Loading...
HomeMy WebLinkAbout20110057 Ver 1_Stormwater Info_20110118EcoEngineering A division of The John R. McAdams Company, Inc. J 8 w t \ - oos'] THE JAMISON AT BRIER CREEK RALEIGH, NORTH CAROLINA FINAL STORMWA TER MANAGEMENT PLAN DESIGN CALCULATIONS is EPH-10000 ?JAN y Su 2011 ?aosro?p?p? t"ttseeaQe"'I't, ` January 2011 ??A C??? s~`s ?- e • e •; w prr`°d Y ?`W i ? . 3337 55 - ??I 6J •w°pwwww•?w \ 9qs Beth Ihnatolya, PE 0 • The Jamison at Brier Creek Final Stormwater Management Plan Design Calculations Project Description and Summary Located at the northeast quadrant of the I-540 (Northern Wake Expressway)/Aviation Parkway intersection and on the western edge of the Brier Creek Village development between Sellona Street and Aviation Parkway in Raleigh, North Carolina, is the proposed multi-family development currently known as The Jamison at Brier Creek. Proposed development on this 17.79 acre site consists of the construction of approximately 276 units, with amenities, parking, sidewalks, streets, and associated utility and stormwater management improvements. The proposed development is located within the Neuse River basin and will be subject to the stormwater management requirements set forth in Section 10, Chapter 9 of the City of Raleigh regulations. Per City of Raleigh regulations, stormwater management on this site shall address two primary issues: (1) peak discharge rates and (2) water quality management. 1. Stormwater Runoff Controls [Section 10-90231 (a) Runoff limitation Following the application of this regulation, the peak stormwater runoff leaving any site for the two-year and ten-year storms shall be no greater for post- development conditions than pre-development conditions. The same • methodologies used to calculate Stormwater runoff must be used for both pre- development and post-development conditions. For any land disturbing activity on sites, as defined in Part 10 Chapter S, between S and 15 acres in size the peak Stormwater runoff leaving the site at each discharge point for the two-year storm and ten-year storm shall be no greater during construction than for pre-development conditions. For any land disturbing activity on sites, as defined in Part 10 Chapter S, greater than 15 acres in size the peak stormwater runoff leaving the site at each discharge point for the two-year storm, ten-year storm, and twenty- five-year storm shall be no greater during construction than for pre-development conditions. However, this regulation shall not be applicable when the development site conforms to all of the following: (1) The disturbed acreage is less than five (S) acres; (2) The two-year peak discharge for the disturbed condition, for all points of discharge, is less than ten (10) percent of the peak discharge from the contributing watershed as measured at the nearest receiving watercourse. 0 • (b) Exemptions In addition to those activities exempted by §10-9003(b) and §10-9021, the stormwater runoff control requirements of this section shall not apply to one (1) or more of the following: (1) The increase in peak stormwater runoff between pre-development and post-development conditions for the two-year and ten-year and twenty- five-year storms is ten (10) per cent or less at each point of discharge. (2) The maximum impervious surface coverage of the lot, including any existing impervious surfaces, is no more than fifteen (15) per cent and the remaining pervious portions of the lot are utilized to convey and control the stormwater runoff of the lot to the maximum extent practical. Any lot which is exempted from the runoff control requirements by subsection (b)(2), shall comply with all the requirements of subsection (a) whenever: a. The exempted lot is subdivided; or b. The exempted lot size is reduced by recombination; or c. Impervious surfaces on the exempted lot equal or exceed fifteen • (15) per cent. (3) Compliance with the runoff limitations in subsection (a) above would result in greater adverse downstream impact, such as local flooding, as determined by City approved engineering studies. (4) Compliance with the ten year storm and twenty-five-year storm runoff limitations in subsection (a) above results in no benefit to current and future downstream development, as determined by City-approved engineering studies. Projects exempted by subsection (b) shall protect all affected lands and receiving watercourses from accelerated erosion as defined in Chapter S, Part 10. 2. Nitrogen Reduction [Section 10-90221 (a) Requirements Unless otherwise exempted by §§10-9003(b) and 10-9021, following the application of this regulation *, no development nor any expansion of an existing development, use, facility, building, structure, nor any new or expanded vehicular • surface area shall contribute a nitrogen export load exceeding three and six- tenths (3.6) pounds per acre per year. (b) Payment to North Carolina Riparian Buffer Restoration Fund as an offset Developers shall have the option of offsetting their nitrogen export load limitations of subsection (a) above by paying monies to the North Carolina Riparian Buffer Restoration Fund based on the latest fee adopted by the State. For residential development, a one-time offset payment may be paid to the North Carolina Riparian Buffer Restoration Fund to bring the nitrogen export load down from six (6) pounds per acre per year to three and six-tenths (3.6) pounds per acre per year. For all other developments, a one-time offset payment may be paid to the North Carolina Riparian Buffer Restoration Fund to bring the nitrogen export load down from ten (10) pounds per acre per year to three and six-tenths (3.6) pounds per acre per year. Installation of City approved stormwater control measures or payments or a combination of both may be used. Residential developments which exceed nitrogen export loads of six (6) pounds per acre per year and other developments which exceed nitrogen export loads of ten (10) pounds per acre per year must install City approved stormwater control measures to reduce the nitrogen export load of their development to the applicable six (6) or ten (10) pounds per acre per year limitation to become eligible for payment offsets. All payments are to be paid to the North Carolina Riparian Buffer Restoration Fund at the time of subdivision recordation for those subdivisions with an approved unified off-site stormwater control facilities plan. • For all other developments, payments shall be paid to the North Carolina Riparian Buffer Restoration Fund prior to the issuance of applicable development permits. This report contains the final design calculations detailing the expected stormwater impacts as a result of the proposed development, along with final design of the stormwater management facilities that will be used to mitigate the impacts. The sediment and erosion control measures for this project are designed to detain the 2-year, 10-year, and 25-year design storms as per the NCDENR Erosion Control Guidelines. Calculation Methodology 1. Rainfall data for the Raleigh, NC region is from NOAA Atlas 14. This data describes a depth-duration-frequency (DDF) table describing rainfall depth versus time for varying return periods in the Raleigh, NC area. These rainfall depths are input into the meteorological model within HEC-HMS for peak flow rate calculations. Please reference the rainfall data section within this report for additional information. 2. Using maps contained within the Wake County Soil Survey, the on- and off-site soils were determined to contain hydrologic soil group (HSG) `B' soils, HSG `C' soils, and HSG `D' soils. Since the method chosen to compute both pre- and post- development peak flow rates and runoff volumes is dependent upon the soil type, care was taken when selecting the appropriate Soil Conservation Service Curve Number (SCS CN). 0 Within each sub-basin, a proportion of each soil group was determined using • NRCS Soil Survey Maps. Once a proportion was determined, a composite SCS CN was computed for each cover condition. For example, the pre-development condition of Sub-basin #7 consists of approximately 62.5% HSG `C' soils and 37.5% HSG `D' soils. Therefore, for the open area cover condition, the composite SCS CN is computed as follows (assuming good condition): Composite Open SCS CN= (0.625*74) + (0.375*80) = 76 This type of calculation was done for each of the studied sub-basins in the pre- and post-development condition in an effort to accurately account for the difference in runoff between HSG `B' soils, HSG `C' soils, and HSG `D' soils. 3. The time of concentration was calculated using SCS TR-55 (Segmental Approach, 1986). The Tc flow path was divided into three segments: overland flow, concentrated flow, and channel flow. The travel time was then computed for each segment, from which the overall time of concentration was determined by taking the sum of each segmental time. 4. The time of concentrations to the proposed stormwater facilities are assumed to be 5 minutes in the post-development condition. This is a conservative assumption. 5. The off-site topography used in the analysis was obtained from LIDAR information. Please refer to the pre- and post-development watershed maps for more information. The on-site topography used in the analysis was provided by The John R. McAdams Company, Inc. • 6. HEC-HMS Version 2.2.1, by the U.S. Army Corps of Engineers, is used to generate post-development peak flow rates and model the proposed stormwater management facilities. 7. Pondpack Version 8.0, by Haestad Methods, is used to generate the stage- discharge rating curve for the proposed stormwater management facilities. This rating curve is then input into HEC-HMS for routing calculations. 8. The stage-discharge rating curve, stage-storage rating curve, and stage-storage function for the proposed stormwater management facilities were all generated outside of HEC-HMS and then input into HEC-HMS for preliminary routing calculations. 9. For 100-year storm routing calculations, a "worst case condition" was modeled in order to insure the proposed facilities would safely pass the 100-year storm event. The assumptions used in this scenario are as follows: The starting water surface elevation in the proposed wetlands, just prior to the 100-year storm event, is at the top of riser elevation. This scenario could occur as a result of a clogged siphon or a rainfall event that lingers for several days. This could also occur as a result of several rainfall events in a series, before the inverted siphon has an opportunity to draw down the storage pool between NWSE and the riser crest elevation. • 2. A minimum of approximately 1.0-ft of freeboard was provided between • the peak elevation during the "worst case" scenario and the top of the dam for the facilities. 10. Water quality sizing calculations for the proposed wetlands was performed in accordance with the N.C. Stormwater Best Management Practices manual (NCDENR July 2007). The wetland surface areas were sized using the runoff volume computed using the Simple Method and a maximum ponding depth of 12- inches. 11. Nitrogen export calculations are computed using Method 2 from the City of Raleigh Storm Drainage Manual. This method uses known footprint areas of wooded, open, and impervious surfaces. Please note that since the development proposed on this site will be classified as "other development" with regards to nitrogen export calculations, the site will be required to adhere to a maximum nitrogen export of 10.0 lbs/ac/yr before' a one-time offset payment to the N.C. Ecosystem Enhancement Program will be allowed by the City of Raleigh. Discussion of Results If the development on this tract is built as proposed within this report, then the requirements set forth in Section 10, Chapter 9 of the City of Raleigh regulations will be met with the proposed stormwater management facilities. However, modifications to the proposed development may require that this analysis be revised. Some modifications that would require this analysis to be revised include: • 1. The proposed site impervious surface exceeds the amount accounted for in this report. 2. The post-development watershed breaks change significantly from those used to prepare this report. The above modifications may result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward. 0 BRIER CREEK APARTMENTS SUMMARY OF RESULTS B. IHNATOLYA, PE EPH-10000 1/6/2011 . SUBBASIN #1 Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year 1.2 0.7 -41.7% 0.7 10-Year 3.0 2.0 -33.3% 2.0 SUBBASIN #2 Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year 0.4 0.3 -25.0% 0.3 10-Year 0.7 0.5 -28.6% 0.5 SUBBASIN #3 Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year 33.3 29.7 -10.8% 60.9 10-Year 52.6 52.5 -0.2% 87.3 SUBBASIN #4 Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year 1.7 0.0 -100.0% 0.0 10-Year 3.4 0.0 -100.0% 0.0 SUBBASIN #5 • Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year 2.2 2.2 0.0% 2.2 10-Year 4.3 3.5 -18.6% 3.5 SUBBASIN #6 Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year 0.6 0.1 -83.3% 0.1 10-Year 1.3 0.2 -84.6% 0.2 SUBBASIN #7 Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year 10.0 6.6 -34.0% 31.3 10-Year 17.7 15.1 -14.7% 45.3 SUBBASIN #8 Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year 0.9 0.6 -33.3% 0.6 10-Year 1.6 1.0 -37.5% 1.0 SUBBASIN #9 Return Period Pre Development [cfs] Post Development w/Detention [cfs] % Increase [%] Post Development w/out Detention [cfs] 2-Year • 0.6 0.6 0.0% 0.6 10-Year 1.1 0.9 -18.2% 0.9 BRIER CREEK APARTMENTS SUMMARY OF RESULTS EPH-10000 B. IHNATOLYA, PE 1/6/2011 US= I • Total Nitrogen Analysis Area = 17.79 acres Max. TN-Export w/o Offset Payment = 64.04 lbs/yr 3.60 lbs/ac/yr Computed TN-Export After Treatment = 123.91 lbs/yr 6.97 lbs/ac/yr TN-Export Requiring Offset Payment = 59.87 lbs/yr Facility Lifetime = 30 years TN-Export Reauirin2 Offset Payment = 1796.11 Ibs Design Drainage Area = 7.80 acres Design Impervious Area = 4.94 acres Top of Dam = 350.00 ft Orifice Diameter = 2 inches Orifice Invert = 346.00 ft Riser Size = 4x4 ft Riser Crest = 347.80 ft is Barrel Diameter = 24 inches # of Barrels = 1 Invert In = 343.20 feet Invert Out = 342.40 feet Length = 70 feet Slope = 0.0114 ft/ft Return Period Inflow [cfs] Outflow [cfs] PeakfWSEL Freeboard [ft] 2-Year 33.03 3.90 347.87 2.13 10-Year 45.89 19.31 348.29 1.71 100-Year 58.84 28.31 348.80 1.20 100-Year WC 58.84 28.58 348.92 1.08 C BRIER CREEK APARTMENTS SUMMARY OF RESULTS EPH-10000 • Design Drainage Area = 8.12 acres Design Impervious Area = 4.13 acres Top of Dam = 363.00 ft Orifice Diameter = 2 inches Orifice Invert = 358.00 ft Riser Size = 4x4 ft Riser Crest = 360.40 ft Barrel Diameter = 24 inches # of Barrels = 1 Invert In = 354.30 feet Invert Out = 354.00 feet Length = 50 feet Slope = 0.0060 ft/ft B. IHNATOLYA, PE 1/6/2011 Return Period Inflow [cfs] Outflow [cfs] PeakfWSEL Freeboard [ft] 2-Year 31.02 6.58 359.80 3.20 10-Year 44.81 14.88 360.63 2.37 100-Year 59.02 34.51 361.11 1.89 100-Year WC 59.02 38.05 361.47 1.53 r? • • 1 MISCELLANEOUS SITE DATA 2 PRECIPITATION DATA 3 WATERSHED SOIL DATA PRE-DEVELOPMENT 4 HYDROLOGIC CALCULATIONS POST-DEVELOPMENT 5 HYDROLOGIC CALCULATIONS NITROGEN EXPORT 6 CALCULATIONS FINAL STORMWATER MANAGEMENT FACILITY DESIGN 7 CALCULATIONS (STORMWATER WETLAND #1) FINAL STORMWATER MANAGEMENT FACILITY DESIGN 8 CALCULATIONS (STORMWATER WETLAND #2) • MISCELLANEOUS SITE DATA 0 THE JAMISON AT BRIER CREEK EPH-10000 Name of Stream Description Curr. Class Date Basin Stream Index # Beaverdam Creek From source to C;NSW 05/01/88 Neuse 27-33-15 Crabtree Creek thwest Prong From source to C;NSW 05/01/88 Neuse 27-33-15-1 ?verdam Creek Beaverdam Creek Southeast Prong From source to C;NSW 05/01/88 Neuse 27-33-15-2 Beaverdam Creek Beaverdam Creek Oxford Branch From source to C;NSW 05/01/88 Neuse 27-33-16 Crabtree Creek Big Branch From source to C;NSW 05/01/88 Neuse 27-33-17 Crabtree Creek Hog Pen Branch From source to dam at B;NSW 05/01/88 Neuse 27-33-17-1-(1) Doak Day Camp Lake Hog Pen Branch From dam at Doak Day C;NSW 05/01/88 Neuse 27-33-17-1-(2) Camp Lake to Big Branch Pigeon House From source to C;NSW 05/01/88 Neuse 27-33-18 Branch Crabtree Creek Williamson Branch From source to Pigeon C;NSW 05/01/88 Neuse 27-33-18-1 House Branch Cemetery Branch From source to Pigeon C;NSW 05/01/88 Neuse 27-33-18-2 House Branch Bridges Branch From source to C;NSW 05/01/88 Neuse 27-33-19 Crabtree Creek Turkey Creek From source to C;NSW 05/01/88 Neuse 27-33-2 Crabtree Creek Marsh Creek From source to C;NSW 05/01/88 Neuse 27-33-20 Crabtree Creek man Lake Entire lake and C;NSW 05/01/88 Neuse 27-33-20-1 connecting stream to Marsh Creek Pews Pond Entire pond and C;NSW 05/01/88 Neuse 27-33-20-2 connecting stream to Marsh Creek Longview Branch From source to C;NSW 05/01/88 Neuse 27-33-21 Crabtree Creek Carolina Lake Entire lake and C;NSW 05/01/88 Neuse 27-33-22 connecting stream to Crabtree Creek Coles Branch From source to C;NSW 05/01/88 Neuse 27-33-3 Crabtree Creek South Fork Coles From source to Coles C;NSW 05/01/88 Neuse 27-33-3-1 Branch Branch Brier Creek From source to C;NSW 05/01/88 Neuse 27-33-4 Crabtree Lake, Crabtree Cr. Little Brier From source to Brier C;NSW 05/01/88 Neuse 27-33-4-1 Creek Creek Stirrup Iron From source to Brier C;NSW 05/01/88 Neuse 27-33-4-2 Creek Creek Black Creek From source to C;NSW 05/01/88 Neuse 27-33-5 Crabtree Lake, • Crabtree Cr. Page 8 of 13 2010-09-11 07:08:53 Copyright (C) 1998, Maptech, Inc C_ Y .. L ? CU 4? i?+ t0 L C t0 C O x"03 °o ? ?' a^ uL a°i3 v a?i o ° n LA M E 0 In .2 E K 41 CL .. a E vovw Lv0 C) aj Qt ?. a aL 9 e (A N a rn Ul A J 4 }' Q a ON •$ A CL m y u E `v °` ° >` w `m ro o Q c A ? dt « E a U) L to A O !t, y. O 9 A 6 x m « ? E q f aJ n O O LY 4 ?. t 3 = QI a -? to E a N 4-. tm ''' d le 0 o- L- 6 CL C U 0) .ye v T a '4 a -C w O :' VS ; to m O C aJ p O E ? u a w Vi d z u .y x -j 'A i O a to a v? m V) :3 (M mv U U 9 3 V) z a? m 7 41 Z S C Y t0 D a L 41 Y m 0 V, po r-I vo Z N C 7 0 U 0 a Y U f i I S f3 I 1 kt I ?n N 0 0 N O O N U Q U z a 0 0 z Yc C Q L H H 0. a 41 "_ N Ul E ns rn 2 a 16 U J N w in io t a t v? 1 t? ??L r? PRECIPITATION DATA 0 0 THE JAMISON AT BRIER CREEK EPH-10000 Precipitation Frequency Data Server POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAH ATLAS 14 •, T.- • North Carolina 35.5994990 N 78.8104415 W 351 feet from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 2, Version G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2004 Extracted: Mon Nov 22 2010 Page 1 of 4 ARI* 5 10 15 30 60 120 12 24 10 20 30 45 60 (years) min min min min min min 3 hr 6 hr hr hr 48 hr 4 day 7 day * Upper bound of the 90% confidence interval Precipitation Fre quency Estimates (inches) ARI 5 10 F115 F30, F60, 120 3 6 12 24 F 4 7 [ ] F20 30 45 min I min min hr hr hr hr hr day day [:] day day day day 1:1 0.43 0.69 0.86 1.18 1.47 1.71 1.81 2.19 2.59 3.04 3.52 3.91 4.51 5.12 6.82 8.45 10.71 12.81 0 0.50 0.81 1.01 1.40 1.75 2.04 2.17 2.62 3.10 3.67 4.23 4.68 5.37 6.08 8.05 9.93 12.52 14.94 0 0.58 0.92 1.17 1.6 6 2.13 2.52 2.68 3.23 3.83 4.58 5.24 5.75 6.52 7.29 9.50 11.53 14.32 1 6.83 10 0.64 1.02 1.29 1.8 7 2.44 2.90 3.11 3.75 4.48 5.28 6.01 6.59 7.43 8.23 10.66 12.77 15.72 18.33 25 0.70 1.12 1.42 2.10 2.80 3.37 3.65 4.41 5.31 6.25 7.05 7.73 8.66 9.52 12.24 14.43 17.56 20.22 50 0.75 1.19 1.51 2.27 3.08 3.75 4.10 4.97 6.00 7.00 7.86 8.63 9.64 10.54 13.49 15.70 18.97 21.68 100 0.79 1.25 1.59 2.43 3.35 4.12 4.54 5.52 6.72 7.78 8.70 9.55 10.64 11.56 14.77 16.98 20.38 23.08 200 0.82 1.31 1.65 2.571 3 60 4.47 4.98 6.10 7.47 8.58 9.53 10.47 11.67 12.62 16.07 18.26 21.75 24.43 500 0.86 1.36 1.72 2.73 3.92 4.93 5.58 6.87 8.50 9.66 10.67 11.74 13.06 14.03 17.83 19.98 23.59 26.18 1000 0.89 1.41 1.76 2.86 4.17 5.30 6.08 7.53 9.40 10.52 11.54 12.74 14.15 15.13 19.22 21.29 24.98 27.48 [it: upper uounu or me conoaence mtervar at vu -/o commence never is me varue wmcn o% or me srmmateo quanvie vawes for a given frequency are greater than. " These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval. Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero. * Lower bound of the 90% confidence interval Precipitation Frequency Estimates (inches) ARI** 5 10 15 30 60 120 3 6 12 11 24 M41 4 7 [:]F 20 45 IWM s) min min min min !JLTi2j min hr hr hr hr day day da y day day day WI 0.36 0.58 0.72 0.99 1.24 1.43 1.52 1.85 2.20 2.66 3.05 3.42 3.97 4.51 6.03 7.49 9.62 11.59 http://dipper.nws.noaa.gov/cgi-binlhdscibuildout.perl?type=pf&units=us&series=pd&statename=NORT... 11/22/2010 precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval. P?fier to NOAA Atlas 14 Document for more information. NOTE: Formatting forces estimates near zero to appear as zero. Precipitation Frequency Data Server Partial duration based Point Precipitation Frequency Estimates - Version: 3 35.8994990 N 78.8104415 W 351 Ft 26 25 24 23 22 21 20 19 18 v 5 W5 ° 14 0 13 12 ;; 11 10 9 8 7 6 5 4 3 2 1 0 1 2 Mon Nov 22 08:40:49 2010 • Duration 5-min - 30-min 3-hr -e 24-hr 7-day 30-day -e- 10-min -+- 60-min t:- 6-hr 48-hr= 10-day - 45-day 15-min - 120-m 12-hr 4-day 20-day 60-day --9- 5 10 25 50 100 200 500 1000 Average Recurrence Interval (years) Page 2 of 4 http://dipper.nws. noaa.gov/cgi-binlhdsc/buildout.perl?type=pf&units=us&series=pd&statename=NORT... 11/22/2010 These precipitation frequency estimates are based on a partial duration maxima series. ARt is the Average Recurrence Interval. Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero. Text version of ta? Precipitation Frequency Data Server Partial duration based Point Precipitation Frequency Estimates - Version: 3 35.8994990 N 78.$i04415 W 351 ft G? - , - 24 23 22 21 20 19 18 17 16 15 14 13 12 11 .Q 10 0 9 L 8 a 7 6 5 4 3 2 1 0 a C C C ? £ E £ £ in aO10 i"07 Mon Nov 22 08:40:49 2010 t L L .LC L t 6 R' 1 4 I£ N M tp 00 N 00 "r W 06 '1 '1 Tj 1 a ' 1 a 1 O O e-1 vi e4 Cd Cl) "T CO It W) rx O 10 O O 10 O `D M Duration 14 -4 N M a W Average 1 -.o. 2 -+ -X- 10 -4- 500 Related Information Maps & Aerials Click here to see topographic maps and aerial photographs available for this location from Microsoft Research Mans Watershed/Streamflow Information Page 3 of 4 Click here to see watershed and streamflow information available for this location from the U.S. Environmental Protection Agency's site Climate Data Sources National Climatic Data Center (NCDC) database Locate NCDC climate stations within: +/-30 minutes 1 or +/-1 degree of this location. Digital ASCII data can be obtained directly from NCD4C. Note: Precipitation frequency results are based on analysis of precipitation data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information ab=the stations used in this study, please refer to the matching documentation available at the PF Document page National Oceanic and Atmospheric Administration http://dipper.nws.noaa.gov/cgi-binlhdsc/buildout.perl?type=pf&units=us&series=pd&statenaine=NORT... 11/22/2010 Precipitation Frequency Data Server POINT PRECIPITATION FREQUENCY ESTIMATES F ROM NOAA ATLAS 14 North Carolina 35.8994990 N 78.8104415 W 351 feet from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 2, Version 3 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2004 Extracted: Mon Nov 22 2010 Page 1 of 4 * Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches) AEP** (1-in- 5 min 10 in 15 min 30 min 60 min 120 min 3 hr 6 hr 12 hr 24 hr 48 hr 4 day 7 day 10 day 20 day 30 day :day 5 60 day 0 0.46 0.74 0.93 1.29 1.62 1.88 2.00 2.41 2.85 3.38 3.90 4.31 4.95 5.60 7.41 9.14 11.53 13.75 0.56 0.90 1.14 1.62 2.08 2.46 2.62 3.15 3.74 4.47 5.12 5.62 6.38 7.13 9.29 11.27 14.00 16.45 10 0.63 1.01 1.28 1.86 2.42 2.87 3.08 3.71 4.43 5.23 5.95 6.53 7.35 8.15 10.56 12.64 15.57 18.15 25 0.70 1.12 1.42 2.10 2.79 3.36 3.63 4.39 5.29 6.22 7.03 7.70 8.62 9.48 12.14 14.37 17.49 20.14 50 0.75 1.19 1.50 2.2b 3.07 3.74 4.08 4.95 5.98 6.97 7.83 8.59 9.60 10.49 13.44 15.63 18.89 21.59 100 0.79 1.25 1.58 2.42 3.33 4.10 4.52 5.50 6.69 7.75 8.66 9.51 10.60 11.52 I 14.71 16.91 2030 . 22.99 200 0.82 1.30 1.64 2.56 3.59 4.46 4.96 6.07 7.44 8.55 9.49 10.43 11.62 12.57 16.01 18.19 21.66 24.34 500 0.86 1.36 1.71 2.72 3.90 4.91 5.56 6.84 8.47 9.62 10.63 11.69 13.01 13.97 17.76 19.90 23.49 26.08 1000 0.89 1.40 1.76 2.84 4.15 5.28 6.05 7.49 9.36 10.48 11.50 12.69 14.09 15.07 19.14 21.20 '4,?8 ?7.37 F,-. uuf I' ' "1-1 Ucll,e 11K=Val at ve%oewmuaaax over is are value wnicn a w or me srmuratea quanare values Tor a given Trequency are greater tnan. These precipitation frequency estimates are based on an annual maxima series. AEP is the Annual Exceedance Probability. Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero. * Lower bound of the 90% confidence interval Precipitation Frequency Estimates (inches) -EP** (1-in- 5 10 15 30 60 120 3 6 12 24 48 4 7 10 20 30 45 60 min min min min min min hr hr hr hr hr day day day day day day day 0.39 0.62 0.78 1.08 1.36 1.58 1.68 2.04 2.43 2.95 3.39 3.77 4.36 4.93 6.54 8.10 10.37 12.44 http://dipper.nws.noaa.gov/cgi-binlhdsclbuildout.perl?type=pf&units=us&series=am&statename=NORT... 11/22/2010 * These precipitation frequency estimates are based on an annual maxima series. AEP is the Annual Exceedance Probability. Prefer to NOAA Atlas 14 Document for more information. NOTE: Formatting forces estimates near zero to aooear as zero. Precipitation Frequency Data Server Page 2 of 4 L 5? 0.48 1 10.76 0.96 1.37 1.76 2.05 2.19 2.66 3.18 3.91 4.45 4.91 5.61 6.28 8.19 9.97 12.58 14.88 n 0.53 0.85 1.08 1.56 2.03 2.39 2.57 3.13 3.76 4.57 5.16 5.69 6.47 7.18 9.28 11.18 13.98 16.37 0.59 0.94 1.19 1.76 2.34 2.78 3.02 3.69 4.47] F54-1] F7 6. 7.56 8.32 10.69 12.66 15.66 18.13 50 0.62 0.99 1.26 1.90 2.57 3.09 3.38 4.14 5.04 6.05 6.75 7.43 8.38 9.18 11.73 13.74 16.87 19.38 100 0.65 1.04 1.31 2.01 2.77 3.36 3.71 4.5 7 5.59 6.70 7.43 8.18 9.20 10.03 12.77 14.80 18.03 20.56'1' 200 0.68 1.08 1.36 2.11 2.96 3.63 4.05 5.00 6.15 7.35 8.11 8.94 10.03 10.89 13.82 15.85 1918 .21.70 500 0.70 1000 0.72 1.11 1.40 2.23 3.20 1.14 1.43 2.31 3.37 3.97 4.48 4.23 4.83 5.56 6.88 8.23 9.02 9.96 11.15 12.03 6.01 7.49 8.91 9.72 10.73 12.01 12.89 15.23 17.21 20.66 23.15 16.31 18.25 21.77 24.21 I he lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are lea than. These precipitation frequency estimates are based on an annual maxima series. AEP is the Annual Exceedance Probability. Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero. Text version of tables Annual Maxima based Point Precipitation Frequency Estimates - Version: 3 35.8994990 N 78.8104415 W 351 fit 26 25 24 23 22 21 20 19 18 17 L 16 5 4 0 13 12 4 10 11 Q 10 .8 9 L 8 a 7 6 5 4 3 2 1 0 2 5 Mon Nov 22 08:41:58 2010 • Duration 5-min - 30-min 3-hr -0- 24-hr 7-day + 30-day - J-i0-min -+- 60-min 6-hr 48-hr 10-day -: 45-day 15-min 120-m 12-hr 4-day 20-day 60-day --e- 10 25 50 100 200 500 1000 Annual Exceedance Probability (1-in-Y) http://dipper.nws.noaa.gov/cgi-binlhdsclbuildout.perl?type=pf&units=us&series=am&statename=NORT... 11/22/2010 Precipitation Frequency Data Server 05 24 23 22 21 20 19 18 17 -45- 16 15 14 13 12 11 10 9 L 6 a 7 6 5 4 3 2 1 0 Annual Maxima based Point Precipitation Frequency Estimates - Version: 3 35.8994990 N 78.6104415 W 351 ft c E ICS c E O A c I ICS 14 c O M Mon Nov 22 06: 41:58 2010 • 1 1 CV M It ?O OD N QO ct 0 CO I I I I I I I I 1 I O O 11 1-1 rl N M d• Cl) 'Cr 10 1- O ICS O O In O w v, Duration ?q -4 c1 m qt 5O Annual Exceedance Probability U-in-Y) 1 in 2 + 1 in 10 1 in 50 1 in 200 1 in 1000 1 in 5 - 1 to 25 -B 1 in 100 - 1 in 500 Related Information Maps & Aerials Click here to see topographic maps and aerial photographs available for this location from Microsoft Research Mans Watershed/Streamflow Information Page 3 of 4 Click here to see watershed and streamflow information available for this location from the U.S. Environmental Protection Agency's site Climate Data Sources National Climatic Data Center (NCDC) database Locate NCDC climate stations within: +/-30 minutes I or +/-1 degree I of this location. Digital ASCII data can be obtained directly from NCDC. Note: Precipitation frequency results are based on analysis ofprecipitation data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information Aethe stations used in this study, please refer to the matching documentation available at the PF Document page r)artment of Commerce National Oceanic and Atmospheric Administration http://dipper.nws.noaa.gov/cgi-binlhdsclbuildout.perl?type=pf&units=us&series=am&statename=NORT... 11/22/2010 • WATERSHED SOIL DATA 0 0 THE JAMISON AT BRIER CREEK EPH-10000 N G? U 1 t tU r If r NI r ' : 1 ? j ,y'7 ?._ r.? ?1 ?'? x: r? ? ?„r ? ? ? !' , ? r •,.. ??? Ilt ? I ? ?,.I a ? ,? ? ? 1 A (,,h ?. J 12 ? ? f 1 (15 1 C? F i ", 1 1 1 ? 1 \\ ?'? r? at if L+ l ,V-, ??? (?,.., \V A Gl ,. ,... i,1( f ?• ..? ;. Ali A !`.,' v - .+ i'1 `` v? 4, 4Q fir r 1 , V, Al , r ? , (?av I ? ? i •? ? ? ,, , ? ? i -. A td?, ? ii ,.. r r l A Xl? { ,. \?? { *?• ,:.-.?J,? ('..-.. ?.s 1 ?.\? u' - j? ? ' c ' \ ` ??'? t\ \ \ h < r , ,fie. 7` .i. ?l ?'"-'.. r \\\\ `\ ` ? }-., { ? .?'.., s?.?r "t .r ? jtl! 1 ? ' r ? +v? ( ?? ` 1r c a ? ,-,.? 1 ? . _ r r , ti "i \\\ 77-- Q , t. t f r , , I ? O,I 4a' to ?? ? I ! LJC? 1 ` 'AA M ?? P;?1 LLJ Jar. ?;. 1 r ?O Q N h1 tX1 ? W ?J ? (j v4 1 \ I vl u, ?/ 1 1 R ' rr ?I 1 ,r fa'A 0009 - ?I!rl I • 0 0001 s 00 C 000 4 000 9 000 z 0 laaj 0009 al!N I :? 0 0001 N d ? U ' tl +r r7 to _' y' ? h .•' ?j j _. ? ? / ? / 1 ?O 000 e l?Y 00o s u I U i / °i LEI f.Ji ?l eu ?I i V 41 I V lL ! I • ?? C c r?1F L / 1• i r f I r ,, 1 I ?' ( ?,p r- h "` /j.r`j,,{-fti1\1 ( 1v ?" ? ,!; .. i•CJ \ '+ r`S p /N a "'P ,r r. ?? ? '? \ F dl 1 :Z,! f jl i )l { ? I? ` 2f " 1 ??I ?A err m xt? 1; us F i mX m v3?s7ed d?{ A # 4 1. ?? ? ;{1 t iL 9 f?) P O / OD ti 1 N? a Jv °? s 5r? 6 ?1 f") f? +'_) `, `?_?• "_- .%..' ?'?J,Mri _, ??•? /? ?' V\+7•?y \"\:??vv? ?1 ! _ _'C? ??+' yea :?? ? ? ? ec f ? d ?, f ?? ,,.T? "'? S ,r?J ?i • ? ? ??.' t ? ?l ,fl ?y ._ r t ? ' ? J ?,.? ? ? ` ? -? Ilk' ?*tY Y I e , S (, coy ? ?? \ f Ilk, W1. • • ? ?`r' d .:J•?iCh ti C1 Pt:?'? n? BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #1 • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification Cm Chewacla Soils B CrC2 Creedmoor Sandy Loam C References: 1 SOIL SURVEY: WAKE COUNTY. NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • 0 BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #2 • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C References: 1 SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #3A • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrB Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C Ws132 White Store Sandy Loam D WsE White Store Sandy Loam D References: SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. E BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #3B • _> Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification CrB2 Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C CrE Creedmoor Sandy Loam C Gu Gullied Land D WsB2 White Store Sandy Loam D WVD3 White Store Clay Loam D SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • :7 BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #4 • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrB Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C References: SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. E 0 BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #5 • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrB Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C CrE Creedmoor Sandy Loam C References: 1 SOIL SURVEY: WAKE COUNTY. NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • • BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #6 • _> Site soils from the Wake County Soil Survey References: 1 2 • Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C CrE Creedmoor Sandy Loam C SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). SCS TR-SS. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #7 • _> Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification CrB Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C CrE Creedmoor Sandy Loam C Gu Gullied Land D WsB2 White Store Sandy Loam D WvD3 White Store Clay Loam D SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • .7 BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 PRE-DEVELOPMENT-SUBBASIN #8 • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C WvD3 White Store Clay Loam D References: SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. 11 0 BRIER CREEK APARTMENTS WATERSHED SOIL EPH-10000 INFORMATION PRE-DEVELOPMENT-SUBBASIN #9 • _> Site soils from the Wake County Soil Survey B. IHNATOLYA, PE 11/22/2010 Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C WsE White Store Sandy Loam D References: 1 SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • is BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 POST-DEVELOPMENT-SUBBASIN #1 • => Site soils from the Wake County Soil Survey Symbol Name Soil Classification Cm Chewacla Soils B CrC2 Creedmoor Sandy Loam C References: SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • 0 BRIER CREEK APARTMENTS WATERSHED SOIL EPH-10000 INFORMATION POST-DEVELOPMENT-SUBBASIN #2 • => Site soils from the Wake County Soil Survey B. IHNATOLYA, PE 11/22/2010 Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C References: 1 SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. 0 0 BRIER CREEK APARTMENTS WATERSHED SOIL EPH-10000 INFORMATION POST-DEVELOPMENT-SUBBASIN #3A-TO POND • _> Site soils from the Wake County Soil Survey B. IHNATOLYA, PE 11/22/2010 Symbol Name Soil Classification Cm Chewacla Soils B CrB Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C Ws132 White Store Sandy Loam D WsE White Store Sandy Loam D References: SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. 0 BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 POST-DEVELOPMENT-SUBBASIN #3A-BYPASS • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrB Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C Ws132 White Store Sandy Loam D References: 1 SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. t 0 BRIER CREEK APARTMENTS WATERSHED SOIL EPH-10000 INFORMATION POST-DEVELOPMENT-SUBBASIN #311 • _> Site soils from the Wake County Soil Survey B. IHNATOLYA, PE 11/22/2010 Symbol Name Soil Classification CrB Creedmoor Sandy Loam C CrB2 Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C CrE Creedmoor Sandy Loam C Gu Gullied Land D Ws132 White Store Sandy Loam D WVD3 White Store Clay Loam D References: SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. 0 0 BRIER CREEK APARTMENTS WATERSHED SOIL EPH-10000 INFORMATION POST-DEVELOPMENT-SUBBASIN #5 • _> Site soils from the Wake County Soil Survey B. IHNATOLYA, PE 11/22/2010 Symbol Name Soil Classification CrB Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C CrE Creedmoor Sandy Loam C References: SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. E?, BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 POST-DEVELOPMENT-SUBBASIN #6 • => Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C CrE Creedmoor Sandy Loam C References: 1 SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. 0 BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 POST-DEVELOPMENT-SUBBASIN #7-TO POND • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrB Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C CrE Creedmoor Sandy Loam C Gu Gullied Land D Ws132 White Store Sandy Loam D WvD3 White Store Clay Loam D References: SOIL SURVEY: WAKE COUNTY. NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • 0 BRIER CREEK APARTMENTS WATERSHED SOIL EPH-10000 INFORMATION POST-DEVELOPMENT-SUBBASIN #7-BYPASS is _> Site soils from the Wake County Soil Survey B. IHNATOLYA, PE 11/22/2010 Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C References: 1 SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. 0 0 BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 POST-DEVELOPMENT-SUBBASIN #8 • _> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C WvD3 White Store Clay Loam D References: 1 SOIL SURVEY: WAKE COUNTY. NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. 0 E BRIER CREEK APARTMENTS WATERSHED SOIL B. IHNATOLYA, PE EPH-10000 INFORMATION 11/22/2010 POST-DEVELOPMENT-SUBBASIN #9 • => Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrC2 Creedmoor Sandy Loam C WsE White Store Sandy Loam D References: 1 SOIL SURVEY: WAKE COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. • C PRE-DEVELOPMENT HYDROLOGIC CALCULATIONS 0 0 THE JAMISON AT BRIER CREEK EPH-10000 W o ?, C aN PG ? M y ?j ?O h 7 ?' M Q? O? ?A 00 M L O? M O [? 00 V1 N h M F? .-+ O h o0 .--? ? O ?O O O N ClOlv1 O --: OIOr en el I?IOIel I? SIOIOIOIOIN ONO IO 0 0 0 0 0 0 0 0 O 0 O 1 O O SOO 0 0 0 O 0 O 00100100 0 0 00 0 0 0 a z a O 7 W A a U W GC h Q z 00 ?x H w 'M Iq ::S nI . hI'-,?ININIA O V7 O --? Q O M O O y-i h? O O o0 O h Vl N O O ?nOO--?OI?N--? M 0 0 0 0 0 0 0 0 0 N o?o? o 0 0 0?o?o? lO 00000o000 o0lo0 l0o 0o 0c0 o o00 lOlo00 S 'S O O O N O O O ?D O O 00 0 0 0 G, O O O 0 0 M i C O O O M O O O O O O V ?b OOON OOOIt OO ?o 00 C? a p 000MOOD?OOO O? cM -r 3000-cc0ooc-ooo? u u u u w o- o 0 o g ? o o Oo o,ooooo00 moo v? Q O O O N O 0 0 O O O M ,Fd, 'g Y go a N ? -N M ?O I- 00 T cd ? ? E' H THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS EPH-10000 Pre-development - Subbasin #1 1. SCS CURVE NUMBERS ? HSG Impervious j Open Wooded A 98 39 -- 30 B 98 61 C 1.__..w_ 74 ?. 70 D 98 80 1 77 Assume. HSG'A' = 0.0% HSG'B' = 53.7% HSG'C' = 46.3% HSG'D' = 0.0% Cover Condition SCS CN ; Comments Impervious en ?? _ 67 Assume good condition T Wooded 62 Assume good condition II. PRE-DEVELOPMENT A. Watershed Breakdown Contributing Area SCS CN j Area [acres] Onsite impervious 98 6.66 Onsite open 67 0.37 Onsite wooded 62 1.58 Onsite pond 106 _ 0.00 _._._ Offsite impervious ?Offsite open 67 J 0.01 Offsite wooded 62 _ _ 0.00 ? Offsite pond.: ) .,... ,. _ 100 ,. . ,mi ... 0.00 Total area = 1.96 acres 0.0031 sq.mi. Composite SCS CN = 62.9 % Impervious = 0.0% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Comments B. IHNATOLYA, PE 11/22/2010 Assume good condition - Assume good condition Assumegood condition Assume good condition Length = 100 ft Height = 4.93 ft Slope = 0.0493 ft/ft Manning's n = 0.40 Wooded P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 14.48 minutes 0 Segment 2: Concentrated Flow Length = 155.33 ft Height = 12.88 ft Slope = 0.0829 ft/ft Paved ? = No Velocity = 4.65 ft/sec Segment Time = 0.56 minutes Time of Concentration = 15.03 minutes SCS Lag Time = 9.02 minutes (SCS Lag = 0.6* Tc) 0.1503 hours Time Increment = 2.62 minutes (= 0.29*SCS Lag) • 0 • THE JAMISON AT BRIER CREEK EPH-10000 Assume: HYDROLOGIC CALCULATIONS Pre-development - Subbasin #2 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 100.0% HSG'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Offsite impervious 98 0.00 - Onsite open 74 0.05 Assume good condition Onsite wooded 70 0.30 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = 0.35 acres 0.0005 sq.mi. Composite SCS CN = 70.6 % Impervious = 0.0% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 100 ft Height = 4.57 ft Slope = 0.0457 ft/ft Manning's n = 0.40 Wooded P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 14.93 minutes Time of Concentration = 15.69 minutes SCS Lag Time = 9.41 minutes (SCS Lag = 0.6* Tc) 0.1569 hours Time Increment = 2.73 minutes = 0.29*SCS Lag) B. IHNATOLYA, PE 11/22/2010 Segment 2: Concentrated Flow Length = 148.71 ft Height = 6.12 ft Slope = 0.0411 ft/ft Paved ? = No Velocity = 3.27 ft/sec Segment Time = 0.76 minutes • • THE JAMISON AT BRIER CREEK EPH-10000 Assume: HYDROLOGIC CALCULATIONS Pre-development - Subbasin #3A HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 83.9% HSG'D' = 16.1% Cover Condition SCS CN Comments Impervious 98 Open 75 Assume good condition Wooded 71 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 75 0.57 Assume good condition Onsite wooded 71 5.05 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 75 0.01 Assume good condition Offsite wooded 71 0.00 Assume good condition Offsite and 100 0.00 - Total area = 5.64 acres 0.0088 sq.mi. Composite SCS CN = 71.5 % Impervious = 0.1% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 100 ft Height = 3.16 ft Slope = 0.0316 ft/ft Manning's n = 0.24 Dense Grasses P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 11.49 minutes B. IHNATOLYA, PE 11/22/2010 Segment 2: Concentrated Flow Length = 114.66 ft Height = 10.76 ft Slope = 0.0938 ft/ft Paved ? = No Velocity = 4.94 ft/sec Segment Time = 0.39 minutes • THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE EPH-10000 Pre-development - Subbasin UA 11/22/2010 • Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 660.23 ft 18.73 ft 0.0284 ft/ft 0.045 channel 6.00 sf (3'x2' channel) 7.00 ft (3'x2' channel) 5.03 ft/sec 2.19 minutes Time of Concentration = 14.07 minutes SCS Lag Time = 8.44 minutes (SCS Lag = 0.6* Tc) = 0.1407 hours Time Increment = 2.45 minutes = 0.29*SCS La • is THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS EPH-10000 Pre-development - Subbasin #3B 1. SCS CURVE NUMBERS HSG Impervious j Open Wooded -- A 7 98 39 30 _ _ 61 55 70 7 Ci...__..._.._..98_.._._._ 4 80 Assume. HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 75.7% HSG'D' = 24.3% Cover Condition ? SCS CN ? Comments Impervious ? 98 ? - _ ? Open 75 Assume good condition Wooded 72 Assume good condition II. PRE-DEVELOPMENT A. Watershed Breakdown Contributing Area ' SCS CN -Onsite impervious 98 _ Onsite open _ _ 75 Onsite wooded - 72 Onsite_pond 100 Offsite impervious _ _ 98 Offsite.?pen _ - _ 75 Offsite wooded 72 Offsite pond 100 Total area = 8.04 0.0126 Composite SCS CN = 85.8 % Impervious = 48.8% Area [acres] Comments 0.00 1 - Assume good condition_ 0.00 Assume good condition J _.......0.00 3.92 2.80 __- r Assume good condition 1.32 Assumekood condition 0 00 - acres sq.mi. B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. B. IHNATOLYA, PE 11/22/2010 Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 100 ft Length = 7 ft Height = 4.50 ft Height = 0.20 ft Slope = 0.0450 ft/ft Slope = 0.0286 ft/ft Manning's n = 0.10 Dense Grasses/Smooth S urfaces Paved ? = Yes P (2-year/24-hour) = 3.42 inches (RDU, NC) Velocity = 3.44 ft/sec Segment Time = 4.89 minutes Segment Time = 0.03 minutes • THE JAMISON AT BRIER CREEK EPH-10000 • Segment 3:30" RCP Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Hydraulic Radius = Channel Velocity = Segment Time HYDROLOGIC CALCULATIONS Pre-development - Subbasin #3B Segment 4:30" RCP 532.59 ft Length = 437.24 5.3259 ft Height = 18 0.0100 ft/ft Slope = 0.0412 0.013 RCP Manning's n = 0.013 4.91 sf (Assume a 30" RCP) Flow Area = 4.91 7.85 ft (Assume a 30" RCP) Wetted Perimeter = 7.85 0.63 ft Hydraulic Radius = 0.63 8.38 ft/sec Channel Velocity = 17.00 1.06 minutes Segment Time = 0.43 B. IHNATOLYA, PE 11/22/2010 ft ft ft/ft RCP sf (Assume a 30" RCP) ft (Assume a 30" RCP) ft ft/sec minutes Time of Concentration = 6.41 minutes SCS Lag Time = 3.85 minutes (SCS Lag = 0.6* Tc) 0.0641 hours Time Increment = 1.12 minutes = 0.29*SCS Lag) 0 is E • THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS EPH-10000 Pre-development - Subbasin #4 Assume. HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 100.0% HSG'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 74 0.00 Assume good condition Onsite wooded 70 1.72 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = 1.73 acres 0.0027 sq.mi. Composite SCS CN = 70.0 % Impervious = 0.0% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 100 ft Height = 2.61 ft Slope = 0.0261 ft/ft Manning's n = 0.40 Wooded P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 18.67 minutes B. IHNATOLYA, PE 11/22/2010 Segment 2: Concentrated Flow Length = 273.37 ft Height = 21.81 ft Slope = 0.0798 ft/ft Paved ? = No Velocity = 4.56 ft/sec Segment Time = 1.00 minutes 0 THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE EPH-10000 Pre-development - Subbasin #4 11/22/2010 • Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 100.02 ft 6.00 ft 0.0600 ft/ft 0.045 channel 2.00 sf (2'xF channel) 4.00 ft (2'x1' channel) 5.11 ft/sec 0.33 minutes Time of Concentration = 20.00 minutes SCS Lag Time = 12.00 minutes (SCS Lag = 0.6* Tc) 0.2000 hours Time Increment = 3.48 minutes = 0.29*SCS La C7 • • • THE JAMISON AT BRIER CREEK EPH-10000 Assume. HYDROLOGIC CALCULATIONS Pre-development - Subbasin #5 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 100.0% HSG'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 74 0.18 Assume good condition Onsite wooded 70 1.71 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 1.89 acres 0.0030 sq.mi. 70.4 0.0% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 100 ft Height = 4.67 ft Slope = 0.0467 ft/ft Manning's n = 0.40 Wooded P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 14.80 minutes Time of Concentration = 15.38 minutes SCS Lag Time = 9.23 minutes (SCS Lag = 0.6* Tc) 0.1538 hours Time Increment = 2.68 minutes = 0.29*SCS La B. IHNATOLYA, PE 11/22/2010 Segment 2: Concentrated Flow Length = 194.52 ft Height = 22.87 ft Slope = 0.1176 ft/ft Paved ? = No Velocity = 5.53 ft/sec Segment Time = 0.59 minutes • • 0 THE JAMISON AT BRIER CREEK EPH-10000 Assume. HYDROLOGIC CALCULATIONS Pre-development - Subbasin #6 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 100.0% HSG 'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 74 0.00 Assume good condition Onsite wooded 70 0.59 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = 0.59 acres 0.0009 sq.mi. Composite SCS CN = 70.0 % Impervious = 0.0% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 100 ft Height = 4.60 ft Slope = 0.0460 ft/ft Manning's n = 0.40 Wooded P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 14.89 minutes Time of Concentration = 15.13 minutes SCS Lag Time = 9.08 minutes (SCS Lag = 0.6* Tc) 0.1513 hours Time Increment = 2.63 minutes = 0.29*SCS La B. IHNATOLYA, PE 11/22/2010 Segment 2: Concentrated Flow Length = 63 ft Height = 4.54 ft Slope = 0.0720 ft/ft Paved ? = No Velocity = 4.33 ft/sec Segment Time = 0.24 minutes • • Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 76 0.75 Assume good condition Onsite wooded 73 3.63 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.46 - Offsite open 76 0.77 Assume good condition Offsite wooded 73 0.64 Assume good condition Offsite and 100 0.00 - Total area = 6.25 acres 0.0098 sq.mi. THE JAMISON AT BRIER CREEK EPH-10000 Assume: HYDROLOGIC CALCULATIONS Pre-development - Subbasin #7 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 62.5% HSG'D' = 37.5% Cover Condition SCS CN Comments Impervious 98 Open 76 Assume good condition Wooded 73 Assume good condition A. Watershed Breakdown Composite SCS CN = 75.4 % Impervious = 7.3% B. Time of Concentration Information Time of concentration is calculated using SCS TR-SS. Segment 1: Overland Flow Length = 100 ft Height = 2.77 ft Slope = 0.0277 ft/ft Manning's n = 0.24 Dense Grasses P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 12.11 minutes B. IHNATOLYA, PE 11/22/2010 Segment 2: Concentrated Flow Length = 152.75 ft Height = 10.08 ft Slope = 0.0660 ft/ft Paved ? = No Velocity = 4.14 ft/sec Segment Time = 0.61 minutes 0 • THE JAMISON AT BRIER CREEK EPH-10000 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = HYDROLOGIC CALCULATIONS Pre-development - Subbasin #7 387.71 ft 21.4828 ft 0.0554 ft/ft 0.045 channel 2.00 sf (2'xl' channel) 4.00 ft (2'x1' channel) 4.91 ft/sec 1.32 minutes B. IHNATOLYA, PE 11/22/2010 Time of Concentration = 14.04 minutes SCS Lag Time = 8.42 minutes (SCS Lag = 0.6* Tc) 0.1404 hours Time Increment = 2.44 minutes (= 0.29*SCS Lag) • Segment Time = C? THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS EPH-10000 Pre-development - Subbasin #8 • 1. SCS CURVE NUMBERS HSG Impervious Open Wooded A 98 30 B 98 61 55 C 98 74 ; 70 D 98 80 77 Assume: HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 68.6% HSG'D' = 31.4% Cover Condition - SCS RCN Comments Impervious 1 98 Y Open Y 76 Assume good condition Wooded 72 Assume good condition • 11. PRE-DEVELOPMENT A. Watershed Breakdown B. IHNATOLYA, PE 11/22/2010 Contributing Area i SCS CN Area [acres] 1 Comments Onsite impervious 98 0 00 nsite open 6 0.25 - __. . - ------ - ------ Assume good condition Onsite wooded 72 0.26 1 _ Assume good condition Onsitepond -____.-__ 100 0.00 _ O_site impervious 98 0.00 w _ Offsite open _ 0.00 S 76 Assume good condition Offsite wooded _ v ?72 0.00 Assume good condition Offsite pond 100 0.00 _.? Total area = Composite SCS CN = % Impervious = 0.51 acres 0.0008 sq.mi. 74.0 0.0% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = Height = Slope = Manning's n = P (2-year/24-hour) = Segment Time = 100 ft 6.4228 ft 0.0642 ft/ft 0.24 Dense Grasses 3.42 inches (RDU, NC) 8.66 minutes Segment 2: Concentrated Flow Length = 128.09 ft Height = 11.0772 ft Slope = 0.0865 ft/ft Paved ? = No Velocity = 4.74 ft/sec Segment Time = 0.45 minutes C7 • THE JAMISON AT BRIER CREEK EPH-10000 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = HYDROLOGIC CALCULATIONS Pre-development - Subbasin #8 29.37 ft 1.3036 ft 0.0444 ft/ft 0.045 channel 4.00 sf (2'x2' channel) 6.00 ft (2'x2' channel) 5.32 ft/sec 0.09 minutes B. IHNATOLYA, PE 11/22/2010 Time of Concentration = 9.20 minutes SCS Lag Time = 5.52 minutes (SCS Lag = 0.6* Tc) = 0.0920 hours Time Increment = 1.60 minutes (= 0.29*SCS Lag) • Segment Time = 0 • • • THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS EPH-10000 Pre-development - Subbasin #9 Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C'= 38.1% HSG'D' = 61.9% Cover Condition SCS CN Comments Impervious 98 Open 78 Assume good condition Wooded 74 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 78 0.12 Assume good condition Onsite wooded 74 0.26 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 78 0.00 Assume good condition Offsite wooded 74 0.00 Assume good condition Offsite and 100 0.00 - Total area = 0.38 acres 0.0006 sq.mi. Composite SCS CN = 75.4 % Impervious = 0.0% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 100 ft Height = 4.5621 ft Slope = 0.0456 ft/ft Manning's n = 0.40 Wooded P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 14.94 minutes Time of Concentration = 15.02 minutes SCS Lag Time = 9.01 minutes (SCS Lag = 0.6* Tc) 0.1502 hours Time Increment = 2.61 minutes = 0.29*SCS La B. IHNATOLYA, PE 11/22/2010 Segment 2: Concentrated Flow Length = 43.81 ft Height = 11.8894 ft Slope = 0.2714 ft/ft Paved ? = No Velocity = 8.41 ft/sec Segment Time = 0.09 minutes III. CHANNEL REACH DATA • _> Subbasin #3B-Reach #1 Segment #1-Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 690.48 ft 20.1 ft 0.0291 ft/ft 0.045 Natural Channel 6.00 sf (Assume Y x 2' Channel) 7.00 ft (Assume Y x 2' Channel) 5.10 ft/sec 2.26 minutes Reach #1 Total Travel Time = 2.26 minutes _> Subbasin W-Reach #2 Segment 1: Channel Flow • Length = 445.51 ft Height = 4.4332 ft Slope = 0.0100 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 28.00 sf (Assume Tx 4' Channel) Wetted Perimeter = 15.00 ft (Assume Tx 4' Channel) Channel Velocity = 5.01 ft/sec Segment Time = 1.48 minutes Reach #2 Total Travel Time = 1.48 minutes • • HEC-HMS Subbasin-5 9? Subbasin-4 Subbasin-9 Subbasin-3 Subbasin-2 Subbasin-3A Reach-2 Junction-1 Subbasin-1 Project: EPH10000 Subbasin-6 Reach-1 Q Subbasin-7 Subbasin-8 Subbasin-3B Basin Model: 0 HMS Project EPH1000i Start of Run 24Aug10 End of Run 25Aug10 Execution Time 22Nov10 * S. 0000 0000 0851 ummary of Results Run Name : 2-Yr Pre Basin Model Pre-Development Met. Model 2-Yr Storm Control Specs 1 min dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) Subbasin-1 1.1894 24 Aug 10 1213 0.10138 0.003 Reach-2 1.1894 24 Aug 10 1214 0.10133 0.003 Junction-1 1.1894 24 Aug 10 1214 0.10133 0.003 Subbasin-2 0.36220 24 Aug 10 1212 0.026309 0.001 Subbasin-3B 27.356 24 Aug 10 1205 1.3497 0.013 Reach-1 27.356 24 Aug 10 1207 1.3490 0.013 Subbasin-3A 7.1049 24 Aug 10 1211 0.48645 0.009 Subbasin-3 33.313 24 Aug 10 1208 1.8354 0.021 Subbasin-4 1.6689 24 Aug 10 1215 0.13724 0.003 Subbasin-5 2.1621 24 Aug 10 1212 0.15614 0.003 Subbasin-6 0.63547 24 Aug 10 1212 0.045817 0.001 Subbasin-7 10.019 24 Aug 10 1211 0.66129 0.010 Subbasin-8 0.88371 24 Aug 10 1207 0.050428 0.001 ?abbasin-9 0.59577 24 Aug 10 1211 0.040476 0.001 C HMS * Summary of Results Project : EPH10000 Run Name : 10-Yr Pre • Start of Run 24Aug10 0000 Basin Model Pre-Development End of Run 25Aug10 0000 Met. Model 10-Yr Storm Execution Time 22Nov10 0853 Control Specs 1 min dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) Subbasin-1 3.0394 24 Aug 10 1212 0.24096 0.003 Reach-2 3.0394 24 Aug 10 1213 0.24086 0.003 Junction-1 3.0394 24 Aug 10 1213 0.24086 0.003 Subbasin-2 0.71172 24 Aug 10 1212 0.054164 0.001 Subbasin-3B 40.531 24 Aug 10 1205 2.2761 0.013 Reach-1 40.531 24 Aug 10 1207 2.2750 0.013 Subbasin-3A 13.616 24 Aug 10 1210 0.98741 0.009 Subbasin-3 52.590 24 Aug 10 1207 3.2624 0.021 Subbasin-4 3.3670 24 Aug 10 1215 0.28535 0.003 Subbasin-5 4.2680 24 Aug 10 1211 0.32248 0.003 Subbasin-6 1.2674 24 Aug 10 1211 0.095237 0.001 Subbasin-7 17.727 24 Aug 10 1210 1.2684 0.010 Subbasin-8 1.5997 24 Aug 10 1207 0.098617 0.001 .ibbasin-9 1.0556 24 Aug 10 1211 0.077637 0.001 0 0 POST-DEVELOPMENT HYDROLOGIC CALCULATIONS 0 0 THE JAMISON AT BRIER CREEK EPH-10000 W ^a o Qr x ai FNISI-I-IIIMIN I? OOl?00OO00000 ? ~I NI0O01OIr'- C> NIMIN OOI?OOOO ?O CC a°I?I?I?I?ICD CD CD 0I°I°I°I° pINI?IpI-rI OIOII?IOIv?L-. O O O\ O N O O ?O O O Q? 0 0 7 0 0 0 0 M 0 0 00 I? Ir x O a a O a A a r?W W U CC F ?o o 0 0 x w F W ?IOIOIoIpIr I=> 1= 0 0 0 0 0 0 0 0 O M O -- O 11 l? 1 N. W O O O O O O n C C" I _!E, CDloloolclow C> CDlCD - CDoloola, ololo0 q <> OO o 0 0 0 0 0 0 0 0 0 0 000lO0l 0 l0000 l 0 I' OOOONOOO?OOO 00 O O O O 01 O O O 't O O M i? 0 O O O M O O 0 0 0 0 7 ,p 0 0 0 0 N O O M O O 110 00 Z, F 8 0 0 C O M 0 0 0 ?D O O H M ? O O O O--? 0 0 0 0 0 0-+ 0 0 0 II II II II d 0 0 0 0 0 0 0 0 0 00 aooooooooo?oo v? Q C C O O N O O O C 0 0 M I" e0+ O O 0,0 O ? b 3 N 'b ? O Q ,? T i0 F G a 0 IN S o ?o ?00co? O '.7 M M ? l\ F F • • 0 THE JAMISON AT BRIER CREEK EPH-10000 Assume: HYDROLOGIC CALCULATIONS Post-development - Subbasin #1 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 71.7% HSG'C' = 28.3% HSG'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 65 Assume good condition Wooded 59 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.01 - Onsite open 65 0.53 Assume good condition Onsite wooded 59 0.73 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 65 0.01 Assume good condition Offsite wooded 59 0.00 Assume good condition Offsite and 100 0.00 - Total area = 1.28 acres 0.0020 sq.mi. Composite SCS CN = 61.8 % Impervious = 0.6% B. Time of Concentration Information Time of concentration is calculated using SCS TR-SS. Segment 1: Overland Flow Length = 100 ft Height = 5.41 ft Slope = 0.0541 ft/ft Manning's n = 0.32 Dense Grasses/Wooded P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 11.78 minutes Time of Concentration = 12.32 minutes SCS Lag Time = 7.39 minutes (SCS Lag = 0.6* Tc) 0.1232 hours Time Increment = 2.14 minutes = 0.29*SCS La B. IHNATOLYA, PE 12/20/2010 Segment 2: Concentrated Flow Length = 151.78 ft Height = 12.96 ft Slope = 0.0854 ft/ft Paved ? = No Velocity = 4.72 ft/sec Segment Time = 0.54 minutes • • THE JAMISON AT BRIER CREEK EPH-10000 Assume. HYDROLOGIC CALCULATIONS Post-development - Subbasin #2 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 100.0% HSG'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 74 0.11 Assume good condition Onsite wooded 70 0.00 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 0.13 acres 0.0002 sq.mi. 75.3 5.4% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 12/20/2010 E E THE JAMISON EPH-10000 Assume. HYDROLOGIC CALCULATIONS Post-development - Subbasin #3A-Bypass HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 73.1% HSG'D' = 26.9% Cover Condition SCS CN Comments Impervious 98 Open 76 Assume good condition Wooded 72 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.02 - Onsite open 76 0.05 Assume good condition Onsite wooded 72 0.47 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 76 0.00 Assume good condition Offsite wooded 72 0.00 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 0.54 acres 0.0008 sq.mi. 73.4 4.6% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.8700 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 12/20/2010 0 • • THE JAMISON EPH-10000 Assume. HYDROLOGIC CALCULATIONS Post-development-Subbasin #3A-ToSWMF#1 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 1.76% HSG'C' = 88.06% HSG'D' = 10.18% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 4.94 - Onsite open 74 2.35 Assume good condition Onsite wooded 70 0.10 Assume good condition Onsite and 100 0.41 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 7.80 acres 0.0122 sq.mi. 90.6 63.4% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment= 0.8700 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 1/6/2011 0 rI E THE JAMISON EPH-10000 Assume. HYDROLOGIC CALCULATIONS Post-development-Subbasin #3A-ToSWMF#1 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 1.76% HSG'C' = 88.06% HSG'D' = 10.18% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 4.94 - Onsite open 74 2.35 Assume good condition Onsite wooded 70 0.10 Assume good condition Onsite and 100 0.41 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 7.80 acres 0.0122 sq.mi. 90.6 63.4% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.8700 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 12/20/2010 40 THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS EPH-10000 Post-development-Subbasin #3B 1. SCS CURVE NUMBERS HSG Imperv?ous? '+ Open (? Wooded A 98 , 39 j 30 61 55 C 98 ! 74 ; 70 D 98 I 80 77 Assume: HSG'A' = 0.0% HSG'B'= 0.0% HSG'C' = 75.7% HSG'D' = 24.3% Cover Condition SCS CN I Comments impervious 98 - Olen _ 75 Assume good condition Wooded 72 Assume good condition II. POST-DEVELOPMENT A. Watershed Breakdown • Contributing Area SCS CN j Area [acres] Comments Onsite impervious 98 i 0.00 j - Onsite open 75 0.00 j Assume good condition _ Onsite wooded - 72 ! 0.00 Assume good condition Onsite and _ 100 0.00 - _ Offsite impervious _._ Offsite open _ 75 ! 2.80 _Assume good condition` _ Offsite wooded 72 1.32 Assume good condition Offsite pond 100 0.00 - Total area = Composite SCS CN = % Impervious = B. IHNATOLYA, PE 12/20/2010 8.04 acres 0.0126 sq.mi. 85.8 48.8% B. Time of Concentration Information Time of concentration is calculated using SCS TR-SS. Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 100 ft Length = 7 ft Height = 4.50 ft Height = 0.20 ft Slope = 0.0450 ft/ft Slope = 0.0286 ft/ft Manning's n = 0.10 Dense Grasses/Smooth S urfaces Paved ? = Yes P (2-year/24-hour) = 3.42 inches (RDU, NC) Velocity = 3.44 ft/sec Segment Time = 4.89 minutes Segment Time = 0.03 minutes • THE JAMISON AT BRIER CREEK HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE EPH-10000 Post-development-Subbasin #3B 12/20/2010 . Segment 3: 30" RCP Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Hydraulic Radius = Channel Velocity = Segment Time = 532.59 5.3259 0.0100 0.013 4.91 7.85 0.63 8.38 1.06 ft ft ft/ft RCP sf (Assume a 30" RCP) ft (Assume a 30" RCP) ft ft/sec minutes Segment 4:30" RCP Length = 437.24 Height = 18 Slope = 0.0412 Manning's n = 0.013 Flow Area = 4.91 Wetted Perimeter = 7.85 Hydraulic Radius = 0.63 Channel Velocity = 17.00 Segment Time = 0.43 ft ft ft/ft RCP sf (Assume a 30" RCP) ft (Assume a 30" RCP) ft ft/sec minutes Time of Concentration = 6.41 minutes SCS Lag Time = 3.85 minutes (SCS Lag = 0.6* Tc) 0.0641 hours Time Increment = 1.12 minutes (= 0.29*SCS Lag) is • C THE JAMISON AT BRIER CREEK EPH-10000 Assume. HYDROLOGIC CALCULATIONS Post-development - Subbasin #5 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 100.0% HSG'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.21 - Onsite open 74 0.54 Assume good condition Onsite wooded 70 0.00 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 0.75 acres 0.0012 sq.mi. 80.6 27.6% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.8700 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 12/20/2010 0 J THE JAMISON AT BRIER CREEK EPH-10000 Assume: HYDROLOGIC CALCULATIONS Post-development - Subbasin #6 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 100.0% HSG'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 74 0.04 Assume good condition Onsite wooded 70 0.00 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.00 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 0.04 acres 0.0001 sq.mi. 74.0 0.0% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.8700 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 12/20/2010 0 C. • THE JAMISON EPH-10000 Assume. HYDROLOGIC CALCULATIONS Post-development - Subbasin #7-Bypass HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 100.0% HSG'D' = 0.0% Cover Condition SCS CN Comments Impervious 98 Open 74 Assume good condition Wooded 70 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 - Onsite open 74 0.10 Assume good condition Onsite wooded 70 0.00 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 74 0.00 Assume good condition Offsite wooded 70 0.01 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 0.11 acres 0.0002 sq.mi. 73.8 0.8% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.8700 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 12/20/2010 0 • • THE JAMISON EPH-10000 Assume: HYDROLOGIC CALCULATIONS Post-development-Subbasin #7-ToSWMF#2 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 69.8% HSG'D' = 30.2% Cover Condition SCS CN Comments Impervious 98 Open 76 Assume good condition Wooded 72 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 3.67 - Onsite open 76 1.71 Assume good condition Onsite wooded 72 0.55 Assume good condition Onsite and 100 0.34 - Offsite impervious 98 0.46 - Offsite open 76 0.77 Assume good condition Offsite wooded 72 0.63 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious = 8.12 acres 0.0127 sq.mi. 87.6 50.8% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment= 0.8700 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 1/6/2011 • • rI THE JAMISON AT BRIER CREEK EPH-10000 Assume: HYDROLOGIC CALCULATIONS Post-development - Subbasin #8 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 72.3% HSG'D' = 27.7% Cover Condition SCS CN Comments Impervious 98 Open 76 Assume good condition Wooded 72 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onite impervious 98 0.00 - Onsite open 76 0.28 Assume good condition Offsite wooded 72 0.04 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 76 0.00 Assume good condition Offsite wooded 72 0.00 Assume good condition Offsite and 100 0.00 - Total area = 0.32 acres 0.0005 sq.mi. Composite SCS CN = 75.2 % Impervious = 0.0% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 100 ft Height = 6.4594 ft Slope = 0.0646 ft/ft Manning's n = 0.24 Dense Grasses P (2-year/24-hour) = 3.42 inches (RDU, NC) Segment Time = 8.64 minutes B. IHNATOLYA, PE 12/20/2010 Segment 2: Concentrated Flow Length = 77.06 ft Height = 6.0406 ft Slope = 0.0784 ft/ft Paved ? = No Velocity = 4.52 ft/sec Segment Time = 0.28 minutes E C? THE JAMISON AT BRIER CREEK EPH-10000 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = HYDROLOGIC CALCULATIONS Post-development - Subbasin #8 75.99 ft 6 ft 0.0790 ft/ft 0.045 channel 2.00 sf (2'x1' channel) 4.00 ft (2'x1' channel) 5.86 ft/sec 0.22 minutes B. IHNATOLYA, PE 12/20/2010 Time of Concentration = 9.14 minutes SCS Lag Time = 5.48 minutes (SCS Lag = 0.6* Tc) = 0.0914 hours Time Increment = 1.59 minutes (= 0.29*SCS Lag) 0 Segment Time = • • THE JAMISON AT BRIER CREEK EPH-10000 Assume. HYDROLOGIC CALCULATIONS Post-development - Subbasin #9 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 30.6% HSG'D' = 69.4% Cover Condition SCS CN Comments Impervious 98 Open 78 Assume good condition Wooded 75 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.05 - Onsite open 78 0.16 Assume good condition Onsite wooded 75 0.00 Assume good condition Onsite and 100 0.00 - Offsite impervious 98 0.00 - Offsite open 78 0.00 Assume good condition Offsite wooded 75 0.00 Assume good condition Offsite and 100 0.00 - Total area = Composite SCS CN = % Impervious. = 0.21 acres 0.0003 sq.mi. 82.8 23.2% B. Time of Concentration Information Time of concentration is conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.8700 minutes (= 0.29*SCS Lag) B. IHNATOLYA, PE 12/20/2010 M. CHANNEL REACH DATA 0 1 -> Subbasin #3B-Reach #I Segment 1: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = • 59.29 ft 1.57 ft 0.0265 ft/ft 0.045 Natural Channel 9.00 sf (Assume 3' x 3' Channel) 9.00 ft (Assume Y x 3' Channel) 5.39 ft/sec 0.18 minutes Reach #1 Total Travel Time = 0.18 minutes Subbasin #3A-Bypass/3B-Reach #2 Segment]: Channel Flow Length = 41.03 ft Height = 1.02 ft Slope = 0.0249 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 9.00 sf (Assume 3' x 3' Channel) Wetted Perimeter = 9.00 ft (Assume Y x 3' Channel) Channel Velocity = 5.22 ft/sec Segment Time = 0.13 minutes Segment 2: 42" RCP Length = 664.95 ft Height = 19.21 ft Slope = 0.0289 ft/ft Manning's n = 0.013 RCP Flow Area = 9.62 sf (Assume a 42" RCP) Wetted Perimeter = 11.00 ft (Assume a 42" RCP) Hydraulic Radius = 0.87 ft Channel Velocity = 17.82 ft/sec Segment Time = 0.62 minutes Reach #2 Total Travel Time = 0.75 minutes 0 _> Subbasin #I-Reach #3 • Segment]: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = 445.51 ft 4.4332 ft 0.0100 ft/ft 0.045 Natural Channel 28.00 sf (Assume Tx 4' Channel) 15.00 ft (Assume Tx 4' Channel) 5.01 ft/sec Segment Time = 1.48 minutes Reach #3 Total Travel Time = 1.48 minutes CJ 0 • Subbasin 7 • HEC-HMS Subbasin-5 Subbasin-9 Subbasin 3 Project: EPH10000 Subbasin-6 Subbasin-8 SWMF #2 Subbasin-7-To Pond Subbasin-7-Bypass Junction-1 SWMF #1 Subbasin-2 Reach-3 Subbasinl Subbasin-1 Reach-2 Subbasin-3A-To Pond Basin Model: Post-Dev Subbasin-3B Reach-1 Subbasin-3A-Bypass 0 HMS * Summary of Results Project : EPH10000 Run Name : 2-Yr Post Start of Run : 24Aug10 0000 Basin Model Post-Dev 2-Yr End of Run : 25Aug10 0000 Met. Model 2-Yr Storm Execution Time : 06Janil 1116 Control Specs 1 min dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) Subbasin-1 0.73854 24 Aug 10 1211 0.060514 0.002 Reach-3 0.73854 24 Aug 10 1212 0.060484 0.002 Subbasinl 0.73854 24 Aug 10 1212 0.060484 0.002 Subbasin-2 0.28091 24 Aug 10 1205 0.013463 0.000 Subbasin-3A-To Pond 33.033 24 Aug 10 1204 1.5784 0.012 SWMF #1 3.9000 24 Aug 10 1232 1.1186 0.012 Subbasin-3B 27.356 24 Aug 10 1205 1.3497 0.013 Reach-1 27.356 24 Aug 10 1205 1.3497 0.013 Subbasin-3A-Bypass 1.0095 24 Aug 10 1205 0.048975 0.001 Junction-1 28.365 24 Aug 10 1205 1.3987 0.013 Reach-2 28.365 24 Aug 10 1205 1.3987 0.013 Subbasin 3 29.739 24 Aug 10 1205 2.5173 0.026 Subbasin-5 2.1902 24 Aug 10 1205 0.10326 0.001 ubbasin-6 0.13064 24 Aug 10 1205 0.0063110 0.000 Wbasin-7-To Pond 31.022 24 Aug 10 1204 1.4625 0.013 SWMF #2 6.5779 24 Aug 10 1220 1.0845 0.013 Subbasin-7-Bypass 0.25830 24 Aug 10 1205 0.012495 0.000 Subbasin 7 6.6446 24 Aug 10 1219 1.0970 0.013 Subbasin-8 0.59413 24 Aug 10 1207 0.033455 0.001 Subbasin-9 0.60432 24 Aug 10 1204 0.028388 0.000 • HMS * Summary of Results Project : EPH10000 Run Name : 10-Yr Post • Start of Run 24Aug10 0000 Basin Model Post-Dev 10-Yr End of Run 25Aug10 0000 Met. Model 10-Yr Storm Execution Time 06Jani1 1122 Control Specs 1 min dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) Subbasin-1 1.9860 24 Aug 10 1210 0.14746 0.002 Reach-3 1.9860 24 Aug 10 1211 0.14741 0.002 Subbasinl 1.9860 24 Aug 10 1211 0.14741 0.002 Subbasin-2 0.48825 24 Aug 10 1204 0.025849 0.000 Subbasin-3A-To Pond 45.885 24 Aug 10 1204 2.5233 0.012 SWMF #1 19.311 24 Aug 10 1212 2.0482 0.012 Subbasin-3B 40.531 24 Aug 10 1205 2.2761 0.013 Reach-1 40.531 24 Aug 10 1205 2.2761 0.013 Subbasin-3A-Bypass 1.8164 24 Aug 10 1204 0.096586 0.001 Junction-1 42.345 24 Aug 10 1205 2.3727 0.013 Reach-2 42.345 24 Aug 10 1205 2.3727 0.013 Subbasin 3 52.480 24 Aug 10 1206 4.4208 0.026 Subbasin-5 3.5042 24 Aug 10 1204 0.18511 0.001 basin-6 0.23243 24 Aug 10 1204 0.012339 0.000 basin-7-To Pond W 44.809 24 Aug 10 1204 2.4167 0.013 SWMF #2 14.881 24 Aug 10 1216 2.0320 0.013 Subbasin-7-Bypass 0.46127 24 Aug 10 1204 0.024501 0.000 Subbasin 7 15.054 24 Aug 10 1216 2.0565 0.013 Subbasin-8 1.0486 24 Aug 10 1207 0.064333 0.001 Subbasin-9 0.93505 24 Aug 10 1204 0.049562 0.000 0 • NITROGEN EXPORT CALCULATIONS • r? THE JAMISON AT BRIER CREEK EPH-10000 W O a .-, 0 Q N y, O N N x W O N t? O O ti O O O "O w U o? a? ? O ? .? ? ? . ? Ow U o p p W o e ? o U o Z ? ? O h o? o ? v ? V y Z c? Z N ` z w y w A q [° h q o C) ° x .. ? N M ? F a a a a a a? a ? W W i W W W as w Ol r 0 H 00 0? <D C-4 PC C? a? F w /1 L V ?O N N i ? c H -31 bQ +., o O . QT y R o Co? ? o g ? o '? ? •? ? 4 0 4 ti ° ? , o CO o O O II II O ? iQC• . o W ? z? H ?o H W o a r, 0 N ?O N N z x a O F9 ??l °a H z 0 N v O z w Q Q w ?o 0 wo x ? w 9 0 y ? O N V O O O ti w U ? Con U ? ti i 0 to Q'i 43, ti D?' O U o ° U •?? I ° w N to N O ° N N ? ? N M rt III W? H F F F F ?Ol v?v?v?r?v? l CN 00 w? kn ? " c O 00 ? a C o ° 0 0 z as v ^ ? z F rA O 0000 a1 U C5 06 06 bo o o? ° O w w y w? ? o ci. C ? C3 0 ? w ? h ° Oa 0 4 ; o ti ° 1?1 N c N II 0 W 0 r~ II 0 0 W O CL, .-, O N O N N z ? x o o? ? w o rA) v ? o ? 0 U ti ti ? o o ? w w A U . ti 4 ? o 0 v ?. c o U o n c F Q ? t ? ? U 4?i ;Zt 't V e? ti O Z ?' O .O fz o U ° U w c ` ? o y y o 4 ? z w q ? ' ? ? N M rf ? ? C .? '? ? a a a a a ? w ? w F w F w F w F w F oaw ? Ol v? vl v? v? r? 0 y en r- S v it O 4 06 C O M O O H w V ?o N N ~ i k p r , ( V z C) 00 0? 00 ZY ° z bq „p C 't tl 4 0 4 o co? cn cn In ?c ~ 00 O 00 M O ,,,, "o II II II 0 Q O z a a H W w o a c N O N N z V ? O o, U ti ? o ? Q ?V ti O o e ? `ti U w Z. N 4> "" +. O U N TS V O N R j O tl y IZ3 Z -It ti p? y O rz S: V 'V %) t3 I Ci z, o rz U ° U c o ° Q z o0i W C) H o) w A q q a a a a a w? w ? wwwww as w y a o ? O N 000 s p ? A p O en 000 k C as F a? ?"? Fi V ?p N N i F 31 1 42 'o 5 r o a 04 4 o 0 4 0 0. o ti ° ? O N 00 , II II II k Q O X, o H W H W o a -• 0 N O N N z ? ai o o? Qot 0 ? 0 U Q 0 0 -o w U ? ? o a !?j ? o o? A ti o o ? z o? w ° w \ o o? K ?, ?? Z rA) rA) w .R ? o w ? w o A r q ?° ? ? h q o ? o O y ? •• ? N M 4 k;i x w w w w w wx xa w ? i i ? i ? H w ? Ol r r ? 0 4 6 C. C H w v ? N i p .-- CA ? z F e I" C) ? ° Qi C? O M O M .? o w to o? ao bc bf) 0. U 13 ?. ? ° a Zt d H tj ? o i ? ? o 13 O as LE E V r" 0 0. o ti ° ? ?t 0 0 O N 00 II II II o sa? Z a a H . Qs , o F0 W BRIER CREEK APARTMENTS EPH-10000 B. IHNATOLYA, PE 12/20/2010 • _> Post-development TN-Export Calculations Before Treatment TNExport - Nitrogen Analysis Area (Without Treatment) = 199.55 lbs/yr Nitrogen Analysis Area = 17.79 acres Total TN Export - Nitrogen Analysis Area = 11.22 lbs/ac/yr Total TN Export To SWMF#1 = 108.16 lbs/yr Total Area - To SWMF #1 = 7.80 acres Total TN Export - To SWMF#1 = 13.87 Ibs/ac/yr Total TN Export To SWMF #2 = 80.92 lbs/yr Total Area - To SWMF #2 = 6.27 acres Total TN Export - To SWMF #2 = 12.91 lbs/ac/yr Total TN Export To Bypass Areas = 10.46 lbs/yr Total Area - Bypass = 3.72 acres Total TN Export - To Bypass Areas = 2.81 lbs/ac/yr On-site Post-development TN-Export Calculations After Treatment Total TNExport To SWMF #1 = 108.16 lbs/yr Total Area - To SWMF #1= 7.80 acres Total TN Export - To SWMF #1= 13.87 lbs/ac/yr Wetland TN Removal Efficiency = 40% • Total TN Export After SWMF #1 = 64.90 lbs/yr Total TN Export To SWMF #2 = 80.92 lbs/yr Total Area - To SWMF #2= 6.27 acres Total TN Export - To SWMF #2= 12.91 lbs/ac/yr Wetland TN Removal Efficiency = 40% Total TN Export After SWMF #2 = 48.55 lbs/yr Total TN Export To Bypass Areas = 2.81 lbs/ac/yr Total Area - Bypass = 3.72 acres Total TN Export - To Bypass Areas = 10.46 lbs/yr Allowable TN Export = 64.04 lbs/yr TNExport - Total Site (With Treatment) = 123.91 lbs/yr Nitrogen Analysis Area = 17.79 acres Total TN Export - Nitrogen Analysis Area = 6.97 Ibs/ac/yr _> Compute Estimated Offset Payment Total Nitrogen Analysis Area = 17.79 acres Max. TN-Export w/o Offset Payment = 64.04 lbs/yr 3.6 Ibs/ac/yr Computed TN-Export After Treatment = 123.91 lbs/yr 6.97 lbs/ac/yr TN-Export Requiring Offset Payment = 59.87 lbs/yr • Facility Lifetime = 30 years TN-Export Requiring Offset Payment = 1796.11 Ibs • FINAL STORMWA TER MANA GEMENT FA CILITY DESIGN CAL CULA TIONS (STORMWATER WETLAND #1) • • THE JAMISON AT BRIER CREEK EPH-10000 •P • 9W9-c&-m - • ••o•• • ?+•m ? S'IIV Q 1# QDId'LLZAA 2iaLVAAiARiO LS Q CON 3 x n Y w ' , $ o v. C14a ON m.gm0 l•ymd ••IOP•11 gm ......... ° z1jD7ava3 • xvyd 379NYAi1 aaaras38 ' .. ? arns valam'Mara a31NIr VMOiiV'J HMON'HOUM o g ° m a o N c + r 1N3NNONIAN3 • SHOA&ANf1S • Sa3NNY7d •S333NION3 " TT /'? /??? I o ?I'? •®avo?v a ?roarw ?nwv v % 3(lN3Atl RdOtiYO 89E 'ONI `SHI,L2I?d:02Id HOOd3 2 • `1 O n Q 1Q ? (L i , ?u1aaau fiu 0:) 1fl ,?" i 3 3 ;.... sHOfslnaa aaNro ZV NOSIWV.P 9H1 a ---------------- - -------- I I I? ------------------- QQ ?V ---------- -- jj a $ W olg N lip Sfli N R w 0 Ti 22 Cr co . y W = O ? F Ow? 2O4 0 _u ? U N W 0 ~ < Z O 2??1 U ? r w C ?S2 Id F V N O z rc W 19 ?s 6 , 9 by' VI? P8 m >j !W zzD ?G3U yJ $ $= o 'b $ o ?b <1? o 6 >W s ?"' ?" <n u?i b ?. > 8 ?<>T m my yi g m Q ?~ ilO 2 dl 13 b 8a6>sg 6 ` 8< < 8 $ r o ?W? WB?? Q a$ z? OSFC m b g u m a< F 1?z ?G bES? W >4y" F°3p?p> 9# f1 ?3 O0 r '8 ?b?0? b° a`b W x,,'-1Ib :az WR 6;??;yy++6? W?°?9pg5 ° < i ow ubi8 f <? F zm< son $ °YW?E'8< v b 1zo O!s F? 7"?8 bNW O $b ?G d a ON g? y?¢$ ?32? =x ? ?azs (?? ? b _y P a oeq- 4 1 v?F Ky ° W X56011 Ra o b bof az? ? N = a ?'?uV10 z Z 6? `FF o o i O m< U a lfF z K F7 ?O . k'WI- .m %w = odl bbq ' b m $p o8W> aW62 Y o g - ?? b 8g wx'< F e s ??b 8# $ > ` zk m ' CSY ?a? u4 YS 8 ? >8 b zQ 8 F V ? u z 1M O F 3b 8 b n ga.1 ?6uogd g p>$'$z> ° X6 I2oy }/OQ? Iy £ "= baa'?° YS OM Iy 6z?'? <I_yV?? 2?<$EF <?8 #<??yIS' z m° F m F #C1 b?f Nr b (?a?0<O 10 1 b>>m1' O& #?C ` <m F U I?I m p?>i C> Z? OWW O9 b i g 8 ffi if z s 7 a ?WhKW' :d F?n?soa#mla cgs ?°< N ?o: u :p,5 u s # ri m a FUg R? g z? q u $It?? ??u z ?2 °< s py?{?'?Ery? o b z8? oW ?1ba < bzze ?8w? e8rc 6?? ffi m z o (e? m O 2018 'z< }~ " t4 $' I 2}f?€bG + py 2 zyy _ Z y N ? <} < }O b F } V ~ mG^ y W 1m? !1-i <ri ?O ?? < U a ? ? ' FIRE? 9 s '? b?8? ° t8 °?>ob bF ? bl§ b ? ? ugtlab? b> 3 }gush ?? mINS b2 b6 bad" dl 8 uWOO Ir ?tbgba b $$ Fq " $ 91aa? ?I - ?? e is z z dam ?m ? v lw? ° # d"Ib az ?1y? F dea a??? °?z` p ? ' m m <? b # ?? F m1 o $ S[ p3 >p 6 b8 L}o ?1z'? ` ;Iobx s 6z di'$F sK x b z q u $ b bryao o o # a ? a3° ?¦ bo_ k ° < 8 F 7br°? aW aFa yf9bo s = s q ? v$ a p8 ro3?• 6' i b > Gf6n E o ??$$ m ?< ??m a g $ ??a ?n $? 5a?2 ba 1b? 11111, ,, Goa} $` ` ° T ?? b { 2 a it, p F 19 ? e{a a$?W F V ??WO ?< C ... (? SWpp ?? rc Wz, !-p `Jq yy?} ai 28J b t?1 ?'?>obV d zw __ 4 J 4" m g u °W 3 si?j 3 ? F ?1 s? m <VN? 88 m I 4m w p_U~ >U n •C> 1- F}< 'MRS a <$? ? a YI R<wY yJi? 3 g V10 ?? W $ 2uq ona= ' '? ,rc b18 bo° < W owtj ?& `in 6 ?8? o-? 8b ss 2 m F " ° < n a ai?$ R ? ?? s = um$\ b 3 Woo Frg z a # 6 WW cz u oFbC Y! ??O w ?a?W m J 3°? ?p?k 4$=^bq>?_? F c a ?v8 zb d? ?' i#<- = 8 i?2S # s b M8m aly?a s=hy>ob z s m 'z8 S8>? t?a 8Fb b' b 8aa ?? F Q Q Y < o8a b8> 2 ? h uk 6F d?W 6 a <$ 38d zbA ,u W8b 2 b < ? gag, F< 4r 106 ff a ? vas 3 Igo-, 155 9? I a # ?a° s ° as v 'R 6x ?4 s a$ t», a b ' > t Is z3 and g'<Y-I6q- b a, iF 3a a &BW??: s 6,55 k& a k 8 "$ d ;# ?b ?i b^ ffi gO < 6 u ><x = X18 8 u8 '? m Ife ?? < w -8 J§ ad # ? ls?:I I3 b Js8 58 ?? ' ?a°1N ????b ?• a<W p F _ z m 8a 6gg o. y ?a ??? ° a?r? ?n3 ?Zti s= "zb u <'S? dl=eig ?K' F8 Wa 14 BY gig. zxa18 EWB 78, bfN?3? $ s? i71 ?Jw?Wq?g?a ?y s<°Kb' gob z1 °8w G? °?oF zW ?1 W o a4 b?< a I b<6 u a i5 =rc x W 8<z N $ $z?? $"a FNl 3is o b? .Q 4ab eseru.$aGISPH $ 78s W;o V <4 Q{ S a r bi P.8 a u? k $b 9 a m^ $a kz b aF -9 ar >< u or ?< Fo ? Y-LL8 P as 2 > > ?D a a 8 "? a r ma <QQI ?W a? z bsb ?? m b 4929 W ?u d 'Mc e ??k b . b§ = FB cb> z6 $ : " ? a$ 4°? ba?' a &u ' ?>& R 9 ???& 6 b ?j ovtn I» T. o ps iq -, ii b a FZo ?W.I } y?p{1m px w 3y/u 8 W.4Fa iSJ F W "9 "fin ?Q? d# 1< 8: < ?Nf X5 ZF 5m C m WO F 9 O W uz bol g1lz a H € FW 8 W° g8 a <&x1N j> F8 B 6 i z I° t- ahd ?bo qz ao1-3 'A ON H, s zu? o rs n 01 ?$ $ 886 7?bi sy _ N N .f v v{ m n d of d 8 - ^ N 1e n ed d d t/f 63 $ B FW z ffi _X° pbuu z 8 n Y 9 i V W x F ell m w < FFF 3 6 1 ? ° O 11 ? 8?4 _0 964 I F? m 3w< a? met a ?;F alb 9XI 1129 go a Rag's EWWblo y? ,?? b8?? =J Im jQj-.RQ.wo gig 3 € z8[ ?€ lifgq Wa a ? ? < ? C 2 Oti q a•? ?lfm ? a a? CK ?? Z T ?n?W €= Fns <! 'b i€ 188g? '?aa?? ?? gsa<NSl bb ° C "m ?i? ?b b u Yes abbbya a< 2 ADC w?LsO? „HS4 ?m W 8z ? :. I go N m° $ U WE 8 aab ?<}? ?a z WT z'4' F< X11 rz- ts'?6 °$ ? ?W Ti JXoi =??'F 48 " ?b?Cg ?u?> am V bq?s 55 W a a? $ ?3 a?l- w? "?? ° a >?< $a ?z ° g b > p bmr Eaa b= H. G? all qwW$? i? 6 ? IS 6 F m i? CI Y19 Uz 13 a3 S ; °z>aoo k<<' a$> za 06 x bb8 i Pf^u 6 is w c<>Y3j Oz b g 16• ' sb a `gate°b? ° R ?? ga b b zo e ? 6 Q o: < 01 " €g vW? a€?^ I WOE 0? ?r°? ?e X11 8 ???o???La 9 ? v?f'h =?# ga sk #S g$ U#8 1 ?$ OiL 1 Is b 8 z Ily ? i b W n 4 a 3 b u ky 8 8 1" ' z< z dla 8 rW <L? .. 8 b? _ C5m 8 ffi?? a???r 19H15L Q ?6°b1 r 01 u m bum 4v ° 5z b l?? ?wx? g ^g r<19 b ?bWMbi 1; !-H .6 g651 ??!# a J mo a? a aq F s >8 a o?b- 1jdgN5 ° nb 6 888 jp?Jlsc m N1y?{' Fbl p>' 1ag 'Z,•T?>j b 11 OF< <?< F O F62Fm O 2 m G ObG fR? A's@° lba asa ?F aWB "? CCC £'? Y?Y Y <gb ?. y $$ o 106 Is I'M! "AN x egg jig n d d a ^ _ a ml 20 > s Fn ? ]? ??llb UII}qlb !: ab; ?? ??? IZG <a 1,2. ?w z 48 Rh 2lql? UPS .4.c °- jy? > i b n .i X71 Co T8 \ > 0- 1 A bC` pu b z Fq 11Q ? PHJ? ?3b ? e? ale oW 218 HON 'd .66 8 . o a sb d 61tl°m` €F Igv ?m ??% b?y?°?? ?b 0:??? smRigi >439" 0111 - ?ae8$Iy i bT6a ? glys ggno - m Di ?56=IsR 4<afbi 1 MH 8'.9 w0v Pia N 4 4 d m 1. 0 0 0 • THE JAMISON AT BRIER CREEK EPH-10000 Staize-Storal a Function Project Name: The Jamison at Brier Creek Designer: B. Ihnatolya, PE Job Number: EPH-10000 Date: 1/6/2011 B. IHNATOLYA, PE 1/6/2011 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 346.0 0.0 17758 347.0 1.0 20801 19280 19280 19280 1.01 348.0 2.0 23979 22390 22390 41670 1.97 349.0 3.0 27036 25508 25508 67177 2.98 350.0 4.0 30152 28594 28594 95771 4.05 C7 Ks= 19077 b = 1.153 Storage vs. Stage 120000 y =19077x' 153 100000 Rz = 0.999 80000 C 60000 A 0 y 40000 20000 0 0 .0 1.0 2.0 3.0 4.0 5 .0 Stage (feet) 0 THE JAMISON AT BRIER CREEK EPH-10000 => Stage - Storage Function Ks = 19077 b = 1.153 Zo = 346 Elevation E 346 0 0.000 346.2 2983 0.068 346.4 6633 0.152 346.6 10586 0.243 346.8 14749 0.339 347 19077 0.438 347.2 23540 0.540 347.4 28119 0.646 347.6 32799 0.753- 347.8 37570 0.862 348 42423 0.974 348.2 47350 1.087 348.4 52347 1.202 348.6 57408 1.318 348.8 62529 1.435 349 67707 1.554 349.2 72937 1.674 349.4 78218 1.796 349.6 83546 1.918 349.8 88920 2.041 350 94338 2.166 B. IHNATOLYA, PE 1/6/2011 0 • HEC-HMS Subbasin-5 Project: EPH10000 u? Subbasin-6 SWMF #2 Subbasin 7 Basin Model: Post-Dev Subbasin-8 Subbasin-7-To Pond Subbasin-7-Bypass Subbasin-9 Subbasin 3 SWMF #1 Subbasin-2 Reach-3 Subbasinl Subbasin-1 Subbasin-3B Junction-1 Reach-1 Reach-2, i Subbasin-3A-Bypass Subbasin-3A-To Pond HMS * Summary of Results for Reach-2 r? Project : EPH10000 Start of Run 24Augl0 0000 End of Run 25Aug10 0000 Execution Time 06Janll 1116 Run Name : 2-Yr Post • Computed Results Basin Model Post-Dev 2-Yr Met. Model 2-Yr Storm Control Specs 1 min dT Peak Inflow : 28.365 (cfs) Date/Time of Peak Inflow 24 Aug 10 1205 Peak Outflow 28.365 (cfs) Date/Time of Peak Outflow 24 Aug 10 1205 Total Inflow : 1.96 (in) Total Outflow : 1.96 (in) 0 HMS * Summary of Results for SWMF #1 • Project : EPH10000 Start of Run 24Augl0 0000 End of Run 25Augl0 0000 Execution Time 06Janll 1116 Run Name : 2-Yr Post • Computed Results Basin Model Post-Dev 2-Yr Met. Model 2-Yr Storm Control Specs 1 min dT Peak Inflow 33.033 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 3.9000 (cfs) Date/Time of Peak Outflow 24 Aug 10 1232 Total Inflow 2.43 (in) Peak Storage 0.90154(ac-ft) Total Outflow 1.72 (in) Peak Elevation 347.87(ft) • Type.... Outlet Input Data Page 1.01 Name.... SWMF#1-2Yr File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: Z _yR ,STORwi REQUESTED POND WS ELEVATIONS: Min. Elev.= 346.00 ft Increment = .20 ft Max. Elev.= 350.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (Upstream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Orifice-Circular OR ---> TW 346.000 350.000 Inlet Box RI ---> BA 347.800 350.000 Orifice-Area 02 ---> BA 347.000 350.000 Culvert-Circular BA ---> TW 343.200 350.000 TW SETUP, DS Channel • SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:54 PM Date: 12/20/2010 Type.... Outlet Input Data Page 1.02 Name.... SWMF#1-2Yr File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments • Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = OR Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 346.00 ft Diameter = .1667 ft Orifice Coeff. _ .600 Structure ID = RI Structure Type = Inlet Box ---- ------ ----------------- # of Openings --------- = 1 Invert Elev. = 347.80 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Submerged = .000 K, Reverse = 1.000 Kb,Barrel = .000000 (per Barrel Length = .00 ft Mannings n = .0000 Structure ID = 02 Structure -Orifice-Area of Openings = 1 Invert Elev. = 347.00 ft Area = .5000 sq.ft Top of Orifice = 347.25 ft Datum Elev. = 347.00 ft Orifice Coeff. _ .600 • ft of full flow) SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:54 PM Date: 12/20/2010 • Type.... Outlet Input Data Name.... SWMF#1-2Yr Page 1.03 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ----------- ----------------- No. Barrels -------- = 1 Barrel Diameter = 2.0000 ft Upstream Invert = 343.20 ft Dnstream Invert = 342.40 ft Horiz. Length = 70.00 ft Barrel Length = 70.00 ft Barrel Slope = .01143 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .012411 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.154 T2 ratio (HW/D) = 1.301 Slope Factor = -.500 • • Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 345.51 ft ---> Flow = 15.55 cfs At T2 Elev = 345.80 ft ---> Flow = 17.77 cfs SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:54 PM Date: 12/20/2010 Type.... Composite Rating Curve Name.... SWMF#1-2Yr • ***** COMPOSITE OUTFLOW SUMMARY **** CUMULATIVE HGL CONVERGENCE ERROR .004 (+/- ft) FLOW PATH: Elev= 348.4; Branch: 02-BA-TW * Max. convergence errors shown may also occur for flow paths other than the ones listed above. • Page 1.11 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: WS Elev, Total Q ---------------- Elev. Q ft cfs 346.00 .00 346.20 .04 346.40 .06 346.60 .08 346.80 .09 347.00 .10 347.20 1.07 347.40 1.64 347.60 1.99 347.80 2.29 348.00 6.85 348.20 14.93 348.40 25.25 348.60 31.94 348.80 32.72 349.00 33.48 349.20 34.22 349.40 34.95 349.60 35.66 349.80 36.36 350.00 37.04 -------- Converge TW Elev Error ft +/-ft -------- ----- 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .004 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 344.38 .000 SIN: 6217012070C3 PondPack Ver. 8.0058 Notes ------------------------- Contributing Structures (no Q: OR,RI,02,BA) OR (no Q: RI,02,BA) OR (no Q: RI,02,BA) OR (no Q: RI,02,BA) OR (no Q: RI,02,BA) OR (no Q: RI,02,BA) OR,02,BA (no Q: RI) OR,02,BA (no Q: RI) OR,02,BA (no Q: RI) OR,02,BA (no Q: RI) OR,RI,O2,BA OR,RI,O2,BA OR,RI,O2,BA OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) The John R. McAdams Company Time: 6:54 PM Date: 12/20/2010 Scenario: Base • • • Title: Street A - Parcel H west Project Engineer: Jeremy J. Beckett, P.E. x:\...\design files\swmfl-10yr.stm The John R. McAdams Company StormCAD v4.1.1 [4.2014] 11/23/10 08:03:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 uivw d o 0 - N r y O r (0 m 7' a v > ao EQ? L€ v O 4) ar c 0) c W U 0) Q a` 0 a U N 0) N N 0 m O v (D co U') O O r m C 3 M m N r r n r (p O r M UO O N N m r M N 00 r O r Cl) >` O O (fl O O O O (D O O O L n n n n n n n n o n n c 0 .O C (ri (ri iri ui ui 0 0 ui o tci ui C 7 r It N n n 00 O N O (O m 00 O W 00 M Un O N n n O ^ r 7 r r TT ? M N n O M O M N N 0 N O IT 5,0 C v M M M M M M M M M M M M M M 2 J a) m co CD r 0 O n N O 00 O) O m c CO CD t0 to n ao CO M O M m 0) -O C ? n CD m CD co co N (D N O v v m r v v `?t v 'p 'p ?' ? v tt' v 'Q' v d' >,(? J M M M M M M M M M M M M M M 2 C O O O O O O O O n n m 0 m w O M CD O (D w 00 O m M M N CD M O ?m > 4 otrio66606r- 06t ro to to v to v v v v v v v v v v ? M M M M M M M M M M M M M M W 0 C o00a000rnn0) 00) 000 0 0 o m m M 0 0 M O M 0 O m 0 m v o 0 o 0 0 o w N w r t` O v o>" ? N 0 0 v to v v v v v v v v v M M M M M M M M M M M M M M W E 0 3 N n m m n 0 to 0 m 0 n n 0 It M N N M N n O n O N M O O ? a? N r N t0 m O N N O m m H >, LL M r m M M M N m 0 0 0 0 0 0 O O O n n m C O O O O O O O O O N N p, Q 0 0 0 0 0 0 O O O M N l) ` 'D C 'o D C 33?, 0 0 0 0 0 0 O 0 O O O 000000 00 000 Y G 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0^ 0 0 0 0 0 0 0 0 O O O 0 0 0 0 0 0 O O O O O -0 m " a U m 0 0 0 0 0 0 0 0 n o 0 0 3^ 0 0 0 0 0 0 O O N O O O O O O O O O N O M O W E c6 ^ N n m M n 0 0 m m m O o m O M N N (M N n n a) c 3 O O r M M O r 0 N Cn M 0 N 0 0 O m m 0 1,.6 N N ? Q. E:L?-` CO O r m V CO 0 n O 0 M N n n n n o C0 ire n n (o o n n n L G T m ui U) 0 0 0 to 0 0 0 to 0 0 0 0 . . U) c v E E ^ O m 0 m m r v O n 0 o v? N O O O N CO r N O O v O O N C Cf') O O > E o O E O m o m o r O n O It to +- O O C? N M r 0 0 O O H o 0 O 0 0 O O to o (n U') Et _ . cE 2 c N O aU 0 0 0 0 0 0 0 0 0 0 0 0 - = 000000 00 000 C O i 0 0 0 0 0 0 O O O O O .m a) C F-8E W O O O O O O O O O O O O O O O O O 0) ^ O O O O O O O to U-) to to Cn LO C0 (0 to 0 t0 O c 0 E q) .m. Q N O C) O 'tt N N O m m O m co O v m Co r r n n v (fl CD O r n n () U O O r .- N M M r r .- 0 0 0 0 m E< N 0 0 0 0 0 0 O O O O O 0 0 0 0 0 0 O O O O O Q)U U 0 0 0 0 0 0 0 0 0 0 0 x co w S o omvco 00 omn Z< N v(. O 17 (0 v v N O C0 cU 0 r o 0 0 r 0 0 0 0 O (0 O 0 o 0 co LO Cl) LO (0 U c 0o 0o 0ommm oom nrnm 0 0 0 0 0 0 0 0 0 0 0 m u) 0 0 0 0 0 0 O O O O O t0 (D L N . q N O N n M O N O u o O N O O O r O O O o Q .0 m N co m N N N N N CM M M N N N J N N m m m m W m m X O m m W U U U U W U U w a U U W 0 0 O LO r M O N Q N D 00 °n t0 O a ? FAU 5 Z U m m Q d0 C N O m O ? o m n M U C N 0 z m m y m 2 N N 3 ? 2 r 3 ro d N M a) Q N C ? m ? D 0) O I- X O • • HEGHMS Subbasin-5 Subbasin-9 Subbasin 3 Project: EPH10000 Subbasin-6 SWMF Subbasin-8 Subbasin-7-To Pond Subbasin-7-Bypass r_ y SWMF #1 Subbasin-2 Reach-3 i Subbasinl Subbasin-1 Basin Model: Post-Dev Subbasin-3B Junction-1 Reach-1 Reach-2 Subbasin-3A-Bypass Subbasin-3A-To Pond 0 Subbasin 7 HMS * Summary of Results for Reach-2 Project : EPH10000 Run Name : 10-Yr Post • Start of Run End of Run Execution Time 24Aug10 0000 Basin Model Post-Dev 10-Yr 25Aug10 0000 Met. Model 10-Yr Storm 06Janll 1122 Control Specs 1 min dT Computed Results Peak Inflow 42.345 (cfs) Date/Time of Peak Inflow 24 Aug 10 1205 Peak Outflow 42.ED Date/Time of Peak Outflow 24 Aug 10 1205 Total Inflow 3.32 (in) Total Outflow : 3.32 (in) 0 HMS * Summary of Results for SWMF #1 • Project : EPH10000 Start of Run 24Augl0 0000 End of Run 25Augl0 0000 Execution Time 06Jan11 1122 Run Name : 10-Yr Post Computed Results Basin Model Post-Dev 10-Yr Met. Model 10-Yr Storm Control Specs 1 min dT Peak Inflow 45.885 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 19.311 (cfs) Date/Time of Peak Outflow 24 Aug 10 1212 Total Inflow 3.88 (in) Peak Storage 1.1383(ac-ft) Total Outflow 3.15 (in) Peak Elevation 348.29(ft) 0 • Type.... Outlet Input Data Page 1.01 Name.... SWMF#1-lOYr File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 346.00 ft Increment = .20 ft Max. Elev.= 350.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Orifice-Circular OR ---> TW 346.000 350.000 Inlet Box RI ---> BA 347.800 350.000 Orifice-Area 02 ---> BA 347.000 350.000 Culvert-Circular BA ---> TW 343.200 350.000 TW SETUP, DS Channel 0 E ?Q SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:58 PM Date: 12/20/2010 Type.... Outlet Input Data Page 1.02 Name.... SWMF#1-lOYr File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments • Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = OR Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 346.00 ft Diameter = .1667 ft Orifice Coeff. _ .600 Structure ID = RI Structure Type -- = Inlet Box -- ------------- # of Openings ------------- = 1 ------ Invert Elev. = 347.80 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Submerged = .000 K, Reverse = 1.000 Kb,Barrel = .000000 (per ft of full flow) Barrel Length = .00 ft Mannings n = .0000 Structure ID = 02 • Structure Type ----------------- = Orifice-Area ------------------- # of Openings = 1 Invert Elev. = 347.00 ft Area = .5000 sq.ft Top of Orifice = 347.25 ft Datum Elev. = 347.00 ft Orifice Coeff. _ .600 • SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:58 PM Date: 12/20/2010 • Type.... Outlet Input Data Name.... SWMF#1-lOYr Page 1.03 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type ----------------- = Culvert-Circular ------------------- No. Barrels = 1 Barrel Diameter = 2.0000 ft Upstream Invert = 343.20 ft Dnstream Invert = 342.40 ft Horiz. Length = 70.00 ft Barrel Length = 70.00 ft Barrel Slope = .01143 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .012411 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.154 T2 ratio (HW/D) = 1.301 Slope Factor = -.500 • C J Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 345.51 ft ---> Flow = 15.55 cfs At T2 Elev = 345.80 ft ---> Flow = 17.77 cfs SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:58 PM Date: 12/20/2010 • • • Type.... Composite Rating Curve Name.... SWMF#1-10Yr Page 1.11 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** CUMULATIVE HGL CONVERGENCE ERROR .007 (+/- ft) FLOW PATH: Elev= 348.4; Branch: 02-BA-TW * Max. convergence errors shown may also occur for flow paths other than the ones listed above. WS Elev, Total Q Notes ---------------- -------- Converge ------------------------- Elev. Q TW Elev Error ft cfs ft +/-ft Contributing Structures -------- ------- -------- ----- -------------------------- 346.00 .00 345.23 .000 (no Q: OR,RI,02,BA) 346.20 .04 345.23 .000 OR (no Q: RI,02,BA) 346.40 .06 345.23 .000 OR (no Q: RI,02,BA) 346.60 .08 345.23 .000 OR (no Q: RI,02,BA) 346.80 .09 345.23 .000 OR (no Q: RI,02,BA) 347.00 .10 345.23 .000 OR (no Q: RI,02,BA) 347.20 1.07 345.23 .000 OR,02,BA (no Q: RI) 347.40 1.64 345.23 .000 OR,02,BA (no Q: RI) 347.60 1.99 345.23 .000 OR,02,BA (no Q: RI) 347.80 2.29 345.23 .000 OR,02,BA (no Q: RI) 348.00 6.85 345.23 .000 OR,RI,02,BA 348.20 14.93 345.23 .000 OR,RI,02,BA 348.40 24.76 345.23 .007 OR,RI,02,BA 348.60 30.23 345.23 .000 OR,RI,BA (no Q: 02) 348.80 31.11 345.23 .000 OR,RI,BA (no Q: 02) 349.00 31.97 345.23 .000 OR,RI,BA (no Q: 02) 349.20 32.81 345.23 .000 OR,RI,BA (no Q: 02) 349.40 33.63 345.23 .000 OR,RI,BA (no Q: 02) 349.60 34.42 345.23 .000 OR,RI,BA (no Q: 02) 349.80 35.20 345.23 .000 OR,RI,BA (no Q: 02) 350.00 35.97 345.23 .000 OR,RI,BA (no Q: 02) SIN: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:59 PM Date: 12/20/2010 Scenario: Base • • E Title: Street A - Parcel H west Project Engineer: Jeremy J. Beckett, P.E. x:\...\design files\swmfl-10yr.stm The John R. McAdams Company StormCAD v4.1.1 [4.2014] 11/23/10 08:03:26 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 u.i v d o ? - N ? Y ? m r CL co > E Q U E -' o a`) a) c CY) c W U O O D_ d N r- m 0 m a 'm 'a C V Z N c O a U N 0 c0 00 M 0 M n O 00 ? 76 c 3 m n (0 M m N O O M OO 2 0 0 N M M M O N O- v J m LL ... •-- ? 0 '( N N N N N N N N N N N N N N N N O N N O N N O CL r r r r r r r n 9 r n J C j m 0 0 m v O m m 0 0 m r r to N D a O ?. W N CO W r (4 U? W (n (p O, v - (O v CO M N N 0 N O v d' 'a v ? v v d' st 'V IT v M v v V' v j, (? C M M M M M M M M M M M M M M 2 J j'0 "" OD M c0 O N o (0 0 O co N 01 N r O v r 0 W ( M N N r N O co -p co c f,- 0 IT 0 v M N r N 0 v v v v d' v v v v v19 L v v v v ()'' J M M M M M M M M M M M M Cl) Cl) S C O O O O O O O O n n O M 0 0 0 00 O O m M M O m N O N 0 M O E (C v O 0 O 0.U') . O o r ' 0 r r O v v v ?' ?> ... ? ? In v (0 v v Q v v v M M M M M M M M M M M M M M W o co 0 0 9 0 0 0 0 r n m 0 m co 0 C - M (0 O OIIR N O m M M W (n M O is v o 0 o 0 0 o o n v v o N N o v v v v o> a) (O (n v 0 v It v v M M M M M M M M Co M Co M Cl) Cl) o W 3 (C v v V) M co (0 O m v N N N m ( (fl y r (D (fl O r O N g 9 r r O U) j T LL F- N (0 - r (n (o (D O N N - N N - r- - M O (O CO CD ( m 0 0 0 0 0 0 O O O CD CD o3 I cu 000999 00 9c4c0 N ? a LL G 0 0 0 0 0 0 0 0 0 co co a < S c 3 O O O O O O O O 0009 09 O O O 090 3 ? 90 o- 0 0 0 0 0 0 0 0 0 0 0 m a) 0 0 0 0 0 0 0 0 9 9 0 c> 0 0 0 0 0 0 O O 9 0 0 O O N 0 0 0 0 0 0 O O O O O U m 0 0 0 0 0 0 0 0 C4 9 0 0 3^ 0 0 0 0 0 0 0 o co 0 0 t 0 0 0 0 0 0 0 0 0 0 LL - (0 a E m v v v 0 M co 0 O) N N N O w O O M C0 LO a) 0 3^ N - m (0 (0 O O N O (` CO CO O ?? o (0 6 _ T iO LL r' N N Cn Q. E:?' N O N 0 (0 W N v O m 00 ` a) (n L N N N 7 7 O m N N O N ? T O co O (n m co 0) O n co O M N r E .. C O O O N N m O O O M 0 l0 t(7 t0 0 LO O l0 (n 0 O O 0 t0 0 0 (n O O E. O w O 0 m ao O r O co N - F- O 9 0 N N m O O O t0 O t0 (ri (ri O (n 0 0 O (O (0 E c C _ m a) E N 0 aU o O 9 0 0 0 o O O 0 0 0 -Fa - o E 009000 00 0 0 0 0 0 0 0 0 000 0 0 0 c a a)? ? L i c 0 0 0 0 0 0 0 0 0 0 ° 0 0 0 0 9 0 0 0 0 o m Lo Lo ui to Lo Lo Lo Lo (ri Lo Lo F- 0 O o o v N N o m m rn 9 m (0 (O a) Q (D 7 r r v (fl c0 v O n n in U O O O '- '- N M M r- .- .- O O O O T (p U) (0 E N O O O O O O O O 9 0 9 0 0 9 0 0 O O O O O O < 0 b 0 0 0 0 0 0 0 0 0 0 0 x m Lu v^ N o o m v co o co v (0 (fl LO v v N o m r O (0 Q N c U 0 0 0- 0 0 0 0 0 0 o O LO O 0 0 0 Cl) (O Cl) (O (n U mw commm 0m rmm c o 0 0 0 0 0 0 0 0 0 0 u^) 0 0 0 0 0 0 0 0 0 0 0 2 N (n CO 9 N O (0 r M O N CO Q (00 0 0 N 0 0 0 O 0 0 0 N m m c Cl) _ N N N N N M N N N N C U) m m m m W m m )( U U W U U U U O CO Co W U U W a LL W O LO N n O N Q D W O O O F- C U m £ ? U -2 N ? m E Q N o C N 0 o ? N Y O o m n M U C N 0 L a m N m m S E .. N N T 30 2 E < (L (n N N Q w c N ? N a) '' N ? O F- X o • Subbasin 7 • HEC-HMS Project: EPH10000 Subbasin-6 SWMF Subbasin-5 Subbasin-8 #2 r 71 Subbasin-7-To Pond Subbasin-7-Bypass Subbasin-9 Junction-1 Subbasin 3 SWMF #1 Subbasi n-2 Reach-3 ?. .. Subbasin1 Subbasin-1 Reach-2 Subbasin-3A-To Pond Basin Model: Post-Dev Subbasin-3B F Reach-1 Subbasin-3A-Bypass 0 HMS * Summary of Results for Reach-2 11 Project : EPH10000 Start of Run 24Augl0 0000 End of Run 25Aug10 0000 Execution Time 06Janll 1132 Run Name : 100-Yr Post • Computed Results Basin Model Post-Dev 100-Yr Met. Model 100-Yr Storm Control Specs 1 min dT Peak Inflow 57.166 (cfs) Date/Time of Peak Inflow 24 Aug 10 1205 Peak Outflow 57.166 (cfs Date/Time of Peak Outflow 24 Aug 10 1205 Total inflow 5.48 (in) Total Outflow : 5.48 (in) 0 HMS * Summary of Results for SWMF #1 Project : EPH10000 Run Name : 100-Yr Post • Start of Run End of Run Execution Time 24Augl0 0000 Basin Model Post-Dev 100-Yr 25Aug10 0000 Met. Model 100-Yr Storm 06Janll 1132 Control Specs 1 min dT E Computed Results Peak Inflow 58.840 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 28.307 (efs) Date/Time of Peak Outflow 24 Aug 10 1212 Total Inflow 6.11 (in) Peak Storage 1.4359(ac-ft) Total Outflow 5.36 (in) Peak Elevation 348.80(ft) 0 • Type.... Outlet Input Data Page 1.01 Name.... SWMF#1-100Yr File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: Sao-yrz s-roRv? REQUESTED POND WS ELEVATIONS: Min. Elev.= 346.00 ft Increment = .20 ft Max. Elev.= 350.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Orifice-Circular OR ---> TW 346.000 350.000 Inlet Box RI ---> BA 347.800 350.000 Orifice-Area 02 ---> BA 347.000 350.000 Culvert-Circular BA ---> TW 343.200 350.000 TW SETUP, DS Channel • • S/N: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 7:03 PM Date: 12/20/2010 Type.... Outlet Input Data Page 1.02 Name.... SWMF#1-100Yr File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments • Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = OR Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 346.00 ft Diameter = .1667 ft Orifice Coeff. _ .600 Structure ID = RI Structure Type ----------------- = Inlet Box ------------- ------ # of Openings = 1 Invert Elev. = 347.80 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Submerged = .000 K, Reverse = 1.000 Kb,Barrel = .000000 (per Barrel Length = .00 ft Mannings n = .0000 Structure ID = 02 • Structure -Type --- ------------------- # of Openings = 1 Invert Elev. = 347.00 ft Area = .5000 sq.ft Top of Orifice = 347.25 ft Datum Elev. = 347.00 ft Orifice Coeff. _ .600 f ft of full flow) SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 7:03 PM Date: 12/20/2010 • • Type.... Outlet Input Data Name.... SWMF#1-100Yr Page 1.03 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular -------------- -- ----------------- No. Barrels -- - = 1 Barrel Diameter = 2.0000 ft Upstream Invert = 343.20 ft Dnstream Invert = 342.40 ft Horiz. Length = 70.00 ft Barrel Length = 70.00 ft Barrel Slope = .01143 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .012411 Kr = .5000 HW Convergence = .001 INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.154 T2 ratio (HW/D) = 1.301 Slope Factor = -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 345.51 ft ---> Flow = 15.55 cfs At T2 Elev = 345.80 ft ---> Flow = 17.77 cfs SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 7:03 PM Date: 12/20/2010 1 Type.... Composite Rating Curve Name.... SWMF#1-100Yr Page 1.11 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** CUMULATIVE HGL CONVERGENCE ERROR .000 (+/- ft) • • WS Elev, Total Q Elev. Q ft cfs -------- 346.00 ------- .00 346.20 .04 346.40 .06 346.60 .08 346.80 .09 347.00 .10 347.20 1.07 347.40 1.64 347.60 1.99 347.80 2.29 348.00 6.85 348.20 14.93 348.40 24.03 348.60 27.32 348.80 28.30 349.00 29.24 349.20 30.16 349.40 31.04 349.60 31.90 349.80 32.75 350.00 33.56 SIN: 6217012070C3 PondPack Ver. 8.0058 ------- Converge TW Elev Error ft +/-ft 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 •.000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 345.85 .000 Notes ----------------------- Contributing Structures ----------------------- (no Q: OR, RI, 02, BA) OR (no Q: RI,02,BA) OR (no Q: RI,02,BA) OR (no Q: RI,02,BA) OR (no Q: RI,02,BA) OR (no Q: RI,02,BA) OR,02,BA (no Q: RI) OR,02,BA (no Q: RI) OR,02,BA (no Q: RI) OR,02,BA (no Q: RI) OR,RI,O2,BA OR,RI,O2,BA OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) OR,RI,BA (no Q: 02) The John R. McAdams Company Time: 7:04 PM Date: 12/20/2010 Scenario: Base • • • Title: Street A - Parcel H west Project Engineer: Jeremy J. Beckett, P.E. x:\...\design files\swmf1-10yr.stm The John R. McAdams Company StormCAD v4.1.1 [4.2014) 11/23/10 08:03:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 L. V 7- doO N Y a m CO CL > T ? EU E O 4) N c c W U N •O d y ? O m a O ? d O z c 0 a U N N m N O 00 CO 01 to r 0) O (0 00 <0 C ?? O O CO W N CO r r O W E 0,2 M 0 0 0 v C0 N O- LO LL C re, Z " N N N N N N N N O N N N r r` n r r N r r o r r O c L 0 a) 0) 0) 0) 0) 0) O as 6 O m 6 -.j t 0 00 O (0 r 0I) O r 0n c0 O OD O M O m 0 " 0 0 r O v M O r N 0n N v V v V V v V V 00 V 11 IT IT V V ?,O c M M co M Cl) Cl) M M Cl) Cl) M Cl) CO Cl) = J •= N W M O O N N r N 0 0n COQ LO 1 r N O O O r O 0r) '-y W a' O O m e 0` N r? r L6 v N 00 (D 0n In V N I 0 J t v v v v v v v v v v v v v M M M M M M M co M M M co co M . c 0 0 0 0 0 0 0 r r 0 O 0 m O O M 0 O 0 o o O O M M co 0 M O E m v O 0 . O 0 00 O 00 r 06 r r O E> 00 00 v 00 v v v v v v v v v 0 M M M M M M M M M M M M M M W c0 O o 0 0 0 o O r x 0) 0 0) co 0 r.2 M 00 O 0 W N O 0 M M o 00 M O 0 m$ v O 6 o 6 6 o ao r ao r-: r-? o v o>" 0 v v v v 0 LO v 0 v v v v v M M M M Cl) M co M M co M M co co _ ?W N O N 00 M r M N r M O O 'F0 0 3 y 6- Q) O (9 r N (9 0n r 0r) v v rM 0) OR 0) 0 j LL ._. M N 00 O O 00 00 M O 0 0n r N N .- r N M M c- - - 00 M Q1 0) m c 0 0 0 0 0 0 O O O r r 0 0 0 O O O v v <D 03 2 3 N 0 0 0 0 0 0 0 0 0 0 0 O • 0 LO LO CL C 33?, O O O O O O O O O O O 000000 00 000 0 0 0 0 0 0 0 0 0 0 0 0 0 (O N 0 0 0 0 0 0 O O O O O c> 0 0 0 0 0 0 O O O O O 0 0 rn 0 0 0 0 0 0 O O O O O ? U m 0 0 0 0 0 0 O O r o 03.?, 000000 00 v, o ?, O N O O 00 O 0 0 0 0 0 0 ? LL <0 N O W 00 M N M N O 00 M N 4 n Q) c 3 o c u? r Uo v O cq v v rn rn m . o 0 M W LO 0 0 to LO M 0 0 0 r r r 7, N M M rn a' E N O N 0 00 01 N V O O O r r (0 00 0C) v f` r (q O r (4 O t O C c c ` rn of Di M M M 0) 0) 0) 0) 0 0) 0) 0) ?, T? O 0) O N O co O 0 O O co O Nr E .E .? O O O N N 00 CO O O M O O 2 F -.s 00 00 In In 00 00 00 00 6 00 06 00 00 00 1 E > Cn . O O 0) O N O O 04 O Cl) O E+ ? O O O N N O O O O O 17 H 0 00 O 00 u-) 00 O 00 O 0 00 E C C I U E N c N O QU O o 0 0 0 o O O O O O O - 0 0 0 0 0 0 0 0 0 0 0 c 0 f0 - a) c 0 0 0 0 0 0 0 0 0 0 0 u? 0 WPc O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c Lo Lo Lo Lo Lo Ln Lo Lri Lo rri Sri Et c O O O O v N N O 0) 0) O 0) 00 (0 rn m Q 9) co r r v cq cq o rr r v N V O O O -- N M M --- 0 0 0 0 T 0p 09 O O O O O O O O O O O E< (u 0 0 0 0 0 0 O O O o 0 'DU 0 0 0 0 0 0 0 0 0 0 0 b W u^ N o o 0) v 00 o co 0 0) r tO 00 0n N O 0r Q N cU? ) v v 7 00.-000 ?0 000 N o 00 O 00 O 0 M 00 M 00 0 U o 0 o rn rn q o rn r rn rn o00000 00 000 N 0 0 0 0 0 0 O O O O O N 0n 00 O N (9 U? r M O N (0 Q fU0 O O N O O O O 0 0 0 a) U ,r 0) co c Cl) m LO V m N N N o 0? N J co N N M N Cl) N N N m M M M W m m X O M M W U 000 U U w U LL a U LL 0 Q 0 CO O r O O c ~ ?U CL A Q O c ? 0 ?y w L 0 ~ m` r M E U) roo 3 ? 2 ' ? EE CL N a? Q w= c 0 ,m ? 0) a N H X • C7 HEGHMS Subbasin 3 Project: EPH10000 Subbasin 7 Subbasin-5 FRM Subbasin-6 SWMF; Q Subbasin-8 FZEFW I Subbasin-7-To Pond Subbasin-7-Bypass MUM 6? Subbasin-9 Reach-2 Junction-1 I -I SWMF #1 Subbasin-2 Subbasin-3A-To Pond Reach-3 , NUT Subbasin1 Subbasin-1 Basin Model: Post-Dev Subbasin-3B F-9 Reach-1 Subbasin-3A-Bypass 0 HMS * Summary of Results for SWMF #1 Project : EPH10000 Run Name : 2-Yr Post • Start of Run 24Augl0 0000 Basin Model Post-Dev 2-Yr End of Run 25Aug10 0000 Met. Model 2-Yr Storm Execution Time 06Janll 1116 Control Specs 1 min dT Computed Results Peak Inflow 33.033 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 3.9000 (cfs) Date/Time of Peak Outflow 24 Aug 10 1232 Total Inflow 2.43 (in) Peak Storage 0.90154(ac-ft) Total Outflow 1.72 (in) Peak Elevation 347.67(ft) • 0 HMS * Summary of Results for SWMF #1 • Project : EPH10000 Start of Run 24Augl0 0000 End of Run 25Aug10 0000 Execution Time 06Janll 1122 Run Name : 10-Yr Post • Computed Results Basin Model Post-Dev 10-Yr Met. Model 10-Yr Storm Control Specs 1 min dT Peak Inflow 45.885 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 19.311 (cfs) Date/Time of Peak Outflow 24 Aug 10 1212 Total Inflow 3.88 (in) Peak Storage 1.1383(ac-ft) Total Outflow 3.15 (in) Peak Elevation 348.29(ft) u HMS * Summary of Results for SWMF #1 • Project : EPH10000 Start of Run 24Augl0 0000 End of Run 25Augl0 0000 Execution Time 06Jani1 1132 Run Name : 100-Yr Post 0 Computed Results Basin Model Post-Dev 100-Yr Met. Model 100-Yr Storm Control Specs 1 min dT Peak Inflow 58.840 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 28.307 (cfs) Date/Time of Peak Outflow 24 Aug 10 1212 Total Inflow 6.11 (in) Peak Storage 1.4359(ac-ft) Total Outflow 5.36 (in) Peak Elevation 348.80(ft) 0 THE JAMISON AT BRIER CREEK STORMWATER WETLAND EPH-10000 SIZING CALCULATIONS - SWMF #1 > Determhsation of Water Quality Volume (WQ v) WQ v = (P) (R v)(A)/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 7.80 acres Impervious area = 4.94 acres Percent impervious cover, I = 63.4 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.62 WQv = 0.40 acre-ft = 17566 cf. is _> Stormwater Wetland Required Surface Area Calculation WQ Volume = 17566 cf. Maximum Ponding Depth = 12 inches Surface Area Required at Normal Pool = 17566 SF -> Associated Pond Depth in Stormwater Wetland Ks = 19077 b = 1.153 V = 17566 Normal Pool Elevation = 346.0 feet WQ Elevation = 346.93 feet B. IHNATOLYA, PE 1/6/2011 0 • THE JAMISON AT BRIER CREEK P WQ VOLUME EPH-10000 WETLAND #1 SIPHON DESIGN D orifice = 2 inch # orifices = 1 Ks = 19077 b = 1.152 Cd siphon = 0.60 Normal Pool Elevation = 346.00 feet Orifice Invert = 345.50 feet 1" WQ Volume = 17566 cf WSEL @ 1" Runoff Volume = 346.93 feet B. IHNATOLYA, PE 1/6/2011 Using the average head over the orifice (assuming average head is one-third the total depth), the result would be: Average driving head on orifice = 0.477 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of 2.0" orifice = 0.022 sf Q = 0.0725 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 2.80 days Conclusion : Use 1- 2.0" Diameter PVC inverted siphon to drawdown the accumulated volume from the 1" storm runoff, with a required time of about 2.80 days. 0 BRIER CREEK APARTMENTS WETLAND ZONE AREAS - WETLAND #1 B. IHNATOLYA, PE EPH-10000 1/6/2011 BRIER CREEK APARTMENTS 2CS22: 1 2`7 . It .., .. `.,`.\:::, 22 k::?';"i::<::i .: 2., `.:;\'2 ::.,.a.....,.. aa'C\,...,?.,..,;«>a...nn..z?z....:::: Per NCDENR "StormwaterBestManagementPractices ", the permanent pool needs to be designed with various water depths to support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep pools being broken down to forebay pools and non-forebay pools. Approximately 5-10% of the wetland surface area should be non-forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the surface area should be shallow water, and the remaining 3040%of the surface area should be shallow land. A. Total Wetland Surface Area (Elev. 346.0) Area = 17758 sf B. Wetland Surface Area: Deep Pools Non-Forebay Area = 1674 sf Forebay Area = 1849 sf C. Wetland Surface Area: Shallow Water Area = 7285 sf D. Wetland Surface Area: Shallow Land • Area = 6950 sf Dee Pools-Non-Foreba 9.43% Dee Pools-Foreba 10.41% Shallow Water 41.02% Shallow Land 39.14% U 0009-lac (ale) 900i-60L43 d1Z 900*1 X08 '0'd I #AWMS =OAU11DS/S7 3M"d/S1198MDX3 W1LIIZ02IWIN H.I?IOI?i `H JI7'I?2I *:)NI `ANddWO3® x3ftaiNiD Hziag ZV NOSIWVr 3H.L SWVUV3W *H NHOr HH,L L LOZ-90-LO .0t, .. L ZMSOOOOLHd3 OOOOL-Hd3 •ox 11101d ABE VOLUME CALCULATORS, PYRAMIDLONG • Page 1 of 1 CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS Enter all known values in the form below and press the "CALCULATE" button. m WIDTH I (W I) LENGTI I I (L 1) I WIDTH2(`'2) LENGTH2(L2} HEIGHT(h) VOLUME M 11 7 Ili Ill 11 2 11 38 1 answer that you lican copy for other use SELECT ANOTHER SHAPE Go to Unit Conversion Page • 38 http://www.abe.msstate.edu/-fto/tools/vol/pyramidlong.httnl 11/23/2010 • C, THE JAMISON AT BRIER CREEK EPH-10000 Input Data =_> SWMF #1 Square Riser/Barrel Anti-Flotation Calculation Sheet Inside length of riser = 4.00 feet Inside width of riser = 4.00 feet Wall thickness of riser = 6.00 inches Base thickness of riser = 8.00 inches Base length of riser = 5.00 feet Base width of riser = 5.00 feet Inside height of Riser = 4.60 feet Concrete unit weight = 142.0 PCF OD of barrel exiting manhole = 31.50 inches Size of drain pipe (if present) = 8.0 inches Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 0.500 SQFT Trash Rack water displacement = 38.00 CF Concrete Present in Riser Structure => Total amount of concrete: Adjust for openings: Base of Riser = 16.667 CF Riser Walls = 41.400 CF Opening for barrel = 2.706 CF Opening for drain pipe = 0.175 CF Opening for detention orifice = 0.250 CF Total Concrete present, adjusted for openings = Weight of concrete present = Amount of water displaced by Riser Structure => Displacement by concrete = 54.936 CF Displacement by open air in riser = 73.600 CF Displacement by trash rack = 38.000 CF B. IHNATOLYA, PE 11/23/2010 Note: NC Products lists unit wt. of manhole concrete at 142 PCF. 54.936 CF 7801 lbs Total water displaced by riser/barrel structure = 166.536 CF Weight of water displaced = 10392 lbs 0 THE JAMISON AT BRIER CREEK SWMF #1 B. IHNATOLYA, PE EPH-10000 11/23/2010 • Calculate amount of concrete to be added to riser => Safety factor to use = 1.25 (recommend I ?.?ox hioierj Must add = 5189 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 63.68 PCF Therefore, must add = 81.484 CF of concrete Standard base described above = 16.667 CF of concrete Therefore, base design must have = 98.150 CF of concrete Calculate size of base for riser assembly ==> Length = 8.000 feet Width = 8.000 feet Thickness = 19.0 inches Concrete Present= 101.333 CF OK Check validity of base as designed => • Total Water Displaced = 251.203 CF Total Concrete Present = 139.603 CF Total Water Displaced = 15675 lbs Total Concrete Present = 19824 lbs Actual safetyfactor = 1.26 Results of design => Base length = 8.00 feet Base width = 8.00 feet Base Thickness = 19.00 inches CY of concrete total in base = 3.75 CY Concrete unit weight in added base >= 142 PCF Oh 0 THE JAMISON AT BRIER CREEK EPH-10000 • _> Stage - Storage Function Ks = 19077 b= Zo = 1.153 346 Elevation Stora e feet [ct] [acre-fe 346 0 0.000 346.2 2983 0.068 346.4 6633 0.152 346.6 10586 0.243 346.8 14749 0.339 347 19077 0.438 347.2 23540 0.540 347.4 28119 0.646 347.6 32799 0.753 347.8 37570 0.862 348 42423 0.974 348.2 47350 1.087 348.4 52347 1.202 348.6 57408 1.318 348.8 62529 1.435 349 67707 1.554 349.2 72937 1.674 349.4 78218 1.796 349.6 83546 1.918 349.8 88920 2.041 _ 350 94338 2.166 B. IHNATOLYA, PE 1/6/2011 IoD-y? W o?7rc.?sr C106*0 100-YR S-S Function-Clogged Siphon Condition Elevation Storage [cl] [acre-feet] 347.80 0 0.000 348.00 4853 0.111 348.20 9781 0.225 348.40 14777 0.339 348.60 19838 0.455 348.80 24959 0.573 349.00 30137 0.692 349.20 35367 0.812 349.40 40648 0.933 349.60 45976 1.055 349.80 51350 1.179 350.00 56768 1.303 • • C7 HEGHMS i Subbasin-5 F Subbasin-9 Project: EPH10000 Subbasin-6 SWMF Subbasin-8 Subbasin-7-To Pond Subbasin-7-Bypass Junction-1 Subbasin 3 Reach-2 SWMF #1 Subbasin-3A-To Pond Subbasin-2 - Reach-3 7 Subbasinl Subbasin-1 Basin Model: Post-Dev Subbasin-3B Reach-1 Subbasin-3A-Bypass 0 Subbasin 7 • • HMS * Summary of Results for Reach-2 Project : EPH10000 Start of Run 24Aug10 0000 End of Run 25Aug10 0000 Execution Time 06Janll 1128 Run Name : 100-Yr WC Basin Model Post-Dev 100-Yr WC Met. Model 100-Yr Storm Control Specs 1 min dT Computed Results I D? -IF woRSreAS? 61PHOO CL0J6FD Peak Inflow 57.166 (cfs) Date/Time of Peak Inflow 24 Aug 10 1205 Peak Outflow 57.166 (cfs) Date/Time of Peak Outflow 24 Aug 10 1205 Total Inflow 5.48 (in) Total Outflow : 5.48 (in) 0 HMS * Summary of Results for SWMF #1 • • Project : EPH10000 Start of Run 24Augl0 0000 End of Run 25Aug10 0000 Execution Time 06Janll 1128 Computed Results Run Name : 100-Yr WC Basin Model Post-Dev 100-Yr WC Met. Model 100-Yr Storm Control Specs 1 min dT Peak Inflow 58.840 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 28.575 (cfs) Date/Time of Peak Outflow 24 Aug 10 1212 Total Inflow 6.11 (in) Peak Storage 0.64204(ac-ft) Total Outflow 6.09 (in) Peak Elevation 348.92(ft) ? 6o vR ub?s?" ? AsE slpN-o? 0('L ED 0 Type.... Outlet Input Data Page 1.01 Name.... SWMF#1-100Yr WC File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments • Project Comments: `' REQUESTED POND WS ELEVATIONS: 1001R ?O?ST CASE SIPHM CcoCGED Min. Elev.= 347.80 ft Increment = .20 ft Max. Elev.= 350.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure ----------------- Inlet Box Culvert-Circular TW SETUP, DS Channel • • No. Outfall El, ft E2, ft ---- ------- --------- --------- RI ---> BA 347.800 350.000 BA ---> TW 343.200 350.000 S/N: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 7:07 PM Date: 12/20/2010 • Type.... Outlet Input Data, Name.... SWMF#1-100Yr WC Page 1.02 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = Inlet Box --------- ------- ----------------- # of Openings --- = 1 Invert Elev. = 347.80 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Submerged = .000 K, Reverse = 1.000 Kb,Barrel = .000000 (per ft of full flow) Barrel Length = .00 ft Mannings n = .0000 • • SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 7:07 PM Date: 12/20/2010 • Type.... Outlet Input Data Name.... SWMF#1-100Yr WC Page 1.03 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type ------------------ = Culvert-Circular ------------------ No. Barrels = 1 Barrel Diameter = 2.0000 ft Upstream Invert = 343.20 ft Dnstream Invert = 342.40 ft Horiz. Length = 70.00 ft Barrel Length = 70.00 ft Barrel Slope = .01143 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .012411 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.154 T2 ratio (HW/D) = 1.301 Slope Factor = -.500 • Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 345.51 ft ---> Flow = 15.55 cfs At T2 Elev = 345.80 ft ---> Flow = 17.77 cfs • SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 7:07 PM Date: 12/20/2010 • ***** COMPOSITE OUTFLOW SUMMARY **** CUMULATIVE HGL CONVERGENCE ERROR .000 (+/- ft) • • Type.... Composite Rating Curve Name.... SWMF#1-100Yr WC Page 1.06 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: WS Elev, Total Q ---------------- Elev. Q ft cfs 347.80 .00 348.00 4.29 348.20 12.14 348.40 22.31 348.60 27.06 348.80 28.03 349.00 28.97 349.20 29.88 349.40 30.77 349.60 31.62 349.80 32.46 350.00 33.27 S/N: 6217012070C3 PondPack Ver. 8.0058 ------- Converge TW Elev Error ft +/-ft ------- ----- 345.87 .000 345.87 .000 345.87 .000 345.87 .000 345.87 .000 345.87 .000 345.87 .000 345.87 .000 345.87 .000 345.87 .000 345.87 .000 345.87 .000 Notes ----------------------- Contributing Structures ----------------------- (no Q: RI,BA) RI, BA RIBA RI, BA RIBA RIBA RIBA RIBA RIBA RIBA RIBA RIBA The John R. McAdams Company Time: 7:07 PM Date: 12/20/2010 Scenario: Base • • • Title: Street A - Parcel H west Project Engineer: Jeremy J. Beckett, P.E. x:\...\design files\swmfl-10yr.stm The John R. McAdams Company StormCAD v4.1.1 [4.2014] 11/23/10 08:03:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 uivw d o ° N .- y ? m e m m7a v ?> T ? O N n O O N C_ m C W U O a Ali ' V 1 O (A t cc O o 4) •? O _ V O 0 Z N 0 a U t/) N ?p N O m (D m t0 n O) O M co 'Fu m O 0 w N O r n O 00 (O b 0 M tf) L to v C's N O -. 6 (0 N N N N N N N N O N N ?•N ? n r n n n n n o n n U C: m O m m m m O) O) O O) m O co o(0nLO 0rnLO CO r lO O V M m r N t0 00 mo M O m O O O^ " = 0 ( 0 (p U n n 0 (O V N N W M O V V V V V V 0 M N V V V V ?(? v V V V V Cl) Cl) Cl) M CO (M Cl) Cl) Cl) Cl) M Cl) M M J •- O C 5 M O N n N O t0 (O O n O N O O n m (O r O m m o (O O N, a ?_. r r r (O V N CO O O vvvvvvvvvv v I L6 N vvv ? >, (,? J M M M M M M M M M M M M M M 2 C ° O o 0 0 0 0 o n r m M (() O (O a0 00 O m m m O m w O w 0 M O f0 % V O to 0 (O O O n N n n 0 , > .? t0 0 v to v v V v v v v v v V ? M M M M M M M M M M M M M M W 0 0 0 0 0 0 0 0 0 n r m M 0 0 0 O w O m m M O m w 0 m 0 m O m^ v o tri o (ri 6 o o r-? 06 r r o o> N 0 to v (n v v v v v v M M M M M M M M v v v v M M M M w M M N O N 0 M r M N V 0 0 m 3 N m m (o n OR m to n (O v n (q 7 7 o o ° o M CO ui 0 o ui to (7 (O (O c r C t F- >1 LL -- N CO M- r- - O M m m ( m 0 0 0 0 0 0 O O O V V 0 0 0 0 0 0 0 0 r n m e ° o 0 0 0 0 0 0 0 0 0 0 LO LO Q'D LL 00 'a C C 33?, O O O O O O O O 000000 00 O O O 000 000000 00 000 Y W v m m 0 0 0 0 0 0 O O O O O C> O O O O O O O O O O O 0 j ? U 0 0 0 0 0 0 O O 0 0 0 Co U m 0 0 0 0 0 0 0 o v o 0 0 3^ 0 0 0 0 0 0 0 o 0 0 n o i o m 0 0 0 0 0 0 (r 00 O Li o E m N O w (O M n M N m 0 0 M N c 3 (O n (n v m m (o 0 o o v v 0 0 ri ao 0 0 LO 0 M 0 co o n n 76 L6 N M M U) 0? E-^ N O N (O CO m N V O m m N L r r n O co V n n co O n o (o C m m m m m m m m m m O m m m ? C E E O m O N O co O (O O O O O N N CO CO O O CO O co 0 v O O r i0.. C t0 t0 t0 Lo Ln t0 to 6 to tri ui t0 t0 to T 0- w O E += O m O N - 0 O M O M o O O O N N co O O O O H 2 O L6 O (n to to O t0 O t0 6 E c c m a E 2) r N O QU 0 0 0 0 0 0 0 O O 0 0 0 - 0 0 0 0 0 0 q q (?0 0 ° °) o o o o 0 o 0 0 0 0 0 c E w?c 0 ° ° ° ° ° ° ° 0 ° ° o 0 C0 0 0 0 C0 0 0 O m LO 0 0 0 LO LO ui LO Lo (ri LO E p c c c 0 E N O o o T N N O m m m O m (D O m Q 0 co n n v co (q a o n r w U U O O e- N M M '- .- - 0 0 0 0 M (0 O O O O O O O O O O O E Q 0 0 0 0 0 0 O O 0 0 0 U 0 0 0 0 0 0 0 0 0 0 0 m W u^) o O m v w O co o m rn N Q N V (O CO t0 v V N O 0 c U i? o o ? o 0 0 ? 0 0 0 0 - m O LO O 0 O (O M LO Cl) in t0 U 0o 0ooommrn com nmm c 0 0 0 0 0 0 0 0 0 0 0 u^) 0 0 0 0 0 0 0 0 0 0 0 N t0 O O N O t0 n Cl? O N CO Q cUC O O N 0 0 0 O 0 0 0 U y, a? co n O O m C to m m N N N N N M M V N 10 N N J N m N m m m W CO 00 ?( M O M W U U U U U- U U w a U U U- (0 (0 L6 LO r M O N Q co r O O c0 A 7 3 ? V? 0 S? E? A a N d o w c ° o ° ?y N L 0 F- o m n M U c N -0 0 m m cn a? m 2 0 E U 3 a) T N O 3 0 _ w ?Na Cl) CL O O Q ? N ? c dj O H X O r? U FINAL STORMWA TER MANA GEMENT FA CILITY DESIGN CAL CULA TIONS (STORMWATER WETLAND #2) 0 0 THE JAMISON AT BRIER CREEK EPH-10000 ,, 1 SIIV1 dQ Z# QNV'LI?AAZI?LdAAiK?IQLS o y ° N U EM-3 °N a°?n•?+®v?wM •erosssa?oe 614a ON m•9ma 'nm4+vd.n9n•N 99E2 1••Y?k7 '?. , , . VNRIOHVJ H72IOPI 'H=JI7IVZi 0 I a 8JJUMYHO • NNW MONYnU HOMSSH •/ ` 88tZE tlQIHO Id '%Htld H3LNIY = ? o m ' ? ro JLN3NNOHIANB • SHOMMIS • SHHNNVId • SHH3NI9NH 8flN8AV tlNI10HV3 89C r }.? Q 0 }.? a MR 2 H C 'AI' ?nvma9Nlaj0?ja IPV z=s, 'ONI `SHIJA OHd HOOdH iti L1 <.i - - - © I N0SI :qH1 I ? i ? iuiaaaui6u3on3 :sNOlstnaH aaNllo V V V . a Ot-?-HJ 10----// 0/ Jag /z h z r / - r z_- -- ------ I =1 - / / I / •? 1 ? 88 W i &b o W 3 A, bj o l ot \ p \ c \ N I ? W 2 r ;w= FQ O WU Z)oC, U C w U N 20 0 o U ir N W{K?r 2 UUJ `g2 6 LLP N z 0 {z ?e b8 8 B? a a? TO gi ?b t- raW u ? jx5F Oa¢p N H-1?$o ?Ha Has ?m 8%xaa?'§p ? e .1196 9 g7= 0 ISROSCWS V..wm? U ¢ .1 o ?y h ?a his v 12z Pfflq a$>mO ?F s 7 a 0? _? b V is 5 NOR ?15 A'a §gW >up "Obi8k'k' WBb yu tai IPJ < l%^8<!+!? a$b %4H orb g?g '.Y,?- ola ??? :198 z j a?? a >` aaq?ab? ?? ?b??? 81?'? 7?mjg 6 ?1n??° $96'9 '^O p5Jw<y ?1 < 8 Ci b<?a i _a ?? ?N Epp, ?a '.§0. 84 - zRIX Dig 0% d m n d " d ° a b b <`? z G < B- ? .j65° "8 W?3 K'G £7 min T °T°i3 i >&<H§df -1 Mg 01 U ' p41a> yy?1i Hai g <3 q;$ <? 3 65?? gi & gi Ki 6"?_ 6 ?a U at 7° d Fg?=b b& ?FibW' $88o? a?Y$uw a? $aa 'b d"?1 &88:3b By?YYa`° d? 3? } $ m1 %b n? ?' a F "R °? <dib < mw F m 1910. iq -sp gag $S ?? o ?'S5 Qd? 2;0 Ev=1Cd 88<$ Zp u? j? 6 N ?Sn :p?a ?? $ $zrci , ^ $w s?JE I o> ?d k=? alp U Q$ U?W$ W Y! ? ? 0 yON? Z a6O j m}U 52M ?? y=1nwl'z - ORB ?g;rt(n2w p??m4$& ?' ?Jll `cccpo3?1{?130, ? ?Fi Y?1 iy lA?loWSYj W?? qmO F<9V1 ¢Z ?Z5 cz F?pe??yOO(?a"w F? Zv yl £? 2?i5=J 1 ?Ij w? twv j m < F'CF FaZ F U 4°U i Q< 6 0 W`?<a3??? z CGS U < x.£ m ? £ k'< a $ _6 a'b jo O s l ? zy?1 Y N m?° .6 dF F 1 ° F bib a F $L^F 2m ?m aO' WS g & x FGI?> ?m 16° 2 8? 1 N FJ °Wk sffi 49? aU ?8$ 'a Q? `zNb 8 W :b 595. ?b 8 ray s , 9 PN w? rf D, a x '3 z " w ' m W in HR 9.5. ul fw-X '? N •i i d d r d w d 1/) O C 3 b (?1 W ? ? F i U" I ° F M `< Z o YS k' 46 j °? 9A '? t ? ? w a ? yql yN?? { o_ ° W41 a <25 gY € ?Z p?d8 ?m< < C <?¢o at 26 \ 6<1 g'Z? $ ?? ?? 4Ga F <@? 88 6'-X19 b I 8 N>E < I to< U13 pi 4x-. H9 WWOP :b Y1a 8W$ g b$ z<R aSff$?119 96E a ? oa ? a $x ?ZO $5 eb5 Jgw l jg -da U' qqb b3 E 19 ;? > o k1? ?$> 01?g €i ° C bb 6$ b ?b5i? ;2i3 ? e= Wb b 8 ?$ a a ?44g $ 1S b 1 In % F" "`gW? ?a b??l? ° a "? ?z7 y£ ??m< 9 z $S b'f$ $ 3 wz ° ?a a N1> wo > ? 81 - e $ '1-0118= c ? ° b? ?c 8 _ 3 b?? in pw = bra "WX? ar k?Y_ b 8oY K'? = b?tl< "7- a- 9. aE g; ff e i 8 3 a ?g ? awn 1jw!KAjw1 Ns Si " e ?j?¢j Z ENO b b? < o? $ 03 >S cW <° ? u N Y ??wm?O ?? ®?? ? 3 a 8 ?0 i?6?b? ?sYa!M cFim ?F??_ ?a 'a?> =a L8j ?? ??ab? _< 1'91 z g i" _ NO ?' b b2Y YS SS ° c_: p? °°s>? dff a di1 1 9! sq J p$ j ley F Fm ° ` " U Cmg <J Z? 2 £i? Ii1.1 F Z ?Y >m?? °` ° k1Tjm 2 llLiii?°t GGG??i $F U$~ 3 1n~ 3 8? 2? gz ? Fu£I? m eraa ?a? <li 3iW€m? 1Zj b? ?b q<q i } mix ??$ Ez X WE W° ?? SW F ? 9??g?a8? $? ff vzz 2. Y ?2c ydyy£ j° q'gwz °gz?$p; Bli F z Sg Ui p$W? m § S ?w o $ S ? ; a H Mg Y.113 Wi Hi n x aw??_j Q s 1????? ?x " 3<? amaR ff$ ix 41 'a 1 d d O W w 6 °80 OF INS63t X$ Fh£Cx w rs? ?a? Iz it M.. N +1 4 4 m n d a ° - =1 3W bYS gY z >B o - Phi; m i.0 Y d F 3s o'hW Si ° < ?v? YID Z b `LLxa? ai M N I S z O o m$ ?Y ] m ? ???9 ??:r?8 Ewa p rGa <$?S$? bQB ?bglf ? 8 lot fa N. Wig 1p, M < ff ow. 318# ?`a §19112 a: "? b? ?b?Jz zi'51§ igb,? ??qqq\ 8$ C? N&I opt"$9j a 561 90.E 9? P -z - N •i ? d d n 9 F V i a J w co 0 0 0 s 8 U w o?p 1[1[?? yW j"l? }¢ gy{. a ° N WO '? '615' M gQg Y ZI££? ?d St i ?!inm O I? x S R • THE JAMISON AT BRIER CREEK EPH-10000 Stage-Storaze Function Project Name: The Jamison at Brier Creek Designer: B. Ihnatolya, PE Job Number: EPH-10000 Date: 1/6/2011 B. IHNATOLYA, PE 1/6/2011 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF1 (SF) (CF) (CF) (feet) 358.0 0.0 14986 359.0 1.0 17250 16118 16118 16118 1.00 360.0 2.0 18275 17763 17763 33881 1.99 361.0 3.0 19052 18664 18664 52544 2.99 362.0 4.0 19828 19440 19440 71984 4.00 363.0 5.0 20603 20216 20216 92200 5.03 • Ks = 16059 b = 1.082 Storage vs. Stage 100000 90000 y = 16059x1082 80000 RZ = 1 u 70000 U m 60000 m 50000 y 40000 30000 20000 10000 0 0 .0 1.0 2.6tage MAO) 4.0 5.0 6 .0 0 THE JAMISON AT BRIER CREEK EPH-10000 • _> Stage - Storage Function Ks= 16059 b = 1.082 Zo = 358 Elevation 358 0 0.000 358.2 2815 0.065 358.4 5959 0.137 358.6 9240 0.212 358.8 12614 0.290 359 16059 0.369 359.2 19561 0.449 359.4 23112 0.531 359.6 26704 0.613 359.8 30334 0.696 360 33996 0.780 360.2 37689 0.865 360.4 41410 0.951 360.6 45156 1.037 360.8 48926 1.123 361 52719 1.210 361.2 56532 1.298 361.4 60364 1.386 361.6 64215 1.474 361.8 68084 1.563 362 71969 1.652 362.2 75871 1.742 362.4 79787 1.832 362.6 83719 1.922 362.8 87664 2.012 363 91623 2.103 B. IHNATOLYA, PE 1/6/2011 0 • Type.... Outlet Input Data Page 1.01 Name.... SWMF#2 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 358.00 ft Increment = .20 ft Max. Elev.= 363.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft orifice-Circular OR ---> TW 358.000 363.000 Inlet Box RI ---> BA 360.400 363.000 Orifice-Area 02 ---> BA 359.000 363.000 Culvert-Circular BA ---> TW 354.300 363.000 TW SETUP, DS Channel • 0 S/N: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 5:53 AM Date: 11/23/2010 Type.... Outlet Input Data Page 1.02 Name.... SWMF#2 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments • Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = OR Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. 358.00 ft Diameter = .1667 ft Orifice Coeff. _ .600 Structure ID = RI Structure Type ------- = Inlet Box ---------- # of Openings ------------ = 1 ------- Invert Elev. = 360.40 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Submerged = .000 K, Reverse = 1.000 Kb,Barrel = .000000 (per ft of full flow) Barrel Length = .00 ft Mannings n = .0000 Structure ID = 02 • Structure Type -------------- = Orifice-Area --- # of Openings ------------ = 1 ------- Invert Elev. = 359.00 ft Area = 1.5000 sq.ft Top of Orifice = 359.75 ft Datum Elev. = 359.00 ft Orifice Coeff. _ .600 • SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 5:53 AM Date: 11/23/2010 • Type.... Outlet Input Data Name.... SWMF#2 Page 1.03 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ----------- ------------------ No. Barrels ------- = 1 Barrel Diameter = 2.0000 ft Upstream Invert = 354.30 ft Dnstream Invert = 354.00 ft Horiz. Length = 50.00 ft Barrel Length = 50.00 ft Barrel Slope = .00600 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .012411 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.157 T2 ratio (HW/D) = 1.304 Slope Factor = -.500 • C7 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 356.61 ft ---> Flow = 15.55 cfs At T2 Elev = 356.91 ft ---> Flow = 17.77 cfs S/N: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 5:53 AM Date: 11/23/2010 • Type.... Outlet Input Data Name.... SWMF#2 Page 1.04 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maximum Iterations= 30 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs r? • S/N: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 5:53 AM Date: 11/23/2010 • Type.... Composite Rating Curve Name.... SWMF#2 Page 1.12 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** • • WS Elev, Total Q Notes -------- -------- ------ -- Converge ---------- ---- -- --------- Elev. Q TW Elev Error ft cfs ft +/-ft Contributi ng Structures -------- 358.00 ------- .00 ------ Free -- ----- - Outfall ---------- (no Q: OR --------------- ,RI,02,BA) 358.20 .04 Free Outfall OR (no Q: RI, 02 ,BA) 358.40 .06 Free Outfall OR (no Q: RI, 02 ,BA) 358.60 .08 Free Outfall OR (no Q: RI, 02 ,BA) 358.80 .09 Free Outfall OR (no Q: RI, 02 ,BA) 359.00 .10 Free Outfall OR (no Q: RI, 02 ,BA) 359.20 1.78 Free Outfall 0R,02,BA (no Q: RI) 359.40 3.46 Free Outfall 0R,02,BA (no Q: RI) 359.60 5.13 Free Outfall 0R,02,BA (no Q: RI) 359.80 6.59 Free Outfall 0R,02,BA (no Q: RI) 360.00 7.36 Free Outfall 0R,02,BA (no Q: RI) 360.20 8.06 Free Outfall 0R,02,BA (no Q: RI) 360.40 8.70 Free Outfall OR,02,BA (no Q: RI) 360.60 13.59 Free Outfall 0R,RI,02,B A 360.80 22.00 Free Outfall 0R,RI,02,B A 361.00 31.26 Free Outfall 0R,RI,02,B A 361.20 37.34 Free Outfall OR,RI,BA (no Q: 02) 361.40 38.00 Free Outfall OR,RI,BA (no Q: 02) 361.60 38.66 Free Outfall OR,RI,BA (no Q: 02) 361.80 39.30 Free Outfall OR,RI,BA (no Q: 02) 362.00 39.94 Free Outfall OR,RI,BA (no Q: 02) 362.20 40.57 Free Outfall OR,RI,BA (no Q: 02) 362.40 41.18 Free Outfall OR,RI,BA (no Q: 02) 362.60 41.79 Free Outfall OR,RI,BA (no Q: 02) 362.80 42.38 Free Outfall OR,RI,BA (no Q: 02) 363.00 42.97 Free Outfall OR,RI,BA (no Q: 02) SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 5:53 AM Date: 11/23/2010 HMS * Summary of Results for SWMF #2 Project : EPH10000 Run Name : 2-Yr Post • Start of Run 24Aug10 0000 Basin Model Post-Dev 2-Yr End of Run 25Aug10 0000 Met. Model 2-Yr Storm Execution Time 06Janll 0825 Control Specs 1 min dT Computed Results Peak Inflow 31.022 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 6.5779 (cfs) Date/Time of Peak Outflow 24 Aug 30 1220 Total Inflow 2.16 (in) Peak Storage 0.69531(ac-ft) Total Outflow 1.60 (in) Peak Elevation 359.80(ft) 0 0 HMS * Summary of Results for SWMF #2 Project : EPH10000 Run Name : 10-Yr Post Start of Run 24Augl0 0000 Basin Model Post-Dev 10-Yr End of Run 25Aug10 0000 Met. Model 10-Yr Storm Execution Time 06Janll 0826 Control Specs 1 min dT Computed Results Peak Inflow 44.809 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 14.881 (cfs) Date/Time of Peak Outflow 24 Aug 10 1216 Total Inflow 3.57 (in) Peak Storage 1.0502(ac-ft) Total Outflow 3.00 (in) Peak Elevation 360.63(ft) • 0 HMS * Summary of Results for SWMF #2 Project : EPH10000 Start of Run 24Aug10 0000 End of Run 25Augl0 0000 Execution Time 06Janll 0827 Run Name : 100-Yr Post • Computed Results Basin Model Post-Dev 100-Yr Met. Model 100-Yr storm Control Specs 1 min dT Peak Inflow 59.016 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 34.505 (cfs) Date/Time of Peak Outflow 24 Aug 10 1209 Total Inflow 5.77 (in) Peak Storage 1.2570(ac-ft) Total Outflow 5.19 (in) Peak Elevation 361.11(ft) 0 THE JAMISON AT BRIER CREEK STORMWATER WETLAND EPH-10000 SIZING CALCULATIONS - SWMF#2 y Detenninadon of Water Quality Volume M v) • W =PR, A/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 8.12 acres Impervious area = 4.13 acres Percent impervious cover, I = 50.8 % Rainfall, P = 1.0 inches Calculated values: Rv= 0.51 WQv = 0.34 acre-ft = 14959 cf. _> Stormwater Wetland Required Surface Area Calculation WQ Volume = 14959 cf. Maximum Ponding Depth = 12 inches Surface Area Required at Normal Pool = 14959 SF Associated Pond Depth in Stormwater Wetland Ks = 16059 b = 1.082 V = 14959 Normal Pool Elevation = 358.0 feet WQ Elevation = 358.94 feet B. IHNATOLYA, PE 1/6/2011 0 r ? THE JAMISON AT BRIER CREEK 1" WQ VOLUME EPH-10000 WETLAND #2 SIPHON DESIGN D orifice = 2 inch # orifices = 1 Ks = 16059 b = 1.082 Cd siphon = 0.60 Normal Pool Elevation = 358.00 feet Orifice Invert = 357.50 feet 1" WQ Volume = 14959 cf WSEL @ 1" Runoff Volume = 358.94 feet B. IHNATOLYA, PE 1/6/2011 Using the average head over the orifice (assuming average head is one-third the total depth), the result would be: Average driving head on orifice = 0.480 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of 2.00" orifice = 0.022 sf Q= 0.0728 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 2.38 days C7 Conclusion : Use 1- 2.0" Diameter PVC inverted siphon to drawdown the accumulated volume from the 1" storm runoff, with a required time of about 2.38 days. 0 BRIER CREEK APARTMENTS WETLAND ZONE AREAS - WETLAND #2 B. HiNATOLYA, PE EPH-10000 1/6/2011 BRIER CREEK APARTMENTS 40 Um"No"A"Mi, / ., MMIMMOMENEM Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep pools being broken down to forebay pools and non-forebay pools. Approximately 5-10% of the wetland surface area should be non-forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the surface area should be shallow water, and the remaining 3040%of the surface area should be shallow land. A. Total Wetland Surface Area (Elev. 358.0) B. Wetland Surface Area: Deep Pools Non-Forebay Forebay Area = 14986 sf Area = 1526 sf Area = 1545 sf C. Wetland Surface Area: Shallow Water D. Wetland Surface Area: Shallow Land Area = 6115 sf Area = 5800 sf Dee Pools-Non-Foreba 10.2% Dee Pools-Foreba 10.3% Shallow Water 40.8% Shallow Land 38.7% is oo"Isae t'Old Z#3NMS LLOZ-90-Lo goeb-OU42 in w log 39 era 3n , H si VNI'IOHVO HJXON `H JI21VH /7?7 ??ul `ANddWO3 usma iv Nosipwr ain ZMSOOOOLHd3 :axvkwl1d s w v Yall'2i mHOr 51HI 0000L-Hd3 oN i?atoaa Dif The Jamison at Brier Creek - SWMF #2 Project # EPH-10000 VELOCITY DISSIPATOR DESIGN • Designed By: B. Ihnatolya Velocity Dissipator - SWMF #2 NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Mannings roughness number is constant over the entire length of the pipe. flow Q in cfs : 14.881 Flow depth (ft) = 1.41 slope S in %: 0.6 Outlet velocity (fps) = 6.262 pipe diameter D in in.: 24 Manning number n : 0.013 NRCD Land Quality Section NYDOT Dissipator Design Results ?J Pipe diameter (ft) 2.00 Outlet velocity (fps) 6.26 Apron length (ft) 12.00 AVG DIAM STONE THICKNESS (inches) CLASS (inches) -------- ----- 3 A --------- 9 »6 B 22« 13 B or 1 22 23 2 27 Width Calculation WIDTH = La + Do WIDTH =12.00 + 2.00 WIDTH =14.0 FEET CONCLUSION Use 8" DIA NCDOT Class `B' Rip Rap 12'L z 14'W x 22" Thick 0 ABE VOLUME CALCULATORS, PYRAMIDLONG Page 1 of 1 CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS 0 Enter all known values in the form below and press the "CALCULATE" button. rYf? ?? WIDTHI(WI) LENGTHI(LI) WIDTH2(W2) LENGTH2(L2) HEIGHT(h) VOLUME F 7 1 Ill -] 12 38 The answer that you 1 1can copy for other use 38 F CALCULATE RESET SELECT ANOTHER SHAPE Go to Unit Conversion Pape • http://www.abe.msstate.edu/-fto/tools/vol/pyramidlong.html 11/22/2010 THE JAMISON AT BRIER CREEK SWMF #2 B. IHNATOLYA, PE EPH-10000 11/22/2010 • Square Riser/Barrel Anti-Flotation Calculation Sheet Input Data => Inside length of riser = 4.00 feet Inside width of riser = 4.00 feet Wall thickness of riser = 6.00 inches Base thickness of riser = 8.00 inches Base length of riser = 5.00 feet Base width of riser = 5.00 feet Inside height of Riser = 6.10 feet Concrete unit weight = 142.0 PCF OD of barrel exiting manhole = 31.50 inches Size of drain pipe (if present) = 8.0 inches Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 1.500 SQFT Trash Rack water displacement = 38.00 CF Concrete Present in Riser Structure => Total amount of concrete: • Adjust for openings: Base of Riser = 16.667 CF Riser Walls = 54.900 CF Opening for barrel = 2.706 CF Opening for drain pipe = 0.175 CF Opening for detention orifice = 0.750 CF Total Concrete present, adjusted for openings = Weight of concrete present = Amount of water displaced by Riser Structure => Displacement by concrete = 67.936 CF Displacement by open air in riser = 97.600 CF Displacement by trash rack = 38.000 CF Note: NC Products lists unit wt. of manhole concrete at 142 PCF. 67.936 CF 9647 lbs Total water displaced by riser/barrel structure = 203.536 CF Weight of water displaced = 12701 lbs • THE JAMISON AT BRIER CREEK SWMF #2 B. IHNATOLYA, PE EPH-10000 11/22/2010 • Calculate amount of concrete to be added to riser => Safety factor to use = 1.25 (recommend 1.25 or higher) Must add = 6229 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 63.68 PCF Therefore, must add = 97.815 CF of concrete Standard base described above = 16.667 CF of concrete Therefore, base design must have = 114.482 CF of concrete Calculate size of base for riser assembly => Length = 8.000 feet Width = 8.000 feet Thickness = 22.0 inches Concrete Present = 117.333 CF OK Check validity of base as designed => • Total Water Displaced = 304.203 CF Total Concrete Present = 168.603 CF Total Water Displaced = 18982 lbs Total Concrete Present = 23942 lbs Actual safetyfactor = 1.26 Results of design => Base length = 8.00 feet Base width = 8.00 feet Base Thickness = 22.00 inches CY of concrete total in base = 4.35 CY Concrete unit weight in added base >= 142 PCF OK is THE JAMISON AT BRIER CREEK EPH-10000 • _> Stage - Storage Function Ks = 16059 b= 1.082 Zo = 358 Elevation • 358 0 0.000 358.2 2815 0.065 358.4 5959 0.137 358.6 9240 0.212 358.8 12614 0.290 359 16059 0.369 359.2 19561 0.449 359.4 23112 0.531 359.6 26704 0.613 359.8 30334 0.696 360 33996 0.780 360.2 37689 0.865 360.4 41410 0.951 360.6 45156 1.037 360.8 48926 1.123 361 52719 1.210 361.2 56532 1.298 361.4 60364 1.386 361.6 64215 1.474 361.8 68084 1.563 362 71969 1.652 362.2 75871 1.742 362.4 79787 1.832 362.6 83719 1.922 362.8 87664 2.012 363 91623 2.103 B. IHNATOLYA, PE 1/6/2011 6 ' ASE PhOd CCO6GED el 100-YR S-S Function-Clogged Siphon Condition Elevation 360.40 0 0.000 360.60 3746 0.086 360.80 7516 0.173 361.00 11308 0.260 361.20 15121 0.347 361.40 18954 0.435 361.60 22805 0.524 361.80 26674 0.612 362.00 30559 0.702 362.20 34461 0.791 362.40 38377 0.881 362.60 42309 0.971 362.80 46254 1.062 363.00 50213 1.153 0 Type.... Outlet Input Data Page 1.01 Name.... SWMF#2-WC File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 B h Ih t 1 • Project Engineer. et na o Y. Project Title: Brier Creek Apartments Project Comments: T% REQUESTED POND WS ELEVATIONS: Min. Elev.= 360.40 ft Increment = .20 ft Max. Elev.= 363.00 ft J YR s 1?ft H CLOP 4 C bbl a TIOt? OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft ----------------- ---- ------- --------- --------- Inlet Box RI ---> BA 360.400 363.000 Culvert-Circular BA ---> TW 354.300 363.000 TW SETUP, DS Channel • f 11 u SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:11 AM Date: 11/23/2010 • Type.... Outlet Input Data Name.... SWMF#2-WC Page 1.02 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = Inlet Box ----- ----------------- # of Openings ------------- = 1 - Invert Elev. = 360.40 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Submerged = .000 K, Reverse = 1.000 Kb,Barrel = .000000 (per ft of full flow) Barrel Length = .00 ft Mannings n = .0000 • S/N: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:11 AM Date: 11/23/2010 • Type.... Outlet Input Data Name.... SWMF#2-WC Page 1.03 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ---------- ------------------ No. Barrels -------- = 1 Barrel Diameter = 2.0000 ft Upstream Invert = 354.30 ft Dnstream Invert = 354.00 ft Horiz. Length = 50.00 ft Barrel Length = 50.00 ft Barrel Slope = .00600 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .012411 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.157 T2 ratio (HW/D) = 1.304 Slope Factor = -.500 • • Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 356.61 ft ---> Flow = 15.55 cfs At T2 Elev = 356.91 ft ---> Flow = 17.77 cfs SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:11 AM Date: 11/23/2010 • Type.... Outlet Input Data Name.... SWMF#2-WC Page 1.04 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Maximum Iterations= 30 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs • • SIN: 6217012070C3 The John R. McAdams Company PondPack Ver. 8.0058 Time: 6:11 AM Date: 11/23/2010 • • • Type.... Composite Rating Curve Name.... SWMF#2-WC Page 1.07 File.... X:\Projects\EPH\EPH-10000\Storm\Construction Drawings\EPH10000.PPW Title... Project Date: 9/12/2010 Project Engineer: Beth Ihnatolya Project Title: Brier Creek Apartments Project Comments: WS Elev, Total Q Elev. Q ft cfs -------- 360.40 ------- .00 360.60 4.29 360.80 12.14 361.00 22.31 361.20 34.35 361.40 37.81 361.60 38.46 361.80 39.10 362.00 39.73 362.20 40.35 362.40 40.96 362.60 41.56 362.80 42.15 363.00 42.74 SIN: 6217012070C3 PondPack Ver. 8.0058 ***** COMPOSITE OUTFLOW SUMMARY **** Notes -------- Converge ------------------------- TW Elev Error ft +/-ft Contributing Structures -------- ----- -------------------------- Free Outfall (no Q: RIBA) Free Outfall RI,BA Free Outfall RI,BA Free Outfall RIBA Free Outfall RIBA Free Outfall RI,BA Free Outfall RI,BA Free Outfall RI,BA Free Outfall RI,BA Free Outfall RIBA Free Outfall RIBA Free Outfall RIBA Free Outfall RI,BA Free Outfall RI,BA The John R. McAdams Company Time: 6:11 AM Date: 11/23/2010 • Subbasin 7 • HEC-HMS Subbasin-5 eklz, Subbasin-9 Subbasin 3 Project: EPH10000 Subbasin-6 Subbasin-8 SWMF #2 Subbasin-7-To Pond Subbasin-7-Bypass Junction-1 4-` SWMF #1 Subbasin-2 Reach-3 e Lft Subbasinl Subbasin-1 Reach-2 Subbasin-3A-To Pond Basin Model: Post-Dev Subbasin-3B Reach-1 Subbasin-3A-Bypass E HMS * Summary of Results for SWMF #2 Project : EPH10000 Run Name : 100-Yr WC • • Start of Run 24Augl0 0000 Basin Model Post-Dev 100-Yr WC End of Run 25Augl0 0000 Met. Model 100-Yr Storm Execution Time 06Janll 1342 Control Specs 1 min dT Computed Results Peak Inflow 59.016 (cfs) Date/Time of Peak Inflow 24 Aug 10 1204 Peak Outflow 38.052 (cfs) Date/Time of Peak Outflow 24 Aug 10 1209 Total Inflow 5.77 (in) Peak Storage 0.46818(ac-ft) Total Outflow 5.75 (in) Peak Elevation 361.47(ft) 0