Loading...
HomeMy WebLinkAbout20061376 Ver 2_Stormwater Info_20101102 ? •SCSI 04-1371oV?, ENGINEERING RECEIVED (pm OC 1 19 ZU10 ou - ?-,-l I_" Ject Num r cobMts 011 Novartis Vaccines & Diagnostics Stormwater Quality & Detention Calculations DENR - WATER QUALITY BMP Wet Detention Poncr'IDsTORIti' ,,,RBRANCH Project Expansion • Prepared by: Jacobs Engineering September 2010 aQ. oy ?•? SEAL 035399 Yd A y v 0?N1AVNG Date: 10/12/10 APPROVED Rev.: B ? DATE: By. USFCC Project N0V 2 20;0 Holly Springs NC JE Project Number: 22CO1113 FJE] 0 PROJECT USFCC CALCULATION COVER SHEET n • JOB NO. 22MN9901 DEPARTMENT Civil CLIENT Novartis Vaccines & Diagnostics CALC. NO. C-2 SUBJECT BMP Wet Detention Pond Project Expansion Stormwater Quality & Detention Calculations ORIGINATOR Ed Kubrin DATE 9/20/06 CHECKER Vance Holt/Tim Horstman DATE 9/20/06 PURPOSE OF ISSUANCE REV NO. PAGES DESCRIPTION ORIG. DATE CHKD. DATE APRV. DATE A 13 Issued for Permitting and EJK 9/20/06 TH 9/20/06 VH 9/20/06 Information B 13 Revised Calculations EJK 3/07 WJO 3/07 C 110 Revised Calculations and CCV 9/10 EJK 9/10 added Detention COMM ENTS: Note that these calculations were prepared using Bentley Pondpack version V8i software. CALC COVER SHEETS C-2.DOC 02/19/96 Calculation #C-2 Wet Detention Basin Expansion Stormwater Quality and Detention Table of Contents Section Description A Executive Summary B Local Codes C Quality Calculations Pond Volumes NCDENR Water Quality Reference D Detention Calculations Pre-Development Flows Input Summary PondPack Report Hydrographs Post-Development Flows Input Summary Pond Pack Report Hydrographs Pond Parameters Outlet Structure Parameters Routing Calculations Summary Appendix A Pre & Post Conditions Drainage Maps Wet Detention Basin Plan Appendix B Soils Map Vegetative Analysis Map Appendix C Pond Modifications Appendix D Full Size Drawings 0 00 • Section A 0 Executive Summary Project: Novartis USFCC Location: Town of Holly Springs, NC Date: September 15, 2010 Introduction The purpose of this project is to construct new additions to an existing Pharmaceutical manufacturing facility on a site located in Holly Springs, NC. Approximately 18.3 acres of impervious area and 29.6 acres total is proposed to drain to an existing pond. The previously submitted and approved site had 17.5 acres of impervious area and 26.2 acres total for planned and future areas which drained into the wet pond. As a condition of approval from DWQ a Best Management Practice (BMP) wet detention pond is proposed to remove 85% of the TSS and to provide nitrogen reduction. This narrative and calculation shows that water quality criteria based on the NCDENR regulations revised on June 16, 2009 can be met at the existing storm pond. The pond does. have enough storage to control the 1" runoff and drawdown in 2 to 3 days. Additional storage in the pond closely matches the existing pre-development peak flow for the 1 year, 24-hour storm. The existing pond can safely discharge the 10 year, 24-hour storm event through the principal riser and the 100 year, 24-hour storm event through the emergency spillway. Site Description The site was originally a wooded area in a rolling terrain. Two perennial streams exist on the site, one in the North and one in the South. The south stream drains into Thomas Mill pond and the North proceeds off site eventually draining into Harris Reservoir. Drainage . patterns at the site go to both of these streams. The existing developed site is being modified with building additions and additional parking. Wet Detention Basin Design Requirements The following design requirements (taken from The Town of Holly Springs Engineering Standards dated revised April 2008 and the NCDENR Manual of Stormwater Best Management Practices, dated revised June 16, 2009) were used to calculate the validity of the existing BMP pond: • Permanent pool average depth of basin is calculated based on Calculations presented in Figure 10-2b of the NCDENR Stormwater BMP Manual • Use calculated average pool depth of 4.5 ft. and an impervious percentage of 61.8% for a full site build out to determine SA/DA (surface area/drainage area) ratio • Calculate required water quality surface area of permanent pool by multiplying SA/DA ratio by the drainage area in acres. • Forebay sized to 20% of the permanent pool volume. • Temporary pool sized for the 1 inch of rainfall (61.8% impervious area). • A 4 inch orifice with a attached trash rack was selected to detain temporary volume for 2 to 3 days. • A gabion rock berm will separate the forebay area. E . The pond will also be used to store peak attenuation storage for the 1 yr, 24-hr storm event. Runoff is routed through the pond with use of PONDPACK software and presented in this Report. • 0 u • LRULT Section B Local Codes 11 1/ r (",-ToWJ of POLL"( SPe%NG,s F,?GI?E,E,l2t?? s?AtJflAe_flr E)A-7s 2ov. . A P %L Zoo $ . As a part of the development permit application process, conceptual methods, calculations, and designs must be presented to the Engineering Department at the concept plan, construction drawing review, and post construction review stages of the permitting process for comprehensive review, evaluation, optimization and approval. Revisions to the preliminary plan may be necessary to obtain Town Construction Drawing and Environmental Plan approvals. In addition to standard Holly Springs' submittal requirements, there are specific development permit application requirements for stormwater features outlined in Section 8.04 of this manual. E. Structural & Non-structural Best Management Practices 1. Performance Standards a. Peak Discharge: There shall be no increase in stormwater runoff peak discharge rate leaving the project site between the pre- and post- development conditions for, at a minimum, the 1-Year, 24-Hour Storm (2.83 inches). Runoff volume drawdown time shall be a minimum of twenty-four (24) hours, but not more than one hundred and twenty (120) hours. b. Total Nitrogen: The total nitrogen (TN) export limitations, per the Neuse Basin Rules, 15A NCAC 2B.0233, will be required throughout the Town and • extra territorial jurisdiction. The Town Council shall establish Fee in Lieu and may amend and update the fees and policies from time to time. Fee costs and policies will be outlined in Section 8.03 of this Design Manual. e. 85% Average Annual TSS: A minimum of 85% average annual removal for Total Suspended Solids (note: for most BMPs this will be based on the I inch run off volume, some specific BMPs may be based on alternative design criteria) d. General: General engineering design criteria for all projects shall be in accordance with 15A NCAC 2H.1008c, as explained in the Design Manual; e. Stream Setback: All Built-Upon Area shall be at a minimum of 30-feet landward of all perennial and intermittent surface waters, as described in Section 7.06 of the UDO. "Where applicable, stormwater management facilities may be located within the outer 50' of the TOHS riparian buffer but are not permitted within the Neuse Riparian Buffers unless specifically approved in writing by the TOHS Director of Engineering or designee. BMP outfalls are permitted in riparian buffers as consistent with NCDENR policies and 401 approvals." Additionally, Section 8.03 of this manual outlines the TOHS Restored Riparian Buffer requirements for removed ponds. The above performance standards shall apply to all projects within the TOHS jurisdiction. Note that the Town's Stormwater Ordinance is a performance based ordinance and does not specifically limit the amount of impervious cover or utilize high or low density development thresholds to control development intensity. Instead, all pertinent development must meet the above standards as FINAL April 2008 add 5 2008 8-11 C] (ZC? : Town? Or Nvtc_Y SP2taCiS F?C?t?vFr'reiNC, SMs?A2?s DA-IEC> 1ZE%J1S5 D AP2iz. 2ooe, if the problem results from high flows from the drainage area or steep slopes in the filter strip. If the flows are too high, but slopes within the filter strip are within the allowable range, then a BMP that captures the stormwater runoff and releases it to the level spreader at a slower rate may be installed upslope. 4. Wet Detention Basin A wet detention basin also know as a wet detention pond is a stormwater management facility that includes a permanent pool of water for removing pollutants and additional capacity above the permanent pool for detaining stormwater runoff. Wet detention basin are designed to intercept a volume of stormwater runoff and provide storage and treatment of this runoff volume. Properly designed and maintained "wet ponds" can be extremely effective BMPs, providing both water quality improvements and quantity control, in addition to providing aesthetic value and aquatic and terrestrial habitat for a variety of plants and animals. Example profile and plan views of a wet detention basin are shown in Figures 8.03h and 8.03i below. In general, basin designs are unique for each site and application. Criteria for selecting the site for installation of the pond should include the site's ability to support the pond environment, as well as the cost effectiveness of locating a pond at that specific site. • 6.UJh: Ptotlle View of a basic Wet.Detention Basin Sw-Tm r j4rc ?#2r ?yelrT-rash H-ngdj ? Sediment EorEbay Rwited as Marsh s. ? r , r?n?i-: • Source: July 2007 NCDENIR BjWP Manual Figure 8.031: Plan View of a Basic Wet Detention Basin out The design for this BMP may be supplemented with the most current NCDENB Stormwater BMP manual. Typical Section HS530 can he found in the TOHS En,gineering Design and Construction Standards. 1] Emergency spillway Design shall meet current 1\TCDENR and TOHS requirements 8-26 215f:: : -Fc>(- xJ Or AOLL ' SPatxJyS ?Nc/NEr???G s7?rmi2zS IAA-ICD 2E0kSfr: D A P2it- Zoo & General design criteria for Wet Detention Basin. • Vegetated slopes shall be no steeper than 3:1. • BMP shall not be located to produce adverse impacts on water levels in adjacent wetlands. • Basin discharge shall be evenly distributed across a minimum 30 feet long vegetative filter strip unless it is designed to remove 90% TSS. (A 50-foot filter may be required in some locations). • If any portion is used for sedimentation and erosion control during construction, it must be cleaned out and returned to the design state. • The design storage shall be above the permanent pool. • Discharge rate following a 1" rainfall event shall be controlled to completely draw down the temporary storage volume between 2 and 3 days. Although NCDENR typically allows up to 5 days, TORS limits to 3 days as a mosquito reduction measure. • The average depth of the permanent pool shall be a minimum of 3 feet. • Permanent pool surface area shall be determined according to the most recent NCDENR BMP Design Manual. • The flow within the pond shall not short-circuit the pond. • The BMP shall be designed with a forebay. • Basin side slopes shall be stabilized with vegetation above the permanent pool level. • The basin shall be designed with sufficient sediment storage to allow for proper operation between scheduled cleanouts. • The forebay volume should be about 20% of the total permanent pool volume, leaving about 80% of the design volume in the main pool. • The BMP shall not be located to produce adverse impacts on water levels in adjacent wetlands. • Freeboard shall be a minimum of 1-foot above the maximum stage of the basin. • A minimum 10-foot wide vegetated safety ledge shall be installed around the full perimeter. The inside edge of the shelf shall be 6" below the permanent pool elevation; the outside edge of the shelf shall be 6" above the permanent pool elevation. • A minimum basin length to width ratio of 1.5 is required. A minimum flow path ratio of 3:1 is recommended. In order to achieve required flow path length, it may be necessary to construct baffles or berms in the basin. Overall shape may vary for practical or aesthetic reasons. • This BMP has no maximum drainage area requirement. 5. Infiltration Devices Infiltration devices enhance percolation to groundwater by directing surface runoff to locations where it can come into contact with pervious soils and then detaining that runoff until it can soak into the soil. Infiltration devices may FINAL April 2008 add 5 2008 8-27 C? T2EF' -T-o?N of r4-or_LY SPrLIkkiS F?GiNEEJZ?ar s1A,0DA9-c>S fzVvts" A?2iL- 2®o° u • 3. Orifice Equation The basic equation for orifices is: Q = Co A (2gHo)o.5 Where: • • Q = Discharge (cfs) Co = Coefficient of discharge (dimensionless) - see below A = Cross-sectional area of flow at the orifice entrance (sq ft) g = Acceleration of gravity (32.2 ft/sect) -D2l+.w00w r.]---? Ho = Driving head (ft), measured from the centroid of the orifice area to the water surface - Note: Usually use Ho /3 to compute drawdown through an orifice to reflect the fact that head is decreasing as the drawdown occurs. Alternatively, designer may use a incremental falling head calculation to better simulate actual performance. FINAL April 2008 add 5 2008 Table 8.05i: Values of Coefficient of Discharge, Co (Malcom, 1 Wi!) Entrance Condition CD Typical default value 0.6 Square-edged entrance 0.59 Concrete pipe, grooved end 0.65 Corrugated metal pipe, mitred to slope 0.52 Corrugated metal pipe, projecting from fill 1 8-89 Figure 8.05d: Schematic section through an orifice 3 • NCDENR Stormwater BMP Manual Revised 06-16-09 • Mainr Desiun Elements* Required by the NC Administrative Rules of the Environmental Management Commission. Other specifications may be necessary to meetthe stated pollutant removal requirements. 1 Sizing shall take into account all runoff at ultimate build-out, including off-site drainage. 2 Vegetated slopes shall be no steeper than 3:1. BMP shall be located in a recorded drainage easement with a recorded access easement to 3 a public ROW. 4 Basin discharge shall be evenly distributed across a minimum 30 feet long vegetative filter strip unless it is designed to remove 90% TSS. (A 50-ft filter is required in some locations.) If any portion is used for S&EC during construction must be cleaned out and returned to 5 design state. 6 The design storage shall be above the permanent pool. Discharge rate of the treatment volume shall completely draw down between 2 and 5 7 days. g Th?? ?s be aeplh of the_periiianerif go_o.Lahall.be`a waunium of 3 feet. The avera e g depth shall be ealculatecl as c e cried in Figure 10 ?b'. 9 Permanent pool surface area shall be determined using Tables 10-1, 10-2, 10-3, and 10-4. 10 The flow within the pond shall not short-circuit the pond. 11 BMP shall be designed with a forebay. 12 Basin side slopes shall be stabilized with vegetation above the permanent pool level. The pond shall be designed with side slopes below the loft shelf stabilized per what the 13 soils will support and per the PE's judgment. The basin shall be designed with sufficient sediment storage to allow for proper operation 14 between scheduled cleanouts. Required: by DWQ policy. These are based on available research, and represent what DWQ considers necessary to achieve the stated, removaFefficiencies. 15 BMP shall not be located to produce adverse impacts on water levels in adjacent wetlands. A minimum 10-foot wide vegetated shelf shall be installed around the perimeter. The 16 inside edge of the shelf shall be 6" below the permanent pool elevation; the outside edge of the shelf shall be 6" above the permanent pool elevation. 17 The forebay volume should be about 20% of the total permanent pool volume, leaving about 80% of the design volume in the main pool. 18 Freeboard shall be a minimum of 1 foot above the maximum stage of the basin. 19 The permanent pool elevation-shall be within 6 inches (plus or minus) of the SHWT elevation. *For multiple pond permits, please specify the areas of the site (including the lot numbers) draining to each pond. i Wet Detention Basin 10-2 July 2007 I o/ 11 3 • a° 0 t 1 z p Q Oe I co 3 ? tv! V V 2 u w N H -zl 1 rti y JS. ? ? r i . 'L} ' I n of 1 ' t {D __°-°._'_-'-_"" - ''3 'L' riL ill '?- z 71 l ILI I I i, rll ? blj? T _ ll 41 N r ILL qtX Y x 'L' ; t am =' - ill T m U - :I Ti LL (4-4 w v 4' 1 ?: F ,y ll '- t} t Fi, ?' [4? ll LI-4 i I ? 4 ? r , ?? te Qi II ui „ - F u li C\l --7y Q-4 17-1 .T} f l1 'LL+ C' ll :I la L LI ill ID ILI it `_3 `.' L H I ? l f' 1 .----_`.`_s._"`."'°.? y. Q9 C'? ril C? I Lt '#? 7 I F4 I IL 7 QY. G 1 ? ,i Cr'? , f? I 1 y. • 0 • -TO Green: Interpolated value not Percent Table 10-1: Piedmont/Mountains 85% Table 10-2: Coastal 85% Impervious Cove Permanent Pool Average Depth (ft) Permanent Pool Average De pth (ft) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 0.59 0.54 0.49 0.46 0.43 0.39 0.35 0.33 0.31 0.30 0.29 0.28 0.26 0.90 0.80 0.70 0.60 0.50 0.00 0.00 0.00 0.00 0.00 11% 0.63 0.57 0.52 0.49 0.46 0.42 0.37 0.35 0.33 0.32 0.31 0.29 0.28 0.98 0.85 0.75 0.65 0.55 0.09 0.08 0.07 0.06 0.05 12% 0.67 0.61 0.55 0.52 0.48 10.44 0.40 0.37 0.35 0.34 0.32 0.31 0.30 1.06 0.90 0.80 0.70 0.60 0.18 0.16 0.14 0.12 0.10 13% 0.70 0.64 0.58 0.55 0.51 0.47 0.42 0.40 0.37 10-36 10.34 0.33 10.31 1.14 M5 0.85 0.75 0.65 0.27 0.24 0.21 0.18 0.15 14% 0.74 0.68 0.61 0.57 _ 0.54 0.49 0.45 0.42 0.39 0.37 0.36 0.35 0.33 1.22 1.00 0.90 0.80 0.70 0.36 0.32 0.28 0.24 0.20 15% 0.78 0.71 0.64 0.60 0.57 0.52 0.47 0.44 0.41 0.39 0.38 0.36 0.35 1.30 1.05 0.95 0.85 0.75 0.45 0.40 0.35 0.30 0.25 16% 0.82 0.74 0.67 0.63 0.59 0.54 0.49 0.46 0.43 0.41 0.39 0.38 0.37 1.38 1.10 1.00 0.90 0.80 0.54 0.48 0.42 0.36 0.30 17% 0.86 0.78 0.70 0.66 0.62 0.57 0.52 0.48 0.45 0.43 0.41 0.40 0.39 1.46 1.15 1.05 0.95 0.85 0.63 0.56 0.49 0.42 0.35 18% 0.89 0.81 0.73 0.69 0.65 0.59 0.54 0.51 0.47 0.45 0.43 0.42 0.40 1.54 1.20 1.10 1.00 0.90 0.72 0.64 0.56 0.48 0.40 19% 0.93 0.85 0.76 0.72 0.67 0.62 0.57 0.53 0.49 0.47 0.44 0.43 0.42 1.62 1.25 1.15 1.05 0.95 0.81 0.72 0.63 0.54 0.45 20% 0.97 0.88 0.79 0.75 0.70 0.65 0.59 0.55 0.51 0.49 0.46 0.45 0.44 1.70 1.30 1.20 1.10 1.00 0.90 0.80 0.70 0.60 0.50 21% 1.01 0.91 0.82 0.77 0.73 0.67 0.61 0.57 0.53 0.50 0.48 0.47 0.46 1.78 1.39 1.27 1.17 1.06 0.96 0.85 0.75 0.64 0.54 22% 1.04 0.95 0.85 0.80 0.75 0.70 0.64 0.59 0.55 0.52 0.50 0.49 0.48 1.86 1.48 1.34 1.24 1.12 1.02 0.90 0.80 0.68 0.58 23% 1.08 0.98 0.88 0.83 0.78 0.72 0.66 0.61 0.57 0.54 0.51 0.50 0.49 1.94 1.57 1.41 1.31 1.18 1.08 0.95 0.85 0.72 0.62 24% 1.12 1.01 0.91 0.86 0.81 0.75 0.69 0.64 0.59 0.56 0.53 0.52 0.51 2.02 1.66 1.48 1.38 1.24 1.14 1.00 0.90 0.76 0.66 25% 1.16 1.05 0.94 0.89 0.84 0.77 0.71 0.66 0.61 0.58 0.55 0.54 0.53 2.10 1.75 1.55 1.45 1.30 1.20 1.05 0.95 0.80 0.70 26% 1.19 1.08 0.96 0.91 0.86 0.80 0.73 0.68 0.62 0.60 0.57 0.56 0.55 2.18 1.84 1.62 1.52 1.36 1.26 1.10. 1.00 0.84 0.74 27% 1.23 1.11 0.99 0.94 0.89 0.82 0.76 0.70 0.64 0.61 0.59 0.58 0.57 2.26 1.93 1.69 1.59 1.42 1.32 1.15 1.05 0.88 0.78 28% 1.27 1.14 1.02 0.97 0.92 0.85 0.78 0.72 0.66 0.63 0.60 0.59 0.58 2.34 2.02 1.76 11 M 1.48 1.38 1.20 1.10 0.92 0.82 29% 1.30 1.18 1.05 1.00 0.94 0.87 0.81 0.74 0.68 0.65 0.62 0.61 0.60 2.42 2.11 1.83 1.73 1.54 1.44 1.25 1.15 0.96 0.86 30% 1.34 1.21 1.08 1.03 0.97 0.90 0.83 0.77 0.70 0.67 0.64 0.63 0.62 2.50 2.20 1.90 1.80 1.60 1.50 1.30 1.20 1.00 0.90 31% 1.38 1.25 1.12 1.06 1.00 0.93 0.85 0.79 0.72 0.69 0.66 0.65 0.64 2.59 2.28 1.97 1.86 1.65 1.54 1.33 1.22 1.01 0.91 32% 1.42 1.28 1-15 11.09 1.03 0.95 0.87 0.81 0.74 0.71 0.68 0.66 0.65 2.68 2.36 2.04 1.92 1.70 1.58 1.36 1.24 1.02 0.92 33% 1.46 1.32 1.19 1.12 1.05 0.98 0.90 0.83 0.76 0.73 0.69 0.68 0.67 2.77 2.44 2.11 1.98 1.75 1.62 1.39 1.26 1.03 0.93 34% 1.50 1.36 1.22 1.15 1.08 1.00 0.92 0.85 0.78 0.75 0.71 0.70 0.68 2.86 2.52 2.18 2.04 1.80 1.66 1.42 1.28 1.04 0.94 35% 1.54 1.40 1.26 1.18 1.11 1.03 0.94 0.87 0.80 0.77 0.73 0.71 0.70 2.95 2.60 2.25 2.10 1.85 1.70 1.45 1.30 1.05 0.95 36% 1.57 1.43 1.29 1.21 1.14 1.05 0.96 0.89 0.82 0.78 0.75 0.73 0.71 3.04 2.68 2.32 2.16 1.90 1.74 1.48 1.32 1.06 0.96 37% 1.61 1.47 1.33 1.25 1.17 1.08 0.98 0.91 0.84 0.80 0.77 0.75 0.73 3.13 2.76 2.39 2.22 1.95 1.78 1.51 1.34 1.07 0.97 38% 1.65 1.51 1.36 1.28 1.19 1.10 1.01 0.93 0.86 0.82 0.78 0.76 0.74 3.22 2.84 2.46 2.28 2.00 1.82 1.54 1.36 1.08 0.98 39% 1.69 1.54 1.40 1.31 1.22 1.13 1.03 0.95 0.88 0.84 0.80 0.78 0.76 3.31 2.92 2.53 2.34 2.05 1.86 1.57 1.38 1.09 0.99 40% 1.73 1.58 1.43 1.34 1.25 1.15 1.05 0.98 0.90 0.86 0.82 0.80 0.77 3.40 3.00 2.60 2.40 2.10 1.90 1.60 1.40 1.10 1.00 41% 1.76 1.61 1.46 1.37 1.28 1.18 1.08 1.00 0.92 0.88 0.84 0.81 0.79 3.48 3.07 2.67 2.46 2.16 1.95 1.65 1.44 1.14 1.03 42% 1.80 1.64 1.49 1.40 1.30 1.20 1.10 1.02 0.94 0.90 0.86 0.83 0.80 3.56 3.14 2.74 2.52 2.22 2.00 1.70 1.48 1.18 1.06 43% 1.83 1.67 1.52 1.42 1.33 1.23 1.13 1.04 0.96 0.92 0.87 0.84 0.82 3.64 3.21 2.81 2.58 2.28 2.05 1.75 1.52 1.22 1.09 44% 1.86 1.71 1.55 1.45 1.35 1.25 1.15 1.06 0.98 0.93 0.89 0.86 0.83 3.72 3.28 2.88 2.64 2.34 2.10 1.80 1.56 1.26 1.12 45% 1.90 1.74 1.58 1.48 1.38 1.28 1.18 1.09 1.00 0.95 0.91 0.88 0.85 3.80 3.35 2.95 2.70 2.40 2.15 1.85 1.60 1.30 1.15 46% 1.93 1.77 1.61 1.51 1.40 1.30 1.20 1.11 1.01 0.97 0.93 0.89 0.86 3.88 3.42 3.02 2.76 2.46 2.20 1.90 1.64 1.34 1.18 47% 1.96 1.80 1.64 1.53 1.43 1.33 1.23 1.13 1.03 0.99 0.95 0.91 0.88 3.96 3.49 3.09 2.82 2.52 2.25 1.95 1.68 1.38 1.21 48% 1.99 1.83 1.67 1.56 1.45 1.35 1.25 1.15 1.05 1.01 0.96 0.93 0.89 4.04 3.56 3.16 2.88 2.58 2.30 2.00 1.72 1.42 1.24 49% 2.03 1.86 1.70 1.59 1.48 1.38 1.28 1.17 1.07 1.03 0.98 0.94 0.91 4.12 3.63 3.23 2.94 2.64 2.35 2.05 1.76 1.46 1.27 50% 2.06 1.90 1.73 1.62 1.50 1.40 1.30 1.20 1.09 1.05 1.00 0.96 0.92 4.20 3.70 3.30 3.00 2.70 2.40 2.10 1.80 1.50 1.30 51% 2.09 1.93 1.76 1.64 1.52 1.42 1.32 1.22 1.11 1.06 1.02 0.98 0.94 428 3.78 3.35 3.05 2.75 2.45 2.15 1.85 1.55 1.33 52% 2.13 1.96 1.79 1.67 1.54 1.44 1.34 1.24 1.13 1.08 1.04 1.00 0.96 4.36 3.86 3.40 3.10 2.80 2.50 2.20 1.90 1.60 1.36 53% 2.16 1.99 1.82 1.69 1.56 1.46 1.36 1.26 1.15 1.10 1.05 1.01 0.97 4.44 3.94 3.45 3.15 2.85 2.55 2.25 1.95 1.65 1.39 54% 2.20 2.02 1.85 1.72 1.58 1.48 1.38 1.28 1.17 1.12 1.07 1.03 0.99 4.52 4.02 3.50 3.20 2.90 2.60 2.30 2.00 1.70 1.42 55% 2.23 2.06 1.88 1.74 1.61 1.51 1.41 1.30 1.19 1.14 1.09 1.05 1.01 4.60 4.10 155 3.25 2.95 2.65 2.35 2.05 1.75 1.45 56% 2.26 2.09 1.91 1.77 1.63 1.53 1.43 1.32 1.21 1.16 1.11 1.07 1.03 4.68 4.18 3.60 3.30 3.00 2.70 2.40 2.10 1.80 1.48 57% 2.30 2.12 1.94 1.79 1.65 1.55 1.45 1.34 1.23 1.18 1.13 1.09 1.05 4.76 4.26 3.65 3.35 3.05 2.75 2.45 2.15 1.85 1.51 58% 2.33 2.15 1.97 1.82 1.67 1.57 1.47 1.36 1.25 1.20 1.14 1.10 1.06 4.84 4.34 3.70 3.40 3.10 2.80 2.50 2.20 1.90 1.54 59% 2.37 2.18 2.00 1.84 1.69 1.59 1.49 1.38 1.27 1.22 1.16 1.12 1.08 4.92 4.42 3.75 3.45 3.15 2.85 2.55 2.25 1.95 1.57 60% 2.40 2.22 2.03 1.87 1.71 1.61 1.51 1.40 1.29 1.24 1.18 1.14 1.10 5.00 4.50 3.80 3.50 3.20 2.90 2.60 2.30 2.00 1.60 61% 2.45 2.26 2.07 1.91 1.75 1.64 1.5 1.43 1.32 1.26 1.20 1.16 1.12 5.10 4.57 3.87 3.56 3.25 2.94 2.63 2.32 2.01 1.62 62% 2.50 2.30 2.10 1.94 1.78 1.67 1.5 1.34 1.28 1.21 1.17 1.13 5.20 4.64 3.94 3.62 .30 2.98 2.66 2.34 2.02 1.64 63% 254 2.34 2.14 1.98 1.82 1.71 1.5 M 1.37 1.30 1.23 1.19 1.15 5.30 4.7 5 3.02 2.69 2.36 2.03 1.66 64% 2.59 2.39 2.18 2.02 1.85 1.74 1.6 1.39 1 .32 1 .25 1.21 1.16 5.40 4.78 4.08 3.74 )1 3.061 2-721 2.381 2.041 1.681 `2- NCDENR Stormwater BMP Manual Revised 06-16-09 allows the user to select from one of NOAA's numerous data stations throughout the state. Then, the user can ask for precipitation intensity and view a table that displays precipitation intensity estimates for various annual return intervals (ARIs) (1 year through 1000 years) and various storm durations (5 minutes through 60 days). The requirements of the applicable stormwater program will determine the appropriate values for ARI and storm duration. If the design is for a level spreader that is receiving runoff directly from the drainage area, then the value for I should simply be one inch per hour (more information on level spreader design in Chapter 8). 3.3. Runoff Volume Many stormwater programs have a volume control requirement; that is, capturing the first 1 or 1.5 inches of stormwater and retaining it for 2 to 5 days. There are two primary methods that can be used to determine the volume of runoff from a given design storm: the Simple Method (Schueler,1987) and the discrete SCS Curve Number Method (NRCS, 1986). Both of these methods are intended for use at the scale of a single drainage area. Stormwater BMPs shall be designed to treat a volume that is at least as large as the volume calculated using the Simple Method. If the SCS Method yields a greater volume, then it can also be used. => 3.3.1. Simple Method The Simple Method uses a minimal amount of information such as,watershed drainage area, impervious area, and design storm depth to estimate the volume of runoff. The Simple Method was developed by measuring the runoff from many watersheds with known impervious areas and cuive-fitting a relationship between percent imperviousness and the fraction of rainfall converted to runoff (the runoff coefficient). This relationship is presented below: Rv = 0.05 +0.9 * IA Where: Rv = Runoff coefficient [storm runoff (in)/storm rainfall (in)], unitless IA = Impervious fraction [impervious portion of drainage area (ac)/ drainage area (ac)], unitless. Once the runoff coefficient is determined, the volume of runoff that must be controlled is given by the equation below: V=3630*RD*Ra*A Where: V = Volume of runoff that must be controlled for the design storm (ft3) RD = Design storm rainfall depth (in) (Typically, 1.0" or 1.5") A = Watershed area (ac) • Stormwater Management and Calculations 3-3 July 2007 • • Section C Water Quality Calculations 0 0 WATER QUALITY The wet detention basin was originally designed for the initial USFCC Novartis site in the Town of Holly Springs. The wet basin was designed based on 2005 Division of Water Quality NCDENR Stormwater Regulations. The existing pond was constructed and is currently used as a construction sedimentation basin. Novartis is planning an expansion to the current site and the following calculations are based on increased runoff due to increased impervious area and the latest revised Town of Holly Springs and NCDENR Stormwater BMP Manual Design requirements as shown in Section B of this report. The existing pond will be modified as shown on Drawing C-JSK-58 attached. The pond depth will be lowered 1 foot to Elevation 307. The vegetative shelf will be constructed between Elevations 314.5 and 315.5, and the inside of the basin will be re-graded to allow more volume. The permanent pool elevation will be set at Elevation 315. Previously, the permanent pool was set at Elevation 314. The temporary pool above Elevation 315 will allow for the water quality storage requirement of the 1" rainfall event and will accommodate the difference between pre and post peak flows of the 1 yr, 24-hr storm event. The storm water routing calculations are presented in the Detention Calculation portion of this report. The revised pond will accommodate enough volume to hold the 1" rainfall event volume of 65,159 CF and a 4 inch diameter orifice will be able to discharge the 1" rainfall event in 2 to 3 days as required by the Town of Holly Springs at the 1" rainfall event elevation in the pond at 317.04. Water quality pond calculations, pond volume charts, and required checklists are presented in this section. 0 [ 5-/ ? i);'- • JACOBS SUBJECT: BMP WET DETENTION POND PROJECT: NOVARTIS SHEET: OF AUTH. BY: CCV DATE: 8/9/2010 CHK BY DATE: BACKGROUND: A WET DETENTION BASIN IS PROPOSED TO OFFSET IMPACT TO: - WETLANDS - PERENNIAL STREAMS TOTAL DRAINAGE AREA: TOTAL IMPERVIOUS AREA: % IMPERVIOUS: 29.6 Acres 18.3 Acres (at projected build out) 61.8 % CALCULATE PERMANENT POOL AVERAGE DEPTH Permanent Pool Average Depth required to be a minimum of 3 feet based on NCDENR 2009. (per Figure 10-2b BMP Manual) 1st Option: da = VOLUMEpermpool / AREApermpool = VOLUMEpermpool = Volume at Elev 315 - 1 foot of sediment storage 119891 - 4786 115105 CF AREApermpool = surface areae at Elev 315 = 26795 SF da = 115105 / 26795 = 4.30 2nd Option: da = [0.25 x(1 + Abotshelf/Apermpool)]+[[(A Abotshelf = 23460 sf Area at Elev. Abot pond= 4949 sf Area at Elev. Main Pond only Area 5358 - Depth= 6.5 ft da= 0.47 + botshelf +Abotpond)/2]x (Depth/Abotshelf)] 314.5 308 - 409 = 4949 3.94 = 4.40 Options 1 & 2 meet NCDENR requirement, Round Permanent Pool Avg. Depth to nearest 0.5 feet Use da = 4.5 RATIO: SURFACE AREA = 1.93 % DRAINAGE AREA SURFACE AREA = 0.0193 X 29.6 Acres = 0.57 Acres = 24,885 SF DETERMINE VOLUME (TEMP WATER QUALITY POOL) FROM 1ST INCH OF STORM REF: TABLE 10.1 OF NCDENR STORMWATER BMP MANUAL, REV. 6-16-09 @ 61.8 %; PERMANENT DEPTH = 4.5 FEET REF: SECTION 3.3 NCDENR STORMWATER BMP MANUAL, REV. 6-16-09 Rv=0.05+0.009x1 Rv = 0.05 + 0.009 x 61.8 Rv = 0.606 I:\CIVIL\BMP 2010\2010 Latest Storm Water Calculations\New revised 9-10-10 Wet Dentention Basin Quality Calcs based on 2009 regs.xls • • 0 JACOBS SUBJECT: BMP Wet Detention Pond AUTH. BY: CCV DATE: 8/9/10 VOLUME THAT MUST BE CONTROLLED 1" storm Volume = (1" Rainfall)(Rv)(Drainage Area) _ Volume = 1.496 Acre-Feet Volume = 65,159 CF 1"x1 ft/12inch x 0.606 x 29.6 FOREBAY CALCULATION Forebay Volume = 20% of Permanent Pool Volume @ Elev. 315 Forebay Volume = 115,105 CF x 0.2 = 23,021 CF POND REQUIREMENTS 1 '7 PROJECT: NOVARTIS SHEET: OF CHK BY DATE: Required Provided Permanent Pool Surface Area 24,885 SF 26,795 SF Permanent Pool Volume (To 315 Elev) 115,105 CF Temporary Pool Volume (Elev. 315 to 320) 65,159 CF 186,826 CF Forebay Volume 23,021 CF 25,886 CF DRAWDOWN OF TEMPORARY POOL REQUIRED = 2 - 5 DAYS Per NCDENR Stormwater BMP Manual Section 3.5.2 Orifice Equation An Orifice at Elevation 315.0 will be checked for drawdown time. Q= CA(SQRT) 2g(Ho/3) Q= 0.326505 cfs 1" rainfall volume above Elev. 315 equals 317.04 Orifice dia= 4 inches Head* = 1.87 ft (* measured to centroid of orifice) 28210.06 CF/day Drawdown Time = 65,159 I 28210 2.3 Drawdown will take 2.3 days I:\CIVIL\BMP 2010\2010 Latest Storm Water Calculations\New revised 9-10-10 Wet Dentention Basin Quality Calcs based on 2009 regs.xis • PA • Novartis Holly Springs, N.C. Wet Detention Pond Calculations Total Impoundment Volume PN 22COl113 9/17/2010 BOR ROW END AREA INCR. ELEVATION AREA(SF) DIST (FT) AVG. AREA (SF) VOLUME (CF) VOLUME (CF) 307 4213 1 4786 4786 308 5358 4786 1 5971 5971 309 6583 10756 1 10541 10541 310 14499 21297 1 15568 15568 311 16637 36865 1 17706 17706 312 18775 54571 1 19705 19705 313 20634 74276 1 21564 21564 314 22493 95839 0.5 22977 11488 314.5 23460 107327 0.5 25128 12564 315 26795 119891 0.5 28547 14273 315.5 30298 134164 0.5 31280 15640 316 32262 149804 1 33871 33871 317 35481 183676 1 37090 37090 318 38699 220765 1 40838 40838 319 42976 261603 1 45115 45115 320 47253 306717 1 49196 49196 321 51139 355913 1 53081 53081 322 55024 408994 TOTALS 408994 9.39 I:\CIVIL\BMP 2010\2010 Latest Storm Water Calculations\New revised 9-10-10 pond volume based on 2009 regsFAge 1 s , Novartis Holly Springs, N.C. Wet Detention Pond Calculations Minimum Temporary Storage PN 22COl113 • Peak Attenuation Storage 9/17/2010 BORROW END AREA INCR. ELEVATION AREA(SF) DIST (FT) AVG. AREA (SF) VOLUME (CF) VOLUME (CF) 315 26795 0.5 28547 14273 315.5 30298 14273 0.5 31280 15640 316 32262 29913 1 33871 33871 317 35480.5 63785 1 37090 37090 318 38699 100874 1 40838 40838 319 42976 141712 1 45115 45115 320 47253 186826 1 49196 49196 321 51139 236022 1 53081 53081 322 55024 289103 Required Volume of 65,159 equals 317.04 ELEV • Novartis Holly Springs, N.C. Wet Detention Pond Calculations Forebay Volume is PN 22COl113 area 9/17/2010 BOR ROW END A REA NOTES Forebay Volume with revised topo INCR. ELEVATION AREA DIST AVG. AREA (sf) VOLUME (cf) VOLUME (cf) 307 224 0 1 316.5 317 308 409 317 1 525.5 526 309 642 842 1 1576.5 1577 310 2511 2419 2 3493 6986 312 4475 9405 2 5102 10204 314 5729 19609 0.5 5904 2952 314.5 6079 22561 0.5 6650 3325 315 7221 25886 • Permit No. (to be provided by DWQ) • is • ?F W A T?9 `? \1 P -c NCDENR STORMWATER MANAGEMENT PERMIT APPLICATION FORM ;g 401 CERTIFICATION APPLICATION FORM WET DETENTION BASIN SUPPLEMENT This form must be filled out, printed and submitted. The Required Items Checklist (Part III) must be printed, filled out and submitted along with all of the required information. I. PROJECT INFORMATION Project name Novartis US CC Contact person Ed Kubrin Phone number 513-595-7791 Date 17-Sep-10 Drainage area number II. DESIGN INFORMATION Site Characteristics Drainage area 1,289,376 ft2 Impervious area, post-development 796,921 ftz % impervious 61.81 % Design rainfall depth 1.0 in Storage Volume: Non-SA Waters Minimum volume required Volume provided Storage Volume: SA Waters 1.5' runoff volume Pre-development 1-yr, 24-hr runoff Post-development 1-yr, 24-hr runoff Minimum volume required Volume provided Peak Flow Calculations Is the pre/post control of the lyr 24hr storm peak flow required? 1-yr, 24-hr rainfall depth Rational C, pre-development Rational C, post-development Rainfall intensity: 1-yr, 24-hr storm Pre-development 1-yr, 24-hr peak flow Post-development 1-yr, 24-hr peak flow Pre/Post 1-yr, 24-hr peak flow control Elevations Temporary pool elevation Permanent pool elevation SHWT elevation (approx. at the perm. pool elevation) Top of 1 Oft vegetated shelf elevation Bottom of 1Oft vegetated shelf elevation Sediment cleanout, top elevation (bottom of pond) Sediment cleanout, bottom elevation Sediment storage provided Is there additional volume stored above the state-required temp. pool? Elevation of the top of the additional volume Form SW401-Wet Detention Basin-Rev.8-9/17/09 65,159 ft3 OK 186,826 fta OK, volume provided is equal to or in excess of volume required. ft3 ft3 ft3 ft3 ft3 Y (Y or N) 2.8 in SCS CN = 60 (unitless) SCS CN = 83 (unitless) in/hr 6.56 ft3/sec 7.48 ft3/sec 0.92 ft3/sec 320.00 fmsl 315.00 fmsl fmsl 315.50 fmsl 314.50 fmsl Data not needed for calculation option #1, but OK if provided. 308.00 fmsl 307.00 fmsl Data not needed for calculation option #1, but OK if provided. 1.00 ft (Y or N) 320.0 fmsl OK Parts I. & II. Design Summary, Page 1 of 2 21/10` Permit No. (to be provided by DWQ) II. DESIGN INFORMATION Surface Areas Area, temporary pool 47,253 fe Area REQUIRED, permanent pool 24,885 ft SAIDA ratio 1.93 (unitless) Area PROVIDED, permanent pool, Aperm_poo, 26,795 ftz OK Area, bottom of 1Oft vegetated shelf, Abot shelf 23,460 ff Area, sediment cleanout, top elevation (bottom of pond), Abot?pond 4,949 ff Volumes Volume, temporary pool 186,826 ft3 OK Volume, permanent pool, Vper,n-pW 115,105 ft3 Volume, forebay (sum of forebays if more than one forebay) 25,321 ft3 Forebay % of permanent pool volume 22.0% % OK SAIDA Table Data Design TSS removal 85 % Coastal SAIDA Table Used? N (Y or N) Mountain/Piedmont SAIDA Table Used? Y (Y or N) SA/DA ratio 1.93 (unitless) Average depth (used in SAIDA table): Calculation option 1 used? (See Figure 10-2b) Y (Y or N) Volume, permanent pool, Vperm_pool 115,105 ft3 Area provided, permanent pool, Aperm-pool 26,795 ff Average depth calculated 4.30 It OK Average depth used in SAIDA, dav, (Round to nearest 0.5ft) 4.5 ft OK Calculation option 2 used? (See Figure 10-2b) N (Y or N) Area provided, permanent pool, Ape,m,oo 26,795 ff Area, bottom of 1Oft vegetated shelf, Abot shelf 23,460 ff Area, sediment cleanout, top elevation (bottom of pond), Abot_pond 4,949 ft2 "Depth" (distance b/w bottom of 10ft shelf and top of sediment) 6.50 ft Average depth calculated 4.40 ft OK Average depth used in SAIDA, dog, (Round to nearest 0.5ft) 4.5 ft OK Drawdown Calculations Drawdown through orifice? Y (Y or N) Diameter of orifice (if circular) 4.00 in Area of orifice (if-non-circular) in' Coefficient of discharge (Cc) 0.59 (unitless) Driving head (Ho) 1.87 ft Drawdown through weir? N (Y or N) Weir type (unitless) Coefficient of discharge (Cj (unitless) Length of weir (L) ft Driving head (H) ft Pre-development 1-yr, 24-hr peak flow 6.56 ft3/sec Post-development 1-yr, 24-hr peak flow 7.48 ft3/sec Storage volume discharge rate (through discharge orifice or weir) 0.33 ft3/sec Storage volume drawdown time 2.30 days OK, draws down in 2-5 days. Additional Information Vegetated side slopes 3 :1 OK Vegetated shelf slope 10 :1 OK Vegetated shelf width 10.0 ft OK Length of flowpath to width ratio 3 :1 OK Length to width ratio 3.0 :1 OK Trash rack for overflow & orifice? Y (Y or N) OK Freeboard provided 1.0 ft OK Vegetated filter provided? Y (Y or N) OK Recorded drainage easement provided? (Y or N) Capures all runoff at ultimate build-out? Y (Y or N) OK Drain mechanism for maintenance or emergencies is: Form SW401-Wet Detention Basin-Rev.8-9/17109 Parts I. & H. Design Summary, Page 2 of 2 ?P F 4 Permit Number: (to be provided by DWQ) Drainage Area Number: C PA Wet Detention Basin Operation and Maintenance Agreement I will keep a maintenance record on this BMP. This maintenance record will be kept in a log in a known set location. Any deficient BMP elements noted in the inspection will be corrected, repaired or replaced immediately. These deficiencies can affect the integrity of structures, safety of the public, and the removal efficiency of the BMP. The wet detention basin system is defined as the wet detention basin, pretreatment including forebays and the vegetated filter if one is provided. This system (check one): ® does ? does not incorporate a vegetated filter at the outlet. This system (check one): ? does ? does not incorporate pretreatment other than a forebay. Important maintenance procedures: - Immediately after the wet detention basin is established, the plants on the vegetated shelf and perimeter of the basin should be watered twice weekly if needed, until the plants become established (commonly six weeks). - No portion of the wet detention pond should be fertilized after the first initial fertilization that is required to establish the plants on the vegetated shelf. - Stable groundcover should be maintained in the drainage area to reduce the sediment load to the wet detention basin. - If the basin must be drained for an emergency or to perform maintenance, the flushing of sediment through the emergency drain should be minimized to the maximum extent practical. • - Once a year, a dam safety expert should inspect the embankment. After the wet detention pond is established, it should be inspected once a month and within 24 hours after every storm event greater than 1.0 inches (or 1.5 inches if in a Coastal County). Records of operation and maintenance should be kept in a known set location and must be available upon request. Inspection activities shall be performed as follows. Any problems that are found shall be repaired immediately. BMP element: Potential problem: How I will remediate the problem: The entire BMP Trash/debris is resent. Remove the trash/debris. The perimeter of the wet Areas of bare soil and/or Regrade the soil if necessary to detention basin erosive gullies have formed. remove the gully, and then plant a ground cover and water until it is established. Provide lime and a one-time fertilizer application. Vegetation is too short or too Maintain vegetation at a height of long. approximately six inches. Form SW401-Wet Detention Basin O&M-Rev.4 Page 1 of 4 Permit Number: (to be provided by DWQ) Drainage Area Number: • • • BMP element: Potential problem: How I will remediate the problem: The inlet device: pipe or The pipe is clogged. Unclog the pipe. Dispose of the swale sediment off-site. The pipe is cracked or Replace the pipe. otherwise damaged. Erosion is occurring in the Regrade the Swale if necessary to swale. smooth it over and provide erosion control devices such as reinforced turf matting or riprap to avoid future problems with erosion. The forebay Sediment has accumulated to Search for the source of the a depth greater than the sediment and remedy the problem if original design depth for possible. Remove the sediment and sediment storage. dispose of it in a location where it will not cause impacts to streams or the BMP. Erosion has occurred. Provide additional erosion protection such as reinforced turf matting or riprap if needed to prevent future erosion problems. Weeds are present. Remove the weeds, preferably by hand. If pesticide is used, wipe it on the plants rather than spraying. The vegetated shelf Best professional practices Prune according to best professional show that pruning is needed practices to maintain optimal plant health. Plants are dead, diseased or Determine the source of the dying. problem: soils, hydrology, disease, etc. Remedy the problem and replace plants. Provide a one-time fertilizer application to establish the ground cover if a soil test indicates it is necessary. Weeds are present. Remove the weeds, preferably by hand. If pesticide is used, wipe it on the plants rather than spraying. The main treatment area Sediment has accumulated to Search for the source of the a depth greater than the sediment and remedy the problem if original design sediment possible. Remove the sediment and storage depth. dispose of it in a location where it will not cause impacts to streams or the BMP. Algal growth covers over Consult a professional to remove 50% of the area. and control the algal growth. Cattails, phragmites or other Remove the plants by wiping them invasive plants cover 50% of with pesticide (do not spray). the basin surface. Form SW401-Wet Detention Basin O&M-Rev.4 Page 2 of 4 Permit Number: (to be provided by DWQ) Drainage Area Number: BMP element: Potential problem: How I will remediate the problem: The embankment Shrubs have started to grow Remove shrubs immediately. on the embankment. Evidence of muskrat or Use traps to remove muskrats and beaver activity is present. consult a professional to remove beavers. A tree has started to grow on Consult a dam safety specialist to the embankment. remove the tree. An annual inspection by an Make all needed repairs. appropriate professional shows that the embankment needs repair. if applicable) The outlet device Clogging has occurred. Clean out the outlet device. Dispose of the sediment off-site. The outlet device is damaged Repair or replace the outlet device. The receiving water Erosion or other signs of Contact the local NC Division of damage have occurred at the Water Quality Regional Office, or outlet. the 401 Oversight Unit at 919-733- 1786. The measuring device used to determine the sediment elevation shall be such • that it will give an accurate depth reading and not readily penetrate into accumulated sediments. When the permanent pool depth reads 7.0 feet in the main pond, the sediment shall be removed. When the permanent pool depth reads 7.0 feet in the forebay, the sediment shall be removed. BASIN DIAGRAM (fill in the blanks) Permanent Pool Elevation 315.0 • Sediment Removal El. 308.0 Pe anen Pool ----------------- Volume - - - - - - Sediment - Removal Elevation - 308.0 - - - - - - - - - - - -Vol- -ume --------------------------- - Bottom E evatio 307.0 -ft Min. Sediment Bottom Elevation 307.0 1-ft r Storage Sedimei Storage FOREBAY MAIN POND Form SW401-Wet Detention Basin O&M-Rev.4 Page 3 of 4 n ?t Pen-nit Number: (to be provided by DYVQ) I acknowledge and agree by my signature below that I am responsible for the performance of the maintenance procedures listed above. I agree to notify DWQ of any problems with the system or prior to any changes to the system or responsible party. Project name:Novartis USFCC BMP drainage area number:- Print name: Title: Address: Phone: Signature:- Date: Note: The legally responsible party should not be a homeowners association unless more than 50% of the lots have been sold and a resident of the subdivision has been named the president. a Notary Public for the State of County of , do hereby certify that personally appeared before me this day of , and acknowledge the due execution of the forgoing wet detention basin maintenance requirements. Witness my hand and official seal, SEAL My commission expires 0 Form SW401-Wet Detention Basin O&M-Rev.4 Page 4 of 4 rl? U bb N 0 Z N W I Q AEI N < Q [? ?5 O 6a a v o N n ?' ;d <r ?d ??yl O U LL Z a J O O 0 E 00 O N O U a ¢ w z N O U V) LQ Z z t p 1 i N Y c3 z > u j d 0 i N i N o FF Lj W ? o ^ 3 o U o m z x I I I G NI I N I I?III} ? I I >3 I! I ?I ?I I I li o I I I I ?? G I I ?I I I I II ? I I?I,I I I I gl Ih?l I ? I I jl ? I I i I to I III G I I I 3 I ? h x I I ?I ?lil!li I h a 'SMMYAON NUM 3N3W33MOY N9 MM MSS M30M11.90A310O00Md ANY NI031Y30dSOOM MO 0350 3930N (0) ONY LMVd NI NO 910HM NI CUM MO O30fl001438 36 ION (9) 30L nM:) N O3NIV13M 39 (Y) 013MM ONILYEM NOILVWM03NI71Y ONY A93M3NL O31N3S3Md3M SW3WS ONY 9:)IA30'SUBW0MISM 3NLLVNL SNOWW700 3NL OL L0MnS O3M30N3L A ONY SUVAON 30 NOILYWaNM AMYiW&IOMd SNIV1130O LN3WIg00 Sft U W W Q U [q ? O U N N 105 Z. ss ?a bdo " a w 0 0 z 4 ut rc Y 1 1/ 0 I NK?-ry\ ?N 4 \ NK ?NK_ryys-I`°'?NK r3 Ig n R 1 1 1 0 1 1 1 , 1 1 1 e -7- 2r P;(,--?, • • 111 ff -ace] : Section D Detention Calculations 0 0 DETENTION CALCULATIONS The wet detention basin was originally designed for the initial USFCC Novartis site in the Town of Holly Springs. The wet basin was designed based on 2005 Division of Water Quality NCDENR Stormwater Regulations. The existing pond was constructed and is currently used as a construction sedimentation basin. It was designed to control peak flows for the 2 year and 10 year, 24-hr storms. Drainage Areas 1,2,3b, DA-3a, and DA2a contribute to the flow at the collection point shown in the Post Development Plan (C-JSK-61) in Appendix A of this report. Drainage Areas DA-la and DA-4a are shown for reference. The latter drainage areas do not contribute to the stormwater detention calculations for the revised wet detention pond. Current Town of Holly Springs and NCDENR regulations require that wet detention basins to control the pre and post development peak flows of a 1 year, 24-hr storm. The storm is based on a 2.83 inch rainfall in a 24 hour period SCS Type II event as required by the Town of Holly Springs. Therefore, the drawdown 4" orifice was used as a control structure. The existing structures have 3 weirs at Elevation 319.20 incorporated into the design. The top of berm is located at Elevation 322.0 with an emergency spillway at Elevation 320. • Using the Bentley software, PONDPACK, drainage parameters were entered into the drainage system and routed through the revised pond. It was determined that the existing revised pond will be able to control the 1 year storm. After routing, the pond outlets 0.7 cfs after receiving over 30cfs. Since the outflow is measured at a point (0- 2) outside of the pond where two additional drainage areas (POST DA-3A & POST DA2A) meet (see Scenario sketch), the actual calculated post developed peak flow exceeds the pre-developed peak flow by less than Icfs. Drainage area POST DA-3A does contains impervious pavement that is a part of Green Oaks Parkway which is outside of Novartis property. However, due to the amount of flow detained at the point of increased runoff, and that this pond will also control the 2 and 10 year storm while keeping the I foot freeboard requirement, we feel that the peak flow requirement is met. Detention wet pond calculations, pre and post development parameters, pond volume info, outlet structure design, and routing calculations are included in this section. 0 %'- /t ,:° C Detention Pond Peak Flow Summary 0 1? • • Scenario: Pre-Development 1 0 v1'rA L_L potm-r • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc . Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • Scenario: Post-Development 1 i • t 0V (FALI pot,J • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • 1 Year, 24-Hour Storm Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) Post DA3A Post-Development 1 1 0.806 12.150 6.43 Post DA1,2,3b Post-Development 1 1 3.398 12.200 30.87 Post DA2a Post-Development 1 1 0.175 12.050 1.94 PreDA2a Pre-Development 1 1 0.533 12.250 2.85 PreDA3A Pre-Development 1 1 0.693 12.250 3.83 Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) J-1 Post-Development 1 1 0.806 12.150 6.43 J-1 Pre-Development 1 1 0.693 12.250 3.83 0-2 Post-Development 1 1 2.484 12.250 7.48 0-2 Pre-Development 1 1 1.226 12.300 6.56 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Post- PO-1 (IN) Development 1 3.398 12.200 30.87 (N/A) (N/A) 1 Post- PO-1 (OUT) Development 1 1.502 24.100 0.74 318.38 2.662 1 YEA2 PEAK r'L_aw -7.48 cis x.56 cis BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i 0 Bottom.ppc Center .[08.11.01.511 9/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 2 Watertown, CT 06795 USA +1-203-755-1666 • • N O O d N L a L ra a? O O O d' O O O O M O O O N M O O O 06 N O O O 4 N O i O O O O N N O E 01- 0 l0 O O O N O O O CO ?O O O co Ln m O CO Ln m o c o L n M O O Ln CO N 0 O M r" r-i Ln CO N 0 O I? O O Ln Ln 4 M M N .-1 r-' O O (S/EI4) MOIL N O N @J O O LL _O L U- ? L O ? ? N 4J ? E N 0- 0 O- O > N N > C N 4-J Ln Q) O L I* 2 Year, 24-Hour Storm Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) Post DA3A Post-Development 2 2 1.538 12.150 15.34 Post DA1,2,3b Post-Development 2 2 4.989 12.200 45.88 Post DA2a Post-Development 2 2 0.366 12.000 5.28 PreDA2a Pre-Development 2 2 1.117 12.200 8.66 PreDA3A Pre-Development 2 2 1.453 12.200 11.71 Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) J-1 Post-Development 2 2 1.538 12.150 15.34 J-1 Pre-Development 2 2 1.453 12.200 11.71 0-2 Post-Development 2 2 4.304 12.250 17.23 0-2 Pre-Development 2 2 2.569 12.250 19.89 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Post- PO-1 (IN) Development 2 4.989 12.200 45.88 (N/A) (N/A) 2 Post- PO-1 (OUT) Development 2 2.400 15.600 2.60 319.28 3.534 2 2 YEarz PEA V_ 4::t_o w 1-7. 2 ens < 1 `"I . °I J? e, pos-r E-- PRE BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i • Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 2 Watertown, CT 06795 USA +1-203-755-1666 • 10 Year, 24-Hour Storm Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) Post DA3A Post-Development 10 10 3.589 12.150 40.59 Post DA1,2,3b Post-Development 10 10 8.702 12.200 80.16 Post DA2a Post-Development 10 10 0.935 12.000 15.46 PreDA2a Pre-Development 10 10 2.849 12.200 27.89 PreDA3A Pre-Development 10 10 3.708 12.150 37.86 Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) J-1 Post-Development 10 10 3.589 12.150 40.59 J-1 Pre-Development 10 10 3.708 12.150 37.86 0-2 Post-Development 10 10 10.620 12.200 45.04 0-2 Pre-Development 10 10 6.557 12.250 64.20 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Post- PO-1 (IN) Development 10 8.702 12.200 80.16 (N/A) (N/A) 10 Post- PO-1 (OUT) Development 10 6.096 12.700 29.76 320.01 4.295 10 10 Y l iAq_ PeFaV, P-o w 46-,o c.V-s c. 6,4.2 675 E--- paSrr e---- Pes . BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 2 Watertown, CT 06795 USA +1-203-755-1666 100 Year, 24-Hour Storm Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) Post DA3A t-Development Po s 100 7.688 12.100 91.47 o s Post DA1,2,3b sst-Development Po 100 15.036 12.200 136.71 o Post DA2a Po sst-Development 100 2.123 11.950 36.87 o PreDA2a Pre-Development 100 100 6.472 12.150 68.99 PreDA3A Pre-Development 100 100 8.421 12.150 93.20 Node Summary Label m PST j O O YIEA(z P eAv' rL4 L•j FLo t S ® v-( L F_ M EQG CaG`( SPI LLLaA%( pa ES N o7 ovF-.-eop sea -l C-4,i5ij or 3-22.c' Et-v• 32d . Cj 2 -::?. 3 2 Z. o . BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bottom.ppc Center 9/17/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (vears) (ac-ft) J-1 sst-Development Po 100 7.688 12.100 91.47 o J-1 Pre-Development 100 100 8.421 12.150 93.20 0-2 Po sst-Development 100 22.225 12.300 176.54 o 0-2 Pre-Development 100 100 14.893 12.200 158.43 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Post- PO-1 (IN) Development 100 15.036 12.200 136.71 (N/A) (N/A) 100 Post- PO-1 (OUT) Development 100 12.414 12.450 101.75 320.92 5.323 100 Bentley PondPack V8i [08.11.01.51 ] Page 1 of 2 ? ? lr r P'? s« • 0 111 AK-• r Pre and Post Parameters 3 e/I (- • Project: Novartis USFCC Location: Holly Springs, NC Date: 9/2/2010 Subject: Site Land Use Predeveloped Land Use Type B Soil Land Use Designation Drainaae Area Total Area A B C DA-1 20.9 20.9 PreDA2a 23.3 23.3 PreDA3A 30.3 30.3 DA-4 3.02 3.02 Acres 77.52 0 0 77.52 Post Developed Land Use Type B Soil Land Use Designation Drainaae Area Total Area A R C DA-la 13.98 6.9 2.97 4.11 Post DA1,2,3b 29.6 11.31 18.29 0 Post DA-3a 24.4 11.94 2.02 10.44 Post DA2a 7.64 2.24 0 5.4 DA-4a 1.43 1.12 0 0.31 Acres 77.05 33.51 23.28 20.26 Land Use Legend A Grass "Good" CN= 61 • B Pavement/Buildings CN= 98 C Woods "Fair" CN= 60 Note: DA-1 and DA-4 do not drain into the wet detention pond. Avg. CN F 60 60 60 60 0 4. ! 69 84 64 60 61 0 % Imp 20.9 0.0% 23.3 0.0% 30.3 0.0% 3.02 0.0% 77.52 Acres 13.98 21.2% 29.6 61.8% 24.4 8.3% 7.64 0.0% 1.43 0.0% 77.05 Acres ?J 3-? / /0:? • Novartis 22MN9901 September-10 Post Developed Drainage Areas (Pavement /Building) Use Land Use B Drainage Area Designation: DA-1 a Drainage Area (Acres): 2.97 Area Description Area (sf) Road B & Road C 61444 Main Parking Lot 36348 Admin Lot & Front Entry 31391 Total 129183 Drainage Area Designation: Post DA-3a Drainage Area (Acres): 2.02 0 Area Description Area (sf) Road A 15211 Road C 14071 Great Oaks Parkway West Half 27103 Great Oaks Parkway East Half 26184 East Sidewalk 5503 Total 88072 Drainage Area Designation: Post DA-(1 Drainage Area: 18.29 Area Description ,2,3)b Area (sf) Main Buildings 230617 Bulk Addition 14328 Lab Addition 11081 Fill Finish Addition 42484 Warehouse Addition 20322 SW Future Bldgs 47103 N. Main Lot Pav't & Small Bldgs. 67297 S. Main Lot Pav't & Small Bldgs. 34470 Utility Yard 65847 Road D 21316 SW Lot Pav't 107796 Road A 28908 Access Drives 22025 Warehouse Dock 20953 Road B 35854 Walkways 26520 is Total 796921 2.97 Acres 2.02 Acres 18.29 Acres 22MN IS 2MN9901 September 2010 Pre Developed Drainage Areas (Time of Concentration) 2 yr P= 3.6 inches Drainage Area Designation: PreDA2a Total Length: 1730 Feet Drainage Area: 23.3 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Mannino's "n" (ft.) (ftift) (feet) (so- ft.) Time (hr) Sheet flow Shallow flow Shallow flow Channel flow 0.4 200 0.08 0.34 330 0.055 0.02 350 0.011 0.06 0.06 850 0.052 80 180 0.02 1 [JU 0.44 Drainage Area Designation: PreDA3A Total Length: 1665 Feet Drainage Area: 30.3 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Mannino's "n" (ft.) (ft/ft) (feet) (sn_ ft_1 Time /hr) Sheet flow Shallow flow Channel flow Channel flow Channel flow 0.4 175 0.05 0.37 125 0.16 0.01 0.06 660 0.05 80 180 0.02 0.06 410 0.02 80 180 0.02 0.06 295 0.047 80 180 0.01 I bbb 0.42 is • 22MN Novartis 2MN9901 September 2010 Post Developed Drainage Areas (Time of Concentration) 2 yr P= 3.6 inches Drainage Area Designation: Post DA1,2,3b Total Length: 1438 Feet Drainage Area: 29.6 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Mannin 's "n" (ft.) (ft/ t) (feet) (sq. ft.) Time (hr) Sheet flow 0.24 250 0.015 0.52 Channel flow 0.013 1188 0.005 7.85 4.9 0.06 1438 0.58 Drainage Area Designation: Post DAM Total Length: 1745 Feet Drainage Area: 7.64 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Mannino's "n" (ft-) (ft/ftl ffPPtl kn ft 1 Times Ihrl Sheet flow Shallow flow Channel flow Channel flow Channel flow Channel flow • U.37 Timp Ihrl 0.24 50 0.045 0.09 200 0.1 0.01 0.06 600 0.052 80 180 0.02 dbU 0.4 150 0.06 0.30 130 0.14 0.01 0.06 660 0.05 80 180 0.02 0.06 100 0.008 9.5 7 0.02 0.06 410 0.02 80 180 0.02 0.06 295 0.047 80 180 0.01 "I /4b Drainage Area Designation: Post DA2a Total Length: 850 Feet Drainage Area: 7.64 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Mannin 's "n" (ft.) (ftift) (feet) (sq. ft.) Sheet flow Shallow flow Channel flow 0.12 R I • Pre Development Storm Calculations • • • IMI A? W i a IO 11?• V y >?o U O `- 6 N 0 a M c ? d 00 d u c m co D c co co 00 OF 00 c 0 0 Ur ? o a ? L ? (O U1 O o c) L? O v) y N N M _U? U N } C > UJ ? E C d N n Q O U c c 0 0 co E rn n N a C O IL 0 0 N Z O CL V) I= ? o ON a? m rn 1 Year Pre-development Calculations Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) PreDA2a Pre-Development 1 1 0.533 12.250 2.85 PreDA3A Pre-Development 1 1 0.693 12.250 3.83 Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) J-1 Pre-Development 1 1 0.693 12.250 3.83 0-2 Pre-Development 1 1 1.226 12.300 6.56 • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 14 Watertown, CT 06795 USA +1-203-755-1666 1 Year Pre-development Calculations Subsection: Time of Concentratio n Calculations. Return Event: 1 years Label: PreDA2a Storm Event: Novartis-Holly Springs 1 year Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 200.00 ft Manning's n (N/A) Slope 0.080 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.16 ft/s Segment Time of 0.337 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 330.00 ft Is Paved? False Slope 0.055 ft/ft Average Velocity 3.78 ft/s Segment Time of 0.024 hours Concentration Segment #3: TR-55 Shallow Concentrated Flow Hydraulic Length 350.00 ft Is Paved? False Slope 0.011 ft/ft Average Velocity 1.69 ft/s Segment Time of 0.057 hours Concentration Segment #4: TR-55 Channel Flow Flow Area 180.0 ft2 Hydraulic Length 850.00 ft Manning's n (N/A) Slope 0.052 ft/ft Wetted Perimeter 80.00 ft Average Velocity 9.72 ft/s Segment Time of 0.024 hours Concentration Time of Concentration (Composite) Time of Concentration 0.443 hours (Composite) BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 2 of 14 Watertown, CT 06795 USA +1-203-755-1666 14, 0 1 Year Pre-development Calculations Subsection: Time of Concentration Calculations Return Event: 1 years Label: PreDA2a Storm Event: Novartis-Holly Springs 1 year SCS Channel Flow R=Qa/Wp Tc = V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n • (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet Where: V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet SCS TR-55 Shallow Concentration Flow Unpaved surface: V = 16.1345 * (Sf**0.5) Tc = Paved Surface: V = 20.3282 * (Sf**0.5) (Lf / V) / 3600 V= Velocity, ft/sec Where: Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet ___= SCS TR-55 Sheet Flow Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4)) Tc= Time of concentration, hours n= Manning's n Where: Lf= Flow length, feet P= 2yr, 24hr Rain depth, inches Sf= Slope, % BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i 0 Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 3 of 14 Watertown. CT 06795 USA +1-203-755-1666 , /1 1 Year Pre-development Calculations Subsection: Time of Concentratio n Calculations Return Event: 1 years Label: PreDA3A Storm Event: Novartis-Holly Springs 1 year Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 175.00 ft Manning's n (N/A) Slope 0.050 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.13 ft/s Segment Time of 0.366 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 125.00 ft Is Paved? False Slope 0.160 ft/ft Average Velocity 6.45 ft/s Segment Time of 0.005 hours Concentration Segment #3: TR-55 Channel Flow Flow Area 180.0 ft2 Hydraulic Length 660.00 ft Manning's n (N/A) Slope 0.050 ft/ft Wetted Perimeter 80.00 ft Average Velocity 9.53 ft/s Segment Time of 0.019 hours Concentration Segment #4: TR-55 Channel Flow Flow Area 180.0 ft2 Hydraulic Length 410.00 ft Manning's n (N/A) Slope 0.020 ft/ft Wetted Perimeter 80.00 ft Average Velocity 6.03 ft/s Segment Time of Concentration 0.019 hours Segment #5: TR-55 Channel Flow Flow Area 180.0 ft2 Hydraulic Length 295.00 ft Manning's n (N/A) BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V81 Bottom.ppc Center [08.11.01.511 9/17/2010 27 Siemon Company Drive Suite 200 W Page 4 of 14 Watertown, CT 06795 USA +1-203-755-1666 ,IF • • 1 Year Pre-development Calculations Subsection: Time of Concentration Calculations Label: PreDA3A Return Event: 1 years Storm Event: Novartis-Holly Springs 1 year Segment #5: TR-55 Channel Flow Slope 0.047 ft/ft Wetted Perimeter 80.00 ft Average Velocity 9.24 ft/s Segment Time of 0.009 hours Concentration Time of Concentration (Composite) Time of Concentration 0.418 hours (Composite) BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 5 of 14 Watertown, CT 06795 USA +1-203-755-1666 1 Year Pre-development Calculations Subsection: Time of Concentration Calculations Return Event: 1 years Label: PreDA3A Storm Event: Novartis-Holly Springs 1 year SCS Channel Flow R=Qa/Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n Tc = s (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet Where: V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet SCS TR-55 Shallow Concentration Flow Unpaved surface: V = 16.1345 * (Sf**0.5) Tc = Paved Surface: V = 20.3282 * (Sf**0,5) (Lf / V) / 3600 V= Velocity, ft/sec Where: Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet ___= SCS TR-55 Sheet Flow Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4)) Tc= Time of concentration, hours n= Manning's n Where: Lf= Flow length, feet P= 2yr, 24hr Rain depth, inches Sf= Slope, % BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 6 of 14 Watertown, CT 06795 USA +1-203-755-1666 1 Year Pre-development Calculations Subsection: Unit Hydrograph Summary Return Event: 1 years Label: PreDA2a Storm Event: Novartis-Holly Springs 1 year Storm Event Novartis-Holly Springs 1 year Return Event 1 years Duration 38.000 hours Depth 2.8 in Time of Concentration 0.443 hours (Composite) Area (User Defined) 23.300 acres Computational Time 0.059 hours Increment Time to Peak (Computed) 12.238 hours Flow (Peak, Computed) 2.86 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12.250 hours Interpolated Output) Flow (Peak Interpolated 2.85 ft3/s Output) Drainage Area SCS CN (Composite) 60.000 Area (User Defined) 23.300 acres Maximum Retention (Pervious) 6.7 in Maximum Retention (Pervious, 20 percent) 1.3 in Cumulative Runoff Cumulative Runoff Depth (Pervious) 0.3 in Runoff Volume (Pervious) 0.533 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.533 ac-ft SCS Unit Hydrograph Parameters Time of Concentration (Composite) 0.443 hours Computational Time 0.059 hours Increment Unit Hydrograph Shape 483.432 Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 9117/2010 27 Siemon Company Drive Suite 200 W Page 7 of 14 Watertown, CT 06795 USA +1-203-755-1666 t • 1 Year Pre-development Calculations Subsection: Unit Hydrograph Summary Label: PreDA2a Return Event: 1 years Storm Event: Novartis-Holly Springs 1 year SCS Unit Hydrograph Parameters Unit peak, qp 59.54 ft3/s Unit peak time, Tp 0.296 hours Unit receding limb, Tr 1.182 hours Total unit time, Tb 1.478 hours BMP NOVARTIS POND 2010@ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 8 of 14 Watertown, CT 06795 USA +1-203-755-1666 5.. , A () • • L a L 0) O 2 N Q N a L O O O v N O O O O N O O O O .-i N O 0 O O O N O E H O O O 00 O O O 'IT 11 O 11 O O O Ln O Ln O Ln O Ln O Ln O Ln O O O I? Lq N O I? Ln N O Il Ln N O M N N N N 114 -1 'A O O O O (SAID) (lelol) Moll 0 F- O LL C N E a _O N a a I 0 p F4 J } 1 Year Pre-development Calculations Subsection: Unit Hydrograph Summary Return Event: 1 years Label: PreDA3A Storm Event: Nova rtis-Holly Springs 1 year Novartis-Holly Storm Event Springs 1 year Return Event 1 years Duration 38.000 hours Depth 2.8 in Time of Concentration 0.418 hours (Composite) Area (User Defined) 30.300 acres Computational Time 0.056 hours Increment Time to Peak (Computed) 12.215 hours Flow (Peak, Computed) 3.84 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12.250 hours Interpolated Output) Flow (Peak Interpolated 3.83 ft3/s Output) Drainage Area SCS CN (Composite) 60.000 Area (User Defined) 30.300 acres Maximum Retention 6.7 in (Pervious) Maximum Retention 1.3 in (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth 0.3 in (Pervious) Runoff Volume (Pervious) 0.693 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.693 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0 418 hours . (Composite) Computational Time 0.056 hours Increment Unit Hydrograph Shape 483.432 Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 9 of 14 Watertown, CT 06795 USA +1-203-755-1666 11 1 Year Pre-development Calculations Subsection: Unit Hydrograph Summary Label: PreDA3A Return Event: 1 years Storm Event: Novartis-Holly Springs 1 year SCS Unit Hydrograph Parameters Unit peak, qp 82.07 ft3/s Unit peak time, Tp 0.279 hours Unit receding limb, Tr 1.116 hours Total unit time, Tb 1.394 hours • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solutign Bentley Pond Pack V8i 0 Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 10 of 14 Watertown, CT 06795 USA +1-203-755-1666 • • L a L O O L 2 Q M Q) L d L (O Q) ,--I V O O N O O O O N O O O O e-\ V) L O O O O 1, N O H O O O 06 O O O 4 O O O O m o m o m O m o mom O m 0 Ln O O O N m N O N m N O N m N O N m N O . . . . . . . . . . . . . . . . . d' M M M M N N N N 7--1 ,-i ,-i ,-i O O O O (S/£44) (jejol) moj? ca O O LL d-J C Q) E a _O N Q) L M Q) L • 1 Year Pre-development Calculations Subsection: Channel Routing Summary Return Event: 1 years Label: REACH POST Storm Event: Novartis-Holly Springs 1 year Infiltration Infiltration Method No Infiltration Translation Routing Summary Flow (Base) 0.00 ft3/s Translate 0.100 hours Inflow Hydrograph Outflow Hydrograph Time Start (hours)... 0.000 0.100 Time Step (hours)... 0.050 0.050 Time End (hours)... 38.000 38.100 Peak Time (hours)... 12.250 12.350 Peak Flow (ft3/s)... 3.83 3.83 Inflow/Outflow Volumes Volume (Routing, Inflow) 0.693 ac-ft Volume (Routing, Unrouted) 0.000 ac-ft Volume (Routing, Base Flow) 0.000 ac-ft Volume (Routing, Infiltration) 0.000 ac-ft Volume (Routing, Outflow) 0.693 ac-ft BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V81 Bottom.ppc Center [08.11.01.51] 9117/2010 27 Siemon Company Drive Suite 200 W Page 11 of 14 Watertown, CT 06795 USA +1-203-755-1666 p s..?' r44f 1 Year Pre-development Calculations Subsection: Addition Summary Return Event: 1 years Label: J-1 Storm Event: Novartis-Holly Springs 1 year Summary for Hydrograph Addition at'J-1' Upstream Link Upstream Node <Catchment to Outflow Node> PreDA3A Node Inflows Inflow Type Element Volume Time to Peak Flow (Peak) (ac-ft) (hours) (ft3/s) Flow (From) PreDA3A 0.693 12.250 3.83 Flow (In) 3-1 0.693 12.250 3.83 • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i 0 Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 12 of 14 Watertown, CT 06795 USA +1-203-755-1666 I Year Pre-development Calculations Subsection: Addition Summary Return Event: 1 years Label: 0-2 Storm Event: Novartis-Holly Springs 1 year Summary for Hydrograph Addition at'0-2' Upstream Link Upstream Node REACH POST J-1 <Catchment to Outflow Node> PreDA2a Node Inflows Inflow Type Element Volume (ac-ft) Flow (From) REACH POST 0.693 Flow (From) PreDA2a 0.533 Flow (In) 0-2 1.226 Time to Peak Flow (Peak) (hours) (ft3/s) 12.350 3.83 12.250 2.85 12.300 6.56 • • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Bottom.ppc Center [08.11.01.511 9/17/2010 27 Siemon Company Drive Suite 200 W Page 13 of 14 Watertown, CT 06795 USA +1-203-755-1666 F' r \ • 0 14 ji Post Development Calculations 0 &0//0-3 • r? • A? W A? W O H a ,o V y r ? a 1 i i ,T) 7 >?o Y U O 6 ? arm ?a ? o0 a W m Q Lo ?rn o° O° C 00 ? C O ? to N O N L ?j c0 N ? a 0 p 6 O p yN I, N N co m o 2 N ? f U N } ?o E a? N O_ (n O a) U C 0 o m E U) N U Q a O O m a C 0 a co 0 0 N 0 Z O a m 1= a Oo Z N mrn 6t/1o?? • 1 Year Post-development Calculations Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) Post DA1,2,3b Post-Development 1 1 3.398 12.200 30.87 Post DA2a Post-Development 1 1 0.175 12.050 1.94 Post DA3A Post-Development 1 1 0.806 12.150 6.43 Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) J-1 Post-Development 1 1 0.806 12.150 6.43 0-2 Post-Development 1 1 2.484 12.250 7.48 Pond Summary • Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Post- PO-1 (IN) Development 1 3.398 12.200 30.87 (N/A) (N/A) 1 Post- PO-1 (OUT) Development 1 1.502 24.100 0.74 318.38 2.662 1 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 21 Watertown, CT 06795 USA +1-203-755-1666 62-110 • 1 Year Post-development Calculations Subsection: Time of Concentration Calculations Return Event: 1 years Label: Post DA1,2,3b Storm Event: Novartis-Holly Springs 1 year Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 250.00 ft Manning's n (N/A) Slope 0.015 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.13 ft/s Segment Time of 0.524 hours Concentration Segment #2: TR-55 Channel Flow Flow Area 4.9 ft2 Hydraulic Length 1,188.00 ft Manning's n (N/A) Slope 0.005 ft/ft Wetted Perimeter 7.85 ft Average Velocity 5.93 ft/s Segment Time of 0.056 hours Concentration • Time of Concentration (Composite) Time of Concentration 0.579 hours (Composite) BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i . Bottom.ppc Center [08.11.01.511 9/17/2010 27 Siemon Company Drive Suite 200 W Page 2 of 21 Watertown, CT 06795 USA +1-203-755-1666 • C, 1 Year Post-development Calculations Subsection: Time of Concentration Calculations Label: Post DA1,2,3b Return Event: 1 years Storm Event: Novartis-Holly Springs 1 year SCS Channel Flow R=Qa/Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n Tc = (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet Where: V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet ___= SCS TR-55 Sheet Flow Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4)) Tc= Time of concentration, hours n= Manning's n Where: Lf= Flow length, feet P= 2yr, 24hr Rain depth, inches Sf= Slope, O/o • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 911712010 27 Siemon Company Drive Suite 200 W Page 3 of 21 Watertown, CT 06795 USA +1-203-755-1666 1 Year Post-development Calculations Subsection: Time of Concentration Calculations Return Event: 1 years Label: Post DA2a Storm Event: Novartis-Holly Springs 1 year Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 50.00 ft Manning's n (N/A) Slope 0.045 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.15 ft/s Segment Time of 0.093 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 200.00 ft Is Paved? False Slope 0.100 ft/ft Average Velocity 5.10 ft/s Segment Time of 0.011 hours Concentration Segment #3: TR-55 Channel Flow Flow Area 180.0 ft2 • Hydraulic Length 600.00 ft Manning's n (N/A) Slope 0.052 ft/ft Wetted Perimeter 80.00 ft Average Velocity 9.72 ft/s Segment Time of 0.017 hours Concentration Time of Concentration (Composite) Time of Concentration 0.121 hours (Composite) BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 4 of 21 Watertown, CT 06795 USA +1-203-755-1666 0 1 Year Post-development Calculations Subsection: Time of Concentration Calculations Return Event: 1 years Label: Post DA2a Storm Event: Novartis-Holly Springs 1 year SCS Channel Flow R=Qa/Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n Tc = (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp = Wetted perimeter, feet Where: V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet CI SCS TR-55 Shallow Concentration Flow Unpaved surface: V = 16.1345 * (Sf**0.5) Tc = Paved Surface: V = 20.3282 * (Sf**0.5) (Lf / V) / 3600 V= Velocity, ft/sec Where: Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet ___= SCS TR-55 Sheet Flow Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4)) Tc= Time of concentration, hours n= Manning's n Where: Lf= Flow length, feet P= 2yr, 24hr Rain depth, inches Sf= Slope, 0/6 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 5 of 21 Watertown, CT 06795 USA +1-203-755-1666 .? lo • 1 Year Post-development Calculations Subsection: Time of Concentration Calculations Return Event: 1 years Label: Post DA3A Storm Event: Novartis-Holly Springs 1 year Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 150.00 ft Manning's n (N/A) Slope 0.060 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.14 ft/s Segment Time of 0.301 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 130.00 ft Is Paved? False Slope 0.140 ft/ft Average Velocity 6.04 ft/s Segment Time of 0.006 hours Concentration Segment #3: TR-55 Channel Flow Flow Area 180.0 ft2 • Hydraulic Length 660.00 ft Manning's n (N/A) Slope 0.050 ft/ft Wetted Perimeter 80.00 ft Average Velocity 9.53 ft/s Segment Time of 0.019 hours Concentration Segment #4: TR-55 Channel Flow Flow Area 7.0 ft2 Hydraulic Length 100.00 ft Manning's n (N/A) Slope 0.008 ft/ft Wetted Perimeter 9.50 ft Average Velocity 1.75 ft/s Segment Time of 0.016 hours Concentration Segment #5: TR-55 Channel Flow Flow Area 180.0 ft2 Hydraulic Length 410.00 ft Manning's n (N/A) BMP NOVARTIS POND 2010 @1315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PonclPack V8i Bottom. ppc Center 108.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 6 of 21 Watertown, CT 06795 USA +1-203-755-1666 • 1 Year Post-development Calculations Subsection: Time of Concentratio n Calculations Return Event: 1 years Label: Post DA3A Storm Event: Novartis-Holly Springs 1 year Segment #5: TR-55 Channel Flow Slope 0.020 ft/ft Wetted Perimeter 80.00 ft Average Velocity 6.03 ft/s Segment Time of 0.019 hours Concentration Segment #6: TR-55 Channel Flow Flow Area 180.0 ft2 Hydraulic Length 295.00 ft Manning's n (N/A) Slope 0.047 ft/ft Wetted Perimeter 80.00 ft Average Velocity 9.24 ft/s Segment Time of 0.009 hours Concentration Time of Concentration (Composite) Time of Concentration 0.370 hours • (Composite) BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i • Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 7 of 21 Watertown. CT 06795 USA +1-203-755-1666 0 1 Year Post-development Calculations Subsection: Time of Concentration Calculations Return Event: 1 years Label: Post DA3A Storm Event: Novartis-Holly Springs 1 year SCS Channel Flow R=Qa/Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n Tc = (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Where: Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet r ? ?.J ==== SCS TR-55 Shallow Concentration Flow Unpaved surface: V = 16.1345 * (Sf**0.5) Tc = Paved Surface: V = 20.3282 * (Sf**0.5) (Lf / V) / 3600 V= Velocity, ft/sec Where: Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet ==== SCS TR-55 Sheet Flow Tc = (0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4)) Tc= Time of concentration, hours n= Manning's n Where: Lf= Flow length, feet P= 2yr, 24hr Rain depth, inches Sf= Slope, % BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i • Bottom.ppc Center [08.11.01.51] 9/1712010 27 Siemon Company Drive Suite 200 W Page 8 of 21 Watertown, CT 06795 USA +1-203-755-1666 1 Year Post-development Calculations Subsection: Runoff CN-Area Return Event: 1 years Label: Post DA1,2,3b Storm Event: Novartis-Holly Springs 1 year Runoff Curve Number Data Soil/Surface Description CN Area C UC Adjusted CN (acres) (%) (%) Open space (Lawns,parks etc.) - Good 61.000 11.310 0.0 0.0 61.000 condition; grass cover > 75% - Soil B Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil 98.000 18.290 0.0 0.0 98.000 B COMPOSITE AREA & WEIGHTED CN ---> (N/A) 29.600 (N/A) (N/A) 83.863 • • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 9 of 21 Watertown, CT 06795 USA +1-203-755-1666 . 1 Year Post-development Calculations Subsection: Runoff CN-Area Return Event: 1 years Label: Post DA2a Storm Event: Novartis-Holly Springs 1 year Runoff Curve Number Data Soil/Surface Description CN Area C UC Adjusted CN (acres) (%) (%) Open space (Lawns,parks etc.) - Good 61.000 2.240 0.0 0.0 61.000 condition; grass cover > 75% - Soil B Woods - fair - Soil B 60.000 5.400 0.0 0.0 60.000 COMPOSITE AREA & WEIGHTED CN ---> (N/A) 7.640 (N/A) (N/A) 60.293 • . BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 10 of 21 Watertown, CT 06795 USA +1-203-755-1666 1 Year Post-development Calculations Subsection: Runoff CN-Area Return Event: 1 years Label: Post DA3A Storm Event: Novartis-Holly Springs 1 year Runoff Curve Number Data Soil/Surface Description CN Area C UC Adjusted CN (acres) (%) (%) Open space (Lawns,parks etc.) - Good 61.000 11.940 0.0 0.0 61.000 condition; grass cover > 75% - Soil B Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil 98.000 2.020 0.0 0.0 98.000 B Woods - fair - Soil B 60.000 10.440 0.0 0.0 60.000 COMPOSITE AREA & WEIGHTED CN ---> (N/A) 24.400 (N/A) (N/A) 63.635 11 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i • Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 11 of 21 Watertown, CT 06795 USA +1-203-755-1666 o 0 1 Year Post-development Calculations Subsection: Unit Hydrograph Summary Return Event: 1 years Label: Post DA1,2,3b Storm Event: Novartis-Holly Springs 1 year Storm Event Novartis-Holly Springs 1 year Return Event 1 years Duration 38.000 hours Depth 2.8 in Time of Concentration 0.579 hours (Composite) Area (User Defined) 29.600 acres Computational Time 0.077 hours Increment Time to Peak (Computed) 12.204 hours Flow (Peak, Computed) 31.03 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12.200 hours Interpolated Output) Flow (Peak Interpolated 30.87 ft3/s Output) Drainage Area SCS CN (Composite) 84.000 Area (User Defined) 29.600 acres Maximum Retention 1.9 in (Pervious) Maximum Retention (Pervious, 20 percent) 0.4 in Cumulative Runoff Cumulative Runoff Depth 1.4 in (Pervious) Runoff Volume (Pervious) 3.398 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 3.398 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0.579 hours (Composite) Computational Time 0.077 hours Increment Unit Hydrograph Shape 483.432 Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670. . BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 12 of 21 Watertown, CT 06795 USA +1-203-755-1666 • 1 Year Post-development Calculations Subsection: Unit Hydrograph Summary Label: Post DA1,2,3b Return Event: 1 years Storm Event: Novartis-Holly Springs 1 year SCS Unit Hydrograph Parameters Unit peak, qp 57.89 ft3/s Unit peak time, Tp 0.386 hours Unit receding limb, Tr 1.545 hours Total unit time, Tb 1.931 hours • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9117/2010 27 Siemon Company Drive Suite 200 W Page 13 of 21 Watertown, CT 06795 USA +1-203-755-1666 74' / / 6 C, ?l fl.. L 0) O L M N 4-J U) O CL L O O O O 6 M O O O N M O O O 00 N O N O L O O N N O E O ?o O O O O O O O O O O O O Lr) O LIB O Ll7 O M M N N .--l .--l (S/£44) Oe4ol) Mold O O O N O O O CO O O O d' O O O O O p O O L.n O [u O O LL N E Q O aJ N n i O a .n M N ?-1 W O a- • -7 ??// 03 1 Year Post-development Calculations Subsection: Unit Hydrograph Summary Return Event: 1 years Label: Post DA2a Storm Event: Novar tis-Holly Springs 1 year Novartis-Holly Storm Event Springs 1 year Return Event 1 years Duration 38.000 hours Depth 2.8 in Time of Concentration 0.121 hours (Composite) Area (User Defined) 7.640 acres Computational Time 0.016 hours Increment Time to Peak (Computed) 12.033 hours Flow (Peak, Computed) 1.99 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12.050 hours Interpolated Output) Flow (Peak Interpolated 1.94 ft3/s Output) Drainage Area SCS CN (Composite) 60.000 Area (User Defined) 7.640 acres Maximum Retention 6.7 in (Pervious) Maximum Retention 1.3 in (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth 0.3 in (Pervious) Runoff Volume (Pervious) 0.175 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.175 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0.121 hours (Composite) Computational Time 0.016 hours Increment Unit Hydrograph Shape 483.432 Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 BMP NOVARTIS POND 1010@ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bottom.ppc Center Bentley Pond Pack V8i (08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 14 of 21 Watertown, CT 06795 USA +1-203-755-1666 77/103 • 1 Year Post-development Calculations Subsection: Unit Hydrograph Summary Label: Post DA2a Return Event: 1 years Storm Event: Novartis-Holly Springs 1 year SCS Unit Hydrograph Parameters Unit peak, qp 71.46 ft3/s Unit peak time, Tp 0.081 hours Unit receding limb, Tr 0.323 hours Total unit time, Tb 0.404 hours • BMP NOVARTIS POND 2010@ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 15 of 21 Watertown, CT 06795 USA +1-203-755-1666 • • Q (B L O 0 L ro N O d. L t-? V O O N O O O O N O O O r-i U) L O O 0 O :c- . N N ,-i E I-- O O O co 0 O O 4 I? 00 O O Ln O i.n O Ln O rIN In N O N (Sh4j) (Ielol) Mold O Ln O Ln N O 0 0 O O ra O O H ,--q 4-J C N E Q _O Q) r) U) O CL r? N Q C) 4--) 0 'a I 0 0 ' Year Post-development Calculations Subsection: Unit Hydrograph Summary Return Event: 1 years Label: Post DA3A Storm Event: Novartis-Holly Springs 1 year Storm Event Novartis-Holly Springs 1 year Return Event 1 years Duration 38.000 hours Depth 2.8 in Time of Concentration 0.370 hours (Composite) Area (User Defined) 24.400 acres Computational Time 0,049 hours Increment Time to Peak (Computed) 12.170 hours Flow (Peak, Computed) 6.57 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12.150 hours Interpolated Output) Flow (Peak Interpolated 6.43 ft3/s Output) Drainage Area 0 SCS CN (Composite) 64.000 Area (User Defined) 24.400 acres Maximum Retention 5.6 in (Pervious) Maximum Retention 1.1 in (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth 0 4 in (Pervious) . Runoff Volume (Pervious) 0.806 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.806 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0 370 hours (Composite) . Computational Time 0.049 hours Increment Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 BMP NOVARTIS POND 2010@' 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Bottom.ppc Center [08.11.01.51] 9/1712010 27 Siemon Company Drive Suite 200 W Page 16 of 21 Watertown, CT 06795 USA +1-203-755-1666 L-I 1 Year Post-development Calculations Subsection: Unit Hydrograph Summary Label: Post DA3A Return Event: 1 years Storm Event: Novartis-Holly Springs 1 year SCS Unit Hydrograph Parameters Unit peak, qp 74.81 ft3/s Unit peak time, Tp 0.246 hours Unit receding limb, Tr 0.985 hours Total unit time, Tb 1.232 hours • BMP NOVARTIS POND 2010@ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 17 of 21 Watertown, CT 06795 USA +1-203-755-1666 • L [a L O O L a M 4-j V) O a L v O O N O O O O N O O O O T-i ?-. V) L O O 0 O ?. N N ,-? E F- O O O CO O O O II O O O CO m m O CO m m O CO m m 0 0 Ln CO N ?o O M r to CO N ?D O r O O Ln Ln d- M M N *-i O O (S/£44) (le4ol) Mou (B O F- O LL i-i a-J C_ N a _O N N C) 0 a a M a.J U1 0 r Hi 0 1 Year Post-development Calculations Subsection: Channel Routing Summary Return Event: 1 years Label: REACH POST Storm Event: Novartis-Holly Springs 1 year Infiltration Infiltration Method No Infiltration Translation Routing Summary Flow (Base) 0.00 ft3/s Translate 0.100 hours Inflow Hydrograph Outflow Hydrograph Time Start (hours)... 0.000 0.100 Time Step (hours)... 0.050 0.050 Time End (hours)... 38.000 38.100 Peak Time (hours)... 12.150 12.250 Peak Flow (ft3/s)... 6.43 6.43 Inflow/Outflow Volumes Volume (Routing, Inflow) 0.806 ac-ft Volume (Routing, Unrouted) 0.000 ac-ft Volume (Routing, Base Flow) 0.000 ac-ft Volume (Routing, Infiltration) 0.000 ac-ft Volume (Routing, Outflow) 0.806 ac-ft BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 18 of 21 Watertown, CT 06795 USA +1-203-755-1666 1 Year Post-development Calculations Subsection: Addition Summary Return Event: 1 years Label: J-1 Storm Event: Novartis-Holly Springs 1 year Summary for Hydrograph Addition at'J-1' Upstream Link Upstream Node <Catchment to Outflow Node> Post DA3A Node Inflows Inflow Type Element Volume Time to Peak Flow (Peak) (ac-ft) (hours) (ft3/s) Flow (From) Post DA3A 0.806 12.150 6.43 Flow (In) J-1 0.806 12.150 6.43 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 19 of 21 Watertown. CT 06795 USA +1-203-755-1666 9 Year Post-development Calculations Subsection: Addition Summary Return Event: 1 years Label: 0-2 Storm Event: Novartis-Holly Springs 1 year Summary for Hydrograph Addition at'0-2' Upstream Link Upstream Node Outlet-1 REACH POST <Catchment to Outflow Node> Inflow Type Flow (From) Flow (From) Flow (From) Flow (In) Element Outlet-1 REACH POST Post DA2a 0-2 PO-1 J-1 Post DA2a Node Inflows Volume Time to Peak Flow (Peak) (ac-ft) (hours) (ft3/s) 1.502 24.100 0.74 0.806 12.250 6.43 0.175 12.050 1.94 2.484 12.250 7.48 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 20 of 21 Watertown, CT 06795 USA +1-203-755-1666 E JACOtsv,q.lx Pond Parameters/ Outlet Structure C 0 Pond Parameters and Outlet Structures Subsection: Elevation-Area Volume Curve Return Event: 1 years Label: PO-1 Storm Event: Novartis-Holly Springs 1 year Elevation Planimeter Area Al+A2+sqr Volume Volume (Total) (ft) M) (acres) (A1*A2) (ac-ft) (ac-ft) (acres) 315.00 0.0 0.615 0.000 0.000 0.000 315.50 0.0 0.696 1.965 0.328 0.328 316.00 0.0 0.741 2.155 0.359 0.687 317.00 0.0 0.815 2.333 0.778 1.464 318.00 0.0 0.888 2.554 0.851 2.316 319.00 0.0 0.987 2.811 0.937 3.253 320.00 0.0 1.085 3.107 1.036 4.288 321.00 0.0 1.174 3.388 1.129 5.418 322.00 0.0 1.263 3.655 1.218 6.636 C] BMP NOVARTIS POND 2010 @1315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.511 9/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 12 Watertown, CT 06795 USA +1-203-755-1666 Pond Parameters and Outlet Structures Subsection: Volume Equations Return Event: 1 years Label: PO-1 Storm Event: Novartis-Holly Springs 1 year Pond Volume Equations * Incremental volume computed by the Conic Method for Reservoir Volumes. Volume = (1/3) * (EL2 - Eli) * (Areal + Area2 + sgr(Areal * Area2)) where: EL1, EL2 Lower and upper elevations of the increment Areal, Area2 Areas computed for ELl, EL2, respectively Volume Incremental volume between ELl and EL2 0 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bottom.ppc Center 9/1712010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 2 of 12 Pond Parameters and Outlet Structures Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: Novartis-Holly Springs 1 year Requested Pond Water Surface Elevations Minimum (Headwater) 315.00 ft Increment (Headwater) 0.50 ft Maximum (Headwater) 322.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall E1 E2 (ft) (ft) Inlet Box Riser - 2 Forward TW 319.20 322.00 Inlet Box Riser - 3 Forward TW 319.20 322.00 Inlet Box Riser - 1 Forward TW 319.20 322.00 Orifice-Circular Orifice - 1 Forward TW 315.00 322.00 Rectangular Weir Weir - 1 Forward TW 320.00 322.00 Tailwater Settings Tailwater (N/A) (N/A) • BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i 0 Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 3 of 12 Watertown, CT 06795 USA +1-203-755-1666 ?r Pond Parameters and Outlet Structures Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: Novartis-Holly Springs 1 year Structure ID: Orifice - 1 Structure Type: Orifice-Circular Number of Openings 1 Elevation 315.00 ft Orifice Diameter 4.0 in Orifice Coefficient 0.590 Structure ID: Weir - 1 Structure Type: Rectangular Weir E7H1506(FMCT ?P IU W AY Number of Openings 1 Elevation 320.00 ft Weir Length 15.00 ft Weir Coefficient 3.00 (ft^0.5)/s Structure ID: Riser - 1 Structure Type: Inlet Box Number of Openings 1 Elevation 319.20 ft Orifice Area 3.6 ft2 Orifice Coefficient Weir Length 0.600 4.50 ft Weir Coefficient 3.30 (ft^0.5)/s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest True Structure ID: Riser - 2 Structure Type: Inlet Box Number of Openings 1 Elevation 319.20 ft Orifice Area 2.4 ftz Orifice Coefficient 0.600 Weir Length 3.00 ft Weir Coefficient 3.30 (ft^0.5)/s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest True BMP NOVARTIS POND 2010@ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 4 of 12 Watertown, CT 06795 USA +1-203-755-1666 Pond Parameters and Outlet Structures Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: Novartis-Holly Springs 1 year Structure ID: Riser -3 Structure Type: Inlet Box Number of Openings 1 Elevation 319.20 ft Orifice Area 3.6 ft2 Orifice Coefficient 0.600 Weir Length 4.50 ft Weir Coefficient 3.30 (ft^0.5)/s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest True Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations Tailwater Tolerance 30. 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3/s Flow Tolerance (Maximum) 10.000 ft3/s BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/1712010 27 Siemon Company Drive Suite 200 W Page 5 of 12 Watertown, CT 06795 USA +1-203-755-1666 a ; Pond Parameters and Outlet Structures Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: Novartis-Holly Springs 1 year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular) --------------------------------------- Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) • Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3/s) (ft) (ft) (ft) 315.00 0.00 (N/A) 0.00 315,50 0.24 (N/A) 0.00 316.00 0.38 (N/A) 0.00 316.50 0.48 (N/A) 0.00 317.00 0.56 (N/A) 0.00 317.50 0.63 (N/A) 0.00 318.00 0.70 (N/A) 0.00 318.50 0.75 (N/A) 0.00 319.00 0.81 (N/A) 0.00 319.20 0.83 (N/A) 0.00 319.50 0.86 (N/A) 0.00 320.00 0.91 (N/A) 0.00 320.50 0.95 (N/A) 0.00 321.00 1.00 (N/A) 0.00 321.50 1.04 (N/A) 0.00 322.00 1.08 (N/A) 0.00 k-UMPuiauun Vlt=aUyca Upstream HW & DNstream TW < Inv.El H =.33 H =.83 H =1.33 H =1.83 H =2.33 H =2.83 H =3.33 H =3.83 H =4.03 H =4.33 H =4.83 H =5.33 H =5.83 H =6.33 H =6.83 BMP NOVARTIS POND 2010 @1115 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 6 of 12 Watertown, CT 06795 USA +1-203-755-1666 Pond Parameters and Outlet Structures Subsection: Individual Outlet Curves. Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: Novartis-Holly Springs 1 year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Weir - 1 (Rectangular Weir) --------------------------------------- Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3/s) (ft) (ft) (ft) 315.00 0.00 (N/A) 0.00 315.50 0.00 (N/A) 0.00 316.00 0.00 (N/A) 0.00 316.50 0.00 (N/A) 0.00 317.00 0.00 (N/A) 0.00 317.50 0.00 (N/A) 0.00 318.00 0.00 (N/A) 0.00 318.50 0.00 (N/A) 0.00 319.00 0.00 (N/A) 0.00 319.20 0.00 (N/A) 0.00 319.50 0.00 (N/A) 0.00 320.00 0.00 (N/A) 0.00 320.50 15.91 (N/A) 0.00 321.00 45.00 (N/A) 0.00 321.50 82.67 (N/A) 0.00 322.00 127.28 (N/A) 0.00 Computation Messages HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 HW &TW below Inv.El.= 320.000 H=.00; Htw=.00; Qfree= .00; H=.50; Htw=.00; Qfree= 15.91; H=1.00; Htw=.00; Qfree =45.00; H=1.50; Htw=.00; Qfree =82.67; H=2.00; Htw=.00; Qfree =127.28; BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Bottom.ppc Center [08.11.01.51] 9117/2010 27 Siemon Company Drive Suite 200 W Page 7 of 12 Watertown. CT 06795 USA +1-203-755-1666 sl Pond Parameters and Outlet Structures Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: Novartis-Holly Springs 1 year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box) Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3/s) (ft) (ft) (ft) C] 315.00 0.00 (N/A) 0.00 315.50 0.00 (N/A) 0.00 316.00 0.00 (N/A) 0.00 316.50 0.00 (N/A) 0.00 317.00 0.00 (N/A) 0.00 317.50 0.00 (N/A) 0.00 318.00 0.00 (N/A) 0.00 318.50 0.00 (N/A) 0.00 319.00 0.00 (N/A) 0.00 319.20 0.00 (N/A) 0.00 319.50 2.44 (N/A) 0.00 320,00 10.63 (N/A) 0.00 320.50 19.76 (N/A) 0.00 321.00 23.25 (N/A) 0.00 321.50 26.28 (N/A) 0.00 322.00 28.99 (N/A) 0.00 Computation Messages HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv.El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 HW & TW < Inv.El.=319.200 HW &TW < Inv.El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 Weir: H =Oft Weir: H =0.3ft Weir: H =0.8ft Orifice: H =1.30; Riser orifice equation controlling. Orifice: H =1.80; Riser orifice equation controlling. Orifice: H =2.30; Riser orifice equation controlling. Orifice: H =2.80; Riser orifice equation BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bottom.ppc Center 9/17/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley Pond Pack V8i [08.11 .01.51) Page 8 of 12 Pond Parameters and Outlet Structures Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: Novartis-Holly Springs 1 year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 2 (Inlet Box) --------------------------------------- Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3/s) (ft) (ft) (ft) • 315.00 0.00 (N/A) 0.00 315.50 0.00 (N/A) 0.00 316.00 0.00 (N/A) 0.00 316.50 0.00 (N/A) 0.00 317.00 0.00 (N/A) 0.00 317.50 0.00 (N/A) 0.00 318.00 0.00 (N/A) 0.00 318.50 0.00 (N/A) 0.00 319.00 0.00 (N/A) 0.00 319.20 0.00 (N/A) 0.00 319.50 1.63 (N/A) 0.00 320.00 7.08 (N/A) 0.00 320.50 13.17 (N/A) 0.00 321.00 15.50 (N/A) 0.00 321.50 17.52 (N/A) 0.00 322.00 19.33 (N/A) 0.00 Computation Messages HW &TW < Inv.El.=319.200 HW &TW < Inv.El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv.El.=319.200 HW &TW < Inv.El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv.El.=319.200 Weir: H =Oft Weir: H =0.3ft Weir: H =0.8ft Orifice: H =1.30; Riser orifice equation controlling. Orifice: H =1.80; Riser orifice equation controlling. Orifice: H =2.30; Riser orifice equation controlling. Orifice: H =2.80; Riser orifice equation controlling. BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 9 of 12 Watertown, CT 06795 USA +1-203-755-1666 D 01 Pond Parameters and Outlet Structures Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: Novartis-Holly Springs 1 year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 3 (Inlet Box) --------------------------------------- Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3/s) (ft) (ft) (ft) 315.00 0.00 (N/A) 0.00 315.50 0.00 (N/A) 0.00 316.00 0.00 (N/A) 0.00 316.50 0.00 (N/A) 0.00 317.00 0.00 (N/A) 0.00 317.50 0.00 (N/A) 0.00 318.00 0.00 (N/A) 0.00 318.50 0.00 (N/A) 0.00 319.00 0.00 (N/A) 0.00 319.20 0.00 (N/A) 0.00 319,50 2.44 (N/A) 0.00 320.00 10.63 (N/A) 0.00 320.50 19.76 (N/A) 0.00 321.00 23.25 (N/A) 0.00 321.50 26.28 (N/A) 0.00 322.00 28.99 (N/A) 0.00 Computation Messages HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv.El.=319.200 HW &TW < Inv. El.=319.200 HW &TW < Inv.El.=319.200 HW &TW < Inv. El.=319.200 Weir: H =Oft Weir: H =0.3ft Weir: H =0.8ft Orifice: H =1.30; Riser orifice equation controlling. Orifice: H =1.80; Riser orifice equation controlling. Orifice: H =2.30; Riser orifice equation controlling. Orifice: H =2.80; Riser orifice equation controlling. BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom. ppc Center [08.11.01.511 9/1712010 27 Siemon Company Drive Suite 200 W Page 10 of 12 Watertown, CT 06795 USA +1-203-755-1666 Pond Parameters and Outlet Structures is Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1 Composite Outflow Summary Water Surface Flow Elevation MIN (ft) Return Event: 1 years Storm Event: Novartis-Holly Springs 1 year Tailwater Elevation Convergence Error (ft) (ft) 315.00 0.00 (N/A) 0.00 315.50 0.24 (N/A) 0.00 316.00 0.38 (N/A) 0.00 316.50 0.48 (N/A) 0.00 317.00 0.56 (N/A) 0.00 317.50 0.63 (N/A) 0.00 318.00 0.70 (N/A) 0.00 318.50 0.75 (N/A) 0.00 319.00 0.81 (N/A) 0.00 319.20 0.83 (N/A) 0.00 319.50 7.37 (N/A) 0.00 320.00 29.24 (N/A) 0.00 320.50 69.55 (N/A) 0.00 321,00 107.99 (N/A) 0.00 321.50 153.78 (N/A) 0.00 322.00 205.67 (N/A) 0.00 L-onrnouung ?,irMures None Contributing Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Riser - 2 + Riser - 3 + Riser - 1 + Orifice - 1 Riser - 2 + Riser - 3 + Riser 1 + Orifice - 1 Riser - 2 + Riser - 3 + Riser - 1 + Orifice - 1 + Weir - 1 Riser - 2 + Riser - 3 + Riser - 1 + Orifice - 1 + Weir - 1 Riser - 2 + Riser - 3 + Riser - 1 + Orifice - 1 + Weir - 1 Riser - 2 + Riser - 3 + Riser - 1 + Orifice - 1 + Weir - 1 Riser - 2 + Riser - 3 + Riser - 1 + Orifice - 1 + Weir - 1 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 11 of 12 Watertown, CT 06795 USA +1-203-755-1666 • • L?IeC??7?-9 Pond Routing Calculations • 0 Pond Routing Calculations Subsection: Elevation-Volume-Flow Table (Pond) Return Event: 1 years Label: PO-1 Storm Event: Novartis-Holly Springs 1 year Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Elevation (Water Surface, 315.00 ft Initial) Volume (Initial) 0.000 ac-ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 0.050 hours E Elevation Outflow Storage Area Infiltration Flow (Total) 2S/t + 0 (ft) (ft3/s) (ac-ft) (acres) (ft3/s) (ft3/s) (ft3/s) 315.00 0.00 0.000 0.615 0.00 0.00 0.00 315.50 0.24 0.328 0.696 0.00 0.24 158.77 316.00 0.38 0.687 0.741 0.00 0.38 332.76 316.50 0.48 1,066 0.778 0.00 0.48 516.58 317.00 0.56 1.464 0.815 0.00 0.56 709.35 317.50 0.63 1.881 0.851 0.00 0.63 911.00 318.00 0.70 2.316 0.888 0.00 0.70 1,121.48 318.50 0.75 2.772 0.937 0.00 0.75 1,342.32 319.00 0.81 3.253 0.987 0.00 0.81 1,575.14 319.20 0.83 3.452 1.006 0.00 0.83 1,671.63 319.50 7.37 3.758 1.035 0.00 7.37 1,826.38 320.00 29.24 4.288 1.085 0.00 29.24 2,104.81 320.50 69.55 4.842 1.129 0.00 69.55 2,412.99 321.00 107.99 5.418 1.174 0.00 107.99 2,730.09 321.50 153.78 6.016 1.218 0.00 153.78 3,065.31 322.00 205.67 6.636 1.263 0.00 205.67 3,417.40 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bottom.ppc Center 9/17/2010 27 Siemon Company Drive Suite 200 W - Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page.1 of 6 Pond Routing Calculations Subsection: Level Pool Pond Routing Summary Return Event: 1 years Label: PO-1 (IN) Storm Event: Novartis-Holly Springs 1 year Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Elevation (Water Surface, 315 00 ft . Initial) Volume (Initial) 0.000 ac-ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 0.050 hours Inflow/Outflow Hydrograph Summary Flow (Peak In) 30.87 ft3/s Time to Peak (Flow, In) 12.200 hours. Flow (Peak Outlet) 0.74 ft3/s Time to Peak (Flow, Outlet) 24.100 hours Elevation (Water Surface, 318 38 ft . Peak) Volume (Peak) 2.662 ac-ft M B l ft ass a ance (ac- ) Volume (Initial) 0.000 ac-ft Volume (Total Inflow) 3.398 ac-ft Volume (Total Infiltration) 0.000 ac-ft Volume (Total Outlet Outflow) 1.502 ac-ft Volume (Retained) 1.893 ac-ft Volume (Unrouted) -0.003 ac-ft Error (Mass Balance) 0.1 % BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Bottom.ppc Center [08.11.01.511 9/17/2010 27 Siemon Company Drive Suite 200 W Page 2 of 6 Watertown, CT 06795 USA +1-203-755-1666 Pond Routing Calculations Subsection: Pond Routed Hydrograph (total out) Return Event: 1 years Label: PO-1 (OUT) Storm Event: Novartis-Holly Springs 1 year Peak Discharge 0.74 ft3/s Time to Peak 24.100 hours Hydrograph Volume 1.502 ac-ft HYDROGRAPH ORDINATES (ft3/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row. Time Flow Flow Flow Flow Flow (hours) (ft3/S) (ft3/S) (ft3/5) (ft3/5) (ft3/S) is 9.350 0.00 0.00 0.00 0.00 0.00 9.600 0.00 0.00 0.00 0.00 0.00 9.850 0.00 0.01 0.01 0.01 0.01 10.100 0.01 0.01 0.01 0.01 0.01 10.350 0.01 0.01 0.02 0.02 0.02 10.600 0.02 0.02 0.02 0.02 0.03 10.850 0.03 0.03 0.03 0.04 0.04 11.100 0.04 0.04 0.05 0.05 0.05 11.350 0.06 0.06 0.07 0.07 0.08 11.600 0.08 0.09 0.10 0.11 0.12 11.850 0.14 0.17 0.20 0.24 0.27 12.100 0.31 0.36 0.39 0.43 0.46 12.350 0.49 0.51 0.53 0.55 0.56 12.600 0.58 0.59 0.60 0.60 0.61 12.850 0.62 0.62 0.63 0.63 0.64 13.100 0.64 0.64 0.65 0.65 0.65 13.350 0.65 0.66 0.66 0.66 0.66 13.600 0.67 0.67 0.67 0.67 0.67 13.850 0.67 0.68 0.68 0.68 0.68 14.100 0.68 0.68 0.68 0.69 0.69 14.350 0.69 0.69 0.69 0.69 0.69 14.600 0.69 0.69 0.69 0.70 0.70 14.850 0.70 0.70 0.70 0.70 0.70 15,100 0.70 0.70 0.70 0.70 0.70 15.350 0.70 0.71 0.71 0.71 0.71 15.600 0.71 0.71 0.71 0.71 0.71 15.850 0.71 0.71 0.71 0.71 0.71 16.100 0.71 0.71 0.71 0.72 0.72 16.350 0.72 0.72 0.72 0.72 0.72 16.600 0.72 0.72 0.72 0.72 0.72 16.850 0.72 . 0.72 0.72 0.72 0.72 17.100 0.72 0.72 0.72 0.72 0.72 17.350 0.72 0.72 0.72 0.73 0.73 17.600 0.73 0.73 0.73 0.73 0.73 17.850 0.73 0.73 0.73 0.73 0.73 18.100 0.73 0.73 0.73 0.73 0.73 18.350 0.73 0.73 0.73 0.73 0.73 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution 0 Bottom.ppc Center 9/17/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V81 [08.11.01.51] Page 3 of 6 • Pond Routing Calculations Subsection: Pond Routed Hydrograph (total out) Return Event: 1 years Label: PO-1 (OUT) Storm Event: Novartis-Holly Springs 1 year HYDROGRAPH ORDINATES (ft3/s) Output Time Increment = 0.050 hours Ti me on left re presents tim e for first val ue in each ro w. Time Flow Flow Flow Flow Flow (hours) (ft3/S) (ft3/S) (ft3/S) (ft3/5) (ft3/S) 18.600 0.73 0.73 0.73 0.73 0.73 18.850 0.73 0.73 0.73 0.73 0.73 19,100 0.73 0.73 0.73 0.73 0.73 19.350 0.73 0.73 0.73 0.73 0.73 19.600 0.74 0.74 0.74 0.74 0.74 19.850 0.74 0.74 0.74 0.74 0.74 20.100 0.74 0.74 0.74 0.74 0.74 20.350 0.74 0.74 0.74 0.74 0.74 20.600 0.74 0.74 0.74 0.74 0.74 20.850 0.74 0.74 0.74 0.74 0.74 21.100 0.74 0.74 0.74 0.74 0.74 21.350 0.74 0.74 0.74 0.74 0.74 21.600 0.74 0.74 0.74 0.74 0.74 21.850 0.74 0.74 0.74 0.74 0.74 22.100 0.74 0.74 0.74 0.74 0.74 22.350 0.74 0.74 0.74 0.74 0.74 22.600 0.74 0.74 0.74 0.74 0.74 22.850 0.74 0.74 0.74 0.74 0.74 23.100 0.74 0.74 0.74 0.74 0.74 23.350 0.74 0.74 0.74 0.74 0.74 23.600 0.74 0.74 0.74 0.74 0.74 23.850 0.74 0.74 0.74 0.74 0.74 24.100 0.74 0.74 0.74 0.74 0.74 24.350 0.74 0.74 0.74 0.74 0.74 24.600 0.74 0.74 0.74 0.74 0.74 24.850 0.74 0.74 0.74 0.74 0.74 25.100 0.74 0.73 0.73 0,73 0.73 25.350 0.73 0.73 0.73 0.73 0.73 25.600 0.73 0.73 0.73 0.73 0.73 25.850 0.73 0.73 0.73 0.73 0.73 26.100 0.73 0.73 0.73 0.73 0.73 26.350 0.73 0.73 0.72 0.72 0.72 26.600 0.72 0.72 0.72 0.72 0.72 26.850 0.72 0.72 0.72 0.72 0.72 27.100 0.72 0.72 0.72 0.72 0.72 27.350 0.72 0.72 0.72 0.72 0.72 27.600 0.72 0.72 0.72 0.71 0.71 27.850 0.71 0.71 0.71 0.71 0.71 28.100 0.71 0.71 0.71 0.71 0.71 28.350 0.71 0.71 0.71 0.71 0.71 28.600 0.71 0.71 0.71 0.71 0.71 28.850 0.71 0.71 0.71 0.71 0.70 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Bottom.ppc Center [08.11.01.51] 9/17/2010 27 Siemon Company Drive Suite 200 W Page 4 of 6 Watertown, CT 06795 USA +1-203-755-1666 yt L7-1 Pond Routing Calculations Subsection: Pond Routed Hydrograph (total out) Return Event: 1 years Label: PO-1 (OUT) Storm Event: Novartis-Holly Springs 1 year HYDROGRAPH ORDINATES (ft3/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row. Time Flow Flow Flow Flow Flow (hours) (ft3/S) (ft3/S) (ft3/S) (ft3/S) (ft3/S) • 29.100 0.70 0.70 0.70 0.70 0.70 29.350 0.70 0.70 0.70 0.70 0.70 29.600 0.70 0.70 0.70 0.70 0.70 29.850 0.70 0.70 0.70 0.70 0.70 30.100 0.70 0.70 0.70 0.70 0.70 30.350 0.70 0.69 0.69 0.69 0.69 30.600 0.69 0.69 0.69 0.69 0.69 30.850 0.69 0.69 0.69 0.69 0.69 31.100 0.69 0.69 0.69 0.69 0.69 31.350 0.69 0.69 0.69 0.69 0.69 31.600 0.68 0.68 0.68 0.68 0.68 31.850 0.68 0.68 0.68 0.68 0.68 32.100 0.68 0.68 0.68 0.68 0.68 32.350 0.68 0.68 0.68 0.68 0.68 32.600 0.68 0.68 0.68 0.68 0.67 32.850 0.67 0.67 0.67 0.67 0.67 33.100 0.67 0.67 0.67 0.67 0.67 33.350 0.67 0.67 0.67 0.67 0.67 33.600 0.67 0.67 0.67 0.67 0.67 33.850 0.67 0.67 0.67 0.66 0.66 34.100 0.66 0.66 0.66 0.66 0.66 34.350 0.66 0.66 0.66 0.66 0.66 34.600 0.66 0.66 0.66 0.66 0.66 34.850 0.66 0.66 0.66 0.66 0.66 35.100 0.66 0.66 0.66 0.65 0.65 35.350 0.65 0.65 0.65 0.65 0.65 35.600 0.65 0.65 0.65 0.65 0.65 35.850 0.65 0.65 0.65 0.65 0.65 36.100 0.65 0.65 0.65 0.65 0.65 36.350 0.65 0.65 0.65 0.64 0.64 36.600 0.64 0.64 0.64 0.64 0.64 36.850 0.64 0.64 0.64 0.64 0.64 37.100 0.64 0.64 0.64 0.64 0.64 37.350 0.64 0.64 0.64 0.64 0.64 37.600 0.64 0.64 0.64 0.64 0.63 37.850 0.63 0.63 0.63 0.63 (N/A) BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution 0 Bottom.ppc Center 9/17/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 5 of 6 • PondMaker Worksheet Detailed Report: Worksheet (PO-1) - 1 PondMaker Worksheet (Routing Design) ?°.?+a??a.,p??? -- Composite Outlet Structure - 1 ? Target Rating Curve ®°® Post-Development 1 ®? Post-Development 2 Post-Development 10 --- Post-Development 100 BMP NOVARTIS POND 2010 @ 315 Pond Bentley Systems, Inc. Haestad Methods Solution Bottom.ppc Center 9/17/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Design Scenario Design Target Peak Computed Computed Return Outflow Peak Outflow Peak Outflow Event (ft3/s) (ft3/s) vs. Target (ft3/5) Post-Development 1 1 6.56 0.74 -5.82 Post-Development 2 2 19.89 2.60 -17.29 Post-Development 10 10 64.20 29.76 -34.44 Post-Development 100 100 158.43 101.75 -56.68 Computed Computed Routing Outlet Computed Freeboard Maximum Volume Outflow Structure Max Water Depth Storage Outflow Volume vs. Elevation (ft) (ac-ft) (ac-ft) Target (ft) (ac-ft) 1.502 0.277 Composite Outlet 18.38 3 62 2 662 Structure - 1 . . 2.400 -0.169 Composite Outlet 319.28 -2 72 3 534 Structure - 1 . . 6.096 -0.461 Composite Outlet 320.01 1 99 4 295 Structure - 1 . . 12.414 -2.479 Composite Outlet 320 92 1 08 5 323 Structure - 1 . . . (ac-ft) C O t6 N W u L v7 c 0 a Target Outflow Volume 1.226 2.569 6.557 14.893 -,roo .?-.?- ,as°- ca.m-- m-?r m-- PondMaker Routing Design 321.00 °°---------°-°°--°--°--e° °°°es°°°°-=--f}-°----°°-°-° 320.00 ? ? 319.00 318.00 317.00 316.00 315.00 0.00 21.00 42.00 63.00 84100 105.00 126.00 147.00 168.00 189.00 Flow (ft3/s) 322.00 Bentley PondPack V8i [08.11.01.51] Page 3 of 3 • O H r- 0 a L (a v ?-. O c H (B a"J 4-J 0 - 0 ? 0 _? l.L I E E a a _o 0 0 C) I 0 0 a a I O O a a r JACOBS' C Appendix A Pre & Post Conditions Drainage Maps 0 ,'? c7 w w q p ? Q m o v, Z LLI g? CL < n C??1i Qio z ?- z {fl1 E? `? ??u? ,e p a a m 0 w z 3 W ? zY z Gil o F? o m o o s G ?? O N Jill W _ X z a m x wa O N N O?1 O ti k Z ss 00 1 tii 04, bdO , 8 0 W WC LL W 1 v illllllll z O Z O I It It 1 r • • O W O Z p5O W ¢ UI 1-3 Z O O `IY O O Q 0 x r ? jig I I W I Q ?OOOO J "-.. U m a U x ? P Z Z w g ? a ?i ? z Au° W ¢ ? F- z ° a U U wZ CL O z to a Q m O m z vi L) z = ~ W X i Y o z w >?? 3oW z o S U n ?..^ '? ° ? n O O O N 2 ° 9°9 o z cn c7 o ? m ? z X I W U N N b o SS I c7?? bd 0 ° W WK 4 W 1 1 1 2 611111111- I ° FO 0 z S I It It I n z O Z O VI K y Z U ° O N > O W K FTT Q • 0 Appendix B Vegetative Soils Map 1] - " "1 OW09 W01 aid 03SM38 f' a C c 1 ? I \ f GM-499 (616) XD.1 066L-k58 (616) auoyd , wsp Ae a3noaeer O L09LZ DUIIOJD gPON 'y61a/Db PD08 UIJf FZ6 1 11SL Ara A9 NMra0 dVW SISA-IVNV S-110S O m Q sIuDllnsuo0 u61sa0 MO : A9 03N'JIS30 3 w N a Cr c(ry 1nm^ N --O,? 00-9fZ : ON 37IJ VNI-10MV0 HILTON 'S'JMUdS A710H I ~ ?L . 1101 , opz'sAarna9392,1 31- rD 1 )fi d ssou?sn8 s6uijdg AlloH U Dl?l(?Q?ds 111 59 MA J NI a cq F 3 z s 0 w o 0 ?? 5 ?aE d o a cAI ? ? x aax P g a E ? k O - U ? J a a • v j x ? z k 6 W 0 q ?g?a. -F + /? z n/ Ey s ?i S E $ C \ ¢ 1 f 0 0 L z? wz o d J Y a F \ C5 3 (1) d ? Q 0' r` porn V) ., _ _ .. D . g > W DI D D, ?? J? ???? ?W M o ?a z 1llVQ5 U, r ?? ?q D? O m o?? a WN> v _ Z W O O Eil Y p Z N x aA -? U w v ON Wm (n C7 a Q z 0 Z J OpU N> o W o (n F- -F- N Z [if O O O ri z U zoo p I < w = Im. W = Q N -f W Q U¢ S W Oww = zW N Q CL Q VI ° CC CL J W =WQO WJa L'i WQOZ. w 000' J Ww 0m ON ?j W W W f/1O° 2 ¢ W o NU O W ¢ZOm Z(n F-NDI- Zn?W OF- OHS }OZnF- c N I >- IL a- o z >- Cy va owswz No-zzoo C o -- <WUXv¢t? }ooz?} ?z W=zoomw F'NViF=a 'S 0 OwwwW m W LIE 0, F< ?oZ F 2-QW I¢- 001?' z0°? U, Wo 0 w 2°? pW ,jUw?D- z0??? > W UW Wcl? W W- ¢ ZWF-Q W (!)(~j)N Z O 0 Z 3 w w z 0 N w Q a?} OWWQa?wW JN°n:2 L" ?w?OFWW- FJWQ.L.j?Q -, <Nn LE~ ox z° m 3O -Mo ¢ a Q O ° K w o z o W OF--j F}-p¢ W W W LW H Z Q?CC U?Q°zWU zF-=>W3 w??(nd o o a 0 6 UI O o W¢ S o w Q NN Na W?UO L? F- Q U7 Q'l _ = FN-='F-a0 p V)wp>=?W? N?.Qw? V1UQ0 B F Owo Oo?Q? O°wZa KQ U¢?woUJ U JO Z Iw-O V) i KD Q 1 WF-'Z;,- WOOOQN w°¢W W=OZa WNW Nzw V) WW°QQ W Wn Wwz?p W NwZV1 W NWQZN E z J Z J Z K ? z~ dW H 3 wow W Q FD O w(f) Q¢ N Q Q F- W Z¢ N N} U W W °V, W =?O Q jWr«m E O ?zm WO? N -3O=0NHV) Q Q?J ww } w ¢ W w J m ? & Q ? of ? (n (n O V) F- F-- F- Q (n z z Z z (Y W W W W 3 O ? > > :?E _ O = Q Q Q Q O O LL A LL 6- L, A A U O N W W W W (n (n Z t w a- ? 0f ? a, w a- n- o ? O -jo o o 0 0 o O O .J Z N U U U U Z V) ? t1 c z fw- F- F- w I w - F- w I w w - F - o ~ ¢ Q Q Q Q Q Q w ~ m of bi of m F- of m 0 x w w w w w = w w W z :2 J O O O O O U p p ( W .J V7 :2 2 :5 :5 2 (n :E :2 (n \ w J < z Z Z Z z z Z Z < \ ¢ n Q Q Q Q Q Q Q Q Q Z j p O O p p p p p S J Q O O O } } O O O ? O Q Q Q Q Q Q Q Q O cl) Q ::E :?i > :i m C2 w m NM U ONO, N Cf Q^ O T I cn Q :2 :2 13f R9 2002 BO:BO:E1 Lj Sap and 6ap'2C3009EZ\MJed ssau[6n8 S6U[JOS A[IUH 00-9EAS13aC0Jd 092 - TOZ\ i far Aq ZUOZ 7t'9Z:ft (T yap and 6M04070o9f2\M ed ssaussng sfiu[y05 AEp 00-9f2\57oafoad 052 - f02\ y i RET-6-0*1 : • Appendix C Pond Modifications • U ----------------------------- ? • i - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - J r-------------------------------------------------------------------------------I I x v w q v w a I I I L O Q 0 o m Z Z (n 2 D CF) I z > ?? a M gl ?- W U ?I N O ?I I ? ? I I n pig `s I x a I I I I I _ L L I .I I L I I ? ? ? I I ? ? I I ? I I I I? I >r I I I I I g I = I I ? I I I I I I I ? ? I I I I a § I I I I ? y Z k lzgyl I Z I I I I I I I a I ? I L g I I ? I I I I ? ? I J F I I I I I 8 ^o S _ o m g n o n 'MWAONR MUar®rJVNMMuNdEa30Nnui=Llnoou ANMM031VaOd comao 031f1311ON b)ONVUVd MaO3a7HMNI0um a003on00aBa31 ION )1) 33Hn*w NIaag3131M oamm ONUM NOUVWa0m Try 00 masHl 0a"SuRa S1"EImaw SQM waWnam 3U lvw 3HI OL min103a30m 9 OW MAON 40 NOLLVWa0IN MVI3WU NVINOJ IMMIO0p sm ° n r n q m I L - - - - - - - - - - - - - - - - - - - - -- - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- i • • P Alf ( ?! I r Appendix D Full Size Drawings is • ~ t7 ~ w A ~ 0 ~ N m o W ~ cr- ~~m J W~ ~b 4~ a~~ w o cry ~Z maw a wv °m ~ ~ uz r.az ~ Z c~ ~ ZED LA z < ill a U® C3~ o Q N Zd OJ ~ O Q Q W W ~Vi ®Nm ~ QOQ v PaL~ ~ Z ~ O® Z ® ~ ~ ,-1 ~j ~ ~ D O N F- ~ ~ ~ W 0. Li deg C9 ~ u W N C3 v U ® Q Z N ~ Z ~ ~ ~ Q Q N G N W 2; C; o~ ~ W L O Lam Cl_ U S ~ o ~ N a = ~ o. ~ W CD ~WN V09= ~ a ~ ~ H z 0 :D I aC N WU O ~ ~ ® N ~ O N9 G i7~ . F- ~ ~ O N ® d O J UO N~Z ~ ~ O ~ ~ ~ ~ ~ W a ~ ~ ~ z > > uj LA 6 W a_ LLJ z O W~ O G U J I- V7 4 tLO, ~ ® O ® D ~ U ~ W ® ® C9 (W9 C7 ~ ~y,~ W LA v-- W D- J® N O ~ ~ Z a ~ 1- ®C Z E N W N O xx > ~ W Z ~ ~ ® C,.) h ~U~p ® O - CL cy o C9 = U ~il v d®W OOH d o j i" c~a p 0. ~ _ _ ~ 0 ~ F _ i ~ w p U- U ~ W _ ~ ~ y U0: O `i ~ , o ~ tnW ONW U' N O ~ ~ p, Us O _ ? ® ~ N ~ - C ~V` U'Q U) C,7 N N ? o ~ C7 N w W -g_OW ~ U, x F- ~ J ~z ~ ~ ~~~o ~ ~ o N=v ~ N ~ z LLJ N _ _ _ _ _ _ _ _ ~ g r o cy m N ~ o ~ r 2~, i ® ® J W w i ® C3 b ~ ~ rZ ~ ' ~ ~ ~ Off, W ~ ii ~ /i~ o O Q J i; ~ W i i I j ~ O N f- i C> ~ ~ 00 e~! cJ rn M ~ ~ ~ ` ro r,:.~ ~ { I ~ ~ , i', ~ ! r i / / ' - ' ~ / 7 ~ ~ i f69 v _ / ~ .r iii ' . , r ~ _ 619 i _ • ;i , . _ _ ~ . - . , _ ~ ~ ~ r . ri~~~ ~ i~ { J ' 0~r,i ~ a,. ~'1,. ! ~ i i, f ~ 1 ..L 77 1 f ~ / ~ ~ i ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ II . I: _ . ~ ~ _ -r ~ r . , • r....... r' j ~ ~ - _ ~ ~ r 7 ~ i ~ - r ~ ~ r 1 ~'I J~r 1 1 ~'1, 111, i ~t f ~ f':_' ~ i~'" It i ~ ~ C I Y~L~- 1 0 r~ - ~ ' i : - ~ ~ j i;l t ~~':i ,iq ~ 1 t 4, ~ r ' , ~ i ~-i, , ` co j dd z i', _ ~ , ~ i w ~ ® w j `s~ ~ i c ~ \ "w? w LL- s ~ _ <; _ _ ~ a ~ - ~ z, ~ ~..~3. i ~'i ~ 1¢ .;i~ ~ , _ ~ _'...n 1 ~ 9 r ~ ~ ~`~I 1 J- R~ W ` ~ ~ .r _ 1 ~ i !1 f, ~ 1, . - 1 ~ , ' "'II , ; ~ 1 ~ L.L. i / ~ ~ I I ~ x' ~ I ' ti,~ it;~ I t ~ i v .v I. I ~ I ~ I. P v t ~ ~ 6(0 ~ v - + •,I .I r ~ ~ .r 1. ..vii ..~.p .t....... 1 ~7~ I l i\ ~ i Lj , . , ~ i ` , i I , ` r~ ~ ~ ~-~~~~f ~ _ ~ s3 , B i t~ i i _ y,.,. ' , r I ~ r ','i i r ~ C, / ~ i v i "i ~,,Y 1 i~ i. r~ ~I~ ~ t(1 ~ it , ; I j ~ J i ~ p I J i i u + i I ~ ~ rq ~ + I~-- i ~ ~ - t _ ~ , ~i ~~'k! ~ i~~' ~ ~ ti~ i. z , i4 t,. ~ ~ ~i ~r ~ 1' Ii i ~ ~ t l.. I I / t~ ..i t ~ - - 't i i'~ ~ .6 ' j G i i ~ I i ~ V ,+.v r ~llxti '11 vii 'I' ,1 v"'~v?~ ~1. ; 1' , ~ 'i i i I v I r• ~ , ' , t ; i w ~ ra > 1' ~ r - ~ ~ ~ , - - i, f-' ' - , , 2 , 1 v t i / I .._.a,..._ . s ~ rr, _ g, ~ >X ' ` f r / i d+ ~ i~fl V ~ ~ 1 ~ / `.T-.._--~_, ~ ~-r a f„ _ ' {I t' It Pt ~ .t ; i 4 ~ ~r s~ + .t~ I . - 1'1 ~ ~ , _..r I . a ~ _ ~ r L P LJ r, ~ , ~ ~ - - - - r i s ' ~.r ' ~ .A / k~ ~ ~ ~ ( ie , ! i i _ \ i ~ ~ 4. 11 / i~. v f ~ 1'i ~ `ti 1 r' 1 ~i~ . A, i I I , , t + ,r f r ~i ' ~ 'a , 1' v w ~ r i o r t t 11 , i ~ ~ a .l~ v., ~ - ~ ~ ;i „ ~ , , , ~ / - i \ 11 ~ ~ 4 v ~ i,' , ~ \ ~ b II ~.<;_,_„c. iii _l.. ~..i . l'1 t ~ i 1 _ ~Y,. / ,I i a ~ ~ 1, + ;~a ~ ~ a`~ s fir. i. _ + e ~ ~ i _-r , ` 1. ,x ;i~ ~ tw ~ , ~ ~v. r-.. ~ d 1 , ~ , , . , ~ , ~ , f . L ~ + ~ v - . ~3~ ~r .n „ ~ ` , , - 1 - - ; r~ ~ - 1( I= ' 1 << , ~I, il~- is-'~ i ~ 4. ~ Illl s~ ' ,t 1 1 t i ~ ~ , lit , 3 l-: A 1 - `t~lY t ~ ~(kr, Q ~ I .y~ r wl1 ~ i ~ . - ~ ~ i ' 1 ~ ~ . i ~ ~ - ~ I' \ \ uj ' , i....i , . ...jry ~ r '1 Ae ~,`y, ~ ~ 1 ~ it,.~l ~ t. ,1(~ i..... >"""-0 x;11 ~ ~i _ , ~ ~ i, ~ ~ + ' r ~ N v, ~ N- ~ ..i v ' ~ ~t , f 1 ~ ~ wl ~ 6 ~ ~i ~ ~ / , M.. . t t ~''i f l (a ~;1 r' i ~ , i v...a V J _ - .l V) A y _ f ~ n t v ~ x - , „ r . 1 , I t i. ~ ~ ~ , ~ ~ ~ _ _ t~ ~ -6a, I ...,.i 11 ~ ~ ' i ' 3 ~ + ~ / ~ ~ 1 ' i 1 ~ I ~ ~ v ~v ~ r .w , ' ~ ~ ~ ~ ;1 t, „ > f . / r ~ ~ i' i r [ ~ i~ t,, , 1.~: i ~ ~ , , , 2 . / + . , 3 f" ! ~ ~ A, ~ j( ~ I I ._i 1 ~ i ~ ~ d i _ { . . - r c. + ~ LLJ _I r ~v - - ~ - - ~ , r, 6iti.[1 \ ~ `i - t ~ 'I~ ri i;~ , _ _ _ ~ r ,i - - I ~ ~ " r<~~ f ' - ~ I ' ~ e:; t ' i ~ I I + \ l ~ \ i - S . , ° _ S . _ t'~ . , \ -.mil\, ,t _ _ ~ \ .-r~ _ ~ r r A , . -z ~ tp .i ~ i'. ~ ' ~ . ~ / ~ ~ ~ ~ ^y e / ~ / ~ ai./ ~ / rr/ A~~, ; , .~AA AAA \A r r , , ~ i i u~a / i ~ ~ , 'i" , ~ ~ i l % ~i i v +'v+ ~ % ,r j % / / v / i ` i ,its i i ! ~ ~ % / / ~ ~ . ~ ~ ~ tit ~r ~ ~ r t ~ ~ / j ~ r ~ V " ! !r ~ A.i; !i / \i .i A i. pit ~ / 1, / ~I A ~ ~ j ~ ~ ~ ~ vv'` i ~ j / ~ v CL. ~ i ~ \ ' ~ 'd / ~ / j % % A. ~ Vet j \ \ / ~ j ~ ` ' , 'it a I~ V) \ e uj I I / i A A ~ / i/ ~ \ , / \ ~ %r \ \ r ` i ~ ~ t i it ~ i ~ v ~ i t~t - i/ ~ i~ i ~ t. :i~ y ~ ~1 ~ ~ Awl / `t 00 1 /fir 1 I i l/ i ~ , - i" ' ~ / ii 1 Ivy % ~ ~ ~ ~ r uj _ v i i ~ ~ ` ~ ~ _ ~ LLI DO NI CIINIVIM H M 'Sll~dnON HliM 1N~W33~Jd N3111~M SS3~dX3 ~3QNf11d3pX3 lp(1Q4~d ANb NI C]31d~Od~OpNl ~0 ~3S(1 ~810N ~0~ QNd ~l~b`d NI ~0 310HM NI ~31dOp ~0 ~3p~40~d3~ 38 lON (~7 ~3pN3t71~NOp NI ~3NId1 Id SNI`d1NOO 1N~vgnoo® SINl 013~3H1 ONild13~ NOIldW~O~NI lld ~Nd A~3~3N1 +~31N3S3~d3~ SW3ISAS ~Nb S301/~3d 'S1N3Wfi~1SNl 3H11dNl SNOIlI~NOp 3Hl 01103~9f1S ~3~3dN31 SI ~Nd SI1~dnON ~0 NOIldW~O~NI A~dl~I~dO~d SNId1N00 w W A U ~ ~ W ~ ~ ~ ~ ~ x a ~ ~ z ~ ®ro W ~ { ~ . a r ® ~ ~ o~ w g i CL z e~ ® r N W ~ a L.Lj w za ~z v < W x v 3N o~v ~ z ~v~ ~ O O J ~ O Q ® 9- o~ ~k-oo ~ v ENE S ~N ^yw ~s ~ ~U ~ M CL V) CL to v9 ~ ~v ~ W a ~ ~ ~ v - ~ ~ ~ ® fl w ^N J C W J ~ U p®~ ~ ~ Wa ~ W N ~ f- ~ p ~ Z F- ~ . s3 yy. g ~ ~ Z O O ~ fn f~ ~ U 1, ::D Llj LA i7~ Z W ~ U d ONU~~ _ ~ ® ~ O N m CL° ~ C I Z3 a~ W! v~~y~y I ® ® a W O Z ~ a Q O C~ W t- W W p.- C? ~ ~ ~ ® N Z Z ~ v~ NW N ~ O W ® ~ ~ g, > Oe ~ ca z ® CB ~ B~ U ~^;3 W ~ C,9 yC W WU' fWJ9 6W/1 O N ~ d _ O ~ O U O O ~ ~ ~ o a ~ . ~ J ~ ~ ~ ~ a o.. ~ ~ Q i~ ^1*t W U ~ O O ~ ~ p p ~ to ~ c ~ y. ® ® ~ a o a o. ~ ~ _ 001 V) 0 ~ N O O C2 ~ ~iT Ca ~ ~ ~ I- g~ 0 Z W ~ O ri.l O O - ~ N fn ZOD 07v > Col- <0 e~ gWyp ~ ~ 0.° m s ~ a ~ ~ ; I, ~ ~ Z F- -p N l p ~ ~ ~L ' i ~A CL'C9 ~ ~ ~ \ a 0~ W ~ U~ W t9 ~ s W ~*J 9 I F_l W ~ O W N ~ p a J it ; L;j e 1 O O O O 4 N I, >r, H _ O ~ G7 Q. $ U W r I, ~I I v ; p O ~ r_~ i _ I /i W E~ ®m ~q i, 1. C3 U' tJ~ I- W ~~I ~,,..,r gym,-, ~ ! ~4, J -J ~ ~ ~ ,y elf; ~ l~ W z ~ ~ - ¢ a m ~ p ~___,I _.I ~ ~ ~~v~Jn.~ I- ~z-w0'~ w H ® ~~UNat~az Q Z r tV ~ I r / % i r / i' I r ~I h lit ~ %;i , ~ ` r 1 ~ ~ ` ~ ` \ ~ ' I _ r / / / / i r 7 I ~ I I r ~ r . s~/ / r 1 r 1 'r J / A ~ , ~ ~ ~ V A \v ~ ` _ / ~ / ~ ( 1 ( ~ I jr ~I`. I'~(, ,i/r i , ~A1~.`V~ .AA `V ~ y ~A\\"`A,., ' ,f ~ , \ ~ r / , ~1 I ~ i , {r I l i 1 j i 1 . { / / :t ~ ` ~ , A A v A A `V A A V A V A .v A . ~ ~ 1'~..~ i//; / / % l 1 i / ~ i ~ 1 j i .I r, i I i ' 1 / ~ r ~ f i i ~ ri ~ ~ ; 1 ~ , A A ~ ~ \ ~ •~:V \ V \ , , , ~ i, i 1 / r , t :i I 3 I I , , l i i i' ( / 1 I I is 1 \ \ \ r \ \ , ' / ; / ! cL , \ \ \ \ \ i i ~ \ , ` ! , / / ' ~ , ~ I { t. ~ ~ I. I. 1(- y I I r r I~ , { I ~ i t t t, i%', - ~ V ~ \ ~ A CV', \ ~VA V y\\ V %S , ~ , X; r l / I is ~ , - t r 1 ~ ' v { t ~ - 1% ~lr f~,1 ' ,t' , ~ \ \ \ \ r _ ' _ _ ~ , , , / r i ( ! ~ ' I 1 i~: 1 II J'/`r / 'Iy r ,it'1./ A ~ 'v A V .,Vt 1 \ V V A . / i~ ~ / ' A t 1 ' ~ ; I,'R ' ; i', ' ~I") I + i ~ , "/;~i, \ ~ V, Av A VA A ~w A. i r \ / i" / f t ' "t ' 11" 'ir ~ ? r ! ~11~ '~iri i 1 ' \ \V v\ ~"y.. - ~i ' / I I ~ ~ i i I 1 111 ~ ~ ( ` r r~ ( ( I i 1 ( : /i~ i/ ~ A ' '1 ` \ V ~ ~ ~ , t \ ~ ~ ~V 'y, l I i r 1 11 ~ i`~ t i ;t~~irl 3 11 ~ _ l3r / A\~ ,1 v `,,~'y ( 1 1 it \\v~,~ 7Y!'r. r v ~;j„ \ y\ _ / 3 y,t,\V1v vd lA y `v .v~~ , i `i ~ V~ A , A ,V A ~ - _ / / i l ~ A~, y~ v~ f i~ / 1 : ~ 1 i ~ I ,t AJ AV A ~,jj'i,/ ` ' i i I~i^ i , V ~ % / ~ ~ 1 ~ A~ VA \ ,A ~ V ~ i 1 I / r ' V ~ V A ~ \ LIJ 'i r` i 1 ~ I t 1~ v i 1 i ' , r i i u ~ / _ ~ . ~t°~~ / I , A' \ ~A. A A ~ \ 1 0 , r , , { { 1< ~ s ~A ~ V- ,v - A \ 1 / , , I ' , _ ~ _ - _ . _ , , 1 i i v~~,,, t, , , , yV ~ ~ , i I' i i li J i ! V ~ A - - i 1 ' v V . AVA ~ 'V ` ~ \ _ ~~-a ~ ' / ,1 „ ~..v ,,,,,F, I ~ , . ~ - - \ \ , )OJT`' ! „rQ 1.1 CIL CA CY ` --.,...a,,.,,.,,, ` yy ' , _ \l~' \ \ . 11 „ , ' ' r ' 1 I , ; y / t j 1 r , , I i _ I 1 r A i i i i t ` ~ ' ~ 1 / / ~ I 1 1, r' i ~ i , l ~Ti{... 1 ~ j r` r, j `t, ~ , ,v ~ , .v ' , ~ I 1 1 ~ I : i'~ ~ ` i . I 1 I ~ ~ _ _ . _ i ^q A A , ~ i 0/~ r 1 I li ~ ~Ir t ~'1 iiil Ir - A V r~ ~~r ~ ~ ~r i , t i 1' ` ~ ~ F i r ~ { i 1 A ,V " \ V - ,t ' ~ ~ r / , , , / 1 1 A I I \ ,t, tli `'v \1~ t i , \ ~ ,~1',~ r ~ ~ ( , ~I ~ \ l i ~ ~ 1 lf3,l;r,r,'r I ,"t 1 I ~ I / % n ~ ( , 1 , 1, i. , r , , , \ C I I' I I r, ~ ~ ~ ~,r rf ~~~('i, i', rl ~ 1 ~ ~ 1 11 i A ~ ~ i i f t t , / r f r, I _ A A r % ` ` 1.. i n, i I ~ \ r . 1 ir/ / / j l i i 1 ( I , i'~ I' In I l ~ / r'r~ 'V A .,V V A ~ ~ A`. , , , i / r i t 1 i A, ~ q ~ i ~ , ' ~ _ r r r . / ~ i + ~ v r` A A 't '1 / r ~ i~ / i { ~ / i ' ~ % A ~ A A A , ,V A A 'rii;''r/r / / ~ / ~ t ~ r / _ r''~ \ - \ r e - i A , / ~ \ \ r : i \ \ r , ~ i N • iA r ' , r , ~ , , , , , r \ / / , , t r 1 ' r ~ ~ , I i / 1 ~ I ' ~ `d r~ ~ F r~ ~ 1 ~ v A `v r ,rr'`/oGr' / r~f . I v ' / jr t ~ + A ,F % / , / , , , r ,r ~ ~ ~ I 1 r / / i \ V A I g I i i r ~ /r ~ NN. ' 1 , , , r "f - \ / r ~ f I { I ,mow r / s I \ \ % ~ \ , A J ! - - -///~//rii; i : i ~ ~ i \ \ j/. ~ \ \ / _..~::5.„v it / i~ { i I i r i. , I J, \ , , , r , ' _ . _ ' , I , / I I I _ _ ~ ~ , , - fi l I i d=;% . ; \ i _ f N' - ~gc I s I I / \ / / i f I, j _ i~. i - / _ - I i / y ' , - - i .,.^a;~~,..71a:,.v ^ 'i 7 -~~L~ ~ i ~ I / 't Y; I ; - - i i' ~ n I '1 rl - / r _ °~~'3,' , , , , ~ ~ , I _ _ l r . _ ~`v I I ~ - '1 r : . 1 I.1 1' - ; , , - - _ 3i_ - \ I - y '1 1 : ~ I ti~ : i - - - • I r \ I \ .l t lr \ £ _ i I ^v s4r Ii ~ y~ - .r , , f ~ - - ~ , ~ I , , „ . . , r - - . C _ _ _ .,.r. r.,,.._.._- I ~ . , , . ~s~.~... - I ~ . . ~i t , ~ , , , _ _ _ _ " \ \ , ( ; I r .,.a _..^~.a~.... , , 111 \ • • . I I , ~ ~;;;r. , , , I ~ ri / , t:,l V ~/,r lr r C.~._... _ ~~Y, r ;,r`~ 1 A 'T ` l / r, ~ ,~7 _ 7 b.;,' , , , t t \ , , r I , > , r U ,r, , I l , r I .."^..;:a:..c.:'_....r r/ U,' T r `I •I __g .1'1 ~•,t '•1+'i '+t`} 1~t 'It ~,t 't /,tt` 'i 1 , ' ' r l I T .:{1" a 'ta" I ,n \,I t v' ' r . rm - - 1\~ J , Yi , s.. '7 i' ~t 4~ c. y, v I. r' i l''` _ " , , ~z:• , ; 1 v ` ~z~,.~:. l , v r ; ~ , tl i - a I I I:I `t . _ 'i a r ~ i ~I :I'. , I` , `t. .f; 1 , ~t: r 4t ,f aa f: 1 e.._.: . n,:_....r. 'f / i~ 9 / f, ~m fi 'r 1 ! 1 .:.E_::: } = , t ,v., r 1 rr. ( / LI,;t,¢., ~:r i :;u..~ I i 1, j...., t~l a.„~: f a _ , I I r , , , , , , , , r ~ , , r r U , , , Y S , , 1 ~ ~ . - I ,1„ , ( ,~,x ~ ,ap ,3, 1~rfrl,.r I . , / r __~~-.....ti-.......::~.::::..~..__...":.... 1 I _ ' i i , 1rf ' r., , , , ~ ~ ' ' ' ~I , ~ , , . , { „ _ „ ti r , . t Ii . .1 . r f. I,,, , r ~ r , , jai i .i / / / ,t ,l. I r~( rr~• r4 „1 s.',r,r~ ~t {I' , ~ i' ;Irri I.t ~I ~ /J t' II .r rlllr r f• t ( ,mar, r, 1 , / - y ~ f I 1 ,I,• I j ~ i ~ / ,i 1 i 1'x111 rn •,7u rlr, 1 r"'%,`4 ;+'4•,14jar a i / V r,'s j I `~l,•,. / i ,l f „r,,r ,'j ~3n 'i r i J,-' L.., ~ '~'~il ,.,I i,' r ~iJ,',d 1 i :t,.!.Lrl. r ~~l ~ ri;r yr.~ka, r„ ~ r~ R i ~.1, r / , Ir 1 `ir , '.fr'f~, 7 l~ ,r i~ /i / 'h'; i' 't i%' i , ?'r'r r i~ r r rr „ A l~ / i ; , , ~ rr 'rf , I A'»~`, a i i it 'i('` 1, al %,1 4 riri` / / j~ ~ v. 1 r rrl ~ I' i I 7'-: 2 1 , ''//I , `t ii ~~lll• ,,3 , 1 ~ 1 f t \ r r, . F / l r i 1, t . I j i i/ JJ I ~i 'I f r 1' I I' ; i i r 'II ki'~ ' i Y x ~U, ; t.~ r `d of , r 1 il~ i , ' ' F `'v ,1 - % i rh , r h',:r<r3, ' !rr' 1, .d, I A'VV ~ 1, li ~ i\ - , 1~ , / \ - - a ,LI! Lty ~t I ~ iJ f ; r i l i ~ i \ J i ! r • - I - i r gg ; , / ' , 1 "'t 1 r,l';,rx.l d 1, I. i ~ i \ I /I. i _ . `1 r ~ ( ' ' , ; , ,1, ~r I i j ~ I~ , //i;"` / k,t~~1j 1.}. I ~.~r ; `,I, .r r~ l ! L°' A \ _ a'I % ~ i / , I / r„ i A i I i t ; + / ,I, ,~„r•.d ,L Irrrli iA, ~ ~ , / ,4' y: i I~ / Ir, , ri,ii`g 'F / d'3rRr'irf ` r4 :'r r i ~ / ~ ~ \ i ~n ' j A 1 r i /r i l r , tv Is .I~ t V ~ Y , r r r, r ~ i 'Ir'~ , ~,R i is 1 r: ~f , ~ / i r % / / y ~i" i t t_. (r 141, ~ ~ 1, / ~ , I - a i i~ v ` - a, , r , / . , r V / r' ;r~. A \ ~ , , , i i i m it 1 r tf ,l' r' ~ \ ~ li `I' Jr i.. A / 'o~'' , u l ~ •I~ 1 i i i : / i , Fir J F r, , 1 , i , r r, ~1 - / / I r 4,„ n, I 1. ,~„r t, ,III, r ij /r , / / , N, k, . f e, ~:.tr r (r,l r.~ n„ , ~ :f % I ~ ~ r / / r, ~ t ~ , t t / , , , , t ` ~ , L .I t' ~ , i , , i. i / ! , .d,', 'f r„ f ; c I. , ; S,„ r , . t r 't % i ; / % M1\ 1 ~ ~ ~ ~ ' ; ,M'• u~' 1 r~, 1 ,r f, 1 4', ~ / I ~ / r rr ' ~ \ ~ r' I' t.;. \ ~ \ ~ , , „ w . - ' f r , , . ~ „ s u. + ; tt ~t it •b r ,a•1, ; , . : ~ , i _ / i _ \ \ \ % r ~ \ , ~ f! q \ / ,!r, , ..t R i, 311., i~ ~ ,r 1 , ~ I I Y ~ _,.y- k i ! , ~ I. l4R, 11 j r.Jl ~ ~ i , , / `a~. - ~ \ I .i,- ~J f , v~`I \ i' ,v , #r , 1 i ~ ` I , 1 kN tl n , „ ~ f,q :r.3 ~ e I ~ Y.. ~kk ~ i 1'1'~.~ °\i\i 's. - i ~ / r I 1...1 r r r ~I. ~ r. A yv / / l ~r~'- v i~,t',.i 1 ~ ~ C'-. . I';,v`~ ~y < i / ~i i ~ / curl,?'r, 1~ I i~ ,r. S' <~„WY` : i 3 / ~ 1 ? ..L`... .al,l, J, I. ~ - , r.. r - , , ' i/ ` ~ f i , y ,4 - t. O` / i , 7 I \ i . 1 y y / 1, I,li I~ :1 wy i ' _ t r w , r , I / .r , 2r-' Lr t l l f i It to i ~ ` ~ / f` \ \ % 1 ~ ~ . , f„r ~ ~r w ~ sw...~....,..,. p / , / \ f I ~ I f 11 ~ A 1 1 I 1 . I r ~ ....r....._ _ . "^..,:,..,,m.,~:..-.. / I G ~ ' \ r q71, ~ ,•,l. c ,..,..1 ~za.......... 3 , i / \~1'', `',iil' \ ~'"~,P ^~..,.~v A. \ !i I , , I ~ ~ 1 t. III \ ti,.. / , I ' ln. ~ J'l, u „ I, ~ ! , i~ / ~4 /i d,a',„~, V \ 'J1 'r y ~V", i ! 1~ ~v ,t t f A i / ~ , , , _ / j w , ; _s- , , 1 ^ I _.,;l1, I F t„ : r`/ ~ / A / A , r 1 ! itl'i~. aei , ~ r. ~ ,.1 : I ~ r t ' i ti i , , ~ n i .I. -r: - , r r i f",\ /r~rl ' , ~ t t , ~ .n., i t ~V` _ ('1 , ~~A 1 i ~ a r, i , , ii \ L.t_ f • i i. } .,,Y _ n l it , I. 1. I I~~ / !rl • ; ~ i f.n- ~ , _~..t . I~..A... i ~ , , 1 I . 1 / _ . I . . r~ , _..,„„M \ ~ t i . a:y~ 1 ~i r. I 1 ~ A ` I , i.l ` V' !f _ I i , , . , I < r , c. 1 00' LU t ~ i , .i I ~ , , ~ a-~ ~ . - - , , t _ .a.. _ ~ , ~ _ :a'~^I ,V '1, ,I Fv t_ '-i t i. _?'i .~J.~yO~ ~r~•. i0/ r ~ .7., < _ 1 , y ) ~ _ ~ t. ~ , , / i . ` _ I ~ ~ fI i Q( A / ii. , \ \ "R,. , , \ ~9 1 r ~ ~ , ,e _ - - - - - I ` _ _ ,.r 91 1 " ~ I 1 1 .f L v ' ~ ~ , ~ ~ `'4V ,;Ifij;;;, 1, ,/1 I 1 t 1 r _ i - i ~ ' I : 7% I . i 1~, / ~ J_._,,,_.... _ ,i ~ %":1.,,.. l1 ' l".: ~l l ~ 11 ~ \\t r ~r_..~~._~~. ~ ~~Pr r , ~ ~ / i t ~'l pf 1 _ _ _ ~ t , 1 ~ ~.1 ~ 1 ' ~ „ ® _ 5 \ A`,A~ f/ 11 l ' / ~ r , , , r ~ ,'.a,,,da;d, - ~ yi _ ® i_. -r_I -T_' r 1 .1 ~1~ {3. I I` f,' , r , . _ _ _ _ _ _ _ , , n ~ , , i i j i ~ ~i'-' _-~r,r i \ j I"~ i I , \p, r f j r , r % ~ i ,r ) \ , , , I r:,l/ t / i.,n aa~)~ ~i -mil ~ i ( r ,Y - . I t l ~ r ' i ~r~ ; ~ i? - ' ;x. ` , ~ : r 1 , t r'. / it / 1 t' : f i~~ r -_r , , . ; , a t i i r / F ,r,l. I ' ' i jl t~ ~~ii : I ,._._.r C ! , _ _ i, , 1 , ~ ri I / \ , ~ . I I , ~ I ~ _ n r _ r i ~ I t ~ _ I ~ J _ r _ 1 i i I ;t! tic ~ I . t~ , : ,r ~ / ~ I ; r ~ ' " - rn,._ . ~.>;..._r..~ I i - , .r . ,l 7~ ti „R ~I a ll ~ 1 1 f, , A, ~ L,'Y , is r r, i _~c. .Il. ~ I II ~I,~ ypA j:... '~i 'i 1 , , `,r _ . ` , r ^ . ~ . , n~ . . _ I ~ I , ; it ~ r , _ _ _ . , . , , ~ ~ .;.01119 3 nl v,,..__.-.. _ _ _ - r r ~,y , \ ' 1,(.fis r'1 / 'i ~ , I \ \ ~ I~(I ~l j I, r - 1 ~ I,,I, ~ ~x tip: , 2I _~...I'C\ I III l,,,'r~~i,;'r yaia:~...'_._."".::..; ~~ri~\, R f ~ r ,I ,171 , / \.~1~,~ w,..~ 4___ ~ ~'Cw:. , r 1,~,n , ,I, I bp{ 7 _,.a,.... A ~ 1 -p . _ / ~ ~t~Iq I ~ I '~-c ,.a.,x, , , V ~ I i ~ ~ I, ~ ~ ! , I i ;li, ff.rn P,, , ~ ~ ` . 4 I ~ ~ V / i' V '1 'tla„_ I I i ``I ( I ~ ~c,y`~~^-. A ~ r , rl it ! P 1 li •1. 1' i ~ Vii,.:' / I I ~I IiV ~ , , i r- ~ \ \ , V ,tit V br,. i I,.I ' 41 r`!q'~ a 1'~J" ~ f'~;'~ ~ ^ i~ I r ~,u. ~ ~ ~ l._...._ l ~ ~r1 i I ~ 1~ ~ i _ r t, \ ~ r~Jl .l ~,~V //r /~ti. r i i___j it I `~~~V A j I I Ir A~ ,r ~ r !1 \ ~ / \ I'll; - ,'<~.,I a ~ j I I dl - .I A / .AI .w I I A,~`-~,_..~~ , 11 ; y ~ y "i` r~~' ; ~r. i r, ~ , , ; ~ ,y w ; ~ I ~ ao~ 3ann~ ~ h l I v _ _ , ~ , soul dli _I,I'~I. r ;;~i,i; Je A " \ .1' ,'I i!i i, i i A ~ ~~A % L:Zrn V ~ `V ltj , °t, ,r it~'~V n?~. i ~ 171 - l it i. i r I i ',.VA V~" 'J i`i , ' , xl.~l ~ + I ~d, ~ , t ~"t 1 i~<''~~ ~ ' ~ i ~ ~',A~ i r l~,`,, t A V~ , :il E r ,.';~,,.1 A~,'~'` 1,r 1~ V. r=~+Ct,n ~i i ~ ~ r,A~,A C ,>~V ~ - I~ r` , , , ~ t r/g.,l fsV / ' A 1' ~l'A., 1 , r ,t' y,.!', ~i t Ii y` ~ / I j'° w - - ~ le , , ~ i. i:.l ~//1 ,!,r` ,1 l ,t 1, l l I iI ~ I rr S~' '`~"\1 \ r , a ~ i v ,Y. , ~ , ,r ~ ~ III III I 'I j, ~ ~,A;l~ r, ! u 11 ;~'t;,', 'r, ~ i , a i '-I 1 r` I + .rj-°, I 1'~,~ i r ' , V ~'~v r,'; A v i' r ,1 A tr;;v\1 _ 1, h•i 1. ._I 1 l ~ ~ ~~N011199~ i I' ~ rl` , i I' ,A'~,A' `\`~A ' V 't~ r , , , \ ~ i I n cif , , , , , Ij ~ L. t. a r r It t, ~ ~ fl Jr ® _ ® I i .I i; ~ d ,1 ~ " t V rVA.,, ~,A~,,`,. A,'.\ 1 U~, I € = v ~ \ , r y r ! ~ N- ` 1 ,A, t p r, X11 i", r, ' , I r ` , t , ~ , ~ , ~1 lCy\Vr4~ r~~; I t stir ~ 1- r ~ ~ r~l~ f~ ~~r~~ .r i I I ~ ~\ltI A ,-.j ii I t l,~l ~ ~ it t', A r,i~ I r i I , I ~ 1 ~ II ~ t , i..? ~ V 0, t , A A-_,'',...~-^.._."'~ 1 ' ~ Vr ,C I?, 9~V1`',',,'., Z \l,J °ii .?~w i '1; I,1 :li I^;'>-' I In 1 .:I , A ~i'~'t~,, 4'• 1 r , ` r `y! \ \ I:i. J ~ „I\~ i , 1 w',' r',~ i.,.,,, I I r ~ i1' : i it f ~ j ~ p'. r, ` C ~s, 1 tAt\ r / ~ ~ ;t I i Iltt i. I,a.... ,ti`~% I ,r I p ~ ~1 ~ ~ tvt~,~' / ' , , r' I ~1 v; .,gnu' vV ,ti~V I~ I ,,I I p L~~ ~ i~ i ~t,,~~~~~~ ! r I I I fi -,".?1' ~ , , , I ii` i.lt t \ \ r r„4'att 11`t;, r, I.~._ jC,,. i , ,~~t, -V ~ i 1 ' ~ Sl I ' , ~ ~ A , ~ ~ ~,9j~4,, ,,~~,l, C,,tV'VA\,, v ~ l ` I ~ i`i `7`: "Z`C: I i } ' ~r \ a1 A~~`., . `..~V ~ ~ r,_-•~ 1 , j A 1.:; ,J, /I >ti ~,p t,,,AytA ~~-r -P,Gi'''''.,.1-i Vy`~ " ~I.I It '.ni L', \r~ ";~'~V~VA ~ ~ (~i I I ~ . , , : t ! ~ ~ ` ~ ! nt/,a~~~.~ ~ 1~~ y,~, ~ ~ . , f ~ ~ ~ } t , 3 : ~ < ?r ~I ! ~1 ~ I' ~ I V ' I r' ~ A v I , ~ ~ 1 rye ~t~~`~\u;`1 ~ .::a ~ 7: k% A . i~• i~ ~ , l ~u, , n / ' - e, i , p . . t , . r ~ ' , ' _ - i _ \ , r% A ,.~i /l~' v I ,r,.i 'f ~ Al , ~ ~ l I . = ~S ~A ~11~ '~g y ~ \ v, f. ~,ah,~~ .A~~1,'O~ 'j ~A1 r r~. . y, I;t II; ~I~ ' ~'.:r r--~ i` ' ! ( 't i , A ~ i I / r p, V t r, ~ ` N`~,t`~ , t ~ 1 I ~ t' , rf i j ~I l n j I j,. A ` \ i i , s , i r' ~ I I I \ r ~ ~ i , ` A i : R tit I , ~ I i. ~ i / , ~ I ~ r ly r_..._ ~~r l\; li@ I I :~~~Vr r~.ri~, r// ~r° PF" ~Q ~ ~n~~V~ i I 1 I tr' ! ' Cs i 1 n t ; i%. h. , a. . ~p uµ r ,.r .~A, , ° I ~ I I ~ , ~ , ! , alt'' I i. rl t 1 M \ \ _ -r; 1, I\ 1`'iii `K'i'rk c~.jy~~ c~ rs _ _.I \ ® ~i Z i` 'I , ` _ , , { ~g 1 . , y r I / 1 ~ . Via, , . , , , , t ~ M 1 4 , ' ( ' , , • `~l fr, ~~V i'f1~' i ~ i, I r ^ I:. _„~ti~,"~~..,~,py\'t',A y\ i p , \ \ \ e„ i~„ ~Yn«.. ;1,.:u ~,,.r i w i I. I ,tV`1`t i :l C~` , „ w m , , • , ' \ ~ ' ~ ~ k U., ~O ' V ~ A~ °`J ~ ~ ~ I i I I I ~ ~ ~ I f I I i ~ \~`,~A, , V'~CY , 't ,~.1 ' A , ~ l'.i AA \ ou"A i ~ 1 t, , \ ~ , ~ , A I • , ~t t, I A v ~ ,l'~ ~ p`i f « \ , Y~~ ~ ~ I l 1 1 \ ~ _ 1~ ~ - rY~, A ~ i. , . A 'V ' ~ ~ ~ R~n ~ l 'I ~i ! I i- I` ~ , - t V~ f ~ t t rl ~ A \ / s t \ J 1 \ ~ i ~ , . : 4. 1!'i",~~,, ~V 1 1, .I I - / L. t l,'t`' VO I , r .,F, p, , < V~v',~ ,A. ~ ''\A' t, ~ e , ,i' I i \ p a t A t, , r . / „ ~ I \ \ \ \ V 1~~~1A`e A~V lnA Gr>...:~ ~I ~ ~ I f I~ ~ I \ ak~a~~\~ `A\\ 'j- \ SJ ' ;r I ~ \ 1 ,pi'4 i.. - i. , i , ~ 1 -I . ap .t ~ ' " ~ , Aj1~~ , 1 a,;'~,;Vpt; \ , '"ti 'V` Q~1 ~°•,y N , 'V ,l _ r.~.;.~^-.:. ~ 9 ..:1~ ~ , ' "a~~eQyy~pe e t A'!','','`, j~ \ V ~ ~ V , ; i~ A ~"-A>y _ / _ :'.z.,_ . I i --'I i. I n t , A "y t a t't, p', , , : \ r, „ • : i \ \ (i / / / ~ ~ . ;1 \'a ,~5: ~-r: ~r. , - [ '~'I - - .,It. i.... ~ rr , \ qa 2~ a,°a a a t' ~ o.,','', , u d i ~ ~ l / 1 1 r`.~ ~ i op'a~h,A~ac`~ et, I i t ~ ' , > t 1. I i i t t~'\t i i 1 ~ a1` \ ~ \ \ ..1~~ ~ ~ . . i t, ii I" 1 p ip t,, t r`~`;~~~t'i\,~\, i ..4 ~ \ , { >u `\v\4\+t \ ..r I I i. II~ r ~ ~y'P 0`p~"~ `~`\\rd\,, , p~ \ A. tA` \ , 4d, ~ '.b. ~ I 1 ~ , , !iepa, yt tt' Ur., ~ \..~'V t`~d V 1~ , b. ' V" V I { ' I; I I ~ p ' ~b ` A ap,, 1 ~ Ai , ' :A , , d ,A \ , tS@ ~ u V ~r~ ~A`~VaA`~,1 , Aye,, A~`,, A i t1 ;!,I li: i V,•. as p~."c ae pp~'\\t °a. "'~t' "i Z, , y _ IN , , ^i r ~ ` \ l ~ ~ _ j . a , { ~ t''~Y` ~';a'A~,,Ati ~ I1, I i;~ I `'A \,"p `,,,Al~;i,`,,,\,~„ 1 V ~ ~iA'1~~ ,,~\~p, tV~," 1 i9,, C~~ ~ I ;rf~ A, A pap,Aaa,5~,`~`~\~~y\\l, ~1 ''A 'y`,~ 1~1`€~q I _ll ~ ~ l C~7 Y ~ '!1'~ i ,I 0 "e`,a ,l~°'`.,,~,i~'t` \ ~'`,i , i OVA ,~A:y~ I t ~ I A ~,aJ' rp' AIt ~V; A'VA'~, , 2, ' I i `\di1' VAV~ \ V' j e ~ r 1 ~ lp,' I 40 t \ Oa~d°V \`VVVA V' G'.. , 1 V i At t „ , • _ a , r , as n + t t \~b,,„'np`V`~ ,d,. ii _ 6.,G'J- 'I" ~ \ V' A l AS~~ p ' t~ .'.Sty' i tt ~ f , 1 / r P. 1 , \ ,r , ~ w h~c~- I I ~ 1 I I ~1 "0 , , ~ \ l ~q~ ~ ly ~ ;1~~,`','r,,,,A V`POt d, A, A, .L ~ rj, 'I I I' F. :tt"',+,~"ya„~ ~r`, A ~ i r ~V11A °,\Cda'tA` ~ 1ty i.r~ Vii; I , II I ~ ill€ I ~ Y'o r~V~ `t~~":?tia,~i~ s~,,l;',r,~t + ',.~A t A r ,h, °`a tt ~ i t 't A - , ~ l' V A ~ 1 ~ r y r , r1 V ° ~ r ;,%i11' V,, r ~ i ~ ~ s - i I ® j ~ r I~ D ,1 ' ~ ~ .:r ''r''jr}j;,' A ,VV, h\a''~ , flto t`,, ~ V ~'d~ 't r er ' T,. ~I ~ I f ~I '1 S} r 'q i'I ~ r` ® I , f C ',,,,AtiVV`t 'p`a,\, ~ \ i ~ 1 ~J r ~ ~ ~ ~ I 1y r I r~ ~ ~ t~4;Xi',`y 1'1;', '\epr~\1`~"'','\1 ;i V ~ I"'=, \r i ~ ~ I t~~l:i!' 1.~1',1,".i\i, `V `~A 1 ) ~ty p~l~;A\l~~\, V ~ i~ _ ~e { I ~.~A ~`~!`~,~,,i'I,I r~'og„~'~'I~ v , , \ ~l,ll1~A,, ;~~AV 'p V \ IA p /r ~i ,i \ / ® +I li: Ir, Z . . . ~ I V r. = ~ „ : I l . t ~ ` , , , , ~ . ' ~II I , r' , , ,r ~r~ : - • I , , 1 f i,l \ , ~ l ~ I ~ , , , \ I ` `Iti ( i ~ \ , \ ne ~ v ' f ~ _ I(~ ~ f i~- y ~ , , , I _ ~ _ ~ , ,r ~ l , , ' i i ~ ' 2l qft , ,-1t i&a ,i ~ r \ _ 8 --y^ ® j a I i /~a ry ~ _ ~ ff I~. I ~~t~ I r I, , ` ~r I ' ~ r t 1',~;j,,, ,t9`.GI!I~1 I \ \ l\ _r rr,. f: I ~ 1 l j ;r i ~ - - ® i j ! r (k. _ ;:I I I l ~ ~ ! is , I i ,i ~ 1 , I ! r; ,'t1'6 lA',~1'9', , ~ I,AV I '1 ~;A / r / I _ _ e€::. 1v ' € , , \ \ \ \ i J ! i V t I Li I I r.' ,'1 ti1,~\•1' \.A ~ ~ I O ~j;./ _ r1?' !i' 17~ t t • ` ' , / 1 ! ,i 61:1„ , , ~ / I : v r .~....o 1 ,,~~"r,i~, A t ,A , ,a.~„ N tr ' i :U I'/ ~'II :s ' =l`.~ ~i ~'r ~ %I; ~ ~ ; 'fl~,\ 1 t4¢ 'rt j'` .1 \ f \ ~ ` ® G~: " ~1r ~i • l _ '''ii? i .I • ; j \ 1 1 i I € V ~t i\\ k ~ tl1 till'` , t I / r` i"' r A\ .!l ~ ~ r ~ I ~ - / i ~ , , , ` f , uy .l _ , ~ I~ ~ ' ~,t,~', \ r i i I,I a i a l ,p„ 1~ ':'T ' , ~ ~ f i' ' I I ~ I \ i 1 , . , ! - _ 1~' r , V ~V i r I , ~ 1 a , t P ,S ~ _ , , , , 1 i i I 1 '1 t C~ a,~, t , \ t 1 ' / t. i r _ ~i _ I \ \ \ ~ \ ~ / , , 4 r, ~ ~ , \ , , , , , > ; j tow ~ \ \ ' , . ' ` , V~ I ~ ~ i ~r ~ `~I{ \ u, :r, . t ~ ~ a y,~ 1. ! ~ _ _ . .r ~ ~ , , , \ ,t L'j ~ I , I . I, ~~ary~~V A A t,"t ;~'~,~~~A~ ~ l ~':Z~` I `~I' ~ r j ji r l/r ~ ,(rif _ ' _n' , t . ~ ! , , 1 l i ~ +o '~a..a ~ peA` : f \ i .gym l ~ ; / i 1V ,1 r~ i~ Il ~ I, ~ I 1 ~ _ \ l l ~ ' ~ \ ~ I A ~ 1 ~ ~ , i , y k \ \ Li % t ( \ / f _ , P \ \ ~ j ~ ' t . ~ ~ . _ , , .t I_ _ ( t a _ ~ I:.- A~~ , - a \ L J~ i r , , t I . t , _ ~,-1 - - . - - f. - ~ _ ' - - _ ; > ~ , . I ; . ~ ~ ~ , , I . - i ~ . t . ~ I v , , ~ 1 l , r ~ _ ~ I \ 1... , „ r i \ , r , , ' . , . , , , rt 1 i i ;fir, , ~ I - _ _ > V \V ~ , t , ~ 1, ' i i : i 1 i ! - ;gttr, - - j f~ \ ~I` \ \ , I I ( j r ~ rfi~, ` r') , r t l I r. t It I - ~ ~Vr ~ ~ 1 i ~ \ ~ f i , ~ - , r , A ' I , i ~ iii % i ~ ',A V (I ~ _ , ~ _ i ~ ~ f" ~ ~ ~ ~ \ A € % s ~ ~ , I I ' I / i W, I I 1 , ` ~ , , , ; ii ! i v ~ f I j t, ~v 1 ; ti', t ' i € I ' r l 1 j c i / ~ l . ~ _ A ~ t , , , 1 I I r ~i., 1 , r % i j~, - 1 1, t ~ j ~ r ~ I i r1 - ` r h'-. 41 , i , , , , r ~ , , , / i , i l : : : : { i ' !art \ ! 7 l } t, A , ~ I : : t` 1 / , A ",r""~ L-~ / - - - ;y:~~- l r ~ 1 f~ I i~ki i ~ t • AVA'' ~ ~ ~~'r ~ ' r r t r i A\ ~ x~ ri f 1~ ~ I - ) ~ p _ i I ~1 i •I i I J I i 'I 4'Z ~ I i 1 1 I 1 ® \ ~ . , I } 1 , 74 t, , i ~x ~ 7 it i r I ,i A ~ ~ V A ~ r' ~ ,J ~ : . / ~ ,4 \ ~ ~ r r !r` :r : r t r 'V A , ~ ~ ' ~I I i 1 O % % i / ~ rj . , , , i , I ' ' , 1 _ , / ~ y i r , , , i . t i~ i , ~ A ~ ~ i ' ' , ' : , i l t' r _ / ~ ` , , ' , ' 1 , ' I a\ , \ , , ` ~ 1 , I v v , ~ ~ v ~ ~ ~ 1 - , , , t ~ , I \ r s , J ''r l 1 ' r t k , ..P; f ` ~ .'r r a ~'tV ~ ' \ , r. , l ~ v \ \ ~ \ \ 1\ r % ~ , i I t , r l \ \ \ _ V _ . r •~V i \ I i i ~ it ~ a \ ~ , 1 `<i / i I ~5 ` 'p ~ t i \ \ 1i •~,y,:'n~ v I ~ V l I~ l ~~l I A,' ! i _ i ~ \ r t A r ~ I lti i fh ~ 1 l , ~ , I /y l ~ A i f ~ V ~ 1 I / j A ~ i t /r 1 % , ' , ~ r ~ ~ V ~r ~ ! , ; ~ A rrV . ~ C;" 7 , ~ , ~V , ~ / i L t r, r ~ I 1 A i ! ~ r~ / I f i % i ~ ~ t ~ ~ ~V `V , , j I ~ l t I I ~I y a~.. ~ v v ..t A 'v ~ ~ y 'ti t ~ ~ V 1 f \ , 1 ~ i i ~ \ ~ V ~ tV A ~ I , i l / / At 'i ~ , ~ V 't ~ ~ ~ A r I \ LLJ 1 ~`''VA\ \AVAVA \ J i ~ l l V A S r~ t r, l I i V a , i \ \ / ( I I \ \ \ 1 , rt 1<°_ y~ A ` ~ ~ : I , i~ j i I f ~ ~ .,fir . ~ ~ r I I ~ ~ t lr \ ~ ~r ~1 ' l~' p ~t I I r i A / ~ r~ i~ ! r I i rr , l c.._~ A ~ I , / r ~ A, \ i ~ r ! i i I t ~ ~ i ~ 1 ~i ~ I ~ ~l I t A i / A , , ~ 1 / ~ t 1 ~ ~ ~ i ~ 1 , ` i i r i r3 1 \ U) , r 1 r ~ I A ~ / ' I i r I I \ , ~ 't ( i / ' ;3 i I I I A _ ~ .%~"0` ~ J~, i y ~ + i 1 1 ~I ( ~i' r ~ , _ : Ii / i i ~I Tc, i l i 11 ( \ r ~ i r I h i r I t 1, 1 l I 1~ V ~ ~ A. V I t~ , i \T ~ i ~ ~ 1 w l I l l ~ ~ i ~ 1 : ; , I ~ , y ` , I ~ 1 ~ ' ~ ' V ~ ! i ~ I , r 1 r r r i I I, I! I I I i~; 1 I i r t l \ / i , ~ I \ ` ` - , \ . . ~ I I , ~ , 1, ~ Ir - ~ i J r ; . I ~ j a i I /-_..r,r r t I i l l I t ~ ~ ~ ~r 't :i: ~ i ~ _ , r I ~ ' I \ l 1 ~ ~ I ~'r ~ i ~ i ( `V 11'' i' ! ~ V it ~tv ~ j~ ~ r , 'i r i ~ ~ i~ 1 1 r I ~ I, I ! I, i r t~ , i ~ti 1 1 1 I I / y., r ~I ~ f ~ r l 1 :1 r l ` . I \ r r l ! 1 ~ ~X r~ ~ % ,1 i ~I I i ` 1 i ~ 00 i l 1 ~I I~ Ir ~i , r i I i t 'rs t, , i i ~ I i rj r~. ~ V I ' , V ~ l ~ \ I i I 't l V ~ r `I j ~ ~ ~ i t i , A i' ~ y •f ! i ~ V ~ / 1 ~ / I ~I 1 I V I ~ 1 A ~ ~ / i' ~'V A rl 1 I ~ I 1•I,'1 ~ / r` i I l ' ~ ;1 r .1 ' \ , • LLI k I , ~ ~ r t r. .i \ _ i _ I~ 1 LL! ' nfl dd3d 39 lON (9~ ~30N3013N0~ NI ~3N NI ~0 ®3S(139 lON (0~ ONd ~lddd NI d0 310HM NI ®31d~0 d0 fl30 0 ~NO3 NI aINIVI:l Ig (VI W33dOd N3llldl~ SS3~dX3 ~3aNfl 1430X3 lOfl®Odd ANd NI a3lddOdd00 Slldd~ON HlIM 1N3 Q3~3aN31 SI aNd Slld`dAON d0 NOIlbWdO~NI ~dd131~dOdd SNI`d1NC Odd SNI`d1NOD 1N3Wtl:DOa SIHI W31 AS ~Nd S301A3fl S1N3W(1d1SNl 3H11dHl SNOIlI4N00 3Hl Ol 103~efiS 13d3H1 JNildl~~ N011`dW~03N1 lld aNb` 1~93d3H1 ~31N3S3~d3d S S 0 w ~ ~ ~ ~ n d r~ z kND ALL INFORMATION RELATING THERETO ~ THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF NOVARTIS AND IS TENDERED SUBJECT TO THE CONDITIONS THAT THE INSTRUMENTS, DEVICES AND SYSTEMS REPRESENTED THEREBY AND All INFO Ln ~ W ~ ® IN RP RATED IN ANY PRODUCT EXCEPT UNDER EXPRESS WRITTEN AGREEI ?ITTEN AGREEMENT WITH NOVARTIS. ~A~ BE RETAINED IN CONFIDENCE, (B} NOT BE REPRODUCED OR COPIED IN WHOLE OR IN PART, AND ~C) NOT BE USED OR CO 0 J ® cn o cn to ~ c,d ® ••Dp~ .O ~ ® A Z ® D ~z A Q n 0 A ~ o p~~ r+ ~ r+ -t < ITI OD ~ z ~ j O O® O m ~N~ O O DD J 01 ~ ~m~-o z o3~ ~ n C) C7 (1 p z ~ rn II'rt O O®® O _ z m ~ r Z Z Z Z Z zmz-nm 6'-4" (A (A (n (n (A < p o r ~ ~ ~ ~ ~ ~ SEE TYPICAL n r o to ~ ~ ;p ~ ~ POND RISER DETAIL ~ ~ -o m 5'-0" 8" 00 m C C C C C mcn ~ O O O ® O ° ~=m vn~ ~ ® ° z ~ p mzz ;p Z Z Z Z Z~ m~ g~ c~ z~ c~D ~v C g 7p to N U9 (A (A ~ c r N~ -I -I -I -I e -c ~ w ~ cp D D D A D to - -I -I -I -I -I ~ I 0 C C C C C t~ (n (A (A Z (~1 nM w \ 0 X m I~ r o N m~ n ~ ~ ~ ~ rn ° • a) cn W I ctDc ~ ~r m m ~Z ~ Z i I -tv D ~ m ~ N~ • D ~ ~ r~ ~ ~ II ~ N P O_~ ® NO ~ Z 'Z r i I.(~ C/) I - it ~ ~ o frl o z s 7D o z p ° -D o ~ ~ ~ ~ m ~ Z 51 Z ao n p p a ~ ~ a ~ ~ r r ® ~ 3 I- mnm~m;m~m~=m ?N 6 " 2'-3 1 /2" v ~ rn Le 2'-3 1/2- m rn s ~ rnvmo z D A D -0 mvm~ rn %0 p~pm J < ~N ~ f41 D~ r=rr ® rm ~'=~'z c im ~o~~ ~ =v= o _ =m cnotn, z ~z pcv z < m-~ n < p~ D~~~ < W i-@ wo m ~ ~ m m wX wo vn r ~p~ ~-~pZn r r ~ NOX O ~ ~ omprn ~ j b ~ D w~ o n z J ~ ~ 'I m co m z cn n m ~ c~ o o cn o m I z I z S _ . . _ _ - - 6Yd - - I r Q rn m m I I ~ m 2" , CLR. .p SEE TYPICAL POND RISER DETAIL ^ • ~1 x:. P A.. w I ` A t VJ I ' I .•P ,J ® m n Z ;w 'p R'1 G7 to ~ O . % I n ~ Z : m'0.. N ~ o l - `A• i.A p r A ~ _ ® „P s ~ Q fD .,4 I~ e `AK wl O 0 O~ ~ cn 09 PD o fTt P a'• 'A N O z mrr s I I Z y r m o ~ rn ~ w#~ . D ~ ~ ,w. ~ v ;p NO ~ ~ ~ Z in m ' ^ ' II ~ •P ~ 1'1 Z ~ ~ ~ ~•a . ,A^,yap^N N I• v , • PK - A o O ~ z m '^'A' ?A 2 AI 7C Vl ~ n ~ ~ ~ ^A D I ~ to ~ ~ ~ s 9" ~ m ffi m< m m n ~ t,a O ® ~ oz v0 um D w ~ m Z ~ ~ ~ p wo w`-~ w w0 oz o oX Z v~ ~ ® w N b v m -0 1 = N 0o Dr L mci 0° v~ vm~ n rn ~ ~ <v jo~rn0 om SEE TYPICAL POND RISER DETAIL m :c zz z l> z 2 z 0 m N m "ri ITI Ri 7_ m I° -r, I I C7 r N N p D m A I~ U) Z ~ ~ ~ i r D D ~ D m D m I I ~ ~ ~ - J r Z NO ~ ~r ~ =Z r (A II °o w II O ~ I° CD a J ~A ~ o I ° I° ~ = o a s ~1 0 a N rn OD a n v v ~ I z~ ~ D r J 2 I i° ~ o rn s ~ ~ ~ Z N = Z D a O ~ inn v in-° z~ nW w 0 m O G7 zD n v rn O r J O~N z r m n ~ g m WO w- w w0 Oz ~ o ox oc W~ w N b m w~ o ~ -0 cn U) O= c rn ~ 0 zo n vz o 0 o 0 o 4 K w w z0 n~ vN t~' 0 cn J C 0 .A L N -D J ~T V ® N p L r~ ^ m~ Y 6 / W O m D_ O r a W @ a ;u MM u Z ?s < < <n - 55 M I° rri D v c 0 ~ m g N rn _ ;u° P tnao aO rn ? -u _ .C :t9 ~ .v ~ _ - - - _ n z°N r L ~ _ D ~ O ~ ~ r- m BY1 N Z Z C -Di~Dr D n C) ~ r D m0 CEO r D D Z -I non m r I- G7 Q < ~ ~ z o Fj) I'TI :l7 t7 p ~ °r~ z~z o \a ;u ~=w rn~~Ny° z z O-r-I~ NOA Z ~ n C Dn ~°=m z~n~rn= ~ m = D ~-Cjo-3T D C pZDD r N ~ ~'~O=iZA r ~ O ~ ~ r DCC N Q Z l~OPf~d~4~~ z o= z r D r D~ cn z G) N ~ D ~~~~•aa~a o m~ ~ m o~ -~i n p o D l J m ~ -r~ .D ~ ~ r7 C ~ D ~-r~ -I 94 > m o r -I m CO ® n m g~ ~ Noo \~mo "~D - ~W~Z ~ ~U8'~ v ao moo O -I ~ cn $r o Z 00 '0 D ~ Z ~ ~ r~ D ~ ~ p r C >~~p ~ x n c. r TI rn m m rx m~ ~ r -IAN ° 2 ~ z ~ X ~ r° w m =m-~ N = o l i t i l i i i l l ~ ' Om °p ~ lAmm O D ~ O O vvr m 'mom \ .U~ n ~ ~ ~~"i n N ~ N rn y J. l J, -I ~ or ~ A~ ~ ~ G~D~ N a ~ ~ -zim r= ~ m n N = n ~ n ~ ~1 Z m x z o 9 2 -3 ~ n o ° v ~ ~ ~ N •s cmn II D ® N N ~ ~Q J p ~ t; n n N O p rD.. ~ ~ I I 0o u o ~ ~ n ~ r ~ r -0 ~ r r r 'p ~ a a (n ~ ~ II II I Z ~ Z C7 _ Z ~ ~ ~ ~ ~ -I 7p ;A - ~ ® ® - rn I° < I° O • ® Z ~ o - o 0 Z ~ ~ Z ~ ° ~ m Z ® c C ~ ~ 1'-0 2'-0" 3'-0° 31-0" 19-6" czn rn o Cfl ~ ~ n ~ 0 ~ V) r n ~ °0 - Z D ~ GI ~l e ~ ~ ~ - w m w J O ~ - ~ ~ z x can n cn iG N ~ m N I° 1 ~ 9 m G~ ~J rn ~ ~ ~ ~ ~ -o ~ m ~ O r O J z ~ -C = m z b = v m N I ~ r~ v ° v i n o I N 0 e Z ~ n cn n r cn p D ~ o ~ ~ o o ~ O° ~ ~ ~ ~ =m S rn ® r o r r~ o v ~ z n o~ z = n CD ~ ~ ~ m ~ c~ C) o Z m I m ~z Z ~ ~ c~v ~ v ~ °m -Nai rn ~ ~ m D i0 r n r ~ CA a ~ ~ ~ ~ ~ ~ ~ x x v w w ~ v 0 Lo Lo w~ ~o Q)o ~ ~ ~Z ® -r u ~ o Z w ~ o a o ~ ~ o zQ ~ > ~ C) C) m o ~ N ~ ®c z Q ni a ~ o a ~ W ) O c~ KW ~ a o = W ,`1 00 c ~ N ° ~ m 0 ~1 e ~ o ~ J (n Z O ~ oc o ~ z o m o O~ ~ d' t `a 'd Q = U CN - a ~ F ~ Cn ~ o o O a o o ® J Ltj aC I o 01 6- C/) ae z V) to ~ w ej ~ X D U V (11 o~~ o°i, J Q W W ~ m C) ~ o 0 o II Q o(~ I m W Z a U p U V) o > W Q O N O 0 U) Z Z ~ ~ ~ •-I w NO M N O - U O J w I I ~il ~ Q= ? o U z 6- ° o I o LU w o o v o01i a O W I.- D z vwi uWi N w Fe Z LLI z ® o cu a ~ N wJ ° I ~ ~ Z a a ~ 0 0 O ° ~ ~ ® 0 z w o oa to N ¢ oC~O ~ t= a z I I ~ ~Z~ ~ a a V) Lo N _ LLJ r F° 1 J Z w p~ 3 U GOi o LLi C O ~ w O I Z a. ~ Z i ~ ~ ~ O O O \ W W O M a Q W O 40 W N JZ W O U Z ~ ~ o 0 ~ O~ N ~ I ~ wi ~ Z = ~ w o w~ ° ~ I- ~O N o Z~ o ~ p ~S ui Z O W f- o ~ Z J UI- ~ a ~ < ~ w M ~ W ° a' a' W m Z tj ~ ° to - L) 0 0~ g,; o c~ ~ Y~ m o (n ~ a°z a° w w z~ ° O w w w W 2 ~ N m Q O W V7 V w ~ L~ ~ ~ W O N ~ ~ W ® J x F N I i wZ Z~ N ~ O~ Z O W rn w 4Q O N ~ O W~ CL F O W I I wW ~ O li ~WjO < U O O O y~Z ~O ~ O Z ~ N ~ o ~ go ~Z ~ ~Z ~ a ~ 3 ~ ~o w - o I 1 ° O w ~ ~nZd o F- ~ ~ X J p W Z ~ O O~ ~i n. O F- M o 0 oaO ~ axx a U' Z Q Q F ~ J JO wW W - Q m x ~NQ QO Q 40 op C7 U ww~ w ~ w W 0 ° :2 1 ° O 3 3 w ~ W H C7y W z o 0 0~~ oo~ o 0o zp p Z Z w w w g o ~a ~ a 30 ~ WZZQ z w w w wow oa. o o~n w Q.OO A' W to ~ to ~ m to v. a a w o a a W~ 0.. p V w U O N U W 2030 C..) N cV M ~ ~ t® r ~ of ~ ~ Z I"_~z- WAIF.R p, z 00 N O W~ ~ ~ ~ Z(n-W Z OOWW DU(n~ ®c~Q w 0 J a J w` - v cn ~?¢U4 - I r. - -FWD-mw=:)- o ° ° 0- ° Or 1 I~~~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ : i ~ ~ ` ~i '1 i ~ i ~ ~ I ~ I'~, ~ ~ ~ it D o 0 1 ~~1 V °~o ~ ~ ~~~I i ,,o ~ ~ ~ 1. '~;1 r ~ ~ ~ 1 1 ~ o y ~ d i ~ O O i I ~ 'i ~ ~ `I. i~ 1 i ~ I ~ ~ 0 0 0 1 O O I I i ~ ~ ~1 y S ' ~ 1 ~ N ` ~ 1 ~ I 1. 'i ~ 1 In i ~ ~ ~ ~ ~ 1 ! 1~ ~ ~ ' ~ U J U ' i i 1 a ~ ~ ' ~ ~ ~ U . ~ ' ~I ~ o y ` I ~ I ~ I 1 ~1 ~ ' as ~ i I ~ro i 1 ~ ~ ~I ~ W O r i i i i i ~ ~ I i D D 0 't, ',t > ~ i I ,I f ~ z I ~ w ~ ~ 1 ~ 1, o ~ ~ Has' ~ ` ~ Has Has ~ Has ~ ~~1 C7 fA D i ~ ~ ' P, i ; { ~ ~~--rhs-~-~~-Hbs- - - I i ~ a i i'~ ~ m5;~---rrvs-Has'r-rros i Has-nvs=-HVS-' r~s-rros-rrrs ~.1~ ~ ~ ~ 0 0 0 1 ~ Q ~ z ; ~ ; o i r, ~ I ~ ~i ~ ~/j~IJB ~ _ ~r M i ! I ~ ~ i (n ~ i I ~~i I i ~i a s i I I ` vv_ x ~i 7 i m ~ ~ ~~I ~i 1 ~ ' ~ s A', ~ ~ r 5 yy~ ~ ~ ~I i i l D o 0 0 ~ ~ / ii i ~ I ti d i I' ~ i c j 'V \ i' I ~ ~ ~ u7 ~ ~ ~ ~ ~ I ~I I ~ 0 0 0 0 0 0 do ! ~ ~ 1 I A ~,x. i ; ~ i \ i ~ t ~ ~.i ; ~ ~ f ` ~ ~ I \ 1` d ~ D o 0 0 0 i ~ ; I ~ i C I ~ ~ ~ ~ ~1 ~I ~'i f ~ i~~ ~~L a ~ ~I w i~ ~ I I ~ ~ I ti0 1~ i ~ l i, ! \ ~ l ~ ~ _ ~ ,I- o 0 o i v ~ , ~ I i o I i _ ~V 1 ~ iI I I . `V ~ t 0 ~ t ~ ~ li A ~ ~ ` \ ~ i i ~ 1 i ~ V i _ \ i i~ o , ~ ~ ~ o o ~ ~ ~ 1 I ~ ~ f 1 ~ ~ ~ ~ 0 D i ~ \ i i I ~ a , ' 1 \ J ~ ~ 'i t i Z \ 1 ° ~ + + w w ~ d ~ ~ t .J ~ i d I~, i ~ .i + + + + V ~i ` ~ 1 ~t i' ~ ; I i J i + + ~ ~ ` \ ~ ` 1 I ai i i Uf ~ i Z ~ o o ` ` t l y i 1 F ~ ~ \ ~ 'i t ~ I I a ~ + + + + y, ~ ~ A~ d ~ j ~ ~ ~ ~ ~ ~ + + + ~ \ `I ~ do I ss ''i ~ ~ ~ ! ~ + + ~ ~ ' i ; ~ f i i ~ ~ i ~ i ~ ! i ~ ~ 00 I + + + ~ ~ ~ ~ ` i i 1 t N ~ ~ A d ~ z d'N) + \ V ~ A ~ ~r0 ~I ti~' p ~ + + + y ~ ~ ~ ~ ~ i 1 I I H I ' + \ t i~ 1 ` V) i z ~ ~ \ ~ ~ i+ + ` D o A 1 d o ~ C + ~ i ~ ~ i i i, I a ~ o o \ i o ~ ~ ;i i i ( I ~ ~ V ~ i l ~ ~ ~ ~I A ~ ''V ~ A 1 ~ ~ yo Z i ~ ~ , ii , ~ i ~ ~ ~ yo ~ ~ ~ ~ ` I ~ F ~ ~i' ~ j ~ I y ~ ~ ~ \d jr F, ~ ~ ~ a ~ ~ ~ so \ W 2\!, LL- I ~ ~ ~ ~ ~ i ~ ` ~ i ~ t o i A ; o o ~ A ~ ~ ~ ~ ~ ~ i 1 d \ \ w ~ \ j `1 A s ~ 1' 'y ~ ~ I ~ ~ 1 ~ I \ A ~ ~ i ~ ~ A ~ dye ~ ° I ~ ~ I I ~ ~ i m ~ t y ~ ~ o ~ ~1 ~1 ~c l ~ ~ ~ o oy \ ~ H ~ V ~ ` A ~ ~ ~ ( ~ ~ o ~ i ~ D 0 1 i I \ Z ` \ ~ ~ ~ , c j ~ ~ A ~ w ~ v ~ '1 ~ \ ~ ; I I ~ I ~ ~ w 1 ~ ~ ~ ~ ~ r p ~ \ , 1- ~ ii ` (n F it 1 i I ~ ~ ~ ~ ~ ,i I ~ v ~ ,t 0, 'n ~ ~ ~ ~ ~ ~ " ~ , i, , a ~ \ ti ~ ~ , ( ~ \ ~ \ ~ \ 1 1 ~ 1 1 i ~ ~ ~ D ~ " 1 \ \ , ~ , ~ x ~ \ \ t \ 1 ` ~ ~ O V A ~ ` \ 1 \ ~r ~ ~ I;, , , \ ZO i I ~ 0 D A o I t A A ` A ~ ~l r V \ ~ ~'t A ~ I c ` ` ,`1 , ` ; i ~ ~ ' i ~ ~ ~ ~ D A ~ ~ t ~ ~V 'r , , ~ i,; I ~ v I r.. O ~ d. 1 ~ ~ ' ~ ~ , o ~ ~ ~ 'i w \ D D ~ ~ ~ , \ ~ ~ ~ ~ I I o \ \ ~ \ ~ ~V A ~ a I, w ~ ~ \ ~ ~ ~ ~ O ( ~ I W D 1 A ~ ~ rv W i 3 r i v v V A ,v v I it ~ ~ ~ vv ' ` ~ v V \ ~ 1 V 't 11 \ i \ ,l , ~ ~ v \ \ ~ a ~V i ~ ~f I I x r'! tp 1 ~~I ~ v ~ A ~ A i ° ~ ~ ` 0 0 ` ` { ~ ~ ~ ~ ~ ~ d' ~ ~ Q ` ~ I ' a ' ' ' ~ ~ ~ ` ~ ~ + x ; Li j y ~ V A ~ ~ ~ ' \ j O~, ~ J ~ ~ A ~ ~ ~ V ~ , ` ~ ~ ~ ~ z~ ( 't ~ A \ wij!i ~ ~ I t I ,l w~ ~ ~ 0 0 ` A ~ ( ~ j~''~ 'i ~ ALL) r r vv ~ V ~ ' V ~ 1 Z , j ( ~ v v ~V ~ ~`t 1. ~ 1 ~ i ~ ~ oH.. r ~ V v , r } \ ~ ~ i~) !i H , ~ ~ ~ ( i ' i i a 1 M `v ~ 0 0 . ~ i ~ I ~ w ~ v ~ \ ~1 I( ~ ~ ~ ~ w z , o ~ ` ~ ~ I i v ~ ~ A ~ r ~ ~ ~ I > • w Z ~v ~ 0 D ~ > i s 1 ~ 'I ~ I I w O ~ ~ \ ~ 4 u 1 V v V 1 ~ I a ~ ~i i I ~ i r' OJT ~ \ r ~ ~ ,r I ~ ~ ~O i i o ~ W v l i i r i r 'i ~V ti. V A ~ , , ~ p ~ ` [ ti i I ~ Q err i 'i i 1 r, t 1 t r, i l r ~ i ~i W 7 ~ ~ A ~r ri 'i r ~I i ~ V A 0 0 i r r r 1 flit 1`il l '`t 1,l 'l •i 'lI ,t, \ r ~ r ~ \ ~ i rr r ~ 1 ~ 1 / I a t i~ r A i i' r 1 '1 r r 'i i r i' ~ o~ ~ ~ r 0. ~ A O ~ 'v A v , r , ' r ~ r , i i r \ ~ \ \ r r i I i ~ ~ 1 i ~ r ! 1 1 r. i 1 t Z ;t O I r I- 0 v i' ~ ~ r ~ l l i ~ r 1 ~ ( j' 'I I 'I ii \ ~ ti'' \ i ~i i ~ .i ~ r r r i ~ m ~ \ I r ~.i r i i i f 1 i i d A V A II ~ {rr I j I I rr rl 1 i li t .l j t ~ ~l t ' I 'r l~ a? h ,i j, i r r i i i l 1 t t} 1 1..1. ~ ~ I ~ r f~ t .r t A r 1 r ~ 1 .r i l ~ i' ~ i~ ~ l ~ ii i I ~ ~ i j I ~ l i A \y ` I i I ~I ~ i i i t ~j t ~it i 11 tt W Qf µ ~ f I ~ ~V A~ v ~I i i r 1 ~1 ~ I 1 ~a% ~ 0 0 , ; 1 1 t l l t t 1 \ 1 } 1 } \ a~, ~ ~ ~V 'r i 1 i 'i I i I ~i / 'I \ , ~ ~ r i I i I 'i i W 'I 1 1 1 Ill ~ rr ~ ~ I I i ~j ~ i i ; it r { lr j v ~ l I i ~ I ( ~ , i ii; r , { I t i I } 1 1 1 .1 ,l j 1 j Il 1 ~ ~ / ~v y 0 D i i ' I i ~I I ~ ~i ~ l i ~ V ~ v ,.i ~ ~ ~ I 1 I ~i j 'i i I, i I i ~ } i t l t it Il t ~ t ~ ii ~ I 'v ~li 'I . i i \ i ~~I i i ~I i r' I r'r'' ~ , t i ~ . / ~ 1' ~ 0 ` I ` ' % ~ ( \ { l f AA ~ ~T ~ ~ ;1 o ' I ~y 4~ I ''I l I . I 1 I , ~ ~i i) ! i I i i i I I f ~i ~ ~s_ } 1 i y I k / i r .i O i i i I r l ~I i cf % ~ i %i ~ NQ i ~i ~I ~I 'i i ! I i / i i. Il 1 ~ r / i u i ~ I ~ it 'r1 ~ li Ji i ' ~I r i / ~ i t i i I i i / / I I I 1' ` l l 1. 1 / \ I , tt / , ~ /i ~ J A ~ r ( ' I r ~ ' ~ ~i~~ ~ ~ ~ ~ v~ _ r ~ ! j..._.. I ~ Imo. ' _ ( ,.~L., i--.- _ _ ' - _ j it ~ i ~ ~ ~ r I I i ~ I~ i r ~S 1.. ~ ~ i I - r, Li' ~ ~ ~ I b'~t i~ - ~ i , _ s~ i lffll f I ffrf' JI ~~t/ W S I ~ r i ii , 1' ~ n i I I i r i t 1, i r _ I , i r i ~ I S r'` ' I ~i W I , ~ I ~ ~ r !tf (f if1lfr' //~'!I I J ¢ ,'i O Z; ! I I i;~ l~ r J a ( , - ~ t` I _ ; i Ir , i ~ _ ~ 4. j{ ~ _ , r, i i ' . I r ~ ~ ~ / i , /_Ny~,~' ; "fir iti; , ~ rr rr ~ I I j I j i ( ~ / ~ ~ W / T,i.-~ i INS ( ~ r 7 It f w ~ I i " i / I- ~ ~-tY ~ i I 1 / / ~ i j' W~ _ F ~i ~ ~ ~ ~ J 1 j ~ I I f 1 1 ;i ~ / / i , I I i 1 ~ , 1 I i I ~ i I li Q Q Q Q Q fi j LL , ~ ~ rl,~~. - _ ~ I I i I I s , I /f I T 3. i cnl, i~ i Ir'• 1 ril ® 2 Iw MW W W! W / _ ~ x f / ~ _ - ~ j i i 'r'ti~ q _ I j ti ` ~ / i v/, - I I Z ~ j,i ~ j 1 i % i/ / Q ~ ; / i f ; ; f . / / i / / ~ , " I X / i ~ f : W r r r i " j ~ i~ I I r r r , i / r i r ~ i ~ r r , ~ ~ ~ ~ j - _ ; ~ i ~ r / - { r ~ / ~ i r r I ~ ~ ~ / ~ ~ ~ i ' ~ t / ~ % - i i ~ / I i j; / j' / ~ i i I I ~ ! ( 1 O I 1 i I i I / i ~ j Ix 1 ? U i W % j / i' f I I ii i i I~ ~ j i ! r , ~ i r' i ~ I I , = / ~ jr ® (n (!1 0 V) to / i I I I I ! - ~ / I f i ~ i i l / j' ~ ~ I~ j _ . j j 1 I ~ I ~ / i' f i i j j I I / I / i _ ~ i j 1 f i z z Z Z Z Z O O O O O O i'~ I f I ~ i ~ i ; I i r' i j - j 00 j ~ - j C i ~ ~ ~ ~ j / ~ ' i ' ` / i - - O O O O O O i / ~ ~ i ~ - ~ ~ j ~ I ~ I i i / / ~ - - \ 1 r O O O O O O , / ~ ~ { I _ i l i { i _ i i" i l ~ ~ ~ - ~ 1 _ i ® (D Q U U ® O Z ® < O O _ , . p , ~ ~ A , i ~ ~ ~ \ ~ / O O , r 'SIl~`d~ON HlIM 1N3W33~Jb' N3llIdM SS3ddX3 d34Ntl 1d30X310f100dd ~lNb' NI a31'ddOdd00Nl d0 a3Sfl 39 lON (0~ aNb ~lddd NI d0 310HM NI a31d00 d0 430(la0dd3d 39 lON (9) ~30N3flI~N00 NI a3Nlb'l~ 0 NI 43NIV13d 38 (V) 013d3H1 JNllb'13~ NOI1dWd0~Nl llb ~N'd 1~93~3H1 ~31N3S3~d3~ SW31Sl~S ~N'd S301A3~ `S1N3Wf1d1SNl 3H1 lb'Hl SNOIlIaN00 3H101103~9f1S ~3~3aN31 SI QNd Slldd~ON d0 NOIlbWdO~NI ~1dd131~dOdd SNIb'1N0011 I SNIViNOD 1N3W(1:D0a SIHI x ~ w w ~ v