Loading...
HomeMy WebLinkAbout20061376 Ver 2_Stormwater Info_20101008JACOBS Transmittal Cover Sheet Novartis Detailed Form Novartis - USFCC Project Project # 22COl130 Jacobs Field Service North America Inc. 475 Green Oaks Pkwy. Holly Springs, NC 27540 Tel: 919.577.5400 Fax: 919.577.5499 Date: 10/7/2010 Reference Number: 220, Transmitted To Transmitted By Suzanne Slotter Suzanne Slotter Jacobs Field Service North America Inc. Jacobs Field Service North America Inc. 475 Green Oaks Parkway 475 Green Oaks Parkway Holly Springs, NC 27540 Holly Springs, NC 27540 Tel: 919.577.5434 Tel: 919.577.5434 Fax: 919.577.5499 Fax: 919.577.5499 © Acknowledgement Required Package Transmitted For Novartis - Tract 2 Fitness Area Bulletin 2 Item # Qty Item Reference 0001 1.00 Track 2 Fitness Area Bulletin 2 0002 1.00 Track 2 Fitness Area Bulletin 2 Cc: Company Name Contact Name Status Delivered Via fedex Description Set Full size drawings in tube Calculation Book in box Copies Notes Notes For Record For Record Remarks Transmittal created FOR OUR RECORDS. Company not listed in Prolog. Novartis - Track 2 Fitness Area Bulletin 2 (1) set of drawings Full size and (1) Calculation book Submitted "FOR RECORD" Delivered fedex to: N.C. Division of Water Quality 2321 Crabtree Blvd. Raleigh, NC 27604 Attn: Ian McMillan D LP -13?1O V2 RP=@RGWmP nrT E 20.0 DENR - WATER QUAUTY VVETUM AND STOR14WER MWO Signature Signed Date Tracking Number Prolog Manager Printed on: 10/7/2010 Novartis Page 1 O LP - t 3? 6 v Q- 10 JACOBS Novartis Tract 2 Fitness Facility Storm water Management Report 0 JE Project Number: 22NM9901 Prepared by: Jacobs Engineering September 2010 Date:09/10/2010 Rev.:A 'V eC - w`,t pC1 - 201 d PR"V Date 9 3v,.J_1 C? Ry R9@199 WA OOT 8 2010 DEW • WATEROUAUl y WETLANDS AM STORNUTR NWO •` j IH Cgq i ? Zii? • ilk®iw yip ?« p??yyst* h~?`a?? Vfa. y.r+y3ffi ? ?4 s ' ? M M qk S w ? y R CI • Stormwater Management Report Table of Contents Calculation Description Project Narrative & Stormwater Design Executive Summary C-20 Fitness Facility Bioretention Basins C-21 Fitness Facility Parking & Courts Stormwater Detention C-22 Fitness Facility Storm Sewer Calculations C-23 Sediment Trap 11 Calculations C-24 Fitness Facility Parking & Court Outlet Protection C-25 Fitness Facility Nitrogen Export Calculations • 0 • PROJECT NARRATIVE This project will construct a fitness facility in tract 2 of the Novartis property. The construction will consist of a grass volleyball court, a paved basketball court, and a paved tennis court. A 52 car parking lot will serve the development. There will alsc be hiking and walking trails and a grassed gathering area for the employees. The facilities are sited to leave undisturbed open spaces between the parking lot and the fitness courts. Calculation C-20 addresses removal of pollutants from stormwater. Two bioretention basins are used. Stormwater flows from the paved areas at the parking lot & fitness courts are contained and directed into the bioretention basins using sheet flow. Calculation C-21 addresses stormwater detention. Current Town of Holly Springs and NCDENR regulations require that BMPs control pre and post development peak flow for the 1 yr storm event. This report contains detention design for two separate bioretention basins located in the Fitness Facility. The bioretention basins are located at the courts and the parking lot. Calculation C-22 addresses storm sewer flows. An overflow riser is used in each bioretention basin. The stormwater flow from the 10 year and 25 year storm event will be routed through these risers and discharged to grade. • Calculation C-23 involves construction of a sediment trap. The sediment trap is a temporary feature that will capture sediment during construction activities. After the drainage area vegetation has been stabilized the sediment trap will be removed. Calculation C-24 addresses outlet protection. Two outlets from the bioretention basins require this rock protection to dissipate the stormwater velocity. Calculation C-25 addresses nitrogen export. Reserved protected undisturbed open spaces are used to keep the nitrogen loading rates to acceptable standards. • • • T"r Towri or g011y Stormwater Design Executive Summary Springs TOWN OF HOLLY SPRINGS ENGINEERING DEPARTMENT nORTFt CAROLInR Project Information Project Name: Phase, if applicable: Previous Project Name if applicable: PIN: c"v-+ I-5 46 06-3 - - q2 - 2 2 Project Contact Person: Lae- W ; lr%i c,, - Novi ??- +; S 14-56 Phone Number: 9 :- , -77 - 5_1 3 `' Email: L. 15 F Wt'-.Hc, ,Aj ('-" N?,? S-0 -S , Cc, ',,A Site Information / Overview Total Site Acreage: acres Watershed Name: ? Neuse River Basin Ca a Fear River Basin Tributary Name: (Creek Name(s)) Total Site Impervious Area (Existing): 0 Total Site Impervious Area (Proposed): /ties Site Percent Impervious Area (Existing): Site Percent Impervious Area (Proposed): / Stormwater Summa Tables A. Peak Discharge Summary Peak Discharge Rate Table for Pre-Development Conditions Sttb?31T2C1 CN C Area (acres) t' (min.) Q1 (CFS) Q100 (CFS) 1. t??tt'_ Cu U !. U(o 17 ©. 12 - 2.&,1-r5 CG Q. q Z ©. I Z - 3. 4. 5. I- Total: Peak Discharge Rate Table for Post-Development Conditions Stb-&k" CN C Area (acres) t' (min.) Q1 (CFS) Qioo (CFS) 1.PA?.4 l - 1.. o(, I / 2.&_)e1b C), `'I I q ! ,3 3. 4. 5. 'I-Total: Drawdown calculations for the First Flush Volume and the 1-year storm are not required for the Preliminary Stormwater Report and Calculations. However, designer shall take note that these requirements exist and should be factored into the overall stormwater+management design. 16005 SW Ex. Summary 4.1.08 Page 1 of 5 • TM TOATI OF Dolly Stormwater Design Executive Summary Springs TOWN OF HOLLY SPRINGS ENGINEERING DEPARTMENT f1OKTK CAROLInA Method 2 (Sites with Known Impervious) Pre-Developed Nitrogen Export Summary Table Type of Land Cover Area (acres) TN Export Coefficient (Ibs/ac/yr) TN Export from Use (Ibs/yr) Existing Forestland 7, q 1.7 / 3 , 4 Existing Pasture 4.4 Existing Residential 7.5 Existing Cropland 13.6 Existing Commercial/Industrial 13 Total: 7,1 3.. Nitro en Loading Rate Ibs/ac/ r Post-Developed (after BMP reductions) Nitrogen Export Summary Table Type of Land Cover Area TN Export BMP TN Coefficient TN Export (acres) (Ibs/ac/yr) Removal from Use Rate (Ibs/yr) Permanently 0.6 Protected G Undisturbed Open Space Permanently 1.2 Protected 3 672 Managed Open Space Impervious f 5 21.2 2, 20, 7 Total: 7, c 27. 2 Nitro en Load ing Rate Ibs/ac/ r 3,-+- C. 85% Total Suspended Solids (TSS) Removal Summary Provide brief description of how 85% TSS removal is being achieved: f1'1 ?4c,_ H -.A - 16005 SW Ex. Summary 4.1.08 Page 3 of 5 T= rotor or Holly Stormwater Design Executive Summary • Springs TOWN OF HOLLY SPRINGS ENGINEERING DEPARTMENT NORTH CAROLINA D. Storm Drainage Conveyance Summary Design engineer shall complete the tables below (or attach tables containing the identical information and layout) for each storm drainage system analyzed. If site conditions require analysis beyond 25-year rainfall event (such as an arterial crossing), then designer shall include additional tables as needed. Structure Summary (10 Year Event) Structure ID Structure Type (Town Standard Rational 'C' Rainfall Intensity 110, (in/hr) Drainage Area (acres) Surface Flow In (cfs) Total Flow Out (cfs) Inv.Out (feet) Rim (feet) HGL (feet) HGL In Pipe? (Yes/No) C6 yov \) A 0-51. 6-%, %, i.0& 3 - v 3.0 U 3'ft a GUi NA v, 71 4.9 q 0.<1C 5 -0-5 -W X- -41 SJ ? s • Structure Summary (25 Year Event) Structure ID Structure Type (Town Standard #) Rational 'C' Rainfall Intensity 125' (in/h r) Drainage Area (acres) Surface Flow In (cfs) Total Flow Out (cfs) Inv.Out (feet) Rim (feet) HGL (feet) Freeboard To Rim (feet) - ?L Ntk 0 S`7 6.92 1.0& 4P35 3-31.0 3Z. 4e5 613 0'cj NA 0,71 S:&"' D. ` el 3. `I Storm Drainage Piping Summary U. S. Structure ID D. S. Structure ID Pipe Length (feet) Pipe Diam. (inches) Slope (ft/ft) U.S. Inv. (feet) D.S. Inv. (feet) Qio (cfs) Q25 (cfs) QOther (cfs) HGL1 o (feet) HGL25 (feet) Pipe Capacity Tc,1, a CB 2W M14202 ?-,3 /S ,00?, IZ 325r 3,8 4.4 - 3z.o 3a,.1 S64 2f)Z 0 iv 030 i5' 0a)0 3Z4 1pf ..3. 4.4 304-. ; 3Z4 .3S Z-0 i 0 11 9-0 12, U Wj 320. j 30. 3 4-o - 32- 2. 30--3 . v E 16005 SW Ex. Summary 4.1.08 Page 4 of 5 -i= TowTi Or Holly Stormwater Design Executive Summary '' Springs TOWN OF HOLLY SPRINGS ENGINEERING DEPARTMENT 11ORTn CAROLINA E. Individual BMP Summary • 16005 SW Ex. Summary 4.1.08 Infiltration C _ aS c O T •V 'O N ? N. V n ? C 0 E a) ° a j ? ° O C °D ? a) (E U o E ° ° a) a) E? > o ? m- Ta i F-? n n c a< a i o o h a) Q ° W-0 0CL ?Z 0) a) c: EZ o n o o` a?a z w° ) 0- > ?- U ?• IL O (acres) (Y / N) (Y / N) (cubic ft) (Y / N) (Y / N) 65 3,5- Y N Y It l rJ - erc-0 1 V % a i t?l ?/ • e? ate: Include additional BMP information if a 4 --Tb 4-5; Page 5 of 5 • • • R, 11140-61 : PROJECT USFCC CALCULATION COVER SHEET JOB NO. 22MN9901 DEPARTMENT Civil CLIENT Novartis Vaccines & Diagnostics CALC. NO. C-20 SUBJECT Fitness Facility Bioretention Basins ORIGINATOR Ed Kubrin DATE 8/26/2010 CHECKER Chuck Van Arsdale DATE 8/26/2010 PURPOSE OF ISSUANCE E NO. PAGES DESCRIPTION ORIG. DATE CDHK . DATE APRV. DATE A 5 PRELIMINARY CALCULATION Issued for Information EJK 8/10/10 B 20 Issued for Permitting EJK 8/26/10 CVA 8/26/10 COMMENTS: CALC COVER SHEETS C-20.DOC 02/19/96 ?J Calculation C-20 Bioretention Basins Table of Contents • Section Description A Courts Bioretention B Parking Lot Bioretention C Pre & Post Development Plans D References • • E Section A Courts Bioretention 0 BASIN Courts • BIORETENTION BASIN FOR FITNESS COURT AREA 1. PREDEVELOPMENT AND POST DEVELOPMENT CONDITION Existing Condition Land Cover Type Soil (HSG) CN Area (Ac) CN xArea % of site Woods (good condition) B 60 0.99 59.40 100 Proposed Condition Impervious Area Woods (fair condition) Grass B 98 0.67 65.66 67.7 B 60 0 0 0 B 61 0.32 19.52 32.3 0.99 85.18 E • 2. Volume/Surface Area Required Simple Method Rv= 0.05 +0.9 * IA NCDENR - SBMP Section 3.3.1 RV = Runoff coefficient [storm runoff (in)/storm rainfall (in)], unitless IA = Impervious fraction [impervious portion of drainage area (ac)/ drainage area (ac)], unitless. Impervious Area = Total Area = IA= 0.676767677 Rv = 0.659090909 V= 3630 * Rp * Rv * A RD= 1 A= 0.99 Acres V = 2368.6 cuft Ponding depth = 0.75 ft Surface Area Required = 3,158 sgft 0.67 acres 0.99 acres V = Volume of runoff that must be controlled f or the design storm (ft) RD = Design storm rainfall depth (in) (Typically, 1.0" or 1.5") A = Watershed area (ac) per NCDENR Section 12.3.3 I:\CIVIL\FITNESS FACILITY\BIORETENTION BASINS\ Final BioRetention Sizing Worksheet.xis Courts - 1of2 BASIN Courts • Compare Surface Area with NRCS Curve Number Method Result: Apply SCS Curve Number Method per NCDENR-SBMP Table 3-6 Runoff depth in inches = (P - 0.2 S)z /(P +0.8S) P = Precipitation (typically use 1 inch) S=1,000=CN-10 Directly Linked Impervious Area = 0.67 Acres Directly Linked Impervious CN = 98 P= 1 in S= 0.20 Runoff Depth = 0.791 inch CN for Remainder of Drainage Area < 64 therefore assume no additional runoff Qjmp = 1923.562 cuft Ponding depth = 0.75 ft Surface Area Required = 2,565 sgft Use 3,158 sqft 3,931 s ft provided Use 2,369 cuft 2,477 cuft provided • is I:\CIVIL\FITNESS FACILITY\BIORETENTION BASINS\ Final BioRetention Sizing Worksheet.xls Courts - 2of2 • Novartis Holly Springs, N.C. Bioretention Pond Calculations - Fitness Facility Courts Total Impoundment Volume PN 22MN9901 8/26/2010 END AREA MET HOD INCR ELEVATION AREA(SF) DIST (FT) AVG. AREA (SF) VOLUME (CF) VOLUME (CF) 322.5 2683 0.5 3094 1547 323 3505 1547 0.25 3718 930 323.25 3931 2477 0.75 4654 3490 324 5376 5967 1 6582 6582 325 7787 12548 TOTALS 12548 0.29 • • I:\CIVIL\FITNESS FACILITY\BIORETENTION BASINS\bioretention volume.xls Page 1 • Section B • Parking Lot Bioretention BASIN Parking • BIORETENTION BASIN FORPARKING LOT AREA 1. PREDEVELOPMENT AND POST DEVELOPMENT CONDITION Existing Condition Land Cover Type Soil (HSG) CN Area (Ac) CN xArea % of site Woods (good condition) B 60 1.06 63.60 100 Proposed Condition Impervious Area Woods (fair condition) Grass B 98 0.56 54.88 52.8 B 60 0 0 0 B 61 0.5 30.5 47.2 1.06 • • 2. Volume/Surface Area Required Simple Method Rv= 0.05 +0.9 * IA NCDENR - SBMP Section 3.3.1 RV = Runoff coefficient [storm runoff (in)/storm rainfall (in)], unitless IA = Impervious fraction [impervious portion of drainage area (ac)/ drainage area (ac)], unitless. Impervious Area = Total Area = IA= 0.528301887 Rv = 0.525471698 V= 3630 * Ro * Rv * A RD= 1 A= 1.06 Acres V= 2021.9 cuft Ponding depth = 0.75 ft Surface Area Required = 2,696 sgft 0.56 acres 1.06 acres V = Volume of runoff that must be controlled f or the design storm (ft) RD = Design storm rainfall depth (in) (Typically, 1.0" or 1.5") A = Watershed area (ac) I:\CIVIL\FITNESS FACILITY\BIORETENTION BASINS\ Final BioRetention Sizing Worksheet.xls Parking - 1of2 BASIN Parking • Compare Surface Area with NRCS Curve Number Method Result: Apply SCS Curve Number Method per NCDENR-SBMP Table 3-6 Runoff depth in inches = (P - 0.2 S)2 /(P + 0.8S) P = Precipitation (typically use 1 inch) S=1,000=CN-10 Directly Linked Impervious Area = 0.56 Acres Directly Linked Impervious CN = 98 P= 1 in S= 0.20 Runoff Depth = 0.791 inch CN for Remainder of Drainage Area < 64 therefore assume no additional runoff QiMP = 1607.753 cuft Ponding depth = 0.75 ft Surface Area Required = 2,144 sqft Use 2,696 sgft 4,513 s ft provided Use 2021.9 cuft 2,818 cuft provided • • I:\CIVIL\FITNESS FACILITY\BIORETENTION BASINS\ Final BioRetention Sizing Worksheet.xls Parking - 2of2 • Novartis Holly Springs, N.C. Bioretention Pond Calculations - Fitness Facility Parking Lot Total Impoundment Volume PN 22MN9901 8/26/2010 END AREA MET HOD INCR ELEVATION AREA(SF DIST (FT) AVG. AREA (SF VOLUME (CF) VOLUME (CF) 328.5 3004 0.5 3506 1753 329 4007 1753 0.25 4260 1065 329.25 4513 2818 0.75 5307 3980 330 6101 6798 TOTALS 6798 0.16 0 • 0 Section C Pre & Post Development Plans 0 r - I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - z u u m I a I ?? o m w °`o v I o_ m 3 0 C/) 1--1 p Z z IJ Q os' - F+ W ? Q Z -I c> s ?? ly ? y z o L ? y ? ? ass °o a u 0 ? 0 J Q Ln N z Nor C ?I z p 156 ) N a QI s _ = s s ? o z cn ? ,a L io o I o o W Yg ? B I w I- O ?6 ?o r Z' ?? ??O m? w O O O w w o m X X I J ' If Z z SS` 41) V% V b? O I I I I 0 I U !r I I I LLJ LLA IL-'j I O ,. Z U 3 0 0 o rr [If L?A I I O N I o Z I I I K O a a I RTIIIIIT I 0 Z I ? I Q o I I J I ? I I z PoI I ? I O ? O ? w o I O ? I 'S"VAON HIM 1N3W33NOV NAIIINM SS38dX3 N3OM11d30X313f100Nd ANY NI 031Y80dd'03NI 60 03Sn 39 ION (D) ONV :1NVd NI 80 3lOHM NI O31dOD NO 03JHOONd3N 3H ION (9)'3JN30HNOJ NI 03NIY13N 39 (tl) 013N3H19NIIY73N NOI1tlWN03Nl lltl ONV A83N3H1031N3S3Nd3N SW315AS ONV S3JIA30'S1N9YCN1SN13H11VH1 SNOIIIONOO3H101103F9n3O3N30N31 SI ONV S118YAON 30 NOI1VWNO1NI ANYITMONd SNIVINOOIN3Wf000 SIHI a O W z LL ? ? m a L - - - - - - - - - - - - - - - - - - - - - - - - - - - - O a N I I I a I U d Q ? ( ? O r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V ?.. ? U nl Q - O ?r Rd' Q % U= N I ?o mw ? po " ?- z I V] N Z Q - 30 0 L LLJ ? ?p 3 NY mU ? S'a0 ? c? U H of Z Z J _n m c ?° l/ e/' ?U U Q N Q oI y _. M w o 0 ~ ?oz ? - Q V7 u cr) o e w w>° w ;g a z > ?d Q wo z z n zI 66 a o o Q oIl _ w K o. LU o 9v- WH s m s w °o s^ I I ti $ e ° __ _ o& ;3 z J I I w w x I o w? n??° ?? `0 0 0 J I I ?? ? ? X z d ? I I U I W U z N 31 a N I I 0 Wo I ? 3 J W? I N o a L'i o - o o LLJ I a_ 03 CD ss?'d, I d I tii I 3,30 O I ?e0 ? II I I I I I I I I I I I I I I I I I I I I ? I I o I ? o ulj LLj a cf? I LIj I I I I z j I a U ° Z U I I I ? I I I I I I I I I I w I Q I ? I I ? I I ° O I o I T? T I I I I I O o I O I I ? I I I I I 75- O p 0 6 is ° I I SIINVAON H11M 1N3 W33MOV N3UlaM SS3Nd X3 N30NH 1d30X310f10OMd ANV NI 031VMOdN00N1 N0 03SH 3A ioN l71 (INV :1MVd NI 80 91OHM N1031A00 M0 030f100Nd3N 3910N I91 13JN3013NOD N103NIV13213A (A w 0083 HI JNIIVI3M NCIIYWN04NI IIV ONV A93N3H[ 031N3SIMd3NSW31SAS(INV SI01A30'SIN3WIINISN13H11VHI SNOI110N003HI,01103f9HS03M30N31S10NVSIIMVAONdONOI1VWN03NIANV131MdONd SNIVINODIN]NnDOCSIHL a x t ? LL U W L - - - - - - y < - - J 9 0 E 0 Section D References NCDENR Stormwater BMP Manual Chapter Revised 07-24-09 Construction Sequencing The drainage area to the cell should be stabilized before cell construction begins in order to prevent clogging. For roadways draining to the cell, the subbase course (crusher run) and the base course layer of asphalt need to be in place prior to cell construction. If fines get washed into the excavated cell, they must be removed before building the cell in. order to restore the in-situ soils permeability. It is recommended the cell media be covered with impermeable plastic during construction. 12.3.2. Step 2: Determine the Volume of Water to Treat Water Volume An individual bioretention cell is intended to treat the first flush. Section 3, Stormwater Calculations, details the volumetric calculation. Siting Issues Bioretention facilities shall not be used in areas with the following characteristics: - The seasonal high water table is less than 2 feet below the bottom of the cell. - Slopes are 20 percent or greater, unless bioretention terraces are planned. - Further construction is planned on either the immediately surrounding site or in outparcels that may drain to the bioretention site. (The upstream contributing drainage area must be completely and permanently stabilized (e.g. gravel base course driving surface (preferably paved), or a dense and vigorous vegetative cover). The heavy sediment load from a bare earth construction site will cause premature failure of a bioretention BMP.) - The cell is inaccessible for maintenance. - The cell will not comply with local landscape ordinances. Contributing Drainage Basin Consider the affect of large storms on potential erosion within the cell as well as potential overflow and downhill erosion upon water leaving the cell. The contributing area to an individual bioretention cell will typically be 5 acres or less because many large watersheds will not have an area that is large enough to serve the treatment volume while also being high enough above the water table. 12.3.3. Step 3: Determine the Surface Area and Depth Required The cell can be designed to hold the first inch of rainfall from the entire drainage area. The required surface area of the bioretention cell is equal to the required treatment volume (as calculated usinv the Simple Method) divided v the Son MR. N o dimension (width, length, or radius) can be less than 10 feet. This is to provide sufficient space for plants. Bioretention 12-12 July 2007 NCDENR Stormwater BMP Manual Chapter Revised 06-16-09 • allows the user to select from one of NOAA's numerous data stations throughout the state. Then, the user can ask for precipitation intensity and view a table that displays precipitation intensity estimates for various annual return intervals (ARIs) (1 year through 1000 years) and various storm durations (5 minutes through 60 days). The requirements of the applicable stormwater program will determine the appropriate values for ARI and storm duration. If the design is for a level spreader that is receiving runoff directly from the drainage area, then the value for I should simply be one inch per hour (more information on level spreader design in Chapter 8). 3.3. Runoff Volume Many stormwater programs have a volume control requirement; that is, capturing the first 1 or 1.5 inches of stormwater and retaining it for 2 to 5 days. There are two primary methods that can be used to determine the volume of runoff from a given design storm: the Simple Method (Schueler,1987) and the discrete SCS Curve Number Method (NRCS, 1986). Both of these methods are intended for use at the scale of a single drainage area. Stormwater BMPs shall be designed to treat a volume that is at least as large as the volume calculated using the Simple Method. If the SCS Method yields a greater volume, then it can also be used. 3.3.1. Simple Method • The Simple Method uses a minimal amount of information such as watershed drainage area, impervious area, and design storm depth to estimate the volume of runoff. The Simple Method was developed by measuring the runoff from many watersheds with known impervious areas and curve-fitting a relationship between percent imperviousness and the fraction of rainfall converted to runoff (the runoff coefficient). This relationship is presented below: Rv = 0.05 +0.9 * IA U Where: Rv = Runoff coefficient [storm runoff (in)/storm rainfall (in)], unitless 1A = Impervious fraction [impervious portion of drainage area (ac)/ drainage area (ac)], rootless. Once the runoff coefficient is determined, the volume of runoff that must be controlled is given by the equation below: V=3630*RD*Ra*A Where: V = Volume of runoff that must be controlled for the design storm (ft3) RD = Design storm rainfall depth (in) (Typically, 1.0" or 1.5") A = Watershed area (ac) Stormwater Management and Calculations 3-3 July 2007 NCDENR Stormwa ter BMP Manual Chapter Revised 06-16-09 • areas has the potential to infiltrate into the soil (for example, where roof downspouts are diffused over a lawn). Disconnected impervious areas produce less runoff than impervious areas that are directly connected to a storm drainage system. Table 3-6 How to apply the SCS Curve Number Method Step 1. Divide the drainage area into land uses and assign an appropriate CN to each one (see Table 3.5). Step 2. Compute Q* for any impervious surfaces that are directly linked to surface waters via a swale or pipe. Find the runoff volume from the directly connected impervious surfaces by multiplying Q* times the area of the directly corulected impervious surfaces. Step 3. Composite a curve number for the remainder of the site by using a weighted average. If the composite CN is equal to or below 64, assume that there is no runoff resulting from either the 1 or 1'-/2 inch storm. If the composite CN is above 64, compute Q* for this area. Find the runoff volume from the remainder of the site by multiplying Q* times the area of the remainder of the site. Step 4. Find the runoff volume from the whole site by adding the results of Step 2 and Step 3. • 3.4. Storage Volume Volume control is typically provided through detention structures with volume above the water operating level and below the required freeboard. Some BMPs do not have the capability to provide this volume control due to their design, and others can include storage volume within the media of the BMP. Each individual BMP chapter discusses the specific calculations for meeting the volume control requirements. However, since many of the BMPs use storage volume in a detention structure, this section will discuss an acceptable method of calculating that volume. Storage volume within a detention structure shall be calculated using a stage-storage method. A table shall be provided showing incremental elevations of the BMP with square footage values at the listed elevations. The elevation increments shall be no more than 1 foot. Columns can then be produced showing the incremental volume and cumulative volume of storage provided. See Table 3-7 below for an example of a storage volume calculation. This. method can be used for basin shapes as simple as a rectangle or as intricate as a curved, landscape designed wetland feature. It can also be used to calculate sediment storage volume and operating volume within BMPs. L_J Stormwater Management and Calculations 3-10 July 2007 • NCDENR Stormwater BMP Manual Chapter Revised 06-16-09 The type of ground cover at a given site greatly affects the volume of runoff. Undisturbed natural areas, such as woods and brush, have high infiltration potentials whereas impervious surfaces, such as parking lots and roofs, will not infiltrate runoff at all. The ground surface can vary extensively, particularly in urban areas, and Table 3-5 lists appropriate curve numbers for most urban land use types according to hydrologic soil group. Land use maps, site plans, and field reconnaissance are all effective methods for determining the ground cover. Table 3-5 Runoff curve numbers in urban areas for the SCS method (SCS, 1986) Cover Description Curve Numbers for Hydrologic Soil Group Fully developed urban areas A B C D Open Space (lawns, parks, golf courses, etc.) Poor condition (< 50 % grass cover) 68 79 86 89 Fair condition (50% to 75% grass cover) 49 69 79 84 Good condition (> 75% grass cover) 39 61 74 80 Impervious areas: Paved parking lots, roofs, driveways, etc. 98 98 98 98 Streets and roads: Paved; curbs and storm sewers 98 98 98 98 Paved; open ditches 83 89 98 98 Gravel 76 85 89 91 Dirt 72 82 85 88 • Developing urban areas Newly graded areas 77 86 91 94 Pasture (< 50% ground cover or heavily grazed) 68 79 86 89 Pasture (50% to 75% ground cover or not heavily grazed) 49 69 79 84 Pasture (>75% ground cover or lightly grazed) 39 61 74 80 Meadow - continuous grass, protected from grazing and 30 58 71 78 generally mowed for hay Brush (< 50% ground cover) 48 67 77 83 Brush (50% to 75% ground cover) 35 56 70 77 Brush (>75% ground cover) 30 48 65 73 Woods (Forest litter, small trees,, and brush destroyed by 45 66 77 83 heavy grazing or regular burning) Woods (Woods are grazed but not burned, and some forest 36 60 73 79 Etter covers the soil) Woods (Woods are protected from grazing, and litter and 30 55 70 77 brush adequately cover the soil) Most drainage areas include a combination of land uses. The SCS Curve Number Model should be applied separately: once for areas where impervious cover is directly connected to surface water via a swale or pipe and a second time for the remainder of the site. The runoff volumes computed from each of these computations should be added to determine the runoff volume for the entire site. For the portion of the site that is NOT directly connected impervious surface, a composite curve number can be determined to apply in the SCS Curve Number Model. The composite curve number must be area-weighted based on the distribution of land • uses at the site. Runoff from impervious areas that is allowed to flow over, pervious Stormwater Management and Calculations 3-9 July 2007 9ZE-hS8 (616) XDj 066L-*99 (616) au0yd MO : AG O3 Odddr "1108 O 0 "°d L09LZ 0ullo?0p y}?oN 'y6!a!?b Xra : A9 wnrao ?' Q o r o: P?ON X;!wJl ZL6 dHW SISJI"lt/NH S Z I- [ c$ 1 ?, WOO : A0 ONOIS30 W [?' z 1 s;u?;!nsu00 u61sap ? M3 ` e e f 00-9rZ o ON 31U I y? / VNPIOHVD HLHON 'SJNIHdS J,-nOH = I ' W ZO-L l-Z4 OaY09 WNW 10 dr035N3H ?.... ?? ON['? IDOL '6 ANrl1aB39 :3IY0 ?J ?ja ssau?sn8 s6uudg ?'??OH a M 31V0 NO(SIn3N '?1i'?n ??a jj j??{? S?xnds ArloNA NxOl :av m»•dWd ? 3 OILBNOr'R' 5 a. p o ?^ _ ? ? ? 9aP8 5 ? I U W 6 E a a • aax i ; ?- ?? a •? sasJ z t? o8 .E q D _ p rr? ? ? ?z _ U W y E? H s .?, a ? ? W p Q w??? `- + + ?- Q pp p + F- w z 0 w °- ? ? JY Q R O a ? N O O m ? D D } ? D , w W ? 0 ft? J E =w o d D D N? ? ?? ? ZJ 0O co LLJ 2: N x aA ? ? D ?i F- w 0,1 4L 9 ? ? ? ?? ZU O 6 ? ?? O S i? ?? ? 1 (nU Cry e ?[, ? ?? KZ J ?? ? \ 000 ° L, s U > U J ? pD ?? w 0m1=- ° D n00 ° 0 O 0 zoo a ?D D d 1- ? Q z ? c? UQ S W W C? w W Z w V) W I- J V)O -d'O<J E D ?w?QOW Q W Q ?a??vwi wQ°z D D W O w J O Q O U W W O VIN ° 5 DD ?YZ¢OZm ?Nf-OJ?? Z??w CL < i J Q} O Z 0 7 0w Q Y Q. O w> Q _ D ~??O?aw NC1zF-°J V1 F-Z z if WQ=z OOw? Fz! JUf~O : ZW°O ?>UW>w J I UO QENO OQwW \ °OZ?Q N wW OZa- O?5 l D -o c, °ww Vj}?w aW.Z ?F a.. aw z Fw W w W W W J V) N N WwQCL?WW J J Jw'KOFW- N1'-wF-WDAN OOwp¢ }V1N?Q 6 D D° C D -'?a3a y?Nit w~ ?3?ox ????? ? ? ° ZO=0? =Cw9 W?QOO w??r1 L' 0 Q ° ? O° WOF- rOQ W WF- Z O d ? ? U'gQOzw ZH2Ww W?U 00?Q06(U-i7-il oz0'''=F? ° w~Q (A :j F!z 0 O°? FaW?ww¢ o ?oF>j w= Lo w ?D?3o?o? p vNosx?Sw? NaQt VN ?£ D 6 C O 00?- OWZQw / J KQ UZ O //I?/J1)) ,JJ NQ ?2W ?c=iJ ?J??ap V) WQzF ¢= wONU N<Q K° QF- 2 z:)) N w to W J O ¢ Nr Wzz Gi UO=w?N w Nwa?VI L ZWZ? z ?ZHa OQ W IQ-3woW D D? yy N Qo 0° W N Q N S, n m Q V) j J [C CD W f1) ?. F I Q a O Q m 3¢ Z° Q p O- O= Q af (~!1 F-Q J w~ ` O Z VI W W V) V) - 3 O J. Q 4 ¢ W J W w w } wQJ zwOJ M W0 r, (n I r wOd'>H ° J I + - + + + ° °Q ? ? E ??qq JJJJ a + iJ JJ ? ° m F F + J J J ++ J I Of w w w w 3 0 -E ::5 2 F-- 0000 000 5 J 1' + y + U N Q Q Q Q _ `- + vw vw vw vw in U) Z z w 0- ? K K K w a- a o r' o ° 0 0 0 0 0 0 0 0 + J Z (n U U U U Z N N W +a t 0 Z Fw- I- H Fw-- F- - I-- Fw-. + \G O_ Of CY Q? Of I-- Of ~ U O 0 0 0 U 0 0 j z = 0 0 0 0 0 0 0 ,,, V) :2 LLJ ¢ w s ? J ? < z z z z z z z z a o Q a a a a Q a a¢ 5 ? =-\ ( ( Z 0 0 O O 0 0 0 0 = \, ® \ J O O O O O O O O Ir Q 3 E JO N m N N 01 m Ul Q a 13f A0 2002 00'00:E{ GS 3a0 ant 6np'20300902\Mjed Ssau[m0 SuIJOS All-H 00-502\S130(odd 052 - f02\:d t • • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - J • F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I s o w o u w ¢ I I ag I I ?? ? a I Q° v? P o I tZy }} U ? c ¢ o W F U) I ?? 1 I Q O L? N L? Q m n o N of GI?I Q u w U~W Z i z «M z > ?? z_ i N ?I I Sao ?w 0 o o ?I ; I . I I I I ? I I I I , I ? I I\ 9 I I I i I ; I I I I ; i I I $ £ i I I I I ; I I I I ; I I I 1 i g ____ ____ I I\ I I I I I 1 8 I I I ;? x i I I I I I ' I I I ; 1 i I I ; I ?I I ?I ' I I I ? I I i I I I I 1 ? 1 IY I , k I I I I I I I I I 1 6 I ; 0 ? o E7 I I W Q i I ! I I I I eil i f5 I i I I I I I I I I I 1 I ?g ? rc Z ? W U I I I 11 I ; I \ I k?l I R• .c ? 7 W ? ? N , , I 1 I I I I I '? `\?\ I S? I o 1111 ? ? ? ? I I I \ I ? I i I J 921 I?\ I r LaJ I i I I I \I i 1 I I ¢I\ ?\? ? I- I , ? 'I Q rc ? , , i I f? II ?? 1 I / R: (9 Z I i I I I I? i I I ???? I I I Y S ? yj ?k'1 120 J N O? a? G O I I ? \ I I ZN 4 I I I I ri I I I I ? I I ; 1?? I I I ,¢?i, WY 12 I I I I I I I I I I ; I I I I ? inH j ?3 qs Vy ?? I I I I ;\ I I i ; I I I I ; ,? CS I ' I I I I ' i I I I ' I i I_ I ' W I I I 1 i I I i n -? 40 I ; I I I i V ? ' n I I I 1 w I I I I ' I\ I I I . I I C I I d I I I . G I 1 I ; I I I I ; I I I I I I I I I I ? i , I I I I I ? I I I I ; I I I I , 04" , m I I I I I I I I ? I I I I I d I? ? o? I 1 I I I I I I I I 1 I I I I 1 I I I I I I I I I I 5 I I I I I I I I I i I I G I I I 1 I I I I I I IV ^I = I I I I . I I I I I I I? I I I I I, ; I I I I I I I I I I I I? I I 1 I i, I I I I I I I /I I I I I I I I , I I I I I I ? I r____l____T____r___i____T_ I I I 1 I I I I 1 ?1 \ i I I I 1 i I i ? ' I I I I ' I I I I I I I I I I I I I I? ?\ \t\? I I I j I? ?\ ?. \ I I I I I I \ I I I I I I I^\\??I? I I I I I, I . \?\\ I I 1?\ - I I I I ; I I I I 1 I ; I ; i I I I . ? \\I\? ' 1 I I I ' I c? 1\ I I I I i I I.\ \ I I I I ? I I I , I , I I I I I I \t\\ `---1---- 1----i----- L----'-- 1__ `- \ I I I I ' I I y?\? T I I I I I Z-?6 OZTO- I I i ??\ - -? I !I I tl ? I I I I Y I I \???' I I I I ? I I 1\ i \??I I I I I I I ' I I I I ? 1 I ?\I'??, I I 1 I I I J\\? I I I I ?; I 1 .I ?\ 1 I I I I I I?\F \ i I I I'' I I r???j I I I I? L I I y I i I I I I I Y\I\? I i I I I I I\\I\\ t I I I I i I \ll \.y7 I I I 1' I I l? I I I ?Ij I I I I N\I , I I\ 1 \? I I I I I i I \ t\ N,\ I I I I ?, \ I I I I ?I \ v\ I I I I \\I' I I ?T\?4 - i--i --I-d i I* \? I I ? I Z I? I I\ \L ' I I r YYYYS I g 1 \l\? I I I I ;? I °I V?\.I\\I I I N 1 I I T _1__L__I I I I I \, I i I I I ? I I I I i I I I I I I I ? I r--__I I I ZS I ' ; I 1 I ;\ I I 1 I I I I I I I I I 1 H I \ I I I I ' I I I I I I ' I h I I X I I I ?, I I Lai , 1 I 1 \ I I 1__ I I I I ; i\ I I ; I I I I ; I I I ; _ i__1 1 I 1 I\ 1 I ? r--i -7--r-- r--r--I--Y , I I I I I I \ I I , I I I I I ?° I I I I I i I I I I I ; f ? ' I I i I ' ' I . 1 I I I I 013N3H I x U L - - - - - - - - - - - - - - - - - I I I I I I I I I I I I I I I I I I I I ?I I I I I I I ' , I ' , I ' , I ' I ,• I i I I I ; I ; I ' I R?. m8 Stn ?° I I I I I I I I I I 1 I 1 I I I I I I I I I I I I I I I I I I I I I i I i I I I I J e o z WJ go? og M NO 310HM NI 1 D ' o d I R ?a I o f %1 0 I z I is I o I qq? I I 8 All ai o -i < dddW a _ gg I ¢?a I _ a __{$ W I 0 z f W I -i o e a I I Milli I Li I -i I f I o ?.+ I ? I 1 I I ° g I MOVAS 3910N (9).10MOWN00 M 03NIY13N 39 IYI N 40 NOUVWNOMl ANYMMONd 4NYJN001MWIU00 51{1 rc < V ? ¢ I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - J 0 0 JACOBS CALCULATION COVER SHEET • • • PROJECT USFCC JOB NO. 22MN9901 DEPARTMENT Civil CLIENT Novartis Vaccines & Diagnostics CALC. NO. C-21 SUBJECT Fitness Facility Parking & Courts Stormwater Detention ORIGINATOR Ed Kubrin DATE 8/2510 CHECKER Charles Van Arsdale DATE 8/25/10 PURPOSE OF ISSUANCE REV NO. PAGES DESCRIPTION ORIG. DATE CHKD. DATE APRV. DATE A 117 Issued for Permitting Information EJK 8/25/10 CCV 8/25/10 COMMENTS: Calculations performed with PondPack software by Bentley. CALC COVER SHEETS C-21.DOC 02/19/96 r i 0 Novartis Vaccines & Diagnostics USFCC Project Fitness Facility Courts and Parking Lot Stormwater Quantity and Bioretention Plan JE Project Number: 22NM9901 Prepared by: Jacobs Engineering August 2010 • Date:8-25-10 Rev.:A JACOBS is Calculation C-21 Parkins and Courts Stormwater Detention Table of Contents Section Description A Executive Summary B Local Codes C Parking Lot Detention Calculations Bioretention Peak Flow Summary Pre and Post Parameters Pre Development Storm Calculations Post Development Storm Calculations Biointrusion Parameters/Outlet Structures • Biointrusion Routing Calculations D Courts Detention Calculations Bioretention Peak Flow Summary Pre and Post Parameters Pre Development Storm Calculations Post Development Storm Calculations Biointrusion Parameters/Outlet Structures Biointrusio.n Routing Calculations 0 Appendix A Pre & Post Conditions Drainage Maps Bioretention Pond Plan Appendix B Soils Map Vegetative Analysis Map • Section A • Executive Summary 0 • DETENTION CALCULATIONS Current Town of Holly Springs and NCDENR regulations require that BMPs control the pre and post development peak flows of a 1 year, 24-hr storm. The storm is based on a 2.83 inch rainfall in a 24 hour period SCS Type II event as required by the Town of Holly Springs. This report contains detention design for two separate bioretention basins located in the Fitness Facility of the existing Novartis complex. The bioretention basins are located at the courts and the parking lot Using the Bentley software, PONDPACK, drainage parameters were entered into the drainage system and routed through the bioretention basins. It was determined that the new bioretention basins will be able to control the 1 year storm. The pre- developed peak flow exceeds the post-developed peak flows in both basins after routing. Detention bioretention calculations, pre and post development parameters, pond volume info, outlet structure design, and routing calculations are included in this section. The outlet structures in both basins contain a 4 inch diameter orifice to control the 1 year storm. Weirs at the top of the structure allow flow from larger storms to discharge through to the proposed storm sewer. • 0 • C Section B Local Codes 0 °TowrJ aF t40LL-(s9eVNG,.s F_441A)E169t J(1 S7A/JflA21a1 • DA7E e w . Af'2%L Zoo$. As a part of the development permit application process, conceptual methods, calculations, and designs must be presented to the Engineering Department at the concept plan, construction drawing review, and post construction review stages of the permitting process for comprehensive review, evaluation, optimization and approval. Revisions to the preliminary plan may be necessary to obtain Town Construction Drawing and Environmental Plan approvals. In addition to standard Holly Springs' submittal requirements, there are specific development permit application requirements for stormwater features outlined in Section 8.04 of this manual. E. Structural & Non-structural Best Management Practices 1. Performance Standards a. Peak Discharge: There shall be no increase in stormwater runoff peak discharge rate leaving the project site between the pre- and post- development conditions for, at a minimum, the 17Year, 24-Hour Storm (2.83 inches). Runoff volume drawdown time shall be a minimum of twenty-four (24) hours, but not more than one hundred and twenty (120) hours. b. Total Nitrogen: The total nitrogen (TN) export limitations, per the Neuse • Basin Rules, 15A NCAC 2B.0233, will be required throughout the Town and extra territorial jurisdiction. The Town Council shall establish Fee in Lieu and may amend and update the fees and policies from time to time. Fee costs and policies will be outlined in Section 8.03 of this Design Manual. c. 85% Average Annual TSS: A minimum of 85% average annual removal for Total Suspended Solids (note: for most BMPs this will be based on the 1 inch run off volume, some speck BMPs may be based on alternative design criteria) d. General: General engineering design criteria for all projects shall be in accordance with 15A NCAC 2H .1008c, as explained in the Design Manual; e. Stream Setback: All Built-Upon Area shall be at a minimum of 30-feet landward of all perennial and intermittent surface waters, as described in Section 7.06 of the UDO. "Where applicable, stormwater management facilities may be located within the outer 50' of the TOHS riparian buffer but are not permitted within the Neuse Riparian Buffers unless specifically approved in writing by the TOHS Director of Engineering or designee. BMP outfalls are permitted in riparian buffers as consistent with NCDENR policies and 401 approvals." Additionally, Section 8.03 of this manual outlines the TOHS Restored Riparian Buffer requirements for removed ponds. The above performance standards shall apply to all projects within the TOHS jurisdiction. Note that the Town's Stormwater Ordinance is a performance based ordinance and does not specifically limit the amount of impervious cover or • utilize high or low density development thresholds to control development intensity. Instead, all pertinent development must meet the above standards as FINAL April 2008 add 5 2008 8-11 Section C 0 Parking Lot Detention Calculations is • Bioretention Peak Flow Summary 0 0 • Scenario: Pre-Development 1 year JD0 --~i O-1 is Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • Scenario: Post-Development 1 year POE-1 C • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Parking Lot.ppc Center 8/25/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 O-1 Bentley PondPack V8i 108.11.01.511 Page 1 of 1 , L?K ">, • E Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) n -Development 1 CM-1 P 1 0.024 12.400 0.12 e a Post-Development 1 CM-1 1 0.102 12.150 1.12 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) 0-1 yea Development 1 1 0.024 12.400 0.12 0-1 Post-Development 1 1 0.030 17.200 0.04 year Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Post- PO-1 (IN) Development 1 0.102 12.150 1.12 (N/A) (N/A) 1 year Post- PO-1 (OUT) Development 1 0.030 17.200 0.04 329.36 0.076 1 year • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Parking Lot.ppc Center 8/26/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.511 Page 1 of 1 • • 0 d-1 V) O a (n CU L a L (B Q? T--I O O O O N O O O Ln .--1 /,^\ W L O N o E O j- O 0 O O O Ln I. O O O l'/ - T-i O V, W O u 1 M T-i o O T? T? T1 O O O O O O O O O O O O O O O O O O O O O H LL L r-I QC? C Q O ? O C) C) 1 L- U) O 0- a .--1 T-I OO I L?IeCo(*7 ?-y • Pre and Post Parameters 0 0 • Project: Novartis USFCC Location: Holly Springs, NC Date: 8/27/2010 Subject: Site Land Use Fitness Facility Parking Lot Predeveloped Land Use Type B Soil Land Use Designation Drainaae Area Total Area A B C CM-1 1.06 1.06 Acres 1.06 0 0 1.06 Post Developed Land Use Type B Soil Land Use Designation nrainanP Ara;; TntA Area A B C CM-1 1.06 0.5 0.56 0 Acres 1.06 0.5 0.56 0 Land Use Legend A Grass "Good" CN= 61 B Pavement/Buildings CN= 98 C Woods "Fair" CN= 60 • Avg. _CN F 60 1.06 0 1.06 Avg. CN 81 1.06 0 1.06 0 • Novartis 22MN9901 Fitness Parking Lot August 2010 Pre Developed Dra inage Areas 2 yr P= 3.6 inches Drainage Area Designation: CM-1 Total Length: 200 Feet Drainage Area: 1.06 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Manning's "n" (ft.) (ft/ft) (feet) (sq. ft.) Time (hr) Sheet flow 0.4 165 0.08 0.29 Shallow flow 35 0.013 0.01 200 0.29 • ?_J • Novartis 22MN9901 Fitness Parking Lot Aug-10 Post Developed Drainage Areas 2 yr P= 3.6 inches Drainage Area Designation: CM-1 Total Length: 139 Feet Drainage Area: 1.06 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Mannina's "n" (ft.) (ftift) (feet) (sq. ft.) Time (hr) Sheet flow Shallow flow Shallow flow Shallow flow 0.24 67 0.015 0.18 20 0.2 0.00 32 0.03 0.00 20 0.125 0.00 139 • 0.19 0 1 .1 AIKOJ 0 Pre Development Storm Calculations 0 0 • Fitness Facility Parking Lot - Pre-Development Project Summary Title Fitness Facility Parking Lot Engineer Ed Kubrin Company Jacobs Engineering Date 8/17/2010 Notes • • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 1 of 7 Watertown, CT 06795 USA +1-203-755-1666 • Table of Contents Master Network Summary • CM-1 Time of Concentration Calculations CM-1 Unit Hydrograph Summary u • Scenario: Pre-Development 1 year O-1 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.511 8/25/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • • Fitness Facility Parking Lot - Pre-Development Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) CM-1 Pre-Development 1 1 0.024 12.400 0.12 Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) 0-1 1 Pre-Development 1 ? 1 0.024 12.400 0.12 year • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 2 of 7 Watertown, CT 06795 USA +1-203-755-1666 • • Fitness Facility Parking Lot - Pre-Development Subsection: Time of Concentration Calculations Return Event: 1 years Label: CM-1 Storm Event: 1 Year Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 165.00 ft Manning's n (N/A) Slope 0.080 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.16 ft/s Segment Time of 0.289 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 35.00 ft Is Paved? False Slope 0.013 ft/ft Average Velocity 1.80 ft/s Segment Time of 0.005 hours Concentration Time of Concentration (Composite) Time of Concentration 0.295 hours (Composite) is Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Parking Lot.ppc Center 8/25/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 3 of 7 • Fitness Facility Parking Lot - Pre-Development Subsection: Time of Concentration Calculations Return Event: 1 years Label: CM-1 Storm Event: 1 Year SCS Channel Flow R= Qa/Wp V = Tc = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp = Wetted perimeter, feet Where: V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet SCS TR-55 Shallow Concentration Flow Unpaved surface: V = 16.1345 * (Sf**0.5) Tc = Paved Surface: V = 20.3282 * (Sf**0.5) (Lf / V) / 3600 V= Velocity, ft/sec Where: Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Parking Lot.ppc Center 8/25/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 4 of 7 i Fitness Facility Parking Lot - Pre-Development Subsection: Unit Hydrograph Summary Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm Event 1 Year Return Event 1 years Duration 24.000 hours Depth 2.8 in Time of Concentration 0 295 hours (Composite) . Area (User Defined) 46,174.0 ft2 Computational Time 0.039 hours Increment Time to Peak (Computed) 12.416 hours Flow (Peak, Computed) 0.12 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12 400 hours Interpolated Output) . Flow (Peak Interpolated 0.12 ft3/s Output) Drainage Area SCS CN (Composite) 60.000 • Area (User Defined) 46,174.0 ft2 Maximum Retention 6 7 in (Pervious) . Maximum Retention 1 3 in (Pervious, 20 percent) . Cumulative Runoff Cumulative Runoff Depth 0.3 in (Pervious) Runoff Volume (Pervious) 0.024 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.024 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0 295 hours (Composite) . Computational Time 0.039 hours Increment Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i • Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Dri ve Suite 200 W Page 5 of 7 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Parking Lot - Pre-Development Subsection: Unit Hydrograph Summary Label: CM-1 SCS Unit Hydrograph Parameters Unit peak, qp 4.08 ft3/s Unit peak time, Tp 0.196 hours Unit receding limb, Tr 0.786 hours Total unit time, Tb 0.982 hours r ?J Return Event: 1 years Storm Event: 1 Year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 6 of 7 Watertown, CT 06795 USA +1-203-755-1666 • • 0 U Q O a? L a O O O O N O O O Ln T? VI L O O E O O O T'I O O O Ln O O O M +-i O m CO l0 Ln d' M r--I O p ,-- ?--i •-I O O O O O O O O O O O O O O O O O O O (S/E44) (1240-0 MOIL a-+ O O LL L tB N c? C Q _O 1 L a U JACOBS • Post Development Storm Calculations 0 0 0 Fitness Facility Parking Lot - Post Developed Project Summary Title Fitness Facility Parking Lot Engineer Ed Kubrin Company Jacobs Engineering Date 8/17/2010 Notes • • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 1 of 7 Watertown, CT 06795 USA +1-203-755-1666 Table of Contents Master Network Summary 0 CM-1 Time of Concentration Calculations CM-1 Unit Hydrograph Summary Scenario: Post-Development 1 year POE-1 0 O-1 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1.203-755-1666 • • CM-1 Post-Development 1 1 0.102 12.150 1.12 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) 0-1 Post-Development 1 1 0.030 17.200 0.04 year Pond Summary Label Scenario Return H ydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) ( ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Fitness Facility Parking Lot - Post Developed Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) Post- PO-1 (IN) Development 1 0.102 12.150 1.12 (N/A) (N/A) 1 year Post- PO-1 (OUT) Development 1 0.030 17.200 0.04 329.36 0.076 1 year is Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 1 of 2 Watertown, CT 06795 USA +1-203-755-1666 • • Fitness Facility Parking Lot - Post Developed Subsection: Time of Concentration Calculations Return Event: 1 years Label: CM-1 Storm Event: 1 Year Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 67.00 ft Manning's n (N/A) Slope 0.015 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.10 ft/s Segment Time of 0.183 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 20.00 ft Is Paved? False Slope 0.200 ft/ft Average Velocity 7.22 ft/s Segment Time of 0.001 hours Concentration Segment #3: TR-55 Shallow Concentrated Flow Hydraulic Length 32.00 ft Is Paved? False Slope 0.030 ft/ft Average Velocity 2.79 ft/s Segment Time of 0.003 hours Concentration Segment #4: TR-55 Shallow Concentrated Flow Hydraulic Length 20.00 ft Is Paved? False Slope 0.125 ft/ft Average Velocity 5.70 ft/s Segment Time of 0.001 hours Concentration Time of Concentration (Composite) Time of Concentration 0 188 hours (Composite) . Fitness Facility Parking Lot.ppc 8/25/2010 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51) Page 3 of 7 • Fitness Facility Parking Lot - Post Developed Subsection: Time of Concentration Calculations Return Event: 1 years Label: CM-1 Storm Event: 1 Year SCS Channel Flow R=Qa/Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n Tc = (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Where: Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet ==== SCS TR-55 Shallow Concentration Flow Unpaved surface: V = 16.1345 * (Sf**0.5) Tc = Paved Surface: V = 20.3282 * (Sf**0.5) • (Lf / / 3600 V= V= Velocity, ft/sec Where: Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.511 8/25/2010 27 Siemon Company Drive Suite 200 W Page 4 of 7 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Parking Lot - Post Developed Subsection: Unit Hydrograph Summary Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm Event 1 Year Return Event 1 years Duration 24.000 hours Depth 2.8 in Time of Concentration 0.188 hours (Composite) Area (User Defined) 46,174.0 ft2 Computational Time 0.025 hours Increment Time to Peak (Computed) 12.153 hours Flow (Peak, Computed) 1.12 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12.150 hours Interpolated Output) Flow (Peak Interpolated 1.12 ft3/s Output) Drainage Area SCS CN (Composite) 80.547 • Area (User Defined) 46,174.0 ft2 Maximum Retention 2.4 in (Pervious) Maximum Retention 0.5 in (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth 1.2 in (Pervious) Runoff Volume (Pervious) 0.102 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.102 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0.188 hours (Composite) Computational Time 0.025 hours Increment Unit Hydrograph Shape 483.432 Factor K Factor 0.749 Receding/Rising, Tr/Tp 1.670 Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 5 of 7 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Parking Lot - Post Developed Subsection: Unit Hydrograph Summary Label: CM-1 SCS Unit Hydrograph Parameters Unit peak, qp 6.40 ft3/s Unit peak time, Tp 0.125 hours Unit receding limb, Tr 0.500 hours Total unit time, Tb 0.625 hours C • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Parking Lot.ppc Center 8/25/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Return Event: 1 years Storm Event: 1 Year Bentley PondPack V8i [08.11.01.51] Page 6 of 7 • • 0 rl CI G U v a O a? v r) U) O a O O O O N O 0 O Ln ,--I L O a? o E o j= 0 0 T-i O 0 0 ui l O O 0 Ln m O CO Ln M O co Ln m O O N ,--i O co ? O u) M N ,-I O ? ,--i .--i O O O O O O O O (S/E41) (12401) MOJJ (B a--+ O O LL L ru rl a-J Q? a O a? a? D I LO O a I U -w s 14f C7 Bioretention Parameters/Outlet Structure C 0 • Table of Contents PO-1 1 Year Elevation-Area Volume Curve Volume Equations Composite Outlet 1 Year Structure - 1 Outlet Input Data Individual Outlet Curves Composite Rating Curve 10 • 0 . Novartis Holly Springs, N.C. Bioretention Pond Calculations - Fitness Facility Parking Lot Total Impoundment Volume • PN 22MN9901 8/26/2010 END AREA MET HOD INCR ELEVATION AREA(SF) DIST (FT) AVG. AREA (SF) VOLUME (CF) VOLUME (CF) 328.5 3004 0.5 3506 1753 329 4007 1753 0.25 4260 1065 329.25 4513 2818 0.75 5307 3980 330 6101 6798 TOTALS 6798 0.16 0 • Bioretention Parameters and Outlet Structure Subsection: Elevation-Area Volume Curve Return Event: 1 years Label: PO-1 Storm Event: 1 Year Elevation Planimeter Area Al+A2+sqr Volume Volume (Total) (ft) (ft2) (ft2) (Al*A2) (ac-ft) (ac-ft) (ft2) • 328.50 0.0 3,004.0 0.0 0.000 0.000 329.00 0.0 4,007.0 10,480.4 0.040 0.040 329.25 0.0 4,513.0 12,772.5 0.024 0.065 330.00 0.0 6,101.0 15,861.3 0.091 0.156 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 1 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Parameters and Outlet Structure Subsection: Volume Equations Label: PO-1 Return Event: 1 years Storm Event: 1 Year Pond Volume Equations * Incremental volume computed by the Conic Method for Reservoir Volumes. Volume = (1/3) * (EL2 - Eli) * (Areal + Areal + sgr(Areal * Area2)) where: EL1, EL2 Lower and upper elevations of the increment Areal, Areal Areas computed for ELI, EL2, respectively Volume Incremental volume between ELl and EL2 E • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 2 of 11 Watertown, CT 06795 USA +1-203-755-1666 • q OF PIPE INTERSECTION I CATCH BASIN COORD. LOCH 4 00-C-55-99-1 24" WEIR I 1"0 ORIFICE x24 WEIR • RISER DETAIL B SCALE: 1/2" = l'-O" 00-C-20-99-22 CAST IN FRAME & GRATE PER NCDOT STD. 840.16 I.E. 329.75 4,000 PSI PRECAST CONCRETE PER ASTM C913 AND NCDOT STD. 840.14 CONCRETE FILL TO FORM SMOOTH FLOW LINE ---- QD BASE CAST INTEGRAL WITH SIDES 6" BOOT CONNECTION (TYP.) FOR HDPE PIPE, SEE DETAIL "D" THIS DWC- 6" WASHED STONE BEDDING --/ PARKING LOT RISER GB • 200 SECTION 4 SCALE: 1/2" = 1'-0" 00-C-55-99-12 NOTE: 1. CONCRETE TOP AND STRUCTURE SHALL BE DESIGNED TO SUPPORT AN AASHTO HS-20-44. 5"x24" WEIR T/GRATE EL. SEE TABLE ON DWG. 00-C-20-99-25 4"0 HOLE I.E. 329.25 PLASTIC CEMENT PUTTY OR BUTYL RUBBER JOINTS V JR. INV. EL. SEE TABLE ON DWG. 00-C-20-99-25 • Bioretention Parameters and Outlet Structure Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Requested Pond Water Surface Elevations Minimum (Headwater) 328.50 ft Increment (Headwater) 0.50 ft Maximum (Headwater) 330.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall E1 E2 (ft) (ft) Orifice-Circular Orifice - 1 Forward Culvert - 1 329.25 330.00 Rectangular Weir Riser - 2 Forward Culvert - 1 329.75 330.00 Rectangular Weir Riser - 1 Forward Culvert - 1 329.75 330.00 Culvert-Circular. Culvert - 1 Forward TW 325.50 330.00 Tailwater Settings Tailwater (N/A) (N/A) • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 3 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Parameters and Outlet Structure Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Structure ID: Culvert - 1 Structure Type: Culvert-Circular Number of Barrels 1 Diameter 12.0 in Length 190.00 ft Length (Computed Barrel) 190.01 ft Slope (Computed) 0.009 ft/ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.031 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0018 • M C 2.0000 0.0292 Y 0.7400 T1 ratio (HW/D) 1.058 T2 ratio (HW/D) 1.203 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 326.56 ft T1 Flow 2.75 ft3/s T2 Elevation 326.70 ft T2 Flow 3.14 ft3/s • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center (06.11.01.51) 8/26/2010 27 Siemon Company Drive Suite 200 W Page 4 of 11 Watertown. CT 06795 USA +1-203-755-1666 • Bioretention Parameters and Outlet Structure Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Structure ID: Riser - 1 Structure Type: Rectangular Weir Number of Openings 1 Elevation 329.75 ft Weir Length 2.00 ft Weir Coefficient 3.00 (ft^0.5)/s Structure ID: Orifice - 1 Structure Type: Orifice-Circular Number of Openings 1 Elevation 329.25 ft Orifice Diameter 4.0 in Orifice Coefficient 0.600 Structure ID: Riser - 2 Structure Type: Rectangular Weir Number of Openings 1 Elevation 329.75 ft Weir Length 2.00 ft Weir Coefficient 3.00 (ft^0.5)/s Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3/s Flow Tolerance (Maximum) 10.000 ft3/s is Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.511 8/26/2010 27 Siemon Company Drive Suite 200 W Page 5 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Parameters and Outlet Structure Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular) Mannings open channel maximum capacity: 3.54 ft3/s Upstream ID = Orifice - 1, Riser - 2, Riser - 1 Downstream ID = Tailwater (Pond Outfall) Water Device (into) Converge Next Downstream Convergence Downstream Tailwater Surface Flow Headwater Downstream Downstream Hydraulic Error Channel Error Elevation (ft3/s) Hydraulic Hydraulic Hydraulic Grade Line (ft3/s) Tailwater (ft) (ft) Grade Line Grade Line Grade Line Error (ft) (ft) (ft) (ft) (ft) 328.50 0.00 0.00 0.00 Free Outfall 0.00 0.00 (N/A) 0.00 329.00 0.00 0.00 0.00 Free Outfall 0.00 0.00 (N/A) 0.00 329.25 0.00 0.00 0.00 Free Outfall 0.00 0.00 (N/A) 0.00 329.50 0.10 325.70 Free Outfall Free Outfall 0.00 0.00 (N/A) 0.00 329.75 0.24 325.81 Free Outfall Free Outfall 0.00 0.00 (N/A) 0.00 330.00 1.82 326.43 Free Outfall Free Outfall 0.00 0.00 (N/A) 0.00 Message • WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. CRIT.DEPTH CONTROL Vh= .045ft Dcr= .130ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .071ft Dcr= .202ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .236ft Dcr= .575ft CRIT.DEPTH Hev= .00ft • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 6 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Parameters and Outlet Structure Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Rectangular Weir) Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular) Water Device (into) Converge Next Downstream Convergence Downstream Tailwater Surface Flow Headwater Downstream Downstream Hydraulic Error Channel Error Elevation (ft3/s) Hydraulic Hydraulic Hydraulic Grade Line (ft3/s) Tailwater (ft) (ft) Grade Line Grade Line Grade Line Error (ft) (ft) (ft) (ft) (ft) 328.50 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.00 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.25 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.50 0.00 0.00 0.00 325.70 0.00 0.00 (N/A) 0.00 329.75 0.00 0.00 0.00 325.81 0.00 0.00 (N/A) 0.00 330.00 0.75 330.00 Free Cutfall 326.43 0.00 0.00 (N/A) 0.00 Message • WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. H=.25; Htw=.00; Qfree=.75; • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51) 8/26/2010 27 Siemon Company Drive Suite 200 W Page 7 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Parameters and Outlet Structure Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular) Upstream ID = (Pond Water Surface) Downstream ID = Culvert -1 (Culvert-Circular) Water Device (into) Converge Next Downstream Convergence Downstream Tailwater Surface Flow Headwater Downstream Downstream Hydraulic Error Channel Error Elevation (ft3/s) Hydraulic Hydraulic Hydraulic Grade Line (ft3/s) Tailwater (ft) (ft) Grade Line Grade Line Grade Line Error (ft) (ft) (ft) (ft) (ft) 328.50 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.00 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.25 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.50 0.10 329.50 Free Outfall 325.70 0.00 0.00 (N/A) 0.00 329.75 0.24 329.75 Free Outfall 325.81 0.00 0.00 (N/A) 0.00 330.00 0.32 330.00 Free Outfall 326.43 0.00 0.00 (N/A) 0.00 Message • WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. CRIT.DEPTH CONTROL Vh= .071ft Dcr= .178ft CRIT.DEPTH Hev= .00ft H =.33 H =.58 . Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 8 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Parameters and Outlet Structure Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 2 (Rectangular Weir) --------------------------------------- Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular) Water Device (into) Converge Next Downstream Convergence Downstream Tailwater Surface Flow Headwater Downstream Downstream Hydraulic Error Channel Error Elevation (ft3/s) Hydraulic Hydraulic Hydraulic Grade Line (ft3/s) Tailwater (ft) (ft) Grade Line Grade Line Grade Line Error (ft) (ft) (ft) (ft) (ft) 328.50 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.00 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.25 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 329.50 0.00 0.00 0.00 325.70 0.00 0.00 (N/A) 0.00 329.75 0.00 0.00 0.00 325.81 0.00 0.00 (N/A) 0.00 330.00 0.75 330.00 Free Clutfall 326.43 0.00 0.00 (N/A) 0.00 Message • WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. H=.25; Htw=.00; Qfree=.75; • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 9 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Parameters and Outlet Structure Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1 Composite Outflow Summary Water Surface Flow Elevation MIN (ft) Tailwater Elevation Convergence Error (ft) (ft) Return Event: 1 years Storm Event: 1 Year 328.50 0.00 (N/A) 0.00 329.00 0.00 (N/A) 0.00 329.25 0.00 (N/A) 0.00 329.50 0.10 (N/A) 0.00 329.75 0.24 (N/A) 0.00 330.00 1.82 (N/A) 0.00 Contributing Structures (no Q: Orifice - 1,Riser - 2,Riser - 1,Culvert - 1) (no Q: Orifice - 1,Riser - 2,Riser - 1,Culvert - 1) (no Q: Orifice - 1,Riser - 2,Riser - 1,Culvert - 1) Orifice - 1,Culvert - 1 (no Q: Riser - 2,Riser - 1) Orifice - 1,Culvert - 1 (no Q: Riser - 2,Riser - 1) Orifice - 1,Riser - 2,Riser - 1,Culvert - 1 is Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 10 of 11 Watertown, CT 06795 USA +1-203-755-1666 JACOBS • Bioretention Routing Calculations • 0 • Table of Contents PO-1 1 Year Elevation-Volume-Flow Table (Pond) PO-1 (IN) 1 Year Level Pool Pond Routing Summary PO-1 (OUT) 1 Year Pond Routed Hydrograph (total out) ?J ? J • • Bioretention Routing Calculations - Fitness Facility Parking Subsection: Elevation-Volume-Flow Table (Pond) Return Event: 1 years Label: PO-1 Storm Event: 1 Year Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Elevation (Water Surface, 328.50 ft Initial) Volume (Initial) 0.000 ac-ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 0.050 hours Elevation Outflow Storage Area Infiltration Flow (Total) 2S/t + 0 (ft) (ft3/s) (ac-ft) (ftz) (ft3/s) (ft3/s) (ft3/s) 328.50 0.00 0.000 3,004.0 0.00 0.00 0.00 329.00 0.00 0.040 4,007.0 0.00 0.00 19.41 329.25 0.00 0.065 4,513.0 0.00 0.00 31.23 329.50 0.10 0.092 5,015.8 0.00 0.10 44.56 329.75 0.24 0.122 5,545.1 0.00 0.24 59.37 330.00 1.82 0.156 6,101.0 0.00 1.82 77.12 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 1 of 5 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Routing Calculations - Fitness Facility Parking Subsection: Level Pool Pond Routing Summary Return Event: 1 years Label: PO-1 (IN) Storm Event: 1 Year Infiltration Infiltration Method (Computed) No Infiltration Initial Conditions Elevation (Water Surface, 328.50 ft Initial) Volume (Initial) 0.000 ac-ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 0.050 hours Inflow/Outflow Hydrograph Summary Flow (Peak In) 1.12 ft3/s Time to Peak (Flow, In) 12.150 hours Flow (Peak Outlet) 0.04 ft3/s Time to Peak (Flow, Outlet) 17.200 hours Elevation (Water Surface, 329.36 ft Peak) • Volume (Peak) 0.076 ac-ft Mass Balance (ac-ft) Volume (Initial) 0.000 ac-ft Volume (Total Inflow) 0.102 ac-ft Volume (Total Infiltration) 0.000 ac-ft Volume (Total Outlet 0.030 ac-ft Outflow) Volume (Retained) 0.072 ac-ft Volume (Unrouted) 0.000 ac-ft Error (Mass Balance) 0.4 0/0 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 2 of 5 Watertown, CT 06795 USA +1-203-755-1666 • Bioretention Routing Calculations - Fitness Facility Parking Subsection: Pond Routed Hydrograph (total out) Return Event: 1 years Label: PO-1 (OUT) Storm Event: 1 Year Peak Discharge 0.04 ft3/s Time to Peak 17.200 hours Hydrograph Volume 0.030 ac-ft HYDROGRAPH ORDINATES (ft3/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row. Time Flow Flow Flow Flow Flow (hours) (ft3/s) (ft3/s) (ft3/s) (ft3/s) (ft3/s) 13.700 0.00 0.00 0.00 0.01 0.01 13.950 0.01 0.01 0.01 0.01 0.01 14.200 0.02 0.02 0.02 0.02 0.02 14.450 0.02 0.02 0.02 0.02 0.03 14.700 0.03 0.03 0.03 0.03 0.03 14.950 0.03 0.03 0.03 0.03 0.03 15.200 0.03 0.04 0.04 0.04 0.04 15.450 0.04 0.04 0.04 0.04 0.04 15.700 0.04 0.04 0.04 0.04 0.04 15.950 0.04 0.04 0.04 0.04 0.04 16.200 0.04 0.04 0.04 0.04 0,04 16.450 0.04 0.04 0.04 0.04 0.04 16.700 0.04 0.04 0.04 0.04 0.04 16.950 0.04 0.04 0.04 0.04 0.04 17.200 0.04 0.04 0.04 0.04 0.04 17.450 0.04 0.04 0.04 0.04 0.04 17.700 0.04 0.04 0.04 0.04 0.04 17.950 0.04 0.04 0.04 0.04 0.04 18.200 0.04 0.04 0.04 0.04 0.04 18.450 0.04 0.04 0.04 0.04 0.04 18.700 0.04 0.04 0.04 0.04 0.04 18.950 0.04 0.04 0.04 0.04 0.04 19.200 0.04 0.04 0.04 0.04 0.04 19.450 0.04 0.04 0.04 0.04 0.04 19.700 0.04 0.04 0.04 0.04 0.04 19.950 0.04 0.04 0.04 0.04 0.04 20.200 0.04 0.04 0.04 0.04 0.04 20.450 0.04 0.04 0.04 0.04 0.04 20.700 0.04 0.04 0.04 0.04 0.04 20.950 0.04 0.04 0.04 0.04 0.04 21.200 0.03 0.03 0.03 0.03 0.03 21.450 0.03 0.03 0.03 0.03 0.03 21.700 0.03 0.03 0.03 0.03 0.03 21.950 0.03 0.03 0.03 0.03 0.03 22.200 0.03 0.03 0.03 0.03 0.03 22.450 0.03 0.03 0.03 0.03 0.03 22.700 0.03 0.03 0.03 0.03 0.03 • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Parking Lot.ppc Center 8/26/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 3 of 5 • • Bioretention Routing Calculations - Fitness Facility Parking Subsection: Pond Routed Hydrograph (total out) Return Event: 1 years Label: PO-1 (OUT) Storm Event: 1 Year HYDROGRAPH ORDINATES (ft3/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row. Time Flow Flow Flow Flow Flow (hours) (ft3/S) (ft3/S) (ft3/S) (ft3/S) (ft3/s) 22.950 0.03 0.03 0.03 0.03 0.03 23.200 0.03 0.03 0.03 0.03 0.03 23.450 0.03 0.03 0.03 0.03 0.03 23.700 0.03 0.03 0.03 0.03 0.03 23.950 0.03 0.03 (N/A) (N/A) (N/A) • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Parking Lot.ppc Center 8/26/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.511 Page 4 of 5 • PondMaker Worksheet Detailed Report: Worksheet (PO-1) - 1 • Element Details ID 32 Label Worksheet (PO-1) - 1 Select Pond to Design PO-1 Flow Allowed Below Target 25.0 Flow Allowed Above Target 10.0 Flow Allowed Below Target 50.0 Flow Allowed Above Target 10.0 Volume Allowed Below Target 25.0 Volume Allowed Above Target 300.0 Tolerance Display Display numerical values for tolerance fields Notes Volume Pond Type Elevation- Use Void Space? False Area Elevation-Area Pond Elevation Pond Area (ft) (ftz) 328.50 3,004.0 329.00 4,007.0 329.25 4,513.0 330.00 6,101.0 Infiltration Infiltration Method No Infiltration Output Detention Time None Initial Conditions Is Outflow Averaging On? False Define Starting Water Surface Pond Invert Elevation • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/2612010 27 Siemon Company Drive Suite 200 W Page 1 of 4 Watertown, CT 06795 USA +1-203-755-1666 • • PondMaker Worksheet Detailed Report: Worksheet (PO-1) - 1 330.00 329.88 329.75 329.63 329.50 L 329.38 C 329.25 ro N Fu 329.13 329.00 328.88 328.75 328.63 328.50 Elevation vs. Volume Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Parking Lot.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 2 of 4 Watertown. CT 06795 USA +1-203-755-1666 0.020 0.040 0.060 0.080 0.100 0.120 0.140 Volume (Total) (ac-ft) • E Composite Outlet Structure - 1 ? Target Rating Curve ®Q- Post- Development 1year I 1.40 1.60 1.80 • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Parking Lot.ppc Center 8/26/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondMaker Worksheet Detailed Report: Worksheet (PO-1) - 1 PondMaker Worksheet (Routing Design) Design Scenario Design Target Peak Computed Computed Target Return Outflow Peak Outflow Peak Outflow Outflow Event (ft3/s) (ft3/s) vs. Target Volume (ft3/s) (ac-ft) Post-Development 1 year 1 0.12 0.04 -0.08 0.024 Computed Computed Routing Outlet Computed Freeboard Maximum Volume Outflow Structure Max Water Depth Storage Outflow Volume vs. Elevation (ft) (ac-ft) (ac-ft) Target (ft) (ac-ft) 0.030 0.006 Composite Outlet 329.36 0.64 0.076 Structure - 1 D-HMaLor Dni H- r)-i- 330.00 329.88 329.75 0 329.63 329.50 m v 329.38 ?.? .-,.-------m-------------- u 329.25 U) 329.13 L 0 329.00 328.88 o ° 328.75 328.63 328.50 0.00 0.20 0.40 0.60 0.80 1.00 1.20 Flow (ft3/s) Bentley PondPack V8i [08.11.01.511 Page 4 of 4 • • 0 4-J 0 C 0 a (n C H '0 0 r L Q) rl 4--J 0 J 0) c- L r? a O O O O N O O O Ln ri L L 0 QC) O C O O O r-- l O O O Ln O O O In M O N --? COn m O w m m O O O W N ?10 m m N .-? O O O O O O O O O (S/s4j) MoI? 4-J ?-. Z3 c 0 H ro (o 0 0 1 I L L fu m Q) Q) >1 >1 T-i r-I 4-J 4-J Q) Q) E E Q Q O _O Q) Q) Q) Q) 0 0 4 4I U) f 0 O 0 a a I a a n • Section D • Courts Detention Calculations 0 e • Bioretention Peak Flow Summary 0 is • E Scenario: Pre-Development 1 year O-1 • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Courts 100816.ppc Center 8/24/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley Pond Pack V8i [08.11.01.51] Page 1 of 1 • Scenario: Post-Development 1 year O-1 Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8124/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • Subsection: Master Network Summary Catchments Summary Label Scenario • Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) CM-1 PrreDevelopment 1 1 0.022 12.300 0.12 year CM-1 Post-Development 1 1 0.125 12.100 1.63 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) 0-1 Pre-Development 1 1 0.022 12.300 0.12 year 0-1 Post-Development 1 1 0.060 14.050 0.09 year Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Post- PO-1 (IN) Development 1 0.125 12.100 1.63 (N/A) (N/A) 1 year Post- PO-1 (OUT) Development 1 0.060 14.050 0.09 323.47 0.078 1 year • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • • 0 ri 1 ?o V d-J U) O a (n a? L L ra a? L O U O O O O N O 0 O U) L O v o E O j= O OJ l? O 0 O Li 0 0 O M .--i O m m 0 fJ ) ? M O 0 ,-i r-i ,-t O O O O O O O O O O O O O O O O O O O (SAID) MoI::i O O LL ? L L ? f 4.-J C C W a) E Q a O > > i? 2 ' V) N O a a i OO I • Pre and Post Parameters r? U • 0 Project: Novartis USFCC Location: Holly Springs, NC Date: 8/27/2010 Subject: Site Land Use Fitness Facility Courts Predeveloped Land Use Type B Soil Land Use Designation Drainaae Area Total Area A B C CM-1 0.99 0.99 Acres 0.99 0 0 0.99 Post Developed Land Use Type B Soil Land Use Designation Drainaae Area Total Area A B C CM-1 0.99 0.32 0.67 0 Acres 0.99 0.32 0.67 0 Land Use Legend A Grass "Good" CN= 61 B Pavement/Buildings CN= 98 C Woods "Fair" CN= 60 Avq. CN F 60 0.99 0 0.99 Avg. CN 86 0.99 0 0.99 0 • Novartis 22MN9901 Fitness Courts August 2010 Pre Developed Drainage Areas 2 yr P= 3.6 inches Drainage Area Designation: CM-1 Total Length: 132 Feet Drainage Area: 0.99 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Sheet flow Shallow flow Manning's "n" (ft.) (ftift) (feet) (sq. ft.) Time (hr; 0.4 77 0.005 0.41 -r 55 0.073 0.0( 132 • 0.48 0 • Novartis 22MN9901 Fitness Courts Aug-10 Post Developed Drainage Areas 2 yr P= 3.6 inches Drainage Area Designation: CM-1 Total Length: 123 Feet Drainage Area: 0.99 Acres Travel Wetted Distance Slope Perimeter Flow Area Flow Type Mannin 's "n" (ft.) (ftift) (feet) (sq. ft.) Time (hr) Sheet flow 0.24 108 0.01 0.31 Shallow flow 15 0.2 0.00 123 0.32 • • • Pre Development Storm Calculations E is • Scenario: Pre-Development 1 year O-1 • Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown. CT 06795 USA +1-203-755-1666 • • Fitness Facility Courts - Pre-Development Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) CM-1 Pre-Development 1 1 0.022 12.300 0.12 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) 0-1 Pre-Development 1 1 0.022 12.300 0.12 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.511 8/25/2010 27 Siemon Company Drive Suite 200 W Page 2 of 8 Watertown, CT 06795 USA +1-203-755-1666 • • Fitness Facility Courts - Pre-Development Subsection: Time of Concentration Calculations Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 77.00 ft Manning's n (N/A) Slope 0.005 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.04 ft/s Segment Time of 0.477 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 55.00 ft Is Paved? False Slope 0.073 ft/ft Average Velocity 4.36 ft/s Segment Time of 0.004 hours Concentration Time of Concentration (Composite) Time of Concentration 0.480 hours (Composite) • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.511 8/25/2010 27 Siemon Company Drive Suite 200 W Page 3 of 8 Watertown, CT 06795 USA +1-203-755-1666 • • Fitness Facility Courts - Pre-Development Subsection: Time of Concentration Calculations Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm SCS Channel Flow `R=Qa/Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n Tc = (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet Where: V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet SCS TR-55 Shallow Concentration Flow Unpaved surface: V = 16.1345 * (Sf**0.5) Tc = Paved Surface: V = 20.3282 * (Sf**0.5) (Lf / V) / 3600 V= Velocity, ft/sec Where: Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8125/2010 27 Siemon Company Drive Suite 200 W Page 4 of 8 Watertown, CT 06795 USA +1-203-755-1666 Fitness Facility Courts - Pre-Development Subsection: Runoff CN-Area Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm Runoff Curve Number Data Soil/Surface Description CN Area C UC Adjusted CN (ftz) (%) (%) • Woods - fair - Soil B 60.000 43,124.400 0.0 0.0 60.000 COMPOSITE AREA & WEIGHTED CN ---> (N/A) 43,124.400 (N/A) (N/A) 60.000 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 5 of 8 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Pre-Development Subsection: Unit Hydrograph Summary Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm Storm Event 1 Year Storm Return Event 1 years Duration 24.000 hours Depth 2.8 in Time of Concentration 0.480 hours (Composite) Area (User Defined) 43,124.400 ft2 Computational Time 0.064 hours Increment Time to Peak (Computed) 12.292 hours Flow (Peak, Computed) 0.12 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12.300 hours Interpolated Output) Flow (Peak Interpolated 0.12 ft3/s Output) Drainage Area SCS CN (Composite) 60.000 • Area (User Defined) 43,124.400 ft2 Maximum Retention 6 7 in (Pervious) . Maximum Retention 1.3 in (Pervious, 20 percent) Cumulative Runoff Cumulative Runoff Depth 0 3 in (Pervious) . Runoff Volume (Pervious) 0.023 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.022 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 480 hours 0 (Composite) . Computational Time 0.064 hours Increment Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 6 of 8 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Pre-Development Subsection: Unit Hydrograph Summary Label: CM-1 SCS Unit Hydrograph Parameters Unit peak, qp 2.34 ft3/s Unit peak time, Tp 0.320 hours Unit receding limb, Tr 1.280 hours Total unit time, Tb 1.601 hours • Return Event: 1 years Storm Event: 1 Year Storm • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 7 of 8 Watertown, CT 06795 USA +1-203-755-1666 • i rl CI G U Q) Q O a? a? r) a? L a O O O O N O O O Ln .--i U) L O a? o O 0 0 T-i 0 0 O Lr) O 0 M ,-I O rn CO ?D Ln ? re) r+ O p T! +-i •-1 O O O O O O O O O O O O O O O O O O O (S/E4j) (I ejol) MoI? i _^ rB O O LL L ra (D rl 4-J E Q- O Q) O Q I a? L a I rl U • Post Development Storm Calculations 0 n LJ • • Scenario: Post-Development 1 year O-1 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 C J Fitness Facility Courts - Post Development Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) CM-1 Post-Development 1 1 0.125 12.100 1.63 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (hours) (ft3/s) (years) (ac-ft) 1 ? 0-1 Post-Development 1 1 0.060 14.050 0.09 year Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (hours) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) Post- PO-1 (IN) Development 1 0.125 12.100 1.63 (N/A) (N/A) 1 year Post- PO-1 (OUT) Development 1 0.060 14.050 0.09 323.47 0.078 1 year • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 2 of 8 Watertown, CT 06795 USA +1-203-755-1666 • • Fitness Facility Courts - Post-Development Subsection: Time of Concentration Calculations Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 108.00 ft Manning's n (N/A) Slope 0.010 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.10 ft/s Segment Time of 0.315 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 15.00 ft Is Paved? False Slope 0.200 ft/ft Average Velocity 7.22 ft/s Segment Time of 0.001 hours Concentration Time of Concentration (Composite) Time of Concentration 0.315 hours (Composite) . Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Courts 100816.ppc Center 8/25/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack VSi [08.11.01.51] Page 3 of 8 • Fitness Facility Courts - Post-Development Subsection: Time of Concentration Calculations Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm SCS Channel Flow R=Qa/Wp Tc = V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp = Wetted perimeter, feet Where: V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet ==== SCS TR-SS Shallow Concentration Flow Unpaved surface: V = 16.1345 * (Sf**0.5) Tc = Paved Surface: V = 20.3282 * (Sf**0.5) (Lf / V) / 3600 V= Velocity, ft/sec Where: Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet • Bentley Systems, Inc. Haestad Methods Solution Fitness Facility Courts 100816.ppc Center 8/25/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 4 of 8 • • Fitness Facility Courts - Post-Development Subsection: Runoff CN-Area Return Event: 1 years Label: CM-1 Runoff Curve Number Data Soil/Surface Description CN Area C (ft2) (%) Storm Event: 1 Year Storm UC Adjusted CN (%) Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil 98.000 29,185.200 0.0 0.0 98.000 B Open space (Lawns,parks etc.) - Good 61.000 13 939.200 0.0 0.0 61.000 condition; grass cover > 75% - Soil B COMPOSITE AREA & WEIGHTED CN ---> (N/A) 43,124.400 (N/A) (N/A) 86.040 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8125/2010 27 Siemon Company Drive Suite 200 W Page 5 of 8 Watertown, CT 06795 USA +1-203-755-1666 . Fitness Facility Courts - Post-Development Subsection: Unit Hydrograph Summary Return Event: 1 years Label: CM-1 Storm Event: 1 Year Storm Storm Event 1 Year Storm Return Event 1 years Duration 24.000 hours Depth 2.8 in Time of Concentration 0.315 hours (Composite) Area (User Defined) 43,124.400 ft2 Computational Time 0.042 hours Increment Time to Peak (Computed) 12.063 hours Flow (Peak, Computed) 1.64 ft3/s Output Increment 0.050 hours Time to Flow (Peak 12.100 hours Interpolated Output) Flow (Peak Interpolated 1.63 ft3/s Output) Drainage Area • SCS CN (Composite) 86.000 Area (User Defined) 43,124.400 ft2 Maximum Retention 1 6 in (Pervious) . Maximum Retention 0 3 in (Pervious, 20 percent) . Cumulative Runoff Cumulative Runoff Depth 1 5 in (Pervious) . Runoff Volume (Pervious) 0.125 ac-ft Hydrograph Volume (Area under Hydrograph curve) Volume 0.125 ac-ft SCS Unit Hydrograph Parameters Time of Concentration 0 315 hours (Composite) . Computational Time 0.042 hours Increment Unit Hydrograph Shape Factor 483.432 K Factor 0.749 Receding/Rising, Tr/Tp 1.670 • Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 6 of 8 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Post-Development Subsection: Unit Hydrograph Summary Label: CM-1 SCS Unit Hydrograph Parameters Unit peak, qp 3.56 ft3/s Unit peak time, Tp 0.210 hours Unit receding limb, Tr 0.841 hours Total unit time, Tb 1.051 hours • Return Event: 1 years Storm Event: 1 Year Storm • Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 7 of 8 Watertown, CT 06795 USA +1-203-755-1666 • O O O O N O • 0 U N C-). _O N Q? Q I O r O 0 0 Ln ri L O oE 0 0 O 0 O 0 Ln O O O 0 O L M N rl -4-J C N E Q _O Q) Q? 1 O CL r-1 U Ln O Ln 0 in O Ln O I? In N O n U) N O (s/E44) (124010 Mold • Bioretention Parameters/Outlet Structure 0 0 • Novartis Holly Springs, N.C. Bioretention Pond Calculations - Fitness Facility Courts Total Impoundment Volume PN 22MN9901 8/26/2010 END AREA METHOD INCR ELEVATION AREA(SF) DIST (FT) AVG. AREA (SF) VOLUME (CF) VOLUME (CF) 322.5 2683 0.5 3094 1547 323 3505 1547 0.25 3718 930 323.25 3931 2477 0.75 4654 3490 324 5376 5967 1 6582 6582 325 7787 12548 TOTALS 12548 0.29 • • I:\CIVIL\FITNESS FACILITY\BIORETENTION BASINS\bioretention volume.xls Page 1 • • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Elevation-Area Volume Curve Return Event: 1 years Label: PO-1 Storm Event: 1 Year Storm Elevation Planimeter Area Al+A2+sqr Volume Volume (Total) (ft) (ft2) (ft2) (Ai*A2) (ac-ft) (ac-ft) (ft2 ) 322.50 0.0 2,683.000 0.000 0.000 0.000 323.00 0.0 3,505.000 9,254.580 0.035 0.035 323.25 0.0 3,931.000 11,147.894 0.021 0.057 324.00 0.0 5,376.000 13,904.070 0.080 0.137 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V81 Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Volume Equations Label: PO-1 Return Event: 1 years Storm Event: 1 Year Storm Pond Volume Equations * Incremental volume computed by the Conic Method for Reservoir Volumes. Volume = (1/3) * (EL2 - Eli) * (Areal + Areal + sgr(Areal * Area2)) where: EL1, EL2 Lower and upper elevations of the increment Areal, Area2 Areas computed for EL1, EL2, respectively Volume Incremental volume between ELl and EL2 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 2 of 11 Watertown, CT 06795 USA +1-203-755-1666 7'-7» • (? OF PIPE INTERSECTION I CATCH BASIN COORD. LOCH 5 00-C-55-99-1 24" WEIR J 4"0 ORIFICE 5%24" WEIR PLAN VIEW RISER DETAIL o SCALE: 1/2" = 11-0" 11100- • CAST IN FRAME & GRATE PER NCDOT STD. 840.16 I.E. 323.75 4,000 PSI PRECAST CONCRETE PER ASTM C913 AND NCDOT 6 STD. 840.14 ---- TTW CONCRETE FILL TO FORM SMOOTH FLOW LINE --- co BASE CAST INTEGRAL WITH SIDES BOOT CONNECTION (TYP.) FOR HDPE PIPE, SEE DETAIL "D" THIS DWG. 6" WASHED STONE BEDDING --/ FITNESS COURTS RISER GB • 201 SECTION 5 SCALE: 1/2" = 1'-0" 00-C-55-99-12 NOTE: 1. CONCRETE TOP AND STRUCTURE SHALL BE DESIGNED TO SUPPORT AN AASHTO HS-20-44. 5"x24" WEIR T/GRATE EL. SEE TABLE ON DWG. 00-C-20-99-25 4"0 HOLE I.E. 323.25 PLASTIC CEMENT PUTTY OR BUTYL RUBBER JOINTS INV. EL. SEE TABLE ON DWG. 00-C-20-99-25 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Storm Requested Pond Water Surface Elevations Minimum (Headwater) 322.50 ft Increment (Headwater) 0.25 ft Maximum (Headwater) 324.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall El E2 (ft) (ft) Orifice-Circular Orifice - 1 Forward Culvert - 1 323.25 324.00 Rectangular Weir Riser - 2 Forward Culvert - 1 323.75 324.00 Rectangular Weir Riser - 1 Forward Culvert - 1 323.75 324.00 Culvert-Circular Culvert - 1 Forward TW 320.05 324.00 Tailwater Settings Tailwater (N/A) (N/A) • • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8130/2010 27 Siemon Company Drive Suite 200 W Page 3 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Storm Structure ID: Culvert - 1 Structure Type: Culvert-Circular Number of Barrels 1 Diameter 12.0 in Length 50.00 ft Length (Computed Barrel) 50.00 ft Slope (Computed) 0.009 ft/ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.031 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0018 • M C 2.0000 0.0292 Y 0.7400 T1 ratio (HW/D) 1.058 T2 ratio (HW/D) 1.203 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 321.11 ft Ti Flow 2.75 ft3/s T2 Elevation 321.25 ft T2 Flow 3.14 ft3/s • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.511 8130/2010 27 Siemon Company Drive Suite 200 W Page 4 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Outlet Input Data Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Storm Structure ID: Riser- 1 Structure Type: Rectangular Weir Number of Openings 1 Elevation 323.75 ft Weir Length 2.00 ft Weir Coefficient 3.00 (ft^0.5)/s Structure ID: Orifice - 1 Structure Type: Orifice-Circular Number of Openings 1 Elevation 323.25 ft Orifice Diameter 4.0 in Orifice Coefficient 0.600 Structure ID: Riser - 2 Structure Type: Rectangular Weir Number of Openings 1 Elevation 323.75 ft Weir Length 2.00 ft • Weir Coefficient 3.00 (ft^0.5)/s Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3/s Flow Tolerance (Maximum) 10.000 ft3/s • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 5 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Storm RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular) Mannings open channel maximum capacity: 3.64 ft3/s Upstream ID = Orifice - 1, Riser - 2, Riser - 1 Downstream ID = Tailwater (Pond Outfall) Water Device (into) Converge Next Downstream Convergence Downstream Tailwater Surface Flow Headwater Downstream Downstream Hydraulic Error Channel Error Elevation (ft3/s) Hydraulic Hydraulic Hydraulic Grade Line (ft3/s) Tailwater (ft) (ft) Grade Line Grade Line Grade Line Error (ft) (ft) (ft) (ft) (ft) 322.50 0.00 0.00 0.00 Free Outfall 0.00 0.00 (N/A) 0.00 322.75 0.00 0.00 0.00 Free Outfall 0.00 0.00 (N/A) 0.00 323.00 0.00 0.00 0.00 Free Outfall 0.00 0.00 (N/A) 0.00 323.25 0.00 0.00 0.00 Free Outfall 0.00 0.00 (N/A) 0.00 323.50 0.10 320.25 Free Outfall Free Outfall 0.00 0.00 (N/A) 0.00 323.75 0.24 320.36 Free Outfall Free Outfall 0.00 0.00 (N/A) 0.00 324.00 1.82 320.98 Free Outfall Free Outfall 0.00 0.00 (N/A) 0.00 Message WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. CRIT.DEPTH CONTROL Vh= .045ft Dcr= ,130ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .071ft Dcr= .202ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .236ft Dcr= .575ft CRIT.DEPTH Hev= .00ft Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 6 of 11 Watertown, CT 06795 USA +1-203-755-1666 C • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Storm RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Rectangular Weir) Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular) Water Device (into) Converge Next Downstream Convergence Downstream Tailwater Surface Flow Headwater Downstream Downstream Hydraulic Error Channel Error Elevation (ft3/s) Hydraulic Hydraulic Hydraulic Grade Line (ft3/s) Tailwater (ft) (ft) Grade Line Grade Line Grade Line Error (ft) (ft) (ft) (ft) (ft) 322.50 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 322.75 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.00 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.25 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.50 0.00 0.00 0.00 320.25 0.00 0.00 (N/A) 0.00 323.75 0.00 0.00 0.00 320.36 0.00 0.00 (N/A) 0.00 324.00 0.75 324.00 Free Outfall 320.98 0.00 0.00 (N/A) 0.00 WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. H=.25; Htw=.00; Qfree=.75; • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/3012010 27 Siemon Company Drive Suite 200 W Page 7 of 11 Watertown, CT 06795 USA +1-203-755-1666 Fitness Facility Courts - Bioretention Routing Calculations Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Storm RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular) Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular) Water Device (into) Converge Next Downstream Convergence Downstream Tailwater Surface Flow Headwater Downstream Downstream Hydraulic Error Channel Error Elevation (ft3/s) Hydraulic Hydraulic Hydraulic Grade Line (ft3/s) Tailwater (ft) (ft) Grade Line Grade Line Grade Line Error (ft) (ft) (ft) (ft) (ft) 322.50 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 322.75 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.00 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.25 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.50 0.10 323.50 Free Outfall 320.25 0.00 0.00 (N/A) 0.00 323.75 0.24 323.75 Free Outfall 320.36 0.00 0.00 (N/A) 0.00 324.00 0.32 324.00 Free Outfall 320.98 0.00 0.00 (N/A) 0.00 Message • WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. CRIT.DEPTH CONTROL Vh= .071ft Dcr= .178ft CRIT.DEPTH Hev= .00ft H =.33 H =.58 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.D1.51] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 8 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Individual Outlet Curves Return Event: 1 years Label: Composite Outlet Structure - 1 Storm Event: 1 Year Storm RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 2 (Rectangular Weir) Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular) Water Device (into) Converge Next Downstream Convergence Downstream Tailwater Surface Flow Headwater Downstream Downstream Hydraulic Error Channel Error Elevation (ft3/s) Hydraulic Hydraulic Hydraulic Grade Line (ft3/s) Tailwater (ft) (ft) Grade Line Grade Line Grade Line Error (ft) (ft) (ft) (ft) (ft) 322.50 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 322.75 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.00 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.25 0.00 0.00 0.00 0.00 0.00 0.00 (N/A) 0.00 323.50 0.00 0.00 0.00 320.25 0.00 0.00 (N/A) 0.00 323.75 0.00 0.00 0.00 320.36 0.00 0.00 (N/A) 0.00 324.00 0.75 324.00 Free Outfall 320.98 0.00 0.00 (N/A) 0.00 Message • WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow. H=.25; Htw=.00; Qfree=.75; • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 9 of 11 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1 Composite Outflow Summary Return Event: 1 years Storm Event: 1 Year Storm Water Surface Flow Tailwater Elevation Convergence Error Elevation MIN (ft) (ft) (ft) 322.50 0.00 (N/A) 0.00 322.75 0.00 (N/A) 0.00 323.00 0.00 (N/A) 0.00 323.25 0.00 (N/A) 0.00 323.50 0.10 (N/A) 0.00 323.75 0.24 (N/A) 0.00 324.00 1.82 (N/A) 0.00 uontnDUUng --)truaure5 (no Q: Orifice - 1,Riser - 2,Riser - 1,Culvert - 1) (no Q: Orifice - 1,Riser - 2,Riser - 1,Culvert - 1) (no Q: Orifice - 1,Riser - 2,Riser - 1,Culvert - 1) (no Q: Orifice - 1,Riser - 2,Riser - 1,Culvert - 1) Orifice - 1,Culvert - 1 (no Q: Riser - 2,Riser - 1) Orifice - 1,Culvert - 1 (no Q: Riser - 2,Riser - 1) Orifice - 1,Riser - 2,Riser - 1,Culvert - 1 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8130/2010 27 Siemon Company Drive Suite 200 W Page 10 of 11 Watertown, CT 06795 USA +1-203-755-1666 L Bioretention Routing Calculations E 0 • • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Elevation-Volume-Flow Table (Pond) Label: PO-1 Return Event: 1 years Storm Event: 1 Year Storm Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Elevation (Water Surface, 322.50 ft Initial) Volume (Initial) 0.000 ac-ft Flow (Initial Outlet) 0.00 ft3/S Flow (Initial Infiltration) 0.00 ft3/S Flow (Initial, Total) 0.00 ft3/S Time Increment 0.050 hours Elevation Outflow Storage Area (ft) (ft3/s) (ac-ft) (ft2) Infiltration Flow (Total) 2S/t + 0 (ft3/S) (ft3/5) (ft3/S) 322.50 0.00 0.000 2,683.000 0.00 0.00 0.00 322.75 0.00 0.017 3,080.290 0.00 0.00 8.00 323.00 0.00 0.035 3,505.000 0.00 0.00 17.14 323.25 0.00 0.057 3,931.000 0.00 0.00 27.46 323.50 0.10 0.081 4,387.587 0.00 0.10 39.11 323.75 0.24 0.107 4,869.253 0.00 0.24 52.10 324.00 1.82 0.137 5,376.000 0.00 1.82 67.91 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 1 of 5 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Level Pool Pond Routing Summary Return Event: 1 years Label: PO-1 (IN) Storm Event: 1 Year Storm Infiltration Infiltration Method (Computed) No Infiltration Initial Conditions Elevation (Water Surface, 322 50 ft Initial) . Volume (Initial) 0.000 ac-ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 0.050 hours Inflow/Outflow Hydrograph Summary Flow (Peak In) 1.63 ft3/s Time to Peak (Flow, In) 12.100 hours Flow (Peak Outlet) 0.09 ft3/s Time to Peak (Flow, Outlet) 14.050 hours Elevation (Water Surface, 323.47 ft Peak) • Volume (Peak) 0.078 ac-ft Mass Balance (ac-ft) Volume (Initial) 0.000 ac-ft Volume (Total Inflow) 0.125•ac-ft Volume (Total Infiltration) 0.000 ac-ft Volume (Total Outlet 0 060 ac-ft Outflow) . Volume (Retained) 0.064 ac-ft Volume (Unrouted) 0.000 ac-ft Error (Mass Balance) 0.3 O/o Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 2 of 5 Watertown, CT 06795 USA +1-203-755-1666 i Fitness Facility Courts - Bioretention Routing Calculations Subsection: Pond Routed Hydrograph (total out) Return Event: 1 years Label: PO-1 (OUT) Storm Event: 1 Year Storm Peak Discharge 0.09 ft3/5 Time to Peak 14.050 hours Hydrograph Volume 0.060 ac-ft HYDROGRAPH ORDINATES (ft3/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row. Time Flow Flow Flow Flow Flow (hours) (ft3/s) (ft3/s) (ft3/s) (ft3/s) (ft3/s) • 12.250 0.00 0.01 0.02 0.03 0.04 12.500 0.05 0.05 0.06 0.06 0.07 12.750 0.07 0.07 0.07 0.08 0.08 13.000 0.08 0.08 0.08 0.08 0.08 13.250 0.08 0.09 0.09 0.09 0.09 13.500 0.09 0.09 0.09 0.09 0.09 13.750 0.09 0.09 0.09 0.09 0.09 14.000 0.09 0.09 0.09 0.09 0.09 14.250 0.09 0.09 0.09 0.09 0.09 14.500 0.09 0.09 0.09 0.09 0.09 14.750 0.09 0.09 0.09 0.09 0.09 15.000 0.09 0.09 0.09 0.09 0.09 15.250 0.09 0.09 0.09 0.09 0.09 15.500 0.08 0.08 0.08 0.08 0.08 15.750 0.08 0.08 0.08 0.08 0.08 16.000 0.08 0.08 0.08 0.08 0.08 16.250 0.08 0.08 0.08 0.08 0.08 16.500 0.08 0.08 0.08 0.08 0.07 16.750 0.07 0.07 0.07 0.07 0.07 17.000 0.07 0.07 0.07 0.07 0.07 17.250 0.07 0.07 0.07 0.07 0.07 17.500 0.07 0.07 0.07 0.07 0.07 17.750 0.07 0.07 0.07 0.07 0.06 18.000 0.06 0.06 0.06 0.06 0.06 18.250 0.06 0.06 0.06 0.06 0.06 18.500 0.06 0.06 0.06 0.06 0.06 18.750 0.06 0.06 0.06 0.06 0.06 19.000 0.06 0.06 0.06 0.06 0.06 19.250 0.06 0.06 0.06 0.05 0.05 19.500 0.05 0.05 0.05 0.05 0.05 19.750 0.05 0.05 0.05 0.05 0.05 20.000 0.05 0.05 0.05 0.05 0.05 20.250 0.05 0.05 0.05 0.05 0.05 20.500 0.05 0.05 0.05 0.05 0.05 20.750 0.05 0.05 0.05 0.05 0.04 21.000 0.04 0.04 0.04 0.04 0.04 21.250 0.04 0.04 0.04 0.04 0.04 • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 3 of 5 Watertown, CT 06795 USA +1-203-755-1666 • Fitness Facility Courts - Bioretention Routing Calculations Subsection: Pond Routed Hydrograph (total out) Return Event: 1 years Label: PO-1 (OUT) Storm Event: 1 Year Storm HYDROGRAPH ORDINATES (ft3/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row. • 21.500 0.04 0.04 0.04 0.04 0.04 21.750 0.04 0.04 0.04 0.04 0.04 22.000 0.04 0.04 0.04 0.04 0.04 22.250 0.04 0.04 0.04 0.04 0.04 22.500 0.04 0.04 0.04 0.04 0.04 22.750 0.04 0.04 0.04 0.04 0.04 23.000 0.04 0.04 0.04 0.04 0.04 23.250 0.04 0.04 0.04 0.04 0.04 23.500 0.04 0.03 0.03 0.03 0.03 23.750 0.03 0.03 0.03 0.03 0.03 24.000 0.03 (N/A) (N/A) (N/A) (N/A) Time Flow Flow Flow Flow Flow (hours) (ft3/S) (ft3/S) (ft3/S) (ft3/S) (ft3/S) • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 4 of 5 Watertown, CT 06795 USA +1-203-755-1666 • • PondMaker Worksheet Detailed Report: Worksheet (PO-1) - 1 Element Details ID 33 Label Worksheet (PO-1) - 1 Select Pond to Design PO-1 Flow Allowed Below Target 75.0 Flow Allowed Above Target 10.0 Flow Allowed Below Target 50.0 Flow Allowed Above Target 10.0 Volume Allowed Below Target 25.0 Volume Allowed Above Target 300.0 Tolerance Display Display PASS for values within specified tolerance Notes Volume Pond Type Elevation- Area Use Void Space? False Pond Elevation (ft) Elevation-Area 322.50 323.00 323.25 324.00 Pond Area (ft2) 2,683.000 3,505.000 3,931.000 5,376.000 Infiltration Infiltration Method No Infiltration Output Detention Time None Initial Conditions Is Outflow Averaging On? False Define Starting Water Surface Pond Invert Elevation • Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 1 of 4 Watertown, CT 06795 USA +1-203-755-1666 C, • PondMaker Worksheet Detailed Report: Worksheet (PO-1) - 1 324.00 323.88 323.75 323.63 323.50 323.38 c 21 323.25 w 323.13 323.00 322.88 322.75 322.63 322.50 0.000 Elevation vs. Volume • Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.511 8/26/2010 27 Siemon Company Drive Suite 200 W Page 2 of 4 Watertown, CT 06795 USA +1-203-755-1666 0.020 0.040 0.060 0.080 0.100 0.120 Volume (Total) (ac-ft) C PondMaker Worksheet Detailed Report: Worksheet (PO-1) - 1 PondMaker Worksheet (Routing Design) Design Scenario Design Target Peak Computed Computed Target Return Outflow Peak Outflow Peak Outflow Outflow Event (ft3/S) (ft3/s) vs. Target Volume (ac-ft) Post-Development 1 year 1 0.12 0.09 Pass 0.022 Computed Computed Routing Outlet Computed Freeboard Maximum Volume Outflow Structure Max Water Depth Storage Outflow Volume vs. Elevation (ac-ft) (ac-ft) Target (ft) 0.060 Pass Composite Outlet 323.47 Pass 0.078 Structure - 1 PondMaker Routing Design 0 323.50 -- _--_ --------------------------------------------- 324.00 323.88 323.75 w ? 323 63 u' 323.38 a) U w° 323.25 L 323.13 n 323.00 0 322.88 0 322.75 322.63 322.50 t' 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Flow (ft3/S) Post- Development 1year l.ov l.ou Composite Outlet Structure - 1 ? Target Rating Curve ®®° I • Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Fitness Facility Courts 100816.ppc Center [08.11.01.51] 8/26/2010 27 Siemon Company Drive Suite 200 W Page 4 of 4 Watertown, CT 06795 USA +1-203-755-1666 1 7-? E L a--) D 0 0 a Lf) H 0 a L N O O O O N O O O Ln rl L \J v o O j= 0 0 0 0 O Lri 0 O O Ln O Ln O Ln o Ln o 0 ? Ln N O N Ln N O *? --+ ,? --i O O O O (Sh4j) mou e-\ c 0 H M fu _0 _0 LL LL I 1 L L (6 m N Q) r-I rl 4--I d--) C C CN w C E 0- 0- 0 0 aJ N N N 0 0 0 0 a. a. 1 l? rl • Appendix A • Pre & Post Conditions Drainage Maps BioRetention Plan 0 r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I ?? I o I I o? °g? p ,._ ? u N Z Z I s 6 k? 6 °m'u ? (J i W d e fin= - ° f° A is Q Z J ?I n a n od a= C) Z w c,4 U 3 o o m " I ? `ge g O u? < w z w w ? F- ] F- W z y v .I > 3 0 Z ? ? ZI _ ?- 0 3 - > D! 0 of d ? ° a a W W a e . e o- N? NUI .o ' r s 0 1 - I w O ?9oW d 5.5 o ' Q 0 DO ? V ? Z w ? 1 1 _ w ° X x I - 1 1 3 Z I I " o I r I z ° a N cV I I I a z ? '' w = ? ? I I z ? I I o ° o a ° o I I I `rS I ?? I I ?o I I dd I ohm b1?1O Z 3 a tt ° U 2 I I w I I ° I I I I I I ? ° I o I I ? ?I I EIITTIII I I I I I I I I I O I F d I U I O I o I ? I I ? I ? I I I O ! fx ?a a I ° I N 'SIIMV/AN NHLIM OLYYIdOdtlOVIVTNdO1 M1SI0O>!d ANV M a'WUHY00Nl MO03Sf13910N(0)ONVIYVd NIN0310NA1M0OW U ONOLV MNNI aJ1E0HNOJMIN3Y IYI 013713Nl ONLLVT3UNOLLVW710lNI T1VQNY ONV AY3N3KL3N1031NdS99Nd3 d3MSWdlSAS ONV971A34'SW3WfIM1SN13N11VN15NOWON003N10110319f1503tl3aN3L90NV571MVAON JO dONOLLVWtlOdNIA71V131NdOMd SNVINOO1NOJ118W11o 0p 57N1 tt a = V w w O U - a i • • r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , .? o w o u m Z Z ???' ? m 3 o h-1 p W Q ? i _ M °° u ? C77 z w ? ? ? Q Z J n # o < o LUi U lai rc of Yq ?? UOz.- 0Y JQ(n >> QLn W Y u `` r 5 z N V '^ < O Z c? Ul z j 1 O o W .° y G n ~ in Nis Cosa sn < 4 r? w =r '"9ow 'S w t w X II Oz >? S°?o '? ? O O O w ' ? ? ?k o ? X I W Q a ? N I ? N I I L?j 0 0 o a o a L?J I ss?? I I `?o I I ?d I ? I I I I I I I I I I I I I I I I I I I I I ? I I ? I I 3 I I I I z I I I I LLJ (1- LLJ I I "I El- o p I I I D, L-i I I I z I I ? a ? I o I I 0 w <cc I I I w I I I Ell I I I I I a I I a - I I I I o L- M z I II ? ? I o 'SLLNVAON HUM IMYa380V N31NNM SSHNdx3 830Nf11d30m I3nOONd ANY NI 031YSOdNOONI NO 09Sn 3910N (0) ONY SNVd NI NO 310HM N10 WOO NO 03Jf100Nd3N 39 ION 19) 30mCUNO0 NI 03NIY133 39(V) 013N3HU ONLLYI3N NOLLVWN0lNI TM 0NV A93N3HL 031N3S3Nd3N SVIMSAS ONV S301A30'SW3WfINmi 3Hl1VHl 9NOWON00 3H1 O1103rins a3N30N31510NY SLLNVAON dO NOLLYWNOlNI ANVJ3INdONd SMYINO0ll 3vgnO(0 M rc L - - - - - - - - - - - - - - - - 0 -- - -0 ----------------------------------------------------------------------- 1 • • Appendix B Soils Map Vegetative Analysis Map 9a6L-1'99 (616) XOj 066L-4'98 (616)-suoyd rvaO+Aea9noaadv w O xva : A9 NsvaO b o`d L09La DupOJD ON V.19108 "110S Z O o{ o=, POOa A;1u1J1 WON aL6 dVV4 SISA' VNV 8 e _c=? 9 s;uo;lnsuoo u6?soa W0O : AB 03NOIS30 3 w N t 00-9CZ:ON nu VNI10EIVO RIWON VEME S JMOH gals I w ?b'd SRI?ION Wed ssau?sn8 s6u?adS ?11oH U M zo-u-z? aavos pwnoiov3dvoisHia 1 %y;>ObtlOH?` ^ A n looz 's Aavnasv : alra C\j 31V0 NOISLI3N """" IT '),,,,fMC11 ?(, lvdC {..7 S sAxddslnuxm xXm ew merdJad 3 - „ ? / N / I I ? YR 3 E ? ^nyl? ?? z w ?>; s U W A?a 3 ? ? I a¢ 'e a pZ U 66 a ?P4 w ? 6.1 a- ! p E z P4 (? F f ey + + Q O p t ZC.4 wZ O a o J Y a s oar \ V? 0 ? ?3, oom Cn 4. D ? W W ? O / ? ? ? -1 0 / ? i a D D MN ?? ? Z J O N 8 IF D D °° Y O Z ._.. U,._ u ?. ? S ?? D I"- W a S ? ? ?? ZU .. e ???? i O° o5 N Ly ? ? ? ° mU z ?. ? ?? oZ ?? ? J ? Z O ? f _j D D ?? v J W W O U F co z D O O o M Z ?U ZOJ D N F N Z 4 0 J 7¢ N W W Q O Q = D >L 3 WQwO}? d?JJ N wQOZ E Q w ILIK w \ D D D W O W 4i0 0 O 0 0 Q W O D ?YZQ0ZC0 Ur-(nF-?? ZW?2w J NUOJZ F O Z F-co yOF oNz n.aO<Z-< o¢ Q oJ'w??iR 0aW??r D ?_ QQ EV1w,-OOZK?+J1 } jZ E!>- U W V- >?, Q - I:r Ks O¢Wxr D / pO(W?=.' QWWLzt OAF ww a_ La II ZLi ZW Ui aWZw IV-, rQ? >wN ? ?° o"oozF-?3 .?1-Q7mN Www??J4JJ w C 'J J Q? tL F J N I- NQ U) i }ZO0w 0Q - Ul D D D (JW¢ Q FQ ?J- N a K XOXO-w ?oX ?°??? ? ? 2020 SLJ W?OZO Om OZL Zr=W?Q zzg0a Q a, ° ?°? :2 w °pSI: ob 0u-i L °?w?Q (/? J o? ? 1 QW a ?? EL WH"WwQ I N-O }O rnF D ° p (n052? UI ?J} zoW J D 9 Z 004,4- Z?` QJ OWZ'JW 0 2 0= O U 0 Z Q O z W 5 0 VI z JJJ NaoWaz?J N,5 W?Q?Q a_ ?J J N wQZ?Q = w?0cn QI- ?J w ?WZZO W N02WZ0 N W 6Jil o< _\ D a N pNOWN? "LJ N NQOOQa < SJK??1 Of V) O ?zNW ?cn? f/1 .-3K0 J-WQ Q aWJ4???J } WQJI??w OJ K wW OKNI-fn W0K>F- + < ?Oj 0 0z 0 ? I-°?z?? a ?0IQi=3 ? ?? ? ? W + + + + JJJJ ?+ - ? ? ? F- n N V) H JJJJ J a++ + JJ ? ? N w w w z i1i F (7 U o CJ U } < of ry W W N L (,,,J) V) cn W W Gi (f) + ^ Ld ^ U O O O O O O O O t _31 z N U U U U Z In N W 3 + S F F- K I ol F- X K W o 0 0 0 0 0 0 0 0 Z J O O O O O D O 0 LLJ Lo w M m m a a LLJ z z z z z z z z o 0 0 0 0 0 0 O N FD ~ a Q a a a ¢ ¢ c o N Q m :2E :2 3: O E 9 a o C] N N N Q m m U U 57 Q CT 3 ol CT O 19P 19 2002 0080V LI 0s0 enl 6a0'200009EZ\XJ2d sseufsn0 56u{J09 4110H 00.-9E2\970e10dd 052 - !OZ\:d 0- - 0 is IJf /,9 2002 G[ 92T; Z; aa9 and En P'C09009,\V2d ssauisn9 Sfiu,IdS Afloll 00-9E2\s70afoJd 092 - f02\'d .JA OB CALCULATION COVER SHEET • • Is PROJECT USFCC JOB NO. 22MN9901 CLIENT Novartis Vaccines & Diagnostics SUBJECT Fitness Facility Storm Sewer Calculations ORIGINATOR Ed Kubrin CHECKER Chuck Van Arsdale PURPOSE OF ISSUANCE REV NO. PAGES DESCRIPTION ORIG. DATE CHKD DATE APRV DATE A 24 Issued for Permitting and Information EJK 8/31/10 CVA 8/31/10 COMMENTS: 1. Bentley Storm CAD V8i software was used to prepare calculations of the stormwater collection system. DEPARTMENT Civil CALC. NO. C-22 DATE 8/23/2010 DATE 8/30/2010 • Active Scenario: 10 YR STORM ?n,adG? N C7 L_o7' 1r? u Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • Scenario: Base couvTS O-1 • • Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8/23/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r I I z I U I ?- I u I o I V I m I a I I - o > Q I U' g?rn ? o N I I ?° - ?° ? ? z z I a g' ? 3 o r-H p w Q _ a 0 < z o n P? o z _ o = ?3 i M µNy?I u O L? ? ? ? z Q Vl s in u ?a Jai p z w ICI V O ¢w_ w Y in 0 a w x 'o ct? I v 4 ary n y S 4 T 5 .? 0 Ln ?d a? ? ? ? Y ? ? - o G w 5? dos Ei S o - ?I of -a _ 3 0 0 1 1 a m X z ? I I a I N N I I I U U O R Q o 0 o a o o' j7\ j SS ?a Oll b? O z 3 a u tt i 0 0 a a a w K o I K a a I I I I I z I 0 ( 0 o a =I u_ I a I 'SLLMYAON HIM IN3W33MOY N31LMM S53MdX3 M30Nn LI307(3 ion(]OU ANY NI (MWOdMOONI MO 03Sn 3910N 101 ONY -'LMYd NI MO 31OHM NI CUM MO 03OnCIOMd3M 39 LON (9) 30MOYN00 M 03NIV13N 39 IV) w a 013M3HL ONLLYSS NOLLYWMOdNl TIV (INV A9343HL 031N3S3Md34 SW3LSAS ONY S301A30'SW3Wn&SNl 3HL LVHI SNOWONOO 3NL 01103f9fIS 03M30N31 SI ONY SLLMYAON 40 NOLLYWMOlNI AMYASJOMd SNIV1NO01N3WLL000 M U w m V CJ a - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ - - - - - - - - - t 0 0 0 Section B 10 Yr Storm Results 0 Active Scenario: 10 YR STORM Label Area Rational C Catchment CA Time of Outflow Node Catchment (acres) (acres) Concentration Intensity (min) (in/hr) • CM-200 1.06 0.596 0.63 11.0 CB-200 5.96 CM-201 0.99 0.708 0.70 18.5 CB201 4.89 Catchment Rational Flow (ft3/s) 3.80 06 3.45 4. CO') fzlrS • Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44) 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • • • Active Scenario: 10 YR STORM Label Elevation Elevation Inlet C Inlet Drainage Total Inlet Local Local Rational (Rim) (Invert Out) Area Tc Intensity Flow (ft) (ft) (acres) (min) (in/hr) (ft3/s) CB-200 331.00 325.50 0.596 1.06 11.0 5.962 3.80 CB201 324.75 320.05 0.708 0.99 18.5 4.891 3.45 Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stC Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • E I1 L I Active Scenario: 10 YR STORM Label Start Node Invert Stop Node Invert Length (Unified) Slope (Upstream) (Downstream) (ft) (Calculated) (ft) (ft) (ft/ft) P1 CB-200 325.50 MH-202 325.02 63.0 0.008 P2 MH-202 324.92 0-10 323.88 130.0 0.008 P3 CB201 320.05 0-11 319.60 50.0 0.009 Diameter Manning's n System Rational System Flow Capacity Velocity (in) Flow Time (Full Flow) (Average) (ft3/s) (min) (ft3/s) (ft/s) 15.0 0.013 3.80 10.957 5.64 4.93 15.0 0.009 3.77 11.170 8.35 6.63 12.0 0.009 3.45 18.494 4.88 6.74 Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 Active Scenario: 10 YR STORM 'PA a \41 d C, 335.00 MH-202 Rim: 332.10 ft CB-200 `Invert: 324.92 ft Rim: 331.00 ft / Invert: 325.50 ft I 330.00 I 0-10 Rim: 326.50 ft 0 HYDRAULIC GRADE LINE Invert : 323.88 ft w • 325.00 - -- - P1 - 630ft@0.008ft/ft l circular Pipe - 15. 0 in Concret e P2 ft @ 0 Ci ' in Corr .008 ft ft rcular Pipe - 1 5.0 in Corrugat d e HDPE (Smooth Interior) i INN „? = 3Z5•oZ 320.00 -0+50 0+00 0+50 1+00 1+50 2+00 Station (ft) • Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • Active Scenario: 10 YR STORM CO?Q's CB201 Rim: 324.75 ft Invert: 320.05 ft • 325.00 320.00 315.00 1 -0+50 Circular Pi "3* 50.0 ft a@ 0.009 fVft pe - 12.0 in Corrugated HDPE 0+00 Station (ft) Bentley Systems, Inc. Haestad Methods Solution FIT FAC STORM 100820.stc Center 8/25/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 z C 0 cu a? Lu 0+50 0-11 Rim: 322.00 ft Invert: 319.60 ft HYDRAULIC GRADE Interior) 1+00 Bentley Storm CAD V8i (SELECTseries 1) [08.11.00.44] Page 1 of 1 • Section C 25 Yr Storm Results 0 • • Active Scenario: 25 YR STORM Label Area Rational C Catchment CA Time of Outflow Node Catchment (acres) (acres) Concentration Intensity (min) (in/hr) CM-200 1.06 0.596 0.63 11.0 CB-200 6.82 CM-201 0.99 0.708 0.70 18.5 CB201 5.63 Catchment Rational Flow (ft3/s) 4.35 0-15-^ ?A21G1N y 3.98 4r= - Co V2'15 Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • • • Active Scenario: 25 YR STORM Label Elevation Elevation Inlet C Inlet Drainage Total Inlet Local Local Rational (Rim) (Invert Out) Area Tc Intensity Flow (ft) (ft) (acres) (min) (in/hr) (ft3/s) CB-200 331.00 325.50 0.596 1.06 11.0 6.822 4.35 CB201 324.75 320.05 0.708 0.99 18.5 5.632 3.98 Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 1? • • Active Scenario: 25 YR STORM Label Start Node Invert Stop Node Invert Length (Unified) Slope (Upstream) (Downstream) (ft) (Calculated) (ft) (ft) (ft/ft) P1 CB-200 325.50 MH-202 325.02 63.0 0.008 P2 MH-202 324.92 0-10 323.88 130.0 0.008 P3 C6201 320.05 0-11 319.60 50.0 0.009 Diameter Manning's n System Rational System Flow Capacity Velocity (in) Flow Time (Full Flow) (Average) (ft3/s) (min) (ft3/s) (ft/s) 15.0 0.013 4.35 10.957 5.64 5.07 15.0 0.009 4.32 11.164 8.35 6.86 12.0 0.009 3.98 18.494 4.88 6.93 Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 C 0 325.00 320.00 ' -0+50 Active Scenario: 25 YR STORM Pp, QV- 110 C' P7: 63.0 ft --- @ 0.008 ft/ft --- Circular pipe 75.0 in Concrete P2 130.0 It CCircular Pipe - 0.008 fuft 16.0 in Corrugated HDPE (Smooth Interior) lad 1N 3ZS°Z- 0+00 0+50 1+00 1+50 2+00 Station (ft) • Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8130/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • Active Scenario: 25 YR STORM CaQv.-(S C B201 Rim: 324.75 ft Invert: 320.05 ft • 325.00 0-11 Rim: 322.00 ft Invert: 319.60 ft HYDRAULIC GRADE ? I c 320.00 c? ?1: 50.0 ft Lu Circular Pipe - 12.10 in C 0.009 ft Corrugated HppE ' ( mooth Interior) i I 315.00 --- -0+50 0+00 0+50 1+00 Station (ft) • Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc Center [08.11.00.44] 8/25/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • • Section D References 0 NCDENR Stormwater BMP Manual Chapter Revised 06-16-09 • 3.2. Peak Flow Calculations Some of the state's stormwater programs require providing attenuation of peak runoff; for example, that the post-development flow rate far the one-year, 24-hour storm may not exceed the pre-development flow rate (Neuse and Tar-Pamlico NSW Programs). In addition, it is also important to compute flow rates from the watershed when designing BMPs such as grassed swales, filter strips, and restored riparian buffers. The primary method that is used to determine peak runoff rate for North Carolina's stormwater programs is the Rational Method. The Rational equation is given as: Q=C- I"A Where: Q = Estimated design discharge (cfs) C = Composite runoff coefficient (unitless) for the watershed I = Rainfall intensity (in/hr) for the designated design storm in the geographic region of interest A = Watershed area (ac) The composite runoff coefficient reflects the surface characteristics of the contributing watershed. The range of runoff coefficient values varies from 0 -1.0, with higher values • corresponding to greater runoff rate potential. The runoff coefficient is determined by estimating the area of different land uses within each drainage area. Table 3-2 presents values of runoff coefficients for various pervious and impervious surfaces. The Division believes that the Rational Method is most applicable to drainage areas . approximately 20 acres or less. Table 3-2 Rational runoff coefficients (ASCE,1975; Viessman, et al., 1996; and Malcom, 1999) Description of Surface Rational Runoff Coefficients, C Unimproved Areas 0.35 Asphalt 95 Concrete 0.95 Brick 0.85 Roofs, inclined 1.00 Roofs, flat 0.90 Lawns, sandy soil, flat (<2%) 0.10 Lawns, sandy soil, average (2-7%) 0.15 Lawns, sandy soil, steep (>7%) 0.20 Lawns, heavy soil, flat (<2%) 0.15 Lawns, heavy soil, average (2-5%) 0.20 Lawns, heavy soil, steep (>7%) 0.30 Wooded areas 0.15 0 The appropriate value for I, precipitation intensity in inches per hour, can be obtained from the NOAA web site at: htlp://hdsc.nws.noaa.gov/hdsc/pfds/. This web site Stormwater Management and Calculations 3-2 July 2007 • • • Active Scenario: 10 YR STORM Element Details ID 27 Notes Label TOHS NC Duration 2 Year 10 Year 25 Year (min) (in/hr) (in/hr) (in/hr) 5.0 5.76 7.22 8.19 10.0 4.76 6.13 7.01 15.0 4.04 5.25 6.03 30.0 2.70 3.71 4.32 60.0 1.70 2.41 2.84 Library Status Summary ID Label Modified Date Library Source Library Modified Date Synchronization Status Engineering Reference Guid Synchronization Details 27 TOHS NC 8/30/2010 9:41:46 AM Orphan (local) Orphan (local) Orphan (local) Orphan (local) 8.50- 8.00 7.50 7.00 ,.. 6.50 - 6.00 L c 5.50 Z 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 Duration (min) Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stC Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown. CT 06795 USA +1-203-755-1666 • I Peak Flow Calculations a. Rational Method: The rational method provides a simple yet reliable way to determine peak runoff rates for drainage areas that do not exceed 20 acres and do not utilize any stormwater attenuation devices. The Rational equation is given as: Q=C*I*A Where: Q = Estimated design discharge (cfs) C = Composite runoff coefficient (unitless) for the watershed. See Table 8.5d for C values based upon soil type. I = Rainfall intensity (in/hr) for the designated design storm. *Please refer to the following Table 8.6b for rainfall intensity, I. A = Watershed area (acres) Although there is no conversion factor, the units are resolved because one acre-inch per hour is about the same as one cubic foot per second. Please note that the precipitation intensity can be calculated either by equation • as shown below or by interpolating values from Table 8.6c: I = g / (h+T) Where: I = Precipitation intensity (in/hr) g and h = empirically derived constants (See Table 8.6b for values) 5 minutes min Table 8.05b: Values for g and h Return Period (years) g h 1 104 18 2 132 18 5 169 21 10 195 22 25 232 23 50 261 24 100 290 25 • Table 8.05c: Intensity-Duration Frequency Table Duration 1-Year (in/hr) 2-Year (in/hr) 5-Year (in/hr) 10-Year (in/hr) 25-Year (in/hr) 50-Year (in/hr) 100-Year (in/hr) 5 minutes 4.52 5.76 6.58 7.22 8.19 8.96 9.72 10 minutes 3.71 4.76 5.54 6.13 7.01 7.71 8.40 15 minutes 3.15 4.04 4.74 5.25 6.03 6.64 7.24 30 minutes 2.17 2.70 3.28 3.71 4.32 4.80 5.28 60 minutes 1.33 1.70 2.12 2.41 2.84 3.17 3.50 2 hours 0.75 0.95 1.20 1.37 1.62 1.81 2.00 3 hours 0.53 0.71 0.89 1.02 1.21 1.35 1.50 6 hours 0.28 0.44 0.56 0.65 0.77 0.86 0.96 12 hours 0.14 0.26 0.33 0.39 0.46 0.52 0.57 24 hours 0.07 0.15 0.19 0.22 0.27 0.30 0.33 r11VAL April 2UUZ5 add J 2UUZ5 8-78 • P., s7 bV-VC,-o erf> Subsection: Time of Concentration Calculations Return Event: 10 years Label: CM-1 (2 OvvR7S Storm Event: 10 year Time of Concentration Results Segment #1: TR-55 Sheet Flow Hydraulic Length 108.00 ft Manning's n (N/A) Slope 0.010 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.10 ft/s Segment Time of 0.315 hours Concentration Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 15.00 ft Is Paved? False Slope 0.200 ft/ft Average Velocity 7.22 ft/s Segment Time of 0.001 hours Concentration Time of Concentration (Composite) Time of Concentration 0.315 hours (Composite) • Bentley Systems, Inc. Haestad Methods Solution Courts 10 25.ppc Center 8/27/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 1 of 2 • Subsection: Time of Concentration Calculations POS? 17i?vEil..o`pr9 Return Event: 10 years Label: CM-1 ?A4v-I Storm Event: 10 year 7 Time of Concentration Results Segment #1: TR-55 Sheet Flow • Hydraulic Length 67.00 ft Manning's n (N/A) Slope 0.015 ft/ft 2 Year 24 Hour Depth 3.6 in Average Velocity 0.10 ft/s Segment Time of Concentration 0.183 hours Segment #2: TR-55 Shallow Concentrated Flow Hydraulic Length 20.00 ft Is Paved? False Slope 0.200 ft/ft Average Velocity 7.22 ft/s Segment Time of Concentration 0.001 hours Segment #3: TR-55 Shallow Concentrated Flow Hydraulic Length 32.00 ft Is Paved? False Slope 0.030 ft/ft Average Velocity 2.79 ft/s Segment Time of Concentration 0.003 hours Segment #4: TR-55 Shallow Concentrated Flow Hydraulic Length 20.00 ft Is Paved? False Slope 0.125 ft/ft Average Velocity 5.70 ft/s Segment Time of Concentration 0.001 hours Time of Concentration (Composite) Time of Concentration (Composite) 0.188 hours • Bentley Systems, Inc. Haestad Methods Solution Parking 10 25.ppc Center 8/27/2010 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.511 Page 1 of 2 - - - - - - - - - - cu:) 3: Ln Elf ;? 0 0 go • • lliffecol: PROJECT USFCC CALCULATION COVER SHEET JOB NO. 22MN9901 DEPARTMENT Civil CLIENT Novartis Vaccines & Diagnostics CALC. NO. C-23 SUBJECT Sediment Trap 11 Calculations ORIGINATOR Ed Kubrin DATE 8/18/2010 CHECKER Chuck Van Arsdale DATE 8/30/2010 PURPOSE OF ISSUANCE REV NO. PAGES DESCRIPTION ORIG. DATE CHKD DATE APRV DATE A 7 Issued for Permitting and Information EJK 8/31/10 CVA 8/31/10 COMMENTS: 0 • Project: Novartis Vaccines & Diagnostics USFCC By: EJK Location: Town of Holly Springs, North Carolina Ckd By: Date: 8/29/2010 Rev.: A Subject. Erosion Control Sediment Trap Calculations SEDIMENT TRAP 11 The following calculations for Sediment Traps follow the "Town of Holly Springs Engineering Design and Construction Standards", Section 4.03 1. Rational Method Discharge from a 10 year storm event "C" and "I" values were determined from "Stormwater Design Manual" Wake County. Sed. Trap Area Ac "Q" Discharge (cfs) 11 0.38 7.22 2.72 7.46 Note: "C" coefficient of land use use is based on "Graded Clayey Soil, 0-5%". C=0.50 and "Lawns Clay soil, 2-7%" C=0.22 (composite average see attached) "I" determined from the 10 yr. storm event with assumed time duration of 5 minutes. Q=CIA • 2. Minimum Storage Capacity (3600 CF/Ac per TOHS) Sed. Trap Drainage Area(AC) Min. Vol CF/Ac (CF) Volume Required (CF) Volume Available (CF) 11 2.72 3600 9792 10500 3. Minimum Surface Area (435 SF/cfs per TOHS) Surface Area Regd Sed. Trap "Q" Discharge (cfs) (435*Q10) (sf) Surface Area Available (sf) 11 7.46 3246 3309 4. Weir Length & Depth per TOHS Table 4.2 (see attached) Min. Length = 8 feet 0 e-, Woodlands 0.20-0.25 Parks, cemeteries 025 Playgrounds 0.35 Lawns: Sandy soil, flat, 2% 0,10 Sandy soil, average, 2 - 7% 0,15 Sandy soil, steep, > 71S 0.20 Clay soil, flat, 2% 4,17 Clay soil, average, 2 - 7% 0.22-' Clay soil, steep, > 7% 0.35 Graded or no plant cover Sandy soil, flat, 0 - 5% 0.30 Sandy soil, flat, 5 -10 % 0,40_ Clayey soil, flat, 0 - 5% 0.50, Clayey soli, average, 5- 10% 0.60 Residential: Single-family (R - 4) 0.50 Single-family (R - 6) 0.55 Multi-famlly (R - W) 0.60 MuM-family (R - 20) 0.70 Multi-family (R-30) 0.75 Business: .O&1(1,11,111) 0.85 11&12 0.85-0.95 Shopping Centers 0.85-0.95 Streets: GraveJ areas 0.50 Drives, walks, and roofs 0.95 Asphalt and Concrete 0.95-1.00 It is often desirable to develop a composite runoff coefficlent based on the percentage of different types of surfaces in the drainage areas. Composites can be made with th e values from Table 2.2 by using percentages of different land uses, as illustrated in Equati6n22. In addition, more detailed composites can be made with coefficients for different surface types such as roofs, asphalt, and concrete streets, drives and walks. The composite procedure can be applied to an entire drainage area or to typical "sample" blocks as a guide to the selection of reasonable values of the coefficient for an entire area. C1"A1 + C2"A2 + ... Cx'Ax Composite C = -- - - - - --- (2.2) Al+A2+...Ax 2.2.3 Rainfzll_Intensi The rainfall intensity (1) is the average rainfall rate in in./hr for a duration equal to the time of concentration for a selected return period. Once a particular return period has been selected for design and a time of concentration calculated for the drainage area, the rainfall intensity can be determined from the Intensity- durallon-frequency (IOF) data for the City of Raleigh given in Table 2.3. - 1 '' i • 1 Peak Flow Calculations a. Rational Method: The rational method provides a simple yet reliable way to determine peak runoff rates for drainage areas that do not exceed 20 acres and do not utilize any stormwater attenuation devices. The Rational equation is given as: Q=C*I*A Where: Q = Estimated design discharge (cfs) C = Composite runoff coefficient (unitless) for the watershed. See Table 8.5d for C values based upon soil type. I = Rainfall intensity (in/hr) for the designated design storm. *Please refer to the following Table 8.6b for rainfall intensity, I. A = Watershed area (acres) Although there is no conversion factor, the units are resolved because one acre-inch per hour is about the same as one cubic foot per second. Please note that the precipitation intensity can be calculated either by equation • as shown below or by interpolating values from Table 8.6c: I=g/(h+T) Where: I = Precipitation intensity (in/hr) g and h = empirically derived constants (See Table 8.6b for values) 5 Table 8.05b: Values for g and h Return Period ears g h 1 104 18 2 132 18 5 169 21 10 195 22 25 232 23 50 261 24 100 290 25 E Table 8.05c: Intensity-Duration Frequency Table Duration 1-Year in/hr 2-Year in/hr 5-Year in/hr 10-Year Ihr 25-Year in/hr 50-Year in/hr 100-Year in/hr 5 minutes 4.52 5.76 6.58 7.22 8.19 8.96 9.72 10 minutes 3.71 4.76 5.54 6.13 7.01 7.71 8.40 15 minutes 3.15 4.04 4.74 5.25 6.03 6.64 7.24 30 minutes 2.17 2.70 3.28 3.71 4.32 4.80 5.28 60 minutes 1.33 1.70 2.12 2.41 2.84 3.17 3.50 2 hours 0.75 0.95 1.20 1.37 1.62 1.81 2.00 3 hours 0.53 0.71 0.89 1.02 1.21 1.35 1.50 6 hours 0.28 0.44 0.56 0.65 0.77 0.86 0.96 12 hours 0.14 0.26 0.33 0.39 0.46 0.52 0.57 24 hours 0.07 0.15 0.19 0.22 0.27 0.30 0.33 riiV!-1L Aprn t.uua aaa Luuu 8-78 installation of the silt fence. Silt fence outlets should NOT be located where the outflow will erode the soil below. A location should be selected that is protected with adequate vegetation, or protection should be provided via stone or layers of filter fabric. Silt fence outlets have the same requirements for access as silt fence, outlined above. Installation: Refer to the approved erosion control plan for location, extent, and specifications. If silt fence is not installed correctly the first time, it will have to be reconstructed. Determine the exact location of the outlet before completing installation of the silt fence, taking into consideration: Installation at the lowest point(s) in the fence where water will pond. 2. Maximum allowable drainage area restriction for silt fence. 3. Installation where the outlet is accessible for installation, maintenance and removal. 4. Placement of the outlet so that water flowing through it will not create an erosion hazard below - avoid steep slopes below the outlet and areas without protective vegetation. Use slope drains if necessary. The silt fence outlet shall be installed in accordance with the standard detail, and • the approved erosion control plan. C. Gravel & Rip Rap Filter Basin (Sediment Trap) A sediment trap is a small, temporary ponding area formed by an embankment or excavation to detain sediment-laden runoff and trap the sediment. The erosion control plan should show the sediment trap drawn to scale with adequate room around it for machinery to construct and maintain it during all phases of construction. Use/Design: Use the following criteria to evaluate the location and to design all types of sediment traps. Sediment traps may be used for maximum drainage areas that are S acres or less and where access can be maintained for sediment removal and proper disposal. Investigate and evaluate the specific conditions on the site, determine if the location is. suitable, and design the trap to fit the conditions. 1. Storage Capacity - The minimum volume of the sediment trap shall be 3600 ft3/acre based on area draining into the basin. Measure volume below the crest elevation of the outlet _---?; 2. Surface Area - The minimum surface area of the trap must be 435 square feet per efs of Qio peak inflow. • FINAL May 2007 TOc 4-7 • Weir Length and Depth - The spillway weir must be designed at least 4 feet long and sized to pass the peak discharge of the 10-yr storm or may be selected from Table 4.2. A maximum flow depth of 0.5 feet, a minimum freeboard of 1 foot, and maximum side slopes of 2:1 are recommended. Weir length is to be designed based on the following criteria by using the weir equation Q=CLH312 ; H, not to exceed .5' and C=3 iabie 4.L lvl1nimum weir Lengtn for aeaiment craps Drainage Acres Minimum Length of Weir Feet 1 4.0 2 6.0 3 8.0 4 10.0 5 12.0 4. Total Depth - The minimum depth below the crest of the outlet is 3.5 feet. The maximum depth is 6.5 feet. Depth may vary in different parts of a trap due to topography. Excavate 1.5 feet of the depth of the basin below grade, and provide minimum storage depth of 2 feet above grade. • Installation: 1. Embankment - Ensure that embankments for temporary sediment traps do not exceed 5 feet in height measured at the center line from the original ground surface to the top of the embankment. Additional freeboard may be added to the embankment height to allow flow through a designated bypass location. Construct embankments with a minimum top width of 5 feet and side slopes of 2:1 or flatter. Machine compact embankments. 2. Diversions and Slope Drains - Runoff must be conveyed into the basin through stable diversions or temporary slope drains per Town of Holly Springs specifications. Locate sediment inflow to the basin away from the dam to prevent short circuits from inlets to the outlet. Outlet Section - The outlet area of a sediment trap. consists of an earthen embankment with filter fabric separating the rip rap and wash stone weir. Baffles to lengthen the distance water travels through the sediment trap should be incorporated in the sediment basin. Installation of porous baffles shall be as described in the silt fence specifications outlined in Section 4.03C. Construct the sediment trap outlet with a minimum of 4 feet in length of the embankment made of stone (located at the low point). The stone section serves two purposes: 1) the top section serves as a non- erosive spillway outlet for flood flows, and 2) the bottom section provides a means of dewatering the basin between runoff events. FINAL May 2007 -'04-5 4-8 • Project: Novartis Vaccines & Diagnostics USFCC Location: Town of Holly Springs, North Carolina Date: 8/309/2010 Subject: Erosion Control Sediment Trap #11 Calculations ELEV AREA (SF) DELTA VOLUME (CF) 317 1462 1 1641 318 1820 1 2012 319 2203 1 2407 320 2611 1.5 4440 321.5 3309 10,500 • By: EJ K Ckd By: Rev.: A INCR VOLUME (CF) 1641 3653 6060 10500 0 -J f m ___-__ 0 ,t / t 11 / t 1,V 7 Ir f 0 / / I O W 'I 1 l? ?i / U ' N f? p / N W / W ? LLJ Q U / ??? ?\ Ln F I 0 0 0 a' -1 a-\ / (D CD A' ?0 IWI s' - / t • • 33c %JACOBS' CALCULATION COVER SHEET PROJECT USFCC JOB NO. 22MN9901 DEPARTMENT Civil CLIENT Novartis Vaccines & Diagnostics CALC. NO. C-24 SUBJECT Fitness Facility Parking & Court Outlet Protection ORIGINATOR Ed Kubrin DATE 8/23/10 CHECKER Chuck Van Arsdale DATE 8/30/10 • • PURPOSE OF ISSUANCE REV NO. PAGES DESCRIPTION ORIG. DATE CHKD. DATE APRV. DATE A 17 Issued for Information EJK 8/31/10 CVA 8/31/10 COMMENTS: CALC COVER SHEETS C-24.DOC 02/19/96 • Calculation C-24 Outlet Protection Table of Contents Section Description A Outlet 0-10 - Parking Lot B Outlet 0-11 - Courts C References is ?J • • Section A Parking Lot Outlet 0-10 0 6M DESIGN OF RIPRAP OUTLET PROTECTION • Minimum TW Maximum TW Figure 8.06a Figure 8.06b User Input Data Calculated Value Reference Data Riprap d50, (in.) 4 Minimum apron length, La (ft.) 8 • Apron width at pipe outlet (ft.) 3.75 Apron shape Trapezoidal Apron width at outlet end (ft.) 9.25 Designed By: EJK Date: 8/25/2010 Checked By: Date: Company: Jacobs Engineering Project Name: Fitness Facility-Parking Project No.: 22MN9901 Site Location (City/Town) TOHS Culvert Id. 0-10 Total Drainage Area (acres) 1.06 Step 1. Determine the tail-water depth froni chiumel character stics below the pipe outlet for the design capacity of the pipe. If the tailiva.ter depth is less than half the outlet pipe diameter, it is classified niinina nY tailwater condition. If it is Greater than, half the pipe diatateter, it is classified mauxinntnn condition. Pipes that outlet onto WI& flat areas "kith no defined channel are assumed to have a ininirninn tailwater condition unless reliable flood state ele-.rations shm% otheniise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) 15 7 Min TW (Fig. 8.06a) 4.32 6.86 Step 21. Based on the tailty ater conditions determi?Yed in step 1, enter Figure 8.066 or Figure 8.06b,, and determine d„ry riprap size and nunin um apron length (L,,). The d,,, size is the median stone size iii a well-graded riprap apron- Step 'i. Deterntine apron width at the pipe outlet, the apron :Shape, and the apron width at the outlet end from the'same figure used in Step '?_ • Step 4. Determine the ina-inium stone diameter:. dma c - 'I .5 x C 5O Minimum TW Max Stone Diameter, dmax (in.) 6 Step 5. Determine the apron thicluiess: Apron thickness = °i -> x d _a ci., Apron Thickness(in.) Maximum TW 0 Minimum TW Maximum TW 9 0 Step . Fit the riprap apron to the site by making it level for the minimum length, L?, from Figure 8.06a or Figure 8.06b. Extend the apron farther downstreani and along channel banks until stability- is assured. Deep the apron as straight as possible and align it vvith the low of the recei-wing strew. NLike any necessary alignment bends near the pipe outlet so tL-It the entrance into the recei uig :stream is straight- Some locations nnay require lining of the entire. channel cross section to assure stablit?•- • it may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Apse.: c'ix 8.05). VVIlere overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8, - 0 . Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 3 0 Outilet wa00 3 Pipe T dlameiei Po) L--- S0 q ilwaer? 0. 5R'0 70 I r r ; ?Ifl?'?l(i h ???'? 1 ? i +tf [1++ I r l l I f . Q t I it 141 SQL 5011 C? L !, II} v i {i i to x' I l k P, "r I I i it l ? r? 1, L -- ,' i 3 r 91 1 {! 1 1 I ? ?-' 0_ -r 1911, i? Li{ 111 !???I i 7-11 C { lj? { v a5 ¢ r? d } iI { t I. CC r 1 i i v „I 1 9 , i, I i L!' ?a { r C 1?? i'I ILf Vil ' I- I I I I I ?I ,I ,I , LIT J 11 3 5 10 20 511 100 20 500 ? 3064 4 Discharge (ft?;Isee) Curves may not be extrapolated. Figure 8.06a Drrsigl Of aunti?t p; Aprtion, prll hum a round pipe i1mvinb full, mi 7irr,urn tailwaiec rondii!Dn (Tr <0.5 cfameter). x.0 ,3 Rev. 12f93 0 r? u • Section B Courts Outlet 0-11 • 6UDESIGN OF RIPRAP OUTLET PROTECTION r? ?J Minimum TW Maximum TW Figure 8.06a Figure 8.06b User Input Data Calculated Value Reference Data Riprap d50, (in.) 4 Minimum apron length, La (ft.) 8 Apron width at pipe outlet (ft.) 3 • Apron shape Trapezoidal Apron width at outlet end (ft.) 9 Designed By: EJK Date: 8/25/2010 Checked By: Date: Company: Jacobs Engineering Project Name: Fitness Facility-Courts Project No.: 22MN9901 Site Location (City/Town) TOHS Culvert Id. 0-11 Total Drainage Area (acres) 0.99 Step 1. Determine the taih titer depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter, it is classified miiumum tailxv ater condition- If it is greater tlhin half the pipe diameter, it is classified maxitxnuii condition. Pipes that outlet onto wide flat areas vj th no defined channel are assi-Inled to have a n1ininnrni tludwater condition miless reliable flood stxage elevations shoe; other i ise. Outlet pipe diameter, Do (in.) Taiwwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) 12 5 Min TW (Fig. 8.06a) 3.98 6.93 Step 2. Based on the tailwater conditions determined instep 1; enter Figuue 8.66 a or FiLpre 8_!06b, and determine dsn riprap size and mininnuii apron length (L,,). The d,L, size is the median stone size isa a well-graded riprap apron- Step 3. Determine apron width at the pipe outlet, the apron .shape, and the apron width at the outlet end from the same figure used ut Step 2_ • Step 4. Deternlille the maXinluln stone diameter: dmax = 1.5 x d50 Minimum TW Max Stone Diameter, dmax (in.) 6 Step 5. Deternune the apron thickness= Apron thickness = °i -5 x cl,,,,,, Apron Thickness(in.) Maximum TW 0 Minimum TW Maximum TW 9 0 Step 6. Fit the riprap apron to the site by making it level for the nlinillitan2 length- L,, fro:ni Figure 3.06a. or Fipue 8.06b. Extend the apron farther downstream and along channel batiks tuytil stability is assured_ Keep the apron as straight as possible and align it With the f1o-r. of the receiving stream. Make any necessary ali anent bends near, the pipe outlet so thlt the entrance into the recely rill stream is straight. Some locations niay rectulre lining of the entire chantiel crass section to assure stabllirv. It mity be necessary to increase the size: of riprap where protection of the chalulel side slopes 1S iiecessar (*?_pe;;cLi 8.05)_ ''i'n'here overfalls exist at pipe outlets or flows are excessiv , a plume pool should be considered, see page &06.8. ?i?.J • Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) ' r I ?I it i i I i i ?l 3 0 outlet y = 00 + La pipe diameter (Do) 1 ilwater - 0.51)o 50 100 Discharge (fi3Jsec) ?{ II . L?III` I' I I I I ' t u I I r 4 I a I I i 3 I I `J i } 2 a I s `I 300a I Curves may not be extrapolated, Figure 0.06a Design at nu*nt pmLl; ian protcetian 1jom a rGund pipe tlrnving full, minjrtnum tallwaler corndiliDn (T,4 <0.5 d2meter), Rev. 1193 60 JAL s , ? F I' I'I ?-= I , 0 • E Section C References 0 • Active Scenario: 25 YR STORM Label Start Node Invert Stop Node Invert Length (Unified) Slope (Upstream) (Downstream) (ft) (Calculated) (ft) (ft) (ft/ft) P1 CB-200 325.50 MH-202 325.02 63.0 0.008 P2 MH-202 324.92 0-10 323.88 130.0 0.008 P3 CB201 320.05 0-11 319.60 50.0 0.009 Diameter Manning's n System Rational System Flow Capacity Velocity (in) Flow Time (Full Flow) (Average) (ft3/s) (min) (ft3/s) (ft/s) 15.0 0.013 4.35 10,957 5.64 5.07 15.0 0.009 4.32 11.164 8.35 6.86 12.0 0.009 3.98 18.494 4.88 6.93 ? _... {'?AQtGWL > -- Cvv?29S !25 Y42 PEAV- FL.O J - Po?l2rGrNl? 2 S Ye PIFo,kL FL-0 K-) -- COO,2lrS • • Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8i (SELECTseries 1) FIT FAC STORM 100820.stc . Center [08.11.00.44] 8/30/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 • • • ° ?' o z 0 Z 0 p v C ? F- m W Z - U y J< co D V W 0 L J J ] F- Z Q 00 m V7 O U) O 0 Q z < a < ° a0 < d W 0? d r N 0? Z LLJ Cf) W = X J W = I - U F-- O W U c 0 `Z m H F- LLLI CCD w ip Z Z W ? gm J F--' Q m In F Q O H F- II J II U) _O J Z Q (U III1I U Q Q III-III-i . I I-1I I-III-. I ? m ?? Q Q H ° IIIIIIIIIIIIIIII IL- III-I 11=1 11=1 I ?_ ? ? ? ° ° I I=11 I=III=11 I. ' 111111 III- Q III I- 1117 Q Q v j z ? J (? w o ? W J Z I ? 1=1 ? 1=1 I1=? •% ?; u=Ti=lilt=lTr = = ? ?U I/ % I I I-III ITI 1 I I? =111-I 1= III-III=III=11 (J) 1 W I ' °' ? I W 11=III=III=11- ? III=1 11-I I ?- '' Q CL _? d tL I1=111=i , I= ~ ? o I I? ? Q J O w O M 41 O • Required Inlet Locations 2 At Every Sag Point (one on each side of road if road is crowned) As Required For Accessibility Where no overflow outlet is available, double inlets must be used (4 total if road is crowned). Allowable Spread: Roads without Roadside Parking %2 Travel Lane Maximum Roads With Roadside Parking No Encroachment Into Travel Lanes D Storm Drainage Piping All storm drainage piping systems shall sized in accordance with Manning's equation and shall be in compliance with the following unless otherwise approved by the TOHS Engineering Department: • • Table 8.06c Storm Drainage Piping Requirement Materials (Town Right-of-Way or Property) Class III RCP or Greater (15" Min.) as Required by Depth or Loading. Corrugated Steel Pipe or Pipe-Arch (with approval of TOHS Eng. Dept.) Conform to AASHTO M36 with pipe ends having no less than two round corrugations on each end. Bands for connecting pipes shall be corrugated with a minimum of two corrugations for each pipe. Pipe shall be fully bituminous coated with an asphalt paved invert in accordance with the requirements of AASHTO M190 for Type C pipe. Materials (Private Property) Designer's Discretion - specify rep, cmp, or hdpe. All pipe connections to the public right-of-way must be RCP. ADS N-12 High Density Polyethylene Corrugated Storm Sewer Pipe (with approval from TOHS Eng. Dept.) ADS pipe shall not be installed under any pavement or curb and gutter, and shall not be installed with Class I or Class II bedding to the spring line for the pipe. Pipe material shall meet the product specifications of ASTM F667 and shall have a smooth interior. Hydraulic Grade Line (HGL) Analysis HEC - 22 Energy Loss or Approved Alternative - Based on Full Buildout Conditions 10-Year HGL Inside Pipe 25-Year HGL 1' Freeboard to Inlet Grate or Lid Min. Sloe 0.5% Max. Slope Concrete Pipes 10% Without Submittal of Structural Calculations and Supporting Documentation Max. Flow Velocity at Outfall 20 fps for the 25-year storm, unless otherwise approved by the TOHS En ineerinQ De t. Outfall Protection Outfalls shall be protected by riprap as needed to meet NCDENR-DLQ standards (see also Section 4 of the TOHS Engineering Design and Construction Standards). Outlets Outlets less than 36" require Flared End Sections. Outlets 36" and Over re uire Endwalls Endwalls must meet criteria specified in table 8.06e Flared End Sections Used as Inlets Flared End Sections May Only Be Used as Inlets when: a) Drainage area is less than or equal to 3 lots or equivalent b) 3 CFS max. Tailwater Use Known Tailwater Conditions Where Appropriate, use 7/8 pipe diameter min. at outlet pipe Analyze 100-Year Storm >20 AC Cumulative Drainage Area or as required by the TOHS Engineering Department Min. Cover (Town R/W or Property) 2' of cover to Sub grade Min. Cover (Private/ non-load bearing) I' of cover to Sub grade Bedding Class As Appropriate for Proposed Conditions FINAL April 2008 add 5 2008 8-92 • Sedimentation Control Planning and Design Manual, Design of Stable Channels and Diversions, shall be used to design stormwater channels. B. Storm Drain Outlet Protection All stormwater release points (downstream of both stream crossing culverts and storm drainage flaired end sections) shall be protected.by riprap dissipation pads designed to reduce discharge velocities to non-erosive levels. Alternate measures will be evaluated on a case by case basis by the Director of Engineering. Dissipation pads shall be designed and constructed with either an engineering fabric or washed stone barrier between the pad and the natural ground. Calculations shall be provided to indicate the sufficiency of the dissipation pads specified. Riprap pad design shall be in accordance with NYDOT or NRCS methods. Storm drain outlet protection shall be installed in accordance with the standard detail and the approved erosion control plan. 4.05 STABILIZATION MEASURES A. Temporary Stabilization Temporary seeding is the use of rapid growing annual grasses, small grains or • legumes to provide initial, temporary cover for erosion control on disturbed areas for less than 12 months. Mulch is used to provide an immediate ground cover to protect disturbed soil from erosion during the completion of construction until the disturbance is permanently stabilized. Seeding and mulching shall be done immediately following construction. All disturbed areas shall be dressed to a depth'of 8 inches (soil loosened using a ripper, harrow, or chisel plow). The top 3 inches shall be pulverized to provide a uniform seedbed. Agricultural Lime - Shall be applied at the rate of 95-lbs/1000 ft2 or 2-tons/ ac. immediately before plowing (soils with a pH of 7 or higher need not be limed). Grass Seed -Shall be applied at the rates outlined in Table 4.3. 10-10-10 shall be applied to all disturbed areas at a rate of 23-lbs./ 1000 ft2 or 1000-lbs./ac. Surface Roughening - If recent tillage operations have resulted in a loose surface, additional roughening may not be required except to break up large clods. If rainfall causes the surface to be come sealed or crusted, loosen it just prior to seeding by disking, raking, harrowing, or other suitable methods. Groove or furrow slopes steeper than 3:1 on the contour before seeding. Mulching - The use of appropriate mulch will help ensure establishment under normal conditions and is essential to the success under harsh site conditions. Mulching shall consist of small grain straw applied at a rate of 95-lbs. / 1000 ft2 or U FINAL May 2007 S9?-rioN 4 . oo -T* 14 S 4-26 Section 1042 • required size range. The size of an individual stone particle will be determined by measuring its long dimension. Stone or broken concrete for riprap shall meet the requirements of Table 1042-1 for the class and size distribution. TABLE 1042-1 ACCEPTANCE CRITERIA FOR RIPRAP AND STONE FOR EROSION CONTROL REQUIRED STONE SIZES - INCHES CLASS MINIMUM MIDRANGE MAXIMUM A 2 4 5 8 12 1 5 10 17 2 9 14 23r No more than 5.0% of the material furnished can be less than the minimum size specified nor no more than 10.0% of the material can exceed the maximum size specified. 1042-2 TESTING Test riprap materials in accordance with the requirements of this section and Sections 1005-4(E) Resistance to Abrasion, and 1005-4(F) Soundness. Satisfactory • resistance to abrasion will be considered to be a percentage of wear of not greater than 55 percent. Satisfactory soundness will be considered to be a loss in weight of not greater than 15 percent when subjected to 5 alterations of the soundness test. SECTION 1044 SUBSURFACE DRAINAGE MATERIALS 1044-1 SUBDRAIN FINE AGGREGATE The subdrain fine aggregate shall meet the gradation requirements for No. 2S or No. 2MS sand as shown in Table 1005-2. 1044-2 PIPE AND FITTINGS--GENERAL Pipe and fittings may be, at the option of the Contractor, either concrete, corrugated steel, bituminized fiber, or corrugated plastic. 1044-3 CONCRETE PIPE AND FITTINGS Non-perforated concrete pipe and pipe fittings shall meet the requirements of AASHTO M86 for standard strength nonreinforced concrete pipe. Perforated concrete pipe shall meet the requirements of AASHTO M175 for standard strength perforated nonreinforced concrete underdrainage pipe. is Joint materials shall meet the requirements of Section 1028. 10-84 r - - - - - - - - - S - - - - - U - - - - - - - - - - - - - - - - - W - - - - - - - - - - - - q - - - - - - - - - - - - - V - - - V1 - - - - - - - - - - < - - - I ? ? y o I ?a Q i mw a? ? N -_ ° r° 3 C? Z aZa I I u m 0 !?1 p W J a I w ?I ° 3z ° 41 0 ti z w N ¢ Q - I o ° o ? a o W W z a0 U W V, H L? :2 IL U U w m In Lo o n W W 0_ (n v NCI 3 p Z z U) ?i I a Lz I e ?o a c a o 0 01 11 o v 0 a_ s N G 9Ya g @ @ 8 o w I s= e boo 1 Z l O sing ?? i W Z X I w U I Z N I a CV I I I ° ? W U o a ° o' a a 2 0 . o S a o 0 I I L?j ss I ?? I ?a I I ?a I I ti? I I I I --- --- - - --- - I I I I I I I I I _ I I i I I I I I ? I I I I ? I I ? I I I a I I a I I I I I I I I I I z I i a I U I o I I o I I ? I I ? I J I N I I ? I c I N I O? O a q I I u I 'SUVAON UM 4M3 IMMOV MLLIMM MUM =Nn Ldme JOnOONd ANY NI 03LYNOdMOONI NO 03Sn 39 ION (O) ONV'ISYJ NI 40 31OHM NI 031d00 MO 03011 OS M 30 ION (B) a0N30HN00 NI ®Nryin 3Y (Y) ? O13N3M t)NLLY13N NOLLVWNOJNI7IY ONV AS3N3H1031N3S3Nd3M SW31SAS ONV S301A30 WUWnMLSN13Hl1VH1 SNOWON00 3HL OL L03rinS 03M30N3L SI ONV SNNVAON dO NOLLYWMOJNI AbYMdONd SNIY1NOOLEWfI000 SM1 a o W I x w q V m < I L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -. ow S*u - - - - - - - - - - - - - - - - - - - - J A"w" BS CALCULATION COVER SHEET • PROJECT USFCC JOB NO. 22MN9901 DEPARTMENT Civil CLIENT Novartis Vaccines & Diagnostics CALC. NO. C-25 SUBJECT Fitness Facility Nitrogen Export Calculations ORIGINATOR Ed Kubrin DATE 8/25/2010 CHECKER Chuck Van Arsdale DATE 8/31/10 E NO. PURPOSE OF ISSUANCE REV PAGES DESCRIPTION ORIG. DATE CHKD DATE APRV DATE A 4 Issued for Permitting and Information EX 8/31/10 CVA 8/31/10 COMMENTS: L J 771E Toimor Hony Stormwater Design Executive Summary 4KSprings TOWN OF HOLLY SPRINGS ENGINEERING DEPARTMENT NORTt[ CAROLINA Method 2 (Sites with Known Impervious) Pre-Developed Nitrogen Export Summary Table Type of Land Cover Area (acres) TN Export Coefficient (Ibs/ac/yr) TN Export from Use (Ibs/yr) Existing Forestland -7• 1.7 , Existing Pasture 4.4 Existing Residential 7.5 Existing Cropland 13.6 Existing Commercial/Industrial 13 Total: -7 Nitrogen Loading Rate Ibs/ac/ r , 7 .Post-Developed (after BMP reductions) Nitrogen Export Summary Table Type of Land Cover Area TN Export BMP TN Coefficient TN Export (acres) (Ibs/ac/yr) Removal from Use Rate (Ibs/yr) Permanently 0.6 Protected Undisturbed Open I . ! ),3 Space Permanently 1.2 Protected Managed Open • L- Space Impervious 5 21.2 20,7 Total: 7. q 2 Nitrogen Load ing Rate Ibs/ac/ r - • C. 85% Total. Suspended Solids (TSS) Removal Summary Provide brief description of how 85% TSS removal is being achieved: 16005 SW Ex. Summary 4.1.08 Page 3 of 5 • Table 8.03b Pollutant Removal and Water Quantity Control for BMP Types • BMP Type Pollutant Removal Water Quantity TSS T TP Peak Attenuation Volume Capture Dry Extended Detention Basin 50% 110% Yes Yes * Dry Extended Detention Basin with Infiltration 50% 10/10% Yes Yes Level Spreaders 0% 0% No No Wet Detention 85% 25/40% Yes Yes * Infiltration Level Spreaders 0% 0% Possible Possible * Infiltration Trenches 85% 30/35% Possible Possible Dry Wells 85% 30/35% Yes Yes Bioretention Areas 85% 35/45% Possible Yes Permeable Pavement 0% 0% Possible Possible Proprietary Systems Varies Varies Varies Varies Grassed Swales 35% 20/20% No No Stormwater Wetlands 85% 40/35% Yes Yes Vegetated Filter Strip 25% 20/35% No No Restored Riparian Buffer 60% 30/35% No No * Dry extended detention basin with infiltration and infiltration level spreaders are T01 'S BMPs. Use of these devices in the Neuse River Basin may be subject to NCDENR review and approvals in addition to approval by the TOHS. c. Other Factors: Lastly, selection of Structural BMPs must also address a variety of physical and social factors. These include factors such as: • Land requirements, • Aesthetics, • Cost of construction, • Cost and complexity of maintenance, • Treatable basin size, • Site constraints • Owner and community acceptance, and • Safety. d. General Design, Operations, and Maintenance Requirements: Certain general design, operation, and maintenance requirements apply to all structural BMPs in the TOHS: • FINAL April 2008 add 5 2008 8-15 • developer and verified by the Town's stormwater staff. The calculated amount of nutrient reduction must then be offset by the developer. If the developer chooses to pay a fee to the Town, the developer makes the payment, and it is then issued a receipt by the Town which allows the developer to receive final Stormwater Management Plan approval from the Town. Upon receiving the payment the Town assumes the responsibility for the mitigation requirement including mitigation site construction and monitoring for success. d. Design Criteria: Projects shall use a nitrogen export standard of 3.6 lbs/ac/yr. However, before using offset payments, the development must attain, at a minimum, a nitrogen export that does not exceed 6.0 lbs/ac/yr for residential development and 10.0 lbs/ac/yr for multi-family, commercial or industrial development. The -total nitrogen (TN) export limitations, in a manner consistent with the Neuse Basin Rules, 15A NCAC 213.0233, will be required throughout the Town and extra territorial jurisdiction. e. Fees • Neuse River Basin In-Lieu fee for projects will be $28.35 / lbs of nitrogen. The per pound rate listed above is then multiplied by the total number of pounds of offset required for the total area of the development for a 30-year • period this amount is consistent with the current Ecosystem Enhancement Program Fee at the time of development of the Town's Stormwater In-Lieu fee program. Cape Fear River Basin In-Lieu fee for projects will be $14.00 / lbs of nitrogen. The per pound rate listed above is then multiplied by the total number of pounds of offset required for the total impervious area of the development for a 30-year period. This amount was determined at a lower rate than the Neuse River Basin since NCDENR does not have mandatory nutrient sensitive waters management regulations in the Town's sub-basin of the Cape Fear River Basin. In the future, if Nutrient Sensitive Water Management is required by NCDENR in the Cape Fear River Basin the Town will update their fees for the Cape Fear River Basin to be consistent with House Bill 859 and rules adopted by the Environmental Management Commission (EMC). f. Required Information: The project developer or their agent (design consultant) will calculate the amount of the payment to be made by the development. For each submittal the development will provide the following information on the TOHS Stormwater Fee-In-Lieu Request Form during the Stormwater Management Review Process. Once reviewed and approved the TOHS can accept the payment and issue a receipt (payments based on letters not including this information will not be accepted). The Stormwater Fee-In- Lieu Request Form requires general contact and project information as well as • the Total Site Area, Existing Impervious Area, Proposed Impervious Area, Pre-Development Nitrogen Load, Post-Development Nitrogen Load, Nitrogen FINAL April 2008 add 5 2008 8-51 i 0 0