Loading...
HomeMy WebLinkAbout20091297 Ver 1_More Info Received_20100331Letter of Transmittal TO NCDENR-DWQ 401 Oversight and Express Permit Unit 2321 Crabtree Blvd., Raleigh NC 27604 DATE 3/29/2010 JOB NO. 2326 F-T ATTENTION Annette Lucas RE: Jordan Buffer Rule (Diffused Flow) Re-Submittal D9-1 aAq WE ARE SENDING YOU ? Shop drawings ? Copy of letter Q Attached ? Under separate cover via ? Prints ? Plans ? Change order ? Samples ? Specifications SITE Z'A SOLUTIONS 2 3 2 0 W. Morehead Street Charlotte, NC 28208 P 704.521.9880 F 704.521.8955 www.sitesotutlonspa.com MAR 3 12010 COPIES DATE NO. DESCRIPTIO 2 3/29/2010 1 Plan Sheets L-4.0 to L-4.2, 6.1, DA1, DA-7 to DA-9 ' 2 3/29/2010 2 Storm Conveyance Calculations 2 3/29/2010 3 Grassed Swale Supplemental Sheets (Swale #5, #7, and #8) 2 3/29/2010 4 Grassed Swale Operation and Maintenance Agreement 1 3/29/2010 5 Response to Comments 1 3/29/2010 6 Diffused Flow Summary for all outfalls I nt?,t Arct 1 KAM MI I I tu. as cnecKea below: ? For approval ? Approved as submitted ? Resubmit ? For your use ? Approved as noted ? Submit ?? As requested ? Returned for corrections ? Return ? For review and comment REMARKS Enclosed are the revised items requested per your comments on March 5, 2010. If you have need anything else or have any questions please feel free to call. My direct line is (704)831-5678. Thanks, Tristan COPY TO SIGNED: Tristan Teasley *" - .0 March 29, 2010 Keeley Park Greensboro, North Carolina Site Solutions (SS) Response to NCDENR - Division of Water Quality - dated March 5, 2010 1. Please provide a new, updated diffuse flow package that is complete and well-organized. The diffuse flow package should include: a. Clearly marked plans that depict every stormwater inlet and outlet and its associated drainage area at a scale of 1"=50' or larger. SS Response: Revised as requested. See sheets DA-7 thru DA-10. b. A concise written summary of each of the outfalls with an explanation of how diffuse flow requirements are being met under the Jordan Lake Buffer Rule. SS Response: The summary is included in this submittal. c. A completed Level Spreader Supplement Form for each proposed level spreader with all of the required items provide in a complete manner and at the requested scale. The level spreader(s) must be designed correctly per Chapter 8 of the DWQ BMP Manual. SS Response: The level spreader has been removed from this project. Discharge now enters into an existing wetland thru Swale #8. A completed Grassed Swale Supplement form for each proposed grass swale that is discharging to wetlands with all of the required items provided in a complete manner and at the requested scale. The grassed swales) must be designed correctly per Chapter 14 of the DWQ BMP Manual. SS Response: The swales have been redesigned to meet Chapter 14 of the BMP manual. All spreadsheets, details, and supplemental forms have been changed to show these updates. 2. Please address the following issues pertaining to Level Spreader 1: a. The level lip must be sized correctly for the filter strip vegetation. It is not clear whether the vegetation is grassed or wooded for the first 50 feet downslope of the level spreader. Please clarify this and modify the length if needed. b. Please provide a bypass channel that directs high flows in a non-erosive manner to the nearest surface water. c. The Profile of the level spreader must include a swale immediately upslope of the level lip to still the water before it passes over the level spreader. d. Please provide calculations to support the design of the bypass structure. SS Response: The level spreader has been removed from this project. 3. All grassed swale must be trapezoidal and side slopes may not exceed 3:1. Please update the design if these criteria have not been met. SS Response: The swales have been redesigned to meet Chapter 14 of the BMP manual. All spreadsheets, details, and supplemental forms have been changed to show these updates. Keely Road Park - Diffused Flow Summary There are a total of six (6) outfalls for this project. Very little offsite area flows thru the conveyance systems located on our site. All of the downstream discharges will either be going into existing (stabilized) outfalls or into existing wetlands. Both of the previously mentioned situations are allowed per North Carolina Administrative Code 15A NCAC 02b .0267. This document will reference particular drainage area maps that show the outfall and the upstream drainage area for that outfall. Outfall - FES #7/Swale #8 There are 1.70 acres of offsite drainage going into this system. The weighted C value is 0.41. The majority of the remaining area draining to FES #7 is grass. The FES will outfall into Swale #8 (a 14.5' trapezoidal swale) with a velocity of 1.26 ft/sec. This swale will discharge directly into the wetlands. Swale #8 will be lined with NAG S75 to protect it from scouring. 1.26 ft/sec is considered a non-erosive velocity. See drainage area map #7 (DA #7) for the boundary of the drainage area. Outfall - FES #I I A A small amount of drainage from Keeley Road enters into the upstream system for this outfall. The majority of this drainage area (woods) will remain undisturbed. A picnic shelter along with playground equipment and grassed areas are being added. The weighted C value for this area is 0.35. The water being conveyed, via swale #1 (lined with NAG S150) to FES1 IA, enters directly into an existing stabilized 15" RCP. See drainage area map #8 (DA #8) for the boundary of the drainage area. Outfall - FES # 12 and FES # 13 Both of these areas are small and have very minimal impervious area. These areas go to existing pipes (that we will be extending) which outfall into the existing stabilized ponds. See drainage area map #8 (DA #8) for the boundary of the drainage areas. Outfall - FES #31/Swale #5 Most of this projects proposed impervious area is draining to this outfall. Swale #5 (a 2' trapezoidal swale) has been split into 3 different sections 5A, 5B, and 5C. The last section of swale 5 (5C) has been designed at 1.0% to slow the water down before it enters into the existing wetlands. The velocity at the end of swale #5 is 1.85 fps. Swale #5 (5A, 5B, and 5C) will be lined with NAG S75 to protect it from scouring. The velocity of 1.85 ft/sec is considered a non- erosive velocity. See drainage area map #8 (DA #8) for the boundary of the drainage area. Outfall - Swale #7 The disturbance in the area for Swale #7 is only 0.10 acres (of a total 1.48 ac.) and consists of adding a small amount of asphalt trail (0.02 ac) and a Swale to drain the sheet flow off the trail and the existing hill side. This swale will discharge directly into the existing wetlands. The velocity at the end of swale #7 is 1.03 ft/sec. Swale #7 will be lined with NAG S75 to protect it from scouring. 1.03 ft/sec is considered a non-erosive velocity. See drainage area map #9 (DA #9) for the boundary of the drainage area. I Permit Name: DR- I LR 7 (to be provided by DWQ) Drainage Area Number: Swa l e. #_5 Grassed Swale Operation and Maintenance Agreement I will keep a maintenance record on this BMP. This maintenance record will be kept in a log in a known set location. Any deficient BMP elements noted in the inspection will be corrected, repaired or replaced immediately. These deficiencies can affect the integrity of structures, safety of the public, and the removal efficiency of the BMP. Important maintenance procedures: - The drainage area of the grassed swale will be carefully managed to reduce the sediment load to the grassed swale. - After the first-time fertilization to establish the grass in the swale, fertilizer will not be applied to the grassed swale. The grassed swale will be inspected once a quarter. Records of operation and maintenance will be kept in a known set location and will be available upon request. Inspection activities shall be performed as follows. Any problems that are found shall be repaired immediately. BMP element: Potential problem: How I will rernediate the problem: The entire length of the Trash/debris is present. Remove the trash/ debris. swale Areas of bare soil and/or Regrade the soil if necessary to erosive gullies have formed. remove the gully, and then re-sod (or plant with other appropriate species) and water until established. Provide lime and a one-time fertilizer application. Sediment covers the grass at Remove sediment and dispose in an the bottom of the swale. area that will not impact streams or BMPs. Re-sod if necessary. Vegetation is too short or too Maintain vegetation at a height of long. approximately six inches. The receiving water Erosion or other signs of Contact the NC Division of Water damage have occurred at the Quality 401 Oversight Unit at 919- outlet. 733-1786. MAP 3 J 2010 l oErLA", ,fy? DR4 ?ry et„Ch Form SW401-Grassed Swale O&M-Rev.3 Page 1 of 2 Permit Number: (to be provided by DWQ) I acknowledge and agree by my signature below that I am responsible for the performance of the maintenance procedures listed above. I agree to notify DWQ of any problems with the system or prior to any changes to the system or responsible party. Project name:Keeley Road Park BMP drainage area number:Combined Swale 5A, 5B, & 5C Print name:William H. Knight Title:Mayor Address:300 West Washington Street, Greensboro NC 27402 Phone Signat Date: - ,- Note: The legally responsible party should not be a homeowners association unless more than 50% of the lots have been sold and a resident of the subdivision has been named the president. 1, A.1 )0(1 (Ane, T"5- , a Notary Public for the State of /VC , County of do hereby certify that 41 W (! t0V11 1::?, 14& personally appeared before me this da of v Y MW-(-h , .261 0 and acknowledge the due execution of the forgoing grassed swale maintenance requirements. Witness my hand and official seal, ?????\\\\P??%,AIN - ? ////i/ O Q ?0TAgy 2ND - n N AVBL\G ? 44 C O VN' tt/ttltl l l i ll1\11???\ SEAL My commission expires f W" p Form SW401-Grassed Swale O&M-Rev.3 Page 2 of 2 Permit Number: - (to be provided by DWQ) AMA W ANCDENR STORMWATER MANAGEMENT PERMIT APPLICATION FORM 401 CERTIFICATION APPLICATION FORM GRASSED SWALE SUPPLEMENT This fort must be filled out, printed and submitted. The Required Items Checklist (Part III) must also be filled out, printed and submitted along with all of the required information. I. PROJECT INFORMATION_ Project name Keeley Road Park Contact name Mark Breen Phone number 704496-6297 Date March 24, 2010 Drainage area number SWALE #5A, 5B, & 5C 111. DESIGN INFORMATION Site Characteristics Drainage area 446,926.00 ft2 Impervious area 62,726.00 ft2 Percent impervious 14,0%% Design rainfall depth RD inch Peak Flow Calculations 10-yr storm runoff depth in 10-yr storm intensity 3.49 in/hr Post-development 10-yr storm peak flow 14.02 -ft'/sec Velocity Maximum non-erosive velocity (peak 10-year storm) 5.50 ft/sec Soil characteristics (enter "x" below) Sand/silt (easily erodible) Clay mix (erosion resistant) x Grass Type (enter "x" below) Bermuda Tall fescue x Bahiagrass Kentucky bluegrass Grass-legume mixture Swale type: Fill out one of the options below: Option 1: Curb Outlet Swale: N (Y or N) Maximum velocity Side slopes .1 Swale length ft Option 2: Convevance Swale, Seeking Pollutant Credit N (Y or N) Maximum velocity for 10-yr storm ft/sec Side slopes :1 Swale length ft Form SW401-Grassed Swale-Rev.3 Parts I and II. Project Design Summary, Page 1 of 2 Permit Number: (to be provided by EWQ Swale Characteristics Swale Shape: Enter an Y in the appropriate cell below: Trapezoidal X Parabolic V-shaped Width of the bottom of the swale 2.00 ft Width of the top of the swale 15.20 ft Additional Information Is the swale sized for all runoff from ultimate build-out? Y (Y or N) OK Is the BMP located in a proposed drainage easement with a recorded access easement to a public Right of Way (ROW)? (Y or N) What is the distance from the bottom of the swale to the SHWT? 0.00 ft What is the ground level elevation? fmsl What is the elevation of the bottom of the swale? fmsl What is the SHWT elevation? fmsl What is the longitudinal slope of the swale? 1.00% OK What is the depth of freeboard? 0,50 ft OK Form SW401-Grassed Swale-Rev.3 Parts I and II. Project Design Summary, Page 2 of 2 J V Permit No: (to be assigned by DWQ) IIL REQUIRED ITEMS CHECKLIST Please indicate the page or plan sheet numbers where the supporting documentation can be found. An incomplete submittal package will result in a request for additional information. This will delay final review and approval of the project. Initial in the space provided to indicate the following design requirements have been met. If the applicant has designated an agent, the agent may initial below. If a requirement has not been met, attach justification. Initials Pagel Plan S ww k .S Sheet No. TAI Y DA 7` 'BPI 10 1. Plans (1" = 50' or larger) of the entire site showing: ? - Design at ultimate build-out, ?- Off-site drainage (if applicable), ?- Delineated drainage basins (include Rational C coefficient per basin), DA 9 - Swale dimensions (width, length, depth), DA I - Maintenance access, ? - Proposed drainage easement and public right of way (ROW), (yA -9 -Grass species, and ? - Boundaries of drainage easement. _rw1T OA' 4 2. Plan details (1" = 50' or larger) for the grassed swale showing: ? - Swale dimensions (width, length, depth), ?- Maintenance access, ? - Proposed drainage easement and public right of way (ROW), ? - Design at ultimate build-out, ? - Grass species, ? - Off-site drainage (if applicable),and ? - Boundaries of drainage easement. TAT QA' 1 3. Section view of the grassed Swale (1" = 20' or larger) showing: ? - Side slopes, ? - Longitudinal slope, ?- Freeboard - Swale dimensions, and - SHWT level(s) Gw?L? TMT Book *.'4. Supporting calculations (including maximum velocity calculations for applicable storms) TM r '? 5. A copy of the signed and notarized operation and maintenance (0&M) agreement. T04 Y P1A 6. A copy of the deed restrictions (if required). SW401-Grassed Swale-Rev.3 Part III, Page 3 of 3 Permit Name: 0 9 q 7 (to be provided by DWQ) Drainage Area Number:.Swa. It # S Grassed Swale Operation and Maintenance Agreement I will keep a maintenance record on this BMP. This maintenance record will be kept in a log in a known set location. Any deficient BMP elements noted in the inspection will be corrected, repaired or replaced immediately. These deficiencies can affect the integrity of structures, safety of the public, and the removal efficiency of the BMP. Important maintenance procedures: - The drainage area of the grassed swale will be carefully managed to reduce the sediment load to the grassed swale. - After the first-time fertilization to establish the grass in the Swale, fertilizer will not be applied to the grassed swale. The grassed swale will be inspected once a quarter. Records of operation and maintenance will be kept in a known set location and will be available upon request. Inspection activities shall be performed as follows. Any problems that are found shall be repaired immediately. BMP element: Potential problem: How I will remediate the problem: The entire length of the Trash/ debris is present. Remove the trash/ debris. swale Areas of bare soil and/or Regrade the soil if necessary to erosive gullies have formed. remove the gully, and then re-sod (or plant with other appropriate species) and water until established. Provide lime and a one-time fertilizer application. Sediment covers the grass at Remove sediment and dispose in an the bottom of the swale. area that will not impact streams or BMPs. Re-sod if necessary. Vegetation is too short or too Maintain vegetation at a height of long. approximately six inches. The receiving water Erosion or other signs of Contact the NC Division of Water damage have occurred at the Quality 401 Oversight Unit at 919- outlet. 733-1786. LY j? 200 ? v+EAv,o° AND S , BRANCH Form SW401-Grassed Swale O&M-Rev.3 Page 1 of 2 Permit Number: (to be provided by DWQ) I acknowledge and agree by my signature below that I am responsible for the performance of the maintenance procedures listed above. I agree to notify DWQ of any problems with the system or prior to any changes to the system or responsible party. Project name:Keeley Road Park BMP drainage area number: Swale Print name:William H. Title: Address:300 West Washington Street, Greensboro NC 27402 Phone: 336-412-4794 Signature: Date: t L Note: The legally responsible party should not be a homeowners association unless more than 50% of the lots have been sold and a resident of the subdivision has been named the president. I, Al lain Lw, Ibr1es , a Notary Public for the State of M(, , County of CA.S W O I , do hereby certify that ( I LMI R. 11t %&r personally appeared before me this v day of ,kf(tn 2010 , and acknowledge the due execution of the forgoing grassed swale maintenance requirements. Witness my hand and official seal, ????p\\?.PN'L A NF V O ms's N0T'AR 0 SEAL My commission expires 3 j z l 0141; -- Form SW401-Grassed Swale O&M-Rev.3 Page 2 of 2 Permit Number: r (to be provided by DWQ) ? ?,< <N A TFR NCDENR ° STORMWATER MANAGEMENT PERMIT APPLICATION FORM 401 CERTIFICATION APPLICATION FORM GRASSED SWALE SUPPLEMENT This form must be filled out, printed and submitted. The Required Items Checklist (Part III) must also be filled out, printed and submitted along with all of the required information. I. PROJECT INFORMATION Project name Keeley Road Park Contact name Mark Breen Phone number 704-496-6297 Date March 24, 2010 Drainage area number FES 7 - SWALE #8 II. DESIGN INFORMATION Site Characteristics Drainage area 302,742.00 ft2 Impervious area 57,064.00 ft2 Percent impervious 18.8%% Design rainfall depth RD inch Peak Flow Calculations 10-yr storm runoff depth in 10-yr storm intensity 3.67 in/hr Post-development 10-yr storm peak flow 10.32 ft3/sec Velocity Maximum non-erosive velocity (peak 10-year storm) 5.50 ft/sec Soil characteristics (enter Y below) Sand/silt (easily erodible) Clay mix (erosion resistant) x Grass Type (enter Y below) Bermuda Tall fescue x Bahiagrass Kentucky bluegrass Grass-legume mixture Swale type: Fill out one of the options below: Option 1: Curb Outlet Swale: N _ (Y or N) Maximum velocity Side slopes :1 Swale length ft Option 2: Conveyance Swale, Seeking Pollutant Credit: N (Y or N) Maximum velocity for 10-yr storm ft/sec Side slopes :1 Swale length ft Form SW401-Grassed Swale-Rev.3 Parts I and 11. Project Design Summary, Page 1 of 2 Permit Number: ,. (to be provided by DWQ) Swale Characteristics Swale Shape: Enter an Y in the appropriate cell below: Trapezoidal x Parabolic V-shaped Width of the bottom of the swale 14.50 ft Width of the top of the swale 21,64 ft Additional Information Is the swale sized for all runoff from ultimate build-out? Y (Y or N) OK Is the BMP located in a proposed drainage easement with a recorded access easement to a public Right of Way (ROW)? (Y or N) What is the distance from the bottom of the swale to the SHWT? 0.00 ft What is the ground level elevation? fmsl What is the elevation of the bottom of the swale? fmsl What is the SHWT elevation? fmsl What is the longitudinal slope of the swale? 0.33 %u OK What is the depth of freeboard? 0.50 ft OK Form SW401-Grassed Swale-Rev.3 Parts I and II. Project Design Summary, Page 2 of 2 Permit No: (to be assigned by DWQ) 111. REQUIRED ITEMS CHECKLIST Please indicate the page or plan sheet numbers where the supporting documentation can be found. An incomplete submittal package will result in a request for additional information. This will delay final review and approval of the project. Initial in the space provided to indicate the following design requirements have been met. If the applicant has designated an agent, the agent may initial below. If a requirement has not been met, attach justification. Initials Pagel Plan S w # a Sheet No. ` TMT DA 7-6* 10 1. Plans (1" = 50' or larger) of the entire site showing: ?- Design at ultimate build-out, Off-site drainage (if applicable), J- Delineated drainage basins (include Rational C coefficient per basin), DA 7 Swale dimensions (width, length, depth), DA 7 Maintenance access, ? - Proposed drainage easement and public right of way (ROW), Dp-7 - Grass species, and ?- Boundaries of drainage easement. DA 7 2. Plan details (1" = 50' or larger) for the grassed swale showing: ?- Swale dimensions (width, length, depth), ?- Maintenance access, ? - Proposed drainage easement and public right of way (ROW), 4 Design at ultimate build-out, ? - rrace cnariac ?- Off-site drainage (if applicable),and ?- Boundaries of drainage easement. TM 71 DA 7 3. Section view of the grassed swale (1" = 20' or larger) showing: ?- Side slopes, •/- Longitudinal slope, ? - Freeboard ? - Swale dimensions, and e. ?- SHWT level(s) TM r g?oK ?4. Supporting calculations (including maximum velocity calculations for applicable storms) 7m T /5. A copy of the signed and notarized operation and maintenance (0&M) agreement. TMr NIA 6. A copy of the deed restrictions (if required). SW401-Grassed Swale-Rev.3 Part III, Page 3 of 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Keeley Park City of Greensboro, North Carolina Storm Water Management Report 3-29-10 T I ?Vz. D9 - k 1. q ?[-A@guvl [a vo MAR 3 12010 DENR • WATER CW?UTY ViETLMDS AND STOR?e'YdgTEQ BRMCH IUI11111/// 2 3 2 0 W. Morehead Street Charlotte, NC 28208 Landscape Architecture Site Planning Civil Engineering www.sitesolutionspa.com Telephone- 704-521-9890 Facsimile-709-521-8955 SS Project No. 2326 0269 z' r '''• R? N. 4 t,.,. '??•,,1I I I I tS???t3 IZliU 1 1 1 1 1 1 1 1 1 1 Keeley Park City of Greensboro, North Carolina Storm Water Management Report - For NCDWQ TABLE OF CONTENTS Project Description .................................................................................................. Section 1 • Topography • Soils • Model Parameters /Analysis Conveyance Design ................................................................................................. Section 2 • Weighted Coefft. Computations • Time of Concentration Calculations • "Closed" Storm Drainage System Analysis • Swale Calculations • Culvert Analysis 11 u rl ?I F 1 Section 1 Project Description 1 1 Keeley Park ' City of Greensboro, North Carolina Storm Water Management Report ' Project Description The proposed project involves the construction of a community garden, playgrounds, a sprayground, maintenance facility, parking lots, and walking trails. Site improvements will also include new "closed" storm drainage systems, culverts, and swales. This will also be some modifications/ upgrades ' to the sites existing ponds. Topography/Drainage ' The site generally drains from north to south with ground elevations ranging from approximately 772.00 Ft to 701.00 Ft. The area will continue to drain into existing ponds which outfalls into the Reedy Fork and then into the Haw River. Soils The NCRS soil survey of Guilford County indicates that soils on the site are ' predominately Appling sandy loam (ApB), Cecil sandy loam (CcB), and Enon fine sandy loam (EnB/EnC). These soil types are classified as Hydrologic Group B/C. Model Parameters/Analysis Capacity analysis for proposed sedimentation and erosion control measures as ' well as the storm water conveyance system design was completed using the Rational Method. The site hydrology and detention were calculations were performed using Bentley's Pond Pack. The water quality design and the ' sedimentation and erosion control measures were completed using excel spreadsheets developed by Site Solutions. The designs were based off the February 2000 version of the City of Greensboro Storm Water Services' "Stormwater Management Manual - First addition". Section 2 Conveyance Design 1 Condition Composite C Values PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 319/10 Sheet Name: Composite C (FES 7-Swale 8 Cwoods= 0.25 Cimperv,= 0.95 CLawn= 0.30 CG.veF 0.95 AREA Drainage Areas (Acres) I COMPOSITE Woods Lawn Im erv. Gravel Total C JB 1 1.40 0.10 0.20 0.00 1.70 0.34 D12 0.60 2.72 0.39 0.00 3.71 0.36 D13 0.00 0.34 0.10 0.00 0.44 0.45 FES 3.1 0.00 0.18 0.07 0.00 0.25 0.48 C14 0.00 0.25 0.52 0.00 0.77 0.74 YI8 0.00 0.05 0.03 0.00 0.08 0.54 TOTAL 2.00 3.64 1.31 0.00 6.95 0.41 Condition Composite C Values PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 3/9/10 Sheet Name: Composite C (FES 11A) Cwoods= 0.25 Cimperv,= 0.95 CLawn= 0.30 CGravei= 0.95 AREA Draina a Areas Acres COMPOSITE Woods Lawn Im erv. Gravel Total C FE511 U.35- U.3U U.UZ U.UU U.6/ U.1y FES 14 0.86 0.03 0.00 0.00 0.89 0.25 EX FES 14A 0.00 0.17 0.23 0.00 0.40 0.67 DI1;5" 0.11 0.04 0.01 0.00 0.16 0.31 DI 16 0.07 0.06 0.01 0.00 0.14 0.32 DI 17 0.08 0.30 0.04 0.00 0.42 0.35 TOTAL 1.47 0.90 0.31 0.00 2.68 0.35 Condition Composite C Values PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 3/9/10 Sheet Name: Composite C (FES 12) Cwoods= 0.25 Clmperv-= 0.95 CLawrn= 0.30 CG.,,el= 0.95 AREA Drainage Areas Acres COMPOSITE Woods Lawn Im erv. Gravel Total C rt512 0.00 0.12 0.01 0.00 0.13 0.35 TOTAL 0.00 0.12 0.01 0.00 0.13 0.35 i i i Condition Composite C Values PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 3/9/10 Sheet Name: Composite C (FES 13) Cwoods= 0.25 Cimperv= 0.95 CLawn= 0.30 CG.vel= 0.95 AREA Drainage Areas Acres COMPOSITE Woods Lawn Im erv. Gravel Total C ft5 13 U.U3 U.bt$ U.US U.UU U./b U.14 TOTAL 0.03 0.68 0.05 0.00 0.76 0.34 Condition Composite C Values PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 3/9/10 Sheet Name: Composite C (FES31-SWALE#5) Cwoods= 0.25 CimpeN.= 0.95 CLawn= 0.30 CG.veF 0.95 AREA Draina a Areas Acres COMPOSITE Woods Lawn Im erv. Gravel Total C GI 19 0.05 0.46 0.35 0.00 0.86 0.56 DI 22 0.01 0.46 0.37 0.00 0.84 0.59 DI 23 0.11 1.35 0.03 0.00 1.49 0.31 DI 24 0.00 0.11 0.22 0.00 0.33 0.73 DI 25 0.00 0.28 0.00 0.00 0.28 0.30 DI 26 0.00 0.75 0.32 0.00 1.07 0.49 DI 28 0.02 0.66 0.00 0.00 0.68 0.30 DI 29 0.00 0.11 0.14 0.00 0.25 0.66 EX DI 30 0.13 1.03 0.01 0.00 1.17 0.30 Swale #5 0.00 3.29 0.00 0.00 3.29 0.30 TOTAL 0.32 8.50 1.44 0.00 10.26 0.39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Summary of Time of Concentration(s) Swale/Ditch No. Basin Area [Ac] Tc [Min] 10 Year Rainfall Intensity [Ins/Hr] 2 Year Rainfall Intensity [Ins/Hr] MH 1 1.7 25.7 3.88 2.84 DI2 3.71 17.4 4.64 3.46 FES 14 0.89 20.1 4.39 3.26 DI 15 0.16 20.0 4.40 3.27 DI 16 0.14 19.9 4.41 3.27 DI 17 0.42 19.9 4.41 3.27 C119 0.86 21.6 4.26 3.15 DI 23 1.49 19.9 4.41 3.27 DI 28 0.68 13.1 5.21 3.92 EX DI 30 1.17 30.0 3149 2.52 FES 32 NIA 25.3 7.17 5.66 All Others 5.0 * Use a minimum of 5 min. Time of Concentration ** All other inlets not listed use a minimum of 5 min. Time of Concentration Table 3.1 Roughness Coefficients (Manning's n) for Sheet Flow Surface Description n Smooth Surfaces (concrete, asphalt, gravel, or bare soil) 0.011 Fallow (no residue) 0.05 Cultivated Soils Residue cover <=20% 0.06 Residue cover >20% 0.17 Grass Short grass prairie 0.15 Dense grasses 0.24 Bermudagrass 0.41 Range 0.13 Woods Light underbrush 0.4 Dense underbrush 0.5 C N 7 N L U y E O w w X O r M N N L U E 0 N CD N M N ? N c•i to ? V O M ?f LO LL CO U) W v O q? O O m E m c c c m 0 U 0 0 ° o LL o O U O m O - m m E co cn 0 • U U U U U U M U fA m W O C C C C C C ? C M C e D . 7 O U O U O U O U O U O U CL O U . IL 7 U 7 U m O O O M 0 O O CL LL ,It O O 0 O LL C? O o 0 0 0 0 0 0 0 N o 0 0 0 0 0 0 0 0 6 ' c m a ? + C LL v f? rn m 00 N r- N N ID m ? 00 C>0 00 Ct0 M ? t1? l[') N N d G - a a a a a s a a a a a a a m U U U U U U U U U U ? ? 7 `n ° C> (.0 co O ° o ? o o c o o o v v l L M N O 00 r. N O 00 d m t? co Co to co U'3 co v v m e o co 0 0o O O o a+ 00 O U? M r` O N a ?` °O ° v > to to to to CD c E c j2 O CD C', O O ° m O O 0 C O. C D 0 co 6 h 0 r- 0 C G r- CD CO CD F- D C3 19 0 CL ? F 3 m m m W w W 0 p U W W w L LL LL LL LL LL L y _m 7 r Q N M tL 1 O r N M U'> CD A y Cl) r r r r . fd 2 Z m O U 0?0 m L CO) W CO) W w LL d U. L I 1i L co C G C O Z O y y , O M a , a M ' Cl O N 0 M 1 F 7 N L E O cn M x ' o M M Q) a? L U C? C O CD N M N u 1 E d N M °r O N N co ? M N O .r O CD Cn - W w O N N Q ti N p O Cl) q Q - {p N Lr) N m N O M 7 O D E m E LT E - - E - E - 5 - E5 C of O D O LL O O C d O o 2 O O O = 0 O O O O O E 4 .U. z p N .N N .N .N .y. w 'p N w .N. .U 'C N U N U a) U a) p ? U 0 U o U a) U a) U N U N U O U N a O U 0 U o U N U a) c c c a ++ c c c c c c c c C c c c c c c c 0 p W a c o c 0 c 0 c 0 c 0 c 0 c 0 c 0 p c 0 c 0 c 0 c 0 o 0 U 0 U U ? a U U U U U U IO U ? a U U U v w tf) to V) M a0 u to UC, M U.) O v LL O O O N O O O M O N ?t LL o 0 0 0 0 0 0 0 0 0 0 0 0 0 d ti 0 o O o 0 0 0 0 0 0 0 0 0 0 t ?. ?.r C LL CD I? O M I? O to co m L O O a0 aO n CO co J N O' ? C to tf') ul Wil tL') tC) to lC) o ' d a a a. a. a- a a s a s a a s a n- a a n- . a o U U U U U U o u O U U O U U U U U U 0 O to O o o ?A Un u') O o O O O In O lC) i- ll) O N M Cb ?' N O O t?L O m co to N O CD M N co "0. O co d d u) Uf l U?l to ?' M M M M M M v M 1 n r- ti [I- r- c u') o Lo o o u') u') U?l W) u') 0 0 O o N f? O) N N O r- O 't CD O N O O CD co O CD CD ti' V M M M N co d u to Ur) CC) v M M M M M M M M M A C j O O Ln In Ln O l[) O O O O O O ? ???..++r ? !? 1? N N CD ao CO O N N CD O O { L N to N to O to t0 CD O co M m M m M N co M to t s 1!J E C7 N N m U) L u o 0 0 v o 0 0 o ? o v o a LL- LL- N d Z 7 . Lo cD W N I-- O N co 0 y y r N N N i m M i N N N W y C G O Z r N N Cl) O N d _) M C)_ O N O r M u 0 O N L U U E O N N X O r M M (D 7 a) L U N E 0 N co N M N m m ? V V O O C m O 0_ E v ? a A c. o o = d o. a LL o ? o w a m LL N J d' ? C ? G $ m a a . o 0 a a ? o ryry LL IL > c e o N y tv a > LL M O O E c 0 o i U 2 C9 Mu o C > m C0 U t D7 C CO co O C fa M ' O W H D j O ? co 00 0 co c) Z tq v1 F- x z V t 0 U) W U) W a C N j O V F- LL- LL Q a O Z d N N 2 m Z 0 M c -p 0 t v = p M M 0 O ° p U y 3 y CO) Z - cq m i LL uj c Z v 0 c 0 X N m e m a> c o c ? c o c 0- _ N co _ U C +? Z iri m U 2 0 II II .?.. O II II U W m V? Z U D W LL ? 0 O M I 1 1 ' CL _rn? M O , O N 0 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n GO W U- G'1 r; N .h ko? d . ?111/01, P " I'/, tV Q m m O, H LO m L•7 m 4; 0 M O 13? ? 0 4? 290 b r?d'?y ? 196 IQ O Lr) N ?r ? O N ,?? p126 D123 TO D124 ? pt 24 N a a 0 r D rv N O? ry co ?w U DI 20 TO FMS 21 coli A?S U , ? w LL v U) w LL 'Q M C? W LL 00 1 ?o r W LL 1 1 O M M E O O ' co N M M N Cl) L 16 16 U N C ` N c I li L CL ? N d N 0) Y N d m 7 Z Z U) '6 t5 r 0) 0) O CL a. w a) N 0 L U = U L U L U L U L U L U L U L U L U L U L U L U L U L U L U = U L U L U L U L U C ' C_ C_ C_ C_ C_ t C_ C_ C_ C_ C_ C I C C C_ C_ 'I C 0 C C C_ O C_ C_ 'I U 00 r (O r O r 00 r o r LO r (O LO LO 00 r t N (O r to r 0 r T N r 0 r 0 r r 00 r T N C V) CO CO CO CO CO CO CO CO M O') M M M M M M M M M m M C •c r O r O r O r O r O r O r O r O r O r O r O r O r O r O r O r O r O O . r '0 r 0 r 0 0 O) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? N O) 0) 0) 0) 0) 0) 0) N O) ?N, 0) 0) 0) N N O) 0) N O) 0) - N U N U N L U N L U N U N U N a N L U O) L U N L U O) L U N L U N L U N L U O) L (..? N L U N L U N U N L U N U N U ? C C C C C C C C C C C C C C C C C C C C C ? O U O U O U O U / 0 U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O r CU O r- N O 00 f- 0 O N V `?t 00D o0D N CO M M N LO r >.`., C O IT ^ C O n N (O n 0 (D 0 O n 0 (O M (O M ? M M M M CO n(M M M n (M O 0) LO d' O f- (O LO M M C n n n n n n n n n n n ? n n O 0) O O N M (O I- V' ?t (O LO O) O M ". LO N (D ^ O Z m N - - - r r CA N - N - N - N ° ° N N M ? - r _ - M (n M o ? o o o ' 0 0 a w U U) N ? 100 ? N co co 0 Lo ? p N N M r 0 00 000 1'. 00 to 00 > O C N O 7 W M CO O) r O n CO LO n O n (D m 'T r 0 n M n N CD n O r 0 O 0 f` M N r 0) O V O) N M LO CO P, N (Y) 'T LO CO 00 O O M r `- 0 0 n Z C _ U e- p _ p r - r - r - N - N - N - N - N - N N M U) (A m Co CO 04 m O U m m 0 m m m m 0 W LU -) m LL LL LO N N CO e co r P- r co N N 0 N r- N o N 0 N o M c; N to n O co m - - - - m - - U V 0 - C[I M m m 0 0 0 W 0 0 m ' O O w 0 M W D M 0 0 0 0 0 0 LL 0 0 0 ) 0 0 0 LL ? 0 O O LL O F- F- "T 0) N M IO (O N N M N N N (n N (0 N co N 0 N O (M co r r [O O co (O r? N U 0 m E5 m [O 9 L] D D 1 1 C] E5 C] 25 L] LL w M N co X w O O M M 7 d 7 0 .O N U U) (O N M N O O N N CO 1 O M Cl) 9 O O m O CD N N M Cl) N M 022 m ca U > (U 0 Y m m T 0 ? O N O N D. Y N d O U N N 7 j Z Z N N 0 'O O N a`a`a C 7 O ? 0 (? CO (D CO OO r N N C D 0 0 C0 (A CD N co t- O "r N O O O 'IT CD CD N (D O 'D V) 0 "T 0 'T M M M t- O m n c6 (O c? (D w ce) CO CD O CO r n h h r r r r t` r N W v c O c0 N co CD r LO N CD N M CO CO (O 'IT N CA U) V) M CA 0) C r O m w W (r0 O O N 0 O w O M M ? r O c) O ? r O ( r ? O r- M ? 0) ? m Cn I ` ? F- t ` r- t ` n ? r ^ _N W N w U cc 3 N r Lo v to ? r co m CO M 0 "t 0) r n O 0 t` CO 'T N In CO O O N V) CO O IT ul (D O a- 0 r r CA (O O O r N cq O (D U - tL 1 1 N-O 0. N r m r 0 O m O 0 O r M O 'T N m C w 0 O o O N O "T V O O ? M LO O ? O r LO O O ca f5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 6 O 6 0 6 0 6 . 0 0 6 0 6 0 6 0 6 . 0 0 . 0 0 6 _U f6 U N CO " N co LO CO " r 'T (O "T r co m CA co N co V w r r- N r- N. LO LO It 1-t N co (D It t` O O LO M CO co ? "T O) (O co co co O O O co m m O LO V- fl- (0 N O co m co C N r J N CO h M O N O Iq (O I,- O D) I- N co r- O co l0 M 't 3 O N ?! Ih O 00 r M N r 0 N 0 r- O M O r O r co 0 O 0 N N 0 Cf) O L ? N N (Q - - - - - - - - - - - - - - - - - - - - - m = Z o Ln co N N - M - rt - co r - r` r - N - v N - 0 N - n N m i0 N - 0 N - 0 M - M m ? U - _ N - O m t- 0 M - -) o D U o o W LL 0 0 o ' a 0 o W o -, w o M 0 H 0 ?- 0 H 0 H 0 H 0 H 0 0 P 0 P 0 H 0 H 0 { 0 ?- 0 H 0 r 0 0 F- 0 F- 0 0 H J 0 r O r N - M - (O r CO r r N N M N I* N to N O N O N M N O ) M co r r m t0 m CO m N U U D O D W ? " m Q O L L to M X 0 O N M M Q 7 0 f6 U E O CN N co N O O N V N co 1 1 1 1 O M M O O (D F, N N M M N Cl) a p p E O Y co 0) a ca >, p N co m N a Y N a O U 0) n N f6 7 j Z Z (n t V- a0) O ) a a`a.x p 0 - 0 O V' 00 n o N n N V' CO M n O 00 O O V• T N M O _ 00 r V; (O CO In 0) M 0) 00 W n W V• N m (O ((i ? (O N) V M Ih l? r ? It 0 r- o (() N r- Q N N to io m V' n M m O m n m .- (o r 0 N (o O O 0 lO O M (O LO N N O IT IT V• 00 U O W In N V• N N O m m N 'T N v V. 'T N r O Cl) N r": LO a) M ?. M tO N (O M LO n (O N LO N to n to n v W to n U) n N (O - (O O 0 V N T N N N N (O N M N N v v V• 0 0 CO 'T V' N a? (6 7 V0 N N 00 O - 00 N - IT CO (O n 00 N co N 0 ? UO 0) IT (O O V N W n - - 00 V• (0 N 00 N N - M 00 V; (D n O M a n (O n n M V• to OO M M M O) Lo 0.) n v 7 v n m Lo Lo (n M M n M CS CS M M (O Lo (o Lo Lo A m m C n n n n n n n n n n n n n n n n n n j, J 2 0) a OS ? U 0 00 n 0 N 00 0 00 V: n O N M N 00 n 1- 00 N (O V, 0 a) r 't LO LO O LO n M M (O V co O V N UO O Z M (') to O 00 n 0 00 n tO LO O O M n O oL N N 0) IT 7 a) m (O n V• n (O n n LO n LO n LO n V• n M n M n M n M n nV' Mn M n O n n n n (O n 0 n A n a _I T LC) N N OM V' (O n 00 V' N V N LO N n N LO 04 O 04 O O M C ? LO N O n 0 M p R 7 m p p () p p W p p m p p p w 0 p m W p 5 O R O O Q O O O O O O O O O O L 0 0 LL co F H ? H F- H F- H D H H Q F- 'T 0) N (M LO ? (0 ? ? N N M N V• N tn N W N W N a N M (Y) (n m LO m O n N U U p p p p p p p p p p p 0 U ? 00 m _ U_ N M X w O O M M M 7 Q 7 0 a m U (o N M N O O N V• N co X O O M M 3 O ' 7 U E `O 0 ' M N O M (7 O O (O N N M M N ('? N - d E ? O N m io O 6 c (p N CL m T M N Cj YNU d E E Z Z y N N O O O y aaw 0 N 7 U O O O O O O O O O O O O O O O O O O p_ C O O O O O O O O O O O O O O O O O O (6 N U E W l6 N ? O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 O ? 3 V7 ip N N O OO O (n n (O N V V V (n N N fp ( N O A O OD V O M co Of 0 O 0 V 0 V - 0) It O V' 0 R N 0 w O 0 N (O 0 O N 0 t0 0 c) 0 0 N N 0 o ? ? 0 0 0 U ? O O O N (O O M O O D (O 0 OD (O Q n (O M N M (O M (O M n M V M (O CO V N Z C o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N (V 0 r,. OR n v tO ? O ? v M N 0 (OO N n N OOD Q v p : o 0 M o 0 0 0 0 O O - O O O o Z 0) ? C Q O co O O O O (O O co (O O O U7 (0 O O C', (O L O 0 0 O V' O O O (O O n l6 r >> N (O N ? ? (O M O O O O O O O O V O M tO M V M (n M O ? OD M N M n (O O N O O c n n n n n n n n n n n n n n n n n n O v O O ?O N O O O O O n u7 n (O N O O O N ?O O O t0 O O O o O O v7 N O 0 O (O O OD E C (O w V w O 1 r_ t0 N t0 N t0 O O O V N V O ? O M O M O ? ? ? O M ii O (O (O l O n ll ? n n n n n n n n n n n n n n n n n n 0 o (0 O O O 0 0 0 0 0 0 0 0 O V o 0 0 - :p O N O (O n n N t0 N O (O O O O N O O OD N O ( O (O O ( o n ( O N m N O O N O O O (O v m O ( p O O n n n n n n ? ? n ? ? ? ? ? n ? ? ? O N M ? O ? N N M N N LO N CO N O N 0) N O M Kj 0) r U O co U U D O D O O W L LL V) N C O N ro n (n M N N (0 Co uD V m n O M n O) C O O N N (O V N O O O O (O M O N n (O o n m O r ? N - O 0 O 0 O O O ; O LL C C ? l0 N l0 (? N N N V) l6 y (D U f6 V1 (0 N l6 In l0 V) O) U) m 0] m y m U m U m U m (n a (a fn p C C C C C C C C C C C C C C C C C C LO N n (O N N 0 M •f n q n (O N OD n (O M o l - - (O co '7 (O O O) r n co 0 (O N p r o e- 0 0 0 0 0 l- X 0 0 0 0 0 0 O." o N n N N N O - M tT n R n (O N co N IO M O - - o OD V o (O O n M O v to N O 0 0 0 0 0 0 0 l 0 0 0 o o of N M O N M N N u1 N co N W N O N O M (.j r (p U U O D O O O W N W LO LL LL l 1 eI O N N ' 1 1 1 1 1 1 O M M O O C) O co N N M Cf) N M N N N U ? E Q' O 0 C 0 O O (O N N 3 104 0 O U N -0 N E E (a :3 Z Z (j U U -t O N O 660- " IL d w X O r ? M M 7 Q. 7 0 U E O O N M N O r O N N M O r M M E O O U O N N M N M N N N a -Cc (p 000 U ? E O f0 ` N N 0 d N >+ O N t 75 CD C N (0 Y N .. N (D ? N 7 j Z Z U) U U V- N N O CL X ? O O M M 7 Q 7 0 E O O N M N IIrl u 1 i i i i o? 1 1 1 1 1 1 1 1 1 1 1 O r M i M E O O O N N M ce) N M N N N cc m ? 0 0 U N E O U cv m a E N co 7 aV Y N U m =3 Z Z (j N N O Q O O O CL CL Ix N O Z d' O N CO 0 CO N M '-t 0 CO 00 O O r Crj ? r r 3 - r - - - r - r - r - N - N - N - N - N - N - N - M f n U m U U 0 0 0 0 0 0 0 0 F5 Es W W LL LL 7 O U N ? 0 CD Ln r N 0 M M M O M CO M M Ln ? C 22 I? 6 Lo 6 M 6 ? 6 M 6 M 6 M 6 Lo 6 M 6 f? 6 0 ? 0 0 CO 0 0 ? 0 N 0 M 0 co w m c O CO U) ;-? (D O I,- O i Lo N M -T N N N Lo (O M Lo Lo 0 V I- r O M r- I,- O O r M N P- 00 O CA 0 N N V C -4 x 0 0 0 CO N r O M r r r O O N E O U LL (0 L C N .S n r r ( r r M N_ N_ I` r N V I` r CD r O d M M 00 V Y N V V V . . . N . 00 N 0 C C O O O N Lo Co r I ti Lo O m CA m Lo CA dj ? Lo Lo r M Lo e) Lo r O r,? LA E_ ?.. N r r r r r c N N C U C O U (> CO CO r (O ?} N O M 00 f? 00 Lo f? Lo C? LO f? CO i? ? r r ? O ? M N O Cfl N r N 00 ? ? O O M O O O O O r O O r O O r O O r N Q O N M Lo CD I- N c') It Lo Cp 00 0) 0 T7 T- r _ U r _ _ U r r r N N N N N N N M m J U D U O D U D O W LL W U (..) U U (..) 0 0 0 U U U U U .) C C ) V U U . . y r X 4- 8 r r M M 7 OL 7 0 E O co (6 N M N O O N N M 11 Ditch/Swale Flows PROJECT NAME: Keeley Park PROJECT NUMBER: 2326 BY: Tristan Teasley DATE: 3/4/10 MNB * All flows and intensitys are designed for the 10 year storm event with a 5 min time of concentration, unless otherwise noted. Swale 1 - to FES 11A Swale 5B Area = 0.20 ac. Length= 165 ft. Intensity = 7.17 in/hr Inv. Up 756.2 Tc = 5.0 min. Inv. Down= 743.0 Comp. C = 0.39 Slope= 8.0% Velocity= 3.35 fps Q = C*I*A = 0.56 cfs Qtota, = 3.59 (includes flow from FES 18 & 11.) Area = N/A Length= 264 ft. Intensity = N/A Inv. Up 727.6 Tc = N/A Inv. Down= 720.4 Comp. C = N/A Slope= 2.8% Velocity= 3.15 fps Q = C*I*A = 14.02 cfs Swale 2 - to FES 13 Swale 5C Area = 0.48 ac. Length= 172 ft. Area = N/A Length= 18 ft. Intensity = 7.17 in/hr Inv. Up 743.5 Intensity = N/A Inv. Up 720.4 Tc = 5.0 min. Inv. Down= 738.0 Tc = N/A Inv. Down= 720.2 Comp. C = 0.3 Slope= 3.2% Comp. C = N/A Slope= 1.0% Velocity= 2.24 fps Velocity= 2.16 fps Q = C*I*A = 1.03 cfs Q = C*I*A = 14.02 cfs Swale 3 - to FES 23 Swale 6 - to Plunge Pool Area = 0.36 ac. Length= 150 ft. Area = N/A Length= 95 ft. Intensity = 7.17 in/hr Inv. Up 745.0 Intensity = N/A Inv. Up 734.4 Tc = 5.0 min. Inv. Down= 742.2 Tc = N/A Inv. Down= 728.0 Comp. C = 0.3 Slope= 1.9% Comp. C = N/A Slope= 6.7% Velocity= 1.72 fps Velocity= 1.45 fps Q = C*I*A = 0.77 cfs Q = C*I*A = 1.22 cfs Qtotai = 1.22 (include s flow from FES 35) Swale 4 - to FES 28 Swale 7 Area = 0.68 ac. Length= 108 ft. Area = 1.48 ac. Length= 232 ft. Intensity = 7.17 in/hr Inv. Up 754.0 Intensity = 7.17 in/hr Inv. Up 738.8 Tc = 5.0 min. Inv. Down= 746.0 Tc = 5.0 mina Inv. Down= 736.0 Comp. C = 0.3 Slope= 7.4% Comp. C = 0.28 Slope= 1.2% Velocity= 3.22 fps Velocity= 1.03 fps Q = C*I*A = 1.46 cfs Q = C*I*A = 2.97 cfs Swale 8 Swale 5A Area = 6.95 ac. Length= 40 ft. Area = 3.29 ac. Length= 221 ft. Intensity = 3.67 in/hr Inv. Up 756.1 Intensity = 3.49 in/hr Inv. Up 732.0 Tc = 28.1 mina Inv. Down= 756.0 Tc = 30.0 min. Inv. Down= 727.6 Comp. C = 0.41 Slope= 0.3% Comp. C = 0.30 ac. Slope= 2.0% Velocity= 1.26 fps Velocity= 2.69 fps Q = C*I*A = 10.46 cfs Q = C*I*A = 3.44 cfs (Directly to swale) Q from FES 31 10.58 cfs TOTAL Q = 14.02 cfs 2326-swale flows with slopes and velocities 3-10-10.x1s 1 Page 1 i i i 1 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 217/2008 REV: Channel # Grass Swale # 1 (To FES 11A) Estimating Mannings 'n' per ESCPDM Page 8.05.5 • See Flow Master Calculations for final Design Step # Variable Result Description C N/A 1) Q= 3.59 ds (Q10) 2.6 ds (02) 1 N/A 2) S= 0.080 Wit A N/A 3) Vp= 4 fps Permissible Velocity per Table 8.05a 4) Size= 0.90 fir =Q/VP 5) R= 0.60 Hydraulic Radius =bd+Zdl / b+2d(Z1+1)1° (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3 (e/d) A= 5 (Cross Sectional Area) Figure 8.05c VPR= 2.40 ngs'n' (As read from gra ph)= 0.043 6.91 fps Actual V from Manning's Equation 34.56 cis Actual channel capacity. Vp>V VP= 4 fps V= 6.91 fps Qc>Q Qc= 34.56 ds Q= 3.59 ds NO (If Vp>V, then OK) YES (If Qc>Q, then OK) ip liner required? YES (NOTE 1- 8.05.7 ESCPDM) U= 1.0 T 6) Usir Fro1 Mar 7) V= Qc= 8) ChE Che 9) OK' 10) Isal 11) N/A c N co C C CIS 3 Average Length of Vegetation on) curve . 2 A Langer Ban 30' A 11" tc 24" 8 6" t 10" C . o 6" D 2" E h I 9 *. . an T I % L .06 c 0 06 04 E 02 .t .G .4 .6 -.e 1.0 2 4 6 6 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.85c Manning's nrelaled to velociy, hydraulic radius, and vegetal retardance. Note: From Sample Problem 8.05a multiply Vp x Hydralu lie Radius (4.5x0.54-2.43), then enter the product of VR and extend a straight line up to Retardanca days "13% next project a straight line to the felt to determine a trial manning's n. Rev. 1283 om Figure 8.05c VPR= 2.40 annings'n' (As read from graph)= 0.090 3.35 fps Actual V from Manning's Equation c= 16.74 cis Actual channel capacity. heck Vp>V Vp= 4 fps V= 3.35 fps heck Qc>Q Qc= 16.74 ds Q= 3.59 ds K? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) a perm'nt liner required? NO (NOTE 1- 8.05.7 ESCPDM) Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 2/7/2008 REV: Channel # Grass Swale # 2 (To FES 13) Estimating Mannings 'n' per ESCPDM Page 8.05.5 - See Flow Master Calculations for final Design Step # Variable Result Description C 0.3 1) Q= 1.03 ds (Qlo) 0.7 cis (Q2) I 7.17 2) S= 0.032 ft/ft A 0.48 3) Vp 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 0.23 it' =Q/Vp 5) R= 0.60 Hydraulic Radius =bd+Zd' / b+2d(Z1+1)11 (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3 (e/d) A= 5 (Cross Sectional Area) 6) Usil Frol Mar 7) V= Qc= 8) Che Che 9) OK', 10) Isat 11) N/A .e A .6 '.tl IA 2 4 6 6 ID Zu VR, Product of Velocity and Hydraulic Radius Retardance Curve D Figure 8.05c VPR= 2.70 ings'n' (As read from graph)= 0.042 4.50 fps Actual V from Manning's Equation 22.48 ds Actual channel capacity. c Vp>V Vp= 4.5 fps V= 4.50 fps c Qc>Q Qc= 22.48 ds Q= 1.03 ds YES (If Vp>V, then OK) YES (If Qc>Q, then OK) 1.0 lueptn incruamg Treeooaru/ Using Retardance Curve B From Figure 8.05c V,R= 2.70 Mannings'n' (As read from graph)= 0.085 V= 2.24 fps Actual V from Manning's Equation Qc= 11.19 ds Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 2.24 fps Check Qc>Q Qc= 11.19 ds Q= 1.03 ds OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Figure 8.05o Manning's nrelalsd to vebdty, hydraulic radius, and vegetal relardance. Note: From Sample Problem 8.05a multtpty Vp x Hydralullc Radius (4.50.54-2.43), hen enter the product of VR and extend a straight Lie up to Retardance class 'D*, next project a straight line to the left b determine a trial manning's n. Rev. 12193 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 2/7/2008 REV: Channel # Grass Swale # 3 (To FES 23) Estimating Mannings W per ESCPDM Page 8.05.6 - See Flow Master Calculations for final Design Step # Variable Result Description C 0.3 1) Q= 0.77 cis (Qlo) 0.6 cfs (Q2) 1 7.17 2) S= 0.019 ft/ft A 0.36 3) VP 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 0.17 ft' =Q/Vp 5) R= 0.60 Hydraulic Radius =bd+Zd' / b+2d(Z1+1)` (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3 (e/d) A= 5 (Cross Sectional Area) 6) 7) 8) 9) 10) From Figure 8.05c VPR= 2.70 Mannings'n' (As read from gra ph)= 0.042 V= 3.46 fps Actual V from Manning's Equation Qc= 17.32 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 3.46 fps Check Qc>Q Qc= 17.32 cis Q= 0.77 cis OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a temp liner required? YES NOTE 1- 8.05.7 ESCPDM U= 1.0 ue [n Inciuam rreeDoaro Using Retardance Curve B From Figure 8.05c VPR= 2.70 Mannings'n' (As read from graph)= 0.085 V= 1.72 fps Actual V from Manning's Equation Qc= 8.62 cis Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 1.72 fps Check Qc>Q Qc= 8.62 cis Q= 0.77 cfs OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a perm'nt liner required? NO NOTE 1- 8.05.7 ESCPDM 11) N/A e N C C of M .J .4 3 Average Length of Vegetation (In) Curve 2 Longer than 30' 11" to 24• 6" t /0" A a C . o 2v to 6" L th 2" D E I es s an . .08 c 04 e 02 .t e .4 .6 -.8 1.0 2 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's nrelated to velocity, hydraulic radius, and vegetal retardance. Note: From Sample Problem 8.05a multiply Vp x 14ydralulic Radius (4.50.54-2.43), then enter the product of VR and extend a straight One up to Retardance clase'D', next project a straight fine to Ohs left to determine a trial manning's n. Rev. 1793 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 217/2008 REV: Channel # Grass Swale # 4 (To FES 28) Estimating Mannings W per ESCPDM Page 8.08.6 - See Flow Master Calculations for final Design Step # Variable Result Description C 0.3 1) Q= 1.46 cfs (Qio) 1.0 efs (Q2) 1 7.17 2) S= 0.074 ft/ft A 0.68 3) VP 4 fps Permissible Velocity per Table 8.05a 4) Size= 0.37 ft' =Q/Vp 5) R= 0.60 Hydraulic Radius =bd+Zdz / b+2d(Z`+1)12 (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3 (e/d) A= 5 (Cross Sectional Area) 6) Usir Froi Mar 7) V= Qc= 8) Che Che 9) OK' 10) Isat 11) N/A .2 .4 .6 -.8 1.0 2 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius v= r.o Lie rn mcauam rreeooara Retardance Curve D Using Retardance Curve B Figure 8.05c VpR= 2.40 From Figure 8.05c VPR= 2.40 ings W (As read from graph)= 0.043 Mannings'n' (As read from graph)= 0.090 6.65 fps Actual V from Manning's Equation V= 3.22 fps Actual V from Manning's Equation 33.24 cis Actual channel capacity. QC= 16.10 ds Actual channel capacity. c Vp>V Vp= 4 fps Check Vp>V Vp= 4 fps V= 6.65 fps V= 3.22 fps c Qc>Q Qc= 33.24 ds Check Qc>Q Qc= 16.10 ds Q= 1.46 cis Q= 1.46 ds NO (If Vp>V, then OK) OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) YES (If Qc>Q, then OK) Figure 8A5c Manning's nrelated to velodly, hydraulb radius, and vegetal retardance. Note: From Sample Problem 8.05a multiply Vp x Hydralulc Radius (4.5x0.54-2.43), hen enter the product of VR and extend a shalght /ne up to Ftetardance dass'13% next project a straight line b the left to determine a trial manning's n. Rev. 1293 1 1 1 1 1 1 1 1 1 1 1 1 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 217/2008 REV: 2/1/2010 Channel # Grass Swale # 5A Estimating Mannings 'n' per ESCPDM Page 8.05.6 • See Flow Master Calculations for final Design Step # Variable Result Description C N/A 1) Q= 14.02 cfs (Q10) 10.0 Cfs (Q2) I N/A 2) S= 0.020 ft/ft A N/A 3) Vp= 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 3.12 ft' =QNp 5) R= 0.85 Hydraulic Radius =bd+Zd' / b+2d(Z1+1)` (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1.5 (Trapezoidal depth) Z= 3 (e/d) A= 9.75 (Cross Sectional Area) 6) Usir Frol Mar 7) V= Qc= 8) Che ChE 9) OK' 10) Is al 11) N/A C N D1 C_ C C N .J .4 3 Average Length of Vegetelton On) Curve . 2 A Longer then Nr A 11" tc 24 B S. too 124 C . to 6" D L th 2" E I is es s an I t2 , 0B C 06 .04 E 02 .? .c .v b '.b W "L 4 6 a 10 20 VR, Product of Velocity and Hydraulic Radius Figure 6.05c Manning's nrelalad to vebdly, hydraulic radius, and vegetal retardance. Note: From Sample problem 6.05a multiply Vp x Hydralulic Radius (4.5x0,54-2.43), than enter the product of VR and extend a straight Ina up to Retardance class •D', next project a straight line to file left to determine a trial manninys n. Rev. 1293 Retardance Curve D Figure 8.05c VpR= 3.82 ings'n' (As read from graph)= 0.039 4.90 fps Actual V from Manning's Equation 47.75 cis Actual channel capacity. (Vp>V VP= 4.5 fps V= 4.90 fps (QC>Q Qc= 47.75 cis Q= 14.02 cis NO (If Vp>V, then OK) YES (If Qc>Q, then OK) np liner required? YES (NOTE 1- 8.05.7 ESCPDM) (ueptn Inducing rreeooara) sing Retardance Curve B om Figure 8.05c VpR= 3.82 annings'n' (As read from graph)= 0.070 = 2.69 fps Actual V from Manning's Equation c= 26.21 efs Actual channel capacity. heck Vp>V Vp= 4.5 fps V= 2.69 fps heck Qc>Q Qc= 26.21 Cis Q= 14.02 cis K? YES (if Vp>V, then OK) YES (If Qc>Q, then OK) a perm'nt liner required? NO (NOTE 1- 8.05.7 ESCPDM) Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJEC T NUMBER: 2326 DATE: 2/7/2008 REV: 2/1/2010 Channel # Grass Swale # 5B Estimating Mannings'n' per ESCPDM Page 8.05.6 - See Flow Master Calculations for final Design Step # Variable Result Description C N/A 1) Q= 14.02 cfs (Q1o) 10.0 Cis (Q2) I N/A 2) S= 0.028 ft/ft A N/A 3) Vp 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 3.12 ft' =Q/Vp 5) R= 0.85 Hydraulic Radius =bd+Zd2 / b+2d(2'+1)" (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1.5 (Trapezoidal depth) Z= 3 (e/d) A= 9.75 (Cross Sectional Area) 6) Usir Frol Mar 7) V= Qc= 8) Che Che 9) OK' 10) Isat 11) N/A .5 .4 .3 .2 C N D1 C i C N .08 .06 04 02 Average Length Curve of Vegetation an) Longer than 37 A 1%% J A 11' to 24' a 6' to 10' C 2' to 6' D Less than 2" E C 0 E .I ,2 .4 .6 '.8 1.0 2 4 6 8 10 VR, Product of Velocity and Hydraulic Radius u= L Retardance Curve D L Figure 8.05c VpR= 3.82 F ings'n' (As read from graph)= 0.039 N 5.74 fps Actual V from Manning's Equation V 55.99 cis Actual channel capacity. C c Vp>V Vp= 4.5 fps C V= 5.74 fps t Qc>Q Qc= 55.99 cfs C Q= 14.02 cis NO (If Vp>V, then OK) C YES (If Qc>Q, then OK) tp liner required? YES NOTE 1- 8.05.7 ESCPDM Is tueptn mciuaing rreeooara) sing Retardance Curve B 'om Figure 8.05c VpR= 3.82 annings'n' (As read from graph)= 0.070 = 3.15 fps Actual V from Manning's Equation c= 30.73 cis Actual channel capacity. heck Vp>V Vp= 4.5 fps V= 3.15 fps heck QC>Q Qc= 30.73 cfs Q= 14.02 cis K? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) a penn'nt liner required? NO (NOTE 1- 8.05.7 ESCPDM) 20 Figure 8.05o Ma ning's n re Is led to vebdy, "u! to radius, and vegetal reisrda nos. Note: From Sample Problem 8.05a multiply Vp x HydraluNc Radius (4.5xo.54-2.43), Own enter the product of VR and extend a straight One up lo Retardance class ID'. next protect a straight fine {0 to lah to determine a trial manning's n. Rev. 1193 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 217/2008 REV: 2/1/2010 Channel # Grass Swale # 5C Estimating Mannings 'n' per ESCPDM Page 8.05.6 • See Flow Master Calculations for final Design Step # Variable Result Description C N/A 1) Q= 14.02 ds (Q10) 10.0 ds (Q2) I N/A 2) S= 0.010 ft/ft A N/A 3) VP 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 3.12 ft' =Q/Vp 5) R= 0.95 Hydraulic Radius =bd+Zd' / b+2d(Z`+1)11 (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1.7 (Trapezoidal depth) Z= 3 (e/d) A= 12.07 (Cross Sectional Area) 6) 7) 8) 9) 10) Using Retardance Curve D From Figure 8.05c VpR= 4.26 Mannings'n' (As read from gra ph)= 0.038 V= 3.81 fps Actual V from Manning's Equation Qc= 45.93 cis Actual channel capacity. Check Vp>V VP= 4.5 fps V= 3.81 fps Check Qc>Q Qc= 45.93 ds Q= 14.02 ds OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Its a temp liner required? YES (NOTE 1- 8.05.7 ESCPDM) c.c t mcauumg rreeooaru/ ff Using Retardance Curve B From Figure 8.05c VpR= 4.26 Mannings'n' (As read from graph)= 0.066 V= 2.16 fps Actual V from Manning's Equation Qc= 26.07 cfs Actual channel capacity. Check Vp>V VP= 4.5 fps V= 2.16 fps Check Qc>Q Qc= 26.07 ds Q= 14.02 cis OK? YES (If Vp>V, then OK) YES (If QC>Q, then OK) Is a perm'nt liner required? NO (NOTE 1- 8.05.7 ESCPDM) 11) N/A C to m C 'c m .:l 3 Average Length of Vegetation an) Curve . 2 Longer than 30' A 11' to 24" B 6" t 10" C . o 2" to 6" D L 2" E th I e es s an . 08 C .06 0 04 e 02 .r a .4 .5 .B 1.0 2 4 6 a 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's nrelated to velocity, hydraulic radius, and vegetal retards nce. Note: From Sample Problem 8.05a multiply Vp x Hydraluft Radius (4.50.54-2.43), khan enter the product of VR and extend a straight fine up to Retardance class "D", next project a straight fine b the left b determine a trial manning's n. Rev. 12193 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 2/7/2008 REV: 9/21/2009 Channel # Grass Swale # 6 (To Plunge Pool) Estimating Mannings W per ESCPDM Page 8.05.8 - See Flow Master Calculations for final Design Step # Variable Result Description C N/A 1) Q= 1.22 al's (Qlo) 0.9 cfs (Q2) I N/A 2) S= 0.067 ft/ft A N/A 3) VP 4 fps Permissible Velocity per Table 8.05a 4) Size= 0.31 ftz =QNp 5) R= 0.34 Hydraulic Radius =bd+Zd' / b+2d(21+1)` (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 0.5 (Trapezoidal depth) Z= 3 (e/d) A= 1.75 (Cross Sectional Area) 6) Usir Frol Mar 7) V= Qc= 8) Che Che 9) OK', 10) Is at 11) N/A .4 ."e cm c ? .I 'c m OE g .OE .04 .02 .I Retardance Curve D Figure 8.05c V,R= 1.36 ings'n' (As read from gra ph)= 0.053 3.53 fps Actual V from Manning's Equation 6.18 cfs Actual channel capacity. c Vp>V Vp= 4 fps V= 3.53 fps c Qc>Q Qc= 6.18 cfs Q= 1.22 cfs YES (If Vp>V, then OK) YES (If Qc>Q, then OK) np liner required? YES (NOTE 1- 8.05.7 ESCPDM) U= ue m inciuam rreeooara Using Retardance Curve B From Figure 8.05c VpR= 1.36 Mannings'n' (As read from graph)= 0.129 V= 1.45 fps Actual V from Manning's Equation CC= 2.54 cis Actual channel capacity. Check Vp>V Vp= 4 fps V= 1.45 fps Check Qc>Q Qc= 2.54 cfs Q= 1.22 cis OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a perm'nt liner required? NO NOTE 1- 8.05.7 ESCPDM Average Length Curve of Vegetation On) A Langer than 30" A 11" to 24" B 8" to to" C 2" to 6" D Less than 2" E c 0 E .2 .4 .6 *.a 1.0 2 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's n relaled to velocity, hydraulic radius, and vegolal retardance. Note: From Sample Problem 8.05a multiply Vp x HydraluIle Radius (4.50.54-2.43), Mn enter the product of VR and extend a straight fine up to Retardanw loss "D", next project a straight fine to dte left fo determine a trial manning's n. Rev. 1203 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 2/7/2008 REV: 31812010 Channel # Grass Swale # 7 Estimating Mannings 'n' per ESCPDM Page 8.05.6 - See Flow Master Calculations for final Design Step # Variable Result Description C 0.28 1) Q= 2.97 cfs (Qto) 2.1 cfs (Q2) 1 7.17 2) S= 0.013 ft/ft A 1.48 3) Vpo 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 0.66 ft' =Q/Vp 5) R= 0.45 Hydraulic Radius =bd+Zd' / b+2d(Z'+1)` (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 0.7 (Trapezoidal depth) Z= 3 (e/d) A= 2.87 (Cross Sectional Area) 6) Usir Frol Mar 7) V= QC= 8) ChE ChE 9) OK' 10) Isa1 11) N/A C W C cc M .J 3 Average Length of Vegetellon Qn) Curve . 2 A Lager than 80' A 11" to 24" 8 8" t 0" C . o 1 2" to 6" D L 2" E th I 8 es s an . 06 0 04 E .02 •? .c .4 .o '.u i.u 'L 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius Retardance Curve D Figure 8.050 VpR= 2.01 ings'n' (As read from gra ph)= 0.045 2.21 fps Actual V from Manning's Equation 6.33 cfs Actual channel capacity. c Vp>V Vp= 4.5 fps V= 2.21 fps c Qc>Q QC= 6.33 cis Q= 2.97 cfs YES (If Vp>V, then OK) YES (If Qc>Q, then OK) np liner required? YES (NOTE 1- 8.05.7 ESCPDM) u= t.Z ue in incluain rreeooara Using Retardance Curve B From Figure 8.050 VpR= 2.01 Mannings'n' (As read from graph)= 0.096 V= 1.03 fps Actual V from Manning's Equation QC= 2.97 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 1.03 fps Check Qc>Q Qc= 2.97 cts Q= 2.97 cfs OK? YES (If Vp>V, then OK) NO (If Qc>Q, then OK) Is a penn'nt liner required? NO NOTE 1- 8.05.7 ESCPDM Figure 8.050 Manning's nrelated to Velocity, hydraulic radius, and vegatal retardance. Note: From Sample Problem 8.05a multiply Vp x Hydralulle Radius (4.50.542.43), then enter the product of VR and extend a sWght fine up to Retardance class-D-, next project a straight fine to the left to determine a trial manning's n. Rev. 1283 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 217/2008 REV: 3/4/2010 Channel # Grass Swale # 8 Estimating Mannings 'n' per ESCPDM Page 8.05.6 - See Flow Master Calculations for final Design Step # Variable Result Description C 0.41 1) Q= 10.46 cts (Q1o) 7.5 cis (Q2) 1 3.67 2) S= 0.003 Wit A 6.95 3) VP 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 2.32 ftz =Q/Vp 5) R= 0.96 Hydraulic Radius =bd+Zd= / b+2d(Z1+1)` (Figure 8.05b) Where b= 14.5 (Trapezoidal Bottom Width) df= 1.17 (Trapezoidal depth) Z= 3 (e/d) A= 21.0717 (Cross Sectional Area) 6) 7) 8) Retardance Curve D Figure 8.05c VPR= 4.33 ings'n' (As read from graph)= 0.038 2.21 fps Actual V from Manning's Equation 46.65 cts Actual channel capacity. c Vp>V Vp= 4.5 fps V= 2.21 fps c Qc>Q Qc= 46.65 cis Q= 10.46 cis YES (If Vp>V, then OK) YES (If Qc>Q, then OK) np liner required? YES (NOTE 1- 8.05.7 ESCPDM) U= 1.6/ ue to Inclualn rreeDoara Using Retardance Curve B From Figure 8.05c VPR= 4.33 Mannings'n' (As read from graph)= 0.066 V= 1.26 fps Actual V from Manning's Equation Qc= 26.60 cis Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 1.26 fps Check Qc>Q QC= 26.60 cis Q= 10.46 cis OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a penm'nt liner required? NO NOTE 1- 8.05.7 ESCPDM 9) OK' 10) Isai 11) N/A C m m c to ' to e .o Average Length 3 of Vegetation an) Curve Longer than 30' A 11" to 24• a .2 A 6' to 10" C 2• to 6' D Less than 2" E OB c O6 0 E 04 2 .I .2 .4 .6 .6 1.0 2 4 6 a 10 20 VR, Product of Velocity and Hydraulic Radius Rgure 8.05c Manning's n related to va ly, hydraulic red lus, and vegetal totarda nce. Note: From Sample Problem 8.05a multiply Vp x Hydralulie Radius (4.50.54°2.43), hen enter the product of VR and extend a straight me up to Retardance class "W, next project a straight line to the left to determine a trial manning's n. Rev. 12193 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet for SWALE #5A Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.070 Channel Slope 0.02000 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 2.00 ft Discharge 14.02 ft'/s Results Normal Depth 1.13 ft Flow Area 6.12 ft2 Wetted Perimeter 9.16 ft Top Width 8.80 ft Critical Depth 0.79 It Critical Slope 0.09379 ft/ft Velocity 2.29 ft/s Velocity Head 0.08 It Specific Energy 1.21 ft Froude Number 0.48 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.13 It Critical Depth 0.79 ft Channel Slope 0.02000 ft/ft Critical Slope 0.09379 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 312912010 3:35:02 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 05795 USA +1-203-755-1585 Page 1 of 1 Worksheet for SWALE #5B Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.070 Channel Slope 0.02750 ft/ft Left Side Slope 3.00 ft /ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 2.00 ft Discharge 14.02 ft3/s Results Normal Depth 1.05 ft Flow Area 5.43 ft2 Wetted Perimeter 8.66 ft Top Width 8.32 ft Critical Depth 0.79 ft Critical Slope 0.09379 ft/ft Velocity 2.58 ft /s Velocity Head 0.10 ft Specific Energy 1.16 ft Froude Number 0.56 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 It Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft /s Upstream Velocity Infinity ft/s Normal Depth 1.05 ft Critical Depth 0.79 ft Channel Slope 0.02750 ft /ft Critical Slope 0.09379 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.001 312912010 3:34:37 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-765-1886 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet for SWALE #5C Project Description Friction Method Solve For Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 312912010 3:34:20 PM Manning Formula Normal Depth 0.066 0.01000 ft/ft 3.00 ft/ft (H:V) 3.00 ft/ft (H:V) 2.00 ft 14.02 ft3/s 1.29 it 7.57 ftz 10.16 ft 9.74 ft 0.79 ft 0.08338 ft/ft 1.85 ft/s 0.05 it 1.34 ft 0.37 Subcritical 0.00 ft 0.00 it 0 0.00 it 0.00 it Infinity ft/s Infinity ft/s 1.29 ft 0.79 ft 0.01000 ft/ft 0.08338 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1868 Page 1 of 1 Worksheet for SWALE #7 Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.096 Channel Slope 0.01300 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 2.00 ft Discharge 2.97 ft'/s Results Normal Depth 0.70 ft Flow Area 2.88 ft2 Wetted Perimeter 6.43 ft Top Width 6.21 ft Critical Depth 0.34 ft Critical Slope 0.21938 ft/ft Velocity 1.03 ft/s Velocity Head 0.02 ft Specific Energy 0.72 ft Froude Number 0.27 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 It Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.70 ft Critical Depth 0.34 ft Channel Slope 0.01300 ft/ft Critical Slope 0.21938 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.001 312912010 3:33:58 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1585 Page 1 of 1 1 1 1 1 1 1 1 1 1 Worksheet for SWALE #8 Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.066 Channel Slope 0.00330 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 14.50 ft Discharge 10.46 ft'/s Results Normal Depth 0.69 ft Flow Area 11.35 ftZ Wetted Perimeter 18.83 ft Top Width 18.61 ft Critical Depth 0.25 ft Critical Slope 0.10328 ft /ft Velocity 0.92 ft/s Velocity Head 0.01 ft Specific Energy 0.70 ft Froude Number 0.21 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.69 ft Critical Depth 0.25 ft Channel Slope 0.00330 ft/ft Critical Slope 0.10328 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 312912010 3:32:15 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 05795 USA +1.203-755-1588 Page 1 of 1 Culvert Flows PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 8/17/09 Design -10 year FES 11 TO FES 11A Area = 0.67 ac. Intensity = 7.17 in/hr Tc = 5.0 min. Comp. C = 0.29 Q=C*I*A= 1.39 cfs FES 12 TO FES EX 12A Area = 0.13 ac. Intensity = 7.17 in/hr Tc = 5.0 min. Comp. C = 0.35 Q = C*I*A = 0.33 cfs FES 13 TO FES EX 13A Area = 0.76 ac. Intensity = 7.17 in/hr Tc = 5.0 min. Comp. C = 0.34 Q=C*I*A= 1.85 cfs FES 34 TO FES 35 Area = 0.46 ac. Intensity = 7.17 in/hr Tc = 5.0 min. Comp. C = 0.37 Q = C*I*A = 1.22 cfs 2326-culvert flows 8-17-09.xls Page 1 11 1 1 1 1 1 1 1 1 HY-8 Culvert Analysis Report Table 1 - Summary of Culvert Flows at Crossing: EX FES 11A.1 TO EX FES 11A.2 Headwater Elevation () Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (cfs) Iterations 742.61 1.00 1.00 0.00 1 742.68 1.26 1.26 0.00 1 742.75 1.52 1.52 0.00 1 742.82 1.78 1.78 0.00 1 742.88 2.04 2.04 0.00 1 742.94 2.29 2.29 0.00 1 742.99 2.55 2.55 0.00 1 743.04 2.81 2.81 0.00 1 743.09 3.07 3.07 0.00 1 743.14 3.33 3.33 0.00 1 743.19 3.59 3.59 0.00 1 Table 2 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth (ft) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (fus) Tailwater Velocity (ft/s) 1.00 1.00 742.61 0.535 0.000 1-S2n 0.329 0.391 0.330 0.000 3.831 0.000 1.26 1.26 742.68 0.603 0.000 1-S2n 0.376 0.439 0.377 0.000 4.043 0.000 1.52 1.52 742.75 0.672 0.000 1-S2n 0.412 0.486 0.415 0.000 4.296 0.000 1.78 1.78 742.82 0.739 0.000 1-S2n 0.448 0.527 0.450 0.000 4.450 0.000 2.04 2.04 742.88 0.800 0.000 1-S2n 0.484 0.566 0.485 0.000 4.627 0.000 2.29 2.29 742.94 0.858 0.000 1-S2n 0.517 0.604 0.518 0.000 4.788 0.000 2.55 2.55 742.99 0.912 0.000 1-S2n 0.548 0.639 0.548 0.000 4.953 0.000 2.81 2.81 743.04 0.964 0.000 1-S2n 0.579 0.671 0.580 0.000 5.045 0.000 3.07 3.07 743.09 1.014 0.000 1-S2n 0.610 0.703 0.612 0.000 5.144 0.000 3.33 3.33 743.14 1.063 0.000 1-S2n 0.640 0.735 0.640 0.000 5.264 0.000 3.59 3.59 743.19 1.111 0.000 1-S2n 0.670 0.764 0.670 0.000 5.365 0.000 Inlet Elevation (invert): 742.08 ft, Outlet Elevation (invert): 741.28 ft Culvert Length: 82.00 ft, Culvert Slope: 0.0098 Water Surface Profile Plot for Culvert: Culvert 1 745.0 744.5 744.0 743.5 0 m743.0 W 742.5 742.0 741.5 Crossing - EX FES 11A.1 TP EX FES 11A.2, Design Discharge - 3.6 cfs Culvert - Culvert 1, Culvert Discharge - 3.6 cfs ?___________-l________ __1__________-J----------- ______________- ------------ L_--- ------------ ------------------ -------------- -------- --------- I F-- ------------- ------------------------ ---------- ------------------- ----- ---------------------- ---------- -20 0 20 40 60 Station (ft) Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 742.08 ft Outlet Station: 82.00 ft Outlet Elevation: 741.28 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.25 ft Barrel Material: Concrete Barrel Manning's n: 0.0130 Inlet Type: Conventional Inlet Edge Condition: Grooved End Projecting Inlet Depression: None 80 100 t 1 1 n 1 1 1 Table 3 - Downstream Channel Rating Curve (Crossing: EX FES 11A.1 TO EX FES Flow (cfs) Water Surface Elev (ft) Depth (ft) 1.00 741.28 0.00 1.26 741.28 0.00 1.52 741.28 0.00 1.78 741.28 0.00 2.04 741.28 0.00 2.29 741.28 0.00 2.55 741.28 0.00 2.81 741.28 0.00 3.07 741.28 0.00 3.33 741.28 0.00 3.59 741.28 0.00 11 A.2) Tailwater Channel Data - EX FES 11A.1 TO EX FES 11A.2 Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 741.28 ft Roadway Data for Crossing: EX FES 11A.1 TO EX FES 11A.2 Roadway Profile Shape: Constant Roadway Elevation Crest Length: 30.00 ft Crest Elevation: 745.00 ft Roadway Surface: Gravel Roadway Top Width: 8.00 ft Table 1 - Summary of Culvert Flows at Crossing: FES 11 TO FES 11A Headwater Elevation (ft) Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (?) Iterations 742.99 1.00 1.00 0.00 1 743.00 1.04 1.04 0.00 1 743.01 1.08 1.08 0.00 1 743.02 1.12 1.12 0.00 1 743.03 1.16 1.16 0.00 1 743.04 1.19 1.19 0.00 1 743.05 1.23 1.23 0.00 1 743.06 1.27 1.27 0.00 1 743.07 1.31 1.31 0.00 1 743.08 1.35 1.35 0.00 1 743.09 1.39 1.39 0.00 1 Table 2 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth (ft) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (ft/s) T el y V eloci ocity (fus) 1.00 1.00 742.99 0.535 0.000 1-S2n 0.338 0.391 0.340 0.000 3.679 0.000 1.04 1.04 743.00 0.547 0.000 1-S2n 0.345 0.398 0.347 0.000 3.716 0.000 1.08 1.08 743.01 0.558 0.000 1-S2n 0.352 0.405 0.354 0.000 3.752 0.000 1.12 1.12 743.02 0.569 0.000 1-S2n 0.360 0.413 0.362 0.000 3.785 0.000 1.16 1.16 743.03 0.581 0.000 1-S2n 0.367 0.420 0.369 0.000 3.817 0.000 1.19 1.19 743.04 0.587 0.000 1-S2n 0.374 0.427 0.375 0.000 3.862 0.000 1.23 1.23 743.05 0.597 0.000 1-S2n 0.380 0.434 0.381 0.000 3.904 0.000 1.27 1.27 743.06 0.607 0.000 1-S2n 0.386 0.441 0.386 0.000 3.955 0.000 1.31 1.31 743.07 0.617 0.000 1-S2n 0.392 0.448 0.392 0.000 3.994 0.000 1.35 1.35 743.08 0.627 0.000 1-S2n 0.397 0.456 0.399 0.000 4.030 0.000 1.39 1.39 743.09 0.638 0.000 1-S2n 0.403 0.463 0.406 0.000 4.048 0.000 »»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»» Inlet Elevation (invert): 742.45 ft, Outlet Elevation (invert): 742.20 ft Culvert Length: 28.00 ft, Culvert Slope: 0.0089 »»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»» Water Surface Profile Plot for Culvert: Culvert 1 Crossing - FES 11 TO FES 11:x, Des i Di c1 age. - 1.4 ds C_ uh-eif - C'uh-ert L Cuh,ert Ulscharoe - 1.4 cf., ' 745.0 --------------- --------------- , 744.5 ---------------- ------ ----- ; aC 744.0 --- -------------r ----------------- ;------- --------;------------ o 743.5 --------------- -----------------------------------= ---- -- ------------ - --------------- 743.0 -- - ----------------- ----------------- ---------------- -----------------r ----------------;-------------- -- ----- ------ 0 10 20 30 ' Station (ft) ' Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 742.45 ft Outlet Station: 28.00 ft Outlet Elevation: 742.20 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.25 ft Barrel Material: Barrel Manning's n: 0.0130 ' Inlet Type: Inlet Edge Condition: Inlet Depression: None 1 Table 3 - Downstream Channel Rating Curve (Crossing: FES 11 TO FES 11A) Flow (cfs) Water Surface Elev (ft) Depth (ft) 1.00 742.20 0.00 1.04 742.20 0.00 1.08 742.20 0.00 1.12 742.20 0.00 1.16 742.20 0.00 1.19 742.20 0.00 1.23 742.20 0.00 1.27 742.20 0.00 1.31 742.20 0.00 1.35 742.20 0.00 1.39 742.20 0.00 Tailwater Channel Data - FES 11 TO FES 11A Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 742.20 ft Roadway Data for Crossing: FES 11 TO FES 11A Roadway Profile Shape: Constant Roadway Elevation Crest Length: 30.00 ft Crest Elevation: 745.00 ft Roadway Surface: Gravel Roadway Top Width: 8.00 ft t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 4 - Summary of Culvert Flows at Crossing: FES 12 TO FES 12A Headwater Elevation () Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (cfs) Iterations 740.67 0.31 0.31 0.00 1 740.67 0.31 0.31 0.00 1 740.67 0.31 0.31 0.00 1 740.67 0.32 0.32 0.00 1 740.67 0.32 0.32 0.00 1 740.67 0.32 0.32 0.00 1 740.67 0.32 0.32 0.00 1 740.67 0.32 0.32 0.00 1 740.68 0.33 0.33 0.00 1 740.68 0.33 0.33 0.00 1 740.68 0.33 0.33 0.00 1 Table 5 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth of Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (ft/s) Tailwater Velocity ( loci 0.31 0.31 740.67 0.339 0.366 2-M2c 0.269 0.225 0.225 0.050 2.387 0.000 0.31 0.31 740.67 0.340 0.367 2-M2c 0.270 0.226 0.226 0.050 2.393 0.000 0.31 0.31 740.67 0.341 0.368 2-M2c 0.271 0.227 0.227 0.050 2.399 0.000 0.32 0.32 740.67 0.343 0.370 2-M2c 0.272 0.228 0.228 0.050 2.405 0.000 0.32 0.32 740.67 0.344 0.371 2-M2c 0.273 0.228 0.228 0.050 2.411 0.000 0.32 0.32 740.67 0.345 0.372 2-M2c 0.274 0.229 0.229 0.050 2.417 0.000 0.32 0.32 740.67 0.347 0.373 2-M2c 0.275 0.230 0.230 0.050 2.423 0.000 0.32 0.32 740.67 0.348 0.375 2-M2c 0.276 0.230 0.230 0.050 2.429 0.000 0.33 0.33 740.68 0.349 0.376 2-M2c 0.277 0.231 0.231 0.050 2.435 0.000 0.33 0.33 740.68 0.350 0.377 2-M2c 0.278 0.232 0.232 0.050 2.441 0.000 0.33 0.33 740.68 0.352 0.378 2-M2c 0.278 0.232 0.232 0.050 2.447 0.000 Inlet Elevation (invert): 740.30 ft, Outlet Elevation (invert): 739.85 It Culvert Length: 46.00 ft, Culvert Slope: 0.0098 Water Surface Profile Plot for Culvert: Culvert 1 C'ros- ing - FES 12 TO FES 12A, Dekwi Dischage - 0.3 cf. C'uh-ert - Cuh-ert 1 Cuh•eit Dischar,e - 0.3 cf,, 741.6 ----- ---------- ----------- I -----;- --;---------- 11---------- ;----------? 741.4 -----"---------- ----- --- -------- ------------ ------- ----------------------- 741.2 741.0 -- ---------- ---------- ------ --------- -------- ;- ------- ; ---------- ; o740.8 ----- --------------------- ------------------- ---------- ------ --- ---------- ---------- I ------ --------------? M 740.6 - ----- - - - -- -, 740.4 ' 740.2 ---------------- ------ ------------------;` -- ----- ---;---------- 740.0 ---------------- ---------- ------ ----------' -------------- ---;----------: -- - - - -- -- - - -1 739.8 --- -1-L -10 0 10 20 30 40 50 60 Station (ft) Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 740.30 ft Outlet Station: 46.00 ft Outlet Elevation: 739.85 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Barrel Manning's n: 0.0240 Inlet Type: Inlet Edge Condition: Inlet Depression: None 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 6 - Downstream Channel Rating Curve (Crossing: FES 12 TO FES 12A) Flow (cfs) Water Surface Elev (ft) Depth (ft) 0.31 739.90 0.05 0.31 739.90 0.05 0.31 739.90 0.05 0.32 739.90 0.05 0.32 739.90 0.05 0.32 739.90 0.05 0.32 739.90 0.05 0.32 739.90 0.05 0.33 739.90 0.05 0.33 739.90 0.05 0.33 739.90 0.05 Tailwater Channel Data - FES 12 TO FES 12A Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 739.90 ft Roadway Data for Crossing: FES 12 TO FES 12A Roadway Profile Shape: Constant Roadway Elevation Crest Length: 50.00 ft Crest Elevation: 741.60 ft Roadway Surface: Paved Roadway Top Width: 8.00 ft Table 7 - Summary of Culvert Flows at Crossing: FES 13 TO FES 13A Headwater Elevation () Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (cfs) Iterations 738.69 1.00 1.00 0.00 1 738.73 1.09 1.09 0.00 1 738.76 1.17 1.17 0.00 1 738.79 1.25 1.25 0.00 1 738.82 1.34 1.34 0.00 1 738.85 1.43 1.43 0.00 1 738.89 1.51 1.51 0.00 1 738.92 1.60 1.60 0.00 1 738.95 1.68 1.68 0.00 1 738.99 1.77 1.77 0.00 1 739.02 1.85 1.85 0.00 1 Table 8 - Culvert Summary Table: Culvert 1 Total Discharge WS) Culvert Discharge (ds) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth (ft) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Velocity Outlet (ft/s) y T V eloci oci elty (ft/s) 1.00 1.00 738.69 0.635 0.693 2-M2c 0.514 0.418 0.418 0.010 3.217 0.000 1.09 1.09 738.73 0.667 0.726 2-M2c 0.540 0.436 0.436 0.010 3.313 0.000 1.17 1.17 738.76 0.698 0.759 2-M2c 0.566 0.453 0.453 0.010 3.378 0.000 1.25 1.25 738.79 0.729 0.791 2-M2c 0.592 0.471 0.471 0.010 3.450 0.000 1.34 1.34 738.82 0.759 0.822 2-M2c 0.619 0.488 0.488 0.010 3.516 0.000 1.43 1.43 738.85 0.789 0.652 2-M2c 0.646 0.505 0.505 0.010 3.584 0.000 1.51 1.51 738.89 0.820 0.887 2-M2c 0.673 0.520 0.520 0.010 3.664 0.000 1.60 1.60 738.92 0.850 0.918 2-M2c 0.700 0.534 0.534 0.010 3.739 0.000 1.68 1.68 738.95 0.880 0.948 2-M2c 0.732 0.549 0.549 0.010 3.809 0.000 1.77 1.77 738.99 0.911 0.987 2-M2c 0.764 0.563 0.563 0.010 3.874 0.000 1.85 1.85 739.02 0.942 1.020 2-M2c 0.795 0.578 0.578 0.010 3.935 0.000 Inlet Elevation (invert): 738.00 ft, Outlet Elevation (invert): 737.34 ft Culvert Length: 68.00 ft, Culvert Slope: 0.0097 1 Water Surface Profile Plot for Culvert: Culvert 1 Cros sh g - FES 13 TO FES 13A, Des,iwi Discharge - 1.9 ds Ctih-cif - Ciih-eif 1, Cuh7ert Dischar&e - 1.9 c£c 740.5 -;--------------,-------------- ;------ ---- 740.0 -;-------------- ------------- '--------------;--- ---------- --------------------- ...739.5 ---------------I------ ------ Q 739.0 -' - - ' 738 5 -i-------------- ----}- ----'------ ----,-------- . --- --------- ------ 738.0 -;------------- ------------ --------------- ' --------?- --------------- 737.5 -?----------------------------- --------------;-------- ---- --------------- - 20 0 20 40 60 80 ' Station (ft) ' Site Data - Culvert 1 Sit D t O ti C l e a a p on: u vert Invert Data Inlet Station: 0.00 ft ' Inlet Elevation: 738.00 ft Outlet Station: 68.00 ft ' Outlet Elevation: 737.34 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Barrel Manning's n: 0.0240 Inlet Type: Inlet Edge Condition: ' Inlet Depression: None Table 9 - Downstream Channel Rating Curve (Crossing: FES 13 TO FES 13A) Flow (cfs) Water Surface Elev (ft) Depth (ft) 1.00 737.35 0.01 1.09 737.35 0.01 1.17 737.35 0.01 1.25 737.35 0.01 1.34 737.35 0.01 1.43 737.35 0.01 1.51 737.35 0.01 1.60 737.35 0.01 1.68 737.35 0.01 1.77 737.35 0.01 1.85 737.35 0.01 Tailwater Channel Data - FES 13 TO FES 13A Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 737.35 ft Roadway Data for Crossing: FES 13 TO FES 13A Roadway Profile Shape: Constant Roadway Elevation Crest Length: 50.00 ft Crest Elevation: 740.50 ft Roadway Surface: Paved Roadway Top Width: 8.00 ft Table 10 - Summary of Culvert Flows at Crossing: FES 32 TO FES 33 Headwater Elevation () Total Discharge (cfs) Culvert 1 Discharge (Cfs) Roadway Discharge (cfs) Iterations 738.78 2.00 2.00 0.00 1 738.80 2.09 2.09 0.00 1 738.82 2.17 2.17 0.00 1 738.84 2.26 2.26 0.00 1 738.86 2.35 2.35 0.00 1 738.88 2.44 2.44 0.00 1 738.89 2.52 2.52 0.00 1 738.91 2.61 2.61 0.00 1 738.93 2.70 2.70 0.00 1 738.95 2.78 2.78 0.00 1 738.96 2.87 2.87 0.00 1 Table 11 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control ft Depth O Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (ft/s) Tailwater Velocity (ft/s) 2.00 2.00 738.78 0.780 0.000 1-S2n 0.360 0.560 0.360 0.000 6.812 0.000 2.09 2.09 738.80 0.800 0.000 1-S2n 0.369 0.573 0.370 0.000 6.861 0.000 2.17 2.17 738.82 0.820 0.000 1-S2n 0.378 0.586 0.378 0.000 6.944 0.000 2.26 2.26 738.84 0.839 0.000 1-S2n 0.385 0.599 0.385 0.000 7.063 0.000 2.35 2.35 738.86 0.857 0.000 1-S2n 0.392 0.612 0.394 0.000 7.114 0.000 2.44 2.44 738.88 0.876 0.000 1-S2n 0.399 0.624 0.403 0.000 7.157 0.000 2.52 2.52 738.89 0.894 0.000 1-S2n 0.406 0.635 0.408 0.000 7.301 0.000 2.61 2.61 738.91 0.911 0.000 1-S2n 0.413 0.646 0.415 0.000 7.399 0.000 2.70 2.70 738.93 0.929 0.000 1-S2n 0.420 0.657 0.426 0.000 7.291 0.000 2.78 2.78 738.95 0.946 0.000 1-S2n 0.427 0.667 0.431 0.000 7.407 0.000 2.87 2.87 738.96 0.963 0.000 1-S2n 0.434 0.678 0.437 0.000 7.487 0.000 Inlet Elevation (invert): 738.00 ft, Outlet Elevation (invert): 737.00 ft Culvert Length: 35.01 ft, Culvert Slope: 0.0286 Water Surface Profile Plot for Culvert: Culvert 1 Crossing - FES 3? TO FES 33, Desip Dl charze - 1.9 efs C'uh-ert - Cuh-eit 1, Ciih-eit Dischar&e - 2.9 cfs ---------------- 741.0 -,----------------I------------ ---- -----------? - -- --- ----------- 740.5- -------------- L ------------- 11----- --------. -------------1-------- 740.0 -j-------------- ------ -----1------------- ------ ---- L------------- 1-------- 739.5 - ------------- ; - = -------------- ---- --- -- ----- a •- 739.0 -;-?-- ---------------------------- r - ----------- . -------- > 738.5 W ?- . 738.0 -- --: -?--;' - -------- ------ ------ --------- ----------- 737.5 - --------------- ---------------------- ;--------------? ------ ;-------- - ------------ ----------- 737.0 -?------------- - - -1o - - ---? - -- -10 0 10 20 30 40 Station (ft) Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 738.00 ft Outlet Station: 35.00 ft Outlet Elevation: 737.00 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.25 ft Barrel Material: Barrel Manning's n: 0.0130 Inlet Type: Inlet Edge Condition: Inlet Depression: None Table 12 - Downstream Channel Rating Curve (Crossing: FES 32 TO FES 33) Flow (cfs) Water Surface Elev (ft) Depth (ft) 2.00 737.00 0.00 2.09 737.00 0.00 2.17 737.00 0.00 2.26 737.00 0.00 2.35 737.00 0.00 2.44 737.00 0.00 2.52 737.00 0.00 2.61 737.00 0.00 2.70 737.00 0.00 2.78 737.00 0.00 2.87 737.00 0.00 Tailwater Channel Data - FES 32 TO FES 33 Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 737.00 ft Roadway Data for Crossing: FES 32 TO FES 33 Roadway Profile Shape: Constant Roadway Elevation Crest Length: 50.00 ft Crest Elevation: 741.00 ft Roadway Surface: Paved Roadway Top Width: 8.00 ft Table 1 - Summary of Culvert Flows at Crossing: FES 34 TO FES 35 Headwater Elevation (ft) Discharge (cfs) Total Culvert 1 Discharge (ds) Roadway Discharge (ds) Iterations 736.02 1.00 1.00 0.00 1 736.02 1.02 1.02 0.00 1 736.02 1.04 1.04 0.00 1 736.02 1.07 1.07 0.00 1 736.02 1.09 1.09 0.00 1 736.02 1.11 1.11 0.00 1 736.02 1.13 1.13 0.00 1 736.02 1.15 1.15 0.00 1 736.03 1.18 1.18 0.00 1 736.03 1.20 1.20 0.00 1 736.03 1.22 1.22 0.00 1 736.80 6.65 6.65 0.00 Overtopping Table 2 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth (ft) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (ft/s) Tailwater Velocity WS) 1.00 1.00 736.02 0.536 1.418 4-FFf 0.344 0.391 1.250 0.000 0.815 0.000 1.02 1.02 736.02 0.542 1.419 4-FFf 0.349 0.395 1.250 0.000 0.833 0.000 1.04 1.04 736.02 0.549 1.420 4-FFf 0.353 0.399 1.250 0.000 0.851 0.000 1.07 1.07 736.02 0.555 1.421 4-FFf 0.357 0.403 1.250 0.000 0.869 0.000 1.09 1.09 736.02 0.561 1.421 4-FFf 0.361 0.407 1.250 0.000 0.887 0.000 1.11 1.11 736.02 0.568 1.422 4-FFf 0.366 0.411 1.250 0.000 0.905 0.000 1.13 1.13 736.02 0.574 1.423 4-FFf 0.370 0.415 1.250 0.000 0.922 0.000 1.15 1.15 736.02 0.580 1.424 4-FFf 0.374 0.419 1.250 0.000 0.940 0.000 1.18 1.18 736.03 0.587 1.425 4-FFf 0.378 0.423 1.250 0.000 0.958 0.000 1.20 1.20 736.03 0.588 1.426 4-FFf 0.381 0.427 1.250 0.000 0.976 0.000 1.22 1.22 736.03 0.593 1.427 4-FFf 0.384 0.432 1.250 0.000 0.994 0.000 Inlet Elevation (invert): 734.60 ft, Outlet Elevation (invert): 734.40 ft Culvert Length: 24.00 ft, Culvert Slope: 0.0083 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Water Surface Profile Plot for Culvert: Culvert 1 (_ro sili - FES 34 TO FES 35, De k'wl Di-schai•ge - 1.' cfb C'uh-ert - C'uh!ert 1, Cuh-ert Discharae - 1.2 cfs 736.5 ----- ---------- ---------- -------- ---- ---- 1----- -- ---------- --------- - - f- - ; -- -------------- -------- --- - - .r. a 735.5 r --- --------- -------- ' ------ ----------- 4) W 735.0 ?. - ,- c ; ------------ ---- ----------- 734.5 -----I---------- ----- ---=- --- - - ---? -5 0 5 10 15 20 25 30 Station (ft) Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 734.60 ft Outlet Station: 24.00 ft Outlet Elevation: 734.40 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.25 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Inlet Type: Conventional Inlet Edge Condition: Grooved End Projecting Inlet Depression: None Table 3 - Downstream Channel Rating Curve (Crossing: FES 34 TO FES 35) Flow (cfs) Water Surface Elev (ft) Depth (ft) 1.00 736.00 0.00 1.02 736.00 0.00 1.04 736.00 0.00 1.07 736.00 0.00 1.09 736.00 0.00 1.11 736.00 0.00 1.13 736.00 0.00 1.15 736.00 0.00 1.18 736.00 0.00 1.20 736.00 0.00 1.22 736.00 0.00 Tailwater Channel Data - FES 34 TO FES 35 Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 736.00 ft Roadway Data for Crossing: FES 34 TO FES 35 Roadway Profile Shape: Constant Roadway Elevation Crest Length: 50.00 ft Crest Elevation: 736.80 ft Roadway Surface: Paved Roadway Top Width: 8.00 ft