Loading...
HomeMy WebLinkAbout20061376 Ver 1_Stormwater Info_20100322a,o o L., - l ?) rl LP Town of Holly Springs Engineering Department LETTER OF TRANSMITTAL To: Ian McMillian Date: 3/19/10 401 Oversight/Express Review Permitting Unit 1650 Mail Service Center Raleigh, NC 27604 0 W A- bpj)?, [JAR J :J LV i1.? Re: Stormwater Plan for Novartis The following items are enclosed: V ENR - WATER 01AU" YETW-vs AND co (n*r pmt wwo 1. 1 copy of approved stormwater plan. 2. 3. These are transmitted: ? as requested ? for review ? for approval ® for your use Remarks: Ian, Heather said you did not have this. This is the stormwater management plan for the bioretention areas at Novartis. Give me a call if you need any additional information at Tel.#(919)557-2921. P"' Darin Eyster tormwater Administrator Copies to: P. O. Box 8 - Holly Springs - NC 27540 -919-557-3938 (phone) - 919-552-9881 (fax) • m JAC06S E•IAR 20-10 .31 DCNR • WATER QUPL{TY Vt?ET R!40S AND :ii'QR% i-.A'ER SfiMCH Novartis Vaccines & Diagnostics Town of Holly Springs, North Carolina USFCC Project Final Storm Sewer & Bioretention Basins Civil Calculations • is NC.i?d!=E= o E .,)p July 2008 it Project No. 22-COl 15S Prepared by: Jacobs Engineering 1880 Waycross Rd Cincinnati, OH 45240 RECEIVED SEP 115 2008 Jacobs Field ervi' r" .. ??.O • %A CARP ''•. OQ` ?z •., y. .•?' ••••OFf. SS/O •. spiv '4Q' SEAL 9r' 033329 0 Q 2 o cc :q,?• •Q % •:?'QtNEta;••. •?, Z)RTHY BP?'P ••?, t. 9"8811 USFCC Project Novartis Vaccines & Diagnostics • Da JACOBS ?c?-???Lp F_s T I S Final Storm Sewer & Bioretention Basins Civil Calculations 'T'able of Contents Section Description Revision Pages A Calc 9C-5A Stormwater Calculations- 1 1 to 65 Final Grading Storm Sewer Calculations B Calc 9C-9 Bioretention Basin Sizing 0 1 to 54 C Calc #C-10 End of Curb & Gutter 0 1 to 5 East Ditch Outlet 0-6 20'J 'NR • YlATER QUALITY M RANDS AN U'VURNW-.AT,ER 6WaNCH E -P-ag-15-1 4 4- • IIJACOBS Section A Cale #C-5A Storrnwater Calculations Final Grading Storm Sewer Calculations • • ---P?agc-2-af4- 0 rte,.,:. Section VA- P\,TI_S Cale #C-5A Stormwater Calculations Final Grading Storm Sewer Calculations • • Page 2 of 4 CALCULATION COMER SHEET PROJECT USFCC JOB NO. 22CO117S DEPARTMENT Civil CLIENT Novartis Vaccines & Diagnostics CALC. NO. C- #5A SUBJECT Stormwater Calculations - Final Grading Storm Sewer Calculations ORIGINATOR Charles VanArsdale DATE 4/08 CHECKER Bill Overholt DATE 4/08 %k CA Ro 0,.o f0'ss?pti•??I.?9 ••,? !q, SEAL ; z 033329 z •///1111111/1?, • • PURPOSE OF ISSUANCE REV NO. PAGES DESCRIPTION ORIG. DATE CHKD. DATE APR DATE 0 62 ISSUED FOR APPROVAL CV 4/08 WJO 4/08 DB 4/08 1 65 ISSUED FOR APPROVAL CV 07/31/08 WJO 07/31/08 COMMENTS: These calculations are in support of a Land Disturbance Permit Application for the Town of Holly Springs, N.C. Bentley Storm CAD software was used to prepare calculations of the stormwater collection system. See BMP Wet Detention Pond Design Calculations, dated revised 2/14/07 for pre and post drainage area conditions. 3-31-08 CALC COVER SHEETS.DOC 02/19/96 ` ;; Nova.rtis USFCC Final Grading Storm Sewer Calculations 0 Holly Springs NC JE Project Number: 22CO117S Prepared by: Jacobs Engineering June, 2008 Date: June 2008 Rev.: 1 2G- 1 • Storm Sewer Narrative Project: Novartis USFCC Location: Town of Holly Springs, N. C. Date: June 2, 2005 Introduction The purpose of this project is to construct a Pharmaceutical manufacturing facility on a site located in Holly Springs, NC. The facility will produce a flu vaccine. Approximately 26 acres will drain to the proposed storm sewer at the site. Most drainage will outlet to a wet detention pond on the south side of the site. The wet detention pond design was previously submitted on 9/22/06 in support of an application for a 401 Certification. A small portion of the drainage area will outlet to the stream to the north, after filtering through bioretention basins. Site Description The site was a wooded area with a rolling terrain. Two perennial streams exist on the site, one in the North and one in the South. The main portion of storm sewer drains runoff to the south which drains into the Thomas Mill pond. Storm Sewer Description • The total storm sewer that will be constructed encompasses approximately 7200 LF of pipe. Approximately 2900 LF of this storm sewer has been constructed as part of the rough grading storm calculations previously submitted. The as-built invert elevations and proposed grate elevations are noted in this report. The storm sewer sizes, excluding cast iron roof leaders, range from 12 inch to 42 inch diameter. Catch basins & manholes are designed per Town of Holly Springs standards, and headwalls are in accordance with NCDOT standards. The storm sewer system, which outlets into the southern wet detention pond, was previously submitted with the wet detention pond design. The storm sewer system included in this installation will be pipe taking flow from the building roof leaders and parking drainage. The total final storm sewer system includes catch basins, curbs and gutters, and area drains on the inside of the site. These will be installed around the buildings, parking lots and utility yard areas in later construction phases. Design Requirements The following design requirements (taken from the Town of Holly Springs, NC, Engineering Standards dated August 2005) are used to design the storm sewer system: ® 10 year design storm for pipe sizing ® Pipe materials: RCP, or N-12 HDPE (and Cast Iron from roof leaders) ® Use Rational Method for runoff: Q=CIA ® Use Manning Equation for pipe sizing S ® Minimum velocity = 2fps ® Minimum pipe size: 12-inch ® Maximum inlet spacing: 400 feet • Calculation #5A Final Grading Storm Sewer Calculations Table of Contents Section Description Local Criteria A Input Summary B StormCAD Reports C Layouts & Profiles W, Grate & Lid Schedule P'rl::a • Focal Criteria 0 2.2 Rational Method Aq-60A? N6 It is usually acceptable to design storm drainage facilities for street drainage and relatively small areas (less than one hundred acres) using the rational method. Beyond this, the designer should employ another model to perform his design, or at least validate the use of the rational equation. In general, for larger areas the rational method will yield over-simplified results. When using the rational method some precautions should be considered. ® in determining the C value (land use) for the drainage area, hydrologic analysis should take into account any changes in land use. Since the rational method uses a composite C value for the entire drainage area, if the distribution of land uses within the drainage basin will affect the results of hydrologic analysis, then the basin should be divided into two or more sub-drainage basins for analysis. • The charts, graphs, and tables included In this section are given to assist the engineer in applying the rational method. The engineer should use good engineering judgment in applying these design alds and should make appropriate adjustments when specific site characteristics dictate that these adjustments are appropriate. 2.2.1 Equations The rational formula estimates the peak rate of runoff at any location in a watershed as a function of the drainage area, runoff coefficient, and mean rainfall intensity for a duration equal to the time of concentration (the time required for water to flow from the most remote point of the basin to the location being analyzed). The rational formula is expressed as follows: Q = G I A (2.1) Where: Q = Peak flow from the drainage area (cfs) C = Coefficient of runoff (dimensionless) I = Rainfall intensity for a given time to peak (in/hr) A = Drainage area (acres) The rational equation is based on the assumption that rainfall is uniformly distributed over the entire drainage area and at a steady rate, causing flow to reach a maximum at the outlet to the watershed at the time to peak (Tp). The rational method also assumes that all land uses within a drainage area are uniformly distributed throughout the area. If it is important to locate a specific land use within the drainage area then another hydrologic method should be used where hydrographs can be generated and routed through the drainage system. 2.2.2 Runoff Coefficient The runoff coefficient (C) is the variable of the rational method least susceptible to precise determination and requires judgment and understanding on the part of the design engineer. While engineering judgment will always be required in the selection of runoff coefficients, typical coefficients represent the integrated effects of many drainage basin parameters. Table 2.2 gives the recommended runoff coefficients for the rational method. Table 2.2 Recommended Runoff Coefficient Values Description of Area Runoff Coefficients (C) • 0 Woodlands 0.20-0.25 Parks, cemeteries 0.25 Playgrounds 0.35 Lawns: Sandy soil, flat, 2% 0.10 Sandy soil, average, 2 - 7% 0.15 Sandy soil, steep, > 7% 0 20 Clay soil, flat, 2% . 0.17 Clay soil, average, 2 - 7% Clay soil, steep, > 7% 0.35 Graded or no plant cover Sandy soil, flat, 0 - 5% 0.30 Sandy soil, flat, 5 - 10% 0.40 Clayey soil, flat, 0 - 5% 0 50 Clayey soil, average, 5 - 10% . 0.60 Residential: Single-family (R - 4) 0.50 Single-family (R - 6) 0 55 Multi-family (R-10) . 0 60 Multi-family (R-20) . 0.70 Multi-family (R - 30) 0.75 Business: .0 & I (I, II, 111) 0 85 11 & 12 Shopping Centers . 0.85 - 0.95 0.85-0,95 Streets: Gravel areas 0 50 Drives, walks, and roofs . 95 Asphalt and Concrete 0.95 - 1.00 ;4?_ It Is often desirable to develop a composite runoff coefficient based on the percentage of different types of surfaces in the drainage areas. Composites can be made with the values from Table 2.2 by using percentages of different land uses, as illustrated in Equation 2.2. In addition, more detailed composites can be made with coefficients for different surface types such as roofs, asphalt, and concrete streets, drives and walks. The composite procedure can be applied to an entire drainage area or to typical "sample" blocks as a guide to the selection of reasonable values of the coefficient for an entire area. C1*A1 + C2*A2 + ... Cx*Ax Composite C = --------------------------------- Al + A2 + ... Ax 2.2.3 Rainfalllntensit (2.2) The rainfall intensity (1) is the average rainfall rate in in./hr for a duration equal to (lie time of concentration for a selected return period. Once a particular return period has been selected for design and a time of concentration calculated for the drainage area, the rainfall intensity can be determined from file intensity- duration-frequency HDF) data for the City of Raleigh given in Table 2.23. ?i I I Table 2.3. Intensity - Duration - Frequency Table Cit of Raleigh North Carolina Duration 5 min 2 5.76 5 Fre uenc 10 7.22 Yrs 25 8.19 50 8,96 - 10 4.76 575 6.13 7.01 7 71 15 4.04 4.74 5.25 6.03 . 6 64 20 30 3.47 2.70 4.12 i 3.28 4.64 3.71 5.42 4.32 . 5.93 4 80- 40 2.28 2.77 _ 3.15 _ 3.70 , 4.08 50 1.94 2.38 2 71 3 19 3 53 60 1.70 2.12 . 2 41 . 2 84 . 3 17 90 2 hr._ 1.22 0.95 _ 1.52 1.20 . 1.74 1.37 . 2.06 _ 1.62 . 2.29 1.81 3 0.71 0.89 _ 1.02 1.21 1.35 6 0.44 0.56 J 0.65 0.77 0.86 12 L 24 0.26 0.15 0.33 0.19 i 639 0.22 0.46 n 97 0.52 n 4n 100 9.72 3.88 3.50 2.53 2.00 1.50 (Developed by Dr. H.R. Malcom, North Carolina State University, Dept. of Civil Engineering, and the authors based on NOAA HYDRO-35 and USWB TP-40) 2.2.4 Time Of Concentration Use of the rational formula requires the time of concentration (tc) for each resign point within the drainage basin. The duration of rainfall is then set equal to the time of concentration and is used to estimate the design average rainfall intensity (1). The time of concentration consists of an overland flow time to the point where the runoff enters a defined drainage feature (i.e., open channel) plus the time of flow in a closed conduit or open channel to the design point. There are several acceptable methods for calculating the time of concentration, including a simple nomograph for use with the rational formula or the use of routing equations such as the kinematic wave or Kirpich equations. 2.2.4.1 Simple Nomograph Figure 2.1 is a simple nomograph that can be used to estimate overland flow time. For each drainage area, the distance is determined from the inlet to the most remote point in the tributary area. From a topographic map, the average slope is determined for the same distance. The runoff coefficient (C) is determined by the procedure described in a subsequent section of this chapter. To obtain the total time of concentration, the pipe or open channel flow time must be calculated and added to the inlet time. After first determining the average flow velocity in the pipe or channel, the travel time is obtained by dividing velocity into the pipe or channel length. Velocity can be estimated by using the nomograph shown on Figure 2.2. Note: time of concentration cannot be less than 5 minutes. • 2.2.4.2 Kinematic Wave Another method that can be used to determine the overland flow portion of the time of concentration is the "Kinematic Wave Nomograph - Figure 2,3," The kinematic wave method incorporates several variables including rainfall intensity and Manning "n". In using the nomograph, the engineer has two unknowns starting the computations, the time of.concentration and the rainfall intensity. The problem is attempting to determine a rainfall intensity, which in turn actually determines the time of concentration. Thus, the problem is one of iteration. A value of "I" must be assumed, compute a time of concentration and then check back to see if the rainfall intensity that was assumed is consistent with the rainfall • I t-- EL Z w U z F4- ' Figure 2,1 Rational Formula - Overland Time of Flow Nomograph Cr?? 0 • September 2000 edilion V •1?? l''+ t ! d? . i 2. See Sections 6.00 and 7.00 of these Standards for horizontal and vertical separation requirements between storm drainage pipe, water lines, and sanitary sewer lines. 3. The Town of Holly Springs shall maintain only the storm sewer systems within Town-maintained rights of way and on Town-owned property. Storm drainage systems-located on private-property shall be maintained by the property owner(s). In the event that privately-owned stoi7n drainage systems are not maintained by the property owner, and are causing an emergency situation, the Town of Holly Springs shall take corrective action and back-charge the property owner for all costs associated with the corrective action. 4. Unless prevented by topographic constraints, storm sewer shall not discharge into front yards of lots, but shall extend to within 20 feet of the rear property line in lots up to 1/2 acre in size and shall extend a minimum of 150 feet from right of way in lots larger than 1/2 acre. B. Sizing and Design 1. Storm sewer systems shall be designed on the basis of the 2-year storm for • inlet spacing, the 10-year storm for street drainage pipe sizing, the 25-year i storm for cross-street drainage, and the 100-year storm for flood plain areas. The Town Engineer may require that the 500 year storm event be used in certain instances. Pipes shall be. designed to flow 7/8 full. 2. Runoff rates shall be calculated by the Rational Method, the SCS Method, or other acceptable procedure. Runoff computations shall be based on rainfall data published by the National Weather Service for this area. 3. For drainage areas less than 2 square miles, the Rational Method is recommended to calculate runoff. For drainage areas greater than 2 square miles, the SCS Method or other recognized method is recommended, 4. Time of concentration (tc) shall be appropriate for the drainage area in question using Kirpich Equation (Bureau of Reclamation, 1974, p. 71). 5. Storm duration shall equal the time of concentration. 6. Storm sewer pipe shall be sized in accordance with the Manning Equation. 7. Storm sewers shall be designed to provide a velocity of at least 2 feet per second at design flow. r r 8-4 • Section A Final Grading Cale #5A Input Summary 0 • VIJV 30VNIVd(I • ONOd 41%, .7 • • Rainfall Table Return Periods Durations 2 year 5 year 10 year 25 year 50 year 5 min 5.76 6.58 7.22 8.19 8.98 10 min 4.76 5.54 6.13 7.01 7.71 15 min 4.04 4.74 5.25 6.03 6.64 20 min 3.47 4.12 4.64 5.42 5.93 30 min 2.70 3.28 3.71 4.32 4.80 40 min 2.28 2.77 3.15 3.70 4.08 50 min 1.94 2.38 2.71 3.19 3.53 60 min 1.70 2.12 2.41 2.84 3.17 Rainfall Intensities are in (in/hr) Title: USFCC Project Project Engineer: EJK i:\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 01:04:5-MPffitntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Scenario: Base • • Inlet Report INLET RIM (ft) INV IN 1 (ft) INV IN 2 (ft) 1 IN 3 (ft) INV OUT (ft) RATIONAL AREA "A" (acres) LOCAL Tc (min) INLET INTENSITY (in/hr) LOCAL INLET RATIONAL FLOW (cfs) C13-1 329.60 318.52 318.60 N/A 318.52 0.30 0.51 22.00 4.45 0.69 CB-2 327.70 319.93 N/A N/A 319.90 0.30 1.23 24.00 4.27 1.59 C13-3 327.70 321.14 N/A N/A 321.01 0.30 1.42 20.00 4.64 1.99 CB-4 327.70 322.65 N/A N/A 322.65 0.43 0.31 17.00 5.01 0.67 C13-5 327.73 323.16 N/A N/A 323.15 0.46 0.45 16.00 5.13 1.07 C13-6 329.15 325.70 324.53 N/A 324.48 0.64 1.30 15.00 5.25 4.40 CB-7 332.70 327.20 325.66 N/A 325.60 0.34 0.43 20.00 4.64 0.68 CB-8 333.30 327.90 N/A N/A 327.80 0.33 0.33 20.00 4.64 0.51 CB-9 334.00 329.20 328.37 N/A 328.34 0.31 0.86 20.00 4.64 1.25 CB-10 335.70 330.50 330.17 N/A 330.04 0.67 0.20 10.00 6.13 0.83 CB-11 335.70 331.10 N/A N/A 330.65 0.41 0.88 25.00 4.17 1.52 CB-12 334.72 328.60 N/A N/A 326.00 0.50 1.51 25.00 4.17 3.18 CB-24 338.00 333.82 N/A N/A 333.72 0.26 0.33 15.00 5.25 0.45 CB-26 338.00 334.43 N/A N/A 334.26 0.32 0.28 10.00 6.13 0.55 CB-27 335.00 N/A N/A N/A 329.70 0.28 1.94 25.00 4.17 2.29 CB-29 344.35 N/A N/A N/A 342.00 0.75 0.77 12.00 5.78 3.36 CB-50 330.20 320.40 N/A N/A 320.35 0.36 0.40 18.00 4.88 0.71 CB-51 330.07 320.98 326.70 N/A 320.90 0.60 0.18 10.00 6.13 0.67 CB-52 333.90 322.02 N/A N/A 321.90 0.75 0.48 5.00 7.22 2.62 CB-53 335.20 323.67 324.96 N/A 323.46 0.60 0.58 10.00 6.13 2.15 CB-54 335.50 325.07 324.77 N/A 324.60 0.74 0.32 10.00 6.13 1.46 CB-55 337.00 325.59 329.00 327.60 325.54 0.78 0.43 7.00 6.78 2.29 CB-56 337.00 326.96 327.00 N/A 326.91 0.65 0.16 17.00 5.01 0.52 CB-58 334.08 326.90 N/A N/A 326.04 0.45 0.58 13.00 5.60 1.47 CB-59 332.04 N/A N/A N/A 329.02 0.65 0.43 5.00 7.22 2.03 CB-60 331.95 328.45 N/A N/A 326.77 0.78 0.56 7.00 6.78 2.99 CB-62 334.00 N/A N/A N/A 330.00 0.60 0.16 5.00 7.22 0.70 CB-63 335.00 328.60 N/A N/A 328.50 0.90 0.12 5.00 7.22 0.79 CB-64 336.00 328.20 N/A N/A 328.10 0.70 0.15 8.00 6.57 0.69 CB-65 334.00 328.30 N/A N/A 328.20 0.75 0.59 5.00 7.22 3.22 CB-66 334.00 N/A N/A N/A 330.70 0.59 0.76 20.00 4.64 2.10 CB-70 336.50 325.96 332.20 N/A 325.71 0.39 0.25 14.00 5.43 0.53 CB-71 338.00 327.10 N/A N/A 327.00 0.22 0.13 10.00 6.13 0.18 CB-72 337.00 N/A N/A N/A 334.40 0.33 0.40 16.00 5.13 0.68 CB-73 338.50 330.50 N/A N/A 330.40 0.95 0.10 5.00 7.22 0.69 CB-75 335.50 329.70 N/A N/A 329.60 0.55 0.27 10.00 6.13 0.92 CB-76 335.50 330.90 N/A N/A 330.80 0.85 0.12 5.00 7.22 0.74 CB-77 335.00 331.20 N/A N/A 331.10 0.85 0.11 5.00 7.22 0.68 CB-78 334.50 N/A N/A N/A 331.80 0.80 0.18 5.00 7.22 1.05 CB-79 336.00 327.80 N/A N/A 327.70 0.45 0.28 17.00 5.01 0.64 CB-82 336.50 330.10 329.10 N/A 329.00 0.60 0.30 17.00 5.01 0.91 CB-83 336.00 330.40 N/A N/A 330.30 0.85 0.12 5.00 7.22 0.74 CB-84 336.00 331.30 N/A N/A 331.20 0.85 0.10 5.00 7.22 0.62 CB-85 335.30 331.50 N/A N/A 331.40 0.85 0.12 5.00 7.22 0.74 CB-86 335.00 331.90 N/A N/A 331.80 0.65 0.20 5.00 7.22 0.95 CB-87 336.20 N/A N/A N/A 333.20 0.71 0.21 12.00 5.78 0.87 CB-88 336.00 331.90 N/A N/A 331.80 0.85 0.04 5.00 7.22 0.25 CB-89 335.20 N/A N/A N/A 332.00 0.75 0.21 7.00 6.78 1.08 CB-90 336.00 N/A N/A N/A 332.80 0.95 0.09 5.00 7.22 0.62 CB-91 336.00 331.40 332.90 N/A 331.30 0.70 0.07 5.00 7.22 0.36 Title: USFCC Project Project Engineer: EJK I:\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10108 02:00:4 ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Scenario: Base • • Inlet Report INLET RIM (ft) INV IN 1 (ft) INV IN 2 (ft) 1 IN 3 (ft) INV OUT (ft) RATIONAL "C" AREA "A" (acres) LOCAL Tc (min) INLET INTENSITY (in/hr) LOCAL INLET RATIONAL FLOW (cfs) CB-92 335.90 330.20 332.10 NIA 329.95 0.60 0.47 16.00 5.13 1.46 CB-93 337.30 333.70 N/A N/A 333.60 0.38 0.76 22.00 4.45 1.30 CB-95 335.00 N/A N/A N/A 331.80 0.75 0.24 5.00 7.22 1.31 CB-96 335.00 331.20 N/A N/A 330.95 0.80 0.42 7.00 6.78 2.30 CB-109 338.50 334.90 333.78 N/A 329.00 0.39 0.27 10.00 6.13 0.65 CB-111 338.50 N/A N/A N/A 335.40 0.46 0.45 10.00 6.13 1.28 DET PIPE-68 336.45 N/A N/4 N/A 333.45 0.00 0.00 0.00 0.00 0.00 TD-20D 335.60 N/A N/A N/A 332.60 0.00 0.00 0.00 0.00 0.00 TD-67 336.90 N/A N/A N/A 333.90 0.95 0.04 5.00 7.22 0.28 TD-68 337.70 333.50 N/A N/A .333.50 0.95 0.07 5.00 7.22 0.48 TD-115 338.30 N/A N/A N/A 336.30 0.00 0.00 0.00 0.00 0.00 Tie 22A 338.80 N/A N/A N/A 332.00 0.95 0.80 5.00 7.22 5.53 Tie 25A 339.50 N/A N/A NIA 336.65 0.95 0.26 5.00 7.22 1.80 Tie 26A 340.00 N/A N/A N/A 335.00 0.95 0.50 5.00 7.22 3.46 Tie 28A 340.00 N/A N/A NIA 336.92 0.95 0.37 5.00 7.22 2.56 Tie 32A 339.50 NIA N/A N/A 332.00 0.95 0.33 5.00 7.22 2.28 Tie 80A 340.00 N/A N/A N/A 334.11 0.95 0.15 5.00 7.22 1.04 Tie 81A 340.00 N/A N/A N/A 333.49 0.95 0.58 5.00 7.22 4.01 Tie 94A 340.00 N/A N/A N/A 336.00 0.95 0.33 5.00 7.22 2.28 Tie 100A 340.00 N/A N/A N/A 336.33 0.95 0.31 5.00 7.22 2.14 Tie 102A 340.00 N/A N/A N/A 333.33 0.95 0.83 5.00 7.22 5.74 Tie 109A 340.00 N/A N/A NIA 336.92 0.95 0.16 5.00 7.22 1.11 Tie 110A 340.00 N/A N/A N/A 336.79 0.95 0.64 5.00 7.22 4.42 Title: USFCC Project Project Engineer: EJK I:\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06110108 02:00:429Untley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 i Scenario: Base • • Pipe Report PIPE UP. NODE UP. INVERT (ft) DN. NODE DN. INVERT (ft) L (ft) S (%) SIZE Mannings n System Rational Q (cfs) System Tc (min) Des. Cap. (cfs) Avg. v (fus) P-1 CB-1 318.52 POND 317.45 103.50 1.03 42 inch 0.013 58.47 28.18 102.29 10.99 P-2 CB-2 319.90 CB-1 318.60 177.30 0.73 30 inch 0.010 20.91 27.85 45.66 9.10 P-3 CB-3 321.01 CB-2 319.93 122.70 0.88 30 inch 0.010 19.56 27.64 50.02 9.57 P-4 C13-4 322.65 CB-3 321.14 181.30 0.83 30 inch 0.010 18.01 27.31 48.66 9.18 P-5 CB-5 323.15 CB-4 322.65 59.20 0.84 30 inch 0.010 17.52 27.20 49.00 9.16 P-6 C13-6 324.48 CB-5 323.16 144.90 0.91 30 inch 0.010 16.79 26.94 50.89 9.31 P-7 CB-7 325.60 CB-6 324.53 309.90 0.35 30 inch 0.013 10.65 25.86 24.10 4.76 P-8 CB-8 327.80 CB-7 325.66 75.10 2.85 24 inch 0.013 8.77 25.73 38.19 9.87 P-9 CB-9 328.34 CB-8 327.90 61.90 0.71 24 inch 0.010 8.35 25.58 24.79 7.12 P-10 CB-10 330.04 CB-9 328.37 163.10 1.02 18 inch 0.010 5.47 25.22 13.82 7.36 P-11 CB-11 330.65 CB-10 330.17 73.60 0.65 18 inch 0.010 3.89 25.00 11.03 5.70 P-12 CB-12 326.00 0-3 324.73 140.50 0.90 15 inch 0.013 5.40 25.50 6.14 5.65 P-19 Tie 22A 332.00 MH-22 331.70 12.80 2.34 15 inch 0.013 5.53 5.00 9.89 8.28 P-20 MH-20 327.40 CB-6 325.70 83.50 2.04 15 inch 0.010 5.51 5.12 11.98 9.59 P-20A SC-20A 328.00 MH-20 327.70 10.00 3.00 12 inch 0.010 0.00 0.54 8.02 3.00 P-20B VALVE-20B 329.50 SC-20A 328.10 59.70 2.35 6 inch 0.013 0.00 0.14 0.86 2.52 P-20C MH-20C 332.00 VALVE-20B 331.50 11.00 4.55 12 inch 0.010 0.00 0.09 9.87 3.47 P-20D TD-20D 332.60 MH-20C 332.10 14.00 3.57 12 inch 0.013 0.00 0.00 6.73 2.66 P-22 MH-22 331.60 MH-20 330.40 57.40 2.09 15 inch 0.010 5.53 5.03 12.14 9.66 P-23 MH-23 329.60 CB-7 327.20 60.80 3.95 12 inch 0.010 2.26 5.29 9.20 9.69 P-24 CB-24 333.72 C13-9 329.20 221.80 2.04 12 inch 0.010 2.31 15.00 6.61 7.67 P-25 MH-25 333.98 CB-10 330.50 228.10 1.53 12 inch 0.010 1.80 5.02 5.72 6.45 P-26 CB-26 334.26 CB-11 331.10 155.10 2.04 12 inch 0.013 3.49 10.00 5.09 6.98 P-27 CB-27 329.70 CB-12 328.60 133.30 0.83 15 inch 0.013 2.29 25.00 5.87 4.48 P-28 MH-28 335.15 CB-24 333.82 129.30 1.03 12 inch 0.010 2.56 5.03 4.70 6.11 P-29 Tie 26A 335.00 CB-26 334.43 18.10 3.15 10 inch 0.013 3.46 5.00 3.89 6.34 P-30 Tie 25A• 336.65 MH-25 336.40 9.00 2.78 10 inch 0.013 1.80 5.00 3.65 6.67 P-31 Tie 28A 336.92 MH-28 336.70 12.40 1.77 10 inch 0.013 2.56 5.00 2.92 6.03 P-32 MH-32 331.50 MH-23 329.70 108.10 1.67 12 inch 0.010 2.28 5.04 5.98 7.10 P-33 Tie 32A 332.00 MH-32 331.60 15.80 2.53 10 inch 0.013 2.28 5.00 3.49 6.81 P-50 CB-50 320.35 CB-1 318.52 223.90 0.82 36 inch 0.010 40.37 24.53 78.39 11.18 P-51 CB-51 320.90 CB-50 320.40 61.60 0.81 36 inch 0.010 39.84 24.43 78.11 11.11 P-52 CB-52 321.90 CB-51 320.98 115.00 0.80 36 inch 0.010 35.72 24.26 77.55 10.75 P-53 CB-53 323.46 CB-52 322.02 199.20 0.72 36 inch 0.010 34.42 23.93 73.72 10.26 P-54 CB-54 324.60 CB-53 323.67 131.20 0.71 36 inch 0.010 27.32 23.70 73.00 9.59 P-55 CB-55 325.54 CB-54 324.77 102.20 0.75 30 inch 0.013 23.94 23.49 35.60 7.79 P-56 CB-56 326.91 CB-55 325.59 102.90 1.28 30 inch 0.013 21.08 23.30 46.45 9.23 P-57 MH-57 327.33 CB-56 326.96 56.80 0.65 15 inch 0.013 3.01 10.03 5.21 2.45 P-58 CB-58 326.04 CB-54 325.07 151.50 0.64 15 inch 0.013 3.22 13.00 5.17 4.44 P-59 CB-59 329.02 CB-60 328.45 83.80 0.68 12 inch 0.013 2.03 5.00 2.94 4.04 P-60 CB-60 326.77 MH-61 322.99 77.10 4.90 18 inch 0.013 4.90 7.00 23.26 10.43 P-61 MH-61 322.89 0-2 322.42 54.90 0.86 18 inch 0.013 4.88 7.12 9.72 5.51 P-62 CB-62 330.00 CB-63 328.60 76.40 1.83 12 inch 0.013 0.70 5.00 4.82 4.37 P-63 CB-63 328.50 CB-64 328.20 14.50 2.07 12 inch 0.010 1.47 5.29 6.66 6.81 P-64 CB-64 328.10 CB-58 326.90 60.20 1.99 12 inch 0.013 2.05 8.00 5.03 6.07 P-65 CB-65 328.20 CB-51 326.70 70.10 2.14 12 inch 0.010 4.13 20.49 6.77 9.05 P-66 CB-66 330.70 CB-65 328.30 161.00 1.49 12 inch 0.013 2.10 20.00 4.35 5.49 P-67 TD-67 333.90 J-67A 333.70 36.00 0.56 8 inch 0.013 0.28 5.00 0.90 2.50 P-67A J-67A 333.70 TD-68 333.50 29.00 0.69 12 inch 0.013 0.27 5.24 2.96 2.62 P-68 TD-68 333.50 MH-68A 333.45 5.50 0.91 12 inch 0.013 0.75 5.42 3.40 3.60 P-68A MH-68A 333.45 V-68B 333.40 10.50 0.48 12 inch 0.013 0.75 5.45 2.46 2.84 Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10/08 02:01:4ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Scenario: Base • • Pipe Report PIPE UP. NODE UP. INVERT (ft) DN. NODE DN. INVERT (ft) L (ft) S (%) SIZE Mannings n System Rational Q (cfs) System Tc (min) Des. Cap. (cfs) Avg. v (ftfs) PI -68B V-68B 329.90 SC-68C 329.20 36.70 1.91 6 inch 0.013 0.75 5.51 0.77 4.32 P-68C SC-68C 329.10 CB-55 329.00 21.30 0.47 8 inch 0.013 0.75 5.65 0.83 2.70 P-68D DET PIPE-6 333.45 MH-68A 333.45 40.00 0.00 24 inch 0.010 0.00 0.00 0.00 0.00 P-70 CB-70 325.71 CB-53 324.96 98.00 0.77 18 inch 0.010 6.74 16.84 11.95 6.96 P-71 CB-71 327.00 CB-70 325.96 53.60 1.94 15 inch 0.013 6.65 10.78 9.00 8.02 P-72 CB-72 334.40 CB-70 332.20 214.00 1.03 12 inch 0.010 0.68 16.00 4.70 4.26 P-73 CB-73 330.40 MH-74 330.10 21.40 1.40 12 inch 0.013 1.71 5.34 4.22 5.09 P-74 MH-74 330.00 CB-55 327.60 124.90 1.92 12 inch 0.013 1.71 5.41 4.94 5.71 P-75 CB-75 329.60 MH-57 329.26 16.20 2.10 12 inch 0.010 3.02 10.00 6.71 8.31 P-76 CB-76 330.80 CB-75 329.70 56.70 1.94 12 inch 0.013 2.45 5.27 4.96 6.30 P-77 CB-77 331.10 CB-76 330.90 14.50 1.38 12 inch 0.010 1.72 5.23 5.44 6.14 P-78 CB-78 331.80 CB-77 331.20 56.20 1.07 12 inch 0.013 1.05 5.00 3.68 4.04 P-79 CB-79 327.70 CB-56 327.00 22.20 3.15 24 inch 0.013 18.51 23.27 40.17 12.52 P-80 MH-80 331.50 CB-73 330.50 78.20 1.28 12 inch 0.013 1.04 5.04 4.03 4.30 P-81 MH-81 328.50 CB-79 327.80 100.30 0.70 24 inch 0.010 18.03 23.08 24.57 8.55 P-82 CB-82 329.00 MH-81 328.60 72.70 0.55 18 inch 0.013 5.42 17.00 7.79 3.07 P-83 CB-83 330.30 CB-82 330.10 14.00 1.43 12 inch 0.010 3.61 5.60 5.54 7.51 P-84 CB-84 331.20 CB-83 330.40 56.70 1.41 12 inch 0.013 2.89 5.43 4.23 5.80 P-85 CB-85 331.40 CB-84 331.30 14.00 0.71 12 inch 0.010 2.28 5.39 3.91 5.17 P-86 CB-86 331.80 CB-85 331.50 57.90 0.52 12 inch 0.013 1.56 5.11 2.56 3.43 P-87 CB-91 331.30 CB-82 329.10 52.60 4.18 12 inch 0.013 2.26 12.12 7.29 8.18 P-88 CB-88 331.80 CB-91 331.40 56.60 0.71 12 inch 0.013 1.31 7.06 2.99 3.68 P-89 CB-89 332.00 CB-88 331.90 14.70 0.68 12 inch 0.010 1.08 7.00 3.82 4.18 P-90 Tie 81A 333.49 MH-81 331.50 94.70 2.10 12 inch 0.013 4.01 5.00 5.16 7.27 P-91 CB-87 333.20 CB-91 332.90 32.80 0.91 12 inch 0.010 0.87 12.00 4.43 4.38 P-92 CB-92 329.95 MH-98 329.30 108.40 0.60 18 inch 0.013 6.24 22.39 8.13 3.53 P-93 CB-93 333.60 CB-92 332.10 144.50 1.04 12 inch 0.010 2.70 22.00 4.72 6.21 P-94 MH-94 333.90 CB-93 333.70 14.10 1.42 12 inch 0.010 2.27 5.23 5.52 6.68 P-95 CB-96 330.95 CB-92 330.20 74.70 1.00 15 inch 0.013 3.53 7.00 6.47 2.88 P-96 CB-95 331.80 CB-96 331.20 61.20 0.98 12 inch 0.013 1.31 5.00 3.53 4.16 P-97 Tie 94A 336.00 MH-94 334.00 90.00 2.22 10 inch 0.013 2.28 5.00 3.27 6.48 P-98 MH-98 329.20 MH-81 328.60 65.20 0.92 18 inch 0.010 10.94 22.90 13.10 6.19 P-99 MH-99 332.40 MH-98 329.30 311.50 1.00 18 inch 0.010 7.80 5.35 13.62 7.97 P-100 MH-100 333.20 MH-99 332.80 77.70 0.51 12 inch 0.010 2.14 5.06 3.32 4.49 P-101 Tie 100A 336.33 MH-100 335.69 23.60 2.71 10 inch 0.013 2.14 5.00 3.61 6.90 P-102 MHA 02 333.00 MH-99 332.80 23.60 0.85 15 inch 0.010 5.73 5.04 7.73 6.90 P-103 Tie 102A 333.33 MH-102 333.10 16.90 1.36 15 inch 0.013 5.74 5.00 7.54 6.76 P-104 Tie 80A 334.11 MH-80 333.75 12.80 2.81 8 inch 0.013 1.04 5.00 2.03 5.84 P-105 CB-90 332.80 CB-86 331.90 36.50 2.47 12 inch 0.010 0.62 5.00 7.27 5.66 P-109 CB-109 329.00 CB-71 327.10 121.90 1.56 15 inch 0.013 6.53 10.50 8.06 7.32 P-110 MHA 10 336.00 MHA 14 335.60 34.70 1.15 15 inch 0.010 4.42 5.02 9.02 7.31 P-111 CB-111 335.40 CB-109 333.78 134.40 1.21 12 inch 0.013 1.28 10.00 3.91 4.46 P-112 Tie 109A 336.92 MHA 14 336.70 8.00 2.75 8 inch 0.013 1.11 5.00 2.00 5.88 P-113 Tie 110A 336.79 MH-110 336.60 8.00 2.37 15 inch 0.013 4.42 5.00 9.95 7.87 P-114 MH-114 335.50 CB-109 334.90 51.80 1.16 15 inch 0.010 5.52 5.10 9.04 7.73 P-115 TD-115 336.30 CO-116 336.25 8.00 0.63 12 inch 0.010 0.00 0.00 3.66 0.49 P-116 CO-116 334.40 MH-74 334.20 39.00 0.51 6 inch 0.013 0.00 0.27 0.40 0.43 P-120 CB-29 342.00 0-6 341.50 48.20 1.04 12 inch 0.010 3.36 12.00 4.72 6.52 Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 060908.stm Storm CAD v5.6 (05.06.012.001 06/10/08 02:01:4,_ ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 0 Section B Final Grading Cale ##5A StormCAD Reports Calculation Results Surnmarnj Scenario: Base »» Info: Subsurface Network Rooted by: 0-3 »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. »» Info: Subsurface Network Rooted by: 0-6 »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. »» Info: Subsurface Network Rooted by: 0-2 »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. »» Info: Subsurface Network Rooted by: POND »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I Inlet I Inlet 1 Total I Total I Capture I Gutter 1 Gut I I Type I I Intercepted I Bypassed I Efficiency I Spread I Dex I I I I Flow I Flow I (%) I (ft), I (f • I I I I (cfs) I - (cfs) --- I I I I CB-60 I Generic Inlet I Generic Default 100% 1 2.99 1 0.00 1 100.0 1 0.00 1 C I CB-59 I Generic Inlet I Generic Default 100% 1 2.03 I 0.00 I 100.0 I 0.00 I C I CB-12 I Generic Inlet I Generic Default 100% I 3.18 I 0.00 I 100.0 I 0.00 I C I CB-27 I Generic Inlet I Generic Default 100°% I 2.29 I 0.00 I 100.0 I 0.00 I C I CB-29 I Generic Inlet 1 Generic Default 100% 1 3.36 I 0.00 1 100.0 1 0.00 1 C I CB-55 I Generic Inlet I Generic Default 100% I 2.29 I 0.00 I 100.0 I 0.00 I C I CB-54 I Generic Inlet 1 Generic Default 100% I 1.46 1 0.00 I 100.0 I 0.00 1 C CB-53 I Generic Inlet I Generic Default 100% I 2.15 I 0.00 I 100.0 I 0.00 I C I CB-52 I Generic Inlet I Generic Default 100% I 2.62 I 0.00 I 100.0 1 0.00 I C I CB-51 I Generic Inlet I Generic Default 100% 1 0.67 1 0.00 I 100.0 1 0.00 I C I CB-50 1 Generic Inlet I Generic Default 100% I 0.71 I 0.00 I 100.0 1 0.00 1 C CB-70 I Generic Inlet I Generic Default 100% I 0.53 1 0.00 I 100.0 1 0.00 1 C I CB-71 1 Generic Inlet 1 Generic Default 100% I 0.18 I 0.00 I 100.0 I 0.00 I C I CB-109 1 Generic Inlet I Generic Default 100% I 0.65 I 0.00 1 100.0 I 0.00 I C I CB-72 1 Generic Inlet 1 Generic Default 100% I 0.68 I 0.00 1 100.0 I 0.00 1 C I CB-56 I Generic Inlet 1 Generic Default 100% 1 0.52 I 0.00 I 100.0 I 0.00 I C I CB-79 I Generic Inlet 1 Generic Default 100% 1 0.64 I 0.00 I 100.0 I 0.00 I C I CB-6 I Generic Inlet I Generic Default 100% 1 4.40 I 0.00 I 100.0 I 0.00 I C 1 CB-5 I Generic Inlet I Generic Default 100% I 1.07 I 0.00 I 100.0 I 0.00 1 C I CB-4 1 Generic Inlet I Generic Default 100% I 0.67 I 0.00 I 100.0 I 0.00 I C I CB-3 1 Generic Inlet I Generic Default 100% 1 1.99 I 0.00 1 100.0 I 0.00 I C I CB-2 I Generic Inlet 1 Generic Default 100°% 1 1.59 I 0.00 1 100.0 I 0.00 I C I CB-1 I Generic Inlet I Generic Default 100% I 0.69 I 0.00 I 100.0 I 0.00 I C I CB-7 I Generic Inlet I Generic Default 100% I 0.68 I 0.00 I 100.0 I 0.00 I C 1 CB-24 I Generic Inlet 1 Generic Default 100°% I 0.45 I 0.00 I 100.0 I 0.00 I C I CB-26 I Generic Inlet I Generic Default 100% I 0.55 I 0.00 I 100.0 I 0.00 I C I CB-11 I Generic Inlet I Generic Default 100% I 1.52 1 0.00 1 100.0 1 0.00 1 C I CB-10 I Generic Inlet I Generic Default 100% I 0.83 I 0.00 I 100.0 I 0.00 1 C I CB-9 I Generic Inlet I Generic Default 100% I 1.25 I 0.00 I 100.0 I 0.00 I C CB-8 1 Generic Inlet 1. Generic Default 100% I 0.51 I 0.00 I 100.0 I 0.00 I C CB-58 1 Generic Inlet I Generic Default 100% I 1.47 1 0.00 I 100.0 I 0.00 I C I CB-92 1 Generic Inlet I Generic Default 100% I 1.46 I 0.00 1 100.0 I 0.00 1 C I CB-93 1 Generic Inlet I Generic Default 100% I 1.30 I 0.00 1 100.0 I 0.00 I C I CB-96 I Generic Inlet I Generic Default 100% 1 2.30 1 0.00 1 100.0 1 0.00 1 C Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10108 02:00:019'IFmntley Syste ms, Inc. Haestad Methods Solution Center Watertown, CT 0 6795 USA +1-203-755-1666 Page 1 of 6 Calculation Results Summary • • CB-95 I Generic Inlet I Generic Default 100% 1 1.31 1 0.00 1 100.0 1 0.00 Tie 100A I Generic Inlet I Generic Default 100% 1 2.14 I 0.00 1 100.0 1 0.00 Tie 102A I Generic Inlet I Generic Default 100% I 5.74 I 0.00 I 100.0 1 0.00 Tie 81A I Generic Inlet I Generic Default 100% I 4.01 1 0.00 I 100.0 1 0.00 CB-82 I Generic Inlet I Generic Default 100% I 0.91 1 0.00 I 100.0 I 0.00 CB-83 I Generic Inlet I Generic Default 100% I 0.74 I 0.00 I 100.0 I 0.00 CB-84 I Generic Inlet I Generic Default 100% ( 0.62 I 0.00 I 100.0 I 0.00 CB-85 I Generic Inlet I Generic Default 100% I 0.74 1 0.00 I 100.0 I 0.00 CB-86 I Generic Inlet I Generic Default 100% I 0.95 I 0.00 1 100.0 I 0.00 CB-91 I Generic Inlet I Generic Default 100% I 0.36 1 0.00 1 100.0 I 0.00 CB-88 I Generic Inlet I Generic Default 100% I 0.25 I 0.00 I 100.0 I 0.00 CB-89 I Generic Inlet I Generic Default 100% I 1.08 I 0.00 I 100.0 1 0.00 CB-87 I Generic Inlet I Generic Default 100% I 0.87 I 0.00 I 100.0 1 0.00 Tie 94A I Generic Inlet I Generic Default 100% 1 2.28 I 0.00 I 100.0 1 0.00 Tie 26A I Generic Inlet I Generic Default 100% 1 3.46 I 0.00 I 100.0 1 0.00 Tie 109A I Generic Inlet I Generic Default 100% 1 1.11 1 0.00 1 100.0 I 0.00 CB-111 I Generic Inlet 1 Generic Default 100% 1 1.28 I 0.00 1 100.0 1 0.00 Tie 110A I Generic Inlet I Generic Default 100% 1 4.42 1 0.00 1 100.0 I 0.00 CB-73 I Generic Inlet I Generic Default 100% 1 0.69 I 0.00 1 100.0 I 0.00 Tie 80A I Generic Inlet I Generic Default 100% 1 1.04 1 0.00 I 100.0 I 0.00 Tie 25A 1 Generic Inlet I Generic Default 100% 1 1.80 I 0.00 I 100.0 I 0.00 Tie 28A I Generic Inlet I Generic Default 100% I 2.56 1 0.00 I 100.0 I 0.00 Tie 22A I Generic Inlet I Generic Default 100% I 5.53 I 0.00 I 100.0 I 0.00 Tie 32A I Generic Inlet I Generic Default 100% I 2.28 I 0.00 I 100.0 I 0.00 CB-64 I Generic Inlet I Generic Default 100% I 0.69 I 0.00 I 100.0 I 0.00 CB-63 I Generic Inlet I Generic Default 100% I 0.79 I 0.00 I 100.0 I 0.00 CB-65 I Generic Inlet I Generic Default 100% 1 3.22 I 0.00 I 100.0 1 0.00 CB-66 1 Generic Inlet 1 Generic Default 100% 1 2.10 I 0.00 1 100.0 I 0.00 CB-62 I Generic Inlet I Generic Default 100% 1 0.70 I 0.00 I 100.0 I 0.00 CB-76 I Generic Inlet 1 Generic Default 100% 1 0.74 I 0.00 I 100.0 I 0.00 CB-77 I Generic Inlet I Generic Default 100°% 1 0.68 I 0.00 I 100.0 I 0.00 CB-78 I Generic Inlet I Generic Default 100% I 1.05 1 0.00 I 100.0 I 0.00 CB-75 1 Generic Inlet I Generic Default 100% I 0.92 1 0.00 I 100.0 I 0.00 TD-20D I Generic Inlet I Generic Default 100% I 0.00 I 0.00 I 100.0 I 0.00 TD-68 I Generic Inlet (.Generic Default 100% I 0.48 I 0.00 I 100.0 I 0.00 TD-67 I Generic Inlet I Generic Default 100% I 0.28 I 0.00 I 100.0 1 0.00 DET PIPE-68 I Generic Inlet 1 Generic Default 100% 1 0.00 I 0.00 I 100.0 1 0.00 TD-115 I Generic Inlet I Generic Default 100% 1 0.00 I 0.00 I 100.0 I 0.00 CB-90 I Generic Inlet I Generic Default 100% 1 0.62 I 0.00 1 100.0 I 0.00 CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 0-2 Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I Sections I I I I Flow I (ft/s) j Upstream I Downstream I I I I I I I (cfs) - I I ---------- (ft) 1 I-----------I (ft) I ------------I I------- I P-61 1----------I---------I I 1 118 inch I ---------- Circular I-------- 1 54.90 I------- I 4.88 I I 5.51 I 323.74 1 323.17 I i P-60 I 1 118 inch I Circular I 77.10 1 4.90 I 10.43 I 327.62 I 323.95 1 P-59 -------- I 1 112 inch I ---------------------- Circular ---------- I 83.80 --------- I 2.03 --------- 1 4.04 ----------- I 329.63 I ------------- 329.06 1 ------------- I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I 1 I Flow I (ft) I Line In I Line Out I 1 I (cfs) I I (ft) I (ft) I • I-------I 1 0-2 1 --------I 4.86 I ----------- I 326.00 I ----------- 322.42 I-----------I I 322.42 I I MH-61 1 4.88 I 328.70 I 323.95 I 323.74 I I CB-60 I 4.90 I 332.30 I 327.90 I 327.62 I I CB-59 --------- I 2.03 I --------- 332.30 I ------------ 329.63 ----------- I 329.63 I ------------- Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06110108 02:00:01ZFMntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 6 Calculation Results Surnmi arry r] CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 0-3 I Label I Number I Section I Section I Length I Total I Average I hyarauiac nyuiauiiu i I of 1 Size I Shape 1 (ft) I System I Velocity I Grade I Grade 1 I I Sections I I I I Flow I (ft/s) I Upstream I Downstream 1 I I I I I I (cfs) I ---- I (ft) I I-----------I (ft) I ------------I 1-------I----------I--------- P-12 1 1 1 15 inch I---------- 1 Circular I-------- 1 140.50 I-------- 1 5.40 I------ 1 5.65 1 326.94 1 325.64 1 I P-27 1 1 1 15 inch I Circular 1 133.30 1 2.29 1 4.48 1 330.30 1 329.14 1 Label 1 Total 1 Ground I Hydraulic I Hydraulic I I I System I Elevation 1 Grade 1 Grade I I Flow 1 (ft) 1 Line In I Line Out 1 I I (cfs) I I ----- (ft) ----------- I (ft) I I-----------I I-------I 1 0-3 1 -------- 5.35 I------ 1 I 328.50 1 324.73 I 324.73 1 1 CB-12 1 5.40 1 334.72 1 327.22 I 326.94 1 CB-27 -------- 1 2.29 --------- I 335.00 ------------ I 330.30 ------------ 1 330.30 1 ------------- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 0-6 I Label I Number I Section 1 Section I Length I Total I Average I Hydraulic 1 Hydraulic 1 I I of 1 Size I Shape I (ft) I System I Velocity I Grade 1 Grade 1 I I Sections I I I I Flow I (ft/s) I Upstream I Downstream 1 I I I I I I (cfs) I I -------1 (ft) I -----------1 (ft) I ------------I 1-------I----------I---------I----------I--------I-------- I P-120 1 1 1 12 inch I Circular 1 48.20 1 3.36 ---------------------------------------------------------- I--- 1 6.52 ------------ 1 342.78 ----------- 1 .342.14 1 -------------- Label I Total I Ground I Hydraulic 1 Hydraulic 1 I I System I Elevation I Grade I Grade 1 Flow I (ft) I Line In I Line Out I I I (cfs) I I ----- (ft) I ----------- (ft) I I-----------I 1-------I--------I 1 0-6 1 3.35 I I ------ 344.00 1 341.50 1 341.50 1 1 CB-29 1 3.36 I ------------------ 344.35 1 ------------ 342.78 ----------- 1 342.78 1 ------------- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: POND I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I I of 1 Size 1 Shape 1 (ft) 1 System 1 Velocity I Grade I Grade I I I Sections I I I I Flow I (ft/s) I Upstream I Downstream I I I I I I I (cfs) I I ----------I (ft) ---------- I (ft) I -I------------I 1-------I P-1 1 ----------I 1 1 --- 42 ------I inch I ----------I Circular 1 -------- 103.50 I--------I 1 58.63 I 10.99 I 320.92 1 319.41 1 P-2 1 1 1 30 inch I Circular 1 177.30 1 20.97 I 9.10 1 322.13 I 321.89 1 1 P-50 I 1 1 36 inch I Circular 1 223.90 1 40.47 1 11.18 I 322.42 I 321.89 1 1 P-3 I 1 1 30 inch I Circular 1 122.70 1 19.62 I 9.57 1 322.51 1 322.32 1 P-51 I 1 1 36 inch I Circular I 61.60 I 39.94 I 11.11 I 322.96 1 322.99 1 P-4 1 1 1 30 inch 1 Circular 1 181.30 I 18.07 I 9.18 1 324.09 1 322.89 1 1 P-52 I 1 1 36 inch I Circular 1 115.00 1 35.82 I 10.75 1 323.85 1 323.61 1 P-65 1 1 1 12 inch I Circular 1 70.10 I 4.13 I 9.05 1 329.06 1 327.28 1 P-5 I 1 1 30 inch I Circular I 59.20 I 17.58 1 9.16 1 324.57 1 324.45 1 1 P-53 I 1 1 36 inch I Circular 1 199.20 I 34.52 I 10.26 1 325.37 1 324.27 1 Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 060908.stm Storm CAD v5.6 [05.06.012.00] 06/10/08 02:00:019FIR.tntley Systems, Inc. Haestad Meth ods Solution Center Watertown, CT 067 95 USA +1-203-755-1666 Page 3 of 6 Calculation Results Surelrnary • • P-66 I 1 1 12 inch I Circular 1 161.00 1 2.10 1 5.49 1 331.32 1 329.37 P-6 I 1 1 30 inch I Circular 1 144.90 1 16.85 1 9.31 1 325.87 1 324.92 P-70 1 1 1 18 inch I Circular 1 98.00 1 6.74 1 6.96 1 326.71 1 325.77 P-54 1 1 1 36 inch 1 Circular 1 131.20 I 27.42 1 9.59 I 326.29 1 325.86 P-7 I 1 1 30 inch I Circular 1 309:90 1 10.65 1 4.76 1 326.76 1 326.26 P-20 1 1 1 15 inch I Circular 1 83.50 1 5.57 I 9.59 1 328.36 1 326.31 P-71 1 1 1 15 inch I Circular 1 53.60 1 6.65 1 8.02 1 328.04 1 327.07 P-72 1 1 1 12 inch I Circular 1 214.00 1 0.68 1 4.26 1 334.74 1 332.46 P-58 1 1 1 15 inch 1 Circular 1 151.50 1 3.22 1 4.44 1 327.13 1 326.78 P-55 I 1 1 30 inch 1 Circular 1 102.20 1 24.04 I 7.79 1 327.21 1 326.78 P-23 1 1 1 12 inch I Circular 1 60.80 1 2.26 1 9.69 1 330.24 1 327.54 P-8 1 1 1 24 inch I Circular 1 75.10 1 8.77 1 9.87 1 328.86 1 327.01 P-20A 1 1 1 12 inch 1 Circular 1 10.00 1 0.06 1 3.00 1 328.74 1 328.74 P-22 1 1 1 15 inch I Circular 1 57.40 1 5.53 1 9.66 1 332.55 1 331.03 P-109 1 1 1 15 inch I Circular 1 121.90 1 6.53 1 7.32 1 330.03 1 328.50 P-64 1 1 1 12 inch I Circular 1 60.20 1 2.05 1 6.07 1 328.71 1 327.34 P-68C 1 1 1 8 inch I Circular 1 21.30 1 0.85 1 2.70 1 329.62 1 329.44 P-56 1 1 1 30 inch I Circular 1 102.90 1 21.08 1 9.23 1 328.47 1 327.95 P-74 1 1 1 12 inch I Circular 1 124.90 1 1.71 1 5.71 1 330.56 1 328.01 P-32 1 1 1 12 inch I Circular 1 108.10 1 2.28 1 7.10 1 332.15 1 330.41 P-9 1 1 1 24 inch I Circular 1 61.90 1 8.35 1 7.12 1 329.37 1 329.07 P-20B 1 1 6 inch I Circular 1 59.70 1 0.06 1 2.52 1 329.62 1 328.74 P-19 I 1 1 15 inch I Circular 1 12.80 1 5.53 1 8.28 1 332.95 1 332.93 P-114 1 1 1 15 inch 1 Circular 1 51.80 1 5.52 1 7.73 1 336.45 1 335.63 P-111 1 1 1 12 inch I Circular 1 134.40 1 1.28 1 4.46 1 335.88 1 334.17 P-63 1 1 1 12 inch I Circular 1 14.50 1 1.47 1 6.81 1 329.01 1 328.92 P-68B 1 1 1 6 inch I Circular 1 36.70 1 0.85 1 4.32 1 330.54 1 329.70 P-79 1 1 1 24 inch I Circular 1 22.20 1 18.51 1 12.52 1 329.25 1 328.94 P-57 1 1 1 15 inch I Circular 1 56.80 1 3.01 1 2.45 1 329.06 1 328.94 P-116 1 1 1 6 inch I Circular 1 39.00 1 0.00 1 0.43 1 334.42 1 334.22 P-73 1 1 1 12 inch I Circular 1 21.40 1 1.71 1 5.09 1 330.96 1 330.69 P-33 1 1 1 10 inch I Circular I 15.80 1 2.28 1 6.81 1 332.67 1 332.31 P-10 I 1 1 18 inch I Circular 1 163.10 1 5.47 1 7.36 1 330.94 1 329.66 P-24 1 1 1 12 inch I Circular 1 221.80 1 2.31 1 7.67 1 334.37 1 329.61 P-20C 1 1 1 12 inch 1 Circular 1 11.00 1 0.06 1 3.47 1 332.10 1 331.56 P-112 1 1 1 8 inch 1 Circular 1 8.00 1 1.11 1 5.88 1 337.42 1 337.08 P-110 1 1 1 15 inch I Circular 1 34.70 1 4.42 1 7.31 1 336.85 1 336.83 P-62 1 1 1 12 inch 1 Circular 1 76.40 1 0.70 1 4.37 1 330.35 1 329.12 P-68A 1 1 1 12 inch 1 Circular 1 10.50 1 0.85 1 2.84 1 333.86 1 333.79 P-81 1 1 1 24 inch 1 Circular 1 100.30 1 18.03 1 8.55 1 330.03 1 329.72 P-75 1 1 1 12 inch I Circular 1 16.20 1 3.02 1 8.31 1 330.34 1 329.80 P-115 1 1 1 12 inch I Circular 1 8.00 1 0.00 1 0.49 1 336.31 1 336.26 P-80 1 1 1 12 inch I Circular 1 78.20 1 1.04 1 4.30 1 331.93 1 331.09 P-11 1 1 1 18 inch I Circular 1 73.60 1 3.89 I 5.70 I 331.40 1 331.17 P-25 1 1 1 12 inch I Circular 1 228.10 1 1.80 1 6.45 1 334.55 1 331.17 P-28 1 1 1 12 inch 1 Circular 1 129.30 1 2.56 1 6.11 I 335.84 1 334.60 P-20D 1 1 1 12 inch 1 Circular 1 14.00 1 0.06 1 2.66 I 332.70 1 332.17 P-113 1 1 1 15 inch 1 Circular I 8.00 1 4.42 1 7.87 1 337.64 1 337.28 P-68D 1 1 1 24 inch 1 Circular 1 40.00 1 0.00 1 0.00 1 333.93 1 333.93 P-68 1 1 1 12 inch I Circular 1 5.50 1 0.85 1 3.60 1 333.90 1 333.93 P-82 1 1 1 18 inch I Circular 1 72.70 1 5.42 1 3.07 1 330.98 1 330.79 P-90 1 1 1 12 inch 1 Circular 1 94.70 1 4.01 1 7.27 1 334.34 1 332.16 P-98 1 1 1 18 inch I Circular I 65.20 1 10.94 I 6.19 1 331.21 1 330.79 P-76 1 1 1 12 inch 1 Circular 1 56.70 1 2.45 1 6.30 1 331.47 1 330.56 P-104 1 1 1 8 inch 1 Circular 1 12.80 1 1.04 1 5.84 1 334.59 1 334.10 P-26 1 1 1 12 inch 1 Circular 1 155.10 1 3.49 1 6.98 1 335.06 1 331.71 P-30 1 1 1 10 inch 1 Circular 1 9.00 1 1.80 1 6.67 1 337.25 1 336.86 P-31 1 1 1 10 inch 1 Circular 1 12.40 1 2.56 1 6.03 1 337.63 1 337.32 P-67A 1 1 1 12 inch 1 Circular 1 29.00 1 0.39 1 2.62 1 333.99 1 334.00 P-87 1 1 1 12 inch I Circular 1 52.60 1 2.26 1 8.18 1 331.94 1 331.10 P-83 1 1 1 12 inch 1 Circular 1 14.00 1 3.61 1 7.51 1 331.11 1 331.10 2-92 1 1 1 18 inch 1 Circular 1 108.40 1 6.24 1 3.53 1 332.07 1 331.69 P-99 1 1 1 18 inch 1 Circular 1 311.50 1 7.80 1 7.97 1 333.48 1 331.69 P-77 1 1 1 12 inch I Circular 1 14.50 1 1.72 1 6.14 ( 331.66 1 331.62 P-29 1 1 1 10 inch 1 Circular 1 18.10 1 3.46 1 6.34 1 335.84 1 335.39 P-67 1 1 1 8 inch 1 Circular 1 36.00 1 0.40 1 2.50 334.21 1 334.05 Title: USFCC Project Project Engineer: EJK i:\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10108 02:00:010:?Mntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 4 of 6 Calculation Results Summary P :l.d • I P-88 I 1 1 12 inch I Circular I 56.60 1 1.31 1 3.68 1 332.28 1 332.19 1 1 P-91 1 1 1 12 inch I Circular 1 32.80 1 0.87 1 4.38 1 333.59 1 333.20 1 P-84 1 1 1 12 inch I Circular 1 56.70 1 2.89 I 5.80 1 331.93 I 331.33 1 P-93 1 1 1 12 inch 1 Circular 1 144.50 1 2.70 I 6.21 1 334.30 1 332.64 1 I P-95 I 1 1 15 inch I Circular 1 74.70 1 3.53 1 2.88 1 332.46 1 332.24 1 P-102 1 1 1 15 inch I Circular 1 23.60 1 5.73 I 6.90 1 333.97 1 333.79 1 1 P-100 I 1 1 12 inch 1 Circular 1 77.70 I 2.14 1 4.49 1 333.82 1 333.79 1 P-78 1 1 1 12 inch I Circular 1 56.20 1 1.05 1 4.04 1 332.23 1 331.77 1 1 P-89 I 1 1 12 inch I Circular 1 14.70 1 1.08 I 4.18 1 332.44 1 332.40 1 P-85 1 1 1 12 inch 1 Circular 1 14.00 1 2.28 I 5.17 1 332.05 1 332.10 1 I P-94 1 1 1 12 inch I Circular 1 14.10 1 2.27 1 6.68 1 334.54 1 334.56 1 P-96 1 1 1 12 inch I Circular 1 61.20 1 1.31 1 4.16 1 332.61 1 332.54 1 P-103 1 1 1 15 inch 1 Circular 1 16.90 I 5.74 1 6.76 1 334.43 1 334.36 1 1 P-101 1 1 1 10 inch I Circular 1 23.60 1 2.14 1 6.90 1 336.99 1 336.17 1 P-86 1 1 1 12 inch 1 Circular 1 57.90 1 1.56 1 3.43 1 332.36 I 332.22 1 P-97 1 1 1 10 inch I Circular 1 90.00 1 2.28 1 6.48 1 336.67 1 334.77 1 P-105 1 -------------- 1 1 12 --------- inch I Circular ---------------- 1 36.50 ---------- 1 0.62 1 ------------ 5.66 1 ---------- 333.13 1 ------------ 332.36 1 ------------ Label I Total 1 Ground I Hydraulic 1 Hydraulic 1 I 1 System 1 Elevation I Grade 1 Grade 1 I 1 Flow 1 (ft) ( L ine In I Line Out 1 1 (cfs) I I --------- --- - (ft) 1 --------I (ft) I -----------1 I------------ POND -I-------- 1 58.41 I 1 - 1 323.00 1 317.45 1 317.45 1 1 CB-1 1 58.63 1 329.60 1 321.89 1 320.92 1 CB-2 1 20.97 1 327.70 1 322.32 1 322.13 1 1 CB-50 1 40.47 1 330.20 1 322.99 1 322.42 1 CB-3 1 19.62 1 327.70 1 322.89 1 322.51 1 • I CB-51 1 39.94 1 330.07 1 323.61 1 322.96 1 CB-4 1 18.07 1 327.70 1 324.45 1 324.09 1 1 CB-52 1 35.82 1 333.90 1 324.27 1 323.85 1 CB-65 1 4.13 1 334.00 1 329.37 1 329.06 1 CB-5 1 17.58 1 327.73 1 324.92 1 324.57 1 1 CB-53 1 34.52 1 335.20 1 325.86 1 325.37 1 1 CB-66 1 2.10 1 334.00 1 331.32 1 331.32 1 1 CB-6 1 16.85 1 329.15 1 326.26-1 325.87 1 1 CB-70 1 6.74 1 336.50 1 327.07 1 326.71 1 1 CB-54 1 27.42 1 335.50 1 326.78 326.29 1 1 CB-7 1 10.65 1 332.70 1 327.01 1 326.76 1 1 MH-20 I 5.57 1 334.60 1 328.74 1 328.36 1 1 CB-71 1 6.65 1 338.00 1 328.50 1 328.04 1 1 CB-72 1 0.68 1 337.00 1 334.81 1 334.74 I 1 CB-58 1 3.22 1 334.08 1 327.23 1 327.13 1 1 CB-55 1 24.04 1 337.00 1 327.95 1 327.21 1 MH-23 I 2.26 1 336.50 1 330.41 1 330.24 1 CB-8 1 8.77 1 333.30 1 329.07 1 328.86 1 I SC-20A 1 0.06 1 '336.00 1 328.74 1 328.74 I MH-22 1 5.53 1 338.40 1 332.93 1 332.55 1 CB-109 1 6.53 1 338.50 1 330.48 1 330.03 1 1 CB-64 1 2.05 1 336.00 1 328.92 1 328.71 1 1 SC-68C 1 0.85 1 337.00 1 329.70 1 329.62 1 1 CB-56 1 21.08 1 337.00 1 328.94 1 328.47 1 1 MH-74 1 1.71 1 338.85 1 330.69 1 330.56 1 MH-32 1 2.28 1 335.50 1 332.31 1 332.15 1 1 CB-9 1 8.35 1 334.00 1 329.66 1 329.37 1 1 VALVE-20B 1 0.06 1 335.25 1 329.64 1 329.62 1 Tie 22A 1 5.53 1 338.80 1 332.95 1 332.95 1 1 MH-114 1 5.52 1 339.30 1 336.83 1 336.45 1 1 CB-111 1 1.28 1 338.50 1 335.88 1 335.88 1 • 1 CB-63 1 1.47 1 335.00 1 329.12 1 329.01 1 I V-68B I 0.85 1 338.50 1 330.69 1 330.54 1 1 CB-79 1 18.51 1 336.00 1 329.72 1 329.25 1 1 MH-57 1 3.01 1 336.50 1 329.12 1 329.06 1 1 CO-116 1 0.00 1 338.20 1 334.42 I 334.42 1 Title: USFCC Project Project Engineer: EJK i:\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10108 02:00:0'?Tbntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 5 of 6 Calculation Results Summary • 11 CB-73 1 1.71 1 338.50 1 331.09 1 330.96 Tie 32A 1 2.28 1 339.50 1 332.67 1 332.67 CB-10 I 5.47 1 335.70 1 331.17 1 330.94 CB-24 1 2.31 1 338.00 1 334.60 1 334.37 MH-20C 1 0.06 1 335.20 1 332.13 1 332.10 Tie 109A 1 1.11 340.00 1 337.42 1 337.42 MH-110 1 4.42 1 339.30 1 337.16 1 336.85 CB-62 1 0.70 1 334.00 1 330.35 1 330.35 MH-68A 1 0.85 1 337.80 1 333.93 1 333.86 MH-81 1 18.03 1 338.20 1 330.79 1 330.03 CB-75 1 3.02 1 335.50 1 330.56 1 330.34 TD-115 1 0.00 1 338.30 1 336.31 1 336.31 MH-80 1 1.04 1 339.65 1 332.03 1 331.93 CB-11 1 3.89 1 335.70 1 331.64 1 331.40 MH-25 1 1.80 1 339.60 1 334.67 1 334.55 MH-28 1 2.56 1 339.50 1 336.08 1 335.84 TD-20D 1 0.06 1 335.60 1 332.70 1 332.70 Tie 110A 1 4.42 1 340.00 1 337.64 1 337.64 DET PIPE-68 1 0.00 1 336.45 1 333.93 1 333.93 TD-68 1 0.85 1 337.70 1 334.00 1 333.90 CB-82 1 5.42 1 336.50 1 331.10 1 330.98 Tie 81A 1 4.01 1 340.00 1 334.34 1 334.34 MH-98 1 10.94 1 337.90 1 331.69 1 331.21 CB-76 1 2.45 1 335.50 1 331.62 1 331.47 Tie 80A 1 1.04 1 340.00 1 334.59 1 334.59 CB-26 1 3.49 1 338.00 1 335.39 1 335.06 Tie 25A 1 1.80 1 339.50 1 337.25 1 337.25 Tie 28A 1 2.56 1 340.00 1 337.63 1 337.63 J-67A 1 0.39 1 337.70 1 334.05 1 333.99 CB-91 1 2.26 1 336.00 1 332.19 1 331.94 CB-83 1 3.61 1 336.00 1 331.33 1 331.11 CB-92 1 6.24 1 335.90 1 332.24 1 332.07 MH-99 1 7.80 1 339.00 1 333.79 1 333.48 CB-77 1 1.72 1 335.00 1 331.77 1 331.66 Tie 26A 1 3.46 1 340.00 1 335.84 1 335.84 TD-67 1 0.40 1 336.90 1 334.21 1 334.21 CB-88 1 1.31 1 336.00 1 332.40 1 332.28 CB-87 1 0.87 1 336.20 1 333.59 1 333.59 CB-84 1 2.89 1 336.00 1 332.10 1 331.93 CB-93 1 2.70 1 337.30 1 334.56 1 334.30 CB-96 1 3.53 1 335.00 1 332.54 1 332.46 MH-102 1 5.73 1 339.00 1 334.36 i 333.97 MH-100 1 2.14 1 339.80 1 334.04 1 333.82 CB-78 1 1.05 1 334.50 1 332.23 1 332.23 CB-89 1 1.08 1 335.20 1 332.44 1 332.44 CB-85 1 2.28 1 335.30 1 332.22 1 332.05 MH-94 1 2.27 1 338.10 1 334.77 1 334.54 CB-95 1 1.31 1 335.00 1 332.61 1 332.61 Tie 102A 1 5.74 1 340.00 1 334.43 1 334.43 Tie 100A 1 2.14 1 340.00 1 336.99 1 336.99 CB-86 1 1.56 1 335.00 1 332.36 1 332.36 Tie 94A 1 2.28 1 340.00 1 336.67 1 336.67 CB-90 1 0.62 1 336.00 1 333.13 1 333.13 ----------------------------------------------------------------- ----------------------------------------------------------------- Completed: 06/10/2008 01:59:40 PM Title: USFCC Project Project Engineer: EJK I:\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10/08 02:00:019FL'Jbntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 6 of 6 Scenario: Base Combined Pipe\Node Report Label Up. Node Up. Invert (ft) HGL In (ft) Dn. Node Dn. Invert (ft) HGL Out (ft) L (ft) Size Avg. v (fus) Q Full (cfs) System Rational Q (cfs) P-1 CB-1 318.52 320.92 POND 317.45 319.41 103.50 42 inch 10.99 102.29 58.47 P-2 CB-2 319.90 322.13 CB-1 318.60 321.89 177.30 30 inch 9.10 45.66 20.91 P-3 CB-3 321.01 322.51 CB-2 319.93 322.32 122.70 30 inch 9.57 50.02 19.56 P-4 CB-4 322.65 324.09 CB-3 321.14 322.89 181.30 30 inch 9.18 48.66 18.01 P-5 CB-5 323.15 324.57 CB-4 322.65 324.45 59.20 30 inch 9.16 49.00 17.52 P-6 CB-6 324.48 325.87 CB-5 323.16 324.92 144.90 30 inch 9.31 50.89 16.79 P-7 CB-7 325.60 326.76 CB-6 324.53 326.26 309.90 30 inch 4.76 24.10 10.65 P-8 CB-8 327.80 328.86 CB-7 325.66 327.01 75.10 24 inch 9.87 38.19 8.77 P-9 CB-9 328.34 329.37 CB-8 327.90 329.07 61.90 24 inch 7.12 24.79 8.35 P-10 CB-10 330.04 330.94 CB-9 328.37 329.66 .163.10 18 inch 7.36 13.82 5.47 P-11 CB-11 330.65 331.40 CB-10 330.17 331.17 73.60 18 inch 5.70 11.03 3.89 P-12 CB-12 326.00 326.94 0-3 324.73 325.64 140.50 15 inch 5.65 6.14 5.40 P-19 Tie 22A 332.00 332.95 MH-22 331.70 332.93 12.80 15 inch 8.28 9.89 5.53 P-20 MH-20 327.40 328.36 CB-6 325.70 326.31 83.50 15 inch 9.59 11.98 5.51 P-20A SC-20A 328.00 328.74 MH-20 327.70 328.74 10.00 12 inch 3.00 8.02 0.00 P-20B VALVE-20B 329.50 329.62 SC-20A 328.10 328.74 59.70 6 inch 2.52 0.86 0.00 P-20C MH-20C 332.00 332.10 VALVE-20B 331.50 331.56 11.00 12 inch 3.47 9.87 0.00 P-20D TD-20D 332.60 332.70 MH-20C 332.10 332.17 14.00 12 inch 2.66 6.73 0.00 P-22 MH-22 331.60 332.55 MH-20 330.40 331.03 57.40 15 inch 9.66 12.14 5.53 P-23 MH-23 329.60 330.24 CB-7 327.20 327.54 60.80 12 inch 9.69 9.20 2.26 P-24 CB-24 333.72 334.37 CB-9 329.20 329.61 221.80 12 inch 7.67 6.61 2.31 P-25 MH-25 333.98 334.55 CB-10 330.50 331.17 228.10 12 inch 6.45 5.72 1.80 P-26 CB-26 334.26 335.06 CB-11 331.10 331.71 155.10 12 inch 6.98 5.09 3.49 P-27 CB-27 329.70 330.30 CB-12 328.60 329.14 133.30 15 inch 4.48 5.87 2.29 P-28 MH-28 335.15 335.84 CB-24 333.82 334.60 129.30 12 inch 6.11 4.70 2.56 P-29 Tie 26A 335.00 335.84 CB-26 334.43 335.39 18.10 10 inch 6.34 3.89 3.46 P-30 Tie 25A 336.65 337.25 MH-25 336.40 336.86 9.00 10 inch 6.67 3.65 1.80 P-31 Tie 28A 336.92 337.63 MH-28 336.70 337.32 12.40 10 inch 6.03 2.92 2.56 P-32 MH-32 331.50 332.15 MH-23 329.70 330.41 108.10 12 inch 7.10 5.98 2.28 P-33 Tie 32A 332.00 332.67 MH-32 331.60 332.31 15.80 10 inch 6.81 3.49 2.28 P-50 CB-50 320.35 322.42 CB-1 318.52 321.89 223.90 36 inch 11.18 78.39 40.37 P-51 CB-51 320.90 322.96 CB-50 320.40 322.99 61.60 36 inch 11.11 78.11 39.84 P-52 CB-52 321.90 323.85 CB-51 320.98 323.61 115.00 36 inch 10.75 77.55 35.72 P-53 CB-53 323.46 325.37 CB-52 322.02 324.27 199.20 36 inch 10.26 73.72 34.42 P-54 CB-54 324.60 326.29 CB-53 323.67 325.86 131.20 36 inch 9.59 73.00 27.32 P-55 CB-55 325.54 327.21 CB-54 324.77 326.78 102.20 30 inch 7.79 35.60 23.94 P-56 CB-56 326.91 328.47 CB-55 325.59 327.95 102.90 30 inch 9.23 46.45 21.08 P-57 MH-57 327.33 329.06 CB-56 326.96 328.94 56.80 15 inch 2.45 5.21 3.01 P-58 CB-58 326.04 327.13 CB-54 325.07 326.78 151.50 15 inch 4.44 5.17 3.22 P-59 CB-59 329.02 329.63 CB-60 328.45 329.06 83.80 12 inch 4.04 2.94 2.03 P-60 CB-60 326.77 327.62 MH-61 322.99 323.95 77.10 18 inch 10.43 23.26 4.90 P-61 MH-61 322.89 323.74 0-2 322.42 323.17 54.90 18 inch 5.51 9.72 4.88 P-62 CB-62 330.00 330.35 CB-63 328.60 329.12 76.40 12 inch 4.37 4.82 0.70 P-63 CB-63 328.50 329.01 CB-64 328.20 328.92 14.50 12 inch 6.81 6.66 1.47 P-64 CB-64 328.10 328.71 CB-58 326.90 327.34 60.20 12 inch 6.07 5.03 2.05 P-65 CB-65 328.20 329.06 CB-51 326.70 327.28 70.10 12 inch 9.05 6.77 4.13 P-66 CB-66 330.70 331.32 CB-65 328.30 329.37 161.00 12 inch 5.49 4.35 2.10 P-67 TD-67 333.90 334.21 J-67A 333.70 334.05 36.00 8 inch 2.50 0.90 0.28 P-67A J-67A 333.70 333.99 TD-68 333.50 334.00 29.00 12 inch 2.62 2.96 0.27 P-68 TD-68 333.50 333.90 MH-68A 333.45 333.93 5.50 12 inch 3.60 3.40 0.75 P-68A MH-68A 333.45 333.86 V-68B 333.40 333.79 10.50 12 inch 2.84 2.46 0.75 Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06110/08 02:01:14Mntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795. USA +1-203-755-1666 Page 1 of 2 ? 1-1 f'D Scenario: Base • • 1? Combined Pipe\Node Report Label Up. Node Up. Invert (ft) HGL In (ft) Dn. Node Dn. Invert (ft) HGL Out (ft) L (ft) Size Avg. v (ft/s) Q Full (cfs) System Rational Q (cfs) P-68B V-68B 329.90 330.54 SC-68C 329.20 329.70 36.70 6 inch 4.32 0.77 0.75 P-68C SC-68C 329.10 329.62 CB-55 329.00 329.44 21.30 8 inch 2.70 0.83 0.75 P-68D DET PIPE-68 333.45 333.93 MH-68A 333.45 333.93 40.00 24 inch 0.00 0.00 0.00 P-70 CB-70 325.71 326.71 CB-53 324.96 325.77 98.00 18 inch 6.96 11.95 6.74 P-71 CB-71 327.00 328.04 CB-70 325.96 327.07 53.60 15 inch 8.02 9.00 6.65 P-72 CB-72 334.40 334.74 CB-70 332.20 332.46 214.00 12 inch 4.26 4.70 0.68 P-73 CB-73 330.40 330.96 MH-74 330.10 330.69 21.40 12 inch 5.09 4.22 1.71 P-74 MH-74 330.00 330.56 CB-55 327.60 328.01 124.90 12 inch 5.71 4.94 1.71 P-75 CB-75 329.60 330.34 MH-57 329.26 329.80 16.20 12 inch 8.31 6.71 3.02 P-76 CB-76 330.80 331.47 CB-75 329.70 330.56 56.70 12 inch 6.30 4.96 2.45 P-77 CB-77 331.10 331.66 CB-76 330.90 331.62 14.50 12 inch 6.14 5.44 1.72 P-78 CB-78 331.80 332.23 CB-77 331.20 331.77 56.20 12 inch 4.04 3.68 1.05 P-79 CB-79 327.70 329.25 CB-56 327.00 328.94 22.20 24 inch 12.52 40.17 18.51 P-80 MH-80 331.50 331.93 CB-73 330.50 331.09 78.20 12 inch 4.30 4.03 1.04 P-81 MH-81 328.50 330.03 CB-79 327.80 329.72 100.30 24 inch 8.55 24.57 18.03 P-82 CB-82 329.00 330.98 MH-81 328.60 330.79 72.70 18 inch 3.07 7.79 5.42 P-83 CB-83 330.30 331.11 CB-82 330.10 331.10 14.00 12 inch 7.51 5.54 3.61 P-84 CB-84 331.20 331.93 CB-83 330.40 331.33 56.70 12 inch 5.80 4.23 2.89 P-85 CB-85 331.40 332.05 CB-84 331.30 332.10 14.00 12 inch 5.17 3.91 2.28 P-86 CB-86 331.80 332.36 CB-85 331.50 332.22 57.90 12 inch 3.43 2.56 1.56 P-87 CB-91 331.30 331.94 CB-82 329.10 331.10 52.60 12 inch 8.18 7.29 2.26 P-88 CB-88 331.80 332.28 CB-91 331.40 332.19 56.60 12 inch 3.68 2.99 1.31 P-89 CB-89 332.00 332.44 CB-88 331.90 332.40 14.70 12 inch 4.18 3.82 1.08 P-90 Tie 81A 333.49 334.34 MH-81 331.50 332.16 94.70 12 inch 7.27 5.16 4.01 P-91 CB-87 333.20 333.59 CB-91 332.90 333.20 32.80 12 inch 4.38 4.43 0.87 P-92 CB-92 329.95 332.07 MH-98 329.30 331.69 108.40 18 inch 3.53 8.13 6.24 P-93 CB-93 333.60 334.30 CB-92 332.10 332.64 144.50 12 inch 6.21 4.72 2.70 P-94 MH-94 333.90 334.54 CB-93 333.70 334.56 14.10 12 inch 6.68 5.52 2.27 P-95 CB-96 330.95 332.46 CB-92 330.20 332.24 74.70 15 inch 2.88 6.47 3.53 P-96 CB-95 331.80 332.61 CB-96 331.20 332.54 61.20 12 inch 4.16 3.53 1.31 P-97 Tie 94A 336.00 336.67 MH-94 334.00 334.77 90.00 10 inch 6.48 3.27 2.28 P-98 MH-98 329.20 331.21 MH-81 328.60 330.79 65.20 18 inch 6.19 13.10 10.94 P-99 MH-99 332.40 333.48 MH-98 329.30 331.69 311.50 18 inch 7.97 13.62 7.80 P-100 MH-100 333.20 333.82 MH-99 332.80 333.79 77.70 12 inch 4.49 3.32 2.14 P-101 Tie 100A 336.33 336.99 MH-100 335.69 336.17 23.60 10 inch 6.90 3.61 2.14 P-102 MH-102 333.00 333.97 MH-99 332.80 333.79 23.60 15 inch 6.90 7.73 5.73 P-103 Tie 102A 333.33 334.43 MH-102 333.10 334.36 16.90 15 inch 6.76 7.54 5.74 P-104 Tie. 80A 334.11 334.59 MH-80 333.75 334.10 12.80 8 inch 5.84 2.03 1.04 P-105 CB-90 332.80 333.13 CB-86 331.90 332.36 36.50 12 inch 5.66 7.27 0.62 P-109 CB-109 329.00 330.03 CB-71 327.10 328.50 121.90 15 inch 7.32 8.06 6.53 P-110 MH-110 336.00 336.85 MHA 14 335.60 336.83 34.70 15 inch 7.31 9.02 4.42 P-111 CB-111 335.40 335.88 CB-109 333.78 334.17 134.40 12 inch 4.46 3.91 1.28 P-112 Tie 109A 336.92 337.42 MHA 14 336.70 337.08 8.00 8 inch 5.88 2.00 1.11 P-113 Tie 110A 336.79 337.64 MHA 10 336.60 337.28 8.00 15 inch 7.87 9.95 4.42 P-114 MHA 14 335.50 336.45 CB-109 334.90 335.63 51.80 15 inch 7.73 9.04 5.52 P-115 TD-115 336.30 336.31 CO-116 336.25 336.26 8.00 12 inch 0.49 3.66 0.00 P-116 CO-116 334.40 334.42 MH-74 334.20 334.22 39.00 6 inch 0.43 0.40 0.00 P-120 CB-29 342.00 342.781 0-6 341.50 342.14 48.20 12 inch 6.52 4.72 3.36 Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10108 02:01:14FIRAntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 f • • Section C Final Grading Cale #5A Layout & Pipe Profiles • 6;0 6 06ed 9996-99L-EOZ-6+ `dsn S6L901o 'umo} 9ioAA J9;u9o uo!;n!oS spoy;aW pe;saeH •ou! 'suaa;s CS Aejlua8 pp Wd LE 06 Z0 80/06/90 f00-Z60'90'90l 9'9A (]VOWJ03S W;s'906090 WJO;s !eui; s!}Jenou\pe0WJo;s\ ... \:[ >Im :Ja9u!6u3;oafoid ;oefoid OOdsn :aR!1 w- 9-9; 9- L-4 9-9: 6-4 O L-90 •90 06-90 4-93 yyg ail 09-90 69-130 "(Y 00 a 69-HW 69-d Z-O LZ-00 9-0 0 d 62-90 E-O • GSeEJ :01jeue3s el 0 d U) m N 0 a ? d V c O w itf r0l m 0 U N N ? E JAI LO M9 e o er? V m Z O ?L ® c u U) O L- 0 - 0 O O O O O O M LO M p M T O + - Itf 41- LO O O I? CY) N co o E? rn j Ir LO ,t ai N Q ; EL 0 ? j > ACC` ?Z) 01 7 II { 4f ct:: 00 O (q 0) w CO co NC 6 > > a c: { J?OI, I Lv- O , F T r\ C') N C') o. o YU O ) W 2 O cf) ? T cu N T m co 4- U T, C? C Cp C? a N NI?O° O > N EN _ID 0 J (n (n cL y.. T O ? bNN N O C\l ?..E c m 0 n 0 O E L co w Lfl T ? I N r (?0 C U O7 Cl) co Cp ?.\o rTC?U ? m '- a ac N° 22- J Q.Lj p O N _C .C -`?- O C E LV Lo 'r o co v t 7] r N W JN? n 7 ?Cl) E LO f0 O co N -j U) N N 0) o U C .. C\ o L9 ° 0- N WOO > >Nco tO f) 17 mo ai c ? Nr i r] N ? c0 c. C N O. ?Nm J C.L! 5 n? c c 0 0 cD a) U C° O ?d-pCU N O N_ '- a J (A (n 0.. O .L N C L O O E LO - W n 0 N L (0 U ? Co ? O como _N .. La (Q CO o= O O + d' C O V U) + V O Y W, 0 o m CV o C 0 o) O ro L6 IL Lu 8 U ? N o O > 0. ? U U) co 0 U LO r M 0 N t Q D LO rn r` (D 0 F- U c 00 a? m a) U c 0 0 rn 0 m y0 rn UI (U ci C N E v N T m c a? m 0 E rn CD 0 O) U) 0 E N0 ro c 4= ? r a ro m o . CL %v U 0 o co ? 0 0 N ? N LO 1- ._ o 0 0 9 n ? d'y?jh `v,„q C) 0 ) IL C V ?/?- CL • cn W .O co Q) V? Lo M 1 r,? c 1 U NC? coa E J ?Cl) f I I I V- 00 Lo co m r N O U N Ch co fl. E J?(n I i Ij I I ° I Lq N N I c a) "' I L- " C ?•C't oC CL > >OMInU c) I a?c co L C) N O 1 . 1 f I J??J(n(n0., 4:? 00 C0 41-p ? r, L6 0) NN r-L0 CNN C U C C•C? C co ? 0 O d a U c c °N LO m--ui •. (U O E J .0 NCV C co J??JCnU7a O` •L ? C L p00 0 P CO IN E U mCl) U) N CO .. Q W J ?Cl) d n = It O M GA I N cu ? O 7 L O ? 0) 0 a) a) c a ' 0 0 0 CO?: 0 N ' rnN U > > U?( ' ) 0 C'o NO 0. J C 0 J? i i I i •O N I C I ? O O E Cn W D n = rt r O Ci (U p 000 0 U Cn D7La N O T C Cp Co Uco co a N N -00 U co D c c?rN 0 N J E E O--p ?r CL C J?(n i J? OJco 00- E Y p^ N O ? ? LLI N N O O E 0 m L' a 0 w C ? co .C °' > 00 ° Q E U E o W UJ O O + ct_- $ 00 ( NN L ()(Y) $ 0 3 19 . ° O N N 0- cO c cd ??U °? - s hi b3 Oa mac. rN :D Q ?5 66 FL O O t O (D O O + L 0 N C O O O ? d Cn O d O - t Cl) r<i E a? (A T T m m 0] 0 O O t N O O E r u) co 0 0 Lo 0 E 0 N f6 C 4= N 2i a m 0 0 o a?N o Li. E E O Cl) 00 = 2 + Q N O ?F 0 C, • 0 Profile Scenario: Base Profile: Tie 26A TO CB-1 0 Scenario: Base Label: Tie 26A Rim: 340.00 ft Sump: 335.00 ft Label: CB-26 Rim: 338.00 ft Sump: 334.26 ft Label: CB- 1 Label: CB-10 Rim: 335.7 ft Rim: 335.70 ft Sump: 330.6 5 ft Sump: 330.04 ft Label: P-29 Up. Invert: 335.00 ft Dn. Invert: 334.43 ft L. 1V. -4 0+00 Size: 10 inch 1+00 S: 3.15 % Pipe: Steel Label: P-26 Up. Invert: 334.26 ft Dn. Invert: 331.10 ft L: 155.10 ft Station (ft) Size: 12 inch S: 2.04 % Pipe: Concrete 340.00 -1 335.00 ElevE 330.00 2+00 3+00 Label: P-11 Up. Invert: 330.65 ft Dn. Invert: 330.17 ft L: 73.60 ft Size: 18 inch S: 0.65 % Pipe: Corrugated HDPE (Smooth Interior) L I Title: USFCC Project Project Engineer: EJK I:\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 01:51:0 ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Profile Scenario: Base Profile: Tie 25A TO CB®10 Scenario: Base Label: Tie 25A Rim: 339.50 ft Sump: 336.65 ft Label: MH-25 Rim: 339.60 ft 340.00 Label: CB-10 Rim: 335.70 ft Sump: 330.04 ft 335.00 / 330.00 L/ 0+00 1+00 2+00 3+00 Label. P-30 Up. Invert: 336.65 ft Dn. Invert: 336.40 ft L: 9.00 ft Station (ft) Size: 10 inch S: 2.78 % Pipe: Steel Label: P-25 Up. Invert: 333.98 ft Dn. Invert: 330.50 ft L: 228.10 ft Size: 12 inch S: 1.53 % Pipe: Corrugated HDPE (Smooth Interior) • L I Title: USFCC Project Project Engineer. EJK is\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 01:55:02ffBbntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 e 's C O (0 > W 0 N c? ? OD y= C 0 L C C N V /) 1 1 W 0 ?Mry? 00? W A p ?? `W : U O L 004:?$ = O T C) u ?co C, M C -O EC J - { U Q1--! dt 00 N O rn 2D 6 (6 Cl co 'aEa J? ° co q q q It CY) co ch ch CY) pp O'q UOCq It 00 ?coN CY) JET C co O .C C L O O E j W J. 4f 4f r r- N C6 6 N d CO M$ U m N \ 0 O d WN > > r T ? t U C ?r N N0 N s O r (0 C1CN.. - l r rr d df f ! mom U00 co co co. o (U E° J •- E ? N C O U) - O O E W d O Lo T N MM W Lo co co '7 00 C M C U O O C \ O d O > WMN° C6TC7U N- fl -N Qj? N '- '- J? N Cl ?J(nCnCL 1 If 41 N O CA r` c6 (6 CY) Cl) M C C,C? N NOO° C C ctTr*, (n N--CV N O C1.CTN- Cl J??JCn(nCL O a L0 c7 O O + O O ce) C O ° O N C/) O O + T O O + O • Profile Scenario: Base Profile: Tie 32ATO C13®7 Scenario: Base 0 Label: MH-32 Rim: 335.50 ft ump: 331.50 ft Label: MH-23 Rim: 336.50 ft Sump: 329.60 ft Ri Su 3 332.00 ft 331.60 ft Label: P-23 r h Up. Invert: 329.60 ft - Dn. Invert: 327.20 ft I L: 60.80 ft / Size: 12 inch S: 3.95 % Label: P-32 Pipe: Corrugated HDPE (S Up. Invert: 331.50 ft Dn. Invert: 329.70 ft L: 108.10 ft OIGC'. 14 If IU I 0+00 S: 1.67 % 1+00 Pipe: Corrugated HDPE (Smooth Interior) Station (ft) • Label: Tie 32A Rim: 339.50 ft Sump: 332.00 ft Label: P Up. Inver Dn. Inver L: 15.801 Size: 10 i S: 2.53 °/ Pipe: Ste 340.00 335.00 abel: CB-7 :332.70 ft r 325.60 ft 330.00 Elevation (ft) 325.00 tooth Interior) 320.00 2+00 Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 060908.stm Storm CAD v5.6 [05.06.012.00] 06/10/08 01:57:539lMntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 1 le r i r..r • Profile Scenario: Base Profile: Tie 22A TO C13-6 Scenario: Base • Label: MH-22 Rim: 338.40 ft ump: 331.60 ft Label: H-20 Rim: 33A .60 ft Sump: 327 .40 ft Label: CB-6 Rim: 329.15 ft Sump: 324.48 ft e: P-22 Invert: 331.60 ft Invert: 330.40 ft 40 ft 15 inch 09% I Label: P-20 : Corrugated HDPE (Smooth Int rior) Up. Invert: 327.40 ft Dn. Invert: 325.70 ft 0+00 1+00 Station (ft) Label: Tie 22A Rim: 338.80 ft Sump: 332.00 ft Label: P-19 Up. Invert: 332.00 ft Dn. Invert: 331.70 ft L: 12.80 ft Size: 15 inch S: 2.34 % / Pipe: Steel Up Dn L: [ Siz S:; Pip 340.00 335.00 330.00 Elevation (ft) 325.00 L: 83.50 ft 320.00 Size: 15 inch 2+00 S: 2.04 % Pipe: Corrugated HDPE (Smooth Interior) Title: USFCC Project Project Engineer EJK is\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10/08 01:54:549RIEntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 •F • Profile Scenario: Base Profile: T®-20® TO MH-20 Scenario: Base 340.00 Label: 0-20C Label: S -20A Rim: 335.20 ft Rim: 336.00 ft Sump: 3.00 ft Sump: 328.00 ft Label: VALVE-20B Label: TD-20D ft 335.00 Rim: 335.60 ft 01-11111 .0-29.50 ft Label: MH-20 Sump: 332.60 ft Rim: 334.60 ft umD: 327.40 ft • • Label: P-20D Up. Invert: 332.60 ft Dn. Invert: 332.10 ft L: 14.00 ft Size: 12 inch / S: 3.57 7 % Pipe: Concrete Label: P-20B Up. Invert: 329.50 ft 0+00 L: 59.70 ft Size: 6 inch Label: P-20C S: 2.35 % Up. Invert: 332.00 ft Pipe: Steel Dn. Invert: 331.50 ft L: 11.00 ft Station (ft) Size: 12 inch S: 4.55 % Pipe: Corrugated HDPE (Smooth Interior) 330.00 J 325.00 1+00 Elevation (ft) Label: P-20A Up. Invert: 328.00 ft Dn. Invert: 327.70 ft L: 10.00 ft Size: 12 inch S: 3.00 % Pipe: Corrugated HDPE (Smooth Interior) Title: USFCC Project Project Engineer: EJK I:\...\stormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06/10/08 01:54:2-0Mkntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 o, 7?d ? r 0 O O ? m 0 .? CL C V D U) M M LJ.J U-) O +) ^co V W e^ a v UO c O co W O O CO O O -h co O O + O O C O O cu M CO Y p^ '- W N O [_ - c N O m o 0 m.? a w o c U t0 m to O > a`o U E 0 (D 0 0 L6 0 r co 0 N O 0 m r 0 0 t- U 3 C w U c 0 6 U) N b O N (0 N N td U C Ul E N N T T N Y C m 0 O T N E to co 0 m O N 0 O N ro c 4= U C m > ro O 0O N Q i co .. U c?C o U) € co n 0 N N F- o O O O O O O p p p O LO O LO p M M co cCi N M ?0, 'key F 9" LO C 0 ? m ® U) 0 m a M PPD O LO $ It C (9 °oc N Ur CN U ?co C' U) mEC E J ? U• O L ®^l (D IV 90 M9 Ur N co mE L, J 9 ? B L c U U U) L O _C L O E cf) W a 4:! elt T = 00 'I N m? Nmco U m 0 N OI O 0 0 N > > T o) U N--r N N macNN'o. N 4f V- 0 p]Od: (`') C7 mE0. JiE E 7 U) O m N CO O O + r O O + 0 Y E7 W N o c o m C: a co W m ? 'o > o. ? U E 0 U) Y F N W o 0 N r O a) m C 00 w? o > 4 Q 0 (D (0 U `- 0 r N O N D LO m h O O F" U C O 0 c m U c 0 0 CO 0 r m N N m E_ N , co U ? c N o m E v1 o (0 N , m a) c ? 4= N N cep o CL s 0) U 70 U I O U E o 0 0 co N N p o E N co 0 O LO 0 E N0 m N if m m 0 O >> N 06 U F) o j 00 N ? N LO P o (U _N W ° 0 0 o 0 0 LO 0 LO C c ( ( O mqq UO O (Y) C\l C N CO co ?Ea o J E O E Cl) CO / W d 00 R r, a, 0 N N ( LO ( U (9 It E N N0N° O >>rr U O I? CV J?OJ(n(nd co q coo m co co co U (9i2i Oo•c? C p. N N0N° O > > rrnU r Ci r: J??JU)(nLL O b a 0 0 0 (N7 00 O O + N O 0 T O O + O c O U) 7 U) m ca 'm= 0 O L C V g ®M1 Yri?9 V g@ N M T- ?O L T 1 ? a) ^y? U VJ co L 0- F v C O 07 N LLI ? O O O 0 O LO "t co (Y) < c c cN O OV- It: ? r?o, r*l LO a) mLQ c) c) U (1) U()N ') ' ^'C? C? C 0 C C ) O N N0? -0111. co g a >>C.C) U a) m- i J? O -r O O_CLO NT O. (n; ztt zt:f 00 oq 00 c N co co ?a ?E CO L= = 00 Iq o 000) ch N (Y) ch EQ jF E CO r Q-'' it? "cc r Lq 00 LO ) m U Cl CY) CY) ?Eo. JF 7 U) O O t r O O t 0 0 O WW, C! N C O N mt6 a wP U aJ N LO O > 0 0 Q U E 0 m LO r ri 0 N F Q D to rn r O 0 I- L) c 00 r a? m c Q) U 0 0 U) 0 0 t 0 m S U C fq N N T m O N W O 0 0 N O E L O iA m C 4= N2 ?tE a a) m co O 0 N ac? U c? o LI- j € o .. m m moo I= .•_• o O O O M O O O O CY) O c O + O r N CO rnr? N N N OchcY) U V r L/ L N N Q) L-) o .. > > r(00 r O C CN NLq N r Ni- Cl ? 0 O C ( J?OJ(q(gi 4:? it? 000 ?t n LO M ro m ch r M (y) C U a) a),:,. No O C Cd'r jU fl r m m r JZ) 0_1() m • • Profile Scenario: Base Profile: Tie 110A TO CB-109 Scenario: Base Label: Tie 110A Label: MH-110 Rim: 340.00 ft Rim: 339.30 ft Sump: 336.79 ft Sump: 336.00 ft Label: MH-114 Rim: 339.30 ft Sump: 335.50 ft Label: P-113 Up. Invert: 336.79 ft Dn. Invert: 336.60 ft L: 8.00 ft Size: 15 inch S: 2.37 % Pipe: Steel Label: P-114 Up. Invert: 335.50 Dn. Invert: 334.90 L. Size: 15 inch S: 1.16 % Pipe: Corrugated I 340.00 Label: CB-109 Rim: 338.50 ft ump: 329.00 ft 335.00 Elevation (ft) 330.00 'E (Smooth Interior) '- Label: P-110 Up. Invert: 336.00 ft 325.00 0+00 Dn. Invert: 335.60 ft 1+00 L: 34.70 ft Size: 15 inch S: 1.15 % Pipe: Corrugated HDPE (Smooth Interior) Station (ft) Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 02:D7:3ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: Tie 109A TO M H-114 Scenario: Base Label: Tie 109A Rim: 340.00 ft Sump: 336.92 ft Label: MH-114 Rim: 339.30 ft Sump: 335.50 ft 0+00 Label: P-112 Up. Invert: 336.92 ft Station (ft) Dn. Invert: 336.70 ft L: 8.00 ft Size: 8 inch S: 2.75 % • • Pipe: Steel 340.00 335.00 141-00 Elevation (ft) Title: USFCC Project Project Engineer. EJK i:\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28108 02:08:32ffM,kntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA 1 +1-203-755-1666 Page 1 of 1 ?ry W N m ? m y= O 0 L a. m V AM L I rn c.) Ow L.? .0 00 c u y? L n c O co co W O O 0 BOO + 0 L m c .c O O E U) W O o- O o + 2 d' -Q a) r (D U ? C O L CY) a) a) N ° 2'. CO Cl) a- 0 O + (f) C O (?0 O O + N O O + r YE 7- ) ° o W N o O N C UO !p C O W f'i co N LO V > d ? Q U E o` U Li LO co 0 N U D m 0 0 U c O m U C O .j 0 N N a 0 L N m m U vi E T N C N 0] 0 E N co O O LO O E O N r ' 0000 = N Ln m N co co O J 'r E 0 U) m C V= N O 8, N CL 5 0 U U O I,- ff O 0 0 N ! N °O O, ° °O °O o `" o N ( ? O N d ? O ` LL G N v 4.11 J 0 C) O L n • m MMQ O W //U^^ v, C O N w O O O O c ? cCi co 0?Lq 0 U ? N ( ? a) cY) (o ?Ea E J? O O (0 LO N N N .c Q) m co m$ U V Lo. C C0 C0 C ° O d N O Lo Lo >>T•-dU C CLo .. N N Cr NO ' 0 - c 0 J?DJCn(n0., co Y: 4- Lo 00 T 00 CD a) m00 d. Co CO 0 N UcN L (0 C? co c 7a) mm C' > >c°?j 0) mE° c c ro?m -I? E ? ? N 0. fl C m •.• cp . JDDJCq(?? ? O O O CO O '' , c U M N L ?mm / O ° = a ° J C () \ w a ce) 4t 4? 2 1? 0 ED 0 O 00 N N O c) L6 co N I N N 0) (y) Cy) co m co I ? JEE 0 d»0N cLn,-nU U) (D - c -d ..o NN d ? ? QC , JDDCn(nE J iNq-_ q_- ?00 00 Oc0 O O UNO ce) NON U (,7 co m U (OCcc ° m E a J? E O O OON c >,;r,-MU D 0--co • m -. 022 d 0 . 11) DJ(q(g0- r- -I 611 O O O co O O [t O O m C O O O N U) 0 O t r O O O • w°o .. N N o o m mu a w? U ? N tq 'O > ao Q U 0 U) co m t6 L r M 0 N Q Lo rn I` m 0 F U c 0 0 m c m U ._ 0 0 U N O 0 ro a m U) 0 (U 2 (i c ui E v T U) T U7 C N co E co 0 0) N 0 E 0 N r C rn ? Ea o m ? 0 0 0 n`. 5 U `0 o L? E 0 j 0 N ? N 1- ._ o ?.n d N Er- O 0 L L D. ? C N V C0 Lr) /III m co C.) ® U) ® OW V ?L ? 00 ^?D d U vJ • m? U? J? O It:! 10 = c(o LLo Q)?? - E:Q J 0 - O U) Qtt 4f 00, 000, ~Cf)m .-o En (u iE E U) C O (0 N W O O O O c co O M Lo 4:? 4:? Lo 0 ,1. m9Ln U rN c a) m m -0•• fl ?? E r °O C°o :1 I (n I O N 1 ?mm N ? I?.C?` C o C O -0 ? 0 N O > >.TNU - - - c-c N O- Q N . •• (0 Q C Lo 0 _ cq q 0 0 2 0 m co a) Y) mi z C O -- Qj m N N a r i (u •• -co O N co m 0CoM U op -E i? a ° W N NON O C N- U N Q) 00 C N (D N CL IO U J??J(n(n? cc r u) r ? 4t CY) CY) co mm .C r C U O N d C > 00 0c) r (n N--N m N N N O r C/) IL • O O Cf) O O O O N O O r O O O C O m 0 Y W o N r a) O .__ 0 moo c 0 w ,r a) to 'o > a`o U 0 O vi to r Cl) 0 N Q N 0) n O O U 3 0 m m m c N U c 0 0 U N O t N t0 N d) m U S ui E a? U T N N m E 03 C6 0 0) Lo 0 0 N m C N ?j?E 0. O M V) . oo? o r- U U U 0 co 00 N ! N F- f to A? y?. Y F Z WW, o o N N O C 0 N 0 C W O •? o Lf) o > a`o U 0 0 m L6 to n Cl) O N t d U) cv d m 4- o O •s• (L C V m D Lr) MM1 l/W V F- 00 M1 ego N O L n • U) W C U U) c 0 (0 0 w V- V O co O O o CCi co a) (Y) ( N N ('') 0 N N ('') (`•) U O r, U LO C:) m0? Ur?(o ?? ? cu E°• J iE U) N O N N U? cq aNa) CO I-, ?CoN > > C c va m ac o ( E E , M-iq? 7 ? mLql Lo N U C co m co - F - UID?? NOO mL?00 Lil UU) o 11. ??? 41- 4t ?Ea ?. J? E 0T7 q r0 7 r, gat co co r, Co Ch r, 0 0 4t Uitir a > cLorN .. _ ?(C') ? d C N fl J _E c (0 J?12 Li CnC6 00 Ct-! v 00 mLq OQ Ud'r ?CMry) mE? J? Cn + , iC iC c ? c Ch d 0 0 0 In ° O > C(brLoU O--CO N N O .fl Lo J?OJ(n(na V U) W 0 O N •O a) NO C O 00) m M a) ?\ L OC U r0U C tt co ' - N L c > >F,r?hU CC N CL (n (n 0 Cobj 6 O O. C O c L N _ J ? ? J Cn fn n. 0 O + c r 0 co O 0 o 00 cq N w? r r W r or) ? 0 ' c dC>°roU J??J(nCnd • 0 ¢ Lo W n m 0 U C 00 v 'o U c 0 0 U m . 0 t N ?o N m m 2 U U E m N T Cn T N C U1 co 0 E N CC) O 0) N 0 0 m c y ? U 'L 4. ai m 0 0 a (U c? o j 2 o N N F- o m U) m ? m 4= O OL L C Q? CO) cr: V- 00 ? O O rn 00 N O Nccicci U c0 00 'C i? $ C C W a)ccc?aipa) i ° S C..•N•. - c J??J(n(n a 0. 0 O 0 O O O O c? ch O O O m C _° E 00 CO N n W a J E 4 C0 O O T 00 OMM m U 00 1 NLt? C 0 C C4t .C o 0 TT 1 0 LqLgq c CO, N -'MU .. . UCD N 00 N--d a)r a) ? OC'-N OCY) m' _ •• N co J:) Q ii U) a ® cn co cc EcL J E 1- 00 Z) Cl) ® Q 0000 C7 gCi co L , L v V N 'd O C 1 (? ) Cl) co co r 0 N ,r N s a) IM C m E° C U U c P o 7 CO C C ?o d C y V d9 >>O N *-U O rr /) N? o0 0 o i 0 m O N C C aj r O ` ? LO J??J(n(n0 4-? ( )C7 N (Y) cY) W a ® L .0111, JEE 0 7 O CO ?A 0000 r LO m ULOr- 00 iC: v p L ?? OONo O ?or U mEa E ? m .0 a) C5 a) CO??Cj J mJu)con 0000 mC)W / OmCY) coE0. 0 0 J? E 7 Cut) 0 0 O Oc?c C. C6?? A'C'C cr: C0 C Ucoc\i a > >rnrNU a) $ .a c c ? a) 6 ai N CL i ? .0 co E ° _ J ? C 00 ( Dorn c°?OJcoU) Cl) N' LO CO co mC7 U O ° O O > a ON .. C CLTf- a ?--co m' ai ai O Cm N.. 2- . -j co co a Y o W ° o W N O C O om a W P. U (q a) to O > 0_ O Q U E `o U) E w ro 0 rn 0 L 0 m C N ?Ea v co 0 0 asL a U c? o LL E co ao N ? N I••• J O t L O ' $ C N C C O c0 O > O N E W (n W O O O O o 4-, v 0 Lo d• co co r N ch N co O' 00 Q 0 CA 00 0 N N m Q 0 L (L V m TM?/? `N OU) co .IO•• ?i CU L) ? vJ ^^® ?..1.. of Q C 4 t a $ O = C oc C; -0 E J Qom= '100 MOO a) OLO co (D J? 7 U) 1000 = N Lq 20000 ?co co nE cJO ._ E D O N N (Y) E O C L O O C E 1 1 N 0 Lo W m00 I IV 4t _ U(N 00 D co ?- co co I N mEo J E r r ) m m co Cf) f`") ? U 7 U) ° O N p NLo N N Cl QC •, ?p .. iiT) O •L C7 4f v TOO O O co ('') (0 E U c i ) U) c CY N Co ch W cu E° I E a "It ? _ U) _ pOj O? .II m Cf) co co U O a N a) ON° O N U > > r .... . C C T N T N N 0 C !. + E •• (0 .i . 0 Li 6E 4f = O O (CY) Y) (Y) r? m U C CY) C o N O NO0? C CO,Nfn N--Ci .D O (D N .. JDQ loom s cD Lo 00 CY) Co U m Cp > >N-NU C C? NO N W cic: NO _O J?t?J(n(n0. O O + ? Cf-I Ln O O M N U rnCC0C oc Q N N.1000 O goo,-(U C: J??J(nfnd O O z c O O W O 0 + N O O r O 0 O w ° o L• N r m o rn o m mL6 a c W s! ii IR N t0 o > d ? Q U E `o V) t0 m L6 L0 r` 0 CV Q In N O t` O O U 3 0 0 a? c U c 0 0 N O N m N N (0 U N E a N c a? m 0 E co 0 m Lo 0 0 v m c w N U C 11 N (0 p7 > N O IL m N o o Z) 0 .0 N N I-?o ,s c O O N W 004:? d =0C r-, c ? Cf) C ?chc E 's J? . G f1f 6e= O 00 V ® p 8y ?V ? ?yy W o U L O?"I-! =O? ch co ch M °Ecl E :3 CO O cr- 4:? 000 T00N 2 rn M (M co 6911 *1 ca rr- E J O G7 QV$ 00( cc) C3 F- m CY) Q. ca 0 J G7 O O LC) mo Ln O O d' O O + O O + N O O + r co O CO_ O 6 Ln + O O U T C .c 0 N--cCcOp7 °N r? N C c odCNNN0. J??J(nUJO.. 0 o p It ? O 1 ) I I O C .c O O E G7 w a Oo cl' M Nrn N CO N O D- N N Lo 00 O . > > rOU r ccCY)NON co ac N n- . . . J?nJ(1JCn0.. 0 L c O O E C0 w ^ LL _ 4=! Q_ 00 N 00 C7 N O c c U O) O !1 > > ON? -U ?r I N s Er'? L N N n I? C5 J?!]J(nG7d i c O G7 ol Y E 0 W, N c Q) O o ro mt a wP 16 (q ro up o > d ? Q U 0 (0 O m to ci 0 N r Q U to rn h m 0 F- U c 0 0 r a? m c U 0 .j 0 U N D O L ro ro N N ro 2 Ci S N E T T N c N m E co 0 rn LO O E o` ro c U t: a ro ro o a ac U L) 0 E ro O O 00 N N I- o Profile Scenario: Base Profile: Tie 102A TO MH-99 Scenario: Base Label: Tie 102A Rim: 340.00 ft Label: MH-102 Sump: 333.33 ft Rim: 339.00 ft Sump: 333.00 ft Label: MH-99 Rim: 339.00 ft ump: 332.40 ft 340.00 335.00 Elevation (ft) Label: P-103 Up. Invert: 333.33 ft Dn. Invert: 333.10 ft L: 16.90 ft Size: 15 inch S: 1.36 % Pipe: Steel 330.00 0+00 Label: P-102 1+00 Up. Invert: 333.00 ft Dn. Invert: 332.80 ft L: 23.60 ft Size: 15 inch S: 0.85 % Pipe: Corrugated HDPE (Smooth Interior) Station (ft) _ s Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 02:41:2ntley Systems, Inc- Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 • Profile Scenario: Base Profile: CB-95 To CB-92 Scenario: Base Label: CB-96 Rim: 335.00 ft Sump: 330.95 ft Label: CB-92 Rim: 335.90 ft Sumo: 329.95 ft 340.00 i 335.00 Label: CB-95 Rim: 335.00 ft Sump: 331.80 ft Elevation (ft) 0 Labe[: P-96 ?- Label: P-95 I Up. Invert: 331.80 ft Up. Invert: 330. 95 Dn. Invert: 331.20 ft Dn. Invert: 330. 2C L: 61.20 ft L: 74.70 ft Size: 12 inch Size: 15 inch S: 0.98 % S: 1.00 % Pipe: Concrete Pipe: Concrete 0+00 1+00 Station (ft) 30.00 ft ft X25.00 2+00 Title: USFCC Project Project Engineer: EJK I:\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 02:42:0ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base 0 F Profile: CB-59 TO 0-2 Scenario: Base S • • Label: CB-59 Labe l: CB-60 Rim: 332.04 ft Rim: 331.95 ft ump: 329.02 ft sump: 326.77 ft Label: MH-61 Rim: 328.99 ft Sump: 322.89 ft \ I Label: 0-2 Rim: 326.00 ft Su mp: 322.42 ft Label: P-59 ?.._ Up. Invert: 329.02 ft Dn. Invert: 328.45 ft L: 83.80 ft j Size: 12 inch La Up bel: P-60 77 [ Invert: 326 S: 0.68 % Pipe: Concrete Dn . 1 Invert: 322.99 ft L: 77.10 ft Sid e: 18 inch S: 4.90 % Pi e: Concrete 0+00 1+00 12+00 L Label: P-61 Up. Invert: 322.89 ft Dn. Invert: 322.42 ft Station (ft) L: 54.90 ft Size: 18 inch S: 0.86 % Pipe: Concrete 335.00 330.00 325.00 320.00 3+00 Elevati L I Title: USFCC Project Project Engineer: EX is\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 02:42:31Q'Bkntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1668 Page 1 of 2 • Profile: CB-27 TO 0-3 Scenario: Base is Profile Scenario: Base Si Label: CB-27 Label: CB-12 Rim: 335.00 ft 72 ft Rim: 334 imp: 329.70 ft . Sump: 326.00 ft Label: O-3 Rim: 328.50 ft ` Sump: 324.73 ft ZLabel:P-27 Up. Invert: 329.70 ft --Cabe[: P-12 Dn. Invert: 328.60 ft Up. Invert: 326.00 ft L: 133.30 ft Dn. Invert: 324.73 ft Size: 15 inch L: 140.50 ft ! S: 0.83 % Size: 15 inch Pipe: Concrete S: 0.90 Pipe: Concrete 0+00 1+00 Station (ft) • 2+00 I ?, J 340.00 335.00 330.00 Elevati 325.00 320.00 3+00 L I Title: USFCC Project Project Engineer: EJK i:\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 02:42:5G9FIRkntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 C7 Profile Scenario: Base Profile: CB-29 TO 0-6 Scenario: Base Label: CB-29 Label: 0-6 Rim: 344.35 ft Rim: 344.00 ft ci imn• 'IA9 nn ft Sump: 341.50 ft 345.00 Elevation (ft) • • 340.00 00 Title: USFCC Project Project Engineer: EJK !:\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 02:43:1ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Up. Invert: 342.00 ft Dn. Invert: 341.50 ft L: 48.20 ft Size: 12 inch S: 1.04 % Pipe: Corrugated HDPE (Smooth Interior) • La Rirr SumF Label: TD-67 Rim: 336.90 ft Sump: 333.90 ft • Label: P-67 Up. Invert: 333.901 Dn. Invert: 333.701 L: 36.00 ft Size: 8 inch S: 0.56 Pipe: Steel Label: P-67A Up. Invert: 3337O Dn. Invert: 333:50 L: 29.00 ft S' 12 ' h Profile: T®®67 TO C®55 Scenario: Base Label: MH-68A Rim: 337.80 ft Sump: 333.45,ft h??• ??_?szR 337.70 Label: TD-68 Rim: 333.70 _Rim- 337.70 ft Sump: mp: 333.50 ft 38.50 ft 29.9QAbel: SC-68C Rim: 337.00 ft Sump: 329.10 ft Label: CB-55 Rim: 337.00 ft um : 325.54 ft Label: P-68 Labe : P-68B Up. Invert: 33 .50 ft Up. I vert: 329. Dn. Invert: 33 .45 ft Dn. I vert: 329. L: 5.50 ft L: 36 70 ft Size: 12 inch Size: 6 inch / S: 1. 91 o Pipe: Steel Pipe Steel ft ft Ize. Inc S: 0.69 % 0+00 Pipe: Concrete Label: P-68A 1+00 Up. Invert: 333.45 ft Dn. Invert: 333.40 ft L: 10.50 ft Size: 12 inch Station (ft) S: 0.48 % Pipe: Steel 340.00 335.00 330.00 Elevation (ft) 325.00 320.00 2+00 Label: P-68C Up. Invert: 329.10 ft Dn. Invert: 329.00 ft L: 21.30 ft Size: 8 inch S: 0.47 % Pipe: Ductile Iron L I Title: USFCC Project Project Engineer: EJK is\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 02:47:0 ntiey Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Profile Scenario: Base. 0 Profile Scenario: Base Profile: ®ET PIPE ® 68 TO MH-68A Scenario: Base Label: DET PIPE-68 Rim: 336.45 ft Sump: 333.45 ft 340.00 335.00 Elevation (ft) Label: P-68D Up. Invert: 333.45 ft Dn. Invert: 333.45 ft • • 0+00 Label: MH-68A Rim: 337.80 ft Sump: 333.45 ft `' -- 11 330.00 Size: 24 inch S: 0.00 % 1+00 Pipe: Corrugated HDPE (Smooth Interior) Station (ft) Title: USFCC Project Project Engineer: EX I:\...\stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28108 02:47:4ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base ,t ?? a fat ? f Profile: T®®115 TO MH®74 Scenario: Base Label: CO-116 Rim: 338.20 ft Label: TD-1158 30 ft i 340.00 Rim: 338.30 ft Label: MH-74 Sump: 336.30 ft Rim: 338.85 ft n ump: 330.00 ft • / 335.00 Label: P-115 Up. Invert: 36.30 ft Dn. Invert: 36.25 ft Label: P-116 1 L: 8.00 ft Up. Invert: 33440 ft Size: 12 inc Dn. Invert: 334.20 ft S: 0.63 % L: 39.00 ft 00 30 Pipe: PVC . Size: 6 inch O+00 1+00 S: 0.51 /o Pipe: Steel Station (ft) Elevation (ft) L I Title: USFCC Project Project Engineer: EX i:\...?stormcad\novartis final storm 051908.stm StormCAD v5.6 [05.06.012.00] 05/28/08 02:48:43U:B t'ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 3 i [a C, Section D Final Grading Calc #5A Grate & Lid Schedule 0 • • GRATE AND LID SCHEDULE r INLET CAPACITY FREE OPEN INLET CAPACITY CATCH BASIN GRATE NEEDED GRATE AREA (sfl AVAILABLE HEAD REQUIRED CB #1 TYPE E 0.69 3.2 5.7 0.3 CB #2 TYPE E 1.59 3.2 5.7 0.3 CB #3 TYPE E 1.99 3.2 5.7 0.3 CB #4 TYPE E 0.67 3.2 5.7 0.3 CB #5 TYPE E 1.07 3.2 5.7 0.3 CB #6 TYPE E 4.40 3.2 5.7 0.3 CB #7 TYPE E 0.68 3.2 5.7 0.3 CB #8 TYPE E 0.51 3.2 5.7 0.3 CB #9 TYPE E 1.25 3.2 5.7 0.3 CB #10 TYPE E 0.83 3.2 5.7 0.3 CB #11 TYPE E 1.52 3.2 5.7 0.3 CB #12 TYPE E 3.18 3.2 5.7 0.3 CB #24 TYPE E 0.45 3.2 5.7 0.3 CB #26 TYPE E 0.55 3.2 5.7 0.3 CB #27 TYPE E 2.29 3.2 5.7 0.3 CB #29 TYPE E 3.36 3.2 5.7 0.3 CB #50 TYPE E 0.71 3.2 5.7 0.3 CB #51 TYPE E 0.67 3.2 5.7 0.3 CB #52 TYPE E 2.62 3.2 5.7 0.3 CB #53 TYPE E 2.15 3.2 5.7 0.3 CB #54 TYPE E 1.46 3.2 5.7 0.3 CB #55 TYPE E 2.29 3.2 5.7 0.3 CB #56 TYPE E 0.52 3.2 5.7 0.3 CB #58 TYPE E 1.47 3.2 5.7 0.3 CB #59 TYPE E 2.03 3.2 5.7 0.3 CB #60 TYPE E 2.99 3.2 5.7 0.3 CB #62 TYPE E 0.70 3.2 5.7 0.3 CB #63 TYPE E 0.79 3.2 5.7 0.3 CB #64 TYPE E 0.69 3.2 5.7 0.3 CB #65 TYPE E 3.22 3.2 5.7 0.3 CB #66 TYPE E 2.10 3.2 5.7 0.3 CB #70 TYPE E 0.53 3.2 5.7 0.3 CB #71 TYPE E 0.18 3.2 5.7 0.3 CB #72 TYPE E 0.68 3.2 5.7 0.3 CB #73 TYPE E 0.69 3.2 5.7 0.3 CB #75 TYPE E 0.92 3.2 5.7 0.3 CB #76 TYPE E 0.74 3.2 5.7 0.3 CB #77 TYPE E 0.68 3.2 5.7 0.3 CB #78 TYPE E 1.05 3.2 5.7 0.3 CB #79 TYPE E 0.64 3.2 5.7 0.3 CB #82 TYPE E 0.91 3.2 5.7 0.3 CB #83 TYPE E 0.74 3.2 5.7 0.3 CB #84 TYPE E 0.62 3.2 5.7 0.3 CB #85 TYPE E 0.74 3.2 5.7 0.3 CB #86 TYPE E 0.95 3.2 5.7 0.3 CB #87 TYPE E 0.87 3.2 5.7 0.3 CB #88 TYPE E 0.25 3.2 5.7 0.3 CB #89 TYPE E 1.08 3.2 5.7 0.3 CB #90 TYPE E 0.62 3.2 5.7 0.3 I:\CIVIL\STORMWATER MANAGEMENT CALCS\4-04-08 Calculation #5A Storm Sewer\GRATE & LID SCHEDULE 052808182/20083:32 PM GRATE AND LID SCHEDULE (f ? • INLET CAPACITY FREE OPEN INLET CAPACITY CATCH BASIN GRATE NEEDED GRATE AREA (sfl AVAILABLE HEAD REQUIRED CB #91 TYPE E 0.36 3.2 5.7 0.3 CB #92 TYPE E 1.46 3.2 5.7 0.3 CB #93 TYPE E 1.30 3.2 5.7 0.3 CB #95 TYPE E 1.31 3.2 5.7 0.3 CB #96 TYPE E 2.30 3.2 5.7 0.3 CB #109 TYPE E 0.65 3.2 5.7 0.3 CB #111 TYPE E 1.28 3.2 5.7 0.3 • • I:\CIVIL\STORMWATER MANAGEMENT CALCS\4-04-08 Calculation #5A Storm Sewer\GRATE & LID SCHEDULE 052808189/20083:32 PM • Ponding - Weir Orifice Equation Weir & Orifice FI®W Comparison Q = 0.6A 2gh (Orifice Flow Equation) Q = Capacity in CFS A = Free open area of grate in sq. ft. g = 32.2 (feet per sectsec) h = Head in feet Orifice Information: Instructions: • Either Select catalog number (will automatically fill in Open Area and Perimeter) or enter your own values • Enter head value • Press CALCULATE The results will determine automatically if your situation falls into a Weir, Transitional or Orifice flow. Additionally, a pop-up window will offer Neenah grates which fall within the parameters chosen. Catalog number and grate type: R-3403-F A Feet perimeter (P): - - -- ---- --------------- ------------- 10.6 Weir capacity in cfs: =*_ L5.7 Calculate Transitional flow in cfs: Q = 3.3P(h)" (Weir Equation) Q = Capacity in CFS P = Feet perimeter h = Head in feet Page 1 of 1 f Weir Information Head in feet (h): 0.3 Free open area in sq. ft. (A): - --- - --- --- -- - I3.2 Orifice capacity in cfs: (Results assume no debris restriction.) NOTE: The above results do not account for the dome height of Beehive-type grates. Please take note of this when determining the Head (h) value. For additional information regarding Neenah Inlet Grate Capacities, please contact our Product Engineer, Steve Akkala, at 920-725-7000 or at sakkala aanfco.com. • ?,rf • • 0 • r OBS r Section B Cale #C-9 Bioretention Basin Sizing • • Page 3 of 4 FJE CALCULATION COVER SHEET • PROJECT USFCC JOB NO. 22COl16S CLIENT Novartis Vaccines & Diaqnostics SUBJECT BioRetention Basin Sizing ORIGINATOR Bill Overholt CHECKER Ed Kubrin r i CJ ?L DEPARTMENT Civil CALC. NO. C-9 DATE 6//08 DATE 6/08 , 0 SSSIp'••.-7 2 : or +- PURPOSE OF ISSUANCE E PAGES DESCRIPTION ORIG. DATE CDHK DATE APRV. DATE 0 54 Issued for Permitting and Information WJO 7131/08 EK 7/31/08 COMMENTS: These calculations were prepared with the use of Bentley Pondpack Software and the NCDENR Bioretention Supplement Spreadsheet. BioRetention CALC COVER SHEETS.DOC 7/31/2008 2-/ .3 • BIO-RETENTION CALCULATIONS Table of Contents • Cover Sheet Purpose Summary References NBiol Calculation NBio2 Calculation NBio3 Calculation NBio4 Calculation Underdrains Drainage Areas 1 Appendix 1- Bioretention Cell Supplements Appendix 2 - DA 1 - Pre and Post Development Peak Flow Calculations I:\CIVIL\STORMWATER MANAGEMENT CALCS\Calculation #9 - BioRetention BasinsUoRetention CaIcTitleSheet.doc E • BIO-RETENTION CALCULATIONS Purpose: The purpose of this calculation is to determine sizing of bioretention basins to provide treatment of stormwater runoff. The bioretention basins will treat runoff from impervious surface areas that drain to the north. Summary: The calculations cover four sub drainage areas as delineated on the attached drainage map. The four bioretention subdrainage areas are part of the "DA 1" drainage area onsite. Sizing methodologies are derived from the references below. References: Stormwater Best Management Practices Manual North Carolina Division of Water Quality, NCDENR 09-28-07 Designing Rain Gardens (Bio-Retention Areas) AG-588-3 North Carolina Cooperative Extension - Urban Waterways NC STATE UNIVERSITY, NC A&T STATE UNIVERSITY 2001 The Bioretention Manual Bioretention Siting and Design Criteria Prince George's County, Maryland (NCDENR-SBMP) (NCCE-DRG) (PGC-BRM) IACIVILWORMWATER MANAGEMENT CALCSTalculation 99 - BioRetention BasinsUoRetention Ca1CTitleSheet.doc BASIN NBio1 • 1. PREDEVELOPMENT AND POST DEVELOPMENT CONDITION Existing Condition Land Cover Type Soil (HSG) CN Area (Ac) CN xArea % of site Woods (good condition) B 55 0.42 23.10 100 Proposed Condition Impervious Area Woods (good condition) Grass 0.42 35:61 • C? Tc = 10 minutes (both) 2. Volume/Surface Area Required Simple Method Rv= 0.05 +0.9 * IA NCDENR - SBMP Section 3.3.1 RV = Runoff coefficient [storm runoff (in)/storm rainfall (in)], unitless IA = Impervious fraction [impervious portion of drainage area (ac)/ drainage area (ac)], unitless. Impervious Area = 0.27 acres Total Area = 0.42 acres IA= 0.642857143 Rv = 0.628571429 V= 3630 * Ro * Rv * A V = Volume of runoff that must be controlled RD= 1 A= 0.42 V= 958.3 cuft Ponding depth = 0.75 ft Surface Area Required = 1,278 sgft Bioretention Area Rule of Thumb Drainage Area = 3% = B 98 0.27 26.46 64.3 B 55 0 0 0 B 61 0.15 9.15 35.7 3 to 8 % of Contributing Area 0.42 Acres 0.0126 Acres 549 sqft NCCE-DRG Table 3 Use 1,278 s ft Compare Surface Area with MRCS Curve Number Method Result: f or the design storm (W) RD = Design storm rainfall depth (in) (Typically, 1.0" or 1.5") A = Watershed area (ac) I:\CIVIL\Hydraulic Calcu's\Bioretention\ Final BioRetention Sizing Worksheet.xls NBio1 - 1of2 BASIN NBiol r? Apply SCS Curve Number Method per NCDENR-SBMP Table 3-6 Runoff depth in inches = (P - 0.2 S)z /(P +0.8S) P = Precipitation (typically use 1 inch) S = 1,000 - CN - 10 Directly Linked Impervious Area = 0.27 Acres Directly Linked Impervious CN = 98 P= 1 in S= 0.20 Runoff Depth = 0.791 inch CN for Remainder of Drainage Area < 64 QiMP = 775.167 Ponding depth = 0.75 ft Surface Area Required = E-170-34-1 sqft Use 1,278 sgft 2,660 s ft provided okay • I:\CIVIL\Hydraulic Calcu's\Bioretention\ Final BioRetention Sizing Worksheet.xls NBio1 - 2of2 BASIN NBio2 C7 • 1. PREDEVELOPMENT AND POST DEVELOPMENT CONDITION Existing Condition Land Cover Type Soil (HSG) CN Area (Ac) CN xArea % of site Woods (good condition) B 55 0.51 28.05 100 Proposed Condition Impervious Area Woods (good condition) Grass Tc = 10 minutes (both) 2. Volume/Surface Area Required 0.51 42.4 Simple Method Rv= 0.05 +0.9 * IA NCDENR - SBMP Section 3.3.1 RV = Runoff coefficient [storm runoff (in)/storm rainfall (in)], unitless IA = Impervious fraction [impervious portion of drainage area Impervious Area = 0.31 acres Total Area = 0.51 acres IA= 0.60784314 R = 0 59705882 B 98 0.31 30.2 60 B 55 0 0.0 0 B 61 0.20 12.2 39 v V = Volume of runoff that must be V= 3630 * RD * Rv * A controlled for the design storm (fe) RD= 1 RD = Design storm rainfall depth (in) (Typically, 1.0" or 1.5") A= 0.51 A = Watershed area (ac) V= 1105.3 cuft Ponding depth = 0.75 ft Surface Area Required = 1,474 sgft Bioretention Area Rule of Thumb NCCE-DRG Table 3 3 to 8 % of Contributing Area Drainage Area = 0.51 Acres 3% = 0.0153 Acres 666.5 sgft Use 1,474 s ft Compare Surface Area with NRCS Curve Number Method Result: I:\CIVIL\Hydraulic Calcu's\B io retention\ Final BioRetention Sizing Worksheet.xls NBio2 -1of2 BASIN NBio2 • Apply SCS Curve Number Method per NCDENR-SBMP Table 3-6 Runoff depth in inches = (P - 0.2 S)2 /(P + 0.8 S) P = Precipitation (typically use 1 inch) S=1,000=CN-10 Directly Linked Impervious Area = 0.31 Directly Linked Impervious CN = 98 P= 1 in S= 0.20 Runoff Depth = 0.791 inch CN for Remainer of Drainage Area < 64 QIMP = 890.006 Ponding depth = 0.75 ft Surface Area Required = 1,187 sgft Use 1,474 sgft 3,080 s ft provided okay. • I:\CIVIL\Hydraulic Calcu's\Bioretention\ Final BioRetention Sizing Worksheet.xls NBio2 - 2of2 BASIN NBio3 • 1. PREDEVELOPMENT AND POST DEVELOPMENT CONDITION Existing Condition Land Cover Type Woods (good condition) Proposed Condition Impervious Area Woods (good condition) Grass 1.43 107.2 • is Tc = 10 minutes (both) 2. Volume/Surface Area Required Simple Method Rv= 0.05 +0.9 * IA NCDENR - SBMP Section 3.3.1 RV = Runoff coefficient [storm runoff (in)/storm rainfall (in)], unitless IA = Impervious fraction [impervious portion of drainage area (ac)/ drainage area (ac)], unitless. Impervious Area = Total Area = IA= 0.371 Rv = 0.384 V= 3630*RD*Rv*A Soil (HSG) CN Area (Ac) CN xArea % of site B 55 1.43 78.65 100 B 98 0.53 52.3 37 B 55 0 0.0 0 B 61 0.90 54.9 63 RD= 1 A= 1.43 V = 1991.1 cuft Ponding depth = 0.75 ft Surface Area Required = 2,655 sqft 0.53 acres 1.43 acres V = Volume of runoff that must be controlled for the design storm (ft) RD = Design storm rainfall depth (in) (Typically, 1.0" or 1.5") A = Watershed area (ac) Bioretention Area Rule of Thumb NCCE-DRG Table 3 3 to 8 % of Contributing Area Drainage Area = 1.43 Acres 3% = 0.043 Acres 1868.724 sqft 8% = 0.114 Acres 4983.264 sgft Use 2,655 s ft Compare Surface Area with MRCS Curve Number Method Result: NBio3 - 1of2 9 BASIN NBio3 • • Apply SCS Curve Number Method per NCDENR-SBMP Table 3-6 Runoff depth in inches = (P - 0.2 S)2 /(P +0.8S) Directly Linked Impervious Area = 0.53 Directly Linked Impervious CN = 98 P= 1 in S= 0.20 Runoff Depth = 0.791 inch CN for Remainer of Drainage Area < 64 QIMP = 1,522 Ponding depth = 0.75 ft Surface Area Required = 2,029 sqft P = Precipitation (typically use 1 inch) S=1,000=CN-10 Use 2029 s ft 4,800 s ft provided okay NBio3 - 2of2 W,.-_ BASIN! NBio4 • 1. PREDEVELOPMENT AND POST DEVELOPMENT CONDITION Existing Condition Land Cover Type Soil (HSG) CN Area (Ac) CN xArea % of site Woods (good condition) B 55 2.24 123.20 100 Proposed Condition Impervious Area Woods (good condition) Grass B 98 0.36 35.7 16 B 55 0 0.0 0 B 61 1.88 114.7 84 2.24 150.3 • Tc = 10 minutes (both) 2. Volume OF Surface Area Required Simple Method Rv= 0.05 +0.9 * IA NCDENR - SBMP Section 3.3.1 RV = Runoff coefficient [storm runoff (in)/storm rainfall (in)], unitless IA = Impervious fraction [impervious portion of drainage area (ac)/ drainage area (ac)], unitless. Impervious Area = 0.36 acres Total Area = 2.24 acres IA= 0.162 Rv = 0.196 V = 3630 * R° * Rv * A V = Volume of runoff that must be controlled • Surface Area Required = 2,128 sqft 4,720 s ft provided Bioretention Area Rule of Thumb NCCE-DRG Table 3 3 to 8 % of Contributing Area V = 1,59670cuft Ponding.depth = 0.75 ft for the design storm (ft) _ RD = Design storm rainfall depth (in) RD 1 (Typically, 1.0" or 1.5") A= 2.2 A = Watershed area (ac) Drainage Area = 2.24 Acres 3% = 0.06731598 Acres 2,932 sqft 8% = 0.17950927 Acres 7,819 sqft Use 2,128 sqft Compare Surface Area with NRCS Curve Number Method Result: NBio4 - 1of2 BASIN NBio4 .7 • C, Apply SCS Curve Number Method per NCDENR-SBMP Table 3-6 Runoff depth in inches = (P - 0.2 S)2 /(P + 0.8 S) P = Precipitation (typically use 1 inch) S = 1,000 =CN - 10 Directly Linked Impervious Area = 0.363866 Directly Linked Impervious C N = 98 P= 1 in S= 0.20 Runoff Depth = 0.7909 inch CN for Remainer of Drainage Area < 64 QIMP = I 1044.655 Ponding depth = 0.75 ft Surface Area Required = 1393 sqft Use 2128 s ft 4,720 s ft provided okay NBio4 - 2of2 C, Underdrain Sizing From NCDENR - SBMP Chapter. 5, Common BMP Design Elements, Section 5.7, Underdrain Systems 1. Determine flow rate through the soil media and apply a safety factor of 5 (this is now the underdrain design flow, Q). Design duration of ponding = maximum of 12 hours. Ponding depth = 6 Inches Minimum Infiltration Rate = 6/12 = 0.5 Inches per hour Design Media Infiltration Rate = 1.0 Inches per hour Q= Inflow rate * Ponding Surface area Basin Ponding areas I in/hr Safety Factor Q cf/hr Q (cfs) NBio1 2660 1 5 1108.3 0.31 NBio2 3080 1 5 1283.3 0.36 NBio3 4800 1 5 2000.0 0.56 NBio4 4720 1 5 1966.7 0.55 • 2. Determine Diameter D using the following equation: 16*Q*n tsia> D - So.5 D = Diameter of single pipe n = roughness factor (recommended to be 0.011) S = internal slope (recommended to be 0.5%) Basin Q (cfs) n S D NBio1 0.31 0.011 0.005 4.74 NBio2 0.36 0.011 0.005 5.01 NBio3 0.56 0.011 0.005 5.91 NBio4 0.55 0.011 776.005 5.88 3. From Table 5-1 NBio1 Requires (2) 4" Diameter Pipes NBio2 Requires (2) 4" Diameter Pipes NBio3 Requires (3) 4" Diameter Pipes NBio4 Requires (3) 4" Diameter Pipes or (2) 6" Diameter Pipes • NB103 AND NB104 REQUIRE ADDITIONAL PIPES DUE TO MAXIMUM PIPE SPACING REQUIREMENTS r I:\CIVIL\Hydraulic Calcu's\Bioretention\ Final BioRetention Sizing Worksheet.xis !r\ ! ------------------------------- I r ,: I: °? I o s o zI We g 0 w .7Z E :5 L U W .uq 34gf a a ?d = u d i L) :2 I i ? $ _ ? d flJ l,?l,JJ ?jM w !Jill PIP 0 I ?I ?µ pp 66 ?y"g? q?? q W I?g?8 23 c ?``S ?! r z a 0 uo Bg a I ail I ? I °Iisg?3 I Z • ?tj tr t, I• r a T . ?a 11, • la..v}•.f1h ,,. ii ;,'• I .:4.,?,r„yy • v 1:'? , •.. ,/ r 1 • \ , ? !1 ?'rytji!•l? f?ff' i ? r '.,' t l ,1.,, ? I r "'•y+o •\ ul t•_;,IYtI1tT. ?' -•?`? ti.:`?h5.?.?'iY.:1? 7ip5:111G., 1 i• ? • •? S,np t, •?':t 1'2J? ` I t •, ' 1 '' ' 1• ? '" ? 1:11 ?-•.. `?- •o.a..{ yZ t• "n' •. ?f.?,ti , ! ' : 1 ' - I I • ,i t' .ry nn•.. .R-w"„c,•r `,." 1, ti `?y ?'I?'? ' 'T} .:'??I '?''Y,'4! ?'u?911! r . • , rl • ,Y- .x' ?? r' ' ,' \ ? :.? ••," `:\' :. :, l\ :. '. "?: • I , :i ;r.r: ?"r?•w' -?..... •-?',5"w$a?s!'w.--,.,?,-'4??;?„r?l?,'-, ,r?1?: may, - ,,?,Irir, ,`'• t"? l ?• " r r Yi ` ;?ti ;1'r<!?' ^ w. a- _', w3'J K. qx { ,h , ?'.' • \ . 1' L .'c t IIP I .! 1 / ?• .r ?I:,j..r. Ila!ih i++;.J•.r'?T,?a- , ' ukj,/- ,rpa Y4 ?IP,? • • Ivy .1 /%1?. r : / ! •u. ulr, -. ': rr ~-?" .. 'i''I'11 •?'i. ryr" ?r''••+./,/iy.,:f/'''•' ',•r I I 7' _ _ -_ .:.. ru.:.. '•' ]ia? .. _: j: -?;i'r'?rp I ? I • ,,1:.• %i''"i' ? I ? w I ?• Ryyl {'^_..' S•? ,y -._]10--..,? .Ywp????'•. `; ...;L._P??i._z__?..:, i:;ij ?" r. f h.I. I. I ,,,gy?pp ? : ?k, ?' ?? '` '`/•::' - ?,'• I •1, .? _ . ?':':, ''t•' '? "•'.I`: .?1~`?C.?.. :. ? • l l ;lr? li'::7 1 ' ?! I I -]•0 .. I ?' •11 1]I '::-??L JUY ?:?'.•?r` I', ;'I ;??II! I I•. Yp I 0 O b-.. •-•?-]Sa- f' •.I :1 MI h-"• \ \ti : -rl?? ?;??:?',__ I .777 lui j \. • I '??I"i I .. i '•3on---'-_.•' ? I ,• .,\`. i ,i. '? .l{1F, S r \, \ `\\ \\ \ \ ,\ o I MI M At `\\ o I 1 •' • I lr/% I SuyVrtON HIIr.S In13N1338'JY N3LIUM SS38dY3 N30u(11e30Y31?f10081 JNV M 031V80dN07Nl YO 035f13Y JON 101 V:lOVd NI80 310FIMNI031d00 YO 03711000d3tl 30 JON 1019]N301JN07 NI 031dY13H 3B Ivl 07l31110Ntlv138IJOIlvWgoJNI IIV ONV J63tl3W 031w3fi8dilN ]SV3lSJSOPlV 5J71A30'SlN3wI1NlSNI3HI IVHJ SNOIIION00ON3H1 OS 103fAfIS 03N30N3l SI ONV 9INVAON dD NOIlVwyOJNI AUVl3ltld08d SNIV1N00 3 3' 51111 ___...-__.._..._____________________________ u__________ ? I -''**,**-*" .... - . 0 d? I ?4 r--------------- I- ---------•-------- ------ I os I I ?v ? a gl 3 eve$ M '? In zI w I x I l u ,?I ® w I g r a Z X000 J ; ? I I ,y ? , .1,4 • ,?i : ,; ..'? ..?? :••`?.'•.: •., ?\.;'• ?.I 14 ? ;; ?•; ': `rig I ??'R: ' __ ._. ,I I •\. ?.j - I 1. I .. -. /? 1 \ •:\ r? ifLh .:?? •' .I \•' ,??'iql ? .1 •' _ I,I. i.,?11''1•'•', . p• I mr;....: as '\'; ,?•. I 'i'lii?a•-?:,• j?f.' •, . \ ? { ? `. ' ? '?/ ::?. ;tyS=.'. .4 ,.y i•?; `Idu9<? J`?. :d:: ',1?aht...%..":!. y'?hi'a "•i I\•\,,''•'' - '.\s:•'•.. ' ?, 1•\ `? C , •? `ter ?. •,.:,4:?n;;rM'.ri,?•?' .. .. ?.?• ? a?'?• ;' ?' •. .. ..?. ..;<., _ i ,.4 •a... , I , ' ' t ?.rr?Z't4:.' 1 >?;rl t i. ( • I • \, '- :''S• \. _ _ ' ? I •r ';Y;••• ;`?'„?r?i'??'-_..,`_ ':_.;?'_?...j.-......: 3'.-'.r-i_'a y S f,,.a-+? x('1:411^ , T'? I III, ?' . •?a . '< , .":1 ?rJt, iW`•^y ?'?a'-?: _-'- -?c? ?'?w ?? `Y7I". •.. I ?? I I I ? ,/ '•d:. yyl,. N:? `' 1 ? I Ill ` •1 I ? III/ 1 , I tit `C ? ':i:: , .' __ - .. .. :/. •':.:'.' -:::'...' , ' I , ? ? ??...::,:• j gyp/ ? I [it •1 v4 -''. 'ICI 1:'I? ?':? 1 I I I '.1,• ? II \ , 1 O:• •'-70' 1 ?.... :'::.: '. Jp°, ., ?....?- ..I I,II11 "i;l ?.i: :;'\• / -- pp ',cgr?gy •'. 1134 \\\ \ \\\ I ® .. _- -ass----' ~' ,` \. .:.•-;;' :'::::, ?:?'`i ?:?': :.. .. 5?.. 11., `??\\\?\``?\\ ql, ' phi .. • - ,`\ % ? j1Y. S \;\\\`\\\\`\ \` \ \\\\ • 7 - x''11' .. '.? / ' e. - •` '.? `??`?????\?\?\\`?\\? i 7 j?..: ?\.ozo-. ` i ,•I,. \?` \? 5• ',/'? _... I.. I• ••r .•, .?••I'• i ?,'`r ? ? I ' 'SItYVA0NW1rn1,13W33YOVN3l°tlMfS38dX37130NIild37%310'ao"1HV11 03,1=0MU003S03Q10NlJIONV:18VdNI1 10, N10311 01100371100Hd3N3YlONI013?N301iNOJM03HIV13M3AIVI a OI3H3H101.111V738 NOIIVwBOiNI IIV ONV AA383HI031z0538dJtl 4w315AS ONV 5301A30'SIN3W°tl1SM 3H11VNl SNO1110N003H101103SAOS 03830H31 SIONV f118VA0N i0 NOIIVWtl0iNl1HVL318dOHd V SNWINO]1H3WOOOOSIHL i I y L---------- -----.----------------.---• - ----- ---- ----------------- -_ ---<-----J CJ 6o6L-S6S-s FS (xv:o) ® ZqV L-S6S-s dq (-13.L) 6909-m-ne (XV4) 3611®®?????. 813M U374INOD 69S£-'EZ6-0 &S (-13.1) NHOBHV30 VNV30:.13V.LNO3 ? onst? Flo `I1tlNN13N13 ? ? o "UH SSOHDAVM 098 F 9 M-909M V3 `3-UIIAAH3W3 19 r NN 121 33 N i J N3 ®®VZSl? '.LS N®.LH®H ®?sio m m oLu x S I.., VA 0' N m ? i w x z S803yr q oz H+? o?0 a z ?"'v ` I n C z z? z 1 • • ST - G F- 1/I G F- N 5 Q 81.1 Q LU Q Z z 0 F- LU 0 p z • APPENDIX 1 BIORETENTION CELL SUPPLEMENTS n I:\CIVIL\STORMWATER MANAGEMENT CALCS\Calculation #9 - BioRetention Basins\BioRetention CalcTitleSheet.doc Permit Number. (to be provided by DWQ) J ® o?ap W ATF?,OG r? '? f _7" T?!7 4 y r ®. o -mac CDENR STORMWATER MANAGEMENT PERMIT APPLICATION FORM 401 CERTIFICATION APPLICATION FORM BIORETENTION CELL SUPPLEMENT This form must be filled out, printed and submitted. The Required Items Checklist (Part III) must be printed, filled out and submitted along with all of the required information. Site Characteristics Drainage area Impervious area Percent impervious Design rainfall depth Peak Flow Calculations Is pre/post control of the 1-yr, 24-hr peak flow required? 24-hr runoff depth 24-hr intensity Pre-development 1-yr, 24-hr peak flow Post-development 1-yr, 24-hr peak flow Pre/Post 1-yr, 24-hr peak control Storage Volume: Non-SR Waters Design volume Storage Volume: SR Waters Pre-development 1-yr, 24-hr runoff Post-development 1-yr, 24-hr runoff Minimum volume required Volume provided Cell Dimensions Ponding depth of water Ponding depth of water Surface area of the top of the bioretention cell Length: Width: -or- Radius Soils Report Summary Drawdown time, ponded volume Drawdown time, to 24 inches below surface Drawdown time, total: In-situ soil. oil permeability "nting media soil: Soil permeability Soil composition % Sand (by weight) % Fines (by weight) % Organic (by weight). 18,300 ftz 1.1;800` ftZ 64.5% % 1.0 inch N' (Y or N) 960.0 ft3 ft 3 ft3 0 ft3 ft3 NBIO1 is part of DA 1 on this site. The Predevelopment Area of DA 1 is 18.6 Ac. The Post development area of DA 1 is 11.3 Ac. The smaller drainage area results in a post development peak flow that is less than the pre development flow. The remainder of the drainage area is tributary to a detention basin in the south. 9 inches OK 0.75 ft 2,660:0. ft2 145 ft 13 ft ft 9 hr 24 hr 33 hr -0:50. in/hr 1.00 in/hr 85% 12% .. 3% OK OK OK OK OK OK OK OK OK OK o-+? 1-4 ? newt,.- c P- 1 f,; Permit Number: (to be provided by DWQ) Phosphorus Index (P-Index) n Elevations Omporary pool elevation Planting elevation (top of the mulch) Bottom of the cell Planting depth Depth of mulch SHWT elevation Are underdrains being installed? Total: 100% (unitless) 333 fmsl 332.25 fmsl 328.5 fmsl 3.75 ft 3 inches 320 fmsl How many clean out pipes are being installed? ' What factor of safety is used for sizing the underdrains? (See BMP Manual Section 12.3.6) _ Additional distance between the bottom of the planting media and the bottom of the cell to account for underdrains Bottom of the cell required Distance from bottom to SHWT Type of bioretention cell (answer "Y" to only one of the two following questions): Is this a grassed cell? Is this a cell with trees/shrubs? Planting Plan Number of tree species Number of shrub species *-ditional mber of herbaceous groundcover species Information Does volume in excess of the design volume bypass the bioretention cell? Does volume in excess of the design volume flow evenly distributed through a vegetated filter? What is the length of the vegetated filter? Does the design use a level spreader to evenly distribute flow? Is the BMP located at least 30 feet from surface waters (50 feet if SA waters)? Is the BMP localed at least 100 feet from water supply wells? Are the vegetated side slopes equal to or less than 3:1? Is the BMP located in a recorded drainage easement with a recorded access easement to a public Right of Way (ROW)? Inlet velocity (from treatment system) Is the area surrounding the cell likely to undergo development in the future? Are the slopes draining to the bioretention cell greater than 20%? Is the drainage area permanently stabilized? Pretreatment Used (Indicate Type Used with an "X" in the shaded cell) 40 Gravel and grass inches gravel followed by 3-5 ft of grass) Grassed swale Forebay Y (Y or N) 7 5 1ft 327.5 fmsl 7.5 ft OK OK OK OK OK OK (Y or N) Y (Y or N) OK media depth 3 OK 3 OK 3 OK Y (Y or N) OK .z Y (Y or N) OK 50 ft N (Y or N) Show how flow is evenly distributed. Y (Y or N) OK Y (Y or N) OK Y (Y or N) OK N (Y or N) Insufficient ROW location. 1 fUsec OK N (Y or N) OK N (Y or N) OK Y (Y or N) OK X OK ' 1 '? ®ENP.. STORMWATER MANAGEMENT PERMIT APPLICATION FORM 401 CERTIFICATION APPLICATION FORM EIORETENTION CELL SUPPLEMENT Permit Number. (to be provided by DWQ) ?pWAtFR ? r o t S This form must be filled out, printed and submitted. The Required Items Checklist (Part III) must be printed, filled out and submitted along with all of the required information. I _MAO,1NFORMATION Peals Flow Calculations Is pre/post control of the 1-yr, 24-hr peak flow required? N` .. (Y or N) r, 24-hr runoff depth 0.79 in r, 24-hr intensity 1.9 in/hr Pre-development 1-yr, 24-hr peak flow 5 ft3/sec Post-development 1-yr, 24-hr peak flow 3 ft3/sec NBIO1 is part of DA 1 on this site. The Predevelopment Pre/Post 1-yr, 24-hr peak control -2 ft3/sec Area of DA 1 is 18.6 Ac. The Post development area of Storage Volume: Non-SR Waters DA 1 is 11.3 Ac. The smaller drainage area results in a Design volume 3 11100:0 ft post development peak flow that is less than the pre development flow. The remainder of the drainage area is Storage Volume: SR Waters tributary to a detention basin in the south. Pre-development 1-yr, 24-hr runoff ft3 Post-development 1-yr, 24-hr runoff ft3 Minimum volume required 0 ft3 Volume provided - ft3 Cell Dimensions Ponding depth of water :;.9 inches OK Ponding depth of water 0.75 ft Surface area of the top of the bioretention cell 3080:0 ft Z OK Length: '135 ft OK Width: 25 ft OK -or- Radius " ft Soils Report Summary Drawdown time, ponded volume 9 hr OK Drawdown time, to 24 inches below surface 24 hr. OK Drawdown time, total: 33 hr 'adwit soil: 'I anting media soil, Soil permeability 1':00 in/hr OK Soil composition. % Sand (by weight) 85% OK % Fines (by weight) 12% OK % Organic (by weight) 3.°C OK of permeability r 0:50 in/hr OK sphorus Index (P-Index) 46hoin Elevations emporary pool elevation Planting elevation (top of the mulch) Bottom of the cell Planting depth Depth of mulch SHWT elevation Are underdrains being installed? How many clean out pipes are being installed? What factor of safety is used for sizing the underdrains? (See BMP Manual Section 12.3.6) Additional distance between the bottom of the planting media and the bottom of the cell to account for underdrains Bottom of the cell required Distance from bottom to SHWT Type of bioretention cell (answer "Y" to only one of the two following questions): Is this a grassed cell? Is this a cell with trees/shrubs? Planting Plan Number of tree species Number of shrub species umber of herbaceous groundcover species . ,®ditional Information Does volume in excess of the design volume bypass the bioretention cell? Does volume in excess of the design volume flow evenly distributed through a vegetated filter? What is the length of the vegetated filter? Does the design use a level spreader to evenly distribute flow? Is the BMP located at least 30 feet from surface waters (50 feet if SA waters)? Is the BMP located at least 100 feet from water supply wells? Are the vegetated side slopes equal to or less than 3:1? Is the BMP located in a recorded drainage easement with a recorded access easement to a public Right of Way (ROW)? Inlet velocity (from treatment system) Is the area surrounding the cell likely to undergo development in the future? Are the slopes draining to the bioretention cell greater than 20%? Is the drainage area permanently stabilized? Pretreatment Used (Indicate Type Used with an "X" in the shaded cell) Gravel and grass 'inches gravel followed by 3-5 ft of grass) irassed swale Forebay Permit Number: (to be provided by DWQ) 100% t? (unitless) 333 fmsl 332.25 fmsl OK 328.5 fmsl 3.75 ft 3 inches OK 320 fmsl OK Total: Y (Y or N) 4 OK 5 OK 1ft 327.5 fmsl 7.5 ft OK (Y or N) Y (Y or N) OK media depth 3 OK 3 OK 3 OK Y (Y or N) OK Y (Y or N) OK 50 ft N (Y or N) Show how flow is evenly distributed. Y (Y or N) OK Y (Y or N) OK Y (Y or N) OK N (Y or N) Insufficient ROW location. 1 ft/sec OK N (Y or N) OK N (Y or N) OK Y (Y or N) OK X OK Al I *17A GDE. t STORMWATER MANAGEMENT PERMIT APPLICATION FORM 401 CERTIFICATION APPLICATION FORM EIORETENTION CELL SUPPLEMENT Permit Number. (to be provided by DWQ) of warF9 O? ' QG r o This form must be filled out, printed and submitted. The Required Items Checklist (Part 111) must be printed, tilled out and submitted along with all of the required information. Ii ,4ES.l.GN INFQRMATION_ Site Characteristics Drainage area 62,300 ftz Impervious area 23;.100 ft2 Percent impervious 37.1% % Design rainfall depth =1.0 inch Peale Flow Calculations Is pre/post control of the 1-yr, 24-hr peak flow required? N:(Y or N) r, 24-hr runoff depth 0:79 in qW, 24-hr intensity " 1.9 inmr tire-development 1-yr, 24-hr peak flow 5 ft3/sec Post-development 1-yr, 24-hr peak flow 3 ft3/sec NBI01 is part of DA 1 on this site. The Predevelopment Pre/Post 1-yr, 24-hr peak control -2 ft3/sec Area of DA 1 is 18.6 Ac. The Post development area of DA 1 is 11.3 Ac. The smaller drainage area results in a Storage Volume: Non-SR Waters post development peak flow that is less than the pre Design volume 2,000.0 ft3 development flow. The remainder of the drainage area is Storage Volume: SR Waters tributary to a detention basin in the south. Pre-development 1-yr, 24-hr runoff ft3 Post-development 1-yr, 24-hr runoff ft3 Minimum volume required 0 ft3 Volume provided ft3 Cell Dimensions Ponding depth of water 9 inches OK Ponding depth of water 0.75 ft Surface area of the top of the bioretention cell 4,800.0. ft2 OK Length: 100 ft OK Width: 48 ft OK -or- Radius ft Soils Report Summary Drawdown time, ponded volume 9 hr OK Drawdown time, to 24 inches below surface 24 hr OK Drawdown time, total: 33 hr In-situ soil.• 0 oil permeability < 0.50. in/hr OK iting media soil. Soil permeability 1.00. in/hr OK Soil composition % Sand (by weight) 85% OK % Fines (by weight) 12% OK % Organic (by weight) .3% OK Phosphorus Index (P-Index) Rm in Elevations porary pool elevation Planting elevation (top of the mulch) Bottom of the cell Planting depth Depth of mulch SHWT elevation Are underdrains being installed? How many clean out pipes are being installed? What factor of safety is used for sizing the underdrains? (See BMP Manual Section 12.3.6) Additional distance between the bottom of the planting media and the bottom of the cell to account for underdrains Bottom of the cell required Distance from bottom to SHWT Type of bioretention cell (answer "Y" to only one of the two following questions): Is this a grassed cell? Is this a cell with trees/shrubs? Planting Plan Number of tree species Number of shrub species umber of herbaceous groundcover species ditional Information Does volume in excess of the design volume bypass the bioretention cell? Does volume in excess of the design volume flow evenly distributed through a vegetated filter? What is the length of the vegetated filter? Does the design use a level spreader to evenly distribute flow? Is the BMP located at least 30 feet from surface waters (50 feet if SA waters)? Is the BMP localed at least 100 feet from water supply wells? Are the vegetated side slopes equal to or less than 3:1? Is the BMP located in a recorded drainage easement with a recorded access easement to a public Right of Way (ROW)? Inlet velocity (from treatment system) Is the area surrounding the cell likely to undergo development in the future? Are the slopes draining to the bioretention cell greater than 20%? Is the drainage area permanently stabilized? Pretreatment Used (Indicate Type Used with an "X" in the shaded cell) Gravel and grass inches gravel followed by 3-5 ft of grass) grassed Swale Forebay Permit Number. (to be provided by DWQ) 100% (unitless) 335 fmsl 334.25 fmsl OK 330.75 fmsl 3.5 ft 3 inches OK 320 fmsl OK Total: Y (Y or N) 6 OK 5 OK 1ft 329.75 fmsl 9.75 ft OK (Y or N) Y (Y or N) OK media depth 3 OK 3 OK 3 OK Y (Y or N) OK Y (Y or N) OK 50 ft N (Y or N) Show how flow is evenly distributed. Y (Y or N) OK Y (Y or N) OK Y (Y or N) OK N (Y or N) Insufficient ROW location. 1 ft/sec OK N (Y or N) OK N (Y or N) OK Y (Y or N) OK X OK "" ParFc 1 pnri II I)aeinn Summary. Pace 2 of 2 Permit Number. (to be provided by DWQ) of WAtFq +i !7 C1 Oy o CQENR STORMWATER MANAGEMENT PERMIT APPLICATION FORM 401 CERTIFICATION APPLICATION FORM EI®RETENTI®N CELL SUPPLEMENT This form must be filled out, printed and submitted. The Required Items Checklist (Part 111) must be printed, filled out and submitted along with all of the required information. F.;,! P.ROJECT_INFRMAT.ION Project name Novartis USFCC Contact name Phone number Date Drainage area number NBio4 - II DESIGN_INFORMATIt Site Characteristics Drainage area Impervious area Percent impervious Design rainfall depth Peak Flow Calculations Is pre/post control of the 1-yr, 24-hr peak flow required? 24-hr runoff depth 24-hr intensity Pre-development 1-yr, 24-hr peak flow Post-development 1-yr, 24-hr peak flow Pre/Post 1-yr, 24-hr peak control Storage Volume: Non-SR Waters Design volume Storage Volume: SR Waters Pre-development 1-yr, 24-hr runoff Post-development 1-yr, 24-hr runoff Minimum volume required Volume provided Cell Dimensions Ponding depth of water Ponding depth of water Surface area of the top of the bioretention cell Length: Width: -or- Radius Soils Report Summary Drawdown time, ponded volume Drawdown time, to 24 inches below surface Drawdown time, total: sku soil. oil permeability .,iting media soil., Soil permeability Soil composition % Sand (by-weight) % Fines (by weight) % Organic (by weight) 97,600 ft2 15,700 ftz 16.1% % 1.0 inch N' (Y or N) 1;600:0 ft3 ft3 ft3 0 ft3 ft3 NBI01 is part of DA '1 on this site. The Predevelopment Area of DA 1 is 18.6 Ac. The Post development area of DA 1 is 11.3 Ac. The smaller drainage area results in a post development peak flow that is less than the pre development flow. The remainder of the drainage area is tributary to a detention basin in the south. 9 inches OK 0.75 ft ft2 OK 85. ft OK 65 ft OK .;ft 9 hr OK 24 hr OK 33 hr <0.50 in/hr OK 1.00 in/hr OK 85% OK 12% OK -3% OK Permit Number. (to be provided by DWQ) Phosphorus Index (P-Index) On Elevations emporary pool elevation Planting elevation (top of the mulch) Bottom of the cell Planting depth Depth of mulch SHWT elevation Total: A nnol (unitless) Are underdrains being installed? How many clean out pipes are being installed? What factor of safety is used for sizing the underdrains? (See BMP Manual Section 12.3.6) Additional distance between the bottom of the planting media and the bottom of the cell to account for underdrains Bottom of the cell required Distance from bottom to SHWT Type of bioretention cell (answer "Y" to only one of the two following questions): Is this a grassed cell? Is this a cell with trees/shrubs? Planting Plan Number of tree species Number of shrub species umber of herbaceous groundcover species ditional Information Does volume in excess of the design volume bypass the bioretention cell? Does volume in excess of the design volume flow evenly distributed through a vegetated filter? What is the length of the vegetated filter? Does the design use a level spreader to evenly distribute flow? Is the BMP located at least 30 feet from surface waters (50 feet if SA waters)? Is the BMP located at least 100 feet from water supply wells? Are the vegetated side slopes equal to or less than 3:1? Is the BMP located in a recorded drainage easement with a recorded access easement to a public Right of Way (ROW)? Inlet velocity (from treatment system) Is the area surrounding the cell likely to undergo development in the future? Are the slopes draining to the bioretention cell greater than 20%? Is the drainage area permanently stabilized? Pretreatment Used (Indicate Type Used with an "X" in the shaded cell) Gravel and grass inches gravel followed by 3-5 ft of grass) grassed swale Forebay 336 fmsl 335.25 fmsi OK 331.75 fmsl 3.5 ft 3 inches OK 320 fmsl - OK Y (Y or N) 10 OK 5 OK 1ft 330.75 fmsl 10.75 ft OK (Y or N) Y (Y or N) OK media depth 3 OK 3 OK 3 OK Y (Y or N) OK Y (Y or N) OK 50 ft N (Y or N) Show how flow is evenly distributed. Y (Y or N) OK Y (Y or N) OK Y (Y or N) OK N (Y or N) Insufficient ROW location. 1 ft/sec OK N (Y or N) OK N (Y or N) OK Y (Y or N) OK X OK • APPENDIX 2 A 1 ® PRE AN T DEVELOPMENT FLOW CALCULATIONS n • I:\CIVIL\STORMWATER MANAGEMENT CALCS\Calculation #9 - BioRetention Basins\BioRetention CalcTitleSheet. doc • Job File: I:\CIVIL\PONDPACK\ REDEVELOPED PREDAI 1YR 080701.2PW Rain Dir: I:\CIVIL\PONDPACK\PREDEVELOPED\ JOB TITLE Project Date: 7/2/2008 Project Engineer: Ed Kubrin Project Title: Novartis Holly Springs Project Comments : Predeveloped Conditions and Discharge from 1 yr storm events in Drainage Area #1 • • SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:33 AM Bentley Systems, Inc. 7/2/2008 !?I/' i-d 2.1.``?',` a 0 Out A 1 4l-,*? N .a 0 1 • 1 . ®•• ?1 1 IAI •9 •s00•1 Al 0 Job File: I:\CIVIL\PONDPACK\PREDEVELOPED\PREDA1 1YR 080701.PPW Rain Dir: I:\CIVIL\PONDPACK\PREDEVELOPED\ • **************r******* MASTER SUMMARY *r************r******* Watershed....... Master Network Summary ............. 1.01 *************** NETWORK SUMMARIES (DETAILED) *************** Watershed....... Pre 1 Executive Summary (Nodes) .......... 2.01 ****************** DESIGN STORMS SUMMARY ******************* Holly Springs NC Design Storms ...................... 3.01 ********************** TC CALCULATIONS ********************* • DA1 ............. Tc Calcs ........................... 4.01 ********************** CN CALCULATIONS ********************* DA1 ............. Runoff CN-Area ..................... 5.01 ******************** RUNOFF HYDROGRAPHS ******************** DAl ............. Pre 1 Unit Hyd. Summary .................. 6.01 11 SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:33 AM 7/2/2008 pd _'?J Table of Contents " i • MASTER DESIGN STORM SUMMARY Network Storm Collection: Holly Springs NC Total Depth Rainfall Return Event in Type RNF ID ------------ ------ ---------------- -------------- Pre 1 2.8000 Synthetic Curve TypeII 24hr MASTER NETWORK SUMMARY SCS Unit Hydrograph Method (*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt) ID Node Return HYG Vol Type Event ac-ft Trun Qpeak hrs Qpeak cfs ----- - DA1 ---- --- AREA 1 .647 --- 12.2100 4.80 *OUT DA1 JCT 1 .647 12.2100 4.80 • Max Max WSEL Pond Storage ft--- --_ac_ft -------- 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:33 AM 7/2/2008 Type.... Master Network Summ ary Page 1.01 Name.... Watershed File.... I:\CIVIL\PONDPACK\PREDEVELOPED\PREDAI lyr 080701.ppw NETWORK SUMMARY -- NODES (Trun.= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left & Rt) DEFAULT Design Storm File,ID = Holly Springs NC Storm Tag Name = Pre 1 Data Type, File, ID = Synthetic Storm TypeII 24hr Storm Frequency = 1 yr Total Rainfall Depth= 2.8000 in Duration Multiplier = 1 Resulting Duration = 24.0000 hrs Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs Node ID DA1 Outfall OUT DAl is 0 HYG Vol Qpeak Qpeak Max WSEL Type ac-ft Trun. hrs cfs ft ------ ---- ---------- -- --------- -------- --------- AREA .647 12.2100 4.80 JCT .647 12.2100 4.80 ? n --d?? SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:33 AM 7/2/2008 Type.... Executive Summary (Nodes) Page 2.01 .Name.... Watershed Event: 1 yr • File.... I:\CIVIL\PONDPACK\PREDEVELOPED\PREDAI lyr 080701.ppw Storm... TypeII 24hr Tag: Pre 1 Title... Project Date: 7/2/2008 Project Engineer: Ed Kubrin Project Title: Novartis Holly Springs Project Comments: Predeveloped Conditions and Discharge from 1 yr storm events in Drainage Area #1 DESIGN STORMS SUMMARY Design Storm File,ID = Storm Tag Name ='Pre 1 Holly Springs NC Data Type, File, ID = Synthetic Storm TypeII 24hr Storm Frequency = 1 yr Total Rainfall Depth= 2.8000 in Duration Multiplier = 1 Resulting Duration = 24.0000 hrs Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs 10 is SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:33 AM 7/2/2008 I Type.... Design Storms Page 3.01 Name.... Holly Springs NC • File.... I:\CIVIL\PONDPACK\PREDEVELOPED\PREDAI lyr 080701.ppw TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: TR-55 Sheet Mannings n .4000 Hydraulic Length 200.00 ft 2yr, 24hr P 3.6000 in Slope .070000 ft/ft Avg.Velocity .16 ft/sec --------------------------------------- Segment #2: Tc: TR-55 Shallow Hydraulic Length 240.00 ft • Slope .120000 ft/ft Unpaved Avg.Velocity 5.59 ft/sec -------------------------- Segment #3: Tc: TR-55 Ch, Flow Area 180.0000 Wetted Perimeter 80.00 Hydraulic Radius 2.25 Slope .050000 Mannings n .0600 Hydraulic Length 630.00 innel sq.ft ft ft ft/ft ft Avg.Velocity 9.53 ft/sec Segment #1 Time: .3559 hrs ------------------------------ Segment #2 Time: .0119 hrs ---------------------------------- Segment #3 Time: .0184 hrs ------------------------------------------------------------------ l/ 1J u S/N: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:33 AM Bentley Systems, Inc. 7/2/2008 J • Type.... Tc Calcs Name.... DA1 File.... I:\CIVIL\PONDPACK\PREDEVELOPED\PREDAI lyr 080701.ppw Segment #4: Tc: TR-55 Channel Flow Area 180.0000 sq.ft Wetted Perimeter 80.00 ft Hydraulic Radius 2.25 ft Slope .014000 ft/ft Mannings n .0600 Hydraulic Length 1140.00 ft Avg.Velocity 5.05 ft/sec Segment #4 Time: .0628 hrs ----------------------------------------------------------------------- Page 4.01 Total Tc: .4490 hrs ------------------------- ------------------------- • • SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:33 AM Bentley Systems, Inc. 7/2/2008 Type.... Tc Calcs • Name.... DAl File.... I:\CIVIL\PONDPACK\PREDEVELOPED\PREDAl lyr 080701.ppw ___= SCS TR-55 Shallow Concentrated Flow ------------------------------------------------------------------------ Tc Equations used... ------------------------------------------------------------------------ SCS TR-55 Sheet Flow Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4)) Where: Tc = Time of concentration, hrs n = Mannings n Lf = Flow length, ft P = 2yr, 24hr Rain depth, inches Sf = Slope, o • C. Page 4.02 Unpaved surface: V = 16.1345 * (Sf**0.5) Paved surface: V = 20.3282 * (Sf**0.5) Tc = (Lf / V) / (3600sec/hr) Where: V = Velocity, ft/sec Sf = Slope, ft/ft Tc = Time of concentration, hrs Lf = Flow length, ft SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:33 AM Bentley Systems, Inc. 7/2/2008 Type.... Tc Calcs • Name.... DA1 File.... I:\CIVIL\PONDPACK\PREDEVELOPED\PREDAI lyr 080701.ppw Page 4.03 ___= SCS Channel Flow R = Aq / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n Tc = (Lf / V) / (3600sec/hr) Where: R = Hydraulic radius Aq = Flow area, sq.ft. Wp = Wetted perimeter, ft V = Velocity, ft/sec Sf = Slope, ft/ft n .= Mannings n Tc = Time of concentration, hrs Lf = Flow length, ft • • SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:33 AM 7/2/2008 72 Type.... Tc Calcs Page 4.04. • Name.... DA1 File.... I:\CIVIL\PONDPACK\PREDEVELOPED\PREDAl lyr 080701.ppw RUNOFF CURVE NUMBER DATA -------------------------------------------------------------------------- Impervious Area Adjustment Adjusted Soil/Surface Description CN acres %C oUC CN -------------------------------- ---- --------- ----- ----- ------ Woods - grass combination - fair 65 18.600 65.00 COMPOSITE AREA & WEIGHTED CN ---> 18.600 65.00 (65) 0 • SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:33 AM Bentley Systems, Inc. 7/2/2008 f r Type.... Runoff CN-Area • Name.... DA1 Page 5.01 SCS UNIT HYDROGRAPH METHOD STORM EVENT: 1 year storm Duration = 24.0000 hrs Rain Depth = 2.8000 in Rain Dir = I:\CIVIL\PONDPACK\PREDEVELOPED\ Rain File -ID = - TypeII 24hr Unit Hyd Type = Default Curvilinear HYG Dir = I:\CIVIL\PONDPACK\PREDEVELOPED\ HYG File - ID = - DAl Pre 1 Tc = .4490 hrs Drainage Area = 18.600 acres Runoff CN= 65 Computational Time Increment = .05987 hrs Computed Peak Time = 12.2125 hrs Computed Peak Flow = 4.81 cfs Time Increment for HYG File = .0100 hrs Peak Time, Interpolated Output = 12.2102 hrs Peak Flow, Interpolated Output = 4.80 cfs DRAINAGE AREA • ------------------- ID:DAl CN = 65 Area = 18.600 acres S = 5.3846 in 0.2S = 1.0769 in Cumulative Runoff ---------- -- - ------ .4177 in .647 ac-ft HYG Volume... .647 ac-ft (area under HYG curve) ***** SCS UNIT HYDROGRAPH PARAMETERS ***** Time Concentration, Tc = .44899 hrs (ID: DA1) Computational Incr, Tm = .05987 hrs = 0.20000 Tp Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491) Unit peak, qp = 46.94 cfs Unit peak time Tp = .29933 hrs Unit receding limb, Tr = 1.19730 hrs Total unit time, Tb = 1.49663 hrs • SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:33 AM 7/2/2008 Type.... Unit Hyd. Summary Page 6.01 • Name.... DAl Tag: Pre 1 Event: 1 yr File.... I:\CIVIL\PONDPACK\PREDEVELOPED\PREDAI lyr 080701.ppw ----- D ----- DAl... 4.01, 5.01, 6.01 ----- H ----- Holly Springs NC... 3.01 ----- W ----- Watershed... 1.01, 2.01 • SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:33 AM 7/2/2008 • Job File: I:\CIVIL\PONDPACK'POST DEVELOPED?\POSTDAI 1 YR 080702.PPW Rain Dir: I:\CIVIL\PONDPACK\POST-DEVELOPED\ JOB TITLE -------------------------- -------------------------- • I I Project Date: 7/2/2008 Project Engineer: Ed Kubrin Project Title: Novartis Holly Springs Project Comments: Post developed conditions and discharge for 1 yr storm events in Drainage Area #l. Post developed discharge volume is less than the predeveloped discharge volume. Post developed DA#1 is reduced in size. Impervious area added to DA1,2,3b and routed through Pond DA 123. SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:14 AM 7/2/2008 • OutDA 1 a ?j DA1a i Job File: I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAI 1 YR 080702.PPW Rain Dir: I:\CIVIL\PONDPACK\POST DEVELOPED\ ***********r********** MASTER SUMMARY **************r**r**** Watershed....... Master Network Summary ............. 1.01 *************** NETWORK SUMMARIES (DETAILED) *************** Watershed....... Dev 1 Executive Summary (Nodes) .......... 2.01 Executive Summary (Links) .......... 2.02 ****************** DESIGN STORMS SUMMARY ******************* Holly Springs NC Dev 1 Design Storms ...................... 3.01 0 ********************** TC CALCULATIONS ********************* DATA............ Tc Calcs ........................... 4.01 ********************** CN CALCULATIONS ********************* DAlA............ Runoff CN-Area ..................... 5.01 ******************** RUNOFF HYDROGRAPHS ******************** DATA............ Dev 1 Unit Hyd. Summary .................. 6.01 • SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:14 AM Bentley Systems, Inc. 7/2/2008 Ate • Table of Contents i ******************** POND ROUTING ********************** PONDDAlA IN Dev 1 Node: Pond Inflow Summary .......... 7.01 • • SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11: 14 AEI Bentley Systems, Inc. 7/2/2008 e Table of Contents 0 Table of Contents (continued) MASTER DESIGN STORM SUMMARY Network Storm Collection: Holly Springs NC ii Total Depth Rainfall Return Event in Type RNF ID ------------ ------ ---------------- ---------------- Dev 1 2.8000 Synthetic Curve TypeII 24hr MASTER NETWORK SUMMARY SCS Unit Hydrograph Method (*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt) Return HYG Vol NodeID Type Event Trun ac-ft ---- -DATA - ----- AREA 1 -- --- .496 *OUTDAlA JCT 1 .496 PONDDAlA IN POND 1 .496 PONDDAlA OUT POND 1 .496 Max Qpeak Qpeak Max WSEL Pond Storage hrs cfs ft ac _ft 12.4100 - -------- -------- --- 2.91 12.4100 2.91 12.4100 2.91 12.4100 2.91 • SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:14 AM Bentley Systems, Inc. 7/2/2008 Type.... Master Network Summary Page 1.01 • Name.... Watershed File.... I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAI 1 YR 080702.ppw NETWORK SUMMARY -- NODES (Trun.= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left & Rt) DEFAULT Design Storm File,ID = Holly Springs NC Storm Tag Name = Dev 1 Data Type, File, ID = Synthetic Storm TypeII 24hr Storm Frequency = 1 yr Total Rainfall Depth= 2.8000 in Duration Multiplier = 1 Resulting Duration = 24.0000 hrs Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs HYG Vol Qpeak Qpeak Max WSEL Node ID Type ac-ft Trun. hrs - -- cfs ft -------- --------- ------------ DAlA ----- ---- AREA --------- .496 - -- ----- - 12.4100 2.91 Outfall OUTDAlA JCT .496 12.4100 2.91 PONDDAlA IN POND .496 12.4100 2.91 PONDDAlA OUT POND .496 12.4100 2.91 11 E SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:14 AM 7/2/2008 Type.... Executive Summary (Nodes) Page 2.01 • Name.... Watershed Event: 1 yr File.... I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAI 1 YR 080702.ppw Storm... TypeII 24hr Tag: Dev 1 r ?f f NETWORK SUMMARY -- LINKS (UN=Upstream Node; DL=DNstream End of Link; DN=DNstream Node) (Trun.= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left & Rt) DEFAULT Design Storm File,ID = Holly Springs NC Storm Tag Name = Dev 1 Data Type, File, ID = Synthetic Storm TypeII 24hr Storm Frequency = 1 yr Total Rainfall Depth= 2.8000 in Duration Multiplier = 1 Resulting Duration = 24.0000 hrs Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs HYG Vol Peak Time Peak Q Link ID Type ac- ft Trun. hrs cfs ------ End Points ---------------- ---------- LINKDAlA ------ ---- ADD ------- UN ---- --- .496 ------- -- 12.4100 2.91 DATA DL .496 12.4100 2.91 DN .496 12.4100 2.91 PONDDAlA IN PONDROUTE PONDrt UN .496 12.4100 2.91 PONDDAIA IN • PONDROUTE .496 12.4100 2.91 PONDDAlA OUT DL .496 12.4100 2.91 DN .496 12.4100 2.91 OUTDAlA • SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:14 AM 7/2/2008 rf / 47r_ .; Type.... Executive Summary (Links) Page 2.02 • Name.... Watershed Event: 1 yr File.... I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAI 1 YR 080702.ppw Storm... TypeII 24hr Tag: Dev 1 DESIGN STORMS SUMMARY Design Storm File,ID = Holly Springs NC Storm Tag Name = Dev 1 Data Type, File, ID = Synthetic Storm TypeII 24hr Storm Frequency = 1 yr Total Rainfall Depth= 2.8000 in Duration Multiplier = 1 Resulting Duration = 24.0000 hrs Resulting Start Time= .0000 hrs Step= .1000 hrs End= 24.0000 hrs E • SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:14 AM 7/2/2008 Type.... Design Storms Page 3.01 • Name.... File.... Holly Springs NC I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAI Event: 1 yr 1 YR 080702.ppw Storm... TypeII 24hr Tag: Dev 1 TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: TR-55 Sheet Mannings n .2400 Hydraulic Length 250.00 ft 2yr, 24hr P 3.6000 in Slope .008000 ft/ft Avg.Velocity .10 ft/sec • I ? J ------------------------------------- Segment #2: Tc: TR-55 Channel Flow Area 3.1400 sq.ft Wetted Perimeter 6.28 ft Hydraulic Radius .50 ft Slope .028000 ft/ft Mannings n .0130 Hydraulic Length 140.00 ft Avg.Velocity 12.08 ft/sec Segment #1 Time: .6733 hrs ------------------------------- Segment #2 Time: .0032 hrs ------------------------------------------------------------------------ Segment 143: Tc: TR-55 Channel Flow Area 180.0000 sq.ft Wetted Perimeter 80.00 ft Hydraulic Radius 2.25 ft Slope .168000 ft/ft Mannings n .0350 Hydraulic Length 110.00 ft Avg.Velocity 29.96 ft/sec Segment #3 Time: .0010 hrs ------------------------------------------------------------------------ S/N: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:14 AM Bentley Systems, Inc. 7/2/2008 Type.... Tc Calcs • Name.... DAlA Page 4.01 File.... I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAI 1 YR 080702.ppw Segment #4: Tc: TR-55 Channel Flow Area 180.0000 sq.ft Wetted Perimeter 80.00 ft Hydraulic Radius 2.25 ft Slope .040000 ft/ft Mannings n .0600 Hydraulic Length 200.00 ft Avg.Velocity 8.53 ft/sec Segment #4 Time: .0065 hrs ----------------------------------------------------------------------- Segment #5: Tc: TR-55 Channel Flow Area 180.0000 sq.ft Wetted Perimeter 80.00 ft Hydraulic Radius 2.25 ft Slope .013000 ft/ft Mannings n .0600 Hydraulic Length 1270.00 ft • Avg.Velocity 4.86 ft/sec Segment #5 Time: .0726 hrs ------------------------------------------------------------------------ • Total Tc: .7567 hrs SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:14 AM 7/2/2008 . ? st Type.... Tc Calcs Page 4.02 • Name.... DAlA File.... I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAl 1 YR 080702.ppw ------------------------------------------------------------------------ Tc Equations used... ------------------------------------------------------------------------ • • SCS TR-55 Sheet Flow Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4)) Where: Tc = Time of concentration, hrs n = Mannings n Lf = Flow length, ft P = 2yr, 24hr Rain depth, inches Sf = Slope, % SCS Channel Flow R = Aq / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n Tc = (Lf / V) / (3600sec/hr) Where: R = Hydraulic radius Aq = Flow area, sq.ft. Wp = Wetted perimeter, ft V = Velocity, ft/sec Sf = Slope, ft/ft n = Mannings n Tc = Time of concentration, hrs Lf = Flow length, ft SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:14 AM Bentley Systems, Inc. 7/2/2008 r L, rf. Type.... Tc Calcs Name.... DATA Page 4.03 is File.... I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAI 1 YR 080702.ppw RUNOFF CURVE NUMBER DATA .......................................................................... .......................................................................... ------------------------------------ ---- ---------- ------------ Impervious ------------ Area Adjustment Adjusted Soil/Surface Description CN acres %C oUC CN -------------------------------- - Open space (Lawns,parks etc.) - Goo --- 61 --------- 4.800 ----- ----- ------ 61.00 Impervious Areas - Paved parking to 98 2.400 98.00 Woods - grass combination - good 58 4.110 58.00 COMPOSITE AREA & WEIGHTED CN ---> .................................... ................................... .... ..... 11.310 .......... .......... ............ ............ 67.76 (68) ............. ............. • • SIN: 68YXYWGYMXBD Bentley PondPack (10.00.023.00) 11:14 AM Bentley Systems, Inc. 7/2/2008 `-f/ / - s J Type.... Runoff CN-Area Name.... DATA Page 5.01 0 File.... I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAl 1 YR 080702.ppw SCS UNIT HYDROGRAPH METHOD STORM EVENT: 1 year storm Duration = 24.0000 hrs Rain Depth = 2.8000 in Rain Dir = I:\CIVIL\PONDPACK\POST DEVELOPED\ Rain File -ID = - TypeII 24hr Unit Hyd Type = Default Curvilinear HYG Dir = I:\CIVIL\PONDPACK\POST DEVELOPED\ HYG File - ID = work_pad.hyg - DATA Dev 1 Tc = .7567 hrs Drainage Area = 11.310 acres Runoff CN= 68 -------------------------------------------- -------------------------------------------- Computational Time Increment = .10089 hrs Computed Peak Time = 12.4091 hrs Computed Peak Flow = 2.91 cfs Time Increment for HYG File = .0100 hrs Peak Time, Interpolated Output = 12.4102 hrs Peak Flow, Interpolated Output = 2.91 cfs DRAINAGE AREA • ------------------- ID:DAlA CN 68 Area = 11.310 acres S = 4.7059 in 0.2S = .9412 in Cumulative Runoff ------------------- .5263 in .496 ac-ft HYG Volume... .496 ac-ft (area under HYG curve) ***** SCS UNIT HYDROGRAPH PARAMETERS ***** Time Concentration, Tc = .75665 hrs (ID: DATA) Computational Incr, Tm = .10089 hrs = 0.20000 Tp Unit Hyd. Shape Fact or = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)) Receding/Rising, Tr/ Tp = 1.6698 (solved from K = .7491) Unit peak, qp = 16.94 cfs Unit peak time Tp = .50443 hrs Unit receding limb, Tr = 2.01773 hrs Total unit time, Tb = 2.52217 hrs SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:14 AM 7/2/2008 D/54 Type.... Unit Hyd. Summary Page 6.01 Name.... DATA Tag: Dev 1 Event: 1 yr • File.... I:\CIVIL\PONDPACK\POST DEVELOPED\POSTDAI 1 YR 080702.ppw SUMMARY FOR HYDROGRAPH ADDITION at Node: PONDDAlA IN HYG Directory: I:\CIVIL\PONDPACK\POST DEVELOPED\ Upstream Link ID Upstream Node ID HYG ---- ---- - file HYG ID HYG tag - --- LINKDAlA ----------------- DATA ---------- ---------- work pad.hyg ------------- DATA ----------- Dev 1 INFLOWS TO: PONDDAlA IN ------------ ----------------- ----------- Volume Peak Time Peak Flow HYG file ------------ HYG ID ----------------- HYG tag ------ ac-ft hrs cfs work pad.hyg DATA ----- Dev 1 ---------- .496 ------------- 12.4100 ----------- 2.91 TOTAL FLOW INTO: PONDDAIA IN ------------ ----------------- ----------- Volume Peak Time Peak Flow HYG file ----------- HYG ID HYG tag ac-ft hrs cfs - work pad.hyg ----------------- PONDDAlA IN ------------ Dev 1 --------- .496 ------------- 12.4100 ----------- 2.91 • _ SIN: 68YXYWGYMXBD Bentley Systems, Inc. Bentley PondPack (10.00.023.00) 11:14 AM 7/2/2008 I /? PondMaker Design Wizard • Pre Dev Pre Dev Post Dev Post Total Estimated Interp. W.S. I Freeboard Retum Event Peak Volume Peak I Volume Storage Elev. Depth (cfs) (ac ft) (cfs) (ac it) , (ac-ft) (ft) I (ft) 1 5.4602 0.70134 2.9123 0.49604 0.11280 0.0000 PASS -, = ? `per ?--_ . i 6 , ? ' . _ _;,_„ f ? 1 • ._ ; , _, • 0 Pre Development Area (ac) % Peak Flow DA1 18.6 100% 4.8 cfs NBI01 0.42 2% 0.11 cfs NBI02 0.51 3% 0.13 cfs N13103 1.43 8% 0.37 cfs NBI04 2.24 12% 0.58 cfs Post Develoment Area (ac) % Peak Flow DA1 11.3 100% 4.8 cfs NBI01 0.42 4% 0.18 cfs N13102 0.51 5% 0.22 cfs NBI03 1.43 13% 0.61 cfs NBI04 2.24 20% 0.95 cfs • 1] • 11',JACn RS r? Section C 0 N/ -T East Ditch Outlet 0-6 Calc #C-10 End of Curb & Gutter • • Page 4 of 4 CALCULATION COVER SHEET U PROJECT USFCC JOB NO. 22CO117S CLIENT Novartis Vaccines & Diagnostics SUBJECT End Of Curb & Gutter East Ditch Outlet 0-6 ORIGINATOR: Ed Kubrin DATE 0612008 CHECKER: Mark Smith DATE 06/2008 DEPARTMENT Civil CALC. NO. C-10 CAR04,, ?,• 'to,SSipN' •; y;2p ?0 'aQ SEAS `:a z 033329 ' z qCq ?FNGIN?••?PV •?.,?OORTH? • • PURPOSE OF ISSUANCE REV NO NO. PAGES DESCRIPTION ORIG. DATE CHKD. DATE APRV. DATE 0 5 Issued for Permitting and Information WJO 07/31/08 EK 07/31/08 COMMENTS: CALC COVER SHEET C#10.DOC 02/19/96 • • • DESIGN OF - OUTLET PROTECTION User Input Data Calculated Value Reference Data )esigned By: EJK Date: 4/3012008 'pecked By: Date: company: Jacobs ?roject Name: Novartls t1SFCC 'roject No.: 22CO117S Site Location (City[rown) Raleigh Culvert Id. 0-6 Total Drainage Area (acres) 0.77 Step 1. Determnie the taihvater depth fiom chaand characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less thanhalfthe outlet pipe diameter, it is classified minimum tailwater condition. If it is greater,lian half the. pipe diameter, it is classifed namci mun condition. Pipes that outlet onto -aide Sat areas with an donned channel are assumed to have a mininiu n taiticater condition anless relinble flood stage elevations show othemise. Outlet pipe diameter, D. (in.) 12 Tailwater depth (in.) 3 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 3.35 Velocity (fL/s) 6.75 Step 2. Based ou the tailw2ier conditions determined in sfep 1, enter Figure 8.06a or Figise 3,06b. and determine (& aprap siza and minimum apron tcugth (L,). T$e d, size is the. aiedianstone suer swell-graded tiprap apron. Step 3. Determine apron width at the pipe outlet, the apron shape, and the apron n-idth at ine outlet end fromihe same ftnre used in Step 2. Minimum TW Sgure 8.06a Riprap den, (ft.) 0.33 Mlnlmum apron length, La (ft.) 6 Apron width at pipe outlet (ft.) 3 Apron shape Trapezoidal Apron width at outlet end (ft.) 7 Step 4. Dctsnvne the maxiaaua staae diameter. d,_ = 1.5 x d,, Minimum TW Max Stone Diameter, dmax (ft.) 0.495 Step $. Deteniune the apron thickness: Apron thickness =1.5 x de„ Maximum TW Figure 8.06h 3 1 Maximum TW 0 Minimum TW Apron Thickness(ft.) 0.7425 Maximum T1N 0 Step 6. Fit the riprap apron to the site by ranking it level for the rrin+i+run length, L, from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along charnel baui-s until stability is assured. Keep the apron as straight as possible and aligttit with the flow of the receiving stretan- Make nay necessary aligim mt bends near the pipe outlet so that the entrance into the receiving streanris straight. Some locations [anti require lining of the entire channel cross section to assure snbiluy. It nrav be necessary to increase the size of iiprap where protectioa of the chairtel „de slopes is aecessary QLPL dir 8.05). Where averfalls emst at pipe midets or9o?cs ma excel>iv a plume pool should be considered, see page 8.06.8. U • f Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) ' 3. 1 } e outlet W = Do + La i pip, ;rne4eit _ SD dill I;1i .;},i I ?Tifilwater d.SQ? 11 I{ I{ I7" i 3`4 TA i:ii?'li •III ! , '.1 -?? J I _I HII 3 t 5 5i1 100 Discharge (Oisee) , , a ? . i111 i 11 v „ { ? 9 4 3 r a ? H '.• ` : S 03 0 L J . a ? Curves May not be extra.polaled., Ng[..44 B,Oea C-cciprr of OutLt prgterfian protcafran Lord a rn nd lrx-, flowhij tuir, 1,1111 t urn taiNvall erwnrUon (Tw <O.s a:amater), I Her.1193 f-A III U :41 It 8.Oo-3 0 n!`t / I! LO 0 U n ^LT-.:.. • Detailed Report for Outlet: 0-6 Note: The input data may have been modi fied since the last calculation was performed. The calculated results may be outdated. Scenario Summary Scenario Base Physical Properties Alternative Physical Properties-Altern ative 3 Catchments Altemative Base-Catchments System Flows Alternative Base-System Flows Structure Headlosses Alternative Base-Structure Headlosses Boundary Conditions Alternative Base-Boundary Conditions Design Constraints Alternative Base-Design Constraints Capital CostAitemative Base-Capital Cost User Data Alternative Base-User Data Geometric Summary x 13,059.62 ft Station 0+00 ft Y 6,436.88 ft Elevations Ground Elevation 344,00 ft Sump Elevation 341.50 ft Rim Elevation 344.00 ft Tailwater Hydraulics . Tailwater Condition Free Outfall Hydraulic Grade Line Out 341.50 ft System Flow Summary Total System Flow 3.35 cis System Rational Flow 3.35 cfs System Flow Time 12.12 min System Known Flow 0.00 cfs System Intensity 5.76 in/hr System Additional Flow 0.00 cfs System CA 0.58 acres Total Lost Surface Flow 0.00 cfs Total Diverted Flow In 0.00 cfs Incoming Diverted Flow Local Diverted Flow In 0.00 cfs Global Diverted Flow In 0.00 cfs Total Diverted Flow In 0.00 cfs Design Constraints Summary Pipe Matching Inverts Allow Drop Structure? true Match line Offset 0.00 ft Local Pipe Matching Constraints? false Design Structure Elevation? true Desired Sump Depth 0.00 ft User Data Date Installed • J % Title: USFCC Project Project Engineer: EJK I:\...\stormEad\novartis final storm 060908.stm StormCAD v5.6 (05.06.012.00] 06/11108 11:14:4ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 • Detailed Report for Pipe: P-'120 Note: The input data may have been modifi ed since the last calculation was performed. The calculated results may be outdated. Scenario Summary Scenario Base Physical Properties Alternative Physical Properties-Alternative 3 Catchments Alternative Base-Catchments System Flows Alternative Base-System Flows Structure Headlosses Alternative Base-Structure Headlosses Boundary Conditions Alternative Base-Boundary Conditions Design Constraints Alternative Base-Design Constraints Capital Cost Alternative Base-Capital Cost User Data Alternative Base-User Data Pipe Characteristics Upstream Node CB-29 Number of Sections 1 Downstream Node 0-6 Section Shape Circular Bend Angle 0.00 degrees Section Size 12 inch Length 48.20 ft Material Corrugated HDPE (Smooth Interior) Constructed Slope 1.04 % Mannings n 0.010 Hydraulic Summary Total System Flow 3.36 cfs Full Capacity 4.72 cis • Profile Description S2 Energy Slope 0.87 % Gravity Element Headloss 0.65 ft Velocity In 5.09 ft/s Average Velocity 6.52 fUs Velocity Out 6.39 ft/s Constructed Slope 1.04 % Design Capacity 4.72 cfs Excess Full Capacity 1.35 cfs Excess Design Capacity 1.35 cfs Elevations/Depths Invert Ground Crow n Cover Depth Hydraulic EGL (ft) (ft) (ft) (ft) (ft) Grade (ft) (ft) Upstream 342.00 344.35 343.00 1.35 0.78 342.78 343.19 Downstrear 341.50 344.00 342.50 1.50 0.64 342.14 342.77 Pipe Design Options Design Pipe? true Design Upstream Invert? true Design Downstream Invert? true Specify Local Pipe Constraints? false Part Full Design? false Design Percent Full N/A % Allow Multiple Sections? false Maximum Number Sections NIA Limit Section Size? false Maximum Section Rise NIA in Pipe Design Constraints Minimum Velocity 2.00 ft/s Maximum Velocity 15,00 ft/s Minimum Cover 1.00 ft Maximum Cover 25.00 ft Minimum Slope 0.50 % Maximum Slope 5.00 % User Data • Date Installed Title: USFCC Project Project Engineer. EJK i:1...lstormcad\novartis final storm 060908.stm StormCAD v5.6 [05.06.012.00] 06111/08 11:16:1 ntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1