Loading...
HomeMy WebLinkAbout20201125 Ver 1_H - Design Calculations_20200831DESIGN CALCULATIONS CASHIERS COMMUNITY WASTEWATER TREATMENT PLANT AND COLLECTION SYSTEM IMPROVEMENTS TUCKASEIGEE WATER AND SEWER AUTHORITY JACKSON COUNTY, NORTH CAROLINA mcI 55 Broad Street Asheville NC, 28801 828-252-0575 Firm License No.: C-0459 AUGUST 2020 PROJECT NO. 15.00391 Shaping Communities Together \,��Y41111f1r/// g 49166- �-/Z TABLE OF CONTENTS DESIGN PARAMETERS 2. INFLUENT PUMP STATION HEADWORKS 4. SEQUENCING BATCH REACTOR (SBR) DISC FILTERS 6. SLUDGE HOLDING TANK 7. PLANT AIR REQUIREMENTS PLANT HYDRAULICS Cashiers, North Carolina Page 2 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 SECTION 1 DESIGN PARAMETERS Design Average Daily Flow (ADF) = 0.125 MGD Design Peak Hourly Flow (PHF) = Peaking Factor x ADF Peak flow estimated is based on service population size, per NC DEQ Minimum Design Criteria for NPDES Wastewater Treatment Facilities, Recommended Standards for Wastewater Facilities (Ten State Standards). 1. PF = 18+ Population (in thousands) 4+ Population (in thousands) Z. Service Area Population (initial design ADF) = 1,392 3 PF _ 18+ 1.392 = 3.70 4+ 1.392 4. Design PHF = 3.70 * 0.125 MGD = 0.463 MGD (321 gpm) Design Daily Peak Flow (PDF) = Peaking Factor x ADF 1. PF = 2 2. Design PDF = 2 * 0.125 MGD = 0.250 MGD (173.6 gpm) Table 1. Design Criteria Influent Wastewater Effluent Wastewater Limits Max Avg Design Monthly Weekly Single Train Avg Avg Monthly Average Flow, 0.125 0.125 n/a MGD Peak Day Flow, MGD 0.25 n/a Peak Hourly Flow, MGD 3.70 n/a BOD5, mg/L 206 210 5.0 7.5 TSS, mg/L 174 195 10.0 15.0 Fecal Coliform, #/100 mL 200 400 Total N, mg/L 35 35 n/a NH3-N, mg/L 23.1 23.1 4 12 n/a pH >6.0 and < 9.0 SU Minimum Temperature, °C 4.7 10 10 n/a Maximum Temperature, °C 25 20 20 n/a Site Elevation, feet above 3,220 n/a MSL • Influent wastewater characteristics in Table 1 are based on NC0063321 DMRs 2011-2018 • Design influent concentrations based on Metcalf & Eddy, 5t' edition, Table 3-18, "Typical Composition of Untreated Domestic Wastewater" Cashiers, North Carolina Page 3 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Table 2. Blower Requirements Design Flow design flow 0.250 MGD hydraulic peaking factor 2.0 times permitted flow design flow 0.250 MGD treatment trains 1 Two SBRs with one in aeration cycle flow per train 0.250 MGD Biochemical Oxygen Demand design influent BOD 210.0 mg/L design effluent BOD 10.0 mg/L design BOD removal 200 mg/L 417 lbs/day BOD destruction oxygen required 1.20 lbs Oz/lb BOD 501 lbs/day Nitro en Removal design influent TKN 35.0 mg/L design influent NH3 23.1 mg/L design influent DON 11.9 mg/L design influent nbDON 1.5 mg/L Design Influent TSS 195 mg/L 407 lbs/day TSS Volatile Fraction 75% VSS VSS 146.25 mg/L 305 lbs/day iTSS 48.75 mg/L 102 lbs/day nbVSS Fraction 20% non -biodegradable VSS nbVSS 29.25 mg/L 61.0 lbs/day Ysludge 0.856 lbs TSS/lb BOD removed 171.2 mg/L 357 lbs/day Ysludge,vss 122.45 mg/L 255 lbs/day Sludge VSS N Fraction 10% Nsludge VSS 12.245 mg/L 25.5 lbs/day design effluent TN 10.00 mg/L Cashiers, North Carolina Page 4 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 design TN removal 25.0 mg/L 52 lbs/day design effluent NH3 2.0 mg/L 4.2 lbs/day design effluent DON 1.5 mg/L 3.1 lbs/day design effluent NOxmaX 6.5 mg/L 13.6 lbs/day design TNw.ns 12.2 mg/L 25.5 lbs/day TN not oxidized 15.7 mg/L 32.8 lbs/day TN oxidized 19.3 mg/L 40.2 lbs/day Nitrogen oxidation oxygen required 4.57 lbs O2/lb N 184 lbs/day nitrification oxygen required 184 lbs/day TN denitrified 13 mg/L 26.6 lbs/day AOR 684 lbs/day OTRf 13 kg/hr 29 lbs/hr Aeration Requirements Temperature Correction design temperature 20.0 °C 68.0 OF Cs,20'c 9.092 mg/L Cst 9.065 mg/L i 0.997 temperature correction factor for oxygen saturation de 0.40 mid -depth correction factor G,20oc 11.559 depth -corrected steady-state DO saturation concentration 0T-200C 1.000 temp correction factor for oxygen transfer Cashiers, North Carolina Page 5 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Elevation Correction elevation 3,220 ft above MSL P, 101.325 kPa 14.696 psi 10.335 in Pb 90.370 kPa 13.107 psi 9.218 in S2 0.8919 pressure correction Yair 0.0671 lbs/ft3 0.0156 lbs 02/ft3 Equipment Correction CW 2.0 mg/L a 0.75 R 0.95 F 1.00 fouling factor SOTR 26 kg/hr 57 lbs/hr SOR 1,358 lbs/day 57 lbs/hr Df 7.01 in 23.00 ft aerator height above floor 2.88 ft depth of aerators 20.12 SOTE 1.42% per foot of depth 28.6% total Sequencing Batch Reactors batches per day 4.00 per SBR fill time 3.00 hrs anoxic fill time 1.50 hrs aerated fill time 1.50 hrs react time 1.50 hrs settle time 0.75 hrs decant time 0.50 hrs idle time 0.25 hrs complete cycle time 6.00 hrs aeration time 3.00 hrs aeration fraction 50% Cashiers, North Carolina Page 6 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Mixing Air reactor diameter 31.67 ft reactor surface area 787.6 ftZ mixing air required 0.12 SCFM/ft2 94.51 SCFM Blower Sizing aeration required 425 SCFM number of reactors 2 blower per basin 1 blower size 212 SCFM P 8.5 psi discharge pressure 75% blower efficiency blower horsepower 10.5 hp each SECTION 2 INFLUENT PUMP STATION Per NCDENR, Minimum Design Criteria for Pump Stations and Force Mains, 2.02,.A.1: multiple pumps shall be used such that the pump station is capable of conveying peak hourly wastewater flow to its desired outfall location with the largest single pump out of service. (a) In duplex pump stations, the pumps shall be of the same capacity. Table 3. Influent Pump Station Design Parameters Parameter Unit Value Peak Hourly Flow MGD 0.463 Influent Pumps Number 2 Capacity (per pump) GPM 320 Influent Pump Station Capacity (Firm) GPM 320 See attached hydraulic calculations for total dynamic head (TDH) and cycle times. Cashiers, North Carolina Page 7 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 SECTION 3 HEADWORKS 1. Verify water level in headworks (per information provided by manufacturer) Table 4. Influent screen channel requirements Flow Rate (MGD) Screen Blinding (%) Water Level (ft) Upstream Downstream Design PHF 0.463 0 0.34 0.11 Screen Max 1.0 0 0.63 0.20 Design PHF 0.4 20 0.39 0.11 Screen Max 1.0 20 0.72 0.20 Design PHF 0.4 40 0.46 0.11 Screen Max 1.0 40 0.86 0.20 2. Downstream of headworks will be controlled by a 12-inch pipe to Switching Box. a. Headwork effluent flange center line elevation: 3249.75' b. Switching Box influent flange center line elevation: 3219.64' c. Elevation head for gravity driven force from headworks to Switching box = 30.1 F d. Headloss at peak flow in 100 LF of 12" pipe from headworks effluent to influent at flow switching vault = 0.06' e. 0.06' < 30.1 Fheadloss is acceptable SECTION 4 SEQUENCING BATCH REACTOR (SBR) Table 5. Sequencing Batch Reactor Canacity Requirements Parameter Value Unit SBR Diameter 31.67 feet Maximum Side Water Depth 24.50 Minimum Side Water Depth 17.75 feet Maximum Volume 144,331.88 gallons Batch Volume 30,928.3 gallons SBRs 2 Number Cycles per day 8 Total at peak day flow Influent BOD5 220 m /L Effluent BOD5 10 m /L Influent Total Suspended Solids 190 m /L Effluent Total Suspended Solids 10 m /L Influent TKN 52.5 m /L Effluent Ammonia 2.0 m /L Site Elevation 3218 feet Average Summer Temperature 25 °C Average Winter Temperature 10 °C Cashiers, North Carolina Page 8 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 SECTION 5 DISC FILTERS Table 6. Disc Filter Design Parameters Parameter Value Unit Design ADF 0.125 m d Design Max 0.250 m d Avg TSS in 10 m /L Peak TSS in 20 m /L Effluent TSS 5 m /L Filter Area 135 sf/filter Avg Hydraulic Loading 0.64 m/sf Peak Hydraulic Loading 1.29 m/sf Backwash Rate 33 gpm Avg TSS waste 13.16 m /L Peak TSS waste 39.48 m /L Performance data from manufacturer (attached) based on Table 1. Design Criteria SECTION 6 UV DISINFECTION Parameter Value Unit Design Flow Rate 0.250 m d Maximum TSS influent 30 m /L Maximum Particle Size influent 30 microns Maximum Count influent 100,000 Fecal Coliforms/100mL UV Transmittance at 253.7 nm 65% minimum UV Dose UVDGM MS2 validation 30 mJ/cm2 Design Count effluent 200 Fecal Coliforms/100mL Temperature Range effluent 41-86 °F Performance data from manufacturer (attached) based on Table 1. Design Criteria Cashiers, North Carolina Page 9 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 SECTION 7 SLUDGE HOLDING TANK Table 7. Sludge Holding Tank Requirements Sludge Production' 360 lb/d 2,055 al/d Percent Solids 2% Specific Gravity 1.05 Required Storage Capacity 30 days Required Tank Volume 61,665 gal 8,244 cf Tank Water Depth 23 ft Tank Diameter 21.5 ft Tank Volume 8,350 cf 62,459 gal 2,716 al/ft Mixing Air Required 30 CFM/1000cf2 247 CFM 'Sludge production rate based on information from SBR manufacturer 2 Per Metcalf and Eddy Wastewater En ing eering 5th edition air requirements for sludge holding is 20-40 SCFM per 1000 CF of sludge holding volume. SECTION 8 PLANT AIR REQUIREMENTS Total Plant Air required = SBR aeration + sludge holding tank mixing. = 425 + 247 SCFM = 672 SCFM. Triplex blowers will be used with two duty blowers, one for each SBR, and one standby normally assigned to the sludge holding tank. The sludge holding tank blower can be used to aerate an SBR in the event that one of the SBR blowers is taken offline. Sludge holding tank aeration can be suspended without affecting NPDES permit compliance. Each blower shall be sized for 250 SCFM. Cashiers, North Carolina Page 10 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 SECTION 9 PLANT HYDRAULICS This WWTP has been designed to eliminate intermediate pumping within the WWTP. Once the initial wastewater lift is provided from the influent pump station to the headworks, subsequent flow to and through the splitter box, influent and decant flow to and from the SBRs, effluent flow from the post-EQ basin, through the disc filters and UV reactors, over the V-notch weir, and through the outfall line to the river will occur due to gravity. Gravity -driven full pipe flows below have been presented to demonstrate that sufficient or excess head is available to drive the design flows. Design Flows Phase 1 Phase 2 Number of Reactors 2 2 0.125 0.250 MGD Monthly Average Flow 86.8 173.6 gpm 0.19 0.39 cfs 5.48 10.95 L/s Daily Peaking Factor 2.00 2.00 0.250 0.500 MGD Daily Peak Flow 173.6 347.2 gpm 0.39 0.77 cfs 10.95 21.91 L/s Hourly Peaking Factor 3.70 3.47 0.463 0.867 MGD Hourly Peak Flow 321.4 602.4 gpm 0.72 1.34 cfs Fill Time 3.00 3.00 hrs Decant Time 0.50 0.50 hrs Decant Peaking Factor 6.00 6.00 0.750 1.500 MGD Decant Flow 520.8 1250.0 gpm 1.16 2.32 cfs Cashiers, North Carolina Page 11 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Influent Pump Station 125,000 gpd Daily Design Flow 86.8 gpm Peaking Factor 3.70 Pump Station Rated Flow 320 gpm Number of Pumps 2 Top of Wetwell 3183.00 ft Ground Elevation 3182.80 ft Gravity Sewer Invert In 3175.44 ft High Water Alarm 3175.00 ft Lag Pump On 3174.50 ft Lead Pump On 3174.00 ft Pumps Off 3172.00 ft Low Water Alarm 3169.50 ft Bottom Elevation 3166.00 ft Total Depth 17.00 ft Pump Station Diameter 10.00 ft Maximum Lead On to 3.23 ft Off Pumps O Minimum Lead Onto 0.81 ft Pumps O Off Actual Lead On to Pumps 2.00 ft Off Pump Cycle Time 18.57 minutes Pump Starts per Hour 3.23 Design Flow 320 gpm Design Head 90.5 ft Design Horsepower 10.4 hp Flow 320 gpm TDH 86.8 ft Pump Efficiency 70% Horsepower 0.0 Wet Well Invert Elevation 3,166.00 ft Discharge Elevation 3,252.82 ft Static Head 86.82 ft Cashiers, North Carolina Page 12 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Influent Pump Station Wet Well and Valve Vault Pipe 0 6 in Wet Well and Valve Vault 30 ft Pipe Length Hazen -Williams C 125 (new DIP) Friction Loss 0.3 ft Velocity 3.6 ft/s Fitting K value 4" x 6" base elbow 1.00 90' elbow (short radius) 0.75 check valve 1.50 plug valve 0.31 45° elbow 0.35 true wye 0.20 tee, straight flow 0.34 plug valve 0.31 6" x 8" reducer 0.50 total K 5.26 Fitting Loss through Vault 1.1 ft Force Main Pipe 0 8.00 in Force Main Pipe Length 925 ft Hazen -Williams C 125 (new DIP) Friction Loss 2.2 ft Velocity 0.0 ft/s Fitting K value plug valve 0.27 pipe exit 1.00 total 1.27 Fitting Loss in Force Main 0.1 ft Cashiers, North Carolina Page 13 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 100.0 99.0 98.0 97.0 96.0 95.0 94.0 2 H 93.0 92.0 91.0 90.0 89.0 88.0 87.0 86.0 85.0 Horsepasture WWTP Influent Pump Station System Curve 0 50 100 150 200 250 300 350 400 gpm Cashiers, North Carolina Page 14 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Headworks Influent Flange Center 3252.25 3252.25 ft MSL Effluent Flange Center 3249.75 3249.75 ft MSL Finished Floor 3248.00 3248.00 ft MSL Head Available Gravity -Driven Force Main from Headworks to Splitter Box Diameter Headworks to Splitter Box Hazen -Williams C Total K Value Average Flow Average Flow Average Velocity (full) Average Friction Loss Average Friction Loss Average Fitting Loss Average Head Loss Peak Flow Peak Flow Peak Velocity (full) Peak Friction Loss Peak Friction Loss Peak Fitting Loss Peak Head Loss 7.25 7.25 ft 12.64 12.64 in 100 100 ft 125 125 2.9 2.9 86.8 173.6 gpm 0.19 0.39 cfs 0.22 0.44 ft/s 0.00002 0.00008 ft/ft 0.00 0.01 ft 0.00 0.01 ft 0.00 0.02 ft 321.42 602.37 gpm 0.72 1.34 cfs 0.82 1.54 ft/s 0.00026 0.00083 ft/ft 0.03 0.08 ft 0.03 0.11 ft 0.06 0.19 ft Cashiers, North Carolina Page 15 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Pipe Center Ground Elevation Splitter Box 3219.64 3223 3219.64 ft MSL 3223 ft MSL Head Available 7.19 7.06 ft Gravity -Driven Force Main from Splitter Box to SBR 8.55 8.55 in Diameter Splitter box to SBR Inlet 100 100 ft Hazen -Williams C 125 125 Total K Value 3.96 3.96 Average Flow 86.8 173.6 gpm Average Flow 0.19 0.39 cfs Average Velocity (full) 0.49 0.97 ft/s Average Friction Loss 0.00015 0.00055 ft/ft Average Friction Loss 0.02 0.06 ft Average Fitting Loss 0.01 0.06 ft Average Head Loss 0.03 0.11 ft Peak Flow 321.4 602.4 gpm Peak Flow 0.72 1.34 cfs Peak Velocity (full) 1.80 3.37 ft/s Peak Friction Loss 0.00173 0.00554 ft/ft Peak Friction Loss 0.17 0.55 ft Peak Fitting Loss 0.20 0.70 ft Peak Head Loss 0.37 1.25 ft Excess Head 6.82 5.81 ft Cashiers, North Carolina Page 16 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Sequencing Batch Reactor decant flow rate depends on initial water level in Post-EQ Basin. Without water in the Post-EQ Basin, an SBR can decant one batch in 23 minutes. An SBR can decant a batch in less than 30 minutes with 30,113 gallons in the Post-EQ Basin and still maintain at least 12" of freeboard in the Post-EQ basin. See attachments for decant calculation method. Sequencing Batch Reactors Empty 30,300 gal in Post-EQ Post-EQ SBR Top Water Level 3241.00 3241.00 ft SBR Low Water Level 3235.70 3235.70 ft End Water Level in Post-EQ 3218.00 3226.15 ft Starting Water Level in Post-EQ 3218.00 3226.15 ft Level Change 5.30 5.30 ft Initial Available Head 23.00 14.85 ft Final Available Head 17.70 9.55 ft Tank Diameter 31.67 31.67 ft Pipe Diameter 8.55 8.55 in Pipe Length 75 75 ft Hazen Williams C 125 125 Fittings K Value 20.58 20.58 Theoretical Initial Flow Rate 6,887 5,534 gpm Theoretical Initial Velocity 38.5 30.9 ft/s Expected Initial Flow Rate 1,447 1,161 gpm Expected Initial Velocity 8.1 6.5 ft/s Friction Head Loss 2.10 1.40 ft Fittings Head Loss 20.90 13.45 ft Total Initial Head Loss 23.00 14.85 ft Coefficient of Discharge 0.21 0.21 Decant Volume 31,250 31,250 gallons Decant Time 23.0 29.9 minutes Expected Final Flow Rate 1269.2 930.8 gpm Expected Final Velocity 7.1 5.2 ft/s Average Flow 1358.1 1045.9 gpm Average Velocity 7.6 5.8 ft/s Cashiers, North Carolina Page 17 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 The Post-EQ basin will be equipped with a mag meter and actuated plug valve to maintain a steady discharge equal to the daily peak flow. Post -Equalization Basin Top of Wall 3233.00 3233.00 ft MSL Influent Pipe Invert Out 3218.00 3218.00 ft MSL High Water Level 3232.00 3232.00 ft MSL Low Water Level 3218.00 3218.00 ft MSL Bottom Slab 3218.00 3218.00 ft MSL Head Available 7.67 7.67 ft Piping from Post-EQ Tank 6.40 6.40 in to Disc Filters Pipe Length to Filters 130 130 ft Hazen -Williams C 125 125 Total K Value 3.56 3.56 Average Flow 86.81 173.61 gpm Average Flow 0.19 0.39 cfs Average Velocity (full) 0.87 1.73 ft/s Average Friction Loss 0.00063 0.00227 ft/ft Average Friction Loss 0.08 0.30 ft Average Fitting Loss 0.06 0.25 ft Average Head Loss 0.14 0.55 ft Peak Flow 173.61 347.22 gpm Peak Flow 0.39 0.77 cfs Peak Velocity (full) 1.73 3.46 ft/s Peak Friction Loss 0.00227 0.00819 ft/ft Peak Friction Loss 0.30 1.07 ft Peak Fitting Loss 0.25 0.25 ft Peak Head Loss 0.55 1.32 ft Excess Head 7.12 6.35 ft Cashiers, North Carolina Page 18 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Disc Filters Influent Flange Center 3210.33 3210.33 ft MSL Effluent Flange Center 3208.76 3208.76 ft MSL Finished Floor 3208.00 3208.00 ft MSL Head Available 7.26 7.26 ft Piping from Disc Filters 10.58 10.58 in to UV Reactors Filters to UV Inlet 35 35 ft Hazen -Williams C 125 125 Total K Value 2.93 2.93 Average Flow 86.81 173.61 gpm Average Flow 0.19 0.39 cfs Average Velocity (full) 0.32 0.63 ft/s Average Friction Loss 0.00005 0.00020 ft/ft Average Friction Loss 0.00 0.01 ft Average Fitting Loss 0.06 0.25 ft Average Head Loss 0.06 0.26 ft Peak Flow 173.61 347.22 gpm Peak Flow 0.39 0.77 cfs Peak Velocity (full) 0.63 1.27 ft/s Peak Friction Loss 0.00020 0.00071 ft/ft Peak Friction Loss 0.01 0.02 ft Peak Fitting Loss 0.25 0.25 ft Peak Head Loss 0.26 0.28 ft Excess Head 7.00 6.98 ft Cashiers, North Carolina Page 19 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 UV Disinfection Equipment UV Reactor Center 3201.50 3201.50 ft MSL Head Available 6.03 5.87 ft Piping from UV Reactors to Effluent Reuse Well 6.40 6.40 in UV Outlet Pipe Length 20 20 ft Hazen -Williams C 125 125 Total K Value 5.4 5.4 Average Flow 86.8 86.8 gpm Average Flow 0.2 0.2 cfs Average Velocity (full) 0.87 1.73 ft/s Average Friction Loss 0.00063 0.00227 ft/ft Average Friction Loss 0.01 0.05 ft Average Fitting Loss 0.06 0.25 ft Average Head Loss 0.08 0.30 ft Peak Flow 173.61 173.61 gpm Peak Flow 0.39 0.39 cfs Peak Velocity (full) 1.73 1.73 ft/s Peak Friction Loss 0.00227 0.00227 ft/ft Peak Friction Loss 0.05 0.05 ft Peak Fitting Loss 0.25 0.25 ft Peak Head Loss 0.30 0.30 ft Excess Head 5.73 5.58 ft Cashiers, North Carolina Page 20 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 Effluent Reuse Well 90 90 ° V-Notch Weir Angle 1.571 1.571 rad 0.36 0.47 ft Average H 4.31 5.69 in 0.47 0.63 ft Peak H 5.69 7.51 in Pump Submergence 5 5 ft HWL 3195.47 3195.63 ft MSL Top of Weir 3196.00 3196.00 ft MSL Bottom of Weir 3195.00 3195.00 ft MSL Bottom of Well 3190.00 3190.00 ft MSL Water Level in Outfall Box 3190.10 3190.38 ft MSL Outfall Pipe Diameter 8.55 8.55 in Average Velocity (full) 0.49 0.97 ft/s Peak Velocity (full) 0.97 1.94 ft/s Hazen -Williams C 125 125 Average Friction Loss 0.00015 0.00055 ft/ft Peak Friction Loss 0.00055 0.00200 ft/ft Outfall Pipe Length 130 130 ft Average Friction Loss 0.02 0.07 ft Peak Friction Loss 0.07 0.26 ft Total K Value 2.1 2.1 Average Fitting Loss 0.01 0.03 ft Peak Fitting Loss 0.03 0.12 ft Average Head Loss 0.03 0.10 ft Peak Head Loss 0.10 0.38 ft Outfall Invert In 3190.00 3190.00 ft MSL Base Flood Elevation 3180.00 3180.00 ft MSL Outfall Invert Out 3173.00 3173.00 ft MSL Outfall Head Available 10.00 10.00 ft Excess Head 9.90 9.62 ft Cashiers, North Carolina Page 21 Design Calculations Horsepasture River Wastewater Treatment Plant and Collection System Improvements August 2020 ATTACHMENTS Calculating Flow Rate for Gravity Decant 1. Calculate the theoretical initial instantaneous discharge with all gravity head converted to velocity head. V2 h=2 9 v = V2gh 2. Calculate the expected initial instantaneous discharge including friction and fitting losses through the pipe system using either Hazen -Williams formula and either equivalent length or excess head method for fittings. For short pipes it may be possible to approximate the head loss using only the excess head method. Use Goalseek or Solver in Excel to set head loss equal to available head. 10.44Q1-85 L _ gpm ft hfriction — C1.85d4.87 an 2 �cfs hfittings = Y-K 2g htotal = hfriction + hfittings 3. Determine the coefficient of discharge. Qexpected Cd = Qtheoretica 4. Set up the incompressible flow equation for the system. 2 2 2 ptank Vtank pdischarg VdischargeCd Y + 2g + -tank = Y + 2g +Zdischarg a. Ptank and Pdischarge are both assumed to be equal to zero. b. Since the diameter of the tank is much larger than the diameter of the pipe, the velocity of the water surface in the tank is negligible. 5. The velocity in the pipe is a function of time since the height of the water changes as a function of time. h = Ztank — Zdischarg Vpipe = Cd 29h(t) dh Vtan = — Lit 6. Apply the continuity equation. VtankAtank = VpipeApipe 7. Substitute in the values from Step 5 dh Lit Atank = Cd 29h(t)Apipe dh dt = —Cd 29h(t)Apipe 8. Let B equal the product of the constants. B = Cd V 2g Aplpe = Cd 2g d 2 A v 9 D2 tank a. d = inside diameter of discharge pipe b. D = inside diameter of tank (if circular tank is used) 9. Integrate and solve for total discharge time in seconds. fhf 1 ft —dh=BJ dt ho V h o 2 [ Fhf — hoI = Bt t-2[ hf— ho t— B 2Atank [ hf — ho] 2D2 ho] Cd 29Apipe Cd V 29d2 10. If desired, solve for average discharge flow rate. However, pipe sizing may depend on the initial instantaneous expected flow rate shown in Step 2. Post-EQ Basin Water Level Model Initial SBR Water Surface 3241.00 ft MSL Final SBR Water Surface 3235.70 ft MSL Initial SBR Head 14.85 ft Final SBR Head 9.55 ft SBR Diameter 31.67 ft SBR Pipe Diameter 8.55 in SBR Cd 0.21 Top of Post-EQ 3233.00 ft MSL Maximum Post-EQ Water Surface Elevation 3232.00 ft MSL Initial Post-EQ Water Surface 3226.15 ft MSL Post-EQ Bottom 3218.00 ft MSL Initial Post-EQ Head 16.35 ft Final Post-EQ Head 7.67 Post-EQ Diameter 24.75 ft Post-EQ Pipe Diameter 6.40 in Post-EQ Cd 0.21 Target Post-EQ Outflow 347.22 gpm 3242 3240 3238 3236 3234 3232 3230 3228 3226 3224 3222 3220 3218 SBR and Post-EQ Water Levels 0 20 40 60 80 100 120 140 160 180 SBR Water Level Post-EQ Water Level SBR Post-EQ Minutes Level Head Outflow Level Depth Head Outflow Net Flow Throughput Volume 0 3241.00 14.85 1,161 3226.15 8.15 16.35 347 814 814 30,113 1 3240.80 14.65 1,153 3226.38 8.38 16.58 347 806 1,620 30,949 2 3240.61 14.46 1,145 3226.60 8.60 16.80 347 798 2,418 31,776 3 3240.41 14.26 1,138 3226.82 8.82 17.03 347 791 3,209 32,596 4 3240.22 14.07 1,130 3227.04 9.04 17.25 347 783 3,991 33,408 5 3240.03 13.88 1,122 3227.26 9.26 17.46 347 775 4,766 34,211 6 3239.84 13.69 1,115 3227.47 9.47 17.68 347 767 5,534 35,007 7 3239.65 13.50 1,107 3227.69 9.69 17.89 347 760 6,293 35,795 8 3239.46 13.31 1,099 3227.90 9.90 18.10 347 752 7,045 36,575 9 3239.27 13.12 1,091 3228.11 10.11 18.31 347 744 7,789 37,347 10 3239.09 12.94 1,084 3228.31 10.31 18.52 347 736 8,526 38,111 11 3238.90 12.75 1,076 3228.52 10.52 18.72 347 729 9,254 38,867 12 3238.72 12.57 1,068 3228.72 10.72 18.93 347 721 9,975 39,615 13 3238.54 12.39 1,060 3228.92 10.92 19.13 347 713 10,689 40,356 14 3238.36 12.21 1,053 3229.12 11.12 19.32 347 705 11,394 41,088 15 3238.18 12.03 1,045 3229.32 11.32 19.52 347 698 12,092 41,812 16 3238.00 11.85 1,037 3229.51 11.51 19.71 347 690 12,782 42,529 17 3237.83 11.68 1,030 3229.70 11.70 19.91 347 682 13,464 43,237 18 3237.65 11.50 1,022 3229.89 11.89 20.10 347 675 14,139 43,938 19 3237.48 11.33 1,014 3230.08 12.08 20.28 347 667 14,806 44,630 20 3237.31 11.16 1,006 3230.26 12.26 20.47 347 659 15,465 45,315 21 3237.14 10.99 999 3230.45 12.45 20.65 347 651 16,116 45,992 22 3236.97 10.82 991 3230.63 12.63 20.83 347 644 16,760 46,660 23 3236.80 10.65 983 3230.81 12.81 21.01 347 636 17,396 47,321 24 3236.63 10.48 975 3230.98 12.98 21.19 347 628 18,024 47,974 25 3236.47 10.32 968 3231.16 13.16 21.36 347 620 18,644 48,619 26 3236.30 10.15 960 3231.33 13.33 21.53 347 613 19,257 49,256 27 3236.14 9.99 952 3231.50 13.50 21.70 347 605 19,862 49,885 28 3235.98 9.83 944 3231.67 13.67 21.87 347 597 20,459 50,506 29 3235.82 9.67 937 3231.84 13.84 22.04 347 590 21,049 51,120 30 3235.66 9.51 0 3232.00 14.00 22.20 347 -347 20,702 51,725 31 3235.66 9.51 0 3231.90 13.90 22.11 347 -347 20,354 51,368 32 3235.66 9.51 0 3231.81 13.81 22.01 347 -347 20,007 51,012 33 3235.66 9.51 0 3231.71 13.71 21.91 347 -347 19,660 50,655 34 3235.66 9.51 0 3231.61 13.61 21.82 347 -347 19,313 50,299 35 3235.66 9.51 0 3231.52 13.52 21.72 347 -347 18,965 49,942 36 3235.66 9.51 0 3231.42 13.42 21.62 347 -347 18,618 49,586 37 3235.66 9.51 0 3231.32 13.32 21.53 347 -347 18,271 49,229 SBR Post-EQ Minutes Level Head Outflow Level Depth Head Outflow Net Flow Throughput Volume 38 3235.66 9.51 0 3231.23 13.23 21.43 347 -347 17,924 48,873 39 3235.66 9.51 0 3231.13 13.13 21.33 347 -347 17,577 48,516 40 3235.66 9.51 0 3231.03 13.03 21.24 347 -347 17,229 48,160 41 3235.66 9.51 0 3230.94 12.94 21.14 347 -347 16,882 47,803 42 3235.66 9.51 0 3230.84 12.84 21.04 347 -347 16,535 47,447 43 3235.66 9.51 0 3230.74 12.74 20.95 347 -347 16,188 47,090 44 3235.66 9.51 0 3230.65 12.65 20.85 347 -347 15,840 46,734 45 3235.66 9.51 0 3230.55 12.55 20.76 347 -347 15,493 46,377 46 3235.66 9.51 0 3230.46 12.46 20.66 347 -347 15,146 46,021 47 3235.66 9.51 0 3230.36 12.36 20.56 347 -347 14,799 45,664 48 3235.66 9.51 0 3230.26 12.26 20.47 347 -347 14,452 45,308 49 3235.66 9.51 0 3230.17 12.17 20.37 347 -347 14,104 44,951 50 3235.66 9.51 0 3230.07 12.07 20.27 347 -347 13,757 44,595 51 3235.66 9.51 0 3229.97 11.97 20.18 347 -347 13,410 44,238 52 3235.66 9.51 0 3229.88 11.88 20.08 347 -347 13,063 43,882 53 3235.66 9.51 0 3229.78 11.78 19.98 347 -347 12,715 43,525 54 3235.66 9.51 0 3229.68 11.68 19.89 347 -347 12,368 43,169 55 3235.66 9.51 0 3229.59 11.59 19.79 347 -347 12,021 42,812 56 3235.66 9.51 0 3229.49 11.49 19.69 347 -347 11,674 42,456 57 3235.66 9.51 0 3229.39 11.39 19.60 347 -347 11,327 42,099 58 3235.66 9.51 0 3229.30 11.30 19.50 347 -347 10,979 41,743 59 3235.66 9.51 0 3229.20 11.20 19.40 347 -347 10,632 41,386 60 3235.66 9.51 0 3229.10 11.10 19.31 347 -347 10,285 41,030 61 3235.66 9.51 0 3229.01 11.01 19.21 347 -347 9,938 40,673 62 3235.66 9.51 0 3228.91 10.91 19.12 347 -347 9,590 40,317 63 3235.66 9.51 0 3228.81 10.81 19.02 347 -347 9,243 39,960 64 3235.66 9.51 0 3228.72 10.72 18.92 347 -347 8,896 39,604 65 3235.66 9.51 0 3228.62 10.62 18.83 347 -347 8,549 39,247 66 3235.66 9.51 0 3228.53 10.53 18.73 347 -347 8,202 38,891 67 3235.66 9.51 0 3228.43 10.43 18.63 347 -347 7,854 38,534 68 3235.66 9.51 0 3228.33 10.33 18.54 347 -347 7,507 38,178 69 3235.66 9.51 0 3228.24 10.24 18.44 347 -347 7,160 37,821 70 3235.66 9.51 0 3228.14 10.14 18.34 347 -347 6,813 37,465 71 3235.66 9.51 0 3228.04 10.04 18.25 347 -347 6,465 37,108 72 3235.66 9.51 0 3227.95 9.95 18.15 347 -347 6,118 36,752 73 3235.66 9.51 0 3227.85 9.85 18.05 347 -347 5,771 36,395 74 3235.66 9.51 0 3227.75 9.75 17.96 347 -347 5,424 36,039 75 3235.66 1 9.51 1 0 3227.66 9.66 17.86 1 347 1 -347 5,077 1 35,682 SBR Post-EQ Minutes Level Head Outflow Level Depth Head Outflow Net Flow Throughput Volume 76 3235.66 9.51 0 3227.56 9.56 17.76 347 -347 4,729 35,326 77 3235.66 9.51 0 3227.46 9.46 17.67 347 -347 4,382 34,969 78 3235.66 9.51 0 3227.37 9.37 17.57 347 -347 4,035 34,613 79 3235.66 9.51 0 3227.27 9.27 17.47 347 -347 3,688 34,256 80 3235.66 9.51 0 3227.17 9.17 17.38 347 -347 3,340 33,900 81 3235.66 9.51 0 3227.08 9.08 17.28 347 -347 2,993 33,543 82 3235.66 9.51 0 3226.98 8.98 17.19 347 -347 2,646 33,187 83 3235.66 9.51 0 3226.89 8.89 17.09 347 -347 2,299 32,830 84 3235.66 9.51 0 3226.79 8.79 16.99 347 -347 1,952 32,474 85 3235.66 9.51 0 3226.69 8.69 16.90 347 -347 1,604 32,117 86 3235.66 9.51 0 3226.60 8.60 16.80 347 -347 1,257 31,761 87 3235.66 9.51 0 3226.50 8.50 16.70 347 -347 910 31,404 88 3235.66 9.51 0 3226.40 8.40 16.61 347 -347 563 31,048 89 3235.66 9.51 0 3226.31 8.31 16.51 347 -347 215 30,691 90 3235.66 9.51 0 3226.21 8.21 16.41 347 -347 -132 30,335 91 3235.66 9.51 0 3226.11 8.11 16.32 347 -347 -479 29,978 92 3235.66 9.51 0 3226.02 8.02 16.22 347 -347 -826 29,622 93 3235.66 9.51 0 3225.92 7.92 16.12 347 -347 -1,173 29,265 94 3235.66 9.51 0 3225.82 7.82 16.03 347 -347 -1,521 28,909 95 3235.66 9.51 0 3225.73 7.73 15.93 347 -347 -1,868 28,552 96 3235.66 9.51 0 3225.63 7.63 15.83 347 -347 -2,215 28,196 97 3235.66 9.51 0 3225.53 7.53 15.74 347 -347 -2,562 27,839 98 3235.66 9.51 0 3225.44 7.44 15.64 347 -347 -2,910 27,482 99 3235.66 9.51 0 3225.34 7.34 15.55 347 -347 -3,257 27,126 100 3235.66 9.51 0 3225.25 7.25 15.45 347 -347 -3,604 26,769 101 3235.66 9.51 0 3225.15 7.15 15.35 347 -347 -3,951 26,413 102 3235.66 9.51 0 3225.05 7.05 15.26 347 -347 -4,298 26,056 103 3235.66 9.51 0 3224.96 6.96 15.16 347 -347 -4,646 25,700 104 3235.66 9.51 0 3224.86 6.86 15.06 347 -347 -4,993 25,343 105 3235.66 9.51 0 3224.76 6.76 14.97 347 -347 -5,340 24,987 106 3235.66 9.51 0 3224.67 6.67 14.87 347 -347 -5,687 24,630 107 3235.66 9.51 0 3224.57 6.57 14.77 347 -347 -6,035 24,274 108 3235.66 9.51 0 3224.47 6.47 14.68 347 -347 -6,382 23,917 109 3235.66 9.51 0 3224.38 6.38 14.58 347 -347 -6,729 23,561 110 3235.66 9.51 0 3224.28 6.28 14.48 347 -347 -7,076 23,204 111 3235.66 9.51 0 3224.18 6.18 14.39 347 -347 -7,423 22,848 112 3235.66 9.51 0 3224.09 6.09 14.29 347 -347 -7,771 22,491 113 3235.66 1 9.51 1 0 3223.99 5.99 14.19 1 347 1 -347 1 -8,118 1 22,135 SBR Post-EQ Minutes Level Head Outflow Level Depth Head Outflow Net Flow Throughput Volume 114 3235.66 9.51 0 3223.89 5.89 14.10 347 -347 -8,465 21,778 115 3235.66 9.51 0 3223.80 5.80 14.00 347 -347 -8,812 21,422 116 3235.66 9.51 0 3223.70 5.70 13.90 347 -347 -9,160 21,065 117 3235.66 9.51 0 3223.60 5.60 13.81 347 -347 -9,507 20,709 118 3235.66 9.51 0 3223.51 5.51 13.71 347 -347 -9,854 20,352 119 3235.66 9.51 0 3223.41 5.41 13.62 347 -347 -10,201 19,996 120 3235.66 9.51 0 3223.32 5.32 13.52 347 -347 -10,548 19,639 121 3235.66 9.51 0 3223.22 5.22 13.42 347 -347 -10,896 19,283 122 3235.66 9.51 0 3223.12 5.12 13.33 347 -347 -11,243 18,926 123 3235.66 9.51 0 3223.03 5.03 13.23 347 -347 -11,590 18,570 124 3235.66 9.51 0 3222.93 4.93 13.13 347 -347 -11,937 18,213 125 3235.66 9.51 0 3222.83 4.83 13.04 347 -347 -12,285 17,857 126 3235.66 9.51 0 3222.74 4.74 12.94 347 -347 -12,632 17,500 127 3235.66 9.51 0 3222.64 4.64 12.84 347 -347 -12,979 17,144 128 3235.66 9.51 0 3222.54 4.54 12.75 347 -347 -13,326 16,787 129 3235.66 9.51 0 3222.45 4.45 12.65 347 -347 -13,673 16,431 130 3235.66 9.51 0 3222.35 4.35 12.55 347 -347 -14,021 16,074 131 3235.66 9.51 0 3222.25 4.25 12.46 347 -347 -14,368 15,718 132 3235.66 9.51 0 3222.16 4.16 12.36 347 -347 -14,715 15,361 133 3235.66 9.51 0 3222.06 4.06 12.26 347 -347 -15,062 15,005 134 3235.66 9.51 0 3221.96 3.96 12.17 347 -347 -15,410 14,648 135 3235.66 9.51 0 3221.87 3.87 12.07 347 -347 -15,757 14,292 136 3235.66 9.51 0 3221.77 3.77 11.98 347 -347 -16,104 13,935 137 3235.66 9.51 0 3221.68 3.68 11.88 347 -347 -16,451 13,579 138 3235.66 9.51 0 3221.58 3.58 11.78 347 -347 -16,798 13,222 139 3235.66 9.51 0 3221.48 3.48 11.69 347 -347 -17,146 12,866 140 3235.66 9.51 0 3221.39 3.39 11.59 347 -347 -17,493 12,509 141 3235.66 9.51 0 3221.29 3.29 11.49 347 -347 -17,840 12,153 142 3235.66 9.51 0 3221.19 3.19 11.40 347 -347 -18,187 11,796 143 3235.66 9.51 0 3221.10 3.10 11.30 347 -347 -18,535 11,440 144 3235.66 9.51 0 3221.00 3.00 11.20 347 -347 -18,882 11,083 145 3235.66 9.51 0 3220.90 2.90 11.11 347 -347 -19,229 10,727 146 3235.66 9.51 0 3220.81 2.81 11.01 347 -347 -19,576 10,370 147 3235.66 9.51 0 3220.71 2.71 10.91 347 -347 -19,923 10,014 148 3235.66 9.51 0 3220.61 2.61 10.82 347 -347 -20,271 9,657 149 3235.66 9.51 0 3220.52 2.52 10.72 347 -347 -20,618 9,301 150 3235.66 9.51 0 3220.42 2.42 10.62 347 -347 -20,965 8,944 151 3235.66 1 9.51 1 0 3220.32 2.32 10.53 1 347 1 -347 -21,312 1 8,588 SBR Post-EQ Minutes Level Head Outflow Level Depth Head Outflow Net Flow Throughput Volume 152 3235.66 9.51 0 3220.23 2.23 10.43 347 -347 -21,660 8,231 153 3235.66 9.51 0 3220.13 2.13 10.33 347 -347 -22,007 7,875 154 3235.66 9.51 0 3220.03 2.03 10.24 347 -347 -22,354 7,518 155 3235.66 9.51 0 3219.94 1.94 10.14 347 -347 -22,701 7,162 156 3235.66 9.51 0 3219.84 1.84 10.05 347 -347 -23,048 6,805 157 3235.66 9.51 0 3219.75 1.75 9.95 347 -347 -23,396 6,449 158 3235.66 9.51 0 3219.65 1.65 9.85 347 -347 -23,743 6,092 159 3235.66 9.51 0 3219.55 1.55 9.76 347 -347 -24,090 5,736 160 3235.66 9.51 0 3219.46 1.46 9.66 347 -347 -24,437 5,379 161 3235.66 9.51 0 3219.36 1.36 9.56 347 -347 -24,785 5,023 162 3235.66 9.51 0 3219.26 1.26 9.47 347 -347 -25,132 4,666 163 3235.66 9.51 0 3219.17 1.17 9.37 347 -347 -25,479 4,310 164 3235.66 9.51 0 3219.07 1.07 9.27 347 -347 -25,826 3,953 165 3235.66 9.51 0 3218.97 0.97 9.18 347 -347 -26,173 3,597 166 3235.66 9.51 0 3218.88 0.88 9.08 347 -347 -26,521 3,240 167 3235.66 9.51 0 3218.78 0.78 8.98 347 -347 -26,868 2,884 168 3235.66 9.51 0 3218.68 0.68 8.89 347 -347 -27,215 2,527 169 3235.66 9.51 0 3218.59 0.59 8.79 347 -347 -27,562 2,171 170 3235.66 9.51 0 3218.49 0.49 8.69 347 -347 -27,910 1,814 171 3235.66 9.51 0 3218.39 0.39 8.60 347 -347 -28,257 1,458 172 3235.66 9.51 0 3218.30 0.30 8.50 347 -347 -28,604 1,101 173 3235.66 9.51 0 3218.20 0.20 8.41 347 -347 -28,951 745 174 3235.66 9.51 0 3218.11 0.11 8.31 347 -347 -29,298 388 175 3235.66 9.51 0 3218.01 0.01 8.21 347 -347 -29,646 32 176 3235.66 9.51 0 3218.00 0.00 8.12 347 -347 -29,993 0 177 3235.66 9.51 0 3218.00 0.00 8.02 347 -347 -30,340 0 178 3235.66 9.51 0 3218.00 0.00 7.92 347 -347 -30,687 0 179 3235.66 9.51 0 3218.00 0.00 7.83 347 -347 -31,035 0 180 3235.66 9.51 0 3218.00 0.00 7.73 347 -347 -31,382 0 Non -Potable Reuse Pump Station Hydraulic Calculations Non -Potable Reuse Pump Station Design Flow 41.0 gpm Number of Pumps 1 Flow 41.0 gpm TDH 225.7 ft Pump Efficiency 40% Horsepower 5.84 Required Pressure 60.00 psi 138.60 ft Static Head 67.25 ft Force Main Pipe D 2.00 in Force Main Pipe Length 350 ft Hazen -Williams C 125 (new DIP) Friction Loss 15.89 ft Velocity 4.2 ft/s Fitting K value # of fittings Tee - Branch Flow 2.00 2 45 Degree Bend 0.40 5 90 Degree Bend 1.50 5 ball valve 0.05 2 pipe exit 1.00 1 total k 14.60 Fitting Loss in Force Main 3.98 ft 240.00 235.00 230.00 225.00 2 220.00 v v 215.00 210.00 205.00 200.00 Horsepasture Non -Potable Reuse Station Pump 10 20 30 40 50 60 gpm Power Generation Recommended Generator Report - C200 D6e Project - TWSA Horsepasture River WWTP Generator Comments - Frequency, Hz 60.0 Generators Running in Parallel 1 Duty Standby Site Altitude, ft(m) 3500(1067) Voltage 277/480, Series Wye Site Temperature, °C 25 Phase 3 Max. Altr Temp Rise, °C 125 Fuel Diesel Project Voltage Distortion Limit, % 10 Emissions No Preference Running kW Calculated 158.2 Individual Generator Set Max. Step kW ... Running and Peak Requirements 107.8 In Step 1 Cumulative Step kW 176.9 Running kVA 186.1 Max. Step kVA 162.7 In Step 2 Cumulative Step kVA 274.6 Running PF 0.85 Peak kW None Cumulative Peak kW None Running NLL kVA 73.7 Peak kVA None Cumulative Peak kVA None Alternator kW 202.94 Pct Rated Capacity 79.0 Alternator Generator UC3H Set Configuration Engine QSB7-G5 NR3 BCode B773 Fuel Diesel Excitation PMG Displacement, cu in. (Litre) 408.0(6.7) Voltage Range 120/208 Thru 139/240 Cylinders 6 240/415 Thru 277/480 Number of Leads 12 Altitude Knee, ft(m) 5500(1676) Reconnectable Yes Altitude Slope, % per 1000ft(304.8m) 8 Full Single Phase Output No Temperature Knee, °F(°C) 104(40) Increased Motor Starting No Temperature Slope, % per 18°F(10.0°C) 34 Extended Stack No Emissions EU SIIIA Cooling Package Set Performance ... Requirements Running At 79.0% Rated Capacity Max. Step Voltage Dip, % 9 Max. Allowed Step Voltage Dip 15 In Step 1 Max. Step Frequency Dip, % 2 Max. Allowed Step Frequency Dip 10 In Step 1 Peak Voltage Dip, % Peak Voltage Dip Limit % 15.0 Peak Frequency Dip, % Peak Frequency Dip Limit % 10 Site Rated Standby kW/kVA 200 / 250 Running kW 158.2 Running kVA 186.1 Site Rated Max. SkW 214 Effective Step kW 149.4 Max. SkVA 791 Effective Step kVA 274.6 Temp Rise at Full Load, °C 150 Percent Non -Linear Load 42.0 Voltage Distortion 6.3 Voltage Distortion Limit 10 Site Rated Max Step kW Limit Max Step kW 'Note: Higher temperature rise at full rated load. 'Note: All generator set power derates are based on open generator sets. Recommended Generator Report 07-May-2020 Page 1 Power Generation Loads Summary Report Project - TWSA Horsepasture River WWTP Generator Comments - Frequency, Hz 60.0 Duty Standby Voltage 277/480, Series Wye Phase 3 Fuel Diesel Emissions No Preference Loads Summary List *Note: Detailed Loads and Step Report available below Generators Running in Parallel 1 Site Altitude, ft(m) 3500(1067) Site Temperature, °C 25 Max. Altr Temp Rise, °C 125 Project Voltage Distortion Limit, % 10 Step No. Load Name Quantity Running Starting Peak Dip Limits, % VTHD% Limit kW kVA kW kVA kW kVA Vdip Hip Ste 01 Misc Plant Load 1 60.0 75.0 60.0 75.0 None None 15.0 10.0 0.0 Step01 1SBR Blower 1 20.72 23.02 20.72 23.02 1 None None 15.0 10.0 10.0 Ste 01 Influent Pump 1 12.43 13.81 27.07 55.24 None None 15.0 10.0 10.0 Step Summary 93.0 112.0 108.0 153.0 None None 15.0 10.0 10.0 Ste 02 Influent Pump 1 12.43 13.81 27.07 55.24 None None 15.0 10.0 10.0 Ste 02 Headworks 1 12.86 14.61 43.37 88.5 None None 15.0 10.0 0.0 Step02 Filter Drive 1 1.89 2.39 13.3 19.0 None None 15.0 10.0 0.0 Step Summary 27.0 31.0 84.0 163.0 None None 15.0 10.0 10.0 Ste 03 SBR Pump 1 8.67 9.97 21.14 39.88 None None 15.0 10.0 10.0 Step03 WAS Pump 1 1.02 11.46 8.97 11.8 None None 15.0 10.0 0.0 Ste 03 UV S stem 1 3.0 3.75 3.0 3.75 None None 15.0 10.0 0.0 Step Summary 13.0 15.0 33.0 55.0 None None 15.0 10.0 10.0 Step04 Sludge Blower 1 20.72 23.02 20.72 23.02 None None 15.0 10.0 10.0 Ste 04 Filter Backwash Pump 1 4.44 15.22 12.74 20.88 None None 15.0 10.0 10.0 Step Summary 25.0 28.0 33.0 144.0 None 1 None 15.0 10.0 10.0 Project Summary Running Max Starting Cumulative Step Cumulative Peak Project VTHD% Limit kW kVA kW kVA kW kVA kW kVA 158.2 186.1 107.8 162.7 176.9 274.E j 0.0 0.0 j 10.0 *Note: Detailed Loads and Step Report available below Loads and Steps Detail Report 07-May-2020 Page 1 IVPower OO Generation Loads and Steps Detail Report Project - TWSA Horsepasture River WWTP Generator Comments - Frequency, Hz Duty Voltage Phase Fuel Emissions Running kW Running kVA Running PF Running NLL kVA Alternator kW Running kW Running kVA Running Amps Running Non -linear kVA Alternator kW Voltage Distortion Limit for step Misc Plant Load Category Running kW Running kVA Running PF Running Amps Alternator kW SBR Blower Category Running kW Running kVA Running PF 158.2 186.1 0.85 73.7 202.94 93.0 112.0 135.0 37.0 115.53 10 60.0 Generators Running in Parallel 1 Standby Site Altitude, ft(m) 3500(1067) 277/480, Series Wye Site Temperature, °C 25 3 Max. Altr Temp Rise, °C 125 Diesel Project Voltage Distortion Limit, % 10 No Preference d Individual Generator Set Max. Step kW ... Running and Peak Requirements 107.8 In Step 1 Cumulative Step kW 176.9 Max. Step kVA 162.7 In Step 2 Cumulative Step kVA 274.6 Peak kW None Cumulative Peak kW None Peak kVA None Cumulative Peak kVA None Calculated Individual Generator Set Step Load Requirements Starting kW 108.0 Cumulative Step kW 108.0 Starting kVA 153.0 Cumulative Step kVA 153.0 Starting Non -linear kVA 78.0 Three Phase Quantity 1 In this Step User Defined 60.0 Starting kW 60.0 Peak kW None 75.0 Starting kVA 75.0 Peak kVA None 0.8 Starting PF 0.8 Cyclic No 90.32 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 60.0 Voltage 480 Three Phase Quantity 1 In this Step Motor 20.72 Starting kW 20.72 Peak kW None 23.02 Starting kVA 23.02 Peak kVA None 0.9 Starting PF 0.9 Cyclic No Loads and Steps Detail Report 07-May-2020 Page 2 Running Amps 27.72 Max. % Voltage Dip Running NLL kVA 23.02 Starting NLL kVA 23.02 Alternator kW 41.44 Shaft Hp 25.0 Shaft kW 18.65 Rectifier Type 6 pulse Efficiency (%) 0.9 Load Factor 100.0 Influent Pump Category Motor Running kW 12.43 Starting kW Running kVA 13.81 Starting kVA Running PF 0.9 Starting PF Running Amps 16.63 Max. % Voltage Dip Running NLL kVA 13.81 Starting NLL kVA 55.24 Alternator kW 14.09 Shaft Hp 15.0 Shaft kW 11.19 Efficiency (%) 0.9 Design Standard NEMA Design B,C or D Rectifier Type 6 pulse Load Factor : 100.0 15.0 Max. % Frequency Dip 10.0 Voltage 480 Type Ramp Details THDI % THDV % Three Phase Quantity Variable Frequency Drive None 26 10 1 In this Step 27.07 Peak kW None 55.24 Peak kVA None 0.49 Cyclic No 15.0 Max. % Frequency Dip 10.0 Voltage 480 Method Solid State Current Limit 400.0 LRkVA Factor 0.0 LRkVA Code 0 THDI % 26 THDV % 10 Calculated Individual Generator Set Step Load Requirements Running kW 27.0 Starting kW 84.0 Cumulative Step kW 177.0 Running kVA 31.0 Starting kVA 163.0 Cumulative Step kVA 275.0 Running Amps 37.0 Starting Non -linear kVA 55.0 Running Non -linear kVA 14.0 Alternator kW 28.84 Voltage Distortion Limit for 10 step Influent Pump Three Phase Quantity 1 In this Step Category Motor Running kW 12.43 Starting kW 27.07 Peak kW None Running kVA 13.81 Starting kVA 55.24 Peak kVA None Running PF 0.9 Starting PF 0.49 Cyclic No Running Amps 16.63 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Running NLL kVA 13.81 Starting NLL kVA 55.24 Voltage 480 Alternator kW 14.09 Loads and Steps Detail Report 07-May-2020 Page 3 Shaft Hp 15.0 Method Solid State Shaft kW 11.19 Current Limit 400.0 Efficiency (%) 0.9 LRkVA Factor 0.0 Design Standard NEMA Design B,C or D LRkVA Code 0 Rectifier Type 6 pulse THDI % 26 THDV % 10 Load Factor 100.0 Headworks Three Phase Quantity 1 In this Step Category Motor Running kW 12.86 Starting kW 43.37 Peak kW None Running kVA 14.61 Starting kVA 88.5 Peak kVA None Running PF 0.88 Starting PF 0.49 Cyclic No Running Amps 17.59 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Alternator kW 12.86 Voltage 480 Shaft Hp 15.0 Method Across the line Shaft kW 11.19 Low Inertia No Efficiency (%) 0.87 LRkVA Factor 5.9 Design Standard NEMA Design B,C or D LRkVA Code G Load Factor 100.0 Filter Drive Three Phase Quantity 1 In this Step Category Motor Running kW 1.89 Starting kW 13.3 Peak kW None Running kVA 2.39 Starting kVA 19.0 Peak kVA None Running PF 0.79 Starting PF 0.7 Cyclic No Running Amps 2.88 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Alternator kW 1.89 Voltage 480 Shaft Hp 2.0 Method Across the line Shaft kW 1.49 Low Inertia No Efficiency (%) 0.79 LRkVA Factor 9.5 Design Standard NEMA Design B,C or D LRkVA Code L Load Factor 100.0 ' Calculated Individual Generator Set Step Load Requirements Running kW 13.0 Starting kW 33.0 Cumulative Step kW 153.0 Running kVA 15.0 Starting kVA 55.0 Cumulative Step kVA 198.0 Running Amps 18.0 Starting Non -linear kVA 40.0 Running Non -linear kVA 0.0 Alternator kW 12.69 Voltage Distortion Limit for 10 step SBR Pump Three Phase Quantity 1 In this Step Category Motor Loads and Steps Detail Report 07-May-2020 Page 4 Running kW 8.67 Starting kW Running kVA 9.97 Starting kVA Running PF 0.87 Starting PF Running Amps 12.01 Max. % Voltage Dip Running NLL kVA 0.0 Starting NLL kVA 39.88 Alternator kW 8.67 Shaft Hp 10.0 Shaft kW 7.46 Efficiency (%) 0.86 Design Standard NEMA Design B,C or D Rectifier Type 6 pulse Load Factor 100.0 WAS Pump Category Motor Running kW 1.02 Starting kW Running kVA 1.46 Starting kVA Running PF 0.7 Starting PF Running Amps 1.76 Max. % Voltage Dip Alternator kW 1.02 Shaft Hp 1.0 Shaft kW 0.75 Efficiency (%) 0.73 Design Standard NEMA Design B,C or D Load Factor 100.0 UV System Category User Defined Running kW 3.0 Starting kW Running kVA 3.75 Starting kVA Running PF 0.8 Starting PF Running Amps 4.52 Max. % Voltage Dip Alternator kW 3.0 Running kW 25.0 Running kVA 28.0 Running Amps 34.0 Running Non -linear kVA 23.0 Alternator kW 45.88 Voltage Distortion Limit for 10 step Sludge Blower 21.14 Peak kW None 39.88 Peak kVA None 0.53 Cyclic No 15.0 Max. % Frequency Dip 10.0 Voltage 480 Method Solid State Current Limit 400.0 LRkVA Factor 6.7 LRkVA Code H THDI % 26 THDV % 10 Three Phase Quantity 1 In this Step 8.97 Peak kW None 11.8 Peak kVA None 0.76 Cyclic No 15.0 Max. % Frequency Dip 10.0 Voltage 480 Method Across the line Low Inertia No LRkVA Factor 11.8 LRkVA Code N Three Phase Quantity 1 In this Step 3.0 Peak kW None 3.75 Peak kVA None 0.8 Cyclic No 15.0 Max. % Frequency Dip 10.0 Voltage 480 Calculated Individual Generator Set Step Load Requirements Starting kW 33.0 Cumulative Step kW 166.0 Starting kVA 44.0 Cumulative Step kVA 202.0 Starting Non -linear kVA 44.0 Three Phase Quantity : 1 In this Step Loads and Steps Detail Report 07-May-2020 Page 5 Category : Motor Running kW 20.72 Starting kW 20.72 Peak kW None Running kVA 23.02 Starting kVA 23.02 Peak kVA None Running PF 0.9 Starting PF 0.9 Cyclic No Running Amps 27.72 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Running NLL kVA 23.02 Starting NLL kVA 23.02 Voltage 480 Alternator kW 41.44 Shaft Hp 25.0 Type Variable Frequency Drive Shaft kW 18.65 Ramp Details None Rectifier Type 6 pulse THDI % 26 Efficiency (%) 0.9 THDV % 10 Load Factor 100.0 Filter Backwash Pump Three Phase Quantity 1 In this Step Category Motor Running kW 4.44 Starting kW 12.74 Peak kW None Running kVA 5.22 Starting kVA 20.88 Peak kVA None Running PF 0.85 Starting PF 0.61 Cyclic No Running Amps 6.29 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Running NLL kVA 0.0 Starting NLL kVA 20.88 Voltage 480 Alternator kW 4.44 Shaft Hp 5.0 Method Solid State Shaft kW 3.73 Current Limit 400.0 Efficiency (%) 0.84 LRkVA Factor 7.5 Design Standard NEMA Design B,C or D LRkVA Code J Rectifier Type 6 pulse THDI % 26 THDV % 10 Load Factor 100.0 Loads and Steps Detail Report 07-May-2020 Page 6 Power Generation Steps and Dips Details Report Project - TWSA Horsepasture River WWTP Generator Frequency, Hz 60.0 Generators Running in Parallel 1 Duty Standby Site Altitude, ft(m) 3500(1067) Voltage 277/480, Series Wye Site Temperature, °C 25 Phase 3 Max. Altr Temp Rise, °C 125 Fuel Diesel Project Voltage Distortion Limit, % 10 Emissions No Preference Running kW Calculated 158.2 Individual Generator Max. Step kW Set ... Running and Peak Requirements 107.8 In Step 1 Cumulative Step kW Running kVA 186.1 Max. Step kVA 162.7 In Step 2 Cumulative Step kVA Running PF 0.85 Peak kW None Cumulative Peak kW Running NLL kVA 73.7 Peak kVA None Cumulative Peak kVA Alternator kW 202.94 Model Generator C200 D6e Set Configuration Alternator UC3H Engine Model QSB7-G5 NR3 Excitation PMG Fuel Diesel 1 15 9 2.4 10 2 0.3 2 15 9 1.6 10 2 0.2 3 15 4 0.3 10 1 0.1 4 15 3 0.3 10 1 0.1 Note: Please refer to the model Spec. sheet for bandwidths used to report recovery times. For products manufactured in the United Kingdom it may be assumed that recovery times are based on IS08528-5 G2 class bandwidths. Voltage and frequency recovery times are estimates. Typically, allow five to ten seconds between application of load steps when designing your system. "Please note that in some cases the voltage and frequency recovery time estimates are not shown in list. This is a result of "dummy" data points temporarily being used to fill data gaps in the GenSize database. Please disregard these blank results. 176.9 274.6 None None Steps and Dips Detail Report 07-May-2020 Page 1 Value 0 1 2 3 4 5 6 7 8 9 1 0 1 1 12 1 3 14 is Step 1 # Step 2 a m N Step 3 Step 4 ■ VDip Actual VDip Limit Value 0 1 2 3 4 5 6 7 8 9 1 0 Step 1 2.0 10.0 # Step 2 2.0 110.0 a N Step 3 1.0 I10.0 Step 4 1.0 110.0 IN FDip Actual FDip Limit Steps and Dips Detail Report 07-May-2020 Page 2 Power Generation Recommended Generator Report - C200 D6e Project - TWSA Horsepasture River WWTP Generator Comments - Frequency, Hz 60.0 Generators Running in Parallel 1 Duty Standby Site Altitude, ft(m) 3500(1067) Voltage 277/480, Series Wye Site Temperature, °C 25 Phase 3 Max. Altr Temp Rise, °C 125 Fuel Diesel Project Voltage Distortion Limit, % 10 Emissions No Preference Running kW Calculated 158.2 Individual Generator Max. Step kW Set ... Running and Peak Requirements 107.8 In Step 1 Cumulative Step kW 176.9 Running kVA 186.1 Max. Step kVA 162.7 In Step 2 Cumulative Step kVA 274.6 Running PF 0.85 Peak kW None Cumulative Peak kW None Running NLL kVA 73.7 Peak kVA None Cumulative Peak kVA None Alternator kW 202.94 Pct Rated Capacity 79.0 Alternator BCode Excitation Voltage Range Number of Leads Reconnectable Full Single Phase Output Increased Motor Starting Extended Stack Running At Max. Step Voltage Dip, % Max. Step Frequency Dip, % Peak Voltage Dip, % Peak Frequency Dip, % Site Rated Standby kW/kVA UCD3J B288 PMG BRHY 416-480 6 Yes No No No 79.0% Rated Capacity 8 2 200 / 250 Site Rated Max. SkW 212 Max. SkVA 920 Temp Rise at Full Load, °C 125 Voltage Distortion 3.9 Site Rated Max Step kW Limit 'Note: Higher temperature rise at full rated load. 'Note: All generator set power derates are based on open generator sets. Engine Fuel Displacement, cu in. (Litre) Cylinders Altitude Knee, ft(m) Altitude Slope, % per 1000ft(304.8m) Temperature Knee, °F(°C) Temperature Slope, % per 18°F(10.0°C) Emissions Cooling Package Max. Allowed Step Voltage Dip Max. Allowed Step Frequency Dip Peak Voltage Dip Limit % Peak Frequency Dip Limit % Running kW Running kVA Effective Step kW Effective Step kVA Percent Non -Linear Load Voltage Distortion Limit Max Step kW QSB7-G5 NR3 Diesel 408.0(6.7) 6 5500(1676) 8 104(40) 34 EU SIIIA 15 In Step 1 10 In Step 1 15.0 10 158.2 186.1 148.8 274.6 42.0 10 Recommended Generator Report 07-May-2020 Page 1 Power Generation Loads Summary Report Project - TWSA Horsepasture River WWTP Generator Comments - Frequency, Hz 60.0 Duty Standby Voltage 277/480, Series Wye Phase 3 Fuel Diesel Emissions No Preference Loads Summary List *Note: Detailed Loads and Step Report available below Generators Running in Parallel 1 Site Altitude, ft(m) 3500(1067) Site Temperature, °C 25 Max. Altr Temp Rise, °C 125 Project Voltage Distortion Limit, % 10 Step No. Load Name Quantity Running Starting Peak Dip Limits, % VTHD% Limit kW kVA kW kVA kW kVA Vdip Hip Ste 01 Misc Plant Load 1 60.0 75.0 60.0 75.0 None None 15.0 10.0 0.0 Step01 1SBR Blower 1 20.72 23.02 20.72 23.02 1 None None 15.0 10.0 10.0 Ste 01 Influent Pump 1 12.43 13.81 27.07 55.24 None None 15.0 10.0 10.0 Step Summary 93.0 112.0 108.0 153.0 None None 15.0 10.0 10.0 Ste 02 Influent Pump 1 12.43 13.81 27.07 55.24 None None 15.0 10.0 10.0 Ste 02 Headworks 1 12.86 14.61 43.37 88.5 None None 15.0 10.0 0.0 Step02 Filter Drive 1 1.89 2.39 13.3 19.0 None None 15.0 10.0 0.0 Step Summary 27.0 31.0 84.0 163.0 None None 15.0 10.0 10.0 Ste 03 SBR Pump 1 8.67 9.97 21.14 39.88 None None 15.0 10.0 10.0 Step03 WAS Pump 1 1.02 11.46 8.97 11.8 None None 15.0 10.0 0.0 Ste 03 UV S stem 1 3.0 3.75 3.0 3.75 None None 15.0 10.0 0.0 Step Summary 13.0 15.0 33.0 55.0 None None 15.0 10.0 10.0 Step04 Sludge Blower 1 20.72 23.02 20.72 23.02 None None 15.0 10.0 10.0 Ste 04 Filter Backwash Pump 1 4.44 15.22 12.74 20.88 None None 15.0 10.0 10.0 Step Summary 25.0 28.0 33.0 144.0 None 1 None 15.0 10.0 10.0 Project Summary Running Max Starting Cumulative Step Cumulative Peak Project VTHD% Limit kW kVA kW kVA kW kVA kW kVA 158.2 186.1 107.8 162.7 176.9 274.E j 0.0 0.0 j 10.0 *Note: Detailed Loads and Step Report available below Loads and Steps Detail Report 07-May-2020 Page 1 IVPower OO Generation Loads and Steps Detail Report Project - TWSA Horsepasture River WWTP Generator Comments - Frequency, Hz Duty Voltage Phase Fuel Emissions Running kW Running kVA Running PF Running NLL kVA Alternator kW Running kW Running kVA Running Amps Running Non -linear kVA Alternator kW Voltage Distortion Limit for step Misc Plant Load Category Running kW Running kVA Running PF Running Amps Alternator kW SBR Blower Category Running kW Running kVA Running PF 158.2 186.1 0.85 73.7 202.94 93.0 112.0 135.0 37.0 115.53 10 60.0 Generators Running in Parallel 1 Standby Site Altitude, ft(m) 3500(1067) 277/480, Series Wye Site Temperature, °C 25 3 Max. Altr Temp Rise, °C 125 Diesel Project Voltage Distortion Limit, % 10 No Preference d Individual Generator Set Max. Step kW ... Running and Peak Requirements 107.8 In Step 1 Cumulative Step kW 176.9 Max. Step kVA 162.7 In Step 2 Cumulative Step kVA 274.6 Peak kW None Cumulative Peak kW None Peak kVA None Cumulative Peak kVA None Calculated Individual Generator Set Step Load Requirements Starting kW 108.0 Cumulative Step kW 108.0 Starting kVA 153.0 Cumulative Step kVA 153.0 Starting Non -linear kVA 78.0 Three Phase Quantity 1 In this Step User Defined 60.0 Starting kW 60.0 Peak kW None 75.0 Starting kVA 75.0 Peak kVA None 0.8 Starting PF 0.8 Cyclic No 90.32 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 60.0 Voltage 480 Three Phase Quantity 1 In this Step Motor 20.72 Starting kW 20.72 Peak kW None 23.02 Starting kVA 23.02 Peak kVA None 0.9 Starting PF 0.9 Cyclic No Loads and Steps Detail Report 07-May-2020 Page 2 Running Amps 27.72 Max. % Voltage Dip Running NLL kVA 23.02 Starting NLL kVA 23.02 Alternator kW 41.44 Shaft Hp 25.0 Shaft kW 18.65 Rectifier Type 6 pulse Efficiency (%) 0.9 Load Factor 100.0 Influent Pump Category Motor Running kW 12.43 Starting kW Running kVA 13.81 Starting kVA Running PF 0.9 Starting PF Running Amps 16.63 Max. % Voltage Dip Running NLL kVA 13.81 Starting NLL kVA 55.24 Alternator kW 14.09 Shaft Hp 15.0 Shaft kW 11.19 Efficiency (%) 0.9 Design Standard NEMA Design B,C or D Rectifier Type 6 pulse Load Factor : 100.0 15.0 Max. % Frequency Dip 10.0 Voltage 480 Type Ramp Details THDI % THDV % Three Phase Quantity Variable Frequency Drive None 26 10 1 In this Step 27.07 Peak kW None 55.24 Peak kVA None 0.49 Cyclic No 15.0 Max. % Frequency Dip 10.0 Voltage 480 Method Solid State Current Limit 400.0 LRkVA Factor 0.0 LRkVA Code 0 THDI % 26 THDV % 10 Calculated Individual Generator Set Step Load Requirements Running kW 27.0 Starting kW 84.0 Cumulative Step kW 177.0 Running kVA 31.0 Starting kVA 163.0 Cumulative Step kVA 275.0 Running Amps 37.0 Starting Non -linear kVA 55.0 Running Non -linear kVA 14.0 Alternator kW 28.84 Voltage Distortion Limit for 10 step Influent Pump Three Phase Quantity 1 In this Step Category Motor Running kW 12.43 Starting kW 27.07 Peak kW None Running kVA 13.81 Starting kVA 55.24 Peak kVA None Running PF 0.9 Starting PF 0.49 Cyclic No Running Amps 16.63 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Running NLL kVA 13.81 Starting NLL kVA 55.24 Voltage 480 Alternator kW 14.09 Loads and Steps Detail Report 07-May-2020 Page 3 Shaft Hp 15.0 Method Solid State Shaft kW 11.19 Current Limit 400.0 Efficiency (%) 0.9 LRkVA Factor 0.0 Design Standard NEMA Design B,C or D LRkVA Code 0 Rectifier Type 6 pulse THDI % 26 THDV % 10 Load Factor 100.0 Headworks Three Phase Quantity 1 In this Step Category Motor Running kW 12.86 Starting kW 43.37 Peak kW None Running kVA 14.61 Starting kVA 88.5 Peak kVA None Running PF 0.88 Starting PF 0.49 Cyclic No Running Amps 17.59 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Alternator kW 12.86 Voltage 480 Shaft Hp 15.0 Method Across the line Shaft kW 11.19 Low Inertia No Efficiency (%) 0.87 LRkVA Factor 5.9 Design Standard NEMA Design B,C or D LRkVA Code G Load Factor 100.0 Filter Drive Three Phase Quantity 1 In this Step Category Motor Running kW 1.89 Starting kW 13.3 Peak kW None Running kVA 2.39 Starting kVA 19.0 Peak kVA None Running PF 0.79 Starting PF 0.7 Cyclic No Running Amps 2.88 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Alternator kW 1.89 Voltage 480 Shaft Hp 2.0 Method Across the line Shaft kW 1.49 Low Inertia No Efficiency (%) 0.79 LRkVA Factor 9.5 Design Standard NEMA Design B,C or D LRkVA Code L Load Factor 100.0 ' Calculated Individual Generator Set Step Load Requirements Running kW 13.0 Starting kW 33.0 Cumulative Step kW 153.0 Running kVA 15.0 Starting kVA 55.0 Cumulative Step kVA 198.0 Running Amps 18.0 Starting Non -linear kVA 40.0 Running Non -linear kVA 0.0 Alternator kW 12.69 Voltage Distortion Limit for 10 step SBR Pump Three Phase Quantity 1 In this Step Category Motor Loads and Steps Detail Report 07-May-2020 Page 4 Running kW 8.67 Starting kW Running kVA 9.97 Starting kVA Running PF 0.87 Starting PF Running Amps 12.01 Max. % Voltage Dip Running NLL kVA 0.0 Starting NLL kVA 39.88 Alternator kW 8.67 Shaft Hp 10.0 Shaft kW 7.46 Efficiency (%) 0.86 Design Standard NEMA Design B,C or D Rectifier Type 6 pulse Load Factor 100.0 WAS Pump Category Motor Running kW 1.02 Starting kW Running kVA 1.46 Starting kVA Running PF 0.7 Starting PF Running Amps 1.76 Max. % Voltage Dip Alternator kW 1.02 Shaft Hp 1.0 Shaft kW 0.75 Efficiency (%) 0.73 Design Standard NEMA Design B,C or D Load Factor 100.0 UV System Category User Defined Running kW 3.0 Starting kW Running kVA 3.75 Starting kVA Running PF 0.8 Starting PF Running Amps 4.52 Max. % Voltage Dip Alternator kW 3.0 Running kW 25.0 Running kVA 28.0 Running Amps 34.0 Running Non -linear kVA 23.0 Alternator kW 45.88 Voltage Distortion Limit for 10 step Sludge Blower 21.14 Peak kW None 39.88 Peak kVA None 0.53 Cyclic No 15.0 Max. % Frequency Dip 10.0 Voltage 480 Method Solid State Current Limit 400.0 LRkVA Factor 6.7 LRkVA Code H THDI % 26 THDV % 10 Three Phase Quantity 1 In this Step 8.97 Peak kW None 11.8 Peak kVA None 0.76 Cyclic No 15.0 Max. % Frequency Dip 10.0 Voltage 480 Method Across the line Low Inertia No LRkVA Factor 11.8 LRkVA Code N Three Phase Quantity 1 In this Step 3.0 Peak kW None 3.75 Peak kVA None 0.8 Cyclic No 15.0 Max. % Frequency Dip 10.0 Voltage 480 Calculated Individual Generator Set Step Load Requirements Starting kW 33.0 Cumulative Step kW 166.0 Starting kVA 44.0 Cumulative Step kVA 202.0 Starting Non -linear kVA 44.0 Three Phase Quantity : 1 In this Step Loads and Steps Detail Report 07-May-2020 Page 5 Category : Motor Running kW 20.72 Starting kW 20.72 Peak kW None Running kVA 23.02 Starting kVA 23.02 Peak kVA None Running PF 0.9 Starting PF 0.9 Cyclic No Running Amps 27.72 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Running NLL kVA 23.02 Starting NLL kVA 23.02 Voltage 480 Alternator kW 41.44 Shaft Hp 25.0 Type Variable Frequency Drive Shaft kW 18.65 Ramp Details None Rectifier Type 6 pulse THDI % 26 Efficiency (%) 0.9 THDV % 10 Load Factor 100.0 Filter Backwash Pump Three Phase Quantity 1 In this Step Category Motor Running kW 4.44 Starting kW 12.74 Peak kW None Running kVA 5.22 Starting kVA 20.88 Peak kVA None Running PF 0.85 Starting PF 0.61 Cyclic No Running Amps 6.29 Max. % Voltage Dip 15.0 Max. % Frequency Dip 10.0 Running NLL kVA 0.0 Starting NLL kVA 20.88 Voltage 480 Alternator kW 4.44 Shaft Hp 5.0 Method Solid State Shaft kW 3.73 Current Limit 400.0 Efficiency (%) 0.84 LRkVA Factor 7.5 Design Standard NEMA Design B,C or D LRkVA Code J Rectifier Type 6 pulse THDI % 26 THDV % 10 Load Factor 100.0 Loads and Steps Detail Report 07-May-2020 Page 6 Power Generation Steps and Dips Details Report Project - TWSA Horsepasture River WWTP Generator Frequency, Hz 60.0 Generators Running in Parallel 1 Duty Standby Site Altitude, ft(m) 3500(1067) Voltage 277/480, Series Wye Site Temperature, °C 25 Phase 3 Max. Altr Temp Rise, °C 125 Fuel Diesel Project Voltage Distortion Limit, % 10 Emissions No Preference Running kW Calculated 158.2 Individual Generator Max. Step kW Set ... Running and Peak Requirements 107.8 In Step 1 Cumulative Step kW Running kVA 186.1 Max. Step kVA 162.7 In Step 2 Cumulative Step kVA Running PF 0.85 Peak kW None Cumulative Peak kW Running NLL kVA 73.7 Peak kVA None Cumulative Peak kVA Alternator kW 202.94 Model Generator C200 D6e Set Configuration Alternator UCD3J Engine Model QSB7-G5 NR3 Excitation PMG Fuel Diesel 1 15 8 2.4 10 2 0.3 2 15 8 1.6 10 2 0.2 3 15 3 0.3 10 1 0.1 4 15 3 0.3 10 1 0.1 Note: Please refer to the model Spec. sheet for bandwidths used to report recovery times. For products manufactured in the United Kingdom it may be assumed that recovery times are based on IS08528-5 G2 class bandwidths. Voltage and frequency recovery times are estimates. Typically, allow five to ten seconds between application of load steps when designing your system. "Please note that in some cases the voltage and frequency recovery time estimates are not shown in list. This is a result of "dummy" data points temporarily being used to fill data gaps in the GenSize database. Please disregard these blank results. 176.9 274.6 None None Steps and Dips Detail Report 07-May-2020 Page 1 Value 0 1 2 3 4 5 6 7 8 9 1 0 1 1 12 1 3 14 is Step 1 # Step 2 a m N Step 3 Step 4 ■ VDip Actual VDip Limit Value 0 1 2 3 4 5 6 7 8 9 1 0 Step 1 2.0 10.0 # Step 2 2.0 110.0 a N Step 3 1.0 I10.0 Step 4 1.0 110.0 IN FDip Actual FDip Limit Steps and Dips Detail Report 07-May-2020 Page 2