Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
NC0005088_Thermal Model Verification Report_20200825
itu DUKE Rogers Energy Complex 573 Duke Power Road ENERGY, Mooresboro, North Carolina 28114 828 657 2000 August 25, 2020 Sergei Chernikov, Ph.D. NC Division of Water Resources Water Quality Permitting Section - NPDES 1617 Mail Service Center Raleigh, North Carolina 27699-1617 Subject: NPDES Wastewater Permit RECEIVED Rogers Energy Complex AUG 2 8 2020 Permit#NC0005088 Thermal Model Verification Report NCDEQIDVURINPDE Dear Dr. Chernikov: With reference to the study plan (May 22, 2019 letter to you) for verification of the Cormix model for Outfall 005 discharge, attached is the completed Thermal Model Verification report. Part I.A. (27) d) of NPDES permit#NC0005088 requires a report be submitted to the Division after 12 months of temperature data are collected to verify the CORMIX model assumptions and predictions. Part I. A. (27) e) of the permit also requires the permittee to perform an assessment to verify that the mixing zone does not prevent the passage of aquatic organisms around the mixing zone. These requirements are addressed in the attached report. This report concludes that effluent mixing of Outfall 005 within the Broad River occurs in a short distance downstream and the plume allows for safe passage of aquatic organisms. Both the historical temperature monitoring and the verified mixing zone model support the current NPDES permit limitations. Should you have questions or require additional information, please contact Robert Wylie at 704-562-8258. Sincerely, Jeffrey A. Joyce General Manager II, Rogers Energy Complex Fossil/Hydro Operations - Carolinas Coal Generation Attachment: Thermal Model Verification Report cc: Cyndi Karoly - NCDEQ Water Science Section USPS: 7020 0090 0001 7517 0177 USPS: 7020 0090 0001 7517 0184 Thermal Model Verification Rogers Energy Complex, Mooresboro, North Carolina RECEIVED AUG 2 8 2020 Prepared for: NCDEQIDWRINPDE$ Duke Energy Corporation NPDES Permit#NCOOO5O88 Mooresboro, North Carolina August 20, 2020 Prepared by: Water Environment Consultants Mount Pleasant, SC ; �. 4, 1111191110r- 1 Rogers Energy Complex Thermal Model Verification Table of Contents Executive Summary iii 1 Introduction 1 2 Field Monitoring 3 2.1 Ambient Currents and Water Depth 3 2.2 Elevation Survey 3 2.3 Outfall Characteristics 3 2.4 Ambient Dilution Study 10 2.5 Thermal Plume Monitoring 12 3 CORMIX Modeling 15 3.1 Field Monitoring Model Inputs 15 3.2 Field Monitoring CORMIX Results 17 3.3 7Q10 CORMIX Adjustments 20 3.4 7Q10 CORMIX Results 23 4 Conclusions 28 5 References 29 Appendix A. CORMIX Files A-1 Rogers Energy Complex Thermal Model Verification List of Figures Figure 1-1. Site Location Map 2 Figure 2-1. Major upstream rivers and dams in relation to outfall and USGS gage 4 Figure 2-2. Downstream USGS discharge rate on field study day 5 Figure 2-3. Measured water depths 5 Figure 2-4. Measured current velocities 6 Figure 2-5. Bottom elevation relative to NAVD88 7 Figure 2-6. Photo of the discharge looking from the outfall point towards the Broad River 8 Figure 2-7. Photo from the discharge from the river towards the rock spillway(red dye shown) 9 Figure 2-8. Photo of the discharge (red dye shown) looking upstream along the Broad River 10 Figure 2-9. Measurement transect locations in the Broad River 11 Figure 2-10. Measured dye concentrations in the Broad River 12 Figure 2-11. Measured temperature rise above upstream, ambient temperature in the Broad River 14 Figure 3-1. Field-measured cross-sections and average profile 16 Figure 3-2. Representative average profile and CORMIX model box 16 Figure 3-3. Modeled plume edge (from right bank) compared to the edge of dye plume 19 Figure 3-4. Modeled temperature dilution compared to field measured temperatures. 19 Figure 3-5. Best-fit line of USGS water level vs.flow rate for fitting data to 7Q10 conditions 21 Figure 3-6.Translated summer and winter profiles and respective CORMIX model boxes 21 Figure 3-7. Comparison of summer(above) and winter(below)temperature dilution CORMIX results 24 Figure 3-8. Comparison of summer(above) and winter(below) plume width CORMIX results. 26 Figure 3-9. Outside edge of plume during summer(above) and winter(below) 7Q10 conditions over aerial. (Imagery source: ESRI aerial 02/01/2019) 27 Figure A-1.Summer 89.6°F Model ISO View 48 Figure A-2. Summer 89.6°F Model Plan View 49 Figure A-3. Winter Delta-T Model ISO View 63 Figure A-4. Winter Delta-T Model Plan View 64 List of Tables Table E-1. Previous uncalibrated and revised CORMIX modeled mixing zone results v Table 2-1. Measured dye concentrations and temperatures in the Broad River 13 Table 2-2. Observed visible plume width 13 Table 3-1. CORMIX model inputs for field monitoring comparison 18 Table 3-2. Revised 7Q10 CORMIX model inputs for summer/winter 22 Table 3-3. Revised CORMIX model results 25 ii v Rogers Energy Complex Thermal Model Verification Executive Summary Water Environment Consultants (WEC) prepared this report for Duke Energy Corporation (Duke) and the North Carolina Department of Environmental Quality(NCDEQ) in support of NPDES permit (NC0005088) for Duke's Rogers Energy Complex (REC) located in Mooresboro, North Carolina. In March 2018,WEC completed a desktop CORMIX model, later approved by NCDEQ,which showed the applicable instream temperature standards will be met in the Broad River at a relatively short distance downstream of Outfall 005 (including both the 89.6°F maximum temperature requirement [15A NCAC 02B .0211 Fresh Surface Water Quality Standards for Class WS-IV Waters], and the requirement of no more than a 5.04°F rise above the natural water [also per 15A NCAC 02B .0211], referred to herein as the delta-T standard). The permit requires field verification of the modeling prediction used to set the 100°F daily maximum temperature limit at Outfall 005. Parts I.A.27.d and I.A.27.e of the permit state: After 12 months of temperature data are collected, the permittee shall submit a report to the Division to verify the CORMIX model predictions. The report shall include field verification of assumptions used in the model and a summary of temperature data for effluent, upstream and downstream... Once during the permit term, the permittee shall perform an assessment to verify that the mixing zone does not prevent the passage of aquatic organisms around the mixing zone.A study plan shall be submitted to the Division prior to commencement of the study... In May 2019, WEC prepared a Study Plan outlining the methodology for data collection and modeling that was later approved by NCDEQ. The data collection efforts included outfall geometry measurements, instream dilution and temperature plume measurements, and cross-sectional surveys for water depth, water surface elevation, ambient temperature, and ambient current velocity. WEC injected Rhodamine WT dye into the effluent discharge to measure dilution and record the visual plume dimensions. WEC used a temperature probe to record temperature measurements within the plume as well. WEC completed the field measurements in September 2019 when the ambient river conditions were as close to 7Q10 conditions as possible. WEC set up a CORMIX(Version 11.0) model with inputs matching the conditions during the field measurement day to the closest extent possible. The model results were compared to the measured plume temperature dilution and dye plume dimensions. While the two were closely correlated,the model provides a conservative(i.e., low) estimate of the effluent's mixing within the river. The model tends to underpredict dilution as compared to the field data, and actual dilutions across a range of ambient flows are likely greater than that estimated by CORMIX. WEC then set up a CORMIX model to predict the dilution and temperature plume from the discharge during a worst-case, 7Q10 ambient flow condition. The model was set up with the field measurement data adjusted to represent the 7Q10 condition. Both the summer and winter conditions were iii Rogers Energy Complex Thermal Model Verification considered in the analysis. WEC compared the resulting mixing zone dimensions to those from the March 2018 desktop model to ensure the 89.6°F and 5.04°F delta-T instream requirements were still being met at a relatively short distance downstream from the outfall. The mixing zone width was checked to ensure the safe passage of aquatic organisms. Thus far and throughout this report,three CORMIX models are discussed. For clarification each will be defined herein. The March 2018 desktop model will be referred to as the "previous desktop model." The CORMIX model set up with the field measurements will be referred to as the "field monitoring model." Lastly,the revised CORMIX model based on 7Q10 conditions will simply be referred to as the "revised model." Since this analysis considers both the summer and winter conditions,the respective season will be included in the discussion of the "revised model." The results from this revised model are similar to the results from the previous desktop model. During the summer conditions, the instream standard is met approximately 371.4 feet downstream compared to 427 feet predicted from the previous model. The revised winter model results show the standard is met roughly 583.3 feet downstream compared to the 476 feet from the previous model. The revised model slightly underpredicted mixing compared to the measured field data. Therefore,the actual distances where instream standards are met are likely less than the model predicted distances mentioned above. Both the previous desktop model and the revised CORMIX models indicate the plume would be bank attached; however,the previous desktop model results showed the plume "jetting" into the river slightly at the outfall. The revised model results show the plume width is less than the previous model during both the summer and winter cases. In addition,the predicted mixing zone width from both the previous and revised models indicate safe passage will be allowed along the opposite side of the river. Table E-1 summarizes the previous desktop model and revised model results. WEC also reviewed 12 months of upstream and downstream temperature monitoring data required by the permit. The goal of this review was to evaluate compliance with the temperature criteria outside of the mixing zone and to verify the model predictions from the previous desktop model used to set the permit limits. A review of upstream and downstream temperature records indicates the discharge is within compliance of the temperature criteria. As compared to ambient temperature upstream of the outfall,the downstream gage station ranged from a minimum of-1.2°F to a maximum of 2.2°F difference. The average delta between the two gages for the time period was 0.3°F, significantly less than the 5.04°F instream standard. In addition,the monitoring station may remain in place as it is downstream of the mixing zone distances, 371.4 feet (summer) and 583.3 feet (winter), predicted by the revised model. _• iv icy L' Rogers Energy Complex Thermal Model Verification Table E-1. Previous desktop and revised CORMIX modeled mixing zone results Mixing Zone Distance downstream Plume width Previous Desktop Model (2018) Summer 130 m (427 ft) 37 m (121 ft) Winter 145 m (476 ft) 49 m (161 ft) Revised Model (2020) Summer 113 m (371 ft) 33 m (107 ft) Winter 178 m (584 ft) 42 m (138 ft) Rogers Energy Complex Thermal Model Verification 1 Introduction Water Environment Consultants (WEC) prepared this report for Duke Energy Corporation (Duke) and the North Carolina Department of Environmental Quality(NCDEQ) in support of the NPDES permit (NC0005088)for Duke's Rogers Energy Complex (REC) located in Mooresboro, North Carolina (Fig. 1-1). Previously,the NCDEQ-approved desktop CORMIX model completed by WEC(WEC, 2018) showed that the applicable instream temperature standards will be met in the Broad River at a relatively short distance downstream of Outfall 005 (including both the 89.6°F maximum temperature requirement [15A NCAC 02B .0211 Fresh Surface Water Quality Standards for Class WS-IV Waters], and the requirement of no more than a 5.04°F rise above the natural water [also per 15A NCAC 02B .0211], referred to herein as the delta-T standard). The worst-case,winter model showed compliance with the 5.04°F delta-T instream standard, and both standards were modeled at worst-case 7Q10 low-flow ambient conditions. The permit requires field verification of the modeling prediction used to set the 100°F daily maximum temperature limit at Outfall 005. Parts I.A.27.d and I.A.27.e of the permit state: After 12 months of temperature data are collected, the permittee shall submit a report to the Division to verify the CORMIX model predictions. The report shall include field verification of assumptions used in the model and a summary of temperature data for effluent, upstream and downstream... Once during the permit term, the permittee shall perform an assessment to verify that the mixing zone does not prevent the passage of aquatic organisms around the mixing zone.A study plan shall be submitted to the Division prior to commencement of the study... In May 2019, WEC prepared a Study Plan that was approved by NCDEQ in June 2019. The Study Plan provided a detailed methodology for data collection and modeling efforts that included: • Ambient current, water depth, water surface elevation and temperature measurements; • Outfall geometry measurements; • Instream dilution measurements; • Instream thermal plume measurements; and • CORMIX modeling. WEC completed the field measurements in September 2019, and using this data, completed a CORMIX modeling analysis to verify the 100°F daily maximum temperature limit. The report is divided into the following subsections: • Section 2, Field Monitoring—provides a detailed description of the field data collection methodology and results. • Section 3, CORMIX Modeling—describes CORMIX model comparison to the observed dilution and temperature in the Broad River, as well as updated CORMIX modeling at critical conditions. • Section 4, Conclusions—presents study conclusions based on the field measurements and updated CORMIX modeling. 1 VV 1 Rogers Energy Complex Thermal Model Verification . O © 1,1 1 , ,,, . - - , Wi E • 1 / �; . lop.'-..-. �°� f'r r a v,. r s } ,y', • • . ' )x,,, IFy. r'isre j 4 , - .., r 4 .try , � . - . butfaII 005 Outfall 002 I � 4 6 of 1_ t `V �-^ - "`�.+. '''1K. '-, Site '_ -\1 • fixation . „,..,.,?:,r --,7. \._.. • • . , i :A Source: U.S Geplogreva Sut vey - Chesnee, $C-NC (2017) - 7.5 Minute Prepared for: Prepared by: DUKE Site Location Map Figure: Rogers Energy Complex L(-" ", ENERGY. Mooresboro, North Carolina r 1-1 Figure 1-1. Site Location Map Rogers Energy Complex Thermal Model Verification 2 Field Monitoring The Cliffside Steam Station is located along the Broad River, approximately 43 miles from Lake Lure and 41 miles from Lake Adger. Major tributaries in this section include the Green and Second Broad Rivers. These rivers begin in the mountains but flow into the Piedmont ecoregion. Upstream of the Cliffside station, both the Green River and Broad River are impounded at Lake Adger and Lake Lure, respectively (Figure 2-1). Both reservoirs are used to produce hydroelectric power. WEC performed the field measurements on September 23, 2019,when the weather was favorable and the Broad River stage was at a low-flow condition, as close to 7010 as possible. For the river to be at a consistent, low-flow condition, WEC coordinated extensively with Northbrook Power Management, LLC (Northbrook),the owner/operator of the Turner Shoals Dam at Lake Adger,to lower the release of water for the field study. The Lake Lure hydro generators were not scheduled to run during the study period,thus coordination to lower the water release was not necessary. The Turner Shoals hydro generators did not run the weekend before the field work, in anticipation of the delayed effects on the downstream flow. The lowered release lasted through completion of the field work, at which time Northbrook Power Management was notified. Figure 2-2 shows the discharge timeseries at USGS station 02151500(USGS, 2020), located 3.3 miles downstream of the outfall,for the period around the field study. The subsections below describe the methodology and results for the various measurements made on this day. 2.1 Ambient Currents and Water Depth WEC used a Sontek RiverSurveyor-M9 to collect detailed water depths and current velocities in the Broad River. The RiverSurveyor is an Acoustic Doppler Current Profiler(ADCP), equipped with a differential GPS to provide horizontal positioning data. The ADCP instrument measures depths and currents through the water column as it traverses the river, providing a two-dimensional cross-section of current velocities. WEC made several transects across the Broad River at and downstream of Outfall 005. Figure 2-3 and Figure 2-4 show the measured water depths and depth-averaged current velocities, respectively. 2.2 Elevation Survey WEC measured water surface elevation at the time of the field data collection using a Trimble Geo 7x Centimeter Edition GPS. The GPS is capable of measuring with a vertical accuracy of±0.1 foot and was used to convert measured water depths to bottom elevation relative to the North American Vertical Datum of 1988 (NAVD88). The Broad River water surface elevation at the outfall was+655.3 feet NAVD88. Figure 2-5 shows the measured depths converted to bottom elevations, referenced in feet NAVD88. 2.3 Outfall Characteristics The previous desktop model inputs of the outfall structure were based on design drawings, maximum flow rate, and CORMIX geometrical restrictions (e.g. outfall "channel" depth to width ratio). WEC observed the constructed outfall structure and measured the discharge geometry and depth at the point e 3 . y Lam" Rogers Energy Complex Thermal Model Verification • Lake Lure Darn , ,r> t f�$ .1.0.$ .. ' .,. .w �;r. Second Broad River Turner Shoals Dam .,.{1,-,,$,,.,,, _ :.•Rlnda.. ' • .ti I,rc. .1, tlkrat.'• H+r, a.L•andcr fit:- .. _--' Green River Broad River h1.,. SFnrq.. uW0-'P-it NN Rivnr \ Legend ` VP 'I..'"•f. - ,N,. ei Outfall 005 '-AR IN.S L , -i _ _ Ni USG S 02151500 BROAD RIVER A ■ • Miles NEAR BOILING SPRINGS, NC 0 2-5 5 7.5 10 Figure 2-1. Major upstream rivers and dams in relation to outfall and USGS gage at which it flows into the Broad River. Photos of the discharge are shown in Figures 2-6 through 2-8. The red color seen in the river(Figure 2-7 and 2-8) is from the Rhodamine WT dye, which is discussed in the followingsection. The discharge was 20 feet wide at the bottom of the rock spillway and 11 feet g P Y wide at the sand bar where it flowed into the Broad River. At this point,the discharge water depth was 12 inches deep at the edges of the channel and 21 inches deep at the mid-point of the discharge channel. These measurements were used to adjust the model's input for discharge channel geometry. Note that the Outfall 005 discharge flow rate was maintained steady at 3,000 gallons per minute (gpm) during the field study. _ 4 i I'� L1 Rogers Energy Complex Thermal Model Verification USGS 82151508 BROAD RIVER NEAR BOILING SPRINGS, NC 2808 ei▪ 1808 .o V �4 1 j f Field Study •a 0 488 08:88 12:08 09:00 12:00 80:80 12:80 88;88 Sep 21 Sep 21 Sep 22 Sep 22 Sep 23 Sep 23 Sep 24 2019 2819 2019 2019 2819 2018 2919 ---- Provisional Data Subject to Revision ---� Median daily statistic (94 years) — Discharge Figure 2-2. Downstream USGS discharge rate on field study day Legend Outfall 005 � Water Depth (ft) 4.5 - 50 • 0.5 - 1.0 2.5 - 3.0 • 5.0 - 55 , • 1.0 - 1.5 3.0 - 3.5 • 5.5 - 60 = v 1.5 -2-0 3.5 -4.0 • 6.0 - 65 r~EE A 0 50 100 200 300 20 -2.5 4.0 -4.5 • 6 5 - 7 0 • ., Figure 2-3. Measured water depths .. 5 --: v L-' Rogers Energy Complex Thermal Model Verification 1.s ri - }3 . _iir fir. • 4' i d} • w t. 4 .� ... ,i- - !��� 0.0 * w ?'Ys,r, f 0. 1a Velocity Vector $ • * y • " 1.73 ft/s 0.00fls , s. o ' it .. „. - * ' . 4. Figure 2-4. Measured current velocities 6 Rogers Energy Complex Thermal Model Verification • G '�,., a is..i , `,. � ypam + � Ale 4 ..... � # 4,ra t ) . . . , _ . Legend i . G Outfall 005 ,a: • Bottom Elev (ft NAVD88) �e + .. , • 648.0 -648-5 651-5 -652.0 .: si • 648.5 649.0 652-0 652 E r k ..i . ott• 1 i '. • 649-0 -649 5 652-5 -653.0 649.5 650.0 4,0 :*. ' - -4 , *. 650.0 - 6505 • 653.5-654.0 '° ' .,* +w 5650.5 -651.0 . 654.0 -654. 6 le ii_ A Feet 651.0 -651.5 t 0 50 100 200 300 L _• le ;" tar► Figure 2-5. Bottom elevation relative to NAVD88 Rogers Energy Complex Thermal Model Verification • i 4 .Ittlik - sir 1 ,^j, ..�'< 1• f"4. '. -,,,j\j'r"•Ct:C7"..;, 4 fie ...j .. ..tir . , r• �j ?.0 Syr. •e tlor II ,�,+tit.: T ,• 1 400,....... - - - • III-'Ilk -•.ram .�_ , .- h?, �' w- ` .�" �. .. ; 1 1. 4' '''r a, � -..A, i lik. • 16 4,.. al' • _ .. ...„.. . „.,,.......,...tc-...az,,,,,,:'ft. . - . r• S•• 4 Figure 2-6. Photo of the discharge looking from the outfall point towards the Broad River 8 i�Y L Rogers Energy Complex Thermal Model Verification • r r shy . ,' • • ... 1 fit+' Figure 2-7. Photo from the discharge from the river towards the rock spillway(red dye shown) : v Rogers Energy Complex Thermal Model Verification 4 y M t epirl— . A a d - , J` - ;,s s - . ✓ - L �� oy ', h " - J Al -[` R Figure 2-8. Photo of the discharge(red dye shown)looking upstream along the Broad River 2.4 Ambient Dilution Study For this modeling application, the ambient river temperature is less important than the ambient and discharge flows, because temperature changes within the region of interest are primarily driven by mixing and not heat exchange with the atmosphere. Although plume temperatures were measured as part of the field verification (as detailed in Section 2.5), dilution of those temperatures with the cooler river water was important for understanding and delineating the plume. To better determine instream mixing and dilution, WEC conducted a dye tracer study using Rhodamine WT dye. WEC injected the dye into the wastewater discharge at a constant rate, under constant discharge flow conditions. WEC deployed a Turner Designs Cyclops-7 logger, a rhodamine sensor,to continuously measure the dye concentration and temperature at the discharge outfall (at the end of pipe, above the rock spillway). WEC used a hand-held Turner Designs fluorometer to measure the dye concentration at the outfall and downstream within the Broad River at regularly spaced transects, as shown in Figure 2-9. WEC also measured the location of the visible edge of the plume in the Broad River. WEC completed the dye and temperature measurements in the river between 9:12 am and 10:24 am. During this time period,the average dye concentration of the effluent prior to discharge was 59 micrograms per liter(pg/I). _ 10 Rogers Energy Complex Thermal Model Verification Legend Outfall 005 — Transect locations Co 4,4 Approximate location of rlp rap spillway 4 y, N Feet , .amass A 0 40 80 120 160 ,. ' Figure 2-9. Measurement transect locations in the Broad River In the Broad River, WEC measured an ambient fluorescence upstream from the discharge that registered in a range equivalent to a dye concentration of 30 to 60 µg/I on the hand-held fluorometer. This background interference also caused some erratic measurements in the river, which limited the use of the instream dye measurements for direct comparison to modeled plume dilution in the river(as initially intended). However,there was a visibly clear delineation between the dye-colored effluent plume and the ambient river. Therefore,the instream dye measurements were used along with the visual observations of the plume edge for correlation with the edge of the modeled plume as it moved downstream. A two-dimensional plot of the dye concentration and edge of plume is shown in Figure 2-10, and Table 2-1 lists the instream fluorometer readings. The results show that the plume is bank-attached, as predicted by the previous CORMIX modeling. A small flow from Suck Creek pushed the plume slightly northward, as indicated by the low dye concentrations along the bank downstream from the confluence of Suck Creek and Broad River. The plume width versus distance downstream, based on the visual edge of the plume, is listed in Table 2-2. 11 ♦fir Lv Rogers Energy Complex Thermal Model Verification Legend �, Outfall 005 /.°Oct„ Dye(ugfl) et. • 9- 51 • >51 --.-- Visual Edge of Plume r S Y ri i '�J **`` tee 4 ,y - iiarkzatt, Approximate location i ftr ,ft`'' of rip rap spillway r • • Feet 0 100 200 300 400 Figure 2-10. Measured dye concentrations in the Broad River 2.5 Thermal Plume Monitoring WEC also measured the instream temperature from the outfall and downstream, and those results are also listed Table 2-1. The use of this data is limited by the relatively small difference between the discharge temperature (23.9 °C) and the upstream ambient temperature (20.0°C). Regardless, Figure 2- 11 shows the temperature rise above the ambient instream temperature. The results support a bank- attached plume and indicate a temperature rise greater than 0.5 °C occurring within a region less than 257 feet downstream of the outfall (the third transect shown on Figure 2-11) and less than 24 feet from the shoreline. .Ls-_ 12 Rogers Energy Complex Thermal Model Verification Table 2-1. Measured dye concentrations and temperatures in the Broad River Cross- stream Downstream distance Temperature Temp. Rise Time Transect Distance(ft) (ft) Depth (ft) Dye(ugh) (deg C) (deg C) 9:12 Effluent 0 0 1 90 23.9 3.9 9:24 1 0 45 1 33 9:26 1 0 42 1 51 19.9 -0.1 9:29 1 0 24 1 86 19.9 -0.1 9:30 1 0 24 2 39 19.9 -0.1 9:32 1 0 15 1 104 9:34 1 0 6 1 130 20.8 0.8 9:37 2 99 60 1 35 19.9 -0.1 9:40 2 99 39 1 46 19.9 -0.1 9:43 2 99 24 1 114 9:44 2 99 6 1 117 20.6 0.6 9:47 3 257 51 1 39 20 0 9:49 3 257 45 1 43 19.9 -0.1 9:52 3 257 30 1 154 19.9 -0.1 9:53 3 257 15 1 1421 20.1 0.1 9:55 3 257 6 1 116 20.3 0.3 9:57 4 445 90 1 64 20 0 9:59 4 445 102 1 37 20 0 10:01 4 445 75 1 281 20 0 10:03 4 445 60 1 1002 20 0 10:05 4 445 30 1 11 20 0 10:06 4 445 15 1 9 19.9 -0.1 10:10 5 658 135 1 14 20.4 0.4 10:11 5 658 84 1 47 20.1 0.1 10:13 5 658 63 1 297 20.1 0.1 10:14 5 658 15 1 2037 20.1 0.1 10:15 5 658 6 1 10 20.2 0.2 10:24 Effluent 0 0 1 92 23.9 3.9 Table 2-2. Observed visible plume width Downstream Distance from Transect Distance(ft) Bank(ft) 1 0 24 2 99 39 3 257 30 4 445 60 5 658 63 ♦ r fi CI L v 13 Rogers Energy Complex Thermal Model Verification Legend Temp Rise(deg C) • -0.1 • 0.0 O 0.1 @,o • O 0.2 a a'Q:� 0 0.3 e,. O 0.4 0 0.5-0.6 • 0.7-0.8 ® Outfall005 `�..�.. • --•-- Visual Edge of Plume • Approximate location 8 of rip rap spillway ,&,-. j O 40.1164484.1 • v�00 �• 4 @y Co \ F Feet A 0 40 80 120 160 Figure 2-11. Measured temperature rise above upstream,ambient temperature in the Broad River 14 —� am' Rogers Energy Complex Thermal Model Verification 3 CORMIX Modeling Using the bathymetric data collected in the field,WEC determined a representative cross-sectional channel geometry within the plume length that is more accurate than the previous desktop model estimate. WEC set up a CORMIX(Version 11.0) model that includes the new model inputs, ambient flow, and the outfall discharge flow and temperature on the field measurement day. WEC adjusted model inputs,to the extent possible,to match the measured data. WEC modeled the field measurement day's conditions for the purpose of comparing the results to the thermal plume and dilution monitoring data. WEC also conducted sensitivity testing on CORMIX inputs that could not be field tested (i.e., bottom friction). Comparing the model results to the field data confirmed that dilution occurred primarily from mixing, and evaporative temperature loss was insignificant. These results were also used to update the previous desktop model inputs as detailed in Section 3.1. WEC set up a model scenario to predict the dilution and temperature plume from the discharge during worst-case conditions(i.e., 6.0 MGD discharge, 7010 river flow, 100°F discharge temperature) used to set the 100°F daily maximum permit limitation. The model inputs and results are presented in detail in the following subsections. WEC then compared the new resulting mixing zone dimensions to those from the previous desktop model to ensure the 89.6°F and 5.04°F delta-T instream requirements were still being met at a relatively short distance downstream from the outfall. 3.1 Field Monitoring Model Inputs WEC performed the field measurements during a low-flow time period (September 23, 2019),when conditions were as close to 7010 as possible. At the conclusion of field data collection,WEC analyzed the data across several transects to determine the mean channel geometry. Figure 3-1 illustrates the cross-sections used and the final representative average profile. Figure 3-2 highlights the representative profile, and the cross-sectional model "box" utilized by CORMIX was best-fit(estimated) within the average profile. The representative model "box" channel geometry width was 237.1 feet and the average depth was 3.2 feet. WEC calculated the ambient flow rate during the field study using depth-averaged velocities and the average channel cross-sectional geometry/area. The results were compared to the downstream USGS gage station (0215150 Broad River Near Boiling Spring, NC). The average flow rate across the surveyed profiles was 559 cubic feet per second (cfs),which is very close to the 504.6 cfs average USGS station value on the field day. The value determined from the field data slightly differs from the USGS flow rate possibly as a result of the ADCP's limited ability to capture depth and velocity data in the very shallow regions near the banks. Since river flow was mostly constant throughout the field study, due to the controlled dam release, WEC used the USGS value of 504.6 cfs for the ambient flow CORMIX input. Additional model inputs adjusted based on the field data include the depth at discharge, bottom slope, discharge channel width and depth, and the effluent flow rate. As discussed in Section 2.3,the flow at the bottom of the rock spillway is confined within a sandbar channel that flows into the main river body. - °v Lam' 15 i Rogers Energy Complex Thermal Model Verification Field Monitoring Profiles (Looking Downstream) 0 -1 -z ‘ j s ``A 16141rIlel0 �� 4� I K.MA 110 -5 -6 0 50 100 150 200 250 Cross-section (ft) Profile 1 Profile 2 --•Profile 3 Profile 4 Profile 5 -Avg Profile Figure 3-1. Field-measured cross-sections and average profile Average Profile (Looking Downstream) 0 -Average Profile -0.5 -CORMIX Model Box -1 Length:237.1 ft -1.5 Depth:3.2 ft $ -2 v -2.5 3 1r & ♦ V -3.5 T V -4 100 150 ?rn 250 Cross-section (ft) Figure 3-2. Representative average profile and CORMIX model box 16 : v Rogers Energy Complex Thermal Model Verification The model inputs for width and depth of the surface channel discharge were 11 ft and 1.64 ft, respectively. WEC used the ambient cross-sectional profile near the discharge to determine a bottom slope. Along the river bank near the discharge,the bottom slope was approximately 12.4 degrees. The effluent flow rate was set to the actual flow rate during the time field monitoring was conducted, 3,000 gpm (4.3 MGD). Table 3-1 summarizes the CORMIX inputs used to model the plume for comparison to the field monitoring. WEC set up two CORMIX models, one for dye and a second for temperature. The inputs for both models are identical,with the exception one model included effluent dye concentration and the second included effluent temperature excess. The dye model was used to compare the CORMIX plume width with the measured Rhodamine plume edge. The temperature model was used to compare the CORMIX model's maximum temperature with the measured maximum temperature as the plume moved downstream. 3.2 Field Monitoring CORMIX Results During the dye tracer study,there was a visibly clear delineation of the Rhodamine dye plume as it mixed downstream with the ambient currents. Figure 3-3 compares this measured plume width against the CORMIX plume width in relationship to the downstream distance (i.e.,the dye plume width from Model 1). The measured and modeled plume edges match fairly well,though the model is slightly conservative in the downstream region. In the far field, CORMIX slightly overestimates the plume width. Figure 3-4 shows the comparison of measured and modeled temperature dilution. In this graph,the maximum measured temperature within the discharge plume is plotted against the CORMIX model's centerline temperature (i.e.,the maximum model temperature from Model 2). The CORMIX model predicts an immediate temperature drop, similar to what was measured in the field. As with the plume width, the model provides a conservative estimate of the discharge temperature dilution within the river. Overall,the field monitoring model is in good agreement with the field observations, and it is an appropriate model for use in evaluatingthe effluent plume and compliance with mixingzone P requirements. 17 Rogers Energy Complex Thermal Model Verification Table 3-1. CORMIX model inputs for field monitoring comparison Revised Input Units Input Reference/Notes Effluent Model 1: Dye % 100 100%starting dye concentration to measure dilution Model 2:Temp °C 3.9 Excess(effluent=23.9; ambient= 20) Effluent Flow Avg discharge flow rate during time field measurements were MGD 4.3 Rate conducted (3000 gpm from plant). Effluent Temp °C 23.9 Effluent Temperature Ambient Average Depth ft 3.2 Average depth of representative profile. Representative profile is first five field day cross-sections. Depth at ft 3.2 Same as above. For CORMIX3: "Specify a depth further off- Discharge shore, more or less equal to average depth" Average wind during dye study 9AM - 11AM Wind Speed mph 3 (https://www.wunderground.com/history/daily/us/sc/greer/ KGSP/date/2019-9-23) Bounded Width ft 237.1 Width of average cross-section profile Appearance - 2 Slight meander Ambient Flow USGS 02151500 Broad River Near Boiling Springs, NC flow Rate cfs 504.6 rate on 9/23/19 Friction Factor value 0.03 Clean, straight section of river(discounts pools and shoals) Ambient Temp- °C 20.0 Measured temperature (upstream of discharge) during dye study Discharge—CORMIX 3 (surface discharge-channel) Nearest Bank - right As seen looking downstream Depth at ft 1.64 Set equal to channel depth (bottom slope begins at this point) Discharge Bottom Slope deg 12.4 Bottom slope between sandbar and first 20 ft of cross section #2 (nearest outfall) Channel Width ft 11 Measured width between sandbar at bottom of rock spillway (before entering the river) Measured depth near outfall sandbar was 1' at edges and Channel Depth ft 1.64 1.75' in middle. 1.64' (0.5 m) is minimum channel depth input within range of empirical data used to develop CORMIX equations. Horiz.Angle deg 90 Perpendicular to river flow (sigma) '1 18 v L'� Rogers Energy Complex Thermal Model Verification Plume Edge vs. Distance Downstream 90 80 70 as 60 a 50 ro 40 v 30 0 u 20 -Visual Dye Plume Edge 10 Modeled Plume Edge 0 0 100 200 300 400 500 600 700 800 900 1000 Distance Downstream (ft) Figure 3-3. Modeled plume edge(from right bank)compared to the edge of dye plume Temperature vs. Downstream Distance z -Maximum Measured Temperature 23.5 -Maximum Modeled Temperature 23 22.5 a 22 21.5 21 20.5 20 0 100 200 300 400 500 600 700 800 900 1000 Distance Downstream(ft) Figure 3-4. Modeled temperature dilution compared to field measured temperatures. ,�' 19 Rogers Energy Complex Thermal Model Verification 3.3 7Q10 CORMIX Adjustments Two previous, desktop CORMIX models were performed to determine the length and width of the plumes where the 89.6 °F and 5.04°F delta-T instream standards were met. The summer model was used for compliance with the 89.6 °F standard, by determining where the 100°F discharge was lowered to 89.6°F. During winter months the discharge temperature excess above ambient was greater. Thus, the winter model determined where the 100°F discharge met the 5.04°F delta-T standard. Because the discharge has limited momentum to push out into the river,the plumes are primarily bank attached. The plumes spread more downstream than across the stream width (i.e.,they're elongated). Therefore, safe passage is provided along the river width,while the plume lengths determine where the standards are achieved. WEC revised the previous, desktop CORMIX models used to set the 100°F daily maximum permit limit by incorporating the river geometry data collected during field monitoring. WEC adjusted the input flows and depths to represent 7010 conditions in order to provide the necessary input information. To translate the field data to low flow, 7Q10 conditions,WEC analyzed the nearby USGS gage data to establish a relationship of depth to flow rate. Figure 3-5 illustrates the relationship between gage height (water depth) and river flow. A best-fit equation of this relationship was used to estimate the water depth associated with 7Q10 flow rates. The difference between river depths duringsummer 7 10 conditions and the field measurement day Q was calculated to be 0.4 feet, and the difference for winter 7Q10 conditions was calculated as 0.1 feet. These minor differences are due to Northbrook agreeing to temporarily shut down the Turner Shoals hydro generators. Therefore, WEC lowered the water depth of the representative profile by 0.4 feet and 0.1 feet for the summer and winter 7010 flows within CORMIX. Similarly,the river width of the representative profile was tapered to account for the lowered water depth. The width for the summer and winter conditions were 229.6 feet and 235.1 feet, respectively. The summer and winter 7Q10 profiles and their respective CORMIX model boxes are shown in Figure 3-6. Both channel depth and width differ in the revised 7Q10 models as compared to the previous desktop model, and their accuracy is an improvement only achievable through cross-section surveys. Because the water depth differences between the field measurement day and 7Q10 conditions were relatively small and the bottom slope was consistent, it is assumed the discharge channel would remain constant. Table 3-2 summarizes the revised model inputs utilized for the 7Q10 model scenarios, including inputs used in the previous desktop model for comparison. 20 _ Rogers Energy Complex Thermal Model Verification USGS Station 0215150 5 4.5 4 i I z 3.5 5 0 'a 2.5 '= y=-3E-14x4+3E-10x3-1 E-06x2+0.0025x+0.8534 c 2 R2=0.9998 t7 1.5 L. 1 0.5 0 0 500 1000 1500 2000 2500 3000 3500 4000 Flow Rate(cfs) • USGS data • Summer 7Q10 • Winter 7010 Best-fit equation Figure 3-5. Best-fit line of USGS water level vs.flow rate for fitting data to 7Q10 conditions Average Profile (Looking Downstream) 0 Field Study Depth Profile -0.5 Summer Depth Profile -1 Summer CORMIX Model Box(229.6 ft X 2.8ft) -----Winter Depth Profile -1.5 Winter CORMIX Model Box(235.1 ft X 3.1 ft) 2 a, -2.5 , ; ,) o % ; ,- . `. i ,, , , -4 . -4.5 0 5u 100 150 200 250 Cross-section (ft) Figure 3-6.Translated summer and winter profiles and respective CORMIX model boxes .G�-- 21 V r L' =' Rogers Energy Complex Thermal Model Verification Table 3-2. Revised 7Q10 CORMIX model inputs for summer/winter Previous Revised Input Units Inputs Input(S/W) Reference/Notes Effluent Worst-case thermal excess"concentrations" Thermal Excess °F 13.7/54.5 13.7/54.5 (see effluent and ambient temperatures below). Effluent Flow MGD 6 6 Projected Outfall 005 long-term daily average flow. Summer: Based on the highest projected 24- hour average, summer temperature of 96.6°F with both boilers draining simultaneously (Guinta, 2017) plus a compliance margin of Effluent Temp °F 100/93.7 100/93.7 3.4°F to account for grab sampling. Winter:90°F based on highest projected 24- hour average,winter temperature plus a compliance margin;3.7°F added per the ambient temperature model constraint(see "Ambient Temp"below). Ambient Average depth of representative profile from Average Depth ft 2.5 2.8/3.1 field measurements(depth=area/width), adjusted for 7Q10 flow. Same as Above. For CORMIX3: "Specify a depth Depth at Discharge ft 3 2.8/3.1 further off-shore, more or less equal to average depth" Wind Speed m/s 2 2 Default CORMIX value;acceptable; minimal effect within near-field prediction results Bounded Width ft 220 229.6/ Summer/Winter widths(field measurement 235.1 widths adjusted for 7Q10 flow). Appearance - 2 2 Slight meander Ambient Flow Rate cfs 287/440 287/440 Summer/Winter 7Q10s from 9/16/16 NPDES permit NC0005088 fact sheet. n- Clean and straight natural river(discounts pools Friction Factor value 0.03 0.03 and shoals). Summer: Maximum daily value(conservative) from 2017; Duke Energy's probe and Onset Model U22-001 data logger at USGS Station 02151500. Ambient Temp °F 86.3/39.2 86.3/39.2 Winter:While the coldest winter value was 35.5°F,the CORMIX model will not allow ambient water colder than 4°C(39.2°F). Therefore,the discharge temperature was modeled at 93.7°F to include this additional "excess"temperature. _� ° _ 22 Rogers Energy Complex Thermal Model Verification Input Units Previous Revised Reference/Notes Inputs Input(S/W) Discharge—CORMIX 3 (surface discharge-channel) Nearest Bank - right right As seen looking downstream Depth at Discharge ft 1 1.64 Set equal to channel depth (bottom slope begins at this point) Bottom Slope deg 45 12.4 Bottom slope between sandbar and first 20 ft of cross section#2(nearest outfall) Channel Width ft 10 11 Measured width between sandbar at bottom of rock spillway(before entering the river) Measured depth near outfall sandbar was 1'at edges and 1.75'in middle. 1.64'(0.5m)is Channel Depth ft 0.5 1.64 minimum channel depth input within range of empirical data used to develop CORMIX equations. Horiz.Angle(sigma) deg 90 90 Perpendicular to river flow Mixing Zone WQ Standard Summer:3.3°F;89.6°F minus ambient of 86.3°F °F 3.3/5.04 3.3/5.04 (excess) Winter: 5.04°F; instream standard Region of Interest ft 2,200 2,350 Must be>10 times the modeled channel width 3.4 7Q10 CORMIX Results WEC executed the revised summer and winter CORMIX models and compared the resulting mixing zone dimensions to those from the previous desktop model. As stated,the purpose of the comparison was to ensure safe passage and that the 89.6°F and 5.04°F delta-T instream requirements were still met at a relatively short distance downstream from the outfall. The revised summer model indicates that with a discharge temperature of 100°F,the 89.6°F instream standard would be met at a distance of 113 meters downstream of the outfall (371 feet). The previous, desktop summer model estimated the instream standard would be met 130 meters (427 feet)from the outfall during worst-case summer conditions. The revised winter model indicates that with a conservative discharge temperature of 90°F,the 5.04°F delta-T instream standard would be met 178 meters(584 feet) downstream of the outfall. The previous, desktop winter desktop model estimated the instream standard would be met 145 meters (476 feet) downstream. Figure 3-7 shows the downstream temperature dilution and locations where instream standards are met. The revised model, as compared to the field measurements, provides a conservative estimate and tends to underpredict the downstream mixing. Per the permit requirement, Duke collected weekly temperature measurements upstream and downstream of the discharge for a period of 12 months. r�r J v 23 Rogers Energy Complex Thermal Model Verification Temperature vs Downstream Distance (Summer 7Q10) 20 106 Revised Summer Model 18 104 — — —Previous Desktop Model 16 102 • Summer Stnd N 14 100 v eo au 12 1 98 A 1 10 l 96 a 8 I 94 0 E 6 t 92 4 ' — — — — — 89.6*F 90 2 88 371' 0 86 0 100 200 300 400 SOO 600 700 800 900 1000 1100 1200 1300 1400 1500 Downstream distance(ft) Temperature vs Downstream Distance (Winter 7Q10) 60 • Winter Stnd 50 — — —Previous Desktop Model i Revised Winter Model a 40 x I W 30 1.4 20 • 10 5.04'F 584' 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Downstream distance(ft) Figure 3-7. Comparison of summer(above) and winter(below)temperature dilution CORMIX results The downstream measurements were collected at the downstream monitoring platform approximately 650 feet downstream of the outfall. A review of the data found that the downstream temperature was within compliance of the 5.04 'F temperature criteria. The maximum difference compared to the upstream station was 2.2 °F, and the average delta-T between the two gages for the time period from April 2019 through March 2020 was 0.3 °F. 24 V if Ld Rogers Energy Complex Thermal Model Verification WEC evaluated the plume geometry to determine compliance with safe passage requirements(refer to Section 1). In both the revised summer and winter models,the CORMIX results indicate the plume is bank-attached immediately after the outfall. Field observations of the Rhodamine dye plume support ti this model prediction. While the previous desktop models predicted the plume would spread to the nearshore bank, it was not bank-attached at the start. Given the distance downstream where the summer and winter standards were met,WEC looked at the model's predicted plume widths and distances from the bank to the far plume edges to ensure safe passage was maintained. At the point where the summer standard is met,the modeled plume width is 107 feet from the discharge bank. Where the winter standard is met downstream,the modeled plume width is 138 feet from the discharge bank. Both plume widths are less than the estimate widths from the previous desktop model. Figure 3- 8 compares the plume widths of the previous desktop and revised 7Q10 scenarios. For additional clarity, Figure 3-9 includes only the revised model plume width overlaid on aerial imagery of the river just downstream of the outfall. In this figure,the outside edge of plume is shown to the downstream distance where the temperature standard is met. The scale of the aerial and plume graphic are approximate (±5 feet); however,the intent is to highlight the availability of safe passage. Table 3-3 summarizes the CORMIX model results from the previous desktop model and the revised models. Based on these results and comparison to the approximate 230-foot river width,the worst-case effluent plume conditions will allow for safe passage. Table 3-3. Revised CORMIX model results Mixing Zone Distance downstream Plume width Previous Desktop Model (2018) Summer 130 m (427 ft) 37 m (121 ft) Winter 145 m (476 ft) 49 m (161 ft) Revised Model (2020) Summer 113 m (371 ft) 33 m (107 ft) Winter 178 m (584 ft) 42 m (138 ft) 25 _ i�v L Rogers Energy Complex Thermal Model Verification Plume Width vs Downstream Distance (Summer 7Q10) 250 200 r ' - r a s) C :° 150 I . .-. .r" . I .a I I E i; / --'~ Previous Desktop Model H 100 �. ��, Plume Area vN, / - f, Revised Model Plume O • Summer Standard SO r. '` ,.. Revised Summer Model I 7' ,. ` , `-.. , — — — Previous Desktop Model 0 t 0 100 200 300 400 SOO 600 700 800 900 1000 1100 1200 1300 1400 1500 Downstream distance(ft) Plume Width vs Downstream Distance (Winter 7010) 250 200 r. E 131 . ,. to r #y Previous Desktop Mode + 100 ` - ` Plume Area i Revised Model Plume 2 A c.� 50 / • winter Standard / -- ` Revised Winter Model I ` -g, — — — Previous Desktop Model 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Downstream distance MI Figure 3-8. Comparison of summer(above) and winter(below) plume width CORMIX results. .b,- 26 V v Lam'. Rogers Energy Complex Thermal Model Verification Plume Width vs Downstream Distance (Summer 7Q10) 300 250 rI y 200 u - Safe Passage r' 150 c a, 100 0 50 I- u 0 • Summer Standard Revised Summer Model -50 • 0 100 200 300 400 500 600 700 800 Downstream distance(ft) Plume Width vs Downstream Distance (Winter 7Q10) 300 • winter Standard 250 Revised winter Model r ' i 200 x• ,>Safe Passage 150 100 `.. 138ft • o S0 _ x: 0 Se 200 300 400 500 c>. 700 800 Downstream distance(ft) ) Figure 3-9. Outside edge of plume during summer(above) and winter(below) 7Q10 conditions over aerial. (Imagery source: ESRI aerial 02/01/2019) .p-� 1 27 Rogers Energy Complex Thermal Model Verification 4 Conclusions Previously, the NCDEQ approved desktop CORMIX models completed by WEC showing that the applicable instream temperature standards would be met in the Broad River at a relatively short distance downstream of Outfall 005. These standards included both the 89.6 °F maximum temperature requirement and the requirement of no more than a 5.04°F rise above the natural water. The permit required field verification of the modeling assumptions used to set the 100°F daily maximum temperature limit at Outfall 005. In addition, the permit required an assessment to verify that the mixing zone allowed safe passage of aquatic organisms around the mixing zone. WEC completed field monitoring on September 23, 2019,when the river stage was as close to 7Q10 conditions as possible. The field monitoring included cross-section surveys for depth and river currents. This data allowed CORMIX to be set up with inputs more representative of actual river and discharge conditions than the previous desktop models. The field monitoring also included ambient dilution measurements for temperature and Rhodamine WT dye. WEC set up a CORMIX(Version 11.0) model for the ambient and effluent conditions that were present during the field monitoring. The model results were then compared to the measured dye and temperature plume by looking at the plume dimension and downstream temperature dilution. Compared to the measured values,the field monitoring model results were similar, though the model slightly underpredicted mixing. The relative accuracy of the field monitoring model versus the field conditions showed that the use of the CORMIX model in this application is acceptable, and in addition, the model provides conservative estimates of instream mixing at the 7Q10 conditions. To determine if the current permit limitations for temperature are sufficient (i.e., do not need to be lowered),WEC modeled the summer and winter 70.10 ambient conditions based on the field monitoring data and the worst-case discharge temperatures. The representative cross-sections and depths were adjusted to 7Q10 conditions usinga best-fit relationshipwith the downstream USGS station data. Downstream temperature mixing from the revised model was similar to results from the previous desktop CORMIX model. During the critical summer case,the instream standard was met slightly sooner downstream than the previous desktop model had predicted. In the critical winter case,the revised model results show the standard being met slightly further downstream than the previous desktop model predicted. The distances from the bank to the far plume edge from the revised models were less than the previous desktop models in both the summer and winter cases. In a review of 12 months of downstream and upstream temperature record, WEC found the maximum temperature difference to be only 2.2°F (Wylie, 2020). Effluent mixing from Outfall 005 occurs within a short distance downstream. Given the plume width of the revised model is less than the previously predicted width, the mixing zone will allow for safe passage of aquatic organisms. The temperature records and updated model results support the current NPDES temperature limitations. •� 28 L. _1 Rogers Energy Complex Thermal Model Verification 5 References Guinta, David. May 22, 2017. Outfall 005 Water Temperature Analysis. Burns and McDonnell. U.S. Geological Survey. 2020. National Water Information System. USGS 02151500 Broad River Near Boiling Springs, NC. Water Data for the Nation, accessed 2020 at https://waterdata.usgs.gov/nwis/uv?site_no=02151500 Water Environment Consultants, March 9, 2018. Outfall 005 Thermal Mixing Zone. Prepared for: Duke Energy—Rogers Energy Complex. Mount Pleasant,SC Wylie, Robert R. "RE: ROGERS TEMPERATURE READING FOR OUTFALL 005." Correspondence with Duke Energy.April 23, 2020. E-mail. C 29 Rogers Energy Complex Thermal Model Verification Appendix A. CORMIX Files Field Monitoring Day Model (dye) CORMIX SESSION REPORT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CORMIX MIXING ZONE EXPERT SYSTEM CORMIX Version 11.0GT HYDRO3:Version-11.0.1.0 August,2019 SITE NAME/LABEL: Cliffside-Rogers DESIGN CASE: field study comparison FILE NAME: C:\Egnyte\Shared\1 Projects\Duke Energy (DUKE) \Cliffside-Rogers\Thermal Model Verification (DUKE0010) \CORMIX\Field Monitoring model\Outfall 005 dye.prd Using subsystem CORMIX3: Buoyant Surface Discharges Start of session: 05/08/2020--09:52:32 ************************************************************************** SUMMARY OF INPUT DATA: AMBIENT PARAMETERS: Cross-section = bounded Width BS = 72.27 m Channel regularity ICHREG = 2 Ambient flowrate QA = 14.29 m^3/s Average depth HA = 0.98 m Depth at discharge HD = 0.98 m Ambient velocity UA = 0.2027 m/s Darcy-Weisbach friction factor F = 0.0712 Calculated from Manning's n = 0.03 Wind velocity UW = 1.34 m/s Stratification Type STRCND = U Surface temperature = 20 degC Bottom temperature = 20 degC Calculated FRESH-WATER DENSITY values: Surface density RHOAS = 998.2051 kg/mA3 Bottom density RHOAB = 998.2051 kg/m^3 DISCHARGE PARAMETERS: Surface Discharge Discharge located on = right bank/shoreline Discharge configuration = flush discharge Distance from bank to outlet DISTB = 0 m Discharge angle SIGMA = 90 deg Depth near discharge outlet HDO = 0.50 m Bottom slope at discharge SLOPE = 12.4 deg Rectangular discharge: Discharge cross-section area AO = 1.675971 m^2 Discharge channel width BO = 3.3528 m Discharge channel depth HO = 0.499872 m Discharge aspect ratio AR = 0.149091 Discharge flowrate QO = 0.188394 m^3/s Discharge velocity UO = 0.11 m/s Discharge temperature (freshwater) = 23.90 degC Corresponding density RHO() = 997.3220 kg/m^3 A-1 Rogers Energy Complex Thermal Model Verification Density difference DRHO = 0.8831 kg/m^3 Buoyant acceleration GPO = 0.0087 m/s^2 Discharge concentration CO = 100 % Surface heat exchange coeff. KS = 0 m/s Coefficient of decay KD = 0 /s DISCHARGE/ENVIRONMENT LENGTH SCALES: LQ = 1.29 m Lm = 0.72 m Lbb = 0.20 m LM = 1.37 m NON-DIMENSIONAL PARAMETERS: Densimetric Froude number FRO = 1.06 (based on LQ) Channel densimetric Froude no. FRCH = 1.71 (based on HO) Velocity ratio R = 0.55 MIXING ZONE / TOXIC DILUTIONZONE / AREA OF INTEREST PARAMETERS: Toxic discharge = no Water quality standard specified = no Regulatory mixing zone = no Region of interest = 1000 m downstream ************************************************************************** HYDRODYNAMIC CLASSIFICATION: * * I FLOW CLASS = SA1 I * * Limiting Dilution S = (QA/Q0)+ 1.0 = 76 .8 ************************************************************************** MIXING ZONE EVALUATION (hydrodynamic and regulatory summary) : X-Y-Z Coordinate system: Origin is located at WATER SURFACE and at centerline of discharge channel: 0 m from the right bank/shore. Number of display steps NSTEP = 200 per module. NEAR-FIELD REGION (NFR) CONDITIONS : Note: The NFR is the zone of strong initial mixing. It has no regulatory implication. However, this information may be useful for the discharge designer because the mixing in the NFR is usually sensitive to the discharge design conditions. Pollutant concentration at NFR edge c = 52.914200 % Dilution at edge of NFR s = 1.9 NFR Location: x = 4.57 m (centerline coordinates) y = 0 m z = 0 m NFR plume dimensions: half-width (bh) = 2.72 m thickness (bv) = 0.50 m Cumulative travel time: 66.2958 sec. Buoyancy assessment: The effluent density is less than the surrounding ambient water density at the discharge level. Therefore, the effluent is POSITIVELY BUOYANT and will tend to rise towards the surface. A-2 Rogers Energy Complex Thermal Model Verification FAR-FIELD MIXING SUMMARY: Plume is vertically fully mixed WITHIN NEAR-FIELD (or a fraction thereof) , but RE-STRATIFIES LATER. Plume becomes vertically fully mixed again at 161.73 m downstream. PLUME BANK CONTACT SUMMARY: Plume in bounded section contacts one bank only at 0 m downstream. ************************ TOXIC DILUTION ZONE SUMMARY ************************ No TDZ was specified for this simulation. ********************** REGULATORY MIXING ZONE SUMMARY *********************** No RMZ and no ambient water quality standard have been specified. ********************* FINAL DESIGN ADVICE AND COMMENTS ********************** REMINDER: The user must take note that HYDRODYNAMIC MODELING by any known technique is NOT AN EXACT SCIENCE. Extensive comparison with field and laboratory data has shown that the CORMIX predictions on dilutions and concentrations (with associated plume geometries) are reliable for the majority of cases and are accurate to within about +-50% (standard deviation) . As a further safeguard, CORMIX will not give predictions whenever it judges the design configuration as highly complex and uncertain for prediction. A-3 iiv Rogers Energy Complex Thermal Model Verification CORMIX3 PREDICTION FILE: 33333333333333333333333333333333333333333333333333333333333333333333333333 CORMIX MIXING ZONE EXPERT SYSTEM Subsystem CORMIX3: Buoyant Surface Discharges CORMIX Version 11.0GT HYDRO3 Version 11.0.1.0 August 2019 CASE DESCRIPTION Site name/label: Cliffside-Rogers Design case: field study comparison FILE NAME: C:\. . .CORMIX\Field Monitoring model\Outfall_005_dye.prd Time stamp: 05/08/2020--09:52:32 ENVIRONMENT PARAMETERS (metric units) Bounded section BS = 72.27 AS = 70.49 QA = 14.29 ICHREG= 2 HA = 0.98 HD = 0.98 UA = 0.203 F = 0.071 USTAR =0.1912E-01 UW = 1.341 UWSTAR=0.1449E-02 Uniform density environment STRCND= U RHOAM = 998.2051 DISCHARGE PARAMETERS (metric units) BANK = RIGHT DISTB = 0.00 Configuration: flush_discharge SIGMA = 90.00 HDO = 0.50 SLOPE = 12.40 deg. Rectangular channel geometry: BO = 3.353 HO = 0.500 AO =0.1676E+01 AR = 0.149 UO = 0.112 QO = 0.188 =0.1884E+00 RHO0 = 997.3220 DRHO0 =0.8831E+00 GPO =0.8676E-02 CO =0.1000E+03 CUNITS= % IPOLL = 1 KS =0.0000E+00 KD =0.0000E+00 FLUX VARIABLES (metric units) QO =0.1884E+00 MO =0.2118E-01 JO =0. 1635E-02 Associated length scales (meters) LQ = 1.29 LM = 1.37 Lm = 0. 72 Lb = 0.20 NON-DIMENSIONAL PARAMETERS FRO = 1.06 FRCH = 1.71 R = 0.55 FLOW CLASSIFICATION 333333333333333333333333333333333333333333333333 3 Flow class (CORMIX3) = SA1 3 3 Applicable layer depth HS = 0.98 3 3 Limiting Dilution S =QA/QO= 76.84 3 333333333333333333333333333333333333333333333333 MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS CO =0.1000E+03 CUNITS= % NTOX = 0 NSTD = 0 REGMZ = 0 XINT = 1000.00 XMAX = 1000.00 X-Y-Z COORDINATE SYSTEM: _ A-4 -:°v LAC Rogers Energy Complex Thermal Model Verification ORIGIN is located at the WATER SURFACE and at center of discharge channel/outlet: 0.00 m from the RIGHT bank/shore. X-axis points downstream Y-axis points to left as seen by an observer looking downstream Z-axis points vertically upward (in CORMIX3, all values Z = 0.00) NSTEP = 200 display intervals per module BEGIN MOD301: DISCHARGE MODULE Efflux conditions: X Y Z S C BV BH UC TT 0.00 0.00 0.00 1.0 0.100E+03 0.50 1 .68 0.112 .00000E+00 END OF MOD301: DISCHARGE MODULE BEGIN MOD302: ZONE OF FLOW ESTABLISHMENT Control volume inflow: X Y Z S C BV BH UC TT 0.00 0.00 0.00 1.0 0.100E+03 0.50 1.68 0.112 .00000E+00 VERTICAL MIXING occurs in the initial zone of flow establishment. Profile definitions: BV = Gaussian l/e (37%) vertical thickness BH = Gaussian 1/e (37%) horizontal half-width, normal to trajectory S = hydrodynamic centerline dilution C = centerline concentration (includes reaction efects, if any) Uc = Local centerline excess velocity (above ambient) TT = Cumulative travel time Control volume outflow: SIGMAE= 17.62 X Y Z S C BV BH UC TT 0.59 0.84 0.00 1.0 0.100E+03 0.68 1.25 0.112 .91301E+01 Cumulative travel time = 9.1301 sec ( 0.00 hrs) END OF MOD302: ZONE OF FLOW ESTABLISHMENT BEGIN CORSURF (MOD310) : BUOYANT SURFACE JET - NEAR-FIELD REGION Surface jet in deep crossflow with shoreline-attachment. Profile definitions: BV = water depth (vertically mixed) BH = Gaussian l/e (37%) horizontal half-width, normal to trajectory S = hydrodynamic centerline dilution C = centerline concentration (includes reaction efects, if any) Uc = Local centerline excess velocity (above ambient) TT = Cumulative travel time X Y Z S C BV BH UC TT 0.59 0.84 0.00 1.0 0.100E+03 0.68 1.25 -0.133 .91301E+01 0.65 0.86 0.00 1.7 0.585E+02 0.69 1.25 -0.137 .10183E+02 0.67 0.86 0.00 1.7 0.584E+02 0.69 1.25 -0.137 .10533E+02 0.69 0.87 0.00 1.7 0.583E+02 0.69 1.25 -0.137 .10883E+02 0.71 0.87 0.00 1.7 0.582E+02 0.69 1.25 -0.137 .11232E+02 A-5 i v Lam- Rogers Energy Complex Thermal Model Verification 0.73 0.88 0.00 1. 7 0.582E+02 0.69 1.25 -0.137 .11581E+02 0. 75 0.88 0.00 1. 7 0.581E+02 0.69 1.25 -0.137 .11929E+02 0.76 0.89 0.00 1. 7 0.580E+02 0.70 1.26 -0.138 .12277E+02 0. 78 0.89 0.00 1.7 0.580E+02 0. 70 1.26 -0.138 .12624E+02 0. 80 0.90 0.00 1. 7 0.579E+02 0. 70 1.26 -0.138 . 12971E+02 0.82 0.91 0.00 1. 7 0.578E+02 0. 70 1.26 -0.138 .13317E+02 0.84 0.91 0.00 1. 7 0.577E+02 0. 70 1.26 -0.138 .13663E+02 0.86 0.92 0.00 1.7 0.577E+02 0.70 1.26 -0.138 .14008E+02 0.88 0. 92 0.00 1. 7 0.576E+02 0.70 1.26 -0.138 .14353E+02 0.90 0.93 0.00 1. 7 0.575E+02 0.70 1.26 -0.138 .14697E+02 0.92 0.93 0.00 1. 7 0.575E+02 0.70 1.26 -0.138 .15040E+02 0.94 0.94 0.00 1. 7 0.574E+02 0.71 1.26 -0.138 .15383E+02 0.96 0.94 0.00 1. 7 0.573E+02 0.71 1.26 -0.138 .15725E+02 0.98 0.95 0.00 1. 7 0.573E+02 0.71 1.26 -0.138 .16067E+02 1.00 0.95 0.00 1. 7 0.572E+02 0.71 1.26 -0.138 .16408E+02 I 1.02 0.95 0.00 1. 7 0.572E+02 0.71 1.26 -0.138 .16749E+02 1.03 0.96 0.00 1.8 0.571E+02 0.71 1.26 -0.139 .17089E+02 1.05 0.96 0.00 1.8 0.570E+02 0.71 1.27 -0.139 .17428E+02 1.07 0.97 0.00 1.8 0.570E+02 0.71 1.27 -0.139 .17767E+02 1.09 0.97 0.00 1.8 0.569E+02 0.71 1.27 -0.139 .18105E+02 1.11 0.98 0.00 1.8 0.569E+02 0.71 1.27 -0.139 .18442E+02 1.13 0.98 0.00 1.8 0.568E+02 0.72 1.27 -0.139 .18779E+02 1.15 0.99 0.00 1.8 0.567E+02 0.72 1.27 -0.139 .19115E+02 1.17 0.99 0.00 1.8 0.567E+02 0.72 1.27 -0.139 .19450E+02 1.19 0.99 0.00 1.8 0.566E+02 0.72 1.27 -0.139 .19785E+02 1.21 1.00 0.00 1.8 0.566E+02 0.72 1.27 -0.139 .20119E+02 1.23 1.00 0.00 1.8 0.565E+02 0. 72 1.27 -0.139 .20452E+02 1.25 1.01 0.00 1.8 0.565E+02 0. 72 1.27 -0.139 .20785E+02 1.27 1.01 0.00 1.8 0.564E+02 0. 72 1.27 -0.139 .21117E+02 1.29 1.01 0.00 1.8 0.564E+02 0. 72 1.27 -0.139 .21449E+02 1.31 1.02 0.00 1.8 0.563E+02 0. 72 1.27 -0.139 .21780E+02 1.33 1.02 0.00 1.8 0.563E+02 0. 72 1.28 -0.139 .22110E+02 1.35 1.03 0.00 1.8 0.562E+02 0.73 1.28 -0.139 .22439E+02 1.37 1.03 0.00 1.8 0.562E+02 0.73 1.28 -0.139 .22768E+02 1.39 1.03 0.00 1.8 0.561E+02 0.73 1.28 -0.138 .23096E+02 1.41 1.04 0.00 1.8 0.561E+02 0.73 1.28 -0.138 .23423E+02 1.43 1.04 0.00 1.8 0.560E+02 0.73 1.28 -0.138 .23750E+02 1.45 1.04 0.00 1.8 0.560E+02 0.73 1 .28 -0.138 .24076E+02 1.46 1.05 0.00 1. 8 0.559E+02 0. 73 1.28 -0.138 .24401E+02 1.48 1.05 0.00 1.8 0.559E+02 0.73 1.28 -0.138 .24726E+02 1.50 1.05 0.00 1.8 0.558E+02 0.73 1.28 -0.138 .25050E+02 1.52 1.06 0.00 1. 8 0.558E+02 0. 73 1.28 -0.138 .25373E+02 1.54 1.06 0.00 1.8 0.557E+02 0.73 1.28 -0.138 .25696E+02 1.56 1.06 0.00 1.8 0.557E+02 0. 73 1.28 -0.138 .26018E+02 1.58 1.07 0.00 1.8 0.556E+02 0. 73 1.28 -0.138 .26339E+02 1.60 1.07 0.00 1 .8 0.556E+02 0. 74 1.28 -0.138 .26659E+02 1.62 1.07 0.00 1 .8 0.555E+02 0. 74 1.29 -0.138 .26979E+02 1.64 1.08 0.00 1.8 0.555E+02 0. 74 1.29 -0.138 .27298E+02 1.66 1.08 0.00 1.8 0.554E+02 0. 74 1.29 -0.138 .27617E+02 1 1.68 1.08 0.00 1.8 0.554E+02 0.74 1.29 -0.138 .27934E+02 1. 70 1.08 0.00 1.8 0.554E+02 0.74 1.29 -0.138 .28251E+02 1.72 1.09 0.00 1.8 0.553E+02 0.74 1 .29 -0.138 .28568E+02 1 . 74 1.09 0.00 1.8 0.553E+02 0.74 1.29 -0.138 .28883E+02 1. 76 1.09 0.00 1.8 0.552E+02 0.74 1.29 -0. 137 .29198E+02 1. 78 1.10 0.00 1.8 0.552E+02 0. 74 1.29 -0.137 .29513E+02 1.80 1.10 0.00 1.8 0.551E+02 0. 74 1.29 -0.137 .29826E+02 v _ A-6 i L� . N a N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W 4.141 W W W W W W W W W W W W W W W W W W W W W W W W 01 ri (r) 01 V' (r) N O N V' O In O V' L. O N V' V' V• V' N O OD ll7 ri l0 ri In 01 N a' VD N N N VD d' N O VD N CO Cl N ri V' l0 OD 01 O O O OD r- ul M Lil l0 L- CO 01 O ri ri N e1 ('1 V' V' V' Lf') Ill Lf') 0 Ln LI) LU L!l V' V' V' (r) 01 N 11 ri O 0) OO L- l0 Ln V' 01 N O 0) N l0 V' 01 ri Ol N LU V' N O L- ul 01 r1 V' N O 01 l0 O 01 l0 0) N Ill 00 ri V' L- O 01 l0 01 N Ln CD ri V' L- O 01 l0 0) N ul L- O 01 l0 0) N Lll OD ri 01 VD 01 N ul CO O 01 lO 01 N Ill N O 01 O O O ri ri ri N N N N 01 01 01 V' V' V' Ll) Ln L/) In l0 l0 l0 N N N a0 co O O 01 01 01 O O O O ri ri ri N N N N 01 01 01 V' V' V' V' ul 0 LU l0 l0 01 (") In 01 01 01 01 01 01 01 (r) 01 01 01 01 () 01 01 01 01 (r) 01 01 01 01 01 01 01 01 01 01 01 01 V' V' V' V' V' V' V' V' V' V' V' V' V' V' V V' V' V' V' V' V' V' V' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N 1- N N N N N N l0 l0 l0 l0 VD l0 lO l0 1.0 l0 0 N LC) Il) Ln In Ll7 It) V' V' V' V' V• V' V' V' (r) 01 01 01 01 Cl 0 01 N N N N N N N ri ri rA ri r1 ri 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 ('1 M M M M M en M M n1 M M M 01 01 01 01 01 01 01 Cl 01 01 01 01 01 01 01 en en M M M el en M Cl r1 ri ri ri ri r1 ri ri ri r1 r1 .-i ri ri ri ri H H ri ri ri r1 ri ri ri ri ri ri ri ri r1 r1 ri ri ri r1 H ri r1 r1 ri ri ri ri ri ri .-i ri .-i ri ri ri ri r1 ri .--I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 II I I III II II I I I I I I I I I I I I I I I 1 I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I 0) 01 0) 01 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ri ri ri ri r1 ri ri ri ri ri ri ri r1 ri ri ri N N N N N N N N N N N N N N N N N 01 01 (V N N N N 01 01 01 01 01 01 01 01 Cl 01 01 01 01 01 01 01 01 el 01 01 01 01 01 01 01 01 01 01 01 01 01 M 01 Cl 01 01 01 01 01 0) 0/ 01 01 01 01 01 01 01 01 01 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ri ri r1 ri r1 r1 ri ri ri ri r1 r1 r1 r1 r1 ri r1 r1 r1 ri ri ri ri ri ri ri ri ri ri ri r1 ri r1 r1 ri .--I r-I r1 r1 ri ri ri ri rA ri ri ri ri ri ri ri ri ri r1 ri V' V' V' V' V' V' Ill L(l Lf) Ln L(l Ill Lfl Lf) Ill Lfl Ill Ill Lfl Ill 0 Lll Ill 0 LU L(l 111 Lll Ill 0 0 l0 l0 l0 l0 l0 V) VD l0 l0 lD l0 l0 l0 l0 l0 l0 VD l0 l0 Lf) l0 l0 lO '.0 l0 L- N N L- L- L- L- L- N L- N L- L- L- L- L- L- L- N L- N L- L- L- N L- N L- N L- N L- L- N L- (- (- L- L- N N L- L- L- L- L- L- N L- L- N N L- (- N L- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W O ri ri O CD CA 01 01 CO CO CO N N lD VD l0 L1l In Ln V' V' V' 01 01 01 N N N ri ri r1 CD O CD CA 01 01 CO CD OD N N L- N l0 l0 l0 Ln Ln Ln Ln VP VP VP 01 01 01 Ln LU 0 U1 V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' V' 01 01 01 0') 01 Cl 01 01 01 01 01 01 01 01 01 01 01 (r) 01 01 01 M L") LI) ul Ln ul LI) lf) ul LI) Ill LL1 ul lf) ll) ul ul 0 Lfl Lll LIl L(l LIl l!l 111 t!l Ln Lll l!l Ln 111 In l!l Ln 111 l!") 111 111 L1l 0 L1l Lll l!l Ln 0 Ln In l!l Lfl Lfl lf) 111 Lfl LI) 0 L!7 Ln Lfl . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L. CO CO CO O O CO CO CO CO CO CO CO CO O CO OD CO CO O CO CO CO CO CO CO CO OD OD OD CO 0) 0) 01 01 0) 0) 0) 01 0) 0) 0) 0) 0) 0) 0) 01 01 0) LT 0) 0) 01 0) 01 01 0) ri H ri ri H H ri H H ri H ri H ri ri H ri ri H ri H H ri ri H H H ri r-I r-I .--I r-I r-I .--I r-I r1 ri ri H H ri O O O O O O O O O O O O O C. O O O O O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o 0 0 • • • L CDCDCD0000000000000000000CDC C) CDC CDCDo0o0000o0o0oCDo00o0000000000 O O ri ri ri ri N N N N N e1 M In 01 V' V' V' V' V' V' L!l Lf) Ln L!l Lll Lf) l0 l0 l0 l0 l0 l0 l0 l0 N N N N N N L- L- (- co co op OD OD CO OD CO CO CO a0 CO ri H H ri .--I .--I r-I r-I ri ri H ri r I H ri ri r-I r-1 r-1 r-1 ri ri H H ri ri H ri ri ri H ri H r1 H ri H ri r--I r1 .--I .--I r1 r1 H H ri ri ri H ri ri ri .-I ri 01' r1 r1 ri ri ri ri ri ri ri ri r1 ri r1 ri ri ri r1 ri ri ri r1 r1 ri r1 ri ri ri ri ri ri ri r1 ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri .-i ri r1 / N VP VD CO CD N VP VD OD CD N VP VD OD CD N V' l0 CO CD N VPlO OD CD N V' lD CO CD N VP VD CO O N V' l0 OD O N VP VD OD CD N V' VD OD CD ri 01 L11 L- 01 ri OD CO CO OD 01 01 01 01 01 CD CD CD CD CD ri ri ri r1 rH N N N N N 01 01 In 01 01 VP V' cr. V' V' ul ul ul ul ul l0 VD l0 l0 l0 N L- L- N NCO CO CO CO a0 OD 01 Lr� ri ri r-i r1 ri ri ri ri ri N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N I Rogers Energy Complex Thermal Model Verification 2.93 1.18 0.00 1.9 0.533E+02 0. 76 1.33 -0.131 .46612E+02 2.95 1.18 0.00 1.9 0.532E+02 0. 76 1.33 -0.131 .46888E+02 2.97 1.18 0.00 1.9 0.532E+02 0. 76 1.33 -0.130 .47165E+02 2.99 1.18 0.00 1.9 0.532E+02 0. 76 1.33 -0.130 .47440E+02 3.01 1.18 0.00 1.9 0.532E+02 0. 76 1.33 -0.130 .47715E+02 3.03 1.18 0.00 1.9 0.531E+02 0. 76 1.33 -0.130 .47989E+02 3.05 1.18 0.00 1.9 0.531E+02 0. 76 1.33 -0.130 .48263E+02 3.07 1.19 0.00 1.9 0.531E+02 0.76 1.33 -0.130 .48537E+02 3.09 1.19 0.00 1.9 0.531E+02 0.76 1.33 -0.130 .48809E+02 3.11 1.19 0.00 1.9 0.530E+02 0.76 1.33 -0.129 .49081E+02 3.13 1.19 0.00 1.9 0.530E+02 0.76 1.33 -0.129 .49353E+02 3.15 1.19 0.00 1.9 0.530E+02 0.76 1.33 -0.129 .49624E+02 3.17 1.19 0.00 1.9 0.530E+02 0.76 1.33 -0.129 .49895E+02 3.19 1.19 0.00 1.9 0.529E+02 0.76 1.33 -0.129 .50165E+02 Maximum lateral extent of recirculation bubble. 3.21 1.19 0.00 1.9 0.529E+02 0.76 1.33 -0.129 .50165E+02 End of recirculation bubble at the above position. Dilution in recirculation bubble = 1. 7 Corresponding concentration = 0.603E+02 Flow continues as WALL JET/PLUME. 3.21 -0.00 0.00 1.9 0.529E+02 0.50 2.67 -0.119 .50403E+02 3.23 0.00 0.00 1.9 0.529E+02 0.50 2.67 -0.119 .50642E+02 3.25 0.00 0.00 1.9 0.529E+02 0.50 2.67 -0.119 .50881E+02 3.27 0.00 0.00 1.9 0.529E+02 0.50 2.67 -0.119 .51119E+02 3.29 0.00 0.00 1.9 0.529E+02 0.50 2.67 -0.119 .51358E+02 3.31 0.00 0.00 1.9 0.529E+02 0.50 2.67 -0.119 .51596E+02 3.33 0.00 0.00 1.9 0.529E+02 0.50 2.67 -0.119 .51834E+02 3.35 0.00 0.00 1.9 0.529E+02 0.50 2.67 -0.119 .52072E+02 3.37 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.119 .52309E+02 3.39 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.119 .52547E+02 3.41 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.119 .52784E+02 3.43 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.119 .53022E+02 3.45 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.119 .53259E+02 3.47 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.118 .53496E+02 3.49 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.118 .53733E+02 3.51 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.118 .53969E+02 3.53 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.118 .54206E+02 3.55 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.118 .54442E+02 3.57 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.118 .54678E+02 3.59 0.00 0.00 1.9 0.529E+02 0.50 2.68 -0.118 .54914E+02 3.61 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.118 .55150E+02 3.63 0.00 0.00 1. 9 0.529E+02 0.50 2.69 -0.118 .55386E+02 3.65 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.118 .55621E+02 3.67 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.118 .55857E+02 3.69 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0. 118 .56092E+02 3. 71 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0. 118 .56327E+02 3. 73 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.118 .56562E+02 3. 75 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.118 .56797E+02 3. 77 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.118 .57031E+02 3. 79 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0. 118 .57266E+02 1 3.81 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.118 .57500E+02 3.83 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.117 .57734E+02 3.85 0.00 0.00 1.9 0.529E+02 0.50 2.69 -0.117 .57969E+02 3.87 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .58202E+02 3.89 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .58436E+02 3.91 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .58670E+02 A-8 i V L' Rogers Energy Complex Thermal Model Verification 3.93 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .58903E+02 3.95 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .59136E+02 3.97 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .59370E+02 3.99 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .59603E+02 4.01 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .59835E+02 4.03 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .60068E+02 4.05 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .60301E+02 4.07 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .60533E+02 4.09 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .60765E+02 4.11 0.00 0.00 1.9 0.529E+02 0.50 2. 70 -0.117 .60997E+02 4.13 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.117 .61229E+02 4.15 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.117 .61461E+02 4.17 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.117 .61693E+02 4.19 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .61924E+02 4.21 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .62156E+02 4.23 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .62387E+02 4.25 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .62618E+02 4.27 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .62849E+02 4.29 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .63080E+02 4.31 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .63310E+02 4.33 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .63541E+02 4.35 0.00 0.00 1.9 0.529E+02 0.50 2. 71 -0.116 .63771E+02 4.37 0.00 0.00 1.9 0.529E+02 0.50 2.71 -0.116 .64002E+02 4.39 0.00 0.00 1.9 0.529E+02 0.50 2.71 -0.116 .64232E+02 4.41 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.116 .64462E+02 4.43 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.116 .64691E+02 4.45 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.116 .64921E+02 4.47 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.116 .65150E+02 4.49 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.116 .65380E+02 4.51 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.116 .65609E+02 4.53 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.116 .65838E+02 4.55 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.116 .66067E+02 4.57 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.115 .66296E+02 4.57 0.00 0.00 1.9 0.529E+02 0.50 2.72 -0.115 .66296E+02 Cumulative travel time = 66.2958 sec ( 0.02 hrs) END OF CORSURF (MOD310) : BUOYANT SURFACE JET - NEAR-FIELD REGION ** End of NEAR-FIELD REGION (NFR) ** WAKE FLOW CONDITIONS: The discharge velocity (UO) is less than or equal to the ambient velocity (Ua) and results in wake flow conditions. There is no discharge momentum induced mixing. The mixing characteristics are UNDESIRABLE. The initial plume WIDTH/THICKNESS VALUE in the next far-field module will be CORRECTED by a factor 1.13 to conserve the mass flux in the far-field! Some lateral bank/shore interaction occurs at end othe near-field. In the next prediction module, the jet/plume centerline will be set to follow the bank/shore. BEGIN MOD341: BUOYANT AMBIENT SPREADING Plume is ATTACHED to RIGHT bank/shore. A-9 i° _Y Lam' , rT AA 0T-V £0+H£TO£Z' I6'8 P£'0 ZO+HTO£'O £'£ 00'0 00'0- ZZ'8£ £O+HIP9ZZ' 08 '8 P£'0 ZO+HSO£'0 £'£ 00'0 00'0- 9P'L£ £0+H89ZZZ' 69'8 P£'0 ZO+H60£'0 Z'£ 00'0 00'0- 69'9£ £0+H968IZ' 8S'8 P£'0 ZO+HPT£'0 Z'£ 00'0 00'0- £6'S£ £0+HPZSIZ' LP'8 P£'0 ZO+H8T£'0 T'£ 00'0 00'0- 9T'S£ £0+HTSITZ' 9£'8 P£'0 ZO+HZZ£'0 T'£ 00'0 00'0- OP'P£ £0+H6LL0Z' SZ'8 P£'0 ZO+H9Z£'0 I'£ 00'0 00'0- £9'££ £0+H90POZ' PT'8 P£'0 ZO+HO££'0 O'£ 00'0 00'0- L8'Z£ £O+HP£OOZ' £0'8 P£'0 ZO+HS££'0 O'£ 00'0 00'0- OT'Z£ £0+HZ996I' T6'L P£'0 ZO+H6££'0 6'Z 00'0 00'0- P£'I£ £0+H68Z6T' 08'L P£'0 ZO+H£P£'O 6'Z 00'0 00'0- LS'0£ £O+HLT68I' 89'L P£'0 Z0+H8P£'O 6'Z 00'0 00'0- I8'6Z £0+HSPS8I' LS'L P£'0 ZO+HZS£'0 8'Z 00'0 00'0- PO'6Z £O+HZLT8T' SP'L S£'0 ZO+HLS£'0 8'Z 00'0 00'0- 8Z'8Z £0+H008LT' ££'L S£'0 ZO+HT9£'0 8'Z 00'0 00'0- TS'LZ £0+H8ZbLT' TZ'L S£'0 Z0+299£'0 L'Z 00'0 00'0- SL' 9Z £O+HSSOLT' 60'L S£'0 ZO+HOL£'0 L'Z 00'0 00'0- 86'SZ £0+H£899T' L6'9 S£'O ZO+HSL£'0 L'Z 00'0 00'0- ZZ'SZ £0+HTT£9T' S8'9 S£'0 Z0+H08£'0 9'Z 00'0 00'0- 9P'PZ £0+H8£6SI' £L '9 S£'0 ZO+HP8£'0 9'Z 00'0 00'0- 69'£Z £0+H99SST' 09'9 9£'0 Z0+H68£'0 9'Z 00'0 00'0- £6'ZZ £0+HP6IST' 8P'9 9£'0 ZO+HP6£'0 S'Z 00'0 00'0- 9I'ZZ £0+HTZ8PT' S£'9 9£'0 ZO+H86£'0 S'Z 00'0 00'0- OP'TZ £0+H6PPPT' ZZ' 9 L£'0 ZO+H£OP'0 S'Z 00'0 00'0- £9'0Z £0+HLLOPI' 60'9 L£'O ZO+H80P'0 S'Z 00'0 00'0- L8'61 £0+HPOL£I' 96'S L£'0 ZO+H£IP'0 P'Z 00'0 00'0- OI'6T £O+HZ£££T' £8'S 8£'0 Z0+H8IP'0 P'Z 00'0 00'0- P£'8I £0+H096ZI' OL'S 8£'0 ZO+H£ZP'0 P'Z 00'0 00'0- LS'LT £0+HL8SZi' 9S'S 6£'0 ZO+H8ZP'0 £'Z 00'0 00'0- T8'9T £0+HSIZZI' ZP'S 6£'0 ZO+H££P'0 £'Z 00'0 00'0- PO'9T £O+HZPBTT' 8Z'S WO ZO+H8£P'0 £'Z 00'0 00'0- 8Z'ST £O+HOLPIT' PT'S OP'0 ZO+HPPP'0 £'Z 00'0 00'0- TS'PT £0+H860TT' 00'S IP'0 ZO+H6PP'0 Z'Z 00'0 00'0- SL '£T £O+HSZLOT' 98'P ZP'0 ZO+HPSP'0 Z'Z 00'0 00'0- 86'ZT £O+H£S£OT' IL'P ZP'0 ZO+HO9P'0 Z'Z 00'0 00'0- ZZ'ZT ZO+HL0866' 9S'P £P'0 ZO+H99P'0 T'Z 00'0 00'0- SP'TT ZO+HP8096' IP'P P17'0 ZO+HZL17'0 I'Z 00'0 00'0- 69'0T ZO+HO9£Z6' SZ'P SP'0 ZO+H8LP'0 T'Z 00'0 00'0- £6'6 ZO+HL£988' 60'P 9P'O ZO+HPBP'0 I'Z 00'0 00'0- 9T'6 ZO+H£I6P8' £6'£ 817'0 ZO+HI6P'0 0'Z 00'0 00'0- OP'8 ZO+HO6II8' LL'£ 6P'0 ZO+HL6P'0 0'Z 00'0 00'0- £9'L ZO+H99PLL' 09'£ OS'0 Z0+HS0S'0 0'Z 00'0 00'0- L8'9 ZO+H£PL£L' £P'£ ZS'0 ZO+HZTS'0 0'Z 00'0 00'0- OT '9 ZO+H6TOOL' SZ'£ PS'0 ZO+HOZS'0 6'T 00'0 00'0- P£'S ZO+H96Z99' LO'£ 9S'0 ZO+H6ZS'O 6'T 00'0 00'0 LS'P II HE MI o S Z A X (Pagopggp Nupq) Z abpgs awnTd aWTq Tanpag anTgpInunJ = II (Aup gT 'sgoajga uozgopaa sapnTouT) uozgpaquaouoo (xTnq) abpaanp = 3 uozgnTTP (NInq) ebpaanp ozui 'uApoapAg = s auTTaaogs/xupq uioaj ATTpquozTaog paanspaw 'ggP?M-;Tpg qpq-doq = HE ATTpoTgaan paanspaui'ssauxoTgq qpg-doq = ng :suoT TuT;ap aTLLoad •aaogs/xupq .I,HJI2i woa; pauzuiaagap Mou sT ggpTM auinTd uopooiJiaan lapoysJ jowiauj xaldwoj Ai6aau,H s.ia6oH Rogers Energy Complex Thermal Model Verification 38.99 -0.00 0.00 3.4 0.297E+02 0.34 9.01 .23385E+03 39.75 -0.00 0.00 3.4 0.293E+02 0.34 9.12 .23758E+03 40.51 -0.00 0.00 3.5 0.289E+02 0.34 9.22 .24130E+03 41.28 -0.00 0.00 3.5 0.285E+02 0.34 9.33 .24502E+03 42.04 -0.00 0.00 3.6 0.281E+02 0.35 9.43 .24875E+03 42.81 -0.00 0.00 3.6 0.278E+02 0.35 9.54 .25247E+03 43.57 -0.00 0.00 3.7 0.274E+02 0.35 9.64 .25619E+03 44.34 -0.00 0.00 3.7 0.270E+02 0.35 9.74 .25992E+03 45.10 -0.00 0.00 3.8 0.266E+02 0.35 9.85 .26364E+03 45.87 -0.00 0.00 3.8 0.263E+02 0.35 9.95 .26736E+03 46.63 -0.00 0.00 3.9 0.259E+02 0.35 10.05 .27109E+03 47.40 -0.00 0.00 3.9 0.256E+02 0.35 10.15 .27481E+03 48.16 -0.00 0.00 4.0 0.252E+02 0.36 10.25 .27853E+03 48.93 -0.00 0.00 4.0 0.248E+02 0.36 10.35 .28226E+03 49.69 -0.00 0.00 4.1 0.245E+02 0.36 10.45 .28598E+03 50.46 -0.00 0.00 4.1 0.242E+02 0.36 10.55 .28970E+03 51.22 -0.00 0.00 4.2 0.238E+02 0.36 10.65 .29343E+03 51.99 -0.00 0.00 4.3 0.235E+02 0.36 10.74 .29715E+03 52.75 -0.00 0.00 4.3 0.232E+02 0.37 10.84 .30088E+03 53.52 -0.00 0.00 4.4 0.228E+02 0.37 10.94 .30460E+03 54.28 -0.00 0.00 4.4 0.225E+02 0.37 11.03 .30832E+03 55.05 -0.00 0.00 4.5 0.222E+02 0.37 11.13 .31205E+03 55.81 -0.00 56.57 -0.00 0.00 4.6 0.219E+02 0.37 11.23 .31577E+03 0.00 4.6 0.216E+02 0.38 11.32 .31949E+03 57.34 -0.00 0.00 4.7 0.213E+02 0.38 11.42 .32322E+03 58.10 -0.00 0.00 4.8 0.210E+02 0.38 11.51 .32694E+03 58.87 -0.00 0.00 4.8 0.207E+02 0.38 11.60 .33066E+03 59.63 -0.00 0.00 4.9 0.204E+02 0.38 11.70 .33439E+03 60.40 -0.00 0.00 5.0 0.201E+02 0.39 11.79 .33811E+03 61.16 -0.00 0.00 5.0 0.198E+02 0.39 11.88 .34183E+03 61.93 -0.00 0.00 5.1 0.195E+02 0.39 11.98 .34556E+03 62.69 -0.00 0.00 5.2 0.193E+02 0.39 12.07 .34928E+03 63.46 -0.00 0.00 5.3 0.190E+02 0.40 12.16 .35300E+03 1 64.22 -0.00 0.00 5.3 0.187E+02 0.40 12.25 .35673E+03 64.99 -0.00 0.00 5.4 0.185E+02 0.40 12.34 .36045E+03 65.75 -0.00 0.00 5.5 0.182E+02 0.40 12.43 .36417E+03 66.52 -0.00 0.00 5.6 0.180E+02 0.41 12.52 .36790E+03 67.28 -0.00 0.00 0.00 5.6 0.177E+02 0.41 12.61 .37162E+03 68.05 -0.00 0.00 5.7 0.175E+02 0.41 12.70 .37534E+03 68.81 -0.00 0.00 5.8 0.172E+02 0.42 12.79 .37907E+03 69.58 -0.00 0.00 5.9 0.170E+02 0.42 12.88 .38279E+03 70.34 -0.00 0.00 6.0 0.167E+02 0.42 12.97 .38652E+03 71.10 -0.00 0.00 6.1 0.165E+02 0.43 13.06 .39024E+03 71.87 -0.00 0.00 6.1 0.163E+02 0.43 13.15 .39396E+03 72.63 -0.00 0.00 6.2 0.161E+02 0.43 13.24 .39769E+03 73.40 -0.00 0.00 6.3 0.158E+02 0.43 13.32 .40141E+03 74.16 -0.00 0.00 6.4 0.156E+02 0.44 13.41 .40513E+03 74.93 -0.00 0.00 1 4 +6.5 0. 5 E 02 0.44 13.50 .40886E+03 75.69 -0.00 0.00 6.6 0.152E+02 0.44 13.59 .41258E+03 76.46 -0.00 0.00 6.7 0.150E+02 0.45 13.67 .41630E+03 77.22 -0.00 0.00 6.8 0.148E+02 0.45 13.76 .42003E+03 77.99 -0.00 0.00 6.9 0.146E+02 0.45 13.85 .42375E+03 78.75 -0.00 0.00 7.0 0.144E+02 0.46 13.93 .42747E+03 79.52 -0.00 0.00 7.0 0.142E+02 0.46 14.02 .43120E+03 80.28 -0.00 0.00 7.1 0.140E+02 0.46 14.10 .43492E+03 81.05 -0.00 0.00 7.2 0.138E+02 0.47 14.19 .43864E+03 4,.._ A-11 v Lam' N a M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W L- CO rA C CO OD r-I M CO OD O M Ln L- O N C' N CO .--I C' CO CO rl M Ln CO O N Ln l- O N V' N CO ri C• CO OD =I M Ln CO O N Ln L- CO N C' l0 01 .--I C' CO M O CO Ln N CO N a' ri OD CO M O L- an N CO CO M ri CO an N O L- C• ri 01 CO M O 00 Ln N CO CO C' -1 OD Ln M O N a' N CO CO M O CO Ln N 01 L- C' ri N CO CO M L- O C' CO N Ln CO M L- 0 CM 00 r-I Ln CO M CO O C' 00 rl Ln 01 N CO O C' N ri Ln CO N CO O M L' ri Ln CO N CO 01 M N ,H C' CO N in CO M L- C' CM C' Ln Ln CO CO CO N L- L- CO CO CO CO 01 O O O f-I r-i N N N M Cr) M C' d' Ln Ln Ln CO CO CO N N CO CO 00 LT CO CO O O O r-I rH N N N M M 0/ C' C' C• CM CV Cr Cr CP CP Cr CP Cr Cr CP C' Cr CM CP Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Li/ Ln Ln Ln Ln Ln Ln Ln Ln Ln CO CO CO CO CO CO CO CO CO CO lO CO CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N CO a' N ri CO N CO a' N ri CO N Ln M ri O CO CO CM N O CO CO C' N O L- Ill C') ri CO L— C' N O 00 Ln M ,-I CO LO C' Cn CO Cr N CO N C' N CO L— C}' ri N M CM Ln CO CO N 00 CO O ri ri N M C' Ln CO CO L- 00 Cn O O ri N M C' V' Ln lO 1- L- CO CO O ri ri N M C' C' Ln CO N N OD CO O O ,-I N M M Ln CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C• C• C CT' C' C' C' C' C' Ln LC) Ln Ln Ln Ln Ln ix) Ln Ln Ln Ln LO CO lO CO CO CO l0 l0 CO CO CO CO CO N N N N N N N N N N N N co co co co co CO CO co co ,-i ri ,-I ri ri ri ri r-1 ri ,-1 ,-I ,-I ri ri ri ri ri rH rH ri ri ri ri ri ri ri ri rA rA ri rH rA rA ri ri ri ri ri ri ,-I ri r-1 ri r1 ri ri rH ri ri ,-I rA ,-I ri ri ri rA L- co CO co CO CO CO O O ,-I ,-I ri N N M M M C' C' an Ln CO CO CO N 1- co co CO CO O O O r-1 rH N N M M C• C' Ln Ln CO CO N L- co CO CO CO O O ri ,-I N Cr C' C' C' C• V' C• Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln l0 LID LO LO LO LO l0 l0 LO LO l0 LO l0 l0 LO LO l0 l0 l0 LO l0 L- L- L- L- 1- • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N rH rA rA ,--I ri ri ri ri ,-1 ,-I ,-i ri r1 ri ri ri ri ri ri rA rA ri ri ri rA ri ri r-i ,--I ,--I ri r-I O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W z VD M ri CO N CO Cl' N ri CO CO CO Ln M N O CO L- CO Ln M N rA C' N O CO CO C)' N ri O CO CO CO N L- L- L- L- L- co co Cn O ,-I N M Ln CO CO O N C' CO M M M M N N N N N N rA ri ri rA ri r--I ri O O O O O O O CO CO L- Ln CM M N r-I O CO N CO Ln C' M N ri O CO CO N L- CO Ln C)' M N ri ri O CO CO i.1 ri .-i ri r-i ri ri ri ri ri ri ri ri ri ri ri rA ri ri rH rA ri ri ri rA CO CO CO CO 01 CO CO CO Cn 00 CO CO CO CO CO 00 00 co L- L- L- N N L- L- L- L- L- N L- CO CO . C.) O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M CM Ln l0 L- Cn O ri N M C' Ln CO L- 00 O ri N 01 C• CO L- co CO ri N on ')' CO L- CO O ri N C' Ln L- CO O rH N C' an L- co O ri M Ln CO CO CO ri 01 N N N N N L- co co CO co co co co co co CO CO CO CO CO CO CO O1 CO O O O O O O O rH ri ri rH rH ri ri N N N N N N N M M M M M M C') CM C' C' C}' ri ri ri ri ri ri ri ri ri ri rA ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri r1 ri ri ri ri ri O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)0) E I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I J. V ri co ri N CM O lO M Ol CO N Ql Ln N co Ln r-1 co ri N C}' 0 L- co CO CO N O1 Ln N CO Ln ri co C' ri N C}' O N M O CO N CJ1 Ln N CO Ln ri co ri C- OD 00 Ln 01 ri CO CO C' ri 01 CO C' N CO L- Ln N O CO Ln M ri 00 CO C)' ri CO CO Cr N CO L- Ln N O CO Ln M ri 00 CO C' ri CO N C' N CO L- Ln N O CO Ln M ri CO Gib r1 N M C' cr Ln CO l— r- CO CO O O ri N M C}' C• Ln CO L- L- CO 01 O O ri N M M C' Ln CO L— L— co 01 O O ri N M M C' Ln CO CO L— CO CO O O i N M M y CO 00 CO 00 CO CO CO CO CO 00 CO 01 01 CO 01 01 CO CO CO CO CO 01 CO 01 CD CD CD CD CD CD CD CD CD CD CD CD CD rH ri ri ri ri ri ri ri ri ,-i ri ri ri N N N N N N ri ri ri ,-i r1 ri ri ri ri ri ri r-i ri r-i ri ri ri ri ri ri rA rA r1 ri ri ri rA rA ri ri ri 0.) O Rogers Energy Complex Thermal Model Verification 124.64 -0.00 0.00 14.7 0.678E+01 0.72 18.69 .65088E+03 125.40 -0.00 0.00 14.9 0.671E+01 0.73 18.76 .65461E+03 126.17 -0.00 0.00 15.1 0.663E+01 0.73 18.84 .65833E+03 126.93 -0.00 0. 00 15.3 0.656E+01 0.74 18.91 .66205E+03 127.70 -0.00 0.00 15.4 0.648E+01 0.75 18.98 .66578E+03 128.46 -0.00 0. 00 15.6 0.641E+01 0.75 19.06 .66950E+03 129.23 -0.00 0.00 15.8 0.634E+01 0.76 19.13 .67322E+03 129.99 -0.00 0.00 15.9 0.627E+01 0.76 19.20 .67695E+03 130.76 -0.00 0.00 16.1 0.620E+01 0.77 19.28 .68067E+03 131.52 -0.00 0.00 16.3 0.614E+01 0.77 19.35 .68439E+03 132.28 -0.00 0.00 16.5 0.607E+01 0.78 19.42 .68812E+03 133.05 -0.00 0.00 16.7 0.600E+01 0.78 19.49 .69184E+03 133.81 -0.00 0.00 16.8 0.594E+01 0.79 19.57 .69556E+03 134.58 -0.00 0.00 17.0 0.588E+01 0.80 19.64 .69929E+03 135.34 -0.00 0.00 17.2 0.581E+01 0.80 19.71 .70301E+03 136.11 -0.00 0.00 17.4 0.575E+01 0.81 19.78 .70673E+03 136.87 -0.00 0.00 17.6 0.569E+01 0.81 19.86 .71046E+03 137.64 -0.00 0.00 17.8 0.563E+01 0.82 19.93 .71418E+03 138.40 -0.00 0. 00 18.0 0.557E+01 0.82 20.00 .71790E+03 139.17 -0.00 0.00 18.1 0.551E+01 0.83 20.07 .72163E+03 139.93 -0.00 0. 00 18.3 0.545E+01 0.84 20.14 .72535E+03 140.70 -0.00 0. 00 18.5 0.540E+01 0.84 20.21 .72908E+03 141.46 -0.00 0.00 18.7 0.534E+01 0.85 20.28 .73280E+03 142.23 -0.00 0.00 18.9 0.528E+01 0.85 20.36 .73652E+03 142.99 -0.00 0.00 19.1 0.523E+01 0.86 20.43 .74025E+03 143.76 -0.00 0.00 19.3 0.518E+01 0.86 20.50 .74397E+03 144.52 -0.00 0.00 19.5 0.512E+01 0.87 20.57 .74769E+03 145.29 -0.00 0.00 19.7 0.507E+01 0.88 20.64 .75142E+03 146.05 -0.00 0.00 19.9 0.502E+01 0.88 20.71 .75514E+03 146.81 -0.00 0.00 20.1 0.497E+01 0.89 20.78 .75886E+03 147.58 -0.00 0.00 20.3 0.492E+01 0.89 20.85 .76259E+03 148.34 -0.00 0.00 20.5 0.487E+01 0.90 20.92 .76631E+03 149.11 -0.00 0.00 20.7 0.482E+01 0.91 20.99 .77003E+03 149.87 -0.00 0.00 21.0 0.477E+01 0.91 21.06 .77376E+03 150.64 -0.00 0.00 21.2 0.472E+01 0.92 21.13 .77748E+03 151.40 -0.00 0.00 21.4 0.468E+01 0.93 21.20 .78120E+03 152.17 -0.00 0.00 21.6 0.463E+01 0.93 21.27 .78493E+03 152.93 -0.00 0.00 21.8 0.459E+01 0.94 21.34 .78865E+03 153.70 -0.00 0.00 22.0 0.454E+01 0.94 21.41 .79237E+03 154.46 -0.00 0.00 22.2 0.450E+01 0.95 21.48 .79610E+03 155.23 -0.00 0.00 22.5 0.445E+01 0.96 21.55 .79982E+03 155.99 -0.00 0.00 22.7 0.441E+01 0.96 21.61 .80354E+03 156.76 -0.00 0.00 22.9 0.437E+01 0.97 21.68 .80727E+03 157.52 -0.00 0.00 23.1 0.432E+01 0.98 21.75 .81099E+03 Cumulative travel time = 810.9932 sec ( 0.23 hrs) END OF MOD341: BUOYANT AMBIENT SPREADING BEGIN MOD361: PASSIVE AMBIENT MIXING IN UNIFORM AMBIENT Vertical diffusivity (initial value) = 0.373E-02 m^2/s Horizontal diffusivity (initial value) = 0.933E-02 m^2/s Profile definitions: BV = Gaussian s.d.*sqrt (pi/2) (46%) thickness, measured vertically = or equal to water depth, if fully mixed _ A-13 V if L'911e Rogers Energy Complex Thermal Model Verification BH = Gaussian s.d.*sqrt (pi/2) (46%) half-width, measured horizontally in Y-direction S = hydrodynamic centerline dilution 1 C = centerline concentration (includes reaction efects, if any) TT = Cumulative travel time Plume Stage 2 (bank attached) : X Y Z S C BV BH TT 157.52 0.00 0.00 23. 1 0.432E+01 0.98 21.75 .81099E+03 Plume interacts with BOTTOM. The passive diffusion plume becomes VERTICALLY FULLY MIXED within this prediction interval. 161.73 -0.00 0.00 23.1 0.432E+01 0.98 21.77 .83150E+03 165.95 -0.00 0.00 23.2 0.432E+01 0.98 21.78 .85201E+03 170.16 -0.00 0.00 23.2 0.432E+01 0.98 21.79 .87252E+03 174.37 -0.00 0.00 23.2 0.431E+01 0.98 21.81 .89303E+03 178.58 -0.00 0.00 23.2 0.431E+01 0.98 21.82 .91354E+03 182.80 -0.00 0.00 23.2 0.431E+01 0.98 21.83 .93405E+03 187.01 -0.00 0.00 23.2 0.430E+01 0.98 21.85 .95456E+03 191.22 -0.00 0.00 23.2 0.430E+01 0.98 21.86 .97507E+03 195.43 -0.00 0.00 23.3 0.430E+01 0.98 21.88 .99558E+03 199.65 -0.00 0.00 23.3 0.430E+01 0.98 21.89 .10161E+04 203.86 -0.00 0.00 23.3 0.429E+01 0.98 21.90 .10366E+04 208.07 -0.00 0.00 23.3 0.429E+01 0.98 21.92 .10571E+04 212.28 -0.00 0.00 23.3 0.429E+01 0.98 21.93 .10776E+04 216.49 -0.00 0.00 23.3 0.429E+01 0.98 21.94 .10981E+04 220.71 -0.00 0.00 23.3 0.428E+01 0.98 21.96 .11186E+04 224.92 -0.00 0.00 23.4 0.428E+01 0.98 21.97 .11391E+04 229.13 -0.00 0.00 23.4 0.428E+01 0. 98 21.99 .11597E+04 233.34 -0.00 0.00 23.4 0.427E+01 0.98 22.00 .11802E+04 237.56 -0.00 0.00 23.4 0.427E+01 0.98 22.01 .12007E+04 241.77 -0.00 0.00 23.4 0.427E+01 0.98 22.03 .12212E+04 245.98 -0.00 0.00 23.4 0.427E+01 0.98 22.04 .12417E+04 250.19 -0.00 0.00 23.5 0.426E+01 0.98 22.05 .12622E+04 254.41 -0.00 0.00 23.5 0.426E+01 0.98 22.07 .12827E+04 258.62 -0.00 0.00 23.5 0.426E+01 0.98 22.08 .13032E+04 262.83 -0.00 0.00 23.5 0.426E+01 0.98 22.09 .13237E+04 267.04 -0.00 0.00 23.5 0.425E+01 0.98 22.11 .13442E+04 271.26 -0.00 0.00 23.5 0.425E+01 0.98 22.12 .13648E+04 275.47 -0.00 0.00 23.5 0.425E+01 0.98 22.14 .13853E+04 279.68 -0.00 0.00 23.6 0.425E+01 0.98 22.15 .14058E+04 283.89 -0.00 0.00 23.6 0.424E+01 0.98 22. 16 .14263E+04 288.11 -0.00 0.00 23.6 0.424E+01 0.98 22.18 .14468E+04 292.32 -0.00 0.00 23.6 0.424E+01 0.98 22. 19 .14673E+04 296.53 -0.00 0.00 23.6 0.424E+01 0.98 22.20 .14878E+04 300. 74 -0.00 0.00 23.6 0.423E+01 0.98 22.22 .15083E+04 304.96 -0.00 0.00 23.6 0.423E+01 0.98 22.23 .15288E+04 309.17 -0.00 0.00 23. 7 0.423E+01 0. 98 22.24 .15493E+04 313.38 -0.00 0.00 23.7 0.423E+01 0.98 22.26 .15699E+04 317.59 -0.00 0.00 23. 7 0.422E+01 0.98 22.27 .15904E+04 321.80 -0.00 0.00 23. 7 0.422E+01 0.98 22.28 .16109E+04 326.02 -0.00 0.00 23.7 0. 422E+01 0.98 22.30 .16314E+04 330.23 -0.00 0.00 23.7 0. 422E+01 0.98 22.31 .16519E+04 334.44 -0.00 0.00 23.7 0. 421E+01 0.98 22.32 .16724E+04 338.65 -0.00 0.00 23.8 0.421E+01 0.98 22.34 . 16929E+04 342.87 -0.00 0.00 23.8 0.421E+01 0. 98 22.35 .17134E+04 .G �", A-14 -. v Lam'' Rogers Energy Complex Thermal Model Verification 347.08 -0.00 0.00 23.8 0.420E+01 0.98 22.37 .17339E+04 351.29 -0.00 0.00 23.8 0.420E+01 0.98 22.38 .17544E+04 355.50 -0.00 0.00 23.8 0.420E+01 0.98 22.39 .17749E+04 359.72 -0.00 0.00 23.8 0.420E+01 0.98 22.41 .17955E+04 363.93 -0.00 0.00 23.8 0.419E+01 0.98 22.42 .18160E+04 368.14 -0.00 0.00 23.9 0.419E+01 0.98 22.43 .18365E+04 372.35 -0.00 0.00 23.9 0.419E+01 0.98 22.45 .18570E+04 376.57 -0.00 0.00 23.9 0.419E+01 0.98 22.46 .18775E+04 380.78 -0.00 0.00 23.9 0.418E+01 0.98 22.47 .18980E+04 384.99 -0.00 0.00 23.9 0.418E+01 0.98 22.49 .19185E+04 389.20 -0.00 0.00 23.9 0.418E+01 0.98 22.50 .19390E+04 393.42 -0.00 0. 00 23.9 0.418E+01 0.98 22.51 .19595E+04 397.63 -0.00 0.00 24.0 0.417E+01 0.98 22.53 .19800E+04 401.84 -0.00 0.00 24.0 0.417E+01 0.98 22.54 .20006E+04 406.05 -0.00 0.00 24.0 0.417E+01 0.98 22.55 .20211E+04 410.27 -0.00 0.00 24.0 0.417E+01 0.98 22.57 .20416E+04 414.48 -0.00 0.00 24.0 0.417E+01 0.98 22.58 .20621E+04 418.69 -0.00 0.00 24.0 0.416E+01 0.98 22.59 .20826E+04 422.90 -0.00 0.00 24.0 0.416E+01 0.98 22.61 .21031E+04 427.11 -0.00 0.00 24.1 0.416E+01 0.98 22.62 .21236E+04 431.33 -0.00 0.00 24.1 0.416E+01 0.98 22.63 .21441E+04 435.54 -0.00 0.00 24.1 0.415E+01 0.98 22.65 .21646E+04 439.75 -0.00 0.00 24.1 0.415E+01 0.98 22.66 .21851E+04 443.96 -0.00 0.00 24.1 0.415E+01 0.98 22.67 .22057E+04 448.18 -0.00 0.00 24.1 0.415E+01 0.98 22.69 .22262E+04 452.39 -0.00 0.00 24.1 0.414E+01 0.98 22.70 .22467E+04 456.60 -0.00 0.00 24.2 0.414E+01 0.98 22.71 .22672E+04 • 460.81 -0.00 0.00 24.2 0.414E+01 0.98 22.73 .22877E+04 465.03 -0.00 0.00 24.2 0.414E+01 0.98 22.74 .23082E+04 469.24 -0.00 0.00 24.2 0.413E+01 0.98 22.75 .23287E+04 473.45 -0.00 0.00 24.2 0.413E+01 0.98 22.76 .23492E+04 477.66 -0.00 0.00 24.2 0.413E+01 0.98 22.78 .23697E+04 481.88 -0.00 0.00 24.2 0.413E+01 0.98 22.79 .23902E+04 486.09 -0.00 0.00 24.2 0.412E+01 0.98 22.80 .24108E+04 490.30 -0.00 0.00 24.3 0.412E+01 0.98 22.82 .24313E+04 494.51 -0.00 0.00 24.3 0.412E+01 0.98 22.83 .24518E+04 498.73 -0.00 0.00 24.3 0.412E+01 0.98 22.84 .24723E+04 502.94 -0.00 0.00 24.3 0.411E+01 0.98 22.86 .24928E+04 507.15 -0.00 0.00 24.3 0.411E+01 0.98 22.87 .25133E+04 511.36 -0.00 0.00 24.3 0.411E+01 0.98 22.88 .25338E+04 515.58 -0.00 0.00 24.3 0.411E+01 0.98 22.90 .25543E+04 519.79 -0.00 0.00 24.4 0.411E+01 0.98 22.91 .25748E+04 524.00 -0.00 0.00 24.4 0.410E+01 0.98 22.92 .25953E+04 528.21 -0.00 0.00 24.4 0.410E+01 0.98 22.94 .26158E+04 532.42 -0.00 0.00 24.4 0.410E+01 0.98 22.95 .26364E+04 536.64 -0.00 0.00 24.4 0.410E+01 0.98 22.96 .26569E+04 540.85 -0.00 0.00 24.4 0.409E+01 0.98 22.98 .26774E+04 545.06 -0.00 0.00 24.4 0.409E+01 0.98 22.99 .26979E+04 549.27 -0.00 0.00 24.5 0.409E+01 0.98 23.00 .27184E+04 553.49 -0.00 0.00 24.5 0.409E+01 0.98 23.01 .27389E+04 557.70 -0.00 0.00 24.5 0.408E+01 0.98 23.03 .27594E+04 561.91 -0.00 0.00 24.5 0.408E+01 0.98 23.04 .27799E+04 566.12 -0.00 0.00 24.5 0.408E+01 0.98 23.05 .28004E+04 570.34 -0.00 0.00 24.5 0.408E+01 0.98 23.07 .28209E+04 574.55 -0.00 0.00 24.5 0.407E+01 0.98 23.08 .28415E+04 578.76 -0.00 0.00 24.6 0.407E+01 0.98 23.09 .28620E+04 A-15 ,it,---- _ . v a lfa O O O 0 0 0 O 0 O O O O 0 O 0 O O O 0 O O O 0 0 0 0 0 0 0 O O O O O O O O O 0 0 0 0 0 0 0 0 0 O 0 0 O O 0 0 O O + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w Ln O LO O Lf) O Ln O 10 rlk,0 rl 10 rl 1D .-I lD rl N N N N N N r- N N N N M co L'') O M a) M a) (V) co C' Ol cr a) Ol C' Ol • 61 Ln O Ln O Ln O Ln N CO M V' a' Lfl Ln 1.0 10 N N a) a) 61 a) O O r-I rl N N M CO V" a' Ln Ln 10 l0 N L- a) co 01 Ol O O r-1 .--I N N CO M d' Ln in L9 a) N a) a) 61 a) O CO O N 10 CO O N a) O N a' l0 61 r-1 M Ln N O r-i M L.f) rl ("I Ln N 61 r-I M Lf) N 0 N •q' 19 CO O N C' l0 O O N c' 10 co O N a' 10 61 rl CO 01 61 Ol 01 01 O O O O O r1 rl r I r-I r4 N N N N N CO M CO CO CO Ct' •IZV Ln Ln Ln Ln 10 10 10 Ls lD N L- L- N N a) CO O CO O 01 6) 01 O O O N N N N N N M M n') M M M M M M M M M CO M M M M M M M M M M M M M M M M M M M M O1 M M M M M M CO M M M M tM M M 00 a' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rl N CO V' 10 N CO Cr r-I N a' Ln 10 N Ol O r1 M a' Ln 10 CO Ol O N M d' Ln N CO 61 rl N M CO 01 rl N CO Ln 10 N CO O r4 N CO Ln 10 N 01 O rl ri r1 r-i N N N N N N N N M M ('') CO Cc) CO CO CO V' a' a' Ln Ln Ln Ln Ln Ln Ln LI) 10 (0 10 1p lD 10 O N N N N N N N N O aO • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CO M M M M M M M M M M M C') M M M M M M 01 01 M M M M M M M M M M M M M M M M M M M M M M M M M M M M M C') M M n') M M N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N CO CO 00 00 O CO O O CO CO CO CO CO CO CO a) CO 00 O co co co a0 co a) a) a) co a0 a) co 00 a) co co co co co 00 CO CO a) O 00 co co 00 a) a) a) a) a) O a) co O a) 01 61 a) a) a) a) 61 a) a) a) 61 a) a) a) a) 01 6l Ol a) a) a) a) Ol dl Ol 61 01 61 61 Ol Ol Ol 61 O 61 01 Ol Ol 01 01 61 Ol 61 61 61 61 61 01 Ol 61 61 61 01 61 61 • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r-I rl rl ri 1-1 r I r1 1-1 1-1 ri rl 1-1 r-i .--I r-I rl 1-1 ri r-I ri rl 1-1 rl r-I r-I r-I rl rl r-1 .--I r-I r-I r-I rl rl rl 1-1 r-I .--I r-I rl rl ri ri r-I rl I O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W O N N 1D 1D 1D 1D Ln Ln Ln Ln L) .1' •1' G' a' M M M M M N N N N r-i r ri r-I rl O O 0 0 Ol a) a) a) a) co co a0 co a) L- N N N 10 1D 10 10 l0 Ln Ln Ln 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O 61 61 61 6) 61 01 Ol Ol Ol 61 61 61 61 01 61 61 61 61 61 O1 61 61 d' a' a' a' a' .1' a' '1. .1' C' '1' .1' '0' a' C' V' V' •' M M Cr) CO M CO M M M M M M M M M M M M M M M M CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1D lD 1D 1D lfl lfl N N N l� l� L- r- L- a0 a0 a0 O OO O a0 01 61 61 61 6) 61 Ol O O O O O O O O r-i r 1 r-I r1 r-1 ri ri N N N N N N N M M M M M M 20) '0' .' Ln Ln Ln Ln Ln Ln Ln Ln In Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Lf) N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 of O 0 0 0 0 O O 0 0 O 0 0 O O O 0 O O O O 0 0 O 0 O O 0 0 0 0 0 O 0 0 0 O 0 0 0 O O 0 O O 0 0 O 0 0 O O 0 O O 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ))) 00000000000000000 0000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 00 0 0 V I N 01 O .1 N '' Ln 10 N Ol O rl N CO Ln l0 N O O rl N M Ln lO l- a0 O .-i N M Ln 1D f a) O .-i N M '' 10 N CO O r1 N M C' l0 N O Ol rl N CO V 10 Ol r-I a' 1D a) 0 N d' 10 00 rl CO Ln N 61 "4 M Ln CO 0 N a' 10 00 0 N Ln N 61 rl M Ln N Ol N a' 1D co O N O' 10 co M Ln 1 Ol rl C") Ln co 0 N V' 10 LLB N N rl Lf) 61 a' OO N 10 O Ln 61 M N r l0 O ' ' co co N rl Ln Ol 0' co N 10 O Ln ail M N rl 10 O 0' O M L- rI LO Ol 0' O N 10 O Ln 61 M N N 10 O cf S co O 61 61 61 O O r-1 ,i N N N M M 'cr 0' Ln Ln Ln 1D L) N L- L- O O 01 01 O O O r-I r-I N N M M a' Ln Ln Ln 10 10 O CO CO Ol 01 0 0 ri ri 1.111 Ln Ln Ln Ln Ln 1D 1D lO 1D 10 lO 10 1D 1D 1D 10 10 1D 1D 1D 1D 1D 10 1D 1D 1D 1D 10 N N L- L- N L- N N N N N N N L- N N N N N L- N N N N a) a) co co . I Rogers Energy Complex Thermal Model Verification 818.87 -0.00 0.00 25.3 0.395E+01 0.98 23.82 .40310E+04 823.08 -0.00 0.00 25.3 0.395E+01 0.98 23.84 .40515E+04 827.29 -0.00 0.00 25.4 0.394E+01 0.98 23.85 .40720E+04 831.51 -0.00 0.00 25.4 0.394E+01 0.98 23.86 .40926E+04 835.72 -0.00 0.00 25.4 0.394E+01 0.98 23.87 .41131E+04 839.93 -0.00 0.00 25.4 0.394E+01 0.98 23.89 .41336E+04 844.14 -0.00 0.00 25.4 0.394E+01 0.98 23.90 .41541E+04 848.35 -0.00 0.00 25.4 0.393E+01 0.98 23.91 .41746E+04 852.57 -0.00 0.00 25.4 0.393E+01 0.98 23.92 .41951E+04 856.78 -0.00 0.00 25.5 0.393E+01 0.98 23.94 .42156E+04 860.99 -0.00 0.00 25.5 0.393E+01 0.98 23.95 .42361E+04 865.20 -0.00 0.00 25.5 0.392E+01 0.98 23.96 .42566E+04 869.42 -0.00 0.00 25.5 0.392E+01 0.98 23.97 .42771E+04 873.63 -0.00 0.00 25.5 0.392E+01 0.98 23.99 .42976E+04 877.84 -0.00 0.00 25.5 0.392E+01 0.98 24.00 .43182E+04 882.05 -0.00 0.00 25.5 0.392E+01 0.98 24.01 .43387E+04 886.27 -0.00 0.00 25.5 0.391E+01 0.98 24.02 .43592E+04 890.48 -0.00 0.00 25.6 0.391E+01 0.98 24.04 .43797E+04 894.69 -0.00 0.00 25.6 0.391E+01 0.98 24.05 .44002E+04 898.90 -0.00 0.00 25.6 0.391E+01 0.98 24.06 .44207E+04 903.12 -0.00 0.00 25.6 0.391E+01 0.98 24.07 .44412E+04 907.33 -0.00 0.00 25.6 0.390E+01 0.98 24.09 .44617E+04411 911.54 -0.00 0.00 25.6 0.390E+01 0.98 24.10 .44822E+04 915.75 -0.00 0.00 25.6 0.390E+01 0.98 24.11 .45027E+04 919.97 -0.00 0.00 25.7 0.390E+01 0.98 24.12 .45233E+04 924.18 -0.00 0.00 25.7 0.390E+01 0.98 24.14 .45438E+04 928.39 -0.00 0.00 25.7 0.389E+01 0.98 24.15 .45643E+04 932.60 -0.00 0.00 25.7 0.389E+01 0.98 24.16 .45848E+04 936.82 -0.00 0.00 25.7 0.389E+01 0.98 24.17 .46053E+04 941.03 -0.00 0.00 25.7 0.389E+01 0.98 24.19 .46258E+04 945.24 -0.00 0.00 25.7 0.389E+01 0.98 24.20 .46463E+04 949.45 -0.00 0.00 25.7 0.388E+01 0.98 24.21 .46668E+04 953.67 -0.00 0.00 25.8 0.388E+01 0.98 24.22 .46873E+04 957.88 -0.00 0.00 25.8 0.388E+01 0.98 24.24 .47078E+04 962.09 -0.00 0.00 25.8 0.388E+01 0.98 24.25 .47284E+04 966.30 -0.00 0.00 25.8 0.388E+01 0.98 24.26 .47489E+04 970.51 -0.00 0.00 25.8 0.387E+01 0.98 24.27 .47694E+04 974.73 -0.00 0.00 25.8 0.387E+01 0.98 24.29 .47899E+04 978.94 -0.00 0.00 25.8 0.387E+01 0.98 24.30 .48104E+04 983.15 -0.00 0.00 25.8 0.387E+01 0.98 24.31 .48309E+04 987.36 -0.00 0.00 25.9 0.387E+01 0.98 24.32 .48514E+04 991.58 -0.00 0.00 25.9 0.386E+01 0.98 24.33 .48719E+04 995.79 -0.00 0.00 25.9 0.386E+01 0.98 24.35 .48924E+04 1000.00 -0.00 0.00 25.9 0.386E+01 0.98 24.36 .49129E+04 Cumulative travel time = 4912.9336 sec ( 1.36 hrs) Simulation limit based on maximum specified distance = 1000.00 m. This is the REGION OF INTEREST limitation. END OF MOD361: PASSIVE AMBIENT MIXING IN UNIFORM AMBIENT CORMIX3: Buoyant Surface Discharges End of Prediction File 33333333333333333333333333333333333333333333333333333333333333333333333333 _ A-17 . v L' - Rogers Energy Complex Thermal Model Verification Field Monitoring Day Model (temp) CORMIX SESSION REPORT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CORMIX MIXING ZONE EXPERT SYSTEM CORMIX Version 11.OGT HYDRO3:Version-11.0.1.0 August,2019 SITE NAME/LABEL: Cliffside-Rogers DESIGN CASE: field study comparison temp FILE NAME: C:\Egnyte\Shared\1 Projects\Duke Energy (DUKE)\Cliffside-Rogers\Thermal Model Verification (DUKE0010) \CORMIX\Field Monitoring model\Outfall 005 temp2.prd Using subsystem CORMIX3: Buoyant Surface Discharges Start of session: 05/08/2020--10:01:03 ************************************************************************** SUMMARY OF INPUT DATA: AMBIENT PARAMETERS: Cross-section = bounded Width BS = 72.27 m Channel regularity ICHREG = 2 Ambient flowrate QA = 14.29 m^3/s Average depth HA = 0.98 m Depth at discharge HD = 0.98 m Ambient velocity UA = 0.2027 m/s Darcy-Weisbach friction factor F = 0.0712 Calculated from Manning's n = 0.03 Wind velocity UW = 1.34 m/s Stratification Type STRCND = U Surface temperature = 20 degC Bottom temperature = 20 degC Calculated FRESH-WATER DENSITY values: Surface density RHOAS = 998.2051 kg/mA3 Bottom density RHOAB = 998.2051 kg/mA3 DISCHARGE PARAMETERS: Surface Discharge Discharge located on = right bank/shoreline Discharge configuration = flush discharge Distance from bank to outlet DISTB = 0 m Discharge angle SIGMA = 90 deg Depth near discharge outlet HDO = 0.50 m Bottom slope at discharge SLOPE = 12.4 deg Rectangular discharge: Discharge cross-section area AO = 1.675971 m^2 Discharge channel width BO = 3.3528 m Discharge channel depth HO = 0.499872 m Discharge aspect ratio AR = 0.149091 Discharge flowrate QO = 0.188394 m^3/s Discharge velocity UO = 0.11 m/s Discharge temperature (freshwater) = 23.90 degC Corresponding density RHO0 = 997.3220 kg/mA3 Density difference DRHO = 0.8831 kg/mA3 Buoyant acceleration GPO = 0.0087 m/s^2 Discharge concentration CO = 3.9 deg.0 Surface heat exchange coeff. KS = 0 m/s A-18 V I LC'"-- Rogers Energy Complex Thermal Model Verification Coefficient of decay KD = 0 /s DISCHARGE/ENVIRONMENT LENGTH SCALES: LQ = 1.29 m Lm = 0.72 m Lbb = 0.20 m LM = 1.37 m NON-DIMENSIONAL PARAMETERS: Densimetric Froude number FRO = 1.06 (based on LQ) Channel densimetric Froude no. FRCH = 1.71 (based on HO) Velocity ratio R = 0.55 MIXING ZONE / TOXIC DILUTION ZONE / AREA OF INTEREST PARAMETERS: Toxic discharge = no Water quality standard specified = no Regulatory mixing zone = no Region of interest = 1000 m downstream ************************************************************************** HYDRODYNAMIC CLASSIFICATION: * * 1 FLOW CLASS = SA1 1 * * Ow Limiting Dilution S = (QA/Q0)+ 1.0 = 76.8 ************************************************************************** MIXING ZONE EVALUATION (hydrodynamic and regulatory summary) : X-Y-Z Coordinate system: Origin is located at WATER SURFACE and at centerline of discharge channel: 0 m from the right bank/shore. Number of display steps NSTEP = 200 per module. NEAR-FIELD REGION (NFR) CONDITIONS : Note: The NFR is the zone of strong initial mixing. It has no regulatory implication. However, this information may be useful for the discharge designer because the mixing in the NFR is usually sensitive to the discharge design conditions. Pollutant concentration at NFR edge c = 2.0637 deg.0 Dilution at edge of NFR s = 1.9 NFR Location: x = 4.57 m (centerline coordinates) y = 0 m z = 0 m NFR plume dimensions: half-width (bh) = 2.72 m thickness (bv) = 0.50 m Cumulative travel time: 66.2958 sec. Buoyancy assessment: The effluent density is less than the surrounding ambient water density at the discharge level. Therefore, the effluent is POSITIVELY BUOYANT and will tend to rise towards the surface. FAR-FIELD MIXING SUMMARY: Plume is vertically fully mixed WITHIN NEAR-FIELD (or a fraction thereof) , but RE-STRATIFIES LATER. A-19 i 17411127r-- Rogers Energy Complex Thermal Model Verification Plume becomes vertically fully mixed again at 161.73 m downstream. PLUME BANK CONTACT SUMMARY: Plume in bounded section contacts one bank only at 0 m downstream. ************************ TOXIC DILUTION ZONE SUMMARY ************************ No TDZ was specified for this simulation. ********************** REGULATORY MIXING ZONE SUMMARY *********************** No RMZ and no ambient water quality standard have been specified. ********************* FINAL DESIGN ADVICE AND COMMENTS ********************** REMINDER: The user must take note that HYDRODYNAMIC MODELING by any known technique is NOT AN EXACT SCIENCE. Extensive comparison with field and laboratory data has shown that the CORMIX predictions on dilutions and concentrations (with associated plume geometries) are reliable for the majority of cases and are accurate to within about +-50% (standard deviation) . As a further safeguard, CORMIX will not give predictions whenever it judges the design configuration as highly complex and uncertain for prediction. A-20 . iL -- Rogers Energy Complex Thermal Model Verification CORMIX3 PREDICTION FILE: 33333333333333333333333333333333333333333333333333333333333333333333333333 CORMIX MIXING ZONE EXPERT SYSTEM Subsystem CORMIX3: Buoyant Surface Discharges CORMIX Version 11.0GT HYDRO3 Version 11.0.1.0 August 2019 CASE DESCRIPTION Site name/label: Cliffside-Rogers Design case: field study comparison temp FILE NAME: C:\. . .RMIX\Field Monitoring model\Outfall_005_temp2.prd Time stamp: 05/08/2020--10:01:03 ENVIRONMENT PARAMETERS (metric units) Bounded section BS = 72.27 AS = 70.49 QA = 14.29 ICHREG= 2 HA = 0.98 HD = 0.98 UA = 0.203 F = 0.071 USTAR =0.1912E-01 UW = 1.341 UWSTAR=0.1449E-02 Uniform density environment STRCND= U RHOAM = 998.2051 DISCHARGE PARAMETERS (metric units) BANK = RIGHT DISTB = 0.00 Configuration: flush_discharge SIGMA = 90.00 HDO = 0.50 SLOPE = 12.40 deg. Rectangular channel geometry: BO = 3.353 HO = 0.500 AO =0.1676E+01 AR = 0.149 UO = 0.112 QO = 0.188 =0.1884E+00 RHOO = 997.3220 DRHOO =0.8831E+00 GPO =0.8676E-02 CO =0.3900E+01 CUNITS= deg.0 IPOLL = 1 KS =0.0000E+00 KD =0.0000E+00 FLUX VARIABLES (metric units) QO =0.1884E+00 MO =0.2118E-01 JO =0.1635E-02 Associated length scales (meters) LQ = 1.29 LM = 1.37 Lm = 0.72 Lb = 0.20 NON-DIMENSIONAL PARAMETERS FRO = 1.06 FRCH = 1.71 R = 0.55 FLOW CLASSIFICATION 333333333333333333333333333333333333333333333333 3 Flow class (CORMIX3) = SA1 3 3 Applicable layer depth HS = 0.98 3 3 Limiting Dilution S =QA/QO= 76.84 3 333333333333333333333333333333333333333333333333 MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS CO =0.3900E+01 CUNITS= deg.0 NTOX = 0 NSTD = 0 REGMZ = 0 XINT = 1000.00 XMAX = 1000.00 X-Y-Z COORDINATE SYSTEM: A-21 Rogers Energy Complex Thermal Model Verification ORIGIN is located at the WATER SURFACE and at center of discharge channel/outlet: 0.00 m from the RIGHT bank/shore. X-axis points downstream Y-axis points to left as seen by an observer looking downstream Z-axis points vertically upward (in CORMIX3, all values Z = 0.00) NSTEP = 200 display intervals per module BEGIN MOD301: DISCHARGE MODULE Efflux conditions: X Y Z S C BV BH UC TT 0.00 0.00 0.00 1.0 0.390E+01 0.50 1.68 0.112 .00000E+00 END OF MOD301: DISCHARGE MODULE BEGIN MOD302: ZONE OF FLOW ESTABLISHMENT Control volume inflow: X Y Z S C BV BH UC TT 0.00 0.00 0.00 1.0 0.390E+01 0.50 1.68 0. 112 .00000E+00 !I! VERTICAL MIXING occurs in the initial zone of flow establishment. Profile definitions: BV = Gaussian 1/e (37%) vertical thickness BH = Gaussian 1/e (37%) horizontal half-width, normal to trajectory S. . = hydrodynamic centerline dilution C = centerline concentration (includes reaction.efects, if any) Uc = Local centerline excess velocity (above ambient) TT = Cumulative travel time Control volume outflow: SIGMAE= 17.62 X Y Z S C BV BH UC TT 0.59 0.84 0.00 1.0 0.390E+01 0.68 1.25 0.112 .91301E+01 Cumulative travel time = 9.1301 sec ( 0.00 hrs) END OF MOD302: ZONE OF FLOW ESTABLISHMENT BEGIN CORSURF (MOD310) : BUOYANT SURFACE JET - NEAR-FIELD REGION Surface jet in deep crossflow with shoreline-attachment. Profile definitions: BV = water depth (vertically mixed) BH = Gaussian 1/e (37%) horizontal half-width, normal to trajectory S = hydrodynamic centerline dilution C = centerline concentration (includes reaction efects, if any) Uc = Local centerline excess velocity (above ambient) TT = Cumulative travel time X Y Z S C BV BH UC TT 0.59 0.84 0.00 1.0 0.390E+01 0.68 1.25 -0.133 .91301E+01 0.65 0.86 0.00 1.7 0.228E+01 0.69 1.25 -0.137 .10183E+02 0.67 0.86 0.00 1.7 0.228E+01 0.69 1.25 -0.137 .10533E+02 0.69 0.87 0.00 1.7 0.227E+01 0.69 1.25 -0.137 .10883E+02 0. 71 0.87 0.00 1.7 0.227E+01 0.69 1.25 -0.137 .11232E+02 G.0_ A-22 i Y JL m N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C) C) 0 0 0 0 C) CD 0 0 CD 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 0 0 0 CD 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + is is + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W r1 01 N C' r1 N M OD en N O M u) I- OD O1 O1 OD N LP) N CA u) O Ln O1 N u7 C 01 CD O 01 OD LO M O LO ri LO O M L0 CO CA CA 0, a0 Ls C• ri CO M CO iM l0 CO N r N N ri 10 O Ul 01 Cr OD N '.0 CD d• 0) N LO CD N r1 LU OD ri u) CO ri C' CO ri M LID O1 N u) L- O N u) N 01 r1 M uU is 01 r1 M uU l0 00 01 rl N Le) O1 N LD CA M 10 O M LO O M N O N O C' N ri C' N ri N H N ri N ri C' is O C' Is CD C' N O en l0 O M VD CA N l0 01 N u) O ri Ln CO ri ri N N N fr) M C' C' C' LU Ln LN l0 LO l0 N N N OD 00 OD 01 01 O1 O O O r1 r1 ri N N N M M M C' Cr C' LO Ln Ln l0 '.0 t0 VD N N N 00 00 co 01 01 01 ri r-I ri ri ri r-I H ri r-1 r1 ri ri r1 r-I H ri ri H r-I r-I ri ri ri r-1 H N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N N 0o co co co CO OD OD CO 0D CO OD 0D 00 00 01 01 01 01 01 O1 01 01 01 01 O1 01 O1 CA 01 01 01 O1 CO CO aD 0o OD CO CO CO CO CO CO CO CO 00 00 CO CO CO O0 N N N M M M en el M en M 0 M M M M M en en M 01 en en en 01 M en 01 01 en en en en M en M en M M en M M M M M 01 iM LM iM iM en M M M 0 M en M M r1 ri ri ri ri ri ri r1 r1 ri r1 ri ri ri ri r1 ri r1 ri ri r1 ri r1 ri ri r1 ri ri ri ri ri ri r1 r1 ri ri ri r1 r1 ri r1 ri ri r1 ri .-i ri r1 r1 r1 r1 r1 r1 ri ri ri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 II I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I III II I I I I I 1 I 1 1 I I I I I I I I I I Ln Ln \0 LD LD \0 LO l0 '.0 '.0 '.0 \0 lD '.0 '.0 '.0 VD N N N N N N N N N N N N N N O CO CO OD 00 00 O 00 00 00 OD CO 03 CO CO 01 O1 rn 01 01 01 01 01 01 01 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ri ri r1 ri ri ri ri ri r1 ri ri ri r1 ri r1 r1 ri r1 r1 r1 r1 ri r1 r1 ri r1 r1 ri r1 ri r1 r1 ri ri r1 ri r1 ri ri ri ri ri H ri r1 ri ri H ri r1 ri ri ri r1 ri ri 01 01 O O O O O O O O O ri H ri H rA H ri ri ri ri N N N N N N N N N N N M M 01 en 01 01 M M en M M M M C' C' C' C' C' C' C' C' C' C' C' '.0 LO N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N L- N I- L- L- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C) 0 0 0 ri ri ri ri r1 r1 r1 ri ri H ri ri ri r1 r1 ri ri ri ri ri ri r1 ri ri ri ri ri ri ri r1 ri ri r1 ri ri ri ri rA ri r1 ri ri ri ri ri r1 r1 ri ri ri ri r1 r1 r1 r1 ri O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W N N '.0 '.0 VD uU LU LU Ln C' Cr C' Cr M M M M N N N N N r1 ri ri ri O O O O O 01 01 01 01 01 OD OD OD CO CO N N N N N N LO l0 lD l0 l0 '.0 LU LP Ln N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N r1 r1 r1 ri r1 ri r1 ri r1 r1 1-1 ri r1 ri ri r1 r1 ri r1 ri r1 ri ri ri ri 4.1 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N t� C) CD C) CD CD CD CD CD CD O C) C) CD CD C) CD CD O O CD CD CD O CD CD C) CD CD CD CD CD CD C) CD CD CD CD CD C) CD CD CD CD CD C) CD CD CD CD C) CD C) CD CD CD CD N N N N N N N N r- N N N N N N N 03 OD 00 00 OD O O CO 00 OD CO OD 00 OD CO CO CO DD CO OD O CO 00 00 CO O CO CO CO 00 CO aD O OD OD 00 CO 00 OD CO ri rA ri ri rA ri ri rA rA ri r• ri rA rA ri ri r� r• r• ri r• ri H H ri ri rA ri rA rA rA rA rA ri rA ri rA rA rA rA rA ri rA rA rA ri ri rA rA rA rA rA rA ri ri rH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C)• 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O o 0 0 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C) C) 00 00 O1 01 O r1 r1 N N 01 iM C' C' u) u7 u) l0 '.0 N N OD 00 O1 01 O1 O O ri ri r1 N N M M M C' a' C' u) ul u) '.0 l0 '.0 is N N CO OD OD 00 O1 O1 01 O C) O CO 00 CO CA 01 O1 01 01 01 01 01 61 01 0\ 01 01 O1 O1 CA O1 01 Ol ON CA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r1 ri O O O O O O O O O O O O O O CD O O O O O O O O O O ri ri ri r1 r1 ri ri r1 r1 ri r1 ri ri ri H ri r1 ri r1 ri ri ri r1 r1 ri ri r1 ri r1 ri r1 LiP4) iM u) l0 00 O N C' LO OD O N C' l0 00 O N M u) N Ol r1 M Ln C Ol ri M u) N 0) ri en u7 N 01 ri M Ln LO CO O N C' '.0 00 CD N C' l0 O O N C' '.O 00 O OJ N N is N CO O O O O 01 01 01 01 01 O O O O C) O r1 ri r1 ri r1 N N N N N en en en 0 en C' V' C' C' C' Ln is) Ln u1 ul '.0 l0 l0 MD l0 N N N N N O fi O O O O O O O O O O O O O O ri ri ri ri r1 ri ri ri r1 r1 ri ri ri ri r1 r1 ri ri ri r1 ri ri r1 ri ri r1 r1 ri ri ri ri ri ri ri ri r1 r1 ri r1 r1 ri ri L. N O I • Rogers Energy Complex Thermal Model Verification 1.82 1.10 0.00 1.8 0.215E+01 0.74 1.29 -0.137 .30139E+02 1.84 1.10 0.00 1. 8 0.215E+01 0.74 1.29 -0.137 .30451E+02 1.86 1.11 0.00 1.8 0.215E+01 0.74 1.29 -0.137 .30763E+02 1.88 1.11 0.00 1.8 0.214E+01 0.74 1.29 -0.137 .31073E+02 1.90 1.11 0.00 1.8 0.214E+01 0.74 1.29 -0.137 .31384E+02 1.92 1.11 0.00 1.8 0.214E+01 0.74 1.30 -0.137 .31693E+02 1.94 1.12 0.00 1.8 0.214E+01 0. 75 1.30 -0.137 .32002E+02 1.96 1.12 0.00 1.8 0.214E+01 0.75 1.30 -0.137 .32310E+02 1.98 1.12 0.00 1.8 0.214E+01 0. 75 1.30 -0.136 .32617E+02 2.00 1.12 0.00 1.8 0.214E+01 0. 75 1.30 -0.136 .32924E+02 2.02 1.12 0.00 1.8 0.213E+01 0. 75 1.30 -0.136 .33230E+02 2.04 1.13 0.00 1.8 0.213E+01 0.75 1.30 -0.136 .33535E+02 2.06 1.13 0.00 1.8 0.213E+01 0.75 1.30 -0.136 .33840E+02 2.08 1.13 0.00 1.8 0.213E+01 0.75 1.30 -0.136 .34144E+02 2.10 1.13 0.00 1.8 0.213E+01 0.75 1.30 -0.136 .34447E+02 2.12 1.14 0.00 1.8 0.213E+01 0.75 1.30 -0.136 .34750E+02 2.14 1.14 0.00 1.8 0.213E+01 0.75 1.30 -0.136 .35052E+02 2.16 1.14 0.00 1.8 0.212E+01 0. 75 1.30 -0.136 .35354E+02 2.18 1.14 0.00 1.8 0.212E+01 0. 75 1.30 -0.135 .35654E+02 110! 2.20 1.14 0.00 1.8 0.212E+01 0.75 1.30 -0.135 .35954E+02 2.22 1.14 0.00 1.8 0.212E+01 0.75 1.30 -0.135 .36254E+02 2.24 1.15 0.00 1.8 0.212E+01 0.75 1.31 -0.135 .36552E+02 2.26 1.15 0.00 1.8 0.212E+01 0.75 1.31 -0.135 .36850E+02 A, 2.28 1.15 0.00 1.8 0.212E+01 0.75 1.31 -0.135 .37148E+02 2.30 1.15 0.00 1.8 0.211E+01 0.75 1.31 -0.135 .37445E+02 2.32 1.15 0.00 1.8 0.211E+01 0.75 1.31 -0.135 .37741E+02 2.34 1.15 0.00 1.8 0.211E+01 0.75 1.31 -0.135 .38036E+02 2.36 1.16 0.00 1.8 0.211E+01 0.75 1.31 -0.134 .38331E+02 2.38 1.16 0.00 1.8 0.211E+01 0.75 1.31 -0.134 .38625E+02 2.40 1.16 0.00 1.8 0.211E+01 0.75 1.31 -0.134 .38919E+02 2.42 1.16 0.00 1.9 0.211E+01 0.75 1.31 -0.134 .39212E+02 2.44 1.16 0.00 1.9 0.211E+01 0.76 1.31 -0.134 .39504E+02 2.46 1.16 0.00 1.9 0.210E+01 0.76 1.31 -0.134 .39796E+02 2.48 1.16 0.00 1.9 0.210E+01 0.76 1.31 -0.134 .40087E+02 2.50 1.16 0.00 1.9 0.210E+01 0.76 1.31 -0.134 .40377E+02 2.52 1.17 0.00 1.9 0.210E+01 0.76 1.31 -0.133 .40667E+02 2.54 1.17 0.00 1.9 0.210E+01 0.76 1.31 -0.133 .40956E+02 2.56 1.17 0.00 1.9 0.210E+01 0.76 1.32 -0.133 .41244E+02 2.58 1.17 0.00 1.9 0.210E+01 0.76 1.32 -0.133 .41532E+02 2.60 1.17 0.00 1.9 0.210E+01 0. 76 1.32 -0.133 .41820E+02 2.62 1.17 0.00 1.9 0.209E+01 0.76 1.32 -0.133 .42106E+02 2.64 1. 17 0.00 1.9 0.209E+01 0. 76 1.32 -0.133 .42392E+02 2.66 1.17 0.00 1.9 0.209E+01 0. 76 1.32 -0. 133 .42678E+02 2.68 1.17 0.00 1.9 0.209E+01 0. 76 1.32 -0.132 .42963E+02 2. 70 1. 18 0.00 1.9 0.209E+01 0. 76 1.32 -0.132 .43247E+02 2. 72 1.18 0.00 1.9 0.209E+01 0. 76 1.32 -0.132 .43531E+02 2. 74 1.18 0.00 1.9 0.209E+01 0. 76 1.32 -0.132 .43814E+02 2. 76 1.18 0.00 1.9 0.209E+01 0. 76 1.32 -0.132 .44096E+02 2. 78 1.18 0.00 1.9 0.209E+01 0. 76 1.32 -0.132 .44378E+02 2.80 1.18 0.00 1.9 0.208E+01 0. 76 1.32 -0.132 .44659E+02 2.81 1. 18 0.00 1.9 0.208E+01 0. 76 1.32 -0.131 .44940E+02 2.83 1. 18 0.00 1.9 0.208E+01 0. 76 1.32 -0.131 .45220E+02 2.85 1. 18 0.00 1.9 0.208E+01 0. 76 1.32 -0.131 .45500E+02 2.87 1.18 0.00 1.9 0.208E+01 0. 76 1.32 -0.131 .45778E+02 2.89 1.18 0.00 1.9 0.208E+01 0. 76 1.33 -0.131 .46057E+02 2.91 1.18 0.00 1.9 0.208E+01 0. 76 1.33 -0.131 .46335E+02 CI A-24 Rogers Energy Complex Thermal Model Verification 2.93 1.18 0.00 1.9 0.208E+01 0.76 1.33 -0.131 .46612E+02 2.95 1.18 0.00 1.9 0.208E+01 0.76 1.33 -0.131 .46888E+02 2.97 1.18 0.00 1.9 0.208E+01 0.76 1.33 -0.130 .47165E+02 2.99 1.18 0.00 1.9 0.207E+01 0.76 1.33 -0.130 .47440E+02 3.01 1.18 0.00 1.9 0.207E+01 0.76 1.33 -0.130 .47715E+02 3.03 1.18 0.00 1.9 0.207E+01 0.76 1.33 -0.130 .47989E+02 3.05 1.18 0.00 1.9 0.207E+01 0.76 1.33 -0.130 .48263E+02 3.07 1.19 0.00 1.9 0.207E+01 0.76 1.33 -0.130 .48537E+02 3.09 1.19 0.00 1.9 0.207E+01 0. 76 1.33 -0.130 .48809E+02 3.11 1.19 0.00 1.9 0.207E+01 0.76 1.33 -0.129 .49081E+02 3.13 1.19 0.00 1.9 0.207E+01 0.76 1.33 -0.129 .49353E+02 3.15 1.19 0.00 1.9 0.207E+01 0.76 1.33 -0.129 .49624E+02 3.17 1.19 0.00 1.9 0.207E+01 0.76 1.33 -0.129 .49895E+02 3.19 1.19 0.00 1.9 0.206E+01 0.76 1.33 -0.129 .50165E+02 Maximum lateral extent of recirculation bubble. 3.21 1.19 0.00 1.9 0.206E+01 0.76 1.33 -0.129 .50165E+02 End of recirculation bubble at the above position. Dilution in recirculation bubble = 1.7 Corresponding concentration = 0.235E+01 Flow continues as WALL JET/PLUME. 3.21 -0.00 0.00 1.9 0.206E+01 0.50 2.67 -0.119 .50403E+02 3.23 0.00 0.00 1.9 0.206E+01 0.50 2.67 -0.119 .50642E+02 11 3.25 0.00 0.00 1.9 0.206E+01 0.50 2.67 -0.119 .50881E+02 1 3.27 0.00 0.00 1.9 0.206E+01 0.50 2.67 -0.119 .51119E+02 3.29 0.00 0.00 1.9 0.206E+01 0.50 2.67 -0.119 .51358E+02 3.31 0.00 0.00 1.9 0.206E+01 0.50 2.67 -0.119 .51596E+02 3.33 0.00 0.00 1.9 0.206E+01 0.50 2.67 -0.119 .51834E+02 3.35 0.00 0.00 1.9 0.206E+01 0.50 2.67 -0.119 .52072E+02 3.37 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.119 .52309E+02 3.39 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.119 .52547E+02 3.41 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.119 .52784E+02 3.43 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.119 .53022E+02 3.45 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.119 .53259E+02 3.47 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.118 .53496E+02 3.49 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.118 .53733E+02 3.51 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.118 .53969E+02 3.53 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.118 .54206E+02 3.55 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.118 .54442E+02 3.57 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.118 .54678E+02 3.59 0.00 0.00 1.9 0.206E+01 0.50 2.68 -0.118 .54914E+02 3.61 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .55150E+02 3.63 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .55386E+02 3.65 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .55621E+02 3.67 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .55857E+02 3.69 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .56092E+02 3.71 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .56327E+02 3.73 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .56562E+02 3.75 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .56797E+02 3.77 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .57031E+02 3.79 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .57266E+02 3.81 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.118 .57500E+02 3.83 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.117 .57734E+02 3.85 0.00 0.00 1.9 0.206E+01 0.50 2.69 -0.117 .57969E+02 3.87 0.00 0.00 1.9 0.206E+01 0.50 2.70 -0.117 .58202E+02 3.89 0.00 0.00 1.9 0.206E+01 0.50 2.70 -0.117 .58436E+02 3.91 0.00 0.00 1.9 0.206E+01 0.50 2.70 -0.117 .58670E+02 -..L-- ` A-25 , L'T Rogers Energy Complex Thermal Model Verification 3.93 0.00 0.00 1.9 0.206E+01 0.50 2.70 -0.117 .58903E+02 3.95 0.00 0.00 1.9 0.206E+01 0.50 2.70 -0.117 .59136E+02 3.97 0.00 0.00 1.9 0.206E+01 0.50 2.70 -0.117 .59370E+02 3.99 0.00 0.00 1.9 0.206E+01 0.50 2. 70 -0.117 .59603E+02 4.01 0.00 0.00 1.9 0.206E+01 0.50 2. 70 -0.117 .59835E+02 4.03 0.00 0.00 1.9 0.206E+01 0.50 2. 70 -0.117 .60068E+02 4.05 0.00 0.00 1.9 0.206E+01 0.50 2. 70 -0. 117 .60301E+02 4.07 0.00 0.00 1.9 0.206E+01 0.50 2. 70 -0.117 .60533E+02 4.09 0.00 0.00 1.9 0.206E+01 0.50 2. 70 -0.117 .60765E+02 4.11 0.00 0.00 1.9 0.206E+01 0.50 2. 70 -0.117 .60997E+02 4.13 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.117 .61229E+02 4.15 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.117 .61461E+02 4.17 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.117 .61693E+02 4. 19 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .61924E+02 4.21 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .62156E+02 1 4.23 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .62387E+02 4.25 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .62618E+02 4.27 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .62849E+02 4.29 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .63080E+02 4.31 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .63310E+02 4.33 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .63541E+02 4.35 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .63771E+02 4.37 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .64002E+02 4.39 0.00 0.00 1.9 0.206E+01 0.50 2.71 -0.116 .64232E+02 4.41 0.00 0.00 1.9 0.206E+01 0.50 2.72 -0.116 .64462E+02 4.43 0.00 0.00 1.9 0.206E+01 0.50 2.72 -0.116 .64691E+02 4.45 0.00 0.00 1.9 0.206E+01 0.50 2.72 -0.116 .64921E+02 4.47 0.00 0.00 1.9 0.206E+01 0.50 2.72 -0.116 .65150E+02 4.49 0.00 0.00 1.9 0.206E+01 0.50 2. 72 -0.116 .65380E+02 4.51 0.00 0.00 1.9 0.206E+01 0.50 2. 72 -0.116 .65609E+02 4.53 0.00 0.00 1.9 0.206E+01 0.50 2. 72 -0.116 .65838E+02 4.55 0.00 0.00 1.9 0.206E+01 0.50 2. 72 -0.116 .66067E+02 4.57 0.00 0.00 1.9 0.206E+01 0.50 2. 72 -0.115 .66296E+02 4.57 0.00 0.00 1.9 0.206E+01 0.50 2. 72 -0.115 .66296E+02 Cumulative travel time = 66.2958 sec ( 0.02 hrs) END OF CORSURF (MOD310) : BUOYANT SURFACE JET - NEAR-FIELD REGION ** End of NEAR-FIELD REGION (NFR) ** WAKE FLOW CONDITIONS: The discharge velocity (UO) is less than or equal to the ambient velocity (Ua) and results in wake flow conditions. There is no discharge momentum induced mixing. The mixing characteristics are UNDESIRABLE. The initial plume WIDTH/THICKNESS VALUE in the next far-field module will be CORRECTED by a factor 1.13 to conserve the mass flux in the far-field! Some lateral bank/shore interaction occurs at end othe near-field. In the nextprediction module, the jet/plume centerline will be set 7 P to follow the bank/shore. BEGIN MOD341: BUOYANT AMBIENT SPREADING Plume is ATTACHED to RIGHT bank/shore. A-26 i�Y Lam' i ro ,•0 lit c i CD <4 rh I- CO- 'U r- G (01 G H II II II II M C 01 �I CO Co CO W CO W CO CO W W W N NJ NJ N NJ N NJ N NJ N NJ NJ N H H H H H H H H H H H H H (D CO J 01 U1 U1 .A W N NJ H O '.0 l0 CO J 01 U1 U1 .A CO N N H O l0 l0 00 J O1 01 U1 .A W Na N H O 1/40 l0 00 J 0 O1 U1 A 1 (D Q. b (D r- (11(1/ N .A 01 1/40 H .A 01 CO H CO U1 CO O N U1 J l0 N .A Ol l0 H .A 01 CO H W 01 Co O N U1 J l0 NJ .A 01 l0 H .A 01 00 H CO 01 rt cra (7 W O �. r hHh NJ 01 CO W 01 O W J O .A J H .A CO H U1 00 N 01 l0 W 01 O W J O .A J H .A Co H U1 CO N U1 CO W 01 O W J O .A J C a W W O (D G N c+ rt r- rt r- H -- N :1' rt r- U1 'C, I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 I I N rt G H- a, H- p k O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o r- h, n rh n Cn p O 0 0 0 0 0 0 o O O o 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 o O O O o o O O O O o 0 0 o O o o O N N X a D " £ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n < P. (D m -I rt C D a '. (D a O 0 0 0 CD CD O CD 0 0 0 0 CD CD CD C) CD CD 0 0 0 0 0 CD CD CD C) C) C) 0 0 0 0 0 0 0 0 0 0 0 0 o C) C) CDrt (D (D (D (D B O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O N n ~ CD 1illn r- O 0 0 0 0 0 0 0 0 0 0 0 0 o O o O o 0 0 0 0 0 0 0 o O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o G rt NI -. D C m o' al G CA hi CL r H n Q. (o CO CO CO W CO CO CO CO CA) NJ Na NJ N NI N N N N.) N N N N NJ NJ N NJ NJ NJ N NJ NJ NJ NJ NJ N NJ N NJ N N NJ NJ NJ H H A. 0 n H- 0 5 n W W N N H HI-, C) CI VD l0 10 CO Co a) --I J -a 01 01 01 U1 U1 U1 U1 .A .A .A W CA) W W NJ N N H H H H CD CA CD10 V0 ^ H O r• H 0 rt 7Z) rt 0 C) 0 0 0 0 0 C) 0 0 C) 0 0 0 C) 0 0 0 C) C) 0 0 C) 0 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 CDn rt H- n GI Z 01 01 01 01 01 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H NJ N N H r• N H H NJ NJ NJ NJ NJ NJ CO Co Co CO CO CO .A .A .A .A .A 0 01 U1 U1 U1 U1 ,a J -a -a -a Co 00 CO 00 10 l0 l0 0 0 0 G O O1 H I-. H J l0 H NJ .A Ol J l0 H NJ .A 01 J l0 H CO .A 01 CO CD N .A U1 -a VD H CO In --I VDH W U1 -a '.0 NJ .A 01 l0 H .A -a O W Ol (D rt ''C tr tzi tzi t+i t+i tzi CI t+7 t+7 tzi tzi CI tzi CI tzi tzi CI tzi CI tzi tzi tzi CI CI CI tzi VI tzi tzi tzi tzi Pi tzi tzi CI t+7 1.1 CI CI tri CI CI t+7 tzi tzi t=i a Cn D1 W + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + H G 0 0 C) 0 0 0 0 0 0 C) 0 C) C) 0 0 C) 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 C) 0 0 C) 0 C) 0 C) C) 0 0 0 0 0 hi H x. H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H (D ' D1 to () I-h 0 0 0 0 C) 0 C) 0 0 0 0 0 0 o CD C) CD 0 0 0 0 0 0 C) C) C) 0 0 0 0 0 C) C) CD CD CD CD 0 0 0 0 0 0 0 0 (rt 0 0 O N CO CO CO CO CO CO CO CO CO CO CO CO W CO W CO W CO Co CO CO CO CO CO CO W CO CO CO CO .A .A .A .A .A .A .A O. .A O. .A U1 01 N 01 <1G .A .A .A .A .A .A .A .A 4h. .A .A .A .A U1 U1 U7 (11 Ul Ul Cn 01 01 01 J J J 00 00 l0 l0 O C) H N NJ CO .A U1 01 OD '-0 O N .A 01 t5' m Di I-h F-h 7: (D co co 00 a) a) a) a) a) co J J J J J J J J 01 01 01 01 01 01 01 01 Ul N U1 U1 01 U1 U1 U1 .IN .A .A .A .A .A. W W W W Co W rt D. (n O l0 00 01 U1 O. CO NJ H O l0 co 01 U1 .A W NJ O l0 CO J 01 .A Co NJ O '-0 OD J 0 .A N H O 00 -J U1 .A NJ O l0 J 01 .A N O x hi H O l0 00 J 01 U1 .A CO H O 00 J U1 W H V0 J U1 W O CO U1 NJ l0 01 CO O 01 N CO .A O 01 H 01 H U1 l0 CO -Al O CO U1 J fD r• H NJ N N NJ NJ NJ NJ NJ NJ H H H H H H H H H H H H H H H H H H H H H H H H H H V0 l0 10 CO CO CO J -a -a Cn r CO N N H H H 0 0 0 l0 l0 00 CO CO J -a -a Cn 01 01 01 U1 .A .A .A La W Na Na N H H H CD C) V0 Ol NJ OD .A H -a W CD Cn O CD 01 NJ Co Cn H -a .A CD Cn NJ VD U1 H OD .A O ON W CO 01 H OD .A O -a (.J l0 U1 Na OD .A O J W OD CD W 01 V0 H .A -a O NJa fD H .A CA l0 N 01 -a CD W 01 00 H .A ,a O N Ul OD H W 01 V0 N .A J CD W 01 OD H .A -a VD Na U1 Ca Co ON CO H l0 01 .A H l0 D W H CO Ol .A H l0 01 .A NJ l0 J O1 NJ O CO (Ti W H a) 01 .A H '-0 J .A N O J N N O 00 01 W J .A O J W O 01 Co l0 01 tzi t+i t+i tzi tzi tzi tzi tzi tzi VI tz] t J CI tzi tzi CI tzi tz] tz7 tzi tzi CI CI tz] VI t+i tzi tzi CI tzi tzi tzi tzi CI CI tzi tzi CI tzl LI tzi tzi tzi L i t+i H O + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + H I O 0 0 C) 0 0 0 0 C) C) 0 C) 0 0 0 0 C) 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 C) 0 C) 0 C) C) 0 0 0 0 0 0 CO W CO CO CO W Co W CO CO W W Co W CO CO CO W Co Co W CO W CO W W W CO CO W CO W CO CO W N NJ N N NJ N N N NJ N D N V I 'T A A v- 8z-V £0+3b98£b' 6T'iI Lb'0 00+38£S'0 Z'L 00'0 00'0— SO'I8 £O+3Z6b£b ' OI'bE 9b'0 00+39bS'0 T'L 00'0 00'0— 8Z'08 £0+30ZT£b' ZO'tI 9b'0 00+3£SS'0 0'L 00'0 00'0— ZS'6L £O+3LbLZb' £6'£T 9b'0 00+3I9S'0 0'L 00'0 00'0— SL'8L £O+3SL£Zb' S8'£I Sb'0 00+3695'0 6'9 00'0 00'0— 66'LL £O+3£OOZb' 9L '£I Sb'0 00+39LS'0 8'9 00'0 00'0— ZZ'LL £0+30£9Tb' L9'£T Sb'0 00+3b8S'0 L'9 00'0 00'0— 9b'9L £0+38SZIb' 6S'£T bb'0 00+3£6S'0 9'9 00'0 00'0— 69'SL £0+39880b' OS'£I bb'0 00+3T09'0 S'9 00'0 00'0— £6'tL £0+3£TSOb' Tb'£T WO 00+3609'0 b'9 00'0 00'0— 9I'bL £0+3TtTOb' Z£'£T £b'0 00+38T9'0 £'9 00'0 00'0— Ob'£L £0+369L6£' LZ'£T £b '0 00+39Z9'0 Z'9 00'0 00'0— £9'ZL £0+396£6£' ST'£T £b'O 00+35£9'0 I'9 00'0 00'0— L8'IL £O+3bZ06£' 90'£T £b'0 00+3bb9'0 T'9 00'0 00'0— OT'TL £O+3ZS98£' L6'ZT Zb '0 00+3£S9'0 0'9 00'0 00'0— b£'OL £0+36LZ8£' 88'ZI Zb'O 00+3Z99'0 6'S 00'0 00'0— 8S'69 £0+3LO6L£' 6L 'ZI Zb'0 OO+3ZL9'O 8'S 00'0 00'0— T8'89 £O+3b£SL£' OL 'ZT Tb'0 00+3T89'0 L'S 00'0 00'0— SO'89 £0+3Z9IL£' T9'ZI Tb'O 00+3T69'0 9'S 00'0 00'0— 8Z'L9 £0+306L9£' ZS'ZI Tb'0 00+3TOL'0 9'S 00'0 00'0— ZS'99 £O+3LTb9£' £b'ZT Ob'0 00+30TL'0 S'S 00'0 00'0— SL 'S9 £0+3Sb09£' b£'ZI Ob'O 00+3TZL'0 b'S 00'0 00'0— 66'b9 £0+3£L9S£' SZ'ZT Ob'0 00+3T£L'O £'S 00'0 00'0— ZZ'b9 £O+300£S£' 9T'ZT O17'0 00+3TbL'0 £'S 00'0 00'0— 9b'£9 £O+38Z6b£' LO'ZT 6£'0 00+3ZSL'0 Z'S 00'0 00'0— 69'39 £0+39SSb£' 86'TT 6£'0 00+3Z9L'O T'S 00'0 00'0— £6'I9 £0+3£8Tb£' 88'TT 6£'0 00+3£LL'0 0'S 00'0 00'0— 91'T9 £0+3TT8££' 6L'II 6£'0 00+3b8L'0 0'S 00'0 00'0— Ob'09 £O+36£b££' 0L' TT 8£'0 00+3S6L'0 6'b 00'0 00'0— £9'6S £0+3990££' 09'TT 8€'0 00+3L08'0 8'b 00'0 00'0— L8'8S £0+3b69Z£' IS'IT 8£'0 00+38T8'0 8'b 00'0 00'0— OT'8S £0+3ZZ£Z£' Zt'TT 8£'0 00+30£8'0 L'b 00'0 00'0— b£'LS £0+36b6I£' Z£'TT 8£'0 00+3Zb8'0 9'b 00'0 00'0— LS'9S £0+3LLST£' £Z'TT L£'0 00+3bS8'0 9'b 00'0 00'0— T8'SS £0+3SOZT£' £I'IT L£'0 00+3998'0 S'b 00'0 00'0— SO'SS 1 £0+3Z£80£' £0'TI L£'0 00+38L8'0 b'b 00'0 00'0— 8Z'tS £0+3O9b0£' b6'OT L£'0 00+3T68'0 b'b 00'0 00'0— ZS'£S £0+38800£' b8'OT L£'0 00+3£06'O £'b 00'0 00'0— SL'ZS £0+3STL6Z' bL'OI 9£'0 00+39T6'0 £'b 00'0 00'0— 66'TS £O+3£b£6Z' S9'0T 9£'0 00+36Z6'0 Z'b 00'0 00'0— ZZ'IS £0+30L68Z' SS'OT 9£'0 00+3Zb6'0 T'b 00'0 00'0— 9b'OS £0+386S8Z' Sb'OT 9£'0 00+39S6'0 T'b 00'0 00'0— 69'6b £0+39ZZ8Z' S£'OT 9£'0 00+3696'0 0'b 00'0 00'0— £6'8b £0+3£S8LZ' SZ'OI 9£'0 00+3£86'0 0'b 00'0 00'0— 9T'8b £0+3T8fLZ' ST'OT S£'O 00+3L66'0 6'£ 00'0 00'0— Ot'Lt £0+36OTLZ' SOOT S£'0 TO+3TOT'0 6'£ 00'0 00'0— £9'9b £0+39£L9Z' S6'6 S£'0 TO+3ZOT '0 8'£ 00'0 00'0— L8'Sb £0+3b9£9Z' S8'6 S€'0 TO+3'OT '0 8'£ 00'0 00'0— OT'St £O+3Z66SZ' tL '6 S£'O TO+3SOT'0 L'£ 00'0 00'0— b£'bb £0+36T9SZ' b9'6 S£'0 TO+3LOT'0 L'£ 00'0 00'0— LS'£b £0+3LbZSZ' bS'6 S£'0 TO+38OT'0 9'£ 00'0 00'0— T8'Zb £0+3SL8bZ' £b'6 S£'O TO+3OIT'O 9'£ 00'0 00'0— b0'Zb £0+3ZOSVZ' ££'6 b£'0 TO+3TTT'0 S'£ 00'0 00'0— 8Z'Tb £0+30£ItZ' ZZ'6 b£'0 TO+3£TI'0 S'£ 00'0 00'0— TS'Ob £0+38SL£Z' ZT '6 b£'0 IO+3VIT'0 b'£ 00'0 00'0— SL'6£ £O+358££Z' TO'6 b£'0 TO+39TT'0 b'£ 00'0 00'0— 66'8£ uopnatjum lapopv lnuaaagj xaldwop if6aaug sia6o6 rn N Q M M M M M M M M M M M M l'') M M M M M M M M M ('') M M M M i`') M M M M M M M M M CO M M M M M CO M M M M M M M M M M M cvi O O O O O O O O O O O O O CD O O O O O O O O 0 O 0 O 0 0 0 O O O 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W N Ol HI V CO CO HI CO l0 CO O M Ln I- O N V' N at ri a' CO CO HI M Ln co O N Ln r- O N N 01 H C CO CO r-I M Ln Co O N Ln r- al N d' CO 01 HI V CO Cr) 0 CO Ln N 01 N V HI OD lO CO 0 I's Ln N Ol CD CO HI CO Ln N O N V' H 01 CO CO 0 CO In N 01 CO V HI CO Ln M O N V' N 01 CD M o CO Ln N 01 I- V' HI N CO 01 M N 0 V CO N Ln al Cr) r- O V CO HI in 01 M CD 0 V• CO HI Ln 01 N Co 0 V N H Ln CO N CO 0 M N r1 in CO N CO 01 CO N HI V CO N In 01 M I- V V V Ln Ln CD CD CD r- r- r- CO CO 01 01 01 O O 0 Hi .-i N N N M M CO V V Ln LO Ln C0 CO l0 N N CO CO CO 01 Ol al 0 O 0 Hi H N N N CO M CO V V V V V V V V V V V' V V V V V V V Ln Ln 0 Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln LU Ln LO Ln Ln Ln Ln Ln Ln l0 CO l0 C0 C0 to to l0 CO l0 l0 C0 l0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r- CD V' N r-i Ol I- CD V' N r-I 01 N Ln M r-I O CO lO V' N 0 CO CD V' N O N Ln CO HI Ol N V' N O CO Ln M ri CO CO V HI 01 CO V' N 01 N cM N 01 N V' H N M V Ln l0 l0 N MMOHHINMVLOW WNCOMOOHNMV V Ln l0 N N CO O1 0 H H N M V V Ln L9 N NOOMOOHNMMV Ln to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✓ V V V V' V V' V V Ln Ln Ln Ln Ln Ln In Ln Ln CO Ln Ln CD CD CD CD CO CO CO CO C0 CO CD C0 CO I- N N N I- N N N N N I- I- N CO CO co co co co co co CO H H H HI HI HI HI HI r 4 ri HHHHHHHHHHHH HI HI Hi HI HI H HI HI r-I Hi r•i Hi ri HI H H HI HI HI HI HI r-1 HI H1 HHHH HI HI Hi H H ri N CO co CO 01 al Ol 0 0 HI HI r-I N N M M CO V V Ln Ln LD CO CO N N CO CO 01 01 O O O HI HI N N M CO V' V Ln Ln CO l0 N N CO 00 01 01 O 0 H H N V V V V V V V Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln LO lO l0 l0 C0 lO l0 l0 l0 lD to to lO l0 CO C0 CO C0 l0 to to N N N N N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 o O o O o 0 0 0 0 0 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + O W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W r-i V' I- O m I- O i'M I- H Ln O1 M I- H Ln O V' O1 M CD M O (vi CD M CO M 01 V' O Ln H r- N O V' O l0 N Ol Ln H I- V' O I- M 0 N Cvi O I- V' r-1 I- M N ri HI O 01 Ol CO I- N l0 Ln Ln V' V' M M N H H O O Ol 01 CO CO I- I- CO CO Co Ln Ln V V CO M MN N H HI HI 0 0 O 01 01 01 CO CO CO r- I- N to Ln Ln Ln Ln Ln v. V' v V' V' V' V' V' V' V• V' V' V V• V V V M M M M M M M M M M M M M M M M M M M M M M M M N N N N N N N N N N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M V OWNMOHNMVLOWN CO O H N M V WNOOCIHNMV l0 N CO O H N V LONCOOHNV LONCOOHMLOWCOMHIMV l0 . N CD O O CO CD CD CD CD CO 01 01 01 01 01 Ol 01 Ol 01 0 0 0 0 0 0 0 H HHHHHHINNNNNNNMMMMMMMV V V V .�„ H H H HI HI HI HI HI HI H H HI H H H H H HI HI HI HI HI HI H r-i HI HI HI HI HI r1 vH TS O 00000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L. ,.O O o 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o O o O O O o O o 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o O o 0 0 0 0 0 0 0 0 o O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c O I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I )0 U ri CO V' ri N V 0 CD CO 01 CD N Ol Ln N CO Ln H CO V' r-I N V' O r- M 01 CD N Ol Ln N CO Ln HI CO V HI N V 0 N CO 0 CO N 01 Ln N CO Ln H CO V HI N CO Ln CO HI CO C0 V HI O1 CO V' N 01 N Ln N O CO Ln M r-i CO CD V HI 01 CO V• N Ol r- In N O CO Ln CO H CO CD V HI al N V' N 01 I- Ln N O CO Ln M H CO . . . . . . . . . . • . . . . . . . W I N M V' Cr Ln l0 I- I- CO 01 O 0 H N CO V V In CO I- r- co 01 O O H N M M V Ln CD I- r- co 01 0 0 H N M CO V. Ln LD VD N CO 01 0 0 H N CO CO ' S CO CO CO CO CO CO CO CO CO CO CO 01 01 al 01 01 01 01 al 01 01 01 01 01 0 O 0 0 O 0 0 O 0 O 0 0 0 H H H H H H HI r-i HI .-i r-i .-i HI N N N N N N S� H H HI HI H HI HI HI H r-I H HI H HHHH H H H r-I HI H H ri H H H H H HI H ' O.l c ! Rogers Energy Complex Thermal Model Verification 124.64 -0.00 0.00 14.7 0.264E+00 0. 72 18.69 .65088E+03 125.40 -0.00 0.00 14.9 0.262E+00 0. 73 18.76 .65461E+03 126.17 -0.00 0.00 15.1 0.259E+00 0. 73 18.84 .65833E+03 126 .93 -0.00 0.00 15.3 0.256E+00 0.74 18.91 .66205E+03 127.70 -0.00 0.00 15.4 0.253E+00 0.75 18.98 .66578E+03 128.46 -0.00 0.00 15.6 0.250E+00 0.75 19.06 .66950E+03 129.23 -0.00 0.00 15.8 0.247E+00 0.76 19.13 .67322E+03 129.99 -0.00 0.00 15.9 0.245E+00 0.76 19.20 .67695E+03 130. 76 -0.00 0.00 16.1 0.242E+00 0.77 19.28 .68067E+03 131.52 -0.00 0.00 16.3 0.239E+00 0. 77 19.35 .68439E+03 132.28 -0.00 0.00 16.5 0.237E+00 0.78 19.42 .68812E+03 133.05 -0.00 0.00 16.7 0.234E+00 0.78 19.49 .69184E+03 133.81 -0.00 0.00 16.8 0.232E+00 0. 79 19.57 .69556E+03 134.58 -0.00 0.00 17.0 0.229E+00 0.80 19.64 .69929E+03 135.34 -0.00 0.00 17.2 0.227E+00 0.80 19.71 . 70301E+03 136.11 -0.00 0.00 17.4 0.224E+00 0.81 19.78 . 70673E+03 136.87 -0.00 0.00 17.6 0.222E+00 0.81 19.86 .71046E+03 137.64 -0.00 0.00 17.8 0.220E+00 0.82 19.93 .71418E+03 138.40 -0.00 0.00 18.0 0.217E+00 0.82 20.00 .71790E+03 139.17 -0.00 0.00 18.1 0.215E+00 0.83 20.07 .72163E+03 139.93 -0.00 0.00 18.3 0.213E+00 0.84 20.14 .72535E+03 140.70 -0.00 0.00 18.5 0.210E+00 0.84 20.21 .72908E+03 141.46 -0.00 0.00 18. 7 0.208E+00 0.85 20.28 .73280E+03 142.23 -0.00 0.00 18.9 0.206E+00 0.85 20.36 .73652E+03 142.99 -0.00 0.00 19.1 0.204E+00 0.86 20.43 .74025E+03 143.76 -0.00 0.00 19.3 0.202E+00 0.86 20.50 .74397E+03 144.52 -0.00 0.00 19.5 0.200E+00 0.87 20.57 .74769E+03 145.29 -0.00 0.00 19.7 0.198E+00 0.88 20.64 . 75142E+03 146.05 -0.00 0.00 19.9 0.196E+00 0.88 20.71 .75514E+03 146.81 -0.00 0.00 20.1 0.194E+00 0.89 20.78 .75886E+03 147.58 -0.00 0.00 20.3 0.192E+00 0.89 20.85 .76259E+03 148.34 -0.00 0.00 20.5 0.190E+00 0.90 20.92 .76631E+03 149.11 -0.00 0.00 20.7 0.188E+00 0.91 20.99 .77003E+03 149.87 -0.00 0.00 21.0 0.186E+00 0.91 21.06 .77376E+03 150.64 -0.00 0.00 21.2 0.184E+00 0.92 21.13 .77748E+03 151.40 -0.00 0.00 21.4 0. 182E+00 0.93 21.20 . 78120E+03 152.17 -0.00 0.00 21.6 0. 181E+00 0.93 21.27 .78493E+03 152.93 -0.00 0.00 21.8 0. 179E+00 0.94 21.34 . 78865E+03 153.70 -0.00 0.00 22.0 0.177E+00 0.94 21.41 . 79237E+03 154.46 -0.00 0.00 22.2 0. 175E+00 0.95 21.48 .79610E+03 155.23 -0.00 0.00 22.5 0.174E+00 0.96 21.55 .79982E+03 155.99 -0.00 0.00 22. 7 0.172E+00 0.96 21.61 .80354E+03 156.76 -0.00 0.00 22.9 0.170E+00 0.97 21.68 .80727E+03 157.52 -0.00 0.00 23.1 0.169E+00 0.98 21.75 .81099E+03 Cumulative travel time = 810.9932 sec ( 0.23 hrs) END OF MOD341: BUOYANT AMBIENT SPREADING BEGIN M0D361: PASSIVE AMBIENT MIXING IN UNIFORM AMBIENT Vertical diffusivity (initial value) = 0.373E-02 m^2/s Horizontal diffusivity (initial value) = 0.933E-02 m^2/s Profile definitions: BV = Gaussian s.d.*sqrt (pi/2) (46%) thickness, measured vertically = or equal to water depth, if fully mixed .p A-30 TV. L'_ Rogers Energy Complex Thermal Model Verification BH = Gaussian s.d.*sgrt(pi/2) (46%) half-width, measured horizontally in Y-direction S = hydrodynamic centerline dilution C = centerline concentration (includes reaction efects, if any) TT = Cumulative travel time Plume Stage 2 (bank attached) : X Y Z S C BV BH TT 157.52 0.00 0.00 23.1 0.169E+00 0.98 21.75 .81099E+03 Plume interacts with BOTTOM. The passive diffusion plume becomes VERTICALLY FULLY MIXED within this prediction interval. 161.73 -0.00 0.00 23.1 0.169E+00 0.98 21.77 .83150E+03 165.95 -0.00 0.00 23.2 0.168E+00 0.98 21.78 .85201E+03 170.16 -0.00 0.00 23.2 0.168E+00 0.98 21.79 .87252E+03 174.37 -0.00 0.00 23.2 0.168E+00 0.98 21.81 .89303E+03 178.58 -0.00 0.00 23.2 0.168E+00 0.98 21.82 .91354E+03 182.80 -0.00 0.00 23.2 0.168E+00 0.98 21.83 .93405E+03 187.01 -0.00 0.00 23.2 0.168E+00 0.98 21.85 .95456E+03 191.22 -0.00 0.00 23.2 0.168E+00 0.98 21.86 .97507E+03 195.43 -0.00 0.00 23.3 0.168E+00 0.98 21.88 .99558E+03 199.65 -0.00 0.00 23.3 0.168E+00 0.98 21.89 .10161E+04 203.86 -0.00 0.00 23.3 0.167E+00 0.98 21.90 .10366E+04 208.07 -0.00 0.00 23.3 0.167E+00 0.98 21.92 .10571E+04 212.28 -0.00 0.00 23.3 0.167E+00 0.98 21.93 .10776E+04 216.49 -0.00 0.00 23.3 0.167E+00 0.98 21.94 .10981E+04 220.71 -0.00 0.00 23.3 0.167E+00 0.98 21.96 .11186E+04 224.92 -0.00 0.00 23.4 0.167E+00 0.98 21.97 .11391E+04 229.13 -0.00 0.00 23.4 0.167E+00 0.98 21.99 .11597E+04 233.34 -0.00 0.00 23.4 0.167E+00 0.98 22.00 .11802E+04 237.56 -0.00 0.00 23.4 0.167E+00 0.98 22.01 .12007E+04 241.77 -0.00 0.00 23.4 0.167E+00 0.98 22.03 .12212E+04 245.98 -0.00 0.00 23.4 0.166E+00 0.98 22.04 .12417E+04 250.19 -0.00 0.00 23.5 0.166E+00 0.98 22.05 .12622E+04 254.41 -0.00 0.00 23.5 0.166E+00 0.98 22.07 .12827E+04 258.62 -0.00 0.00 23.5 0.166E+00 0.98 22.08 .13032E+04 262.83 -0.00 0.00 23.5 0.166E+00 0.98 22.09 .13237E+04 267.04 -0.00 0.00 23.5 0.166E+00 0.98 22.11 .13442E+04 271.26 -0.00 0.00 23.5 0.166E+00 0.98 22.12 .13648E+04 275.47 -0.00 0.00 23.5 0.166E+00 0.98 22.14 .13853E+04 279.68 -0.00 0.00 23.6 0.166E+00 0.98 22.15 .14058E+04 283.89 -0.00 0.00 23.6 0.165E+00 0.98 22.16 .14263E+04 288.11 -0.00 0.00 23.6 0.165E+00 0.98 22.18 .14468E+04 292.32 -0.00 0.00 23.6 0.165E+00 0.98 22.19 .14673E+04 296.53 -0.00 0.00 23.6 0.165E+00 0.98 22.20 .14878E+04 300.74 -0.00 0.00 23.6 0.165E+00 0.98 22.22 .15083E+04 304.96 -0.00 0.00 23.6 0.165E+00 0.98 22.23 .15288E+04 309.17 -0.00 0.00 23.7 0.165E+00 0.98 22.24 .15493E+04 313.38 -0.00 0.00 23.7 0.165E+00 0.98 22.26 .15699E+04 317.59 -0.00 0.00 23.7 0.165E+00 0.98 22.27 .15904E+04 321.80 -0.00 0.00 23.7 0.165E+00 0.98 22.28 .16109E+04 326.02 -0.00 0.00 23.7 0.164E+00 0.98 22.30 .16314E+04 330.23 -0.00 0.00 23.7 0.164E+00 0.98 22.31 .16519E+04 334.44 -0.00 0.00 23.7 0.164E+00 0.98 22.32 .16724E+04 338.65 -0.00 0.00 23.8 0.164E+00 0.98 22.34 .16929E+04 342.87 -0.00 0.00 23.8 0.164E+00 0.98 22.35 .17134E+04 _ A-31 Rogers Energy Complex Thermal Model Verification 347.08 -0.00 0.00 23.8 0.164E+00 0.98 22.37 .17339E+04 351.29 -0.00 0.00 23.8 0.164E+00 0.98 22.38 .17544E+04 355.50 -0.00 0.00 23.8 0.164E+00 0.98 22.39 .17749E+04 359.72 -0.00 0.00 23.8 0.164E+00 0.98 22.41 . 17955E+04 363.93 -0.00 0.00 23.8 0.164E+00 0.98 22.42 .18160E+04 368.14 -0.00 0.00 23.9 0.164E+00 0.98 22.43 .18365E+04 372.35 -0.00 0.00 23.9 0.163E+00 0.98 22.45 .18570E+04 376 .57 -0.00 0.00 23.9 0.163E+00 0.98 22.46 .18775E+04 380.78 -0.00 0.00 23.9 0.163E+00 0.98 22.47 .18980E+04 384.99 -0.00 0.00 23.9 0. 163E+00 0.98 22.49 .19185E+04 389.20 -0.00 0.00 23.9 0.163E+00 0.98 22.50 .19390E+04 393.42 -0.00 0.00 23.9 0.163E+00 0.98 22.51 .19595E+04 397.63 -0.00 0.00 24.0 0.163E+00 0.98 22.53 .19800E+04 401.84 -0.00 0.00 24.0 0.163E+00 0.98 22.54 .20006E+04 406 .05 -0.00 0.00 24.0 0.163E+00 0.98 22.55 .20211E+04 410.27 -0.00 0.00 24.0 0.163E+00 0.98 22.57 .20416E+04 414.48 -0.00 0.00 24.0 0.162E+00 0.98 22.58 .20621E+04 418.69 -0.00 0.00 24.0 0.162E+00 0.98 22.59 .20826E+04 422.90 -0.00 0.00 24.0 0.162E+00 0.98 22.61 .21031E+04 427.11 -0.00 0.00 24.1 0.162E+00 0.98 22.62 .21236E+04 431.33 -0.00 0.00 24.1 0.162E+00 0.98 22.63 .21441E+04 435.54 -0.00 0.00 24.1 0.162E+00 0.98 22.65 .21646E+04 439.75 -0.00 0.00 24.1 0.162E+00 0.98 22.66 .21851E+04 443.96 -0.00 0.00 24.1 0.162E+00 0.98 22.67 .22057E+04 448.18 -0.00 0.00 24.1 0.162E+00 0.98 22.69 .22262E+04 452.39 -0.00 0.00 24.1 0.162E+00 0.98 22. 70 .22467E+04 456.60 -0.00 0.00 24.2 0. 161E+00 0.98 22. 71 .22672E+04 460.81 -0.00 0.00 24.2 0. 161E+00 0.98 22.73 .22877E+04 465.03 -0.00 0.00 24.2 0.161E+00 0. 98 22.74 .23082E+04 469.24 -0.00 0.00 24.2 0. 161E+00 0. 98 22.75 .23287E+04 473.45 -0.00 0.00 24.2 0.161E+00 0.98 22.76 .23492E+04 477.66 -0.00 0.00 24.2 0.161E+00 0.98 22.78 .23697E+04 481.88 -0.00 0.00 24.2 0.161E+00 0.98 22.79 .23902E+04 486.09 -0.00 0.00 24.2 0. 161E+00 0.98 22.80 .24108E+04 490.30 -0.00 0.00 24.3 0.161E+00 0.98 22.82 .24313E+04 494.51 -0.00 0.00 24.3 0.161E+00 0.98 22.83 .24518E+04 1 498.73 -0.00 0.00 24.3 0.161E+00 0.98 22.84 .24723E+04 502.94 -0.00 0.00 24.3 0.160E+00 0.98 22.86 .24928E+04 507.15 -0.00 0.00 24.3 0.160E+00 0.98 22.87 .25133E+04 511.36 -0.00 0.00 24.3 0.160E+00 0.98 22.88 .25338E+04 515.58 -0.00 0.00 24.3 0.160E+00 0.98 22.90 .25543E+04 519.79 -0.00 0.00 24.4 0.160E+00 0.98 22.91 .25748E+04 524.00 -0.00 0.00 24.4 0.160E+00 0.98 22.92 .25953E+04 528.21 -0.00 0.00 24.4 0.160E+00 0.98 22.94 .26158E+04 532.42 -0.00 0.00 24.4 0.160E+00 0.98 22.95 .26364E+04 536.64 -0.00 0.00 24.4 0.160E+00 0.98 22.96 .26569E+04 540.85 -0.00 0.00 24.4 0.160E+00 0.98 22.98 .26774E+04 545.06 -0.00 0.00 24.4 0.160E+00 0.98 22.99 .26979E+04 549.27 -0.00 0.00 24.5 0.159E+00 0.98 23.00 .27184E+04 553.49 -0.00 0.00 24.5 0. 159E+00 0.98 23.01 .27389E+04 557. 70 -0.00 0.00 24.5 0. 159E+00 0.98 23.03 .27594E+04 561.91 -0.00 0.00 24.5 0.159E+00 0.98 23.04 .27799E+04 566.12 -0.00 0.00 24.5 0. 159E+00 0.98 23.05 .28004E+04 570.34 -0.00 0.00 24.5 0. 159E+00 0.98 23.07 .28209E+04 574.55 -0.00 0.00 24.5 0.159E+00 0.98 23.08 .28415E+04 578.76 -0.00 0.00 24.6 0.159E+00 0.98 23.09 .28620E+04 _Q�_ A-32 . v L'�� Co Co OD CO J J J J J J J J J J J J J J J J J J J J J J J J 01 01 01 01 01 01 01 ON Ol Ol 01 61 Ol CA 01 01 01 01 01 01 CA 01 01 U, U, CA U, U, H H C) O l0 l0 CO CO CO J J O1 O1 UI in in 43. 41. CO CO W N N H I, O O O co VD 00 Co J J J 01 O1 Ui U1 U7 .P P W W N N N 1-` H O O VD CO Co CO CO O 01 N J CO l0 Ln O 01 N Co .A VD U7 H J W Co O 01 H J W l0 U1 O 01 N 00 41. l0 Ln H J W co .4. O Ch H J CO VD Ln O 01 N CO 0. l0 U7 H J N tTi 01 �A N) O co (J) CO H l0 J CA CO H 00 01 �A N CD Co CA �p NCO -J Ln CoH CO J Ln N) CD 00 Ol 0. N co co Ln Co H l0 J Ln W H 00 Ol 0. N CO Co 01 �P H Co fo 01 4.. W NJ I� l0 00 J CA . W N 1� CO co J O1 .A W N H O co J O'. Ln W N I-' O co J 01 Ln W N 1� co00 J Ol Ln W N F-' C) VD J C1 Ln �A N 1-' COl0 J ion `� ( 11 I I III I I I 1 I I 1 I I I I I 1 I I I I I I I I 1 I 1 1 I I I I I I I I I I 1 I I I I I I I I I I I I I O CD 0 CD CD CD CD CD CD 0 0 CD 0 0 0 0 0 0 0 0 CD 0 0 0 0 CD CD CD CD CD 0 CD 0 0 0 CD 0 0 0 0 0 CD 0 0 0 0 0 0 0 0 0 CD CD CD 0 CD C) O CD CD CD 0 0 0 CD CD CD CD 0 0 0 CD CD 0 CD CD 0 CD CD CD 0 CD CD CD 0 0 0 0 0 CD 0 0 0 0 CD CD 0 CD 0 0 CD CD 0 0 CD 0 0 0 0 0 0 CD co CD 0 0 0 0 CD CD CD CD CD 0 CD CD 0 0 CD 0 CD CD CD CD 0 0 0 0 0 0 0 CD 0 0 0 CD 0 C) CD CD CD C) CD 0 CD 0 CD 0 0 CD 0 0 0 CD CD 0 CD 0 0 k co O O o O o O O o O O O O O O O O o 0 0 o O O O O O 0 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O CD O O O O O O O O O O O O CD O O O O O O O O O O O O O O O O O O O O O O O O O CO CO O CO O C) O O O O O CD O CD 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 0 CD CD 0 CD CD CD 0 CD CD 0 C) 0 CD CD 0 CD CD 0 0 0 0 CD C) CD CD 0 0 0 CD 0 0 0 0 0 CD 0 CD CD 0 EL co N N N N N N N N N) N) N N N N N) N N N N N) N N N N) N N N N N N N N N N N) N) N) N N N N N N N N N N) N) N N N N N N N N ^' U7 N in Ln Ln U7 N U7 U7 in N in N Ln Ln U1 U1 Cn UI U1 Cn Ln In Cn U1 U1 U1 U1 4N 43. 0. 43. 43. 4P 43. 4.. aP aP aP 4. 0. 0. 4N 4N 4.. iP 43. 4A aP aA 4. 4N 4N W W W W W W N NJ N N) N N N H I-` H H H F, H O O O O CO O O O CO CO VD CO CO co CO Co Co co co co co Oo J J J J J J J J 01 01 01 01 01 01 CO CO O O O O O O O O O O O CO O O O O O O O O CO O O O O O O O O O co O O O O O O O O O CO CO O CO CO O O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f, H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H U1 in in U1 U1 U1 U1 U1 U1 U1 in in U1 U1 U1 Ut U1 Cn U1 Ln U1 U1 U1 Ln U1 in U1 U1 CA U1 U1 U1 U1 U1 Ln U1 Cn U1 U1 U1 U7 Ln in in in Ln U1 U1 U1 Ln Ln U1 U1 U1 U1 U7 4. 43. 43. iP 4N .P Cn U7 Ln U7 in Ln in UI U7 Ln U7 in 01 01 01 01 01 01 01 O1 01 O1 01 01 J J J J J J J J J J J CO CO Co CO OD Co CO CO OD CO CO CO Co CO CO tri trl Cr] tzi CTJ LTJ tz1 CTJ CTJ Cr] tzi CTJ tri tzi CTJ tri [xi Pi CI C'j tzl C'] tz1 tzi tr1 tzi C] tzi tzi Ci] CI C'] C'] C] tzi tzi tzi tzi tzi tzi tzi C'] CI Cal tzl tzi tzi Ci] Ci] tzi + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + CD 0 0 0 CD CD CD CD CD 0 CD CD CD 0 CD 0 CD CD CD 0 0 0 0 CD 0 0 0 0 CD 0 0 0 0 0 0 CD CD 0 C) CD CD 0 CD 0 CD 0 0 0 0 C) 0 0 0 0 0 0 CD 0 CD CD CD CD CD CD 0 0 0 CD CD CD CD 0 CD CD CD CD CD CD CD CD CD 0 C) CD CD CD 0 0 CD 0 C) 0 0 CD C) CD CD CD 0 0 0 0 0 CD C) CD 0 0 0 0 0 0 CD CD CD CD CD CD 0 CD CD 0 CD CD CD CD CD 0 CD CD CD CD CD CD 0 0 0 CD CD 0 CD CD CD CD 0 CD 0 0 0 0 0 0 C) CD 0 0 0 C) C) CD 0 CD CD 0 CD 0 0 CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CO CO CO CO CO Co CO CO CO CO Co CO CO Co CO CO CO CO CO CO CO CO Co l0 l0 Co Co Co Co co Co Co co Co CO CO Co CO CO Co CO Co CO Co Co Co Co Co CO Co Co CO Co CO CO CO CO 00 Co Co Co co co OD co co co co co co co co co co co co co co co co co co co co co co co co co co co co co co co co 00 Co Co OD Co Co Co Co Co Co Co Co CO Co OD CO N) N N N) N N) N N N Na N) N) N N N N N N) N) N) N N N) N N) N N N) N) N N) N) N) N N N N N N) N N N N N N N N N N N N N N N N N CO CO CO W CO CO CO CO W CO CO W CO CO CO CO CO CO CO CO W CO CO W W W U) W W Co CO CO CO W CO CO Cu CO W Co CO CO CO W CO W CO CO CO W W CO CO CO CO W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Co CO J J J J J J J J 01 01 01 01 01 01 01 Ln (n In in In in in In ,A ,p .A .A .A .A ,p . W W W W W W W CO N N N N N N N) N H H H H H H H H C) Co J 01 in CO N H C) OD J 01 (n W N H Co CO J 01 ,p Co N) H CO co J U1 .A CO N O Co CO 01 Ln . W H O Co J 01 in 4. N H O CO J 01 .P W N H .P CO CO CO CO CO Co Co CO CO Co W CO Co Co Co Co Co W W W W W W W W W W CO Co CO Co Co Co W W W W W W W W W W Co W W W W W N N N N N N O VD vD CO Co Co Co 00 00 co OD J J J J J O1 01 01 01 01 In in in U1 43. 4N 4N .A CO CO CO CO CO N N N N N) H H H H H O O O O O Co Co CO Co Co CO H VD 01 .A N O CO 01 .p N O CO CA .P N O CO Ol .A NJ O -J (n W H l0 -J (n W H Co J in W H Co J Ln W H CO 01 0. N O Co 01 .p N) O Co 01 4N N O OD O O CO Co CO CO J 01 01 (n U7 .A iP W W N) N H H O O Co Co CO CO J J 01 01 Cn (n ,A 4N W CO N N H H O O Co CO CO OD -J J 01 01 U1 (n .P 0. CO W Na Ln O U7 O Ln O Cn Co .P Co 0. Co .P Co .P Co iA OD W co W Oo W co W OD W -J N) J N) J N) J N J N -J H 01 H 01 H CA H 01 H 01 O Ln O U1 O U1 CO Ln tzi Cz] tzi Cz] Czi tzi tzi Cz] tzi Czi tzi Czi Cz] Cz1 tzl Cr] Cr] tzl Cz] tzl Cr] tzi Cz] tzi tzi tzi tr1 tzi tri tz] tzi tz] tz] tzi tzl tri tzi tzl Cz] tri tzi 1=1 Czi tzi Cz] C+] tzi tzi Czi tzi Cz] tzi tzi tzi tri + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + CO O O O C) C) O O O C) O O O O O C) O O O O O O O O O O O O O O O O O O O O O O C) C) O O C) O O O O O O O CO O CO O O CO iP 0. iP 4. iP aP iP 0. .0. aA 43. 0. .A .P 4N .A .A .A .A .P 43. 43. .P iP .A iP iP .P iP 4. 4. 4. 4. 4. .A iP .A iP .P 0. 0. 4. 4. aA .A aA 4. .A .P 4N iA .P .P 4N .A AN w w Rogers Energy Complex Thermal Model Verification 818.87 -0.00 0.00 25.3 0.154E+00 0.98 23.82 .40310E+04 823.08 -0.00 0.00 25.3 0.154E+00 0.98 23.84 .40515E+04 827.29 -0.00 0.00 25. 4 0.154E+00 0.98 23.85 .40720E+04 831.51 -0.00 0.00 25. 4 0.154E+00 0.98 23.86 .40926E+04 835.72 -0.00 0.00 25.4 0.154E+00 0.98 23.87 .41131E+04 839.93 -0.00 0.00 25.4 0.154E+00 0.98 23.89 .41336E+04 844.14 -0.00 0.00 25.4 0.153E+00 0.98 23.90 .41541E+04 848.35 -0.00 0.00 25.4 0.153E+00 0.98 23.91 .41746E+04 852.57 -0.00 0.00 25.4 0.153E+00 0.98 23.92 .41951E+04 856.78 -0.00 0.00 25.5 0.153E+00 0.98 23.94 .42156E+04 860.99 -0.00 0.00 25.5 0. 153E+00 0.98 23.95 .42361E+04 865.20 -0.00 0.00 25.5 0.153E+00 0.98 23.96 .42566E+04 869.42 -0.00 0.00 25.5 0.153E+00 0.98 23.97 .42771E+04 873.63 -0.00 0.00 25.5 0.153E+00 0.98 23.99 .42976E+04 877.84 -0.00 0.00 25.5 0.153E+00 0.98 24.00 .43182E+04 882.05 -0.00 0.00 25.5 0.153E+00 0.98 24.01 .43387E+04 886.27 -0.00 0.00 25.5 0.153E+00 0.98 24.02 .43592E+04 890.48 -0.00 0.00 25.6 0.153E+00 0.98 24.04 .43797E+04 894.69 -0.00 0.00 25.6 0.153E+00 0.98 24.05 .44002E+04 898.90 -0.00 0.00 25.6 0.152E+00 0.98 24.06 .44207E+04 903.12 -0.00 0.00 25.6 0.152E+00 0.98 24.07 .44412E+04 907.33 -0.00 0.00 25.6 0.152E+00 0.98 24.09 .44617E+04 911.54 -0.00 0.00 25.6 0.152E+00 0.98 24.10 .44822E+04 915.75 -0.00 0.00 25.6 0.152E+00 0.98 24.11 .45027E+04 919.97 -0.00 0.00 25.7 0.152E+00 0.98 24.12 .45233E+04 924.18 -0.00 0.00 25.7 0.152E+00 0.98 24.14 .45438E+04 928.39 -0.00 0.00 25.7 0.152E+00 0.98 24.15 .45643E+04 932.60 -0.00 0.00 25. 7 0.152E+00 0.98 24.16 .45848E+04 936.82 -0.00 0.00 25. 7 0.152E+00 0.98 24.17 .46053E+04 941.03 -0.00 0.00 25. 7 0. 152E+00 0.98 24.19 .46258E+04 945.24 -0.00 0.00 25. 7 0. 152E+00 0.98 24.20 .46463E+04 949.45 -0.00 0.00 25.7 0.151E+00 0.98 24.21 .46668E+04 953.67 -0.00 0.00 25.8 0. 151E+00 0. 98 24.22 .46873E+04 957.88 -0.00 0.00 25.8 0. 151E+00 0.98 24.24 .47078E+04 962.09 -0.00 0.00 25.8 0.151E+00 0.98 24.25 .47284E+04 966.30 -0.00 0.00 25.8 0.151E+00 0.98 24.26 .47489E+04 970.51 -0.00 0.00 25.8 0.151E+00 0.98 24.27 .47694E+04 974.73 -0.00 0.00 25.8 0.151E+00 0.98 24.29 .47899E+04 978.94 -0.00 0.00 25.8 0.151E+00 0.98 24.30 .48104E+04 983.15 -0.00 0.00 25.8 0.151E+00 0.98 24.31 .48309E+04 987.36 -0.00 0.00 25.9 0.151E+00 0.98 24.32 .48514E+04 991.58 -0.00 0.00 25.9 0.151E+00 0.98 24.33 .48719E+04 995.79 -0.00 0.00 25.9 0. 151E+00 0.98 24.35 .48924E+04 1000.00 -0.00 0.00 25.9 0.151E+00 0.98 24.36 .49129E+04 Cumulative travel time = 4912.9336 sec ( 1.36 hrs) Simulation limit based on maximum specified distance = 1000.00 m. This is the REGION OF INTEREST limitation. END OF MOD361: PASSIVE AMBIENT MIXING IN UNIFORM AMBIENT CORMIX3: Buoyant Surface Discharges End of Prediction File 33333333333333333333333333333333333333333333333333333333333333333333333333 _ A-34 i Y� Lam'" Rogers Energy Complex Thermal Model Verification Summer 89.6°F Model CORMIX SESSION REPORT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CORMIX MIXING ZONE EXPERT SYSTEM CORMIX Version 11.OGT HYDRO3:Version-11.0.1.0 August,2019 SITE NAME/LABEL: Cliffside-Rogers DESIGN CASE: Summer 7Q10 temp FILE NAME: C:\Egnyte\Shared\1 Projects\Duke Energy (DUKE) \Cliffside-Rogers\Thermal Model Verification (DUKE0010)\CORMIX\7Q10 updated\Outfall 005 summer.prd Using subsystem CORMIX3: Buoyant Surface Discharges Start of session: 05/08/2020--10:11:11 ************************************************************************** SUMMARY OF INPUT DATA: AMBIENT PARAMETERS: Cross-section = bounded Width BS = 69.98 m Channel regularity ICHREG = 2 Ambient flowrate QA = 8.13 m^3/s Average depth HA = 0.85 m Depth at discharge HD = 0.85 m Ambient velocity UA = 0.1361 m/s Darcy-Weisbach friction factor F = 0.0744 Calculated from Manning's n = 0.03 Wind velocity UW = 2 m/s Stratification Type STRCND = U Surface temperature = 30.17 degC Bottom temperature = 30.17 degC Calculated FRESH-WATER DENSITY values: Surface density RHOAS = 995.5965 kg/m^3 Bottom density RHOAB = 995.5965 kg/m^3 DISCHARGE PARAMETERS: Surface Discharge Discharge located on = right bank/shoreline Discharge configuration = flush discharge Distance from bank to outlet DISTB = 0 m Discharge angle SIGMA = 90 deg Depth near discharge outlet HDO = 0.50 m Bottom slope at discharge SLOPE = 12.4 deg Rectangular discharge: Discharge cross-section area AO = 1.675971 m^2 Discharge channel width BO = 3.3528 m Discharge channel depth HO = 0.499872 m Discharge aspect ratio AR = 0.149091 Discharge flowrate QO = 0.262876 m^3/s Discharge velocity UO = 0.16 m/s Discharge temperature (freshwater) = 37.78 degC Corresponding density RHO0 = 993.0427 kg/m^3 Density difference DRHO = 2.5538 kg/m^3 Buoyant acceleration GPO = 0.0252 m/s^2 Discharge concentration CO = 13.700000 deg.F Surface heat exchange coeff. KS = 0 m/s Coefficient of decay KD = 0 /s A-35 Rogers Energy Complex Thermal Model Verification DISCHARGE/ENVIRONMENT LENGTH SCALES: LQ = 1.29 m Lm = 1.49 m Lbb = 2.62 m LM = 1.13 m NON-DIMENSIONAL PARAMETERS: Densimetric Froude number FRO = 0.87 (based on LQ) Channel densimetric Froude no. FRCH = 1.40 (based on HO) Velocity ratio R = 1.15 MIXING ZONE / TOXIC DILUTION ZONE / AREA OF INTEREST PARAMETERS: Toxic discharge = no Water quality standard specified = yes Water quality standard CSTD = 3.3 deg.F Regulatory mixing zone = no Region of interest = 716.28 m downstream ************************************************************************** HYDRODYNAMIC CLASSIFICATION: * * I FLOW CLASS = PL2 I * * Limiting Dilution S = (QA/QO)+ 1.0 = 31.9 ************************************************************************** MIXING ZONE EVALUATION (hydrodynamic and regulatory summary) : X-Y-Z Coordinate system: Origin is located at WATER SURFACE and at centerline of discharge channel: 0 m from the right bank/shore. Number of display steps NSTEP = 200 per module. NEAR-FIELD REGION (NFR) CONDITIONS : Note: The NFR is the zone of strong initial mixing. It has no regulatory implication. However, this information may be useful for the discharge designer because the mixing in the NFR is usually sensitive to the discharge design conditions. Pollutant concentration at NFR edge c = 13.700000 deg.F Dilution at edge of NFR s = 1 NFR Location: x = 1.68 m (centerline coordinates) y = 0.34 m z = 0 m NFR plume dimensions: half-width (bh) = 4.08 m thickness (bv) = 0.47 m Cumulative travel time: 12.32 sec. Buoyancy assessment: The effluent density is less than the surrounding ambient water density at the discharge level. Therefore, the effluent is POSITIVELY BUOYANT and will tend to rise towards the surface. FAR-FIELD MIXING SUMMARY: Plume becomes vertically fully mixed at 331.62 m downstream. PLUME BANK CONTACT SUMMARY: .0 A-36 . Rogers EnergyComplex Thermal Model Verification 9 p Plume in bounded section contacts one bank only at 0 m downstream. ************************ TOXIC DILUTION ZONE SUMMARY ************************ No TDZ was specified for this simulation. ********************** REGULATORY MIXING ZONE SUMMARY *********************** No RMZ has been specified. However: The ambient water quality standard was encountered at the following plume position: Water quality standard = 3.3 deg.F Corresponding dilution s = 4.2 Plume location: x = 113.92 m (centerline coordinates) y = 0 m z = 0 m Plume dimensions: half-width (bh) = 32.60 m thickness (bv) = 0.24 m ********************* FINAL DESIGN ADVICE AND COMMENTS ********************** REMINDER: The user must take note that HYDRODYNAMIC MODELING by any known technique is NOT AN EXACT SCIENCE. Extensive comparison with field and laboratory data has shown that the CORMIX predictions on dilutions and concentrations (with associated plume geometries) are reliable for the majority of cases and are accurate to within about +-50% (standard deviation) . As a further safeguard, CORMIX will not give predictions whenever it judges the design configuration as highly complex and uncertain for prediction. A-37 v v L' Rogers Energy Complex Thermal Model Verification CORMIX3 PREDICTION FILE: 33333333333333333333333333333333333333333333333333333333333333333333333333 CORMIX MIXING ZONE EXPERT SYSTEM Subsystem CORMIX3: Buoyant Surface Discharges CORMIX Version 11.0GT HYDRO3 Version 11.0.1.0 August 2019 CASE DESCRIPTION Site name/label: Cliffside-Rogers Design case: Summer 7Q10 temp FILE NAME: C:\. . .E0010)\CORMIX\7Q10 updated\Outfall_005_summer.prd Time stamp: 05/08/2020--10:11:11 ENVIRONMENT PARAMETERS (metric units) Bounded section BS = 69.98 AS = 59. 73 QA = 8.13 ICHREG= 2 HA = 0.85 HD = 0. 85 UA = 0.136 F = 0. 074 USTAR =0.1313E-01 UW = 2.000 UWSTAR=0.2198E-02 Uniform density environment STRCND= U RHOAM = 995.5966 DISCHARGE PARAMETERS (metric units) BANK = RIGHT DISTB = 0.00 Configuration: flush_discharge SIGMA = 90.00 HDO = 0.50 SLOPE = 12.40 deg. Rectangular channel geometry: BO = 3.353 HO = 0.500 AO =0.1676E+01 AR = 0.149 UO = 0.157 QO = 0.263 =0.2629E+00 RHO0 = 993.0427 DRHO0 =0.2554E+01 GPO =0.2516E-01 CO =0.1370E+02 CUNITS= deg.F IPOLL = 1 KS =0.0000E+00 KD =0.0000E+00 FLUX VARIABLES (metric units) QO =0.2629E+00 MO =0.4123E-01 JO =0.6613E-02 Associated length scales (meters) LQ = 1.29 LM = 1.13 Lm = 1.49 Lb = 2.62 NON-DIMENSIONAL PARAMETERS FRO = 0.87 FRCH = 1.40 R = 1.15 FLOW CLASSIFICATION 333333333333333333333333333333333333333333333333 3 Flow class (CORMIX3) = PL2 3 3 Applicable layer depth HS = 0.85 3 3 Limiting Dilution S =QA/QO= 31.92 3 333333333333333333333333333333333333333333333333 MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS CO =0.1370E+02 CUNITS= deg.F NTOX = 0 NSTD = 1 CSTD =0.3300E+01 REGMZ = 0 XINT = 716.28 XMAX = 716.28 X-Y-Z COORDINATE SYSTEM: ("u' A-38 Rogers Energy Complex Thermal Model Verification ORIGIN is located at the WATER SURFACE and at center of discharge channel/outlet: 0.00 m from the RIGHT bank/shore. X-axis points downstream Y-axis points to left as seen by an observer looking downstream Z-axis points vertically upward (in CORMIX3, all values Z = 0.00) NSTEP = 200 display intervals per module BEGIN MOD301: DISCHARGE MODULE Efflux conditions: X Y Z S C BV BH UC TT 0.00 0. 00 0. 00 1.0 0.137E+02 0.50 1.68 0.157 .00000E+00 END OF MOD301: DISCHARGE MODULE BEGIN MOD302: ZONE OF FLOW ESTABLISHMENT Control volume inflow: X Y Z S C BV BH UC TT 0.00 0.00 0.00 1.0 0.137E+02 0.50 1.68 0.157 .00000E+00 RAPID DEFLECTION by ambient current: Profile definitions: BV = top-hat thickness,measured vertically BH = top-hat half-width, measured horizontally from bank/shoreline S = hydrodynamic average (bulk) dilution C = average (bulk) concentration (includes reaction effects, if any) TT = Cumulative travel time Control volume outflow: SIGMAE= 78.59 X Y Z S C BV BH UC TT 1.68 0.34 0. 00 1.0 0.137E+02 0.47 4.08 0. 157 .12320E+02 Cumulative travel time = 12.3200 sec ( 0.00 hrs) END OF MOD302: ZONE OF FLOW ESTABLISHMENT ** End of NEAR-FIELD REGION (NFR) ** BEGIN MOD341: BUOYANT AMBIENT SPREADING Profile definitions: BV = top-hat thickness,measured vertically BH = top-hat half-width, measured horizontally from bank/shoreline S = hydrodynamic average (bulk) dilution C = average (bulk) concentration (includes reaction effects, if any) TT = Cumulative travel time _ A-39 V L' - 'T A Oh-d £0+H£t76T9' St'LZ OZ'0 TO+HZ9b '0 O'£ 00'0 00'0- 96' 98 £O+HSLL09' ZI'LZ OZ'O TO+HZLt'0 6'Z 00'0 00'0- Z£'S8 £0+HL096S' 6L'9Z OZ'0 TO+HZ8t'0 8'Z 00'0 00'0- 89'£8 £O+HOTib8S' 9b'9Z OZ'0 TO+HZ617'0 8'Z 00'0 00'0- b0'38 £O+HZLZLS' £T'9Z OZ'0 TO+HZOS'O L'Z 00'0 00'0- Ot'08 £0+HSOT9S' 6L 'SZ 6I'0 TO+H£TS'0 L 'Z 00'0 00'0- 9L"8L £0+HL£66S' S17'SZ 6T'0 TO+H£ZS'0 9'Z 00'0 00'0- ZT'LL £O+HOLL£S" IT 'SZ 6I'0 TO+Hb£S'0 9'Z 00'0 00'0- 8b'SL £0+HZ09ZS' 9L 'tZ 6I'0 TO+HSbS'0 S'Z 00'0 00'0- b8'£L £O+HS£tIS' Zt'tZ 6I'0 TO+H9SS'0 S'Z 00'0 00'0- OZ'ZL £0+HL9ZOS' LO't'Z 6I'0 TO+H89S'0 17'Z 00'0 00"0- 9S'0L £O+HOOT66" ZL '£Z 6T'0 TO+HO8S'0 t7"Z 00"0 00'0- Z6'89 £O+HZ£6L6" 9£'£Z 6T'0 TO+HT6S'0 £'Z 00'0 00'0- 8Z'L9 £0+HS9L9ti' IO'£Z 8I'0 TO+Hb09'0 £'Z 00'0 00'0- b9'S9 £0+HL6SS6' 69"ZZ 8T'O TO+H9T9'0 Z'Z 00'0 00'0- 00'b9 £O+HO£bbb' 8Z'ZZ 81'0 TO+38Z9'O Z'Z 00'0 00'0- 9£'Z9 £0+HZ9Z£b' Z6'TZ 8T'0 TO+HTb9'0 T'Z 00'0 00'0- ZL'09 £0+HS6OZ6" SS'TZ 8I'0 IO+HtS9'0 I'Z 00'0 00'0- 80'6S £O+HLZ60ti' LT'TZ 8I'0 TO+HL99'0 T'Z 00'0 00'0- tt'LS £0+H09L6£' 08'OZ 8T'0 TO+H089'0 O'Z 00'0 00'0- 08'SS £0+HZ6S8£' Ifii'OZ 8T-0 IO+H£69'0 0'Z 00'0 00'0- 9T'tS £O+HSZ'L£' £0'03 8T'0 TO+HLOL '0 6'T 00'0 00'0- ZS'ZS £O+HLSZ9£' b9'61 8I'0 IO+HTZL '0 6'T 00'0 00'0- 88'0S £0+H060S£' SZ'6T 81'0 TO+HS£L'O 6'T 00'0 00'0- 17Z'66 £O+HZZ6££' S8'8I 8I'0 TO+H6tL'0 8'T 00'0 00'0- 09'L6 £O+HSSLZ£' St'8I 8I'0 TO+H£9L'O 8'T 00'0 00'0- 96'St £0+HL8ST£' SO'81 8I'0 TO+HLLL'O 8'T 00'0 00'0- Z£'tt £O+HOZbO£' £9'LT 8T'0 TO+HZ6L'O L'T 00'0 00'0- 89'Zb £O+HZSZ6Z' ZZ'LT 8I'0 TO+H908'0 L'I 00'0 00'0- '0'Tb £0+HS808Z' 08'9T 6I'0 TO+HTZ8'0 CT 00'0 00'0- Oti'6£ £O+HLT69Z' L£'9I 6I'0 IO+H9£8'0 9'T 00'0 00'0- 9L 'L£ £O+HOSLSZ' 66'ST 6I'0 TO+HIS8'0 9'T 00'0 00'0- ZI'9£ £0+HZ8StZ' OS'ST 6I'0 TO+HL98'0 9'T 00'0 00'0- 8ti'b£ £O+HSIb£Z' SO'ST 6I'0 TO+HZ88'0 9'T 00'0 00'0- t'8'Z£ £O+HLbZZZ' 09'17T OZ'0 TO+H868'0 S'T 00'0 00'0- OZ'T£ £0+H080TZ' £T'tT OZ'0 TO+atT6'0 S'T 00'0 00'0- 9S'6Z £0+HZI66T' 99'£T OZ'0 TO+HO£6'0 S'T 00'0 00'0- Z6'LZ 1 £O+HStL8I' 6T'£T IZ'O TO+HLt6'0 t'T 00'0 00'0- 83'9Z £O+HLLSLI' OL 'ZT TZ'0 TO+HTi96'0 1'I 00'0 00'0- t9'17Z £O+HOI69I' OZ'ZT TZ'O TO+HT86'0 Ii'T 00'0 00'0- 00'£Z £O+HZtZSI' 69'11 ZZ'0 10+2666'0 6'I 00'0 00'0- 9£'IZ £O+HSLOtI' LT'IT £Z'O ZO+HZOT'0 £'I 00'0 00'0- ZL '6I £0+HL06ZT' t9'0T £Z'O ZO+Ht7OI'0 £'I 00'0 00'0- 80'81 £O+HOtLII' 60'0T tZ'0 Z0+H9OI'0 £'I 00'0 00'0- T7t'9T £O+HZLSOT' ZS'6 SZ'0 ZO+H80I'0 £'T 00'0 00'0- 08'bT ZO+H9b066' 66'8 9Z'0 ZO+HOII'0 Z'T 00'0 00'0- 9T'£T ZO+HIL£Z8' b£'8 LZ'0 ZO+HZTT'0 Z'I 00'0 00'0- ZS'II ZO+H9690L' TL'L 6Z'0 ZO+HSIT'0 Z'I 00'0 00'0- 88 '6 ZO+HOZO6S' 90'L I£'0 ZO+H8II'0 Z'T 00'0 00'0- tZ'8 Z0+HS6£Lt' L£'9 ££'0 ZO+HIZT'0 T'T 00'0 00'0- 09'9 ZO+HOL9S£' 179'S 9£'0 ZO+HSZT'0 I'T 00'0 00'0- 96'b ZO+HS66£Z' L8'17 Ot'0 ZO+HO£T'0 T'I 00'0 00'0- Z£'£ ZO+HOZ£ZT" Z0"t L6'0 ZO+HL£T'0 0'I 00'0 00'0 89'I ZZ HE AE 3 S Z A X (Pauaegge )[uea) Z abeg5 aiunld uopoo uan japopv jowiayy xarltuo3£'6aau3 saaSod Rogers Energy Complex Thermal Model Verification 88.60 -0.00 0.00 3.0 0.453E+01 0.20 27.78 .63110E+03 90.24 -0.00 0.00 3.1 0.443E+01 0.21 28.10 .64278E+03 91.88 -0.00 0.00 3.2 0.434E+01 0.21 28.43 .65445E+03 93.52 -0.00 0.00 3.2 0.426E+01 0.21 28.75 .66613E+03 95.16 -0.00 0.00 3.3 0.417E+01 0.21 29.07 .67780E+03 96.80 -0.00 0.00 3.4 0.408E+01 0.21 29.38 .68948E+03 98.44 -0.00 0.00 3.4 0.400E+01 0.22 29.70 .70115E+03 100.08 -0.00 0.00 3.5 0.392E+01 0.22 30.01 .71283E+03 101.72 -0.00 0.00 3.6 0.384E+01 0.22 30.32 .72450E+03 103.36 -0.00 0.00 3.6 0.376E+01 0.22 30.63 .73618E+03 105.00 -0.00 0.00 3.7 0.368E+01 0.22 30.94 .74785E+03 106.64 -0.00 0.00 3.8 0.361E+01 0.23 31.25 .75953E+03 108.28 -0.00 0.00 3.9 0.354E+01 0.23 31.56 .77120E+03 109.92 -0.00 0.00 4.0 0.347E+01 0.23 31.86 .78288E+03 111.56 -0.00 0.00 4.0 0.340E+01 0.23 32.16 .79455E+03 113.20 -0.00 0.00 4.1 0.333E+01 0.24 32.47 .80623E+03 ** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND ** The pollutant concentration in the plume falls below water quality standard or CCC value of 0.330E+01 in the current prediction interval. This is the spatial extent of concentrations exceeding the water quality standard or CCC value. 114.84 -0.00 0.00 4.2 0.326E+01 0.24 32.77 .81790E+03 116.48 -0.00 0.00 4.3 0.320E+01 0.24 33.06 .82958E+03 118.12 -0.00 0.00 4.4 0.314E+01 0.25 33.36 .84125E+03 119.76 -0.00 0.00 4.5 0.307E+01 0.25 33.66 .85293E+03 121.40 -0.00 0.00 4.5 0.301E+01 0.25 33.95 .86460E+03 123.04 -0.00 0.00 4.6 0.295E+01 0.25 34.25 .87628E+03 124.68 -0.00 0.00 4.7 0.290E+01 0.26 34.54 .88795E+03 126.32 -0.00 0.00 4.8 0.284E+01 0.26 34.83 .89963E+03 127.96 -0.00 0.00 4.9 0.279E+01 0.26 35.12 .91130E+03 129.60 -0.00 0.00 5.0 0.273E+01 0.27 35.41 .92298E+03 131.24 -0.00 0.00 5.1 0.268E+01 0.27 35.70 .93465E+03 132.88 -0.00 0.00 5.2 0.263E+01 0.27 35.98 .94633E+03 134.52 -0.00 0.00 5.3 0.258E+01 0.27 36.27 .95800E+03 136.16 -0.00 0.00 5.4 0.253E+01 0.28 36.56 .96968E+03 137.80 -0.00 0.00 5.5 0.248E+01 0.28 36.84 .98135E+03 139.44 -0.00 0.00 5.6 0.243E+01 0.28 37.12 .99303E+03 141.08 -0.00 0.00 5.7 0.239E+01 0.29 37.40 .10047E+04 142.72 -0.00 0.00 5.8 0.234E+01 0.29 37.68 .10164E+04 144.36 -0.00 0.00 6.0 0.230E+01 0.29 37.96 .10281E+04 146.00 -0.00 0.00 6.1 0.226E+01 0.30 38.24 .10397E+04 147.64 -0.00 0.00 6.2 0.222E+01 0.30 38.52 .10514E+04 149.28 -0.00 0.00 6.3 0.218E+01 0.30 38.79 .10631E+04 150.92 -0.00 0.00 6.4 0.214E+01 0.31 39.07 .10748E+04 152.56 -0.00 0.00 6.5 0.210E+01 0.31 39.35 .10864E+04 154.20 -0.00 0.00 6.6 0.206E+01 0.31 39.62 .10981E+04 155.84 -0.00 0.00 6.8 0.202E+01 0.32 39.89 .11098E+04 157.48 -0.00 0.00 6.9 0.199E+01 0.32 40.16 .11215E+04 159.12 -0.00 0.00 7.0 0.195E+01 0.32 40.43 .11331E+04 160.76 -0.00 0.00 7.1 0.192E+01 0.33 40.71 .11448E+04 162.40 -0.00 0.00 7.3 0.188E+01 0.33 40.97 .11565E+04 164.04 -0.00 0.00 7.4 0.185E+01 0.34 41.24 .11682E+04 165.68 -0.00 0.00 7.5 0.182E+01 0.34 41.51 .11798E+04 167.32 -0.00 0.00 7.7 0.179E+01 0.34 41.78 .11915E+04 168.96 -0.00 0.00 7.8 0.176E+01 0.35 42.04 .12032E+04 170.60 -0.00 0.00 7.9 0.173E+01 0.35 42.31 .12149E+04 A _ A-41 v v L - Rogers Energy Complex Thermal Model Verification 172.24 -0.00 0.00 8.1 0.170E+01 0.35 42.57 .12265E+04 173.88 -0.00 0.00 8.2 0.167E+01 0.36 42.84 .12382E+04 175.52 -0.00 0.00 8.4 0.164E+01 0.36 43.10 .12499E+04 177.16 -0.00 0.00 8.5 0.161E+01 0.37 43.36 .12616E+04 178.80 -0.00 0.00 8.6 0.159E+01 0.37 43.62 .12732E+04 180.44 -0.00 0.00 8.8 0.156E+01 0.37 43.89 .12849E+04 182.08 -0.00 0.00 8.9 0.153E+01 0.38 44.15 .12966E+04 183.72 -0.00 0.00 9.1 0.151E+01 0.38 44. 40 .13083E+04 185.36 -0.00 0.00 9.2 0.148E+01 0.39 44.66 .13199E+04 187.00 -0.00 0.00 9.4 0.146E+01 0.39 44.92 .13316E+04 188.64 -0.00 0.00 9.5 0.144E+01 0.40 45.18 .13433E+04 190.28 -0.00 0.00 9.7 0.141E+01 0.40 45.43 .13550E+04 191.92 -0.00 0.00 9.9 0.139E+01 0.40 45.69 .13666E+04 193.56 -0.00 0.00 10.0 0.137E+01 0.41 45. 95 .13783E+04 195.20 -0.00 0.00 10.2 0.135E+01 0.41 46.20 .13900E+04 196.84 -0.00 0.00 10.3 0.132E+01 0.42 46.45 .14017E+04 198.48 -0.00 0.00 10.5 0.130E+01 0.42 46. 71 .14133E+04 200. 12 -0.00 0.00 10.7 0.128E+01 0.43 46.96 .14250E+04 201. 76 -0.00 0.00 10.8 0.126E+01 0.43 47.21 .14367E+04 203.40 -0.00 0.00 11.0 0.124E+01 0.43 47.46 .14484E+04 205.04 -0.00 0.00 11.2 0.122E+01 0.44 47. 71 .14600E+04 206.68 -0.00 0.00 11.4 0.121E+01 0.44 47.96 .14717E+04 208.32 -0.00 0.00 11.5 0.119E+01 0.45 48.21 .14834E+04 209.96 -0.00 0.00 11.7 0.117E+01 0.45 48.46 .14951E+04 211.60 -0.00 0.00 11.9 0.115E+01 0.46 48. 71 .15067E+04 213.24 -0.00 0.00 12.1 0.113E+01 0.46 48.96 .15184E+04 214.88 -0.00 0.00 12.3 0.112E+01 0.47 49.21 .15301E+04 216 .52 -0.00 0.00 12.4 0.110E+01 0.47 49.45 .15418E+04 218.16 -0.00 0.00 12.6 0.109E+01 0.48 49. 70 .15534E+04 219.80 -0.00 0.00 12.8 0.107E+01 0.48 49.94 .15651E+04 221.44 -0.00 0.00 13.0 0.105E+01 0.48 50.19 .15768E+04 223.08 -0.00 0.00 13.2 0.104E+01 0.49 50.43 .15885E+04 224.72 -0.00 0.00 13.4 0.102E+01 0.49 50.68 .16001E+04 226 .36 -0.00 0.00 13.6 0.101E+01 0.50 50.92 .16118E+04 228.00 -0.00 0.00 13.8 0.994E+00 0.50 51.16 .16235E+04 229.64 -0.00 0.00 14.0 0.980E+00 0.51 51.40 .16352E+04 231.28 -0.00 0.00 14.2 0.966E+00 0.51 51.65 .16468E+04 232.92 -0.00 0.00 14.4 0.953E+00 0.52 51.89 .16585E+04 234.56 -0.00 0.00 14.6 0.939E+00 0.52 52.13 .16702E+04 236.20 -0.00 0.00 14.8 0.926E+00 0.53 52.37 .16819E+04 237.84 -0.00 0.00 15.0 0.913E+00 0.53 52.61 .16935E+04 239.48 -0.00 0.00 15.2 0.901E+00 0.54 52.85 .17052E+04 241.12 -0.00 0.00 15.4 0.888E+00 0.54 53.08 .17169E+04 242.76 -0.00 0.00 15.6 0.876E+00 0.55 53.32 .17286E+04 244.40 -0.00 0.00 15.9 0.864E+00 0.55 53.56 .17402E+04 246.04 -0.00 0.00 16.1 0.852E+00 0.56 53.80 .17519E+04 247.68 -0.00 0.00 16.3 0.841E+00 0.56 54.03 .17636E+04 249.32 -0.00 0.00 16.5 0.830E+00 0.57 54.27 .17753E+04 250.96 -0.00 0.00 16.7 0.819E+00 0.57 54.50 .17869E+04 252.60 -0.00 0.00 17.0 0.808E+00 0.58 54.74 .17986E+04 254.24 -0.00 0.00 17.2 0. 797E+00 0.59 54.97 .18103E+04 255.88 -0.00 0.00 17.4 0. 786E+00 0.59 55.21 .18220E+04 257.52 -0.00 0.00 17. 7 0. 776E+00 0.60 55.44 .18336E+04 259.16 -0.00 0.00 17.9 0. 766E+00 0.60 55.67 .18453E+04 260.80 -0.00 0.00 18.1 0. 756E+00 0.61 55.91 .18570E+04 262.44 -0.00 0.00 18.4 0.746E+00 0.61 56.14 .18687E+04 _ A-42 vV L-� Rogers Energy Complex Thermal Model Verification 264.08 -0.00 0.00 18.6 0.737E+00 0.62 56.37 .18803E+04 265.72 -0.00 0.00 18.8 0.727E+00 0.62 56.60 .18920E+04 267.36 -0.00 0.00 19.1 0.718E+00 0.63 56.83 .19037E+04 269.00 -0.00 0.00 19.3 0.709E+00 0.63 57.06 .19154E+04 270.64 -0.00 0.00 19.6 0.700E+00 0.64 57.29 .19270E+04 272.28 -0.00 0.00 19.8 0.691E+00 0.64 57.52 .19387E+04 273.92 -0.00 0.00 20.1 0.683E+00 0.65 57.75 .19504E+04 275.56 -0.00 0.00 20.3 0.674E+00 0.66 57.98 .19621E+04 277.20 -0.00 0.00 20.6 0.666E+00 0.66 58.21 .19737E+04 278.84 -0.00 0.00 20.8 0.658E+00 0.67 58.44 .19854E+04 280.48 -0.00 0. 00 21.1 0.650E+00 0.67 58.67 .19971E+04 282.12 -0.00 0. 00 21.4 0.642E+00 0.68 58.89 .20088E+04 283.76 -0.00 0.00 21.6 0.634E+00 0.68 59.12 .20204E+04 285.40 -0.00 0. 00 21.9 0.626E+00 0.69 59.35 .20321E+04 287.04 -0.00 0. 00 22.1 0.619E+00 0.70 59.57 .20438E+04 288.68 -0.00 0. 00 22.4 0.611E+00 0.70 59.80 .20555E+04 290.32 -0.00 0. 00 22.7 0.604E+00 0.71 60.02 .20671E+04 291.96 -0.00 0. 00 23.0 0.597E+00 0.71 60.25 .20788E+04 293.60 -0.00 0.00 23.2 0.590E+00 0.72 60.47 .20905E+04 295.24 -0.00 0.00 23.5 0.583E+00 0.72 60.70 .21022E+04 296.88 -0.00 0.00 23.8 0.576E+00 0.73 60.92 .21138E+04 298.52 -0.00 0.00 24.1 0.569E+00 0.74 61.14 .21255E+04 300.16 -0.00 0.00 24.3 0.563E+00 0.74 61.37 .21372E+04 301.80 -0.00 0.00 24.6 0.556E+00 0.75 61.59 .21489E+04 303.44 -0.00 0.00 24.9 0.550E+00 0.75 61.81 .21605E+04 305.08 -0.00 0.00 25.2 0.543E+00 0.76 62.03 .21722E+04 306.72 -0.00 0.00 25.5 0.537E+00 0.77 62.25 .21839E+04 308.36 -0.00 0.00 25.8 0.531E+00 0.77 62.47 .21956E+04 310.00 -0.00 0.00 26.1 0.525E+00 0.78 62.69 .22072E+04 311.64 -0.00 0.00 26.4 0.519E+00 0.78 62.91 .22189E+04 313.28 -0.00 0.00 26.7 0.513E+00 0.79 63.13 .22306E+04 314.92 -0.00 0.00 27.0 0.508E+00 0.80 63.35 .22423E+04 316.56 -0.00 0.00 27.3 0.502E+00 0.80 63.57 .22539E+04 318.20 -0.00 0.00 27.6 0.497E+00 0.81 63.79 .22656E+04 319.84 -0.00 0.00 27.9 0.491E+00 0.82 64.01 .22773E+04 321.48 -0.00 0.00 28.2 0.486E+00 0.82 64.23 .22890E+04 323.12 -0.00 0.00 28.5 0.480E+00 0.83 64.45 .23006E+04 324.76 -0.00 0.00 28.8 0.475E+00 0.83 64.66 .23123E+04 326.40 -0.00 0.00 29.1 0.470E+00 0.84 64.88 .23240E+04 328.04 -0.00 0.00 29.5 0.465E+00 0.85 65.10 .23357E+04 329.68 -0.00 0.00 29.8 0.460E+00 0.85 65.31 .23473E+04 Cumulative travel time = 2347.3408 sec ( 0.65 hrs) END OF MOD341: BUOYANT AMBIENT SPREADING BEGIN MOD361: PASSIVE AMBIENT MIXING IN UNIFORM AMBIENT Vertical diffusivity (initial value) = 0.224E-02 m^2/s Horizontal diffusivity (initial value) = 0.561E-02 m^2/s Profile definitions: BV = Gaussian s.d.*sgrt(pi/2) (46%) thickness, measured vertically = or equal to water depth, if fully mixed BH = Gaussian s.d.*sqrt(pi/2) (46%) half-width, measured horizontally in Y-direction G _ _C A-43 ♦ i Rogers Energy Complex Thermal Model Verification S = hydrodynamic centerline dilution C = centerline concentration (includes reaction efects, if any) TT = Cumulative travel time Plume Stage 2 (bank attached) : X Y Z S C BV BH TT 329.68 0.00 0.00 29.8 0.460E+00 0.85 65.31 .23473E+04 Plume interacts with BOTTOM. The passive diffusion plume becomes VERTICALLY FULLY MIXED within this prediction interval. 331.62 -0.00 0.00 29.8 0.460E+00 0.85 65.32 .23611E+04 333.55 -0.00 0.00 29.8 0.460E+00 0.85 65.32 .23749E+04 335.48 -0.00 0.00 29.8 0.460E+00 0.85 65.32 .23886E+04 337.41 -0.00 0.00 29.8 0.460E+00 0.85 65.32 .24024E+04 339.35 -0.00 0.00 29.8 0.460E+00 0.85 65.32 .24161E+04 341.28 -0.00 0.00 29.8 0.460E+00 0.85 65.32 .24299E+04 343.21 -0.00 0.00 29.8 0.460E+00 0.85 65.33 .24437E+04 345.15 -0.00 0.00 29.8 0.460E+00 0.85 65.33 .24574E+04 347.08 -0.00 0.00 29.8 0.460E+00 0.85 65.33 .24712E+04 349.01 -0.00 0.00 29.8 0.460E+00 0.85 65.33 .24849E+04 350.95 -0.00 0.00 29.8 0.460E+00 0.85 65.33 .24987E+04 352.88 -0.00 0.00 29.8 0.460E+00 0.85 65.34 .25125E+04 354.81 -0.00 0.00 29.8 0.460E+00 0.85 65.34 .25262E+04 356.74 -0.00 0.00 29.8 0.460E+00 0.85 65.34 .25400E+04 358.68 -0.00 0.00 29.8 0.460E+00 0.85 65.34 .25537E+04 360.61 -0.00 0.00 29.8 0.460E+00 0.85 65.34 .25675E+04 362.54 -0.00 0.00 29.8 0.460E+00 0.85 65.35 .25813E+04 364.48 -0.00 0.00 29.8 0.460E+00 0.85 65.35 .25950E+04 366.41 -0.00 0.00 29.8 0.460E+00 0.85 65.35 .26088E+04 368.34 -0.00 0.00 29.8 0.460E+00 0.85 65.35 .26225E+04 370.28 -0.00 0.00 29.8 0.460E+00 0.85 65.35 .26363E+04 372.21 -0.00 0.00 29.8 0.460E+00 0.85 65.35 .26501E+04 374.14 -0.00 0.00 29.8 0.460E+00 0.85 65.36 .26638E+04 376.07 -0.00 0.00 29.8 0.460E+00 0.85 65.36 .26776E+04 378.01 -0.00 0.00 29.8 0.460E+00 0.85 65.36 .26913E+04 379.94 -0.00 0.00 29.8 0.460E+00 0.85 65.36 .27051E+04 381.87 -0.00 0.00 29.8 0.460E+00 0.85 65.36 .27189E+04 383.81 -0.00 0.00 29.8 0.460E+00 0.85 65.37 .27326E+04 385.74 -0.00 0.00 29.8 0.460E+00 0.85 65.37 .27464E+04 387.67 -0.00 0.00 29.8 0.460E+00 0.85 65.37 .27602E+04 389.61 -0.00 0.00 29.8 0.460E+00 0.85 65.37 .27739E+04 391.54 -0.00 0.00 29.8 0.460E+00 0.85 65.37 .27877E+04 393.47 -0.00 0.00 29.8 0.460E+00 0.85 65.37 .28014E+04 395.40 -0.00 0.00 29.8 0.459E+00 0.85 65.38 .28152E+04 397.34 -0.00 0.00 29.8 0.459E+00 0.85 65.38 .28290E+04 399.27 -0.00 0.00 29.8 0.459E+00 0.85 65.38 .28427E+04 401.20 -0.00 0.00 29.8 0.459E+00 0.85 65.38 .28565E+04 403.14 -0.00 0.00 29.8 0.459E+00 0.85 65.38 .28702E+04 405.07 -0.00 0.00 29.8 0.459E+00 0.85 65.39 .28840E+04 407.00 -0.00 0.00 29.8 0.459E+00 0.85 65.39 .28978E+04 408.94 -0.00 0.00 29.8 0.459E+00 0.85 65.39 .29115E+04 410.87 -0.00 0.00 29.8 0.459E+00 0. 85 65.39 .29253E+04 412.80 -0.00 0.00 29.8 0.459E+00 0.85 65.39 .29390E+04 414.73 -0.00 0.00 29.8 0.459E+00 0.85 65.40 .29528E+04 416.67 -0.00 0.00 29.8 0.459E+00 0.85 65.40 .29666E+04 418.60 -0.00 0.00 29.8 0.459E+00 0.85 65.40 .29803E+04 Q-rilf A-44 � � L- (PCPC (P (P (P CPCPCPCPCPa as a .Pa .P � a. .P .P0. 0. .P A. a. a. a. a. � .P A .P .P P 4. 4. 4. a. a. , a. a. a. a. a , a. as a. a. a a. a ft ill ` ft PCP N N N N 1-' I-�-' F' I-' U F-` CD CD CD CD O l0 l0 l0 l0 l0 l0 CO 0D CO CO OD J J J J J O1 01 O1 O1 O1 U1 (P (P in in .a .A .a .a .a W W W W Cs) W N N N N N En! 1 O1 .A N I-' l0 J CP W F' VD J U1 W 1-' l0 J CP W N O CO O1 .A N O OD 01 .a N O CO O1 .a W F' lD J CP W 1-' l0 J CP W F' l0 J Ol .A N O O CA .A N O Ctl CO l0 lO O F-` I-' N.) W CO .A U1 CP O1 J J CO l0 l0 O I-, 1-' N CO (..0 .a in U1 01 J J a) (0 l0 O I- I-' N CO W .A U1 U1 O1 J a) 00 (0 O O F' N N W .A .A U1 CO (P I-' OD in N 00 VI N 00 CP N Co Ut N) CO 01 N l0 Ut N l0 01 N l0 01 N l0 01 N (0 01 N l0 61 W l0 O1 W CO 01 W CO CA W O CA La O 01 W CD CA W O J W ,11 ........ (4 ( a) .I .I .I •I .I .I .I .I .I .I .I .I .I .I .I .I •I .I .I .I .I .I .I •I .I I 1 I .I .I .I .I .I .1 .I .I .I .I .I .I .I I• .I .I .I .1 .I .I .I .I .I .I .I I• .I I CD CD CD CD CD CD CD CD CD CD CD CD CD O O CD CD O CD O CD CD CD CD O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >C (0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O G. (0 N N N N N N N N N) N N N N N N N) N N N N.) N N N N N N N) N N N N N) N) N N N N) N N N N) N N N NJ N) N) N) N N N N N N) N) N l0 l0 VD l0 l0 l0 l0 l0 1/40 VD l0 l0 lO l0 l0 l0 l0 VD l0 VD VD l0 VD VD CO CO l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 VD l0 VD l0 VD l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 . . . . . . . . . . . . . . . . . CO E.0 l0 VD CD VD l0 VD l0 l0 l0 l0 lO l0 VD VD VD l0 l0 l0 (D l0 l0 l0 lD l0 VD VD CO Co Co Co Co Co Co 00 00 00 CO CO Co Co CO OD CO CO 00 OD CO CO CO OD OD OD CO CO CO '1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n A. A. .A A. .A .A .A .A .A .A .A .A .A .A .A .a .a .A .A 0. .A .A .A .A .a .A .a .a .A .A .A .A .A .A .a a. a. a. a. a. .A a. .A .A .A .A .A .A .A .a .a .a .A .A .A .a (P CP (P CP U1 U1 U1 U1 U1 CP CP CP CP CP U1 in U1 U1 CP U1 (P CP U1 U1 U1 CP 01 CP CP In C.11 in U1 U7 U1 U1 U1 U1 U1 (P in CP (P CP in CP (P in Ut CP U1 in U1 in U1 in 0' l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 VD l0 l0 l0 l0 l0 l0 1/40 l0 1/40 l0 l0 l0 l0 l0 l0 VD l0 l0 VD VD l0 l0 l0 l0 l0 l0 VD lD l0 l0 VD l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 VD 0 CI CI Crl Crl Cri Cri Cri VI VI Cri VI CI Cr1 LI Cri Cri LT1 CI CI CI Cri Cri CI Lri Cri Cri CI Cri Cri CI CI CI C'i Cri Lri Lri Cri Cri Cri CI Cr1 CI CI Crl Cri Cri Cri Cri Lri LT1 CI CI CI VI CI CI + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CO CO O O OD Co OD 00 OD 00 CO CO Co Co 00 co 00 CO Co co 00 CO OD CO CO O0 CO Co CO CO CO CO CO 00 CO CO CO Co CO CO CO CO CO 0D CO CO OD CO Co CO OD O CO CO CO Co CP U1 CP CP U1 U1 (P CP (P (P U1 U1 U1 U1 Cr! In VI (P Cr' U1 U1 U1 0 U1 U1 CP Cr' U1 Cr' CP Cs! CP 01 CP Cr! Cr' In (P U1 CP 01 U1 CP U1 (P (P (P CP in U1 U1 U1 U1 CP LP in 01 O1 61 01 O1 O1 O1 01 01 0, O1 O1 61 O1 01 01 01 O1 61 01 01 O1 O1 01 O1 01 O1 O1 O1 01 O1 01 01 O1 61 O1 61 O1 01 01 01 O1 01 01 01 01 01 01 01 01 01 01 01 01 01 01 (11 CP CP (P U1 CP CP (P U1 U1 CP (P CP CP CP CP U1 (P CP (P CP CP In in U7 CP U1 (P (P U1 U1 in CP (P CP U1 (P U1 U1 CP U1 CP CP U1 CP (P CP U1 LP U1 U1 CP 01 (P CP CP . . . . . . . . . . . . . . . . . . . . . CP In CP CP (P .A .A .P .a .A .A .a .A .a .A .A .A .A .A .A .a .A .A .A .A .A .A .A .a .A .A .A .A .A .A .A .A .A .A .A .A .P .A .A .A .A .a .A .A .A .A .A .A .a .A .a O O O O O l0 (0 l0 VD VD CO CO Co Co Co co -J J J J J 01 01 O1 01 01 CP CP CP in in (P .A .A .A as .A W W W Co W N) N N) N N) N) F' I, I-' I--' I-' O O O W W W W W W CO W W C.W W W W W CO W Co W W Co W W W W W CO Co W W W W W Co W W W W W Cu CO CO CO Co Co W CO W W W W W W W W W N J J J J 01 01 O1 01 O1 01 01 in in in in (P (P N N .P .a .A .A .A .A .A. W CO W W W W W N) N) N) N N N) N N I--' F' I-' F-' N I-' F-' O O O O O O O VD U1 W N O l0 Co O1 (P .A N I-' l0 CO J CP .P W N O CO J 01 .A W N O l0 J 01 C.11 W N N l0 OD 01 (P .A N I-' O CO -J C1 .A CO h' O l0 J 01 .P W N) O lD O J W l0 U7 N) Co a. O -J W l0 U1 NJ CO .a O J W l0 U1 1-' 00 .a O 01 (..) l0 U1 F' CO .a O 01 W l0 (P F' 00 .A O O1 G) VD CP F-' J .A O 01 N l0 in F' J .A VD N .A O1 l0 I-' W 01 OD F' W U1 00 O W U1 J O N 01 J l0 N .a J (D F' .A 01 l0 F' W 01 Co F' W (P CO O W (P J O N .A J l0 N .P 01 l0 1-' .a O1 CO 1-' CI Cr1 Cr1 Cr1 Cri CI Cri CI CI CI C'i Cri Cri CI LT1 C'i LTi C.1 CI Cri [xi CI CI Cri CI Cri VI CI CI Cri VI Cri Cr1 Cr1 VI VI CI Cr1 C.1 CI Crl CI Cri CI Cri Cri Cri CI CI Cr7 CI Cri L-1 CI CI Cri + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .A .a as as .a .A .A .A .A .A .A .A .A .a .a .A .A .A .A .A .a .a .A A. A. .A .A A. .A A. 0 .A .A .A .A .A .A .A .a .a .a .a .A .A as .a .A .A .a .a .a .a .A .A .A .A > IN 01 . . 0, 01 01 0, 01 01 01 01 01 01 01 Cr) 01 01 01 01 01 01 01 Cn Cn (n (n Cn (n (n Cn (n (1 Cn Cn (Jl In Cn Cn Cn Cn (n (n (n (n (n Cn un (n Cr! (n Cn (n Cn Cn (n (1 (1 Cn Cr) W W W N N N) N N 1-1 I-` 1-1 1-1 V-' C) C) C) C) C0 C0 CO C0 CO CO CO OD CO CO --1 -.1 -.101 01 01 01 Ol ( n (1 C1 01 (1 Cn .A .A .A CF.) Lc/ CF..) W W N (0) 411, (n W I--' CO --] Cn W 1-1 CO -.1 u"l W I-1 CO Co Ol .A N O CO 01 .A N O CO 01 .A N O CO -1 U1 W 1-1 CO J U'i W F 1/40 -.1 Cn W 1-1 O OO 01 .A NJ O CO 01 .A N C) CO Cif O FJ N W W .A (71 Cn a> J J CO CO CO O F-' N N CO W .A Cn Cn of 00 1/4.0 l0 O F, F--' N W co .A (J'1 U'1 Ol t J co lfl CO O F-' N N W W A Cn (Jl al J J (p 1/40 Ol W O 01 W O 0) W 0 01 W O -1 W O -1 W O -.] W O -I .A O --] .A O -1 .A O �] .A F-` -] .A F-` �1 H‘ CO .A 1J CO .A 1-1 CO .A N CO Cn 1-) co r(() I I I I I I I II I I I I I I II I I I I I I I III II I I I I I II I II II I II II I I I I I I I I I I O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .� O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C) C) 0 0 0 0 0 COO O O O O O O O O O O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00000000000000000000000000000000000000000000 00000 •0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •0 0 • 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cp N N N N N N N) N N N N) N NJ N N N N N N N N N) N N N N) N) N N N N) N N) N N N N) N N) N N N N) N N N N N N N) N) N N N N) Ni Cfl CO C0 Cfl lfl C) CO CO C) CO CO CO CO 10 C0 C0 CO C0 C0 10 CO C0 1/40 CO CO C0 CO CO CO CO CO CO CO C0 CO C0 CO CO 1 C0 CO CO CO C0 CO 1 CO C) 1/40 CO CO CO C) CO CO C0 • CO C) C) C) VD CO CO CO CO CO C0 CO 1 C0 C0 C0 C0 C0 L CO CO C0 C CO CO C0 CO CO C) CO Cfl 1 CO CO CO CO CO CO CO CO CO C0 C0 1 C0 1 C0 C0 CO CO CO CO 1 CO CO O 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 C) 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o .A .A .A .A .A iA .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .P .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A (fi (n CP cl1 LTI u1 Cn Cn (n Cn Cy, I_l LP Ln u-i ul Cn cl1 Cn cn Cn (n vl U1 (n cn cn (n 01 Cn Cn Ul 01 cn CP Cn (J1 cn U-1 u-i cn u-i Cn vl Cn Cn Cn Cr) CT1 LP u-i (n ul (J1 Cn Ln 0' co Co 00 CO CO CO CO 00 CO CO CO Oo CO CO CO CO CO W 0o OD CO OD CO CO 00 CO 00 CO CO CO CO CO CO CO CO CO CO CO 00 Oo 0D CO CO OD CO OD CO CO CO CO CO CO CO CO lc) CO CI CI CI CI CI CI C J C.1 [T] CrJ CI] CI CrJ CI CI] [=J CT1 CI CI C.1 CI CI CI] CI CI CI CI t 1 CI CI CI C J C J CI CI C.1 [T] Cr1 CI CrJ CTf Crf CI CI CI CrJ LTf tii CI CI CI CI CI CIf CI CI + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 00000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000000000000000000000000000000 0 0 o C) 0 0 0 0 O 0 0 0 O 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o 0 0 o 0 0 o 0 0 0 0 0 0 0 0 o C) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CO CO Co OD CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO 00 CO CO CO CO CO CO CO CO U'1 Cn Cn Cn Ln Cn Cn Cn (n Cn Cn CJl Cn Cn Cn Cn Cn Cn Ln Cn u1 Cn Cn Cn Cn Cn Ln Cn Cn Ln Cn Cn Cn C71 Ul (J1 U'1 Cn U'1 Cn Cr) Cn Cn Cn Cn (n (n Cn Cr) Cn (n Cn (J1 Cn u1 Cn 01 01 01 01 01 01 01 01 01 01 01 61 O) 01 CT) 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 al 01 01 01 01 Ol O1 01 O1 01 al O> 01 al 01 01 01 01 01 01 Cf1 (.n (n (T1 [.n cn Cn (n Cn Cr cn Cn (n Cn (J1 (n (JI Cn Cn Cn Cn (11 Cr) Cn Cn Cn u1 Ln (17 Ln Cr) Ln Ln (l1 (n Cn (n cn (n cn (JI (n u1 (n (n (n LP Cn CT1 (n (n (n CP (11 Cn (J O1 O) O) O1 O1 O1 0 Cn Cn Cn Cr) 01 Cr) Cn Cn Cn Cn cn U 1 (n ul (n (n Cn (n (n Cn (n (n 01 01 (J1 (J1 ul Cn cn Cn Ul Cn Cn Cn (J1 Ln Cn in (Il Cn (n Cn Cn Cn (n (n u'1 Cn Cn IJ O 0 O O O 0 CO CO CO CO CO CO Co Co CO CO J -.1 J J J J Ol 01 01 01 01 (n (11 (1 Cn Cn Cn .A .A .A .A .A W W W W W W N) N) N) N) N) 1-1 1-1 1-1 1-1 O .A .A .A .A .A .A .A .A .A .A .A ,A .A .A .A .A .A .A .A .A aA .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A W W Co W W W W W W W W W W Co W Co W W Cr) Cn .A .A .A .A .A .A .A W CO W W W W W W N N N N) N N) N 1-1 1-1 H N 1 1 1-1 F-1 O O O 0 0 0 0 CO CO CO CO CO CO C0 CO CO CO CO CO CO CO CO -.1 J J N O CO CO 01 Cn W N I-' CO Co -1 Cn .A N) FI O CO J Q\ .P W 1-a O CO -.1 Ol (n W N O Cfl CO 01 Cn W N I-' CO Co -1 ul .A N I-' O 00 -1 C) .A co I-. O CO .A O 01 Ni CO Cn 1--1 -.] W 0 01 N CO 01 1-1 -.] W 0 01 N CO (Jl - --1 G7 0 01 N CO .A 1-1 J W CO O1 N) 00 Co CO O1 N 00 co CO O1 N co .A (n -1 O N) (Jl -] CO N .A -] CO 1-1 .A 01 CO 1-1 W 01 CO F-1 W (n CO O N ul J O N .A -.] CO N) .A 61 CO I-' .A 01 CO I� W CT) CO O W Cn CO O N Ln J C) N .A -U CJ CJ CI CI tJ LI CI] CJ CIl CJ CI C 7 CIJ CI] CI LI C.1 C+J CI] LI CI CIf CI CI CI CIf CIf CI C J CI CI] CI] CI] CI CI CTJ Crf t+J t+J LTJ LI CI C+7 tIf t+J CI] CI CTi C.1 C17 CI] CrJ CIf CI] CI] CI + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 0 0 0 C) 0 0 0 0 .A .A .A .A .A .A .A .A .A .P .A .A .A 4, .A .A .A .A .P .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .A .P .A .P .A .A .A .A .A .A .A .A .A .A .A .A .A .A .P D 01 Rogers Energy Complex Thermal Model Verification 637.03 -0.00 0.00 29.9 0.458E+00 0.85 65.61 .45353E+04 638.96 -0.00 0.00 29.9 0.458E+00 0.85 65.61 .45490E+04 640.89 -0.00 0.00 29.9 0.458E+00 0.85 65.61 .45628E+04 642.83 -0.00 0.00 29.9 0.458E+00 0.85 65.61 .45765E+04 644.76 -0.00 0.00 29.9 0.458E+00 0.85 65.62 .45903E+04 646.69 -0.00 0.00 29.9 0.458E+00 0.85 65.62 .46041E+04 648.62 -0.00 0.00 29.9 0.458E+00 0.85 65.62 .46178E+04 650.56 -0.00 0.00 29.9 0.458E+00 0.85 65.62 .46316E+04 652.49 -0.00 0.00 29.9 0.458E+00 0.85 65.62 .46453E+04 654.42 -0.00 0.00 29.9 0.458E+00 0.85 65.62 .46591E+04 656.36 -0.00 0.00 29.9 0.458E+00 0.85 65.63 .46729E+04 658.29 -0.00 0.00 29.9 0.458E+00 0.85 65.63 .46866E+04 660.22 -0.00 0.00 29.9 0.458E+00 0.85 65.63 .47004E+04 662.16 -0.00 0.00 29.9 0.458E+00 0.85 65.63 .47142E+04 664.09 -0.00 0.00 29.9 0.458E+00 0.85 65.63 .47279E+04 666.02 -0.00 0.00 29.9 0.458E+00 0.85 65.64 .47417E+04 667.95 -0.00 0.00 29.9 0.458E+00 0.85 65.64 .47554E+04 669.89 -0.00 0.00 29.9 0.458E+00 0.85 65.64 .47692E+04 671.82 -0.00 0.00 29.9 0.458E+00 0.85 65.64 .47830E+04 673.75 -0.00 0.00 29.9 0.458E+00 0.85 65.64 .47967E+04 675.69 -0.00 0.00 29.9 0.458E+00 0.85 65.65 .48105E+04 677.62 -0.00 0.00 29.9 0.458E+00 0.85 65.65 .48242E+04 679.55 -0.00 0.00 29.9 0.458E+00 0.85 65.65 .48380E+04 681.49 -0.00 0.00 29.9 0.458E+00 0.85 65.65 .48518E+04 683.42 -0.00 0.00 29.9 0.458E+00 0.85 65.65 .48655E+04 685.35 -0.00 0.00 29.9 0.458E+00 0.85 65.65 .48793E+04 687.28 -0.00 0.00 29.9 0.458E+00 0.85 65.66 .48930E+04 689.22 -0.00 0.00 29.9 0.458E+00 0.85 65.66 .49068E+04 691.15 -0.00 0.00 29.9 0.458E+00 0.85 65.66 .49206E+04 693.08 -0.00 0.00 29.9 0.458E+00 0.85 65.66 .49343E+04 695.02 -0.00 0.00 29.9 0.457E+00 0.85 65.66 .49481E+04 696.95 -0.00 0.00 29.9 0.457E+00 0.85 65.67 .49618E+04 698.88 -0.00 0.00 29.9 0.457E+00 0.85 65.67 .49756E+04 700.82 -0.00 0.00 29.9 0.457E+00 0.85 65.67 .49894E+04 702.75 -0.00 0.00 29.9 0.457E+00 0.85 65.67 .50031E+04 704.68 -0.00 0.00 30.0 0.457E+00 0.85 65.67 .50169E+04 706.61 -0.00 0.00 30.0 0.457E+00 0.85 65.67 .50306E+04 708.55 -0.00 0.00 30.0 0.457E+00 0.85 65.68 .50444E+04 710.48 -0.00 0.00 30.0 0.457E+00 0.85 65.68 .50582E+04 712.41 -0.00 0.00 30.0 0.457E+00 0.85 65.68 .50719E+04 714.35 -0.00 0.00 30.0 0.457E+00 0.85 65.68 .50857E+04 716.28 -0.00 0.00 30.0 0.457E+00 0.85 65.68 .50994E+04 Cumulative travel time = 5099.4507 sec ( 1.42 hrs) Simulation limit based on maximum specified distance = 716.28 m. This is the REGION OF INTEREST limitation. END OF MOD361: PASSIVE AMBIENT MIXING IN UNIFORM AMBIENT CORMIX3: Buoyant Surface Discharges End of Prediction File 33333333333333333333333333333333333333333333333333333333333333333333333333 A-47 -----:° _v L --� Rogers Energy Complex Thermal Model Verification 120 f30 w LA . 35 0 UA 25\ 2i. 0 1 0 1 -Tie° 1 10-O.p —0. -0 2' -0.2 • -0.3 -0.3 -0.4 -0.4 -0.5 • Outfall_005_summer Discharge Excess (°F) Row pass PL2 Origin Water Surface ——— Plume Centerline 0 2 4 6 8 10 12 14 CORMIX3 Simulation Length arts n mile s --— End of Near Field Region(NFR: Distortion Scale: Y:X=1 Z:X=75 — Comm Module Boundary(MOD) Visualization up to X=121 m(out of ROI X=716 rn. Figure A-1. Summer 89.6°F Model ISO View G A-48 v Lam' Rogers Energy Complex Thermal Model Verification Y 35-- UA 25- 20- 151 10- 5 4 X I e-LIBMIP ■ — A I a - I- - I -4 - f r f I = -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 OuDischarge Excess (°F) Row Class __— Plume Centerline Flow Class:PL2 Origin.Water Surface � frd�Near Feld Region(NfR) 0 2 4 6 8 10 12 14 CORMIX3 Simulation Length units in meters Corrnx Module Boundary IMOD) Distortion Scale Y:X=1 Z:X=0.01 Visualization up to X=121 m(out of ROI X=716 m) Figure A-2. Summer 89.6°F Model Plan View Rogers Energy Complex Thermal Model Verification Winter Delta-T Model CORMIX SESSION REPORT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CORMIX MIXING ZONE EXPERT SYSTEM CORMIX Version 11.0GT HYDR03:Version-11.0.1.0 August,2019 SITE NAME/LABEL: Cliffside-Rogers DESIGN CASE: Winter 7Q10 temp FILE NAME: C:\Egnyte\Shared\1 Projects\Duke Energy (DUKE) \Cliffside-Rogers\Thermal Model Verification (DUKE0010)\CORMIX\7Q10 updated\Outfall 005 winter.prd Using subsystem CORMIX3: Buoyant Surface Discharges Start of session: 05/08/2020--10:12:50 ************************************************************************** SUMMARY OF INPUT DATA: AMBIENT PARAMETERS: Cross-section = bounded Width BS = 71.66 m Channel regularity ICHREG = 2 Ambient flowrate QA = 12.46 m^3/s Average depth HA = 0.94 m Depth at discharge HD = 0.94 m Ambient velocity UA = 0.1840 m/s Darcy-Weisbach friction factor F = 0.0720 Calculated from Manning's n = 0.03 Wind velocity UW = 2 m/s Stratification Type STRCND = U Surface temperature = 4.00 degC Bottom temperature = 4.00 degC Calculated FRESH-WATER DENSITY values: Surface density RHOAS = 999.9749 kg/m^3 Bottom density RHOAB = 999.9749 kg/m^3 DISCHARGE PARAMETERS: Surface Discharge Discharge located on = right bank/shoreline Discharge configuration = flush discharge Distance from bank to outlet DISTB = 0 m Discharge angle SIGMA = 90 deg Depth near discharge outlet HDO = 0.50 m Bottom slope at discharge SLOPE = 12.4 deg Rectangular discharge: Discharge cross-section area AO = 1.675971 m^2 Discharge channel width BO = 3.3528 m Discharge channel depth HO = 0.499872 m Discharge aspect ratio AR = 0.149091 Discharge flowrate QO = 0.262876 m^3/s Discharge velocity UO = 0.16 m/s Discharge temperature (freshwater) = 34.28 degC Corresponding density RHOO = 994.2759 kg/m^3 Density difference DRHO = 5.6990 kg/m^3 Buoyant acceleration GPO = 0.0559 m/s^2 Discharge concentration CO = 54.5 deg.F Surface heat exchange coeff. KS = 0 m/s Coefficient of decay KD = 0 /s .�Tr A-50 Rogers Energy Complex Thermal Model Verification DISCHARGE/ENVIRONMENT LENGTH SCALES: LQ = 1.29 m Lm = 1.10 m Lbb = 2.36 m LM = 0.75 m NON-DIMENSIONAL PARAMETERS: Densimetric Froude number FRO = 0.58 (based on LQ) Channel densimetric Froude no. FRCH = 0 .94 (based on HO) Velocity ratio R = 0. 85 MIXING ZONE / TOXIC DILUTION ZONE / AREA OF INTEREST PARAMETERS: Toxic discharge = no Water quality standard specified = yes Water quality standard CSTD = 5.04 deg.F Regulatory mixing zone = no Region of interest = 716.58 m downstream ************************************************************************** HYDRODYNAMIC CLASSIFICATION: * * I FLOW CLASS = PL2 * * Limiting Dilution S = (QA/Q0)+ 1.0 = 48.4 ************************************************************************** MIXING ZONE EVALUATION (hydrodynamic and regulatory summary) : X-Y-Z Coordinate system: Origin is located at WATER SURFACE and at centerline of discharge channel: 0 m from the right bank/shore. Number of display steps NSTEP = 200 per module. NEAR-FIELD REGION (NFR) CONDITIONS : Note: The NFR is the zone of strong initial mixing. It has no regulatory implication. However, this information may be useful for the discharge designer because the mixing in the NFR is usually sensitive to the discharge design conditions. Pollutant concentration at NFR edge c = 54.5 deg.F Dilution at edge of NFR s = 1 NFR Location: x = 1.68 m (centerline coordinates) y = 0.34 m z = 0 m NFR plume dimensions: half-width (bh) = 3.13 m thickness (bv) = 0.46 m Cumulative travel time: 9.1101 sec. Buoyancy assessment: The effluent density is less than the surrounding ambient water density at the discharge level. Therefore, the effluent is POSITIVELY BUOYANT and will tend to rise towards the surface. FAR-FIELD MIXING SUMMARY: Plume becomes vertically fully mixed at 352.57 m downstream. A-51 i � Rogers Energy Complex Thermal Model Verification PLUME BANK CONTACT SUMMARY: Plume in bounded section contacts one bank only at 0 m downstream. ************************ TOXIC DILUTION ZONE SUMMARY ************************ No TDZ was specified for this simulation. ********************** REGULATORY MIXING ZONE SUMMARY *********************** No RMZ has been specified. However: The ambient water quality standard was encountered at the following plume position: Water quality standard = 5.04 deg.F Corresponding dilution s = 10.8 Plume location: x = 178.16 m (centerline coordinates) y = 0 m z = 0 m Plume dimensions: half-width (bh) = 42.17 m thickness (bv) = 0.36 m ********************* FINAL DESIGN ADVICE AND COMMENTS ********************** REMINDER: The user must take note that HYDRODYNAMIC MODELING by any known technique is NOT AN EXACT SCIENCE. Extensive comparison with field and laboratory data has shown that the CORMIX predictions on dilutions and concentrations (with associated plume geometries) are reliable for the majority of cases and are accurate to within about +-50% (standard deviation) . As a further safeguard, CORMIX will not give predictions whenever it judges the design configuration as highly complex and uncertain for prediction. 1 A-52 Rogers Energy Complex Thermal Model Verification CORMIX3 PREDICTION FILE: 33333333333333333333333333333333333333333333333333333333333333333333333333 CORMIX MIXING ZONE EXPERT SYSTEM Subsystem CORMIX3: Buoyant Surface Discharges CORMIX Version 11.OGT HYDRO3 Version 11.0.1.0 August 2019 CASE DESCRIPTION Site name/label: Cliffside-Rogers Design case: Winter 7Q10 temp FILE NAME: C:\. . .E0010) \CORMIX\7Q10 updated\Outfall_005_winter.prd Time stamp: 05/08/2020--10:12:50 ENVIRONMENT PARAMETERS (metric units) Bounded section BS = 71.66 AS = 67.71 QA = 12.46 ICHREG= 2 HA = 0.94 HD = 0.94 UA = 0.184 F = 0.072 USTAR =0.1745E-01 UW = 2.000 UWSTAR=0.2198E-02 Uniform density environment STRCND= U RHOAM = 999.9750 DISCHARGE PARAMETERS (metric units) BANK = RIGHT DISTB = 0.00 Configuration: flush_discharge SIGMA = 90.00 HDO = 0.50 SLOPE = 12.40 deg. Rectangular channel geometry: BO = 3.353 HO = 0.500 AO =0.1676E+01 AR = 0.149 UO = 0.157 QO = 0.263 =0.2629E+00 RHO0 = 994.2759 DRHO0 =0.5699E+01 GPO =0.5589E-01 CO =0.5450E+02 CUNITS= deg.F IPOLL = 1 KS =0.0000E+00 KD =0.0000E+00 FLUX VARIABLES (metric units) QO =0.2629E+00 MO =0.4123E-01 JO =0.1469E-01 Associated length scales (meters) LQ = 1.29 LM = 0.75 Lm = 1.10 Lb = 2.36 NON-DIMENSIONAL PARAMETERS FRO = 0.58 FRCH = 0.94 R = 0.85 FLOW CLASSIFICATION 333333333333333333333333333333333333333333333333 3 Flow class (CORMIX3) = PL2 3 3 Applicable layer depth HS = 0.94 3 3 Limiting Dilution S =QA/QO= 48.40 3 333333333333333333333333333333333333333333333333 MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS CO =0.5450E+02 CUNITS= deg.F NTOX = 0 NSTD = 1 CSTD =0.5040E+01 REGMZ = 0 XINT = 716.58 XMAX = 716 .58 X-Y-Z COORDINATE SYSTEM: A-53 v 1-'� Rogers Energy Complex Thermal Model Verification ORIGIN is located at the WATER SURFACE and at center of discharge channel/outlet: 0.00 m from the RIGHT bank/shore. X-axis points downstream Y-axis points to left as seen by an observer looking downstream Z-axis points vertically upward (in CORMIX3, all values Z = 0.00) NSTEP = 200 display intervals per module BEGIN MOD301: DISCHARGE MODULE Efflux conditions: X Y Z S C BV BH UC TT 0.00 0.00 0.00 1.0 0.545E+02 0.50 1.68 0.157 .00000E+00 END OF MOD301: DISCHARGE MODULE BEGIN MOD302: ZONE OF FLOW ESTABLISHMENT Control volume inflow: X Y Z S C BV BH UC TT 0.00 0.00 0.00 1.0 0.545E+02 0.50 1.68 0.157 .00000E+00 RAPID DEFLECTION by ambient current: Profile definitions: BV = top-hat thickness,measured vertically BH = top-hat half-width, measured horizontally from bank/shoreline S = hydrodynamic average (bulk) dilution C = average (bulk) concentration (includes reaction effects, if any) TT = Cumulative travel time Control volume outflow: SIGMAE= 75.14 X Y Z S C BV BH UC TT 1.68 0.34 0.00 1.0 0.545E+02 0. 46 3.13 0.157 .91101E+01 Cumulative travel time = 9.1101 sec ( 0.00 hrs) END OF MOD302: ZONE OF FLOW ESTABLISHMENT ** End of NEAR-FIELD REGION (NFR) ** WAKE FLOW CONDITIONS: The discharge velocity (UO) is less than or equal to the ambient velocity (Ua) and results in wake flow conditions. There is no discharge momentum induced mixing. The mixing characteristics are UNDESIRABLE. BEGIN MOD341: BUOYANT AMBIENT SPREADING Profile definitions: BV = top-hat thickness,measured vertically A._ '4 A-54 v CO CO CO CO -A -A -A -A -A 01 01 O1 CO CO 01 Cn Cn Cn Cn Cn Cn 4A IA as as as 1A W W CO W W N) N N N N N I-' I-' I-' H F-' H` (D to)! 1 Cn W HCD OD 61 as W H' lfl OD O1 as N F-' VD -A Cn as N CD OO -4 Cn Co H` 0 CO 01 1s W F' lfl -A 01 as N CDlfl -A Cn W N CD CO CA Cn W F' II II II II t ' 1A -) UD IV 1A -) l0 IV 1A -1 CD N 0 -) CD N Cn -I O N Cn CO O W Cn CO CD W Ln CO o W O1 CO F" C 61 OD F' W CA Co F' 1A 01 F9 F" as 01 rt (") a rt (D im 01 H 01 N -1 W CO W l0 as C U1 H 01 N -] W CO as l0 01 C CO F- CO N) -1 W OD 4N 10 01 C CO F- -] N 00 CO 00 as l0 01 C CO F" -4 N CO a G < 1.< 0 i LEI Ft (DH a O G' lC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tr c N a G a O I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I I I I I I I I I I I I I 1 1 1 1 1 1 1 rt titil--7,04) '< 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — pi .a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000. 000 00000 Di (D tY a ( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o G G I-- I-- k 75- rt H 0 hi y a a —pc. a I c rt c c H- `i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o rt CD Cl (D a N a F. O Fi rt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n G a G' a C C C C C C C C C FC FC 0 0 0 o C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 G' rt n t a O -- (Drt — (D Z. • Fi Cr a (t Di G In W W Co W W W N) N IV IV N) N N) IV IV N) N IV N) IV IV IV NJ H H H F" FJ F" F" FH F' H F" H H H F- F-' F' F" F" H' H F- F- F-' F- F- rt H G • . Cn H- X Fi CD 4N C IV H H C l0 OD CO -) CO CO Cn Cn as CO C ND N H H C C l0 l0 l0 CO CO -) -1 J CO CO CO Cn Cn Cn 1s as as CO W Co Co IV IV H H C 0 (D "s a C C C C C C o C C C C C C C C C C C C C C C C C C C C C C C C C o C C C C C C C C C C C C C C C C a rI • . . . H. fJ F-+ p, F-H 1-' F- H H F" H` IV IV IV IV N N N) N) N) N N) IV N IV N ND IV W W W W W CO C W W W W C W C 4N .A 4N as 1A 1A 1A Cn Cn H- I-' 0 f CO CO -) -) -J CO CO VD l0 C C H H IV N W C as Cn Cn CO CO -) Co OD l0 C C H N N) CO as 1A Cn CO -) -4 CO l0 C H IV C as CO CO C 1s G G hi 0 N 01 C 1A CO (.) -) IV CO H CO H -4 K) -1 C Co az. o CO N) Co az. C -7 Co C CO co C �) 1A H 00 Cn Co C co -) Cn .A a. ,A CO t0 Cn 1A 00 01 C) rt H- Cri CI CI Cri CI Crl Cr1 CrJ Cri Crl Crl Crl Crl Lrl CI C+l LTJ Crj Cri Crl C J C J LI C J VI C'J C'] Ll C'l CI CI Lam] I.x] C'J CI tri C+] C'] C'] C+] LTJ LTJ HI Lxi HI HI CI HI HI () H H- N + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + G 0 O 0 0 0 0 0 0 0 0 0 0 0 (D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a G G N N IV IV IV N) N IV N IV IV IV IV N N IV N N IV IV IV IV N) N) N) N) N) N N) N IV IV N IV N N IV N N N N N IV N) N) IV IV N Na (D rt CD Di H Fi H O C C C C C C C C C C C C C C C C C C 0 C C C 0 C C C 0 C C C C C C C C 0 C 0 C C C C C C C 0 C C (D 1C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m a H F" H F' H H H H H F' F' F' H H H H H H H H H H F' H H H H F' H H H H H H H F' H H H N N) N IV N N) N) W W as c (] Fh CO CO 00 -) J J J J J Cl CO 01 01 CO CO 01 CO CO CO CO CO CO 01 CO 01 01 01 CO CO CO CO CO -) J -4 Co Co l0 l0 C H NJ Co 1A 01 l0 IV -) Cn rt II H- 0 0 G CY N) N) N) FV NJ NJ N N N IV IV IV IV N IV IV N H H H H H H F' H H H F' H H H H H H H H H H H (D a 01 Cn Cn Cn is As is CO C N) IV N) H H H C C (0 l0 l0 00 Co -4 -4 -4 CO 01 Cn Cn as 1s W CO IV N H H C C l0 l0 OD J J CO Cn 4N 4N W Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by F-h 7r H` 00 1A H -4 as C 01 C l0 01 N CO 1A C 01 C l0 Cn H -4 IV OD 1s C 01 F' -) N) OD CO CO W CO C CO C -4 N CO C as 00 H as -) l0 C C HI (D \ 1A C Cn C Cn C 1A OD N Cn 00 H 1A CO CO l0 C F" F" F-H CD l0 CO CO C C 01 H CO o C CO -) CO -4 CO C l0 C CO -4 CO IV 01 01 N) CO CO l0 (] CD rt U) 0 as as as 1s 1A 1A CO W C CO CO CO CO W W CO C N) N) NJ IV IV N) N IV ND N) IV H H H H H H H H H H H l0 00 -) CO Cn 41. C N) H l0 . Fi Cn as C N) H C l0 Co Co -4 CO Cn ,A C IV H C l0 CO -) Cl 01 in .A C IV H C l0 0 J CO Cn as C N) N H C N C 1A 1A Cn CO 01 -) CO F' (D as Cn 01 -) -) Co VD l0 C H N) N CO as as Cn CO -) J CO l0 VD C H N) N) CO as 4N Cn CO -) -) OD l0 l0 C H IV -) 1A H CO Cn N l0 CO C H` H. H l0 CO CO H Co Cn IV l0 CO C C -4 Cn N) l0 01 C C -) 4N H l0 CO C C ,) as H OD 01 C C -) 1s H` CO Cn IV C C N) CO 1A Cn CO -4 CO l0 C rh H- -) co (0 C H CO .A Cn CO -4 OD VD C IV C as ()1 CO -4 CO l0 H N) C as Cn CO -4 CO C H N Co 41. Cn CO OD l0 C VD C H CO 1A Cn CO CO l0 H G Crl Crl CrJ [xi CI Crl C l CI LI C J C i Cri C+l CrJ C+7 C+l CrJ C+l C+l LTl LTJ Crl CI Crl C+l CI C+l Cr1 C+l Cr1 CrJ C+l Cr1 CrJ CrJ CI CI Cr1 Crl LI CI CI C9 Crl CI C+l Cr1 CrJ C+l H a (D + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + H O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "C C C CO CO C CO CO C C C C C C C C C C C C C C Co C C Co C CO Co CO CO CO CO CO CO C C C Co C IV IV N N) IV N N N IV F' I> &I Ln Rogers Energy Complex Thermal Model Verification 87.20 -0.00 0.00 3.5 0.158E+02 0.18 26.48 .46426E+03 88.94 -0.00 0.00 3.5 0.154E+02 0.18 26.82 .47355E+03 90.69 -0.00 0.00 3.6 0.150E+02 0. 19 27.16 .48284E+03 92.43 -0.00 0.00 3. 7 0.147E+02 0.19 27.50 .49212E+03 94.18 -0.00 0.00 3.8 0.143E+02 0.19 27.83 .50141E+03 95.92 -0.00 0.00 3.9 0.140E+02 0.19 28.16 .51070E+03 97.67 -0.00 0.00 4.0 0.136E+02 0.20 28.49 .51999E+03 99.41 -0.00 0.00 4.1 0.133E+02 0.20 28.82 .52928E+03 101. 16 -0.00 0.00 4.2 0.130E+02 0.20 29.14 .53857E+03 102.91 -0.00 0.00 4.3 0.127E+02 0.20 29.47 .54786E+03 104.65 -0.00 0.00 4.4 0.124E+02 0.21 29. 79 .55715E+03 106.40 -0.00 0.00 4.5 0.121E+02 0.21 30.11 .56643E+03 108.14 -0.00 0.00 4.6 0.118E+02 0.21 30.43 .57572E+03 109.89 -0.00 0.00 4.7 0.115E+02 0.22 30. 75 .58501E+03 111.63 -0.00 0.00 4.8 0.113E+02 0.22 31.06 .59430E+03 113.38 -0.00 0.00 5.0 0.110E+02 0.22 31.38 .60359E+03 1 115.12 -0.00 0.00 5.1 0.108E+02 0.22 31.69 .61288E+03 116.87 -0.00 0.00 5.2 0.105E+02 0.23 32.00 .62217E+03 118.61 -0.00 0.00 5.3 0.103E+02 0.23 32.31 .63146E+03 120.36 -0.00 0.00 5.4 0.100E+02 0.23 32.62 .64074E+03 122.10 -0.00 0.00 5.6 0.981E+01 0.24 32.92 .65003E+03 123.85 -0.00 0.00 5. 7 0.959E+01 0.24 33.23 .65932E+03 125.59 -0.00 0.00 5.8 0.938E+01 0.24 33.53 .66861E+03 127.34 -0.00 0.00 5.9 0.917E+01 0.25 33.84 .67790E+03 129.09 -0.00 0.00 6.1 0.897E+01 0.25 34.14 .68719E+03 130.83 -0.00 0.00 6.2 0.877E+01 0.25 34.44 .69648E+03 132.58 -0.00 0.00 6.4 0.858E+01 0.26 34. 74 .70577E+03 134.32 -0.00 0.00 6 .5 0.839E+01 0.26 35.04 .71505E+03 136.07 -0.00 0.00 6 .6 0.821E+01 0.26 35.33 .72434E+03 137.81 -0.00 0.00 6 .8 0.804E+01 0.27 35.63 .73363E+03 139.56 -0.00 0.00 6.9 0. 786E+01 0.27 35.92 .74292E+03 141.30 -0.00 0.00 7.1 0. 770E+01 0.27 36.22 .75221E+03 143.05 -0.00 0.00 7.2 0. 754E+01 0.28 36.51 . 76150E+03 144.79 -0.00 0.00 7.4 0. 738E+01 0.28 36.80 .77079E+03 146.54 -0.00 0.00 7.5 0. 722E+01 0.28 37.09 . 78008E+03 148.28 -0.00 0.00 7. 7 0. 707E+01 0.29 37.38 .78936E+03 150.03 -0.00 0.00 7.9 0.693E+01 0.29 37.66 .79865E+03 151.77 -0.00 0.00 8.0 0.679E+01 0.30 37.95 .80794E+03 153.52 -0.00 0.00 8.2 0.665E+01 0.30 38.24 .81723E+03 155.27 -0.00 0.00 8.4 0.651E+01 0.30 38.52 .82652E+03 157.01 -0.00 0.00 8.5 0.638E+01 0.31 38.80 .83581E+03 158.76 -0.00 0.00 8. 7 0.626E+01 0.31 39.09 .84510E+03 160.50 -0.00 0.00 8.9 0.613E+01 0.32 39.37 .85439E+03 162.25 -0.00 0.00 9.1 0.601E+01 0.32 39.65 .86367E+03 163.99 -0.00 0.00 9.2 0.589E+01 0.32 39.93 .87296E+03 165.74 -0.00 0.00 9.4 0.578E+01 0.33 40.21 .88225E+03 167.48 -0.00 0.00 9.6 0.567E+01 0.33 40.49 .89154E+03 169.23 -0.00 0.00 9.8 0.556E+01 0.34 40.76 .90083E+03 170.97 -0.00 0.00 10.0 0.545E+01 0.34 41.04 .91012E+03 1 172.72 -0.00 0.00 10.2 0.535E+01 0.35 41.32 .91941E+03 174.46 -0.00 0.00 10.4 0.525E+01 0.35 41.59 .92870E+03 176.21 -0.00 0.00 10.6 0.515E+01 0.35 41.86 .93798E+03 177.95 -0.00 0.00 10.8 0.505E+01 0.36 42.14 .94727E+03 ** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND ** 1 The pollutant concentration in the plume falls below water quality standard 1 or CCC value of 0.504E+01 in the current prediction interval. Q-_ A-56 i 11 L'�'- Rogers Energy Complex Thermal Model Verification This is the spatial extent of concentrations exceeding the water quality standard or CCC value. 179.70 -0.00 0.00 11.0 0.496E+01 0.36 42.41 .95656E+03 181.45 -0.00 0.00 11.2 0.487E+01 0.37 42.68 .96585E+03 183.19 -0.00 0.00 11.4 0.478E+01 0.37 42.95 .97514E+03 184.94 -0.00 0.00 11.6 0.469E+01 0.38 43.22 .98443E+03 186.68 -0.00 0.00 11.8 0.460E+01 0.38 43.49 .99372E+03 188.43 -0.00 0.00 12.1 0.452E+01 0.39 43.76 .10030E+04 190.17 -0.00 0.00 12.3 0.444E+01 0.39 44.02 .10123E+04 191.92 -0.00 0.00 12.5 0.436E+01 0.39 44.29 .10216E+04 193.66 -0.00 0.00 12.7 0.428E+01 0.40 44.56 .10309E+04 195.41 -0.00 0.00 12.9 0.421E+01 0.40 44.82 .10402E+04 197.15 -0.00 0.00 13.2 0.414E+01 0.41 45.09 .10494E+04 198.90 -0.00 0.00 13.4 0.406E+01 0.41 45.35 .10587E+04 200.64 -0.00 0.00 13.6 0.399E+01 0.42 45.61 .10680E+04 202.39 -0.00 0.00 13.9 0.393E+01 0.42 45.88 .10773E+04 204.13 -0.00 0.00 14.1 0.386E+01 0.43 46.14 .10866E+04 205.88 -0.00 0.00 14.4 0.379E+01 0.43 46.40 .10959E+04 207.63 -0.00 0.00 14.6 0.373E+01 0.44 46.66 .11052E+04 209.37 -0.00 0.00 14.9 0.367E+01 0.44 46.92 .11145E+04 211.12 -0.00 0.00 15.1 0.361E+01 0.45 47.18 .11238E+04 212.86 -0.00 0.00 15.4 0.355E+01 0.45 47.43 .11330E+04 214.61 -0.00 0.00 15.6 0.349E+01 0.46 47.69 .11423E+04 1 216.35 -0.00 0.00 15.9 0.343E+01 0.46 47.95 .11516E+04 218.10 -0.00 0.00 16.1 0.338E+01 0.47 48.20 .11609E+04 219.84 -0.00 0.00 16.4 0.332E+01 0.47 48.46 .11702E+04 221.59 -0.00 0.00 16.7 0.327E+01 0.48 48.72 .11795E+04 223.33 -0.00 0.00 17.0 0.322E+01 0.48 48.97 .11888E+04 225.08 -0.00 0.00 17.2 0.316E+01 0.49 49.22 .11981E+04 226.82 -0.00 0.00 17.5 0.311E+01 0.49 49.48 .12074E+04 228.57 -0.00 0.00 17.8 0.307E+01 0.50 49.73 .12166E+04 230.31 -0.00 0.00 18.1 0.302E+01 0.51 49.98 .12259E+04 232.06 -0.00 0.00 18.3 0.297E+01 0.51 50.23 .12352E+04 233.81 -0.00 0.00 18.6 0.292E+01 0.52 50.48 .12445E+04 235.55 -0.00 0.00 18.9 0.288E+01 0.52 50.73 .12538E+04 237.30 -0.00 0.00 19.2 0.284E+01 0.53 50.98 .12631E+04 239.04 -0.00 0.00 19.5 0.279E+01 0.53 51.23 .12724E+04 240.79 -0.00 0.00 19.8 0.275E+01 0.54 51.48 .12817E+04 242.53 -0.00 0.00 20.1 0.271E+01 0.54 51.73 .12910E+04 244.28 -0.00 0.00 20.4 0.267E+01 0.55 51.98 .13002E+04 246.02 -0.00 0.00 20.7 0.263E+01 0.56 52.22 .13095E+04 247.77 -0.00 0. 00 21.0 0.259E+01 0.56 52.47 .13188E+04 249.51 -0.00 0. 00 21.4 0.255E+01 0.57 52.71 .13281E+04 251.26 -0.00 0.00 21.7 0.252E+01 0.57 52.96 .13374E+04 253.00 -0.00 0. 00 22.0 0.248E+01 0.58 53.20 .13467E+04 254.75 -0.00 0. 00 22.3 0.244E+01 0.58 53.45 .13560E+04 256.49 -0.00 0 . 00 22.6 0.241E+01 0.59 53.69 .13653E+04 258.24 -0.00 0. 00 23.0 0.237E+01 0.60 53.94 .13746E+04 259.99 -0.00 0.00 23.3 0.234E+01 0.60 54.18 .13838E+04 261.73 -0.00 0.00 23.6 0.231E+01 0.61 54.42 .13931E+04 263.48 -0.00 0.00 24.0 0.227E+01 0.61 54.66 .14024E+04 265.22 -0.00 0.00 24.3 0.224E+01 0.62 54.90 .14117E+04 266.97 -0.00 0.00 24.6 0.221E+01 0.63 55.14 .14210E+04 268.71 -0.00 0.00 25.0 0.218E+01 0.63 55.38 .14303E+04 270.46 -0.00 0.00 25.3 0.215E+01 0.64 55.62 .14396E+04 272.20 -0.00 0.00 25.7 0.212E+01 0.64 55.86 .14489E+04 o_r r-41 A-57 v Y L -� 00 U, Q � � nt. -4. C' C' ch, C' C' CPC' C' C' C' C' C' C' C' C' C' C' CPC' C' C' CPTVC' C' C' C' C' C' C' CVCPC' C+ C' cr, CPC' C' C' CP 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W >I N C' L` O M l0 01 N L!) 00 O M VD 0) N I!) OD H C' l0 01 N L!) CO H C' Ls 0) N U) CO H C' L- O M L!") co H C• L- O In l0 0) H 00 L- UD l0 U) C' M M N H H CD 01 00 CO Ls lO l0 L) CM In M N H H O 01 CO CO N 1/40 VD Ln C' C• M N H H O 01 0) CO L- VD H L!) to Ls CO 01 O H N 0 C' Ll) %0 VD Ls CO CA O H N In C' L!) LA L- CO 0) 0) O H N M C' L!) VD L- CO 0) O H N N M C• Ul l0 ro C' C' C' CM C• LI) LI) L!) Lf) L!) Ll) 11) Lf) L!) Ln LI) VD l0 VD l0 l0 l0 l0 l0 l0 l0 l0 Ls Ls Ls- Ls C N Ls Ls L- r- OD CO OD OD OD 00 00 CO 0 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H -H • • • . • • • • • . • • • • • • . . . . • • • • • . . • • . . • • • • • • . . • • • • • • +) O C' O ri Ul 01 N l0 01 M VD O M L9 01 M l0 01 N Ln CO rH C' Ls O N Ul O O M l0 CO ri M 10 CO O M Ul Ls O N C' VD CO U) N H M Ul O 0 N Ul is 0) N C' Ls CA H M l0 CO O M Ul C O N C' Ls 01 H In l0 00 0 N Ul Ls 01 H C' l0 O O M Ln N 01 H ►-I 'J . • • • . • • • • • • • . . • • • • • • • • • • . • • • • • • .4 l0 l0 l0 l0 Ls Ls is Ls Ls CO 00 00 CO 0) O1 0) 01 O O O O H H H H H N N N N 0 M M (M M Cr C' C' C' Lf) Ul Ul LI) LI) VD Cl) U) "0 U) L!) 0 0 Ln L!) Ln Ln Ln L!) Lf) L() Ln L!) 0 Ln L!) l0 l0 VD l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 VD l0 l0 l0 lD VD l0 l0 l0 l0 l0 l0 l0 VD CV \ \ a) If) N N )-I H < < 0 0 Z E E m W al Ln l0 l0 Ls Ls 00 0) 0) O H H N N In C' C' 111 l0 l0 Ls CO CO 01 CD O H N N M C' Ul LI) l0 Ls Ls CO Ol 0) CD H N N M C' C' H N N (I) l0 L9 V) l0 l0 VD VD l0 L- L- L- N N L- L- L- L- L- L- L- Ls N Ls CO CO OD CO CO 00 CO CO 00 CO CO CO CO CO CO 01 01 01 01 01 01 Ol co O (✓, I I co 0 0 0 0 0 0 o O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O O o o 0 0 0 0 o O o 0 0 0 o O o -- W W O Ll) m 1 01 N U) U M co C) H H H H H H H H H H H H r-I H H H H H H H H r-I H r-L H H r-I H H H H H H H H H H H H H H H r-I ,-I H N 0 • • G o o co o 0 o 0 0 CD CD CD 0 0 0 0 0 0 CD 0 0 O 0 CD CD 0 0 CD CD CD O CD 0 CD CD 0 CD CD O CD CD CD 0 CD CD CD m [r., O CD x + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + H U W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W O Z II II -r1 O 01 10 C' H 00 l0 01 CD 00 l0 01 H 00 1/40 C' N O OD Ul 01 H 0) Ls l0 "0 N CD CO VD Ul 01 H CD OD Ls Ul 01 N CD 01 L� l0 Ul 01 N 0) 0 ,1 CD CD CD CD 01 CA Cl 01 CO CO CO CO L- L- L- L- N VD l0 VD VD LI) I) Ul LI) LI) Ul C' C' C' C' C' C' 0 In In In M M N N N N N N L!) () -P 4I N N N N H H H H H H H H H H H H H H H H H H H H H ri r-I H H H H H H H H H H H H H H H H H r-I O Z Z Q) 0 • • • • . • . . • . • . • • . . • . • • • . • • H H U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l0 a N H o\o 0 ro Lo L. CD C' CO H L!) 0) N l0 CD C' OD H LI) 01 In N H LI) 01 C' CO N l0 CD Ul 0) 01 CO N Ls H lfl CD Ul 01 C' CO 01CO 01 Cs N Ls N N opa H ro > l0 l0 l0 N L- Is CO CO 0) 01 01 CD CD CD r-I H N N N In M C' C' Ul Ul LI) l0 U0 Ls Ls 00 CO 01 01 01 CD O H H N N M In C' C' ill 'k 'J H N N N N N N N N N N N M M M In M M M M M M M M M (M 01 0 M M M M M M (M (M C' C• C' C' C' C' C' C' C' C' CO H ro Cu "0 H ro 4) O Z H -H -r1 -H PI O O O O O O O 0 O O O O o 0 0 0 CD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 H r) -H -H al Q O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 O 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 (Y 0 I H 0 II W -H )-I E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -- rI tr 0.) N 4-) U) -H Z W > .• *. 4-) 4 > -r-I -r-I U) 11 CD CD 0 CD 0 CD CD CD 0 CD 0 O O CD CD CD CD CD 0 0 CD 0 0 CD CD CD 0 CD 0 CD 0 CD 0 0 CD CD CD CD 0 0 0 0 0 CD CD 'y( H ',> U) Z • CU 0 CD 0 CD CD CD 0 O CD O O o 0 CD 0 0 0 CD 0 CD CD CD 0 CD CD CD 0 O 0 0 0 CD CD 0 CD CD CD CD 0 CD 0 0 0 CD CD H 0 Cl) -H 7 0 m A. 00000CD0000000Oo0000000000000000CD000000CD000000 > pq Cl) 0 co 4 4-4 4.) ( (4111/ � E 1 1 1 1 1 1 I I I 1 I 1 1 I 1 1 I I I I I I I 1 1 1 1 1 1 1 1 1 I I I I 1 I I I 1 I I 1 1 It w 4-I -H -Hro 1 U N .. •. W "O 0 -H CP H 'b U) ( ,H 4-1 U Ln a) C' CO M N N N H l0 CD Ul a) C' CO M L- N l0 H U) O LI) 01 C' CO M N N l0 H Ll) O C' 01 M co M L- N l0 H Ll) O C' > CI M r-I 4i '0 ro o.) 0) l0 C' H 01 l0 C' H 01 LA C' H CO VD M H OD VD M H O lfl M CD OD LI) In CD CO Ln M O CO 117 N CD Ls Lf) N o N Ln N CD L- -H 0 CI ( G 0 w M Ln L- a) CD N C' l0 N CA H M C' VD CO CD H M 0 L- 00 CD N C' Ln L- 01 H N C' l0 CO 01 H M Ul l0 00 O N M Ln L- 01 CD (Li £ -rl N r-I II t lop Ls Ls Ls Ls CO O OD CO CO CO 01 01 01 0) 01 O O CD CD CD CD H ri H H H H N N N N N N M M M M M C' C' C' C' C' C' LI) H P.l aJ -H -r-I N N N N N N N N N N N N N N N M M 01 M M M In 0 M M M M M In M M In M M M M M 01 0 M M M M M M 0 O Z N O O (IQ ' 10. 0 Z � x 0 Ili Rogers Energy Complex Thermal Model Verification = or equal to water depth, if fully mixed BH = Gaussian s.d.*sqrt(pi/2) (46%) half-width, measured horizontally in Y-direction S = hydrodynamic centerline dilution C = centerline concentration (includes reaction efects, if any) TT = Cumulative travel time Plume Stage 2 (bank attached) : X Y Z S C BV BH TT 350.74 0.00 0.00 44.7 0.122E+01 0.94 66.18 .18669E+04 Plume interacts with BOTTOM. The passive diffusion plume becomes VERTICALLY FULLY MIXED within this prediction interval. 352.57 -0.00 0.00 44.7 0.122E+01 0.94 66.18 .18766E+04 354.40 -0.00 0.00 44.7 0.122E+01 0.94 66.18 .18863E+04 356.23 -0.00 0.00 44.7 0.122E+01 0.94 66.19 .18961E+04 358.06 -0.00 0.00 44.7 0.122E+01 0.94 66.19 .19058E+04 359.89 -0.00 0.00 44.7 0.122E+01 0.94 66.19 .19155E+04 361.72 -0.00 0.00 44.7 0.122E+01 0.94 66.19 .19253E+04 363.55 -0.00 0.00 44.7 0.122E+01 0.94 66.19 .19350E+04 365.38 -0.00 0.00 44.7 0.122E+01 0.94 66.20 .19447E+04 367.21 -0.00 0.00 44.7 0.122E+01 0.94 66.20 .19545E+04 369.03 -0.00 0.00 44.7 0.122E+01 0.94 66.20 .19642E+04 370.86 -0.00 0.00 44.7 0.122E+01 0.94 66.20 .19739E+04 372.69 -0.00 0.00 44.7 0.122E+01 0.94 66.20 .19837E+04 374.52 -0. 00 0.00 44.7 0.122E+01 0.94 66.21 .19934E+04 376.35 -0.00 0.00 44.7 0.122E+01 0.94 66.21 .20032E+04 378.18 -0.00 0.00 44.7 0.122E+01 0.94 66.21 .20129E+04 380.01 -0.00 0.00 44.7 0.122E+01 0.94 66.21 .20226E+04 381.84 -0.00 0.00 44.7 0.122E+01 0.94 66.21 .20324E+04 383.67 -0.00 0.00 44.7 0.122E+01 0.94 66.22 .20421E+04 385.50 -0.00 0.00 44.7 0.122E+01 0.94 66.22 .20518E+04 387.33 -0.00 0.00 44.7 0.122E+01 0.94 66.22 .20616E+04 389.16 -0.00 0.00 44.7 0.122E+01 0.94 66.22 .20713E+04 390.99 -0.00 0.00 44.7 0.122E+01 0.94 66.22 .20810E+04 392.81 -0.00 0.00 44.7 0.122E+01 0.94 66.22 .20908E+04 394.64 -0.00 0.00 44.7 0.122E+01 0.94 66.23 .21005E+04 396.47 -0.00 0.00 44.7 0.122E+01 0.94 66.23 .21102E+04 398.30 -0.00 0.00 44.7 0.122E+01 0.94 66.23 .21200E+04 400.13 -0.00 0.00 44.7 0.122E+01 0.94 66.23 .21297E+04 401.96 -0.00 0.00 44.7 0.122E+01 0.94 66.23 .21394E+04 403.79 -0.00 0.00 44.7 0.122E+01 0.94 66.24 .21492E+04 405.62 -0.00 0.00 44.7 0.122E+01 0.94 66.24 .21589E+04 407.45 -0.00 0.00 44.7 0.122E+01 0.94 66.24 .21686E+04 409.28 -0.00 0.00 44.7 0.122E+01 0.94 66.24 .21784E+04 411.11 -0.00 0.00 44.7 0.122E+01 0.94 66.24 .21881E+04 412.94 -0.00 0.00 44.7 0.122E+01 0.94 66.25 .21979E+04 414.77 -0.00 0.00 44.7 0.122E+01 0.94 66.25 .22076E+04 416.59 -0.00 0.00 44.7 0.122E+01 0.94 66.25 .22173E+04 418.42 -0.00 0.00 44.7 0.122E+01 0.94 66.25 .22271E+04 420.25 -0.00 0.00 44.7 0.122E+01 0.94 66.25 .22368E+04 422.08 -0.00 0.00 44.7 0.122E+01 0.94 66.26 .22465E+04 423.91 -0.00 0.00 44.7 0.122E+01 0.94 66.26 .22563E+04 425.74 -0.00 0.00 44.7 0.122E+01 0.94 66.26 .22660E+04 427.57 -0.00 0.00 44.8 0.122E+01 0.94 66.26 .22757E+04 429.40 -0.00 0.00 44.8 0.122E+01 0.94 66.26 .22855E+04 A-59 . Y Lam' Rogers Energy Complex Thermal Model Verification 431.23 -0.00 0.00 44.8 0.122E+01 0.94 66.26 .22952E+04 433.06 -0.00 0.00 44.8 0.122E+01 0.94 66.27 .23049E+04 434.89 -0.00 0.00 44.8 0.122E+01 0.94 66.27 .23147E+04 436. 72 -0.00 0.00 44.8 0.122E+01 0.94 66.27 .23244E+04 438.55 -0.00 0.00 44.8 0.122E+01 0.94 66 .27 .23341E+04 440.37 -0.00 0.00 44.8 0.122E+01 0.94 66.27 .23439E+04 442.20 -0.00 0.00 44.8 0.122E+01 0.94 66.28 .23536E+04 444.03 -0.00 0.00 44.8 0.122E+01 0.94 66.28 .23634E+04 445.86 -0.00 0.00 44.8 0.122E+01 0.94 66.28 .23731E+04 447.69 -0.00 0.00 44.8 0.122E+01 0.94 66 .28 .23828E+04 449.52 -0.00 0.00 44.8 0.122E+01 0.94 66.28 .23926E+04 451.35 -0.00 0.00 44.8 0.122E+01 0.94 66.29 .24023E+04 453.18 -0.00 0.00 44.8 0.122E+01 0.94 66.29 .24120E+04 455.01 -0.00 0.00 44.8 0.122E+01 0.94 66 .29 .24218E+04 456.84 -0.00 0.00 44.8 0.122E+01 0.94 66.29 .24315E+04 458.67 -0.00 0.00 44.8 0.122E+01 0.94 66.29 .24412E+04 460.50 -0.00 0.00 44.8 0. 122E+01 0.94 66.30 .24510E+04 462.33 -0.00 0.00 44.8 0.122E+01 0.94 66.30 .24607E+04 464.15 -0.00 0.00 44.8 0.122E+01 0.94 66.30 .24704E+04 465.98 -0.00 0.00 44.8 0.122E+01 0.94 66.30 .24802E+04 467.81 -0.00 0.00 44.8 0.122E+01 0.94 66.30 .24899E+04 469.64 -0.00 0.00 44.8 0.122E+01 0.94 66.30 .24996E+04 471.47 -0.00 0.00 44.8 0.122E+01 0.94 66.31 .25094E+04 473.30 -0.00 0.00 44.8 0.122E+01 0.94 66.31 .25191E+04 475.13 -0.00 0.00 44.8 0.122E+01 0.94 66.31 .25289E+04 476.96 -0.00 0.00 44.8 0.122E+01 0.94 66.31 .25386E+04 478. 79 -0.00 0.00 44.8 0.122E+01 0.94 66.31 .25483E+04 480.62 -0.00 0.00 44.8 0.122E+01 0.94 66.32 .25581E+04 482.45 -0.00 0.00 44.8 0.122E+01 0.94 66.32 .25678E+04 484.28 -0.00 0.00 44.8 0.122E+01 0.94 66.32 .25775E+04 486.11 -0.00 0.00 44.8 0.122E+01 0.94 66.32 .25873E+04 487.93 -0.00 0.00 44.8 0.122E+01 0.94 66.32 .25970E+04 489.76 -0.00 0.00 44.8 0.122E+01 0.94 66.33 .26067E+04 1 491.59 -0.00 0.00 44.8 0.122E+01 0.94 66.33 .26165E+04 493.42 -0.00 0.00 44.8 0.122E+01 0.94 66.33 .26262E+04 495.25 -0.00 0.00 44.8 0. 122E+01 0.94 66.33 .26359E+04 497.08 -0.00 0.00 44.8 0.122E+01 0.94 66.33 .26457E+04 498.91 -0.00 0.00 44.8 0.122E+01 0.94 66.34 .26554E+04 500.74 -0.00 0.00 44.8 0.122E+01 0. 94 66.34 .26651E+04 502.57 -0.00 0.00 44.8 0.122E+01 0.94 66.34 .26749E+04 504.40 -0.00 0.00 44.8 0.122E+01 0. 94 66.34 .26846E+04 506.23 -0.00 0.00 44.8 0.122E+01 0.94 66.34 .26944E+04 508.06 -0.00 0.00 44.8 0.122E+01 0.94 66.34 .27041E+04 509.89 -0.00 0.00 44.8 0.122E+01 0.94 66.35 .27138E+04 511. 71 -0.00 0.00 44.8 0.122E+01 0.94 66.35 .27236E+04 513.54 -0.00 0.00 44.8 0.122E+01 0.94 66.35 .27333E+04 515.37 -0.00 0.00 44.8 0.122E+01 0.94 66.35 .27430E+04 517.20 -0.00 0.00 44.8 0.122E+01 0.94 66.35 .27528E+04 519.03 -0.00 0.00 44.8 0.122E+01 0.94 66.36 .27625E+04 520.86 -0.00 0.00 44.8 0.122E+01 0.94 66.36 .27722E+04 522.69 -0.00 0.00 44.8 0.122E+01 0.94 66.36 .27820E+04 524.52 -0.00 0.00 44.8 0.122E+01 0.94 66.36 .27917E+04 526.35 -0.00 0.00 44.8 0.122E+01 0.94 66.36 .28014E+04 528.18 -0.00 0.00 44.8 0.122E+01 0.94 66.37 .28112E+04 530.01 -0.00 0.00 44.8 0.122E+01 0.94 66.37 .28209E+04 531.84 -0.00 0.00 44.8 0.122E+01 0.94 66.37 .28306E+04 _ A-60 i I Lam' Rogers Energy Complex Thermal Model Verification 533.66 -0.00 0.00 44.8 0.122E+01 0.94 66.37 .28404E+04 535.49 -0.00 0.00 44.8 0.122E+01 0.94 66.37 .28501E+04 537.32 -0.00 0.00 44.8 0.122E+01 0.94 66.38 .28599E+04 539.15 -0.00 0.00 44.8 0.122E+01 0.94 66.38 .28696E+04 540.98 -0.00 0.00 44.8 0.122E+01 0.94 66.38 .28793E+04 542.81 -0.00 0.00 44.8 0.122E+01 0.94 66.38 .28891E+04 544.64 -0.00 0.00 44.8 0.122E+01 0.94 66.38 .28988E+04 546.47 -0.00 0.00 44.8 0.122E+01 0.94 66.38 .29085E+04 548.30 -0.00 0.00 44.8 0.122E+01 0.94 66.39 .29183E+04 550.13 -0.00 0.00 44.8 0.122E+01 0.94 66.39 .29280E+04 551.96 -0.00 0.00 44.8 0.122E+01 0.94 66.39 .29377E+04 553.79 -0.00 0.00 44.8 0.122E+01 0.94 66.39 .29475E+04 555.62 -0.00 0.00 44.8 0.122E+01 0.94 66.39 .29572E+04 557.44 -0.00 0.00 44.8 0.122E+01 0.94 66.40 .29669E+04 559.27 -0.00 0.00 44.8 0.122E+01 0.94 66.40 .29767E+04 561.10 -0.00 0.00 44.8 0.122E+01 0.94 66.40 .29864E+04 562.93 -0.00 0.00 44.8 0.122E+01 0.94 66.40 .29961E+04 564.76 -0.00 0.00 44.8 0.122E+01 0.94 66.40 .30059E+04 566.59 -0.00 0.00 44.8 0.122E+01 0.94 66.41 .30156E+04 568.42 -0.00 0.00 44.9 0.122E+01 0.94 66.41 .30253E+04 570.25 -0.00 0.00 44.9 0.122E+01 0.94 66.41 .30351E+04 572.08 -0.00 0.00 44.9 0.122E+01 0.94 66.41 .30448E+04 573.91 -0.00 0.00 44.9 0.122E+01 0.94 66.41 .30546E+04 575.74 -0.00 0.00 44.9 0.122E+01 0.94 66.42 .30643E+04 577.57 -0.00 0.00 44.9 0.121E+01 0.94 66.42 .30740E+04 579.40 -0.00 0.00 44.9 0.121E+01 0.94 66.42 .30838E+04 581.22 -0.00 0.00 44.9 0.121E+01 0.94 66.42 .30935E+04 583.05 -0.00 0.00 44.9 0.121E+01 0.94 66.42 .31032E+04 584.88 -0.00 0.00 44.9 0.121E+01 0.94 66.42 .31130E+04 586.71 -0.00 0.00 44.9 0.121E+01 0.94 66.43 .31227E+04 588.54 -0.00 0.00 44.9 0.121E+01 0.94 66.43 .31324E+04 590.37 -0.00 0.00 44.9 0.121E+01 0.94 66.43 .31422E+04 592.20 -0.00 0.00 44.9 0.121E+01 0.94 66.43 .31519E+04 594.03 -0.00 0.00 44.9 0.121E+01 0.94 66.43 .31616E+04 595.86 -0.00 0.00 44.9 0.121E+01 0.94 66.44 .31714E+04 597.69 -0.00 0.00 44.9 0.121E+01 0.94 66.44 .31811E+04 599.52 -0.00 0.00 44.9 0.121E+01 0.94 66.44 .31908E+04 601.35 -0.00 0.00 44.9 0.121E+01 0.94 66.44 .32006E+04 603.18 -0.00 0.00 44.9 0.121E+01 0.94 66.44 .32103E+04 605.00 -0.00 0.00 44.9 0.121E+01 0.94 66.45 .32201E+04 606.83 -0.00 0.00 44.9 0.121E+01 0.94 66.45 .32298E+04 608.66 -0.00 0.00 44.9 0.121E+01 0.94 66.45 .32395E+04 610.49 -0.00 0.00 44.9 0.121E+01 0.94 66.45 .32493E+04 612.32 -0.00 0.00 44.9 0.121E+01 0.94 66.45 .32590E+04 614.15 -0.00 0.00 44.9 0.121E+01 0.94 66.46 .32687E+04 615.98 -0.00 0.00 44.9 0.121E+01 0.94 66.46 .32785E+04 617.81 -0.00 0.00 44.9 0.121E+01 0.94 66.46 .32882E+04 619.64 -0.00 0.00 44.9 0.121E+01 0.94 66.46 .32979E+04 621.47 -0.00 0.00 44.9 0.121E+01 0.94 66.46 .33077E+04 623.30 -0.00 0.00 44.9 0.121E+01 0.94 66.46 .33174E+04 625.13 -0.00 0.00 44.9 0.121E+01 0.94 66.47 .33271E+04 626.96 -0.00 0.00 44.9 0.121E+01 0.94 66.47 .33369E+04 628.78 -0.00 0.00 44.9 0.121E+01 0.94 66.47 .33466E+04 630.61 -0.00 0.00 44.9 0.121E+01 0.94 66.47 .33563E+04 632.44 -0.00 0.00 44.9 0.121E+01 0.94 66.47 .33661E+04 634.27 -0.00 0.00 44.9 0.121E+01 0.94 66.48 .33758E+04 _ A-61 r. L' - - f Rogers Energy Complex Thermal Model Verification 636.10 -0.00 0.00 44.9 0.121E+01 0.94 66.48 .33856E+04 637.93 -0.00 0.00 44.9 0.121E+01 0.94 66.48 .33953E+04 639. 76 -0.00 0.00 44.9 0.121E+01 0.94 66.48 .34050E+04 641 .59 -0.00 0.00 44.9 0.121E+01 0.94 66. 48 .34148E+04 643.42 -0.00 0.00 44.9 0.121E+01 0.94 66.49 .34245E+04 645.25 -0.00 0.00 44.9 0.121E+01 0.94 66.49 .34342E+04 647.08 -0.00 0.00 44.9 0.121E+01 0.94 66.49 .34440E+04 648.91 -0.00 0.00 44.9 0.121E+01 0.94 66.49 .34537E+04 650.74 -0.00 0.00 44.9 0.121E+01 0.94 66.49 .34634E+04 652.56 -0.00 0.00 44.9 0.121E+01 0.94 66.49 .34732E+04 654.39 -0.00 0.00 44.9 0.121E+01 0.94 66.50 .34829E+04 656.22 -0.00 0.00 44.9 0.121E+01 0.94 66.50 .34926E+04 658.05 -0.00 0.00 44.9 0.121E+01 0.94 66.50 .35024E+04 659.88 -0.00 0.00 44.9 0. 121E+01 0.94 66.50 .35121E+04 661.71 -0.00 0.00 44.9 0.121E+01 0.94 66.50 .35218E+04 663.54 -0.00 0.00 44.9 0.121E+01 0.94 66.51 .35316E+04 665.37 -0.00 0.00 44.9 0.121E+01 0.94 66.51 .35413E+04 667.20 -0.00 0.00 44.9 0.121E+01 0.94 66.51 .35511E+04 669.03 -0.00 0.00 44.9 0.121E+01 0.94 66.51 .35608E+04 670.86 -0.00 0.00 44.9 0.121E+01 0.94 66.51 .35705E+04 672.69 -0.00 0.00 44.9 0.121E+01 0.94 66.52 .35803E+04 674.52 -0.00 0.00 44.9 0.121E+01 0.94 66.52 .35900E+04 676 .34 -0.00 0.00 44.9 0.121E+01 0.94 66 .52 .35997E+04 678.17 -0.00 0.00 44.9 0.121E+01 0.94 66.52 .36095E+04 680.00 -0.00 0.00 44.9 0.121E+01 0.94 66.52 .36192E+04 681.83 -0.00 0.00 44.9 0. 121E+01 0.94 66.53 .36289E+04 683.66 -0.00 0.00 44.9 0.121E+01 0.94 66.53 .36387E+04 685.49 -0.00 0.00 44.9 0.121E+01 0.94 66.53 .36484E+04 687.32 -0.00 0.00 44.9 0. 121E+01 0.94 66.53 .36581E+04 689.15 -0.00 0.00 44.9 0.121E+01 0.94 66.53 .36679E+04 690.98 -0.00 0.00 44.9 0.121E+01 0.94 66 .53 .36776E+04 692.81 -0.00 0.00 44.9 0. 121E+01 0.94 66.54 .36873E+04 694.64 -0.00 0.00 44.9 0. 121E+01 0.94 66.54 .36971E+04 696.47 -0.00 0.00 44.9 0.121E+01 0.94 66 .54 .37068E+04 698.30 -0.00 0.00 44.9 0.121E+01 0.94 66.54 .37165E+04 700.12 -0.00 0.00 44.9 0. 121E+01 0.94 66.54 .37263E+04 701.95 -0.00 0.00 44.9 0.121E+01 0.94 66.55 .37360E+04 703. 78 -0.00 0.00 44.9 0.121E+01 0.94 66.55 .37458E+04 705.61 -0.00 0.00 44.9 0.121E+01 0.94 66.55 .37555E+04 707.44 -0.00 0.00 44.9 0.121E+01 0.94 66.55 .37652E+04 709.27 -0.00 0.00 44.9 0.121E+01 0.94 66.55 .37750E+04 711.10 -0.00 0.00 45.0 0.121E+01 0.94 66.56 .37847E+04 712.93 -0.00 0.00 45.0 0.121E+01 0.94 66.56 .37944E+04 714. 76 -0.00 0.00 45.0 0.121E+01 0.94 66.56 .38042E+04 716.59 -0.00 0.00 45.0 0.121E+01 0.94 66.56 .38139E+04 Cumulative travel time = 3813.8887 sec ( 1.06 hrs) Simulation limit based on maximum specified distance = 716 .58 m. This is the REGION OF INTEREST limitation. END OF M0D361: PASSIVE AMBIENT MIXING IN UNIFORM AMBIENT CORMIX3: Buoyant Surface Discharges End of Prediction File 33333333333333333333333333333333333333333333333333333333333333333333333333 WE�- Rogers Energy Complex Thermal Model Verification Z • X 200 220 5' - UA • a 0 . 31p O l at • -20 -b.0- .1 1).2 .15 -0\2 -0.3 -0.4 -0.4 -0.5 Outtall_005winter Discharge Excess (°F) Row pass:PL2 Origin Water Surface ——w— Plume Centerline CORMIX3 Simulation End of Near Field Region INFR) 0 5 10 15 20 25 30 35 40 45 50 55 Length units In meters =__ Coma Module Boundary NODI Distortion Scale Y X=1 ZX=200 Visualization up to X=201 m(out of ROI X=717 m) Figure A-3. Winter Delta-T Model ISO View A-63 Rogers Energy Complex Thermal Model Verification Y 50-S UA(AI t3�0 to- 101 Z x -20 , 4 20 40 60 80 100 120 140 160 180 200 220 Outfall_005_winter Discharge Excess (°F) Flow Class PL2 Ongin Water Surface ——— Plume Centerline 0 5 10 15 20 25 30 35 40 45 50 55 CORMIX3 Senulation Length unf End of Near Field Region INFRs in meters — Corm Module Boundary IMOD; Distortion Scale Y:X=1 Z:X=0.01 Visualization up to X=201 m(out of ROI X.717m) Figure A-4. Winter Delta-T Model Plan View _ V V A 64 Lam' Water Environment Consultants P.O. Box 2221 Mount Pleasant, SC 29465 (843) 375-9022 www.water-ec.com WFL € _ i glogibomatit, _ _ . . r .. , ..