Loading...
HomeMy WebLinkAboutWQ0033455_Engineering cals and product bulletins_2008111901 kL NOV 2 12663 THE CLIFFS AT HIGH CAROLIN�k � pvnl�' BUNCOMBE COUNTY, NORTH CARO WASTEWATER IRRIGATION SYSTEM CALCULATIONS AND PRODUCT BULLETINS PREPARED FOR: THF, CLIFFS COMMUNITIES MR. DON NICKELL 3598 HIGHWAY 1 1 TRAVELER's REST, SOUTH CAROLINA 291590 ORIGINAL: OCTOBER 21, 200a REVISED: NOVEMBER 1 9, 2008 aROOKS ENGINEERING ASSOCIATES PROJECT No. 307808 17 Arlington Street Asheville, NC 28801 828.232.4700 THE CLIFFS AT HIGH CAROLINA BUNCOMBE COUNTY, NORTH CAROLINA WASTEWATER IRRIOATION SYSTEM CALCULATIONS AND PRODUCT BULLETINS PREPARED FOR: THE CLIFFS AT HIGH CAROLINA, LLC 359B HIGHWAY I I TRAVELERS REST, SC 29690 FINAL DESIGN - NOT RELEASED FOR CONSTRUCTION ORIGINAL: 013TOaER 22, 200B REVISED: NOVEMBER 19, 2008 BROOKS ENGINEERING AssocIATES PROJECT No.: 30780B I TABLE OF CONTENTS 1.0 Calculations 1.1 Design Flow Table and Phasing Summary 1.2 WWTP Head Calculations and Process Calculations and Supporting Charts 1.3 Pump Curve for Irrigation Dose Pumps and Pump Curve for Pumps in Series 1.4 Pump Curve and TDH Calculations for Return Pumps and Tanks 1.5 Return Pump Tank Sizing Calculations 1.6 Irrigation Zone Pressure and Flow Analysis 1.7 irrigation Schedule Spreadsheet 1.8 Rainfall Data Analysis for Short -Term Wet Weather Storage Requirements 2.0 Bulletins Bulletin A Aqueonics Plant Cut -Sheets for: concrete mix design, railing, chemical feed pumps, Parkson sand filter and air compressor, DuraPac trickling filter media, Trojan UV, level controller and tranduscers, chemical feed pumps and pressure relief valves. Bulletin B Cut -Sheets and Pump Curves for WVVTP Pumps: forward flow/recycle pumps, sand filter flow pumps, equalization tank grinder pumps, sludge tank decanting pump. Bulletin C Cut -Sheets for WV\1TP Blowers Bulletin D Cut -Sheets and Pump Curve for Irrigation Dosing/Flushing Pump Bulletin E Cut -Sheets for Flushing Return Pumps Bulletin F Cut -Sheets for Alternate Pond Liner Bulletin G WSI PC Controller Electrical Schematics Bulletin H Cut -Sheets for Drip System Valving Bulletin I Cut -Sheets for Flow Meter Bulletin J Cut -Sheets for Disc Filtration System Bulletin K Cut -Sheet for Rainbird Rain Gauge Bulletin L Drip Line Cut Sheets Bulletin M Pole Blower Curve and Cut -Sheet Bulletin N Back -Up Generator Cut -Sheets Bulletin 0 Turbidity Meter 1.0 Calcu ations 1.1 Design Flow Table and Phasing Summary 1.2 WWTP Head Calculations and Process Calculations and Supporting Charts 1.3 Pump Curve for Irrigation Dose Pumps and Pump Curve for Pumps in Series 1.4 Pump Curve and TDH Calculations for Return Pumps and Tanks 1.5 Return Pump Tank Sizing Calculations 1.6 Irrigation Zone Pressure and Flow Analysis 1.7 Irrigation Schedule Spreadsheet 1.8 Rainfall Data Analysis for Short -Term Wet Weather Requirements i k�'-j AM� i 6W 1 L LA d .4 1.1 Design Flow Table and Phasing Summary BEA Project # 307808 The Cliffs at High Carolina Design Flow Calculations Priase I uesign mow: wo'v IV Phase 11 Design Flow: 103780 Total Design Flow: 199,690 gpd Site I —F— Phase I Buildings Floors I unitalfloor I brl unit tlowlbr 51 21 120 — Site 2 Phase I Buildings FRoars I units1floor I brl unit flowl br 000 gpd Site 3 Phase I Inn bedrooms HOW& 48 1201 5,760 gpd Phase I Restaurant seats flowlseat 1 120 401 4,800 gpd Phase I Market Area (sq. ft) gall 1000 sq. ft 9000 100 900 gpd Phase I Banquet seats flowl seat 60 30 1,800 gpd Phase I Spa persons Flow1person 200 101 site 5 Phase I I Village Wellness Sq. Ft I Flowl 100 sq. ft J09� 1 1 8-0001 4 70 0: d— Site 7 Phase I I Clubhouse w1person 1 601 site 9 Phase I Strauss Lake SF units brl unit 161 Site 10 Phasel Practice Goff SF 41 1201 3,840 1 gpd masp I I Goff Maintenance I sq. Ft W/ 100 sq. ft 1 7.50( Site 4 Sq. Ft Flowl 100 sq, tt 5,0001 1 1 2,5001 gpd Site 6 Tn—its—lbldg [brlunit I flowl br I- 81 Site 8 brl unit lflowlbr I site 11 Phase H Clubhouse Cottage SF units brl F-, 41 Site 12 —Lunits I brl Iflow1br 1 :1:�9�,2009pc n��e �LotsSF 1 401 4 Site 14 Phasell 1011age Lake OverlooK �Buildings - I units jbr1un=itflow1br Prepared by: Matthew Rice Brooks Engineering Associates, PA 11118/2008 1.2 WWTP Head Calculations and Process Calculations & Supporting Charts PROCESS CALCULATIONS The Cliffs at High Carolina Aqueonics Treatment Plant PUMP HEADLOSS CALCULATIONS A. Egualization Tan Average daily flow 100,000 gpd equalized at 70 gpm. for Phase 1. Pumps to be replaced for Phase II. Total Dynamic Head ("TDH"): Top of plant 100.00'Elev. EQ Tank Floor (Pump Inlet) -83.71 16.29' Inlet to head box + 3.00' 19.29' Static Head Friction losses in pipe & fittings: Fittings I - 2" — 90'ell 3 - 6" - 90'ell Pipe length 161-2110 61-6110 Friction Loss/Ft. of Pipe 211 o loss = 15.87100' 6"o loss= 0-17100' Fitting loss in equivalent feet of pipe, 211 ell = 5.2'x 1 pe. 5.2' 6" ell = 15.3'x 3 pc. 45.9' Total frictional loss: 2"o=[l6'+5.2']xl5.8/l00= 3.34' 61 o = [6'+ 45.9'] x 0.1/100 = 0.05' Total Frictional Losses 3.39' TDH = Static + frictional loss Static 19.3' Friction +3.4' Total 247 Approximately 25'TDH for pump sizing, P. I I I Since 26.4 lbs. of ammonia -nitrogen remain, we have available 7418 f� per lb. of influent ammonia (195840ft�/ 26.41b). On first iteration, therefore, Figure 4-15 tells us that approximately 1.5mg/I effluent ammonia concentration could be predicted, which is more than the 1.0 mg/I goal and indicates that recycle must be employed to achieve the goal . Since the conversion from nitrite to nitrate is highly efficient and immediate because of the action of nitrobacter, the presence of nitrite in effluent is not observed. F. Stage 11; (Iteration 2 - regycle.) By recycling flow from Aerobic stage III to the suction of stage 1, the removal of BOD in stage I is unaffected, since raw flow distribution does not change. In going to stage 2, however, the composition of flow will be a mass balance betweeen stage I effluent and recycle flow: 56.45 mg/I x 70 gpin + 2.27 mg/I x 74 gpm = 26.17 mg/I x 144 gpin 26.17 mg/I x 8.34 x.144 MGD = 31.43 #/d of BOD, or 10.92 lb/d/1000 cuft. Referring to figure 4-7 the removal efficiency for ammonia is 52%, and so the Tower II discharge is: 2880 cu ft x 68 sq ft/cu. ft. x.52 / 3800 sf/lb = 26.8 lbs of ammonia removed. BOD removal will be 67%, from information bulletin VC -5.0-477-1 based upon a raw flow rate of 1.0 gpmJsq. ft., resulting in a discharge concentration of .3 3 x 26.17 = 8.63 mg/l Tower 11 discharae: BOD = 8.63 mg/l, 10.36 lbs/day Ammonia -N = 22.31 mg/l, or 21.2 lbs/day Nitrate -N = 22.3 mg/l, or 26.8 lbs/day G. Stage 111; (Iteration 2 - recycle) As in iteration 1, the ammonia discharge from Tower III will be minimally interfered with by BOD concentration, and the slightly increased concentration of BOD will actually assist in the Nitrate removal in Anaerobic 111. The recycle has had the effect of removal of additional ammonia, and reduction of the load on Tower III. We now have a loading of 21.2 lb/day on 195,840 sf of media surface, or 9,237 sf /lb/day, which, from Figure 4-15 will produce the desired 1.0 mg/l effluent. Tower III discharge of BOD and ammonia will- __ refore be: BOD < 8.63 x 0.33 = 2.8 mg/l, = 2.3 lbs/day Ammonia -nitrogen < 1.0 mg/l, = 0.83 lbs/day Nitrate -nitrogen = 22.3 - 1.0 = 21.3 mg/l = 17.8 lbs/day p. 7 I I In the third anoxic reactor, the nitrate is consumed by facultative bacteria. Both BOD residue and nitrate are so low as to provide inefficient contact conversion. The same effect is noted in Figure 4-15 for the nitrification process. To assist in the removal of nitrate in the relative absence of BOD present, recycle capability has been made to return up to full flow of fully nitrified liquor to the first anaerobic reactor, where significant BOD is present. This is done by the flow splitter/overflow weir located between Tower III and Anaerobic III. These facilities are controlled by valving that allows the operator to control the amount of recycle coming from Tower 111, compared to that coming from Tower I. Submerged weirs in Anaerobic I and 11, and a surface weir in the Primary clarifier allows for gravity retrograde flow from the secondary flow splitter to the suction of the Tower I recirculation pump. Anticipated discharge from Anaerobic III will therefore be: BOD < 2.3 mg/l, = 1.9 lbs/day AmmoniaNitrogen <lmg/1=0.83lbs/day Nitrite Nitrogen = 0 mg/1 = 0 lbs/day Nitrate Nitrogen < 3 mg/I = 2.5 lbs/day H. Anaerobic Calculations The tianaerobic" reactors achieve three functions. First, as a tube settler for solids removal, second, to create an anoxic environment to accomplish denitrification utilizing sewage as the organic carbon source and, third, to achieve partial "anaerobic" digestion of biomass. Each of the "anaerobic" reactors contain plastic media having a surface area of 30 ft�/fL3 placed atop precast concrete hoppers on fiberglass beams within the tankage. Influent enters each itanaerobic" unit beneath the media and flows in a serpentine fashion through the media. A hydraulic retention time of 2 hours is maintained in contact with the media for completion of the anoxic denitrification reaction. A surface overflow rate of 879 gpd /ft2 or less and presence of the media makes these reactors extremely efficient clarifiers in addition to their primary function in biological denitrification. Denitrification conversion efficiency is limited only by minimal concentration of the nitrate substrate with which the colonies of facultative anaerobe denitrifiers can be maintained. An effluent consistently less than 3 mg/I nitrate -nitrogen has been achieved in similar facilities The process of anoxic denitrification is confirmed by EPA design data. (Process Desi n Manual for Nitrogen Control. U.S. EPA Technology Transfer. October, 1975.) Figure 5-13 shows that submerged high -porosity media reactors remove, at 130 C, approximately 600 pounds N/1,000 ft3/day. Aqueonics process removal efficiency with plastic media is calculated on a surface area per cubic foot basis is the same as the EPA reference system that uses sand particles. Detail calculations are available upon request. The rate of removal is proportional to biomass contact (the reaction area), and 600 lb N/1,000 ft3/day has been shown to be removed in the fluidized bed. The proportionate plastic media removal rate : P. 8 0 I Volume Denitrification Rate (fixed media) = 0.116 x 600 (conversion factor to convert EPA's fluidized sand bed reactor to a fix media reactor) = 69.6 lbs IN /1,000 ft3/day of fixed media = 0.0696 lbs N per W of fixed -film media/day = 0.069 lbs N /W media using 30 W1ft3 media = .00232 lbs N 1W media/day In the present design, each anaerobic reactor has sufficient media to provide at least 2 hours of detention time. Thus, we have a design capacity in each reactor of 0.33 ft� or more of surface per gpd, which is the nitrogen removal capacity of 0.00232 lbs N/ft�/day x.33 ft�/gpd =.00076 lbs N per gallon per day. However, the influent N concentration, at 60 mg/l, contains 0.0005 lbs of N per gallon (8.34 lb/gallon x 70.4 x 10-6 = .0005 lbs N per gallon). More than sufficient denitrification capacity exists within each reactor to complete the process: ie, there is no process limitation anticipated as a result of available surface area. In order to take full advantage of the BOD present in Anaerobic 1, it is advantageous to provide for the recirculation of fully nitrified flow from Aerobic No. 3 to Anaerobic No. 1 to reduce the BOD requirements of Anaerobic No. 3 by denitrifying the recycle sidestream. This function is particularly useful where the aerobic portion provides excessive BOD consumption in the final stages. The recycle sidestream is variable, and controllable up to a flow of R = (144 — Q) gpm, where Q is the raw forward flow through the plant. Operational control is required to retain sufficient retention time in the anoxic reactors I and II when using recycle to assure completion of the anoxic reaction. Under conditions where R + Q exceeds 70 gpm, retention time would be reduced to less than 2 hours, the nominal design retention time. Above this flow, the operator must monitor the completion of the anoxic reactions in Anaerobic I and II after making a change in recycle flow. P. 9 FIGURE 4-7 EFFECT OF ORGANIC LOAD ON NITRWICATION- EFFICIENCY EFFECT OF ORGANIC10AD ON NITRIFICATION -EFFICIENCY MW OF ROCK TRICKLING FILTERS too r Z NO RECIRCULATION' 80 M RECIRC04ATION f Kq y 6 2,4 1 b 'BOD5/1 000 Cu f t/daY /M 40=- rc 20- 0, 0 20 30 40 50 60 BOD5 LOAD LB11000 CU FTIDAY I Ai 7 FIGURE 4-15 SURFACE AREA REQUIRED FOR NITRIFICATION FIGURE 4-15 WRIACE MtLA ItEQUIRLMENTS FOR NITRIFICATION - MIDLAND MICHIGAN W100D A @ Lnitluent D013, (mean) 15 - 2 0 mq/t C4 Organic iN 1- 4 ma/l N, 11 N 8 - M M- 4 B00�,/TKW 1 Oil r�, � 0 44 '0 (D 7 to b*1 Lu 4,0,0* to 19C Key: �r 7 to stc 1 SF/lb/day 0, M�/ Pg /ony Z) T 13 iG 13C 3,0 4,0 5,0 6D EFFLUOVT AMMOMIT-N, fnql� 4-64 VC — 5.0-477-1 BFGoodrich Information Bulletin OFGocWrich General Products Division DESIGN CALCULATION RESULTS TREATABILITY FACTOR K 20 = 0.07 Influent Wastq Temperature — 4VC A 21PIO INFORMAi N BULLETIN 500souvlMaivslmol Akron, Ohio 44318 DepaAmOnl 0444. WHB-3 VC -5,0-477-i VINYL CORE'y' Influent Waste Temperature — 130 C % BOD RernOyeCl Media Depth Raw Flam Expn:9!:;E) Media Depth RawFjowEVressedin PM/ft.- of Tower Surface Area 0.5 Feet —F2— —14--- 16 - —0,3 0.45 7�57 ' 63 -77 67 -0�7 2 86 79 9 81 91 84 92. 86 --�i3 88-85 94 89 -95 91 5 93 O�-6 54, .59 ft$41 �-8E 72 76 79 81 83 87 -W---87 go 91 2 O�7 51 56 bi 66 6 73 79 --- 81 83 85 88 go , 91 0.8 49 64 59 6-3 67 7D 74 76 79 81 83— 8-5 8,6 88 89 0.9 47, 52 57 6-1-59 65 68zk 72 74 77 79 81 B-3 85 86 88 1,0, 4-!Y—;F3 50 55- 6377671-- 66 -:7 p 72 75 77 9-0 81 83 85 8; 1.1 48 53 57 �05 ub 71 73 76 78 80 82 83 85 1,2 42 47 52 — 6 63 66 69 �2 74 77 79 80 82 84 1.3 41 50 54-53 58 62 -65 68 70 73 75 77 79 81 82 1.4 40 44 49 57 60 �3 66 69 72 74 76 78 -�Q 81 1-5 39 43 48 52 56 59 62 65 68 70 73 75 77 �9 80 1 �8 —0— 22 24 28 30 '34 36 �38 — 40 Influent Waste Temperature — 130 C % 130D Hemovea Media Depth Raw Flam Expn:9!:;E) .1, c)f Tower Sijrface Area Feet 0.3 0.5 O�6 0.7 0.b U.0 1.0 1A 1�2 1,3 1,4 1.5 12 52 50 45 44 43 42 14 75 6-0 66 7-1 i —68 0 65 58 63 56 60 —5-� 59, 67 50 55 49 54 48 62 47 51 18 84 75 72 69 67 6,5 63 61 60 58 57 55 201 87 79 �76 ---- 73 --- 7 1 69 6 7 65— 63 62 61 59 22 79 76 74 72 70. 6p� 6 65 64 63 24 91 I-- 85 82 79 � I 77 -- 80 75 , 3 73 7.2 6 74 70 73 69 7i--7-0 67 66 6-9 26 28 93 94 87 89 84 -- 86 -- 84 82 so 79 77 -- 75 74 73 72 30 9.5 ---- go 88 ---9-6--84 82 61 79 78 76 7- 5 74 32 95 92 -- 90 88 86 84 83 81 80 79 77 76 34 95 !�3 91 89 88 86 85--,- , 83 82 81 79 78 36 96 94 4 Q-2 3 91 89 go 88 8g 86 k6§�7 4 85 82 84 81 83 80 82 38 40 95 88 87 83 FIGURE 5-12 VOLUME DENITRIFICATION RATE I Mlrolyo- Q Z 2000 u 1600 ku 12(X 40 FIGURE, 5-13 VOLUME DENITRIFICATION RATE FOR SU13MERGED HICH POROSITY FINE MEDIA COLUMNS (REFERENCE 39) to 4u TEMPERATURE) C ut to 4u TEMPERATURE) C 1.3 Pump Curve for Irrigation Dose Pumps and Pump Curve for Pumps in Series Berkeley 10 HP Flow (gpm, Head (FT) 1 154 100 153 125 151 150 149 175 145 200 140 225 134 250 124 Paco 40 HP Flow (gpm, Head (FT) 1 360 100 360 125 358 150 356 175 354 200 350 225 345 250 340 Both Pumps in Series Flow (gpm, Head (FT) 1 514 100 513 125 509 150 505 175 499 200 490 225 479 250 464 I m Col ME AW aN 11, mm IF, limriimlAllu- Vlan fivWFURNMIlifne FamirdwrliffirAmps R5011521211somm 011011110111111ANO 511801INEIIIIINE Immollamlifloom REIIII 81111mom ON s 1 11 s I 1 11 in ON on m m son MEN MEN son son 0 -1/16/2008 12:21pm wwS1 1111 Alla C 0 r " pumps lProject: Waste Water Svstema f-1 ov, I 0� 6o I 40 20 0 7702766535 LC - 20953 Configured Curve Tag # P -I P-2 Model: 20953 Oty; 2 Service: #439 Page 11/12 By: TGJ Date: I0/9/20nR Rev. # .0. # SPE 0 so 100 150 260 300 350 400 450 Soo 550 600 650 700 Capacity - usgpm 9.60 in Max ... . ...... . ..... j J .................... . . ....... ......... . ...... ........... Fluid: Water Power . .. . ------- Temp: 69.00 dog F . ... ............ - �Autoff Head-, 363 ft ... . . ...... Diff. Press: 0 so 100 150 260 300 350 400 450 Soo 550 600 650 700 Capacity - usgpm 9.60 in Max 100 -90 '80 ,70 -60 -50 -40 30 .20 .10 IN 0 so 100 ISO 1.00 260 300 350 400 450 500 Sso 600 650 700 Capacity - usgpm V- 40 POO �20 0 0 50 . ....... ......... . ...... ........... Fluid: Water TQ.S4 In Rated . .. . .................. .. . Temp: 69.00 dog F Die. Press, �Autoff Head-, 363 ft . . . . ............. Diff. Press: PSHr, 7.04 ft Visc.; 1.00 op SHP: 30.3 hp_ 17p--U—la . ............ .... ... . Fump Eff.: 58.16 4 Ob Of Stages, I ISEP: 426 USgpm_ III's Mbtdr Data, . ..... . I i! 40 Voltage: 208-2301460 jEff; W;m1nal RPM: 3500 Phase: Three phase F.; 1.15 Actual RPM, 3500 Hz., an jEnol.-_ ODP 7.00 in Kin .. ..... . ..... .... ... . .. ...... . .... . ......... 100 -90 '80 ,70 -60 -50 -40 30 .20 .10 IN 0 so 100 ISO 1.00 260 300 350 400 450 500 Sso 600 650 700 Capacity - usgpm V- 40 POO �20 0 PSHr 1 .......... . ............. ..... ............... . 7 Capacity - usgpm M 0 50 W; 200 USqpm Fluid: Water Suet Press: 0-00_psi.a )H: PSHr 1 .......... . ............. ..... ............... . 7 Capacity - usgpm M Desl�n Data`,._',:.`, W; 200 USqpm Fluid: Water Suet Press: 0-00_psi.a )H: 350 ft Temp: 69.00 dog F Die. Press, �Autoff Head-, 363 ft S.C., 0.998 Diff. Press: PSHr, 7.04 ft Visc.; 1.00 op SHP: 30.3 hp_ 17p--U—la 9.54 In Fump Eff.: 58.16 4 Ob Of Stages, I ISEP: 426 USgpm_ III's Mbtdr Data, I i! 40 Voltage: 208-2301460 jEff; W;m1nal RPM: 3500 Phase: Three phase F.; 1.15 Actual RPM, 3500 Hz., an jEnol.-_ ODP WWSI 7792766535 #439 Page 12/12 �4 MOTOR DRIVE B,'r,>, T P M S Nominal RPM 3600 1:3-a s ed o n F resi-r- Wclerr E*- &B-- d-�b-q, F rrnpt�rrer Dirarnutur. J 0 J 9.0 tat W )W 1 L 12;q r,_Vre POW. 25 so 75 100 125 150 275 3C CAPACITY IN (WA.014C, PER MINUTE 7-& 70 ZZ L.1 LAJ 1AJ 65 L.0 60 0: LLJ "10.0 OL OL - 0 SIELECTWYN CONMTTOWSS 1111!!1 PRL K 200.0 GPM Priming Type: 9 E Total Dynamic Head: 140.0 feat I�A-ot-or Loading. Stand"ard PUMP DESCRIPTION �4 MOTOR DRIVE B,'r,>, T P M S Nominal RPM 3600 1:3-a s ed o n F resi-r- Wclerr E*- &B-- d-�b-q, F rrnpt�rrer Dirarnutur. J 0 J 9.0 tat W )W 1 L 12;q r,_Vre POW. 25 so 75 100 125 150 275 3C CAPACITY IN (WA.014C, PER MINUTE 7-& 70 ZZ L.1 LAJ 1AJ 65 L.0 60 0: LLJ "10.0 OL OL - 0 QUOTED BY - TAS Q UOTED TO. brooks jo-b cliffs, SIELECTWYN CONMTTOWSS Flow: 200.0 GPM Priming Type: Standard Total Dynamic Head: 140.0 feat I�A-ot-or Loading. Stand"ard PUMP DESCRIPTION Pump Model- E32TPMS Priming Type: Stan-dard Impeller Diameter: 6. 1 a a i -n. I-rnp-ial-ler Material; Iron Suction: 2Yz"KPT Dircharge- 2"NPT Shaft Seal; Mechanicar FUMF PERFOH24ANCE Flow: 200-0 GPM Flo.wer- 9_7 E�.H.p ToLal Dynamic Head; 1 40.6 feet Efficiency: 7 3-.4 % Nominal SpL-_ed: 3600 RPM NPSHR; '14.2 feet Shut—Off Head: 154.3 feet Max Flower: T'T_0 Sest Eff; 73.7 (9� 21-4,gr OF"K4 MOTOR Size: 10 HP Enclosure: TEFC voltaye.; CorisulL Catalog/Facto.ry HZ/Phn.se., PRICE/ORDER Ela�RMATIGN Catalog No.., Fo oto ry wcighl:: 200 lbs. QUOTED BY - TAS Q UOTED TO. brooks jo-b cliffs, 1.4 Pump Curve and TDH Calculation for Return Pumps BUNCOMBE COUNTY, NC THE CLIFFS AT HIGH CAROLINA PROJECT #307808 TDH = AH + h, where: AH elevation head h, major pipe losses, utilize Hazen Williams equation with equivalent lengths for fittings hm (4.727 U d 4.17) (Q/c)1.85 where: Q in cfs, L in feet, d in ft. n o user input user input req'd Piping: inal) equals 2.047 inches (11)) Diameter vlwwa 0.1705833 ft. i Q (gpm) AH hm (feet) TDH PSI Velocity 5 173.001 0.34 173.34 75.0 0.51 10 173.00 1.24 174.24 75.4 1.02 Is 173.00 2.63 175.63 76.0 1.53 20 173.00 4.48 177.48 76.8 2.04 22 173.00 5.35 178.36 77.2 2.25 25 173.00 6.78 179.78 77.8 2.55 30 173.001 9.50 182.50 79.0 3.07 35 173.00 12.64 186.64 80.4 3.58 40 173.00 16.19 189.19 81.9 4.09 45 173.00 20.14 193.14 83.6 4.60 173.00 24.47 1 197.471 85.5 5.11 Brooks Engineering Associates, PA P. I of 1 10/21/2008 Will H P Part Number H P Voltage Phase Amps Stages Height 2 9- --9032 0-005 1/2 115 1 12.0 4 80- 5030-0005 1/2 115 10 GPM Models 6 2248�' 5032-0009 1-1/2 230 1 13.1 10 HP� 10 STAGE 314 PUMP PERFORMANCE CURVE 112 230 10GPM 6 22-318' 11/4" NPT DISCHARGE 1 98 120- 400- 1 1 1 31� HP- 12 V2 112 - 360 FAGE 8 1 04 - �Q 1/2 K P� 4 STAGE 1-1/2 9 320 5030-0008 112 ': 280 1 6.0 8 60- 112 HP- 8 STAGE 72- 240- —TO3-0-0009 314 64 1 8.0 12 200- S6- 112 H 6 ST GE 1 24- 0 48- 160- ID 40- 120- 32- 2u ILI 40- 24- 80- 16 40- k_. 0- 8- 10 4 66 60 60 I�B 40 6 8 10 12 14 16 18 5 10 15 20 25 30 GALLONS UTERS 8' JS 24' 3'2 410 48 5'6 64 FLOW PER MINUTE FLOW PER MINUTE 015413 Will H P Part Number H P Voltage Phase Amps Stages Height 2 9- --9032 0-005 1/2 115 1 12.0 4 80- 5030-0005 1/2 115 1 12.0 6 2248�' 5032-0009 1-1/2 230 1 13.1 10 HP� 10 STAGE 314 5030-0006 112 230 1 6.0 6 22-318' 230 1 98 9 —TO -30-0007 V2 115 1 120 8 24-1/8' �Q 1/2 K P� 4 STAGE 1-1/2 230 5030-0008 112 230 1 6.0 8 24-1/8" FN N\\ 24- —TO3-0-0009 314 230 1 8.0 12 28-7/8' Will H P 300- H P 88- Phase Amps 27 GPM Models Height 2 9- --9032 0-005 1/2 115 1 12.0 4 80- WWI PUMP PERFORMANCE CURVE 27 GPM ko^ 240- I 114'NPT DISCHARGE 26-7116' 5032-0009 1-1/2 230 1 13.1 10 HP� 10 STAGE 314 Will H P 300- H P 88- Phase Amps I Stages Height 2 9- --9032 0-005 1/2 115 1 12.0 4 80- 260- 21-1/8' 72 240- foR, 26-7116' 5032-0009 1-1/2 230 1 13.1 10 I 314 ;ac -,PM 0 1 8.0 64- 203- In# 314 HP 1 230 1 98 9 18D 64- 48- 50 4 24-16/16' �Q 1/2 K P� 4 STAGE 1-1/2 230 56- 13.1_ 3 2- 1 D- -.1i V, x FN N\\ 24- 00- — — 112 HP 0G. 5 STAGE 1 24- 0 80---- ID 1 - 2u ILI 40- — W -CNS 0- UTERS 10 4 66 60 60 I�B 40 FLOWPERMINUTE 015046 5 10 15 20 25 30 GALLONS Will H P Part Number H P Voltage Phase Amps I Stages Height 115 --9032 0-005 1/2 115 1 12.0 4 21-118' 5032-0006 1/2 230 1 6.0 4 21-1/8' 5032-0007 314 230 1 8.0 6 24-5116' -T --6658 —1 — 230 1 9.8 7 632 26-7116' 5032-0009 1-1/2 230 1 13.1 10 31 -718 - Will 015414 Part Number H P 19 GPM Models Phase Amps Stages Height 5031-0005 112 115 PUMP PERFORMANCE CURVE 5 21-15116' 19 GPM 112 230 1114" NPT DISCHARGE 5 280 - ---4,1 HP - 9 STAGE 314 80- 1 8.0 72- 240 - 314 HP 1 230 1 98 9 7 STAGE 64- 1 9.8 4 24-16/16' 200 1-1/2 230 56- 13.1_ 48- 16.0 < 40- 120 - 112 HP 32- 5 STAGE 1 24- 0 80---- NA 1 - 40- — 8- 0- 5 10 15 20 25 30 GALLONS LITERS 210 4'0 110 80 100 FLOW PER MINUTE 015414 Part Number H P Voltage Phase Amps Stages Height 5031-0005 112 115 1 12.0 5 21-15116' 5031-0006 112 230 1 6.0 5 21-15/16' 5031-0007 314 230 1 8.0 7 25-1/16' 5031-0008 1 230 1 98 9 28-1/8' 35 GPM Models PUMP PERFORMANCE CURVE 75 35 GPM 2" NPT DISCHARGE 56- ISO- i-ir).4-5siAGE 48- 160- 140--IHP-48 40- 120- W4 HP - 3 STAGE 9 32 - loo 24- So- 112HP-2STAGE 6 is - 40 a- 2()] LLONS lo 1� 4o 10 10 LITERS I 40 80 120 160 200 FLOW PER MINUTE 015044 Part Number H P Voltage Phase Amps Stages Height 5033-0005 112 115 1 120 2 19-7/16' 5033-0006 112 230 1 6.0 2 19-7/16' 5033-0007 314 230 1 8.0 3 22-3116' 5033-0008 1_ 230 1 9.8 4 24-16/16' 5033-0009 1-1/2 230 1 13.1_ 6 29-15116" @ Copyright 2007 Zoeller Co. All rights reserved. BUNCOMBE COUNTY, NC THE CLIFFS AT HIGH CAROLINA PROJECT #307808 TDH = AH + h, where: AH elevation head h, major pipe losses, utilize Hazen Williams equation with equivalent lengths for fittings hm (4.727 U d 4.117) (Q/C)1.85 where: Q in cfs, L in feet, d in ft. no user input user input req'd 'I Piping: Diameter fflinches (!-ominal) equals 2.047 inches (ID) 0.1705833 ft, Q (gpm) 1�s hm (feet) TDH PSI Velocity 6 175.001 2.10 177.10 76.7 0.51 10 175.001 7.59 182.59 79.0 1.02 16 175.00 16.09 191.09 82.7 1.53 20 175.00 27.41 202.41 87.6 2.04 24 176.00 �38.42 213.42 92.4 2.45 25 175.00 41.44 216.44 93.7 2.55 30 175.00 58.09 233.09 100.9 3.07 35 175.001 77.28 252.28 109.2 3.58 40 175.00 98.96 273.96 118.6 4.09 45 175.00 123.08 298.081 129.0 4.60 50 175.00 149.60 1 Brooks Engineering Associates, PA P. I of 1 10/21/2008 10 GPM Models ffi PUMP PERFORMANCE CURVE 10 GPM 1 1/4" NPT DISCHARGE 120 - 400- — - T-1 1 112 - 360 314 HP- 12 STAGE 104 - 96 320- 88 280- 80 V2 P, 8 67AGE 72 240 - 64 5 200, 6 STAGE 112 Hp� 6 6 112 HR� 6 160 40 120- 32 24 le 40- 8 0 0 12 14 16 18 GALLONS LITERS 8' 16 24 j2 �0 �e 66 6� FLOW PER MINUTE 015413 Part Number H P Voltage Phase Amps Stages Height -�-03-0-0005 - 112 115 1 12.0 — 6 — 22-318" -�2-31&- - — R30-0006 --- 112 — 230 — 1 6.0 6 21-1/8' r �030 0-007 —1/2 115 1 — 12.0 — 8 24-1/8" 0008 �0-3-0 — 1/2 — 230 1 — 60 — 8 — 24-1/8' r— _�()30_0009 — 3/4 — 230 1 8.0 12 28-7/8 - c 27 GPM Models H P PUMP PERFORMANCE CURVE Phase W GPM 1 11,4'NPT DISCHARGE ;11 H +c> 1 112 Hp- �12S I 00 1 1 1 x I I wwTF' 72 240- 1 HP- 7 STAGE 220- - STAGE H 209 om HP "70 4B 160 W2 HP- 4 STAGE 120- 2 4 2 2, 1 1 0 2. M 32 106. 80 60 16 40 20- 5 1 1�5 10 15 �0 55 40 GALLCNS 1 140 6C 80 100 UTERS 40 1 20 FLOWPERMINUTE 015045 Part Number H P Voltage Phase Amps Stages Height -�-03-2-0005 12 115 1 19 GPM 4 21-1/8' 8 Fo3-2-0006 1/2 P34 230 1 P12.0 6.0 4 — 21-1/8' r -�0-32--0007 1 230 1 8.0 6 51 24-5/16' --R-31 0008 1 230 1 9.8 7 26-7/16' -T63-2-66og 1-1/2 230 1 1 13.1 1 10 1 31-7/8 015414 Part Number H P 19 GPM Models Phase Amps Stages Height �0-31--0005 PUMP PERFORMANCE CURVE 11-5 1 19 GPM 5 21-15/16' 1W NPT DISCHARGE 112 280 - I HP -I STAGE 1 HP-ISTAOE 80 5 - 72 240 - P 314 P 14HN 2-30 —1 STAGE 7 STAGE 64 1 9.8 --R-31 0008 1 200 - 1 56 9 5 48 ISO - < 40 120 - 1/2 HP 3E a2 5STAGE 24 80- 16 40 - 8 0 5 10 15 20 25 F GALLONS LITERS 1 2'0 40 60 so 10 FLOW PER MINUTE 015414 Part Number H P Voltage Phase Amps Stages Height �0-31--0005 1/2 11-5 1 12.0 5 21-15/16' 5031-0006 112 230 1 6.0 5 - 21-15/16" -E-1/16 --�031 0-007 -5�4- 2-30 —1 8-0 7 1 9.8 --R-31 0008 1 230 1 98 9 5 0 1 1 1 GALLONS I 10 5'0 60 T---T— LITERS 0' �o 80 120 160 200 FLOWPERMINUTE 015044 Part Number 35 GPM Models IHP-48TAGE 40 PUMP PERFORMANCE CURVE Height 35 GPM 120- 2" NPT DISCHARGE 56 180- 2 314 HP - 3 STAG 1-1/24-55�AGE 100- 230 48 160- 1/2HP-2STAC 5033-0007 0 1 1 1 GALLONS I 10 5'0 60 T---T— LITERS 0' �o 80 120 160 200 FLOWPERMINUTE 015044 Part Number 140- IHP-48TAGE 40 Stages Height 5033-0005 120- 116 9 32 2 314 HP - 3 STAG -Z z 100- 230 24 so- 1/2HP-2STAC 5033-0007 314 230 1 8.0 so - 22-&16' 5033-0008 1 M 1 9.8 40 24-15/16' 0 1 1 1 GALLONS I 10 5'0 60 T---T— LITERS 0' �o 80 120 160 200 FLOWPERMINUTE 015044 Part Number H P Voltage Phase Amps Stages Height 5033-0005 112 116 1 12.0 2 19-7116' 5033-0006 1/2 230 1 6.0 2 19-7116' 5033-0007 314 230 1 8.0 3 22-&16' 5033-0008 1 230 1 9.8 4 24-15/16' 5033-0009 1-1/2 . 230 1 13.1 5 29-15/16' @ Copyiright 2007 Zoeller Co. All rights reserved. 1.5 Return Pump Tank Sizing Calculations BEA Project # 307808 TANK SIZING CALCULATIONS Return Flush Pump Tank 1850 gallon Pump Tank Selected Minimum dose (gal) 700 Total Height 63inches Storage (gal/ft) 355.51 Storage (gal/in) 29.63 min pump submergence 26inches min dose volume 23.6 inches space lost due to float spacing 8 inches emergency storage 5.4 inches Emergency Storage (gal) 159.14 Net On/Off PT -298 Length (ft) Width (ft) Height (ft) Gal/ft Volume (gal) Setting (inches) Pump Tank 1 9.83 4.83 5.25 355.51 1866.4 23.63 In/ft. 29.63 F— Brooks Engineering Associates, PA i J P.1 of 1 10/21/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 1A-1 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE j operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unle Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H U.2 2 Total Segment Headloss (ft) = Friction + Elev. I Inputs I Dose Flow �a)j Flush Flow (b)l 0.016 0.014 12.016 12.014 711� I Brooks Engineering Associates, PA p.2 of 3 10120/2008 61 Hydraulic Unit H.U. Elev NEW 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to A Segment Flow Rate (gpm) Line Length (ft) Line Size ID (In)5 3.058 2.778 4 Friction Headloss (ft) 0,306 0.278 Minor Losses (ft) Line Velocity (ft/s) 2.27 2.16 A to J2 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 0.434 0.902 Mq 5 Friction Headloss (ft) 0.043 0.090 Minor Losses (ft) Line Velocity (ft1s) 1.16 1.73 J2 to 1A-SM2 Segment Flow Rate (gpm) Line Length (ft) MW Line Size ID (In)5 1.512 4.770 6 Friction Headloss (ft) 0.151 0.477 Minor Losses (ft) 1.25 2.33 Line Velocity (ft/s) Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 4 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral 4 Win Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Lateral5 Elevation (ft) from Manifold to Bottom Feed Lateral5 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 0.700 3.213 9 Total Segment Headloss (ft) = Friction + Elev. -26.300 -30.787 Return Force Main Friction Losses rllffl� 1A-RM2 to J2 [ Segment Flow Rate (gpm) Willi Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve 10.131 r Friction Headloss (ft) 2.54 Line Velocity (ft1s) J2 to A Segment Flow Rate (gpm) Line Length (ft) 49 11 0 Line Size ID (in.) Minor Losses (ft) 1.853 Friction Headloss; (ft) Line Velocity (ft/s) 2.03 A to WWTF Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) W9 Minor Losses (ft) 3.782 Friction Headloss (ft) 2.03 Line Velocity (ft/s) ido t Return Line Elevation Delta Elevation (ft) from Return Manifold to VVWTF EMEM 711� I Brooks Engineering Associates, PA p.2 of 3 10120/2008 61 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 1A-1 Feet 274.2 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 203.5 88. F— Low Pressure Check: P at Min. Flush Flow at Return Manifold 296.5 128.4 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 412.8 178.7 Flush Pressure at backwash tank for Min. Flush Rate 452.4 195.8 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 274.2 PSI 51.2 Pressure at manifold before PRV 468.5 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 164.3 66.5 PRV setting utilized 127.1 W,10 Low Pressure Check: P at Min. Flush Flow at Return Manifold 39.1 16.9 Flush Pressure at WWTF for Min. Flush Rate 113.3 49.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 146.4 63.4 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 I N PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engine i's Notes& Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4, 7) (Q/c)1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 8 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. A E I th Re uired Flush ate plus a Dose low Rate 0 -1 K2 leg1A-2 No. L. Eali . La ' s 1 15 1 . Tubin : 15D in) 0.79 mitters h E tt 0.62 Emitter S acin it 'd Flush Rate (gpm)': Total Foota a: 1 6908 Deskin Flow (9pm): I UO.b'd Application Flow �gprr): 35.7 - Min. Desig Scour Vel. (itts) 2.0 1�ng ID (in) 0.787 Residual Flow for Scour (gp 2.30 _ 'd Flush Rate (gpm)': 70.2 Supply Manifold EleV. lA-SMl Return Manifold E Run IA-RMl Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow ,_�7 1 Pnnth ft - '-- - - 1 1 121 1.3 484 2.5 4.8 2 121 1.3 2 3 120 1.2 478 2.5 4.8 4 119 1.2 3 5 118 1.2 472 2.4 4.7 6 118 11.2 4 7 117 1.2 466 2.4 4.7 8 116 1.2 5 9 116 1.2 462 2.4 4.7 10 115 1.2 6 11 115 1.2 458 2.4 4.7 12 114 1.2 7 13 113 1.2 448 2.3 4.6 14 ill 1.1 8 15 108 1.1 434 2.2 4.5 16 109 1.1 9 17 110 1.1 442 2.3 4.6 18 Ill 1.1 10 19 114 1.2 462 2.4 4.7 20 117 1.2 11 21 119 1.2 480 2.5 4.8 22 121 1.3 12 23 123 1.3 490 2.5 4.8 24 122 1.3 13 25. 122 1.3 488 2.5 4.8 26 122 1.3 14 27 104 1.1 418 2.2 4.5 28 105 1.1 15 29 106 1.1 426 2.2 4.5 30 107 1.1 - - RQnR :14b4 50.1 35.7 70.2 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 n 3.782 Friction Headloss (ft) 2.03 Line Velocity Ws) Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF P"! Brooks Engineering Associates, PA p.2 of 3 10/20/2008 �maii I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE IA -2 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT In LINE 1 —Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unie Line length (ft) from P.T. to H.U.5 M" Line Size ID (in) Friction Headloss (ft) from Pump to H.U.2 0.016 0.014 2 Total Segment Headloss (ft) Friction + Elev. 12.016 12.014 no, Hydraulic Unit H.U. Elev [ISM 3 Headloss from H.0 (ft.)3 RaffifflEMEMEW Supply Force Main Friction Losses H.U. to A Segment Flow Rate (gpm) Line Length (ft) MW=2.778 Line Size ID (In)a 4, 4 Friction Headloss (ft) 0.306 0.278 Minor Losses (ft) 2.27 2.16 Line Velocity (ftts) A to J2 Segment Flow Rate Wpm) Line Length (ft) Line Size ID 0n)5 5 Friction Headloss (ft) 0.434 0.902 no� Minor Losses (ft) 0.043 0.090 Line Velocity (ftfs) 1.16 1.73 J2 to I A-SM1 Segment Flow Rate (gPm) Line Length (ft) Line Size ID (in)5 1.078 3.426 6 Friction Headloss (ft) 0.108 0.343 Minor Losses (ft) 1.92 3.58 Line Velocity (ft/s) Supply Force Main Elevation Delta 82 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 4 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Latera15 Elevation (ft) from Manifold to Bottom Feed Lateral5 Line Size ID (1n)5 Bottom Feed Lateral2 Friction Headloss (ft) from Manifold to 0.933 3.504 9 Total Segment Headloss (ft) = Friction + Elev. -42.067 -46.496 Return Force Main Friction Losses 1A-RM1 to J2 —NMffljj7jM Segment Flow Rate Wpm) Line Length (ft) big Line Size ID (in.) W6 Minor Losses from Check Valve 0.438 FNction Headloss (ft) 1.50 Line Velocity (ft1s) J2 to J1 MEMMEN Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) 1,853 FNction Headloss (ft) 3.66 Willi Line Velocity (ft/s) if to WWTF MENEM Segment Flow Rate (gpm) I'll Line Length (ft) Line Size ID (in.) KA; -,I OSSeS (ftl n 3.782 Friction Headloss (ft) 2.03 Line Velocity Ws) Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF P"! Brooks Engineering Associates, PA p.2 of 3 10/20/2008 �maii I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 1A-2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 181.1 78.4 Low Pressure Check: P at Min. Flush Flow at Return Manifold 318.9 138.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 429.0 185.7 Flush Pressure at backwash tank for Min. Flush Rate 476.4 206.2 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 290.4 51.2 Pressure at manifold before PRV 469.0 117.7 66.5 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 PRV setting utilized 104.0 37.0 16.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold Flush Pressure at VVWTF for Min. Flush Rate 112.9 48.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow llq n 60.^ Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineers Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4.87) (Q/ )1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d C 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. A Enuals the Reauired Flush ate [DAus a Dose low Rate Zone: No. Laterals: 13 Tubing: ID (in) 0.79 Emitters (gph): alA-3 0.62 Emitter Spacing ft 2 Total Footage: 7736 Design Flow (gpm 39.97 Supply Manifold Elev. 1A-SM1 Return Manifold E 1A-RM1 Run Run Lateral Run Elev. Len th 1 1 69.9 2 3 4 2 5 6 7 608 8 5.4 3 9 10 11 12 4 13 14 5 15 586 16 5.3 6 17 18 7 19 20 8 21 22 9 23 606 24 5.4 10 25 26 11 27 610 28 5.5 12 29 30 13 31 604 72 74 78 79 70 73 82 81 68 es 76 153 150 155 150 153 149 148 145 148 147 147 144 148 150 150 150 149 148 146 144 3868 Ai3olication Flow (gPm): 400 Min. Design Scour Val. (ft/s) 2.0 Tubing ID (in) . - - 0.787 Residual Flow for ScourTg­p­m)�' 2.30 Req'd Flush Rate (gpm)8: 69.9 Dose Flow (gprn� Lateral Length.(ft) Lateral Dose (gpm) Min. Flush Flow (9prn) 0.8 594 3.1 5.4 0.7 0.8 0.8 0.8 608 3.1 5.4 0.7 0.8 0.8 0.8 586 3.0 5.3 0.7 0.7 0.8 1.6 606 3.1 5.4 1.6 1.6 610 3.2 5.5 1.6 1.6 604 3.1 5.4 1.5 1.5 586 3.0 5.3 1.5 1.5 590 3.0 5.3 1.5 1.5 582 3.0 5.3 1.5 1.5 596 3.1 5.4 1.6 1.6 600 3.1 5.4 1.6 1.5 594 3.1 5.4 1.5 1.5 580 3.0 5.3 Brooks Engineering Associates, PA p.1 of 3 10120/2008 I nor 4.192 Fdcflon Headloss (ft) 2.15 Line Velocity (ft1s) Return Line Elevation Delta Elevation (ft) from Return Manifold to WVVrF T11"I Brooks Engineering Associates, PA p.2 of 3 10/20/2008 601 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 1 B-6 i TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT inputs I Dose Flow (a)l �Flush FIOW�b) LINE 1 Operating Head from Pump Curve' MENNESEEMEM Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unie Line length (ft) from P.T. to H.U.5 Line Size ID (in) Friction Headloss (ft) from Pump to H.U.2 0.016 0.014 2 Total Segment Headloss (ft) Friction + Elev. 12.016 12.014 Hydraulic Unit H.U. Elev MEW 3 Headloss from H -U (ft.)3 Supply Force Main Friction Losses H.U. to A Segment Flow Rate WPM) Line Length (ft) Line Size ID 0n)' 3.058 2.778 4 Friction Headloss (ft) 0.306 0.278 Minor Losses (ft) 2.27 2.16 Line Velocity (ft1s) A to J3 Segment Flow Rate (gPm) Line Length (ft) Line Size ID Cin)5 0.081 0.278 5 Friction Headloss (ft) 0.008 0.028 Minor Losses (ft) 1.11 2.16 Line Velocity ON J3 to 1 B -SM 1 Segment Flow Rate (gpm) Line Length (ft) NW=4 ff" Line Size ID (in)5 454 6 Friction Headloss (ft) 0.142 0.445 Minor Losses (ft) 1.75 3.24 Line Velocity (ft1s) Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft) in drip system from supply manifold to return manifold 4 Feed Manifold to Bottom Lateral I Igo Headloss (ft) in manifold4 Line Length (ft) from Supply Manifold to Bottom Feed Laterd Elevation (ft) from Manifold to Bottom Feed Laterals PIN Line Size ID Cin)5 12 Friction Headloss (ft) from Manifold to Bottom Feed Latera 1.491 4.759 9 Total Segment Headloss (ft) = Friction + Elev. -49.509 -53.241 Return Force Main Friction Losses M" 1 B -RM I to J3 3475 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve 3.072 Friction Headloss (ft) -0.38 Line Velocity (ftts) J3 to J1 Segment Flow Rate (gpm) Line Length (ft) 100 Line Size ID (in.) Minor Losses (ft) 0.419 Friction Headloss (ft) 2.15 Line Velocity (fits) ii to WW-rF Segment Flow Rate (gpm) n" Line Length (ft) 1000 L,-� Line Size ID (in.) -1 1 .. as if+% nor 4.192 Fdcflon Headloss (ft) 2.15 Line Velocity (ft1s) Return Line Elevation Delta Elevation (ft) from Return Manifold to WVVrF T11"I Brooks Engineering Associates, PA p.2 of 3 10/20/2008 601 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARYZONEIB-5 Feet Psi Total Headloss at Min. Flush Rate at Return Manifold 190.5 82. Low Pressure Check: P at Min. Flush Flow at Return Manifold 309.5 134.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 448.5 194.1 Flush Pressure at backwash tank for Min. Flush Rate 445.5 192.9 PRV NEEDED? YES ZONE SUMMARY W1 PRV Pressure loss required (high pressure - 60 psi) Feet 309.9 Psi 61.2 Pressure at manifold before PRV 469.0 117.7 PRY setting calculated (pressure at manifold - pressure loss required) 154.3 66.15 PRV setting utilized 104.0 16.0 �45�O 6.9 Low Pressure Check: P at Min. Flush Flow at Return Manifold Flush Pressure at VVWTF for Min, Flush Rate 82.3 35.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 146.5 63.4 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Ennineer's Notes..& Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 fl/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 487 (Q/C)1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. A Enuals the Reauired Flush ate lus he Dose low Rate Zone: 1 B-6 No. Laterals: 10 Tubing: ID (in) 0.79 Emitters (gph): 0.62 Emitter Spacing (ft) Req'd Flush Rate (gPm)a: Total Footage: 51 k22 Design Flow (gpm�)�t216(.95 0.2 Supply Manifold E�ev. IB-SM2 Return Manifold E a I B-RM2 Run Run 2 3 4 5 6 7 8 2 9 10 11 12 3 13 14 4 15 16 5 17 18 6 19 20 7 21 22 8 23 24 9 25 26 10 27 11 15 19 24 31 49 55 62 62 69 79 81 102 108 113 118 123 129 131 133 136 138 140 143 145 146 83 Application Flow TV: 25.9 Min. Desi n Scour Vel . (ft/s) 2.0 Tubing ID (in) --7-776- 0.787 Residual Fl for Scour (gpm) 2.30 Req'd Flush Rate (gPm)a: 48.9 Dose Lateral Lateral Min. Flush w (gprn� Length (ft) Dose (gpm) Flow (gpm) 0.1 532 2.7 5.0 0.2 0.2 0.2 0.3 0.5 0.6 0.6 0.6 582 3.0 5.3 0.7 0.8 0.8 1.1 420 2.2 4.5 1.1 1.2 462 2.4 4.7 1.2 1.3 504 2.6 4.9 1.3 1.4 528 2.7 5.0 1.4 1.4 548 2.8 5.1 1.4 1.4 566 2.9 5.2 1.5 1.5 582 3.0 5.3 1.5 0.9 298 1.5 3.8 0.7 25.9 25.9 48.9 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 1B- 6 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT Inputs [Dose Flow (a)jF1u.=h =Flow(b) LINE I Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unie Line length (ft) from P.T. to H -U-5 Line Size ID (in) Friction Headloss (ft) from Pump to H.U.2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev MIM 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses 0.016 0.014 12.016 12.014 H.U. to A w1affiffilmn Segment Flow Rate (gPm) Line Length (ft) MW Line Size ID (In)" 3.058 2.778 4 Friction Headloss (ft) 0.306 0.278 Minor Losses (ft) 2.27 2.16 Line Velocity (ft/s) A to J4 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 0.597 2.042 5 Friction Headloss (ft) 0.060 0.204 Minor Losses (ft) 1.11 2.16 Line Velocity (ft/s) J4 to 1 B-SM2 25.9 Segment Flow Rate (gpm) Line Length (ft) Line Size ID OnP 0.324 1.047 6 Friction Headloss (ft) 0.032 0.105 Minor Losses (ft) 1.13 2.13 Line Velocity (fUs) Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 4 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Elm Feed Manifold to Bottom Lateral Headloss (ft) in manifold4 Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed LateraI5 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera 12 0.280 1.519 9 Total Segment Headloss (ft) = Friction + Elev. -24.720 -30.481 Return Force Main Friction Losses I B-RM2 to J4 Segment Flow Rate (gpm) Line Length (ft) 185 Line Size ID (in.) Minor Losses from Check Valve - - 5.983 Friction Headloss (ft) 3.63 Line Velocity (flfs) J4 to A Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) 1 178 Friction Headloss (ft) , 1.28 Line Velocity (ft1s) A to VVWTF Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) �A; I -sses fff% nor 4.192 Friction Headloss (ft) 2.15 Line Velocity Ws) Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE I B-6 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 195.9 84.8 Low Pressure Check: P at Min. Flush Flow at Return Manifold 304.1 131.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 412.3 178.5 Flush Pressure at backwash tank for Min. Flush Rate A64.3 201.0 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 273.7 Psi 51.2 Pressure at manifold before PRV 469.6 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 32.5 14.1 Flush Pressure at WWTF for Min. Flush Rate 111.1 48.1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 133.2 57.7 Brooks Engineering Associates, PA p.3 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Enaineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in, the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4 (Q C)i 85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. A Eauals the Reauired Flush ate plus the Dose Flow Rate Izone: T 3A-7 No L8 aL 18 :�.t __ ,!.eL in ID �,n) 0.79 Emitters (gph): 0.62 ErnitterS acin Ren'd Flush Rate (.QPm)': Total Footage: 9620 Desion Flow (gipm): 49.70 Supply Manifold Elev. 3A-SM1 Return Manifold 3A-RM1 Run Run f. -I Pm Flpv� Lenath # 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Ap lication Flow (gpm): 49.7 Min. Design Scour VeL 2.0 Tubing ID (in) 0.787 a Residual Flow for Scour (gpm 2.30 Ren'd Flush Rate (.QPm)': 91.1 Dose Lateral Lateral Min. Flush 2 3 4 5 6 "M 7 8 1 Vt," 9 10 12 13 14 16 5 41 ""@Y' I 17 18 19 6 20 ff'W" 21 'R- -E"'i 22 23 24 U 25 A, 1, 26 'X; 27 28 N 29 30 31 32 33 34 35 36 37 38 39 AT Z�' 378 432 448 462 476 494 540 552 558 564 580 588 594 600 600 600 600 2.0 2.2 2.3 2.4 2.5 2A 2.8 2.9 2.9 2.9 3.0 3.0 3.1 3.1 3.1 3.1 3.1 4.3 4.6 4.6 4.7 4.8 4.9 5.1 5.2 5.2 5.2 5.3 5.3 5.4 5.4 5.4 5.4 5.4 Brooks Engineering Associates, PA p.1 of 3 11/18/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 3A-7 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 211.2 91.4 Low Pressure Check: P at Min. Flush Flow at Return Manifold 287.8 124.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 409.1 177.1 Flush Pressure at backwash tank for Min. Flush Rate 470.1 203.5 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 270.5 PSI 51.2 Pressure at manifold before PRV 469.9 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 34.5 14.9 Flush Pressure at WWTF for Min. Flush Rate 1 21 ' 5 526 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 143.6 62*i_j Brooks Engineering Associates, PA p.3 of 3 11/18/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4.17) (Q/C)1.81 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Eauals the Required Flush Rate plus the Dose Flow Rate Zone: 3A-8 No. Laterals: 8 Tubing: ID (in) 0.79 Emitters (gph): 0.62 Emitter Spacing (ft) 2 Total Footage: 4148 Design Flow (gpm): 21.43 Application Flow (gpm): Min. Design Scour Val. (ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scou�_(_gpmr 2.30 Req'd Flush Rate (gpm)6: Supply Manifold E ev. 2ev. 3A -SMI Return Manifold 3A -RM 1 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow (gpM)7 Length (ft) Dose(gpm) Flow (gpm)8 1 1 16 0.2 510 2.6 4.9 2 17 0.2 3 19 0.2 4 21 0.2 6 24 0.2 6 26 0.3 7 29 0.3 8 311 0.3 9 34 0.4 10 39 0.4 2 11 41 0.4 598 3.1 5.4 12 45 0.5 13 100 1.0 14 113 1.2 3 15 127 1.3 512 2.6 4.9 16 129 1.3 4 17 128 1.3 508 2.6 4.9 18 126 1.3 5 19 124 1.3 494 2.6 4.9 20 123 1.3 6 21 122 1.3 488 2.5 4.8 22 122 1.3 7 23 120 1.2 450 2.3 4.6 24 105 1.1 8 25 87 0.9 588 3.0 5.3 26 79 0.8 27 60 0.6 28 68 0.7 4148 2074 21.4 21.4 39.8 Brooks Engineering Associates, PA P.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 3A-8 Zbl.o 01. Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 218.2 94.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 280.8 121.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 400.1 173.2 Flush Pressure at backwash tank for Min. Flush Rate 463.1 200.5 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) Zbl.o 01. Pressure at manifold before PRV 469.9 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154�3 PRV setting utilized 115.5 -50.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 27.5 11.9 Flush Pressure at WWTF for Min. Flush Rate 114.5 49.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 134.7--- 58.3 Brooks Engineering Associates, PA p.3 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4.17) (Q/C)1-111 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 1113-9 No. Laterals: 3 Tubing: ID (in) 0.79 Emitters (gph): 0.62 Emitter Spacing (ft) 2 Total Footage: 1358 Design Flow (glarn): 7.02 Supply Manifold Elev. 1 B-SM3 Return Manifold E 1 B-RM3 Run Run Lateral Run Elev. Lenath 1 1 �.q 13.9 2 3 4 2 5 6 3 7 470 8 4.7 9 10 Application Flow (gpm): 7.0 Min. Design Scour Val. (ft1s) 2.0 Tubing ID (in) 0.787 a2.3 Flow for Sc� 0 .Residual Req'd Flush Rate (gpm)': �.q 13.9 Dose mitters Flow (gpm)7 Lateral Length (ft) Lateral Dose (gpm) Min. Flush Flow (9prr) I 1 0.1 398 2.1 4.4 16 0.2 89 0.9 83 0.9 82 0.8 470 2.4 4.7 153 1.6 70 0.7 490 2.5 4.8 67 0.7 58 0.6 50 0.5 7.0 13.9 Brooks Engineering Associates, PA P. 1 of 3 10120/2008 -Aj I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM F" ZONE 1113-9 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE Inputs I Dose Flow fall Flush Flow (b) 1 Operating Head from Pump Curve' JW Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic UnIt5 Line length (ft) from P.T. to H.U.' M Line Size ID (in) Friction Headloss (ft) from Pump to H U.2 0.016 0.014 2 Total Segment Headloss (ft) Friction + Elev. 12.016 12.014 Hydraulic Unit H.U. Elev EMM 3 Headloss from H.0 (%)3 Supply Force Main Friction Losses H.U. to J3 Segment Flow Rate (gpm) 01MEMMEM Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 3,373 3.056 Minor Losses (ft) 0.337 0.306 Line Velocity (ft/s) 2.27 2.16 J3toJ4 Segment Flow Rate (gpm) EMMEMEINNEM Line Length (ft) Line Size ID (in)s 5 Friction Headloss (ft) 0.503 0.620 Minor Losses (ft) 0.060 0,062 Line Velocity (ft/s) 1.11 1.24 J4 to 1 B-SM3 Segment Flow Rate (gpm) Line Length (ft) Line Size I D (in)s 6 Friction Headloss (ft) 0.071 0.231 Minor Losses (ft) 0.007 0.023 Line Velocity (ft/s) 1.01 1.91 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold 4 Feed Manifold to Bottom Lateral 4 1 J4 Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterar Elevation (ft) from Manifold to Bottom Feed LateraI5 Line Size ID (Inf Friction Headloss (ft) from Manifold to Bottom Feed LateraI2 0.769 2.642 9 Total Segment Headloss (ft) = Friction + Elev. -18.231 -23.458 Return Force Main Friction Losses Fig 1 B-RM3 to J4 Segment Flow Rate (gpm) 61 Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 0.394 Line Velocity (ft1s) 0.66 J4 to A Segment Flow Rate (gpm) milmim Line Length (ft) Line Size ID (in.) ! Minor Losses (ft) A Friction Headloss (ft) 0.993 Line Velocity (ft/s) 1.28 J I to WWTF Segment Flow Rate (gpm) Line Length (ft) A Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.611 Line Velocity (ft/s) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF "I Brooks Engineering Associates, PA p.2 of 3 10/20/2008 1 Ldiii PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 1 B-9 PSI Ti.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 142.9 61.9 Low Pressure Check: P at Min. Flush Flow at Return Manifold 357.1 154.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 441.9 191.3 Flush Pressure at backwash tank for Min. Flush Rate 450.7 195.1 PRV NEEDED? YES ZONE SUMMARY W1 PRV Feet Pressure loss required (high pressure - 60 psi) 303.3 PSI Ti.2 Pressure at manifold before PRV 469.6 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66:5 PRV setting utilized 127.1 5&0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 59.1 25.6 Flush Pressure at WVVTF for Min. Flush Rate 107.1 46.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 138.3 59.9 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4-87) (Q/C)1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. A Enuals the Reouired Flush Rate plus the Dose Flow Rate Zone: No. Laterals: Design Sco6(rVel. (fVs) Tubing: ID (in) 0.79 Emitters (gph): ;ffi4 0.62 Emitter Spacing ft 2 Total Footage: 1992 Design Flow (gp m 10. 9 10.29 ication Flow pm): 10.3 Design Sco6(rVel. (fVs) 2.0 Tubing ID (in) - 0,787 Residual Flow for Scour (opm)' 2.30 Req'd Flush Rate (gpmf.. 19.5 Supply Manifold Elev. I B-SM3 Return Manifold E Run I B-RM3 Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow (gpM)7 Length (ft) Dose (gpm) Flow (gpm) 1 11 73 0.8 604 3.1 5.4 12 73 0.8 13 76 0.8 14 80 0.8 2 15 74 0.8 600 3.1 5.4 16 72 0.7 17 73 0.8 18 81 0.8 3 19 96 1.0 386 2.0 4.3 20 97 1.0 4 21 99 1.0 402 2.1 4.4 22 102 1.1 1 nnq oar in.14 10.3 19.5 Brooks Engineering Associates, PA p.1 of 3 11118/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE IB -10 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit' Line length (ft) from P.T. to H.U.5 Line Size ID (in) Friction Headloss (ft) from Pump to H.U.2 2 Total Segment Headloss (ft) = Friction + Elev. 0.016 0.014 12.016 12.014 p.2 of 3 Brooks Engineering Associates, PA 11/18/2008 Hydraulic Unit H.U. Elev ME= 3 Headloss from H. U (ft.)3 Supply Force Main Friction Losses H.U. to J3 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in )5 3.373 3.056 4 Friction Headloss (ft) 0.337 0.306 Minor Losses (ft) 2.27 2.16 Line Velocity (ft/s) J3 to J4 Segment Flow Rate (gpm) Allu Line Length (ft) Line Size I D (in)s 0.503 0.620 ram 5 Friction Headloss (ft) 0.050 0.062 Minor Losses (ft) 1.11 1.24 Line Velocity (ft/s) J4 to 1 B-SM3 Segment Flow Rate (gpm) Line Length (ft) MW Line Size ID (in)5 6 Friction Headloss (ft) Minor Losses (ft) 0.071 0.007 0.231 0.023 1.01 1.91 Line Velocity (ft/s) r17 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 4 8 Total Headloss (ft.) in drip system from supply manifold to return manifold MINEEMEWEE Feed Manifold to Bottom Lateral Headloss (ft) in manifold' Line Length (ft) from Supply Manifold to Bottom Feed Latera 15 Elevation (ft) from Manifold to Bottom Feed Lateral' Line Size ID (in)5 2 Friction Headloss (ft) from Manifold to Bottom Feed Lateral 0.533 2.117 9 Total Segment Headloss (ft) = Friction + Elev. -10.467 -15.883 Return Force Main Friction Losses 1 B-RM3 to J4 Segment Flow Rate (gpm) Line Length (ft) 50 Line Size I D (in.) wwr�� Minor Losses from Check Valve 0.394 Friction Headloss (ft) 0.88 Line Velocity (ft/s) J4 to A Segment Flow Rate (gpm) Line Length (ft) 620 Line Size ID (in.) MW Minor Losses (ft) 0.993 Friction Headloss (ft) 1.28 Line Velocity (ft/s) A to WWTF �1 Segment Flow Rate (gpm) Line Length (ft) Willi Line Size ID (in.) WC Minor Losses (ft) 4 6`1 Friction Headloss (ft) 2.15 Line Velo(:ity (ft/s) : WIN i Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF p.2 of 3 Brooks Engineering Associates, PA 11/18/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 1B-10 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 162.9 70.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 337.1 145.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 434.1 187.9 Flush Pressure at backwash tank for Min. Flush Rate 430.7 186.5 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) ztl .0 . I.. Pressure at manifold before PRV 469.6 154.3 117.7 66.5 PRV setting calculated (pressure at manifold - pressure loss required) PRV setting utilized 127.1 39.1 16.9 Low Pressure Check: P at Min. Flush Flow at Return Manifold Flush Pressure at WWTF for Min. Flush Rate 87.1 37.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 130.5 56.5 Brooks Engineering Associates, PA p.3 of 3 11/18/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4-87) (QIC)1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. R E I th Re uired Flush Rate plus the Dose Flow Rate one'- 2A-12 L-Lf� No. Laie-ral;_.. L s' 15 ID in Tubin : ID 'n 0.79 h Emitters h 0 0.62 . S a_n ft Emitter S acin 2 ota a Total Foote a: 7962 Design Flow (gpm): '+ 1. 1-+ Supply Manffold E ev. ev. I= 2A-SMl Return Manifold 2 2A-RM1 Run Run Lateral Run Elev. L th I I Nia 2 9 4 5 6 7 8 9 10 11 12 13 14 15 2 3 4 7 8 9 10 11 12 13 14 15 16 17 is 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 7 9 11 14 18 48 53 59 64 66 68 70 71 74 73 77 72 72 74 80 96 100 104 108 ill 115 119 123 127 132 135 139 143 147 152 150 150 150 150 150 150 Applicatio Flow (9pn1): 41.1 - Min. Design Scour Val. (ft/s) Z�u Tubing ID (in) 0.787 Residual Flow for Scour (�p_mf 2.30 Rea'd Flush Rate (gpm)5: - 75.6 Dose Lateral N (gpM)7 Length. 0.1 438 0.1 0.1 0.1 0.2 0.5 0.5 0.6 0.7 536 0.7 0.7 0.7 0.7 590 0.8 0.8 0.8 0.7 596 0.7 0.8 0.8 1.0 392 1.0 1.1 424 1.1 1.1 452 1.2 1.2 484 1.3 1.3 518 1.4 1.4 548 1.4 1.5 680 1.5 1.6 604 1.6 1.6 600 1.6 1.6 600 1.6 1.6 600 Lateral Min. Flush 2.8 5.1 3.0 5.3 3.1 6.4 2.0 4.3 2.2 4.5 2.3 4.6 2.5 4.8 2.7 5.0 2.8 5.1 3.0 5.3 3.1 5.4 3.1 5.4 3.1 5.4 3.1 5.4 -41.1 75.( Brooks Engineering Associates, PA p.1 of 3 10120/2008 0 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 2B-14 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unle Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H U.2 2 Total Segment Headloss (ft) = Friction + Elev. I Inputs Lb �—se Flow ja)1 Flush Flow JbI, 0.017 0.016 12.017 12.016 Hydraulic Unit H.U. Elev REM 3 Headloss from H.0 (ft.)3 Ruffiliffimmom Supply Force Main Friction Losses H.U. to A Segment Flow Rate (gpm) Line Length (ft) Line Size ID Qn)r' 4 Friction Headloss (ft) 3.301 3.178 Minor Losses (ft) 0.330 0.318 Line Velocity (ft1s) 2.37 2.32 J1 to J7 Segment Flow Rate (gpm) Line Length (it) Line Size ID (in)6 6.919 6.662 5 Friction Headloss (ft) 0.692 0.666 Minor Losses (ft) Line Velocity (ft/s) 2.37 2.32 J7 to 2B-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (In)5 6 Friction Headloss (ft) 0.342 1.303 Minor Losses (11) 0.034 0.130 Line Velocity (ft/s) 1.12 2.32 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 4 a Total Headloss (ft.) in drip system from supply manifold to return manifold now Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Lateral, Elevation (ft) from Manifold to Bottom Feed Lateral5 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral� 1.578 4.726 9 Total Segment Headloss (ft) = Friction + Elev. -22.422 -26.274 Return Force Main Friction Losses 2B-RM1 to J7 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 1,551 Line Velocity (ft/s) 2.03 J7 to A Segment Flow Rate (gpm) Line Length (ft) 20 1 96 Line Size ID (in.) Minor Losses (ft) 7.928 Friction Headloss (ft) Line Velocity (ft/s) 2.03 it to WWTF Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) Wjif��� Minor Losses (ft) - 3.782 Friction Headloss (ft) Line Velocity (ft/s) 2.03 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 i� 10/20/2008 j, PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 2A-16 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Inouts I Dose Flow I operating Head from Pump Curve' I is ft�� 4da Pump Tank to H. U. Elevation (ft) from Pump to Hydraulic Unle Line length (ft) from P.T. to H.U.5 Line Size ID (in) 2 Friction Headloss (ft) from Pump to H.U. 0.017 0.016 2 Total Segment Headloss (ft) Friction + Elev. 12.017 12.016 Hydraulic Unit H.U. Elev MINN liffim 3 Headloss from H, U (ft.)3 Supply Force Main Friction Losses H.U. to J1 Segment Flow Rate (gpm) Line Length (ft) Me= Line Size ID (in)' 4 Friction Headloss (ft) 0.330 0.311 Minor Losses (ft) 2.37 2.29 Line Velocity (fVs) A to J7 Segment Flow Rate (gpm) REWHEEMEEM Line Length (ft) Line Size ID 0n)' 6.919 6.512 5 Friction Headloss (ft) 0.692 0.651 Minor Losses (ft) 2.37 2.29 pk%� Line Velocity (fVs) J7 to 2A-SM1 'rAj Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in) 0.165 0.513 6 Friction Headloss (ft) 0.017 0,051 Minor Losses (ft) 1.24 2.29 Line Velocity (ftfs) Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 4 8 Total Headloss (ft.) in drip system from supply manifold to return manifold MENIMEM Feed Manifold to Bottom Lateral Headloss (ft) in manifold' Line Length (ft) from Supply Manifold to Bottom Feed Lateral, Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 0.648 3.049 9 Total Segment Headloss (ft) Friction + Elev. -51.352 -55.951 Return Force Main Friction Losses 2A-RM1 to J7 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve 0.692 Friction Headloss (ft) 2.15 Line Velocity (fUs) J7 to A Segment Flow Rate (Qpm) ONIMM Line Length (ft) 68d Line Size ID (in.) Minor Losses (ft) 8.786 Friction Headloss (ft) 2.15 Line Velocity (ft1s) J1 to WWTF Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) Minor Losses (ft) 4,192 Friction Headloss (ft) 2.15 Line Velocity (fVs) Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF 10/20/2008 Brooks Engineering Assodlates, PA p.2 of 3 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARYZONE -15 set PSI Total Headloss at Min. Flush Rate at Return Manifold 275.1 119.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 223.9 96.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 361.9 156.7 Flush Pressure at backwash tank for Min. Flush Rate 518.2 224.3 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet Psi Pressure loss required (high pressure - 60 psi) 223.3 51.2 Pressure at manifold before PRV 461.6 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 -"",�45.0' , Low Pressure Check: P at Min. Flush Flow at Return Manifold 15.0 6.6 Flush Pressure at WWTF for Min. Flush Rate 159.3 69.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 1482 64.2 Brooks Engineering Associates, PA P.3 of 3 10/20/2008 I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: Lateral all emitters operate between 7 and 70 psi, Len th # Emitters Flow (-N? --th Ift) there is sufficient pressure to return the flush to the Hydraulic Unit, 1 a flushing flow velocity of 2 ft/s is provided. 89 2. The source of either the calculations or the data inputs are indicated In the footnotes. 368 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. 95 (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 4,87) (QIC)I." 3 From Wastewater Systems Inc. Data 95 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 2.0 5 From Engineering Drawings 4 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 3 8 E ual, the R uired Flush Rate pWhe Dose low Rate 1.0 408 2.1 213-16 plication Flow (opm): 67. 1.1 L. 26 Min. Design Scour Val. (fVs) 7 110 1.1 Tubln 11 in 0.79 2.3 -ijbing ID (in) 8 114 Emitters h 0.62 WF S !2,�ivall' afor Scour (gionn) 5 9 Emitter S adin ft 2 1.2 (gpin)' 2.4 4.7 Total Foote a: 13132 119 1.2 , M 67.85 Desi n -1 6 11 122 Supply Manifold Elev. I= 2B-SM1 494 2.6 Return Manifold Elev. 2B-RM1 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow (-N? --th Ift) - 1 1 89 0.9 368 1.9 4.2 2 95 1.0 2 3 95 1.0 384 2.0 4.3 4 97 1.0 3 5 100 1.0 408 2.1 4.4 6 104 1.1 4 7 110 1.1 448 2.3 4.6 8 114 1.2 5 9 116 1.2 470 2.4 4.7 10 119 1.2 6 11 122 1.3 494 2.6 4.9 12 125 1.3 7 13 128 1.3 516 2.7 5.0 14 130 1.3 8 15 133 1.4 536 2.8 5.1 1 6 135 1.4 9 17 139 1.4 562 2.9 5.2 18 142 1.5 10 19 144 1.5 582 3.0 5.3 20 147 1.5 I 1 21 149 1.5 600 3.1 5.4 22 151 1.6 12 23 151 1.6 606 3.1 5.4 24 152 1.6 13 25 152 1.6 608 3.1 5.4 26 152 1.6 14 27 150 1.6 598 3.1 5.4 28 149 1.5 15 29 W '1.5 584 3.0 5.3 30 145 1.5 16 31 143 '1.5 568 2.9 5.2 32 141 1.5 17 33 139 1.4 546 2.8 5.1 34 134 1.4 18 35 132 1.4 522 2.7 5.0 36 129 1.3 19 37 125 1.3 496 2.6 4.9 38 123 1.3 20 39 120 1.2 474 2.4 4.7 40 117 1.2 21 41 114 1.2 452 2.3 4.6 42 112 1.2 22 43 110 1.1 434 2.2 4.5 44 107 1.1 23 45 102 1.1 396 2.0 4.3 46 96 1.0 24 47 93 1.0 366 1.9 4.2 48 90 0.9 25 81 0.8 540 2.8 5.1 69 0.7 M 63 0.7 57 0.6 26 53 51 0.5 574 3.0 5.3 54 48 0.5 55 42 0.4 56 38 0.4 57 30 0.3 58 30 0.3 24 0.2 :10 24 0.2 13132 5566 WX 67.8 127.6 Brooks Engineering Associates, PA p.1 of3 10/2012008 I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM �Ao ZONE2B46 TOP LOAD MANIFOLD PRESSURE ANALYSIS LAW INPUT LINE Inputs Dose Flow W1 Flush Flow jbil 1 0 erating Head from Pump Curve' RIENNEIMEMMEM Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P,T. to H.U.6 Line Size ID Cin) Friction Headloss (11) from Pump to H.U., 0.017 0.016 2 Total Segment Headloss (ft) Friction Elev. 12.017 12.016 Hydraulic Unit H.U. Elev INUM 3 Headloss from H.0 (ft.) EMEM Supply Force Main Friction Losses H.U. to A Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)s 3.301 3.178 4 Friction Headloss (ft) 0.330 0.318 Minor Losses (ft) 2.37 2.32 Line Velocity (ft/s) A to J7 Segment Flow Rate (gpm) KNIERMEMMEM Line Length (ft) Line Size ID (in)' 6.919 6.662 5 Friction Headloss (ft) 0.692 0.666 Minor Losses (ft) 2.37 2.32 Line Velocity (ft1s) J7 to 2B -SMI Segment Flow Rate (gpm) offlummimm Line Length (ft) Line Size 10 (in)' a F(Iction Headloss (ft) 0.342 1.303 Minor Losses (ft) 0.034 0.130 Line Velocity (ft/s) 1,12 2.32 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U, to Manifold Drip System Headloss Results 4 Total Headloss (ft.) in drip system from supply manifold to return manifold 8 Feed Manifold to Bottom Lateral 4 Headloss (ft) in manifold Une, Length (ft) from Supply Manifold to Bottom Feed Latera is Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)6 Friction Headloss (ft) from Manifold to Bottom Feed Lateral' 1,708 4.940 9 Total Segment Headloss (ft) = Friction + Elev. -53.292 .57.060 Return Force Main Friction Losses 2B -RM I to J7 Segment Flow Rate (gpm) Une Length (ft) Line Size 10 (in.) Minor Losses from Check Valve 1.551 Friction Headloss (ft) 2.03 Line Velocity (1`11s) J7 to A MIRIAM Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) 7.928 Foction Headloss (ft) 2.03 Line Velocity (fUs) it to VVWrF Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 3.782 Line Velocity ON 2.03 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Em� Brooks Engineering Associates, PA p2 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARYZONE21346 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 305,2 132.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 1941 84.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 335.7 145.3 Flush Pressure at backwash tank for Min. Flush Rate 539.6 233.6 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 197.1 51.2 Pressure at manifold before PRV 461.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 45.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 14.0 6.0 Flush Pressure at VVWTF for Min. Flush Rate 180.7 78.2 1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 150.2 65.0 Brooks Engineering Associates, PA P.3 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 487) 85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d - Q/C 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. A Equals the Required Flush Rate plus the Dose Flow Rate Zone: 4A-17 No. Laterals: 7 Tubing: ID (in) 0.79 Emitters (gph): 0.6 -2 - Emitter Spacing (ft) 2 Total Footage: 3664 Design Flow (gpm): 18.93 Supply Manifold E ev. 4A-SM1 Return Manifold E:ev 4A -RM 1 Run Run f-1 Pm Rev- Lenath # 2 3 4 2 3 10 4 11 12 13 14 6 15 16 7 FBI= Application Flow (9prn): 18.9 Min. Design Scour Vel. (ftfs) 2.0 Tubing ID (in) 0.787 a2.3 Residual Flow for Scour (opm)' 0 Req'd Flush Rate (gp��) : � 0 35.0 Dose Lateral Lateral Min. Flush 61 0.6 65 0.7 69 0.7 71 0.7 598 3.1 5.4 68 0.7 70 0.7 90 0.9 102 1.1 418 2.2 4.5 107 1.1 1113 1.2 466 2.4 4.7 120 1.2 131 1.4 538 2.8 5.1 138 1.4 130 1.3 548 2.8 5.1 144 1.5 104 1.1 596 3.1 5.4 66 0.7 68 0.7 60 0.6 1QQ 189 35.0 Brooks Engineering Associates, PA p.1 of 3 10120/2008 PRESSURE ANALYSIS 1 44 TOP FEED MANIFOLD SYSTEM ZONE 4A-17 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I —np 1 —ODeratina Head from Pump Curve' ults I Dose Flow I H.U. To ilu Segment Flow Rate (gPm) Numlifflifflomm Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 5.061 10.970 Minor Losses (ft) 0.506 1.097 Line Velocity (ft1s) 1.51 2.30 J20 to J1 1 Segment Flow Rate (gPm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 1.478 3.203 Minor Losses (ft) 0.148 0.320 Line Velocity (ft1s) 1.37 2.07 J1 1 to 4A -SMI Segment Flow Rate Wpm) 090UPINIMM Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.346 1.112 Minor Losses (ft) 0.035 0.111 Line Velocity (ft1s) 1.24 2.34 Supply Force Main Elevation Delta Manifold 7 Elevation (ft) from H.U. to Drip System Headloss Results 8 Total Headloss (ft.) in drip System from supply manifold to return manifold 4 Feed Manifold to Bottom Lateral 4 Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed Lateral5 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 1.831 5.139 9 Total Segment Headloss (ft) = Friction + Elev. -12.169 -15.861 Return Force Main Friction Losses 4A-RM1 to A 1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 1.871 Line Velocity (ft1s) 2.41 ,111 to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 6.072 Line Velocity fts) 2.26 J20 to WWTF Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 Line Velocity (ft1s) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 LAO I ww 1 1 61� 1 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 4A-17 Feet 112.0 PSI 51.2 Feet psi Total Headloss at Min. Flush Rate at Return Manifold 357.3 1547 Low Pressure Check: P at Min. Flush Flow at Return Manifold 141.7 61.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 250.6 108.5 Flush Pressure at backwash tank for Min. Flush Rate 578.2 250.3 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 112.0 PSI 51.2 Pressure at manifold before PRV 467.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 138.6 60 O��'� Low Pressure Check: P at Min. Flush Flow at Return Manifold 50.6 21.9 Flush Pressure at WWTF for Min. Flush Rate 259.5 112.3 I High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 143.8 62.2 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Enalneer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ d'-87) (Q/C)"8' 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 4A-18 No. Laterals: 4 Tubing: ID (in) 0.79 Emitters (gph): 0.62 Emitter Spacing (ft) 2 Total Footage: 1872 Design Flow (gpm): 9.67 Supply Manifold E ev. 4A-SM1 Return Manifold E�e 4A-RM1 Run Run 2 3 4 8 9 Application Flow (gpm): 9.7 Min. Design Scour Vel. (ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour 2.30 Rea'd Flush -Rate (gpm)8: 18.9 Emitters 24 27 27 65 63 86 104 100 97 93 89 79 46 36 �RV Dose Lateral Lateral Min. Flush N (gpM)7 Length (ft) Dose (gpm) Flow (gpm) 0.2 584 3.0 5.3 0.3 0.3 0.7 0.7 0.9 1.1 408 2.1 4.4 1.0 1.0 380 2.0 4.3 1.0 0.9 500 2.6 4.9 0.8 0.5 Brooks Engineering Associates, PA p.1 of 3 10/2012008 I W"i i I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 4118 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unie Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.U.2, 2 Total Segment Headloss (ft) = Friction + Elev. Brooks Engineering Associates, PA p.2 of 3 10/20/2008 Hydraulic Unit H.U. Elev so= 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size I D (in)s 4 Friction Headloss (ft) 5.061 10.970 Minor Losses (ft) 0.506 1.097 Line Velocity (ft/s) 1.51 2.30 J20 to A 1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 1.478 3.203 Minor Losses (ft) 0,148 0.320 Line Velocity (ft/s) 1.37 2.07 A 1 to 4A-SM1 Segment Flow Rate (gpm) Line Length (ft) "Pip, Line Size ID (in)5 6 Friction Headloss (ft) 0.346 1.112 Minor Losses (ft) 0.035 0.111 Line Velocity (ft/s) 1.24 2.34 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold4 kwwafflvffilx� FINJ Feed Manifold to Bottom Lateral Headloss (ft) in manifold 4 Line Length (ft) from Supply Manifold to Bottom Feed Lateral5 Elevation (ft) from Manifold to Bottom Feed Lateral5 Line Size ID (in)5 Lai Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 1.323 4.297 9 Total Segment Headloss (ft) = Friction + Elev. -12.677 -16.703 Return Force Main Friction Losses 4A -RMI to A 1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 1.871 Line Velocity (ft1s) 2.41 J1 I to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size I D (in.) Minor Losses (ft) Friction Headloss (ft) 6.072 Line Velocity (ft/s) 2.26 J20 to WWTF Mffl� Segment Flow Rate (gpm) ; I !! Line Length (ft) 64 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 Line Velocity (ft/s) 2.26 ww I Return Line Elevation Delta Elevation (ft) from Return Manifold to WVVTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 LWW01 A I Llj� I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 4A-18 Feet 112.5 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 352.3 152.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 146.7 63.5 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 251.1 108.7 Flush Pressure at backwash tank for Min. Flush Rate 583.2 252.4 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 112.5 PSI 51.2 Pressure at manifold before PRV 467.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 138.6 Low Pressure Check: P at Min. Flush Flow at Return Manifold 55.6 24.i Flush Pressure at WVTrF for Min. Flush Rate 264.5 114.5 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 144.3 1 62.5 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 I um� L4 i 64 1 V q PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Ennineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ d'-") (Q/C)'-" 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 4A-20 4A-SM3 Application Flow (gpm): 22.2 No. Laterals: 8 Min. Design Scour Vel. (ft/s) 2.0 Tubing: ID (in) 0.79 Return Manifold Elev. Tubing ID (in) 0.787 Emitters (gph): 0.62 Residual Flow for Scour (gpm)' 2.30 Emitter Spacing (ft) 2 Req'd Flush Rate (gpm)': 40.6 Total Footage: 4288 Design Flow (gpm): 22.15 Lateral Supply Manifold Elev. 4A-SM3 Return Manifold Elev. 4A-SM3 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Lenqth # Emitters Flow (gpM)7 Length (ft) Dose(gpm) Flow (gpm)e 1 1 98 1.0 398 2.1 4.4 2 101 1.0 2 3 135 1.4 540 2.8 5.1 4 135 1.4 3 5 136 1.4 544 2.8 5.1 6 136 1.4 4 7 137 1.4 548 2.8 5.1 8 137 1.4 5 9 1 1 37 1.4 548 2.8 5.1 10 137 1.4 6 111 139 1.4 558 2.9 5.2 12 140 1.4 7 13 141 1.5 568 2.9 5.2 14 143 1.5 8 15 145 1.5 584 3.0 5.3 16 1 47 1.5 4288 2144 22.2 22.2 40.6 Brooks Engineering Associates, PA P.1 of3 10120/2008 I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) ZONE 4A-20 TOP LOAD MANIFOLD PRESSURE ANALYSIS Line Length (ft) ffm INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. 4 Friction Headloss (ft) Elevation (ft) from Pump to Hydraulic Unie 5.061 Line length (ft) from P.T. to H.U.' Minor Losses (ft) Line Size ID (in) 0.506 Friction Headloss (ft) from Pump to H U.2 a 2 Total Segment Headloss (ft) = Friction + Elev. 1.51 Hydraulic Unit J20 to J1 3 H.U. Elev MUM 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) Line Length (ft) ffm Line Size ID (in)5 4 Friction Headloss (ft) 5.061 10.970 Minor Losses (ft) 0.506 1.097 Line Velocity (ft/s) 1.51 2.30 J20 to J1 3 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 2.733 5.924 Minor Losses (ft) 0.273 0.592 Line Velocity (ft/s) 1.37 2.07 J 13 to 4A-SM3 Segment Flow Rate (gpm) KAWWWWWROW—M Line Length (ft) Ku Line Size ID (in)5 6 Friction Headloss (ft) 0.623 1.903 Minor Losses (ft) 0.062 0.190 Line Velocity (ft/s) 1.49 2.72 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold 4 Feed Manifold to Bottom Lateral Headloss (ft) in manifold 4 Line Length (ft) from Supply Manifold to Bottom Feed LateraI6 Elevation (ft) from Manifold to Bottom Feed Latera15 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.675 4.886 9 Total Segment Headloss (ft) = Friction + Elev. -8.325 -12.114 Return Force Main Friction Losses 4A-RM3 to J 13 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 3.531 Line Velocity (ft/s) 2.90 J13 to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.228 Line Velocity (ft1s) 2.26 J20 to WWTF Segment Flow Rate (gpm) W&WHO Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 Line Velocity (ft1s) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF 77 i Brooks Engineering Associates, PA p.2 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 4A-20 43.5 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 418.8 181.Y— Low Pressure Check: P at Min. Flush Flow at Return Manifold 80.2 34.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 182.1 78.8 Flush Pressure at backwash tank for Min. Flush Rate 633.6 274.3 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) 43.5 51.2 Pressure at manifold before PRV 465.7 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66:, 5 PRV setting utilized 138.6 -60.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 55.6 24 1 Flush Pressure at WWTF for Min. Flush Rate 318.7 137.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 139.9 60.6 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM LAI Brooks Engineering Associates, PA p,2 of 3 10/20/2008 Wki ZONE 5A-21 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE Inputs I Dose Flow (a)l Flush Flow I Operating Head from Pump Curve' NNINAIMIN1111am jbj Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.U.2 0.015 0.0114 2 Total Segment Headloss (ft) Friction + Elev. 12.015 12.014 Hydraulic Unit H.U. Elev NEW 3 Headloss from H. U (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 10.507 9.784 Minor Losses (ft) 1.051 0.978 fqoq Line Velocity (ft1s) 2.25 2.16 J20 to J14 Segment Flow Rate (gpm) NERMIMMIM Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 6.094 5.675 Minor Losses (ft) 0.609 0.567 Line Velocity (ft/s) 2.03 1.95 J14 to 5A-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.572 1.685 Will! Minor Losses (ft) 0.057 0.169 Line Velocity (ft1s) 1.51 2.71 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold4 Feed Manifold to Bottom Lateral Headloss (ft) in manifold4 Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)s Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.865 5.193 9 Total Segment Headloss (ft) = Friction + Elev. -12.135 -15.807 Return Force Main Friction Losses 5A -RMI to J14 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 2.550 Line Velocity (ft/s) 2.64 J14 to J20 Segment Flow Rate (gpm) 110-0-5m Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 12.060 Line Velocity (ft/s) 2.26 J20 to WWTF Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 Line Velocity (fUs) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WVVTF Brooks Engineering Associates, PA p,2 of 3 10/20/2008 Wki PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 5A-21 44.6 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 416,2 180.2 Low Pressure Check: P at Min. Flush Flow at Return Manifold 83.8 36.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 183.2 79.3 Flush Pressure at backwash tank for Min. Flush Rate 623.5 269.9 PRV NEEDED? YES Pressure loss required (high pressure - 60 Psi) 44.6 51.2 Pressure at manifold before PRV 455.1 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 138.6 60.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 48.6 21.0 Flush Pressure at WWTF for Min. Flush Rate 305.8 132.4 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 143.7 62.2 Brooks Engineering Associates, PA p.3 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 487) (Q/c)1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. A Equals the Required Flush Rate plus the Dose Flow Rate n SA -22 0 0* .':i No. L. erali.. K2 f - 7 Tubin ID in 079 "- Emitters (Qph): 0.62 Emitter S adin ftt 2 Total Foot. a. 3 722 Design Flow (gpm): 19.23 Supply Manifold E ev. Return Manifold 2ev- Run Lateral Run Elev. 5A-SM`1 5A-RM1 Run Len th # Ernitte 1 1 Tubing ID (in) 23 2 2.30 27 3 2.7 44 4 47 5 0.5 55 6 61 2 68 0.6 70 0.6 80 83 3 3.1 74 12 77 13 0.8 79 14 82 4 15 75 16 624 77 17 0.8 56 18 59 6 19 59 20 61 21 0.8 59 22 5.1 59 7 23 59 24 59 25 0.6 60 26 60 8 27 2.5 61 28 62 29 0.6 62 �Lp�ation Flow Opm): 19.2 Min. Design Scour Vel. (ft1s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour Opm? 2.30 d Flush Rate (g T.�-RMt� 35.3 Dose Lateral Lateral Min. Flush ,V (gpM)7 Length (ft) Dose (gpm) Flow (gpm 0.2 514 2.7 5.0 0.3 0.5 0.5 0.6 0.6 0.7 602 3.1 5.4 0.7 0.8 0.9 0.8 624 3.2 5.5 0.8 0.8 0.8 0.8 534 2.8 5.1 0.8 0.6 0.6 0.6 476 2.5 4.8 0.6 0.6 0.6 0.6 476 2.5 4.8 0.6 0.6 0,6 0.6 496 2.6 4.9 0.6 0.6 0.7 19.2 19.2 35.3 Brooks Engineering Associates, PA p. I of 3 10/20/2008 -1 ZONE SA -22 TOP LOAD MANIFOLD PRESSURE ANALYSIS PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM -A Brooks Engineering Associates, PA p.2 of 3 1012012008 INPUT inputs LINE I — Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit' Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 .2 0.015 0.014 2 Total Segment Headloss (ft) Friction + Elev. 12.015 12.014 Hydraulic Unit H.U. Elev EMM 3 Headloss from H.Ll (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 10.507 9.784 4 Friction Headloss (ft) 1.051 0.978 Minor Losses (ft) 2.25 2.16 Line Velocity (ft/s) J20 to J14 Segment Flow Rate (gpm) Line Length (ft) la=6 Line Size ID (in)s 676 5 Friction Headloss (ft) 0.609 0.567 Minor Losses (ft) 2.03 1.95 Line Velocity (ft1s) J14 to 5A-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 2=1 .685 6 Friction Headloss (ft) 0.057 0.169 Minor Losses (ft) 1.51 2.71 Line Velocity ON P" Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 4 MUM 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed Lateral5 Line Size ID (in)s Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 1.303 4.263 9 Total Segment Headloss (ft) = Friction + Elev. -25.697 -29.737 Return Force Main Friction Losses 5A-RM1 to J1 4 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve 2.550 Friction Headloss (ft) 2.64 Line Velocity (ft/s) J14 to J20 Segment Flow Rate (gpm) Line Length (ft) rr, Line Size ID (in.) aw Minor Losses (ft) 12.060 Friction Headloss (ft) 2.26 Line Velocity (fUs) J20 to WWTF Segment Flow Rate (gpm) - Line Length (ft) Line Size ID (in.) Minor Losses (ft) 16.186 Friction Headloss (ft) 2.26 Line Velocity (ft/s) : LWO Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF -A Brooks Engineering Associates, PA p.2 of 3 1012012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 5A-22 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 419.2 181.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 80.8 35.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 196.8 85.2 Flush Pressure at backwash tank for Min. Flush Rate 620.5 268.6 PRV NEEDED? YES ZONE SUMMARY W1 PRV Pressure loss required (high pressure - 60 psi) Feet 58.2 PSI 51.2 Pressure at manifold before PRV 455.1 154.3 117.7 66.5 PRV setting calculated (pressure at manifold - pressure loss required) PRV setting utilized 138.6 45.6 19.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold Flush Pressure at WWTF for Min. Flush Rate 302.8 131.1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 157 R 68.1 Brooks Engineering Associates, PA p.3 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineers Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) hf = (4.727 U d 4.87) (Q/C)1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. Ft E I th Re uhred Flush Rate plus the Dose Flow Rate K. 6A'23 " ' 11 Tubing: ID (in 0.79 Emitters h 0.62 Emitter Spacing ft 2 Total Footage7 4784 Design Flow (APrn): 24.72 Supply Manifold E ev. 2e 24.7 5A-SM2 Return Manifold Tubing ID (in) 5A-RM2 Residual Flow for Scour (gpm) Run Run Lateral Run Elev. Len th # 1 6 Applicatio Flow (gpm): 24.7 Min. Design Scour Val. (ft/s) 2.0 6 Tubing ID (in) 0.787 a2.3O Residual Flow for Scour (gpm) 0 �eq'd Flush Rate (gpm)': 50.0 Dose Lateral Lateral Min. Flush N (gpM)7 Length (ft) Dose (gpm) Flow (9pM n Ft sno 3.1 5.4 392 70 0.7 384 69 0.7 376 88 0.9 2 5 98 1.0 6 98 1.0 3 7 96 1.0 8 96 1.0 4 9 94 1.0 10 94 1.0 5 11 94 1.0 12 93 1.0 6 13 92 1.0 14 91 0.9 7 is 110 '11 16 112 1.2 8 17 109 1.1 18 105 1.1 9 '19 103 1.1 20 102 1.1 10 21 100 1.0 22 99 1.0 11 23 88 0.9 24 85 0.9 25 70 0.7 qa 63 0.7 392 2.0 4.3 384 2.0 4.3 376 1.9 4.2 374 1.9 4.2 366 1.9 4.2 444 2.3 4.6 428 2.2 4.5 410 2.1 4.4 398 2.`1 4.4 612 3.2 5.5 Brooks Engineering Associates, PA p.1 of 3 10120/2008 �A PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 5A-23 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit" Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H U.2 2 Total Segment Headloss (ft) = Friction + Elev. Inouts �e Figgw (all Flush Flow (b MOOMMMMM 0.015 0.014 12.015 12.014 N I I Drip System HeadlosS Results 4 8 Total Headloss (ft.) in drip system from supply manifold to return manifold I I i Feed Manifold to D—orn a era Headloss (ft) in manifold 4 Line Length (ft) from Supply Manifold to Bottom Feed Lateral, Elevation (ft) from Manifold to Bottom Feed Lateral' Line Size ID (in)r Friction Headloss; (ft) from Manifold to Bottom Feed Lateral2 Total Segment Headloss (ft) = Friction + Elev. Return Force Main Friction Losses 5A-RM2 to J 15 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) Line Velocity (ft/s) J15 to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) Line Velocity (ft1s) J20 to VVWTF Segment Flow Rate (gPm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) Line Velocity (ft/s) i; n It meturn Line Eleva on e a Elevation (ft) from Return Manifold to WWTF 1.923 5.286 -19.077 -22.714 p.2 of 3 10/20/2008 Brooks Engineering Associates, PA Hydraulic Unit -h H.U. Elev Emw 3 Headloss from H.0 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) r" Line Length (ft) Line Size ID (in)s 9.784 4 Friction Headloss (ft) 1.051 0.978 Minor Losses (ft) Line Velocity (ft/s) 2.25 2.16 J20 to J15 Segment Flow Rate (gpm) Line Length (11) Line Size ID (in)5 6.678 6.218 5 Friction Headloss (ft) 0.668 0.622 Minor Losses (ft) Line Velocity (ft/s) 2.03 1.95 J 15 to 5A-SM2 Segment Flow Rate (gpm) mass= Line Length R Line Size ID (in)5 0.391 1.348 6 Friction Headloss (ft) 0.039 0.135 Minor Losses (ft) Line Velocity (ft/s) 1.46 2.85 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold N I I Drip System HeadlosS Results 4 8 Total Headloss (ft.) in drip system from supply manifold to return manifold I I i Feed Manifold to D—orn a era Headloss (ft) in manifold 4 Line Length (ft) from Supply Manifold to Bottom Feed Lateral, Elevation (ft) from Manifold to Bottom Feed Lateral' Line Size ID (in)r Friction Headloss; (ft) from Manifold to Bottom Feed Lateral2 Total Segment Headloss (ft) = Friction + Elev. Return Force Main Friction Losses 5A-RM2 to J 15 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) Line Velocity (ft/s) J15 to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) Line Velocity (ft1s) J20 to VVWTF Segment Flow Rate (gPm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) Line Velocity (ft/s) i; n It meturn Line Eleva on e a Elevation (ft) from Return Manifold to WWTF 1.923 5.286 -19.077 -22.714 p.2 of 3 10/20/2008 Brooks Engineering Associates, PA PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM MMARY ZONE 5A-23 Feet Psi Total Headloss at Min. Flush Rate at Return Manifold 408.4 176.8 Low Pressure Check: P at Min. Flush Flow at Return Manifold 91.6 39.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 197.7 85.6 Flush Pressure at backwash tank for Min. Flush Rate 618.3 2677 PRV NEEDED? YES NE SUMMARY W/ PRV Pressure loss required (high pressure - 60 Psi) Feet 59.1 Psi 51.2 Pressure at manifold before PRV 454.7 154.3 117.7 66.5 PRV setting calculated (pressure at manifold - pressure loss required) '60.6 PRV setting utilized 115.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 25.5 11'6 Flush Pressure at WWTF for Min. Flush Rate 277.8 120.2 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 127.6 55.2 Brooks Engineering Associates, PA P.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ftis is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4.137) (Q/C)1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from 0 = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. R Equals the Required Flush Rate plus the Dose Flow Rate Zone: 513-25 No. Laterals: 11 Tubing: ID (in) 0,79 Emitters (gph): 0 Emitter Spacing RAn'd Flush Rate (aprn)': Total Footage: 5986 Design Flow (gpm): 30.93 Supply Manifold Elev. 30.9 5B-SM1 2.0 Return Manifold E 0.787 5B-RM1 2.30 RAn'd Flush Rate (aprn)': Run Run Lateral Run Elev. Lenqth # Ernittf 1 1 1.4 136 2 136 2 3 2.8 136 4 137 3 5 1.4 137 6 5.2 138 4 7 139 8 562 139 5 9 1.5 140 10 141 6 11 2.9 141 12 142 7 13 1.5 142 14 5.2 143 8 15 110 16 432 106 9 1A 12 75 588 3.0 67 0.8 70 10 21 0.7 70 22 65 23 63 24 60 11 57 53 48 43 IN In 41 p fication Flow (gpm): 30.9 Min. Design Scour V 1. (ft1s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scou 2.30 RAn'd Flush Rate (aprn)': Dose w (gprn� Lateral Length (ft) Lateral Dose (gpm) Min. Flush Flow (gpm) 1.4 544 2.8 5.1 1.4 1.4 546 2.8 5.1 1.4 1.4 550 2.8 5.1 1.4 1.4 556 2.9 5.2 1.4 1.4 562 2.9 5.2 1.5 1.5 566 2.9 5.2 1.5 1.5 570 2.9 5.2 1.5 1.1 432 2.2 4.5 1A 0.8 588 3.0 5.3 0.8 0.7 0.7 0.7 516 2.7 5.0 0.7 0.7 0.6 0.6 556 2.9 5.2 0.5 0.5 0.4 0.4 0.4 ,in a 9 56.2 Brooks Engineering Associates, PA p. 1 of 3 10/20/2008 I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 5B-25 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit' Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 .2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev BMWs 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 10,507 8.787 Minor Losses (ft) 1.051 0.879 Line Velocity (ft/s) 2.25 2.04 J20 to J16 Segment Flow Rate (gpm) MNIWWWRWAMN� Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 7.752 6.483 Minor Losses (ft) 0.775 0.648 Line Velocity (ft/s) 2.03 1.84 J16 to 5B-SM1 Segment Flow Rate (gpm) mfflmm�� Line Length (ft) Line Size ID (in� 6 Friction Headloss (ft) 0.359 1.054 Minor Losses (ft) 0.036 0.105 Line Velocity (ft/s) 1.39 2.50 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 4 8 Total Headloss (ft.) in drip system from supply manifold to return manifold EMMEM Feed Manifold to Bottom Lateral Headloss (ft) in manifold' Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed LateraI5 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.610 4.779 9 Total Segment Headloss (ft) = Friction + Elev. -31.390 -35.221 Return Force Main Friction Losses 5B-RM1 to J16 -- Segment Flow Rate (gpm) MOM Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 2.511 Line Velocity (ft1s) 2.93 A6 to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) 11.262 Friction Headloss (ft) Line Velocity (ft1s) 1.91 J20 to VVVVTF Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.883 Line Velocity (ft1s) 1.91 Return Line Elevation Delta Elevation (ft) from Return Manifold to WVVTF 71 Brooks Engineering Associates, PA p.2 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 513-26 78.3 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 396.3 171.6 Low Pressure Check: P at Min. Flush Flow at Return Manifold 103.7 44.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 216.9 93.9 Flush Pressure at backwash tank for Min. Flush Rate 620.5 26SZ A PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) 78.3 51.2 Pressure at manifold before PRV 453.5 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 116.5 50.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 28.5 112.3 Flush Pressure at WVVTF for Min. Flush Rate 278.8 120.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 139.9 60.6 Brooks Engineering Associates, PA p.3 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4.11) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. a Equals the Required Flush Rate plus the Dose Flow Rate Zone: 513-26 No. Laterals: 8 Tubing: ID (in) O�79 Emitters (oph): 062 Emitter Spacing (ft) 45 Total Footage: 4714 Design Flow (gpm): 24.36 Supply Manifold Elev. Return Manifold E Run Lateral Run Elev. 5B-SM1 5B-RM1 Run Lenqth # ErnittE 1 1 Tubing ID (in) 39 2 2.30 45 3 3.0 49 4 50 5 0.5 51 6 53 2 76 0.5 76 0.5 75 75 3 11 3.1 74 12 74 13 0.8 73 14 74 4 75 0.8 590 75 5.3 0.8 75 75 5 19 75 20 74 21 0.8 74 22 5.4 74 6 75 0.8 75 0.8 75 74 7 27 3.1 75 28 74 29 0.8 74 30 74 8 71 0.8 598 7 1 5.4 0.8 70 68 Application Flow (gpm): 24.4 Min. Design 1 2.0 Tubing ID (in) - OJ87 Residual Flow for Scour 2.30 Req'd Flush Rate (gpm)': 42.8 Dose Lateral Lateral Min. Flush N (gpM)7 Length (ft) Dose(gpm) Flow (gprn� 0.4 574 3.0 5.3 0.5 0.5 0.5 0.5 0.5 0.8 604 3.1 5.4 0.8 0.8 0.8 0.8 590 3.0 5.3 0.8 0.8 0.8 0.8 600 3.1 5.4 0.8 0.8 0.8 0.8 594 3.1 5.4 0.8 0.8 0.8 0.8 598 3.1 5.4 0.8 0.8 0.8 0.8 694 3.1 5.4 0.8 0.8 0.8 0.7 560 2.9 5.2 0.7 0.7 Brooks Engineering Associates, PA p.1 of 3 1012012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineers Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 fUs is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4.81) (Q/C)1.85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. a Equals the Required Flush ate plus the Dose Flow Rate Zone: SB -27 No. Laterals: 9 Tubing: ID (in) 0.79 -'�-62 Emitters (gph): Residual Flow for Scour Emitter Spacing (ft) 2 Total Footage: 3986 Design Flow (gpm): 20.59 Application Flow (gpm): 20.6 Min. Design Scour Vel. (ft1s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour 2.30 Rea'd Flush Rate (gpm)': 41.3 Supply Manifold E ev. 2e 5B-SM2 Return Manifold - 5B-RM2 I Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow (gpM)7 Length (ft) Dose (gpm) Flow (gpm 1 1 1 144 1.5 574 3.0 5.3 2 2 143 1.6 3 2 3 137 1.4 542 2.8 5.1 4 4 134 1.4 5 3 5 131 1.4 516 2.7 6.0 6 6 127 1.3 7 4 7 123 1.3 484 2.5 4.8 8 8 119 1.2 9 5 9 114 1.2 446 2.3 4.6 10 1 0 109 1.1 1 1 6 11 106 1.1 416 2.1 4.4 12 102 7 13 90 0.9 338 1.7 4.0 14 79 0.8 8 15 71 0.7 272 1.4 3.7 16 65 0.7 9 56 0.6 398 2.1 4.4 52 0.5 48 0.5 43 0.4 3986 1993 20.6 20.6 41.3 Brooks Engineering Associates, PA p.1 of 3 1012012008 I I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE SB -27 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit5 Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H. U.2 2 Total Segment Headloss (ft) = Friction + Elev. inputs [Dose Flow (all Flush Flow (b) lam 0.015 0.013 12.015 12.0`13 ! P� , p,2 of 3 10/20/2008 Brooks Englneedng Associates, PA Hydraulic Unit H.U. Elev NEW 3 Headloss from H.0 (ft.)3 MINMENSIMIM Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) ffliffilmlimm Line Length (ft) Line Size ID (in)'� L401, 4 Friction Headloss (ft) 10.507 8.787 Minor Losses (ft) 1.051 0.879 Line Velocity (ft/s) 2.25 2.04 J20 to J16 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)6 5 Friction Headloss (ft) 7.752 6.483 04� Minor Losses (ft) 0.775 0.648 Line Velocity (ft1s) 2.03 1.84 J16 to 5B-SM2 Segment Flow Rate (gpm) mlfflm��� Line Length (ft) Line Size ID (in 6 Friction Headloss (ft) 2.563 8.678 Minor Losses (ft) 0.256 0.868 Line Velocity (ft/s) 1.50 2.90 Supply Force Main Elevation Delta to Manifold 7 Elevation (ft) from H.U. Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold4 Feed Manifold to Bottom Lateral 'Alo Headloss (ft) in manifold4 Line Length (ft) from Supply Manifold to Bottom Feed Latera Elevation (ft) from Manifold to Bottom Feed Lateral5 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera,2 0.867 3.478 9 Total Segment Headloss (ft) = Friction + Elev. -17.133 -21.522 Return Force Main Friction Losses 6B-RM2 to J 16 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headioss (ft) 6.497 Line Velocity (ft/s) 2.16 J16 to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.262 Line Velocity (ft/s) 1.91 J20 to WWTF Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.883 Line Velocity (ft/s) 1.91 Return Line Elevation Delta Elevation (ft) from Return Manifold to WVVTF ! P� , p,2 of 3 10/20/2008 Brooks Englneedng Associates, PA PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE SB -27 (31.0 0 1 Z Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 399.0 172.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold 101.0 43.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 200.2 86.7 Flush Pressure at backwash tank for Min. Flush Rate 606.9 262.7 PRV NEEDED? YES Pressure loss required (high pressure - 60 Psi) (31.0 0 1 Z Pressure at manifold before PRV 451.1 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 127.1 55.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 45.1 19.5 Flush Pressure at WWTF for Min. Flush Rate 284.4 123.1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 137.2 59.4 Brooks Engineering Associates, PA P.3 of 3 1012012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4.17) (Q/C)1.81 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 5B-28 No. Laterals: 5 Tubing: ID (in) 0.79 Emitters (gph): E-6-2 Emitter Spacing (ft) 2 Total Footage: 2684 Design Flow (gpm): 13.87 Supply Manifold Elev. 5B-SM2 26 2684 Brooks Engineering Associates, PA 45 47 48 51 53 56 59 63 64 67 70 71 70 69 69 68 67 67 37 36 32 28 24 21 17 Application Flow (gpm): 13.9 Min. Design Scour Val. (ft/s) 6 2.0 Tubing ID (in) 0.787 Residual Flow for Scour 2.30 Req'd Flush Rate (gpm)': 25.4 Dose Flow (gpM)7 Lateral Length (ft) Lateral Dose (gpm) Min. Flush Flow (gpm) 0.4 574 3.0 5.3 0.5 0.5 0.5 0.5 0.5 0.6 484 2.5 4.8 0.6 0.7 0.7 0.7 556 2.9 5.2 0.7 0.7 0.7 0.7 546 2.6 5.1 0.7 0.7 0.7 0.7 524 2.7 5.0 0.4 0.4 0.3 0.3 0.2 0.2 P.1 of 3 10/20/2008 I !-TM PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 5B-28 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H U.2 2 Total Segment Headloss (ft) = Friction + Elev. Brooks Engineering Associates, PA p.2 of 3 10120/2008 Hydraulic Unit H.U. Elev Mom 3 Headloss from H.0 (ft.)3 Wad Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gPm) Line Length (ft) Line Size ID (In)5 4 Friction Headloss (ft) 10.507 8.787 Minor Losses (ft) 1.051 0.879 Line Velocity (ft/s) 2.25 2.04 J20 to J16 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 7.752 6.483 Minor Losses (ft) 0.775 0.648 Line Velocity (ft/s) 2.03 1.84 J 16 to 5B-SM2 Segment Flow Rate (gpm) Raiku M - Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 2.563 8.678 Minor Losses (ft) 0.256 0.868 Line Velocity (ft/s) 1.50 2.90 p#p� Supply Force Main Elevation Delta i 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold4 Feed Manifold to Bottom Lateral Headloss (ft) in manifold4 Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 1.443 4.501 9 Total Segment Headloss (ft) = Friction + Elev. -26.557 -30.499 Return Force Main Friction Losses 56-RM2 to J 16 Segment Flow Rate (gpm) i Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 6.497 Line Velocity (ft/s) 2.16 J1 6 to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.262 Line Velocity (ft/s) 1.91 J20 to WV\fTF �77 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.883 Line Velocity (ft/s) 1.91 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF FRINIM Brooks Engineering Associates, PA p.2 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 613-28 71.0 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 399.0 172.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold 101.0 43.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 209.6 90.8 Flush Pressure at backwash tank for Min. Flush Rate 606.9 262.7 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) 71.0 51.2 Pressure at manifold before PRV 451.1 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 127.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 45.1 19.5 Flush Pressure at WWTF for Min. Flush Rate 284.4 123.1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 146.6 63.5 Brooks Engineering Associates, PA P.3 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Enaineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4.17) (Q/C)1.81 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mrn Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 4B-29 No. Laterals: 7 Tubing: ID (in) 0.79 Emitters (gph): 0.62 Emitter Spacing (ft) Rea'd Flush Rate (gpm)': Total Footage: 5018 Design Flow (gpm): 25.93 Applicat on Flow (gpm): 25.9 Min. Design ScourVel. (ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for S Aiu5p-f 2.30 Rea'd Flush Rate (gpm)': 48.9 Supply Manifold E ev. 4B-SM1 Return Manifold Et. 4B-RM2 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow (gpm� Length (ft) Dose (gpm) Flow (gpm)8 1 1 19 0.2 534 2.8 5.1 2 32 0.3 3 45 0.5 4 55 0.6 5 58 0.6 6 58 0.6 20 74 0.8 616 3.2 5.5 74 0.8 80 0.8 80 0.8 3 11 101 1.0 406 2.1 4.4 12 102 1A 13 102 1.1 410 2.1 4.4 14 103 1.1 16 104 1.1 418 2.2 4.5 16 105 1.1 17 106 1.1 426 2.2 4.5 18 107 1.1 4 98 1.0 610 3.2 5.5 71 0.7 In 69 0.7 67 0.7 5 23 76 0.8 580 3.0 5.3 24 72 0.7 25 72 0.7 26 70 0.7 6 68 0.7 492 2.5 4.8 65 0.7 59 0.6 54 0.6 7 31 49 0.5 526 2.7 5.0 32 43 0.4 33 39 0.4 34 35 0.4 35 30 0.3 36 26 0.3 37 23 0.2 .48 - 18 0.2 8 20.0 Brooks Engineering Associates, PA p.1 of 3 10120/2008 r4l� I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 413-29 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unie Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H U.2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev MEW 3 Headloss from H. U (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 5.061 0.920 Minor Losses (ft) 0.506 0.092 Line Velocity (ft1s) 1.51 0.60 J20 to J16 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 0.209 0.679 Minor Losses (ft) 0.021 0.068 Line Velocity (ft/s) 0.29 0.54 J16 to 4B-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 2.144 6.949 Minor Losses (ft) 0.214 0.695 Line Velocity (ft/s) 1.12 2.12 Supply Force Main Elevation Delta H.U. to Manifold 7 Elevation (ft) from Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold 4 Feed Manifold to Bottom Lateral 4 Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Lateral5 Elevation (ft) from Manifold to Bottom Feed Lateral5 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 1.453 4.518 9 Total Segment Headloss (ft) = Friction + Elev. -30.547 -34.482 Return Force Main Friction Losses 4B-RM1 to J16 Segment Flow Rate (gpm) -- Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 4.958 Line Velocity (ft1s) 1.54 J16 to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 1.237 Line Velocity (ft/s) 0.58 J20 to WWTF Segment Flow Rate (gpm) OEM Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 1.305 Line Velocity (ft/s) 0.58 Return Line Elevation Delta Elevation (ft) from Return Mangold to WWTF p.2 of 3 Brooks Engineering Associates, PA 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 413-29 Feet 104.8 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 379.5 164.3 Low Pressure Check: P at Min. Flush Flow at Return Manifold 125.5 54.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 243.4 105.4 Flush Pressure at backwash tank for Min. Flush Rate 631.8 273.5 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 104.8 PSI 51.2 Pressure at manifold before PRV 466.8 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115,5 60.� Low Pressure Check: P at Min. Flush Flow at Return Manifold 23.5 10.2 Flush Pressure at WVVTF for Min. Flush Rate 27:�l High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 2 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 I I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM P�"! I I Engineer's Notes & Instructions: "Na, 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, Rlq� there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) I 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ d"') (Q/C) 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush ate plus the Dose Flow Rate Zone: 3BU-30 No. Laterals: 48 Tubing: ID (in) 0.79 Emitters Oph). 0.62 Emitter Spacino (ft) 2 Total Footage, 18398 Design Flow (qpm): 95.06 Supply Manifold Elev. 3B-SM1 Return Mani 3B-RM1 Run Run 1 1 156 2 2 167 3 3 169 4 4 171 5 5 173 6 6 175 7 7 177 8 a 179 9 9 182 10 10 183 11 11 184 12 12 185 13 13 185 14 14 185 15 15 186 16 16 186 17 17 187 18 18 188 19 19 iss 20 20 190 21 21 192 22 22 194 23 23 196 24 24 199 25 25 202 26 26 205 27 27 209 28 28 212 29 29 216 30 30 220 31 31 217 32 32 216 33 33 216 34 34 217 35 35 215 36 36 214 37 37 213 38 38 208 39 39 204 40 40 200 41 41 197 42 42 193 43 43 188 44 44 183 45 45 178 46 46 172 47 47 166 48 4.5 161 432 __48 18398 91 9� Application Flow (apm): 95.1 M1 Design Scour Vel. (ft1s) 2.0 Tubing ID (in) 0787 Residual Flow for Scour (gpm)' 2.30 Req'd Flush Rate (gpm)B: 205.5 Supply Manifold Elev. 3B-SM2 Return Manifold Elev. 3B-RM2 Dose Lateral Lateral Min. Flush Flow (gpM)7 Length (ft) Dose(gpm) Flow (gpm)' 1.6 312 1.6 3.9 1.7 334 1.7 4.0 1.7 338 1.7 4.0 1.8 342 1.8 4.1 1.8 346 1.8 4.1 1.8 350 1.8 4.1 1.8 354 1.8 4.1 1.8 358 1.8 4.1 1.9 364 1.9 4.2 1.9 366 1.9 4.2 1.9 368 1.9 4.2 1.9 370 1.9 4.2 1.9 370 1.9 4.2 1.9 370 1.9 4.2 1.9 372 1.9 4.2 1.9 372 1.9 4.2 1.9 374 1.9 4.2 1.9 376 1.9 4.2 1.9 376 1.9 4.2 2.0 380 2.0 4.3 2.0 384 2.0 4.3 2.0 388 2.0 4.3 2.0 392 2.0 4.3 2.1 398 2.1 4.4 2.1 404 2.1 4.4 2.1 410 2.1 4.4 2.2 418 2.2 4.5 2.2 424 2.2 4.5 2.2 432 2.2 4.5 2.3 440 2.3 4.6 2.2 434 2.2 4.5 2.2 432 2.2 4.5 2.2 432 2.2 4.5 2.2 434 2.2 4.5 2.2 430 2.2 4.5 2.2 428 2.2 4.5 2.2 426 2.2 4.5 2.1 416 2.1 4.4 2.1 408 2.1 4.4 2.1 400 2.1 4.4 2.0 394 2.0 4.3 2.0 386 2.0 4.3 1.9 376 1.9 4.2 1.9 366 1.9 4.2 1.8 356 1.8 4.1 1.8 344 1.8 4.1 1.7 332 1.7 4.0 Brooks Engineering Associates, PA P. I of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 38-30 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE Inputs Dose Flow (all Flush Flow (b) 1 operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H U.2 0.005 0.019 2 Total Segment Headloss (ft) Friction + Elev. 12.005 12.019 Hydraulic Unit H.U. Elev 11SM 3 Headloss from H. U (ft)3 Supply Force Main Friction Losses H.U. to 313-SM2 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)' 4 Friction Headloss (ft) 2.324 9.667 Minor Losses (ft) 0.232 0.967 . : 11 1 ; .1 1.17 2.53 ne a oc ty � s, Supply Force Main Elevation Delta 5 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 6 Total Headloss (ft.) in drip system from supply manifold to return manifold4 Riffismilliffimm Feed Manifold to Bottom Lateral Headloss (ft) in manifold4 Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 0.587 2.378 7 Total Segment Headloss (ft) = Friction + Elev, -50.413 -55.622 Return Force Main Friction Losses 313-SM2 to WWTF Segment Flow Rate (gpm) REZ� Line Length (ft) Line Size ID (in.) Minor Losses (ft) 8 Friction Headloss (ft) 17.538 Line Velocity (ft1s) 2.78 Return Line Elevation Delta 9 Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 3B-30 SUBMANIFOLD 313-SM2 �510.j 01,/ Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 160.7 %6 Low Pressure Check: P at Min. Flush Flow at Return Manifold 331.3 143.4 High Pressure Check, Emitter P on Bottom Lateral at Dose Flow 454.9 196.9 Flush Pressure at backwash tank for Min, Flush Rate 446.8 193.4 PRV NEEDED? YES Pressure loss required (high pressure - 60 Psi) �510.j 01,/ Pressure at manifold before PRV 470.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 A5,6 Low Pressure Check: P at Min. Flush Flow at Return Manifold 44.0 19.0 Flush Pressure at VVWTF for Min. Flush Rate 94.4 40.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 147.4 63.8 Note: Return Flush Tank needed, See Pressure Calcs for Zone 313-30 Submanifold 1. Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 313-30 SUBMANIFOLD 3B-SM1 ;610.4 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 98.7 42.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold 393.3 170.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 517.0 223.8 Flush Pressure at backwash tank for Min. Flush Rate 382.8 165.7 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) ;610.4 Pressure at manifold before PRV 470.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 45.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 44.0 19.0 Flush Pressure at WVVTF for Min. Flush Rate 30.4 13.2 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 147.5 63.9 Note: Return Flush Tank needed. Flush Pressure at WWTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineers Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit. a flushing flow velocity of 2 fVs is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 4 1) (Q/C)l .85 3 From Wastewater Systems Inc. Date 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Reaulred Flush Rate cilus the Dose low Rate Zone: lication Flow (opm): No. Laterals: 18 tff Deslan Scour Val. (ft/s) 2.0 Tubing: 10 (in) 0.79 Tubing ID (in) 0 Emitters (oDh): 0.62 a 1 us, Fg for gcouy 1 _Y__ 1 __ ('prn)' 130 Emitter Spacina (ft) 2 Rod "ush "T 91.8 Total Footage: 9760 Desian Flow (opm 50.43 Supply Manifold Elev. 6A-SM5 Return Manifold Elev. 6A-RM5 supply Manifold Elev. 6A-SM4 Return Manifold Elev. SA-RM4 Supply Manifold Elev. 6A-SM3 Return Manifold Elev. SA-RM3 Run Dose Lateral Lateral Min. Flush Lateral Run Lenath # Emitters Flow kiprn� Len* (ft) Dose Opm) Flow (gpm? 1 1 105 1.6 630 3.3 5.6 2 157 1.6 2 3 1 57 1 .6 628 3.2 5.5 4 157 1.6 3 5 156 1.6 622 3.2 5.5 6 '155 1.6 4 7 1 54 1 .6 616 3.2 5.5 8 154 1.6 5 9 1 53 1.6 612 3.2 5.5 10 153 1.6 6 11 124 1.3 496 2.6 4.9 1 2 1 24 1 ' 3 7 13 126 1.3 506 2.6 4.9 14 1 27 1.3 8 1 5 129 1 3 518 2.7 6.0 1 6 130 1 1 9 17 131 1.4 526 2.7 5.0 18 132 1 A 10 19 11 1 538 2.8 5.1 20 35 '�4 11 67 0.7 622 3.2 5.5 54 0.6 51 0.5 48 0. 46 45 0.5 12 44 0,5 514 2.7 5.0 45 0.5 45 0.5 45 0.5 46 0.5 32 0.3 13 49 0.5 392 2.0 4.3 49 0.5 49 0. 49 0.5 14 37 49 0.6 698 3.1 5.4 38 60 0.5 39 50 0.5 40 50 0.5 41 50 0.5 42 50 0.5 15 43 51 0.5 612 3.2 5.5 44 50 0. 45 51 46 51 0.5 47 51 0.6 48 52 0.5 16 49 52 0.5 624 3.2 5.5 60 52 0.6 51 52 a 5 52 52 0 5 53 52 0.5 54 52 0.5 17 55 49 0.5 485 2.5 4.8 56 45 0.5 57 42 0.4 58 3: 0.4 59 3 (), 4 60 33 0.3 18 61 31 0.3 218 1.1 3.4 62 2 0.3 63 2: 3 .4 24 -n 2 50.4 91.8 Brooks Engineering Associates, PA p.1 of 3 1111812008 N I M11i I I Brooks Engineering Associates, PA p.2 of 3 11/1812008 Willi PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE SA -31 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I inputs Dose Flow Flush Flow (b) 1 Operating Head from Pump Curvel Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.U.' 0.010 0.011 2 Total Segment Headloss (ft) Friction I Elev. 12.010 12.011 Hydraulic Unit H.U. Elev §0NM 3 Headloss from H.0 (It.? Supply Force Main Friction Losses H.U. to 3B-SM2 Segment Flow Rate (gpm) Line Length (ft) Une Size ID (in? 4 Friction Headloss (ft) 5.052 0.505 5.635 0.564 Minor Losses (ft) Line Velocity (ft/s) 1.78 1.89 3B-SM2 to 3B-SM1 Segment Flow Rate (gpm) RUNWHOM Line Length (ft) ON Line Size ID (Imp 5 Fricti n Headloss (ft) 0,410 0.458 MinooLosses, (ft) 0.041 0.046 Line Velocity (ft1s) 1.78 1.89 38 -SMI to SA_SM3 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)' 6 Friction Headloss (ft) 0.731 2.174 Minor Lomas (ft) 0.073 0.217 Une Velocity (ftfs) 1.30 2.35 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold DHp System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold4 SA -31 _,9M-3 Feed Manifold to Bottom Lateral Headloss (ft) in manifold' Une Length (ft) from Supply Manifold to Bottom Feed Latersl' 100 1 Elevation (ft) from Manifold to Bottom Feed Lateral' Line Size ID finP Friction Headloss, (ft) from Manifold to Bottom Feed Lateral' 0.000 0.000 a Total Segment Headloss (ft) - Friction + Elev. -49.000 -56.000 Return Force Main Friction Losses 6A-RM3 to 38 -SMI Segment Flow Rate (gpm) Une Length (ft) Line Size tD (in.) Minor Losses from Check ValVe 5.261 Friction Headloss (ft) Line Velocity (ft1s) 2.78 3B-SM1 to 38-SM2 Segment Flow Rate (gpm) Line Length (ft) Une Size ID (In.) Minor Losses (ft) 0.515 Friction Headloss, (ft) 1 -me Velocity (ft/s) 1.61 3B-SM2 to WWTF Segment Flow Rate (gpm) Line Length (ft) 2585 wir�� Line Size ID (in.) Minor Losses (ft) 6.341 Friction Headloss (ft) 1.61 Line Velocity (ftfs) Return Une Elevation Delta Elevation (ft) from Return Manifold to VhVTF I M11i I I Brooks Engineering Associates, PA p.2 of 3 11/1812008 Willi PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM UMMARY ZONE SA -31 SUBMANIFOLD 6A 3 Feet psi Total Headloss at Min. Flush Rate at Return Manifold 45.7 j139�B Low Pressure Check: P at Min. Flush Flow at Return Manifold 546.7 7 High Pressure Check: ' 0�om Dose Flow 696.2 301.4 Flush Pressure at I'.. =kol.'r.,n FlLu= 200.0 86.6 PRV NEEDED? YES ZONE SUMMARY W! PRV Feet PSI Pressure loss required (high pressure - 60 posi) 557.6 51.2 Pressure at manifold before PRV 473.2 117.7 PRV :etfingg calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV etdn utilized 116.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 20.5 8.9 Flush Pr 'or Min. Flush Rat' -151.6 .65.6 Frlqh liter I on tio. Lateral at ... Now P==F. 157.5 68.2 Note: Return Flush Tank needed. Flush Pressure at WWTF is too low. May not have sufficlent pressure to return the flush. Brooks Engineering Associates, PA p,3 of 3 11/18t2008 Lmi PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM MARY ZONE 6A-31 Submanifold SA-SM4 Feet Psi Total Headloss at Min. Flush Rate at Return Manifold 10" 3 4.4 Low Pressure Check: P at Min. Flush Flow at Return Manifold ..7 212.4 High Pressure Check: Emitter P on Bottom Lateral at Dos. Flow 624.2 2 0.2 Flush Pressure at backWaSh tank for Min. Flush Rate 254.0 11700 PRV NEEDED? YES ONE SUMMARY W/ PRV Feet PSI Pressure loss required (high Pressure - 60 Psi) 485.6 473.2 51.2 117.7 Pressure at manifold before PRV PRV setting calculated (pressure at manifold - Pressure loss required) 154.3 66.5 PRV setting utilized 115.5 Low Pressure Check; P at Min. Flush Flow at Return Manifold 20.5 8.9 Flush Pressure at WWTF for Min. Flush Rate -97.6 -42.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 141.5 61.3 Note: Return Flush Tank needed. Flush Pressure at WWTF 1. too low. May not have sufficient Pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 1012012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE SA -31 SUBMANIFOLD 6A -SMG Feet PSI Total Headlow, at Min. Flush Rate at Return Manifold 72.3 31.3 Low Pressure Check: P at Min. Flush Flow at Return Manifold 428.7 185.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 570.2 246.8 Flush Pressure at backwash tank for Min. Flush Rate 306.0 132.5 PRV NEEDED? YES ZONE SUMMARY W1 PRV Feet Psi Pressure low required (high pressure - 60 psi) 431.6 51.2 Pressure at manifold before PRV 473.2 154.3 117.7 66.5 PRV setting calculated (pressure at manifold - pressure low required) PRV setting alized 115.5 50.0,',� Low Pressure Check: P at Min. Flush Flow at Return Manifold 20.5 8.9 Flush Pressure at WWTF for Min. Flush Rate -45.6 -19.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flo. 149.5 64.7 Note: Return Flush Tank needed. Flush Pressure at WWTF is too low. May not have sufficient pressure to return the flush. Brooks Engineedng Associates, PA p.3 of 3 10120/2008 L4 I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engine rs Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the - data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes I From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4-87) (Q/C)i 85 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate I Supply Manifold E ev. 6A-SM2 Return Manifold 2ev. 6A-RM2 Run Run Lateral Run Elev. Length 1 111111110 loom 2 3 4 6 7 10 11 12 8 9 10 11 12 Is17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 �0 43 44 44 45 47 48 50 53 56 57 59 60 66 70 74 78 106 112 148 '157 154 152 150 1 46 143 140 136 128 123 67 57 50 44 37 12 Ap_ lication Flow (gpm): Zone: I 6A.32 No. Laterals: 12 Tubing: ID (in) 0.79 Emitters (gph): 0.62 Emitter Spacing (ft) 2 Total Footage: 6350 Design Flow (gpm): 32.81 I Supply Manifold E ev. 6A-SM2 Return Manifold 2ev. 6A-RM2 Run Run Lateral Run Elev. Length 1 111111110 loom 2 3 4 6 7 10 11 12 8 9 10 11 12 Is17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 �0 43 44 44 45 47 48 50 53 56 57 59 60 66 70 74 78 106 112 148 '157 154 152 150 1 46 143 140 136 128 123 67 57 50 44 37 12 Ap_ lication Flow (gpm): 32.8 Min. Design Scour Val. (ft 2.0 Tubing I (in) 0.787 Residual Flow for Scour gpm 2.30 Rea'd Flush Rate (gpm)': 60.4 Supply Manifold Elev. 6A-SM1 Return Manifold Elev. 6A -RMI Dose Lateral Lateral Min. Flush Flow (gpM)7 Length (ft) Dose (gpm) Flow (gPM)8 0.4 530 Z. f 5.0 0.4 0.5 0.5 0.5 0.5 0.5 646 3.3 5.6 0.5 0.5 0.6 0.6 0.6 0.6 540 2.8 5.1 0.7 0.7 0.8 0.8 322 1.7 4.0 0.9 1.0 400 2.1 4.4 1.1 1.2 520 2.7 5.0 1.5 1.6 622 3.2 5.5 1.6 1.6 604 3.1 5.4 1.6 1.5 578 3.0 5.3 1,5 1.4 552 2.9 5.2 1.4 1.3 502 2.6 4.9 1.3 0.7 534 2.8 5.1 0.6 0.5 0.5 0.4 q p " ! Brooks Engineering Associates, PA p.1 of 3 10/20/2008 Nk; I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 6A-32 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unie Line length (ft) from P.T. to H.U.5 Line Size ID (in) Friction Headloss (ft) from Pump to H U.2 2 Total Segment Headloss (ft) = Friction + Elev. F - Inputs IDoseFlow(a I lFlush low b KJO&M 0.010 0.011 12.010 12.011 p.2 of 3 10/20/2008 Brooks Engineering Associates, PA Hydraulic Unit H.U. Elev OEM 3 Headloss from H.0 MY 4 Supply Force Main Friction Losses H.U. to 3B-SM2 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (In)5 5.062 5.635 4 Friction Headloss (ft) Minor Losses (ft) 0.505 0.564 Line Velocity (ft/s) 1.78 1.89 3B-SM2 to 3B-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 0.410 0.458 Minor Losses (ft) 0.041 0.046 Line Velocity (ft1s) 1.78 1.89 3B -SMI to 6A-SM3 Segment Flow Rate (gpm) Line Length (ft) Line Size 10 (in)5 6 Friction Headloss (ft) 0.731 2.174 0.217 Minor Losses (ft) 0.073 Line Velocity (ft/s) 1.30 2.35 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold 4 6A -32 -SM -1 Feed Manifold to Bottom Lateral 4 Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Lateral A* Elevation (ft) from Manifold to Bottom Feed Latera15 Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.333 4.313 9 Total Segment Headloss (ft) = Friction + Elev. -41.667 -45.687 Return Force Main Friction Losses 6A-RM3 to 3B-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 5.261 Line Velocity (ft1s) 2.78 313-SM1 to 3B-SM2 Segment Flow Rate (gpm) REMEM Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 0.515 Line Velocity (ft/s) 1.61 36-SM2 to WWTF Segment Flow Rate (gpm) Line Length (ft) alli Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 6.341 Line Velocity (ft/s) 1.61 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF p.2 of 3 10/20/2008 Brooks Engineering Associates, PA PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6A-32 Submanifold 6A -SMI Feet 358.2 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 143.3 62.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 357.7 154.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 496.8 215.1 Flush Pressure at backwash tank for Min. Flush Rate 383.0 165.8 PRV NEEDED? YES ZONE SUMMARY W1 PRV Pressure loss required (high pressure - 60 Psi) Feet 358.2 PSI 51.2 Pressure at manifold before PRV 473.2 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 '66.5 PRV setting utilized 115.5 50.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 23.5 10.2 Flush Pressure at WWTF for Min. Flush Rate 31.4 13.6 H1 h Pressure Check: Emitter P on Bottom Lateral at Dose Flow 150.2 65.0 Note: Return Flush Tank needed. Flush Pressure at WWTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6A-32 Submanifold 6A-SM2 Feet PSI Pressure loss required (high pressure - 60 psi) Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 187.3 81.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 313.7 135.8 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 442.8 191.7 � Flush Pressure at backwash tank for Min. Flush Rate A97 n 181" PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 304.2 51.2 Pressure at manifold before PRV 473.2 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 PRV setting utilized 115.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 23.6 16.2 Flush Pressure at WWTF for Min. Flush Rate 75.4 32.6 -High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 140.2 60.7 Note: Return Flush Tank needed. Flush Pressure at WWTF is too low. May not haVe sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Enolneer's No s & lnstructions� 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, 2 there is sufficient pressure to return the flush to the Hydraulic Unit, 0.8 a flushing flow velocity of 2 file is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number 80 Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 4 2 Headloss from pipe friction calculated from Hazen -Williams Equation: h, = (4.727 Ll d"') p1c)"s 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Enpineerinq Drawingis 5 6 Calculated from Q = VA 0.9 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 1.8 8 Equals the Required Flush Rate olus the Dose Flow Rate 90 0�9 Zone: 6 pplicatton Flow (9prn): 3 7 No. Laterals: 30 1. 0 376 �2j 4.2 Tubing ID (in) 0.79 8 Tubin ID in 1.0 Emitters (cph): 0.62 Residual Flow for Scour (gpm)' 2.30 98 Emitter Spacing (ft) 2 398 1 Ph -h Q.t. opir)': _ 128.6 Total Footage: 1152e 101 1.0 Desion Flow (cDrn): 59.56 5 Supply Manifold Elev,11 68-SM3 1 04 Return Manifold Elev. 68-RM3 414 Supply Manifold Elev. 6S.SM2 4.4 Return Manifold Slay. 6B.RM2 12 Supply Manifold Elev, 6MM1 1.1 Return Manifold Elev. 68-RM1 Run Run Dose Lateral Lateral Min. Flush Lateral Run Eley. Lenqth #EnnitteEE Flow(gpnri� Length(ft) Dose(OPM) Flow (gpm)g 1 1 74 0.8 628 3.2 5�� Brooks Engineering Associates, PA p.1 of 3 10120/2008 2 77 0.8 3 80 0.8 4 83 0.9 2 5 87 0.9 354 1.8 4.1 6 90 0�9 3 7 92 1. 0 376 1.9 4.2 8 96 1.0 4 9 98 1.0 398 2.1 4.4 10 101 1.0 5 1 1 1 04 1 1 414 2.1 4.4 12 103 1.1 6 13 101 1.0 400 2.1 4.4 1 4 99 1 0 7 1 5 98 lo 388 2.0 4.3 16 as 1.0 8 1 7 96 1 .0 380 2.0 4.3 18 94 1.0 9 'a 93 1.0 372 1.9 4.2 20 93 1'0_368 10 21 92 '.o 1.9 4.2 22 92 1.0 11 23 91 0.9 364 1.9 4.2 24 91 0.9 12 25 91 0.9 364 1.9 4.2 26 91 0.9 13 27 90 0.9 360 1.9 4.2 28 90 0.9 14 29 89 0.9 356 1.8 4.1 30 89 0.9 is 31 88 0.9 352 1.8 4.1 32 88 0.9 16 33 88 0.9 350 1.8 4.1 3 87 o' 9 17 35 87 0.9 348 1.8 4.1 3 87 0.9 18 37 86 0.9 346 1.8 4.1 3 87 0.9 19 39 87 0.9 348 1.8 4.1 40 87 0.9 20 41 87 0 348 1.8 4.1 42 0�: - 21 43 87 0.9 348 1.8 4,1 44 87 0.9 22 45 87 0.9 346 1.8 4.1 46 86 0 ' 9 23 47 85 0.9 340 1.8 4.1 48 85 0.9 24 49 88 0.9 344 1.8 4.1 50 86 0.9 25 51 86 0.9 342 1.8 4.1 52 85 0.9 26 53 83 0.9 328 1.7 4.0 54 81 0.8 27 55 80 1 0.8 316 1.6 3.9 56 78 0.8 28 57 75 0.8 592 3.1 5.4 58 74 0.8 59 74 0.8 60 73 0.8 29 61 70 0.7 518 2.7 5.0 62 as 0.7 63 63 0.7 64 60 0.6 30 65 58 0.6 440 2.3 4.6 66 56 0.6 67 54 0.6 Brooks Engineering Associates, PA p.1 of 3 10120/2008 I I I PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 6B-33 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Inputs I Doss Flm fall Flush FICW 1 Operating Head from Pump Curve' Pump Tank to H.U, Elevation (ft) from Pump to Hydraulic Uni? Line length (ft) from P.T. to H.0 5 No Line Size ID (in) Friction Headloss (ft) from Pump to H.U.' 0.010 0.011 2 Total Segment Headloss (ft) Friction + Eley, 12.010 12.011 Hydraulic Unit H.U. Elev 01aw 3 Headloss from H.0 (ft.? Supply Force Main Friction Losses H.U� to 3B-SM2 Segment Flow Rate (gpm) Line Length (ft) Line Size ID fln)" 4 Friction Headloss (ft) 5.052 5.635 Minor Losses (ft) 0.505 0.564 Line Velocity (ft1s) 1,78 1.89 3B-SM2 to 3B-SM1 segment Flow Rate (gpm) Line Length (ft) Line Size ID (10 5 Friction Headloss (ft) 0.410 0A58 Minor Lomas (ft) 0.041 0.046 Line Velocity (fils) 1 .78 1.89 3B-SM1 to 6A_SM3 segment Flow Rate (gpm) REMEMEMMIMM Line Length (ft) Line Size ID 0n)' 6 Friction Heachoss (ft) 0,731 2.174 Minor Losses (ft) 0 . 073 0.217 Line Velocity (1`116) 1 . 30 2.35 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold' 11SEEM 68 -33 -SM -1 Feed Manifold to Bottom Lateral Headloss (ft) In manifold4 Line Length (ft) from Supply Manifold to Bottom Feed Lateral' 01 Elevation (ft) from Manifold to Bottom Feed Lateral' Line size ID (In� Friction Headloss (ft) from Manifold to Bottom Feed Later@12 1.412 4.449 9 Total Segment Headloss (ft) = Friction + Elev. -5&588 .57.551 Return Force Main Friction Losses 6A-RM3 to 3B -SMI segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headlow (ft) 5.261 Line Velocity (fl/s) 2.78 3B-SM1 to 3B-SM2 Segment Flow Rate (gipm) Line Length (ft) Line Size ID (in.) Minor Lomas (ft) Friction Headloss (ft) 0.515 Line Velocity (ft/$) 1.61 3B-SM2 to VVWTF Segment Flow Rate (gpm) Line Length (ft) Line Size 10 (in.) Minor Losses (ft) Friction Headloss (ft) 6.341 Lin. Velocity (ft) 1.61 Return Line Elevati- Delta Elevation (ft) from Return Manifold to VVWTF Brooks Engineering Associates. PA p.2 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6B-33 Subinanifold l Feet Psi Total Headloss, at Min. Flush Rate at Return Manifold .47.7 -20.7 Lm Pressure Check, P at Min. Flush Flow at Return Manifold 552.7 239.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 700�8 303.4 Flush Pressure at backwa.h tank for Min. Flush Rate 194.0 -8410 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 562 ' 2 51.2 Pressure at manifold before PRV 473.2 117.7 PRV calculated (Pressure at manifold - Pressure low required) 154.3 66.5 :etting PRV sting utilized 115.5 500 Low Pressure Check: P at Min. Flush Flow at Return Manifold 22.5 9.7 Flush Pressure at VAVTF for Min. Flush Rate .161.6 -70.0 ni h Pressure ChecW Emitter P on Bottom Lateral at Dose Flow 162.1 702 Note: Return Flush Tank needed. Flush Pressure at WWTF is too iow. May not have sufficient pressure to return the flush, Brooks Engineering Associates, PA P.3 of 3 10120t2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 613�33 Submanifold 6B-SM2 Feet PSI Total Heactlass at Min. Flush Rate at Return Manifold 18. 3 - Low Pressure Check: P at Min. Flush Flow at Return Manifold 486.7 - 7 �7 High Pressure Checic. Emitter P on Bottom Lateral at Dose Flow 634.8 S flush Pressure at backwash tank for Min. Flush Rate 1,4 r 1 �j PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure Ion required (high pressure - 60 Psi) 496.2 51,2 Pressure at manifold before PRV 473.2 117.7 PRV satt ng calculated (pressure at manifold - pressure low required) 154 . 3 66.5 1 PRV setting utilized 115.5 , 50.0, Low Pressure Check, P at Min. Flush Flow at Return Manifold 22.5 9.7 Flush Pressure at WWTF for Min. Flush Rate -95.6 -41.4 Hiah Pressure Checic Emitter P on Bottom Lateral at Dose Flow 162.1 70.2 Note: Return Flush Tank needed. Flush Pressure at WWTF is too 10W. May not have sufficient pressure to return the flush Brooks Engineering Associates, PA p.3 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE OB -33 Submanifold 6B4M3 Feet Psi Total Headloss at Min. Flush Rate at Return Manifold 64.3 27.8 Low Pressure Check: P at Min. Flush Flow at Return Manifold 440.7 190.8 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 568.8 246.2 Flush Pressure at bacicyash tank for Min. Flush Rate 312,0 135.1 PRV NEEDED? YES ZONE SUMMARYWI PRV Feet PSI Pressure lose required (high pressure - 60 psi) 430.2 51.2 Pressure at manifold before PRV 473.2 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRVsefting utilized 115.5 �-'50.Q Low Pressure Check P at Min. Flush Flow at Return Manifold 22.5 9.7 Flush Pressure at VAVTF for Min, Flush Rate 43.6 -18.9 Hloh Pressure Check', Emitter P on Bottom Lat.nal at Dose Flow 142.1 6115 Note: Return Flush Tank needed. Flush Pressure at VVWTF is too low. May not have sufficient pressure to return the flush Brooks Engineering Associates, PA P.3 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: Brooks Engineering Associates, PA p.1 of 3 10/20/2008 all emitters operate between 7 and 70 psi, 0.2 there is suffident pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 0.3 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number 0.3 Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. 0.3 (Flush flow is for single zone and Dose flow is for dual zones.) 2 4. 7) ( Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d 8 Q/C)1 .85 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate 2 9 48 Zone: 413-34 Application Flow (9pm): 4161 3.1 No. Laterals: 20 Min. Design S ur Val. (m) 2.0 53 Tubing: ID (in) 0.79 Tubino 10 (in) 0.787 Emitters (aph): 0.62 Residual Flow for Scour (gpm)s 2.30 99 Emitter Spacina (ft) 2 Rea'd Flush Rate (Qpm)` _79 -46 - 87.1 Total Footage: 12 99 Design Flow (glpm): 41.05 Supply Manifold Elev.11 48-SM4 3 13 99 Retum Manifold Elev. 4B-RM4 396 2.0 Supply Manifold Elev. 4B-SM3 14 99 Return Manifold Elev. 48-RM3 Supply Manifold Elev. 4B-SM2 4 15 99 Return Manifold Elev. 48-RM2 396 2.0 Run Run Dose Lateral Lateral Min. Flush 99 Lateral Run Elev. Lan th # Emitters Flow j_%7 1 ­fh (M 1 22 0.2 496 2,6 4.9 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 24 0.2 27 0.3 29 0.3 31 0.3 34 0.4 38 0.4 43 0.4 2 9 48 0.5 598 3.1 5.4 10 53 0.5 11 99 1.0 12 99 1'0 3 13 99 1.0 396 2.0 4.3 14 99 1.0 4 15 99 1.0 396 2.0 4.3 16 99 1.0 5 17 99 1.0 396 2.0 4.3 18 99 1.0 19 99 1.0 396 2.0 4.3 20 99 1.0 7 21 98 1.0 392 2.0 43 22 98 1.0 8 23 97 1.0 US 2.0 4.3 24 97 1.0 9 25 96 1.0 382 2.0 4.3 26 95 1.0 10 27 94 1.0 376 1.9 4.2 28 94 1.0 11 29 93 1.0 372 1.9 4.2 30 93 1.0 12 31 92 1.0 366 1.9 4.2 32 91 0.9 3 3 TT 33 3 89 0.9 356 1.8 4.1 3 34 4 89 0.9 3 5 14 35 4 89 0.9 354 1.8 4.1 36 3 a as 0.9 37 15 37 5 87 0.9 348 1.8 4.1 38 38 87 0.9 6 39 16 39 86 0.9 342 1.8 4.1 40 40 85 0.9 7 41 17 41 85 0.9 338 1.7 4.0 42 42 84 0.9 1 a 43 18 43 82 1 0.8 326 1.7 4.0 44 81 0.8 19 45 79 0.8 314 1.6 3.9 46 78 0.8 20 75 0.8 614 3.2 5.5 61 0.6 53 0.5 47 0.5 39 0.4 32 0.3 7946 3973 41.1 41.1 87.' Brooks Engineering Associates, PA p.1 of 3 10/20/2008 121 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM `I ZONE 48-34 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.U? 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to 3B-SM2 Segment Flow Rate (gpm) w agi ®b�ua a ,ffi me Line Length (ft) Line Size ID (in)' 4 Friction Headloss (ft) 5.052 5.635 Minor Losses (ft) 0.505 0.564 Line Velocity (Ws) 1.78 1.89 3B-SM2 to 3B-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)' 5 Friction Headloss (ft) 0.410 0.458 Minor Losses (ft) 0.041 0.046 Line Velocity (Ws) 1.78 1.89 3B-SM1 to 6A-SM3 Segment Flow Rate (gpm) Line Length (ft) I Line Size ID (in)' 6 Friction Headloss (ft) 0.731 2.174 Minor Losses (ft) 0.073 0.217 Line Velocity (Ws) 1.30 2.35 Supply Force Main Elevation Delta -156 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold 4 c 48-34-SM-2 Feed Manifold to Bottom Lateral Headloss (ft) in manifold" Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (In)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral 2 0.559 2.865 9Total Segment Headloss (ft) = Friction + Elev. -40.441 -45.135 Return Force Main Friction Losses Friction Headloss (ft) 6.341 Line Velocity (Ws) 1.61 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 1 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 413-34 Submantfold 4B-SM2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold -32.7 "14.2 Low Pressure Check: P at Min. Flush Flow at Return Manifold 537.7 232.8 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 664.6 287.7 Flush Pressure at backwash tank for Min. Flush Rate 217.0 93.9 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 526.0 51.2 Pressure at manifold before PRV 468.2 154.3 117.7 66.5 PRV setting calculated (pressure at manifold - pressure loss required) PRV setting utilized 115.5 25.5 5,0.0 11.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold Flush Pressure at W WTF for Min. Flush Rate -138.6 -60.0 Hi h Pressure Check: Emitter P on Bottom Lateral at Dose Flow 148.9 64.5 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 413-34 Submanifold 4B-SM3 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 11.3 4.9 Low Pressure Check: P at Min. Flush Flow at Return Manifold 493.7 213.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 611.E 264.8 Flush Pressure at backwash tank for Min. Flush Rate 259.0 112.1 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 473.0 51.2 Pressure at manifold before PRV 468.2 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 86.5 PRV setting utilized 115.5 25.5 50.0 11.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold Flush Pressure at W WTF for Min. Flush Rate -98.6 -41.8 Hi h Pressure Check: Emitter P on Bottom Lateral at Dose Flow 139.9 1 60.8 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 46-34 Submanifold 4B-SM4 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold -32.7 -14.2 Low Pressure Check: P at Min. Flush Flow at Return Manifold 537.7 232.8 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 664.6 267.7 Flush Pressure at backwash tank for Min. Flush Rate 305.0 132.0 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 526.0 468.2 51.2 117.7 Pressure at manifold before PRV PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 25.5 50.0 11.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold Flush Pressure at W WTF for Min. Flush Rate -50.8 -21.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 148.9 1 64.5 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 10/20/2008 1.7 Irrigation Schedule Spreadsheet 000NNd Mfl-U L 0) co irrco d' co t- r•CC) d' Lry O ?� oco 6> CV et t-0(Dm r• (V M a- LL N LL Z U) = H 3 � LL LL d C d C O N 3 � N y y LOLnr•(oaoco M M M C M M It y 6)Nd'CMNN M M P7 M M M � V L � � r+ � J J O O o Z O Z to CO O (9 M 7 C O) G) O) 3 `(0 00 It o L. LL 4) y p G O 0 d C d C O N N Ln.O V `7000 (O7M000'M 3r:vriv00 ornrnornrnrn B:mw o0)(0O0)00(0 'Nwo LL LL m H O O � d C N C O N A � � N co co O C. O N LL M 000 N J M M M J COO o O d C d C O N N 00(D d-MNCO 000000co(0 N-Noc0--L tm C00O00000N OnO-ONtM C0)M00r- 0' r-� N e- — e- � r — a- r e- 3 `~ O O �+ LL LL cc d cc 0 d C C J J L 0 L O O U O V c� coo 1.5 O ;4 N cr N C N C p N � N� N N C _ yO(D N� T N N 7 tn> 0) U�O�O 0) d c d m C" N O Z o N Z d C _ v d O �` 3000QmQm OC 7QCOC�000 a0S d ' (d) C4 C14 M co a CO V 'd LO (0 00 a f0 .0 y N Q rn C N C cm C W Y O O CO N O r I 9 1.8 Rainfall Data Analysis for Short Term Wet Weather Storage Lai Requirements 310301 15 years STATE CLIMATE OFFICE OF NORTH CAROLINA NC CRONOS Database Data retrieval from 310301- Asheville for 1970-01-01 thru 2007-05-17 (13651 days) 13,651 records for this period of record (100% data available) *Stores design flow if temperature is < 32 F or Precip > 0.25. *If there are suitable conditions on a day after a storage event Twice the design flow is irrigated. Design Flow Maximum Storage 200000 1,200,000 6 Days of storage 9 Days of storage with 1.5 safety factor Page 1 1 0 0 0 0 0 0 0 0 0 0 0 0$ 0 0 0 0 0 0 0 ........................ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 ....... 0. 00 O G eO N NON N N N N � O a 0 p 0 0 0 0 0 0 0 0 W p 0 0 0 0 0 0 0 0 0 0' 0 0 0 NO O O O e O O O N O 0 0 0 0 0 0 0 0 0 ....... Ci bV O O O O rn' O O O t0 0 0 0 G C O C O 6156 0 ^ O C O O G e vNiav°inmmmnn�mv`Oi��iv�������<uoi ionn<vOiornvu°fim ern uNi vei�mnn���°��nmm m'aoo��nmwnnn�nn�mio nn raw 0000mg0oo0o�0o�0o�am�n ��'co�omoa�e0rn0m0M0vbv�� o�moem000 omm00000Om o010o;i113 �1mogonoo- 05 ooo o^�im 00ooB'ooeo 0000noomoo0000mo omo_ eoo�oaM '0000 ---------------------------------------------------------------------------------------------------------------------------------------------------- 00000000......00.oeo p000 0 000000 0000ae0000000000ee o000o0 T N o 0 0 O 0 0 0 N a 0 G O o 0 0 O A 0 0 0 0 0 n O N O O N 0 0 0 0 0 0 0 m 0 0 M y G G O G O G C 66 O O G O O 66 lV C O G O G C 'a L c a E N L M < V tp in �[Oi< V aYOiOm<tO')N f0 f0 tOp t00 NYmtb NtOON YaiON��Otf N tNp �O tp tmOb Y�tp HtNp YO'f NNNfDntp lD�Y�NNfOD 10 <n0]M �YOi V u^�NtNp INO �yy 6 E *'7 N CmaMoo�rno�o 0000 `mmmmrno 0 0 oommmoee�oom�ogo�000000�mmo ro mrnomaMvuoim�woom ave�im��v aom��l.navm�imnmmo?il�nv�mm�mmo�anave�imrm��l.Mvvo�i 000000 ,,, ���c��c���eeaaeaaaa�aaaaaa'a^aaa�"�"aSaSS�"00 ccco o^o^00000^oo^'oo'o`o^oo'o^0000^o^o^o^oo^o^o^oo^o^00000000 000000eeeo eeeceeeeOc c I I 12 p p T N N N N N N N N Ol � W a 0 G NO O O O O O O G 0 0^ a 0' O 0 0 0 0 O NO o o o o O' o O N N S.- �0 O O o o o o 1pV p o 0 0 o ID 0 0 0 0 0 0 NO o W p O C ' C G G C O C G G O O 06 C C G C C p O O V NN{O fO IMO d�DN bmNYNINpNb V MMN fp0 f^Oh<bY V YOt IpN �Y<O V MN V INOOYY V OM V M V V HtD fOOh Opt N�Inp IOONNYNN�NN Oq0 Of OIL OI O� OfmTA ' COI �f QfT'�'�m O�T�aQi ��go�anv�nm�am �'� m�c m�nmrnmmmrn� mrnommo�amanm�wm � vin �mm_ o $oo � aa�aa'aaaa'aa'aaS��S"a'�"a�SS�SaS� ee�e_oo;_,_,_,,,,c�cc�c�e��e��o oaaopao'a o 9 ......0 0 0 0 0 0 0 0 0 00 O O O O O O O O O O p o 0 0 0 0 ......... 0 ........ W e0000 0 000 � o N GG y-� NQt00<N N N V N V N N N W N a M O O h nrrnhl�mm�rlO trO tD l��or ����c�e�on�aenin W (r0 nnnn�ic �o io vtDi«NfON �t0 f00 �1ph10 fD IOD (D lDnn hl�N NtO tO N�[ <N m m m rn m m m m 0 0 0 0 0 0 0 0 rn m m m m O O rn m 11S, 0 0 0 0 R m 0 O O O O O O O O O m m O m m O O m O O m �n00000000mo�A n ev�mnmmo ma m�___m . 0000�A`ain ion�?oi CSC �poC���"L`+��`anam cococcoc�c �aaaaaa �opaaaosop o' o-oo-000aa����«�«7� 7 7 I WO O O O O O O O O O O O O O O g ............. O O o O O o O O o o O O O o O O o O O o O O o ...... O o o 0 0 0 o o o o 0 m O T O � N W m a M p 0 0 0 0 0 0 0 0 0 No O O O O O M N ............... aD I�� m W m Nm�ronlmObnnl�t0 tp�rnl�nn�n om u�i m(f fmOr1'nfmO 1p (D t�D N(O W I�tD 100rrnnr W W t0 nhNN�MYNit�i<MM�Ot'D tO I�ID I rnm� '�m'm 'mom �rn^�rnn�rnmE Qrm�Mm 2'�mo�o' m��rngirnmmm mmrna��mm��Qr�anmim`-q�o���vvm`in ��N�nm�mm3 a a n �o,� mor o=m�v�mrm� a�n3r S'' 'H` ;_„��oo��00000__`m_` ,_ o&cooc�o�ooe= ,,,000e;,,,,,' oaooaaaaoaaoo----- o0 0 cmococcccoco°foogim moo �� � �� .-� .- .- .-� � �«.-�����.-��..��«� 00000000e.o 000000. 8... 000�00000 000 oomooeo.eo.00 ... o... N O o 0 T o 0 0 OO O O C O O O 0 0 O N A � N a M O O 0 0 O C o C C C O o: C 66 C G G G o C C G C G o 0 O C O CC mromromm�mmmrnmmmm�mrnwmmoo+m��mn �m rowwmmmmmamwnm�mm�m�mmnnmm�nm�mmwmwnnm�r°mn a�auo`i ionmmo�cl� r�ivvm`>��nm o�io�anavo`>mnmmo�mrnn'�vm`i �onmmom �lnavm`i�nmrnomamavo`��i=mmo���nmm'gm 00000000��`���-�����L�L`+l"���C' C+�"'�."o�o�00000�����.-���•-��L`+"L`+L"C+L`+N�tl �i `�nooeoo`So nnnn�nno�nnnn�nnrnnnrnrnornnr=oa " " omm`o>mmwmmmmmmommmm mmmrnm` 0000000 0000000000000000 0000 00000000 0000000000000 000000000000000 TIR E 0......000c0000e0000000000000000a0000o00000000000000000000000000000000 T e O N N N N N N N N a 0 VISAS .......... mm O O p V O O O ... O N NO 111 O O O O O N O 0 0 0 0 0 0 0 0 0 0 O N m O m d O m (n G G GG C G C C G O O G 66 O G O C C C m O G C C O G C C O ImO fD tmO l�rol� nr W � nAl� W'm W 1`nompbnmm W W m W � ONi mm mm W 010i O1ro m oMDnmmmm W �mmm mOm mm roam aNGm 01�ImOr maND m OOl rlmO ��nnm N QNQff NmNOi mmNmmNaNi N gN�TNS �ONi ONET��ONI AT�OIN �ONf TNmTCNiN NO u�i l"N-M ONmf i°N'Q'mmNIYrn M9 _iormmo�gNC dmmrmmo�aog mnmoo`arm`idhmnmm �`��=�oo'�' �" n�oo- I`y d�`n lonm I$1O000 ol°000"'oofD000m Qr ro``nn�nnl=nnnrn�nnnnnrnrnnnn nnr�mw�3mo'3��m3m 0 0 0 00000000000000000000000000000000000000000000000000 --------------------------------------------------------------------------------------------------------------------------------------------- o 0000000000000000 000000000000000000......... 000...........o0oo0oomo 0 0 000 oSoo00 o c o 0 00 T O o 0 00 00 N Od Od N N N N< N N d N co a � r m G C O O C O G O O O C G C C O O O < tmp N ID tp � m m � h n m�� r r lD b t0 ti r W� v h N fnD t0 ti� ti Imo tND < Y Y N n� r� r h I� m Mm n fnD r'W ro n A� t0 �� r N fp n f0 r A� W 6 n n N rnrnmmmmmmNmNNmmm �imrnmmrnmmmrnmmrnrn�mm�`�rnm�mmm�rnmrnm��irn`mmmmm�m�mmrndmN mrnmmmmrn ffpp Y h`_ 0000`0M"�m �m010`aM<Mlph m`O10`� mroQlO�aMO m(prm�O�a MY�(+IDn W OO��aM nm010 ad Odd<V`V v`v`3`vvv���avaa��n �n `inoo�n I III II mmmm�n o oc�i 0000$O�o�o�00000�oS0000�0000000000000000000000000000000l$`8 `� o00000000000e oo 00000000000e0000000.......... 8.0000000o 0000eo o 000000.... °em o 0o c o o s oe t o t D V N N N O N N N N N � a O o 0 0 o n o 0 0 o 0 0 o O o 0 0 o ... o 0 0 0 0 0' o 0 0 e o in o 00 o c o o o 666 O N V O V V V OloO Ymf htnD lD hY�f �Mfi tOnN tp�Nh V N 1p ln0 �mtfNrrnI�IDN Imp fnOr�Nlp� rlO l�rr�hl�fprrn mmn W ooG aMDr �ImOm �i�aMD tMp tMON M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M m�pv��i�nMmrnMo�mM mmMmc m�MnMmMm�o�^ ���� no vev�aiman�m�mao oa�'aa'ac��iomom��o�omooLo`i��'aso,"nCo�vMm�rn��mM M M�m�m ia i5o;05 ;�m�5;�55- o o 000io021�m. �oLo"io`i . 0E— — ------------------------------------------------------------------ �' o00000000000000000000 ......000eooe000 o.... 0......000000 o ego oeooeoo ����,, m o c c c c c oo c c'o� rill" 1C1 N N N N N N N N N N Y N N N a k, M �^nFooaoon0000n000'o oaoo�00000000000000000 �n,N000 r�0000N000�n0000sn�0000000vn p o 6 6 6 0 e cn oo co 0 oc 000c c 00 oc o N h�Nh<O V hN V f V «V <V NbN V OYIMONNNue'V Y�i fO NN Yf NhiAhN�MM�MN V <hN m'f MM V M V (pl Yf h V V <�m[1Nr<V M mmmrnmm�"'mm�m��marnrnrnrnrnmmrnmmmmmmmmm_ � ammem Qismmrnmmmrnmrnrnm�0000�000��.-� a mm�mmoma emm�mrne�a EMU mnmm 00000�000��?��=�'�''o� ammnm�aioam r`m c o`.-a �QQ-aaaaaaaaaaaaaaaaaaa�aS�a SS "a SM MMMMM oo'oo'o'o'o'o`o'oo'oo'oo'00000'o'o'000'o 0000000000000000000000a00000000000000000000 r o00000 T 0ON 0N N V S SS oO 0O 0S �S 0O 0S S 0S O S 000S 00O �D S aoS SO ooSO 0000NW< oN 000000000 .W0000 o00000000 S 888 o N ONN N N O O W O O W O d O S O O W b W O V N y N a M h 0 O C C O C 66 C C o O O O O G O C C O O OOO W ONM VV ��OOMYM^+f V NMM�h'l lA V V a`h'f �NMtO")N NtW'10 <1tOi V YWi NfpYOMNi�<V NYOi Ip tOO lhp YMY�h010 HlO fNO AID M d Y d Y M M M M M M 0 1] h Y O O 9 Y�i IpQ W 010� MONla tim TOq�l��au�i l�OAbOf O� NM V Nm^ W O10 �I�tZ'O �(�l to lam 0'f O��N� u�i W m O�GT OWN T1a N1�D 1�m O1 O� aaS----S-SS-SaooeQ000e=„_,,,,,,,c� ccnc��n;"-oaooa�o'aoaaa'a'aao��o�a"a o000000000000000000000000000000 0 0 0 000000 00 WIN 1 .l ,._________________________________________ ww 1 �' o000000000000000000000 00000000..W000000000000000 00000000000 so -op. W SSS O O N o a ci G G O C G G C O G O C O C G M � d OOONOh W O�YT� W S W OWN W O N W NO W�-tO�SS���W,S N�btinrbSh<h b��{p V NYf N1[OiN �IONb NNhSOYt'O�h< M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M O �MOMi OMi W OA 010001 W OOOI W W O W OHO n�010 �(1. M<HNI�-�Of� � OI. Of0�0 W TO �Ot�M Co��QO�iO �f�M `NtOr�NO � V Y'�O �OQiO gl�thgN tOn W OO�f_V fiY &��co�co _ =c---------�aaaaaaaaaaaaaa 0000asa'aao's'sa-a-0000-oo_-- �� N C00000 000 Ooo o 000000000000000000 occoococccgooccoccccomococOcmoc00000c00000co S N Q o s p O o N N N ry N N N N N a M G m NO 0 0 0 0 V� N o 0 0 0 O ... go .... G O O O N O .... p t� O lV m O O D .... Q g 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 m O O O O O 00 O O O {OV G G O O O C r nrrrr brrr nAr W �ntmO 1pmb�lmO mlD�Nh10 fmOn bl��tmD 1�1�f0 r10 NNmio one�nmm�io� ninmennio io��mm�u'Oi euni iow �mmmmmmmNUH T�mOf Q�1 mQQp�1T iN�mQ�Q+5 mm m� mmmm�a�arnrn � mo` vvl� �l rZ onm `?AmviT+mn�mo C[3 eic (i3Vn` No3 r mo\A"in ^mornmorno�om�oog0003o�"o' o o oo o -d o o i _________________________________________________________________________________________________________________ o �' 000000000000000000 ao 0000000000000000000000000000000o e000 ........... BE oo CCCCo Coo 0000000 00 eC CCC C Coo NObeN N f. LLY NON' N ONON NOIOON NON NON N NON N W f n �nmm°'m w�mmwmn�mron��mmwoomnm�nnnmmmw�wnenmmmn�mnnmm�mwom m�ion�nnn�mmwommwm ��� vav m...mmrnavvaa avva a a vaavaaa vaava a� vav<va<e<av vva �m ���rnm���mm���;���mmm��e�;;a����anm�����m�� ^�Mvmmrc'mo^AA ainmrmmo^^o�00000��a������r'�L`�����ml`��mC'�'o"'^C•000�o�000��?���� I,.�,3non nonnnrnnr rnrrrrnmm " mmmmm "mm m m m m mmmm000mmo o`wm"` o 000 00 000000000000000000C0000000000000000C0000000000000 00 000a000°f tsL R 0 0 o .... O O o 0 0 0 o 0 o 0 0 0 o o o O o p O o 0 0 0 0 0 0 0 0 0 g o 0 0 0 0 Op O O O O O O O O O O O p p p p p 0 T C o O O 828 O G C c In ON N N N NON N N N NO N R IL con C µ' N ON O ro O O n 0 0 0 0 0 0 0 0 0O' 0 0 Np V O O O O N O O O O O p O 0 0 N 0 0' O N C C O o G G C C G G C C f V � O G C G O C O O nnnnmmwmwmn�mmmmmmmroow wmmmmmmmmwmmommmrnmmwmmrnmm�mm�rfO-�omoomoammmmnmrnmm��� i l� E •.. ma a" n000�00000��?����rmmo��.3 pmo�vo�000��?���`r°�m�o�� ion c��c�c�� ccccc��6��eepp 000�000 o68c9ScccoSBoocoocoo89SSS98o9SS60000=00000=0000=��_�������' --------------------------------------------------------------------------------------- ---------------------------------------------- ........... 0 ......... O .......... p pp O p 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 Op ..... o 0 0 0 0 0 oo Cp p p p 6. pogo 000N rn �g� T p O N N N NON NOt00 W fDON N � N a 1 tD fND D��10p c0 W nl� hNh(00 O l�iprnNHtp tip f0hr W t0 nrnnnroo�mnnnmrn-romronnmrnnrao mrnn�mmNl"O t"prrnt�rtn0 " " " " " " " " " " " " " " " " " mmmmmmmmmmmmmor�ammmrnmmo,amrnmrnammmmm`�mmmmmgimmmmrnmrnmmpmmm eimmrnmmmpmmpmom Ane"fcnmrne�Aco a�nmr aro maoa �A�nain� mp`o�Ain a�'n �on'm rn�"Ly���p�,00000�p{�o{pp�oo�(pp=a���p�m�tw�tDD o+ 0 0 0 0 OG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IPi°,w8 o 00000000 op0000o00000........... 000000000000000 g�000000000000000000000000 abi g o 0 000 00 p T S � N 0 a 0' NO O O O o M O O C G O O G O O C O O O G O O C G C G C C G V NtbO hrt�NONNa alp rl�h V a aY<� bW lrO rinO �(bOr hl�n ntO lDr hlrp l� W YOirn W bW mr b�bb W Ib.NH10 iO I�b W O�O� abGAmO01 W m W W n yy 1p b b bb ttDD b big1�p,+ b bbb bb bb b bbb mbl� � Obi010 bbbb b b b b bb ��<Nbn�O�O��iJnvvm-e�mmo��A e�n����nmmo��rov�`nn�n�rno���av�i�nmmo���M vu�im �-�romo����n3���m M onMnMMa�in�a�aa���vaa��<'-3a-oo~��"�o 0000c'�'oa000000000000000000000000000 0 00000000000oo�ooaoogo�oo� o 0 00 I 64 � o00000000000000000000000 eo oo 00000e000 oae o000000000000000000 000000 000 � o 0 000 0000000 o b e000eoo 0 0 0 T O p O o N N NON NY �W fDYN O N N NOtD�lOON N N N M N 0 a o 0 0 0 G C bN G N OOptpO 6 O O 66 M G C N C G G G O O G O O O O NIpYNIp �OMO hNYM O V <vOMtN+f �bNM<NNIbOhMaYOMMONYID 10 n�hnrNM<N V NYri InOH�NOHf00 bb !`� W �b�MM �p b b m m b 11OO b m b �O {{pp �tpO a b �p b Obl m �fpp rrp� �p Obi abl {(pp (tpp ��pp �1pO �p �1pO ��pp ��pp �1pp �1pp AObiN AOb-1 �1 O1 W OI W � O� Ol -(Ob W TObi�� G � pqO bQi Of �i W 0b Orb OIO W bbb Ofb ObiA Orb Tyb�l 6bi b�f O� O�00�0 M a�io'mAo��rob -i 'a �n <o na'om-o,��N�0000�000 •=aM b�orromo�aiainm�mm'000�o�000�`'a�����°�^C�C� -����������-�aaaaaaaaaa'aa''aaa'aaa'aa'a�"�������S�,aMMMMMMMMMMMMMMMMMMM 000000000000000000000000000000000000000000000000000000000000000000000 1 o 000 000e000000000 eo oog000goo oo eoo 000 e0000 o000000000000000000 oo 0000000 oo00000 oo eo oo m o o 0 00 0 o0 0 0 0 00 0000 0 0pp T o O O o o 00 O O O O O o O O N V N M o N N N Y N N N Y m< N N N N O Y N N o. N EL 0 o 0 0 0 0 o a o 0 0 0 0 0 o o ro m m o 0 0 o a o 0 0 0 0 0 o IeNi o 0 0 o 0 0 0 o s o o ro N o 0 0 0 N^ O O O O O o 0 0 0 0 0 e v 0 0 000c o occ co c o00 00�0 <n o 00 o00 0 o c 60 b�<V fp lO lO 1p N�fNl IMO tn0 fmp� V MOYlKNM MO�MNNN V IphN V V V <Y V V Nt0 fm0 (SON V NfD V MMMdtm] YO�IOO lO lmO �10� V itNiNb�fOti �mmmmommmrQ^�1Im n�m��rr�^=`m`�=^�\^�^�^^^.^��nrnnr�=rnr�n�nnnnnnrrrnrrrrnr eliw nmmo��N rno��Mavlmnmrnom ainrnr�mao��anav�i to r.mrno��N nanenmmom �a�m �.�o SSSaaeoo ooe�_„_, _,cCS SSE 9cSSIMoaoa�o'aaa'aaa�oa"�"a �aS SSM € 'o'oo'oo'`a'o'oo'o 'o o'o o'o 'o oo'o 0000'000'o 'o oo'o 0 0 00 000000 0 000 000 0 ---------------------------------------------------------------------- ---------------------------------------------------------------------- ---- ........... o............0......... oo oo O00000..8 ........ ...... 00o r N �,�� a M r nnfOhh trOrhlmO rfap nl�nmr t00<YNN(mD tnD tD MI�M d<Y V YEN N�O[12V 1. G 9 2 V NY NG O. YA hhY ME t oNYnf NUN"I V MMNMN mTO�TOIgggg gl.-12 Oi`�`,mmmm`8_Im`$iOfm`�OfoWmmOmiT�Om101pm_INOIaammTmmOmimO�m`P`8��m`S�,mm`4i�1rn�fO�mOmfrnOmi�fmmOm�fT`� ma000�o ?�nam_\a`o^+oi`IC C�L"Cmi`�L'I nL`�mL"�`o"'.=Ancm c HHMMAmmrwm �aaaaaaaaaaa'aaaaaa'a'aSS saaoa0000�oo�goos��« �� o ooe00000000000000woo..00ocmwOmoommomOcmmomomocmc 00000m..000000. o.o00 oo a LLY N N N O1 � m a pp p p 0 0 MY O O O O O O O O O O 0.0 ..... Q �:^ O O G O m NO O .. M o O C C O O C G Cl C O O L O C O O C O C C C C P I�rlO I�rIO�n�mm`mm nn�nnmw�tOh Yrnf ID 10p 4� Vrnih b(Ob NtD f0 t0 f0 �mfl YNYON<N V vhh V YpaMONNYnY YiNN V NNb{n0 �(rf h Ch m rn�rnmmm m�+mrnmrnmm�c�ivm rnmrn rnmrnrnrnmm � - A �� 03 oaoo�0000� °1 a"'cmom�mo goy _ \m`mmo Y m me'm��o�ooc�ocoo'eeeo ;c�c�c���� eat 0 o HUM 0 0 0 0- m o 0000e00000000m0000000000.oOooO00000m00000aeoe00000e0000000000000000 S O S S _ a 0 O N p M G o o G G C G G G G C C C C O G G o Law rn rmm�maNYnmMmmmOmnninmmmm�m�NmnNmnm�OmnNwmwnwnmO�nnamNwNNc'��Ym�nnmmn�Y m mmm mmnmmmmrnmnnmmmmmnnnnrmmmmmrnrnmmmnnnmmwmmwmmmmrnmmmmnnnmmmmmmmmmmmmm �' rnrnrnnnrnrnnrnnrnnrnrrrrrnrrrnnrnnnnnnrnnnnrnnnnnnrrrrnrrnnnnrrrnrn � _rnmmmmrnmmrnrnrnmmrn rnmmom �, Qimmrnmrnm Qirnrnmrn Qirnmmmrnrna�rn rnmrnwmrnrnrnrnmrnrnmmQ,mmm �,rnn Qimrnarnrn cccccccc^e,�e,ommm,�« n.innnnnrrnrnnnm 00000om00000000 0000mmmwmrnrnmrnornrn `m rnrn00mmrnmmmmmrnrnrnorn F: o000000000000000000000000000000000000000000000 0 I `vl Iud .0000e000000000000000000000000000000000......0000g0000000000.......... m o g o o e � W a M p O ONO 0 0' 0 0 0 0 0 0 ON O O O O O �- O O p V o p 0 0 0 0 NO N O O O O O O O O O O O O O NA ............... 0 0 0 0 G O O O O G G C O C C C O oGG O O m W m m W m m m m W W m m W m W W m W m m m W m m W W m W W m m W m m W m m W m m W W mp� W m m W W m W W m m W m m W m m m m W m m W m m mmmamamm�mmomAnvu�i �onmmomm�avm�imnmmo��amammr.mmm�r7namm r: m mosmmvmm1mmm - �arm'iv WL`i�M000�000ga Mi'��i`i�L`i 0000QQoo -�NN Cv CL`i L`i Lv�MMgooQ fO000000000000000000 o00000000000000000 o... o000000... o00°0000 0........ O---------------------------------------------------------------------------------------------------------------------------------------------------- F.... SEE ....... 8....... o......00000 ooWoo888008o00000000000000000 N o00 o 00o c o 000 0 d T o 0 000 N R o Y N N V N N N N< N N m N a V, p o o my 0 0 0' o o m n v m M o W o o m o < f 0 0 0 N 0 o O O o o O o 0 0 0 0 o O o p o m o o a N o N n o O o ci' 0 0 0 0 o NO o 0 o O o 0 0 0 0 0 0 O O O O O O 0 0 0 0 G (h G O O O O G G G G G G C O O �ommm(cnrWmW�nm�cmmmrmrrmnrmmmmmmmmmmmmmmmmmmmmmmmmmmmm�mmmnmmmmrmmmmrnmmm mmWmmmmWmmmmmmmmWmmmmmmWmmWmmWmmmmmmWmmWmmmmmmWmmmmmWmmmmmmWmWmmWWm o amrnrnrnmrnrnmrnrnrnrnmmrnrnmrnmmrnrnmmrnmmWmmrnQimrnmmrnrnmrn�rnmmmmWrnmWmmrnmmrn�rnrnrnmp�imrn Qirnm �lnvm�"p.rmmo�Ain�m�mmo�Ainv'm ionWmo�AMamio n aimo�oAi'v 0000°"�?�e`in`mrn oL`�L`��`+Ml`���mL"C o 0000�o�o�000000000000000000000000000000000oo$o'S 00000`800`c°io o`B oo'g000000 I o..000000......0000000000oo oo orbao oo 000000 e�oo 0000000....... o......000o 000000 m oSS g ooclp '000 T 0 0 0 N N V N N Y N N N N < N N 0 a O O O O g o N O ..... H 0 0 0 0 ON 0 0 0 0 0 GO O N O O O O o m o 0 0 0 0 0 0 N O 0 0 N 0 0 0 0 0 MO 0 0 0 0 0 0 0 0$ 0 0 0 0 0 M 0 0 C O O o G o G O O O O O O O O N ht� W 6'1 W hmn W �rofD leO tOmfO �hlmp l0 W �^m l�fOb rtp OtOD�htirlD tmprr �rmnrbn0 m^n�l�mma"'o �e nicnmw nnnw mmnco m i m mmmomi mmrnmmmmmmmmrnmm�immmmmrnmmmmp��mmmrnrn&i ��mmmmm�mrnmgmrn�rnmmmrnm���mrnrn Emil. Mavrn'smn�mo��a in eu�i �onmmo�{y"`mnwmo�A`av�im�mmomaMau�imnmmo� av�i`�mmo��a<o`v�im� 00ggo0ooQ���L���^•-.-�L`iia��i�CCCauo`invo'>�o`nn�`n v8i�?L������������Ntl l���tl L"�^C�000$ o �avai"aa `v a` a aaaa nninm NN�`n v�i`n �o NmNmm�nmmmm3mt3 in3 € 00000��oo�oo�00000��00�000000�000000000000e00000000000000000000000000 1 ---------------------------------------------------------------------------------------------------------------------------------------------------- `� o000000000 00000 00000e000000e0000000000000000eoom0000000000000000 N o e ee a N 0 0 0 0 0 00 00o COGGO co 0 00000e O000 0 0 M �m oo6O N �N Ymi �mff �[ I�NfOh V MN� htmON 10 tmp fD fp topbM V NtND NYC V OM MM V <mff NUM]YfD NAM NfOY V �rn'1M<N r'f MMfD n�O 1p 1p iM[1 N tO fmDN <YlO lop rnmrnrnmrnrnrnrnrnrnmmrnmrnrnmmrnrnmrnmmrnmrnmrnmrnrnrnrnmrnrnrnmmrnmrnrnmmmrnmmmmmrnmmrnrnrnmrnmmrn �arnpmmmmmmmmmmammrnrnrnmmmmrnmmmm mm rnmmmmmmmmrnrnrnmrnrnmm�rnmmm Qimmmm�mmrnmmmrnmm� C� H05�n000000000��a«���mmo. m �o"'000�oo��?« '�'mmo.-aMvm�onmrno o aaaaaaaa�aaaaaaaaaaSS��S�a�NSS�aMa ����������� M Mt`"1 �tMMM MMMMMMMMMMMMMMMM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RZ- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OO O Oe 00 O Oe O OO 0 ............. 0 g 0 0 0 .......... Op ........... O O O0. C C o C C p 0 p Y N � NON N NON NOtOQN N NOtDON N W a ....... ^Y,� 0 0 0 8 NO O O O O O O O N O 0 0 0 0 8 0 0 0 0 0 t�pb f0�<OOONhINO fOm M NONCOI vM NNmMNNNO N9 t�l NM<YNfO MNmhNm 1pvvhlD lO in tD �On V NNINOm ntOhhbfO NtOh tOrtiOn ooE�po�000E$00000000a00000000000000000000�Q000000000000000000000000�0000 o� o00 �an Y o for 'z� a s„ inn Y iei wmo�a�a�n 'm n wm o?o�om00000��?= =� moo\ Yin r�moan oo�oo p00000ee„Q cE2�aaaaaaaaaaa�oa�oaaSSaSSS�2��M�a --------------------- 0 0 0 0 0 OO 0 888 ..................... 0 Op 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 oop N N Y N N O N N O e oo p a p o0000000�m,��00000 oo�0000p00000000nvNi0000po 0000000000000000000e000000 iy o0 0 0 0�0 00 V �{Oprrr nrm(NO YtD lib (OOrnr-�omu nhO VOi tpO 10100 mhfOro mtpD in {ONMYtOp lO f00 bmlpm N(D 10h NNIOYNNNmO V'YMMNYM V Vim mpemO1a mrnm°'mrnommrnmmmmrna�O1 °'rn o'mmrn wmrnwe mmoo�oO1,mmm°1mamm°p1�rn�'mmmoirnmmmo�mmmmmmo°i�,m e ernmQ',. Q'� mo � .-?il.n IOW O�O�at�"fY NtOA01�0 pia m�m�m�a is v'o `8�o�o.-Nnau�mr=maom �a�v� n o� M-aaaaaaa-a a s "ar-"ar-"a-S------- 00000e00000000000000cmoemmemccommcmoogooeooeeoee. 0000ee 0000e.00000 omoco 0 000 a oo N _ a p o o o v im,- - - - - - -- - - - - - - - - _ _ - - - o o o o o e o o d M mmmnvmia aio�mm�nn��i'�nnnnn���i nnn��o iono�mvoi vmim ovvevnmianavoiv av�'i vNin umi�aaM�aM'a diva � o000000 0000 ooeooeoo oeooeeooe00000 00 0000000 ooe 000000 �oo 000 Qu oo 0000000 00000 0000o�000goo oo 0000 2oQ moo o �o`�0 3oo�anvm�onmmo�oai`��nL`iCon'Ln�'o�Qoo�oQ$o=A min �o\^CCmi"�CmL"lr'??a??A?��c'l� -------------- -- 0 -- -- --- r� I--------------------------------------------------------------------------- ............ ........... o00000 oe0000.... go ......... 00000 .... n i T O N N NYtO V SON � 1n N Of m S a (h C C G C O C O G G O G G O G � W W Om W W ����Om Oei O�mm rnmm l�hnro W OI�OI W fOO lrp W m� W m�ro'm W nrl�� W t�lp nl�amD m'A mm omOro nlp ntD�ro W fDnmrYf rntp l�rn E. t' sty 000000000e00000e000000e000000e0000000000e00000000000000000 ooeo 00000000000000000000000000000000000000000000 o_m000000000a0a0000000000 mn`mo"An`v mionmo+o� A iaV NtD RH m0`aa`vN`I�`mm0`�t�M000=00��?«�����oC CCCC�00000000o �L`�CCCCCC^L'000 n nrnrnmm `ommm` `nmmmmmmmmmmm rnmmmommmmmm......mmeoo..... omoo 00000000000000000 0000000000000000000000000000000000000000000000000 1 o00......000000000eo oo 0ooe00000000000000000000......8.8-00000000o00oocoo o d o 000 0 0$o g T pp 0 0 0 0 N N N O N N N V N N N N V N W W a p O MO N 0 0 0 0 0 0 0' � O M m O 0 0 m � 0 �'l < o).- NO N l0 m m O O O N O o O N V O O O O O O O O O O o O o � O N M 00 00 N D O V m O O N G G G o � C C C C o C C G C O o 6606 o C m mm morommmnmmmromnn'mmmn�mnn�ro�"'m m�mmmmmm°fmmnmmmmm�rm.wmmmwmmmmmnnr�.n'mrommmn$mr oo�000`o 00000moo`000`o Qu00000000`oo'oo`000000QoQom00000000 `o 00000�oo`o oQW000� coccoccc��?������m oL"��i "'L`i�����mi`o�n?cQ'o Qoeoc��a ccccccI._I_ gO 0690600000000aSo68o86oBSo8oaomoa�ooWmooa000OO oo000000Om000000000000 �m ---------------------- ------------------------------------------------------------------------------------------------------------------------------ k o 0000000000000000.... 000000......00000000 O000moo 0000000e00000000000c o oaa T G o O N N N N N V N N N N m W a M p O O O O O p 0 0 0 0 0 0 0 0 0 0 l0 NO 0 O' M O O O O N O O O O O O o O O O o o O O o O O O N O O O O O O 6 �y 66 66 G O 6666 66 66 66 G C n brnr W Om W I, In Nm W 6� W Anl�l00 l�1p rl�(mDrh�lmp fah W arGm rl�r W 00 W W n�CrC W W W W r W nl� W m� �c0 W �ro O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O a O O O O O O O O O O O O O O '000g00000�z?�«`r'�mmo� rov�mrmmo 'o o�oo�000� WHIM" ����v ��'Ln00000 �000o otO 0 ��ppHb {patD �p1Orni nn 4i'a" �V�YNY>m OmmN m oN oY�h H�NmYI m ttpp {{pp m00 O 00 00 0000000 O O O O O O O O O O O O O O O O O O O O O O O m O O m 0 0 0 0 0 0 0 0 0 0 0 k_ i 000000000000000000000000000e0000000000000000000000000000e000 oo000000000 S N N N O N N f0 a 0 00000�00 O O O O G O O O G C O O O fV C e M O p p o e 0 e m�n�nnmmMm �moom��no �onnnro�on�nmmmn�mn�n�wfo vwi io vmim�mw��m onmwro ow mm�mn`mmcrommnn o u ooS0000Q�oQoS00000000000�00�000000g0000aQo�oS0000000 �00000Qoom g �anvinm^3eo�a au+onmmo�aMav's mi:mm3 `-aM anm `rrowo�A aimm�mme.-�aMainmrmmo.=m m CC4C CCCCC@No oQQ000��.-��-�^��^CC �CCCCC�"�N���QE000��;«-� oo�00000000000�0�0$00�0'000000000000000000000000000000000000000000go�oo o0000000000000000000000000000 0 0000000e0000000eooeooe00000 O0000000 m o0 ogoo 000eo 000 �+ i0 N.88 V N N N N NYteC<N N N<N N a nrn� V <MMM t0'f Yri 100 tD <H i`lIN NhYN fpN�Y V IwON `mNM V V dNhtO tp trp ��hNlOn mN rINO tD� tmDhM�(D rfp vta0 A101rO fGrhNNNtp ��"aaaaaaaaa'aa'aa`aa'a'aa'aa"S���S���aaaaM�,MMHMMMMMMMMCfMMMMMMMMMMMMMo�� o`o 000000000000000000000000000000000000000000000000000000000000� c�go�o I oo oo oa000$o0000000000000000000000000000000000000000000000000000000000000000 �yS sa o 0 T N O N N O N N N N N N N N N p � N a M j O O O 66 O 66 G O G O N O G O C G C O G O C tmp i(Nf i+f MQ<M^]N ��m"1N V V NN V MMYM'i0 V �d tp lam <OM o"''f�aNYd'O ImDMM V HN<100 YY �m(1 V O V Ym'�tONNmr10p Nfp IDNIOOnr YO1 h 101�0100 I I ryry an.>'m'mm3� �+vmmrmmo_.=a�aimnmWo� roav+mn$mo_ ammrm000eo�oo"o�aMa�nn_� �o�maaaa�maa'aa''aa'aa''aaa'aa''aS�S��a"aS"��M�MM�,�,MMa_aa_Ma;M 'oo'000'o o'o 'o `o 'oo'o 'o 'o 'o 'o o'o 'o o o"o 000000000000000000 000000000000000000000000 `� o000000000eo oe000 0000000m00000000000 0 0000e00000......00000..... 000� o l0 N NON NON NON N N N �`1 N � I W a cp n O M o 0 o OG 6.. G G G G No o G C C G O C G G Y Num')nHNhlmp tO �tOhVN Wf1N<NiffHum')VNID tOhct�invNiMOu�'iMOMvvaavO�nvvmin$v`�i uNi i'n�vaMeMo'<:b�N��YO�«� N N N N N N N N N N N N N N N N N N N N N N N bV O N O` O O O N O 0 0 0 0 0 0 0 0 0 O O O i 0 0 0 0 0 0 0 0 0 0 0 0 O a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � e � O �,� m 3.=a vu>m�m`oa n o�ain van �onm �a� mmnwm rno _aaav�orm "'^" ""---5-------aaaaaaaaaaaaaa'aaa'--S----SS S S00000000 I o00000000000000000000000a0000000000000D000000000000000000000 ooa00000000 N G e o00 oDe e N N V o N N O N N N m a rpi N D O O O O O O O N o 0 O C C o O O C C t V G o 66 666 n �nNdlrDbr rl�l�p N10 �Ohh brnr W W nrnlrO L uv'ibnnum-ia vei ip rip ip u°iinnnvmi vNin m(p Mitrf HYM��'fMMaNhv�i MOtm1 m'f YOiNO V M M O O O O O D O Q O O` O o O Q 0`= 0 0 0 O O O O O Q O O Q O O O Q O O O O O M O O e M O O O O O O Q a�a�,'��ma a�v 3n S000000�QQo.-Anvvimrwm`o anv 3��m��oo$nur�oo�arla�imno� -----oaa000g00000-- ��_�'^aaaaaaaaa'a_'a`aaa'a'aa'a'a _ I o 000000000 go..... 000000000000000000000000000000000eo o o.00........... T O 0 0 O O O O N o mm� am M �o 0 0 0000o coo 00 oc 60 0 0000 �mnmmwmmmro mmmmmw$mm.mmmm�mmmmmm�nnnnn�mm�nnnmmno nn�nn�v(o �u fo ai n io �i=mm�n "oaoo`o�oo �000 ��0000000�0000000 o_00000000000000Q�00000000000"g�'00�00000 p o��oo��a��'e^mrno�l.nvinmr�mo�'000�00000�: ?���`m nmmo�Ain�mm�w rn o`an�imnm oo� `'L"L`��i`�"'�'��� L"........00.000 oo.-8 comwmm.. mm mmmom.....m`m rnmamammamrn� ommm oo `o 00000'o oo 00000000e00000000000000000000000000000000000000000000000ao�.-���«� E2 o00000000000000000 - ........ 8000000000000.... 0000e oo 000eoogooeo 0000000e000 oo m e ee e e o 000 os000 oOe m O o 0 o O O O o 0 o O o pp O O O O N N N Y N N N N Y N N Y N N Y m Y N N Y N m � N a mCi 0 0 0 M O G OC CCC OC C CG OC C C � GOOC C Ot7O N�- m nm�moowwwmmmm oYon mmi=mmmmmi=nnm'm mmnn'w nmwmaowmn'mwmmmmm�Wmn�n'm n�nnm om mr°-n om n�'��n Y o�oQgYo ��Y�Qe�Qo�o^�000�og000�oo�oo�oo� oo oo�oQ�Yo o'°��o�og�ooQ�o�oQo .o3'�ne�mrno�nlnYm�on � mnmrno=A'e'�mrmme� Ymmnaom3�: �n� remmo`A���n iormmo CCCCCCCC�mL"C M�2 0o CC��mmmmmmCmm�mm�rnmmrnmmm "rnmmrnmmm o nnnnnrrnrnrrnrrnn��mmmm mmwm wm mmmw�mmmm 0000000000000000000000000000000000000000000000000000000000000000000a I ____________________________________ 000 o 0000000000000000000000000000 000000000o'o ooe000 a e00000000000 So m o0000 r F N N V N N N N O N N V N< N N N N m ry I a y'�. 0 O O O N O O O O O O O O O O O 0 0' O M N 10 0 0 tp M O O O rn O N N 0 0 0 No p O O O O o O O O O O O O O O O O e O o O O e G C O C O O C C C G G O C M G C G O O G C G G G C C G G O w�mwmmnn�nwnnmmromrommwm�mm�nmmn�mm�w�mo�mmmamw"m n�'m nromm�nm mr c"'on��mmmmwrnmmmm o 0000S0000003g�0000�oo�oo�SYoo�Y_8o,a000cS000088000S8o>ooa_o800000 ' mommo'Aio Y�nm�mrno�c� � mrmrno��aMa��n000 o'a���m�m'+�C�CY�"��C m�"�L oo�oo'g�000�.'A� CC L`+�CCCCC Lnnog000�o� 000000000000000000000000000��00���000��0�o��oc�i�o�oo�����0000000000000 I Wooe00000000e000000OaooW000W000 o oeWWCWWWceWceWeWWeeoceWosooe� 000000ee Woe T W o 0 0 o 0 o p $$ N N N NN N N N N N V N N aL 0 o C; W o W o o N o 0 0 O C e o O O O G G o G:.G O O o o G o G O G O C 0 0 0R. 0 0 O C o � C trnp rl�W�WnNVfO UWfNm1�fD W"1.121.1.f2 �nnennmmWr n�n�ennnnnniom maornmnW nmwi=nmmmmm���nmm N N N N N N N N N N N N N N N N N N N N N N No N N N N N N N N N N N N N N N N N N N N N N N N N �nwrno��el.�ave�im�wmo�aMavo�i�nmmo�an3u�imnwrn0000auo�imnromo��aMan�nmmo�a�W3mm�mmo��� _ YL`i� o�Yo 00000000$Y000000000000a000000000�0000000000�00000�000000�00000000 ________________________________________________________________________ I W o"g o 000 0 000 00 `O oo 6 0 555 W M d d W oNNYNY W NCO �Mrn NNtf�IrnOHavWi KM MM nYNN10G lONa i'ff HInO I�uNiha Muth �fl �INp N{D fD rl�udi udi �t` fDNNN nnnm�e nm aD tOh �Oh N W N Y M N Y N N W Y d Y Y W N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Q O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N nmmo�aM YinWnmrno� ainWnm�ain v�nWrwrno�anYinNnwmo�a NWnWmo��aihaTm�3a+o .=ai a�n �oo.-��-��-�- aaaaaaaa�oaaaa�SSS"�SWaMa MMM`nMMMMMMMMMMMMMMMMMMNM Y «< 00000000 0 00000000000000000000000000000000000000000Wo��o$�ooe���000W Ll" I ILA --------------------------------------------------------------------------------------------------------------------------------------- 7 W� 000000000000............000000...... CL . . . . . Ago . . . A . . . CR . . ROO . . . . . . . -R R 6 66 66 6 1- . 6 6 6 . . 0 g g 1 E0aoimRUM MU8 111H - - - - - - - - - I I 2.0 Bulletins Bulletin A — Aqueonics Plant Cut -Sheets for: concrete mix design, railing, chemical feed pumps, Parkson sand filter and air compressor, DuraPac trickling filter media, Trojan UV, level controller and tranduscers, chemical feed pumps and pressure relief valves. Bulletin B — Cut -Sheets and Pump Curves for WWTP Pumps: forward flow/recycle pumps, sand filter flow pumps, equalization tank grinder pumps, sludge tank decanting pump. Bulletin C — Cut -Sheets for WWTP Blowers Bulletin D — Cut -Sheets and Pump Curve for Irrigation Dosing/Flushing Pump Bulletin E — Cut -Sheets for Flushing Return Pumps and Tanks Bulletin F - Cut -Sheets for Alternate Pond Liner Bulletin G — WSI PC Controller Electrical Schematics Bulletin H — Cut -Sheets for Drip System Valving Bulletin I - Cut -Sheets for Flow Meter Bulletin J - Cut -Sheets for Disc Filtration System Bulletin K - Cut -Sheet for Rainbird Rain Gauge Bulletin L - Drip Line Cut Sheets Bulletin M - Pole Blower Curve and Cut -Sheet Bulletin N - Back -Up Generator Cut -Sheets Bulletin O — Turbidity Meter BULLETIN A Aqueonics Plant Cut -Sheets for: concrete mix design, railing, chemical feed pumps, Parkson sand filter and air compressor, DuraPac trickling filter media, Trojan UC, level controller and transducers, chemical feed pumps and pressure relief valves. MARION CENTER. SUPPLY, INC. READY Ni[TX CIONCRETE P.O. BOX 173 MARION CENTER, PA 15759 (724) 397-5505 Fax (724) 397-9077 WESSITE: WWW.MARIONCEN T>=RSUPPt-Y,COM DATE: 14-Aug-08 CUSTOMER: ;::-< :.x ::.: �07�� -�- L 0� FROJECT: Treatment Plant MATERIALS 94URCE Cement: Cemex, PittsburghAftmpum, PA EXL Select- RM Excell Minerals, Sarver, PA Coarse Aggregate: Hansen Aggregates, Torrance, PA Fine Aggregate: Glacial Sand & Gravel, Tarrtown, PA Water. Qnsite Well Air Entrabting: Master Builders Inc„ MBAE 90 Water Reducer: Master Builders Inc., Pozzoiith 200N Retarder: Master Builders Inc,, Pozzolith 100XR super Plasticizier Master Builders Inc., Glenium 3030 NS Non Chloride Acc, Master Builders Inc,, Pozzollty NC 534 MIX DESIGN 4000 psi Air Entrained Material Weight (lbs,) Cement 420 EXL Select - RM 140 Coarse Aggregate 1800 Fine Aggregates 1376 Water 195 Air 6.0w1,5% 6.0.0% TOTAL 3931 ASTM C-150 C114&1157 C-33 C-33 n!a C-260 C-494 C-4S4 C-494 C-494 Gallons S.G, Volume (cm ft.) 3.15 2.14 2.90 0.77 2,68 10.76 2.87 8.58 23.41 1.00 3.13 1.52 27.00 TYPE IJII #57 A potable n!a A-B-D 8-D AF C-E Slump (inches); 4" MaXtmum Calculated Unit Weight (pCt' 145,60 Water / Ratio: 0.35 Marion Center Supply will not be held responsible for any type of cracking_ Cracking Is a natural thing which we have absolutely no control over- ` ADMIXTURE NOTES"' 1. At ambient temperatures below 75 degrees, 3 ozlcwt of 200N 2. At ambient temperatures from 75 - 85 degrees, 3 cz/cwt of 100XR $. At ambient temperatures above 85 degrees, 4 o7lcwt of 1 DOXR DQSAGE n/a n/a nia nfa Na As Required See Below See Selow As Required As Required SCC6SPt. ��-- S,q c.� ff Valley City: Cement 488 lb 3,15 Sp Gr 62.4 2.48 ft3 Ply Ash 102 lb 2.35 Sp Gr 62.4 0.70 ft3 Slag Cement 0 lb 2.35 Sp Gr 62.4 0.00 ft3 Gravel 57 840 lb 2.64 Sp Gr 62.4 5.10 ft3 Gravel 8 560 lb 2.64 Sp Gr 62.4 3.40 ft3 Concrete sand 1568 ib 2.64 Sp Gr 62.4 9.52 ft3 Water gl 30.50 254.065 lb 1 Sp Gr 62.4 4.07 ft3 Air 7% 1.89 1 1 1.89 ft3 6100 48 oz AEA14 6 oz NC 50 oz If Needed Plastiment 15 oz If Needed 27,16 ft3 Comments: watericem coarselfine cemlfla total agg agg cu.ft. 2968 590 1400.00 0.43 0.53 22% 40% 8.50 r Valley City: Cement 530 lb 3.15 Sp Gr 62.4 2.70 ft3 Fly Ash 110 lb 2.35 Sp Gr 62.4 0.75 ft3 Slag Cement 0 lb 2.35 Sp Gr 62.4 0.00 ft3 Gravel 57 840 lb 2.64 Sp Gr 62.4 5.10 ft3 Gravel 8 560 lb 2.64 Sp Gr 62.4 3.40 ft3 Concrete Sand 1428 lb 2.64 Sp Gr 62.4 8.67 ft3 Water gl 34.00 283.22 lb 1 Sp Gr 62A 4.54 ft3 Air 7% 1.89 1 1 1.89 ft3 6100 48 oz AEA14 4 oz NC 50 oz If Needed Plastiment 15 oz If Needed 27.04 ft3 Comments: water/cem coarse/fine cemlf/a total agg agg cu.ft. 2828 640 1400.00 0.40 0.50 22% 40% 8.50 r Al Cat 1A Slip-OnFittings 2l16r04 12:39 PM Page 1 I i Wb91 Z- Iv 10 1E i C9 0-1 le IN�, N olloondor. lfbur Handrail Source. Structural Slip -tin fittings used with aluminum, galvanized steel, stainless steel and black iron pipe on installations around the world for over fifty years, Hollaender Products are produced from only the highest quality materials and feature proprietary fasteners and design features. Aluminum Alloy 535 • Most corrosive resistant aluminum casting alloy available today • High strength as cast • Bright attractive burnished mill finish • Conforms to ASTM B26 & B 179 Proprietary Internal/External Reverse Knurl Cup Point Set Screw • Knurl cup point design provides tremendous resist- ance to loosening due to heavy vibration • Full contact of point greatly resists pull out and rotational slip • Conforms to FF-S-200, ANSIIASNiE 818.3 Type CIG The Hollaender Advantage • Speed of Installation — Studies have shown significant cost savings when compared to the cost of welded handrail and other structures • Ease of Installation — Only tools required are a saw, hex key and tape measure • Flexibility — Cast fittings can be used with galva- nized steel, aluminum, stainless steel and black iron pipe • Reusability —Structures fabricated with Hollaender fittings can easily be disassembled and reconfigured The Rib® Design . . Hollaender® Speed -Rail® Nu -Rail® Speed-RailO II Rackmaster' Mend-A-Raiie Interne-Raile Bumble Bee' All are registered trademarks of the Hollaender Manufacturing Company. Call Toll Free; 8ee-772-8800 • www.hollaender.com • Strength — Railing systems can be designed using standard Hollaender products to meet any building code. Please refer to Technical Section of Catalog, www.hollaendercom or call our engineers. • Time Tested - Products are backed by over 50 years of experience Hollaender Isotopes the World'S best known brands Speed -Rail' inline design has become the benchmark for quality throughout the industry. Nu -Rail• Offset design of heavier duty structural fittings allows multiple pieces of pipe to cross, minimizing number of cuts. Rackmaster® Heaviest duty line developed for the construction of rack systems. Mend -A -Rail' Ideal for repairing broken welds on existing pipe structures, Speed -Rail' n Patented modular fitting system which easily allows for additions and changes to existing structures without having to entirely disassemble. Applications ape limited only by the imagination Handrails & guardrails, playgrounds and carts, store fixtures, offshore petro%hemical, industrial plants, racking systems, warehouses, health & medical buildings, portable structures, recreational areas, amusement parks, film industry, government facilities & public works, displays, and much, much more. Instant, Structures' Cat 1A slip-OnFittings 2/16/04 12:39 PM Page 2 Your Handrail Source. 'nical HollaendeP Slip-01"I HUMUS Speed -Rail®• Speed -bill 11 • Nu -Rail®• Rackmasteril Gall Toil Fran: 800-772-0000 • www,hallaendercom "The Fitting iith the Rib"' OnFitr_ings 2/16/04 12:39 PM Page 3 I.P.S. Size Item Number 3X 05020 1' 06020 1-1y 07020 �• 08020 22* 09020 I.P.S. Size Item Number 07030 w I-1i2° 06030 I.P.S. Size Item Number Ur 05050 d 1 ^ 05050 Cali Tali Free: 800-772-8800 + vim.hallaeuder.eem Your Handrail Source. - I.P.S. Size Item Number 06060 0" > ¢r 1-ti4° 070fi0 "TheFiWW Kith theRib'" I.P.S. Size Item Number 07080 08080 I.P.S. Size item Number 3/4' 05090 1^ 06090 1.1(4' 07090 1-1/2' 08090 2" 09090 Cat 1A Slip-OnFittings 2/16/04 12:39 PM Page 4 leftender. Your Handrail Source. h, I.P.S. Sue item Number 3/4' 05100 i 06100 1-114' 07100 N I.P.S. Size Item Number 1.112' 10020 Components: (I No.7S8 pl Nn.2SB I.P.S. We Item Number 3/4' 05123 06120 w 1.1/4' 07120 1-VT 03120 2" 09120 I.P.S. Size Item Number 3/4' 05130 t° 06130 HAD 2' 09110 I.P.S. Size Rem Number 3/4° 05140 aw 1' 06140 07140 091.d E Cali Tail Free:860-772-8800 • wwm.Aallaender.cum NoittESideUlufefTee-E ' ' ^ I.P.S. Size Item Number 3j4' 05180 P 06160 1-114' 07160 1-112' 08160 'TherMngwiththe MY" I.P.S. Size Item Number 314' 05170 1• 06170 1.1 /4' 07170 1.1/2' 08170 I.P.S. Size Item Number 1' 06180 1.1/4- 07180 1.1/2, 68180 s;m'O ' Cat 1A Slip—OnFittings 2/16/04 12:39 PM Page 8 ra�^� ellsendal. Your Handrail Source. z :d ,+ fA I.P.S. Sfze Item Number I.P.S. Size Item Number 08490 314' 05520 06520 Pj4' 07520 2" 096M I.P.S. Size Item Number I I.P.S. Size Item Number y 3/4' 05530 3/4' 05450 r „� I° 06530 07450 1-1/4' 07530 f ' �� I-1l2' 08450 1 if 08530 2' 09530 W caps not included 1;;. ni t , n I , h '. r . I.P.S. Size Item Number I.P.S. $lie Item Number I tj417150 1-tr2' 08540 1 ¢ A 4. Components: (11110.99C " (11 No. 28S8 x . Us. Size Item Number I.P.S. Size Item Number 314' 05600 rs Y° 06500 „ r i" 06600 1-114' 07500 a "' 1-1i4' 01600 n 1-112` 08600 2° 09500 Y 09800 Compnnenm (II30A �; itl3oe I.P.S. Size Item Number I . x, ' Y I I I.P.S. Size Item Number m nem ir< --- r 3/4° 05610 05510 1-Ile 07510 1-1r4" 07610 Cat 3a Flanges 2/16/04 12:44 PM Page 1 ,9all Your Handrail Source. a' flanges Hollaender offers an extensive line of flanges for e:: e mounting handrail, guardrail, and other pipe structures. These flanges are available in all the optional finishes. Selecting the right flange becomes extremely important in all handrail applications. To aid in the selection process, please refer to the chart on the following page, and dimensional drawings on the subsequent pages. Our engineering staff is available to answer questions a regarding the appropriate hardware. Concrete anchors and machined bolts may be ordered to complete the handrail system. Many applications require toeptate. (Refer to Tech biformation section, building codes and OSHA standard pipe railing for requirements.) Refer to our accessories section for our toeplate and toeplate brackets. Please refer to our wob page at wwwhollaendercom for additional technical support. 1"In EL P14 -A A Sulzer Cherntech Sulzer CompaXTm The space -saving solution ..................................... �7 Z7 4Z r ►rr�paX�M 1'echnOlOgy Sulzer GompaXTm for turbulent flow Sulzer CompaX is the name for the new, space -saving and efficient solution to your mixing problems in the turbulent flow regime. In comparsion to conventional static mixer configurations, the Sulzer CompaX has an amazingly reduced overall length. This greatly im- proves your operational flexibility and reduces installa- tion costs. Further more the additive can be admixed in an easy and reliable way. Functional description The patented Sulzer CompaX design consists of a highly efficient mixing device with integrated dosing in- let point. The additive is fed into the zone where strong turbulent flow prevails. This design secures homogeneous mixing over a very short distance with the use of only one mixing element and with only one additive dosing point. The Sulzer CompaX is patented technology. Field of application The Sulzer CompaX is widely used for the inline mixing of liquids, gases and suspensions in the turbulent flow regime. outstanding features The following features make the Sulzer.CompaX an advantageous and efficient solution to your mixing needs. • very short mixing;.distance independent of Mixing ratio, a homogeneous mixture. is achieved only 3 pipe diameters :downstream. of the mixer • low pressure drop (typically 10 —100 mbar) • extremely short overall installation length (approx. 0.3 pipe-0) • easy to fit, low installation costs • simple dosing of additive: no multipoint dosing system necessary • no clogging (both in the main flow and in additive stream) • robust construction, no moving parts • easy to clean • excellent price/performance ratio 0.0- Main flo I! ' Sulzer CompaX Homogeneity data ® ,:2000 1:,00 • ,:20 0 2 4 UD I-1 Homogeneity curve measured at different mixing ratios Calculation of the homogeneity with CFD (Computational Fluid Dynamics) Pressure drop (©p) The pressure drop can be calculated as follows: Ap=0.015pv2 Ap = pressure drop (mbar) p = density (kg/m3) v = velocity (m/s) in the case of water, the relevant pressure drop value can be seen in the diagram below. Sulzer CompaX 1000 100 -- _ E - --- — - 0,5 1 0,1 Velocity (misj OR : .:Sulzer CompaXT'" �TecI�InQ����� Applications There are many potential application areas for the Sulzer CompaX: • concentration and temperature equalisation of low - viscosity liquids and gases • mixing of additives • dilution of concentrates • water and wastewater treatment (adjustment of pH value, mixing of flocculation agents, neutralisation processes using acids or caustic solutions) • concentration- and flow equalisation for an accurate representative sampling from a single point down- stream the mixer • etc. Design features The Sulzer CompaX consists of a mixer with an inte- grated dosing point. The dosing point is designed for the mixing of an additive into a primary stream at ratios ranging from 1 to 3. The mixer is installed in the pipe, mounted between two flanges (DIN 2633 or ANSI B16.5). The overall installa- tion length is equivalent to less than half of the actual pipe diameter. Sulzer CompaX is available in the following materials: • Stainless steel (1.4571) • Polypropylene (PP) • FRP for diameters > DN 500 • following other materials on request PVC, PTFE, SS-ETFE coated For mixing ratios > 1 to 3 and nominal diameters DN > 100 mm flanged versions are available. Pressure rating: Stainless steel = 16 bar @ 120 °C PP = 10 bar @ 20 °C 1 1 Headquarters Sulzer Chemtech Ltd P.O. Box 65 8404 Winterthur, Switzerland Phone +41 52 262 50 28 Fax +41 52 262 01 82 chemtech@sulzer.com www.suizerchemtech.com North and South America Sulzer Chemtech USA, Inc. 4019 South Jackson Avenue Tulsa, OK 74107, USA Phone +1 918 446 6672 Fax +1 918 446 5321 Asia Pacific Sulzer Chemtech Pte. Ltd. 10 Benoi Sector Singapore 629845 Phone +65 6515 5500 Fax +65 6862 7563 Sulzer Chemtech Ltd, a member of the Sulzer Corporation, with head- The activity program comprises: quarters in Winterthur, Switzerland, is active in the field of process engi- . Process components such as trays, structured and random neering and employs some 2500 persons worldwide. packings, internals for separation columns and reaction technology Sulzer Chemtech is represented in all important industrial countries and . Engineering services for separation and reaction technology such sets standards in the field of mass transfer and static mixing with its as optimizing energy consumption, plant optimization studies, advanced and economical solutions. pre -engineering for governmental approval, basic engineering • Separation and purification of organic chemicals by means of crystallization and membranes • Mixing and reaction technology with static mixers • Mixing and Cartridges Technology • Tower field services 23.13,06.40 - 11.08 - 50 - Printed in Switzerland Distributed bv: D s 0 z 5 s I� r z �� 0 s' I I® FOR R o C f t i; . il! ONE7C pMW OWONBW AID Nl aRffl1.4 UNLESS OTHERWI SPEC IFlED SIGNATURES DATE \_ k1mm will 711E PRU= new M W DIMENSIONS ARE IN FEET DRAWN: F. J. CAMARGO 11-2-28 S MPIFIE 1T AND FLNGw ALL S�iETY SVJMAM AND INCHES P ,y W �y SIAM AM �, � TOLEMCE t CHECNID: P. TATASCIORE 10-2-98 'APEX IMW MI PAMM CORPORA M APPROVED: P .TATASC ORE 1G-2-98 Ep xr EIrO TIE OVmN1 PR06f Croat SIZE: 8 SCALE: 318W"-V-0' pAw," OORPO AION WLL NOT 9E R6PONSHE FOR U1WM AM/OR P AMW W MWVW DATE: 3-22-99 BY. F. J. CAMARGO CHECKED: P. TATASCIORE N T16 PLMr Coot NOR IS PMf5011 DESCRIPTION FOR RAW @iflD Y OMW AM APPROVED: P. TATASCIORE M PAUR TO m181 APpRaP1aTE %� MODIFIED BASE PLATE AS SHOWN PPEGV"m N Tff OKwm Am UOITMANa EL OF NOZZLE "C" WAS 16'-6 1 /2' a PAR1aa1 0-Ea "Off.. w + w m m z A� O C mA S N a m L ,:PARKSON CORPORATION DynaSand° Filter DSF 19FT2 DBTF SS SALES DRAWING PROJECT NUMBER: DRAWING FILE NUMBER: Ncvu 003758-01 PROJECT NAME SHEET NUMBER: 1 1 OF 1 NEMA Premium" Balder 5.0 horsepower totally enclosed, fan -cooled, electric motors. Specifications: EM3615T Catalog Number: EM3615T Specification Number: 36G271T031 Horsepower: 5 Voltage: 2301460 Hertz: 60 Phase: 3 Full Load Amps: 13/6.5 Usable at 208 Volts: 13.6 RPM: 1750 Frame Size: 184T Service Factor: 1.15 Rating: 40C AMB-CONT Locked Rotor Code: K NEMA Design Code: B Insulation Class: F Full Load Efficiency: 90.2 Power Factor: 80 Enclosure: TEFC Baldor Type: 3643M DE Bearing: 6206 ODE Bearing: 6205 Electrical Specification Number: 36WGT031 Mechanical Specification Number: 36G271 Base: RG Mounting: F1 RASCHIG GmbH Mundenheimer Strasse 100 67061 Ludwigshafen - Germany Phone: +49.621.5618-602 Fax: +49,621.5618.604 email: hneis@raschig.de wwwxaschig.de Locations/Production Sites Ludwigshafen and Espenhain, Germany Houston, Texas El Dorado, Kansas Monterrey, Mexico D URA -PAC crossflow and vertical flow PVC sheet media for trickling filters, submerged fixed beds and other wastewater treatment applications DU RA -PAC is a self- supporting PVC sheet media, capable of withstanding loads in excess of industry standards. DURA=PAC modules are available in various sizes and specific surface areas of 30, 31, 48 or 68 ft2/fV. DURA-PACis a plastic sheet media available in two basic designs. DURA-PAC XF is a cross flow media recommended for low to medium BOD loading applications. DURA-PAC VF is a vertical flow media recommended for high BOD loading applications. DURA-PAC's volumetric void ratios of at least 95% allow for uniform redistribution of wastewater and air while maximizing contact between the biomass and the wastewater. DURA-PAC is available in specific surface areas of 30, 31, 48 and 68 ft2/ft3. 31 ft2/ft' media is typically used for BOD removal and 48 ft2/ft' media can be used for nitrification to reduce the size of new nitrifying trickling filters. The DURA-PAC media is non -toxic to microorganisms and immune to rot. It is resistant to degradation by ultraviolet light, fungi, bases and acids, and other compounds normally found in wastewater. DURA-PAC consists of thermoformed flat PVC sheets. Sheets are sized in varied thicknesses indexed to applications. For cross flow applications (DURA-PAC XF) these sheets are corrugated horizontally and bonded to one another in a honeycomb pattern module. Vertical flow media modules (DURA-PAC VF) are formed by alternating flat and corrugated sheets. DURA-PAC modules typically measure 2' x 4' x 2'. Custom module sizes are available. DURA-PAC sheets can also be shipped to the job site for assembly, if the application requires. DURA-PAC is one of five trickling filter media designs from Jaeger Environmental. Jaeger Environmental has manufactured trickling filter media since 1979, with system installations worldwide. We offer random and structured media for municipal and industrial applications. Product specifications for DURA-PAC are detailed on the reverse side of this presentation. For further information, or to discuss your application, contact Jaeger Environmental via phone, fax or e-mail. pp�a�� �cc NNtii�m i � 9r Y0 �BTe y/t[1�p�� ma ��Aomt� L �E z � 6.9a° [864mmj 5.00• `� , (19Is. mmj19mmj 127-1 " 'RAINS'Ind ME— gsR g �9�v "IO II 9 11 II rl a N c nu R N �IZ �� 3 1111111 `3 x < II II 11 I 3 go moamy Z ii ii u _ g ,U V U €3� 3 {yi iiii B y I� gId,o m3as; o%o� 3g Ilii ®�� u iy03 m �o x {S u 3ii oyi "a< �ca d ; Ail u! 589 mnu a S �F'o >E all a�S mono ado$ 8 �biii ii N �'�o� �Hm s B Qnu n s> y �yE gz � �i 3 ^m ii ii ii g g�9 � gz � �. _ m _. q �iVl' .. ❑ � og g o gc �m > xg o T []Bmmj II �3�a-m t`. III R rj�p �ngl` 1SWmm II It I; {l{l1N oD a d L (INSIDE OF apes C~EL) 1 NQ B 6g6 3 f aA w i z tt Sy� os�..3. III ma Nmt� mR SC IzH EF z ly^A As, +III Ra.4T v= I up 1^ '. - NC yymfrl [847mmj REF. a me V Sp §gj9 C mm n Obt° 0.81• N z�[zimm] za.Do° [zlmm] m L NI m Z;; for. qqHq iA y of o� o n n z � o"d n.oe' 9.00'I mea$ v� �riz ZO y g mN SN a 8> v [4ummjj^�m [Rz9mm7l ka r z E n 0 Lpp E"'zcil —r �KoV� Q09 tp t'oc � u i v yr Z a .. t�o Oil-—�• IDS o z P B I © Siemens AG 2008 -d tat ,g Continuous level measurement - Ultrasonic controllers Design Technical specifications Mode of Operation Measuring principle Ultrasonic level measurement Measuring range 0.3 to 15 m (1 to 50 ft), transducer dependent Measuring points 1 or 2 Input Analog 0 to 20 mA or 4 to 20 mA, from alternate device, scaleable (6 relay model) Discrete 10 to 50 V DC switching level Logical 0 = < 0.5 V DC Logical 1 = 10 to 50 V DC Max. 3 mA Output Echomax6 transducer 44 kHz Ultrasonic transducer Compatible transducers: ST-H and Echomax series XPS-10/10F, XPS 15/15F, XCT-8, XCT-12 and XRS-5 Relays') Rating 5 A at 250 V AC, non - inductive Model with 1 relay2) 1 SPST Form A Model with 3 relays2) 2 SPST Form A/1 SPDT Form C Model with 6 relays 4 SPST Form A/2 SPDT Form C mA output 0 to 20 mA or 4 to 20 mA • Max. load 750 St, isolated • Resolution 0.1 % of range Accuracy Error in measurement 0.25 % of range or 6 mm (0.24"), whichever is greater Resolution 0.1 % of measuring range or 2 mm (0.08"), whichever is greater3) Temperature compensation • -50 to +150 °C (-58 to +302 °F) • Integral temperature sensor in transducer • External TS-3 temperature sen- sor (optional) • Programmable fixed tempera- ture values Rated operating conditions Installation conditions Location indoor / outdoor Installation category 11 Pollution degree 4 Ambient conditions Ambient temperature (enclosure) -20 to +50 °C (-4 to +122 `F) Siemens FI 01 • 2009 Weight • Wall mount 1.37 kg (3.02 Ibs) • Panel mount 1.50 kg (3.31 Ibs) Material (enclosure) Polycarbonate Degree of protection (enclosure) • Wall mount IP65/Type 4X/NEMA 4X • Panel mount IP54(Type 3/NEMA 3 Cabe Transducer and mA output signal 2-core copper conductor, twisted, shielded, 300 Vrms, 0.82 mm2 (18 AWG), Belden 8760 or equivalent is acceptable Max. separation between trans- 365 in (1200 ft) ducer and transceiver _ ` Displays and controls 100 x 40 mm (4 x 1.5") multi -block LCD with backlighting Programming Programming using handheld programmer or via PC with SIMATIC PDM software Power supply" AC version 100 to 230 V AC ± 15%, 50/60 Hz, 36VA(17W) DC version 12 to 30 V DC (20 W) Certificates and approvals • CE, C-TICKS) • Lloyd's Register of Shipping • ABS Type Approval • FM, CSANRTL/C, UL listed • CSA Class I, Div. 2, Groups A, B, C and D, Class II, Div. 2, Groups F and G, Class 111 (wall mount only) • MCERTS Class 1 approved for Open Channel Flow Communication • RS-232 with Modbus RTU or ASCII via RJ-11 connector • RS-485 with Modbus RTU or ASCII via terminal blocks • Optional: SmartLinxO' cards for PROFIBUS DP DeviceNetTM Allen-Bradley° Remote 1/0 t) All relays certified for use with equipment that fails in a state at or under the rated maximums of the relays 2) This model is level control only; no open channel flow, differential level or volume conversion functions 3) Program range is defined as the empty distance to the face of the trans- ducer plus any range extension 4) Maximum power consumption is listed 5) EMC performance available upon request O Siemens AG 2008 .,= q` Continuous level measurement Ultrasonic controllers W= a Selection and Ordering data n order No. �-Selection and Ordering data order No Siemens HydroRanger 200 C) 7 M L 5 0 3 4- Siemens HydroRanger 200 C) 7 M L 5 0 3 4- Ultrasonic level controller for up to six pumps that fr Ultrasonic level controller for up to six pumps thatMAN provides control, differential control and open at %,SiW N_ provides control, differential control and open channel flow monitoring. The HydroRanger 200 is channel flow monitoring. The HydroRanger 200 is also available as a level measurement controller also available as a level measurement controller only. Select option, from model code below. only. Select option from model code below. Mounting Wall mount, standard enclosure ^ sor;r =, 1 Handheld programmer 7ML1830-2AK Wall mount, 4 entries, 4 M20 cable glands included 2 Tag stainless steel, 12 x 45 mm (0.47 x 1.77'), one 7ML1930-1AC Panel mount') 3 text line, suitable for enclosure TS-3 Temperature Sensor - see TS-3 on page 5/147 Power supply A SITRANS RD100 Remote display - see RD100 on 100 to 230 V AC page 5/263 12 to 30 V DC B SITRANS RD200 Remote display -see RD200 on Number of measurement points page 5/265 -, Single point model, 6 relays A pa; e Pa, Dual point model, 6 relays B Power Supply Board (100 to 230 V AC) C) 7ML1830.1MD Single point model, level only, 1 relay2) C Power Supply Board (12 to 30 V DC) C) 7ML1830-1ME Single point model, level only, 3 relays2) 0 Display Board C) 7ML1830-1 MF Communication (SmartLinx) See SmartLinx product page 5/260 for more infor- r"r q Without module 0 mation. SmartLinx© Allen-Bradley® Remote 1/0 module 1 -- ea SmartLinx PROFIBUS DP module 2 i) Available with approval option 1 only 2) This model is level control only; no open channel flow, differential level, or SmartLinx DeviceNetTM module 3 volume conversion functions See SmartLinx product page 5/260 for more infor- C) Subject to export regulations AL: N, ECCN: F-AR99 oration. t Approvals General Purpose CE, FM, CSAusic, UL listed, 1, C-TICK CSA Class 1, Div. 2, Groups A, B, C and D; Class It, 2 Div 2, Groups F and G; Class III (for wall mount applications only) cf,pss' ns Order code Please add °-Z" to Order No. and specify Order code(s). Stainless steel tag [69 mm x 50 mm (2.71 x 1.97")]: Y15 Measuring -point number/identification (max. 16 «, characters) specify in plain text ;s;iftt'.ft`r =r ;Ftr;e;era! Order No, English C) 7ML1998.5FC03 French C) 7ML1998-5FC11 German C) 7ML1998-5FC32 Note: The instruction manual should be ordered as a separate line on the order. This device is shipped with the Siemens Militronics manual CD containing the complete ATEX Quick Start and instruction manual library. SmartLinxAllen-BradleyRemote 1/0, English C) 7ML1998-1AP03 SmartLinx PROFIBUS DP, English C) 7ML1998.1A003 SmartLinx PROFIBUS DP, German C) 7ML1998-1AQ33 SmartLinx PROFIBUS DP, French C) 7ML1998-1A012 SmartLinx DeviceNet, English C) 7ML1998-iBH02 Note: The appropriate SmartLinx instruction manual should be ordered as a separate line on the order. Siemens FI 01 2009 k (9 Siemens AG 2008 gg Continuous level measurement - Ultrasonic controllers _- �y �4 � Selection and Ordering data Order No. Selection and Ordering data Order No. Milltronics HydroRanger 200 C) 7 M L 10 3 4- Militmnics HydroRanger 200 C) 7 M L 1 034 Ultrasonic level controller for up to six pumps that Ultrasonic level controller for up to six pumps that provides control, differential control and open u provides control, differential control and open channel flow monitoring. The HydroRanger 200 is channel flow monitoring. The HydroRanger 200 is available as a level measurement controller also available as a level measurement controller only. Select option from model code below. also only. Select option from model code below. ,. Mounting Wall mount, standard enclosure Acc, s_-;ork� r 1 Handheld programmer 7ML1830-2AK u`ii Wall mount, 4 entries, 4 M20 cable glands included 2 Tag, stainless steel, 12 x 45 mm (0.47 x 1.77'), one 7ML1930-1AC Panel mounts) 3 text line, suitable for enclosure """'r. Power supply TS-3 Temperature Sensor - see TS-3 on page 5/147 100 to 230 V AC A SITRANS RD100 Remote display - see RD100 on =� 12 to 30 V DC B page 5/263 SITRANS RD200 Remote display - see RD200 on Communication (SmartLinx) page 5/265 •- a Without module A SmartLinx' Allen-Bradley Remote 1/0 module B SmartLinx PROFIBUS DP module C SmartLinx DeviceNetTM module R See SmartLinx product page 5/260 for more infor- mation. 4 p' Mill Approvals General Purpose CE, FM, CSAusrc, UL listed, 1 ., C-TICK CSA Class I, Div. 2, Groups A, B, C and D; Class II, 2 Div 2, Groups F and G; Class III (for wall mount applications only) Number of measurement points Single point model, 6 relays 1 Dual point model, 6 relays 2 Single point model, level only, 1 relay2J 3 'o Single point model, level only, 3 relays2) 4 r"'czrtf •r curs? r<<s Order code Please add "-Z' to Order No: and specify Order code(s). �00' Stainless steel tag [69 mm x 50 mm (2.71 x 1.97")]: Y15 Measuring -point number/identification (max. 16 characters) specify in plain text /rn'shi"c'fhx? !.;antra= Order No. English C) 7ML1998-1FC08 g French C) 7ML1998-1 FC14 German C) 7ML1998.1FC34 Note: The instruction manual should be ordered as a separate line on the order. a This device is shipped with the Siemens Milltronics manual CD containing the complete ATEX Quick Start and instruction manual library. "q SmartLinx Allen-Bradley Remote UO, English C) 7ML1998-1AP03 SmartLinx PROFIBUS DP, English C) 7ML1998-1AQ03 SmartLinx PROFIBUS DP, German C) 7ML1998-1A033 SmartLinx PROFIBUS DP, French C) 7ML1998-1AQ12 j SmartLinx DeviceNet, English C) 7ML1998-1BH02 9 Note: The appropriate SmartLinx instruction manual should be ordered as a separate line on the order, Siemens FI 01 2009 Sp -ore pa�s Power Supply Board (100 to 230 V AC) C) 7ML1830-1M0 Power Supply Board (12 to 30 V DC) C) 7ML1830-1ME Display Board C) 7ML1630-1MF See SmartLinx product page 5/260 for more infor- mation. 1) Available with approval option 1 only 2) This model is level control only; no open channel flow, differential level, or volume conversion functions C) Subject to export regulations AL: N, ECCN: EAR99 'Modbus is a registered trademark of Schneider Electric. QBelden is a registered trademark of Belden Wire and Cable Company. OAllen-Bradley is a registered trademark of Rockwell Automation. TMDeviceNet is a trademark of Open DeviceNet Vendor Association (ODVA) © Siemens AG 2008 .. Continuous level measurement Ultrasonic controllers Schematics _--'1 I imensianai drawings Wall Mount Version 14.9 mm ifi.3 mm 91 mm 6.6 mm rs1 + (0.58") 6,325" mounting 3.58" 15.21 m 130mm— ►� holes ( ) (0.2&") rez !n 0.6 5.126 I 04.3mm (m - 1 ®® ref Q L?m.0 1�1 ( ) (O.t7") (x4) _� ^ rea r, ® + T See note 1 0 1 .i. SYNC O i +S 12.30 V r cover'.:. 240 mm 1 DC.versron o crews. (9.45') ® RELAY 1. �n R qa ou7vuts _ .� i3 �f JRE4AY QQ RELAY 3. !'+' rq - * ---� housing 5m Suitable: location for : mounting screw. conduttengances ® SRELAya F }(provided by customer) osoREre f��fztt,I SlemenB.M-lltronics mountingholes �RELays Nwrs GIB recommends using a hole, (acgessed under lid) -� punch for dulling the holes. (O j .3 vim (0.17") ® RELAY 4 R568 A Panel Mg6rit Version ' S Relays shown m releasedstate 198 vim' 97 mm (7 80) 36 m Notes (140)2-core capper wire twisted wdh shield for expansion up to 365 m (1200 f 0 o Route ca 46, m grounded metal condwt, separate from other cables,. y 2 UeriJy that all system components are installed m accordence with instructions It onned all cable shields to the HydroRanger 200 Shield Connections Avoid differential ground potentials by not connecting cable shields to ground (earth) anywhere else 278 min 4 Keep eXPpsed conductors o shielded cables as short as possible to reduce noise 0.004") e • on the tine caused by stray transmrsswns and noise pickup. -ntiA HydroRanger 200 connections o HydroRanger 200 dimensions Siemens FI 01 • 2009 'ry I'llh-tisolli S; for naltilstrital app'lic, A It, A 1 tJL-941�lT Irsomin: I eNA'ALIF V1411di'mg j SPECIFICATIONS: ECHOMAX° NON -CONTACTING ULTRASONIC TRANSDUCERS Model Min.Range Max Range BeamFHeAica.11y Angieouing -3dB XCT Foam Facing Opt. Foam Temp. Rating Built in Temp. Rating Temp.Range Celsius (Fahrenheit) Chemical Immunity Rating Thread Size FlangeA Mount, Opt, Freq. kHz (nom.) Weight Kg (lbs.) M Ft, M Ft. THE SURE SHOT XPS SERIES XPS 10 0,3 1 10 33 12° Kynaro (blue) J 95° (203°) Yes -40° to 95° -(-40° to 203°) Excellent 1" NPT 1" BSP 4 43 .75 (1.65) XPS-15 0,3 1 15 50 6° Kynar© (blue) 95° (203°) Yes -40° to 95° (-40° to 203°) Excellent 1" NPT 1" BSP 43 1.28 (2.81) XPS-30 0.6 2 30 100 6° Kynar® (blue} 95° (203°) Yes -40° to 95° (-40° to 203°) Excellent lT/2,. BSP/NPT Compa tible 4 30 4,14 (1,12) XPS-40 0,9 3 40 130 6° Kynar( (blue) 65° (149°) Yes i -40° to 95° (-40° to 203°) Excellent 22 7:9 (17.4) THE HOT SHOT XCT SERIES XCT-0* 045 1,5 8 2.6 12° : Kynar® (white) — — Yes -40° to 145° (-40° to 293°) Excellent 1" NPT 1" BSP 43 .75 (1.65) XCT=12* 0 45,' 1,5 _ .' 12 40 .6° Kynar : (white) — — Yes -40° to 145° ( 40° to 293°) Excellent. 1" NPT 1" BSP 43 1.28 (2.81) THE LONG SHOT XLT /XLS SERIES ■ XLS, 30 0 9 3 •. 30 1'00 5° Alurrilnum Yes -40° to 9lj Falr 1 NPT 22 : 4.4 (9.7) Grey; (-40° to 194°} XLS 60 1 8 ' 6 60 200 5° Alurimum Yes 40' to 90° Fair 1" NPT 13 ;. 6,35 (14.0) (40° to 194°) XLT 30: 0 9 3 30 100 5 Alltlnmum Yes 40 to 150p Fair 1 ".:NPT ` ':Red:: , . XLT 60 1 8 ' 6 60 20Q 5 Aluminum Yes 40 to 150'., Fair .` 1" NPT 13 6,35, (14.0) Cted (-90 to 300°) _.. A All .r,nrlolc ran ha hlinrl Hanna mnttnted. Note: Effective maximum range capanu¢y may vary aepenutny un dppN—MI. t 1, 1..,,...,r.....• Our continuous program to improve products may result in changes in design and specifications without notice, For XRS-5,'XKS-6, XPS-1 Of: see Technical Specification Sheets: ECHOMAX® SERIES APPROVALS CENELEC EEx m II T5: XLS Series. EEx m 11 T4: XPS Series. EEx m 11 T3: XLT & XCT Series, TS-1 CSA Class 1, 11, Div. 1, Group A, B, C, D/E, F G. Class 111. FM Class 1, 11, Div. 2, Group A, B, C, D/F, G. Class III, FM XPS 10115: Class 1, II, Div. 1, Group A, B, C, D/E, F, G. Class III. CSA. FM. TS-3 Temperature sensor: Class I, Div. 1, Group C & D. Class II, Div. 1, Group E, F & G. NOTE XCT-B, unfaced only, CSA approved. CONDENSED APPROVALS LiSTiNG, CONSULT AGENCY APPROVAL GUIDE FOR DETAILS. Representative ■ Polyester covering is standard. Milltronics versatile tine of sophisticated Ranger TM transceivers provree rename never corn trot in a single vessel or a multiple tank farm. .f i.rii':ijlii- I?riC 4'P. f.lE$t )i}Let !,Inver). f 954 t,.cnro,n9y Dr.. P D. B. 422.SLP:Sn,mnouyn. Onn. Canada 1:91 /81 11 -1 /05]4SG•131 Fax:-11QS ld1U466 -• V 182 Nannnnby Rd.. Bnx J3B. Snun Mc11m,u,w. 3205. Australia g+ IN.-0115139F95240fi Fnx-+U1161396952M1611 Fc �X Typos, Tan de �- tni•32(01332W6ic4i56,n5,41 2100 nr-ur F aM, 3Z(0 )332G 0mS 2 •LL4 .. Cnazury liouzn.. Bri4ywnc, Roan, Wurrns,er. E191aad Wi'4 9ZQ f<:1--041305450500 Fax:•4, 106S,6Q501 Prvc na to Salina Virac,rr.. Bat 5. 135901Ac'—, Fransc tat..Sa 4 42 6169 M Fax: +33 4 42 56 lit 95 VJnrnsnasve 41. D40549 Guz l '. Cie —y •49211W25025 Fax:•492t1 i626830 1 lint W-,n S' a .Sync 602, Quauy Bay. Hong Kong •011 A6228663166 Fax. •Q� i 0s228562982 Am '," No. 1155. Co' ".' _"_ 031Q0 tAax,cr. G F.. Muxic° ici-.-5255l5:12fl Fnx-52561S2u 86 N1., n nsa, 10. N 4S23 AS Bran.,. The Nn111°11ands td.: -J t0)Ib 12 1 5­12 ax'. -n t(p11G 54L A 512 /09 S;ad 0! nine; 1 U.S.A. Ii,Ut i Ic4.: •1311))1. '4:i Far: r8r][1).38'14 A joint v°niura in Singapore, n Tales °ffiea in Brazil and diziri6ulars in B6 cawrlrias. 35751080NA 35751082 A4 ba-1 Pmm�d in Canin.=. WALLACE &TIERNAN ENCORE"' 700 DIAPHRAGM METERING PUMP SB.440.400.GE rar'g MORE APPLICATIONS, MORE BENEFITS, MORE FEATURES ... MORE PUMP ENCORE' 700 DIAPHRAGM METERING PUMP Ilydlaulic diapbrvgm pumps am renowned foi- their dcu'abillty, but start -Lip and rnainternuice can be laborious, partiarlar/y sihen service regcrirrr purging and replacing' Intermediate fluids. Additionally, ntrtny designs' zuc? very s'c'nsilille to Ch8f7ging.S'lIdion conditions•. If urrdiaglansed, blocked m-s'turved suction can lead to lridraulic overfill and su(xsegc.rent dhaphragrn failure. Me'clronical diaplu'agin pumps are. Jar less sopliisticaled. Star't-trp and .service suer typically touch aarronther since there aiv no messy internredleMe fluids, internal relief calves of hydrar.dic rely]] cire'uits to tamper with. &jt, unal n0 y,, ineclra.nical dlaphragm pumps' haven't shoed lbc bydiauNc diahhragrn purrip's'.rc:putarion .for robustneis•. Welcome to the &cOr'e"I17O0 admnti3,te... • A whole new class of metering pine{... combines the robust ness of hydraul. . diaphragm drives with the unparalleled ec:onocny, sinniplicity ami serviceability of mechanical diaphragm hquiri ends. " i-'Iamlies capr.iciu..,s to 2,400 1/is, hack pressures to • Non -loss motion {arrrplit.urle mo(.1ulation) stroke adjust meCharlisrn renders unrivaled efficiency, longevity and reliability. • Ckioice of two field convertible drives.. - direct. coupled ur pulley coupled, for an ac:iditional 4:1. tltrndQ A n on stroke frequency with a standard induction motor, • Precision et tgineered liquid ends meter' mild solut.inns, aggressive chernicals, high viscxrsity' polyrners and slurries with far greater r1'13riency than conventional liquid ands. • Clear f. Vc cartridge valves fix• last, roolproof• sea -vice with no piping disturbances and built-in visual indication of operation. • Jln+miij n diaphragm design ensur"i high metering ac:ci.n'ac.y; even at varybig discharge pi'essure5. I=t TYPICAL APPLICATIONS, _ _ 'lyp.ical lnduslries Typiarl Applications, Metering & PlUnping METERING AND PUMPING 4 VVater and Vda+tewater C;oagi.dants, oxidising agents, disinfectants, corrosion Tre.ahnent inhibitors, chemicals for taste, odour and pli control FULL MECHANICAL MOVEMENT AMPLITUDE MODULATION ADVANTAGE $wirmning Pools Food Processing Chemical Processing '?� P a Brewing & Distillation *[ Agriculture Acids, caustics, disinfectants and oxidising agents Bactericides. algaecides, acids, caustics, detergents, corrosion inhibitors and luhricants Additives for petrochemical., I: ilannarei.rtical, pulp and paper, plastics and textile manurarl:ure, Filtration and fermentation aids, bactericides, acids, caustics and detergents Fertilisers, herbicides, pesticides and food supplernents Metering pump rnanufacttarors generally use one of three diaphragm actuation methods. Solenoid Pumps, The rnust simple and economical type of pump, these provide a pulsed flow with huge pressure spikes, considerable noise and wear. Lost -Motion Purnps. These motor driven pumps are. higher in capacity Lhan solenoid pumps, but also give rapid acceleration to the liquid at rest in the pump head due Ln non -continuous ciiaphragm rnotion. Non I.,oss Motion Ptunps. The diaphragm is driven by a .rotating crankshaft, where the eccentricity can be smoothly adjusted during operation. There. are no return spri.rigs, and the diaphragm moves with simple harimmic motion. The Ruld velocity proflle is sinusoldal at all stroke lengths, adjusting stroke length simply niters Lhe amplitude of rite sine Wave. This design provides reliahility and longevity, and pump valves operate with jar greater efficiency. This graph shows the velocity profiles for each pomp type. For any given output, the areas circunvscribed by each curve are identical. Note the difference in non -loss -motion designs. Encore' 700non-loss .: in motion mechanical `tR diaphragm pump s suit raid, :` lost motion s — utti "�' =i_ p.t.: . pump '— su nun . SirOi<C . 1 suction_ � __ slrnke Time Scale ENCORE® 700 DIAPHRAGM METERING PUMP ``; ve.re-eery rneered.tlTe.Encure�Tr70 um irrcp o<<i(u1 ail oirr:r;':.°:: �:�, ,„:'':.-.,._�—^.;.s:,•_,.�.`�.:.: fv�izFte'fPatures!N tth, many liew attntrutes lyplcal y faundton an.Yr:<: c':.:'n... .::.....:..:.......:....... ,.. mast nred hyrliatrLc diaphragm r%slgru, ,'1 he result is a mechanrtal":. diaplriagra pump thats unrivaled f rabustnese, economy, simplicity* L and set v�cca1111ity Na naattei svfiai yvvi. aoliilcatinn, EnmrerD 700 rxan. �ri t .- 1landleit,lvitli.ease..:.::r.:...:i:;::::_._:-.>,::':>.,..:.:.. ?x Available with standard induction and variable speed motors (optional) for wider operating ranges and automatic process control, Short suction and discharge porting minimises friction losses and cavitation, improving hvdraulic characteristics and providing far more e.ffrcient fluid metering than conventional liquid end designs. l Our premium composite \ diaphragm is manufactured to \\ stringent specifications to ensure tong life even under the most demanding applications. The design incorporates tcflon- facing, for the. highest degree of chemical resistance and nylon reinforcements, all bonded to a prc-formed elastomcric support. �Ve've added convolutions for unconstrained rolling aebon, ""•�� a steel backing plate to assure volumetric accuracy even at varying discharge pressures and an o-ring groove in the head's diaphragm cavity for complete sealing. Higlt precision guided ball -and -scat clear PVC: cartridge valves (except 165inni head) provide built-in sight flow indication and fast, foolproof service. The design includes wide flow patlis and four -point guides to control ball rise and assure proper seating. The valve housing is compression sealed to the pump head and pipe cormectors by o-rings and removes easily for service or replacement. A secondary diaphragm seat c.onipletcly separates the ptunphead lion) the drive unit: This double. diaphragm / isolating design eliminates the risk of cross -contaminating gearbox lubricant and Process fluid. Available in two field convertible drive arrangements: direct chive or pulley drive For an additional rl',l. rangeabiFiiy on stroke frequency with a standard induction motor. When the: pulley drive arrangement is ronlbined with a DC variable speed motor, total operating turndown call be as high as 800:11 With double simplex capability, two drive units, each with independent capacity control, can be multiplexed For blending applications or future proces, expansion. This robust mechanical assembly features liberal use or heavy duty parts including an epoxy -painted cast iron gearbox For superior corrosion resistance, 316 SS fasteners, load absorbing tapered roller bearings, robust gears and steel and nodular iron drive components, C3btain precise and highly repeatable feed rate settings avith a 10 turn tnicrutnetcr-type stroke length adjuster. !J� A percent scale and vernier Indicate stroke length in increrxients. Feed rate is infinitely acl3u.st�ble from Q to Automatic: capacity control via stroke length is also available. Art optional diaphragm leak detection system senses the early stages or diaphragm failure, The. system consists (iF a soli -state: electro optic sense)r that mounts to the liquid end and a 1.P 65 control box. This box, which can be inounted at the pt.rmp, nr up to 30 metres, can monitor twa liquid ends, LE1�'s and a relay provide both local and remote indication of t'ailure. Plerbn-nptir sensor 1 ENCORE@ 700 DIAPHRAGM METERING PLUMP MANUAL AND AUTOMATIC Automatic Stroke Length Control STROKE LENGTH CONTROL Tile Encore+}'100 metering primp can be controlled by varying the stroke length or stroke frequency, The following control schemes are available: - Nijanual or 1Zemote Nlanual Control Start -Stop Control where the motor is wired into the circuit of a transfer pump. switch, timer or controller - Flow Proportional Control from a single process variable. - Residual, Compound Loop or Setpoinl Control using one or two prixess variables Manual Stroke Length Control A ICi turn micrometer gives continuous read rate adjusunenl over a 10:1 range. A percent scale and vernier Indicate stroke litrrgth srttir'rg to 1 part in 400. F,ach revoiutinn of the knob changes feed rate by 10%n. Stroke length is infinitely adjustable from 0 to 100%. For automatic capacity control via stroke Iength, our new IP 65 actuator is used in conjunction with either of two new process variable controllers. The compact, fieLd- retrofittable actuator easily installs on the pump and features local manual override and a window for clear indication of stroke length. Two new microprocessor -based controllers are available: SCU, Signal Conditioning Unit The economical SCU gives automatir process control in response to one process variable, typically flow rate. Housed in a IP 65 enclosure, the SCU features an 8-character alphanumeric l..,CD display with 6-button keypad and rrie'ntl-driven open tar prompts for simple operation, setup and calibration. Input flow scaling; and output dosage adjustment. allow independent scaling; from 10 to 4009/6. Svc publication `.t 140.100GE cure snore details. Variable Speed Control For precise and accurate feed rate control via stroking speed, an SCR Drive Unit varies the speed of a DC pump motor. Stroke rrequency earl be. regulated manually by potentiometer setting. or automatically. via a 4-20 mA process variable input signal (optional). Closed -loop speed regrrlatfnn provides feed rate control accutafo to 1°fo of full scale. With conLhtuoUs adjustment over a 20:1 range, total operating turndown with water -like solutions is 200:1 on direct drive units, 800:1 on pulley drives. Dosing or scaling of a process variable cats be accomplished liy means of an SCU, Signal Conditioning Unit used in conjunctiorl with an SCR drive. For more complex control, a PCU, Process Control Unit can be used to provide setpoint control in response to two process variables, such as plant flow and chlorine residual. PCU, Process Control Unit The PCU is a full feature setpoint controller. It provides automatic process control in response to Lwo process inputs, typically flow rate and chlorine residual. The PCU can operate in any of four different control modes Including residual Feedback, compound loop, dual signal feed forward (for duchlorination) and flow .r:.:.: .._ proportionaL. In -i addition, the PCU Can be i configured for "center zcrci operation in �:'..compound loop mode when a DEOX/20001' Dechlorination AnalyLcr is used. Housed in a 11' 65 enclosure, Lhe PCU features a large alphanumeric display, an LED bargraph to indicate flow input or actuator position in S% tncrernents, a 6- button keypad and menu driven operator prompts for shnple operation, setup and calibration, I of more information request publication '17140.200GE. TECHNICAL INFORMATION CAPACITIES AND DISCHARGI,,,RESSU Sh.SURES $D I -fa 1460 RPM (t",)----1is C."ueLllnncUiapluagn, snake C'apaci,y' pulley IM list'aois S�ruvl} I'li,bingll1,n) .55 ia7S):ill IAI 3.r.3 t 12- 35 60 '2.1 79 I 12R!�;(`A�Ifix120 4.2 15.9 1 1'l.4y' l7p}44 5.0 18.9 1 12 5.0 22.1 I l- 50 60 10.0 44.2 1 12 - - [;KM. 120 20.0 89.0 1 12. - - 7 oi..)) _ 144 24 106.0 i 12 - an 9.4 355 1 11) - - 75 60 18.R 71 IN 31:5 141.9 !44 45.0 170.3 1 - 10 30 16.0 60.7 1 9 I01) 60 32.1 121 A 1 - fl - R'q 120 64.2 2421 1 - - 9 [44 77.0 291.4 1 9 30 37.5 141 � 1 5 ' 125 60 75.0 28M) 1 - 5 - Rl IN 150.11 567.A I - - 5 1.14 1A0.0 681.3 30 6G0 M0.0 1 3 165 IiU 13'2.0 a20.6 1 - :i RI Y, 121 11f4.0 1041.0 1 - .. 3 1-14 317.0 t25DA) a 'Re4ecn simplex 1spat0y, doubla•s!ntplex arrangemears must be co01gured with same stroke.frequent' on both liquid wi&. `°Fcv pulley art,,, :vra,gun,enis, n,paci0es Ihlcd ;vc fur pulley ste}r L. Capacities For steps2, 3. and 4 are'75`;;:, $0% nixl'2594, respc'0vrly. Accuracy Repeatable metering accuracy is t 2% of roll scale, at constant hydraulic conditions, over a 10:1 operating range. Stroke length Liquid End .S17r 3.5 and 50nu77: 4.8rrv77 (0.1.881. Llr. wd Fnds ,97r. 7.5, 100, 125 and t 65rrun.' 9.6mnt (0.3751, Feed Rate Adjustment Feed rats is infinitely adjustable from 0 through 100%, A percent. stale and vernier indicate stroke length seitiiig in 0.25`%, increments. Tach revolution of the kriob changes stroke length by 10°yr,. Operating Range Dirrer Drive Aj-rvnyrnh 171:' Stroke length is adjustable over a 10: l range; stroke frequency is adjustable over a 20:1 range (using an optional variahle speed drive). "l'otal combined tykaximum operating torridown ciin be as high as 200:1. Above 100:1 continuous turritlown, total available operating range should be evaluated against specific chemicals being metered. pfdley Drive lirraagrr77ent.' Stroke length is adjustable over a 10:1 range; stroke Frequency is acliustable over an 80:1 range (using an optional variable speed drive..). Till cnttibined maximum operating tut-ndown can be as high as 800:1. Above 100:1 continuous turndown, total available operating range should be evaluated against specific chemicals being metered. Speed of Response Automatic stroke length control response time is L00 seconds from 0 to 100%. Valiable speed control response tirne is under 3 seconds Froin 0 to 1009/b. Suction Lift The plinip will self prime with 3 metres of water suction lift (wetted valves, zero back pressure, full stroke and speed, waterlike solutions), Once primed, tide pump will operate with 3 metres of water suction lift_ Flooded suction is recorrunended. Weight and Shipping Weight Singlr,rLnplr..r 50 kg, fi0 kg; double shnplex 73 kg; 88 kg. For arrangements with automatic stroke length control add 5.5 kg; 7.3kg. Temperature Limits With l'1JG liquid cull' atnbirnf terrlperatl.u'es from 2-52'C:•, process fluid temperatures LIP to 5?,' . 141io 1(ynarlkrrrld liod'process fil.lid temperatures up to 62`C. (.[ethnical Inibrtrialion continued on next 1."p-) leflan, Hypslor, sod VO.on arc reyisrenaE trader;arks or El. Dupont. Cdl. I Electrical Requirments Standard induction motor arraugrnent is 1450 rpm, 115/230 Volts, 50Hz, single phase, TUC. Motors with other electrical characteristics are available as an option. Diaphragm leak detector requires It 5/230 VoILs, Relay rating 5 Anifs @ 250 Volts, 30 VDC. 1.P 65 enclosure. Variable speccd drive control unit requires 11.5/230 Volts, 50/60 Hz, Single phase., 200 mA (l'1.5V, 1.00 mA (230V). Automatic stroke length actuator- ( atarnr contact's (high, low, actuator disengaged) N.O., rates! 5 Amps @ 250 Volts. Materials of Construction C e ar box and liquid rnd adapPCr; epoxy painted, cast iron Stroke positioner enclosure: epoxy Painted, cast. aluminum Punap head' PVC or PVDF ,%lion and discharge valor, housing- clear PVC, grey PVC or PVDF valve bal(r; 316 stainless,'TFE, ceramic, glass and polyurethane (for sherry service) halve orals: Itypalon and Won DiaphlClgl7l:'1•F.E-faced, fabric. reinforced, elastnmer backeci, with a steel or cast irots backing plate M01111ting bux (apuonal).: ABS The putrip is UV risistanl' Due co continual product devetnprrsenr. and in:prnveiuenL cer7ahi s1.uTc1i'icatiom May chnngo without prior anrunmcernent. ENCORE 700 DIAPHRAGM METERING PUMP Polymer and Slurry Handling Capabilities Polyiner solutions at. viscosities LIP to 5,000 cps at. 144 sprn. Viscosities measured with a Brookfield Viscometer with No. 2 spindle at 3 rpm, Hydrated lime slurries up to 0.38 kg per litre of water, activated carbon slurries op to 0,11 kg her Titre of water; cliatomaceaus earth slurries up to 0,17 kg per litre of water. Chemical Metering Systems Lowy cost packaged systems can be custarn configured frorn standard stork components including tanks, rnixers, instrumentation and a wide range of controls. All systems are shipped assembled, prewired and ready to install. Ow' comprehensive range of co-ordirnuted accessories provide the ability to produce the best possible irstallation. Accessories Choose rrorn Back Pressure Valves, Fressurc Relief Valves, Antisyphon Valves, Whi- Lunction Valves, Main Connections. Strainers, Pulsation Dampeners, Calibration Chambers, Solution'lanks, Mixers, Liquid Level Switches. Slorr.y FLushing Systems and nurnerous Mrnunting Ar.;essories,,jtlst to name a lew. PM Kits" Preventive Maintenance kits contain original Wallace & Tiernan replacements ror those parts most susceptible to wear. They facilitate .scheduled maintenance and help maintain equipment in good working order, eliminating equipment breakdowns and costly downtime. For further technical information see publications: Ti.440.400.GE & Ti,440.400.2.GE, TIEFINAN Cltentfeed Limited rnriary Works 'Rnib idgc Keiit `I'.N H 0QL. Trleplione: +44 (0) 1732 771777 Fax: 4.44 (0) 1.732 771800 Ti;1a11; trtforlrlL�tt�ai;�rrr.-trenlau7.rnn1 h1tp.��4Yt7'iV.7-Vi31%C.C-t1Y-171c111. L'O11'1 07i02 02/ 09f 2 0oe 19; 21 7658273669 TEC INC PAGE. 02 TEC. Inc. bFMAM;A 11VN%`) PRESSURE RELIEF VALVES : WEIGHT LOAD-ED The TEC weight loaded pressure relief valve offers non - vibrating, reliable capacity relief for positive displacement blowers. The pressure relief valve is insta tied In the discharge air stream to prevent damage.to positive displacement blowers when operating pressures exceed the maximum pressure rating. of the blower. As the system pressure approaches the valve set point, the weight loaded cylinder is forced up from the valve seat and exposes the vent ports for fast and efficient blow -down. When acceptable system pressures are re -stored, the valve automatically returns to the origlnai set position. The valve cylinder and seat are constructed of cast iron and accurately machined to very tight tolerances for smooth operation. Removable weights have been carefully designed to permit accurate pressure settings in J: PSI increments. Adjustments In the relief setting can be made by adding or removing weights. D1MENSIMS ji c OPEN SIZE A 8 C . .0 E Wt. (Lbs.j 1^ 1.0" FPT 4.19 4.75 2.00 6.00 5 1.5" FPT 5.81 6.44 2.63 8.13 to 2-1l2" 2.5" FPT 7.63 8.88 3.63 9.88 25 PFEFO—EM_A —GE c1 nui QnTinir _ rFArt lfiR l= P. 1d_7 PS1A1 �A P!P£ TAP VALVE SIZE -- - 'SET PRESSURE - PSIG 1 2 3 4 5 6 7 8 9 10 1" 19 40 60 80 100 120 140 160 165 206 !2" 39 80 120 160 205 245 285 330 370 410 2-112" 119 240 365 490 620 740 865 1000 1125 1260 TEC, Inc. 3594 S. CF2. 350 E. Connersville,,IN 47331 PH: (765) 827-3868 i=X: (765) 827-3669 SWLI 199 ..., r_-Co nCn CAIr)l -,.A., ! 1--1=1%ll:MAI ntmr-KISIONS FOR STYLE 5002 1 1-5/8 =2-". 4-7/8 6-1/8 3-112 1.315 4 5 6 7 4-1/2 5-9116 1.1 /4 1-1/2 3.1 /2 4 1.660 1.900 2 2-1/4 6 .8 6-5/8 7.1/8 4 2-3/8 2-3/4 8 10 8-5/8 9-1/2 !2 5 2 7/8 3-1/4 10 12 10-3/4 11-1 /2 g 5.1/2 3 1/2 3-7/8 12 14 12-314 13-3/4 ALL DIMENSIONS IN IIVt;Htt, STANDARD MODELS &'MATERIALS 0:0 5002-AL Aluminum Aluminum 50 5002-SR . Brass Brass 150 5002-304 304 Stainless Steel 304 Stainless Steel 150 5002-316 316 Stainless Steel 316 Stainless Steel 150 5002-Class A Steel Aluminum 150 5002 Class D Steel Cadmium Plated Steel 150 Standard Elastomer: Buna-N nP71nAIAI MATFRIAL SELECTION MATERIAL 'TEMPERATURE RANG • Buna-N —60 to 225° F + Neoprene —40 to 225° F • Butyl —65 to 325° F • HYpalon —20 to 300° F •' EPOM —40 to 350° F • Viton —20 to 400° F + Teflon —20 to 460° F • Silicone —100 to 500° F d —40 to 225° F 'Non stock item —Available upon request. • FDA Approve White Neoprene ,� �yy � ;,xw�,aai,�•.. '"This temperature range is for genera! guidance. The • 304 Stainless Steel figures may vary with application. 316 Stainless Steel Monel and Inconel springs available upon request. CONSULT RATTING PRESSURE RANGFOR MATERIALS, SIZES AND S NOT SHOWN. • COMBINATION END CONFIGURATIONS ALSO AVAILABLE. BULLETIN B Cut -Sheets and Pump Curves for WWTP Pumps: forward flow/recycle pumps, sand filter flow pumps, equalization tank grinder pumps, sludge tank decanting pump. ompany: Aqueonics Recirculation Pump Selection 4 ;%�� -/ �r%� e 16@0 HYDROMATIC a e: 10/5/2008 F i�JI �7 �"`/` f ��� dump: Size: 30MMP Type: Self-Primer3 Synch speed: Adjustable Curve: 30MM2000 Specific Speeds: Dimensions: LAO ,,_;,,Pump Limits: Temperature: 140 °F Pressure: 125 psi g Sphere size: 2.5 in �, -- Data Point --- Flow: 147 US gpm Head: 30 ft Eff: 44% Power: 2.5 hp NPSHr: 6.54 ft -- Design Curve -- Shutoff head: 39.9 ft Shutoff dP: 17.2 psi Min flow: --- US gpm BEP: 47% @ 180 US gpm NOL power. 2.66 hp @ 180 US gpm i Search Criteria: Flow: --- US gpm Head: --- ft Speed: 1200 rpm Fluid: Dia: 8.4062 in Water Temperature: 60 °F Impeller: Density: 62.25 Ib/f? Vapor pressure: 0.2563 psi a Ns: --- Viscosity: 1.105 cP Atm pressure: 14.7 psi a Nss: --- NPSHa: --- ft Suction: --- in Discharge: 3 in Motor. Standard: NEMA --- hp Enclosure: TEFC Speed: --- Power: -- hp Frame: --- Eye area: --- in' Sizing criteria: Max Power on Design Curve 90 40 8.4062 in 80 30 -- d = 20 10 0 20 40 60 80 100 120 140 160 10:: , 5 2 N a z 0 20 40 60 80 100 120 140 160 3: Q. 2', - 70 60 u c - 50 W __ -- 40 30 20 10 160 0 180 s d 0'; 20 _ 40 60 80 100 -120 140 160 180 US gpm Performance Evaluation: Flow Speed Head Efficiency Power r US gpm rpm ft % hp ftNP 173 1200 27.9 46 2.63 8.31 144 1200 30.2 44 2.49 6.39 115 1200 31.9 41 2.26 4.55 86.4 1200 33.4 35 2.07 3.07 57.6 1200 35.4 27 1.94 1.69 " `H2Optimize Hydromatic 8 Selected from catalog: Self -Primer Pumps 60Hz Vers: Feb 2006 Z D MEIN 28' no OXIMER IMIM No 4' 20 IS MIN MEN■ME MEN M IM IN MIMIMMIM IM NMI In IN a IMEMIMEM111 IN IMIM Ca ■IIEEII Molina 2- NONE ME NONE 1100112 ON L40 is ME him, 'lag ME ON som M L I N S I ■.s■■■ L MI Mmb.;; o M —M! --- No ■■�i■�i■�i,iii ■N�o■Om�iliv.iiii LM ' ' MIRM mg OREN oNMI oil il 130 4,1 now -mom -10 0 50 100 150 200 250 300 350 400 20 40 60 BO 14 Operation is recommended in the bounded area with operational point within the curve limit. Performance curves are based on actual tests with clear water at 70' F. and 1280 feet site elevation. Conditions of Service: -� HYDROMATIC- U0 GPM: TDH: rIr �,sar32 I Self Priming Sewage and Trash Pumps c" NOTE! To the installer: Please make sure you provide this manual to the owner of the pumping equipment or to the responsible party who maintains the system. IrUj?0 H DROMATIC ° Pentair Pump Group 1 1 The MP / MPH self -priming centrifugal pump has a semi -open impeller and suction flap valve. Pump is designed to handle raw un-screened sewage, mild indus- trial waste and slurries containing entrained solids. The material of construction is a cast iron volute case and bearing frame, ductile iron impeller and wear plate. Thank you for purchasing your Hydromatic self -priming pump. If there are any additional questions not covered in this manual please contact the HYDROMATIC representative or HYDROMATIC Pump Co. Before Operation: Read the following instructions carefully. Reasonable care and safe methods should be practiced for installation and operation of pump. Check all local codes and requirements before installation. Attention: This manual contains important information for the safe use of this product. Read this manual completely before using this product and refer to it often for continued safe product use. DO NOT THROW AWAY OR LOSE THIS MANUAL. Keep it in a safe place so that you may refer to it often. Unpacking Pump: Remove pump from pallet. When unpacking unit, check for concealed damage. Claims for damage must be made at the receiving end through the delivery 2 carrier. Damage claims cannot be processed from the factory. Check for and tighten all loose attaching hardware. Check oil levels and lubricate as necessary. Warning: Before handling these pumps and controls, always disconnect the power first. Do not smoke or use sparkable electrical devices or flames in a septic (gaseous) or possible septic area. Pump Not Operating Or In Storage: If pump is not put into service immediately, it must be properly stored to prevent damage. Store unit in a dry warm location. Never store unit in the open even if it is protected with plastic or other covering. The bearing housing and motor will draw moisture, which may result in pump failure after being put in operation. While in storage pumps with carbon ceramic seals must have impellers manually rotated (6 to 12 revolutions) after setting non -operational for 3 months or longer and prior to electrical startup. Pumps with tungsten carbide seals must have impellers manually rotated (6 to 12 revolutions) after setting non -operational for 3 weeks or longer and prior to electrical startup. Motors: Pump unit may be shipped less the motor for customer to supply and mount. Motor Types: Pumps can be driven by Standard drip -proof, totally enclosed fan cooled, totally enclosed explosion proof or drip proof with encapsulated windings for moisture protection. If motor is to operate in the open or in a dusty location a totally enclosed fan cooled motor must be used. If pump is to operate in a damp location a motor with encapsulated winding should be used. Motors are to be sized so that no overload will exist in the operating range of the pump. Note: When pump units are mounted at the factory, the driver and pump are aligned before shipment. During transit and handling of pump and components misalignment may occur. Before operation the drive alignment should be checked. Shaft Couplings: We recommend using Wood's flexible coupling to prevent misalignment and noise that can be caused by other couplings. The extra cost of the coupling is easily saved in installation and field service that can result from coupling problems. V-belt drive: Where V-belts are used, keep belts tight by adjusting motor base screws. Belts should run cool. If belts heat up it will indicate slipping. The V-belts should be fiddle string tight CAUTION: Belt guards and coupling guards must be properly installed before operating pump unit. Electrical Starting Equipment: If electrical starting equipment is not furnished with pump, certain precautions must be observed in selecting motor starter. a I Type Of Starter: For three phase power a magnetic starter with 3 leg overload protection is recommended to prevent motor burn out that can occur from single phasing or transformer faults on three phase systems. For single-phase motors a standard starter with 2-leg overload protection is recommended. Electrical: For motor overload protection the magnetic starter trip amp rating should not be more than 1.25 times the full load amps of the motor. HYDROMATIC recommends a rating of 1.15 times the full load amps of the motor. 2. Always use fused disconnect switch or circuit breaker ahead of magnetic starter for short circuit protection. When duplex pumps are used and are operated from single disconnect switch be sure disconnect switch is large enough to withstand the starting current of both pumps coming on at once. This can occur after a power failure. This is impor- tant as a blown fuse or tripped circuit breaker can make both pumps and an alarm system inoperative resulting in flooding or other damage. Ground: Connect a ground wire to motors, control box and other related con- trols. Ground wired to be sized to the National Electric Code article 250-95 Ground wire must be con- nected to a driven ground stake or to a ground wire from the supply service. If a ground stake is used it must be driven at least 8 feet into the ground. Codes: All local wiring codes must be observed and any exceptions to data given must be followed in accordance with the local code. Consult the local inspector before installation to avoid costly delays that can occur due to rejection after job is finished. Pump Installation Foundation: Pump frame or base should be installed on a concrete floor with proper shims and grout. Use hardwood tapered shims to drive under base to level. Base should be about 1 to 1 1/2" off the floor. Build form around the base and fill base inside cavity with grout. Foundation bolts can be set in the grout or set in the concrete floor with expansion bolts. Grout should be made witli I part cement and 2 parts sand. Mixture should be fluid enough to run under base. Wood shim blocks can be removed after grout has set and holes filled with quick set cement. Piping: All piping to suction and discharge openings of pump must be supported to remove stress from the pump case and bearing frame. Suction Pipe: Suction pipe should be same size as pump opening. DO NOT use larger suction pipe as priming time will be increased and velocity may not be high enough to properly carry solids. 2. Pump should be installed as close to the liquid being pumped as possible with a minimum of elbows or fittings. 3. To avoid air pockets suction pipe must be as short and direct as possible. Suction pipe must always slope upwards to the pump from the source of the liquid being pumped. 4. The suction pipe should be installed at a distance equal to 11/2 times the diameter of the suction pipe from the wall of the wet well, minimum. 5. The suction pipe should be installed at a distance equal to one half the diameter of the suction pipe or 3" from the floor of the wet well, minimum. 6. If more than one suction pipe is to be installed in the same wet well, a distance equal to at least 3 times the diameter of the suction pipe should separate them, minimum. 7. Submergence of the suction pipe is critical to efficient pump operations. See the following chart for recommended minimum submergence vs. velocity. Submergence may be reduced by installing a standard pipe increaser fitting at the end of the suction pipe. The larger opening size will reduce the inlet velocity and required submergence. See Figure #1. Vertical Suction Lift: Vertical lift should not be more than 15 feet. This is for starting level only. After ` pump primes, level can be pumped down to 18 to 20 feet if desired, but sump level must rise up to the original level for restart. All suction Iine joints must be air tight as a leak in the suction pipe can cause pump to loose prime or not prime at all. Always check N.P.S.H. calculations for available atmosphere pressure before applying pump. R Hydroinatic PUMP WELCOME Nevis & Events Distributor Locator Search This Site Feedback WHOLESALE PRODUCTS SumplEffluent Pumps Effluent Fourruips Sewage Ejector Pumps Packaged Pump Systems Special Purpose Pumps Price Pages ENGINEERED PRODUCTS Grinders Pumps Grinder Pump Systems Non -Clog Dry Pit Pumps Non -Clog Pumps Self -Priming Pumps Sewage Eje-ctor Pumps C�v �x) SiN � S- _1L AP fll-76 I - ' Mw -ff Ejector Pump Superior Features, -Carbon/Ceramic type 21 mechanical seal -Oil-filled motor with automatic reset thermal overload for maximum protection (one phase models) -Upper and lower single -row ball -bearing construction •Piggyback plug available for easy maintenance and switch replacement ACCESSORIES Download PDF Sales Sheet Control Panels Download PDF Nlanuai Float Switches Download Specification Submittal Data VALUE SERVICES Specifications: Typical High -capacity sornp/effluent, Contact Us Directions to ,Application, Sewage Hydromatic Capacities: up to 120 GPM (7.5 LPS) Requests Heads: up to 28 ft. (8,5 m) So-Nvare 115V, lo, 9.5 FLA, 6OHz- Electrioal: 230V, lo, 4.7 FLA, 6OHz' MADE FOR YOU 4/10 HP split phase with lick he! - if you are a Motor thermal overload protection, Hydromatic distributor 1750 RPM or representatives. hitermittent Liquid 140-F (60f"C) I Page I of 2 10/412008 Hydr("»Matic Punip Copyright a Pentair Pump Group All Rights Reserved. privney Policy Terips and Condi tions. Temp: Minimum Simplex -- 18" (457 mm) Recommended Duplex = 30" (762 mm) Sump Diameter: Automatic Diaphragm pressure switch Operatic, w (manual available) Materials of Class 30 cast iron Construction. Impeller: Thermoplastic Discharge, Size, TNPT (50.8 mm) Solids Handling: 1-1/4" (31.8 mm) Power Cord 10i, $JTW (201 optional) Porformance. I&S, �50AFU Page 2 of 2 A4 0 us UPM A) 40 io 100 UO 140 Hydron.wific reserves the right. to tap Are reviAct's to Us products and their specifications, this cata-log and relates inforination witholat notice. hip4O.hmnl 4 aqueonics ,,,Company: 11r,90 HYDROMATIC Name: t-bate: 10/5/2008 ca -F OA P Pump: Search Criteria: Size: HPGF/H/X-300 Flow: 70 US gpm Head: 23 ft Type: GRINDER-SUBM Speed: 1750 rpm Fluid: Synch speed: 1800 rpm Dia: 7.0625 in Water Temperature: 60'F Curve: Impeller: Density: 62.25 lb/ft' Vapor pressure: 0.2563 psi a Specific Speeds: Ns: --- Viscosity: 1.105 cP Atm pressure: 14.7 psi a Nss: NPSHa: 46.4 ft Dimensions: Suction: --- in Discharge: 2 in Motor. Pu�i$���iiYo�i iamTN to select a motor for this pump. Pump Limits: Temperature: 140 °F Power: -- hp Catalog does not contain data to verify that NPSHa is sufficient. Pressure: --- psi g Eye area: --- in' Sphere size: --- in t -- Data Point--- 8 in Flow: 70 US gpm Head: 23 ft 50 _. Eff: — % Power: 3 hp 4 NPSHr: ---ft 40 -- Design Curve --- $ Shutoff head: 34.5 ft 0 25 in Shutoff dP: 14.9 psi d Min flow: 5 US gpm Z 30' BEP: F.- NOL power. 3hp@5USgpm 20' — Max Curve -- r Max power: 3 hp @ 5 US gpm t4 10 10 20 30 40 50 60 70 80 90 100 110 120 1.5 _. f � 1 U) 0.5 IL z 0 10 20 30 40 50 60 70 80 90 100 110 120 4 4 s 2 ;,,-- a 0 10 20 30 40 50 60 70 80 90 100 110 120 _ US gpm Performance Evaluation: Flow Speed Head Efficiency Power NPSHr ft US gpm rpm ft % hp <, eR 84 1750 19.9 --- 3 --- 70 1750 23 --- 3 56 1750 25.9 --- 3 --- 42 1750 28.6 --- 3 --- 28 1750 30.9 3 H2Optimize Hydromatic 8 Selected from catalog: Grinder Pumps 60Hz Vers: Feb 2006 =mom DECANTING PUMP -- HYDROMATIC Model SK50 ;Typical Application [Capacities to jHeads to Recommended __.... ______ ___.__ - ._... !Sump Diameter Duplex Automatic Operation of Construction u,�miYu.�er.u. ao �o sn sa too Aso Performance Curve 18" (457mm) " (762mm) _.......... Wide angle float switch (manual available) 30 cast iron ;Impeller !Class 30 cast iron non -clog 'Discharge Size 12" (50.8mm); 3" (76 2mm) optional ;Solids handling 12" (50 8mm) ;Power cord 110' , SJTW, (20' optional) ;Superior Features Carbon/Ceramic type 21 mechanical seal Oil filled motor w/automatic reset thermal overload 'Tor maximum protection Upper and lower single row ball bearing `construction Piggy -back plug available for easy maintenance rand replacement BULLETIN C Cut -Sheets for WWTP Blowers /' \tea 4 Ainc�fr 3.5 !!2!"-S 2,80076 1.1 71 1.6 67 2.1 2.4 fi3 79 2.5 59 2.9 75 3.0 3.4 56 72 4.0 2LP 2LVP 0.035 3,250 3,560 91 4.3 102 1.4 86 97 1.8 2.0 82 93 2.6 78 3.2 86 3.7 83 143 4.3 6.1 5 275 162 2.0 i 9 Y 57 142 2.8 2.8 153 135 3.7 3.7 149 130 4.6 i 46 4.5 124 5.3 5.2 120 6.1 3LP 2h'"-S 0.104 1,760 2,265 149 202 2.4 194 3.5 188 4.7 182 235 5.6 177 6.8 230 6.7 8.2 172 225 7.8 9.6 3LVP 3,600. 2,770r400 2.9 3.7 247 333 4.3 5.3 240 327 5.5 7.1 321 8.9 316 10.6 3t1 12.4 1,760 3.0 243 4.5 234 5.7 227 300 7.1 220 8.8 293 8.5 10.6 213 286 9.9 12.4 4LP 3"•S 0.17D 2,190 2,620 3.7 4.4 316 389 5.3 6.3381 307 7.1 8.4 373 10.6 366 12.7 360 14.8 4LVP 3 600 5.8 556 6.7 547 11.6 539 427 14.5 533 12.4 418149 17.4 526 409 20.3 17.4 1,500 1,760 5.2 5.8 449 540 7.5 8.8 438 529 10.0 11.7 518 14.6 509 17.5 500 20.4 5LP SLVP 4"-S 0.350 2,100 673 7.0 669 10.5 6A8 13.9 637 17.4 628 20.9 619 24.4 1,170 739 8.0 12.0 716 1,139 11.0 18.0 697 1.120 16.9 24.0 680 1,103 19.9 29.9 664 1, 23.9 35.9 650 1, 27.9 41. 6LP 6„-F 0718 1,760 1,930 1,162 1,284 13.1 1,261 19.7 1,242 26.3 1,225 32.6 Y0 1,210 39.4 96 t,196 46.0 6LVP 1,527 40.0 1,512 1,170 1,465 1,277 1,631 13.3 16.7 1,248 1,602 20.0 25.0 1,224 1.578 16.6 33.3 1,203 1,557 33.3 41.7 1,184 1,538 39.9 50.0 7LP 7LVP 8"•F 1.200 1,760 1,985 20.0 1,956 30.0 1,932 40.0 1,911 50.1 1,892 2,240.. 60.1 70.0 2050 880 2,333 1,366 23.3 14.5 2,304 1,329 35.0 21.8 2,280 1,298 46.6 29.0 2 259 1,271 58.3 36.3 1,246 43.5 8LP 10"-F. 1.740 1,170 1,375 1,871 2,228 19.3 22.7 1,834 2,191 28.9 34.0 1,803 2,159 36.6 45.4 1,775 2,132 48.2 56.7 1,750 2,107 57.9 68.0 8LVP 1,800 1 2,967 29.7 2,930 44.5 2,899 59.4 2,871 74.2 2,647 1 69.1 • 2,800. 25 1.7 22 2.1 2MP 3,250 1 -S 0.017 33 1.9 2.1 30 2.5 28 2.7 35 2.7 34 3.0 4 9 2MVP 3,560 5 275 38 67 3.1 64 3.6 64 3.9 63 4.4 60 59 4.6 5.1 , .. 1,760 3MP 2"-S 0,060 2,265 2777a 95 4.6,, 12V �5.6 i , 88,, ,,, 5. 87 6.4 119 7.1 117 7.9 112 9.5 3MVP - 3,600 175 7.2 169 9.2 167 10.2 162 12.3 1,760 144 6.8 136 8.8 132 9.8 4MP 2S" S 0 117 2,190 2,620 194 245 8.5 10.2 186 236 10.9 13.1 182 233 12.1 14.5 4MVP 3,600 1,500 359 237 14.0 10.5 351 227 18.0 13.4 347 222 20.0 14.9 213 17.9 209 19.4 5MP C-S 0.210 1,760 292 12.3 14.6 281 353 15.8 18.8 277 348 17.5 20.9 268 339 21.0 25.1 263 335 22.8 27.2 5MVP 2,100 2,850 363 521 19.9 510 25.5 506 28.4 497 34.0 25.5 493 269 36.9 27.6 283 29.7 1,170 1,760 332 558 14.9 22.4 316 542 19.1 28.8 309 535 21.2 32.0 296 522 38.3 515 41.5 509 44.7 6MP 6MVP 5„-S 0.383 1,930 622 24.5 607 31.5 600 35.0 587 42.0 580 741 45.5 55.5 574 735 49.1 59.7 _ 2,350 764 29.9 768 38.4 761 42.7 748 51.2 1,170 693 28.5 671 36.6 661 40.7 7MP 6"-F 0.733 1,465 1,760 909 1,125 35.6 42.8 887 1,103 45.8 55.0 877 1,093 50.9 61.1 7MVP 2,050 1,338 49.9 1,316 64.1 1.306 71.2 880 709 30.4 681 39.0 669 43.4 8mP 8"-F 1.040 1,170 1,375 1,011 1,224 40.4 47.4 983 1,196 51.9 61.0 970 1,183 57.7 67.6 BMVP 1,800 1 1.666 62.1 1 1,638 79.9 1,625 88.7 � �y1 e 1,760 46 ' 2.6 44 13.0 41 3.4 3HP t -S 0.045 2,265 2 770 69 3.4 66 3.9 91 4.1 69 4.7 64 4.3 87 5.3 60 83 5.3 6.5 3HVP 3,600 129 5.4 126 6.1 124 6.9 120 8.4 117 10.0 113 11.5 1,760 2,190 80 110 4.0 5.0 77 107 4.6 5.7 74 104 5-2 6.4 99 7.9 4HP 4HVP iW-S 0.069 2,620 139 6.0 137 6.9 134 7.7 129 9.4 13.0 124 192 11.1 15.3 168 17.7 3,600 207 8.2 204 9.4 201. 10.6 196 1,500 154 7.0 151 8.0 147 783 9. 10.5 140 177 10.9 12.8 171 15.2 165 17.5 5HP 2h"-S 0.140 1,760 2,100 91 238 8.2 9.8 187 235 9.3 11.1 231 12.5 224 15.3 218 18.1 213 20.4 SHVP 2,850 343 132 340 15.1 336 17.0 329 20.8 323 24.6 318 28.4 1,170 18 8.8 182 10. _ 177 311 1.3 17.0 168 302 13.8 20.8 159 293 16.4 24.6 265 28.4 6HP 3"-S 0.227 1.760 1,930 321 360 13.3 14.5 316 355 15.1 16.6 350 18.7 340 22.6 332 27.0 324 3i.1 6HVP 2,350 455 17.7 450 20.2 445 22.8 436 27.8 _.427 32.9 419 37.9 1,170 332 14.2 326 16.3 319 428 18.3 22.9 308 416 22.4 28.0 297 405 26.5 33.1 287 '396 30.5 38.2 7HP q��.S 0.367 1,465 1,760 441 549 17.8 21.4 434 542 20.4 24.5 536 27.6 524 33.7 514 ' 39.8 504 45.9 7HVP 2,050 655 25.0 649 28.5 642 32.1 631 39.2 620 46.4 610 53.5 880 363 16.5 354 18.9 34G 509 21.2 28.3 329 493 26.0 34.5 31:5 479 30.7 40:8 8D1 465 35.4 47.1 SHP 4"-S D.566 1,170 1,375 528 644 22.0 25.8 518 634 25.1 29.5 626 33.2 609 40.6 595 - 48.0 581 55.3 BHVP 1,800 884 3: 875 38.6 866 43.5 850 53.1 835 62.8 522 72.4 RPM r9; Proven Performance. Global Applications. Local Support. Below are just a few examples of the industries that, 50% Less The sound data shown,compares over the decades, have depended upon the Sutorbilt° Operating Noise the Legend and a comparably sized Legend'"` to deliver clean, oil -free air to a wide range blower operating at 3,275 rpm and �.®� SUtOeFR,tECc9 ...x� Lg4fgt�atFLLH� of global applications. Industry Application so � Aquaculture Aeration is - Cement and Lime Fluidization and Conveying Chemical Vacuum Processing and Conveying A 12 psig. An improved blower design significantly reduces the sound pressure output of the Legend blower. The typical reduction is 3 dBA which represents 50% less noise than the competition. p Coal Bed/Landfill Methane Gas Recovery Superior Local Sales and p Dairy Automated Milking Dry Bulk Hauling Trailer Unloading and Aeration Service Environmental Services Sewer Cleaning and ""` Our extensive network of authorized Portable Restroom Services 4. '' ' Sutorbilt distributors offers the most Industrial Material Vacuuming convenient local sales and service sup - Milling and Baking Blending and Conveying = - port of anyone in the industry today. Oil and Gas Gas Collection and Sparging These factory trained professionals Power Generation Fly Ash Conveying and Aeration are experts in blower/vacuum pump Process Gas Gas Boosting technology providing system installation guidance, troubleshooting and Pulp and Paper Chip Conveying and optimization recommendations of your new or existing applications. Process Vacuum Resin and Plastic Processing and Conveying Even a Legendary Warranty Soil Remediation Vacuum Extraction and Sparging Every Sutorbilt Legend Series blower/ vacuum pump is covered by Vacuum Excavation Potholing and Slurry Recovery an uncontested warranty for 24 months from the date of shipment Wastewater Aeration and Backwashing or 18 months from the date of installation on all blower materials and workmanship. Replacement or repair costs will be at no charge __J._J_.__ _..,....., r_:—t— 7 nral .Cntnrhilt LAW Small Compact Filter Silencers w/ Standard Filter Design TS" Series 1/2" - 3" MPT • Industrial & Severe Duty + Engines •Waste Water Aeration r:J + Piston Compressors + Construction\Contractor Industry • Nailers and Staplers + Screw Compressors + Workshop + Vacuum Vent Breathers + Blowers - Side Channel & P.D. • Medical\Dental Industry + Hydraulic Breathers — fine filtration + Pneumatic Conveying lFEATURES & SPECIFICATIONS�� • Polyester: 99%+ removal efficiency standard to 5 micron +Interchangeable media: Polyester, Paper, HEPA • Paper: 99%+ removal, efficiency standard to 2 micron • Several element sizes available per given connection F:F + Fully drawn weatherhood - no welds to rust or vibrate apart (safety factor) • Tubular silencing design - tube is positioned to maximize • Temp (continuous): min -15°F (-26'C ) max 220'F (104°C ) attenuation and air flow while minimizing pressure drop • Filter change out differential: 10"-15" H2O over initial delta P + Durable carbon steel construction with baked enamel + Pressure drop graphs available upon request ., finish and powder coated weatherhood + 1/8" tap holes + Available in Stainless Steel + Various media available �A + Pressure Drop Indicator + Epoxy coated housings • Special connections, BSPT %7111 s �i i- OUTLET Dimension tolerance + 114" ■ 1= Industriat duty S = Severe Duty *' TYPICAL NOISE ATTENUATION — FS SERIES za a v 15 I Z 0 10 5 4LET 63 125 250 SW 1000 2000 4000 5000 OCTAVE BAND CENTER FRECUENCIES - Hz Noise attenuation may vary due to the wide range of applications and machines with Polyester Element ,with Paper Element MPT Outlet DIMENSIONS - inches A B C Rated Flow SGFM crew. lower, Element Piston Fan Rating No. of Silencing Tubes Approx. Wt.lbs I FS-15-050 FS-14-050 112" 4 1 1/2 6 10 10 35 1 2 I FS-15-075 FS-14-075 3/4" 4 11/2 6 20 25 35 2 2 I FS 15 100 F5 14 100 11. -a.T,pJ 4 �`.". 1 1/2 fr4 OF 6 25 35 35 3 2 . .+.w. I FS-19P-150 FS-18P-150 1 1/2" 6 5/8 1 5/8 6 70 85 100 5 4 I FS-31P-200 FS-30P-200 2" 7114 21/4 10 85 135 195 5 $ S FS 231P-200 FS 230P 200 2' 12 1/4 2 1/4 10 -g'�kmwa­ 135 135 300 -5 14 � 4 � ,u. 'i �:'� k� . � `��i� F ,� t+ ei�'e�;n3,2u� Note: Model offerings and design parameters may change without notice. 1151 Ardmore Ave, + Itasca, IL 60143 USA Sales/Service: 630,773.1363 + Fax: 630.773.0727 Solberg — Discover the Possibilities E-mail: sales@solbergmfg.com + Web Site: www.solbergmfg.com FS25-406 pg. 3 i._ BULLETIN D Cut -Sheets and Pump Curve for Irrigation Dosing/Flushing Pump : TPA 9 ■■ so u 12:21pm wwS1 7702766535 #439 Page 11/12 tjU Co PUMPS_ LC - 20953 Configured Curve By., TGJ Date; 1019/2008 Rev. �Project: Waste Water Systems -Tag 9 P-I P-2 P.O. Location; Model: 20953 Oust Ref# ,1Contractor: Cfty; 2 EgenURep. SPE jEngineer: Service: Dar, # La 60 asp 40 20 ...... .... ........ ........... .. ..... ..... . .... .... - -------- .... . ................ . FEE. ............. .... . . ..... .... ......... . ......... . .......... 0 so 100 150 200 260 300 350 400 450 Soo 550 600 650 700 Capacity - Us9pril 9.60 in Max Ratedl- . ..... . ............... ... . .. . ...... . ......... ..... ... ... .... ...... ....... ....... -------- - F954 In . . . . ............. . ..... . ....... Effidency .... . ... ... 7.00 in fain i ... ........ . ........ . .... . ...... ....... . . .......... ............ . -4 .. ....... 100 -90 80 ,70 -60 50 .40 30 20 0 so 100 150 200 250 500 350 400 450 Soo SSO 600 650 700 Capacity - Usgpm 20- n. ir i T.. ........... . ......... ............. . ..... - 0 so 100 ISO 200 250 300 3S0 400 450 500 550 $00 650 700 Capacity - usgpm 6,w ..7 Flow: 200 USqpm Fluid: Wetter Suct. Press: 0-00 psi.a ?H: 350 ft Temp: 68.00 deg F Dis. Press: �Pqutoff Head; 363 ft S.C.: 0.998 Diff. Press: NPSHr, 7.04 ft isc.; 1.00 ap BHP: 30.3 hp Dig-- 9-54 In Pump Eff., 58.16 fa*4 Of Stages., 1 ISEP- 426 Usgpm, Motor Data, 40 Voltage: 208-2301460 Eff; r' inal RPM, 3500 Phase: Three phase S.F.; 1.15 Actual RPM., 3500 Hz, Go End.: ODP • SELECTICtN CC3'[ DITKYNS Flow: 200.0 GPM Priming Type: Standard, Total Dynamic Head: 140.0 feet M-ot-or Loading: Standard PUMP DESCRIPTION Pump Model: 82TPMS Priming Type: Standard Impeller Diameter: 6,Iaa in. Irrrp•el•ler Material: Iron Suction: 2Vz"NPT Discharge: 2"NPT Shaft Seal: Mechanical' PUMP PERFGRIrEANEE Flow: 200-0 GPM Pa.Wer: 3..7 3N.P Total Dynamic Head; 140-6 feet Efficiency: 73-.4 7 Nominal Speed: 3600 RPM NPSHR: °I4..2 feet Shut —Off Head: 154.3 feet Max Power: T'T.0 ETH.R Beat Eff; 73.7 (9� 21.4.E 0P'M MOTOR Size: 10 HP Enclosure: TEFL VoItoYe: Consult Catalog/Factory HZ/171-hose: FR10E/ORDER INFORMATION CatOing No.: Factory WaighL; 200 Ibs_ BULLETIN E Cut -Sheets for Flushing Return Pumps and Tanks `QV,4L/TY PVMPS �NCE ����/ 'tUA Product information presented here reflects conditions at time of publication. Consult fac- u tory regarding discrepancies or inconsistencies. Ar MAIL TO: P0. BOX 16347 • Louisville, KY 40256-0347 SHIP TO: 3649 Cane Run Road • Louisville, KY 40211-1961 (502) 778-2731. 1(800) 928-PUMP • FAX (502) 774-3624 SECTION: 3.20.022 FM2091 0207 Supersedes 0506 visit our web site: www.zoeller.com 80E1.66R ON -SITE WASTEWATER PRODUCTS Multi-Sta Effluent Turbine Submersible Pumps Effluent turbine pumps are used in on -site applications that demand more head than a traditional single stage centrifugal submersible pump. Zoeller Pump Company is able to meet this need by offering a complete line of submersible effluent turbine pumps. These pumps have been proven in field applications and have many years of development behind them. Typical appli- cations include mound systems, drip systems, and recirculating media filters. All units include cool running submersible motors that do not require external water flow to prevent overheating. An outer pump sleeve is not required. Pumps can be installed directly in a dose tank as long as an effluent filter is used on the septic tank outlet. These pumps can also be used in conjunction with the Zoeller Effluent Turbine Filtered STEP system. FEATURES: • Corrosion resistant. • Many models available - 10, 19, 27, 35, 55 and 85 GPM. 1/2 thru 3 HP units. 115 and 230 Volt. 1-1/4" discharge (10, 19, 27 gpm) or 2" discharge (35, 55 and 85 GPM). Heavy wall stainless steel pump shell. • Franklin Electric submersible motors. • Stainless steel hex drive pump shaft. High Efficiency floating stack. Glass -filled Noryl discharge and mounting ring (10, 19, and 27 GPM models). Stainless steel discharge and mounting ring (35, 55 and 85 GPM models). No external capacitors or relays required for starting ('/,A % HP). Starting box provided for 2 & 3 HP units. • External check valves available. Pressure effluent filter available. 10 feet of jacketed SO type power cord ('/ - 1'/z HP units only). Consult Factory for longer lengths. • Timed dosing panels available. 5 year extended warranties available. (Consult Factory for details.) U Gopyrlgnl Lu t LOeller l.O. Mu l lyi as load Vc 75 70 65 60 55 0 50 4 = 45 v_ ¢ 40 35 F 30 25 20 15 10 5 C Models65 GPM PERFORMANCEPUMP 55 GPM 2" NPT A- MEN W� �1■■■■■. ME 77 F77 ME 314 HP-2 STAGE 10 20 30 40 50 60 70 80 90 10 LITERS 0 40 80 120 160 200 240 280 320 360 FLOW PER HOURIMINUTE 015649 Part Number H P Voltage Phase Amps Stages Height 5034-0005 1 /2 115 1 12.0 1 18-5/ 16, 5034-0006 112 230 1 6.0 1 18-5116" 5034-0007 314 230 1 8.0 2 21-9116" 6034-0008 1 230 1 9.8 3 24-3/4' 5034-0009 1-1/2 230 1 13.1 4 30-3/16" 5034-0010* 2 230 1 13.2 5 32-5/16° 5034.0011* 3 1 230 1 1 14.5 7 1 40-7/16" *Includes starter box and 25' long flat wire cable assembly. W PUMP PERFORMANCE CURVE 85 GPM 2" NPT DISCHARGE 60 200 3 HP-6 STAGE 55 175 50 ¢w 45 x 150 U 40 2 HP-4 STAGE a 125 } 0 35 1.5HP 0 30 100 _ 3 STAGE 25 75 20 1 HP-2 STAGE 15 50 314 HP-1 STAGE 10 25 5- 0 20 40 60 80 100 120 140 GALLONS LITERS 0 80 160 240 320 400 480 FLOW PER HOUR/MINUTE 015845 Part Number H P Voltage Phase Amps Stages Height 5035-0005 314 230 1 8.0 1 20-1/8" 5035-0006 1 230 1 9.8 2 24" 5035-0007 1-1/2 230 1 13.1 3 30-1/8' 5035-0008* 2 230 1 13.2 4 32-7/8" 5035.0009* 3 230 1 14.5 6 42-318" *Includes starter box and 29long flat wire cable assembly. Accessories Filtered STEP System Zoeller Pressure Effluent Filter This Zoeller Filtered STEP The Zoeller Pressure Filter will help System is designed as an prolong the life of an on -site drainfield economical and reliable by filtering out solids which cause solution to an On -Site plugging. Used in both resi dental and pumping requirement. commercial applications, this unique When the effluent must design and mounting location allows be pumped up hill, for easy access to the filtering screen. enhanced flow, pressure sewer or where alternative Use in low-pressure pipe, drip, or systems require high head, enhanced flow applications. Use as a the Filtered STEP System prefilter for dosed treatment devices is the answer without the such as recirculating media filters. extra cost of a pumping chamber. For use with pumps up to 55 GPM. Contact Factory for 85 GPM applications. See FM2244 for more information. See FM2090 for more information. © Copyright 2007 Zoeller Co. All rights reserved. All brass spring loaded check valves are designed to screw directly into the pump discharge. Check valves are assembled with components suitable for a septic environment. Check valves should be used at the pump in a pressure sewer system. A redundant PVC check valve and isolator (ball) valve should also be used at the sewer connection in pressure sewers. Part Number Piping Size Pressure Rating Weight 30-0187 1-1/4" 400 psi 2lbs. 30-0189 2" 400 psi 3 lbs. H PVC check valves can be used inline with the pump discharge piping or at the street service connection in a pressure sewer system. Check valves are a true -union design so they can be removed and serviced without cutting the pipe. Clear PVC for easy inspection and connection via a glue joint. Part Number Piping Size Pressure Rating Weight 30-0207 V 125 psi 11b. 30-0209 1-1/2" 125 si 11b. 30-0210 2" 125 si1 3lbs. Rail systems are used for easy pump removal from an efflu- ent pit. Service personnel will not need to enter a hazardous environment. Pump sits on floor and engages piping system via a sliding disconnect fitting. All parts are stainless steel or brass and suitable for a septic environment. Part Number Piping Size Weight 39-0098 1-1/4" Female pipe thread 10 lbs. 39-0099 1-1/2" Female pipe thread 11 lbs. 39-0100 2" Female pipe thread 12 lbs. Disconnects Onlv Part Number Pipe Size Weight 39-0053 1-1/4" 2lbs. 39-0001 1-1/2" 2lbs. 39-0002 1 2" 1 2.5lbs Stainless Steel Pull Rods 3/8"-16 UNC umber Length 0691' N 006 2%0007 3%2 39-0008 4'/2 39-0009 5% 39-0018 7' 39-0010 8' ALL ZOELLER ON -SITE WASTEWATER PRODUCTS MUST BE INSTALLED IN ACCORDANCE WITH LOCAL AND/OR STATE PLUMB- ING AND/OR HEALTH DEPARTMENT CODES. © Copyright 2007 Zoeller Co. All rights reserved. 10 GPM Models 1 w PUMP PERFORMANCE CURVE LL 10 GPM 1 1/4" NPT DISCHARGE "1 314 HP-12 STAGE 360 104 96 320 ss p 80 2so 112 HR 8 STAGE L i 72 U 240 g z 64 0 56 zoo 112 HP- 6 STAGE '� < 0 49 160 40 120 32 2q 80 I" A 16 40 8 LA IN o 2 4 6 8 10 12 14 FLOW PER MINUTE 015413 Part Number H P Voltage Phase Amps Stages Height 5030-0005 1/2 115 1 12.0 6 22-3/8' 5030-0006 112 230 1 6.0 6 22-318" 5030-0007 112 115 1 12.0 8 24-118' 5030- 0008 112 230 1 6.0 8 24-1/8' 5030-0009 3/4 230 1 8.0 12 28-7/8' 7 GPM Models PUMP PERFORMANCE CURVE„'.z 27 GPM 1 1/4" NPT DISCHARGE.. 326 399 11t2 HP-10 STAGE v i t � ' "". \I IN Hij cA 1oNs l ❑TERG 29 a0 s ea Tao 126 1c0 FLUNPERMINUTE 015045 Part Number]HPVoltage Phase Amps Stages Height 5032-0005 115 112.0 4 21-1/8' 5032-0006 230 1 6.0 4 21-118' 5032-0007 230 1 8.0 6 24-5116'5032-0008 230 1 9.8 7 26-7116' -0009 230 1 13.1 10 31-718' 19 GPM Models E LL PUMP PERFORMANCE CURVE 19 GPM 1"/4" NPT DISCHARGE 80 280 1 HP -.9 STAGE 72 240 314 HP 7 STAGE 64 200 56 48 160 U < 40 � 32 120 1/2 HP 5 STAGE 0 24 H 80 16 40 8 D I I I I 5 10 15 20 25 GALLONS LITERS '—'I 0 20 40 60 80 100 FLOW PER MINUTE 015414 Part Number H P Voltage Phase Amps Stages Height 5031-0005 1/2 115 1 12.0 5 21-16116' 5031- 0006 1/2 230 1 6.0 5 21-15116" 5031-0007 3/4 230 1 8.0 7 25-1/16" 5031.0008 1 230 1 9.8 9 28-1/8' 35 GPM Models PUMP PERFORMANCE CURVE 35 GPM 2" NPT DISCHARGE 56 180 1-1/2 HP- 5 STA 48 160 140 1 HP- 4 STAGE 40 120 32 314 HP-3STAG 100 r 0 0 24 BO 1/2HP-25TAG F- 8 j 0 10 20 30 40 50 60 GALLONS LITERS 0 40 80 120 160 200 FLOW PER MINUTE 015044 Part Number H P Voltage Phase Amps Stages Height 5033-0005 112 115 1 12.0 2 19-7116' 5033-0006 112 230 1 6.0 2 19-7/16' 5033-0007 3/4 230 1 8.0 3 22-3/16' 6033-0008 1 230 1 9.8 4 24-15/16' 5033-0009 1-1/2 230 1 13.1 5 29-15/16' © Copyright 2007 Zoeller Co. All rights reserved. 10 GPM Models PUMP PERFORMANCE CURVE 10 GPM 1 1/4" NPT DISCHARGE 1zo qoo � I t12 314 HR 12 STAB 360 t04 96 320 88 280 o so 112 HP-8 STAGE i 72 240 U z 64 200 56 112 HP- 6 STAGE 0 48 160 40 120 32 2q SO - Is 40- 8 0 2 4 GALLONS FLOW PER MINUTE 015413 Part Number HP Voltage Phase Amps Stages Height 5 330-0005 1/2 115 1 12.0 6 22-318" 5030.0006 1l2 230 1 6.0 6 22-3/8' 5036-0007 1l2 155 1 120 8 24-1/8" 5030-0008 1/2 230 1 6.0 8 24-1/8° 5030-0009 314 230 1 8.0 12 28-7/8" 19, 27 GPM Models ?,,% l PUMP PERFORMANCE CURVE ¢ .._..,,27 GPM f 320 NPT DISCHARGE �. 1 HP-7 STAGE 220 84 31 200 5fAGEHP _ i 5fi 160 � ae ts0 W. LO 12 HP-4 STAGE LITERS FLOW PER MI NUTE IL 015045 Part Number H P Voltage Phase Amps Stages Height 5032-0005 72 115 1 12.0 4 21-1/8' 5032-0006 112 230 1 6.0 4 21-1/8' 5032-0007 3l4 230 1 8.0 6 24-5116" 5032-0008 1 230 1 9.8 7 26-7/16' 5032-0009 1-1/2 230 1 13.1 10 31-7/8" 19 GPM Models LL PUMP PERFORMANCE CURVE 19 GPM 1'/4" NPT DISCHARGE 280 1 HP - 9 STAGE 80 72 240 3/4 HP 7 STAGE 64 200 0 56 4g 160 U a 40-120 1/2HP 32 5 STAGE O 24 80 16 40- 8 0 5 10 15 20 25 30 GALLONS _ LITERS 0 20 40 60 80 100 FLOW PER MINUTE 015414 Part Number H P Vdtage Phase Amps Stages Height 5031-0005 112 115 1 12.0 5 21-15116" 5031-0006 112 230 1 6.0 5 21-15116' 5031-0 007 3l4 230 1 8.0 7 25-1116' 5031-0008 1 230 1 9.8 9 28-118" 35 GPM Models PUMP PERFORMANCE CURVE LL 35 GPM 2" NPT DISCHARGE 56 180 :1HP HP-5STAGE 48 160 140 4STAGE 40 120 2 9 32 314HP-3 STAGE 100 r 0 0 24 80 1/2HP-2STAGE 6U 16 40- 8 20 10 20 30 40 50 60 GALLONS I LITERS 110 40 80 120 160 200 FLOW PER MINUTE 015044 HP Voltage Phase Amps Stages Height 112 115 1 12.0 2 19-7/16' 112 230 1 6.0 2 19-7/16' P5033-0008 314 230 1 8.0 3 22-3116' 1 230 1 9.8 4 24-15/16' 1-1/2 230 1 13.1 5 29-15116" O Copyright 2007 Zoeller Co. All rights reserved. FM2218 .. `4KIWITY jazImPs 9116CE 11939 0206 Supersedes ® L" 1204 Product information presented % here reflects conditions at time L . of publication. Consult faG Wry regarding discrepancies or VISIt our Web Site: inconsistencle!s. MAIL TO: PO. BOX 16347 • Louisville, KY 40256-0347 SHIP TO: 3649 Cane Run Road • Louisville, KY 40211-1961 www.zoeller.com (502) 778-2731. 1 (800) 928-PUMP • FAX (502) 774-3624 EFFLUENT TURBINE PUMP INFORMATION Cable Guide: SJOW: Junior hard service, same construction as type'juuv out only 14Lea poi 0w V U-1 *Dry run capable for up to 24 hours without damage. `"Minimum Liquid Level (measured from bottom of pump). © Copyright 2006 Zoeller Co. All rights reserved. l t -rd •1 �' >q j V4j 43 Qf C.° o� � , 4-4r�i a rd J p� q V Up kw fd °Y'4 .,A .Apt P/ C� cn ni ro a IV ; oHo arn s r�4 ed 4J 4A rs . t, x 4-► ro ul 04 I � t b W tD A Ptl 4b �" ao di m I b •� to LD tG d' 4 co 0 47 r-+ cU a co In O gy «4 1.4 in -H °4% � 41 � I::O I ; O z N cn O G U C1 fT G s 41 .. _- 0' rC U C " 0 O Nl , 91 cm Ul ® E Ln u_ � 'V e \ p r4 4 fl r 4 W '{J 4 r+ trg8�. [1 lli! •N r r•l L+6 r^4 r •/ 1 • I 4' � rf > � N ^.� ' n . r,• r n � � ,� rw I !* 1 1 �9 "1 41 1 I I r'9 n II Ilf'9 ^�T ! nf9-,I in L`QI.i BULLETIN F Cut -Sheets for Alternate Pond Liner IN u E 0 . k / ° � m > c E Ch / §� & v 3 4-1 % 3 \ 0- 0 0 E E �§ E 0) t 7 ' 2 � ƒ _ vLn &> 4 ° 4 2 Ln y_ u ® cu��� oE u L2 . � m o@.0 u Q c k = E 4 e 2 § / 4-1 CL 1 ') D E @ $ :E V 2 / E � $ E $ 6 § :E / E 0 � 2 CL Ln @ cn s cu W O a , 4-+ C o v aj N 5 +' 4 c � o v ° 3 -he v� Ocu O 4- O > a o N � a o :E ate,F- V lJ 00 cn ai �► V N m Oai tG a1 'aQ_ V +�, U O cri S n3 0-0 41 s -p � tC O r- L O O 4 E L N � 'a` /� O f>S� cn L � w O 6n cu W Gi IA -C a, to V i '% i a) 0 tA _0 o = � .� aJ y_ i C C a--� CL= N C O 0 O t6 E CC S C OO :N u U O aJ CL C 140— S C f6 a-+ cc O O O � 4) u "_ L .O ate. 's= _v E f,� C6 L Ln m O V) ru 0)O aJ -0' } u M w "O C Q -P O 4- P auj O V1 m L �_ is m U cn -O aJ N V C V= � u OL O U Cu 0 -N O •O tA '0 .� + cu aten Q +-, Ln O O 1 Ln ai O O,._. Q Ln _ o _ 0 •I-r '� L > Q L i Q �-0 +L ((a Q � O — N aJ N _>1 >1 +a (U M co U M coN V) O O Z3 O [0 f6 cn 7 E o U cNn v� r a� v w O `m L '- ar v E w �, E V1 � (U V -a 3 � �'m L W to O u ra m-0 ' O � N Em ®► Ln _ - Q C C v `n .Q ow O 0 4- u v C _O r6 = Qai o � O C M C ai ® O Q 'p a1 � v— O } v -C J 4-1 M cn Qi c "= m .O u O �NO > o o � 00 uc U CA R v 0 O D C p L N 4� M O 4- L > v v C > p .- 4, ra Lni" 4-0 „y x L U -- C O Ln c Q ai co a� +. o E FJ aiLn 4-1 i > al c u 4 - aJ a c s O � g ai +Z L (U ra a + O O Q CL a- m V i. � L Q /�1 y -� �� O m 4 - (a v1 �, LA N L O O .N Q �, s s tA ~ •� U 0- O `n a1 -0 O_ C S C m aJ - aJ aJ c 0 vim- C al C Q v > 'c O a) O O U C O Q u N .0 �� a) V n C `n ra fa L. O aJ ate+ Ol L c E %aJ a p O N 2 Q-0 p �O C -0 O O O � L a C L u a S (U aJ �, -C V a� C OCL `^ (U U aJ Q l0 sue. L `�_ O aiL O $ Q a) +' N O � LncL Q- L OC L s p tt1 a1 "i aJ +' L +O-� O Q O +� U m p u (0 � O ate-+ C aJ N w O Ln fa M O m O M 76 O v- ai '' O c:-0 CA p u s c � LAAw ZFc c o c O Ln Q � E Q- dJ m Q E `- 41 a) ;F, •Q (6 ra vt L CLnin cu O >, aj .aJ L L TLC V �Qse� y (O � Ln Q la O -0 ai n3 U Ln C vim. � ?, � 4- O 0 Ln .ai � � C a1 p N 0 L N> 'n +, O M Q Q +-, - (O u , L 'a 4- M U L p ''' c aJ C O a) 0 N iJ O N `^ c L O ai L L O. (a L Ln O Ln 0 0 (6 O Q v L O (6 O �_ Q O L p Ln N 'a O p l.1 •� Q m L — -CL Qi E e a d 0 N-0 O C •`n �O `n E Om vi u can C E C u C O O O O O fu a1 O a- L 00 �O QJ O 7aS! u l6 Q U Ln •� +.i iJ -0W � •c Ln L a} L- .� O O U L +� L O O In _ O .� ca -0O a1 M r U ai n3 U 0 aJ LGJ -C v (Uy_ Q aJ C +- U Ofu a) (6 g- W aj fB ~ � L � VI ai � � -0C c ai 4" > y ai N� ay s x >, E '� c uai o a1 '^ p Q- -a a1 `n o s ai 1 +1 +, rp a C M C Ln - v !+- U U O O s~ O i >> M o Q. C C a�J Q Q t�i1 Q ,� � o E i IN al = C p `n p E O Q O a, L v Q' O �- �n C wLn .� Q >, -0 to v C aj c a� E ai ai E a� u� `ai w r : ai � Ln t� Imo— Imo— (6 •� ii Es- Q H C O f 6 av c� a+ C O aJ a! Q O M � o � O — v i �4- ai ai �M 4- v vNi —_ .�- __ s -C W V, — to L .� u Q > 4- X O O +��' E v +� > N 41 OLn i C t!1 — C Ln p 'in C Olii Ln 0 Lri _ O 4- � i�- 1 O N O M _ C , C O++Ln i! v Q Ln M Ln Q N Ln OL 0) to .Q On " O O W p C O O 4-ro a) CA > i U W a) U � m L i co Ln � �) iQ ` 5 aj L% L Ln t O -O y p Ln N 40 O 4-+� a) C aJ �- v V " +-, O +, C " C Ln u `6 O Q O vCO a) LA v p C ro t ai c C -C >, ns u O a1 p v, C L > .� O a� � CLLA = s —� 4 LA Ln Ln 0 u '� a � O C O O E >. R Q v pvi r.n °EO a1 p C O O .N E V LnU -0cu M a) U W O v C N Q W cu m CL •> p >, >, Z L C � v O O t11 M LL O C Ln Ln N M V 0 a1 QJ N Ln W S v .— L QJ M Ln�- W a) , . V L OL a1 •i O GJ _ vim•, W 4-V +� 0. E C >. t � �_ vi M (V 07 un CU R ++ i LA� V1 > U 3.H QJ C O L) to � 'E ® n3 "_ ° C ai ® _ Q. fo r c+l d U• o N N 1f1 co LL N 0 a u v 0 .0 d,l m �® G ® O 00 u V ai R d v o -Z, au > C: M o a5 o }; a, '- sa E v L Ln > o -� ° -0>, o � 4-o, :3 o o o o V V O - O 0 Q. LA o L o_ U � O Q Ln aj N v o > 4 Ln o a, o > °Ln , V Q Q- 4- p a o S t C s 4 � ar a� c o aaj ai s 0 0 °' N L BULLETIN G WSI PC Controller Electrical Schematics k v v v v v v v tl v l 00000�o�r��r pM PUMP A & B 120 VAC ➢ISCONNECTS DISCONNECTS CONTACTOR A G CE15+NSTR TI T2 T3 A 6 e e OVERLOAD A CONTACTOR B 1 FM �� L [&jgi r - Na��e CET1 N'TTe T3 ® Deb 6 6 e ® e OVERLOAD B 120V POWER DISTRIBUTION BLOCKS lm■91. MIT, rtolcno�l Ir�ono�l Ir on��l Iro�onoril II©I;7�(71�11 IIo11:�]OOfi�ll I�lC70E]IBII I��ocrtl MM 1MEN 24 VAC CONTROL TRANSFORMER qM 24 VAC ISOLATION TRANSFORMER ;7,- TGo241-,E ._ 0 0 TG ee ❑❑ RACK i �404❑ �, ❑ ao mm,mmmmmm'm°mmmmmm""m19mmmmmmmmmmmmm ,. N 120VAC CPU POWER me 1A AM TO L A SCP30 S 5-DN +12 VDC POWER m, r SUPPLY C E. 9J IN IN • • 6 m m e SS ❑ L SCP30 J-DN +5 VDC POWER ' SUPPLY Irt� Sv- , 6M C E9�\ E IN 1N • • e 0) . .. .....uuc.c.c.c.c.c.c.c.c.c.c.c .........ca..e.e.a.ess..e...cs......e.e DISTRIBUTION BLOCKS1 CONTROLLER RACK 2 �Q� O 04C0 ao Tmmmmmmmmmmmmm15mTm"mmme'mmmmmmmmm O Q O • O • O 0 0 0 0 ,lo❑� � oom000mmmmoommmm uRdm E2 RACK 3 I ouoo ❑� �1 ,. G „1oN ea 14. 1111 N 11 m mmmm'm'mmmmmmmmmmmmmmm m1m wD mmm g0o�❑ o o a a e o o NI MUM O l L SRISUI9 e • s u 1x u, vs -I�-[ ----oo oo[[-oo[0000N m000 ❑oo 00mIca 0[gf�.R0000000oo0-�001-[ 00 -9❑0!1I1��•.II !1!1II�.,II !1!1Ih�II 11-[o°�o°A�Ims_ -I!%-,�❑��1I��„i� I��tI r �=1��tf „1I��t1,I��tf_E!1 ,I��tI 1I��tI „1a���I'„i1 I��tI „1l��t-„!1 ��tI „1l��t„�1�I��tI,;i1 I��tI .1,I���I „�I���I:�.-.i�.,'l(I ❑ I�C�9C OBC� aCaCCCC�CC al.-�.-1 L_�.-1 L-�.-1Cal- 1��a i �I I:a I_I I-1 L->I �� L_I I-1 I-1 L-11�-1 L-1 I_I I-1 I_I I -•.I I_I PC PANEL LAYOUT 1 of 1 REV-0 4 Rose Hill "PercdRito" DATE: 09/22/07 FIELD ISOLATION RELAYS r4 - r20 Waste Water Systems, Inc. P.O. BOX 1023 (706) 276-3139 F1 i IJAY (A n.54n Fry (7nF) PUMP A POWER A B C PUMP B POWER A B C G G G G G G ➢30 WMS3D30 415V — 10000 D30 WMS3D30 415V — 10000 A B A B B S 261 D4 —230/40 7R7- Nt 40 A S 261 ➢4 —230/40C Nt 40 A ❑N ON LEIN ON LEIN LoNj GGGGGGG G PUMP A & B DISC❑NNECTS 120 VAC DISCONNECTS 0000�aoop�p =0000000�m 120V 20 A from panel 120V from UPS (by wwsi) fsiiii';2� �1lfltii[itiaa[[til?[19 11 � 11 11 �..._ E'961=, ��AIgPIRIFIIAIAIAAIgIpIFPIPP�giq;q'. INCOMING POWER CONNECTIONS 1 of 1 Waste Water Systems, Inc. 4 REV-0 Rose Hill P.O. BOX 1023 (706) 276-3139 DATE: 09/22/07 n "Perc�Rite'� � _ ELLIJAY. GA. 30540 Fax i706i 276-6535 c� � r Z yN� �Z O C) �C o �J 0 d wm� �P o� D ��01 D z D z M QO �td u z v + < W C u tj 0 0 n 0 < F d � o M e� 0 +o es es CAI �� es CAI es 1 A�� w t7 C o �-< c F1 :C M o�u z d N V) o O < Z D F9 n 120vac DISTRIBUTION 1 of 1 Waste Water Systems, Inc. REV_0 y d Rose Hill P.O. BOX 1023 (706) 276-3139 DATE: 09/22/07 "Perc`Rite"• ELLIJAY, GA. 30540 Fax (706) 276-6535 l: ztt '4 e o 0 00 iu 4� ,eer, zz uido ��w -� e- g —e n W� e x em Fc -1A ee u� e� e is O e: yN Au ��77 r,ro y nN o e P o o N b a y O C p c y A e a mk4 ,u� A6 ON Fes+ a o y n OCo m YA+ CA L�J 0G Caa o 0 o-I e m Z p pi i A m r eeP O t em [oao o� em HN Dm Oo aO Lh ID n �•e Le •z 'sag n U� 1� • m n m <3s m O C o ® o Aso ti C o 0 o- o o b -� Roo shoo r� see++22 oldo O .s, �a zz oldo 02 O y ep eN � Q - ooO e- ` a ooO ea omO ea o Z om0 em oo �0 el cep, om FO ee w N oo PO ery u ooO e o`o &O er a om FO e. OE PO ea o`o 0 eN a; es ew m om&Oom mom0em d omO eo o®O eo om0 ery o`o0 eN o`o 'Q e om �O e oo'O ea o'oO ea ='d � oo PO em c o O em :omOe" =O Oe n le Oo�O ry 00-0 N 5vdc DISTRIBUTION 1 of 1 Waste Water Systems, Inc. REV-0 d Rose Hill P.O. BOX 1023 (706) 276-3139 DATE: 09/212/07 „_ "PerclRite'® FLI_I, AY. GA. 3054(1 Fnx (706) 976—A.5.-�.5 COMMUNICATIN WIRING -- 1 of 1 Waste Water Systems, Inc. REV_0 IWZ� Rose Hill P.O. BOX 1023 (706) 276-3139 "Perc`Rite" DATE: 09/22/07 FI I IJAY (A 3n54n Fnv f7nFl E 0Nna �� .n o� n El A .P� .. ./ O1NX ® o D D R7 3 P 0 �l?JI � �- -C} Iti 3 3 �- _o- NN o= o a o z 3 Z 3 N D� O M 'O o 0 C u 'x7 t7 a 3 3 D ._.,µy. A f ,�u Z 0 Z no tzj R) o H9IHdb0 ZZ �Ld� O �7 O CA M No as m<� .- N N O _ eZ N t e s ZONE 1 / 1A E) =� ZONE 2 / 1B eLn s m Q ZONE 3 / 2A _ e z - O� �g0 e ZONE 4 / 2B m x O e�e O e o w ZONE 5 / 3A ZONE 6 / 3B O fib= 0 e e N>< I -40 ZONE 7 / 4A S Y O M. e ". e � ZONE 8 / 4B O _= 0 e I M le. ° N ZONE 9 / 5A 0 �_ N _. o ZONE 10 / 5B N i - N N ZONE 11 / 6A e e ru ZONE 12 / 6B N O� O e - o Q J ZONE 13 / 7A O gig e . W e N ZONE 14 / 7B N - 0 e w m e o ZONE 15 / 8A e - I I O g= W ZONE 16 / 8B CONTROLLER RACK 3 1 of 1 Waste Water Systems, Inc. REV_0 Rose Hill P.O. BOX 1023 (706) 276-3139 DATE: "PeYc09/22/07 ,`Rite"• _ _ EI_I.I,IAY. GA .30.54(1 Fnx (7(1F1 ua4-aw MOIJ 00- apA Zl+ ua�.aw MOIJ 04- DpA 4 2Z- ual-aw Mol_4 wou j :.ndui aslnd� a5nb6 dQ o4- abnn6 dQ wojj aa!Aap uMopq-nL]s xn'o oo, aa!Aap uMopgngs,xrnb wouj Z Jaq-11j 00 Z ua44-4 021- C ua�,l!-4 O�, t, ua0,l!.4 04-4 9 ua:-J!-4 04 9 ua4-I!j 04 aAlbA ua:�snw 00� anlbA 6upnpau aunssaud o�- st, - SC sgndui uo j lnuj-nau SUOwwOD gDq-!MS q-YIOI j 04- lnu4-naU abA t2 q-'OolJ uaq-nm Mol wouJ N-�2 a-'001.4 algnua asop wouJ U{2 q-bol- laq-'OM L 6blq wOJJ u-�Z imp M ■11T © EMEM �M�M00IM— M EMEM 11m100EMI MMIDOOr®l1 1Im10001m11 11M1000n1 1 = EMEM' 1 m DOOIm11 MM-IMME Ml 11m1000 IN 11m1000M11! 1 0001-11 G'��■LVJ��■i"iI rlplli��� O"S n m W am r 1 'M EM '� 1 1 ' 1MME i -11 r td O x UNIT CONNECTIONS ® 1 of 1 Waste Water Systems, Inc. REV-0 4 Rose Hill P.O. BOX 1023 (706) 276-3139 "Perc`Rite" DATE: 09/22/07 FI 1 I.IAY (A .-�n�an Fnv MR) bedrock. The top surface of layer one was set to actual field survey elevations and given a layer thickness of 5'. Layer two for each model was given a uniform thickness of 100' based on the depth of the deepest boring measured from the bottom of Layer 1. Layer 3 was given a uniform thickness of 100' measured from the bottom of layer 2. 5.5.2.2 Time Parameters The groundwater model was analyzed as a steady-state model. A model run time of 365 days was used as the time period of simulation. Loading rates were calculated at a yearly rate to successfully calculate the annual loading rate for the groundwater model. 5.5.2.3 Hydrogeologic Parameters Monthly precipitation data was averaged over a 30 year period to determine a precipitation rate of 48.6 inches/year for the study site. An annual evapotranspiration rate value of 28.2 inches/year was subtracted from the averaged precipitation value for a net precipitation rate. An industry held practice of utilizing 10 percent of the net precipitation rate was utilized as a baseline groundwater recharge rate. 2.1 inches/year was applied to the surface layer 1 of the model to simulate the groundwater recharge that occurs naturally. Additional recharge values were utilized to calibrate the base model to field conditions. Hydraulic conductivity values, well head observations, and stream elevation observations were utilized in the groundwater model to simulate the actual field conditions. 5.5.3 Boundary Conditions A River boundary condition was utilized to model the effect of the branch that exists along the eastern side of area F. Each cell had a specified stage level, branch bottom level, and bottom conductance value assigned to it, taken from field data from the site survey. The bottom of layer 3 and the outer perimeter cells are considered no -flow boundaries. 5.6 Model Calibration The base groundwater model was calibrated using actual field measurements of well levels and hydraulic conductivity. Recharge values were varied to achieve a model that simulated in -situ field conditions within 0% - 10% Root Mean Square Error. The base numerical groundwater model of area F was calibrated to 3.815% Root Mean Square Error. The calibration graph is included in Attachment D. Brooks Engineering Associates, PA Hydrogeological Assessment Report BEA Project No. 307808 23 The Cliffs at High Carolina e sanlbn P181�4 00, jbu4.nau obn {,(7 1 11 p i j0 s i0i i anlbn uunO, au auoz 04- nd4-no obn bB n0 anlnn nT/T auoz oq- ol-ndl-no obn V2 / vi %O ® F anjbn 01/2 auoz oq, ondq.rno obn t,B .0 ® El anlbn nZ/C auoz o} �ndqno onn �� i =0 ® ED q anTnn qB/t auoz oq- q-ndgno onn bZ 4 £Z � a0'CH anjon nC/S auoz o�- 4-ndol-no onn t2 4 `'�° a0 anlnn qC/g auoz o� �nd�no onn t2 f anlnn n{,/L auoz o: 4-nd4-no antn 2l in ED FEE anIbn CIt/g auoz o� �nd�no onn t2 anInn -OS/6 auoz off. }ndono onn t2 q_(a) anjnn qS/0T auoz oq. q nd�no ann bZ ED anjnn n9/TT auoz 02- :I-ndol-no ann 0I HE anlon q9/21 auoz o�- :I-nd}no ann VB 110E ED anlnn nL/ET auoz o4- �-nd4no ann bB / kLo KeE an)n qL/bu� � T auoz ond�ob no n �Z / n0 ® F b anjnn ng/ST auoz 00, 4-nd4-no onn -,2 o a0 anlbn qg/ST auoz o�- 4-ndol-no ann t2 / c %OFEI nnnn I (a)nnnn FIELD VALVE CONNECTIONS 1 of 1 Waste Water Systems, Inc. REV-0 Rose Hill P.O. BOX 1023 (706) 276-3139 " Perc! Rite' DATE: 09/22/07 „� _ _ .. ELLIJAY. GA. 30540 Fax (70e) 97Fi-R5.35 BULLETIN H Cut -Sheets for Drip System Valving Diaphragm Actuated Valve 44; Piston Actuated Valve IBM= __ id L-11ME The actuator assembly is unitized and is removable from the body as an integral unit. It consists of both an upper and a lower control -chamber. Each basic valve can easily be configured, on -site, either as a single -chamber control valve (Model 705/805), or a double -chamber control valve (Model 700/800). The shaft sub -assembly, in both single and double -chambered versions is center -guided, providing an unobstructed seat area. The Model 700/800 Basic double -chambered valve operation is independent of valve differential pressure since the line pressure actually serves as the actuator differential pressure. This develops maximum power, ensuring immediate valve response. 'The upper control -chamber is pressurized to close, and vented to open the valve. The lower control - chamber is usually vented to the atmosphere, but can also be pressurized to power the valve open, The Model 705/805 Basic Valve uses valve differential pressure to power the actuator open or closed. The lower control -chamber, which serves L B6RMAD WatEPWOrks 70 Srri E S E _- Avaiar:,"'a —Sizes & Patte'rns F-1 0 1 /Y- 20" (40 - 500 mm} (.�,And Angle a 24' - 32" (600 - 800 mm) - Globe Cownectioii Standard Flanged, ISO ISO 7005-2 (ANSI B- 16.42), reacted; 9 1 rWded;NPTorBSP40,50,65&80mm e� J Water Temp('nature a Up to 800C (1 800F) VVork�nq pre-,ssure psi v ISO PN 16: 16 bar tClass 150': 250 p,, 41 '1"�s 00, 0. w ISO PN 25, 25 bar w Class 4#30& psi Standard materials Main valve body and cover Ductile iron EN 1563 (ASTM A-536) Main valve internals Stainless steel and bronze Control Trim Brass components/accessories Forged brass fittings & copper tubing Elastomers NBR (Bona-N) Coating Fusion Bonded Epoxy, RAL 5005 (Blue) i LNSF 61 and WRAS approved or Electrostatic Polyester Powder, RAL 6017 (Green) 1-11 WRAS approved Main valve body/internals Carbon steel (ASTM A-216-WCB) Stainless steel 316 CF8M (316) Aluminum Nickel Aluminum Bronze Titanium Alloy 20 Duplex Hastalloy Marine Bronze 254 SM0 Control Trim Stainless steel 316 Hastalloy C-276 Elastorners EPDM Viton Hydraulic C;OMPOI VaIVES 700 & 800 5 ries o ins Available Sizes Patterns 11/2" -� 20" (40-1- 500 mm) - Y pattern 11/9" - 18" (40450 mm) - Angle n Star dard x Flange : ISO 16-1 (ANSI B16.5), Water lei iperah lre a Up to IC (1 80'F) Working ressur� * ISO PNI 16: 16 bar K Class 4 150: 250 psi * ISO PNj25: 25 ar a Class #300: 400 psi * ISO PN�40: 40 ar s Class #400-. 600 psi Stardard ilfttena I j Main alve y Gar on bl on steel TM A-216-WCB) DucJile iron EJ 1563 (ASTM A-536) Valvelcover (p' ton cylinder) Brorize or stai less steel -j Main valve int malls StAless steel and bronze Control Trim ,)mponpnts/acce-ssorjes brass fAtings & copper tubing NSF�l and W1 or E16otrostatic WRA'approvE i optiom , aterials Main valve bod StainlIss steel Nickel Alt. Titaniu I in Alloy 20 Duplex Hastalloy Marine B? 254 SIVId -j Control Tr Stainless Hastalloy -3 Flastarnei EPDM Viton -poxy, RAL 5005 (Blue) �S approved lolvester Powder, RAL. 6017 (Green) 6 CF8M (316) Bronzee BERMAD Watepworks Flow Chart i C� Valvc- Flow COOPOEnt Y-Pattern Flat Disc Y-PaMern U_Plug Angle Flat Disc Angie "'J Control VaIVES M-6 & 800 seric-s �-777 7 77 4, $T IN Inch 1.5" 3" 4" 6%p 87' 10" 12" 14" 16v$ 18" ir :,1 20 Kv 42 50 55 115 200 460 815 1,250 1,850 1,990 3,310 3,430 3,550 Cv 49 58 64 133 230 530 940 1,440 2,140 2,300 3,820 3,960 4,100 Kv 36 43 47 98 170 391 693 1,063 1,573 1,692 2,814 2,916.3,018 Cv 41 49 54 113 200 450 800 1,230 1,820 1,950 3,250 3,370 3,490. Kv 46 55 61 127 220 506 897 1,375 12,035 2,189 3,641 3,773 NAI Cv 53 64 70 146 250 580 1,040 1,590 2,350 2,530 4,210 4,360 NA Kv 39 47 51 108 187 430 762 1,169 1,730 1,861 3,095 3,207 NA CV 45 54 59 124 220 500 880 1,350 2,000 2,150 3,580 3,710 NA inch 24'' 28 30" 32" G-Pattern rE Kv 7,350 7,500 7,500 7,500 Flat Disc Cv 8,490 8,670 8,670:8,670 FG-f Valve flow coefficient, Kv or Cv Kv(Cv)=Q dP Where: R Kv = Valve flow coefficient (flow in m3/h at 1 bar Diff. . Press.) Cv = Valve flow coefficient (flow in gprn at Diff. . Press. 1 psi) Q = Flow rate (rn',I/h ; gpm) AP = Differential pressure (bar; psi) Gf = Liquid specific gravity (Water = 1.0) J 0 Series METAL BODY cONT.: TECHNICAL DATA Specifications • Valve Configuration: Y-pattern and angle • Sizes: Y - Y-pattern; 11/2", 2" & 3" A —Angle. 2" • End Connections. —11/2" & 2": threaded NPT, BSP — 3": female threaded NPT/BS or flanged to ANSI/ISO/BS-D • Operating Pressure Range: 10-150 psi (0.7-10 bar) • Temperature Range: Water up to 1 B0°F (80°C) • Materials: Body: (11/2" & 2") Brass, (3") Polyester -coated Cast Iron Actuator: Plastic, Brass and Stainless Steel Diaphragm: Nylon -fabric, Reinforced Natural Rubber Seals: BNR and NR 77 and��nf�r �lcceasc�ries, 'ref�rt�r�serie, page$ Flow Chart 6 Model 300 Hydraulic Control Valve Model 300 is a hydraulically operated control valve, requiring a pressure command to close. e w Model 310 Electric Control Valve Model 310 has a 3-way solenoid pilot valve with manual override. Standard: N.C. (normally closed), requiring electrical energy to open. Option: N.O. Model 320 Pressure Reducing Control Valve Model 320 reduces high upstream pressure to lower set downstream pressure. Simple Design Delivem Years of Trouble -Free Operatil 3/4' LOW4LOW PRESSURE REGULATOR OUTLET PRESSURE VS. INLET tRtSSUM AT 1.3 GPM 0 28 56 84 112 Inlet Pressure (psi) )v 40 30 20 10 0 140 Product Advantages • Instant response to variations in pressure assures that outlet pressure will remain constant regardless of inlet pressure. • Pressure Regulators are preset with flows from 3.5 to 175 GPM. • Manufactured from non -corrosive, high quality plastic and Bross, to withstand all fertilizers and chemicals In cammoin use. • Regulating unit has a stainless steel spring and screw. • The EDPM rubber diaphragm creates a tight seal eliminating leakage. • The rise versus the decline in outlet pressure has significantly decreased ensuring better hydraulic perfornance. • Sealed regulating unit is field replaceable and easy to maintain. • Built-in operating indicator visually shows when proper outlet pressure is achieved. • New regulating units are compatible with existing Pressure Regulator bodies. 3/4" Low Flow Pre_-,� RegWator • Improved in -line unit. • Female threaded 3/4" X 3/4" connections. • One-piece sealed unit regulates accurately at low flows. • Silicon diaphragm and stainless steel spring — no leakage. 310 F6W Appikafims For use in drip and sprinkler irrigation systems. Speciffitcadons * Available in the following pre-set pressures: 9, 12, 15, 20, 25, 30, 35, 43, 50, 57 and 65 psi * 3/4" Low Flow available in: 15, 20, 25, 35 and 43 psi * Maximum operating pressure: 145 psi t Flow Rate (CWjW) EXAMPLE: • Given Flow Role = 63 GPM, Nominal required pressure = 20 psi: • Using Pressure Regulator Model 2" x 6 (6 regulating units) will result in 10, 5 GPM per regulating unit. • 10, 5 GPM Per regulating Unit Will 16SUlt in On output pressure of 18 psi. (See Regulated Pressure vs. Flow Rote graph). • Head loss of Pressure Regulator 2" x 6 at 63 GPM is 5 psi, (See Heed Loss vs. flow Rate graph). • Design pressure of inlet of Pressure Rft§Ul0tOT should be 18 + 5 = 23 psi. 3.5 8 12 16 17.5 Flow Raic (per r-egulating unit) L i A The Dorot Quick Reacting Relief (QR) Valve is a direct -sealing diaphragm valve activated by line pressure and controlled by an adjustable pilot, When the network pressure exceeds the pressure setting of the pilot, the valve fully opens instantly. When the network pressure decreases below the set point, the valve closes slowly. r1% 9 a Standard Features (see diagram) A. Self -Cleaning Filter B. Needle Valve C. Ball Valves D. Quick Response Pilot (66-300) E. Quick Response Relay 2" (for 6" and larger valves) The 2" QR valve(bronze) is available in a globe or angle pattern. A pilot (68-200) with a built-in needle valve ensures slow closure. The QR valve is installed on a tee -junction in a pipeline and releases excess pressure to protect the pipe network from dangerous surges. The slow closing of the valve, adjustable with a needle valve, prevents secondary surges, Design Considerations 0 The QR valve is not a modulating valve and should not be used to maintain a certain pressure in the network, A pressure sustaining /relief valve should be used. 0 A quick reacting pressure relief valve cannot prevent water -hammer caused by power failure, A surge anticipating valve should be used. 0 The use of an isolation valve is recommended at the upstream side of the QR valve. ir +k I 0 A discharge pipe attached TO the downstream side ki e v 1-4 V must be sized for the maximum flow and not restrict the flow. 0 QR valves operate in case of emergency, usually for a short time. The valve should be sized to accommodate 50%-80% of the system's nominal flow rate, Recommended MaXiMUM Flow Rates (GPM) Flow 450 1,100 1,700 4,000 7,000 10,000 15,000 28,000 pilots *The green spring is standard for the 68-200 and the red spring is standard for the 66-300 pilot, FBI 68-200 66-300 For detailed information, material specifications and dimensions, see the Dorot Basic Valve brochure. C Pilot Specs 68-200 66-300 Spring Yellow 8-30 PSI 8-30 PSI Green 14-140 PSI 14-100 PSI Red * 115-360 PSI 30-190 PSI Black N/A 100-360 Dimensions Port Size V", Height 6 V 9" Width 2" 3 Y2` Max, Press. 350 PSI 350 PSI Materials Body/borinet Bross Brass Plunger St. Steel St. Steel Diaphragm Not. Rubber Not. Rubber 0-rings Nitrile Nitrile __,NETAF1M-..,_ \Quality Works NETAFIM IRRIGATION, INC. - ..... . .. ............. WEST COAST: 3025 E, Hamlion - Fresno. CA 93721 (209) 498-6880 - FAX (209) 442-Sl 10 FAST COAST: 548 N. Douglas Ave. - Altamonte Springs, FL 32714 (407) 788-6352 - FAX (407) 862-0259 BULLETIN I Cut -Sheets for Flow Meter ktui " AN Al0F lsr,T HAN DIN. -. -.. '4�mwmN%v>^� ' yx'>.tm,emmeea n. a � M'VEL Ml.'G'e R.AisiMU !WE MUMS t1-o 3,.an.#r1„tmd is Me It4o #_obi- dni in on mvp xt Vi!! tt=astr W& 1r to' -Ca psi 4Y-t;irking F&OW4 INC 1 g t'wT MD.lave - rill hvie k. SJmn et m� vokmad ,tr3. r .hv Pwtfly. s 32 15 mks of t,mon evpoy ran of FOY t d f #r{ hmngs, 0 i t t lend tc, S8t up 4 t' r. ,7sI,;F � foz of ti „t i p ,.i..t"t -;( .= upstfeaf, earl anp, E)Jpe >t 'x:F t o f m r tMlAtr f R POLL R io,,Ili t72i; { t(3 s t i vAlill li! drive �aod,-liowsnl thf?iugh the sewd psi Po{"QS To CMOMN dInlltt ates MW a og Ma F* a r 1 O AN.0 AVP bladed j iompoon wp€. two T iJF et,dfA the N1os it, t Ha MNG in -t i { ! o� e , �. x4 rti YP ! , lei ! i I (art 'ipl(d lVau t t3t3+ lvlgs, gMnjud oa aR valw& handhande BW i}` Wth NMI "rI ad 7 e M 10MM i ! otjalP it+ i s El ,' J Jt�e rumr+€t i tt ism( *propeltv *pm M. RomRomml RAW "P 0e. M. .�� i h m ate &g� d uWS. qwmv y�F lNUCA10RAOIALEER a 0,WwYJ) lum I i Wv f(1il. 'r ! iKt.i }}tMJtP _ 73„m as pg. „; .-.fie n a A �i3o sraioit ,�d.i .�f ' P t i n= 1- 3 P rt t ski 1? 3 iio www"Na q Ne *+w<.e, , ...i' h, , .oe .te- a, 04.„lM":ri 4 v -:-- ?Nu AW.1 qu IS ,3 Ef`ip ME Bit ! ` § i 9 8 A t , I; Tpawns t,. MW rx, one oume"- � we r t., i _ # L'. the ,tid,, } BACO131EL � } SEALED METER ME HAMS V f,6 �Nr, T'>{., [!RPvJF, E9 DkGA T OR - T`- Al AZE. R �. AA/IppLRRACY Pkl 0 66 l w Ti N1 x PH S RL RAWE Up !_ to il,wan",", MINIMUM FLOWS A,�osliQuMOw , e , t } MAXIMUM FLOWS {... •q; E ,i. ic.}vr._,ti i a R .b.., rt 13`ERM17 ENT FLOWS A hov ,t t, 1 go , k, _! , p0. p£ {f g�[tRR{{ P�ATEMNi4.•S {1.' 11 b ; no k .. F a 4 i ) k E ItE,fk t. R ;oil i YAW-3.+..j0001 55JAa 1 so an 12110 1, FE OffIQNAI. EU.FIzt$rtENT ak hwo wnwA In L K e . t e, 4 . ,F a r, g pp ff 5,.st'St.F„S fi� G two so I i{ { c '�'� ,e t^Afnrc:b �nnv ww i f MODEL ML-08 300 psi FLANGED TUBE METER SEALED METER MECHANISM -- MAGNETIC DRIVE INDICATOR -TOTALIZER SIZES 3" thru 48 E - Bolt Circle F - Number of Bolts G - Size of Bolts METER & PIPE SIZE 'LOWVELOCITY CONSTRUCTION MIN. - MAX. FLOW RANGES,GPM STANDARD HIGHVELOGITY CONSTRUCTION CONSTRUCTION MIN. - MAX. - INT. MIN. - MAX. DIMENSIONS SHIPPING' WEIGHT POUNDS A I B1 132 C D E F G H K 3 40-250 45-250-350 NIA 18 81/4 5 11/8 7 65/8 8 3/4 53/16 9 85 4 50-500 55-500-700 200-700 18 10 63/16 11/8 7 7718 8 3/4 53/16 9 122 6 90-1200 120-1200-1500 300-1500 22 12112 81/2 13/8 9 105/8 12 3/4 61/4 9 167 8 100-1500 150-1500-2000 400-2500 24 15 10518 19/16 9 13 12 718 71/4 9 237 10 125-2000 180-2000-3000 500-3500 26 171/2 12314 15/8 10 151/4 16 1 81/2 11 310 12 150-2800 200-3000-3500 800-5000 28 201/2 15 113/16 10 173/4 16 11J8 9112 11 400 14 250-3750 300-4000-4500 1000-6000 42 23 161/4 115/16 12 201/4 20 11/8 101/2 131/2 600 16 350-4750 400-5000-6000 1200-7500 48 251/2 18112 21116 12 221/2 20 11/4 111/2 131/2 800 18 450-5625 700-6000-7500 1500-9000 54 28 21 23/16 15 243/4 24 11/4 121/2 131/2 1080 20 550-6875 850-8000-9000 2000-12000 60 301/2 23 27116 15 27 24 11/4 131/2 131/2 1260 24 800-10000 100010000-13500 3000-15000 72 36 271/4 211/16 '18 32 24 11/2 173/4 23 2040 30 1200-15000 1800-15000-21000 4000-25000 84 43 35 215/16 18 391/4128 13/4 203/4 23 3220 36 1500-20000 2000-20000-30000 5000-35000 96 50 42 33/16 20 46 32 2 233/4 23 4550 42 2000-28000 3000-30000-40000 6000-50000 108 57 507/16 37/16 24 523/4 36 2 1 28 36 5900 48 2500 35000 5500-35000-50000 7000-60000 120 65 587/16 39/16 24 603/4 40 2 31 36 7200 Standard construction will be supplied for all main line meters unless special flow range, materials, or construction are required. * Low velocity (LV) construction has the same low and maximum flow rates as AWWA C704. For lower flows refer to Model » TM-01 turbine meters. x,:w^,rt.as.-,, 10 A � t�)A'Z" FA Z1 r" _r 40114r 1,° f6l �,�� �`�: k S x F �,, ' k ` ,- 1 f t Sr BULLETIN J Cut -Sheets for Disc Filtration System ?4 i juil[vA r®mA- Fully Automatic Disc Filters For 50-800 GPM Flow Ranges 4 2 w 1.0 0.4 0.2 2n & V DISC-KLEEN FILTERS Headloss 40 100 200 400 1000 2000 Flow Pate (GPM) uct AchmnWges • Quick Installation — factory assembled and tested, arriving on a pallet ready for hook-up and immediate operation. • Less Maintenance — molded spine, chemically resistant and performs reliable backflush. Manual cleaning is practically eliminated. • Filtration Grade Versatility — filtration discs can be changed quickly and easily from 40 mesh up to 200 mesh. • Optimizes Irrigation — less backflush time means more uniform application of water in the field. • System Flexibility — each Disc-Kleen Battery is capable of handling a wide operational flow range. • Lasts Longer — manufactured from engineered synthetics to resist rust and corrosion from chemicals and weather. • Standard with installed polypropylene drain manifold. F111ratIon Process As dirty water travels through a Disc-Kleen Filter, debris is captured along the walls and in the grooves of the channels in the filter element. During the backflush cycle, the valve changes position, the pressure in the outlet manifold loosens the discs automatically. A specially designed nozzle system inside the filter stack then sprays pressurized water against the loosened discs, spinning them clean quickly and efficiently. After backflushing, the stack of discs automatically compress to resume filtration. No of Nladfold ! Part ;Number Size :: Ei[ters, " :,Size 3" Disc-ICleen Filter Battery lllica$ons • For surface water containing algae and other organic materials such as reservoirs, canals, rivers and waste water applications. • For well water containing light sand (<3 ppm) and other contaminants. Specificatilons Includes installed drain manifold Inlet and outlet connections: Grooved Backflush valve flush port. 2" NIPT Maximum operating pressure: 140 psi Minimum backflush pressure required: 40 psi downstream of filter during backflush Minimum backflush flow per spine: 35 GPM Minimum pH: 5 Mesh sizes and color: 40 - Blue 80 - Yellow 120 - Red 140 - Black 200 - Green Materials Manifold: Polypropylene Filter Body: Glass Reinforced Polyamide Spine: Polypropylene O-Rings and Seals: EPDM ;tea Mmuii"ALAbIaLaL IMPORTANT NOTE: We have categorized water quality as a guideline for filtration requirements. Be aware all water qualify categories shown above are general. Your water quality may vary. If your water contains more ihan two path per million of sand, a sand separator is recommended. If in doubt, consult an authorized Netafim USA dealer. a BULLETIN K Cut -Sheet for Rainbird Rain Gauge A?AlAr�*BIRD(@ TECH SPECS Rainfall and Wind Speed Sensors Rain Bird Rainfall Gauge The Rain Bird Rainfall Gauge customizes the weather data gathering features of Maxicomz by providing site -specific rainfall measurements. The central controller retrieves this information daily, adjusting station runtimes using the site -specific weather data. The Rainfall Gauge may be used to automatically interrupt Maxicomz during an irrigation cycle if it starts to rain. If enough rainfall occurs, further irrigation will be cancelled. If only a small amount of rainfall occurs, irrigation will resume, adjusting runtimes for the amount of rainfall that occurred. Features • Identifies localized rainfall and adjusts system operation accordingly • Watering cycle can be interrupted or cancelled when rainfall commences • Provides site specific rainfall measurements in increments of 0.01" (.025 cm) • Heavy-duty construction, with a gold anodized aluminum collector funnel and white baked enamel coated aluminum sensor housing • Filter screen for capturing debris • Integrates into the Maxicomz system using the Rain Bird pulse decoder for two -wire CCU systems, or directly to the sensor input on ESP -Site and IvIAXILink satellite controllers Specifications • Resolution: 0.01" (.025 cm) • Accuracy. 1.0% at 1 " (2.5 cm) /hour or less • Average switch closure time: 135 ms • Maximum bounce settling time:.75 ms • Maximum switch rating: 30 VDC @ 2 A, 115 VAC @ IA • Temperature limits: +32° F to +125° F (0° C to +52' C) • Humidity limits: 0 —100% • Height: 4.5" (11,4 cm) • Weight: 1.5 pounds (0,68 Kg) • Receiving orifice diameter: 3.80" (9,7 cm) • Cable: 60 feet (18 meters) Model • RAINGAUGE Rain Bird Anemometer (Wind Speed Meter) The Rain Bird Anemometer provides additional customization to the Maxicomz Central Control system by providing site - specific windfall measurements. Local wind speed is captured by the Wind Speed Meter and input to the Cluster Control Unit (CCU). The CCU can interrupt irrigation when wind velocity reaches a programmed set point. Interrupting a watering cycle during windy conditions saves water, avoids property damage, and improves sprinkler distribution uniformity. Features • Precision three -cup anemometer for measuring wind velocity • Balanced rotor and low friction bearings detect wind speeds from 4 MPH to 80MPH (6,5 to 128 km/h) • Electronics supplied with a weather tight enclosure exceeding NEMA 4 and 6 specifications • Mounting bracket and 20 feet (6 meters) of cable • Identifies localized wind speed and adjusts system operation accordingly • Watering cycle can be interrupted during windy conditions • Integrates into the Maxicom- system using the Rain Bird pulse decoder for two -wire CCU systems, or directly to the sensor input on ESP -Site and MAXILink satellite controllers Specifications • Power supply: 5 to 24 VDC • Current draw: 3 to 7 mA • Output signal: K = 1.6965, offset of +0.059 • Cable: 20 feet (6 meters) • Weight: 1.3 Lbs (0,6 Kg) • Dimensions: 22"L x 8"W x 8"H (56 cmL x 20cmW x 20cmH) Model • ANEMOMETER (Wind Speed Meter) Rainfall Gauge Anemometer HOW t6 Speccfy RAINGAUG ANEMOMETER J E - RAIW�kBIRDS Specifications _ Model: RAINGAUGE eA The rainfall gauge shall be a tipping bucket type, with each tip of the tipping bucket producing a momentary switch closure. The rainfall gauge will be constructed of a gold anodized aluminum collector funnel, white baked enamel coated aluminum sensor housing, stainless steel shafts, screws and nuts, and brass shaft collars. The tipping bucket will be injection molded plastic providing rainfall measurements in 4 increments of 0.01" (.025 cm). The rainfall gauge shall have three mounting feet for use ,° =} on flat surfaces as well as a side bracket for mast mounting. The rainfall gauge shall operate in temperatures ranging from +32' F to +125° F (0° C to +52° Q. 60 feet (18 meters) of 2-conductor cable shall be included. This rainfall sensor shall be Rain Bird Model RAINGAUGE. Model• ANEMOMETER The wind speed meter shall be a three -cup anemometer providing wind speed measurements from 4 — 80 miles per hour (65 to 128 km/h). The wind speed meter electronics shall be housed in a weather -tight enclosure exceeding NEMA 4 and 6 specifications. The wind speed meter shall include a mounting bracket and 20 feet (6 meters) of cable. This wind speed meter shall be Rain Bird Model ANEMOMETER. Rain Bird Corporation Contractor Division 970 West Sierra Madre Avenue, Azusa, CA 91702 Phone: (626) 963-9311 Fax: (626) 812-3411 Rain Bird Corporation Commercial Division 6991 East Southpoint Road, Tucson, AZ 85706 Phone: (520) 741-6100 Fax: (520) 741-6522 Rain Bird International, Inc. 145 North Grand Avenue, Glendora, CA 91741 Phone: (626) 963-9311 Fax: (626) 963-4287 Rain Bird Technical Service (800) 247-3782 (U.S. only) www.rainbirdcom CentralContro►@rainbirdcom k4' Rain Bird. Conserving More Than Water. ® Registered trademark of Rain Bird Corporation. O 2002 Rain Bird Corporation 9102 i D37238A BULLETIN L Drip Line Cut Sheets NEWIMUSA The Most Successful Pressure Compensating Diripper in the History of Irrigation Industry`s Widest Flaw Path ... -- Self -Adjusting Wider cross-section allows large Diaphragm particles through short flow path Continuously adjusts s' to varing water : * prassares - crushing, mini'rizing and �� , flushing debris. Large Filter Inlets, Secondary Filtration Reduces clogging and maintains the essential supply of water to the dripper for constant delivery of water flow. Pressure Compensating Bath and Outlet Delivers precise water applications anywhere in the field. I, y _. Increased Flow Path Velocity Commonly used turbulent drippers have overlapping tooth patterns, easily catching debris. Turbonet Technology improves dripper'perfarmonce by widening the tooth pattern, maximizing flow, path velocity, allowing contaminants to pass easily through the dripper, virtually eliminating plugging. Product Advantages • Wide pressure range (7 to 60 psi) produce uniform dripper flow rates• longer runs and steep topographies are irrigated with high uniformity. • Mechanical barrier prevents root intrusion - ideal for sub -surface irrigation (SDI). • lowest coefficient of manufacturing variability (Cv) in the industry. •Seamless, one-piece construction prevents damage to drippers during installation and retrieval. • Design flexibility and performance with various dripper flows and spacings allow for specific application rates and controlling of wetting pattern in different soil types. * Pressure compensating feature delivers precise water applications anywhere in the field. Applications • For sub -surface or surface applications. • For tree, vine, row crops, €;.reenhouse and nursery. • Multi -seasonal use, • For undulating fields. Specificadons Nominal flow rates (GPH)c .32, .42, .53, .62, .92 Common spacings: 24", 30" 36", 42.25" 48" Recommended filtration: 120 mesh Inside diameter:.540 - 16mm (45 roil) .570 - 17mm (45 mill) .620 - I8mm (45 mil) .690 - 20mm (48 nail) .820 - (35, 45'niil} ,.. VineLlne t Vineyard solutions Pre -Installed Adjustable Dtipperline Ring See back for details. PRECISION IRRIGATI'ONTB" E ® i Flows (GPH): - .32, •42, .53, .62, ,92 Wall thickness (mil): 45 RAM 57 Flows (GPH): ± .32, A2, .53, .62> .92 Wall thickness Wit: 45 !RAM 620 Flows (GPH): .32, .42, .53, .62, .92 Wall thickness (mil), 45 V RAM 690 Flours (GPH): _ .32, .42, .5 i, 62, 92 Well thickness (Wit): 48 i RAM $20 Flows (GPH)- .32:.42, .5 i> 62, .92 Wall thickness (mil). 45 ti 0 ?Oil 41)0 b60 800 4, 1200 1491 00 D. NO WfJ 101 kr�t Len�rh'CfY j� 25 I` '0 7 800 WOO 1?00 5 Ram Technical Infonnation 6 .4 .2 RAM Flow Rare vs. Pressure ' 0 10 20 30 40 50 60 Pressmn, j),i) DRIPPER FLOW PATH DIMENSIONS OH JS" 0.42 GPH 75" .037" 04 0.53 OPH .75", 0.62,GPH TSa, -0.044" 0.92 OPH .0477., Caw PACKAGING DATA 340 45.-J 0Q 5 6,90.,, '48 3 000!",:, 47,$ 20 coils per pallet. ViiineLlne Vineyard Solutions Pre -installed Adjustable Dripper line Ring - Easily adjustable — moves from one,end of the dripperline to the other preventing wale; migration & Ecoflomicol — saves labor costs * Flexible options — available with Rain of Triton Hen/wall Nipperlines e Available for 540, 620, and 690 sizes. , Pre -installed at Netafirn USA Netafim USA — Delivering Total Growing Solutions Dripperlines ® Filters e Valves a Air Vents - Sprinklers * Automation a Flow Meters For Agriculture, Greenhouse & Nursery and Landscape Description of Ram's Advanced Pressure Compensatimrso Operation .. ...... . . . Ram's self-cleaning pressure compensating dripper is a fully self-contained unit welded to the interior wall of the dripper tubing. Both tubing and dripper are manufactured from high quality synthetic elastomers to withstand chemicals and. fertilizers. The Ram dripper contains a diaphragm that continuously adjusts to vaiyiti,-,, water pressure to ensure a constant flow rate. The diaphragm allows particles to pass through the dripper, promoting reliable performance and a longer system life. This continuous flushing feature and wide flow path keep drippers flowing at optimal rates without clogging or interrupting operation. Parlicles that may sMi accumulate at the dripper outlet can cause a reduction of flow. Dripper resumes 7 normal operation. koW?" 4 .7, PRECISION IRRIGATION'" For more information call your Authorized Netahm USA Dealer or call Netalim USA Customer Service at (888; 638-2346. Aow 3"'07 BULLETIN M Pole Blower Curve and Cut -Sheet Daytone PSC and Shaded Pole Blowers Description Dayton PSC and Shaded Pole blowers provide economical air delivery for general heating, cooling, ventilating, or component cooling. Typical applications include cooling greenhouses, blowers for wood and corn stoves, ventilating small buildings, cooling electrical enclosures and removing heat from machinery. The blowers are exact replacements for many OEM blowers with the same physical footprint. Forward curve wheels driven by Dayton motors are rated for continuous duty with all -position mount. These units incorporate balanced ball or sleeve -bearing motors with cast aluminum end shields. This provides greater heat dissipation and protection, reducing down time due to component failure and accidental damage. Direct drive blower wheels are dynamically balanced to reduce noise and vibration and to maintain CFM at higher static pressures. Specifications 1TDT9* 794 780 750 690 670 * Replaces 4C668 NOTE: Includes Conduit Box with 8" Lead Length. NOTE: Not suitable for use with speed -controlled devices. Dimensions in. (mm) 13.109 (332.98) 1 i 0 0 0 0 078013 00).a 60HZ (inwg) (MMAq) 1 25.4 0.8 20.3 0.6 15.2 OA 10.2 0.2 5.1 0 0 (CMM) 0 4.53 9.06 13.6 18.12 22.65 iIiiiiiiiIir!.ii_iiii-(CFM) 0 160 320 480 640 800 610 570 — — 115230 2.75 @115V 1.45 @230V (261.00) Features • PSC motor • Baked enamel Gray finish • Heavy gauge steel housing • All position Mounting • Maximum Ambient Temperature 104°F • Suitable for 50Hz operation Additional Benefits • Permanently Lubricated Ball -Bearings • Extruded Aluminum Blower Frame for Increased Rigidity • Auto -Thermal Protection 60 ® Motor Component Recognition C US E47479 BULLETIN N Back -Up Generator Cut -Sheets Descilption Features Cummins Power Generation commercial generator sets are fully integrated power generation systems providing optimum performance, reliability and versatility for stationary and prime power applications. This generator set is designed in faclittles certified to IS09001 and manufactured in facilities certified to ISS69001 or iS0900 . The Prototype Test Support (PTS) program verifies the performance integrity of the generator set design. Cummins Power Generation products bearing the PTS symbol meet the prototype test requirements of NFPA 110 for level 1 systems. All low voltage models are CSA certified to cal, product class 4 15-01. The generator set is available Listed to U12200, Stationary Engine Generator Assemblies. Engine certified to U.S. EPA lslonroad Source Emissions standards, 40 CFH 89, Tier 3. Cu rise heavy-duty engine - Rugged 4-cycle, industrial diesel delivers reliable power, low emissions and fast response to load changes. Alternator Several alternator sizes offer selectable motor starting capability with low reactance /S pitch windings, low waveform distortion with non -linear heads and fault clearing short-circuit capability. Control system -"The PowerCornmando 1.1 electronic control is standard equipment and provides total genset system integration including automatiG remote starting/stopping, precise frequency and voltage regulation, alarm and status message display, output metering, auto -shutdown at fault detection and NFPA 110 Level 1 compliance. The optional PowerCommand 2.2 control is UL 508 Listed and provides Am $entry' protection. Cooling system - Standard integral set -mounted radiator system, designed and tested for rated ambient temperatures, simplifies facility design requirements for rejected heat. Enclosures - Optional weather protective and sound attenuated enclosures are available. NFPA - The genset accepts full rated load in a single step in accordance with NFPA 110 for Level 1 systems. Warmnty and service - Backed by a comprehensive warranty and worldwide distributor network. Standby rating Prime rating Continuous rating Data sheets Made] 60 RZ SD NZ so Fix 60 14M 60 NZ 60 Ha 60 1IZ 'so NZ DSGAA i llti 125 113} D-3349 DSGAS 125156 113141 b-335fi DSDA►D 15f) 13& 135 169 D-3351 •L)2008 I Cummins Potter Generation Inc. I Aff rights reserved i Specifications subject to change without rw&e I Cummins Power Generation and Cummins are registered trademarks at Cummins Inc. PowerCommand, InPower and 'Our energy working for you." are trademarks of Cummins Power Generation. other company, product or service flames may be trademarks or service marks of others. S-1540 (4108) Governor regulation cuss 180 8528 Part 1 Mass G3 Voltage regulation, no load to full load z 1$0 Random voltage variation + 0.5 Frequency regulation Random frequency variation lsochronous 0.25% Radio frequency emissions compliance Meets requirements of most industrial and commercial applications. Engine specifications Design 4 cycle, turbocharged and charge air aftercooted Bore 107 mm (4,21 ink Stroke 124,0 mim (4,88 in) Displacement &69 L (408 in) Cylinder block Cast Iron, in -line; 6 cylinder Battery capacity 1100 amps minimum at ambient temperature of -flit °C to 0 °C °F to 32 a Battery charging alternator 100 amps Starting voltage 12 volt, negative ground Fuel system Direct in;ection. number 2 diesel fuel Fuel fitter Single element,10 micron filtration, spin -on fuel #iiterwith water se tar Air caner type Dry replaceable element Lube oil filter typed One spin -on, full flow filter Standard cooling system High ambient radiator Alternator i r t Design Brushless, 4 pole, revolving field Stator 213 pitch Rotor Single haring, flexible disc Insulation system Standard temperature rise Class H 150 -C Standby @ 40.0 ambient Exciter type Torque match (shunt) standard, PG optional Phase rotation A N}, 8 M, C (t } Alternator cooling Direct drive centrifugal blower fan AC waveform total harmonic distortion c 5% no load to full lineal' load, { 3% for any single harmonic Telephone Influence factor (TIF) c 50 per NEMA MG1-22.43 Telephone harmonic factor (THF) < 3 Available It vl 60 Nz Three titre- a flfine-flue eO Hz Single phase fine-neutral#line-line - 110/190 . 115/230 Delta o 127/220 •240/416 •110/220 - 1151230 • 1201240 - 110/220 .',1201208 - 1391240 - 2551440 - 115/200 o 120/240 Delta • 2201380 • 27i/480 t... - 230/400 - 347/600 * Note: Consult factory for other voltages. Generator set options and accessories Engine Atterrtator Exhaust system 0 Power0ommand Network 0 120 V, 150 W lube oil heater 0 105 °C rise alternator 13 Heavy duty exhaust elbow Communications Module 51 1201240 V, 1500 W coolant 9 125 IC rise alternator 0 Slip on exhaust connection (NCM) hater Q 120 V,100 W anti -condensation aeiiei"a$4s:i" set 0 Remote annunciator panel 4 Fuel System heater 0 PMG excitation Satiety 0 13 Spring isolators UL2200listed 24 hour dual wall iota -base 0 Single phase charger � 2 year prime over warrant Y R P y tank EndoBattery Enclosure: aluminum, steel, 0 2 year standby power weather protective car sound warranty attenuated 5 year basic power warranty N Main fine circuit breaker ` Note: Some options may not be available on all models - consult factory for availability. Our eneMy worlding for you.rlf z a .rq=T I ,i qs V_fLoxlm C,2008 1 Cummins Power Generation tnc. I Xt tights reserved l Specificationssubject to change wbout notice I Cummins Power Generation uitwer and Cummins are registered t edernaft of Cummins Inc. PoweaComman4. InPower end "Our emrgy wprking far you." are trademarks of Generation " Ce Cummins Power Ge om Otner compani. P Suci cr scarce names may he trae9emarhs or service marks esf others S-9544f (4/08) wControl system Operator panel features PowerCommand control - An integrated generator set control system providing voltage regulation, engine protection, generator protection, operator interface and isochronous governing (optional). Control - Provides battery monitoring and testing features and smart -starting control system-. In erT - PC -based service tool available for detailed diagnostics. - Network interface (standard) to devices such as remote annunciator for NFPA 110 applications, Control boards s - Potted for environmental protection. High ambient a tion - Suitable for operation in ambient temperatures from -47 °C to +lit °C and altitudes to 13,000 feet (5000 meters). Pfttatype to - UL, GSA and CIE compliant. AC protection • Over current warning, and shutdown :, • Over and under voltage shutdown • Over and under frequency shutdown L :a • Over excitation (loss of sensing) fault Field overload Engine protection • Overspeed shutdown a Low tail pressure warning and shutdown a High coolant temperature warring and shutdown Low coolant level warning or shutdown • Low coolant temperature warning e High, low and weak battery voltage warning -, • Fail to start (overcrank) shutdown • Fail to crank shutdown • Redundant start disconnect • Cranking lockout o Sensor failure indication • Low fuel level warding or shutdown Fuel -in -rupture -basin warning or shutdown Operator/display panel * Manual off switch t • Alpha -numeric display with pushbutton access for viewing engine and alternator data and providing setup, controls and adjustments (English or international symbols) .y_ • LIT lamps indicating genset running, not in auto, common warning, common shutdown, manual run mode and remote start + Suitable for operation in ambient temperatures from -20 °C to +70 $G Aftemator data • Line -to -neutral AC volts ¢ Lure -to -line AC volts • 3-phase AC current • Frequency • Total WA Our energy working r your ?t; Standard control fun terry Engine data • OC voltage • Lube oil pressure o Coolant temperature Other daft • Genset model data • Start attempts, starts, running hours • Fault history • R5485 Modbue interface • Data logging and fault simulation (requires InPower service tool) Dilgiltal governing (optional) • Integrated digital electronic isochronous governor • Temperature dynamic governing Digital voltage regulation • Integrated digital electronic voltage regulator • 2-please line -to -line sensing • Configurable torque matching Control functions • Time delay start and cooldown • Glow plug control (some models) • Cycle cranking • PCCNet interface • (2) Configurable inputs • (2) Configurable outputs • Remote emergency stop Options n Auxiliary output relays (2) 1] 120/240 V, 100 W anti -condensation heater ❑ Rewrote annunciator with (3) configurable inputs and (4) configurable outputs a PMG alternator excitation tj PowerCommand for Windowe remote monitoring software (direct connect) ❑ Auxiliary, configurable signal inputs (8) and configurable relay outputs (8) C AC output analogue meters C3 PowerCommand 2.2 control with AmpSentry protection Standard Po erCarnmand 1.1 control operator/display panel' n2008 I Cummins Power Generation Inc. I All rights reserved I Specifiicatrons subject to change without notice I Cummins Power Generation and Cummins are registered trademarks of Cummins inc. PowerCommand, inPower and 'Our energy working for you.' are trademarks of Cummins Power Generaion. Other company, product or service names may be trademwilz or service marks of others. S-1544f j4108) Optional AC output analog meters Pores e Generation This outline drawing is for reference only. See respective model data sheet for specific model outline drawing number. Model Dim 0A`1 mm (in.) Dim "S" mm (in.) Dim "C" mm (in.) set Weight* dry kg (Ibs) Set Weight* wet kq )ilbs) AA 2656(104.6) 1100(43.3) 1549(61) 1180(2602) DSGAS 2656(104.6) 110D(413) 1549(61) 1225(2700) DSGAC 2656(104.6) 1100(43.3) 1549(61) 1263(2784) * Note. Weights represent a set with standard features. $ee outline drawings for weights of other configurations. Cummins Power Generation 1400 73� Avenue N.E. Minneapolis, MN 55432 USA Telephone: 763 574 5000 Fax: 763 574 5298 Important. Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any btfilding's electrical system except through an approved device or after building main switch is open. Our enerlding for Vou.— vmmm, 02008 1 Cummins Power Generation Inc. I Aft tights reserved I Spectlications wbject to charge withoto notice f Curnrrons Power (3arwatlon Power and Curravins we registered tradernaft of Curna;Ins Im PowarCorrimand, InPower and 'Our energy woWng for you.' are traderriaft of -leneration Cummins Power Generation. Other company, product or service names may be tradernaft or service niaft of oftm- S-1544f (4108) BULLETIN O Turbidity Meter experience + accuracy + simplicity EXPERIENCE The Model 1720E Low Range Turbidimeter reflects an astound years of Hach leadership in turbidity measurement science. Metrol water treatment systems, rural water utilities, wastewater trey ' plants large and small, and industrial processes of every kind - a relied on Hach turbidimeters for nearly five decades. In fact, Ha the largest turbidimeter installation base in the world. Operators and engineers alike know they can count on the formance of Hach turbidimeters and calibration standards as wl the experienced Hach personnel designing, manufacturing, se installing, and supporting these systems. Additionally, Hach of ;. 2-year warranty on the 1720E, compared to the 1-year wart offered with many other turbidimeters on the market. Hach is ` only the world's turbidity leader, but also your partner in turb measurement, filtration management, and treatment pro optimization solutions. ACCURACY Now, the 1720E Turbidimeter combines Hach's proven design, demonstrat accuracy and reliability, plus innovative elements that add more powe and utility to your low-level turbidity monitoring program: > Built-in bubble removal system - eliminates falsely high readings at low levels > Sensitivity -'fast response to fine changes in low-level turbidity > Repeatability -not effected by sample flow and pressure SIMPLICITY > Simplified two -module design -sensor and controller interface with simple plug & play connection > Reduced instrumentation - controller accepts two sensors; adding a second 1720E sensor unit gives you two complete turbidir > Easy calibration and verification - with no interruption in sample flow .. _i THE BEST TOOL FOR EFFLUENT MONITORING' IREQUIREMEN PRINCIPLE OF OPE ON NPHLOETIC EAS.EET Incandescent light directed from the sensor head asse91 l.�`down into the turbidimeter body is scattered by suspended particles in the sample. Thespnsor's submerged photocell detects light scattered at 90° from the incident beam. SAMPLE FLOW P TH Sample enters the center column of the turbidimeter, rises into the measuring chamber and spills over the weir into the drain port. This configuration results in an optically flat surface free of turbulence: SIMPLIFIED CALIDATIO1 One -point calibration with preparStablCal'�' Stabilized Formazi "Solution eliminates the errors USEPsof cee tedlme suspension dilution, takes less than two minut per sensor, and is a p Lng �,j P POWERFUL DATA MANAGEMENT AND COMMUNICATIONS t...,J COLLECTIONDATA L The 1720E Turbidimeter sc100 Controller receives data from one or two sensors. Its built-in data logger collects turbidity measurements at user selectable intervals (1-15 minutes), along with calibration and verification points, alarm history, and instrument setup changes for 6 months. Local display, recall, graphing, and trending in CSV format make chart recorders redundant: DIRECT DIGITAL COMMUNICATION a This revolutionary smart controller is a new standard for Hach instruments. Not only will it accept a rapidly increasing number of Hach analytical tools; but it will reduce your operator training load as a wide variety of instruments will share the same interface and control method. The sc100 Controller also offers optional Digital Direct solutions for direct Range Accuracy" Displayed Resolution Repeatability" Response Time Signal Average Time Sample Flow Required Storage Temperature Operating Temperature Operating Humidity Sample Temperature Recorder Outputs Alarms Power Requirements Sample Inlet Fitting Drain Fitting Enclosures Digital Communications Wireless Communication Compliance Certification Safety: Immunity: Emissions Class A: Dimensions Mounting Shipping Weight *Subject to change without notice. "" Defined according to ISO 15E39. a 0.001-100 Nephelometric Turbidity Units (NTU) ± 2% ofreading or±0.015 NTU (whichever is greater) from 0 to 10 NTU; ± 50/o of reading froln 10 to 40 NTU; ± 100/b of reading from 40 to 100 NTU 0.0001 NTU from 0 to 9.9999 NTU; 0.001 NTU from 10.000 to 99.999 NTU Better than ± 1.0% of reading or ±0.002 NTU, whichever is greater For a full-scale step change, initial response in 1 minute, 15 seconds User Selectable ranging from 6, 30, 60, 90 seconds; user default 30 seconds 200 to 750 mL/minute (3.1 to 11.9 galthour) -20 to +60' C (-4 to 140' F) 0 to 50o C (32 to 122° F) for single sensor system, 0 to 40' C (32 to 104' F) for two sensor system 5 to 95% non -condensing 0 to 50' C (32 to 122' F) Two selectable for 0-20 mA or 4-20 mA. Output span programmable over any portion of the 0-100 NTU range; built into the sc100 Controller Three set -point alarms, each equipped with an SPDT relay with unpowered contacts rated SA resistive load at 230 VAC; built into the sc100 Controller 100-230 VAC, 50/60 Hz, auto selecting; 40 VA 1/4" NPT female, 1/4" compression fitting (provided) 1/2" NPT female, 1/2" hose barb (provided) NEMA-4XIIP66 Controller Network card compatible; MODBUSIRS485, MODBUSIRS232, Lon Works° protocol (optional) IR Port on the sc100 Controller to download into a handheld Personal Digital Assistant (PDA) or laptop computer via MODBUS Standard Methods 2130B, USEPA 180.1, Hach Method 8195 Listed by ETL to UL 61010A-1: Certified by FTL to CSA C22.2 No. 1010.1: CE certified by Hach Company to EN C1010-1 CE certified by Hach Company to EN61326 (industrial levels) EN 61326, CISPR 11, FCC Part 15, Canadian Interference -Causing Equipment Regulation ICES-003 Turbidimeter Body and Cap: 10 x 12 x 16 inches (25.4x 30.5 x 40.6 cm) sc100 Controller: 5.67 x 5.67 x 5.91 inches (14.4 X 14A X 15.0 cm) Turbidimeter Bodyand Head Assembly: wall and floor stand sc100 Controller: wall, pole, panel, and floor stand 1720E Turbidimeter and sc100 Controller: 13.5 lbs. (6.12 kg) 1720E Turbidimeter: 10 lbs. (4.54 kg) HOW TO ORDER 60101-00 1720E Turbidimeter with sc100 Controller 60101-01 1120E Turbidimeter, Sensor Only r7lsq 1720E with DigitaiDirect communications 60101-02 1720E/sclo0 with MODBUS/RS485 output IL,4 60101-03 1720E/sc1o0 with MODBUS/RS232 output 60101-04 1720E/5c100 with LonWorks output 60101-05 1720E/sc100 with PROFIBUS output r' CABLES* 57960-00 25 ft (7.7 M) Extension Cable 46306-00 Power Cord with Strain Relief (125 VAC) 46308-00 Power Cord with Strain Relief (230 VAC), European Style Plug "Note: Power cables must be ordered separately. OPTIONAL ACCESSORIES ICE-PIC Verification Module/1720E: 52250-00 20 NTU 52215-00 1 NTU STABLCAL COMPARATIVE CALIBRATION STANDARDS (far 1720E, 1720D, and 1720C Turbid!meters)*** 26601-53 20.0 NTU, 1 L each — Note: Calibration Cylinder must be ordered separately. STABLCAL VERIFICATION STANDARDS 26598-53 1.0 NTU, 1 L each 27463-53 40.0 NTU, 1 L each 26979-53 0.3 NTU, 1 L each 26980-53 0.5 NTU, 1 Leach 27233-53 0.1 NTU, 1 Leach FORMAZIN CALIBRATION STANDARDS 44156-00 Formazin Calibration Kit for user -prepared calibration includes 4000 NTU Formazin, (500 mQ, TenSette® Pipet, and Calibration Cylinder 2461-49 Formazin Primary Standard, 4000 NTU, 500 mL, replacement for kit #44156-00 44153-000 Calibration Cylinder, 1L 57432-00 Floor Stand MODEL SC100TM CONTROLLER The Model sc100 Controller receives data from one or two sensors. Its "plug and play", mix -and -match operation lets it fit into any facility or workflow. Digital communication with any Hach digital sensor or probe is simple and reliable. MODEL SCIOOOTM CONTROLLER Get the same great features as the sc100 Controller above — "plug and play", all digital operation and communication —but with the Hach sc1000 Controller, up to eight Hach sensors can be used with one controller in any combination. The sc1000 Controller is also expandable and upgradeable to easily adapt to you needs. Lit. No. 2446 155 Printed in U.S.A. 0 Hach Company, 2005. All rights reserved. ATTACHMENT M Pole Blowe Curve and Cut -Sheet ATTACHMENT N Back -Up Generator Cut -Sheets ,w :,j �,_J ATTACHMENT 0 Turbidity Meter 71 I=