Loading...
HomeMy WebLinkAboutNC0003425_Comments_20170221BLACKRQCK ENGINEERS, INC. Post Office Box 58 Wilmington NC 28402 February 21, 2017 Ms. Jay Zimmerman - Director NC DENR Division of Water Resources 1617 Mail Service Center Raleigh, NC 27699-1617 RE: Comments for Draft NPDES Wastewater Permit Roxboro Steam Electric Plant, Permit No.: NC0003425 Dear Mr. Zimmerman: Blackrock Engineers, Inc. is pleased to submit the following comments regarding the Draft National Pollution Discharge Elimination System (NPDES) wastewater permit for the Roxboro Steam Electric Plant. With respect to the technical and regulatory requirements for the NPDES Ash Ponds, our comments concern the schedule, data, and Best Management Practices for dewatering of the ash ponds as required by the NC Coal Ash Management Act and 40 CFR 257. In accordance with the North Carolina Coal Ash Management Act (NC CAMA), the Department is required to approve corrective actions for the CCR impoundment. Furthermore, if the owner meets pre -requisite requirements for classification of the CCR impoundment as a low -risk impoundment, then the Department is authorized to direct closure leaving the CCR in place and installing a final cover system as per 40 CFR 257. In the case where an overfill is present on the CCR impoundment, dewatering, stabilization and closure of the existing CCR is required prior to adding new CCR . In any closure condition, dewatering by removing the interstitial water, or leachate, from the pond ash deposit is a necessary step in the closure plan and provides improved stability to the pond ash deposit. Issuance of the NPDES permit is the preceding step to decanting and dewatering activities for each impoundment and should include a Roxboro Steam Electric Plant — Draft NPDES Permit Comments Page 2 of 4 February 21, 2017 schedule with Best Management Practices for initiating decanting and dewatering activities to minimize groundwater, surface water, and structural integrity risks for each impoundment. Based on the following information and in compliance with State and Federal law, the Department should amend the final NPDES permit as provided herein. New technologies for dewatering are available and can practicably remove interstitial water down to the bottom of the saturated CCR materials in the impoundments at the site; for example, see Exhibit A: US Patent 9,556,579 titled "In Situ Treatment for Dewatering and Stabilization of Waste Material Deposits in Waste Impoundments." To reduce the use of water resources and as a Best Management Practice for NPDES, the recovered leachate can be reused for moisture conditioning dry ash for transport and compaction in an on -site landfill. Accordingly, records should be maintained for dewatering activities including construction of dewatering systems and operating data to measure water removal from the pond and pond ash deposit. Where the coal-fired electrical generating units continue to operate and produce new dry ash for disposal in an on -site landfill or structural fill, water is required for moisture conditioning the dry ash for optimum compaction density. Excerpted from the Annual Dam Safety Progress Report filed with the Department in 2014, attached is Exhibit B providing moisture density tests for the dry ash compaction in the Roxboro Industrial Landfill (SW Permit 7302-INDUS1988) which establish total water inputs ranging from 35% to 45% by weight are needed to achieve optimum ash compaction in the landfill. By way of example, 40% moisture requires 160 gallons of water to be added to 1 ton of dry ash. If 1,000 dry tons of ash are produced and compacted in the landfill per day and the new ash is moisture conditioned with interstitial water removed from the pond ash deposit, then 160,000 gallons of Ieachate is removed daily from the unlined pond and stored in the lined landfill. With proper management of surface infiltration from precipitation, this Ieachate can be substantially stored in the landfill. A reasonable estimate of the available free liquids contained in the pond ash deposit for dewatering is the 20% difference between the typical liquid limit of ash (60%) and the compacted or consolidated moisture content (40%). Accordingly, an estimated 65,000 gallons of Ieachate is recovered by lowering the phreatic water level 1 foot over 1 Acre. Dewatering with Ieachate reuse for new waste disposal is a Best Management Practice Roxboro Steam Electric Plant — Draft NPDES Permit Comments Page 3 of 4 February 21, 2017 that reduces clean water resource use for waste disposal, and provides risk reduction by removing the mobile source of groundwater and surface water contamination and improves safety factors for pond stability and structural integrity. For the East Ash Pond, dewatering is the presumed initial remedy to stabilizing the pond ash deposit supporting overlying landfilled ash stages up to 130 feet above the dam. In fact, attached is an excerpt from 40 CFR 257 Final Rule (page 21373) which describes dewatering as a prudent and standard engineering practice required to reduce the risk of failure in the unconsolidated pond ash deposit. As the Engineer of Record from 2003 to 2014 for the Lined Landfill constructed over the East Ash Pond and the subject matter expert engaged by the State of North Carolina in 2015, BlackRock agrees with the risk reduction improvements provided by dewatering the pond ash deposit as required by NC CAMA and 40 CFR 257. With issuance of the NPDES permit, it is practicable for the owner to initiate dewatering activities required for closure under NC CAMA. Furthermore, it is practicable for dewatering activities to proceed immediately on the East Ash Pond site wherein the interstitial leachate is reused to moisture condition newly received dry ash for landfill disposal. All NPDES Permits for coal-fired power plants that include an on - site landfill receiving ash for disposal should include the same schedule requirement for initiating dewatering activities on inactive ash ponds as soon as practicable but no later than October 19, 2017 (2 years from the effective date of 40 CFR 257) and for active ponds as soon as practicable but no later than 30 days after ceasing sluicing operations; see 40 CFR 257.102(e). Based on the CAMA dewatering closure requirement or as a component of corrective action and consistent with 40 CFR 257, BlackRock is recommending that the Department establish a schedule in the NPDES permit requiring Duke Energy Progress, Inc. to initiate dewatering activities, use Best Management Practices by reusing recovered pond leachate, and maintain records for dewatering to evaluate effectiveness by amending Condition A (3) of the final NPDES Permit NC0003425 to include: A. Owner shall initiate dewatering on or before October 19, 2017, by removing interstitial water from the pond ash deposit in the East Ash Pond. Roxboro Steam Electric Plant — Draft NPDES Permit Comments Page 4 of 4 February 21, 2017 B. As a Best Management Practice to minimize wastewater discharge from the facility, the interstitial water shall be reused to moisture condition CCR material for transport and compaction in the on -site landfill. C. Owner shall initiate decanting and dewatering activities for closure of the West Ash Pond no later than 30 days after ceasing sluicing operations. D. Owner shall record maintain records for dewatering activities including but not limited to: (i) engineering construction records for dewatering components installed in the pond; (ii) the normal pool and phreatic water level measurements at least on a weekly basis, and; (iii) incremental and total daily flow volume from dewatering that is reused to moisture condition ash for disposal in the landfill and otherwise transmitted for treatment and discharge. We appreciate the Department's efforts in this permitting process to protect ground and surface water during closure of the ash ponds. In our opinion, the Department should clarify these same requirements for all other ash pond closures as relevant in partial approval of Corrective Action Plans or through other actions to achieve compliance with State and Federal law. Should you have any questions or require clarification regarding our comments, please contact me at 910.232.6696. Respectfully Submitted, BlackRock Engineers, Inc. Gary W. Ahlberg, P.E. President Attachments: Exhibit A — US Patent 9,556,579 Exhibit B - Ash Moisture Density Relationship Graph Exhibit C — Excerpt from 40 CFR 257 Final Rule p. 21373 Exhibit A US Patent 9,556,579 mu uuuu ui iiui iiui uui lull iuu lull iuu mu uuii uu uii mi (12) United States Patent Ahlberg et al. (54) IN SITU TREATMENT SYSTEM AND METHOD FOR DEWATERING AND STABILIZATION OF WASTE MATERIAL DEPOSITS IN WASTE IMPOUNDMENTS (71) Applicant: B1ackRock Engineers, Inc., Wilmington, NC (US) (72) Inventors: Gary Ahlberg, Wilmington, NC (US); William Lupi, Wilmington, NC (US); Nicholas Parks, Wilmington, NC (US) (73) Assignee: B1ackRock Engineers, Inc., Wilmington, NC (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 7 days. (21) Appl. No.: 14/693,398 (22) Filed: Apr. 22, 2015 (65) (51) (52) (58) Prior Publication Data US 2016/0312428 Al Oct. 27, 2016 Int. Cl. B09C 1102 (2006.01) E02D 3100 (2006.01) BOLD 29156 (2006.01) B01D 39106 (2006.01) U.S. Cl. CPC ................. E02D 3100 (2013.01); BOLD 29156 (2013.01); BOLD 39106 (2013.01); B09C 1102 (2013.01) Field of Classification Search CPC ................................... B09C 1/02; B09C 1/002 USPC ..... 405/128.1, 128.15, 128.2, 128.25, 128.3, 405/129.1, 129.15, 129.2, 129.3, 129.45, 405/129.5, 129.57, 129.7, 129.85 See application file for complete search history. (io) Patent No.: US 9,556,579 B2 (45) Date of Patent: Jan. 31, 2017 (56) References Cited U.S. PATENT DOCUMENTS 4,810,131 A * 3/1989 Turner ...................... E02B 3/16 210/170.01 6,351,900 BI 3/2002 DeWind 6,390,192 132 5/2002 Doesburg et al. 6,447,207 BI * 9/2002 Ivey ......................... 405/128.25 (Continued) FOREIGN PATENT DOCUMENTS CN 202265897 U * 6/2012 FR 3001829 AI * 8/2014 JP 2011256671 A * 12/2011 OTHER PUBLICATIONS Machine translation of Japanese doucment JP 2011-256671, 32 pages, Aug. 5, 2016.* Primary Examiner Sunil Singh (74) Attorney, Agent, or Firm Howard B. Rockman; Mercedes V. O'Connor; Rockman Videbeck & O'Connor (57) ABSTRACT A system and method for in situ dewatering and stabilizing waste material deposits previously created from sluicing into a waste impoundment. The method includes access for installation of wells and grading for surface drainage and storm water control. If free water is present, primary dewa- tering siphons or decants the free water in the pond. The system includes vertical dewatering well installation that requires drilling, well completion materials for filtering leachate, and well pump installation for removing leachate from the well. Collection piping collects leachate from the wells and transfers the leachate to a discharge solution. The dewatering operation collects and removes leachate from the pond ash deposit and impoundment, reuses or treats the leachate at a discharge solution, remediates contaminants and/or hydraulic head in the impoundment, and consolidates and stabilizes the dewatered solids. Impoundment closure includes horizontal drains, final grading, final cover or overfill landfill development, and post closure. 3 Claims, 8 Drawing Sheets 700 US 9,556,579 B2 Page 2 (56) References Cited U.S. PATENT DOCUMENTS 8,360,682 B2 * 1/2013 Xu ............................. 405/128.2 2002/0184954 At * 12/2002 Tyson ................. GO1L 19/0636 73/706 2010/0200516 At * 8/2010 Hwang ......................... 210/747 2013/0101353 At * 4/2013 Bousquet et al. ......... 405/128.3 2014/0255100 At 9/2014 Li, Jr. et al. * cited by examiner U.S. Patent ,Tan. 31, 2017 Sheet 1 of 8 US 9,556,579 B2 PRIOR ART FIGURE 1 U.S. Patent ,Tan. 31, 2017 Sheet 2 of 8 US 9,556,579 B2 204 FIGURE 2 U.S. Patent Jan. 31, 2017 Sheet 3 of 8 US 9,556,579 B2 204 FIGURE 3 U.S. Patent Jan. 31, 2017 Sheet 4 of 8 US 9,556,579 B2 204 FIGURE 4 U.S. Patent ,Tan. 31, 2017 Sheet 5 of 8 US 9,556,579 B2 101 FIGURE 5 204 U.S. Patent Jan. 31, 2017 Sheet 6 of 8 US 9,556,579 B2 i01 F!GURE 6 204 U.S. Patent ,Tan. 31, 2017 Sheet 7 of 8 US 9,556,579 B2 FIGURE 7A 701 707 1� .. 70A I �\ r 700 FIGURE 7B U.S. Patent ,Tan. 31, 2017 Sheet 8 of 8 US 9,556,579 B2 saz xna � xo Site Site I Dewatering Well s _ _ Collection System Characterization Preparation Installation Installation r ada Primary Dewatering (optlona!) I sia _2, t_warerr_o Dewatering System Operation I I I I I I I r I Direct T'rind I I Water To I � I � I I I I i Circcr:WaferPo I I I i I I I I I I 1 i I I 1 I I I i I I 624 Discharge Solution Treatment or Recycle I 820 Groundwater Recovery (op5anal) s:2 Dewatered Stabilized Pond Ash/ CCR ® Overfill Unde Installation rdralr sls 3 i!i Ash Basin I Closure (opffonal) 922 Overfill Landfill Development, and Closure s, Post I' Closure � I ReryGe for Write C—Pa i-1 QO ',Nl Operation f I Direct Water ro FIGURE 8 US 9,556,579 B2 1 IN SITU TREATMENT SYSTEM AND METHOD FOR DEWATERING AND STABILIZATION OF WASTE MATERIAL DEPOSITS IN WASTE IMPOUNDMENTS BACKGROUND OF THE INVENTION Field of the Invention The present invention relates generally to a system and method for dewatering and stabilization system, and more particularly, to a system and method for in situ dewatering and stabilizing saturated coal ash and other coal combustion residuals or similar waste material deposits previously cre- ated from sluicing into an ash basin or similar waste impoundment. Description of the Prior Art Impoundments have been utilized in the mining industry and power industry for disposal of waste products generated from the mining and burning of coal prior to the 1960's. Coal fired power plants have historically used basins or impoundments to contain and store waste products gener- ated by the coal combustion process. Ash basins were designed to settle the coal ash and other coal combustion residual (CCR) solids and decant the water to adjoining surface water through a discharge structure. Deposited CCRs are typically saturated and layered, the accumulated layers described as pond ash deposit. The water level within the constructed embankments and the pond ash deposit is described as the phreatic surface, which may be perched or connected to the local groundwater level in surrounding soils and bedrock. Accordingly, the components of an ash basin typically include free water on top of the pond ash deposits and ponded around the outlet structure, leachate within the saturated pond ash deposit, and pond ash solids. The CCR materials accumulate in a pond ash deposit and remain in an undrained, saturated condition that is typically very loose or soft. Historically, ash basins were constructed at a time when groundwater monitoring requirements and groundwater pro- tections were not routinely required. Environmental impacts from existing ash basins have typically occurred in the foundation soils and rock materials adjoining the basins. The environmental risks posed by existing impoundments typi- cally involve the migration of water with concentrated heavy metals, sulfates, chlorides, total dissolved solids, or total suspended solids to adjoining surface water or groundwater. During most of their useful life, ash basins remain passive facilities and only receive the work necessary to maintain the basin embankments and the flow path to the outlet structure. As the basin approaches its storage capacity, shallow dewatering, excavating and/or dredging activities have been used to relocate or stack pond ash to improve settlement and storage conditions within the basin. After excavation, the leachate drains from stacked pond ash leav- ing drier, unsaturated ash materials. The stacked ash is more dense and stable than the sluiced ash and supports heavy equipment loads. Conversely, the adjoining unimproved pond ash deposit is subject to failure under excessive static load conditions or could liquefy or spread laterally from vibration or earthquake conditions. Based on these obser- vations and on laboratory testing of drained and undrained ash samples, consolidation and an increase in shear strength are the structural improvements needed for pond ash deposit stability. The process treatment of the wastewater collected from an ash basin provides risk reduction for groundwater and surface water quality. Both passive and active methods for 2 wastewater treatment to remove metals, total suspended solids and total dissolved solids have been successfully implemented in the mining and power industry. The water treatment methods to remove heavy metals from groundwa- 5 ter and coal wastewater have been successfully implemented for similar applications and new technologies are under development. Existing CCR landfill overfills have been developed over historic pond ash deposits and provide added capacity for io CCR disposal. For existing and new overfills, dewatered pond ash deposits improve the foundation conditions by consolidating the old pond ash deposits, which will increase the factor of safety for stability. The current state of the art in dewatering ash basins 15 includes excavating or dredging the pond ash, draining the leachate back to the pond, and moving the ash to a storage location. The pond ash is typically saturated when excavated and must be temporarily stacked to drain prior to loading the pond ash on trucks for hauling. Existing methods remove the 20 leachate and ash together from below the phreatic surface to an elevated position where the leachate gravity drains from the pile, typically back into the basin. Dredging and pump- ing the ash-leachate slurry to process equipment for solid - liquid separation has been used to remove the pond ash 25 deposit. With excavation or dredging, the existing methods disturb the pond ash deposit and remove the ash and leachate together. Unless the leachate accumulating in the pond during excavation is properly treated, environmental risks to surface water quality are increased during the excavation 3o and drainage process. The costs and emissions from an excavation or dredging operation to remove ash from an ash basin are significant. The weight of heavy construction equipment over saturated weak material and unstable conditions in the pond ash 35 deposit is a general safety risk for conventional excavation on a pond ash deposit. In the mining industry there is a record of loss of life and equipment from these excavation activities. The safety risks are greater with increasing exca- vation depth. 40 The in situ treatment system for dewatering and stabili- zation of the present invention comprises a method to lower the phreatic surface with limited disturbance to the pond ash deposit for environmental risk reduction, remediation, and closure of the ash basin. The phreatic surface can be lowered 45 and risks for contaminant migration are lowered when the leachate is collected and removed from the basin. The remaining wastes may avoid removal and transportation to an alternate site for disposal if the risks are reduced to an acceptable level. 50 The in situ treatment system also includes specialized wells to retain and filter solids from the recovered leachate. Controlling suspended solids from clogging the collector and damaging pump equipment is a key component of the in situ treatment system. The operation of the collectors may be 55 concurrent with existing practices to manage leachate removal from the pond ash deposit and may be supple- mented by adjoining groundwater recovery. The dewatered CCR solids will consolidate under their self -weight and will have improved strength and structural properties to support 60 overfill of additional wastes or in situ closure. If necessary, dewatered CCR solids may be removed for secure disposal. U.S. Pat. No. 6,351,900 discloses a shaft driven trencher that includes a mobile powered base, a boom assembly, a chain digging assembly, a drive assembly and a linkage. The 65 boom assembly includes a first boom member pivotally mounted to the base at a first pivot and a second boom member pivotally mounted to the first boom member. The US 9,556,579 B2 3 chain digging assembly has a plurality of buckets. The drive assembly operably interconnects the mobile base and the chain digging assembly, with the drive assembly including a drive shaft connected to the mobile base for powered rotation of the drive shaft. The drive assembly further includes a right angle gear unit with input and output shafts, with the right angle gear unit being pivotally mounted to the boom assembly for rotation about the output shaft. The linkage interconnects the right angle gear unit with the base and pivots the right angle gear unit during rotation of the first boom member. The linkage also maintains the input shaft of the right angle gear unit facing the first pivot. U.S. Pat. No. 6,390,192 discloses an integral well filter and screen and method for making and using same. A first embodiment includes a perforated cylindrical well screen with a filter assembly in its interior. The filter assembly includes a pliable filter material bonded to a filter support. The filter support is a plastic lattice rigid enough to hold the shape of the filter assembly and keep the filter material in contact with the inner surface of the well screen, yet deformable enough that the filter assembly can be formed into a shape consistent with the interior of the well screen. A second embodiment includes a well screen with a filter made of a rigid, porous material placed inside the well screen. Because the filter is rigid, it needs no filter support. The method for the first embodiment includes bonding the filter support to the filter material, forming the filter assem- bly into a cylindrical shape complementary to the inner surface of the well screen, securing abutting edges of the filter assembly to maintain its shape and rigidity, and ensure complete filtration, and inserting the filter assembly into the well screen. The manufacture of the filter in the second embodiment is similar, but does not include the bonding of a filter support to the rigid porous material. U.S. Patent Publication 2014/0255100 discloses a geo- synthetic composite for filtration and drainage of fine- grained geomaterials that includes a geonet and a geotextile. The geotextile has a nonwoven fabric layer and a woven fabric layer, with the nonwoven fabric connected by needle - punching to the woven fabric whereby fibers of the nonwo- ven fabric extend through and beyond the woven fabric, and the woven fabric and fibers of the nonwoven fabric extend- ing through the woven fabric are bonded to one side of the geonet. The prior art to date does not disclose a system and method for dewatering and stabilizing coal combustion residuals or similar waste material deposits previously cre- ated from sluicing into an ash basin or coal combustion residual impoundment. None of the prior art can be com- bined in a way to suggest these necessary modifications. There is no teaching, suggestion, or motivation that would have enabled a person of ordinary skill in the art to modify any prior art to arrive at the present invention. It is a primary object of the present invention to provide an in situ treatment system and method for dewatering and stabilization that removes leachate from the pond ash deposit and pond in situ. Another object of the present invention is to provide an in situ treatment system and method that reduces environmen- tal risks associated with pond leachate. Still another object of the present invention is to provide an in situ treatment system and method that consolidates and stabilizes pond ash solids. Still another object of the present invention is to provide a in situ treatment system and method that allows the closed pond to be developed as an overfill landfill for added waste disposal. 4 SUMMARY OF THE INVENTION The in situ treatment system and method of the present invention includes a method to dewater waste material 5 deposits in situ and remove leachate from waste material deposits in the impoundments. The system uses specialized well filters installed in vertical dewatering wells to dewater soft, loose sluiced coal ash waste materials that are retained by an existing earthen embankment or impoundment. The l0 method collects data related to the waste impoundment, including data and information related to the topography, hydrology, hydrogeology, phreatic surface and groundwater levels, environmental conditions, quantity of the waste and 15 leachate, and chemical and physical properties of the waste and leachate. The method then gains access to the waste deposit by excavating, dredging, ditching, and/or grading the surface of the waste deposit and impoundment perimeter. If free water is present, the free water is siphoned or 20 decanted from the impoundment. Removal of free water is a presumed condition and is considered primary dewatering. Wells are drilled and completed with specified materials, such as well screen completion materials, and individual pumps. The drilling creates a borehole for the well instal- 25 lation where completion includes placement of the specified well screen completion materials within the borehole. Leachate is filtered from the waste material deposit into the wells using well screen completion materials and is removed from the well into the collection piping network using a 30 pump installed in proximity to the bottom of each vertical dewatering well. The leachate is then transmitted in a series of piping laterals and headers to a discharge solution. The piping laterals feed into the headers, which are the larger 35 pipes that connect the plurality of laterals to a main and end at the discharge solution. The phreatic surface and contami- nants are reduced to acceptable levels in the impoundment and the dewatered waste deposit is consolidated and stabi- lized. The method then performs a final grading, with the 40 optional installation of a lateral underdrain system on the impoundment, and a final cover is installed over the waste material deposit to minimize continued leachate generation. The closed impoundment may be developed as an overfill landfill for additional waste storage over the waste material 45 deposit. The dewatering system operation is necessary to implement closure of the waste material deposit and impoundment with the option to extend operations as oth- erwise necessary. In another embodiment, the dewatering method and system may be applied as necessary to waste 50 material deposits or impoundments with pre-existing final cover or overfill landfill. BRIEF DESCRIPTION OF THE DRAWINGS 55 The following figures are included to better illustrate the embodiments of the devices and techniques of the present invention. In these figures, like numerals represent like features in the several views. It is to be noted that these figures, illustrating the several views of the present inven- 60 tion, unless stated to be otherwise, are not necessarily drawn to scale. Nor are the contents of the drawings to be consid- ered as limiting the scope of the present invention as defined in the claims: FIG. 1 is a cross -sectional view of an existing ash basin's 65 characteristics, as seen in the prior art, including water, earthen, and pond ash surfaces, and a water level piezometer installed during site preparation. US 9,556,579 B2 5 FIG. 2 is a cross -sectional view of an existing ash basin with piezometers, vertical dewatering wells, and optional groundwater recovery wells installed prior to active dewa- tering. FIG. 3 is a cross -sectional view of an existing pond ash deposit during active dewatering with an increasing unsatu- rated and consolidated CCR layer, lowered phreatic surface, and settled pond ash surface. FIG. 4 is a cross -sectional view of the steady-state and stabilized ash basin conditions including optional ground- water recovery wells and grading of the surface prior to closure. FIG. 5 is a cross -sectional view of the ash basin with a cap and closure system limiting infiltration into the dewatered pond ash deposit. FIG. 6 is a cross -sectional view of the closed ash basin that is developed for future CCR storage as an overfill landfill, and including an underdrain system. FIG. 7A is a side cross -sectional view of the well screen completion configuration installed in a borehole for a pond ash dewatering well. FIG. 7B is a top plan view of the well screen completion configuration installed in a borehole for a pond ash dewa- tering well. FIG. 8 is a flow diagram depicting the process for implementing the in situ treatment system and method of the present invention. DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS The water level within constructed embankments and pond ash deposits is described as the phreatic surface, which may be connected to the local groundwater level in sur- rounding natural soils and bedrock. The in situ treatment system and method of the present invention combines exist- ing and new technologies in a method to close the waste impoundment and manage environmental risk and remedia- tion requirements. The presumed impoundment condition includes free water at the surface and removal of the free water is described as primary dewatering. The primary objectives of the in situ treatment system and method are to remove leachate from the pond ash deposit and pond, lower the phreatic surface, reduce environmental risks associated with pond leachate, and consolidate and stabilize pond ash solids. Dewatering and stabilization are required for pond ash closure in place and continued operation of an existing overfill landfill located over a historic pond ash deposit. Additionally, the closed pond may be developed as a new overfill landfill for added waste disposal. The in situ treatment system and method includes a method to dewater the pond ash deposit in place and recover and collect the leachate. In a first embodiment, the in situ treatment system includes completion materials, individual well pumps, collection piping, outflow from the ash pond, and an impoundment final cover or cap. In a second embodi- ment, the in situ treatment system also includes groundwater recovery. In a third embodiment, the secondary pond ash dewatering and stabilization system also includes overfill landfill development. In a fourth embodiment, the in situ treatment system may be implemented as a retrofit to an existing closed or inactive impoundment, an existing overfill landfill, or for corrective action where a reduction in the source of contamination is necessary. The existing impound- ment includes the ash basin with an existing overfill landfill, or the final cover is in -place over the pond ash deposit. The 6 dewatering and stabilization system is retrofitted around or through the final cover or overfill landfill into an underlying or adjacent pond ash. The in situ treatment system includes nine components: 5 site characterization, site preparation, optional primary dewatering, pond ash dewatering wells, collection piping, secondary pond ash dewatering system operation, optional groundwater recovery well expansion, pond closure, and optional pond closure with overfill development or founda- 10 tion improvements to existing overfills. Site preparation includes access for installation of wells and grading for surface drainage and storm water control. If free water is present in the existing pond, primary dewatering siphons and/or decants the free water in the pond. The pond ash 15 dewatering well includes vertical installation that requires drilling, well completion materials for filtering leachate, and well pump installation for removing leachate from the dewatering wells. The collection piping collects leachate from the dewatering wells and transfers the leachate to a 20 discharge solution. The dewatering operation collects and removes leachate from the pond ash deposit, reuses or treats the leachate through a discharge solution, remediates con- taminants and/or hydraulic head in the impoundment, and consolidates and stabilizes the dewatered pond ash solids. 25 Leachate reuse is limited to compaction of coal ash waste in a lined landfill facility. The groundwater recovery well expansion is an optional component that removes contami- nated groundwater and controls perimeter groundwater lev- els around the pond. Pond closure includes final grading, 30 pond final cover or cap installation where the cap minimizes continued leachate generation, and post closure. When the post closure plan includes added storage of CCR wastes in an overfill landfill, an optional underdrain system is added prior to the pond final cover. Post closure development of the 35 closed pond as an overfill landfill or foundation improve- ments to existing overfills is an optional component with multiple improvements including pond ash dewatering and demonstrating the stability of the pond ash foundation to support overfill. Where necessary for overfill landfill devel- 40 opment, an underdrain system is added prior to the pond final cover to control or maintain the water level and phreatic separation expected from increased overfill loading condi- tions that drive and squeeze water up in the underlying pond ash deposit. Once the final cover is completed over the 45 impoundment, the impoundment is closed and post closure begins. After the impoundment is closed, the use of the closed pond for additional waste disposal is overfill landfill development. After the final cover is completed over the overfill landfill, the overfill landfill is closed and post closure 50 of the overfill landfill begins, which includes at least final cover maintenance and environmental monitoring. Installa- tion of the secondary dewatering collection system requires earth work that includes an initial fill, or push out, onto the existing ash pond to provide access for installation of the 55 vertical well dewatering system. The well installation includes specially designed wells to remove the leachate from the pond ash deposit in situ. Perimeter ditching inter- cepts storm water run-on or directs pond run-off away from the pond ash deposit as part of dewatering activities. Primary 6o dewatering is necessary when there is free water present in the existing pond or may be optional when the pond ash surface covers the entire area where in situ treatment wells are installed. Where there is free water in the pond, primary dewatering siphons or decants the water to a discharge 65 solution. Wells are installed to remove the leachate from the pond ash deposit. Well pumps remove leachate from the in situ US 9,556,579 B2 7 treatment wells and transmit the leachate to a collection piping system. The collection piping system drains to a discharge solution, outside the discrete limits of the ash pond. Well installation includes the well screen completion materials and pump. In situ dewatering removes buoyancy effects in the pond ash deposit which consolidates the unsaturated CCR solids. In an illustrated embodiment of the present invention, where the waste impoundment is an ash basin, the in situ treatment system includes dewatering wells constructed with a combination of specific materials to filter and mini- mize the suspended solids in the recovered leachate. The collection piping system is installed to collect and transmit leachate pumped from the wells to a discharge solution. The recovered leachate can be treated or reused. The method can include several components supporting or supplemental to the secondary dewatering system as described herein and not in any specific order. In situ treatment system operation lowers the leachate level and phreatic surface in the pond ash deposit. The duration and extent of dewatering operations is site specific for pond closure. During operation, well pumping rates or cycle times are controlled to provide a uniform leachate level drawdown in the pond ash deposit. Piezometer water levels, rain gauge, and measurements from the wells provide data monitoring for operation effectiveness. Other measure- ments may be obtained to monitor consolidation of the dewatered pond ash solids, including cone penetrometer testing and settlement monuments. A final cover system or cap is required for pond closure to minimize the continued generation of leachate from rain water infiltration. The in situ treatment method may extend through the pond closure and into the post closure period. Site characterization provides data and information used to design the site specific dewatering and stabilization system and typically includes but is not limited to: topog- raphy, hydrology, hydrogeology, phreatic surface and groundwater levels, environmental conditions, quantity of waste and leachate, and chemical and physical properties of the waste and leachate. One aspect of the invention includes site preparation activities that are designed to gain access to the unstable pond ash areas and control the continued generation of new leachate during secondary dewatering. The purpose of site preparation for secondary dewatering is to provide equip- ment access for piezometer, well, and collection piping installations. Site preparation generally includes activities on and in the surficial pond ash zone and involves the disturbance and grading of ash materials. Grading or the import of fill materials may be necessary to bridge over the soft, saturated pond ash. Conventional earth work or dredg- ing equipment is used to excavate, ditch, and grade the surface of the pond. Primary dewatering may include dredg- ing, ditching, site specific grading and intermediate cover plans for the pond ash surface to gain equipment access, and segregation and removal of free water and storm water from the basin area. Perimeter ditching may be used to control storm water run-on into the pond. Site preparation may also include removal of free water from the basin and construc- tion of water and waste treatment systems for use in the project. Primary dewatering, if needed, is accomplished by siphoning or decanting the free water from the pond and directing the effluent to an approved discharge solution. Primary dewatering methods may also be used with con- ventional excavation and grading activities to remove leachate from the surficial pond ash depositions where 8 contaminant mixing of leachate with the free water in the pond are not a concern to the discharge solution. When ditching and draining activities have been completed, pri- mary dewatering methods may continue to be utilized 5 through pond closure to remove free water from the pond surface. Typically, site preparation and primary dewatering activi- ties for the surficial pond and pond ash zone provide acceptable conditions for equipment access to install the to secondary dewatering wellfield and collection system. The wellfield includes a plurality of wells and the collection system includes a network of collection piping. The instal- lation removes leachate from within the saturated pond ash 15 deposit at depths below the surficial zone in situ. After the initial removal of leachate with the secondary dewatering collection, maintenance and continued operation of site preparation components are incorporated in the in situ treatment system. 20 The in situ treatment system includes specialized wells installed in the pond ash deposit, the wells including completion materials designed to retain the pond ash solids and extract the pond leachate by pumping or gravity drain- age. The vertical dewatering wells are designated as in situ 25 treatment (IST) wells. Drilling rigs are used for the instal- lation of boreholes to a depth just above the base of the pond ash deposit for vertical well completion. The spacing and type of collection wells are dependent on the ash basin characteristics and natural strata grades in the area surround- 30 ing the ash basin. The level of secondary dewatering is designed by the hydrogeologist and engineer to meet the environmental and structural criteria for pond closure and post closure. 35 One aspect of the invention is the combination of comple- tion materials used in the IST wells. The well screen completion materials used in the IST wells include multiple layers to minimize migration of CCR fines from the pond ash deposit into the interior well casing, pumps, and collec- 40 tion system. The sand layer gradation and geotextile layer act together to prevent clogging of the well at the interior slotted or perforated casing comprising the well screen. The geotextile used around the well screen, as shown in FIGS. 7A and 713, consists of a specific double needle punched 45 woven/nonwoven geotextile system. These completion materials may be installed in an outer perforated casing or in direct contact with the borehole and pond ash deposit. Pumps installed in the IST wells remove and transmit the leachate to the collection system. The collection system 50 transmits the leachate from the pond ash deposit to a discharge solution for necessary processing and treatment. The in situ treatment system is operated to draw down and maintain the phreatic surface to the steady-state level or practical limit required by the engineer for pond closure and 55 the site's specified end use. When the phreatic surface has reached steady-state or maximum drawdown, horizontal gravity drains may be installed with conventional cut and cover methods to replace or supplement the pumping IST wells. To maintain the lowered phreatic surface in the pond 6o ash deposit, the horizontal drains may be collected in a vault and pumped or a drain may be installed to traverse through the basin embankment. Installation of the horizontal gravity drains through the basin embankment may also be added to the final dewatering system for closure. 65 Secondary dewatering may be supplemented by or imple- mented with methods for pumping and recovering ground- water upgradient of or adjacent to the pond ash deposit. US 9,556,579 B2 9 Intermediate cover and controls may be specified by the engineer to control water infiltration and new leachate generation during secondary dewatering. Storm water controls and final cover are specified by the engineer for closure. If the site is to be developed as an overfill landfill, an underdrain system may be installed to maintain separation of the overfill liner system and the phreatic surface in the pond ash deposit. The requirements of the underdrain system are specified by the engineer for the site conditions and design configuration. The in situ treatment method includes the steps of site characterization where data and information is collected and analyzed to create a dewatering plan for the ash pond closure and post -closure use, site preparation, primary dewatering and discharge system when free water is present in the existing pond, pond ash dewatering well installation and completion that includes well pumps, collection piping installation, in situ treatment system operation, optional groundwater recovery well expansion, pond closure, optional post closure and overfill post closure use, and in situ treatment system decommissioning. Pond closure and post closure includes final grading, pond final cover/cap instal- lation, and post closure procedures. Overfill landfill devel- opment includes optional underdrain system installation, structural fill grading, pond final cover/cap installation, landfill overfill liner and leachate collection system, landfill waste disposal, operation, and construction, and landfill final cover and post closure. The overfill landfill procedure is included in the third embodiment of the present invention where the post closure use is an overfill landfill and the in situ treatment process continues. In the third embodiment, the in situ treatment system functions to dewater the pond ash deposit to the extent practical, to consolidate the dewatered pond ash creating a stable foundation for overfill, and to maintain long term water level separation from the overfill liner system via the underdrain system installation step. The overfill landfill procedure includes the steps of optional underdrain system installation, structural fill grading, pond final cover/cap installation, landfill waste disposal, operation, and construc- tion, and overfill landfill final cover and post closure. The overfill landfill process includes grading of the site to form the liner system for additional landfill disposal capacity. The liner used to close the impoundment can be of the same type as the liner used in the base of the overfill landfill. Referring to FIG. 1, an existing ash basin or waste impoundment, as seen in the prior art, consists of saturated pond ash deposit 102 and adjoining natural foundation soils, rock, or constructed embankment 101, and the pond ash deposit surface 109 consists of drained unsaturated CCR 103 above the static phreatic surface 105 and the saturated pond ash deposit 102. Around the pond ash deposit, free water 106 is present in constructed ditches or open pond areas. Soil or other layers 107 may be present above the pond ash deposit surface 109 up to an existing top grade 108. A monitoring piezometer 104 is installed to a depth near the base of the saturated pond ash deposit 102. Referring to FIG. 2, the vertical dewatering collection system consists of pond ash dewatering wells 202 con- structed with well completion materials 700, optional ver- tical groundwater recovery wells 201, and a pump and network of collection piping 203. The well completion materials 700 comprise the completed dewatering well and well screen as shown in FIGS. 7A and 7B. The collected leachate is routed to a discharge solution 204. The ash basin 10 cross section in FIG. 1 is illustrated as background with the initial phreatic surface 105 shown prior to start of dewater- ing. Referring to FIG. 3, the in situ treatment system is active 5 and lowers phreatic surface 301. Removal of the leachate from the pond ash deposit increases the thickness of the overlying dewatered and unsaturated CCR zone 303. The drawdown rate of the phreatic surface 301 is controlled during the dewatering period and monitored by the piezom- io eters 104 and dewatering wells. As the phreatic surface 301 within the pond ash deposit 304 is gradually lowered, the drawdown induces consolidation, settlement, and stability improvements in the dewatered CCR zone 303. Consolida- tion of the dewatered CCR zone 303 layers creates a lowered 15 or settled CCR surface 302. FIG. 4 illustrates the stabilized condition of the pond ash deposit when the operation of the dewatering wells reaches the steady state condition, with the optional operation of the vertical groundwater recovery wells 201. The steady-state 20 phreatic surface 401 has increased the total thickness of the improved dewatered CCR zone 402. Grading the dewatered pond ash materials or structural fill 403 establishes the final grade 404 conditions prior to closure of the ash basin. FIG. 5 illustrates the closure condition of the ash basin 25 that includes a final cover cap and closure system 501. FIG. 6 illustrates closure and post closure of the ash basin and the development of an overfill landfill adding supple- mental controls and disposal or storage capacity. The liner system 601 typically consists of barrier and leachate collec- 30 tion 602 and protective cover components. In the overfill configuration, an optional underdrain system 603 is installed below the liner system, maintaining vertical separation from the underlying phreatic surface during overfill loading con- ditions 604. 35 FIGS. 7A and 7B illustrate the well screen completion materials used in the 1ST vertical dewatering well consist of multiple layers to filter and minimize migration of pond ash fines into the well. The sand filter layer 704 and the geotextile filter layer 702 around the well screen 701 act 40 together to filter suspended solids from the leachate entering the well screen 701 which optimizes dewatering perfor- mance and well efficiency. The geotextile filter layer 702 used around the inner perforated or slotted casing (well screen) 701 consists of a 45 specified double -layered, needle punched woven/nonwoven geotextile material. The geotextile filter layer 702 is installed with intimate contact to the well screen 701 and is heat welded or chemically bonded 703 at the ends of the lengths of the inner slotted or perforated well screen 701 segments, 50 such that the perforations or slots are covered, and along the length of the geotextile filter layer 702 where the overlap of the geotextile occurs. The heat welding 703 is such that the geotextile filter layer 702 is bonded or held firm to the well screen 701 and to the geotextile filter layer 702. The 55 geotextile filter layer 702 portion of the filter system is non -biodegradable, non -reactive within a pH range from three to eleven, and has a maximum apparent opening size (AOS) ranging from 0.075 mm to 0.106 mm. The geotextile filter layer 702 is the second filter between the sand filter 60 layer 704 and the well screen 701. The geotextile filter layer 702 and the sand filter layer 704 have an adequate system permeability to maintain leachate flow into the well screen 701, with a typical required permeability greater than 1x10-4 cm/sec. 65 The outer casing 705 may be a necessary component to ensure the integrity of the sand filter layer 704 when bottom heaving is observed in the borehole 707. If the well is US 9,556,579 B2 11 completed without the outer casing 705 in the open borehole 707, then the sand filter layer 704 would have to be installed by gravity or tremie methods, after the inner casing 701 and geotextile filter layer 702 are installed in the borehole. The sand filter layer 704 provides the primary granular filter layer that is in contact with the pond ash deposit waste. The geotextile filter layer 702 is bonded to the inner casing 701 and is specifically designed as a final filter to retain fines in the sand filter layer 704 and allow the leachate to flow into the inner casing 701. The inner casing 701 is a conventional slotted or perforated plastic pipe, such as PVC pipe. The well pump 706 is a conventional pneumatic or electric powered pump. The sand filter layer 704 of the well screen includes a well graded sand product that meets the gradation criteria for the saturated pond ash deposit 102. Gradation criteria for the sand filter layer 704 includes mixtures of commercially available fine aggregate determined by the engineer using standards developed by National Resource Conservation Service (NRCS) for filter ratio criteria for the gradation diameters of the protected material and the filter materials. The NRCS method, or equivalent method, is used to deter- mine the required gradation of the sand filter layer 704. Typically, American Society for Testing Materials (ASTM) C-33, fine Aggregate, or blending with other sand products will form the sand filter layer 704. The geotextile filter layer 702 provides final filtration of leachate to minimize clogging and migration of fines in the inner casing 701 and maintains adequate drainage into the inner casing. The sand filter layer 704 and geotextile filter layer 702 combine to create a dual filter system to retain fines migrating from the pond ash deposit to the well. Retention of the pond ash fines mini- mizes clogging of the apertures in the inner casing 701, siltation into the inner casing 701, and damage to the well pump 706 from abrasive particles in the leachate, which improves the effectiveness of the dewatering well installa- tion and extends its service life. FIG. 8 is a flow diagram depicting the process for implementing the in situ treatment and method of the present invention. Site characterization 802 evaluates the impound- ment and site preparation 804 is then performed on the impoundment. After site preparation 804, primary dewater- ing 810 is performed if free water is present in the impound- ment and the free water is directed to a discharge solution 826. Then, the dewatering well is installed 806 and the col- lection system is installed 808. The dewatering system operation 814 begins and water is directed to a discharge solution 826. Optionally, groundwater recovery 820 directs water to a discharge solution 826. The dewatering system operation 814 produces dewatered stabilized pond ash for either an ash basin closure 818 or an overfill landfill devel- opment 822 which includes an optional precedent step for installation of an underdrain system 816. Overfill landfill development incorporates a pond closure step, improve- ments for additional waste disposal, and a final cover. Leachate from the underdrain system or from the overfill landfill is directed to the discharge solution 826. The dis- charge solution 826 may include recycling of leachate to the overfill landfill for waste compaction and disposal. Post closure 824 begins when closure of the ash basin 818 or overfill landfill 822 is completed. The dewatering system operation 814 may extend through closure activities and into the post closure period as necessary. The foregoing description of an illustrated embodiment of the invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or to 12 limit the invention to the precise form disclosed. The description was selected to best explain the principles of the invention and practical application of these principles to enable others skilled in the art to best utilize the invention in 5 various embodiments and various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention not be limited by the specification, but be defined by the claims set forth below. What is claimed is: 10 1. A method to treat an extant stationary waste material deposit comprising an amount of waste material stored in a waste impoundment by removing particle -containing leachate from the waste material deposit at depths below the phreatic surface in situ, said leachate removal improving the 15 waste material deposit for at least one of waste stability, waste removal, structural integrity, and/or reduction in the source of environmental contamination, the method com- prising the steps of: installing a plurality of vertical dewatering wells in the 20 extant stationary waste material deposit, wherein the extant stationary waste material deposit substantially fills the waste impoundment, each vertical dewatering well having an apertured well screen located within the vertical dewatering well; 25 installing at least one specialized completion material around the well screen and within each of the vertical dewatering wells, each well screen adapted to filter particles suspended in the leachate, which particles are drained from the waste material deposit, to 30 prevent clogging of the at least one completion material and the apertures in the well screen, wherein the at least one specialized completion material is selected from the group consisting of: at least one geotextile filter layer in intimate contact 35 with the outer circumference of the well screen and a sand layer disposed around the at least one geo- textile filter layer; at least one geotextile filter layer in intimate contact with the outer circumference of the well screen; and 40 a sand layer in intimate contact with the well screen; installing at least one well pump in each vertical dewatering well, the well pump in each vertical dewatering well adapted to concurrently remove the leachate from each vertical dewatering well and 45 create radial leachate flow through a saturated depth of the waste material deposit to the vertical dewa- tering wells, wherein the at least one well pump is installed at a depth below the phreatic surface and in proximity to the bottom of each vertical dewatering 50 well; installing at least one collection pipe network having at least one collection pipe lateral and at least one col- lection pipe header by connecting the at least one well pump to the at least one collection pipe lateral via 55 flexible tubing, connecting the at least one collection pipe lateral to the at least one collection pipe header, and connecting the at least one collection pipe header to a discharge solution, the collection pipe network directly connected to the discharge solution and 60 adapted to transmit the leachate from each vertical dewatering well to the discharge solution; pumping the leachate from each vertical dewatering well through the at least one collection pipe network and filtering the leachate through the plurality of 65 specialized completion materials and through the apertures in the well screen to an interior of each vertical dewatering well; US 9,556,579 B2 13 transferring the leachate from the at least one collection pipe network to the discharge solution, the discharge solution adapted to one of: treat, dispose, and reuse the leachate; and wherein the at least one collection pipe network is adapted to transmit the leachate using the at least one well pump in the at least one vertical well, using one of: pumping and radial leachate flow; and one of pumping and radial leachate flow. 2. A method to treat an extant stationary waste material deposit comprising an amount of waste material stored in a waste impoundment by removing particle -containing leachate from the waste material deposit at depths below the phreatic surface in situ, said leachate removal improving the waste material deposit for at least one of waste stability, waste removal, structural integrity, and/or reduction in the source of environmental contamination, the method com- prising the steps of: installing a plurality of vertical dewatering wells in the extant stationary waste material deposit, wherein the extant waste material deposit substantially fills the waste impoundment, each vertical dewatering well having an apertured well screen located within the vertical dewatering well; installing at least one specialized completion material around the well screen and within each of the vertical dewatering wells, each well screen adapted to filter particles suspended in the leachate, which particles are drained from the waste material deposit, to prevent clogging of the at least one completion material and the apertures in the well screen, wherein the at least one specialized completion material is selected from the group consisting of: at least one geotextile filter layer in intimate contact with the outer circumference of the well screen and a sand layer disposed around the at least one geo- textile filter layer; at least one geotextile filter layer in intimate contact with the outer circumference of the well screen; and a sand layer in intimate contact with the well screen; installing at least one well pump in each vertical dewatering well, the well pump in each vertical dewatering well adapted to concurrently remove the leachate from each vertical dewatering well and create radial leachate flow through a saturated depth of the waste material deposit to the vertical dewa- tering wells, wherein the at least one well pump is installed at a depth below the phreatic surface and in proximity to the bottom of each vertical dewatering well; dewatering, consolidating, and stabilizing the waste mate- rial deposit and preparing for closure of the waste material deposit, said waste material deposit adapted to be used as an overfill landfill; grading the waste material deposit for closure of the impoundment and for use as the overfill landfill; installing one of: an overfill landfill liner over the waste material deposit and a leachate collection system; and one of an overfill landfill liner over the waste material deposit and a leachate collection system; placing and compacting at least one waste layer in the overfill landfill; 14 installing a final cover over the overfill landfill; installing an underdrain system to the waste material deposit adapted to maintain waste level and phreatic separation and control due to overfill landfill oper- 5 ating load conditions; grading the waste material deposit; installing an overfill landfill liner and a leachate col- lection system; adding waste material to the waste material deposit; to and installing a final cover over the waste material deposit. 3. A method to treat an extant stationary waste material deposit comprising an amount of waste material stored in a 15 waste impoundment by removing particle -containing leachate from the waste material deposit at depths below the phreatic surface in situ, said leachate removal improving the waste material deposit for at least one of waste stability, waste removal, structural integrity, and/or reduction in the 20 source of environmental contamination, the method com- prising the steps of: installing a plurality of vertical dewatering wells in the extant stationary waste material deposit, wherein the extant waste material deposit substantially fills the 25 waste impoundment, each vertical dewatering well having an apertured well screen located within the vertical dewatering well; installing at least one specialized completion material around the well screen and within each of the vertical so dewatering wells, each well screen adapted to filter particles suspended in the leachate, which particles are drained from the waste material deposit, to prevent clogging of the at least one completion material and the apertures in the well screen, wherein 35 the at least one specialized completion material is selected from the group consisting of: at least one geotextile filter layer in intimate contact with the outer circumference of the well screen and a sand layer disposed around the at least one geo- 40 textile filter layer; at least one geotextile filter layer in intimate contact with the outer circumference of the well screen; and a sand layer in intimate contact with the well screen; installing at least one well pump in each vertical 45 dewatering well, the well pump in each vertical dewatering well adapted to concurrently remove the leachate from each vertical dewatering well and create radial leachate flow through a saturated depth of the waste material deposit to the vertical dewa- 50 tering wells, wherein the at least one well pump is installed at a depth below the phreatic surface and in proximity to the bottom of each vertical dewatering well; installing at least one collection pipe network having at 55 least one collection pipe lateral and at least one col- lection pipe header by connecting the at least one well pump to the at least one collection pipe lateral via flexible tubing, connecting the at least one collection pipe lateral to the at least one collection pipe header, 60 and connecting the at least one collection pipe header to a discharge solution, the collection pipe network directly connected to the discharge solution and adapted to transmit the leachate from each vertical dewatering well to the discharge solution; 65 pumping the leachate from each vertical dewatering well through the at least one collection pipe network and filtering the leachate through the plurality of special- US 9,556,579 B2 15 16 ized completion materials and through the apertures in the well screen to an interior of each vertical dewater- ing well; and transferring the leachate from the at least one collection pipe network to the discharge solution, the discharge s solution adapted to one of: treat, dispose, and reuse the leachate; and at least one of treat, dispose, and reuse the leachate. Exhibit B Ash Moisture Density Relationship Graph From Annual Dam Safety Progress Report PERSO-033-L Submitted to NC DENR April 2014 Client: Project Name Project Number 95.0 90.0 85.0 80.0 G 65.0 60.0 55.0 50.0 15.0 BLACKROCK ENG. ROXBORO LF P4C 2013-600 20.0 25.0 Fly Ash Moisture Density Relationships 30.0 35.0 40.0 45.0 50.0 55.0 Moisture Content (%) eotechnics INTEGRITY IN TESTING 100% Saturation Line Based on SG of 2.35 (Assumed) +607-01-01 / 66.4 @ 35.2 / ROX 1.18.12 -(-607-01-02 / 93.1 @ 21.0 / MAYO 1.18.12 t 607-03-01 / 59.0 @ 41.8 / 4.24.12 +607-04-01 / 58.9 @ 46.2 / PRO ASH 5.10.12 607-04-02 / 64.4 @ 40.8 / ROX 5.10.12 t607-06-01 / 62.4 @ 41.0 / PRO ASH 8.20.12 -ram 607-08-01 / 85.4 @ 23.2 / MAYO 11.12.12 751-01-02 / 71.1 @ 34.4 / 10.26.12 t 720-01-01 / 85.9 @ 22.6 / MAYO 8.20.12 720-01-02 / 66.5 @ 35.7 / ROX 8.20.12 607-09-01 / 69.0 @ 33.6 / ROX 11.21.12 t 607-10-01 / 66.2 @ 35.7 / 12.6.12 • 607-11-01 / 60.3 @ 45.3 / 12.27.12 2200 Westinghouse Blvd. - Suite 103 - Raleigh, NC 27604 - Phone (919) 876-0405 - Fax (919) 876-0460 Exhibit C Excerpt from 40 CFR 257 Final Rule p. 21373 Federal Register / Vol. 80, No. 74 / Friday, April 17, 2015 / Rules and Regulations 21373 being promulgated in this rule. Therefore, vertical expansions of existing CCR landfills are not subject to the provisions governing new units, but are subject to all applicable requirements for existing CCR landfills. To be clear however, while the location requirements relating to the placement above the water table, wetlands, fault areas, and seismic impact zones do not apply to existing CCR landfills, all of these restrictions apply to lateral expansions of existing CCR units, as well as new CCR units. Consequently, under this rule, owners or operators of existing CCR landfills can continue to vertically expand their existing facilities in these locations, but must comply with the provisions governing new units if they wish to laterally expand. 5. Construction of New CCR Landfills or Any Lateral Expansion Over an Existing CCR Unit On August 2, 20139 EPA published a NODA that among other things, solicited comment regarding a particular type of CCR management unit described by some commenters in the proposed rule as "overfills" (see 78 FR 46940). Overfills are CCR landfills constructed over a closed CCR surface impoundment. As discussed in the NODA, in developing the proposed rule, EPA was not aware that CCR was managed in this fashion and so did not either evaluate this specific management scenario or propose technical requirements specifically tailored to this type of unit. Under the proposed rule, these types of units would need to comply with both the requirements applicable to the closure of surface impoundments or landfills, and with all of the technical requirements applicable to new landfills. Information collected since the proposal confirmed that the practice of constructing overfills for the disposal of CCR is conducted with some regularity, and raised questions as to whether overfills would be effectively regulated under the proposed technical requirements of the rule. In the NODA, to aid in the development of final technical requirements, EPA solicited data and information that directly addressed existing engineering guidelines or practices applicable to this units, as well as any regulatory requirements governing the siting, design, construction, and long-term protectiveness of these units for the disposal of CCR. The Agency received numerous comments on the NODA. The majority of commenters agreed that overfills are commonly employed to allow continuing use of CCR disposal sites and to avoid the need to develop CCR management units at other sites. Some commenters added that: (1) The engineering design of an overfill can increase the stability of the underlying surface impoundment or landfill; (2) the use of an overfill facility reduces the need for new infrastructure construction; and (3) an overfill avoids having to transport CCR significant distances for off -site disposal. Other commenters mentioned that several states had experience with overfills and have applied requirements such as liner systems, monitoring wells, and stormwater modeling on a case -by - case basis using best engineering practices. They added that overfills pose unique construction and operational issues depending on the site and the characteristics of the underlying unit, and that the construction of these units will therefore vary to account for these conditions. Commenters identified several issues requiring additional attention during design and construction of overfills including seismic and static liquefaction, settlement, foundation improvement, partial overfills, groundwater upwelling, groundwater monitoring, and wastewater infrastructure. Upon review of these comments and further evaluation, the Agency has concluded that while there may be technical issues relating to the design, construction, and maintenance of overfills, the technical standards for CCR landfills are sufficiently flexible that no modifications are necessary to accommodate such units. For example, while the design and construction of groundwater monitoring systems may be technically more challenging, the final standards already allow for the construction of a multi -unit system. The performance standards and technical specifications laid out in the technical criteria developed for this rule are equally as applicable to overfills (and as protective) as to other new units. In essence, EPA is retaining the approach from the proposal that overfills will need to comply with both the requirements applicable to the closure of surface impoundments or landfills, and with all of the technical requirements applicable to new landfills. Thus, overfills cannot be constructed unless the underlying foundation—i.e., the existing CCR surface impoundment has first been dewatered, capped, and completely closed. And because overfills are considered to be "new CCR landfills," the design and construction of such units must comply with the technical requirements that address foundation settlement, overall and side slope stability, side slope and subgrade reinforcement, and leachate collection and groundwater monitoring system requirements, which will all need to be evaluated independent of the underlying CCR unit to ensure that the overfill design is environmentally protective. This evaluation must also be certified by a qualified professional engineer. Under the location standards applicable to new CCR units, subgrade soils must be capable of providing stable structural support to the new liner system. A foundation composed of unconsolidated materials, such as CCR that is susceptible to slip -plane failure, is an unstable area (man-made) and, under provisions of this rule, is therefore a prohibited location for new CCR units. The TVA Kingston ash fill failure was at least partly attributable to slip -plane failure of saturated CCR that made up the subgrade and foundation beneath the unit. Similarly, prudent and standard engineering practice for new CCR landfills requires that the base and side slopes of the overlying CCR landfill be able to maintain the structural integrity of the unit. If necessary, the subgrade should be reinforced with a geotextile fabric, or otherwise improved, to stabilize existing CCR in the underlying unit and to minimize tensile strain in the liner system. Slopes should be reinforced to prevent downhill sliding and to protect the leachate drainage system. EPA is aware from comments that at least one facility is consolidating wet CCR in an active CCR surface impoundment through placement of dry ash over the wet CCR, and thereby converting the impoundment to a dry landfill, without stabilizing the CCR in the unit or capping the unit. This practice will no longer be permitted under the final rule criteria. Although no modifications were determined to be necessary to the individual technical criteria, EPA has added specific provisions that clarify the status of overfills, and clearly prohibit construction of a CCR landfill over a CCR surface impoundment unless the CCR in the underlying unit has first been dewatered and the unit is capped and completely closed. Dewatering, capping and closure of the underlying CCR unit prior to construction of the overlying CCR landfill renders the CCR overfill less susceptible to slip -plane failure. Conversion of an impoundment to a landfill without these measures involves a complex construction process that is highly site specific; EPA was unable to develop sufficiently objective performance standards that could be