HomeMy WebLinkAboutNC0004308_WASTELOAD ALLOCATION_19880203NPDES DOCUWENT SCANN@NO COVER SHEET
NPDES Permit:
NC0004308
ALCOA — Badin Works
Document Type:
Permit Issuance
Wasteload Allocation
Authorization to Construct (AtC)
Permit Modification
Complete File - Historical
Other (Mixing Zone Study)
Instream Assessment (67b)
Environmental Assessment (EA)
Permit
History
Document Date:
February 3, 1988
W,bd s clocuarrwexwt its printed oars reuse paper - i@pzore any
content on the areirerfte aide
MEMORANDUM
TO:
FROM:
SUBJECT:
DIVISION OF ENVIRONMENTAL MANAGEMENT
February 3, 1988
Trevor Clements
Carla Sanderson
Alcoa
NPDES Permit # NC0004308
Based upon proposed division procedure for determining whether effluent
limits for industrial discharges should be mass or concentration based, the
current proposed permit limits for Alcoa should be revised as follows:
BOD_, (mg/1)
Nickel (mg/1)
Fluoride (mg/1)
Monthly Average
Summer Winter
31.8 63.6
Daily Maximum
Summer
Winter
47.7
95.4
0.103
0.103
3.71
3.71
The other parameters are based on effluent guidelines and will remain
as written on the current wasteload allocation (attached).
CS:gh
Sept. 30, 1987
MEMORANEM
To: Trevor Clements
Through: ,jay Sauber,
4�
From: Mary Jaynes fi
Subject: Badin Lake data
Enclosed are the data for Badin Lake that you requested. The lake has
been sampled every year since 1981 as part of the Ambient Lakes
Monitoring effort. The enclosed maps show the locations of the four
sampling stations. The two computer forms (STORET ALLPARM and
INVENTory retrievals) summarize all available data on the lake except for
this summer's samples. The 1987 data are presented in Tables 1, 2, and 3.
For your convenience, depth profiles of dissolved oxygen, temperature, and
pH at each station have also been graphed (Figure 1, A-D). Please contact me
if I can be of further assistance.
cc: Steve Tedder
Q C W A N o D A V l D S O N p P A N D O L P H
C O U N G C U I Y N, _
fl4
UAI
Ir
AREA
DA.M
A � ! a
MAX
ucx
JCII
tS t
'> 5
\ i,•� 1u
kOUWAJM
rtleir`•
62
BADIN LAKE
,
1 �'lr 1 lh V f t-7.
' (�—' f'' 1 / �• _ `' f ..;'' � . ,` . _' ��" Vie:
\\ y r L n7 1 t i
ice,: ✓ ' j ��
�, ocks � l' �r. r /,�� � i r��, \4 Y isS [ �� � f .'�''-� � fr/ / �:•;+
! / �' !/I !•� 1I }i I ' S i �' }/'' i iiln \\����;,� 1�ti�1 \ 1� � r�� � � r 5\ ,:�',
AMBIENT LAKES MONITORING PROGRAM
TABLE 1. 1987 BADIN LAKE PHYSICAL PROFILES. Page i
DEPTH
D.O.
TEMP
pH
COND
SECCHI 1% LIGHT
DATE
STATION
TIME
m
mg/L
C
SU
uhmo/cm
m DEPTH(m)
870813
YAD178B
1320
0.15
5.6
29.1
6.4
83
0.7 1.8
870813
YAD178B
1320
1.0
5.3
29.1
6.4
82
870813
YAD178B
1320
2.0
4.8
28.9
6.3
82
87C813
YAD178B
1320
3.0
4.4
28.6
6.3
80
870813
YAD178B
1320
4.0
4.4
28.5
6.3
78
87083
YAD178B
1320
5.0
4.4
28.5
6.3
77
87 3-13
YAD1783
1320
6.0
4.9
28.5
6.3
76
870813
YAD178B
1320
7.0
5.1
28.5
6.3
77
870813
YAD178B
1320
8.0
5.2
28.5
6.3
73
870813
YAD178B
1320
9.0
5.1
28.5
6.3
72
870813
YAD1783
1320
10.0
2.8
28.3
6.2
74
870813
YAD178B
1320
15.0
0.1
26.7
5.9
63
870813
YAD178B
1320
17.0
0.1
26.1
5,9
63
87CB13
YAD17BE
1242
0.15
6.4
29.1
6.6
74
1.7 4.1
870813
YAD178E
1242
1.0
6.6
29.0
6.6
74
870813
YAD178E
1242
2.0
6.7
28.8
6.6
72
870813
YAD17BE
1242
3.0
6.6
28.8
6.6
71
870813
YAD178E
1242
4.0
6.4
28.6
6.5
70
870813
YAD178E
1242
5.0
6.2
28.5
6.5
69
870813
YAD178E
1242
6.0
4.8
28.4
6.4
68
870813
YAD178E
1242
7.0
0.8
28.0
6.2
69
870813
YAD178E
1242
8.0
0.1
27.8
6.1
67
870813
YAD178E
1242
9.0
0.1
27.8
6.0
65
870813
YAD178E
1242
10.0
0.1
27.7
6.0
66
870813
YAD178E
1242
15.0
0.1
26.6
5.9
61
870813
YAD178E
1242
20.0
0.1
24.3
5.9
69
870813
YAD178E
1242
25.0
0.1
15.4
6.1
72
870813
YAD178F
1200
0.15
5.8
28.5
6.5
78
1.0 3.0
870813
YAD178F
1200
1.0
5.7
28.5
6.5
77
870813
YAD178F
1200
2.0
5.6
28.4
6.4
76
870813
YAD176F
1200
3.0
5.4
28.4
6.4
76
870813
YAD178F
1200
4.0
5.2
28.4
6.4
74
870813
YAD178F
1200
5.0
5.1
28.3
6.4
72
870813
YAD178F
1200
6.0
5.1
28.3
6.4
71
870813
YAD178F
1200
7.0
5.0
28.3
6.3
70
870813
YAD178F
1200
8.0
5.1
28.2
6.3
69
870813
YAD178F
1200
9.0
5.1
28.2
6.3
69
670813
YAD178F
1200
10.0
4.6
28.2
6.3
67
870813
YAD178F
1200
15.0
0.2
26.9
6.0
60
870813
YAD178F
1200
20.0
0.1
24.9
6.0
60
870813
YAD178F
1200
23.0
0,1
18.4
5.9
47
870813
YAD178FI
1130
0.15
7.4
28.9
6.7
78
1.1 2.6
870813
YAD178FI
1130
1.0
7.4
28.9
6.8
78
870813
YAD178FI
1130
2.0
7.4
28.8
6.8
77
AMBIENT LAKES MONITORING PROGRAM
TABLE 1. 1987
BADIN
LAKE
PHYSICAL
PROFILES.
Page 2
DEPTH
D.O.
TEMP
PH
COND SECCHI 1% LIGHT
DATE
STATION
TIME
m
mg/ L
C
SU
uhmo/cm m DEPTH(m)
870813
YAD178F1
1130
3.0
7.0
28.7
6.7
74
87081.3
YAD178F1
1130
4.0
6.6
28.6
6.6
72
870813
YAD178FI
1130
5.0
6.2
28.6
6.5
71
870813
YAD178FI
1130
6.0
6.5
28.5
6.5
70
870813
YAD178F1
1130
7.0
6.5
28.6
6.5
68
870813
YAD178FI
1130
8.0
5.7
28.5
6.4
67
870813
YAD178FI
1130
9.0
5.0
28.4
6.3
68
870813
YAD?78F1
1130
10.0
3.4
28.3
6.2
66
8708i3
YAD178FI
1130
14.0
0.1
27.2
5.9
60
i
AMBIENT
LAKES MONITORING
PROGRAM
TABLE 2. 1987
BADIN LAKE
CHEMISTRY
DATA.
TOTAL
SUSPENDED
CHL A
CHL A
RESIDUE
RESIDUE
ALKALINITY
TURBIDITY
(TRI)
(CORR)
PHEOPHYTIN
DATE
STATION
mg/L
mg/L
mg/L
NTU
ug/L
ug/L
ug/L
870813
YAD178B
82
10
21
5.2
33
31
3
870813
YAD178E
72
7
20
6.6
11
10
<1
870813
YAD178F
72
6
20
3.4
22
22
<1
870813
YAD178FI
82
4
21
29
32
31
<1
TABLE 3. 1967 BADIN LAKE NUTRIENT DATA.
NH3
TKN
NO2+NO3
TOT P
DATE
STATION
mg/L
mg/L
mg/L
mg/L
870813
YAD178B
0.10
0.5
0.05
0.04
870813
YAD178BBOT
0.31
0.4
0.19
0.07
870813
YAD178E
0.22
0.5
0.05
0.04
870813
YAD178EBOT
0.47
0.6
0.03
0.07
870813
YAD178F
0.05
0.3
0.08
0.03
870813
YAD178FBOT
0.19
0.4
0.17
0.05
870813
YAD178FI
0.02
0.3
0.07
0.02
870813
YAD178FIBO
0.06
0.4
0.31
0.03
PO4
mg/L
<0.01
0.01
<0.01
0.01
0.01
0.01
0.01
<0.01
1-
w
C3 -1
-1
AMBIENT LAKES MONITORING PROGRAM
OD.o. ❑TEMP 6PH
B. YAD 17BE
0...................... .............. -.
0
-5
_ -10
W
-1s
-20
-25
-30
III
-5 0 5 10 15 20 25 30
Figure 1. 1987 Badin Lake --Depth profiles of physical parameters.
9
'y 'r • s ryl v e tor` r. ! 1,
ZTbP,t-,—
Lcle. DS GQj,
zc
Ck KO-
L ice. Ds 6e"enda.&k..
za CK RJR
(� GS'4 D000 f �
10 Li's J-)a..MA-
to SJ:w �jII
e. Z 4Bc ,,, Nc
M T
e ca 4A7�v ' y V
State of North Carolina
Department of Natural Resources and Community Development
Division of Environmental Management
512 North Salisbury Street • Raleigh, North Carolina 27611
James G. Martin, Governor R. Paul Wilms
October 2, 1987
S. Thomas Rhodes, Secretary Director
Mr. Dennis E. Ford
FTN Associates
3 lnr►wood Circle
Suite 220
Little Rock, AR 72211
Dear Mr. Ford:
Enclosed you will find the data that you requested. Also enclosed
are maps showing the -station locations where the data were collected.
Please contact Trevor Clements or myself before proceeding with
sampling as BEM would like to have an observer present.
If z can be of further assistance, please contact me at (919)
733-5083 (ext. 161).
JDV:gh
cc: Trevor Clements
Enclosure
Sincerely,
David Vogt
Pollution Prevenlian Pars
P.O. Box 27687, Raleigh, North Carolina 27611-7687 Telephone 919-733-7015
An Equal Opportunity Affirmative Action Employer
State- of North Carolina
Department of Natural Resources and Community Development
Division of Environmental Management
512 North Salisbury Street • Raleigh, North Carolina 27611
James G. Martin, Governor
S. Thomas Rhodes, Secretary
Marc Johnson
FTN Associates
3 Innwood Circle
Suite 220
Little Rock, AR 72211
Dear Mr. Johnson:
September 14, 1987
R. Paul Wilms
Director
Attached you will find a copy of a memorandum written by a member
of our modeling staff. This memorandum outlines some of the concerns
that DEM has with the proposed study. Perhaps you would care to review
these concerns before our meeting on the 23rd. We look forward to seeing
you then.
JTC:gh
cc:,,, David Vogt
Attachment
Sincerely,
J. Trevor Clements, Supervisor
Technical Support Unit
Pollution Prevention Pats
P.O. Box 27687, Raleigh, North Carolina 27611-7687 . Telephone 919-733-7015
DIVISION OF ENVIRONMENTAL MANAGEMENT �C",
September 13, 1.987
MEMORANDUM
TO: George Everett
THROUGH: Trevor Clemen
Steve Tedder
FROM: David Vogt
SUBJECT: Proposed Study Plan for Alcoa's WLA
I have reviewed the study plan proposed by FTN Associates
for determining the mixing characteristics of the cove in Baden
Lake in which Alcoa's waste is discharged. I have the following
comments:
1) EPA stongly advocates doing tracer studies during critical
design conditions. Near -to -design conditions are acceptable if
the obtained coefficients can be extrapolated to critical
conditions using hydraulic parameters.' Normally DEM recommends
that intensive studies be done in late August or early September
when water temperatures are high and flows are low. However,
since we are presently near low -flow conditions, a study done in
late September or early October may be permissable. This means
that both Alcoa and FTN Associates will need to accelerate the
planning and execution of the study.
2) FTN's proposal mainly addresses the determination of mixing
characteristics within the cove. While this is quite important,
spatial and temporal examinations also need to be made at the
interface of -the cove with the lake. Only if this is done can
a determination be made of the residence time of the pollutants
in the cove and the method by which they are transported into the
main portion of the lake.
3) FTN proposes to inject dye into the effluent "for a minimum of
2 hours" and then observe the dye concentration in a 3-dimensional
grid of sampling locations located within the cove. However, due
to the lack of mixing in•the cove, it may take days of continuous
injection before the dye reaches equilibrium at a sampling point
(this is especially true for,the outermost sampling locations).
Figure 1 illustrates this concern.
4) It is recommended that FTN take sediment samples in the grid
area sometime during the study to ascertain if there are elevated
concentrations of cyanide or fluoride in the sediments.
I hope that these comments are of use to you in deciding the
disposition of Alcoa's wasteload allocation. Please contact me if I
can be of further assistance.
PW
WC
Figure 1. Dye Concentration vs. Time at a Sampling Grid Location.
To me
water resources consultants
ASSOCIATES LTD. 3INNWOOD CIRCLE • SUITE 220 • LITTLE ROCK, AR 72211 • PHONE (501) 225-7779
12 August 1987
SEP , g ;ma's r
Aluminum Company of America
Hwy. 740�(}��
P. O. Box 576
Badin, NC 28009
Attn: D. J. Phillips
Re: Request for Quotation, Inquiry No. 7818418A
dated 28 July 1987
Dear Sir/Madam:
Enclosed for your review is our proposal and bid for the
referenced RFQ. Our bid includes professional services,
travel, field equipment, and analysis as specified. Some
parts of our proposal such as the number of trips and
coordination meetings are negotiable.
If you have any questions -or require additional information,
please call Marc'Johnson or myself.
Kindest regards,
FOC TNIATES, LTD..
Dennis E. Ford, PhD, P.E.
President
Enc.
SEA} 1 � 1�
TECH'VICAt SERVICES
WASTELOAD ALLOCATION AND MIXING ZONE STUDY
wo
rd 1.0 PROPOSED STUDY OUTLINE
FTN proposes to conduct a wasteload allocation and mixing zone modeling study for
ALCOA, Badin, NC works, on two separate NPDES permitted outfalls (002 and 009)
following applicable sections of EPA's Technical Support Document for Water Quality -based
Toxics Control. The parameters will include fluoride and cyanide (total and free) at both
outfalls and sulfate at outfall 002 only. To accomplish the study within the eight weeks
proposed in the request for quotation, we have divided the study into 4 tasks:
1. Data compilation and review.
2. Tracer study.
3. Simple steady state modeling.
4. Report preparation and review.
These tasks are described hereafter.
1.1 Data Compilation and Review
1.111.Object,ives
The objectives of this task are:
a. Define outfall characteristics (magnitude of momentum and buoyancy forces).
b. Define receiving body characteristics (stratification, flow regime).
C. Define critical conditions and scenarios to be modeled.
1.1.2 Procedures
a. A site visit will be made to ALCOA's Badin works as well as a visit to the offices of
the North Carolina Department of Natural Resources and Community
Development to discuss the project and collect information.
b. Outfall characteristics will be determined using information obtained from
ALCOA and the NPDES permits. Information required will include outlet
geometry (depth, orientation, and size of outfalI), flow rates (including seasonal
variability), and effluent density (dependent on temperature and dissolved and
suspended solids). This information is required to classify the outfall on the basis
1
of the magnitude of momentum and buoyancy forces. It will be used to select the
appropriate model and determine dilution characteristics.
C. The receiving water body characteristics that must be determined include reservoir
and cove morphometry, stratification patterns, flow regime including seasonal
variability and residence times, and reservoir operating procedures such as
withdrawal depths, pool level fluctuations, rule curves, etc. This information will
be obtained from the State of North Carolina and the operators and owners of the
Badin Reservoir, Yadkin Incorporated.
d. Pertinent State and Federal water quality standards will be obtained and used to
determine effluent concentrations that must be met outside the mixing zone.
1.1.3 Schedule
This task will require 2 to 3 weeks to complete after receiving the notice to proceed.
1.1.4 Products
a. Classification of the outfall to select appropriate models.
b. Identification of critical conditions and scenarios to be modeled. These will be
submitted to ALCOA and the State for approval.
C. Determination of dilution requirements to meet State and Federal water quality
standards.
1.2 Tracer Study
1.2.1 Objectives
The objectives of this task are:
a. Define effluent dilution characteristics.
b. Collect data for use in modeling effluent dilution under other conditions (i.e.,
model coefficient calibration data).
1.2.2 Justification
For existing outfalls, tracer studies are the most cost-effective and defensible studies to
determine mixing characteristics. They do not require the extensive data and assumptions
that mathematical models require. Their only limitations are that they show only what will
happen under the conditions they were conducted under. Ideally, tracer studies should be
conducted under the critical conditions to be modeled. In this study, because of the limited
2
time frame, consideration cannot be given to the selecting the optimum time for the tracer
study.
1.2.3 Field Procedures
a. Make in situ measurements to determine:
- Approximate dilution of effluent for use in determining tracer dosages.
- Background fluorescence.
- Cove stratification.
b. Inject Rhodamine WT fluorescent dye into the effluent for a minimum of 2 hours.
Rhodamine WT was developed especially for water tracing and is approved for use
by the State.
C. Define the temporal and spatial characteristics of the dye cloud with a three-
dimensional grid of sampling points established in the cove. A Turner Designs
field fluorometer will be used for in situ dye concentration analysis. Discrete
samples will be collected as backup.
d. Submit several discrete samples to an analytical laboratory for the analysis of
fluoride, sulfate and total and free cyanide to verify that dye and effluent dilutions
are similar.
e. Make velocity measurements at each outfall for use in modeling applications.
1.2.4 Schedule
The tracer study will be scheduled for the second or third week of the study. It is
projected to take about one week to study both outfalls. If possible, more than one dye study
will be conducted on each outfall. With sufficient lead time, cost reductions may be possible
with supplies, travel, etc.
1.2.5 Products
a. Summary of tracer study procedures and results.
b. Near and far field dilutions.
C. Calibration data for modeling studies.
d. Definition of mixing zone.
3
1.3 Model Simulations
1.3.1 Objective
The objective of this task is to predict effluent behavior under critical conditions and to
define the mixing zone.
1.3.2 Model Selection
a. No three-dimensional, dynamic, density dependent models are available.
b. Two-dimensional models are available but require detailed input data (e.g., hourly
solar radiation data, observed temperature profiles) and large amounts of
computer time (hours on large main-frame computers) that make their application
impossible within a six week period.
C. Only simple steady state models can be used such as those described in "Lake and
Reservoir Analyses", Part 1 - Mixing Zone and Toxic Waste]oad Allocations,
Chapter 5 of EPA's Technical Support Document for Water Quality -based Toxics
Control. The exact model to be used cannot be identified until the outfall and
receiving body characteristics have been defined; however two general types of
models will be used:
Near field dilution model - predicts initial dilution near the outfall pipe.
Outfall characteristics will determine if it will be a jet or pIume model.
Far field dispersion model - predicts mixing caused by the ambient flow
regime. Currents may be driven by convection (differential heating) or
advection (inflows or outflows from the reservoir).
1.3.3 Model Application
A maximum of four scenarios will be evaluated to determined critical conditions. These
scenarios would be selected only after consulting with and gaining the approval of ALCOA
and State officials. Examples of such scenarios might involve determining the behavior of the
effluent with a low outflow and strong stratification, with a negatively buoyant outflow rate
and stratification, and with a neutrally buoyant outflow and no stratification.
1.3.4 Schedule
The modeling study will be conducted during the two week period (weeks 4 and 5)
following the tracer study.
4
1.3.5 Products
The results from this task will be:
a. A description of the assumptions, limitations, and procedures used in the analysis.
b. Predicted dilutions for each of the scenarios.
C. Definition of the mixing zone.
1.4 —Report Preparation
1.4.1 Draft Report
A draft report will be completed within six weeks of project commencement and
submitted to ALCOA for review. After ALCOA has reviewed the report, the Project
Manager and Project Engineer will meet with ALCOA to discuss the results. If desired, a
meeting can also be arranged to discuss the results with the State.
1.4.2 Final Report
A final report with recommendations will be submitted within 2 weeks after receipt of
draft report comments.
5
2.0 PERSONNEL AND STUDY TEAM ORGANIZATION
2.1 Ke Personnel
Dennis E. Ford PhD, P.E.
Dr. Ford is a recognized international authority on reservoir hydrodynamics. Pertinent
experience includes:
- Authored the sections on lake and reservoir analysis in Chapter 5 of EPA's
Technical Support Document for Water Quality -based Toxics Control.
Principal Investigator for the development and verification of techniques for
describing internal reservoir mixing processes, U.S. Army Engineer Waterways
Experiment Station (WES).
Project Manager for Lake Catherine, AR mixing zone and wasteload allocation
study.
- Directed over 10 large-scale dye studies in reservoirs to study inflow and effluent
behavior.
- Project Manager for Yazoo River, MS mixing zone study for dredged material
spoil area releases.
- Conducted laboratory, field, and numerical modeling investigations of thermal
discharges.
- Principal Investigator for the development of one- and two-dimensional reservoir
water quality models with the WES.
Marc C. Johnson P.E.
Mr. Johnson has conducted numerous dye studies in reservoirs and has worked on the
development and application of a wide range of reservoir models. Specific experience
includes:
- Authored an instructional report on conducting tracer studies in reservoirs for the
U.S. Army Corps of Engineers (referenced in "General Recommendations for
Tracer Studies",:Part 1, Chapter 5, Technical Support Document for Water
Quality -based Toxics Control).
- Conducted over 10 dye tracer studies in reservoirs including cove and effluent
discharge studies.
- Principal Investigator for the development and application of a two-dimensional
reservoir water quality model while at the WES.
2
- Applied steady state jet and plume models and developed a two-dimensional
longitudinal dispersion model for the Lake Catherine, AR mixing zone and
wasteload allocation study.
Designed dye studies for ALCOA, Benton, AR mixing zone and Use Attainability
Analysis.
James T. Malcolm
Mr. Malcolm has a background in aquatic chemistry, aquatic toxicology, water quality
study planning, quality assurance and quality control, and data analysis. Specific experience
includes:
Conducted Use Attainability Analyses (UAA) for the Cities of Blytheville and
Decatur, in Arkansas. Responsibilities included study design, water chemistry
sampling and data interpretation, dye studies for time of travel, and wasteload
allocation computer modeling.
Conducted UAA for ALCOA, Benton, AR and assisted in preliminary dye study to
evaluate the effects of ALCOA's discharge on the Saline River, Arkansas. Mr.
Malcolm prepared dye standards for the dye study and assisted in sample
collection and analysis.
- Project scientist for groundwater sampling and in situ analyses at Pine Bluff
Arsenal, AR.
- Assisted in the preparation and review of EPA's National Acid Precipitation
Assessment Program - ELS Phase 11 and co-authored the Watershed Manipulation
Project Quality Assurance/Quality Control Methods Manual for sampling and
analytical protocols.
2.2 Team Organization
Data and Standards
M. C. Johnson, P.E.
L. S. Johnson, P.E.
ALCOA I
Project Manager
Administration
D. E. Ford, PhD, P.E.
Project Engineer
M. C. Johnson, P.E.
Tracer
M. C. Johnson, P.E.
J. T. Malcolm
R. A. Nusz
Model
Simulations
D. E. Ford, PhD, P.E.
M. C. Johnson, P.E.
Report and
M C. Johnson, P.E.
D. E. Ford, PhD, P.E.
3.0 CLIENT CONTACT LIST FOR SIMILAR STUDIES
Contact Nature of Work
Dr. Elizabeth Southerland
Prepared sections on mixing
Monitoring and Data
zone definitions, Chapter 5
Support Division
"Exposure and Wasteload
US EPA,
Allocation", USEPA Tech -
Washington, DC
nical Support Document for
(202-382-7022)
Water Quality -based Toxics
Control
Mr. Milton Raabe, Manager Mixing zone and wasteload
City of Hot Springs, AR allocation study in Lake
Sewer Department Catherine, AR. Work
(501-624-7109) included dye studies and
modeling to determine
effluent behavior in the
reservoir.
° Dr. Jarvis Harper
On -going mixing zone,
Operations Environmental Scientist
wasteload allocation, and
Aluminum Company of America
Use Attainability Analysis
Benton, AR
in the Saline River, AR.
(501-776-4701)
Mr. Niall O'Shaughnessy
Coordinated and consulted
Asst. Chief of Water Division
on numerous wasteload
Arkansas Department of Pollution
allocation and dye studies
Control and Ecology
in Arkansas.
Little Rock, AR
(501-562-7444)
Dr. Richard Price
Performed mixing zone
Hydraulic Engineer
analysis for dredged
USAE Waterways Experiment Station
material spoil contaminant
Vicksburg, MS
area releases in Yazoo
(601-636-3111)
River, MS.
0
4.0 MODEL SELECTION
As discussed in Section 1.3.2, only simple steady state models can be applied. No three-
dimensional dynamic density dependent models exist. The two-dimensional models that do
exist would require longer than the allotted six weeks to apply, require much more detailed
input data than is available, and require large amounts of computer time.
The steady-state models that will be used cannot be identified until the characteristics of
the outfall and receiving waters can be determined (Section 1.1.2); however, the models to be
considered fall into two general classes:
Near field dilution
2. Far field dispersion
Near field models determine the initial mixing at the outfall. If the velocity of the
effluent entering the reservoir at the outfall is high, a jet model will be used; if it is low, a
plume model can be used. If the density differences (caused by temperature and dissolved
and suspended solids concentration differences) are large enough, the buoyancy effects of the
discharge will be considered. The plume and jet models discussed in Chapter 5 of EPA's
Technical Support Document for Water Quality -based Toxics Control are examples of near
field models.
Far field dispersion models simulate the flow -generating mechanisms in the ambient
waterbody. In a cove these may be the naturally occurring convection currents caused by
differential heating along its axis or by inflows and outflows from the main body of the
reservoir. Only after the driving mechanisms are identified (as described in Section 1.1.2) can
the appropriate models be selected.
EX9]
5.0 BILLING RATES
1987 Fee Schedulel
FTN Associates, Ltd.
Labor CateRoU
Principal Engineer/Scientist
Engineer
Scientist
Technician
Draftsperson
Clerical
HourlYRates
$78.00
48.00
44.00
32.00
26.00
20.00
Miscellaneous Expenses
All miscellaneous expenses will be invoiced at cost plus 10 percent for handling. In-
house miscellaneous costs include:
Computer (Harris 80)
Mileage
Copies
Travel
Supplies/Other
$180.00/CPU hr + 1017o
- 0.21/mi + 1.0%
- 0.10/copy + 10%
Cost + 10%
Cost + 10%
1 Effective 1 July 1987 - 31 December 1987
11
6.0 TIME AND COST ESTIMATE
Cost estimates for labor, travel, and materials, are broken down in Sections 6.1 to 6.3
and totaled in Section 6.4. The number of coordination trips is negotiable. Section 6.5 is a
separate quote for analytical laboratory services. The total lump sum "not to exceed" costs are
given in Section 6.6.
12
PERMIT NO.: NC00014309
FACILITY NAME:
Facility Status: <L`_Ur_ r PROPOSED
(circle one)
Permit Status: RENEWAL MOMCAT[ON _
(circle one)
Major Minor
Pipe No: 003
Design ,Capacity (MGD): 0.181
Domestic (% of Flow):
NPDES WASTE LOAD ALLOCATION
IEW
Industrial (X of Flow): d
'Comments: :r ;s or, f Z711 (dAe b re,4.
ryZcQS oh / ( An error rk�s rAj- � ero.fs L, sw4m;jej
a S1oo of 0.016 ticb. flaw sk,-14 be D 1 e( /441&
RECEIVING STREAM: LiELLt Mr ,jr ,,.j C aK
Class:
Sub -Basin: 3-01- 0
Reference USGS Quad: 1 4L (please attach)
County: — ST."Ly
Regional Office.: As Fa Mo Ra Wa Wi WS
(airele oar)
Requested By: 0j&tCA5N Date: -6
/067
Prepared By: / �� Date: ,36g-
Reviewed By: Date:
Modeler
Date Rec.
#
Drainage Area (mil) Avg. Streamflow (cfs): r� a
o _ "(
7Q10 (cfs) d 3 Winter 7Q10 (cfs) 30Q2 (cfs)
Toxicity Limits: IWC _ % (circle one) Acute / =hronic
Instream Monitoring:
Parameters
Upstream T Location�l .,, 5/Wi4 e,
Downstream Location >7nrox. n'lil r/ekh) Dr`Isth.
Comments: P_ j Ad ll°d ,5kee, f -�Y e4j4eY{'►E x 'Pl? jj j o$
/If eAvrl : N/l _Li Z // :.. I i 7n ! -Y _ -
FOR APPROPRIATE DISCHARGERS, LIST COMPLETE GUIDELINE LIMITATIONS BELOW
Effluent Characteristics Monthly Daily
Average Maximum Comments
-)M A-"(0Cb 4.4 # z7i? 1
(�
F-PPLoA,Ji i. UK l T/h"j o &A) Z" f E �ib7" cm4k d.
O LkT TA L-1,S
OpZ
Oo01l
bo� O tZ
ot3
S v��
PERMIT NO.: NCooOt(30$ NPDES WASTE LOAD ALLOCATION
FACILITY NAME:
Facility Status: PROPOSED
(circle ose)
Permit Status:
(circle
oae) RENE{iNAL MOMCAIiON UNPERWffED NEW
Milor—��Minor
Pipe No: a
Design Capacity (MGD)• 1
Domestic (X of Flow) -
Industrial (R of Flow): �o
Comments:
RECEIVING STREAM:I�L� iYln��H�lr�,n_
Class: —_ 11_
Sub -Basin: -_ 03601B
Reference USGS Quad: "' (please attach)
County:
Regional Office: As Fa Mo Ra Wa WI WS
(circle *tie)
Requested By: O�e�(^ash ^.Date•
—4-0 /17—
Prepared By• :i4 ate:
Reviewed By: Date:
Modeler Date Rec.
Drainage Area (miZ) Avg. Streamflow (cfs):
7Q10 (cfs) Winter 7Q10 (cfs) _30Q2 (cfs)
Toxicity Limits: IWC% (circle one) Acute / Chronic
Instream Monitoring:
Parameters
:1
Upstream. Location 'A
Downstream Location , DOrblf,�! P bell
/ rliv_h► A .59 /7.20
Effluent
Characte
iM rALY)
i Met(
oov! de
4; moa
to
Comments:
rrrbn 4h I
fife .
:I
rn924�
�
nn r
#31..0
113.E
qu
yl
-
5 01
-
as-c�4
15
--
y
o• t o3
o. t 55
-
r
3.'l 1
. (�
�-
b. Soo t
.
C5-OCY�t �
Request No. :4033
^ --------------------- WASTELOAD ALLOCATION APPROVAL FORM ---------------------
Permit Number
: NC0004308
Facility Name
: ALCOA
Type of Waste
: INDUSTRIAL
Status
: EXISTING
Receiving Stream
: LITTLE MOUNTAIN
CREEK
Stream Class
: C
Subbasin
: 030708
County
: STANLY
Drainage Area
(sq mi)
: 6.1
Regional Office
: MRO
Average Flow
(cfs)
: 6.0
Requestor
: DALE OVERCASH
Summer 7010
(cfs)
: 0.3
Date of Request
: 6/11/87
Winter 7010
(cfs)
: 0.5
Quad
: F18NE
3002
(cfs)
:
------------------------- RECOMMENDED EFFLUENT LIMITS -------------------------
: MON AVE DAL MAX WINTER
Wasteflow
(mgd):
0.181
0.181 0.181
5-Day BOD
(#/d):
48
96
Dissolved Oxygen
(mg/1):
5
Oil & Grease
(#/d):
15.09
22.64
TSS
(#/d):
1050
1575
Nickel
(#/d):
~1 55
Flouride
(#/d):
5.6
Aluminum
(#/d):
2.5214
5.684
Antimony
(#/d):
0.8001
1.7955
Benzo(a) pyrene
(#/d):
0.0091
--------------------------------- MONITORING ---------------------------------
Upstream (Y/N): Y Location: JUST UPSTREAM OF DISCHARGE POINT
Downstream (Y/N): Y Location: APPROX. 1.4 MILES BELOW DISCH. AT SR 1720
---------------------------------- COMMENTS ----------------------------------
THIS ALLOCATION IS A MODIFICATION OF WLA DONE 1/16/86 BY DAVE VOGT. A DESIGN
FLOW ERROR WAS MADE BY PERMITS ON THE PREVIOUS ALLOCATION.
THESE LIMITS APPLY TO WHAT IS PERMITTED AT PRESENT (BADIN EAST AND BADIN WEST)
ON LITTLE MOUNTAIN CREEK. BADIN IS TO RECEIVE FUNDING FOR A 201 PROJECT
WHICH WILL ELIMINATE THEIR EXISTING PLANTS AN6 PUT BADIN IN DOWNSTREAM OF
ALCOA. PLEASE SEE ATTACHED SHEET FOR LIMITS THAT WILL PERTAIN TO ALCOA WHEN
BADIN RELOCATES.
SEE TOXICITY LIMITS ATTACHED.
_______________________________________________________________________________
Recommended by
Reviewed by:
Tech. Support Supervisor
Regional Supervisor
Permits & Engineering
Date _
Date( 174
Date
Date
�Ny �� ���
RETURN TO TECHNICAL SERVICES BY ��� �° w��'.
Facility Name Permit
TOXICITY TESTING REQUIREMENT
The effluent discharge shall at no time exhibit chronic toxicity using
test procedures outlined in:
1.) The North Carolina Ceriodaphnia chronic effluent bioassay proce-
dure (North Carolina Chronic Bioassay Procedure - Revised *February 1987) or
subsequent versions.
The effluent concentration at which there may be no observable inhibi-
tion of reproduction or significant mortality is xwf % (defined as treatment
two in the North Carolina procedure document). The permit holder shall
perform r (, monitoring using this procedure to establish compliance
with the permit condition. The first test will be performed within thirty
days from issuance of this permit. Effluent sampling for this testing shall
be performed at the NPDES permitted final effluent discharge below all
treatment processes.
All toxicity testing results required as part of this permit condition
will be entered on the Effluent Discharge Monitoring Form (MR-1) for the
month in which it was performed, using the appropriate parameter code.
Additionally, DEM Form AT-1 (original) is to be sent to the following
address:
Attention: Technical Services Branch
North Carolina Division of
Environmental Management
P.O. Box 27687
Raleigh, N.C. 27611
Test data shall be complete and accurate and include all supporting chemi-
cal/physical measurements performed in association with the toxicity tests,
as well as all dose/response data. Total residual chlorine must be measured
and reported if chlorine is employed for disinfection of the waste stream.
Should any test data from this monitoring requirement or tests per-
formed by the North Carolina Division of Environmental Management indicate
potential impacts to the receiving stream, this permit may be re -opened and
modified to include alternate monitoring requirements or limits.
NOTE: Failure to achieve test conditions as specified in the cited docu-
ment, such as minimum control organism survival and appropriate environmen-
tal controls, shall constitute an invalid test and will require immediate
retesting. Failure to submit suitable test results will constitute a fail-
ure of permit condition.
7Q10 0.3 cfs
Permited Flow Q,Igl MGD Recommended by:
Basin & Sub -basin
Receiving Stream m� ;h �`ee-K 1,
County i7/y Date
ICDA's I4�evVlG+I ire I
jVd SO Ln d6W n:5-k-ea w1 0-f A (COA use
Li of t W1 I1 0-pp�
w i AAA - &Ct i VA CLt C. Ig ►mid
�A �cva
no . (�
c�0 �5 m,_�/I -
Wi 4+) i A 1.04- m
}1 ICO,A
Summer U)in+Iw
G30 D `��� 3 % �u. tp #/d
Do
jwodd
C2,
Ll
j ;�o5
CP
0,7/
03,5- .
T5
95-
15 1) 135
q5-
C 13,/)0 135 1-21
q7
15/ -3
t2
C2,3
-J-9 d
1,33
1,53 /.33 /-,53
1. 33
1-�,0��
oo .00 .06
.06
7,3 7,3 T5
7,3
j
173
J3.3
6, Q
16Y q5,5-
33.3
Ll 13
414
C2-1
jexv
0 .5
T?6/W
75
1,33
1.35
/.3:5
3-3
1,03
Ob
'00
0 Ca
0&
J.
0,/
C),
Do
47.3
"7-3
Ol 1� K 0 U)
z
cz
(Z'
ri
7-3
t-13. 67
�vo -
C-14 V-�
4
J� ov -
q6
-S 4 L c E 8A 0
tvj 41Cie,40
It
AJ
f�
D4o
-
mac r-)
1) CL,
r
bc) G
C7r
Cam,► = 143, 5 C �,� --003 CA
� L5—s— "
3PT
;4-)VrG
'PIT, CZAt. I
ail
00 000
U,.-) 6
4- Aa 4
y ATacer
I
-woL-t)
`) 0 - (i ?
16)6.08 ot-I lot/,, i jW
r
u) GD Au
Sloor
00
ase
ASS
/g)m5c�
5 'D -
-- . a gas
,3
eD
aa.c04
15?5fell
.. . ..
..
SUMMER
MODEL WITH ALL
THREE
DISCH.
INTERACTING
----------
MODEL RESULTS ----------
Discharger
:
ALCOA
Receiving
Stream
:
LITTLE MOUNTAIN CREEK
______________________________________________________________________
The End
D.O.
is 7.34
mg/1.
The End
CBOD
is 22.70
mg/l.
The End
______________________________________________________________________
NBOD
is 0.00
mg/1.
'
WLA
WLA
WLA
DO Min
CBOD
NBDD
DO
Waste Flow
(mg/1)
MiIepoint
Reach #
(mg/1)
____
(mg/1)
____
(Mg/1)
__
(mgd)
-----------
segment
1
5.12
0.91
____
4
Reach
1
96
0.0O
5.00
0.18000
Reach
2
0
0.00
0.00
0.00000
Reach
3
0
0.00
0.00
0.00000
Reach
4
96
0.00
5.00
0.18100
Segment
2
5.95
0.27
3
Reach
1
96
0.00
6.00
0,58000
Reach
2
0
0.00
0.00
0.06000
Reach
3
0
0.00
0.00
0.00000
Segment
3
5.10
1.45
3
Reach
1
0
0.00
0.00
0.00000
Reach
2
0
0.00
0.00
0.00000
Reach
3
0
0.00
0.00
0.00000
Reach
4
0
0.00
0.00
0.00000
Reach
5
0
0.00
0.00
0.00000
Segment
4
5.57
0.38
l
Reach
1
0
0.00
0.00
0.00000
Reach
2
0
0.00
0.00
0.00000
Reach
3
0
0.00
0.00
0.00000
Reach
4
0
0.00
0.00
0.00000
.�..� �{ I`�t.f iN_:.1.... ;::,L11v11`1 F§ 1=; `� l.) �'1 � �t• �• #
AL._C.C: A Eli..iL.4fi_'FC:,�;iyi
Rc-r-eivi}-irj Sty-eafn L-11`TLE MOL1N'TATN CR1w --, stE earn Class: C,
3urrlrrler- 7010 0.3 Wiriter' 7[ 1t:} t}.
j}t;-.rsigri 26.
U NGTH1 SLOPE; VELOCITY ; DEPTH; K1 1 K1 1 K2 1 K2 ; K11 ; M 1 KNR' 1 KNR
Mile 1 ft/mi; fps ; ft :design; Z201 :design! 8201 ;de5ignF 120' ;design; 320'
-----------------------------------------------------------------------------------------------------
4
Segment 1 1 0.20; 47.60; 0.121 1 0.52 ; 0.64 ; 0.48 111.79 1 10.34; 0.00 1 0.00 ; 0.00 ; 0.00 ;
1
Reach 1 I I 4
-----------------------------------------------------------------------------------------------------
1 4 1 I 1 1 1 1 1 1 1 1 4
Segment 1 1 0.131 76.90; 0.139 ; 0.47 ; 0.69 1 0.52 121.92 ; 19,231 0.00 ; 0.00 ; 0.00 ; 0,00
Reach L 1 f 1 1 F
4
1 f 1 i 1 1 1 1 1 1 1 1 f
1 i 1 1 1 i 1 1 1 i 1 1 4
Segment 1 1 0.301 31.301 0.107 0.56 ; 0.58 ; 0.44 ; 6.09 ; 6,041 0.00 ; 0.00 ; 0.00 ; 0.00 ;
Reach 3 ; 1
--------------------•--------------------------------------_---------•---------------------------------
1
Segment 1 0.641 31.301 0.147 1 0.62 0.60 ; 0.46 ; 9.46 1 8.30; 0.00 ; 0.00 ; 0.00 0.00 ;
Reach 4 1 1 ; ; 1 ; 1
Segment 2 ; 0.13; 91.001 0.908 ; 0.26 ; 1.32 ; 1.00 :56.97 ; 50.00; 0.00 ; 0.00 ; 0.00 ; 0.00
Reach 1 1 ; ; ; 1 ; ; ; 1 ; ; 1 1
! f I 1 I 1 I 1 ! 1 1 1 I
Segment 2 1 0.111 50.00; 0.714 ; 0.29 1 1.32 ; 1.00 156.97 1 50.00; 0.00 ; 0.00 1 0.00 ; 0.00 1
Reach 2 ; 1 ; ; ; 1 1 ; ; ; ; 1
] 3 1 1 1 ] 1 1 1 1 4 1 3
Segment 2 1 0.13; 77.00; 0.765 ; (1.28 1 1.32 1 1.00 156.97 ; 50.00; 0.00 0.00 ; 0.00 1 0.00
Reach 3 1 1 1 ; 1 1
-----------------------------------------------------------------------------------------------------
1 i 4 1 f I 4 1 1 i 1 1 1
Segment 3 1 0.221 43.501 0.269 ; 0.67 1 0.75 ; 0.57 123.97 1 21.03; 0.00 ; 0.00 1 0.00 1 0.00
Reach 1 1 , 1 4 1 , ! 1 1 , ! 1 F
1 1 ] 1 4 1 1 1 1 1 1 1 1 1
1 3 I 1 1 1 1 1 1 1 1 1 i
Segment 3 ; 0.601 33.301 0.246 1 0.70 ; 0.68 ; 0.51 116.79 ; 14.74; 0.00 ; 0.00 1 0.00 ; 0.00
Reach 2 1 , !
1 ] 4 ! 1 1 4 1 , i 4 1 3
-----------------------------------------------------------------------------------------------------
Segment 3 ; 0.901 22.501 0.216 0.76 ; 0.60 ; 0.46 1 9.95 ; 8.741 0.00 1 0.00 1 0.00 1 0.00 1
Reach 3 1
Segment 3 ; 0,30; 33.30; 0.239 1 0.73 ; 0.66 ; 0.50 116,31 ; 14.32; 0.00 ; 0.00 1 0.00 1 0.00
Reach 4; ; ; 1 ; 1 ; ; 1 1 1 1
Segment 3 ; 0.221 16.70; 0.195 1 0.81 ; 0.56 0.42 1 6.67 ; 5.851 0.00 ; 0.00 ; 0.00 1 0.00 1
C 1
Reach .� i
Segment 4 1 0.381 16.401 0.184 ; 0.95 ; 0.54 '1 0.41 ; 6.17 1 5.421 0.00 ; 0.00 1 0.00 1 0.00 1
-----------------------------------------------------------------------------------------------------
F
• 1 1 1 � 1 i 1 1 i i 1 1 1 i
Segeent 4] 0.221' 43.50� 0.244 1 0.83 0.67 1 0.51 :21.73 114.071 0.00 1 0.00 1 0.00 10.00
2 1 i 1 1
Reach 1 1 1
1 I 1 1 I 1 i i 1
-----------------------------------------------------------------------`-----------------------------
1 1 1 i 4 1 1 f 1
1 1 1 1 i 4 1 i 1 1 1 1 I
Segment 4 1 0.14: 33.34; 0.225 0.87 1 0.62 1 0.47 115.31 1 13.511 0.00 1 0.00 1 0.00 1 0.00 1
Reach 3 4 1 1 L F 1 I 1 F 1 1 ] 1 1 1 1
1 1 I 1 ) 1 1 i I 4 1
------------------------------------------------------------------------`----------------------------
I 1
1 1
Segment 4 1 1.20: 41.301 0.240 1 0.86 1 0.66 1 0.50 :20.33 1 PAC 0.00 1 0.00 1 0.00 1 0.00 1
Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1
-----------------------------------------------------------------------------------------------------
i l' .I.(-jvi 1 CDC) 1) i I'd 1•:+0D 1 D..0 1
1 (--fs 1 mg/1 1 al,'1 1 [Iig1:1 1
Waste i ()."4_)2 1 96.000 i 0.000 i 5.()00
PIeEtdvii::tt.erS::i
1
t) 290
i 2 00;) i
(.)„;)Ot_}
i %.._�(}t`}
T r i b U t EIV' y
;
(} , r ) i) t:)
i {_) . t_ 0 ) i
Cl . i) t_) (.)
; C) . i) f i i)
* Runoff
)2c)
1 2 , 000 1
t:) , t )E) 4)
7.30
Segaie-nt 1
Reacti G
Waste
1
0,000
i f).i)0 0
0.000
i [).(.)4.)0
•�^.1_. i.1:3t..ttct"i_"}s
1
t_) f i( )4.)
i 0 , 0(.)i.1 i
0 . t.)t,)il
; 0 4.ri)4.Y
34 RLAt"10f"1`'
i
4.),02r_)
i 2„000 i
L).00R)
i 1»300
Ei g [)) e,ri t 1.
Re
r.:t C:: h'I 3
Waste
1
4),i)C}{:)
1 [) tlilC) 1
0.4:}:)4.)
1 4?,i)isis
T ibutc-t.i_v
i
0.000
i C).E)t.1(:) 1
C)
C) i [).t»)i)i)
4, F.Lti is-',Ir f
t.} . 4">2i.)
2 , 4lilf,;) 1
0 , 000
1 7.
Segment I
Reacti
WF:%-,t-e
i
t�41
�),281
6.t)00 ;
t) t_}f)i)
i 5.000
-I••i..:t. bt..('1':'FA 'i"`f
1
0 , i }t.Si)
i 0. 000 i
0 . C)00
i 0. 000
* Ruli-ICI"f"f
1
0.160
1 2 . i.)i)t.) i
0 , 000
i 7. 304 )
::aG:.[:al3)t?)lt 2 1ie?ac.l'i 1
Was ist-
1
0.399
i 96.000 i
() . t„1t.14.1
i 6 . 000
HeFAdw=_tter=..:5 1
t_)„0C)t:)
; 0.4100 1
0.00 C)
1 1:.). [,.)4:)4.)
Tr i b l_t t: za y" y
i
4.r , t.} t_)
.
, t_} f) it
i t i . Q (") C)
* RLlllC.l'f"I=
1
i).Gi)i)
; 0„000 1
0.i)t.)()
i).fri}i)
Segt3ient 2
Reach
2
Waste
i
4_) . C)r. 0
1 0 . 4.14_)0 i
(.) . 4.r4_r4_r
i 0. 004.)
T- 11')U t i::t)' }
;
() . t,.)i)t.}
; 0 , 04,)4.) ;
4_) , 00o
; 0 , t.)4.0
F,LA'i )C,'17'Ir
i
Cl . () O4:.)
i 0 . 0 )0 1
t.) . t )00
1 i) , 0 ()S)
Sefgaic-i"it 2
Reiac:h
3
Wa-atG:
1
0 . (.)()i.)
; 0 . r 14»S4_S i
C) . 4_}f.)f)
i 0 . 000
Tr x ID u t ClF..r
1
() a lilt..)
i 0. 000 1
iJ „ C) C)
; t 1. t-1(,li:)
* RLt)ICIAff
1
4.S . 1.0()
; 0 , (.)il(.) 1
t») .:.)(.)4_)
i [_) . 000
Segment 3 R iAcl-i 1
Waiste i 0.4:){.)t..) 1 0.000 1 0 t_)04_) i 0.t14.)4)
Tributary
| 0.000
0.000
| 0.000 |
0.000
*R�f'
. .
{' 0.060
|
2.000
| 0.000 |
7.300
Segment 3
Reach 2
. Waste
| 0.000
|
0.000
| 0.000 |
0.000
' TrIbutary
000
|
0.000
|
0.000
* Runoff
0.060
|
2.000
| 0.000 |
7.300
Segment 3
Reach 3
Waste
| 0.000
|
0.000
| 0.000 |
0.000
Tributary
| 0.000
|
0.000
| 0.000 |
0.000
* Runoff
| 0.060
(
2.000
0.000 |
7.300
Segment 3
Reach 4
Waste
� 0.000
|
0.000
0.000
Tributary
| 0.000
(
0.000
| 0.000 |
0.000
* Runoff
| 0.060
|
2.000
| 0.000 |
7.300
Segment 3
Reach 5
Wsste
| 0.000
t
0.O00
0.000 |
0.000
` Tributary
i 0.000
0.000
| 0.000 |
0.000
* Runoff
\ 0.060
2.000
| O.000 |
7.300
Seoment 4 Reach 1
Waste
| 0.000
| 0.000
| 0.000
| 0.000
Headwaters|
0.000
� 0.000
| 0.000
| 0.000
Tributary
| 0.560
| 2.000
} 0.000
7.300
* Runoff
| 0.120
| 2.000
| 0.000
| 7.300
Segment 4
Reach 2
Waste
.000
| 0.000
000
| 0.000
Tributary
| 0.000
0.000
| 0.000
| 0.000
* Runoff
| 0.120
| 2.000
| 0.000
| 7.300
Segment 4
Reach 3
Waste
| 0.000
0.000
| 0.000
| 0.000
Tributary
| 0.000
| 0.000
| 0.000
| 0.000
* Runoff
0.120
| 2.000
| 0.000
| 7.300
Segment 4
Reach 4
Waste
| 0.000
| 0.000
| 0.000
| 000U
Tributary
| 0.000
| 0.000
| 0.000
� 0.00O
* Runoff
� 0.120
| 2.000
7.300
* Runoff flow is in cfs/miIe
'
'
WINTER
MODEL
WITH ALL
THREE
DISCH.
`
INTERACTING
----------
MODEL RESULTS
----------
Discharger
:
ALCOA
Receiving Stream :
LITTLE MOUNTAIN CREEK
______________________________________________________________________
The End
D.O.
is 9.50
mg/l.
The End
CBOD
is 37.79
mg/l.
The End
______________________________________________________________________
NBOD
is 0.00
mg/l.
WLA
WLA
WLA
DO Min
CBOD
NBOD
DO
Waste Flow
(mg/l)
______
Milepoint
_________
Reach #
_______
(mg/1)
____
(mg/l)
____
(mg/l)
__
(mgd)
-----------
segment
1
6.17
0.63
4
Reach
1
135
0.00
0.00
0.13000
Reach
2
0
0.00
0.00
0.00000
Reach
3
0
0.00
0.00
0.00000
Reach
4
190
0.00
0.00
0.18100
Segment
2
6.00
0.00
1
Reach
1
'
�
135
0.00
6.00
0.58000
Reach
2
0
0,00
0.00
0.00000
Reach
3
0
0.00
0.00
0.00000
Segment
3
7.34
1.63
3
Reach
1
0
0.00
0.00
0.00000
Reach
2
0
0.00
0.00
0.00000
Reach
3
0
0.00
0.00
0.00000
Reach
4
0
0.00
0.00
0.00000
Reach
5
0
0.00
0.00
0.00000
Segment
4
7.91
0.38
1
Reach
1
0
0.00
0.00
0.00000
Reach
2
0
0.00
0.00
0.00000
Reach
3
0
0.00
0.00
0.00000
Reach
4
0
0.00
0.00
0.00000
Discharger » AL_.00A 8i_ibbasin » 03o708
1=tire_e7.vinth r'Ll c.i::ifT1 » L..TTTL...L:_ MC:i1.1N'TAIN Cl"E:Et--.: `J'tream C Iasf,e C:.
San-ifnev. 7010 t?.;3 Wi.i.it;f:_r 7()1ry 0.Ur
Desigi-i -fc:fTipF---a'LU-Fe.14.
1LENGTH! SLOPE, VELOCITY 1 DEPTH: K1 1 K1 1 K2 1 K2 1 KN l KN 1 KNR 1 KNR 1
1 mile 1 ftfmil fps 1 ft ldesigM 920' lde5ignl a20' :design! 820' 1de5ignl 2204 1
Segment 1 1 0.20: 47.601 0.154 1 0.54 l 0.39 1 0.52 :11.61 1 13.23! 0.00 1 0,00 ! 0.00 1 0.00
Reach 1 1 ! ! 1 11 i 1 1
1 k } ! 1 1 { 1 1
1 ! 1 1
1 I 1 I 1 1 1 1 1 1 k 1 I
Segment 1 l 0.13: 76.901 0,178 1 0.51 ! 0.42 1 0.56 :21.61 1 24.631 0.00 1 0.00 1 0.00 1 0.00 1
1 1 F 1 1
Reach 2 1 , , I { 1 I i , 1 , 1
-----------------------------------------------------------------------------------------------------
Segment 1 1 0.301 31,301 0.130 1 0.58 1 0.35 1 0.46 1 6.60 1 7.751 MO 1 0.00 l 0.00 l 0.00 1
Reach 3 1 1 1 1 1 1 1 1 1 1 l 1 1
-----------------------------------------------------------------------------------------------------
r 1 1 1 i 1 1 1 i
Segment 1 1 0.641 31.30: 0.179 1 0.64 1 0.36 1 0.48 1 8.85 1 10.081 0.00 1 0.00 1 0.00 1 0.00 1
Reach 4, , 1 , > , 1 i r r 1 r r 1 1 1 1 1 ,
1 1 1 , , 1 1
Segment 2 1 0,13: 71.001 0.908 1 0.26 ! 0.76 1 1.00 :43.88 1 50.001 0.00 1 0.00 ! 0.00 1 0.00 l
Reach 1{ 1 1 F I • , 1
k 1 i 1 , 1 ,1 ! 1 1 > 1
-----------------------------------------------------------------------------------------------------
i 1 1 i
k 1
Segment 2 1 0.111 50.00: 0,714 1 0.29 1 0.76 l 1.00 :43.88 1 50.00: 0.00 1 0.00 l 0.00 1 0.00 1
Reach 2 1 1 1 l 1 1 l 1 1 1 1 1 1
, 1 ,1 1 1 1 r ,1 1 1 1 , , 1
1 1 I { ! 1 I 1 i 1
Segment 2 1 0.131 77.00: 0.765 1 0.28 1 0.76 1 1.00 M AO 1 50.00: 0.00 1 0.00 1 0.00 1 0.00 1
Reach 3 1 1 1 1 1 1 1 1 I l ! ! l
-----------------------------------------------------------------------------------------------------
Segment 3 1 0.221 43.501 0.302 1 0.68 ! 0.45 1 0.59 :20.73 1 23.621 0.00 1 0,00 1 0.00 l 0.00 1
Reach 1 1 1 1 1 1
, 1 , 1 i 1 , 1 1 ,
-----------------------------------------------------------------------------------------------------
Segment 3 1 0.60: 33.301 0.277 1 0.72 1 0.40 1 0.53 114.59 1 16.621 0.00 1 0.00 1 0.00 1 0.00 1
Reach 2 1 1 1 1 , 1 1
-----------------------------------------------------------------------------------------------------
Segment 3 l 0.90: 22.501 0.245 l 0.78 1 0.36 l 0.47 1 8.71 1 9.931 0.00 1 0.00 1 0.00 1 0.00 1
Reach 3 1 l 1 1 1 1 1 1 1 1 1
--------------------------------------------------•----------------_----_--•---------------_____-------
r
Segment 3 l 0.301 33.30: 0.273 1 0.74 1 0.40 1 0.52 114.36 1 16.361 0.00 1 0.00 l 0.00 1 0.00 1
Reach 4 1 1 1 ! 1 1 ! 1 1 1 1 1 1
-----------------------------------------------------------------------------------------------------
Segment 3 1 0.221 16.701 0,223 1 0.83 1 0.33 1 0.43 1 5.88 1 6.70: 0.00 1 0.00 1 0.00 1 0.00 1
l' I 1 I ] 1 1 1 4 1 I { 1 I
Reach s I
-----------------------------------------------------------------------------------------------------
Segment 4 l 0.391 16.40: 0.226 1 0.99 t Me 1 0.42 1 5.84 1 6.661 0.00 1 0.00 1 0.00 1 0.00 l
Itcaul i I I 1
Segment 4 1 0.22; 43.501 0.300 1 0,90 0.41 0.54 120.64 1 23.5E 13,00 0.00 0.00 0,00 1
Reach 2 1 1 1 1 ;
Segment 4 1 0.141 33,301 0.273 0.70 1 0.38 1 0.50 114.65 1 16.691 0,00 0.00 0.00 1 0.00 1
1 I , 1 1 1 , , , r 1 1 r
Reach 1 1 , , 1 1 1 1 i I 1
1 I 1 I 1 I 1 I 1 1
Segment 4 1 1.241 41,301 0.299 1 0.89 1 0.40 1 0.53 119.49 1 22,211 0.00 1 0.00 1 0.00 1 0.00 1
Reach 4 1 1 I 1 1 I 1
i 1 , r 1 , 1 , 1 I 1 1 1
----------------------------------------------------------------------------------------_------------
1 f= 1 ow
1 CDOD
1 NE(0:1D
1 D. 0 . 1
1 cfs
1 (Tig 1
1 :rlgll
1 mg/1 1
; c. t�l tll rl t 1.
Reach 1.
Waste
1 („} . P02
i 1375 . E )[1E_)
1 {_) , (_t(_)()
1 0. (.)OV
1-�t�=�ctdwatf=rs [).4�.0
i 2. 000
1 i).C)C)0
i ��.Gt t)
Tr 1 b (.t t a Ty
1 0. , OOCI
1 f-) , 4-) f } C)
1 0. 000 C 0
1 E) . t„) CIO
(;Y(;Y(..)
1 9.280
BF-4.yio,i l; 1
Rc?r_.aF:h 2
wasto
1 ().()C7C)
1 Ct.{?00
1 (l,(,(.):)
1 C).C)(.);s.
Tribc.ltBry
1 C).000
1 C), i0C)
1 E1.00C)
().C;00
Ru-i-ioff
1 C) . 035
1 2 . 000
1 yi . 000
1 9.2030
Segfr,elit 1
Reach 3
lnlastfc?
1 C).E)(.)0
1 f...).Cj0C)
1 t_7„CK)C]
.1. 7- i t7l_t t �K'i...,�
1 , �.
fi . f)()C)
1 t_? (_)(_t(_)
_
1 ( 7 „ C)(Ic#
1
r C) [ , ) C-) 0
it 1
Reach4
.
[SF_gaie
W Ci ma's t F.:
2 8 1
�t �1
i 1 �F 0 , f„) 0 0
1 (,) �. E„) � } wl
, ;_) . E_) C) Fes}
T F. i 1:.l l..l I-, a l V
H1.111CI.f -
1 (,) . 31 0
i 2. C)E_)C)
1 E_) . ()(}r }
i 9.280
Waste
i 0.399
i 1351.0(=1C)
i 0.O K)
i 6.000
Headwaters! 0 . t„)C)f_)
i 0 . C)0C)
1 0 . 0C)0
1 C ) . 00 (-1
11,r.L1::)(..ltar'y
1 C7.E}[1(}
i C).C)C)C)
i C).C)C)€..l
1 CI..Ek�.#()
iF 1'il-ii"iC:I"4' i
1 („) C)t 1[S
i t:} . i!00
1 C) „ ()C74_)
1 0 ()f_)C)
Segfrfelt 2
`zeac_t.) 2
waste!
i f.) . ()(.)(.)
1 () , C)4.1C)
1 (,k . E_)f.)()
i C7 .. C )C*
T v i b ut ar y
1 () (loco
1 C) . C)E )f.)
1 (_) . f,lf.1,)
i C) . C)CYt„1
tk Fl-tv-1fiff
1 C1.(..)Cit}
i ').C1Cl{_)
i 0.f1(D
i [).(_)€l(1
Sf='gfy-jerit 2
1tieeutC' 1 i 3
Wa5t., e
i E?.C1(1C}
1 0,f)#_7f_t
1 C).
Tributary
1 0.0t„1t_7
1 0.00
i 0.000
1 f_).fi0f)
Rl..l'noff
i C) „ {,}C}C)
i 0. 000
1 (_) . 000
i E_) , C)(,)0
Seginent 3
Reach 1
Way( 5.1:
C)€.l
i f.t . ()(_)(..)
Tributary
| 0.000
| 0.000
( 0.000
| 0.O00
* Ruhciff
. .
100
| 2.000
| 0.000
| 9.280
Segment 3
Reach 2
Waste
| 0.000
| 0.000
| 0.000
| 0.000
' Tributary
| 0.000
| 0.000
| 0.000
| 0.000
* Runoff
| 0.100
| 2.000
0.000
| 9.200
Segment 3
Reach 3
Waste
| 0.00U
| 0.000
| 0.00O
| 0.000
.
Tributary
| 0.000
| 0.000
| 0.000
| 0.000
* Runoff
| 0.100
1 2.000
1 O.000
| 9.280
Segment 3
Reach A.
Waste
| O.000
0.000
( 0.000
| 0.000
Tributary
| 0.000
| 0.000
| 0.000
| O.000
* Runoff
| 0.100
| 2.000
0.000
| 9.280
Gegment 8
Reach 5
Waste
| 0.000
| 0.000
0.000
| 0.00O
Tributary
| 0.000
| 0.000
� 0.000
| 0.000
* Runoff
| 0.100
| 2.000
| 0.000
| 9.280
Segment 4
Reach 1
Waste
| 0.0O0
| 0.000
| 0.000
| 0.000
Headwaters: 0.000
| 0.000
| 0.000
| 0.000
Tributary
| 0,950
| 2.000
| 0.000
| 9.280
* Runoff
| U.210
| 2.000
| 0.000
| 9.280
Segment 4
Reach 2
Waste
| 0.000
| 0.000
| 0.000
| 0.000
Tributary
| 0.000
| 0.000
| 0.000
| 0.000
* Runoff
| 0.210
| 2.000
| 0.000
| 9.280
Segment 4
Reach 3
Waste
| 0.0U0
| 0.0O0
| 0.000
| 0.000
Tributary
| 0.000
| 0.000
| 0.000
| 0.000
* Runoff
| 0.210
| 2.000
| 0.000
| 9'280
Segment 4
Reach 4
Waste
| 0.000
| 0.000
| 0.000
| 0000
Tributary
| 0.000
0.000
| 0.000
| 0.000 (
* Runoff
| 0.210
| 2.000
| 0.000
| 9.280
* Runoff flow is in cfs/mile
A
yvlutTrPL C 5 cFivAt�i b s
IL -?eow'ged pre:5ek--�
3�cLrn. _ rnJrc/ on L, {le-YYotm, 1' CYeeK
` _�RS� ,(3GtG�crt 58rr c� oit ./ ohA C -eel( (VT*) &Myk .}
6rPeK
f
19
u-6)
_ _ ,✓� L �� � n roc, a, 2.-
00 5
14
wP.s , 4allA, on. 44
Ao c.. /D 6, / C8 G n 0 04 Pu ee,o cz�cxst�
CIL-
C,C 3,c 3a►� spD
am� oc)
- - - - - - C'Goo-. = I D_D U.
12-0
- G�eCLw C"Bon. = 135-Y _ ,o D
�4-1�,L�
-
D &A
-
- - - off,
J06
. r r
ICO.A ETCH
{
:� vn o�� � i s ; _ 3 -• �,�. �'4 a ! P 3 ' -- - - -
Ow
%joy= a.9 L-k)
�3�
,Vaco --�o 03 5r
3
vl
11)
J
� _
_1.33
_
w.
Coo
/V600
%J
qJ-6 `7'7
e A
i�u �]_O�-� 6_' _.,{�aC.�,� _ f_���c..�✓Y.� .__G_U C.S��G�.��%ytJ ..��c�c�-� v �.-P.c1C7 Gv �� T� _
7
CuM
Idtv 14ist dtst'
q6q 0 o SI o
Stream : ovn- ac n 3`f , 3 3
�Myy U 30
1'�4�nSt�m ✓ Bra�C� � J�. 1
GIO� 05
Slope C4`cu ia�'�on s
J3.3
OV
Pel 6 - 39 3
3� 0
a3G{�41
3
3 3 b
�.� • a�
Sao
,00
414
a�U
s-i8
,,.3
S
333
5f+1d.
-o
�a � � S
FF 33.3
o
3,S
0I•U
aG.3
t 5
A;AaAcG
A;AaAcG
9
Stream
61
1 iO4ggStcrn — Blanch .�
Slope Caicu lAtion s
2
./..
d� S
Sala 4L
J 7U O
-5D
31 ,
0 d;AcknGG a
7
lq�o
disc
SIo
o
St r e a m :. L IV-lf
I
C' 6
,21 4`70
3
r
.�
1'14;nstGm .� Beae%Ch
3
33.3
SIope CalCulo-lions
3L
J-ULlu—
11 a
1430
o
u 3. 03 3�
3 8b 3.33 car fc�,
ais l.anLC-
• ace ��
CI33-1,I9� = 1�
'J_1.VW."(�.�-�%:��`�
ct 2J. _ lam•" ads - - --- -
i
Y*i
t
33-
✓Ow�Ob_
h�13 A 0.17
,"alsop
0,7
0"?
o, 7
o
'i
it �0�05
------ �� - - ---/v�3 --- -- _o _ o. o. _ a� -7
-b 5 7,-3
I�
_ _ --- �' -.�L' .dl/_�'i— .� %�� _ '�`-�--�%%L,�/!^� • _a-Q-� ��-.Oft) �-�C.W'�wCGlil� J
��' IJ D ,'
r3s�{�o �r�r3 c�3no
k�
1
1
|
�
^~ ^+^_'''-''
'
d
~
Seg # |
Reach # |
Seg Ili |
D.
1
1
0.00
6.�
1
1
0.02
6.�
1
1
0.04
6.�
1
1
0.06
6.�
1
1
0.08
b.�
1
1
0.10
6.�
1
1
0.12
6.�
1
1
0.14
6.�
1
1
0.16
6.�
1
1
0.lB
6.�
1
1
0.20
6.�
1
2
0.20
6.�
1
2
0.21
6.�
1
2
0.22
6.�
1
2
0.23
6.�
1
2
0.25
6./
1
2
0.26
6.4
1
2
0'27
6'�
1
2
�.28
6.�
1
2
0.29
6.�
1
2
0.30
6./
1
2
0.31
6'/
1
2
0.32
6.-
1
2
0.33
1
3
0.33
6.-
1
3
0.36
6.�
1
3
0.39
6.�
1
3
0.42
6.�
1
3
0.45
6.�
1
3
0.48
6.(
1
3
0.51
5.'
1
3
0.54
5.�
1
3
0.57
5.(
1
3
0.60
5.�
1
3
0'63
5.'
1
4
0.63
5./
1
4
0.67
5.�
1
4
0.71
5.�
1
4
' 0.75
5.�
1
4
0.79
5.�
1
4
0.83
5.�
1
4
0'87
5.�
1
4
0.91
5.�
1
4
0.95
5.�
1
4
0.99
5.�
1
4
1.03
5.�
l
4
1.07
5.
1
4
1.11
5.�
1
4
1.15
5.�
1
4
1.19
5.�
1
4
1.23
5.�
1
4
1.27
5.�
2
1
0.00
6.(
2
1
0.01
6.(
2
1
0.02
2
�1
0.03
2
1
0.04
5.'
2
1
0.05
5.�
`
SUMMER
MODEL WITH ALL
INTERACTING
]. |
CBOD |
NBOD |
Flow
36
40.54
0.00
0.49
]1
40.24
0.00
0.49
27
39.95
0.00
0.49
�3
39.67
0.00
0.49
20
3V.38
0.00
0.49
18
39.10
0.00
0.49
i6
38.82
0.00
0.49
15
38.54
0.00
0.49
i3
38.26
0.00
0.49
12
37.98
0'00
0.50
i2
37.71
0.00
0.50
12
37.71
0.00
0.50
i9
37.58
0.00
0.50
�6
37.45
0.00
0.50
32
37.33
0.00
0.50
]8
37.20
0.00
0.50
+3
37.07
0.00
0.50
�8
36'95
0.00
0.50
�3
36.82
0.00
0.50
57
36.70
0.00
0.50
10
36,57
0.00
0.50
14
36.45
0.00
0.50
�7
36.33
0.00
0.50
70
36.20
0.00
0.50
72
36.08
0.00
0.50
72
36.08
0.00
0.50
54
35.69
0.00
0.50
39
35.30
0.00
0.50
26
34.91
0.00
0.50
14
34.53
0.00
0.50
14
34.15
0.00
0.50
76
33.78
0.00
0.50
39
33.41
0.00
0.50
33
33.05
0.00
0.50
78
32.69
0.00
0.50
74
32.33
0.00
0.50
f7
55.10
0.00
0.7B
�6
54.12
0.00
0.79
�8
53,17
0.00
O.8O
�2
52.23
0.00
0.80
i7
51.32
0.00
0.81
14
50.43
0.00
0.82
i3
49.55
0.00
0.82
12
48.69
0.00
0.83
i2
47.85
0.00
0.84
13
47.03
0.00
0.84
i5
46.23
0.00
0.85
17
45.44
0.00
0.86
i9
44.66
0.00
0.86
22
43.91
0.00
0.87
25
43.17
0.00
0.87
�8
42.44
0.00
0.88
'i2
41.73
0.00
0.89
}0
96.00
0.00
0.90
)0
95.91
0.00
0.90
79
95.83
0.00
0.90
f9
95.75
0.00
0.90
78
95.66
0.00
0.90
?8
95.58
0.00
0.90
THREE DISCH.
��\/x� \�\
/`/`~' ' ' »' m^J
2 1
0.07
5.98
95.41
0.00
0.90
2 1 '
0'.08
5.97
95.32
0.00
0.90
2
0.09
5.97
95.24
0.00
0.90
2 1
0.10
5.97
95.15
O.00
0.90
2 1
0.11
5.97
95.O7
0.00
0.90
2 1
0.12
5.96
94.98
0.00
0.90
2 1
0.13
5.96
94.90
O.00
0.90
2 2
0.13
5.96
94.90
0.00
0.90
2 2
0.14
5.96
94'79
0.00
0.90
2 2
0.15
5.96
94.69
O.00
0.90
2 2
0.16
5'96
98
0.00
0.90
2 2
0.17
5.96
94.47
0.00
0.90
2 2
0.18
5.95
94.37
0.00
0.90
2 2
0.19
5.95
94.26
0.00
0.90
2 2
0.20
5'95
94.15
0.00
0,90
2 2
O.21
5.95
94.05
0.00
0.9O
2 2
0.22
5.95
93.94
0.00
0.90
2 2
0.23
5.95
93.84
0.00
0.90
2 2
0.24
5.95
93.73
0.00
0.90
2 3
0.24
5.95
93.73
O.00
0.9O
2 3
0.25
5.95
93.63
0.U0
0.90
2 3
0.26
5.95
93.53
0.00
0.90
2 3
0.27
5.95
93.43
0.00
0.90
2 3
0.28
5.95
93.34
0.00
0.90
2 3
0'29
5.95
93.24
0.00
0'90
2 3
0.30
5.95'
93.14
0.00
0.90
2 3
0.31
5.95
93.04
0.00
0.90
2 3
0.32
5.95
92.94
0.00
0.90
2 3
0.33
5.95
92.85
0.00
0.90
2 3
0.34
5.95
92.75
0.00
0.90
2 3
0.35
5.95
92.65
0.00
0.90
2 3
0.36
5.95
92.55
0.00
0.90
2 3
0.37
5.95
92.46
0.00
0.90
3 1
0.00
5.64
67.26
0.00
1.79
3 1
0.02
5.68
66.99
0.00
1.79
3 1
0.04
5.71
66.71
0.00
1.79
3 1
0.06
5.74
66.44
0.00
1.79
8 1
0.08
5.77
66.17
O.00
1.79
3 1
0.10
5.80
65.90
0.00
1.79
3 1
0.12
5.83
65.63
O.00
1.79
3 1
0.14
5.85
65.371.79
3 1
0.16
5.87
65.10
0.00
1.80
3 1
0.18
5'89
64.84
0.00
1.80
3 1
0.20
5.91
64.57
0.00
1.80
3 1
0.22
5.93
64.31
0.00
1.80
3 2
0.22
5.93
64.31
0.00
1.80
3 2
0.28
5.85
63.54
0.00
1.80
3 2
0.34
5.79
62.78
0.00
1.81
8 2
0.40
5.75
62.03
O.00
1.81
3 2
0.46
5.72
61.29
0.0Q
1.81
3 2
0.52
5.71
60.f35
0.O0
1.82
3 It?2
0.58
5.70
59.83
O.00
1.82
3 2
0.64
5.71
59.11
0.00
1.82
3 2
0.70
5.72
58.41
0.00
1.83
8 2
0.76
5.73
57.71
0.00
1.83
3 2
0.82
5.75
57.02
0.00
1.84
3 3
0.82
5.75
57.02
0.00
1.84
3 3
0.91
5.52
56.00
0.00
1.84
3 3
1.00
5.35
54.99
0.00
1.85
3 3
1.09
5.24
54.00
0.00
1.85
3 3
1.18
5.17
53.03
0.00
1.86
3 3
1.27
5.12
52.08
0.00
1.86
3 3
1.36
5.10
51,15
0.00
1.87
3 3
1.45
5.10
50.23
0.00
1.B7
3 3
1.54
49.33
0.00
1.88
-5.10
3 3
1.72
5.15
- -
47.58
'
0.00
- --
1.89
�
3 4 '
1'.,72
5.15
47.58
0.00
1.89
3 4
1.75
5.27
47.30
0.00
1.89
3 4
1-78
5.38
47.01
0.00
1.89
3 4
1.81
5.48
46.73
0.00
1.89
3 4
1.B4
5.57
46.45
0.00
1.90
3 4
1'87
5.65
46.17
0.00
1.90
3 4
1.90
5.72
45.90
0.00
1.90
3 4
1.93
5'78
45.62
0.00
1.90
3 4
1.96
5.84
45.35
0.00
1.90
3 4
1.99
5.89
45.08
0.00
1.91
3 4
2.02
5.94
44.81
0.00
1.91
3 5
2.02
5.94
44.81
0-00
1.91
3 5
2.04
5.87
44.62
0.00
1-91
3 5
2.06
5.B1
44.44
0.00
1.91
3 5
2.08
5.76
44.26
0.00
1.91
3 5
2.10
5.70
44.08
0.00
1.91
3 5
2.12
5.65
43.90
0.00
1.91
3 5
2.14
5.60
43.72
0.00
1.91
3 5
2.16
5.55
43.54
0.00
1.92
3 5
2.18
5.51
43.36
0.00
1.92
3 5
2.20
5.47
43.18
0.00
1.92
3 5
2.22
5.43
43.00
0.00
1.92
3 5
2.24
5.39
42.83
0.00
1.92
4 1
0.00
5.82
33.61
0.00
2.48
4 1
0.02
5.80
33.46
0.00
2.48
4 1
0.04
5.73
33.31
0.00
2.49
4 1
0.06
5.76
33'16
0.00
2.49
4 1
0.08
5.74
38.O1
0.00
2.49
4 1
0.10
5.72
32.86
0.00
2.49
4 1
0.12
5.70
32.71
0.00
2.49
4 1
0.14
5.68
32.57
0.00
2.50
4 1
0.16
5.67
32.42
U.00
2.50
4 1
0.18
5.65
32.28
0.00
2.50
4 1
0.20
5.64
32.13
0.00
2.50
4 1
0.22
5.63
31.99
0.00
2.51
4 1
0,24
5.62
31.84
0.00
2.51
4 1
0.26
5.61
31.70
0.00
2.51
4 1
0.28
5.60
31.56
0.00
2.51
4 1
0.30
5.59
31.42
0.00
2.52
4 1
0.32
5.58
31.28
0.00
2.52
4 1
0.34
5.58
31.14
0.00
2.52
4 1
0.36
5.57
31.00
0.00
2.52
4 1
0.38
5.57
30.86
0.00
2.53
4 2
0.38
5.57
30.86
0.00
2.53
4 2
0.40
5.73
3Q.73
0.00
2.53
4 2
0.42
5.89
30.60
0.00
2.53
4 2
0.44
6.02
30.47
0.00
2.53
4 2
0'46
6'14
30'34
0'00
2'54
4 2
0.48
6.24
30.21
0.00
2.54
4 2
0.50
6.34
30.08
0.00
2.54 '
4 2
0.52
6.43
29.95
0.00
2.54
4 2
0.54
6.51
29.83
0.00
2.55
4 2
0.56
6.58
29.70
0.00
2.55
4 2
0.58
6.64
29.57
0.00
2.55
4 2
0.60
6.70
29.45
0.00
2.55
4 3
0.60
6.70
29.45
0.00
2.55
4 3
0.62
6.72
29.32
0.00
2.55
4 3
0.64
6.74
29.20
0.00
2.56
4 3
0.66
6-75
29'07
0.00
2.56
4 3
0.68
6.77
28.95
0.00
2.56
4 3
0.70
6.78
28-83
0.00
2.56
4 -3
0.72
6.80
28.71
0.00
2.57
4 3
0.74
6.81
28.59
0.00
2.57
4 4
0'74
6.81
28'59
0'00
2'57
�
4
4
,0.94
7.07
27.40
0.00
2.59
4
4 '
�.04
7.14
26.83
0.00
2.61
1.14
7,18
26.28
0.00
2.62
. 4
4
1.24
7.22
25.73
0.00
2.63
4
4
1.34
7.25
25.20
0.00
2.64
' 4
4
1.44
7'27
24.67
0.00
2.65
4
4
1.54
7.29
24.16
0.00
2.67
4
4
1-64
7.31
23.66
0.00
2.68
4
4
1.74
7.33
23.18
0.00
2.69
4
4
1.84
7.34
22.70
0.00
2.70
| Seg # |
Reach it |
Seg MIL |
D.O.
| CBOD
| NBOD |
FIow |
�
WINTER
MODEL
WITH ALL
INTERACTING
Seg # |
Reach #
| Seg Mi |
D.O. >
CBOD
| NE0D
| Flow
1
1
0.00
6.54
41.32
0.00
0.68
1
1
0.02
6.75
41.16
0.00
0.68
1
1
0.04
6.94
40.99
0.00
0.68
1
1
0.06
7.12
40.82
0.00
0.68
1
1
0.08
7.28
40.66
0.00
0.68
1
1
0.10
7.43
40.49
0,00
0.69
1
1
0.12
7.56
40.33
0.00
0.69
1
1
0.14
7.69
40.16
0.00
0.69
1
1
0'16
7.80
40.00
0.00
0.69
1
1
0.18
7.90
39.84
0.00
0.69
1
1
0-20
8.00
39.68
0.00
0.69
1
2
0.20
8.00
39.68
0-00
0.69
1
2
0.21
8.11
39,60
0.00
0.69
1
2
0.22
8.21
39.52
0.00
0.69
1
2
0.23
8.31
39.45
0.00
0.69
1
2
0.24
8.40
39-37
0.00
0.69
1
2
0.25
8,48
89.29
0.00
0.69
1
2
0.26
8.55
39.22
0.00
0.69
1
2
0.27
G.62
39.14
0.00
0.69
1
2
0.28
8.69
39.07
0.00
0.69
1
2
0.29
8.75
38.99
0.00
0.69
1
2
0.30
8.81
38.91
0.00
0.69
1
2
0.31
8.86
38.84
0.00
0.69
1
2
0.32
8.91
38.76
0.00
0.69
1
2
0.33
B.96
38.69
0.00
0.69
1
3
0.33
8.96
38.69
0,00
0.69
1
3
0.36
8.90
38.45
0.00
0.69
1
3
0.39
8.86
38.22
0.00
0.70
1
3
0'42
8.82
37.99
0.00
0.70
1
3
0.45
8.78
37.76
0.00
0.70
1
3
0.48
8.75
37.53
0.00
0.70
1
3
0.51
8.72
37.31
0.00
0.70
1
3
0.54
8.69
37.08
0.00
0.70
1
3
0.57
8.67
36.86
0.00
0.70
1
3
0.60
8.65
86.64
0.00
0.70
1
3
0.63
8.63
36.42
0.00
0'70
1
4
0.63
6.17
80.20
0.00
0.98
1
4
0.67
6.31
78.84
0.00
1.00
1
4
0.71
6.43
77.51
0.00
1.01
1
4
0.75
6.55
76.21
0.00
1.02
1
4
0.79
6.66
74.95
0.00
1.03
1
4
0.83
6.75
73.72
0.00
1.05
1
4
0.B7
6.85
72.52
0.00
1.06
1
4
0.91
6.93
71.35
0.00
1.07
1
4
0.95
7.01
70.21
0.00
1.08
1
4
0.99
7.09
69.09
0.00
1.10
1
4
1.03
7.16
68.00
0.00
1.11
1
4
1.07
7.22
66'94
0.00
1.12
1
4
1.11
7.29
65.90
0.00
1.13
1
4
1.15
7.35
64.B9
0.00
1.15
1
4
1.19
7.40
63.90
0.00
1.16
1
4
1.23
7.46
62.93
0.00
1.17
1
4
1.27
7.51
61.98
0.00
1.18
2
1
0.00
6.00
135.00
0.00
0.90
2
1
0.01
6.06
134.93
0.00
0.90
2
1
0.02
6.11
134.86
0.00
0.90
2
1
0.03
6.17
134.79
0.00
0.90
2
1
0.04
6.22
134.72
0.00
0.90
2
-
1
0.05
'
6.27
--
134.66
_ _-
0.00
-
0.90
'-'
THREE DISCH.
��,�"J'
L�f�� �` N
.SS road
Wes sadiv)
�n�
^ \.» n
--_..
.`"�|^�J�m-
�
`
1
6.37
134.52
0 .00
0.90
,0.07
6.42
134.45
0.00
0.90
6.46
134.38
0.00
0.90
2
1
0.10
6.51
134.31
0.00
0.90
,
2
1
0'11
6.55
134.24
0.00
0.90
. 2
� 1
0.12
6.59
134.18
0.00
0.90
' 2
1
0.13
6.63
134.11
0.00
0.90
2
2
0.13
6.63
134.11
0.00
0.90
2
2
0.14
6.68
134.02
0.00
O.90
2
2
0.15
6.73
133.93
0.00
0.90
2
2
0.16
6.78
133.85
0.00
0.9()
2
2
0.17
6.82
133.76
0.O0
0.90
2
2
0.18
6.87
133.67
0.00 �
0.90
2
2
0.19
6.91
133.58
0.00
0.90
2
2
0.20
6.95
133'50
0.00
0.90
2
2
0.21
6.99
133.41
0.O0
0.90
2
2
0.22
7.02
133.32
0.00
0.90
2
2
0.23
7.06
133.24
0.00
0.90
2
2
0.24
7.09
133.15
0.00
0.90
2
3
0.24
7.09
133.15
0.00
0.90
�
3
0.25
7.13
133.07
0.00
0.90
2
3
0.26
7.16
132.99
0.00
0.90
2
3
0.27
7.19
132.91
0.00
().90
2
3
0.28
7.21
132.83
0.00
0.90
2
3
0.29
7.24
132.75
0.00
0.90
2
3
0.30
7.27
132.67
0.00
0.90
2
3
0.31
7.29
132,590.90
2
332
7.32
132.51
0.00
O.90
2
3
0.33
7.34
132.43
0.00
0.90
2
3
C..34
7.37
132.35
0.00
O.90
2
3
0.35
7,39
132.27
0.00
0.90
2
3
0.36
7.41
132.19
0.00
0.90
2
3
0.37
7.43
132.11
0.00
0.90
3
1
0.00
7.48
92.27
0.00
2.08
3
1
0.02
7.54
92.01
0.00
2.08
3
1
0,04
7.61
91.76
0.00
2.09
3
1
0.06
7.67
91.50
0.00
2.09
3
J.
0.08
7.72
91.25
0.00
2.09
3
1
0.10
7.77
91.00
0.00
2.09
3
1
0.12
7.82
90.75
0.00
2.09
3
1
'0.14
7'86
90.50
0.00
2.10
3
1
0.16
7.90
90.25
0.00
2.10
3
1
0'18
7.94
90.00
0.00
2.10
3
1
0.20
7.97
89.75
0.00
2.10
3
1
0.22
8.00
89.50
0.0O
2.10
3
2
0.22
8.00
89.50
0.00
2.10
3
2
0,28
7.98
88.78
0.0O
2.11
3
2
0.34
7.96
88.06
0.00
2.12
3
2
0.40
7'95
87.35
0.00
2.12
3
2
0.46
7.95
86.65
0.00
2.13
3
2
().52
7.95
85.95
0.00
2.13
3
2
0.58
7.95
85.26
0.00
2.14
3
84.57
0,00
2.15
3
2
0.70
7.96
83.89
0.00
2.15
3
2
0.76
7.97
83.22
0.00
2.16
3
2
0.82
7.98
82.55
0.00
2.16
3
3
0.82
7.98
82.55
0.00
2.16
3
3
0-91
7.81
81.56
0.00
2.17
3
3
1.00
7.67
80.59
0.00
2.18
3
3
1.09
7.57
79.63
0.00
2.19
S
� 3
1.18
7.49
78.68
0.00
2.20
3
3
1.27
7.43
77.75
0.00
2.21
3
3
1.36
7.39
76.83
0.00
2.22
3
3
1.45
7.36
75.92
0.00
2^.23
3
3
1.54
7.35
75.02
0.00
2.24
' 3
3
1.72
7.34
73.26
0.00
2.25
7.34
73.26
0.00
2.25
37.43
72.97
0.00
2.26
3
4
1.78
7.51
72.68
0.00
2.26
3
4
1.B1
7.59
72.40
0.00
2.26
3
4
1.84
7.66
72.11
0.00
2.27
3
4
1.87
7.72
71.83
0.00
2.27
3
4
1.90
7.78
71.54
0.00
2.27
3
4
1.93
7.83
71.26
0.00
2.27
3
4
1.96
7.88
70.98
0.00
2.28
3
4
1.99
7.93
70.70
0.00
2,28
3
4
2.02
7.97
70.42
0.O0
2.28
3
5
2.02
�7.97
70.42
0.00
2.28
3
5
2.04
7.92
70.24
0.00
2.29
3
5
2.06
7.87
70.05
0.00
2.29
3
5
2.08
7.83
69.87
0.00
2.29
3
5
2.10
7.78
69.68
0.00
2.29
3
5
2.12
7.74
69.50
0.00
2.29
3
5
2,14
7.70
69.31
0.00
2.30
3
5
2.16
7.66
69.13
0.00
2.30
3
5
2.18
7.62
68.95
0.00
2.30
3
5
2.20
7.59
68.76
0.00
2.30
3
5
2.22
7.55
68.58
0.00
2.30
3
5
2.24
7.52
68.40
0.00
2.31
4
1
0.00
8.03
49.02
0.00
3.26
4
1
0.02
8.02
48.88
0.00
3.26
4
1
0.04
8.01
48.73
0.00
3.26
4
1
0.06
8.00
48.59
0.00
3.27
4
1
0.08
7.99
48.45
0.0D
3.27
4
1
0.10
7.99
48.30
0.00
3.28
4
1
0.12
7.98
48.16
0.00
3.28
4
l
0.14
7-97
48.02
0.00
3.28
4
1
0.16
7.96
47.88
0.00
3.29
4
1
0.18
7.96
47.74
0.00
3.29
4
1
0.20
7.95
47.59
0.00
3.30
4
1
0.22
7.95
47.45
0.00
3.30
4
1
0.24
7.94
47.31
0.00
3.31
4
1
0.26
7.94
47.18
0.00
3.31
4
1
0.28
7.93
47.04
0.00
3.31
4
1
0.30
7.93
46.90
0.00
3.32
4
1
0.32
7.92
46.76
0.00
3.32
4
1
0.34
7.92
46.62
0.00
3.33
4
1
0.36
7.92
46.49
0.00
3.33
4
1
0.38
7.91
46.35
0.00
3.34
4
2
0.38
7.91
46.35
0.00
3.34
4
2
0.40
8.03
46.22
0.00
3.34
4
2
0.42
8.14
46.08
0.00
3.34
4
2
0.44
8.25
45.95
0.00
3.35
4
2
0.46
8.34
45.82
0.00
3.35
4
2
0.48
8.43
45.69
0.00
3.36
4
2
0.50
8.51
45.56
0.00
3.36
4
2
0.52
8.58
45.43
0.00
3.36
4
2
0.54
8.65
45.30
0.00
3.37
4
2
0.56
8.71
45.17
0.00
3.37
4
2
0.58
8.77 '
45.04
0.00
3.38
4
2
0.60
8.82
44.91
0.00
3.38
4
3
0.60
8.82
44.91
0.00
3.38
4
3
0.62
8.84
44.78
0.00
3.39
4
3
0.64
8.B6
44.66
0.00
3.39
4
3
' 0.66
8.88
44.53
0.00
3.39
4
3
0.68
8.90
44,40
0.00
3.40
4
3
0.70
8.92
44.28
0.00
3.40
4
3 .
0.72
8.93
44.15
0.00
3.41
4
3
0.74
8.95
44.03
0.00
3.41
4
4
0.74
8.95
44.03
0.00
3.41
4
4
0.94
9.21
42.81
0.00
3.45
4
� .
4 ~
' .
V.04
9.28
42.21
0.00
3.47
4
4
1.14
9.34
41.63
0.00
3.49
4
4
1.24
9.38
41.05
0.00
3.52
' 4
4
1.34
9.41
40.48
0.00
3.54
. 4
4
1.44
9.43
39.93
0.00
3.56
' 4
4
1.54
9.45
39.38
0.00
3.58
4
4
1.64
9.47
38.84
0.00
3-60
4
4
1.74
9.48
38.31
0.00
3.62
4
4
1.84
9.50
37.79
0.00
3.64
| Seg # |
Reach # |
Seg Mi |
D.O.
| MOD |
NBOD 1
Flow |