Loading...
HomeMy WebLinkAboutNC0004308_WASTELOAD ALLOCATION_19880203NPDES DOCUWENT SCANN@NO COVER SHEET NPDES Permit: NC0004308 ALCOA — Badin Works Document Type: Permit Issuance Wasteload Allocation Authorization to Construct (AtC) Permit Modification Complete File - Historical Other (Mixing Zone Study) Instream Assessment (67b) Environmental Assessment (EA) Permit History Document Date: February 3, 1988 W,bd s clocuarrwexwt its printed oars reuse paper - i@pzore any content on the areirerfte aide MEMORANDUM TO: FROM: SUBJECT: DIVISION OF ENVIRONMENTAL MANAGEMENT February 3, 1988 Trevor Clements Carla Sanderson Alcoa NPDES Permit # NC0004308 Based upon proposed division procedure for determining whether effluent limits for industrial discharges should be mass or concentration based, the current proposed permit limits for Alcoa should be revised as follows: BOD_, (mg/1) Nickel (mg/1) Fluoride (mg/1) Monthly Average Summer Winter 31.8 63.6 Daily Maximum Summer Winter 47.7 95.4 0.103 0.103 3.71 3.71 The other parameters are based on effluent guidelines and will remain as written on the current wasteload allocation (attached). CS:gh Sept. 30, 1987 MEMORANEM To: Trevor Clements Through: ,jay Sauber, 4� From: Mary Jaynes fi Subject: Badin Lake data Enclosed are the data for Badin Lake that you requested. The lake has been sampled every year since 1981 as part of the Ambient Lakes Monitoring effort. The enclosed maps show the locations of the four sampling stations. The two computer forms (STORET ALLPARM and INVENTory retrievals) summarize all available data on the lake except for this summer's samples. The 1987 data are presented in Tables 1, 2, and 3. For your convenience, depth profiles of dissolved oxygen, temperature, and pH at each station have also been graphed (Figure 1, A-D). Please contact me if I can be of further assistance. cc: Steve Tedder Q C W A N o D A V l D S O N p P A N D O L P H C O U N G C U I Y N, _ fl4 UAI Ir AREA DA.M A � ! a MAX ucx JCII tS t '> 5 \ i,•� 1u kOUWAJM rtleir`• 62 BADIN LAKE , 1 �'lr 1 lh V f t-7. ' (�—' f'' 1 / �• _ `' f ..;'' � . ,` . _' ��" Vie: \\ y r L n7 1 t i ice,: ✓ ' j �� �, ocks � l' �r. r /,�� � i r��, \4 Y isS [ �� � f .'�''-� � fr/ / �:•;+ ! / �' !/I !•� 1I }i I ' S i �' }/'' i iiln \\����;,� 1�ti�1 \ 1� � r�� � � r 5\ ,:�', AMBIENT LAKES MONITORING PROGRAM TABLE 1. 1987 BADIN LAKE PHYSICAL PROFILES. Page i DEPTH D.O. TEMP pH COND SECCHI 1% LIGHT DATE STATION TIME m mg/L C SU uhmo/cm m DEPTH(m) 870813 YAD178B 1320 0.15 5.6 29.1 6.4 83 0.7 1.8 870813 YAD178B 1320 1.0 5.3 29.1 6.4 82 870813 YAD178B 1320 2.0 4.8 28.9 6.3 82 87C813 YAD178B 1320 3.0 4.4 28.6 6.3 80 870813 YAD178B 1320 4.0 4.4 28.5 6.3 78 87083 YAD178B 1320 5.0 4.4 28.5 6.3 77 87 3-13 YAD1783 1320 6.0 4.9 28.5 6.3 76 870813 YAD178B 1320 7.0 5.1 28.5 6.3 77 870813 YAD178B 1320 8.0 5.2 28.5 6.3 73 870813 YAD178B 1320 9.0 5.1 28.5 6.3 72 870813 YAD1783 1320 10.0 2.8 28.3 6.2 74 870813 YAD178B 1320 15.0 0.1 26.7 5.9 63 870813 YAD178B 1320 17.0 0.1 26.1 5,9 63 87CB13 YAD17BE 1242 0.15 6.4 29.1 6.6 74 1.7 4.1 870813 YAD178E 1242 1.0 6.6 29.0 6.6 74 870813 YAD178E 1242 2.0 6.7 28.8 6.6 72 870813 YAD17BE 1242 3.0 6.6 28.8 6.6 71 870813 YAD178E 1242 4.0 6.4 28.6 6.5 70 870813 YAD178E 1242 5.0 6.2 28.5 6.5 69 870813 YAD178E 1242 6.0 4.8 28.4 6.4 68 870813 YAD178E 1242 7.0 0.8 28.0 6.2 69 870813 YAD178E 1242 8.0 0.1 27.8 6.1 67 870813 YAD178E 1242 9.0 0.1 27.8 6.0 65 870813 YAD178E 1242 10.0 0.1 27.7 6.0 66 870813 YAD178E 1242 15.0 0.1 26.6 5.9 61 870813 YAD178E 1242 20.0 0.1 24.3 5.9 69 870813 YAD178E 1242 25.0 0.1 15.4 6.1 72 870813 YAD178F 1200 0.15 5.8 28.5 6.5 78 1.0 3.0 870813 YAD178F 1200 1.0 5.7 28.5 6.5 77 870813 YAD178F 1200 2.0 5.6 28.4 6.4 76 870813 YAD176F 1200 3.0 5.4 28.4 6.4 76 870813 YAD178F 1200 4.0 5.2 28.4 6.4 74 870813 YAD178F 1200 5.0 5.1 28.3 6.4 72 870813 YAD178F 1200 6.0 5.1 28.3 6.4 71 870813 YAD178F 1200 7.0 5.0 28.3 6.3 70 870813 YAD178F 1200 8.0 5.1 28.2 6.3 69 870813 YAD178F 1200 9.0 5.1 28.2 6.3 69 670813 YAD178F 1200 10.0 4.6 28.2 6.3 67 870813 YAD178F 1200 15.0 0.2 26.9 6.0 60 870813 YAD178F 1200 20.0 0.1 24.9 6.0 60 870813 YAD178F 1200 23.0 0,1 18.4 5.9 47 870813 YAD178FI 1130 0.15 7.4 28.9 6.7 78 1.1 2.6 870813 YAD178FI 1130 1.0 7.4 28.9 6.8 78 870813 YAD178FI 1130 2.0 7.4 28.8 6.8 77 AMBIENT LAKES MONITORING PROGRAM TABLE 1. 1987 BADIN LAKE PHYSICAL PROFILES. Page 2 DEPTH D.O. TEMP PH COND SECCHI 1% LIGHT DATE STATION TIME m mg/ L C SU uhmo/cm m DEPTH(m) 870813 YAD178F1 1130 3.0 7.0 28.7 6.7 74 87081.3 YAD178F1 1130 4.0 6.6 28.6 6.6 72 870813 YAD178FI 1130 5.0 6.2 28.6 6.5 71 870813 YAD178FI 1130 6.0 6.5 28.5 6.5 70 870813 YAD178F1 1130 7.0 6.5 28.6 6.5 68 870813 YAD178FI 1130 8.0 5.7 28.5 6.4 67 870813 YAD178FI 1130 9.0 5.0 28.4 6.3 68 870813 YAD?78F1 1130 10.0 3.4 28.3 6.2 66 8708i3 YAD178FI 1130 14.0 0.1 27.2 5.9 60 i AMBIENT LAKES MONITORING PROGRAM TABLE 2. 1987 BADIN LAKE CHEMISTRY DATA. TOTAL SUSPENDED CHL A CHL A RESIDUE RESIDUE ALKALINITY TURBIDITY (TRI) (CORR) PHEOPHYTIN DATE STATION mg/L mg/L mg/L NTU ug/L ug/L ug/L 870813 YAD178B 82 10 21 5.2 33 31 3 870813 YAD178E 72 7 20 6.6 11 10 <1 870813 YAD178F 72 6 20 3.4 22 22 <1 870813 YAD178FI 82 4 21 29 32 31 <1 TABLE 3. 1967 BADIN LAKE NUTRIENT DATA. NH3 TKN NO2+NO3 TOT P DATE STATION mg/L mg/L mg/L mg/L 870813 YAD178B 0.10 0.5 0.05 0.04 870813 YAD178BBOT 0.31 0.4 0.19 0.07 870813 YAD178E 0.22 0.5 0.05 0.04 870813 YAD178EBOT 0.47 0.6 0.03 0.07 870813 YAD178F 0.05 0.3 0.08 0.03 870813 YAD178FBOT 0.19 0.4 0.17 0.05 870813 YAD178FI 0.02 0.3 0.07 0.02 870813 YAD178FIBO 0.06 0.4 0.31 0.03 PO4 mg/L <0.01 0.01 <0.01 0.01 0.01 0.01 0.01 <0.01 1- w C3 -1 -1 AMBIENT LAKES MONITORING PROGRAM OD.o. ❑TEMP 6PH B. YAD 17BE 0...................... .............. -. 0 -5 _ -10 W -1s -20 -25 -30 III -5 0 5 10 15 20 25 30 Figure 1. 1987 Badin Lake --Depth profiles of physical parameters. 9 'y 'r • s ryl v e tor` r. ! 1, ZTbP,t-,— Lcle. DS GQj, zc Ck KO- L ice. Ds 6e"enda.&k.. za CK RJR (� GS'4 D000 f � 10 Li's J-)a..MA- to SJ:w �jII e. Z 4Bc ,,, Nc M T e ca 4A7�v ' y V State of North Carolina Department of Natural Resources and Community Development Division of Environmental Management 512 North Salisbury Street • Raleigh, North Carolina 27611 James G. Martin, Governor R. Paul Wilms October 2, 1987 S. Thomas Rhodes, Secretary Director Mr. Dennis E. Ford FTN Associates 3 lnr►wood Circle Suite 220 Little Rock, AR 72211 Dear Mr. Ford: Enclosed you will find the data that you requested. Also enclosed are maps showing the -station locations where the data were collected. Please contact Trevor Clements or myself before proceeding with sampling as BEM would like to have an observer present. If z can be of further assistance, please contact me at (919) 733-5083 (ext. 161). JDV:gh cc: Trevor Clements Enclosure Sincerely, David Vogt Pollution Prevenlian Pars P.O. Box 27687, Raleigh, North Carolina 27611-7687 Telephone 919-733-7015 An Equal Opportunity Affirmative Action Employer State- of North Carolina Department of Natural Resources and Community Development Division of Environmental Management 512 North Salisbury Street • Raleigh, North Carolina 27611 James G. Martin, Governor S. Thomas Rhodes, Secretary Marc Johnson FTN Associates 3 Innwood Circle Suite 220 Little Rock, AR 72211 Dear Mr. Johnson: September 14, 1987 R. Paul Wilms Director Attached you will find a copy of a memorandum written by a member of our modeling staff. This memorandum outlines some of the concerns that DEM has with the proposed study. Perhaps you would care to review these concerns before our meeting on the 23rd. We look forward to seeing you then. JTC:gh cc:,,, David Vogt Attachment Sincerely, J. Trevor Clements, Supervisor Technical Support Unit Pollution Prevention Pats P.O. Box 27687, Raleigh, North Carolina 27611-7687 . Telephone 919-733-7015 DIVISION OF ENVIRONMENTAL MANAGEMENT �C", September 13, 1.987 MEMORANDUM TO: George Everett THROUGH: Trevor Clemen Steve Tedder FROM: David Vogt SUBJECT: Proposed Study Plan for Alcoa's WLA I have reviewed the study plan proposed by FTN Associates for determining the mixing characteristics of the cove in Baden Lake in which Alcoa's waste is discharged. I have the following comments: 1) EPA stongly advocates doing tracer studies during critical design conditions. Near -to -design conditions are acceptable if the obtained coefficients can be extrapolated to critical conditions using hydraulic parameters.' Normally DEM recommends that intensive studies be done in late August or early September when water temperatures are high and flows are low. However, since we are presently near low -flow conditions, a study done in late September or early October may be permissable. This means that both Alcoa and FTN Associates will need to accelerate the planning and execution of the study. 2) FTN's proposal mainly addresses the determination of mixing characteristics within the cove. While this is quite important, spatial and temporal examinations also need to be made at the interface of -the cove with the lake. Only if this is done can a determination be made of the residence time of the pollutants in the cove and the method by which they are transported into the main portion of the lake. 3) FTN proposes to inject dye into the effluent "for a minimum of 2 hours" and then observe the dye concentration in a 3-dimensional grid of sampling locations located within the cove. However, due to the lack of mixing in•the cove, it may take days of continuous injection before the dye reaches equilibrium at a sampling point (this is especially true for,the outermost sampling locations). Figure 1 illustrates this concern. 4) It is recommended that FTN take sediment samples in the grid area sometime during the study to ascertain if there are elevated concentrations of cyanide or fluoride in the sediments. I hope that these comments are of use to you in deciding the disposition of Alcoa's wasteload allocation. Please contact me if I can be of further assistance. PW WC Figure 1. Dye Concentration vs. Time at a Sampling Grid Location. To me water resources consultants ASSOCIATES LTD. 3INNWOOD CIRCLE • SUITE 220 • LITTLE ROCK, AR 72211 • PHONE (501) 225-7779 12 August 1987 SEP , g ;ma's r Aluminum Company of America Hwy. 740�(}�� P. O. Box 576 Badin, NC 28009 Attn: D. J. Phillips Re: Request for Quotation, Inquiry No. 7818418A dated 28 July 1987 Dear Sir/Madam: Enclosed for your review is our proposal and bid for the referenced RFQ. Our bid includes professional services, travel, field equipment, and analysis as specified. Some parts of our proposal such as the number of trips and coordination meetings are negotiable. If you have any questions -or require additional information, please call Marc'Johnson or myself. Kindest regards, FOC TNIATES, LTD.. Dennis E. Ford, PhD, P.E. President Enc. SEA} 1 � 1� TECH'VICAt SERVICES WASTELOAD ALLOCATION AND MIXING ZONE STUDY wo rd 1.0 PROPOSED STUDY OUTLINE FTN proposes to conduct a wasteload allocation and mixing zone modeling study for ALCOA, Badin, NC works, on two separate NPDES permitted outfalls (002 and 009) following applicable sections of EPA's Technical Support Document for Water Quality -based Toxics Control. The parameters will include fluoride and cyanide (total and free) at both outfalls and sulfate at outfall 002 only. To accomplish the study within the eight weeks proposed in the request for quotation, we have divided the study into 4 tasks: 1. Data compilation and review. 2. Tracer study. 3. Simple steady state modeling. 4. Report preparation and review. These tasks are described hereafter. 1.1 Data Compilation and Review 1.111.Object,ives The objectives of this task are: a. Define outfall characteristics (magnitude of momentum and buoyancy forces). b. Define receiving body characteristics (stratification, flow regime). C. Define critical conditions and scenarios to be modeled. 1.1.2 Procedures a. A site visit will be made to ALCOA's Badin works as well as a visit to the offices of the North Carolina Department of Natural Resources and Community Development to discuss the project and collect information. b. Outfall characteristics will be determined using information obtained from ALCOA and the NPDES permits. Information required will include outlet geometry (depth, orientation, and size of outfalI), flow rates (including seasonal variability), and effluent density (dependent on temperature and dissolved and suspended solids). This information is required to classify the outfall on the basis 1 of the magnitude of momentum and buoyancy forces. It will be used to select the appropriate model and determine dilution characteristics. C. The receiving water body characteristics that must be determined include reservoir and cove morphometry, stratification patterns, flow regime including seasonal variability and residence times, and reservoir operating procedures such as withdrawal depths, pool level fluctuations, rule curves, etc. This information will be obtained from the State of North Carolina and the operators and owners of the Badin Reservoir, Yadkin Incorporated. d. Pertinent State and Federal water quality standards will be obtained and used to determine effluent concentrations that must be met outside the mixing zone. 1.1.3 Schedule This task will require 2 to 3 weeks to complete after receiving the notice to proceed. 1.1.4 Products a. Classification of the outfall to select appropriate models. b. Identification of critical conditions and scenarios to be modeled. These will be submitted to ALCOA and the State for approval. C. Determination of dilution requirements to meet State and Federal water quality standards. 1.2 Tracer Study 1.2.1 Objectives The objectives of this task are: a. Define effluent dilution characteristics. b. Collect data for use in modeling effluent dilution under other conditions (i.e., model coefficient calibration data). 1.2.2 Justification For existing outfalls, tracer studies are the most cost-effective and defensible studies to determine mixing characteristics. They do not require the extensive data and assumptions that mathematical models require. Their only limitations are that they show only what will happen under the conditions they were conducted under. Ideally, tracer studies should be conducted under the critical conditions to be modeled. In this study, because of the limited 2 time frame, consideration cannot be given to the selecting the optimum time for the tracer study. 1.2.3 Field Procedures a. Make in situ measurements to determine: - Approximate dilution of effluent for use in determining tracer dosages. - Background fluorescence. - Cove stratification. b. Inject Rhodamine WT fluorescent dye into the effluent for a minimum of 2 hours. Rhodamine WT was developed especially for water tracing and is approved for use by the State. C. Define the temporal and spatial characteristics of the dye cloud with a three- dimensional grid of sampling points established in the cove. A Turner Designs field fluorometer will be used for in situ dye concentration analysis. Discrete samples will be collected as backup. d. Submit several discrete samples to an analytical laboratory for the analysis of fluoride, sulfate and total and free cyanide to verify that dye and effluent dilutions are similar. e. Make velocity measurements at each outfall for use in modeling applications. 1.2.4 Schedule The tracer study will be scheduled for the second or third week of the study. It is projected to take about one week to study both outfalls. If possible, more than one dye study will be conducted on each outfall. With sufficient lead time, cost reductions may be possible with supplies, travel, etc. 1.2.5 Products a. Summary of tracer study procedures and results. b. Near and far field dilutions. C. Calibration data for modeling studies. d. Definition of mixing zone. 3 1.3 Model Simulations 1.3.1 Objective The objective of this task is to predict effluent behavior under critical conditions and to define the mixing zone. 1.3.2 Model Selection a. No three-dimensional, dynamic, density dependent models are available. b. Two-dimensional models are available but require detailed input data (e.g., hourly solar radiation data, observed temperature profiles) and large amounts of computer time (hours on large main-frame computers) that make their application impossible within a six week period. C. Only simple steady state models can be used such as those described in "Lake and Reservoir Analyses", Part 1 - Mixing Zone and Toxic Waste]oad Allocations, Chapter 5 of EPA's Technical Support Document for Water Quality -based Toxics Control. The exact model to be used cannot be identified until the outfall and receiving body characteristics have been defined; however two general types of models will be used: Near field dilution model - predicts initial dilution near the outfall pipe. Outfall characteristics will determine if it will be a jet or pIume model. Far field dispersion model - predicts mixing caused by the ambient flow regime. Currents may be driven by convection (differential heating) or advection (inflows or outflows from the reservoir). 1.3.3 Model Application A maximum of four scenarios will be evaluated to determined critical conditions. These scenarios would be selected only after consulting with and gaining the approval of ALCOA and State officials. Examples of such scenarios might involve determining the behavior of the effluent with a low outflow and strong stratification, with a negatively buoyant outflow rate and stratification, and with a neutrally buoyant outflow and no stratification. 1.3.4 Schedule The modeling study will be conducted during the two week period (weeks 4 and 5) following the tracer study. 4 1.3.5 Products The results from this task will be: a. A description of the assumptions, limitations, and procedures used in the analysis. b. Predicted dilutions for each of the scenarios. C. Definition of the mixing zone. 1.4 —Report Preparation 1.4.1 Draft Report A draft report will be completed within six weeks of project commencement and submitted to ALCOA for review. After ALCOA has reviewed the report, the Project Manager and Project Engineer will meet with ALCOA to discuss the results. If desired, a meeting can also be arranged to discuss the results with the State. 1.4.2 Final Report A final report with recommendations will be submitted within 2 weeks after receipt of draft report comments. 5 2.0 PERSONNEL AND STUDY TEAM ORGANIZATION 2.1 Ke Personnel Dennis E. Ford PhD, P.E. Dr. Ford is a recognized international authority on reservoir hydrodynamics. Pertinent experience includes: - Authored the sections on lake and reservoir analysis in Chapter 5 of EPA's Technical Support Document for Water Quality -based Toxics Control. Principal Investigator for the development and verification of techniques for describing internal reservoir mixing processes, U.S. Army Engineer Waterways Experiment Station (WES). Project Manager for Lake Catherine, AR mixing zone and wasteload allocation study. - Directed over 10 large-scale dye studies in reservoirs to study inflow and effluent behavior. - Project Manager for Yazoo River, MS mixing zone study for dredged material spoil area releases. - Conducted laboratory, field, and numerical modeling investigations of thermal discharges. - Principal Investigator for the development of one- and two-dimensional reservoir water quality models with the WES. Marc C. Johnson P.E. Mr. Johnson has conducted numerous dye studies in reservoirs and has worked on the development and application of a wide range of reservoir models. Specific experience includes: - Authored an instructional report on conducting tracer studies in reservoirs for the U.S. Army Corps of Engineers (referenced in "General Recommendations for Tracer Studies",:Part 1, Chapter 5, Technical Support Document for Water Quality -based Toxics Control). - Conducted over 10 dye tracer studies in reservoirs including cove and effluent discharge studies. - Principal Investigator for the development and application of a two-dimensional reservoir water quality model while at the WES. 2 - Applied steady state jet and plume models and developed a two-dimensional longitudinal dispersion model for the Lake Catherine, AR mixing zone and wasteload allocation study. Designed dye studies for ALCOA, Benton, AR mixing zone and Use Attainability Analysis. James T. Malcolm Mr. Malcolm has a background in aquatic chemistry, aquatic toxicology, water quality study planning, quality assurance and quality control, and data analysis. Specific experience includes: Conducted Use Attainability Analyses (UAA) for the Cities of Blytheville and Decatur, in Arkansas. Responsibilities included study design, water chemistry sampling and data interpretation, dye studies for time of travel, and wasteload allocation computer modeling. Conducted UAA for ALCOA, Benton, AR and assisted in preliminary dye study to evaluate the effects of ALCOA's discharge on the Saline River, Arkansas. Mr. Malcolm prepared dye standards for the dye study and assisted in sample collection and analysis. - Project scientist for groundwater sampling and in situ analyses at Pine Bluff Arsenal, AR. - Assisted in the preparation and review of EPA's National Acid Precipitation Assessment Program - ELS Phase 11 and co-authored the Watershed Manipulation Project Quality Assurance/Quality Control Methods Manual for sampling and analytical protocols. 2.2 Team Organization Data and Standards M. C. Johnson, P.E. L. S. Johnson, P.E. ALCOA I Project Manager Administration D. E. Ford, PhD, P.E. Project Engineer M. C. Johnson, P.E. Tracer M. C. Johnson, P.E. J. T. Malcolm R. A. Nusz Model Simulations D. E. Ford, PhD, P.E. M. C. Johnson, P.E. Report and M C. Johnson, P.E. D. E. Ford, PhD, P.E. 3.0 CLIENT CONTACT LIST FOR SIMILAR STUDIES Contact Nature of Work Dr. Elizabeth Southerland Prepared sections on mixing Monitoring and Data zone definitions, Chapter 5 Support Division "Exposure and Wasteload US EPA, Allocation", USEPA Tech - Washington, DC nical Support Document for (202-382-7022) Water Quality -based Toxics Control Mr. Milton Raabe, Manager Mixing zone and wasteload City of Hot Springs, AR allocation study in Lake Sewer Department Catherine, AR. Work (501-624-7109) included dye studies and modeling to determine effluent behavior in the reservoir. ° Dr. Jarvis Harper On -going mixing zone, Operations Environmental Scientist wasteload allocation, and Aluminum Company of America Use Attainability Analysis Benton, AR in the Saline River, AR. (501-776-4701) Mr. Niall O'Shaughnessy Coordinated and consulted Asst. Chief of Water Division on numerous wasteload Arkansas Department of Pollution allocation and dye studies Control and Ecology in Arkansas. Little Rock, AR (501-562-7444) Dr. Richard Price Performed mixing zone Hydraulic Engineer analysis for dredged USAE Waterways Experiment Station material spoil contaminant Vicksburg, MS area releases in Yazoo (601-636-3111) River, MS. 0 4.0 MODEL SELECTION As discussed in Section 1.3.2, only simple steady state models can be applied. No three- dimensional dynamic density dependent models exist. The two-dimensional models that do exist would require longer than the allotted six weeks to apply, require much more detailed input data than is available, and require large amounts of computer time. The steady-state models that will be used cannot be identified until the characteristics of the outfall and receiving waters can be determined (Section 1.1.2); however, the models to be considered fall into two general classes: Near field dilution 2. Far field dispersion Near field models determine the initial mixing at the outfall. If the velocity of the effluent entering the reservoir at the outfall is high, a jet model will be used; if it is low, a plume model can be used. If the density differences (caused by temperature and dissolved and suspended solids concentration differences) are large enough, the buoyancy effects of the discharge will be considered. The plume and jet models discussed in Chapter 5 of EPA's Technical Support Document for Water Quality -based Toxics Control are examples of near field models. Far field dispersion models simulate the flow -generating mechanisms in the ambient waterbody. In a cove these may be the naturally occurring convection currents caused by differential heating along its axis or by inflows and outflows from the main body of the reservoir. Only after the driving mechanisms are identified (as described in Section 1.1.2) can the appropriate models be selected. EX9] 5.0 BILLING RATES 1987 Fee Schedulel FTN Associates, Ltd. Labor CateRoU Principal Engineer/Scientist Engineer Scientist Technician Draftsperson Clerical HourlYRates $78.00 48.00 44.00 32.00 26.00 20.00 Miscellaneous Expenses All miscellaneous expenses will be invoiced at cost plus 10 percent for handling. In- house miscellaneous costs include: Computer (Harris 80) Mileage Copies Travel Supplies/Other $180.00/CPU hr + 1017o - 0.21/mi + 1.0% - 0.10/copy + 10% Cost + 10% Cost + 10% 1 Effective 1 July 1987 - 31 December 1987 11 6.0 TIME AND COST ESTIMATE Cost estimates for labor, travel, and materials, are broken down in Sections 6.1 to 6.3 and totaled in Section 6.4. The number of coordination trips is negotiable. Section 6.5 is a separate quote for analytical laboratory services. The total lump sum "not to exceed" costs are given in Section 6.6. 12 PERMIT NO.: NC00014309 FACILITY NAME: Facility Status: <L`_Ur_ r PROPOSED (circle one) Permit Status: RENEWAL MOMCAT[ON _ (circle one) Major Minor Pipe No: 003 Design ,Capacity (MGD): 0.181 Domestic (% of Flow): NPDES WASTE LOAD ALLOCATION IEW Industrial (X of Flow): d 'Comments: :r ;s or, f Z711 (dAe b re,4. ryZcQS oh / ( An error rk�s rAj- � ero.fs L, sw4m;jej a S1oo of 0.016 ticb. flaw sk,-14 be D 1 e( /441& RECEIVING STREAM: LiELLt Mr ,jr ,,.j C aK Class: Sub -Basin: 3-01- 0 Reference USGS Quad: 1 4L (please attach) County: — ST."Ly Regional Office.: As Fa Mo Ra Wa Wi WS (airele oar) Requested By: 0j&tCA5N Date: -6 /067 Prepared By: / �� Date: ,36g- Reviewed By: Date: Modeler Date Rec. # Drainage Area (mil) Avg. Streamflow (cfs): r� a o _ "( 7Q10 (cfs) d 3 Winter 7Q10 (cfs) 30Q2 (cfs) Toxicity Limits: IWC _ % (circle one) Acute / =hronic Instream Monitoring: Parameters Upstream T Location�l .,, 5/Wi4 e, Downstream Location >7nrox. n'lil r/ekh) Dr`Isth. Comments: P_ j Ad ll°d ,5kee, f -�Y e4j4eY{'►E x 'Pl? jj j o$ /If eAvrl : N/l _Li Z // :.. I i 7n ! -Y _ - FOR APPROPRIATE DISCHARGERS, LIST COMPLETE GUIDELINE LIMITATIONS BELOW Effluent Characteristics Monthly Daily Average Maximum Comments -)M A-"(0Cb 4.4 # z7i? 1 (� F-PPLoA,Ji i. UK l T/h"j o &A) Z" f E �ib7" cm4k d. O LkT TA L-1,S OpZ Oo01l bo� O tZ ot3 S v�� PERMIT NO.: NCooOt(30$ NPDES WASTE LOAD ALLOCATION FACILITY NAME: Facility Status: PROPOSED (circle ose) Permit Status: (circle oae) RENE{iNAL MOMCAIiON UNPERWffED NEW Milor—��Minor Pipe No: a Design Capacity (MGD)• 1 Domestic (X of Flow) - Industrial (R of Flow): �o Comments: RECEIVING STREAM:I�L� iYln��H�lr�,n_ Class: —_ 11_ Sub -Basin: -_ 03601B Reference USGS Quad: "' (please attach) County: Regional Office: As Fa Mo Ra Wa WI WS (circle *tie) Requested By: O�e�(^ash ^.Date• —4-0 /17— Prepared By• :i4 ate: Reviewed By: Date: Modeler Date Rec. Drainage Area (miZ) Avg. Streamflow (cfs): 7Q10 (cfs) Winter 7Q10 (cfs) _30Q2 (cfs) Toxicity Limits: IWC% (circle one) Acute / Chronic Instream Monitoring: Parameters :1 Upstream. Location 'A Downstream Location , DOrblf,�! P bell / rliv_h► A .59 /7.20 Effluent Characte iM rALY) i Met( oov! de 4; moa to Comments: rrrbn 4h I fife . :I rn924� � nn r #31..0 113.E qu yl - 5 01 - as-c�4 15 -- y o• t o3 o. t 55 - r 3.'l 1 . (� �- b. Soo t . C5-OCY�t � Request No. :4033 ^ --------------------- WASTELOAD ALLOCATION APPROVAL FORM --------------------- Permit Number : NC0004308 Facility Name : ALCOA Type of Waste : INDUSTRIAL Status : EXISTING Receiving Stream : LITTLE MOUNTAIN CREEK Stream Class : C Subbasin : 030708 County : STANLY Drainage Area (sq mi) : 6.1 Regional Office : MRO Average Flow (cfs) : 6.0 Requestor : DALE OVERCASH Summer 7010 (cfs) : 0.3 Date of Request : 6/11/87 Winter 7010 (cfs) : 0.5 Quad : F18NE 3002 (cfs) : ------------------------- RECOMMENDED EFFLUENT LIMITS ------------------------- : MON AVE DAL MAX WINTER Wasteflow (mgd): 0.181 0.181 0.181 5-Day BOD (#/d): 48 96 Dissolved Oxygen (mg/1): 5 Oil & Grease (#/d): 15.09 22.64 TSS (#/d): 1050 1575 Nickel (#/d): ~1 55 Flouride (#/d): 5.6 Aluminum (#/d): 2.5214 5.684 Antimony (#/d): 0.8001 1.7955 Benzo(a) pyrene (#/d): 0.0091 --------------------------------- MONITORING --------------------------------- Upstream (Y/N): Y Location: JUST UPSTREAM OF DISCHARGE POINT Downstream (Y/N): Y Location: APPROX. 1.4 MILES BELOW DISCH. AT SR 1720 ---------------------------------- COMMENTS ---------------------------------- THIS ALLOCATION IS A MODIFICATION OF WLA DONE 1/16/86 BY DAVE VOGT. A DESIGN FLOW ERROR WAS MADE BY PERMITS ON THE PREVIOUS ALLOCATION. THESE LIMITS APPLY TO WHAT IS PERMITTED AT PRESENT (BADIN EAST AND BADIN WEST) ON LITTLE MOUNTAIN CREEK. BADIN IS TO RECEIVE FUNDING FOR A 201 PROJECT WHICH WILL ELIMINATE THEIR EXISTING PLANTS AN6 PUT BADIN IN DOWNSTREAM OF ALCOA. PLEASE SEE ATTACHED SHEET FOR LIMITS THAT WILL PERTAIN TO ALCOA WHEN BADIN RELOCATES. SEE TOXICITY LIMITS ATTACHED. _______________________________________________________________________________ Recommended by Reviewed by: Tech. Support Supervisor Regional Supervisor Permits & Engineering Date _ Date( 174 Date Date �Ny �� ��� RETURN TO TECHNICAL SERVICES BY ��� �° w��'. Facility Name Permit TOXICITY TESTING REQUIREMENT The effluent discharge shall at no time exhibit chronic toxicity using test procedures outlined in: 1.) The North Carolina Ceriodaphnia chronic effluent bioassay proce- dure (North Carolina Chronic Bioassay Procedure - Revised *February 1987) or subsequent versions. The effluent concentration at which there may be no observable inhibi- tion of reproduction or significant mortality is xwf % (defined as treatment two in the North Carolina procedure document). The permit holder shall perform r (, monitoring using this procedure to establish compliance with the permit condition. The first test will be performed within thirty days from issuance of this permit. Effluent sampling for this testing shall be performed at the NPDES permitted final effluent discharge below all treatment processes. All toxicity testing results required as part of this permit condition will be entered on the Effluent Discharge Monitoring Form (MR-1) for the month in which it was performed, using the appropriate parameter code. Additionally, DEM Form AT-1 (original) is to be sent to the following address: Attention: Technical Services Branch North Carolina Division of Environmental Management P.O. Box 27687 Raleigh, N.C. 27611 Test data shall be complete and accurate and include all supporting chemi- cal/physical measurements performed in association with the toxicity tests, as well as all dose/response data. Total residual chlorine must be measured and reported if chlorine is employed for disinfection of the waste stream. Should any test data from this monitoring requirement or tests per- formed by the North Carolina Division of Environmental Management indicate potential impacts to the receiving stream, this permit may be re -opened and modified to include alternate monitoring requirements or limits. NOTE: Failure to achieve test conditions as specified in the cited docu- ment, such as minimum control organism survival and appropriate environmen- tal controls, shall constitute an invalid test and will require immediate retesting. Failure to submit suitable test results will constitute a fail- ure of permit condition. 7Q10 0.3 cfs Permited Flow Q,Igl MGD Recommended by: Basin & Sub -basin Receiving Stream m� ;h �`ee-K 1, County i7/y Date ICDA's I4�evVlG+I ire I jVd SO Ln d6W n:5-k-ea w1 0-f A (COA use Li of t W1 I1 0-pp� w i AAA - &Ct i VA CLt C. Ig ►mid �A �cva no . (� c�0 �5 m,_�/I - Wi 4+) i A 1.04- m }1 ICO,A Summer U)in+Iw G30 D `��� 3 % �u. tp #/d Do jwodd C2, Ll j ;�o5 CP 0,7/ 03,5- . T5 95- 15 1) 135 q5- C 13,/)0 135 1-21 q7 15/ -3 t2 C2,3 -J-9 d 1,33 1,53 /.33 /-,53 1. 33 1-�,0�� oo .00 .06 .06 7,3 7,3 T5 7,3 j 173 J3.3 6, Q 16Y q5,5- 33.3 Ll 13 414 C2-1 jexv 0 .5 T?6/W 75 1,33 1.35 /.3:5 3-3 1,03 Ob '00 0 Ca 0& J. 0,/ C), Do 47.3 "7-3 Ol 1� K 0 U) z cz (Z' ri 7-3 t-13. 67 �vo - C-14 V-� 4 J� ov - q6 -S 4 L c E 8A 0 tvj 41Cie,40 It AJ f� D4o - mac r-) 1) CL, r bc) G C7r Cam,► = 143, 5 C �,� --003 CA � L5—s— " 3PT ;4-)VrG 'PIT, CZAt. I ail 00 000 U,.-) 6 4- Aa 4 y ATacer I -woL-t) `) 0 - (i ? 16)6.08 ot-I lot/,, i jW r u) GD Au Sloor 00 ase ASS /g)m5c� 5 'D - -- . a gas ,3 eD aa.c04 15?5fell .. . .. .. SUMMER MODEL WITH ALL THREE DISCH. INTERACTING ---------- MODEL RESULTS ---------- Discharger : ALCOA Receiving Stream : LITTLE MOUNTAIN CREEK ______________________________________________________________________ The End D.O. is 7.34 mg/1. The End CBOD is 22.70 mg/l. The End ______________________________________________________________________ NBOD is 0.00 mg/1. ' WLA WLA WLA DO Min CBOD NBDD DO Waste Flow (mg/1) MiIepoint Reach # (mg/1) ____ (mg/1) ____ (Mg/1) __ (mgd) ----------- segment 1 5.12 0.91 ____ 4 Reach 1 96 0.0O 5.00 0.18000 Reach 2 0 0.00 0.00 0.00000 Reach 3 0 0.00 0.00 0.00000 Reach 4 96 0.00 5.00 0.18100 Segment 2 5.95 0.27 3 Reach 1 96 0.00 6.00 0,58000 Reach 2 0 0.00 0.00 0.06000 Reach 3 0 0.00 0.00 0.00000 Segment 3 5.10 1.45 3 Reach 1 0 0.00 0.00 0.00000 Reach 2 0 0.00 0.00 0.00000 Reach 3 0 0.00 0.00 0.00000 Reach 4 0 0.00 0.00 0.00000 Reach 5 0 0.00 0.00 0.00000 Segment 4 5.57 0.38 l Reach 1 0 0.00 0.00 0.00000 Reach 2 0 0.00 0.00 0.00000 Reach 3 0 0.00 0.00 0.00000 Reach 4 0 0.00 0.00 0.00000 .�..� �{ I`�t.f iN_:.1.... ;::,L11v11`1 F§ 1=; `� l.) �'1 � �t• �• # AL._C.C: A Eli..iL.4fi_'FC:,�;iyi Rc-r-eivi}-irj Sty-eafn L-11`TLE MOL1N'TATN CR1w --, stE earn Class: C, 3urrlrrler- 7010 0.3 Wiriter' 7[ 1t:} t}. j}t;-.rsigri 26. U NGTH1 SLOPE; VELOCITY ; DEPTH; K1 1 K1 1 K2 1 K2 ; K11 ; M 1 KNR' 1 KNR Mile 1 ft/mi; fps ; ft :design; Z201 :design! 8201 ;de5ignF 120' ;design; 320' ----------------------------------------------------------------------------------------------------- 4 Segment 1 1 0.20; 47.60; 0.121 1 0.52 ; 0.64 ; 0.48 111.79 1 10.34; 0.00 1 0.00 ; 0.00 ; 0.00 ; 1 Reach 1 I I 4 ----------------------------------------------------------------------------------------------------- 1 4 1 I 1 1 1 1 1 1 1 1 4 Segment 1 1 0.131 76.90; 0.139 ; 0.47 ; 0.69 1 0.52 121.92 ; 19,231 0.00 ; 0.00 ; 0.00 ; 0,00 Reach L 1 f 1 1 F 4 1 f 1 i 1 1 1 1 1 1 1 1 f 1 i 1 1 1 i 1 1 1 i 1 1 4 Segment 1 1 0.301 31.301 0.107 0.56 ; 0.58 ; 0.44 ; 6.09 ; 6,041 0.00 ; 0.00 ; 0.00 ; 0.00 ; Reach 3 ; 1 --------------------•--------------------------------------_---------•--------------------------------- 1 Segment 1 0.641 31.301 0.147 1 0.62 0.60 ; 0.46 ; 9.46 1 8.30; 0.00 ; 0.00 ; 0.00 0.00 ; Reach 4 1 1 ; ; 1 ; 1 Segment 2 ; 0.13; 91.001 0.908 ; 0.26 ; 1.32 ; 1.00 :56.97 ; 50.00; 0.00 ; 0.00 ; 0.00 ; 0.00 Reach 1 1 ; ; ; 1 ; ; ; 1 ; ; 1 1 ! f I 1 I 1 I 1 ! 1 1 1 I Segment 2 1 0.111 50.00; 0.714 ; 0.29 1 1.32 ; 1.00 156.97 1 50.00; 0.00 ; 0.00 1 0.00 ; 0.00 1 Reach 2 ; 1 ; ; ; 1 1 ; ; ; ; 1 ] 3 1 1 1 ] 1 1 1 1 4 1 3 Segment 2 1 0.13; 77.00; 0.765 ; (1.28 1 1.32 1 1.00 156.97 ; 50.00; 0.00 0.00 ; 0.00 1 0.00 Reach 3 1 1 1 ; 1 1 ----------------------------------------------------------------------------------------------------- 1 i 4 1 f I 4 1 1 i 1 1 1 Segment 3 1 0.221 43.501 0.269 ; 0.67 1 0.75 ; 0.57 123.97 1 21.03; 0.00 ; 0.00 1 0.00 1 0.00 Reach 1 1 , 1 4 1 , ! 1 1 , ! 1 F 1 1 ] 1 4 1 1 1 1 1 1 1 1 1 1 3 I 1 1 1 1 1 1 1 1 1 i Segment 3 ; 0.601 33.301 0.246 1 0.70 ; 0.68 ; 0.51 116.79 ; 14.74; 0.00 ; 0.00 1 0.00 ; 0.00 Reach 2 1 , ! 1 ] 4 ! 1 1 4 1 , i 4 1 3 ----------------------------------------------------------------------------------------------------- Segment 3 ; 0.901 22.501 0.216 0.76 ; 0.60 ; 0.46 1 9.95 ; 8.741 0.00 1 0.00 1 0.00 1 0.00 1 Reach 3 1 Segment 3 ; 0,30; 33.30; 0.239 1 0.73 ; 0.66 ; 0.50 116,31 ; 14.32; 0.00 ; 0.00 1 0.00 1 0.00 Reach 4; ; ; 1 ; 1 ; ; 1 1 1 1 Segment 3 ; 0.221 16.70; 0.195 1 0.81 ; 0.56 0.42 1 6.67 ; 5.851 0.00 ; 0.00 ; 0.00 1 0.00 1 C 1 Reach .� i Segment 4 1 0.381 16.401 0.184 ; 0.95 ; 0.54 '1 0.41 ; 6.17 1 5.421 0.00 ; 0.00 1 0.00 1 0.00 1 ----------------------------------------------------------------------------------------------------- F • 1 1 1 � 1 i 1 1 i i 1 1 1 i Segeent 4] 0.221' 43.50� 0.244 1 0.83 0.67 1 0.51 :21.73 114.071 0.00 1 0.00 1 0.00 10.00 2 1 i 1 1 Reach 1 1 1 1 I 1 1 I 1 i i 1 -----------------------------------------------------------------------`----------------------------- 1 1 1 i 4 1 1 f 1 1 1 1 1 i 4 1 i 1 1 1 1 I Segment 4 1 0.14: 33.34; 0.225 0.87 1 0.62 1 0.47 115.31 1 13.511 0.00 1 0.00 1 0.00 1 0.00 1 Reach 3 4 1 1 L F 1 I 1 F 1 1 ] 1 1 1 1 1 1 I 1 ) 1 1 i I 4 1 ------------------------------------------------------------------------`---------------------------- I 1 1 1 Segment 4 1 1.20: 41.301 0.240 1 0.86 1 0.66 1 0.50 :20.33 1 PAC 0.00 1 0.00 1 0.00 1 0.00 1 Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1 ----------------------------------------------------------------------------------------------------- i l' .I.(-jvi 1 CDC) 1) i I'd 1•:+0D 1 D..0 1 1 (--fs 1 mg/1 1 al,'1 1 [Iig1:1 1 Waste i ()."4_)2 1 96.000 i 0.000 i 5.()00 PIeEtdvii::tt.erS::i 1 t) 290 i 2 00;) i (.)„;)Ot_} i %.._�(}t`} T r i b U t EIV' y ; (} , r ) i) t:) i {_) . t_ 0 ) i Cl . i) t_) (.) ; C) . i) f i i) * Runoff )2c) 1 2 , 000 1 t:) , t )E) 4) 7.30 Segaie-nt 1 Reacti G Waste 1 0,000 i f).i)0 0 0.000 i [).(.)4.)0 •�^.1_. i.1:3t..ttct"i_"}s 1 t_) f i( )4.) i 0 , 0(.)i.1 i 0 . t.)t,)il ; 0 4.ri)4.Y 34 RLAt"10f"1`' i 4.),02r_) i 2„000 i L).00R) i 1»300 Ei g [)) e,ri t 1. Re r.:t C:: h'I 3 Waste 1 4),i)C}{:) 1 [) tlilC) 1 0.4:}:)4.) 1 4?,i)isis T ibutc-t.i_v i 0.000 i C).E)t.1(:) 1 C) C) i [).t»)i)i) 4, F.Lti is-',Ir f t.} . 4">2i.) 2 , 4lilf,;) 1 0 , 000 1 7. Segment I Reacti WF:%-,t-e i t�41 �),281 6.t)00 ; t) t_}f)i) i 5.000 -I••i..:t. bt..('1':'FA 'i"`f 1 0 , i }t.Si) i 0. 000 i 0 . C)00 i 0. 000 * Ruli-ICI"f"f 1 0.160 1 2 . i.)i)t.) i 0 , 000 i 7. 304 ) ::aG:.[:al3)t?)lt 2 1ie?ac.l'i 1 Was ist- 1 0.399 i 96.000 i () . t„1t.14.1 i 6 . 000 HeFAdw=_tter=..:5 1 t_)„0C)t:) ; 0.4100 1 0.00 C) 1 1:.). [,.)4:)4.) Tr i b l_t t: za y" y i 4.r , t.} t_) . , t_} f) it i t i . Q (") C) * RLlllC.l'f"I= 1 i).Gi)i) ; 0„000 1 0.i)t.)() i).fri}i) Segt3ient 2 Reach 2 Waste i 4_) . C)r. 0 1 0 . 4.14_)0 i (.) . 4.r4_r4_r i 0. 004.) T- 11')U t i::t)' } ; () . t,.)i)t.} ; 0 , 04,)4.) ; 4_) , 00o ; 0 , t.)4.0 F,LA'i )C,'17'Ir i Cl . () O4:.) i 0 . 0 )0 1 t.) . t )00 1 i) , 0 ()S) Sefgaic-i"it 2 Reiac:h 3 Wa-atG: 1 0 . (.)()i.) ; 0 . r 14»S4_S i C) . 4_}f.)f) i 0 . 000 Tr x ID u t ClF..r 1 () a lilt..) i 0. 000 1 iJ „ C) C) ; t 1. t-1(,li:) * RLt)ICIAff 1 4.S . 1.0() ; 0 , (.)il(.) 1 t») .:.)(.)4_) i [_) . 000 Segment 3 R iAcl-i 1 Waiste i 0.4:){.)t..) 1 0.000 1 0 t_)04_) i 0.t14.)4) Tributary | 0.000 0.000 | 0.000 | 0.000 *R�f' . . {' 0.060 | 2.000 | 0.000 | 7.300 Segment 3 Reach 2 . Waste | 0.000 | 0.000 | 0.000 | 0.000 ' TrIbutary 000 | 0.000 | 0.000 * Runoff 0.060 | 2.000 | 0.000 | 7.300 Segment 3 Reach 3 Waste | 0.000 | 0.000 | 0.000 | 0.000 Tributary | 0.000 | 0.000 | 0.000 | 0.000 * Runoff | 0.060 ( 2.000 0.000 | 7.300 Segment 3 Reach 4 Waste � 0.000 | 0.000 0.000 Tributary | 0.000 ( 0.000 | 0.000 | 0.000 * Runoff | 0.060 | 2.000 | 0.000 | 7.300 Segment 3 Reach 5 Wsste | 0.000 t 0.O00 0.000 | 0.000 ` Tributary i 0.000 0.000 | 0.000 | 0.000 * Runoff \ 0.060 2.000 | O.000 | 7.300 Seoment 4 Reach 1 Waste | 0.000 | 0.000 | 0.000 | 0.000 Headwaters| 0.000 � 0.000 | 0.000 | 0.000 Tributary | 0.560 | 2.000 } 0.000 7.300 * Runoff | 0.120 | 2.000 | 0.000 | 7.300 Segment 4 Reach 2 Waste .000 | 0.000 000 | 0.000 Tributary | 0.000 0.000 | 0.000 | 0.000 * Runoff | 0.120 | 2.000 | 0.000 | 7.300 Segment 4 Reach 3 Waste | 0.000 0.000 | 0.000 | 0.000 Tributary | 0.000 | 0.000 | 0.000 | 0.000 * Runoff 0.120 | 2.000 | 0.000 | 7.300 Segment 4 Reach 4 Waste | 0.000 | 0.000 | 0.000 | 000U Tributary | 0.000 | 0.000 | 0.000 � 0.00O * Runoff � 0.120 | 2.000 7.300 * Runoff flow is in cfs/miIe ' ' WINTER MODEL WITH ALL THREE DISCH. ` INTERACTING ---------- MODEL RESULTS ---------- Discharger : ALCOA Receiving Stream : LITTLE MOUNTAIN CREEK ______________________________________________________________________ The End D.O. is 9.50 mg/l. The End CBOD is 37.79 mg/l. The End ______________________________________________________________________ NBOD is 0.00 mg/l. WLA WLA WLA DO Min CBOD NBOD DO Waste Flow (mg/l) ______ Milepoint _________ Reach # _______ (mg/1) ____ (mg/l) ____ (mg/l) __ (mgd) ----------- segment 1 6.17 0.63 4 Reach 1 135 0.00 0.00 0.13000 Reach 2 0 0.00 0.00 0.00000 Reach 3 0 0.00 0.00 0.00000 Reach 4 190 0.00 0.00 0.18100 Segment 2 6.00 0.00 1 Reach 1 ' � 135 0.00 6.00 0.58000 Reach 2 0 0,00 0.00 0.00000 Reach 3 0 0.00 0.00 0.00000 Segment 3 7.34 1.63 3 Reach 1 0 0.00 0.00 0.00000 Reach 2 0 0.00 0.00 0.00000 Reach 3 0 0.00 0.00 0.00000 Reach 4 0 0.00 0.00 0.00000 Reach 5 0 0.00 0.00 0.00000 Segment 4 7.91 0.38 1 Reach 1 0 0.00 0.00 0.00000 Reach 2 0 0.00 0.00 0.00000 Reach 3 0 0.00 0.00 0.00000 Reach 4 0 0.00 0.00 0.00000 Discharger » AL_.00A 8i_ibbasin » 03o708 1=tire_e7.vinth r'Ll c.i::ifT1 » L..TTTL...L:_ MC:i1.1N'TAIN Cl"E:Et--.: `J'tream C Iasf,e C:. San-ifnev. 7010 t?.;3 Wi.i.it;f:_r 7()1ry 0.Ur Desigi-i -fc:fTipF---a'LU-Fe.14. 1LENGTH! SLOPE, VELOCITY 1 DEPTH: K1 1 K1 1 K2 1 K2 1 KN l KN 1 KNR 1 KNR 1 1 mile 1 ftfmil fps 1 ft ldesigM 920' lde5ignl a20' :design! 820' 1de5ignl 2204 1 Segment 1 1 0.20: 47.601 0.154 1 0.54 l 0.39 1 0.52 :11.61 1 13.23! 0.00 1 0,00 ! 0.00 1 0.00 Reach 1 1 ! ! 1 11 i 1 1 1 k } ! 1 1 { 1 1 1 ! 1 1 1 I 1 I 1 1 1 1 1 1 k 1 I Segment 1 l 0.13: 76.901 0,178 1 0.51 ! 0.42 1 0.56 :21.61 1 24.631 0.00 1 0.00 1 0.00 1 0.00 1 1 1 F 1 1 Reach 2 1 , , I { 1 I i , 1 , 1 ----------------------------------------------------------------------------------------------------- Segment 1 1 0.301 31,301 0.130 1 0.58 1 0.35 1 0.46 1 6.60 1 7.751 MO 1 0.00 l 0.00 l 0.00 1 Reach 3 1 1 1 1 1 1 1 1 1 1 l 1 1 ----------------------------------------------------------------------------------------------------- r 1 1 1 i 1 1 1 i Segment 1 1 0.641 31.30: 0.179 1 0.64 1 0.36 1 0.48 1 8.85 1 10.081 0.00 1 0.00 1 0.00 1 0.00 1 Reach 4, , 1 , > , 1 i r r 1 r r 1 1 1 1 1 , 1 1 1 , , 1 1 Segment 2 1 0,13: 71.001 0.908 1 0.26 ! 0.76 1 1.00 :43.88 1 50.001 0.00 1 0.00 ! 0.00 1 0.00 l Reach 1{ 1 1 F I • , 1 k 1 i 1 , 1 ,1 ! 1 1 > 1 ----------------------------------------------------------------------------------------------------- i 1 1 i k 1 Segment 2 1 0.111 50.00: 0,714 1 0.29 1 0.76 l 1.00 :43.88 1 50.00: 0.00 1 0.00 l 0.00 1 0.00 1 Reach 2 1 1 1 l 1 1 l 1 1 1 1 1 1 , 1 ,1 1 1 1 r ,1 1 1 1 , , 1 1 1 I { ! 1 I 1 i 1 Segment 2 1 0.131 77.00: 0.765 1 0.28 1 0.76 1 1.00 M AO 1 50.00: 0.00 1 0.00 1 0.00 1 0.00 1 Reach 3 1 1 1 1 1 1 1 1 I l ! ! l ----------------------------------------------------------------------------------------------------- Segment 3 1 0.221 43.501 0.302 1 0.68 ! 0.45 1 0.59 :20.73 1 23.621 0.00 1 0,00 1 0.00 l 0.00 1 Reach 1 1 1 1 1 1 , 1 , 1 i 1 , 1 1 , ----------------------------------------------------------------------------------------------------- Segment 3 1 0.60: 33.301 0.277 1 0.72 1 0.40 1 0.53 114.59 1 16.621 0.00 1 0.00 1 0.00 1 0.00 1 Reach 2 1 1 1 1 , 1 1 ----------------------------------------------------------------------------------------------------- Segment 3 l 0.90: 22.501 0.245 l 0.78 1 0.36 l 0.47 1 8.71 1 9.931 0.00 1 0.00 1 0.00 1 0.00 1 Reach 3 1 l 1 1 1 1 1 1 1 1 1 --------------------------------------------------•----------------_----_--•---------------_____------- r Segment 3 l 0.301 33.30: 0.273 1 0.74 1 0.40 1 0.52 114.36 1 16.361 0.00 1 0.00 l 0.00 1 0.00 1 Reach 4 1 1 1 ! 1 1 ! 1 1 1 1 1 1 ----------------------------------------------------------------------------------------------------- Segment 3 1 0.221 16.701 0,223 1 0.83 1 0.33 1 0.43 1 5.88 1 6.70: 0.00 1 0.00 1 0.00 1 0.00 1 l' I 1 I ] 1 1 1 4 1 I { 1 I Reach s I ----------------------------------------------------------------------------------------------------- Segment 4 l 0.391 16.40: 0.226 1 0.99 t Me 1 0.42 1 5.84 1 6.661 0.00 1 0.00 1 0.00 1 0.00 l Itcaul i I I 1 Segment 4 1 0.22; 43.501 0.300 1 0,90 0.41 0.54 120.64 1 23.5E 13,00 0.00 0.00 0,00 1 Reach 2 1 1 1 1 ; Segment 4 1 0.141 33,301 0.273 0.70 1 0.38 1 0.50 114.65 1 16.691 0,00 0.00 0.00 1 0.00 1 1 I , 1 1 1 , , , r 1 1 r Reach 1 1 , , 1 1 1 1 i I 1 1 I 1 I 1 I 1 I 1 1 Segment 4 1 1.241 41,301 0.299 1 0.89 1 0.40 1 0.53 119.49 1 22,211 0.00 1 0.00 1 0.00 1 0.00 1 Reach 4 1 1 I 1 1 I 1 i 1 , r 1 , 1 , 1 I 1 1 1 ----------------------------------------------------------------------------------------_------------ 1 f= 1 ow 1 CDOD 1 NE(0:1D 1 D. 0 . 1 1 cfs 1 (Tig 1 1 :rlgll 1 mg/1 1 ; c. t�l tll rl t 1. Reach 1. Waste 1 („} . P02 i 1375 . E )[1E_) 1 {_) , (_t(_)() 1 0. (.)OV 1-�t�=�ctdwatf=rs [).4�.0 i 2. 000 1 i).C)C)0 i ��.Gt t) Tr 1 b (.t t a Ty 1 0. , OOCI 1 f-) , 4-) f } C) 1 0. 000 C 0 1 E) . t„) CIO (;Y(;Y(..) 1 9.280 BF-4.yio,i l; 1 Rc?r_.aF:h 2 wasto 1 ().()C7C) 1 Ct.{?00 1 (l,(,(.):) 1 C).C)(.);s. Tribc.ltBry 1 C).000 1 C), i0C) 1 E1.00C) ().C;00 Ru-i-ioff 1 C) . 035 1 2 . 000 1 yi . 000 1 9.2030 Segfr,elit 1 Reach 3 lnlastfc? 1 C).E)(.)0 1 f...).Cj0C) 1 t_7„CK)C] .1. 7- i t7l_t t �K'i...,� 1 , �. fi . f)()C) 1 t_? (_)(_t(_) _ 1 ( 7 „ C)(Ic# 1 r C) [ , ) C-) 0 it 1 Reach4 . [SF_gaie W Ci ma's t F.: 2 8 1 �t �1 i 1 �F 0 , f„) 0 0 1 (,) �. E„) � } wl , ;_) . E_) C) Fes} T F. i 1:.l l..l I-, a l V H1.111CI.f - 1 (,) . 31 0 i 2. C)E_)C) 1 E_) . ()(}r } i 9.280 Waste i 0.399 i 1351.0(=1C) i 0.O K) i 6.000 Headwaters! 0 . t„)C)f_) i 0 . C)0C) 1 0 . 0C)0 1 C ) . 00 (-1 11,r.L1::)(..ltar'y 1 C7.E}[1(} i C).C)C)C) i C).C)C)€..l 1 CI..Ek�.#() iF 1'il-ii"iC:I"4' i 1 („) C)t 1[S i t:} . i!00 1 C) „ ()C74_) 1 0 ()f_)C) Segfrfelt 2 `zeac_t.) 2 waste! i f.) . ()(.)(.) 1 () , C)4.1C) 1 (,k . E_)f.)() i C7 .. C )C* T v i b ut ar y 1 () (loco 1 C) . C)E )f.) 1 (_) . f,lf.1,) i C) . C)CYt„1 tk Fl-tv-1fiff 1 C1.(..)Cit} i ').C1Cl{_) i 0.f1(D i [).(_)€l(1 Sf='gfy-jerit 2 1tieeutC' 1 i 3 Wa5t., e i E?.C1(1C} 1 0,f)#_7f_t 1 C). Tributary 1 0.0t„1t_7 1 0.00 i 0.000 1 f_).fi0f) Rl..l'noff i C) „ {,}C}C) i 0. 000 1 (_) . 000 i E_) , C)(,)0 Seginent 3 Reach 1 Way( 5.1: C)€.l i f.t . ()(_)(..) Tributary | 0.000 | 0.000 ( 0.000 | 0.O00 * Ruhciff . . 100 | 2.000 | 0.000 | 9.280 Segment 3 Reach 2 Waste | 0.000 | 0.000 | 0.000 | 0.000 ' Tributary | 0.000 | 0.000 | 0.000 | 0.000 * Runoff | 0.100 | 2.000 0.000 | 9.200 Segment 3 Reach 3 Waste | 0.00U | 0.000 | 0.00O | 0.000 . Tributary | 0.000 | 0.000 | 0.000 | 0.000 * Runoff | 0.100 1 2.000 1 O.000 | 9.280 Segment 3 Reach A. Waste | O.000 0.000 ( 0.000 | 0.000 Tributary | 0.000 | 0.000 | 0.000 | O.000 * Runoff | 0.100 | 2.000 0.000 | 9.280 Gegment 8 Reach 5 Waste | 0.000 | 0.000 0.000 | 0.00O Tributary | 0.000 | 0.000 � 0.000 | 0.000 * Runoff | 0.100 | 2.000 | 0.000 | 9.280 Segment 4 Reach 1 Waste | 0.0O0 | 0.000 | 0.000 | 0.000 Headwaters: 0.000 | 0.000 | 0.000 | 0.000 Tributary | 0,950 | 2.000 | 0.000 | 9.280 * Runoff | U.210 | 2.000 | 0.000 | 9.280 Segment 4 Reach 2 Waste | 0.000 | 0.000 | 0.000 | 0.000 Tributary | 0.000 | 0.000 | 0.000 | 0.000 * Runoff | 0.210 | 2.000 | 0.000 | 9.280 Segment 4 Reach 3 Waste | 0.0U0 | 0.0O0 | 0.000 | 0.000 Tributary | 0.000 | 0.000 | 0.000 | 0.000 * Runoff | 0.210 | 2.000 | 0.000 | 9'280 Segment 4 Reach 4 Waste | 0.000 | 0.000 | 0.000 | 0000 Tributary | 0.000 0.000 | 0.000 | 0.000 ( * Runoff | 0.210 | 2.000 | 0.000 | 9.280 * Runoff flow is in cfs/mile A yvlutTrPL C 5 cFivAt�i b s IL -?eow'ged pre:5ek--� 3�cLrn. _ rnJrc/ on L, {le-YYotm, 1' CYeeK ` _�RS� ,(3GtG�crt 58rr c� oit ./ ohA C -eel( (VT*) &Myk .} 6rPeK f 19 u-6) _ _ ,✓� L �� � n roc, a, 2.- 00 5 14 wP.s , 4allA, on. 44 Ao c.. /D 6, / C8 G n 0 04 Pu ee,o cz�cxst� CIL- C,C 3,c 3a►� spD am� oc) - - - - - - C'Goo-. = I D_D U. 12-0 - G�eCLw C"Bon. = 135-Y _ ,o D �4-1�,L� - D &A - - - - off, J06 . r r ICO.A ETCH { :� vn o�� � i s ; _ 3 -• �,�. �'4 a ! P 3 ' -- - - - Ow %joy= a.9 L-k) �3� ,Vaco --�o 03 5r 3 vl 11) J � _ _1.33 _ w. Coo /V600 %J qJ-6 `7'7 e A i�u �]_O�-� 6_' _.,{�aC.�,� _ f_���c..�✓Y.� .__G_U C.S��G�.��%ytJ ..��c�c�-� v �.-P.c1C7 Gv �� T� _ 7 CuM Idtv 14ist dtst' q6q 0 o SI o Stream : ovn- ac n 3`f , 3 3 �Myy U 30 1'�4�nSt�m ✓ Bra�C� � J�. 1 GIO� 05 Slope C4`cu ia�'�on s J3.3 OV Pel 6 - 39 3 3� 0 a3G{�41 3 3 3 b �.� • a� Sao ,00 414 a�U s-i8 ,,.3 S 333 5f+1d. -o �a � � S FF 33.3 o 3,S 0I•U aG.3 t 5 A;AaAcG A;AaAcG 9 Stream 61 1 iO4ggStcrn — Blanch .� Slope Caicu lAtion s 2 ./.. d� S Sala 4L J 7U O -5D 31 , 0 d;AcknGG a 7 lq�o disc SIo o St r e a m :. L IV-lf I C' 6 ,21 4`70 3 r .� 1'14;nstGm .� Beae%Ch 3 33.3 SIope CalCulo-lions 3L J-ULlu— 11 a 1430 o u 3. 03 3� 3 8b 3.33 car fc�, ais l.anLC- • ace �� CI33-1,I9� = 1� 'J_1.VW."(�.�-�%:��`� ct 2J. _ lam•" ads - - --- - i Y*i t 33- ✓Ow�Ob_ h�13 A 0.17 ,"alsop 0,7 0"? o, 7 o 'i it �0�05 ------ �� - - ---/v�3 --- -- _o _ o. o. _ a� -7 -b 5 7,-3 I� _ _ --- �' -.�L' .dl/_�'i— .� %�� _ '�`-�--�%%L,�/!^� • _a-Q-� ��-.Oft) �-�C.W'�wCGlil� J ��' IJ D ,' r3s�{�o �r�r3 c�3no k� 1 1 | � ^~ ^+^_'''-'' ' d ~ Seg # | Reach # | Seg Ili | D. 1 1 0.00 6.� 1 1 0.02 6.� 1 1 0.04 6.� 1 1 0.06 6.� 1 1 0.08 b.� 1 1 0.10 6.� 1 1 0.12 6.� 1 1 0.14 6.� 1 1 0.16 6.� 1 1 0.lB 6.� 1 1 0.20 6.� 1 2 0.20 6.� 1 2 0.21 6.� 1 2 0.22 6.� 1 2 0.23 6.� 1 2 0.25 6./ 1 2 0.26 6.4 1 2 0'27 6'� 1 2 �.28 6.� 1 2 0.29 6.� 1 2 0.30 6./ 1 2 0.31 6'/ 1 2 0.32 6.- 1 2 0.33 1 3 0.33 6.- 1 3 0.36 6.� 1 3 0.39 6.� 1 3 0.42 6.� 1 3 0.45 6.� 1 3 0.48 6.( 1 3 0.51 5.' 1 3 0.54 5.� 1 3 0.57 5.( 1 3 0.60 5.� 1 3 0'63 5.' 1 4 0.63 5./ 1 4 0.67 5.� 1 4 0.71 5.� 1 4 ' 0.75 5.� 1 4 0.79 5.� 1 4 0.83 5.� 1 4 0'87 5.� 1 4 0.91 5.� 1 4 0.95 5.� 1 4 0.99 5.� 1 4 1.03 5.� l 4 1.07 5. 1 4 1.11 5.� 1 4 1.15 5.� 1 4 1.19 5.� 1 4 1.23 5.� 1 4 1.27 5.� 2 1 0.00 6.( 2 1 0.01 6.( 2 1 0.02 2 �1 0.03 2 1 0.04 5.' 2 1 0.05 5.� ` SUMMER MODEL WITH ALL INTERACTING ]. | CBOD | NBOD | Flow 36 40.54 0.00 0.49 ]1 40.24 0.00 0.49 27 39.95 0.00 0.49 �3 39.67 0.00 0.49 20 3V.38 0.00 0.49 18 39.10 0.00 0.49 i6 38.82 0.00 0.49 15 38.54 0.00 0.49 i3 38.26 0.00 0.49 12 37.98 0'00 0.50 i2 37.71 0.00 0.50 12 37.71 0.00 0.50 i9 37.58 0.00 0.50 �6 37.45 0.00 0.50 32 37.33 0.00 0.50 ]8 37.20 0.00 0.50 +3 37.07 0.00 0.50 �8 36'95 0.00 0.50 �3 36.82 0.00 0.50 57 36.70 0.00 0.50 10 36,57 0.00 0.50 14 36.45 0.00 0.50 �7 36.33 0.00 0.50 70 36.20 0.00 0.50 72 36.08 0.00 0.50 72 36.08 0.00 0.50 54 35.69 0.00 0.50 39 35.30 0.00 0.50 26 34.91 0.00 0.50 14 34.53 0.00 0.50 14 34.15 0.00 0.50 76 33.78 0.00 0.50 39 33.41 0.00 0.50 33 33.05 0.00 0.50 78 32.69 0.00 0.50 74 32.33 0.00 0.50 f7 55.10 0.00 0.7B �6 54.12 0.00 0.79 �8 53,17 0.00 O.8O �2 52.23 0.00 0.80 i7 51.32 0.00 0.81 14 50.43 0.00 0.82 i3 49.55 0.00 0.82 12 48.69 0.00 0.83 i2 47.85 0.00 0.84 13 47.03 0.00 0.84 i5 46.23 0.00 0.85 17 45.44 0.00 0.86 i9 44.66 0.00 0.86 22 43.91 0.00 0.87 25 43.17 0.00 0.87 �8 42.44 0.00 0.88 'i2 41.73 0.00 0.89 }0 96.00 0.00 0.90 )0 95.91 0.00 0.90 79 95.83 0.00 0.90 f9 95.75 0.00 0.90 78 95.66 0.00 0.90 ?8 95.58 0.00 0.90 THREE DISCH. ��\/x� \�\ /`/`~' ' ' »' m^J 2 1 0.07 5.98 95.41 0.00 0.90 2 1 ' 0'.08 5.97 95.32 0.00 0.90 2 0.09 5.97 95.24 0.00 0.90 2 1 0.10 5.97 95.15 O.00 0.90 2 1 0.11 5.97 95.O7 0.00 0.90 2 1 0.12 5.96 94.98 0.00 0.90 2 1 0.13 5.96 94.90 O.00 0.90 2 2 0.13 5.96 94.90 0.00 0.90 2 2 0.14 5.96 94'79 0.00 0.90 2 2 0.15 5.96 94.69 O.00 0.90 2 2 0.16 5'96 98 0.00 0.90 2 2 0.17 5.96 94.47 0.00 0.90 2 2 0.18 5.95 94.37 0.00 0.90 2 2 0.19 5.95 94.26 0.00 0.90 2 2 0.20 5'95 94.15 0.00 0,90 2 2 O.21 5.95 94.05 0.00 0.9O 2 2 0.22 5.95 93.94 0.00 0.90 2 2 0.23 5.95 93.84 0.00 0.90 2 2 0.24 5.95 93.73 0.00 0.90 2 3 0.24 5.95 93.73 O.00 0.9O 2 3 0.25 5.95 93.63 0.U0 0.90 2 3 0.26 5.95 93.53 0.00 0.90 2 3 0.27 5.95 93.43 0.00 0.90 2 3 0.28 5.95 93.34 0.00 0.90 2 3 0'29 5.95 93.24 0.00 0'90 2 3 0.30 5.95' 93.14 0.00 0.90 2 3 0.31 5.95 93.04 0.00 0.90 2 3 0.32 5.95 92.94 0.00 0.90 2 3 0.33 5.95 92.85 0.00 0.90 2 3 0.34 5.95 92.75 0.00 0.90 2 3 0.35 5.95 92.65 0.00 0.90 2 3 0.36 5.95 92.55 0.00 0.90 2 3 0.37 5.95 92.46 0.00 0.90 3 1 0.00 5.64 67.26 0.00 1.79 3 1 0.02 5.68 66.99 0.00 1.79 3 1 0.04 5.71 66.71 0.00 1.79 3 1 0.06 5.74 66.44 0.00 1.79 8 1 0.08 5.77 66.17 O.00 1.79 3 1 0.10 5.80 65.90 0.00 1.79 3 1 0.12 5.83 65.63 O.00 1.79 3 1 0.14 5.85 65.371.79 3 1 0.16 5.87 65.10 0.00 1.80 3 1 0.18 5'89 64.84 0.00 1.80 3 1 0.20 5.91 64.57 0.00 1.80 3 1 0.22 5.93 64.31 0.00 1.80 3 2 0.22 5.93 64.31 0.00 1.80 3 2 0.28 5.85 63.54 0.00 1.80 3 2 0.34 5.79 62.78 0.00 1.81 8 2 0.40 5.75 62.03 O.00 1.81 3 2 0.46 5.72 61.29 0.0Q 1.81 3 2 0.52 5.71 60.f35 0.O0 1.82 3 It?2 0.58 5.70 59.83 O.00 1.82 3 2 0.64 5.71 59.11 0.00 1.82 3 2 0.70 5.72 58.41 0.00 1.83 8 2 0.76 5.73 57.71 0.00 1.83 3 2 0.82 5.75 57.02 0.00 1.84 3 3 0.82 5.75 57.02 0.00 1.84 3 3 0.91 5.52 56.00 0.00 1.84 3 3 1.00 5.35 54.99 0.00 1.85 3 3 1.09 5.24 54.00 0.00 1.85 3 3 1.18 5.17 53.03 0.00 1.86 3 3 1.27 5.12 52.08 0.00 1.86 3 3 1.36 5.10 51,15 0.00 1.87 3 3 1.45 5.10 50.23 0.00 1.B7 3 3 1.54 49.33 0.00 1.88 -5.10 3 3 1.72 5.15 - - 47.58 ' 0.00 - -- 1.89 � 3 4 ' 1'.,72 5.15 47.58 0.00 1.89 3 4 1.75 5.27 47.30 0.00 1.89 3 4 1-78 5.38 47.01 0.00 1.89 3 4 1.81 5.48 46.73 0.00 1.89 3 4 1.B4 5.57 46.45 0.00 1.90 3 4 1'87 5.65 46.17 0.00 1.90 3 4 1.90 5.72 45.90 0.00 1.90 3 4 1.93 5'78 45.62 0.00 1.90 3 4 1.96 5.84 45.35 0.00 1.90 3 4 1.99 5.89 45.08 0.00 1.91 3 4 2.02 5.94 44.81 0.00 1.91 3 5 2.02 5.94 44.81 0-00 1.91 3 5 2.04 5.87 44.62 0.00 1-91 3 5 2.06 5.B1 44.44 0.00 1.91 3 5 2.08 5.76 44.26 0.00 1.91 3 5 2.10 5.70 44.08 0.00 1.91 3 5 2.12 5.65 43.90 0.00 1.91 3 5 2.14 5.60 43.72 0.00 1.91 3 5 2.16 5.55 43.54 0.00 1.92 3 5 2.18 5.51 43.36 0.00 1.92 3 5 2.20 5.47 43.18 0.00 1.92 3 5 2.22 5.43 43.00 0.00 1.92 3 5 2.24 5.39 42.83 0.00 1.92 4 1 0.00 5.82 33.61 0.00 2.48 4 1 0.02 5.80 33.46 0.00 2.48 4 1 0.04 5.73 33.31 0.00 2.49 4 1 0.06 5.76 33'16 0.00 2.49 4 1 0.08 5.74 38.O1 0.00 2.49 4 1 0.10 5.72 32.86 0.00 2.49 4 1 0.12 5.70 32.71 0.00 2.49 4 1 0.14 5.68 32.57 0.00 2.50 4 1 0.16 5.67 32.42 U.00 2.50 4 1 0.18 5.65 32.28 0.00 2.50 4 1 0.20 5.64 32.13 0.00 2.50 4 1 0.22 5.63 31.99 0.00 2.51 4 1 0,24 5.62 31.84 0.00 2.51 4 1 0.26 5.61 31.70 0.00 2.51 4 1 0.28 5.60 31.56 0.00 2.51 4 1 0.30 5.59 31.42 0.00 2.52 4 1 0.32 5.58 31.28 0.00 2.52 4 1 0.34 5.58 31.14 0.00 2.52 4 1 0.36 5.57 31.00 0.00 2.52 4 1 0.38 5.57 30.86 0.00 2.53 4 2 0.38 5.57 30.86 0.00 2.53 4 2 0.40 5.73 3Q.73 0.00 2.53 4 2 0.42 5.89 30.60 0.00 2.53 4 2 0.44 6.02 30.47 0.00 2.53 4 2 0'46 6'14 30'34 0'00 2'54 4 2 0.48 6.24 30.21 0.00 2.54 4 2 0.50 6.34 30.08 0.00 2.54 ' 4 2 0.52 6.43 29.95 0.00 2.54 4 2 0.54 6.51 29.83 0.00 2.55 4 2 0.56 6.58 29.70 0.00 2.55 4 2 0.58 6.64 29.57 0.00 2.55 4 2 0.60 6.70 29.45 0.00 2.55 4 3 0.60 6.70 29.45 0.00 2.55 4 3 0.62 6.72 29.32 0.00 2.55 4 3 0.64 6.74 29.20 0.00 2.56 4 3 0.66 6-75 29'07 0.00 2.56 4 3 0.68 6.77 28.95 0.00 2.56 4 3 0.70 6.78 28-83 0.00 2.56 4 -3 0.72 6.80 28.71 0.00 2.57 4 3 0.74 6.81 28.59 0.00 2.57 4 4 0'74 6.81 28'59 0'00 2'57 � 4 4 ,0.94 7.07 27.40 0.00 2.59 4 4 ' �.04 7.14 26.83 0.00 2.61 1.14 7,18 26.28 0.00 2.62 . 4 4 1.24 7.22 25.73 0.00 2.63 4 4 1.34 7.25 25.20 0.00 2.64 ' 4 4 1.44 7'27 24.67 0.00 2.65 4 4 1.54 7.29 24.16 0.00 2.67 4 4 1-64 7.31 23.66 0.00 2.68 4 4 1.74 7.33 23.18 0.00 2.69 4 4 1.84 7.34 22.70 0.00 2.70 | Seg # | Reach it | Seg MIL | D.O. | CBOD | NBOD | FIow | � WINTER MODEL WITH ALL INTERACTING Seg # | Reach # | Seg Mi | D.O. > CBOD | NE0D | Flow 1 1 0.00 6.54 41.32 0.00 0.68 1 1 0.02 6.75 41.16 0.00 0.68 1 1 0.04 6.94 40.99 0.00 0.68 1 1 0.06 7.12 40.82 0.00 0.68 1 1 0.08 7.28 40.66 0.00 0.68 1 1 0.10 7.43 40.49 0,00 0.69 1 1 0.12 7.56 40.33 0.00 0.69 1 1 0.14 7.69 40.16 0.00 0.69 1 1 0'16 7.80 40.00 0.00 0.69 1 1 0.18 7.90 39.84 0.00 0.69 1 1 0-20 8.00 39.68 0.00 0.69 1 2 0.20 8.00 39.68 0-00 0.69 1 2 0.21 8.11 39,60 0.00 0.69 1 2 0.22 8.21 39.52 0.00 0.69 1 2 0.23 8.31 39.45 0.00 0.69 1 2 0.24 8.40 39-37 0.00 0.69 1 2 0.25 8,48 89.29 0.00 0.69 1 2 0.26 8.55 39.22 0.00 0.69 1 2 0.27 G.62 39.14 0.00 0.69 1 2 0.28 8.69 39.07 0.00 0.69 1 2 0.29 8.75 38.99 0.00 0.69 1 2 0.30 8.81 38.91 0.00 0.69 1 2 0.31 8.86 38.84 0.00 0.69 1 2 0.32 8.91 38.76 0.00 0.69 1 2 0.33 B.96 38.69 0.00 0.69 1 3 0.33 8.96 38.69 0,00 0.69 1 3 0.36 8.90 38.45 0.00 0.69 1 3 0.39 8.86 38.22 0.00 0.70 1 3 0'42 8.82 37.99 0.00 0.70 1 3 0.45 8.78 37.76 0.00 0.70 1 3 0.48 8.75 37.53 0.00 0.70 1 3 0.51 8.72 37.31 0.00 0.70 1 3 0.54 8.69 37.08 0.00 0.70 1 3 0.57 8.67 36.86 0.00 0.70 1 3 0.60 8.65 86.64 0.00 0.70 1 3 0.63 8.63 36.42 0.00 0'70 1 4 0.63 6.17 80.20 0.00 0.98 1 4 0.67 6.31 78.84 0.00 1.00 1 4 0.71 6.43 77.51 0.00 1.01 1 4 0.75 6.55 76.21 0.00 1.02 1 4 0.79 6.66 74.95 0.00 1.03 1 4 0.83 6.75 73.72 0.00 1.05 1 4 0.B7 6.85 72.52 0.00 1.06 1 4 0.91 6.93 71.35 0.00 1.07 1 4 0.95 7.01 70.21 0.00 1.08 1 4 0.99 7.09 69.09 0.00 1.10 1 4 1.03 7.16 68.00 0.00 1.11 1 4 1.07 7.22 66'94 0.00 1.12 1 4 1.11 7.29 65.90 0.00 1.13 1 4 1.15 7.35 64.B9 0.00 1.15 1 4 1.19 7.40 63.90 0.00 1.16 1 4 1.23 7.46 62.93 0.00 1.17 1 4 1.27 7.51 61.98 0.00 1.18 2 1 0.00 6.00 135.00 0.00 0.90 2 1 0.01 6.06 134.93 0.00 0.90 2 1 0.02 6.11 134.86 0.00 0.90 2 1 0.03 6.17 134.79 0.00 0.90 2 1 0.04 6.22 134.72 0.00 0.90 2 - 1 0.05 ' 6.27 -- 134.66 _ _- 0.00 - 0.90 '-' THREE DISCH. ��,�"J' L�f�� �` N .SS road Wes sadiv) �n� ^ \.» n --_.. .`"�|^�J�m- � ` 1 6.37 134.52 0 .00 0.90 ,0.07 6.42 134.45 0.00 0.90 6.46 134.38 0.00 0.90 2 1 0.10 6.51 134.31 0.00 0.90 , 2 1 0'11 6.55 134.24 0.00 0.90 . 2 � 1 0.12 6.59 134.18 0.00 0.90 ' 2 1 0.13 6.63 134.11 0.00 0.90 2 2 0.13 6.63 134.11 0.00 0.90 2 2 0.14 6.68 134.02 0.00 O.90 2 2 0.15 6.73 133.93 0.00 0.90 2 2 0.16 6.78 133.85 0.00 0.9() 2 2 0.17 6.82 133.76 0.O0 0.90 2 2 0.18 6.87 133.67 0.00 � 0.90 2 2 0.19 6.91 133.58 0.00 0.90 2 2 0.20 6.95 133'50 0.00 0.90 2 2 0.21 6.99 133.41 0.O0 0.90 2 2 0.22 7.02 133.32 0.00 0.90 2 2 0.23 7.06 133.24 0.00 0.90 2 2 0.24 7.09 133.15 0.00 0.90 2 3 0.24 7.09 133.15 0.00 0.90 � 3 0.25 7.13 133.07 0.00 0.90 2 3 0.26 7.16 132.99 0.00 0.90 2 3 0.27 7.19 132.91 0.00 ().90 2 3 0.28 7.21 132.83 0.00 0.90 2 3 0.29 7.24 132.75 0.00 0.90 2 3 0.30 7.27 132.67 0.00 0.90 2 3 0.31 7.29 132,590.90 2 332 7.32 132.51 0.00 O.90 2 3 0.33 7.34 132.43 0.00 0.90 2 3 C..34 7.37 132.35 0.00 O.90 2 3 0.35 7,39 132.27 0.00 0.90 2 3 0.36 7.41 132.19 0.00 0.90 2 3 0.37 7.43 132.11 0.00 0.90 3 1 0.00 7.48 92.27 0.00 2.08 3 1 0.02 7.54 92.01 0.00 2.08 3 1 0,04 7.61 91.76 0.00 2.09 3 1 0.06 7.67 91.50 0.00 2.09 3 J. 0.08 7.72 91.25 0.00 2.09 3 1 0.10 7.77 91.00 0.00 2.09 3 1 0.12 7.82 90.75 0.00 2.09 3 1 '0.14 7'86 90.50 0.00 2.10 3 1 0.16 7.90 90.25 0.00 2.10 3 1 0'18 7.94 90.00 0.00 2.10 3 1 0.20 7.97 89.75 0.00 2.10 3 1 0.22 8.00 89.50 0.0O 2.10 3 2 0.22 8.00 89.50 0.00 2.10 3 2 0,28 7.98 88.78 0.0O 2.11 3 2 0.34 7.96 88.06 0.00 2.12 3 2 0.40 7'95 87.35 0.00 2.12 3 2 0.46 7.95 86.65 0.00 2.13 3 2 ().52 7.95 85.95 0.00 2.13 3 2 0.58 7.95 85.26 0.00 2.14 3 84.57 0,00 2.15 3 2 0.70 7.96 83.89 0.00 2.15 3 2 0.76 7.97 83.22 0.00 2.16 3 2 0.82 7.98 82.55 0.00 2.16 3 3 0.82 7.98 82.55 0.00 2.16 3 3 0-91 7.81 81.56 0.00 2.17 3 3 1.00 7.67 80.59 0.00 2.18 3 3 1.09 7.57 79.63 0.00 2.19 S � 3 1.18 7.49 78.68 0.00 2.20 3 3 1.27 7.43 77.75 0.00 2.21 3 3 1.36 7.39 76.83 0.00 2.22 3 3 1.45 7.36 75.92 0.00 2^.23 3 3 1.54 7.35 75.02 0.00 2.24 ' 3 3 1.72 7.34 73.26 0.00 2.25 7.34 73.26 0.00 2.25 37.43 72.97 0.00 2.26 3 4 1.78 7.51 72.68 0.00 2.26 3 4 1.B1 7.59 72.40 0.00 2.26 3 4 1.84 7.66 72.11 0.00 2.27 3 4 1.87 7.72 71.83 0.00 2.27 3 4 1.90 7.78 71.54 0.00 2.27 3 4 1.93 7.83 71.26 0.00 2.27 3 4 1.96 7.88 70.98 0.00 2.28 3 4 1.99 7.93 70.70 0.00 2,28 3 4 2.02 7.97 70.42 0.O0 2.28 3 5 2.02 �7.97 70.42 0.00 2.28 3 5 2.04 7.92 70.24 0.00 2.29 3 5 2.06 7.87 70.05 0.00 2.29 3 5 2.08 7.83 69.87 0.00 2.29 3 5 2.10 7.78 69.68 0.00 2.29 3 5 2.12 7.74 69.50 0.00 2.29 3 5 2,14 7.70 69.31 0.00 2.30 3 5 2.16 7.66 69.13 0.00 2.30 3 5 2.18 7.62 68.95 0.00 2.30 3 5 2.20 7.59 68.76 0.00 2.30 3 5 2.22 7.55 68.58 0.00 2.30 3 5 2.24 7.52 68.40 0.00 2.31 4 1 0.00 8.03 49.02 0.00 3.26 4 1 0.02 8.02 48.88 0.00 3.26 4 1 0.04 8.01 48.73 0.00 3.26 4 1 0.06 8.00 48.59 0.00 3.27 4 1 0.08 7.99 48.45 0.0D 3.27 4 1 0.10 7.99 48.30 0.00 3.28 4 1 0.12 7.98 48.16 0.00 3.28 4 l 0.14 7-97 48.02 0.00 3.28 4 1 0.16 7.96 47.88 0.00 3.29 4 1 0.18 7.96 47.74 0.00 3.29 4 1 0.20 7.95 47.59 0.00 3.30 4 1 0.22 7.95 47.45 0.00 3.30 4 1 0.24 7.94 47.31 0.00 3.31 4 1 0.26 7.94 47.18 0.00 3.31 4 1 0.28 7.93 47.04 0.00 3.31 4 1 0.30 7.93 46.90 0.00 3.32 4 1 0.32 7.92 46.76 0.00 3.32 4 1 0.34 7.92 46.62 0.00 3.33 4 1 0.36 7.92 46.49 0.00 3.33 4 1 0.38 7.91 46.35 0.00 3.34 4 2 0.38 7.91 46.35 0.00 3.34 4 2 0.40 8.03 46.22 0.00 3.34 4 2 0.42 8.14 46.08 0.00 3.34 4 2 0.44 8.25 45.95 0.00 3.35 4 2 0.46 8.34 45.82 0.00 3.35 4 2 0.48 8.43 45.69 0.00 3.36 4 2 0.50 8.51 45.56 0.00 3.36 4 2 0.52 8.58 45.43 0.00 3.36 4 2 0.54 8.65 45.30 0.00 3.37 4 2 0.56 8.71 45.17 0.00 3.37 4 2 0.58 8.77 ' 45.04 0.00 3.38 4 2 0.60 8.82 44.91 0.00 3.38 4 3 0.60 8.82 44.91 0.00 3.38 4 3 0.62 8.84 44.78 0.00 3.39 4 3 0.64 8.B6 44.66 0.00 3.39 4 3 ' 0.66 8.88 44.53 0.00 3.39 4 3 0.68 8.90 44,40 0.00 3.40 4 3 0.70 8.92 44.28 0.00 3.40 4 3 . 0.72 8.93 44.15 0.00 3.41 4 3 0.74 8.95 44.03 0.00 3.41 4 4 0.74 8.95 44.03 0.00 3.41 4 4 0.94 9.21 42.81 0.00 3.45 4 � . 4 ~ ' . V.04 9.28 42.21 0.00 3.47 4 4 1.14 9.34 41.63 0.00 3.49 4 4 1.24 9.38 41.05 0.00 3.52 ' 4 4 1.34 9.41 40.48 0.00 3.54 . 4 4 1.44 9.43 39.93 0.00 3.56 ' 4 4 1.54 9.45 39.38 0.00 3.58 4 4 1.64 9.47 38.84 0.00 3-60 4 4 1.74 9.48 38.31 0.00 3.62 4 4 1.84 9.50 37.79 0.00 3.64 | Seg # | Reach # | Seg Mi | D.O. | MOD | NBOD 1 Flow |