Loading...
HomeMy WebLinkAboutCape Fear - BTV Report_FINAL_Apr 2020_20200430C(> DUKE C ENEnNf",*Xf%.7 April 8, 2020 North Carolina Department of Environmental Quality Division of Water Resources Raleigh Regional Office 3800 Barrett Drive Raleigh, NC 27609 Attn: Mr. Eric Rice (submitted electronically via email) Re: Cape Fear Updated Background Threshold Values Dear Mr. Rice: Mailing Address 410 S. Wilmington Street Raleigh, NC 27601 Mail Code NC15 919-546-2104 Duke Energy submits the enclosed updated background groundwater dataset through August 2019 and background soil dataset through October 2017 for the Cape Fear Steam Electric Plant. These data were used to calculate updated background threshold values (BTVs) for soil and groundwater as described in the attached report, "Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil" prepared for Duke Energy by SynTerra Corporation. Calculations were completed consistent with the "Statistical Methods for Developing Reference Background Concentrations for Groundwater and Soil at Coal Ash Facilities" dated May 2017 prepared under the guidance of the North Carolina Department of Environmental Quality (NCDEQ) by HDR Engineering, Inc. and SynTerra Corporation. If you have any questions or need any clarification regarding the information provided, feel free to contact me at Andrew.Shull@duke-energy.com or at 919-546-2104 at your convenience. Respectfully submitted, I_A i 1� Andrew W. Shull, P.E. Duke Energy, Environmental Services cc (via email): Mr. Eric Smith — DEQ Central Office Mr. Steve Lanter — DEQ Central Office Mr. Ed Sullivan - Duke Energy Mr. Scott Davies — Duke Energy Mr. John Toepfer —Duke Energy Mr. Evan Yurkovich — SynTerra Mr. Chris Suttell — SynTerra enc: Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil, Cape Fear Steam Electric Plant; SynTerra Corporation, March 2020 ,61p synTerra UPDATED BACKGROUND THRESHOLD VALUES FOR CONSTITUENT CONCENTRATIONS IN GROUNDWATER AND SOIL CAPE FEAR STEAM ELECTRIC PLANT 500 CP&L ROAD MONCURE,, NORTH CAROLINA 27559 MARCH 2O20 PREPARED FOR: DUKE ENERGY DUKE ENERGY PROGRESS,, LLC Jess Gilmer Proiect Scientist Evan Yurkovich Project Manager Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC - Cape Fear Steam Electric Plant SynTerra TABLE OF CONTENTS SECTION PAGE 1.0 INTRODUCTION.........................................................................................................1-1 1.1 Purpose...........................................................................................................................1-2 2.0 BACKGROUND GROUNDWATER AND SOIL DATASETS ...........................2-1 2.1 Groundwater................................................................................................................. 2-1 2.2 Unsaturated Soil............................................................................................................2-2 2.3 Extreme Outlier Concentrations................................................................................. 2-2 2.4 Description of Background Datasets..........................................................................2-4 2.4.1 Groundwater........................................................................................................... 2-4 2.4.2 Unsaturated Soil......................................................................................................2-4 3.0 STATISTICAL METHODOLOGY............................................................................3-1 3.1 Background Threshold Values....................................................................................3-1 3.1.1 Upper Tolerance Limits.........................................................................................3-2 3.2 Fitting Distributions.....................................................................................................3-3 3.3 Outlier Screening..........................................................................................................3-4 4.0 REFERENCES................................................................................................................4-1 Page Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil Duke Energy Progress, LLC — Cape Fear Steam Electric Plant LIST OF FIGURES Figure 1 Background Sample Locations LIST OF TABLES Table 1 Updated Background Threshold Values for Constituent Concentrations in Groundwater Table 2 Updated Background Threshold Values for Constituent Concentrations in Unsaturated Soil Table 3 Background Groundwater Analytical Results Table 4 Background Unsaturated Soil Analytical Results Table 5 Statistical Analysis Results — Surficial Flow Zone Table 6 Statistical Analysis Results — Bedrock Flow Zone Table 7 Statistical Analysis Results — Unsaturated Soil LIST OF ATTACHMENTS March 2020 SynTerra Attachment 1 Arcadis U.S., Inc. Technical Memorandum: Background Threshold Value Statistical Outlier Evaluation — Cape Fear Steam Electric Plant, March 25, 2 02 0. LIST OF APPENDICES Appendix A Upper Tolerance Limits Appendix B Goodness of Fit Test Results Appendix C Quantitative Outlier Test Results Page ii Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil Duke Energy Progress, LLC — Cape Fear Steam Electric Plant LIST OF ACRONYMS Arcadis Arcadis U.S., Inc. bgs below ground surface BTV background threshold value Cape Fear/Site Cape Fear Steam Electric Plant Duke Energy Duke Energy Progress, LLC GOF goodness of fit NCDEQ North Carolina Department of Environmental Quality rROS robust regression on order statistics SW Shapiro -Wilk SynTerra SynTerra Corporation TM technical memorandum USEPA U.S. Environmental Protection Agency UTL upper tolerance limit March 2020 SynTerra Page iii Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant 1.0 INTRODUCTION SynTerra At the request of Duke Energy Progress, LLC (Duke Energy), SynTerra Corporation (SynTerra) updated background threshold values (BTVs) pertaining to constituents monitored in groundwater and unsaturated soil at the Duke Energy Cape Fear Steam Electric Plant (Cape Fear, Site) (Table 1). This report includes an attachment titled, "Background Threshold Value Statistical Outlier Evaluation — Cape Fear Steam Electric Plant, March 25, 2020" prepared by Arcadis U.S., Inc (Arcadis). The Arcadis attachment (Attachment 1) provides a detailed evaluation of extreme outlier concentrations identified in the background datasets for groundwater and unsaturated soil. Arcadis evaluated background groundwater and unsaturated soil data using multiple lines of evidence that considered broader Site geochemical conditions and statistical analysis of individual constituents. Duke Energy previously submitted BTVs to the North Carolina Department of Environmental Quality (NCDEQ) in two separate technical memorandums (TM): • Background Threshold Values for Groundwater, Cape Fear Steam Electric Plant — Moncure, NC (September 5, 2017) • Background Threshold Values for Soil, Cape Fear Steam Electric Plant — Moncure, NC (September 5, 2017) NCDEQ provided response to those BTVs in the letter — "Approval of Provisional Background Threshold Values for Allen Steam Station, Asheville Steam Electric Plant, Buck Combined Cycle Station, Cape Fear Steam Electric Plant, James E. Rogers Energy Complex, Dan River Combined Cycle Station, H.F. Lee Energy Complex, Marshall Steam Station, L.V. Sutton Energy Complex, and W.H. Weatherspoon Power Plant" (Zimmerman to Draovitch, October 11, 2017). The groundwater BTVs provided in the September 5, 2017 TM (Table 1) were statistically derived using a background dataset that: • Included concentration data from background groundwater samples collected from May 2015 to February 2017 • Did not include any extreme outlier concentrations even when those concentrations were valid results not caused by sampling error or laboratory analytical error Page 1-1 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra The unsaturated soil BTVs provided in the September 5, 2017 TM (Table 2) were statistically derived using a background dataset that: • Included concentration data from background unsaturated soil samples collected from August 2013 to June 2016 • Did not include any extreme outlier concentrations even when those concentrations were valid results not caused by sampling error or laboratory analytical error The updated groundwater BTVs presented in this report (Table 1) were derived using an augmented background dataset (Table 3) that included: • Concentration data from background groundwater samples collected from September 2013 to August 2019 • Extreme outlier concentrations not caused by sampling error or laboratory analytical error The updated unsaturated soil BTVs presented in this report (Table 2) were derived using an augmented background dataset (Table 4) that included: • Concentration data from background unsaturated soil samples collected from August 2013 to October 2017 • Extreme outlier concentrations not caused by sampling error or laboratory analytical error 1.1 Purpose The purpose of this report is to: • Present updated BTVs pertaining to constituents monitored in groundwater and unsaturated soil at Cape Fear • Document the statistical approach used to derive updated BTVs • Document data excluded from statistical evaluations • Document the approach used to screen background datasets for extreme statistical outliers Page 1-2 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra 2.0 BACKGROUND GROUNDWATER AND SOIL DATASETS 2.1 Groundwater Two distinct hydrogeologic flow zones at Cape Fear have been identified (SynTerra, 2015): • Surficial flow zone • Bedrock flow zone The background groundwater dataset for each of the distinct flow zones consists of concentration data pooled across background monitoring wells installed within those flow zones (Table 3). Well installations occurred within each flow zone at locations where groundwater quality is not affected by coal ash management or storage. In accordance with NCDEQ guidance, the following sample data were not included in the background groundwater datasets: • Samples with a recorded groundwater pH greater than 8.5 standard units • Samples with a recorded groundwater turbidity greater than 10 nephelometric turbidity units • Samples that had no record of groundwater turbidity or pH • Samples (autocorrelated) collected less than 60 days after the previous sample was collected • Non -detect values greater than Title 15A, North Carolina Administrative Code, Subchapter 02L, Groundwater Classification and Standards or Interim Maximum Allowable Concentrations listed in 15A North Carolina Administrative Code 02L .0202 NCDEQ requirements regarding the exclusion of groundwater sample data were outlined in letters and through email communication: • Letter - "Request for Additional Information regarding Statistical Methods for Developing Reference Background Concentrations for Groundwater and Soil at Coal Ash Facilities" (HDR Engineering, Inc. and SynTerra, January 2017) (Zimmerman to Draovitch, April 2017) • Letter — "Duke Energy Submittal - Background Soil and Groundwater Statistical Methodology for 14 Duke Energy Facilities," May 26, 2017 (Zimmerman to Draovitch, July 2017) Page 2-1 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra • Email — "Duke Energy Comments: Technical Memorandum, Statistical Methods for Developing Reference Background Concentrations for Groundwater at Coal Ash Facilities, HDR, October 2016" (Lanter to Sullivan, November 2016) 2.2 Unsaturated Soil Background unsaturated soil samples were collected from borings at locations where coal ash management or storage has not affected soil quality. The background unsaturated soil dataset consists of concentration data pooled across sampling locations and across multiple depth intervals (Table 4). In accordance with NCDEQ guidance, the following soil sample data were not included in the background unsaturated soil dataset: • Samples collected from depths shallower than 0.5 feet below ground surface (bgs) • Samples collected from depths deeper than 1 foot above the top of the seasonal high-water table • Samples collected from depths deeper than the top of water table • Non -detect values greater than preliminary soil remediation goals for protection of groundwater NCDEQ requirements regarding the exclusion of soil sample data were outlined in the following letters: • "Request for Additional Information regarding Statistical Methods for Developing Reference Background Concentrations for Groundwater and Soil at Coal Ash Facilities" (HDR Engineering, Inc. and SynTerra, January 2017) (Zimmerman to Draovitch, April 2017) • "Duke Energy Submittal — Background Soil and Groundwater Statistical Methodology for 14 Duke Energy Facilities," May 26, 2017 (Zimmerman to Draovitch, July 2017) 2.3 Extreme Outlier Concentrations Extreme outlier concentrations in the background groundwater datasets and the background unsaturated soil dataset were retained when data validation and geochemical analysis of background constituent concentrations indicated that those outlying concentrations did not result from sampling error or laboratory analytical error (Table 3 and Table 4). The approach used to evaluate whether extreme outlier concentrations should be retained in background datasets is presented in the technical Page 2-2 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra memorandum prepared by Arcadis titled, "Background Threshold Value Statistical Outlier Evaluation — Cape Fear Steam Electric Plant, March 25, 2020" (Attachment 1). This is consistent with U.S. Environmental Protection Agency (USEPA) guidance (2009, 2018), which recommends the following: • Outlier concentrations should not be removed from background datasets based solely on statistical methods because statistical methods do not indicate why outlying concentrations are abnormal with respect to the rest of the background dataset. • Statistical outliers should be retained in background datasets unless a specific technical reason (e.g., sampling or laboratory error) for the concentration can be determined. SynTerra conducted data validation of extreme outlier concentrations. Arcadis evaluated extreme outlier concentrations identified in the background groundwater datasets and background unsaturated soil datasets for Cape Fear using a data -driven approach that considered the following: • Concentration of individual constituents • The broader geochemical conditions at the Site Extreme outlier concentrations were evaluated in accordance with the Revised Statistical Methods for Developing Reference Background Concentrations for Groundwater and Soil at Coal Ash Facilities (HDR Engineering, Inc. and SynTerra, 2017), which states: "If statistical outliers have been detected, the project scientist will review the values to determine if they should be removed from the data set or are representative of background and should be retained for statistical analysis." Arcadis reviewed extreme outlier concentrations identified in the background groundwater datasets and the background unsaturated soil dataset for the Site (Attachment 1). Arcadis identified extreme outlier concentrations that should be included in background groundwater and unsaturated soil datasets for each of the Site using the following criteria: • Repeatability of constituent concentrations • Relationship between pairs of constituents or among groups of constituents • Relationships between the concentrations of major ions and total dissolved solids (pertinent to groundwater only) Page 2-3 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra • Relationship between constituent concentrations and pH • Relationship between constituent concentrations and oxidation-reduction potential Extreme outlier concentrations that were retained in the background groundwater datasets and the background unsaturated soil dataset for Cape Fear are identified in Table 3 and Table 4. Rational for including extreme outlier concentrations in the background groundwater for the Site is provided in Table 2 and text of Attachment 1. 2.4 Description of Background Datasets 2.4.1 Groundwater The background dataset for each distinct groundwater flow zone was used to update BTVs for constituents within that flow zone (Table 1). Surficial Flow Zone Three wells (MW-15SU, MW-15SL, and MW-16S) are used to monitor background groundwater quality within the surficial flow zone at Cape Fear (Figure 1). To statistically derive the updated BTVs provided in this report, concentration data from the three wells were included in the background dataset pertaining to the surficial flow zone (Table 5). The background datasets for constituents (except fluoride) in the surficial flow zone contain 10 or more valid sample data (Table 5). Bedrock Flow Zone Four wells (MW-9, MW-9BR, MW-15BR, and MW-16BR) are used to monitor background groundwater quality within the bedrock flow zone at Cape Fear (Figure 1). To statistically derive the updated BTVs provided in this report, concentration data from the four background wells were included in the background dataset pertaining to the bedrock flow zone (Table 6). The background datasets for constituents in the bedrock flow zone contain 10 or more valid sample data (Table 6). 2.4.2 Unsaturated Soil Unsaturated soil samples were collected from 12 locations throughout the Site (Figure 1). Soil samples were collected from multiple depth intervals at each location (Table 4). Only soil samples collected from depths between 0.5 feet bgs and 1 foot above the water table were included in the background unsaturated soil dataset. The background datasets for constituents in unsaturated soil contain 10 or more valid sample data (Table 7). Page 24 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra 3.0 STATISTICAL METHODOLOGY This section describes the statistical approach used to: • Evaluate the background groundwater datasets and the background unsaturated soil dataset • Calculate BTVs pertaining to constituent concentrations in groundwater and unsaturated soil at Cape Fear Statistical methods were performed using guidance provided in the following documents: • Revised Statistical Methods for Developing Reference Background Concentrations for Groundwater and Soil at Coal Ash Facilities (HDR Engineering, Inc. and SynTerra, 2017) • Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance (USEPA, 2009) • ProUCL 5.1.002 Technical Guide, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations (USEPA, 2015) • Groundwater Statistics Tool User's Guide (USEPA, 2018) 3.1 Background Threshold Values Site -specific groundwater and unsaturated soil BTVs were represented by one of the following: • The upper tolerance limit (UTL) represented the Site -specific BTV for a constituent when the background dataset for that constituent contained 10 or more valid sample data and the frequency of non -detects present within the dataset was less than or equal to 90 percent • The maximum non -detect value represented the Site -specific BTV for a constituent when the background dataset for that constituent contained 10 or more valid sample data and the frequency of non -detects present within the dataset was greater than 90 percent • The maximum value represented the Site -specific BTV for a constituent when the background dataset for that constituent contained fewer than 10 valid sample data Page 3-1 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra Site -specific BTVs represented by the UTL and maximum non -detect value are identified in Table 5 through Table 7. 3.1.1 Upper Tolerance Limits UTLs represent — with a specified level of statistical confidence — an upper limit of a range of values in which a specified proportion of the data population resides. UTLs were calculated for constituents (except for pH) using ProUCL version 5.1.002 (Appendix A). Two-sided tolerance intervals consisting of an upper and lower tolerance limit were calculated for pH using NCSS 11 Statistical Software (Appendix A) because ProUCL cannot calculate two-sided tolerance intervals. UTLs were calculated using either parametric statistics or non - parametric statistics. Parametric Upper Tolerance Limits Parametric UTLs were calculated for constituents when the background dataset contained less than or equal to 50 percent non -detects and the background dataset fit a discernible distribution model. When those criteria were met, one of the following UTLs were calculated: Normal UTLs were calculated for constituents when the background dataset fit the normal distribution model. Gamma UTLs were calculated for constituents when the background dataset fit the gamma distribution model but did not fit the normal distribution model. • Lognormal UTLs were calculated for constituents when the background dataset fit only the lognormal distribution model and the standard deviation of the natural log -transformed background dataset for those constituents was less than 1. Parametric UTLs were calculated using a coverage of 95 percent and a confidence level of 95 percent. The Kaplan -Meier method was used to handle non -detects. Page 3-2 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra Non -Parametric Upper Tolerance Limits Non -parametric UTLs were calculated for constituents when the background dataset had one of the following characteristics: • Could not be fitted to a discernible distribution model • Contained greater than 50 percent non -detects and less than or equal to 90 percent non -detects • Could be fitted to the lognormal distribution model but had a standard deviation greater than 1 when the data were natural log -transformed Non -parametric UTLs were calculated using: A confidence level of 95 percent and a coverage of 85 percent when a background dataset contained fewer than 29 samples A confidence level of 95 percent and a coverage of 90 percent when a background dataset contained from 29 to 58 samples A confidence level of 95 percent and a coverage of 95 percent when a background dataset contained 59 or more samples 3.2 Fitting Distributions Background datasets were fitted to various distribution models using goodness of fit (GOF) tests when background datasets contained less than or equal to 50 percent non - detects. Details about the distribution of background groundwater data are provided in Table 5 through Table 6, and details about the distribution of background unsaturated soil data are provided in Table 7. GOF tests were performed using ProUCL version 5.1.002 (Appendix B). If non -detects were present in a background dataset, those data were handled using robust regression on ordered statistics (rROS). rROS requires that the detected concentration data in a dataset fit a distribution model. If the detected concentration data fit a distribution model, rROS estimates a value for each non -detect. The joint distribution of the estimated values and detected concentration data is then evaluated for fit with distribution models using GOF tests. This determines the overall distribution of a dataset. Page 3-3 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra Background data were evaluated for fit with the normal, gamma, and lognormal distribution models using the following GOF tests: • Normal distribution — Shapiro -Wilk (SW) test or Lilliefors test • Gamma distribution — Anderson Darling test and Kolmogorov-Smirnov test • Lognormal distribution — SW test or Lilliefors test The SW test was used to evaluate data for fit with the normal distribution model and lognormal distribution model when background datasets contained 50 or fewer sample data. The Lilliefors test was used to evaluate data for fit with the normal distribution model and lognormal distribution model when background datasets contained more than 50 sample data. Both the Anderson -Darling test and the Kolmogorov-Smirnov test were used to evaluate background datasets for fit with the gamma distribution model, regardless of background dataset sample size. Background data were considered non -parametric when GOF tests could not fit data to a discernible distribution model, or when the background data were fitted to the lognormal distribution, but the standard deviation of the natural log -transformed dataset was greater than 1. 3.3 Outlier Screening Background groundwater and background unsaturated soil datasets were screened for extreme outlier concentrations using ProUCL version 5.1.002. Temporally autocorrelated data were retained in the background groundwater datasets during outlier screening. Temporal autocorrelation was pertinent only to groundwater data. Retaining temporally autocorrelated data in background groundwater datasets helped confirm the validity of apparent statistical outliers or to determine whether outliers were caused by omitting data about concentrations present in groundwater at a given point in time. The background dataset for each constituent within each distinct groundwater flow zone and the background dataset for each constituent in unsaturated soil were screened for extreme outlier concentrations using all the following: • Box -and -whisker plots • Dixon's outlier test or Rosner's outlier test using a 0.01 significance level Extreme outlier concentrations identified in the Dixon's outlier test was used when a background dataset for a constituent contained fewer than 25 samples. Rosner's outlier test was used when a background dataset for a constituent contained more than 25 Page 34 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra samples. Both Dixon's outlier test and Rosner's outlier test make the assumption that the background data for a constituent fit the normal distribution model, excluding all concentrations that are suspected to be outliers. Dixon's or Rosner's outlier test were used to screen the background dataset for a constituent for extreme outlier concentrations only when the aforementioned assumption was met (Appendix C). Extreme outlier concentrations identified in the background groundwater datasets are presented in Table 3. Extreme outlier concentrations identified in the background unsaturated soil dataset are presented in Table 4. Page 3-5 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra 4.0 REFERENCES HDR Engineering, Inc. and SynTerra (2017). Revised Statistical Methods for Developing Reference Background Concentrations for Groundwater and Soil at Coal Ash Facilities. May 2017. SynTerra Corporation (2015). Comprehensive Site Assessment Update. Cape Fear Steam Electric Plant. September 2015. USEPA (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. EPA 530-R-09-007. USEPA (2015). ProUCL 5.1.002 Technical Guide, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R07/041. USEPA (2018). Groundwater Statistics Tool User's Guide. OSWER 9283.1-46. Page 4-1 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant FIGURE SynTerra I NOTES: 1. WELL LOCATIONS WERE DERIVED FROM VARIOUS SOURCES AND ARE A MIX OF . ♦ ■ SURVEYED AND APPROXIMATE LOCATIONS. THEREFORE, WELL LOCATIONS ARE TO BE DEEMED APPROXIMATE. • . ►' I ` ■ • `• ` • I• 2. THE WATERS OF THE US DELINEATION HAS NOT BEEN APPROVED BY THE US ARMY CORPS OF ENGINEERS AT THE TIME OF THE MAP CREATION. THIS MAP , • I �, / •� r ■ ■ IS NOT TO BE USED FOR JURISDICTIONAL DETERMINATION PURPOSES. THE ` J WETLANDS AND STREAMS BOUNDARIES WERE OBTAINED FROM STREAM AND WETLAND DELINEATION CONDUCTED BY AMEC FOSTER WHEELER ENVIRONMENTAL �` AND INFRASTRUCTURE, INC. MAY 2015. I CAL .'�O GRAPHIC SCALE 4. PROPERTY BOUNDARY PROVIDED BYIDUKE ENERGY PROGRESS. .� DUKE 400 D 400 5. AERIAL PHOTOGRAPHY OBTAINED FROM GOOGLE EARTH PRO ON MAY 21, 2018. AERIAL WAS COLLECTED ON FEBRUARY 18, 2018. 6. INSET BASEMAP OBTAINED FROM OPENSTREET MAP VIA ESRI WEB SERVICE. 7. DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINA STATE PLANE COORDINATE SYSTEM FIPS 3200 (NAD83). ENERGY PROGRESS (IN FEET) 800 DRAWN BY: A. ROBINSON DATE: 05/03/2019 REVISED BY: A. ROBINSON DATE: 02/21/2020 CHECKED BY: JHG DATE: 02/21/2020 APPROVED BY: EMY DATE: 02/21/2020 PROJECT MANAGER: E. YURKOVITCH If LEGEND iP GROUNDWATER SAMPLE LOCATION SOIL SAMPLE LOCATION ASH BASIN WASTE BOUNDARY ASH BASIN COMPLIANCE BOUNDARY NPDES TREATMENT UNIT DUKE ENERGY PROGRESS PROPERTY LINE - - • DITCH 310- STREAM (AMEC NRTR) FIGURE 1 BACKGROUND SAMPLE LOCATIONS CAPE FEAR STEAM ELECTRIC PLANT MONCURE, NORTH CAROLINA A Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant TABLES SynTerra TABLE 1 UPDATED BACKGROUND THRESHOLD VALUES FOR CONSTITUENT CONCENTRATIONS IN GROUNDWATER CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Constituent Reporting Unit 15A NCAC 02L Standard Historical BTVs (2017)1 Updated BTVs (2020)2 Surficial Bedrock Surficial Bedrock pH* S.U. 6.5-8.5 5.8-6.4 5.5-8.2 5.8-6.5 5.5-8.2 Alkalinity mg/L NE 206 237 252 232 Aluminum pg/L NE 323 118 447 126 Antimony ug/L 1* 1 1 1 1 Arsenic pg/L 10 3 6 3 8 Barium pg/L 700 183 471 187 485 Beryllium pg/L 4* 1 1 1 1 Bicarbonate mg/L NE 206 235 257 231 Boron pg/L 700 177 50 161 52 Cadmium pg/L 2 1 1 1 1 Calcium mg/L NE 83 63 118 70 Carbonate mg/L NE 5 5 5 5 Chloride mg/L 250 250 220 270 240 Chromium pg/L 10 1 1 3 14 Chromium (VI) pg/L 10 0.1 0.03 0.2 0.1 Cobalt pg/L 1* 89 1.2 61 5 Copper pg/L 1,000 4 1 4 2 Fluoride mg/L 2 --- --- 0.8 0.3 Iron pg/L 300 37,500 910 37,500 2,290 Lead pg/L 15 1 1 1 1 Lithium pg/L NE --- --- 11 13 Magnesium mg/L NE 33 31 33 31 Manganese pg/L 50 9,170 901 9,050 1,080 Mercury pg/L 1 0.05 0.05 0.1 0.05 Methane pg/L NE 10 25 13 52 Molybdenum pg/L NE 1 12 1 13 Nickel pg/L 100 78 2 25 5 Nitrate + Nitrite mg/L NE 2 2 3 2 Potassium mg/L NE 1 2 4 3 Selenium pg/L 20 1 2 1 3 Sodium mg/L NE 190 73 190 76 Strontium pg/L NE 994 806 2,360 738 Sulfate mg/L 250 510 96 510 100 Sulfide mg/L NE 0.1 0.1 0.1 0.2 TDS mg/L 500 1,200 675 900 611 Thallium pg/L 0.2* 0.2 0.2 0.2 0.5 TOC mg/L NE 6 1 6 2 Total Radium pCi/L 5^ 4 3 6 5 Total Uranium pg/mL 0.03^ 0.02 0.002 0.02 0.001 Vanadium pg/L 0.3* 1 2 1 3 Zinc pg/L 1,000 62 5 50 13 Prepared by: HES Checked by: MCM Notes: - Background threshold value (BTV) not calculated for constituent. * - Interim maximum allowable concentration of the 15A North Carolina Administrative Code (NCAC) 02L Standard, Appendix 1, April 1, 2013. ^ - Federal maximum contaminant level BTVs calculated using data from background groundwater samples collected December 2010 to February 2017. Z - Updated BTVs calculated using data from background groundwater samples collected September 2013 to August 2019. pg/L - micrograms per liter pg/mL - micrograms per milliliter mg/L - milligrams per liter NE - not established pCi/L - picocuries per liter S.U. - standard units TDS - total dissolved solids TOC - total organic carbon Page 1 of 1 TABLE 2 UPDATED BACKGROUND THRESHOLD VALUES FOR CONSTITUENT CONCENTRATIONS IN UNSATURATED SOIL CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Constituent PSRG Protection of Groundwater Historical BTV (2017)1 Updated BTV (2020)2 pH NE 5.2-6.7 3.2-6.9 Aluminum 110,000 44,400 44,743 Antimony 0.9 0.2 0.6 Arsenic 5.8 8.1 2.9 Barium 580 224 260 Beryllium 63 1 2 Boron 45 14 7 Cadmium 3 0.7 0.1 Calcium NE 2,750 3,548 Chloride NE 301 276 Chromium 3.8 40 42 Cobalt 0.9 32 22 Copper 700 17 28 Iron 150 24,500 38,976 Lead 270 26 20 Magnesium NE 3,420 3,226 Manganese 65 370 3,418 Mercury 1 0.11 0.1 Molybdenum 7.1 3.3 4.1 Nickel 130 9 14 Nitrate (as N) NE 30 0.3 Potassium NE 427 1,457 Selenium 2.1 4.4 0.8 Sodium NE 338 858 Strontium 1,500 36 28 Sulfate 2,938 301 444 Thallium 0.28 0.35 0.43 Vanadium 350 42 182 Zinc 1,200 154 93 Prepared by: HES Checked by: MCM Notes• Background threshold values (BTVs) calculated using data from background unsaturated soil samples collected August 2013 to June 2016. z Updated BTVs calculated using data from background unsaturated soil samples collected January 2015 to October 2017. All constituents except for pH are reported in milligrams per kilogram. NE - not established pH reported in standard units. PSRG - preliminary soil remediation goal Page 1 of 1 TABLE 3 BACKGROUND GROUNDWATER ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Well ID FIOW Zone Sample Collection Date pH WL Temp SPC DO ORP Eh Turbidity Alkalinity Aluminum Antimony Arsenic Barium Beryllium Bicarbonate Alkalinity Boron Cadmium Calcium Carbonate Alkalinity Chloride Chromium Chromium (VI) Cobalt Copper Fluoride S.U. Ft (BTOC) °C PS/CM mg/L mV mV NTU mg/L Ng/L Ng/L Ng/L Ng/L Ng/L mg/L Ng/L Ng/L mg/L mg/L mg/L Ng/L Ng/L Ng/L Ng/L mg/L MW-155U Surficial 05/29/2015 4.6 10.47 24 2530 2.22 371 576 4.1 11 6850 <1 2.47 29 10 11 <50 1.21 147 <10 51 3.39 --- 387 30.7 --- MW-15SU Surficial 09/01/2015 4.8 8.84 19 1567 1 6.39 123 328 1 NM --- 1250 N1, RO <1 N1, RO 1.16 N1, RO 29 N1, RO 3.16 N1, RO --- 54 N1, RO <1 N1, RO 77.7 N1, RO --- --- <1 N1, RO --- 153 N1, RO 11.6 N1, RO --- MW-15SU Surficial 12/02/2015 6.2 5.83 15 2270 4.00 129 334 3.5 110 167 <1 <1 12 <1 110 116 <1 67.9 <10 20 <1 <0.03 100 6.32 --- MW-155U Surficial 01/06/2016 6.7 5.70 11 1329 4.75 72 277 14.6 173 116 <1 <1 10 <1 173 105 <1 66.4 <5 1.4 <1 0.041 48.9 4.74 --- MW-15SU Surficial 03/02/2016 6.3 5.75 12 1687 3.20 185 390 2.0 172 55 <1 <1 11 <1 172 71 <1 85.9 <5 11 <1 <0.03 50.6 3.41 --- MW-155U Surficial 03/03/2016 NM NM NM NM NM NM NM NM --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-15SU Surficial 06/02/2016 6.0 6.78 19 1290 1.22 S 122 327 9.9 146 369 <1 <1 16 <1 146 85 <1 70.6 <5 7.6 <1 0.035 78.7 4.89 --- MW-15SU Surficial 08/01/2016 5.9 11.78 23 136 3.85 89 294 9.57 --- 158 <1 <1 20 <1 --- 64 <1 61.2 --- --- <1 --- 60.1 2.8 --- MW-15SU Surficial 10/04/2016 6.2 6.80 21 1283 2.14 41 246 1.6 136 216 <1 <1 22 <1 136 134 <1 69 <5 7 <1 0.032 M1 35.5 3.6 --- MW-15SU Surficial 02/27/2017 6.4 6.80 15 1160 1.42 -26 180 3.6 158 95 <1 <1 9 <1 158 64 <1 82.6 <5 5.6 3.32 2.3 3.11 1.96 --- MW-155U Surficial 06/12/2017 6.3 8.56 22 943 0.83 103 308 3.6 146 360 <1 <1 20 <1 146 70 <1 91.1 <5 4.8 <1 <0.12 11.1 3.35 MW-155U Surficial 06/15/2017 NM NM NM NM NM NM NM NM --- --- --- --- --- --- --- --- --- --- --- MW-15SU Surficial 03/13/2018 6.5 13.15 9 843 1.88 2 207 3.3 187 52 <1 <1 16 <1 187 67 <1 99.4 <S 3.1 <1 0.055 1.18 1.52 <1 MW-15SU Surficial 06/13/2018 6.3 6.80 22 762 0.29 42 247 9.2 173 269 <1 0.338 j 22 <1 173 76 <1 81.7 <5 3.1 0.381 j 0.068 6.43 2.39 0.584 j MW-15SU Surficial 08/22/2018 6.1 5.28 23 848 0.75 308 513 7.3 225 50 <1 <1 32 <1 225 116 <1 120 <5 3.1 <1 0.042 1.54 2.02 0.559 j MW-15SU Surficial 1 12/05/2018 6.3 4.70 13 833 0.94 295 500 1.1 218 25 <1 <1 34 <1 218 68 <1 118 <S 2.5 <1 0.047 1.27 1.65 <0.5 MW-15SU Surficial 02/06/2019 6.3 4.79 20 652 0.65 315 520 9.8 1 120 399 <1 <1 32 <1 --- 48.101 j --- 105 --- 2.6 0.755 j 0.4 S1 5.42 --- --- MW-15SL Surficial 05/29/2015 6.0 10.58 18 329 0.10 116 321 5.0 47 76 <1 2.4 76 <1 47 <50 <1 10 <10 6.3 <1 --- 21.1 <1 --- MW-15SL Surficial 06/30/2015 6.1 10.44 19 282 0.30 -61 145 5.3 58 161 <1 1.91 69 <1 58 <50 <1 7.21 <10 7.6 <1 --- 12.3 <1 --- MW-15SL Surficial 09/01/2015 6.3 12.05 20 278 1.05 -95 110 6.3 59 83 <1 2.36 69 <1 59 <50 <1 6.95 <10 7.7 <1 --- 11.8 <1 --- MW-15SL Surficial 12/02/2015 6.3 8.85 17 261 0.60 -50 155 9.9 54 75 <1 2.4 71 <1 54 <50 <1 6.24 <10 7.8 <1 <0.03 13.5 <1 --- MW-15SL Surficial 01/06/2016 6.5 7.01 10 251 0.35 -89 116 8.3 40.2 53 <1 2.86 73 <1 40.2 <50 <1 6.13 <5 7.6 <1 <0.03 13.3 <1 --- MW-15SL Surficial 03/02/2016 6.1 7.68 14 269 0.20 -29 176 9.7 30.4 261 <1 2.42 74 <1 30.4 <50 <1 6.04 <5 7.3 <1 <0.03 16.9 <1 --- MW-15SL Surficial 06/02/2016 6.2 9.45 19 255 0.21 S -70 135 9.5 34.7 63 <1 2.54 75 <1 34.7 <50 <1 5.69 <5 6.7 <1 <3 D3 17.5 <1 --- MW-15SL Surficial 08/01/2016 6.0 11.30 20 224 0.18 -43 162 21.0 35.9 597 <1 2.9 75 <1 35.9 <50 <1 5.96 <5 7.2 <1 8.9 16 <1 --- MW-15SL Surficial 10/04/2016 5.8 10.81 18 254 0.26 -53 152 5.1 51.1 79 <1 2.72 73 <1 51.1 <50 <1 5.38 <5 6.7 <1 <1.5 D3 18.2 <1 --- MW-15SL Surficial 02/27/2017 6.3 10.26 17 248 1.19 -75 130 31.8 44.6 51 <1 2.66 79 <1 44.6 <50 <1 5.25 <5 6.6 <1 27.4 20.1 <1 --- MW-15SL Surficial 06/12/2017 6.2 10.09 22 258 0.35 -63 142 15.7 32.2 97 <1 2.66 71 <1 32.2 <50 <1 5.48 <5 6.4 <1 13.8 20.5 <1 --- MW-15SL Surficial 08/28/2017 6.2 11.81 21 245 0.24 -42 163 58.1 39 42 <1 2.63 69 <1 39 <50 <1 5.13 <5 6.1 <1 <0.25 D3 19.3 <1 --- MW-15SL Surficial 12/04/2017 6.3 12.30 17 231 0.37 -59 146 67.8 20.8 60 <1 2.82 72 <1 20.8 <50 <1 4.43 <5 6 <1 <0.025 19 <1 MW-15SL Surficial 03/13/2018 6.1 10.54 11 226 0.38 -28 177 45.6 40.3 36 <1 2.61 75 <1 40.3 <50 <1 5.37 <5 5.9 <1 29.3 21.3 <1 <0.1 MW-15SL Surficial 06/13/2018 6.0 10.60 20 248 0.23 49 254 80.2 44 116 <1 3.22 87 <1 44 <50 <1 5.94 <5 5.7 <1 <0.025 23.6 <1 <0.1 MW-15SL Surficial 08/22/2018 5.9 10.71 22 250 0.34 170 375 151.0 6.3 133 <1 4.49 84 <1 6.3 <50 <1 5.57 <5 5.7 <1 <0.025 19.9 <1 <0.1 MW-15SL Surficial 12/05/2018 6.0 6.62 14 229 0.19 171 376 7.7 36.5 50 <1 2.6 61 <1 36.5 <50 <1 4.31 <5 5.6 <1 <0.025 18 <1 <0.1 MW-15SL Surficial 02/06/2019 6.1 7.90 19 241 0.20 190 395 33.0 36 80 <1 1.93 66 <1 --- <50 --- 4.85 --- 5.3 0.419 j <0.025 19.1 --- --- MW-15SL Surficial 08/06/2019 6.1 10.83 22 253 0.11 167 372 17.0 40.7 34 <1 2.47 73 <1 40.7 <50 --- 5.31 <5 4.5 0.453 j 0.15 19.1 --- --- MW-16S Surficial 05/20/2015 6.2 2.19 17 978 16.60 111 316 4.3 84 110 <1 <1 160 <1 84 140 <1 59.9 <10 210 <1 --- 3.52 <1 --- MW-16S Surficial 06/11/2015 6.1 3.81 17 1017 0.26 -72 133 3.6 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-16S Surficial 06/30/2015 6.1 3.77 21 1080 0.24 50 255 3.3 --- --- -- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-16S Surficial 09/01/2015 6.2 5.83 19 1196 4.50 36 241 2.0 130 91 <1 <1 202 <1 130 81 <1 72 <10 280 <1 --- 2.49 <1 --- MW-16S Surficial 12/02/2015 6.1 1.60 16 1073 0.40 -5 201 2.1 110 53 <1 <1 182 <1 110 113 <1 57.8 <10 250 <1 <0.03 1 <1 MW-16S Surficial O1/07/2016 6.2 0.96 12 1027 0.50 85 290 0.9 107 20 <1 <1 161 <1 107 113 <1 54.3 <5 240 1.22 <0.03 <1 1.44 MW-16S Surficial 03/02/2016 6.2 1.10 14 967 1.26 117 322 1.4 96 17 <1 <1 155 <1 96 140 <1 52.6 <5 210 <1 r <0.03 <1 <1 Page 1 of 8 TABLE 3 BACKGROUND GROUNDWATER ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Well ID Flow Zone Sample Collection Date Iron Lead Lithium Magnesium Manganese Mercury Methane Molybdenum Nickel Nitrate + Nitrite Potassium Selenium Sodium Strontium Sulfate Sulfide TDS Thallium TOC Total Radium Total Uranium Vanadium Zinc pg/L pg/L pg/L mg/L pg/L pg/L pg/L pg/L pg/L mg/L mg/L pg/L mg/L pg/L mg/L mg/L mg/L Ng/L mg/L pCVL pg/mL pg/L pg/L MW-15SU Surficial 05/29/2015 2490 2.48 --- 82.3 33700 <0.05 <10 <1 150 0.623 0.623 1.45 293 1270 1600 <1 --- 0.218 7.4 --- --- 4.57 288 MW-15SU Surficial 1 09/01/2015 1580 N1, RO <1 N1, RO --- 55.5 N1, RO 16800 N1, RO <0.05 N1, RO --- <1 N1, RO 99.3 N1, RO --- 2.3 N1, RO <1 N1 198 N1, RO 793 N1, RO --- --- --- <0.2 N1, RO --- --- --- 1.51 N1, RO 163 N1, RO MW-15SU Surficial 12/02/2015 119 <1 --- 21.4 9880 <0.05 <10 <1 43 1.6 2.3 1.58 409 743 1100 <0.1 1600 <0.2 7.2 --- <0.3 62 MW-15SU Surficial 01/06/2016 73 <1 --- 16.2 7480 <0.05 <10 <1 21.4 0.924 2.73 1.15 324 810 800 <0.1 1300 <0.2 6.8 --- --- <0.3 28 MW-15SU Surficial 03/02/2016 46 <1 --- 18.8 7970 <0.05 <10 <1 19.6 1.1 3.21 <1 281 984 690 <0.1 1200 <0.2 6.2 <RL 0.0165 <0.3 24 MW-15SU Surficial 03/03/2016 -- --- -- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-15SU Surficial 06/02/2016 494 <1 --- 16.2 9170 <0.05 --- <1 24.8 0.608 3.55 1.05 185 932 510 <0.1 890 <0.2 6.3 2.05 0.00738 0.863 50 MW-15SU Surficial 08/01/2016 162 <1 --- 35.7 9050 <0.05 --- <1 48 --- 1.09 <1 179 760 --- --- --- <0.2 --- --- 0.616 66 MW-15SU Surficial 10/04/2016 208 <1 --- 14.9 6650 <0.05 <10 <1 16.9 3.9 3.44 1.17 190 994 500 <0.1 900 <0.2 5.5 2.448 0.00911 0.506 26 MW-155U Surficial 02/27/2017 133 <1 15.4 1240 <0.05 <10 <1 8.53 1.4 3.16 <1 146 1390 420 <0.1 810 <0.2 4 1198 0.0132 0.306 9 MW-155U Surficial 06/12/2017 313 <1 14.7 3970 <0.05 <10 <1 17.6 0.767 4.36 <1 95.3 B3 1350 350 <0.1 690 <0.2 3.8 B3 0.769 26 MW-15SU Surficial 06/15/2017 --- --- --- --- --- --- --- --- --- --- --- --- --- 0.974 0.00742 --- --- MW-15SU Surficial 03/13/2018 104 <1 1.808 j 12.3 285 <0.05 --- 0.197 j 2.5 3.45 0.691 j 78.8 1930 360 <0.1 620 0.089 j 3.6 1.2348 0.0188 0.361 10 MW-15SU Surficial 06/13/2018 233 <1 4.001 j 13.6 1830 <0.05 --- 0.136 j2.5 72!.34 1.2 3.09 0.477 j 61 1480 230 <0.1 510 <0.2 3.9 0.802 0.0102 0.802 18 MW-15SU Surficial 08/22/2018 50 <1 4 j 12.5 514 <0.05 --- 0.363 j3.5 0.879 4.51 0.975 j 52.8 210 <0.1 600 <0.2 4.6 1.0842 0.0162 0.525 6 MW-15SU Surficial 12/05/2018 21 <1 2.609 j 13.4 795 0.022 j --- 0.385 j 4.45 0.063 3.65 0.617 j 44.2 240 <0.1 570 <0.2 4.6 1.862 0.016 0.341 4.874) MW-15SU Surficial 02/06/2019 223 --- 3.727 j 11 2080 --- --- 0.246 j 6.48 0.194 3.81 0.379 j 22 2150 200 1 --- 430 <0.2 --- -- --- 0.557 9 MW-15SL Surficial 05/29/2015 45500 <1 --- 3.62 4560 <0.05 11 <1 1.69 0.018 1.57 <1 15.6 133 80 <0.1 210 <0.2 1.3 --- --- <0.3 <5 MW-15SL Surficial 06/30/2015 38400 <1 --- 2.88 3860 <0.05 <10 <1 <1 0.026 1.42 <1 15.5 114 52 <0.1 190 <0.2 1.2 --- --- 0.383 <5 MW-15SL Surficial 09/01/2015 37500 <1 --- 2.66 3630 <0.05 16 <1 <1 0.018 1.41 <1 15.7 109 47 <0.1 160 <0.2 0.865 --- --- 0.48 <5 MW-15SL Surficial 12/02/2015 33900 <1 --- 2.38 3220 <0.05 <10 <1 <1 0.022 1.36 <1 17 101 46 <0.1 190 <0.2 0.806 --- --- 0.322 <5 MW-15SL Surficial 01/06/2016 37200 <1 --- 2.31 3330 <0.05 15.3 <1 <1 0.016 1.28 <1 16.8 102 44 <0.1 160 <0.2 0.8 --- --- <0.3 <5 MW-15SL Surficial 03/02/2016 35800 <1 --- 2.22 2880 <0.05 <10 <1 1.27 <0.01 1.36 <1 16.8 101 47 <0.1 180 <0.2 0.843 0.872 <0.0002 0.734 <5 MW-15SL Surficial 06/02/2016 36700 <1 --- 1.94 2710 <0.05 <10 <1 1.43 <0.01 1.25 <1 17.2 98 43 <0.1 160 <0.2 0.888 0.91 <0.0002 0.334 <5 MW-15SL Surficial 08/01/2016 34200 <1 --- 2.15 2880 <0.05 <10 <1 1.18 <0.01 1.22 <1 16.8 98 40 <0.1 160 <0.2 0.83 B2 7.42 <0.0002 1.52 <5 MW-15SL Surficial 10/04/2016 34600 <1 --- 1.88 2480 <0.05 <10 <1 1.41 <0.01 1.25 <1 17.9 93 21 <0.1 210 <0.2 0.793 3.78 <0.0002 0.324 <5 MW-15SL Surficial 02/27/2017 38200 <1 --- 1.85 2520 <0.05 <10 <1 1.41 <0.01 1.28 <1 18 95 47 <0.1 160 <0.2 1.1 0.87 <0.0002 <0.3 <5 MW-15SL Surficial 06/12/2017 35300 <1 --- 1.88 2310 <0.05 <10 <1 1.49 <0.01 1.25 <1 18.7 B3 88 45 <0.1 170 <0.2 0.907 B3 0.553 <0.0002 0.399 7 MW-15SL Surficial 08/28/2017 32400 <1 --- 1.78 2240 <0.05 --- <1 1.38 --- 1.24 <1 17.7 88 48 <0.1 160 <0.2 B4 1.3 4.1 <0.0002 <0.3 <5 MW-15SL Surficial 12/04/2017 31900 <1 --- 1.54 2190 <0.05 --- <1 1.51 --- 1.11 <1 16.5 89 41 <0.1 150 <0.2 1.3 1.82 <0.0002 0.328 <5 MW-15SL Surficial 03/13/2018 39800 <1 <5 1.83 2390 <0.05 0.246 j 1.65 0.042 1.26 <1 17.9 92 49 <0.1 180 <0.2 0.915 1.891 <0.0002 0.297 j <5 MW-15SL Surficial 06/13/2018 46400 <1 <5 2.04 2680 <0.05 --- 0.217 j 1.68 0.028 1.29 <1 18.1 108 58 <0.1 160 <0.2 1.1 1.006 <0.0002 0.523 <5 MW-15SL Surficial 08/22/2018 47100 <1 1.8 j 1.87 2350 <0.05 0.298 j 1.76 0.055 1.29 <1 18.4 95 54 <0.1 170 <0.2 1.1 1.814 <0.0002 0.554 4 j MW-15SL Surficial 12/05/2018 29800 <1 <5 1.46 1870 <0.05 --- 0.227 j 1 1.4 0.212 1.13 <1 17.1 77 43 <0.1 140 <0.2 1 1.274 <0.0002 0.2641 1.719 j MW-15SL Surficial 02/06/2019 32000 --- 3.283 j 1.68 2180 --- --- 0.205 j 1.77 0.134 1.24 <1 16.7 91 56 --- 130 <0.2 --- --- --- 0.28 j <5 MW-15SL Surficial 08/06/2019 36000 --- <5 1.72 2260 --- --- 0.163 j 1.5 0.123 M2 1.22 <1 17.1 94 54 --- 170 <0.2 0.943 S1 --- --- 0.328 7 S1 MW-16S Surficial 05/20/2015 93 <1 --- 26 202 <0.05 <10 <1 3.14 0.018 0.992 <1 83.1 624 44 <0.1 630 <0.2 0.706 1.1 <5 MW-16S Surficial 06/11/2015 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-16S Surficial 06/30/2015 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 3 0.000209 --- --- MW-16S Surficial 09/01/2015 385 <1 --- 32.5 105 <0.05 <10 <1 2.16 <0.01 1.24 <1 104 758 25 <0.1 830 <0.2 0.918 --- --- 0.674 <S MW-16S Surficial 12/02/2015 260 <1 --- 27.2 39 <0.05 <10 <1 2.59 <0.01 0.944 <1 98.3 619 32 <0.1 630 <0.2 0.875 --- --- 0.679 <5 MW-16S Surficial O1/07/2016 184 <1 --- 26.6 26 <0.05 <10 <1 2.33 0.117 0.991 <1 92.8 587 43 <0.1 560 <0.2 0.865 --- --- 0.612 10 MW-16S Surficial 03/02/2016 257 <1 27.4 19 <0.05 <10 <1 1.82 0.034 0.95 <1 91.3 574 50 <0.1 550 <0.2 0.78 1.7 0.000304 0.782 <5 Page 2 of 8 TABLE 3 BACKGROUND GROUNDWATER ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Well ID Flow Zone Sample Collection Date pH WL Temp SPC DO ORP Eh Turbidity Alkalinity Aluminum Antimony Arsenic Barium Beryllium Bicarbonate Alkalinity Boron Cadmium Calcium Carbonate Alkalinity Chloride Chromium Chromium (VI) Cobalt Copper Fluoride S. U. Ft (BTOC) oC Ns/cm mg/L mV mV NTU mg/L Ng/L Ng/L Ng/L Ng/L Ng/L mg/L Ng/L Ng/L mg/L mg/L mg/L Ng/L Ng/L Ng/L Ng/L mg/L MW-16S Surficial 06/02/2016 6.0 1.70 15 980 0.22 S 145 350 1.2 112 14 <1 <1 164 <1 112 150 <1 60.4 <5 220 <1 <0.03 <1 <1 --- MW-16S Surficial 08/01/2016 6.1 4.35 19 1054 0.14 20 225 1.9 129 <5 <1 <1 179 <1 129 112 <1 59.8 <5 240 <1 <0.03 <1 <1 --- MW-16S Surficial 10/05/2016 6.1 3.30 19 1115 0.17 58 263 1.0 139 7 <1 <1 183 <1 139 99 <1 63.3 <5 240 <1 <0.03 <1 <1 --- MW-16S Surficial 02/28/2017 6.2 1.87 15 1027 0.47 S 259 464 7.6 121 76 <1 <1 172 <1 121 138 <1 56.6 <5 230 <1 <0.12 D3 1.25 <1 --- MW-16S Surficial 06/12/2017 6.2 3.00 18 951 0.38 -89 116 7.9 130 134 <1 <1 171 <1 130 113 <1 66.4 <5 240 <1 <0.025 <1 <1 --- MW-16S Surficial 08/29/2017 6.2 5.89 19 1130 0.12 93 298 8.5 164 106 <1 <1 187 <1 164 77 <1 62 B2 <5 240 <1 <0.025 <1 <1 --- MW-16S Surficial 12/05/2017 6.3 5.94 18 1114 0.45 63 268 9.8 202 84 <1 <1 185 <1 202 51 <1 54.1 <5 250 <1 <0.025 <1 <1 --- MW-16S Surficial 03/15/2018 6.2 2.41 13 1087 0.31 20 225 8.4 191 160 <1 <1 175 <1 191 48.663 j <1 62.9 <5 230 <1 <0.025 0.531 j <1 0.2145 j MW-16S Surficial 06/13/2018 6.3 3.68 17 1106 NM 76 281 4.5 177 31 <1 <1 172 <1 177 62 <1 60.4 <5 240 <1 <0.025 0.621 j <1 0.244 j MW-16S Surficial 08/29/2018 6.3 3.86 21 1082 0.18 61 266 9.2 199 127 <1 <1 170 <1 199 49.658 j <1 57.7 B1 <5 230 <1 <0.025 0.995 j <1 0.2595 j MW-16S Surficial 12/04/2018 6.3 1.23 17 1105 0.28 168 373 8.1 163 132 <1 <1 176 <1 163 73 <1 60.2 <5 270 <1 <0.025 2.04 <1 <0.5 MW-16S Surficial 02/05/2019 6.2 1.05 17 1168 0.15 252 457 6.9 140 144 SI <1 <1 187 <1 --- 94 --- 59.7 --- 250 <1 <0.025 1.83 --- --- MW-16S Surficial 08/06/2019 6.2 4.28 19 1069 0.06 231 436 6.5 187 46 <1 <1 170 <1 187 62 --- 55.4 <5 250 <1 0.18 S1 2.02 --- --- MW-9 Bedrock 09/03/2013 NM 13.09 NM NM NM NM NM NM --- --- --- --- -- MW-9 Bedrock 09/09/2013 6.2 NM 20 549 0.35 50 1 NM 14.9 111 546 <0.34 0.7 j 74.7 ---Lprw-i 44.2 --- 145 <1.6 --- MW-9 Bedrock 06/17/2015 5.9 14.26 18 991 0.70 -12 193 2.9 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-9 Bedrock 06/30/2015 5.7 14.20 21 1049 0.23 101 306 3.2 83 16 <1 <1 76 <1 82 <50 <1 68.9 <10 240 <1 --- 6.7 <1 --- MW-9 Bedrock 09/01/2015 6.1 15.48 22 863 0.20 49 254 1.9 120 23 <1 <1 103 <1 120 <50 <1 57.1 <10 150 <1 --- 1.51 <1 --- MW-9 Bedrock 12/02/2015 5.7 13.64 17 1061 0.50 57 262 1.1 87 15 <1 <1 83 <1 86 <50 <1 72.2 <10 220 <1 <0.03 2.68 <1 --- MW-9 Bedrock O1/07/2016 5.8 11.94 12 1069 2.40 200 405 0.4 63.7 14 <1 <1 66 <1 63.7 <50 <1 61.4 <5 250 <1 0.052 1.02 <1 --- MW-9 Bedrock 03/01/2016 5.6 10.45 16 1028 1.48 213 418 3.7 63.6 17 <1 <1 46 <1 63.6 <50 <1 61.9 <5 240 <1 <0.03 <1 <1 --- MW-9 Bedrock 06/02/2016 5.6 12.14 16 1016 1.15 S 156 361 1.5 78.1 21 <1 <1 45 <1 78.1 <50 <1 55.6 <5 200 <1 <0.03 <1 <1 --- MW-9 Bedrock 08/02/2016 5.46 S 14.44 20 996 0.24 47 252 7.5 102 23 <1 <1 61 <1 102 <50 <1 60.2 <5 220 <1 <0.03 2.21 <1 --- MW-9 Bedrock 10/05/2016 5.7 14.54 18 999 0.34 36 241 1.0 117 11 <1 <1 103 <1 117 <50 <1 57.3 <5 150 <1 <0.03 1.4 <1 --- MW-9 Bedrock 02/27/2017 5.8 13.08 17 1030 2.53 187 392 2.4 93.1 17 <1 <1 82 <1 93.1 <50 <1 55.5 M4 <5 200 <1 <0.12 1.15 <1 --- MW-9 Bedrock 06/13/2017 5.7 13.73 22 1013 1.08 73 278 4.2 110 27 <1 <1 61 <1 110 <50 <1 56.8 <5 180 0.044 <1 <1 --- MW-9 Bedrock 08/29/2017 5.6 15.63 18 985 0.34 144 349 5.1 93.5 19 <1 <1 65 <1 93.5 <50 <1 69.6 B2 <5 200 <1 <0.025 2.23 <1 --- MW-9 Bedrock 12/05/2017 5.7 16.73 18 969 0.67 99 304 7.9 77.9 30 <1 <1 97 <1 77.9 <50 <1 61.3 M4 <5 210 <1 <0.025 4.97 <1 --- MW-9 Bedrock 03/14/2018 6.0 14.39 14 930 2.40 84 289 3.3 107 13 <1 <1 99 <1 107 <50 <1 65.7 <5 180 <1 0.064 1.29 <1 0.2605 j MW-9 Bedrock 06/14/2018 5.6 14.50 18 907 0.30 83 288 2.5 116 13 <1 <1 86 <1 116 <50 <1 58.3 <5 160 <1 0.049 0.66 j 0.428 j 0.1886 j MW-9 Bedrock 08/22/2018 5.6 14.85 20 908 0.28 224 429 4.6 126 5.9 j <1 <1 99 <1 126 <50 <1 62.4 <5 150 <1 <0.025 0.805 j <1 0.282 j MW-9 Bedrock 12/05/2018 6.1 13.20 16 840 0.60 268 473 0.6 123 6 <1 <1 118 <1 123 <50 <1 55.6 <5 150 <1 <0.025 MO 0.931 j <1 <0.5 MW-9 Bedrock 02/06/2019 5.7 10.89 14 866 1.77 759 964 0.5 73 9 <1 <1 38 <1 --- <50 --- 48.6 --- 180 <1 0.14 S1 <1 --- --- MW-9 Bedrock 08/07/2019 5.7 13.99 23 790 1.03 306 511 1.4 72.5 11 <1 <1 28 <1 72.5 <50 --- 41.7 <5 170 1 <1 0.045 <1 --- --- MW-9BR Bedrock 05/30/2015 7.7 17.46 19 706 0.12 -238 -33 2.1 160 138 <1 <1 420 <1 160 <50 <1 60.3 <10 120 <1 --- <1 <1 --- MW-9BR Bedrock 06/17/2015 7.4 18.43 20 714 0.32 -262 -57 1.6 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-9BR Bedrock 09/01/2015 7.3 19.23 21 656 0.20 -128 78 1.0 170 18 <1 <1 410 <1 170 <50 <1 55.8 <10 100 <1 --- <1 <1 --- MW-9BR Bedrock 12/02/2015 7.3 15.97 15 639 0.40 -128 77 2.3 160 17 <1 <1 399 <1 160 <50 <1 52.1 <10 97 <1 <0.03 <1 <1 --- MW-9BR Bedrock 01/07/2016 7.6 15.15 11 650 0.70 -116 89 0.7 174 17 <1 <1 414 <1 174 <50 <1 51.2 <5 100 <1 <0.03 <1 <1 --- MW-9BR Bedrock 03/01/2016 7.4 14.93 19 637 0.38 -155 50 2.0 168 13 <1 <1 420 <1 168 <50 <1 52.1 <5 95 <1 <0.03 <1 <1 --- Bedrock 06/02/2016 7.4 16.05 19 617 1.51 S 77 282 0.6 181 14 <1 <1 405 <1 181 <50 <1 53.8 <5 93 <1 <0.03 <1 <1 --- MW-9BR Bedrock 08/02/2016 7.3 S 18.44 21 631 0.32 -125 81 1.1 166 30 <1 <1 474 <1 166 <50 <1 52.4 <5 110 <1 <0.03 <1 <1 --- MW-9BR Bedrock 10/05/2016 7.3 17.66 17 685 0.25 -107 98 2.7 1 167 21 <1 <1 485 <1 167 <50 <1 62.6 <5 120 <1 <0.03 <1 <1 Page 3 of 8 TABLE 3 BACKGROUND GROUNDWATER ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Well ID Flow Zone Sample Collection Date Iron Lead Lithium Magnesium Manganese Mercury Methane Molybdenum Nickel Nitrate + Nitrite Potassium Selenium Sodium Strontium Sulfate Sulfide TDS Thallium TOC Total Radium Total Uranium Vanadium Zinc Ng/L Ng/L Ng/L mg/L Ng/L Ng/L Ng/L Ng/L Ng/L mg/L mg/L Ng/L mg/L Ng/L mg/L mg/L mg/L Ng/L mg/L POIL Ng/mL Ng/L Ng/L MW-16S Surficial 06/02/2016 149 <1 --- 26.4 17 <0.05 <10 <1 1.8 <0.01 0.983 <1 91.8 640 44 <0.1 640 <0.2 0.813 2.17 0.000329 0.964 <5 MW-16S Surficial 08/01/2016 126 <1 --- 27.5 23 <0.05 12.8 <1 1.93 0.032 1.07 <1 100 688 34 1 <0.1 650 <0.2 0.936 B2 85.5 0.00036 0.833 <5 MW-16S Surficial 10/05/2016 140 <1 --- 29 22 <0.05 <10 <1 1.79 <0.01 1.11 <1 113 687 29 <0.1 630 <0.2 0.933 1.02 0.000419 1.05 <5 MW-16S Surficial 02/28/2017 162 <1 --- 26.9 36 <0.05 <10 <1 2.15 <0.01 0.996 <1 102 633 38 <0.1 580 <0.2 0.922 1.02 0.000355 0.949 B <5 MW-16S Surficial 06/12/2017 220 <1 --- 29.3 24 <0.05 <10 <1 1.98 <0.01 1.11 <1 104 B3 641 33 <0.1 670 <0.2 0.883 B3 0.545 0.000121 j 0.841 <5 MW-16S Surficial 08/29/2017 299 <1 --- 27.7 26 <0.05 --- <1 2.32 --- 1.15 <1 116 684 23 <0.1 620 <0.2 1.4 3.51 0.000474 0.75 <5 MW-16S Surficial 12/05/2017 256 <1 --- 18.6 20 <0.05 --- <1 1.94 --- 1.02 <1 108 662 16 <0.1 590 <0.2 B3 1.7 0.995 0.000447 1.24 <5 MW-16S Surficial 03/15/2018 176 <1 6 29.5 20 0.13 --- 0.267 j 1.54 <0.01 1.14 <1 118 659 17 <0.1 R1 580 <0.2 1.1 7.662 0.000556 1.43 <5 MW-16S Surficial 06/13/2018 132 <1 7 29 28 0.08 --- 0.259 j 1.89 0.019 1.09 <1 116 666 22 <0.1 620 <0.2 1.6 2.296 0.000546 1.18 2.605 j MW-16S Surficial 08/29/2018 164 <1 7 26.1 25 0.12 --- 0.344 j 1.8 <0.01 1.14 <1 127 627 15 <0.1 580 <0.2 1.1 0.2721 0.000429 1.42 2.411 j MW-16S Surficial 12/04/2018 435 <1 8 B2 27.3 113 <0.05 --- 0.306 j 2.92 <0.01 1.18 <1 122 645 21 <0.1 600 <0.2 1.5 1.481 0.000376 0.687 3.42 j MW-16S Surficial 02/05/2019 184 S1 --- 8 27.9 79 S1 --- --- 0.267 j 2.78 <0.01 1.13 <1 121 683 24 --- 620 <0.2 --- --- --- 0.601 <5 MW-16S Surficial 08/06/2019 414 --- 6 25.6 73 --- --- 0.315 j 2.03 <0.01 1.04 <1 123 590 17 --- 565 <0.2 1.2 S1 --- --- 0.407 7 S1 MW-9 Bedrock 09/03/2013 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-9 Bedrock 09/09/2013 1060 0.24 j --- 22.4 678 <0.06 --- --- 3.6 j --- 1.4 <0.5 55.7 --- 22 --- 393 <0.15 --- --- --- --- 20.6 MW-9 Bedrock 06/17/2015 --- --- --- --- --- --- --- --- --- --- --- --- --- -- --- --- --- --- --- --- --- --- --- MW-9 Bedrock 06/30/2015 1800 <1 --- 30.3 826 <0.05 25 <1 1.8 <0.01 0.962 <1 61.4 538 41 <0.1 660 <0.2 1.3 --- --- <0.3 10 MW-9 Bedrock 09/01/2015 2290 <1 --- 28 814 <0.05 35 <1 1.4 <0.01 1.23 <1 45.8 490 21 <0.1 560 <0.2 0.915 --- --- 0.41 6 MW-9 Bedrock 12/02/2015 4230 <1 --- 32.5 789 <0.05 15 <1 3.26 0.016 1.01 <1 57.7 534 40 <0.1 530 <0.2 1.4 --- --- <0.3 14 MW-9 Bedrock 01/07/2016 406 <1 --- 32.4 360 <0.05 <10 <1 3.39 0.703 0.83 <1 70.2 480 51 <0.1 560 <0.2 1.4 --- --- <0.3 12 MW-9 Bedrock 03/01/2016 201 <1 --- 3.57 115 <0.05 <10 <1 1.73 0.016 0.733 <1 77.7 477 53 <0.1 590 <0.2 1.4 2.779 0.000472 <0.3 <5 MW-9 Bedrock 06/02/2016 184 <1 --- 30.8 230 <0.05 <10 <1 1.32 0.034 0.75 <1 75.7 463 42 <0.1 650 <0.2 1.3 8.002 0.0005 0.438 <5 MW-9 Bedrock 08/02/2016 378 <1 --- 31.2 680 <0.05 <10 <1 2.61 <0.01 0.904 <1 67.2 513 44 <0.1 600 <0.2 1.3 <RL 0.000784 0.313 10 MW-9 Bedrock 10/05/2016 1220 <1 --- 28.2 785 <0.05 27.1 <1 1.12 0.063 1.18 <1 46.5 481 26 <0.1 470 <0.2 0.887 0.712 0.000586 <0.3 <5 MW-9 Bedrock 02/27/2017 408 <1 --- 30.4 M4 551 <0.05 <10 <1 1.98 0.019 1.03 <1 66.9 472 39 <0.1 530 <0.2 1.3 0.766 0.000595 <0.3 6 MW-9 Bedrock 06/13/2017 329 <1 --- 31.3 408 <0.05 <10 <1 8.32 0.043 0.994 <1 66 B4,B1 458 34 <0.1 550 <0.2 1 B3 <RL 0.000407 <0.3 <5 MW-9 Bedrock 08/29/2017 1250 <1 --- 28.5 528 <0.05 --- <1 3.2 --- 0.917 <1 61.1 501 43 <0.1 580 <0.2 1.7 --- --- <0.3 13 MW-9 Bedrock 12/05/2017 1880 <1 --- 18.4 1080 <0.05 --- <1 4.94 --- 0.994 <1 48.4 B2,B4 531 52 <0.1 590 <0.2 B3 1.9 --- --- <0.3 11 MW-9 Bedrock 03/14/2018 305 <1 6 28.5 642 <0.05 --- 0.551 j 3.32 0.013 1.13 <1 50 530 43 <0.1 470 <0.2 0.975 1.518 0.000494 0.229 j 8 MW-9 Bedrock 06/14/2018 293 <1 7 28.4 539 <0.05 --- 0.353 j 2.03 0.033 1.06 <1 49.5 480 38 <0.1 470 <0.2 1 0.554 0.000362 0.252 j 6 MW-9 Bedrock 08/22/2018 428 <1 8 27.7 692 <0.05 --- 0.447 j 1.75 0.0037 j 1.2 <1 46.1 484 29 <0.1 480 <0.2 0.85 1.46 0.000467 0.249 j 9 MW-9 Bedrock 12/05/2018 725 <1 8 25.7 682 0.022 j --- 0.454 j 1.18 0.01 1.2 <1 45.4 473 27 <0.1 430 <0.2 0.855 1.061 0.000636 0.132 j 4.439 j MW-9 Bedrock 02/06/2019 6.055 j --- 8 26.2 71 --- --- 0.116 j 1.34 0.032 0.637 <1 73.7 384 51 --- 440 <0.2 --- --- --- 0.133 j 2.175 j MW-9 Bedrock 08/07/2019 33 --- 6 22.3 59 --- --- 0.096 j 0.809 j 0.032 0.592 <1 70.7 331 37 --- 458 <0.2 1.3 S1 --- --- 0.196 j 5 B MW-9BR Bedrock 05/30/2015 441 <1 --- 24.1 829 <0.05 <10 <1 <1 <0.01 2.1 <1 37.2 677 7.9 <0.1 410 <0.2 0.517 --- --- <0.3 <5 MW-9BR Bedrock 06/17/2015 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-9BR Bedrock 09/01/2015 491 <1 --- 24.4 905 <0.05 <10 <1 <1 <0.01 2.16 <1 36.3 642 4.9 0.146 410 <0.2 0.507 --- --- <0.3 <5 MW-9BR Bedrock 12/02/2015 412 <1 --- 21.4 793 <0.05 <10 <1 <1 <0.01 2.13 <1 37.6 600 1.8 <0.2 380 0.489 0.443 --- --- 0.372 11 MW-9BR Bedrock 01/07/2016 427 <1 --- 22.3 778 <0.05 <10 <1 <1 <0.01 2.09 <1 37.2 593 1.6 <0.1 360 <0.2 0.337 --- --- <0.3 <5 MW-9BR Bedrock 03/01/2016 379 <1 --- 2.38 770 <0.05 10.6 <1 <1 <0.01 2.1 <1 36.1 596 2.3 <0.1 360 <0.2 0.429 1.09 <0.0002 <0.3 <5 MW-9BR Bedrock 06/02/2016 127 <1 --- 21.2 724 <0.05 <10 <1 <1 <0.01 2.04 <1 36.2 601 4 <0.1 360 <0.2 0.427 <RL <0.0002 0.31 <5 MW-9BR Bedrock 08/02/2016 800 <1 --- 21.6 901 <0.05 16 <1 <1 <0.01 2.06 <1 35.9 699 4.7 <0.1 360 <0.2 0.449 1.17 <0.0002 0.312 <5 MW-9BR Bedrock 10/05/2016 696 <1 25.8 901 <0.05 51.9 <1 <1 <0.01 2.09 <1 37.1 724 6.8 <0.1 420 <0.2 0.463 <RL <0.0002 <0.3 <5 Page 4 of 8 TABLE 3 BACKGROUND GROUNDWATER ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Well ID FIOW Zone Sample Collection Date pH WL Temp SPC DO ORP Eh Turbidity Alkalinity Aluminum Antimony Arsenic Barium Beryllium Bicarbonate Alkalinity Boron Cadmium Calcium Carbonate Alkalinity Chloride Chromium Chromium (VI) Cobalt Copper Fluoride S. U. Ft (BTOC) °C Ns/cm mg/L mV mV NTU mg/L pg/L Ng/L Ng/L Ng/L Ng/L mg/L Ng/L pg/L mg/L mg/L mg/L Ng/L Ng/L Ng/L Ng/L mg/L MW-9BR Bedrock 02/27/2017 7.4 16.31 17 644 0.28 -111 94 2.6 167 7 <1 <1 471 <1 167 <50 <1 59.2 <5 120 <1 <0.025 <1 <1 --- MW-9BR Bedrock 06/13/2017 7.4 17.35 24 628 0.97 -82 123 3.2 176 10 <1 <1 412 <1 176 <50 <1 57.3 <5 95 <1 0.038 <1 <1 --- MW-9BR Bedrock 08/29/2017 7.4 19.89 19 686 0.32 -103 102 2.5 178 32 <1 <1 472 <1 178 <50 <1 58.6 B2 <5 110 <1 <0.025 <1 <1 --- MW-9BR Bedrock 12/05/2017 7.4 19.97 17 698 0.38 -45 160 1.9 189 48 <1 <1 449 <1 189 <50 <1 <0.01 <5 120 <1 <0.025 <1 <1 --- MW-9BR Bedrock 03/14/2018 7.5 17.16 12 650 0.30 -68 137 2.0 177 11 <1 <1 464 <1 177 17.335 j <1 58.3 <5 120 <1 0.049 <1 <1 0.1824 j MW-9BR Bedrock 06/14/2018 7.3 17.94 19 661 2.16 -43 162 2.2 176 6 <1 <1 462 <1 176 <50 <1 56.8 <5 120 <1 <0.025 <1 <1 0.1968 j MW-9BR Bedrock 08/22/2018 7.3 17.80 21 685 2.00 187 392 3.4 178 4.5 j <1 --- 488 <1 178 23.8 j <1 67.6 M4 <5 120 <1 <0.025 <1 <1 0.1596 j MW-9BR Bedrock 12/05/2018 7.4 15.47 15 671 0.27 113 318 1.7 161 4.03 j <1 <1 447 <1 161 <50 <1 57.8 <5 110 <1 <0.025 <1 <1 <0.2 MW-9BR Bedrock 02/06/2019 7.3 14.98 16 689 0.12 54 259 0.8 160 4.772 j <1 <1 450 <1 --- <50 --- 56.5 --- 110 <1 0.046 S1 <1 --- --- MW-9BR Bedrock 08/07/2019 7.3 19.18 21 733 0.13 160 365 3.5 165 2.39 j <1 <1 467 <1 165 <50 --- 63.7 <5 130 <1 <0.025 <1 --- --- MW-15BR Bedrock 06/01/2015 8.2 10.87 21 410 1.52 -71 134 4.8 150 7 <1 6.76 429 <1 150 <50 <1 34.4 <10 --- <1 --- <1 <1 --- MW-15BR Bedrock 06/30/2015 7.9 9.62 18 431 0.52 137 342 2.3 130 30 <1 6.07 398 <1 130 <50 <1 31.9 <10 13 <1 --- <1 <1 --- MW-15BR Bedrock 09/01/2015 8.1 10.71 23 425 0.65 -141 64 6.5 140 <1 7.84 342 <1 130 <50 <1 27.7 <10 15 <1 --- <1 <1 --- MW-15BR Bedrock 12/02/2015 8.0 7.95 16 421 0.44 114 319 2.1 130 40 <1 8.25 335 <1 130 <50 <1 30.8 <10 14 <1 <0.03 <1 <1 MW-15BR Bedrock 01/06/2016 8.2 5.78 10 401 0.45 37 242 2.0 131 48 <1 6.35 325 <1 131 <50 <1 28.9 <5 15 <1 <0.03 <1 <1 --- MW-15BR Bedrock 03/02/2016 7.8 6.61 14 422 0.31 -121 84 4.3 135 25 <1 5.97 299 <1 135 <50 <1 26 <5 15 <1 <0.03 <1 <1 --- MW-15BR Bedrock 06/02/2016 8.0 7.95 19 403 1.98 S -59 146 4.9 138 44 <1 6.4 323 <1 138 <50 <1 28.5 <5 15 <1 0.055 <1 <1 --- MW-15BR Bedrock 08/01/2016 7.6 9.71 20 393 1.08 -71 134 3.3 136 23 <1 5.81 325 <1 136 <50 <1 26.2 <5 14 <1 <0.03 <1 <1 --- MW-15BR Bedrock 10/04/2016 7.7 9.51 19 400 0.53 -91 114 0.7 156 12 <1 5.07 383 <1 156 <50 <1 32.1 <5 14 <1 <0.03 <1 <1 --- MW-15BR Bedrock 02/27/2017 8.1 9.26 18 392 3.62 -68 137 2.3 127 10 <1 4.82 291 <1 127 <50 <1 24.8 <5 14 <1 0.084 <1 <1 --- MW-15BR Bedrock 06/12/2017 8.0 8.98 21 401 1.73 55 260 1.9 138 18 <1 4.92 286 <1 138 <50 <1 25.7 <5 14 <1 0.21 <1 <1 --- MW-15BR Bedrock 08/28/2017 8.0 10.46 22 385 0.77 -57 148 6.8 136 26 <1 4.53 284 <1 136 <50 <1 24.4 <5 13 <1 0.048 <1 <1 --- MW-15BR Bedrock 12/04/2017 7.8 11.15 17 369 0.40 -115 90 3.9 143 15 <1 4.56 315 <1 143 <50 <1 23.5 <5 13 <1 <0.025 <1 <1 --- MW-15BR Bedrock 03/13/2018 7.9 9.66 12 376 2.40 43 248 2.0 135 11 <1 4.81 295 <1 135 32.496 j <1 24.7 <5 14 <1 0.035 <1 <1 0.095 j MW-15BR Bedrock 06/13/2018 7.3 9.56 20 376 1.59 51 256 6.2 146 15 <1 4.46 294 <1 146 28.977 j <1 23.4 <5 13 0.351 j <1 <1 0.12 MW-15BR Bedrock 08/22/2018 7.7 8.77 22 391 1.55 294 499 4.5 143 M1 32 <1 4.46 330 <1 143 42.5 j <1 27.7 <5 13 <1 0.032 <1 <1 0.11 MW-15BR Bedrock 12/05/2018 7.8 5.60 11 379 0.57 254 459 1.8 140 5 <1 4.8 341 <1 140 26.38 j <1 27.4 <5 13 <1 <0.025 <1 <1 <0.1 MW-15BR Bedrock 02/05/2019 7.9 6.58 20 396 0.33 248 453 4.7 130 4.939 j,S1 <1 4.59 350 <1 --- 30.514 j --- 27.5 --- 13 <1 0.043 S1 <1 --- --- MW-15BR Bedrock 08/06/2019 7.9 9.56 20 416 0.34 247 452 7.0 143 3.719 j <1 4.32 420 <1 143 27.4 j --- 33.5 <5 14 <1 <0.025 <1 --- MW-16BR Bedrock 05/20/2015 7.7 53.91 16 589 0.17 -149 56 4.8 180 <1 2.5 360 <1 170 <1 41.1 <10 37 <1 --- <1 MW-16BR Bedrock 06/11/2015 7.7 4.80 17 581 0.12 -260 -55 3.9 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-16BR Bedrock 09/01/2015 7.7 6.82 18 673 0.10 -115 90 1.0 190 60 <1 1.44 468 <1 180 52 <1 51.5 <10 48 4.98 --- <1 --- MW-16BR Bedrock 12/02/2015 7.6 2.50 16 720 0.40 -102 103 4.0 170 147 <1 1.56 459 <1 170 53 <1 51.1 <10 50 <1 <0.03 <1 <1 --- MW-16BR Bedrock 01/07/2016 7.7 1.93 13 700 0.30 -129 76 1.0 196 42 <1 <1 437 <1 196 <50 <1 50.1 <5 50 <1 <0.03 <1 <1 --- MW-16BR Bedrock 03/02/2016 7.6 1.99 15 695 0.20 -178 27 4.5 195 72 <1 1.06 419 <1 195 <50 <1 50.1 <5 48 <1 <0.03 <1 <1 --- MW-16BR Bedrock 06/02/2016 7.6 2.63 16 659 0.23 S 63 268 2.0 202 33 <1 <1 412 <1 202 <50 <1 49.4 <5 42 <1 <0.03 <1 <1 --- MW-16BR Bedrock 08/01/2016 7.3 5.31 18 664 0.15 -116 89 4.6 194 52 <1 <1 391 <1 194 <50 <1 47 <5 41 <1 <0.03 <1 <1 --- MW-16BR Bedrock 10/05/2016 7.5 4.19 17 664 0.14 -164 41 1.6 200 24 <1 <1 383 <1 200 <50 <1 47.6 <5 41 B2 <1 <0.03 <1 <1 --- MW-16BR Bedrock 02/28/2017 7.5 2.77 15 608 0.14 S -110 95 0.5 213 15 <1 <1 392 <1 213 <50 <1 42.9 <5 41 <1 <0.025 <1 <1 --- MW-16BR Bedrock 06/12/2017 7.5 3.91 18 596 0.29 -142 63 1.7 213 11 <1 <1 428 <1 213 <50 <1 49.8 <5 41 <1 <0.025 <1 <1 --- MW-16BR Bedrock 08/29/2017 7.6 6.89 18 641 0.18 -116 89 4.5 196 28 <1 <1 442 <1 196 <50 <1 47.5 B2 <5 42 <1 <0.025 <1 <1 --- MW-16BR Bedrock 12/05/2017 7.7 6.82 17 657 0.25 -61 144 5.4 212 19 <1 <1 428 <1 212 <50 <1 45.5 <5 44 <1 <0.025 <1 <1 --- MW-16BR Bedrock 03/15/2018 7.7 3.27 13 653 0.20 -118 87 6.3 215 295 <1 0.9 j 428 <1 215 48.475 j <1 49.6 <5 41 <1 <0.025 <1 <1 0.1758 j Page 5 of 8 TABLE 3 BACKGROUND GROUNDWATER ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Well ID Flow Zone Sample Collection Date Iron Lead Lithium Magnesium Manganese Mercury Methane Molybdenum Nickel Nitrate + Nitrite Potassium Selenium Sodium Strontium Sulfate Sulfide TDS Thallium TOC Total Radium Total Uranium Vanadium Zinc Ng/L Ng/L Ng/L mg/L Ng/L Ng/L Ng/L Ng/L Ng/L mg/L mg/L Ng/L mg/L Ng/L mg/L mg/L mg/L Ng/L mg/L POIL Ng/mL Ng/L Ng/L MW-9BR Bedrock 02/27/2017 493 <1 --- 24.7 867 <0.05 84.5 <1 <1 <0.01 2.19 <1 38.4 680 5.9 <0.1 380 <0.2 0.546 1.032 <0.0002 <0.3 <5 MW-9BR Bedrock 06/13/2017 141 <1 --- 23.4 369 <0.05 <10 <1 <1 0.034 2.12 <1 37.5 B4,B1 622 5.8 1 <0.1 390 <0.2 0.51 B3 <RL <0.0002 0.374 <5 MW-9BR Bedrock 08/29/2017 837 <1 --- 23.2 1120 <0.05 --- <1 <1 --- 2.14 <1 37.5 698 6.9 <0.1 410 <0.2 <1 --- --- <0.3 6 MW-9BR Bedrock 12/05/2017 504 <1 --- <0.005 888 <0.05 --- <1 <1 --- <0.1 <1 <0.05 B3 688 7.5 <0.1 420 <0.2 1.1 --- --- <0.3 <5 MW-9BR Bedrock 03/14/2018 482 <1 8 22.6 873 <0.05 --- 0.392 j <1 <0.01 2.13 <1 38.6 704 6.2 <0.1 400 <0.2 0.447 0.675 <0.0002 0.216 j <5 MW-9BR Bedrock 06/14/2018 77 <1 11 24.7 221 <0.05 --- 0.934 j <1 0.042 2.38 <1 40.6 717 8 <0.1 420 <0.2 0.475 0.0972 <0.0002 0.483 <5 MW-9BR Bedrock 08/22/2018 146 <1 10 26.3 M4 717 <0.05 --- 0.507 j <1 <0.01 2.37 <1 41.3 M4 738 8 <0.1 450 <0.2 0.522 0.4401 <0.0002 0.286 j 11 MW-9BR Bedrock 12/05/2018 267 <1 9 22.7 1020 <0.05 --- 0.442 j <1 <0.01 2.04 <1 37.4 659 7 <0.1 390 0.149 j 0.453 0.618 <0.0002 0.142 j 1.847 j MW-9BR Bedrock 02/06/2019 370 --- 10 23.9 874 --- --- 0.377 j <1 <0.01 2.1 <1 38.9 674 6.7 --- 350 0.089 j --- --- --- <0.3 <5 MW-9BR Bedrock 08/07/2019 201 --- 8 24.8 667 --- --- 0.31 j <1 0.0058 j 2.11 <1 37.7 701 9.7 --- 371 <0.2 0.458 S1 --- --- 0.17 j 1.916 j MW-15BR Bedrock 06/01/2015 <10 <1 --- 8.49 72 <0.05 14 17 <1 --- 1.48 2.02 36.7 501 --- <0.1 --- <0.2 --- --- --- 1.73 <5 MW-15BR Bedrock 06/30/2015 31 <1 --- 8.24 69 <0.05 <10 11.5 <1 2.7 1.69 1.98 42.9 493 37 <0.1 260 <0.2 0.371 --- --- 1.82 <5 MW-15BR Bedrock 09/01/2015 123 <1 --- 7.11 62 <0.05 21 9.22 <1 1.8 1.76 1.92 52.1 435 54 <0.1 270 <0.2 0.425 --- --- 1.98 <5 MW-15BR Bedrock 12/02/2015 45 <1 --- 7.16M53 <0.05 12 12.4 <1 1.2 1.86 1.62 47.8 441 50 <0.1 260 <0.2 0.341 --- --- 2.32 <5 MW-15BR Bedrock 01/06/2016 31 <1 --- 6.82<0.05 23.3 5.66 <1 1.4 1.53 2.38 50.2 438 54 <0.1 240 <0.2 0.372 --- --- 2.83 <5 MW-15BR Bedrock 03/02/2016 26 <1 --- 6.54<0.05 21.7 6.53 <1 1.3 1.56 1.69 53 409 56 <0.1 260 <0.2 0.293 0.801 0.00106 2.75 <5 MW-15BR Bedrock 06/02/2016 49 <1 6.68<0.05 11.8 <1 1.3 1.8 1.76 47.6 429 47 <0.1 240 <0.2 0.361 3.27 0.00105 2.37 <5 MW-15BR Bedrock 08/01/2016 42 <1 --- 6.43 22 <0.05 <10 9.09 <1 1.4 1.66 1.28 50.5 431 47 <0.1 230 <0.2 0.368 B21 1.4 0.00108 2.12 <5 MW-15BR Bedrock 10/04/2016 <10 <1 --- 7.55 66 <0.05 11.8 6 <1 2.3 1.56 3.04 43.9 489 35 <0.1 280 <0.2 0.364 1.749 0.000941 2.96 <S MW-15BR Bedrock 02/27/2017 <10 <1 --- 5.88 11 <0.05 <10 5.89 <1 1.1 1.51 1.01 51.6 372 45 <0.1 210 <0.2 0.375 1.207 0.00099 2.08 <5 MW-15BR Bedrock 06/12/2017 19 <1 --- 5.82 16 <0.05 <10 5.15 <1 1.4 1.48 1.38 51 B3 363 43 <0.1 240 <0.2 0.338 B3 0.803 0.000842 2.28 <5 MW-15BR Bedrock 08/28/2017 30 <1 --- 5.93 23 <0.05 --- 4.79 <1 --- 1.45 1.85 49.4 361 40 <0.1 230 <0.2 B4 <1 <RL 0.000807 2.11 <5 MW-15BR Bedrock 12/04/2017 33 <1 --- 5.44 35 <0.05 --- 4.68 <1 --- 1.3 1.56 45.5 399 38 <0.1 240 <0.2 0.835 <RL 0.000827 2.18 <5 MW-15BR Bedrock 03/13/2018 39 <1 4.099 j 6.15 7 <0.05 --- 4.78 <1 1 1.51 0.998 j 50.9 380 43 <0.1 260 <0.2 0.268 0.568 0.000911 2.18 3.468 j MW-15BR Bedrock 06/13/2018 44 <1 4.22 j 5.94 20 <0.05 --- 4.58 <1 1.2 1.4 1.4 47.9 M4 367 38 <0.1 220 0.147 j 0.313 0.562 0.00079 2.37 <5 MW-15BR Bedrock 08/22/2018 70 <1 6 6.68 39 <0.05 --- 4.06 <1 1.9 1.43 2.2 45.8 406 36 <0.1 260 0.178 j 0.277 0.474 0.000809 2.5 3.7 j MW-15BR Bedrock 12/05/2018 6.159 j <1 4.478 j 6.56 64 0.021 j --- 4 <1 2.9 1.4 2.18 44.9 412 31 <0.1 240 <0.2 0.369 1.013 0.000831 2.77 3.536 j MW-15BR Bedrock 02/05/2019 3.382 j,S1 --- 3.467 j 6.56 51 S1 --- --- 4.1 <1 1.8 1.43 2.03 46.7 418 34 --- 230 <0.2 --- --- --- 2.75 <5 MW-15BR Bedrock 08/06/2019 9.738 j --- 4.984 j 7.94 79 --- --- 4 <1 3.1 1.57 3.17 43.7 500 36 --- 245 <0.2 0.39 S1 --- --- 3.35 5 Sl MW-16BR Bedrock 05/20/2015 329 <1 --- 13.9 326 <0.05 11 2.97 <1 <0.01 2.49 <1 57.3 505 41 <0.1 340 <0.2 0.892 --- --- <0.3 <5 MW-16BR Bedrock 06/11/2015 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- MW-16BR Bedrock 09/01/2015 311 <1 --- 16.6 248 <0.05 <10 11.3 2.97 <0.01 2.88 <1 70.7 713 93 0.122 410 <0.2 1.3 --- --- <0.3 <5 MW-16BR Bedrock 12/02/2015 401 <1 --- 17.3 246 <0.05 <10 13.4 <1 <0.01 2.6 <1 72.5 771 120 0.189 440 <0.2 1.1 --- --- <0.3 <5 MW-16BR Bedrock 01/07/2016 303 <1 --- 16.9 260 <0.05 <10 7.59 <1 <0.01 2.48 <1 66.6 730 110 <0.1 440 <0.2 0.802 --- --- <0.3 <5 MW-16BR Bedrock 03/02/2016 350 <1 --- 17 252 <0.05 <10 6.48 <1 <0.01 2.12 <1 68.7 703 100 <0.1 430 <0.2 0.85 2.501 0.000359 <0.3 <5 MW-16BR Bedrock 06/02/2016 296 <1 --- 16.8 254 <0.05 <10 4.41 <1 <0.01 2.24 <1 64.7 700 86 <0.1 390 <0.2 0.848 2.451 0.000256 0.304 <5 MW-16BR Bedrock 08/01/2016 305 <1 --- 16.3 275 <0.05 <10 5.94 <1 0.017 2.23 <1 71.3 652 96 <0.1 400 <0.2 0.778 B2 2.05 0.000261 <0.3 <5 MW-16BR Bedrock 10/05/2016 268 <1 --- 15.9 272 <0.05 <10 4.85 <1 <0.01 2.1 <1 69.4 627 87 <0.1 390 <0.2 0.687 1.479 0.000158 j <0.3 <5 MW-16BR Bedrock 02/28/2017 264 <1 --- 15.1 244 <0.05 <10 2.46 <1 <0.01 2.05 <1 62.5 596 62 <0.1 370 <0.2 0.787 2.34 0.0001 j 0.495 B <5 MW-16BR Bedrock 06/12/2017 268 <1 --- 16.4 238 <0.05 <10 3.85 <1 0.01 2.18 <1 64.9 B3 637 74 <0.1 400 <0.2 0.802 B31 1.531 0.000133 j 0.445 <5 MW-16BR Bedrock 08/29/2017 346 <1 --- 16.7 280 <0.05 --- 5 <1 --- 2.25 <1 66.9 688 87 <0.1 390 <0.2 1.3 1.497 0.000229 <0.3 <5 MW-16BR Bedrock 12/05/2017 329 <1 --- 15.3 292 <0.05 6.46 <1 --- 2.02 <1 62.8 B2,B4 695 99 <0.1 390 <0.2 B3 1.4 1.016 0.000249 <0.3 <5 MW-16BR Bedrock 03/15/2018 571 <1 6 16.8 286 <0.05 4.95 <1 <0.01 2.26 <1 67.8 702 70 <0.1 350 <0.2 0.8 1.191 0.000254 0.389 <5 Page 6 of 8 TABLE 3 BACKGROUND GROUNDWATER ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC FIOW Sample pH WL Temp SPC DO ORP Eh Turbidity Alkalinity Aluminum Antimony Arsenic Barium Beryllium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Chromium (VI) Cobalt Copper Fluoride Well ID Collection Alkalinity Alkalinity Zone Date S. U. Ft (BTOC) 'C Ns/cm mg/L mV mV NTU mg/L Ng/L Ng/L Ng/L Ng/L Ng/L mg/L Ng/L Ng/L m /L g m g /L m g /L Ng L Ng L Ng L Ng L mg L MW-16BR Bedrock 06/13/2018 7.5 4.48 18 636 0.23 71 276 2.3 215 19 <1 0.611 j 428 <1 215 40.573 j <1 47.2 <5 39 <1 <0.025 <1 <1 0.1944 j MW-16BR Bedrock 08/29/2018 7.7 4.75 21 678 0.22 41 246 5.1 210 11 <1 0.51 j 387 <1 210 45.893 j <1 47.8 B1 <5 41 <1 <0.025 <1 <1 0.2 MW-16BR Bedrock 12/04/2018 7.8 2.08 15 568 0.23 126 331 8.8 180 155 <1 11.9 320 <1 180 43.236 j <1 35.1 <5 36 0.454 j <0.025 <1 <1 0.082 j MW-16BR Bedrock 02/05/2019 7.5 2.00 16 622 0.07 134 339 0.4 200 9 S1 <1 8.3 398 <1 44.073 j 41.5 37 <1 0.027 S1 <1 --- --- MW-16BR Bedrock 08/06/2019 7.5 5.24 21 624 0.14 104 309 3.9 189 18 <1 2.48 415 <1 189 49.135 j 48.6 <5 40 <1 0.96 <1 --- --- Notes: - Sample results are invalid for use because recorded sample pH greater than 8.5 standard units, recorded sample turbidity greater than 10 NTU, or no sample pH or turbidity was recorded. - Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error or laboratory analytical error. - Concentration is an extreme statistical outlier. Concentration was not included in the calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was a result of field error, laboratory analytical error, or elevated reporting limit. 0 - Data from sample not included in calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that multiple concentrations were a result of field error or laboratory error. 0 - Sample collected less than 60 days from the previous sample. Sample results not included in calculation of BTVs. --- - No result because the concentration of analyte was not measured in sample or the sample result was rejected due to serious deficiencies in meeting QC criteria. °C - degrees celsius pg/L - micrograms per liter pg/mL - micrograms per milliliter pS/cm - microsiemens per centimeter BTOC - below top of casing DO - dissolved oxygen mg/L - milligrams per liter my - millivolts NM - Field parameter was not measured NTU - nephelometric turbidity unit ORP - oxidation-reduction potential pCi/L - picocuries per liter S.U. - standard units SPC - specific conductance TDS - total dissolved solids Temp - temperature TOC - total organic carbon W L - water level Laboratory Qualifiers: < - Concentration not detected at or above the adjusted reporting limit. <RL - Less than reporting limit. Result was not included in statistical analysis because no numeric value was provided for the reporting limit. B - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample is less than 1OX the concentration in the method blank. Analyte concentration in sample could be due to blank contamination. BI - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample was greater than SOX the concentration in the method blank. Analyte concentration in sample is not affected by blank contamination. B2 - Target analyte was detected in blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes. B3 - Target analyte was detected in Continuing Calibration Blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes. B4 - Target analyte was detected in Continuing Calibration Blank(s) at or above the reporting limit. D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference. j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. MO - Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. M1 - Matrix spike recovery was high: the associated laboratory Control Spike (LCS) was acceptable. M2 - Matrix spike recovery was Low: the associated Laboratory Control Spike (LCS) was acceptable. M4 - The spike recovery value was unusable since the analyte concentration in the sample was disproportionate to the spike level. N1 - This sample was inadvertently collected with sample running through the flow cell and should be considered invalid based on possible contamination from the flow cell. R1 - Relative Percent Difference (RPD) value was outside control limits. Data Validation Oualifiers: S - Associated calibration check did not meet specified criteria. 51 - Data review findings indicate result may be biased, however, data is usable. RO - The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample. Prepared by: HES Checked by: EMY Page 7 of 8 TABLE 3 BACKGROUND GROUNDWATER ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Well ID Flow Zone Sample Collection Date Iron Lead Lithium Magnesium Manganese Mercury Methane Molybdenum Nickel Nitrate + Nitrite Potassium Selenium Sodium Strontium Sulfate Sulfide TDS Thallium TOC Total Radium Total Uranium Vanadium Zinc Ng/L Ng/L Ng/L mg/L Ng/L Ng/L lig/L Ng/L Ng/L mg/L mg/L Ng/L mg/L Ng/L mg/L mg/L mg/L Ng/L mg/L pCVL Ng/mL Ng/L Ng/L MW-16BR Bedrock 06/13/2018 343 <1 1 6 16.9 1 280 <0.05 --- 4.28 <1 <0.01 2.24 <1 68.5 694 83 <0.1 380 1 <0.2 1.3 1 1.301 0.000195 j <0.3 <5 MW-16BR Bedrock 08/29/2018 303 <1 6 17.4 289 <0.05 --- 5.6 <1 <0.01 2.12 <1 67 646 92 <0.1 400 <0.2 0.732 1.217 0.00018 j 0.114 j 2.546 j MW-16BR Bedrock 12/04/2018 208 <1 14 B2 14.3 151 <0.05 --- 5.18 0.461 j 0.0089 j 5.6 <1 60.1 578 47 <0.1 310 <0.2 1.9 0.758 0.000995 1.35 2.372 j MW-16BR Bedrock 02/05/2019 198 SI --- 11 15.8 229 S1 --- --- 1.84 0.458 j <0.01 3.45 <1 62.8 644 51 --- 340 <0.2 --- --- --- 0.14 j <5 MW-16BR Bedrock 08/06/2019 310 --- 7 16.9 236 --- --- 3.02 <1 <0.01 2.82 <1 63.2 679 84 --- 373 <0.2 1.2 S1 --- --- 0.135 j 7 S1 Notes: - Sample results are invalid for use because recorded sample pH greater than 8.5 standard units, recorded sample turbidity greater than 10 NTU, or no sample pH or turbidity was recorded. - Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error or laboratory analytical error. - Concentration is an extreme statistical outlier. Concentration was not included in the calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was a result of field error, laboratory analytical error, or elevated reporting limit. 0 - Data from sample not included in calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that multiple concentrations were a result of field error or laboratory error. - Sample collected less than 60 days from the previous sample. Sample results not included in calculation of BTVs. --- - No result because the concentration of analyte was not measured in sample or the sample result was rejected due to serious deficiencies in meeting QC criteria. °C - degrees celsius pg/L - micrograms per liter pg/mL - micrograms per milliliter pS/cm - microsiemens per centimeter BTOC - below top of casing DO - dissolved oxygen mg/L - milligrams per liter mV - millivolts NM - Field parameter was not measured NTU - nephelometric turbidity unit ORP - oxidation-reduction potential pCi/L - picocuries per liter S.U. - standard units SPC - specific conductance TDS - total dissolved solids Temp - temperature TOC - total organic carbon W L - water level Laboratory Qualifiers: < - Concentration not detected at or above the adjusted reporting limit. <RL - Less than reporting limit. Result was not included in statistical analysis because no numeric value was provided for the reporting limit. B - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample is less than 1OX the concentration in the method blank. Analyte concentration in sample could be due to blank contamination. BS - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample was greater than SOX the concentration in the method blank. Analyte concentration in sample is not affected by blank contamination. B2 - Target analyte was detected in blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes. B3 - Target analyte was detected in Continuing Calibration Blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes. B4 - Target analyte was detected in Continuing Calibration Blank(s) at or above the reporting limit. D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference. j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. MO - Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. M1 - Matrix spike recovery was high: the associated laboratory Control Spike (LCS) was acceptable. M2 - Matrix spike recovery was Low: the associated Laboratory Control Spike (LCS) was acceptable. M4 - The spike recovery value was unusable since the analyte concentration in the sample was disproportionate to the spike level. N1 - This sample was inadvertently collected with sample running through the flow cell and should be considered invalid based on possible contamination from the flow cell. R1 - Relative Percent Difference (RPD) value was outside control limits. Data Validation Oualifiers: S - Associated calibration check did not meet specified criteria. 51 - Data review findings indicate result may be biased, however, data is usable. RO - The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample. Prepared by: HES Checked by: EMY Page 8 of 8 TABLE 4 BACKGROUND UNSATURATED SOIL ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Sample ID Sample Collection Date pH Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chloride Chromium Cobalt Copper Iron Lead Magnesium Manganese S. U. mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg BG-1 (2-2.5) 08/20/2013 --- 25600 <0.0992 1.61 --- --- 5.26 j <0.053 --- --- 27.2 --- 7.95 --- 19.2 --- 234 BG-2 (2-2.5) 08/20/2013 --- 44400 <0.117 3.32 --- --- 9 j <0.0625 --- --- 40.4 --- 16.8 --- 16.8 --- 134 BG-3 (2-2.5) 08/20/2013 --- 17600 <0.104 2.16 --- --- 6.54 j <0.0554 --- --- 26.9 --- 8.06 --- 12.9 --- 155 BGS13-1 (2-3) 10/18/2017 4.5 19000 0.13 j 1.4 33 0.31 <2.7 <0.024 360 25 19 3.7 10 18000 10 1500 150 BGSB-2 (2-3) 10/18/2017 5.1 28000 <0.48 M 1.5 M 62 0.64 <3.1 <0.024 45 j 1.7 j 27 4.4 9.6 24000 14 780 53 BGSB-2 (6-7) 10/18/2017 5.2 15000 <0.53 1.2 52 1 <2.4 0.018 j 280 22 16 6.6 12 16000 12 1600 190 BGSB-3 (2-3) 10/18/2017 4.9 25000 <0.59 0.73 100 0.82 <15 <0.029 <1500 3.2 j 14 6.8 23 40000 7.4 1900 71 BGS13-3 (6-7) 10/18/2017 4.6 15000 <0.47 0.17 j 75 1.4 <27 0.034 600 j 140 4.9 j 12 27 29000 7.2 1900 j 100 BGSB-4 (2-3) 10/18/2017 4.5 23000 <0.43 1.3 50 0.33 <2.4 <0.022 82 j 8.6 j 24 3.3 8.6 15000 12 690 55 BGSB-4 (4-5) 10/18/2017 4.5 40000 <0.49 1.9 57 0.45 <2.9 <0.025 <290 140 28 4 9.2 13000 16 800 42 BGSB-5 (2-3) 10/18/2017 5.0 20000 <0.56 0.73 150 1.2 <5 0.034 1200 16 20 17 19 17000 10 1900 2700 BGSB-5 (4-5) 10/18/2017 4.4 19000 <0.58 1.7 170 0.75 <2.2 <0.029 380 110 23 7.4 13 19000 11 2300 280 BGSB-MW-9 (2-3) 10/18/2017 4.6 17000 <0.43 1.1 30 0.23 <2.1 <0.022 <210 3.5 j 5.2 1.2 3.9 12000 9.1 620 34 BGSB-MW-9 (6-7) 10/18/2017 5.3 11000 <0.41 0.52 42 0.46 <2.3 <0.021 330 1.4 j 10 3.9 6.2 18000 7 1800 120 BGSB-MW-15 (2-3) 10/18/2017 5.1 13000 <0.54 1 28 0.56 <2.5 0.033 790 14 18 19 12 14000 12 1600 440 BGSB-MW-15 (4-5) 10/18/2017 6.9 17000 <0.57 1.5 38 0.72 <2.3 0.017 j 810 12 j 21 10 13 18000 11 2800 260 BGSB-MW-20 (2-3) 10/17/2017 5.8 17000 M <0.57 0.73 200 1.1 6 j,M 0.084 2300 M 1.5 j 22 14 19 16000 M 9 2100 1900 M BGSB-MW-20 (6-7) 10/17/2017 5.0 20000 <0.47 0.9 100 0.89 <5.1 0.047 1400 2.9 j 32 12 18 20000 9.1 2100 670 MW-22 SB (3-4) 06/10/2016 5.2 j 15600 j <2.8 N2 j <1.4 48.4 0.27 j <54.7 j <0.17 j 473 <301 D3 17.8 j 8.2 j 14.1 j 16500 6.1 1890 370 Prepared by: JHG Checked by: EMY Notes• Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error or laboratory analytical error. Concentration is an extreme statistical outlier. Concentration was not included in the calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was a result of field error, laboratory analytical error, or elevated reporting limit. Non -detect value is greater than Preliminary Soil Remediation Goal Protection of Groundwater for the constituent. Non -detect value was not included in the calculation of BTVs. No result because the concentration of analyte was not measured in sample. mg/kg - milligrams per kilogram S.U. - standard units Laboratory Oualifiers: < - Concentration not detected at or above the adjusted reporting limit. D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference. H3 - Sample was received or analysis requested beyond the recognized method holding time. j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. M - Matrix spike / matrix spike dup failure. N2 - The lab does not hold accreditation for this parameter. Page 1 of 2 TABLE 4 BACKGROUND UNSATURATED SOIL ANALYTICAL RESULTS CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Sample ID Sample Collection Date Mercury Molybdenum Nickel Nitrate (as N) Potassium Selenium Sodium Strontium Sulfate Thallium Vanadium Zinc mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg BG-1 (2-2.5) 08/20/2013 0.0387 j --- 4.95 --- --- 0.414 j --- --- --- 0.349 --- 19.8 BG-2 (2-2.5) 08/20/2013 0.113 j --- 9.2 --- --- 0.795 j --- --- --- 0.347 --- 33 BG-3 (2-2.5) 08/20/2013 0.0536 j --- 3.44 --- --- 0.638 j --- --- --- 0.159 j --- 16.6 BGS13-1 (2-3) 10/18/2017 <0.082 <2.2 6.6 0.87 250 j 0.36 j 99 j 6.4 260 0.18 69 26 BGSB-2 (2-3) 10/18/2017 0.15 <2.5 6.2 <0.26 280 j 0.3 j,M <310 5.5 8.7 j 0.3 120 M 21 BGSB-2 (6-7) 10/18/2017 <0.098 <2 6.9 0.082 j 390 <1.4 190 j 11 <12 0.16 71 20 BGSB-3 (2-3) 10/18/2017 <0.095 <12 11 j <0.25 610 j 0.36 j <1500 5 j <13 0.13 j 48 83 BGSB-3 (6-7) 10/18/2017 <0.087 <22 <22 0.25 1300 j 0.45 j <2700 15 <12 0.13 14 83 BGSB-4 (2-3) 10/18/2017 0.07 j <1.9 5.7 0.16 j 270 0.33 j <240 4.6 74 0.2 140 19 BGS13-4 (4-5) 10/18/2017 0.14 <2.3 7.5 0.23 j 320 0.42 j 160 j 3.4 <13 0.27 170 31 BGSB-5 (2-3) 10/18/2017 0.072 j <4 11 0.18 j 310 j 0.33 j <500 17 42 0.18 74 43 BGSB-5 (4-5) 10/18/2017 <0.086 <1.7 7.6 0.24 290 <1.5 330 8.6 420 0.19 98 28 BGSB-MW-9 (2-3) 10/18/2017 <0.094 <1.7 1.5 j <0.23 M 280 0.3 j <210 1.5 6.8 j,M 0.099 j 30 14 BGSB-MW-9 (6-7) 10/18/2017 <0.083 <1.9 5 <0.22 920 <1.1 49 j 7.1 31 0.1 j 20 48 BGSB-MW-15 (2-3) 10/18/2017 <0.083 <2 6.2 0.1 j 140 j 0.33 j 50 j 11 63 0.09 j 65 22 BGSB-MW-15 (4-5) 10/18/2017 <0.092 <1.9 8 0.27 350 0.53 j 790 13 21 0.15 95 28 BGSB-MW-20 (2-3) 10/17/2017 <0.094 <9.9 M 11 <0.24 220 j <1.5 <1200 29 <12 0.14 j 66 44 BGSB-MW-20 (6-7) 10/17/2017 0.03 j <4.1 10 <0.24 220 j 0.39 j <510 19 8.5 j 0.11 j 72 45 MW-22 SIB (3-4) 06/10/2016 0.014 <0.55 7.8 <30.1 H3,D3 139 <1.4 165 7.3 <301 D3 <1.4 42 28.3 Prepared by: JHG Checked by: EMY Notes• Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error or laboratory analytical error. Concentration is an extreme statistical outlier. Concentration was not included in the calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was a result of field error, laboratory analytical error, or elevated reporting limit. Non -detect value is greater than Preliminary Soil Remediation Goal Protection of Groundwater for the constituent. Non -detect value was not included in the calculation of BTVs. No result because the concentration of analyte was not measured in sample. mg/kg - milligrams per kilogram S.U. - standard units Laboratory Oualifiers: < - Concentration not detected at or above the adjusted reporting limit. D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference. H3 - Sample was received or analysis requested beyond the recognized method holding time. j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. M - Matrix spike / matrix spike dup failure. N2 - The lab does not hold accreditation for this parameter. Page 2 of 2 TABLE 5 STATISTICAL ANALYSIS RESULTS - SURFICIAL FLOW ZONE CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Constituent Reporting Unit Descriptive Statistics Upper Tolerance Limits Sample Size Number of NDs Percent NDs 1 Type of UTL Coverage Confidence Level Value pH* S.U. 35 0 0 Normal 95 95 5.8 - 6.5 Alkalinity mg/L 34 0 0 Normal 95 95 252 Aluminum pg/L 35 1 3 1 Gamma 95 95 447.2 Antimony pg/L 35 35 100 n/a n/a n/a 1° Arsenic Ng/L 35 27 77 Non -parametric 90 95 2.6 Barium pg/L 35 0 0 Non-parametric3 90 95 187 Beryllium pg/L 35 35 100 n/a n/a n/a 1° Bicarbonate mg/L 32 0 0 Normal 95 95 257 Boron pg/L 35 7 20 Gamma 95 95 160.9 Cadmium pg/L 32 32 100 n/a n/a n/a 1° Calcium mg/L 35 0 0 Non-parametric3 90 95 118 Carbonate mg/L 26 26 100 n/a n/a n/a 5° Chloride mg/L 34 0 0 Non-parametric3 90 95 270 Chromium Ng/L 35 32 91 n/a n/a n/a 3.32° Chromium (VI) pg/L 28 19 68 Non -parametric 85 95 0.18 Cobalt pg/L 35 7 20 Gamma 95 95 61.05 Copper Ng/L 32 22 69 Non -parametric 90 95 3.6 Fluoride mg/L 9 4 44 Normal 95 95 0.805t Iron pg/L 35 0 0 Non-parametric3 90 95 37,500 Lead pg/L 32 32 100 n/a n/a n/a 1° Lithium pg/L 12 1 1 8 Normal 95 95 10.77 Magnesium mg/L 35 0 0 Non-parametric3 90 95 32.5 Manganese pg/L 35 0 0 Non-parametric3 90 95 9,050 Mercury pg/L 32 28 88 Non-parametric2 90 95 0.12 Methane pg/L 19 16 84 Non-parametric2 85 95 12.8 Molybdenum pg/L 35 23 66 Non-parametric2 90 95 1 Nickel pg/L 35 2 6 Non-parametric3 90 95 24.8 Nitrate + Nitrite mg/L 32 14 44 Non-parametric3 90 95 2.5 Potassium mg/L 35 0 0 Non-parametric3 90 95 4.36 Selenium pg/L 35 28 80 Non-parametric2 90 95 1.05 Sodium mg/L 35 0 0 Non-parametric3 90 95 190 Strontium pg/L 35 0 0 Non-parametric3 90 95 2,360 Sulfate mg/L 34 0 0 Non -parametric' 90 95 510 Sulfide mg/L 31 31 100 n/a n/a n/a 0.1° TDS mg/L 34 0 0 Non-parametric3 90 95 900 Thallium pg/L 35 34 97 n/a n/a n/a 0.2° TOC mg/L 32 0 0 Non-parametric3 90 95 6.2 Total Radium pCi/L 22 0 0 Gamma 95 95 6.219 Total Uranium pg/mL 24 4 17 Non-parametric3 85 95 0.0165 Vanadium pg/L 35 2 6 Normal 95 95 1.394 Zinc pg/L 35 19 54 Non- arametric2 90 95 50 Prepared by: LWD Checked by: JHG Notes: * - Upper and lower tolerance limits calculated for constituent. t - Value represents maximum value in dataset for constituent. o - Value represents maximum non -detect value in dataset for constituent. ' - The type of upper tolerance limit (UTL) calculated for each constituent was based on the distribution of its data. 2 - The distribution of the data for the constituent could not be adequately assessed because the dataset contains >50 percent and <90 percent NDs. Therefore, the non -parametric UTL was calculated for the constituent. 3 - The non -parametric UTL was calculated for the constituent because its backqround dataset could not be fitted to the normal, qamma, or loqnormal distribution models. pg/L - micrograms per liter pg/mL - micrograms per milliliter mg/L - milligrams per liter n/a - Dataset was comprised of >90 percent non -detects or contained <10 samples. ND - non -detect pCi/L - picocuries per liter S.U. - standard units TDS - total dissolved solids TOC - total organic carbon Page 1 of 1 TABLE 6 STATISTICAL ANALYSIS RESULTS - BEDROCK FLOW ZONE CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NORTH CAROLINA Constituent Reporting Unit Descriptive Statistics Upper Tolerance Limits Sample Size Number of NDs Percent NDs Type of UTL' Coverage Confidence Level Value PH- S.U. 68 0 0 Non-parametric3 95 95 5.5 - 8.2 Alkalinity mg/L 68 0 0 Normal 95 95 231.5 Aluminum Ng/L 68 0 0 Lognormal 95 95 125.5 Antimony Ng/L 68 68 100 n/a n/a n/a 1° Arsenic Ng/L 67 40 60 Non-parametricZ 95 95 8.3 Barium Ng/L 68 0 0 Non-parametric3 95 95 485 Beryllium Ng/L 68 68 100 n/a n/a n/a 1° Bicarbonate mg/L 64 0 0 Normal 95 95 230.9 Boron Ng/L 68 51 75 Non-parametricZ 95 95 52 Cadmium Ng/L 60 60 100 n/a n/a n/a 1° Calcium mg/L 68 1 1 Non-parametric3 95 95 69.6 Carbonate mg/L 52 52 100 n/a n/a n/a 5° Chloride mg/L 67 0 0 Non-parametric3 95 95 240 Chromium Ng/L 68 64 94 n/a n/a n/a 14.1° Chromium (VI) Ng/L 59 41 69 Non-parametricZ 90 95 0.14 Cobalt Ng/L 68 56 1 82 Non-parametricZ 95 95 4.97 Copper Ng/L 60 57 95 n/a n/a n/a 2.48° Fluoride mg/L 15 2 13 Normal 95 95 0.316 Iron Ng/L 68 3 4 Non-parametric3 95 95 2,290 Lead Ng/L 60 60 100 n/a n/a n/a 1° Lithium Ng/L 24 0 0 Normal 95 95 13.24 Magnesium mg/L 68 1 11 Non-parametric3 95 95 31.3 Manganese Ng/L 68 0 0 Non-parametric3 95 95 1080 Mercury Ng/L 60 58 97 n/a n/a n/a 0.05° Methane Ng/L 35 21 60 Non-parametricZ 90 95 51.9 Molybdenum Ng/L 68 22 32 Non-parametric3 95 95 13.4 Nickel Ng/L 68 48 71 Non-parametricZ 95 95 4.94 Nitrate + Nitrite mg/L 59 27 46 Non-parametric3 90 95 1.9 Potassium mg/L 68 1 1 Non-parametric3 95 95 3.45 Selenium Ng/L 68 51 75 Non-parametricZ 95 95 3.04 Sodium mg/L 68 1 1 Non-parametric3 95 95 75.7 Strontium Ng/L 68 0 0 Non-parametric3 95 95 738 Sulfate mg/L 67 0 0 Non-parametric3 95 95 100 Sulfide mg/L 59 56 95 n/a n/a n/a 0.189° TDS mg/L 67 0 0 Normal 95 95 610.6 Thallium Ng/L 68 63 93 n/a n/a n/a 0.489° TOC mg/L 63 2 3 Non-parametric3 95 95 1.9 Total Radium pCi/L 37 0 0 Lognormal 95 95 5.287 Total Uranium Ng/mL 1 44 10 23 Non-parametric3 90 95 0.00105 Vanadium Ng/L 68 25 37 Non-parametric3 95 195 2.96 Zinc Ng/L 68 43 63 Non-parametricZ 95 1 95 13 Prepared by: LWD Checked by: JHG Notes: * - Upper and lower tolerance limits calculated for constituent. o - Value represents maximum non -detect value in dataset for constituent. 1 - The type of upper tolerance limit (UTL) calculated for each constituent was based on the distribution of its data. Z - The distribution of the data for the constituent could not be adequately assessed because the dataset contains >50 percent and :590 percent NDs. Therefore, the non -parametric UTL was calculated for the constituent. s - The non -parametric UTL was calculated for the constituent because its background dataset could not be fitted to the normal, gamma, or lognormal distribution models. pg/L - micrograms per liter pg/mL - micrograms per milliliter mg/L - milligrams per liter n/a - Dataset was comprised of >90 percent non -detects or contained <10 samples. ND - non -detect pCi/L - picocuries per liter S.U. - standard units TDS - total dissolved solids TOC - total organic carbon Page 1 of 1 TABLE 7 STATISTICAL ANALYSIS RESULTS - UNSATURATED SOIL CAPE FEAR STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, MONCURE, NC Constituent Descriptive Statistics Upper Tolerance Limits Sample Size Number of NDs Percent NDs 1 Type of UTL Coverage Confidence Level Value pH* 16 0 0 Gamma 95 95 3.2 - 6.9 Aluminum 19 0 0 Gamma 95 95 44,743 Antimony 18 17 94 n/a n/a n/a 0.591, Arsenic 19 1 5 Normal 95 95 2.946 Barium 16 0 0 Gamma 95 95 259.9 Beryllium 16 0 0 Normal 95 95 1.589 Boron 16 12 75 Non-parametricZ 85 95 6.54 Cadmium 18 11 61 Non-parametricZ 85 95 0.0625 Calcium 15 2 13 Gamma 95 95 3,548 Chloride 15 0 0 Gamma 95 95 275.9 Chromium 19 0 0 Normal 95 95 42.21 Cobalt 16 0 0 Normal 95 95 21.52 Copper 19 0 0 Normal 95 95 27.67 Iron 16 0 0 Lognormal 95 95 38,976 Lead 19 0 0 Normal 95 95 19.65 Magnesium 16 0 0 Normal 95 95 3,226 Manganese 19 0 0 Lognormal 95 95 3,418 Mercury 19 10 53 Non-parametricZ 85 95 0.14 Molybdenum 13 13 100 n/a n/a n/a 4.1° Nickel 18 0 0 Normal 95 95 13.65 Nitrate (as N) 16 7 44 Non-parametric3 85 95 0.27 Potassium 16 0 0 Lognormal 95 95 1,457 Selenium 19 5 26 Gamma 95 95 0.783 Sodium 13 5 38 Gamma 95 95 858 Strontium 16 0 0 Normal 95 95 28.08 Sulfate 15 5 33 Gamma 95 95 443.6 Thallium 18 0 0 Gamma 95 95 0.433 Vanadium 16 0 0 Normal 95 95 181.8 Zinc 19 0 0 Gamma 95 95 92.76 Prepared by: LWD Checked by: JHG Notes: * - Upper and lower tolerance limits calculated for constituent. a - Value represents maximum non -detect value in dataset for constituent. 1- The type of upper tolerance limit (UTL) calculated for each constituent was based on the distribution of its data. Z - The distribution of the data for the constituent could not be adequately assessed because the dataset contains >50 percent and :590 percent NDs. Therefore, the non -parametric UTL was calculated for the constituent. 3 - The non -parametric UTL was calculated for the constituent because its background dataset could not be fitted to the normal, gamma, or lognormal distribution models. All constituents (except for pH) are reported in milligrams per kilogram. n/a - Dataset was comprised of >90 percent non -detects or contained <10 samples. ND - non -detect pH is reported in standard units. Page 1 of 1 Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC — Cape Fear Steam Electric Plant ATTACHMENT 1 SynTerra AARCADIS�Design Consultancy fornaturaland I V r `� built assets ets Arcadis U.S., Inc. To: Copies: 11001 W. 120th Avenue Scott Davies, PG, Duke Energy Suite 200 526 South Church Street Broomfield Charlotte, North Carolina 28202 Colorado 80021 Tel 303 544 0043 From: Fax 720 887 6051 Julie K Sueker, PhD, PH, PE (CO) Date: March 25, 2020 Arcadis Project No.: 30043729 Subject: Background Threshold Value Statistical Outlier Evaluation — Cape Fear Steam Electric Plant Arcadis U.S. Inc. (Arcadis) prepared this technical memorandum, titled Background Threshold Value Statistical Outlier Evaluation — Cape Fear Steam Electric Plant, on behalf of Duke Energy Progress, LLC (Duke Energy) (Figure 1). Arcadis evaluated statistically significant outliers identified in the Updated Background Threshold Values for Constituent Concentrations in Groundwater and Unsaturated Soil by SynTerra Corporation (SynTerra) (2020) constituent concentration dataset (background groundwater dataset) for the Cape Fear Steam Electric Plant (Site), located in Chatham County, North Carolina (Figure 1). This memorandum presents the results of this evaluation, which was conducted within the context of recent United States Environmental Protection Agency (USEPA) guidance regarding the treatment of statistical outliers. Results of the statistical outlier evaluation support findings reached in the background threshold value (BTV) statistical analysis conducted by SynTerra for the Site (SynTerra, 2020) applying the technical approach presented herein. Additionally, this technical memorandum includes a review of regional background groundwater quality. Groundwater BTVs are calculated to compare site groundwater constituent concentrations when the constituent has no established 15A NCAC 02L.0202 Groundwater Standard (02L) or Interim Maximum Allowable Concentration (IMAC), and/or when the BTVs are higher than either the 02L or IMAC criteria. Unsaturated soil BTVs are calculated to compare Site soil constituent concentrations to background when the constituent has no established Preliminary Soil Remediation Goal (PSRG), and/or when the BTVs are higher than the PSRG criteria. Page: MEMO REGIONAL GROUNDWATER QUALITY The Cape Fear Steam Electric Plant is located in the Deep River Basin which is part of the eastern edge of the greater Piedmont physiographic region.Local geology is part of the Triassic basin which includes Triassic sedimentary rocks such as red to maroon colored conglomerates, sandstones, siltstones and mudstones. The Deep River Basin is bordered by gneiss, schist, and intrusive rocks of other parts of the Piedmont (Olsen, P. et al. 1989). Naturally occurring constituent concentrations in Piedmont Region groundwater have been measured at numerous monitoring sites and residential water supply wells by several institutions and government agency (Chapman et al. 2005, Gunkle and Bradley 2007, Pippin et al. 2008, Harden et al. 2009, Sanders et al. 2012, Chapman et al. 2013, Polizzotto et al. 2015, Gillispie et al. 2016, Vengosh et al. 2016, and North Carolina Department of Environmental Quality [NCDEQ] 2019 — see Attachment A). These studies demonstrate variability in groundwater constituent concentrations across the Piedmont Region as shown on Figure 2 (Chapman et al. 2013). These patterns in regional groundwater constituent concentration variability are also indicated by the USEPA Unified Guidance (USEPA 2009) to occur for constituent concentrations in groundwater at individual wells (Table 1). Detections of naturally occurring trace metals at concentrations above 02L criteria have been demonstrated. Gunkle and Bradley (2007) compiled Piedmont Region groundwater dissolved arsenic concentrations and show detections of arsenic above the 02L of 10 micrograms per liter (pg/L) in multiple areas across the region (Figure 3). Manganese has been detected at concentrations above the 02L of 50 pg/L in Piedmont groundwater (Gillispie et al. 2016; Figure 4). Vengosh et al. (2016) established a range of background groundwater concentrations for chromium (VI), boron, and strontium for the Piedmont Region of North Carolina. Chromium (VI) concentrations ranged from less than the detection limit of 0.012 to 22.9 pg/L , boron concentrations ranged from less than the detection limit of 0.09 to 159.2 pg/L, and strontium concentrations ranged from less than the detection limit of 0.25 to 3,426 pg/L (Vengosh et al. 2016). Data compiled by the NCDEQ (2019) demonstrate concentrations of aluminum, arsenic, chromium, iron, lead, manganese, nitrate plus nitrite, sulfate, total dissolved solids (TDS), and zinc above their respective 02L criteria for Piedmont Region groundwater (Table 2). Down et al. (2015) conducted a pre -drilling background groundwater quality for the Deep River Triassic Basin. In the study, water chemistry, dissolved gases, and volatile organic compounds were evaluated in 51 private drinking water well samples to establish a baseline dataset to evaluate effects of future natural gas industry development. Results of this study identified concentrations of aluminum, arsenic, barium, chloride, iron, and manganese that were above 02L or IMAC criteria (Figure 6). CONSTITUENT OUTLIERS HDR Engineering, Inc. (HDR) and SynTerra developed protocol and procedures, with input from NCDEQ, for establishing groundwater BTVs for Duke Energy coal ash facilities (HDR and SynTerra 2017). The protocol establishes identifying extreme statistical outliers using the Dixon's or Rosner's statistical outlier test using a significance level of 0.01. This report states, "If statistical outliers have been detected, the project scientist will review the values to determine if they should be removed from the data set or are representative of background and should be retained for statistical analysis." This approach to evaluating statistical outliers for inclusion or exclusion from a background dataset is consistent with guidance provided by the USEPA in their 2009 Unified Guidance (USEPA 2009) and 2018 Groundwater Statistics Tool — User's Guide (USEPA 2018). arcadis.com Page: 2/11 MEMO The Unified Guidance (USEPA 2009) states: A statistical determination of one or more statistical outliers does not indicate why the measurements are discrepant from the rest of the data set. The Unified Guidance does not recommend that outliers be removed solely on a statistical basis. The outlier tests can provide supportive information, but generally a reasonable rationale needs to be identified for removal of suspect outlier values (usually limited to background data). At the same time there must be some level of confidence that the data are representative of ground water quality. " USEPA (2018) states [in bold font within the document]: "Dixon's [outlier] test is used only to indicate whether a data point can be considered as an outlier statistically; outliers should not be discarded from the data set unless there is also a valid, known technical reason for the outlier (for example, field or lab conditions). " The Unified Guidance (USEPA 2009) recommends testing of outliers on background data, but they generally should not be removed unless some basis for a likely error or discrepancy can be identified. Possible errors or discrepancies that would exclude outlier data from a background dataset include: • Data recording errors • Unusual sampling and laboratory procedures or conditions • Inconsistent sample turbidity • Values significantly outside the historical ranges of background data. The Unified Guidance (USEPA 2009) also states: `7n groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparent extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples. " Based on guidance and documents provided by the USEPA (2009 and 2018), statistical outliers identified by SynTerra in background groundwater datasets for the Site were evaluated to determine whether statistical outliers should be included or excluded from the background groundwater datasets. GROUNDWATER OUTLIER EVALUATION METHODS A data -driven approach was used to evaluate identified statistical outliers in the background groundwater datasets for the Site. This approach not only considers analytical results for individual constituents, but also the broader geochemical conditions at the Site to determine inclusion or exclusion of statistical outliers in the background groundwater dataset. This section describes the five methods used to evaluate statistical outliers within the background groundwater datasets for the Site including: 1. Initial screening for turbidity and pH 2. Repeatability of constituent concentrations arcadis.com Page: 3/11 MEMO 3. Relationship among pairs or groups of constituents 4. Relationships between major ions and total dissolved solids 5. Relationship between constituent concentration and oxidation-reduction potential (ORP) Outlier evaluation methods 2 through 5 were conducted as part of the protocol established by HDR and SynTerra (2017): "If statistical outliers have been detected, the project scientist will review the values to determine if they should be removed from the data set or are representative of background and should be retained for statistical analysis." Relationships between pH and constituent concentrations were evaluated but were not found to be important for explaining presence of observed outliers. This outlier evaluation approach provides multiple lines of evidence to support inclusion or exclusion of identified statistical outliers in the background groundwater datasets for the Site. Initial Screening for Turbidity and pH Background groundwater samples with turbidity values greater than 10 Nephelometric turbidity units (NTU) and/or pH values greater than 8.5 standard units (S.U.) were eliminated from the background groundwater dataset as defined in the protocol established by HDR and SynTerra (2017) for the Site. Site -specific background data were eliminated for turbidity values greater than 10 NTU to reduce potential effects of particulates entrained in the background groundwater samples on background groundwater metals concentrations. However, particulate metals may still be present in samples with turbidity values less than 10 NTU. Published comparisons of turbidity measured as NTU and total suspended solids (TSS)(Idaho Department of Environmental Quality 2007 and Xiang et al. 2011) suggest that turbidity greater than 10 NTU is associated with TSS concentrations generally greater than 10 milligrams per liter (mg/L; Figure 7). Combined concentrations of particulate metals, especially iron and aluminum, in all retained site background groundwater data are less than 10 mg/L (e.g., Figure 8) and exhibited turbidity values less than 10 NTU. Therefore, groundwater sample data with associated turbidity values less than 10 NTU were appropriately included within the background groundwater datasets for the Site whether particulate forms of metals were present. Repeatability of Constituent Concentrations Statistical outliers identified as a repeated concentration across sample dates for individual wells were retained within the background groundwater datasets for the Site. All retained outliers for the Site are provided in Table 3. Data were evaluated for the repeatability of individual constituent analytical results. Repeatability weighs in favor of data inclusion because it suggests that the measured value is not due to a data recording error or unusual condition. Additionally, if a value is repeatedly measured over time, it is an indication that the sampling is accurately measuring the constituent concentration. For example, in well MW-15BR, selenium was measured at concentrations above 1 µg/L in 16 samples between 2015 and 2019, all of which were flagged as statistical outliers (Table 3). The consistency of the measurements strongly indicates that the detected constituent concentrations are not due to sampling artifacts. Repeatability was evaluated for individual wells across the individual groundwater flow zones (surficial and bedrock) identified for the Site. Figure 9 provides examples of constituents with repeated concentrations arcadis.com Page: 4/11 MEMO within a small range that were identified as statistical outliers. Statistical outliers are identified on Figure 9 by orange boxes. The constituents shown on Figure 9, as well as other constituents with similar profiles, were retained within the background groundwater dataset. The following bullets summarize the constituents and wells with repeatable concentrations for the Site; a subset of these are illustrated on Figure 9. • MW-15BR —Selenium • MW-15SL — Iron • MW-15SU — Potassium, total uranium, zinc • MW-9 —Nickel This portion of the evaluation also included evaluating box -and -whisker plots for statistical outliers of individual constituents by well (SynTerra, 2020). Background groundwater constituent concentrations that were not identified as outliers within the individual well box -and -whisker plots were retained. Relationship among Pairs or Groups of Constituents Statistical outliers identified to have distributions similar to those for other constituents were retained within the background groundwater datasets for the Site and are provided in Table I Relationships among constituents provide evidence regarding whether a measured concentration is due to a data recording or unusual condition. When two constituents are correlated, a higher concentration for one constituent will typically be associated with a higher concentration for the correlated constituent. When a statistical outlier in one constituent is associated with a higher value in an associated constituent, this association provides evidence that the statistical outlier is a valid data point that is not associated with sampling or laboratory error. Conversely, a statistical outlier that is not associated with a higher value in an associated constituent is more likely to be invalid. Groups of Constituents Groups of constituents and statistical outliers were identified for several metals including aluminum, chromium, cobalt, iron, manganese, and nickel (Figures 8, 10, and 11). These statistical outliers were associated with particulate or dissolved forms based on comparison of total and filtered (0.45 micron) metals concentrations. Statistical outlier concentrations of aluminum and iron were typically associated primarily with particulate form, while statistical outlier concentrations of chromium, cobalt, manganese, and nickel were typically in dissolved form. Statistical outlier metals in primarily dissolved form were consistent with geochemical conditions including ORP values that indicated presence of metal (e.g., iron and manganese) reducing conditions. Dissolution of iron and manganese oxides in metal reducing conditions results in release of other metals associated with the iron and manganese oxides including arsenic and cobalt. Statistical outlier metals present primarily in particulate form are consistent with chemical and mechanical weathering of the aquifer matrix. Naturally occurring chemical weathering (e.g., via metal reduction) results in dissolution of minerals present within the aquifer matrix and can result in formation of very fine-grained particles such as clay particles and colloids. Mechanical weathering of the aquifer matrix (e.g., stress applied to the aquifer via groundwater pumping), even under low -flow conditions, can dislodge these fine- grained particles and cause them to migrate to the well. Although monitoring well filter pack materials are arcadis.com Page: 5/11 MEMO sized to minimize migration of fine-grained particles, some of these fine-grained particles can still migrate through the filter pack and become captured during groundwater sampling. This can occur for both groundwater monitoring and drinking water supply wells, which are often completed as open boreholes in bedrock absent of filter packs to minimize migration of fine-grained particles. Chemical weathering of aquifer matrix minerals can also result in formation of fine-grained particulates. Metals dissolved under metal reducing conditions can form particulates via re -oxidation and precipitation of metals when the dissolved metals encounter less reducing and more oxic (oxygen -rich) conditions. Pairs of Constituents Similarities in distributions of several constituent pairs were observed across monitoring wells and groundwater flow zones. These similarities in constituent distributions were observed for the constituent well pairs aluminum and iron (Figure 8), cobalt and manganese (Figure 10), and chromium and nickel (Figure 11) as well as other constituent pairs and groupings not shown on Figures 8, 10, and 11. These strong similarities in constituent distributions across wells and groundwater flow zones indicate natural conditions. Relationship between Major Ions and Total Dissolved Solids Statistical outliers with TDS increase not accompanied by similar increases in major cation and anion concentrations were excluded from the background groundwater datasets for the Site and retained outliers for the Site are provided in Table 3. Concentrations of major cations (calcium, magnesium, sodium, and potassium) and anions (alkalinity, chloride, and sulfate) identified as statistical outliers were compared to TDS concentrations. If outlier cation or anion concentrations were accompanied by a similar increase in TDS, the outlier was retained within the background groundwater datasets for the Site. TDS concentrations identified as statistical outliers were then compared with concentrations of major cations and anions. Relationship between Constituent Concentration and Oxidation -Reduction Potential Statistical outliers associated with lower ORP values were retained within the background groundwater datasets for the Site, and all retained outliers are provided in Table 3. Background groundwater datasets were evaluated for relationships between groundwater ORP and constituent concentrations. Lower ORP values were observed to be associated with higher concentrations of copper, iron, methane, sulfide, and other constituent values. Higher ORP values were observed to be associated with higher concentrations of chromium (VI), as illustrated in groundwater monitoring wells MW-9 and MW-16S on Figure 12. SUMMARY OF RESULTS - GROUNDWATER Results of the constituent statistical outlier evaluation for groundwater are provided in Table 3. This table provides the well ID, sampling date, constituent, constituent concentration, reporting unit, and the rationale for each identified outlier included in the background groundwater datasets for the Site. The general rationales for each constituent that had an outlier included in the background groundwater datasets for the Site are summarized below. • Aluminum —Not identified as an outlier on individual well box -and -whisker plot; no laboratory or field errors identified. arcadis.com Page: 6/11 MEMO • Boron — Not identified as an outlier on individual well box -and -whisker plot. • Chromium — Present with higher nickel and chromium(VI) concentrations; No laboratory or field errors identified. • Chromium (VI) — Present with higher nickel and chromium concentrations; no laboratory or field errors identified; Present with higher ORP • Cobalt — Present with higher manganese concentrations; Not identified as an outlier on individual well box -and -whisker plot. • Copper — Present with higher zinc concentration; No laboratory or field errors identified; not identified as an outlier on individual well box -and -whisker plot. • Iron — Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time; No laboratory or field errors identified. • Mercury — No laboratory or field errors identified. • Methane — Present with lower ORP; Preceded by decrease in sulfate; Not identified as an outlier on individual well box -and -whisker plot; No laboratory or field errors identified. • Nickel — Present with higher chromium concentrations; Repeated concentration within well over time; Not identified as an outlier on individual well box -and -whisker plot. • Nitrate + nitrite — No laboratory or field errors identified. • Potassium — Repeated concentration within well over time; not identified as an outlier on individual well and flow zone box -and -whisker plots; No laboratory or field errors identified. • Selenium — Not identified as an outlier on individual well box -and -whisker plot; repeated concentration within well over time. • Sodium — Present with higher TDS and chloride concentration; Not identified as an outlier on individual well box -and -whisker plot. • Strontium — Present with higher calcium concentration; Not identified as an outlier on individual well box -and -whisker plot. • Sulfate — Not identified as an outlier on individual well box -and -whisker plot. • Sulfide — Present with lower ORP and decrease in sulfate concentration; No laboratory or field errors identified. • TDS — Present with higher sodium concentration. • Thallium — Present with higher zinc concentrations ; No laboratory or field errors identified. • Total radium — No laboratory or field errors identified. • Total uranium — Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker plots; Repeated concentration within well over time. arcadis.com Page: 7/11 MEMO • Zinc — Present with higher iron and copper and other metals concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time; No laboratory or field errors identified. SOIL OUTLIER EVALUATION METHODS Unsaturated soil samples for evaluation of background soil constituent concentrations were collected at background soil boring locations and during installation of background groundwater monitoring wells. HDR Engineering, Inc. (HDR) and SynTerra developed protocol and procedures, with input from NCDEQ, for establishing unsaturated soil BTVs for Duke Energy coal ash facilities (HDR and SynTerra 2017). The protocol establishes identifying extreme statistical outliers using the Dixon's or Rosner's statistical outlier test using a significance level of 0.01. This report states, "If statistical outliers have been detected, the project scientist will review the values to determine if they should be removed from the data set or are representative of background and should be retained for statistical analysis." As described for groundwater above, this approach to evaluating statistical outliers for inclusion or exclusion from a background dataset is consistent with guidance provided by the USEPA in their 2009 Unified Guidance (USEPA 2009) and 2018 Groundwater Statistics Tool — User's Guide (USEPA 2018). Unsaturated soil constituent concentrations for Cape Fear background samples were reviewed to identify outliers to be included or excluded from the background soil data set for calculation of background soil BTVs. Data were evaluated for potential field sampling or laboratory errors. In addition, data were evaluated for potential associations between constituents. For example, several soil samples from boring BGSB-3 and BGSB-MW-9 had higher concentrations of potassium compared with other soil samples. These locations also had generally higher aluminum concentrations (not considered outliers) (Table 4). Soil at these locations may contain arkosic minerals that would contribute to higher potassium concentrations. Arkosic (feldspar -containing) minerals are common within the Deep River Basin, and potassium -feldspar may be present, resulting higher potassium levels in these samples compared to other background soil sample locations (Figure 1). SUMMARY OF RESULTS - SOIL Results of the constituent statistical outlier evaluation for soil are provided in Table 4. This table provides thesoil sample ID, sampling date, constituent, constituent concentration, reporting unit, and the rationale for each identified outlier included in the background soil datasets for the Site. The general rationales for each constituent that had an outlier included in the background soil datasets for the Site are summarized below. • Aluminum — No field or laboratory errors identified. • Arsenic — Associated with higher concentration of aluminum, arsenic preferentially sorbs onto iron and Aluminum (oxy)hydroxides; no field or laboratory errors identified. • Iron — No field or laboratory errors identified. • Manganese — No field or laboratory errors identified. • Nitrate (as N) — No field or laboratory errors identified. • pH — No field or laboratory errors identified. arcadis.com Page: 8/11 MEMO • Potassium — Arkosic (Potassium or sodium -feldspar -containing) sands common in Deep River Basin; No field or laboratory errors identified. • Sulfate — No field or laboratory errors identified. RFFFRFMrPq Chapman, M., R. Bolich, and B. Huffman. 2005. Hydrogeologic Setting, Ground -Water Flow, and Ground Water Quality at the Lake Wheeler Road Research Station, 2001-03. United States Geological Survey Scientific Investigation Report 2005-5166. Prepared in cooperation with the North Carolina Department of Environment and Natural Resources, Division of Water Quality. Chapman, M., C. Cravotta III, Z. Szabo, and B. Lindsey. 2013. Naturally Occurring Contaminants in the Piedmont and Blue Ridge Crystalline -Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic- Rock Aquifers, Eastern United States, 1994-2008. United States Geological Survey, Scientific Investigation Report 2013-5072. Daniel, C. and P. Dahlen. 2002. Preliminary Hydrogeologic Assessment and Study Plan for a Regional Ground -water Resource Investigation of the Blue Ridge and Piedmont Provinces of North Carolina. United States Geological Survey Water Investigation Report 2002-4105. Prepared in cooperation with the North Carolina Department of Environment and Natural Resources, Division of Water Quality. Down, A., K. Schreglmann, D. Plata, M. Elsner, N. Warner, A. Vengosh, K. Moore, D. Coleman, R. Jackson. 2015. Pre -drilling Background Groundwater Quality in the Deep River Triassic Basin of Central North Carolina, USA. Applied Geochemistry. 60. 3-13. HDR Engineering, Inc. and SynTerra Corporation (HDR and SynTerra). 2017. Revised Statistical Methods for Developing Reference Background Concentrations for Groundwater and Soil at Coal Ash Facilities. May. Gillispie, E. R. Austin, N. Rivera, R. Bolich, O. Duckworth, P. Bradley, A. Amoozegar, D. Hesterberg, and M. Polizzotto. 2016. Soil weathering as and engine for manganese contamination of well water. Environmental Science Technology, 50: 9963-9971. Gunkle, D. and P. Bradley. 2007. Arsenic Occurrence in Groundwater in Orange and Durham Counties. North Carolina Geological Survey and Department of Environment and Natural Resources. Harden, S., M. Chapman, and D. Hamed. 2009. Characterization of Groundwater Quality Based on Regional Geologic Setting in the Piedmont and Blue Ridge Physiographic Provinces, North Carolina. United States Geological Survey Scientific Investigation Report 2009-5149. Prepared in cooperation with the North Carolina Department of Environment and Natural Resources, Division of Water Quality, Aquifer Protection Section. Idaho Department of Environmental Quality. 2007. Turbidity and Total Suspended Solids (TSS) Relationship for all Mainstem Portneuf River and Marsh Creek Sites. <https://deq.idaho.gov/media/594342- turbid ity_tss_phosphorus_051507.pdf>. North Carolina Department of Environmental Quality (NCDEQ). 2019. Piedmont Mountain Groundwater Resource Evaluation Program. Websites for Allison Woods, Bent Creek, Coweeta, Langtree arcadis.com Page: 9/11 MEMO Peninsula, Morgan Mill, Pasour Mountain, Tater Hill, and Upper Piedmont Groundwater Monitoring and Research Stations accessed May 21, 2019. <https://deq.nc.gov/node/83001>. Olsen, P., R. Schlische, P. Gore 1989. Field Guide to the Tectonics, Stratigraphy, Sedimentology, and Paleontology of the NewarK Supergroup, Eastern North America. International Geological Congress, Guidebooks for Field Trips T351, p. 19-33. Pippin, C., M. Chapman, B. Huffman, M. Heller, and M. Schelgel. 2008. Hydrogeologic Setting, Ground - Water Flow, and Ground -Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, 2008-5055. United States Geological Survey Scientific Investigation Report 2009- 5149. Prepared in cooperation with the North Carolina Department of Environment and Natural Resources, Division of Water Quality. Polizzotto, M., A. Amoozegar, R. Austin, R. Bolich, P. Bradley, O. Duckworth, and D. Hesterberg. 2015. Surface and Subsurface Properties Regulating Manganese Contamination of Groundwater in the North Carolina Piedmont. Water Resources Research Institute of The University of North Carolina, Report No. 459. Sanders, A., K. Messier, M. Shehee, K Rudo, M. Serre, and R. Fry. 2012. Arsenic in North Carolina: Public Health Implications. Environment International. 38(1): 10-16. SynTerra Corporation. 2020. Updated Background Threshold Values for Constituent Concentrations in Groundwater and Unsaturated Soil. Cape Fear Steam Electric Plant. February 2020. United States Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities — Unified Guidance. EPA 530-R-09-007. March. USEPA. 2018. Groundwater Statistics Tool — User's Guide. September. Vengosh, A., R. Coyte, J. Karr, S. Harkness, A. Kondash, L. Ruhl, R. Merola, and G. Dywer. 2016. Origin of hexavalent chromium in drinking water wells from the Piedmont aquifers of North Carolina. Enviro. Sci. Technol. Letters. Accepted September 30, 2016. Xiang, D.L.H., Djati, H.UD., and Hao, K.L.Z. 2011. Correlation between Turbidity and Total Suspended Solids in Singapore Rivers. Journal of Water Sustainability, 1(3): 313-322. arcadis.com Page: 10/11 MEMO TABLES 1 Typical Background Data Patterns for Routine Groundwater Monitoring Analytes 2 Summary of Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations 3 Rationale for Inclusion of Statistical Outlier Data — Groundwater 4 Rationale for Inclusion of Statistical Outlier Data — Soil FIGURES 1 Site Location and Regional Geology 2 Box -and -Whisker Plots for Constituent Concentrations in Piedmont and Mountain Region Groundwater 3 Arsenic Occurrence in the Carolina and Spring Hope Terranes 4 Manganese Concentrations in the Piedmont Region of North Carolina 5 Chromium Concentrations in North Carolina Piedmont Groundwater 6 Distribution of Subset of Elements 7 Relationships between Turbidity and Total Suspended Solids 8 Relationships between Iron and Aluminum Concentrations 9 Repeatability of COI Concentrations 10 Relationships between Manganese and Cobalt Concentrations 11 Relationships between Chromium and Nickel Concentrations 12 Relationships between ORP and COI Concentrations ATTACHMENT A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations arcadis.com Page: 11/11 TABLES Table 1 Typical Background Data Patterns for Routine Groundwater Monitoring Analytes /aRCJaDIS Design Consultancy for natural and built assets Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Detec Temporal Variation BetweenWell Mean WithinWell Variability Between Well Equal Outlier Between Well by Analy�te Well Typical �Among Distribution Group 0101J= Fc Data Analyte Groups Constituents andMIndicat Differences (CVS) Variances Problems withLroupinl. w in Well G Major ions, pH, TDS, High to 100% ✓✓✓ Generally low ✓✓ ✓ ✓✓ ✓✓✓ ✓✓ ✓✓ ✓✓ Normal Intrawell Specific Conductance 0.1 to 0.5 CO3, F, NOz, NO3 Some to most ✓✓ ✓✓ Moderate (0.2 Variable ✓✓ ✓ ✓ ✓ Normal, Log or Intrawell/ detectable High to 100% ✓✓ ✓✓✓ to 1.5) ow ✓ ✓ ✓ ✓ NPM Interwell Be Normal Intrawell 0.1Lt 0.5 As, Se Some wells high, ✓✓ ✓✓ Moderate (0.2 Variable ✓✓ ✓ ✓ Normal, Log or Intrawell/ others low to zero (some wells) to 1.5) NPM Interwell Moderate to Intrawell/ Al, Mn, Fe Low to moderate ✓✓ ✓ high ✓ ✓✓✓ ✓ ✓ Log or NPM 0.3 > 2.0 Interwell Cr, Cu, Hg, Pb, Moderate to Interwell or Ni, Ag, TI, V, Zn Ni, g, I, Zero to low ✓✓✓ high ✓✓ ✓✓✓ ✓ ✓✓ ✓ Log or NPM 0.5 > 2.0)NDC General Notes: No Checkmarks = Unknown, absent, or infrequently occurring ✓ = Occasionally ✓✓ = Frequently ✓✓✓ = Very frequently Acronyms and Abbreviations: % = percent CV = coefficient of variability µm = micrometers NDC = never -detected constituents NPM = non -parametric method TDS = total dissolved solids Source: United States Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities — Unified Guidance. EPA 530-R-09-007. March. Page 1 of 1 Table 2 AARCADIS�=bulttaonsultancy and Summary of Constituent Concentrations in Groundwater ssets at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Constituent Aluminum 02L or IMAC Criteria 1,000 Reporting Unit /L Maximum Detected Concentration Total' Dissolved' 44,000 30,000 Arsenic 10 /L 254 24 Barium 700 /L 150 98 Bicarbonate Alkalinity NA m /L 150 130 Cadmium 2 /L ND ND Calcium NA m /L 99 550 Chloride 250 m /L 29 33 Chromium 10 /L 43 ND Copper 1000 /L 750 32 Fluoride NA m /L 3.6 2.4 Iron 300 /L 33,000 18,000 Lead 15 /L 32 13 Magnesium NA m /L 30 24 Manganese 50 /L 2,800 830 Nickel 100 /L 27 15 Nitrate + Nitrite 10 m /L NA 14 Potassium NA m /L 16 6.6 Selenium 20 /L ND 8.4 Sodium NA m /L 120 89 Sulfate 250 m /L 72 1,500 Total Dissolved Solids 500 m /L I NA 2,500 Total Orcianic Carbon NA m /L 12 NA nc iW 1000 /L 13,000 3,200 General Notes: Groundwater data summarized from NCDEQ (2019). Data provided in Attachment A. Data summarized from NCDEQ (2019). Data provided in Attachment A. Bolded values indicate detected concentration is above 02L or IMAC criterion. Footnotes: 1 NCDEQ Groundwater Monitoring and Research Stations (NCDEQ 2019) reported dissolved constituent concentrations, total constituent concentrations, or both total and dissolved constituent concentrations. Acronyms and Abbreviations: IMAC - Interim Maximum Allowable Concentration NA - not applicable NCDEQ - North Carolina Departmnet of Environmental Quality ND - not detected pg/L - micrograms per liter mg/L - milligrams per liter Page 1 of 1 Table 3 Rationale for Inclusion of Statistical Outlier Data - Groundwater Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC /aRCA DIS Design Consultancy 04 fornaturaland built assets ID Sample Constituent Concentration ReportingWell Data in Background Groundwater Data Date MW-9BR 5/30/2015 Aluminum 138 pg/L No laboratory or field errors identified MW-15BR 9/1/2015 Aluminum 120 pg/L No laboratory or field errors identified Not identified as an outlier on individual well box -and -whisker plot MW-16BR 5/20/2015 Aluminum 118 pg/L MW-16BR 12/02/2015 Aluminum 147 pg/L Not identified as an outlier on individual well box -and -whisker plot MW-16BR 3/15/2018 Aluminum 295 pg/L No laboratory or field errors identified MW-16BR 12/4/2018 Aluminum 155 pg/L Not identified as an outlier on individual well box -and -whisker plot MW-16BR 5/20/2015 Boron 51 pg/L Not identified as an outlier on individual well box -and -whisker plot MW-16BR 9/1/2015 Boron 52 pg/L Not identified as an outlier on individual well box -and -whisker plot MW-16BR 12/2/2015 Boron 53 pg/L Not identified as an outlier on individual well box -and -whisker plot MW-15SU 2/27/2017 Chromium 3.32 pg/L Present with higher chromium (VI) concentration; No laboratory or Feld errors identified MW-9 6/13/2017 Chromium 14.1 pg/L Present with higher nickel concentration MW-16BR 9/1/2015 Chromium 4.98 pg/L Present with higher nickel concentration; No laboratory or field errors identified MW-15SU 2/27/2017 Chromium (VI) 2.3 pg/L Present with higher chromium concentration; No laboratory or Feld errors identified MW-15SU 2/6/2019 Chromium (VI) 0.4 S1 pg/L Present with higher chromium concentration; No laboratory or Feld errors identified Present with higher ORP; No laboratory or field errors identified Present with higher ORP; No laboratory or field errors identified No laboratory or field errors identified MW-16S 8/6/2019 Chromium (VI) 0.18 S1 pg/L MW-9 2/6/2019 Chromium (VI) 0.14 S1 pg/L MW-15BR 6/12/2017 Chromium (VI) 0.21 pg/L MW-15BR 6/13/2018 Chromium (VI) 0.17 pg/L No laboratory or field errors identified Present with higher ORP; No laboratory or field errors identified MW-16BR 8/6/2019 Chromium (VI) 0.96 pg/L MW-15SU 12/2/2015 Cobalt 100 pg/L Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker lot Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker MW-15SU 6/2/2016 Cobalt 78.7 pg/L lot MW-9 6/30/2015 Cobalt 6.7 pg/L Present with higher manganese concentration MW-9 9/1/2015 Cobalt 1.51 pg/L Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker lot MW-9 12/2/2015 Cobalt 2.68 pg/L Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker lot MW-9 8/2/2016 Cobalt 2.21 pg/L Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker lot MW-9 10/5/2016 Cobalt 1.4 pg/L Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker lot MW-9 2/27/2017 Cobalt 1.15 pg/L Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker lot MW-9 8/29/2017 Cobalt 2.23 pg/L Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker lot MW-9 12/5/2017 Cobalt 4.97 pg/L Present with higher manganese concentration MW-9 3/14/2018 Cobalt 1.29 pg/L Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker lot MW-15SU 12/2/2015 Copper 6.32 pg/L Present with higher zinc concentration; Not identified as an outlier on individual well box -and -whisker plot MW-16BR 5/20/2015 Copper 2.48 pg/L No laboratory or field errors identified MW-16BR 9/1/2015 Copper 1.53 pg/L No laboratory or field errors identified MW-15SL 5/29/2015 Iron 45500 pg/L No laboratory or field errors identified MW-15SL 9/1/2015 Iron 37500 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SL 12/2/2015 Iron 33900 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SL 3/2/2016 Iron 35800 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SL 6/2/2016 Iron 36700 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SL 10/4/2016 Iron 34600 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SL 12/5/2018 Iron 29800 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 6/30/2015 Iron 1800 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot MW-9 9/1/2015 Iron 2290 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot MW-9 12/2/2015 Iron 4230 pg/L Present with lower ORP; No laboratory or field errors identified MW-9 12/5/2017 Iron 1880 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot MW-16S 3/15/2018 Mercury 0.13 pg/L No laboratory or field errors identified MW-16S 6/13/2018 Mercury 0.08 pg/L No laboratory or field errors identified No laboratory or field errors identified Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot MW-16S 8/29/2018 Mercury 0.12 pg/L MW-15SL 5/29/2015 Methane 11 pg/L MW-15SL 9/1/2015 Methane 16 pg/L Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot MW-16S 8/1/2016 Methane 12.8 pg/L No laboratory or field errors identified MW-9 9/1/2015 Methane 35 pg/L Not identified as an outlier on individual well box -and -whisker plot MW-9BR 10/5/2016 Methane 51.9 pg/L Present with lower ORP; Preceded by decrease in sulfate MW-9BR 2/27/2017 Methane 84.5 pg/L Present with lower ORP; Preceded by decrease in sulfate MW-15SU 12/2/2015 Nickel 43 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SU 3/2/2016 Nickel 19.6 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SU 6/2/2016 Nickel 24.8 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SU 8/1/2016 Nickel 48 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time Page 1 of 3 Table 3 Rationale for Inclusion of Statistical Outlier Data - Groundwater Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC /aRCA DIS Design Consultancy 04 fornaturaland built assets ID Sample Constituent Concentration ReportingWell Data in Background Groundwater Data Set Date MW-9 6/30/2015 Nickel 1.8 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 9/1/2015 Nickel 1.4 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 12/2/2015 Nickel 3.26 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 3/1/2016 Nickel 1.73 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 6/2/2016 Nickel 1.32 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 8/2/2016 Nickel 2.61 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 2/27/2017 Nickel 1.98 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 6/13/2017 Nickel 8.32 pg/L Present with higher chromium concentration MW-9 8/29/2017 Nickel 3.2 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 12/5/2017 Nickel 4.94 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 3/14/2018 Nickel 3.32 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 6/14/2018 Nickel 2.03 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 8/22/2018 Nickel 1.75 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 2/6/2019 Nickel 1.34 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-16BR 9/1/2015 Nickel 2.97 pg/L Present with higher chromium concentration MW-15SU 10/4/2016 Nitrate + Nitrite 3.9 mg-N/L No laboratory or field errors identified MW-15SU 3/13/2018 Nitrate + Nitrite 2.5 mg-N/L No laboratory or field errors identified MW-15SU 12/2/2015 Potassium 2.3 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-15SU 3/2/2016 Potassium 3.21 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-15SU 6/2/2016 Potassium 3.55 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - MW-15SU 10/4/2016 Potassium 3.44 mg/L and -whisker plots MW-15SU 2/27/2017 Potassium 3.16 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-15SU 6/12/2017 Potassium 4.36 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-15SU 3/13/2018 Potassium 3.45 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-15SU 6/13/2018 Potassium 3.09 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-15SU 8/22/2018 Potassium 4.51 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-15SU 12/5/2018 Potassium 3.65 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-15SU 2/6/2019 Potassium 3.81 mg/L Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box - and -whisker plots MW-16BR 12/4/2018 Potassium 5.6 mg/L No laboratory or field errors identified MW-15SU 12/2/2015 Selenium 1.58 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SU 6/2/2016 Selenium 1.05 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SU 10/4/2016 Selenium 1.17 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 6/1/2015 Selenium 2.02 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 9/1/2015 Selenium 1.92 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 12/2/2015 Selenium 1.62 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 3/2/2016 Selenium 1.69 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 6/2/2016 Selenium 1.76 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 8/1/2016 Selenium 1.28 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 10/4/2016 Selenium 3.04 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 2/27/2017 Selenium 1.01 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 6/12/2017 Selenium 1.38 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 8/28/2017 Selenium 1.85 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 12/4/2017 Selenium 1.56 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 6/13/2018 Selenium 1.4 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 8/22/2018 Selenium 2.2 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 12/5/2018 Selenium 2.18 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 2/5/2019 Selenium 2.03 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15BR 8/6/2019 Selenium 3.17 pg/L Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-15SU 12/2/2015 Sodium 409 mg/L Present with higher TDS and chloride concentration; Not identified as an outlier on individual well box -and - whisker plot MW-15SU 8/22/2018 Strontium 2360 pg/L Present with higher calcium concentration; Not identified as an outlier on individual well box -and -whisker plot MW-15SU 12/5/2018 Strontium 2460 pg/L Present with higher calcium concentration; Not identified as an outlier on individual well box -and -whisker plot MW-15SU 12/2/2015 Sulfate 1100 mg/L Not identified as an outlier on individual well box -and -whisker plot MW-9BR 9/1/2015 Sulfide 0.146 mg/L Present with lower ORP and decrease in sulfate MW-16BR 9/1/2015 Sulfide 0.122 mg/L Present with lower ORP; No laboratory or field errors identified MW-16BR 12/2/2015 Sulfide 0.189 mg/L Present with lower ORP; No laboratory or field errors identified MW-15SU 12/2/2015 TDS 1600 mg/L Present with higher sodium concentration MW-9BR 12/2/2015 Thallium 0.489 pg/L Present with higher zinc concentration, No laboratory or field errors identified Page 2 of 3 Table 3 Rationale for Inclusion of Statistical Outlier Data — Groundwater Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC /aRCA DIS Design Consultancy 04 fornaturaland built assets ID Sample Constituent Concentration ReportingWell Data in Background Groundwater Data Set Date MW-16S 3/15/2018 Total Radium 7.662 pCi/L No laboratory or field errors identified MW-9 6/2/2016 Total Radium 8.002 pCi/L No field or laboratory errors identified MW-15SU 3/2/2016 Total Uranium 0.0165 pg/mL Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker lots; Repeated concentration within well over time MW-15SU 6/2/2016 Total Uranium 0.00738 pg/mL Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker lots; Repeated concentration within well over time MW-15SU 10/4/2016 Total Uranium 0.00911 Ng/mL Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker lots; Repeated concentration within well overtime MW-15SU 2/27/2017 Total Uranium 0.0132 pg/mL Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker lots; Repeated concentration within well overtime MW-15SU 3/13/2018 Total Uranium 0.0188 Ng/mL Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker lots; Repeated concentration within well over time MW-15SU 6/13/2018 Total Uranium 0.0102 pg/mL Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker lots; Repeated concentration within well over time MW-15SU 8/22/2018 Total Uranium 0.0162 pg/mL Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker plots; Repeated concentration within well over time MW-15SU 12/5/2018 Total Uranium 0.016 pg/mL Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker lots; Repeated concentration within well over time MW-15SU 12/2/2015 Zinc 62 pg/L Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box - and -whisker lot; Repeated concentration within well over time MW-15SU 6/2/2016 Zinc 50 pg/L Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box - and -whisker lot; Repeated concentration within well over time MW-15SU 8/1/2016 Zinc 66 pg/L Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box - and -whisker lot; Repeated concentration within well over time MW-15SU 10/4/2016 Zinc 26 pg/L Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box - and -whisker plot; Repeated concentration within well over time MW-15SU 6/12/2017 Zinc 26 pg/L Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box - and -whisker lot; Repeated concentration within well over time MW-9 6/30/2015 Zinc 10 pg/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 9/1/2015 Zinc 6 pg/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 12/2/2015 Zinc 14 pg/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 8/2/2016 Zinc 10 pg/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 2/27/2017 Zinc 6 pg/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; MW-9 8/29/2017 Zinc 13 pg/L Repeated concentration within well over time MW-9 12/5/2017 Zinc 11 pg/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 3/14/2018 Zinc 8 pg/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 6/14/2018 Zinc 6 pg/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9 8/22/2018 Zinc 9 u9/L Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over time MW-9131R 12/2/2015 Zinc 11 pg/L No laboratory or field errors identified MW-9131R 8/29/2017 Zinc 6 pg/L No laboratory or field errors identified MW-9BR 8/22/2018 Zinc 11 pg/L No laboratory or field errors identified MW-16BR 8/6/2019 Zinc 7 S1 pg/L No laboratory or field errors identified General Notes: 0 - Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error or laboratory analytical error. Qualifiers: D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference. S1 — Data review findings indicate result may be unreliable. Use with caution. Acronyms and Abbreviations: pg/L = micrograms per liter pg/mL = micrograms per milliliter mg/L = milligrams per liter mg - N/L = milligrams per liter as nitrogen ORP = oxidation reduction potential pCi/L = picocuries per liter TDS = total dissolved solids Page 3 of 3 Table 4 Rationale for Inclusion of Statistical Outlier Data - Soil AR�► V I I Design & CansuLtanCy V for natural and 6u iit assets Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Sample ID Sample Constituent Concentration ReportingSoil Data in Background Soil Data Set Date BG-2 (2-2.5) 08/20/2013 Aluminum 44400 mg/kg No field or laboratory errors identified BGSB-4 (4-5) 10/18/2017 Aluminum 40000 mg/kg No field or laboratory errors identified BG-2 (2-2.5) 08/20/2013 Arsenic 3.3 mg/kg Associated with higher concentration of aluminum, arsenic preferentially sorbs onto Iron and AI(oxy)hydroxides; no field or laboratory errors identified BGSB-3 (2-3) 10/18/2017 Iron 40000 mg/kg No field or laboratory errors identified BGSB-5 (2-3) 10/18/2017 Manganese 2700 mg/kg No field or laboratory errors identified BGSB-MW-20 (2-3) 10/17/2017 Manganese 1900 M mg/kg No field errors identified BGSB-1 (2-3) 10/18/2017 Nitrate (as N) 0.87 mg/kg No field or laboratory errors identified BGSB-MW-15 (4-5) 10/18/2017 pH 6.91 S.U. No field or laboratory errors identified BGSB-3 (2-3) 10/18/2017 Potassium 610 j mg/kg Arkosic (feldspar -containing) sands common in Deep River Basin; no field or laboratory errors identified BGSB-3 (6-7) 10/18/2017 Potassium 1300 j mg/kg Arkosic (feldspar -containing) sands common in Deep River Basin; no field or laboratory errors identified BGSB-MW-9 (6-7) 10/18/2017 Potassium 920 mg/kg Arkosic (feldspar -containing) sands common in Deep River Basin; no field or laboratory errors identified BGSB-1 (2-3) 10/18/2017 Sulfate 260 mg/kg No field or laboratory errors identified BGSB-5 (4-5) 10/18/2017 Sulfate 420 mg/kg No field or laboratory errors identified General Notes: 0 - Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error or laboratory analytical error. Qualifiers: j - Estimated concentration above the method detection limit and below the reporting limit. M - Matrix spike / matrix spike dup failure. Acronyms and Abbreviations: mg/kg - milligrams per kilogram S.U. - standard units Page 1 of 1 FIGURES II in KY wV I �•- ' NCDEQ Rocky Branch 5 ` Research Station f, a ...DRIN i a r NCDEQ Lake Wheeler Research Station 5 `F- _-F J- I + T+r - lit=. My- Y IPIIn r!MII . .14 1 1 M~ 'O 1#LtNA! ;� �_ �17tici �7JI�sYs ad .0 60 120 miles so 120 180 K�rDrneWfs Cape Fear Steam Electric Plant J Note: Locations and scale approximate Source: Reid, J.C., and Milici, R.C., 2008, "Hydrocarbon source rocks in the Deep River and Dan River Triassic Basins, North Carolina," U.S. Geological Survey, Open -File report 2008-1108, 35 p. plus tables (see URL http://pubs.usgs.gov/of/2008/1108/). +Veil s • Foul s w 1� eologt Regions �I Valley and Pidge Blue Ridge LI Pied tom Allantic Coastal Plain Trossic Basins A E 5t II 99 17 70 5S 36 2. .A AS CV COE DE.= E 9 - U # 5i i I 98 16' 'MT. ffi 7$ 2 A AS AR AR AD @ AS 46 - _�_-- �U41 t7 d 61 in 91 Its 57 m A j • GTG r � � H. la �TI1 � 1 t It 3 4 5 0 7 a e 8 0 51 In 91 14 6i 51 29 Z. .A A .30 ac C BC SC Fw nap 17 R 9 F 9 9d 1d 91 Id 67 91 39 2 1 ..S Aa A A13 a A An LT u.m N 5 5S In yl 1� y7 SI yN 2 b1 L 1 Z 3 it S 9 7 g 5 I C 9 Si 10 91 19 51 S1 2e 2 A AS OWE BE C C ABC - ai I N- M ie 111 n b a AS 6 T 9' 8 A A6 A r g St In 91 it 51 61 1$ 7 1 S 3 i d 7 11 9 A B tl $1 10 e1 111 titEl W 2 a fez I 95 1$ 7a ea 3; 3 7�dn A, Al C ® G Cli G SC • I dprA A 11 LD tl 8®G W r .7 T t � � ci 4 : y u $ e not 1 0 s 91. In 9r 16 6e 9S 3r 2 A A A A A A A A Ip � 9.1 i n .O1 a1 e Outlier dada value more than EXPLANATION times the imerquartila range outside the quartile i Clastic sedimentary rocks ICLSD) = Outlier data value less than or equal le 3 and more than 2 Clastic lacustrinelevaporite sedimentary rocks (CLSOLACI 1.5fillies the interquartila 3 Quart2-ricltsedimentary rocks (CLSH) range outside the quartile 4 Metamorphosed clastiCSedllnentaryrocks ICLSOMT) Data value less than orequalTo 1.5times the ieterquartilerange 5 Quart¢-richmetamorplticrocks IMTQ1 oulsidethe quartile 6 Felsic igneous rocks and their metamorphic equivalents IIGMTF) 75111 percentile 7 Intermediate igneous lacks and Witmelarnorphic equivalents (IGIV1T11) Mean 25th percentile a Ma}ic igneous racks and their metamorphic equivalents IIGMTMj 9 Ultram6(ic rocks IULMAFI Source: Chapman, M., C. Cravotta III, Z. Szabo, and B. Lindsey. 2013. Naturally Occurring Contaminants in the Piedmont and Blue Ridge Crystalline -Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994-2008. United States Geological Survey, Scientific Investigation Report 2013-5072. Page 1 of 2 C 6 G 1 11 R 11 !9 Yd 34 7 gd A5 A BC OE i COf CK 61 is 1,0 Is d it . 55 50 ' 0.5 . 69 E. f A $1 Id 91 16 $1 28 2 h 51 7tl I} 67 99 ?8 ? i(am9 AS B AB AB A AS AR AS 14�pp B B All A A AS AB AB I roA90 = 8 16oc — 1.01110� —c -- — - lop J.- to N 1 I a r s$ 12 it _$ 17 1 _ _1_ 11 S 515 U S.y M 13 7 fad - A k .A W A A A nu =- A AB B B n6 n n �- - � j o - 1 A 1 43 7 S5 12 Bt S5 47 2 ttl,rlm A t3 BC ec fit: eG t - 1.0m L £ 10 . P,T IN T t a ff I 28 S 55 12 8t SS 6 2 Ali _q AU Ay- b AB AB o � i B C 1 43 7 95 u 411 5B 17 2 1 48 7 55 12 6% Vi 17 2 0:1 F 1 63 2 Ss 12 61 -Z 17 10 r100 B A 0 e B a 8 - - ` _ _•_ `_ - I.DW ,�• •�T t 7 3 4 5 11 7 e 1 F 7 Ill 4 26 1 9 S 12 2 1 r 9 30 B 79 10 00 M M I 1gQ11p0 1S A9 q A& A AB A - WE � 1Gt1 _ • Page 2 of 2 o Outlier data value more than 3 times The imeryuartile range outside the quartile } Outlier data Value IeSsthan or equal to 3 and more than 1.5 times the interquarille range outside the quartile Data value less than or equal to 1.5 times the intergeartile range outside the quartile 75th percentile Mean 2541i percentile EXPLANATION i Clastic sedirnewary racks ICLSO) 2 Clastic lacustrinelevaparite sedimentary rucks (CLSOLACI 3 QuaM-rich sedinlenlary rocks {CLSQQ) 4 Metamorphosed ciaslic sedimentary rucks ICI_SdMT) 5 Quara-rich rnatamorpltic racks IMTQI 6 Felsic igneans racks and their 1nel:amorphic equivalents 11GMTF1 7 latemtediate igneous rocks and ibeir melanlorphic equivalents (IGMTJi a Mafic Igneous rocks and rlteit metamorphic equivalents I1GMTM) 9 Ultrarnafic rocks (ULMAF) Source: Chapman, M., C. Cravotta III, Z. Szabo, and B. Lindsey. 2013. Naturally Occurring Contaminants in the Piedmont and Blue Ridge Crystalline -Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994-2008. United States Geological Survey, Scientific Investigation Report 2013-5072. QbJect Area { `) y � a + ■ a Cape Fear Steam , q Electric Plant oil- 'P �* ■ E *y i f � :;0't � w , � *RL * •LMMnd i * Arm Con_�_r■it wa E" is W *eft EM MM 0 10 mb * � 1l�p1lrr� qe,�n� j Carolina terrane (Carolina slate beet) = S-WtV kapb WUM (E�A§?L-m : IME te!D o � ■x ra �n +n Dissolved groundwater arsenic occurrence in the Carolina and spring Hope Terranes at concentrations equal to or above the Environmental Protection Agency Maximum Contaminant Levels of 10 parts per billion (Data points from DHHS Groundwater Database, Pippin et al., 2003 and Pippin, 2005 — Modified by J. Tootoo) Note: Location and scale approximate Source: Gunkle, D. and P. Bradley. 2007. Arsenic Occurrence in Groundwater in Orange and Durham Counties. North Carolina Geological Survey and Department of Environment and Natural Resources Cape Fear Steam 1 ,� f•• , I Electric Plant _• '� �- may— - .' •.i3'1. ��- �: i � �� - S • Soil System High Mountain Broad Basins. River Terraces Felstc Crystalline Mixed Felstc and Mahc Carolina Slate Belt Triassic Bann ` Sandhtils Upper Coastal Plain and Piedmont Middle Coastal Plain Note: Location approximate Source: Gillispie, E., R. Austin, N. Rivera, R. Bolich, O. Duckworth, P. Bradley, A. Amoozegar, D. Hesterberg, and M. Polizzotto. 2016. Soil weathering as an engine for manganese contamination of well water. Enviro. Sci. Technol. Letters. Accepted August 28, 2016. •� �•f _. 1 • 41 1 t � f Mn (mg1L) 0 - 0.1 • 0.1 - 0.2 • 0.2 - 0.3 • 0.3 - 0.6 0 0.5 -1.0 25 20 15 10 0 ■ This study • 00 o NC Environmental Quality 0100 • • • r - i •� - • • • 0 0 Q Notes: tag/L - micrograms per liter 5 10 15 20 Total Chromium (µg/L) 25 Hexavalent chromium (Cr) concentration vs. total Cr concentration in groundwater analyzed in this (Vengosh et al. 2016) study (red circles) and reported by the North Carolina Department of Environmental Quality (NC-DEQ) (open circles). Note the high correlation o f Cr(VI) to CrT in both data sets with an r2 of 0.93 (p < 0.001; n = 77) reported in this study and an r2 of 0.90 (p < 0.001; n = 129) in NC-DEQ data. The —1:1 ratio in most of the samples indicates that Cr(VI) is the predominant species of dissolved Cr in the Piedmont groundwater. Source:.Vengosh, A., R. Coyte, J. Karr, S. Harkness, A. Kondash, L. Ruhl, R. Merola, and G. Dywer. 2016. Origin of hexavalent chromium in drinking water wells from the Piedmont aquifers of North Carolina. Enviro. Sci. Technol. Letters. Accepted September 30, 2016. A. Down et al./Applied Geochemistry 60 (2015) 3-13 0 0 N I 0 (N 0 N I I 1 1 I I 17 I I U') 1 1 LO I J I I I O 1 I I O O I I I 1 r 1 r r I 1 U I In In I Distribution of concentrations of a subset of elements measured in Down 0.00 0.10 0.20 o 0.00 I I 0.02 0.04 O 0.00 s 0.10 0.20 0.30 o 0.0 LIIi,iI 0.4 0.8 eta1.2015. Al (mg/L) As (mg/L) B (mg/L) Ba (mg/L) Water quality standards are shown as 0 0 0 o dotted lines: US EPA primary N N N N standards in red (As only), US EPA r r r LO r secondary standards in orange (Al, Cl, U Fe, and Mn), and NC primary o 0 0 o standards in blue (Ba only). a) L I I..L L L LO Ili For panels with no water quality ' ? standards shown, there are either no 0 0 50 100 150 200 0 0 50 150 2�0 o 0 1 2 3 4 5 o 0 10 20 30 40 50 existing water quality standards for Ca (mg/L) Cl (mg/L) Fe (mg/L) Mg (mg/L) that element (Ca, Mg, Na, Si, Sr) or all federal and state water quality 0 N N standards exceed the range of values N we measured (B). In o I o 0 0 ^, LO In o 0.0 0.4 0.8 O 0 _, 20 40 60 80 0 10 20 30 40 50 O 0.0 _ 0.5 1.0 1.5 2.0 Mn (mg/L) Na (mg/L) Si (mg/L) Sr (mg/L) Notes: mg/L - milligrams per liter NC -North Carolina USEPA— United States Environmental Protection Agency Source: Down, A., K. Schreglmann, D. Plata, M. Elsner, N. Warner, A. Vengosh, K. Moore, D. Coleman, R. Jackson. 2015. Pre -drilling Background Groundwater Quality in the Deep River Triassic Basin of Central North Carolina, USA. Applied Geochemistry. 60. 3-13. I �, Turbidity and total suspended svijds (TSS) relationship for all majnstetn Por'tneuf R and Muslt Cr sites" Dar, R'4r.94n. FKU-ME1 1i=21T Tas = 2&597tLffb3duyin fiL.0 J_ 5 Q1 E od 00 ; +4■ ■ it]Q C. n Im 21012 turbid-fy ( TLf) `all sites except Porh-va& River at Siphon Road 3;M -. 1: 0 99 400 80 .K 74 0 30 0 0 y 300 qq� v 40 Gn ISO C7 30 0 tub 0 0 0 N ()0 s0 0 � OC a IU p 0 _ 4 0 90 100 150 ?60 LR !90 0 20 40 50 80 NO it" Tuibidit (1-ri) Tuibid:tyPELi (a) (b) Fig ure 4 Correlation between Total Suspended Solids (TSS in mg'L)-and Tlubidity level [lam. `_ fi=-. (a- left) U n'VCT water samples and (b- r &ht) selected river water samples at lower TSS concentration range, which were collected from various river streams iu Singapoiv betwwecn 3an?010 to 3*2011. NTU — Nephelometric turbidity units mg/L — milligram per liter TSS — Total Suspended Solids Source: I: Idaho Department of Environmental Quality. 2007. Turbidity and Total Suspended Solids (TSS) Relationship for all Mainstem Portneuf River and Marsh Creek Sites. https:Hdeq.idaho.gov/media/594342- turbidity_tss_phosphorus_O515O7.pdf II: Xiang, D.L.H., Djati, H.UD., and Hao, K.L.Z. 2011. Correlation between Turbidity and Total Suspended Solids in Singapore Rivers. Journal of Water Sustainability, 1(3): 313-322. Cape Fear - MW-15BR Cape Fear - MW-16BR 1000 600 500 J J t71 100 01 c 400 0 0 300 m m c 10 c 200 U U 100 Note: Aluminum outlier only 1 0 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 Jan-20 e~Aluminum ttron --*—Aluminum -f-Iron BACKGROUND THRESHOLD VALUE STATISTICAL OUTLIER EVALUATION - CAPE FEAR STEAM ELECTRIC PLANT Notes: DUKE ENERGY PROGRESS, LLC : Constituent concentration identified as a statistical outlier RELATIONSHIPS BETWEEN IRON AND Filled circle : detected result ALUMINUM CONCENTRATIONS Unfilled circle : non -detect result; value shown is reporting limit /L liter FIGURE sultancy 8 fornaturaland ARCADIS : micro rams er pg g p huiltassets bust ssets Cape Fear - MW-15BR Note: Orange outline indicates outliers 01 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 - - - Selenium Cape Fear - MW-9 W 8 rn 7 C .t0 6 , m e 5 m U c 4 O u 3 2 1 0 Cape Fear - MW-15SL 50000 45000 3 rn 40000 s 0 35000 ro 30000 o a� 25000 O V 20000 15000 Note: Orange outline indicates outliers 10000 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 a I ron J Of E C O c m c 1 O U E N N Y O a 0.1 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 Jan-20 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 —Nickel Potassium --*--Zinc Notes: : Constituent concentration identified as a statistical outlier BACKGROUND THRESHOLD VALUE S Filled circle : detected result EVALUATION - CAPE FEAR STEAM DUKE ENERGY PROGRE Unfilled circle : non -detect result; values shown in reporting limit Non -circled outliers were auto -correlated and not included in the background data set REPEATABILITY C CONCENTRATI pg/L : micrograms per liter mg/L : milligrams per liter ARCADIS busOeqt n8 for natur COI — Constituents of Interest huiltassE 1 U J s J '6 7 3 0 6 0 5 c m 0 4 0 w 3 as 0 2 V 1 0 Jan-15 Cane Fear - MW-9 200 100000 J 000 Z W 10000 c o rn 00 m ? c 2 1000 00 m o c 100 00 w 0 <D V 01 10 .00 m A Jan-16 Jan-17 Jan-18 Jan-19 Jan-20 - Cobalt --o—Manganese 1 1- Jan-15 Notes: Q: Constituent concentration identified as a statistical outlier Filled circle : detected result Unfilled circle : non -detect result; value shown is reporting limit Non -circled outliers were auto -correlated and not included in the background data set pg/L : micrograms per liter Cape Fear - MW-15SU Jan-16 Jan-17 Jan-18 Jan-1; +Cobalt Manganese Cape Fear - MW-9 16 14 12 rn 10 c 0 8 � 6 a� U o 4 v 2 0 Jan-15 Jan-16 Jan-17 Chromium - ___r I 0 Jan-18 Jan-19 Jan-20 Jan-15 Jan-16 Jan-17 - Nickel -e Chromium Cape Fear - MW-16BR Notes: : Constituent concentration identified as a statistical outlier Filled circle : detected result Unfilled circle : non -detect result; value shown is reporting limit Non -circled outliers were auto -correlated and not included in the background data set pg/L : micrograms per liter Jan-18 Jan-19 Jan-20 +Nickel Cape Fear - MW-15SL Cape Fear - MW-9 18 200 _ 0.16 800 16 150 E 0.14 700 E J 14 — l0 60D CID i 100 ( ? 0-12 0 12 ° a. 01 500 +' 10 - 50 c 400 c _ 8 0 0.08 •2 300 a 0 6 _' s= 0 0.06 200 -50 c W" 4 R 0.04 ! 2 100� 2 -100 '9 x 0.02 0 :o 0 -150 O Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 0 -100 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 Jan-20 Methane -*--ORP Chromium (VI) --e-ORP Cape Fear - MW-16S 0.2 300 S 0.18 <° 250 0.16 200 ' 0.14 C 150 p g 0.12 a %V 0.1 100 C = ' 0.08 50 � 0 v 0.06 0.04 -50 ,o 0.02 -100 72 x 0 0 -150 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 Jan-20 Chromium (VI) --o-ORP Notes: Constituent concentration identified as a statistical outlier BACKGROUND THRESHOLD VALUE STATISTICAL OUTLIER �--� EVALUATION - CAPE FEAR STEAM ELECTRIC PLANT Filled circle : detected result DUKE ENERGY PROGRESS, LLC Unfilled circle : non -detect result; value shown is reporting limit RELATIONSHIPS BETWEEN ORP AND pg/L : micrograms per liter COI CONCENTRATIONS ORP — Oxidation Reduction Potential COI —Constituents of Interest ARCJaDIS Oesi�n&Cansultancy FIGURE 00 fornaturatand 12 mV — millivolts huittassets ATTACHMENT A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Location Allison Woods Station ID 30002000011 Samp ling Data lk 11/28/2006 Sampling Depth 65 Aluminum Dissolved (og/LasAl) <50 luminum Total (pg/LasAl) I a. ( rl'13• 1c Arsen' Disso IC s As) <5.0 Arsenic Total As) Barium olved (pg/L as Ba) 36 Barium Total BaO(ft) a sdo g 38 Bicarbonate Total �• Cadmium Dissolved as Cd) <2.0 Cadmium Total as Cd) Calcium Dissolved 19 Calcium Total Chloride Dissolved 2.0 Chloride Total Chromium Dissolved <25 Ch o1al 'a Cr)j C or ved (0'/ [a. C <2.0 Cyanide as HCN) Dissolved (mg/L) 4.7 Fluoride Dissolved <0.40 Fluoride Total L Iron <50 Allison Woods 30002000011 3/5/2007 65 <50 <5.0 95 41 <1.0 8.3 2.6 <10 <2.0 7.8 <0.40 <50 Allison Woods 30002000011 7/9/2007 65 <50 <5.0 68 32 <1.0 6.9 2.2 <10 <2.0 NA <0.40 <50 Allison Woods 30002000011 11/5/2007 65 NA NA NA 23 NA NA 2.9 NA <2.0 7.4 <0.40 <50 Allison Woods 30002000011 5/27/2008 65 NA <5.0 49 17 <1.0 4.5 2.8 <10 <2.0 7.6 <0.40 <50 Allison Woods 30002000011 3/16/2009 65 <50 <5.0 71 28 <1.0 6 1.7 <10 2.5 8.0 <0.40 780 Allison Woods 3000200001D 11/28/2006 209 <50 <5.0 52 66 <2.0 20 2.0 <25 <2.0 2.2 <0.40 <50 Allison Woods 13000200001D 3/5/2007 209 <50 <5.0 50 71 <1.0 21 1.4 <10 <2.0 0.8 <0.40 240 Allison Woods 3000200001D 7/9/2007 209 <50 <5.0 48 67 <1.0 20 1.3 <10 <2.0 0.7 <0.40 58 Allison Woods 3000200001D 11/5/2007 209 NA NA NA 65 NA NA 1.8 NA <2.0 0.4 <0.40 120 Allison Woods 3000200001D 5/27/2008 209 <50 <5.0 49 63 <1.0 21 2.1 <10 <2.0 0.7 <0.40 <50 Allison Woods 3000200001D 3/16/2009 140 <50 <2.0 48 65 <1.0 20 1.1 <10 <2.0 0.3 <0.40 <50 Allison Woods 300020000CH1 11/28/2006 67 <50 <5.0 74 60 <2.0 16 2.0 <25 14 3.9 <0.40 3300 Allison Woods 3000200002E 11/28/2006 33 <50 <5.0 37 4.0 <2.0 0.47 1.0 <25 <2.0 6.0 <0.40 <50 Allison Woods 3000200002S 3/5/2007 33 <50 <5.0 34 3.0 <1.0 0.48 1.1 <10 <2.0 6.9 <0.40 <50 Allison Woods 13000200002S 7/10/2007 33 <50 <5.0 35 4.8 <1.0 0.52 1.0 <10 <2.0 9.4 <0.40 <50 Allison Woods 3000200002S 11/5/2007 33 <50 <5.0 37 3.3 <1.0 0.50 1.6 <10 <2.0 9.1 <0.40 <50 Allison Woods 3000200002E 5/27/2008 33 <50 <5.0 35 1 <1.0 0.55 <10 <2.0 9.4 <50 Allison Woods 3000200002S 3/17/2009 33 <50 <2.0 35 3.3 <1.0 0.50 <1.0 <10 <2.0 10.5 <0.40 <50 Allison Woods 30002000021 11/28/2006 62 <50 <5.0 58 72 <2.0 20 1.0 <25 <2.0 1.7 <0.40 <50 Allison Woods 30002000021 3/5/2007 62 <50 <5.0 59 79 <1.0 23 1.2 <10 <2.0 NA <0.40 <50 Allison Woods 30002000021 7/10/2007 62 <50 <5.0 58 60 <1.0 17 1.3 <10 <2.0 1.9 <0.40 <50 Allison Woods 30002000021 11/6/2007 62 NA <5.0 NA 55 NA 1.8 NA NA NA <0.40 NA Allison Woods 30002000021 5/27/2008 62 <5.0 NA Allison Woods 30002000021 3/17/2009 62 <50 <2.0 64 58 <1.0 19 1.1 <10 <2.0 3.8 <0.40 <50 Allison Woods 3000200002D 11/28/2006 194 <50 <5.0 91 <2.0 18 1.0 <25 <2.0 0.7 <0.40 <50 Allison Woods 3000200002D 3/5/2007 194 <50 <5.0 88 68 <1.0 17 1.2 <10 <2.0 1.1 <0.40 <50 Allison Woods 3000200002D 7/9/2007 194 <50 <5.0 90 62 <1.0 16 1.2 <10 <2.0 2.2 <0.40 <50 Allison Woods 3000200002D 11/5/2007 194 <50 <5.0 88 58 <1.0 17 1.6 <10 <2.0 NA <0.40 <50 Allison Woods 3000200002D 5/27/2008 194 <50 <5.0 91 56 <1.0 17 1.8 <10 <2.0 1.8 <0.40 <50 Allison Woods 3000200002D 3/16/2009 140 <50 <2.0 89 52 <1.0 16 1.0 <10 <2.0 1.0 <0.40 <10 Allison Woods 3000200003S 11/29/2006 15 <50 <5.0 19 12 <2.0 0.8 5.0 <25 <2.0 6.0 <0.40 <50 Allison Woods 3000200003S 3/13/2007 15 <50 <5 45 16 <1.0 4.0 4.1 <10 <2.0 2.8 <0.40 <50 Allison Woods 3000200003E 7/11/2007 15 <50 <5.0 44 14 <1.0 4.1 4.0 <10 <2.0 2.4 <0.40 <50 Allison Woods 3000200003S 11/6/2007 15 <50 <5.0 49 13 <1.0 4.4 2.5 <10 <2.0 NA <0.40 <50 Allison Woods 3000200003S 5/28/2008 15 <50 <5.0 44 12 <1.0 4.2 4.5 <10 <2.0 3.4 <0.40 <50 Allison Woods 3000200003S 3/23/2009 15 <50 <2.0 41 8.5 <1.0 4.1 3.6 <10 <2.0 5.3 <0.40 <50 Allison Woods 30002000031 11/29/2006 34 <50 <5.0 <10 25 <2.0 <0.10 1.0 <25 <2.0 5.1 <0.40 <50 Allison Woods 30002000031 3/13/20071 34 <50 <5.0 83 NA <1.0 6.5 3.3 <10 <2.0 4.6 <0.40 <50 Allison Woods 30002000031 7/11/2007 34 <50 <5.0 77 24 <1.0 6.8 3.3 <10 <2.0 5.9 <0.40 <50 Allison Woods 30002000031 11/6/2007 34 <50 <5.0 78 23 <1.0 7.3 <1 <10 <2.0 5.6 <0.40 <50 Allison Woods 30002000031 5/28/2008 34 <50 <5.0 77 23 <1.0 7.5 3.6 <10 <2.0 NA <0.40 <50 Allison Woods 30002000031 3/23/2009 34 <50 <2.0 69 22 <1.0 7.3 2.8 <10 <2.0 5.1 <0.40 <50 Allison Woods 3000200003D 11/29/2006 88 <50 <5.0 94 52 <2.0 6.5 1.0 <25 <2.0 0.1 <0.40 <50 Allison Woods 3000200003D 3/13/2007 88 <50 <5.0 17 34 <1.0 19 1.1 <10 <2.0 0.5 <0.40 <50 Allison Woods 3000200003D 7/11/2007 88 <50 <5.0 39 70 <1.0 21 1.2 <10 <2.0 NA <0.40 <50 Allison Woods 3000200003D 11/6/2007 88 <50 <5.0 28 62 <1.0 21 1.4 <10 <2.0 0.1 <0.40 <50 Allison Woods 3000200003D 5/28/2008 88 <50 <5.0 27 64 <1.0 20 2.0 <10 <2.0 0.2 <0.40 <50 Allison Woods 3000200003D 3/23/2009 88 <50 <2.0 41 64 <1.0 22 1.1 <10 <2.0 0.2 <0.40 <50 Allison Woods 3000200004E 11/29/2006 22 <50 <5.0 25 6.0 <2.0 7.3 <1 1 <25 <2.0 2.6 <0.40 <50 Allison Woods 3000200004S 3/6/2007 22 <50 <5.0 17 2.0 <1.0 0.76 1.3 <10 <2.0 5.5 <0.40 <50 Allison Woods 3000200004S 7/10/2007 22 <50 <5.0 16 5.9 <1.0 0.77 1.0 <10 <2.0 8.4 <0.40 <50 Allison Woods 3000200004S 11/6/2007 22 <50 <5.0 18 5.3 <1.0 0.87 4.3 <10 <2.0 8.6 <0.40 <50 Allison Woods 3000200004E 5/28/2008 22 <50 <5.0 17 4.3 <1.0 1 0.75 1.6 <10 <2.0 8.0 <0.40 <50 Allison Woods 3000200004S 3/17/2009 22 <50 <2.0 17 5.8 <1.0 0.72 1.0 <10 <2.0 8.0 <0.40 <50 Allison Woods 30002000041 11/29/2006 39 <50 <5.0 98 31 <2.0 8.3 1.0 <25 <2.0 NA <0.40 <50 Allison Woods 30002000041 3/6/20071 39 <50 <5.0 24 14 <1.0 6.0 1.2 <10 <2.0 8.6 <0.40 <50 Allison Woods 30002000041 7/10/20071 39 <50 <5.0 23 31 <1.0 7.0 1.1 <10 <2.0 10.6 <0.40 <50 Allison Woods 30002000041 11/6/20071 39 <50 <5.0 27 33 <1.0 9.0 1.3 <10 <2.0 7.5 <0.40 <50 Allison Woods 30002000041 5/28/2008 39 <50 <5.0 25 31 <1.0 8.0 1.7 <10 <2.0 6.9 <0.40 <50 Allison Woods 30002000041 3/17/2009 39 <50 <2.0 24 30 <1.0 7.5 1 <10 <2.0 9.7 <0.40 <50 Allison Woods 3000200004D 11/29/2006 121 <50 <5.0 14 62 <2.0 15 3.0 <25 <2.0 0.1 <0.40 <50 Allison Woods 3000200004D 3/6/2007 121 <50 <5.0 37 31 <1.0 19 1.1 <10 <2.0 0.4 <0.40 <50 Allison Woods 3000200004D 7/10/2007 121 <50 <5.0 39 61 <1.0 19 1.2 <10 <2.0 0.3 <0.40 <50 Allison Woods 3000200004D 11/6/2007 121 <50 <5.0 42 61 <1.0 21 1.7 <10 <2.0 0.1 <0.40 <50 Allison Woods 3000200004D 5/28/2008 121 <50 <5.0 42 57 <1.0 19 2.0 <10 <2.0 0.1 <0.40 <50 Allison Woods 3000200004D 3/17/2009 121 <50 <2.0 46 59 <1.0 19 1.0 <10 <2.0 0.2 <0.40 <50 Allison Woods AWCH4 7/10/2007 88 <50 <5.0 47 64 <1 20 1.2 <10 <2.0 2.6 <0.4 <50 Allison Woods 3000200001Y 3/6/20007 na NA EENA NA NA 8 NA NA 4.0 NA NA 5.1 <0.40 NA Allison Woods 3000200001Y 7/11/2007 na <50 <5.0 39 21 <1.0 4.7 2.5 <10 <2.0 7.2 <0.40 77 Allison Woods 3000200001Y 11/6/2007 na NA NA NA 21 NA NA <1.0 NA NA 7.7 <0.40 NA Allison Woods 3000200001Y 5/27/2008 na <50 <5.0 35 <1.0 4.9 <10 28 5.2 140 Allison Woods 3000200001Y 5/28/2008 na NA NA NA NA NA 2.9 NA NA 7.2 1 <0.40 1 1 NA Allison Woods 3000200001Y 3/23/2009 na 1 <50 1 1 <2.0 33 17 <1.0 5.2 2.9 <10 <2 NA 1 <0.40 1 1 <50 iAARCADIS Page 1 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC FIARCJaDIS ��,a��, Location Allison Woods Station ID 30002000011 Sampling Da t. 11/28/2006 Sampling Depth (ft) 65 Iron Total (pg/L Lead Dissolved (pg/L <10 Lead Total (pg/L Magnesium Disso lve mg/L (A 2.9 jWe ::um jmg/L Manganese Dissolved (pg/L 17 Manganese Total (pg/L Mercury Dissolved (pg/L ercury To d t. I (Pg/L Nickel Dissolved (pg/L <10 Nicke!q Total (pg/L n Nitrogleia L... (nng/L <0.02 Ni trogen Ammonia + • M�M Nitrogen OrganicDIs <0.2 Nitrogen, NitrateDis Nitrogen, NItrateDIs �• Nitrate as N ,• NO2 + NO3 Dis 0.22 NO2+NO3 as N (as �• . Oxidation III Reduction raw value Fie] 6.0 Lab ILabWH, 6.7 "sph L as Phosphorus <0.02 Phosphorous Allison Woods 30002000011 3/5/2007 65 <10 3.2 190 <10 <0.02 NA 0.14 6.4 6.4 NA Allison Woods 30002000011 7/9/2007 65 <10 2.9 97 <10 <0.02 NA 0.17 6.3 6.3 NA Allison Woods 30002000011 11/5/2007 65 NA NA NA NA NA NA 0.16 6.1 6.6 NA Allison Woods 30002000011 5/27/2008 65 <10 2.4 33 <10 NA NA 0.04 5.8 6.1 NA Allison Woods 30002000011 3/16/2009 65 <10 2.6 49 <10 NA NA <0.02 5.7 6.3 NA Allison Woods 3000200001D 11/28/2006 209 <10 4.3 <10 <10 <0.02 <0.2 <0.02 7.8 8.0 NA Allison Woods 13000200001D 3/5/2007 209 <10 4.4 <10 <10 <0.02 NA <0.02 8.1 8.0 NA Allison Woods 3000200001D 7/9/2007 209 <10 4.2 <10 <10 <0.02 NA <0.02 8.1 7.9 NA Allison Woods 3000200001D 11/5/2007 209 NA NA NA NA NA NA <0.02 8.1 8.0 NA Allison Woods 3000200001D 5/27/2008 209 <10 4.6 <10 <10 NA NA <0.02 8.0 8.0 NA Allison Woods 3000200001D 3/16/2009 140 <10 4.3 <10 <10 NA NA <0.02 7.9 7.9 NA Allison Woods 300020000CH1 11/28/2006 67 <10 4.9 31 <10 <0.02 <0.2 <0.02 6.9 7.2 0.02 Allison Woods 3000200002E 11/28/2006 33 <10 0.65 22 <10 <0.02 <0.2 <0.02 5.3 5.5 <0.02 Allison Woods 3000200002S 3/5/2007 33 <10 0.63 16 <10 <0.02 NA 0.02 5.1 5.3 NA Allison Woods 13000200002S 7/10/2007 33 <10 0.66 11 <10 <0.02 NA 0.03 5.2 5.4 NA Allison Woods 3000200002S 11/5/2007 33 <10 0.68 <10 <10 NA NA 0.03 5.1 5.4 NA Allison Woods 3000200002E 5/27/2008 33 <10 0.66 <10 <10 NA NA 0.02 5.2 NA Allison Woods 3000200002S 3/17/2009 33 <10 0.61 <10 <10 NA NA 0.02 5.0 5.5 NA Allison Woods 30002000021 11/28/2006 62 <10 4.1 150 <10 <0.02 <0.2 <0.02 6.6 7.4 0.02 Allison Woods 30002000021 3/5/2007 62 <10 4.3 160 <10 <0.02 NA <0.02 7.2 7.3 NA Allison Woods 30002000021 7/10/2007 62 <10 3.1 140 <10 <0.02 NA <0.02 7.0 7.1 NA Allison Woods 30002000021 11/6/2007 62 NA NA NA NA NA 0.05 6.9 7.1 NA Allison Woods 30002000021 5/27/2008 62 NA NA 0.02 NA NA Allison Woods 30002000021 3/17/2009 62 <10 3.1 350 <10 NA NA <0.02 7.2 7.5 NA Allison Woods 3000200002D 11/28/2006 194 <10 4.6 10 <10 <0.02 <0.2 <0.02 7.6 7.5 <0.02 Allison Woods 3000200002D 3/5/2007 194 <10 4.3 10 <10 <0.02 NA <0.02 7.4 7.3 NA Allison Woods 3000200002D 7/9/2007 194 <10 4.0 10 <10 <0.02 NA <0.02 7.2 7.4 NA Allison Woods 3000200002D 11/5/2007 194 <10 4.4 <10 <10 NA NA <0.02 7.4 7.4 NA Allison Woods 3000200002D 5/27/2008 194 <10 4.3 <10 <10 NA NA 0.07 7.1 7.2 NA Allison Woods 3000200002D 3/16/20091 140 <10 4.1 <10 <10 NA NA <0.02 7.0 7.2 NA Allison Woods 3000200003S 11/29/2006 15 <10 0.97 <10 <10 <0.02 <0.2 0.23 5.3 5.3 <0.02 Allison Woods 3000200003S 3/13/2007 15 <10 2.6 16 <10 <0.02 NA 0.44 5.2 5.5 NA Allison Woods 3000200003E 7/11/2007 15 <10 2.6 16 <10 <0.02 NA 0.69 5.2 5.6 NA Allison Woods 3000200003S 11/6/2007 15 <10 2.8 11 <10 NA NA 0.83 5.7 5.6 NA Allison Woods 3000200003S 5/28/2008 15 <10 2.7 <10 <10 NA NA 0.94 5.1 5.5 NA Allison Woods 3000200003S 3/23/2009 15 <10 2.5 <10 <10 NA NA 1.2 4.9 5.2 NA Allison Woods 30002000031 11/29/2006 34 <10 <0.10 <10 <10 <0.02 <0.2 2.1 6.0 6.0 0.02 Allison Woods 30002000031 3/13/2007 34 <10 2.7 35 <10 <0.02 NA 2.1 6.2 6.2 NA Allison Woods 30002000031 7/11/20071 34 1 <10 2.8 1 21 1 <10 <0.02 NA 2.3 5.8 6.2 NA Allison Woods 30002000031 11/6/2007 34 <10 3.0 11 <10 NA NA 2.3 6.0 6.2 NA Allison Woods 30002000031 5/28/2008 34 <10 3.1 <10 <10 NA NA 2.4 5.7 6.2 NA Allison Woods 30002000031 3/23/2009 34 <10 2.9 <10 <10 NA NA 2.6 5.6 6.0 NA Allison Woods 3000200003D 11/29/2006 88 <10 2.8 53 <10 <0.02 <0.2 <0.02 9.0 9.0 0.02 Allison Woods 3000200003D 3/13/2007 88 <10 2.2 <10 <10 <0.02 NA <0.02 8.7 8.2 NA Allison Woods 3000200003D 7/11/2007 88 <10 2.6 24 <10 <0.02 NA <0.02 8.5 8.3 NA Allison Woods 3000200003D 11/6/2007 88 <10 2.5 12 <10 NA NA 0.02 8.6 8.4 NA Allison Woods 3000200003D 5/28/2008 88 <10 2.4 11 <10 NA NA <0.02 8.5 8.3 NA Allison Woods 3000200003D 3/23/2009 88 <10 2.6 26 <10 NA NA <0.02 8.2 8.2 NA Allison Woods 3000200004E 11/29/2006 22 <10 2.3 <10 <10 <0.02 <0.2 <0.02 4.8 5.8 <0.02 Allison Woods 3000200004S 3/6/20071 22 <10 0.93 <10 <10 <0.02 NA <0.02 5.3 5.8 NA Allison Woods 3000200004S 7/10/2007 22 <10 0.90 <10 <10 <0.02 NA <0.02 5.2 5.6 NA Allison Woods 3000200004S 11/6/2007 22 <10 0.98 <10 <10 NA NA 0.02 5.4 5.6 NA Allison Woods 30002000045 5/28/2008 22 <10 0.95 <10 <10 NA NA <0.02 5.0 5.5 NA Allison Woods 3000200004S 3/17/2009 22 <10 0.89 <10 <10 NA NA <0.02 4.9 5.7 NA Allison Woods 30002000041 11/29/2006 39 <10 3.2 200 <10 <0.02 <0.2 <0.02 6.1 6.7 0.03 Allison Woods 30002000041 3/6/2007 39 <10 2.0 <10 <10 <0.02 NA <0.02 6.0 6.6 NA Allison Woods 30002000041 7/10/2007 39 <10 2.2 <10 <10 <0.02 NA <0.02 6.4 6.6 NA Allison Woods 30002000041 11/6/2007 39 <10 2.6 <10 <10 NA NA 0.03 6.5 6.7 NA Allison Woods 30002000041 5/28/2008 39 <10 2.4 <10 <10 NA NA 0.09 6.3 6.5 NA Allison Woods 30002000041 3/17/2009 39 <10 2.2 <10 <10 NA NA <0.02 6.1 6.5 NA Allison Woods 30002000041) 11/29/2006 121 <10 1.8 <10 <10 <0.02 <0.2 <0.02 8.4 8.0 <0.02 Allison Woods 3000200004D 3/6/2007 121 <10 3.0 19 <10 <0.02 NA <0.02 8.3 8.0 NA Allison Woods 3000200004D 7/10/2007 121 <10 3.1 22 <10 <0.02 NA 0.02 8.3 8.2 NA Allison Woods 3000200004D 11/6/2007 121 <10 3.4 24 <10 NA NA <0.02 8.3 8.2 NA Allison Woods 3000200004D 5/28/2008 121 <10 3.2 25 <10 NA NA <0.02 8.2 8.0 NA Allison Woods 3000200004D 3/17/2009 121 <10 3.3 26 <10 NA NA <0.02 7.9 8.1 NA Allison Woods AWCH4 7/10/2007 88 <10 3.1 16 <10 <0.02 NA 0.02 8.0 8.1 NA Allison Woods 3000200001Y 3/6/20007 na NA NA NA NA <0.02 NA 1.70 6.1 7.2 NA Allison Woods 3000200001Y 7/11/2007 na <10 2.4 100 <10 <0.02 NA 0.60 6.1 6.4 NA Allison Woods 3000200001Y 11/6/2007 na NA NA NA NA NA NA 0.25 6.7 6.8 NA Allison Woods 3000200001Y 5/27/2008 na <10 2.5 37 <10 NA NA 7.4 NA Allison Woods 13000200001Y 5/28/2008 na NA NA NA NA NA NA NA 6.6 NA NA Allison Woods 13000200001Y 3/23/2009 na <10 2.6 13 <10 NA NA 0.95 7.1 6.5 NA Page 2 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC PARCADIS Location Allison Woods Station ID 30002000011 Samplin ..2 11/28/2006 Sampling 65 Potassium 3.4 Potassium Radon-22 Selen lu NA t'l IF Silica Dissolved 17 Silica Total as Ag <5.0 Silver Total Sodium gIL as Na 5.7 Sodlu m Total Solids 11 Solids, R esidue at :0 eg C <25 Specific Cond., Field 102 Specific Cond., Lab 100 Sulfate Dissolved (mg/L as <2.0 Sulfate (mg/L as Ifide D�u <0.10 J Sulfide Total Di Ived Solids Total Organic Carbon total <2.0 Total Suspende Solids, Residue To r(NT <1.0 Water Temp (deg C) 15.3 Zinc Dissolved pg/L a Zn) 12 Zinc Total (pg/L as Allison Woods 30002000011 3/5/2007 65 4.1 <5.0 16 <5.0 8.0 74 4.8 122 99 6.4 <0.1 <2.0 <1.0 15.9 20 Allison Woods 30002000011 7/9/2007 65 3.1 <5.0 16 <5.0 6.6 64 <6.2 86 85 4.7 <0.1 <2.0 <1.0 16.1 <10 Allison Woods 30002000011 11/5/2007 65 NA NA 16 NA NA 54 <6.2 55 66 3.8 NA <2.0 <1.0 14.6 <10 Allison Woods 30002000011 5/27/2008 65 2.0 <5.0 16 NA 2.5 48 <6.2 51 54 2.0 NA <1.0 15.1 <10 Allison Woods 30002000011 3/16/2009 65 3.2 <5.0 20 <5.0 2.7 58 NA 67 NA 4.0 <0.1 NA NA 14.5 10 Allison Woods 3000200001D 11/28/2006 209 4.5 NA 27 <5.0 5.2 103 J NA 152 150 8.0 <0.10 J <2.0 <1.0 16.8 97 Allison Woods 13000200001D 3/5/2007 209 4.3 8.4 25 <5.0 5.1 108 3.0 128 150 8.2 <0.1 <2.0 <1.0 16.6 120 Allison Woods 3000200001D 7/9/2007 209 4.3 5.0 26 <5.0 4.9 114 <6.2 157 150 7.8 <0.1 <2.0 <1.0 17.5 110 Allison Woods 3000200001D 11/5/2007 209 NA NA 25 NA NA 109 <6.2 158 150 6.4 NA <2.0 <1.0 16.8 130 Allison Woods 3000200001D 5/27/2008 209 4.4 <5.0 25 NA 5.2 118 <6.2 155 150 8.2 NA NA <1.0 17.5 120 Allison Woods 3000200001D 3/16/2009 140 4.4 <5.0 26 <5.0 4.9 104 NA 147 NA 7.5 <0.1 NA NA 15.9 84 Allison Woods 300020000CH1 11/28/2006 67 3.6 NA 30 <5.0 6.4 106 J 222 144 150 10 <0.10 J <2 27 15.1 14 Allison Woods 3000200002E 11/28/2006 33 1.2 NA 8.0 <5.0 0.69 <10 J 5.2 27 18 <2 <0.10 J <2.0 <1.0 14.8 <10 Allison Woods 3000200002S 3/5/2007 33 1.1 <5.0 8.0 <5.0 0.66 22 <2.5 12 16 <2 <0.10 <2.0 <1.0 14.5 <10 Allison Woods 3000200002S 7/10/2007 33 1.2 <5.0 7.4 <5.0 0.60 18 J <6.2 15 16 <2 <0.10 J <2.0 <1.0 14.8 12 Allison Woods 3000200002S 11/5/2007 33 1.2 <5.0 7.4 <5.0 0.67 14 <6.2 12 16 6.3 NA <2.0 <1.0 14.5 <10 Allison Woods 3000200002E 5/27/2008 33 1.2 <5.0 7.7 <5.0 0.72 30 <6.2 15 16 NA NA <1.0 15.2 <10 Allison Woods 3000200002S 3/17/2009 33 1.2 <5.0 7.8 <5.0 0.64 30 NA 16 NA <2 <0.10 NA NA 14.4 <10 Allison Woods 30002000021 11/28/2006 62 5.4 NA 20 <5.0 5.8 114 J 3.8 137 160 9.0 <0.10 <2.0 6.4 15.6 <10 Allison Woods 30002000021 3/5/2007 62 5.5 <5.0 20 <5.0 5.5 122 <2.5 174 160 9.4 <0.10 <2.0 <1.0 16.5 11 Allison Woods 30002000021 7/10/2007 62 5.4 <5.0 21 <5.0 4.1 101 <6.2 151 150 8.3 <0.10 <2.0 1.7 16.2 26 Allison Woods 30002000021 11/6/2007 62 NA 21 NA 99 <6.2 136 140 7.7 NA <2.0 1.2 14.6 NA Allison Woods 30002000021 5/27/2008 62 24 110 NA 140 NA NA 13 NA Allison Woods 30002000021 3/17/2009 62 5.9 <5.0 23 <5.0 4.6 102 NA 140 NA 8.2 <0.1 NA NA 14.5 <10 Allison Woods 3000200002D 11/28/2006 194 5.0 NA 29 <5.0 5.0 108 J 2.8 144 150 7.0 <0.10 <2.0 <1.0 16.7 65 Allison Woods 3000200002D 3/5/2007 194 4.7 <5.0 26 <5.0 4.6 111 6.0 117 140 8.0 <0.10 <2.0 <1.0 16.6 100 Allison Woods 3000200002D 7/9/2007 194 4.7 <5.0 27 <5.0 4.3 107 <6.2 125 130 6.5 <0.10 <2.0 <1.0 15.8 53 Allison Woods 3000200002D 11/5/2007 194 4.9 <5.0 26 <5.0 4.7 97 <6.2 136 130 6.6 NA <2.0 <1.0 16.5 91 Allison Woods 3000200002D 5/27/2008 194 4.9 <5.0 27 NA 4.6 98 <12 131 130 7.6 NA NA <1.0 16.1 78 Allison Woods 3000200002D 3/16/2009 140 4.8 <5.0 27 <5.0 4.4 57 NA 126 NA 7.9 <0.10 NA NA 15.4 130 Allison Woods 3000200003S 11/29/2006 15 0.80 NA 14 <5.0 1.2 32 <2.5 51 50 <2.0 <0.10 <2 <1 14.8 <10 Allison Woods 3000200003S 3/13/2007 15 0.98 <5.0 13 <5.0 1.9 44 <5.0 43 51 <2.0 <0.1 <2 3.2 12.7 <10 Allison Woods 3000200003E 7/11/2007 15 1.0 <5.0 13 <5.0 1.9 55 10 50 53 <2.0 NA <2 4.8 14.4 <10 Allison Woods 3000200003S 11/6/2007 15 1.2 <5.0 13 <5.0 2.1 50 29 59 55 <2.0 <0.10 J <2 8.3 15.2 <10 Allison Woods 3000200003S 5/28/2008 15 1.1 <5.0 13 NA 1.9 48 <6.2 56 56 <2.0 NA NA 5.1 13.2 <10 Allison Woods 3000200003S 3/23/2009 15 1.0 <5.0 12 <5.0 1.8 42 NA 53 NA <2.0 <0.1 NA NA 12.5 <10 Allison Woods 30002000031 11/29/2006 34 <0.10 NA 23 <5.0 <0.10 67 <2.5 83 83 7.0 <0.10 <2 <1 14.3 <10 Allison Woods 30002000031 3/13/2007 34 3.0 <5.0 22 <5.0 4.0 72 <2.5 66 78 <2.0 <0.1 <2 <1 14.6 <10 Allison Woods 30002000031 7/11/2007 34 2.5 <5.0 22 <5.0 3.9 67 <6.2 79 80 <2.0 <0.1 <2 <1 14.0 <10 Allison Woods 30002000031 11/6/2007 34 2.5 <5.0 21 <5.0 4.0 70 <6.2 51 79 <2.0 NA <2 <1 14.2 <10 Allison Woods 30002000031 5/28/2008 34 2.3 <5.0 22 NA 4.1 72 <6.2 83 81 <2.0 NA NA <1 14.2 <10 Allison Woods 30002000031 3/23/2009 34 2.0 <5.0 22 <5.0 3.7 71 NA 82 NA <2.0 <0.1 NA NA 14.4 <10 Allison Woods 3000200003D 11/29/2006 88 3.7 NA 24 <5.0 4.2 101 <2.5 145 140 8.0 <0.10 <2 <1 15.8 <10 Allison Woods 3000200003D 3/13/2007 88 4.6 <5.0 26 <5.0 10 92 <2.5 125 150 6.4 <0.1 <2 1.7 15.2 42 Allison Woods 3000200003D 7/11/2007 88 3.7 <5.0 34 <5.0 7.8 115 13 136 150 6.3 <0.1 <2 <1 17.9 13 Allison Woods 3000200003D 11/6/2007 88 4.3 <5.0 30 <5.0 9.4 110 <6.2 154 150 <2.0 NA <2 1.2 15.6 21 Allison Woods 3000200003D 5/28/2008 88 4.1 <5.0 29 NA 10 115 <6.2 153 150 7.0 NA NA 2.0 16.5 <10 Allison Woods 3000200003D 3/23/2009 88 3.5 <5.0 34 <5.0 7.7 120 NA 149 NA 6.2 <0.1 NA NA 16.4 <10 Allison Woods 3000200004E 11/29/2006 22 1.5 NA 10 <5.0 3.6 18 <2.5 19 22 <2.0 <0.1 <2.0 1.0 15.5 <10 Allison Woods 3000200004S 3/6/2007 22 0.71 <5.0 9.0 <5.0 1.1 27 <2.5 15 20 <2.0 <0.1 <2.0 <1.0 14.2 <10 Allison Woods 3000200004S 7/10/2007 22 0.72 <5.0 9.2 <5.0 1.1 21 <6.2 19 20 <2.0 <0.1 <2.0 <1.0 14.6 <10 Allison Woods 3000200004S 11/6/2007 22 0.85 <5.0 9.4 <5.0 1.3 27 8.0 18 20 <2.0 NA <2.0 <1.0 15.4 <10 Allison Woods 3000200004E 5/28/2008 22 0.71 <5.0 9.2 NA 1.2 24 14 19 19 <2.0 NA NA 4.7 13.9 <10 Allison Woods 3000200004S 3/17/2009 22 0.68 <5.0 9.6 <5.0 1.2 20 ns 19 NA <2.0 <0.1 NA NA 14.0 <10 Allison Woods 30002000041 11/29/2006 39 4.2 NA 26 <5.0 10 60 <2.5 65 67 2.0 <0.1 <2.0 <1.0 14.4 <10 Allison Woods 30002000041 3/6/2007 39 1.4 <5.0 23 <5.0 3.1 58 <2.5 58 58 <2.0 <0.1 <2.0 <1.0 14.3 <10 Allison Woods 30002000041 7/10/2007 39 1.5 <5.0 25 <5.0 3.4 62 <6.2 64 67 <2.0 <0.1 <2.0 <1.0 14.4 <10 Allison Woods 30002000041 11/6/2007 39 1.7 <5.0 24 <5.0 4.0 70 <6.2 73 75 <2.0 NA <2.0 <1.0 14.4 <10 Allison Woods 30002000041 5/28/2008 39 1.5 <5.0 25 NA 3.8 68 <12 73 73 <2.0 NA NA <1.0 14.6 <10 Allison Woods 30002000041 3/17/2009 39 1.5 <5.0 25 <5.0 3.5 62 NA 70 NA <2.0 <0.1 NA NA 14.5 <10 Allison Woods 3000200004D 11/29/2006 121 5.3 NA 28 <5.0 14 98 <2.5 134 140 9.0 <0.1 <2.0 <1.0 16.4 15 Allison Woods 3000200004D 3/6/2007 121 3.4 <5.0 26 <5.0 5.5 100 <2.5 112 130 7.0 <0.1 <2.0 <1.0 16.5 <10 Allison Woods 3000200004D 7/10/2007 121 3.4 <5.0 27 <5.0 5.4 109 <6.2 132 140 6.9 <0.1 <2.0 <1.0 15.9 <10 Allison Woods 3000200004D 11/6/2007 121 3.8 <5.0 26 <5.0 5.7 119 <6.2 140 140 <2.0 NA <2.0 <1.0 15.7 <10 Allison Woods 3000200004D 5/28/2008 121 3.5 <5.0 27 NA 5.2 110 <6.2 139 140 7.6 NA NA <1.0 15.7 <10 Allison Woods 3000200004D 3/17/2009 121 3.7 <5.0 27 <5.0 5.2 270 NA 141 NA 7.1 <0.1 NA NA 15.8 <10 Allison Woods AWCH4 7/10/2007 88 3.5 <5.0 26 <5.0 5.2 105 <6.2 143 140 7.5 <0.1 <2.0 <1.0 15.4 <10 Allison Woods 3000200001Y 3/6/20007 na NA NA 14 NA 3.6 73 <2.5 60 71 2.8 <0.1 <2.0 3.0 12.5 NA Allison Woods 3000200001Y 1 7/11/2007 na 1.2 <5 16 <5.0 2.8 55 33 59 57 <2.0 <0.1 <2.0 24 17.4 <10 Allison Woods 3000200001Y 1 11/6/2007 na NA NA 16 NA 2.9 54 <6.2 55 53 <2.0 NA <2.0 <1.0 12.2 NA Allison Woods 3000200001Y 5/27/2008 na 1.1 <5 NA 44 NA NA 17.1 20 Allison Woods 3000200001Y 5/28/2008 na NA NA NA NA 2.8 NA NA 55 NA <2.0 NA NA NA 15.5 NA Allison Woods 3000200001Y 1 3/23/20091 na 1 1.7 1 <5 1 1 12 1 1 <5 1 1 3.3 54 1 NA 86 NA <2.0 <0.1 NA NA 1 15.9 <10 Page 3 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Bent Creek Station ID BC-3S Samp lin t g .. 4/22/2003 Sampling Depth Aluminum Dissolved (pg/L as Al) A luminum Total (pg/L as Al) 1300 -.0 nia r Arsen' Disso s As) ,,Ived Arsenic Total (pg/L as <10 Barium Diss olved (pg/L as Ba) Barium Total (pg/L .-Location � 21 Bicarborul Dissolve �• Bicarbonate Total �• 3) 5 Cadmium Dissolved as Cd) Cadmium Total as Cd) <2 Calcium Dissolved as Ca) Calcium Total as C 0.8 Chloride Dissolved as Cl) Chloride Total as CI) <5 Chromium Dissolved as Cr) omiu Ch T tal 'a. Cr)j <25 Copper issolved as CU) 2.tpa 2.3 Cyanide (mg/L as HCN) Dissolved Oxygen (mg/L) 6.3 Fluoride Dissolved as F)@ Fluoride Total as F) <500 Iron Di ssolve as Fe) Bent Creek BC-3S 4/27/2004 27 <50 380 <0.02 <10 <10 <10 12 <2 <2 0.8 0.6 <5 <25 <25 <2 <2 6.7 <50 <50 Bent Creek BC-3S 11/2/2004 27 <50 <0.02 <5 <10 6 <2 0.7 <1 <25 <2 4.2 <400 Bent Creek BC-3S 6/27/2005 27 <50 200 0.03 <5 <5 11 11 1.5 <2 <2 1.0 1.3 <1 <25 <25 <2 <2 7.3 <400 <50 Bent Creek BC-3S 6/13/2006 27 <50 71 <0.02 <5 <5 11 12 5.5 <2 <2 0.8 0.8 <1 <25 <25 <2 <2 5.8 <400 <50 Bent Creek BC-3i 4/22/2003 49 470 <10 16 7 <2 1.6 <5 <25 <2 <0.02 7.8 <500 Bent Creek BC-31 4/27/2004 30 <50 <10 <10 <2 1.0 <25 <2 7.9 Bent Creek BC-3i 11/2/2004 45 <50 <0.02 <5 <10 7 <2 1.0 1 <1 <25 <2 7.3 <400 Bent Creek BC-3i 6/27/2005 39 <50 63 0.02 <5 <5 12 10 2 <2 <2 1.2 1.2 <1 <25 <25 <2 <2 7.7 <400 <50 Bent Creek BC-3i 6/13/2006 45 <50 <50 <0.02 <5 <5 11 13 5.5 <2 <2 1.0 1.1 <1 <25 <25 <2 <2 8.0 <400 <50 Bent Creek BC-3D 4/22/2003 240 180 <10 29 <2 18.0 <5 <25 <2 <0.02 0.1 <500 Bent Creek BC-3D 4/27/2004 240 <50 <10 <10 <2 18.0 <25 <2 0.7 Bent Creek BC-3D 11/1/2004 240 <50 <50 <0.02 <5 <5 <10 <10 58 <2 <2 21.0 21.0 <1 <25 <25 <2 <2 1.0 <400 390 Bent Creek BC-31) 6/27/2005 240 <50 <0.02 <5 <10 29 <2 24.0 1.4 <25 <2 0.1 <400 230 Bent Creek BC-3D 6/13/2006 148 <50 <50 <0.02 <5 <5 10 13 57 <2 <2 23.0 24.0 1.2 <25 <25 <2 <2 0.2 <400 920 Bent Creek BC-4S 4/22/2003 3900 <10 69 4 <2 0.50 <5 <25 8.1 <0.02 7.5 <500 Bent Creek BC4S 4/27/2004 <50 <10 12 <2 0.48 <25 <2 7.9 Bent Creek BC-4S 11/2/2004 17 84 <0.02 <5 14 5 <2 0.53 <1 <25 <2 9.0 <400 Bent Creek BC4S 6/27/2005 17 <50 <50 <0.02 <5 <5 14 14 <1 <2 <2 0.61 0.61 <1 <25 <25 <2 <2 8.4 <400 <50 Bent Creek BC4S 6/13/2006 17 85 <0.02 <5 16 4 <2 0.61 <1 <25 <2 7.8 <400 Bent Creek BC4S 8/21/2007 19 <50 110 <0.02 <5 <5 13 14 3.7 <1 <1 0.57 0.62 <1 <10 <10 <2 <2 12.0 <400 <50 Bent Creek BC-4i 4/22/2003 57 <10 14 4 <2 0.79 <5 <25 <2 9.0 <500 Bent Creek BC41 4/27/2004 <50 <50 <10 <10 12 12 <2 <2 0.67 0.67 <25 <25 <2 <2 8.6 <50 Bent Creek BC4i 11/2/2004 36 <50 <50 <0.02 <5 <5 12 12 6 <2 <2 0.71 0.70 <1 <25 <25 <2 <2 5.4 <400 <50 Bent Creek BC4i 6/27/2005 <50 <50 <0.02 <5 <5 13 13 <1 <2 <2 0.78 0.78 <1 <25 <25 <2 <2 9.1 <400 <50 Bent Creek BC4i 6/13/2006 36 <50 <50 <0.02 <5 <5 15 15 4.5 <2 <2 0.85 0.82 <1 <25 <25 <2 <2 9.9 <400 <50 Bent Creek BC41 8/21/2007 37 <50 <50 <0.02 <5 <5 13 13 3.7 <1 <1 0.73 0.76 <1 <10 <10 <2 <2 8.9 <400 <50 Bent Creek BC4D 4/22/2003 112 62 <10 13 48 <2 18.00 <5 <25 <2 <0.02 0.1 <500 Bent Creek BC4D 4/27/2004 112 <50 <10 11 <2 17.00 <25 <2 0.1 Bent Creek BC-4D 11/2/2004 115 <50 <0.02 <5 12 46 <2 18.00 <1 <25 <2 0.2 <400 Bent Creek 13C4D 6/27/2005 115 <50 <50 <0.02 <5 <5 12 12 41 <2 <2 17.0 18.00 <1 <25 <25 <2 <2 0.1 <400 <50 Bent Creek BC4D 6/13/2006 115 <50 <50 0.24 <5 <5 14 12 45 <2 <2 18.0 18.00 <1 <25 <25 <2 <2 0.2 <400 <50 Bent Creek BC4D 8/21/2007 105 <50 <50 <0.02 <5 <5 17 16 46 <1 <1 19.0 18.00 <1 <10 <10 <2 <2 0.2 <400 <50 Bent Creek BC-5S 4/23/2003 170 <10 26 7 <2 1.30 <5 <25 <2 <0.02 3.8 <500 Bent Creek BC-5S 4/28/2004 <50 <10 16 <2 0.92 <25 <2 3.6 Bent Creek BC-5S 11/2/2004 19 <50 <50 <0.02 <5 <5 20 21 8 <2 <2 1.00 1.10 1 <25 <25 <2 <2 1.4 <400 <50 Bent Creek BC-5S 6/28/2005 18 <50 <50 <0.02 <5 <5 20 20 <1 <2 <2 1.00 0.99 1 <25 <25 <2 <2 2.1 <400 <50 Bent Creek BC-5S 6/14/2006 19 <50 74 <0.02 <5 <5 21 21 4 <2 <2 0.98 1.20 <1 <25 <25 <2 <2 3.4 <400 <50 Bent Creek BC-51 4/23/2003 <50 <10 11 7 <2 0.87 <5 <25 <2 <0.02 4.6 <500 Bent Creek BC-5i 4/28/2004 <50 <10 <10 <2 0.66 <25 <2 5.4 Bent Creek BC-5i 11/2/2004 35 <50 <0.02 <5 <10 8 <2 0.73 <1 <25 <2 5.8 <400 Bent Creek BC-5i 6/28/2005 35 <50 <50 <0.02 <5 <5 10 10 3 <2 <2 0.78 0.80 <1 <25 <25 <2 <2 6.1 <400 <50 Bent Creek BC-51 6/14/2006 35 <50 <50 <0.02 <5 <5 12 11 6 <2 <2 0.82 0.84 <1 <25 <25 <2 <2 5.8 <400 <50 Bent Creek BC-5D 4/23/2003 85 <50 <10 24 33 <2 7.90 <5 <25 <2 <0.02 2.4 <500 Bent Creek BC-5D 4/28/2004 85 <50 <10 18 <2 3.40 <25 <2 4.4 Bent Creek BC-51) 11/3/2004 85 60 0.02 <5 16 22 <2 3.90 <1 <25 2.5 2.1 <400 Bent Creek BC-51) 6/28/2005 85 <50 <50 <0.02 <5 <5 22 16 19 <2 <2 5.80 4.60 <1 <25 <25 <2 <2 4.2 <400 86 Bent Creek BC-5D 6/14/2006 85 <50 <50 <0.02 <5 <5 21 22 22 <2 <2 3.70 4.00 <1 <25 <25 <2 <2 3.5 <400 52 Bent Creek BC-7S 4/23/2003 980 <10 31 7 <2 1.20 <5 <25 9.7 <0.02 5.7 <500 Bent Creek BC-7S 4/28/2004 22 830 <10 19 <2 1.20 <25 <2 6.4 Bent Creek BC-7S 11/3/2004 20 180 0.11 <5 19 8 <2 0.71 1 <25 <2 <400 Bent Creek BC-7S 6/28/2005 20 <50 68 0.02 <5 <5 18 17 <1 <2 <2 0.82 0.82 1.1 <25 <25 <2 <2 5.4 <400 <50 Bent Creek BC-7S 6/14/2006 20 <50 630 <0.02 <5 <5 19 28 4 <2 <2 0.70 0.83 1.1 <25 <25 <2 <2 6.7 <50 Bent Creek BC-7S 8/21/2007 20 <50 4700 0.07 <5 <5 13 46 3.7 <1 <1 0.54 0.64 <1 <10 <10 <2 10 11.9 <50 Bent Creek BC-71 4/23/2003 3500 <10 84 5 <2 0.81 <5 <25 7.1 <0.02 6.9 <500 Bent Creek BC-7i 4/28/2004 45 <50 <10 <10 <2 0.47 <25 <2 6.6 Bent Creek BC-7i 11/3/2004 40 160 <0.02 <5 <10 6 <2 0.55 <1 <25 <2 9.0 <400 Bent Creek BC-T 6/28/2005 40 <50 70 <0.02 <5 <5 <10 <10 1.5 <2 <2 0.50 0.64 1.1 <25 <25 <2 <2 7.4 <400 <50 Bent Creek BC-71 6/14/2006 40 <50 160 <0.02 <5 <5 <10 <10 3 <2 <2 0.47 0.51 1.1 <25 <25 <2 <2 7.5 <400 <50 Bent Creek BC-7i 8/21/2007 40 <50 90 <0.02 <5 <5 <10 <10 3 <1 <1 0.40 0.41 <1 <10 <10 <2 <2 11.2 <400 <50 Bent Creek 13C-7D 4/23/2003 140 110 <10 19 54 <2 20.00 <5 <25 <2 <0.02 0.2 <500 Bent Creek BC-7D 4/28/2004 140 <50 <10 10 <2 14.00 <25 <2 Bent Creek BC-7D 11/3/2004 140 50 <0.02 <5 15 53 <2 15.00 <1 <25 5.4 1.0 <400 Bent Creek BC-7D 6/28/2005 140 <50 <50 <0.02 <5 <5 16 16 56 <2 <2 19.00 19.00 <1 <25 <25 <2 <2 0.3 <400 <50 Bent Creek 13C-7D 6/14/2006 140 <50 57 <0.02 <5 <5 21 22 71 <2 <2 23.00 23.00 <1 <25 <25 <2 <2 0.2 <400 <50 Bent Creek BC-7D 8/21/2007 140 <50 <50 <0.02 <5 <5 21 21 78 <1 <1 27.00 26.00 <1 <10 <10 <2 <2 0.6 <400 <50 Bent Creek 13C-1S 4/21/2003 14 100 100 <10 <10 <10 <10 6 <2 <2 0.80 0.80 <1 <25 <25 3 3 <0.02 6.0 <500 170 Bent Creek BC-1S 4/26/2004 14 <50 <50 <10 <10 <10 <10 6.2 <2 <2 0.80 0.80 <25 <25 <2 <2 5.8 <50 Bent Creek BC-1S 11/1/2004 14 <50 51 <0.02 <5 <5 <10 <10 6 <2 <2 0.81 0.78 <1 <25 <25 <2 <2 6.4 <400 <50 Bent Creek BC-1S 6/27/2005 14 <50 <50 <0.02 <5 <5 <10 <10 <1 <2 <2 0.93 0.95 <1 <25 <25 <2 <2 4.9 <400 <50 Bent Creek BC-1S 6/12/2006 14 <50 <50 <0.02 <5 <5 <10 <10 2 <2 <2 0.83 1.90 <1 <25 <25 <2 <2 5.0 <400 <50 Bent Creek BC-1S 8/20/2007 14 <50 <50 <0.02 <5 <5 12 11 4 <1 <1 0.89 0.81 <1 <10 <10 <2 <2 1.7 <400 <50 Bent Creek BC-1i 4/21/2003 45 <50 <50 <10 <10 <10 <10 5 <2 <2 0.76 0.76 <1 <25 <25 <2 <2 <0.02 6.9 <500 <50 Bent Creek BC-1i 4/27/2004 45 <50 <50 <0.02 <10 <10 <10 <10 <2 <2 0.73 0.73 <5 <25 <25 <2 <2 6.4 <50 <50 Bent Creek BC-11 11/1/2004 42 <50 89 <0.02 <5 <5 <10 <10 7 <2 <2 1.00 1.10 <1 <25 <25 <2 <2 9.4 <400 <50 Bent Creek BC-1i 6/27/2005 45 <50 <50 <0.02 <5 <5 <10 <10 <1 <2 <2 0.80 0.80 <1 <25 <25 <2 <2 0.2 <400 <50 Bent Creek BC-1i 6/12/2006 40 <50 <50 <0.02 <5 <5 <10 <10 4 <2 <2 0.82 0.80 <1 <25 <25 <2 <2 9.7 <400 <50 Bent Creek BC-1i 8/20/2007 45 <50 <50 <0.02 <5 <5 Bent Creek BC-1D 4/21/2003 141 <50 <10 <10 24 <2 7.10 1 <25 <2 <0.02 0.1 <500 Bent Creek BC-1D 4/26/2004 141 <50 Bent Creek BC-1D 1 11 i9onnAl 141 I<50 <0.02 <5 <10 20 <2 6.50 1.1 <25 <2 0.1 <400 iAARCADIS Page 4 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC FIARCJaDIS ��,a��, Location .AL Bent Creek Station ID AM BC-3S Samplin t g 4/22/2003 Sampling Depth & Iron Total -as 2300 Lead Dissolved Lead Total <10 Magnesium Dissolve We K. 0.9 Manganese Dissolved Manganese Total 39 Mercury Dissolved ercury Tot. I Nickel Dissolved Nicke!q Total <10 Nitroge n L ... ia Nitrogen Ammonia + M�M Nitrogen Organic Dis Nitrogen, Nitrate Dis Nitrogen, �•-,::um Nitrate Dis Nitrate as N (mg1L LL:L NO2 + NO3 Dis NO2+NO3 as N A < . "!'a (,. N JN, Oxidation Reduction Potential, 1 j1.e I 5.1 I Lab (m/L g. Ortho, dis as P Total 0.07 Bent Creek BC-3S 4/27/2004 27 800 <10 <10 0.5 0.6 11 20 <10 <10 <0.02 <0.02 <0.01 5.8 0.12 Bent Creek BC-3S 11/2/2004 27 <50 <10 0.6 13 <10 <0.02 <0.02 <0.01 5.4 <0.02 <0.02 Bent Creek BC-3S 6/27/2005 27 <50 <10 <10 0.7 0.7 10 11 <200 <200 <10 <10 <0.02 <0.02 <0.01 5.1 0.1 0.02 Bent Creek BC-3S 6/13/2006 27 140 <10 <10 0.7 0.7 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 4.4 0.2 0.02 Bent Creek BC-3i 4/22/2003 49 540 <10 0.8 16 <10 0.05 5.7 0.06 Bent Creek BC-31 4/27/2004 30 <50 <10 0.6 <10 <10 6.0 Bent Creek BC-3i 11/2/2004 45 <50 <10 0.6 <10 <10 0.06 0.06 <0.01 5.8 <0.02 0.02 Bent Creek BC-3i 6/27/2005 39 <50 <10 <10 0.6 0.6 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 5.2 <0.02 0.02 Bent Creek BC-3i 6/13/2006 45 <50 <10 <10 0.6 0.7 <10 <10 <200 <200 <10 <10 0.05 0.05 <0.01 4.6 <0.02 0.02 Bent Creek BC-31) 4/22/2003 240 350 <10 1.5 34 <10 <0.02 8.5 <0.02 Bent Creek BC-31) 4/27/2004 240 85 <10 1.5 95 <10 8.3 Bent Creek BC-31) 11/1/2004 240 730 <10 <10 1.6 1.6 200 210 <10 <10 <0.02 <0.02 <0.01 8.5 <0.02 <0.02 Bent Creek BC-31) 6/27/2005 240 <10 1.7 130 <200 <10 0.04 0.04 <0.01 8.0 <0.02 0.04 Bent Creek BC-31) 6/13/2006 148 990 <10 <10 1.7 1.8 230 230 <200 <200 <10 <10 <0.02 <0.02 <0.01 7.2 <0.02 0.02 Bent Creek BC-4S 4/22/2003 5400 <10 1.20 450 <10 <0.02 4.8 0.14 Bent Creek BC4S 4/27/2004 <50 <10 0.42 <10 <10 5.1 Bent Creek BC-4S 11/2/2004 17 96 <10 0.45 14 <10 2.7 2.7 <0.01 5.5 <0.02 <0.02 Bent Creek BC4S 6/27/2005 17 <50 <10 <10 0.51 0.51 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 5.5 <0.02 <0.02 Bent Creek BC4S 6/13/2006 17 91 <10 0.51 14 <200 <10 <0.02 <0.02 <0.01 5.8 0.02 Bent Creek BC4S 8/21/2007 19 110 <10 <10 0.45 0.46 <10 11 <200 <200 <10 <10 <0.02 <0.02 <0.01 218 6.1 <0.02 <0.02 Bent Creek BC-4i 4/22/2003 <50 <10 0.46 <10 <10 <0.02 5.5 <0.02 Bent Creek BC41 4/27/2004 <50 <10 <10 0.41 0.41 <10 <10 <10 <10 5.2 Bent Creek BC4i 11/2/2004 36 <50 <10 <10 0.45 0.44 <10 <10 <10 <10 <0.02 <0.02 <0.01 5.7 <0.02 <0.02 Bent Creek BC4i 6/27/2005 <50 <10 <10 0.47 0.48 <10 <10 <200 <200 <10 <10 0.06 0.06 <0.01 5.6 <0.02 <0.02 Bent Creek BC-4i 6/13/2006 36 <50 <10 <10 0.50 0.49 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 6.0 <0.02 0.02 Bent Creek BC41 8/21/2007 37 <50 <10 <10 0.45 0.44 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 210 4.2 <0.02 <0.02 Bent Creek BC4D 4/22/2003 112 210 <10 1.30 45 <10 <0.02 8.3 <0.02 Bent Creek BC41) 4/27/2004 112 <50 <10 1.10 25 <10 7.8 Bent Creek BC-41) 11/2/2004 115 <50 <10 1.10 25 <10 <0.2 <0.02 <0.01 8.2 <0.02 <0.02 Bent Creek BC4D 6/27/2005 115 <50 <10 <10 1.10 1.10 31 31 <200 <200 <10 <10 <0.02 <0.02 <0.01 170 7.7 <0.02 0.03 Bent Creek BC4D 6/13/2006 115 <50 <10 <10 1.10 1.10 21 21 <200 <200 <10 <10 <0.02 <0.02 <0.01 7.9 <0.02 0.02 Bent Creek BC41) 8/21/2007 105 <50 <10 <10 1.10 1.10 20 20 <200 <200 <10 <10 <0.02 <0.02 <0.01 7.8 <0.02 <0.02 Bent Creek BC-5S 4/23/2003 610 <10 1.10 47 <10 0.25 6.7 <0.02 Bent Creek BC-5S 4/28/2004 <50 <10 0.72 13 <10 5.4 Bent Creek BC-5S 11/2/2004 19 <50 <10 <10 0.80 0.78 30 29 <10 <10 0.09 0.09 <0.01 5.3 <0.02 <0.02 Bent Creek BC-5S 6/28/2005 18 <50 <10 <10 0.69 0.70 13 17 <200 <200 <10 <10 0.07 0.07 <0.01 202 5.4 <0.02 <0.02 Bent Creek BC-5S 6/14/2006 19 79 <10 <10 0.72 0.70 12 12 <200 <200 <10 <10 0.23 0.23 <0.01 5.8 <0.02 0.27 Bent Creek BC-51 4/23/2003 <50 <10 0.54 <10 <10 <0.02 5.0 <0.02 Bent Creek BC-5i 4/28/2004 58 <10 0.46 <10 <10 5.1 Bent Creek BC-5i 11/2/2004 35 <50 <10 0.56 <10 <10 <0.02 <0.02 <0.01 5.5 <0.02 <0.02 Bent Creek BC-5i 6/28/2005 35 <50 <10 <10 0.59 0.60 <10 <10 <200 <200 <10 <10 <0.02 <0.02 0.2 243 5.6 <0.02 <0.02 Bent Creek BC-51 6/14/2006 35 <50 <10 <10 0.59 0.59 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 5.9 <0.02 0.02 Bent Creek BC-5D 4/23/2003 85 350 <10 1.50 190 <10 <0.02 6.6 <0.02 Bent Creek BC-51) 4/28/2004 85 58 <10 1.10 83 <10 5.7 Bent Creek BC-51) 11/3/2004 85 880 32 1.20 76 <10 <0.2 <0.02 <0.01 6.7 <0.02 0.02 Bent Creek BC-51) 6/28/2005 85 82 <10 <10 1.50 1.50 86 47 <200 <200 <10 <10 <0.2 <0.2 <0.01 6.2 <0.02 0.02 Bent Creek BC-5D 6/14/2006 85 92 <10 <10 1.30 1.40 64 68 <200 <200 <10 <10 0.03 0.03 <0.01 5.9 <0.02 0.04 Bent Creek BC-7S 4/23/2003 3600 <10 0.97 35 <10 <0.02 4.7 0.07 Bent Creek BC-7S 4/28/2004 22 2900 <10 0.69 <10 <10 5.7 Bent Creek BC-7S 11/3/2004 20 490 <10 0.65 <10 <10 <0.2 <0.02 0.02 6.1 <0.02 0.38 Bent Creek BC-7S 6/28/2005 20 75 <10 <10 0.71 0.71 <10 <10 <200 <200 <10 <10 0.07 0.07 <0.01 5.1 <0.02 0.03 Bent Creek BC-7S 6/14/2006 20 1400 <10 <10 0.74 0.83 <10 13 <200 <200 <10 <10 0.02 0.02 <0.01 4.5 0.02 0.03 Bent Creek BC-7S 8/21/2007 20 17000 <10 <10 0.62 1.40 <10 90 <200 <200 <10 <10 <0.02 <0.02 <0.01 463 5.9 <0.02 0.23 Bent Creek BC-71 4/23/2003 9800 <10 1.70 580 <10 <0.02 5.2 0.27 Bent Creek BC-7i 4/28/2004 45 <50 <10 0.66 580 <10 6.1 Bent Creek BC-T 11/3/2004 40 460 <10 0.76 30 <10 <0.2 <0.02 <0.01 6.6 <0.02 <0.02 Bent Creek BC-T 6/28/2005 40 <50 <10 <10 0.72 0.74 <10 18 <200 <200 <10 <10 0.1 <0.1 <0.01 5.6 <0.02 0.03 Bent Creek BC-71 6/14/2006 40 440 <10 <10 0.73 0.78 <10 26 <200 <200 <10 <10 <0.02 <0.02 <0.01 4.4 <0.02 0.03 Bent Creek BC-7i 8/21/2007 40 260 <10 <10 0.67 0.68 <10 15 <200 <200 <10 <10 <0.02 <0.02 <0.01 456 5.5 <0.02 <0.02 Bent Creek BC-71) 4/23/2003 140 250 <10 3.00 27 <10 <0.02 8.6 <0.02 Bent Creek BC-71) 4/28/2004 140 380 <10 2.40 95 <10 8.0 Bent Creek BC-71) 11/3/2004 140 140 <10 2.90 120 <10 <0.2 <0.02 <0.01 7.8 <0.02 0.02 Bent Creek BC-7D 6/28/2005 140 <50 <10 <10 3.10 3.00 <10 13 <200 <200 <10 <10 <0.02 <0.02 <0.01 7.6 <0.02 0.07 Bent Creek BC-71) 6/14/2006 140 56 <10 <10 3.30 3.30 150 150 <200 <200 <10 <10 <0.02 <0.02 <0.01 7.4 <0.02 <0.02 Bent Creek BC-71) 8/21/2007 140 150 <10 <10 3.50 3.40 17 32 <200 <200 <10 <10 <0.02 <0.02 <0.01 103 8.4 <0.02 <0.02 Bent Creek BC-1S 4/21/2003 14 170 <10 <10 0.53 0.53 19 19 <10 <10 <0.02 5.3 <0.02 Bent Creek BC-1S 4/26/2004 14 <50 <10 <10 0.51 0.51 <10 <10 <10 <10 5.8 Bent Creek BC-1S 11/1/2004 14 68 <10 <10 0.57 0.55 <10 <10 <10 <10 <0.02 0.02 <0.01 5.3 <0.02 <0.02 Bent Creek BC-1S 6/27/2005 14 <50 <10 <10 0.61 0.62 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 283 5.5 <0.02 <0.02 Bent Creek BC-1S 6/12/2006 14 <50 <10 <10 0.56 0.56 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 4.8 <0.02 0.02 Bent Creek BC-1S 8/20/20071 14 <50 <10 <10 0.52 0.51 17 15 <200 <200 <10 <10 <0.02 <0.02 <0.01 196 5.3 <0.02 <0.02 Bent Creek BC-1i 4/21/2003 45 <50 <10 <10 0.48 0.48 <10 <10 <10 <10 <0.02 5.4 <0.04 Bent Creek BC-1i 4/27/2004 45 <50 <10 <10 0.47 0.47 <10 <10 <10 <10 <0.02 <0.02 <0.01 5.8 <0.02 0.02 Bent Creek BC-11 11/1/2004 42 <50 <10 <10 0.51 0.54 <10 <10 <10 <10 0.35 0.35 <0.01 3.9 0.04 0.12 Bent Creek BC-1i 6/27/2005 45 <50 <10 <10 0.53 0.53 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 197 5.6 <0.02 <0.02 Bent Creek BC-1i 6/12/2006 40 <50 <10 <10 0.56 0.54 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 5.1 <0.02 <0.02 Bent Creek BC-1i 8/20/2007 45 <50 <10 <10 0.52 0.52 <10 <10 <200 <200 <10 <10 0.02 0.02 <0.01 198 5.S <0.02 <0.02 Bent Creek BC-1D 4/21/2003 141 390 <10 1.20 20 <10 <0.02 7.1 <0.02 Bent Creek BC-1D 4/26/2004 141 540 <10 1.10 18 <10 6.6 0 Bent Creek BC-1D 11/2/2004 141 580 <10 1.10 20 <10 <0.02 <0.02 <0.01 7.0 <0.02 <0.02 Page 5 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC PARCADIS Location Bent Creek Station ID BC-3S Samplin ..2 4/22/2003 Sampling Potassium Potassium 0.8 Radon-22 Selen lu t'l 15 IF Silica Dissolved Silica Total 10 as Ag Silver Total <5 Sodium gIL as Na Sodlu m Total 1.5 Solids Solids, R esidue at :f Specific Cond., Field 12 Specific Cond., Lab Sulfate Dissolved (mg/L as Sulfate (mg/L as <5 Ifide f D�u Sulfide Total Di Ived Solids 24 Total Organic Carbon total <5 Total Suspende Solids, Residue 75 To r(NT 50.0 Water Temp (deg C) 12.0 Zinc Dissolved pg/L as Zn) Zinc Total (pg/L as 13 Bent Creek BC-3S 4/27/2004 27 0.44 0.5 <5 <5 8.6 <5 <5 1.10 1.0 15 <2 18 <5 12.0 11.9 18 <10 Bent Creek BC-3S 11/2/2004 27 0.7 <5 9 <5 1.4 18 <2 24 <5 <5 1.8 14.4 <10 Bent Creek BC-3S 6/27/2005 27 0.62 0.6 <5 <5 11 <5 <5 1.50 1.4 14 <2 25 <2 2.8 <2 12.4 <10 <10 Bent Creek BC-3S 6/13/2006 27 0.63 0.7 <5 <5 10 <5 <5 1.40 1.4 <2 23 3 2.0 12.4 <10 <10 Bent Creek BC-3i 4/22/2003 49 1.0 <5 9 <5 1.2 13 <5 23 <5 13 13.0 12.6 <10 Bent Creek BC-31 4/27/2004 30 0.6 <5 <5 0.9 17 12.4 <10 Bent Creek BC-3i 11/2/2004 45 0.8 <5 8 <5 1.2 19 <2 26 <5 <2.5 <1 13.2 210 Bent Creek BC-3i 6/27/2005 39 0.77 0.8 <5 <5 9.3 <5 <5 1.40 1.4 16 <2 24 <2 <2.5 <1 12.9 <10 <10 Bent Creek BC-3i 6/13/2006 45 0.73 0.8 <5 <5 10 <5 <5 1.20 1.3 18 <2 24 <2 <2.5 <1 12.2 <10 60 Bent Creek BC-3D 4/22/2003 240 5.3 <5 17 <5 6.0 135 10 340 <5 12 19.0 14.4 3800 Bent Creek BC-3D 4/27/2004 240 3.0 <5 <5 3.9 137 0 14.9 290 Bent Creek BC-3D 11/1/2004 240 2.30 2.3 <5 <5 14 <5 <5 2.80 2.9 128 7.8 91 <5 <2.5 4.4 15.0 460 190 Bent Creek BC-3D 6/27/2005 240 3.20 <5 <5 4.30 136 13 102 <2 <5 1.8 15.1 97 Bent Creek BC-3D 6/13/2006 148 2.50 2.5 <5 <5 17 <5 <5 3.20 3.4 150 11 98 <2 <2.5 7.6 14.6 66 110 Bent Creek BC-4S 4/22/2003 1.00 <5 7 <5 0.68 8 <5 <10 <5 63 50.0 11.6 29 Bent Creek BC4S 4/27/2004 0.43 <5 <5 0.53 11 11.5 <10 Bent Creek BC-4S 11/2/2004 17 0.74 <5 6 <5 0.85 13 <2 <10 <5 5 10.0 15.6 <10 Bent Creek BC4S 6/27/2005 17 0.69 0.66 <5 <5 7.5 <5 <5 0.84 0.84 14 <2 19 <2 <2.5 <1 12.3 <10 <10 Bent Creek BC4S 6/13/2006 17 0.66 <5 7 <5 0.84 14 <2 15 <2 <2.5 1.7 12.1 <10 Bent Creek BC4S 8/21/2007 19 0.65 0.68 <5 <5 6.9 <5 <5 0.77 0.80 15 <2 <0.1 12 <2 <6.2 2.0 14.1 <10 <10 Bent Creek BC-4i 4/22/2003 0.62 <5 7 <5 0.87 6 <5 16 <5 <2.5 <1 13.2 <10 Bent Creek BC41 4/27/2004 0.57 0.57 <5 <5 <5 <5 0.70 0.70 12 12.5 <10 <10 Bent Creek BC4i 11/2/2004 36 0.76 0.76 <5 <5 6 <5 <5 0.85 0.89 14 <2 19 <5 <2.5 <1 13.3 <10 22 Bent Creek BC4i 6/27/2005 0.78 0.78 <5 <5 8.3 <5 <5 0.96 1.00 11 <2 14 <2 <2.5 <1 12.8 <10 <10 Bent Creek BC-4i 6/13/2006 36 0.83 0.80 <5 <5 8 <5 <5 0.95 0.95 15 <2 <2 <2.5 <1 12.6 <10 <10 Bent Creek BC41 8/21/2007 37 0.75 0.71 <5 <5 7.6 <5 <5 0.87 0.87 16 <2 <0.1 16 <2 <6.2 <1 12.8 <10 <10 Bent Creek BC4D 4/22/2003 112 4.40 <5 12 <5 3.90 127 12 86 <5 <2.2 3.6 13.5 440 Bent Creek BC4D 4/27/2004 112 3.30 <5 <5 3.30 101 13.3 46 Bent Creek BC-4D 11/2/2004 115 3.80 <5 <5 3.50 128 12 85 <5 <2.5 <1 14.2 120 Bent Creek BC4D 6/27/2005 115 3.70 3.70 <5 <5 15 <5 <5 3.70 3.80 104 10 82 <2 <2.5 <1 14.6 130 140 Bent Creek BC4D 6/13/2006 115 3.60 3.60 <5 <5 15 <5 <5 3.70 3.70 119 9.3 80 <2 <2.5 <1 13.3 140 150 Bent Creek BC4D 8/21/2007 105 3.90 3.80 <5 <5 13 <5 <5 3.40 3.40 125 10 <0.1 82 <2 <6.2 <1 12.8 210 230 Bent Creek BC-5S 4/23/2003 1.10 <5 10 <5 1.60 20 <5 18 <5 <2.1 3.2 10.7 <10 Bent Creek BC-5S 4/28/2004 0.57 <5 <5 1.20 24 10.1 <10 Bent Creek BC-5S 11/2/2004 19 0.94 0.98 <5 <5 11 <5 <5 1.90 2.00 24 <2 27 <5 <2.5 <1 15.4 <10 390 Bent Creek BC-5S 6/28/2005 18 0.84 0.83 <5 <5 13 <5 <5 1.90 1.70 24 <2 22 <2 <2.5 2.2 13.2 <10 <10 Bent Creek BC-5S 6/14/2006 19 0.78 0.77 <5 <5 12 <5 <5 1.90 1.80 22 <2 22 <2 <2.5 <1 12.2 <10 <10 Bent Creek BC-51 4/23/2003 0.59 <5 11 <5 1.80 16 <5 <10 <5 <2.1 <1 12.6 <10 Bent Creek BC-5i 4/28/2004 0.44 <5 <5 1.50 20 12.6 <10 Bent Creek BC-5i 11/2/2004 35 0.61 <5 11 <5 1.80 18 <2 26 <5 <2.5 <1 15.5 <10 Bent Creek BC-5i 6/28/2005 35 0.60 0.62 <5 <5 13 <5 <5 2.00 1.90 20 <2 15 <2 <2.5 <1 13.2 <10 <10 Bent Creek BC-51 6/14/2006 35 0.60 0.57 <5 <5 13 <5 <5 1.90 1.90 18 <2 26 <2 <2.5 <1 13.0 <10 <10 Bent Creek BC-5D 4/23/2003 85 3.00 <5 14 <5 2.90 15 <5 47 <5 2.3 3.8 14.1 2600 Bent Creek BC-5D 4/28/2004 85 1.50 <5 <5 2.20 46 14.6 870 Bent Creek BC-5D 11/3/2004 85 1.70 <5 15 <5 2.70 65 <2 41 <5 3 4.0 14.7 1400 Bent Creek BC-5D 6/28/2005 85 2.20 1.70 <5 <5 19 <5 <5 3.20 3.00 50 2.6 46 <2 <2.5 <1 14.5 1900 1000 Bent Creek BC-5D 6/14/2006 85 1.70 1.80 <5 <5 17 <5 <5 2.70 2.90 53 2.8 40 <2 <2.5 <1 14.4 1700 1800 Bent Creek BC-7S 4/23/2003 1.50 <5 7 <5 1.00 21 <5 16 <5 60 12.2 24 Bent Creek BC-7S 4/28/2004 22 1.20 <5 <5 0.73 20 12.8 <10 Bent Creek BC-7S 11/3/2004 20 1.40 <5 6 <5 1.10 14 <2 16 <5 30 80.0 15.3 13 Bent Creek BC-7S 6/28/2005 20 1.40 1.40 <5 <5 6.9 <5 <5 0.97 0.92 18 <2 11 <2 <2.5 3.7 14.0 <10 <10 Bent Creek BC-7S 6/14/2006 20 1.20 1.40 <5 <5 7 <5 <5 0.99 1.00 18 <2 16 <2 4.2 8.6 13.4 <10 14 Bent Creek BC-7S 8/21/2007 20 1.00 1.60 <5 <5 6.3 <5 <5 0.89 0.99 10 <2 <0.1 2.7 120 300.0 17.2 <10 21 Bent Creek BC-71 4/23/2003 1.40 <5 8 <5 0.83 12 <5 12 <5 13.7 30 Bent Creek BC-7i 4/28/2004 45 0.50 <5 <5 0.50 9 13.0 <10 Bent Creek BC-T 11/3/2004 40 0.72 <5 6 <5 0.76 11 <2 16 <5 6 15.0 14.0 <10 Bent Creek BC-T 6/28/2005 40 0.65 0.67 <5 <5 7.3 <5 <5 0.71 0.79 11 <2 10 <2 3 4.1 14.1 <10 <10 Bent Creek BC-71 6/14/2006 40 0.64 0.70 <5 <5 7 <5 <5 0.68 0.71 14 <2 17 <2 4 7.2 14.7 <10 <10 Bent Creek BC-7i 8/21/2007 40 0.58 0.63 <5 <5 6.6 <5 <5 0.61 0.64 14 <2 <0.1 14 <2 <6.2 2.7 14.6 <10 <10 Bent Creek BC-7D 4/23/2003 140 10.00 <5 12 <5 14.00 213 38 110 <5 9.2 7.8 15.3 2600 Bent Creek BC-7D 4/28/2004 140 2.30 <5 <5 4.90 104 14.8 1000 Bent Creek BC-7D 11/3/2004 140 3.00 <5 12 <5 6.40 134 7.5 78 <5 <2.5 3.0 15.5 1600 Bent Creek BC-7D 6/28/2005 140 3.60 3.60 <5 <5 10 <5 <5 8.40 8.50 139 13 100 <2 <2.5 <1 14.5 650 700 Bent Creek BC-7D 6/14/2006 140 4.30 4.40 <5 <5 9 <5 <5 9.10 9.20 180 15 100 <2 <2.5 1.3 15.3 820 900 Bent Creek BC-7D 8/21/2007 140 4.80 4.70 <5 <5 6.8 <5 <5 8.70 8.40 209 15 <0.1 116 <2 <6.2 1.7 15.5 610 730 Bent Creek BC-1S 4/21/2003 14 0.26 0.26 4090 <5 <5 9 <5 <5 0.99 0.99 10 <5 17 <5 3.9 2.3 11.8 27 Bent Creek BC-1S 4/26/2004 14 0.22 0.22 <5 <5 <5 <5 0.99 0.99 15 <5 11.2 <10 Bent Creek BC-1S 11/1/2004 14 0.33 0.33 <5 <5 8 <5 <5 1.20 1.10 12 <2 22 <5 <2.5 1.8 13.6 <10 Bent Creek BC-1S 6/27/2005 14 0.37 0.35 <5 <5 10 <5 <5 1.40 1.50 17 <2 24 <2 <2.5 1.7 13.7 10 Bent Creek BC-1S 6/12/2006 14 0.34 0.37 <5 <5 10 <5 <5 1.20 1.30 16 <2 14 <2 <2.5 <1 13.6 10 Bent Creek BC-1S 8/20/2007 14 0.45 0.45 <5 <5 10 <5 <5 1.40 1.40 17 <2 <0.1 22 <2 <6.2 <1 17.0 <10 Bent Creek BC-1i 4/21/2003 45 0.24 0.24 5310 <5 <5 9 <5 <5 1.10 1.10 11 <5 <10 <5 <2.2 <1 12.6 <10 Bent Creek BC-1i 4/27/2004 45 0.21 0.21 <5 <5 7.7 <5 <5 0.81 0.81 12 <2 10 <5 <1 12.3 <10 Bent Creek BC-11 11/1/2004 42 0.31 0.32 <5 <5 7 <5 <5 1.10 1.30 14 <2 25 <5 <2.5 <1 12.2 37 Bent Creek BC-1i 6/27/2005 45 0.30 0.31 <5 <5 9.4 <5 <5 1.10 1.10 14 <2 20 <2 <2.5 <1 12.7 <10 reek BC-1i 6/12/2006 40 0.30 0.30 <5 <5 9 <5 <5 1.10 1.10 16 <2 14 <2 <2.5 <1 12.8 <10 reek BC-1i 8/20/2007 45 0.28 0.32 <5 <5 8.7 <5 <5 1.20 1.10 16 <2 <0.1 21 <2 <6.2 <1 14.1 <10 reek r BC-1D 4/21/2003 141 0.72 2730 <5 22 <5 4.70 69 6 64 <5 <2.11.2 13.7 reek BC-1D 426/2004 141 0.62 <5 <5 3.60 55 <2.5 14.6 reek BC-1D 11/2/2004 141 0.75 <5 20 1 <5 1 4.40 1 69 8.1 1 1 1 64 1 <5 1 <2.5 1 1.0 14.5 Page 6 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Location Bent Creek Station ID BC-1D Samplin g .. 6/21/2005 Sampling Depth 100 Aluminum Dissolved <50 Aluminum Total I <50 mo n a a. ( rl'13 <0.02 Arsen' 1c I Disso ved <5 Arsenic Total As) <5 Barium Dias olved <10 Barium Total BaO <10 B a one c I D �• 15 Bicarbonate Total �• Cadmium <2 Cadmium <2 Calcium 7.50 Calcium 7.40 Chloride M Chloride 1.8 Chromium <25 Ch romn' ( . Cr)jj <25 r Coppe M; I ssolved pp t <2 Cyanide as HCN) Dissolved an (mg/L) 0.3 Fluoride Fluoride <400 Iron 680 <2 Bent Creek BC-1D 6/12/2006 141 <50 <50 <0.02 <5 <5 <10 <10 22 <2 <2 8.00 7.90 2.4 <25 <25 <2 <2 0.9 <400 840 Bent Creek BC-1D 8/20/2007 141 <50 <50 <0.02 <5 <5 <10 <10 20 <1 <1 7.40 7.40 2 <10 <10 <2 <2 0.1 <400 910 Bent Creek BC-2i 4/21/2003 <50 <10 <10 8 <2 2.00 1 <25 <2 <0.02 5.0 <500 Bent Creek BC-2i 4/26/2004 19 <50 <10 <10 6.2 <2 1.30 <25 <2 6.2 Bent Creek BC-2i 11/1/2004 29 <50 <0.02 <5 <10 5 <2 1.10 <1 <25 <2 7.6 <400 Bent Creek BC-21 6/29/2005 29 55 <50 <0.02 <5 <5 <10 <10 8.6 <2 <2 0.46 4.70 1.6 <25 <25 <2 <2 7.4 <400 <50 Bent Creek BC-2i 6/12/2006 30 1 <50 <0.02 <5 <10 6 <2 1.90 1 <25 <2 5.8 <400 Bent Creek BC-2i 8/20/2007 29 <50 <50 <0.02 <5 <5 <10 <10 1.7 <1 <1 0.89 0.92 <1 <10 <10 <2 <2 5.8 <400 <50 Bent Creek BC-2D 4/21/2003 245 250 <10 <10 32 <2 36.0 14 <25 2.5 <0.02 0.1 1.2 Bent Creek BC-2D 2/11/2004 245 94 <10 <10 31.2 <2 38.0 16 <25 <2 0.0 1 Bent Creek BC-2D 4/26/2004 150 <50 <50 <10 <10 <10 <10 39 <2 <2 30.0 30.0 <25 <25 <2 <2 <50 Bent Creek BC-2D 11/3/2004 135 <50 <50 <0.02 <5 <5 <10 <10 48 <2 <2 22.0 21.0 8.8 <25 <25 <2 <2 0.3 1.3 <50 Bent Creek BC-2D 6/29/2005 150 61 <50 <0.02 <5 <5 <10 <10 51 <2 <2 18.0 18.0 5.7 <25 <25 <2 <2 0.1 <400 <50 Bent Creek BC-2D 6/12/2006 100 <50 <50 0.04 <5 <5 <10 <10 <2 <2 18.0 18.0 6 <25 <25 <2 <2 0.1 0.9 <50 Bent Creek BC-2D 8/20/2007 150 <50 <50 <0.02 <5 <5 <10 I <10 63 <1 <1 1 17.0 17.0 4 <10 <10 <2 1 <2 0.1 1 <50 Coweeta CW-1S 7/21/2008 17 <50 <50 <0.1 <5 <5 17 17 <1 <1 2.9 2.9 1.1 <10 <10 <2 <2 <0.02 1.8 <0.4 <50 Coweeta CW-1S 2/9/2009 17 <50 <50 <0.02 <2 <2 18 18 13 <1 <1 3.1 3.1 <1 <10 <10 <2 <2 1.3 <0.4 <50 Coweeta CW-11 7/21/2008 44 <50 <50 <0.02 <5 <5 <10 <10 13 <1 <1 2.6 2.7 1 <10 <10 <2 <2 <0.02 5.9 <0.4 <50 Coweeta CW-11 2/9/2009 44 <50 <50 <0.02 <2 <2 <10 <10 14 <1 <1 2.6 2.4 <1 <10 <10 <2 <2 6.1 <0.4 <50 Coweeta CW-1D 7/21/2008 160 <50 <50 <0.02 <5 <5 <10 <10 23 <1 <1 11.0 11.0 1.2 <10 <10 <2 <2 <0.02 4.9 <0.4 <50 Coweeta CW-1D 2/9/2009 150 <50 <50 <0.02 <2 <2 <10 <10 23 <1 <1 10.0 10.0 <1 <10 <10 <2 <2 4.6 <0.4 <50 Coweeta CW-21 7/22/2008 18 <50 <50 <0.02 <5 <5 15 15 9 <1 1.4 1.4 1 <10 <2 <0.02 7.5 <0.4 <50 Coweeta CW-21 2/10/2009 18 <50 140 <0.02 <2 <2 15 17 10 <1 <1 1.5 2.3 1 <10 <10 1 <2 <2 7.4 <0.4 <50 Coweeta CW-2D 7/22/2008 90 <50 110 <0.02 <5 <5 <10 <10 9 <1 <1 2.5 2.5 <1 <10 <10 <2 <2 <0.02 5.3 <0.4 <50 Coweeta CW-2D 2/10/2009 90 <50 880 <0.02 <2 <2 <10 <10 8.6 <1 <1 2.3 2.3 <1 <10 <10 <2 <2 7.3 <0.4 <50 Coweeta CW-3P1 7/23/2008 38 <50 <50 <0.02 <5 <5 <10 <10 8 <1 <1 2.1 2.2 <1 <10 <10 <2 <2 <0.02 9.7 <0.4 <50 Coweeta CW-31`1 2/11/2009 38 <50 <50 <0.02 <2 <2 <10 <10 9.9 <1 <1 2.1 2.2 <1 <10 <10 <2 <2 7.4 <0.4 <50 Coweeta CW-3D 7/23/2008 75 <50 <50 <0.02 <5 <5 <10 <10 16 <1 <1 3.8 3.8 <1 <10 <10 <2 <2 <0.02 5.9 <0.4 <50 Coweeta CW-3D 2/11/2009 75 <50 <50 <0.02 <2 <2 <10 <10 17 <1 <1 3.7 3.7 <10 <10 <2 <2 7.5 <50 Coweeta CW-41 7/22/2008 60 <50 670 <0.02 <5 <5 <10 <10 12 <1 <1 3.3 3.2 1.4 <10 <10 <2 2.4 <0.02 7.7 <0.4 <50 Coweeta CW-41 2/8/2009 60 <50 350 <0.02 <2 <2 <10 <10 11 <1 <1 2.9 3.1 1.2 <10 <10 <2 <2 8.0 <0.4 <50 Coweeta CW4D 7/22/2008 250 <50 260 <0.02 <5 <5 <10 <10 29 <1 <1 9.4 9.6 1 1.2 <10 11 <2 2.6 <0.02 1.1 <50 Lan tree MW-1 11/12/2003 2000* <10* 24* 11 <2.0* 2.3* 2.0 <25* 8.0* 6.4 <0.5 1500* Lan tree MW-1 6/15/2004 660 <10 16 7.2 <2.0 1.3 1.5 <25 <2.0 6.6 <0.1 270 Lan tree MW-11 8/28/2002 5600" <10* 43* 33 <2.0* 6.3* 1.0 <25* 28* 5.1 <0.5 4900* Lan tree MW-11 3/4/2003 1800* <10* 60* 31 <2.0* 7.1* <5 <25* 28* 5.0 <0.5 1600* Lan tree MW-11 11/12/2003 1600* <10* 12* 31 <2.0* 5.0* 1.7 <25* 4.3* 4.5 0.07 850* Lan tree MW-11 6/15/2004 <50 <10 <10 31 <2.0 5.1 1.3 <25 <2.0 5.0 <0.1 <50 Lan tree MW-11 4/14/2009 50 <50 <2.0 <10 39 <1.0 7.8 1.2 <10 <2.0 NA 1.2 <50 Lan tree MAD 8/27/2002 84* <10* <10* 69 <2.0* 46* 2.0 <25* 3.2* 1 1.0 <0.5 120* Lan tree MAD 3/3/2003 <50* <10* <10* 58 <2.0* 22* <5 <25* <2.0* 2.1 <0.5 <50* Lan tree MW-1D 11/12/2003 <50* <10* <10* 68 <2.0* 36* 2.1 <25* <2.0* 0.9 0.07 <50* Lan tree MW-1D 6/15/2004 <50 <10 <10 70 <2.0 38 1.8 <25 <2.0 0.8 <0.1 <50 Lan tree MAD 11/28/2007 118 <50 <2.0 <10 62 <1.0 34 2.4 <10 <2.0 0.7 2.4 <50 Lan tree MAD 4/14/2009 118 <50 <2.0 <10 67 <1.0 35 1.6 <10 <2.0 0.8 1.6 <50 Lan tree MW-2 8/28/2002 270" <10" <10* 1 28 <2.0* 6.1" 3.0 <25* <2.0* 6.1 <0.5 180* Lan tree MW-2 3/4/2003 87* <10* <10* 27 <2.0* 6.0* <5.0 <25* 2.0* 6.9 <0.5 51* Lan tree MW-2 8/14/2009 25 <50 <2.0 <10 28 <1.0 6.3 2.8 1 <10 <2.0 6.2 <0.4 <50 Lan tree MW-21 8/28/2002 820* <10* 28* 56 <2.0* 8.5* 2.0 1 <25* 3.9* 1 4.2 <0.5 590* Lan tree MW-21 3/4/2003 90" <10* 18" 53 <2.0* 9.3" <5.0 <25* <2.0* 7.3 <0.5 75* Lan tree MW-21 11/17/2003 80* <10* 18* 53 <2.0* 9.7* <5.0 <25* <2.0* NA <0.5 67* Lan tree MW-21 6/15/2004 <50 <10 17 61 <2.0 9.5 1.8 <25 <2.0 4.8 0.2 <50 Lan tree MW-21 8/14/2009 45 <50 <2.0 19 49 <1.0 10.0 2.2 <10 <2.0 5.0 <0.4 <50 Lan tree MW-2D 8/28/2002 920* <10" <10* 43 <2.0* 11* 1.0 <25* 5.5* 6.1 <0.5 840* Lan tree MW-2D 3/4/2003 <50* <10* <10* 39 <2.0* 10* <5.0 <25* 2.4* 4.8 <0.5 1 <50* Lan tree MW-2D 11/17/2003 <50* <10* <10* 42 <2.0* 1 10* <5.0 <25* <2.0* 10 <0.5 <50* Lan tree MW-2D 6/15/2004 <50 <10 <10 45 <2.0 1 12 1.3 <25 <2.0 4.7 <0.1 <50 Lan tree MW-2D 8/14/2009 140 <50 <2.0 <10 47 <1.0 13 1.3 <10 1 <2.0 4.19 <0.4 <50 Lan tree MW-3 8/27/2002 1200* <10* <10* 7.0 <2.0* 0.77* 2.0 <25* 3.9* NA <0.5 1200* Lan tree MW-3 3/5/2003 560* <10* 18* 25 <2.0* 2.7* 1 <5.0 <25* 3.3* 6.3 <0.5 350* Lan tree MW-3 11/13/2003 1400* <10* 17* 26 <2.0* 2.1" 1 3.4 <25* 4.4* 5.8 0.05 3500* Lan tree MW-3 6/17/2004 60 <10 <10 26 <2.0 1.2 3.4 <25 <2.0 NA 0.05 <50 Lan tree MW-3 4/20/2009 18 74 <2.0 <10 7.8 <1.0 1.4 1.9 <10 <2.0 NA <0.4 <50 Lan tree MW-31 8/26/2002 1100* <10* 31* 33 <2.0* 6.6* 2.0 <25* 6.4* NA <0.5 1200* Lan tree MW-31 3/4/2003 130* <10* 26* 32 <2.0* 7.0* <5.0 <25* 2.3* 10.8 <0.5 160* Lan tree MW-31 11/13/2003 430" <10* 25" 37 <2.0* 1 7.0* 2.2 <25* 3.0* NA 0.06 500* Lan tree MW-31 6/17/2004 <50 <10 23 36 <2.0 6.5 2.1 <25 <2.0 NA <0.1 161 Lan tree MW-31 4/20/2009 60 <50 <2.0 31 42 <1.0 8.1 2.1 <10 <2.0 16.8 <0.4 <50 Lan tree MW4 6/16/2004 <50 <10 <10 24 <2.0 4.1 1.8 <25 <2 6.3 <0.1 <50 Lan tree MW41 8/27/2002 3900" <10* 21" 39 <2.0* 7.9* 1.0 <25* 22* 8.7 <0.5 2200 Lan tree MW-41 3/3/2003 69* <10* <10* 28 <2.0* 5.7* 7 <25* 2.8* 8.0 <0.5 <50 iAARCADIS Page 7 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC FIARCJaDIS ��,a��, Location .AL Bent Creek Station ID AM BC-11D Sampling t 6/27/2005 Sampling Depth & 100 Iron Total -as 690 Lead Dissolved <10 Lead Total <10 Magnesium Dissolve 1.30 We -,::um K. 1.30 Manganese Dissolved 21 Manganese Total 21 Mercury Dissolved --md&.- <200 ercury Tot. I <200 Nickel Dissolved <10 Nicke!q Total <10 Nitroge n L... ia Nitrogen Ammonia + • M�M Nitrogen Organic Dis Nitrogen, Nitrate Dis Nitrogen, Nitrate Dis �• Nitrate as N ,• <0.02 NO2 + NO3 Dis NO2+NO3 as N A <0.02 N, !'a a N �• . <0.01 Oxidation Reduction 125 6.9 -Lab WH, Phosph (m g. <0.02 Phosphorus Phosphorous <0.02 Bent Creek BC-1D 6/12/2006 141 820 <10 <10 1.40 1.30 23 23 <200 <200 <10 <10 <0.02 <0.02 <0.01 6.5 <0.02 0.02 Bent Creek BC-1D 8/20/2007 141 910 <10 <10 1.20 1.20 23 23 <200 <200 <10 <10 <0.02 <0.02 <0.01 24 6.1 <0.02 0.07 Bent Creek BC-2i 4/21/2003 69 <10 1.10 11 <10 0.1 5.3 <0.04 Bent Creek BC-2i 4/26/2004 19 <50 <10 0.80 <10 <10 5.7 Bent Creek BC-2i 11/1/2004 29 <50 <10 0.78 <10 <10 <0.02 0.03 <0.02 5.3 <0.02 0.02 Bent Creek BC-21 6/29/2005 29 <50 <10 <10 2.20 2.30 <10 <10 <200 <200 <10 <10 0.14 0.14 0.01 5.3 <0.02 0.02 Bent Creek BC-2i 6/12/2006 30 <50 1 <10 1 1.10 <10 1 <200 1 <10 1 1 0.04 1 0.04 <0.01 1 5.8 1 <0.02 1 0.02 Bent Creek BC-2i 8/20/2007 29 <50 <10 <10 0.70 0.71 <10 <10 <200 <200 <10 <10 0.04 0.04 <0.01 510 5.8 <0.02 0.02 Bent Creek BC-2D 4/21/2003 245 420 <10 0.85 <10 <10 <0.02 8.7 <0.02 Bent Creek BC-2D 2/11/2004 245 180 <10 0.80 <10 <10 <0.02 8.5 <0.02 Bent Creek BC-2D 4/26/2004 150 <50 <10 <10 0.63 0.63 <10 <10 <10 <10 8.6 Bent Creek BC-21) 11/3/2004 135 62 <10 <10 0.46 0.45 <10 160 <10 <10 <0.2 <0.02 <0.01 8.8 <0.02 0.04 Bent Creek BC-2D 6/29/2005 150 <50 <10 <10 0.37 0.38 <10 <10 <200 <200 <10 <10 0.07 0.07 <0.01 8.1 <0.02 0.02 Bent Creek BC-2D 6/12/2006 100 <50 <10 <10 0.36 0.36 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 8.3 <0.02 0.03 Bent Creek BC-2D 8/20/2007 150 <50 <10 <10 0.35 0.35 <10 <10 <200 <200 <10 <10 <0.02 <0.02 <0.01 88 8.9 <0.02 <0.02 Coweeta CW-1S 7/21/2008 17 <50 <10 <10 0.84 0.8 39 40 <0.2 <0.2 <10 <10 0.02 0.02 <0.01 477 5.3 <0.02 <0.02 Coweeta CW-1S 2/9/2009 17 <50 <10 <10 0.9 0.91 130 130 <0.2 <0.2 <10 <10 0.08 0.08 <0.01 160 5.2 <0.02 0.04 Coweeta CW-11 7/21/2008 44 55 <10 <10 0.66 0.7 29 32 <0.2 <0.2 <10 <10 0.02 0.02 <0.01 134 6.4 0.02 0.02 Coweeta CW-11 2/9/2009 44 <50 <10 <10 0.65 0.6 <10 <10 <0.2 <0.2 <10 <10 0.02 0.02 <0.01 -160 6.2 0.02 0.05 Coweeta CW-1D 7/21/2008 160 <50 <10 <10 1.3 1.2 <10 <10 <0.2 <0.2 <10 <10 0.02 0.02 <0.01 297 7.3 <0.02 0.02 Coweeta CW-1D 2/9/2009 150 <50 <10 <10 1.2 1.2 <10 <10 <0.2 <0.2 <10 <10 0.02 0.02 <0.01 -91 7.2 <0.02 0.02 Coweeta CW-21 7/22/2008 18 <10 <10 0.92 0.9 28 <0.2 <10 <10 <0.02 <0.02 <0.01 462 5.7 <0.02 Coweeta CW-21 2/10/2009 18 110 <10 <10 0.88 0.9 <10 13 <0.2 <0.2 <10 <10 <0.02 <0.02 <0.01 5.8 <0.02 <0.02 Coweeta CW-2D 7/22/2008 90 140 <10 <10 0.49 0.5 <10 <10 <0.2 <0.2 <10 <10 <0.02 <0.02 <0.01 374 6.1 0.02 0.02 Coweeta CW-2D 2/10/2009 90 820 <10 <10 0.5 0.71 <10 <10 <0.2 <0.2 <10 <10 <0.02 <0.02 <0.01 5.2 0.12 0.04 Coweeta CW-3PI 7/23/2008 38 <50 <10 <10 0.63 0.7 <10 <10 <0.2 <0.2 <10 <10 <0.02 <0.02 <0.01 431 6.1 <0.02 <0.02 Coweeta CW-31`I 2/11/2009 38 <50 <10 <10 0.64 0.6 <10 <10 <0.2 <0.2 <10 <10 <0.02 <0.02 <0.01 218 5.8 <0.02 <0.02 Coweeta CW-3D 7/23/2008 75 <50 <10 <10 0.98 1.0 <10 <10 <0.2 <0.2 <10 <10 <0.02 <0.02 <0.01 346 6.9 <0.02 0.02 Coweeta CW-3D 2/11/2009 75 <50 <10 <10 0.9 0.92 <10 <10 <0.2 <0.2 <10 <10 0.79 0.79 <0.01 193 6.4 <0.02 0.02 Coweeta CW-41 7/22/2008 60 690 <10 <10 1.4 1.5 <10 12 <0.2 <0.2 <10 <10 0.31 0.32 0.01 400 5.5 <0.02 0.02 Coweeta CW-41 2/8/2009 60 370 <10 <10 1.2 1.2 <10 <10 <0.2 <0.2 <10 <10 0.32 0.32 <0.01 226 5.3 <0.02 <0.02 Coweeta CW4D 7/22/2008 250 990 <10 <10 0.88 1.0 <10 11 <0.2 <0.2 <10 <10 0.02 <0.02 <0.01 231 8.1 <0.02 <0.02 Lan tree MW-1 11/12/2003 <10* 1.9* 37* NA <10* <0.20 NA 0.74 5.1 5.7 Lan tree MW-1 6/15/2004 <10 1.9 12 <0.2 <10 <0.20 0.39 0.41 6.2 5.2 Lan tree MW-11 8/28/2002 <10* 4.4* 61* NA 10* <0.20 NA 0.74 6.3 NA Lan tree MW-11 3/4/2003 <10* 4.9* 78* NA 10* <0.20 NA 1.00 6.8 NA Lan tree MW-11 11/12/2003 <10* 3.3* <10* NA <10* <0.20 NA 0.89 6.7 6.5 Lan tree MW-11 6/15/2004 <10 3.8 <10 <0.2 <10 <0.20 0.83 0.83 5.2 6.2 Lan tree MW-11 4/14/2009 50 <10 5.1 <10 NA <10 NA NA 1.00 6.4 6.4 Lan tree MWAD 8/27/2002 <10* 2.4* <10* NA <10* <0.20 NA 0.05 7.6 NA Lan tree MWAD 3/3/2003 <10* 2.7* <10* NA <10* <0.20 NA 0.26 7.5 NA Lan tree MW-1D 11/12/2003 <10* 1.9* <10* NA <10* <0.20 NA 0.08 7.8 7.9 Lan tree MWAD 6/15/2004 <10 1.9 <10 <0.2 <10 <0.20 0.7 0.07 8.1 7.7 Lan tree MWAD 11/28/2007 118 <10 2.0 <10 NA <10 NA NA 0.09 8.0 8.0 Lan tree MWAD 4/14/2009 118 <10 1.9 <10 NA <10 NA NA 0.06 7.8 8.0 Lan tree MW-2 8/28/2002 <10* 3.2* <10* NA <10* <0.20 0.78 6.2 NA Lan tree MW-2 3/4/2003 <10* 3.0* <10* NA <10* <0.20 1.40 6.3 NA Lan tree MW-2 8/14/2009 25 <10 3.2 <10 NA <10 0.62 6.0 6.4 Lan tree MW-21 8/28/2002 <10* 4.5* 15* NA <10* <0.20 0.79 7.0 NA Lan tree MW-21 3/4/2003 <10* 4.4* <10* NA <10* <0.20 0.92 6.6 7.1 Lan tree MW-21 11/17/2003 <10* 4.6* <10* NA <10* <0.20 0.81 NA 7.1 Lan tree MW-21 6/15/2004 <10 4.8 <10 <0.2 <10 <0.20 0.87 7.2 7.0 Lan tree MW-21 8/14/2009 45 <10 5.0 <10 NA <10 1.10 6.8 7.0 Lan tree MW-2D 8/28/2002 <10* 3.1* 20* NA <10* <0.20 0.97 5.2 NA Lan tree MW-2D 3/4/2003 <10* 2.7* 2.7* NA <10* <0.20 1.30 6.9 NA Lan tree MW-2D 11/17/2003 <10* 2.6* <10* NA <10* <0.20 0.77 6.8 7.3 Lan tree MW-2D 6/15/2004 <10 2.9 <10 <0.2 <10 <0.20 1.30 7.2 7.1 Lan tree MW-2D 8/14/2009 140 <10 3.3 <10 NA <10 1.50 6.85 7.2 Lan tree MW-3 8/27/2002 <10* 0.81* 36* <10* <0.2 NA 0.04 NA NA Lan tree MW-3 3/5/2003 <10* 1.0* 26* <10* <0.2 NA 0.05 6.0 NA Lan tree MW-3 11/13/2003 <10* 1.1* 170* <10* <0.2 NA <0.2 5.9 6.2 Lan tree MW-3 6/17/2004 <10 0.56 <10 <10 <0.2 NA <0.2 6.3 6.2 Lan tree MW-3 4/20/2009 18 <10 0.86 <10 <10 NA 0.12 5.3 5.6 Lan tree MW-31 8/26/2002 <10* 3.8* 20* <10* <0.2 NA 0.06 NA NA Lan tree MW-31 3/4/2003 <10* 3.9* <10* <10* <0.2 NA 0.12 6.2 NA Lan tree MW-31 11/13/2003 <10* 3.6* 13* <10* <0.2 NA 0.27 6.1 6.4 Lan tree MW-31 6/17/2004 <10 3.7 <10 <10 <0.2 0.2 0.20 6.3 6.1 Lan tree MW-31 4/20/2009 60 <10 4.6 <10 <10 NA NA 0.17 6.0 6.3 Lan tree MW-4 6/16/2004 <10 2.9 <10 <10 <0.20 0.85 0.89 3.9 6.2 Lan tree MW41 1 8/27/2002 <10* 3.8* 48* <10* <0.2 NA 1.00 6.8 NA Lan tree MW-41 3/3/2003 <10* 2.4* <10* <10* <0.2 1 1 NA 1 1.50 6.8 NA Page 8 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC PARCADIS Location Bent Creek Station ID BC-11D Samplin ..2 6/21/2005 Sampling 100 Potassium 0.79 Potassium 0.80 Radon-22 Selen lu <5 t'l <5 IF Silica Dissolved Silica Total 251<5 as Ag Silver Total <5 Sodium gIL as Na 5.30 Sodlu m Total 5.10 Solids Solids, R esidue at :f Specific Cond., Field 73 Specific Cond., Lab Sulfate Dissolved (mg/L as Sulfate (mg/L as 8.3 Ifide D�u Sulfide Total Di Ived Solids 67 Total Organic Carbon total <2 Total Suspende Solids, Residue <2.5 To r(NT <1 Water Temp (deg C) 13.6 Zinc Dissolved pg/L as Zn) 130 Zinc Total (pg/L as Bent Creek BC-1D 6/12/2006 141 0.85 0.86 <5 <5 25 <5 5.60 5.60 77 8.9 64 <2 <2.5 1.0 14.1 100 Bent Creek BC-1D 8/20/2007 141 0.80 0.85 <5 <5 23 <5 5.80 5.20 90 7.3 <0.1 68 <2 <6.2 1.4 13.7 97 Bent Creek BC-2i 4/21/2003 0.29 2910 <5 7 <5 0.9 21 <5 24 <5 <2.1 <1 12.4 <10 Bent Creek BC-2i 4/26/2004 19 0.24 <5 <5 0.6 24 26 12.4 <10 Bent Creek BC-2i 11/1/2004 29 0.36 <5 6 <5 0.8 13.8 <2 24 <5 <5 <1 12.6 <10 Bent Creek BC-21 6/29/2005 29 0.44 0.45 <5 <5 7.3 <5 1.50 1.3 11 4.4 37 <2 <2.5 <1 12.2 <10 <10 Bent Creek BC-2i 6/12/2006 30 0.35 <5 7 <5 1.0 24 2 18 <2 <2.5 <1 12.4 <10 Bent Creek BC-2i 8/20/2007 29 0.36 0.33 <5 <5 6.8 <5 <5 0.81 0.9 17 <2 <0.1 18 <2 <6.2 <1 12.6 <10 <10 Bent Creek BC-2D 4/21/2003 245 2.20 130 <5 16 <5 22.0 314 65 200 <5 6.8 20.0 14.3 910 Bent Creek BC-2D 2/11/2004 245 1.40 <5 22 <5 19.0 333 72 190 <5 4 3.5 15.2 590 Bent Creek BC-2D 4/26/2004 150 1.30 1.30 <5 <5 <5 <5 18.0 18.0 278 <2.5 14.4 15 Bent Creek BC-2D 11/3/2004 135 1.10 1.10 <5 <5 <5 <5 22.0 21.0 214 34 140 <5 <2.5 2.0 15.1 64 460 Bent Creek BC-2D 6/29/2005 150 1.10 1.10 <5 <5 22 <5 <5 20.0 21.0 166 18 120 <2 <2.5 <1 15.3 72 110 Bent Creek BC-2D 6/12/2006 100 0.95 0.95 <5 <5 21 <5 <5 21.0 20.0 174 13 <2 14.2 22 49 Bent Creek BC-2D 8/20/2007 150 0.91 0.97 <5 <5 22 <5 <5 19.0 19.0 174 11 <0.1 112 <2 <6.2 <1 14.8 <10 12 Coweeta CW-1S 7/21/2008 17 0.9 0.8 670 <5 <5 12 <5 <5 2.5 2.4 31 <2 <0.1 58 <2 <6.2 <1 17.6 <10 <10 Coweeta CW-1S 2/9/2009 17 0.7 0.7 <5 <5 11 <5 <5 2.1 2.2 31 <2 <0.1 32 <2 <6.2 <1 13.4 <10 Coweeta CW-11 7/21/2008 44 1 1.0 1450 <5 <5 17 <5 <5 3.2 3.2 32 <2 <0.1 53 <2 <6.2 <1 15.6 240 220 Coweeta CW-11 2/9/2009 44 0.94 0.9 <5 <5 18 <5 <5 3.2 3.1 30 <2 <0.1 6 <2 <6.2 <1 15.1 210 200 Coweeta CW-1D 7/21/2008 160 1.8 1.8 <5 <5 19 <5 <5 7.4 7.1 93 16 <0.1 88 <2 <6.2 <1 14.9 150 170 Coweeta CW-1D 2/9/2009 150 1.6 1.6 <5 <5 19 <5 <5 7 7.1 91 19 <0.1 64 <2 <6.2 <1 14.6 180 180 Coweeta CW-21 7/22/2008 18 1.4 1.4 2160 <5 <5 <20 <5 <5 1.9 1.9 24 <2 <0.1 50 <2 <6.2 9.1 14.5 <10 <10 Coweeta CW-21 2/10/2009 18 1.1 1.2 <5 <5 12 <5 <5 2.7 2.7 27 2.4 <0.1 <12 <2 <6.2 3.4 11.8 <10 <10 Coweeta CW-2D 7/22/2008 90 0.83 0.9 <5 <5 <20 <5 <5 1.8 1.7 24 <2 <0.1 34 <2 <6.2 3.7 13.2 49 50.0 Coweeta CW-2D 2/10/2009 90 0.8 0.92 <5 <5 12 <5 <5 1.7 22 <2 <0.1 30 <2 14 12.0 12.8 120 130 Coweeta CW-3PI 7/23/2008 38 0.74 0.8 1160 <5 <5 27 <5 <5 2.1 2.2 23 <2 <0.1 38 <2 <6.2 <1 13.7 <10 <10 Coweeta CW-3PI 2/11/2009 38 0.76 0.8 <5 <5 16 <5 <5 2.2 2.2 23 <2 <0.1 33 <2 <6.2 <1 12.0 <10 <10 Coweeta CW-3D 7/23/2008 75 1 1.1 <5 <5 15 <5 <5 3.4 3.4 40 2 <0.1 52 <2 <6.2 <1 13.1 200 260 Coweeta CW-3D 2/11/2009 75 1.0 1.1 <5 <5 <5 <5 3.3 3.3 37 2.4 <0.1 <12 <2 <6.2 <1 12.1 380 430 Coweeta CW-41 7/22/2008 60 0.8 0.9 2200 <5 <5 <20 <5 <5 2.1 2.1 36 <2 <0.1 56 <2 31 14.3 <10 <10 Coweeta CW41 2/8/2009 60 0.71 0.7 <5 <5 11 <5 <5 2 2.1 37 <2 <0.1 69 <2 <6.2 13 12.6 <10 <10 Coweeta CW4D 7/22/2008 250 1.7 1.7 <5 <5 <20 <5 <5 6.2 6.3 78 4.9 <0.1 69 <2 <6.2 9.1 17.8 66 110.0 Lan tree MW-1 11/12/2003 0.37* <5.0* 12 0.96* 24 88 53 43 3.8 NA <5.0 100 18.9 to* Lan tree MW-1 6/15/2004 0.24 <5.0 11 1.1 38 59 28 30 <1.0 X2 <5.0 100 18.7 12 Lan tree MW-11 8/28/2002 2.0* <5.0* 31 3.5* 76 130 76 83 <5 NA <5.0 60 19.9 43* Lan tree MW-11 3/4/2003 2.0* <5.0* 29 3.6* 78 180 84 81 <5 NA <5.0 25 15.5 49* Lan tree MW-11 11/12/2003 1.2* <5.0* 27 5.1* 100 44 93 79 2.7 NA <5.0 37 17.7 <10* Lan tree MW-11 6/15/2004 0.92 <5.0 22 3.6 80 24 71 73 <1.0 X2 <5.0 14 18.4 22 Lan tree MW-11 4/14/2009 50 1.5 27 4.0 68 NA 87 NA <2.0 <0.1 NA NA 16.2 <10 Lan tree MW-1D 8/27/2002 2.3* <5.0* 34 8.5* 220 <2.5 297 320 80 NA <5.0 1.4 17.2 <10* Lan tree MW-11D 3/3/2003 2.4* <5.0* 34 6.5* 130 <2.5 168 180 18 NA <5.0 <1.0 17.4 <10* Lan tree MW-1D 11/12/2003 1.8* <5.0* 32 7.9* 150 16 248 240 52 NA <5.0 <1.0 18.0 <10* Lan tree MW-1D 6/15/2004 1.9 <5.0 26 8.7 180 <2.5 219 250 33 NA <5.0 <1.0 17.7 <10 Lan tree MW-1D 11/28/2007 118 2.0 <5.0 29 9.0 138 <6.2 211 NA 35 NA NA NA 17.6 <10 Lan tree MW-1D 4/14/2009 118 1.9 <5.0 29 9.1 156 NA 209 NA 38 <0.1 NA NA 17.0 <10 Lan tree MW-2 8/28/2002 0.53* <5.0* 31 3.5* 72 9.0 65 82 <5.0 NA <5.0 4.0 16.9 <10* Lan tree MW-2 3/4/2003 0.58* <5.0* 27 3.2* 70 8.0 76 80 <5.0 NA <5.0 9.1 16.8 <10* Lan tree MW-2 8/14/2009 25 0.49 <5.0 26 3.8 62 65 NA <2.0 NA NA NA 16.7 <10 Lan tree MW-21 8/28/2002 2.5* <5.0* 29 6.0* 96 11 122 140 <5.0 NA <5.0 12 18.5 <10* Lan tree MW-21 3/4/2003 2.0* <5.0* 30 5.6* 85 3.0 118 120 <5.0 NA <5.0 2.1 16.6 <10* Lan tree MW-21 11/17/2003 2.0* <5.0* 30 5.9* 82 <2.5 NA 120 <5.0 NA <5.0 4 NA 18* Lan tree MW-21 6/15/2004 2.3 <5.0 26 6.1 110 380 122 130 2.0 X2 <5.0 23 7.2 <10 Lan tree MW-21 8/14/2009 45 2.2 <5.0 30 5.7 88 104 NA <2.0 NA NA NA 17.3 <10 Lan tree MW-2D 8/28/2002 1.8* <5.0* 41 4.7* 98 18 220 110 <5.0 NA <5.0 7.4 19.8 <10* Lan tree MW-2D 3/4/2003 1.8* <5.0* 37 4.5* 91 14 95 100 <5.0 NA <5.0 <1.0 17.6 <10* Lan tree MW-2D 11/17/2003 1.7* <5.0* 39 4.1* 84 <2.5 96 97 <5.0 NA <5.0 1.6 17.9 <10* Lan tree MW-2D 6/15/2004 1.9 <5.0 36 4.9 100 3.0 100 100 1.0 X2 <5.0 3.0 17.9 <10 Lan tree MW-2D 8/14/2009 140 2.1 <5.0 36 5.4 96 103 NA <2.0 NA NA NA 17.3 <10 Lan tree MW-3 8/27/2002 0.47* <5.0* 9.0 3.6* 48 90 NA 38 <5.0 NA <5.0 60 NA <10* Lan tree MW-3 3/5/2003 0.63* <5.0* 8.0 12* 140 360 85 91 5.0 NA <5.0 140 6.0 13* Lan tree MW-3 11/13/2003 0.83* <5.0* 9.0 9.6* 130 39 71 75 3.0 NA <5.0 50 5.9 15* Lan tree MW-3 6/17/2004 0.97 <5.0 9.0 7.1 130 39 69 75 3.0 NA <5.0 50 6.3 12 Lan tree MW-3 4/20/2009 18 1.3 <5.0 4.1 3.0 27 NA 30 NA <2.0 NA NA NA 12.8 <10 Lan tree MW-31 8/26/2002 0.88* <5.0* 26 2.1* 50 21 NA 80 <5.0 NA <5.0 13 NA 11* Lan tree MW-31 3/4/2003 0.86* <5.0* 25 2.1* 70 11 76 81 <5.0 NA <5.0 8.2 6.2 <10* Lan tree MW-31 11/13/2003 0.89* <5.0* 25 3.3* 72 14 79 84 1.2 NA <5.0 6.5 6.1 <10* Lan tree MW-31 6/17/2004 0.93 <5.0 23 3.0 74 10 91 82 1.0 NA <5.0 2.2 6.3 <10 Lan tree MW-31 4/20/2009 60 1.1 <5.0 26 2.8 67 NA 77 NA <2.0 NA NA NA 16.5 <10 Lan tree MW-4 6/16/2004 0.53 NA 19 1.5 56 11 57 60 <1 NA <5.0 9.2 16.9 MW-41 8/27/2002 2.0* <5.0* 23 7.5* 79 96 101 110 <5.0 NA <5.0 55 17.8 <10* Ftree tree MW41 1 3/3/2003 1.3* 1 1 <5.0* 1 26 4.7* 68 4 T 79 81 <5.0 NA <5.0 3.0 16.1 <10* Page 9 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Location Lan tree Station ID MW-41 Samp .. t. g 11/12/2003 Sampling Depth (ft) Aluminum Dissolved (0g/L as AI) 1500* luminum Total (pg/L as Al) a. r Arsen' Dissolved L as As) <10* Arsenic (pg/L as Barium Dissolved (pg/L as Ba) <10* Barium Total a(0g/L BaOAs) sC3) �• 17 Bicarbonate Total g• Cadmium Dissolved as Cd) <2.0* Cadmium Total as Cd) Calcium Dissolved as Ca) 3.7* Calcium Total as C Chloride Dissolved Cl) 1.5 Chloride Total as CI) Chromium Dissolved as Cr) <25* h 'a T g/L Copper sso [a. CU) 7.4* Tot' ]a(,OgC Cyanide (mg/L Dissolved Oxygen 8.5 Fluoride as.A 0.07 Fluoride as F) n 'ro IvI Dl--o /L as F 540 Lan tree MW-41 6/16/2004 <50 <10 <10 25 <1.0 4.9 1.3 <25 <2.0 4.7 <0.1 <50 Lan tree MW-41 4/20/2009 50 67 <2 <10 25 <1.0 4.7 1.5 <10 <2.0 NA <0.4 <50 Lan tree MW4D 8/27/2002 2300* <10* 19* 30 <2.0* 20* 2.0 <25* 13* 6.8 <0.5 1300* Langtree MW4D 3/3/2003 360* <10* 12* 35 <2.0* 32* <5.0 <25* 8.2* NA <0.5 360* Lan tree MW4D 11/12/2003 3100* <10* 36* 31 <2.0* 18* 2.1 <25* 15* 8.5 0.08 1700* Lan tree MW4D 6/16/2004 30000* <10* 75* 41 <2.0* 34* 1.8 <25* 23* 4.0 <0.1 10000* Lan tree MW4D 4/20/2009 140 1 460 1 <2 1 <10 49 <1.0 35 1.7 1 <10 1 <2.0 1 6.5 1 <0.4 1 140 Lan tree MW-51 8/27/2002 <10* 38* 52 <2.0* 16* 2.0 <10* <2.0* NA <0.5 3200* Lan tree MW-51 3/3/2003 <10* 30* 27 <2.0* 7.1* <5.0 <10* <2.0* 1.3 <0.5 2200* Lan tree MW-51 11/13/2003 <10* 34* 22 <2.0* 6.2* 2.8 <10* <2.0* 1.1 0.06 3000* Lan tree MW-51 6/16/2004 <10 42 41 <2.0 13 2.7 <10 <2.0 1.7 <0.1 200 Lan tree MW-51 4/20/2009 30 <50 <2.0 <10 36 <1.0 9.0 3.0 <10 <2.0 NA <0.4 68 Lan tree MW-5D 8/27/2002 <10* <10* 33 <2.0* 150* 8.0 <10* <2.0* NA <0.5 <50* Lan tree MW-5D 3/3/2003 <10* 13* 28 <2.0* 240* 12 <10* <2.0* 1.3 <0.5 120* Lan tree MW-5D 11/13/2003 <10* I <10* 29 <2.0* 220* 12 <10* <2.0* 1.1 0.1 <50* Lan tree MW-5D 6/16/2004 <10 <10 36 <2.0 160 7.0 <10 <2.0 1.7 0.1 <50 Lan tree MW-5D 4/20/2009 140 <50 <2.0 <10 44 <1.0 240 10 U, P <10 <2.0 2.63 4 U, P <50 Lan tree MW-6 8/26/2002 500* <10* <10* 10 <2.0* 2.9* 3.0 <25* 2.7* 5.5 <0.5 870* Lan tree MW-6 3/5/2003 520* <10* <10* 5.0 <2.0* 1.8* <5.0 <25* 3.5* 4.6 <0.5 790* Lan tree MW-6 11/13/2003 52* <10* <10* 8.0 <2.0* 2.0* 2.6 <25* <2.0* 5.8 <0.5 82* Lan tree MW-6 6/17/2004 210 <10 <10 8.2 <2.0 3.2 2.6 <25 <2.0 1.9 <0.1 <50 Lan tree MW-6 4/14/2009 15 <50 <2.0 11 12 <1.0 4.2 2.8 <10 <2.0 4.1 <0.4 <50 Lan tree I MW-61 8/26/2002 230* <10* <10* 20 <2.0* 5.2* 2.0 <25* 2.9* 6.8 <0.5 230* Lan tree MW-61 3/5/2003 <50* <10* <10* 15 <2.0* 4.0* <5.0 <25* 2.7* 6.9 <0.5 <50* Lan tree MW-61 11/13/2003 <50* <10* <10* 14 <2.0* 3.3* 2.3 <25* 2.4* 4.8 0.04 <50* Lan tree MW-61 6/17/2004 <50 <10 <10 15 <2.0 4.0 1.9 <25 <2.0 4.8 <0.1 <50 Lan tree MW-61 4/14/2009 28 <50 <2.0 <10 17 <1.0 4.2 2.1 <10 <2.0 8.0 <0.4 <50 Lan tree MW-6D 8/26/2002 <50* <10* 10* 29 <2.0* 260* 15 <25* 2.8* 6.8 <0.5 <50* Lan tree MW-6D 3/5/2003 <50* <10* 16* 22 <2.0* 380* 19 <25* <2.0* 0.12 <0.5 <50* Lan tree MW-6D 11/13/2003 160* <10* 15* 16 <2.0* 550* 33 <25* <2.0* 1.1 0.1 110* Lan tree MW-6D 6/17/2004 <50 <10 18 26 <2.0 440 22 <25 <2.0 0.14 0.1 <50 Lan tree MW-6D 4/14/2009 120 <50 <2.0 11 37 <1.0 330 20 U, P <10 <2.0 0.36 8.0 U, P <50 Morgan Mill MW-1S 11/3/2008 34 <50 <5.0 <10 33 <1.0 17 3.7 <10 <2.0 0.4 <0.4 910 Morgan Mill MW-1S 1/26/2009 34 <50 2.4 <10 39 <1.0 14 7.9 J8 <10 <2.0 1.3 <0.4 J8 1400 Morgan Mill MW-1S 4/6/2009 34 <50 2.1 <10 35 <1.0 12 4.7 <10 <2.0 0.5 <0.4 1100 Morgan Mill MW-1S 8/17/2009 34 <50 <2.0 <10 42 <1.0 14 11 <10 <2.0 0.5 <0.4 2000 Morgan Mill CH-1 11/3/2008 40 <50 <5.0 <10 110 <1.0 40 15 <10 <2.0 0.2 <0.4 150 Morgan Mill CH-1 1/26/2009 40 <50 3.6 12 120 <1.0 40 16 J8 <10 <2.0 0.4 <0.4 J8 280 Mor an Mill CH-1 4/6/2009 40 <50 4.1 10 120 <1.0 37 15 <10 <2.0 0.3 <0.4 250 Morgan Mill CH-1 8/17/2009 40 <50 4.0 <10 110 <1.0 41 17 <10 <2.0 0.3 <0.4 540 Morcian Mill I MW-1D 11/3/2008 118 <50 5.7 <10 110 <1.0 40 15 <10 <2.0 0.6 <0.4 <50 Mor an Mill I MW-1 D 1/26/2009 118 <50 6.9 <10 120 <1.0 43 16 J8 <10 <2.0 0.4 <0.4 J8 <50 Mor an Mill I MW-1D 4/6/2009 118 <50 7.4 <10 120 <1.0 40 15 <10 <2.0 0.2 <0.4 <50 Morgan Mill I MW-1D 5/11/2009 70 <50 7.0 <10 120 <1.0 41 18 <10 <2.0 0.9 <0.4 <50 Mor an Mill I MW-1D 8/17/2009 118 <50 7.5 <10 120 <1.0 42 18 <10 <2.0 0.4 <0.4 <50 Morgan Mill MW-2D 11/12/2008 118 <50 2.2 34 120 <1.0 40 17 <10 <2.0 0.4 <0.4 120 Mor an Mill MW-2D 1/26/2009 118 <50 3.6 34 120 <1.0 40 17 J8 <10 <2.0 0.2 <0.4 J8 170 Morgan Mill MW-2D 4/6/2009 118 <50 3.9 35 130 <1.0 43 17 <10 <2.0 0.2 <0.4 180 Morgan Mill MW-2D 5/12/2009 70 <50 3.9 32 130 <1.0 40 20 <10 <2.0 0.8 <0.4 220 Mor an Mill MW-2D 8/17/2009 118 <50 4.0 32 120 <1.0 44 19 <10 <2.0 0.2 <0.4 150 Pasour PM-1 12/15/2008 85 <50 <2.0 <10 11 <1.0 1.8 1.3 <10 <2.0 7.5 <0.4 110 Pasour PM-1 6/8/2009 85 <50 <2.0 <10 11 <1.0 1.7 1.3 <10 <2.0 8.0 <0.4 71 Pasour PM-2 12/15/2008 DRY NA NA NA 3.8 NA NA NA NA NA NA NA NA Pasour PM-2 6/22/2009 42 <50 <2.0 <10 <1.0 1.7 4.3 <10 <2.0 NA <0.4 <50 Pasour PM-3 12/15/2008 110 <50 <2.0 <10 6.8 <1.0 1.3 1.4 <10 <2.0 8.0 <0.4 90 Pasour PM-3 6/8/2009 110 <50 <2.0 <10 5.2 <1.0 1.3 1.3 <10 <2.0 7.6 <0.4 87 Pasour PM-9 12/15/2008 90 <50 <2.0 15 <1 <1.0 0.13 1.8 <10 <2.0 7.6 <0.4 <50 Pasour PM-9 6/8/2009 90 <50 <2.0 14 <1 <1.0 <0.10 1.6 <10 <2.0 8.9 <0.4 <50 Pasour PM-6 1/22/2009 70 <50* <2.0* 15* 26 <1.0* 4.8* 1.2 <10* <2.0* 2.5 <0.4 18000* Pasour PM-6 6/15/2009 130 <50 <2.0 <10 24 <1.0 6.1 1.2 <10 <2.0 7.2 <0.4 76 Pasour PM-7 1/21/2009 70 2000* <2.0* 25* 5.2 <1.0* 1.3* <1.0 <10* <2.0* 9.0 <0.4 1200* Pasour PM-7 6/15/2009 70 580* <2.0* 15* 1.8 <1.0* 0.24* 1.7 <10* <2.0* 9.2 <0.4 540* Pasour PM-17 1/21/2009 28 68 <2.0 <10 42 <1.0 4.9 2.9 <10 <2.0 5.2 <0.4 60 Pasour PM-17 6/15/2009 30 <50 <2.0 <10 45 <1.0 5.1 2.5 <10 <2.0 9.5 <0.4 <50 Pasour PM-18 1/21/2009 80 <50 3.0 <10 57 <1.0 12 1.3 <10 <2.0 4.3 <0.4 <50 Pasour PM-18 6/15/2009 119 <50 3.9 <10 58 <1.0 12 1.3 <10 <2.0 4.6 <0.4 <50 Pasour PM-22 12/15/2008 85 <50 <2.0 <10 8.8 <1.0 0.85 1.1 <10 <2.0 8.0 <0.4 410 Pasour PM-22 6/8/2009 87 <50 <2.0 <10 5.3 <1.0 0.69 1.3 <10 <2.0 8.4 <0.4 130 Pasour PM-25 12/15/2008 75 <50 <2.0 <10 <1 <1.0 0.19 1.2 <10 <2.0 8.9 <0.4 <50 Pasour PM-25 6/8/2009 70 <50 <2.0 <10 <1 <1.0 0.12 1.4 <10 <2.0 9.1 <0.4 <50 Pasour PM-5 12/15/2008 60 <50 <2.0 <10 2.7 <1.0 0.46 1.4 <10 <2.0 NA <0.4 <50 Pasour PM-5 6/22/2008 60 <50 <2.0 <10 1.0 <1.0 0.17 1.3 <10 <2.0 NA <0.4 <50 Pasour PM-14 1/21/2009 45 <50 <2.0 <10 <1 <1.0 0.19 1.2 <10 <2.0 8.8 <0.4 <50 Pasour PM-14 6/22/2008 45 <50 <2.0 <10 <1 <1.0 0.20 1.2 <10 <2.0 10.7 <0.4 <50 Pasour PM-15 1/21/2009 48 <50 <2.0 <10 2.7 <1.0 0.44 1.4 <10 <2.0 NA <0.4 <50 Pasour PM-15 6/22/2008 53 <50 <2.0 <10 2.8 <1.0 0.4 1.2 <10 <2.0 8.0 <0.4 <50 Pasour PM-19 1/21/2009 47 <50 <2.0 <10 29 <1.0 3.2 8.4 <10 <2.0 0.5 <0.4 <50 Pasour PM-19 6/22/2008 50 <50 <2.0 <10 8.0 <1.0 3.2 5.8 <10 <2.0 0.7 <0.4 <50 Pasour PM-0 1/22/2009 NA* <50 3.3 25 30 <1.0 22 1.3 <10 <2.0 0.27 <0.4 <50 Pasour PM-0 6/22/2008 na <50 <2.0 21 62 <1.0 19 1.2 <10 <2.0 8.42 <0.4 <50 iAARCADIS Page 10 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation — Cape Fear Steam Electric Plant Duke Energy Progress, LLC FIARCJaDIS ��,a��, Location Station ID Sampling Date Sampling Depth () Iron Total (Ng/L as Fe) Lead Dissolved (Ng/L as Pb) Lead Total (Ng/L as Pb) Magnesium Dissolve (mg/L1mg/L asMg)s nes]um otal Mg) Manganese Dissolved (Ng/L as Mn) Manganese Total (Ng/L as Mn) Mercury Dissolved (Ng/L as Hg) ercury Total (Ng/L(Ng/L as Hg) Nickel Dissolved as Ni) Nickel Total (Ng/L as Ni) Nitrogen mo. (mg/L as NH d Nitrogen Ammonia + Organic r Nitrogen Organic Dis (mg/L as N) -M Nitrogen, Nitrate Dis (mg/L as N) Nitrogen, Nitrate Dis (mg/L as NO3) Nitrate as N (mg/L as NO3) NO2+ NO3 Dis (mg/L as N) NO2+NO3 as N (mg/L as N) Nitrite as N . No as NO Oxidation Reduction potential, raw value (mV) p Fie] Lab WH, Lab (SU) Phosph (mg/L as PO4)AM Phosphorus Ortho, dis (mg/L as P) Phosphorous as P Total (mg/L as P) Page 11 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC PARCADIS Location Lan tree Station ID MW-41 Samplin ..7 11/12/2003 Sampling Potassium 0.54* Potassium Radon-22 2 Selen <5.0* Silica Dissolved Silica Total 21 Silver Silver Total Sodium gIL as Na 1.2* Sodlu in Total Solids (mg/L) 44 Solids, Residue at :0 (M eg C 27 Specific Cond., Field (Us/cm) 49 Spec ific Cond., Lab (us/cm) 54 Sulfate Dissolved (mg/L as <2.0 Sulfa at Tot - 1[ (mg/L as �ulfid. Dissolved (pg/L as S) NA Sulfide (mg/L as 1-12S Total Di Ived sso Solids Total Organic Carbon tota I <5.0 Total Suspends Solids, Residue 1 To r(NT 18 Water Temp (deg C) 17.8 Zinc Dissolved pg/L a Zn) <10* Zinc Total (pg/L as Lan tree MW-41 6/16/2004 1.0 <5.0 22 3.6 60 7 65 66 <1.0 <5.0 4.8 17.8 <10 Lan tree MW-41 4/20/2009 50 0.67 <5.0 21 2.0 55 NA 58 NA <2.0 NA NA NA 16.9 <10 Lan tree MW4D 8/27/2002 2.0* <5.0* 31 6.0 110 65 132 150 25 NA <5.0 50 17.5 <10* Langtree MW41) 3/3/2003 1.5* <5.0* 27 6.7 190 19 NA 270 62 NA <5.0 4.4 NA <10* Lan tree MW4D 11/12/2003 2.1* <5.0* 29 5.5 90 240 125 120 19 NA <5.0 31 18.8 <to* Lan tree MW4D 6/16/2004 3.9* <5.0* 26 10* 140 340 161 170 34 NA <5.0 380 18.9 <10 Lan tree MW4D 4/20/2009 140 1.60 <5.0 27 8.2 160 NA 198 NA 53 NA NA NA 16.8 <10 Lan tree I MW-51 8/27/2002 4.9* <5.0* 6.7* 98 140 NA 190 <5.0 NA NA 110 NA 10* Lan tree MW-51 3/3/2003 1.6* <5.0* 25 2.8* 76 180 274 78 <5.0 NA <5 150 16.1 <10* Lan tree MW-51 11/13/2003 1.3* <5.0* 22 2.1* 66 180 53 67 1.8 NA <5 110 16.0 <10* Lan tree MW-51 6/16/2004 2.8 NA 20 4.9 200 180 122 170 10 NA <5 350 16.4 <10 Lan tree MW-51 4/20/2009 30 1.2 <5.0 24 <5.0 3.0 62 NA 70 NA <2.0 NA NA NA 16.6 <10 Lan tree MW-5D 8/27/2002 3.3* <5.0* 24 22* 680 <2.5 NA 860 370 NA <5 <1.0 NA <10* Lan tree MW-5D 3/3/2003 4.1* <5.0* 20 34* 930 4 1090 1100 540 NA <5 2.8 16.9 <10* Lan tree MW-5D 11/13/2003 3.2* <5.0* 21 24* 830 <2.5 1047 1000 580 NA <5 <1.0 16.7 <10* Lan tree MW-5D 6/16/2004 3.3 NA 20 23 640 5 850 820 390 NA <5 <1.0 18.2 <10 Lan tree MW-5D 4/20/2009 140 2.9 <5.0 23 <5.0 32 804 NA 877 NA 490 NA NA NA 16.4 <10 Lan tree MW-6 8/26/2002 0.51* <5.0* 12 1.4* 22 14 36 39 <5.0 NA <5.0 18 5.6 <10* Lan tree MW-6 3/5/2003 0.49* <5.0* 7.0 1.2* 14 16 30 29 <5.0 NA <5.0 50 6.0 15* Lan tree MW-6 11/13/2003 0.38* <5.0* 11 0.87* 29 <2.5 24 33 0.4 NA <5.0 2.1 5.4 22* Lan tree MW-6 6/17/2004 0.52 <5.0 8.9 1.3 38 9.0 34 37 1.3 NA NA 10 4.5 <10* Lan tree MW-6 4/14/2009 15 0.62 <5.0 11 2.0 32 NA 47 NA 5.1 NA NA NA 15.2 <10 Lan tree MW-61 8/26/2002 0.64* <5.0* 20 1.9* 38 8.0 53 56 <5.0 NA <5.0 5.4 16.1 <10* Lan tree I MW-61 3/5/2003 0.56* <5.0* 17 1.7* 41 5.0 44 38 <5.0 NA <5.0 1.6 16.8 <10* Lan tree MW-61 11/13/2003 0.44* <5.0* 17 1.4* 38 <2.5 33 38 0.4 NA <5.0 1.2 16.5 <10* Lan tree MW-61 6/17/2004 0.54 <5.0 16 1.9 54 <2.5 52 42 <1.0 NA NA <1.0 19.7 25 Lan tree MW-61 4/14/2009 28 0.63 <5.0 17 2.1 36 NA 43 NA <2.0 NA NA NA 16.5 <10 Lan tree MW-61) 8/26/2002 3.9* <5.0* 18 36* 1100 <2.5 53 1300 740 NA <5.0 <1.0 16.0 <10* Lan tree MW-6D 3/5/2003 4.3* <5.0* 17 42* 1400 <2.5 1617 1600 710 NA <5.0 <1.0 16.8 <10* Lan tree MW-6D 11/13/2003 4.2* <5.0* 17 55* 2500 3.0 2440 2800 1500 NA <5.0 1.1 16.5 <10* Lan tree MW-6D 6/17/2004 5.7 <5.0 16 55 1700 <2.5 2028 2000 1000 NA NA <1.0 17.6 13 Lan tree MW-61) 4/14/2009 120 2.5 <5.0 20 34 1224 NA 1374 NA 800 NA NA NA 16.5 <10 Morgan Mill MW-1S 11/3/2008 34 1.00 <5.0 35 <5.0 14 152 <6.2 NA NA 55 <2 1.5 16.3 10 Morgan Mill MW-1S 1/26/2009 34 0.78 <5.0 NA <5.0 14 144 NA 194 NA 40 J8 <0.1 <2 NA 16.0 17 Morgan Mill MW-1S 4/6/2009 34 0.83 <5.0 38 <5.0 13 135 J NA 141 NA 35 <0.1 NA NA 16.3 14 Morgan Mill MWAS 8/17/2009 34 0.72 <5.0 NA <5.0 13 138 NA 138 NA 34 NA NA NA 16.1 <10 Morgan Mill CH-1 11/3/2008 40 0.85 <5.0 23 <5.0 20 182 <6.2 NA NA 15 <2 2.4 16.1 <10 Morgan Mill CH-1 1/26/2009 40 0.57 <5.0 NA <5.0 21 179 NA 301 NA 14 J8 <0.1 <2 NA 15.8 <10 Mor an Mill CH-1 4/6/2009 40 0.60 <5.0 25 <5.0 21 190 J NA 280 NA 13 <0.1 NA NA 16.2 <10 Morgan Mill CH-1 8/17/2009 40 0.52 <5.0 NA <5.0 19 180 NA 275 NA 14 NA NA NA 16.3 <10 Mor an Mill I MW-1D 11/3/2008 118 0.35 <5.0 25 <5.0 20 178 <6.2 NA NA 11 <2 <1 16.7 <10 Mor an Mill I MW-1D 1/26/2009 118 0.39 <5.0 NA <5.0 21 178 NA 292 NA 12 J8 <0.1 <2 NA 16.8 <10 Mor an Mill I MW-1 D 4/6/2009 118 0.40 <5.0 25 <5.0 21 193 J NA 284 NA 12 <0.1 NA NA 16.6 <10 Morgan Mill I MW-1D 5/11/2009 70 0.39 <5.0 25 <5.0 21 190 NA 283 NA 14 NA NA 16.6 <10 Mor an Mill I MW-1D 8/17/2009 118 0.34 <5.0 NA <5.0 21 183 NA 258 NA 13 NA NA NA 16.9 <10 Morgan Mill MW-2D 11/12/2008 118 0.41 <5.0 26 <5.0 23 193 <6.2 NA NA 13 <2 2.6 17.0 82 Mor an Mill MW-2D 1/26/2009 118 0.34 <5.0 NA <5.0 22 186 NA NA NA 13 J8 <0.1 <2 NA 16.8 170 Morgan Mill MW-2D 4/6/2009 118 0.40 <5.0 26 <5.0 23 202 J NA 292 NA 14 <0.1 NA NA 16.7 32 Morgan Mill MW-2D 5/12/2009 70 0.41 <5.0 26 <5.0 21 206 NA 282 NA 15 NA NA 16.6 40 Mor an Mill MW-2D 8/17/2009 118 0.38 <5.0 NA <5.0 21 184 NA 191 NA 15 NA NA NA 16.9 27 Pasour PM-1 12/15/2008 85 0.51 <5.0 12 <5.0 1.8 31 <6.2 32 30 <2.0 <0.1J6 <2.0 NA 16.8 <10 Pasour PM-1 6/8/2009 85 0.43 <5.0 12 <5.0 1.7 29 NA 29 NA <2.0 NA NA NA 16.7 <10 Pasour PM-2 12/15/2008 DRY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Pasour PM-2 6/22/2009 42 0.75 <5.0 11 <5.0 3.3 38 NA 44 NA <2.0 NA NA NA 18.4 <10 Pasour PM-3 12/15/2008 110 0.41 <5.0 11 <5.0 1.8 26 <6.2 25 25 <2.0 <0.1J6 <2.0 NA 16.6 <10 Pasour PM-3 6/8/20091 110 0.38 <5.0 11 <5.0 1.7 24 NA 22 NA <2.0 NA NA NA 16.6 <10 Pasour PM-9 12/15/2008 90 0.24 <5.0 7.3 <5.0 2.3 23 <6.2 22 21 <2.0 <0.1J6 <2.0 NA 15.9 <10 Pasour PM-9 6/8/2009 90 0.24 <5.0 7.6 <5.0 2.1 20 NA 20 NA <2.0 NA NA NA 16.5 <10 Pasour PM-6 1/22/2009 70 0.71* <5.0* 31 <5.0* 7.2* 62 38 57 53 <2.0 <2.0 <2.0 NA 15.0 <10* Pasour PM-6 6/15/2009 130 0.51 <5.0 36 <5.0 7.0 70 NA 58 NA <2.0 NA NA NA 16.4 <10 Pasour PM-7 1/21/2009 70 0.48* <5.0* 7.5 <5.0* 4.5* 62 100 18 21 <2.0 <0.1 <2.0 NA 15.1 12 Pasour PM-7 6/15/2009 70 0.16* <5.0* 7.5 <5.0* 2* 20 NA 14 NA <2.0 NA NA NA 16.6 <10* Pasour PM-17 1/21/2009 28 0.89 <5.0 23 <5.0 8.7 43 460 100 92 <2.0 <0.1 <2.0 NA 14.4 <10 Pasour PM-17 6/15/2009 30 0.78 <5.0 23 <5.0 6.8 73 NA 92 NA <2.0 NA NA NA 15.0 <10 Pasour PM-18 1/21/2009 80 0.81 <5.0 30 <5.0 7.2 97 <6.2 123 110 3.8 <0.1 <2.0 NA 15.1 <10 Pasour PM-18 6/15/2009 119 0.79 <5.0 30 <5.0 6.7 91 NA 113 NA 3.7 NA NA NA 16.0 <10 Pasour PM-22 12/15/2008 85 0.44 <5.0 9.5 <5.0 1.3 25 <6.2 27 25 <2.0 <0.1J6 <2.0 NA 16.1 1600 Pasour PM-22 6/8/2009 87 0.34 <5.0 9.2 <5.0 1.3 20 NA 18 NA <2.0 NA NA NA 16.6 640 Pasour PM-25 12/15/2008 75 0.24 <5.0 7.4 <5.0 1.2 20 21 12.7 <14.9 <2.0 <0.1J6 <2.0 NA 16.3 <10 Pasour PM-25 6/8/2009 70 0.18 <5.0 7.6 <5.0 1.2 18 NA 14 NA <2.0 NA NA NA 16.5 <10 Pasour PM-5 12/15/2008 60 0.28 <5.0 7.8 <5.0 1.6 18 131 16 16 <2.0 <0.1 J6 <2 NA 15.4 <10 Pasour PM-5 6/22/2008 60 0.26 <5.0 7.9 <5.0 1.7 16 NA 16 NA <2.0 NA NA NA 16.3 <10 Pasour PM-14 1/21/2009 45 0.19 <5.0 6.8 <5.0 1.4 <12 186 14 13 <2.0 <0.1 <2 NA 14.4 <10 Pasour PM-14 6/22/2008 45 0.18 <5.0 7.3 <5.0 1.3 14 NA 14 13 <2.0 NA NA NA 16.5 <10 Pasour PM-15 1/21/2009 48 0.22 <5.0 7.5 <5.0 1.3 <12 148 17.3 18 <2.0 <0.1 <2 NA 15.6 <10 Pasour PM-15 6/22/2008 53 0.21 <5.0 7.4 <5.0 1.2 16 NA 15 NA <2.0 NA NA NA 16.8 <10 Pasour PM-19 1/21/2009 47 0.97 <5.0 14 <5.0 14 58 <6.2 107 99 <2.0 <0.1 <2.0 NA 15.2 <10 Pasour PM-19 6/22/2008 50 0.80 <5.0 14 <5.0 13 63 NA 95 NA <2.0 NA NA NA 15.8 <10 Pasour PM-O 1/22/2009 NA* 0.52 <5.0 31 <5.0 8.9 126 <6.2 157 150 <2.0 <0.1 <2.0 NA 17.3 120 Pasour PM-0 6/22/2008 na 0.61 <5.0 34 <5.0 6.2 100 NA 90 NA 1 <2.0 NA NA NA 16.9 1900 Page 12 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Location Tater Hill Station ID 40004000001 Samplin .. t. g 10/2/2007 Sampling Depth 38 Aluminum Dissolved luminum Total 18000 mo n a a. ( rl'13 <0.02 Arsen' Disso' 1c Arsenic Total As) <5 Barium olved Barium Total a BaOC 82 B a bon D .. "i �•C3) Bicarbonate Total �• 310 Cadmium Dissolved as Cd) Cadmium Total as Cd) <1 Calcium Dissolved as Ca) Calcium Total C 46.0 Chloride Dissolved as Cl) Chloride Total as Cl) 9.3 Chromium Dissolved as Cr) Ch Total 'a . Cr)j 20 C ss [a. pp 410 Cyanide (mg/L Dissolved OXY9 10.23 Fluoride Dissolved as F)@ Fluoride Total as F) <0.4 Iron Dissolve as Fe) Tater Hill 40004000001 4/2/2008 38 <50 11000 <0.02 <5 <5 12 36 310 <1 <1 51.0 67.0 5.3 <10 17 32.0 150 <0.02 <0.4 <50 Tater Hill 40004000001 7/9/2008 41 44000 <0.02 <5 150 230 <1 87.0 <1 43 750 <0.4 Tater Hill 40004000001 1/12/2009 41 <50 18000 0.46 <5 <5 <10 61 270 <1 <1 94.0 99.0 1.7 <10 27 7.1 250 <0.4 <50 Tater Hill 40004000002 10/2/2007 210 <50 150 <0.02 <5 <5 <10 <10 30 <1 <1 11.0 11.0 1.3 <10 <10 2.0 5.0 <0.02 9.05 <0.4 <50 Tater Hill 40004000002 4/1/2008 250 <50 <50 <0.02 <5 <5 <10 <10 13 <1 <1 5.9 5.8 1.4 <10 <10 6.6 4.1 12.17 <0.4 <50 Tater Hill 40004000002 7/8/2008 250 <50 62 <0.02 <5 <5 <10 <10 16 <1 <1 7.5 7.3 1.2 <10 <10 2.1 3.4 9.52 <0.4 <50 Tater Hill 140004000002 1/12/2009 242 1 <50 <50 <0.02 <5 <5 <10 <10 17 <1 <1 6.8 6.7 <1 <10 <10 3.4 4.1 7.70 <0.4 <50 Tater Hill 40004000002 7/7/2009 245 <50 <50 <0.02 <5 <5 <10 <10 20 <1 <1 7.0 7.0 <1 <10 <10 2.7 3.9 8.69 <0.4 <50 Tater Hill 40004000003 10/2/2007 245 <50 100 <5 <5 <10 <10 35 <1 <1 1.2 <10 <10 <2 <2 <0.02 1.88 <0.4 <50 Tater Hill 40004000003 4/2/2008 245 <50 <50 <0.02 <5 <5 <10 <10 8.2 <1 <1 13.0 13.0 1.3 <10 <10 <2 <2 2.26 <0.4 <50 Tater Hill 40004000003 7/9/2008 285 <50 <50 <0.02 <5 <5 <10 <10 34 <1 <1 14.0 13.0 1.2 <10 <10 <2 <2 1.54 <0.4 <50 Tater Hill 40004000003 1/13/2009 245 <50 <50 <0.02 <5 <5 <10 <10 36 <1 <1 14.0 14.0 <1 <10 <10 <2 <2 1.85 <0.4 <50 Tater Hill 40004000003 1/13/2009** <50 <0.02 <5 <10 37 <1 14.0 14.0 <1 <10 <2 1.85 <0.4 Tater Hill 40004000003 7/7/2009 145 <50 <50 <0.02 <5 <5 <10 <10 40 <1 <1 14.0 <1 <10 <10 <2 <2 2.04 <0.4 <50 Tater Hill 140004000003 7/7/2009** <50 <0.02 <5 <10 <1 13.0 13.0 <10 <2 2.04 <50 Tater Hill 40004000004 10/2/2007 NA/SW 77 370 <5 <5 <10 <10 13 <1 <1 13.0 1.4 <10 <10 <2 <0.02 8.71 <0.4 980 Tater Hill 40004000004 4/2/2008 NA/SW <50 380 <5 <5 <10 <10 8 <1 <1 3.1 3.2 1.2 <10 <10 <2 12.69 <0.4 230 Tater Hill 40004000004 7/9/2008 NA/SW 96 500 <5 <5 <10 <10 11 <1 <1 2.5 2.5 1.2 <10 <10 <2 8.19 <0.4 620 Tater Hill 40004000004 1/12/2009 NA/SW <50 100 <5 <5 <10 <10 6.4 <1 <1 3.3 3.3 <1 <10 <10 <2 10.69 <0.4 140 Tater Hill 40004000004 7/7/2009 NA/SW 51 540 <5 <5 <10 <10 11 <1 <1 2.1 1.9 <1 <10 <10 <2 8.71 <0.4 310 Upper Piedmont 40001000001 12/11/2002 14 1700 <0.02 <10 22 49 <2 15 3 <25 2.8 <0.02 3.60 <0.5 Upper Piedmont 40001000001 6/11/2003 3400 0.02 <10 30 24 <2 7.8 4.2 <25 3.8 4.63 <0.08 Upper Piedmont 40001000001 12/8/2003 14 4700 0.02 <10 41 40 <2 13 2.7 <25 6.3 1.25 0.1 Upper Piedmont 140001000001 7/26/2004 540 <0.02 <10 24 43 <2 13 2.7 <25 <2 2.25 <0.2 Upper Piedmont 140001000001 3/7/2005 17 <50 1800 0.12 <5 <5 11 27 38 <2 <2 9.1 9.4 3.4 <25 <25 <2 6.3 2.59 <0.4 <50 Upper Piedmont 140001000001 9/26/2006 580 <0.02 <5 26 50 <2 14 2.9 <25 <2 4.49 <0.4 Upper Piedmont 140001000001 9/18/2007 15 <50 <0.02 <5 13 49 <1 12 2.1 <10 <2 0.50 0.4 Upper Piedmont 140001000001 9/23/2008 15 <50 110 0.1 <5 <5 14 15 49 <1 <1 13 14 3.2 <10 <10 <2 <2 1.51 <0.4 <50 Upper Piedmont 140001000002 12/11/2002 35 69 <0.02 <10 16 180 <2 16 9 <25 <2 <0.02 2.20 <0.5 Upper Piedmont 140001000002 6/11/2003 65 <0.02 <10 17 110 <2 14 10 <25 <2 3.25 0.24 Upper Piedmont 140001000002 12/8/20031 35 280 1 <0.02 <10 11 78 <2 15 9 <25 <2 1.76 0.16 Upper Piedmont 140001000002 7/26/2004 68 270 <10 19 80 <2 15 9.9 <25 <2 2.85 <0.2 Upper Piedmont 140001000002 3/7/2005 65 <50 210 <0.02 <5 <5 12 13 78 <2 <2 17 16 9.9 <25 <25 <2 <2 2.48 <0.4 <50 Upper Piedmont 140001000002 9/26/2006 1100 <0.02 <5 22 70 <2 14 8.4 <25 2.5 2.77 <0.4 Upper Piedmont 140001000002 9/18/2007 67 360 <0.02 <5 12 64 <1 14 5.7 <10 <2 1.93 <0.4 Upper Piedmont 140001000002 9/23/2008 55 <50 210 0.1 <5 <5 <10 10 59 <1 <1 13 13 5.3 <10 <10 <2 <2 2.12 <0.4 <50 Upper Piedmont 140001000003 12/11/2002 146 160 <0.02 17 <10 110 <2 27 3 <25 <2 <0.02 0.18 1.4 Upper Piedmont 140001000003 6/11/2003 <50 <0.02 17 <10 110 <2 27 2.5 <25 <2 0.07 1.4 Upper Piedmont 140001000003 12/8/2003 148 57 <0.02 17 <10 110 <2 27 2.7 <25 <2 0.06 1.2 Upper Piedmont 140001000003 7/26/2004 145 180 22 <10 120 <2 29 3.6 <25 <2 0.20 1.2 Upper Piedmont 140001000003 3/7/2005 150 <50 <50 <0.02 24 25 <10 <10 118 <2 <2 31 31 3.8 <25 <25 <2 <2 0.25 1.3 <50 Upper Piedmont 140001000003 9/26/2006 <50 <0.02 18 <10 110 <2 29 4.3 <25 <2 0.07 1.2 Upper Piedmont 140001000003 9/18/2007 150 <50 <0.02 22 <10 110 <1 31 3.7 <10 <2 0.08 1 Upper Piedmont 140001000003 9/23/2008 151 <50 <50 0.1 <5 <5 <10 <10 110 <1 <1 32 31 4.7 <10 <10 <2 <2 0.09 1 <50 Upper Piedmont 140001000020 12/11/2002 NA/SW 870 0.06 <10 25 18 <2 4.8 5 <25 2.5 10.84 <0.5 Upper Piedmont 140001000020 6/11/2003 NA/SW 300 0.04 <10 24 19 <2 4.7 2.8 <25 <2 7.20 0.11 Upper Piedmont 140001000020 12/8/2003 NA/SW 87 0.09 <10 20 26 <2 5.5 3.8 <25 <2 10.80 0.1 Upper Piedmont 140001000020 7/26/2004 NA/SW 120 0.02 <10 19 35 <2 7.3 5 <25 <2 6.50 <0.2 Upper Piedmont 140001000020 3/7/2005 NA/SW 510 0.03 <5 <5 22 26 <2 5.8 5.1 <25 <2 11.02 <0.4 Upper Piedmont 140001000020 9/26/2006 NA/SW 170 0.08 <5 12 25 <2 5.6 4.1 <25 <2 7.11 <0.4 Upper Piedmont 140001000020 9/18/2007 NA/SW 58 0.06 <5 28 34 <1 7.3 4.8 <10 <2 7.69 <0.4 Upper Piedmont 140001000020 9/23/2008 NA/SW <50 <50 <0.02 <5 <5 21 22 30 <1 <1 7.3 7.3 4.8 <10 <10 <2 <2 7.39 400 Upper Piedmont 140001000004 12/11/2002 10 2500 0.12 <10 83 59 <2 7.2 6 <25 3.4 <0.02 6.20 <0.5 Upper Piedmont 40001000004 6/11/2003 2900 0.08 <10 95 15 <2 5.8 5.1 <25 3.9 0.15 Upper Piedmont 40001000004 12/8/2003 3700 0.05 <10 77 22 <2 5.4 3.5 <25 3.7 0.04 0.09 Upper Piedmont 40001000004 7/26/2004 2100 0.05 <10 76 22 <2 5.4 4.4 <25 2.6 4.59 <0.2 Upper Piedmont 40001000004 3/7/2005 <50 700 <0.02 <5 <5 58 63 21 <2 <2 5.7 5.6 3.7 <25 <25 <2 <2 5.80 <0.4 760 Upper Piedmont 40001000004 9/26/2006 180 0.03 <5 86 28 <2 7 2.6 <25 <2 <0.4 Upper Piedmont 40001000005 12/11/2002 38 <50 <0.02 <10 <10 92 <2 22 4 <25 <2 <0.02 0.27 <0.5 Upper Piedmont 40001000005 6/11/2003 160 <0.02 <10 12 85 <2 20 3.4 <25 <2 3.49 0.22 Upper Piedmont 140001000005 12/8/20031 38 <50 <0.02 <10 <10 83 <2 19 3.2 <25 <2 0.05 0.2 Upper Piedmont 140001000005 7/26/2004 42 <50 <10 12 90 <2 20 4 <25 <2 0.65 0.2 Upper Piedmont 140001000005 7/26/2004** <50 <10 15 86 1 <2 21 4.6 <25 <2 0.65 0.27 Upper Piedmont 140001000005 3/7/2005 41 <50 60 <0.02 <5 <5 <10 <10 90 <2 <2 22 22 4.2 <25 <25 <2 <2 0.60 <0.4 <50 Upper Piedmont 140001000005 9/26/2006 41 50 <5 29 46 <2 1 20 4.4 : 25 <2 <0.4 Upper Piedmont 140001000006 12/11/2002 156 61 <0.02 <10 <10 140 <2 35 4 <25 <2 <0.02 0.20 0.8 Upper Piedmont 140001000006 6/11/2003 <50 <0.02 <10 10 130 <2 35 3.3 <25 <2 0.05 0.92 Upper Piedmont 140001000006 12/8/2003 156 <50 <0.02 <10 <10 95 <2 25 2.5 <25 <2 0.02 1.2 Upper Piedmont 140001000006 7/26/2004 159 <50 <10 14 130 <2 28 3.7 <25 <2 0.18 0.72 Upper Piedmont 140001000006 3/7/20051 159 <50 <50 0.04 <5 <5 <10 <10 112 <2 <2 30 31 3.8 <25 <25 <2 <2 0.18 0.8 420 Upper Piedmont 140001000006 9/26/2006 <50 <0.02 <5 <10 150 <2 30 3.3 <25 <2 1.5 Upper Piedmont 140001000007 7/29/2004 2300 <10 62 110 <2 30 9.1 <25 7.8 2.08 0.9 Upper Piedmont 140001000008 12/12/2002 164 230 <0.02 <10 <10 84 <2 22 3 <25 <2 <0.02 0.17 2.2 Upper Piedmont 140001000008 6/9/2003 164 250 <0.02 14 <10 74 <2 24 2.5 <25 <2 0.05 1.9 Upper Piedmont 40001000008 12/10/2003 164 <50 <0.02 <10 <10 80 <2 23 2.8 <25 <2 1.7 Upper Piedmont 40001000008 7/29/2004 167 <50 <50 10 10 <10 <10 89 <2 <2 28 24 3.2 <25 <25 <2 <2 0.03 2 <50 Upper Piedmont 40001000008 7/29/2004** <50 <50 10 10 <10 <10 83 <2 <2 27 28 3.3 <25 <25 <2 <2 0.03 2 <50 Upper Piedmont 40001000008 3/7/2005 167 <50 <0.02 12 <10 86 <2 24 3.1 <25 <2 0.33 1.8 Upper Piedmont 40001000008 9/28/2006 <50 <0.02 9.8 <10 33 <2 24 3.5 <25 <2 0.04 1.8 Upper Piedmont 40001000009 12/9/2002 65 116 0.13 <10 <10 38 <2 15 12 <25 <2 <0.02 3.50 1.6 iAARCADIS Page 13 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC FIARCJaDIS ��,a��, Location Tater Hill Station ID do 40004000001 Samping t1 11L 10/2/2007 Sampling Depth (ft) 38 Iron Total as Fe) 12000 Lead Dissolved as Pb) Lead Total as Pb) <10 Magnesium Dissolve as Mg) We -,::um Ks 12.0 Manganese Dissolved Manganese Total 570 Mercury Dissolved ercury Tot. I Nickel Dissolved Nicke!q Total 12 Nitrogen Loma Ni trogen Ammonia + • M�M Nitrogen Organic Dis Nitrogen, Nitrate Dis Nitrogen, Nitrate Dis �• a Nitrate as N ,• <0.02 NO2 + NO2+NO3 as �• . Oxidation III Reduction Fie] 7.50 [-Lab WH, p1h .• Phosphorus Phosphorous 0.80 Tater Hill 40004000001 4/2/2008 38 9000 <10 <10 16.0 20.0 150 310 <10 <10 0.30 0.13 Tater Hill 40004000001 7/9/2008 41 33000 <10 30.0 940 27 0.26 1.20 Tater Hill 40004000001 1/12/2009 41 13000 <10 <10 24.0 27.0 18 490 <10 14 0.20 0.63 Tater Hill 40004000002 10/2/2007 210 130 <10 <10 1.5 1.6 30 32 <10 <10 0.05 6.80 <0.02 Tater Hill 40004000002 4/1/2008 250 77 <10 <10 1.2 1.2 <10 <10 <10 <10 0.02 6.35 <0.02 Tater Hill 40004000002 7/8/2008 250 85 <10 <10 1.4 1.4 <10 <10 <10 <10 0.05 6.68 <0.02 Tater Hill 140004000002 1/12/2009 242 <50 <10 <10 1.5 1.5 <10 <10 <10 <10 0.02 6.61 0.02 Tater Hill 40004000002 7/7/2009 245 <50 <10 <10 1.4 1.4 <10 <10 <10 <10 0.03 6.56 <0.02 Tater Hill 40004000003 10/2/2007 245 160 <10 <10 <10 <10 <10 <10 0.02 7.69 <0.02 Tater Hill 40004000003 4/2/2008 245 <50 <10 <10 1.8 1.8 <10 <10 <10 <10 0.02 8.33 0.66 Tater Hill 40004000003 7/9/2008 285 <50 <10 <10 1.9 1.8 <10 <10 <10 <10 0.02 8.44 0.02 Tater Hill 40004000003 1/13/2009 245 <50 <10 <10 1.9 1.9 <10 <10 <10 <10 0.02 8.45 0.15 Tater Hill 40004000003 1/13/2009** <50 <10 1.9 1.9 <10 <10 <0.02 8.45 0.02 Tater Hill 40004000003 7/7/2009 145 <50 <10 <10 1.7 1.8 <10 <10 <10 <10 0.02 8.14 <0.02 Tater Hill 40004000003 7/7/2009** <10 1.7 1.7 <10 <10 8.14 Tater Hill 40004000004 10/2/2007 NA/SW 2400 <10 <10 72 110 <10 <10 0.13 7.14 0.06 Tater Hill 40004000004 4/2/2008 NA/SW 840 <10 <10 1.6 1.7 30 42 <10 <10 .0.24 6.74 <0.02 Tater Hill 40004000004 7/9/2008 NA/SW 1800 <10 <10 1.3 1.3 58 79 <10 <10 0.13 7.33 0.03 Tater Hill 40004000004 1/12/2009 NA/SW 270 <10 <10 1.7 1.7 17 16 <10 <10 0.24 7.06 0.02 Tater Hill 40004000004 7/7/2009 NA/SW 1400 <10 <10 1.1 1.1 38 62 <10 <10 0.13 7.44 0.07 Upper Piedmont 40001000001 12/11/2002 14 2800 <10 6.8 79 <10 0.1 5.91 0.07 Upper Piedmont 40001000001 6/11/2003 5600 <10 6.3 56 <10 0.02 5.31 0.08 Upper Piedmont 40001000001 12/8/2003 14 7900 <10 8.1 86 <10 0.09 5.64 0.06 Upper Piedmont 140001000001 7/26/2004 680 <10 7.1 30 <10 0.05 6.12 0.06 Upper Piedmont 140001000001 3/7/2005 17 1900 <10 <10 7.6 9 20 61 <10 <10 <0.02 6.38 0.14 Upper Piedmont 140001000001 9/26/2006 960 <10 8.1 24 <10 0.06 5.22 0.08 Upper Piedmont 140001000001 9/18/2007 15 <50 <10 6.9 <10 <10 0.06 5.89 0.03 Upper Piedmont 140001000001 9/23/2008 15 140 <10 <10 7.5 7.7 12 10 <10 <10 0.08 6.23 0.03 Upper Piedmont 140001000002 12/11/2002 35 70 <10 7.6 67 <10 0.69 6.70 0.04 Upper Piedmont 140001000002 6/11/2003 79 <10 6.8 17 <10 1.4 6.83 0.05 Upper Piedmont 140001000002 12/8/2003 35 280 <10 6.6 15 <10 2.4 <0.02 Upper Piedmont 140001000002 7/26/2004 68 160 <10 7.4 33 <10 2.2 6.81 0.06 Upper Piedmont 140001000002 3/7/2005 65 140 <10 <10 7.9 7.9 31 44 <10 <10 2 6.13 0.06 Upper Piedmont 140001000002 9/26/2006 1500 <10 7.4 87 <10 0.96 6.04 0.1 Upper Piedmont 140001000002 9/18/2007 67 490 <10 6.2 6 65 <10 0.47 6.55 0.07 Upper Piedmont 140001000002 9/23/2008 55 280 <10 <10 24 44 <10 <10 0.19 6.45 0.07 Upper Piedmont 140001000003 12/11/2002 146 200 <10 4.8 11 <10 <0.02 7.79 0.02 Upper Piedmont 140001000003 6/11/2003 <50 <10 4.8 <10 <10 <0.02 7.31 0.48 Upper Piedmont 140001000003 12/8/2003 148 63 <10 5.1 10 <10 <0.02 7.80 <0.02 Upper Piedmont 140001000003 7/26/2004 145 240 <10 5.6 12 <10 NA 8.35 0.04 Upper Piedmont 140001000003 3/7/2005 150 54 <10 <10 5.7 5.7 <10 <10 <10 <10 <0.02 7.91 <0.02 Upper Piedmont 140001000003 9/26/2006 <50 <10 5.6 <10 <10 <0.02 7.85 <0.02 Upper Piedmont 140001000003 9/18/2007 150 <50 <10 5.7 <10 <10 <0.02 8.58 <0.02 Upper Piedmont 140001000003 9/23/2008 151 <50 <10 <10 6.1 5.8 <10 <10 <10 <10 0.05 7.65 <0.02 Upper Piedmont 140001000020 12/11/2002 NA/SW 1600 <10 2.6 120 <10 0.16 6.89 0.04 Upper Piedmont 140001000020 6/11/2003 NA/SW 1500 <10 2.3 150 <10 0.11 7.33 0.04 Upper Piedmont 140001000020 12/8/2003 NA/SW 1200 <10 2.8 71 <10 0.14 <0.02 Upper Piedmont 140001000020 7/26/2004 NA/SW 510 <10 3.4 200 <10 0.22 7.17 0.03 Upper Piedmont 140001000020 3/7/2005 NA/SW 1200 <10 3.1 89 <10 0.24 7.87 0.03 Upper Piedmont 140001000020 9/26/2006 NA/SW 1400 <10 2.8 130 <10 0.08 7.16 0.04 Upper Piedmont 140001000020 9/18/2007 NA/SW 590 <10 3.7 130 <10 0.31 6.87 0.05 Upper Piedmont 140001000020 9/23/2008 NA/SW 630 <10 <10 3.7 3.6 84 97 <10 <10 0.17 7.25 0.03 Upper Piedmont 140001000004 12/11/2002 10 4600 <10 3.3 470 <10 0.81 5.45 0.06 Upper Piedmont 140001000004 6/11/2003 6700 11.00 2.5 320 <10 0.02 0.07 Upper Piedmont 140001000004 12/8/2003 3300 <10 2.4 350 <10 0.02 5.38 0.04 Upper Piedmont 140001000004 7/26/2004 10000 <10 2.2 410 <10 <0.02 6.05 0.09 Upper Piedmont 140001000004 3/7/2005 1600 <10 <10 2.2 2.3 250 290 <10 <10 0.14 5.83 0.09 Upper Piedmont 140001000004 9/26/2006 570 <10 2.7 170 <10 <0.02 5.81 <0.02 Upper Piedmont 140001000005 12/11/2002 38 <50 <10 7.2 <10 <10 0.06 6.35 <0.02 Upper Piedmont 140001000005 6/11/2003 170 <10 7.1 41 <10 0.05 7.01 0.04 Upper Piedmont 140001000005 12/8/2003 38 1 <50 <10 7.2 <10 <10 0.07 6.43 0.02 Upper Piedmont 140001000005 7/26/2004 42 <50 <10 7.6 <10 <10 0.07 6.70 0.02 Upper Piedmont 140001000005 7/26/2004** <50 <10 8.5 <10 <10 0.07 0.02 Upper Piedmont 140001000005 3/7/2005 41 50 <10 <10 8.5 8.4 <10 <10 <10 <10 0.11 6.61 0.03 Upper Piedmont 140001000005 9/26/2006 41 55 <10 7.6 <10 <10 NA 6.67 NA Upper Piedmont 140001000006 12/11/2002 156 160 <10 7.1 340 <10 <0.02 7.12 <0.02 Upper Piedmont 140001000006 6/11/2003 51 <10 6.6 410 <10 <0.02 6.80 <0.02 Upper Piedmont 140001000006 12/8/2003 156 120 <10 5.3 180 <10 0.05 6.82 <0.02 Upper Piedmont 140001000006 7/26/2004 159 990 <10 7 1000 <10 <0.02 6.96 NA Upper Piedmont 140001000006 3/7/2005 159 580 <10 <10 7.5 7.7 830 880 <10 <10 0.03 6.92 0.02 Upper Piedmont 140001000006 9/26/2006 330 <10 6.2 330 <10 0.02 6.86 0.02 Upper Piedmont 140001000007 7/29/2004 6200 <10 18 2800 <10 6.89 Upper Piedmont 140001000008 12/12/2002 164 190 11 5 130 <10 <0.02 7.68 <0.02 Upper Piedmont 140001000008 6/9/2003 164 200 <10 5 130 <10 <0.02 8.35 0.02 Upper Piedmont 40001000008 12/10/2003 164 <50 <10 5.5 140 <10 <0.02 7.97 <0.02 Upper Piedmont 40001000008 7/29/2004 167 <50 <10 <10 6 6.2 150 150 <10 <10 7.75 Upper Piedmont 40001000008 7/29/2004** <50 <10 <10 6.2 6.2 150 150 <10 <10 Upper Piedmont 40001000008 3/7/2005 167 <50 <10 6.4 160 <10 <0.02 7.83 <0.02 Upper Piedmont 40001000008 9/28/2006 <50 <10 6.3 140 <10 <0.02 7.63 <0.02 Upper Piedmont 40001000009 12/9/2002 65 660 <10 3.3 2500 <10 3.7 6.35 0.02 Page 14 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC PARCADIS Location Tater Hill Station ID 40004000001 Samplin ..2 10/2/2007 Sampling 38 Potassium Potassium 3.20 Radon-22 Selen lu l t'l 15 IF Silica Dissolved Si02) Silica Total Si02) (og as Ag Silver Total Ag) 1 <5 Sodium mgIL as Na Sodlu m Total 120.00 Solids Solids, R esidue at :� deg C Specific Cond., Field (Us/cm) 565 Specific Cond., Lab (us/cm) 650 Sulfate Dissolved (mg/L as Sulfate (mg/L as 45 Ifide f D�u (pg/L as S) Sulfide H2S Total Di Ived Solids 510 Total Organic Carbon total 12.0 Total Suspende Solids, Residue 1 r(NT Tot]j 500.0 Water Temp (deg C) 9.98 Zinc Dissolved pg/L as Zn) Zinc Total (pg/L as 73 Tater Hill 40004000001 4/2/2008 38 2.90 3.40 <5 <5 15 <5 <5 89.00 97.00 350 64 457 <10 39 Tater Hill 40004000001 7/9/2008 41 3.30 <5 17 <5 33.00 50 28 324 8.5 23.0 140 Tater Hill 40004000001 1/12/2009 41 2.70 3.20 <5 <5 20 <5 <5 16.00 17.00 540 48 350 5.4 600.0 <10 84 Tater Hill 40004000002 10/2/2007 210 1.40 1.40 <5 <5 10 <5 <5 1.60 1.70 65 74 3.9 54 <2 2.5 12.17 <10 <10 Tater Hill 40004000002 4/1/2008 250 0.45 0.43 <5 <5 7.8 <5 <5 1.10 1.00 41 43 2.9 37 <2 1.6 11.37 17 20 Tater Hill 40004000002 7/8/2008 250 0.52 0.47 <5 <5 9.5 <5 <5 1.40 1.30 48 50 4 32 <2 <1 12.63 19 23 Tater Hill 40004000002 1/12/20091 242 0.36 0.39 <5 <5 9.5 <5 <5 1.30 1.40 48 50 3.8 26 <2 <1 11.57 19 16 Tater Hill 140004000002 7/7/2009 245 0.41 0.43 <5 <5 9.5 <5 1 <5 1.30 1.40 52 50 5 32 13.15 <10 13 Tater Hill 40004000003 10/2/2007 245 <5 <5 16 <5 <5 86 94 9.2 69 <2 <1 11.75 <10 <10 Tater Hill 40004000003 4/2/2008 245 1.20 1.20 <5 <5 16 <5 <5 4.30 4.30 96 94 9.4 74 <2 <1 11.06 <10 <10 Tater Hill 40004000003 7/9/2008 285 1.20 1.10 <5 <5 16 <5 <5 4.50 4.40 30 99 8.2 64 <2 <1 11.21 <10 <10 Tater Hill 40004000003 1/13/2009 245 1.20 1.10 <5 <5 17 <5 <5 4.60 4.60 90 92 8.9 58 <2 <1 10.98 <10 <10 Tater Hill 40004000003 1/13/2009** 1.20 1.20 <5 17 <5 4.40 4.40 90 92 9.0 58 <2 <1 10.98 <10 Tater Hill 40004000003 7/7/2009 145 1.20 <5 <5 16 <5 <5 4.40 99 91 9.5 66 10.92 <10 <10 Tater Hill 40004000003 7/7/2009** 1.10 1.10 <5 <5 4.30 4.40 99 10.92 <10 Tater Hill 40004000004 10/2/2007 NA/SW 1.10 <5 <5 11 <5 <5 4.30 29 33 <2 33 2.8 16.0 13.05 <10 <10 Tater Hill 40004000004 4/2/2008 NA/SW 0.33 0.38 <5 <5 8.4 <5 <5 1.20 1.30 25 25 <2 30 2.0 8.2 9.02 <10 <10 Tater Hill 40004000004 7/9/2008 NA/SW 0.39 0.38 <5 <5 10 <5 <5 1.50 1.10 30 30 <2 32 3.0 20.0 16.01 <10 <10 Tater Hill 40004000004 1/12/2009 NA/SW 0.37 0.34 <5 <5 8 <5 <5 1.20 1.20 21 19 <2 <12 2.2 3.3 3.53 <10 <10 Tater Hill 40004000004 7/7/2009 NA/SW 0.21 0.25 <5 <5 10 <5 <5 0.92 0.91 29 27 <2 29 14.90 <10 <10 Upper Piedmont 40001000001 12/11/2002 14 1.6 <5 39 <5 4.5 150.0 13 120 <5 260 44 14.96 Upper Piedmont 40001000001 6/11/2003 0.63 <5 24 <5 4.6 101.0 16 76 <5 56 40 14.16 28 Upper Piedmont 40001000001 12/8/2003 14 1.6 <5 44 <5 4.5 101.6 15 110 <5 37 53 16.20 13 Upper Piedmont 40001000001 7/26/2004 1.3 <5 31 <5 4.5 118.5 17 120 14 9.5 15.70 25 Upper Piedmont 140001000001 3/7/2005 17 0.61 0.65 <5 <5 27 <5 <5 7.6 7.5 131.0 22 110 3.2 110 220 12.80 <10 Upper Piedmont 140001000001 9/26/2006 1.6 <5 38 <5 4.9 136.0 17 114 <2 24 22 17.03 <10 <10 Upper Piedmont 140001000001 9/18/2007 15 1.2 <5 32 <5 5.5 140.0 12 108 <2 <6.2 <1 16.52 <10 Upper Piedmont 140001000001 9/23/2008 15 1.3 1.5 <5 <5 34 <5 <5 6.1 6.2 140.0 13 110 <2 <6.2 3.6 16.85 <10 Upper Piedmont 140001000002 12/11/2002 35 2 <5 23 <5 64 416.0 17 280 <5 <2.5 2.2 14.80 <10 <10 Upper Piedmont 140001000002 6/11/2003 1.8 <5 34 <5 31 318.0 7.4 180 <5 <2.5 <1 17.55 34 Upper Piedmont 140001000002 12/8/2003 35 1.8 <5 48 <5 14 149.0 2.7 140 <5 4 4.3 14.80 <10 Upper Piedmont 140001000002 7/26/2004 68 1.8 <5 34 <5 12 184.1 3.2 160 5 3.4 16.40 <10 Upper Piedmont 140001000002 3/7/2005 65 1.7 1.7 <5 <5 38 <5 <5 15 15 194.6 3.5 140 <2 5 5 15.20 <10 Upper Piedmont 140001000002 9/26/2006 1.6 <5 38 <5 12 163.0 5.4 132 <2 42 26 15.38 <10 <10 Upper Piedmont 140001000002 9/18/2007 67 1.7 <5 37 <5 11 153.0 3.2 123 <2 8.8 10 15.86 <10 Upper Piedmont 140001000002 9/23/2008 55 1.7 1.7 <5 <5 40 <5 <5 11 11 146.0 4.6 118 <2 <6.2 5.1 16.30 <10 Upper Piedmont 140001000003 12/11/2002 146 0.89 <5 20 <5 18 238.0 <5 140 <5 3 4.2 15.37 41 <10 Upper Piedmont 140001000003 6/11/2003 0.81 <5 20 <5 15 241.0 5.7 140 <5 <2.5 <1 16.50 170 Upper Piedmont 140001000003 12/8/2003 148 0.27 <5 22 <5 14 174.8 5.5 140 <5 <2.5 <1 15.70 140 Upper Piedmont 140001000003 7/26/2004 145 0.97 <5 18 <5 15 216.0 6 170 6 5.2 15.70 54 Upper Piedmont 140001000003 3/7/2005 150 0.83 0.84 <5 <5 19 <5 <5 19 19 249.5 6.2 150 <2 <5 <1 15.30 200 Upper Piedmont 140001000003 9/26/2006 0.84 <5 19 <5 18 247.0 6.9 150 <2 <2.5 1.3 16.10 15 180 Upper Piedmont 140001000003 9/18/2007 150 0.87 <5 20 <5 17 229.0 5.9 154 <2 <6.2 1.1 15.58 180 Upper Piedmont 140001000003 9/23/2008 151 0.89 0.86 <5 <5 20 <5 <5 19 19 248.0 8 148 <2 <6.2 <1 15.82 <10 Upper Piedmont 140001000020 12/11/2002 NA/SW 2.2 <5 13 <5 3.5 67.0 <5 65 <5 10 25 5.76 <10 19 Upper Piedmont 140001000020 6/11/2003 NA/SW 1 1.9 1 <5 13 <5 2.9 61.0 4.2 54 <5 10 8.2 23.35 14 Upper Piedmont 140001000020 12/8/2003 NA/SW 2 <5 15 <5 3.8 50.0 3.2 56 <5 <2.5 4.8 8.40 <10 Upper Piedmont 140001000020 7/26/2004 NA/SW 1.8 <5 17 <5 5.1 80.4 2 70 4 3.5 24.00 <10 Upper Piedmont 140001000020 3/7/2005 NA/SW 2.1 <5 14 <5 5.3 79.2 4.4 60 2.4 4 8.7 9.70 <10 Upper Piedmont 140001000020 9/26/2006 NA/SW 2.7 <5 16 <5 3.8 69.0 3.3 68 4.5 6 6.9 19.50 <10 Upper Piedmont 140001000020 9/18/2007 NA/SW 2.3 <5 18 <5 5.9 92.0 <2 72 3.5 <6.2 3.5 18.67 <10 Upper Piedmont 140001000020 9/23/2008 NA/SW 2.5 2.4 <5 <5 14 <5 <5 5.5 5.3 88.0 3 64 3 <6.2 2.5 19.32 <10 Upper Piedmont 140001000004 12/11/2002 10 3.9 <5 26 <5 6.2 120.0 11 120 <5 62 55 10.96 35 Upper Piedmont 140001000004 6/11/2003 3.4 <5 21 <5 4.9 15 85 <5 74 110 11 Upper Piedmont 140001000004 12/8/2003 3.4 <5 23 <5 4.9 92.3 8.8 86 <5 57 60 13.30 12 Upper Piedmont 140001000004 7/26/2004 3.6 <5 22 <5 5.8 85.6 8.2 76 33 40 17.10 <10 Upper Piedmont 140001000004 3/7/2005 3.1 3.2 <5 <5 19 <5 <5 6.1 6.2 58.0 9.4 75 <2 16 31 9.90 <10 <10 Upper Piedmont 140001000004 9/26/2006 4 <5 25 <5 5.8 98.0 10 82 <2 3.2 4.9 17.11 <10 Upper Piedmont 140001000005 12/11/2002 38 1.7 <5 32 <5 6.9 192.0 <5 150 <5 <2.5 <1 13.94 23 Upper Piedmont 140001000005 6/11/2003 1.8 <5 34 <5 6.5 176.0 2.2 120 <5 5 <1 14.00 <10 Upper Piedmont 140001000005 12/8/2003 38 1.8 <5 37 <5 6.5 180.5 2.6 110 <5 <2.5 <1 13.60 <10 Upper Piedmont 140001000005 7/26/2004 42 1.9 <5 30 <5 7 186.6 3 130 <2.5 <1 13.90 <10 Upper Piedmont 140001000005 7/26/2004** 2 <5 30 <5 7.7 186.6 3.9 150 <2.5 <1 <10 Upper Piedmont 140001000005 3/7/2005 41 2 2 <5 <5 31 <5 <5 7.9 7.9 140.0 3.1 130 <2 5 <1 14.00 <10 29 Upper Piedmont 140001000005 9/26/2006 41 1.7 <5 33 <5 6.8 171.0 3.4 126 <2 <2.5 <1 <10 Upper Piedmont 140001000006 12/11/2002 156 2.4 <5 29 <5 9 281.0 <5 170 <5 7 4.2 14.81 8900 Upper Piedmont 140001000006 6/11/2003 3.6 <5 23 <5 8.6 290.0 3.4 170 <5 <5 <1 15.95 6300 Upper Piedmont 140001000006 12/8/2003 156 1.3 <5 23 <5 10 223.5 5.5 130 <5 <2.5 1.4 15.70 740 Upper Piedmont 140001000006 7/26/2004 159 1.6 <5 23 <5 9.6 250.2 4 160 <2.5 4 15.40 3100 Upper Piedmont 140001000006 3/7/2005 159 1.6 1.6 <5 <5 26 <5 <5 11 11 197.0 5 140 <2 <2.5 3.8 15.80 2000 2100 Upper Piedmont 40001000006 9/26/2006 1.5 <5 24 <5 14 235.0 6.9 153 <2 <2.5 2.2 14.63 790 Upper Piedmont 40001000007 7/29/2004 7.1 <5 22 <5 26 340.9 52 200 150 140 16.20 86 Upper Piedmont 40001000008 12/12/2002 164 2.1 <5 29 <5 8.9 192.0 7 140 <5 16 6.3 14.90 35 Upper Piedmont 40001000008 6/9/2003 164 2.1 <5 29 <5 9.7 174.0 10 120 <5 17 13 15.48 28 Upper Piedmont 40001000008 12/10/2003 164 2 <5 25 <5 9.3 135.0 9.8 130 <5 <2.5 2 14.00 <10 Upper Piedmont 40001000008 7/29/2004 167 2.1 2.2 <5 <5 26 <5 <5 ..7 9.9 197.3 10 120 <2.5 <1 15.40 <10 <10 Upper Piedmont 40001000008 7/29/2004** 2.2 2.2 <5 <5 25 <5 <5 10 10 197.3 10 140 <5 <1 <10 <10 Upper Piedmont 40001000008 3/7/2005 167 2.1 <5 27 <5 10 198.0 9.4 130 <2 <2.5 <1 15.47 <10 Upper Piedmont 40001000008 9/28/2006 2.1 <5 29 <5 10 197.0 9.7 134 <2 <2.5 <1 14.58 <10 Upper Piedmont 40001000009 1 12/9/2002 65 3.8 <5 36 1 <5 11 183.0 12 120 5.4 183 4.6 115.59 30 Page 15 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC Location U er Piedmont Station ID 40001000009 Samplin t g ..a 6/9/2003 Sampling Depth 65 Aluminum Dissolved luminum A Total 970 mo n a a. a. ( rl'13 <0.02 Arsen' Disso Ic Ived Arsenic Total As) <10 Barium Dissolved Barium Total BaO <10 B a bon D "i �• C Bicarbonate Total �• 14 Cadmium Dissolved Cadmium Total <2 Calcium Dissolved Calcium Total 11 Chloride Dissolved Chloride Total 10 Chromium Dissolved Ch omu o1al ( . Cr)jj <25 Coppe M; r I ssolved pp , , <2 Cyanide Dissolved 1.80 Fluoride Dissolved Fluoride Total 3.1 Iron Dissolve Upper Piedmont 40001000009 12/9/2003 1300 <0.02 <10 <10 14 <2 11 9.8 <25 <2 3.10 3.6 Upper Piedmont 40001000009 7/29/2004 70 220 220 <0.04 <10 <10 15 19 6.2 <2 <2 10 11 14 <25 <25 5.7 5.6 8.26 0.88 <50- Upper Piedmont 40001000009 3/8/2005 67 380 <0.02 <5 <10 8 <2 12 13 <25 6 0.58 1.3 Upper Piedmont 40001000009 9/28/2006 100 <0.02 <5 29 4.5 <2 11 13 <25 4.7 9.10 0.44 Upper Piedmont 40001000009 9/28/2006** 110 <0.02 <5 31 <2 12 <25 4.6 Upper Piedmont 40001000009 9/18/2007 67 93 <0.02 <5 32 4.1 <1 11 12 <10 3.8 8.07 <0.4 Upper Piedmont 140001000009 9/24/2008 57 <50 140 <0.02 <5 <5 25 24 4 <1 <1 11 11 12 <10 <10 3.5 2.5 9.24 0.4 <50 Upper Piedmont 40001000010 12/9/2002 323 3300 0.04 <10 37 43 <2 7.5 11 <25 4.3 <0.02 3.37 0.6 Upper Piedmont 40001000010 6/9/2003 810 0.02 <10 10 39 <2 7.1 13 <25 <2 3.80 0.45 Upper Piedmont 40001000010 12/9/2003 323 2000 <0.02 <10 <10 38 <2 7.9 13 <25 3.1 0.41 Upper Piedmont 40001000010 7/29/2004 150 <50 190 <0.02 <10 <10 <10 <10 31 <2 <2 7 7 14 <25 <25 <2 <2 5.86 0.54 <50 Upper Piedmont 40001000010 3/8/2005 1600 <0.02 <5 <10 19 <2 8.7 13 <25 2.6 5.13 <0.4 Upper Piedmont 40001000010 9/28/2006 740 <0.02 <5 <10 22 <2 7.7 14 <25 <2 8.02 <0.4 Upper Piedmont 40001000010 9/18/2007 4100 0.46 <5 29 27 <1 8.7 13 <10 4.9 4.30 <0.4 Upper Piedmont 140001000010 9/24/2008 323 <50 1800 <0.02 <5 <5 <10 <10 22 <1 <1 8.3 8.8 14 <10 <10 <2 2.4 6.65 0.4 <50 Upper Piedmont 140001000011 12/10/2002 45 970 0.03 <10 63 23 <2 12 11 <25 5.3 <0.02 6.60 <0.5 Upper Piedmont 140001000011 6/9/2003 3100 0.02 <10 54 24 <2 11 10 <25 2.8 0.14 Upper Piedmont 140001000011 12/9/2003 45 120 <0.02 <10 48 15 <2 13 12 <25 2.8 7.30 0.11 Upper Piedmont 140001000011 7/28/2004 48 <50 1100 <0.1 <10 <10 39 49 16 <2 <2 10 10 9.6 <25 <25 <2 <2 6.68 <0.2 <50 Upper Piedmont 140001000011 3/9/2005 47 460 <0.02 <5 38 23 <2 9 6.9 <25 <2 <0.4 Upper Piedmont 140001000011 9/28/2006 39 880 0.09 <5 41 23 <2 7.2 5.9 <25 <2 6.31 <0.4 Upper Piedmont 140001000012 12/9/2002 200 100 <0.02 <10 12 93 <2 32 24 <25 <2 <0.02 0.06 3.2 Upper Piedmont 140001000012 6/9/2003 80 <0.02 <10 16 87 <2 32 26 <25 <2 3 Upper Piedmont 140001000012 12/11/20031 145 <50 <0.02 <10 10 81 <2 32 25 <25 <2 0.56 2.8 Upper Piedmont 140001000012 7/28/2004 200 <50 130 <10 <10 10 17 85 <2 <2 36 33 28 <25 <25 <2 <2 2.71 3.1 <50 Upper Piedmont 140001000012 3/9/2005 200 76 <0.02 <5 18 93 <2 36 26 <25 <2 2.9 Upper Piedmont 40001000012 9/28/2006 145 <50 <0.02 <5 19 45 <2 36 29 <25 <2 2.38 2.8 Upper Piedmont 40001000012 9/28/2006** 145 <2 20 27 <25 2.38 2.8 Upper Piedmont 40001000013 12/10/2002 36 1300 0.04 <10 94 17 <2 5.1 6 <25 <2 <0.02 7.20 <0.5 Upper Piedmont 40001000013 6/10/2003 770 <0.02 <10 57 13 <2 5.4 6.7 <25 <2 5.70 0.07 Upper Piedmont 40001000013 12/10/2003 1300 0.03 <10 57 15 <2 5.7 7.6 <25 <2 0.05 Upper Piedmont 40001000013 7/27/2004 38 <50 820 0.09 <10 <10 57 60 17 <2 <2 6.3 7 7.4 <25 <25 <2 3.9 7.68 <0.2 <50 Upper Piedmont 40001000013 7/27/2004** 38 <50 1200 0.16 <10 <10 53 71 15 <2 <2 6.2 7 7.6 <25 <25 <2 <2 7.68 <0.2 <50 Upper Piedmont 140001000013 3/8/2005 580 <0.02 <5 57 18 <2 6.5 7.4 <25 <2 <0.4 Upper Piedmont 140001000013 9/27/2006 620 <0.02 <5 84 16 <2 7.3 9 <25 <2 6.37 0.4 Upper Piedmont 140001000013 9/19/2007 35 150 <0.02 <5 62 14 <1 7.1 7.9 <10 <2 7.16 <0.4 Upper Piedmont 140001000013 9/25/2008 38 <50 120 0.1 <5 <5 68 65 14 <1 <1 7.9 7.5 8.3 <10 <10 <2 <2 7.68 <0.4 <50 Upper Piedmont 140001000014 12/10/2002 42 54 <0.02 <10 40 20 <2 6.8 7 <25 <2 <0.02 <0.5 Upper Piedmont 40001000014 6/10/2003 <50 <0.02 <10 53 19 <2 7.7 6.3 <25 <2 5.35 0.06 Upper Piedmont 40001000014 12/10/2003 <50 <0.02 <10 49 18 <2 7.4 6.7 <25 <2 0.07 Upper Piedmont 40001000014 7/27/20041 55 <50 50 <10 <10 55 53 19 <2 <2 7.9 7.9 6.9 <25 <25 <2 <2 8.79 <0.2 <50 Upper Piedmont 40001000014 3/8/2005 55 55 <0.02 <5 46 19 <2 7.8 7 <25 <2 7.73 <0.4 Upper Piedmont 40001000014 9/27/2006 <50 <0.02 <5 55 22 <2 8.5 8.2 <25 <2 7.66 <0.4 Upper Piedmont 40001000014 9/19/2007 53 <50 <0.02 <5 52 17 <1 8.4 5.9 <10 <2 7.52 <0.4 Upper Piedmont 40001000014 9/25/2008 55 <50 <50 0.1 <5 <5 60 58 16 <1 <1 9.4 9.1 8.6 <10 <10 <2 <2 8.25 <0.4 <50 Upper Piedmont 140001000015 12/10/2002 66 300 <0.02 <10 20 25 <2 6.3 7 <25 <2 <0.02 8.01 <0.5 Upper Piedmont 140001000015 6/10/2003 1100 <0.02 <10 27 20 <2 6.6 5.2 <25 2.8 6.64 0.08 Upper Piedmont 140001000015 12/11/2003 2500 <0.02 <10 38 20 <2 7.9 5.9 <25 6.2 0.08 Upper Piedmont 140001000015 7/27/2004 70 <50 230 <10 <10 26 29 24 <2 <2 8.2 7.8 6 <25 <25 <2 <2 7.04 <0.2 <50 Upper Piedmont 140001000015 3/8/2005 120 <0.02 1 <5 19 1 21 <2 7.9 6.4 <25 <2 7.41 <0.4 Upper Piedmont 140001000015 9/27/2006 65 <0.02 <5 22 23 <2 8.9 7.7 <25 <2 7.87 <0.4 Upper Piedmont 140001000015 9/19/2007 70 <50 <0.02 <5 20 21 <1 9 6.8 <10 <2 8.22 <0.4 Upper Piedmont 140001000015 9/19/2007** 70 53 <0.02 <5 20 22 <1 9 6.8 <10 <2 8.22 <0.4 Upper Piedmont 140001000015 9/25/2008 70 <50 870 <0.02 <5 <5 23 29 21 <1 <1 9.7 9.7 8.6 <10 <10 <2 <2 8.55 <0.4 <50 Upper Piedmont 140001000016 12/10/2002 164 <50 <0.02 <10 <10 39 <2 12 3 <25 <2 <0.02 5.25 <0.5 Upper Piedmont 140001000016 6/10/2003 <50 <0.02 <10 <10 34 <2 10 5 <25 <2 0.15 Upper Piedmont 140001000016 12/10/2003 159 <50 <0.02 <10 <10 31 <2 11 5.4 <25 <2 0.14 Upper Piedmont 140001000016 7/27/2004 162 <50 <50 <10 <10 <10 <10 31 <2 <2 11 11 5.9 <25 <25 <2 <2 5.87 <0.2 <50 Upper Piedmont 140001000016 3/8/2005 <50 <0.02 <5 <10 33 <2 12 5.8 <25 <2 6.63 <0.4 Upper Piedmont 140001000016 3/8/2005** <50 <0.02 <5 <10 32 <2 12 5.8 <25 <2 6.63 <0.4 Upper Piedmont 140001000016 9/27/2006 <50 <0.02 <5 <10 35 <2 13 7.7 <25 <2 5.80 <0.4 Upper Piedmont 140001000016 9/18/2007 162 <50 <0.02 <5 <10 31 <1 <1 13 7 <10 <2 6.55 <0.4 Upper Piedmont 140001000016 9/25/2008 162 <50 <50 <0.02 <5 <5 <10 <10 29 14 14 8.8 <10 <10 <2 <2 5.91 <0.4 <50 Upper Piedmont 140001000017 12/10/2002 13 2100 0.24 <10 16 82 <2 31 19 <25 16 <0.02 0.63 <0.5 Upper Piedmont 140001000017 6/10/2003 6100 0.16 <10 26 84 <2 28 21 <25 14 4.45 0.18 Upper Piedmont 140001000017 12/9/2003 14 1900 0.1 <10 11 90 <2 31 <25 9.1 Upper Piedmont 140001000017 7/28/2004 <50 1100 0.2 <10 <10 14 15 90 <2 <2 36 36 18 <25 <25 <2 5 0.42 0.26 770 Upper Piedmont 140001000017 3/9/2005 710 0.1 <5 <10 91 <2 31 16 <25 4.2 0.50 <0.4 Upper Piedmont 140001000017 3/9/2005** 570 0.09 <5 <10 90 <2 31 15 <25 3.1 <0.4 Upper Piedmont 140001000017 9/28/2006 180 0.18 <5 13 89 <2 28 15 <25 2.3 3.22 <0.4 Upper Piedmont 140001000018 12/10/2002 30 <50 <0.02 <10 12 80 <2 34 15 <25 <2 <0.02 0.10 <0.5 Upper Piedmont 140001000018 6/10/2003 <50 <0.02 <10 16 74 <2 31 17 <25 <2 0.11 0.21 Upper Piedmont 40001000018 12/9/2003 30 <50 <0.02 <10 12 72 <2 32 17 <25 <2 0.30 0.2 Upper Piedmont 40001000018 7/28/2004 35 <50 <50 <10 <10 20 18 77 <2 <2 33 33 12 <25 <25 <2 <2 0.14 0.21 870 Upper Piedmont 40001000018 3/9/2005 35 <50 <0.02 <5 13 78 <2 35 16 <25 <2 0.50 <0.4 Upper Piedmont 40001000018 9/27/2006 <50 <0.02 <5 13 130 <2 33 16 <25 <2 3.22 <0.4 Upper Piedmont 40001000019 12/10/2002 132 <50 <0.02 <10 18 72 <2 38 14 <25 <2 <0.02 0.10 <0.5 Upper Piedmont 40001000019 6/10/2003 <50 <0.02 <10 25 64 <2 31 17 <25 <2 1.23 0.22 U er Piedmont 40001000019 12/9/2003 132 <50 <0.02 <10 22 68 <2 33 17 <25 <2 0.06 0.26 Upper Piedmont 40001000019 7/28/2004 135 <50 <50 <10 <10 28 27 71 <2 <2 38 42 13 <25 <25 <2 <2 1 1 0.13 0.56 I 290 iAARCADIS Page 16 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC FIARCJaDIS ��,a��, Location IL Upper Piedmont Station ID AM 40001000009 Samp ling t 6/9/2003 Sampling Depth L 65 Iron Total 130 Lead Dissolved Lead Total <10 Magnesium Dissolve jWe K.• 2.8 Manganese Dissolved Manganese Total 1500 Mercury Dissolved ercury Tot. I Nickel Dissolved Nicke!q Total <10 Nitroge n L. ia Nitrogen Ammonia � M�M Nitrogen Organic Dis Nitrogen, Nitrate Dis Nitrogen, Nitrate Dis �• Nitrate as N ,• NO2 + NO3 Dis NO2+NO3 as N 2.7 "!'a (,. N JN, Oxidation Reduction 5.75 .-,::um 702 U er Piedmont 40001000009 12/9/2003 61 <10 3.8 880 12 3.1 5.85 <0.02 Upper Piedmont 40001000009 7/29/2004 70 <50 <10 <10 4.7 4.9 130 130 <10 <10 5.28 8.8 Upper Piedmont 40001000009 3/8/2005 67 190 <10 4.2 150 <10 7.9 5.56 <0.02 Upper Piedmont 40001000009 9/28/2006 <50 <10 3.1 25 <10 7.5 5.22 <0.02 Upper Piedmont 40001000009 9/28/2006** <50 <10 3.3 26 <10 7.4 <0.02 Upper Piedmont 40001000009 9/18/2007 67 <50 <10 3 18 <10 7.1 5.48 <0.02 Upper Piedmont 140001000009 9/24/2008 57 230 <10 <10 2.3 2.9 23 25 <10 <10 6 5.10 <0.02 Upper Piedmont 40001000010 12/9/2002 323 5400 14 8.3 120 <10 7.9 6.41 0.13 Upper Piedmont 40001000010 6/9/2003 2000 12 5.7 36 <10 7.4 6.43 0.04 Upper Piedmont 40001000010 12/9/2003 323 5100 <10 7 69 <10 7.8 5.90 0.08 Upper Piedmont 40001000010 7/29/2004 150 560 <10 <10 6.9 6.7 <10 12 <10 <10 7.6 6.18 0.03 Upper Piedmont 40001000010 3/8/2005 2400 <10 7.3 68 <10 9.3 5.91 0.12 Upper Piedmont 40001000010 9/28/2006 1400 <10 7.3 33 <10 8.6 5.92 0.05 Upper Piedmont 40001000010 9/18/2007 18000 12 10 190 <10 7.5 6.34 0.19 Upper Piedmont 140001000010 9/24/2008 323 5800 <10 <10 7.4 8.9 12 61 <10 <10 8.9 6.09 0.1 Upper Piedmont 140001000011 12/10/2002 45 1600 <10 5.1 220 <10 10 6.87 0.12 Upper Piedmont 140001000011 6/9/2003 5300 <10 4.7 460 <10 5.1 5.87 0.11 Upper Piedmont 140001000011 12/9/2003 45 140 <10 4.8 25 <10 9.1 5.45 <0.02 Upper Piedmont 140001000011 7/28/2004 48 1200 <10 <10 4.4 4.6 36 77 <10 <10 6 5.82 0.09 Upper Piedmont 140001000011 3/9/2005 47 350 <10 3.8 46 <10 3.1 5.86 0.04 Upper Piedmont 140001000011 9/28/2006 39 690 <10 3.3 41 <10 14 5.82 0.07 Upper Piedmont 140001000012 12/9/2002 200 230 <10 6.7 100 <10 0.23 7.85 0.03 Upper Piedmont 140001000012 6/9/2003 160 <10 7.8 130 <10 0.23 7.75 <0.02 Upper Piedmont 140001000012 12/11/2003 145 120 <10 8.6 200 <10 0.12 7.67 <0.02 Upper Piedmont 140001000012 7/28/2004 200 330 <10 <10 10 10 210 220 <10 <10 <0.02 7.75 NA Upper Piedmont 140001000012 3/9/2005 200 150 <10 10 230 <10 0.26 7.72 0.02 Upper Piedmont 140001000012 9/28/2006 145 140 <10 10 170 <10 0.32 8.71 <0.02 Upper Piedmont 140001000012 9/28/2006** 145 8.71 Upper Piedmont 140001000013 12/10/2002 36 1300 10 2.3 170 <10 8.1 6.03 0.21 Upper Piedmont 140001000013 6/10/2003 1000 <10 1.9 58 <10 9.9 5.00 0.02 Upper Piedmont 140001000013 12/10/2003 1000 <10 2 46 <10 9.6 4.99 0.34 Upper Piedmont 140001000013 7/27/2004 38 280 <10 <10 2 2.2 <10 16 <10 <10 9.4 5.54 0.03 Upper Piedmont 40001000013 7/27/2004** 38 620 <10 <10 2 2.4 <10 65 <10 <10 11 5.54 0.06 Upper Piedmont 40001000013 3/8/2005 240 <10 2.2 12 <10 10 0.03 Upper Piedmont 40001000013 9/27/2006 650 <10 2.8 82 <10 9.9 4.49 0.08 Upper Piedmont 40001000013 9/19/2007 35 140 <10 2.3 <10 <10 11 5.41 2.2 Upper Piedmont 40001000013 9/25/2008 38 160 <10 <10 2.6 2.5 <10 <10 <10 <10 12 6.19 <0.02 Upper Piedmont 40001000014 12/10/2002 42 <50 <10 2.2 18 <10 9.7 6.40 0.02 Upper Piedmont 40001000014 6/10/2003 <50 <10 2.4 <10 <10 9.6 5.43 0.03 Upper Piedmont 140001000014 12/10/2003 <50 <10 2.3 <10 <10 9 5.22 <0.02 Upper Piedmont 140001000014 7/27/2004 55 <50 <10 <10 2.6 2.5 <10 <10 <10 <10 10 5.60 0.02 Upper Piedmont 140001000014 3/8/2005 55 <50 <10 2.5 <10 <10 10 5.66 <0.02 Upper Piedmont 140001000014 9/27/2006 <50 <10 2.7 <10 <10 10 4.98 <0.02 Upper Piedmont 140001000014 9/19/2007 53 <50 <10 2.6 <10 <10 11 5.61 <0.02 Upper Piedmont 140001000014 9/25/2008 55 <50 <10 <10 2.9 2.9 <10 <10 <10 <10 12 6.58 <0.02 Upper Piedmont 140001000015 12/10/2002 66 460 <10 2.2 67 <10 7 5.66 0.1 Upper Piedmont 140001000015 6/10/2003 2200 <10 2.4 78 24 7.1 5.76 0.07 Upper Piedmont 140001000015 12/11/2003 4700 <10 3.3 140 <10 7.6 0.11 Upper Piedmont 140001000015 7/27/2004 70 230 <10 <10 2.5 2.5 22 29 <10 <10 8 6.00 0.04 Upper Piedmont 140001000015 3/8/2005 110 <10 2.6 15 <10 8.7 5.52 0.04 Upper Piedmont 140001000015 9/27/2006 54 <10 2.9 <10 <10 9 5.14 0.03 Upper Piedmont 140001000015 9/19/2007 70 54 <10 2.9 <10 <10 9.9 5.53 0.03 Upper Piedmont 140001000015 9/19/2007** 70 58 <10 2.9 <10 <10 9.7 5.53 0.03 Upper Piedmont 140001000015 9/25/2008 70 1600 <10 <10 3.1 3.5 <10 42 <10 <10 10 6.22 0.09 Upper Piedmont 140001000016 12/10/2002 164 70 <10 4.1 <10 <10 8.5 6.33 0.08 Upper Piedmont 140001000016 6/10/2003 74 <10 4 <10 <10 8.6 0.05 Upper Piedmont 140001000016 12/10/2003 159 <50 <10 4 <10 <10 8.8 5.70 0.04 Upper Piedmont 140001000016 7/27/2004 162 <50 <10 <10 4.7 4.8 <10 <10 <10 <10 9.4 6.43 0.05 Upper Piedmont 140001000016 3/8/2005 <50 <10 5 <10 <10 9.8 6.28 0.05 Upper Piedmont 140001000016 3/8/2005** <50 <10 5 <10 <10 9.8 6.28 0.06 Upper Piedmont 140001000016 9/27/2006 180 <10 5.4 <10 <10 9.7 5.49 <0.02 Upper Piedmont 140001000016 9/18/2007 162 85 <10 5.2 <10 <10 9.9 6.24 0.07 Upper Piedmont 140001000016 9/25/2008 162 65 <10 <10 5.8 5.7 <10 <10 <10 <10 11 6.28 0.05 Upper Piedmont 140001000017 12/10/2002 13 4800 13 18 620 <10 <0.02 6.15 0.31 Upper Piedmont 140001000017 6/10/2003 11000 <10 17 670 <10 <0.02 6.37 0.37 Upper Piedmont 140001000017 12/9/2003 14 3200 <10 16 570 <10 <0.02 6.50 0.09 Upper Piedmont 140001000017 7/28/2004 3200 <10 <10 18 19 690 780 <10 <10 NA 6.72 0.08 Upper Piedmont 140001000017 3/9/2005 1600 <10 16 650 <10 <0.02 6.76 0.07 Upper Piedmont 140001000017 3/9/2005** 1300 <10 16 610 <10 <0.02 6.76 0.08 Upper Piedmont 140001000017 9/28/2006 1700 <10 15 740 <10 <0.02 6.70 0.05 Upper Piedmont 140001000018 12/10/2002 30 830 <10 12 140 <10 0.68 6.60 0.02 Upper Piedmont 140001000018 6/10/2003 810 <10 12 160 <10 <0.02 6.64 0.02 Upper Piedmont 140001000018 12/9/2003 30 790 <10 11 160 <10 <0.02 6.40 <0.02 Upper Piedmont 140001000018 7/28/2004 35 840 <10 <10 12 12 170 170 <10 <10 <0.02 6.89 <0.02 Upper Piedmont 40001000018 3/9/2005 35 920 <10 13 180 <10 <0.02 6.87 <0.02 Upper Piedmont 40001000018 9/27/2006 800 <10 12 170 <10 <0.02 6.70 <0.02 Upper Piedmont 40001000019 12/10/2002 132 260 <10 5.4 74 <10 <0.02 6.90 <0.02 Upper Piedmont 40001000019 6/10/2003 360 <10 6.4 84 <10 <0.02 6.78 <0.02 Upper Piedmont 40001000019 12/9/2003 132 330 <10 6.8 88 <10 <0.02 6.40 <0.02 Upper Piedmont 40001000019 7/28/2004 135 280 <10 <10 7.8 7.5 81 80 <10 <10 NA 7.06 NA Page 17 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant Duke Energy Progress, LLC PARCADIS Location Upper Piedmont Station ID 40001000009 Samplin ..2 6/9/2003 Sampling 65 Potassium Potassium 4.4 Radon-22 Selen lu t'l 15 IF Silica Dissolved Silica Total 27 as Ag Silver Total 1 <5 Sodium gIL as Na Sodlu m Total 4.8 Solids Solids, R esidue at :0 Specific Cond., Field 135.0 Specific Cond., Lab Sulfate Dissolved (mg/L as Sulfate (mg/L as 16 Ifide D�u Sulfide Total Di Ived Solids 100 Total Organic Carbon total <5 Total Suspende Solids, Residue 135 To r(NT <1 Water Temp (deg C) 16.75 Zinc Dissolved pg/L as Zn) Zinc Total (pg/L as <10 Upper Piedmont 40001000009 12/9/2003 4.2 <5 9 <5 4.4 142.4 19 81 <5 142.4 <1 13.90 23 Upper Piedmont 40001000009 7/29/2004 70 4.5 4.8 <5 <5 25 <5 <5 8.6 9.1 145.6 12 150 145.6 <1 16.50 10 13 Upper Piedmont 40001000009 3/8/2005 67 4.3 <5 30 <5 8.4 161.0 13 120 <2 161 2.2 14.83 36 Upper Piedmont 40001000009 9/28/2006 3.3 <5 31 <5 8.9 143.0 14 136 <2 143 <1 17.70 <10 Upper Piedmont 40001000009 9/28/2006** 3.6 <5 <5 9.4 <2 <10 Upper Piedmont 40001000009 9/18/2007 67 3.2 <5 30 <5 8.9 145.0 12 138 <2 145 <1 15.61 <10 Upper Piedmont 40001000009 9/24/2008 57 3.4 3.2 <5 <5 <5 <5 9.2 9.2 136.0 16 120 <2 20 9.1 16.22 <10 <10 Upper Piedmont 40001000010 12/9/2002 323 2.7 <5 43 <5 13 194.0 <5 140 <5 194 24 14.56 13000 Upper Piedmont 40001000010 6/9/2003 0.99 <5 42 <5 11 185.0 4.6 140 <5 185 22 16.66 10000 Upper Piedmont 40001000010 12/9/2003 323 1.2 <5 36 <5 12 189.8 4.6 130 <5 189.8 26 16.50 11000 Upper Piedmont 40001000010 7/29/2004 150 0.87 0.84 <5 <5 38 <5 <5 13 11 155.2 <5 150 155.2 4.5 16.50 3200 3100 Upper Piedmont 40001000010 3/8/2005 1.1 <5 42 <5 16 185.0 4.5 140 <2 185 1.5 15.39 7100 Upper Piedmont 40001000010 9/28/2006 0.85 <5 45 <5 15 164.0 5.4 151 <2 164 9 17.14 1000 Upper Piedmont 40001000010 9/18/2007 2 <5 36 <5 15 175.0 5 148 <2 175 120 15.95 1700 Upper Piedmont 140001000010 9/24/2008 323 0.89 1.1 <5 <5 <5 <5 16 17 175.0 8 1 156 1 <2 56 40 16.98 140 330 Upper Piedmont 140001000011 12/10/2002 45 1.8 <5 34 <5 14 191.0 14 150 <5 280 270 9.85 92 Upper Piedmont 140001000011 6/9/2003 2 <5 33 <5 11 174.0 17 140 <5 190 160 16.88 66 Upper Piedmont 140001000011 12/9/2003 45 1.6 <5 27 <5 10 160.0 17 120 <5 10 3.1 17.80 40 Upper Piedmont 140001000011 7/28/2004 48 1.6 1.6 <5 <5 30 <5 <5 9 9.2 138.1 16 120 200 50 17.50 24 51 Upper Piedmont 140001000011 3/9/2005 47 1.6 <5 35 <5 12 136.7 18 100 2.5 61 13 15.20 23 Upper Piedmont 140001000011 9/28/2006 39 16 <5 35 <5 11 121.0 19 108 <2 70 170 16.00 27 Upper Piedmont 140001000012 12/9/2002 200 5.5 <5 29 <5 13 299.0 16 170 <5 17 1.8 15.69 4400 Upper Piedmont 140001000012 6/9/2003 5.5 <5 29 <5 11 302.0 19 180 <5 6 1.8 17.19 610 Upper Piedmont 140001000012 12/11/2003 145 4.7 <5 30 <5 12 305.0 22 160 <5 <2.5 2.1 16.70 240 Upper Piedmont 140001000012 7/28/2004 200 4.2 4.3 <5 <5 17 <5 <5 12 12 271.3 22 200 12 3.8 18.60 760 1000 Upper Piedmont 140001000012 3/9/2005 200 5.5 <5 28 <5 14 319.7 21 190 <2 <2.5 <1 17.00 460 Upper Piedmont 140001000012 9/28/2006 145 5.6 <5 27 <5 13 314.0 22 198 <2 <2.5 1.5 17.20 270 Upper Piedmont 140001000012 9/28/2006** 145 26 21 17.20 Upper Piedmont 140001000013 12/10/2002 36 2.1 <5 40 <5 14 124.0 <5 120 <5 280 350 15.25 27 Upper Piedmont 140001000013 6/10/2003 2.1 <5 42 <5 12 128.9 <1 130 <5 22 16 15.92 11 Upper Piedmont 140001000013 12/10/2003 2 <5 42 <5 13 142.2 0.44 130 <5 170 37 15.20 18 Upper Piedmont 140001000013 7/27/2004 38 2.3 2.4 <5 <5 34 <5 <5 14 15 101.6 2.3 170 22 14 15.80 41 1100 Upper Piedmont 140001000013 7/27/2004** 38 2.2 2.4 <5 34 <5 <5 18 16 101.6 5.8 210 25 50 15.80 14 130 Upper Piedmont 140001000013 3/8/2005 2.2 <5 38 <5 19 <2 130 <2 34 17 <10 Upper Piedmont 140001000013 9/27/2006 2.4 <5 39 <5 19 144.0 <2 151 <2 86 110 15.20 11 Upper Piedmont 140001000013 9/19/2007 35 2.2 <5 37 <5 18 157.0 <2 152 <2 <6.2 8.2 15.58 <10 Upper Piedmont 140001000013 9/25/2008 38 2.4 2.3 <5 <5 39 <5 <5 20 19 101.6 2 139 <2 <6.2 2.5 15.48 <10 <10 Upper Piedmont 140001000014 12/10/2002 42 1.7 <5 42 <5 14 142.0 <5 120 <5 <2.5 4.2 13.46 16 Upper Piedmont 140001000014 6/10/2003 1.9 <5 42 <5 14 161.2 11 130 <5 300 1.3 16.00 <10 Upper Piedmont 140001000014 12/10/2003 1.9 <5 49 <5 15 163.0 10 140 <5 <2.5 1.3 15.30 12 Upper Piedmont 140001000014 7/27/2004 55 2.1 2.1 <5 <5 38 <5 <5 18 18 134.4 4.5 180 <2.5 1.3 16.00 <10 <10 Upper Piedmont 140001000014 3/8/2005 55 1.9 <5 46 <5 19 152.3 3.2 120 <2 <2.5 <1 15.51 <10 Upper Piedmont 140001000014 9/27/2006 1.9 <5 44 <5 19 152.0 <2 149 <2 <2.5 <1 15.32 <10 Upper Piedmont 140001000014 9/19/2007 53 1.9 <5 41 <5 18 161.0 <2 154 <2 <6.2 <1 15.45 <10 Upper Piedmont 140001000014 9/25/2008 55 2.1 2.1 <5 <5 41 <5 <5 20 20 173.0 <2 144 <2 <6.2 <1 15.70 <10 <10 Upper Piedmont 140001000015 12/10/2002 66 1.1 <5 54 <5 11 119.0 25 110 <5 72 100 15.49 28 Upper Piedmont 1400010000i5 6/10/2003 1.3 <5 48 <5 10 117.0 <1 120 <5 57 38 21.11 <10 Upper Piedmont 140001000015 12/11/2003 1.6 <5 49 <5 12 0.49 100 <5 120 60 54 Upper Piedmont 140001000015 7/27/2004 70 1.4 1.4 <5 <5 35 <5 <5 12 11 129.4 <2 160 13 7.4 17.60 <10 10 Upper Piedmont 140001000015 3/8/2005 1.3 <5 44 <5 15 145.0 <2 120 <2 8 1.5 15.51 <10 Upper Piedmont 140001000015 9/27/2006 1.4 <5 48 <5 16 138.0 <2 143 <2 3.5 2.7 15.40 <10 Upper Piedmont 140001000015 9/19/2007 70 1.4 <5 43 <5 15 145.0 <2 150 <2 <6.2 1.3 15.40 <10 Upper Piedmont 140001000015 9/19/2007** 70 1.4 <5 42 <5 15 145.0 <2 150 <2 <6.2 5 15.40 <10 Upper Piedmont 140001000015 9/25/2008 70 1.5 1.6 <5 <5 46 <5 <5 17 16 164.0 <2 144 <2 59 26 15.73 <10 <10 Upper Piedmont 140001000016 12/10/2002 164 0.87 <5 43 <5 11 164.0 <5 130 <5 <2.5 1.3 15.63 4000 Upper Piedmont 140001000016 6/10/2003 0.85 <5 44 <5 10 1.9 140 <5 3 <1 1200 Upper Piedmont 140001000016 12/10/2003 159 0.84 <5 49 <5 10 161.0 1.8 140 <5 <2.5 1.4 15.60 1100 Upper Piedmont 140001000016 7/27/2004 162 0.98 0.99 <5 <5 39 <5 <5 10 12 164.3 <2 210 <2.5 <1 17.00 780 800 Upper Piedmont 140001000016 3/8/2005 0.98 <5 46 <5 14 166.0 <2 150 <2 <2.5 <1 15.50 610 Upper Piedmont 140001000016 3/8/2005** 0.98 <5 44 <5 14 166.0 <2 150 <2 <2.5 <1 15.50 610 Upper Piedmont 140001000016 9/27/2006 1.2 <5 46 <5 15 178.0 2.3 161 <2 <2.5 2.3 16.48 750 Upper Piedmont 140001000016 9/18/2007 162 0.99 <5 40 <5 13 177.0 <2 154 <2 12 <1 15.88 610 Upper Piedmont 140001000016 9/25/2008 162 1.2 1.1 <5 <5 38 <5 <5 15 15 182.0 3.4 166 <2 <6.2 <1 15.79 300 470 Upper Piedmont 140001000017 12/10/2002 13 2.3 <5 43 <5 7.3 316 41 210 <5 140 170 14.98 46 Upper Piedmont 140001000017 6/10/2003 2.5 <5 38 <5 8 332 43 240 <5 300 180 14.37 26 Upper Piedmont 140001000017 12/9/2003 14 2.5 <5 32 <5 8.1 325 200 <5 48 50 15.20 16 Upper Piedmont 140001000017 7/28/2004 3 2.9 <5 <5 36 <5 <5 8 8.8 316 52 230 NA 10 12 16.80 <10 <10 Upper Piedmont 140001000017 3/9/2005 2.3 <5 38 <5 7.6 201 39 190 2.5 34 13 10.10 <10 Upper Piedmont 140001000017 3/9/2005** 2.2 <5 38 <5 7.6 39 200 2.5 31 13 <10 Upper Piedmont 140001000017 9/28/2006 2.5 <5 42 <5 7.2 277 39 200 <2 11 10 17.26 <10 Upper Piedmont 140001000018 12/10/2002 30 1.9 <5 34 <5 8.4 317 55 200 <5 <2.5 1.8 14.90 360 Upper Piedmont 140001000018 6/10/2003 1.9 <5 35 <5 8.2 313 49 210 <5 <2.5 2.1 14.39 1700 Upper Piedmont 140001000018 12/9/2003 30 1.9 <5 31 <5 8.6 212 53 170 <5 <5 1.4 14.80 1600 Upper Piedmont 140001000018 7/28/2004 35 2.4 2.3 <5 <5 28 <5 <5 8.1 8.2 301 42 210 <2.5 1.4 14.60 1500 1600 Upper Piedmont 40001000018 3/9/2005 35 2 <5 32 <5 9.6 239 52 190 <2 4 1.3 14.10 1900 Upper Piedmont 40001000018 9/27/2006 2 <5 32 <5 9.3 277 51 211 <2 <2.5 <1 17.26 1100 Upper Piedmont 40001000019 12/10/2002 132 2.2 <5 34 <5 11 295 51 200 <5 <2.5 2.3 15.20 1300 Upper Piedmont 40001000019 6/10/2003 2.7 <5 31 <5 9.5 260 40 200 <5 8 <1 16.49 730 Upper Piedmont 40001000019 12/9/2003 132 2.7 <5 34 <5 10 202 48 160 <5 3 <1 15.50 470 560 Upper Piedmont 40001000019 7/28/2004 135 3.1 2.9 <5 <5 28 <5 <5 12 12 310 58 210 7 1.4 15.50 470 490 Page 18 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation — Cape Fear Steam Electric Plant Duke Energy Progress, LLC Location IL Station ID AM Sampling Date I�(ft) Sampling Aluminum Depth Dissolved (Ng/L as AI) Aluminum Total (Ng/L as AI) monia as N (mg/L as NH3) Arsenic Arsenic Barium Total Dissolved Dissolved (Ng/L as u9/L as As) As) (Ng/L as Ba) Barium Bicarbona Total Dissolve (Ng/L as BaO as Bicarbonate Total (mg/L (mg/L 'CO I as HCO3) Cadmium Cadmium Dissolved Total (Ng/L (Ng/L as Cd) as Cd) Calcium Calcium Chloride Dissolved Total Dissolved (mg/L (mg/L (mg/L as Ca) as Ca) �Mas Chloride Chromium Total Dissolved (mg/L (Ng/L Cl) as Cl) as Cr) Chromiu Total (Ng/L as Cr) Copper Copp issolved Tota (Ng/L N as Cu) I Cyanide (mg/L as HCN) Fluoride Dissolved Dissolved Oxygen (mg/L (mg/L) as Fluoride Iron Total Dissolve (mg/L (Ng/L F)@� as F) as Fe) �• � 'rrr rrrr r r ®-� r r -®-®-�-®-0-0-®-®- r r -�- �S-®-�-®-®-®-�-�- QT�--�- Qi 'rrr rrrr r r r-� 0 "Mom r r -®-®-0-®-®-®-�-�- ��'-�-0-®-®-®-0-®-®-�-�- [If�'� m�'rrr rrrr rr �-� r r -®-®-®-®-m-®-®-®-�-�- Q,i�-�- iAARCADIS Page 19 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation — Cape Fear Steam Electric Plant Duke Energy Progress, LLC FIARCJaDIS ��,a��, Sampling Iron Lead Lead Magnesium nesium Manganese Manganese Mercury ercury Nickel Nickel Nitrogen Nitrogen Nitrogen, Nitrogen -M Nitrogen, NO2+ NO2+NO3JN, Nitrate as N Oxidation Reductionj1.e Phosph Lab WH, Phosphorus Phosphorou Location Station ID Sampling Date Depth (ft) Total Dissolved (pg/L (pg/L Total Dissolve (pg/L (mg/L otal mg/L Dissolved Total Dissolved (pg/L (pg/L (pg/L Total Dissolved Total monia Ammonia + Organic Dis Nitrate (pg/L (pg/L (pg/L (mg/L Organic (mg/L (mg/L Dis Nitrate Dis (mg/L NO3 Dis as N (mg/L as NO3) (mg/L (mg/L potential,Lab raw value(SU) (mg/L Ortho, as PO4) (mg/L dis as P Total as P) (mg/L as P) IL AM I as Fe) as Pb) as Pb) as Mg) s Mg) as Mn) as Mn) as Hg) as Hg) as Ni) as Ni) as NH4) as N) as N) as NO3) as N) a (mV) Page 20 of 21 Attachment A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research Stations BTV Statistical Outlier Evaluation — Cape Fear Steam Electric Plant Duke Energy Progress, LLC PARCADIS Location IL Station ID AM Sampling Date I Sampling Potassium Depth Dissolved (ft) mg/L as K) Potassium Radon-222 Total (mg/L as K) (pCi/L) Seleniu Dissolv (pg/L as Se rgIL Se) �- Silica Silica Dissolved Total (mg/L as (mg/L as Si02) Si02) Silver Dissolved (pg/L as Ag Silver Total (pg/L as Ag) Sodium Sodium Solids Total Dissolved Dissolved (mg/L as (mg/L as Na) (mg/L) Na) Solids, Specific Specific Residue at Cond., Field Cond., 180 deg C (us/cm) (us/cm) (mg/L) Sulfate Sulfate Dissolved Total Lab (mg/L as (mg/L as SO4) SO4) Total Sulfide Sulfide Dissolved Dissolved (mg/L as Solids (pg/L as S) H2S) (mg/L) Total Organic Carbon total (mg/L) Total Suspende Solids,r(NT Residue(deg 18(mg/ )i Water Temp C) Zinc Zinc Total Dissolved Dissolved as Zn) (pg/L as Zn) General Notes: 1. Blank fields = not sampled. Footnotes: Langtree * = Represents total analysis in unfiltered samples. Upper Piedmont * = Below measure point. * = Duplicate sample. Tater Hill * = Below measure point. * = Duplicate sample. Acronyms and Abbreviations: Qualifiers: Cord. = conductivity J = estimated deg C = degrees Celsius U = not detected Dis = dissolved µg/L = micrograms per liter ps/cm = microsiemen per centimeter mg/L - milligrams per liter my = millivolt NA = not available NCDEQ = North Carolina Department of Environmental Quality pCi/L = picocuries per liter SU = standard unit Page 21 of 21 04ARCADIS built nConsultancy fornatunaland hu ilt asss ets Arcadis U.S., Inc. 11400 Parkside Drive Suite 410 Knoxville, Tennessee 37934 Tel 865 675 6700 Fax 865 675 6712 www.arcadis.com Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC - Cape Fear Steam Electric Plant /. - \ � . �, UPPER TOLERANCE LIMITS (PROUCL OUTPUT SynTerra Cape Fear Steam Electric Plant Appendix A Aluminum Gamma Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProUCL 5.11/30/2020 3:11:38 PM From File Cape Fear Background Soil Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 95% General Statistics Total Number of Observations 19 Minimum 11000 Second Largest 40000 Maximum 44400 Mean 21168 Coefficient of Variation 0.407 Mean of logged Data 9.896 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.423 Number of Distinct Observations 14 First Quartile 16300 Median 19000 Third Quartile 24000 SD 8605 Skewness 1.672 SD of logged Data 0.352 d2max (for USL) 2.531 Gamma GOF Test A-D Test Statistic 0.71 Anderson -Darling Gamma GOF Test 5% A-D Critical Value 0.742 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.2 Kolmogorov-Smimov Gamma GOF Test 5% K-S Critical Value 0.199 Data Not Gamma Distributed at 5% Significance Level Detected data follow Appr. Gamma Distribution at 5% Significance Level Gamma Statistics k hat (MLE) 7.999 k star (bias corrected MLE) 6.771 Theta hat (MLE) 2646 Theta star (bias corrected MLE) 3126 nu hat (MLE) 304 nu star (bias corrected) 257.3 MLE Mean (bias corrected) 21168 MLE Sd (bias corrected) 8135 Background Statistics Assuming Gamma Distribution 95% Wilson Hilferty (WH) Approx. Gamma UPL 36659 90% Percentile 32032 95% Hawkins Wixley (HW) Approx. Gamma UPL 36748 95% Percentile 36078 95% WH Approx. Gamma UTL with 95% Coverage 44269 99% Percentile 44515 95% HW Approx. Gamma UTL with 95% Coverage 44743 95% WH USL 45643 95% HW USL 46204 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Barium General Statistics Total Number of Observations 16 Minimum 28 Second Largest 170 Maximum 200 Mean 77.21 Coefficient of Variation 0.687 Mean of logged Data 4.156 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.524 Number of Distinct Observations 15 Number of Missing Observations 3 First Quartile 41 Median 54.5 Third Quartile 100 SD 53.08 Skewness 1.311 SD of logged Data 0.619 d2max (for USL) 2.443 Gamma GOF Test A-D Test Statistic 0.612 Anderson -Darling Gamma GOF Test 5% A-D Critical Value 0.746 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.184 Kolmogorov-Smimov Gamma GOF Test 5% K-S Critical Value 0.217 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 2.775 k star (bias corrected MLE) 2.296 Theta hat (MLE) 27.83 Theta star (bias corrected MLE) 33.63 nu hat (MLE) 88.79 nu star (bias corrected) 73.47 MLE Mean (bias corrected) 77.21 MLE Sd (bias corrected) 50.96 Background Statistics Assuming Gamma Distribution 95% Wilson Hilferty (WH) Approx. Gamma UPL 182.3 90% Percentile 145.4 95% Hawkins Wixley (HW) Approx. Gamma UPL 184.7 95% Percentile 175.4 95% WH Approx. Gamma UTL with 95% Coverage 250.3 99% Percentile 241.4 95% HW Approx. Gamma UTL with 95% Coverage 259.9 95% WH USL 241.9 95% HW USL 250.4 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Calcium General Statistics Total Number of Observations 15 Number of Missing Observations 4 Number of Detects 13 Number of Distinct Detects 13 Minimum Detect 45 Maximum Detect 2300 Variance Detected 393649 Mean Detected 696.2 Mean of Detected Logged Data 6.113 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.566 Number of Distinct Observations 15 Number of Non -Detects 2 Number of Distinct Non -Detects 2 Minimum Non -Detect 210 Maximum Non -Detect 290 Percent Non -Detects 13.33% SD Detected 627.4 SD of Detected Logged Data 1.09 d2max (for USL) 2.409 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.191 Anderson -Darling GOF Test 5% A-D Critical Value 0.753 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.124 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.242 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution KM Mean 615.4 95% UTL95% Coverage 2151 95% KM Chebyshev UPL 3309 95% KM Percentile (z) 1600 95% KM USL 2057 Gamma Statistics on Detected Data Only k hat (MLE) 1.298 Theta hat (MLE) 536.2 nu hat (MLE) 33.75 MLE Mean (bias corrected) 696.2 MLE Sd (bias corrected) 679.4 KM SD 598.3 95% KM UPL (t) 1704 90% KM Percentile (z) 1382 99% KM Percentile (z) 2007 k star (bias corrected MLE) 1.05 Theta star (bias corrected MLE) 663.1 nu star (bias corrected) 27.3 95% Percentile of Chisquare (2kstar) 6.183 Gamma ROS Statistics using Imputed Non -Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 0.01 Mean 603.7 Maximum 2300 Median 380 SD 630 CV 1.044 k hat (MLE) 0.491 k star (bias corrected MLE) 0.437 Theta hat (MLE) 1229 Theta star (bias corrected MLE) 1380 nu hat (MLE) 14.74 nu star (bias corrected) 13.12 MLE Mean (bias corrected) 603.7 MLE Sd (bias corrected) 912.7 95% Percentile of Chisquare (2kstar) 3.524 90% Percentile 1677 95% Percentile 2431 99% Percentile 4310 The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 4268 5915 95% Approx. Gamma UPL 2507 3088 95% Gamma USL 3846 5204 Cape Fear Steam Electric Plant Appendix A Calcium (Continued) Estimates of Gamma Parameters using KM Estimates Mean (KM) 615.4 SD (KM) 598.3 Variance (KM) 358021 SE of Mean (KM) 161 k hat (KM) 1.058 k star (KM) 0.891 nu hat (KM) 31.74 nu star (KM) 31.74 theta hat (KM) 581.8 theta star (KM) 690.9 80% gamma percentile (KM) 999.1 90% gamma percentile (KM) 1458 95% gamma percentile (KM) 1921 99% gamma percentile (KM) 3006 The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 3133 3548 95% Approx. Gamma UPL 1994 2123 95% KM Gamma Percentile 1776 1864 95% Gamma USL 2865 3202 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Chloride General Statistics Total Number of Observations 15 Minimum 1.4 Second Largest 140 Maximum 140 Mean 33.45 Coefficient of Variation 1.523 Mean of logged Data 2.38 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.566 Number of Distinct Observations 14 Number of Missing Observations 3 First Quartile 3.05 Median 12 Third Quartile 23.5 SD 50.94 Skewness 1.65 SD of logged Data 1.603 d2max (for USL) 2.409 Gamma GOF Test A-D Test Statistic 0.904 Anderson -Darling Gamma GOF Test 5% A-D Critical Value 0.789 Data Not Gamma Distributed at 5% Significance Level K-S Test Statistic 0.2 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.233 Detected data appear Gamma Distributed at 5% Significance Level Detected data follow Appr. Gamma Distribution at 5% Significance Level Gamma Statistics k hat (MLE) 0.553 k star (bias corrected MLE) 0.487 Theta hat (MLE) 60.47 Theta star (bias corrected MLE) 68.69 nu hat (MLE) 16.6 nu star (bias corrected) 14.61 MLE Mean (bias corrected) 33.45 MLE Sd (bias corrected) 47.94 Background Statistics Assuming Gamma Distribution 95% Wilson Hilferty (WH) Approx. Gamma UPL 136.5 90% Percentile 91 95% Hawkins Wixley (HW) Approx. Gamma UPL 143.2 95% Percentile 129.7 95% WH Approx. Gamma UTL with 95% Coverage 240.9 99% Percentile 225.2 95% HW Approx. Gamma UTL with 95% Coverage 275.9 95% WH USL 215.6 95% HW USL 242.5 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Selenium General Statistics Total Number of Observations 19 Number of Detects 14 Number of Distinct Detects 10 Minimum Detect 0.3 Maximum Detect 0.795 Variance Detected 0.0202 Mean Detected 0.425 Mean of Detected Logged Data -0.899 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.423 Number of Distinct Observations 13 Number of Non -Detects 5 Number of Distinct Non -Detects 3 Minimum Non -Detect 1.1 Maximum Non -Detect 1.5 Percent Non -Detects 26.32% SD Detected 0.142 SD of Detected Logged Data 0.288 d2max (for USL) 2.531 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.769 Anderson -Darling GOF Test 5% A-D Critical Value 0.734 Data Not Gamma Distributed at 5% Significance Level K-S Test Statistic 0.191 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.229 Detected data appear Gamma Distributed at 5% Significance Level Detected data follow Appr. Gamma Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution KM Mean 0.425 KM SD 0.137 95% UTL95% Coverage 0.756 95% KM UPL (t) 0.668 95% KM Chebyshev UPL 1.037 90% KM Percentile (z) 0.6 95% KM Percentile (z) 0.65 99% KM Percentile (z) 0.743 95% KM USL 0.771 Gamma Statistics on Detected Data Only k hat (MLE) 11.95 k star (bias corrected MLE) 9.435 Theta hat (MLE) 0.0356 Theta star (bias corrected MLE) 0.045 nu hat (MLE) 334.5 nu star (bias corrected) 264.2 MLE Mean (bias corrected) 0.425 MLE Sd (bias corrected) 0.138 95% Percentile of Chisquare (2kstar) 29.98 Gamma ROS Statistics using Imputed Non -Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 0.3 Mean 0.423 Maximum 0.795 Median 0.39 SD 0.125 CV 0.295 k hat (MLE) 14.92 k star (bias corrected MLE) 12.6 Theta hat (MLE) 0.0283 Theta star (bias corrected MLE) 0.0335 nu hat (MLE) 566.9 nu star (bias corrected) 478.7 MLE Mean (bias corrected) 0.423 MLE Sd (bias corrected) 0.119 95% Percentile of Chisquare (2kstar) 37.9 90% Percentile 0.581 95% Percentile 0.636 99% Percentile 0.748 The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 0.743 0.747 95% Approx. Gamma UPL 0.643 0.643 95% Gamma USL 0.761 0.766 Cape Fear Steam Electric Plant Appendix A Selenium (Continued) Estimates of Gamma Parameters using KM Estimates Mean (KM) 0.425 Variance (KM) 0.0187 k hat (KM) 9.64 nu hat (KM) 366.3 theta hat (KM) 0.0441 80% gamma percentile (KM) 0.542 95% gamma percentile (KM) 0.695 SD (KM) 0.137 SE of Mean (KM) 0.0379 k star (KM) 8.153 nu star (KM) 366.3 theta star (KM) 0.0521 90% gamma percentile (KM) 0.623 99% gamma percentile (KM) 0.845 The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 0.779 0.783 95% Approx. Gamma UPL 0.666 0.666 95% KM Gamma Percentile 0.644 0.644 95% Gamma USL 0.799 0.804 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Sodium General Statistics Total Number of Observations 13 Number of Missing Observations 6 Number of Detects 8 Number of Distinct Detects 8 Minimum Detect 49 Maximum Detect 790 Variance Detected 59520 Mean Detected 229.1 Mean of Detected Logged Data 5.037 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.671 Number of Distinct Observations 13 Number of Non -Detects 5 Number of Distinct Non -Detects 5 Minimum Non -Detect 210 Maximum Non -Detect 510 Percent Non -Detects 38.46% SD Detected 244 SD of Detected Logged Data 0.932 d2max (for USL) 2.331 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.385 Anderson -Darling GOF Test 5% A-D Critical Value 0.73 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.221 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.299 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution KM Mean 190 KM SD 190.6 95% UTL95% Coverage 699 95% KM UPL (t) 542.5 95% KM Chebyshev UPL 1052 90% KM Percentile (z) 434.2 95% KM Percentile (z) 503.5 99% KM Percentile (z) 633.3 95% KM USL 634.1 Gamma Statistics on Detected Data Only k hat (MLE) 1.403 k star (bias corrected MLE) 0.96 Theta hat (MLE) 163.3 Theta star (bias corrected MLE) 238.7 nu hat (MLE) 22.44 nu star (bias corrected) 15.36 MLE Mean (bias corrected) 229.1 MLE Sd (bias corrected) 233.8 95% Percentile of Chisquare (2kstar) 5.836 Gamma ROS Statistics using Imputed Non -Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 49 Mean 184.5 Maximum 790 Median 125 SD 195.5 CV 1.06 k hat (MLE) 1.812 k star (bias corrected MLE) 1.445 Theta hat (MLE) 101.8 Theta star (bias corrected MLE) 127.7 nu hat (MLE) 47.12 nu star (bias corrected) 37.58 MLE Mean (bias corrected) 184.5 MLE Sd (bias corrected) 153.5 95% Percentile of Chisquare (2kstar) 7.624 90% Percentile 388 95% Percentile 486.6 99% Percentile 710 The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 775.1 802.7 95% Approx. Gamma UPL 510.4 510.9 95% Gamma USL 656.4 669.7 Cape Fear Steam Electric Plant Appendix A Sodium (Continued) Estimates of Gamma Parameters using KM Estimates Mean (KM) 190 SD (KM) 190.6 Variance (KM) 36326 SE of Mean (KM) 58.67 k hat (KM) 0.993 k star (KM) 0.815 nu hat (KM) 25.83 nu star (KM) 25.83 theta hat (KM) 191.2 theta star (KM) 233 80% gamma percentile (KM) 310.1 90% gamma percentile (KM) 459.8 95% gamma percentile (KM) 612 99% gamma percentile (KM) 971 The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 813.7 858 95% Approx. Gamma UPL 531.2 538.2 95% KM Gamma Percentile 472.8 474.8 95% Gamma USL 686.9 711.8 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Sulfate General Statistics Total Number of Observations 15 Number of Missing Observations 3 Number of Detects 10 Number of Distinct Detects 10 Minimum Detect 6.8 Maximum Detect 420 Variance Detected 18820 Mean Detected 93.5 Mean of Detected Logged Data 3.648 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.566 Number of Distinct Observations 12 Number of Non -Detects 5 Number of Distinct Non -Detects 2 Minimum Non -Detect 12 Maximum Non -Detect 13 Percent Non -Detects 33.33% SD Detected 137.2 SD of Detected Logged Data 1.412 d2max (for USL) 2.409 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.542 Anderson -Darling GOF Test 5% A-D Critical Value 0.762 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.21 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.277 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution KM Mean 65 KM SD 113.7 95% UTL95% Coverage 356.6 95% KM UPL (t) 271.7 95% KM Chebyshev UPL 576.6 90% KM Percentile (z) 210.7 95% KM Percentile (z) 251.9 99% KM Percentile (z) 329.4 95% KM USL 338.8 Gamma Statistics on Detected Data Only k hat (MLE) 0.682 k star (bias corrected MLE) 0.544 Theta hat (MLE) 137.1 Theta star (bias corrected MLE) 171.9 nu hat (MLE) 13.64 nu star (bias corrected) 10.88 MLE Mean (bias corrected) 93.5 MLE Sd (bias corrected) 126.8 95% Percentile of Chisquare (2kstar) 4.055 Gamma ROS Statistics using Imputed Non -Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 0.01 Mean 62.34 Maximum 420 Median 8.7 SD 119.1 CV 1.91 k hat (MLE) 0.224 k star (bias corrected MLE) 0.223 Theta hat (MLE) 278.9 Theta star (bias corrected MLE) 279.2 nu hat (MLE) 6.706 nu star (bias corrected) 6.698 MLE Mean (bias corrected) 62.34 MLE Sd (bias corrected) 131.9 95% Percentile of Chisquare (2kstar) 2.233 90% Percentile 188.2 95% Percentile 311.8 99% Percentile 646.1 The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 600.5 852.8 95% Approx. Gamma UPL 304.5 365.9 95% Gamma USL 527 724.1 Cape Fear Steam Electric Plant Appendix A Sulfate (Continued) Estimates of Gamma Parameters using KM Estimates Mean (KM) 65 SD (KM) 113.7 Variance (KM) 12917 SE of Mean (KM) 30.93 k hat (KM) 0.327 k star (KM) 0.306 nu hat (KM) 9.813 nu star (KM) 9.813 theta hat (KM) 198.7 theta star (KM) 212.3 80% gamma percentile (KM) 100.2 90% gamma percentile (KM) 191.2 95% gamma percentile (KM) 295.4 99% gamma percentile (KM) 565.5 The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 414.1 443.6 95% Approx. Gamma UPL 238.8 238.2 95% KM Gamma Percentile 206.7 202.9 95% Gamma USL 371.8 392.3 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Thallium General Statistics Total Number of Observations 18 Minimum 0.09 Second Largest 0.347 Maximum 0.349 Mean 0.182 Coefficient of Variation 0.448 Mean of logged Data -1.787 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.453 Number of Distinct Observations 16 First Quartile 0.13 Median 0.16 Third Quartile 0.198 SD 0.0818 Skewness 1.046 SD of logged Data 0.419 d2max (for USL) 2.504 Gamma GOF Test A-D Test Statistic 0.502 Anderson -Darling Gamma GOF Test 5% A-D Critical Value 0.742 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.136 Kolmogorov-Sminnov Gamma GOF Test 5% K-S Critical Value 0.204 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 5.983 Theta hat (MLE) 0.0305 nu hat (MLE) 215.4 MLE Mean (bias corrected) 0.182 Background Statistics Assuming Gamma Distribution 95% Wilson Hilferty (WH) Approx. Gamma UPL 0.341 95% Hawkins Wixley (HW) Approx. Gamma UPL 0.344 95% WH Approx. Gamma UTL with 95% Coverage 0.425 95% HW Approx. Gamma UTL with 95% Coverage 0.433 95% WH USL 0.431 k star (bias corrected MLE) 5.023 Theta star (bias corrected MLE) 0.0363 nu star (bias corrected) 180.8 MLE Sd (bias corrected) 0.0814 90% Percentile 0.291 95% Percentile 0.334 99% Percentile 0.423 95% HW USL 0.441 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Zinc General Statistics Total Number of Observations 19 Minimum 14 Second Largest 83 Maximum 83 Mean 34.35 Coefficient of Variation 0.579 Mean of logged Data 3.409 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.423 Number of Distinct Observations 17 First Quartile 20.5 Median 28 Third Quartile 43.5 SD 19.88 Skewness 1.63 SD of logged Data 0.499 d2max (for USL) 2.531 Gamma GOF Test A-D Test Statistic 0.664 Anderson -Darling Gamma GOF Test 5% A-D Critical Value 0.745 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.162 Kolmogorov-Sminnov Gamma GOF Test 5% K-S Critical Value 0.199 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 4.068 k star (bias corrected MLE) 3.461 Theta hat (MLE) 8.444 Theta star (bias corrected MLE) 9.926 nu hat (MLE) 154.6 nu star (bias corrected) 131.5 MLE Mean (bias corrected) 34.35 MLE Sd (bias corrected) 18.47 Background Statistics Assuming Gamma Distribution 95% Wilson Hilferty (WH) Approx. Gamma UPL 70.92 90% Percentile 59.11 95% Hawkins Wixley (HW) Approx. Gamma UPL 71.37 95% Percentile 69.25 95% WH Approx. Gamma UTL with 95% Coverage 90.79 99% Percentile 91.05 95% HW Approx. Gamma UTL with 95% Coverage 92.76 95% WH USL 94.46 95% HW USL 96.78 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Two -Sided 95% Tolerance Intervals of pH Percent of Parametric Parametric Nonparametric Nonparametric Population Lower Upper Lower Upper Between Tolerance Tolerance Tolerance Tolerance Limits Limit Limit Limit Limit 50 4.402926 5.665823 4.46 5.83 60 4.24646 5.822289 4.38 6.91 70 4.06408 6.00467 4.38 6.91 80 3.834604 6.234147 90 3.494485 6.574265 95 3.199483 6.869267 99 2.622918 7.445832 Cape Fear Steam Electric Plant Appendix A Gamma Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 8:50:01 AM From File Cape Fear Background GW Surficial Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 95% Aluminum General Statistics Total Number of Observations 35 Number of Detects 34 Number of Distinct Detects 32 Minimum Detect 7 Maximum Detect 399 Variance Detected 10551 Mean Detected 119.6 Mean of Detected Logged Data 4.426 Number of Distinct Observations 33 Number of Non -Detects 1 Number of Distinct Non -Detects 1 Minimum Non -Detect 5 Maximum Non -Detect 5 Percent Non -Detects 2.857% SD Detected 102.7 SD of Detected Logged Data 0.924 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.157 d2max (for USL) 2.812 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.379 Anderson -Darling GOF Test 5% A-D Critical Value 0.765 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.088 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.154 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution KM Mean 116.3 KM SD 101.5 95% UTL95% Coverage 335.4 95% KM UPL (t) 290.5 95% KM Chebyshev UPL 565.3 90% KM Percentile (z) 246.5 95% KM Percentile (z) 283.4 99% KM Percentile (z) 352.6 95% KM USL 401.9 Gamma Statistics on Detected Data Only k hat (MLE) 1.54 Theta hat (MLE) 77.68 nu hat (MLE) 104.7 MLE Mean (bias corrected) 119.6 MLE Sd (bias corrected) 100.3 k star (bias corrected MLE) 1.424 Theta star (bias corrected MLE) 84.02 nu star (bias corrected) 96.81 95% Percentile of Chisquare (2kstar) 7.548 Cape Fear Steam Electric Plant Appendix A Aluminum (Continued) Gamma ROS Statistics using Imputed Non -Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 0.01 Mean 116.2 Maximum 399 Median 83 SD 103.2 CV 0.888 k hat (MLE) 0.984 k star (bias corrected MLE) 0.919 Theta hat (MLE) 118.1 Theta star (bias corrected MLE) 126.5 nu hat (MLE) 68.89 nu star (bias corrected) 64.32 MLE Mean (bias corrected) 116.2 MLE Sd (bias corrected) 121.2 95% Percentile of Chisquare (2kstar) 5.673 90% Percentile 273.2 95% Percentile 358.7 99% Percentile 558.6 The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 454.4 528 95% Approx. Gamma UPL 346.3 385.1 95% Gamma USL 652.3 808 Estimates of Gamma Parameters using KM Estimates Mean (KM) 116.3 SD (KM) 101.5 Variance (KM) 10312 SE of Mean (KM) 17.42 k hat (KM) 1.313 k star (KM) 1.219 nu hat (KM) 91.88 nu star (KM) 91.88 theta hat (KM) 88.64 theta star (KM) 95.43 80% gamma percentile (KM) 183.9 90% gamma percentile (KM) 255.1 95% gamma percentile (KM) 325.2 99% gamma percentile (KM) 485.7 The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 414.9 447.2 95% Approx. Gamma UPL 321.3 336.2 95% KM Gamma Percentile 307.9 320.7 95% Gamma USL 584.3 659.4 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Boron General Statistics Total Number of Observations 35 Number of Detects 28 Number of Distinct Detects 24 Minimum Detect 48.1 Maximum Detect 150 Variance Detected 1004 Mean Detected 88.09 Mean of Detected Logged Data 4.417 Appendix A Number of Distinct Observations 25 Number of Non -Detects 7 Number of Distinct Non -Detects 1 Minimum Non -Detect 50 Maximum Non -Detect 50 Percent Non -Detects 20% SD Detected 31.69 SD of Detected Logged Data 0.354 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.157 d2max (for USL) 2.812 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.705 Anderson -Darling GOF Test 5% A-D Critical Value 0.746 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.14 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.165 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution KM Mean 80.23 KM SD 31.97 95% UTL95% Coverage 149.2 95% KM UPL (t) 135 95% KM Chebyshev UPL 221.5 90% KM Percentile (z) 121.2 95% KM Percentile (z) 132.8 99% KM Percentile (z) 154.6 95% KM USL 170.1 Gamma Statistics on Detected Data Only k hat (MLE) 8.379 k star (bias corrected MLE) 7.505 Theta hat (MLE) 10.51 Theta star (bias corrected MLE) 11.74 nu hat (MLE) 469.3 nu star (bias corrected) 420.3 MLE Mean (bias corrected) 88.09 MLE Sd (bias corrected) 32.15 95% Percentile of Chisquare (2kstar) 25.01 Gamma ROS Statistics using Imputed Non -Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 22.88 Mean 78.4 Maximum 150 Median 70 SD 34.69 CV 0.442 k hat (MLE) 5.233 k star (bias corrected MLE) 4.803 Theta hat (MLE) 14.98 Theta star (bias corrected MLE) 16.32 nu hat (MLE) 366.3 nu star (bias corrected) 336.2 MLE Mean (bias corrected) 78.4 MLE Sd (bias corrected) 35.77 95% Percentile of Chisquare (2kstar) 17.76 90% Percentile 126.3 95% Percentile 145 99% Percentile 184.5 Cape Fear Steam Electric Plant Appendix A Boron (Continued) The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH 95% Approx. Gamma UTL with 95% Coverage 171.3 175.3 95% Approx. Gamma UPL 146.7 95% Gamma USL 212.6 221.1 Estimates of Gamma Parameters using KM Estimates HW 148.7 Mean (KM) 80.23 SD (KM) 31.97 Variance (KM) 1022 SE of Mean (KM) 5.503 k hat (KM) 6.3 k star (KM) 5.779 nu hat (KM) 441 nu star (KM) 441 theta hat (KM) 12.74 theta star (KM) 13.88 80% gamma percentile (KM) 106.1 90% gamma percentile (KM) 124.9 95% gamma percentile (KM) 141.8 99% gamma percentile (KM) 177.4 The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 159.1 160.9 95% Approx. Gamma UPL 138.8 139.5 95% KM Gamma Percentile 135.7 136.3 95% Gamma USL 192.6 197.1 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Cobalt General Statistics Total Number of Observations 35 Number of Distinct Observations 28 Number of Detects 28 Number of Non -Detects 7 Number of Distinct Detects 28 Number of Distinct Non -Detects 1 Minimum Detect 0.531 Minimum Non -Detect 1 Maximum Detect 78.7 Maximum Non -Detect 1 Variance Detected 388.9 Percent Non -Detects 20% Mean Detected 13.87 SD Detected 19.72 Mean of Detected Logged Data 1.671 SD of Detected Logged Data 1.479 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.157 d2max (for USL) 2.812 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.953 Anderson -Darling GOF Test 5% A-D Critical Value 0.796 Data Not Gamma Distributed at 5% Significance Level K-S Test Statistic 0.173 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.173 Detected data appear Gamma Distributed at 5% Significance Level Detected data follow Appr. Gamma Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution KM Mean 11.24 KM SD 18.1 95% UTL95% Coverage 50.28 95% KM UPL (t) 42.28 95% KM Chebyshev UPL 91.26 90% KM Percentile (z) 34.43 95% KM Percentile (z) 41.01 99% KM Percentile (z) 53.35 95% KM USL 62.13 Gamma Statistics on Detected Data Only k hat (MLE) 0.639 k star (bias corrected MLE) 0.594 Theta hat (MLE) 21.71 Theta star (bias corrected MLE) 23.34 nu hat (MLE) 35.77 nu star (bias corrected) 33.27 MLE Mean (bias corrected) 13.87 MLE Sd (bias corrected) 17.99 95% Percentile of Chisquare (2kstar) 4.291 Gamma ROS Statistics using Imputed Non -Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 0.01 Mean 11.09 Maximum 78.7 Median 2.04 SD 18.45 CV 1.663 k hat (MLE) 0.339 k star (bias corrected MLE) 0.329 Theta hat (MLE) 32.68 Theta star (bias corrected MLE) 33.68 nu hat (MLE) 23.76 nu star (bias corrected) 23.06 MLE Mean (bias corrected) 11.09 MLE Sd (bias corrected) 19.33 95% Percentile of Chisquare (2kstar) 2.923 90% Percentile 32.33 95% Percentile 49.23 99% Percentile 92.67 Cape Fear Steam Electric Plant Appendix A Cobalt (Continued) The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 66.74 81.43 95% Approx. Gamma UPL 44.95 50.61 95% Gamma USL 110.4 150.5 Estimates of Gamma Parameters using KM Estimates Mean (KM) 11.24 SD (KM) 18.1 Variance (KM) 327.7 SE of Mean (KM) 3.116 k hat (KM) 0.385 k star (KM) 0.371 nu hat (KM) 26.97 nu star (KM) 26.97 theta hat (KM) 29.16 theta star (KM) 30.26 80% gamma percentile (KM) 17.96 90% gamma percentile (KM) 32.14 95% gamma percentile (KM) 47.89 99% gamma percentile (KM) 87.82 The following statistics are computed using gamma distribution and KM estimates Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW 95% Approx. Gamma UTL with 95% Coverage 56.75 61.05 95% Approx. Gamma UPL 39.78 40.7 95% KM Gamma Percentile 37.45 38.02 95% Gamma USL 89.82 104.1 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Total Radium General Statistics Total Number of Observations 22 Minimum 0.272 Second Largest 3.78 Maximum 7.662 Mean 1.827 Coefficient of Variation 0.862 Mean of logged Data 0.353 Appendix A Number of Distinct Observations 21 Number of Missing Observations 11 First Quartile 1.001 Median 1.254 Third Quartile 2.14 SD 1.575 Skewness 2.684 SD of logged Data 0.706 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.349 d2max (for USL) 2.603 Gamma GOF Test A-D Test Statistic 0.585 Anderson -Darling Gamma GOF Test 5% A-D Critical Value 0.755 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.15 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.188 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 2.159 k star (bias corrected MLE) 1.895 Theta hat (MLE) 0.846 Theta star (bias corrected MLE) 0.964 nu hat (MLE) 95 nu star (bias corrected) 83.38 MLE Mean (bias corrected) 1.827 MLE Sd (bias corrected) 1.327 Background Statistics Assuming Gamma Distribution 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.503 90% Percentile 3.598 95% Hawkins Wixley (HW) Approx. Gamma UPL 4.558 95% Percentile 4.408 95% WH Approx. Gamma UTL with 95% Coverage 6.004 99% Percentile 6.209 95% HW Approx. Gamma UTL with 95% Coverage 6.219 95% WH USL 6.741 95% HW USL 7.059 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Lognormal Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 11:13:12 AM From File Cape Fear Background GW Bedrock Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 95% Different or Future K Observations 1 Number of Bootstrap Operations 2000 Aluminum General Statistics Total Number of Observations 68 Number of Distinct Observations 43 Minimum 2.39 First Quartile 11 Second Largest 155 Median 17 Maximum 295 Third Quartile 28.5 Mean 31.69 SD 46.71 Coefficient of Variation 1.474 Skewness 3.605 Mean of logged Data 2.909 SD of logged Data 0.966 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 d2max (for USL) 3.073 Lognormal GOF Test Shapiro Wilk Test Statistic 0.961 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk P Value 0.0907 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.095 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.107 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Background Statistics assuming Lognormal Distribution 95% UTL with 95% Coverage 125.5 90% Percentile (z) 63.25 95% UPL (t) 92.96 95% Percentile (z) 89.84 95% USL 357.2 99% Percentile (z) 173.6 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Total Radium General Statistics Total Number of Observations 37 Minimum 0.0972 Second Largest 3.27 Maximum 8.002 Mean 1.437 Coefficient of Variation 0.916 Mean of logged Data 0.106 Appendix A Number of Distinct Observations 37 Number of Missing Observations 29 First Quartile 0.758 Median 1.17 Third Quartile 1.518 SD 1.315 Skewness 3.687 SD of logged Data 0.728 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.14 d2max (for USL) 2.835 Lognormal GOF Test Shapiro Wilk Test Statistic 0.952 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.936 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.114 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.144 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Background Statistics assuming Lognormal Distribution 95% UTL with 95% Coverage 5.287 90% Percentile (z) 2.829 95% UPL (t) 3.868 95% Percentile (z) 3.686 95% USL 8.772 99% Percentile (z) 6.055 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Lognormal Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProUCL 5.11/30/2020 3:08:24 PM From File Cape Fear Background Soil Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 95% Different or Future K Observations 1 Number of Bootstrap Operations 2000 Iron General Statistics Total Number of Observations 16 Minimum 12000 Second Largest 29000 Maximum 40000 Mean 19094 Coefficient of Variation 0.364 Mean of logged Data 9.809 Number of Distinct Observations 13 Number of Missing Observations 3 First Quartile 15750 Median 17500 Third Quartile 19250 SD 6948 Skewness 2.125 SD of logged Data 0.302 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443 Lognormal GOF Test Shapiro Wilk Test Statistic 0.898 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.887 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.202 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.213 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Background Statistics assuming Lognormal Distribution 95% UTL with 95% Coverage 38976 90% Percentile (z) 26793 95% UPL (t) 31395 95% Percentile (z) 29896 95% USL 38038 99% Percentile (z) 36720 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Manganese General Statistics Total Number of Observations 19 Minimum 34 Second Largest 1900 Maximum 2700 Mean 418.8 Coefficient of Variation 1.659 Mean of logged Data 5.248 Number of Distinct Observations 19 First Quartile 85.5 Median 155 Third Quartile 325 SD 694.7 Skewness 2.731 SD of logged Data 1.192 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531 Lognormal GOF Test Shapiro Wilk Test Statistic 0.949 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.901 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.11 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.197 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Background Statistics assuming Lognormal Distribution 95% UTL with 95% Coverage 3418 90% Percentile (z) 876.3 95% UPL (t) 1586 95% Percentile (z) 1351 95% USL 3889 99% Percentile (z) 3046 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Potassium General Statistics Total Number of Observations 16 Minimum 139 Second Largest 920 Maximum 1300 Mean 393.1 Coefficient of Variation 0.783 Mean of logged Data 5.779 Appendix A Number of Distinct Observations 14 Number of Missing Observations 3 First Quartile 242.5 Median 285 Third Quartile 360 SD 307.9 Skewness 2.219 SD of logged Data 0.597 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443 Lognormal GOF Test Shapiro Wilk Test Statistic 0.899 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.887 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.197 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.213 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Background Statistics assuming Lognormal Distribution 95% UTL with 95% Coverage 1457 90% Percentile (z) 694.5 95% UPL (t) 950.2 95% Percentile (z) 862.6 95% USL 1389 99% Percentile (z) 1295 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Nonparametric Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.11/30/2020 3:17:58 PM From File Cape Fear Background Soil Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 85% Different or Future K Observations 1 Boron General Statistics Total Number of Observations 16 Number of Distinct Observations 14 Number of Missing Observations 2 Number of Detects 4 Number of Non -Detects 12 Number of Distinct Detects 4 Number of Distinct Non -Detects 10 Minimum Detect 5.26 Minimum Non -Detect 2.1 Maximum Detect 9 Maximum Non -Detect 5.1 Variance Detected 2.626 Percent Non -Detects 75% Mean Detected 6.7 SD Detected 1.621 Mean of Detected Logged Data 1.882 SD of Detected Logged Data 0.229 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.69 d2max (for USL) 2.443 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 3.25 SD 2.112 95% UTL85% Coverage 6.818 95% KM UPL (t) 7.066 95% KM Chebyshev UPL 12.74 90% KM Percentile (z) 5.956 95% KM Percentile (z) 6.724 99% KM Percentile (z) 8.163 95% KM USL 8.41 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 15 95% UTL with85% Coverage 6.54 Approx, f used to compute achieved CC 1.324 Approximate Actual Confidence Coefficient achieved by UTL 0.716 Approximate Sample Size needed to achieve specified CC 30 95% UPL 9 95% USL 9 95% KM Chebyshev UPL 12.74 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Cadmium General Statistics Total Number of Observations 18 Number of Distinct Observations 14 Number of Detects 7 Number of Non -Detects 11 Number of Distinct Detects 6 Number of Distinct Non -Detects 8 Minimum Detect 0.017 Minimum Non -Detect 0.021 Maximum Detect 0.084 Maximum Non -Detect 0.0625 Variance Detected 5.1581E-4 Percent Non -Detects 61.11% Mean Detected 0.0381 SD Detected 0.0227 Mean of Detected Logged Data -3.4 SD of Detected Logged Data 0.549 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.64 d2max (for USL) 2.504 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.0265 SD 0.0167 95% UTL85% Coverage 0.0538 95% KM UPL (t) 0.0562 95% KM Chebyshev UPL 0.101 90% KM Percentile (z) 0.0478 95% KM Percentile (z) 0.0538 99% KM Percentile (z) 0.0652 95% KM USL 0.0682 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 17 95% UTL with85% Coverage 0.0625 Approx, f used to compute achieved CC 1.5 Approximate Actual Confidence Coefficient achieved by UTL 0.776 Approximate Sample Size needed to achieve specified CC 30 95% UPL 0.084 95% USL 0.084 95% KM Chebyshev UPL 0.101 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Mercury General Statistics Total Number of Observations 19 Number of Distinct Observations 17 Number of Detects 9 Number of Non -Detects 10 Number of Distinct Detects 9 Number of Distinct Non -Detects 8 Minimum Detect 0.014 Minimum Non -Detect 0.082 Maximum Detect 0.15 Maximum Non -Detect 0.098 Variance Detected 0.00236 Percent Non -Detects 52.63% Mean Detected 0.0757 SD Detected 0.0485 Mean of Detected Logged Data -2.81 SD of Detected Logged Data 0.776 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.619 d2max (for USL) 2.531 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.0603 SD 0.0379 95% UTL85% Coverage 0.122 95% KM UPL (t) 0.128 95% KM Chebyshev UPL 0.23 90% KM Percentile (z) 0.109 95% KM Percentile (z) 0.123 99% KM Percentile (z) 0.148 95% KM USL 0.156 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 18 95% UTL with85% Coverage 0.14 Approx, f used to compute achieved CC 1.588 Approximate Actual Confidence Coefficient achieved by UTL 0.802 Approximate Sample Size needed to achieve specified CC 30 95% UPL 0.15 95% USL 0.15 95% KM Chebyshev UPL 0.23 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant N itrate Appendix A General Statistics Total Number of Observations 15 Number of Distinct Observations 11 Number of Missing Observations 3 Number of Detects 9 Number of Non -Detects 6 Number of Distinct Detects 9 Number of Distinct Non -Detects 5 Minimum Detect 0.082 Minimum Non -Detect 0.22 Maximum Detect 0.87 Maximum Non -Detect 0.26 Variance Detected 0.0559 Percent Non -Detects 40% Mean Detected 0.265 SD Detected 0.236 Mean of Detected Logged Data -1.565 SD of Detected Logged Data 0.678 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.719 d2max (for USL) 2.409 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.217 SD 0.185 95% UTL85% Coverage 0.535 95% KM UPL (t) 0.554 95% KM Chebyshev UPL 1.051 90% KM Percentile (z) 0.454 95% KM Percentile (z) 0.521 99% KM Percentile (z) 0.648 95% KM USL 0.663 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 14 95% UTL with85% Coverage 0.27 Approx, f used to compute achieved CC 1.235 Approximate Actual Confidence Coefficient achieved by UTL 0.681 Approximate Sample Size needed to achieve specified CC 30 95% UPL 0.87 95% USL 0.87 95% KM Chebyshev UPL 1.051 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Nonparametric Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 8:54:35 AM From File Cape Fear Background GW Surficial Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 85% Different or Future K Observations 1 Chromium (VI) General Statistics Total Number of Observations 27 Number of Distinct Observations 12 Number of Missing Observations 8 Number of Detects 9 Number of Non -Detects 18 Number of Distinct Detects 9 Number of Distinct Non -Detects 3 Minimum Detect 0.032 Minimum Non -Detect 0.025 Maximum Detect 2.3 Maximum Non -Detect 0.12 Variance Detected 0.548 Percent Non -Detects 66.67% Mean Detected 0.351 SD Detected 0.741 Mean of Detected Logged Data -2.268 SD of Detected Logged Data 1.428 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.503 d2max (for USL) 2.698 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.134 SD 0.431 95% UTL85% Coverage 0.782 95% KM UPL (t) 0.883 95% KM Chebyshev UPL 2.049 90% KM Percentile (z) 0.687 95% KM Percentile (z) 0.843 99% KM Percentile (z) 1.137 95% KM USL 1.298 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 25 95% UTL with85% Coverage 0.18 Approx, f used to compute achieved CC 1.471 Approximate Actual Confidence Coefficient achieved by UTL 0.793 Approximate Sample Size needed to achieve specified CC 40 95% UPL 1.54 95% USL 2.3 95% KM Chebyshev UPL 2.049 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Methane General Statistics Total Number of Observations 19 Number of Missing Observations 8 Number of Detects 3 Number of Distinct Detects 3 Minimum Detect 11 Maximum Detect 16 Variance Detected 6.413 Mean Detected 13.27 Mean of Detected Logged Data 2.573 Appendix A Number of Distinct Observations 4 Number of Non -Detects Number of Distinct Non -Detects Minimum Non -Detect Maximum Non -Detect Percent Non -Detects SD Detected SD of Detected Logged Data Warning: Data set has only 3 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates. Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.619 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 10.52 95% UTL85% Coverage 12.86 95% KM Chebyshev UPL 16.99 95% KM Percentile (z) 12.9 95% KM USL 14.18 d2max (for USL) SD 95% KM UPL (t) 90% KM Percentile (z) 99% KM Percentile (z) Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) 16 1 10 10 84.21 % 2.532 0.188 2.531 1.447 13.09 12.37 13.88 Order of Statistic, r 18 95% UTL with85% Coverage 12.8 Approx, f used to compute achieved CC 1.588 Approximate Actual Confidence Coefficient achieved by UTL 0.802 Approximate Sample Size needed to achieve specified CC 30 95% UPL 16 95% USL 16 95% KM Chebyshev UPL 16.99 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Total Uranium General Statistics Total Number of Observations 24 Number of Missing Observations 9 Number of Detects 20 Number of Distinct Detects 20 Minimum Detect 1.2100E-4 Maximum Detect 0.0188 Variance Detected 4.9131 E-5 Mean Detected 0.00561 Mean of Detected Logged Data -6.483 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.538 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Appendix A Number of Distinct Observations 21 Number of Non -Detects 4 Number of Distinct Non -Detects 1 Minimum Non -Detect 2.0000E-4 Maximum Non -Detect 2.0000E-4 Percent Non -Detects 16.67% SD Detected 0.00701 SD of Detected Logged Data 1.818 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.00469 95% UTL85% Coverage 0.0148 95% KM Chebyshev UPL 0.0339 95% KM Percentile (z) 0.0155 95% KM USL 0.022 d2max (for USL) 2.644 SD 0.00656 95% KM UPL (t) 0.0162 90% KM Percentile (z) 0.0131 99% KM Percentile (z) 0.02 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 23 95% UTL with85% Coverage 0.0165 Approx, f used to compute achieved CC 2.029 Approximate Actual Confidence Coefficient achieved by UTL 0.894 Approximate Sample Size needed to achieve specified CC 30 95% UPL 0.0182 95% USL 0.0188 95% KM Chebyshev UPL 0.0339 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Nonparametric Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 9:21:57 AM From File Cape Fear Background GW Surficial Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 90% Different or Future K Observations 1 Arsenic General Statistics Total Number of Observations 35 Number of Distinct Observations 8 Number of Detects 8 Number of Non -Detects 27 Number of Distinct Detects 7 Number of Distinct Non -Detects 1 Minimum Detect 0.338 Minimum Non -Detect 1 Maximum Detect 2.72 Maximum Non -Detect 1 Variance Detected 0.595 Percent Non -Detects 77.14% Mean Detected 2.222 SD Detected 0.771 Mean of Detected Logged Data 0.662 SD of Detected Logged Data 0.707 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.769 SD 0.863 95% UTL90% Coverage 2.256 95% KM UPL (t) 2.249 95% KM Chebyshev UPL 4.584 90% KM Percentile (z) 1.875 95% KM Percentile (z) 2.188 99% KM Percentile (z) 2.777 95% KM USL 3.196 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 34 95% UTL with90% Coverage 2.6 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% UPL 2.624 95% USL 2.72 95% KM Chebyshev UPL 4.584 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Barium General Statistics Total Number of Observations 35 Number of Distinct Observations 28 Minimum 9 First Quartile 32 Second Largest 187 Median 76 Maximum 202 Third Quartile 173.5 Mean 106.4 SD 71.4 Coefficient of Variation 0.671 Skewness -0.097 Mean of logged Data 4.299 SD of logged Data 0.999 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 34 95% UTL with 90% Coverage 187 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 187 95% BCA Bootstrap UTL with 90% Coverage 187 95% UPL 190 90% Percentile 184.2 90% Chebyshev UPL 323.6 95% Percentile 187 95% Chebyshev UPL 422 99% Percentile 196.9 95% USL 202 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Calcium General Statistics Total Number of Observations 35 Number of Distinct Observations 34 Minimum 4.31 First Quartile 54.75 Second Largest 118 Median 60.4 Maximum 120 Third Quartile 71.3 Mean 58.58 SD 31.52 Coefficient of Variation 0.538 Skewness -0.302 Mean of logged Data 3.758 SD of logged Data 1.011 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 34 95% UTL with 90% Coverage 118 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 114 95% BCA Bootstrap UTL with 90% Coverage 112.8 95% UPL 118.4 90% Percentile 96.08 90% Chebyshev UPL 154.5 95% Percentile 108.9 95% Chebyshev UPL 197.9 99% Percentile 119.3 95% USL 120 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Chloride General Statistics Total Number of Observations 34 Appendix A Number of Distinct Observations 20 Number of Missing Observations 1 Minimum 2.5 First Quartile 6.4 Second Largest 270 Median 110.5 Maximum 280 Third Quartile 240 Mean 122.9 SD 119.6 Coefficient of Variation 0.973 Skewness 0.0357 Mean of logged Data 3.574 SD of logged Data 1.959 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.732 d2max (for USL) 2.799 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 33 95% UTL with 90% Coverage 270 Approx, f used to compute achieved CC 1.833 Approximate Actual Confidence Coefficient achieved by UTL 0.867 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 264 95% BCA Bootstrap UTL with 90% Coverage 250 95% UPL 272.5 90% Percentile 250 90% Chebyshev UPL 486.8 95% Percentile 257 95% Chebyshev UPL 651.7 99% Percentile 276.7 95% USL 280 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Copper Appendix A General Statistics Total Number of Observations 32 Number of Distinct Observations 11 Number of Missing Observations 1 Number of Detects 10 Number of Non -Detects 22 Number of Distinct Detects 10 Number of Distinct Non -Detects 1 Minimum Detect 1.52 Minimum Non -Detect 1 Maximum Detect 4.89 Maximum Non -Detect 1 Variance Detected 1.123 Percent Non -Detects 68.75% Mean Detected 2.759 SD Detected 1.06 Mean of Detected Logged Data 0.95 SD of Detected Logged Data 0.379 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.748 d2max (for USL) 2.773 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 1.55 SD 0.99 95% UTL90% Coverage 3.281 95% KM UPL (t) 3.255 95% KM Chebyshev UPL 5.933 90% KM Percentile (z) 2.819 95% KM Percentile (z) 3.179 99% KM Percentile (z) 3.853 95% KM USL 4.296 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 31 95% UTL with90% Coverage 3.6 Approx, f used to compute achieved CC 1.722 Approximate Actual Confidence Coefficient achieved by UTL 0.844 Approximate Sample Size needed to achieve specified CC 46 95% UPL 4.052 95% USL 4.89 95% KM Chebyshev UPL 5.933 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Iron General Statistics Total Number of Observations 35 Minimum 21 Second Largest 37500 Maximum 45500 Mean 7418 Coefficient of Variation 1.991 Mean of logged Data 6.216 Appendix A Number of Distinct Observations 34 First Quartile 144.5 Median 223 Third Quartile 424.5 SD 14768 Skewness 1.644 SD of logged Data 2.259 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 34 95% UTL with 90% Coverage 37500 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 37500 95% BCA Bootstrap UTL with 90% Coverage 37180 95% UPL 39100 90% Percentile 35320 90% Chebyshev UPL 52350 95% Percentile 36940 95% Chebyshev UPL 72703 99% Percentile 42780 95% USL 45500 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Magnesium General Statistics Total Number of Observations 35 Number of Distinct Observations 34 Minimum 1.46 First Quartile 12.4 Second Largest 32.5 Median 18.8 Maximum 35.7 Third Quartile 27.45 Mean 18.82 SD 10.56 Coefficient of Variation 0.561 Skewness -0.405 Mean of logged Data 2.622 SD of logged Data 0.984 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 34 95% UTL with 90% Coverage 32.5 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 32.5 95% BCA Bootstrap UTL with 90% Coverage 31.3 95% UPL 33.14 90% Percentile 29.18 90% Chebyshev UPL 50.94 95% Percentile 30.4 95% Chebyshev UPL 65.5 99% Percentile 34.61 95% USL 35.7 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Manganese General Statistics Total Number of Observations 35 Number of Distinct Observations 34 Minimum 17 First Quartile 27 Second Largest 9050 Median 285 Maximum 9170 Third Quartile 2795 Mean 1879 SD 2689 Coefficient of Variation 1.431 Skewness 1.632 Mean of logged Data 5.79 SD of logged Data 2.302 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 34 95% UTL with 90% Coverage 9050 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 8618 95% BCA Bootstrap UTL with 90% Coverage 8618 95% UPL 9074 90% Percentile 5814 90% Chebyshev UPL 10060 95% Percentile 8294 95% Chebyshev UPL 13765 99% Percentile 9129 95% USL 9170 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Mercury Appendix A General Statistics Total Number of Observations 32 Number of Distinct Observations 5 Number of Missing Observations 1 Number of Detects 4 Number of Non -Detects 28 Number of Distinct Detects 4 Number of Distinct Non -Detects 1 Minimum Detect 0.022 Minimum Non -Detect 0.05 Maximum Detect 0.13 Maximum Non -Detect 0.05 Variance Detected 0.0024 Percent Non -Detects 87.5% Mean Detected 0.088 SD Detected 0.049 Mean of Detected Logged Data -2.626 SD of Detected Logged Data 0.822 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.748 d2max (for USL) 2.773 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.0303 SD 0.0265 95% UTL90% Coverage 0.0766 95% KM UPL (t) 0.0759 95% KM Chebyshev UPL 0.148 90% KM Percentile (z) 0.0642 95% KM Percentile (z) 0.0738 99% KM Percentile (z) 0.0919 95% KM USL 0.104 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 31 95% UTL with90% Coverage 0.12 Approx, f used to compute achieved CC 1.722 Approximate Actual Confidence Coefficient achieved by UTL 0.844 Approximate Sample Size needed to achieve specified CC 46 95% UPL 0.124 95% USL 0.13 95% KM Chebyshev UPL 0.148 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Molybdenum General Statistics Total Number of Observations 35 Number of Distinct Observations 12 Number of Detects 12 Number of Non -Detects 23 Number of Distinct Detects 11 Number of Distinct Non -Detects 1 Minimum Detect 0.136 Minimum Non -Detect 1 Maximum Detect 0.385 Maximum Non -Detect 1 Variance Detected 0.0051 Percent Non -Detects 65.71% Mean Detected 0.276 SD Detected 0.0714 Mean of Detected Logged Data -1.323 SD of Detected Logged Data 0.289 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.276 SD 0.0684 95% UTL90% Coverage 0.394 95% KM UPL (t) 0.393 95% KM Chebyshev UPL 0.578 90% KM Percentile (z) 0.364 95% KM Percentile (z) 0.388 99% KM Percentile (z) 0.435 95% KM USL 0.468 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 34 95% UTL with90% Coverage 1 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% UPL 1 95% USL 1 95% KM Chebyshev UPL 0.578 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Nickel General Statistics Total Number of Observations 35 Number of Distinct Observations 33 Number of Detects 33 Number of Non -Detects 2 Number of Distinct Detects 32 Number of Distinct Non -Detects 1 Minimum Detect 1.27 Minimum Non -Detect 1 Maximum Detect 48 Maximum Non -Detect 1 Variance Detected 93.2 Percent Non -Detects 5.714% Mean Detected 6.318 SD Detected 9.654 Mean of Detected Logged Data 1.224 SD of Detected Logged Data 0.98 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 6.014 SD 9.313 95% UTL90% Coverage 22.07 95% KM UPL (t) 21.99 95% KM Chebyshev UPL 47.18 90% KM Percentile (z) 17.95 95% KM Percentile (z) 21.33 99% KM Percentile (z) 27.68 95% KM USL 32.2 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 34 95% UTL with90% Coverage 24.8 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% UPL 29.44 95% USL 48 95% KM Chebyshev UPL 47.18 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Nitrate + Nitrite General Statistics Total Number of Observations 32 Number of Distinct Observations 17 Number of Missing Observations 3 Number of Detects 18 Number of Non -Detects 14 Number of Distinct Detects 16 Number of Distinct Non -Detects 1 Minimum Detect 0.018 Minimum Non -Detect 0.01 Maximum Detect 3.9 Maximum Non -Detect 0.01 Variance Detected 1.09 Percent Non -Detects 43.75% Mean Detected 0.721 SD Detected 1.044 Mean of Detected Logged Data -1.701 SD of Detected Logged Data 1.968 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.748 d2max (for USL) 2.773 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.41 SD 0.839 95% UTL90% Coverage 1.877 95% KM UPL (t) 1.854 95% KM Chebyshev UPL 4.123 90% KM Percentile (z) 1.485 95% KM Percentile (z) 1.79 99% KM Percentile (z) 2.361 95% KM USL 2.736 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 31 95% UTL with90% Coverage 2.5 Approx, f used to compute achieved CC 1.722 Approximate Actual Confidence Coefficient achieved by UTL 0.844 Approximate Sample Size needed to achieve specified CC 46 95% UPL 2.99 95% USL 3.9 95% KM Chebyshev UPL 4.123 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Potassium General Statistics Total Number of Observations 35 Number of Distinct Observations 29 Minimum 0.944 First Quartile 1.09 Second Largest 4.36 Median 1.18 Maximum 4.51 Third Quartile 3.125 Mean 1.855 SD 1.168 Coefficient of Variation 0.63 Skewness 1.119 Mean of logged Data 0.459 SD of logged Data 0.542 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 34 95% UTL with 90% Coverage 4.36 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 4.23 95% BCA Bootstrap UTL with 90% Coverage 4.14 95% UPL 4.39 90% Percentile 3.61 90% Chebyshev UPL 5.41 95% Percentile 3.975 95% Chebyshev UPL 7.021 99% Percentile 4.459 95% USL 4.51 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Selenium General Statistics Total Number of Observations 35 Number of Distinct Observations 8 Number of Detects 7 Number of Non -Detects 28 Number of Distinct Detects 7 Number of Distinct Non -Detects 1 Minimum Detect 0.379 Minimum Non -Detect 1 Maximum Detect 1.17 Maximum Non -Detect 1 Variance Detected 0.0914 Percent Non -Detects 80% Mean Detected 0.766 SD Detected 0.302 Mean of Detected Logged Data -0.34 SD of Detected Logged Data 0.423 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.655 SD 0.228 95% UTL90% Coverage 1.049 95% KM UPL (t) 1.047 95% KM Chebyshev UPL 1.665 90% KM Percentile (z) 0.948 95% KM Percentile (z) 1.031 99% KM Percentile (z) 1.187 95% KM USL 1.298 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 34 95% UTL with90% Coverage 1.05 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% UPL 1.074 95% USL 1.17 95% KM Chebyshev UPL 1.665 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Sodium General Statistics Total Number of Observations 35 Number of Distinct Observations 33 Minimum 15.6 First Quartile 48.5 Second Largest 190 Median 100 Maximum 281 Third Quartile 119.5 Mean 94.03 SD 59.62 Coefficient of Variation 0.634 Skewness 0.771 Mean of logged Data 4.268 SD of logged Data 0.853 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data appear Approximate Normal at 5% Significance Level Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 34 95% UTL with 90% Coverage 190 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 188 95% BCA Bootstrap UTL with 90% Coverage 190 95% UPL 208.2 90% Percentile 165.8 90% Chebyshev UPL 275.4 95% Percentile 186.5 95% Chebyshev UPL 357.6 99% Percentile 250.1 95% USL 281 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Strontium General Statistics Total Number of Observations 35 Number of Distinct Observations 34 Minimum 77 First Quartile 604.5 Second Largest 2360 Median 662 Maximum 2460 Third Quartile 958 Mean 816.6 SD 625.4 Coefficient of Variation 0.766 Skewness 1.257 Mean of logged Data 6.349 SD of logged Data 0.976 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 34 95% UTL with 90% Coverage 2360 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 2276 95% BCA Bootstrap UTL with 90% Coverage 2276 95% UPL 2380 90% Percentile 1750 90% Chebyshev UPL 2720 95% Percentile 2213 95% Chebyshev UPL 3582 99% Percentile 2426 95% USL 2460 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Sulfate General Statistics Total Number of Observations 34 Minimum 15 Second Largest 510 Maximum 690 Mean 133 Coefficient of Variation 1.336 Mean of logged Data 4.135 Appendix A Number of Distinct Observations 29 Number of Missing Observations 1 First Quartile 24.25 Median 43.5 Third Quartile 207.5 SD 177.6 Skewness 1.721 SD of logged Data 1.193 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.732 d2max (for USL) 2.799 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 33 95% UTL with 90% Coverage 510 Approx, f used to compute achieved CC 1.833 Approximate Actual Confidence Coefficient achieved by UTL 0.867 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 510 95% BCA Bootstrap UTL with 90% Coverage 507 95% UPL 555 90% Percentile 402 90% Chebyshev UPL 673.5 95% Percentile 503.5 95% Chebyshev UPL 918.4 99% Percentile 630.6 95% USL 690 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant TDS Appendix A General Statistics Total Number of Observations 34 Number of Distinct Observations 24 Number of Missing Observations 1 Minimum 140 First Quartile 520 Second Largest 900 Median 600 Maximum 1200 Third Quartile 637.5 Mean 560.4 SD 239.3 Coefficient of Variation 0.427 Skewness -0.0438 Mean of logged Data 6.204 SD of logged Data 0.565 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.732 d2max (for USL) 2.799 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 33 95% UTL with 90% Coverage 900 Approx, f used to compute achieved CC 1.833 Approximate Actual Confidence Coefficient achieved by UTL 0.867 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 900 95% BCA Bootstrap UTL with 90% Coverage 897 95% UPL 975 90% Percentile 824 90% Chebyshev UPL 1289 95% Percentile 893.5 95% Chebyshev UPL 1619 99% Percentile 1101 95% USL 1200 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant TOC Appendix A General Statistics Total Number of Observations 32 Number of Distinct Observations 30 Number of Missing Observations 3 Minimum 0.706 First Quartile 0.881 Second Largest 6.2 Median 1.1 Maximum 6.3 Third Quartile 3.65 Mean 2.074 SD 1.78 Coefficient of Variation 0.858 Skewness 1.28 Mean of logged Data 0.435 SD of logged Data 0.736 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.748 d2max (for USL) 2.773 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 31 95% UTL with 90% Coverage 6.2 Approx, f used to compute achieved CC 1.722 Approximate Actual Confidence Coefficient achieved by UTL 0.844 Approximate Sample Size needed to achieve specified CC 46 95% Percentile Bootstrap UTL with 90% Coverage 6.13 95% BCA Bootstrap UTL with 90% Coverage 6.04 95% UPL 6.235 90% Percentile 4.6 90% Chebyshev UPL 7.495 95% Percentile 5.815 95% Chebyshev UPL 9.951 99% Percentile 6.269 95% USL 6.3 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Zinc General Statistics Total Number of Observations 35 Number of Distinct Observations 15 Number of Detects 16 Number of Non -Detects 19 Number of Distinct Detects 14 Number of Distinct Non -Detects 1 Minimum Detect 1.719 Minimum Non -Detect 5 Maximum Detect 66 Maximum Non -Detect 5 Variance Detected 338.9 Percent Non -Detects 54.29% Mean Detected 16.63 SD Detected 18.41 Mean of Detected Logged Data 2.27 SD of Detected Logged Data 1.098 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 9.233 SD 13.85 95% UTL90% Coverage 33.11 95% KM UPL (t) 32.99 95% KM Chebyshev UPL 70.47 90% KM Percentile (z) 26.99 95% KM Percentile (z) 32.02 99% KM Percentile (z) 41.46 95% KM USL 48.18 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 34 95% UTL with90% Coverage 50 Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878 Approximate Sample Size needed to achieve specified CC 46 95% UPL 53.2 95% USL 66 95% KM Chebyshev UPL 70.47 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Nonparametric Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProUCL 5.12/3/2020 11:20:12 AM From File Cape Fear Background GW Bedrock Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 95% Different or Future K Observations 1 Arsenic General Statistics Total Number of Observations 67 Number of Missing Observations 1 Number of Detects 27 Number of Distinct Detects 26 Minimum Detect 0.51 Maximum Detect 11.9 Variance Detected 7.293 Mean Detected 4.579 Mean of Detected Logged Data 1.275 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.994 Number of Distinct Observations 27 Number of Non -Detects 40 Number of Distinct Non -Detects 1 Minimum Non -Detect 1 Maximum Non -Detect 1 Percent Non -Detects 59.7% SD Detected 2.7 SD of Detected Logged Data 0.822 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.068 Mean 2.247 SD 2.553 95% UTL95% Coverage 7.337 95% KM UPL (t) 6.537 95% KM Chebyshev UPL 13.46 90% KM Percentile (z) 5.519 95% KM Percentile (z) 6.446 99% KM Percentile (z) 8.186 95% KM USL 10.08 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 66 95% UTL with95% Coverage 8.3 Approx, f used to compute achieved CC 1.737 Approximate Actual Confidence Coefficient achieved by UTL 0.854 Approximate Sample Size needed to achieve specified CC 93 95% UPL 8.086 95% USL 11.9 95% KM Chebyshev UPL 13.46 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Barium General Statistics Total Number of Observations 68 Minimum 28 Second Largest 485 Maximum 488 Mean 316 Coefficient of Variation 0.474 Mean of logged Data 5.542 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Appendix A Number of Distinct Observations 58 First Quartile 242.5 Median 383 Third Quartile 428 SD 149.6 Skewness -0.816 SD of logged Data 0.784 d2max (for USL) 3.073 Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 67 95% UTL with 95% Coverage 485 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% Percentile Bootstrap UTL with 95% Coverage 485 95% BCA Bootstrap UTL with 95% Coverage 482.4 95% UPL 473.1 90% Percentile 464.9 90% Chebyshev UPL 768.1 95% Percentile 471.7 95% Chebyshev UPL 972.9 99% Percentile 486 95% USL 488 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Boron General Statistics Total Number of Observations 68 Number of Detects 17 Number of Distinct Detects 17 Minimum Detect 17.34 Maximum Detect 53 Variance Detected 125.9 Mean Detected 38.63 Mean of Detected Logged Data 3.608 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Appendix A Number of Distinct Observations 18 Number of Non -Detects 51 Number of Distinct Non -Detects 1 Minimum Non -Detect 50 Maximum Non -Detect 50 Percent Non -Detects 75% SD Detected 11.22 SD of Detected Logged Data 0.328 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 36.49 SD 10.2 95% UTL95% Coverage 56.8 95% KM UPL (t) 53.63 95% KM Chebyshev UPL 81.28 90% KM Percentile (z) 49.56 95% KM Percentile (z) 53.27 99% KM Percentile (z) 60.22 95% KM USL 67.84 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 52 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 50.55 95% USL 53 95% KM Chebyshev UPL 81.28 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Calcium General Statistics Total Number of Observations 68 Number of Detects 67 Number of Distinct Detects 60 Minimum Detect 23.4 Maximum Detect 72.2 Variance Detected 189.7 Mean Detected 47.69 Mean of Detected Logged Data 3.816 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Appendix A Number of Distinct Observations 61 Number of Non -Detects 1 Number of Distinct Non -Detects 1 Minimum Non -Detect 0.01 Maximum Non -Detect 0.01 Percent Non -Detects 1.471 % SD Detected 13.77 SD of Detected Logged Data 0.33 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 46.99 SD 14.73 95% UTL95% Coverage 76.33 95% KM UPL (t) 71.74 95% KM Chebyshev UPL 111.7 90% KM Percentile (z) 65.87 95% KM Percentile (z) 71.22 99% KM Percentile (z) 81.27 95% KM USL 92.27 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 69.6 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 68.32 95% USL 72.2 95% KM Chebyshev UPL 111.7 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Chloride General Statistics Total Number of Observations 67 Minimum 13 Second Largest 240 Maximum 240 Mean 89.85 Coefficient of Variation 0.777 Mean of logged Data 4.092 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.994 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Appendix A Number of Distinct Observations 27 Number of Missing Observations 1 First Quartile 36.5 Median 93 Third Quartile 140 SD 69.85 Skewness 0.558 SD of logged Data 0.998 d2max (for USL) 3.068 Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 66 95% UTL with 95% Coverage 240 Approx, f used to compute achieved CC 1.737 Approximate Actual Confidence Coefficient achieved by UTL 0.854 95% Percentile Bootstrap UTL with 95% Coverage 240 95% UPL 220 90% Chebyshev UPL 300.9 95% Chebyshev UPL 396.6 95% USL 240 Approximate Sample Size needed to achieve specified CC 93 95% BCA Bootstrap UTL with 95% Coverage 234 90% Percentile 200 95% Percentile 217 99% Percentile 240 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Cobalt General Statistics Total Number of Observations 68 Number of Detects 12 Number of Distinct Detects 12 Minimum Detect 0.66 Maximum Detect 6.7 Variance Detected 3.375 Mean Detected 2.211 Mean of Detected Logged Data 0.544 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Appendix A Number of Distinct Observations 13 Number of Non -Detects 56 Number of Distinct Non -Detects 1 Minimum Non -Detect 1 Maximum Non -Detect 1 Percent Non -Detects 82.35% SD Detected 1.837 SD of Detected Logged Data 0.706 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 1.048 SD 0.92 95% UTL95% Coverage 2.879 95% KM UPL (t) 2.593 95% KM Chebyshev UPL 5.087 90% KM Percentile (z) 2.227 95% KM Percentile (z) 2.561 99% KM Percentile (z) 3.188 95% KM USL 3.875 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 4.97 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 2.478 95% USL 6.7 95% KM Chebyshev UPL 5.087 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Iron General Statistics Total Number of Observations 68 Number of Detects 65 Number of Distinct Detects 59 Minimum Detect 3.382 Maximum Detect 4230 Variance Detected 423236 Mean Detected 442.5 Mean of Detected Logged Data 5.316 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Appendix A Number of Distinct Observations 60 Number of Non -Detects 3 Number of Distinct Non -Detects 1 Minimum Non -Detect 10 Maximum Non -Detect 10 Percent Non -Detects 4.412% SD Detected 650.6 SD of Detected Logged Data 1.45 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 423.3 SD 637.5 95% UTL95% Coverage 1692 95% KM UPL (t) 1494 95% KM Chebyshev UPL 3222 90% KM Percentile (z) 1240 95% KM Percentile (z) 1472 99% KM Percentile (z) 1906 95% KM USL 2382 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 2290 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 1844 95% USL 4230 95% KM Chebyshev UPL 3222 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Magnesium General Statistics Total Number of Observations 68 Number of Detects 67 Number of Distinct Detects 61 Minimum Detect 2.38 Maximum Detect 32.5 Variance Detected 76.4 Mean Detected 17.87 Mean of Detected Logged Data 2.718 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Number of Distinct Observations 62 Number of Non -Detects 1 Number of Distinct Non -Detects 1 Minimum Non -Detect 0.005 Maximum Non -Detect 0.005 Percent Non -Detects 1.471 % SD Detected 8.741 SD of Detected Logged Data 0.638 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 17.61 SD 8.876 95% UTL95% Coverage 35.28 95% KM UPL (t) 32.52 95% KM Chebyshev UPL 56.58 90% KM Percentile (z) 28.98 95% KM Percentile (z) 32.21 99% KM Percentile (z) 38.26 95% KM USL 44.89 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 31.3 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 31.02 95% USL 32.5 95% KM Chebyshev UPL 56.58 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Manganese General Statistics Total Number of Observations 68 Minimum 7 Second Largest 1080 Maximum 1120 Mean 411.8 Coefficient of Variation 0.825 Mean of logged Data 5.42 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Number of Distinct Observations 66 First Quartile 71.75 Median 280 Third Quartile 735.5 SD 339.6 Skewness 0.44 SD of logged Data 1.356 d2max (for USL) 3.073 Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 67 95% UTL with 95% Coverage 1080 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% Percentile Bootstrap UTL with 95% Coverage 1080 95% BCA Bootstrap UTL with 95% Coverage 1059 95% UPL 968.3 90% Percentile 878.2 90% Chebyshev UPL 1438 95% Percentile 903.6 95% Chebyshev UPL 1903 99% Percentile 1093 95% USL 1120 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Molybdenum General Statistics Total Number of Observations 68 Number of Detects 46 Number of Distinct Detects 45 Minimum Detect 0.096 Maximum Detect 17 Variance Detected 15.07 Mean Detected 4.675 Mean of Detected Logged Data 0.987 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Number of Distinct Observations 46 Number of Non -Detects 22 Number of Distinct Non -Detects 1 Minimum Non -Detect 1 Maximum Non -Detect 1 Percent Non -Detects 32.35% SD Detected 3.882 SD of Detected Logged Data 1.32 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 3.297 SD 3.736 95% UTL95% Coverage 10.74 95% KM UPL (t) 9.574 95% KM Chebyshev UPL 19.7 90% KM Percentile (z) 8.085 95% KM Percentile (z) 9.442 99% KM Percentile (z) 11.99 95% KM USL 14.78 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 13.4 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 12.13 95% USL 17 95% KM Chebyshev UPL 19.7 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Nickel General Statistics Total Number of Observations 68 Number of Detects 20 Number of Distinct Detects 20 Minimum Detect 0.458 Maximum Detect 8.32 Variance Detected 3.259 Mean Detected 2.3 Mean of Detected Logged Data 0.591 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Number of Distinct Observations 21 Number of Non -Detects 48 Number of Distinct Non -Detects 1 Minimum Non -Detect 1 Maximum Non -Detect 1 Percent Non -Detects 70.59% SD Detected 1.805 SD of Detected Logged Data 0.72 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 1.083 SD 1.244 95% UTL95% Coverage 3.559 95% KM UPL (t) 3.173 95% KM Chebyshev UPL 6.544 90% KM Percentile (z) 2.677 95% KM Percentile (z) 3.129 99% KM Percentile (z) 3.976 95% KM USL 4.905 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 4.94 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 3.293 95% USL 8.32 95% KM Chebyshev UPL 6.544 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Potassium General Statistics Total Number of Observations 68 Number of Detects 67 Number of Distinct Detects 52 Minimum Detect 0.592 Maximum Detect 5.6 Variance Detected 0.573 Mean Detected 1.8 Mean of Detected Logged Data 0.507 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Number of Distinct Observations 53 Number of Non -Detects 1 Number of Distinct Non -Detects 1 Minimum Non -Detect 0.1 Maximum Non -Detect 0.1 Percent Non -Detects 1.471 % SD Detected 0.757 SD of Detected Logged Data 0.411 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 1.775 SD 0.774 95% UTL95% Coverage 3.315 95% KM UPL (t) 3.075 95% KM Chebyshev UPL 5.172 90% KM Percentile (z) 2.766 95% KM Percentile (z) 3.047 99% KM Percentile (z) 3.575 95% KM USL 4.152 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 3.45 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 2.853 95% USL 5.6 95% KM Chebyshev UPL 5.172 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Selenium General Statistics Total Number of Observations 68 Number of Detects 17 Number of Distinct Detects 17 Minimum Detect 0.998 Maximum Detect 3.17 Variance Detected 0.362 Mean Detected 1.83 Mean of Detected Logged Data 0.555 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Number of Distinct Observations 18 Number of Non -Detects 51 Number of Distinct Non -Detects 1 Minimum Non -Detect 1 Maximum Non -Detect 1 Percent Non -Detects 75% SD Detected 0.602 SD of Detected Logged Data 0.322 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 1.206 SD 0.464 95% UTL95% Coverage 2.129 95% KM UPL (t) 1.985 95% KM Chebyshev UPL 3.242 90% KM Percentile (z) 1.8 95% KM Percentile (z) 1.969 99% KM Percentile (z) 2.285 95% KM USL 2.631 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 3.04 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 2.191 95% USL 3.17 95% KM Chebyshev UPL 3.242 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Sodium General Statistics Total Number of Observations 68 Number of Detects 67 Number of Distinct Detects 62 Minimum Detect 35.9 Maximum Detect 77.7 Variance Detected 158.5 Mean Detected 52.9 Mean of Detected Logged Data 3.94 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Appendix A Number of Distinct Observations 63 Number of Non -Detects 1 Number of Distinct Non -Detects 1 Minimum Non -Detect 0.05 Maximum Non -Detect 0.05 Percent Non -Detects 1.471 % SD Detected 12.59 SD of Detected Logged Data 0.239 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 52.12 SD 13.94 95% UTL95% Coverage 79.88 95% KM UPL (t) 75.54 95% KM Chebyshev UPL 113.3 90% KM Percentile (z) 69.99 95% KM Percentile (z) 75.05 99% KM Percentile (z) 84.55 95% KM USL 94.97 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 75.7 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 73.16 95% USL 77.7 95% KM Chebyshev UPL 113.3 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Strontium General Statistics Total Number of Observations 68 Minimum 331 Second Largest 738 Maximum 771 Mean 557.4 Coefficient of Variation 0.22 Mean of logged Data 6.298 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 67 Approx, f used to compute achieved CC 1.763 95% Percentile Bootstrap UTL with 95% Coverage 738 95% UPL 720.9 90% Chebyshev UPL 928.1 95% Chebyshev UPL 1096 95% USL 771 Number of Distinct Observations 65 First Quartile 461.8 Median 536 Third Quartile 679.3 SD 122.7 Skewness -0.0862 SD of logged Data 0.23 d2max (for USL) 3.073 95% UTL with 95% Coverage Approximate Actual Confidence Coefficient achieved by UTL Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. 738 0.86 93 733.1 702.3 715.6 748.9 Cape Fear Steam Electric Plant Appendix A Sulfate General Statistics Total Number of Observations 67 Minimum 1.8 Second Largest 100 Maximum 120 Mean 41.93 Coefficient of Variation 0.699 Mean of logged Data 3.356 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.994 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Number of Distinct Observations 53 Number of Missing Observations 1 First Quartile 15.35 Median 40 Third Quartile 52.5 SD 29.32 Skewness 0.589 SD of logged Data 1.038 d2max (for USL) 3.068 Nonparametric Upper Limits for Background Threshold Values Order of Statistic, r 66 95% UTL with 95% Coverage Approx, f used to compute achieved CC 1.737 Approximate Actual Confidence Coefficient achieved by UTL 95% Percentile Bootstrap UTL with 95% Coverage 100 95% UPL 97.8 90% Chebyshev UPL 130.5 95% Chebyshev UPL 170.7 95% USL 120 Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile 95% Percentile 99% Percentile Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. 100 0.854 93 100 87 95.1 106.8 Cape Fear Steam Electric Plant TOC General Statistics Total Number of Observations 63 Number of Missing Observations 5 Number of Detects 61 Number of Distinct Detects 48 Minimum Detect 0.268 Maximum Detect 1.9 Variance Detected 0.184 Mean Detected 0.805 Mean of Detected Logged Data -0.359 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.007 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Appendix A Number of Distinct Observations 48 Number of Non -Detects 2 Number of Distinct Non -Detects 1 Minimum Non -Detect 1 Maximum Non -Detect 1 Percent Non -Detects 3.175% SD Detected 0.429 SD of Detected Logged Data 0.546 d2max (for USL) 3.045 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.798 SD 0.422 95% UTL95% Coverage 1.645 95% KM UPL (t) 1.509 95% KM Chebyshev UPL 2.654 90% KM Percentile (z) 1.339 95% KM Percentile (z) 1.492 99% KM Percentile (z) 1.78 95% KM USL 2.084 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 62 95% UTL with95% Coverage 1.9 Approx, f used to compute achieved CC 1.632 Approximate Actual Confidence Coefficient achieved by UTL 0.83 Approximate Sample Size needed to achieve specified CC 93 95% UPL 1.64 95% USL 1.9 95% KM Chebyshev UPL 2.654 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Vanadium General Statistics Total Number of Observations 68 Number of Detects 43 Number of Distinct Detects 40 Minimum Detect 0.114 Maximum Detect 3.35 Variance Detected 1.153 Mean Detected 1.144 Mean of Detected Logged Data -0.446 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Nonparametric Distribution Free Background Statistics Data do not follow a Discernible Distribution (0.05) Number of Distinct Observations 41 Number of Non -Detects 25 Number of Distinct Non -Detects 1 Minimum Non -Detect 0.3 Maximum Non -Detect 0.3 Percent Non -Detects 36.76% SD Detected 1.074 SD of Detected Logged Data 1.159 Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 0.791 SD 0.963 95% UTL95% Coverage 2.708 95% KM UPL (t) 2.409 95% KM Chebyshev UPL 5.019 90% KM Percentile (z) 2.025 95% KM Percentile (z) 2.375 99% KM Percentile (z) 3.031 95% KM USL 3.751 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 2.96 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 2.761 95% USL 3.35 95% KM Chebyshev UPL 5.019 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Zinc General Statistics Total Number of Observations 68 Number of Detects 25 Number of Distinct Detects 18 Minimum Detect 1.847 Maximum Detect 14 Variance Detected 13.42 Mean Detected 6.56 Mean of Detected Logged Data 1.71 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 Appendix A Number of Distinct Observations 18 Number of Non -Detects 43 Number of Distinct Non -Detects 1 Minimum Non -Detect 5 Maximum Non -Detect 5 Percent Non -Detects 63.24% SD Detected 3.663 SD of Detected Logged Data 0.624 Nonparametric Distribution Free Background Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution d2max (for USL) 3.073 Mean 4.238 SD 2.888 95% UTL95% Coverage 9.989 95% KM UPL (t) 9.091 95% KM Chebyshev UPL 16.92 90% KM Percentile (z) 7.94 95% KM Percentile (z) 8.989 99% KM Percentile (z) 10.96 95% KM USL 13.12 Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects) Order of Statistic, r 67 95% UTL with95% Coverage 13 Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86 Approximate Sample Size needed to achieve specified CC 93 95% UPL 11 95% USL 14 95% KM Chebyshev UPL 16.92 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Two -Sided 95% Tolerance Intervals of pH Percent of Parametric Parametric Nonparametric Nonparametric Population Lower Upper Lower Upper Between Tolerance Tolerance Tolerance Tolerance Limits Limit Limit Limit Limit 50 6.457064 7.81823 5.72 7.8 60 6.288423 7.986872 5.7 7.85 70 6.09185 8.183444 5.66 7.96 80 5.844518 8.430777 5.6 8 90 5.477933 8.79736 5.46 8.19 95 5.159976 9.115317 99 4.538547 9.736747 Cape Fear Steam Electric Plant Appendix A Normal Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 11:06:04 AM From File Cape Fear Background GW Bedrock Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 95% Different or Future K Observations 1 Alkalinity General Statistics Total Number of Observations 68 Number of Distinct Observations 50 Minimum 63.6 First Quartile 126.8 Second Largest 215 Median 158 Maximum 215 Third Quartile 180 Mean 151.2 SD 40.31 Coefficient of Variation 0.267 Skewness -0.348 Mean of logged Data 4.978 SD of logged Data 0.302 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.991 d2max (for USL) 3.073 Normal GOF Test Shapiro Wilk Test Statistic 0.95 Normal GOF Test 5% Shapiro Wilk P Value 0.0188 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.0864 Lilliefors GOF Test 5% Lilliefors Critical Value 0.107 Data appear Normal at 5% Significance Level Data appear Approximate Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 231.5 90% Percentile (z) 202.9 95% UPL (t) 218.9 95% Percentile (z) 217.5 95% USL 275.1 99% Percentile (z) 245 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Bicarbonate Alkalinity General Statistics Total Number of Observations 64 Minimum 63.6 Second Largest 215 Maximum 215 Mean 151.4 Coefficient of Variation 0.262 Mean of logged Data 4.98 Appendix A Number of Distinct Observations 48 Number of Missing Observations 4 First Quartile 126.8 Median 158 Third Quartile 178.5 SD 39.7 Skewness -0.325 SD of logged Data 0.296 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.003 d2max (for USL) 3.051 Normal GOF Test Shapiro Wilk Test Statistic 0.954 Normal GOF Test 5% Shapiro Wilk P Value 0.043 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.0876 Lilliefors GOF Test 5% Lilliefors Critical Value 0.111 Data appear Normal at 5% Significance Level Data appear Approximate Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 230.9 90% Percentile (z) 202.2 95% UPL (t) 218.1 95% Percentile (z) 216.7 95% USL 272.5 99% Percentile (z) 243.7 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Fluoride Appendix A General Statistics Total Number of Observations 15 Number of Distinct Observations 14 Number of Missing Observations 51 Number of Detects 13 Number of Non -Detects 2 Number of Distinct Detects 13 Number of Distinct Non -Detects 2 Minimum Detect 0.082 Minimum Non -Detect 0.1 Maximum Detect 0.282 Maximum Non -Detect 0.2 Variance Detected 0.00358 Percent Non -Detects 13.33% Mean Detected 0.173 SD Detected 0.0598 Mean of Detected Logged Data -1.816 SD of Detected Logged Data 0.374 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.566 d2max (for USL) 2.409 Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.946 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.866 Detected Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.171 Lilliefors GOF Test 5% Lilliefors Critical Value 0.234 Detected Data appear Normal at 5% Significance Level Detected Data appear Normal at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.165 SD 0.0589 95% UTL95% Coverage 0.316 95% KM UPL (t) 0.272 95% KM Chebyshev UPL 0.43 90% KM Percentile (z) 0.241 95% KM Percentile (z) 0.262 99% KM Percentile (z) 0.302 95% KM USL 0.307 DL/2 Substitution Background Statistics Assuming Normal Distribution Mean 0.16 SD 0.0659 95% UTL95% Coverage 0.329 95% UPL (t) 0.28 90% Percentile (z) 0.244 95% Percentile (z) 0.268 99% Percentile (z) 0.313 95% USL 0.319 DL/2 is not a recommended method. DU2 provided for comparisons and historical reasons Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Lithium General Statistics Total Number of Observations 24 Minimum 3.467 Second Largest 11 Maximum 14 Mean 7.344 Coefficient of Variation 0.348 Mean of logged Data 1.937 Appendix A Number of Distinct Observations 12 Number of Missing Observations 44 First Quartile 6 Median 7 Third Quartile 8.25 SD 2.556 Skewness 0.744 SD of logged Data 0.348 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.309 d2max (for USL) 2.644 Normal GOF Test Shapiro Wilk Test Statistic 0.946 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.916 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.159 Lilliefors GOF Test 5% Lilliefors Critical Value 0.177 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 13.24 90% Percentile (z) 10.62 95% UPL (t) 11.81 95% Percentile (z) 11.55 95% USL 14.1 99% Percentile (z) 13.29 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant TDS General Statistics Total Number of Observations 67 Minimum 210 Second Largest 650 Maximum 660 Mean 390.4 Coefficient of Variation 0.283 Mean of logged Data 5.927 Appendix A Number of Distinct Observations 34 Number of Missing Observations 1 First Quartile 325 Median 390 Third Quartile 440 SD 110.4 Skewness 0.392 SD of logged Data 0.291 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 1.994 d2max (for USL) 3.068 Normal GOF Test Shapiro Wilk Test Statistic 0.939 Normal GOF Test 5% Shapiro Wilk P Value 0.00402 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.0958 Lilliefors GOF Test 5% Lilliefors Critical Value 0.108 Data appear Normal at 5% Significance Level Data appear Approximate Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 610.6 90% Percentile (z) 531.9 95% UPL (t) 576 95% Percentile (z) 572 95% USL 729.2 99% Percentile (z) 647.3 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Normal Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.11/30/2020 1:15:03 PM From File Cape Fear Background Soil Data_ProUCL.xls Full Precision OFF Confidence Coefficient 95% Coverage 95% Different or Future K Observations 1 Arsenic General Statistics Total Number of Observations 19 Number of Distinct Observations 15 Number of Detects 18 Number of Non -Detects 1 Number of Distinct Detects 15 Number of Distinct Non -Detects 1 Minimum Detect 0.17 Minimum Non -Detect 1.4 Maximum Detect 3.32 Maximum Non -Detect 1.4 Variance Detected 0.511 Percent Non -Detects 5.263% Mean Detected 1.304 SD Detected 0.715 Mean of Detected Logged Data 0.102 SD of Detected Logged Data 0.651 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531 Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.927 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.897 Detected Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.123 Lilliefors GOF Test 5% Lilliefors Critical Value 0.202 Detected Data appear Normal at 5% Significance Level Detected Data appear Normal at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 1.279 SD 0.688 95% UTL95% Coverage 2.946 95% KM UPL (t) 2.503 95% KM Chebyshev UPL 4.356 90% KM Percentile (z) 2.161 95% KM Percentile (z) 2.411 99% KM Percentile (z) 2.88 95% KM USL 3.021 DL/2 Substitution Background Statistics Assuming Normal Distribution Mean 1.272 SD 0.708 95% UTL95% Coverage 2.988 95% UPL (t) 2.532 90% Percentile (z) 2.18 95% Percentile (z) 2.437 99% Percentile (z) 2.92 95% USL 3.065 DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Beryllium General Statistics Total Number of Observations 16 Minimum 0.23 Second Largest 1.2 Maximum 1.4 Mean 0.696 Coefficient of Variation 0.509 Mean of logged Data -0.499 Appendix A Number of Distinct Observations 16 Number of Missing Observations 3 First Quartile 0.42 Median 0.68 Third Quartile 0.918 SD 0.354 Skewness 0.458 SD of logged Data 0.558 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443 Normal GOF Test Shapiro Wilk Test Statistic 0.953 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.122 Lilliefors GOF Test 5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 1.589 90% Percentile (z) 1.149 95% UPL (t) 1.336 95% Percentile (z) 1.278 95% USL 1.561 99% Percentile (z) 1.519 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Chromium General Statistics Total Number of Observations 19 Number of Distinct Observations 19 Minimum 4.9 First Quartile 16.9 Second Largest 32 Median 21 Maximum 40.4 Third Quartile 26.95 Mean 20.86 SD 8.811 Coefficient of Variation 0.422 Skewness 0.0236 Mean of logged Data 2.921 SD of logged Data 0.555 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531 Normal GOF Test Shapiro Wilk Test Statistic 0.974 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.901 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.104 Lilliefors GOF Test 5% Lilliefors Critical Value 0.197 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 42.21 90% Percentile (z) 32.15 95% UPL (t) 36.54 95% Percentile (z) 35.36 95% USL 43.16 99% Percentile (z) 41.36 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Cobalt General Statistics Total Number of Observations 16 Minimum 1.2 Second Largest 17 Maximum 19 Mean 8.344 Coefficient of Variation 0.625 Mean of logged Data 1.907 Appendix A Number of Distinct Observations 15 Number of Missing Observations 3 First Quartile 3.975 Median 7.1 Third Quartile 12 SD 5.219 Skewness 0.701 SD of logged Data 0.727 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443 Normal GOF Test Shapiro Wilk Test Statistic 0.931 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.15 Lilliefors GOF Test 5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 21.52 90% Percentile (z) 15.03 95% UPL (t) 17.77 95% Percentile (z) 16.93 95% USL 21.09 99% Percentile (z) 20.48 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Copper General Statistics Total Number of Observations 19 Number of Distinct Observations 16 Minimum 3.9 First Quartile 8.9 Second Largest 23 Median 12 Maximum 27 Third Quartile 17.4 Mean 13.18 SD 5.978 Coefficient of Variation 0.454 Skewness 0.722 Mean of logged Data 2.477 SD of logged Data 0.478 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531 Normal GOF Test Shapiro Wilk Test Statistic 0.953 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.901 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.144 Lilliefors GOF Test 5% Lilliefors Critical Value 0.197 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 27.67 90% Percentile (z) 20.84 95% UPL (t) 23.82 95% Percentile (z) 23.01 95% USL 28.31 99% Percentile (z) 27.09 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Lead General Statistics Total Number of Observations 19 Number of Distinct Observations 14 Minimum 6.1 First Quartile 9.05 Second Largest 16.8 Median 11 Maximum 19.2 Third Quartile 12.45 Mean 11.15 SD 3.51 Coefficient of Variation 0.315 Skewness 0.723 Mean of logged Data 2.365 SD of logged Data 0.31 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531 Normal GOF Test Shapiro Wilk Test Statistic 0.95 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.901 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.141 Lilliefors GOF Test 5% Lilliefors Critical Value 0.197 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 19.65 90% Percentile (z) 15.65 95% UPL (t) 17.39 95% Percentile (z) 16.92 95% USL 20.03 99% Percentile (z) 19.31 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Magnesium General Statistics Total Number of Observations 16 Minimum 620 Second Largest 2300 Maximum 2800 Mean 1643 Coefficient of Variation 0.382 Mean of logged Data 7.315 Number of Distinct Observations 12 Number of Missing Observations 3 First Quartile 1325 Median 1845 Third Quartile 1950 SD 627.5 Skewness -0.333 SD of logged Data 0.467 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443 Normal GOF Test Shapiro Wilk Test Statistic 0.915 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.162 Lilliefors GOF Test 5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 3226 90% Percentile (z) 2447 95% UPL (t) 2776 95% Percentile (z) 2675 95% USL 3176 99% Percentile (z) 3102 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Nickel General Statistics Total Number of Observations 18 Minimum 1.5 Second Largest 11 Maximum 11 Mean 7.199 Coefficient of Variation 0.365 Mean of logged Data 1.886 Appendix A Number of Distinct Observations 15 Number of Missing Observations 1 First Quartile 5.825 Median 7.2 Third Quartile 8.9 SD 2.631 Skewness -0.256 SD of logged Data 0.484 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.453 d2max (for USL) 2.504 Normal GOF Test Shapiro Wilk Test Statistic 0.959 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.897 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.103 Lilliefors GOF Test 5% Lilliefors Critical Value 0.202 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 13.65 90% Percentile (z) 10.57 95% UPL (t) 11.9 95% Percentile (z) 11.53 95% USL 13.79 99% Percentile (z) 13.32 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Strontium General Statistics Total Number of Observations 16 Minimum 1.5 Second Largest 19 Maximum 29 Mean 10.28 Coefficient of Variation 0.687 Mean of logged Data 2.102 Appendix A Number of Distinct Observations 15 Number of Missing Observations 3 First Quartile 5.375 Median 7.95 Third Quartile 13.5 SD 7.055 Skewness 1.323 SD of logged Data 0.734 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443 Normal GOF Test Shapiro Wilk Test Statistic 0.899 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.163 Lilliefors GOF Test 5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 28.08 90% Percentile (z) 19.32 95% UPL (t) 23.02 95% Percentile (z) 21.88 95% USL 27.51 99% Percentile (z) 26.69 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Vanadium General Statistics Total Number of Observations 16 Minimum 14 Second Largest 140 Maximum 170 Mean 74.63 Coefficient of Variation 0.569 Mean of logged Data 4.131 Appendix A Number of Distinct Observations 16 Number of Missing Observations 3 First Quartile 46.5 Median 70 Third Quartile 95.75 SD 42.45 Skewness 0.729 SD of logged Data 0.675 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443 Normal GOF Test Shapiro Wilk Test Statistic 0.947 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.193 Lilliefors GOF Test 5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 181.8 90% Percentile (z) 129 95% UPL (t) 151.3 95% Percentile (z) 144.5 95% USL 178.3 99% Percentile (z) 173.4 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Normal Background Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 8:46:58 AM From File Cape Fear Background GW Surficial Data_ProUCL.xis Full Precision OFF Confidence Coefficient 95% Coverage 95% Different or Future K Observations 1 Alkalinity General Statistics Total Number of Observations 34 Minimum 30.4 Second Largest 218 Maximum 225 Mean 131.4 Coefficient of Variation 0.424 Mean of logged Data 4.753 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.166 Number of Distinct Observations 31 Number of Missing Observations 1 First Quartile 99.5 Median 137.5 Third Quartile 172.8 SD 55.68 Skewness -0.356 SD of logged Data 0.563 d2max (for USL) 2.799 Normal GOF Test Shapiro Wilk Test Statistic 0.944 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.933 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.109 Lilliefors GOF Test 5% Lilliefors Critical Value 0.15 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 252 90% Percentile (z) 202.8 95% UPL (t) 227 95% Percentile (z) 223 95% USL 287.3 99% Percentile (z) 260.9 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Bicarbonate Alkalinity General Statistics Total Number of Observations 32 Minimum 30.4 Second Largest 218 Maximum 225 Mean 131.5 Coefficient of Variation 0.436 Mean of logged Data 4.746 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.186 Number of Distinct Observations 29 Number of Missing Observations 3 First Quartile 93 Median 137.5 Third Quartile 174 SD 57.39 Skewness -0.353 SD of logged Data 0.58 d2max (for USL) 2.773 Normal GOF Test Shapiro Wilk Test Statistic 0.939 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.93 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.115 Lilliefors GOF Test 5% Lilliefors Critical Value 0.154 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level Background Statistics Assuming Normal Distribution 95% UTL with 95% Coverage 257 90% Percentile (z) 205 95% UPL (t) 230.3 95% Percentile (z) 225.9 95% USL 290.6 99% Percentile (z) 265 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Fluoride General Statistics Total Number of Observations 9 Number of Missing Observations 24 Number of Detects 5 Number of Distinct Detects 5 Minimum Detect 0.215 Maximum Detect 0.584 Variance Detected 0.0334 Mean Detected 0.372 Mean of Detected Logged Data -1.084 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 3.031 Appendix A Number of Distinct Observations 8 Number of Non -Detects 4 Number of Distinct Non -Detects 3 Minimum Non -Detect 0.1 Maximum Non -Detect 1 Percent Non -Detects 44.44% SD Detected 0.183 SD of Detected Logged Data 0.483 d2max (for USL) 2.11 Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.773 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.762 Detected Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.331 Lilliefors GOF Test 5% Lilliefors Critical Value 0.343 Detected Data appear Normal at 5% Significance Level Detected Data appear Normal at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.296 SD 0.168 95% UTL95% Coverage 0.805 95% KM UPL (t) 0.626 95% KM Chebyshev UPL 1.068 90% KM Percentile (z) 0.512 95% KM Percentile (z) 0.573 99% KM Percentile (z) 0.687 95% KM USL 0.651 DL/2 Substitution Background Statistics Assuming Normal Distribution Mean 0.323 SD 0.181 95% UTL95% Coverage 0.872 95% UPL (t) 0.678 90% Percentile (z) 0.556 95% Percentile (z) 0.621 99% Percentile (z) 0.745 95% USL 0.705 DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Lithium General Statistics Total Number of Observations 12 Number of Missing Observations 23 Number of Detects 11 Number of Distinct Detects 8 Minimum Detect 1.808 Maximum Detect 8 Variance Detected 4.663 Mean Detected 5.286 Mean of Detected Logged Data 1.57 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.736 Appendix A Number of Distinct Observations 9 Number of Non -Detects 1 Number of Distinct Non -Detects 1 Minimum Non -Detect 5 Maximum Non -Detect 5 Percent Non -Detects 8.333% SD Detected 2.159 SD of Detected Logged Data 0.486 d2max (for USL) 2.285 Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.924 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.85 Detected Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.179 Lilliefors GOF Test 5% Lilliefors Critical Value 0.251 Detected Data appear Normal at 5% Significance Level Detected Data appear Normal at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 5.115 SD 2.067 95% UTL95% Coverage 10.77 95% KM UPL (t) 8.978 95% KM Chebyshev UPL 14.49 90% KM Percentile (z) 7.764 95% KM Percentile (z) 8.514 99% KM Percentile (z) 9.923 95% KM USL 9.838 DL/2 Substitution Background Statistics Assuming Normal Distribution Mean 5.054 SD 2.21 95% UTL95% Coverage 11.1 95% UPL (t) 9.185 90% Percentile (z) 7.886 95% Percentile (z) 8.689 99% Percentile (z) 10.2 95% USL 10.1 DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Appendix A Vanadium General Statistics Total Number of Observations 35 Number of Detects 33 Number of Distinct Detects 33 Minimum Detect 0.264 Maximum Detect 1.43 Variance Detected 0.104 Mean Detected 0.718 Mean of Detected Logged Data -0.435 Critical Values for Background Threshold Values (BTVs) Tolerance Factor K (For UTL) 2.157 Number of Distinct Observations 34 Number of Non -Detects 2 Number of Distinct Non -Detects 1 Minimum Non -Detect 0.3 Maximum Non -Detect 0.3 Percent Non -Detects 5.714% SD Detected 0.322 SD of Detected Logged Data 0.474 d2max (for USL) 2.812 Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.942 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.931 Detected Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.0836 Lilliefors GOF Test 5% Lilliefors Critical Value 0.152 Detected Data appear Normal at 5% Significance Level Detected Data appear Normal at 5% Significance Level Kaplan Meier (KM) Background Statistics Assuming Normal Distribution Mean 0.692 SD 0.325 95% UTL95% Coverage 1.394 95% KM UPL (t) 1.25 95% KM Chebyshev UPL 2.13 90% KM Percentile (z) 1.109 95% KM Percentile (z) 1.227 99% KM Percentile (z) 1.449 95% KM USL 1.607 DL/2 Substitution Background Statistics Assuming Normal Distribution Mean 0.685 SD 0.34 95% UTL95% Coverage 1.418 95% UPL (t) 1.268 90% Percentile (z) 1.121 95% Percentile (z) 1.244 99% Percentile (z) 1.476 95% USL 1.641 DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Cape Fear Steam Electric Plant Two -Sided 95% Tolerance Intervals of pH Percent of Parametric Parametric Nonparame Nonparametric Population Lower Upper Lower Upper Between Tolerance Tolerance Tolerance Tolerance Limits Limit Limit Limit Limit 50 6.065653 6.310919 6.04 6.3 60 6.035266 6.341306 6 6.33 70 5.999846 6.376726 6 6.34 80 5.955279 6.421292 5.8 6.5 90 5.889225 6.487346 95 5.831933 6.544638 99 5.719959 6.656612 Appendix A Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC - Cape Fear Steam Electric Plant GOODNESS OF FIT TEST RESULTS (PROUCL OUTPUT SynTerra Cape Fear Steam Electric Plant Appendix B ME Goodness -of -Fit Test Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 4:12:34 PM From File Cape —Fear BG_Soil_Data_ProUCL.xis Full Precision OFF Confidence Coefficient 0.95 Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 15 Minimum 4.38 Maximum 6.91 Mean of Raw Data 5.034 Standard Deviation of Raw Data 0.629 Khat 76.53 Theta hat 0.0658 Kstar 62.22 Theta star 0.0809 Mean of Log Transformed Data 1.61 Standard Deviation of Log Transformed Data 0.115 Normal GOF Test Results Correlation Coefficient R 0.893 Shapiro Wilk Test Statistic 0.813 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.00298 Lilliefors Test Statistic 0.209 Lilliefors Critical (0.05) Value 0.213 Data appear Approximate Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.912 A-D Test Statistic 0.775 A-D Critical (0.05) Value 0.736 K-S Test Statistic 0.186 K-S Critical(0.05) Value 0.214 Data follow Appr. Gamma Distribution at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.922 Shapiro Wilk Test Statistic 0.862 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.0177 Lilliefors Test Statistic 0.18 Lilliefors Critical (0.05) Value 0.213 Data appear Approximate —Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Aluminum Raw Statistics Number of Valid Observations 19 Number of Distinct Observations 14 Minimum 11000 Maximum 44400 Mean of Raw Data 21168 Standard Deviation of Raw Data 8605 Khat 7.999 Theta hat 2646 Kstar 6.771 Theta star 3126 Mean of Log Transformed Data 9.896 Standard Deviation of Log Transformed Data 0.352 Normal GOF Test Results Correlation Coefficient R 0.903 Shapiro Wilk Test Statistic 0.822 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.00171 Lilliefors Test Statistic 0.238 Lilliefors Critical (0.05) Value 0.197 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.95 A-D Test Statistic 0.71 A-D Critical (0.05) Value 0.742 K-S Test Statistic 0.2 K-S Critical(0.05) Value 0.199 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.967 Shapiro Wilk Test Statistic 0.939 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.254 Lilliefors Test Statistic 0.176 Lilliefors Critical (0.05) Value 0.197 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Arsenic Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 19 0 19 18 1 5.26% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 1 1.4 1.4 1.4 1.4 N/A 18 0.17 3.32 1.304 1.25 0.715 19 0.17 3.32 1.309 1.3 0.695 19 0.17 3.32 1.272 1.2 0.708 19 0.17 3.32 1.281 1.2 0.702 19 0.17 3.32 1.278 1.2 0.704 19 0.17 3.32 1.275 1.2 0.706 K hat K Star Theta hat Log Mean Log Stdv Log CV 3.213 2.714 0.406 0.102 0.651 6.397 3.38 2.882 0.387 0.114 0.635 5.563 3.223 2.749 0.395 0.0776 0.641 8.261 3.281 2.798 0.389 0.0849 0.636 7.495 - - - 0.0809 0.639 7.891 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.955 0.953 0.951 0.95 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.927 0.897 Data Appear Normal 0.925 0.901 Data Appear Normal 0.919 0.901 Data Appear Normal 0.919 0.901 Data Appear Normal 0.123 0.202 Data Appear Normal 0.129 0.197 Data Appear Normal 0.115 0.197 Data Appear Normal 0.117 0.197 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.983 0.979 0.984 0.984 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) 0.261 0.745 0.114 0.205 0.324 0.747 0.11 0.2 0.255 0.747 0.112 0.2 0.251 0.747 0.126 0.2 Conclusion with Alpha(0.05) Detected Data Appear Gamma Distributed Data Appear Gamma Distributed Data Appear Gamma Distributed Data Appear Gamma Distributed Cape Fear Steam Electric Plant Appendix B Arsenic (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.945 0.94 0.951 0.949 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.914 0.897 Data Appear Lognormal 0.904 0.901 Data Appear Lognormal 0.924 0.901 Data Appear Lognormal 0.921 0.901 Data Appear Lognormal 0.15 0.202 Data Appear Lognormal 0.144 0.197 Data Appear Lognormal 0.144 0.197 Data Appear Lognormal 0.163 0.197 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Barium Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 15 Minimum 28 Maximum 200 Mean of Raw Data 77.21 Standard Deviation of Raw Data 53.08 Khat 2.775 Theta hat 27.83 Kstar 2.296 Theta star 33.63 Mean of Log Transformed Data 4.156 Standard Deviation of Log Transformed Data 0.619 Normal GOF Test Results Correlation Coefficient R 0.91 Shapiro Wilk Test Statistic 0.822 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.00534 Lilliefors Test Statistic 0.238 Lilliefors Critical (0.05) Value 0.213 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.974 A-D Test Statistic 0.612 A-D Critical (0.05) Value 0.746 K-S Test Statistic 0.184 K-S Critical(0.05) Value 0.217 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.975 Shapiro Wilk Test Statistic 0.936 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.143 Lilliefors Critical (0.05) Value 0.213 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Appendix B Beryllium Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 16 Minimum 0.23 Maximum 1.4 Mean of Raw Data 0.696 Standard Deviation of Raw Data 0.354 Khat 3.845 Theta hat 0.181 Kstar 3.166 Theta star 0.22 Mean of Log Transformed Data -0.499 Standard Deviation of Log Transformed Data 0.558 Normal GOF Test Results Correlation Coefficient R 0.983 Shapiro Wilk Test Statistic 0.953 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.614 Lilliefors Test Statistic 0.122 Lilliefors Critical (0.05) Value 0.213 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.989 A-D Test Statistic 0.218 A-D Critical (0.05) Value 0.742 K-S Test Statistic 0.119 K-S Critical(0.05) Value 0.216 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.986 Shapiro Wilk Test Statistic 0.957 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.685 Lilliefors Test Statistic 0.12 Lilliefors Critical (0.05) Value 0.213 Data appear Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Calcium Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 19 4 15 13 2 13.33% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 2 210 290 250 250 56.57 13 45 2300 696.2 473 627.4 15 45 2300 636.7 380 601.9 15 45 2300 620 380 614.7 15 -191.6 2300 586 380 649.9 15 0.01 2300 603.7 380 630 15 45 2300 616 380 618.2 K hat K Star Theta hat Log Mean Log Stdv Log CV 1.298 1.05 536.2 6.113 1.09 0.178 1.322 1.102 481.5 6.033 1.033 0.171 1.16 0.972 534.5 5.94 1.109 0.187 0.491 0.437 1229 5.107 3.084 0.604 - - 5.905 1.151 0.195 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.92 0.9 0.906 0.937 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.855 0.866 Data Not Normal 0.82 0.881 Data Not Normal 0.828 0.881 Data Not Normal 0.888 0.881 Data Appear Normal 0.197 0.234 Data Appear Normal 0.207 0.22 Data Appear Normal 0.195 0.22 Data Appear Normal 0.169 0.22 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.994 0.991 0.995 0.985 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.191 0.753 0.124 0.242 Detected Data Appear Gamma Distributed 0.22 0.757 0.13 0.226 Data Appear Gamma Distributed 0.16 0.76 0.0987 0.227 Data Appear Gamma Distributed 0.633 0.795 0.241 0.234 Detected Data appear Approximate Gamma Distribt Cape Fear Steam Electric Plant Calcium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.969 0.98 0.99 0.983 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.943 0.866 Data Appear Lognormal 0.965 0.881 Data Appear Lognormal 0.975 0.881 Data Appear Lognormal 0.958 0.881 Data Appear Lognormal 0.176 0.234 Data Appear Lognormal 0.15 0.22 Data Appear Lognormal 0.125 0.22 Data Appear Lognormal 0.141 0.22 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Chloride Raw Statistics Number of Valid Observations 15 Number of Missing Observations 3 Number of Distinct Observations 14 Minimum 1.4 Maximum 140 Mean of Raw Data 33.45 Standard Deviation of Raw Data 50.94 Khat 0.553 Theta hat 60.47 Kstar 0.487 Theta star 68.69 Mean of Log Transformed Data 2.38 Standard Deviation of Log Transformed Data 1.603 Normal GOF Test Results Correlation Coefficient R 0.802 Shapiro Wilk Test Statistic 0.638 Shapiro Wilk Critical (0.05) Value 0.881 Approximate Shapiro Wilk P Value 3.0634E-5 Lilliefors Test Statistic 0.366 Lilliefors Critical (0.05) Value 0.22 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.925 A-D Test Statistic 0.904 A-D Critical (0.05) Value 0.789 K-S Test Statistic 0.2 K-S Critical(0.05) Value 0.233 Data follow Appr. Gamma Distribution at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.967 Shapiro Wilk Test Statistic 0.913 Shapiro Wilk Critical (0.05) Value 0.881 Approximate Shapiro Wilk P Value 0.209 Lilliefors Test Statistic 0.159 Lilliefors Critical (0.05) Value 0.22 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Chromium Raw Statistics Number of Valid Observations 19 Number of Distinct Observations 19 Minimum 4.9 Maximum 40.4 Mean of Raw Data 20.86 Standard Deviation of Raw Data 8.811 Khat 4.434 Theta hat 4.705 Kstar 3.769 Theta star 5.536 Mean of Log Transformed Data 2.921 Standard Deviation of Log Transformed Data 0.555 Normal GOF Test Results Correlation Coefficient R 0.985 Shapiro Wilk Test Statistic 0.974 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.818 Lilliefors Test Statistic 0.104 Lilliefors Critical (0.05) Value 0.197 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.967 A-D Test Statistic 0.652 A-D Critical (0.05) Value 0.744 K-S Test Statistic 0.171 K-S Critical(0.05) Value 0.199 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.925 Shapiro Wilk Test Statistic 0.86 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.00818 Lilliefors Test Statistic 0.207 Lilliefors Critical (0.05) Value 0.197 Data not Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Cobalt Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 15 Minimum 1.2 Maximum 19 Mean of Raw Data 8.344 Standard Deviation of Raw Data 5.219 Khat 2.485 Theta hat 3.358 Kstar 2.061 Theta star 4.049 Mean of Log Transformed Data 1.907 Standard Deviation of Log Transformed Data 0.727 Normal GOF Test Results Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.931 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.285 Lilliefors Test Statistic 0.15 Lilliefors Critical (0.05) Value 0.213 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.986 A-D Test Statistic 0.235 A-D Critical (0.05) Value 0.747 K-S Test Statistic 0.13 K-S Critical(0.05) Value 0.217 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.974 Shapiro Wilk Test Statistic 0.95 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.48 Lilliefors Test Statistic 0.114 Lilliefors Critical (0.05) Value 0.213 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Copper Raw Statistics Number of Valid Observations 19 Number of Distinct Observations 16 Minimum 3.9 Maximum 27 Mean of Raw Data 13.18 Standard Deviation of Raw Data 5.978 Khat 5.068 Theta hat 2.6 Kstar 4.303 Theta star 3.063 Mean of Log Transformed Data 2.477 Standard Deviation of Log Transformed Data 0.478 Normal GOF Test Results Correlation Coefficient R 0.976 Shapiro Wilk Test Statistic 0.953 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.454 Lilliefors Test Statistic 0.144 Lilliefors Critical (0.05) Value 0.197 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.994 A-D Test Statistic 0.172 A-D Critical (0.05) Value 0.742 K-S Test Statistic 0.0919 K-S Critical(0.05) Value 0.199 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.988 Shapiro Wilk Test Statistic 0.979 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.908 Lilliefors Test Statistic 0.0939 Lilliefors Critical (0.05) Value 0.197 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Iron Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 13 Minimum 12000 Maximum 40000 Mean of Raw Data 19094 Standard Deviation of Raw Data 6948 Khat 10.61 Theta hat 1799 Kstar 8.666 Theta star 2203 Mean of Log Transformed Data 9.809 Standard Deviation of Log Transformed Data 0.302 Normal GOF Test Results Correlation Coefficient R 0.869 Shapiro Wilk Test Statistic 0.773 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 7.6501 E-4 Lilliefors Test Statistic 0.261 Lilliefors Critical (0.05) Value 0.213 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.921 A-D Test Statistic 0.857 A-D Critical (0.05) Value 0.739 K-S Test Statistic 0.222 K-S Critical(0.05) Value 0.215 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.942 Shapiro Wilk Test Statistic 0.898 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.0668 Lilliefors Test Statistic 0.202 Lilliefors Critical (0.05) Value 0.213 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Lead Raw Statistics Number of Valid Observations 19 Number of Distinct Observations 14 Minimum 6.1 Maximum 19.2 Mean of Raw Data 11.15 Standard Deviation of Raw Data 3.51 Khat 11.1 Theta hat 1.004 Kstar 9.385 Theta star 1.188 Mean of Log Transformed Data 2.365 Standard Deviation of Log Transformed Data 0.31 Normal GOF Test Results Correlation Coefficient R 0.976 Shapiro Wilk Test Statistic 0.95 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.407 Lilliefors Test Statistic 0.141 Lilliefors Critical (0.05) Value 0.197 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.992 A-D Test Statistic 0.207 A-D Critical (0.05) Value 0.741 K-S Test Statistic 0.101 K-S Critical(0.05) Value 0.199 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.993 Shapiro Wilk Test Statistic 0.98 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.941 Lilliefors Test Statistic 0.09 Lilliefors Critical (0.05) Value 0.197 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Magnesium Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 12 Minimum 620 Maximum 2800 Mean of Raw Data 1643 Standard Deviation of Raw Data 627.5 Khat 5.802 Theta hat 283.1 Kstar 4.756 Theta star 345.4 Mean of Log Transformed Data 7.315 Standard Deviation of Log Transformed Data 0.467 Normal GOF Test Results Correlation Coefficient R 0.959 Shapiro Wilk Test Statistic 0.915 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.153 Lilliefors Test Statistic 0.162 Lilliefors Critical (0.05) Value 0.213 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.934 A-D Test Statistic 1.069 A-D Critical (0.05) Value 0.741 K-S Test Statistic 0.22 K-S Critical(0.05) Value 0.216 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.921 Shapiro Wilk Test Statistic 0.841 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.0105 Lilliefors Test Statistic 0.248 Lilliefors Critical (0.05) Value 0.213 Data not Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Appendix B Manganese Raw Statistics Number of Valid Observations 19 Number of Distinct Observations 19 Minimum 34 Maximum 2700 Mean of Raw Data 418.8 Standard Deviation of Raw Data 694.7 Khat 0.757 Theta hat 553.3 Kstar 0.673 Theta star 622.8 Mean of Log Transformed Data 5.248 Standard Deviation of Log Transformed Data 1.192 Normal GOF Test Results Correlation Coefficient R 0.739 Shapiro Wilk Test Statistic 0.563 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 2.1464E-7 Lilliefors Test Statistic 0.33 Lilliefors Critical (0.05) Value 0.197 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.939 A-D Test Statistic 1.156 A-D Critical (0.05) Value 0.779 K-S Test Statistic 0.209 K-S Critical(0.05) Value 0.206 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.976 Shapiro Wilk Test Statistic 0.949 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.397 Lilliefors Test Statistic 0.11 Lilliefors Critical (0.05) Value 0.197 Data appear Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Nickel Raw Statistics Number of Valid Observations 18 Number of Missing Observations 1 Number of Distinct Observations 15 Minimum 1.5 Maximum 11 Mean of Raw Data 7.199 Standard Deviation of Raw Data 2.631 Khat 5.85 Theta hat 1.231 Kstar 4.912 Theta star 1.466 Mean of Log Transformed Data 1.886 Standard Deviation of Log Transformed Data 0.484 Normal GOF Test Results Correlation Coefficient R 0.982 Shapiro Wilk Test Statistic 0.959 Shapiro Wilk Critical (0.05) Value 0.897 Approximate Shapiro Wilk P Value 0.609 Lilliefors Test Statistic 0.103 Lilliefors Critical (0.05) Value 0.202 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.951 A-D Test Statistic 0.489 A-D Critical (0.05) Value 0.742 K-S Test Statistic 0.138 K-S Critical(0.05) Value 0.204 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.911 Shapiro Wilk Test Statistic 0.842 Shapiro Wilk Critical (0.05) Value 0.897 Approximate Shapiro Wilk P Value 0.00484 Lilliefors Test Statistic 0.172 Lilliefors Critical (0.05) Value 0.202 Data appear Approximate -Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Nitrate Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 19 3 16 9 7 43.75% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 7 0.22 30.1 4.506 0.24 11.29 9 0.082 0.87 0.265 0.23 0.236 16 0.082 30.1 2.12 0.24 7.463 16 0.082 15.05 1.135 0.145 3.715 16 0.0723 0.87 0.213 0.177 0.186 16 0.0675 0.87 0.202 0.16 0.189 16 0.082 0.87 0.21 0.161 0.185 K hat K Star Theta hat Log Mean Log Stdv Log CV 2.276 1.592 0.116 -1.565 0.678 -0.433 0.345 0.322 6.148 -1.203 1.327 -1.103 0.403 0.369 2.818 -1.506 1.259 -0.836 2.399 1.991 0.0843 -1.821 0.617 -0.339 - - - -1.748 0.55 -0.315 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.793 0.507 0.522 0.748 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.658 0.829 Data Not Normal 0.287 0.887 Data Not Normal 0.303 0.887 Data Not Normal 0.59 0.887 Data Not Normal 0.38 0.274 Data Not Normal 0.504 0.213 Data Not Normal 0.467 0.213 Data Not Normal 0.316 0.213 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.898 0.83 0.831 0.864 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.656 0.729 0.289 0.282 Detected Data appear Approximate Gamma Distribi 4.466 0.829 0.498 0.232 Data Not Gamma Distributed 3.841 0.817 0.448 0.23 Data Not Gamma Distributed 0.857 0.748 0.185 0.217 Detected Data appear Approximate Gamma Distribi Cape Fear Steam Electric Plant Appendix B Nitrate (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.944 0.742 0.787 0.924 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.91 0.829 Data Appear Lognormal 0.585 0.887 Data Not Lognormal 0.645 0.887 Data Not Lognormal 0.873 0.887 Data Not Lognormal 0.242 0.274 Data Appear Lognormal 0.407 0.213 Data Not Lognormal 0.313 0.213 Data Not Lognormal 0.164 0.213 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Potassium Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 14 Minimum 139 Maximum 1300 Mean of Raw Data 393.1 Standard Deviation of Raw Data 307.9 Khat 2.716 Theta hat 144.7 Kstar 2.248 Theta star 174.8 Mean of Log Transformed Data 5.779 Standard Deviation of Log Transformed Data 0.597 Normal GOF Test Results Correlation Coefficient R 0.826 Shapiro Wilk Test Statistic 0.698 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 7.8707E-5 Lilliefors Test Statistic 0.316 Lilliefors Critical (0.05) Value 0.213 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.93 A-D Test Statistic 1.114 A-D Critical (0.05) Value 0.746 K-S Test Statistic 0.243 K-S Critical(0.05) Value 0.217 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.945 Shapiro Wilk Test Statistic 0.899 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.0732 Lilliefors Test Statistic 0.197 Lilliefors Critical (0.05) Value 0.213 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Selenium Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 19 0 19 14 5 26.32% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 5 1.1 1.5 1.38 1.4 0.164 14 0.3 0.795 0.425 0.375 0.142 19 0.3 1.5 0.676 0.42 0.455 19 0.3 0.795 0.495 0.42 0.175 19 0.3 0.795 0.425 0.39 0.124 19 0.3 0.795 0.423 0.39 0.125 19 0.3 0.795 0.421 0.39 0.124 K hat K Star Theta hat Log Mean Log Stdv Log CV 11.95 9.435 0.0356 -0.899 0.288 -0.321 2.82 2.41 0.24 -0.579 0.605 -1.044 8.878 7.512 0.0557 -0.761 0.345 -0.454 14.92 12.6 0.0283 -0.895 0.256 -0.286 - - - -0.899 0.253 -0.282 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.893 0.878 0.944 0.905 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.803 0.874 Data Not Normal 0.753 0.901 Data Not Normal 0.87 0.901 Data Not Normal 0.827 0.901 Data Not Normal 0.228 0.226 Data Not Normal 0.269 0.197 Data Not Normal 0.192 0.197 Data Appear Normal 0.184 0.197 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.94 0.929 0.956 0.942 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.769 0.734 0.191 0.229 Detected Data appear Approximate Gamma Distribi 1.57 0.749 0.247 0.2 Data Not Gamma Distributed 0.833 0.741 0.167 0.199 Detected Data appear Approximate Gamma Distribi 0.737 0.741 0.171 0.198 Data Appear Gamma Distributed Cape Fear Steam Electric Plant Selenium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.94 0.922 0.958 0.947 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.882 0.874 Data Appear Lognormal 0.828 0.901 Data Not Lognormal 0.895 0.901 Data Not Lognormal 0.9 0.901 Data Not Lognormal 0.171 0.226 Data Appear Lognormal 0.221 0.197 Data Not Lognormal 0.147 0.197 Data Appear Lognormal 0.16 0.197 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Sodium Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 19 6 13 8 5 38.46% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 5 210 510 354 310 142.6 8 49 790 229.1 162.5 244 13 49 790 277.2 210 213.3 13 49 790 209.1 160 192.6 13 49 790 200.2 160 190.4 13 49 790 184.5 125 195.5 13 49 790 184.1 119.5 195.6 K hat K Star Theta hat Log Mean Log Stdv Log CV 1.403 0.96 163.3 5.037 0.932 0.185 1.856 1.479 149.3 5.332 0.844 0.158 1.951 1.552 107.2 5.065 0.751 0.148 1.812 1.445 101.8 4.917 0.731 0.149 - - 4.914 0.731 0.149 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.847 0.938 0.826 0.77 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.734 0.818 Data Not Normal 0.883 0.866 Data Appear Normal 0.706 0.866 Data Not Normal 0.623 0.866 Data Not Normal 0.314 0.283 Data Not Normal 0.185 0.234 Data Appear Normal 0.252 0.234 Data Not Normal 0.367 0.234 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.966 0.992 0.934 0.902 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.385 0.73 0.221 0.299 Detected Data Appear Gamma Distributed 0.201 0.745 0.103 0.24 Data Appear Gamma Distributed 0.422 0.744 0.148 0.24 Data Appear Gamma Distributed 0.948 0.746 0.232 0.24 Detected Data appear Approximate Gamma Distribi Cape Fear Steam Electric Plant Sodium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.974 0.982 0.976 0.94 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.944 0.818 Data Appear Lognormal 0.955 0.866 Data Appear Lognormal 0.959 0.866 Data Appear Lognormal 0.898 0.866 Data Appear Lognormal 0.161 0.283 Data Appear Lognormal 0.15 0.234 Data Appear Lognormal 0.112 0.234 Data Appear Lognormal 0.186 0.234 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Appendix B Strontium Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 15 Minimum 1.5 Maximum 29 Mean of Raw Data 10.28 Standard Deviation of Raw Data 7.055 Khat 2.353 Theta hat 4.366 Kstar 1.954 Theta star 5.259 Mean of Log Transformed Data 2.102 Standard Deviation of Log Transformed Data 0.734 Normal GOF Test Results Correlation Coefficient R 0.944 Shapiro Wilk Test Statistic 0.899 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.0729 Lilliefors Test Statistic 0.163 Lilliefors Critical (0.05) Value 0.213 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.994 A-D Test Statistic 0.132 A-D Critical (0.05) Value 0.748 K-S Test Statistic 0.107 K-S Critical(0.05) Value 0.217 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.986 Shapiro Wilk Test Statistic 0.98 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.926 Lilliefors Test Statistic 0.0939 Lilliefors Critical (0.05) Value 0.213 Data appear Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Sulfate Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 18 3 15 10 5 33.33% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 5 12 13 12.4 12 0.548 10 6.8 420 93.5 36.5 137.2 15 6.8 420 66.47 13 116.9 15 6 420 64.4 8.7 118 15 -90.31 420 51.16 16.83 128.5 15 0.01 420 62.34 8.7 119.1 15 3.492 420 65.12 14.13 117.6 K hat K Star Theta hat Log Mean Log Stdv Log CV 0.682 0.544 137.1 3.648 1.412 0.387 0.659 0.571 100.9 3.271 1.26 0.385 0.556 0.489 115.9 3.04 1.441 0.474 0.224 0.223 278.9 0.897 4.184 4.663 - - - 3.096 1.427 0.461 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.819 0.738 0.742 0.852 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.68 0.842 Data Not Normal 0.562 0.881 Data Not Normal 0.567 0.881 Data Not Normal 0.746 0.881 Data Not Normal 0.357 0.262 Data Not Normal 0.341 0.22 Data Not Normal 0.334 0.22 Data Not Normal 0.296 0.22 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.978 0.951 0.962 0.986 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) 0.542 0.762 0.21 0.277 1.506 0.782 0.26 0.232 1.468 0.789 0.274 0.233 0.658 0.872 0.222 0.244 Conclusion with Alpha(0.05) Detected Data Appear Gamma Distributed Data Not Gamma Distributed Data Not Gamma Distributed Data Appear Gamma Distributed Cape Fear Steam Electric Plant Sulfate (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.975 0.931 0.919 0.966 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.935 0.842 Data Appear Lognormal 0.861 0.881 Data Not Lognormal 0.831 0.881 Data Not Lognormal 0.925 0.881 Data Appear Lognormal 0.154 0.262 Data Appear Lognormal 0.246 0.22 Data Not Lognormal 0.262 0.22 Data Not Lognormal 0.157 0.22 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Appendix B Thallium Raw Statistics Number of Valid Observations 18 Number of Distinct Observations 16 Minimum 0.09 Maximum 0.349 Mean of Raw Data 0.182 Standard Deviation of Raw Data 0.0818 Khat 5.983 Theta hat 0.0305 Kstar 5.023 Theta star 0.0363 Mean of Log Transformed Data -1.787 Standard Deviation of Log Transformed Data 0.419 Normal GOF Test Results Correlation Coefficient R 0.937 Shapiro Wilk Test Statistic 0.867 Shapiro Wilk Critical (0.05) Value 0.897 Approximate Shapiro Wilk P Value 0.0163 Lilliefors Test Statistic 0.193 Lilliefors Critical (0.05) Value 0.202 Data appear Approximate Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.969 A-D Test Statistic 0.502 A-D Critical (0.05) Value 0.742 K-S Test Statistic 0.136 K-S Critical(0.05) Value 0.204 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.979 Shapiro Wilk Test Statistic 0.944 Shapiro Wilk Critical (0.05) Value 0.897 Approximate Shapiro Wilk P Value 0.39 Lilliefors Test Statistic 0.113 Lilliefors Critical (0.05) Value 0.202 Data appear Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Vanadium Raw Statistics Number of Valid Observations 16 Number of Missing Observations 3 Number of Distinct Observations 16 Minimum 14 Maximum 170 Mean of Raw Data 74.63 Standard Deviation of Raw Data 42.45 Khat 2.906 Theta hat 25.68 Kstar 2.403 Theta star 31.06 Mean of Log Transformed Data 4.131 Standard Deviation of Log Transformed Data 0.675 Normal GOF Test Results Correlation Coefficient R 0.973 Shapiro Wilk Test Statistic 0.947 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.442 Lilliefors Test Statistic 0.193 Lilliefors Critical (0.05) Value 0.213 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.988 A-D Test Statistic 0.278 A-D Critical (0.05) Value 0.745 K-S Test Statistic 0.175 K-S Critical(0.05) Value 0.217 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.939 Shapiro Wilk Critical (0.05) Value 0.887 Approximate Shapiro Wilk P Value 0.335 Lilliefors Test Statistic 0.213 Lilliefors Critical (0.05) Value 0.213 Data appear Approximate —Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Zinc Raw Statistics Number of Valid Observations 19 Number of Distinct Observations 17 Minimum 14 Maximum 83 Mean of Raw Data 34.35 Standard Deviation of Raw Data 19.88 Khat 4.068 Theta hat 8.444 Kstar 3.461 Theta star 9.926 Mean of Log Transformed Data 3.409 Standard Deviation of Log Transformed Data 0.499 Normal GOF Test Results Correlation Coefficient R 0.893 Shapiro Wilk Test Statistic 0.798 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 6.7337E-4 Lilliefors Test Statistic 0.211 Lilliefors Critical (0.05) Value 0.197 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.952 A-D Test Statistic 0.664 A-D Critical (0.05) Value 0.745 K-S Test Statistic 0.162 K-S Critical(0.05) Value 0.199 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.973 Shapiro Wilk Test Statistic 0.941 Shapiro Wilk Critical (0.05) Value 0.901 Approximate Shapiro Wilk P Value 0.29 Lilliefors Test Statistic 0.132 Lilliefors Critical (0.05) Value 0.197 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Appendix B pH Goodness -of -Fit Test Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 4:14:37 PM From File Cape_Fear_BG_GW_Surficial_Data_ProUCL.xis Full Precision OFF Confidence Coefficient 0.95 Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 18 Minimum 5.8 Maximum 6.5 Mean of Raw Data 6.188 Standard Deviation of Raw Data 0.143 Khat 1916 Theta hat 0.00323 Kstar 1751 Theta star 0.00353 Mean of Log Transformed Data 1.822 Standard Deviation of Log Transformed Data 0.0232 Normal GOF Test Results Correlation Coefficient R 0.975 Shapiro Wilk Test Statistic 0.959 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 0.273 Lilliefors Test Statistic 0.19 Lilliefors Critical (0.05) Value 0.148 Data appear Approximate Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.975 A-D Test Statistic 0.721 A-D Critical (0.05) Value 0.746 K-S Test Statistic 0.193 K-S Critical(0.05) Value 0.148 Data follow Appr. Gamma Distribution at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.973 Shapiro Wilk Test Statistic 0.955 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 0.208 Lilliefors Test Statistic 0.194 Lilliefors Critical (0.05) Value 0.148 Data appear Approximate —Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Alkalinity Raw Statistics Number of Valid Observations 34 Number of Missing Observations 1 Number of Distinct Observations 31 Minimum 30.4 Maximum 225 Mean of Raw Data 131.4 Standard Deviation of Raw Data 55.68 Khat 4.156 Theta hat 31.62 Kstar 3.808 Theta star 34.5 Mean of Log Transformed Data 4.753 Standard Deviation of Log Transformed Data 0.563 Normal GOF Test Results Correlation Coefficient R 0.981 Shapiro Wilk Test Statistic 0.944 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 0.104 Lilliefors Test Statistic 0.109 Lilliefors Critical (0.05) Value 0.15 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.938 A-D Test Statistic 1.342 A-D Critical (0.05) Value 0.752 K-S Test Statistic 0.17 K-S Critical(0.05) Value 0.152 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.93 Shapiro Wilk Test Statistic 0.854 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 2.0166E-4 Lilliefors Test Statistic 0.201 Lilliefors Critical (0.05) Value 0.15 Data not Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Aluminum Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 35 0 35 34 1 2.86% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 1 5 5 5 5 N/A 34 7 399 119.6 83.5 102.7 35 5 399 116.3 83 103 35 2.5 399 116.3 83 103.1 35 -122.5 399 112.7 83 109.2 35 0.01 399 116.2 83 103.2 35 7 399 116.4 83 102.9 K hat K Star Theta hat Log Mean Log Stdv Log CV 1.54 1.424 77.68 4.426 0.924 0.209 1.358 1.261 85.65 4.345 1.027 0.236 1.303 1.21 89.23 4.325 1.086 0.251 0.984 0.919 118.1 4.168 1.777 0.426 - - - 4.36 0.99 0.227 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.908 0.91 0.911 0.933 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.82 0.933 Data Not Normal 0.823 0.934 Data Not Normal 0.825 0.934 Data Not Normal 0.88 0.934 Data Not Normal 0.184 0.15 Data Not Normal 0.182 0.148 Data Not Normal 0.182 0.148 Data Not Normal 0.167 0.148 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.98 0.981 0.981 0.98 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.379 0.765 0.088 0.154 Detected Data Appear Gamma Distributed 0.333 0.769 0.0922 0.152 Data Appear Gamma Distributed 0.335 0.77 0.101 0.152 Data Appear Gamma Distributed 0.756 0.776 0.159 0.153 Detected Data appear Approximate Gamma Distribut Cape Fear Steam Electric Plant Aluminum (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.983 0.973 0.961 0.979 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.964 0.933 Data Appear Lognormal 0.945 0.934 Data Appear Lognormal 0.929 0.934 Data Not Lognormal 0.952 0.934 Data Appear Lognormal 0.113 0.15 Data Appear Lognormal 0.137 0.148 Data Appear Lognormal 0.152 0.148 Data Not Lognormal 0.126 0.148 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Barium Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 28 Minimum 9 Maximum 202 Mean of Raw Data 106.4 Standard Deviation of Raw Data 71.4 Khat 1.505 Theta hat 70.68 Kstar 1.395 Theta star 76.25 Mean of Log Transformed Data 4.299 Standard Deviation of Log Transformed Data 0.999 Normal GOF Test Results Correlation Coefficient R 0.917 Shapiro Wilk Test Statistic 0.816 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 1.3890E-5 Lilliefors Test Statistic 0.238 Lilliefors Critical (0.05) Value 0.148 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.832 A-D Test Statistic 2.306 A-D Critical (0.05) Value 0.767 K-S Test Statistic 0.262 K-S Critical(0.05) Value 0.151 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.921 Shapiro Wilk Test Statistic 0.829 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 3.2752E-5 Lilliefors Test Statistic 0.258 Lilliefors Critical (0.05) Value 0.148 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant Appendix B Bicarbonate Alkalinity Raw Statistics Number of Valid Observations 32 Number of Missing Observations 3 Number of Distinct Observations 29 Minimum 30.4 Maximum 225 Mean of Raw Data 131.5 Standard Deviation of Raw Data 57.39 Khat 3.925 Theta hat 33.5 Kstar 3.578 Theta star 36.75 Mean of Log Transformed Data 4.746 Standard Deviation of Log Transformed Data 0.58 Normal GOF Test Results Correlation Coefficient R 0.979 Shapiro Wilk Test Statistic 0.939 Shapiro Wilk Critical (0.05) Value 0.93 Approximate Shapiro Wilk P Value 0.0865 Lilliefors Test Statistic 0.115 Lilliefors Critical (0.05) Value 0.154 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.934 A-D Test Statistic 1.292 A-D Critical (0.05) Value 0.751 K-S Test Statistic 0.177 K-S Critical(0.05) Value 0.156 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.932 Shapiro Wilk Test Statistic 0.855 Shapiro Wilk Critical (0.05) Value 0.93 Approximate Shapiro Wilk P Value 3.7002E-4 Lilliefors Test Statistic 0.203 Lilliefors Critical (0.05) Value 0.154 Data not Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Boron Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 35 0 35 28 7 20.00% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 7 50 50 50 50 0 28 48.1 150 88.09 76.5 31.69 35 48.1 150 80.47 70 32.2 35 25 150 75.47 70 38.12 35 8.437 150 77.23 70 36.38 35 22.88 150 78.4 70 34.69 35 33.52 150 79.52 70 33.31 K hat K Star Theta hat Log Mean Log Stdv Log CV 8.379 7.505 10.51 4.417 0.354 0.0801 7.156 6.561 11.25 4.316 0.376 0.0872 3.583 3.295 21.06 4.178 0.58 0.139 5.233 4.803 14.98 4.263 0.461 0.108 - - - 4.294 0.409 0.0953 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.958 0.931 0.971 0.981 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.9 0.924 Data Not Normal 0.847 0.934 Data Not Normal 0.921 0.934 Data Not Normal 0.951 0.934 Data Appear Normal 0.172 0.164 Data Not Normal 0.171 0.148 Data Not Normal 0.113 0.148 Data Appear Normal 0.131 0.148 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.971 0.961 0.969 0.98 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.705 0.746 0.14 0.165 Detected Data Appear Gamma Distributed 1.419 0.749 0.157 0.149 Data Not Gamma Distributed 0.79 0.753 0.143 0.15 Detected Data appear Approximate Gamma Distribut 0.39 0.75 0.101 0.149 Data Appear Gamma Distributed Cape Fear Steam Electric Plant Appendix B Boron (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.976 0.952 0.956 0.985 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.933 0.924 Data Appear Lognormal 0.883 0.934 Data Not Lognormal 0.891 0.934 Data Not Lognormal 0.954 0.934 Data Appear Lognormal 0.124 0.164 Data Appear Lognormal 0.161 0.148 Data Not Lognormal 0.151 0.148 Data Not Lognormal 0.107 0.148 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Calcium Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 34 Minimum 4.31 Maximum 120 Mean of Raw Data 58.58 Standard Deviation of Raw Data 31.52 Khat 1.749 Theta hat 33.5 Kstar 1.618 Theta star 36.21 Mean of Log Transformed Data 3.758 Standard Deviation of Log Transformed Data 1.011 Normal GOF Test Results Correlation Coefficient R 0.947 Shapiro Wilk Test Statistic 0.886 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 0.00144 Lilliefors Test Statistic 0.225 Lilliefors Critical (0.05) Value 0.148 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.89 A-D Test Statistic 3.909 A-D Critical (0.05) Value 0.763 K-S Test Statistic 0.346 K-S Critical(0.05) Value 0.151 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.842 Shapiro Wilk Test Statistic 0.701 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 2.0604E-8 Lilliefors Test Statistic 0.38 Lilliefors Critical (0.05) Value 0.148 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant Chloride Raw Statistics Number of Valid Observations 34 Number of Missing Observations 1 Number of Distinct Observations 20 Minimum 2.5 Maximum 280 Mean of Raw Data 122.9 Standard Deviation of Raw Data 119.6 Khat 0.511 Theta hat 240.3 Kstar 0.486 Theta star 252.9 Mean of Log Transformed Data 3.574 Standard Deviation of Log Transformed Data 1.959 Normal GOF Test Results Correlation Coefficient R 0.853 Shapiro Wilk Test Statistic 0.702 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 3.8867E-8 Lilliefors Test Statistic 0.325 Lilliefors Critical (0.05) Value 0.15 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.709 A-D Test Statistic 4.426 A-D Critical (0.05) Value 0.811 K-S Test Statistic 0.309 K-S Critical(0.05) Value 0.159 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.873 Shapiro Wilk Test Statistic 0.737 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 2.3054E-7 Lilliefors Test Statistic 0.317 Lilliefors Critical (0.05) Value 0.15 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Appendix B Data do not follow a discernible distribution at (0.05) Level of Significance Cape Fear Steam Electric Plant Cobalt Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 35 0 35 28 7 20.00% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 7 1 1 1 1 0 28 0.531 78.7 13.87 4.47 19.72 35 0.531 78.7 11.29 2.04 18.33 35 0.5 78.7 11.19 2.04 18.39 35 -29.24 78.7 7.989 2.04 21.52 35 0.01 78.7 11.09 2.04 18.45 35 0.121 78.7 11.19 2.04 18.39 K hat K Star Theta hat Log Mean Log Stdv Log CV 0.639 0.594 21.71 1.671 1.479 0.885 0.572 0.542 19.74 1.337 1.482 1.109 0.519 0.493 21.57 1.198 1.63 1.361 0.339 0.329 32.68 0.416 2.868 6.899 - - 1.155 1.71 1.48 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.83 0.789 0.792 0.92 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.696 0.924 Data Not Normal 0.633 0.934 Data Not Normal 0.638 0.934 Data Not Normal 0.861 0.934 Data Not Normal 0.249 0.164 Data Not Normal 0.279 0.148 Data Not Normal 0.28 0.148 Data Not Normal 0.186 0.148 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.987 0.982 0.985 0.989 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.953 0.796 0.173 0.173 Detected Data appear Approximate Gamma Distribut 2.267 0.805 0.219 0.156 Data Not Gamma Distributed 1.722 0.81 0.193 0.157 Data Not Gamma Distributed 0.615 0.848 0.128 0.16 Data Appear Gamma Distributed Cape Fear Steam Electric Plant Cobalt (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.978 0.948 0.959 0.986 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.939 0.924 Data Appear Lognormal 0.881 0.934 Data Not Lognormal 0.896 0.934 Data Not Lognormal 0.958 0.934 Data Appear Lognormal 0.134 0.164 Data Appear Lognormal 0.177 0.148 Data Not Lognormal 0.131 0.148 Data Appear Lognormal 0.116 0.148 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Fluoride Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 33 24 9 5 4 44.44% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 4 0.1 1 0.525 0.5 0.369 5 0.215 0.584 0.372 0.26 0.183 9 0.1 1 0.44 0.5 0.272 9 0.05 0.584 0.323 0.25 0.181 9 -0.0327 0.584 0.277 0.26 0.194 9 0.0484 0.584 0.287 0.26 0.176 9 0.115 0.584 0.296 0.26 0.163 K hat K Star Theta hat Log Mean Log Stdv Log CV 5.404 2.295 0.0689 -1.084 0.483 -0.446 2.77 1.921 0.159 -1.012 0.694 -0.686 2.77 1.92 0.117 -1.32 0.744 -0.563 2.643 1.836 0.109 -1.448 0.739 -0.511 - -1.338 0.515 -0.385 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.895 0.949 0.935 0.948 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.773 0.762 Data Appear Normal 0.91 0.829 Data Appear Normal 0.87 0.829 Data Appear Normal 0.903 0.829 Data Appear Normal 0.331 0.343 Data Appear Normal 0.191 0.274 Data Appear Normal 0.305 0.274 Data Not Normal 0.284 0.274 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.907 0.972 0.924 0.94 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) 0.664 0.681 0.34 0.358 0.326 0.727 0.217 0.282 0.632 0.727 0.226 0.282 0.491 0.728 0.242 0.282 Conclusion with Alpha(0.05) Detected Data Appear Gamma Distributed Data Appear Gamma Distributed Data Appear Gamma Distributed Data Appear Gamma Distributed Cape Fear Steam Electric Plant Appendix B Fluoride (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.91 0.968 0.895 0.949 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.802 0.762 Data Appear Lognormal 0.943 0.829 Data Appear Lognormal 0.819 0.829 Data Not Lognormal 0.905 0.829 Data Appear Lognormal 0.308 0.343 Data Appear Lognormal 0.233 0.274 Data Appear Lognormal 0.273 0.274 Data Appear Lognormal 0.284 0.274 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Iron Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 34 Minimum 21 Maximum 45500 Mean of Raw Data 7418 Standard Deviation of Raw Data 14768 Khat 0.262 Theta hat 28359 Kstar 0.258 Theta star 28730 Mean of Log Transformed Data 6.216 Standard Deviation of Log Transformed Data 2.259 Normal GOF Test Results Correlation Coefficient R 0.727 Shapiro Wilk Test Statistic 0.526 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 6.155E-12 Lilliefors Test Statistic 0.48 Lilliefors Critical (0.05) Value 0.148 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.871 A-D Test Statistic 6.226 A-D Critical (0.05) Value 0.876 K-S Test Statistic 0.418 K-S Critical(0.05) Value 0.163 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.867 Shapiro Wilk Test Statistic 0.743 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 1.9869E-7 Lilliefors Test Statistic 0.302 Lilliefors Critical (0.05) Value 0.148 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant Lithium Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 35 23 12 11 1 8.33% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 1 5 5 5 5 N/A 11 1.808 8 5.286 6 2.159 12 1.808 8 5.262 5.5 2.06 12 1.808 8 5.054 5.001 2.21 12 1.808 8 5.137 5.001 2.122 12 1.808 8 5.135 5.001 2.124 12 1.808 8 5.116 5.001 2.141 K hat K Star Theta hat Log Mean Log Stdv Log CV 5.441 4.018 0.971 1.57 0.486 0.309 5.914 4.491 0.89 1.574 0.463 0.295 4.955 3.772 1.02 1.516 0.5 0.33 5.551 4.219 0.925 1.543 0.473 0.306 - - - 1.538 0.477 0.31 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.971 0.981 0.969 0.971 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.924 0.85 Data Appear Normal 0.944 0.859 Data Appear Normal 0.915 0.859 Data Appear Normal 0.924 0.859 Data Appear Normal 0.179 0.251 Data Appear Normal 0.146 0.243 Data Appear Normal 0.183 0.243 Data Appear Normal 0.204 0.243 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.937 0.95 0.943 0.948 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) 0.449 0.731 0.217 0.256 0.36 0.732 0.178 0.246 0.457 0.732 0.206 0.246 0.418 0.732 0.197 0.246 Conclusion with Alpha(0.05) Detected Data Appear Gamma Distributed Data Appear Gamma Distributed Data Appear Gamma Distributed Data Appear Gamma Distributed Cape Fear Steam Electric Plant Lithium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.952 0.957 0.962 0.964 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.896 0.85 Data Appear Lognormal 0.91 0.859 Data Appear Lognormal 0.909 0.859 Data Appear Lognormal 0.919 0.859 Data Appear Lognormal 0.221 0.251 Data Appear Lognormal 0.181 0.243 Data Appear Lognormal 0.209 0.243 Data Appear Lognormal 0.203 0.243 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Magnesium Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 34 Minimum 1.46 Maximum 35.7 Mean of Raw Data 18.82 Standard Deviation of Raw Data 10.56 Khat 1.747 Theta hat 10.77 Kstar 1.617 Theta star 11.64 Mean of Log Transformed Data 2.622 Standard Deviation of Log Transformed Data 0.984 Normal GOF Test Results Correlation Coefficient R 0.95 Shapiro Wilk Test Statistic 0.883 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 0.00121 Lilliefors Test Statistic 0.225 Lilliefors Critical (0.05) Value 0.148 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.857 A-D Test Statistic 2.647 A-D Critical (0.05) Value 0.763 K-S Test Statistic 0.237 K-S Critical(0.05) Value 0.151 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.88 Shapiro Wilk Test Statistic 0.762 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 5.7190E-7 Lilliefors Test Statistic 0.226 Lilliefors Critical (0.05) Value 0.148 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant Appendix B Manganese Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 34 Minimum 17 Maximum 9170 Mean of Raw Data 1879 Standard Deviation of Raw Data 2689 Khat 0.38 Theta hat 4951 Kstar 0.366 Theta star 5134 Mean of Log Transformed Data 5.79 Standard Deviation of Log Transformed Data 2.302 Normal GOF Test Results Correlation Coefficient R 0.856 Shapiro Wilk Test Statistic 0.724 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 7.1139E-8 Lilliefors Test Statistic 0.244 Lilliefors Critical (0.05) Value 0.148 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.958 A-D Test Statistic 1.564 A-D Critical (0.05) Value 0.839 K-S Test Statistic 0.191 K-S Critical(0.05) Value 0.16 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.942 Shapiro Wilk Test Statistic 0.858 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 2.1859E-4 Lilliefors Test Statistic 0.173 Lilliefors Critical (0.05) Value 0.148 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Cape Fear Steam Electric Plant Nickel Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 35 0 35 33 2 5.71 % Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 2 1 1 1 1 0 33 1.27 48 6.318 2.16 9.654 35 1 48 6.014 2.15 9.449 35 0.5 48 5.985 2.15 9.466 35 -12.72 48 5.305 2.15 10.26 35 0.01 48 5.957 2.15 9.483 35 0.326 48 5.979 2.15 9.469 K hat K Star Theta hat Log Mean Log Stdv Log CV 0.939 0.874 6.728 1.224 0.98 0.801 0.912 0.853 6.594 1.154 0.993 0.861 0.87 0.814 6.88 1.114 1.052 0.944 0.679 0.64 8.772 0.891 1.67 1.874 - - 1.099 1.082 0.984 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.736 0.73 0.735 0.812 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.565 0.931 Data Not Normal 0.557 0.934 Data Not Normal 0.564 0.934 Data Not Normal 0.695 0.934 Data Not Normal 0.342 0.152 Data Not Normal 0.348 0.148 Data Not Normal 0.346 0.148 Data Not Normal 0.313 0.148 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.939 0.936 0.941 0.955 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 3.824 0.779 0.294 0.158 Data Not Gamma Distributed 3.885 0.78 0.291 0.154 Data Not Gamma Distributed 3.422 0.782 0.281 0.154 Data Not Gamma Distributed 2.729 0.795 0.236 0.155 Data Not Gamma Distributed Cape Fear Steam Electric Plant Nickel (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.898 0.911 0.936 0.94 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.801 0.931 Data Not Lognormal 0.826 0.934 Data Not Lognormal 0.877 0.934 Data Not Lognormal 0.891 0.934 Data Not Lognormal 0.229 0.152 Data Not Lognormal 0.22 0.148 Data Not Lognormal 0.203 0.148 Data Not Lognormal 0.198 0.148 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Nitrate + Nitrite Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 35 3 32 18 14 43.75% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 14 0.01 0.01 0.01 0.01 1.800E-18 18 0.018 3.9 0.721 0.203 1.044 32 0.01 3.9 0.41 0.018 0.852 32 0.005 3.9 0.408 0.018 0.853 32 -3.629 3.9 -0.42 0.018 1.62 32 0.01 3.9 0.41 0.018 0.852 32 3.5680E-5 3.9 0.407 0.018 0.854 K hat K Star Theta hat Log Mean Log Stdv Log CV 0.467 0.426 1.544 -1.701 1.968 -1.157 0.327 0.317 1.255 -2.971 2.066 -0.695 0.291 0.285 1.4 -3.275 2.326 -0.71 0.327 0.317 1.255 -2.971 2.066 -0.695 - - -3.941 3.152 -0.8 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.845 0.731 0.732 0.984 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.722 0.897 Data Not Normal 0.553 0.93 Data Not Normal 0.555 0.93 Data Not Normal 0.972 0.93 Data Appear Normal 0.25 0.202 Data Not Normal 0.346 0.154 Data Not Normal 0.344 0.154 Data Not Normal 0.169 0.154 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.993 0.988 0.991 0.988 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.81 0.807 0.2 0.216 Detected Data appear Approximate Gamma Distribut 3.855 0.849 0.315 0.168 Data Not Gamma Distributed 3.242 0.859 0.282 0.169 Data Not Gamma Distributed 3.855 0.849 0.315 0.168 Data Not Gamma Distributed Cape Fear Steam Electric Plant Appendix B Nitrate + Nitrite (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.946 0.882 0.904 0.988 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.872 0.897 Data Not Lognormal 0.76 0.93 Data Not Lognormal 0.797 0.93 Data Not Lognormal 0.962 0.93 Data Appear Lognormal 0.192 0.202 Data Appear Lognormal 0.253 0.154 Data Not Lognormal 0.245 0.154 Data Not Lognormal 0.113 0.154 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Potassium Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 29 Minimum 0.944 Maximum 4.51 Mean of Raw Data 1.855 Standard Deviation of Raw Data 1.168 Khat 3.292 Theta hat 0.564 Kstar 3.029 Theta star 0.612 Mean of Log Transformed Data 0.459 Standard Deviation of Log Transformed Data 0.542 Normal GOF Test Results Correlation Coefficient R 0.851 Shapiro Wilk Test Statistic 0.71 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 3.4484E-8 Lilliefors Test Statistic 0.334 Lilliefors Critical (0.05) Value 0.148 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.915 A-D Test Statistic 4.205 A-D Critical (0.05) Value 0.753 K-S Test Statistic 0.299 K-S Critical(0.05) Value 0.15 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.881 Shapiro Wilk Test Statistic 0.756 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 4.1742E-7 Lilliefors Test Statistic 0.27 Lilliefors Critical (0.05) Value 0.148 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant Sodium Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 33 Minimum 15.6 Maximum 281 Mean of Raw Data 94.03 Standard Deviation of Raw Data 59.62 Khat 1.966 Theta hat 47.83 Kstar 1.817 Theta star 51.76 Mean of Log Transformed Data 4.268 Standard Deviation of Log Transformed Data 0.853 Normal GOF Test Results Correlation Coefficient R 0.952 Shapiro Wilk Test Statistic 0.908 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 0.00681 Lilliefors Test Statistic 0.147 Lilliefors Critical (0.05) Value 0.148 Data appear Approximate Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.961 A-D Test Statistic 1.776 A-D Critical (0.05) Value 0.76 K-S Test Statistic 0.208 K-S Critical(0.05) Value 0.151 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.921 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 4.2535E-5 Lilliefors Test Statistic 0.242 Lilliefors Critical (0.05) Value 0.148 Data not Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Appendix B Strontium Raw Statistics Number of Valid Observations 35 Number of Distinct Observations 34 Minimum 77 Maximum 2460 Mean of Raw Data 816.6 Standard Deviation of Raw Data 625.4 Khat 1.549 Theta hat 527 Kstar 1.436 Theta star 568.8 Mean of Log Transformed Data 6.349 Standard Deviation of Log Transformed Data 0.976 Normal GOF Test Results Correlation Coefficient R 0.914 Shapiro Wilk Test Statistic 0.83 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 3.3554E-5 Lilliefors Test Statistic 0.25 Lilliefors Critical (0.05) Value 0.148 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.965 A-D Test Statistic 1.796 A-D Critical (0.05) Value 0.766 K-S Test Statistic 0.245 K-S Critical(0.05) Value 0.151 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.921 Shapiro Wilk Test Statistic 0.836 Shapiro Wilk Critical (0.05) Value 0.934 Approximate Shapiro Wilk P Value 5.0253E-5 Lilliefors Test Statistic 0.301 Lilliefors Critical (0.05) Value 0.148 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Cape Fear Steam Electric Plant Sulfate Raw Statistics Number of Valid Observations 34 Number of Missing Observations 1 Number of Distinct Observations 29 Minimum 15 Maximum 690 Mean of Raw Data 133 Standard Deviation of Raw Data 177.6 Khat 0.788 Theta hat 168.8 Kstar 0.738 Theta star 180.2 Mean of Log Transformed Data 4.135 Standard Deviation of Log Transformed Data 1.193 Normal GOF Test Results Correlation Coefficient R 0.829 Shapiro Wilk Test Statistic 0.689 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 1.9637E-8 Lilliefors Test Statistic 0.356 Lilliefors Critical (0.05) Value 0.15 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.971 A-D Test Statistic 2.843 A-D Critical (0.05) Value 0.786 K-S Test Statistic 0.312 K-S Critical(0.05) Value 0.157 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.936 Shapiro Wilk Test Statistic 0.857 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 2.5274E-4 Lilliefors Test Statistic 0.251 Lilliefors Critical (0.05) Value 0.15 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant TDS Raw Statistics Number of Valid Observations 34 Number of Missing Observations 1 Number of Distinct Observations 24 Minimum 140 Maximum 1200 Mean of Raw Data 560.4 Standard Deviation of Raw Data 239.3 Khat 4.154 Theta hat 134.9 Kstar 3.807 Theta star 147.2 Mean of Log Transformed Data 6.204 Standard Deviation of Log Transformed Data 0.565 Normal GOF Test Results Correlation Coefficient R 0.942 Shapiro Wilk Test Statistic 0.89 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 0.00223 Lilliefors Test Statistic 0.218 Lilliefors Critical (0.05) Value 0.15 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.923 A-D Test Statistic 2.88 A-D Critical (0.05) Value 0.752 K-S Test Statistic 0.286 K-S Critical(0.05) Value 0.152 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.892 Shapiro Wilk Test Statistic 0.791 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 4.5312E-6 Lilliefors Test Statistic 0.31 Lilliefors Critical (0.05) Value 0.15 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant TOC Raw Statistics Number of Valid Observations 32 Number of Missing Observations 3 Number of Distinct Observations 30 Minimum 0.706 Maximum 6.3 Mean of Raw Data 2.074 Standard Deviation of Raw Data 1.78 Khat 1.847 Theta hat 1.123 Kstar 1.695 Theta star 1.224 Mean of Log Transformed Data 0.435 Standard Deviation of Log Transformed Data 0.736 Normal GOF Test Results Correlation Coefficient R 0.857 Shapiro Wilk Test Statistic 0.723 Shapiro Wilk Critical (0.05) Value 0.93 Approximate Shapiro Wilk P Value 2.9866E-7 Lilliefors Test Statistic 0.302 Lilliefors Critical (0.05) Value 0.154 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.943 A-D Test Statistic 3.066 A-D Critical (0.05) Value 0.761 K-S Test Statistic 0.23 K-S Critical(0.05) Value 0.158 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.908 Shapiro Wilk Test Statistic 0.806 Shapiro Wilk Critical (0.05) Value 0.93 Approximate Shapiro Wilk P Value 2.1349E-5 Lilliefors Test Statistic 0.209 Lilliefors Critical (0.05) Value 0.154 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant Appendix B Total Radium Raw Statistics Number of Valid Observations 22 Number of Missing Observations 11 Number of Distinct Observations 21 Minimum 0.272 Maximum 7.662 Mean of Raw Data 1.827 Standard Deviation of Raw Data 1.575 Khat 2.159 Theta hat 0.846 Kstar 1.895 Theta star 0.964 Mean of Log Transformed Data 0.353 Standard Deviation of Log Transformed Data 0.706 Normal GOF Test Results Correlation Coefficient R 0.833 Shapiro Wilk Test Statistic 0.715 Shapiro Wilk Critical (0.05) Value 0.911 Approximate Shapiro Wilk P Value 1.0909E-5 Lilliefors Test Statistic 0.21 Lilliefors Critical (0.05) Value 0.184 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.94 A-D Test Statistic 0.585 A-D Critical (0.05) Value 0.755 K-S Test Statistic 0.15 K-S Critical(0.05) Value 0.188 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.979 Shapiro Wilk Test Statistic 0.972 Shapiro Wilk Critical (0.05) Value 0.911 Approximate Shapiro Wilk P Value 0.741 Lilliefors Test Statistic 0.117 Lilliefors Critical (0.05) Value 0.184 Data appear Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Total Uranium Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 33 9 24 20 4 16.67% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 4 2.0000E-4 2.0000E-4 2.0000E-4 2.0000E-4 0 20 1.2100E-4 0.0188 0.00561 5.1000E-4 0.00701 24 1.2100E-4 0.0188 0.0047 4.3800E-4 0.00669 24 1.0000E-4 0.0188 0.00469 4.3800E-4 0.00671 24 -0.0107 0.0188 0.00347 4.3800E-4 0.00808 24 1.2100E-4 0.0188 0.00634 0.00397 0.00659 24 2.0143E-5 0.0188 0.00468 4.3800E-4 0.00671 K hat K Star Theta hat Log Mean Log Stdv Log CV 0.49 0.45 0.0114 -6.483 1.818 -0.28 0.443 0.415 0.0106 -6.822 1.825 -0.268 0.415 0.391 0.0113 -6.938 1.952 -0.281 0.563 0.52 0.0113 -6.17 1.8 -0.292 - - - -7.051 2.117 -0.3 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.868 0.835 0.837 0.944 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.737 0.905 Data Not Normal 0.685 0.916 Data Not Normal 0.688 0.916 Data Not Normal 0.886 0.916 Data Not Normal 0.364 0.192 Data Not Normal 0.399 0.177 Data Not Normal 0.398 0.177 Data Not Normal 0.308 0.177 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.884 0.899 0.896 0.873 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 2.209 0.805 0.348 0.205 Data Not Gamma Distributed 2.855 0.819 0.366 0.19 Data Not Gamma Distributed 2.448 0.825 0.348 0.19 Data Not Gamma Distributed 2.322 0.8 0.297 0.187 Data Not Gamma Distributed Cape Fear Steam Electric Plant Appendix B Total Uranium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.898 0.896 0.917 0.946 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.789 0.905 Data Not Lognormal 0.786 0.916 Data Not Lognormal 0.82 0.916 Data Not Lognormal 0.881 0.916 Data Not Lognormal 0.311 0.192 Data Not Lognormal 0.31 0.177 Data Not Lognormal 0.279 0.177 Data Not Lognormal 0.25 0.177 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Vanadium Appendix B Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 35 0 35 33 2 5.71 % Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Statistics (Non -Detects Only) Statistics (NDs = DL) Statistics (NDs = DL/2) Statistics (Gamma ROS Estimates) Statistics (Lognormal ROS Estimates) Number Minimum Maximum Mean Median SD 2 0.3 0.3 0.3 0.3 0 33 0.264 1.43 0.718 0.687 0.322 35 0.264 1.43 0.694 0.679 0.327 35 0.15 1.43 0.685 0.679 0.34 35 -0.0201 1.43 0.679 0.679 0.351 35 0.157 1.43 0.688 0.679 0.336 35 0.218 1.43 0.691 0.679 0.332 K hat K Star Theta hat Log Mean Log Stdv Log CV 4.998 4.564 0.144 -0.435 0.474 -1.09 4.566 4.194 0.152 -0.479 0.494 -1.032 3.713 3.414 0.185 -0.518 0.574 -1.108 3.951 3.632 0.174 -0.506 0.548 -1.081 - - -0.492 0.517 -1.051 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.978 0.972 0.985 0.991 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.942 0.931 Data Appear Normal 0.929 0.934 Data Not Normal 0.957 0.934 Data Appear Normal 0.976 0.934 Data Appear Normal 0.0836 0.152 Data Appear Normal 0.103 0.148 Data Appear Normal 0.0874 0.148 Data Appear Normal 0.0747 0.148 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.99 0.988 0.987 0.988 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) 0.325 0.748 0.101 0.154 0.479 0.751 0.121 0.149 0.295 0.753 0.0992 0.149 0.279 0.753 0.0943 0.149 Conclusion with Alpha(0.05) Detected Data Appear Gamma Distributed Data Appear Gamma Distributed Data Appear Gamma Distributed Data Appear Gamma Distributed Cape Fear Steam Electric Plant Vanadium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.985 0.98 0.976 0.985 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.953 0.931 Data Appear Lognormal 0.941 0.934 Data Appear Lognormal 0.943 0.934 Data Appear Lognormal 0.954 0.934 Data Appear Lognormal 0.11 0.152 Data Appear Lognormal 0.12 0.148 Data Appear Lognormal 0.128 0.148 Data Appear Lognormal 0.118 0.148 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Appendix B pH Goodness -of -Fit Test Statistics for Data Sets with Non -Detects User Selected Options Date/Time of Computation ProLICL 5.12/3/2020 4:18:28 PM From File Cape_Fear_BG_GW_Bedrock Data_ProUCL.xls Full Precision OFF Confidence Coefficient 0.95 Raw Statistics Number of Valid Observations 68 Number of Distinct Observations 34 Minimum 5.46 Maximum 8.19 Mean of Raw Data 7.138 Standard Deviation of Raw Data 0.857 Khat 64.4 Theta hat 0.111 Kstar 61.57 Theta star 0.116 Mean of Log Transformed Data 1.958 Standard Deviation of Log Transformed Data 0.129 Normal GOF Test Results Correlation Coefficient R 0.891 Approximate Shapiro Wilk Test Statistic 0.772 Approximate Shapiro Wilk P Value 2.776E-14 Lilliefors Test Statistic 0.311 Lilliefors Critical (0.05) Value 0.107 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.874 A-D Test Statistic 7.126 A-D Critical (0.05) Value 0.749 K-S Test Statistic 0.325 K-S Critical(0.05) Value 0.108 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.878 Approximate Shapiro Wilk Test Statistic 0.749 Approximate Shapiro Wilk P Value 1.221 E-15 Lilliefors Test Statistic 0.331 Lilliefors Critical (0.05) Value 0.107 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Cape Fear Steam Electric Plant Appendix B Alkalinity Raw Statistics Number of Valid Observations 68 Number of Distinct Observations 50 Minimum 63.6 Maximum 215 Mean of Raw Data 151.2 Standard Deviation of Raw Data 40.31 Khat 12.35 Theta hat 12.24 Kstar 11.81 Theta star 12.8 Mean of Log Transformed Data 4.978 Standard Deviation of Log Transformed Data 0.302 Normal GOF Test Results Correlation Coefficient R 0.986 Approximate Shapiro Wilk Test Statistic 0.95 Approximate Shapiro Wilk P Value 0.0188 Lilliefors Test Statistic 0.0864 Lilliefors Critical (0.05) Value 0.107 Data appear Approximate Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.964 A-D Test Statistic 1.135 A-D Critical (0.05) Value 0.75 K-S Test Statistic 0.116 K-S Critical(0.05) Value 0.108 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.962 Approximate Shapiro Wilk Test Statistic 0.909 Approximate Shapiro Wilk P Value 3.2701 E-5 Lilliefors Test Statistic 0.127 Lilliefors Critical (0.05) Value 0.107 Data not Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Appendix B Aluminum Raw Statistics Number of Valid Observations 68 Number of Distinct Observations 43 Minimum 2.39 Maximum 295 Mean of Raw Data 31.69 Standard Deviation of Raw Data 46.71 Khat 1.049 Theta hat 30.22 Kstar 1.012 Theta star 31.31 Mean of Log Transformed Data 2.909 Standard Deviation of Log Transformed Data 0.966 Normal GOF Test Results Correlation Coefficient R 0.732 Approximate Shapiro Wilk Test Statistic 0.565 Approximate Shapiro Wilk P Value 0 Lilliefors Test Statistic 0.312 Lilliefors Critical (0.05) Value 0.107 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.922 A-D Test Statistic 3.252 A-D Critical (0.05) Value 0.779 K-S Test Statistic 0.179 K-S Critical(0.05) Value 0.111 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.982 Approximate Shapiro Wilk Test Statistic 0.961 Approximate Shapiro Wilk P Value 0.0907 Lilliefors Test Statistic 0.095 Lilliefors Critical (0.05) Value 0.107 Data appear Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Appendix B Antimony Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 0 68 0 68 100.00% Warning: All observations are Non -Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable Antimony was not processed! Cape Fear Steam Electric Plant Arsenic Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 1 67 27 40 59.70% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Number Minimum Maximum Mean Median SD 40 1 1 1 1 0 27 0.51 11.9 4.579 4.59 2.7 67 0.51 11.9 2.442 1 2.45 67 0.5 11.9 2.144 0.5 2.634 67 -6.447 11.9 1.475 1.177 3.556 67 0.01 11.9 2.24 1.209 2.642 67 0.122 11.9 2.38 1.262 2.519 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 2.183 1.965 2.098 1.275 0.822 0.645 Statistics (NDs = DL) 1.463 1.408 1.669 0.514 0.815 1.585 Statistics (NDs = DL/2) 0.884 0.855 2.424 0.1 1.101 11 Statistics (Gamma ROS Estimates) 0.428 0.419 5.236 -0.715 2.49 -3.481 Statistics (Lognormal ROS Estimates) 0.324 1.088 3.355 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.968 0.82 0.824 0.993 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (NDs = DL) 0.678 0 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.679 0 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.985 0.858 Data Appear Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.938 0.923 Data Appear Normal Lilliefors (Detects Only) 0.166 0.167 Data Appear Normal Lilliefors (NDs = DL) 0.37 0.108 Data Not Normal Lilliefors (NDs = DL/2) 0.347 0.108 Data Not Normal Lilliefors (Normal ROS Estimates) 0.0882 0.108 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.964 0.947 0.958 0.958 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 1.106 0.756 0.261 0.17 Data Not Gamma Distributed 9.644 0.77 0.383 0.111 Data Not Gamma Distributed 9.727 0.786 0.373 0.113 Data Not Gamma Distributed 2.243 0.834 0.176 0.116 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Appendix B Arsenic (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.933 0.856 0.837 0.988 Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Shapiro -Wilk (Detects Only) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.724 1.110E-16 Data Not Lognormal 0.681 0 Data Not Lognormal 0.961 0.0865 Data Appear Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.867 0.923 Data Not Lognormal 0.294 0.167 Data Not Lognormal 0.378 0.108 Data Not Lognormal 0.371 0.108 Data Not Lognormal 0.136 0.108 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Barium Raw Statistics Number of Valid Observations 68 Number of Distinct Observations 58 Minimum 28 Maximum 488 Mean of Raw Data 316 Standard Deviation of Raw Data 149.6 Khat 2.493 Theta hat 126.7 Kstar 2.393 Theta star 132 Mean of Log Transformed Data 5.542 Standard Deviation of Log Transformed Data 0.784 Normal GOF Test Results Correlation Coefficient R 0.917 Approximate Shapiro Wilk Test Statistic 0.814 Approximate Shapiro Wilk P Value 1.358E-11 Lilliefors Test Statistic 0.188 Lilliefors Critical (0.05) Value 0.107 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.811 A-D Test Statistic 6.919 A-D Critical (0.05) Value 0.76 K-S Test Statistic 0.27 K-S Critical(0.05) Value 0.109 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.864 Approximate Shapiro Wilk Test Statistic 0.733 Approximate Shapiro Wilk P Value 1.110E-16 Lilliefors Test Statistic 0.304 Lilliefors Critical (0.05) Value 0.107 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant Appendix B Bicarbonate Alkalinity Raw Statistics Number of Valid Observations 64 Number of Missing Observations 4 Number of Distinct Observations 48 Minimum 63.6 Maximum 215 Mean of Raw Data 151.4 Standard Deviation of Raw Data 39.7 Khat 12.86 Theta hat 11.77 Kstar 12.26 Theta star 12.34 Mean of Log Transformed Data 4.98 Standard Deviation of Log Transformed Data 0.296 Normal GOF Test Results Correlation Coefficient R 0.988 Approximate Shapiro Wilk Test Statistic 0.954 Approximate Shapiro Wilk P Value 0.043 Lilliefors Test Statistic 0.0876 Lilliefors Critical (0.05) Value 0.111 Data appear Approximate Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.967 A-D Test Statistic 0.984 A-D Critical (0.05) Value 0.75 K-S Test Statistic 0.116 K-S Critical(0.05) Value 0.111 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.964 Approximate Shapiro Wilk Test Statistic 0.915 Approximate Shapiro Wilk P Value 1.7510E-4 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.111 Data not Lognormal at (0.05) Significance Level Cape Fear Steam Electric Plant Calcium Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 0 68 67 1 1.47% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Number Minimum Maximum Mean Median SD 1 0.01 0.01 0.01 0.01 N/A 67 23.4 72.2 47.69 50.1 13.77 68 0.01 72.2 46.99 49.95 14.84 68 0.005 72.2 46.99 49.95 14.84 68 11.88 72.2 47.16 49.95 14.34 68 20.44 72.2 47.29 49.95 14.07 68 19.79 72.2 47.28 49.95 14.08 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 10.4 9.943 4.586 3.816 0.33 0.0864 Statistics (NDs = DL) 3.324 3.187 14.13 3.692 1.072 0.29 Statistics (NDs = DL/2) 3.132 3.003 15 3.682 1.153 0.313 Statistics (Gamma ROS Estimates) 9.75 9.33 4.85 3.804 0.341 0.0897 Statistics (Lognormal ROS Estimates) 3.804 0.342 0.09 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROE Correlation Coefficient R 0.967 0.966 0.966 0.97 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.91 4.8306E-5 Data Not Normal Shapiro -Wilk (NDs = DL) 0.93 8.9621 E-4 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.93 8.9593E-4 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.927 5.5767E-4 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Lilliefors (Detects Only) 0.137 0.108 Data Not Normal Lilliefors (NDs = DL) 0.147 0.107 Data Not Normal Lilliefors (NDs = DL/2) 0.147 0.107 Data Not Normal Lilliefors (Normal ROS Estimates) 0.143 0.107 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.943 0.896 0.893 0.942 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 2.807 0.751 0.179 0.109 Data Not Gamma Distributed 5.705 0.757 0.22 0.109 Data Not Gamma Distributed 6.061 0.757 0.222 0.109 Data Not Gamma Distributed 2.831 0.751 0.182 0.108 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Calcium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.94 0.554 0.537 0.943 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.861 2.5201 E-8 Data Not Lognormal 0.358 0 Data Not Lognormal 0.339 0 Data Not Lognormal 0.87 7.8301 E-8 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.198 0.108 Data Not Lognormal 0.293 0.107 Data Not Lognormal 0.308 0.107 Data Not Lognormal 0.201 0.107 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Chloride Raw Statistics Number of Valid Observations 67 Number of Missing Observations 1 Number of Distinct Observations 27 Minimum 13 Maximum 240 Mean of Raw Data 89.85 Standard Deviation of Raw Data 69.85 Khat 1.374 Theta hat 65.4 Kstar 1.322 Theta star 67.95 Mean of Log Transformed Data 4.092 Standard Deviation of Log Transformed Data 0.998 Normal GOF Test Results Correlation Coefficient R 0.948 Approximate Shapiro Wilk Test Statistic 0.872 Approximate Shapiro Wilk P Value 1.2716E-7 Lilliefors Test Statistic 0.208 Lilliefors Critical (0.05) Value 0.108 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.949 A-D Test Statistic 2.149 A-D Critical (0.05) Value 0.772 K-S Test Statistic 0.144 K-S Critical(0.05) Value 0.111 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.946 Approximate Shapiro Wilk Test Statistic 0.863 Approximate Shapiro Wilk P Value 3.5427E-8 Lilliefors Test Statistic 0.178 Lilliefors Critical (0.05) Value 0.108 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant Fluoride Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 66 51 15 13 2 13.33% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Number Minimum Maximum Mean Median SD 2 0.1 0.2 0.15 0.15 0.0707 13 0.082 0.282 0.173 0.182 0.0598 15 0.082 0.282 0.17 0.182 0.0591 15 0.05 0.282 0.16 0.176 0.0659 15 0.082 0.282 0.165 0.176 0.06 15 0.082 0.282 0.166 0.176 0.0593 15 0.082 0.282 0.165 0.176 0.0594 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 8.386 6.502 0.0206 -1.816 0.374 -0.206 Statistics (NDs = DL) 8.271 6.661 0.0205 -1.835 0.374 -0.204 Statistics (NDs = DL/2) 5.515 4.456 0.029 -1.927 0.472 -0.245 Statistics (Gamma ROS Estimates) 8.078 6.507 0.0205 -1.861 0.375 -0.202 Statistics (Lognormal ROS Estimates) -1.863 0.375 -0.201 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROE Correlation Coefficient R 0.975 0.97 0.981 0.976 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Normal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Normal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.946 0.866 Data Appear Normal 0.934 0.881 Data Appear Normal 0.958 0.881 Data Appear Normal 0.943 0.881 Data Appear Normal 0.171 0.234 Data Appear Normal 0.171 0.22 Data Appear Normal 0.138 0.22 Data Appear Normal 0.149 0.22 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.971 0.967 0.971 0.979 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.422 0.734 0.181 0.237 Detected Data Appear Gamma Distributed 0.557 0.738 0.186 0.222 Data Appear Gamma Distributed 0.39 0.738 0.177 0.222 Data Appear Gamma Distributed 0.364 0.738 0.147 0.222 Data Appear Gamma Distributed Appendix B Cape Fear Steam Electric Plant Appendix B Fluoride (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.969 0.965 0.966 0.978 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.932 0.866 Data Appear Lognormal 0.922 0.881 Data Appear Lognormal 0.934 0.881 Data Appear Lognormal 0.946 0.881 Data Appear Lognormal 0.198 0.234 Data Appear Lognormal 0.202 0.22 Data Appear Lognormal 0.189 0.22 Data Appear Lognormal 0.163 0.22 Data Appear Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Iron Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 0 68 65 3 4.41 % Number Minimum Maximum Mean Median SD Statistics (Non -Detects Only) 3 10 10 10 10 0 Statistics (Non -Detects Only) 65 3.382 4230 442.5 305 650.6 Statistics (All: NDs treated as DL value) 68 3.382 4230 423.4 299.5 642.1 Statistics (All: NDs treated as DL/2 value) 68 3.382 4230 423.2 299.5 642.2 Statistics (Normal ROS Imputed Data) 68 -642.4 4230 401.3 299.5 665 Statistics (Gamma ROS Imputed Data) 68 0.01 4230 423 299.5 642.4 Statistics (Lognormal ROS Imputed Data) 68 3.382 4230 423.6 299.5 642 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 0.768 0.743 576.2 5.316 1.45 0.273 Statistics (NDs = DL) 0.698 0.677 606.4 5.183 1.548 0.299 Statistics (NDs = DL/2) 0.678 0.658 624.5 5.152 1.611 0.313 Statistics (Gamma ROS Estimates) 0.537 0.523 787.5 4.878 2.494 0.511 Statistics (Lognormal ROS Estimates) 5.198 1.523 0.293 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROE Correlation Coefficient R 0.748 0.746 0.747 0.792 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.592 0 Data Not Normal Shapiro -Wilk (NDs = DL) 0.59 0 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.591 0 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.67 0 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Lilliefors (Detects Only) 0.293 0.11 Data Not Normal Lilliefors (NDs = DL) 0.288 0.107 Data Not Normal Lilliefors (NDs = DL/2) 0.288 0.107 Data Not Normal Lilliefors (Normal ROS Estimates) 0.277 0.107 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.939 0.943 0.945 0.955 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 1.244 0.791 0.14 0.115 Data Not Gamma Distributed 1.201 0.797 0.13 0.113 Data Not Gamma Distributed 1.211 0.799 0.128 0.113 Data Not Gamma Distributed 1.714 0.813 0.148 0.114 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Appendix B Iron (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.964 0.965 0.958 0.968 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.928 9.7493E-4 Data Not Lognormal 0.924 3.9223E-4 Data Not Lognormal 0.909 3.3528E-5 Data Not Lognormal 0.931 0.00107 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.187 0.11 Data Not Lognormal 0.189 0.107 Data Not Lognormal 0.192 0.107 Data Not Lognormal 0.186 0.107 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Lithium Raw Statistics Number of Valid Observations 24 Number of Missing Observations 44 Number of Distinct Observations 12 Minimum 3.467 Maximum 14 Mean of Raw Data 7.344 Standard Deviation of Raw Data 2.556 Khat 8.884 Theta hat 0.827 Kstar 7.801 Theta star 0.941 Mean of Log Transformed Data 1.937 Standard Deviation of Log Transformed Data 0.348 Normal GOF Test Results Correlation Coefficient R 0.972 Shapiro Wilk Test Statistic 0.946 Shapiro Wilk Critical (0.05) Value 0.916 Approximate Shapiro Wilk P Value 0.228 Lilliefors Test Statistic 0.159 Lilliefors Critical (0.05) Value 0.177 Data appear Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.988 A-D Test Statistic 0.326 A-D Critical (0.05) Value 0.745 K-S Test Statistic 0.139 K-S Critical(0.05) Value 0.178 Data appear Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.988 Shapiro Wilk Test Statistic 0.975 Shapiro Wilk Critical (0.05) Value 0.916 Approximate Shapiro Wilk P Value 0.78 Lilliefors Test Statistic 0.13 Lilliefors Critical (0.05) Value 0.177 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Magnesium Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 0 68 67 1 1.47% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Number Minimum Maximum Mean Median SD 1 0.005 0.005 0.005 0.005 N/A 67 2.38 32.5 17.87 17 8.741 68 0.005 32.5 17.61 16.95 8.942 68 0.0025 32.5 17.61 16.95 8.942 68 -4.954 32.5 17.54 16.95 9.106 68 2.38 32.5 17.67 16.95 8.83 68 2.38 32.5 17.65 16.95 8.859 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 3.189 3.056 5.604 2.718 0.638 0.235 Statistics (NDs = DL) 2.017 1.937 8.732 2.6 1.16 0.446 Statistics (NDs = DL/2) 1.948 1.871 9.042 2.59 1.231 0.475 Statistics (Gamma ROS Estimates) 3.06 2.935 5.776 2.7 0.651 0.241 Statistics (Lognormal ROS Estimates) 2.695 0.662 0.246 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROE Correlation Coefficient R 0.968 0.971 0.971 0.973 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.912 6.3685E-5 Data Not Normal Shapiro -Wilk (NDs = DL) 0.92 2.0869E-4 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.92 2.0894E-4 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.932 0.0012 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Lilliefors (Detects Only) 0.142 0.108 Data Not Normal Lilliefors (NDs = DL) 0.14 0.107 Data Not Normal Lilliefors (NDs = DL/2) 0.14 0.107 Data Not Normal Lilliefors (Normal ROS Estimates) 0.134 0.107 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.928 0.906 0.904 0.927 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 2.634 0.757 0.146 0.11 Data Not Gamma Distributed 2.894 0.763 0.187 0.109 Data Not Gamma Distributed 3 0.764 0.19 0.11 Data Not Gamma Distributed 2.648 0.757 0.148 0.109 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Appendix B Magnesium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.937 0.732 0.71 0.938 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.865 4.8746E-8 Data Not Lognormal 0.582 0 Data Not Lognormal 0.551 0 Data Not Lognormal 0.865 3.4713E-8 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.184 0.108 Data Not Lognormal 0.224 0.107 Data Not Lognormal 0.235 0.107 Data Not Lognormal 0.188 0.107 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Appendix B Manganese Raw Statistics Number of Valid Observations 68 Number of Distinct Observations 66 Minimum 7 Maximum 1120 Mean of Raw Data 411.8 Standard Deviation of Raw Data 339.6 Khat 0.965 Theta hat 427 Kstar 0.932 Theta star 442 Mean of Log Transformed Data 5.42 Standard Deviation of Log Transformed Data 1.356 Normal GOF Test Results Correlation Coefficient R 0.948 Approximate Shapiro Wilk Test Statistic 0.871 Approximate Shapiro Wilk P Value 9.1199E-8 Lilliefors Test Statistic 0.197 Lilliefors Critical (0.05) Value 0.107 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.911 A-D Test Statistic 1.688 A-D Critical (0.05) Value 0.782 K-S Test Statistic 0.142 K-S Critical(0.05) Value 0.111 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.946 Approximate Shapiro Wilk Test Statistic 0.877 Approximate Shapiro Wilk P Value 2.0726E-7 Lilliefors Test Statistic 0.185 Lilliefors Critical (0.05) Value 0.107 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Cape Fear Steam Electric Plant Molybdenum Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 0 68 46 22 32.35% Number Minimum Maximum Mean Median SD Statistics (Non -Detects Only) 22 1 1 1 1 0 Statistics (Non -Detects Only) 46 0.096 17 4.675 4.495 3.882 Statistics (All: NDs treated as DL value) 68 0.096 17 3.486 1.42 3.622 Statistics (All: NDs treated as DL/2 value) 68 0.096 17 3.324 1.387 3.741 Statistics (Normal ROS Imputed Data) 68 -5.107 17 3.156 2.574 4.07 Statistics (Gamma ROS Imputed Data) 68 0.01 17 3.406 2.014 3.701 Statistics (Lognormal ROS Imputed Data) 68 0.0851 17 3.373 1.64 3.711 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 1.036 0.983 4.513 0.987 1.32 1.337 Statistics (NDs = DL) 0.994 0.96 3.506 0.668 1.177 1.763 Statistics (NDs = DL/2) 0.785 0.76 4.233 0.444 1.34 3.022 Statistics (Gamma ROS Estimates) 0.606 0.589 5.621 0.207 1.967 9.506 Statistics (Lognormal ROS Estimates) 0.451 1.404 3.111 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROE Correlation Coefficient R 0.941 0.892 0.885 0.966 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (NDs = DL) 0.795 8.343E-13 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.781 1.023E-13 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.939 0.00352 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.881 0.945 Data Not Normal Lilliefors (Detects Only) 0.164 0.129 Data Not Normal Lilliefors (NDs = DL) 0.254 0.107 Data Not Normal Lilliefors (NDs = DL/2) 0.256 0.107 Data Not Normal Lilliefors (Normal ROS Estimates) 0.104 0.107 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.974 0.985 0.98 0.979 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 1.751 0.777 0.21 0.134 Data Not Gamma Distributed 2.262 0.78 0.249 0.111 Data Not Gamma Distributed 4.314 0.791 0.28 0.112 Data Not Gamma Distributed 0.918 0.806 0.142 0.114 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Molybdenum (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.929 0.968 0.932 0.974 Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Shapiro -Wilk (Detects Only) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.927 5.6750E-4 Data Not Lognormal 0.854 5.7234E-9 Data Not Lognormal 0.926 5.4316E-4 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.853 0.945 Data Not Lognormal 0.26 0.129 Data Not Lognormal 0.215 0.107 Data Not Lognormal 0.269 0.107 Data Not Lognormal 0.18 0.107 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Nitrate + Nitrite Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 9 59 32 27 45.76% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Number Minimum Maximum Mean Median SD 27 0.01 0.01 0.01 0.01 1.768E-18 32 0.0037 3.1 0.754 0.0425 0.944 59 0.0037 3.1 0.414 0.01 0.785 59 0.0037 3.1 0.411 0.0089 0.786 59 -2.484 3.1 -0.00928 0.0089 1.171 59 0.0037 3.1 0.414 0.01 0.785 59 3.4581 E-5 3.1 0.411 0.013 0.786 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 0.38 0.365 1.986 -2.03 2.318 -1.141 Statistics (NDs = DL) 0.297 0.293 1.393 -3.209 2.132 -0.664 Statistics (NDs = DL/2) 0.267 0.264 1.543 -3.526 2.36 -0.669 Statistics (Gamma ROS Estimates) 0.297 0.293 1.393 -3.209 2.132 -0.664 Statistics (Lognormal ROS Estimates) -3.973 2.944 -0.741 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.886 0.763 0.764 0.974 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (NDs = DL) 0.582 0 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.584 0 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.946 0.0196 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.773 0.93 Data Not Normal Lilliefors (Detects Only) 0.331 0.154 Data Not Normal Lilliefors (NDs = DL) 0.435 0.115 Data Not Normal Lilliefors (NDs = DL/2) 0.434 0.115 Data Not Normal Lilliefors (Normal ROS Estimates) 0.238 0.115 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.912 0.947 0.943 0.947 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 2.553 0.837 0.27 0.167 Data Not Gamma Distributed 9.71 0.865 0.352 0.126 Data Not Gamma Distributed 8.645 0.88 0.322 0.127 Data Not Gamma Distributed 9.71 0.865 0.352 0.126 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Appendix B Nitrate + Nitrite (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.926 0.843 0.86 0.971 Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Shapiro -Wilk (Detects Only) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.694 1.110E-15 Data Not Lognormal 0.717 1.288E-14 Data Not Lognormal 0.924 0.0012 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.835 0.93 Data Not Lognormal 0.247 0.154 Data Not Lognormal 0.286 0.115 Data Not Lognormal 0.248 0.115 Data Not Lognormal 0.149 0.115 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Potassium Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 0 68 67 1 1.47% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Number Minimum Maximum Mean Median SD 1 0.1 0.1 0.1 0.1 N/A 67 0.592 5.6 1.8 1.86 0.757 68 0.1 5.6 1.775 1.83 0.779 68 0.05 5.6 1.774 1.83 0.781 68 -0.0561 5.6 1.773 1.83 0.785 68 0.44 5.6 1.78 1.83 0.769 68 0.573 5.6 1.782 1.83 0.766 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 6.36 6.086 0.283 0.507 0.411 0.81 Statistics (NDs = DL) 4.79 4.589 0.371 0.466 0.531 1.141 Statistics (NDs = DL/2) 4.405 4.221 0.403 0.456 0.589 1.292 Statistics (Gamma ROS Estimates) 5.778 5.532 0.308 0.488 0.438 0.899 Statistics (Lognormal ROS Estimates) 0.491 0.428 0.87 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.915 0.925 0.926 0.926 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.866 5.1623E-8 Data Not Normal Shapiro -Wilk (NDs = DL) 0.89 1.8001 E-6 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.892 2.2550E-6 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.894 3.4453E-6 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Lilliefors (Detects Only) 0.152 0.108 Data Not Normal Lilliefors (NDs = DL) 0.149 0.107 Data Not Normal Lilliefors (NDs = DL/2) 0.149 0.107 Data Not Normal Lilliefors (Normal ROS Estimates) 0.15 0.107 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.941 0.943 0.943 0.944 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 1.28 0.753 0.158 0.109 Data Not Gamma Distributed 1.638 0.754 0.156 0.108 Data Not Gamma Distributed 1.873 0.755 0.154 0.108 Data Not Gamma Distributed 1.312 0.754 0.158 0.108 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Potassium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.972 0.899 0.853 0.971 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.951 0.0239 Data Not Lognormal 0.851 3.6434E-9 Data Not Lognormal 0.778 7.516E-14 Data Not Lognormal 0.946 0.0108 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.176 0.108 Data Not Lognormal 0.158 0.107 Data Not Lognormal 0.154 0.107 Data Not Lognormal 0.175 0.107 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Sodium Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 0 68 67 1 1.47% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Number Minimum Maximum Mean Median SD 1 0.05 0.05 0.05 0.05 N/A 67 35.9 77.7 52.9 50 12.59 68 0.05 77.7 52.12 49.75 14.04 68 0.025 77.7 52.12 49.75 14.05 68 20.01 77.7 52.41 49.75 13.12 68 25.57 77.7 52.5 49.75 12.93 68 27.5 77.7 52.53 49.75 12.87 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 17.96 17.17 2.945 3.94 0.239 0.0608 Statistics (NDs = DL) 4.497 4.308 11.59 3.838 0.874 0.228 Statistics (NDs = DL/2) 4.144 3.971 12.58 3.828 0.955 0.25 Statistics (Gamma ROS Estimates) 16.43 15.71 3.195 3.93 0.252 0.0642 Statistics (Lognormal ROS Estimates) 3.931 0.249 0.0635 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROE Correlation Coefficient R 0.965 0.961 0.961 0.974 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.904 1.8860E-5 Data Not Normal Shapiro -Wilk (NDs = DL) 0.93 0.00102 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.93 0.00101 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.937 0.00289 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Lilliefors (Detects Only) 0.112 0.108 Data Not Normal Lilliefors (NDs = DL) 0.109 0.107 Data Not Normal Lilliefors (NDs = DL/2) 0.109 0.107 Data Not Normal Lilliefors (Normal ROS Estimates) 0.103 0.107 Data Appear Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.968 0.929 0.927 0.972 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 1.608 0.749 0.118 0.109 Data Not Gamma Distributed 5.702 0.755 0.266 0.108 Data Not Gamma Distributed 6.242 0.755 0.278 0.108 Data Not Gamma Distributed 1.346 0.75 0.115 0.108 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Appendix B Sodium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.968 0.536 0.516 0.975 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.907 3.1912E-5 Data Not Lognormal 0.339 0 Data Not Lognormal 0.318 0 Data Not Lognormal 0.934 0.00187 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.122 0.108 Data Not Lognormal 0.369 0.107 Data Not Lognormal 0.383 0.107 Data Not Lognormal 0.119 0.107 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Cape Fear Steam Electric Plant Appendix B Strontium Raw Statistics Number of Valid Observations 68 Number of Distinct Observations 65 Minimum 331 Maximum 771 Mean of Raw Data 557.4 Standard Deviation of Raw Data 122.7 Khat 20.01 Theta hat 27.86 Kstar 19.13 Theta star 29.13 Mean of Log Transformed Data 6.298 Standard Deviation of Log Transformed Data 0.23 Normal GOF Test Results Correlation Coefficient R 0.969 Approximate Shapiro Wilk Test Statistic 0.915 Approximate Shapiro Wilk P Value 8.7769E-5 Lilliefors Test Statistic 0.124 Lilliefors Critical (0.05) Value 0.107 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.958 A-D Test Statistic 1.73 A-D Critical (0.05) Value 0.749 K-S Test Statistic 0.136 K-S Critical(0.05) Value 0.108 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.967 Approximate Shapiro Wilk Test Statistic 0.914 Approximate Shapiro Wilk P Value 7.2765E-5 Lilliefors Test Statistic 0.138 Lilliefors Critical (0.05) Value 0.107 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Cape Fear Steam Electric Plant Sulfate Raw Statistics Number of Valid Observations 67 Number of Missing Observations 1 Number of Distinct Observations 53 Minimum 1.8 Maximum 120 Mean of Raw Data 41.93 Standard Deviation of Raw Data 29.32 Khat 1.459 Theta hat 28.73 Kstar 1.404 Theta star 29.86 Mean of Log Transformed Data 3.356 Standard Deviation of Log Transformed Data 1.038 Normal GOF Test Results Correlation Coefficient R 0.964 Approximate Shapiro Wilk Test Statistic 0.913 Approximate Shapiro Wilk P Value 7.9079E-5 Lilliefors Test Statistic 0.118 Lilliefors Critical (0.05) Value 0.108 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.959 A-D Test Statistic 2.333 A-D Critical (0.05) Value 0.77 K-S Test Statistic 0.187 K-S Critical(0.05) Value 0.111 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.935 Approximate Shapiro Wilk Test Statistic 0.861 Approximate Shapiro Wilk P Value 2.6357E-8 Lilliefors Test Statistic 0.237 Lilliefors Critical (0.05) Value 0.108 Data not Lognormal at (0.05) Significance Level Non -parametric GOF Test Results Data do not follow a discernible distribution at (0.05) Level of Significance Appendix B Cape Fear Steam Electric Plant TDS Raw Statistics Number of Valid Observations 67 Number of Missing Observations 1 Number of Distinct Observations 34 Minimum 210 Maximum 660 Mean of Raw Data 390.4 Standard Deviation of Raw Data 110.4 Khat 12.5 Theta hat 31.23 Kstar 11.95 Theta star 32.67 Mean of Log Transformed Data 5.927 Standard Deviation of Log Transformed Data 0.291 Normal GOF Test Results Correlation Coefficient R 0.978 Approximate Shapiro Wilk Test Statistic 0.939 Approximate Shapiro Wilk P Value 0.00402 Lilliefors Test Statistic 0.0958 Lilliefors Critical (0.05) Value 0.108 Data appear Approximate Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.983 A-D Test Statistic 1.141 A-D Critical (0.05) Value 0.75 K-S Test Statistic 0.112 K-S Critical(0.05) Value 0.109 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.977 Approximate Shapiro Wilk Test Statistic 0.936 Approximate Shapiro Wilk P Value 0.00279 Lilliefors Test Statistic 0.131 Lilliefors Critical (0.05) Value 0.108 Data not Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant TOC Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 5 63 61 2 3.17% Number Minimum Maximum Mean Median SD Statistics (Non -Detects Only) 2 1 1 1 1 0 Statistics (Non -Detects Only) 61 0.268 1.9 0.805 0.787 0.429 Statistics (All: NDs treated as DL value) 63 0.268 1.9 0.811 0.8 0.423 Statistics (All: NDs treated as DL/2 value) 63 0.268 1.9 0.796 0.778 0.425 Statistics (Normal ROS Imputed Data) 63 0.268 1.9 0.799 0.778 0.424 Statistics (Gamma ROS Imputed Data) 63 0.268 1.9 0.798 0.778 0.424 Statistics (Lognormal ROS Imputed Data) 63 0.268 1.9 0.797 0.778 0.425 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 3.658 3.489 0.22 -0.359 0.546 -1.52 Statistics (NDs = DL) 3.752 3.584 0.216 -0.348 0.541 -1.555 Statistics (NDs = DL/2) 3.695 3.53 0.215 -0.37 0.541 -1.461 Statistics (Gamma ROS Estimates) 3.717 3.55 0.215 -0.366 0.54 -1.475 Statistics (Lognormal ROS Estimates) -0.367 0.54 -1.472 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROE Correlation Coefficient R 0.956 0.96 0.953 0.956 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.896 1.9518E-5 Data Not Normal Shapiro -Wilk (NDs = DL) 0.904 3.7190E-5 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.891 6.2571 E-6 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.896 1.1853E-5 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Lilliefors (Detects Only) 0.172 0.113 Data Not Normal Lilliefors (NDs = DL) 0.166 0.111 Data Not Normal Lilliefors (NDs = DL/2) 0.184 0.111 Data Not Normal Lilliefors (Normal ROS Estimates) 0.172 0.111 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.979 0.98 0.979 0.98 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 1.334 0.755 0.149 0.114 Data Not Gamma Distributed 1.296 0.755 0.144 0.113 Data Not Gamma Distributed 1.408 0.755 0.163 0.113 Data Not Gamma Distributed 1.319 0.755 0.149 0.113 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant TOC (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.976 0.976 0.977 0.978 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.929 0.00179 Data Not Lognormal 0.93 0.00161 Data Not Lognormal 0.931 0.00182 Data Not Lognormal 0.932 0.00231 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.129 0.113 Data Not Lognormal 0.124 0.111 Data Not Lognormal 0.142 0.111 Data Not Lognormal 0.128 0.111 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Total Radium Raw Statistics Number of Valid Observations 37 Number of Missing Observations 29 Number of Distinct Observations 37 Minimum 0.0972 Maximum 8.002 Mean of Raw Data 1.437 Standard Deviation of Raw Data 1.315 Khat 2.105 Theta hat 0.682 Kstar 1.953 Theta star 0.736 Mean of Log Transformed Data 0.106 Standard Deviation of Log Transformed Data 0.728 Normal GOF Test Results Correlation Coefficient R 0.782 Shapiro Wilk Test Statistic 0.648 Shapiro Wilk Critical (0.05) Value 0.936 Approximate Shapiro Wilk P Value 4.072E-10 Lilliefors Test Statistic 0.255 Lilliefors Critical (0.05) Value 0.144 Data not Normal at (0.05) Significance Level Gamma GOF Test Results Correlation Coefficient R 0.896 A-D Test Statistic 0.79 A-D Critical (0.05) Value 0.759 K-S Test Statistic 0.157 K-S Critical(0.05) Value 0.147 Data not Gamma Distributed at (0.05) Significance Level Lognormal GOF Test Results Correlation Coefficient R 0.96 Shapiro Wilk Test Statistic 0.952 Shapiro Wilk Critical (0.05) Value 0.936 Approximate Shapiro Wilk P Value 0.154 Lilliefors Test Statistic 0.114 Lilliefors Critical (0.05) Value 0.144 Data appear Lognormal at (0.05) Significance Level Appendix B Cape Fear Steam Electric Plant Total Uranium Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 66 22 44 34 10 22.73% Number Minimum Maximum Mean Median SD Statistics (Non -Detects Only) 10 2.0000E-4 2.0000E-4 2.0000E-4 2.0000E-4 2.857E-20 Statistics (Non -Detects Only) 34 1.0000E-4 0.00108 5.7676E-4 5.4300E-4 3.1593E-4 Statistics (All: NDs treated as DL value) 44 1.0000E-4 0.00108 4.9114E-4 3.8450E-4 3.1954E-4 Statistics (All: NDs treated as DL/2 value) 44 1.0000E-4 0.00108 4.6841 E-4 3.8450E-4 3.4270E-4 Statistics (Normal ROS Imputed Data) 44 -2.298E-4 0.00108 4.6364E-4 3.8450E-4 3.5594E-4 Statistics (Gamma ROS Imputed Data) 44 1.0000E-4 0.01 0.00272 7.9850E-4 0.004 Statistics (Lognormal ROS Imputed Data) 44 8.3221E-5 0.00108 4.8453E-4 3.8450E-4 3.2683E-4 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 2.755 2.532 2.0932E-4 -7.65 0.683 -0.0892 Statistics (NDs = DL) 2.34 2.196 2.0985E-4 -7.847 0.702 -0.0895 Statistics (NDs = DL/2) 1.623 1.527 2.8867E-4 -8.005 0.892 -0.111 Statistics (Gamma ROS Estimates) 0.59 0.565 0.00461 -6.958 1.423 -0.204 Statistics (Lognormal ROS Estimates) -7.895 0.769 -0.0974 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROE Correlation Coefficient R 0.97 0.935 0.942 0.977 Test value Crit. (0.05) Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.916 0.933 Data Not Normal Shapiro -Wilk (NDs = DL) 0.85 0.944 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.858 0.944 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.936 0.944 Data Not Normal Lilliefors (Detects Only) 0.156 0.15 Data Not Normal Lilliefors (NDs = DL) 0.219 0.132 Data Not Normal Lilliefors (NDs = DL/2) 0.182 0.132 Data Not Normal Lilliefors (Normal ROS Estimates) 0.153 0.132 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma RO: Correlation Coefficient R 0.937 0.944 0.933 0.835 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.867 0.755 0.18 0.152 Data Not Gamma Distributed 1.922 0.759 0.195 0.135 Data Not Gamma Distributed 1.682 0.766 0.152 0.136 Data Not Gamma Distributed 4.815 0.805 0.335 0.14 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Total Uranium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.961 0.955 0.942 0.97 Shapiro -Wilk (Detects Only) Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.908 0.933 Data Not Lognormal 0.89 0.944 Data Not Lognormal 0.854 0.944 Data Not Lognormal 0.918 0.944 Data Not Lognormal 0.179 0.15 Data Not Lognormal 0.172 0.132 Data Not Lognormal 0.162 0.132 Data Not Lognormal 0.151 0.132 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Appendix B Cape Fear Steam Electric Plant Vanadium Num Obs Num Miss Num Valid Detects NDs % NDs Raw Statistics 68 0 68 43 25 36.76% Statistics (Non -Detects Only) Statistics (Non -Detects Only) Statistics (All: NDs treated as DL value) Statistics (All: NDs treated as DL/2 value) Statistics (Normal ROS Imputed Data) Statistics (Gamma ROS Imputed Data) Statistics (Lognormal ROS Imputed Data) Number Minimum Maximum Mean Median SD 25 0.3 0.3 0.3 0.3 1.133E-16 43 0.114 3.35 1.144 0.438 1.074 68 0.114 3.35 0.834 0.3 0.944 68 0.114 3.35 0.779 0.223 0.978 68 -1.359 3.35 0.731 0.371 1.07 68 0.01 3.35 0.791 0.313 0.976 68 0.035 3.35 0.801 0.311 0.966 K hat K Star Theta hat Log Mean Log Stdv Log CV Statistics (Non -Detects Only) 0.996 0.942 1.149 -0.446 1.159 -2.601 Statistics (NDs = DL) 1.057 1.02 0.789 -0.724 0.989 -1.365 Statistics (NDs = DL/2) 0.813 0.787 0.958 -0.979 1.157 -1.182 Statistics (Gamma ROS Estimates) 0.609 0.592 1.299 -1.248 1.713 -1.372 Statistics (Lognormal ROS Estimates) -0.925 1.188 -1.285 Normal GOF Test Results No NDs NDs = DL NDs = DL/2Normal ROS Correlation Coefficient R 0.899 0.822 0.822 0.94 Apr. Test P Value Conclusion with Alpha(0.05) Shapiro -Wilk (NDs = DL) 0.663 0 Data Not Normal Shapiro -Wilk (NDs = DL/2) 0.662 0 Data Not Normal Shapiro -Wilk (Normal ROS Estimates) 0.876 1.9244E-7 Data Not Normal Test value Crit. (0.05) Conclusion with Alpha(0.05) Shapiro -Wilk (Detects Only) 0.789 0.943 Data Not Normal Lilliefors (Detects Only) 0.309 0.134 Data Not Normal Lilliefors (NDs = DL) 0.375 0.107 Data Not Normal Lilliefors (NDs = DL/2) 0.349 0.107 Data Not Normal Lilliefors (Normal ROS Estimates) 0.234 0.107 Data Not Normal Gamma GOF Test Results No NDs NDs = DL NDs = DL/23amma ROE Correlation Coefficient R 0.9 0.917 0.919 0.922 Anderson -Darling (Detects Only) Kolmogorov-Smirnov (Detects Only) Anderson -Darling (NDs = DL) Kolmogorov-Smirnov (NDs = DL) Anderson -Darling (NDs = DL/2) Kolmogorov-Smirnov (NDs = DL/2) Anderson -Darling (Gamma ROS Estimates) Kolmogorov-Smirnov (Gamma ROS Est.) Test value Crit. (0.05) Conclusion with Alpha(0.05) 2.9 0.778 0.229 0.139 Data Not Gamma Distributed 8.426 0.779 0.316 0.111 Data Not Gamma Distributed 8.058 0.789 0.244 0.112 Data Not Gamma Distributed 2.136 0.806 0.164 0.113 Data Not Gamma Distributed Appendix B Cape Fear Steam Electric Plant Appendix B Vanadium (Continued) Lognormal GOF Test Results No NDs NDs = DL NDs = DL/2 Log ROS Correlation Coefficient R 0.937 0.898 0.883 0.958 Shapiro -Wilk (NDs = DL) Shapiro -Wilk (NDs = DL/2) Shapiro -Wilk (Lognormal ROS Estimates) Shapiro -Wilk (Detects Only) Lilliefors (Detects Only) Lilliefors (NDs = DL) Lilliefors (NDs = DL/2) Lilliefors (Lognormal ROS Estimates) Apr. Test P Value Conclusion with Alpha(0.05) 0.788 2.865E-13 Data Not Lognormal 0.755 2.442E-15 Data Not Lognormal 0.9 7.9380E-6 Data Not Lognormal Test value Crit. (0.05) Conclusion with Alpha(0.05) 0.854 0.943 Data Not Lognormal 0.207 0.134 Data Not Lognormal 0.288 0.107 Data Not Lognormal 0.242 0.107 Data Not Lognormal 0.167 0.107 Data Not Lognormal Note: Substitution methods such as DL or DL/2 are not recommended. Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil March 2020 Duke Energy Progress, LLC - Cape Fear Steam Electric Plant APPENDIX C QUANTITATIVE OUTLIER TEST RESULTS (PROUCL OUTPUT SynTerra Cape Fear Steam Electric Plant Appendix C Outlier Tests for Selected Uncensored Variables User Selected Options Date/Time of Computation ProUCL 5.11/27/2020 11:05:55 AM From File Cape_Fear_BG_Soil_Data_Boxplots.xls Full Precision OFF Dixon's Outlier Test for pH Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1 % critical value: 0.595 1. Observation Value 6.91 is a Potential Outlier (Upper Tail)? Test Statistic: 0.667 For 10% significance level, 6.91 is an outlier. For 5% significance level, 6.91 is an outlier. For 1 % significance level, 6.91 is an outlier. 2. Observation Value 4.38 is a Potential Outlier (Lower Tail)? Test Statistic: 0.140 For 10% significance level, 4.38 is not an outlier. For 5% significance level, 4.38 is not an outlier. For 1 % significance level, 4.38 is not an outlier. Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Aluminum Number of Observations = 19 10% critical value: 0.412 5% critical value: 0.462 1 % critical value: 0.547 1. Observation Value 44400 is a Potential Outlier (Upper Tail)? Test Statistic: 0.558 For 10% significance level, 44400 is an outlier. For 5% significance level, 44400 is an outlier. For 1 % significance level, 44400 is an outlier. 2. Observation Value 11000 is a Potential Outlier (Lower Tail)? Test Statistic: 0.235 For 10% significance level, 11000 is not an outlier. For 5% significance level, 11000 is not an outlier. For 1 % significance level, 11000 is not an outlier. Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Arsenic Number of Observations = 19 10% critical value: 0.412 5% critical value: 0.462 1 % critical value: 0.547 1. Observation Value 3.32 is a Potential Outlier (Upper Tail)? Test Statistic: 0.548 For 10% significance level, 3.32 is an outlier. For 5% significance level, 3.32 is an outlier. For 1 % significance level, 3.32 is an outlier. 2. Observation Value 0.17 is a Potential Outlier (Lower Tail)? Test Statistic: 0.324 For 10% significance level, 0.17 is not an outlier. For 5% significance level, 0.17 is not an outlier. For 1 % significance level, 0.17 is not an outlier. Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Iron Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1 % critical value: 0.595 1. Observation Value 40000 is a Potential Outlier (Upper Tail)? Test Statistic: 0.615 For 10% significance level, 40000 is an outlier. For 5% significance level, 40000 is an outlier. For 1 % significance level, 40000 is an outlier. 2. Observation Value 12000 is a Potential Outlier (Lower Tail)? Test Statistic: 0.167 For 10% significance level, 12000 is not an outlier. For 5% significance level, 12000 is not an outlier. For 1 % significance level, 12000 is not an outlier. Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Nickel Number of Observations = 19 10% critical value: 0.412 5% critical value: 0.462 1 % critical value: 0.547 1. Observation Value 22 is a Potential Outlier (Upper Tail)? Test Statistic: 0.645 For 10% significance level, 22 is an outlier. For 5% significance level, 22 is an outlier. For 1 % significance level, 22 is an outlier. 2. Observation Value 1.5 is a Potential Outlier (Lower Tail)? Test Statistic: 0.363 For 10% significance level, 1.5 is not an outlier. For 5% significance level, 1.5 is not an outlier. For 1 % significance level, 1.5 is not an outlier. Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Nitrate (as N) Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1 % critical value: 0.595 1. Observation Value 30.1 is a Potential Outlier (Upper Tail)? Test Statistic: 0.996 For 10% significance level, 30.1 is an outlier. For 5% significance level, 30.1 is an outlier. For 1 % significance level, 30.1 is an outlier. 2. Observation Value 0.082 is a Potential Outlier (Lower Tail)? Test Statistic: 0.415 For 10% significance level, 0.082 is not an outlier. For 5% significance level, 0.082 is not an outlier. For 1 % significance level, 0.082 is not an outlier. Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Potassium Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1 % critical value: 0.595 1. Observation Value 1300 is a Potential Outlier (Upper Tail)? Test Statistic: 0.639 For 10% significance level, 1300 is an outlier. For 5% significance level, 1300 is an outlier. For 1 % significance level, 1300 is an outlier. 2. Observation Value 139 is a Potential Outlier (Lower Tail)? Test Statistic: 0.172 For 10% significance level, 139 is not an outlier. For 5% significance level, 139 is not an outlier. For 1 % significance level, 139 is not an outlier. Cape Fear Steam Electric Plant Appendix C ITERATION 2 Dixon's Outlier Test for Aluminum Number of Observations = 18 10% critical value: 0.424 5% critical value: 0.475 1 % critical value: 0.561 1. Observation Value 40000 is a Potential Outlier (Upper Tail)? Test Statistic: 0.576 For 10% significance level, 40000 is an outlier. For 5% significance level, 40000 is an outlier. For 1 % significance level, 40000 is an outlier. 2. Observation Value 11000 is a Potential Outlier (Lower Tail)? Test Statistic: 0.274 For 10% significance level, 11000 is not an outlier. For 5% significance level, 11000 is not an outlier. For 1 % significance level, 11000 is not an outlier. Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Nitrate (as N) Number of Observations = 15 10% critical value: 0.472 5% critical value: 0.525 1 % critical value: 0.616 1. Observation Value 0.87 is a Potential Outlier (Upper Tail)? Test Statistic: 0.859 For 10% significance level, 0.87 is an outlier. For 5% significance level, 0.87 is an outlier. For 1 % significance level, 0.87 is an outlier. 2. Observation Value 0.082 is a Potential Outlier (Lower Tail)? Test Statistic: 0.438 For 10% significance level, 0.082 is not an outlier. For 5% significance level, 0.082 is not an outlier. For 1 % significance level, 0.082 is not an outlier. Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Potassium Number of Observations = 15 10% critical value: 0.472 5% critical value: 0.525 1 % critical value: 0.616 1. Observation Value 920 is a Potential Outlier (Upper Tail)? Test Statistic: 0.757 For 10% significance level, 920 is an outlier. For 5% significance level, 920 is an outlier. For 1 % significance level, 920 is an outlier. 2. Observation Value 139 is a Potential Outlier (Lower Tail)? Test Statistic: 0.323 For 10% significance level, 139 is not an outlier. For 5% significance level, 139 is not an outlier. For 1 % significance level, 139 is not an outlier. Cape Fear Steam Electric Plant Appendix C ITERATION 3 Dixon's Outlier Test for Potassium Number of Observations = 14 10% critical value: 0.492 5% critical value: 0.546 1 % critical value: 0.641 1. Observation Value 610 is a Potential Outlier (Upper Tail)? Test Statistic: 0.667 For 10% significance level, 610 is an outlier. For 5% significance level, 610 is an outlier. For 1 % significance level, 610 is an outlier. 2. Observation Value 139 is a Potential Outlier (Lower Tail)? Test Statistic: 0.384 For 10% significance level, 139 is not an outlier. For 5% significance level, 139 is not an outlier. For 1 % significance level, 139 is not an outlier. Cape Fear Steam Electric Plant Appendix C Outlier Tests for Selected Uncensored Variables User Selected Options Date/Time of Computation ProLICL 5.11/21/2020 5:57:15 PM From File Cape_Fear_BG_GW_Data_Boxplots_b.xls Full Precision OFF Rosner's Outlier Test for pH Mean 6.151 Standard Deviation 0.288 Number of data 42 Number of suspected outliers 10 Potential Obs. Test Critical Critical # Mean sd outlier Number value value (5%) value (1 %) 1 6.151 0.285 4.55 1 5.622 3.06 3.4 2 6.19 0.14 5.8 21 2.791 3.05 3.39 3 6.2 0.127 6.5 9 2.375 3.04 3.38 4 6.192 0.118 5.9 5 2.467 3.03 3.37 5 6.199 0.11 6.45 18 2.286 3.01 3.36 6 6.193 0.103 6.4 7 2.018 2.998 3.346 7 6.187 0.0979 6 4 1.909 2.986 3.332 8 6.192 0.0939 6 30 2.048 2.974 3.318 9 6.198 0.0891 6.01 14 2.11 2.962 3.304 10 6.204 0.0839 6.04 22 1.95 2.95 3.29 For 5% Significance Level, there is 1 Potential Outlier Potential outliers is: 4.55 For 1 % Significance Level, there is 1 Potential Outlier Potential outliers is: 4.55 Cape Fear Steam Electric Plant Appendix C Rosner's Outlier Test for Iron Mean 8451 Standard Deviation 15483 Number of data 40 Number of suspected outliers 10 Potential Obs. Test Critical Critical # Mean sd outlier Number value value (5%) value (1 %) 1 8451 15288 45500 14 2.423 3.04 3.38 2 7501 14456 38400 15 2.137 3.03 3.37 3 6688 13717 37500 16 2.246 3.01 3.36 4 5855 12895 37200 18 2.431 3 3.34 5 4984 11924 36700 20 2.66 2.99 3.33 6 4078 10767 35800 19 2.946 2.976 3.314 7 3145 9384 34600 21 3.352 2.962 3.298 8 2192 7678 33900 17 4.13 2.948 3.282 9 1201 5236 29800 22 5.463 2.934 3.266 10 278.5 425.9 2490 1 5.193 2.92 3.25 For 5% significance level, there are 10 Potential Outliers Potential outliers are: 45500, 38400, 37500, 37200, 36700, 35800, 34600, 33900, 29800, 2490 For 1 % Significance Level, there are 10 Potential Outliers Potential outliers are: 45500, 38400, 37500, 37200, 36700, 35800, 34600, 33900, 29800, 2490 Cape Fear Steam Electric Plant Appendix C Rosner's Outlier Test for Potassium Mean 1.789 Standard Deviation 1.123 Number of data 40 Number of suspected outliers 10 Potential Obs. Test Critical Critical # Mean sd outlier Number value value (5%) value (1 %) 1 1.789 1.109 4.51 11 2.453 3.04 3.38 2 1.719 1.047 4.36 8 2.523 3.03 3.37 3 1.649 0.965 3.81 13 2.238 3.01 3.36 4 1.591 0.908 3.65 12 2.268 3 3.34 5 1.534 0.851 3.55 4 2.37 2.99 3.33 6 1.476 0.788 3.45 9 2.503 2.976 3.314 7 1.418 0.72 3.44 6 2.806 2.962 3.298 8 1.357 0.635 3.21 3 2.917 2.948 3.282 9 1.299 0.55 3.16 7 3.384 2.934 3.266 10 1.239 0.44 3.09 10 4.21 2.92 3.25 For 5% significance level, there are 10 Potential Outliers Potential outliers are: 4.51, 4.36, 3.81, 3.65, 3.55, 3.45, 3.44, 3.21, 3.16, 3.09 For 1 % Significance Level, there are 10 Potential Outliers Potential outliers are: 4.51, 4.36, 3.81, 3.65, 3.55, 3.45, 3.44, 3.21, 3.16, 3.09 Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Total Radium Number of Observations = 24 10% critical value: 0.367 5% critical value: 0.413 1 % critical value: 0.497 1. Observation Value 85.5 is a Potential Outlier (Upper Tail)? Test Statistic: 0.965 For 10% significance level, 85.5 is an outlier. For 5% significance level, 85.5 is an outlier. For 1 % significance level, 85.5 is an outlier. 2. Observation Value 0.2721 is a Potential Outlier (Lower Tail)? Test Statistic: 0.151 For 10% significance level, 0.2721 is not an outlier. For 5% significance level, 0.2721 is not an outlier. For 1 % significance level, 0.2721 is not an outlier. Cape Fear Steam Electric Plant Appendix C Rosner's Outlier Test for Total Uranium Mean 0.00452 Standard Deviation 0.00662 Number of data 25 Number of suspected outliers 10 Potential Obs. Test Critical Critical # Mean sd outlier Number value value (5%) value (1 %) 1 0.00452 0.00648 0.0188 5 2.202 2.82 3.14 2 0.00393 0.00604 0.0165 1 2.083 2.8 3.11 3 0.00338 0.00553 0.0162 7 2.317 2.78 3.09 4 0.0028 0.00489 0.016 8 2.701 2.76 3.06 5 0.00217 0.00399 0.0132 4 2.762 2.73 3.03 6 0.00162 0.00317 0.0102 6 2.705 2.702 2.994 7 0.00117 0.00251 0.00911 3 3.16 2.674 2.958 8 7.2806E-4 0.00167 0.00738 2 3.995 2.646 2.922 9 3.3676E-4 1.3213E-4 5.5600E-4 22 1.659 2.618 2.886 10 3.2306E-4 1.2336E-4 5.4600E-4 23 1.807 2.59 2.85 For 5% significance level, there are 8 Potential Outliers Potential outliers are: 0.0188, 0.0165, 0.0162, 0.016, 0.0132, 0.0102, 0.00911, 0.00738 For 1 % Significance Level, there are 8 Potential Outliers Potential outliers are: 0.0188, 0.0165, 0.0162, 0.016, 0.0132, 0.0102, 0.00911, 0.00738 Cape Fear Steam Electric Plant Appendix C Rosner's Outlier Test for Vanadium Mean 0.761 Standard Deviation 0.696 Number of data 40 Number of suspected outliers 10 Potential Obs. Test Critical Critical # Mean sd outlier Number value value (5%) value (1 %) 1 0.761 0.687 4.57 1 5.541 3.04 3.38 2 0.664 0.325 1.43 35 2.355 3.03 3.37 3 0.644 0.304 1.42 37 2.554 3.01 3.36 4 0.623 0.279 1.24 34 2.213 3 3.34 5 0.605 0.262 1.18 36 2.19 2.99 3.33 6 0.589 0.247 1.1 23 2.071 2.976 3.314 7 0.574 0.234 1.05 30 2.038 2.962 3.298 8 0.56 0.221 0.964 28 1.827 2.948 3.282 9 0.547 0.212 0.949 31 1.893 2.934 3.266 10 0.534 0.203 0.863 4 1.624 2.92 3.25 For 5% Significance Level, there is 1 Potential Outlier Potential outliers is: 4.57 For 1 % Significance Level, there is 1 Potential Outlier Potential outliers is: 4.57 Cape Fear Steam Electric Plant ITERATION 2 Rosner's Outlier Test for Potassium Mean 1.177 Standard Deviation 0.279 Number of data 30 Number of suspected outliers 10 Potential Obs. Test Critical Critical # Mean sd outlier Number value value (5%) value (1 %) 1 1.177 0.274 2.3 2 4.09 2.91 3.24 2 1.139 0.185 0.623 1 2.79 2.89 3.22 3 1.157 0.159 1.57 4 2.601 2.88 3.2 4 1.142 0.139 1.42 5 1.999 2.86 3.18 5 1.131 0.13 1.41 6 2.144 2.84 3.16 6 1.12 0.119 1.36 7 2.011 2.818 3.134 7 1.11 0.111 1.36 9 2.258 2.796 3.108 8 1.099 0.0993 1.28 8 1.823 2.774 3.082 9 1.091 0.0933 1.25 10 1.707 2.752 3.056 10 1.083 0.0884 1.25 11 1.888 2.73 3.03 For 5% Significance Level, there is 1 Potential Outlier Potential outliers is: 2.3 For 1 % Significance Level, there is 1 Potential Outlier Potential outliers is: 2.3 Appendix C Cape Fear Steam Electric Plant Appendix C Dixon's Outlier Test for Total Radium Number of Observations = 23 10% critical value: 0.374 5% critical value: 0.421 1 % critical value: 0.505 1. Observation Value 7.662 is a Potential Outlier (Upper Tail)? Test Statistic: 0.605 For 10% significance level, 7.662 is an outlier. For 5% significance level, 7.662 is an outlier. For 1 % significance level, 7.662 is an outlier. 2. Observation Value 0.2721 is a Potential Outlier (Lower Tail)? Test Statistic: 0.164 For 10% significance level, 0.2721 is not an outlier. For 5% significance level, 0.2721 is not an outlier. For 1 % significance level, 0.2721 is not an outlier. Cape Fear Steam Electric Plant Appendix C Outlier Tests for Selected Uncensored Variables User Selected Options Date/Time of Computation ProLICL 5.11/17/2020 11:19:18 AM From File Cape_Fear_BG_GW_Data_Boxplots_b.xls Full Precision OFF Dixon's Outlier Test for Fluoride Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1 % critical value: 0.595 1. Observation Value 0.5 is a Potential Outlier (Upper Tail)? Test Statistic: 0.599 For 10% significance level, 0.5 is an outlier. For 5% significance level, 0.5 is an outlier. For 1 % significance level, 0.5 is an outlier. 2. Observation Value 0.082 is a Potential Outlier (Lower Tail)? Test Statistic: 0.101 For 10% significance level, 0.082 is not an outlier. For 5% significance level, 0.082 is not an outlier. For 1 % significance level, 0.082 is not an outlier.