HomeMy WebLinkAboutCape Fear - BTV Report_FINAL_Apr 2020_20200430C(> DUKE
C ENEnNf",*Xf%.7
April 8, 2020
North Carolina Department of Environmental Quality
Division of Water Resources
Raleigh Regional Office
3800 Barrett Drive
Raleigh, NC 27609
Attn: Mr. Eric Rice (submitted electronically via email)
Re: Cape Fear Updated Background Threshold Values
Dear Mr. Rice:
Mailing Address
410 S. Wilmington Street
Raleigh, NC 27601
Mail Code NC15
919-546-2104
Duke Energy submits the enclosed updated background groundwater dataset through August 2019 and
background soil dataset through October 2017 for the Cape Fear Steam Electric Plant. These data were
used to calculate updated background threshold values (BTVs) for soil and groundwater as described in
the attached report, "Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil" prepared for Duke Energy by SynTerra Corporation. Calculations were completed
consistent with the "Statistical Methods for Developing Reference Background Concentrations for
Groundwater and Soil at Coal Ash Facilities" dated May 2017 prepared under the guidance of the North
Carolina Department of Environmental Quality (NCDEQ) by HDR Engineering, Inc. and SynTerra
Corporation.
If you have any questions or need any clarification regarding the information provided, feel free to contact
me at Andrew.Shull@duke-energy.com or at 919-546-2104 at your convenience.
Respectfully submitted,
I_A i
1�
Andrew W. Shull, P.E.
Duke Energy, Environmental Services
cc (via email): Mr. Eric Smith — DEQ Central Office
Mr. Steve Lanter — DEQ Central Office
Mr. Ed Sullivan - Duke Energy
Mr. Scott Davies — Duke Energy
Mr. John Toepfer —Duke Energy
Mr. Evan Yurkovich — SynTerra
Mr. Chris Suttell — SynTerra
enc: Updated Background Threshold Values for Constituent Concentrations in Groundwater and Soil,
Cape Fear Steam Electric Plant; SynTerra Corporation, March 2020
,61p
synTerra
UPDATED BACKGROUND THRESHOLD VALUES
FOR CONSTITUENT CONCENTRATIONS IN
GROUNDWATER AND SOIL
CAPE FEAR STEAM ELECTRIC PLANT
500 CP&L ROAD
MONCURE,, NORTH CAROLINA 27559
MARCH 2O20
PREPARED FOR:
DUKE
ENERGY
DUKE ENERGY PROGRESS,, LLC
Jess Gilmer
Proiect Scientist
Evan Yurkovich
Project Manager
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC - Cape Fear Steam Electric Plant SynTerra
TABLE OF CONTENTS
SECTION PAGE
1.0 INTRODUCTION.........................................................................................................1-1
1.1 Purpose...........................................................................................................................1-2
2.0 BACKGROUND GROUNDWATER AND SOIL DATASETS ...........................2-1
2.1 Groundwater................................................................................................................. 2-1
2.2 Unsaturated Soil............................................................................................................2-2
2.3 Extreme Outlier Concentrations................................................................................. 2-2
2.4 Description of Background Datasets..........................................................................2-4
2.4.1 Groundwater........................................................................................................... 2-4
2.4.2 Unsaturated Soil......................................................................................................2-4
3.0 STATISTICAL METHODOLOGY............................................................................3-1
3.1 Background Threshold Values....................................................................................3-1
3.1.1 Upper Tolerance Limits.........................................................................................3-2
3.2 Fitting Distributions.....................................................................................................3-3
3.3 Outlier Screening..........................................................................................................3-4
4.0 REFERENCES................................................................................................................4-1
Page
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
LIST OF FIGURES
Figure 1 Background Sample Locations
LIST OF TABLES
Table 1
Updated Background Threshold Values for Constituent
Concentrations in Groundwater
Table 2
Updated Background Threshold Values for Constituent
Concentrations in Unsaturated Soil
Table 3
Background Groundwater Analytical Results
Table 4
Background Unsaturated Soil Analytical Results
Table 5
Statistical Analysis Results — Surficial Flow Zone
Table 6
Statistical Analysis Results — Bedrock Flow Zone
Table 7
Statistical Analysis Results — Unsaturated Soil
LIST OF ATTACHMENTS
March 2020
SynTerra
Attachment 1 Arcadis U.S., Inc. Technical Memorandum: Background Threshold
Value Statistical Outlier Evaluation — Cape Fear Steam Electric Plant,
March 25, 2 02 0.
LIST OF APPENDICES
Appendix A Upper Tolerance Limits
Appendix B Goodness of Fit Test Results
Appendix C Quantitative Outlier Test Results
Page ii
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
LIST OF ACRONYMS
Arcadis
Arcadis U.S., Inc.
bgs
below ground surface
BTV
background threshold value
Cape Fear/Site
Cape Fear Steam Electric Plant
Duke Energy
Duke Energy Progress, LLC
GOF
goodness of fit
NCDEQ
North Carolina Department of Environmental Quality
rROS
robust regression on order statistics
SW
Shapiro -Wilk
SynTerra
SynTerra Corporation
TM
technical memorandum
USEPA
U.S. Environmental Protection Agency
UTL
upper tolerance limit
March 2020
SynTerra
Page iii
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
1.0 INTRODUCTION
SynTerra
At the request of Duke Energy Progress, LLC (Duke Energy), SynTerra Corporation
(SynTerra) updated background threshold values (BTVs) pertaining to constituents
monitored in groundwater and unsaturated soil at the Duke Energy Cape Fear Steam
Electric Plant (Cape Fear, Site) (Table 1). This report includes an attachment titled,
"Background Threshold Value Statistical Outlier Evaluation — Cape Fear Steam Electric Plant,
March 25, 2020" prepared by Arcadis U.S., Inc (Arcadis). The Arcadis attachment
(Attachment 1) provides a detailed evaluation of extreme outlier concentrations
identified in the background datasets for groundwater and unsaturated soil. Arcadis
evaluated background groundwater and unsaturated soil data using multiple lines of
evidence that considered broader Site geochemical conditions and statistical analysis of
individual constituents.
Duke Energy previously submitted BTVs to the North Carolina Department of
Environmental Quality (NCDEQ) in two separate technical memorandums (TM):
• Background Threshold Values for Groundwater, Cape Fear Steam Electric Plant —
Moncure, NC (September 5, 2017)
• Background Threshold Values for Soil, Cape Fear Steam Electric Plant — Moncure, NC
(September 5, 2017)
NCDEQ provided response to those BTVs in the letter — "Approval of Provisional
Background Threshold Values for Allen Steam Station, Asheville Steam Electric Plant,
Buck Combined Cycle Station, Cape Fear Steam Electric Plant, James E. Rogers Energy
Complex, Dan River Combined Cycle Station, H.F. Lee Energy Complex, Marshall
Steam Station, L.V. Sutton Energy Complex, and W.H. Weatherspoon Power Plant"
(Zimmerman to Draovitch, October 11, 2017).
The groundwater BTVs provided in the September 5, 2017 TM (Table 1) were
statistically derived using a background dataset that:
• Included concentration data from background groundwater samples collected
from May 2015 to February 2017
• Did not include any extreme outlier concentrations even when those
concentrations were valid results not caused by sampling error or laboratory
analytical error
Page 1-1
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra
The unsaturated soil BTVs provided in the September 5, 2017 TM (Table 2) were
statistically derived using a background dataset that:
• Included concentration data from background unsaturated soil samples collected
from August 2013 to June 2016
• Did not include any extreme outlier concentrations even when those
concentrations were valid results not caused by sampling error or laboratory
analytical error
The updated groundwater BTVs presented in this report (Table 1) were derived using
an augmented background dataset (Table 3) that included:
• Concentration data from background groundwater samples collected from
September 2013 to August 2019
• Extreme outlier concentrations not caused by sampling error or laboratory
analytical error
The updated unsaturated soil BTVs presented in this report (Table 2) were derived
using an augmented background dataset (Table 4) that included:
• Concentration data from background unsaturated soil samples collected from
August 2013 to October 2017
• Extreme outlier concentrations not caused by sampling error or laboratory
analytical error
1.1 Purpose
The purpose of this report is to:
• Present updated BTVs pertaining to constituents monitored in groundwater and
unsaturated soil at Cape Fear
• Document the statistical approach used to derive updated BTVs
• Document data excluded from statistical evaluations
• Document the approach used to screen background datasets for extreme
statistical outliers
Page 1-2
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
SynTerra
2.0 BACKGROUND GROUNDWATER AND SOIL DATASETS
2.1 Groundwater
Two distinct hydrogeologic flow zones at Cape Fear have been identified
(SynTerra, 2015):
• Surficial flow zone
• Bedrock flow zone
The background groundwater dataset for each of the distinct flow zones consists of
concentration data pooled across background monitoring wells installed within those
flow zones (Table 3). Well installations occurred within each flow zone at locations
where groundwater quality is not affected by coal ash management or storage. In
accordance with NCDEQ guidance, the following sample data were not included in the
background groundwater datasets:
• Samples with a recorded groundwater pH greater than 8.5 standard units
• Samples with a recorded groundwater turbidity greater than 10
nephelometric turbidity units
• Samples that had no record of groundwater turbidity or pH
• Samples (autocorrelated) collected less than 60 days after the previous sample
was collected
• Non -detect values greater than Title 15A, North Carolina Administrative Code,
Subchapter 02L, Groundwater Classification and Standards or Interim Maximum
Allowable Concentrations listed in 15A North Carolina Administrative Code
02L .0202
NCDEQ requirements regarding the exclusion of groundwater sample data were
outlined in letters and through email communication:
• Letter - "Request for Additional Information regarding Statistical Methods
for Developing Reference Background Concentrations for Groundwater and
Soil at Coal Ash Facilities" (HDR Engineering, Inc. and SynTerra,
January 2017) (Zimmerman to Draovitch, April 2017)
• Letter — "Duke Energy Submittal - Background Soil and Groundwater
Statistical Methodology for 14 Duke Energy Facilities," May 26, 2017
(Zimmerman to Draovitch, July 2017)
Page 2-1
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra
• Email — "Duke Energy Comments: Technical Memorandum, Statistical
Methods for Developing Reference Background Concentrations for
Groundwater at Coal Ash Facilities, HDR, October 2016" (Lanter to Sullivan,
November 2016)
2.2 Unsaturated Soil
Background unsaturated soil samples were collected from borings at locations where
coal ash management or storage has not affected soil quality. The background
unsaturated soil dataset consists of concentration data pooled across sampling locations
and across multiple depth intervals (Table 4). In accordance with NCDEQ guidance, the
following soil sample data were not included in the background unsaturated soil
dataset:
• Samples collected from depths shallower than 0.5 feet below ground surface
(bgs)
• Samples collected from depths deeper than 1 foot above the top of the
seasonal high-water table
• Samples collected from depths deeper than the top of water table
• Non -detect values greater than preliminary soil remediation goals for
protection of groundwater
NCDEQ requirements regarding the exclusion of soil sample data were outlined in the
following letters:
• "Request for Additional Information regarding Statistical Methods for
Developing Reference Background Concentrations for Groundwater and Soil
at Coal Ash Facilities" (HDR Engineering, Inc. and SynTerra, January 2017)
(Zimmerman to Draovitch, April 2017)
• "Duke Energy Submittal — Background Soil and Groundwater Statistical
Methodology for 14 Duke Energy Facilities," May 26, 2017 (Zimmerman to
Draovitch, July 2017)
2.3 Extreme Outlier Concentrations
Extreme outlier concentrations in the background groundwater datasets and the
background unsaturated soil dataset were retained when data validation and
geochemical analysis of background constituent concentrations indicated that those
outlying concentrations did not result from sampling error or laboratory analytical error
(Table 3 and Table 4). The approach used to evaluate whether extreme outlier
concentrations should be retained in background datasets is presented in the technical
Page 2-2
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
SynTerra
memorandum prepared by Arcadis titled, "Background Threshold Value Statistical Outlier
Evaluation — Cape Fear Steam Electric Plant, March 25, 2020" (Attachment 1). This is
consistent with U.S. Environmental Protection Agency (USEPA) guidance (2009, 2018),
which recommends the following:
• Outlier concentrations should not be removed from background datasets
based solely on statistical methods because statistical methods do not indicate
why outlying concentrations are abnormal with respect to the rest of the
background dataset.
• Statistical outliers should be retained in background datasets unless a specific
technical reason (e.g., sampling or laboratory error) for the concentration can
be determined.
SynTerra conducted data validation of extreme outlier concentrations. Arcadis
evaluated extreme outlier concentrations identified in the background groundwater
datasets and background unsaturated soil datasets for Cape Fear using a data -driven
approach that considered the following:
• Concentration of individual constituents
• The broader geochemical conditions at the Site
Extreme outlier concentrations were evaluated in accordance with the Revised Statistical
Methods for Developing Reference Background Concentrations for Groundwater and Soil at
Coal Ash Facilities (HDR Engineering, Inc. and SynTerra, 2017), which states: "If
statistical outliers have been detected, the project scientist will review the values to
determine if they should be removed from the data set or are representative of
background and should be retained for statistical analysis."
Arcadis reviewed extreme outlier concentrations identified in the background
groundwater datasets and the background unsaturated soil dataset for the Site
(Attachment 1).
Arcadis identified extreme outlier concentrations that should be included in
background groundwater and unsaturated soil datasets for each of the Site using the
following criteria:
• Repeatability of constituent concentrations
• Relationship between pairs of constituents or among groups of constituents
• Relationships between the concentrations of major ions and total dissolved solids
(pertinent to groundwater only)
Page 2-3
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra
• Relationship between constituent concentrations and pH
• Relationship between constituent concentrations and oxidation-reduction
potential
Extreme outlier concentrations that were retained in the background groundwater
datasets and the background unsaturated soil dataset for Cape Fear are identified in
Table 3 and Table 4. Rational for including extreme outlier concentrations in the
background groundwater for the Site is provided in Table 2 and text of Attachment 1.
2.4 Description of Background Datasets
2.4.1 Groundwater
The background dataset for each distinct groundwater flow zone was used to
update BTVs for constituents within that flow zone (Table 1).
Surficial Flow Zone
Three wells (MW-15SU, MW-15SL, and MW-16S) are used to monitor
background groundwater quality within the surficial flow zone at Cape Fear
(Figure 1). To statistically derive the updated BTVs provided in this report,
concentration data from the three wells were included in the background
dataset pertaining to the surficial flow zone (Table 5). The background
datasets for constituents (except fluoride) in the surficial flow zone contain 10
or more valid sample data (Table 5).
Bedrock Flow Zone
Four wells (MW-9, MW-9BR, MW-15BR, and MW-16BR) are used to monitor
background groundwater quality within the bedrock flow zone at Cape Fear
(Figure 1). To statistically derive the updated BTVs provided in this report,
concentration data from the four background wells were included in the
background dataset pertaining to the bedrock flow zone (Table 6). The
background datasets for constituents in the bedrock flow zone contain 10 or
more valid sample data (Table 6).
2.4.2 Unsaturated Soil
Unsaturated soil samples were collected from 12 locations throughout the Site
(Figure 1). Soil samples were collected from multiple depth intervals at each
location (Table 4). Only soil samples collected from depths between 0.5 feet
bgs and 1 foot above the water table were included in the background
unsaturated soil dataset. The background datasets for constituents in
unsaturated soil contain 10 or more valid sample data (Table 7).
Page 24
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra
3.0 STATISTICAL METHODOLOGY
This section describes the statistical approach used to:
• Evaluate the background groundwater datasets and the background unsaturated
soil dataset
• Calculate BTVs pertaining to constituent concentrations in groundwater and
unsaturated soil at Cape Fear
Statistical methods were performed using guidance provided in the following
documents:
• Revised Statistical Methods for Developing Reference Background Concentrations for
Groundwater and Soil at Coal Ash Facilities (HDR Engineering, Inc. and
SynTerra, 2017)
• Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified
Guidance (USEPA, 2009)
• ProUCL 5.1.002 Technical Guide, Statistical Software for Environmental Applications
for Data Sets with and without Nondetect Observations (USEPA, 2015)
• Groundwater Statistics Tool User's Guide (USEPA, 2018)
3.1 Background Threshold Values
Site -specific groundwater and unsaturated soil BTVs were represented by one of the
following:
• The upper tolerance limit (UTL) represented the Site -specific BTV for a
constituent when the background dataset for that constituent contained 10 or
more valid sample data and the frequency of non -detects present within the
dataset was less than or equal to 90 percent
• The maximum non -detect value represented the Site -specific BTV for a
constituent when the background dataset for that constituent contained 10 or
more valid sample data and the frequency of non -detects present within the
dataset was greater than 90 percent
• The maximum value represented the Site -specific BTV for a constituent when the
background dataset for that constituent contained fewer than 10 valid sample
data
Page 3-1
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra
Site -specific BTVs represented by the UTL and maximum non -detect value are
identified in Table 5 through Table 7.
3.1.1 Upper Tolerance Limits
UTLs represent — with a specified level of statistical confidence — an upper
limit of a range of values in which a specified proportion of the data population
resides. UTLs were calculated for constituents (except for pH) using ProUCL
version 5.1.002 (Appendix A). Two-sided tolerance intervals consisting of an
upper and lower tolerance limit were calculated for pH using NCSS 11 Statistical
Software (Appendix A) because ProUCL cannot calculate two-sided tolerance
intervals. UTLs were calculated using either parametric statistics or non -
parametric statistics.
Parametric Upper Tolerance Limits
Parametric UTLs were calculated for constituents when the background
dataset contained less than or equal to 50 percent non -detects and the
background dataset fit a discernible distribution model. When those criteria
were met, one of the following UTLs were calculated:
Normal UTLs were calculated for constituents when the background
dataset fit the normal distribution model.
Gamma UTLs were calculated for constituents when the background
dataset fit the gamma distribution model but did not fit the normal
distribution model.
• Lognormal UTLs were calculated for constituents when the
background dataset fit only the lognormal distribution model and the
standard deviation of the natural log -transformed background dataset
for those constituents was less than 1.
Parametric UTLs were calculated using a coverage of 95 percent and a
confidence level of 95 percent. The Kaplan -Meier method was used to handle
non -detects.
Page 3-2
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
SynTerra
Non -Parametric Upper Tolerance Limits
Non -parametric UTLs were calculated for constituents when the background
dataset had one of the following characteristics:
• Could not be fitted to a discernible distribution model
• Contained greater than 50 percent non -detects and less than or equal to 90
percent non -detects
• Could be fitted to the lognormal distribution model but had a standard
deviation greater than 1 when the data were natural log -transformed
Non -parametric UTLs were calculated using:
A confidence level of 95 percent and a coverage of 85 percent when a
background dataset contained fewer than 29 samples
A confidence level of 95 percent and a coverage of 90 percent when a
background dataset contained from 29 to 58 samples
A confidence level of 95 percent and a coverage of 95 percent when a
background dataset contained 59 or more samples
3.2 Fitting Distributions
Background datasets were fitted to various distribution models using goodness of fit
(GOF) tests when background datasets contained less than or equal to 50 percent non -
detects. Details about the distribution of background groundwater data are provided in
Table 5 through Table 6, and details about the distribution of background unsaturated
soil data are provided in Table 7.
GOF tests were performed using ProUCL version 5.1.002 (Appendix B). If non -detects
were present in a background dataset, those data were handled using robust regression
on ordered statistics (rROS). rROS requires that the detected concentration data in a
dataset fit a distribution model. If the detected concentration data fit a distribution
model, rROS estimates a value for each non -detect. The joint distribution of the
estimated values and detected concentration data is then evaluated for fit with
distribution models using GOF tests. This determines the overall distribution of a
dataset.
Page 3-3
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra
Background data were evaluated for fit with the normal, gamma, and lognormal
distribution models using the following GOF tests:
• Normal distribution — Shapiro -Wilk (SW) test or Lilliefors test
• Gamma distribution — Anderson Darling test and Kolmogorov-Smirnov test
• Lognormal distribution — SW test or Lilliefors test
The SW test was used to evaluate data for fit with the normal distribution model
and lognormal distribution model when background datasets contained 50 or fewer
sample data. The Lilliefors test was used to evaluate data for fit with the normal
distribution model and lognormal distribution model when background datasets
contained more than 50 sample data. Both the Anderson -Darling test and the
Kolmogorov-Smirnov test were used to evaluate background datasets for fit with
the gamma distribution model, regardless of background dataset sample size.
Background data were considered non -parametric when GOF tests could not fit data to
a discernible distribution model, or when the background data were fitted to the
lognormal distribution, but the standard deviation of the natural log -transformed
dataset was greater than 1.
3.3 Outlier Screening
Background groundwater and background unsaturated soil datasets were screened for
extreme outlier concentrations using ProUCL version 5.1.002. Temporally autocorrelated
data were retained in the background groundwater datasets during outlier screening.
Temporal autocorrelation was pertinent only to groundwater data. Retaining
temporally autocorrelated data in background groundwater datasets helped confirm
the validity of apparent statistical outliers or to determine whether outliers were caused
by omitting data about concentrations present in groundwater at a given point in time.
The background dataset for each constituent within each distinct groundwater flow
zone and the background dataset for each constituent in unsaturated soil were screened
for extreme outlier concentrations using all the following:
• Box -and -whisker plots
• Dixon's outlier test or Rosner's outlier test using a 0.01 significance level
Extreme outlier concentrations identified in the Dixon's outlier test was used when a
background dataset for a constituent contained fewer than 25 samples. Rosner's outlier
test was used when a background dataset for a constituent contained more than 25
Page 34
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
SynTerra
samples. Both Dixon's outlier test and Rosner's outlier test make the assumption that
the background data for a constituent fit the normal distribution model, excluding all
concentrations that are suspected to be outliers. Dixon's or Rosner's outlier test were
used to screen the background dataset for a constituent for extreme outlier
concentrations only when the aforementioned assumption was met (Appendix C).
Extreme outlier concentrations identified in the background groundwater datasets are
presented in Table 3. Extreme outlier concentrations identified in the background
unsaturated soil dataset are presented in Table 4.
Page 3-5
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant SynTerra
4.0 REFERENCES
HDR Engineering, Inc. and SynTerra (2017). Revised Statistical Methods for Developing
Reference Background Concentrations for Groundwater and Soil at Coal Ash
Facilities. May 2017.
SynTerra Corporation (2015). Comprehensive Site Assessment Update. Cape Fear Steam
Electric Plant. September 2015.
USEPA (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities:
Unified Guidance. EPA 530-R-09-007.
USEPA (2015). ProUCL 5.1.002 Technical Guide, Statistical Software for Environmental
Applications for Data Sets with and without Nondetect Observations.
EPA/600/R07/041.
USEPA (2018). Groundwater Statistics Tool User's Guide. OSWER 9283.1-46.
Page 4-1
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
FIGURE
SynTerra
I
NOTES:
1. WELL LOCATIONS WERE DERIVED FROM VARIOUS SOURCES AND ARE A MIX OF
.
♦
■
SURVEYED AND APPROXIMATE LOCATIONS. THEREFORE, WELL LOCATIONS ARE TO
BE DEEMED APPROXIMATE.
• . ►'
I
`
■
• `•
` •
I•
2. THE WATERS OF THE US DELINEATION HAS NOT BEEN APPROVED BY THE
US ARMY CORPS OF ENGINEERS AT THE TIME OF THE MAP CREATION. THIS MAP
, •
I
�,
/
•�
r ■
■
IS NOT TO BE USED FOR JURISDICTIONAL DETERMINATION PURPOSES. THE
`
J
WETLANDS AND STREAMS BOUNDARIES WERE OBTAINED FROM STREAM AND
WETLAND DELINEATION CONDUCTED BY AMEC FOSTER WHEELER ENVIRONMENTAL
�`
AND INFRASTRUCTURE, INC. MAY 2015.
I
CAL
.'�O
GRAPHIC SCALE
4. PROPERTY BOUNDARY PROVIDED BYIDUKE ENERGY PROGRESS.
.�
DUKE
400 D 400
5. AERIAL PHOTOGRAPHY OBTAINED FROM GOOGLE EARTH PRO ON MAY 21, 2018.
AERIAL WAS COLLECTED ON FEBRUARY 18, 2018.
6. INSET BASEMAP OBTAINED FROM OPENSTREET MAP VIA ESRI WEB SERVICE.
7. DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINA STATE PLANE
COORDINATE SYSTEM FIPS 3200 (NAD83).
ENERGY
PROGRESS
(IN FEET)
800
DRAWN BY: A. ROBINSON DATE: 05/03/2019
REVISED BY: A. ROBINSON DATE: 02/21/2020
CHECKED BY: JHG DATE: 02/21/2020
APPROVED BY: EMY DATE: 02/21/2020
PROJECT MANAGER: E. YURKOVITCH
If
LEGEND
iP GROUNDWATER SAMPLE LOCATION
SOIL SAMPLE LOCATION
ASH BASIN WASTE BOUNDARY
ASH BASIN COMPLIANCE BOUNDARY
NPDES TREATMENT UNIT
DUKE ENERGY PROGRESS PROPERTY LINE
- - • DITCH
310- STREAM (AMEC NRTR)
FIGURE 1
BACKGROUND SAMPLE LOCATIONS
CAPE FEAR STEAM ELECTRIC PLANT
MONCURE, NORTH CAROLINA
A
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
TABLES
SynTerra
TABLE 1
UPDATED BACKGROUND THRESHOLD VALUES FOR CONSTITUENT CONCENTRATIONS IN
GROUNDWATER
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Constituent
Reporting Unit
15A NCAC 02L
Standard
Historical BTVs (2017)1
Updated BTVs (2020)2
Surficial
Bedrock
Surficial
Bedrock
pH*
S.U.
6.5-8.5
5.8-6.4
5.5-8.2
5.8-6.5
5.5-8.2
Alkalinity
mg/L
NE
206
237
252
232
Aluminum
pg/L
NE
323
118
447
126
Antimony
ug/L
1*
1
1
1
1
Arsenic
pg/L
10
3
6
3
8
Barium
pg/L
700
183
471
187
485
Beryllium
pg/L
4*
1
1
1
1
Bicarbonate
mg/L
NE
206
235
257
231
Boron
pg/L
700
177
50
161
52
Cadmium
pg/L
2
1
1
1
1
Calcium
mg/L
NE
83
63
118
70
Carbonate
mg/L
NE
5
5
5
5
Chloride
mg/L
250
250
220
270
240
Chromium
pg/L
10
1
1
3
14
Chromium (VI)
pg/L
10
0.1
0.03
0.2
0.1
Cobalt
pg/L
1*
89
1.2
61
5
Copper
pg/L
1,000
4
1
4
2
Fluoride
mg/L
2
---
---
0.8
0.3
Iron
pg/L
300
37,500
910
37,500
2,290
Lead
pg/L
15
1
1
1
1
Lithium
pg/L
NE
---
---
11
13
Magnesium
mg/L
NE
33
31
33
31
Manganese
pg/L
50
9,170
901
9,050
1,080
Mercury
pg/L
1
0.05
0.05
0.1
0.05
Methane
pg/L
NE
10
25
13
52
Molybdenum
pg/L
NE
1
12
1
13
Nickel
pg/L
100
78
2
25
5
Nitrate + Nitrite
mg/L
NE
2
2
3
2
Potassium
mg/L
NE
1
2
4
3
Selenium
pg/L
20
1
2
1
3
Sodium
mg/L
NE
190
73
190
76
Strontium
pg/L
NE
994
806
2,360
738
Sulfate
mg/L
250
510
96
510
100
Sulfide
mg/L
NE
0.1
0.1
0.1
0.2
TDS
mg/L
500
1,200
675
900
611
Thallium
pg/L
0.2*
0.2
0.2
0.2
0.5
TOC
mg/L
NE
6
1
6
2
Total Radium
pCi/L
5^
4
3
6
5
Total Uranium
pg/mL
0.03^
0.02
0.002
0.02
0.001
Vanadium
pg/L
0.3*
1
2
1
3
Zinc
pg/L
1,000
62
5
50
13
Prepared by: HES Checked by: MCM
Notes:
- Background threshold value (BTV) not calculated for constituent.
* - Interim maximum allowable concentration of the 15A North Carolina Administrative Code (NCAC) 02L Standard, Appendix 1, April 1, 2013.
^ - Federal maximum contaminant level
BTVs calculated using data from background groundwater samples collected December 2010 to February 2017.
Z - Updated BTVs calculated using data from background groundwater samples collected September 2013 to August 2019.
pg/L - micrograms per liter
pg/mL - micrograms per milliliter
mg/L - milligrams per liter
NE - not established
pCi/L - picocuries per liter
S.U. - standard units
TDS - total dissolved solids
TOC - total organic carbon
Page 1 of 1
TABLE 2
UPDATED BACKGROUND THRESHOLD VALUES FOR CONSTITUENT
CONCENTRATIONS IN UNSATURATED SOIL
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Constituent
PSRG Protection of
Groundwater
Historical BTV (2017)1
Updated BTV (2020)2
pH
NE
5.2-6.7
3.2-6.9
Aluminum
110,000
44,400
44,743
Antimony
0.9
0.2
0.6
Arsenic
5.8
8.1
2.9
Barium
580
224
260
Beryllium
63
1
2
Boron
45
14
7
Cadmium
3
0.7
0.1
Calcium
NE
2,750
3,548
Chloride
NE
301
276
Chromium
3.8
40
42
Cobalt
0.9
32
22
Copper
700
17
28
Iron
150
24,500
38,976
Lead
270
26
20
Magnesium
NE
3,420
3,226
Manganese
65
370
3,418
Mercury
1
0.11
0.1
Molybdenum
7.1
3.3
4.1
Nickel
130
9
14
Nitrate (as N)
NE
30
0.3
Potassium
NE
427
1,457
Selenium
2.1
4.4
0.8
Sodium
NE
338
858
Strontium
1,500
36
28
Sulfate
2,938
301
444
Thallium
0.28
0.35
0.43
Vanadium
350
42
182
Zinc
1,200
154
93
Prepared by: HES Checked by: MCM
Notes•
Background threshold values (BTVs) calculated using data from background unsaturated soil samples collected
August 2013 to June 2016.
z Updated BTVs calculated using data from background unsaturated soil samples collected January 2015 to October 2017.
All constituents except for pH are reported in milligrams per kilogram.
NE - not established
pH reported in standard units.
PSRG - preliminary soil remediation goal
Page 1 of 1
TABLE 3
BACKGROUND GROUNDWATER ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Well ID
FIOW
Zone
Sample
Collection
Date
pH
WL
Temp
SPC
DO
ORP
Eh
Turbidity
Alkalinity
Aluminum
Antimony
Arsenic
Barium
Beryllium
Bicarbonate
Alkalinity
Boron
Cadmium
Calcium
Carbonate
Alkalinity
Chloride
Chromium
Chromium (VI)
Cobalt
Copper
Fluoride
S.U.
Ft (BTOC)
°C
PS/CM
mg/L
mV
mV
NTU
mg/L
Ng/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
Ng/L
Ng/L
mg/L
mg/L
mg/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
MW-155U
Surficial
05/29/2015
4.6
10.47
24
2530
2.22
371
576
4.1
11
6850
<1
2.47
29
10
11
<50
1.21
147
<10
51
3.39
---
387
30.7
---
MW-15SU
Surficial
09/01/2015
4.8
8.84
19
1567
1 6.39
123
328
1 NM
---
1250 N1, RO
<1 N1, RO
1.16 N1, RO
29 N1, RO
3.16 N1, RO
---
54 N1, RO
<1 N1, RO
77.7 N1, RO
---
---
<1 N1, RO
---
153 N1, RO
11.6 N1, RO
---
MW-15SU
Surficial
12/02/2015
6.2
5.83
15
2270
4.00
129
334
3.5
110
167
<1
<1
12
<1
110
116
<1
67.9
<10
20
<1
<0.03
100
6.32
---
MW-155U
Surficial
01/06/2016
6.7
5.70
11
1329
4.75
72
277
14.6
173
116
<1
<1
10
<1
173
105
<1
66.4
<5
1.4
<1
0.041
48.9
4.74
---
MW-15SU
Surficial
03/02/2016
6.3
5.75
12
1687
3.20
185
390
2.0
172
55
<1
<1
11
<1
172
71
<1
85.9
<5
11
<1
<0.03
50.6
3.41
---
MW-155U
Surficial
03/03/2016
NM
NM
NM
NM
NM
NM
NM
NM
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-15SU
Surficial
06/02/2016
6.0
6.78
19
1290
1.22 S
122
327
9.9
146
369
<1
<1
16
<1
146
85
<1
70.6
<5
7.6
<1
0.035
78.7
4.89
---
MW-15SU
Surficial
08/01/2016
5.9
11.78
23
136
3.85
89
294
9.57
---
158
<1
<1
20
<1
---
64
<1
61.2
---
---
<1
---
60.1
2.8
---
MW-15SU
Surficial
10/04/2016
6.2
6.80
21
1283
2.14
41
246
1.6
136
216
<1
<1
22
<1
136
134
<1
69
<5
7
<1
0.032 M1
35.5
3.6
---
MW-15SU
Surficial
02/27/2017
6.4
6.80
15
1160
1.42
-26
180
3.6
158
95
<1
<1
9
<1
158
64
<1
82.6
<5
5.6
3.32
2.3
3.11
1.96
---
MW-155U
Surficial
06/12/2017
6.3
8.56
22
943
0.83
103
308
3.6
146
360
<1
<1
20
<1
146
70
<1
91.1
<5
4.8
<1
<0.12
11.1
3.35
MW-155U
Surficial
06/15/2017
NM
NM
NM
NM
NM
NM
NM
NM
---
---
---
---
---
---
---
---
---
---
---
MW-15SU
Surficial
03/13/2018
6.5
13.15
9
843
1.88
2
207
3.3
187
52
<1
<1
16
<1
187
67
<1
99.4
<S
3.1
<1
0.055
1.18
1.52
<1
MW-15SU
Surficial
06/13/2018
6.3
6.80
22
762
0.29
42
247
9.2
173
269
<1
0.338 j
22
<1
173
76
<1
81.7
<5
3.1
0.381 j
0.068
6.43
2.39
0.584 j
MW-15SU
Surficial
08/22/2018
6.1
5.28
23
848
0.75
308
513
7.3
225
50
<1
<1
32
<1
225
116
<1
120
<5
3.1
<1
0.042
1.54
2.02
0.559 j
MW-15SU
Surficial
1 12/05/2018
6.3
4.70
13
833
0.94
295
500
1.1
218
25
<1
<1
34
<1
218
68
<1
118
<S
2.5
<1
0.047
1.27
1.65
<0.5
MW-15SU
Surficial
02/06/2019
6.3
4.79
20
652
0.65
315
520
9.8
1 120
399
<1
<1
32
<1
---
48.101 j
---
105
---
2.6
0.755 j
0.4 S1
5.42
---
---
MW-15SL
Surficial
05/29/2015
6.0
10.58
18
329
0.10
116
321
5.0
47
76
<1
2.4
76
<1
47
<50
<1
10
<10
6.3
<1
---
21.1
<1
---
MW-15SL
Surficial
06/30/2015
6.1
10.44
19
282
0.30
-61
145
5.3
58
161
<1
1.91
69
<1
58
<50
<1
7.21
<10
7.6
<1
---
12.3
<1
---
MW-15SL
Surficial
09/01/2015
6.3
12.05
20
278
1.05
-95
110
6.3
59
83
<1
2.36
69
<1
59
<50
<1
6.95
<10
7.7
<1
---
11.8
<1
---
MW-15SL
Surficial
12/02/2015
6.3
8.85
17
261
0.60
-50
155
9.9
54
75
<1
2.4
71
<1
54
<50
<1
6.24
<10
7.8
<1
<0.03
13.5
<1
---
MW-15SL
Surficial
01/06/2016
6.5
7.01
10
251
0.35
-89
116
8.3
40.2
53
<1
2.86
73
<1
40.2
<50
<1
6.13
<5
7.6
<1
<0.03
13.3
<1
---
MW-15SL
Surficial
03/02/2016
6.1
7.68
14
269
0.20
-29
176
9.7
30.4
261
<1
2.42
74
<1
30.4
<50
<1
6.04
<5
7.3
<1
<0.03
16.9
<1
---
MW-15SL
Surficial
06/02/2016
6.2
9.45
19
255
0.21 S
-70
135
9.5
34.7
63
<1
2.54
75
<1
34.7
<50
<1
5.69
<5
6.7
<1
<3 D3
17.5
<1
---
MW-15SL
Surficial
08/01/2016
6.0
11.30
20
224
0.18
-43
162
21.0
35.9
597
<1
2.9
75
<1
35.9
<50
<1
5.96
<5
7.2
<1
8.9
16
<1
---
MW-15SL
Surficial
10/04/2016
5.8
10.81
18
254
0.26
-53
152
5.1
51.1
79
<1
2.72
73
<1
51.1
<50
<1
5.38
<5
6.7
<1
<1.5 D3
18.2
<1
---
MW-15SL
Surficial
02/27/2017
6.3
10.26
17
248
1.19
-75
130
31.8
44.6
51
<1
2.66
79
<1
44.6
<50
<1
5.25
<5
6.6
<1
27.4
20.1
<1
---
MW-15SL
Surficial
06/12/2017
6.2
10.09
22
258
0.35
-63
142
15.7
32.2
97
<1
2.66
71
<1
32.2
<50
<1
5.48
<5
6.4
<1
13.8
20.5
<1
---
MW-15SL
Surficial
08/28/2017
6.2
11.81
21
245
0.24
-42
163
58.1
39
42
<1
2.63
69
<1
39
<50
<1
5.13
<5
6.1
<1
<0.25 D3
19.3
<1
---
MW-15SL
Surficial
12/04/2017
6.3
12.30
17
231
0.37
-59
146
67.8
20.8
60
<1
2.82
72
<1
20.8
<50
<1
4.43
<5
6
<1
<0.025
19
<1
MW-15SL
Surficial
03/13/2018
6.1
10.54
11
226
0.38
-28
177
45.6
40.3
36
<1
2.61
75
<1
40.3
<50
<1
5.37
<5
5.9
<1
29.3
21.3
<1
<0.1
MW-15SL
Surficial
06/13/2018
6.0
10.60
20
248
0.23
49
254
80.2
44
116
<1
3.22
87
<1
44
<50
<1
5.94
<5
5.7
<1
<0.025
23.6
<1
<0.1
MW-15SL
Surficial
08/22/2018
5.9
10.71
22
250
0.34
170
375
151.0
6.3
133
<1
4.49
84
<1
6.3
<50
<1
5.57
<5
5.7
<1
<0.025
19.9
<1
<0.1
MW-15SL
Surficial
12/05/2018
6.0
6.62
14
229
0.19
171
376
7.7
36.5
50
<1
2.6
61
<1
36.5
<50
<1
4.31
<5
5.6
<1
<0.025
18
<1
<0.1
MW-15SL
Surficial
02/06/2019
6.1
7.90
19
241
0.20
190
395
33.0
36
80
<1
1.93
66
<1
---
<50
---
4.85
---
5.3
0.419 j
<0.025
19.1
---
---
MW-15SL
Surficial
08/06/2019
6.1
10.83
22
253
0.11
167
372
17.0
40.7
34
<1
2.47
73
<1
40.7
<50
---
5.31
<5
4.5
0.453 j
0.15
19.1
---
---
MW-16S
Surficial
05/20/2015
6.2
2.19
17
978
16.60
111
316
4.3
84
110
<1
<1
160
<1
84
140
<1
59.9
<10
210
<1
---
3.52
<1
---
MW-16S
Surficial
06/11/2015
6.1
3.81
17
1017
0.26
-72
133
3.6
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-16S
Surficial
06/30/2015
6.1
3.77
21
1080
0.24
50
255
3.3
---
---
--
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-16S
Surficial
09/01/2015
6.2
5.83
19
1196
4.50
36
241
2.0
130
91
<1
<1
202
<1
130
81
<1
72
<10
280
<1
---
2.49
<1
---
MW-16S
Surficial
12/02/2015
6.1
1.60
16
1073
0.40
-5
201
2.1
110
53
<1
<1
182
<1
110
113
<1
57.8
<10
250
<1
<0.03
1
<1
MW-16S
Surficial
O1/07/2016
6.2
0.96
12
1027
0.50
85
290
0.9
107
20
<1
<1
161
<1
107
113
<1
54.3
<5
240
1.22
<0.03
<1
1.44
MW-16S
Surficial
03/02/2016
6.2
1.10
14
967
1.26
117
322
1.4
96
17
<1
<1
155
<1
96
140
<1
52.6
<5
210
<1
r <0.03
<1
<1
Page 1 of 8
TABLE 3
BACKGROUND GROUNDWATER ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Well ID
Flow
Zone
Sample
Collection
Date
Iron
Lead
Lithium
Magnesium
Manganese
Mercury
Methane
Molybdenum
Nickel
Nitrate + Nitrite
Potassium
Selenium
Sodium
Strontium
Sulfate
Sulfide
TDS
Thallium
TOC
Total Radium
Total Uranium
Vanadium
Zinc
pg/L
pg/L
pg/L
mg/L
pg/L
pg/L
pg/L
pg/L
pg/L
mg/L
mg/L
pg/L
mg/L
pg/L
mg/L
mg/L
mg/L
Ng/L
mg/L
pCVL
pg/mL
pg/L
pg/L
MW-15SU
Surficial
05/29/2015
2490
2.48
---
82.3
33700
<0.05
<10
<1
150
0.623
0.623
1.45
293
1270
1600
<1
---
0.218
7.4
---
---
4.57
288
MW-15SU
Surficial
1 09/01/2015
1580 N1, RO
<1 N1, RO
---
55.5 N1, RO
16800 N1, RO
<0.05 N1, RO
---
<1 N1, RO
99.3 N1, RO
---
2.3 N1, RO
<1 N1
198 N1, RO
793 N1, RO
---
---
---
<0.2 N1, RO
---
---
---
1.51 N1, RO
163 N1, RO
MW-15SU
Surficial
12/02/2015
119
<1
---
21.4
9880
<0.05
<10
<1
43
1.6
2.3
1.58
409
743
1100
<0.1
1600
<0.2
7.2
---
<0.3
62
MW-15SU
Surficial
01/06/2016
73
<1
---
16.2
7480
<0.05
<10
<1
21.4
0.924
2.73
1.15
324
810
800
<0.1
1300
<0.2
6.8
---
---
<0.3
28
MW-15SU
Surficial
03/02/2016
46
<1
---
18.8
7970
<0.05
<10
<1
19.6
1.1
3.21
<1
281
984
690
<0.1
1200
<0.2
6.2
<RL
0.0165
<0.3
24
MW-15SU
Surficial
03/03/2016
--
---
--
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-15SU
Surficial
06/02/2016
494
<1
---
16.2
9170
<0.05
---
<1
24.8
0.608
3.55
1.05
185
932
510
<0.1
890
<0.2
6.3
2.05
0.00738
0.863
50
MW-15SU
Surficial
08/01/2016
162
<1
---
35.7
9050
<0.05
---
<1
48
---
1.09
<1
179
760
---
---
---
<0.2
---
---
0.616
66
MW-15SU
Surficial
10/04/2016
208
<1
---
14.9
6650
<0.05
<10
<1
16.9
3.9
3.44
1.17
190
994
500
<0.1
900
<0.2
5.5
2.448
0.00911
0.506
26
MW-155U
Surficial
02/27/2017
133
<1
15.4
1240
<0.05
<10
<1
8.53
1.4
3.16
<1
146
1390
420
<0.1
810
<0.2
4
1198
0.0132
0.306
9
MW-155U
Surficial
06/12/2017
313
<1
14.7
3970
<0.05
<10
<1
17.6
0.767
4.36
<1
95.3 B3
1350
350
<0.1
690
<0.2
3.8 B3
0.769
26
MW-15SU
Surficial
06/15/2017
---
---
---
---
---
---
---
---
---
---
---
---
---
0.974
0.00742
---
---
MW-15SU
Surficial
03/13/2018
104
<1
1.808 j
12.3
285
<0.05
---
0.197 j
2.5
3.45
0.691 j
78.8
1930
360
<0.1
620
0.089 j
3.6
1.2348
0.0188
0.361
10
MW-15SU
Surficial
06/13/2018
233
<1
4.001 j
13.6
1830
<0.05
---
0.136 j2.5
72!.34
1.2
3.09
0.477 j
61
1480
230
<0.1
510
<0.2
3.9
0.802
0.0102
0.802
18
MW-15SU
Surficial
08/22/2018
50
<1
4 j
12.5
514
<0.05
---
0.363 j3.5
0.879
4.51
0.975 j
52.8
210
<0.1
600
<0.2
4.6
1.0842
0.0162
0.525
6
MW-15SU
Surficial
12/05/2018
21
<1
2.609 j
13.4
795
0.022 j
---
0.385 j
4.45
0.063
3.65
0.617 j
44.2
240
<0.1
570
<0.2
4.6
1.862
0.016
0.341
4.874)
MW-15SU
Surficial
02/06/2019
223
---
3.727 j
11
2080
---
---
0.246 j
6.48
0.194
3.81
0.379 j
22
2150
200
1 ---
430
<0.2
---
--
---
0.557
9
MW-15SL
Surficial
05/29/2015
45500
<1
---
3.62
4560
<0.05
11
<1
1.69
0.018
1.57
<1
15.6
133
80
<0.1
210
<0.2
1.3
---
---
<0.3
<5
MW-15SL
Surficial
06/30/2015
38400
<1
---
2.88
3860
<0.05
<10
<1
<1
0.026
1.42
<1
15.5
114
52
<0.1
190
<0.2
1.2
---
---
0.383
<5
MW-15SL
Surficial
09/01/2015
37500
<1
---
2.66
3630
<0.05
16
<1
<1
0.018
1.41
<1
15.7
109
47
<0.1
160
<0.2
0.865
---
---
0.48
<5
MW-15SL
Surficial
12/02/2015
33900
<1
---
2.38
3220
<0.05
<10
<1
<1
0.022
1.36
<1
17
101
46
<0.1
190
<0.2
0.806
---
---
0.322
<5
MW-15SL
Surficial
01/06/2016
37200
<1
---
2.31
3330
<0.05
15.3
<1
<1
0.016
1.28
<1
16.8
102
44
<0.1
160
<0.2
0.8
---
---
<0.3
<5
MW-15SL
Surficial
03/02/2016
35800
<1
---
2.22
2880
<0.05
<10
<1
1.27
<0.01
1.36
<1
16.8
101
47
<0.1
180
<0.2
0.843
0.872
<0.0002
0.734
<5
MW-15SL
Surficial
06/02/2016
36700
<1
---
1.94
2710
<0.05
<10
<1
1.43
<0.01
1.25
<1
17.2
98
43
<0.1
160
<0.2
0.888
0.91
<0.0002
0.334
<5
MW-15SL
Surficial
08/01/2016
34200
<1
---
2.15
2880
<0.05
<10
<1
1.18
<0.01
1.22
<1
16.8
98
40
<0.1
160
<0.2
0.83 B2
7.42
<0.0002
1.52
<5
MW-15SL
Surficial
10/04/2016
34600
<1
---
1.88
2480
<0.05
<10
<1
1.41
<0.01
1.25
<1
17.9
93
21
<0.1
210
<0.2
0.793
3.78
<0.0002
0.324
<5
MW-15SL
Surficial
02/27/2017
38200
<1
---
1.85
2520
<0.05
<10
<1
1.41
<0.01
1.28
<1
18
95
47
<0.1
160
<0.2
1.1
0.87
<0.0002
<0.3
<5
MW-15SL
Surficial
06/12/2017
35300
<1
---
1.88
2310
<0.05
<10
<1
1.49
<0.01
1.25
<1
18.7 B3
88
45
<0.1
170
<0.2
0.907 B3
0.553
<0.0002
0.399
7
MW-15SL
Surficial
08/28/2017
32400
<1
---
1.78
2240
<0.05
---
<1
1.38
---
1.24
<1
17.7
88
48
<0.1
160
<0.2 B4
1.3
4.1
<0.0002
<0.3
<5
MW-15SL
Surficial
12/04/2017
31900
<1
---
1.54
2190
<0.05
---
<1
1.51
---
1.11
<1
16.5
89
41
<0.1
150
<0.2
1.3
1.82
<0.0002
0.328
<5
MW-15SL
Surficial
03/13/2018
39800
<1
<5
1.83
2390
<0.05
0.246 j
1.65
0.042
1.26
<1
17.9
92
49
<0.1
180
<0.2
0.915
1.891
<0.0002
0.297 j
<5
MW-15SL
Surficial
06/13/2018
46400
<1
<5
2.04
2680
<0.05
---
0.217 j
1.68
0.028
1.29
<1
18.1
108
58
<0.1
160
<0.2
1.1
1.006
<0.0002
0.523
<5
MW-15SL
Surficial
08/22/2018
47100
<1
1.8 j
1.87
2350
<0.05
0.298 j
1.76
0.055
1.29
<1
18.4
95
54
<0.1
170
<0.2
1.1
1.814
<0.0002
0.554
4 j
MW-15SL
Surficial
12/05/2018
29800
<1
<5
1.46
1870
<0.05
---
0.227 j
1 1.4
0.212
1.13
<1
17.1
77
43
<0.1
140
<0.2
1
1.274
<0.0002
0.2641
1.719 j
MW-15SL
Surficial
02/06/2019
32000
---
3.283 j
1.68
2180
---
---
0.205 j
1.77
0.134
1.24
<1
16.7
91
56
---
130
<0.2
---
---
---
0.28 j
<5
MW-15SL
Surficial
08/06/2019
36000
---
<5
1.72
2260
---
---
0.163 j
1.5
0.123 M2
1.22
<1
17.1
94
54
---
170
<0.2
0.943 S1
---
---
0.328
7 S1
MW-16S
Surficial
05/20/2015
93
<1
---
26
202
<0.05
<10
<1
3.14
0.018
0.992
<1
83.1
624
44
<0.1
630
<0.2
0.706
1.1
<5
MW-16S
Surficial
06/11/2015
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-16S
Surficial
06/30/2015
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
3
0.000209
---
---
MW-16S
Surficial
09/01/2015
385
<1
---
32.5
105
<0.05
<10
<1
2.16
<0.01
1.24
<1
104
758
25
<0.1
830
<0.2
0.918
---
---
0.674
<S
MW-16S
Surficial
12/02/2015
260
<1
---
27.2
39
<0.05
<10
<1
2.59
<0.01
0.944
<1
98.3
619
32
<0.1
630
<0.2
0.875
---
---
0.679
<5
MW-16S
Surficial
O1/07/2016
184
<1
---
26.6
26
<0.05
<10
<1
2.33
0.117
0.991
<1
92.8
587
43
<0.1
560
<0.2
0.865
---
---
0.612
10
MW-16S
Surficial
03/02/2016
257
<1
27.4
19
<0.05
<10
<1
1.82
0.034
0.95
<1
91.3
574
50
<0.1
550
<0.2
0.78
1.7
0.000304
0.782
<5
Page 2 of 8
TABLE 3
BACKGROUND GROUNDWATER ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Well ID
Flow
Zone
Sample
Collection
Date
pH
WL
Temp
SPC
DO
ORP
Eh
Turbidity
Alkalinity
Aluminum
Antimony
Arsenic
Barium
Beryllium
Bicarbonate
Alkalinity
Boron
Cadmium
Calcium
Carbonate
Alkalinity
Chloride
Chromium
Chromium (VI)
Cobalt
Copper
Fluoride
S. U.
Ft (BTOC)
oC
Ns/cm
mg/L
mV
mV
NTU
mg/L
Ng/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
Ng/L
Ng/L
mg/L
mg/L
mg/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
MW-16S
Surficial
06/02/2016
6.0
1.70
15
980
0.22 S
145
350
1.2
112
14
<1
<1
164
<1
112
150
<1
60.4
<5
220
<1
<0.03
<1
<1
---
MW-16S
Surficial
08/01/2016
6.1
4.35
19
1054
0.14
20
225
1.9
129
<5
<1
<1
179
<1
129
112
<1
59.8
<5
240
<1
<0.03
<1
<1
---
MW-16S
Surficial
10/05/2016
6.1
3.30
19
1115
0.17
58
263
1.0
139
7
<1
<1
183
<1
139
99
<1
63.3
<5
240
<1
<0.03
<1
<1
---
MW-16S
Surficial
02/28/2017
6.2
1.87
15
1027
0.47 S
259
464
7.6
121
76
<1
<1
172
<1
121
138
<1
56.6
<5
230
<1
<0.12 D3
1.25
<1
---
MW-16S
Surficial
06/12/2017
6.2
3.00
18
951
0.38
-89
116
7.9
130
134
<1
<1
171
<1
130
113
<1
66.4
<5
240
<1
<0.025
<1
<1
---
MW-16S
Surficial
08/29/2017
6.2
5.89
19
1130
0.12
93
298
8.5
164
106
<1
<1
187
<1
164
77
<1
62 B2
<5
240
<1
<0.025
<1
<1
---
MW-16S
Surficial
12/05/2017
6.3
5.94
18
1114
0.45
63
268
9.8
202
84
<1
<1
185
<1
202
51
<1
54.1
<5
250
<1
<0.025
<1
<1
---
MW-16S
Surficial
03/15/2018
6.2
2.41
13
1087
0.31
20
225
8.4
191
160
<1
<1
175
<1
191
48.663 j
<1
62.9
<5
230
<1
<0.025
0.531 j
<1
0.2145 j
MW-16S
Surficial
06/13/2018
6.3
3.68
17
1106
NM
76
281
4.5
177
31
<1
<1
172
<1
177
62
<1
60.4
<5
240
<1
<0.025
0.621 j
<1
0.244 j
MW-16S
Surficial
08/29/2018
6.3
3.86
21
1082
0.18
61
266
9.2
199
127
<1
<1
170
<1
199
49.658 j
<1
57.7 B1
<5
230
<1
<0.025
0.995 j
<1
0.2595 j
MW-16S
Surficial
12/04/2018
6.3
1.23
17
1105
0.28
168
373
8.1
163
132
<1
<1
176
<1
163
73
<1
60.2
<5
270
<1
<0.025
2.04
<1
<0.5
MW-16S
Surficial
02/05/2019
6.2
1.05
17
1168
0.15
252
457
6.9
140
144 SI
<1
<1
187
<1
---
94
---
59.7
---
250
<1
<0.025
1.83
---
---
MW-16S
Surficial
08/06/2019
6.2
4.28
19
1069
0.06
231
436
6.5
187
46
<1
<1
170
<1
187
62
---
55.4
<5
250
<1
0.18 S1
2.02
---
---
MW-9
Bedrock
09/03/2013
NM
13.09
NM
NM
NM
NM
NM
NM
---
---
---
---
--
MW-9
Bedrock
09/09/2013
6.2
NM
20
549
0.35
50
1 NM
14.9
111
546
<0.34
0.7 j
74.7
---Lprw-i
44.2
---
145
<1.6
---
MW-9
Bedrock
06/17/2015
5.9
14.26
18
991
0.70
-12
193
2.9
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-9
Bedrock
06/30/2015
5.7
14.20
21
1049
0.23
101
306
3.2
83
16
<1
<1
76
<1
82
<50
<1
68.9
<10
240
<1
---
6.7
<1
---
MW-9
Bedrock
09/01/2015
6.1
15.48
22
863
0.20
49
254
1.9
120
23
<1
<1
103
<1
120
<50
<1
57.1
<10
150
<1
---
1.51
<1
---
MW-9
Bedrock
12/02/2015
5.7
13.64
17
1061
0.50
57
262
1.1
87
15
<1
<1
83
<1
86
<50
<1
72.2
<10
220
<1
<0.03
2.68
<1
---
MW-9
Bedrock
O1/07/2016
5.8
11.94
12
1069
2.40
200
405
0.4
63.7
14
<1
<1
66
<1
63.7
<50
<1
61.4
<5
250
<1
0.052
1.02
<1
---
MW-9
Bedrock
03/01/2016
5.6
10.45
16
1028
1.48
213
418
3.7
63.6
17
<1
<1
46
<1
63.6
<50
<1
61.9
<5
240
<1
<0.03
<1
<1
---
MW-9
Bedrock
06/02/2016
5.6
12.14
16
1016
1.15 S
156
361
1.5
78.1
21
<1
<1
45
<1
78.1
<50
<1
55.6
<5
200
<1
<0.03
<1
<1
---
MW-9
Bedrock
08/02/2016
5.46 S
14.44
20
996
0.24
47
252
7.5
102
23
<1
<1
61
<1
102
<50
<1
60.2
<5
220
<1
<0.03
2.21
<1
---
MW-9
Bedrock
10/05/2016
5.7
14.54
18
999
0.34
36
241
1.0
117
11
<1
<1
103
<1
117
<50
<1
57.3
<5
150
<1
<0.03
1.4
<1
---
MW-9
Bedrock
02/27/2017
5.8
13.08
17
1030
2.53
187
392
2.4
93.1
17
<1
<1
82
<1
93.1
<50
<1
55.5 M4
<5
200
<1
<0.12
1.15
<1
---
MW-9
Bedrock
06/13/2017
5.7
13.73
22
1013
1.08
73
278
4.2
110
27
<1
<1
61
<1
110
<50
<1
56.8
<5
180
0.044
<1
<1
---
MW-9
Bedrock
08/29/2017
5.6
15.63
18
985
0.34
144
349
5.1
93.5
19
<1
<1
65
<1
93.5
<50
<1
69.6 B2
<5
200
<1
<0.025
2.23
<1
---
MW-9
Bedrock
12/05/2017
5.7
16.73
18
969
0.67
99
304
7.9
77.9
30
<1
<1
97
<1
77.9
<50
<1
61.3 M4
<5
210
<1
<0.025
4.97
<1
---
MW-9
Bedrock
03/14/2018
6.0
14.39
14
930
2.40
84
289
3.3
107
13
<1
<1
99
<1
107
<50
<1
65.7
<5
180
<1
0.064
1.29
<1
0.2605 j
MW-9
Bedrock
06/14/2018
5.6
14.50
18
907
0.30
83
288
2.5
116
13
<1
<1
86
<1
116
<50
<1
58.3
<5
160
<1
0.049
0.66 j
0.428 j
0.1886 j
MW-9
Bedrock
08/22/2018
5.6
14.85
20
908
0.28
224
429
4.6
126
5.9 j
<1
<1
99
<1
126
<50
<1
62.4
<5
150
<1
<0.025
0.805 j
<1
0.282 j
MW-9
Bedrock
12/05/2018
6.1
13.20
16
840
0.60
268
473
0.6
123
6
<1
<1
118
<1
123
<50
<1
55.6
<5
150
<1
<0.025 MO
0.931 j
<1
<0.5
MW-9
Bedrock
02/06/2019
5.7
10.89
14
866
1.77
759
964
0.5
73
9
<1
<1
38
<1
---
<50
---
48.6
---
180
<1
0.14 S1
<1
---
---
MW-9
Bedrock
08/07/2019
5.7
13.99
23
790
1.03
306
511
1.4
72.5
11
<1
<1
28
<1
72.5
<50
---
41.7
<5
170
1 <1
0.045
<1
---
---
MW-9BR
Bedrock
05/30/2015
7.7
17.46
19
706
0.12
-238
-33
2.1
160
138
<1
<1
420
<1
160
<50
<1
60.3
<10
120
<1
---
<1
<1
---
MW-9BR
Bedrock
06/17/2015
7.4
18.43
20
714
0.32
-262
-57
1.6
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-9BR
Bedrock
09/01/2015
7.3
19.23
21
656
0.20
-128
78
1.0
170
18
<1
<1
410
<1
170
<50
<1
55.8
<10
100
<1
---
<1
<1
---
MW-9BR
Bedrock
12/02/2015
7.3
15.97
15
639
0.40
-128
77
2.3
160
17
<1
<1
399
<1
160
<50
<1
52.1
<10
97
<1
<0.03
<1
<1
---
MW-9BR
Bedrock
01/07/2016
7.6
15.15
11
650
0.70
-116
89
0.7
174
17
<1
<1
414
<1
174
<50
<1
51.2
<5
100
<1
<0.03
<1
<1
---
MW-9BR
Bedrock
03/01/2016
7.4
14.93
19
637
0.38
-155
50
2.0
168
13
<1
<1
420
<1
168
<50
<1
52.1
<5
95
<1
<0.03
<1
<1
---
Bedrock
06/02/2016
7.4
16.05
19
617
1.51 S
77
282
0.6
181
14
<1
<1
405
<1
181
<50
<1
53.8
<5
93
<1
<0.03
<1
<1
---
MW-9BR
Bedrock
08/02/2016
7.3 S
18.44
21
631
0.32
-125
81
1.1
166
30
<1
<1
474
<1
166
<50
<1
52.4
<5
110
<1
<0.03
<1
<1
---
MW-9BR
Bedrock
10/05/2016
7.3
17.66
17
685
0.25
-107
98
2.7
1 167
21
<1
<1
485
<1
167
<50
<1
62.6
<5
120
<1
<0.03
<1
<1
Page 3 of 8
TABLE 3
BACKGROUND GROUNDWATER ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Well ID
Flow
Zone
Sample
Collection
Date
Iron
Lead
Lithium
Magnesium
Manganese
Mercury
Methane
Molybdenum
Nickel
Nitrate + Nitrite
Potassium
Selenium
Sodium
Strontium
Sulfate
Sulfide
TDS
Thallium
TOC
Total Radium
Total Uranium
Vanadium
Zinc
Ng/L
Ng/L
Ng/L
mg/L
Ng/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
mg/L
Ng/L
mg/L
Ng/L
mg/L
mg/L
mg/L
Ng/L
mg/L
POIL
Ng/mL
Ng/L
Ng/L
MW-16S
Surficial
06/02/2016
149
<1
---
26.4
17
<0.05
<10
<1
1.8
<0.01
0.983
<1
91.8
640
44
<0.1
640
<0.2
0.813
2.17
0.000329
0.964
<5
MW-16S
Surficial
08/01/2016
126
<1
---
27.5
23
<0.05
12.8
<1
1.93
0.032
1.07
<1
100
688
34
1 <0.1
650
<0.2
0.936 B2
85.5
0.00036
0.833
<5
MW-16S
Surficial
10/05/2016
140
<1
---
29
22
<0.05
<10
<1
1.79
<0.01
1.11
<1
113
687
29
<0.1
630
<0.2
0.933
1.02
0.000419
1.05
<5
MW-16S
Surficial
02/28/2017
162
<1
---
26.9
36
<0.05
<10
<1
2.15
<0.01
0.996
<1
102
633
38
<0.1
580
<0.2
0.922
1.02
0.000355
0.949 B
<5
MW-16S
Surficial
06/12/2017
220
<1
---
29.3
24
<0.05
<10
<1
1.98
<0.01
1.11
<1
104 B3
641
33
<0.1
670
<0.2
0.883 B3
0.545
0.000121 j
0.841
<5
MW-16S
Surficial
08/29/2017
299
<1
---
27.7
26
<0.05
---
<1
2.32
---
1.15
<1
116
684
23
<0.1
620
<0.2
1.4
3.51
0.000474
0.75
<5
MW-16S
Surficial
12/05/2017
256
<1
---
18.6
20
<0.05
---
<1
1.94
---
1.02
<1
108
662
16
<0.1
590
<0.2 B3
1.7
0.995
0.000447
1.24
<5
MW-16S
Surficial
03/15/2018
176
<1
6
29.5
20
0.13
---
0.267 j
1.54
<0.01
1.14
<1
118
659
17
<0.1 R1
580
<0.2
1.1
7.662
0.000556
1.43
<5
MW-16S
Surficial
06/13/2018
132
<1
7
29
28
0.08
---
0.259 j
1.89
0.019
1.09
<1
116
666
22
<0.1
620
<0.2
1.6
2.296
0.000546
1.18
2.605 j
MW-16S
Surficial
08/29/2018
164
<1
7
26.1
25
0.12
---
0.344 j
1.8
<0.01
1.14
<1
127
627
15
<0.1
580
<0.2
1.1
0.2721
0.000429
1.42
2.411 j
MW-16S
Surficial
12/04/2018
435
<1
8 B2
27.3
113
<0.05
---
0.306 j
2.92
<0.01
1.18
<1
122
645
21
<0.1
600
<0.2
1.5
1.481
0.000376
0.687
3.42 j
MW-16S
Surficial
02/05/2019
184 S1
---
8
27.9
79 S1
---
---
0.267 j
2.78
<0.01
1.13
<1
121
683
24
---
620
<0.2
---
---
---
0.601
<5
MW-16S
Surficial
08/06/2019
414
---
6
25.6
73
---
---
0.315 j
2.03
<0.01
1.04
<1
123
590
17
---
565
<0.2
1.2 S1
---
---
0.407
7 S1
MW-9
Bedrock
09/03/2013
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-9
Bedrock
09/09/2013
1060
0.24 j
---
22.4
678
<0.06
---
---
3.6 j
---
1.4
<0.5
55.7
---
22
---
393
<0.15
---
---
---
---
20.6
MW-9
Bedrock
06/17/2015
---
---
---
---
---
---
---
---
---
---
---
---
---
--
---
---
---
---
---
---
---
---
---
MW-9
Bedrock
06/30/2015
1800
<1
---
30.3
826
<0.05
25
<1
1.8
<0.01
0.962
<1
61.4
538
41
<0.1
660
<0.2
1.3
---
---
<0.3
10
MW-9
Bedrock
09/01/2015
2290
<1
---
28
814
<0.05
35
<1
1.4
<0.01
1.23
<1
45.8
490
21
<0.1
560
<0.2
0.915
---
---
0.41
6
MW-9
Bedrock
12/02/2015
4230
<1
---
32.5
789
<0.05
15
<1
3.26
0.016
1.01
<1
57.7
534
40
<0.1
530
<0.2
1.4
---
---
<0.3
14
MW-9
Bedrock
01/07/2016
406
<1
---
32.4
360
<0.05
<10
<1
3.39
0.703
0.83
<1
70.2
480
51
<0.1
560
<0.2
1.4
---
---
<0.3
12
MW-9
Bedrock
03/01/2016
201
<1
---
3.57
115
<0.05
<10
<1
1.73
0.016
0.733
<1
77.7
477
53
<0.1
590
<0.2
1.4
2.779
0.000472
<0.3
<5
MW-9
Bedrock
06/02/2016
184
<1
---
30.8
230
<0.05
<10
<1
1.32
0.034
0.75
<1
75.7
463
42
<0.1
650
<0.2
1.3
8.002
0.0005
0.438
<5
MW-9
Bedrock
08/02/2016
378
<1
---
31.2
680
<0.05
<10
<1
2.61
<0.01
0.904
<1
67.2
513
44
<0.1
600
<0.2
1.3
<RL
0.000784
0.313
10
MW-9
Bedrock
10/05/2016
1220
<1
---
28.2
785
<0.05
27.1
<1
1.12
0.063
1.18
<1
46.5
481
26
<0.1
470
<0.2
0.887
0.712
0.000586
<0.3
<5
MW-9
Bedrock
02/27/2017
408
<1
---
30.4 M4
551
<0.05
<10
<1
1.98
0.019
1.03
<1
66.9
472
39
<0.1
530
<0.2
1.3
0.766
0.000595
<0.3
6
MW-9
Bedrock
06/13/2017
329
<1
---
31.3
408
<0.05
<10
<1
8.32
0.043
0.994
<1
66 B4,B1
458
34
<0.1
550
<0.2
1 B3
<RL
0.000407
<0.3
<5
MW-9
Bedrock
08/29/2017
1250
<1
---
28.5
528
<0.05
---
<1
3.2
---
0.917
<1
61.1
501
43
<0.1
580
<0.2
1.7
---
---
<0.3
13
MW-9
Bedrock
12/05/2017
1880
<1
---
18.4
1080
<0.05
---
<1
4.94
---
0.994
<1
48.4 B2,B4
531
52
<0.1
590
<0.2 B3
1.9
---
---
<0.3
11
MW-9
Bedrock
03/14/2018
305
<1
6
28.5
642
<0.05
---
0.551 j
3.32
0.013
1.13
<1
50
530
43
<0.1
470
<0.2
0.975
1.518
0.000494
0.229 j
8
MW-9
Bedrock
06/14/2018
293
<1
7
28.4
539
<0.05
---
0.353 j
2.03
0.033
1.06
<1
49.5
480
38
<0.1
470
<0.2
1
0.554
0.000362
0.252 j
6
MW-9
Bedrock
08/22/2018
428
<1
8
27.7
692
<0.05
---
0.447 j
1.75
0.0037 j
1.2
<1
46.1
484
29
<0.1
480
<0.2
0.85
1.46
0.000467
0.249 j
9
MW-9
Bedrock
12/05/2018
725
<1
8
25.7
682
0.022 j
---
0.454 j
1.18
0.01
1.2
<1
45.4
473
27
<0.1
430
<0.2
0.855
1.061
0.000636
0.132 j
4.439 j
MW-9
Bedrock
02/06/2019
6.055 j
---
8
26.2
71
---
---
0.116 j
1.34
0.032
0.637
<1
73.7
384
51
---
440
<0.2
---
---
---
0.133 j
2.175 j
MW-9
Bedrock
08/07/2019
33
---
6
22.3
59
---
---
0.096 j
0.809 j
0.032
0.592
<1
70.7
331
37
---
458
<0.2
1.3 S1
---
---
0.196 j
5 B
MW-9BR
Bedrock
05/30/2015
441
<1
---
24.1
829
<0.05
<10
<1
<1
<0.01
2.1
<1
37.2
677
7.9
<0.1
410
<0.2
0.517
---
---
<0.3
<5
MW-9BR
Bedrock
06/17/2015
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-9BR
Bedrock
09/01/2015
491
<1
---
24.4
905
<0.05
<10
<1
<1
<0.01
2.16
<1
36.3
642
4.9
0.146
410
<0.2
0.507
---
---
<0.3
<5
MW-9BR
Bedrock
12/02/2015
412
<1
---
21.4
793
<0.05
<10
<1
<1
<0.01
2.13
<1
37.6
600
1.8
<0.2
380
0.489
0.443
---
---
0.372
11
MW-9BR
Bedrock
01/07/2016
427
<1
---
22.3
778
<0.05
<10
<1
<1
<0.01
2.09
<1
37.2
593
1.6
<0.1
360
<0.2
0.337
---
---
<0.3
<5
MW-9BR
Bedrock
03/01/2016
379
<1
---
2.38
770
<0.05
10.6
<1
<1
<0.01
2.1
<1
36.1
596
2.3
<0.1
360
<0.2
0.429
1.09
<0.0002
<0.3
<5
MW-9BR
Bedrock
06/02/2016
127
<1
---
21.2
724
<0.05
<10
<1
<1
<0.01
2.04
<1
36.2
601
4
<0.1
360
<0.2
0.427
<RL
<0.0002
0.31
<5
MW-9BR
Bedrock
08/02/2016
800
<1
---
21.6
901
<0.05
16
<1
<1
<0.01
2.06
<1
35.9
699
4.7
<0.1
360
<0.2
0.449
1.17
<0.0002
0.312
<5
MW-9BR
Bedrock
10/05/2016
696
<1
25.8
901
<0.05
51.9
<1
<1
<0.01
2.09
<1
37.1
724
6.8
<0.1
420
<0.2
0.463
<RL
<0.0002
<0.3
<5
Page 4 of 8
TABLE 3
BACKGROUND GROUNDWATER ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Well ID
FIOW
Zone
Sample
Collection
Date
pH
WL
Temp
SPC
DO
ORP
Eh
Turbidity
Alkalinity
Aluminum
Antimony
Arsenic
Barium
Beryllium
Bicarbonate
Alkalinity
Boron
Cadmium
Calcium
Carbonate
Alkalinity
Chloride
Chromium
Chromium (VI)
Cobalt
Copper
Fluoride
S. U.
Ft (BTOC)
°C
Ns/cm
mg/L
mV
mV
NTU
mg/L
pg/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
Ng/L
pg/L
mg/L
mg/L
mg/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
MW-9BR
Bedrock
02/27/2017
7.4
16.31
17
644
0.28
-111
94
2.6
167
7
<1
<1
471
<1
167
<50
<1
59.2
<5
120
<1
<0.025
<1
<1
---
MW-9BR
Bedrock
06/13/2017
7.4
17.35
24
628
0.97
-82
123
3.2
176
10
<1
<1
412
<1
176
<50
<1
57.3
<5
95
<1
0.038
<1
<1
---
MW-9BR
Bedrock
08/29/2017
7.4
19.89
19
686
0.32
-103
102
2.5
178
32
<1
<1
472
<1
178
<50
<1
58.6 B2
<5
110
<1
<0.025
<1
<1
---
MW-9BR
Bedrock
12/05/2017
7.4
19.97
17
698
0.38
-45
160
1.9
189
48
<1
<1
449
<1
189
<50
<1
<0.01
<5
120
<1
<0.025
<1
<1
---
MW-9BR
Bedrock
03/14/2018
7.5
17.16
12
650
0.30
-68
137
2.0
177
11
<1
<1
464
<1
177
17.335 j
<1
58.3
<5
120
<1
0.049
<1
<1
0.1824 j
MW-9BR
Bedrock
06/14/2018
7.3
17.94
19
661
2.16
-43
162
2.2
176
6
<1
<1
462
<1
176
<50
<1
56.8
<5
120
<1
<0.025
<1
<1
0.1968 j
MW-9BR
Bedrock
08/22/2018
7.3
17.80
21
685
2.00
187
392
3.4
178
4.5 j
<1
---
488
<1
178
23.8 j
<1
67.6 M4
<5
120
<1
<0.025
<1
<1
0.1596 j
MW-9BR
Bedrock
12/05/2018
7.4
15.47
15
671
0.27
113
318
1.7
161
4.03 j
<1
<1
447
<1
161
<50
<1
57.8
<5
110
<1
<0.025
<1
<1
<0.2
MW-9BR
Bedrock
02/06/2019
7.3
14.98
16
689
0.12
54
259
0.8
160
4.772 j
<1
<1
450
<1
---
<50
---
56.5
---
110
<1
0.046 S1
<1
---
---
MW-9BR
Bedrock
08/07/2019
7.3
19.18
21
733
0.13
160
365
3.5
165
2.39 j
<1
<1
467
<1
165
<50
---
63.7
<5
130
<1
<0.025
<1
---
---
MW-15BR
Bedrock
06/01/2015
8.2
10.87
21
410
1.52
-71
134
4.8
150
7
<1
6.76
429
<1
150
<50
<1
34.4
<10
---
<1
---
<1
<1
---
MW-15BR
Bedrock
06/30/2015
7.9
9.62
18
431
0.52
137
342
2.3
130
30
<1
6.07
398
<1
130
<50
<1
31.9
<10
13
<1
---
<1
<1
---
MW-15BR
Bedrock
09/01/2015
8.1
10.71
23
425
0.65
-141
64
6.5
140
<1
7.84
342
<1
130
<50
<1
27.7
<10
15
<1
---
<1
<1
---
MW-15BR
Bedrock
12/02/2015
8.0
7.95
16
421
0.44
114
319
2.1
130
40
<1
8.25
335
<1
130
<50
<1
30.8
<10
14
<1
<0.03
<1
<1
MW-15BR
Bedrock
01/06/2016
8.2
5.78
10
401
0.45
37
242
2.0
131
48
<1
6.35
325
<1
131
<50
<1
28.9
<5
15
<1
<0.03
<1
<1
---
MW-15BR
Bedrock
03/02/2016
7.8
6.61
14
422
0.31
-121
84
4.3
135
25
<1
5.97
299
<1
135
<50
<1
26
<5
15
<1
<0.03
<1
<1
---
MW-15BR
Bedrock
06/02/2016
8.0
7.95
19
403
1.98 S
-59
146
4.9
138
44
<1
6.4
323
<1
138
<50
<1
28.5
<5
15
<1
0.055
<1
<1
---
MW-15BR
Bedrock
08/01/2016
7.6
9.71
20
393
1.08
-71
134
3.3
136
23
<1
5.81
325
<1
136
<50
<1
26.2
<5
14
<1
<0.03
<1
<1
---
MW-15BR
Bedrock
10/04/2016
7.7
9.51
19
400
0.53
-91
114
0.7
156
12
<1
5.07
383
<1
156
<50
<1
32.1
<5
14
<1
<0.03
<1
<1
---
MW-15BR
Bedrock
02/27/2017
8.1
9.26
18
392
3.62
-68
137
2.3
127
10
<1
4.82
291
<1
127
<50
<1
24.8
<5
14
<1
0.084
<1
<1
---
MW-15BR
Bedrock
06/12/2017
8.0
8.98
21
401
1.73
55
260
1.9
138
18
<1
4.92
286
<1
138
<50
<1
25.7
<5
14
<1
0.21
<1
<1
---
MW-15BR
Bedrock
08/28/2017
8.0
10.46
22
385
0.77
-57
148
6.8
136
26
<1
4.53
284
<1
136
<50
<1
24.4
<5
13
<1
0.048
<1
<1
---
MW-15BR
Bedrock
12/04/2017
7.8
11.15
17
369
0.40
-115
90
3.9
143
15
<1
4.56
315
<1
143
<50
<1
23.5
<5
13
<1
<0.025
<1
<1
---
MW-15BR
Bedrock
03/13/2018
7.9
9.66
12
376
2.40
43
248
2.0
135
11
<1
4.81
295
<1
135
32.496 j
<1
24.7
<5
14
<1
0.035
<1
<1
0.095 j
MW-15BR
Bedrock
06/13/2018
7.3
9.56
20
376
1.59
51
256
6.2
146
15
<1
4.46
294
<1
146
28.977 j
<1
23.4
<5
13
0.351 j
<1
<1
0.12
MW-15BR
Bedrock
08/22/2018
7.7
8.77
22
391
1.55
294
499
4.5
143 M1
32
<1
4.46
330
<1
143
42.5 j
<1
27.7
<5
13
<1
0.032
<1
<1
0.11
MW-15BR
Bedrock
12/05/2018
7.8
5.60
11
379
0.57
254
459
1.8
140
5
<1
4.8
341
<1
140
26.38 j
<1
27.4
<5
13
<1
<0.025
<1
<1
<0.1
MW-15BR
Bedrock
02/05/2019
7.9
6.58
20
396
0.33
248
453
4.7
130
4.939 j,S1
<1
4.59
350
<1
---
30.514 j
---
27.5
---
13
<1
0.043 S1
<1
---
---
MW-15BR
Bedrock
08/06/2019
7.9
9.56
20
416
0.34
247
452
7.0
143
3.719 j
<1
4.32
420
<1
143
27.4 j
---
33.5
<5
14
<1
<0.025
<1
---
MW-16BR
Bedrock
05/20/2015
7.7
53.91
16
589
0.17
-149
56
4.8
180
<1
2.5
360
<1
170
<1
41.1
<10
37
<1
---
<1
MW-16BR
Bedrock
06/11/2015
7.7
4.80
17
581
0.12
-260
-55
3.9
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-16BR
Bedrock
09/01/2015
7.7
6.82
18
673
0.10
-115
90
1.0
190
60
<1
1.44
468
<1
180
52
<1
51.5
<10
48
4.98
---
<1
---
MW-16BR
Bedrock
12/02/2015
7.6
2.50
16
720
0.40
-102
103
4.0
170
147
<1
1.56
459
<1
170
53
<1
51.1
<10
50
<1
<0.03
<1
<1
---
MW-16BR
Bedrock
01/07/2016
7.7
1.93
13
700
0.30
-129
76
1.0
196
42
<1
<1
437
<1
196
<50
<1
50.1
<5
50
<1
<0.03
<1
<1
---
MW-16BR
Bedrock
03/02/2016
7.6
1.99
15
695
0.20
-178
27
4.5
195
72
<1
1.06
419
<1
195
<50
<1
50.1
<5
48
<1
<0.03
<1
<1
---
MW-16BR
Bedrock
06/02/2016
7.6
2.63
16
659
0.23 S
63
268
2.0
202
33
<1
<1
412
<1
202
<50
<1
49.4
<5
42
<1
<0.03
<1
<1
---
MW-16BR
Bedrock
08/01/2016
7.3
5.31
18
664
0.15
-116
89
4.6
194
52
<1
<1
391
<1
194
<50
<1
47
<5
41
<1
<0.03
<1
<1
---
MW-16BR
Bedrock
10/05/2016
7.5
4.19
17
664
0.14
-164
41
1.6
200
24
<1
<1
383
<1
200
<50
<1
47.6
<5
41 B2
<1
<0.03
<1
<1
---
MW-16BR
Bedrock
02/28/2017
7.5
2.77
15
608
0.14 S
-110
95
0.5
213
15
<1
<1
392
<1
213
<50
<1
42.9
<5
41
<1
<0.025
<1
<1
---
MW-16BR
Bedrock
06/12/2017
7.5
3.91
18
596
0.29
-142
63
1.7
213
11
<1
<1
428
<1
213
<50
<1
49.8
<5
41
<1
<0.025
<1
<1
---
MW-16BR
Bedrock
08/29/2017
7.6
6.89
18
641
0.18
-116
89
4.5
196
28
<1
<1
442
<1
196
<50
<1
47.5 B2
<5
42
<1
<0.025
<1
<1
---
MW-16BR
Bedrock
12/05/2017
7.7
6.82
17
657
0.25
-61
144
5.4
212
19
<1
<1
428
<1
212
<50
<1
45.5
<5
44
<1
<0.025
<1
<1
---
MW-16BR
Bedrock
03/15/2018
7.7
3.27
13
653
0.20
-118
87
6.3
215
295
<1
0.9 j
428
<1
215
48.475 j
<1
49.6
<5
41
<1
<0.025
<1
<1
0.1758 j
Page 5 of 8
TABLE 3
BACKGROUND GROUNDWATER ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Well ID
Flow
Zone
Sample
Collection
Date
Iron
Lead
Lithium
Magnesium
Manganese
Mercury
Methane
Molybdenum
Nickel
Nitrate + Nitrite
Potassium
Selenium
Sodium
Strontium
Sulfate
Sulfide
TDS
Thallium
TOC
Total Radium
Total Uranium
Vanadium
Zinc
Ng/L
Ng/L
Ng/L
mg/L
Ng/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
mg/L
Ng/L
mg/L
Ng/L
mg/L
mg/L
mg/L
Ng/L
mg/L
POIL
Ng/mL
Ng/L
Ng/L
MW-9BR
Bedrock
02/27/2017
493
<1
---
24.7
867
<0.05
84.5
<1
<1
<0.01
2.19
<1
38.4
680
5.9
<0.1
380
<0.2
0.546
1.032
<0.0002
<0.3
<5
MW-9BR
Bedrock
06/13/2017
141
<1
---
23.4
369
<0.05
<10
<1
<1
0.034
2.12
<1
37.5 B4,B1
622
5.8
1 <0.1
390
<0.2
0.51 B3
<RL
<0.0002
0.374
<5
MW-9BR
Bedrock
08/29/2017
837
<1
---
23.2
1120
<0.05
---
<1
<1
---
2.14
<1
37.5
698
6.9
<0.1
410
<0.2
<1
---
---
<0.3
6
MW-9BR
Bedrock
12/05/2017
504
<1
---
<0.005
888
<0.05
---
<1
<1
---
<0.1
<1
<0.05 B3
688
7.5
<0.1
420
<0.2
1.1
---
---
<0.3
<5
MW-9BR
Bedrock
03/14/2018
482
<1
8
22.6
873
<0.05
---
0.392 j
<1
<0.01
2.13
<1
38.6
704
6.2
<0.1
400
<0.2
0.447
0.675
<0.0002
0.216 j
<5
MW-9BR
Bedrock
06/14/2018
77
<1
11
24.7
221
<0.05
---
0.934 j
<1
0.042
2.38
<1
40.6
717
8
<0.1
420
<0.2
0.475
0.0972
<0.0002
0.483
<5
MW-9BR
Bedrock
08/22/2018
146
<1
10
26.3 M4
717
<0.05
---
0.507 j
<1
<0.01
2.37
<1
41.3 M4
738
8
<0.1
450
<0.2
0.522
0.4401
<0.0002
0.286 j
11
MW-9BR
Bedrock
12/05/2018
267
<1
9
22.7
1020
<0.05
---
0.442 j
<1
<0.01
2.04
<1
37.4
659
7
<0.1
390
0.149 j
0.453
0.618
<0.0002
0.142 j
1.847 j
MW-9BR
Bedrock
02/06/2019
370
---
10
23.9
874
---
---
0.377 j
<1
<0.01
2.1
<1
38.9
674
6.7
---
350
0.089 j
---
---
---
<0.3
<5
MW-9BR
Bedrock
08/07/2019
201
---
8
24.8
667
---
---
0.31 j
<1
0.0058 j
2.11
<1
37.7
701
9.7
---
371
<0.2
0.458 S1
---
---
0.17 j
1.916 j
MW-15BR
Bedrock
06/01/2015
<10
<1
---
8.49
72
<0.05
14
17
<1
---
1.48
2.02
36.7
501
---
<0.1
---
<0.2
---
---
---
1.73
<5
MW-15BR
Bedrock
06/30/2015
31
<1
---
8.24
69
<0.05
<10
11.5
<1
2.7
1.69
1.98
42.9
493
37
<0.1
260
<0.2
0.371
---
---
1.82
<5
MW-15BR
Bedrock
09/01/2015
123
<1
---
7.11
62
<0.05
21
9.22
<1
1.8
1.76
1.92
52.1
435
54
<0.1
270
<0.2
0.425
---
---
1.98
<5
MW-15BR
Bedrock
12/02/2015
45
<1
---
7.16M53
<0.05
12
12.4
<1
1.2
1.86
1.62
47.8
441
50
<0.1
260
<0.2
0.341
---
---
2.32
<5
MW-15BR
Bedrock
01/06/2016
31
<1
---
6.82<0.05
23.3
5.66
<1
1.4
1.53
2.38
50.2
438
54
<0.1
240
<0.2
0.372
---
---
2.83
<5
MW-15BR
Bedrock
03/02/2016
26
<1
---
6.54<0.05
21.7
6.53
<1
1.3
1.56
1.69
53
409
56
<0.1
260
<0.2
0.293
0.801
0.00106
2.75
<5
MW-15BR
Bedrock
06/02/2016
49
<1
6.68<0.05
11.8
<1
1.3
1.8
1.76
47.6
429
47
<0.1
240
<0.2
0.361
3.27
0.00105
2.37
<5
MW-15BR
Bedrock
08/01/2016
42
<1
---
6.43
22
<0.05
<10
9.09
<1
1.4
1.66
1.28
50.5
431
47
<0.1
230
<0.2
0.368 B21
1.4
0.00108
2.12
<5
MW-15BR
Bedrock
10/04/2016
<10
<1
---
7.55
66
<0.05
11.8
6
<1
2.3
1.56
3.04
43.9
489
35
<0.1
280
<0.2
0.364
1.749
0.000941
2.96
<S
MW-15BR
Bedrock
02/27/2017
<10
<1
---
5.88
11
<0.05
<10
5.89
<1
1.1
1.51
1.01
51.6
372
45
<0.1
210
<0.2
0.375
1.207
0.00099
2.08
<5
MW-15BR
Bedrock
06/12/2017
19
<1
---
5.82
16
<0.05
<10
5.15
<1
1.4
1.48
1.38
51 B3
363
43
<0.1
240
<0.2
0.338 B3
0.803
0.000842
2.28
<5
MW-15BR
Bedrock
08/28/2017
30
<1
---
5.93
23
<0.05
---
4.79
<1
---
1.45
1.85
49.4
361
40
<0.1
230
<0.2 B4
<1
<RL
0.000807
2.11
<5
MW-15BR
Bedrock
12/04/2017
33
<1
---
5.44
35
<0.05
---
4.68
<1
---
1.3
1.56
45.5
399
38
<0.1
240
<0.2
0.835
<RL
0.000827
2.18
<5
MW-15BR
Bedrock
03/13/2018
39
<1
4.099 j
6.15
7
<0.05
---
4.78
<1
1
1.51
0.998 j
50.9
380
43
<0.1
260
<0.2
0.268
0.568
0.000911
2.18
3.468 j
MW-15BR
Bedrock
06/13/2018
44
<1
4.22 j
5.94
20
<0.05
---
4.58
<1
1.2
1.4
1.4
47.9 M4
367
38
<0.1
220
0.147 j
0.313
0.562
0.00079
2.37
<5
MW-15BR
Bedrock
08/22/2018
70
<1
6
6.68
39
<0.05
---
4.06
<1
1.9
1.43
2.2
45.8
406
36
<0.1
260
0.178 j
0.277
0.474
0.000809
2.5
3.7 j
MW-15BR
Bedrock
12/05/2018
6.159 j
<1
4.478 j
6.56
64
0.021 j
---
4
<1
2.9
1.4
2.18
44.9
412
31
<0.1
240
<0.2
0.369
1.013
0.000831
2.77
3.536 j
MW-15BR
Bedrock
02/05/2019
3.382 j,S1
---
3.467 j
6.56
51 S1
---
---
4.1
<1
1.8
1.43
2.03
46.7
418
34
---
230
<0.2
---
---
---
2.75
<5
MW-15BR
Bedrock
08/06/2019
9.738 j
---
4.984 j
7.94
79
---
---
4
<1
3.1
1.57
3.17
43.7
500
36
---
245
<0.2
0.39 S1
---
---
3.35
5 Sl
MW-16BR
Bedrock
05/20/2015
329
<1
---
13.9
326
<0.05
11
2.97
<1
<0.01
2.49
<1
57.3
505
41
<0.1
340
<0.2
0.892
---
---
<0.3
<5
MW-16BR
Bedrock
06/11/2015
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
MW-16BR
Bedrock
09/01/2015
311
<1
---
16.6
248
<0.05
<10
11.3
2.97
<0.01
2.88
<1
70.7
713
93
0.122
410
<0.2
1.3
---
---
<0.3
<5
MW-16BR
Bedrock
12/02/2015
401
<1
---
17.3
246
<0.05
<10
13.4
<1
<0.01
2.6
<1
72.5
771
120
0.189
440
<0.2
1.1
---
---
<0.3
<5
MW-16BR
Bedrock
01/07/2016
303
<1
---
16.9
260
<0.05
<10
7.59
<1
<0.01
2.48
<1
66.6
730
110
<0.1
440
<0.2
0.802
---
---
<0.3
<5
MW-16BR
Bedrock
03/02/2016
350
<1
---
17
252
<0.05
<10
6.48
<1
<0.01
2.12
<1
68.7
703
100
<0.1
430
<0.2
0.85
2.501
0.000359
<0.3
<5
MW-16BR
Bedrock
06/02/2016
296
<1
---
16.8
254
<0.05
<10
4.41
<1
<0.01
2.24
<1
64.7
700
86
<0.1
390
<0.2
0.848
2.451
0.000256
0.304
<5
MW-16BR
Bedrock
08/01/2016
305
<1
---
16.3
275
<0.05
<10
5.94
<1
0.017
2.23
<1
71.3
652
96
<0.1
400
<0.2
0.778 B2
2.05
0.000261
<0.3
<5
MW-16BR
Bedrock
10/05/2016
268
<1
---
15.9
272
<0.05
<10
4.85
<1
<0.01
2.1
<1
69.4
627
87
<0.1
390
<0.2
0.687
1.479
0.000158 j
<0.3
<5
MW-16BR
Bedrock
02/28/2017
264
<1
---
15.1
244
<0.05
<10
2.46
<1
<0.01
2.05
<1
62.5
596
62
<0.1
370
<0.2
0.787
2.34
0.0001 j
0.495 B
<5
MW-16BR
Bedrock
06/12/2017
268
<1
---
16.4
238
<0.05
<10
3.85
<1
0.01
2.18
<1
64.9 B3
637
74
<0.1
400
<0.2
0.802 B31
1.531
0.000133 j
0.445
<5
MW-16BR
Bedrock
08/29/2017
346
<1
---
16.7
280
<0.05
---
5
<1
---
2.25
<1
66.9
688
87
<0.1
390
<0.2
1.3
1.497
0.000229
<0.3
<5
MW-16BR
Bedrock
12/05/2017
329
<1
---
15.3
292
<0.05
6.46
<1
---
2.02
<1
62.8 B2,B4
695
99
<0.1
390
<0.2 B3
1.4
1.016
0.000249
<0.3
<5
MW-16BR
Bedrock
03/15/2018
571
<1
6
16.8
286
<0.05
4.95
<1
<0.01
2.26
<1
67.8
702
70
<0.1
350
<0.2
0.8
1.191
0.000254
0.389
<5
Page 6 of 8
TABLE 3
BACKGROUND GROUNDWATER ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
FIOW
Sample
pH
WL
Temp
SPC
DO
ORP
Eh
Turbidity
Alkalinity
Aluminum
Antimony
Arsenic
Barium
Beryllium
Bicarbonate
Boron
Cadmium
Calcium
Carbonate
Chloride
Chromium
Chromium (VI)
Cobalt
Copper
Fluoride
Well ID
Collection
Alkalinity
Alkalinity
Zone
Date
S. U.
Ft (BTOC)
'C
Ns/cm
mg/L
mV
mV
NTU
mg/L
Ng/L
Ng/L
Ng/L
Ng/L
Ng/L
mg/L
Ng/L
Ng/L
m /L
g
m g /L
m g /L
Ng L
Ng L
Ng L
Ng L
mg L
MW-16BR
Bedrock
06/13/2018
7.5
4.48
18
636
0.23
71
276
2.3
215
19
<1
0.611 j
428
<1
215
40.573 j
<1
47.2
<5
39
<1
<0.025
<1
<1
0.1944 j
MW-16BR
Bedrock
08/29/2018
7.7
4.75
21
678
0.22
41
246
5.1
210
11
<1
0.51 j
387
<1
210
45.893 j
<1
47.8 B1
<5
41
<1
<0.025
<1
<1
0.2
MW-16BR
Bedrock
12/04/2018
7.8
2.08
15
568
0.23
126
331
8.8
180
155
<1
11.9
320
<1
180
43.236 j
<1
35.1
<5
36
0.454 j
<0.025
<1
<1
0.082 j
MW-16BR
Bedrock
02/05/2019
7.5
2.00
16
622
0.07
134
339
0.4
200
9 S1
<1
8.3
398
<1
44.073 j
41.5
37
<1
0.027 S1
<1
---
---
MW-16BR
Bedrock
08/06/2019
7.5
5.24
21
624
0.14
104
309
3.9
189
18
<1
2.48
415
<1
189
49.135 j
48.6
<5
40
<1
0.96
<1
---
---
Notes:
- Sample results are invalid for use because recorded sample pH greater than 8.5 standard units, recorded sample turbidity greater than 10 NTU, or no sample pH or turbidity was recorded.
- Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error or laboratory analytical error.
- Concentration is an extreme statistical outlier. Concentration was not included in the calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was a result of field error, laboratory analytical error, or elevated reporting limit.
0 - Data from sample not included in calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that multiple concentrations were a result of field error or laboratory error.
0 - Sample collected less than 60 days from the previous sample. Sample results not included in calculation of BTVs.
--- - No result because the concentration of analyte was not measured in sample or the sample result was rejected due to serious deficiencies in meeting QC criteria.
°C - degrees celsius
pg/L - micrograms per liter
pg/mL - micrograms per milliliter
pS/cm - microsiemens per centimeter
BTOC - below top of casing
DO - dissolved oxygen
mg/L - milligrams per liter
my - millivolts
NM - Field parameter was not measured
NTU - nephelometric turbidity unit
ORP - oxidation-reduction potential
pCi/L - picocuries per liter
S.U. - standard units
SPC - specific conductance
TDS - total dissolved solids
Temp - temperature
TOC - total organic carbon
W L - water level
Laboratory Qualifiers:
< - Concentration not detected at or above the adjusted reporting limit.
<RL - Less than reporting limit. Result was not included in statistical analysis because no numeric value was provided for the reporting limit.
B - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample is less than 1OX the concentration in the method blank. Analyte concentration in sample could be due to blank contamination.
BI - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample was greater than SOX the concentration in the method blank. Analyte concentration in sample is not affected by blank contamination.
B2 - Target analyte was detected in blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes.
B3 - Target analyte was detected in Continuing Calibration Blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes.
B4 - Target analyte was detected in Continuing Calibration Blank(s) at or above the reporting limit.
D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference.
j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
MO - Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1 - Matrix spike recovery was high: the associated laboratory Control Spike (LCS) was acceptable.
M2 - Matrix spike recovery was Low: the associated Laboratory Control Spike (LCS) was acceptable.
M4 - The spike recovery value was unusable since the analyte concentration in the sample was disproportionate to the spike level.
N1 - This sample was inadvertently collected with sample running through the flow cell and should be considered invalid based on possible contamination from the flow cell.
R1 - Relative Percent Difference (RPD) value was outside control limits.
Data Validation Oualifiers:
S - Associated calibration check did not meet specified criteria.
51 - Data review findings indicate result may be biased, however, data is usable.
RO - The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
Prepared by: HES Checked by: EMY
Page 7 of 8
TABLE 3
BACKGROUND GROUNDWATER ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Well ID
Flow
Zone
Sample
Collection
Date
Iron
Lead
Lithium
Magnesium
Manganese
Mercury
Methane
Molybdenum
Nickel
Nitrate + Nitrite
Potassium
Selenium
Sodium
Strontium
Sulfate
Sulfide
TDS
Thallium
TOC
Total Radium
Total Uranium
Vanadium
Zinc
Ng/L
Ng/L
Ng/L
mg/L
Ng/L
Ng/L
lig/L
Ng/L
Ng/L
mg/L
mg/L
Ng/L
mg/L
Ng/L
mg/L
mg/L
mg/L
Ng/L
mg/L
pCVL
Ng/mL
Ng/L
Ng/L
MW-16BR
Bedrock
06/13/2018
343
<1
1 6
16.9
1 280
<0.05
---
4.28
<1
<0.01
2.24
<1
68.5
694
83
<0.1
380
1 <0.2
1.3
1 1.301
0.000195 j
<0.3
<5
MW-16BR
Bedrock
08/29/2018
303
<1
6
17.4
289
<0.05
---
5.6
<1
<0.01
2.12
<1
67
646
92
<0.1
400
<0.2
0.732
1.217
0.00018 j
0.114 j
2.546 j
MW-16BR
Bedrock
12/04/2018
208
<1
14 B2
14.3
151
<0.05
---
5.18
0.461 j
0.0089 j
5.6
<1
60.1
578
47
<0.1
310
<0.2
1.9
0.758
0.000995
1.35
2.372 j
MW-16BR
Bedrock
02/05/2019
198 SI
---
11
15.8
229 S1
---
---
1.84
0.458 j
<0.01
3.45
<1
62.8
644
51
---
340
<0.2
---
---
---
0.14 j
<5
MW-16BR
Bedrock
08/06/2019
310
---
7
16.9
236
---
---
3.02
<1
<0.01
2.82
<1
63.2
679
84
---
373
<0.2
1.2 S1
---
---
0.135 j
7 S1
Notes:
- Sample results are invalid for use because recorded sample pH greater than 8.5 standard units, recorded sample turbidity greater than 10 NTU, or no sample pH or turbidity was recorded.
- Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error or laboratory analytical error.
- Concentration is an extreme statistical outlier. Concentration was not included in the calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was a result of field error, laboratory analytical error, or elevated reporting limit.
0 - Data from sample not included in calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that multiple concentrations were a result of field error or laboratory error.
- Sample collected less than 60 days from the previous sample. Sample results not included in calculation of BTVs.
--- - No result because the concentration of analyte was not measured in sample or the sample result was rejected due to serious deficiencies in meeting QC criteria.
°C - degrees celsius
pg/L - micrograms per liter
pg/mL - micrograms per milliliter
pS/cm - microsiemens per centimeter
BTOC - below top of casing
DO - dissolved oxygen
mg/L - milligrams per liter
mV - millivolts
NM - Field parameter was not measured
NTU - nephelometric turbidity unit
ORP - oxidation-reduction potential
pCi/L - picocuries per liter
S.U. - standard units
SPC - specific conductance
TDS - total dissolved solids
Temp - temperature
TOC - total organic carbon
W L - water level
Laboratory Qualifiers:
< - Concentration not detected at or above the adjusted reporting limit.
<RL - Less than reporting limit. Result was not included in statistical analysis because no numeric value was provided for the reporting limit.
B - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample is less than 1OX the concentration in the method blank. Analyte concentration in sample could be due to blank contamination.
BS - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample was greater than SOX the concentration in the method blank. Analyte concentration in sample is not affected by blank contamination.
B2 - Target analyte was detected in blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes.
B3 - Target analyte was detected in Continuing Calibration Blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes.
B4 - Target analyte was detected in Continuing Calibration Blank(s) at or above the reporting limit.
D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference.
j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
MO - Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1 - Matrix spike recovery was high: the associated laboratory Control Spike (LCS) was acceptable.
M2 - Matrix spike recovery was Low: the associated Laboratory Control Spike (LCS) was acceptable.
M4 - The spike recovery value was unusable since the analyte concentration in the sample was disproportionate to the spike level.
N1 - This sample was inadvertently collected with sample running through the flow cell and should be considered invalid based on possible contamination from the flow cell.
R1 - Relative Percent Difference (RPD) value was outside control limits.
Data Validation Oualifiers:
S - Associated calibration check did not meet specified criteria.
51 - Data review findings indicate result may be biased, however, data is usable.
RO - The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
Prepared by: HES Checked by: EMY
Page 8 of 8
TABLE 4
BACKGROUND UNSATURATED SOIL ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Sample ID
Sample
Collection
Date
pH
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chloride
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
S. U.
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
BG-1 (2-2.5)
08/20/2013
---
25600
<0.0992
1.61
---
---
5.26 j
<0.053
---
---
27.2
---
7.95
---
19.2
---
234
BG-2 (2-2.5)
08/20/2013
---
44400
<0.117
3.32
---
---
9 j
<0.0625
---
---
40.4
---
16.8
---
16.8
---
134
BG-3 (2-2.5)
08/20/2013
---
17600
<0.104
2.16
---
---
6.54 j
<0.0554
---
---
26.9
---
8.06
---
12.9
---
155
BGS13-1 (2-3)
10/18/2017
4.5
19000
0.13 j
1.4
33
0.31
<2.7
<0.024
360
25
19
3.7
10
18000
10
1500
150
BGSB-2 (2-3)
10/18/2017
5.1
28000
<0.48 M
1.5 M
62
0.64
<3.1
<0.024
45 j
1.7 j
27
4.4
9.6
24000
14
780
53
BGSB-2 (6-7)
10/18/2017
5.2
15000
<0.53
1.2
52
1
<2.4
0.018 j
280
22
16
6.6
12
16000
12
1600
190
BGSB-3 (2-3)
10/18/2017
4.9
25000
<0.59
0.73
100
0.82
<15
<0.029
<1500
3.2 j
14
6.8
23
40000
7.4
1900
71
BGS13-3 (6-7)
10/18/2017
4.6
15000
<0.47
0.17 j
75
1.4
<27
0.034
600 j
140
4.9 j
12
27
29000
7.2
1900 j
100
BGSB-4 (2-3)
10/18/2017
4.5
23000
<0.43
1.3
50
0.33
<2.4
<0.022
82 j
8.6 j
24
3.3
8.6
15000
12
690
55
BGSB-4 (4-5)
10/18/2017
4.5
40000
<0.49
1.9
57
0.45
<2.9
<0.025
<290
140
28
4
9.2
13000
16
800
42
BGSB-5 (2-3)
10/18/2017
5.0
20000
<0.56
0.73
150
1.2
<5
0.034
1200
16
20
17
19
17000
10
1900
2700
BGSB-5 (4-5)
10/18/2017
4.4
19000
<0.58
1.7
170
0.75
<2.2
<0.029
380
110
23
7.4
13
19000
11
2300
280
BGSB-MW-9 (2-3)
10/18/2017
4.6
17000
<0.43
1.1
30
0.23
<2.1
<0.022
<210
3.5 j
5.2
1.2
3.9
12000
9.1
620
34
BGSB-MW-9 (6-7)
10/18/2017
5.3
11000
<0.41
0.52
42
0.46
<2.3
<0.021
330
1.4 j
10
3.9
6.2
18000
7
1800
120
BGSB-MW-15 (2-3)
10/18/2017
5.1
13000
<0.54
1
28
0.56
<2.5
0.033
790
14
18
19
12
14000
12
1600
440
BGSB-MW-15 (4-5)
10/18/2017
6.9
17000
<0.57
1.5
38
0.72
<2.3
0.017 j
810
12 j
21
10
13
18000
11
2800
260
BGSB-MW-20 (2-3)
10/17/2017
5.8
17000 M
<0.57
0.73
200
1.1
6 j,M
0.084
2300 M
1.5 j
22
14
19
16000 M
9
2100
1900 M
BGSB-MW-20 (6-7)
10/17/2017
5.0
20000
<0.47
0.9
100
0.89
<5.1
0.047
1400
2.9 j
32
12
18
20000
9.1
2100
670
MW-22 SB (3-4)
06/10/2016
5.2
j 15600
j <2.8 N2
j <1.4
48.4
0.27
j <54.7
j <0.17
j 473
<301 D3
17.8
j 8.2
j 14.1
j 16500
6.1
1890
370
Prepared by: JHG Checked by: EMY
Notes•
Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error
or laboratory analytical error.
Concentration is an extreme statistical outlier. Concentration was not included in the calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was a result of field error, laboratory analytical error, or
elevated reporting limit.
Non -detect value is greater than Preliminary Soil Remediation Goal Protection of Groundwater for the constituent. Non -detect value was not included in the calculation of BTVs.
No result because the concentration of analyte was not measured in sample.
mg/kg - milligrams per kilogram
S.U. - standard units
Laboratory Oualifiers:
< - Concentration not detected at or above the adjusted reporting limit.
D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference.
H3 - Sample was received or analysis requested beyond the recognized method holding time.
j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
M - Matrix spike / matrix spike dup failure.
N2 - The lab does not hold accreditation for this parameter.
Page 1 of 2
TABLE 4
BACKGROUND UNSATURATED SOIL ANALYTICAL RESULTS
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Sample ID
Sample
Collection
Date
Mercury
Molybdenum
Nickel
Nitrate (as N)
Potassium
Selenium
Sodium
Strontium
Sulfate
Thallium
Vanadium
Zinc
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
BG-1 (2-2.5)
08/20/2013
0.0387 j
---
4.95
---
---
0.414 j
---
---
---
0.349
---
19.8
BG-2 (2-2.5)
08/20/2013
0.113 j
---
9.2
---
---
0.795 j
---
---
---
0.347
---
33
BG-3 (2-2.5)
08/20/2013
0.0536 j
---
3.44
---
---
0.638 j
---
---
---
0.159 j
---
16.6
BGS13-1 (2-3)
10/18/2017
<0.082
<2.2
6.6
0.87
250 j
0.36 j
99 j
6.4
260
0.18
69
26
BGSB-2 (2-3)
10/18/2017
0.15
<2.5
6.2
<0.26
280 j
0.3 j,M
<310
5.5
8.7 j
0.3
120 M
21
BGSB-2 (6-7)
10/18/2017
<0.098
<2
6.9
0.082 j
390
<1.4
190 j
11
<12
0.16
71
20
BGSB-3 (2-3)
10/18/2017
<0.095
<12
11 j
<0.25
610 j
0.36 j
<1500
5 j
<13
0.13 j
48
83
BGSB-3 (6-7)
10/18/2017
<0.087
<22
<22
0.25
1300 j
0.45 j
<2700
15
<12
0.13
14
83
BGSB-4 (2-3)
10/18/2017
0.07 j
<1.9
5.7
0.16 j
270
0.33 j
<240
4.6
74
0.2
140
19
BGS13-4 (4-5)
10/18/2017
0.14
<2.3
7.5
0.23 j
320
0.42 j
160 j
3.4
<13
0.27
170
31
BGSB-5 (2-3)
10/18/2017
0.072 j
<4
11
0.18 j
310 j
0.33 j
<500
17
42
0.18
74
43
BGSB-5 (4-5)
10/18/2017
<0.086
<1.7
7.6
0.24
290
<1.5
330
8.6
420
0.19
98
28
BGSB-MW-9 (2-3)
10/18/2017
<0.094
<1.7
1.5 j
<0.23 M
280
0.3 j
<210
1.5
6.8 j,M
0.099 j
30
14
BGSB-MW-9 (6-7)
10/18/2017
<0.083
<1.9
5
<0.22
920
<1.1
49 j
7.1
31
0.1 j
20
48
BGSB-MW-15 (2-3)
10/18/2017
<0.083
<2
6.2
0.1 j
140 j
0.33 j
50 j
11
63
0.09 j
65
22
BGSB-MW-15 (4-5)
10/18/2017
<0.092
<1.9
8
0.27
350
0.53 j
790
13
21
0.15
95
28
BGSB-MW-20 (2-3)
10/17/2017
<0.094
<9.9 M
11
<0.24
220 j
<1.5
<1200
29
<12
0.14 j
66
44
BGSB-MW-20 (6-7)
10/17/2017
0.03 j
<4.1
10
<0.24
220 j
0.39 j
<510
19
8.5 j
0.11 j
72
45
MW-22 SIB (3-4)
06/10/2016
0.014
<0.55
7.8
<30.1 H3,D3
139
<1.4
165
7.3
<301 D3
<1.4
42
28.3
Prepared by: JHG Checked by: EMY
Notes•
Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was not a result of field error
or laboratory analytical error.
Concentration is an extreme statistical outlier. Concentration was not included in the calculation of BTVs because data validation and detailed evaluation of Site -specific geochemical conditions indicated that the concentration was a result of field error, laboratory analytical error, or
elevated reporting limit.
Non -detect value is greater than Preliminary Soil Remediation Goal Protection of Groundwater for the constituent. Non -detect value was not included in the calculation of BTVs.
No result because the concentration of analyte was not measured in sample.
mg/kg - milligrams per kilogram
S.U. - standard units
Laboratory Oualifiers:
< - Concentration not detected at or above the adjusted reporting limit.
D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference.
H3 - Sample was received or analysis requested beyond the recognized method holding time.
j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
M - Matrix spike / matrix spike dup failure.
N2 - The lab does not hold accreditation for this parameter.
Page 2 of 2
TABLE 5
STATISTICAL ANALYSIS RESULTS - SURFICIAL FLOW ZONE
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Constituent
Reporting
Unit
Descriptive Statistics
Upper Tolerance Limits
Sample Size
Number
of NDs
Percent
NDs
1
Type of UTL
Coverage
Confidence
Level
Value
pH*
S.U.
35
0
0
Normal
95
95
5.8 - 6.5
Alkalinity
mg/L
34
0
0
Normal
95
95
252
Aluminum
pg/L
35
1
3
1 Gamma
95
95
447.2
Antimony
pg/L
35
35
100
n/a
n/a
n/a
1°
Arsenic
Ng/L
35
27
77
Non -parametric
90
95
2.6
Barium
pg/L
35
0
0
Non-parametric3
90
95
187
Beryllium
pg/L
35
35
100
n/a
n/a
n/a
1°
Bicarbonate
mg/L
32
0
0
Normal
95
95
257
Boron
pg/L
35
7
20
Gamma
95
95
160.9
Cadmium
pg/L
32
32
100
n/a
n/a
n/a
1°
Calcium
mg/L
35
0
0
Non-parametric3
90
95
118
Carbonate
mg/L
26
26
100
n/a
n/a
n/a
5°
Chloride
mg/L
34
0
0
Non-parametric3
90
95
270
Chromium
Ng/L
35
32
91
n/a
n/a
n/a
3.32°
Chromium (VI)
pg/L
28
19
68
Non -parametric
85
95
0.18
Cobalt
pg/L
35
7
20
Gamma
95
95
61.05
Copper
Ng/L
32
22
69
Non -parametric
90
95
3.6
Fluoride
mg/L
9
4
44
Normal
95
95
0.805t
Iron
pg/L
35
0
0
Non-parametric3
90
95
37,500
Lead
pg/L
32
32
100
n/a
n/a
n/a
1°
Lithium
pg/L
12
1
1 8
Normal
95
95
10.77
Magnesium
mg/L
35
0
0
Non-parametric3
90
95
32.5
Manganese
pg/L
35
0
0
Non-parametric3
90
95
9,050
Mercury
pg/L
32
28
88
Non-parametric2
90
95
0.12
Methane
pg/L
19
16
84
Non-parametric2
85
95
12.8
Molybdenum
pg/L
35
23
66
Non-parametric2
90
95
1
Nickel
pg/L
35
2
6
Non-parametric3
90
95
24.8
Nitrate + Nitrite
mg/L
32
14
44
Non-parametric3
90
95
2.5
Potassium
mg/L
35
0
0
Non-parametric3
90
95
4.36
Selenium
pg/L
35
28
80
Non-parametric2
90
95
1.05
Sodium
mg/L
35
0
0
Non-parametric3
90
95
190
Strontium
pg/L
35
0
0
Non-parametric3
90
95
2,360
Sulfate
mg/L
34
0
0
Non -parametric'
90
95
510
Sulfide
mg/L
31
31
100
n/a
n/a
n/a
0.1°
TDS
mg/L
34
0
0
Non-parametric3
90
95
900
Thallium
pg/L
35
34
97
n/a
n/a
n/a
0.2°
TOC
mg/L
32
0
0
Non-parametric3
90
95
6.2
Total Radium
pCi/L
22
0
0
Gamma
95
95
6.219
Total Uranium
pg/mL
24
4
17
Non-parametric3
85
95
0.0165
Vanadium
pg/L
35
2
6
Normal
95
95
1.394
Zinc
pg/L
35
19
54
Non- arametric2
90
95
50
Prepared by: LWD Checked by: JHG
Notes:
* - Upper and lower tolerance limits calculated for constituent.
t - Value represents maximum value in dataset for constituent.
o - Value represents maximum non -detect value in dataset for constituent.
' - The type of upper tolerance limit (UTL) calculated for each constituent was based on the distribution of its data.
2 - The distribution of the data for the constituent could not be adequately assessed because the dataset contains >50 percent and <90 percent NDs. Therefore, the
non -parametric UTL was calculated for the constituent.
3 - The non -parametric UTL was calculated for the constituent because its backqround dataset could not be fitted to the normal, qamma, or loqnormal distribution models.
pg/L - micrograms per liter
pg/mL - micrograms per milliliter
mg/L - milligrams per liter
n/a - Dataset was comprised of >90 percent non -detects or contained <10 samples.
ND - non -detect
pCi/L - picocuries per liter
S.U. - standard units
TDS - total dissolved solids
TOC - total organic carbon
Page 1 of 1
TABLE 6
STATISTICAL ANALYSIS RESULTS - BEDROCK FLOW ZONE
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NORTH CAROLINA
Constituent
Reporting
Unit
Descriptive Statistics
Upper Tolerance Limits
Sample
Size
Number
of NDs
Percent
NDs
Type of UTL'
Coverage
Confidence
Level
Value
PH-
S.U.
68
0
0
Non-parametric3
95
95
5.5 - 8.2
Alkalinity
mg/L
68
0
0
Normal
95
95
231.5
Aluminum
Ng/L
68
0
0
Lognormal
95
95
125.5
Antimony
Ng/L
68
68
100
n/a
n/a
n/a
1°
Arsenic
Ng/L
67
40
60
Non-parametricZ
95
95
8.3
Barium
Ng/L
68
0
0
Non-parametric3
95
95
485
Beryllium
Ng/L
68
68
100
n/a
n/a
n/a
1°
Bicarbonate
mg/L
64
0
0
Normal
95
95
230.9
Boron
Ng/L
68
51
75
Non-parametricZ
95
95
52
Cadmium
Ng/L
60
60
100
n/a
n/a
n/a
1°
Calcium
mg/L
68
1
1
Non-parametric3
95
95
69.6
Carbonate
mg/L
52
52
100
n/a
n/a
n/a
5°
Chloride
mg/L
67
0
0
Non-parametric3
95
95
240
Chromium
Ng/L
68
64
94
n/a
n/a
n/a
14.1°
Chromium (VI)
Ng/L
59
41
69
Non-parametricZ
90
95
0.14
Cobalt
Ng/L
68
56
1 82
Non-parametricZ
95
95
4.97
Copper
Ng/L
60
57
95
n/a
n/a
n/a
2.48°
Fluoride
mg/L
15
2
13
Normal
95
95
0.316
Iron
Ng/L
68
3
4
Non-parametric3
95
95
2,290
Lead
Ng/L
60
60
100
n/a
n/a
n/a
1°
Lithium
Ng/L
24
0
0
Normal
95
95
13.24
Magnesium
mg/L
68
1
11
Non-parametric3
95
95
31.3
Manganese
Ng/L
68
0
0
Non-parametric3
95
95
1080
Mercury
Ng/L
60
58
97
n/a
n/a
n/a
0.05°
Methane
Ng/L
35
21
60
Non-parametricZ
90
95
51.9
Molybdenum
Ng/L
68
22
32
Non-parametric3
95
95
13.4
Nickel
Ng/L
68
48
71
Non-parametricZ
95
95
4.94
Nitrate + Nitrite
mg/L
59
27
46
Non-parametric3
90
95
1.9
Potassium
mg/L
68
1
1
Non-parametric3
95
95
3.45
Selenium
Ng/L
68
51
75
Non-parametricZ
95
95
3.04
Sodium
mg/L
68
1
1
Non-parametric3
95
95
75.7
Strontium
Ng/L
68
0
0
Non-parametric3
95
95
738
Sulfate
mg/L
67
0
0
Non-parametric3
95
95
100
Sulfide
mg/L
59
56
95
n/a
n/a
n/a
0.189°
TDS
mg/L
67
0
0
Normal
95
95
610.6
Thallium
Ng/L
68
63
93
n/a
n/a
n/a
0.489°
TOC
mg/L
63
2
3
Non-parametric3
95
95
1.9
Total Radium
pCi/L
37
0
0
Lognormal
95
95
5.287
Total Uranium
Ng/mL
1 44
10
23
Non-parametric3
90
95
0.00105
Vanadium
Ng/L
68
25
37
Non-parametric3
95
195
2.96
Zinc
Ng/L
68
43
63
Non-parametricZ
95
1 95
13
Prepared by: LWD Checked by: JHG
Notes:
* - Upper and lower tolerance limits calculated for constituent.
o - Value represents maximum non -detect value in dataset for constituent.
1 - The type of upper tolerance limit (UTL) calculated for each constituent was based on the distribution of its data.
Z - The distribution of the data for the constituent could not be adequately assessed because the dataset contains >50 percent and :590 percent NDs. Therefore,
the non -parametric UTL was calculated for the constituent.
s - The non -parametric UTL was calculated for the constituent because its background dataset could not be fitted to the normal, gamma, or lognormal distribution
models.
pg/L - micrograms per liter
pg/mL - micrograms per milliliter
mg/L - milligrams per liter
n/a - Dataset was comprised of >90 percent non -detects or contained <10 samples.
ND - non -detect
pCi/L - picocuries per liter
S.U. - standard units
TDS - total dissolved solids
TOC - total organic carbon
Page 1 of 1
TABLE 7
STATISTICAL ANALYSIS RESULTS - UNSATURATED SOIL
CAPE FEAR STEAM ELECTRIC PLANT
DUKE ENERGY PROGRESS, LLC, MONCURE, NC
Constituent
Descriptive Statistics
Upper Tolerance Limits
Sample
Size
Number
of NDs
Percent
NDs
1
Type of UTL
Coverage
Confidence
Level
Value
pH*
16
0
0
Gamma
95
95
3.2 - 6.9
Aluminum
19
0
0
Gamma
95
95
44,743
Antimony
18
17
94
n/a
n/a
n/a
0.591,
Arsenic
19
1
5
Normal
95
95
2.946
Barium
16
0
0
Gamma
95
95
259.9
Beryllium
16
0
0
Normal
95
95
1.589
Boron
16
12
75
Non-parametricZ
85
95
6.54
Cadmium
18
11
61
Non-parametricZ
85
95
0.0625
Calcium
15
2
13
Gamma
95
95
3,548
Chloride
15
0
0
Gamma
95
95
275.9
Chromium
19
0
0
Normal
95
95
42.21
Cobalt
16
0
0
Normal
95
95
21.52
Copper
19
0
0
Normal
95
95
27.67
Iron
16
0
0
Lognormal
95
95
38,976
Lead
19
0
0
Normal
95
95
19.65
Magnesium
16
0
0
Normal
95
95
3,226
Manganese
19
0
0
Lognormal
95
95
3,418
Mercury
19
10
53
Non-parametricZ
85
95
0.14
Molybdenum
13
13
100
n/a
n/a
n/a
4.1°
Nickel
18
0
0
Normal
95
95
13.65
Nitrate (as N)
16
7
44
Non-parametric3
85
95
0.27
Potassium
16
0
0
Lognormal
95
95
1,457
Selenium
19
5
26
Gamma
95
95
0.783
Sodium
13
5
38
Gamma
95
95
858
Strontium
16
0
0
Normal
95
95
28.08
Sulfate
15
5
33
Gamma
95
95
443.6
Thallium
18
0
0
Gamma
95
95
0.433
Vanadium
16
0
0
Normal
95
95
181.8
Zinc
19
0
0
Gamma
95
95
92.76
Prepared by: LWD Checked by: JHG
Notes:
* - Upper and lower tolerance limits calculated for constituent.
a - Value represents maximum non -detect value in dataset for constituent.
1- The type of upper tolerance limit (UTL) calculated for each constituent was based on the distribution of its data.
Z - The distribution of the data for the constituent could not be adequately assessed because the dataset contains
>50 percent and :590 percent NDs. Therefore, the non -parametric UTL was calculated for the constituent.
3 - The non -parametric UTL was calculated for the constituent because its background dataset could not be fitted to the normal,
gamma, or lognormal distribution models.
All constituents (except for pH) are reported in milligrams per kilogram.
n/a - Dataset was comprised of >90 percent non -detects or contained <10 samples.
ND - non -detect
pH is reported in standard units.
Page 1 of 1
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC — Cape Fear Steam Electric Plant
ATTACHMENT 1
SynTerra
AARCADIS�Design Consultancy
fornaturaland
I V r `� built assets
ets
Arcadis U.S., Inc.
To: Copies:
11001 W. 120th Avenue
Scott Davies, PG, Duke Energy
Suite 200
526 South Church Street
Broomfield
Charlotte, North Carolina 28202
Colorado 80021
Tel 303 544 0043
From:
Fax 720 887 6051
Julie K Sueker, PhD, PH, PE (CO)
Date:
March 25, 2020
Arcadis Project No.:
30043729
Subject:
Background Threshold Value Statistical Outlier Evaluation — Cape Fear
Steam Electric Plant
Arcadis U.S. Inc. (Arcadis) prepared this technical memorandum, titled Background Threshold Value
Statistical Outlier Evaluation — Cape Fear Steam Electric Plant, on behalf of Duke Energy Progress, LLC
(Duke Energy) (Figure 1). Arcadis evaluated statistically significant outliers identified in the Updated
Background Threshold Values for Constituent Concentrations in Groundwater and Unsaturated Soil by
SynTerra Corporation (SynTerra) (2020) constituent concentration dataset (background groundwater
dataset) for the Cape Fear Steam Electric Plant (Site), located in Chatham County, North Carolina
(Figure 1). This memorandum presents the results of this evaluation, which was conducted within the
context of recent United States Environmental Protection Agency (USEPA) guidance regarding the
treatment of statistical outliers. Results of the statistical outlier evaluation support findings reached in the
background threshold value (BTV) statistical analysis conducted by SynTerra for the Site (SynTerra, 2020)
applying the technical approach presented herein. Additionally, this technical memorandum includes a
review of regional background groundwater quality.
Groundwater BTVs are calculated to compare site groundwater constituent concentrations when the
constituent has no established 15A NCAC 02L.0202 Groundwater Standard (02L) or Interim Maximum
Allowable Concentration (IMAC), and/or when the BTVs are higher than either the 02L or IMAC criteria.
Unsaturated soil BTVs are calculated to compare Site soil constituent concentrations to background when
the constituent has no established Preliminary Soil Remediation Goal (PSRG), and/or when the BTVs are
higher than the PSRG criteria.
Page:
MEMO
REGIONAL GROUNDWATER QUALITY
The Cape Fear Steam Electric Plant is located in the Deep River Basin which is part of the eastern edge
of the greater Piedmont physiographic region.Local geology is part of the Triassic basin which includes
Triassic sedimentary rocks such as red to maroon colored conglomerates, sandstones, siltstones and
mudstones. The Deep River Basin is bordered by gneiss, schist, and intrusive rocks of other parts of the
Piedmont (Olsen, P. et al. 1989).
Naturally occurring constituent concentrations in Piedmont Region groundwater have been measured at
numerous monitoring sites and residential water supply wells by several institutions and government
agency (Chapman et al. 2005, Gunkle and Bradley 2007, Pippin et al. 2008, Harden et al. 2009, Sanders
et al. 2012, Chapman et al. 2013, Polizzotto et al. 2015, Gillispie et al. 2016, Vengosh et al. 2016, and
North Carolina Department of Environmental Quality [NCDEQ] 2019 — see Attachment A). These studies
demonstrate variability in groundwater constituent concentrations across the Piedmont Region as shown
on Figure 2 (Chapman et al. 2013). These patterns in regional groundwater constituent concentration
variability are also indicated by the USEPA Unified Guidance (USEPA 2009) to occur for constituent
concentrations in groundwater at individual wells (Table 1).
Detections of naturally occurring trace metals at concentrations above 02L criteria have been
demonstrated. Gunkle and Bradley (2007) compiled Piedmont Region groundwater dissolved arsenic
concentrations and show detections of arsenic above the 02L of 10 micrograms per liter (pg/L) in multiple
areas across the region (Figure 3). Manganese has been detected at concentrations above the 02L of 50
pg/L in Piedmont groundwater (Gillispie et al. 2016; Figure 4). Vengosh et al. (2016) established a range
of background groundwater concentrations for chromium (VI), boron, and strontium for the Piedmont
Region of North Carolina. Chromium (VI) concentrations ranged from less than the detection limit of 0.012
to 22.9 pg/L , boron concentrations ranged from less than the detection limit of 0.09 to 159.2 pg/L, and
strontium concentrations ranged from less than the detection limit of 0.25 to 3,426 pg/L (Vengosh et al.
2016). Data compiled by the NCDEQ (2019) demonstrate concentrations of aluminum, arsenic, chromium,
iron, lead, manganese, nitrate plus nitrite, sulfate, total dissolved solids (TDS), and zinc above their
respective 02L criteria for Piedmont Region groundwater (Table 2).
Down et al. (2015) conducted a pre -drilling background groundwater quality for the Deep River Triassic
Basin. In the study, water chemistry, dissolved gases, and volatile organic compounds were evaluated in
51 private drinking water well samples to establish a baseline dataset to evaluate effects of future natural
gas industry development. Results of this study identified concentrations of aluminum, arsenic, barium,
chloride, iron, and manganese that were above 02L or IMAC criteria (Figure 6).
CONSTITUENT OUTLIERS
HDR Engineering, Inc. (HDR) and SynTerra developed protocol and procedures, with input from NCDEQ,
for establishing groundwater BTVs for Duke Energy coal ash facilities (HDR and SynTerra 2017). The
protocol establishes identifying extreme statistical outliers using the Dixon's or Rosner's statistical outlier
test using a significance level of 0.01. This report states, "If statistical outliers have been detected, the
project scientist will review the values to determine if they should be removed from the data set or are
representative of background and should be retained for statistical analysis." This approach to evaluating
statistical outliers for inclusion or exclusion from a background dataset is consistent with guidance
provided by the USEPA in their 2009 Unified Guidance (USEPA 2009) and 2018 Groundwater Statistics
Tool — User's Guide (USEPA 2018).
arcadis.com Page:
2/11
MEMO
The Unified Guidance (USEPA 2009) states:
A statistical determination of one or more statistical outliers does not indicate why the
measurements are discrepant from the rest of the data set. The Unified Guidance does not
recommend that outliers be removed solely on a statistical basis. The outlier tests can provide
supportive information, but generally a reasonable rationale needs to be identified for removal of
suspect outlier values (usually limited to background data). At the same time there must be some
level of confidence that the data are representative of ground water quality. "
USEPA (2018) states [in bold font within the document]:
"Dixon's [outlier] test is used only to indicate whether a data point can be considered as an outlier
statistically; outliers should not be discarded from the data set unless there is also a valid, known
technical reason for the outlier (for example, field or lab conditions). "
The Unified Guidance (USEPA 2009) recommends testing of outliers on background data, but they
generally should not be removed unless some basis for a likely error or discrepancy can be identified.
Possible errors or discrepancies that would exclude outlier data from a background dataset include:
• Data recording errors
• Unusual sampling and laboratory procedures or conditions
• Inconsistent sample turbidity
• Values significantly outside the historical ranges of background data.
The Unified Guidance (USEPA 2009) also states:
`7n groundwater data collection and testing, background conditions may not be static over time.
Caution should be observed in removing observations which may signal a change in natural
groundwater quality. Even when conditions have not changed, an apparent extreme measurement
may represent nothing more than a portion of the background distribution that has yet to be
observed. This is particularly true if the background data set contains fewer than 20 samples. "
Based on guidance and documents provided by the USEPA (2009 and 2018), statistical outliers identified
by SynTerra in background groundwater datasets for the Site were evaluated to determine whether
statistical outliers should be included or excluded from the background groundwater datasets.
GROUNDWATER OUTLIER EVALUATION METHODS
A data -driven approach was used to evaluate identified statistical outliers in the background groundwater
datasets for the Site. This approach not only considers analytical results for individual constituents, but
also the broader geochemical conditions at the Site to determine inclusion or exclusion of statistical
outliers in the background groundwater dataset. This section describes the five methods used to evaluate
statistical outliers within the background groundwater datasets for the Site including:
1. Initial screening for turbidity and pH
2. Repeatability of constituent concentrations
arcadis.com Page:
3/11
MEMO
3. Relationship among pairs or groups of constituents
4. Relationships between major ions and total dissolved solids
5. Relationship between constituent concentration and oxidation-reduction potential (ORP)
Outlier evaluation methods 2 through 5 were conducted as part of the protocol established by HDR and
SynTerra (2017):
"If statistical outliers have been detected, the project scientist will review the values to determine if they
should be removed from the data set or are representative of background and should be retained for
statistical analysis."
Relationships between pH and constituent concentrations were evaluated but were not found to be
important for explaining presence of observed outliers. This outlier evaluation approach provides multiple
lines of evidence to support inclusion or exclusion of identified statistical outliers in the background
groundwater datasets for the Site.
Initial Screening for Turbidity and pH
Background groundwater samples with turbidity values greater than 10 Nephelometric turbidity units
(NTU) and/or pH values greater than 8.5 standard units (S.U.) were eliminated from the background
groundwater dataset as defined in the protocol established by HDR and SynTerra (2017) for the Site.
Site -specific background data were eliminated for turbidity values greater than 10 NTU to reduce potential
effects of particulates entrained in the background groundwater samples on background groundwater
metals concentrations. However, particulate metals may still be present in samples with turbidity values
less than 10 NTU. Published comparisons of turbidity measured as NTU and total suspended solids
(TSS)(Idaho Department of Environmental Quality 2007 and Xiang et al. 2011) suggest that turbidity
greater than 10 NTU is associated with TSS concentrations generally greater than 10 milligrams per liter
(mg/L; Figure 7). Combined concentrations of particulate metals, especially iron and aluminum, in all
retained site background groundwater data are less than 10 mg/L (e.g., Figure 8) and exhibited turbidity
values less than 10 NTU. Therefore, groundwater sample data with associated turbidity values less than
10 NTU were appropriately included within the background groundwater datasets for the Site whether
particulate forms of metals were present.
Repeatability of Constituent Concentrations
Statistical outliers identified as a repeated concentration across sample dates for individual wells were
retained within the background groundwater datasets for the Site. All retained outliers for the Site are
provided in Table 3.
Data were evaluated for the repeatability of individual constituent analytical results. Repeatability weighs in
favor of data inclusion because it suggests that the measured value is not due to a data recording error or
unusual condition. Additionally, if a value is repeatedly measured over time, it is an indication that the
sampling is accurately measuring the constituent concentration. For example, in well MW-15BR, selenium
was measured at concentrations above 1 µg/L in 16 samples between 2015 and 2019, all of which were
flagged as statistical outliers (Table 3). The consistency of the measurements strongly indicates that the
detected constituent concentrations are not due to sampling artifacts.
Repeatability was evaluated for individual wells across the individual groundwater flow zones (surficial and
bedrock) identified for the Site. Figure 9 provides examples of constituents with repeated concentrations
arcadis.com Page:
4/11
MEMO
within a small range that were identified as statistical outliers. Statistical outliers are identified on Figure 9
by orange boxes. The constituents shown on Figure 9, as well as other constituents with similar profiles,
were retained within the background groundwater dataset. The following bullets summarize the
constituents and wells with repeatable concentrations for the Site; a subset of these are illustrated on
Figure 9.
• MW-15BR —Selenium
• MW-15SL — Iron
• MW-15SU — Potassium, total uranium, zinc
• MW-9 —Nickel
This portion of the evaluation also included evaluating box -and -whisker plots for statistical outliers of
individual constituents by well (SynTerra, 2020). Background groundwater constituent concentrations that
were not identified as outliers within the individual well box -and -whisker plots were retained.
Relationship among Pairs or Groups of Constituents
Statistical outliers identified to have distributions similar to those for other constituents were retained within
the background groundwater datasets for the Site and are provided in Table I
Relationships among constituents provide evidence regarding whether a measured concentration is due to
a data recording or unusual condition. When two constituents are correlated, a higher concentration for
one constituent will typically be associated with a higher concentration for the correlated constituent. When
a statistical outlier in one constituent is associated with a higher value in an associated constituent, this
association provides evidence that the statistical outlier is a valid data point that is not associated with
sampling or laboratory error. Conversely, a statistical outlier that is not associated with a higher value in an
associated constituent is more likely to be invalid.
Groups of Constituents
Groups of constituents and statistical outliers were identified for several metals including aluminum,
chromium, cobalt, iron, manganese, and nickel (Figures 8, 10, and 11). These statistical outliers were
associated with particulate or dissolved forms based on comparison of total and filtered (0.45 micron)
metals concentrations. Statistical outlier concentrations of aluminum and iron were typically associated
primarily with particulate form, while statistical outlier concentrations of chromium, cobalt, manganese, and
nickel were typically in dissolved form.
Statistical outlier metals in primarily dissolved form were consistent with geochemical conditions including
ORP values that indicated presence of metal (e.g., iron and manganese) reducing conditions. Dissolution
of iron and manganese oxides in metal reducing conditions results in release of other metals associated
with the iron and manganese oxides including arsenic and cobalt.
Statistical outlier metals present primarily in particulate form are consistent with chemical and mechanical
weathering of the aquifer matrix. Naturally occurring chemical weathering (e.g., via metal reduction) results
in dissolution of minerals present within the aquifer matrix and can result in formation of very fine-grained
particles such as clay particles and colloids. Mechanical weathering of the aquifer matrix (e.g., stress
applied to the aquifer via groundwater pumping), even under low -flow conditions, can dislodge these fine-
grained particles and cause them to migrate to the well. Although monitoring well filter pack materials are
arcadis.com Page:
5/11
MEMO
sized to minimize migration of fine-grained particles, some of these fine-grained particles can still migrate
through the filter pack and become captured during groundwater sampling. This can occur for both
groundwater monitoring and drinking water supply wells, which are often completed as open boreholes in
bedrock absent of filter packs to minimize migration of fine-grained particles.
Chemical weathering of aquifer matrix minerals can also result in formation of fine-grained particulates.
Metals dissolved under metal reducing conditions can form particulates via re -oxidation and precipitation
of metals when the dissolved metals encounter less reducing and more oxic (oxygen -rich) conditions.
Pairs of Constituents
Similarities in distributions of several constituent pairs were observed across monitoring wells and
groundwater flow zones. These similarities in constituent distributions were observed for the constituent
well pairs aluminum and iron (Figure 8), cobalt and manganese (Figure 10), and chromium and nickel
(Figure 11) as well as other constituent pairs and groupings not shown on Figures 8, 10, and 11. These
strong similarities in constituent distributions across wells and groundwater flow zones indicate natural
conditions.
Relationship between Major Ions and Total Dissolved Solids
Statistical outliers with TDS increase not accompanied by similar increases in major cation and anion
concentrations were excluded from the background groundwater datasets for the Site and retained outliers
for the Site are provided in Table 3.
Concentrations of major cations (calcium, magnesium, sodium, and potassium) and anions (alkalinity,
chloride, and sulfate) identified as statistical outliers were compared to TDS concentrations. If outlier
cation or anion concentrations were accompanied by a similar increase in TDS, the outlier was retained
within the background groundwater datasets for the Site. TDS concentrations identified as statistical
outliers were then compared with concentrations of major cations and anions.
Relationship between Constituent Concentration and Oxidation -Reduction Potential
Statistical outliers associated with lower ORP values were retained within the background groundwater
datasets for the Site, and all retained outliers are provided in Table 3.
Background groundwater datasets were evaluated for relationships between groundwater ORP and
constituent concentrations. Lower ORP values were observed to be associated with higher concentrations
of copper, iron, methane, sulfide, and other constituent values. Higher ORP values were observed to be
associated with higher concentrations of chromium (VI), as illustrated in groundwater monitoring wells
MW-9 and MW-16S on Figure 12.
SUMMARY OF RESULTS - GROUNDWATER
Results of the constituent statistical outlier evaluation for groundwater are provided in Table 3. This table
provides the well ID, sampling date, constituent, constituent concentration, reporting unit, and the rationale
for each identified outlier included in the background groundwater datasets for the Site. The general
rationales for each constituent that had an outlier included in the background groundwater datasets for the
Site are summarized below.
• Aluminum —Not identified as an outlier on individual well box -and -whisker plot; no laboratory or field
errors identified.
arcadis.com Page:
6/11
MEMO
• Boron — Not identified as an outlier on individual well box -and -whisker plot.
• Chromium — Present with higher nickel and chromium(VI) concentrations; No laboratory or field
errors identified.
• Chromium (VI) — Present with higher nickel and chromium concentrations; no laboratory or field
errors identified; Present with higher ORP
• Cobalt — Present with higher manganese concentrations; Not identified as an outlier on individual
well box -and -whisker plot.
• Copper — Present with higher zinc concentration; No laboratory or field errors identified; not identified
as an outlier on individual well box -and -whisker plot.
• Iron — Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time; No laboratory or field errors identified.
• Mercury — No laboratory or field errors identified.
• Methane — Present with lower ORP; Preceded by decrease in sulfate; Not identified as an outlier on
individual well box -and -whisker plot; No laboratory or field errors identified.
• Nickel — Present with higher chromium concentrations; Repeated concentration within well over
time; Not identified as an outlier on individual well box -and -whisker plot.
• Nitrate + nitrite — No laboratory or field errors identified.
• Potassium — Repeated concentration within well over time; not identified as an outlier on individual
well and flow zone box -and -whisker plots; No laboratory or field errors identified.
• Selenium — Not identified as an outlier on individual well box -and -whisker plot; repeated
concentration within well over time.
• Sodium — Present with higher TDS and chloride concentration; Not identified as an outlier on
individual well box -and -whisker plot.
• Strontium — Present with higher calcium concentration; Not identified as an outlier on individual well
box -and -whisker plot.
• Sulfate — Not identified as an outlier on individual well box -and -whisker plot.
• Sulfide — Present with lower ORP and decrease in sulfate concentration; No laboratory or field errors
identified.
• TDS — Present with higher sodium concentration.
• Thallium — Present with higher zinc concentrations ; No laboratory or field errors identified.
• Total radium — No laboratory or field errors identified.
• Total uranium — Present with higher alkalinity; Not identified as an outlier on individual well and flow
zone box -and -whisker plots; Repeated concentration within well over time.
arcadis.com Page:
7/11
MEMO
• Zinc — Present with higher iron and copper and other metals concentration; Not identified as an
outlier on individual well box -and -whisker plot; Repeated concentration within well over time; No
laboratory or field errors identified.
SOIL OUTLIER EVALUATION METHODS
Unsaturated soil samples for evaluation of background soil constituent concentrations were collected at
background soil boring locations and during installation of background groundwater monitoring wells. HDR
Engineering, Inc. (HDR) and SynTerra developed protocol and procedures, with input from NCDEQ, for
establishing unsaturated soil BTVs for Duke Energy coal ash facilities (HDR and SynTerra 2017). The
protocol establishes identifying extreme statistical outliers using the Dixon's or Rosner's statistical outlier
test using a significance level of 0.01. This report states, "If statistical outliers have been detected, the
project scientist will review the values to determine if they should be removed from the data set or are
representative of background and should be retained for statistical analysis." As described for groundwater
above, this approach to evaluating statistical outliers for inclusion or exclusion from a background dataset
is consistent with guidance provided by the USEPA in their 2009 Unified Guidance (USEPA 2009) and
2018 Groundwater Statistics Tool — User's Guide (USEPA 2018).
Unsaturated soil constituent concentrations for Cape Fear background samples were reviewed to identify
outliers to be included or excluded from the background soil data set for calculation of background soil
BTVs. Data were evaluated for potential field sampling or laboratory errors. In addition, data were
evaluated for potential associations between constituents. For example, several soil samples from boring
BGSB-3 and BGSB-MW-9 had higher concentrations of potassium compared with other soil samples.
These locations also had generally higher aluminum concentrations (not considered outliers) (Table 4).
Soil at these locations may contain arkosic minerals that would contribute to higher potassium
concentrations. Arkosic (feldspar -containing) minerals are common within the Deep River Basin, and
potassium -feldspar may be present, resulting higher potassium levels in these samples compared to other
background soil sample locations (Figure 1).
SUMMARY OF RESULTS - SOIL
Results of the constituent statistical outlier evaluation for soil are provided in Table 4. This table provides
thesoil sample ID, sampling date, constituent, constituent concentration, reporting unit, and the rationale
for each identified outlier included in the background soil datasets for the Site. The general rationales for
each constituent that had an outlier included in the background soil datasets for the Site are summarized
below.
• Aluminum — No field or laboratory errors identified.
• Arsenic — Associated with higher concentration of aluminum, arsenic preferentially sorbs onto iron
and Aluminum (oxy)hydroxides; no field or laboratory errors identified.
• Iron — No field or laboratory errors identified.
• Manganese — No field or laboratory errors identified.
• Nitrate (as N) — No field or laboratory errors identified.
• pH — No field or laboratory errors identified.
arcadis.com Page:
8/11
MEMO
• Potassium — Arkosic (Potassium or sodium -feldspar -containing) sands common in Deep River
Basin; No field or laboratory errors identified.
• Sulfate — No field or laboratory errors identified.
RFFFRFMrPq
Chapman, M., R. Bolich, and B. Huffman. 2005. Hydrogeologic Setting, Ground -Water Flow, and Ground
Water Quality at the Lake Wheeler Road Research Station, 2001-03. United States Geological Survey
Scientific Investigation Report 2005-5166. Prepared in cooperation with the North Carolina
Department of Environment and Natural Resources, Division of Water Quality.
Chapman, M., C. Cravotta III, Z. Szabo, and B. Lindsey. 2013. Naturally Occurring Contaminants in the
Piedmont and Blue Ridge Crystalline -Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-
Rock Aquifers, Eastern United States, 1994-2008. United States Geological Survey, Scientific
Investigation Report 2013-5072.
Daniel, C. and P. Dahlen. 2002. Preliminary Hydrogeologic Assessment and Study Plan for a Regional
Ground -water Resource Investigation of the Blue Ridge and Piedmont Provinces of North Carolina.
United States Geological Survey Water Investigation Report 2002-4105. Prepared in cooperation with
the North Carolina Department of Environment and Natural Resources, Division of Water Quality.
Down, A., K. Schreglmann, D. Plata, M. Elsner, N. Warner, A. Vengosh, K. Moore, D. Coleman, R.
Jackson. 2015. Pre -drilling Background Groundwater Quality in the Deep River Triassic Basin of
Central North Carolina, USA. Applied Geochemistry. 60. 3-13.
HDR Engineering, Inc. and SynTerra Corporation (HDR and SynTerra). 2017. Revised Statistical Methods
for Developing Reference Background Concentrations for Groundwater and Soil at Coal Ash Facilities.
May.
Gillispie, E. R. Austin, N. Rivera, R. Bolich, O. Duckworth, P. Bradley, A. Amoozegar, D. Hesterberg, and
M. Polizzotto. 2016. Soil weathering as and engine for manganese contamination of well water.
Environmental Science Technology, 50: 9963-9971.
Gunkle, D. and P. Bradley. 2007. Arsenic Occurrence in Groundwater in Orange and Durham Counties.
North Carolina Geological Survey and Department of Environment and Natural Resources.
Harden, S., M. Chapman, and D. Hamed. 2009. Characterization of Groundwater Quality Based on
Regional Geologic Setting in the Piedmont and Blue Ridge Physiographic Provinces, North Carolina.
United States Geological Survey Scientific Investigation Report 2009-5149. Prepared in cooperation
with the North Carolina Department of Environment and Natural Resources, Division of Water Quality,
Aquifer Protection Section.
Idaho Department of Environmental Quality. 2007. Turbidity and Total Suspended Solids (TSS)
Relationship for all Mainstem Portneuf River and Marsh Creek Sites.
<https://deq.idaho.gov/media/594342- turbid ity_tss_phosphorus_051507.pdf>.
North Carolina Department of Environmental Quality (NCDEQ). 2019. Piedmont Mountain Groundwater
Resource Evaluation Program. Websites for Allison Woods, Bent Creek, Coweeta, Langtree
arcadis.com Page:
9/11
MEMO
Peninsula, Morgan Mill, Pasour Mountain, Tater Hill, and Upper Piedmont Groundwater Monitoring
and Research Stations accessed May 21, 2019. <https://deq.nc.gov/node/83001>.
Olsen, P., R. Schlische, P. Gore 1989. Field Guide to the Tectonics, Stratigraphy, Sedimentology, and
Paleontology of the NewarK Supergroup, Eastern North America. International Geological Congress,
Guidebooks for Field Trips T351, p. 19-33.
Pippin, C., M. Chapman, B. Huffman, M. Heller, and M. Schelgel. 2008. Hydrogeologic Setting, Ground -
Water Flow, and Ground -Water Quality at the Langtree Peninsula Research Station, Iredell County,
North Carolina, 2008-5055. United States Geological Survey Scientific Investigation Report 2009-
5149. Prepared in cooperation with the North Carolina Department of Environment and Natural
Resources, Division of Water Quality.
Polizzotto, M., A. Amoozegar, R. Austin, R. Bolich, P. Bradley, O. Duckworth, and D. Hesterberg. 2015.
Surface and Subsurface Properties Regulating Manganese Contamination of Groundwater in the
North Carolina Piedmont. Water Resources Research Institute of The University of North Carolina,
Report No. 459.
Sanders, A., K. Messier, M. Shehee, K Rudo, M. Serre, and R. Fry. 2012. Arsenic in North Carolina:
Public Health Implications. Environment International. 38(1): 10-16.
SynTerra Corporation. 2020. Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Unsaturated Soil. Cape Fear Steam Electric Plant. February 2020.
United States Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater
Monitoring Data at RCRA Facilities — Unified Guidance. EPA 530-R-09-007. March.
USEPA. 2018. Groundwater Statistics Tool — User's Guide. September.
Vengosh, A., R. Coyte, J. Karr, S. Harkness, A. Kondash, L. Ruhl, R. Merola, and G. Dywer. 2016. Origin
of hexavalent chromium in drinking water wells from the Piedmont aquifers of North Carolina. Enviro.
Sci. Technol. Letters. Accepted September 30, 2016.
Xiang, D.L.H., Djati, H.UD., and Hao, K.L.Z. 2011. Correlation between Turbidity and Total Suspended
Solids in Singapore Rivers. Journal of Water Sustainability, 1(3): 313-322.
arcadis.com Page:
10/11
MEMO
TABLES
1 Typical Background Data Patterns for Routine Groundwater Monitoring Analytes
2 Summary of Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and
Research Stations
3 Rationale for Inclusion of Statistical Outlier Data — Groundwater
4 Rationale for Inclusion of Statistical Outlier Data — Soil
FIGURES
1 Site Location and Regional Geology
2 Box -and -Whisker Plots for Constituent Concentrations in Piedmont and Mountain Region
Groundwater
3 Arsenic Occurrence in the Carolina and Spring Hope Terranes
4 Manganese Concentrations in the Piedmont Region of North Carolina
5 Chromium Concentrations in North Carolina Piedmont Groundwater
6 Distribution of Subset of Elements
7 Relationships between Turbidity and Total Suspended Solids
8 Relationships between Iron and Aluminum Concentrations
9 Repeatability of COI Concentrations
10 Relationships between Manganese and Cobalt Concentrations
11 Relationships between Chromium and Nickel Concentrations
12 Relationships between ORP and COI Concentrations
ATTACHMENT
A Constituent Concentrations in Groundwater at NCDEQ Groundwater Monitoring and Research
Stations
arcadis.com Page:
11/11
TABLES
Table 1
Typical Background Data Patterns for Routine Groundwater Monitoring Analytes
/aRCJaDIS Design Consultancy
for natural and
built assets
Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Detec
Temporal Variation
BetweenWell
Mean
WithinWell
Variability
Between
Well Equal
Outlier
Between
Well by
Analy�te
Well Typical
�Among Distribution
Group 0101J= Fc
Data
Analyte Groups
Constituents andMIndicat
Differences
(CVS)
Variances
Problems
withLroupinl.
w in Well
G
Major ions, pH, TDS,
High to 100%
✓✓✓
Generally low
✓✓
✓
✓✓
✓✓✓ ✓✓ ✓✓ ✓✓ Normal
Intrawell
Specific Conductance
0.1 to 0.5
CO3, F, NOz, NO3
Some to most ✓✓
✓✓
Moderate (0.2
Variable
✓✓
✓
✓ ✓
Normal, Log or
Intrawell/
detectable
High to 100% ✓✓
✓✓✓
to 1.5)
ow
✓
✓
✓
✓
NPM
Interwell
Be
Normal
Intrawell
0.1Lt 0.5
As, Se
Some wells high, ✓✓
✓✓
Moderate (0.2
Variable
✓✓
✓
✓
Normal, Log or
Intrawell/
others low to zero
(some wells)
to 1.5)
NPM
Interwell
Moderate to
Intrawell/
Al, Mn, Fe
Low to moderate ✓✓
✓
high
✓
✓✓✓
✓
✓
Log or NPM
0.3 > 2.0
Interwell
Cr, Cu, Hg, Pb,
Moderate to
Interwell or
Ni, Ag, TI, V, Zn
Ni, g, I,
Zero to low ✓✓✓
high
✓✓
✓✓✓
✓
✓✓ ✓
Log or NPM
0.5 > 2.0)NDC
General Notes:
No Checkmarks = Unknown, absent, or infrequently occurring
✓ = Occasionally
✓✓ = Frequently
✓✓✓ = Very frequently
Acronyms and Abbreviations:
% = percent
CV = coefficient of variability
µm = micrometers
NDC = never -detected constituents
NPM = non -parametric method
TDS = total dissolved solids
Source: United States Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities — Unified Guidance. EPA 530-R-09-007. March.
Page 1 of 1
Table 2 AARCADIS�=bulttaonsultancy
and
Summary of Constituent Concentrations in Groundwater ssets
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Constituent
Aluminum
02L or IMAC
Criteria
1,000
Reporting Unit
/L
Maximum Detected Concentration
Total' Dissolved'
44,000 30,000
Arsenic
10
/L
254
24
Barium
700
/L
150
98
Bicarbonate Alkalinity
NA
m /L
150
130
Cadmium
2
/L
ND
ND
Calcium
NA
m /L
99
550
Chloride
250
m /L
29
33
Chromium
10
/L
43
ND
Copper
1000
/L
750
32
Fluoride
NA
m /L
3.6
2.4
Iron
300
/L
33,000
18,000
Lead
15
/L
32
13
Magnesium
NA
m /L
30
24
Manganese
50
/L
2,800
830
Nickel
100
/L
27
15
Nitrate + Nitrite
10
m /L
NA
14
Potassium
NA
m /L
16
6.6
Selenium
20
/L
ND
8.4
Sodium
NA
m /L
120
89
Sulfate
250
m /L
72
1,500
Total Dissolved Solids
500
m /L
I NA
2,500
Total Orcianic Carbon
NA
m /L
12
NA
nc
iW
1000
/L
13,000
3,200
General Notes:
Groundwater data summarized from NCDEQ (2019). Data provided in Attachment A.
Data summarized from NCDEQ (2019). Data provided in Attachment A.
Bolded values indicate detected concentration is above 02L or IMAC criterion.
Footnotes:
1 NCDEQ Groundwater Monitoring and Research Stations (NCDEQ 2019) reported dissolved constituent concentrations, total
constituent concentrations, or both total and dissolved constituent concentrations.
Acronyms and Abbreviations:
IMAC - Interim Maximum Allowable Concentration
NA - not applicable
NCDEQ - North Carolina Departmnet of Environmental Quality
ND - not detected
pg/L - micrograms per liter
mg/L - milligrams per liter
Page 1 of 1
Table 3
Rationale for Inclusion of Statistical Outlier Data - Groundwater
Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
/aRCA DIS Design Consultancy
04 fornaturaland
built assets
ID
Sample
Constituent Concentration
ReportingWell
Data in Background Groundwater Data
Date
MW-9BR
5/30/2015
Aluminum 138
pg/L
No laboratory or field errors identified
MW-15BR
9/1/2015
Aluminum
120
pg/L
No laboratory or field errors identified
Not identified as an outlier on individual well box -and -whisker plot
MW-16BR
5/20/2015
Aluminum
118
pg/L
MW-16BR
12/02/2015
Aluminum
147
pg/L
Not identified as an outlier on individual well box -and -whisker plot
MW-16BR
3/15/2018
Aluminum
295
pg/L
No laboratory or field errors identified
MW-16BR
12/4/2018
Aluminum
155
pg/L
Not identified as an outlier on individual well box -and -whisker plot
MW-16BR
5/20/2015
Boron
51
pg/L
Not identified as an outlier on individual well box -and -whisker plot
MW-16BR
9/1/2015
Boron
52
pg/L
Not identified as an outlier on individual well box -and -whisker plot
MW-16BR
12/2/2015
Boron
53
pg/L
Not identified as an outlier on individual well box -and -whisker plot
MW-15SU
2/27/2017
Chromium
3.32
pg/L
Present with higher chromium (VI) concentration; No laboratory or Feld errors identified
MW-9
6/13/2017
Chromium
14.1
pg/L
Present with higher nickel concentration
MW-16BR
9/1/2015
Chromium
4.98
pg/L
Present with higher nickel concentration; No laboratory or field errors identified
MW-15SU
2/27/2017
Chromium (VI)
2.3
pg/L
Present with higher chromium concentration; No laboratory or Feld errors identified
MW-15SU
2/6/2019
Chromium (VI)
0.4 S1
pg/L
Present with higher chromium concentration; No laboratory or Feld errors identified
Present with higher ORP; No laboratory or field errors identified
Present with higher ORP; No laboratory or field errors identified
No laboratory or field errors identified
MW-16S
8/6/2019
Chromium (VI)
0.18 S1
pg/L
MW-9
2/6/2019
Chromium (VI)
0.14 S1
pg/L
MW-15BR
6/12/2017
Chromium (VI)
0.21
pg/L
MW-15BR
6/13/2018
Chromium (VI)
0.17
pg/L
No laboratory or field errors identified
Present with higher ORP; No laboratory or field errors identified
MW-16BR
8/6/2019
Chromium (VI)
0.96
pg/L
MW-15SU
12/2/2015
Cobalt
100
pg/L
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
lot
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
MW-15SU
6/2/2016
Cobalt
78.7
pg/L
lot
MW-9
6/30/2015
Cobalt
6.7
pg/L
Present with higher manganese concentration
MW-9
9/1/2015
Cobalt
1.51
pg/L
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
lot
MW-9
12/2/2015
Cobalt
2.68
pg/L
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
lot
MW-9
8/2/2016
Cobalt
2.21
pg/L
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
lot
MW-9
10/5/2016
Cobalt
1.4
pg/L
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
lot
MW-9
2/27/2017
Cobalt
1.15
pg/L
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
lot
MW-9
8/29/2017
Cobalt
2.23
pg/L
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
lot
MW-9
12/5/2017
Cobalt
4.97
pg/L
Present with higher manganese concentration
MW-9
3/14/2018
Cobalt
1.29
pg/L
Present with higher manganese concentration; Not identified as an outlier on individual well box -and -whisker
lot
MW-15SU
12/2/2015
Copper
6.32
pg/L
Present with higher zinc concentration; Not identified as an outlier on individual well box -and -whisker plot
MW-16BR
5/20/2015
Copper
2.48
pg/L
No laboratory or field errors identified
MW-16BR
9/1/2015
Copper
1.53
pg/L
No laboratory or field errors identified
MW-15SL
5/29/2015
Iron
45500
pg/L
No laboratory or field errors identified
MW-15SL
9/1/2015
Iron
37500
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated
concentration within well over time
MW-15SL
12/2/2015
Iron
33900
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated
concentration within well over time
MW-15SL
3/2/2016
Iron
35800
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated
concentration within well over time
MW-15SL
6/2/2016
Iron
36700
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated
concentration within well over time
MW-15SL
10/4/2016
Iron
34600
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot; Repeated
concentration within well over time
MW-15SL
12/5/2018
Iron
29800
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
6/30/2015
Iron
1800
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot
MW-9
9/1/2015
Iron
2290
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot
MW-9
12/2/2015
Iron
4230
pg/L
Present with lower ORP; No laboratory or field errors identified
MW-9
12/5/2017
Iron
1880
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot
MW-16S
3/15/2018
Mercury
0.13
pg/L
No laboratory or field errors identified
MW-16S
6/13/2018
Mercury
0.08
pg/L
No laboratory or field errors identified
No laboratory or field errors identified
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot
MW-16S
8/29/2018
Mercury
0.12
pg/L
MW-15SL
5/29/2015
Methane
11
pg/L
MW-15SL
9/1/2015
Methane
16
pg/L
Present with lower ORP; Not identified as an outlier on individual well box -and -whisker plot
MW-16S
8/1/2016
Methane
12.8
pg/L
No laboratory or field errors identified
MW-9
9/1/2015
Methane
35
pg/L
Not identified as an outlier on individual well box -and -whisker plot
MW-9BR
10/5/2016
Methane
51.9
pg/L
Present with lower ORP; Preceded by decrease in sulfate
MW-9BR
2/27/2017
Methane
84.5
pg/L
Present with lower ORP; Preceded by decrease in sulfate
MW-15SU
12/2/2015
Nickel
43
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15SU
3/2/2016
Nickel
19.6
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15SU
6/2/2016
Nickel
24.8
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15SU
8/1/2016
Nickel
48
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
Page 1 of 3
Table 3
Rationale for Inclusion of Statistical Outlier Data - Groundwater
Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
/aRCA DIS Design Consultancy
04 fornaturaland
built assets
ID
Sample Constituent Concentration
ReportingWell
Data in Background Groundwater Data Set
Date
MW-9
6/30/2015 Nickel 1.8
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
9/1/2015
Nickel
1.4
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
12/2/2015
Nickel
3.26
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
3/1/2016
Nickel
1.73
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
6/2/2016
Nickel
1.32
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
8/2/2016
Nickel
2.61
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
2/27/2017
Nickel
1.98
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
6/13/2017
Nickel
8.32
pg/L
Present with higher chromium concentration
MW-9
8/29/2017
Nickel
3.2
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
12/5/2017
Nickel
4.94
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
3/14/2018
Nickel
3.32
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
6/14/2018
Nickel
2.03
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
8/22/2018
Nickel
1.75
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-9
2/6/2019
Nickel
1.34
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-16BR
9/1/2015
Nickel
2.97
pg/L
Present with higher chromium concentration
MW-15SU
10/4/2016
Nitrate + Nitrite
3.9
mg-N/L
No laboratory or field errors identified
MW-15SU
3/13/2018
Nitrate + Nitrite
2.5
mg-N/L
No laboratory or field errors identified
MW-15SU
12/2/2015
Potassium
2.3
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-15SU
3/2/2016
Potassium
3.21
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-15SU
6/2/2016
Potassium
3.55
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
MW-15SU
10/4/2016
Potassium
3.44
mg/L
and -whisker plots
MW-15SU
2/27/2017
Potassium
3.16
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-15SU
6/12/2017
Potassium
4.36
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-15SU
3/13/2018
Potassium
3.45
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-15SU
6/13/2018
Potassium
3.09
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-15SU
8/22/2018
Potassium
4.51
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-15SU
12/5/2018
Potassium
3.65
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-15SU
2/6/2019
Potassium
3.81
mg/L
Repeated concentration within well over time; Not identified as an outlier on individual well and flow zone box -
and -whisker plots
MW-16BR
12/4/2018
Potassium
5.6
mg/L
No laboratory or field errors identified
MW-15SU
12/2/2015
Selenium
1.58
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15SU
6/2/2016
Selenium
1.05
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15SU
10/4/2016
Selenium
1.17
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
6/1/2015
Selenium
2.02
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
9/1/2015
Selenium
1.92
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
12/2/2015
Selenium
1.62
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
3/2/2016
Selenium
1.69
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
6/2/2016
Selenium
1.76
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
8/1/2016
Selenium
1.28
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
10/4/2016
Selenium
3.04
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
2/27/2017
Selenium
1.01
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
6/12/2017
Selenium
1.38
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
8/28/2017
Selenium
1.85
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
12/4/2017
Selenium
1.56
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
6/13/2018
Selenium
1.4
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
8/22/2018
Selenium
2.2
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
12/5/2018
Selenium
2.18
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
2/5/2019
Selenium
2.03
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15BR
8/6/2019
Selenium
3.17
pg/L
Not identified as an outlier on individual well box -and -whisker plot; Repeated concentration within well over
time
MW-15SU
12/2/2015
Sodium
409
mg/L
Present with higher TDS and chloride concentration; Not identified as an outlier on individual well box -and -
whisker plot
MW-15SU
8/22/2018
Strontium
2360
pg/L
Present with higher calcium concentration; Not identified as an outlier on individual well box -and -whisker plot
MW-15SU
12/5/2018
Strontium
2460
pg/L
Present with higher calcium concentration; Not identified as an outlier on individual well box -and -whisker plot
MW-15SU
12/2/2015
Sulfate
1100
mg/L
Not identified as an outlier on individual well box -and -whisker plot
MW-9BR
9/1/2015
Sulfide
0.146
mg/L
Present with lower ORP and decrease in sulfate
MW-16BR
9/1/2015
Sulfide
0.122
mg/L
Present with lower ORP; No laboratory or field errors identified
MW-16BR
12/2/2015
Sulfide
0.189
mg/L
Present with lower ORP; No laboratory or field errors identified
MW-15SU
12/2/2015
TDS
1600
mg/L
Present with higher sodium concentration
MW-9BR
12/2/2015
Thallium
0.489
pg/L
Present with higher zinc concentration, No laboratory or field errors identified
Page 2 of 3
Table 3
Rationale for Inclusion of Statistical Outlier Data — Groundwater
Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
/aRCA DIS Design Consultancy
04 fornaturaland
built assets
ID
Sample Constituent Concentration
ReportingWell
Data in Background Groundwater Data Set
Date
MW-16S
3/15/2018 Total Radium 7.662
pCi/L
No laboratory or field errors identified
MW-9
6/2/2016
Total Radium
8.002
pCi/L
No field or laboratory errors identified
MW-15SU
3/2/2016
Total Uranium
0.0165
pg/mL
Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker
lots; Repeated concentration within well over time
MW-15SU
6/2/2016
Total Uranium
0.00738
pg/mL
Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker
lots; Repeated concentration within well over time
MW-15SU
10/4/2016
Total Uranium
0.00911
Ng/mL
Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker
lots; Repeated concentration within well overtime
MW-15SU
2/27/2017
Total Uranium
0.0132
pg/mL
Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker
lots; Repeated concentration within well overtime
MW-15SU
3/13/2018
Total Uranium
0.0188
Ng/mL
Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker
lots; Repeated concentration within well over time
MW-15SU
6/13/2018
Total Uranium
0.0102
pg/mL
Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker
lots; Repeated concentration within well over time
MW-15SU
8/22/2018
Total Uranium
0.0162
pg/mL
Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker
plots; Repeated concentration within well over time
MW-15SU
12/5/2018
Total Uranium
0.016
pg/mL
Present with higher alkalinity; Not identified as an outlier on individual well and flow zone box -and -whisker
lots; Repeated concentration within well over time
MW-15SU
12/2/2015
Zinc
62
pg/L
Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box -
and -whisker lot; Repeated concentration within well over time
MW-15SU
6/2/2016
Zinc
50
pg/L
Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box -
and -whisker lot; Repeated concentration within well over time
MW-15SU
8/1/2016
Zinc
66
pg/L
Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box -
and -whisker lot; Repeated concentration within well over time
MW-15SU
10/4/2016
Zinc
26
pg/L
Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box -
and -whisker plot; Repeated concentration within well over time
MW-15SU
6/12/2017
Zinc
26
pg/L
Present with higher copper and other metals concentrations; Not identified as an outlier on individual well box -
and -whisker lot; Repeated concentration within well over time
MW-9
6/30/2015
Zinc
10
pg/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
MW-9
9/1/2015
Zinc
6
pg/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
MW-9
12/2/2015
Zinc
14
pg/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
MW-9
8/2/2016
Zinc
10
pg/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
MW-9
2/27/2017
Zinc
6
pg/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
MW-9
8/29/2017
Zinc
13
pg/L
Repeated concentration within well over time
MW-9
12/5/2017
Zinc
11
pg/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
MW-9
3/14/2018
Zinc
8
pg/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
MW-9
6/14/2018
Zinc
6
pg/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
MW-9
8/22/2018
Zinc
9
u9/L
Present with higher iron concentration; Not identified as an outlier on individual well box -and -whisker plot;
Repeated concentration within well over time
MW-9131R
12/2/2015
Zinc
11
pg/L
No laboratory or field errors identified
MW-9131R
8/29/2017
Zinc
6
pg/L
No laboratory or field errors identified
MW-9BR
8/22/2018
Zinc
11
pg/L
No laboratory or field errors identified
MW-16BR
8/6/2019
Zinc
7 S1
pg/L
No laboratory or field errors identified
General Notes:
0 - Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical
conditions indicated that the concentration was not a result of field error or laboratory analytical error.
Qualifiers:
D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference.
S1 — Data review findings indicate result may be unreliable. Use with caution.
Acronyms and Abbreviations:
pg/L = micrograms per liter
pg/mL = micrograms per milliliter
mg/L = milligrams per liter
mg - N/L = milligrams per liter as nitrogen
ORP = oxidation reduction potential
pCi/L = picocuries per liter
TDS = total dissolved solids
Page 3 of 3
Table 4
Rationale for Inclusion of Statistical Outlier Data - Soil
AR�► V I I Design & CansuLtanCy
V for natural and
6u iit assets
Background Threshold Value Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Sample ID
Sample
Constituent
Concentration
ReportingSoil
Data in Background Soil Data Set
Date
BG-2 (2-2.5)
08/20/2013
Aluminum
44400
mg/kg
No field or laboratory errors identified
BGSB-4 (4-5)
10/18/2017
Aluminum
40000
mg/kg
No field or laboratory errors identified
BG-2 (2-2.5)
08/20/2013
Arsenic
3.3
mg/kg
Associated with higher concentration of aluminum, arsenic preferentially sorbs onto Iron
and AI(oxy)hydroxides; no field or laboratory errors identified
BGSB-3 (2-3)
10/18/2017
Iron
40000
mg/kg
No field or laboratory errors identified
BGSB-5 (2-3)
10/18/2017
Manganese
2700
mg/kg
No field or laboratory errors identified
BGSB-MW-20 (2-3)
10/17/2017
Manganese
1900 M
mg/kg
No field errors identified
BGSB-1 (2-3)
10/18/2017
Nitrate (as N)
0.87
mg/kg
No field or laboratory errors identified
BGSB-MW-15 (4-5)
10/18/2017
pH
6.91
S.U.
No field or laboratory errors identified
BGSB-3 (2-3)
10/18/2017
Potassium
610 j
mg/kg
Arkosic (feldspar -containing) sands common in Deep River Basin; no field or laboratory
errors identified
BGSB-3 (6-7)
10/18/2017
Potassium
1300 j
mg/kg
Arkosic (feldspar -containing) sands common in Deep River Basin; no field or laboratory
errors identified
BGSB-MW-9 (6-7)
10/18/2017
Potassium
920
mg/kg
Arkosic (feldspar -containing) sands common in Deep River Basin; no field or laboratory
errors identified
BGSB-1 (2-3)
10/18/2017
Sulfate
260
mg/kg
No field or laboratory errors identified
BGSB-5 (4-5)
10/18/2017
Sulfate
420
mg/kg
No field or laboratory errors identified
General Notes:
0 - Concentration is an extreme statistical outlier. Concentration was included in the calculation of background threshold values (BTVs) because data validation and detailed evaluation of Site -specific geochemical
conditions indicated that the concentration was not a result of field error or laboratory analytical error.
Qualifiers:
j - Estimated concentration above the method detection limit and below the reporting limit.
M - Matrix spike / matrix spike dup failure.
Acronyms and Abbreviations:
mg/kg - milligrams per kilogram
S.U. - standard units
Page 1 of 1
FIGURES
II in
KY wV
I �•- ' NCDEQ Rocky Branch
5 ` Research Station
f,
a ...DRIN
i a
r
NCDEQ Lake Wheeler
Research Station
5 `F-
_-F
J- I +
T+r -
lit=.
My-
Y IPIIn
r!MII . .14 1 1 M~ 'O
1#LtNA!
;� �_ �17tici �7JI�sYs
ad .0 60 120 miles
so 120 180 K�rDrneWfs
Cape Fear Steam
Electric Plant
J
Note: Locations and scale approximate
Source: Reid, J.C., and Milici, R.C., 2008, "Hydrocarbon source rocks in the Deep River and Dan River Triassic Basins, North Carolina," U.S.
Geological Survey, Open -File report 2008-1108, 35 p. plus tables (see URL http://pubs.usgs.gov/of/2008/1108/).
+Veil s
•
Foul s
w 1�
eologt
Regions
�I
Valley and Pidge
Blue Ridge
LI
Pied tom
Allantic
Coastal Plain
Trossic Basins
A
E 5t II 99 17 70 5S 36 2.
.A AS CV COE DE.= E 9 -
U
# 5i i I 98 16' 'MT. ffi 7$ 2
A AS AR AR AD @ AS 46 -
_�_--
�U41
t7
d 61 in 91 Its 57 m A j
• GTG r � � H.
la �TI1 � 1
t It 3 4 5 0 7 a e
8
0 51 In 91 14 6i 51 29 Z.
.A A .30 ac C BC SC Fw
nap
17
R
9
F
9 9d 1d 91 Id 67 91 39 2
1
..S Aa A A13 a A An
LT
u.m
N
5 5S In yl 1� y7 SI yN 2
b1 L
1 Z 3 it S 9 7 g 5
I
C
9 Si 10 91 19 51 S1 2e 2
A AS OWE BE C C ABC -
ai I N- M ie 111 n b
a AS 6 T 9' 8 A A6 A
r
g St In 91 it 51 61 1$ 7
1 S 3 i d 7 11 9
A B
tl $1 10 e1 111 titEl W 2 a fez I 95 1$ 7a ea 3; 3
7�dn A, Al C ® G Cli G SC • I dprA A 11 LD tl 8®G W
r .7 T
t � �
ci 4 : y
u $ e
not 1
0
s 91. In 9r 16 6e 9S 3r 2
A A A A A A A A
Ip �
9.1 i n
.O1
a1
e Outlier dada value more than
EXPLANATION
times the imerquartila range
outside the quartile
i
Clastic sedimentary rocks ICLSD)
= Outlier data value less than
or equal le 3 and more than
2
Clastic lacustrinelevaporite sedimentary rocks (CLSOLACI
1.5fillies the interquartila
3
Quart2-ricltsedimentary rocks (CLSH)
range outside the quartile
4
Metamorphosed clastiCSedllnentaryrocks ICLSOMT)
Data value less than orequalTo
1.5times the ieterquartilerange
5
Quart¢-richmetamorplticrocks IMTQ1
oulsidethe quartile
6
Felsic igneous rocks and their metamorphic equivalents IIGMTF)
75111 percentile
7
Intermediate igneous lacks and Witmelarnorphic equivalents (IGIV1T11)
Mean
25th percentile
a
Ma}ic igneous racks and their metamorphic equivalents IIGMTMj
9
Ultram6(ic rocks IULMAFI
Source: Chapman, M., C. Cravotta III, Z. Szabo, and B. Lindsey. 2013. Naturally Occurring Contaminants in the Piedmont and Blue Ridge
Crystalline -Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994-2008. United States
Geological Survey, Scientific Investigation Report 2013-5072.
Page 1 of 2
C
6 G 1 11 R 11 !9 Yd 34 7
gd A5 A BC OE i COf CK 61
is
1,0
Is
d it .
55
50 '
0.5 .
69
E. f
A $1 Id 91 16 $1 28 2 h 51 7tl I} 67 99 ?8 ?
i(am9 AS B AB AB A AS AR AS 14�pp B B All A A AS AB AB
I roA90 = 8 16oc —
1.01110�
—c -- — -
lop J.- to
N 1
I a r s$ 12 it _$ 17 1 _ _1_ 11 S 515 U S.y M 13 7
fad - A k .A W A A A nu =- A AB B B n6 n n �-
-
�
j o
-
1
A
1 43 7 S5 12 Bt S5 47 2
ttl,rlm A t3 BC ec fit: eG t -
1.0m
L
£ 10 .
P,T
IN
T t
a
ff
I 28 S 55 12 8t SS 6 2
Ali _q AU Ay- b AB AB
o �
i
B C
1 43 7 95 u 411 5B 17 2 1 48 7 55 12 6% Vi 17 2
0:1
F
1 63 2 Ss 12 61 -Z 17
10 r100 B A 0 e B a 8 -
- ` _ _•_ `_ -
I.DW
,�• •�T
t 7 3 4 5 11 7 e 1
F
7 Ill 4 26 1 9 S 12 2
1
r
9 30 B 79 10 00 M M I
1gQ11p0
1S A9 q A& A AB A -
WE
� 1Gt1
_
•
Page 2 of 2
o Outlier data value more than
3 times The imeryuartile range
outside the quartile
} Outlier data Value IeSsthan
or equal to 3 and more than
1.5 times the interquarille
range outside the quartile
Data value less than or equal to
1.5 times the intergeartile range
outside the quartile
75th percentile
Mean
2541i percentile
EXPLANATION
i Clastic sedirnewary racks ICLSO)
2 Clastic lacustrinelevaparite sedimentary rucks (CLSOLACI
3 QuaM-rich sedinlenlary rocks {CLSQQ)
4 Metamorphosed ciaslic sedimentary rucks ICI_SdMT)
5 Quara-rich rnatamorpltic racks IMTQI
6 Felsic igneans racks and their 1nel:amorphic equivalents 11GMTF1
7 latemtediate igneous rocks and ibeir melanlorphic equivalents (IGMTJi
a Mafic Igneous rocks and rlteit metamorphic equivalents I1GMTM)
9 Ultrarnafic rocks (ULMAF)
Source: Chapman, M., C. Cravotta III, Z. Szabo, and B. Lindsey. 2013. Naturally Occurring Contaminants in the Piedmont and Blue Ridge
Crystalline -Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994-2008. United States
Geological Survey, Scientific Investigation Report 2013-5072.
QbJect Area
{ `)
y � a +
■
a
Cape Fear Steam , q
Electric Plant
oil-
'P �*
■
E
*y i f �
:;0't
�
w , � *RL
* •LMMnd
i
* Arm Con_�_r■it wa E" is W *eft EM MM 0 10 mb * �
1l�p1lrr� qe,�n� j Carolina terrane (Carolina slate beet)
= S-WtV kapb WUM (E�A§?L-m : IME te!D
o � ■x ra �n +n
Dissolved groundwater arsenic occurrence in the Carolina and spring Hope Terranes
at concentrations equal to or above the Environmental Protection Agency Maximum
Contaminant Levels of 10 parts per billion
(Data points from DHHS Groundwater Database, Pippin et al., 2003 and Pippin,
2005 — Modified by J. Tootoo)
Note: Location and scale approximate
Source: Gunkle, D. and P. Bradley. 2007. Arsenic Occurrence in Groundwater in Orange and Durham Counties. North Carolina Geological
Survey and Department of Environment and Natural Resources
Cape Fear Steam
1 ,� f•• , I Electric Plant
_• '� �- may— - .' •.i3'1. ��- �: i � �� -
S •
Soil System
High Mountain
Broad Basins. River Terraces
Felstc Crystalline
Mixed Felstc and Mahc
Carolina Slate Belt
Triassic Bann `
Sandhtils
Upper Coastal Plain and Piedmont
Middle Coastal Plain
Note: Location approximate
Source: Gillispie, E., R. Austin, N. Rivera, R. Bolich, O. Duckworth, P. Bradley, A. Amoozegar, D. Hesterberg, and M. Polizzotto. 2016. Soil
weathering as an engine for manganese contamination of well water. Enviro. Sci. Technol. Letters. Accepted August 28, 2016.
•�
�•f _. 1
•
41
1
t �
f
Mn (mg1L)
0 - 0.1
• 0.1 - 0.2
• 0.2 - 0.3
• 0.3 - 0.6
0 0.5 -1.0
25
20
15
10
0
■ This study • 00
o NC Environmental Quality 0100
•
•
•
r
- i •� -
•
•
•
0
0
Q
Notes:
tag/L - micrograms per liter
5 10 15 20
Total Chromium (µg/L)
25
Hexavalent chromium (Cr) concentration vs. total Cr
concentration in groundwater analyzed in this
(Vengosh et al. 2016) study (red circles) and reported
by the North Carolina Department of Environmental
Quality (NC-DEQ) (open circles). Note the high
correlation o f Cr(VI) to CrT in both data sets with an r2
of 0.93 (p < 0.001; n = 77) reported in this study and
an r2 of 0.90 (p < 0.001; n = 129) in NC-DEQ data.
The —1:1 ratio in most of the samples indicates that
Cr(VI) is the predominant species of dissolved Cr in
the Piedmont groundwater.
Source:.Vengosh, A., R. Coyte, J. Karr, S. Harkness, A. Kondash, L. Ruhl, R. Merola, and G. Dywer. 2016. Origin of
hexavalent chromium in drinking water wells from the Piedmont aquifers of North Carolina. Enviro. Sci. Technol. Letters.
Accepted September 30, 2016.
A. Down et al./Applied Geochemistry 60 (2015) 3-13
0
0
N
I
0
(N
0
N
I
I
1
1
I
I
17
I
I
U')
1
1
LO
I
J
I
I
I
O
1
I
I
O
O
I
I
I
1
r
1
r
r
I
1
U
I
In
In
I
Distribution of concentrations of a
subset of elements measured in Down
0.00
0.10 0.20
o
0.00
I
I
0.02 0.04
O
0.00
s
0.10 0.20 0.30
o
0.0
LIIi,iI
0.4 0.8
eta1.2015.
Al (mg/L)
As (mg/L)
B (mg/L)
Ba (mg/L)
Water quality standards are shown as
0
0
0
o
dotted lines: US EPA primary
N
N
N
N
standards in red (As only), US EPA
r
r
r
LO
r
secondary standards in orange (Al, Cl,
U
Fe, and Mn), and NC primary
o
0
0
o
standards in blue (Ba only).
a)
L
I
I..L
L
L
LO
Ili
For panels with no water quality
'
?
standards shown, there are either no
0
0
50 100 150 200
0
0
50
150 2�0
o
0
1 2 3 4 5
o
0
10 20 30 40 50
existing water quality standards for
Ca (mg/L)
Cl (mg/L)
Fe (mg/L)
Mg (mg/L)
that element (Ca, Mg, Na, Si, Sr) or all
federal and state water quality
0
N
N
standards exceed the range of values
N
we measured (B).
In
o I
o
0
0
^,
LO
In
o
0.0
0.4 0.8
O
0
_,
20 40 60 80
0
10 20 30 40 50
O
0.0
_
0.5 1.0 1.5 2.0
Mn (mg/L)
Na (mg/L)
Si (mg/L)
Sr (mg/L)
Notes:
mg/L - milligrams per liter
NC -North Carolina
USEPA— United States Environmental Protection Agency
Source: Down, A., K. Schreglmann, D. Plata, M. Elsner, N. Warner, A. Vengosh, K. Moore, D. Coleman, R. Jackson. 2015.
Pre -drilling Background Groundwater Quality in the Deep River Triassic Basin of Central North Carolina, USA. Applied
Geochemistry. 60. 3-13.
I �,
Turbidity and total suspended svijds (TSS) relationship
for all majnstetn Por'tneuf R and Muslt Cr sites"
Dar,
R'4r.94n. FKU-ME1
1i=21T
Tas = 2&597tLffb3duyin
fiL.0
J_ 5
Q1
E
od
00 ;
+4■
■
it]Q
C.
n Im 21012
turbid-fy ( TLf)
`all sites except Porh-va& River at Siphon Road
3;M -.
1: 0 99
400 80
.K 74 0
30 0 0
y 300 qq� v 40
Gn
ISO C7 30 0
tub 0 0 0 N ()0
s0 0 � OC a IU p
0 _ 4
0 90 100 150 ?60 LR !90 0 20 40 50 80 NO it"
Tuibidit (1-ri) Tuibid:tyPELi
(a) (b)
Fig ure 4 Correlation between Total Suspended Solids (TSS in mg'L)-and Tlubidity level [lam. `_
fi=-. (a- left) U n'VCT water samples and (b- r &ht) selected river water samples at
lower TSS concentration range, which were collected from various river streams iu
Singapoiv betwwecn 3an?010 to 3*2011.
NTU — Nephelometric turbidity units
mg/L — milligram per liter
TSS — Total Suspended Solids
Source:
I: Idaho Department of Environmental Quality. 2007. Turbidity and Total Suspended Solids (TSS) Relationship for all Mainstem Portneuf
River and Marsh Creek Sites. https:Hdeq.idaho.gov/media/594342- turbidity_tss_phosphorus_O515O7.pdf
II: Xiang, D.L.H., Djati, H.UD., and Hao, K.L.Z. 2011. Correlation between Turbidity and Total Suspended Solids in Singapore Rivers.
Journal of Water Sustainability, 1(3): 313-322.
Cape Fear - MW-15BR
Cape Fear - MW-16BR
1000
600
500
J
J
t71
100
01
c
400
0
0
300
m
m
c
10
c
200
U
U
100
Note: Aluminum outlier only
1
0
Jan-15 Jan-16 Jan-17 Jan-18 Jan-19
Jan-15
Jan-16 Jan-17 Jan-18 Jan-19 Jan-20
e~Aluminum ttron
--*—Aluminum -f-Iron
BACKGROUND THRESHOLD VALUE STATISTICAL OUTLIER
EVALUATION - CAPE FEAR STEAM ELECTRIC PLANT
Notes:
DUKE ENERGY PROGRESS, LLC
: Constituent concentration identified as a statistical outlier
RELATIONSHIPS BETWEEN IRON AND
Filled circle : detected result
ALUMINUM CONCENTRATIONS
Unfilled circle : non -detect result; value shown is reporting limit
/L liter
FIGURE
sultancy 8
fornaturaland
ARCADIS
: micro rams er
pg g p
huiltassets
bust ssets
Cape Fear - MW-15BR
Note: Orange outline indicates outliers
01
Jan-15 Jan-16 Jan-17 Jan-18 Jan-19
- - - Selenium
Cape Fear - MW-9
W
8
rn
7
C
.t0 6
,
m
e 5
m
U
c 4
O
u 3
2
1
0
Cape Fear - MW-15SL
50000
45000
3
rn 40000
s
0 35000
ro 30000 o
a�
25000
O
V 20000
15000
Note: Orange outline indicates outliers
10000
Jan-15 Jan-16 Jan-17 Jan-18 Jan-19
a I ron
J
Of
E
C
O
c
m
c 1
O
U
E
N
N
Y
O
a
0.1
Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 Jan-20 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19
—Nickel Potassium --*--Zinc
Notes:
: Constituent concentration identified as a statistical outlier BACKGROUND THRESHOLD VALUE S
Filled circle : detected result EVALUATION - CAPE FEAR STEAM
DUKE ENERGY PROGRE
Unfilled circle : non -detect result; values shown in reporting limit
Non -circled outliers were auto -correlated and not included in the background data set REPEATABILITY C
CONCENTRATI
pg/L : micrograms per liter
mg/L : milligrams per liter
ARCADIS busOeqt n8
for natur
COI — Constituents of Interest huiltassE
1
U
J
s
J
'6 7
3
0 6
0
5
c
m
0 4
0
w 3
as
0 2
V
1
0
Jan-15
Cane Fear - MW-9
200
100000
J
000
Z
W
10000
c
o
rn
00
m
?
c
2
1000
00
m
o
c
100
00
w
0
<D
V
01
10
.00
m
A
Jan-16 Jan-17 Jan-18 Jan-19 Jan-20
- Cobalt --o—Manganese
1 1-
Jan-15
Notes:
Q: Constituent concentration identified as a statistical outlier
Filled circle : detected result
Unfilled circle : non -detect result; value shown is reporting limit
Non -circled outliers were auto -correlated and not included in the background data set
pg/L : micrograms per liter
Cape Fear - MW-15SU
Jan-16 Jan-17 Jan-18 Jan-1;
+Cobalt Manganese
Cape Fear - MW-9
16
14
12
rn
10
c
0 8
� 6
a�
U
o 4
v
2
0
Jan-15 Jan-16 Jan-17
Chromium
- ___r I 0
Jan-18 Jan-19 Jan-20 Jan-15 Jan-16 Jan-17
- Nickel -e Chromium
Cape Fear - MW-16BR
Notes:
: Constituent concentration identified as a statistical outlier
Filled circle : detected result
Unfilled circle : non -detect result; value shown is reporting limit
Non -circled outliers were auto -correlated and not included in the background data set
pg/L : micrograms per liter
Jan-18 Jan-19 Jan-20
+Nickel
Cape Fear - MW-15SL
Cape Fear - MW-9
18
200 _
0.16
800
16
150 E
0.14
700 E
J 14 —
l0
60D
CID i
100 (
?
0-12
0 12
°
a.
01
500 +'
10 -
50
c
400
c _
8
0
0.08
•2
300 a
0 6
_'
s=
0
0.06
200
-50 c
W"
4
R
0.04
! 2
100�
2
-100 '9
x
0.02
0 :o
0
-150
O
Jan-15 Jan-16 Jan-17 Jan-18 Jan-19
0
-100
Jan-15
Jan-16 Jan-17 Jan-18 Jan-19 Jan-20
Methane -*--ORP
Chromium (VI) --e-ORP
Cape Fear - MW-16S
0.2
300
S
0.18 <°
250
0.16
200
'
0.14
C
150 p
g 0.12
a
%V
0.1
100 C
= '
0.08
50
�
0
v 0.06
0.04
-50 ,o
0.02
-100 72
x
0
0
-150
Jan-15 Jan-16 Jan-17 Jan-18 Jan-19
Jan-20
Chromium (VI) --o-ORP
Notes:
Constituent concentration identified as a statistical outlier
BACKGROUND THRESHOLD VALUE STATISTICAL OUTLIER
�--�
EVALUATION - CAPE FEAR STEAM ELECTRIC PLANT
Filled circle : detected result
DUKE ENERGY PROGRESS, LLC
Unfilled circle : non -detect result; value shown is reporting limit
RELATIONSHIPS BETWEEN ORP AND
pg/L : micrograms per liter
COI CONCENTRATIONS
ORP — Oxidation Reduction Potential
COI —Constituents of Interest
ARCJaDIS Oesi�n&Cansultancy FIGURE
00 fornaturatand
12
mV — millivolts
huittassets
ATTACHMENT A
Constituent Concentrations in Groundwater at
NCDEQ Groundwater Monitoring and Research Stations
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Location
Allison Woods
Station ID
30002000011
Samp ling
Data
lk
11/28/2006
Sampling
Depth
65
Aluminum
Dissolved
(og/LasAl)
<50
luminum
Total
(pg/LasAl)
I
a.
( rl'13•
1c
Arsen'
Disso
IC s As)
<5.0
Arsenic
Total
As)
Barium
olved
(pg/L as Ba)
36
Barium
Total
BaO(ft)
a
sdo
g
38
Bicarbonate
Total
�•
Cadmium
Dissolved
as Cd)
<2.0
Cadmium
Total
as Cd)
Calcium
Dissolved
19
Calcium
Total
Chloride
Dissolved
2.0
Chloride
Total
Chromium
Dissolved
<25
Ch
o1al
'a
Cr)j
C or
ved
(0'/
[a. C
<2.0
Cyanide
as HCN)
Dissolved
(mg/L)
4.7
Fluoride
Dissolved
<0.40
Fluoride
Total
L
Iron
<50
Allison Woods
30002000011
3/5/2007
65
<50
<5.0
95
41
<1.0
8.3
2.6
<10
<2.0
7.8
<0.40
<50
Allison Woods
30002000011
7/9/2007
65
<50
<5.0
68
32
<1.0
6.9
2.2
<10
<2.0
NA
<0.40
<50
Allison Woods
30002000011
11/5/2007
65
NA
NA
NA
23
NA
NA
2.9
NA
<2.0
7.4
<0.40
<50
Allison Woods
30002000011
5/27/2008
65
NA
<5.0
49
17
<1.0
4.5
2.8
<10
<2.0
7.6
<0.40
<50
Allison Woods
30002000011
3/16/2009
65
<50
<5.0
71
28
<1.0
6
1.7
<10
2.5
8.0
<0.40
780
Allison Woods
3000200001D
11/28/2006
209
<50
<5.0
52
66
<2.0
20
2.0
<25
<2.0
2.2
<0.40
<50
Allison Woods
13000200001D
3/5/2007
209
<50
<5.0
50
71
<1.0
21
1.4
<10
<2.0
0.8
<0.40
240
Allison Woods
3000200001D
7/9/2007
209
<50
<5.0
48
67
<1.0
20
1.3
<10
<2.0
0.7
<0.40
58
Allison Woods
3000200001D
11/5/2007
209
NA
NA
NA
65
NA
NA
1.8
NA
<2.0
0.4
<0.40
120
Allison Woods
3000200001D
5/27/2008
209
<50
<5.0
49
63
<1.0
21
2.1
<10
<2.0
0.7
<0.40
<50
Allison Woods
3000200001D
3/16/2009
140
<50
<2.0
48
65
<1.0
20
1.1
<10
<2.0
0.3
<0.40
<50
Allison Woods
300020000CH1
11/28/2006
67
<50
<5.0
74
60
<2.0
16
2.0
<25
14
3.9
<0.40
3300
Allison Woods
3000200002E
11/28/2006
33
<50
<5.0
37
4.0
<2.0
0.47
1.0
<25
<2.0
6.0
<0.40
<50
Allison Woods
3000200002S
3/5/2007
33
<50
<5.0
34
3.0
<1.0
0.48
1.1
<10
<2.0
6.9
<0.40
<50
Allison Woods
13000200002S
7/10/2007
33
<50
<5.0
35
4.8
<1.0
0.52
1.0
<10
<2.0
9.4
<0.40
<50
Allison Woods
3000200002S
11/5/2007
33
<50
<5.0
37
3.3
<1.0
0.50
1.6
<10
<2.0
9.1
<0.40
<50
Allison Woods
3000200002E
5/27/2008
33
<50
<5.0
35
1
<1.0
0.55
<10
<2.0
9.4
<50
Allison Woods
3000200002S
3/17/2009
33
<50
<2.0
35
3.3
<1.0
0.50
<1.0
<10
<2.0
10.5
<0.40
<50
Allison Woods
30002000021
11/28/2006
62
<50
<5.0
58
72
<2.0
20
1.0
<25
<2.0
1.7
<0.40
<50
Allison Woods
30002000021
3/5/2007
62
<50
<5.0
59
79
<1.0
23
1.2
<10
<2.0
NA
<0.40
<50
Allison Woods
30002000021
7/10/2007
62
<50
<5.0
58
60
<1.0
17
1.3
<10
<2.0
1.9
<0.40
<50
Allison Woods
30002000021
11/6/2007
62
NA
<5.0
NA
55
NA
1.8
NA
NA
NA
<0.40
NA
Allison Woods
30002000021
5/27/2008
62
<5.0
NA
Allison Woods
30002000021
3/17/2009
62
<50
<2.0
64
58
<1.0
19
1.1
<10
<2.0
3.8
<0.40
<50
Allison Woods
3000200002D
11/28/2006
194
<50
<5.0
91
<2.0
18
1.0
<25
<2.0
0.7
<0.40
<50
Allison Woods
3000200002D
3/5/2007
194
<50
<5.0
88
68
<1.0
17
1.2
<10
<2.0
1.1
<0.40
<50
Allison Woods
3000200002D
7/9/2007
194
<50
<5.0
90
62
<1.0
16
1.2
<10
<2.0
2.2
<0.40
<50
Allison Woods
3000200002D
11/5/2007
194
<50
<5.0
88
58
<1.0
17
1.6
<10
<2.0
NA
<0.40
<50
Allison Woods
3000200002D
5/27/2008
194
<50
<5.0
91
56
<1.0
17
1.8
<10
<2.0
1.8
<0.40
<50
Allison Woods
3000200002D
3/16/2009
140
<50
<2.0
89
52
<1.0
16
1.0
<10
<2.0
1.0
<0.40
<10
Allison Woods
3000200003S
11/29/2006
15
<50
<5.0
19
12
<2.0
0.8
5.0
<25
<2.0
6.0
<0.40
<50
Allison Woods
3000200003S
3/13/2007
15
<50
<5
45
16
<1.0
4.0
4.1
<10
<2.0
2.8
<0.40
<50
Allison Woods
3000200003E
7/11/2007
15
<50
<5.0
44
14
<1.0
4.1
4.0
<10
<2.0
2.4
<0.40
<50
Allison Woods
3000200003S
11/6/2007
15
<50
<5.0
49
13
<1.0
4.4
2.5
<10
<2.0
NA
<0.40
<50
Allison Woods
3000200003S
5/28/2008
15
<50
<5.0
44
12
<1.0
4.2
4.5
<10
<2.0
3.4
<0.40
<50
Allison Woods
3000200003S
3/23/2009
15
<50
<2.0
41
8.5
<1.0
4.1
3.6
<10
<2.0
5.3
<0.40
<50
Allison Woods
30002000031
11/29/2006
34
<50
<5.0
<10
25
<2.0
<0.10
1.0
<25
<2.0
5.1
<0.40
<50
Allison Woods
30002000031
3/13/20071
34
<50
<5.0
83
NA
<1.0
6.5
3.3
<10
<2.0
4.6
<0.40
<50
Allison Woods
30002000031
7/11/2007
34
<50
<5.0
77
24
<1.0
6.8
3.3
<10
<2.0
5.9
<0.40
<50
Allison Woods
30002000031
11/6/2007
34
<50
<5.0
78
23
<1.0
7.3
<1
<10
<2.0
5.6
<0.40
<50
Allison Woods
30002000031
5/28/2008
34
<50
<5.0
77
23
<1.0
7.5
3.6
<10
<2.0
NA
<0.40
<50
Allison Woods
30002000031
3/23/2009
34
<50
<2.0
69
22
<1.0
7.3
2.8
<10
<2.0
5.1
<0.40
<50
Allison Woods
3000200003D
11/29/2006
88
<50
<5.0
94
52
<2.0
6.5
1.0
<25
<2.0
0.1
<0.40
<50
Allison Woods
3000200003D
3/13/2007
88
<50
<5.0
17
34
<1.0
19
1.1
<10
<2.0
0.5
<0.40
<50
Allison Woods
3000200003D
7/11/2007
88
<50
<5.0
39
70
<1.0
21
1.2
<10
<2.0
NA
<0.40
<50
Allison Woods
3000200003D
11/6/2007
88
<50
<5.0
28
62
<1.0
21
1.4
<10
<2.0
0.1
<0.40
<50
Allison Woods
3000200003D
5/28/2008
88
<50
<5.0
27
64
<1.0
20
2.0
<10
<2.0
0.2
<0.40
<50
Allison Woods
3000200003D
3/23/2009
88
<50
<2.0
41
64
<1.0
22
1.1
<10
<2.0
0.2
<0.40
<50
Allison Woods
3000200004E
11/29/2006
22
<50
<5.0
25
6.0
<2.0
7.3
<1
1
<25
<2.0
2.6
<0.40
<50
Allison Woods
3000200004S
3/6/2007
22
<50
<5.0
17
2.0
<1.0
0.76
1.3
<10
<2.0
5.5
<0.40
<50
Allison Woods
3000200004S
7/10/2007
22
<50
<5.0
16
5.9
<1.0
0.77
1.0
<10
<2.0
8.4
<0.40
<50
Allison Woods
3000200004S
11/6/2007
22
<50
<5.0
18
5.3
<1.0
0.87
4.3
<10
<2.0
8.6
<0.40
<50
Allison Woods
3000200004E
5/28/2008
22
<50
<5.0
17
4.3
<1.0
1
0.75
1.6
<10
<2.0
8.0
<0.40
<50
Allison Woods
3000200004S
3/17/2009
22
<50
<2.0
17
5.8
<1.0
0.72
1.0
<10
<2.0
8.0
<0.40
<50
Allison Woods
30002000041
11/29/2006
39
<50
<5.0
98
31
<2.0
8.3
1.0
<25
<2.0
NA
<0.40
<50
Allison Woods
30002000041
3/6/20071
39
<50
<5.0
24
14
<1.0
6.0
1.2
<10
<2.0
8.6
<0.40
<50
Allison Woods
30002000041
7/10/20071
39
<50
<5.0
23
31
<1.0
7.0
1.1
<10
<2.0
10.6
<0.40
<50
Allison Woods
30002000041
11/6/20071
39
<50
<5.0
27
33
<1.0
9.0
1.3
<10
<2.0
7.5
<0.40
<50
Allison Woods
30002000041
5/28/2008
39
<50
<5.0
25
31
<1.0
8.0
1.7
<10
<2.0
6.9
<0.40
<50
Allison Woods
30002000041
3/17/2009
39
<50
<2.0
24
30
<1.0
7.5
1
<10
<2.0
9.7
<0.40
<50
Allison Woods
3000200004D
11/29/2006
121
<50
<5.0
14
62
<2.0
15
3.0
<25
<2.0
0.1
<0.40
<50
Allison Woods
3000200004D
3/6/2007
121
<50
<5.0
37
31
<1.0
19
1.1
<10
<2.0
0.4
<0.40
<50
Allison Woods
3000200004D
7/10/2007
121
<50
<5.0
39
61
<1.0
19
1.2
<10
<2.0
0.3
<0.40
<50
Allison Woods
3000200004D
11/6/2007
121
<50
<5.0
42
61
<1.0
21
1.7
<10
<2.0
0.1
<0.40
<50
Allison Woods
3000200004D
5/28/2008
121
<50
<5.0
42
57
<1.0
19
2.0
<10
<2.0
0.1
<0.40
<50
Allison Woods
3000200004D
3/17/2009
121
<50
<2.0
46
59
<1.0
19
1.0
<10
<2.0
0.2
<0.40
<50
Allison Woods
AWCH4
7/10/2007
88
<50
<5.0
47
64
<1
20
1.2
<10
<2.0
2.6
<0.4
<50
Allison Woods
3000200001Y
3/6/20007
na
NA
EENA
NA
NA
8
NA
NA
4.0
NA
NA
5.1
<0.40
NA
Allison Woods
3000200001Y
7/11/2007
na
<50
<5.0
39
21
<1.0
4.7
2.5
<10
<2.0
7.2
<0.40
77
Allison Woods
3000200001Y
11/6/2007
na
NA
NA
NA
21
NA
NA
<1.0
NA
NA
7.7
<0.40
NA
Allison Woods
3000200001Y
5/27/2008
na
<50
<5.0
35
<1.0
4.9
<10
28
5.2
140
Allison Woods
3000200001Y
5/28/2008
na
NA
NA
NA
NA
NA
2.9
NA
NA
7.2
1 <0.40
1
1 NA
Allison Woods
3000200001Y
3/23/2009
na
1 <50
1
1
<2.0
33
17
<1.0
5.2
2.9
<10
<2
NA
1 <0.40
1
1 <50
iAARCADIS
Page 1 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
FIARCJaDIS ��,a��,
Location
Allison Woods
Station ID
30002000011
Sampling
Da t.
11/28/2006
Sampling
Depth
(ft)
65
Iron
Total
(pg/L
Lead
Dissolved
(pg/L
<10
Lead
Total
(pg/L
Magnesium
Disso lve
mg/L
(A
2.9
jWe ::um
jmg/L
Manganese
Dissolved
(pg/L
17
Manganese
Total
(pg/L
Mercury
Dissolved
(pg/L
ercury
To d
t.
I (Pg/L
Nickel
Dissolved
(pg/L
<10
Nicke!q
Total
(pg/L
n
Nitrogleia
L...
(nng/L
<0.02
Ni trogen
Ammonia +
•
M�M
Nitrogen
OrganicDIs
<0.2
Nitrogen,
NitrateDis
Nitrogen,
NItrateDIs
�•
Nitrate as N
,•
NO2 +
NO3 Dis
0.22
NO2+NO3
as N
(as
�• .
Oxidation III
Reduction
raw value
Fie]
6.0
Lab
ILabWH,
6.7
"sph
L
as
Phosphorus
<0.02
Phosphorous
Allison Woods
30002000011
3/5/2007
65
<10
3.2
190
<10
<0.02
NA
0.14
6.4
6.4
NA
Allison Woods
30002000011
7/9/2007
65
<10
2.9
97
<10
<0.02
NA
0.17
6.3
6.3
NA
Allison Woods
30002000011
11/5/2007
65
NA
NA
NA
NA
NA
NA
0.16
6.1
6.6
NA
Allison Woods
30002000011
5/27/2008
65
<10
2.4
33
<10
NA
NA
0.04
5.8
6.1
NA
Allison Woods
30002000011
3/16/2009
65
<10
2.6
49
<10
NA
NA
<0.02
5.7
6.3
NA
Allison Woods
3000200001D
11/28/2006
209
<10
4.3
<10
<10
<0.02
<0.2
<0.02
7.8
8.0
NA
Allison Woods
13000200001D
3/5/2007
209
<10
4.4
<10
<10
<0.02
NA
<0.02
8.1
8.0
NA
Allison Woods
3000200001D
7/9/2007
209
<10
4.2
<10
<10
<0.02
NA
<0.02
8.1
7.9
NA
Allison Woods
3000200001D
11/5/2007
209
NA
NA
NA
NA
NA
NA
<0.02
8.1
8.0
NA
Allison Woods
3000200001D
5/27/2008
209
<10
4.6
<10
<10
NA
NA
<0.02
8.0
8.0
NA
Allison Woods
3000200001D
3/16/2009
140
<10
4.3
<10
<10
NA
NA
<0.02
7.9
7.9
NA
Allison Woods
300020000CH1
11/28/2006
67
<10
4.9
31
<10
<0.02
<0.2
<0.02
6.9
7.2
0.02
Allison Woods
3000200002E
11/28/2006
33
<10
0.65
22
<10
<0.02
<0.2
<0.02
5.3
5.5
<0.02
Allison Woods
3000200002S
3/5/2007
33
<10
0.63
16
<10
<0.02
NA
0.02
5.1
5.3
NA
Allison Woods
13000200002S
7/10/2007
33
<10
0.66
11
<10
<0.02
NA
0.03
5.2
5.4
NA
Allison Woods
3000200002S
11/5/2007
33
<10
0.68
<10
<10
NA
NA
0.03
5.1
5.4
NA
Allison Woods
3000200002E
5/27/2008
33
<10
0.66
<10
<10
NA
NA
0.02
5.2
NA
Allison Woods
3000200002S
3/17/2009
33
<10
0.61
<10
<10
NA
NA
0.02
5.0
5.5
NA
Allison Woods
30002000021
11/28/2006
62
<10
4.1
150
<10
<0.02
<0.2
<0.02
6.6
7.4
0.02
Allison Woods
30002000021
3/5/2007
62
<10
4.3
160
<10
<0.02
NA
<0.02
7.2
7.3
NA
Allison Woods
30002000021
7/10/2007
62
<10
3.1
140
<10
<0.02
NA
<0.02
7.0
7.1
NA
Allison Woods
30002000021
11/6/2007
62
NA
NA
NA
NA
NA
0.05
6.9
7.1
NA
Allison Woods
30002000021
5/27/2008
62
NA
NA
0.02
NA
NA
Allison Woods
30002000021
3/17/2009
62
<10
3.1
350
<10
NA
NA
<0.02
7.2
7.5
NA
Allison Woods
3000200002D
11/28/2006
194
<10
4.6
10
<10
<0.02
<0.2
<0.02
7.6
7.5
<0.02
Allison Woods
3000200002D
3/5/2007
194
<10
4.3
10
<10
<0.02
NA
<0.02
7.4
7.3
NA
Allison Woods
3000200002D
7/9/2007
194
<10
4.0
10
<10
<0.02
NA
<0.02
7.2
7.4
NA
Allison Woods
3000200002D
11/5/2007
194
<10
4.4
<10
<10
NA
NA
<0.02
7.4
7.4
NA
Allison Woods
3000200002D
5/27/2008
194
<10
4.3
<10
<10
NA
NA
0.07
7.1
7.2
NA
Allison Woods
3000200002D
3/16/20091
140
<10
4.1
<10
<10
NA
NA
<0.02
7.0
7.2
NA
Allison Woods
3000200003S
11/29/2006
15
<10
0.97
<10
<10
<0.02
<0.2
0.23
5.3
5.3
<0.02
Allison Woods
3000200003S
3/13/2007
15
<10
2.6
16
<10
<0.02
NA
0.44
5.2
5.5
NA
Allison Woods
3000200003E
7/11/2007
15
<10
2.6
16
<10
<0.02
NA
0.69
5.2
5.6
NA
Allison Woods
3000200003S
11/6/2007
15
<10
2.8
11
<10
NA
NA
0.83
5.7
5.6
NA
Allison Woods
3000200003S
5/28/2008
15
<10
2.7
<10
<10
NA
NA
0.94
5.1
5.5
NA
Allison Woods
3000200003S
3/23/2009
15
<10
2.5
<10
<10
NA
NA
1.2
4.9
5.2
NA
Allison Woods
30002000031
11/29/2006
34
<10
<0.10
<10
<10
<0.02
<0.2
2.1
6.0
6.0
0.02
Allison Woods
30002000031
3/13/2007
34
<10
2.7
35
<10
<0.02
NA
2.1
6.2
6.2
NA
Allison Woods
30002000031
7/11/20071
34
1 <10
2.8
1
21
1
<10
<0.02
NA
2.3
5.8
6.2
NA
Allison Woods
30002000031
11/6/2007
34
<10
3.0
11
<10
NA
NA
2.3
6.0
6.2
NA
Allison Woods
30002000031
5/28/2008
34
<10
3.1
<10
<10
NA
NA
2.4
5.7
6.2
NA
Allison Woods
30002000031
3/23/2009
34
<10
2.9
<10
<10
NA
NA
2.6
5.6
6.0
NA
Allison Woods
3000200003D
11/29/2006
88
<10
2.8
53
<10
<0.02
<0.2
<0.02
9.0
9.0
0.02
Allison Woods
3000200003D
3/13/2007
88
<10
2.2
<10
<10
<0.02
NA
<0.02
8.7
8.2
NA
Allison Woods
3000200003D
7/11/2007
88
<10
2.6
24
<10
<0.02
NA
<0.02
8.5
8.3
NA
Allison Woods
3000200003D
11/6/2007
88
<10
2.5
12
<10
NA
NA
0.02
8.6
8.4
NA
Allison Woods
3000200003D
5/28/2008
88
<10
2.4
11
<10
NA
NA
<0.02
8.5
8.3
NA
Allison Woods
3000200003D
3/23/2009
88
<10
2.6
26
<10
NA
NA
<0.02
8.2
8.2
NA
Allison Woods
3000200004E
11/29/2006
22
<10
2.3
<10
<10
<0.02
<0.2
<0.02
4.8
5.8
<0.02
Allison Woods
3000200004S
3/6/20071
22
<10
0.93
<10
<10
<0.02
NA
<0.02
5.3
5.8
NA
Allison Woods
3000200004S
7/10/2007
22
<10
0.90
<10
<10
<0.02
NA
<0.02
5.2
5.6
NA
Allison Woods
3000200004S
11/6/2007
22
<10
0.98
<10
<10
NA
NA
0.02
5.4
5.6
NA
Allison Woods
30002000045
5/28/2008
22
<10
0.95
<10
<10
NA
NA
<0.02
5.0
5.5
NA
Allison Woods
3000200004S
3/17/2009
22
<10
0.89
<10
<10
NA
NA
<0.02
4.9
5.7
NA
Allison Woods
30002000041
11/29/2006
39
<10
3.2
200
<10
<0.02
<0.2
<0.02
6.1
6.7
0.03
Allison Woods
30002000041
3/6/2007
39
<10
2.0
<10
<10
<0.02
NA
<0.02
6.0
6.6
NA
Allison Woods
30002000041
7/10/2007
39
<10
2.2
<10
<10
<0.02
NA
<0.02
6.4
6.6
NA
Allison Woods
30002000041
11/6/2007
39
<10
2.6
<10
<10
NA
NA
0.03
6.5
6.7
NA
Allison Woods
30002000041
5/28/2008
39
<10
2.4
<10
<10
NA
NA
0.09
6.3
6.5
NA
Allison Woods
30002000041
3/17/2009
39
<10
2.2
<10
<10
NA
NA
<0.02
6.1
6.5
NA
Allison Woods
30002000041)
11/29/2006
121
<10
1.8
<10
<10
<0.02
<0.2
<0.02
8.4
8.0
<0.02
Allison Woods
3000200004D
3/6/2007
121
<10
3.0
19
<10
<0.02
NA
<0.02
8.3
8.0
NA
Allison Woods
3000200004D
7/10/2007
121
<10
3.1
22
<10
<0.02
NA
0.02
8.3
8.2
NA
Allison Woods
3000200004D
11/6/2007
121
<10
3.4
24
<10
NA
NA
<0.02
8.3
8.2
NA
Allison Woods
3000200004D
5/28/2008
121
<10
3.2
25
<10
NA
NA
<0.02
8.2
8.0
NA
Allison Woods
3000200004D
3/17/2009
121
<10
3.3
26
<10
NA
NA
<0.02
7.9
8.1
NA
Allison Woods
AWCH4
7/10/2007
88
<10
3.1
16
<10
<0.02
NA
0.02
8.0
8.1
NA
Allison Woods
3000200001Y
3/6/20007
na
NA
NA
NA
NA
<0.02
NA
1.70
6.1
7.2
NA
Allison Woods
3000200001Y
7/11/2007
na
<10
2.4
100
<10
<0.02
NA
0.60
6.1
6.4
NA
Allison Woods
3000200001Y
11/6/2007
na
NA
NA
NA
NA
NA
NA
0.25
6.7
6.8
NA
Allison Woods
3000200001Y
5/27/2008
na
<10
2.5
37
<10
NA
NA
7.4
NA
Allison Woods
13000200001Y
5/28/2008
na
NA
NA
NA
NA
NA
NA
NA
6.6
NA
NA
Allison Woods
13000200001Y
3/23/2009
na
<10
2.6
13
<10
NA
NA
0.95
7.1
6.5
NA
Page 2 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
PARCADIS
Location
Allison Woods
Station ID
30002000011
Samplin
..2
11/28/2006
Sampling
65
Potassium
3.4
Potassium
Radon-22
Selen lu
NA
t'l
IF Silica
Dissolved
17
Silica
Total
as Ag
<5.0
Silver
Total
Sodium
gIL as Na
5.7
Sodlu m
Total
Solids
11
Solids,
R esidue at
:0 eg C
<25
Specific
Cond., Field
102
Specific
Cond., Lab
100
Sulfate
Dissolved
(mg/L as
<2.0
Sulfate
(mg/L as
Ifide
D�u
<0.10 J
Sulfide
Total
Di Ived
Solids
Total
Organic
Carbon total
<2.0
Total
Suspende
Solids,
Residue
To
r(NT
<1.0
Water Temp
(deg C)
15.3
Zinc
Dissolved
pg/L a Zn)
12
Zinc
Total
(pg/L as
Allison Woods
30002000011
3/5/2007
65
4.1
<5.0
16
<5.0
8.0
74
4.8
122
99
6.4
<0.1
<2.0
<1.0
15.9
20
Allison Woods
30002000011
7/9/2007
65
3.1
<5.0
16
<5.0
6.6
64
<6.2
86
85
4.7
<0.1
<2.0
<1.0
16.1
<10
Allison Woods
30002000011
11/5/2007
65
NA
NA
16
NA
NA
54
<6.2
55
66
3.8
NA
<2.0
<1.0
14.6
<10
Allison Woods
30002000011
5/27/2008
65
2.0
<5.0
16
NA
2.5
48
<6.2
51
54
2.0
NA
<1.0
15.1
<10
Allison Woods
30002000011
3/16/2009
65
3.2
<5.0
20
<5.0
2.7
58
NA
67
NA
4.0
<0.1
NA
NA
14.5
10
Allison Woods
3000200001D
11/28/2006
209
4.5
NA
27
<5.0
5.2
103 J
NA
152
150
8.0
<0.10 J
<2.0
<1.0
16.8
97
Allison Woods
13000200001D
3/5/2007
209
4.3
8.4
25
<5.0
5.1
108
3.0
128
150
8.2
<0.1
<2.0
<1.0
16.6
120
Allison Woods
3000200001D
7/9/2007
209
4.3
5.0
26
<5.0
4.9
114
<6.2
157
150
7.8
<0.1
<2.0
<1.0
17.5
110
Allison Woods
3000200001D
11/5/2007
209
NA
NA
25
NA
NA
109
<6.2
158
150
6.4
NA
<2.0
<1.0
16.8
130
Allison Woods
3000200001D
5/27/2008
209
4.4
<5.0
25
NA
5.2
118
<6.2
155
150
8.2
NA
NA
<1.0
17.5
120
Allison Woods
3000200001D
3/16/2009
140
4.4
<5.0
26
<5.0
4.9
104
NA
147
NA
7.5
<0.1
NA
NA
15.9
84
Allison Woods
300020000CH1
11/28/2006
67
3.6
NA
30
<5.0
6.4
106 J
222
144
150
10
<0.10 J
<2
27
15.1
14
Allison Woods
3000200002E
11/28/2006
33
1.2
NA
8.0
<5.0
0.69
<10 J
5.2
27
18
<2
<0.10 J
<2.0
<1.0
14.8
<10
Allison Woods
3000200002S
3/5/2007
33
1.1
<5.0
8.0
<5.0
0.66
22
<2.5
12
16
<2
<0.10
<2.0
<1.0
14.5
<10
Allison Woods
3000200002S
7/10/2007
33
1.2
<5.0
7.4
<5.0
0.60
18 J
<6.2
15
16
<2
<0.10 J
<2.0
<1.0
14.8
12
Allison Woods
3000200002S
11/5/2007
33
1.2
<5.0
7.4
<5.0
0.67
14
<6.2
12
16
6.3
NA
<2.0
<1.0
14.5
<10
Allison Woods
3000200002E
5/27/2008
33
1.2
<5.0
7.7
<5.0
0.72
30
<6.2
15
16
NA
NA
<1.0
15.2
<10
Allison Woods
3000200002S
3/17/2009
33
1.2
<5.0
7.8
<5.0
0.64
30
NA
16
NA
<2
<0.10
NA
NA
14.4
<10
Allison Woods
30002000021
11/28/2006
62
5.4
NA
20
<5.0
5.8
114 J
3.8
137
160
9.0
<0.10
<2.0
6.4
15.6
<10
Allison Woods
30002000021
3/5/2007
62
5.5
<5.0
20
<5.0
5.5
122
<2.5
174
160
9.4
<0.10
<2.0
<1.0
16.5
11
Allison Woods
30002000021
7/10/2007
62
5.4
<5.0
21
<5.0
4.1
101
<6.2
151
150
8.3
<0.10
<2.0
1.7
16.2
26
Allison Woods
30002000021
11/6/2007
62
NA
21
NA
99
<6.2
136
140
7.7
NA
<2.0
1.2
14.6
NA
Allison Woods
30002000021
5/27/2008
62
24
110
NA
140
NA
NA
13
NA
Allison Woods
30002000021
3/17/2009
62
5.9
<5.0
23
<5.0
4.6
102
NA
140
NA
8.2
<0.1
NA
NA
14.5
<10
Allison Woods
3000200002D
11/28/2006
194
5.0
NA
29
<5.0
5.0
108 J
2.8
144
150
7.0
<0.10
<2.0
<1.0
16.7
65
Allison Woods
3000200002D
3/5/2007
194
4.7
<5.0
26
<5.0
4.6
111
6.0
117
140
8.0
<0.10
<2.0
<1.0
16.6
100
Allison Woods
3000200002D
7/9/2007
194
4.7
<5.0
27
<5.0
4.3
107
<6.2
125
130
6.5
<0.10
<2.0
<1.0
15.8
53
Allison Woods
3000200002D
11/5/2007
194
4.9
<5.0
26
<5.0
4.7
97
<6.2
136
130
6.6
NA
<2.0
<1.0
16.5
91
Allison Woods
3000200002D
5/27/2008
194
4.9
<5.0
27
NA
4.6
98
<12
131
130
7.6
NA
NA
<1.0
16.1
78
Allison Woods
3000200002D
3/16/2009
140
4.8
<5.0
27
<5.0
4.4
57
NA
126
NA
7.9
<0.10
NA
NA
15.4
130
Allison Woods
3000200003S
11/29/2006
15
0.80
NA
14
<5.0
1.2
32
<2.5
51
50
<2.0
<0.10
<2
<1
14.8
<10
Allison Woods
3000200003S
3/13/2007
15
0.98
<5.0
13
<5.0
1.9
44
<5.0
43
51
<2.0
<0.1
<2
3.2
12.7
<10
Allison Woods
3000200003E
7/11/2007
15
1.0
<5.0
13
<5.0
1.9
55
10
50
53
<2.0
NA
<2
4.8
14.4
<10
Allison Woods
3000200003S
11/6/2007
15
1.2
<5.0
13
<5.0
2.1
50
29
59
55
<2.0
<0.10 J
<2
8.3
15.2
<10
Allison Woods
3000200003S
5/28/2008
15
1.1
<5.0
13
NA
1.9
48
<6.2
56
56
<2.0
NA
NA
5.1
13.2
<10
Allison Woods
3000200003S
3/23/2009
15
1.0
<5.0
12
<5.0
1.8
42
NA
53
NA
<2.0
<0.1
NA
NA
12.5
<10
Allison Woods
30002000031
11/29/2006
34
<0.10
NA
23
<5.0
<0.10
67
<2.5
83
83
7.0
<0.10
<2
<1
14.3
<10
Allison Woods
30002000031
3/13/2007
34
3.0
<5.0
22
<5.0
4.0
72
<2.5
66
78
<2.0
<0.1
<2
<1
14.6
<10
Allison Woods
30002000031
7/11/2007
34
2.5
<5.0
22
<5.0
3.9
67
<6.2
79
80
<2.0
<0.1
<2
<1
14.0
<10
Allison Woods
30002000031
11/6/2007
34
2.5
<5.0
21
<5.0
4.0
70
<6.2
51
79
<2.0
NA
<2
<1
14.2
<10
Allison Woods
30002000031
5/28/2008
34
2.3
<5.0
22
NA
4.1
72
<6.2
83
81
<2.0
NA
NA
<1
14.2
<10
Allison Woods
30002000031
3/23/2009
34
2.0
<5.0
22
<5.0
3.7
71
NA
82
NA
<2.0
<0.1
NA
NA
14.4
<10
Allison Woods
3000200003D
11/29/2006
88
3.7
NA
24
<5.0
4.2
101
<2.5
145
140
8.0
<0.10
<2
<1
15.8
<10
Allison Woods
3000200003D
3/13/2007
88
4.6
<5.0
26
<5.0
10
92
<2.5
125
150
6.4
<0.1
<2
1.7
15.2
42
Allison Woods
3000200003D
7/11/2007
88
3.7
<5.0
34
<5.0
7.8
115
13
136
150
6.3
<0.1
<2
<1
17.9
13
Allison Woods
3000200003D
11/6/2007
88
4.3
<5.0
30
<5.0
9.4
110
<6.2
154
150
<2.0
NA
<2
1.2
15.6
21
Allison Woods
3000200003D
5/28/2008
88
4.1
<5.0
29
NA
10
115
<6.2
153
150
7.0
NA
NA
2.0
16.5
<10
Allison Woods
3000200003D
3/23/2009
88
3.5
<5.0
34
<5.0
7.7
120
NA
149
NA
6.2
<0.1
NA
NA
16.4
<10
Allison Woods
3000200004E
11/29/2006
22
1.5
NA
10
<5.0
3.6
18
<2.5
19
22
<2.0
<0.1
<2.0
1.0
15.5
<10
Allison Woods
3000200004S
3/6/2007
22
0.71
<5.0
9.0
<5.0
1.1
27
<2.5
15
20
<2.0
<0.1
<2.0
<1.0
14.2
<10
Allison Woods
3000200004S
7/10/2007
22
0.72
<5.0
9.2
<5.0
1.1
21
<6.2
19
20
<2.0
<0.1
<2.0
<1.0
14.6
<10
Allison Woods
3000200004S
11/6/2007
22
0.85
<5.0
9.4
<5.0
1.3
27
8.0
18
20
<2.0
NA
<2.0
<1.0
15.4
<10
Allison Woods
3000200004E
5/28/2008
22
0.71
<5.0
9.2
NA
1.2
24
14
19
19
<2.0
NA
NA
4.7
13.9
<10
Allison Woods
3000200004S
3/17/2009
22
0.68
<5.0
9.6
<5.0
1.2
20
ns
19
NA
<2.0
<0.1
NA
NA
14.0
<10
Allison Woods
30002000041
11/29/2006
39
4.2
NA
26
<5.0
10
60
<2.5
65
67
2.0
<0.1
<2.0
<1.0
14.4
<10
Allison Woods
30002000041
3/6/2007
39
1.4
<5.0
23
<5.0
3.1
58
<2.5
58
58
<2.0
<0.1
<2.0
<1.0
14.3
<10
Allison Woods
30002000041
7/10/2007
39
1.5
<5.0
25
<5.0
3.4
62
<6.2
64
67
<2.0
<0.1
<2.0
<1.0
14.4
<10
Allison Woods
30002000041
11/6/2007
39
1.7
<5.0
24
<5.0
4.0
70
<6.2
73
75
<2.0
NA
<2.0
<1.0
14.4
<10
Allison Woods
30002000041
5/28/2008
39
1.5
<5.0
25
NA
3.8
68
<12
73
73
<2.0
NA
NA
<1.0
14.6
<10
Allison Woods
30002000041
3/17/2009
39
1.5
<5.0
25
<5.0
3.5
62
NA
70
NA
<2.0
<0.1
NA
NA
14.5
<10
Allison Woods
3000200004D
11/29/2006
121
5.3
NA
28
<5.0
14
98
<2.5
134
140
9.0
<0.1
<2.0
<1.0
16.4
15
Allison Woods
3000200004D
3/6/2007
121
3.4
<5.0
26
<5.0
5.5
100
<2.5
112
130
7.0
<0.1
<2.0
<1.0
16.5
<10
Allison Woods
3000200004D
7/10/2007
121
3.4
<5.0
27
<5.0
5.4
109
<6.2
132
140
6.9
<0.1
<2.0
<1.0
15.9
<10
Allison Woods
3000200004D
11/6/2007
121
3.8
<5.0
26
<5.0
5.7
119
<6.2
140
140
<2.0
NA
<2.0
<1.0
15.7
<10
Allison Woods
3000200004D
5/28/2008
121
3.5
<5.0
27
NA
5.2
110
<6.2
139
140
7.6
NA
NA
<1.0
15.7
<10
Allison Woods
3000200004D
3/17/2009
121
3.7
<5.0
27
<5.0
5.2
270
NA
141
NA
7.1
<0.1
NA
NA
15.8
<10
Allison Woods
AWCH4
7/10/2007
88
3.5
<5.0
26
<5.0
5.2
105
<6.2
143
140
7.5
<0.1
<2.0
<1.0
15.4
<10
Allison Woods
3000200001Y
3/6/20007
na
NA
NA
14
NA
3.6
73
<2.5
60
71
2.8
<0.1
<2.0
3.0
12.5
NA
Allison Woods
3000200001Y
1 7/11/2007
na
1.2
<5
16
<5.0
2.8
55
33
59
57
<2.0
<0.1
<2.0
24
17.4
<10
Allison Woods
3000200001Y
1 11/6/2007
na
NA
NA
16
NA
2.9
54
<6.2
55
53
<2.0
NA
<2.0
<1.0
12.2
NA
Allison Woods
3000200001Y
5/27/2008
na
1.1
<5
NA
44
NA
NA
17.1
20
Allison Woods
3000200001Y
5/28/2008
na
NA
NA
NA
NA
2.8
NA
NA
55
NA
<2.0
NA
NA
NA
15.5
NA
Allison Woods
3000200001Y
1 3/23/20091
na
1 1.7
1
<5
1
1 12
1
1 <5
1
1 3.3
54
1 NA
86
NA
<2.0
<0.1
NA
NA
1 15.9
<10
Page 3 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Bent Creek
Station ID
BC-3S
Samp lin
t g
..
4/22/2003
Sampling
Depth
Aluminum
Dissolved
(pg/L as Al)
A luminum
Total
(pg/L as Al)
1300
-.0 nia
r
Arsen'
Disso
s As)
,,Ived
Arsenic
Total
(pg/L as
<10
Barium
Diss olved
(pg/L as Ba)
Barium
Total
(pg/L
.-Location
�
21
Bicarborul
Dissolve
�•
Bicarbonate
Total
�•
3)
5
Cadmium
Dissolved
as Cd)
Cadmium
Total
as Cd)
<2
Calcium
Dissolved
as Ca)
Calcium
Total
as C
0.8
Chloride
Dissolved
as Cl)
Chloride
Total
as CI)
<5
Chromium
Dissolved
as Cr)
omiu
Ch T
tal
'a. Cr)j
<25
Copper
issolved
as CU)
2.tpa
2.3
Cyanide
(mg/L
as HCN)
Dissolved
Oxygen
(mg/L)
6.3
Fluoride
Dissolved
as F)@
Fluoride
Total
as F)
<500
Iron
Di ssolve
as Fe)
Bent Creek
BC-3S
4/27/2004
27
<50
380
<0.02
<10
<10
<10
12
<2
<2
0.8
0.6
<5
<25
<25
<2
<2
6.7
<50
<50
Bent Creek
BC-3S
11/2/2004
27
<50
<0.02
<5
<10
6
<2
0.7
<1
<25
<2
4.2
<400
Bent Creek
BC-3S
6/27/2005
27
<50
200
0.03
<5
<5
11
11
1.5
<2
<2
1.0
1.3
<1
<25
<25
<2
<2
7.3
<400
<50
Bent Creek
BC-3S
6/13/2006
27
<50
71
<0.02
<5
<5
11
12
5.5
<2
<2
0.8
0.8
<1
<25
<25
<2
<2
5.8
<400
<50
Bent Creek
BC-3i
4/22/2003
49
470
<10
16
7
<2
1.6
<5
<25
<2
<0.02
7.8
<500
Bent Creek
BC-31
4/27/2004
30
<50
<10
<10
<2
1.0
<25
<2
7.9
Bent Creek
BC-3i
11/2/2004
45
<50
<0.02
<5
<10
7
<2
1.0
1 <1
<25
<2
7.3
<400
Bent Creek
BC-3i
6/27/2005
39
<50
63
0.02
<5
<5
12
10
2
<2
<2
1.2
1.2
<1
<25
<25
<2
<2
7.7
<400
<50
Bent Creek
BC-3i
6/13/2006
45
<50
<50
<0.02
<5
<5
11
13
5.5
<2
<2
1.0
1.1
<1
<25
<25
<2
<2
8.0
<400
<50
Bent Creek
BC-3D
4/22/2003
240
180
<10
29
<2
18.0
<5
<25
<2
<0.02
0.1
<500
Bent Creek
BC-3D
4/27/2004
240
<50
<10
<10
<2
18.0
<25
<2
0.7
Bent Creek
BC-3D
11/1/2004
240
<50
<50
<0.02
<5
<5
<10
<10
58
<2
<2
21.0
21.0
<1
<25
<25
<2
<2
1.0
<400
390
Bent Creek
BC-31)
6/27/2005
240
<50
<0.02
<5
<10
29
<2
24.0
1.4
<25
<2
0.1
<400
230
Bent Creek
BC-3D
6/13/2006
148
<50
<50
<0.02
<5
<5
10
13
57
<2
<2
23.0
24.0
1.2
<25
<25
<2
<2
0.2
<400
920
Bent Creek
BC-4S
4/22/2003
3900
<10
69
4
<2
0.50
<5
<25
8.1
<0.02
7.5
<500
Bent Creek
BC4S
4/27/2004
<50
<10
12
<2
0.48
<25
<2
7.9
Bent Creek
BC-4S
11/2/2004
17
84
<0.02
<5
14
5
<2
0.53
<1
<25
<2
9.0
<400
Bent Creek
BC4S
6/27/2005
17
<50
<50
<0.02
<5
<5
14
14
<1
<2
<2
0.61
0.61
<1
<25
<25
<2
<2
8.4
<400
<50
Bent Creek
BC4S
6/13/2006
17
85
<0.02
<5
16
4
<2
0.61
<1
<25
<2
7.8
<400
Bent Creek
BC4S
8/21/2007
19
<50
110
<0.02
<5
<5
13
14
3.7
<1
<1
0.57
0.62
<1
<10
<10
<2
<2
12.0
<400
<50
Bent Creek
BC-4i
4/22/2003
57
<10
14
4
<2
0.79
<5
<25
<2
9.0
<500
Bent Creek
BC41
4/27/2004
<50
<50
<10
<10
12
12
<2
<2
0.67
0.67
<25
<25
<2
<2
8.6
<50
Bent Creek
BC4i
11/2/2004
36
<50
<50
<0.02
<5
<5
12
12
6
<2
<2
0.71
0.70
<1
<25
<25
<2
<2
5.4
<400
<50
Bent Creek
BC4i
6/27/2005
<50
<50
<0.02
<5
<5
13
13
<1
<2
<2
0.78
0.78
<1
<25
<25
<2
<2
9.1
<400
<50
Bent Creek
BC4i
6/13/2006
36
<50
<50
<0.02
<5
<5
15
15
4.5
<2
<2
0.85
0.82
<1
<25
<25
<2
<2
9.9
<400
<50
Bent Creek
BC41
8/21/2007
37
<50
<50
<0.02
<5
<5
13
13
3.7
<1
<1
0.73
0.76
<1
<10
<10
<2
<2
8.9
<400
<50
Bent Creek
BC4D
4/22/2003
112
62
<10
13
48
<2
18.00
<5
<25
<2
<0.02
0.1
<500
Bent Creek
BC4D
4/27/2004
112
<50
<10
11
<2
17.00
<25
<2
0.1
Bent Creek
BC-4D
11/2/2004
115
<50
<0.02
<5
12
46
<2
18.00
<1
<25
<2
0.2
<400
Bent Creek
13C4D
6/27/2005
115
<50
<50
<0.02
<5
<5
12
12
41
<2
<2
17.0
18.00
<1
<25
<25
<2
<2
0.1
<400
<50
Bent Creek
BC4D
6/13/2006
115
<50
<50
0.24
<5
<5
14
12
45
<2
<2
18.0
18.00
<1
<25
<25
<2
<2
0.2
<400
<50
Bent Creek
BC4D
8/21/2007
105
<50
<50
<0.02
<5
<5
17
16
46
<1
<1
19.0
18.00
<1
<10
<10
<2
<2
0.2
<400
<50
Bent Creek
BC-5S
4/23/2003
170
<10
26
7
<2
1.30
<5
<25
<2
<0.02
3.8
<500
Bent Creek
BC-5S
4/28/2004
<50
<10
16
<2
0.92
<25
<2
3.6
Bent Creek
BC-5S
11/2/2004
19
<50
<50
<0.02
<5
<5
20
21
8
<2
<2
1.00
1.10
1
<25
<25
<2
<2
1.4
<400
<50
Bent Creek
BC-5S
6/28/2005
18
<50
<50
<0.02
<5
<5
20
20
<1
<2
<2
1.00
0.99
1
<25
<25
<2
<2
2.1
<400
<50
Bent Creek
BC-5S
6/14/2006
19
<50
74
<0.02
<5
<5
21
21
4
<2
<2
0.98
1.20
<1
<25
<25
<2
<2
3.4
<400
<50
Bent Creek
BC-51
4/23/2003
<50
<10
11
7
<2
0.87
<5
<25
<2
<0.02
4.6
<500
Bent Creek
BC-5i
4/28/2004
<50
<10
<10
<2
0.66
<25
<2
5.4
Bent Creek
BC-5i
11/2/2004
35
<50
<0.02
<5
<10
8
<2
0.73
<1
<25
<2
5.8
<400
Bent Creek
BC-5i
6/28/2005
35
<50
<50
<0.02
<5
<5
10
10
3
<2
<2
0.78
0.80
<1
<25
<25
<2
<2
6.1
<400
<50
Bent Creek
BC-51
6/14/2006
35
<50
<50
<0.02
<5
<5
12
11
6
<2
<2
0.82
0.84
<1
<25
<25
<2
<2
5.8
<400
<50
Bent Creek
BC-5D
4/23/2003
85
<50
<10
24
33
<2
7.90
<5
<25
<2
<0.02
2.4
<500
Bent Creek
BC-5D
4/28/2004
85
<50
<10
18
<2
3.40
<25
<2
4.4
Bent Creek
BC-51)
11/3/2004
85
60
0.02
<5
16
22
<2
3.90
<1
<25
2.5
2.1
<400
Bent Creek
BC-51)
6/28/2005
85
<50
<50
<0.02
<5
<5
22
16
19
<2
<2
5.80
4.60
<1
<25
<25
<2
<2
4.2
<400
86
Bent Creek
BC-5D
6/14/2006
85
<50
<50
<0.02
<5
<5
21
22
22
<2
<2
3.70
4.00
<1
<25
<25
<2
<2
3.5
<400
52
Bent Creek
BC-7S
4/23/2003
980
<10
31
7
<2
1.20
<5
<25
9.7
<0.02
5.7
<500
Bent Creek
BC-7S
4/28/2004
22
830
<10
19
<2
1.20
<25
<2
6.4
Bent Creek
BC-7S
11/3/2004
20
180
0.11
<5
19
8
<2
0.71
1
<25
<2
<400
Bent Creek
BC-7S
6/28/2005
20
<50
68
0.02
<5
<5
18
17
<1
<2
<2
0.82
0.82
1.1
<25
<25
<2
<2
5.4
<400
<50
Bent Creek
BC-7S
6/14/2006
20
<50
630
<0.02
<5
<5
19
28
4
<2
<2
0.70
0.83
1.1
<25
<25
<2
<2
6.7
<50
Bent Creek
BC-7S
8/21/2007
20
<50
4700
0.07
<5
<5
13
46
3.7
<1
<1
0.54
0.64
<1
<10
<10
<2
10
11.9
<50
Bent Creek
BC-71
4/23/2003
3500
<10
84
5
<2
0.81
<5
<25
7.1
<0.02
6.9
<500
Bent Creek
BC-7i
4/28/2004
45
<50
<10
<10
<2
0.47
<25
<2
6.6
Bent Creek
BC-7i
11/3/2004
40
160
<0.02
<5
<10
6
<2
0.55
<1
<25
<2
9.0
<400
Bent Creek
BC-T
6/28/2005
40
<50
70
<0.02
<5
<5
<10
<10
1.5
<2
<2
0.50
0.64
1.1
<25
<25
<2
<2
7.4
<400
<50
Bent Creek
BC-71
6/14/2006
40
<50
160
<0.02
<5
<5
<10
<10
3
<2
<2
0.47
0.51
1.1
<25
<25
<2
<2
7.5
<400
<50
Bent Creek
BC-7i
8/21/2007
40
<50
90
<0.02
<5
<5
<10
<10
3
<1
<1
0.40
0.41
<1
<10
<10
<2
<2
11.2
<400
<50
Bent Creek
13C-7D
4/23/2003
140
110
<10
19
54
<2
20.00
<5
<25
<2
<0.02
0.2
<500
Bent Creek
BC-7D
4/28/2004
140
<50
<10
10
<2
14.00
<25
<2
Bent Creek
BC-7D
11/3/2004
140
50
<0.02
<5
15
53
<2
15.00
<1
<25
5.4
1.0
<400
Bent Creek
BC-7D
6/28/2005
140
<50
<50
<0.02
<5
<5
16
16
56
<2
<2
19.00
19.00
<1
<25
<25
<2
<2
0.3
<400
<50
Bent Creek
13C-7D
6/14/2006
140
<50
57
<0.02
<5
<5
21
22
71
<2
<2
23.00
23.00
<1
<25
<25
<2
<2
0.2
<400
<50
Bent Creek
BC-7D
8/21/2007
140
<50
<50
<0.02
<5
<5
21
21
78
<1
<1
27.00
26.00
<1
<10
<10
<2
<2
0.6
<400
<50
Bent Creek
13C-1S
4/21/2003
14
100
100
<10
<10
<10
<10
6
<2
<2
0.80
0.80
<1
<25
<25
3
3
<0.02
6.0
<500
170
Bent Creek
BC-1S
4/26/2004
14
<50
<50
<10
<10
<10
<10
6.2
<2
<2
0.80
0.80
<25
<25
<2
<2
5.8
<50
Bent Creek
BC-1S
11/1/2004
14
<50
51
<0.02
<5
<5
<10
<10
6
<2
<2
0.81
0.78
<1
<25
<25
<2
<2
6.4
<400
<50
Bent Creek
BC-1S
6/27/2005
14
<50
<50
<0.02
<5
<5
<10
<10
<1
<2
<2
0.93
0.95
<1
<25
<25
<2
<2
4.9
<400
<50
Bent Creek
BC-1S
6/12/2006
14
<50
<50
<0.02
<5
<5
<10
<10
2
<2
<2
0.83
1.90
<1
<25
<25
<2
<2
5.0
<400
<50
Bent Creek
BC-1S
8/20/2007
14
<50
<50
<0.02
<5
<5
12
11
4
<1
<1
0.89
0.81
<1
<10
<10
<2
<2
1.7
<400
<50
Bent Creek
BC-1i
4/21/2003
45
<50
<50
<10
<10
<10
<10
5
<2
<2
0.76
0.76
<1
<25
<25
<2
<2
<0.02
6.9
<500
<50
Bent Creek
BC-1i
4/27/2004
45
<50
<50
<0.02
<10
<10
<10
<10
<2
<2
0.73
0.73
<5
<25
<25
<2
<2
6.4
<50
<50
Bent Creek
BC-11
11/1/2004
42
<50
89
<0.02
<5
<5
<10
<10
7
<2
<2
1.00
1.10
<1
<25
<25
<2
<2
9.4
<400
<50
Bent Creek
BC-1i
6/27/2005
45
<50
<50
<0.02
<5
<5
<10
<10
<1
<2
<2
0.80
0.80
<1
<25
<25
<2
<2
0.2
<400
<50
Bent Creek
BC-1i
6/12/2006
40
<50
<50
<0.02
<5
<5
<10
<10
4
<2
<2
0.82
0.80
<1
<25
<25
<2
<2
9.7
<400
<50
Bent Creek
BC-1i
8/20/2007
45
<50
<50
<0.02
<5
<5
Bent Creek
BC-1D
4/21/2003
141
<50
<10
<10
24
<2
7.10
1
<25
<2
<0.02
0.1
<500
Bent Creek
BC-1D
4/26/2004
141
<50
Bent Creek
BC-1D
1 11 i9onnAl
141
I<50
<0.02
<5
<10
20
<2
6.50
1.1
<25
<2
0.1
<400
iAARCADIS
Page 4 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
FIARCJaDIS ��,a��,
Location
.AL
Bent Creek
Station ID
AM
BC-3S
Samplin
t g
4/22/2003
Sampling
Depth
&
Iron
Total
-as
2300
Lead
Dissolved
Lead
Total
<10
Magnesium
Dissolve
We
K.
0.9
Manganese
Dissolved
Manganese
Total
39
Mercury
Dissolved
ercury
Tot. I
Nickel
Dissolved
Nicke!q
Total
<10
Nitroge n
L ... ia
Nitrogen
Ammonia +
M�M
Nitrogen
Organic Dis
Nitrogen,
Nitrate Dis
Nitrogen,
�•-,::um
Nitrate Dis
Nitrate as N
(mg1L
LL:L
NO2 +
NO3 Dis
NO2+NO3
as N
A
< .
"!'a
(,. N
JN,
Oxidation
Reduction
Potential,
1
j1.e I
5.1
I Lab
(m/L
g.
Ortho, dis
as P Total
0.07
Bent Creek
BC-3S
4/27/2004
27
800
<10
<10
0.5
0.6
11
20
<10
<10
<0.02
<0.02
<0.01
5.8
0.12
Bent Creek
BC-3S
11/2/2004
27
<50
<10
0.6
13
<10
<0.02
<0.02
<0.01
5.4
<0.02
<0.02
Bent Creek
BC-3S
6/27/2005
27
<50
<10
<10
0.7
0.7
10
11
<200
<200
<10
<10
<0.02
<0.02
<0.01
5.1
0.1
0.02
Bent Creek
BC-3S
6/13/2006
27
140
<10
<10
0.7
0.7
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
4.4
0.2
0.02
Bent Creek
BC-3i
4/22/2003
49
540
<10
0.8
16
<10
0.05
5.7
0.06
Bent Creek
BC-31
4/27/2004
30
<50
<10
0.6
<10
<10
6.0
Bent Creek
BC-3i
11/2/2004
45
<50
<10
0.6
<10
<10
0.06
0.06
<0.01
5.8
<0.02
0.02
Bent Creek
BC-3i
6/27/2005
39
<50
<10
<10
0.6
0.6
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
5.2
<0.02
0.02
Bent Creek
BC-3i
6/13/2006
45
<50
<10
<10
0.6
0.7
<10
<10
<200
<200
<10
<10
0.05
0.05
<0.01
4.6
<0.02
0.02
Bent Creek
BC-31)
4/22/2003
240
350
<10
1.5
34
<10
<0.02
8.5
<0.02
Bent Creek
BC-31)
4/27/2004
240
85
<10
1.5
95
<10
8.3
Bent Creek
BC-31)
11/1/2004
240
730
<10
<10
1.6
1.6
200
210
<10
<10
<0.02
<0.02
<0.01
8.5
<0.02
<0.02
Bent Creek
BC-31)
6/27/2005
240
<10
1.7
130
<200
<10
0.04
0.04
<0.01
8.0
<0.02
0.04
Bent Creek
BC-31)
6/13/2006
148
990
<10
<10
1.7
1.8
230
230
<200
<200
<10
<10
<0.02
<0.02
<0.01
7.2
<0.02
0.02
Bent Creek
BC-4S
4/22/2003
5400
<10
1.20
450
<10
<0.02
4.8
0.14
Bent Creek
BC4S
4/27/2004
<50
<10
0.42
<10
<10
5.1
Bent Creek
BC-4S
11/2/2004
17
96
<10
0.45
14
<10
2.7
2.7
<0.01
5.5
<0.02
<0.02
Bent Creek
BC4S
6/27/2005
17
<50
<10
<10
0.51
0.51
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
5.5
<0.02
<0.02
Bent Creek
BC4S
6/13/2006
17
91
<10
0.51
14
<200
<10
<0.02
<0.02
<0.01
5.8
0.02
Bent Creek
BC4S
8/21/2007
19
110
<10
<10
0.45
0.46
<10
11
<200
<200
<10
<10
<0.02
<0.02
<0.01
218
6.1
<0.02
<0.02
Bent Creek
BC-4i
4/22/2003
<50
<10
0.46
<10
<10
<0.02
5.5
<0.02
Bent Creek
BC41
4/27/2004
<50
<10
<10
0.41
0.41
<10
<10
<10
<10
5.2
Bent Creek
BC4i
11/2/2004
36
<50
<10
<10
0.45
0.44
<10
<10
<10
<10
<0.02
<0.02
<0.01
5.7
<0.02
<0.02
Bent Creek
BC4i
6/27/2005
<50
<10
<10
0.47
0.48
<10
<10
<200
<200
<10
<10
0.06
0.06
<0.01
5.6
<0.02
<0.02
Bent Creek
BC-4i
6/13/2006
36
<50
<10
<10
0.50
0.49
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
6.0
<0.02
0.02
Bent Creek
BC41
8/21/2007
37
<50
<10
<10
0.45
0.44
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
210
4.2
<0.02
<0.02
Bent Creek
BC4D
4/22/2003
112
210
<10
1.30
45
<10
<0.02
8.3
<0.02
Bent Creek
BC41)
4/27/2004
112
<50
<10
1.10
25
<10
7.8
Bent Creek
BC-41)
11/2/2004
115
<50
<10
1.10
25
<10
<0.2
<0.02
<0.01
8.2
<0.02
<0.02
Bent Creek
BC4D
6/27/2005
115
<50
<10
<10
1.10
1.10
31
31
<200
<200
<10
<10
<0.02
<0.02
<0.01
170
7.7
<0.02
0.03
Bent Creek
BC4D
6/13/2006
115
<50
<10
<10
1.10
1.10
21
21
<200
<200
<10
<10
<0.02
<0.02
<0.01
7.9
<0.02
0.02
Bent Creek
BC41)
8/21/2007
105
<50
<10
<10
1.10
1.10
20
20
<200
<200
<10
<10
<0.02
<0.02
<0.01
7.8
<0.02
<0.02
Bent Creek
BC-5S
4/23/2003
610
<10
1.10
47
<10
0.25
6.7
<0.02
Bent Creek
BC-5S
4/28/2004
<50
<10
0.72
13
<10
5.4
Bent Creek
BC-5S
11/2/2004
19
<50
<10
<10
0.80
0.78
30
29
<10
<10
0.09
0.09
<0.01
5.3
<0.02
<0.02
Bent Creek
BC-5S
6/28/2005
18
<50
<10
<10
0.69
0.70
13
17
<200
<200
<10
<10
0.07
0.07
<0.01
202
5.4
<0.02
<0.02
Bent Creek
BC-5S
6/14/2006
19
79
<10
<10
0.72
0.70
12
12
<200
<200
<10
<10
0.23
0.23
<0.01
5.8
<0.02
0.27
Bent Creek
BC-51
4/23/2003
<50
<10
0.54
<10
<10
<0.02
5.0
<0.02
Bent Creek
BC-5i
4/28/2004
58
<10
0.46
<10
<10
5.1
Bent Creek
BC-5i
11/2/2004
35
<50
<10
0.56
<10
<10
<0.02
<0.02
<0.01
5.5
<0.02
<0.02
Bent Creek
BC-5i
6/28/2005
35
<50
<10
<10
0.59
0.60
<10
<10
<200
<200
<10
<10
<0.02
<0.02
0.2
243
5.6
<0.02
<0.02
Bent Creek
BC-51
6/14/2006
35
<50
<10
<10
0.59
0.59
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
5.9
<0.02
0.02
Bent Creek
BC-5D
4/23/2003
85
350
<10
1.50
190
<10
<0.02
6.6
<0.02
Bent Creek
BC-51)
4/28/2004
85
58
<10
1.10
83
<10
5.7
Bent Creek
BC-51)
11/3/2004
85
880
32
1.20
76
<10
<0.2
<0.02
<0.01
6.7
<0.02
0.02
Bent Creek
BC-51)
6/28/2005
85
82
<10
<10
1.50
1.50
86
47
<200
<200
<10
<10
<0.2
<0.2
<0.01
6.2
<0.02
0.02
Bent Creek
BC-5D
6/14/2006
85
92
<10
<10
1.30
1.40
64
68
<200
<200
<10
<10
0.03
0.03
<0.01
5.9
<0.02
0.04
Bent Creek
BC-7S
4/23/2003
3600
<10
0.97
35
<10
<0.02
4.7
0.07
Bent Creek
BC-7S
4/28/2004
22
2900
<10
0.69
<10
<10
5.7
Bent Creek
BC-7S
11/3/2004
20
490
<10
0.65
<10
<10
<0.2
<0.02
0.02
6.1
<0.02
0.38
Bent Creek
BC-7S
6/28/2005
20
75
<10
<10
0.71
0.71
<10
<10
<200
<200
<10
<10
0.07
0.07
<0.01
5.1
<0.02
0.03
Bent Creek
BC-7S
6/14/2006
20
1400
<10
<10
0.74
0.83
<10
13
<200
<200
<10
<10
0.02
0.02
<0.01
4.5
0.02
0.03
Bent Creek
BC-7S
8/21/2007
20
17000
<10
<10
0.62
1.40
<10
90
<200
<200
<10
<10
<0.02
<0.02
<0.01
463
5.9
<0.02
0.23
Bent Creek
BC-71
4/23/2003
9800
<10
1.70
580
<10
<0.02
5.2
0.27
Bent Creek
BC-7i
4/28/2004
45
<50
<10
0.66
580
<10
6.1
Bent Creek
BC-T
11/3/2004
40
460
<10
0.76
30
<10
<0.2
<0.02
<0.01
6.6
<0.02
<0.02
Bent Creek
BC-T
6/28/2005
40
<50
<10
<10
0.72
0.74
<10
18
<200
<200
<10
<10
0.1
<0.1
<0.01
5.6
<0.02
0.03
Bent Creek
BC-71
6/14/2006
40
440
<10
<10
0.73
0.78
<10
26
<200
<200
<10
<10
<0.02
<0.02
<0.01
4.4
<0.02
0.03
Bent Creek
BC-7i
8/21/2007
40
260
<10
<10
0.67
0.68
<10
15
<200
<200
<10
<10
<0.02
<0.02
<0.01
456
5.5
<0.02
<0.02
Bent Creek
BC-71)
4/23/2003
140
250
<10
3.00
27
<10
<0.02
8.6
<0.02
Bent Creek
BC-71)
4/28/2004
140
380
<10
2.40
95
<10
8.0
Bent Creek
BC-71)
11/3/2004
140
140
<10
2.90
120
<10
<0.2
<0.02
<0.01
7.8
<0.02
0.02
Bent Creek
BC-7D
6/28/2005
140
<50
<10
<10
3.10
3.00
<10
13
<200
<200
<10
<10
<0.02
<0.02
<0.01
7.6
<0.02
0.07
Bent Creek
BC-71)
6/14/2006
140
56
<10
<10
3.30
3.30
150
150
<200
<200
<10
<10
<0.02
<0.02
<0.01
7.4
<0.02
<0.02
Bent Creek
BC-71)
8/21/2007
140
150
<10
<10
3.50
3.40
17
32
<200
<200
<10
<10
<0.02
<0.02
<0.01
103
8.4
<0.02
<0.02
Bent Creek
BC-1S
4/21/2003
14
170
<10
<10
0.53
0.53
19
19
<10
<10
<0.02
5.3
<0.02
Bent Creek
BC-1S
4/26/2004
14
<50
<10
<10
0.51
0.51
<10
<10
<10
<10
5.8
Bent Creek
BC-1S
11/1/2004
14
68
<10
<10
0.57
0.55
<10
<10
<10
<10
<0.02
0.02
<0.01
5.3
<0.02
<0.02
Bent Creek
BC-1S
6/27/2005
14
<50
<10
<10
0.61
0.62
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
283
5.5
<0.02
<0.02
Bent Creek
BC-1S
6/12/2006
14
<50
<10
<10
0.56
0.56
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
4.8
<0.02
0.02
Bent Creek
BC-1S
8/20/20071
14
<50
<10
<10
0.52
0.51
17
15
<200
<200
<10
<10
<0.02
<0.02
<0.01
196
5.3
<0.02
<0.02
Bent Creek
BC-1i
4/21/2003
45
<50
<10
<10
0.48
0.48
<10
<10
<10
<10
<0.02
5.4
<0.04
Bent Creek
BC-1i
4/27/2004
45
<50
<10
<10
0.47
0.47
<10
<10
<10
<10
<0.02
<0.02
<0.01
5.8
<0.02
0.02
Bent Creek
BC-11
11/1/2004
42
<50
<10
<10
0.51
0.54
<10
<10
<10
<10
0.35
0.35
<0.01
3.9
0.04
0.12
Bent Creek
BC-1i
6/27/2005
45
<50
<10
<10
0.53
0.53
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
197
5.6
<0.02
<0.02
Bent Creek
BC-1i
6/12/2006
40
<50
<10
<10
0.56
0.54
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
5.1
<0.02
<0.02
Bent Creek
BC-1i
8/20/2007
45
<50
<10
<10
0.52
0.52
<10
<10
<200
<200
<10
<10
0.02
0.02
<0.01
198
5.S
<0.02
<0.02
Bent Creek
BC-1D
4/21/2003
141
390
<10
1.20
20
<10
<0.02
7.1
<0.02
Bent Creek
BC-1D
4/26/2004
141
540
<10
1.10
18
<10
6.6
0
Bent Creek
BC-1D
11/2/2004
141
580
<10
1.10
20
<10
<0.02
<0.02
<0.01
7.0
<0.02
<0.02
Page 5 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
PARCADIS
Location
Bent Creek
Station ID
BC-3S
Samplin
..2
4/22/2003
Sampling
Potassium
Potassium
0.8
Radon-22
Selen lu
t'l
15
IF Silica
Dissolved
Silica
Total
10
as Ag
Silver
Total
<5
Sodium
gIL as Na
Sodlu m
Total
1.5
Solids
Solids,
R esidue at
:f
Specific
Cond., Field
12
Specific
Cond., Lab
Sulfate
Dissolved
(mg/L as
Sulfate
(mg/L as
<5
Ifide
f D�u
Sulfide
Total
Di Ived
Solids
24
Total
Organic
Carbon total
<5
Total
Suspende
Solids,
Residue
75
To
r(NT
50.0
Water Temp
(deg C)
12.0
Zinc
Dissolved
pg/L as Zn)
Zinc
Total
(pg/L as
13
Bent Creek
BC-3S
4/27/2004
27
0.44
0.5
<5
<5
8.6
<5
<5
1.10
1.0
15
<2
18
<5
12.0
11.9
18
<10
Bent Creek
BC-3S
11/2/2004
27
0.7
<5
9
<5
1.4
18
<2
24
<5
<5
1.8
14.4
<10
Bent Creek
BC-3S
6/27/2005
27
0.62
0.6
<5
<5
11
<5
<5
1.50
1.4
14
<2
25
<2
2.8
<2
12.4
<10
<10
Bent Creek
BC-3S
6/13/2006
27
0.63
0.7
<5
<5
10
<5
<5
1.40
1.4
<2
23
3
2.0
12.4
<10
<10
Bent Creek
BC-3i
4/22/2003
49
1.0
<5
9
<5
1.2
13
<5
23
<5
13
13.0
12.6
<10
Bent Creek
BC-31
4/27/2004
30
0.6
<5
<5
0.9
17
12.4
<10
Bent Creek
BC-3i
11/2/2004
45
0.8
<5
8
<5
1.2
19
<2
26
<5
<2.5
<1
13.2
210
Bent Creek
BC-3i
6/27/2005
39
0.77
0.8
<5
<5
9.3
<5
<5
1.40
1.4
16
<2
24
<2
<2.5
<1
12.9
<10
<10
Bent Creek
BC-3i
6/13/2006
45
0.73
0.8
<5
<5
10
<5
<5
1.20
1.3
18
<2
24
<2
<2.5
<1
12.2
<10
60
Bent Creek
BC-3D
4/22/2003
240
5.3
<5
17
<5
6.0
135
10
340
<5
12
19.0
14.4
3800
Bent Creek
BC-3D
4/27/2004
240
3.0
<5
<5
3.9
137
0
14.9
290
Bent Creek
BC-3D
11/1/2004
240
2.30
2.3
<5
<5
14
<5
<5
2.80
2.9
128
7.8
91
<5
<2.5
4.4
15.0
460
190
Bent Creek
BC-3D
6/27/2005
240
3.20
<5
<5
4.30
136
13
102
<2
<5
1.8
15.1
97
Bent Creek
BC-3D
6/13/2006
148
2.50
2.5
<5
<5
17
<5
<5
3.20
3.4
150
11
98
<2
<2.5
7.6
14.6
66
110
Bent Creek
BC-4S
4/22/2003
1.00
<5
7
<5
0.68
8
<5
<10
<5
63
50.0
11.6
29
Bent Creek
BC4S
4/27/2004
0.43
<5
<5
0.53
11
11.5
<10
Bent Creek
BC-4S
11/2/2004
17
0.74
<5
6
<5
0.85
13
<2
<10
<5
5
10.0
15.6
<10
Bent Creek
BC4S
6/27/2005
17
0.69
0.66
<5
<5
7.5
<5
<5
0.84
0.84
14
<2
19
<2
<2.5
<1
12.3
<10
<10
Bent Creek
BC4S
6/13/2006
17
0.66
<5
7
<5
0.84
14
<2
15
<2
<2.5
1.7
12.1
<10
Bent Creek
BC4S
8/21/2007
19
0.65
0.68
<5
<5
6.9
<5
<5
0.77
0.80
15
<2
<0.1
12
<2
<6.2
2.0
14.1
<10
<10
Bent Creek
BC-4i
4/22/2003
0.62
<5
7
<5
0.87
6
<5
16
<5
<2.5
<1
13.2
<10
Bent Creek
BC41
4/27/2004
0.57
0.57
<5
<5
<5
<5
0.70
0.70
12
12.5
<10
<10
Bent Creek
BC4i
11/2/2004
36
0.76
0.76
<5
<5
6
<5
<5
0.85
0.89
14
<2
19
<5
<2.5
<1
13.3
<10
22
Bent Creek
BC4i
6/27/2005
0.78
0.78
<5
<5
8.3
<5
<5
0.96
1.00
11
<2
14
<2
<2.5
<1
12.8
<10
<10
Bent Creek
BC-4i
6/13/2006
36
0.83
0.80
<5
<5
8
<5
<5
0.95
0.95
15
<2
<2
<2.5
<1
12.6
<10
<10
Bent Creek
BC41
8/21/2007
37
0.75
0.71
<5
<5
7.6
<5
<5
0.87
0.87
16
<2
<0.1
16
<2
<6.2
<1
12.8
<10
<10
Bent Creek
BC4D
4/22/2003
112
4.40
<5
12
<5
3.90
127
12
86
<5
<2.2
3.6
13.5
440
Bent Creek
BC4D
4/27/2004
112
3.30
<5
<5
3.30
101
13.3
46
Bent Creek
BC-4D
11/2/2004
115
3.80
<5
<5
3.50
128
12
85
<5
<2.5
<1
14.2
120
Bent Creek
BC4D
6/27/2005
115
3.70
3.70
<5
<5
15
<5
<5
3.70
3.80
104
10
82
<2
<2.5
<1
14.6
130
140
Bent Creek
BC4D
6/13/2006
115
3.60
3.60
<5
<5
15
<5
<5
3.70
3.70
119
9.3
80
<2
<2.5
<1
13.3
140
150
Bent Creek
BC4D
8/21/2007
105
3.90
3.80
<5
<5
13
<5
<5
3.40
3.40
125
10
<0.1
82
<2
<6.2
<1
12.8
210
230
Bent Creek
BC-5S
4/23/2003
1.10
<5
10
<5
1.60
20
<5
18
<5
<2.1
3.2
10.7
<10
Bent Creek
BC-5S
4/28/2004
0.57
<5
<5
1.20
24
10.1
<10
Bent Creek
BC-5S
11/2/2004
19
0.94
0.98
<5
<5
11
<5
<5
1.90
2.00
24
<2
27
<5
<2.5
<1
15.4
<10
390
Bent Creek
BC-5S
6/28/2005
18
0.84
0.83
<5
<5
13
<5
<5
1.90
1.70
24
<2
22
<2
<2.5
2.2
13.2
<10
<10
Bent Creek
BC-5S
6/14/2006
19
0.78
0.77
<5
<5
12
<5
<5
1.90
1.80
22
<2
22
<2
<2.5
<1
12.2
<10
<10
Bent Creek
BC-51
4/23/2003
0.59
<5
11
<5
1.80
16
<5
<10
<5
<2.1
<1
12.6
<10
Bent Creek
BC-5i
4/28/2004
0.44
<5
<5
1.50
20
12.6
<10
Bent Creek
BC-5i
11/2/2004
35
0.61
<5
11
<5
1.80
18
<2
26
<5
<2.5
<1
15.5
<10
Bent Creek
BC-5i
6/28/2005
35
0.60
0.62
<5
<5
13
<5
<5
2.00
1.90
20
<2
15
<2
<2.5
<1
13.2
<10
<10
Bent Creek
BC-51
6/14/2006
35
0.60
0.57
<5
<5
13
<5
<5
1.90
1.90
18
<2
26
<2
<2.5
<1
13.0
<10
<10
Bent Creek
BC-5D
4/23/2003
85
3.00
<5
14
<5
2.90
15
<5
47
<5
2.3
3.8
14.1
2600
Bent Creek
BC-5D
4/28/2004
85
1.50
<5
<5
2.20
46
14.6
870
Bent Creek
BC-5D
11/3/2004
85
1.70
<5
15
<5
2.70
65
<2
41
<5
3
4.0
14.7
1400
Bent Creek
BC-5D
6/28/2005
85
2.20
1.70
<5
<5
19
<5
<5
3.20
3.00
50
2.6
46
<2
<2.5
<1
14.5
1900
1000
Bent Creek
BC-5D
6/14/2006
85
1.70
1.80
<5
<5
17
<5
<5
2.70
2.90
53
2.8
40
<2
<2.5
<1
14.4
1700
1800
Bent Creek
BC-7S
4/23/2003
1.50
<5
7
<5
1.00
21
<5
16
<5
60
12.2
24
Bent Creek
BC-7S
4/28/2004
22
1.20
<5
<5
0.73
20
12.8
<10
Bent Creek
BC-7S
11/3/2004
20
1.40
<5
6
<5
1.10
14
<2
16
<5
30
80.0
15.3
13
Bent Creek
BC-7S
6/28/2005
20
1.40
1.40
<5
<5
6.9
<5
<5
0.97
0.92
18
<2
11
<2
<2.5
3.7
14.0
<10
<10
Bent Creek
BC-7S
6/14/2006
20
1.20
1.40
<5
<5
7
<5
<5
0.99
1.00
18
<2
16
<2
4.2
8.6
13.4
<10
14
Bent Creek
BC-7S
8/21/2007
20
1.00
1.60
<5
<5
6.3
<5
<5
0.89
0.99
10
<2
<0.1
2.7
120
300.0
17.2
<10
21
Bent Creek
BC-71
4/23/2003
1.40
<5
8
<5
0.83
12
<5
12
<5
13.7
30
Bent Creek
BC-7i
4/28/2004
45
0.50
<5
<5
0.50
9
13.0
<10
Bent Creek
BC-T
11/3/2004
40
0.72
<5
6
<5
0.76
11
<2
16
<5
6
15.0
14.0
<10
Bent Creek
BC-T
6/28/2005
40
0.65
0.67
<5
<5
7.3
<5
<5
0.71
0.79
11
<2
10
<2
3
4.1
14.1
<10
<10
Bent Creek
BC-71
6/14/2006
40
0.64
0.70
<5
<5
7
<5
<5
0.68
0.71
14
<2
17
<2
4
7.2
14.7
<10
<10
Bent Creek
BC-7i
8/21/2007
40
0.58
0.63
<5
<5
6.6
<5
<5
0.61
0.64
14
<2
<0.1
14
<2
<6.2
2.7
14.6
<10
<10
Bent Creek
BC-7D
4/23/2003
140
10.00
<5
12
<5
14.00
213
38
110
<5
9.2
7.8
15.3
2600
Bent Creek
BC-7D
4/28/2004
140
2.30
<5
<5
4.90
104
14.8
1000
Bent Creek
BC-7D
11/3/2004
140
3.00
<5
12
<5
6.40
134
7.5
78
<5
<2.5
3.0
15.5
1600
Bent Creek
BC-7D
6/28/2005
140
3.60
3.60
<5
<5
10
<5
<5
8.40
8.50
139
13
100
<2
<2.5
<1
14.5
650
700
Bent Creek
BC-7D
6/14/2006
140
4.30
4.40
<5
<5
9
<5
<5
9.10
9.20
180
15
100
<2
<2.5
1.3
15.3
820
900
Bent Creek
BC-7D
8/21/2007
140
4.80
4.70
<5
<5
6.8
<5
<5
8.70
8.40
209
15
<0.1
116
<2
<6.2
1.7
15.5
610
730
Bent Creek
BC-1S
4/21/2003
14
0.26
0.26
4090
<5
<5
9
<5
<5
0.99
0.99
10
<5
17
<5
3.9
2.3
11.8
27
Bent Creek
BC-1S
4/26/2004
14
0.22
0.22
<5
<5
<5
<5
0.99
0.99
15
<5
11.2
<10
Bent Creek
BC-1S
11/1/2004
14
0.33
0.33
<5
<5
8
<5
<5
1.20
1.10
12
<2
22
<5
<2.5
1.8
13.6
<10
Bent Creek
BC-1S
6/27/2005
14
0.37
0.35
<5
<5
10
<5
<5
1.40
1.50
17
<2
24
<2
<2.5
1.7
13.7
10
Bent Creek
BC-1S
6/12/2006
14
0.34
0.37
<5
<5
10
<5
<5
1.20
1.30
16
<2
14
<2
<2.5
<1
13.6
10
Bent Creek
BC-1S
8/20/2007
14
0.45
0.45
<5
<5
10
<5
<5
1.40
1.40
17
<2
<0.1
22
<2
<6.2
<1
17.0
<10
Bent Creek
BC-1i
4/21/2003
45
0.24
0.24
5310
<5
<5
9
<5
<5
1.10
1.10
11
<5
<10
<5
<2.2
<1
12.6
<10
Bent Creek
BC-1i
4/27/2004
45
0.21
0.21
<5
<5
7.7
<5
<5
0.81
0.81
12
<2
10
<5
<1
12.3
<10
Bent Creek
BC-11
11/1/2004
42
0.31
0.32
<5
<5
7
<5
<5
1.10
1.30
14
<2
25
<5
<2.5
<1
12.2
37
Bent Creek
BC-1i
6/27/2005
45
0.30
0.31
<5
<5
9.4
<5
<5
1.10
1.10
14
<2
20
<2
<2.5
<1
12.7
<10
reek
BC-1i
6/12/2006
40
0.30
0.30
<5
<5
9
<5
<5
1.10
1.10
16
<2
14
<2
<2.5
<1
12.8
<10
reek
BC-1i
8/20/2007
45
0.28
0.32
<5
<5
8.7
<5
<5
1.20
1.10
16
<2
<0.1
21
<2
<6.2
<1
14.1
<10
reek
r
BC-1D
4/21/2003
141
0.72
2730
<5
22
<5
4.70
69
6
64
<5
<2.11.2
13.7
reek
BC-1D
426/2004
141
0.62
<5
<5
3.60
55
<2.5
14.6
reek
BC-1D
11/2/2004
141
0.75
<5
20
1
<5
1 4.40
1
69
8.1
1
1
1 64
1 <5
1 <2.5
1 1.0
14.5
Page 6 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Location
Bent Creek
Station ID
BC-1D
Samplin g
..
6/21/2005
Sampling
Depth
100
Aluminum
Dissolved
<50
Aluminum
Total
I
<50
mo n a
a.
( rl'13
<0.02
Arsen'
1c
I
Disso ved
<5
Arsenic
Total
As)
<5
Barium
Dias olved
<10
Barium
Total
BaO
<10
B a one
c I
D �•
15
Bicarbonate
Total
�•
Cadmium
<2
Cadmium
<2
Calcium
7.50
Calcium
7.40
Chloride
M
Chloride
1.8
Chromium
<25
Ch romn'
( . Cr)jj
<25
r
Coppe M;
I ssolved
pp
t
<2
Cyanide
as HCN)
Dissolved
an
(mg/L)
0.3
Fluoride
Fluoride
<400
Iron
680
<2
Bent Creek
BC-1D
6/12/2006
141
<50
<50
<0.02
<5
<5
<10
<10
22
<2
<2
8.00
7.90
2.4
<25
<25
<2
<2
0.9
<400
840
Bent Creek
BC-1D
8/20/2007
141
<50
<50
<0.02
<5
<5
<10
<10
20
<1
<1
7.40
7.40
2
<10
<10
<2
<2
0.1
<400
910
Bent Creek
BC-2i
4/21/2003
<50
<10
<10
8
<2
2.00
1
<25
<2
<0.02
5.0
<500
Bent Creek
BC-2i
4/26/2004
19
<50
<10
<10
6.2
<2
1.30
<25
<2
6.2
Bent Creek
BC-2i
11/1/2004
29
<50
<0.02
<5
<10
5
<2
1.10
<1
<25
<2
7.6
<400
Bent Creek
BC-21
6/29/2005
29
55
<50
<0.02
<5
<5
<10
<10
8.6
<2
<2
0.46
4.70
1.6
<25
<25
<2
<2
7.4
<400
<50
Bent Creek
BC-2i
6/12/2006
30
1
<50
<0.02
<5
<10
6
<2
1.90
1
<25
<2
5.8
<400
Bent Creek
BC-2i
8/20/2007
29
<50
<50
<0.02
<5
<5
<10
<10
1.7
<1
<1
0.89
0.92
<1
<10
<10
<2
<2
5.8
<400
<50
Bent Creek
BC-2D
4/21/2003
245
250
<10
<10
32
<2
36.0
14
<25
2.5
<0.02
0.1
1.2
Bent Creek
BC-2D
2/11/2004
245
94
<10
<10
31.2
<2
38.0
16
<25
<2
0.0
1
Bent Creek
BC-2D
4/26/2004
150
<50
<50
<10
<10
<10
<10
39
<2
<2
30.0
30.0
<25
<25
<2
<2
<50
Bent Creek
BC-2D
11/3/2004
135
<50
<50
<0.02
<5
<5
<10
<10
48
<2
<2
22.0
21.0
8.8
<25
<25
<2
<2
0.3
1.3
<50
Bent Creek
BC-2D
6/29/2005
150
61
<50
<0.02
<5
<5
<10
<10
51
<2
<2
18.0
18.0
5.7
<25
<25
<2
<2
0.1
<400
<50
Bent Creek
BC-2D
6/12/2006
100
<50
<50
0.04
<5
<5
<10
<10
<2
<2
18.0
18.0
6
<25
<25
<2
<2
0.1
0.9
<50
Bent Creek
BC-2D
8/20/2007
150
<50
<50
<0.02
<5
<5
<10
I <10
63
<1
<1
1 17.0
17.0
4
<10
<10
<2
1 <2
0.1
1
<50
Coweeta
CW-1S
7/21/2008
17
<50
<50
<0.1
<5
<5
17
17
<1
<1
2.9
2.9
1.1
<10
<10
<2
<2
<0.02
1.8
<0.4
<50
Coweeta
CW-1S
2/9/2009
17
<50
<50
<0.02
<2
<2
18
18
13
<1
<1
3.1
3.1
<1
<10
<10
<2
<2
1.3
<0.4
<50
Coweeta
CW-11
7/21/2008
44
<50
<50
<0.02
<5
<5
<10
<10
13
<1
<1
2.6
2.7
1
<10
<10
<2
<2
<0.02
5.9
<0.4
<50
Coweeta
CW-11
2/9/2009
44
<50
<50
<0.02
<2
<2
<10
<10
14
<1
<1
2.6
2.4
<1
<10
<10
<2
<2
6.1
<0.4
<50
Coweeta
CW-1D
7/21/2008
160
<50
<50
<0.02
<5
<5
<10
<10
23
<1
<1
11.0
11.0
1.2
<10
<10
<2
<2
<0.02
4.9
<0.4
<50
Coweeta
CW-1D
2/9/2009
150
<50
<50
<0.02
<2
<2
<10
<10
23
<1
<1
10.0
10.0
<1
<10
<10
<2
<2
4.6
<0.4
<50
Coweeta
CW-21
7/22/2008
18
<50
<50
<0.02
<5
<5
15
15
9
<1
1.4
1.4
1
<10
<2
<0.02
7.5
<0.4
<50
Coweeta
CW-21
2/10/2009
18
<50
140
<0.02
<2
<2
15
17
10
<1
<1
1.5
2.3
1
<10
<10
1 <2
<2
7.4
<0.4
<50
Coweeta
CW-2D
7/22/2008
90
<50
110
<0.02
<5
<5
<10
<10
9
<1
<1
2.5
2.5
<1
<10
<10
<2
<2
<0.02
5.3
<0.4
<50
Coweeta
CW-2D
2/10/2009
90
<50
880
<0.02
<2
<2
<10
<10
8.6
<1
<1
2.3
2.3
<1
<10
<10
<2
<2
7.3
<0.4
<50
Coweeta
CW-3P1
7/23/2008
38
<50
<50
<0.02
<5
<5
<10
<10
8
<1
<1
2.1
2.2
<1
<10
<10
<2
<2
<0.02
9.7
<0.4
<50
Coweeta
CW-31`1
2/11/2009
38
<50
<50
<0.02
<2
<2
<10
<10
9.9
<1
<1
2.1
2.2
<1
<10
<10
<2
<2
7.4
<0.4
<50
Coweeta
CW-3D
7/23/2008
75
<50
<50
<0.02
<5
<5
<10
<10
16
<1
<1
3.8
3.8
<1
<10
<10
<2
<2
<0.02
5.9
<0.4
<50
Coweeta
CW-3D
2/11/2009
75
<50
<50
<0.02
<2
<2
<10
<10
17
<1
<1
3.7
3.7
<10
<10
<2
<2
7.5
<50
Coweeta
CW-41
7/22/2008
60
<50
670
<0.02
<5
<5
<10
<10
12
<1
<1
3.3
3.2
1.4
<10
<10
<2
2.4
<0.02
7.7
<0.4
<50
Coweeta
CW-41
2/8/2009
60
<50
350
<0.02
<2
<2
<10
<10
11
<1
<1
2.9
3.1
1.2
<10
<10
<2
<2
8.0
<0.4
<50
Coweeta
CW4D
7/22/2008
250
<50
260
<0.02
<5
<5
<10
<10
29
<1
<1
9.4
9.6
1
1.2
<10
11
<2
2.6
<0.02
1.1
<50
Lan tree
MW-1
11/12/2003
2000*
<10*
24*
11
<2.0*
2.3*
2.0
<25*
8.0*
6.4
<0.5
1500*
Lan tree
MW-1
6/15/2004
660
<10
16
7.2
<2.0
1.3
1.5
<25
<2.0
6.6
<0.1
270
Lan tree
MW-11
8/28/2002
5600"
<10*
43*
33
<2.0*
6.3*
1.0
<25*
28*
5.1
<0.5
4900*
Lan tree
MW-11
3/4/2003
1800*
<10*
60*
31
<2.0*
7.1*
<5
<25*
28*
5.0
<0.5
1600*
Lan tree
MW-11
11/12/2003
1600*
<10*
12*
31
<2.0*
5.0*
1.7
<25*
4.3*
4.5
0.07
850*
Lan tree
MW-11
6/15/2004
<50
<10
<10
31
<2.0
5.1
1.3
<25
<2.0
5.0
<0.1
<50
Lan tree
MW-11
4/14/2009
50
<50
<2.0
<10
39
<1.0
7.8
1.2
<10
<2.0
NA
1.2
<50
Lan tree
MAD
8/27/2002
84*
<10*
<10*
69
<2.0*
46*
2.0
<25*
3.2*
1
1.0
<0.5
120*
Lan tree
MAD
3/3/2003
<50*
<10*
<10*
58
<2.0*
22*
<5
<25*
<2.0*
2.1
<0.5
<50*
Lan tree
MW-1D
11/12/2003
<50*
<10*
<10*
68
<2.0*
36*
2.1
<25*
<2.0*
0.9
0.07
<50*
Lan tree
MW-1D
6/15/2004
<50
<10
<10
70
<2.0
38
1.8
<25
<2.0
0.8
<0.1
<50
Lan tree
MAD
11/28/2007
118
<50
<2.0
<10
62
<1.0
34
2.4
<10
<2.0
0.7
2.4
<50
Lan tree
MAD
4/14/2009
118
<50
<2.0
<10
67
<1.0
35
1.6
<10
<2.0
0.8
1.6
<50
Lan tree
MW-2
8/28/2002
270"
<10"
<10*
1
28
<2.0*
6.1"
3.0
<25*
<2.0*
6.1
<0.5
180*
Lan tree
MW-2
3/4/2003
87*
<10*
<10*
27
<2.0*
6.0*
<5.0
<25*
2.0*
6.9
<0.5
51*
Lan tree
MW-2
8/14/2009
25
<50
<2.0
<10
28
<1.0
6.3
2.8
1 <10
<2.0
6.2
<0.4
<50
Lan tree
MW-21
8/28/2002
820*
<10*
28*
56
<2.0*
8.5*
2.0
1 <25*
3.9*
1
4.2
<0.5
590*
Lan tree
MW-21
3/4/2003
90"
<10*
18"
53
<2.0*
9.3"
<5.0
<25*
<2.0*
7.3
<0.5
75*
Lan tree
MW-21
11/17/2003
80*
<10*
18*
53
<2.0*
9.7*
<5.0
<25*
<2.0*
NA
<0.5
67*
Lan tree
MW-21
6/15/2004
<50
<10
17
61
<2.0
9.5
1.8
<25
<2.0
4.8
0.2
<50
Lan tree
MW-21
8/14/2009
45
<50
<2.0
19
49
<1.0
10.0
2.2
<10
<2.0
5.0
<0.4
<50
Lan tree
MW-2D
8/28/2002
920*
<10"
<10*
43
<2.0*
11*
1.0
<25*
5.5*
6.1
<0.5
840*
Lan tree
MW-2D
3/4/2003
<50*
<10*
<10*
39
<2.0*
10*
<5.0
<25*
2.4*
4.8
<0.5
1 <50*
Lan tree
MW-2D
11/17/2003
<50*
<10*
<10*
42
<2.0*
1 10*
<5.0
<25*
<2.0*
10
<0.5
<50*
Lan tree
MW-2D
6/15/2004
<50
<10
<10
45
<2.0
1 12
1.3
<25
<2.0
4.7
<0.1
<50
Lan tree
MW-2D
8/14/2009
140
<50
<2.0
<10
47
<1.0
13
1.3
<10
1 <2.0
4.19
<0.4
<50
Lan tree
MW-3
8/27/2002
1200*
<10*
<10*
7.0
<2.0*
0.77*
2.0
<25*
3.9*
NA
<0.5
1200*
Lan tree
MW-3
3/5/2003
560*
<10*
18*
25
<2.0*
2.7*
1 <5.0
<25*
3.3*
6.3
<0.5
350*
Lan tree
MW-3
11/13/2003
1400*
<10*
17*
26
<2.0*
2.1"
1 3.4
<25*
4.4*
5.8
0.05
3500*
Lan tree
MW-3
6/17/2004
60
<10
<10
26
<2.0
1.2
3.4
<25
<2.0
NA
0.05
<50
Lan tree
MW-3
4/20/2009
18
74
<2.0
<10
7.8
<1.0
1.4
1.9
<10
<2.0
NA
<0.4
<50
Lan tree
MW-31
8/26/2002
1100*
<10*
31*
33
<2.0*
6.6*
2.0
<25*
6.4*
NA
<0.5
1200*
Lan tree
MW-31
3/4/2003
130*
<10*
26*
32
<2.0*
7.0*
<5.0
<25*
2.3*
10.8
<0.5
160*
Lan tree
MW-31
11/13/2003
430"
<10*
25"
37
<2.0*
1 7.0*
2.2
<25*
3.0*
NA
0.06
500*
Lan tree
MW-31
6/17/2004
<50
<10
23
36
<2.0
6.5
2.1
<25
<2.0
NA
<0.1
161
Lan tree
MW-31
4/20/2009
60
<50
<2.0
31
42
<1.0
8.1
2.1
<10
<2.0
16.8
<0.4
<50
Lan tree
MW4
6/16/2004
<50
<10
<10
24
<2.0
4.1
1.8
<25
<2
6.3
<0.1
<50
Lan tree
MW41
8/27/2002
3900"
<10*
21"
39
<2.0*
7.9*
1.0
<25*
22*
8.7
<0.5
2200
Lan tree
MW-41
3/3/2003
69*
<10*
<10*
28
<2.0*
5.7*
7
<25*
2.8*
8.0
<0.5
<50
iAARCADIS
Page 7 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
FIARCJaDIS ��,a��,
Location
.AL
Bent Creek
Station ID
AM
BC-11D
Sampling
t
6/27/2005
Sampling
Depth
&
100
Iron
Total
-as
690
Lead
Dissolved
<10
Lead
Total
<10
Magnesium
Dissolve
1.30
We
-,::um
K.
1.30
Manganese
Dissolved
21
Manganese
Total
21
Mercury
Dissolved
--md&.-
<200
ercury
Tot. I
<200
Nickel
Dissolved
<10
Nicke!q
Total
<10
Nitroge n
L... ia
Nitrogen
Ammonia +
•
M�M
Nitrogen
Organic Dis
Nitrogen,
Nitrate Dis
Nitrogen,
Nitrate Dis
�•
Nitrate as N
,•
<0.02
NO2 +
NO3 Dis
NO2+NO3
as N
A
<0.02
N, !'a
a N
�• .
<0.01
Oxidation
Reduction
125
6.9
-Lab WH,
Phosph
(m
g.
<0.02
Phosphorus
Phosphorous
<0.02
Bent Creek
BC-1D
6/12/2006
141
820
<10
<10
1.40
1.30
23
23
<200
<200
<10
<10
<0.02
<0.02
<0.01
6.5
<0.02
0.02
Bent Creek
BC-1D
8/20/2007
141
910
<10
<10
1.20
1.20
23
23
<200
<200
<10
<10
<0.02
<0.02
<0.01
24
6.1
<0.02
0.07
Bent Creek
BC-2i
4/21/2003
69
<10
1.10
11
<10
0.1
5.3
<0.04
Bent Creek
BC-2i
4/26/2004
19
<50
<10
0.80
<10
<10
5.7
Bent Creek
BC-2i
11/1/2004
29
<50
<10
0.78
<10
<10
<0.02
0.03
<0.02
5.3
<0.02
0.02
Bent Creek
BC-21
6/29/2005
29
<50
<10
<10
2.20
2.30
<10
<10
<200
<200
<10
<10
0.14
0.14
0.01
5.3
<0.02
0.02
Bent Creek
BC-2i
6/12/2006
30
<50
1 <10
1 1.10
<10
1
<200
1
<10
1
1
0.04
1
0.04
<0.01
1
5.8
1
<0.02
1 0.02
Bent Creek
BC-2i
8/20/2007
29
<50
<10
<10
0.70
0.71
<10
<10
<200
<200
<10
<10
0.04
0.04
<0.01
510
5.8
<0.02
0.02
Bent Creek
BC-2D
4/21/2003
245
420
<10
0.85
<10
<10
<0.02
8.7
<0.02
Bent Creek
BC-2D
2/11/2004
245
180
<10
0.80
<10
<10
<0.02
8.5
<0.02
Bent Creek
BC-2D
4/26/2004
150
<50
<10
<10
0.63
0.63
<10
<10
<10
<10
8.6
Bent Creek
BC-21)
11/3/2004
135
62
<10
<10
0.46
0.45
<10
160
<10
<10
<0.2
<0.02
<0.01
8.8
<0.02
0.04
Bent Creek
BC-2D
6/29/2005
150
<50
<10
<10
0.37
0.38
<10
<10
<200
<200
<10
<10
0.07
0.07
<0.01
8.1
<0.02
0.02
Bent Creek
BC-2D
6/12/2006
100
<50
<10
<10
0.36
0.36
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
8.3
<0.02
0.03
Bent Creek
BC-2D
8/20/2007
150
<50
<10
<10
0.35
0.35
<10
<10
<200
<200
<10
<10
<0.02
<0.02
<0.01
88
8.9
<0.02
<0.02
Coweeta
CW-1S
7/21/2008
17
<50
<10
<10
0.84
0.8
39
40
<0.2
<0.2
<10
<10
0.02
0.02
<0.01
477
5.3
<0.02
<0.02
Coweeta
CW-1S
2/9/2009
17
<50
<10
<10
0.9
0.91
130
130
<0.2
<0.2
<10
<10
0.08
0.08
<0.01
160
5.2
<0.02
0.04
Coweeta
CW-11
7/21/2008
44
55
<10
<10
0.66
0.7
29
32
<0.2
<0.2
<10
<10
0.02
0.02
<0.01
134
6.4
0.02
0.02
Coweeta
CW-11
2/9/2009
44
<50
<10
<10
0.65
0.6
<10
<10
<0.2
<0.2
<10
<10
0.02
0.02
<0.01
-160
6.2
0.02
0.05
Coweeta
CW-1D
7/21/2008
160
<50
<10
<10
1.3
1.2
<10
<10
<0.2
<0.2
<10
<10
0.02
0.02
<0.01
297
7.3
<0.02
0.02
Coweeta
CW-1D
2/9/2009
150
<50
<10
<10
1.2
1.2
<10
<10
<0.2
<0.2
<10
<10
0.02
0.02
<0.01
-91
7.2
<0.02
0.02
Coweeta
CW-21
7/22/2008
18
<10
<10
0.92
0.9
28
<0.2
<10
<10
<0.02
<0.02
<0.01
462
5.7
<0.02
Coweeta
CW-21
2/10/2009
18
110
<10
<10
0.88
0.9
<10
13
<0.2
<0.2
<10
<10
<0.02
<0.02
<0.01
5.8
<0.02
<0.02
Coweeta
CW-2D
7/22/2008
90
140
<10
<10
0.49
0.5
<10
<10
<0.2
<0.2
<10
<10
<0.02
<0.02
<0.01
374
6.1
0.02
0.02
Coweeta
CW-2D
2/10/2009
90
820
<10
<10
0.5
0.71
<10
<10
<0.2
<0.2
<10
<10
<0.02
<0.02
<0.01
5.2
0.12
0.04
Coweeta
CW-3PI
7/23/2008
38
<50
<10
<10
0.63
0.7
<10
<10
<0.2
<0.2
<10
<10
<0.02
<0.02
<0.01
431
6.1
<0.02
<0.02
Coweeta
CW-31`I
2/11/2009
38
<50
<10
<10
0.64
0.6
<10
<10
<0.2
<0.2
<10
<10
<0.02
<0.02
<0.01
218
5.8
<0.02
<0.02
Coweeta
CW-3D
7/23/2008
75
<50
<10
<10
0.98
1.0
<10
<10
<0.2
<0.2
<10
<10
<0.02
<0.02
<0.01
346
6.9
<0.02
0.02
Coweeta
CW-3D
2/11/2009
75
<50
<10
<10
0.9
0.92
<10
<10
<0.2
<0.2
<10
<10
0.79
0.79
<0.01
193
6.4
<0.02
0.02
Coweeta
CW-41
7/22/2008
60
690
<10
<10
1.4
1.5
<10
12
<0.2
<0.2
<10
<10
0.31
0.32
0.01
400
5.5
<0.02
0.02
Coweeta
CW-41
2/8/2009
60
370
<10
<10
1.2
1.2
<10
<10
<0.2
<0.2
<10
<10
0.32
0.32
<0.01
226
5.3
<0.02
<0.02
Coweeta
CW4D
7/22/2008
250
990
<10
<10
0.88
1.0
<10
11
<0.2
<0.2
<10
<10
0.02
<0.02
<0.01
231
8.1
<0.02
<0.02
Lan tree
MW-1
11/12/2003
<10*
1.9*
37*
NA
<10*
<0.20
NA
0.74
5.1
5.7
Lan tree
MW-1
6/15/2004
<10
1.9
12
<0.2
<10
<0.20
0.39
0.41
6.2
5.2
Lan tree
MW-11
8/28/2002
<10*
4.4*
61*
NA
10*
<0.20
NA
0.74
6.3
NA
Lan tree
MW-11
3/4/2003
<10*
4.9*
78*
NA
10*
<0.20
NA
1.00
6.8
NA
Lan tree
MW-11
11/12/2003
<10*
3.3*
<10*
NA
<10*
<0.20
NA
0.89
6.7
6.5
Lan tree
MW-11
6/15/2004
<10
3.8
<10
<0.2
<10
<0.20
0.83
0.83
5.2
6.2
Lan tree
MW-11
4/14/2009
50
<10
5.1
<10
NA
<10
NA
NA
1.00
6.4
6.4
Lan tree
MWAD
8/27/2002
<10*
2.4*
<10*
NA
<10*
<0.20
NA
0.05
7.6
NA
Lan tree
MWAD
3/3/2003
<10*
2.7*
<10*
NA
<10*
<0.20
NA
0.26
7.5
NA
Lan tree
MW-1D
11/12/2003
<10*
1.9*
<10*
NA
<10*
<0.20
NA
0.08
7.8
7.9
Lan tree
MWAD
6/15/2004
<10
1.9
<10
<0.2
<10
<0.20
0.7
0.07
8.1
7.7
Lan tree
MWAD
11/28/2007
118
<10
2.0
<10
NA
<10
NA
NA
0.09
8.0
8.0
Lan tree
MWAD
4/14/2009
118
<10
1.9
<10
NA
<10
NA
NA
0.06
7.8
8.0
Lan tree
MW-2
8/28/2002
<10*
3.2*
<10*
NA
<10*
<0.20
0.78
6.2
NA
Lan tree
MW-2
3/4/2003
<10*
3.0*
<10*
NA
<10*
<0.20
1.40
6.3
NA
Lan tree
MW-2
8/14/2009
25
<10
3.2
<10
NA
<10
0.62
6.0
6.4
Lan tree
MW-21
8/28/2002
<10*
4.5*
15*
NA
<10*
<0.20
0.79
7.0
NA
Lan tree
MW-21
3/4/2003
<10*
4.4*
<10*
NA
<10*
<0.20
0.92
6.6
7.1
Lan tree
MW-21
11/17/2003
<10*
4.6*
<10*
NA
<10*
<0.20
0.81
NA
7.1
Lan tree
MW-21
6/15/2004
<10
4.8
<10
<0.2
<10
<0.20
0.87
7.2
7.0
Lan tree
MW-21
8/14/2009
45
<10
5.0
<10
NA
<10
1.10
6.8
7.0
Lan tree
MW-2D
8/28/2002
<10*
3.1*
20*
NA
<10*
<0.20
0.97
5.2
NA
Lan tree
MW-2D
3/4/2003
<10*
2.7*
2.7*
NA
<10*
<0.20
1.30
6.9
NA
Lan tree
MW-2D
11/17/2003
<10*
2.6*
<10*
NA
<10*
<0.20
0.77
6.8
7.3
Lan tree
MW-2D
6/15/2004
<10
2.9
<10
<0.2
<10
<0.20
1.30
7.2
7.1
Lan tree
MW-2D
8/14/2009
140
<10
3.3
<10
NA
<10
1.50
6.85
7.2
Lan tree
MW-3
8/27/2002
<10*
0.81*
36*
<10*
<0.2
NA
0.04
NA
NA
Lan tree
MW-3
3/5/2003
<10*
1.0*
26*
<10*
<0.2
NA
0.05
6.0
NA
Lan tree
MW-3
11/13/2003
<10*
1.1*
170*
<10*
<0.2
NA
<0.2
5.9
6.2
Lan tree
MW-3
6/17/2004
<10
0.56
<10
<10
<0.2
NA
<0.2
6.3
6.2
Lan tree
MW-3
4/20/2009
18
<10
0.86
<10
<10
NA
0.12
5.3
5.6
Lan tree
MW-31
8/26/2002
<10*
3.8*
20*
<10*
<0.2
NA
0.06
NA
NA
Lan tree
MW-31
3/4/2003
<10*
3.9*
<10*
<10*
<0.2
NA
0.12
6.2
NA
Lan tree
MW-31
11/13/2003
<10*
3.6*
13*
<10*
<0.2
NA
0.27
6.1
6.4
Lan tree
MW-31
6/17/2004
<10
3.7
<10
<10
<0.2
0.2
0.20
6.3
6.1
Lan tree
MW-31
4/20/2009
60
<10
4.6
<10
<10
NA
NA
0.17
6.0
6.3
Lan tree
MW-4
6/16/2004
<10
2.9
<10
<10
<0.20
0.85
0.89
3.9
6.2
Lan tree
MW41
1 8/27/2002
<10*
3.8*
48*
<10*
<0.2
NA
1.00
6.8
NA
Lan tree
MW-41
3/3/2003
<10*
2.4*
<10*
<10*
<0.2
1
1 NA
1
1.50
6.8
NA
Page 8 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
PARCADIS
Location
Bent Creek
Station ID
BC-11D
Samplin
..2
6/21/2005
Sampling
100
Potassium
0.79
Potassium
0.80
Radon-22
Selen lu
<5
t'l
<5
IF Silica
Dissolved
Silica
Total
251<5
as Ag
Silver
Total
<5
Sodium
gIL as Na
5.30
Sodlu m
Total
5.10
Solids
Solids,
R esidue at
:f
Specific
Cond., Field
73
Specific
Cond., Lab
Sulfate
Dissolved
(mg/L as
Sulfate
(mg/L as
8.3
Ifide
D�u
Sulfide
Total
Di Ived
Solids
67
Total
Organic
Carbon total
<2
Total
Suspende
Solids,
Residue
<2.5
To
r(NT
<1
Water Temp
(deg C)
13.6
Zinc
Dissolved
pg/L as Zn)
130
Zinc
Total
(pg/L as
Bent Creek
BC-1D
6/12/2006
141
0.85
0.86
<5
<5
25
<5
5.60
5.60
77
8.9
64
<2
<2.5
1.0
14.1
100
Bent Creek
BC-1D
8/20/2007
141
0.80
0.85
<5
<5
23
<5
5.80
5.20
90
7.3
<0.1
68
<2
<6.2
1.4
13.7
97
Bent Creek
BC-2i
4/21/2003
0.29
2910
<5
7
<5
0.9
21
<5
24
<5
<2.1
<1
12.4
<10
Bent Creek
BC-2i
4/26/2004
19
0.24
<5
<5
0.6
24
26
12.4
<10
Bent Creek
BC-2i
11/1/2004
29
0.36
<5
6
<5
0.8
13.8
<2
24
<5
<5
<1
12.6
<10
Bent Creek
BC-21
6/29/2005
29
0.44
0.45
<5
<5
7.3
<5
1.50
1.3
11
4.4
37
<2
<2.5
<1
12.2
<10
<10
Bent Creek
BC-2i
6/12/2006
30
0.35
<5
7
<5
1.0
24
2
18
<2
<2.5
<1
12.4
<10
Bent Creek
BC-2i
8/20/2007
29
0.36
0.33
<5
<5
6.8
<5
<5
0.81
0.9
17
<2
<0.1
18
<2
<6.2
<1
12.6
<10
<10
Bent Creek
BC-2D
4/21/2003
245
2.20
130
<5
16
<5
22.0
314
65
200
<5
6.8
20.0
14.3
910
Bent Creek
BC-2D
2/11/2004
245
1.40
<5
22
<5
19.0
333
72
190
<5
4
3.5
15.2
590
Bent Creek
BC-2D
4/26/2004
150
1.30
1.30
<5
<5
<5
<5
18.0
18.0
278
<2.5
14.4
15
Bent Creek
BC-2D
11/3/2004
135
1.10
1.10
<5
<5
<5
<5
22.0
21.0
214
34
140
<5
<2.5
2.0
15.1
64
460
Bent Creek
BC-2D
6/29/2005
150
1.10
1.10
<5
<5
22
<5
<5
20.0
21.0
166
18
120
<2
<2.5
<1
15.3
72
110
Bent Creek
BC-2D
6/12/2006
100
0.95
0.95
<5
<5
21
<5
<5
21.0
20.0
174
13
<2
14.2
22
49
Bent Creek
BC-2D
8/20/2007
150
0.91
0.97
<5
<5
22
<5
<5
19.0
19.0
174
11
<0.1
112
<2
<6.2
<1
14.8
<10
12
Coweeta
CW-1S
7/21/2008
17
0.9
0.8
670
<5
<5
12
<5
<5
2.5
2.4
31
<2
<0.1
58
<2
<6.2
<1
17.6
<10
<10
Coweeta
CW-1S
2/9/2009
17
0.7
0.7
<5
<5
11
<5
<5
2.1
2.2
31
<2
<0.1
32
<2
<6.2
<1
13.4
<10
Coweeta
CW-11
7/21/2008
44
1
1.0
1450
<5
<5
17
<5
<5
3.2
3.2
32
<2
<0.1
53
<2
<6.2
<1
15.6
240
220
Coweeta
CW-11
2/9/2009
44
0.94
0.9
<5
<5
18
<5
<5
3.2
3.1
30
<2
<0.1
6
<2
<6.2
<1
15.1
210
200
Coweeta
CW-1D
7/21/2008
160
1.8
1.8
<5
<5
19
<5
<5
7.4
7.1
93
16
<0.1
88
<2
<6.2
<1
14.9
150
170
Coweeta
CW-1D
2/9/2009
150
1.6
1.6
<5
<5
19
<5
<5
7
7.1
91
19
<0.1
64
<2
<6.2
<1
14.6
180
180
Coweeta
CW-21
7/22/2008
18
1.4
1.4
2160
<5
<5
<20
<5
<5
1.9
1.9
24
<2
<0.1
50
<2
<6.2
9.1
14.5
<10
<10
Coweeta
CW-21
2/10/2009
18
1.1
1.2
<5
<5
12
<5
<5
2.7
2.7
27
2.4
<0.1
<12
<2
<6.2
3.4
11.8
<10
<10
Coweeta
CW-2D
7/22/2008
90
0.83
0.9
<5
<5
<20
<5
<5
1.8
1.7
24
<2
<0.1
34
<2
<6.2
3.7
13.2
49
50.0
Coweeta
CW-2D
2/10/2009
90
0.8
0.92
<5
<5
12
<5
<5
1.7
22
<2
<0.1
30
<2
14
12.0
12.8
120
130
Coweeta
CW-3PI
7/23/2008
38
0.74
0.8
1160
<5
<5
27
<5
<5
2.1
2.2
23
<2
<0.1
38
<2
<6.2
<1
13.7
<10
<10
Coweeta
CW-3PI
2/11/2009
38
0.76
0.8
<5
<5
16
<5
<5
2.2
2.2
23
<2
<0.1
33
<2
<6.2
<1
12.0
<10
<10
Coweeta
CW-3D
7/23/2008
75
1
1.1
<5
<5
15
<5
<5
3.4
3.4
40
2
<0.1
52
<2
<6.2
<1
13.1
200
260
Coweeta
CW-3D
2/11/2009
75
1.0
1.1
<5
<5
<5
<5
3.3
3.3
37
2.4
<0.1
<12
<2
<6.2
<1
12.1
380
430
Coweeta
CW-41
7/22/2008
60
0.8
0.9
2200
<5
<5
<20
<5
<5
2.1
2.1
36
<2
<0.1
56
<2
31
14.3
<10
<10
Coweeta
CW41
2/8/2009
60
0.71
0.7
<5
<5
11
<5
<5
2
2.1
37
<2
<0.1
69
<2
<6.2
13
12.6
<10
<10
Coweeta
CW4D
7/22/2008
250
1.7
1.7
<5
<5
<20
<5
<5
6.2
6.3
78
4.9
<0.1
69
<2
<6.2
9.1
17.8
66
110.0
Lan tree
MW-1
11/12/2003
0.37*
<5.0*
12
0.96*
24
88
53
43
3.8
NA
<5.0
100
18.9
to*
Lan tree
MW-1
6/15/2004
0.24
<5.0
11
1.1
38
59
28
30
<1.0
X2
<5.0
100
18.7
12
Lan tree
MW-11
8/28/2002
2.0*
<5.0*
31
3.5*
76
130
76
83
<5
NA
<5.0
60
19.9
43*
Lan tree
MW-11
3/4/2003
2.0*
<5.0*
29
3.6*
78
180
84
81
<5
NA
<5.0
25
15.5
49*
Lan tree
MW-11
11/12/2003
1.2*
<5.0*
27
5.1*
100
44
93
79
2.7
NA
<5.0
37
17.7
<10*
Lan tree
MW-11
6/15/2004
0.92
<5.0
22
3.6
80
24
71
73
<1.0
X2
<5.0
14
18.4
22
Lan tree
MW-11
4/14/2009
50
1.5
27
4.0
68
NA
87
NA
<2.0
<0.1
NA
NA
16.2
<10
Lan tree
MW-1D
8/27/2002
2.3*
<5.0*
34
8.5*
220
<2.5
297
320
80
NA
<5.0
1.4
17.2
<10*
Lan tree
MW-11D
3/3/2003
2.4*
<5.0*
34
6.5*
130
<2.5
168
180
18
NA
<5.0
<1.0
17.4
<10*
Lan tree
MW-1D
11/12/2003
1.8*
<5.0*
32
7.9*
150
16
248
240
52
NA
<5.0
<1.0
18.0
<10*
Lan tree
MW-1D
6/15/2004
1.9
<5.0
26
8.7
180
<2.5
219
250
33
NA
<5.0
<1.0
17.7
<10
Lan tree
MW-1D
11/28/2007
118
2.0
<5.0
29
9.0
138
<6.2
211
NA
35
NA
NA
NA
17.6
<10
Lan tree
MW-1D
4/14/2009
118
1.9
<5.0
29
9.1
156
NA
209
NA
38
<0.1
NA
NA
17.0
<10
Lan tree
MW-2
8/28/2002
0.53*
<5.0*
31
3.5*
72
9.0
65
82
<5.0
NA
<5.0
4.0
16.9
<10*
Lan tree
MW-2
3/4/2003
0.58*
<5.0*
27
3.2*
70
8.0
76
80
<5.0
NA
<5.0
9.1
16.8
<10*
Lan tree
MW-2
8/14/2009
25
0.49
<5.0
26
3.8
62
65
NA
<2.0
NA
NA
NA
16.7
<10
Lan tree
MW-21
8/28/2002
2.5*
<5.0*
29
6.0*
96
11
122
140
<5.0
NA
<5.0
12
18.5
<10*
Lan tree
MW-21
3/4/2003
2.0*
<5.0*
30
5.6*
85
3.0
118
120
<5.0
NA
<5.0
2.1
16.6
<10*
Lan tree
MW-21
11/17/2003
2.0*
<5.0*
30
5.9*
82
<2.5
NA
120
<5.0
NA
<5.0
4
NA
18*
Lan tree
MW-21
6/15/2004
2.3
<5.0
26
6.1
110
380
122
130
2.0
X2
<5.0
23
7.2
<10
Lan tree
MW-21
8/14/2009
45
2.2
<5.0
30
5.7
88
104
NA
<2.0
NA
NA
NA
17.3
<10
Lan tree
MW-2D
8/28/2002
1.8*
<5.0*
41
4.7*
98
18
220
110
<5.0
NA
<5.0
7.4
19.8
<10*
Lan tree
MW-2D
3/4/2003
1.8*
<5.0*
37
4.5*
91
14
95
100
<5.0
NA
<5.0
<1.0
17.6
<10*
Lan tree
MW-2D
11/17/2003
1.7*
<5.0*
39
4.1*
84
<2.5
96
97
<5.0
NA
<5.0
1.6
17.9
<10*
Lan tree
MW-2D
6/15/2004
1.9
<5.0
36
4.9
100
3.0
100
100
1.0
X2
<5.0
3.0
17.9
<10
Lan tree
MW-2D
8/14/2009
140
2.1
<5.0
36
5.4
96
103
NA
<2.0
NA
NA
NA
17.3
<10
Lan tree
MW-3
8/27/2002
0.47*
<5.0*
9.0
3.6*
48
90
NA
38
<5.0
NA
<5.0
60
NA
<10*
Lan tree
MW-3
3/5/2003
0.63*
<5.0*
8.0
12*
140
360
85
91
5.0
NA
<5.0
140
6.0
13*
Lan tree
MW-3
11/13/2003
0.83*
<5.0*
9.0
9.6*
130
39
71
75
3.0
NA
<5.0
50
5.9
15*
Lan tree
MW-3
6/17/2004
0.97
<5.0
9.0
7.1
130
39
69
75
3.0
NA
<5.0
50
6.3
12
Lan tree
MW-3
4/20/2009
18
1.3
<5.0
4.1
3.0
27
NA
30
NA
<2.0
NA
NA
NA
12.8
<10
Lan tree
MW-31
8/26/2002
0.88*
<5.0*
26
2.1*
50
21
NA
80
<5.0
NA
<5.0
13
NA
11*
Lan tree
MW-31
3/4/2003
0.86*
<5.0*
25
2.1*
70
11
76
81
<5.0
NA
<5.0
8.2
6.2
<10*
Lan tree
MW-31
11/13/2003
0.89*
<5.0*
25
3.3*
72
14
79
84
1.2
NA
<5.0
6.5
6.1
<10*
Lan tree
MW-31
6/17/2004
0.93
<5.0
23
3.0
74
10
91
82
1.0
NA
<5.0
2.2
6.3
<10
Lan tree
MW-31
4/20/2009
60
1.1
<5.0
26
2.8
67
NA
77
NA
<2.0
NA
NA
NA
16.5
<10
Lan tree
MW-4
6/16/2004
0.53
NA
19
1.5
56
11
57
60
<1
NA
<5.0
9.2
16.9
MW-41
8/27/2002
2.0*
<5.0*
23
7.5*
79
96
101
110
<5.0
NA
<5.0
55
17.8
<10*
Ftree
tree
MW41
1 3/3/2003
1.3*
1
1 <5.0*
1 26
4.7*
68
4
T 79
81
<5.0
NA
<5.0
3.0
16.1
<10*
Page 9 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Location
Lan tree
Station ID
MW-41
Samp
.. t. g
11/12/2003
Sampling
Depth
(ft)
Aluminum
Dissolved
(0g/L as AI)
1500*
luminum
Total
(pg/L as Al)
a.
r
Arsen'
Dissolved
L as As)
<10*
Arsenic
(pg/L as
Barium
Dissolved
(pg/L as Ba)
<10*
Barium
Total
a(0g/L
BaOAs) sC3)
�•
17
Bicarbonate
Total
g•
Cadmium
Dissolved
as Cd)
<2.0*
Cadmium
Total
as Cd)
Calcium
Dissolved
as Ca)
3.7*
Calcium
Total
as C
Chloride
Dissolved
Cl)
1.5
Chloride
Total
as CI)
Chromium
Dissolved
as Cr)
<25*
h
'a
T g/L
Copper
sso
[a. CU)
7.4*
Tot'
]a(,OgC
Cyanide
(mg/L
Dissolved
Oxygen
8.5
Fluoride
as.A
0.07
Fluoride
as F)
n
'ro IvI
Dl--o /L
as F
540
Lan tree
MW-41
6/16/2004
<50
<10
<10
25
<1.0
4.9
1.3
<25
<2.0
4.7
<0.1
<50
Lan tree
MW-41
4/20/2009
50
67
<2
<10
25
<1.0
4.7
1.5
<10
<2.0
NA
<0.4
<50
Lan tree
MW4D
8/27/2002
2300*
<10*
19*
30
<2.0*
20*
2.0
<25*
13*
6.8
<0.5
1300*
Langtree
MW4D
3/3/2003
360*
<10*
12*
35
<2.0*
32*
<5.0
<25*
8.2*
NA
<0.5
360*
Lan tree
MW4D
11/12/2003
3100*
<10*
36*
31
<2.0*
18*
2.1
<25*
15*
8.5
0.08
1700*
Lan tree
MW4D
6/16/2004
30000*
<10*
75*
41
<2.0*
34*
1.8
<25*
23*
4.0
<0.1
10000*
Lan tree
MW4D
4/20/2009
140
1 460
1 <2
1 <10
49
<1.0
35
1.7
1
<10
1 <2.0
1
6.5
1 <0.4
1 140
Lan tree
MW-51
8/27/2002
<10*
38*
52
<2.0*
16*
2.0
<10*
<2.0*
NA
<0.5
3200*
Lan tree
MW-51
3/3/2003
<10*
30*
27
<2.0*
7.1*
<5.0
<10*
<2.0*
1.3
<0.5
2200*
Lan tree
MW-51
11/13/2003
<10*
34*
22
<2.0*
6.2*
2.8
<10*
<2.0*
1.1
0.06
3000*
Lan tree
MW-51
6/16/2004
<10
42
41
<2.0
13
2.7
<10
<2.0
1.7
<0.1
200
Lan tree
MW-51
4/20/2009
30
<50
<2.0
<10
36
<1.0
9.0
3.0
<10
<2.0
NA
<0.4
68
Lan tree
MW-5D
8/27/2002
<10*
<10*
33
<2.0*
150*
8.0
<10*
<2.0*
NA
<0.5
<50*
Lan tree
MW-5D
3/3/2003
<10*
13*
28
<2.0*
240*
12
<10*
<2.0*
1.3
<0.5
120*
Lan tree
MW-5D
11/13/2003
<10*
I
<10*
29
<2.0*
220*
12
<10*
<2.0*
1.1
0.1
<50*
Lan tree
MW-5D
6/16/2004
<10
<10
36
<2.0
160
7.0
<10
<2.0
1.7
0.1
<50
Lan tree
MW-5D
4/20/2009
140
<50
<2.0
<10
44
<1.0
240
10 U, P
<10
<2.0
2.63
4 U, P
<50
Lan tree
MW-6
8/26/2002
500*
<10*
<10*
10
<2.0*
2.9*
3.0
<25*
2.7*
5.5
<0.5
870*
Lan tree
MW-6
3/5/2003
520*
<10*
<10*
5.0
<2.0*
1.8*
<5.0
<25*
3.5*
4.6
<0.5
790*
Lan tree
MW-6
11/13/2003
52*
<10*
<10*
8.0
<2.0*
2.0*
2.6
<25*
<2.0*
5.8
<0.5
82*
Lan tree
MW-6
6/17/2004
210
<10
<10
8.2
<2.0
3.2
2.6
<25
<2.0
1.9
<0.1
<50
Lan tree
MW-6
4/14/2009
15
<50
<2.0
11
12
<1.0
4.2
2.8
<10
<2.0
4.1
<0.4
<50
Lan tree
I MW-61
8/26/2002
230*
<10*
<10*
20
<2.0*
5.2*
2.0
<25*
2.9*
6.8
<0.5
230*
Lan tree
MW-61
3/5/2003
<50*
<10*
<10*
15
<2.0*
4.0*
<5.0
<25*
2.7*
6.9
<0.5
<50*
Lan tree
MW-61
11/13/2003
<50*
<10*
<10*
14
<2.0*
3.3*
2.3
<25*
2.4*
4.8
0.04
<50*
Lan tree
MW-61
6/17/2004
<50
<10
<10
15
<2.0
4.0
1.9
<25
<2.0
4.8
<0.1
<50
Lan tree
MW-61
4/14/2009
28
<50
<2.0
<10
17
<1.0
4.2
2.1
<10
<2.0
8.0
<0.4
<50
Lan tree
MW-6D
8/26/2002
<50*
<10*
10*
29
<2.0*
260*
15
<25*
2.8*
6.8
<0.5
<50*
Lan tree
MW-6D
3/5/2003
<50*
<10*
16*
22
<2.0*
380*
19
<25*
<2.0*
0.12
<0.5
<50*
Lan tree
MW-6D
11/13/2003
160*
<10*
15*
16
<2.0*
550*
33
<25*
<2.0*
1.1
0.1
110*
Lan tree
MW-6D
6/17/2004
<50
<10
18
26
<2.0
440
22
<25
<2.0
0.14
0.1
<50
Lan tree
MW-6D
4/14/2009
120
<50
<2.0
11
37
<1.0
330
20 U, P
<10
<2.0
0.36
8.0 U, P
<50
Morgan Mill
MW-1S
11/3/2008
34
<50
<5.0
<10
33
<1.0
17
3.7
<10
<2.0
0.4
<0.4
910
Morgan Mill
MW-1S
1/26/2009
34
<50
2.4
<10
39
<1.0
14
7.9 J8
<10
<2.0
1.3
<0.4 J8
1400
Morgan Mill
MW-1S
4/6/2009
34
<50
2.1
<10
35
<1.0
12
4.7
<10
<2.0
0.5
<0.4
1100
Morgan Mill
MW-1S
8/17/2009
34
<50
<2.0
<10
42
<1.0
14
11
<10
<2.0
0.5
<0.4
2000
Morgan Mill
CH-1
11/3/2008
40
<50
<5.0
<10
110
<1.0
40
15
<10
<2.0
0.2
<0.4
150
Morgan Mill
CH-1
1/26/2009
40
<50
3.6
12
120
<1.0
40
16 J8
<10
<2.0
0.4
<0.4 J8
280
Mor an Mill
CH-1
4/6/2009
40
<50
4.1
10
120
<1.0
37
15
<10
<2.0
0.3
<0.4
250
Morgan Mill
CH-1
8/17/2009
40
<50
4.0
<10
110
<1.0
41
17
<10
<2.0
0.3
<0.4
540
Morcian Mill
I MW-1D
11/3/2008
118
<50
5.7
<10
110
<1.0
40
15
<10
<2.0
0.6
<0.4
<50
Mor an Mill
I MW-1 D
1/26/2009
118
<50
6.9
<10
120
<1.0
43
16 J8
<10
<2.0
0.4
<0.4 J8
<50
Mor an Mill
I MW-1D
4/6/2009
118
<50
7.4
<10
120
<1.0
40
15
<10
<2.0
0.2
<0.4
<50
Morgan Mill
I MW-1D
5/11/2009
70
<50
7.0
<10
120
<1.0
41
18
<10
<2.0
0.9
<0.4
<50
Mor an Mill
I MW-1D
8/17/2009
118
<50
7.5
<10
120
<1.0
42
18
<10
<2.0
0.4
<0.4
<50
Morgan Mill
MW-2D
11/12/2008
118
<50
2.2
34
120
<1.0
40
17
<10
<2.0
0.4
<0.4
120
Mor an Mill
MW-2D
1/26/2009
118
<50
3.6
34
120
<1.0
40
17 J8
<10
<2.0
0.2
<0.4 J8
170
Morgan Mill
MW-2D
4/6/2009
118
<50
3.9
35
130
<1.0
43
17
<10
<2.0
0.2
<0.4
180
Morgan Mill
MW-2D
5/12/2009
70
<50
3.9
32
130
<1.0
40
20
<10
<2.0
0.8
<0.4
220
Mor an Mill
MW-2D
8/17/2009
118
<50
4.0
32
120
<1.0
44
19
<10
<2.0
0.2
<0.4
150
Pasour
PM-1
12/15/2008
85
<50
<2.0
<10
11
<1.0
1.8
1.3
<10
<2.0
7.5
<0.4
110
Pasour
PM-1
6/8/2009
85
<50
<2.0
<10
11
<1.0
1.7
1.3
<10
<2.0
8.0
<0.4
71
Pasour
PM-2
12/15/2008
DRY
NA
NA
NA
3.8
NA
NA
NA
NA
NA
NA
NA
NA
Pasour
PM-2
6/22/2009
42
<50
<2.0
<10
<1.0
1.7
4.3
<10
<2.0
NA
<0.4
<50
Pasour
PM-3
12/15/2008
110
<50
<2.0
<10
6.8
<1.0
1.3
1.4
<10
<2.0
8.0
<0.4
90
Pasour
PM-3
6/8/2009
110
<50
<2.0
<10
5.2
<1.0
1.3
1.3
<10
<2.0
7.6
<0.4
87
Pasour
PM-9
12/15/2008
90
<50
<2.0
15
<1
<1.0
0.13
1.8
<10
<2.0
7.6
<0.4
<50
Pasour
PM-9
6/8/2009
90
<50
<2.0
14
<1
<1.0
<0.10
1.6
<10
<2.0
8.9
<0.4
<50
Pasour
PM-6
1/22/2009
70
<50*
<2.0*
15*
26
<1.0*
4.8*
1.2
<10*
<2.0*
2.5
<0.4
18000*
Pasour
PM-6
6/15/2009
130
<50
<2.0
<10
24
<1.0
6.1
1.2
<10
<2.0
7.2
<0.4
76
Pasour
PM-7
1/21/2009
70
2000*
<2.0*
25*
5.2
<1.0*
1.3*
<1.0
<10*
<2.0*
9.0
<0.4
1200*
Pasour
PM-7
6/15/2009
70
580*
<2.0*
15*
1.8
<1.0*
0.24*
1.7
<10*
<2.0*
9.2
<0.4
540*
Pasour
PM-17
1/21/2009
28
68
<2.0
<10
42
<1.0
4.9
2.9
<10
<2.0
5.2
<0.4
60
Pasour
PM-17
6/15/2009
30
<50
<2.0
<10
45
<1.0
5.1
2.5
<10
<2.0
9.5
<0.4
<50
Pasour
PM-18
1/21/2009
80
<50
3.0
<10
57
<1.0
12
1.3
<10
<2.0
4.3
<0.4
<50
Pasour
PM-18
6/15/2009
119
<50
3.9
<10
58
<1.0
12
1.3
<10
<2.0
4.6
<0.4
<50
Pasour
PM-22
12/15/2008
85
<50
<2.0
<10
8.8
<1.0
0.85
1.1
<10
<2.0
8.0
<0.4
410
Pasour
PM-22
6/8/2009
87
<50
<2.0
<10
5.3
<1.0
0.69
1.3
<10
<2.0
8.4
<0.4
130
Pasour
PM-25
12/15/2008
75
<50
<2.0
<10
<1
<1.0
0.19
1.2
<10
<2.0
8.9
<0.4
<50
Pasour
PM-25
6/8/2009
70
<50
<2.0
<10
<1
<1.0
0.12
1.4
<10
<2.0
9.1
<0.4
<50
Pasour
PM-5
12/15/2008
60
<50
<2.0
<10
2.7
<1.0
0.46
1.4
<10
<2.0
NA
<0.4
<50
Pasour
PM-5
6/22/2008
60
<50
<2.0
<10
1.0
<1.0
0.17
1.3
<10
<2.0
NA
<0.4
<50
Pasour
PM-14
1/21/2009
45
<50
<2.0
<10
<1
<1.0
0.19
1.2
<10
<2.0
8.8
<0.4
<50
Pasour
PM-14
6/22/2008
45
<50
<2.0
<10
<1
<1.0
0.20
1.2
<10
<2.0
10.7
<0.4
<50
Pasour
PM-15
1/21/2009
48
<50
<2.0
<10
2.7
<1.0
0.44
1.4
<10
<2.0
NA
<0.4
<50
Pasour
PM-15
6/22/2008
53
<50
<2.0
<10
2.8
<1.0
0.4
1.2
<10
<2.0
8.0
<0.4
<50
Pasour
PM-19
1/21/2009
47
<50
<2.0
<10
29
<1.0
3.2
8.4
<10
<2.0
0.5
<0.4
<50
Pasour
PM-19
6/22/2008
50
<50
<2.0
<10
8.0
<1.0
3.2
5.8
<10
<2.0
0.7
<0.4
<50
Pasour
PM-0
1/22/2009
NA*
<50
3.3
25
30
<1.0
22
1.3
<10
<2.0
0.27
<0.4
<50
Pasour
PM-0
6/22/2008
na
<50
<2.0
21
62
<1.0
19
1.2
<10
<2.0
8.42
<0.4
<50
iAARCADIS
Page 10 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation — Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
FIARCJaDIS ��,a��,
Location
Station ID
Sampling
Date
Sampling
Depth
()
Iron
Total
(Ng/L
as Fe)
Lead
Dissolved
(Ng/L
as Pb)
Lead
Total
(Ng/L
as Pb)
Magnesium
Dissolve
(mg/L1mg/L
asMg)s
nes]um
otal
Mg)
Manganese
Dissolved
(Ng/L
as Mn)
Manganese
Total
(Ng/L
as Mn)
Mercury
Dissolved
(Ng/L
as Hg)
ercury
Total
(Ng/L(Ng/L
as Hg)
Nickel
Dissolved
as Ni)
Nickel
Total
(Ng/L
as Ni)
Nitrogen
mo.
(mg/L
as NH d
Nitrogen
Ammonia +
Organic
r
Nitrogen
Organic Dis
(mg/L
as N)
-M
Nitrogen,
Nitrate Dis
(mg/L
as N)
Nitrogen,
Nitrate Dis
(mg/L
as NO3)
Nitrate as N
(mg/L
as NO3)
NO2+
NO3 Dis
(mg/L
as N)
NO2+NO3
as N
(mg/L
as N)
Nitrite
as N
. No
as NO
Oxidation
Reduction
potential,
raw value
(mV)
p
Fie]
Lab WH,
Lab
(SU)
Phosph
(mg/L
as PO4)AM
Phosphorus
Ortho, dis
(mg/L as P)
Phosphorous
as P Total
(mg/L as P)
Page 11 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
PARCADIS
Location
Lan tree
Station ID
MW-41
Samplin
..7
11/12/2003
Sampling
Potassium
0.54*
Potassium
Radon-22 2
Selen
<5.0*
Silica
Dissolved
Silica
Total
21
Silver
Silver
Total
Sodium
gIL as Na
1.2*
Sodlu in
Total
Solids
(mg/L)
44
Solids,
Residue at
:0
(M eg C
27
Specific
Cond., Field
(Us/cm)
49
Spec ific
Cond., Lab
(us/cm)
54
Sulfate
Dissolved
(mg/L as
<2.0
Sulfa
at
Tot - 1[
(mg/L as
�ulfid.
Dissolved
(pg/L as S)
NA
Sulfide
(mg/L as
1-12S
Total
Di Ived
sso
Solids
Total
Organic
Carbon tota I
<5.0
Total
Suspends
Solids,
Residue
1
To
r(NT
18
Water Temp
(deg C)
17.8
Zinc
Dissolved
pg/L a Zn)
<10*
Zinc
Total
(pg/L as
Lan tree
MW-41
6/16/2004
1.0
<5.0
22
3.6
60
7
65
66
<1.0
<5.0
4.8
17.8
<10
Lan tree
MW-41
4/20/2009
50
0.67
<5.0
21
2.0
55
NA
58
NA
<2.0
NA
NA
NA
16.9
<10
Lan tree
MW4D
8/27/2002
2.0*
<5.0*
31
6.0
110
65
132
150
25
NA
<5.0
50
17.5
<10*
Langtree
MW41)
3/3/2003
1.5*
<5.0*
27
6.7
190
19
NA
270
62
NA
<5.0
4.4
NA
<10*
Lan tree
MW4D
11/12/2003
2.1*
<5.0*
29
5.5
90
240
125
120
19
NA
<5.0
31
18.8
<to*
Lan tree
MW4D
6/16/2004
3.9*
<5.0*
26
10*
140
340
161
170
34
NA
<5.0
380
18.9
<10
Lan tree
MW4D
4/20/2009
140
1.60
<5.0
27
8.2
160
NA
198
NA
53
NA
NA
NA
16.8
<10
Lan tree
I MW-51
8/27/2002
4.9*
<5.0*
6.7*
98
140
NA
190
<5.0
NA
NA
110
NA
10*
Lan tree
MW-51
3/3/2003
1.6*
<5.0*
25
2.8*
76
180
274
78
<5.0
NA
<5
150
16.1
<10*
Lan tree
MW-51
11/13/2003
1.3*
<5.0*
22
2.1*
66
180
53
67
1.8
NA
<5
110
16.0
<10*
Lan tree
MW-51
6/16/2004
2.8
NA
20
4.9
200
180
122
170
10
NA
<5
350
16.4
<10
Lan tree
MW-51
4/20/2009
30
1.2
<5.0
24
<5.0
3.0
62
NA
70
NA
<2.0
NA
NA
NA
16.6
<10
Lan tree
MW-5D
8/27/2002
3.3*
<5.0*
24
22*
680
<2.5
NA
860
370
NA
<5
<1.0
NA
<10*
Lan tree
MW-5D
3/3/2003
4.1*
<5.0*
20
34*
930
4
1090
1100
540
NA
<5
2.8
16.9
<10*
Lan tree
MW-5D
11/13/2003
3.2*
<5.0*
21
24*
830
<2.5
1047
1000
580
NA
<5
<1.0
16.7
<10*
Lan tree
MW-5D
6/16/2004
3.3
NA
20
23
640
5
850
820
390
NA
<5
<1.0
18.2
<10
Lan tree
MW-5D
4/20/2009
140
2.9
<5.0
23
<5.0
32
804
NA
877
NA
490
NA
NA
NA
16.4
<10
Lan tree
MW-6
8/26/2002
0.51*
<5.0*
12
1.4*
22
14
36
39
<5.0
NA
<5.0
18
5.6
<10*
Lan tree
MW-6
3/5/2003
0.49*
<5.0*
7.0
1.2*
14
16
30
29
<5.0
NA
<5.0
50
6.0
15*
Lan tree
MW-6
11/13/2003
0.38*
<5.0*
11
0.87*
29
<2.5
24
33
0.4
NA
<5.0
2.1
5.4
22*
Lan tree
MW-6
6/17/2004
0.52
<5.0
8.9
1.3
38
9.0
34
37
1.3
NA
NA
10
4.5
<10*
Lan tree
MW-6
4/14/2009
15
0.62
<5.0
11
2.0
32
NA
47
NA
5.1
NA
NA
NA
15.2
<10
Lan tree
MW-61
8/26/2002
0.64*
<5.0*
20
1.9*
38
8.0
53
56
<5.0
NA
<5.0
5.4
16.1
<10*
Lan tree
I MW-61
3/5/2003
0.56*
<5.0*
17
1.7*
41
5.0
44
38
<5.0
NA
<5.0
1.6
16.8
<10*
Lan tree
MW-61
11/13/2003
0.44*
<5.0*
17
1.4*
38
<2.5
33
38
0.4
NA
<5.0
1.2
16.5
<10*
Lan tree
MW-61
6/17/2004
0.54
<5.0
16
1.9
54
<2.5
52
42
<1.0
NA
NA
<1.0
19.7
25
Lan tree
MW-61
4/14/2009
28
0.63
<5.0
17
2.1
36
NA
43
NA
<2.0
NA
NA
NA
16.5
<10
Lan tree
MW-61)
8/26/2002
3.9*
<5.0*
18
36*
1100
<2.5
53
1300
740
NA
<5.0
<1.0
16.0
<10*
Lan tree
MW-6D
3/5/2003
4.3*
<5.0*
17
42*
1400
<2.5
1617
1600
710
NA
<5.0
<1.0
16.8
<10*
Lan tree
MW-6D
11/13/2003
4.2*
<5.0*
17
55*
2500
3.0
2440
2800
1500
NA
<5.0
1.1
16.5
<10*
Lan tree
MW-6D
6/17/2004
5.7
<5.0
16
55
1700
<2.5
2028
2000
1000
NA
NA
<1.0
17.6
13
Lan tree
MW-61)
4/14/2009
120
2.5
<5.0
20
34
1224
NA
1374
NA
800
NA
NA
NA
16.5
<10
Morgan Mill
MW-1S
11/3/2008
34
1.00
<5.0
35
<5.0
14
152
<6.2
NA
NA
55
<2
1.5
16.3
10
Morgan Mill
MW-1S
1/26/2009
34
0.78
<5.0
NA
<5.0
14
144
NA
194
NA
40 J8
<0.1
<2
NA
16.0
17
Morgan Mill
MW-1S
4/6/2009
34
0.83
<5.0
38
<5.0
13
135 J
NA
141
NA
35
<0.1
NA
NA
16.3
14
Morgan Mill
MWAS
8/17/2009
34
0.72
<5.0
NA
<5.0
13
138
NA
138
NA
34
NA
NA
NA
16.1
<10
Morgan Mill
CH-1
11/3/2008
40
0.85
<5.0
23
<5.0
20
182
<6.2
NA
NA
15
<2
2.4
16.1
<10
Morgan Mill
CH-1
1/26/2009
40
0.57
<5.0
NA
<5.0
21
179
NA
301
NA
14 J8
<0.1
<2
NA
15.8
<10
Mor an Mill
CH-1
4/6/2009
40
0.60
<5.0
25
<5.0
21
190 J
NA
280
NA
13
<0.1
NA
NA
16.2
<10
Morgan Mill
CH-1
8/17/2009
40
0.52
<5.0
NA
<5.0
19
180
NA
275
NA
14
NA
NA
NA
16.3
<10
Mor an Mill
I MW-1D
11/3/2008
118
0.35
<5.0
25
<5.0
20
178
<6.2
NA
NA
11
<2
<1
16.7
<10
Mor an Mill
I MW-1D
1/26/2009
118
0.39
<5.0
NA
<5.0
21
178
NA
292
NA
12 J8
<0.1
<2
NA
16.8
<10
Mor an Mill
I MW-1 D
4/6/2009
118
0.40
<5.0
25
<5.0
21
193 J
NA
284
NA
12
<0.1
NA
NA
16.6
<10
Morgan Mill
I MW-1D
5/11/2009
70
0.39
<5.0
25
<5.0
21
190
NA
283
NA
14
NA
NA
16.6
<10
Mor an Mill
I MW-1D
8/17/2009
118
0.34
<5.0
NA
<5.0
21
183
NA
258
NA
13
NA
NA
NA
16.9
<10
Morgan Mill
MW-2D
11/12/2008
118
0.41
<5.0
26
<5.0
23
193
<6.2
NA
NA
13
<2
2.6
17.0
82
Mor an Mill
MW-2D
1/26/2009
118
0.34
<5.0
NA
<5.0
22
186
NA
NA
NA
13 J8
<0.1
<2
NA
16.8
170
Morgan Mill
MW-2D
4/6/2009
118
0.40
<5.0
26
<5.0
23
202 J
NA
292
NA
14
<0.1
NA
NA
16.7
32
Morgan Mill
MW-2D
5/12/2009
70
0.41
<5.0
26
<5.0
21
206
NA
282
NA
15
NA
NA
16.6
40
Mor an Mill
MW-2D
8/17/2009
118
0.38
<5.0
NA
<5.0
21
184
NA
191
NA
15
NA
NA
NA
16.9
27
Pasour
PM-1
12/15/2008
85
0.51
<5.0
12
<5.0
1.8
31
<6.2
32
30
<2.0
<0.1J6
<2.0
NA
16.8
<10
Pasour
PM-1
6/8/2009
85
0.43
<5.0
12
<5.0
1.7
29
NA
29
NA
<2.0
NA
NA
NA
16.7
<10
Pasour
PM-2
12/15/2008
DRY
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Pasour
PM-2
6/22/2009
42
0.75
<5.0
11
<5.0
3.3
38
NA
44
NA
<2.0
NA
NA
NA
18.4
<10
Pasour
PM-3
12/15/2008
110
0.41
<5.0
11
<5.0
1.8
26
<6.2
25
25
<2.0
<0.1J6
<2.0
NA
16.6
<10
Pasour
PM-3
6/8/20091
110
0.38
<5.0
11
<5.0
1.7
24
NA
22
NA
<2.0
NA
NA
NA
16.6
<10
Pasour
PM-9
12/15/2008
90
0.24
<5.0
7.3
<5.0
2.3
23
<6.2
22
21
<2.0
<0.1J6
<2.0
NA
15.9
<10
Pasour
PM-9
6/8/2009
90
0.24
<5.0
7.6
<5.0
2.1
20
NA
20
NA
<2.0
NA
NA
NA
16.5
<10
Pasour
PM-6
1/22/2009
70
0.71*
<5.0*
31
<5.0*
7.2*
62
38
57
53
<2.0
<2.0
<2.0
NA
15.0
<10*
Pasour
PM-6
6/15/2009
130
0.51
<5.0
36
<5.0
7.0
70
NA
58
NA
<2.0
NA
NA
NA
16.4
<10
Pasour
PM-7
1/21/2009
70
0.48*
<5.0*
7.5
<5.0*
4.5*
62
100
18
21
<2.0
<0.1
<2.0
NA
15.1
12
Pasour
PM-7
6/15/2009
70
0.16*
<5.0*
7.5
<5.0*
2*
20
NA
14
NA
<2.0
NA
NA
NA
16.6
<10*
Pasour
PM-17
1/21/2009
28
0.89
<5.0
23
<5.0
8.7
43
460
100
92
<2.0
<0.1
<2.0
NA
14.4
<10
Pasour
PM-17
6/15/2009
30
0.78
<5.0
23
<5.0
6.8
73
NA
92
NA
<2.0
NA
NA
NA
15.0
<10
Pasour
PM-18
1/21/2009
80
0.81
<5.0
30
<5.0
7.2
97
<6.2
123
110
3.8
<0.1
<2.0
NA
15.1
<10
Pasour
PM-18
6/15/2009
119
0.79
<5.0
30
<5.0
6.7
91
NA
113
NA
3.7
NA
NA
NA
16.0
<10
Pasour
PM-22
12/15/2008
85
0.44
<5.0
9.5
<5.0
1.3
25
<6.2
27
25
<2.0
<0.1J6
<2.0
NA
16.1
1600
Pasour
PM-22
6/8/2009
87
0.34
<5.0
9.2
<5.0
1.3
20
NA
18
NA
<2.0
NA
NA
NA
16.6
640
Pasour
PM-25
12/15/2008
75
0.24
<5.0
7.4
<5.0
1.2
20
21
12.7
<14.9
<2.0
<0.1J6
<2.0
NA
16.3
<10
Pasour
PM-25
6/8/2009
70
0.18
<5.0
7.6
<5.0
1.2
18
NA
14
NA
<2.0
NA
NA
NA
16.5
<10
Pasour
PM-5
12/15/2008
60
0.28
<5.0
7.8
<5.0
1.6
18
131
16
16
<2.0
<0.1 J6
<2
NA
15.4
<10
Pasour
PM-5
6/22/2008
60
0.26
<5.0
7.9
<5.0
1.7
16
NA
16
NA
<2.0
NA
NA
NA
16.3
<10
Pasour
PM-14
1/21/2009
45
0.19
<5.0
6.8
<5.0
1.4
<12
186
14
13
<2.0
<0.1
<2
NA
14.4
<10
Pasour
PM-14
6/22/2008
45
0.18
<5.0
7.3
<5.0
1.3
14
NA
14
13
<2.0
NA
NA
NA
16.5
<10
Pasour
PM-15
1/21/2009
48
0.22
<5.0
7.5
<5.0
1.3
<12
148
17.3
18
<2.0
<0.1
<2
NA
15.6
<10
Pasour
PM-15
6/22/2008
53
0.21
<5.0
7.4
<5.0
1.2
16
NA
15
NA
<2.0
NA
NA
NA
16.8
<10
Pasour
PM-19
1/21/2009
47
0.97
<5.0
14
<5.0
14
58
<6.2
107
99
<2.0
<0.1
<2.0
NA
15.2
<10
Pasour
PM-19
6/22/2008
50
0.80
<5.0
14
<5.0
13
63
NA
95
NA
<2.0
NA
NA
NA
15.8
<10
Pasour
PM-O
1/22/2009
NA*
0.52
<5.0
31
<5.0
8.9
126
<6.2
157
150
<2.0
<0.1
<2.0
NA
17.3
120
Pasour
PM-0
6/22/2008
na
0.61
<5.0
34
<5.0
6.2
100
NA
90
NA
1 <2.0
NA
NA
NA
16.9
1900
Page 12 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Location
Tater Hill
Station ID
40004000001
Samplin
.. t. g
10/2/2007
Sampling
Depth
38
Aluminum
Dissolved
luminum
Total
18000
mo n a
a.
( rl'13
<0.02
Arsen'
Disso' 1c
Arsenic
Total
As)
<5
Barium
olved
Barium
Total
a BaOC
82
B a bon
D .. "i
�•C3)
Bicarbonate
Total
�•
310
Cadmium
Dissolved
as Cd)
Cadmium
Total
as Cd)
<1
Calcium
Dissolved
as Ca)
Calcium
Total
C
46.0
Chloride
Dissolved
as Cl)
Chloride
Total
as Cl)
9.3
Chromium
Dissolved
as Cr)
Ch
Total
'a
. Cr)j
20
C
ss
[a.
pp
410
Cyanide
(mg/L
Dissolved
OXY9
10.23
Fluoride
Dissolved
as F)@
Fluoride
Total
as F)
<0.4
Iron
Dissolve
as Fe)
Tater Hill
40004000001
4/2/2008
38
<50
11000
<0.02
<5
<5
12
36
310
<1
<1
51.0
67.0
5.3
<10
17
32.0
150
<0.02
<0.4
<50
Tater Hill
40004000001
7/9/2008
41
44000
<0.02
<5
150
230
<1
87.0
<1
43
750
<0.4
Tater Hill
40004000001
1/12/2009
41
<50
18000
0.46
<5
<5
<10
61
270
<1
<1
94.0
99.0
1.7
<10
27
7.1
250
<0.4
<50
Tater Hill
40004000002
10/2/2007
210
<50
150
<0.02
<5
<5
<10
<10
30
<1
<1
11.0
11.0
1.3
<10
<10
2.0
5.0
<0.02
9.05
<0.4
<50
Tater Hill
40004000002
4/1/2008
250
<50
<50
<0.02
<5
<5
<10
<10
13
<1
<1
5.9
5.8
1.4
<10
<10
6.6
4.1
12.17
<0.4
<50
Tater Hill
40004000002
7/8/2008
250
<50
62
<0.02
<5
<5
<10
<10
16
<1
<1
7.5
7.3
1.2
<10
<10
2.1
3.4
9.52
<0.4
<50
Tater Hill
140004000002
1/12/2009
242
1 <50
<50
<0.02
<5
<5
<10
<10
17
<1
<1
6.8
6.7
<1
<10
<10
3.4
4.1
7.70
<0.4
<50
Tater Hill
40004000002
7/7/2009
245
<50
<50
<0.02
<5
<5
<10
<10
20
<1
<1
7.0
7.0
<1
<10
<10
2.7
3.9
8.69
<0.4
<50
Tater Hill
40004000003
10/2/2007
245
<50
100
<5
<5
<10
<10
35
<1
<1
1.2
<10
<10
<2
<2
<0.02
1.88
<0.4
<50
Tater Hill
40004000003
4/2/2008
245
<50
<50
<0.02
<5
<5
<10
<10
8.2
<1
<1
13.0
13.0
1.3
<10
<10
<2
<2
2.26
<0.4
<50
Tater Hill
40004000003
7/9/2008
285
<50
<50
<0.02
<5
<5
<10
<10
34
<1
<1
14.0
13.0
1.2
<10
<10
<2
<2
1.54
<0.4
<50
Tater Hill
40004000003
1/13/2009
245
<50
<50
<0.02
<5
<5
<10
<10
36
<1
<1
14.0
14.0
<1
<10
<10
<2
<2
1.85
<0.4
<50
Tater Hill
40004000003
1/13/2009**
<50
<0.02
<5
<10
37
<1
14.0
14.0
<1
<10
<2
1.85
<0.4
Tater Hill
40004000003
7/7/2009
145
<50
<50
<0.02
<5
<5
<10
<10
40
<1
<1
14.0
<1
<10
<10
<2
<2
2.04
<0.4
<50
Tater Hill
140004000003
7/7/2009**
<50
<0.02
<5
<10
<1
13.0
13.0
<10
<2
2.04
<50
Tater Hill
40004000004
10/2/2007
NA/SW
77
370
<5
<5
<10
<10
13
<1
<1
13.0
1.4
<10
<10
<2
<0.02
8.71
<0.4
980
Tater Hill
40004000004
4/2/2008
NA/SW
<50
380
<5
<5
<10
<10
8
<1
<1
3.1
3.2
1.2
<10
<10
<2
12.69
<0.4
230
Tater Hill
40004000004
7/9/2008
NA/SW
96
500
<5
<5
<10
<10
11
<1
<1
2.5
2.5
1.2
<10
<10
<2
8.19
<0.4
620
Tater Hill
40004000004
1/12/2009
NA/SW
<50
100
<5
<5
<10
<10
6.4
<1
<1
3.3
3.3
<1
<10
<10
<2
10.69
<0.4
140
Tater Hill
40004000004
7/7/2009
NA/SW
51
540
<5
<5
<10
<10
11
<1
<1
2.1
1.9
<1
<10
<10
<2
8.71
<0.4
310
Upper Piedmont
40001000001
12/11/2002
14
1700
<0.02
<10
22
49
<2
15
3
<25
2.8
<0.02
3.60
<0.5
Upper Piedmont
40001000001
6/11/2003
3400
0.02
<10
30
24
<2
7.8
4.2
<25
3.8
4.63
<0.08
Upper Piedmont
40001000001
12/8/2003
14
4700
0.02
<10
41
40
<2
13
2.7
<25
6.3
1.25
0.1
Upper Piedmont
140001000001
7/26/2004
540
<0.02
<10
24
43
<2
13
2.7
<25
<2
2.25
<0.2
Upper Piedmont
140001000001
3/7/2005
17
<50
1800
0.12
<5
<5
11
27
38
<2
<2
9.1
9.4
3.4
<25
<25
<2
6.3
2.59
<0.4
<50
Upper Piedmont
140001000001
9/26/2006
580
<0.02
<5
26
50
<2
14
2.9
<25
<2
4.49
<0.4
Upper Piedmont
140001000001
9/18/2007
15
<50
<0.02
<5
13
49
<1
12
2.1
<10
<2
0.50
0.4
Upper Piedmont
140001000001
9/23/2008
15
<50
110
0.1
<5
<5
14
15
49
<1
<1
13
14
3.2
<10
<10
<2
<2
1.51
<0.4
<50
Upper Piedmont
140001000002
12/11/2002
35
69
<0.02
<10
16
180
<2
16
9
<25
<2
<0.02
2.20
<0.5
Upper Piedmont
140001000002
6/11/2003
65
<0.02
<10
17
110
<2
14
10
<25
<2
3.25
0.24
Upper Piedmont
140001000002
12/8/20031
35
280
1 <0.02
<10
11
78
<2
15
9
<25
<2
1.76
0.16
Upper Piedmont
140001000002
7/26/2004
68
270
<10
19
80
<2
15
9.9
<25
<2
2.85
<0.2
Upper Piedmont
140001000002
3/7/2005
65
<50
210
<0.02
<5
<5
12
13
78
<2
<2
17
16
9.9
<25
<25
<2
<2
2.48
<0.4
<50
Upper Piedmont
140001000002
9/26/2006
1100
<0.02
<5
22
70
<2
14
8.4
<25
2.5
2.77
<0.4
Upper Piedmont
140001000002
9/18/2007
67
360
<0.02
<5
12
64
<1
14
5.7
<10
<2
1.93
<0.4
Upper Piedmont
140001000002
9/23/2008
55
<50
210
0.1
<5
<5
<10
10
59
<1
<1
13
13
5.3
<10
<10
<2
<2
2.12
<0.4
<50
Upper Piedmont
140001000003
12/11/2002
146
160
<0.02
17
<10
110
<2
27
3
<25
<2
<0.02
0.18
1.4
Upper Piedmont
140001000003
6/11/2003
<50
<0.02
17
<10
110
<2
27
2.5
<25
<2
0.07
1.4
Upper Piedmont
140001000003
12/8/2003
148
57
<0.02
17
<10
110
<2
27
2.7
<25
<2
0.06
1.2
Upper Piedmont
140001000003
7/26/2004
145
180
22
<10
120
<2
29
3.6
<25
<2
0.20
1.2
Upper Piedmont
140001000003
3/7/2005
150
<50
<50
<0.02
24
25
<10
<10
118
<2
<2
31
31
3.8
<25
<25
<2
<2
0.25
1.3
<50
Upper Piedmont
140001000003
9/26/2006
<50
<0.02
18
<10
110
<2
29
4.3
<25
<2
0.07
1.2
Upper Piedmont
140001000003
9/18/2007
150
<50
<0.02
22
<10
110
<1
31
3.7
<10
<2
0.08
1
Upper Piedmont
140001000003
9/23/2008
151
<50
<50
0.1
<5
<5
<10
<10
110
<1
<1
32
31
4.7
<10
<10
<2
<2
0.09
1
<50
Upper Piedmont
140001000020
12/11/2002
NA/SW
870
0.06
<10
25
18
<2
4.8
5
<25
2.5
10.84
<0.5
Upper Piedmont
140001000020
6/11/2003
NA/SW
300
0.04
<10
24
19
<2
4.7
2.8
<25
<2
7.20
0.11
Upper Piedmont
140001000020
12/8/2003
NA/SW
87
0.09
<10
20
26
<2
5.5
3.8
<25
<2
10.80
0.1
Upper Piedmont
140001000020
7/26/2004
NA/SW
120
0.02
<10
19
35
<2
7.3
5
<25
<2
6.50
<0.2
Upper Piedmont
140001000020
3/7/2005
NA/SW
510
0.03
<5
<5
22
26
<2
5.8
5.1
<25
<2
11.02
<0.4
Upper Piedmont
140001000020
9/26/2006
NA/SW
170
0.08
<5
12
25
<2
5.6
4.1
<25
<2
7.11
<0.4
Upper Piedmont
140001000020
9/18/2007
NA/SW
58
0.06
<5
28
34
<1
7.3
4.8
<10
<2
7.69
<0.4
Upper Piedmont
140001000020
9/23/2008
NA/SW
<50
<50
<0.02
<5
<5
21
22
30
<1
<1
7.3
7.3
4.8
<10
<10
<2
<2
7.39
400
Upper Piedmont
140001000004
12/11/2002
10
2500
0.12
<10
83
59
<2
7.2
6
<25
3.4
<0.02
6.20
<0.5
Upper Piedmont
40001000004
6/11/2003
2900
0.08
<10
95
15
<2
5.8
5.1
<25
3.9
0.15
Upper Piedmont
40001000004
12/8/2003
3700
0.05
<10
77
22
<2
5.4
3.5
<25
3.7
0.04
0.09
Upper Piedmont
40001000004
7/26/2004
2100
0.05
<10
76
22
<2
5.4
4.4
<25
2.6
4.59
<0.2
Upper Piedmont
40001000004
3/7/2005
<50
700
<0.02
<5
<5
58
63
21
<2
<2
5.7
5.6
3.7
<25
<25
<2
<2
5.80
<0.4
760
Upper Piedmont
40001000004
9/26/2006
180
0.03
<5
86
28
<2
7
2.6
<25
<2
<0.4
Upper Piedmont
40001000005
12/11/2002
38
<50
<0.02
<10
<10
92
<2
22
4
<25
<2
<0.02
0.27
<0.5
Upper Piedmont
40001000005
6/11/2003
160
<0.02
<10
12
85
<2
20
3.4
<25
<2
3.49
0.22
Upper Piedmont
140001000005
12/8/20031
38
<50
<0.02
<10
<10
83
<2
19
3.2
<25
<2
0.05
0.2
Upper Piedmont
140001000005
7/26/2004
42
<50
<10
12
90
<2
20
4
<25
<2
0.65
0.2
Upper Piedmont
140001000005
7/26/2004**
<50
<10
15
86
1
<2
21
4.6
<25
<2
0.65
0.27
Upper Piedmont
140001000005
3/7/2005
41
<50
60
<0.02
<5
<5
<10
<10
90
<2
<2
22
22
4.2
<25
<25
<2
<2
0.60
<0.4
<50
Upper Piedmont
140001000005
9/26/2006
41
50
<5
29
46
<2
1
20
4.4
: 25
<2
<0.4
Upper Piedmont
140001000006
12/11/2002
156
61
<0.02
<10
<10
140
<2
35
4
<25
<2
<0.02
0.20
0.8
Upper Piedmont
140001000006
6/11/2003
<50
<0.02
<10
10
130
<2
35
3.3
<25
<2
0.05
0.92
Upper Piedmont
140001000006
12/8/2003
156
<50
<0.02
<10
<10
95
<2
25
2.5
<25
<2
0.02
1.2
Upper Piedmont
140001000006
7/26/2004
159
<50
<10
14
130
<2
28
3.7
<25
<2
0.18
0.72
Upper Piedmont
140001000006
3/7/20051
159
<50
<50
0.04
<5
<5
<10
<10
112
<2
<2
30
31
3.8
<25
<25
<2
<2
0.18
0.8
420
Upper Piedmont
140001000006
9/26/2006
<50
<0.02
<5
<10
150
<2
30
3.3
<25
<2
1.5
Upper Piedmont
140001000007
7/29/2004
2300
<10
62
110
<2
30
9.1
<25
7.8
2.08
0.9
Upper Piedmont
140001000008
12/12/2002
164
230
<0.02
<10
<10
84
<2
22
3
<25
<2
<0.02
0.17
2.2
Upper Piedmont
140001000008
6/9/2003
164
250
<0.02
14
<10
74
<2
24
2.5
<25
<2
0.05
1.9
Upper Piedmont
40001000008
12/10/2003
164
<50
<0.02
<10
<10
80
<2
23
2.8
<25
<2
1.7
Upper Piedmont
40001000008
7/29/2004
167
<50
<50
10
10
<10
<10
89
<2
<2
28
24
3.2
<25
<25
<2
<2
0.03
2
<50
Upper Piedmont
40001000008
7/29/2004**
<50
<50
10
10
<10
<10
83
<2
<2
27
28
3.3
<25
<25
<2
<2
0.03
2
<50
Upper Piedmont
40001000008
3/7/2005
167
<50
<0.02
12
<10
86
<2
24
3.1
<25
<2
0.33
1.8
Upper Piedmont
40001000008
9/28/2006
<50
<0.02
9.8
<10
33
<2
24
3.5
<25
<2
0.04
1.8
Upper Piedmont
40001000009
12/9/2002
65
116
0.13
<10
<10
38
<2
15
12
<25
<2
<0.02
3.50
1.6
iAARCADIS
Page 13 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
FIARCJaDIS ��,a��,
Location
Tater Hill
Station ID
do
40004000001
Samping
t1
11L
10/2/2007
Sampling
Depth
(ft)
38
Iron
Total
as Fe)
12000
Lead
Dissolved
as Pb)
Lead
Total
as Pb)
<10
Magnesium
Dissolve
as Mg)
We
-,::um
Ks
12.0
Manganese
Dissolved
Manganese
Total
570
Mercury
Dissolved
ercury
Tot. I
Nickel
Dissolved
Nicke!q
Total
12
Nitrogen
Loma
Ni trogen
Ammonia +
•
M�M
Nitrogen
Organic Dis
Nitrogen,
Nitrate Dis
Nitrogen,
Nitrate Dis
�•
a
Nitrate as N
,•
<0.02
NO2 +
NO2+NO3
as
�• .
Oxidation III
Reduction
Fie]
7.50
[-Lab WH,
p1h
.•
Phosphorus
Phosphorous
0.80
Tater Hill
40004000001
4/2/2008
38
9000
<10
<10
16.0
20.0
150
310
<10
<10
0.30
0.13
Tater Hill
40004000001
7/9/2008
41
33000
<10
30.0
940
27
0.26
1.20
Tater Hill
40004000001
1/12/2009
41
13000
<10
<10
24.0
27.0
18
490
<10
14
0.20
0.63
Tater Hill
40004000002
10/2/2007
210
130
<10
<10
1.5
1.6
30
32
<10
<10
0.05
6.80
<0.02
Tater Hill
40004000002
4/1/2008
250
77
<10
<10
1.2
1.2
<10
<10
<10
<10
0.02
6.35
<0.02
Tater Hill
40004000002
7/8/2008
250
85
<10
<10
1.4
1.4
<10
<10
<10
<10
0.05
6.68
<0.02
Tater Hill
140004000002
1/12/2009
242
<50
<10
<10
1.5
1.5
<10
<10
<10
<10
0.02
6.61
0.02
Tater Hill
40004000002
7/7/2009
245
<50
<10
<10
1.4
1.4
<10
<10
<10
<10
0.03
6.56
<0.02
Tater Hill
40004000003
10/2/2007
245
160
<10
<10
<10
<10
<10
<10
0.02
7.69
<0.02
Tater Hill
40004000003
4/2/2008
245
<50
<10
<10
1.8
1.8
<10
<10
<10
<10
0.02
8.33
0.66
Tater Hill
40004000003
7/9/2008
285
<50
<10
<10
1.9
1.8
<10
<10
<10
<10
0.02
8.44
0.02
Tater Hill
40004000003
1/13/2009
245
<50
<10
<10
1.9
1.9
<10
<10
<10
<10
0.02
8.45
0.15
Tater Hill
40004000003
1/13/2009**
<50
<10
1.9
1.9
<10
<10
<0.02
8.45
0.02
Tater Hill
40004000003
7/7/2009
145
<50
<10
<10
1.7
1.8
<10
<10
<10
<10
0.02
8.14
<0.02
Tater Hill
40004000003
7/7/2009**
<10
1.7
1.7
<10
<10
8.14
Tater Hill
40004000004
10/2/2007
NA/SW
2400
<10
<10
72
110
<10
<10
0.13
7.14
0.06
Tater Hill
40004000004
4/2/2008
NA/SW
840
<10
<10
1.6
1.7
30
42
<10
<10
.0.24
6.74
<0.02
Tater Hill
40004000004
7/9/2008
NA/SW
1800
<10
<10
1.3
1.3
58
79
<10
<10
0.13
7.33
0.03
Tater Hill
40004000004
1/12/2009
NA/SW
270
<10
<10
1.7
1.7
17
16
<10
<10
0.24
7.06
0.02
Tater Hill
40004000004
7/7/2009
NA/SW
1400
<10
<10
1.1
1.1
38
62
<10
<10
0.13
7.44
0.07
Upper Piedmont
40001000001
12/11/2002
14
2800
<10
6.8
79
<10
0.1
5.91
0.07
Upper Piedmont
40001000001
6/11/2003
5600
<10
6.3
56
<10
0.02
5.31
0.08
Upper Piedmont
40001000001
12/8/2003
14
7900
<10
8.1
86
<10
0.09
5.64
0.06
Upper Piedmont
140001000001
7/26/2004
680
<10
7.1
30
<10
0.05
6.12
0.06
Upper Piedmont
140001000001
3/7/2005
17
1900
<10
<10
7.6
9
20
61
<10
<10
<0.02
6.38
0.14
Upper Piedmont
140001000001
9/26/2006
960
<10
8.1
24
<10
0.06
5.22
0.08
Upper Piedmont
140001000001
9/18/2007
15
<50
<10
6.9
<10
<10
0.06
5.89
0.03
Upper Piedmont
140001000001
9/23/2008
15
140
<10
<10
7.5
7.7
12
10
<10
<10
0.08
6.23
0.03
Upper Piedmont
140001000002
12/11/2002
35
70
<10
7.6
67
<10
0.69
6.70
0.04
Upper Piedmont
140001000002
6/11/2003
79
<10
6.8
17
<10
1.4
6.83
0.05
Upper Piedmont
140001000002
12/8/2003
35
280
<10
6.6
15
<10
2.4
<0.02
Upper Piedmont
140001000002
7/26/2004
68
160
<10
7.4
33
<10
2.2
6.81
0.06
Upper Piedmont
140001000002
3/7/2005
65
140
<10
<10
7.9
7.9
31
44
<10
<10
2
6.13
0.06
Upper Piedmont
140001000002
9/26/2006
1500
<10
7.4
87
<10
0.96
6.04
0.1
Upper Piedmont
140001000002
9/18/2007
67
490
<10
6.2
6
65
<10
0.47
6.55
0.07
Upper Piedmont
140001000002
9/23/2008
55
280
<10
<10
24
44
<10
<10
0.19
6.45
0.07
Upper Piedmont
140001000003
12/11/2002
146
200
<10
4.8
11
<10
<0.02
7.79
0.02
Upper Piedmont
140001000003
6/11/2003
<50
<10
4.8
<10
<10
<0.02
7.31
0.48
Upper Piedmont
140001000003
12/8/2003
148
63
<10
5.1
10
<10
<0.02
7.80
<0.02
Upper Piedmont
140001000003
7/26/2004
145
240
<10
5.6
12
<10
NA
8.35
0.04
Upper Piedmont
140001000003
3/7/2005
150
54
<10
<10
5.7
5.7
<10
<10
<10
<10
<0.02
7.91
<0.02
Upper Piedmont
140001000003
9/26/2006
<50
<10
5.6
<10
<10
<0.02
7.85
<0.02
Upper Piedmont
140001000003
9/18/2007
150
<50
<10
5.7
<10
<10
<0.02
8.58
<0.02
Upper Piedmont
140001000003
9/23/2008
151
<50
<10
<10
6.1
5.8
<10
<10
<10
<10
0.05
7.65
<0.02
Upper Piedmont
140001000020
12/11/2002
NA/SW
1600
<10
2.6
120
<10
0.16
6.89
0.04
Upper Piedmont
140001000020
6/11/2003
NA/SW
1500
<10
2.3
150
<10
0.11
7.33
0.04
Upper Piedmont
140001000020
12/8/2003
NA/SW
1200
<10
2.8
71
<10
0.14
<0.02
Upper Piedmont
140001000020
7/26/2004
NA/SW
510
<10
3.4
200
<10
0.22
7.17
0.03
Upper Piedmont
140001000020
3/7/2005
NA/SW
1200
<10
3.1
89
<10
0.24
7.87
0.03
Upper Piedmont
140001000020
9/26/2006
NA/SW
1400
<10
2.8
130
<10
0.08
7.16
0.04
Upper Piedmont
140001000020
9/18/2007
NA/SW
590
<10
3.7
130
<10
0.31
6.87
0.05
Upper Piedmont
140001000020
9/23/2008
NA/SW
630
<10
<10
3.7
3.6
84
97
<10
<10
0.17
7.25
0.03
Upper Piedmont
140001000004
12/11/2002
10
4600
<10
3.3
470
<10
0.81
5.45
0.06
Upper Piedmont
140001000004
6/11/2003
6700
11.00
2.5
320
<10
0.02
0.07
Upper Piedmont
140001000004
12/8/2003
3300
<10
2.4
350
<10
0.02
5.38
0.04
Upper Piedmont
140001000004
7/26/2004
10000
<10
2.2
410
<10
<0.02
6.05
0.09
Upper Piedmont
140001000004
3/7/2005
1600
<10
<10
2.2
2.3
250
290
<10
<10
0.14
5.83
0.09
Upper Piedmont
140001000004
9/26/2006
570
<10
2.7
170
<10
<0.02
5.81
<0.02
Upper Piedmont
140001000005
12/11/2002
38
<50
<10
7.2
<10
<10
0.06
6.35
<0.02
Upper Piedmont
140001000005
6/11/2003
170
<10
7.1
41
<10
0.05
7.01
0.04
Upper Piedmont
140001000005
12/8/2003
38
1 <50
<10
7.2
<10
<10
0.07
6.43
0.02
Upper Piedmont
140001000005
7/26/2004
42
<50
<10
7.6
<10
<10
0.07
6.70
0.02
Upper Piedmont
140001000005
7/26/2004**
<50
<10
8.5
<10
<10
0.07
0.02
Upper Piedmont
140001000005
3/7/2005
41
50
<10
<10
8.5
8.4
<10
<10
<10
<10
0.11
6.61
0.03
Upper Piedmont
140001000005
9/26/2006
41
55
<10
7.6
<10
<10
NA
6.67
NA
Upper Piedmont
140001000006
12/11/2002
156
160
<10
7.1
340
<10
<0.02
7.12
<0.02
Upper Piedmont
140001000006
6/11/2003
51
<10
6.6
410
<10
<0.02
6.80
<0.02
Upper Piedmont
140001000006
12/8/2003
156
120
<10
5.3
180
<10
0.05
6.82
<0.02
Upper Piedmont
140001000006
7/26/2004
159
990
<10
7
1000
<10
<0.02
6.96
NA
Upper Piedmont
140001000006
3/7/2005
159
580
<10
<10
7.5
7.7
830
880
<10
<10
0.03
6.92
0.02
Upper Piedmont
140001000006
9/26/2006
330
<10
6.2
330
<10
0.02
6.86
0.02
Upper Piedmont
140001000007
7/29/2004
6200
<10
18
2800
<10
6.89
Upper Piedmont
140001000008
12/12/2002
164
190
11
5
130
<10
<0.02
7.68
<0.02
Upper Piedmont
140001000008
6/9/2003
164
200
<10
5
130
<10
<0.02
8.35
0.02
Upper Piedmont
40001000008
12/10/2003
164
<50
<10
5.5
140
<10
<0.02
7.97
<0.02
Upper Piedmont
40001000008
7/29/2004
167
<50
<10
<10
6
6.2
150
150
<10
<10
7.75
Upper Piedmont
40001000008
7/29/2004**
<50
<10
<10
6.2
6.2
150
150
<10
<10
Upper Piedmont
40001000008
3/7/2005
167
<50
<10
6.4
160
<10
<0.02
7.83
<0.02
Upper Piedmont
40001000008
9/28/2006
<50
<10
6.3
140
<10
<0.02
7.63
<0.02
Upper Piedmont
40001000009
12/9/2002
65
660
<10
3.3
2500
<10
3.7
6.35
0.02
Page 14 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
PARCADIS
Location
Tater Hill
Station ID
40004000001
Samplin
..2
10/2/2007
Sampling
38
Potassium
Potassium
3.20
Radon-22
Selen lu
l
t'l
15
IF Silica
Dissolved
Si02)
Silica
Total
Si02)
(og as Ag
Silver
Total
Ag)
1 <5
Sodium
mgIL as Na
Sodlu m
Total
120.00
Solids
Solids,
R esidue at
:� deg C
Specific
Cond., Field
(Us/cm)
565
Specific
Cond., Lab
(us/cm)
650
Sulfate
Dissolved
(mg/L as
Sulfate
(mg/L as
45
Ifide
f D�u
(pg/L as S)
Sulfide
H2S
Total
Di Ived
Solids
510
Total
Organic
Carbon total
12.0
Total
Suspende
Solids,
Residue
1
r(NT
Tot]j
500.0
Water Temp
(deg C)
9.98
Zinc
Dissolved
pg/L as Zn)
Zinc
Total
(pg/L as
73
Tater Hill
40004000001
4/2/2008
38
2.90
3.40
<5
<5
15
<5
<5
89.00
97.00
350
64
457
<10
39
Tater Hill
40004000001
7/9/2008
41
3.30
<5
17
<5
33.00
50
28
324
8.5
23.0
140
Tater Hill
40004000001
1/12/2009
41
2.70
3.20
<5
<5
20
<5
<5
16.00
17.00
540
48
350
5.4
600.0
<10
84
Tater Hill
40004000002
10/2/2007
210
1.40
1.40
<5
<5
10
<5
<5
1.60
1.70
65
74
3.9
54
<2
2.5
12.17
<10
<10
Tater Hill
40004000002
4/1/2008
250
0.45
0.43
<5
<5
7.8
<5
<5
1.10
1.00
41
43
2.9
37
<2
1.6
11.37
17
20
Tater Hill
40004000002
7/8/2008
250
0.52
0.47
<5
<5
9.5
<5
<5
1.40
1.30
48
50
4
32
<2
<1
12.63
19
23
Tater Hill
40004000002
1/12/20091
242
0.36
0.39
<5
<5
9.5
<5
<5
1.30
1.40
48
50
3.8
26
<2
<1
11.57
19
16
Tater Hill
140004000002
7/7/2009
245
0.41
0.43
<5
<5
9.5
<5
1 <5
1.30
1.40
52
50
5
32
13.15
<10
13
Tater Hill
40004000003
10/2/2007
245
<5
<5
16
<5
<5
86
94
9.2
69
<2
<1
11.75
<10
<10
Tater Hill
40004000003
4/2/2008
245
1.20
1.20
<5
<5
16
<5
<5
4.30
4.30
96
94
9.4
74
<2
<1
11.06
<10
<10
Tater Hill
40004000003
7/9/2008
285
1.20
1.10
<5
<5
16
<5
<5
4.50
4.40
30
99
8.2
64
<2
<1
11.21
<10
<10
Tater Hill
40004000003
1/13/2009
245
1.20
1.10
<5
<5
17
<5
<5
4.60
4.60
90
92
8.9
58
<2
<1
10.98
<10
<10
Tater Hill
40004000003
1/13/2009**
1.20
1.20
<5
17
<5
4.40
4.40
90
92
9.0
58
<2
<1
10.98
<10
Tater Hill
40004000003
7/7/2009
145
1.20
<5
<5
16
<5
<5
4.40
99
91
9.5
66
10.92
<10
<10
Tater Hill
40004000003
7/7/2009**
1.10
1.10
<5
<5
4.30
4.40
99
10.92
<10
Tater Hill
40004000004
10/2/2007
NA/SW
1.10
<5
<5
11
<5
<5
4.30
29
33
<2
33
2.8
16.0
13.05
<10
<10
Tater Hill
40004000004
4/2/2008
NA/SW
0.33
0.38
<5
<5
8.4
<5
<5
1.20
1.30
25
25
<2
30
2.0
8.2
9.02
<10
<10
Tater Hill
40004000004
7/9/2008
NA/SW
0.39
0.38
<5
<5
10
<5
<5
1.50
1.10
30
30
<2
32
3.0
20.0
16.01
<10
<10
Tater Hill
40004000004
1/12/2009
NA/SW
0.37
0.34
<5
<5
8
<5
<5
1.20
1.20
21
19
<2
<12
2.2
3.3
3.53
<10
<10
Tater Hill
40004000004
7/7/2009
NA/SW
0.21
0.25
<5
<5
10
<5
<5
0.92
0.91
29
27
<2
29
14.90
<10
<10
Upper Piedmont
40001000001
12/11/2002
14
1.6
<5
39
<5
4.5
150.0
13
120
<5
260
44
14.96
Upper Piedmont
40001000001
6/11/2003
0.63
<5
24
<5
4.6
101.0
16
76
<5
56
40
14.16
28
Upper Piedmont
40001000001
12/8/2003
14
1.6
<5
44
<5
4.5
101.6
15
110
<5
37
53
16.20
13
Upper Piedmont
40001000001
7/26/2004
1.3
<5
31
<5
4.5
118.5
17
120
14
9.5
15.70
25
Upper Piedmont
140001000001
3/7/2005
17
0.61
0.65
<5
<5
27
<5
<5
7.6
7.5
131.0
22
110
3.2
110
220
12.80
<10
Upper Piedmont
140001000001
9/26/2006
1.6
<5
38
<5
4.9
136.0
17
114
<2
24
22
17.03
<10
<10
Upper Piedmont
140001000001
9/18/2007
15
1.2
<5
32
<5
5.5
140.0
12
108
<2
<6.2
<1
16.52
<10
Upper Piedmont
140001000001
9/23/2008
15
1.3
1.5
<5
<5
34
<5
<5
6.1
6.2
140.0
13
110
<2
<6.2
3.6
16.85
<10
Upper Piedmont
140001000002
12/11/2002
35
2
<5
23
<5
64
416.0
17
280
<5
<2.5
2.2
14.80
<10
<10
Upper Piedmont
140001000002
6/11/2003
1.8
<5
34
<5
31
318.0
7.4
180
<5
<2.5
<1
17.55
34
Upper Piedmont
140001000002
12/8/2003
35
1.8
<5
48
<5
14
149.0
2.7
140
<5
4
4.3
14.80
<10
Upper Piedmont
140001000002
7/26/2004
68
1.8
<5
34
<5
12
184.1
3.2
160
5
3.4
16.40
<10
Upper Piedmont
140001000002
3/7/2005
65
1.7
1.7
<5
<5
38
<5
<5
15
15
194.6
3.5
140
<2
5
5
15.20
<10
Upper Piedmont
140001000002
9/26/2006
1.6
<5
38
<5
12
163.0
5.4
132
<2
42
26
15.38
<10
<10
Upper Piedmont
140001000002
9/18/2007
67
1.7
<5
37
<5
11
153.0
3.2
123
<2
8.8
10
15.86
<10
Upper Piedmont
140001000002
9/23/2008
55
1.7
1.7
<5
<5
40
<5
<5
11
11
146.0
4.6
118
<2
<6.2
5.1
16.30
<10
Upper Piedmont
140001000003
12/11/2002
146
0.89
<5
20
<5
18
238.0
<5
140
<5
3
4.2
15.37
41
<10
Upper Piedmont
140001000003
6/11/2003
0.81
<5
20
<5
15
241.0
5.7
140
<5
<2.5
<1
16.50
170
Upper Piedmont
140001000003
12/8/2003
148
0.27
<5
22
<5
14
174.8
5.5
140
<5
<2.5
<1
15.70
140
Upper Piedmont
140001000003
7/26/2004
145
0.97
<5
18
<5
15
216.0
6
170
6
5.2
15.70
54
Upper Piedmont
140001000003
3/7/2005
150
0.83
0.84
<5
<5
19
<5
<5
19
19
249.5
6.2
150
<2
<5
<1
15.30
200
Upper Piedmont
140001000003
9/26/2006
0.84
<5
19
<5
18
247.0
6.9
150
<2
<2.5
1.3
16.10
15
180
Upper Piedmont
140001000003
9/18/2007
150
0.87
<5
20
<5
17
229.0
5.9
154
<2
<6.2
1.1
15.58
180
Upper Piedmont
140001000003
9/23/2008
151
0.89
0.86
<5
<5
20
<5
<5
19
19
248.0
8
148
<2
<6.2
<1
15.82
<10
Upper Piedmont
140001000020
12/11/2002
NA/SW
2.2
<5
13
<5
3.5
67.0
<5
65
<5
10
25
5.76
<10
19
Upper Piedmont
140001000020
6/11/2003
NA/SW
1
1.9
1
<5
13
<5
2.9
61.0
4.2
54
<5
10
8.2
23.35
14
Upper Piedmont
140001000020
12/8/2003
NA/SW
2
<5
15
<5
3.8
50.0
3.2
56
<5
<2.5
4.8
8.40
<10
Upper Piedmont
140001000020
7/26/2004
NA/SW
1.8
<5
17
<5
5.1
80.4
2
70
4
3.5
24.00
<10
Upper Piedmont
140001000020
3/7/2005
NA/SW
2.1
<5
14
<5
5.3
79.2
4.4
60
2.4
4
8.7
9.70
<10
Upper Piedmont
140001000020
9/26/2006
NA/SW
2.7
<5
16
<5
3.8
69.0
3.3
68
4.5
6
6.9
19.50
<10
Upper Piedmont
140001000020
9/18/2007
NA/SW
2.3
<5
18
<5
5.9
92.0
<2
72
3.5
<6.2
3.5
18.67
<10
Upper Piedmont
140001000020
9/23/2008
NA/SW
2.5
2.4
<5
<5
14
<5
<5
5.5
5.3
88.0
3
64
3
<6.2
2.5
19.32
<10
Upper Piedmont
140001000004
12/11/2002
10
3.9
<5
26
<5
6.2
120.0
11
120
<5
62
55
10.96
35
Upper Piedmont
140001000004
6/11/2003
3.4
<5
21
<5
4.9
15
85
<5
74
110
11
Upper Piedmont
140001000004
12/8/2003
3.4
<5
23
<5
4.9
92.3
8.8
86
<5
57
60
13.30
12
Upper Piedmont
140001000004
7/26/2004
3.6
<5
22
<5
5.8
85.6
8.2
76
33
40
17.10
<10
Upper Piedmont
140001000004
3/7/2005
3.1
3.2
<5
<5
19
<5
<5
6.1
6.2
58.0
9.4
75
<2
16
31
9.90
<10
<10
Upper Piedmont
140001000004
9/26/2006
4
<5
25
<5
5.8
98.0
10
82
<2
3.2
4.9
17.11
<10
Upper Piedmont
140001000005
12/11/2002
38
1.7
<5
32
<5
6.9
192.0
<5
150
<5
<2.5
<1
13.94
23
Upper Piedmont
140001000005
6/11/2003
1.8
<5
34
<5
6.5
176.0
2.2
120
<5
5
<1
14.00
<10
Upper Piedmont
140001000005
12/8/2003
38
1.8
<5
37
<5
6.5
180.5
2.6
110
<5
<2.5
<1
13.60
<10
Upper Piedmont
140001000005
7/26/2004
42
1.9
<5
30
<5
7
186.6
3
130
<2.5
<1
13.90
<10
Upper Piedmont
140001000005
7/26/2004**
2
<5
30
<5
7.7
186.6
3.9
150
<2.5
<1
<10
Upper Piedmont
140001000005
3/7/2005
41
2
2
<5
<5
31
<5
<5
7.9
7.9
140.0
3.1
130
<2
5
<1
14.00
<10
29
Upper Piedmont
140001000005
9/26/2006
41
1.7
<5
33
<5
6.8
171.0
3.4
126
<2
<2.5
<1
<10
Upper Piedmont
140001000006
12/11/2002
156
2.4
<5
29
<5
9
281.0
<5
170
<5
7
4.2
14.81
8900
Upper Piedmont
140001000006
6/11/2003
3.6
<5
23
<5
8.6
290.0
3.4
170
<5
<5
<1
15.95
6300
Upper Piedmont
140001000006
12/8/2003
156
1.3
<5
23
<5
10
223.5
5.5
130
<5
<2.5
1.4
15.70
740
Upper Piedmont
140001000006
7/26/2004
159
1.6
<5
23
<5
9.6
250.2
4
160
<2.5
4
15.40
3100
Upper Piedmont
140001000006
3/7/2005
159
1.6
1.6
<5
<5
26
<5
<5
11
11
197.0
5
140
<2
<2.5
3.8
15.80
2000
2100
Upper Piedmont
40001000006
9/26/2006
1.5
<5
24
<5
14
235.0
6.9
153
<2
<2.5
2.2
14.63
790
Upper Piedmont
40001000007
7/29/2004
7.1
<5
22
<5
26
340.9
52
200
150
140
16.20
86
Upper Piedmont
40001000008
12/12/2002
164
2.1
<5
29
<5
8.9
192.0
7
140
<5
16
6.3
14.90
35
Upper Piedmont
40001000008
6/9/2003
164
2.1
<5
29
<5
9.7
174.0
10
120
<5
17
13
15.48
28
Upper Piedmont
40001000008
12/10/2003
164
2
<5
25
<5
9.3
135.0
9.8
130
<5
<2.5
2
14.00
<10
Upper Piedmont
40001000008
7/29/2004
167
2.1
2.2
<5
<5
26
<5
<5
..7
9.9
197.3
10
120
<2.5
<1
15.40
<10
<10
Upper Piedmont
40001000008
7/29/2004**
2.2
2.2
<5
<5
25
<5
<5
10
10
197.3
10
140
<5
<1
<10
<10
Upper Piedmont
40001000008
3/7/2005
167
2.1
<5
27
<5
10
198.0
9.4
130
<2
<2.5
<1
15.47
<10
Upper Piedmont
40001000008
9/28/2006
2.1
<5
29
<5
10
197.0
9.7
134
<2
<2.5
<1
14.58
<10
Upper Piedmont
40001000009
1 12/9/2002
65
3.8
<5
36
1
<5
11
183.0
12
120
5.4
183
4.6
115.59
30
Page 15 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Location
U er Piedmont
Station ID
40001000009
Samplin
t g
..a
6/9/2003
Sampling
Depth
65
Aluminum
Dissolved
luminum
A Total
970
mo n a
a. a.
( rl'13
<0.02
Arsen'
Disso Ic
Ived
Arsenic
Total
As)
<10
Barium
Dissolved
Barium
Total
BaO
<10
B a bon
D "i
�•
C
Bicarbonate
Total
�•
14
Cadmium
Dissolved
Cadmium
Total
<2
Calcium
Dissolved
Calcium
Total
11
Chloride
Dissolved
Chloride
Total
10
Chromium
Dissolved
Ch omu
o1al
( . Cr)jj
<25
Coppe M;
r
I ssolved
pp
, ,
<2
Cyanide
Dissolved
1.80
Fluoride
Dissolved
Fluoride
Total
3.1
Iron
Dissolve
Upper Piedmont
40001000009
12/9/2003
1300
<0.02
<10
<10
14
<2
11
9.8
<25
<2
3.10
3.6
Upper Piedmont
40001000009
7/29/2004
70
220
220
<0.04
<10
<10
15
19
6.2
<2
<2
10
11
14
<25
<25
5.7
5.6
8.26
0.88
<50-
Upper Piedmont
40001000009
3/8/2005
67
380
<0.02
<5
<10
8
<2
12
13
<25
6
0.58
1.3
Upper Piedmont
40001000009
9/28/2006
100
<0.02
<5
29
4.5
<2
11
13
<25
4.7
9.10
0.44
Upper Piedmont
40001000009
9/28/2006**
110
<0.02
<5
31
<2
12
<25
4.6
Upper Piedmont
40001000009
9/18/2007
67
93
<0.02
<5
32
4.1
<1
11
12
<10
3.8
8.07
<0.4
Upper Piedmont
140001000009
9/24/2008
57
<50
140
<0.02
<5
<5
25
24
4
<1
<1
11
11
12
<10
<10
3.5
2.5
9.24
0.4
<50
Upper Piedmont
40001000010
12/9/2002
323
3300
0.04
<10
37
43
<2
7.5
11
<25
4.3
<0.02
3.37
0.6
Upper Piedmont
40001000010
6/9/2003
810
0.02
<10
10
39
<2
7.1
13
<25
<2
3.80
0.45
Upper Piedmont
40001000010
12/9/2003
323
2000
<0.02
<10
<10
38
<2
7.9
13
<25
3.1
0.41
Upper Piedmont
40001000010
7/29/2004
150
<50
190
<0.02
<10
<10
<10
<10
31
<2
<2
7
7
14
<25
<25
<2
<2
5.86
0.54
<50
Upper Piedmont
40001000010
3/8/2005
1600
<0.02
<5
<10
19
<2
8.7
13
<25
2.6
5.13
<0.4
Upper Piedmont
40001000010
9/28/2006
740
<0.02
<5
<10
22
<2
7.7
14
<25
<2
8.02
<0.4
Upper Piedmont
40001000010
9/18/2007
4100
0.46
<5
29
27
<1
8.7
13
<10
4.9
4.30
<0.4
Upper Piedmont
140001000010
9/24/2008
323
<50
1800
<0.02
<5
<5
<10
<10
22
<1
<1
8.3
8.8
14
<10
<10
<2
2.4
6.65
0.4
<50
Upper Piedmont
140001000011
12/10/2002
45
970
0.03
<10
63
23
<2
12
11
<25
5.3
<0.02
6.60
<0.5
Upper Piedmont
140001000011
6/9/2003
3100
0.02
<10
54
24
<2
11
10
<25
2.8
0.14
Upper Piedmont
140001000011
12/9/2003
45
120
<0.02
<10
48
15
<2
13
12
<25
2.8
7.30
0.11
Upper Piedmont
140001000011
7/28/2004
48
<50
1100
<0.1
<10
<10
39
49
16
<2
<2
10
10
9.6
<25
<25
<2
<2
6.68
<0.2
<50
Upper Piedmont
140001000011
3/9/2005
47
460
<0.02
<5
38
23
<2
9
6.9
<25
<2
<0.4
Upper Piedmont
140001000011
9/28/2006
39
880
0.09
<5
41
23
<2
7.2
5.9
<25
<2
6.31
<0.4
Upper Piedmont
140001000012
12/9/2002
200
100
<0.02
<10
12
93
<2
32
24
<25
<2
<0.02
0.06
3.2
Upper Piedmont
140001000012
6/9/2003
80
<0.02
<10
16
87
<2
32
26
<25
<2
3
Upper Piedmont
140001000012
12/11/20031
145
<50
<0.02
<10
10
81
<2
32
25
<25
<2
0.56
2.8
Upper Piedmont
140001000012
7/28/2004
200
<50
130
<10
<10
10
17
85
<2
<2
36
33
28
<25
<25
<2
<2
2.71
3.1
<50
Upper Piedmont
140001000012
3/9/2005
200
76
<0.02
<5
18
93
<2
36
26
<25
<2
2.9
Upper Piedmont
40001000012
9/28/2006
145
<50
<0.02
<5
19
45
<2
36
29
<25
<2
2.38
2.8
Upper Piedmont
40001000012
9/28/2006**
145
<2
20
27
<25
2.38
2.8
Upper Piedmont
40001000013
12/10/2002
36
1300
0.04
<10
94
17
<2
5.1
6
<25
<2
<0.02
7.20
<0.5
Upper Piedmont
40001000013
6/10/2003
770
<0.02
<10
57
13
<2
5.4
6.7
<25
<2
5.70
0.07
Upper Piedmont
40001000013
12/10/2003
1300
0.03
<10
57
15
<2
5.7
7.6
<25
<2
0.05
Upper Piedmont
40001000013
7/27/2004
38
<50
820
0.09
<10
<10
57
60
17
<2
<2
6.3
7
7.4
<25
<25
<2
3.9
7.68
<0.2
<50
Upper Piedmont
40001000013
7/27/2004**
38
<50
1200
0.16
<10
<10
53
71
15
<2
<2
6.2
7
7.6
<25
<25
<2
<2
7.68
<0.2
<50
Upper Piedmont
140001000013
3/8/2005
580
<0.02
<5
57
18
<2
6.5
7.4
<25
<2
<0.4
Upper Piedmont
140001000013
9/27/2006
620
<0.02
<5
84
16
<2
7.3
9
<25
<2
6.37
0.4
Upper Piedmont
140001000013
9/19/2007
35
150
<0.02
<5
62
14
<1
7.1
7.9
<10
<2
7.16
<0.4
Upper Piedmont
140001000013
9/25/2008
38
<50
120
0.1
<5
<5
68
65
14
<1
<1
7.9
7.5
8.3
<10
<10
<2
<2
7.68
<0.4
<50
Upper Piedmont
140001000014
12/10/2002
42
54
<0.02
<10
40
20
<2
6.8
7
<25
<2
<0.02
<0.5
Upper Piedmont
40001000014
6/10/2003
<50
<0.02
<10
53
19
<2
7.7
6.3
<25
<2
5.35
0.06
Upper Piedmont
40001000014
12/10/2003
<50
<0.02
<10
49
18
<2
7.4
6.7
<25
<2
0.07
Upper Piedmont
40001000014
7/27/20041
55
<50
50
<10
<10
55
53
19
<2
<2
7.9
7.9
6.9
<25
<25
<2
<2
8.79
<0.2
<50
Upper Piedmont
40001000014
3/8/2005
55
55
<0.02
<5
46
19
<2
7.8
7
<25
<2
7.73
<0.4
Upper Piedmont
40001000014
9/27/2006
<50
<0.02
<5
55
22
<2
8.5
8.2
<25
<2
7.66
<0.4
Upper Piedmont
40001000014
9/19/2007
53
<50
<0.02
<5
52
17
<1
8.4
5.9
<10
<2
7.52
<0.4
Upper Piedmont
40001000014
9/25/2008
55
<50
<50
0.1
<5
<5
60
58
16
<1
<1
9.4
9.1
8.6
<10
<10
<2
<2
8.25
<0.4
<50
Upper Piedmont
140001000015
12/10/2002
66
300
<0.02
<10
20
25
<2
6.3
7
<25
<2
<0.02
8.01
<0.5
Upper Piedmont
140001000015
6/10/2003
1100
<0.02
<10
27
20
<2
6.6
5.2
<25
2.8
6.64
0.08
Upper Piedmont
140001000015
12/11/2003
2500
<0.02
<10
38
20
<2
7.9
5.9
<25
6.2
0.08
Upper Piedmont
140001000015
7/27/2004
70
<50
230
<10
<10
26
29
24
<2
<2
8.2
7.8
6
<25
<25
<2
<2
7.04
<0.2
<50
Upper Piedmont
140001000015
3/8/2005
120
<0.02
1
<5
19
1
21
<2
7.9
6.4
<25
<2
7.41
<0.4
Upper Piedmont
140001000015
9/27/2006
65
<0.02
<5
22
23
<2
8.9
7.7
<25
<2
7.87
<0.4
Upper Piedmont
140001000015
9/19/2007
70
<50
<0.02
<5
20
21
<1
9
6.8
<10
<2
8.22
<0.4
Upper Piedmont
140001000015
9/19/2007**
70
53
<0.02
<5
20
22
<1
9
6.8
<10
<2
8.22
<0.4
Upper Piedmont
140001000015
9/25/2008
70
<50
870
<0.02
<5
<5
23
29
21
<1
<1
9.7
9.7
8.6
<10
<10
<2
<2
8.55
<0.4
<50
Upper Piedmont
140001000016
12/10/2002
164
<50
<0.02
<10
<10
39
<2
12
3
<25
<2
<0.02
5.25
<0.5
Upper Piedmont
140001000016
6/10/2003
<50
<0.02
<10
<10
34
<2
10
5
<25
<2
0.15
Upper Piedmont
140001000016
12/10/2003
159
<50
<0.02
<10
<10
31
<2
11
5.4
<25
<2
0.14
Upper Piedmont
140001000016
7/27/2004
162
<50
<50
<10
<10
<10
<10
31
<2
<2
11
11
5.9
<25
<25
<2
<2
5.87
<0.2
<50
Upper Piedmont
140001000016
3/8/2005
<50
<0.02
<5
<10
33
<2
12
5.8
<25
<2
6.63
<0.4
Upper Piedmont
140001000016
3/8/2005**
<50
<0.02
<5
<10
32
<2
12
5.8
<25
<2
6.63
<0.4
Upper Piedmont
140001000016
9/27/2006
<50
<0.02
<5
<10
35
<2
13
7.7
<25
<2
5.80
<0.4
Upper Piedmont
140001000016
9/18/2007
162
<50
<0.02
<5
<10
31
<1
<1
13
7
<10
<2
6.55
<0.4
Upper Piedmont
140001000016
9/25/2008
162
<50
<50
<0.02
<5
<5
<10
<10
29
14
14
8.8
<10
<10
<2
<2
5.91
<0.4
<50
Upper Piedmont
140001000017
12/10/2002
13
2100
0.24
<10
16
82
<2
31
19
<25
16
<0.02
0.63
<0.5
Upper Piedmont
140001000017
6/10/2003
6100
0.16
<10
26
84
<2
28
21
<25
14
4.45
0.18
Upper Piedmont
140001000017
12/9/2003
14
1900
0.1
<10
11
90
<2
31
<25
9.1
Upper Piedmont
140001000017
7/28/2004
<50
1100
0.2
<10
<10
14
15
90
<2
<2
36
36
18
<25
<25
<2
5
0.42
0.26
770
Upper Piedmont
140001000017
3/9/2005
710
0.1
<5
<10
91
<2
31
16
<25
4.2
0.50
<0.4
Upper Piedmont
140001000017
3/9/2005**
570
0.09
<5
<10
90
<2
31
15
<25
3.1
<0.4
Upper Piedmont
140001000017
9/28/2006
180
0.18
<5
13
89
<2
28
15
<25
2.3
3.22
<0.4
Upper Piedmont
140001000018
12/10/2002
30
<50
<0.02
<10
12
80
<2
34
15
<25
<2
<0.02
0.10
<0.5
Upper Piedmont
140001000018
6/10/2003
<50
<0.02
<10
16
74
<2
31
17
<25
<2
0.11
0.21
Upper Piedmont
40001000018
12/9/2003
30
<50
<0.02
<10
12
72
<2
32
17
<25
<2
0.30
0.2
Upper Piedmont
40001000018
7/28/2004
35
<50
<50
<10
<10
20
18
77
<2
<2
33
33
12
<25
<25
<2
<2
0.14
0.21
870
Upper Piedmont
40001000018
3/9/2005
35
<50
<0.02
<5
13
78
<2
35
16
<25
<2
0.50
<0.4
Upper Piedmont
40001000018
9/27/2006
<50
<0.02
<5
13
130
<2
33
16
<25
<2
3.22
<0.4
Upper Piedmont
40001000019
12/10/2002
132
<50
<0.02
<10
18
72
<2
38
14
<25
<2
<0.02
0.10
<0.5
Upper Piedmont
40001000019
6/10/2003
<50
<0.02
<10
25
64
<2
31
17
<25
<2
1.23
0.22
U er Piedmont
40001000019
12/9/2003
132
<50
<0.02
<10
22
68
<2
33
17
<25
<2
0.06
0.26
Upper Piedmont
40001000019
7/28/2004
135
<50
<50
<10
<10
28
27
71
<2
<2
38
42
13
<25
<25
<2
<2
1
1 0.13
0.56
I 290
iAARCADIS
Page 16 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
FIARCJaDIS ��,a��,
Location
IL
Upper Piedmont
Station ID
AM
40001000009
Samp ling
t
6/9/2003
Sampling
Depth
L
65
Iron
Total
130
Lead
Dissolved
Lead
Total
<10
Magnesium
Dissolve
jWe
K.•
2.8
Manganese
Dissolved
Manganese
Total
1500
Mercury
Dissolved
ercury
Tot. I
Nickel
Dissolved
Nicke!q
Total
<10
Nitroge n
L. ia
Nitrogen
Ammonia �
M�M
Nitrogen
Organic Dis
Nitrogen,
Nitrate Dis
Nitrogen,
Nitrate Dis
�•
Nitrate as N
,•
NO2 +
NO3 Dis
NO2+NO3
as N
2.7
"!'a
(,. N
JN,
Oxidation
Reduction
5.75
.-,::um
702
U er Piedmont
40001000009
12/9/2003
61
<10
3.8
880
12
3.1
5.85
<0.02
Upper Piedmont
40001000009
7/29/2004
70
<50
<10
<10
4.7
4.9
130
130
<10
<10
5.28
8.8
Upper Piedmont
40001000009
3/8/2005
67
190
<10
4.2
150
<10
7.9
5.56
<0.02
Upper Piedmont
40001000009
9/28/2006
<50
<10
3.1
25
<10
7.5
5.22
<0.02
Upper Piedmont
40001000009
9/28/2006**
<50
<10
3.3
26
<10
7.4
<0.02
Upper Piedmont
40001000009
9/18/2007
67
<50
<10
3
18
<10
7.1
5.48
<0.02
Upper Piedmont
140001000009
9/24/2008
57
230
<10
<10
2.3
2.9
23
25
<10
<10
6
5.10
<0.02
Upper Piedmont
40001000010
12/9/2002
323
5400
14
8.3
120
<10
7.9
6.41
0.13
Upper Piedmont
40001000010
6/9/2003
2000
12
5.7
36
<10
7.4
6.43
0.04
Upper Piedmont
40001000010
12/9/2003
323
5100
<10
7
69
<10
7.8
5.90
0.08
Upper Piedmont
40001000010
7/29/2004
150
560
<10
<10
6.9
6.7
<10
12
<10
<10
7.6
6.18
0.03
Upper Piedmont
40001000010
3/8/2005
2400
<10
7.3
68
<10
9.3
5.91
0.12
Upper Piedmont
40001000010
9/28/2006
1400
<10
7.3
33
<10
8.6
5.92
0.05
Upper Piedmont
40001000010
9/18/2007
18000
12
10
190
<10
7.5
6.34
0.19
Upper Piedmont
140001000010
9/24/2008
323
5800
<10
<10
7.4
8.9
12
61
<10
<10
8.9
6.09
0.1
Upper Piedmont
140001000011
12/10/2002
45
1600
<10
5.1
220
<10
10
6.87
0.12
Upper Piedmont
140001000011
6/9/2003
5300
<10
4.7
460
<10
5.1
5.87
0.11
Upper Piedmont
140001000011
12/9/2003
45
140
<10
4.8
25
<10
9.1
5.45
<0.02
Upper Piedmont
140001000011
7/28/2004
48
1200
<10
<10
4.4
4.6
36
77
<10
<10
6
5.82
0.09
Upper Piedmont
140001000011
3/9/2005
47
350
<10
3.8
46
<10
3.1
5.86
0.04
Upper Piedmont
140001000011
9/28/2006
39
690
<10
3.3
41
<10
14
5.82
0.07
Upper Piedmont
140001000012
12/9/2002
200
230
<10
6.7
100
<10
0.23
7.85
0.03
Upper Piedmont
140001000012
6/9/2003
160
<10
7.8
130
<10
0.23
7.75
<0.02
Upper Piedmont
140001000012
12/11/2003
145
120
<10
8.6
200
<10
0.12
7.67
<0.02
Upper Piedmont
140001000012
7/28/2004
200
330
<10
<10
10
10
210
220
<10
<10
<0.02
7.75
NA
Upper Piedmont
140001000012
3/9/2005
200
150
<10
10
230
<10
0.26
7.72
0.02
Upper Piedmont
140001000012
9/28/2006
145
140
<10
10
170
<10
0.32
8.71
<0.02
Upper Piedmont
140001000012
9/28/2006**
145
8.71
Upper Piedmont
140001000013
12/10/2002
36
1300
10
2.3
170
<10
8.1
6.03
0.21
Upper Piedmont
140001000013
6/10/2003
1000
<10
1.9
58
<10
9.9
5.00
0.02
Upper Piedmont
140001000013
12/10/2003
1000
<10
2
46
<10
9.6
4.99
0.34
Upper Piedmont
140001000013
7/27/2004
38
280
<10
<10
2
2.2
<10
16
<10
<10
9.4
5.54
0.03
Upper Piedmont
40001000013
7/27/2004**
38
620
<10
<10
2
2.4
<10
65
<10
<10
11
5.54
0.06
Upper Piedmont
40001000013
3/8/2005
240
<10
2.2
12
<10
10
0.03
Upper Piedmont
40001000013
9/27/2006
650
<10
2.8
82
<10
9.9
4.49
0.08
Upper Piedmont
40001000013
9/19/2007
35
140
<10
2.3
<10
<10
11
5.41
2.2
Upper Piedmont
40001000013
9/25/2008
38
160
<10
<10
2.6
2.5
<10
<10
<10
<10
12
6.19
<0.02
Upper Piedmont
40001000014
12/10/2002
42
<50
<10
2.2
18
<10
9.7
6.40
0.02
Upper Piedmont
40001000014
6/10/2003
<50
<10
2.4
<10
<10
9.6
5.43
0.03
Upper Piedmont
140001000014
12/10/2003
<50
<10
2.3
<10
<10
9
5.22
<0.02
Upper Piedmont
140001000014
7/27/2004
55
<50
<10
<10
2.6
2.5
<10
<10
<10
<10
10
5.60
0.02
Upper Piedmont
140001000014
3/8/2005
55
<50
<10
2.5
<10
<10
10
5.66
<0.02
Upper Piedmont
140001000014
9/27/2006
<50
<10
2.7
<10
<10
10
4.98
<0.02
Upper Piedmont
140001000014
9/19/2007
53
<50
<10
2.6
<10
<10
11
5.61
<0.02
Upper Piedmont
140001000014
9/25/2008
55
<50
<10
<10
2.9
2.9
<10
<10
<10
<10
12
6.58
<0.02
Upper Piedmont
140001000015
12/10/2002
66
460
<10
2.2
67
<10
7
5.66
0.1
Upper Piedmont
140001000015
6/10/2003
2200
<10
2.4
78
24
7.1
5.76
0.07
Upper Piedmont
140001000015
12/11/2003
4700
<10
3.3
140
<10
7.6
0.11
Upper Piedmont
140001000015
7/27/2004
70
230
<10
<10
2.5
2.5
22
29
<10
<10
8
6.00
0.04
Upper Piedmont
140001000015
3/8/2005
110
<10
2.6
15
<10
8.7
5.52
0.04
Upper Piedmont
140001000015
9/27/2006
54
<10
2.9
<10
<10
9
5.14
0.03
Upper Piedmont
140001000015
9/19/2007
70
54
<10
2.9
<10
<10
9.9
5.53
0.03
Upper Piedmont
140001000015
9/19/2007**
70
58
<10
2.9
<10
<10
9.7
5.53
0.03
Upper Piedmont
140001000015
9/25/2008
70
1600
<10
<10
3.1
3.5
<10
42
<10
<10
10
6.22
0.09
Upper Piedmont
140001000016
12/10/2002
164
70
<10
4.1
<10
<10
8.5
6.33
0.08
Upper Piedmont
140001000016
6/10/2003
74
<10
4
<10
<10
8.6
0.05
Upper Piedmont
140001000016
12/10/2003
159
<50
<10
4
<10
<10
8.8
5.70
0.04
Upper Piedmont
140001000016
7/27/2004
162
<50
<10
<10
4.7
4.8
<10
<10
<10
<10
9.4
6.43
0.05
Upper Piedmont
140001000016
3/8/2005
<50
<10
5
<10
<10
9.8
6.28
0.05
Upper Piedmont
140001000016
3/8/2005**
<50
<10
5
<10
<10
9.8
6.28
0.06
Upper Piedmont
140001000016
9/27/2006
180
<10
5.4
<10
<10
9.7
5.49
<0.02
Upper Piedmont
140001000016
9/18/2007
162
85
<10
5.2
<10
<10
9.9
6.24
0.07
Upper Piedmont
140001000016
9/25/2008
162
65
<10
<10
5.8
5.7
<10
<10
<10
<10
11
6.28
0.05
Upper Piedmont
140001000017
12/10/2002
13
4800
13
18
620
<10
<0.02
6.15
0.31
Upper Piedmont
140001000017
6/10/2003
11000
<10
17
670
<10
<0.02
6.37
0.37
Upper Piedmont
140001000017
12/9/2003
14
3200
<10
16
570
<10
<0.02
6.50
0.09
Upper Piedmont
140001000017
7/28/2004
3200
<10
<10
18
19
690
780
<10
<10
NA
6.72
0.08
Upper Piedmont
140001000017
3/9/2005
1600
<10
16
650
<10
<0.02
6.76
0.07
Upper Piedmont
140001000017
3/9/2005**
1300
<10
16
610
<10
<0.02
6.76
0.08
Upper Piedmont
140001000017
9/28/2006
1700
<10
15
740
<10
<0.02
6.70
0.05
Upper Piedmont
140001000018
12/10/2002
30
830
<10
12
140
<10
0.68
6.60
0.02
Upper Piedmont
140001000018
6/10/2003
810
<10
12
160
<10
<0.02
6.64
0.02
Upper Piedmont
140001000018
12/9/2003
30
790
<10
11
160
<10
<0.02
6.40
<0.02
Upper Piedmont
140001000018
7/28/2004
35
840
<10
<10
12
12
170
170
<10
<10
<0.02
6.89
<0.02
Upper Piedmont
40001000018
3/9/2005
35
920
<10
13
180
<10
<0.02
6.87
<0.02
Upper Piedmont
40001000018
9/27/2006
800
<10
12
170
<10
<0.02
6.70
<0.02
Upper Piedmont
40001000019
12/10/2002
132
260
<10
5.4
74
<10
<0.02
6.90
<0.02
Upper Piedmont
40001000019
6/10/2003
360
<10
6.4
84
<10
<0.02
6.78
<0.02
Upper Piedmont
40001000019
12/9/2003
132
330
<10
6.8
88
<10
<0.02
6.40
<0.02
Upper Piedmont
40001000019
7/28/2004
135
280
<10
<10
7.8
7.5
81
80
<10
<10
NA
7.06
NA
Page 17 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation - Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
PARCADIS
Location
Upper Piedmont
Station ID
40001000009
Samplin
..2
6/9/2003
Sampling
65
Potassium
Potassium
4.4
Radon-22
Selen lu
t'l
15
IF Silica
Dissolved
Silica
Total
27
as Ag
Silver
Total
1 <5
Sodium
gIL as Na
Sodlu m
Total
4.8
Solids
Solids,
R esidue at
:0
Specific
Cond., Field
135.0
Specific
Cond., Lab
Sulfate
Dissolved
(mg/L as
Sulfate
(mg/L as
16
Ifide
D�u
Sulfide
Total
Di Ived
Solids
100
Total
Organic
Carbon total
<5
Total
Suspende
Solids,
Residue
135
To
r(NT
<1
Water Temp
(deg C)
16.75
Zinc
Dissolved
pg/L as Zn)
Zinc
Total
(pg/L as
<10
Upper Piedmont
40001000009
12/9/2003
4.2
<5
9
<5
4.4
142.4
19
81
<5
142.4
<1
13.90
23
Upper Piedmont
40001000009
7/29/2004
70
4.5
4.8
<5
<5
25
<5
<5
8.6
9.1
145.6
12
150
145.6
<1
16.50
10
13
Upper Piedmont
40001000009
3/8/2005
67
4.3
<5
30
<5
8.4
161.0
13
120
<2
161
2.2
14.83
36
Upper Piedmont
40001000009
9/28/2006
3.3
<5
31
<5
8.9
143.0
14
136
<2
143
<1
17.70
<10
Upper Piedmont
40001000009
9/28/2006**
3.6
<5
<5
9.4
<2
<10
Upper Piedmont
40001000009
9/18/2007
67
3.2
<5
30
<5
8.9
145.0
12
138
<2
145
<1
15.61
<10
Upper Piedmont
40001000009
9/24/2008
57
3.4
3.2
<5
<5
<5
<5
9.2
9.2
136.0
16
120
<2
20
9.1
16.22
<10
<10
Upper Piedmont
40001000010
12/9/2002
323
2.7
<5
43
<5
13
194.0
<5
140
<5
194
24
14.56
13000
Upper Piedmont
40001000010
6/9/2003
0.99
<5
42
<5
11
185.0
4.6
140
<5
185
22
16.66
10000
Upper Piedmont
40001000010
12/9/2003
323
1.2
<5
36
<5
12
189.8
4.6
130
<5
189.8
26
16.50
11000
Upper Piedmont
40001000010
7/29/2004
150
0.87
0.84
<5
<5
38
<5
<5
13
11
155.2
<5
150
155.2
4.5
16.50
3200
3100
Upper Piedmont
40001000010
3/8/2005
1.1
<5
42
<5
16
185.0
4.5
140
<2
185
1.5
15.39
7100
Upper Piedmont
40001000010
9/28/2006
0.85
<5
45
<5
15
164.0
5.4
151
<2
164
9
17.14
1000
Upper Piedmont
40001000010
9/18/2007
2
<5
36
<5
15
175.0
5
148
<2
175
120
15.95
1700
Upper Piedmont
140001000010
9/24/2008
323
0.89
1.1
<5
<5
<5
<5
16
17
175.0
8
1
156
1 <2
56
40
16.98
140
330
Upper Piedmont
140001000011
12/10/2002
45
1.8
<5
34
<5
14
191.0
14
150
<5
280
270
9.85
92
Upper Piedmont
140001000011
6/9/2003
2
<5
33
<5
11
174.0
17
140
<5
190
160
16.88
66
Upper Piedmont
140001000011
12/9/2003
45
1.6
<5
27
<5
10
160.0
17
120
<5
10
3.1
17.80
40
Upper Piedmont
140001000011
7/28/2004
48
1.6
1.6
<5
<5
30
<5
<5
9
9.2
138.1
16
120
200
50
17.50
24
51
Upper Piedmont
140001000011
3/9/2005
47
1.6
<5
35
<5
12
136.7
18
100
2.5
61
13
15.20
23
Upper Piedmont
140001000011
9/28/2006
39
16
<5
35
<5
11
121.0
19
108
<2
70
170
16.00
27
Upper Piedmont
140001000012
12/9/2002
200
5.5
<5
29
<5
13
299.0
16
170
<5
17
1.8
15.69
4400
Upper Piedmont
140001000012
6/9/2003
5.5
<5
29
<5
11
302.0
19
180
<5
6
1.8
17.19
610
Upper Piedmont
140001000012
12/11/2003
145
4.7
<5
30
<5
12
305.0
22
160
<5
<2.5
2.1
16.70
240
Upper Piedmont
140001000012
7/28/2004
200
4.2
4.3
<5
<5
17
<5
<5
12
12
271.3
22
200
12
3.8
18.60
760
1000
Upper Piedmont
140001000012
3/9/2005
200
5.5
<5
28
<5
14
319.7
21
190
<2
<2.5
<1
17.00
460
Upper Piedmont
140001000012
9/28/2006
145
5.6
<5
27
<5
13
314.0
22
198
<2
<2.5
1.5
17.20
270
Upper Piedmont
140001000012
9/28/2006**
145
26
21
17.20
Upper Piedmont
140001000013
12/10/2002
36
2.1
<5
40
<5
14
124.0
<5
120
<5
280
350
15.25
27
Upper Piedmont
140001000013
6/10/2003
2.1
<5
42
<5
12
128.9
<1
130
<5
22
16
15.92
11
Upper Piedmont
140001000013
12/10/2003
2
<5
42
<5
13
142.2
0.44
130
<5
170
37
15.20
18
Upper Piedmont
140001000013
7/27/2004
38
2.3
2.4
<5
<5
34
<5
<5
14
15
101.6
2.3
170
22
14
15.80
41
1100
Upper Piedmont
140001000013
7/27/2004**
38
2.2
2.4
<5
34
<5
<5
18
16
101.6
5.8
210
25
50
15.80
14
130
Upper Piedmont
140001000013
3/8/2005
2.2
<5
38
<5
19
<2
130
<2
34
17
<10
Upper Piedmont
140001000013
9/27/2006
2.4
<5
39
<5
19
144.0
<2
151
<2
86
110
15.20
11
Upper Piedmont
140001000013
9/19/2007
35
2.2
<5
37
<5
18
157.0
<2
152
<2
<6.2
8.2
15.58
<10
Upper Piedmont
140001000013
9/25/2008
38
2.4
2.3
<5
<5
39
<5
<5
20
19
101.6
2
139
<2
<6.2
2.5
15.48
<10
<10
Upper Piedmont
140001000014
12/10/2002
42
1.7
<5
42
<5
14
142.0
<5
120
<5
<2.5
4.2
13.46
16
Upper Piedmont
140001000014
6/10/2003
1.9
<5
42
<5
14
161.2
11
130
<5
300
1.3
16.00
<10
Upper Piedmont
140001000014
12/10/2003
1.9
<5
49
<5
15
163.0
10
140
<5
<2.5
1.3
15.30
12
Upper Piedmont
140001000014
7/27/2004
55
2.1
2.1
<5
<5
38
<5
<5
18
18
134.4
4.5
180
<2.5
1.3
16.00
<10
<10
Upper Piedmont
140001000014
3/8/2005
55
1.9
<5
46
<5
19
152.3
3.2
120
<2
<2.5
<1
15.51
<10
Upper Piedmont
140001000014
9/27/2006
1.9
<5
44
<5
19
152.0
<2
149
<2
<2.5
<1
15.32
<10
Upper Piedmont
140001000014
9/19/2007
53
1.9
<5
41
<5
18
161.0
<2
154
<2
<6.2
<1
15.45
<10
Upper Piedmont
140001000014
9/25/2008
55
2.1
2.1
<5
<5
41
<5
<5
20
20
173.0
<2
144
<2
<6.2
<1
15.70
<10
<10
Upper Piedmont
140001000015
12/10/2002
66
1.1
<5
54
<5
11
119.0
25
110
<5
72
100
15.49
28
Upper Piedmont
1400010000i5
6/10/2003
1.3
<5
48
<5
10
117.0
<1
120
<5
57
38
21.11
<10
Upper Piedmont
140001000015
12/11/2003
1.6
<5
49
<5
12
0.49
100
<5
120
60
54
Upper Piedmont
140001000015
7/27/2004
70
1.4
1.4
<5
<5
35
<5
<5
12
11
129.4
<2
160
13
7.4
17.60
<10
10
Upper Piedmont
140001000015
3/8/2005
1.3
<5
44
<5
15
145.0
<2
120
<2
8
1.5
15.51
<10
Upper Piedmont
140001000015
9/27/2006
1.4
<5
48
<5
16
138.0
<2
143
<2
3.5
2.7
15.40
<10
Upper Piedmont
140001000015
9/19/2007
70
1.4
<5
43
<5
15
145.0
<2
150
<2
<6.2
1.3
15.40
<10
Upper Piedmont
140001000015
9/19/2007**
70
1.4
<5
42
<5
15
145.0
<2
150
<2
<6.2
5
15.40
<10
Upper Piedmont
140001000015
9/25/2008
70
1.5
1.6
<5
<5
46
<5
<5
17
16
164.0
<2
144
<2
59
26
15.73
<10
<10
Upper Piedmont
140001000016
12/10/2002
164
0.87
<5
43
<5
11
164.0
<5
130
<5
<2.5
1.3
15.63
4000
Upper Piedmont
140001000016
6/10/2003
0.85
<5
44
<5
10
1.9
140
<5
3
<1
1200
Upper Piedmont
140001000016
12/10/2003
159
0.84
<5
49
<5
10
161.0
1.8
140
<5
<2.5
1.4
15.60
1100
Upper Piedmont
140001000016
7/27/2004
162
0.98
0.99
<5
<5
39
<5
<5
10
12
164.3
<2
210
<2.5
<1
17.00
780
800
Upper Piedmont
140001000016
3/8/2005
0.98
<5
46
<5
14
166.0
<2
150
<2
<2.5
<1
15.50
610
Upper Piedmont
140001000016
3/8/2005**
0.98
<5
44
<5
14
166.0
<2
150
<2
<2.5
<1
15.50
610
Upper Piedmont
140001000016
9/27/2006
1.2
<5
46
<5
15
178.0
2.3
161
<2
<2.5
2.3
16.48
750
Upper Piedmont
140001000016
9/18/2007
162
0.99
<5
40
<5
13
177.0
<2
154
<2
12
<1
15.88
610
Upper Piedmont
140001000016
9/25/2008
162
1.2
1.1
<5
<5
38
<5
<5
15
15
182.0
3.4
166
<2
<6.2
<1
15.79
300
470
Upper Piedmont
140001000017
12/10/2002
13
2.3
<5
43
<5
7.3
316
41
210
<5
140
170
14.98
46
Upper Piedmont
140001000017
6/10/2003
2.5
<5
38
<5
8
332
43
240
<5
300
180
14.37
26
Upper Piedmont
140001000017
12/9/2003
14
2.5
<5
32
<5
8.1
325
200
<5
48
50
15.20
16
Upper Piedmont
140001000017
7/28/2004
3
2.9
<5
<5
36
<5
<5
8
8.8
316
52
230
NA
10
12
16.80
<10
<10
Upper Piedmont
140001000017
3/9/2005
2.3
<5
38
<5
7.6
201
39
190
2.5
34
13
10.10
<10
Upper Piedmont
140001000017
3/9/2005**
2.2
<5
38
<5
7.6
39
200
2.5
31
13
<10
Upper Piedmont
140001000017
9/28/2006
2.5
<5
42
<5
7.2
277
39
200
<2
11
10
17.26
<10
Upper Piedmont
140001000018
12/10/2002
30
1.9
<5
34
<5
8.4
317
55
200
<5
<2.5
1.8
14.90
360
Upper Piedmont
140001000018
6/10/2003
1.9
<5
35
<5
8.2
313
49
210
<5
<2.5
2.1
14.39
1700
Upper Piedmont
140001000018
12/9/2003
30
1.9
<5
31
<5
8.6
212
53
170
<5
<5
1.4
14.80
1600
Upper Piedmont
140001000018
7/28/2004
35
2.4
2.3
<5
<5
28
<5
<5
8.1
8.2
301
42
210
<2.5
1.4
14.60
1500
1600
Upper Piedmont
40001000018
3/9/2005
35
2
<5
32
<5
9.6
239
52
190
<2
4
1.3
14.10
1900
Upper Piedmont
40001000018
9/27/2006
2
<5
32
<5
9.3
277
51
211
<2
<2.5
<1
17.26
1100
Upper Piedmont
40001000019
12/10/2002
132
2.2
<5
34
<5
11
295
51
200
<5
<2.5
2.3
15.20
1300
Upper Piedmont
40001000019
6/10/2003
2.7
<5
31
<5
9.5
260
40
200
<5
8
<1
16.49
730
Upper Piedmont
40001000019
12/9/2003
132
2.7
<5
34
<5
10
202
48
160
<5
3
<1
15.50
470
560
Upper Piedmont
40001000019
7/28/2004
135
3.1
2.9
<5
<5
28
<5
<5
12
12
310
58
210
7
1.4
15.50
470
490
Page 18 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation — Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
Location
IL
Station ID
AM
Sampling
Date
I�(ft)
Sampling Aluminum
Depth Dissolved
(Ng/L as AI)
Aluminum
Total
(Ng/L as AI)
monia
as N
(mg/L as
NH3)
Arsenic
Arsenic Barium
Total
Dissolved Dissolved
(Ng/L as
u9/L as As) As) (Ng/L as Ba)
Barium Bicarbona
Total Dissolve
(Ng/L
as BaO as
Bicarbonate
Total
(mg/L (mg/L
'CO I as HCO3)
Cadmium Cadmium
Dissolved Total
(Ng/L (Ng/L
as Cd) as Cd)
Calcium Calcium Chloride
Dissolved Total Dissolved
(mg/L (mg/L (mg/L
as Ca) as Ca) �Mas
Chloride Chromium
Total Dissolved
(mg/L (Ng/L
Cl) as Cl) as Cr)
Chromiu
Total
(Ng/L
as Cr)
Copper Copp
issolved Tota
(Ng/L N
as Cu) I
Cyanide
(mg/L
as HCN)
Fluoride
Dissolved
Dissolved
Oxygen
(mg/L
(mg/L) as
Fluoride Iron
Total Dissolve
(mg/L (Ng/L
F)@� as F) as Fe)
�• �
'rrr rrrr
r r
®-�
r r
-®-®-�-®-0-0-®-®-
r r
-�-
�S-®-�-®-®-®-�-�-
QT�--�-
Qi
'rrr rrrr
r r r-�
0 "Mom
r r
-®-®-0-®-®-®-�-�-
��'-�-0-®-®-®-0-®-®-�-�-
[If�'�
m�'rrr
rrrr
rr
�-�
r r
-®-®-®-®-m-®-®-®-�-�-
Q,i�-�-
iAARCADIS
Page 19 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation — Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
FIARCJaDIS ��,a��,
Sampling
Iron Lead
Lead Magnesium
nesium
Manganese Manganese Mercury
ercury Nickel Nickel Nitrogen Nitrogen Nitrogen,
Nitrogen
-M
Nitrogen, NO2+ NO2+NO3JN,
Nitrate as N
Oxidation
Reductionj1.e
Phosph
Lab WH, Phosphorus
Phosphorou
Location
Station ID
Sampling
Date
Depth
(ft)
Total Dissolved
(pg/L (pg/L
Total Dissolve
(pg/L (mg/L
otal
mg/L
Dissolved Total Dissolved
(pg/L (pg/L (pg/L
Total Dissolved Total monia Ammonia + Organic Dis Nitrate
(pg/L (pg/L (pg/L (mg/L Organic (mg/L (mg/L
Dis Nitrate Dis (mg/L NO3 Dis as N
(mg/L as NO3) (mg/L (mg/L
potential,Lab
raw value(SU)
(mg/L Ortho,
as PO4) (mg/L
dis as P Total
as P) (mg/L as P)
IL
AM
I
as Fe) as Pb)
as Pb) as Mg)
s Mg)
as Mn) as Mn) as Hg)
as Hg) as Ni) as Ni) as NH4) as N) as
N) as NO3) as N) a
(mV)
Page 20 of 21
Attachment A
Constituent Concentrations in Groundwater
at NCDEQ Groundwater Monitoring and Research Stations
BTV Statistical Outlier Evaluation — Cape Fear Steam Electric Plant
Duke Energy Progress, LLC
PARCADIS
Location
IL
Station ID
AM
Sampling
Date
I
Sampling Potassium
Depth Dissolved
(ft) mg/L as K)
Potassium
Radon-222
Total
(mg/L as K) (pCi/L)
Seleniu
Dissolv
(pg/L as Se
rgIL
Se)
�-
Silica Silica
Dissolved Total
(mg/L as (mg/L as
Si02) Si02)
Silver
Dissolved
(pg/L as Ag
Silver
Total
(pg/L as
Ag)
Sodium
Sodium Solids
Total
Dissolved Dissolved
(mg/L as
(mg/L as Na) (mg/L)
Na)
Solids,
Specific Specific
Residue at
Cond., Field Cond.,
180 deg C
(us/cm) (us/cm)
(mg/L)
Sulfate Sulfate
Dissolved Total
Lab
(mg/L as (mg/L as
SO4) SO4)
Total
Sulfide Sulfide
Dissolved
Dissolved (mg/L as
Solids
(pg/L as S) H2S)
(mg/L)
Total
Organic
Carbon total
(mg/L)
Total
Suspende
Solids,r(NT
Residue(deg
18(mg/ )i
Water Temp
C)
Zinc
Zinc
Total
Dissolved
Dissolved
as Zn) (pg/L as
Zn)
General Notes:
1. Blank fields = not sampled.
Footnotes:
Langtree
* = Represents total analysis in unfiltered samples.
Upper Piedmont
* = Below measure point.
* = Duplicate sample.
Tater Hill
* = Below measure point.
* = Duplicate sample.
Acronyms and Abbreviations: Qualifiers:
Cord. = conductivity J = estimated
deg C = degrees Celsius U = not detected
Dis = dissolved
µg/L = micrograms per liter
ps/cm = microsiemen per centimeter
mg/L - milligrams per liter
my = millivolt
NA = not available
NCDEQ = North Carolina Department of Environmental Quality
pCi/L = picocuries per liter
SU = standard unit
Page 21 of 21
04ARCADIS built nConsultancy
fornatunaland
hu ilt asss ets
Arcadis U.S., Inc.
11400 Parkside Drive
Suite 410
Knoxville, Tennessee 37934
Tel 865 675 6700
Fax 865 675 6712
www.arcadis.com
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC - Cape Fear Steam Electric Plant
/. - \ � . �,
UPPER TOLERANCE LIMITS
(PROUCL OUTPUT
SynTerra
Cape Fear Steam Electric Plant
Appendix A
Aluminum
Gamma Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation ProUCL 5.11/30/2020 3:11:38 PM
From File Cape Fear Background Soil Data_ProUCL.xls
Full Precision OFF
Confidence Coefficient 95%
Coverage 95%
General Statistics
Total Number of Observations 19
Minimum 11000
Second Largest 40000
Maximum 44400
Mean 21168
Coefficient of Variation 0.407
Mean of logged Data 9.896
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.423
Number of Distinct Observations 14
First Quartile 16300
Median 19000
Third Quartile 24000
SD 8605
Skewness 1.672
SD of logged Data 0.352
d2max (for USL) 2.531
Gamma GOF Test
A-D Test Statistic 0.71
Anderson -Darling Gamma GOF Test
5% A-D Critical Value 0.742
Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.2
Kolmogorov-Smimov Gamma GOF Test
5% K-S Critical Value 0.199
Data Not Gamma Distributed at 5% Significance Level
Detected data follow Appr. Gamma Distribution at 5% Significance Level
Gamma Statistics
k hat (MLE) 7.999
k star (bias corrected MLE) 6.771
Theta hat (MLE) 2646
Theta star (bias corrected MLE) 3126
nu hat (MLE) 304
nu star (bias corrected) 257.3
MLE Mean (bias corrected) 21168
MLE Sd (bias corrected) 8135
Background Statistics Assuming Gamma Distribution
95% Wilson Hilferty (WH) Approx. Gamma UPL 36659 90% Percentile 32032
95% Hawkins Wixley (HW) Approx. Gamma UPL 36748 95% Percentile 36078
95% WH Approx. Gamma UTL with 95% Coverage 44269 99% Percentile 44515
95% HW Approx. Gamma UTL with 95% Coverage 44743
95% WH USL 45643 95% HW USL 46204
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Barium
General Statistics
Total Number of Observations 16
Minimum
28
Second Largest
170
Maximum
200
Mean
77.21
Coefficient of Variation
0.687
Mean of logged Data
4.156
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.524
Number of Distinct Observations
15
Number of Missing Observations
3
First Quartile
41
Median
54.5
Third Quartile
100
SD
53.08
Skewness
1.311
SD of logged Data
0.619
d2max (for USL) 2.443
Gamma GOF Test
A-D Test Statistic
0.612
Anderson -Darling Gamma GOF Test
5% A-D Critical Value
0.746
Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic
0.184
Kolmogorov-Smimov Gamma GOF Test
5% K-S Critical Value
0.217
Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma
Distributed at
5% Significance Level
Gamma Statistics
k hat (MLE)
2.775
k star (bias corrected MLE)
2.296
Theta hat (MLE)
27.83
Theta star (bias corrected MLE)
33.63
nu hat (MLE)
88.79
nu star (bias corrected)
73.47
MLE Mean (bias corrected)
77.21
MLE Sd (bias corrected)
50.96
Background Statistics Assuming Gamma Distribution
95% Wilson Hilferty (WH) Approx. Gamma UPL
182.3
90% Percentile
145.4
95% Hawkins Wixley (HW) Approx. Gamma UPL
184.7
95% Percentile
175.4
95% WH Approx. Gamma UTL with 95% Coverage
250.3
99% Percentile
241.4
95% HW Approx. Gamma UTL with 95% Coverage
259.9
95% WH USL
241.9
95% HW USL
250.4
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Calcium
General Statistics
Total Number of Observations
15
Number of Missing Observations
4
Number of Detects
13
Number of Distinct Detects
13
Minimum Detect
45
Maximum Detect
2300
Variance Detected 393649
Mean Detected
696.2
Mean of Detected Logged Data
6.113
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.566
Number of Distinct Observations 15
Number of Non -Detects
2
Number of Distinct Non -Detects
2
Minimum Non -Detect
210
Maximum Non -Detect
290
Percent Non -Detects
13.33%
SD Detected
627.4
SD of Detected Logged Data
1.09
d2max (for USL) 2.409
Gamma GOF Tests on Detected Observations Only
A-D Test Statistic 0.191 Anderson -Darling GOF Test
5% A-D Critical Value 0.753 Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.124 Kolmogorov-Smirnov GOF
5% K-S Critical Value 0.242 Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
KM Mean 615.4
95% UTL95% Coverage 2151
95% KM Chebyshev UPL 3309
95% KM Percentile (z) 1600
95% KM USL 2057
Gamma Statistics on Detected Data Only
k hat (MLE)
1.298
Theta hat (MLE)
536.2
nu hat (MLE)
33.75
MLE Mean (bias corrected)
696.2
MLE Sd (bias corrected)
679.4
KM SD 598.3
95% KM UPL (t)
1704
90% KM Percentile (z)
1382
99% KM Percentile (z)
2007
k star (bias corrected MLE)
1.05
Theta star (bias corrected MLE)
663.1
nu star (bias corrected)
27.3
95% Percentile of Chisquare (2kstar) 6.183
Gamma ROS Statistics using Imputed Non -Detects
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCLs and BTVs
This is especially true when the sample size is small.
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates
Minimum 0.01 Mean
603.7
Maximum 2300 Median
380
SD 630 CV
1.044
k hat (MLE) 0.491 k star (bias corrected MLE)
0.437
Theta hat (MLE) 1229 Theta star (bias corrected MLE)
1380
nu hat (MLE) 14.74 nu star (bias corrected)
13.12
MLE Mean (bias corrected) 603.7 MLE Sd (bias corrected)
912.7
95% Percentile of Chisquare (2kstar) 3.524 90% Percentile
1677
95% Percentile 2431 99% Percentile
4310
The following statistics are computed using Gamma ROS Statistics on Imputed Data
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods
WH HW WH
HW
95% Approx. Gamma UTL with 95% Coverage 4268 5915 95% Approx. Gamma UPL 2507
3088
95% Gamma USL 3846 5204
Cape Fear Steam Electric Plant
Appendix A
Calcium (Continued)
Estimates of Gamma Parameters using KM Estimates
Mean (KM) 615.4
SD (KM)
598.3
Variance (KM) 358021
SE of Mean (KM)
161
k hat (KM) 1.058
k star (KM)
0.891
nu hat (KM) 31.74
nu star (KM)
31.74
theta hat (KM) 581.8
theta star (KM)
690.9
80% gamma percentile (KM) 999.1
90% gamma percentile (KM)
1458
95% gamma percentile (KM) 1921
99% gamma percentile (KM)
3006
The following statistics are computed using gamma distribution and KM
estimates
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW)
Methods
WH HW
WH
HW
95% Approx. Gamma UTL with 95% Coverage 3133 3548
95% Approx. Gamma UPL 1994
2123
95% KM Gamma Percentile 1776 1864
95% Gamma USL 2865
3202
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Chloride
General Statistics
Total Number of Observations 15
Minimum
1.4
Second Largest
140
Maximum
140
Mean
33.45
Coefficient of Variation
1.523
Mean of logged Data
2.38
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.566
Number of Distinct Observations 14
Number of Missing Observations 3
First Quartile
3.05
Median
12
Third Quartile
23.5
SD
50.94
Skewness
1.65
SD of logged Data
1.603
d2max (for USL) 2.409
Gamma GOF Test
A-D Test Statistic
0.904
Anderson -Darling Gamma GOF Test
5% A-D Critical Value
0.789
Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic
0.2
Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value
0.233
Detected data appear Gamma Distributed at 5% Significance Level
Detected data follow Appr. Gamma Distribution at 5% Significance Level
Gamma Statistics
k hat (MLE)
0.553
k star (bias corrected MLE)
0.487
Theta hat (MLE)
60.47
Theta star (bias corrected MLE)
68.69
nu hat (MLE)
16.6
nu star (bias corrected)
14.61
MLE Mean (bias corrected)
33.45
MLE Sd (bias corrected)
47.94
Background Statistics Assuming Gamma Distribution
95% Wilson Hilferty (WH) Approx. Gamma UPL
136.5
90% Percentile
91
95% Hawkins Wixley (HW) Approx. Gamma UPL
143.2
95% Percentile
129.7
95% WH Approx. Gamma UTL with 95% Coverage
240.9
99% Percentile
225.2
95% HW Approx. Gamma UTL with 95% Coverage
275.9
95% WH USL
215.6
95% HW USL
242.5
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Selenium
General Statistics
Total Number of Observations
19
Number of Detects
14
Number of Distinct Detects
10
Minimum Detect
0.3
Maximum Detect
0.795
Variance Detected
0.0202
Mean Detected
0.425
Mean of Detected Logged Data
-0.899
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.423
Number of Distinct Observations
13
Number of Non -Detects
5
Number of Distinct Non -Detects
3
Minimum Non -Detect
1.1
Maximum Non -Detect
1.5
Percent Non -Detects
26.32%
SD Detected
0.142
SD of Detected Logged Data
0.288
d2max (for USL) 2.531
Gamma GOF Tests on Detected Observations Only
A-D Test Statistic
0.769 Anderson -Darling GOF Test
5% A-D Critical Value
0.734 Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic
0.191 Kolmogorov-Smirnov GOF
5% K-S Critical Value
0.229 Detected data appear Gamma Distributed at 5% Significance Level
Detected data follow Appr. Gamma Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
KM Mean
0.425 KM SD
0.137
95% UTL95% Coverage
0.756 95% KM UPL (t)
0.668
95% KM Chebyshev UPL
1.037 90% KM Percentile (z)
0.6
95% KM Percentile (z)
0.65 99% KM Percentile (z)
0.743
95% KM USL
0.771
Gamma Statistics on Detected Data Only
k hat (MLE)
11.95 k star (bias corrected MLE)
9.435
Theta hat (MLE)
0.0356 Theta star (bias corrected MLE)
0.045
nu hat (MLE)
334.5 nu star (bias corrected)
264.2
MLE Mean (bias corrected)
0.425
MLE Sd (bias corrected)
0.138 95% Percentile of Chisquare (2kstar)
29.98
Gamma ROS Statistics using Imputed Non -Detects
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCLs and BTVs
This is especially true when the sample size is small.
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates
Minimum
0.3
Mean
0.423
Maximum
0.795
Median
0.39
SD
0.125
CV
0.295
k hat (MLE)
14.92
k star (bias corrected MLE)
12.6
Theta hat (MLE)
0.0283
Theta star (bias corrected MLE)
0.0335
nu hat (MLE)
566.9
nu star (bias corrected)
478.7
MLE Mean (bias corrected)
0.423
MLE Sd (bias corrected)
0.119
95% Percentile of Chisquare (2kstar)
37.9
90% Percentile
0.581
95% Percentile
0.636
99% Percentile
0.748
The following statistics are computed using Gamma ROS Statistics on Imputed Data
Upper Limits using Wilson Hilferty
(WH) and Hawkins Wixley (HW) Methods
WH
HW
WH
HW
95% Approx. Gamma UTL with 95% Coverage 0.743
0.747
95% Approx. Gamma UPL 0.643
0.643
95% Gamma USL 0.761
0.766
Cape Fear Steam Electric Plant
Appendix A
Selenium (Continued)
Estimates of Gamma Parameters using KM Estimates
Mean (KM)
0.425
Variance (KM)
0.0187
k hat (KM)
9.64
nu hat (KM)
366.3
theta hat (KM)
0.0441
80% gamma percentile (KM)
0.542
95% gamma percentile (KM)
0.695
SD (KM)
0.137
SE of Mean (KM)
0.0379
k star (KM)
8.153
nu star (KM)
366.3
theta star (KM)
0.0521
90% gamma percentile (KM)
0.623
99% gamma percentile (KM)
0.845
The following statistics are computed using gamma distribution and KM estimates
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods
WH HW WH HW
95% Approx. Gamma UTL with 95% Coverage 0.779 0.783 95% Approx. Gamma UPL 0.666 0.666
95% KM Gamma Percentile 0.644 0.644 95% Gamma USL 0.799 0.804
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Sodium
General Statistics
Total Number of Observations
13
Number of Missing Observations
6
Number of Detects
8
Number of Distinct Detects
8
Minimum Detect
49
Maximum Detect
790
Variance Detected
59520
Mean Detected
229.1
Mean of Detected Logged Data
5.037
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.671
Number of Distinct Observations 13
Number of Non -Detects
5
Number of Distinct Non -Detects
5
Minimum Non -Detect
210
Maximum Non -Detect
510
Percent Non -Detects
38.46%
SD Detected
244
SD of Detected Logged Data
0.932
d2max (for USL) 2.331
Gamma GOF Tests on Detected Observations Only
A-D Test Statistic 0.385 Anderson -Darling GOF Test
5% A-D Critical Value 0.73 Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.221 Kolmogorov-Smirnov GOF
5% K-S Critical Value 0.299 Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
KM Mean 190 KM SD
190.6
95% UTL95% Coverage 699 95% KM UPL (t)
542.5
95% KM Chebyshev UPL 1052 90% KM Percentile (z)
434.2
95% KM Percentile (z) 503.5 99% KM Percentile (z)
633.3
95% KM USL 634.1
Gamma Statistics on Detected Data Only
k hat (MLE) 1.403 k star (bias corrected MLE)
0.96
Theta hat (MLE) 163.3 Theta star (bias corrected MLE)
238.7
nu hat (MLE) 22.44 nu star (bias corrected)
15.36
MLE Mean (bias corrected) 229.1
MLE Sd (bias corrected) 233.8 95% Percentile of Chisquare (2kstar)
5.836
Gamma ROS Statistics using Imputed Non -Detects
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCLs and BTVs
This is especially true when the sample size is small.
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates
Minimum 49 Mean
184.5
Maximum 790 Median
125
SD 195.5 CV
1.06
k hat (MLE) 1.812 k star (bias corrected MLE)
1.445
Theta hat (MLE) 101.8 Theta star (bias corrected MLE)
127.7
nu hat (MLE) 47.12 nu star (bias corrected)
37.58
MLE Mean (bias corrected) 184.5 MLE Sd (bias corrected)
153.5
95% Percentile of Chisquare (2kstar) 7.624 90% Percentile
388
95% Percentile 486.6 99% Percentile
710
The following statistics are computed using Gamma ROS Statistics on Imputed Data
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods
WH HW WH
HW
95% Approx. Gamma UTL with 95% Coverage 775.1 802.7 95% Approx. Gamma UPL 510.4
510.9
95% Gamma USL 656.4 669.7
Cape Fear Steam Electric Plant
Appendix A
Sodium (Continued)
Estimates of Gamma Parameters using KM Estimates
Mean (KM) 190
SD (KM)
190.6
Variance (KM) 36326
SE of Mean (KM)
58.67
k hat (KM) 0.993
k star (KM)
0.815
nu hat (KM) 25.83
nu star (KM)
25.83
theta hat (KM) 191.2
theta star (KM)
233
80% gamma percentile (KM) 310.1
90% gamma percentile (KM)
459.8
95% gamma percentile (KM) 612
99% gamma percentile (KM)
971
The following statistics are computed using gamma distribution and KM
estimates
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW)
Methods
WH HW
WH
HW
95% Approx. Gamma UTL with 95% Coverage 813.7 858
95% Approx. Gamma UPL 531.2
538.2
95% KM Gamma Percentile 472.8 474.8
95% Gamma USL 686.9
711.8
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Sulfate
General Statistics
Total Number of Observations
15
Number of Missing Observations
3
Number of Detects
10
Number of Distinct Detects
10
Minimum Detect
6.8
Maximum Detect
420
Variance Detected
18820
Mean Detected
93.5
Mean of Detected Logged Data
3.648
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.566
Number of Distinct Observations 12
Number of Non -Detects
5
Number of Distinct Non -Detects
2
Minimum Non -Detect
12
Maximum Non -Detect
13
Percent Non -Detects
33.33%
SD Detected
137.2
SD of Detected Logged Data
1.412
d2max (for USL) 2.409
Gamma GOF Tests on Detected Observations Only
A-D Test Statistic 0.542 Anderson -Darling GOF Test
5% A-D Critical Value 0.762 Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.21 Kolmogorov-Smirnov GOF
5% K-S Critical Value 0.277 Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
KM Mean 65 KM SD
113.7
95% UTL95% Coverage 356.6 95% KM UPL (t)
271.7
95% KM Chebyshev UPL 576.6 90% KM Percentile (z)
210.7
95% KM Percentile (z) 251.9 99% KM Percentile (z)
329.4
95% KM USL 338.8
Gamma Statistics on Detected Data Only
k hat (MLE) 0.682 k star (bias corrected MLE)
0.544
Theta hat (MLE) 137.1 Theta star (bias corrected MLE)
171.9
nu hat (MLE) 13.64 nu star (bias corrected)
10.88
MLE Mean (bias corrected) 93.5
MLE Sd (bias corrected) 126.8 95% Percentile of Chisquare (2kstar)
4.055
Gamma ROS Statistics using Imputed Non -Detects
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCLs and BTVs
This is especially true when the sample size is small.
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates
Minimum 0.01 Mean
62.34
Maximum 420 Median
8.7
SD 119.1 CV
1.91
k hat (MLE) 0.224 k star (bias corrected MLE)
0.223
Theta hat (MLE) 278.9 Theta star (bias corrected MLE)
279.2
nu hat (MLE) 6.706 nu star (bias corrected)
6.698
MLE Mean (bias corrected) 62.34 MLE Sd (bias corrected)
131.9
95% Percentile of Chisquare (2kstar) 2.233 90% Percentile
188.2
95% Percentile 311.8 99% Percentile
646.1
The following statistics are computed using Gamma ROS Statistics on Imputed Data
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods
WH HW WH
HW
95% Approx. Gamma UTL with 95% Coverage 600.5 852.8 95% Approx. Gamma UPL 304.5
365.9
95% Gamma USL 527 724.1
Cape Fear Steam Electric Plant
Appendix A
Sulfate (Continued)
Estimates of Gamma Parameters using KM Estimates
Mean (KM) 65
SD (KM)
113.7
Variance (KM) 12917
SE of Mean (KM)
30.93
k hat (KM) 0.327
k star (KM)
0.306
nu hat (KM) 9.813
nu star (KM)
9.813
theta hat (KM) 198.7
theta star (KM)
212.3
80% gamma percentile (KM) 100.2
90% gamma percentile (KM)
191.2
95% gamma percentile (KM) 295.4
99% gamma percentile (KM)
565.5
The following statistics are computed using gamma distribution and KM estimates
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW)
Methods
WH HW
WH
HW
95% Approx. Gamma UTL with 95% Coverage 414.1 443.6
95% Approx. Gamma UPL 238.8
238.2
95% KM Gamma Percentile 206.7 202.9
95% Gamma USL 371.8
392.3
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Thallium
General Statistics
Total Number of Observations
18
Minimum
0.09
Second Largest
0.347
Maximum
0.349
Mean
0.182
Coefficient of Variation
0.448
Mean of logged Data
-1.787
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.453
Number of Distinct Observations
16
First Quartile
0.13
Median
0.16
Third Quartile
0.198
SD
0.0818
Skewness
1.046
SD of logged Data
0.419
d2max (for USL) 2.504
Gamma GOF Test
A-D Test Statistic 0.502
Anderson -Darling Gamma GOF Test
5% A-D Critical Value 0.742
Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.136
Kolmogorov-Sminnov Gamma GOF Test
5% K-S Critical Value 0.204
Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at
5% Significance Level
Gamma Statistics
k hat (MLE)
5.983
Theta hat (MLE)
0.0305
nu hat (MLE)
215.4
MLE Mean (bias corrected)
0.182
Background Statistics Assuming Gamma Distribution
95% Wilson Hilferty (WH) Approx. Gamma UPL
0.341
95% Hawkins Wixley (HW) Approx. Gamma UPL
0.344
95% WH Approx. Gamma UTL with 95% Coverage
0.425
95% HW Approx. Gamma UTL with 95% Coverage
0.433
95% WH USL
0.431
k star (bias corrected MLE)
5.023
Theta star (bias corrected MLE)
0.0363
nu star (bias corrected)
180.8
MLE Sd (bias corrected)
0.0814
90% Percentile 0.291
95% Percentile 0.334
99% Percentile 0.423
95% HW USL 0.441
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Zinc
General Statistics
Total Number of Observations
19
Minimum
14
Second Largest
83
Maximum
83
Mean
34.35
Coefficient of Variation
0.579
Mean of logged Data
3.409
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.423
Number of Distinct Observations
17
First Quartile
20.5
Median
28
Third Quartile
43.5
SD
19.88
Skewness
1.63
SD of logged Data
0.499
d2max (for USL) 2.531
Gamma GOF Test
A-D Test Statistic
0.664
Anderson -Darling Gamma GOF Test
5% A-D Critical Value
0.745
Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic
0.162
Kolmogorov-Sminnov Gamma GOF Test
5% K-S Critical Value
0.199
Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma
Distributed at
5% Significance Level
Gamma Statistics
k hat (MLE)
4.068
k star (bias corrected MLE)
3.461
Theta hat (MLE)
8.444
Theta star (bias corrected MLE)
9.926
nu hat (MLE)
154.6
nu star (bias corrected)
131.5
MLE Mean (bias corrected)
34.35
MLE Sd (bias corrected)
18.47
Background Statistics Assuming Gamma Distribution
95% Wilson Hilferty (WH) Approx. Gamma UPL
70.92
90% Percentile
59.11
95% Hawkins Wixley (HW) Approx. Gamma UPL
71.37
95% Percentile
69.25
95% WH Approx. Gamma UTL with 95% Coverage
90.79
99% Percentile
91.05
95% HW Approx. Gamma UTL with 95% Coverage
92.76
95% WH USL
94.46
95% HW USL
96.78
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Two -Sided 95% Tolerance Intervals of pH
Percent of Parametric Parametric Nonparametric Nonparametric
Population Lower Upper Lower Upper
Between Tolerance Tolerance Tolerance Tolerance
Limits Limit Limit Limit Limit
50 4.402926 5.665823 4.46 5.83
60 4.24646 5.822289 4.38 6.91
70 4.06408 6.00467 4.38 6.91
80 3.834604 6.234147
90 3.494485 6.574265
95 3.199483 6.869267
99 2.622918 7.445832
Cape Fear Steam Electric Plant
Appendix A
Gamma Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation ProLICL 5.12/3/2020 8:50:01 AM
From File Cape Fear Background GW Surficial Data_ProUCL.xls
Full Precision OFF
Confidence Coefficient 95%
Coverage 95%
Aluminum
General Statistics
Total Number of Observations
35
Number of Detects
34
Number of Distinct Detects
32
Minimum Detect
7
Maximum Detect
399
Variance Detected
10551
Mean Detected
119.6
Mean of Detected Logged Data
4.426
Number of Distinct Observations
33
Number of Non -Detects
1
Number of Distinct Non -Detects
1
Minimum Non -Detect
5
Maximum Non -Detect
5
Percent Non -Detects
2.857%
SD Detected
102.7
SD of Detected Logged Data
0.924
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.157 d2max (for USL) 2.812
Gamma GOF Tests on Detected Observations Only
A-D Test Statistic
0.379 Anderson -Darling GOF Test
5% A-D Critical Value
0.765 Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic
0.088 Kolmogorov-Smirnov GOF
5% K-S Critical Value
0.154 Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear
Gamma Distributed at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
KM Mean
116.3 KM SD 101.5
95% UTL95% Coverage
335.4 95% KM UPL (t) 290.5
95% KM Chebyshev UPL
565.3 90% KM Percentile (z) 246.5
95% KM Percentile (z)
283.4 99% KM Percentile (z) 352.6
95% KM USL
401.9
Gamma Statistics on Detected Data Only
k hat (MLE)
1.54
Theta hat (MLE)
77.68
nu hat (MLE)
104.7
MLE Mean (bias corrected)
119.6
MLE Sd (bias corrected)
100.3
k star (bias corrected MLE) 1.424
Theta star (bias corrected MLE) 84.02
nu star (bias corrected) 96.81
95% Percentile of Chisquare (2kstar) 7.548
Cape Fear Steam Electric Plant
Appendix A
Aluminum (Continued)
Gamma ROS Statistics using Imputed Non -Detects
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCLs and BTVs
This is especially true when the sample size is small.
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates
Minimum 0.01 Mean
116.2
Maximum 399 Median
83
SD 103.2 CV
0.888
k hat (MLE) 0.984 k star (bias corrected MLE)
0.919
Theta hat (MLE) 118.1 Theta star (bias corrected MLE)
126.5
nu hat (MLE) 68.89 nu star (bias corrected)
64.32
MLE Mean (bias corrected) 116.2 MLE Sd (bias corrected)
121.2
95% Percentile of Chisquare (2kstar) 5.673 90% Percentile
273.2
95% Percentile 358.7 99% Percentile
558.6
The following statistics are computed using Gamma ROS Statistics on Imputed Data
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods
WH HW WH
HW
95% Approx. Gamma UTL with 95% Coverage 454.4 528 95% Approx. Gamma UPL 346.3
385.1
95% Gamma USL 652.3 808
Estimates of Gamma Parameters using KM Estimates
Mean (KM) 116.3 SD (KM)
101.5
Variance (KM) 10312 SE of Mean (KM)
17.42
k hat (KM) 1.313 k star (KM)
1.219
nu hat (KM) 91.88 nu star (KM)
91.88
theta hat (KM) 88.64 theta star (KM)
95.43
80% gamma percentile (KM) 183.9 90% gamma percentile (KM)
255.1
95% gamma percentile (KM) 325.2 99% gamma percentile (KM)
485.7
The following statistics are computed using gamma distribution and KM estimates
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods
WH HW WH
HW
95% Approx. Gamma UTL with 95% Coverage 414.9 447.2 95% Approx. Gamma UPL 321.3
336.2
95% KM Gamma Percentile 307.9 320.7 95% Gamma USL 584.3
659.4
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Boron
General Statistics
Total Number of Observations
35
Number of Detects
28
Number of Distinct Detects
24
Minimum Detect
48.1
Maximum Detect
150
Variance Detected
1004
Mean Detected
88.09
Mean of Detected Logged Data
4.417
Appendix A
Number of Distinct Observations
25
Number of Non -Detects
7
Number of Distinct Non -Detects
1
Minimum Non -Detect
50
Maximum Non -Detect
50
Percent Non -Detects
20%
SD Detected
31.69
SD of Detected Logged Data
0.354
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.157 d2max (for USL) 2.812
Gamma GOF Tests on Detected Observations Only
A-D Test Statistic 0.705 Anderson -Darling GOF Test
5% A-D Critical Value 0.746 Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.14 Kolmogorov-Smirnov GOF
5% K-S Critical Value 0.165 Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
KM Mean 80.23 KM SD
31.97
95% UTL95% Coverage 149.2 95% KM UPL (t)
135
95% KM Chebyshev UPL 221.5 90% KM Percentile (z)
121.2
95% KM Percentile (z) 132.8 99% KM Percentile (z)
154.6
95% KM USL 170.1
Gamma Statistics on Detected Data Only
k hat (MLE) 8.379 k star (bias corrected MLE)
7.505
Theta hat (MLE) 10.51 Theta star (bias corrected MLE)
11.74
nu hat (MLE) 469.3 nu star (bias corrected)
420.3
MLE Mean (bias corrected) 88.09
MLE Sd (bias corrected) 32.15 95% Percentile of Chisquare (2kstar)
25.01
Gamma ROS Statistics using Imputed Non -Detects
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCLs and BTVs
This is especially true when the sample size is small.
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates
Minimum 22.88 Mean
78.4
Maximum 150 Median
70
SD 34.69 CV
0.442
k hat (MLE) 5.233 k star (bias corrected MLE)
4.803
Theta hat (MLE) 14.98 Theta star (bias corrected MLE)
16.32
nu hat (MLE) 366.3 nu star (bias corrected)
336.2
MLE Mean (bias corrected) 78.4 MLE Sd (bias corrected)
35.77
95% Percentile of Chisquare (2kstar) 17.76 90% Percentile
126.3
95% Percentile 145 99% Percentile
184.5
Cape Fear Steam Electric Plant
Appendix A
Boron (Continued)
The following statistics are computed using Gamma ROS Statistics on Imputed Data
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods
WH HW WH
95% Approx. Gamma UTL with 95% Coverage 171.3 175.3 95% Approx. Gamma UPL 146.7
95% Gamma USL 212.6 221.1
Estimates of Gamma Parameters using KM Estimates
HW
148.7
Mean (KM)
80.23
SD (KM)
31.97
Variance (KM)
1022
SE of Mean (KM)
5.503
k hat (KM)
6.3
k star (KM)
5.779
nu hat (KM)
441
nu star (KM)
441
theta hat (KM)
12.74
theta star (KM)
13.88
80% gamma percentile (KM)
106.1
90% gamma percentile (KM)
124.9
95% gamma percentile (KM)
141.8
99% gamma percentile (KM)
177.4
The following statistics are computed using gamma
distribution and KM estimates
Upper Limits using Wilson
Hilferty (WH) and Hawkins Wixley (HW) Methods
WH
HW
WH
HW
95% Approx. Gamma UTL with 95% Coverage 159.1
160.9
95% Approx. Gamma UPL 138.8
139.5
95% KM Gamma Percentile 135.7
136.3
95% Gamma USL 192.6
197.1
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Cobalt
General Statistics
Total Number of Observations
35
Number of Distinct Observations
28
Number of Detects
28
Number of Non -Detects
7
Number of Distinct Detects
28
Number of Distinct Non -Detects
1
Minimum Detect
0.531
Minimum Non -Detect
1
Maximum Detect
78.7
Maximum Non -Detect
1
Variance Detected
388.9
Percent Non -Detects
20%
Mean Detected
13.87
SD Detected
19.72
Mean of Detected Logged Data
1.671
SD of Detected Logged Data
1.479
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.157 d2max (for USL) 2.812
Gamma GOF Tests on Detected Observations Only
A-D Test Statistic 0.953 Anderson -Darling GOF Test
5% A-D Critical Value 0.796 Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.173 Kolmogorov-Smirnov GOF
5% K-S Critical Value 0.173 Detected data appear Gamma Distributed at 5% Significance
Level
Detected data follow Appr. Gamma Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
KM Mean 11.24 KM SD
18.1
95% UTL95% Coverage 50.28 95% KM UPL (t)
42.28
95% KM Chebyshev UPL 91.26 90% KM Percentile (z)
34.43
95% KM Percentile (z) 41.01 99% KM Percentile (z)
53.35
95% KM USL 62.13
Gamma Statistics on Detected Data Only
k hat (MLE) 0.639 k star (bias corrected MLE)
0.594
Theta hat (MLE) 21.71 Theta star (bias corrected MLE)
23.34
nu hat (MLE) 35.77 nu star (bias corrected)
33.27
MLE Mean (bias corrected) 13.87
MLE Sd (bias corrected) 17.99 95% Percentile of Chisquare (2kstar)
4.291
Gamma ROS Statistics using Imputed Non -Detects
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCLs and BTVs
This is especially true when the sample size is small.
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates
Minimum 0.01 Mean
11.09
Maximum 78.7 Median
2.04
SD 18.45 CV
1.663
k hat (MLE) 0.339 k star (bias corrected MLE)
0.329
Theta hat (MLE) 32.68 Theta star (bias corrected MLE)
33.68
nu hat (MLE) 23.76 nu star (bias corrected)
23.06
MLE Mean (bias corrected) 11.09 MLE Sd (bias corrected)
19.33
95% Percentile of Chisquare (2kstar) 2.923 90% Percentile
32.33
95% Percentile 49.23 99% Percentile
92.67
Cape Fear Steam Electric Plant Appendix A
Cobalt (Continued)
The following statistics are computed using Gamma ROS Statistics on Imputed Data
Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods
WH HW WH HW
95% Approx. Gamma UTL with 95% Coverage 66.74 81.43 95% Approx. Gamma UPL 44.95 50.61
95% Gamma USL 110.4 150.5
Estimates of Gamma Parameters using KM Estimates
Mean (KM)
11.24
SD (KM)
18.1
Variance (KM)
327.7
SE of Mean (KM)
3.116
k hat (KM)
0.385
k star (KM)
0.371
nu hat (KM)
26.97
nu star (KM)
26.97
theta hat (KM)
29.16
theta star (KM)
30.26
80% gamma percentile (KM)
17.96
90% gamma percentile (KM)
32.14
95% gamma percentile (KM)
47.89
99% gamma percentile (KM)
87.82
The following statistics are computed using gamma distribution and KM estimates
Upper Limits using Wilson
Hilferty (WH) and Hawkins
Wixley (HW) Methods
WH
HW
WH
HW
95% Approx. Gamma UTL with 95% Coverage 56.75
61.05
95% Approx. Gamma UPL 39.78
40.7
95% KM Gamma Percentile 37.45
38.02
95% Gamma USL 89.82
104.1
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Total Radium
General Statistics
Total Number of Observations 22
Minimum
0.272
Second Largest
3.78
Maximum
7.662
Mean
1.827
Coefficient of Variation
0.862
Mean of logged Data
0.353
Appendix A
Number of Distinct Observations
21
Number of Missing Observations
11
First Quartile
1.001
Median
1.254
Third Quartile
2.14
SD
1.575
Skewness
2.684
SD of logged Data
0.706
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.349 d2max (for USL) 2.603
Gamma GOF Test
A-D Test Statistic
0.585
Anderson -Darling Gamma GOF Test
5% A-D Critical Value
0.755
Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic
0.15
Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value
0.188
Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at 5% Significance Level
Gamma Statistics
k hat (MLE)
2.159
k star (bias corrected MLE)
1.895
Theta hat (MLE)
0.846
Theta star (bias corrected MLE)
0.964
nu hat (MLE)
95
nu star (bias corrected)
83.38
MLE Mean (bias corrected)
1.827
MLE Sd (bias corrected)
1.327
Background Statistics Assuming Gamma Distribution
95% Wilson Hilferty (WH) Approx. Gamma UPL
4.503
90% Percentile
3.598
95% Hawkins Wixley (HW) Approx. Gamma UPL
4.558
95% Percentile
4.408
95% WH Approx. Gamma UTL with 95% Coverage
6.004
99% Percentile
6.209
95% HW Approx. Gamma UTL with 95% Coverage
6.219
95% WH USL
6.741
95% HW USL
7.059
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant Appendix A
Lognormal Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProLICL 5.12/3/2020 11:13:12 AM
From File
Cape Fear Background GW Bedrock Data_ProUCL.xls
Full Precision
OFF
Confidence Coefficient
95%
Coverage
95%
Different or Future K Observations
1
Number of Bootstrap Operations
2000
Aluminum
General Statistics
Total Number of Observations
68
Number of Distinct Observations
43
Minimum
2.39
First Quartile
11
Second Largest
155
Median
17
Maximum
295
Third Quartile
28.5
Mean
31.69
SD
46.71
Coefficient of Variation
1.474
Skewness
3.605
Mean of logged Data
2.909
SD of logged Data
0.966
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991 d2max (for USL) 3.073
Lognormal GOF Test
Shapiro Wilk Test Statistic 0.961 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value 0.0907 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.095 Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.107 Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level
Background Statistics assuming Lognormal Distribution
95% UTL with 95% Coverage 125.5 90% Percentile (z) 63.25
95% UPL (t) 92.96 95% Percentile (z) 89.84
95% USL 357.2 99% Percentile (z) 173.6
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Total Radium
General Statistics
Total Number of Observations 37
Minimum
0.0972
Second Largest
3.27
Maximum
8.002
Mean
1.437
Coefficient of Variation
0.916
Mean of logged Data
0.106
Appendix A
Number of Distinct Observations
37
Number of Missing Observations
29
First Quartile
0.758
Median
1.17
Third Quartile
1.518
SD
1.315
Skewness
3.687
SD of logged Data
0.728
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.14 d2max (for USL) 2.835
Lognormal GOF Test
Shapiro Wilk Test Statistic 0.952 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.936 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.114 Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.144 Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level
Background Statistics assuming Lognormal Distribution
95% UTL with 95% Coverage 5.287 90% Percentile (z) 2.829
95% UPL (t) 3.868 95% Percentile (z) 3.686
95% USL 8.772 99% Percentile (z) 6.055
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Lognormal Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProUCL 5.11/30/2020 3:08:24 PM
From File
Cape Fear Background Soil Data_ProUCL.xls
Full Precision
OFF
Confidence Coefficient
95%
Coverage
95%
Different or Future K Observations
1
Number of Bootstrap Operations
2000
Iron
General Statistics
Total Number of Observations 16
Minimum 12000
Second Largest 29000
Maximum 40000
Mean 19094
Coefficient of Variation 0.364
Mean of logged Data 9.809
Number of Distinct Observations 13
Number of Missing Observations 3
First Quartile
15750
Median
17500
Third Quartile
19250
SD
6948
Skewness
2.125
SD of logged Data
0.302
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443
Lognormal GOF Test
Shapiro Wilk Test Statistic 0.898 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.887 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.202 Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.213 Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level
Background Statistics assuming Lognormal Distribution
95% UTL with 95% Coverage 38976 90% Percentile (z) 26793
95% UPL (t) 31395 95% Percentile (z) 29896
95% USL 38038 99% Percentile (z) 36720
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Manganese
General Statistics
Total Number of Observations
19
Minimum
34
Second Largest
1900
Maximum
2700
Mean
418.8
Coefficient of Variation
1.659
Mean of logged Data
5.248
Number of Distinct Observations
19
First Quartile
85.5
Median
155
Third Quartile
325
SD
694.7
Skewness
2.731
SD of logged Data
1.192
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531
Lognormal GOF Test
Shapiro Wilk Test Statistic 0.949 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.901 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.11 Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.197 Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level
Background Statistics assuming Lognormal Distribution
95% UTL with 95% Coverage 3418 90% Percentile (z) 876.3
95% UPL (t) 1586 95% Percentile (z) 1351
95% USL 3889 99% Percentile (z) 3046
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Potassium
General Statistics
Total Number of Observations 16
Minimum
139
Second Largest
920
Maximum
1300
Mean
393.1
Coefficient of Variation
0.783
Mean of logged Data
5.779
Appendix A
Number of Distinct Observations 14
Number of Missing Observations 3
First Quartile
242.5
Median
285
Third Quartile
360
SD
307.9
Skewness
2.219
SD of logged Data
0.597
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443
Lognormal GOF Test
Shapiro Wilk Test Statistic 0.899 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.887 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.197 Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.213 Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level
Background Statistics assuming Lognormal Distribution
95% UTL with 95% Coverage 1457 90% Percentile (z) 694.5
95% UPL (t) 950.2 95% Percentile (z) 862.6
95% USL 1389 99% Percentile (z) 1295
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant Appendix A
Nonparametric Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProLICL 5.11/30/2020 3:17:58 PM
From File
Cape Fear Background Soil Data_ProUCL.xls
Full Precision
OFF
Confidence Coefficient
95%
Coverage
85%
Different or Future K Observations
1
Boron
General Statistics
Total Number of Observations
16
Number of Distinct Observations
14
Number of Missing Observations
2
Number of Detects
4
Number of Non -Detects
12
Number of Distinct Detects
4
Number of Distinct Non -Detects
10
Minimum Detect
5.26
Minimum Non -Detect
2.1
Maximum Detect
9
Maximum Non -Detect
5.1
Variance Detected
2.626
Percent Non -Detects
75%
Mean Detected
6.7
SD Detected
1.621
Mean of Detected Logged Data
1.882
SD of Detected Logged Data
0.229
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.69
d2max (for USL)
2.443
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
3.25
SD
2.112
95% UTL85% Coverage
6.818
95% KM UPL (t)
7.066
95% KM Chebyshev UPL
12.74
90% KM Percentile (z)
5.956
95% KM Percentile (z)
6.724
99% KM Percentile (z)
8.163
95% KM USL
8.41
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
15
95% UTL with85% Coverage
6.54
Approx, f used to compute achieved CC
1.324
Approximate Actual Confidence Coefficient achieved by UTL
0.716
Approximate Sample Size needed to achieve specified CC
30
95% UPL
9
95% USL
9
95% KM Chebyshev UPL
12.74
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Cadmium
General Statistics
Total Number of Observations
18
Number of Distinct Observations
14
Number of Detects
7
Number of Non -Detects
11
Number of Distinct Detects
6
Number of Distinct Non -Detects
8
Minimum Detect
0.017
Minimum Non -Detect
0.021
Maximum Detect
0.084
Maximum Non -Detect
0.0625
Variance Detected 5.1581E-4
Percent Non -Detects
61.11%
Mean Detected
0.0381
SD Detected
0.0227
Mean of Detected Logged Data
-3.4
SD of Detected Logged Data
0.549
Critical Values for
Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.64
d2max (for USL)
2.504
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.0265
SD
0.0167
95% UTL85% Coverage
0.0538
95% KM UPL (t)
0.0562
95% KM Chebyshev UPL
0.101
90% KM Percentile (z)
0.0478
95% KM Percentile (z)
0.0538
99% KM Percentile (z)
0.0652
95% KM USL
0.0682
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
17
95% UTL with85% Coverage
0.0625
Approx, f used to compute achieved CC
1.5
Approximate Actual Confidence Coefficient achieved by UTL
0.776
Approximate Sample Size needed to achieve specified CC
30
95% UPL
0.084
95% USL
0.084
95% KM Chebyshev UPL
0.101
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Mercury
General Statistics
Total Number of Observations
19
Number of Distinct Observations
17
Number of Detects
9
Number of Non -Detects
10
Number of Distinct Detects
9
Number of Distinct Non -Detects
8
Minimum Detect
0.014
Minimum Non -Detect
0.082
Maximum Detect
0.15
Maximum Non -Detect
0.098
Variance Detected
0.00236
Percent Non -Detects
52.63%
Mean Detected
0.0757
SD Detected
0.0485
Mean of Detected Logged Data
-2.81
SD of Detected Logged Data
0.776
Critical Values for
Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.619
d2max (for USL)
2.531
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.0603
SD
0.0379
95% UTL85% Coverage
0.122
95% KM UPL (t)
0.128
95% KM Chebyshev UPL
0.23
90% KM Percentile (z)
0.109
95% KM Percentile (z)
0.123
99% KM Percentile (z)
0.148
95% KM USL
0.156
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
18
95% UTL with85% Coverage
0.14
Approx, f used to compute achieved CC
1.588
Approximate Actual Confidence Coefficient achieved by UTL
0.802
Approximate Sample Size needed to achieve specified CC
30
95% UPL
0.15
95% USL
0.15
95% KM Chebyshev UPL
0.23
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
N itrate
Appendix A
General Statistics
Total Number of Observations
15
Number of Distinct Observations
11
Number of Missing Observations
3
Number of Detects
9
Number of Non -Detects
6
Number of Distinct Detects
9
Number of Distinct Non -Detects
5
Minimum Detect
0.082
Minimum Non -Detect
0.22
Maximum Detect
0.87
Maximum Non -Detect
0.26
Variance Detected
0.0559
Percent Non -Detects
40%
Mean Detected
0.265
SD Detected
0.236
Mean of Detected Logged Data
-1.565
SD of Detected Logged Data
0.678
Critical Values for
Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.719
d2max (for USL)
2.409
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.217
SD
0.185
95% UTL85% Coverage
0.535
95% KM UPL (t)
0.554
95% KM Chebyshev UPL
1.051
90% KM Percentile (z)
0.454
95% KM Percentile (z)
0.521
99% KM Percentile (z)
0.648
95% KM USL
0.663
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
14
95% UTL with85% Coverage
0.27
Approx, f used to compute achieved CC
1.235
Approximate Actual Confidence Coefficient achieved by UTL
0.681
Approximate Sample Size needed to achieve specified CC
30
95% UPL
0.87
95% USL
0.87
95% KM Chebyshev UPL
1.051
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant Appendix A
Nonparametric Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProLICL 5.12/3/2020 8:54:35 AM
From File
Cape Fear Background GW Surficial Data_ProUCL.xls
Full Precision
OFF
Confidence Coefficient
95%
Coverage
85%
Different or Future K Observations
1
Chromium (VI)
General Statistics
Total Number of Observations
27
Number of Distinct Observations
12
Number of Missing Observations
8
Number of Detects
9
Number of Non -Detects
18
Number of Distinct Detects
9
Number of Distinct Non -Detects
3
Minimum Detect
0.032
Minimum Non -Detect
0.025
Maximum Detect
2.3
Maximum Non -Detect
0.12
Variance Detected
0.548
Percent Non -Detects
66.67%
Mean Detected
0.351
SD Detected
0.741
Mean of Detected Logged Data
-2.268
SD of Detected Logged Data
1.428
Critical Values for
Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.503
d2max (for USL)
2.698
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.134
SD
0.431
95% UTL85% Coverage
0.782
95% KM UPL (t)
0.883
95% KM Chebyshev UPL
2.049
90% KM Percentile (z)
0.687
95% KM Percentile (z)
0.843
99% KM Percentile (z)
1.137
95% KM USL
1.298
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
25
95% UTL with85% Coverage
0.18
Approx, f used to compute achieved CC
1.471
Approximate Actual Confidence Coefficient achieved by UTL
0.793
Approximate Sample Size needed to achieve specified CC
40
95% UPL
1.54
95% USL
2.3
95% KM Chebyshev UPL
2.049
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Methane
General Statistics
Total Number of Observations
19
Number of Missing Observations
8
Number of Detects
3
Number of Distinct Detects
3
Minimum Detect
11
Maximum Detect
16
Variance Detected
6.413
Mean Detected
13.27
Mean of Detected Logged Data
2.573
Appendix A
Number of Distinct Observations 4
Number of Non -Detects
Number of Distinct Non -Detects
Minimum Non -Detect
Maximum Non -Detect
Percent Non -Detects
SD Detected
SD of Detected Logged Data
Warning: Data set has only 3 Detected Values.
This is not enough to compute meaningful or reliable statistics and estimates.
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.619
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean 10.52
95% UTL85% Coverage 12.86
95% KM Chebyshev UPL 16.99
95% KM Percentile (z) 12.9
95% KM USL 14.18
d2max (for USL)
SD
95% KM UPL (t)
90% KM Percentile (z)
99% KM Percentile (z)
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
16
1
10
10
84.21 %
2.532
0.188
2.531
1.447
13.09
12.37
13.88
Order of Statistic, r
18
95% UTL with85% Coverage
12.8
Approx, f used to compute achieved CC
1.588
Approximate Actual Confidence Coefficient achieved by UTL
0.802
Approximate Sample Size needed to achieve specified CC
30
95% UPL
16
95% USL
16
95% KM Chebyshev UPL
16.99
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Total Uranium
General Statistics
Total Number of Observations
24
Number of Missing Observations
9
Number of Detects
20
Number of Distinct Detects
20
Minimum Detect 1.2100E-4
Maximum Detect
0.0188
Variance Detected 4.9131 E-5
Mean Detected
0.00561
Mean of Detected Logged Data
-6.483
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.538
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Appendix A
Number of Distinct Observations 21
Number of Non -Detects
4
Number of Distinct Non -Detects
1
Minimum Non -Detect 2.0000E-4
Maximum Non -Detect 2.0000E-4
Percent Non -Detects
16.67%
SD Detected
0.00701
SD of Detected Logged Data
1.818
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.00469
95% UTL85% Coverage
0.0148
95% KM Chebyshev UPL
0.0339
95% KM Percentile (z)
0.0155
95% KM USL
0.022
d2max (for USL) 2.644
SD 0.00656
95% KM UPL (t) 0.0162
90% KM Percentile (z) 0.0131
99% KM Percentile (z) 0.02
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
23
95% UTL with85% Coverage
0.0165
Approx, f used to compute achieved CC
2.029
Approximate Actual Confidence Coefficient achieved by UTL
0.894
Approximate Sample Size needed to achieve specified CC
30
95% UPL
0.0182
95% USL
0.0188
95% KM Chebyshev UPL
0.0339
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant Appendix A
Nonparametric Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProLICL 5.12/3/2020 9:21:57 AM
From File
Cape Fear Background GW Surficial Data_ProUCL.xls
Full Precision
OFF
Confidence Coefficient
95%
Coverage
90%
Different or Future K Observations
1
Arsenic
General Statistics
Total Number of Observations
35
Number of Distinct Observations
8
Number of Detects
8
Number of Non -Detects
27
Number of Distinct Detects
7
Number of Distinct Non -Detects
1
Minimum Detect
0.338
Minimum Non -Detect
1
Maximum Detect
2.72
Maximum Non -Detect
1
Variance Detected
0.595
Percent Non -Detects
77.14%
Mean Detected
2.222
SD Detected
0.771
Mean of Detected Logged Data
0.662
SD of Detected Logged Data
0.707
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.769
SD
0.863
95% UTL90% Coverage
2.256
95% KM UPL (t)
2.249
95% KM Chebyshev UPL
4.584
90% KM Percentile (z)
1.875
95% KM Percentile (z)
2.188
99% KM Percentile (z)
2.777
95% KM USL
3.196
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
34
95% UTL with90% Coverage
2.6
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% UPL
2.624
95% USL
2.72
95% KM Chebyshev UPL
4.584
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Barium
General Statistics
Total Number of Observations
35
Number of Distinct Observations
28
Minimum
9
First Quartile
32
Second Largest
187
Median
76
Maximum
202
Third Quartile
173.5
Mean
106.4
SD
71.4
Coefficient of Variation
0.671
Skewness
-0.097
Mean of logged Data
4.299
SD of logged Data
0.999
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
34
95% UTL with 90% Coverage
187
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
187
95% BCA Bootstrap UTL with 90% Coverage
187
95% UPL
190
90% Percentile
184.2
90% Chebyshev UPL
323.6
95% Percentile
187
95% Chebyshev UPL
422
99% Percentile
196.9
95% USL
202
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Calcium
General Statistics
Total Number of Observations
35
Number of Distinct Observations
34
Minimum
4.31
First Quartile
54.75
Second Largest
118
Median
60.4
Maximum
120
Third Quartile
71.3
Mean
58.58
SD
31.52
Coefficient of Variation
0.538
Skewness
-0.302
Mean of logged Data
3.758
SD of logged Data
1.011
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
34
95% UTL with 90% Coverage
118
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
114
95% BCA Bootstrap UTL with 90% Coverage
112.8
95% UPL
118.4
90% Percentile
96.08
90% Chebyshev UPL
154.5
95% Percentile
108.9
95% Chebyshev UPL
197.9
99% Percentile
119.3
95% USL
120
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Chloride
General Statistics
Total Number of Observations 34
Appendix A
Number of Distinct Observations 20
Number of Missing Observations 1
Minimum
2.5
First Quartile
6.4
Second Largest
270
Median
110.5
Maximum
280
Third Quartile
240
Mean
122.9
SD
119.6
Coefficient of Variation
0.973
Skewness
0.0357
Mean of logged Data
3.574
SD of logged Data
1.959
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.732
d2max (for USL)
2.799
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
33
95% UTL with 90% Coverage
270
Approx, f used to compute achieved CC
1.833
Approximate Actual Confidence Coefficient achieved by UTL
0.867
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
264
95% BCA Bootstrap UTL with 90% Coverage
250
95% UPL
272.5
90% Percentile
250
90% Chebyshev UPL
486.8
95% Percentile
257
95% Chebyshev UPL
651.7
99% Percentile
276.7
95% USL
280
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Copper
Appendix A
General Statistics
Total Number of Observations
32
Number of Distinct Observations
11
Number of Missing Observations
1
Number of Detects
10
Number of Non -Detects
22
Number of Distinct Detects
10
Number of Distinct Non -Detects
1
Minimum Detect
1.52
Minimum Non -Detect
1
Maximum Detect
4.89
Maximum Non -Detect
1
Variance Detected
1.123
Percent Non -Detects
68.75%
Mean Detected
2.759
SD Detected
1.06
Mean of Detected Logged Data
0.95
SD of Detected Logged Data
0.379
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.748
d2max (for USL)
2.773
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
1.55
SD
0.99
95% UTL90% Coverage
3.281
95% KM UPL (t)
3.255
95% KM Chebyshev UPL
5.933
90% KM Percentile (z)
2.819
95% KM Percentile (z)
3.179
99% KM Percentile (z)
3.853
95% KM USL
4.296
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
31
95% UTL with90% Coverage
3.6
Approx, f used to compute achieved CC
1.722
Approximate Actual Confidence Coefficient achieved by UTL
0.844
Approximate Sample Size needed to achieve specified CC
46
95% UPL
4.052
95% USL
4.89
95% KM Chebyshev UPL
5.933
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Iron
General Statistics
Total Number of Observations
35
Minimum
21
Second Largest
37500
Maximum
45500
Mean
7418
Coefficient of Variation
1.991
Mean of logged Data
6.216
Appendix A
Number of Distinct Observations
34
First Quartile
144.5
Median
223
Third Quartile
424.5
SD
14768
Skewness
1.644
SD of logged Data
2.259
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.724 d2max (for USL) 2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r 34 95% UTL with 90% Coverage 37500
Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878
Approximate Sample Size needed to achieve specified CC 46
95% Percentile Bootstrap UTL with 90% Coverage 37500 95% BCA Bootstrap UTL with 90% Coverage 37180
95% UPL 39100 90% Percentile 35320
90% Chebyshev UPL 52350 95% Percentile 36940
95% Chebyshev UPL 72703 99% Percentile 42780
95% USL 45500
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Magnesium
General Statistics
Total Number of Observations
35
Number of Distinct Observations
34
Minimum
1.46
First Quartile
12.4
Second Largest
32.5
Median
18.8
Maximum
35.7
Third Quartile
27.45
Mean
18.82
SD
10.56
Coefficient of Variation
0.561
Skewness
-0.405
Mean of logged Data
2.622
SD of logged Data
0.984
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
34
95% UTL with 90% Coverage
32.5
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
32.5
95% BCA Bootstrap UTL with 90% Coverage
31.3
95% UPL
33.14
90% Percentile
29.18
90% Chebyshev UPL
50.94
95% Percentile
30.4
95% Chebyshev UPL
65.5
99% Percentile
34.61
95% USL
35.7
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Manganese
General Statistics
Total Number of Observations
35
Number of Distinct Observations
34
Minimum
17
First Quartile
27
Second Largest
9050
Median
285
Maximum
9170
Third Quartile
2795
Mean
1879
SD
2689
Coefficient of Variation
1.431
Skewness
1.632
Mean of logged Data
5.79
SD of logged Data
2.302
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
34
95% UTL with 90% Coverage
9050
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
8618
95% BCA Bootstrap UTL with 90% Coverage
8618
95% UPL
9074
90% Percentile
5814
90% Chebyshev UPL
10060
95% Percentile
8294
95% Chebyshev UPL
13765
99% Percentile
9129
95% USL
9170
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Mercury
Appendix A
General Statistics
Total Number of Observations
32
Number of Distinct Observations
5
Number of Missing Observations
1
Number of Detects
4
Number of Non -Detects
28
Number of Distinct Detects
4
Number of Distinct Non -Detects
1
Minimum Detect
0.022
Minimum Non -Detect
0.05
Maximum Detect
0.13
Maximum Non -Detect
0.05
Variance Detected
0.0024
Percent Non -Detects
87.5%
Mean Detected
0.088
SD Detected
0.049
Mean of Detected Logged Data
-2.626
SD of Detected Logged Data
0.822
Critical Values for
Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.748
d2max (for USL)
2.773
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.0303
SD
0.0265
95% UTL90% Coverage
0.0766
95% KM UPL (t)
0.0759
95% KM Chebyshev UPL
0.148
90% KM Percentile (z)
0.0642
95% KM Percentile (z)
0.0738
99% KM Percentile (z)
0.0919
95% KM USL
0.104
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
31
95% UTL with90% Coverage
0.12
Approx, f used to compute achieved CC
1.722
Approximate Actual Confidence Coefficient achieved by UTL
0.844
Approximate Sample Size needed to achieve specified CC
46
95% UPL
0.124
95% USL
0.13
95% KM Chebyshev UPL
0.148
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Molybdenum
General Statistics
Total Number of Observations
35
Number of Distinct Observations
12
Number of Detects
12
Number of Non -Detects
23
Number of Distinct Detects
11
Number of Distinct Non -Detects
1
Minimum Detect
0.136
Minimum Non -Detect
1
Maximum Detect
0.385
Maximum Non -Detect
1
Variance Detected
0.0051
Percent Non -Detects
65.71%
Mean Detected
0.276
SD Detected
0.0714
Mean of Detected Logged Data
-1.323
SD of Detected Logged Data
0.289
Critical Values for
Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.276
SD
0.0684
95% UTL90% Coverage
0.394
95% KM UPL (t)
0.393
95% KM Chebyshev UPL
0.578
90% KM Percentile (z)
0.364
95% KM Percentile (z)
0.388
99% KM Percentile (z)
0.435
95% KM USL
0.468
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r 34 95% UTL with90% Coverage 1
Approx, f used to compute achieved CC 1.889 Approximate Actual Confidence Coefficient achieved by UTL 0.878
Approximate Sample Size needed to achieve specified CC 46 95% UPL 1
95% USL 1 95% KM Chebyshev UPL 0.578
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Nickel
General Statistics
Total Number of Observations
35
Number of Distinct Observations
33
Number of Detects
33
Number of Non -Detects
2
Number of Distinct Detects
32
Number of Distinct Non -Detects
1
Minimum Detect
1.27
Minimum Non -Detect
1
Maximum Detect
48
Maximum Non -Detect
1
Variance Detected
93.2
Percent Non -Detects
5.714%
Mean Detected
6.318
SD Detected
9.654
Mean of Detected Logged Data
1.224
SD of Detected Logged Data
0.98
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
6.014
SD
9.313
95% UTL90% Coverage
22.07
95% KM UPL (t)
21.99
95% KM Chebyshev UPL
47.18
90% KM Percentile (z)
17.95
95% KM Percentile (z)
21.33
99% KM Percentile (z)
27.68
95% KM USL
32.2
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
34
95% UTL with90% Coverage
24.8
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% UPL
29.44
95% USL
48
95% KM Chebyshev UPL
47.18
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Nitrate + Nitrite
General Statistics
Total Number of Observations
32
Number of Distinct Observations
17
Number of Missing Observations
3
Number of Detects
18
Number of Non -Detects
14
Number of Distinct Detects
16
Number of Distinct Non -Detects
1
Minimum Detect
0.018
Minimum Non -Detect
0.01
Maximum Detect
3.9
Maximum Non -Detect
0.01
Variance Detected
1.09
Percent Non -Detects
43.75%
Mean Detected
0.721
SD Detected
1.044
Mean of Detected Logged Data
-1.701
SD of Detected Logged Data
1.968
Critical Values for
Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.748
d2max (for USL)
2.773
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.41
SD
0.839
95% UTL90% Coverage
1.877
95% KM UPL (t)
1.854
95% KM Chebyshev UPL
4.123
90% KM Percentile (z)
1.485
95% KM Percentile (z)
1.79
99% KM Percentile (z)
2.361
95% KM USL
2.736
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
31
95% UTL with90% Coverage
2.5
Approx, f used to compute achieved CC
1.722
Approximate Actual Confidence Coefficient achieved by UTL
0.844
Approximate Sample Size needed to achieve specified CC
46
95% UPL
2.99
95% USL
3.9
95% KM Chebyshev UPL
4.123
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Potassium
General Statistics
Total Number of Observations
35
Number of Distinct Observations
29
Minimum
0.944
First Quartile
1.09
Second Largest
4.36
Median
1.18
Maximum
4.51
Third Quartile
3.125
Mean
1.855
SD
1.168
Coefficient of Variation
0.63
Skewness
1.119
Mean of logged Data
0.459
SD of logged Data
0.542
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
34
95% UTL with 90% Coverage
4.36
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
4.23
95% BCA Bootstrap UTL with 90% Coverage
4.14
95% UPL
4.39
90% Percentile
3.61
90% Chebyshev UPL
5.41
95% Percentile
3.975
95% Chebyshev UPL
7.021
99% Percentile
4.459
95% USL
4.51
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Selenium
General Statistics
Total Number of Observations
35
Number of Distinct Observations
8
Number of Detects
7
Number of Non -Detects
28
Number of Distinct Detects
7
Number of Distinct Non -Detects
1
Minimum Detect
0.379
Minimum Non -Detect
1
Maximum Detect
1.17
Maximum Non -Detect
1
Variance Detected
0.0914
Percent Non -Detects
80%
Mean Detected
0.766
SD Detected
0.302
Mean of Detected Logged Data
-0.34
SD of Detected Logged Data
0.423
Critical Values for
Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.655
SD
0.228
95% UTL90% Coverage
1.049
95% KM UPL (t)
1.047
95% KM Chebyshev UPL
1.665
90% KM Percentile (z)
0.948
95% KM Percentile (z)
1.031
99% KM Percentile (z)
1.187
95% KM USL
1.298
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
34
95% UTL with90% Coverage
1.05
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% UPL
1.074
95% USL
1.17
95% KM Chebyshev UPL
1.665
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Sodium
General Statistics
Total Number of Observations
35
Number of Distinct Observations
33
Minimum
15.6
First Quartile
48.5
Second Largest
190
Median
100
Maximum
281
Third Quartile
119.5
Mean
94.03
SD
59.62
Coefficient of Variation
0.634
Skewness
0.771
Mean of logged Data
4.268
SD of logged Data
0.853
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data appear Approximate Normal at 5% Significance Level
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
34
95% UTL with 90% Coverage
190
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
188
95% BCA Bootstrap UTL with 90% Coverage
190
95% UPL
208.2
90% Percentile
165.8
90% Chebyshev UPL
275.4
95% Percentile
186.5
95% Chebyshev UPL
357.6
99% Percentile
250.1
95% USL
281
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Strontium
General Statistics
Total Number of Observations
35
Number of Distinct Observations
34
Minimum
77
First Quartile
604.5
Second Largest
2360
Median
662
Maximum
2460
Third Quartile
958
Mean
816.6
SD
625.4
Coefficient of Variation
0.766
Skewness
1.257
Mean of logged Data
6.349
SD of logged Data
0.976
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
34
95% UTL with 90% Coverage
2360
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
2276
95% BCA Bootstrap UTL with 90% Coverage
2276
95% UPL
2380
90% Percentile
1750
90% Chebyshev UPL
2720
95% Percentile
2213
95% Chebyshev UPL
3582
99% Percentile
2426
95% USL
2460
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Sulfate
General Statistics
Total Number of Observations 34
Minimum
15
Second Largest
510
Maximum
690
Mean
133
Coefficient of Variation
1.336
Mean of logged Data
4.135
Appendix A
Number of Distinct Observations
29
Number of Missing Observations
1
First Quartile
24.25
Median
43.5
Third Quartile
207.5
SD
177.6
Skewness
1.721
SD of logged Data
1.193
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.732 d2max (for USL) 2.799
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
33
95% UTL with 90% Coverage
510
Approx, f used to compute achieved CC
1.833
Approximate Actual Confidence Coefficient achieved by UTL
0.867
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
510
95% BCA Bootstrap UTL with 90% Coverage
507
95% UPL
555
90% Percentile
402
90% Chebyshev UPL
673.5
95% Percentile
503.5
95% Chebyshev UPL
918.4
99% Percentile
630.6
95% USL
690
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
TDS
Appendix A
General Statistics
Total Number of Observations
34
Number of Distinct Observations
24
Number of Missing Observations
1
Minimum
140
First Quartile
520
Second Largest
900
Median
600
Maximum
1200
Third Quartile
637.5
Mean
560.4
SD
239.3
Coefficient of Variation
0.427
Skewness
-0.0438
Mean of logged Data
6.204
SD of logged Data
0.565
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.732
d2max (for USL)
2.799
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
33
95% UTL with 90% Coverage
900
Approx, f used to compute achieved CC
1.833
Approximate Actual Confidence Coefficient achieved by UTL
0.867
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
900
95% BCA Bootstrap UTL with 90% Coverage
897
95% UPL
975
90% Percentile
824
90% Chebyshev UPL
1289
95% Percentile
893.5
95% Chebyshev UPL
1619
99% Percentile
1101
95% USL
1200
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
TOC
Appendix A
General Statistics
Total Number of Observations
32
Number of Distinct Observations
30
Number of Missing Observations
3
Minimum
0.706
First Quartile
0.881
Second Largest
6.2
Median
1.1
Maximum
6.3
Third Quartile
3.65
Mean
2.074
SD
1.78
Coefficient of Variation
0.858
Skewness
1.28
Mean of logged Data
0.435
SD of logged Data
0.736
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.748
d2max (for USL)
2.773
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
31
95% UTL with 90% Coverage
6.2
Approx, f used to compute achieved CC
1.722
Approximate Actual Confidence Coefficient achieved by UTL
0.844
Approximate Sample Size needed to achieve specified CC
46
95% Percentile Bootstrap UTL with 90% Coverage
6.13
95% BCA Bootstrap UTL with 90% Coverage
6.04
95% UPL
6.235
90% Percentile
4.6
90% Chebyshev UPL
7.495
95% Percentile
5.815
95% Chebyshev UPL
9.951
99% Percentile
6.269
95% USL
6.3
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Zinc
General Statistics
Total Number of Observations
35
Number of Distinct Observations
15
Number of Detects
16
Number of Non -Detects
19
Number of Distinct Detects
14
Number of Distinct Non -Detects
1
Minimum Detect
1.719
Minimum Non -Detect
5
Maximum Detect
66
Maximum Non -Detect
5
Variance Detected
338.9
Percent Non -Detects
54.29%
Mean Detected
16.63
SD Detected
18.41
Mean of Detected Logged Data
2.27
SD of Detected Logged Data
1.098
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL)
1.724
d2max (for USL)
2.812
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
9.233
SD
13.85
95% UTL90% Coverage
33.11
95% KM UPL (t)
32.99
95% KM Chebyshev UPL
70.47
90% KM Percentile (z)
26.99
95% KM Percentile (z)
32.02
99% KM Percentile (z)
41.46
95% KM USL
48.18
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
34
95% UTL with90% Coverage
50
Approx, f used to compute achieved CC
1.889
Approximate Actual Confidence Coefficient achieved by UTL
0.878
Approximate Sample Size needed to achieve specified CC
46
95% UPL
53.2
95% USL
66
95% KM Chebyshev UPL
70.47
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Nonparametric Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProUCL 5.12/3/2020 11:20:12 AM
From File
Cape Fear Background GW Bedrock Data_ProUCL.xls
Full Precision
OFF
Confidence Coefficient
95%
Coverage
95%
Different or Future K Observations
1
Arsenic
General Statistics
Total Number of Observations
67
Number of Missing Observations
1
Number of Detects
27
Number of Distinct Detects
26
Minimum Detect
0.51
Maximum Detect
11.9
Variance Detected
7.293
Mean Detected
4.579
Mean of Detected Logged Data
1.275
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.994
Number of Distinct Observations 27
Number of Non -Detects
40
Number of Distinct Non -Detects
1
Minimum Non -Detect
1
Maximum Non -Detect
1
Percent Non -Detects
59.7%
SD Detected
2.7
SD of Detected Logged Data
0.822
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.068
Mean
2.247
SD
2.553
95% UTL95% Coverage
7.337
95% KM UPL (t)
6.537
95% KM Chebyshev UPL
13.46
90% KM Percentile (z)
5.519
95% KM Percentile (z)
6.446
99% KM Percentile (z)
8.186
95% KM USL
10.08
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
66
95% UTL with95% Coverage
8.3
Approx, f used to compute achieved CC
1.737
Approximate Actual Confidence Coefficient achieved by UTL
0.854
Approximate Sample Size needed to achieve specified CC
93
95% UPL
8.086
95% USL
11.9
95% KM Chebyshev UPL
13.46
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Barium
General Statistics
Total Number of Observations
68
Minimum
28
Second Largest
485
Maximum
488
Mean
316
Coefficient of Variation
0.474
Mean of logged Data
5.542
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Appendix A
Number of Distinct Observations
58
First Quartile
242.5
Median
383
Third Quartile
428
SD
149.6
Skewness
-0.816
SD of logged Data
0.784
d2max (for USL) 3.073
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
67
95% UTL with 95% Coverage
485
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% Percentile Bootstrap UTL with 95% Coverage
485
95% BCA Bootstrap UTL with 95% Coverage
482.4
95% UPL
473.1
90% Percentile
464.9
90% Chebyshev UPL
768.1
95% Percentile
471.7
95% Chebyshev UPL
972.9
99% Percentile
486
95% USL
488
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Boron
General Statistics
Total Number of Observations
68
Number of Detects
17
Number of Distinct Detects
17
Minimum Detect
17.34
Maximum Detect
53
Variance Detected
125.9
Mean Detected
38.63
Mean of Detected Logged Data
3.608
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Appendix A
Number of Distinct Observations
18
Number of Non -Detects
51
Number of Distinct Non -Detects
1
Minimum Non -Detect
50
Maximum Non -Detect
50
Percent Non -Detects
75%
SD Detected
11.22
SD of Detected Logged Data
0.328
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
36.49
SD
10.2
95% UTL95% Coverage
56.8
95% KM UPL (t)
53.63
95% KM Chebyshev UPL
81.28
90% KM Percentile (z)
49.56
95% KM Percentile (z)
53.27
99% KM Percentile (z)
60.22
95% KM USL
67.84
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r 67 95% UTL with95% Coverage 52
Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86
Approximate Sample Size needed to achieve specified CC 93 95% UPL 50.55
95% USL 53 95% KM Chebyshev UPL 81.28
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Calcium
General Statistics
Total Number of Observations
68
Number of Detects
67
Number of Distinct Detects
60
Minimum Detect
23.4
Maximum Detect
72.2
Variance Detected
189.7
Mean Detected
47.69
Mean of Detected Logged Data
3.816
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Appendix A
Number of Distinct Observations
61
Number of Non -Detects
1
Number of Distinct Non -Detects
1
Minimum Non -Detect
0.01
Maximum Non -Detect
0.01
Percent Non -Detects
1.471 %
SD Detected
13.77
SD of Detected Logged Data
0.33
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
46.99
SD
14.73
95% UTL95% Coverage
76.33
95% KM UPL (t)
71.74
95% KM Chebyshev UPL
111.7
90% KM Percentile (z)
65.87
95% KM Percentile (z)
71.22
99% KM Percentile (z)
81.27
95% KM USL
92.27
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
69.6
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
68.32
95% USL
72.2
95% KM Chebyshev UPL
111.7
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Chloride
General Statistics
Total Number of Observations 67
Minimum
13
Second Largest
240
Maximum
240
Mean
89.85
Coefficient of Variation
0.777
Mean of logged Data
4.092
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.994
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Appendix A
Number of Distinct Observations 27
Number of Missing Observations 1
First Quartile
36.5
Median
93
Third Quartile
140
SD
69.85
Skewness
0.558
SD of logged Data
0.998
d2max (for USL) 3.068
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r 66 95% UTL with 95% Coverage 240
Approx, f used to compute achieved CC 1.737 Approximate Actual Confidence Coefficient achieved by UTL 0.854
95% Percentile Bootstrap UTL with 95% Coverage 240
95% UPL
220
90% Chebyshev UPL
300.9
95% Chebyshev UPL
396.6
95% USL
240
Approximate Sample Size needed to achieve specified CC 93
95% BCA Bootstrap UTL with 95% Coverage
234
90% Percentile
200
95% Percentile
217
99% Percentile
240
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Cobalt
General Statistics
Total Number of Observations
68
Number of Detects
12
Number of Distinct Detects
12
Minimum Detect
0.66
Maximum Detect
6.7
Variance Detected
3.375
Mean Detected
2.211
Mean of Detected Logged Data
0.544
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Appendix A
Number of Distinct Observations
13
Number of Non -Detects
56
Number of Distinct Non -Detects
1
Minimum Non -Detect
1
Maximum Non -Detect
1
Percent Non -Detects
82.35%
SD Detected
1.837
SD of Detected Logged Data
0.706
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
1.048
SD
0.92
95% UTL95% Coverage
2.879
95% KM UPL (t)
2.593
95% KM Chebyshev UPL
5.087
90% KM Percentile (z)
2.227
95% KM Percentile (z)
2.561
99% KM Percentile (z)
3.188
95% KM USL
3.875
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
4.97
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
2.478
95% USL
6.7
95% KM Chebyshev UPL
5.087
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Iron
General Statistics
Total Number of Observations
68
Number of Detects
65
Number of Distinct Detects
59
Minimum Detect
3.382
Maximum Detect
4230
Variance Detected 423236
Mean Detected
442.5
Mean of Detected Logged Data
5.316
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Appendix A
Number of Distinct Observations
60
Number of Non -Detects
3
Number of Distinct Non -Detects
1
Minimum Non -Detect
10
Maximum Non -Detect
10
Percent Non -Detects
4.412%
SD Detected
650.6
SD of Detected Logged Data
1.45
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
423.3
SD
637.5
95% UTL95% Coverage
1692
95% KM UPL (t)
1494
95% KM Chebyshev UPL
3222
90% KM Percentile (z)
1240
95% KM Percentile (z)
1472
99% KM Percentile (z)
1906
95% KM USL
2382
Nonparametric Upper Limits for BTVs(no
distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
2290
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
1844
95% USL
4230
95% KM Chebyshev UPL
3222
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Magnesium
General Statistics
Total Number of Observations
68
Number of Detects
67
Number of Distinct Detects
61
Minimum Detect
2.38
Maximum Detect
32.5
Variance Detected
76.4
Mean Detected
17.87
Mean of Detected Logged Data
2.718
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Number of Distinct Observations
62
Number of Non -Detects
1
Number of Distinct Non -Detects
1
Minimum Non -Detect
0.005
Maximum Non -Detect
0.005
Percent Non -Detects
1.471 %
SD Detected
8.741
SD of Detected Logged Data
0.638
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
17.61
SD
8.876
95% UTL95% Coverage
35.28
95% KM UPL (t)
32.52
95% KM Chebyshev UPL
56.58
90% KM Percentile (z)
28.98
95% KM Percentile (z)
32.21
99% KM Percentile (z)
38.26
95% KM USL
44.89
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r 67 95% UTL with95% Coverage 31.3
Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86
Approximate Sample Size needed to achieve specified CC 93 95% UPL 31.02
95% USL 32.5 95% KM Chebyshev UPL 56.58
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Manganese
General Statistics
Total Number of Observations
68
Minimum
7
Second Largest
1080
Maximum
1120
Mean
411.8
Coefficient of Variation
0.825
Mean of logged Data
5.42
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Number of Distinct Observations
66
First Quartile
71.75
Median
280
Third Quartile
735.5
SD
339.6
Skewness
0.44
SD of logged Data
1.356
d2max (for USL) 3.073
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r
67
95% UTL with 95% Coverage
1080
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% Percentile Bootstrap UTL with 95% Coverage
1080
95% BCA Bootstrap UTL with 95% Coverage
1059
95% UPL
968.3
90% Percentile
878.2
90% Chebyshev UPL
1438
95% Percentile
903.6
95% Chebyshev UPL
1903
99% Percentile
1093
95% USL
1120
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Molybdenum
General Statistics
Total Number of Observations
68
Number of Detects
46
Number of Distinct Detects
45
Minimum Detect
0.096
Maximum Detect
17
Variance Detected
15.07
Mean Detected
4.675
Mean of Detected Logged Data
0.987
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Number of Distinct Observations
46
Number of Non -Detects
22
Number of Distinct Non -Detects
1
Minimum Non -Detect
1
Maximum Non -Detect
1
Percent Non -Detects
32.35%
SD Detected
3.882
SD of Detected Logged Data
1.32
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
3.297
SD
3.736
95% UTL95% Coverage
10.74
95% KM UPL (t)
9.574
95% KM Chebyshev UPL
19.7
90% KM Percentile (z)
8.085
95% KM Percentile (z)
9.442
99% KM Percentile (z)
11.99
95% KM USL
14.78
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
13.4
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
12.13
95% USL
17
95% KM Chebyshev UPL
19.7
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Nickel
General Statistics
Total Number of Observations
68
Number of Detects
20
Number of Distinct Detects
20
Minimum Detect
0.458
Maximum Detect
8.32
Variance Detected
3.259
Mean Detected
2.3
Mean of Detected Logged Data
0.591
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Number of Distinct Observations
21
Number of Non -Detects
48
Number of Distinct Non -Detects
1
Minimum Non -Detect
1
Maximum Non -Detect
1
Percent Non -Detects
70.59%
SD Detected
1.805
SD of Detected Logged Data
0.72
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
1.083
SD
1.244
95% UTL95% Coverage
3.559
95% KM UPL (t)
3.173
95% KM Chebyshev UPL
6.544
90% KM Percentile (z)
2.677
95% KM Percentile (z)
3.129
99% KM Percentile (z)
3.976
95% KM USL
4.905
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
4.94
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
3.293
95% USL
8.32
95% KM Chebyshev UPL
6.544
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Potassium
General Statistics
Total Number of Observations
68
Number of Detects
67
Number of Distinct Detects
52
Minimum Detect
0.592
Maximum Detect
5.6
Variance Detected
0.573
Mean Detected
1.8
Mean of Detected Logged Data
0.507
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Number of Distinct Observations
53
Number of Non -Detects
1
Number of Distinct Non -Detects
1
Minimum Non -Detect
0.1
Maximum Non -Detect
0.1
Percent Non -Detects
1.471 %
SD Detected
0.757
SD of Detected Logged Data
0.411
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
1.775
SD
0.774
95% UTL95% Coverage
3.315
95% KM UPL (t)
3.075
95% KM Chebyshev UPL
5.172
90% KM Percentile (z)
2.766
95% KM Percentile (z)
3.047
99% KM Percentile (z)
3.575
95% KM USL
4.152
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
3.45
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
2.853
95% USL
5.6
95% KM Chebyshev UPL
5.172
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Selenium
General Statistics
Total Number of Observations
68
Number of Detects
17
Number of Distinct Detects
17
Minimum Detect
0.998
Maximum Detect
3.17
Variance Detected
0.362
Mean Detected
1.83
Mean of Detected Logged Data
0.555
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Number of Distinct Observations
18
Number of Non -Detects
51
Number of Distinct Non -Detects
1
Minimum Non -Detect
1
Maximum Non -Detect
1
Percent Non -Detects
75%
SD Detected
0.602
SD of Detected Logged Data
0.322
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
1.206
SD
0.464
95% UTL95% Coverage
2.129
95% KM UPL (t)
1.985
95% KM Chebyshev UPL
3.242
90% KM Percentile (z)
1.8
95% KM Percentile (z)
1.969
99% KM Percentile (z)
2.285
95% KM USL
2.631
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
3.04
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
2.191
95% USL
3.17
95% KM Chebyshev UPL
3.242
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Sodium
General Statistics
Total Number of Observations
68
Number of Detects
67
Number of Distinct Detects
62
Minimum Detect
35.9
Maximum Detect
77.7
Variance Detected
158.5
Mean Detected
52.9
Mean of Detected Logged Data
3.94
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Appendix A
Number of Distinct Observations
63
Number of Non -Detects
1
Number of Distinct Non -Detects
1
Minimum Non -Detect
0.05
Maximum Non -Detect
0.05
Percent Non -Detects
1.471 %
SD Detected
12.59
SD of Detected Logged Data
0.239
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
52.12
SD
13.94
95% UTL95% Coverage
79.88
95% KM UPL (t)
75.54
95% KM Chebyshev UPL
113.3
90% KM Percentile (z)
69.99
95% KM Percentile (z)
75.05
99% KM Percentile (z)
84.55
95% KM USL
94.97
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
75.7
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
73.16
95% USL
77.7
95% KM Chebyshev UPL
113.3
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Strontium
General Statistics
Total Number of Observations
68
Minimum
331
Second Largest
738
Maximum
771
Mean
557.4
Coefficient of Variation
0.22
Mean of logged Data
6.298
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r 67
Approx, f used to compute achieved CC 1.763
95% Percentile Bootstrap UTL with 95% Coverage
738
95% UPL
720.9
90% Chebyshev UPL
928.1
95% Chebyshev UPL
1096
95% USL
771
Number of Distinct Observations
65
First Quartile
461.8
Median
536
Third Quartile
679.3
SD
122.7
Skewness
-0.0862
SD of logged Data
0.23
d2max (for USL) 3.073
95% UTL with 95% Coverage
Approximate Actual Confidence Coefficient achieved by UTL
Approximate Sample Size needed to achieve specified CC
95% BCA Bootstrap UTL with 95% Coverage
90% Percentile
95% Percentile
99% Percentile
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
738
0.86
93
733.1
702.3
715.6
748.9
Cape Fear Steam Electric Plant
Appendix A
Sulfate
General Statistics
Total Number of Observations 67
Minimum
1.8
Second Largest
100
Maximum
120
Mean
41.93
Coefficient of Variation
0.699
Mean of logged Data
3.356
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.994
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Number of Distinct Observations
53
Number of Missing Observations
1
First Quartile
15.35
Median
40
Third Quartile
52.5
SD
29.32
Skewness
0.589
SD of logged Data
1.038
d2max (for USL) 3.068
Nonparametric Upper Limits for Background Threshold Values
Order of Statistic, r 66 95% UTL with 95% Coverage
Approx, f used to compute achieved CC 1.737 Approximate Actual Confidence Coefficient achieved by UTL
95% Percentile Bootstrap UTL with 95% Coverage
100
95% UPL
97.8
90% Chebyshev UPL
130.5
95% Chebyshev UPL
170.7
95% USL
120
Approximate Sample Size needed to achieve specified CC
95% BCA Bootstrap UTL with 95% Coverage
90% Percentile
95% Percentile
99% Percentile
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
100
0.854
93
100
87
95.1
106.8
Cape Fear Steam Electric Plant
TOC
General Statistics
Total Number of Observations
63
Number of Missing Observations
5
Number of Detects
61
Number of Distinct Detects
48
Minimum Detect
0.268
Maximum Detect
1.9
Variance Detected
0.184
Mean Detected
0.805
Mean of Detected Logged Data
-0.359
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.007
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Appendix A
Number of Distinct Observations 48
Number of Non -Detects
2
Number of Distinct Non -Detects
1
Minimum Non -Detect
1
Maximum Non -Detect
1
Percent Non -Detects
3.175%
SD Detected
0.429
SD of Detected Logged Data
0.546
d2max (for USL) 3.045
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.798
SD
0.422
95% UTL95% Coverage
1.645
95% KM UPL (t)
1.509
95% KM Chebyshev UPL
2.654
90% KM Percentile (z)
1.339
95% KM Percentile (z)
1.492
99% KM Percentile (z)
1.78
95% KM USL
2.084
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r
62
95% UTL with95% Coverage
1.9
Approx, f used to compute achieved CC
1.632 Approximate Actual Confidence Coefficient achieved by UTL
0.83
Approximate Sample Size needed to achieve specified CC
93
95% UPL
1.64
95% USL
1.9
95% KM Chebyshev UPL
2.654
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Vanadium
General Statistics
Total Number of Observations
68
Number of Detects
43
Number of Distinct Detects
40
Minimum Detect
0.114
Maximum Detect
3.35
Variance Detected
1.153
Mean Detected
1.144
Mean of Detected Logged Data
-0.446
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Nonparametric Distribution Free Background Statistics
Data do not follow a Discernible Distribution (0.05)
Number of Distinct Observations
41
Number of Non -Detects
25
Number of Distinct Non -Detects
1
Minimum Non -Detect
0.3
Maximum Non -Detect
0.3
Percent Non -Detects
36.76%
SD Detected
1.074
SD of Detected Logged Data
1.159
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
0.791
SD
0.963
95% UTL95% Coverage
2.708
95% KM UPL (t)
2.409
95% KM Chebyshev UPL
5.019
90% KM Percentile (z)
2.025
95% KM Percentile (z)
2.375
99% KM Percentile (z)
3.031
95% KM USL
3.751
Nonparametric Upper Limits for BTVs(no distinction
made between detects and nondetects)
Order of Statistic, r
67
95% UTL with95% Coverage
2.96
Approx, f used to compute achieved CC
1.763
Approximate Actual Confidence Coefficient achieved by UTL
0.86
Approximate Sample Size needed to achieve specified CC
93
95% UPL
2.761
95% USL
3.35
95% KM Chebyshev UPL
5.019
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Zinc
General Statistics
Total Number of Observations
68
Number of Detects
25
Number of Distinct Detects
18
Minimum Detect
1.847
Maximum Detect
14
Variance Detected
13.42
Mean Detected
6.56
Mean of Detected Logged Data
1.71
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991
Appendix A
Number of Distinct Observations
18
Number of Non -Detects
43
Number of Distinct Non -Detects
1
Minimum Non -Detect
5
Maximum Non -Detect
5
Percent Non -Detects
63.24%
SD Detected
3.663
SD of Detected Logged Data
0.624
Nonparametric Distribution Free Background Statistics
Data appear to follow a Discernible Distribution at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
d2max (for USL) 3.073
Mean
4.238
SD
2.888
95% UTL95% Coverage
9.989
95% KM UPL (t)
9.091
95% KM Chebyshev UPL
16.92
90% KM Percentile (z)
7.94
95% KM Percentile (z)
8.989
99% KM Percentile (z)
10.96
95% KM USL
13.12
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Order of Statistic, r 67 95% UTL with95% Coverage 13
Approx, f used to compute achieved CC 1.763 Approximate Actual Confidence Coefficient achieved by UTL 0.86
Approximate Sample Size needed to achieve specified CC 93 95% UPL 11
95% USL 14 95% KM Chebyshev UPL 16.92
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Two -Sided 95% Tolerance Intervals of pH
Percent of Parametric Parametric Nonparametric Nonparametric
Population
Lower
Upper Lower
Upper
Between
Tolerance
Tolerance Tolerance
Tolerance
Limits
Limit
Limit Limit
Limit
50
6.457064
7.81823
5.72
7.8
60
6.288423
7.986872
5.7
7.85
70
6.09185
8.183444
5.66
7.96
80
5.844518
8.430777
5.6
8
90
5.477933
8.79736
5.46
8.19
95
5.159976
9.115317
99
4.538547
9.736747
Cape Fear Steam Electric Plant Appendix A
Normal Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProLICL 5.12/3/2020 11:06:04 AM
From File
Cape Fear Background GW Bedrock Data_ProUCL.xls
Full Precision
OFF
Confidence Coefficient
95%
Coverage
95%
Different or Future K Observations
1
Alkalinity
General Statistics
Total Number of Observations
68
Number of Distinct Observations
50
Minimum
63.6
First Quartile
126.8
Second Largest
215
Median
158
Maximum
215
Third Quartile
180
Mean
151.2
SD
40.31
Coefficient of Variation
0.267
Skewness
-0.348
Mean of logged Data
4.978
SD of logged Data
0.302
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.991 d2max (for USL) 3.073
Normal GOF Test
Shapiro Wilk Test Statistic 0.95 Normal GOF Test
5% Shapiro Wilk P Value 0.0188 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.0864 Lilliefors GOF Test
5% Lilliefors Critical Value 0.107 Data appear Normal at 5% Significance Level
Data appear Approximate Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 231.5 90% Percentile (z) 202.9
95% UPL (t) 218.9 95% Percentile (z) 217.5
95% USL 275.1 99% Percentile (z) 245
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Bicarbonate Alkalinity
General Statistics
Total Number of Observations 64
Minimum
63.6
Second Largest
215
Maximum
215
Mean
151.4
Coefficient of Variation
0.262
Mean of logged Data
4.98
Appendix A
Number of Distinct Observations 48
Number of Missing Observations 4
First Quartile
126.8
Median
158
Third Quartile
178.5
SD
39.7
Skewness
-0.325
SD of logged Data
0.296
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.003 d2max (for USL) 3.051
Normal GOF Test
Shapiro Wilk Test Statistic 0.954 Normal GOF Test
5% Shapiro Wilk P Value 0.043 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.0876 Lilliefors GOF Test
5% Lilliefors Critical Value 0.111 Data appear Normal at 5% Significance Level
Data appear Approximate Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 230.9 90% Percentile (z) 202.2
95% UPL (t) 218.1 95% Percentile (z) 216.7
95% USL 272.5 99% Percentile (z) 243.7
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Fluoride
Appendix A
General Statistics
Total Number of Observations
15
Number of Distinct Observations
14
Number of Missing Observations
51
Number of Detects
13
Number of Non -Detects
2
Number of Distinct Detects
13
Number of Distinct Non -Detects
2
Minimum Detect
0.082
Minimum Non -Detect
0.1
Maximum Detect
0.282
Maximum Non -Detect
0.2
Variance Detected
0.00358
Percent Non -Detects
13.33%
Mean Detected
0.173
SD Detected
0.0598
Mean of Detected Logged Data
-1.816
SD of Detected Logged Data
0.374
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.566 d2max (for USL) 2.409
Normal GOF Test on Detects Only
Shapiro Wilk Test Statistic 0.946 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.866 Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.171 Lilliefors GOF Test
5% Lilliefors Critical Value 0.234 Detected Data appear Normal at 5% Significance Level
Detected Data appear Normal at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean 0.165 SD
0.0589
95% UTL95% Coverage 0.316 95% KM UPL (t)
0.272
95% KM Chebyshev UPL 0.43 90% KM Percentile (z)
0.241
95% KM Percentile (z) 0.262 99% KM Percentile (z)
0.302
95% KM USL 0.307
DL/2 Substitution Background Statistics Assuming Normal Distribution
Mean 0.16 SD
0.0659
95% UTL95% Coverage 0.329 95% UPL (t)
0.28
90% Percentile (z) 0.244 95% Percentile (z)
0.268
99% Percentile (z) 0.313 95% USL
0.319
DL/2 is not a recommended method. DU2 provided for comparisons and historical reasons
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Lithium
General Statistics
Total Number of Observations 24
Minimum
3.467
Second Largest
11
Maximum
14
Mean
7.344
Coefficient of Variation
0.348
Mean of logged Data
1.937
Appendix A
Number of Distinct Observations
12
Number of Missing Observations
44
First Quartile
6
Median
7
Third Quartile
8.25
SD
2.556
Skewness
0.744
SD of logged Data
0.348
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.309 d2max (for USL) 2.644
Normal GOF Test
Shapiro Wilk Test Statistic 0.946 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.916 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.159 Lilliefors GOF Test
5% Lilliefors Critical Value 0.177 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 13.24 90% Percentile (z) 10.62
95% UPL (t) 11.81 95% Percentile (z) 11.55
95% USL 14.1 99% Percentile (z) 13.29
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
TDS
General Statistics
Total Number of Observations 67
Minimum
210
Second Largest
650
Maximum
660
Mean
390.4
Coefficient of Variation
0.283
Mean of logged Data
5.927
Appendix A
Number of Distinct Observations 34
Number of Missing Observations 1
First Quartile
325
Median
390
Third Quartile
440
SD
110.4
Skewness
0.392
SD of logged Data
0.291
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 1.994 d2max (for USL) 3.068
Normal GOF Test
Shapiro Wilk Test Statistic 0.939 Normal GOF Test
5% Shapiro Wilk P Value 0.00402 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.0958 Lilliefors GOF Test
5% Lilliefors Critical Value 0.108 Data appear Normal at 5% Significance Level
Data appear Approximate Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 610.6 90% Percentile (z) 531.9
95% UPL (t) 576 95% Percentile (z) 572
95% USL 729.2 99% Percentile (z) 647.3
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant Appendix A
Normal Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProLICL 5.11/30/2020 1:15:03 PM
From File
Cape Fear Background Soil Data_ProUCL.xls
Full Precision
OFF
Confidence Coefficient
95%
Coverage
95%
Different or Future K Observations
1
Arsenic
General Statistics
Total Number of Observations
19
Number of Distinct Observations
15
Number of Detects
18
Number of Non -Detects
1
Number of Distinct Detects
15
Number of Distinct Non -Detects
1
Minimum Detect
0.17
Minimum Non -Detect
1.4
Maximum Detect
3.32
Maximum Non -Detect
1.4
Variance Detected
0.511
Percent Non -Detects
5.263%
Mean Detected
1.304
SD Detected
0.715
Mean of Detected Logged Data
0.102
SD of Detected Logged Data
0.651
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531
Normal GOF Test on Detects Only
Shapiro Wilk Test Statistic 0.927 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.897 Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.123 Lilliefors GOF Test
5% Lilliefors Critical Value 0.202 Detected Data appear Normal at 5% Significance Level
Detected Data appear Normal at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean 1.279 SD
0.688
95% UTL95% Coverage 2.946 95% KM UPL (t)
2.503
95% KM Chebyshev UPL 4.356 90% KM Percentile (z)
2.161
95% KM Percentile (z) 2.411 99% KM Percentile (z)
2.88
95% KM USL 3.021
DL/2 Substitution Background Statistics Assuming Normal Distribution
Mean 1.272 SD
0.708
95% UTL95% Coverage 2.988 95% UPL (t)
2.532
90% Percentile (z) 2.18 95% Percentile (z)
2.437
99% Percentile (z) 2.92 95% USL
3.065
DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Beryllium
General Statistics
Total Number of Observations 16
Minimum
0.23
Second Largest
1.2
Maximum
1.4
Mean
0.696
Coefficient of Variation
0.509
Mean of logged Data
-0.499
Appendix A
Number of Distinct Observations 16
Number of Missing Observations 3
First Quartile
0.42
Median
0.68
Third Quartile
0.918
SD
0.354
Skewness
0.458
SD of logged Data
0.558
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443
Normal GOF Test
Shapiro Wilk Test Statistic 0.953 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.122 Lilliefors GOF Test
5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 1.589 90% Percentile (z) 1.149
95% UPL (t) 1.336 95% Percentile (z) 1.278
95% USL 1.561 99% Percentile (z) 1.519
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Chromium
General Statistics
Total Number of Observations
19
Number of Distinct Observations 19
Minimum
4.9
First Quartile 16.9
Second Largest
32
Median 21
Maximum
40.4
Third Quartile 26.95
Mean
20.86
SD 8.811
Coefficient of Variation
0.422
Skewness 0.0236
Mean of logged Data
2.921
SD of logged Data 0.555
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531
Normal GOF Test
Shapiro Wilk Test Statistic 0.974 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.901 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.104 Lilliefors GOF Test
5% Lilliefors Critical Value 0.197 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 42.21 90% Percentile (z) 32.15
95% UPL (t) 36.54 95% Percentile (z) 35.36
95% USL 43.16 99% Percentile (z) 41.36
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Cobalt
General Statistics
Total Number of Observations 16
Minimum
1.2
Second Largest
17
Maximum
19
Mean
8.344
Coefficient of Variation
0.625
Mean of logged Data
1.907
Appendix A
Number of Distinct Observations
15
Number of Missing Observations
3
First Quartile
3.975
Median
7.1
Third Quartile
12
SD
5.219
Skewness
0.701
SD of logged Data
0.727
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443
Normal GOF Test
Shapiro Wilk Test Statistic 0.931 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.15 Lilliefors GOF Test
5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 21.52 90% Percentile (z) 15.03
95% UPL (t) 17.77 95% Percentile (z) 16.93
95% USL 21.09 99% Percentile (z) 20.48
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Copper
General Statistics
Total Number of Observations
19
Number of Distinct Observations 16
Minimum
3.9
First Quartile 8.9
Second Largest
23
Median 12
Maximum
27
Third Quartile 17.4
Mean
13.18
SD 5.978
Coefficient of Variation
0.454
Skewness 0.722
Mean of logged Data
2.477
SD of logged Data 0.478
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531
Normal GOF Test
Shapiro Wilk Test Statistic 0.953 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.901 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.144 Lilliefors GOF Test
5% Lilliefors Critical Value 0.197 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 27.67 90% Percentile (z) 20.84
95% UPL (t) 23.82 95% Percentile (z) 23.01
95% USL 28.31 99% Percentile (z) 27.09
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Lead
General Statistics
Total Number of Observations
19
Number of Distinct Observations 14
Minimum
6.1
First Quartile 9.05
Second Largest
16.8
Median 11
Maximum
19.2
Third Quartile 12.45
Mean
11.15
SD 3.51
Coefficient of Variation
0.315
Skewness 0.723
Mean of logged Data
2.365
SD of logged Data 0.31
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.423 d2max (for USL) 2.531
Normal GOF Test
Shapiro Wilk Test Statistic 0.95 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.901 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.141 Lilliefors GOF Test
5% Lilliefors Critical Value 0.197 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 19.65 90% Percentile (z) 15.65
95% UPL (t) 17.39 95% Percentile (z) 16.92
95% USL 20.03 99% Percentile (z) 19.31
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Magnesium
General Statistics
Total Number of Observations 16
Minimum
620
Second Largest
2300
Maximum
2800
Mean
1643
Coefficient of Variation
0.382
Mean of logged Data
7.315
Number of Distinct Observations
12
Number of Missing Observations
3
First Quartile
1325
Median
1845
Third Quartile
1950
SD
627.5
Skewness
-0.333
SD of logged Data
0.467
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443
Normal GOF Test
Shapiro Wilk Test Statistic 0.915 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.162 Lilliefors GOF Test
5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 3226 90% Percentile (z) 2447
95% UPL (t) 2776 95% Percentile (z) 2675
95% USL 3176 99% Percentile (z) 3102
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Nickel
General Statistics
Total Number of Observations 18
Minimum
1.5
Second Largest
11
Maximum
11
Mean
7.199
Coefficient of Variation
0.365
Mean of logged Data
1.886
Appendix A
Number of Distinct Observations
15
Number of Missing Observations
1
First Quartile
5.825
Median
7.2
Third Quartile
8.9
SD
2.631
Skewness
-0.256
SD of logged Data
0.484
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.453 d2max (for USL) 2.504
Normal GOF Test
Shapiro Wilk Test Statistic 0.959 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.897 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.103 Lilliefors GOF Test
5% Lilliefors Critical Value 0.202 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 13.65 90% Percentile (z) 10.57
95% UPL (t) 11.9 95% Percentile (z) 11.53
95% USL 13.79 99% Percentile (z) 13.32
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Strontium
General Statistics
Total Number of Observations 16
Minimum
1.5
Second Largest
19
Maximum
29
Mean
10.28
Coefficient of Variation
0.687
Mean of logged Data
2.102
Appendix A
Number of Distinct Observations 15
Number of Missing Observations 3
First Quartile
5.375
Median
7.95
Third Quartile
13.5
SD
7.055
Skewness
1.323
SD of logged Data
0.734
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443
Normal GOF Test
Shapiro Wilk Test Statistic 0.899 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.163 Lilliefors GOF Test
5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 28.08 90% Percentile (z) 19.32
95% UPL (t) 23.02 95% Percentile (z) 21.88
95% USL 27.51 99% Percentile (z) 26.69
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Vanadium
General Statistics
Total Number of Observations 16
Minimum
14
Second Largest
140
Maximum
170
Mean
74.63
Coefficient of Variation
0.569
Mean of logged Data
4.131
Appendix A
Number of Distinct Observations 16
Number of Missing Observations 3
First Quartile
46.5
Median
70
Third Quartile
95.75
SD
42.45
Skewness
0.729
SD of logged Data
0.675
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.524 d2max (for USL) 2.443
Normal GOF Test
Shapiro Wilk Test Statistic 0.947 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.887 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.193 Lilliefors GOF Test
5% Lilliefors Critical Value 0.213 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 181.8 90% Percentile (z) 129
95% UPL (t) 151.3 95% Percentile (z) 144.5
95% USL 178.3 99% Percentile (z) 173.4
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Normal Background Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation
ProLICL 5.12/3/2020 8:46:58 AM
From File
Cape Fear Background GW Surficial Data_ProUCL.xis
Full Precision
OFF
Confidence Coefficient
95%
Coverage
95%
Different or Future K Observations
1
Alkalinity
General Statistics
Total Number of Observations 34
Minimum
30.4
Second Largest
218
Maximum
225
Mean
131.4
Coefficient of Variation
0.424
Mean of logged Data
4.753
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.166
Number of Distinct Observations 31
Number of Missing Observations 1
First Quartile
99.5
Median
137.5
Third Quartile
172.8
SD
55.68
Skewness
-0.356
SD of logged Data
0.563
d2max (for USL) 2.799
Normal GOF Test
Shapiro Wilk Test Statistic 0.944 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.933 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.109 Lilliefors GOF Test
5% Lilliefors Critical Value 0.15 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 252 90% Percentile (z) 202.8
95% UPL (t) 227 95% Percentile (z) 223
95% USL 287.3 99% Percentile (z) 260.9
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Bicarbonate Alkalinity
General Statistics
Total Number of Observations 32
Minimum
30.4
Second Largest
218
Maximum
225
Mean
131.5
Coefficient of Variation
0.436
Mean of logged Data
4.746
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.186
Number of Distinct Observations 29
Number of Missing Observations 3
First Quartile
93
Median
137.5
Third Quartile
174
SD
57.39
Skewness
-0.353
SD of logged Data
0.58
d2max (for USL) 2.773
Normal GOF Test
Shapiro Wilk Test Statistic 0.939 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.93 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.115 Lilliefors GOF Test
5% Lilliefors Critical Value 0.154 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level
Background Statistics Assuming Normal Distribution
95% UTL with 95% Coverage 257 90% Percentile (z) 205
95% UPL (t) 230.3 95% Percentile (z) 225.9
95% USL 290.6 99% Percentile (z) 265
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Fluoride
General Statistics
Total Number of Observations
9
Number of Missing Observations
24
Number of Detects
5
Number of Distinct Detects
5
Minimum Detect
0.215
Maximum Detect
0.584
Variance Detected
0.0334
Mean Detected
0.372
Mean of Detected Logged Data
-1.084
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 3.031
Appendix A
Number of Distinct Observations 8
Number of Non -Detects
4
Number of Distinct Non -Detects
3
Minimum Non -Detect
0.1
Maximum Non -Detect
1
Percent Non -Detects
44.44%
SD Detected
0.183
SD of Detected Logged Data
0.483
d2max (for USL) 2.11
Normal GOF Test on Detects Only
Shapiro Wilk Test Statistic 0.773 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.762 Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.331 Lilliefors GOF Test
5% Lilliefors Critical Value 0.343 Detected Data appear Normal at 5% Significance Level
Detected Data appear Normal at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.296
SD
0.168
95% UTL95% Coverage
0.805
95% KM UPL (t)
0.626
95% KM Chebyshev UPL
1.068
90% KM Percentile (z)
0.512
95% KM Percentile (z)
0.573
99% KM Percentile (z)
0.687
95% KM USL
0.651
DL/2 Substitution Background Statistics Assuming Normal Distribution
Mean
0.323
SD
0.181
95% UTL95% Coverage
0.872
95% UPL (t)
0.678
90% Percentile (z)
0.556
95% Percentile (z)
0.621
99% Percentile (z)
0.745
95% USL
0.705
DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Lithium
General Statistics
Total Number of Observations
12
Number of Missing Observations
23
Number of Detects
11
Number of Distinct Detects
8
Minimum Detect
1.808
Maximum Detect
8
Variance Detected
4.663
Mean Detected
5.286
Mean of Detected Logged Data
1.57
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.736
Appendix A
Number of Distinct Observations 9
Number of Non -Detects
1
Number of Distinct Non -Detects
1
Minimum Non -Detect
5
Maximum Non -Detect
5
Percent Non -Detects
8.333%
SD Detected
2.159
SD of Detected Logged Data
0.486
d2max (for USL) 2.285
Normal GOF Test on Detects Only
Shapiro Wilk Test Statistic 0.924 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.85 Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.179 Lilliefors GOF Test
5% Lilliefors Critical Value 0.251 Detected Data appear Normal at 5% Significance Level
Detected Data appear Normal at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
5.115
SD
2.067
95% UTL95% Coverage
10.77
95% KM UPL (t)
8.978
95% KM Chebyshev UPL
14.49
90% KM Percentile (z)
7.764
95% KM Percentile (z)
8.514
99% KM Percentile (z)
9.923
95% KM USL
9.838
DL/2 Substitution Background Statistics Assuming Normal Distribution
Mean
5.054
SD
2.21
95% UTL95% Coverage
11.1
95% UPL (t)
9.185
90% Percentile (z)
7.886
95% Percentile (z)
8.689
99% Percentile (z)
10.2
95% USL
10.1
DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Appendix A
Vanadium
General Statistics
Total Number of Observations
35
Number of Detects
33
Number of Distinct Detects
33
Minimum Detect
0.264
Maximum Detect
1.43
Variance Detected
0.104
Mean Detected
0.718
Mean of Detected Logged Data
-0.435
Critical Values for Background Threshold Values (BTVs)
Tolerance Factor K (For UTL) 2.157
Number of Distinct Observations
34
Number of Non -Detects
2
Number of Distinct Non -Detects
1
Minimum Non -Detect
0.3
Maximum Non -Detect
0.3
Percent Non -Detects
5.714%
SD Detected
0.322
SD of Detected Logged Data
0.474
d2max (for USL) 2.812
Normal GOF Test on Detects Only
Shapiro Wilk Test Statistic 0.942 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.931 Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.0836 Lilliefors GOF Test
5% Lilliefors Critical Value 0.152 Detected Data appear Normal at 5% Significance Level
Detected Data appear Normal at 5% Significance Level
Kaplan Meier (KM) Background Statistics Assuming Normal Distribution
Mean
0.692
SD
0.325
95% UTL95% Coverage
1.394
95% KM UPL (t)
1.25
95% KM Chebyshev UPL
2.13
90% KM Percentile (z)
1.109
95% KM Percentile (z)
1.227
99% KM Percentile (z)
1.449
95% KM USL
1.607
DL/2 Substitution Background Statistics Assuming Normal Distribution
Mean
0.685
SD
0.34
95% UTL95% Coverage
1.418
95% UPL (t)
1.268
90% Percentile (z)
1.121
95% Percentile (z)
1.244
99% Percentile (z)
1.476
95% USL
1.641
DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers
and consists of observations collected from clean unimpacted locations.
The use of USL tends to provide a balance between false positives and false negatives provided the data
represents a background data set and when many onsite observations need to be compared with the BTV.
Cape Fear Steam Electric Plant
Two -Sided 95% Tolerance Intervals of pH
Percent of Parametric Parametric Nonparame Nonparametric
Population Lower Upper Lower Upper
Between Tolerance Tolerance Tolerance Tolerance
Limits Limit Limit Limit Limit
50 6.065653 6.310919 6.04 6.3
60 6.035266 6.341306 6 6.33
70 5.999846 6.376726 6 6.34
80 5.955279 6.421292 5.8 6.5
90 5.889225 6.487346
95 5.831933 6.544638
99 5.719959 6.656612
Appendix A
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC - Cape Fear Steam Electric Plant
GOODNESS OF FIT TEST RESULTS
(PROUCL OUTPUT
SynTerra
Cape Fear Steam Electric Plant
Appendix B
ME
Goodness -of -Fit Test Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation ProLICL 5.12/3/2020 4:12:34 PM
From File Cape —Fear BG_Soil_Data_ProUCL.xis
Full Precision OFF
Confidence Coefficient 0.95
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
15
Minimum
4.38
Maximum
6.91
Mean of Raw Data
5.034
Standard Deviation of Raw Data
0.629
Khat
76.53
Theta hat
0.0658
Kstar
62.22
Theta star
0.0809
Mean of Log Transformed Data
1.61
Standard Deviation of Log Transformed Data
0.115
Normal GOF Test Results
Correlation Coefficient R
0.893
Shapiro Wilk Test Statistic
0.813
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.00298
Lilliefors Test Statistic
0.209
Lilliefors Critical (0.05) Value
0.213
Data appear Approximate Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.912
A-D Test Statistic
0.775
A-D Critical (0.05) Value
0.736
K-S Test Statistic
0.186
K-S Critical(0.05) Value
0.214
Data follow Appr. Gamma Distribution at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.922
Shapiro Wilk Test Statistic
0.862
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.0177
Lilliefors Test Statistic
0.18
Lilliefors Critical (0.05) Value
0.213
Data appear Approximate —Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Aluminum
Raw Statistics
Number of Valid Observations
19
Number of Distinct Observations
14
Minimum
11000
Maximum
44400
Mean of Raw Data
21168
Standard Deviation of Raw Data
8605
Khat
7.999
Theta hat
2646
Kstar
6.771
Theta star
3126
Mean of Log Transformed Data
9.896
Standard Deviation of Log Transformed Data
0.352
Normal GOF Test Results
Correlation Coefficient R
0.903
Shapiro Wilk Test Statistic
0.822
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.00171
Lilliefors Test Statistic
0.238
Lilliefors Critical (0.05) Value
0.197
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.95
A-D Test Statistic
0.71
A-D Critical (0.05) Value
0.742
K-S Test Statistic
0.2
K-S Critical(0.05) Value
0.199
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.967
Shapiro Wilk Test Statistic
0.939
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.254
Lilliefors Test Statistic
0.176
Lilliefors Critical (0.05) Value
0.197
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Arsenic
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 19 0 19 18 1 5.26%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
1
1.4
1.4
1.4
1.4
N/A
18
0.17
3.32
1.304
1.25
0.715
19
0.17
3.32
1.309
1.3
0.695
19
0.17
3.32
1.272
1.2
0.708
19
0.17
3.32
1.281
1.2
0.702
19
0.17
3.32
1.278
1.2
0.704
19
0.17
3.32
1.275
1.2
0.706
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
3.213
2.714
0.406
0.102
0.651
6.397
3.38
2.882
0.387
0.114
0.635
5.563
3.223
2.749
0.395
0.0776
0.641
8.261
3.281
2.798
0.389
0.0849
0.636
7.495
-
-
-
0.0809
0.639
7.891
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.955 0.953 0.951 0.95
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.927
0.897
Data
Appear Normal
0.925
0.901
Data
Appear Normal
0.919
0.901
Data
Appear Normal
0.919
0.901
Data
Appear Normal
0.123
0.202
Data
Appear Normal
0.129
0.197
Data
Appear Normal
0.115
0.197
Data
Appear Normal
0.117
0.197
Data
Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.983 0.979 0.984 0.984
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value Crit. (0.05)
0.261
0.745
0.114
0.205
0.324
0.747
0.11
0.2
0.255
0.747
0.112
0.2
0.251
0.747
0.126
0.2
Conclusion with Alpha(0.05)
Detected Data Appear Gamma Distributed
Data Appear Gamma Distributed
Data Appear Gamma Distributed
Data Appear Gamma Distributed
Cape Fear Steam Electric Plant
Appendix B
Arsenic (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.945 0.94 0.951 0.949
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.914
0.897
Data
Appear Lognormal
0.904
0.901
Data
Appear Lognormal
0.924
0.901
Data
Appear Lognormal
0.921
0.901
Data
Appear Lognormal
0.15
0.202
Data
Appear Lognormal
0.144
0.197
Data
Appear Lognormal
0.144
0.197
Data
Appear Lognormal
0.163
0.197
Data
Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Barium
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
15
Minimum
28
Maximum
200
Mean of Raw Data
77.21
Standard Deviation of Raw Data
53.08
Khat
2.775
Theta hat
27.83
Kstar
2.296
Theta star
33.63
Mean of Log Transformed Data
4.156
Standard Deviation of Log Transformed Data
0.619
Normal GOF Test Results
Correlation Coefficient R
0.91
Shapiro Wilk Test Statistic
0.822
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.00534
Lilliefors Test Statistic
0.238
Lilliefors Critical (0.05) Value
0.213
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.974
A-D Test Statistic
0.612
A-D Critical (0.05) Value
0.746
K-S Test Statistic
0.184
K-S Critical(0.05) Value
0.217
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.975
Shapiro Wilk Test Statistic
0.936
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.36
Lilliefors Test Statistic
0.143
Lilliefors Critical (0.05) Value
0.213
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Beryllium
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
16
Minimum
0.23
Maximum
1.4
Mean of Raw Data
0.696
Standard Deviation of Raw Data
0.354
Khat
3.845
Theta hat
0.181
Kstar
3.166
Theta star
0.22
Mean of Log Transformed Data
-0.499
Standard Deviation of Log Transformed Data
0.558
Normal GOF Test Results
Correlation Coefficient R
0.983
Shapiro Wilk Test Statistic
0.953
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.614
Lilliefors Test Statistic
0.122
Lilliefors Critical (0.05) Value
0.213
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.989
A-D Test Statistic
0.218
A-D Critical (0.05) Value
0.742
K-S Test Statistic
0.119
K-S Critical(0.05) Value
0.216
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.986
Shapiro Wilk Test Statistic
0.957
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.685
Lilliefors Test Statistic
0.12
Lilliefors Critical (0.05) Value
0.213
Data appear Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Calcium
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 19 4 15 13 2 13.33%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
2
210
290
250
250
56.57
13
45
2300
696.2
473
627.4
15
45
2300
636.7
380
601.9
15
45
2300
620
380
614.7
15
-191.6
2300
586
380
649.9
15
0.01
2300
603.7
380
630
15
45
2300
616
380
618.2
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
1.298
1.05
536.2
6.113
1.09
0.178
1.322
1.102
481.5
6.033
1.033
0.171
1.16
0.972
534.5
5.94
1.109
0.187
0.491
0.437
1229
5.107
3.084
0.604
-
-
5.905
1.151
0.195
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.92 0.9 0.906 0.937
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.855
0.866
Data Not Normal
0.82
0.881
Data Not Normal
0.828
0.881
Data Not Normal
0.888
0.881
Data Appear Normal
0.197
0.234
Data Appear Normal
0.207
0.22
Data Appear Normal
0.195
0.22
Data Appear Normal
0.169
0.22
Data Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.994 0.991 0.995 0.985
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.191
0.753
0.124
0.242
Detected Data Appear Gamma Distributed
0.22
0.757
0.13
0.226
Data Appear Gamma Distributed
0.16
0.76
0.0987
0.227
Data Appear Gamma Distributed
0.633
0.795
0.241
0.234
Detected Data appear Approximate Gamma Distribt
Cape Fear Steam Electric Plant
Calcium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.969 0.98 0.99 0.983
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.943
0.866
Data
Appear Lognormal
0.965
0.881
Data
Appear Lognormal
0.975
0.881
Data
Appear Lognormal
0.958
0.881
Data
Appear Lognormal
0.176
0.234
Data
Appear Lognormal
0.15
0.22
Data
Appear Lognormal
0.125
0.22
Data
Appear Lognormal
0.141
0.22
Data
Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Chloride
Raw Statistics
Number of Valid Observations
15
Number of Missing Observations
3
Number of Distinct Observations
14
Minimum
1.4
Maximum
140
Mean of Raw Data
33.45
Standard Deviation of Raw Data
50.94
Khat
0.553
Theta hat
60.47
Kstar
0.487
Theta star
68.69
Mean of Log Transformed Data
2.38
Standard Deviation of Log Transformed Data
1.603
Normal GOF Test Results
Correlation Coefficient R
0.802
Shapiro Wilk Test Statistic
0.638
Shapiro Wilk Critical (0.05) Value
0.881
Approximate Shapiro Wilk P Value 3.0634E-5
Lilliefors Test Statistic
0.366
Lilliefors Critical (0.05) Value
0.22
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.925
A-D Test Statistic
0.904
A-D Critical (0.05) Value
0.789
K-S Test Statistic
0.2
K-S Critical(0.05) Value
0.233
Data follow Appr. Gamma Distribution at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.967
Shapiro Wilk Test Statistic
0.913
Shapiro Wilk Critical (0.05) Value
0.881
Approximate Shapiro Wilk P Value
0.209
Lilliefors Test Statistic
0.159
Lilliefors Critical (0.05) Value
0.22
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Chromium
Raw Statistics
Number of Valid Observations
19
Number of Distinct Observations
19
Minimum
4.9
Maximum
40.4
Mean of Raw Data
20.86
Standard Deviation of Raw Data
8.811
Khat
4.434
Theta hat
4.705
Kstar
3.769
Theta star
5.536
Mean of Log Transformed Data
2.921
Standard Deviation of Log Transformed Data
0.555
Normal GOF Test Results
Correlation Coefficient R
0.985
Shapiro Wilk Test Statistic
0.974
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.818
Lilliefors Test Statistic
0.104
Lilliefors Critical (0.05) Value
0.197
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.967
A-D Test Statistic
0.652
A-D Critical (0.05) Value
0.744
K-S Test Statistic
0.171
K-S Critical(0.05) Value
0.199
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.925
Shapiro Wilk Test Statistic
0.86
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.00818
Lilliefors Test Statistic
0.207
Lilliefors Critical (0.05) Value
0.197
Data not Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Cobalt
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
15
Minimum
1.2
Maximum
19
Mean of Raw Data
8.344
Standard Deviation of Raw Data
5.219
Khat
2.485
Theta hat
3.358
Kstar
2.061
Theta star
4.049
Mean of Log Transformed Data
1.907
Standard Deviation of Log Transformed Data
0.727
Normal GOF Test Results
Correlation Coefficient R
0.969
Shapiro Wilk Test Statistic
0.931
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.285
Lilliefors Test Statistic
0.15
Lilliefors Critical (0.05) Value
0.213
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.986
A-D Test Statistic
0.235
A-D Critical (0.05) Value
0.747
K-S Test Statistic
0.13
K-S Critical(0.05) Value
0.217
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.974
Shapiro Wilk Test Statistic
0.95
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.48
Lilliefors Test Statistic
0.114
Lilliefors Critical (0.05) Value
0.213
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Copper
Raw Statistics
Number of Valid Observations
19
Number of Distinct Observations
16
Minimum
3.9
Maximum
27
Mean of Raw Data
13.18
Standard Deviation of Raw Data
5.978
Khat
5.068
Theta hat
2.6
Kstar
4.303
Theta star
3.063
Mean of Log Transformed Data
2.477
Standard Deviation of Log Transformed Data
0.478
Normal GOF Test Results
Correlation Coefficient R
0.976
Shapiro Wilk Test Statistic
0.953
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.454
Lilliefors Test Statistic
0.144
Lilliefors Critical (0.05) Value
0.197
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.994
A-D Test Statistic
0.172
A-D Critical (0.05) Value
0.742
K-S Test Statistic
0.0919
K-S Critical(0.05) Value
0.199
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.988
Shapiro Wilk Test Statistic
0.979
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.908
Lilliefors Test Statistic
0.0939
Lilliefors Critical (0.05) Value
0.197
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Iron
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
13
Minimum
12000
Maximum
40000
Mean of Raw Data
19094
Standard Deviation of Raw Data
6948
Khat
10.61
Theta hat
1799
Kstar
8.666
Theta star
2203
Mean of Log Transformed Data
9.809
Standard Deviation of Log Transformed Data
0.302
Normal GOF Test Results
Correlation Coefficient R
0.869
Shapiro Wilk Test Statistic
0.773
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value 7.6501
E-4
Lilliefors Test Statistic
0.261
Lilliefors Critical (0.05) Value
0.213
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.921
A-D Test Statistic
0.857
A-D Critical (0.05) Value
0.739
K-S Test Statistic
0.222
K-S Critical(0.05) Value
0.215
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.942
Shapiro Wilk Test Statistic
0.898
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.0668
Lilliefors Test Statistic
0.202
Lilliefors Critical (0.05) Value
0.213
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Lead
Raw Statistics
Number of Valid Observations
19
Number of Distinct Observations
14
Minimum
6.1
Maximum
19.2
Mean of Raw Data
11.15
Standard Deviation of Raw Data
3.51
Khat
11.1
Theta hat
1.004
Kstar
9.385
Theta star
1.188
Mean of Log Transformed Data
2.365
Standard Deviation of Log Transformed Data
0.31
Normal GOF Test Results
Correlation Coefficient R
0.976
Shapiro Wilk Test Statistic
0.95
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.407
Lilliefors Test Statistic
0.141
Lilliefors Critical (0.05) Value
0.197
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.992
A-D Test Statistic
0.207
A-D Critical (0.05) Value
0.741
K-S Test Statistic
0.101
K-S Critical(0.05) Value
0.199
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.993
Shapiro Wilk Test Statistic
0.98
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.941
Lilliefors Test Statistic
0.09
Lilliefors Critical (0.05) Value
0.197
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Magnesium
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
12
Minimum
620
Maximum
2800
Mean of Raw Data
1643
Standard Deviation of Raw Data
627.5
Khat
5.802
Theta hat
283.1
Kstar
4.756
Theta star
345.4
Mean of Log Transformed Data
7.315
Standard Deviation of Log Transformed Data
0.467
Normal GOF Test Results
Correlation Coefficient R
0.959
Shapiro Wilk Test Statistic
0.915
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.153
Lilliefors Test Statistic
0.162
Lilliefors Critical (0.05) Value
0.213
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.934
A-D Test Statistic
1.069
A-D Critical (0.05) Value
0.741
K-S Test Statistic
0.22
K-S Critical(0.05) Value
0.216
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.921
Shapiro Wilk Test Statistic
0.841
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.0105
Lilliefors Test Statistic
0.248
Lilliefors Critical (0.05) Value
0.213
Data not Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Manganese
Raw Statistics
Number of Valid Observations
19
Number of Distinct Observations
19
Minimum
34
Maximum
2700
Mean of Raw Data
418.8
Standard Deviation of Raw Data
694.7
Khat
0.757
Theta hat
553.3
Kstar
0.673
Theta star
622.8
Mean of Log Transformed Data
5.248
Standard Deviation of Log Transformed Data
1.192
Normal GOF Test Results
Correlation Coefficient R
0.739
Shapiro Wilk Test Statistic
0.563
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value 2.1464E-7
Lilliefors Test Statistic
0.33
Lilliefors Critical (0.05) Value
0.197
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.939
A-D Test Statistic
1.156
A-D Critical (0.05) Value
0.779
K-S Test Statistic
0.209
K-S Critical(0.05) Value
0.206
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.976
Shapiro Wilk Test Statistic
0.949
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.397
Lilliefors Test Statistic
0.11
Lilliefors Critical (0.05) Value
0.197
Data appear Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Nickel
Raw Statistics
Number of Valid Observations
18
Number of Missing Observations
1
Number of Distinct Observations
15
Minimum
1.5
Maximum
11
Mean of Raw Data
7.199
Standard Deviation of Raw Data
2.631
Khat
5.85
Theta hat
1.231
Kstar
4.912
Theta star
1.466
Mean of Log Transformed Data
1.886
Standard Deviation of Log Transformed Data
0.484
Normal GOF Test Results
Correlation Coefficient R
0.982
Shapiro Wilk Test Statistic
0.959
Shapiro Wilk Critical (0.05) Value
0.897
Approximate Shapiro Wilk P Value
0.609
Lilliefors Test Statistic
0.103
Lilliefors Critical (0.05) Value
0.202
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.951
A-D Test Statistic
0.489
A-D Critical (0.05) Value
0.742
K-S Test Statistic
0.138
K-S Critical(0.05) Value
0.204
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.911
Shapiro Wilk Test Statistic
0.842
Shapiro Wilk Critical (0.05) Value
0.897
Approximate Shapiro Wilk P Value
0.00484
Lilliefors Test Statistic
0.172
Lilliefors Critical (0.05) Value
0.202
Data appear Approximate -Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Nitrate
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 19 3 16 9 7 43.75%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
7
0.22
30.1
4.506
0.24
11.29
9
0.082
0.87
0.265
0.23
0.236
16
0.082
30.1
2.12
0.24
7.463
16
0.082
15.05
1.135
0.145
3.715
16
0.0723
0.87
0.213
0.177
0.186
16
0.0675
0.87
0.202
0.16
0.189
16
0.082
0.87
0.21
0.161
0.185
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
2.276
1.592
0.116
-1.565
0.678
-0.433
0.345
0.322
6.148
-1.203
1.327
-1.103
0.403
0.369
2.818
-1.506
1.259
-0.836
2.399
1.991
0.0843
-1.821
0.617
-0.339
-
-
-
-1.748
0.55
-0.315
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.793 0.507 0.522 0.748
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.658
0.829
Data Not Normal
0.287
0.887
Data Not Normal
0.303
0.887
Data Not Normal
0.59
0.887
Data Not Normal
0.38
0.274
Data Not Normal
0.504
0.213
Data Not Normal
0.467
0.213
Data Not Normal
0.316
0.213
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.898 0.83 0.831 0.864
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.656
0.729
0.289
0.282
Detected Data appear Approximate Gamma Distribi
4.466
0.829
0.498
0.232
Data Not Gamma Distributed
3.841
0.817
0.448
0.23
Data Not Gamma Distributed
0.857
0.748
0.185
0.217
Detected Data appear Approximate Gamma Distribi
Cape Fear Steam Electric Plant
Appendix B
Nitrate (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.944 0.742 0.787 0.924
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.91
0.829
Data Appear Lognormal
0.585
0.887
Data Not Lognormal
0.645
0.887
Data Not Lognormal
0.873
0.887
Data Not Lognormal
0.242
0.274
Data Appear Lognormal
0.407
0.213
Data Not Lognormal
0.313
0.213
Data Not Lognormal
0.164
0.213
Data Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Potassium
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
14
Minimum
139
Maximum
1300
Mean of Raw Data
393.1
Standard Deviation of Raw Data
307.9
Khat
2.716
Theta hat
144.7
Kstar
2.248
Theta star
174.8
Mean of Log Transformed Data
5.779
Standard Deviation of Log Transformed Data
0.597
Normal GOF Test Results
Correlation Coefficient R
0.826
Shapiro Wilk Test Statistic
0.698
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value 7.8707E-5
Lilliefors Test Statistic
0.316
Lilliefors Critical (0.05) Value
0.213
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.93
A-D Test Statistic
1.114
A-D Critical (0.05) Value
0.746
K-S Test Statistic
0.243
K-S Critical(0.05) Value
0.217
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.945
Shapiro Wilk Test Statistic
0.899
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.0732
Lilliefors Test Statistic
0.197
Lilliefors Critical (0.05) Value
0.213
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Selenium
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 19 0 19 14 5 26.32%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
5
1.1
1.5
1.38
1.4
0.164
14
0.3
0.795
0.425
0.375
0.142
19
0.3
1.5
0.676
0.42
0.455
19
0.3
0.795
0.495
0.42
0.175
19
0.3
0.795
0.425
0.39
0.124
19
0.3
0.795
0.423
0.39
0.125
19
0.3
0.795
0.421
0.39
0.124
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
11.95
9.435
0.0356
-0.899
0.288
-0.321
2.82
2.41
0.24
-0.579
0.605
-1.044
8.878
7.512
0.0557
-0.761
0.345
-0.454
14.92
12.6
0.0283
-0.895
0.256
-0.286
-
-
-
-0.899
0.253
-0.282
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.893 0.878 0.944 0.905
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.803
0.874
Data Not Normal
0.753
0.901
Data Not Normal
0.87
0.901
Data Not Normal
0.827
0.901
Data Not Normal
0.228
0.226
Data Not Normal
0.269
0.197
Data Not Normal
0.192
0.197
Data Appear Normal
0.184
0.197
Data Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.94 0.929 0.956 0.942
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.769
0.734
0.191
0.229
Detected Data appear Approximate Gamma Distribi
1.57
0.749
0.247
0.2
Data Not Gamma Distributed
0.833
0.741
0.167
0.199
Detected Data appear Approximate Gamma Distribi
0.737
0.741
0.171
0.198
Data Appear Gamma Distributed
Cape Fear Steam Electric Plant
Selenium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.94 0.922 0.958 0.947
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.882
0.874
Data Appear Lognormal
0.828
0.901
Data Not Lognormal
0.895
0.901
Data Not Lognormal
0.9
0.901
Data Not Lognormal
0.171
0.226
Data Appear Lognormal
0.221
0.197
Data Not Lognormal
0.147
0.197
Data Appear Lognormal
0.16
0.197
Data Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Sodium
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 19 6 13 8 5 38.46%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
5
210
510
354
310
142.6
8
49
790
229.1
162.5
244
13
49
790
277.2
210
213.3
13
49
790
209.1
160
192.6
13
49
790
200.2
160
190.4
13
49
790
184.5
125
195.5
13
49
790
184.1
119.5
195.6
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
1.403
0.96
163.3
5.037
0.932
0.185
1.856
1.479
149.3
5.332
0.844
0.158
1.951
1.552
107.2
5.065
0.751
0.148
1.812
1.445
101.8
4.917
0.731
0.149
-
-
4.914
0.731
0.149
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.847 0.938 0.826 0.77
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.734
0.818
Data Not Normal
0.883
0.866
Data Appear Normal
0.706
0.866
Data Not Normal
0.623
0.866
Data Not Normal
0.314
0.283
Data Not Normal
0.185
0.234
Data Appear Normal
0.252
0.234
Data Not Normal
0.367
0.234
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.966 0.992 0.934 0.902
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.385
0.73
0.221
0.299
Detected Data Appear Gamma Distributed
0.201
0.745
0.103
0.24
Data Appear Gamma Distributed
0.422
0.744
0.148
0.24
Data Appear Gamma Distributed
0.948
0.746
0.232
0.24
Detected Data appear Approximate Gamma Distribi
Cape Fear Steam Electric Plant
Sodium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.974 0.982 0.976 0.94
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.944
0.818
Data
Appear Lognormal
0.955
0.866
Data
Appear Lognormal
0.959
0.866
Data
Appear Lognormal
0.898
0.866
Data
Appear Lognormal
0.161
0.283
Data
Appear Lognormal
0.15
0.234
Data
Appear Lognormal
0.112
0.234
Data
Appear Lognormal
0.186
0.234
Data
Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Strontium
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
15
Minimum
1.5
Maximum
29
Mean of Raw Data
10.28
Standard Deviation of Raw Data
7.055
Khat
2.353
Theta hat
4.366
Kstar
1.954
Theta star
5.259
Mean of Log Transformed Data
2.102
Standard Deviation of Log Transformed Data
0.734
Normal GOF Test Results
Correlation Coefficient R
0.944
Shapiro Wilk Test Statistic
0.899
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.0729
Lilliefors Test Statistic
0.163
Lilliefors Critical (0.05) Value
0.213
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.994
A-D Test Statistic
0.132
A-D Critical (0.05) Value
0.748
K-S Test Statistic
0.107
K-S Critical(0.05) Value
0.217
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.986
Shapiro Wilk Test Statistic
0.98
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.926
Lilliefors Test Statistic
0.0939
Lilliefors Critical (0.05) Value
0.213
Data appear Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Sulfate
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 18 3 15 10 5 33.33%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
5
12
13
12.4
12
0.548
10
6.8
420
93.5
36.5
137.2
15
6.8
420
66.47
13
116.9
15
6
420
64.4
8.7
118
15
-90.31
420
51.16
16.83
128.5
15
0.01
420
62.34
8.7
119.1
15
3.492
420
65.12
14.13
117.6
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
0.682
0.544
137.1
3.648
1.412
0.387
0.659
0.571
100.9
3.271
1.26
0.385
0.556
0.489
115.9
3.04
1.441
0.474
0.224
0.223
278.9
0.897
4.184
4.663
-
-
-
3.096
1.427
0.461
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.819 0.738 0.742 0.852
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.68
0.842
Data Not Normal
0.562
0.881
Data Not Normal
0.567
0.881
Data Not Normal
0.746
0.881
Data Not Normal
0.357
0.262
Data Not Normal
0.341
0.22
Data Not Normal
0.334
0.22
Data Not Normal
0.296
0.22
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.978 0.951 0.962 0.986
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value Crit. (0.05)
0.542
0.762
0.21
0.277
1.506
0.782
0.26
0.232
1.468
0.789
0.274
0.233
0.658
0.872
0.222
0.244
Conclusion with Alpha(0.05)
Detected Data Appear Gamma Distributed
Data Not Gamma Distributed
Data Not Gamma Distributed
Data Appear Gamma Distributed
Cape Fear Steam Electric Plant
Sulfate (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.975 0.931 0.919 0.966
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.935
0.842
Data Appear Lognormal
0.861
0.881
Data Not Lognormal
0.831
0.881
Data Not Lognormal
0.925
0.881
Data Appear Lognormal
0.154
0.262
Data Appear Lognormal
0.246
0.22
Data Not Lognormal
0.262
0.22
Data Not Lognormal
0.157
0.22
Data Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Thallium
Raw Statistics
Number of Valid Observations
18
Number of Distinct Observations
16
Minimum
0.09
Maximum
0.349
Mean of Raw Data
0.182
Standard Deviation of Raw Data
0.0818
Khat
5.983
Theta hat
0.0305
Kstar
5.023
Theta star
0.0363
Mean of Log Transformed Data
-1.787
Standard Deviation of Log Transformed Data
0.419
Normal GOF Test Results
Correlation Coefficient R
0.937
Shapiro Wilk Test Statistic
0.867
Shapiro Wilk Critical (0.05) Value
0.897
Approximate Shapiro Wilk P Value
0.0163
Lilliefors Test Statistic
0.193
Lilliefors Critical (0.05) Value
0.202
Data appear Approximate Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.969
A-D Test Statistic
0.502
A-D Critical (0.05) Value
0.742
K-S Test Statistic
0.136
K-S Critical(0.05) Value
0.204
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.979
Shapiro Wilk Test Statistic
0.944
Shapiro Wilk Critical (0.05) Value
0.897
Approximate Shapiro Wilk P Value
0.39
Lilliefors Test Statistic
0.113
Lilliefors Critical (0.05) Value
0.202
Data appear Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Vanadium
Raw Statistics
Number of Valid Observations
16
Number of Missing Observations
3
Number of Distinct Observations
16
Minimum
14
Maximum
170
Mean of Raw Data
74.63
Standard Deviation of Raw Data
42.45
Khat
2.906
Theta hat
25.68
Kstar
2.403
Theta star
31.06
Mean of Log Transformed Data
4.131
Standard Deviation of Log Transformed Data
0.675
Normal GOF Test Results
Correlation Coefficient R
0.973
Shapiro Wilk Test Statistic
0.947
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.442
Lilliefors Test Statistic
0.193
Lilliefors Critical (0.05) Value
0.213
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.988
A-D Test Statistic
0.278
A-D Critical (0.05) Value
0.745
K-S Test Statistic
0.175
K-S Critical(0.05) Value
0.217
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.969
Shapiro Wilk Test Statistic
0.939
Shapiro Wilk Critical (0.05) Value
0.887
Approximate Shapiro Wilk P Value
0.335
Lilliefors Test Statistic
0.213
Lilliefors Critical (0.05) Value
0.213
Data appear Approximate —Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Zinc
Raw Statistics
Number of Valid Observations
19
Number of Distinct Observations
17
Minimum
14
Maximum
83
Mean of Raw Data
34.35
Standard Deviation of Raw Data
19.88
Khat
4.068
Theta hat
8.444
Kstar
3.461
Theta star
9.926
Mean of Log Transformed Data
3.409
Standard Deviation of Log Transformed Data
0.499
Normal GOF Test Results
Correlation Coefficient R
0.893
Shapiro Wilk Test Statistic
0.798
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value 6.7337E-4
Lilliefors Test Statistic
0.211
Lilliefors Critical (0.05) Value
0.197
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.952
A-D Test Statistic
0.664
A-D Critical (0.05) Value
0.745
K-S Test Statistic
0.162
K-S Critical(0.05) Value
0.199
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.973
Shapiro Wilk Test Statistic
0.941
Shapiro Wilk Critical (0.05) Value
0.901
Approximate Shapiro Wilk P Value
0.29
Lilliefors Test Statistic
0.132
Lilliefors Critical (0.05) Value
0.197
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Appendix B
pH
Goodness -of -Fit Test Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation ProLICL 5.12/3/2020 4:14:37 PM
From File Cape_Fear_BG_GW_Surficial_Data_ProUCL.xis
Full Precision OFF
Confidence Coefficient 0.95
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
18
Minimum
5.8
Maximum
6.5
Mean of Raw Data
6.188
Standard Deviation of Raw Data
0.143
Khat
1916
Theta hat
0.00323
Kstar
1751
Theta star
0.00353
Mean of Log Transformed Data
1.822
Standard Deviation of Log Transformed Data
0.0232
Normal GOF Test Results
Correlation Coefficient R
0.975
Shapiro Wilk Test Statistic
0.959
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value
0.273
Lilliefors Test Statistic
0.19
Lilliefors Critical (0.05) Value
0.148
Data appear Approximate Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.975
A-D Test Statistic
0.721
A-D Critical (0.05) Value
0.746
K-S Test Statistic
0.193
K-S Critical(0.05) Value
0.148
Data follow Appr. Gamma Distribution at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.973
Shapiro Wilk Test Statistic
0.955
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value
0.208
Lilliefors Test Statistic
0.194
Lilliefors Critical (0.05) Value
0.148
Data appear Approximate —Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Alkalinity
Raw Statistics
Number of Valid Observations
34
Number of Missing Observations
1
Number of Distinct Observations
31
Minimum
30.4
Maximum
225
Mean of Raw Data
131.4
Standard Deviation of Raw Data
55.68
Khat
4.156
Theta hat
31.62
Kstar
3.808
Theta star
34.5
Mean of Log Transformed Data
4.753
Standard Deviation of Log Transformed Data
0.563
Normal GOF Test Results
Correlation Coefficient R
0.981
Shapiro Wilk Test Statistic
0.944
Shapiro Wilk Critical (0.05) Value
0.933
Approximate Shapiro Wilk P Value
0.104
Lilliefors Test Statistic
0.109
Lilliefors Critical (0.05) Value
0.15
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.938
A-D Test Statistic
1.342
A-D Critical (0.05) Value
0.752
K-S Test Statistic
0.17
K-S Critical(0.05) Value
0.152
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.93
Shapiro Wilk Test Statistic
0.854
Shapiro Wilk Critical (0.05) Value
0.933
Approximate Shapiro Wilk P Value 2.0166E-4
Lilliefors Test Statistic
0.201
Lilliefors Critical (0.05) Value
0.15
Data not Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Aluminum
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 35 0 35 34 1 2.86%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
1
5
5
5
5
N/A
34
7
399
119.6
83.5
102.7
35
5
399
116.3
83
103
35
2.5
399
116.3
83
103.1
35
-122.5
399
112.7
83
109.2
35
0.01
399
116.2
83
103.2
35
7
399
116.4
83
102.9
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
1.54
1.424
77.68
4.426
0.924
0.209
1.358
1.261
85.65
4.345
1.027
0.236
1.303
1.21
89.23
4.325
1.086
0.251
0.984
0.919
118.1
4.168
1.777
0.426
-
-
-
4.36
0.99
0.227
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.908 0.91 0.911 0.933
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.82
0.933
Data Not Normal
0.823
0.934
Data Not Normal
0.825
0.934
Data Not Normal
0.88
0.934
Data Not Normal
0.184
0.15
Data Not Normal
0.182
0.148
Data Not Normal
0.182
0.148
Data Not Normal
0.167
0.148
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.98 0.981 0.981 0.98
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.379
0.765
0.088
0.154
Detected Data Appear Gamma Distributed
0.333
0.769
0.0922
0.152
Data Appear Gamma Distributed
0.335
0.77
0.101
0.152
Data Appear Gamma Distributed
0.756
0.776
0.159
0.153
Detected Data appear Approximate Gamma Distribut
Cape Fear Steam Electric Plant
Aluminum (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.983 0.973 0.961 0.979
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.964
0.933
Data
Appear Lognormal
0.945
0.934
Data
Appear Lognormal
0.929
0.934
Data
Not Lognormal
0.952
0.934
Data
Appear Lognormal
0.113
0.15
Data
Appear Lognormal
0.137
0.148
Data
Appear Lognormal
0.152
0.148
Data
Not Lognormal
0.126
0.148
Data
Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Barium
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
28
Minimum
9
Maximum
202
Mean of Raw Data
106.4
Standard Deviation of Raw Data
71.4
Khat
1.505
Theta hat
70.68
Kstar
1.395
Theta star
76.25
Mean of Log Transformed Data
4.299
Standard Deviation of Log Transformed Data
0.999
Normal GOF Test Results
Correlation Coefficient R
0.917
Shapiro Wilk Test Statistic
0.816
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 1.3890E-5
Lilliefors Test Statistic
0.238
Lilliefors Critical (0.05) Value
0.148
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.832
A-D Test Statistic
2.306
A-D Critical (0.05) Value
0.767
K-S Test Statistic
0.262
K-S Critical(0.05) Value
0.151
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.921
Shapiro Wilk Test Statistic
0.829
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 3.2752E-5
Lilliefors Test Statistic
0.258
Lilliefors Critical (0.05) Value
0.148
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Bicarbonate Alkalinity
Raw Statistics
Number of Valid Observations
32
Number of Missing Observations
3
Number of Distinct Observations
29
Minimum
30.4
Maximum
225
Mean of Raw Data
131.5
Standard Deviation of Raw Data
57.39
Khat
3.925
Theta hat
33.5
Kstar
3.578
Theta star
36.75
Mean of Log Transformed Data
4.746
Standard Deviation of Log Transformed Data
0.58
Normal GOF Test Results
Correlation Coefficient R
0.979
Shapiro Wilk Test Statistic
0.939
Shapiro Wilk Critical (0.05) Value
0.93
Approximate Shapiro Wilk P Value
0.0865
Lilliefors Test Statistic
0.115
Lilliefors Critical (0.05) Value
0.154
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.934
A-D Test Statistic
1.292
A-D Critical (0.05) Value
0.751
K-S Test Statistic
0.177
K-S Critical(0.05) Value
0.156
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.932
Shapiro Wilk Test Statistic
0.855
Shapiro Wilk Critical (0.05) Value
0.93
Approximate Shapiro Wilk P Value 3.7002E-4
Lilliefors Test Statistic
0.203
Lilliefors Critical (0.05) Value
0.154
Data not Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Boron
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 35 0 35 28 7 20.00%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
7
50
50
50
50
0
28
48.1
150
88.09
76.5
31.69
35
48.1
150
80.47
70
32.2
35
25
150
75.47
70
38.12
35
8.437
150
77.23
70
36.38
35
22.88
150
78.4
70
34.69
35
33.52
150
79.52
70
33.31
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
8.379
7.505
10.51
4.417
0.354
0.0801
7.156
6.561
11.25
4.316
0.376
0.0872
3.583
3.295
21.06
4.178
0.58
0.139
5.233
4.803
14.98
4.263
0.461
0.108
-
-
-
4.294
0.409
0.0953
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.958 0.931 0.971 0.981
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.9
0.924
Data Not Normal
0.847
0.934
Data Not Normal
0.921
0.934
Data Not Normal
0.951
0.934
Data Appear Normal
0.172
0.164
Data Not Normal
0.171
0.148
Data Not Normal
0.113
0.148
Data Appear Normal
0.131
0.148
Data Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.971 0.961 0.969 0.98
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.705
0.746
0.14
0.165
Detected Data Appear Gamma Distributed
1.419
0.749
0.157
0.149
Data Not Gamma Distributed
0.79
0.753
0.143
0.15
Detected Data appear Approximate Gamma Distribut
0.39
0.75
0.101
0.149
Data Appear Gamma Distributed
Cape Fear Steam Electric Plant
Appendix B
Boron (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.976 0.952 0.956 0.985
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.933
0.924
Data Appear Lognormal
0.883
0.934
Data Not Lognormal
0.891
0.934
Data Not Lognormal
0.954
0.934
Data Appear Lognormal
0.124
0.164
Data Appear Lognormal
0.161
0.148
Data Not Lognormal
0.151
0.148
Data Not Lognormal
0.107
0.148
Data Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Calcium
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
34
Minimum
4.31
Maximum
120
Mean of Raw Data
58.58
Standard Deviation of Raw Data
31.52
Khat
1.749
Theta hat
33.5
Kstar
1.618
Theta star
36.21
Mean of Log Transformed Data
3.758
Standard Deviation of Log Transformed Data
1.011
Normal GOF Test Results
Correlation Coefficient R
0.947
Shapiro Wilk Test Statistic
0.886
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value
0.00144
Lilliefors Test Statistic
0.225
Lilliefors Critical (0.05) Value
0.148
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.89
A-D Test Statistic
3.909
A-D Critical (0.05) Value
0.763
K-S Test Statistic
0.346
K-S Critical(0.05) Value
0.151
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.842
Shapiro Wilk Test Statistic
0.701
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 2.0604E-8
Lilliefors Test Statistic
0.38
Lilliefors Critical (0.05) Value
0.148
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
Chloride
Raw Statistics
Number of Valid Observations
34
Number of Missing Observations
1
Number of Distinct Observations
20
Minimum
2.5
Maximum
280
Mean of Raw Data
122.9
Standard Deviation of Raw Data
119.6
Khat
0.511
Theta hat
240.3
Kstar
0.486
Theta star
252.9
Mean of Log Transformed Data
3.574
Standard Deviation of Log Transformed Data
1.959
Normal GOF Test Results
Correlation Coefficient R
0.853
Shapiro Wilk Test Statistic
0.702
Shapiro Wilk Critical (0.05) Value
0.933
Approximate Shapiro Wilk P Value 3.8867E-8
Lilliefors Test Statistic
0.325
Lilliefors Critical (0.05) Value
0.15
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.709
A-D Test Statistic
4.426
A-D Critical (0.05) Value
0.811
K-S Test Statistic
0.309
K-S Critical(0.05) Value
0.159
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.873
Shapiro Wilk Test Statistic
0.737
Shapiro Wilk Critical (0.05) Value
0.933
Approximate Shapiro Wilk P Value 2.3054E-7
Lilliefors Test Statistic
0.317
Lilliefors Critical (0.05) Value
0.15
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Appendix B
Data do not follow a discernible distribution at (0.05) Level of Significance
Cape Fear Steam Electric Plant
Cobalt
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 35 0 35 28 7 20.00%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
7
1
1
1
1
0
28
0.531
78.7
13.87
4.47
19.72
35
0.531
78.7
11.29
2.04
18.33
35
0.5
78.7
11.19
2.04
18.39
35
-29.24
78.7
7.989
2.04
21.52
35
0.01
78.7
11.09
2.04
18.45
35
0.121
78.7
11.19
2.04
18.39
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
0.639
0.594
21.71
1.671
1.479
0.885
0.572
0.542
19.74
1.337
1.482
1.109
0.519
0.493
21.57
1.198
1.63
1.361
0.339
0.329
32.68
0.416
2.868
6.899
-
-
1.155
1.71
1.48
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.83 0.789 0.792 0.92
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.696
0.924
Data Not Normal
0.633
0.934
Data Not Normal
0.638
0.934
Data Not Normal
0.861
0.934
Data Not Normal
0.249
0.164
Data Not Normal
0.279
0.148
Data Not Normal
0.28
0.148
Data Not Normal
0.186
0.148
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.987 0.982 0.985 0.989
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.953
0.796
0.173
0.173
Detected Data appear Approximate Gamma Distribut
2.267
0.805
0.219
0.156
Data Not Gamma Distributed
1.722
0.81
0.193
0.157
Data Not Gamma Distributed
0.615
0.848
0.128
0.16
Data Appear Gamma Distributed
Cape Fear Steam Electric Plant
Cobalt (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.978 0.948 0.959 0.986
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.939
0.924
Data Appear Lognormal
0.881
0.934
Data Not Lognormal
0.896
0.934
Data Not Lognormal
0.958
0.934
Data Appear Lognormal
0.134
0.164
Data Appear Lognormal
0.177
0.148
Data Not Lognormal
0.131
0.148
Data Appear Lognormal
0.116
0.148
Data Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Fluoride
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 33 24 9 5 4 44.44%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
4
0.1
1
0.525
0.5
0.369
5
0.215
0.584
0.372
0.26
0.183
9
0.1
1
0.44
0.5
0.272
9
0.05
0.584
0.323
0.25
0.181
9
-0.0327
0.584
0.277
0.26
0.194
9
0.0484
0.584
0.287
0.26
0.176
9
0.115
0.584
0.296
0.26
0.163
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
5.404
2.295
0.0689
-1.084
0.483
-0.446
2.77
1.921
0.159
-1.012
0.694
-0.686
2.77
1.92
0.117
-1.32
0.744
-0.563
2.643
1.836
0.109
-1.448
0.739
-0.511
-
-1.338
0.515
-0.385
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.895 0.949 0.935 0.948
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.773
0.762
Data
Appear Normal
0.91
0.829
Data
Appear Normal
0.87
0.829
Data
Appear Normal
0.903
0.829
Data
Appear Normal
0.331
0.343
Data
Appear Normal
0.191
0.274
Data
Appear Normal
0.305
0.274
Data
Not Normal
0.284
0.274
Data
Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.907 0.972 0.924 0.94
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value Crit. (0.05)
0.664
0.681
0.34
0.358
0.326
0.727
0.217
0.282
0.632
0.727
0.226
0.282
0.491
0.728
0.242
0.282
Conclusion with Alpha(0.05)
Detected Data Appear Gamma Distributed
Data Appear Gamma Distributed
Data Appear Gamma Distributed
Data Appear Gamma Distributed
Cape Fear Steam Electric Plant
Appendix B
Fluoride (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.91 0.968 0.895 0.949
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.802
0.762
Data
Appear Lognormal
0.943
0.829
Data
Appear Lognormal
0.819
0.829
Data
Not Lognormal
0.905
0.829
Data
Appear Lognormal
0.308
0.343
Data
Appear Lognormal
0.233
0.274
Data
Appear Lognormal
0.273
0.274
Data
Appear Lognormal
0.284
0.274
Data
Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Iron
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
34
Minimum
21
Maximum
45500
Mean of Raw Data
7418
Standard Deviation of Raw Data
14768
Khat
0.262
Theta hat
28359
Kstar
0.258
Theta star
28730
Mean of Log Transformed Data
6.216
Standard Deviation of Log Transformed Data
2.259
Normal GOF Test Results
Correlation Coefficient R
0.727
Shapiro Wilk Test Statistic
0.526
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 6.155E-12
Lilliefors Test Statistic
0.48
Lilliefors Critical (0.05) Value
0.148
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.871
A-D Test Statistic
6.226
A-D Critical (0.05) Value
0.876
K-S Test Statistic
0.418
K-S Critical(0.05) Value
0.163
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.867
Shapiro Wilk Test Statistic
0.743
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 1.9869E-7
Lilliefors Test Statistic
0.302
Lilliefors Critical (0.05) Value
0.148
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
Lithium
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 35 23 12 11 1 8.33%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
1
5
5
5
5
N/A
11
1.808
8
5.286
6
2.159
12
1.808
8
5.262
5.5
2.06
12
1.808
8
5.054
5.001
2.21
12
1.808
8
5.137
5.001
2.122
12
1.808
8
5.135
5.001
2.124
12
1.808
8
5.116
5.001
2.141
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
5.441
4.018
0.971
1.57
0.486
0.309
5.914
4.491
0.89
1.574
0.463
0.295
4.955
3.772
1.02
1.516
0.5
0.33
5.551
4.219
0.925
1.543
0.473
0.306
-
-
-
1.538
0.477
0.31
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.971 0.981 0.969 0.971
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.924
0.85
Data
Appear Normal
0.944
0.859
Data
Appear Normal
0.915
0.859
Data
Appear Normal
0.924
0.859
Data
Appear Normal
0.179
0.251
Data
Appear Normal
0.146
0.243
Data
Appear Normal
0.183
0.243
Data
Appear Normal
0.204
0.243
Data
Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.937 0.95 0.943 0.948
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value Crit. (0.05)
0.449
0.731
0.217
0.256
0.36
0.732
0.178
0.246
0.457
0.732
0.206
0.246
0.418
0.732
0.197
0.246
Conclusion with Alpha(0.05)
Detected Data Appear Gamma Distributed
Data Appear Gamma Distributed
Data Appear Gamma Distributed
Data Appear Gamma Distributed
Cape Fear Steam Electric Plant
Lithium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.952 0.957 0.962 0.964
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.896
0.85
Data
Appear Lognormal
0.91
0.859
Data
Appear Lognormal
0.909
0.859
Data
Appear Lognormal
0.919
0.859
Data
Appear Lognormal
0.221
0.251
Data
Appear Lognormal
0.181
0.243
Data
Appear Lognormal
0.209
0.243
Data
Appear Lognormal
0.203
0.243
Data
Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Magnesium
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
34
Minimum
1.46
Maximum
35.7
Mean of Raw Data
18.82
Standard Deviation of Raw Data
10.56
Khat
1.747
Theta hat
10.77
Kstar
1.617
Theta star
11.64
Mean of Log Transformed Data
2.622
Standard Deviation of Log Transformed Data
0.984
Normal GOF Test Results
Correlation Coefficient R
0.95
Shapiro Wilk Test Statistic
0.883
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value
0.00121
Lilliefors Test Statistic
0.225
Lilliefors Critical (0.05) Value
0.148
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.857
A-D Test Statistic
2.647
A-D Critical (0.05) Value
0.763
K-S Test Statistic
0.237
K-S Critical(0.05) Value
0.151
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.88
Shapiro Wilk Test Statistic
0.762
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 5.7190E-7
Lilliefors Test Statistic
0.226
Lilliefors Critical (0.05) Value
0.148
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Manganese
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
34
Minimum
17
Maximum
9170
Mean of Raw Data
1879
Standard Deviation of Raw Data
2689
Khat
0.38
Theta hat
4951
Kstar
0.366
Theta star
5134
Mean of Log Transformed Data
5.79
Standard Deviation of Log Transformed Data
2.302
Normal GOF Test Results
Correlation Coefficient R
0.856
Shapiro Wilk Test Statistic
0.724
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 7.1139E-8
Lilliefors Test Statistic
0.244
Lilliefors Critical (0.05) Value
0.148
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.958
A-D Test Statistic
1.564
A-D Critical (0.05) Value
0.839
K-S Test Statistic
0.191
K-S Critical(0.05) Value
0.16
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.942
Shapiro Wilk Test Statistic
0.858
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 2.1859E-4
Lilliefors Test Statistic
0.173
Lilliefors Critical (0.05) Value
0.148
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Cape Fear Steam Electric Plant
Nickel
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 35 0 35 33 2 5.71 %
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
2
1
1
1
1
0
33
1.27
48
6.318
2.16
9.654
35
1
48
6.014
2.15
9.449
35
0.5
48
5.985
2.15
9.466
35
-12.72
48
5.305
2.15
10.26
35
0.01
48
5.957
2.15
9.483
35
0.326
48
5.979
2.15
9.469
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
0.939
0.874
6.728
1.224
0.98
0.801
0.912
0.853
6.594
1.154
0.993
0.861
0.87
0.814
6.88
1.114
1.052
0.944
0.679
0.64
8.772
0.891
1.67
1.874
-
-
1.099
1.082
0.984
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.736 0.73 0.735 0.812
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.565
0.931
Data Not Normal
0.557
0.934
Data Not Normal
0.564
0.934
Data Not Normal
0.695
0.934
Data Not Normal
0.342
0.152
Data Not Normal
0.348
0.148
Data Not Normal
0.346
0.148
Data Not Normal
0.313
0.148
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.939 0.936 0.941 0.955
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
3.824
0.779
0.294
0.158
Data Not Gamma Distributed
3.885
0.78
0.291
0.154
Data Not Gamma Distributed
3.422
0.782
0.281
0.154
Data Not Gamma Distributed
2.729
0.795
0.236
0.155
Data Not Gamma Distributed
Cape Fear Steam Electric Plant
Nickel (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.898 0.911 0.936 0.94
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.801
0.931
Data Not Lognormal
0.826
0.934
Data Not Lognormal
0.877
0.934
Data Not Lognormal
0.891
0.934
Data Not Lognormal
0.229
0.152
Data Not Lognormal
0.22
0.148
Data Not Lognormal
0.203
0.148
Data Not Lognormal
0.198
0.148
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Nitrate + Nitrite
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 35 3 32 18 14 43.75%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
14
0.01
0.01
0.01
0.01
1.800E-18
18
0.018
3.9
0.721
0.203
1.044
32
0.01
3.9
0.41
0.018
0.852
32
0.005
3.9
0.408
0.018
0.853
32
-3.629
3.9
-0.42
0.018
1.62
32
0.01
3.9
0.41
0.018
0.852
32
3.5680E-5
3.9
0.407
0.018
0.854
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
0.467
0.426
1.544
-1.701
1.968
-1.157
0.327
0.317
1.255
-2.971
2.066
-0.695
0.291
0.285
1.4
-3.275
2.326
-0.71
0.327
0.317
1.255
-2.971
2.066
-0.695
-
-
-3.941
3.152
-0.8
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.845 0.731 0.732 0.984
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.722
0.897
Data Not Normal
0.553
0.93
Data Not Normal
0.555
0.93
Data Not Normal
0.972
0.93
Data Appear Normal
0.25
0.202
Data Not Normal
0.346
0.154
Data Not Normal
0.344
0.154
Data Not Normal
0.169
0.154
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.993 0.988 0.991 0.988
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.81
0.807
0.2
0.216
Detected Data appear Approximate Gamma Distribut
3.855
0.849
0.315
0.168
Data Not Gamma Distributed
3.242
0.859
0.282
0.169
Data Not Gamma Distributed
3.855
0.849
0.315
0.168
Data Not Gamma Distributed
Cape Fear Steam Electric Plant
Appendix B
Nitrate + Nitrite (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.946 0.882 0.904 0.988
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.872
0.897
Data Not Lognormal
0.76
0.93
Data Not Lognormal
0.797
0.93
Data Not Lognormal
0.962
0.93
Data Appear Lognormal
0.192
0.202
Data Appear Lognormal
0.253
0.154
Data Not Lognormal
0.245
0.154
Data Not Lognormal
0.113
0.154
Data Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Potassium
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
29
Minimum
0.944
Maximum
4.51
Mean of Raw Data
1.855
Standard Deviation of Raw Data
1.168
Khat
3.292
Theta hat
0.564
Kstar
3.029
Theta star
0.612
Mean of Log Transformed Data
0.459
Standard Deviation of Log Transformed Data
0.542
Normal GOF Test Results
Correlation Coefficient R
0.851
Shapiro Wilk Test Statistic
0.71
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 3.4484E-8
Lilliefors Test Statistic
0.334
Lilliefors Critical (0.05) Value
0.148
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.915
A-D Test Statistic
4.205
A-D Critical (0.05) Value
0.753
K-S Test Statistic
0.299
K-S Critical(0.05) Value
0.15
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.881
Shapiro Wilk Test Statistic
0.756
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 4.1742E-7
Lilliefors Test Statistic
0.27
Lilliefors Critical (0.05) Value
0.148
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
Sodium
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
33
Minimum
15.6
Maximum
281
Mean of Raw Data
94.03
Standard Deviation of Raw Data
59.62
Khat
1.966
Theta hat
47.83
Kstar
1.817
Theta star
51.76
Mean of Log Transformed Data
4.268
Standard Deviation of Log Transformed Data
0.853
Normal GOF Test Results
Correlation Coefficient R
0.952
Shapiro Wilk Test Statistic
0.908
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value
0.00681
Lilliefors Test Statistic
0.147
Lilliefors Critical (0.05) Value
0.148
Data appear Approximate Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.961
A-D Test Statistic
1.776
A-D Critical (0.05) Value
0.76
K-S Test Statistic
0.208
K-S Critical(0.05) Value
0.151
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.921
Shapiro Wilk Test Statistic
0.834
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 4.2535E-5
Lilliefors Test Statistic
0.242
Lilliefors Critical (0.05) Value
0.148
Data not Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Strontium
Raw Statistics
Number of Valid Observations
35
Number of Distinct Observations
34
Minimum
77
Maximum
2460
Mean of Raw Data
816.6
Standard Deviation of Raw Data
625.4
Khat
1.549
Theta hat
527
Kstar
1.436
Theta star
568.8
Mean of Log Transformed Data
6.349
Standard Deviation of Log Transformed Data
0.976
Normal GOF Test Results
Correlation Coefficient R
0.914
Shapiro Wilk Test Statistic
0.83
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 3.3554E-5
Lilliefors Test Statistic
0.25
Lilliefors Critical (0.05) Value
0.148
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.965
A-D Test Statistic
1.796
A-D Critical (0.05) Value
0.766
K-S Test Statistic
0.245
K-S Critical(0.05) Value
0.151
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.921
Shapiro Wilk Test Statistic
0.836
Shapiro Wilk Critical (0.05) Value
0.934
Approximate Shapiro Wilk P Value 5.0253E-5
Lilliefors Test Statistic
0.301
Lilliefors Critical (0.05) Value
0.148
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Cape Fear Steam Electric Plant
Sulfate
Raw Statistics
Number of Valid Observations
34
Number of Missing Observations
1
Number of Distinct Observations
29
Minimum
15
Maximum
690
Mean of Raw Data
133
Standard Deviation of Raw Data
177.6
Khat
0.788
Theta hat
168.8
Kstar
0.738
Theta star
180.2
Mean of Log Transformed Data
4.135
Standard Deviation of Log Transformed Data
1.193
Normal GOF Test Results
Correlation Coefficient R
0.829
Shapiro Wilk Test Statistic
0.689
Shapiro Wilk Critical (0.05) Value
0.933
Approximate Shapiro Wilk P Value 1.9637E-8
Lilliefors Test Statistic
0.356
Lilliefors Critical (0.05) Value
0.15
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.971
A-D Test Statistic
2.843
A-D Critical (0.05) Value
0.786
K-S Test Statistic
0.312
K-S Critical(0.05) Value
0.157
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.936
Shapiro Wilk Test Statistic
0.857
Shapiro Wilk Critical (0.05) Value
0.933
Approximate Shapiro Wilk P Value 2.5274E-4
Lilliefors Test Statistic
0.251
Lilliefors Critical (0.05) Value
0.15
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
TDS
Raw Statistics
Number of Valid Observations
34
Number of Missing Observations
1
Number of Distinct Observations
24
Minimum
140
Maximum
1200
Mean of Raw Data
560.4
Standard Deviation of Raw Data
239.3
Khat
4.154
Theta hat
134.9
Kstar
3.807
Theta star
147.2
Mean of Log Transformed Data
6.204
Standard Deviation of Log Transformed Data
0.565
Normal GOF Test Results
Correlation Coefficient R
0.942
Shapiro Wilk Test Statistic
0.89
Shapiro Wilk Critical (0.05) Value
0.933
Approximate Shapiro Wilk P Value
0.00223
Lilliefors Test Statistic
0.218
Lilliefors Critical (0.05) Value
0.15
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.923
A-D Test Statistic
2.88
A-D Critical (0.05) Value
0.752
K-S Test Statistic
0.286
K-S Critical(0.05) Value
0.152
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.892
Shapiro Wilk Test Statistic
0.791
Shapiro Wilk Critical (0.05) Value
0.933
Approximate Shapiro Wilk P Value 4.5312E-6
Lilliefors Test Statistic
0.31
Lilliefors Critical (0.05) Value
0.15
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
TOC
Raw Statistics
Number of Valid Observations
32
Number of Missing Observations
3
Number of Distinct Observations
30
Minimum
0.706
Maximum
6.3
Mean of Raw Data
2.074
Standard Deviation of Raw Data
1.78
Khat
1.847
Theta hat
1.123
Kstar
1.695
Theta star
1.224
Mean of Log Transformed Data
0.435
Standard Deviation of Log Transformed Data
0.736
Normal GOF Test Results
Correlation Coefficient R
0.857
Shapiro Wilk Test Statistic
0.723
Shapiro Wilk Critical (0.05) Value
0.93
Approximate Shapiro Wilk P Value 2.9866E-7
Lilliefors Test Statistic
0.302
Lilliefors Critical (0.05) Value
0.154
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.943
A-D Test Statistic
3.066
A-D Critical (0.05) Value
0.761
K-S Test Statistic
0.23
K-S Critical(0.05) Value
0.158
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.908
Shapiro Wilk Test Statistic
0.806
Shapiro Wilk Critical (0.05) Value
0.93
Approximate Shapiro Wilk P Value 2.1349E-5
Lilliefors Test Statistic
0.209
Lilliefors Critical (0.05) Value
0.154
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Total Radium
Raw Statistics
Number of Valid Observations
22
Number of Missing Observations
11
Number of Distinct Observations
21
Minimum
0.272
Maximum
7.662
Mean of Raw Data
1.827
Standard Deviation of Raw Data
1.575
Khat
2.159
Theta hat
0.846
Kstar
1.895
Theta star
0.964
Mean of Log Transformed Data
0.353
Standard Deviation of Log Transformed Data
0.706
Normal GOF Test Results
Correlation Coefficient R
0.833
Shapiro Wilk Test Statistic
0.715
Shapiro Wilk Critical (0.05) Value
0.911
Approximate Shapiro Wilk P Value 1.0909E-5
Lilliefors Test Statistic
0.21
Lilliefors Critical (0.05) Value
0.184
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.94
A-D Test Statistic
0.585
A-D Critical (0.05) Value
0.755
K-S Test Statistic
0.15
K-S Critical(0.05) Value
0.188
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.979
Shapiro Wilk Test Statistic
0.972
Shapiro Wilk Critical (0.05) Value
0.911
Approximate Shapiro Wilk P Value
0.741
Lilliefors Test Statistic
0.117
Lilliefors Critical (0.05) Value
0.184
Data appear Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Total Uranium
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 33 9 24 20 4 16.67%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
4
2.0000E-4
2.0000E-4
2.0000E-4
2.0000E-4
0
20
1.2100E-4
0.0188
0.00561
5.1000E-4
0.00701
24
1.2100E-4
0.0188
0.0047
4.3800E-4
0.00669
24
1.0000E-4
0.0188
0.00469
4.3800E-4
0.00671
24
-0.0107
0.0188
0.00347
4.3800E-4
0.00808
24
1.2100E-4
0.0188
0.00634
0.00397
0.00659
24
2.0143E-5
0.0188
0.00468
4.3800E-4
0.00671
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
0.49
0.45
0.0114
-6.483
1.818
-0.28
0.443
0.415
0.0106
-6.822
1.825
-0.268
0.415
0.391
0.0113
-6.938
1.952
-0.281
0.563
0.52
0.0113
-6.17
1.8
-0.292
-
-
-
-7.051
2.117
-0.3
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.868 0.835 0.837 0.944
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.737
0.905
Data Not Normal
0.685
0.916
Data Not Normal
0.688
0.916
Data Not Normal
0.886
0.916
Data Not Normal
0.364
0.192
Data Not Normal
0.399
0.177
Data Not Normal
0.398
0.177
Data Not Normal
0.308
0.177
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.884 0.899 0.896 0.873
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
2.209
0.805
0.348
0.205
Data Not Gamma Distributed
2.855
0.819
0.366
0.19
Data Not Gamma Distributed
2.448
0.825
0.348
0.19
Data Not Gamma Distributed
2.322
0.8
0.297
0.187
Data Not Gamma Distributed
Cape Fear Steam Electric Plant
Appendix B
Total Uranium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.898 0.896 0.917 0.946
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.789
0.905
Data Not Lognormal
0.786
0.916
Data Not Lognormal
0.82
0.916
Data Not Lognormal
0.881
0.916
Data Not Lognormal
0.311
0.192
Data Not Lognormal
0.31
0.177
Data Not Lognormal
0.279
0.177
Data Not Lognormal
0.25
0.177
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Vanadium
Appendix B
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 35 0 35 33 2 5.71 %
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Statistics (Non -Detects Only)
Statistics (NDs = DL)
Statistics (NDs = DL/2)
Statistics (Gamma ROS Estimates)
Statistics (Lognormal ROS Estimates)
Number
Minimum
Maximum
Mean
Median
SD
2
0.3
0.3
0.3
0.3
0
33
0.264
1.43
0.718
0.687
0.322
35
0.264
1.43
0.694
0.679
0.327
35
0.15
1.43
0.685
0.679
0.34
35
-0.0201
1.43
0.679
0.679
0.351
35
0.157
1.43
0.688
0.679
0.336
35
0.218
1.43
0.691
0.679
0.332
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
4.998
4.564
0.144
-0.435
0.474
-1.09
4.566
4.194
0.152
-0.479
0.494
-1.032
3.713
3.414
0.185
-0.518
0.574
-1.108
3.951
3.632
0.174
-0.506
0.548
-1.081
-
-
-0.492
0.517
-1.051
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROS
Correlation Coefficient R 0.978 0.972 0.985 0.991
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.942
0.931
Data Appear Normal
0.929
0.934
Data Not Normal
0.957
0.934
Data Appear Normal
0.976
0.934
Data Appear Normal
0.0836
0.152
Data Appear Normal
0.103
0.148
Data Appear Normal
0.0874
0.148
Data Appear Normal
0.0747
0.148
Data Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.99 0.988 0.987 0.988
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value Crit. (0.05)
0.325
0.748
0.101
0.154
0.479
0.751
0.121
0.149
0.295
0.753
0.0992
0.149
0.279
0.753
0.0943
0.149
Conclusion with Alpha(0.05)
Detected Data Appear Gamma Distributed
Data Appear Gamma Distributed
Data Appear Gamma Distributed
Data Appear Gamma Distributed
Cape Fear Steam Electric Plant
Vanadium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.985 0.98 0.976 0.985
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.953
0.931
Data
Appear Lognormal
0.941
0.934
Data
Appear Lognormal
0.943
0.934
Data
Appear Lognormal
0.954
0.934
Data
Appear Lognormal
0.11
0.152
Data
Appear Lognormal
0.12
0.148
Data
Appear Lognormal
0.128
0.148
Data
Appear Lognormal
0.118
0.148
Data
Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Appendix B
pH
Goodness -of -Fit Test Statistics for Data Sets with Non -Detects
User Selected Options
Date/Time of Computation ProLICL 5.12/3/2020 4:18:28 PM
From File Cape_Fear_BG_GW_Bedrock Data_ProUCL.xls
Full Precision OFF
Confidence Coefficient 0.95
Raw Statistics
Number of Valid Observations
68
Number of Distinct Observations
34
Minimum
5.46
Maximum
8.19
Mean of Raw Data
7.138
Standard Deviation of Raw Data
0.857
Khat
64.4
Theta hat
0.111
Kstar
61.57
Theta star
0.116
Mean of Log Transformed Data
1.958
Standard Deviation of Log Transformed Data
0.129
Normal GOF Test Results
Correlation Coefficient R
0.891
Approximate Shapiro Wilk Test Statistic
0.772
Approximate Shapiro Wilk P Value 2.776E-14
Lilliefors Test Statistic
0.311
Lilliefors Critical (0.05) Value
0.107
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.874
A-D Test Statistic
7.126
A-D Critical (0.05) Value
0.749
K-S Test Statistic
0.325
K-S Critical(0.05) Value
0.108
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.878
Approximate Shapiro Wilk Test Statistic
0.749
Approximate Shapiro Wilk P Value 1.221
E-15
Lilliefors Test Statistic
0.331
Lilliefors Critical (0.05) Value
0.107
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Cape Fear Steam Electric Plant
Appendix B
Alkalinity
Raw Statistics
Number of Valid Observations
68
Number of Distinct Observations
50
Minimum
63.6
Maximum
215
Mean of Raw Data
151.2
Standard Deviation of Raw Data
40.31
Khat
12.35
Theta hat
12.24
Kstar
11.81
Theta star
12.8
Mean of Log Transformed Data
4.978
Standard Deviation of Log Transformed Data
0.302
Normal GOF Test Results
Correlation Coefficient R
0.986
Approximate Shapiro Wilk Test Statistic
0.95
Approximate Shapiro Wilk P Value
0.0188
Lilliefors Test Statistic
0.0864
Lilliefors Critical (0.05) Value
0.107
Data appear Approximate Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.964
A-D Test Statistic
1.135
A-D Critical (0.05) Value
0.75
K-S Test Statistic
0.116
K-S Critical(0.05) Value
0.108
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.962
Approximate Shapiro Wilk Test Statistic
0.909
Approximate Shapiro Wilk P Value 3.2701
E-5
Lilliefors Test Statistic
0.127
Lilliefors Critical (0.05) Value
0.107
Data not Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Appendix B
Aluminum
Raw Statistics
Number of Valid Observations
68
Number of Distinct Observations
43
Minimum
2.39
Maximum
295
Mean of Raw Data
31.69
Standard Deviation of Raw Data
46.71
Khat
1.049
Theta hat
30.22
Kstar
1.012
Theta star
31.31
Mean of Log Transformed Data
2.909
Standard Deviation of Log Transformed Data
0.966
Normal GOF Test Results
Correlation Coefficient R 0.732
Approximate Shapiro Wilk Test Statistic 0.565
Approximate Shapiro Wilk P Value 0
Lilliefors Test Statistic 0.312
Lilliefors Critical (0.05) Value 0.107
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.922
A-D Test Statistic
3.252
A-D Critical (0.05) Value
0.779
K-S Test Statistic
0.179
K-S Critical(0.05) Value
0.111
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.982
Approximate Shapiro Wilk Test Statistic
0.961
Approximate Shapiro Wilk P Value
0.0907
Lilliefors Test Statistic
0.095
Lilliefors Critical (0.05) Value
0.107
Data appear Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant Appendix B
Antimony
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 68 0 68 0 68 100.00%
Warning: All observations are Non -Detects (NDs), therefore all statistics and estimates should also be NDs!
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!
The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).
The data set for variable Antimony was not processed!
Cape Fear Steam Electric Plant
Arsenic
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 68 1 67 27 40 59.70%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Number
Minimum
Maximum
Mean
Median
SD
40
1
1
1
1
0
27
0.51
11.9
4.579
4.59
2.7
67
0.51
11.9
2.442
1
2.45
67
0.5
11.9
2.144
0.5
2.634
67
-6.447
11.9
1.475
1.177
3.556
67
0.01
11.9
2.24
1.209
2.642
67
0.122
11.9
2.38
1.262
2.519
K hat
K Star
Theta hat Log Mean
Log Stdv Log CV
Statistics (Non -Detects Only)
2.183
1.965
2.098 1.275
0.822 0.645
Statistics (NDs = DL)
1.463
1.408
1.669 0.514
0.815 1.585
Statistics (NDs = DL/2)
0.884
0.855
2.424 0.1
1.101 11
Statistics (Gamma ROS Estimates)
0.428
0.419
5.236 -0.715
2.49 -3.481
Statistics (Lognormal ROS Estimates)
0.324
1.088 3.355
Normal GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal ROS
Correlation Coefficient R
0.968
0.82
0.824 0.993
Apr. Test
P Value
Conclusion with Alpha(0.05)
Shapiro -Wilk (NDs = DL)
0.678
0
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.679
0
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.985
0.858
Data Appear Normal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.938
0.923
Data Appear Normal
Lilliefors (Detects Only)
0.166
0.167
Data Appear Normal
Lilliefors (NDs = DL)
0.37
0.108
Data Not Normal
Lilliefors (NDs = DL/2)
0.347
0.108
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.0882
0.108
Data Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.964 0.947 0.958 0.958
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
1.106
0.756
0.261
0.17
Data Not Gamma Distributed
9.644
0.77
0.383
0.111
Data Not Gamma Distributed
9.727
0.786
0.373
0.113
Data Not Gamma Distributed
2.243
0.834
0.176
0.116
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Arsenic (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.933 0.856 0.837 0.988
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Shapiro -Wilk (Detects Only)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.724
1.110E-16
Data Not Lognormal
0.681
0
Data Not Lognormal
0.961
0.0865
Data Appear Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.867
0.923
Data Not Lognormal
0.294
0.167
Data Not Lognormal
0.378
0.108
Data Not Lognormal
0.371
0.108
Data Not Lognormal
0.136
0.108
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Barium
Raw Statistics
Number of Valid Observations
68
Number of Distinct Observations
58
Minimum
28
Maximum
488
Mean of Raw Data
316
Standard Deviation of Raw Data
149.6
Khat
2.493
Theta hat
126.7
Kstar
2.393
Theta star
132
Mean of Log Transformed Data
5.542
Standard Deviation of Log Transformed Data
0.784
Normal GOF Test Results
Correlation Coefficient R 0.917
Approximate Shapiro Wilk Test Statistic 0.814
Approximate Shapiro Wilk P Value 1.358E-11
Lilliefors Test Statistic 0.188
Lilliefors Critical (0.05) Value 0.107
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.811
A-D Test Statistic
6.919
A-D Critical (0.05) Value
0.76
K-S Test Statistic
0.27
K-S Critical(0.05) Value
0.109
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.864
Approximate Shapiro Wilk Test Statistic
0.733
Approximate Shapiro Wilk P Value 1.110E-16
Lilliefors Test Statistic
0.304
Lilliefors Critical (0.05) Value
0.107
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Bicarbonate Alkalinity
Raw Statistics
Number of Valid Observations
64
Number of Missing Observations
4
Number of Distinct Observations
48
Minimum
63.6
Maximum
215
Mean of Raw Data
151.4
Standard Deviation of Raw Data
39.7
Khat
12.86
Theta hat
11.77
Kstar
12.26
Theta star
12.34
Mean of Log Transformed Data
4.98
Standard Deviation of Log Transformed Data
0.296
Normal GOF Test Results
Correlation Coefficient R
0.988
Approximate Shapiro Wilk Test Statistic
0.954
Approximate Shapiro Wilk P Value
0.043
Lilliefors Test Statistic
0.0876
Lilliefors Critical (0.05) Value
0.111
Data appear Approximate Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.967
A-D Test Statistic
0.984
A-D Critical (0.05) Value
0.75
K-S Test Statistic
0.116
K-S Critical(0.05) Value
0.111
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.964
Approximate Shapiro Wilk Test Statistic
0.915
Approximate Shapiro Wilk P Value 1.7510E-4
Lilliefors Test Statistic
0.126
Lilliefors Critical (0.05) Value
0.111
Data not Lognormal at (0.05) Significance Level
Cape Fear Steam Electric Plant
Calcium
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 68 0 68 67 1 1.47%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Number
Minimum
Maximum
Mean
Median
SD
1
0.01
0.01
0.01
0.01
N/A
67
23.4
72.2
47.69
50.1
13.77
68
0.01
72.2
46.99
49.95
14.84
68
0.005
72.2
46.99
49.95
14.84
68
11.88
72.2
47.16
49.95
14.34
68
20.44
72.2
47.29
49.95
14.07
68
19.79
72.2
47.28
49.95
14.08
K hat
K Star
Theta hat Log Mean
Log Stdv Log CV
Statistics (Non -Detects Only)
10.4
9.943
4.586 3.816
0.33 0.0864
Statistics (NDs = DL)
3.324
3.187
14.13 3.692
1.072 0.29
Statistics (NDs = DL/2)
3.132
3.003
15 3.682
1.153 0.313
Statistics (Gamma ROS Estimates)
9.75
9.33
4.85 3.804
0.341 0.0897
Statistics (Lognormal ROS Estimates)
3.804
0.342 0.09
Normal GOF Test Results
No NDs
NDs = DL
NDs = DL/2Normal ROE
Correlation Coefficient R
0.967
0.966
0.966 0.97
Apr. Test
P Value
Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.91
4.8306E-5
Data Not Normal
Shapiro -Wilk (NDs = DL)
0.93
8.9621 E-4
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.93
8.9593E-4
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.927
5.5767E-4
Data Not Normal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Lilliefors (Detects Only)
0.137
0.108
Data Not Normal
Lilliefors (NDs = DL)
0.147
0.107
Data Not Normal
Lilliefors (NDs = DL/2)
0.147
0.107
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.143
0.107
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.943 0.896 0.893 0.942
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
2.807
0.751
0.179
0.109
Data Not Gamma Distributed
5.705
0.757
0.22
0.109
Data Not Gamma Distributed
6.061
0.757
0.222
0.109
Data Not Gamma Distributed
2.831
0.751
0.182
0.108
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Calcium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.94 0.554 0.537 0.943
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.861
2.5201 E-8
Data Not Lognormal
0.358
0
Data Not Lognormal
0.339
0
Data Not Lognormal
0.87
7.8301 E-8
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.198
0.108
Data Not Lognormal
0.293
0.107
Data Not Lognormal
0.308
0.107
Data Not Lognormal
0.201
0.107
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Chloride
Raw Statistics
Number of Valid Observations
67
Number of Missing Observations
1
Number of Distinct Observations
27
Minimum
13
Maximum
240
Mean of Raw Data
89.85
Standard Deviation of Raw Data
69.85
Khat
1.374
Theta hat
65.4
Kstar
1.322
Theta star
67.95
Mean of Log Transformed Data
4.092
Standard Deviation of Log Transformed Data
0.998
Normal GOF Test Results
Correlation Coefficient R
0.948
Approximate Shapiro Wilk Test Statistic
0.872
Approximate Shapiro Wilk P Value 1.2716E-7
Lilliefors Test Statistic
0.208
Lilliefors Critical (0.05) Value
0.108
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.949
A-D Test Statistic
2.149
A-D Critical (0.05) Value
0.772
K-S Test Statistic
0.144
K-S Critical(0.05) Value
0.111
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.946
Approximate Shapiro Wilk Test Statistic
0.863
Approximate Shapiro Wilk P Value 3.5427E-8
Lilliefors Test Statistic
0.178
Lilliefors Critical (0.05) Value
0.108
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
Fluoride
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 66 51 15 13 2 13.33%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Number
Minimum
Maximum
Mean
Median
SD
2
0.1
0.2
0.15
0.15
0.0707
13
0.082
0.282
0.173
0.182
0.0598
15
0.082
0.282
0.17
0.182
0.0591
15
0.05
0.282
0.16
0.176
0.0659
15
0.082
0.282
0.165
0.176
0.06
15
0.082
0.282
0.166
0.176
0.0593
15
0.082
0.282
0.165
0.176
0.0594
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
Statistics (Non -Detects Only)
8.386
6.502
0.0206
-1.816
0.374
-0.206
Statistics (NDs = DL)
8.271
6.661
0.0205
-1.835
0.374
-0.204
Statistics (NDs = DL/2)
5.515
4.456
0.029
-1.927
0.472
-0.245
Statistics (Gamma ROS Estimates)
8.078
6.507
0.0205
-1.861
0.375
-0.202
Statistics (Lognormal ROS Estimates)
-1.863
0.375
-0.201
Normal
GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal
ROE
Correlation Coefficient R
0.975
0.97
0.981
0.976
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Normal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Normal ROS Estimates)
Test value Crit. (0.05) Conclusion with Alpha(0.05)
0.946 0.866 Data Appear Normal
0.934 0.881 Data Appear Normal
0.958 0.881 Data Appear Normal
0.943 0.881 Data Appear Normal
0.171 0.234 Data Appear Normal
0.171 0.22 Data Appear Normal
0.138 0.22 Data Appear Normal
0.149 0.22 Data Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.971 0.967 0.971 0.979
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.422
0.734
0.181
0.237
Detected Data Appear Gamma Distributed
0.557
0.738
0.186
0.222
Data Appear Gamma Distributed
0.39
0.738
0.177
0.222
Data Appear Gamma Distributed
0.364
0.738
0.147
0.222
Data Appear Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Fluoride (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.969 0.965 0.966 0.978
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value Crit. (0.05) Conclusion with Alpha(0.05)
0.932 0.866 Data Appear Lognormal
0.922 0.881 Data Appear Lognormal
0.934 0.881 Data Appear Lognormal
0.946 0.881 Data Appear Lognormal
0.198 0.234 Data Appear Lognormal
0.202 0.22 Data Appear Lognormal
0.189 0.22 Data Appear Lognormal
0.163 0.22 Data Appear Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Iron
Num Obs
Num Miss
Num Valid Detects
NDs
% NDs
Raw Statistics
68
0
68 65
3 4.41 %
Number
Minimum
Maximum Mean
Median
SD
Statistics (Non -Detects Only)
3
10
10 10
10
0
Statistics (Non -Detects Only)
65
3.382
4230 442.5
305
650.6
Statistics (All: NDs treated as DL value)
68
3.382
4230 423.4
299.5
642.1
Statistics (All: NDs treated as DL/2 value)
68
3.382
4230 423.2
299.5
642.2
Statistics (Normal ROS Imputed Data)
68
-642.4
4230 401.3
299.5
665
Statistics (Gamma ROS Imputed Data)
68
0.01
4230 423
299.5
642.4
Statistics (Lognormal ROS Imputed Data)
68
3.382
4230 423.6
299.5
642
K hat
K Star
Theta hat Log Mean
Log Stdv
Log CV
Statistics (Non -Detects Only)
0.768
0.743
576.2 5.316
1.45
0.273
Statistics (NDs = DL)
0.698
0.677
606.4 5.183
1.548
0.299
Statistics (NDs = DL/2)
0.678
0.658
624.5 5.152
1.611
0.313
Statistics (Gamma ROS Estimates)
0.537
0.523
787.5 4.878
2.494
0.511
Statistics (Lognormal ROS Estimates)
5.198
1.523
0.293
Normal GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal ROE
Correlation Coefficient R
0.748
0.746
0.747 0.792
Apr. Test
P Value
Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.592
0
Data Not Normal
Shapiro -Wilk (NDs = DL)
0.59
0
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.591
0
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.67
0
Data Not Normal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Lilliefors (Detects Only)
0.293
0.11
Data Not Normal
Lilliefors (NDs = DL)
0.288
0.107
Data Not Normal
Lilliefors (NDs = DL/2)
0.288
0.107
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.277
0.107
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.939 0.943 0.945 0.955
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
1.244
0.791
0.14
0.115
Data Not Gamma Distributed
1.201
0.797
0.13
0.113
Data Not Gamma Distributed
1.211
0.799
0.128
0.113
Data Not Gamma Distributed
1.714
0.813
0.148
0.114
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Iron (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.964 0.965 0.958 0.968
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.928
9.7493E-4
Data Not Lognormal
0.924
3.9223E-4
Data Not Lognormal
0.909
3.3528E-5
Data Not Lognormal
0.931
0.00107
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.187
0.11
Data Not Lognormal
0.189
0.107
Data Not Lognormal
0.192
0.107
Data Not Lognormal
0.186
0.107
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Lithium
Raw Statistics
Number of Valid Observations
24
Number of Missing Observations
44
Number of Distinct Observations
12
Minimum
3.467
Maximum
14
Mean of Raw Data
7.344
Standard Deviation of Raw Data
2.556
Khat
8.884
Theta hat
0.827
Kstar
7.801
Theta star
0.941
Mean of Log Transformed Data
1.937
Standard Deviation of Log Transformed Data
0.348
Normal GOF Test Results
Correlation Coefficient R
0.972
Shapiro Wilk Test Statistic
0.946
Shapiro Wilk Critical (0.05) Value
0.916
Approximate Shapiro Wilk P Value
0.228
Lilliefors Test Statistic
0.159
Lilliefors Critical (0.05) Value
0.177
Data appear Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.988
A-D Test Statistic
0.326
A-D Critical (0.05) Value
0.745
K-S Test Statistic
0.139
K-S Critical(0.05) Value
0.178
Data appear Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.988
Shapiro Wilk Test Statistic
0.975
Shapiro Wilk Critical (0.05) Value
0.916
Approximate Shapiro Wilk P Value
0.78
Lilliefors Test Statistic
0.13
Lilliefors Critical (0.05) Value
0.177
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Magnesium
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 68 0 68 67 1 1.47%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Number
Minimum
Maximum
Mean
Median
SD
1
0.005
0.005
0.005
0.005
N/A
67
2.38
32.5
17.87
17
8.741
68
0.005
32.5
17.61
16.95
8.942
68
0.0025
32.5
17.61
16.95
8.942
68
-4.954
32.5
17.54
16.95
9.106
68
2.38
32.5
17.67
16.95
8.83
68
2.38
32.5
17.65
16.95
8.859
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
Statistics (Non -Detects Only)
3.189
3.056
5.604
2.718
0.638
0.235
Statistics (NDs = DL)
2.017
1.937
8.732
2.6
1.16
0.446
Statistics (NDs = DL/2)
1.948
1.871
9.042
2.59
1.231
0.475
Statistics (Gamma ROS Estimates)
3.06
2.935
5.776
2.7
0.651
0.241
Statistics (Lognormal ROS Estimates)
2.695
0.662
0.246
Normal
GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal
ROE
Correlation Coefficient R
0.968
0.971
0.971
0.973
Apr. Test P Value Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.912
6.3685E-5
Data Not Normal
Shapiro -Wilk (NDs = DL)
0.92
2.0869E-4
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.92
2.0894E-4
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.932
0.0012
Data Not Normal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Lilliefors (Detects Only)
0.142
0.108
Data Not Normal
Lilliefors (NDs = DL)
0.14
0.107
Data Not Normal
Lilliefors (NDs = DL/2)
0.14
0.107
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.134
0.107
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.928 0.906 0.904 0.927
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
2.634
0.757
0.146
0.11
Data Not Gamma Distributed
2.894
0.763
0.187
0.109
Data Not Gamma Distributed
3
0.764
0.19
0.11
Data Not Gamma Distributed
2.648
0.757
0.148
0.109
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Magnesium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.937 0.732 0.71 0.938
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.865
4.8746E-8
Data Not Lognormal
0.582
0
Data Not Lognormal
0.551
0
Data Not Lognormal
0.865
3.4713E-8
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.184
0.108
Data Not Lognormal
0.224
0.107
Data Not Lognormal
0.235
0.107
Data Not Lognormal
0.188
0.107
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Appendix B
Manganese
Raw Statistics
Number of Valid Observations
68
Number of Distinct Observations
66
Minimum
7
Maximum
1120
Mean of Raw Data
411.8
Standard Deviation of Raw Data
339.6
Khat
0.965
Theta hat
427
Kstar
0.932
Theta star
442
Mean of Log Transformed Data
5.42
Standard Deviation of Log Transformed Data
1.356
Normal GOF Test Results
Correlation Coefficient R
0.948
Approximate Shapiro Wilk Test Statistic
0.871
Approximate Shapiro Wilk P Value 9.1199E-8
Lilliefors Test Statistic
0.197
Lilliefors Critical (0.05) Value
0.107
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.911
A-D Test Statistic
1.688
A-D Critical (0.05) Value
0.782
K-S Test Statistic
0.142
K-S Critical(0.05) Value
0.111
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.946
Approximate Shapiro Wilk Test Statistic
0.877
Approximate Shapiro Wilk P Value 2.0726E-7
Lilliefors Test Statistic
0.185
Lilliefors Critical (0.05) Value
0.107
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Cape Fear Steam Electric Plant
Molybdenum
Num Obs
Num Miss
Num Valid
Detects
NDs
% NDs
Raw Statistics
68
0
68
46
22
32.35%
Number
Minimum
Maximum
Mean
Median
SD
Statistics (Non -Detects Only)
22
1
1
1
1
0
Statistics (Non -Detects Only)
46
0.096
17
4.675
4.495
3.882
Statistics (All: NDs treated as DL value)
68
0.096
17
3.486
1.42
3.622
Statistics (All: NDs treated as DL/2 value)
68
0.096
17
3.324
1.387
3.741
Statistics (Normal ROS Imputed Data)
68
-5.107
17
3.156
2.574
4.07
Statistics (Gamma ROS Imputed Data)
68
0.01
17
3.406
2.014
3.701
Statistics (Lognormal ROS Imputed Data)
68
0.0851
17
3.373
1.64
3.711
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
Statistics (Non -Detects Only)
1.036
0.983
4.513
0.987
1.32
1.337
Statistics (NDs = DL)
0.994
0.96
3.506
0.668
1.177
1.763
Statistics (NDs = DL/2)
0.785
0.76
4.233
0.444
1.34
3.022
Statistics (Gamma ROS Estimates)
0.606
0.589
5.621
0.207
1.967
9.506
Statistics (Lognormal ROS Estimates)
0.451
1.404
3.111
Normal GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal ROE
Correlation Coefficient R
0.941
0.892
0.885
0.966
Apr. Test P Value Conclusion with Alpha(0.05)
Shapiro -Wilk (NDs = DL)
0.795
8.343E-13
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.781
1.023E-13
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.939
0.00352
Data Not Normal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.881
0.945
Data Not Normal
Lilliefors (Detects Only)
0.164
0.129
Data Not Normal
Lilliefors (NDs = DL)
0.254
0.107
Data Not Normal
Lilliefors (NDs = DL/2)
0.256
0.107
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.104
0.107
Data Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.974 0.985 0.98 0.979
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
1.751
0.777
0.21
0.134
Data Not Gamma Distributed
2.262
0.78
0.249
0.111
Data Not Gamma Distributed
4.314
0.791
0.28
0.112
Data Not Gamma Distributed
0.918
0.806
0.142
0.114
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Molybdenum (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.929 0.968 0.932 0.974
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Shapiro -Wilk (Detects Only)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.927
5.6750E-4
Data Not Lognormal
0.854
5.7234E-9
Data Not Lognormal
0.926
5.4316E-4
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.853
0.945
Data Not Lognormal
0.26
0.129
Data Not Lognormal
0.215
0.107
Data Not Lognormal
0.269
0.107
Data Not Lognormal
0.18
0.107
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Nitrate + Nitrite
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 68 9 59 32 27 45.76%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Number
Minimum
Maximum
Mean
Median
SD
27
0.01
0.01
0.01
0.01
1.768E-18
32
0.0037
3.1
0.754
0.0425
0.944
59
0.0037
3.1
0.414
0.01
0.785
59
0.0037
3.1
0.411
0.0089
0.786
59
-2.484
3.1
-0.00928
0.0089
1.171
59
0.0037
3.1
0.414
0.01
0.785
59
3.4581 E-5
3.1
0.411
0.013
0.786
K hat
K Star
Theta hat Log Mean
Log Stdv Log CV
Statistics (Non -Detects Only)
0.38
0.365
1.986 -2.03
2.318 -1.141
Statistics (NDs = DL)
0.297
0.293
1.393 -3.209
2.132 -0.664
Statistics (NDs = DL/2)
0.267
0.264
1.543 -3.526
2.36 -0.669
Statistics (Gamma ROS Estimates)
0.297
0.293
1.393 -3.209
2.132 -0.664
Statistics (Lognormal ROS Estimates)
-3.973
2.944 -0.741
Normal GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal ROS
Correlation Coefficient R
0.886
0.763
0.764 0.974
Apr. Test
P Value
Conclusion with Alpha(0.05)
Shapiro -Wilk (NDs = DL)
0.582
0
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.584
0
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.946
0.0196
Data Not Normal
Test value
Crit. (0.05)
Conclusion with
Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.773
0.93
Data Not Normal
Lilliefors (Detects Only)
0.331
0.154
Data Not Normal
Lilliefors (NDs = DL)
0.435
0.115
Data Not Normal
Lilliefors (NDs = DL/2)
0.434
0.115
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.238
0.115
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.912 0.947 0.943 0.947
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
2.553
0.837
0.27
0.167
Data Not Gamma Distributed
9.71
0.865
0.352
0.126
Data Not Gamma Distributed
8.645
0.88
0.322
0.127
Data Not Gamma Distributed
9.71
0.865
0.352
0.126
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Nitrate + Nitrite (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.926 0.843 0.86 0.971
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Shapiro -Wilk (Detects Only)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.694
1.110E-15
Data Not Lognormal
0.717
1.288E-14
Data Not Lognormal
0.924
0.0012
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.835
0.93
Data Not Lognormal
0.247
0.154
Data Not Lognormal
0.286
0.115
Data Not Lognormal
0.248
0.115
Data Not Lognormal
0.149
0.115
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Potassium
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 68 0 68 67 1 1.47%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Number
Minimum
Maximum
Mean
Median
SD
1
0.1
0.1
0.1
0.1
N/A
67
0.592
5.6
1.8
1.86
0.757
68
0.1
5.6
1.775
1.83
0.779
68
0.05
5.6
1.774
1.83
0.781
68
-0.0561
5.6
1.773
1.83
0.785
68
0.44
5.6
1.78
1.83
0.769
68
0.573
5.6
1.782
1.83
0.766
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
Statistics (Non -Detects Only)
6.36
6.086
0.283
0.507
0.411
0.81
Statistics (NDs = DL)
4.79
4.589
0.371
0.466
0.531
1.141
Statistics (NDs = DL/2)
4.405
4.221
0.403
0.456
0.589
1.292
Statistics (Gamma ROS Estimates)
5.778
5.532
0.308
0.488
0.438
0.899
Statistics (Lognormal ROS Estimates)
0.491
0.428
0.87
Normal
GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal
ROS
Correlation Coefficient R
0.915
0.925
0.926
0.926
Apr. Test P Value Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.866
5.1623E-8
Data Not Normal
Shapiro -Wilk (NDs = DL)
0.89
1.8001 E-6
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.892
2.2550E-6
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.894
3.4453E-6
Data Not Normal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Lilliefors (Detects Only)
0.152
0.108
Data Not Normal
Lilliefors (NDs = DL)
0.149
0.107
Data Not Normal
Lilliefors (NDs = DL/2)
0.149
0.107
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.15
0.107
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.941 0.943 0.943 0.944
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
1.28
0.753
0.158
0.109
Data Not Gamma Distributed
1.638
0.754
0.156
0.108
Data Not Gamma Distributed
1.873
0.755
0.154
0.108
Data Not Gamma Distributed
1.312
0.754
0.158
0.108
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Potassium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.972 0.899 0.853 0.971
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.951
0.0239
Data Not Lognormal
0.851
3.6434E-9
Data Not Lognormal
0.778
7.516E-14
Data Not Lognormal
0.946
0.0108
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.176
0.108
Data Not Lognormal
0.158
0.107
Data Not Lognormal
0.154
0.107
Data Not Lognormal
0.175
0.107
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Sodium
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 68 0 68 67 1 1.47%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Number
Minimum
Maximum
Mean
Median
SD
1
0.05
0.05
0.05
0.05
N/A
67
35.9
77.7
52.9
50
12.59
68
0.05
77.7
52.12
49.75
14.04
68
0.025
77.7
52.12
49.75
14.05
68
20.01
77.7
52.41
49.75
13.12
68
25.57
77.7
52.5
49.75
12.93
68
27.5
77.7
52.53
49.75
12.87
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
Statistics (Non -Detects Only)
17.96
17.17
2.945
3.94
0.239
0.0608
Statistics (NDs = DL)
4.497
4.308
11.59
3.838
0.874
0.228
Statistics (NDs = DL/2)
4.144
3.971
12.58
3.828
0.955
0.25
Statistics (Gamma ROS Estimates)
16.43
15.71
3.195
3.93
0.252
0.0642
Statistics (Lognormal ROS Estimates)
3.931
0.249
0.0635
Normal
GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal
ROE
Correlation Coefficient R
0.965
0.961
0.961
0.974
Apr. Test P Value Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.904
1.8860E-5
Data Not Normal
Shapiro -Wilk (NDs = DL)
0.93
0.00102
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.93
0.00101
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.937
0.00289
Data Not Normal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Lilliefors (Detects Only)
0.112
0.108
Data Not Normal
Lilliefors (NDs = DL)
0.109
0.107
Data Not Normal
Lilliefors (NDs = DL/2)
0.109
0.107
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.103
0.107
Data Appear Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.968 0.929 0.927 0.972
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
1.608
0.749
0.118
0.109
Data Not Gamma Distributed
5.702
0.755
0.266
0.108
Data Not Gamma Distributed
6.242
0.755
0.278
0.108
Data Not Gamma Distributed
1.346
0.75
0.115
0.108
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Sodium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.968 0.536 0.516 0.975
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.907
3.1912E-5
Data Not Lognormal
0.339
0
Data Not Lognormal
0.318
0
Data Not Lognormal
0.934
0.00187
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.122
0.108
Data Not Lognormal
0.369
0.107
Data Not Lognormal
0.383
0.107
Data Not Lognormal
0.119
0.107
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Cape Fear Steam Electric Plant
Appendix B
Strontium
Raw Statistics
Number of Valid Observations
68
Number of Distinct Observations
65
Minimum
331
Maximum
771
Mean of Raw Data
557.4
Standard Deviation of Raw Data
122.7
Khat
20.01
Theta hat
27.86
Kstar
19.13
Theta star
29.13
Mean of Log Transformed Data
6.298
Standard Deviation of Log Transformed Data
0.23
Normal GOF Test Results
Correlation Coefficient R
0.969
Approximate Shapiro Wilk Test Statistic
0.915
Approximate Shapiro Wilk P Value 8.7769E-5
Lilliefors Test Statistic
0.124
Lilliefors Critical (0.05) Value
0.107
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.958
A-D Test Statistic
1.73
A-D Critical (0.05) Value
0.749
K-S Test Statistic
0.136
K-S Critical(0.05) Value
0.108
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.967
Approximate Shapiro Wilk Test Statistic
0.914
Approximate Shapiro Wilk P Value 7.2765E-5
Lilliefors Test Statistic
0.138
Lilliefors Critical (0.05) Value
0.107
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Cape Fear Steam Electric Plant
Sulfate
Raw Statistics
Number of Valid Observations
67
Number of Missing Observations
1
Number of Distinct Observations
53
Minimum
1.8
Maximum
120
Mean of Raw Data
41.93
Standard Deviation of Raw Data
29.32
Khat
1.459
Theta hat
28.73
Kstar
1.404
Theta star
29.86
Mean of Log Transformed Data
3.356
Standard Deviation of Log Transformed Data
1.038
Normal GOF Test Results
Correlation Coefficient R
0.964
Approximate Shapiro Wilk Test Statistic
0.913
Approximate Shapiro Wilk P Value 7.9079E-5
Lilliefors Test Statistic
0.118
Lilliefors Critical (0.05) Value
0.108
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.959
A-D Test Statistic
2.333
A-D Critical (0.05) Value
0.77
K-S Test Statistic
0.187
K-S Critical(0.05) Value
0.111
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.935
Approximate Shapiro Wilk Test Statistic
0.861
Approximate Shapiro Wilk P Value 2.6357E-8
Lilliefors Test Statistic
0.237
Lilliefors Critical (0.05) Value
0.108
Data not Lognormal at (0.05) Significance Level
Non -parametric GOF Test Results
Data do not follow a discernible distribution at (0.05) Level of Significance
Appendix B
Cape Fear Steam Electric Plant
TDS
Raw Statistics
Number of Valid Observations
67
Number of Missing Observations
1
Number of Distinct Observations
34
Minimum
210
Maximum
660
Mean of Raw Data
390.4
Standard Deviation of Raw Data
110.4
Khat
12.5
Theta hat
31.23
Kstar
11.95
Theta star
32.67
Mean of Log Transformed Data
5.927
Standard Deviation of Log Transformed Data
0.291
Normal GOF Test Results
Correlation Coefficient R
0.978
Approximate Shapiro Wilk Test Statistic
0.939
Approximate Shapiro Wilk P Value
0.00402
Lilliefors Test Statistic
0.0958
Lilliefors Critical (0.05) Value
0.108
Data appear Approximate Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.983
A-D Test Statistic
1.141
A-D Critical (0.05) Value
0.75
K-S Test Statistic
0.112
K-S Critical(0.05) Value
0.109
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.977
Approximate Shapiro Wilk Test Statistic
0.936
Approximate Shapiro Wilk P Value
0.00279
Lilliefors Test Statistic
0.131
Lilliefors Critical (0.05) Value
0.108
Data not Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
TOC
Num Obs
Num Miss
Num Valid
Detects
NDs
% NDs
Raw Statistics
68
5
63
61
2
3.17%
Number
Minimum
Maximum
Mean
Median
SD
Statistics (Non -Detects Only)
2
1
1
1
1
0
Statistics (Non -Detects Only)
61
0.268
1.9
0.805
0.787
0.429
Statistics (All: NDs treated as DL value)
63
0.268
1.9
0.811
0.8
0.423
Statistics (All: NDs treated as DL/2 value)
63
0.268
1.9
0.796
0.778
0.425
Statistics (Normal ROS Imputed Data)
63
0.268
1.9
0.799
0.778
0.424
Statistics (Gamma ROS Imputed Data)
63
0.268
1.9
0.798
0.778
0.424
Statistics (Lognormal ROS Imputed Data)
63
0.268
1.9
0.797
0.778
0.425
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
Statistics (Non -Detects Only)
3.658
3.489
0.22
-0.359
0.546
-1.52
Statistics (NDs = DL)
3.752
3.584
0.216
-0.348
0.541
-1.555
Statistics (NDs = DL/2)
3.695
3.53
0.215
-0.37
0.541
-1.461
Statistics (Gamma ROS Estimates)
3.717
3.55
0.215
-0.366
0.54
-1.475
Statistics (Lognormal ROS Estimates)
-0.367
0.54
-1.472
Normal GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal ROE
Correlation Coefficient R
0.956
0.96
0.953
0.956
Apr. Test P Value Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.896
1.9518E-5
Data Not Normal
Shapiro -Wilk (NDs = DL)
0.904
3.7190E-5
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.891
6.2571 E-6
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.896
1.1853E-5
Data Not Normal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Lilliefors (Detects Only)
0.172
0.113
Data Not Normal
Lilliefors (NDs = DL)
0.166
0.111
Data Not Normal
Lilliefors (NDs = DL/2)
0.184
0.111
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.172
0.111
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.979 0.98 0.979 0.98
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
1.334
0.755
0.149
0.114
Data Not Gamma Distributed
1.296
0.755
0.144
0.113
Data Not Gamma Distributed
1.408
0.755
0.163
0.113
Data Not Gamma Distributed
1.319
0.755
0.149
0.113
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
TOC (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.976 0.976 0.977 0.978
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.929
0.00179
Data Not Lognormal
0.93
0.00161
Data Not Lognormal
0.931
0.00182
Data Not Lognormal
0.932
0.00231
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.129
0.113
Data Not Lognormal
0.124
0.111
Data Not Lognormal
0.142
0.111
Data Not Lognormal
0.128
0.111
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Total Radium
Raw Statistics
Number of Valid Observations
37
Number of Missing Observations
29
Number of Distinct Observations
37
Minimum
0.0972
Maximum
8.002
Mean of Raw Data
1.437
Standard Deviation of Raw Data
1.315
Khat
2.105
Theta hat
0.682
Kstar
1.953
Theta star
0.736
Mean of Log Transformed Data
0.106
Standard Deviation of Log Transformed Data
0.728
Normal GOF Test Results
Correlation Coefficient R
0.782
Shapiro Wilk Test Statistic
0.648
Shapiro Wilk Critical (0.05) Value
0.936
Approximate Shapiro Wilk P Value 4.072E-10
Lilliefors Test Statistic
0.255
Lilliefors Critical (0.05) Value
0.144
Data not Normal at (0.05) Significance Level
Gamma GOF Test Results
Correlation Coefficient R
0.896
A-D Test Statistic
0.79
A-D Critical (0.05) Value
0.759
K-S Test Statistic
0.157
K-S Critical(0.05) Value
0.147
Data not Gamma Distributed at (0.05) Significance Level
Lognormal GOF Test Results
Correlation Coefficient R
0.96
Shapiro Wilk Test Statistic
0.952
Shapiro Wilk Critical (0.05) Value
0.936
Approximate Shapiro Wilk P Value
0.154
Lilliefors Test Statistic
0.114
Lilliefors Critical (0.05) Value
0.144
Data appear Lognormal at (0.05) Significance Level
Appendix B
Cape Fear Steam Electric Plant
Total Uranium
Num Obs
Num Miss
Num Valid
Detects
NDs
% NDs
Raw Statistics
66
22
44
34
10
22.73%
Number
Minimum
Maximum
Mean
Median
SD
Statistics (Non -Detects Only)
10
2.0000E-4
2.0000E-4
2.0000E-4
2.0000E-4
2.857E-20
Statistics (Non -Detects Only)
34
1.0000E-4
0.00108
5.7676E-4
5.4300E-4
3.1593E-4
Statistics (All: NDs treated as DL value)
44
1.0000E-4
0.00108
4.9114E-4
3.8450E-4
3.1954E-4
Statistics (All: NDs treated as DL/2 value)
44
1.0000E-4
0.00108
4.6841 E-4
3.8450E-4
3.4270E-4
Statistics (Normal ROS Imputed Data)
44
-2.298E-4
0.00108
4.6364E-4
3.8450E-4
3.5594E-4
Statistics (Gamma ROS Imputed Data)
44
1.0000E-4
0.01
0.00272
7.9850E-4
0.004
Statistics (Lognormal ROS Imputed Data)
44
8.3221E-5
0.00108
4.8453E-4
3.8450E-4
3.2683E-4
K hat
K Star
Theta hat
Log Mean
Log Stdv
Log CV
Statistics (Non -Detects Only)
2.755
2.532
2.0932E-4
-7.65
0.683
-0.0892
Statistics (NDs = DL)
2.34
2.196
2.0985E-4
-7.847
0.702
-0.0895
Statistics (NDs = DL/2)
1.623
1.527
2.8867E-4
-8.005
0.892
-0.111
Statistics (Gamma ROS Estimates)
0.59
0.565
0.00461
-6.958
1.423
-0.204
Statistics (Lognormal ROS Estimates)
-7.895
0.769
-0.0974
Normal GOF Test Results
No NDs NDs = DL NDs = DL/2Normal ROE
Correlation Coefficient R 0.97 0.935 0.942 0.977
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.916
0.933
Data Not Normal
Shapiro -Wilk (NDs = DL)
0.85
0.944
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.858
0.944
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.936
0.944
Data Not Normal
Lilliefors (Detects Only)
0.156
0.15
Data Not Normal
Lilliefors (NDs = DL)
0.219
0.132
Data Not Normal
Lilliefors (NDs = DL/2)
0.182
0.132
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.153
0.132
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma RO:
Correlation Coefficient R 0.937 0.944 0.933 0.835
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.867
0.755
0.18
0.152
Data Not Gamma Distributed
1.922
0.759
0.195
0.135
Data Not Gamma Distributed
1.682
0.766
0.152
0.136
Data Not Gamma Distributed
4.815
0.805
0.335
0.14
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Total Uranium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.961 0.955 0.942 0.97
Shapiro -Wilk (Detects Only)
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.908
0.933
Data Not Lognormal
0.89
0.944
Data Not Lognormal
0.854
0.944
Data Not Lognormal
0.918
0.944
Data Not Lognormal
0.179
0.15
Data Not Lognormal
0.172
0.132
Data Not Lognormal
0.162
0.132
Data Not Lognormal
0.151
0.132
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Appendix B
Cape Fear Steam Electric Plant
Vanadium
Num Obs Num Miss Num Valid Detects NDs % NDs
Raw Statistics 68 0 68 43 25 36.76%
Statistics (Non -Detects Only)
Statistics (Non -Detects Only)
Statistics (All: NDs treated as DL value)
Statistics (All: NDs treated as DL/2 value)
Statistics (Normal ROS Imputed Data)
Statistics (Gamma ROS Imputed Data)
Statistics (Lognormal ROS Imputed Data)
Number
Minimum
Maximum
Mean
Median
SD
25
0.3
0.3
0.3
0.3
1.133E-16
43
0.114
3.35
1.144
0.438
1.074
68
0.114
3.35
0.834
0.3
0.944
68
0.114
3.35
0.779
0.223
0.978
68
-1.359
3.35
0.731
0.371
1.07
68
0.01
3.35
0.791
0.313
0.976
68
0.035
3.35
0.801
0.311
0.966
K hat
K Star
Theta hat Log Mean
Log Stdv Log CV
Statistics (Non -Detects Only)
0.996
0.942
1.149 -0.446
1.159 -2.601
Statistics (NDs = DL)
1.057
1.02
0.789 -0.724
0.989 -1.365
Statistics (NDs = DL/2)
0.813
0.787
0.958 -0.979
1.157 -1.182
Statistics (Gamma ROS Estimates)
0.609
0.592
1.299 -1.248
1.713 -1.372
Statistics (Lognormal ROS Estimates)
-0.925
1.188 -1.285
Normal GOF
Test Results
No NDs
NDs = DL
NDs = DL/2Normal ROS
Correlation Coefficient R
0.899
0.822
0.822 0.94
Apr. Test
P Value
Conclusion with
Alpha(0.05)
Shapiro -Wilk (NDs = DL)
0.663
0
Data Not Normal
Shapiro -Wilk (NDs = DL/2)
0.662
0
Data Not Normal
Shapiro -Wilk (Normal ROS Estimates)
0.876
1.9244E-7
Data Not Normal
Test value
Crit. (0.05)
Conclusion with
Alpha(0.05)
Shapiro -Wilk (Detects Only)
0.789
0.943
Data Not Normal
Lilliefors (Detects Only)
0.309
0.134
Data Not Normal
Lilliefors (NDs = DL)
0.375
0.107
Data Not Normal
Lilliefors (NDs = DL/2)
0.349
0.107
Data Not Normal
Lilliefors (Normal ROS Estimates)
0.234
0.107
Data Not Normal
Gamma GOF Test Results
No NDs NDs = DL NDs = DL/23amma ROE
Correlation Coefficient R 0.9 0.917 0.919 0.922
Anderson -Darling (Detects Only)
Kolmogorov-Smirnov (Detects Only)
Anderson -Darling (NDs = DL)
Kolmogorov-Smirnov (NDs = DL)
Anderson -Darling (NDs = DL/2)
Kolmogorov-Smirnov (NDs = DL/2)
Anderson -Darling (Gamma ROS Estimates)
Kolmogorov-Smirnov (Gamma ROS Est.)
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
2.9
0.778
0.229
0.139
Data Not Gamma Distributed
8.426
0.779
0.316
0.111
Data Not Gamma Distributed
8.058
0.789
0.244
0.112
Data Not Gamma Distributed
2.136
0.806
0.164
0.113
Data Not Gamma Distributed
Appendix B
Cape Fear Steam Electric Plant
Appendix B
Vanadium (Continued)
Lognormal GOF Test Results
No NDs NDs = DL NDs = DL/2 Log ROS
Correlation Coefficient R 0.937 0.898 0.883 0.958
Shapiro -Wilk (NDs = DL)
Shapiro -Wilk (NDs = DL/2)
Shapiro -Wilk (Lognormal ROS Estimates)
Shapiro -Wilk (Detects Only)
Lilliefors (Detects Only)
Lilliefors (NDs = DL)
Lilliefors (NDs = DL/2)
Lilliefors (Lognormal ROS Estimates)
Apr. Test
P Value
Conclusion with Alpha(0.05)
0.788
2.865E-13
Data Not Lognormal
0.755
2.442E-15
Data Not Lognormal
0.9
7.9380E-6
Data Not Lognormal
Test value
Crit. (0.05)
Conclusion with Alpha(0.05)
0.854
0.943
Data Not Lognormal
0.207
0.134
Data Not Lognormal
0.288
0.107
Data Not Lognormal
0.242
0.107
Data Not Lognormal
0.167
0.107
Data Not Lognormal
Note: Substitution methods such as DL or DL/2 are not recommended.
Updated Background Threshold Values for Constituent Concentrations in
Groundwater and Soil March 2020
Duke Energy Progress, LLC - Cape Fear Steam Electric Plant
APPENDIX C
QUANTITATIVE OUTLIER TEST RESULTS
(PROUCL OUTPUT
SynTerra
Cape Fear Steam Electric Plant
Appendix C
Outlier Tests for Selected Uncensored Variables
User Selected Options
Date/Time of Computation ProUCL 5.11/27/2020 11:05:55 AM
From File Cape_Fear_BG_Soil_Data_Boxplots.xls
Full Precision OFF
Dixon's Outlier Test for pH
Number of Observations = 16
10% critical value: 0.454
5% critical value: 0.507
1 % critical value: 0.595
1. Observation Value 6.91 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.667
For 10% significance level, 6.91 is an outlier.
For 5% significance level, 6.91 is an outlier.
For 1 % significance level, 6.91 is an outlier.
2. Observation Value 4.38 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.140
For 10% significance level, 4.38 is not an outlier.
For 5% significance level, 4.38 is not an outlier.
For 1 % significance level, 4.38 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Aluminum
Number of Observations = 19
10% critical value: 0.412
5% critical value: 0.462
1 % critical value: 0.547
1. Observation Value 44400 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.558
For 10% significance level, 44400 is an outlier.
For 5% significance level, 44400 is an outlier.
For 1 % significance level, 44400 is an outlier.
2. Observation Value 11000 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.235
For 10% significance level, 11000 is not an outlier.
For 5% significance level, 11000 is not an outlier.
For 1 % significance level, 11000 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Arsenic
Number of Observations = 19
10% critical value: 0.412
5% critical value: 0.462
1 % critical value: 0.547
1. Observation Value 3.32 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.548
For 10% significance level, 3.32 is an outlier.
For 5% significance level, 3.32 is an outlier.
For 1 % significance level, 3.32 is an outlier.
2. Observation Value 0.17 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.324
For 10% significance level, 0.17 is not an outlier.
For 5% significance level, 0.17 is not an outlier.
For 1 % significance level, 0.17 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Iron
Number of Observations = 16
10% critical value: 0.454
5% critical value: 0.507
1 % critical value: 0.595
1. Observation Value 40000 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.615
For 10% significance level, 40000 is an outlier.
For 5% significance level, 40000 is an outlier.
For 1 % significance level, 40000 is an outlier.
2. Observation Value 12000 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.167
For 10% significance level, 12000 is not an outlier.
For 5% significance level, 12000 is not an outlier.
For 1 % significance level, 12000 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Nickel
Number of Observations = 19
10% critical value: 0.412
5% critical value: 0.462
1 % critical value: 0.547
1. Observation Value 22 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.645
For 10% significance level, 22 is an outlier.
For 5% significance level, 22 is an outlier.
For 1 % significance level, 22 is an outlier.
2. Observation Value 1.5 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.363
For 10% significance level, 1.5 is not an outlier.
For 5% significance level, 1.5 is not an outlier.
For 1 % significance level, 1.5 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Nitrate (as N)
Number of Observations = 16
10% critical value: 0.454
5% critical value: 0.507
1 % critical value: 0.595
1. Observation Value 30.1 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.996
For 10% significance level, 30.1 is an outlier.
For 5% significance level, 30.1 is an outlier.
For 1 % significance level, 30.1 is an outlier.
2. Observation Value 0.082 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.415
For 10% significance level, 0.082 is not an outlier.
For 5% significance level, 0.082 is not an outlier.
For 1 % significance level, 0.082 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Potassium
Number of Observations = 16
10% critical value: 0.454
5% critical value: 0.507
1 % critical value: 0.595
1. Observation Value 1300 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.639
For 10% significance level, 1300 is an outlier.
For 5% significance level, 1300 is an outlier.
For 1 % significance level, 1300 is an outlier.
2. Observation Value 139 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.172
For 10% significance level, 139 is not an outlier.
For 5% significance level, 139 is not an outlier.
For 1 % significance level, 139 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
ITERATION 2
Dixon's Outlier Test for Aluminum
Number of Observations = 18
10% critical value: 0.424
5% critical value: 0.475
1 % critical value: 0.561
1. Observation Value 40000 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.576
For 10% significance level, 40000 is an outlier.
For 5% significance level, 40000 is an outlier.
For 1 % significance level, 40000 is an outlier.
2. Observation Value 11000 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.274
For 10% significance level, 11000 is not an outlier.
For 5% significance level, 11000 is not an outlier.
For 1 % significance level, 11000 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Nitrate (as N)
Number of Observations = 15
10% critical value: 0.472
5% critical value: 0.525
1 % critical value: 0.616
1. Observation Value 0.87 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.859
For 10% significance level, 0.87 is an outlier.
For 5% significance level, 0.87 is an outlier.
For 1 % significance level, 0.87 is an outlier.
2. Observation Value 0.082 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.438
For 10% significance level, 0.082 is not an outlier.
For 5% significance level, 0.082 is not an outlier.
For 1 % significance level, 0.082 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Potassium
Number of Observations = 15
10% critical value: 0.472
5% critical value: 0.525
1 % critical value: 0.616
1. Observation Value 920 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.757
For 10% significance level, 920 is an outlier.
For 5% significance level, 920 is an outlier.
For 1 % significance level, 920 is an outlier.
2. Observation Value 139 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.323
For 10% significance level, 139 is not an outlier.
For 5% significance level, 139 is not an outlier.
For 1 % significance level, 139 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
ITERATION 3
Dixon's Outlier Test for Potassium
Number of Observations = 14
10% critical value: 0.492
5% critical value: 0.546
1 % critical value: 0.641
1. Observation Value 610 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.667
For 10% significance level, 610 is an outlier.
For 5% significance level, 610 is an outlier.
For 1 % significance level, 610 is an outlier.
2. Observation Value 139 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.384
For 10% significance level, 139 is not an outlier.
For 5% significance level, 139 is not an outlier.
For 1 % significance level, 139 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Outlier Tests for Selected Uncensored Variables
User Selected Options
Date/Time of Computation ProLICL 5.11/21/2020 5:57:15 PM
From File Cape_Fear_BG_GW_Data_Boxplots_b.xls
Full Precision OFF
Rosner's Outlier Test for pH
Mean 6.151
Standard Deviation 0.288
Number of data 42
Number of suspected outliers 10
Potential
Obs.
Test
Critical
Critical
#
Mean
sd
outlier
Number
value
value (5%)
value (1 %)
1
6.151
0.285
4.55
1
5.622
3.06
3.4
2
6.19
0.14
5.8
21
2.791
3.05
3.39
3
6.2
0.127
6.5
9
2.375
3.04
3.38
4
6.192
0.118
5.9
5
2.467
3.03
3.37
5
6.199
0.11
6.45
18
2.286
3.01
3.36
6
6.193
0.103
6.4
7
2.018
2.998
3.346
7
6.187
0.0979
6
4
1.909
2.986
3.332
8
6.192
0.0939
6
30
2.048
2.974
3.318
9
6.198
0.0891
6.01
14
2.11
2.962
3.304
10
6.204
0.0839
6.04
22
1.95
2.95
3.29
For 5% Significance Level, there is 1 Potential Outlier
Potential outliers is: 4.55
For 1 % Significance Level, there is 1 Potential Outlier
Potential outliers is: 4.55
Cape Fear Steam Electric Plant
Appendix C
Rosner's Outlier Test for Iron
Mean
8451
Standard Deviation
15483
Number of data
40
Number of suspected outliers
10
Potential
Obs.
Test
Critical
Critical
#
Mean sd
outlier
Number
value
value (5%)
value (1 %)
1
8451 15288
45500
14
2.423
3.04
3.38
2
7501 14456
38400
15
2.137
3.03
3.37
3
6688 13717
37500
16
2.246
3.01
3.36
4
5855 12895
37200
18
2.431
3
3.34
5
4984 11924
36700
20
2.66
2.99
3.33
6
4078 10767
35800
19
2.946
2.976
3.314
7
3145 9384
34600
21
3.352
2.962
3.298
8
2192 7678
33900
17
4.13
2.948
3.282
9
1201 5236
29800
22
5.463
2.934
3.266
10
278.5 425.9
2490
1
5.193
2.92
3.25
For 5% significance level, there are 10 Potential Outliers
Potential outliers are:
45500, 38400, 37500, 37200, 36700, 35800, 34600, 33900, 29800, 2490
For 1 % Significance Level, there are 10 Potential Outliers
Potential outliers are:
45500, 38400, 37500, 37200, 36700, 35800, 34600, 33900, 29800, 2490
Cape Fear Steam Electric Plant
Appendix C
Rosner's Outlier Test for Potassium
Mean 1.789
Standard Deviation 1.123
Number of data 40
Number of suspected outliers 10
Potential
Obs.
Test
Critical
Critical
#
Mean
sd
outlier
Number
value
value (5%)
value (1 %)
1
1.789
1.109
4.51
11
2.453
3.04
3.38
2
1.719
1.047
4.36
8
2.523
3.03
3.37
3
1.649
0.965
3.81
13
2.238
3.01
3.36
4
1.591
0.908
3.65
12
2.268
3
3.34
5
1.534
0.851
3.55
4
2.37
2.99
3.33
6
1.476
0.788
3.45
9
2.503
2.976
3.314
7
1.418
0.72
3.44
6
2.806
2.962
3.298
8
1.357
0.635
3.21
3
2.917
2.948
3.282
9
1.299
0.55
3.16
7
3.384
2.934
3.266
10
1.239
0.44
3.09
10
4.21
2.92
3.25
For 5% significance level, there are 10 Potential Outliers
Potential outliers are:
4.51, 4.36, 3.81, 3.65, 3.55, 3.45, 3.44, 3.21, 3.16, 3.09
For 1 % Significance Level, there are 10 Potential Outliers
Potential outliers are:
4.51, 4.36, 3.81, 3.65, 3.55, 3.45, 3.44, 3.21, 3.16, 3.09
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Total Radium
Number of Observations = 24
10% critical value: 0.367
5% critical value: 0.413
1 % critical value: 0.497
1. Observation Value 85.5 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.965
For 10% significance level, 85.5 is an outlier.
For 5% significance level, 85.5 is an outlier.
For 1 % significance level, 85.5 is an outlier.
2. Observation Value 0.2721 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.151
For 10% significance level, 0.2721 is not an outlier.
For 5% significance level, 0.2721 is not an outlier.
For 1 % significance level, 0.2721 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Rosner's Outlier Test for Total Uranium
Mean
0.00452
Standard Deviation
0.00662
Number of data
25
Number of suspected outliers
10
Potential
Obs.
Test
Critical
Critical
#
Mean sd
outlier
Number
value
value (5%)
value (1 %)
1
0.00452 0.00648
0.0188
5
2.202
2.82
3.14
2
0.00393 0.00604
0.0165
1
2.083
2.8
3.11
3
0.00338 0.00553
0.0162
7
2.317
2.78
3.09
4
0.0028 0.00489
0.016
8
2.701
2.76
3.06
5
0.00217 0.00399
0.0132
4
2.762
2.73
3.03
6
0.00162 0.00317
0.0102
6
2.705
2.702
2.994
7
0.00117 0.00251
0.00911
3
3.16
2.674
2.958
8
7.2806E-4 0.00167
0.00738
2
3.995
2.646
2.922
9
3.3676E-4 1.3213E-4
5.5600E-4
22
1.659
2.618
2.886
10
3.2306E-4 1.2336E-4
5.4600E-4
23
1.807
2.59
2.85
For 5% significance level, there are 8 Potential Outliers
Potential outliers are:
0.0188, 0.0165, 0.0162, 0.016, 0.0132, 0.0102, 0.00911, 0.00738
For 1 % Significance Level, there are 8 Potential Outliers
Potential outliers are:
0.0188, 0.0165, 0.0162, 0.016, 0.0132, 0.0102, 0.00911, 0.00738
Cape Fear Steam Electric Plant
Appendix C
Rosner's Outlier Test for Vanadium
Mean 0.761
Standard Deviation 0.696
Number of data 40
Number of suspected outliers 10
Potential
Obs.
Test
Critical
Critical
#
Mean
sd
outlier
Number
value
value (5%)
value (1 %)
1
0.761
0.687
4.57
1
5.541
3.04
3.38
2
0.664
0.325
1.43
35
2.355
3.03
3.37
3
0.644
0.304
1.42
37
2.554
3.01
3.36
4
0.623
0.279
1.24
34
2.213
3
3.34
5
0.605
0.262
1.18
36
2.19
2.99
3.33
6
0.589
0.247
1.1
23
2.071
2.976
3.314
7
0.574
0.234
1.05
30
2.038
2.962
3.298
8
0.56
0.221
0.964
28
1.827
2.948
3.282
9
0.547
0.212
0.949
31
1.893
2.934
3.266
10
0.534
0.203
0.863
4
1.624
2.92
3.25
For 5% Significance Level, there is 1 Potential Outlier
Potential outliers is: 4.57
For 1 % Significance Level, there is 1 Potential Outlier
Potential outliers is: 4.57
Cape Fear Steam Electric Plant
ITERATION 2
Rosner's Outlier Test for Potassium
Mean 1.177
Standard Deviation 0.279
Number of data 30
Number of suspected outliers 10
Potential
Obs.
Test
Critical
Critical
#
Mean
sd
outlier
Number
value
value (5%)
value (1 %)
1
1.177
0.274
2.3
2
4.09
2.91
3.24
2
1.139
0.185
0.623
1
2.79
2.89
3.22
3
1.157
0.159
1.57
4
2.601
2.88
3.2
4
1.142
0.139
1.42
5
1.999
2.86
3.18
5
1.131
0.13
1.41
6
2.144
2.84
3.16
6
1.12
0.119
1.36
7
2.011
2.818
3.134
7
1.11
0.111
1.36
9
2.258
2.796
3.108
8
1.099
0.0993
1.28
8
1.823
2.774
3.082
9
1.091
0.0933
1.25
10
1.707
2.752
3.056
10
1.083
0.0884
1.25
11
1.888
2.73
3.03
For 5% Significance Level, there is 1 Potential Outlier
Potential outliers is: 2.3
For 1 % Significance Level, there is 1 Potential Outlier
Potential outliers is: 2.3
Appendix C
Cape Fear Steam Electric Plant
Appendix C
Dixon's Outlier Test for Total Radium
Number of Observations = 23
10% critical value: 0.374
5% critical value: 0.421
1 % critical value: 0.505
1. Observation Value 7.662 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.605
For 10% significance level, 7.662 is an outlier.
For 5% significance level, 7.662 is an outlier.
For 1 % significance level, 7.662 is an outlier.
2. Observation Value 0.2721 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.164
For 10% significance level, 0.2721 is not an outlier.
For 5% significance level, 0.2721 is not an outlier.
For 1 % significance level, 0.2721 is not an outlier.
Cape Fear Steam Electric Plant
Appendix C
Outlier Tests for Selected Uncensored Variables
User Selected Options
Date/Time of Computation ProLICL 5.11/17/2020 11:19:18 AM
From File Cape_Fear_BG_GW_Data_Boxplots_b.xls
Full Precision OFF
Dixon's Outlier Test for Fluoride
Number of Observations = 16
10% critical value: 0.454
5% critical value: 0.507
1 % critical value: 0.595
1. Observation Value 0.5 is a Potential Outlier (Upper Tail)?
Test Statistic: 0.599
For 10% significance level, 0.5 is an outlier.
For 5% significance level, 0.5 is an outlier.
For 1 % significance level, 0.5 is an outlier.
2. Observation Value 0.082 is a Potential Outlier (Lower Tail)?
Test Statistic: 0.101
For 10% significance level, 0.082 is not an outlier.
For 5% significance level, 0.082 is not an outlier.
For 1 % significance level, 0.082 is not an outlier.