Loading...
HomeMy WebLinkAbout20091297 Ver 1_Stormwater Info_201001111.I 1 CWS Carolina Wetland Services li I Carolina Wetland Services, Inc. 550 East Westinghouse Boulevard Charlotte, NC 28273 704-527-1177 - Phone 704-527-1133 - Fax TO: Ms. Cyndi Karoly N.C. Division of Water Quality 2321 Crabtree Boulevard, Suite 250 Raleigh, NC 27604 Date: 01-07-10 CWS Project 2006-1324 DWQ #: 09-1297 LETTER OF TRANSMITTAL 2al`a X115 L DEW - WMER QUALITY VdETLA4DS AND STOW WATEP BRANCH WE ARE SENDING YOU: ®Attached ?Under separate cover via the following items: ? Prints ? Plans ? JD Package El ? Specifications Copy of letter ? Change order ? Wetland Survey ® Other IF ENCLOSURES ARE NOT AS NOTED, KINDLY NOTIFY US AT 1 01/07/10 1 Keeley Park Site Additional Information 2 01/07/10 1 Keeley Park Plan Sheets 3 01/07/10 1 Keeley Park Stormwater Management Plan (Plan Sheets) THESE ARE TRANSMITTED as checked below: ®For approval ?Approved as submitted ?Resubmit copies for approval ®For your use ?Approved as noted ?Submit copies for distribution ?As requested ?Returned for corrections ?Return corrected prints ?For review and comment ?For your verification and signature REMARKS: Ms. Karoly Please find attached the additional information requested regarding buffer impacts at the Keeley Park Site. I have also included a cony of the approved stormwater management plan plan sheets A copy of the Stormwater Management Report has been sent in a separate package due to size constraints Copy to: File Thank you, omas dBIProject Scientist NORTH CAROLINA • SOUTH CAROLINA 1.I CWS1 Carolina Wetland Services Carolina Wetland Services, Inc. 550 East Westinghouse Boulevard Charlotte, NC 28273 704-527-1177 - Phone 704-527-1133 - Fax TO: Ms. Cyndi Karoly N.C. Division of Water Quality 2321 Crabtree Boulevard, Suite 250 Raleigh, NC 27604 04M - WATER WAL!TY LETTER OF TRANSMITTAL VOUMENO S i0R?d'7!'ATeR $RA!tCFE WE ARE SENDING YOU: ®Attached ?Under separate cover via the following items: ? Prints ? Plans ? JD Package ? ? Specifications Copy of letter ? Change order ? Wetland Survey ® Other ®For approval ?Approved as submitted ?Resubmit copies for approval ®For your use ?Approved as noted ?Submit copies for distribution ?As requested ?Returned for corrections ?Return corrected prints ?For review and comment ?For your verification and signature REMARKS: Ms. Karoly Please find attached the Stormwater Management Report for the Keeley Park site. The associated plan sheets have been sent separately. Copy to: File Thank you, omas Blackwell Project Scientist Oa-1L.l Date: 01-07-10 CWS Project 2006-1324 DWQ #: 09-1297 NORTH CAROLINA • SOUTH CAROLINA THESE ARE TRANSMITTED as checked below: 1.1 1?cws January 7, 2010 550 E WESTINGHOUSE BLVD. CHARLOTTE, NC 28273 866-527-1177 (office) 704-527-1133 (fax) Ms. Sue Homewood North Carolina Division of Water Quality 585 Waughtown Street Winston-Salem, NC 27107 r"?1 +"--s JA Ni ,, f?ET , L"R - WMER QUALI"Y W,JDSANDS;"O?Y Lar4Tte,8-RANCH Subject: Additional Information Application for Water Quality Certification No. 3705 Keeley Park Site McLeansville, North Carolina CWS Project No. 2006-1324 DWQ # 09-1297 Dear Ms. Homewood, I am pleased to provide you with the additional information you requested following the field meeting on December 22, 2009, regarding the Keeley Park Site, as summarized in your email dated December 23, 2009. 1. A copy of the approved Stormwater Management Plan has been sent to DWQ central office in Raleigh. 2. Plan sheets showing the new Zone 1 and Zone 2 buffers per the Jordan Buffer Rules are attached as Sheet L-1.1 to L-1.2, L-4.1 to L-4.2, and L-5.0 to L-5.2. 3. The square footage of all activities proposed to occur within these buffers are summarized in Table 1 below. Each of the encroachment areas are clearly shown in color on the attached plan sheets. Table 1. Keeley Road Buffer Encroachment Impact Im ac p t mpact Type A rea of, M" ment, S u?e $ke 6ne`1 Zone 21 Buffer Encroachment # 1 existing trail* 3,248 1,000 Buffer Encroachment # 2 ravel trail and wood boardwalk 5,005 2,251 Buffer Encroachment # 3 exist in trail and tree protection fence* 3,827 0 Buffer Encroachment # 4 existin trail andspillway* 5,638 0 Buffer Encroachment # 5 new trail 5,928 7,568 Buffer Encroachment # 6 combining ponds, tree removal from dam, emerge- access trail 29,877 5,200 Buffer Encroachment # 7 plunge pool 10,568 2,829 Buffer Encroachment # 8 Grading and trail construction 7,764 6,484 Buffer Encroachment # 9 Grading 3,490 3,145 Buffer Encroachment # 10 ; new trail 496 7,606 Buffer Encroachment # 11 fishin dock 800 190 EMSU,,g pawl trails are m-siru, mere will be no new impacts associated with these areas. NORTH CAROLINA - SOUTH CAROLINA WWW.CWS-INC.NET Keeley Park Site January 7, 2010 Application for Water Ouality Certification No 3705 Project No 2006-1324 4. All of the proposed buffer encroachment activities are listed as allowable under the Jordan Lake Buffer Rules. However, efforts to avoid and minimize activities within the buffers must be demonstrated through an alternatives analysis. The following discussion presents the reasons why encroachment into the buffer areas is either unavoidable or more protective of the watershed in general than relocating the activity beyond the buffer zone. Keeley Park Buffer Encroachment Justification Buffer Encroachment # 1 The applicant is requesting to approve the existing trail located within Zone 1 of the buffer. It is an existing condition. Buffer Encroachment #2 The applicant is requesting to approve the construction of a new gravel trail and wood boardwalk within zone 2 of the buffer to provide a trail connection to the existing trail adjacent to both sides of the proposed trail. Constructing a trail section outside the buffer will disturb more of the existing wetland area located south of the proposed trail. Please note that both the proposed boardwalk and the alternative route are shown on plan sheet L-4.1. Buffer Encroachment #3 The applicant is requesting to approve the existing trail located within Zone Iof the buffer. It is an existing condition. In addition, the applicant is requesting to install tree protection fence beside the existing trail to protect existing vegetation in between the existing trail and pond. This is a City of Greensboro requirement. In addition the applicant is requesting to use this section of existing trail as a construction route for buffer encroachment #2. A rubber tired backhoe or bobcat is needed to construct the trail in section 2. Construction of a new trail outside the buffer will result in clearing a significant amount of existing woods. Buffer Encroachment #4 The applicant is requesting to approve the existing trail and spillway located within Zone 1 of the buffer. It is an existing condition. Buffer Encroachment #5 The applicant is requesting to approve construction of a new trail in Zone 2 of the buffer and a small part of Zone 1 on the west end of this section where the proposed trial connects to buffer encroachment #3. Constructing a new trail in the location proposed instead of the alternate route shown on L-4.2 will: 1. Lessen the clearing of permanent Tree Conservation Areas (TCAs) to the south. This is because the trail will be longer and higher in elevation which will require more grading (wider cleared area) to meet the accessibility code slope tolerances. 2. Avoid rock excavation by locating the trail outside the buffer places the elevation of the trail 2-3 feet higher than currently proposed. To meet accessibility code slope tolerances, the trail would need to be excavated 2-3 feet 2 Keeley Park Site January 7, 2010 Application for Water Quality Certification No 3705 Proiect No 2006-1324 lower through rock and/or handrails and ramps installed if the trail was designed on top of the existing grade. These design solutions are more disruptive to the environment than locating the trail where it is proposed. Buffer Encroachment #6 The applicant is requesting to approve removal of Zone 1 and Zone 2 buffer in this section to combine existing ponds 4, 5, and 6 into one large pond and to make dam improvements for existing pond 6. A significant amount of existing trees to be removed from the buffer are located on the dams of the existing ponds 4 and 6. These trees if left would weaken the pond dams and eventually may cause dam failure. It is prudent to remove them. This buffer will be replanted with new trees as shown on sheet L-5.2. The density and size of tree has been reduced to prevent any issue with the combined pond dam. In addition permanent TCA's (tree conservation areas) have been preserved to the north and south of the development areas. These existing conservation areas will remain undisturbed permanently. The ponds are being combined to improve water quality and fish habitat. During normal and dry weather conditions the oxygen level in the ponds drop from dense pond algae growth. This condition is having a negative impact on the fish population. In addition a larger pond will improve water quality, be visually more attractive, and has higher recreation value. Furthermore the existing pond 6 drainage structures and pipe through the spillway need replacing. They have exceeded their life expectancy. Riprap needs to be installed on three sides of the existing pond 6 location to stabilize the dam embankment. It is eroding. The applicant is requesting to approve the construction of an 8' wide paved trail within Zone 1 on the south and east sides of this encroachment section for dam maintenance and for emergency vehicle access around the pond. The majority of this encroachment occurs on top of the existing pond 6 dam. Buffer Encroachment 47 The applicant is requesting to approve removal of Zone lbuffer around the unimportant intermittent stream. This area is an existing riprap lined channel which serves as an emergency spillway outlet for existing pond 6. In return the applicant is providing a plunge pool with a greater buffer area. Buffer Encroachment #8 The applicant is requesting to approve the removal of existing vegetation and grade within Zone 1 and Zone 2 of the buffer in this section. This work is needed to stabilize an eroding pond bank and to correct a severely sloped pond bank. When the ponds are combined the water level for the existing pond 5 will be 4.6 feet lower. Therefore a drop-off with slopes exceeding a 1:1 ratio will be created on the north side of the existing pond 5. In order to prevent erosion a new slope will be constructed from the existing pond 5 edge to the bottom of the proposed combined pond. In addition the applicant is proposing a paved 8' wide trail in Zone 2 of the buffer for emergency vehicles and dam maintenance access. In return the application will provide Keeley Park Site January 7, 2010 Aaalication for Water Ouality Certification No. 3705 Project No. 2006-1324 a new 50' vegetated buffer. The proposed buffer will be a combination of grass and trees as shown on L-5.2. Furthermore, please notice 50% of this existing buffer section has an existing gravel drive located in Zone 1. Please be aware locating the proposed trail outside Zone 2 of the buffer would result in shifting the entire development to the north into existing woods already designated as permanent TCA's. This will result in a greater amount of clearing than in the proposed location. Buffer Encroachment #9 The applicant is proposing to grade in Zone 1 and Zone 2 of the buffer. This grading (fill) is needed to raise the elevation in this area to provide an accessible path of trail from the proposed parking lot to the pond. Without this fill the short connector walk from the proposed parking lot to the pond would become a complex system of concrete ramps and handrails. Since this property will now be used as a public park, the accessibility code requires access to the pond. In return the applicant is proposing permanent TCA's north of the development area. These TCA areas are much larger than the area being removed. Buffer Encroachment # 10 The applicant is requesting approval to construct an 8' wide paved trail in Zone 2 of the buffer. This locates the proposed trail on top of existing grass earth berm adjacent the ponds. The benefits of this location follow: The proposed trail drains well and naturally drains away from the pond into an existing (and slightly improved) grass swale. The grass swale drains into an existing pipe located in the low point of the swale. Moving the proposed trail outside the buffer locates the proposed trail in the existing grass swale. This results in relocating the existing grass swale to the north and having to undercut the existing unsuitable soil approximately 2 feet to create a stable trail foundation. The proposed trail location will result in less land disturbance. Zone 1 of the buffer remains undisturbed except to add a flared end section (FES 12) to the existing pipe. This flared end section is located east of the proposed fishing dock. In addition approximately 50% of the existing ground located within Zone 2 consists of a gravel and grass mix. This area on the north side of existing pond 4 was used to store containerized plants when the property was formerly used as a nursery. Buffer Encroachment #11 The applicant is requesting approval to construct a fixed wood fishing dock on the north side of existing pond 3. This will encroach through Zone 1 of the buffer. The applicant will field locate the dock to minimize disturbance to vegetation. In return the applicant has designated permanent TCA's north of the fishing dock. 4 Keeley Park Site January 7, 2010 Application for Water Quality Certification No 3705 Proiect No 2006-1324 General Comment Please bear in mind the proposed development will remove approximately 1.24 acres of existing woods within Zone 1 and 2 of the buffer. However the applicant is reserving 20.67 acres of existing woods in permanent TCA's located throughout the site. The TCA's are shown on L-5.0, 5. 1, and 5.2. 5. Table 2 summarizes the total areas within Zones 1 and 2 that are currently treed that will be impacted and revegetated with trees and grass. The project will result in a net increase of buffered areas vegetated with trees and grass Table 2. Summa of Tree Removal Area !n` S care Feet. Zone 1 ' Zone 2 Total Area of Tree Removal 42,099 11,915 Total Area of Grass and Trees Replanted 42,150 21,519 Please do not hesitate to contact us at 704-527-1177, or through email at tom@cws-inc.net should you have any additional questions or comments regarding this project. Sincerely??? zn- Thomas J. Blackwell Gregg C. Antemann, PWS Project Scientist Principal Scientist Enclosures: Approved Stormwater Management Plan and calculations Plan Sheets L-1.1 to L-1.2, L-4.1 to L-4.2, and L-5.0 to L-5.2 cc: Ms. Sue Homewood, NCDWQ 09- la.Rl Keeley Park City of Greensboro, North Carolina Storm Water Management Report 12-15-09 ,1411 2I-O, DENR - wAiTER QUALITY %-Tt mOSAADSTORWQVIER CfO T 1 O,??JA 2 3 2 0 W. Morehead Street Charlotte, NC 28208 Landscape Architecture Site Planning Civil Engineering www.sitesolutionspa.com Telephone-704-521-9880 Facsimile-704-521-8955 CAIN xY ?'o SEAL $ 026926 a ? SS Project No. 2326 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Keeley Park City of Greensboro, North Carolina Storm Water Management Report TABLE OF CONTENTS Project Description .................................................................................................. Section 1 • Topography • Soils • Model Parameters/Analysis Conveyance Design ................................................................................................. Section 2 • Weighted Coefft. Computations • Time of Concentration Calculations • "Closed" Storm Drainage System Analysis • Swale Calculations • Culvert Analysis Sedimentation and Erosion Control Measures .............................................. Section 3 • Pre Et Post Basin/Trap Calculations • Outlet Protection Calculations • Channel Liner Analysis • Level Spreader Detail Site Hydrology ........................................................................................................ Section 4 • Weighted Curve Number Computations • Time of Concentration (TR 55) 10% Study .............................................................................................................. Section 5 • Design Area - Pre vs Post Flows • 10% Study - Flows • 10% Study - Results • Creek Cross Section Information Appendix ....................................................................... • Site Map • USGS Quad Map • Guilford County Soil Survey • Guilford County Hydrologic Soil Groups • IDF Table • Runoff Curve Numbers • Runoff Coefficient Table • Component Drainage Area Map • Pre-Development Drainage Area Map • Post-Development Drainage Area Map ................................. Section 6 1 n CIS' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 Section 1 Projection Description 1 C 1 Keeley Park City of Greensboro, North Carolina Storm Water Management Report Project Description The proposed project involves the construction of a community garden, playgrounds, a sprayground, maintenance facility, parking lots, and walking trails. Site improvements will also include new "closed" storm drainage systems, culverts, and swales.- This will also be some modifications/ upgrades to the sites existing ponds. Topography/Drainage The site generally drains from north to south with ground elevations ranging from approximately 772.00 Ft to 701.00 Ft. The area will continue to drain into existing ponds which outfalls into the Reedy Fork and then into the Haw River. Soils The NCRS soil survey of Guilford County indicates that soils on the site are predominately Appling sandy loam (ApB), Cecil sandy loam (CcB), and Enon fine sandy loam (EnB/EnC). These soil types are classified as Hydrologic Group B/C. Model Parameters/Analysis Capacity analysis for proposed sedimentation and erosion control measures as well as the storm water conveyance system design was completed using the Rational Method. The site hydrology and detention were calculations were performed using Bentley's Pond Pack. The water quality design and the sedimentation and erosion control measures were completed using excel spreadsheets developed by Site Solutions. The designs were based off the February 2000 version of the City of Greensboro Storm Water Services' "Stormwater Management Manual - First addition". 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Section 2 Conveyance Design u 1 I 1 1 1 1 1 1 1 1 1 1 1 1 Condition Composite C Values PROJECT NAME: Keeley Park PROJECT NUMBER: 2326 Cwoods= 0.25 CImp".= 0.95 Cram= 0.30 CG.,,.I= 0.95 BY: Tristan Teasley DATE: 8/14/09 AREA Drainage Areas (Acres) COMPOSITE Woods Lawn Imperv. Gravel Total C 00 t I .'FU U: I U VIZU U. uu DI2 0.60 2.72 0.39 0.00 DI3 0.00 0.47 0.22 0.00 CI5 0.00 0.25 0.52 0.00 Yl8 0.00 0.05 0.03 0.00 FES 11 0.35 0.30 0.02 0.00 FES 12 0.00 0.12 0.01 0.00 FES 13 0.03 0.68 0.05 0.00 FES 14 - 0.86 0.03 0.00 0.00 EX FES 14A 0.00 0.17 0.23 0.00 DI 15 0.11 0.04 0.01 0.00 DI 16 0.07 0.06 0.01 0.00 DI 17 0`08 0.30 0.04 0.00 CI 19 0.05 0.46 0.35 0.00 DI 20 0.00 0.12 0.01 0.00 DI 22 0.01 0.46 0.37 0.00 DI 23 0.11 1.35 0.03 0.00 DI 24 0.00 0.11 0.22> 0.00 DI 25 0.00 0.28 0.00 0.00 DI 26 0.00 0.41 0.12 0.00 DI 28 0.02 0.66 0.00 ` 0.00 DI 29 0.00 0.11 0.14 0.00 - EX D1 30 0.13 1.03 0.01 0,00 DI 32 0.75 0.73 0.00 0.00 FES 34 0.00 0.41 0.05 0.00 Swale #1 0.07 0:29 0.06 0.00 Swale #2 0.04 0.44 0.00 0.00 Swale #3 0.00 0.36 0.00 0.00 Swale #4 0.02 0.66 0.00 0.00 1.10 3.71 0.69 0.77 0.08 0.67 0.13 0.76 0.89 0.40 0.16 0.14 0.42 0.86 0.13 0.84 1.49 0.33 0.28 0.53 0.68 0.25 1.17 1.48 0.46 0.42 0.48 0.36 0.68 0.34 0.36 0.51 0.74 0.54 0.29 0.35 0.34 0.25 0.67 0.31 0.32 0.35 0.56 0.35 0.59 0.31 0.73 0.30 0.45 0.30 0.66 0.30 0.27 0.37 0.38 0.30 0.30 0.30 TOTAL 4.70 13.17 3.09 0.00 20.96 Project Name: Keeley Road Park Project No.: 2326 Sheet Title: MH 1 Calculated By: TMT Date: 2/5/2008 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nQ ^0.8 Tc (min )= P"0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW Segment ID: Paved or Unpaved Flow length, L (ft): Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: TC= L / (3600xV) Tc (min.)= Total Shallow Concentrated Flow Tc = CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0.5)/n Flow length, L (ft): TC= L / (3600xV) Tc (min Total Sheet Flow Tc = 24.5 min. 0.41 hr. B Unpaved Unpaved 320.0 4:080 O.OOfl 0,000 ' 4.56 0.01 0.01 1.2 0.0 0.0 1.2 min. 0.02 hr. 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0000 0.00 0.00 0.00 0.000 0.000 x;000 ............... ...... 1490.00 1490.00 ..... 1490.00 .... 0.00 , 0,00 0.00 .)= 0.0 0.0 0.0 0.0 min. 0.00 hr. Minutes rs 2326_TC-Calculator storm. xt >MA... 1 n ' Project Name: Keeley Road Park Project No.: 2326 Sheet Title: DI 2 Calculated By: TMT Date: 2/5/2008 ' Post-developed Tc Calculation SHEET FLOW Segment ID: A ' Surface description (table 3-1): Bermudagrass Manning's roughness coeff., n: 0.410 Flow length, L (total L<300) (ft): 100.0 2yr 24 hour rainfall, P(in): 150 0.00 0,00 Land slope, s (ft/ft): 0.04Q 01000 < 0.0 ¢Q ' Tc= 0.007 (nQ -0.8 Tc (min )= P^0.5 x s^0.4 15.9 0.0 0.0 Total Sheet Flow Tc = 15.9 min. 0.26 hr. SHALLOW CONCENTRATED FLOW ' Segment ID: >B Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 28,7.0 Watercourse slope, s (ft/ft) : t2l24¢ . Qty ! . t>«30¢ ' Average velocity, V (ft/s) = 16.1345(s)^0.5: 3.23 0.01 0.01 Tc= L / (3600xV) Tc (min.)= 1.5 0.0 0.0 Total Shallow Concentrated Flow Tc = 1.5 min ' . 0.02 hr. CHANNEL FLOW Segment ID: ' Manning's Coefficient 0.00 0 00 00 - Hydraulic Radius, R (ft) - (A/Pw 1.00 1.00 1.00 Cross Sectional Area, A (ft^2) 0100 0.00 0.00 ' Wetted perimeter, Pw (ft) 0. '00 0.00 0.00 Channel slope, s (ft/ft ) 0.0120 ..000 0.000 Velocity, V (ft/s): _ (1.49`rA(2/3)'`s^(0.5)/n 1490.00 1490.00 1490.00 ' Flow length, L (ft): 0.90 0,#IQ 0:00 Tc= L / 3600x ( V) Tc (min.)= 0.0 0.0 ' Total Sheet Flow Tc = 0.0 min. 0.00 hr. ::.:;;::.;:.:;::::;:...;:...:.:;..;..>:.:.;.:.:.;..::........... 13 a... M inutes 23 - 2 6 T C Ca Ic u lato urs Project Name: Keeley Road Park Project No.: 2326 Sheet Title: FES 14 Calculated By: TMT Date: 215/2008 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300) (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (n L) 110.8 Tc (min.)= P^0.5 x s"0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW 19.4 min. 0.32 hr. Segment ID: B Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 120.0 Watercourse slope, s (ft/ft): 0,032 0400 Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.89 0.01 0.01 Tc= L / (3600xV) Tc (min.)= 0.7 0.0 0.0 Total Shallow Concentrated Flow Tc = 0.7 min. 0.01 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft" 2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min Total Sheet Flow Tc = 2326 TC-Calculator storm.xl 0:00 0.00 ...._ ................. iI;DO 1.00 1.00 1.00 0.00 0100 o.oo 0.00 0.00 4.00 O.Oi110 ........... D.000 ............. .-...0X-00,* ....................... 1490.00 ..................................... 1490.00 ................................. _. 1490.00 ............................... . . 0400 0.00 ... . .... 1#:00 )= 0.0 0.0 0.0 0.0 min. 0.00 hr. Project Name: Project No.: Keeley Road Park 2326 Sheet Title: DI 15 Calculated By: TMT Date: 2/5/2008 1 1 1 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): TC= 0.007 (nQ -0.8 Tc (min.)= SHALLOW CONCENTRATED FLOW Segment ID: Paved or Unpaved Flow length, L (ft): Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)"0.5: TC= L / (3600xV) Tc (min.)= Total Shallow Concentrated Flow Tc = CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49`r^(2/3)" s^(0.5)/n Flow length, L (ft): TC= L / (3600xV) Tc (min Total Sheet Flow Tc = P^0.5 x s^0.4 Total Sheet Flow Tc = 19.4 min. 0.32 hr. B Unpaved' Unpaved 96.0 O.U2 0100!, 4.DQ0 2.89 0.01 0.01 0.6 0.0 0.0 0.6 min. 0.01 hr. 0,00 0.00 11.00 1.00 1.00 1.00 0100 a»00 0.00 0.00 e.t1o 0.00 0.000 0.000 ' 4.000 1490.00 1490.00 1490.00 0.00 0.00 O.QO )= 0.0 0.0 0.0 0.0 min. 0.00 hr. Minutes 2326_TC-Calculator storm. Project Name: Keeley Road Park Project No.: 2326 Sheet Title: DI 16 Calculated By: TMT Date: 2/5/2008 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nQ ^0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW 19.4 min. 0.32 hr. Segment ID: B Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 7810 Watercourse slope, s (ft/ft): 0:032 01000 0:000 Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.89 0.01 0.01 Tc= L / (3600xV) Tc (min.)= 0.5 0.0 0.0 Total Shallow Concentrated Flow Tc = 0.5 min. 0.01 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min Total Sheet Flow Tc = 0.00 0.00 0,00 1.00 1.00 1.00 0:00 0.00 fl.00 0:00 10.00 0.00 0.000 O.OOQ 0.000 1490.00 1490.00 1490.00 tir 00 0.,00 0.00 .)= 0.0 0.0 0.0 0.0 min. 0.00 hr. Minutes 2326 TC-Calculator storm. Project Name: Project No.: Keeley Road Park 2326 Sheet Title: DI 17 ' Calculated By: TMT Date: 2/5/2008 LF 1 1 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nL) ^0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW Segment ID: Paved or Unpaved Flow length, L (ft): Watercourse slope, s (ft/fty Average velocity, V (ft/s) = 16.1345(s)^0.5: Tc= L / (3600xV) Tc (min.)= Total Shallow Concentrated Flow Tc = CHANNEL FLOW 1 1 1 1 Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft" 2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49'r^(2/3)" s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min.)= Total Sheet Flow Tc = 2326_TC-Calculator storm 19.4 min. 0.32 hr. B Unpaved 21 .Q 8.07 0.0 0.5 min. 0.01 hr. C Unpaved 118.0 0h08D.! O,D44 . ............... 4.56 0.01 0.4 0.0 0.00 0.00 0.00 1.00 1.00 1.00 0:00 00 0100 0.00 0,00 0.00 0.000 Q.000 4.1lIDO 1490.00 1490.00 1490.00 iQ 0.01 a,b0 0.0 0.0 0.0 0.0 min. 0.00 hr. Minutes Id wrs Project Name: Keeley Road Park Project No.: 2326 Sheet Title: cl 19 Calculated By: TMT Date: 2/5/2008 Post-develop ed Tc Calculation SHEET FLOW Segment ID: A Surface description (table 3-1): Woods Manning's roughness coeff., n: 0.500 Flow length, L (total L<300') (ft): 100.0 2yr 24 hour rainfall, P (in): 150 0.00 0.00 Land slope, s (ft/ft): Oa3$6 0.000 0400 ........... .._.. TC= 0.007 (nL) ^0.8 Tc (min.)= 19.4 0.0 0.0 P^0.5 x s^0.4 Total Sheet Flow Tc = 19.4 min. 0.32 hr. SHALLOW CONCENTRATED FLOW Segment ID: B C D Paved or Unpaved unpaved ` unpaved Paved Flow length, L (ft): 136.0 32,0 137.0 Watercourse slope, s (ft/ft): 0.010 045 4.035 Average velocity, V (ft/s) = 16.1345(s)^0.5: 1.61 8.07 3.00 TC= L / (3600xV) Tc (min.)= 1.4 0.1 0.8 Total Shallow Concentrated Flow Tc = 2.2 min. 0.04 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min.) Total Sheet Flow Tc = ................... 0.00 ............. 0.00 .................... 0.00 1.00 1.00 1.00 0,00 0.00 0.00 0.00 0.00 a.00 0.000 0.000 r3.oo0 1490.00 1490.00 1490.00 0.00 6.. tlt?0tf 0.0 0.0 0.0 0.0 min. 0.00 hr. = Minutes 2326 TC-Calculator storm. xl '0.3 ?9 Project Name: Keeley Road Park Project No.: 2326 Sheet Title: DI 23 Calculated By: TMT ' Date: 215/2008 ' Post-developed Tc Calculation SHEET FLOW Segment ID: A Surface description (table 3-1): Woods Manning's roughness coeff., n: 0.500 Flow length, L (total L<300') (ft): 100.0 ' 2yr 24 hour rainfall, P (in): 150 0.00 0.00 Land slope, s (ft/ft): 0.036 0.000< 0.000 Tc= 0.007 (nL) ^0.8 Tc (min )= 19.4 0.0 0.0 ' P^0.5 x s^0.4 Total Sheet Flow Tc = 19.4 min. ' 0.32 hr. SHALLOW CONCENTRATED FLOW Segment ID: B Paved or Unpaved Unpaved Unpaved ' Flow length, L (ft): 149.0 Watercourse slope, s (ft/ft): 0,080 El,000 ; 01000 Average velocity, V (ft/s) = 16.1345(s)^0.5: 4.81 0.01 0.01 TC= L / (3600x V) Tc (min.)= 0.5 0.0 0.0 Total Shallow Concentrated Flow Tc = 0.5 min ' . 0.01 hr. CHANNEL FLOW Segment ID: ' Manning's Coefficient 0,00 0.00 0.00 Hydraulic Radius, R (ft) _ (A/Pw) 1.00 1.00 1.00 Cross Sectional Area, A (ft^2) 0,00 o,OQ o.oo Wetted perimeter, Pw (ft) 0.00 4.00 0.00 Channel slope, s (ft/ft) 0.000 0.000 0.000 Velocity, V (ft/s): _ (1.49*rA(2/3)'s^(0.5)/n 1490.00 1490.00 1490.00 Flow length, L (ft): 0.00 Q.OQ 0.00 TC= L / 3600x ( V) Tc (min.)= 0.0 .: 0.0 0.0 Total Sheet Flow Tc = 0.0 min. 0.00 hr. ! ., Minutes 2326_TC-Calculator storm. As .. . I> 3 " , Project Name: Keeley Road Park Project No.: 2326 Sheet Title: DI 28 Calculated By: TMT Date: 2/5/2008 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nQ ^0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW Segment ID: Paved or Unpaved Flow length, L (ft): Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: TC= L / (3600xV) Tc (min.)= Total Shallow Concentrated Flow Tc = 12.6 min. 0.21 hr. 8 Unpaved Unpaved 120.0 0,067 0.000 OA-00 4.17 0.01 0.01 0.5 0.0 0.0 0.5 min. 0.01 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49" r^(2/3)`s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min Total Sheet Flow Tc = 0.00 0.00 0.00 ...:.. 1.00 1.00 1.00 0-00 0.00 O moo 0.00 0.00 0.00 0.000 0.000 ! 0,000 1490.00 1490.00 1490.00 0100 0100 0.00 )= 0.0 0.0 0.0 0.0 min. 0.00 hr. Minutes 2326 TC-Calculator storm. 1 1 Project Name: Keeley Road Park ' Project No.: 2326 Sheet Title: EX DI 30 ' Calculated By: TMT Date: 2/5/2008 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nQ -0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW Segment ID: g C Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 204.0 253.0 Watercourse slope, s (ft/ft): 0X23 ............. 0.072 0,000 Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.45 4.33 0.01 TC= L / (3600xV) Tc (min.)= 1.4 1.0 0.0 Total Shallow Concentrated Flow Tc = 2.4 min. 0.04 hr. CHANNEL FLOW Segment ID: t Manning's Coefficient 0.00 I) 00 0.00 Hydraulic Radius, R = (ft) (A/PW) 1.00 1.00 1.0 0 ' Cross Sectional Area, A (ft^2) Wetted perimeter Pw ft 0.00 0 0,00 0,00 , ( ) 0: 0 0.00 00 Channel slope, s (ft/ft) 0.000 0.000 0000 ' Velocity, V (ft/s): = (1.49'r^(2/3)'s^(0.5)/n 1490.00 1490.00 1490.00 Flow length, L (ft): 0,00 0.00 4,00 TC= L / (3600xV) Tc (min.)= 0.0 0.0 0 0 ' Total Sheet Flow Tc = 0.0 min. . 0.00 hr. Project Name: River Road Soccer Complex Project No.: 3017 Sheet Title: FES 32 Calculated By: TMT Date: 9/26/2007 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nQ -0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW 23.2 min. 0.39 hr. Segment ID: B Paved or Unpaved Unpaved ! Unpaved Flow length, L (ft): 449.0 Watercourse slope, s (ft/ft): 0101 152 ' 01000 Average velocity, V (ft/s) = 16.1345(s)^0.5: 3.68 0.01 0.01 Tc= L / (3600xV) Tc (min.)= 2.0 0.0 0.0 Total Shallow Concentrated Flow Tc = 2.0 min. 0.03 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min.)= Total Sheet Flow Tc = 2326 TC-Calculator storm.xl 0.00 8.00 0,00 1.00 1.00 1.00 0.00 0.00 0.0a.. 0.00 0.80 0.00:... 0.000 0.000 x.000.' <::> 1490.00 1490.00 1490.00 0400 0.00 0:00 0.0 0.0 0.0 0.0 min. 0.00 hr. Minutes ' Project Name: Project No.: River Road Soccer Complex 3017 Sheet Title: All Others Calculated By: TMT Date: 9/26/2007 Summary of Ditch Time of Concentration(s) Swale/Ditch No. Basin Area [Ac] Tc [Min] 10 Year Rainfall Intensity [Ins/Hr] 2 Year Rainfall Intensity [Ins/Hr] M H 1 1.7 25.7 3.88 2.84 DI2 3.71 17.4 4,64 3,46 FES 14 0.89 20.1 4,39 3,26 DI 15 0.16 20.0 4,40 3,27 DI 16 0.14 19.9 4.41 3,27 D117 0.42 19.9 4,41 3,27 Cl 19 0186 21.6 4,26 3,15 DI 23 1,49 19.9 4.41 3.27 DI 28 0,68 13.1 5.21 3.92 EX DI 30 1.17 30.0 3,49 2,52 FES 32 MIA 25.3 7,17 5,66 All Others 5.0 * Use a minimum of 5 min. Time of Concentration ** All other inlets not listed use a minimum of 5 min. Time of Concentration Table 3.1 Roughness Coefficients (Manning's n) for Sheet Flow Surface Description n Smooth Surfaces (concrete, asphalt, gravel, or bare soil) 0.01 Fallow (no residue) 0.0:.5 Cultivated Soils Residue cover <=20% 0,06 Residue cover >20% 0.17 Grass Short grass prairie 0.15 Dense grasses 0.24 Bermudagrass 0.41 Range 0.13 Woods Light underbrush 0.4 Dense underbrush 0.5 i 1 a. c , m N U o` M N i u 3 D E o w ? > m ' C y L CM D CO C 3 V ? O U - m M T v ? t O R •O O • C U , E U - 5 U i 0 7 O N O N O ? O O O p C N p m m O. ? N N N N ? N ? ? •V a C ) CD a ) a ) 0 O 0 N p C C C C C 0 O . m .? m G :3 U U U U V U a U ` a ID CL 0 c . LL v ° LO 0 tr) 0 Lo 0 , o o ? Cl) 0 0 a. p V O 0 O O O O O CD O O ? 0 0 0 0 0 0 0 0 0 z , - -4- OD 0 r 04 04 C4 , m l0 ? ' C. a c C - - to - - U ) - - - - - , - - LO - - LO LO LO LO LO N N ? m •c CL U a U a U a U s U a U - a U - 0- U - - CL - - - a - - a - - - a - - - CL - U U U O L t LL cq COO M ? ?O OM ' p V? LO LO IL m cl ? cc 04 ' Co COD '- c\i C; o0 C cq 000 ? C? OM C> O CL M LL , '?t CO C'h CO cV co M CO CO COD COO , , N CV ' , O -1 O C) O O O O CD O 00 O 00 m ' ' V > LL LO 00 co 00 ro Cl) co W 3 d d m C j ; m m WM WM LU C O L L L L L L L L W L LL L U L L L d 7 N N M t t U , C O N C` 7 r r m Z i n 0 D m m L U t o c o N t o co U - LL LL W W W C • L L. L L ? C , C r a m co (d' V 0 0 N M N N r CU O N L U N E 0 N N x ai 9 rn N N_ N v N L U U) O T CO N co NI E E E m E m E m m m m _? O N O Cl) N N O .? Cn O co O N p (J) D CO N N C LL C LL C D E l.L E C O m O O O O m p O m p `p p O O O O E 2 4 E _ 4 C U a) U a) U a) O N C N _ N y U v G o o O a V; c cx d o 0 C= 0 C 0 v . n U U U a m O U a U U U c U . m 0 U 0 U Q. o o to T 0 `'> ° o o - It co ' C-4 v CO w O a 0 7 LL 0 C=) 0 C? o 0 o o o o O C> C> 0 0 0 0 0 R C v' v . C° ° rn U07 v '? n v o i a O I i LO CD m a A c u> Cn ? Cc> u> u> IL o - - CL m a a a a a- a a a CL a s a s CL a a U U U U U U U U U U U 0 0 U U U cc w cr- Ix Of of af O O O O O O O O m cl O LO ? O O cD U'> o N M a m LO o o 00 co = M ti m C 1 L1> N O U?l O O N LL) to O O U7 ? U7 ? O c0 O OR O O ' n _ d m .? LL O co U' co to co ' CO N N N CV > ) U ) M M , M M M E C O ' n N M co o COD N lp LPL ' N N O co M CD O co N co ID D. W Cn ; Cn LL- m m C T LO C.0 r I? r T r N N N N N CM N N Z CO) U) ?C LL O o u V U LL D D . E 6 CD D) LL C C3 p Z R CV) 1 1 1 v cl 0 N NI N T n Ll F L E ? m w m 1 > m ? V ch O CA O 0 O O c C) CO _ R w O ev % O - i0 U- c O m o o 0 m 0 m O d . R m U U fA E d E m C V r fA C C C C d ? ,M C ' o ? U U .0 W CL .0 (p C L a` m CL a w o rn co 0 ; co a o y 0 0 0 0 C 0 C0 0 AL co o °O Cl) CL m 61 LO O N - J - - - - - - - - - ; - - - - QJ Q cO ^ C L, LO LO In LO - - LO - - - LLB LO CL ?v 'm d a a a. a CL a CL IL CL 7 r O O O N Y) ' O co 1 a > tL `. 00 ti M CV C - N N Y ® Q. _ t: + N -f l O O O o ?Y N cu rn d > " M C ) M N CO ' M M "C C I? ti ? O C C O •6 w O O C O N 5 co 1 U `I C ) (3 o6 C9 Lu ti r- 1 1 O O C.6 C U i O c p Xe CO ?E 00 d 1 O co N M ' O O Nt M -4 . - N 0 oo co 44- 7 m Z x p Z co ro 4t O 2 1 p p p CO w _ p CO CO CO a) -0 X S P- O 0 U ... U- LL LL _p• p Z ab - v D Z N o U ' O ? p cm N O N O M M N M M M O O o o U . Cp ? U co Z W CO) z o (-) a CD p p u p ` W L L LL Z c x C . v) a> 8 w C O m o C O 1 1 U Q c (D aa) C o V Z ' cu O L L U p ?? 1 1 tis o n n U t o u w Z U cr- L l. m C,^ v-. O C) a m M 4 V O 0 N N N N W LL h^ QQ' O m m X06 m m O N m N co b C ?O O U N LL ? U v Q of e s3? ?a G O m O e? 00 'o N O? m m 1 1 1 1 1 1 1 1 1 1 1 1 1 0 m 0 C 0 2g ?s9 LL N \?Rs 0 Q N ? 1 o 009%2 co LL- D] 23 TO DI 24 P? 2 N M ? N a 0 r N O N N R U) s? °o DI 24 TO FES 21 rn 9?Q?? N ? U Q?? d w LL M co LL ?a j ?F1? p LL m O i (A N N r O C) ?5 N co O N N M N N a) a) a) cc w C? O U) Y CO ca a CO a) C*J _a Y CO d U a) m a) m 7 L ZZU) () a) a .6 .6 N CL. O_ Of a) N ? L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U L U O C C_ C_ C_ C C C C_ C_ C_ C C_ C_ C_ _C C_ C_ C C_ C_ C_ C_ LO LO e- LO c- LO r- LO a- LO - LO - Ln - LO - LO - to - to e- Ln s- LO •- LO •-- 't N 00 It It LLB LO •-- C N M M co M M co M M M M co co co M co M co M m m M M C C - O O O r O _ O r O _ O _ O _ O O O - O - O - O - O - O - O - O - O r- O - O - O C m O C7 0 0 0j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? •C o N a) N a) N a) N o N a) N a) N a) N a) N a) N a) N a) N a) N a) N m d a) N m ? a) N a) N a) ? m N a) N -co Cp L c c L 0 C L 0 C L 0 C L 0 C L 0 C L 0 C L 0 C L 0 C L 0 C L 0 C L 0 C L ° C L 0 C L 0 C L 0 C L 0 C L 0 C L 0 C L a C L o C L a C ? O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U O U ccp 00 N n N N ? N ? 00 N CO n C 4 * 04 r- 00 U M O N M C C D t D ? N ir ? M M n ? ? M n ? M ? M n w n ? ? CO n M n ? C n ? 3 0 ? N O N LO CD n ? O N -t CO N 0 v 0 0 _ M Ln M `7 0 n M ce) ?t Z - r- .- N N N N N N M m - - m U - ? ? ? ? W ? W ? ? W ? ? ? ? W -a LL W U 0 LL LL Ll LL LL LL E Lo Ln LO O L1W) LO N tO CO M CO O co N LLj (O M - c i a) a) 6 n "6 o ` n n M M M M r n n ? c o c° o n CO ? n r n n a) Z r to CD n O O M O t0 N aD O O st N C`•) Lo to N M _ M m U) ? - f- - ? - ? - N - N - N - N N N N N M m m co U- U. 0 ? ( O ? - N _ N N N N N N N O M _ co co n CO M ? N _ ( co U) _ w - - - ? w m v- cn v) U ? ? ? ? W ? W _ ? ? W ? ? ? X W m ? U m W W 0 75 .0 0 ? 0 0 ? 0 0 LL 0 0 0 W 0 0 0 0 W W 0 0 0 0 0 0 0 - co ? F- Nt F- F- ~ F- F- F- F- F- F- 0 ~ F- F- F- F- . i r m Cn LO CO r-- 0) - N ce) N v N N LO N N N 00 N F- O M v N ? M ? Ln co ? N M c` Co - ? - ? U 0 ? ? Ei ? ? ? N Q U -, n Q W 1 1 1 1 1 1 1 1 (A O i CA N .2 E O O p ? N O co 04 N N ?2 (U N (U U- cc m 0 0 E O co Y m m ^CL (V y CD N N C1 Y N if L N E E U Z Z O Z N O O O O CL CL w C 7 O G co (D n N L N o LO O M M M Lo p aO M CD M C p N p M aO O co co .CO 0) M co a0 o (O cc n m n n n n M n ^ Cno CD cno n n Cno W C O Q ca O ? n n ? O n O r N N n Y N V coo CO CO M . N co co o CO n M 0 O M ? ? OO co (Cf w n n (p n (D n V n n n n n n ?t n n n M n CO n n co n P- n o n n N W m 3 p N aO CMD CMO N apO M ? O 0) co v ? et ? LO cl p ` O U C O ?t o6 n U) M N CA Lo n (O CO V) ? 7 LL Q.U 0 ? O tn O (D O T T (o O (n cl S CO T CM T CO O 4 y (A M T N to O ? O 0 O tf> O LO O CO O n M _O ' Cn X 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 U f6 U .t ^ T T LO M CO r. T N O O to ?t LO ?o CA T LO O (O M LO O O n T- to T n v W N co co 0) C N ? J y C N O C-4 0" M N n O ? N M O N M N r, p O UO n N M M o M ?? M ? M L p O ? M N ( D 'o O N O T T N N N M M O M T ?-- N C) n M 0 p N 6 LL L N ? .O L (a T T T T T T T T T T T T T T T T T T T T :3 Co Z - N C Q O T n _ r O N N vC N O N c NC o O N v N m N M M ?t o M YC n O( C U nM O ) `r U a 0 0 Q 0 0 0 0 L LL 0 Q 0 0 O LL 0 0 0 X WL W C L O 0 U m W L W L L L Q mi J ' - 1 ' P F 4, - M H O QI F- - QF ~ -F O - DI ~ O -I O - O H O Q Q H O H OO Lo Q Q ? T m M C O N s M N t N N V) N N 0 N 0 N O C O `> ? U N O m ? O OO N M M ? O O ? U ? O O ? ? ? ? N m M A L W L En M X O O N O N N T C2 7 Q N U E O N co N m O O N CA N N T 0) p C6 N N E O O p ? N co 0) N N M N N N N N LL M CO > E O U) Y co ca T ? a? ? (D 4) N N Y N a ? U E E C6 7 ? Z Z (n 5 U N N Q O O N CL a cl? 5 5 ,i 0 M CA U-) CA (D N t- N S t1f N tl) It O? O d t1) .- CO a0 O) 1? '-t M et V 00 o? - C? 't - N - co N N h N M v M 0O l-? 6 )` O M 6 4 h p 6 4 6 6 0 4 6 y a' L N > O N aO 0 O 0 l- 6 LO h LO Op 0 tO to h to t0 LO 00 t o M d 0 1h ? M Lo N co co 0 LO C'4 U O 65 ? N N N O ? v v v N v v N f? N ? e- M ? L Q) > Cc O t0 d M U') N et to t0 ? - t0 h to O t0 to to ti v ? to N O M ? CD to N t0 r- U w U) C) O N C14 00 N q -q- M v v -v v - CV t- •- U) O d N :3 N 00 V (D N r (0 h t` 00 h M It 't Ln 00 O It CO O a- 0) V 00 t` It 't h 00 CD 00 It r- 00 V tf) - O CO r - L) O 3 L6 0 Di 0 Di 0 r- t0 6c LO 6 m c Cl) t1) M M M N M M M tf) M 00 C'7 0M cM N M N CD V CD M (D - (D ? (D N m M to m 0 h r t` r r- r ? h r- t` ? t` r- n t• t` ? r t` n t` r J >. J 2 CD cc (' C U tO •t p aO ? t? O N M I, tO O h r` 't "t V O 0 M ? 0 t0 M 00 V t` N 00 ? M h M 00 ? CD O 1? M - 3 N t- tpO p tO 00 tO ti tn ? ? M 00 M to M M M M N ? O d' O M M M M CD 0 CD ? N co CD CD CM co ~ CD (Lo c r n ? r` r? r- ? I? r- I? ? )? r- r• r? r` r` r- n r r, r >+ J co r'. N N N N N N N N M M CD r M v N T co - 0 - - U) - - - ? (n to M -t (n (n U .0 ? ? ? w5 ? W ? ? ? W ? ? ? ? X W W W m ? U m W LL W o O ? O O O O O O O O O O O 0 O O O O O O co J F- I- F- F- F- F- F- I- H H I- p H F- h- - H r °o co tO to a) O CV N - N - O N N N N F- O O Cf) U N M U) Co N Ce) M (n ? ? D U ? ? ? ? ? N Q c) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0) O C6 N N_ E O O O (n N co 0) N N M N N r ? N O 'Docc M o O N 0 co L7 Y C N CL co O O U N Y N U ai a EEa Z Z Q)6 aQ N a M L1 LY 0 N 3 0 0 C. o 0 0 0 C l 0 0 0 0 0 0 0 0 0 C . C . 0 n? _ m 0 o CD r o r 0 r 0 .- 0 r 0 r CD r 0 r 0 r 0 r 0 r CD r 0 r 0 r 0 r 0 r 0 r 0 r U W (O N O 0 0 0 0 0 0 C 0 C 0 C a 0 C a C 0 0 C 0 fp O N 3 co d) w M co p N N O O O n N 00 O V N (D A co M V w <O 0 V 0 O (0 0 N (0 n O ? U O r 0 0 0 0 0 V: C. O 0 V N N O V N M O O V O v 0 0 0 0 0 0 0 0 0 O U co (M V M N CM to M t0 O O V LO 0 M M O M (0 O 0 M V n M N M V C O o 0 0 0 0 0 0 0 F 0 I 0 0 0 0 0 0 Z c 1 c; N y C ?A n 01 co CO r V r N sr (0 Co M M V M M co O 00 N ? CO O L N n - co n ¢ 00 (n Co (M O O 0 0 C7 CD 0 r 0 0 0 0 0 o ? r O Z 't r N 0 N ? cQ c O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Wn (0 0 0 0 N co M M 0 (n n 0 0 (N O O M (D O O N O n M O c? M co O) O W O OO co V 00 V N M .0 M M N N n c n n n n V) n W) n V n M n M n M n CM n M n V n v n M n CO n (o n (O n M n CO n C ? 0 0 0 0 0 O O 0 0 0 O 0 0 0 0 0 V O O O O O 00 (0 n (() n n N N n N c0 (0 (O (0 0 0 N O O ao O N (D (0 (O N (D N(O O (0 co V M V N V o V 00 M co co (O v O) co 0 M O n n n n n n n n n n n M n V n V n V n M n O n n n M n O n c ? 0 C 0 O 0 (O 0 O 0 n LO n LO N LO N a n 0 N ri cq o o (O o (p o O o O V N O 00 O aD (n c0 o 0 O > 3 00 n r N ( N O (O M N O M O O O V• 0) c0 6 c6 0 m o ? ? ? . ? ? ? ? n ?° C7 N M .V- TC O T O) O N M N V C N O N O N N N M N M N O M V O N M r M i E LL t ] U L ] p p p t 7 L ] U m p W LL N (6 C O co .2 O co 0) N N O n M O V N aD n O) M co V n C 0 N (o V r O O N O O (D O O N (M O O n n m (O M O r N O p M co N r r o r r V N O 0 3 0 c O N N (0 f0 N (d f6 (6 co N N M m m m m m m m m O J C - C - C - C C - C - C - C - C - C - C - C - C - C - C - C - C - C - C - C N O M n n n O n V V 0 (0 O V rn n n N? N O O O r n co Q Co O O Co O O O O O O O O r T•' 0 0 c N O M V n V; n O n 0 O co n O V M V O O M 0 I- V. O O V CO O r n r n n cM r r O O O O O O O O r o 6 O O O r ? o 6 N M r U ) LO (D ? 01 O N M N V N 0 N O N N N 00 N 0 N 0 ('7 V O M r CM W M -i ES U) LU V) r X 0 O O r M N N 3 O. ?p U O N M N M p O N N N O O LO T N T O p U) N M T N M N N T co cu O j U E O (n m a. p N ? (0 N 3 YcM.i0 U N N E E I N 7 =3 Z Z a) N 0 Cl- C ` m O O M M M M >? 3 ti ti ? cu L L L L 0 3 3 3 3 ~ H H ? H ca c ? ? -c -a a v co 0 0 0 0 0 0 =3 0 N N c 4= c i' c 4= c o LL LL 0 ? U L x) L 0 L 0 L 0 Z) Z) D D c ? o -- O N N N N N m= ED O M co M M N 0 ti ti ti C C ? M c co ao M M M M ti LO ti ti ti O 00 T r N ? N r M M CO -0 (n (n (n (n (n C) co uj w W W W W LL U- LL LL LL to r X w- 9 O ' 9- U') r N r ' 7 CL 7 0 (0 U E L 0 U) N M N t rn , O O N N T 1 1 1 1 1 1 1 1 1 1 1 1 m p LO r N E O O p U) N co r M N N O O -0 0 0 U E L O V/ ?m ?o CL a) ? o (D C.0? N N Y N L U E E N Z Z 3 U U a) a) O Q a- d 0? (n - ? o o ?- LO N r Q 7 0 .a co U E O U) N M N rn 0 0 N CO N r O) O L[) r CV r 0 0 U CO r N co N N r a) O N U E O U cu to CL aa) A E L (UN+U' Y c M Co .iU O U E E Q Z Z Cj O N d O O O d a of a? v O Z -kr LO M O O M N M O r LO CO (- M r N (O "t N r (Y) N N N N M N N r N U) r r r N _ M U) O U 0 0 0 Lu 7 O U IO C_ CO co M Co Cfl M r M M LC) (D Ln LO M LO N r M N M 0 M 0 V M 0 M LC) V 'IT (? U') N co 0 0 0 0 C] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 co co c O (0 U) " r N O M LO W I- M m N N Ln M O 0 N 0 ? r- N 3 r ( D O O r r r N r 0 N LO M O N CO 0 O 0 N 0 O (O O d r N N N 0 I' r O cf O N OO 0 ? O U- U N L C ? ? c. C ` N 00 I_ r O T ~ r l( t r M 0 r r ~ r OO V r ~ r r r U N r ti r N N LCj l- . M '' V ti N 4 r-- M 4 ICT 4 Nf Iq v ~ O M (D ? f? (? (? (• (0 ? C C O ? O M O LCD r (+^j LO OM CA (T L() (fl r In r O O CA (? LO (- to IT I- LCD L(7 LCD LC) r r N N r r N r _ C U C O U m U co co CO LO ti rn V (o M CA (D 't N 't M (0 co ' Lo M CO N Cfl N r 't CO CO r 00 r r qcT q ti Ln (` V N O O O O r r O O O O O O O O r M O O r 0 co Q ,;T Lo Co O O M N CA - O r o (C) I? C7 r N (O N ? N M C7 N N N N M N N ? N r r r _ O D O U W 0 W U- U- U ? ? U U U U U U U U U U U V U V U V U .. U 1 1 1 1 1 1 1 ? O 71-1s o M o O m w t3 H m N JJ O a r mg N N mN S mm Or _ m C N O C? N co v v V n? v`ni m N ? C1 ? ? N r-r ? O as o ? ? rn ?o I ? M O N (g) uollenel3 R U y O L r Cli N m = 0 0 w ° ° N N W W N N r , UU i l`! U C4 O p ? N - N N i N 13 s 0 :' m r N t N i i CI ' h ' N ? G ? ? p O y Q? 0 a a O ?p N M O O M N M M N N 8 oN N °o n °m °v S 8 N J Q r N N ?. N fOO..N N..N N..N N..? N (4) uOI)PAOl3 W n :; N - m N OD En o 0 0 N O O ci ry N " ry 0 p p W i V ^ ^ - O i V O o : u? ro o ?. o f ry ^ O ^ fD ' o .? N fD O [3 N O N ^ p O N f0 ? ? N ? O O H M N 7 N ' O O t0 N N o O ? ' 1 ? 3 tl O } ?i. H O - rn Ix O ' as Q? y.7Ll V1 Q1 O M O N IV A d ;y ? I+I 3 ?, : Q C N N ' } L' .. ? H ? 1000 n _ 0 y? L1 ' ? m m .. O O . N m m r y1 4 ?, J O c m A : ? _ LL 1 ? l p m f? ai 0 ? 1 N N I N ao u°? n A N 0 C.p Mu : . O O C C m R 0 M V `?' I p a ry ' p 0 0 n P I A H ? N U1 h ? Y O A ^ A ta`- O N m N m N A N m R O M pp ^ M (p M A ? n ? a?.?A C1 n N N 1A ? N M In N M M M M (?) A (?1 ?` (?'1 n 1'"1 A A n A A ? o v t m H v .C S v S 9 v 9 v C v C tl V?lena? ? ? y y n H °a -°N -S m .8 O? R 0 n ry ; V1 ?U N pp U UU - N p ° fD N ^ (U ° a ' n ID N a U ? o ? m N ry : o N m = h 0 O ry ? C V ID N D O el N N v O ry 9 t ° ;e. ? 3 a d O ? ? 3 d ? c > e K 1 1 71 L E 1 L 1 0 N ay( ? pp 1] J k- A H N 1 I i 1 O N oo N aVm O L? ~ J , m U 1 I m: N m 11 g o 1 1 O rrO^^ Vl ? O M O N N:qs T J N 8 i t N N d ? a in N - W n 0 A { ? O I - N fD ? fD ? ? ? J A f- N " W LL p p ID:U1 N J I i N ? ry i i N ? sU? I " n ? n ^ A ^ n ? n ^ A M ? ? r` '? ' ? g v v 9 d n {?} UOIJOA013 n o_ s g LL g o ? ? S u O as rO^ M O O d N L6 r m w w 0 CD N 0 FR F fJ O f U J + O O r r' W r r r a m ! OD t I I f O? Y I r_ n' - rrJ J I i I i A A A A A A (H) "ge"13 A A A A A A A W la . A n N m ; A M uj I ID: : O M N O A fh nom V1 fV a { S n a W W . O V C4 0) ° i a. N N ! A ' _ A N a ? A ° ° m D O O n n m o ? ? O A A i A .' Y y^_ w N ? g v v v 9 c ." ? 9 v m c g ° } U a i 1 1 1 `V 0 N O O M O O G9 M? W M U- O LI N m d r a0 J 1 I i f? F, ? I } N M m -a,ft,Jg??,T?• Q L N h?r?7].{{a ? I ^ 0?7 ^ PA'1 ^ f`?') ^ l`7 ^ ? A tM7 ? ? ? A A A A ^ A A (u) uogenal3 (s 9 N V O M M N N N ° N 0 M ?- A ^ co N M M f0 ? ry ' M i O I ? N N Lf) in ao m N 1i y Ditch/Swale Flows PROJECT NAME: Keeley Park BY: Tristan Teas#ey PROJECT NUMBER: 2326DATE: 216108 * All flows and intensitys are designed for the 10 year storm event with a 5 min time of concentration Swale 1 -to FES 11A Swale 6 - to Plunge Pool Area = >1 >±12 i .. Lengt h h= ! ...... . Area Area ' . tA i?'.'»`' ength >fY> Intensity <<>::: : Inv. U p :..:; x.... Intensi ty I>' 1 Inv. U p Tc Inv. Down= :»:743...... : : #>>'< ........................... : Inv. Down_ . Comp. C .. ......::.......:. Slope= 8.0% Comp. C = Ifi!:;<:. :::: ' Slope= : 6.7% Velocity= > ........................ . _ Velocity= Q = C*I*A = 1.14 cfs Q = C*I*A = 1.22 cfs Qtotai = 3.15 (includes flow from FES 18.) Qt°tai = 1.22 (includes flow from FE S 35) Swale 2 -to FES 13 Area = '':'Q48: Intensity = r tr Tc . .0 ......................... Comp. C = ` ": >'>_ Q = C*I*A = 1.03 cfs Swale 3 - to FES 23 Length= 172 ft" Inv. Up 743 5 Inv. Down= .. Slope= 3.2 % Velocity= 2a6 Area = <>e_ Length= 15ft:_> Intensity = . ' .................................... Inv. Up .. 7{> Tc = €5?lt:t?t1 Inv. Down= >'>'< ....... Comp . C = :: . :: :.: ` »'(<>>'l> < .::... . .................................................... ... Slo e= . . 1.9% Velocity= Q = C*I*A = 0.77 cfs Swale 4 - to FES 28 Area = 'st36a Intensity {h : 7 ......................... Tc = }riit Comp. C = tY' < Q = C*I*A = 1.46 cfs Swale 5 - to Level Spreader Length= 1i8ft Inv. Up _>= Inv. Down= #'i Slope= 7.4% Velocity= 3;22 .............. ........................ Area = >N/A>a>>> Len gth= D_ _ Intensity '<14 ``s> Inv. Up ><T6I? €1>> Tc - << ! Jt ' < >> Inv. Down ..:,.... ........... . . ..: Com C p. <ill»< Slope= 1 A % Velocity= '>19f3z .......... Q = C*I*A = 10.37 cfs 2326-swale flows with slopes and velocitys.xls Page 1 n 1 1 1 1 1 1 1 1 1 1 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER : 2326 DATE: 27/2008 REV: Channel # Grass Swale # 1 (To FES 11) Estimating Mannings'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C N/A 1) Q= 3.15 cfs (Q10) 2.3 cfs (Q2) I N/A 2) S= 0.080 ft/ft A N/A 3) Vp 4 fps Permissible Velocity per Table 8.05a 4) Size= 0.79 if =QNp 5) R= 0.60 Hydraulic Radius =bd+Zdl / b+2d(Z41)'rz (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3 (e/d) A= 5 (Cross Sectional Area) 6) 7) 8) 9) 10) Using Retardance Curve D From Figure 8.05c VPR= 2.40 Mannings'n' (As read from gra ph)= 0.043 V= 6.91 fps Actual V from Manning's Equation Qc= 34.56 cfs Actual channel capacity. Check Vp>V VP= 4 fps V= 6.91 fps Check Qc>Q Qc= 34.56 cfs Q= 3.15 cfs OK? NO (If Vp>V, then OK) YES (if Qc>Q, then OK) Is a temp liner required? YES (NOTE 1- 8.05.7 ESCPDM) U= 1.0 ue m Inciuain rreeooara Using Retardance Curve B From Figure 8.05c VPR= 2.40 Mannings'n' (As read from graph)= 0.090 V= 3.35 fps Actual V from Manning's Equation QC-- 16.74 cfs Actual channel capacity. Check Vp>V Vp= 4 fps V= 3.35 fps Check Qc>Q Qc= 16.74 cfs Q= 3.15 cfs OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) isa erm'ntliner required? NO NOTE 1-8.05.7 ESCPDM) 11) N/A Z N tT C .C at 2 .J 4 . 3 Average Length of Vegetallon (fn) Curve 2 Langer than 30" it" to 24" 6• • A 8 . to 10 2• to 6" L " C D ess than 2 E a 7 7 77 1 06 04 e .02 •? .Y .o -.o t.u Z 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's n related to vebdy, hydraulic radius, and vegetal retardance. Note: FrJm Sample Problem 8.05a multpy Vp x Hydralullc Radius (4.50.54-2.43), Own enter ft product of VR and extend a straight the up to Retardance class "D", next project a straight Ana to the left to determine a trial manning's n. Rev. 12193 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326- DATE: 2712008 REV: Channel # Grass Swale # 2 (To FES 13) Estimating Mannings'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C 0.3 1) Q= 1.03 CfS (Q10) 0.7 Cfs (012) I 7.17 2) S= 1032 ft/ft A 0.48 3) V,, 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 0.23 ftz =QNp 5) R= 0.60 Hydraulic Radius =bd+Zd' / b+2d(ZZ+1)'r' (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3 (e/d) A= 5 (Cross Sectional Area) 6) 7) 8) 9) 10) Using Retardance Curve D From Figure 8.05c VPR= 2.70 Mannings'n' (As read from gra ph)= 0.042 V= 4.50 fps Actual V from Manning's Equation Qc= 22.48 cis Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 4.50 fps Check Qc>Q Qc= 22.48 cfs Q= 1.03 cfs OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a temp liner required? YES (NOTE 1- 8.05.7 ESCPDM) U= 1.0 ue m inciualn treeooara Using Retardance Curve B From Figure 8.05c VpR= 2.70 Mannings'n' (As read from graph)= 0.085 V= 2.24 fps Actual V from Manning's Equation Qc= 11.19 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 2.24 fps Check Qc>Q Qc= 11.19 cfs Q= 1.03 cis OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a enn'nt liner required? NO NOTE 1- 8.05.7 ESCPDM 11) N/A .5 .4 .3 2 C m C .t .C ca .D8 2.06 .04 .02 .1 Average Length of Vegetation On) Curve A Luger Utan a0" 11" to 24° 6• l 10 A B C 4 1 0 2° to 6• Less tha 2" D E e n C D E 22. .Z .4 .6 •.B IA 2 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's nrole led to vebcly, hydraulie radius, and vegetal retardance. Note: From Sample problem 8.05a multiply Vp x Hydralulto Radius (4.50.54.2A3), [ten enter Ute product of VR and extend a straight Ins up b Relardance class *D*. next projects straight line to the left b determine a trial manning's n. Rev. 1293 1 1 1 1 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER : 2326 DATE: ,21712008 REV: Channel # Grass Swale# 3 (To FES 23) Estimating Mannings'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C 0.3 1) Q= 0.77 cfs (Q10) 0.6 CfS (Q2) I 7.17 2) S= 0.019 tuft A 0.361 3) VP= 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 0.17 ft' =Q/Vp 5) R= 0.60 Hydraulic Radius =bd+Zd' / b+2d(Z'+1)'n (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3 (e/d) A= 5 (Cross Sectional Area) 6) 7) 8) 9) 10) Using Retardance Curve D From Figure 8.05c VPR= 2.70 Mannings'n' (As read from graph)= 0.042 V= 3.46 fps Actual V from Manning's Equation Qc= 17.32 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 3.46 fps Check Qc>Q Qc= 17.32 cfs Q= 0.77 cfs OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a temp liner required? YES (NOTE 1- 8.05.7 ESCPDM) 1.5 (Depth including freeboard) Using Retardance Curve B From Figure 8.05c VPR= 2.70 Mannings'n' (As read from graph)= 0.085 V= 1.72 fps Actual V from Manning's Equation Qc= 8.62 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 1.72 fps Check Qc>Q Qc= 8.62 cfs Q= 0.77 cfs OK? YES (If Vp>V, then OK) YES (If QC>Q, then OK) s a perm'nt liner required? NO (NOTE 1- 8.05.7 ESCPDM) 11) N/A C y 01 C .C al m M 4 . 3 Average Length of Vegetation (In) Curve 2 n Longer than 30' 11- to 24" ° " A a . 8 l0 10 2" to 6" " C D Less than 2 E .I 6 .0B C 06 0 04 E 02, -- •- • • - c v b 6 10 20 VR, Product of Velocity and Hydraulic Radius Fgure 8.0 So Manning's r; re Is led to velo dly, hydra LA to radius, and Vegetal re isrdance. Note: From Sample Problem 8.05a muldpy Vp x Hydra lullc Radius (4.50.54-2.43), Man enter this product of VR and extend a straight fine up to Retardance class "D', next project a straight line b the left to determine a trial manning's n. Itm. 12,93 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 2/712008 REV: Channel # Grass Swale # 4 (To FES 28) Estimating Mannings'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C 0.3 1) Q= 1.46 cfs (Q10) 1.0 CfS (Q2) 1 7.17 2) S= 0.074 ft/ft A 0.68 3) VP 4 fps Permissible Velocity per Table 8.05a 4) Size= 0.37 If =QNp 5) R= 0.60 Hydraulic Radius =bd+Zd' / b+2d(Z'+V) (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3" (e/d) A= 5 (Cross Sectional Area) 6) 7) 8) 9) 10) Using Retardance Curve D From Figure 8.05c VpR= 2.40 Mannings'n' (As read from gra ph)= 0.043 V= 6.65 fps Actual V from Manning's Equation Qc= 33.24 cfs Actual channel capacity. Check Vp>V VP= 4 fps V= 6.65 fps Check Qc>Q Qc= 33.24 cfs Q= 1.46 cfs OK? NO (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a temp liner required? YES (NOTE 1- 8.05.7 ESCPDM) is tuepm Inciuamg rreeooaraj Using Retardance Curve B From Figure 8.05c VPR= 2.40 Mannings'n' (As read from graph)= 0.090 V= 3.22 fps Actual V from Manning's Equation Qc= 16.10 cfs Actual channel capacity. Check Vp>V VP= 4 fps V= 3.22 fps Check Qc>Q Qc= 16.10 cfs Q= 1.46 cfs OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a penn'nt liner required? NO (NOTE 1- 8.05.7 ESCPDM) 11) N/A .5 .4 .3 .2 C N 0) C .t C ? .oe ? .os 04 .02 .1 Average Length of Vegetation 0n) Curve Luger than Xr 11' to 24' to 10" A B C 2" to 6' Less than 2" D E 9 C 0 E 2 .4 .6 -.8 IA 2 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.15c Manning's n telated to vebdty, hydraullc radius, and vegetal totardance. Note: From Sample Problem 8.05a multiply Vp x Hydralulfc Radius (4.5x0.54-2.43), then enter the productof VR and extand a straight Ana up lo Relardance dass'D'. next project a straight Ana b the left to detarmine a trial manning's n. Rev. 1293 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER: 2326 DATE: 2!7/2008 REV: Channel # Grass Swale # 5 (To Level Spreader) Estimating Mannings'n' per ESCPDM Page 8.05.6 Step # Variable Result Description C N/A 1) Q= 10.37 CfS (Q1o) 7.4 CfS (Q2) i N/A 2) S= 0.010 ft/ft A NIA 3) VP= 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 2.30 ft2 =Q/Vp 5) R= 0.85 Hydraulic Radius =bd+Zd2 / b+2d(Z2+1)'? (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1.5 (Trapezoidal depth) Z= 3 (e/d) A= 9.75 (Cross Sectional Area) 6) 7) 8) 9) 10) U= Z Ue to including freeboard Using Retardance Curve D Using Retardance Curve B From Figure 8.05c VPR= 3.82 From Figure 8.05c VPR= 3.82 Mannings'n' (As read from gra ph)= 0.039 Mannings'n' (As read from graph)= 0.070 V= 3.46 fps Actual V from Manning's Equation V= 1.90 fps Actual V from Manning's Equation Qc= 33.77 cfs Actual channel capacity. Qc= 18.53 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps Check Vp>V Vp= 4.5 fps V= 3.46 fps V= 1.90 fps Check Qc>Q Qc= 33.77 cfs Check Qc>Q Qc= 18.53 cfs Q= 10.37 cfs Q= 10.37 cis OK? YES (If Vp>V, then OK) OK? YES (If Vp>V, then OK) YES (If QC?Q, then OK) YES (If Qc>Q, then OK) Is atemp liner required? YES NOTE 1-8.05.7 ESCPDM Ise enn'ntliner required? NO NOTE 1-8.05.7 ESCPDM 11) N/A C N CT) c 'c c m 4 . g Average Length of Vegetation on) Curve 2 A Longer than 30' 11" to 24" " " A 8 . 6 to 10 2" to 6" " C D Less than 2 E I e . 06 c 06 0 04 E ImIlam 02 .1 .0 .0 W [ 4 6 a 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's n related 10 Vebdy, hydraulic radius, and vegetal retardame. Note: From Sample Problem 8.05a multiply Vp x Hydralulic Radius (4.5x0.54.2.43), then enter the product of VR and extend a straight One up to Retardance class "D nextpro)act a straight fine to the left to determine a trial manning's n. Rev. t2B3 Swale Design Flow and Depth PROJECT NAME: Keeley Park BY: Site Solutions PROJECT NUMBER : 2326 DATE: 2/712008 REV: 9/21 /2009' ' Channel # Grass Swale # 6 (To Plunge Poo l) Estimating Mannings'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C N/A 1) Q= 1.22 cfs (Q10) 0.9 cfs (02) I N!A 2) S= 0,067 ft/ft A N/A 3) VP 4 fps Permissible Velocity per Table 8.05a 4) Size= 0.31 ft' =Q/Vp 5) R= 0.34 Hydraulic Radius =bd+Zd2 / b+2d(Zz+1)` (Figure 8.05b) Where b= 2' (Trapezoidal Bottom Width) df= 0.5 (Trapezoidal depth) Z= 3 (e/d) A= 1.75 (Cross Sectional Area) 6) 7) 8) 9) 10) U= I Using Retardance Curve D Using From Figure 8.05c VPR= 1.36 From Mannings 'n' (As read from gra ph)= 0.053 Mann V= 3.53 fps Actual V from Manning's Equation V= Qc= 6.18 cfs Actual channel capacity. Qc= Check Vp>V VP= 4 fps Check V= 3.53 fps Check Qc>Q Qc= 6.18 cfs Check Q= 1.22 cis OK? YES (If Vp>V, then OK) OK? YES (If Qc>Q, then OK) Is a tam liner required? YES NOTE 1- 8.05.7 ESCPDM Is a e Figure 8.05c VPR= 1.36 ngs'n' (As read from graph)= 0.129 1.45 fps Actual V from Manning's Equation 2.54 cfs Actual channel capacity. Vp>V VP= 4 fps V= 1.45 fps Qc>Q Qc= 2.54 cfs Q= 1.22 cis YES (If Vp>V, then OK) YES (If Qc>Q, then OK) n'ntliner required? NO i NOTE 1- 8.05.7 ESCPDM n 11) N/A .5 .4 .3 2 c or c .1 m Oa ? .06 .04 02 Average ngth Curve of Vegetation On) Longer Bean 30' A i f" to 24' B n 6' to t0• C 41 2° to 61 D Less than 2° E e c D E .I .2 .4 .6 -.a 1.0 2 4 6 a 10 VR, Product of Velocity and Hydraulic Radius 20 Rgure 8.050 Manning's nrelaled to vebclly, hydraulic radius, and vegalal relardance. Note: From Sample Prohlem 13.05a multiply Vp x Hydralulic Radius (4.5xo.54-2.43), lien enler the product of VR and exlend a straight One up to Relardance class "D', next projects straight One to the left to determine a trial manning's n. Rev. 1293 Culvert Flows PROJECT NAME: Keeley, Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 8/17/09 Design -10 year FES 11 TO FES 11A Area = ........... .... Q 8 v::>:>;<' Intensity = 17 dgfbr Tc= 50rr n Comp. C = 0 29> Q = C*I*A = 1.39 cfs FES 12 TO FES EX 12A Area = 0.13 ac. Intensity = 7.17 in/tar Tc = 5.0 min. Comp. C = 0.35 Q = C*I*A = 0.33 cfs FES 13 TO FES EX 13A Area = 0.76 a;. Intensity = 7.171n/hr Tc= 5.0min. Comp. C _ 0.34 Q = C*I*A = 1.85 cfs FES 34 TO FES 35 Area = 0.46 ac. Intensity = 7.17 in/hr Tc = 5.0 min. Comp. C = 0.37 Q = C*I*A = 1.22 cfs 2326-culvert flows 8-17-09.xis Page 1 HY-8 Culvert Analysis Report Table 1 - Summary of Culvert Flows at Crossing: FES 11 TO FES 11A Headwater Elevation (ft) Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (Cfs) Iterations 742.99 1.00 1.00 0.00 1 743.00 1.04 1.04 0.00 1 743.01 1.08 1.08 0.00 1 743.02 1.12 1.12 0.00 1 743.03 1.16 1.16 0.00 1 743.04 1.19 1.19 0.00 1 743.05 1.23 1.23 0.00 1 743.06 1.27 1.27 0.00 1 743.07 1.31 1.31 0.00 1 743.08 1.35 1.35 0.00 1 743.09 1.39 1.39 0.00 1 Table 2 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth (ft) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (ft/s) Tailwater Velocity (ft/s) 1.00 1.00 742.99 0.535 0.000 1-S2n 0.338 0.391 0.340 0.000 3.679 0.000 1.04 1.04 743.00 0.547 0.000 1-S2n 0.345 0.398 0.347 0.000 3.716 0.000 1.08 1.08 743.01 0.558 0.000 1-S2n 0.352 0.405 0.354 0.000 3.752 0.000 1.12 1.12 743.02 0.569 0.000 1-S2n 0.360 0.413 0.362 0.000 3.785 0.000 1.16 1.16 743.03 0.581 0.000 1-S2n 0.367 0.420 0.369 0.000 3.817 0.000 1.19 1.19 743.04 0.587 0.000 1-S2n 0.374 0.427 0.375 0.000 3.862 0.000 1.23 1.23 743.05 0.597 0.000 1-S2n 0.380 0.434 0.381 0.000 3.904 0.000 1.27 1.27 743.06 0.607 0.000 1-S2n 0.386 0.441 0.386 0.000 3.955 0.000 1.31 1.31 743.07 0.617 0.000 1-S2n 0.392 0.448 0.392 0.000 3.994 0.000 1.35 1.35 743.08 0.627 0.000 1-S2n 0.397 0.456 0.399 0.000 4.030 0.000 1.39 1.39 743.09 0.638 0.000 1-S2n 0.403 0.463 0.406 0.000 4.048 0.000 Inlet Elevation (invert): 742.45 ft, Outlet Elevation (invert): 742.20 ft Culvert Length: 28.00 It, Culvert Slope: 0.0089 Water Surface Profile Plot for Culvert: Culvert 1 - FES 11 TO FES 11.x, Des-iwi Di, chafPe - 1.4 ds ' t=ul-vent - CWN-ert 1, C'iAvert Disch-w-.cre - 1.4 eft 745.0 --- ------- ---- ---------------- ' --------------------;----------- 1 744.5 ---------------- ------ ------ ---------------- -- ---------- -;- ---------- r 744.0 --------------- -- -------------' ---------------------- -------- ' u 0 ------------ 743.5 ------------------------------------ ----------------= ---- --;------------ w 743.0---- ------------ ----------------- ---------------- -------------- --?- 742.5 ---------------- -----------------r ---------------- -- -- ------ ---------------- ---- --X i 0 10 20 30 Station (ft) Site Data - Culvert 1 Sit D t O ti C l t I t D t e a a p on: u ver nver a a Inlet Station: 0.00 ft ' Inlet Elevation: 742.45 ft Outlet Station: 28.00 ft ' Outlet Elevation: 742.20 ft Number of Barrels: 1 ' Culvert Data Summary - Culvert 1 Barrel Shape: Circular ' Barrel Diameter: 1.25 ft Barrel Material: ' Barrel Manning's n: 0.0130 Inlet Type: Inlet Edge Condition: ' Inlet Depression: None 1 Table 3 - Downstream Channel Rating Curve (Crossing: FES 11 TO FES 11A) Flow (cfs) Water Surface Elev (ft) Depth (ft) 1.00 742.20 0.00 1.04 742.20 0.00 1.08 742.20 0.00 1.12 742.20 0.00 1.16 742.20 0.00 1.19 742.20 0.00 1.23 742.20 0.00 1.27 742.20 0.00 1.31 742.20 0.00 1.35 742.20 0.00 1.39 742.20 0.00 Tailwater Channel Data - FES 11 TO FES 11A Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 742.20 ft Roadway Data for Crossing: FES 11 TO FES 11A Roadway Profile Shape: Constant Roadway Elevation Crest Length: 30.00 ft Crest Elevation: 745.00 ft Roadway Surface: Gravel Roadway Top Width: 8.00 ft L 1 1 11 i 1 P 1 I Table 4 - Summary of Culvert Flows at Crossing: FES 12 TO FES 12A 7 Headwater Elevation (ft) Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (cfs) Iterations 740.67 0.31 0.31 0.00 1 740.67 0.31 0.31 0.00 1 740.67 0.31 0.31 0.00 1 740.67 0.32 0.32 0.00 1 740.67 0.32 0.32 0.00 1 740.67 0.32 0.32 0.00 1 740.67 0.32 0.32 0.00 1 740.67 0.32 0.32 0.00 1 740.68 0.33 0.33 0.00 1 740.68 0.33 0.33 0.00 1 740.68 0.33 0.33 0.00 1 Table 5 - Culvert Summary Table: Culvert 1 I I Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevati on (ft) Inlet Control Depth (ft) Outlet Control Depth (ft) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (f /s) Tailwater Velocity (ft/s) 0.31 0.31 740.67 0.339 0.366 2-M2c 0.269 0.225 0.225 0.050 2.387 0.000 0.31 0.31 740.67 0.340 0.367 2-M2c 0.270 0.226 0.226 0.050 2.393 0.000 0.31 0.31 740.67 0.341 0.368 2-M2c 0.271 0.227 0.227 0.050 2.399 0.000 0.32 0.32 740.67 0.343 0.370 2-M2c 0.272 0.228 0.228 0.050 2.405 0.000 0.32 0.32 740.67 0.344 0.371 2-M2c 0.273 0.228 0.228 0.050 2.411 0.000 0.32 0.32 740.67 0.345 0.372 2-M2c 0.274 0.229 0.229 0.050 2.417 0.000 0.32 0.32 740.67 0.347 0.373 2-M2c 0.275 0.230 0.230 0.050 2.423 0.000 0.32 0.32 740.67 0.348 0.375 2-M2c 0.276 0.230 0.230 0.050 2.429 0.000 0.33 0.33 740.68 0.349 0.376 2-M2c 0.277 0.231 0.231 0.050 2.435 0.000 0.33 0.33 740.68 0.350 0.377 2-M2c 0.278 0.232 0.232 0.050 2.441 0.000 0.33 0.33 740.68 0.352 0.378 2-M2c 0.278 0.232 0.232 0.050 2.447 0.000 Inlet Elevation (invert): 740.30 ft, Outlet Elevation (invert): 739.85 ft Culvert Length: 46.00 ft, Culvert Slope: 0.0098 1 Water Surface Profile Plot for Culvert: Culvert 1 FES 12 To FES 12_x, Desiwl Di,.-,,charge - 0.3 c,:; Cult' eit - 04-vert 1, Cijbveit Dischirge - 0.3 ds 741.6 741.4 741.2 741.0 740.8 740.6 w 740.4 740.2 740.0 739.8 ---------- ---------- -------- ---------- ---------- ---------- 1 1 ; I I I I I ----L---------- --------- -------- ----------J------- --J----------J----------1 I 1 I 1 ' 1 I --------------------- -------------------- -------- ; 4-- -------------------------------- ------ ----- _ _ I I I I . I I -I I I I ? I I I I ----r ---------- -------` r?-4Z.7 - ---------- I I I I ---------- -------- --------- ------------ -- ------ --- ---------- -I IF I ---------- ---------- ---------- ---------- --------------- --- --- --- -?? 1 I I I I I I I --I--L-+-a-4--I--`-1- -+-4--I-- -F-+--1 --I- '--F'-I- + - + - --1-- -F-+- --I--F - f - +- -10 0 10 Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 740.30 ft Outlet Station: 46.00 ft Outlet Elevation: 739.85 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Barrel Manning's n: 0.0240 Inlet Type: Inlet Edge Condition: Inlet Depression: None 20 30 40 50 60 Station (ft) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 6 - Downstream Channel Rating Curve (Crossing: FES 12 TO FES 12A) Flow (cfs) Water Surface Elev (ft) Depth (ft) 0.31 739.90 0.05 0.31 739.90 0.05 0.31 739.90 0.05 0.32 739.90 0.05 0.32 739.90 0.05 0.32 739.90 0.05 0.32 739.90 0.05 0.32 739.90 0.05 0.33 739.90 0.05 0.33 739.90 0.05 0.33 739.90 0.05 Tailwater Channel Data - FES 12 TO FES 12A Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 739.90 ft Roadway Data for Crossing: FES 12 TO FES 12A Roadway Profile Shape: Constant Roadway Elevation Crest Length: 50.00 ft Crest Elevation: 741.60 ft Roadway Surface: Paved Roadway Top Width: 8.00 ft Table 7 - Summary of Culvert Flows at Crossing: FES 13 TO FES 13A Headwater Elevation (ft) Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (cfs) Iterations 738.69 1.00 1.00 0.00 1 738.73 1.09 1.09 0.00 1 738.76 1.17 1.17 0.00 1 738.79 1.25 1.25 0.00 1 738.82 1.34 1.34 0.00 1 738.85 1.43 1.43 0.00 1 738.89 1.51 1.51 0.00 1 738.92 1.60 1.60 0.00 1 738.95 1.68 1.68 0.00 1 738.99 1.77 1.77 0.00 1 739.02 1.85 1.85 0.00 1 Table 8 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth (ft) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (ft/s) Tailwater Velocity (ft/s) 1.00 1.00 738.69 0.635 0.693 2-M2c 0.514 0.418 0.418 0.010 3.217 0.000 1.09 1.09 738.73 0.667 0.726 2-M2c 0.540 0.436 0.436 0.010 3.313 0.000 1.17 1.17 738.76 0.698 0.759 2-M2c 0.566 0.453 0.453 0.010 3.378 0.000 1.25 1.25 738.79 0.729 0.791 2-M2c 0.592 0.471 0.471 0.010 3.450 0.000 1.34 1.34 738.82 0.759 0.822 2-M2c 0.619 0.488 0.488 0.010 3.516 0.000 1.43 1.43 738.85 0.789 0.852 2-M2c 0.646 0.505 0.505 0.010 3.584 0.000 1.51 1.51 738.89 0.820 0.887 2-M2c 0.673 0.520 0.520 0.010 3.664 0.000 1.60 1.60 738.92 0.850 0.918 2-M2c 0.700 0.534 0.534 0.010 3.739 0.000 1.68 1.68 738.95 0.880 0.948 2-M2c 0.732 0.549 0.549 0.010 3.809 0.000 1.77 1.77 738.99 0.911 0.987 2-M2c 0.764 0.563 0.563 0.010 3.874 0.000 1.85 1.85 739.02 0.942 1.020 2-M2c 0.795 0.578 0.578 0.010 3.935 0.000 Inlet Elevation (invert): 738.00 ft, Outlet Elevation (invert): 737.34 ft Culvert Length: 68.00 ft, Culvert Slope: 0.0097 1 u 1 1 1 1 1 1 1 ?I 1 J Water Surface Profile Plot for Culvert: Culvert 1 t_'ro?shig - FES 1-1 T(=) FES 1--A, Des ft Discharge - 1.9 cf 4- 4- ? C'xih-ert - Ci?1'-ert 1, Cixih•ert Dischar;e - 1.9 cfs 740.5 740.0 „_,739.5 r- 2 739.0 ?i 738.5 738.0 737.5 •, 1 1 1 '----------------------------------- ---- - -- ------- r--------------1------- 1 -------------- ------ ------- -------------- -------- ----- -------------- ------- 1 ? 1 1 1 1 1 1 •1 1 t 1 1 1 - - 1 1 1 1 1 1 1 1 1 1-------------- --- 1L --- ---- J__ ------ --L--- --------- 1------ 1 i 1 1 ?------------- 1 1 T--------------r_____--------_I_------____--_.1----____ --r----_ -------- I -- 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 -2U U 20 40 Station (ft) Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 738.00 ft Outlet Station: 68.00 ft Outlet Elevation: 737.34 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Barrel Manning's n: 0.0240 Inlet Type: Inlet Edge Condition: Inlet Depression: None 60 80 Table 9 - Downstream Channel Rating Curve (Crossing: FES 13 TO FES 13A) Flow (cfs) Water Surface Elev (ft) Depth (ft) 1.00 737.35 0.01 1.09 737.35 0.01 1.17 737.35 0.01 1.25 737.35 0.01 1.34 737.35 0.01 1.43 737.35 0.01 1.51 737.35 0.01 1.60 737.35 0.01 1.68 737.35 0.01 1.77 737.35 0.01 1.85 737.35 0.01 Tailwater Channel Data - FES 13 TO FES 13A Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 737.35 ft Roadway Data for Crossing: FES 13 TO FES 13A Roadway Profile Shape: Constant Roadway Elevation Crest Length: 50.00 ft Crest Elevation: 740.50 ft Roadway Surface: Paved Roadway Top Width: 8.00 ft 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 1 - Summary of Culvert Flows at Crossing: FES 34 TO FES 35 Headwater Elevation (ft) Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (Cfs) Iterations 736.02 1.00 1.00 0.00 1 736.02 1.02 1.02 0.00 1 736.02 1.04 1.04 0.00 1 736.02 1.07 1.07 0.00 1 736.02 1.09 1.09 0.00 1 736.02 1.11 1.11 0.00 1 736.02 1.13 1.13 0.00 1 736.02 1.15 1.15 0.00 1 736.03 1.18 1.18 0.00 1 736.03 1.20 1.20 0.00 1 736.03 1.22 1.22 0.00 1 736.80 6.65 6.65 0.00 Overtopping Table 2 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth (ft) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwater Depth (ft) Outlet Velocity (ft/s) Tailwater Velocity (ft/s) 1.00 1.00 736.02 0.536 1.418 4-FFf 0.344 0.391 1.250 0.000 0.815 0.000 1.02 1.02 736.02 0.542 1.419 4-FFf 0.349 0.395 1.250 0.000 0.833 0.000 1.04 1.04 736.02 0.549 1.420 4-FFf 0.353 0.399 1.250 0.000 0.851 0.000 1.07 1.07 736.02 0.555 1.421 4-FFf 0.357 0.403 1.250 0.000 0.869 0.000 1.09 1.09 736.02 0.561 1.421 4-FFf 0.361 0.407 1.250 0.000 0.887 0.000 1.11 1.11 736.02 0.568 1.422 4-FFf 0.366 0.411 1.250 0.000 0.905 0.000 1.13 1.13 736.02 0.574 1.423 4-FFf 0.370 0.415 1.250 0.000 0.922 0.000 1.15 1.15 736.02 0.580 1.424 4-FFf 0.374 0.419 1.250 0.000 0.940 0.000 1.18 1.18 736.03 0.587 1.425 4-FFf 0.378 0.423 1.250 0.000 0.958 0.000 1.20 1.20 736.03 0.588 1.426 4-FFf 0.381 0.427 1.250 0.000 0.976 0.000 1.22 1.22 736.03 0.593 1.427 4-FFf 0.384 0.432 1.250 0.000 0.994 0.000 Inlet Elevation (invert): 734.60 ft, Outlet Elevation (invert): 734.40 ft Culvert Length: 24.00 ft, Culvert Slope: 0.0083 Water Surface Profile Plot for Culvert: Culvert 1 t-'os,sliia - FES 34 TO FES 35, Des kip Discharge - 1.2 efs Culvert - Culvert 1 Culvert Discharge - 1.2 cfs 736.6 --- ------- --------------- 736.5 I1J ? ? ----------- -------------- ---z -------------- 735.0 - c 734.5 ----------------------------- ---------- ------ ------ - ---------?--- 10 15 20 25 30 Station (ft) Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 734.60 ft Outlet Station: 24.00 ft Outlet Elevation: 734.40 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 1.25 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Inlet Type: Conventional Inlet Edge Condition: Grooved End Projecting Inlet Depression: None 11 1 1 1 Table 3 - Downstream Channel Rating Curve (Crossing: FES 34 TO FES 35) Flow (cfs) Water Surface Elev (ft) Depth (ft) 1.00 736.00 0.00 1.02 736.00 0.00 1.04 736.00 0.00 1.07 736.00 0.00 1.09 736.00 0.00 1.11 736.00 0.00 1.13 736.00 0.00 1.15 736.00 0.00 1.18 736.00 0.00 1.20 736.00 0.00 1.22 736.00 0.00 Tailwater Channel Data - FES 34 TO FES 35 Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 736.00 ft Roadway Data for Crossing: FES 34 TO FES 35 Roadway Profile Shape: Constant Roadway Elevation Crest Length: 50.00 ft Crest Elevation: 736.80 ft Roadway Surface: Paved Roadway Top Width: 8.00 ft I u 1 ?J 1 C ' Section 3 Sedimentation and Erosion Control Measures 1 ?j r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Pond EC Tc Calculated By: TMT Date: 12/1012009 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nQ ^0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW 17.7 min. 0.29 hr. Segment ID: B C Paved or Unpaved Unpaved Unpaved Flow length, L (ft): $89.6 290.0 Watercourse slope, s (ft/ft): 0,040 ..... 0:035 0.000 ! ........... Average velocity, V (ft/s) = 16.1345(s)"0.5: 3.23 3.00 0.01 Tc= L / (3600xV) Tc (min.)= 3.0 1.6 0.0 Total Shallow Concentrated Flow Tc = 4.7 min. 0.08 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) _ (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): _ (1.49'r^(2/3)"s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min.)= Total Sheet Flow Tc = E 0.03 0.05 0.00 0.74 1.42 1.00 13.50 27.00 0.00 18.25 18.97 0.00 0.023 0.016 0.000 6.12 5.37 1490.00 353.00 978,00 0.00 1.0 3.0 0.0 4.0 min. 0.07 hr. Minutes 2326 TC-Calculator EC 12-10-09.E#s»Ftt?:, 97?/2010 Summary of Time of Concentration(s) 10 Year 2 Year Swale/Ditch Basin Tc Rainfall Rainfall No. Area [Min] Intensity Intensity [Ac] [Ins/Hr] [Ins/Hr] Pond EC Tc 194.95 26.4 3.81 2.78 * Use a minimum of 5 min. Time of Concentration ** All other inlets not listed use a minimum of 5 min. Time of Concentration Table 3.1 Roughness Coefficients (Manning's n) for Sheet Flow Surface Description n Smooth Surfaces (concrete, asphalt, gravel, or bare soil) 0.011 Fallow (no residue) 0.05 Cultivated Soils Residue cover <=20% 0.06 Residue cover >20% 0.17 Grass Short grass prairie 0.15 Dense grasses 0.24 Bermudagrass 0.41 Range 0.13 Woods Light underbrush 0.4 Dense underbrush 0.5 TEMPORARY SKIMMER BASIN #1 1 1 1 1 1 1 1 1 PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: REV 12/10/2009 THE SEDIMENT BASIN IS DESIGNED IN ACCORDANCE WITH THE NORTH CAROLINA SEDIMENT AND EROSION CONTROL MANUAL, SECTION 6.64 DISTURBED AREA= 19.27 ac. DRAINAGE AREA= 194.95 ac: REQ'D BASIN VOL.= DISTURBED AREA X 1800 cf/ac = 34,686 cf RASIN STA('F/.qTr)RArF• rnAir_ erAi r• 4„ ELEV. PLANIMETER READING AREA s AVG. AREA s VOL c ACCUM. VOL cf. 728 107313 107313 0 0 0 727 113169 113169 110241 110241 110241 728 119088 119088 116129 116129 226370 729 125068 125068 122078 122078 348448 730 131106 131106 128087 128087 476535 731 ' 137201 137201 134154 134154 610688 732 143359 143359 140280 140280 750968 733 149580 149580 146470 146470 897438 734 155860 155860 152720 152720 1050158 735 > 162199 162199 159030 159030 1209187 736 168595 168595 165397 165397 1374584 DETERMINE ELEV. OF SEDIMENT STORAGE: ELEV. VOLUME (cf) 726 0 X 34686 X= 726.31 727 110241 Z= 0.31 ft A= 10.00 ' ac. GRASS C= 0.30 A= 24.42 :ac. BARE SOIL C= 0.55 A= 151.93 ac. Woods C= 0.25 A= 8.60 ac. BLDG/PVM'T C= 0.95 A= 194.95 ac. TOTAL C = 0 32 c DETERMINE REQ'D SURFACE AREA : WHERE: 110= 3.81 in/hr (10 YEAR STORM) Q1o = Cc110A= 238.44 cfs AR= SKIMMER DESIGN = 435 SF PER CFS (Q1o PEAK) AR= 103,723 sf NOTE: REQUIRED SURFACE AREA IS LESS THAN POND BOTTOM AREA. DETERMINE SURFACE AREA ELEV. OF THE 10 YR RAINFALL AREA (so 726 107313 X 103723 X= 725.39 727 113169 Z= -0.61 ft USE Z= 0.00 ft DEPTH OF SEDIMENT STORAGE (Z) BASED ON VOL. REQUIREMENT = 0.31 ft DEPTH OF SEDIMENT STORAGE (Z) BASED ON AREA REQUIREMENT= 0.00 ft USE Z= 6100 ft ' Elev. Of Perm. Structure NOTE: Z OF 6.0' MATCHES DIFFERENCE BETWEEN POND BOTTOM AND PERMANENT CONTROL STRUCTURE WEIR ELEVATION. BASIN DEWATERING: Q=cA(2gH)11 /2 SKIMMER SIZE= 8,0 AMOUNT OF SKIMMERS= 1 Constant head= 6.5 Coefficient= 0.6 cfs QD= 1.23649452 Z value elevation= 732.00 Hrs Page 1 of 2 PRIMARY SPILLWAY: DESIGN FLOW: Q,o= 238.44 cfs DETERMINE LENGTH OF SPILLWAY AND DEPTH OF FLOW OVER SPILLWAY He [Qe/ (C x L)]ti3. WHERE: C= 3.2 LENGTH loft 15 ft 20 ft 25 ft 30 ft SPILLWAY LENGTH (L)-USE 28 ft SPILLWAY, (6'X8 BOX) TEMPORARY SEDIMENT BASIN HEAD (He) 3.84 ft 2.93 ft 2.41 ft 2.08 ft 1.84 ft He 1.60 ft #1 SUMMARY BOTTOM OF POND BARREL DIA.(IN.) BARREL SLOPE (%) Y (ft,) H (ft.) Z (ft.) L (ft.) STORAGE REQ'D (cf.) STORAGE PROVO (cf.) 726.00 42 1.00 9.10 7.60 6.00 28 34686 750968 ELEVATION BOTTOM POND= 726.00 MIN. ELEV. SEDIMENT STORAGE (RISER ELEV.)= 732.00 DESIGN HIGH WATER ELEV. (10 YEAR STAGE)= 733.60 MIN. ELEVATION TOP OF DAM= 734.60 Page 2 of 2 SURF. AREA SURF. AREA REQ'D (sf.) PROVO (sf.) 103723 143359 1 1 1 1 1 1 [i 1 1 1 TEMPORARY SEDIMENT TRAP #2 PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 1/25/08 REV: 12/2/09 THE SEDIMENT BASIN IS DESIGNED IN ACCORDANCE WITH THE N.C. SEDIMENT & EROSION CONTROL MANUAL SECTION 6.60. WHERE: I10= 7.17 in/hr (10 YEAR STORM) DISTURBED AREA= 1.45 Ac A= 0.00 Ac GRASS C= 0.30 DRAINAGE AREA= 2.51 Ac A= 1.54 Ac SOIL C= 0.55 A= 0.74 Ac WOODS C= 0.25 PEAK FLOW: Q10 = CcIjoA A= 0.23 Ac BLDG/PVM'T C= 0.95 Q10 = 8.97 cfs A= 2.51 Ac TOTAL Cc= 0.50 BASIN STAGF/ STnRAGP nWr, SCAI P 1"= 1 rNnTF• MAX Fu i Wr1rZHT = 59 ELEV. PLANIMETER READING AREA s AVG. AREA s VOL c ACCUM. VOL cf. 737 3018.00 3018 0 0 0 738 3477.00 3477 3248 3248 3248 739 3961.00 3961 3719 3719 6967 740 " 4470.00 4470 4216 4216 11182 741 5004.00 5004 4737 4737 15919 DETERMINE LENGTH OF SPILLWAY AND DEPTH OF FLOW OVER SPILLWAY: HE=[Q,./ (C x L)]2J3 WHERE: C= 3.2, LENGTH (4' min.) HEAD (HE) 5 ft 0.68 ft NO GOOD loft 0.43 ft OK 15 ft 0.32 ft OK 20 ft 0.27 ft OK 25 ft 0.23 ft OK USE L= 10 ft SPILLWAY, HE= 0.43 ft Ok REQUIRED BASIN VOLUME, (VR)=(DISTURBED AREA X 3600 cf/ac)= 5,220 cf REQUIRED Quo SURFACE AREA, (AR)= (435 x Q10 cfs)= 3,900 sf DETERMINE ELEVATION OF Q1a YR STORM, (X): ELEV. AREA (sf) 738 3477 X 3900 X= 738.87 739 3961 DETERMINE MINIMUM ELEVATION OF SEDIMENT STORAGE, (Hs)=[(Qjo EL.) - HE] Hs= 738.45 Use Hs= 739.00 DETERMINE VOLUME OF SEDIMENT STORAGE, (Vs) @ Hs: ELEV. VOLUME (cf) 739 6967 Hs= 739.00 Vs Vs= 6,967 d 740 11182 PROVIDED; STORAGE VOLUME EXCEEDS REQUIRED VOLUME, THEREFORE OKAY 2326-NC SEDTRAP #2 12-1-09.xis Page 1 TEMPORARY SEDIMENT TRAP #2 PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 1/25/08 REV: 12/2/09 Cross-Section 12' min. of NCDOT #5 or #57 washed stone i 3600 cu ft/acre min Design settled Overfill 6' for top mh settlement -? ?`•, Plan VV l ? 4' \ Emergency bY- pass 6' below 5min, settled top of dam 2' toI 3.5' filter 3• _... GNaiur dl fabric min. FRI SEDIMENT DEPTH (H)= (Hs-ELEVATION OF BOTTOM OF POND) SEDIMENT CLEANOUT DEPTH (Z)= 1/2(H) X (ft.) L (ft.) H (ft.) Z (ft.) W (ft.) STORAGE VOLUME REQUIRED (cf.) 4 STORAGE VOLUME PROVIDED (cf.) - 7.5 loft 2.00 . 5220 6967 Elevation of Pond Bottom= 737.00 Elevation fo Sediment Storage/ Spillway Crest = 739.00 Elevation of 10-year Stage/ Surface Area Reqm't= 739.43 Elevation of Dam Top= 740.50 2326-NC SEDTRAP #2 12-1-09.xls Page 2 1 1 RIP RAP OUTLET PROTECTION PROJECT NAME: Keeley Park BY: TMT PROJECT NUMBER: 2326 DATE: 7-Feb-08 REV: 10/29/09 DESIGN OF RIP RAP OUTLET PROTECTION IN ACCORDANCE WITH THE N.C. SEDIMENT & EROSION CONTROL MANUAL. ASSUME TAILWATER DEPTH < 0.5 Do RIP RAP GRADATION PER NCDOT SPECIFICATIONS RIP RAP MINIMUM MIDRANGE MAXIMUM CLASS (IN) (IN) (IN) A 2 4 6 B 5 8 12 1 5 10 17 2 9 14 23 FES# DISCHARGE (Q)= PIPE DIA. (Do)= LENGTH (La)= WIDTH W=Do + La= d5o= 7 10.23 cfs 2:00 ft. FR( 13.0 ft. 2.00 + 0.60 ft. USE CLASS B RIP RAP d5o= 8 in. dMAx= 12 in. )M FIGURE 8.06A APRON THICKNESS= 1.5 x dMAx 13.0 = 15.00 ft. APRON THICKNESS= 18.0 in. = 7.20 in Velocity= 5.30 ft/sec. MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= SIDE SLOPE OF RIP RAP APRON (M)= Page 1 of 4 16 in 3 HAV FES # 11A USE CLASS B RIP RAP ' DISCHARGE (Q)= 1.39 cfs d5o= 8 in. PIPE DIA. (Do)= 1.25 ft. dM„x= 12 in. FROM FIGURE 8.06A LENGTH (La)= 8.0 ft. APRON THICKNESS= 1.5 x dmAx WIDTH W=Do + La= 1.25 + 8.0 = 9.25 ft. APRON THICKNESS= 18.0 in. ' d5o= 0.50 ft. = 6.00 in Velocity= 4.05 ft/sec. MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 10 in ' SIDE SLOPE OF RIP RAP APRON (M)= 3 H:1V FES # 18 USE CLASS B RIP RAP ' DISCHARGE (Q)= 2.00 cfs d5o= 8 in. PIPE DIA. (Do)= 1.25 ft. dMAx= 12 in. FROM FIGURE 8.06A ' LENGTH (La)= 8.0 ft. APRON THICKNESS= 1.5 x dmAx WIDTH W=Do + La= 1.25 + 8.0 = 9.25 ft. APRON THICKNESS= 18.0 in. , d50= 0.50 ft. = 6.00 in Velocity= 3.64 ft/sec. MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 10 in ' SIDE SLOPE OF RIP RAP APRON (M)= 3 H:1V FES # 21 USE CLASS B RIP RAP , DISCHARGE (Q)= 2.25 cfs d5o= 8 in. PIPE DIA. (Do)= _ 1.25 ft. dMAx= 12 in. FROM FIGURE 8.06A ' LENGTH (La)= 8.0 ft. APRON THICKNESS= 1.5 x dmAx WIDTH W=Do + La= 1.25 + 8.0 = 9.25 ft. APRON THICKNESS= 18.0 in. d50= 0.50 ft. = 6.00 in Velocity= 7.45 ft/sec. MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 10 in SIDE SLOPE OF RIP RAP APRON (M)= 3 H:1V FES # 27 USE CLASS B RIP RAP ' DISCHARGE (Q)= ` 6.72 cfs d5o= 8 in. PIPE DIA. (Do)= 1.25 ft. dmAx= 12 in. FROM FIGURE 8.06A ' LENGTH (La)= 8.0 ft. APRON THICKNESS= 1.5 x dmAx WIDTH W=Do + La= 1.25 + 8.0 = 9.25 ft. APRON THICKNESS= 18.0 in. d50= 0.50 ft. = 6.00 in Velocity= 5.78 ft/sec. , MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 10 in SIDE SLOPE OF RIP RAP APRON (M)= 3 H:1V ' Page 2of4 M FES # 31 USE CLASS B RIP RAP DISCHARGE (Q)= 2.53 cfs dso= 8 in. PIPE DIA. (Do)= 1.25 ft. dM,x= 12 in. ' FROM FIGURE 8.06A LENGTH (La)= 80 ft. APRON THICKNESS= 1.5 x dM,x ' WIDTH W=Do + La= 1.25 + 8.0 = 9.25 ft . APRON THICKNESS= 18.0 in. dso= 0.50 ft. = 6.00 in Velocity= 6.50 ft/sec. ' MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 10 in SIDE SLOPE OF RIP RAP APRON (M)= 3 H:1V ' FES # 33 USE CLASS B RIP RAP DISCHARGE (Q)= ` 2.94 cfs d50_ 8 in. PIPE DIA. (Do)= 1.25 ft. dMAx= 12 in. ' FROM FIGURE 8.06A LENGTH (La)= 8.0 ft. APRON THICKNESS= 1.5 x dmAx WIDTH W=Do + La= 1.25 + 8.0 = 9.25 ft. APRON THICKNESS= 18.0 in. ' dso= 0.50 ft. = 6.00 in Velocity= 4.12 #t/sec. MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 10 in SIDE SLOPE OF RIP RAP APRON (M)= 3< HAV FES # 35 USE CLASS B RIP RAP DISCHARGE (Q)= 1.22 cfs dso= 8 in. ' PIPE DIA. (Do)= 1.25 ft. FROM FIGURE 8.06A dM,x= 12 in. LENGTH (La)= 8.0 ft. APRON THICKNESS= 1.5 x dmAx WIDTH W=Do + La= 1.25 + 8.0 = 9.25 ft. APRON THICKNESS= 18.0 in. ' dso= 0.50 ft. = 6.00 in Velocity= 0.99 ft/sec. ' MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 10 in SIDE SLOPE OF RIP RAP APRON (M)= 3 HAV ' Page 3 of 4 SUMMARY OF RESULTS RIP RAP APRON SCHEDULE FES/ HW D IN RIP RAP CLASS W IN L FT H IN M 7 18.0 B 15.00 13.00 16.00 3 11A 18.0 B 9.25 8.00 10.00 3 18 18.0 B 9.25 8.00 10.00 3 21 18.0 B 9.25 8.00 10.00 3 27 18.0. B 9.25 8.00 10.00 3 31 18.0 B 9.25 8.00 10.00 3 33 18.0 B 9.25 8.00 10.00 3 35 18.0 B 9.25 8.00 10.00 3 3 0 l Outlet W Do + La 90 j pipe diameter (Cb) 80 V, L -si? n a i water K 0.5Do { °?LLa)70 k a + a t n l ?J 50 4 4 30 20 10._,? rf?= tt 2 N - 0 7' i }I ?I v v-5'? 0 3 5 10 20 50 100 200 500 1000 Discharge (ft3lsec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (Tw < 0.5 diameter}. Page 4 of 4 1 NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 'NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: Keeley Park PROJECT NO.: 2326 'COMPUTED BY: TMT DATE: 2/7/2008 FROM STATION/REACH: Swale 1 to FES 11A TO STATION/REACH: Swale 1 to FES 11A DRAINAGE AREA: 0.42 ac. DESIGN FREQUENCY: 10 yr. INPUT PARAMETERS Channel Discharge : 3.2 cfs (.09 MA 3/s) Peak Flow Period : 12 hours Channel Slope :0.08 ft/ft (0.08 m/m) Channel Bottom Width : 2.0 ft (.61 m) Left Side Slope :3:1 Right Side Slope :3:1 'Channel Lining : S150 Staple D Permi. Shear(Tp) :1.75 psf (83.8 Pa) Phase = 0 CALCULATIONS Initial Depth Estimate = 0.16 * (3.2 /(0.080^0.5))^0.375 = 0.40 ft (.12 m) Final Channel Depth (after 8 iterations) =.35 ft (0.11 m) Flow Area = (2.0 * 0.3)+(0.5 *0.35^2 * (3.0+3.0)) = 1.1 sq.ft (0.1 m^2) Wet Per. =2.0 +(0.3*(((3.OA2)+1)^.5 +((3.0^2)+1)".5)) = 4.2 ft (1.3 m) Hydraulic Radius = (1.1 / 4.2) = 0.3 ft (0.1 m) Channel Velocity =(1.486/0.055)*(0.3"0.667)*(0.080^.5) = 3.0 fps (0.9 m/s) 'Channel Effective Manning's Roughness = 0.055 Calculated Shear (Td) = 62.4 * 0.35 * 0.080 = 1.73 psf (82.8 Pa) Safety Factor = (Tp/Td) = (1.75 /1.73) = 1.01 ,it 1 r, C Nath Amdleart Mean - ECMDS Vdsion 4.3 _ 2/7/2008 115 AAMCOMPUTED BY: TMT PROJECT NAME: Keeley Park iS?OJECT NO.: 2328 FROM STATION/REACH: Swale lm TO STATIONIREACH: Swale 1 to FES RAINAGE AREA 0.42 ac. ESIGNFREOUENCY: 10yr. HYDRAULIC RESULTS S150 In-11055) Dachdge Peck Flow (IPS Area (sµk) HyNauk Namd IclsI Period Oss) ebciy _ Redeuk D. _k d2 120 304 1.05 0.25 0.35 S-0.00 1 Width- ZO01t' 3.01 LINER RESULTS Not to Scale Reach Melting Type lability Andy" Vegetation Chdactedtlics Per:- Celculded Safety Faeta Remarks Staple PaOdn Phase Class Type Demiy Shed Stress lay) SFtear Skeen IPA Skdght S150 Urwegdded 1.75 1.73 1.01 STABLE Staple D 1 1 LI 1 I Bali to Input Screen 1 1 1 ORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 f ORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS PROJECT NAME: Keeley Park PROJECT NO.: 2326 'COMPUTED BY: TMT DATE: 2/7/2008 FROM STATION/REACH: Swale 2 to FES 13 TO STATION/REACH: Swale 2 to FES 13 DRAINAGE AREA: 0.48 ac. DESIGN FREQUENCY: 10 yr. INPUT PARAMETERS Channel Discharge : 1.0 cfs (.03 MA 3/s) 'Peak Flow Period : 12 hours Channel Slope : 0.032 ft/ft (0.032 m/m) Channel Bottom Width : 2.0 ft (.61 m) ,Left Side Slope :3:1 Right Side Slope :3:1 'Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 CALCULATIONS Initial Depth Estimate = 0.16 * (1.0 /(0.032^0.5))^0.375 = 0.31 ft (.09 m) 'Final Channel Depth (after 7 iterations) = .24 ft (0.07 m) Flow Area = (2.0 * 0.2)+(0.5 *0.24^2 * (3.0+3.0)) = 0.6 sq.ft (0.1 m^2) Wet Per. =2.0 +(0.2*(((3.OA2)+1)^.5 +((3.0^2)+1)^.5)) = 3.5 ft (1.1 m) ,Hydraulic Radius = (0.6 / 3.5) = 0.2 ft (a.1 m) Channel Velocity =(1.486/0.055)*(0.2"0.667)*(0.032^.5) = 1.6 fps (0.5 m/s) 'Channel Effective Manning's Roughness Calculated Shear (Td) = 62.4 * 0.24 * 0.032 Safety Factor = (Tp/Td) = (1.55 /0.47) r.. = 0.055 = 0.47 psf (22.6 Pa) = 3.28 1 North American Green- ECMDS Version 4.3 277/2008 1153AM MPUTED BY: TMT PROJECT NAME: Keeley Pak OIECT NO.: 2326 FROMSTATION/REACH: Sw4le2to TOSTATIOWREACH: Swate2toFES DRAINAGEAREA 0.48ac. ESIGNFREQUENCY: 10 w. HYDRAULIC RESULTS S75 (n-0.0551 Discharge Peak Flow eloaty(Ips Area ls4Nl Hydraic Normal ds Period a RadituB De Ih 1.0 120 1.56 014 0.10 0.24 S - 0.0320 if '\h6d 200h1 1 LINER RESULTS Not to Scale Reach Matteg we tahily Maly Vegetation Charac[erislics Permisslob Caleilated Safety Fads Remarks Staple Pattern Phase Class Type D;;i Shea Stress fJo l Shea Strew Ipso Straight S75 Unvegdetee 1.55 0.47 3.28 STABLE Staple D 1 1 1 1 1 1 1 1 ORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN ORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. SER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS PROJECT NAME: Keeley Park PROJECT NO.: 2326 'COMPUTED BY: TMT DATE: 2/7/2008 FROM STATION/REACH: Swale 3 to FES 23 TO STATION/REACH DRAINAGE AREA: 0.36 ac. DESIGN FREQUENCY: 10 yr. INPUT PARAMETERS Channel Discharge .8 cfs (.02 MA 3/s) 'Peak Flow Period : 12 hours Channel Slope :0.019 ft/ft (0.019 m/m) Channel Bottom Width : 2.0 ft (.61 m) 'Left Side Slope :3:1 Right Side Slope :3:1 'Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 CALCULATIONS SOFTWARE VERSION 4.3 Swale 3 to FES 23 Initial Depth Estimate = 0.16 * (0.8 /(0.019^0.5))^0.375 = 0.31 ft (.09 m) 'Final Channel Depth (after 7 iterations) = .24 ft (0.07 m) Flow Area = (2.0 * 0.2)+(0.5 *0.24"2 * (3.0+3.0)) = 0.7 sq.ft (0.1 m^2) Wet Per. =2.0 +(0.2*(((3.0"2)+1)^.5 +((3.0^2)+1)^.5)) = 3.5 ft (1.1 m) 'Hydraulic Radius = (0.7 13.5) = 0.2 ft (0.1 m) Channel Velocity =(1.486/0.055)*(0.2"0.667)*(0.019^.5) = 1.2 fps (0.4 m/s) 'Channel Effective Manning's Roughness = 0.055 Calculated Shear (Td) = 62.4 * 0.24 * 0.019 = 0.29 psf (13.7 Pa) Safety Factor = (Tp/Td) = (1.55 /0.29) = 5.41 '„ Nuth American Green- ECMDSVeision 4.3 -- 1217r&M 11:54AMCOMPUTEDBY: TMT PROJECT NAME: Keeley Pak DJECT NO. 2326 FROM STATION/REACH: Swale 3 to TO STATIOW EACH: Swab 3to FES RAINAGE AREA: 0.36 ac. ]DESIGN FREQUENCY: 10 m. HYDRAULIC RESULTS 575 (nA.0551 Discluge Peak %w eloaTy (fps Area (saftl HO,,,Ac Normal d: Period hr Radiuc N Depth ft 118 120 112 0.66 0.19 .0.24 S - 0.0190 1 'VlB d Zoo rrr t1' 3.01 Not to Scale Reach Marring Type taMSly Analy' Vegetation Characteristics Pan+suble Calculated Safety Factor Ramaks Staple Pattern Phase Class Type Deristy Shea Stress (PdI Shea Shett (pso Straight S75 Umvegeteted 1.55 0.29 541 STABLE Staple D NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN 'NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS SOFTWARE VERSION 4.3 PROJECT NAME: Keeley Park PROJECT NO.: 2326 'COMPUTED BY: TMT DATE: 2/7/2008 FROM STATION/REACH: Swale 4 to FES 28 TO STATION/REACH: Swale 4 to FES 28 DRAINAGE AREA: 0.68 ac. DESIGN FREQUENCY: 10 yr. INPUT PARAMETERS Channel Discharge : 1.5 cfs (.04 MA 3/s) l Peak Flow Period : 12 hours Channel Slope :0.074 ft/ft (0.074 m/m) Channel Bottom Width : 2.0 ft (.61 m) ' Left Side Slope :3:1 Right Side Slope :3:1 Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 CALCULATIONS Initial Depth Estimate = 0.16 * (1.5 /(0.074^0.5))^0.375 = 0.30 ft (.09 m) Final Channel Depth (after 9 iterations) =.23 ft (0.07 m) Flow Area = (2.0 * 0.2)+(0.5 *0.23"2 * (3.0+3.0)) = 0.6 sq.ft (0.1 m^2) Wet Per. =2.0 +(0.2*(((3.OA2)+1)^.5 +((3.0^2)+1)".5)) = 3.5 ft (1.1 m) ' Hydraulic Radius = (0.6 / 3.5) = 0.2 ft (0.1 m) Channel Velocity =(1.486/0.055)*(0.2^0.667)*(0.074^.5) = 2.4 fps (0.7 m/s) ' Channel Effective Manning's Roughness = 0.055 Calculated Shear (Td) = 62.4 * 0.23 * 0.074 = 1.08 psf (51.9 Pa) Safety Factor = (Tp/Td) = (1.55 /1.08) = 1.43 Diuhnge Peak Flow ebcdy([pc Arm[cq.Nl Rydraufc Normal fcfsl Period [Nsl 1.5 120 238 0.63 U18 0.23 LINER RESULTS L DSB ac. IDESIDNFREUUENUr. lUw. S75 [? S-0.0740 1 'WicI 20011, 1 Norio Scale Reach Matting Type lahily Analy' Vegetation f?araclerislics PertrusciLle CaIClated Safely Fade Rernarb Staple Pattern Phase pass Type .;T, Sheer SUett Ip?l Shear Siren Ivsfl Straight S75 Unvegetaled 1.55 1.08 1.43 STABLE Staple D 1 1 1 1 1 1 e orth American Green- ECMDS Version 4.3 .4130/2005 OR57AMCOMPUTED BY: TMT PROJECT NAME: Keeley Pak PROJECT NO.: 2326, FROM STATIONIREAM: Swab 45 O STATION/REACH:. Swale #5 DRNNAGEAREA: N/A ESIGN FREQUENCY: 10Yr. HYDRAULIC RESULTS Discha Peak Flow V (s4ft) Hy? S75 (n-0.0,45) pe eledy (fpsJ Area aurc Normal cfs PerrodlMs) Radiusfftl Depth III 104 120 220 4.56 057 0.94 S -0.0100 1 1V,rdthttT.DOIt ' 3.01 LINER RESULTS Not to Scale Reach Mattiig Type Stabaty Vegetation Chaactaistics Permissible Calculated Safety Factor Remarks Staple Pattern Phase Class Type Density Shea Stress IPSO Shea Shess (PSO Straight S75 Unvegetated 1.55 0.59 263 STABLE Staple D Back W Iryut S.- NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: Keeley Park COMPUTED BY: TMT FROM STATION/REACH: Swale #5 DRAINAGE AREA: N/A PROJECT NO.: 2326 DATE: 4/30/2009 TO STATION/REACH: Swale #5 DESIGN FREQUENCY: 10 Yr. ***************************************************************************** INPUT PARAMETERS , ***************************************************************************** Channel Discharge Peak Flow Period Channel Slope Channel Bottom Width Left Side Slope Right Side Slope : 10.4 cfs (.29 mA3/s) : 12 hours : 0.01 ft/ft (0.01 m/m) : 2.0 ft (.61 m) 3.1 . 3.1 Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 ***************************************************************************** CALCULATIONS ***************************************************************************** Initial Depth Estimate = 0.16 * (10.4 /(0.010A0.5))A0.375 Final Channel Depth (after 6 iterations) Flow Area = (2.0 * 0.9)+(0.5 *0.94A2 * (3.0+3.0)) Wet Per. =2.0 +(0.9*(((3.0A2)+1)A.5 +((3.0A2)+,)A.5)) Hydraulic Radius = (4.6 / 8.0) Channel Velocity =(1.486/0.045)*(0.6A0.667)*(0.010A.5) Channel Effective Manning's Roughness Calculated Shear (Td) = 62.4 * 0.94 * 0.010 Safety Factor = (Tp/Td) = (1.55 /0.59) 0. .94 4.6 8.0 0.6 2.3 31 ft (.28 m) ft (0.29 m) sq. ft (0.4 m"2) ft (2.4 m) ft (0.2 m) fps (0.7 m/s) = 0.045 0.59 psf (28.2 Pa) 2.63 11 ;NortllAmerican Green - ECMDS Version 4 3 9121/2009 12.12 PM COMPUTED BY: TMT _ IPROJECTNAME: Keeley Park ;PROJECT NO.: 2326 (FROM STATIONh1EACH: Swale lf6 TO STATION/REACH: Swale #6 DRAMAGEAREA: N/A DESIGN FREQUENCY: 10YR. HYDRAULIC RESULTS Discharge Peak Flow Velocity (fps Area (s4R( Hydraulic Normal S75 (n-0.055) cfs Period(hrs) Radusfitl Depth fft) ' h.2 120 213 0.56 0.17 0.21 S-0.0670 1?1 oHOm 3.0 VldBth=2000 LINER RESULTS Not to Scale Reach MaOing Type tat Nfty Analysis Vegetatim Chara vistirs Paririssble Calmlated Safely Fads Remarks Staple Pattern Phwse Class Type Density Shear Stress (psf) Shear Stress (p-fl Straight S75 Urwegetaled 1.55 089 1.74 STABLE Staple D Back to Input Sneer i III I? 1 n***************************************************************************** NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: Keeley Park COMPUTED BY: TMT FROM STATION/REACH: Swale #6 DRAINAGE AREA: N/A PROJECT NO.: 2326 DATE: 9/21/2009 TO STATION/REACH: Swale #6 DESIGN FREQUENCY: 10 YR. 1 1 ***************************************************************************** INPUT PARAMETERS ***************************************************************************** Channel Discharge Peak Flow Period Channel Slope Channel Bottom Width Left Side Slope Right Side Slope 1.2 cfs (.03 mA3/s) 12 hours 0.067 ft/ft 2.0 ft (.61 3:1 3:1 (0.067 m/m) m) Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 ***************************************************************************** CALCULATIONS ***************************************************************************** Initial Depth Estimate = 0.16 * (1.2 /(0.067A0.5))A0.375 = 0.28 ft (.09 m) Final Channel Depth (after 7 iterations) _ .21 ft (0.07 m) Flow Area = (2.0 * 0.2)+(0.5 *0.21A2 * (3.0+3.0)) = 0.6 sq.ft (0.1 mA2) Wet Per. =2.0 +(0.2*(((3.0A2)+1)A.5 +((3.0A2)+1)A.5)) = 3.3 ft (1.0 m) Hydraulic Radius = (0.6 / 3.3) = 0.2 ft (0.1 m) Channel Velocity =(1.486/0.055)*(0.2A0.667)*(0.067A.5) = 2.1 fps (0.6 m/s) Channel Effective Manning's Roughness = 0.055 Calculated Shear (Td) = 62.4 * 0.21 * 0.067 = 0.89 psf (42.7 Pa) Safety Factor = (Tp/Td) _ (1.55 /0.89) = 1.74 IL Level Spreader (not to scale) -14 Vegetated ??t •`I\?_1?`?r,'?? `ls??•:!? xis-.A ° ?» ??-..i 1 ransitton diversion u'q"u ;w`Y°-'?1??t' ^? '. ti• to 0 grade ?, gyp}} u? N' ?Y, i >?' 4, la r t4411 ?- r1'" ?:??j?? .fir aA ?.-5 IA ytY•.{Ir ?` , ? J.U-iEi .i. 1}t'?A? ` 1 r1+t ?, SYr• l .A tii' ?'isii ?. N ?•, a.r E j;P } ?•.yr w iw1 ' 4 ili, t.i ???yt,.. ,?. ?`\ r gyp j Stabilized "`~ ;?'?\??''Ir?+fy+. a?Va ?6t.•a ,? ?/ slope Stable 'i.w".'1•l i' ,fZtr('4n.\.}rT??,??' v1f" 1w} ry; `?a' N?\ undisturbed' 14 >xf,?fr.r+' i ?' ia.. ?^" ,?,..• outlet ?a. l fit, ?' yy #f•, xl. 4 ' ? ?- .?'"r? t aln„ `?' ii ?l• Ri• yt.. t` yrr ,,. ,w .Ufi, ?' S.r ?,?}` \ .r'f +' ! ? ?? yy- N• Cr+•.. alr r., Ana rta rt?i• ,al" µt•1` ?rr. ?,l•'?i?f{?{. '?'u?'? _ f?/?'?• "t`•. \v ?r *0, ' \><I ??/ iM ?,,1rr"' wln. wlr' \r. hr. wit k'ly•r ufi. '` ??1. ..?•. ,?,?.t, h t( ur hr ?r?, .11 , r?t It, kL1 Figure 6.40a Level spreader is. designed to disperse small volumes of concentrated flow across stable slopes. Crass Section Material stapled in place . ra??l???,+L Level lip of spreader Variable 1011 Buried ?i 6- min _ I Figure 6.40b Detail of level spreader cross section. I Table 6.40a Minimum Dimensions for Level Spreader Design Flow tfs 0-10 Entrance Depth End Width Width --_-minimum dimension in feet,- 10 0.5 3 Length 10 UOE 10-20 16 -OX31- 10° 3 20 20-30 24 0-7 3 30 Level Spreader Detail N.T.S. u 1 J 1 1 1 Section 4 Site Hydrology 1 1 1 1 1 1 ' Condition Composite C Values PROJECT NAME: Keeley Park' BY: Tristan Teasley PROJECT NUMBER:. 2326 DATE: 4/17/09 Cwoods= 0,25 Cimperv-= 0.95 ' CLawn= 0,30 CGravel= 0.55 1 1 1 11 1 1 AREA Drainage Areas (Acres) COMPOSITE Woods Lawn Imperv. Gravel Total C rre Area K U. 2!2 t.JM 0.10 0.00 6.03 0.31 Pre Area B 1.31 6.04 0.65 0.88 8.88 0.36 Pre Area C 0.62 0.77 0.00 0.00 1.39 0.28 Post Area A' 0.18 426 1.59 0.00 6.03 0.47 Post Area B 0,42 6.21 2.25 0.00 8.88 0.46 Post Area C 0.00 030 0.69 0.00 1.39 0.62 Area D 8.11 5.48 0.37 0.00 13.96 0.29 Area E 4.86 4.01 0.10 0.00 8.97 0.28 TOTAL 15.79 33.11 5.75 0.88 55.53 11 Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area A Pre Calculated By: TMT Date: 4/16/2009 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft) 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): TC= 0.007 (nL) ^0.8 Tc (min.)= P"0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW Segment ID: Paved or Unpaved Flow length, L (ft): Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: Tc= L / (3600xV) Tc (min.)= Total Shallow Concentrated Flow Tc = 11.5 min. 0.19 hr. 2.7 0.0 0.0 2.7 min. 0.04 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft"2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49*r^(2/3)"s^(0.5)/n Flow length, L (ft): TC= L / (3600xV) Tc (min Total Sheet Flow Tc = 0.00 0.00 0.00 1.00 1.00 1.00 0-00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 1490.00 1490.00 1490.00 0.00 0.00 co10 .)= 0.0 0.0 0.0 0.0 min. 0.00 hr. Minutes 2326 TC-Calculator 4-16-09.xls Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area B Pre Calculated By: TMT Date: 4/16/2009 Post-develop ed Tc Calculation ' SHEET FLOW Segment ID: A Surface description (table 3-1): Betmudagrass Manning's roughness coeff., n: 0.410 Flow length, L (total L<300') (ft): 100.0 ' 2yr 24 hour rainfall, P (in): 3,84 Q.00 0.00 Land slope, s (ft/ft): 0.050 _.: 0 OOt)_;... .. ,.: 0,000 Tc= 0.007 K) ^0.8 Tc (min.)= 13.9 0.0 0.0 P^0.5 x s^0.4 Total Sheet Flow Tc = 13.9 min. ' 0.23 hr. SHALLOW CONCENTRATED FLOW Segment ID: B C ' Paved or Unpaved unpaved unpaved Flow length, L (ft): 307.0 38,0 Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: 0.087 4.76 03 30 9.27 0.000 0.01 TC= L / (3600xV) Tc (min.)= 1.1 0.1 0.0 Total Shallow Concentrated Flow Tc = 1.1 min. ' 0.02 hr. CHANNEL FLOW Segment ID: Manning's Coefficient 0.00 0.00 0.00 Hydraulic Radius, R (ft) _ (A/Pw) 1.00 1.00 1.00 Cross Sectional Area, A (ft^2) 0.00 0.00 0.00 ' Wetted perimeter, Pw (ft) 0.00 0.00 0400 Channel slope, s (ft/ft) 0.000 0.000 0.000 ' Velocity, V (ft/s): = (1.49*rA(2/3)*SA(0.5)/n 1490.00 1490.00 1490.00 Flow length, L (ft): 0400 0.00 0400 TC= L / (3600xV) Tc (min.)= Total Sheet Fl T = 0.0 0.0 0.0 ow c 0.0 min. 0.00 hr. ' ??..D.: Minute 1 2326_TC-Calculator 4-16-09.x1s'` f rei "? Pre; < /09 Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area C Pre Calculated By: TMT Date: 4/16/2009 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nQ ^0.8 Tc (min.)= P"0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW Segment ID: Paved or Unpaved Flow length, L (ft): Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: Tc= L / (3600xV) Tc (min.)= Total Shallow Concentrated Flow Tc = CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0;5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min.) Total Sheet Flow Tc = 13.9 min. 0.23 hr. ..................... ................ ........ ............. Unpaved Unpaved 1>05.0 0.034 0-M 01000 2.99 0.01 0.01 0.6 0.0 0.0 0.6 min. 0.01 hr. 4.00 0 00 0.00 1.00 1.00 1.00 4,00 0,00 am 4.00 0.00 0.00 0000 0.000 4.000 1490.00 1490.00 1490.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 min. 0.00 hr. = Minutes 2326 TC-Calculator 4-16-09.xls, Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area A Post Calculated By: TMT Date: 4/16/2009 r Post-develop ed Tc Calculation SHEET FLOW Segment ID: A ' Surface description (table 3-1): Pavement Manning's roughness coeff., n: 0.011 Flow length, L (total L<300') (ft): 42.0 ' 2yr 24 hour rainfall, P (in): 3,84 0.00 U0 Land slope, s (ft/ft): 0 .01.5 , 0.04D 0.000 ' Tc= 0.007 K) ^0.8 Tc (min.)= 0.6 0.0 0.0 P^0.5 x s^0.4 Total Sheet Flow Tc = 0.6 min. ' 0.01 hr. SHALLOW CONCENTRATED FLOW Segment ID: g ' Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 365.0 Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: uu 1.61 .0.000 0.01 0-.000 0.01 Tc= L / (3600xV) Tc (min.)= 3.8 0.0 0.0 ' Total Shallow Concentrated Flow Tc = 3.8 min. 0.06 hr. CHANNEL FLOW Segment ID: Manning's Coefficient 0.01 0.00 0.0p Hydraulic Radius, R (ft) _ (A/Pw) 0.50 1.00 1.00 Cross Sectional Area, A (ft^2) 1.57 O.OO 0.00 Wetted perimeter, Pw (ft) 3.14 0.00 0.00 Channel slope, s (ft/ft) 0.020 0.000 0.000 Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0.5)/n 10.21 1490.00 1490.00 Flow length, L (ft): 342.00 0.00 040 Tc= L / (3600xV) Tc (min.)= 0.6 0.0 0.0 Total Sheet Flow Tc = 0.6 min. 0.01 hr. 2326 TC-Calculator 4-16-09.xis, Project Name: Keeley Road Park ' Project No.: 2326 Sheet Title: Area B Post Calculated By: TMT ' Date: 4/1 6/2009 Post-developed Tc Calculation SHEET FLOW ' Segment ID: A Surface description (table 3-1): Short Grass Manning's roughness coeff., n: 0A50 Flow length, L (total L<300') (ft): 45.0 ' 2yr 24 hour rainfall, P (in): 184 Q.00 O.OQ Land slope, s (ft/ft): .. 0.01.5 ... 01.000 ... 0-000--- . TC= 0.007 (nL) ^0.8 Tc (min.)= 5.3 0.0 0.0 P^0.5 x s"0.4 Total Sheet Flow Tc = 5.3 min. 0.09 hr. ' SHALLOW CONCENTRATED FLOW Segment ID: B Paved or Unpaved Paved Unpaved , Flow length, L (ft): 133.0 Watercourse slope, s (ft/ft): 0...1045 0400 44000 Average velocity, V (ft/s) = 16.1345(s)^0.5: 3.42 0.01 0.01 , TC= L / (3600xV) Tc (min.)= 0.6 0.0 0.0 Total Shallow Concentrated Flow Tc = 0.6 min. , 0.01 hr. CHANNEL FLOW Segment ID: Manning's Coefficient 0.01 0.00 0.00 Hydraulic Radius, R (ft) _ (A/Pw) 0.38 1.00 1.00 Cross Sectional Area, A (ft^2) 1.77 0.00 0.00 Wetted perimeter, Pw (ft) 4.71 0.00 0.00 Channel slope, s (ft/ft) 0.010 0.000; 0.000 Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0.5)/n 5.97 1490.00 1490.00 ' Flow length, L (ft): 267.00 0.00 a.00 TC= L / (3600xV) Tc (min.)= 0.7 0.0 0.0 Total Sheet Flow Tc = 0.7 min. ' 0.01 hr. ...::...:.. ..:. . :»::::>::>>>::::::::>::>::>::>:=;::>:>::>:>::>::»>::;:>:>::>:><:::> Minutes 2326 TC-Calculator 4-16-09.xls, ? a ' ?c l? y 09 Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area C Post Calculated By: TMT Date: 4/16/2009 ' Post-develop ed Tc Calculation ' SHEET FLOW Segment ID: ' Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): ' 2yr 24 hour rainfall, P (in): 0.00 0.00 ! 0.00 Land slope, s (ft/ft): 0.00Q _ ......: ......... A.000:,; _ Q,DQO ............ Tc= 0.007 (nQ ^0.8 Tc (min.)= 0.0 0.0 0.0 P^0.5 x s^0.4 Total Sheet Flow Tc = 0.0 min. ' 0.00 hr. ' SHALLOW CONCENTRATED FLOW Segment ID: ............ A _.._ ....... ' Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 120,0 Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: 0.042 3.29 0,000 ....... 0.01 0*DDO ....... .............. 0.01 TC= L / (3600xV) Tc (min.)= 0.6 0.0 0.0 Total Shallow Concentrated Flow Tc = 0.6 min. ' 0.01 hr. ' CHANNEL FLOW Segment ID: ' Manning's Coefficient 0.00 0.00 0.00 Hydraulic Radius, R (ft) _ (A/Pw) 1.00 1.00 1.00 ..... Cross Sectional Area, A (ft^2) ...................... . 0.00 0.00 0.00 ' Wetted perimeter, Pw (ft) 0.D0 0.00 _ 0.00 Channel slope, s (ft/ft) 0.000 0.000 01.000 ' Velocity, V (ft/s): _ (1.49" r^(2/3)" s^(0.5)/n 1490.00 1490.00 1490.00 Flow length, L (ft): 40 0.00 0;00 ' Tc= L / (3600xV) Tc (min.)= Total Sheet Flow Tc = 0.0 0.0 min. 0.0 0.0 0.00 hr. :.::.::.::.:::.::.:::.:::...:..::.. X .;;::<:.:;.............:::.::::::: $;Minutes 2326_TC-Calculator 4-16-09.xls, Aroma" ,"Pot tb09 Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area D Calculated By: TMT Date: 4/16/2009 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Woods Manning's roughness coeff., n: 0,400 Flow length, L (total L<300') (ft): 100.0 2yr 24 hour rainfall, P (in): 3,84 Land slope, s (ft/ft): 0.0.24 Tc= 0.007 (nL) "0.8 Tc (min.)= 18.3 P^0.5 x s^0.4 Total Sheet Flow Tc = 18.3 min. 0.30 hr. SHALLOW CONCENTRATED FLOW 0.00 0.00 Or000 0.000 0.0 0.0 Segment ID: B Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 574.0 434.0 Watercourse slope, s (ft/ft): 0,0 6 QW057> 0 ODO Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.60 3.85 0.01 TC= L / (3600xV) Tc (min.)= 3.7 1.9 0.0 Total Shallow Concentrated Flow Tc = 5.6 min. 0.09 hr. CHANNEL FLOW Segment ID: D .. ........................ Manning's Coefficient 0.03 0.00 Q 00 Hydraulic Radius, R (ft) = (A/Pw) 1.39 1.00 1.00 Cross Sectional Area, A (ft^2) 26.00 0.00 0.00 Wetted perimeter, Pw (ft) 18.77 0.00 0.00 Channel slope, s (ft/ft) 0.007 0.000 0.000 Velocity, V (ft/s): = (1.49*r"(2/3)*s^(0.5)/n 5.16 1490.00 1490.00 Flow length, L (ft): 523.00 0100 ! 0.00 TC= L / (3600xV) Tc (min.)= 1.7 0.0 0.0 Total Sheet Flow Tc = 1.7 min. 0.03 hr. Minutes 2326 TC-Calculator 4-16-09.xt Aria D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area E 1 Calculated By: TMT Date: 4/16/2009` Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): TC= 0.007 (nL) ^0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW 20.0 min. 0.33 hr. Segment ID: >B ' Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 788.0 Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: 0.063 4.03 0400 0.01 01000 .. 0.01 Tc= L / (3600xV) Tc (min.)= 3.3 0.0 0.0 ' Total Shallow Concentrated Flow Tc = 3.3 min. 0.05 hr. ' CHANNEL FLOW Segment ID: Manning's Coefficient C 01.03 0.00 0.00 Hydraulic Radius, R (ft) _ (A/Pw) 1.39 1.00 1.00 ' .... Cross Sectional Area, A (ft^2) ..................... . 26.00 0.00 0.00 Wetted perimeter, Pw (ft) 18.77 0100 0.00 Channel slope, s (ft/ft) 0.007 0.000 < 0.000 ' Velocity, V (ft/s): = (1.49'r^(2/3)" s^(0.5)/n 5.16 1490.00 1490.00 Flow length, L (ft): 175.00 0.00 0.00 TC= L / (3600xV) Tc (min.)= 0.6 0.0 0.0 ' Total Sheet Flow Tc = 0.6 min. 0.01 hr. mx- ................. . Minutes 2326_TC-Calculator 4-16-09.x# " *A-" In?' Summary of Time of Concentration(s) 10 Year 2 Year Swale/Ditch Basin Tc Rainfall Rainfall No. Area [Min] Intensity Intensity [Ac] [Ins/Hr] [Ins/Hr] Area A Pre 6.03 14.2 5.01 176 Area B Pre 8.88 15.0 4.86 3,64 Area C Pre 1.39 14.4 4.97 3.73 Area A Post 6.03 4.9 * 7.17 5166 Area B Post 8.88 6.7 6.69 5.23 Area C Post 1,39 0.6 * 7.17 5,66 Area D 13.95 25.5 3.90 2186 Area E 8.97 23.8 4.06 198 * Use a minimum of 5 min. Time of Concentration ** All other inlets not listed use a minimum of 5 min. Time of Concentration Table 3.1 Roughness Coefficients (Manning's n) for Sheet Flow Surface Description Smooth Surfaces (concrete, asphalt, gravel, or bare soil) Fallow (no residue) Cultivated Soils Residue cover <=20% Residue cover >20% Grass Range Woods Short grass prairie Dense grasses Bermudagrass Light underbrush Dense underbrush n 0,0111 0.05 0.05 0.17 C05 024 0.4 0.1:3 0.4 0,5 1 1 1 1 1 Section 5 ' ioa smey Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area D Calculated By: TMT Date: 4/16/2009 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nL) ^0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW 18.3 min. 0.30 hr. .00 0.0 Segment ID: Paved or Unpaved Unpaved Unpaved Flow length, L (ft): $74.0 434.0 Watercourse slope, s (ft/ft): olfl26 Q?057 0.000 Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.60 3.85 0.01 Tc= L / (3600xV) Tc (min.)= 3.7 1.9 0.0 Total Shallow Concentrated Flow Tc = 5.6 min. 0.09 hr. CHANNEL FLOW Segment ID: D Manning's Coefficient 0.03 0.00 0,00 Hydraulic Radius, R (ft) _ (A/Pw) 1.39 1.00 1.00 Cross Sectional Area, A (ft^2) 26.00 0,00 0,00 Wetted perimeter, Pw (ft) 18.77 0.00 ! 0.00 Channel slope, s (ft/ft) 0.007 0.000 0.000 Velocity, V (ft/s): = (1.49*r^(2/3)*s^(0.5)/n 5.16 1490.00 1490.00 Flow length, L (ft): 523.00 0.00 O.QQ Tc= L / (3600xV) Tc (min.)= 1.7 0.0 0.0 Total Sheet Flow Tc = 1.7 min. 0.03 hr. 2326 TC-Calculator 4-16-09.xIs Aria J Minutes ?I 7 I' IF LI 1 1 1 1 ' Project Name: Keeley Road Park Project No.: 2326 Sheet Title: Area E Calculated By: TMT Date: 4/16/2009 ' Post-develop ed Tc Calculation 1 1 1 1 SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nL) ^0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW Segment ID: Paved or Unpaved Flow length, L (ft): Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: Tc= L / (3600xV) Tc (min.)= Total Shallow Concentrated Flow Tc = 20.0 min. 0.33 hr. '!B ... Unpaved Unpaved 788.0 0.063.. 0.000 ' 0.000 4.03 0.01 0.01 3.3 0.0 0.0 3.3 min. 0.05 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) = (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): = (1.49`r^(2/3)" s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min Total Sheet Flow Tc = C.. 0.03 0.00 0.00 1.39 1.00 1.00 26.00 o.oo 0.00 1$17 0.00 0.00 0.007 0.000 0.000 5.16 1490.00 1490.00 17$,00 0.00 0.00 0.6 0.0 0.0 0.6 min. 0.01 hr. Minutes 2326 TC-Calculator 4-16-09 Summary of Time of Concentration(s) 10 Year 2 Year Swale/Ditch Basin Tc Rainfall Rainfall No. Area [Min] Intensity Intensity [Ac] [Ins/Hr] [Ins/Hr] Area A Pre 6.03 14.2 5.01 3.76 Area B Pre 8.88 15.0 4,86 3, 54 Area C Pre 1.39 14.4 4,97 3,73 Area A Post 6,03 4.9 * 7,17 5,66 Area B Post 8,88 6.7 8,69 513 Area C Post 1.38 0.6 * 7,17 5.86 Area D 13,95 25.5 180 2,86 Area E 8.97 23.8 4.06 198 * Use a minimum of 5 min. Time of Concentration ** All other inlets not listed use a minimum of 5 min. Time of Concentration Table 3.1 Roughness Coefficients (Manning's n) for Sheet Flow Surface Description n Smooth Surfaces (concrete, asphalt, gravel, or bare soil) 0.01, Fallow (no residue) 0.-105 Cultivated Soils Residue cover <=20% 0.00 Residue cover >20% 0.17 Grass Short grass prairie C.15 Dense grasses 0.24 Bermudagrass 0.41 Range 0.1'3 Woods Light underbrush 0A Dense underbrush 0,5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Design Area - Pre vs Post Flows PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 4/17/09 Pre Flows Label C-Value Intensity Intensity Area (ac) Flow Flow 2-Yr (in/hr) 10-Yr in/hr) 2-Yr (cfs 10-Yr (cfs) Area A 0.31 3.76 5.01 6.03 7.03 9.37 Area B 0.36 3.64 4.86 8.88 11.64 15.54 Area C 0.28 3.73 4.97 1.39 1.45 1.93 Total Flow 20.12 26.84 Post Flows Label C-Value Intensity (in/hr) Intensity Area (ac) Flow Flow 2-Yr (in/hr) 10-Yr (in/hr) 2-Yr (cfs) 10-Yr (cfs) Area A 0.47 3.76 7.17 6.03 10.66 20.32 Area B 0.46 3.64 6.69 8.88 14.87 27.33 Area C 0.62 3.73 7.17 1.39 3.21 6.18 Total Flow 28.74 53.83 Difference in flows Label Flow 2-Yr (cfs) Flow 10-Yr (cfs) Area A 3.63 10.96 Area B 3.23 11.79 Area C 1.76 4.24 Total additional flow (2-Yr) = 8.62 cfs Total additional flow (10-Yr) = 26.99 cfs L C l l 0 1 Section 5 10% Study 1 F J 1 L7 1 1 10% Study Flows PROJECT NAME: Keeley Park BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 4/16/09 Flows - Areas Downstream of the pond Label C-Value Intensity Intensity Area ac Flow Flow 2-Yr in/hr _ 0-Yr in/hr 2-Yr cfs 10-Yr cfs Area D 0.29 2.86 3.9 13.96 11.58 15.79 Area E 0.28 2.98 4.06 8.97 7.48 10.20 Total 19.06 25.99 Flows from Pond 2 Yr. = 62 cfs 10 Yr. = 146 cfs Total POST flows at 10% point 2 Yr. =181 cfs 10 Yr. = 172 cfs Note: Flows from ECS (Pond Sub consultant) Note: This is the total Flows from the pond plus the flows from the contributing downstream areas D and E. ' Total additional flow (2-Yr) = 8.62 cfs Note: These flows are the difference Total additional flow 10-Yr = 26.99 cfs between the Pre and the Post conditions for our design area. Taken from the spreadsheet "Design Area - Pre vs Post Flows". Total PRE flows at 10% point 2 Yr. = 72 cfs 10 Yr. = 145 cfs Note: This is the total Post Flows at the 10% point, minus the difference between the Pre and Post conditions flow above. 10% Study Results ' PROJECT NAME: Keeley Park' ` BY: Tristan Teasley PROJECT NUMBER: 2326 DATE: 4/22/09 ' Cross Section # Slope (ft/ft) Base Width (ft) Side Slope Left (H:V) Side Slope Right (H:V) 1 0.0175 5.35 3.08 3.83 2 0.0213 8.31 1.50 5.50 3 0.0167 9.31 2.75 1.50 4 0.0067 6.70 2.73 2.73 5 0.0118 6.20 1.45 2.27 6 0.006 7.90 10.99 7.52 7 0.008 18.00 14.00 6.50 8 0.029 5.61 1.82 3.80 Velocity (ft/s) Cross Section # 2 Yr. Pre 2 Yr. Post Increase 10 Yr. Pre 10 Yr. Post Increase 1 4.38 4.51 0.13 5.26 5.50 0.24 2 4.52 4.67 0.15 5.50 5.76 0.26 3 4.40 4.56 0.16 5.42 5.70 0.28 4 3.18 3.28 0.10 3.83 4.01 0.18 5 4.16 4.30 0.14 5.04 5.28 0.24 6 2.35 2.42 0.07 2.81 2.94 0.13 7 2.44 2.52 0.08 2.97 3.11 0.14 8 5.44 5.61 0.17 6.57 6.87 0.30 Depth (ft) Cross Section # 2 Yr. Pre 2 Yr. Post Increase 10 Yr. Pre 10 Yr. Post Increase 1 1.55 1.63 0.08 2.15 2.33 0.18 2 1.26 1.34 0.08 1.80 1.97 0.17 3 1.35 1.44 0.09 1.98 2.17 0.19 4 1.91 2.02 0.11 2.69 2.92 0.23 5 1.82 1.93 0.11 2.60 2.84 0.24 6 1.45 1.52 0.07 1.97 2.12 0.15 7 1.04 1.10 0.06 1.47 1.60 0.13 8 1.40 1.48 0.08 1.98 2.15 0.17 Note: The entire outfall channel is islocated in a deep valley within our property limits. Because of this valley type condition, the outfall ditch has a average depth of more than five (5) feet. The maximum increase in depth is only 0.24 feet. The maximum increase in velocity is 0.30 feet/see. Note: At cross section #6 - #7 the channel starts to widen and transform into a lowland wetland. The area transforms back into a defined channel after cross section #8. Worksheet for XSC #1 - 2 YR Pre Project Description Friction Method Solve For Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Manning Formula Normal Depth Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope Subcritical 0.045 0.01750 ft/ft 3.08 ft/ft (H:V) 3.83 ft/ft (H:V) 5.35 ft 72.40 fts/s 1.55 ft 16.54 ft- 16.48 ft 16.04 ft 1.34 ft 0.03147 ft/ft 4.38 ft/s 0.30 ft 1.84 ft 0.76 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.55 ft 1.34 ft 0.01750 ft/ft 0.03147 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:08:17 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #1 - 10 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data. Roughness Coefficient 0.045 Channel Slope 0.01750 ft/ft Left Side Slope 3.08 ft /ft (H:V) Right Side Slope 3.83 ft/ft (H:V) Bottom Width 5.35 ft Discharge 145.00 f?/s Results Normal Depth 2.15 ft Flow Area 27.56 ft2 Wetted Perimeter 20.85 ft Top Width 20.24 ft Critical Depth 1.92 ft Critical Slope 0.02859 ft/ft Velocity 5.26 ft/s Velocity Head 0.43 ft Specific Energy 2.58 ft Froude Number 0.79 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft /s Normal Depth 2.15 ft Critical Depth 1.92 ft Channel Slope 0.01750 ft/ft Critical Slope 0.02859 ft/ft Bentley Systems, Ina Haestad Methods Solution Center Bentley FlowMaster 108.01.071.00] 412212009 4:08:22 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 11 of i Worksheet for XSC #2 - 2 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.02130 ft/ft Left Side Slope 1.50 ft /ft (H:V) Right Side Slope 5.50 ft/ft (H:V) Bottom Width 8.31 ft Discharge 72.40 ft'/s Results Normal Depth 1.26 ft Flow Area 16.01 ft2 Wetted Perimeter 17.62 ft Top Width 17.12 ft Critical Depth 1.13 ft Critical Slope 0.03225 ft /ft Velocity 4.52 ft/s Velocity Head 0.32 ft Specific Energy 1.58 ft Froude Number 0.82 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.26 ft Critical Depth 1.13 ft Channel Slope 0.02130 ft/ft Critical Slope 0.03225 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4122/2009 4:08:36 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #2 - 10 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.02130 ft/ft Left Side Slope 1.50 ft/ft (H:V) Right Side Slope 5.50 ft/ft (H:V) Bottom Width 8.31 ft Discharge 145.00 ft3/s Results Normal Depth 1.80 ft Flow Area 26.37 ft2 Wetted Perimeter 21.64 ft Top Width 20.93 ft Critical Depth 1.67 ft Critical Slope 0.02916 ft/ft Velocity 5.50 ft/s Velocity Head 0.47 ft Specific Energy 2.27 ft Froude Number 0.86 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.80 ft Critical Depth 1.67 ft Channel Slope 0.02130 ft/ft Critical Slope 0.02916 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:08:41 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 1 of 1 Worksheet for XSC #3 - 2 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data, Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number 0.045 0.01670 ft/ft 2.75 ft/ft (H:V) 1.50 ft/ft (H:V) 9.31 ft 72.40 ft'/s 1.35 ft 16.45 ft2 15.70 ft 15.05 ft 1.13 ft 0.03172 ft/ft 4.40 ft/s 0.30 ft 1.65 ft 0.74 Flow Type Subcritical GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.35 ft 1.13 ft 0.01670 ft/ft 0.03172 ft/ft Bentley Systems, Inc. Haested Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:08:45 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Project Description Worksheet for XSC #3 - 10 YR Pre Friction Method Manning Formula Solve For Normal Depth Input,Data, Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type Subcritical GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 0.045 0.01670 ft/ft 2.75 ft/ft (H:V) 1.50 ft/ft (H:V) 9.31 ft 145.00 ft'/s 1.98 ft 26.74 ft2 18.67 ft 17.72 ft 1.71 ft 0.02858 ft/ft 5.42 ft/s 0.46 ft 2.44 ft 0.78 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.98 ft 1.71 ft 0.01670 ft/ft 0.02858 ft/ft 1 1 1 1 1 1 1 1 1 1 1 1 1 Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:08:48 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 IN 1 1 Worksheet for XSC #4 - 2 YR Pre Project Description Friction Method Solve For Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope Manning Formula Normal Depth 0.045 0.00667 ft/ft 2.73 ft/ft (H:V) 2.73 ft/ft (H:V) 6.70 ft 72.40 ft3/s 1.91 ft 22.79 ft2 17.82 ft 17.14 ft 1.28 ft 0.03131 ft/ft 3.18 ft/s 0.16 ft 2.07 ft 0.49 Subcritical 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.91 ft 1.28 ft 0.00667 ft/ft 0.03131 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:08:51 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #4 - 10 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type Subcritical 0.045 0.00667 ft /ft 2.73 ft/ft (H:V) 2.73 ft/ft (H:V) 6.70 ft 145.00 ft3/s 2.69 it 37.86 ft2 22.36 ft 21.41 ft 1.88 ft 0.02837 ft/ft 3.83 ft/s 0.23 ft 2.92 ft 0.51 G\/F I t Data npu Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 0.00 it 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 2.69 ft 1.88 ft 0.00667 ft/ft 0.02837 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:09:02 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i i i i Worksheet for XSC #5 - 2 YR Pre Project Description Friction Method Solve For Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope Manning Formula Normal Depth 0.045 0.01180 ft/ft 1.45 ft/ft (H:V) 2.27 ft/ft (H:V) 6.20 ft 72.40 ft3/s 1.82 ft 17.39 ft2 13.90 ft 12.95 ft 1.40 ft 0.03125 ft/ft 4.16 ft/s 0.27 ft 2.09 ft 0.63 Subcritical 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.82 ft 1.40 ft 0.01180 ft/ft 0.03125 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00) 4122/2009 4:09:06 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #5 - 10 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data, ' Roughness Coefficient 0.045 Channel Slope 0.01180 ft/ft Left Side Slope 1.45 ft/ft (H:V) Right Side Slope 2.27 ft/ft (H:V) Bottom Width 6.20 ft Discharge 145.00 ft'/s Results Normal Depth 2.60 ft Flow Area 28.75 ft2 Wetted Perimeter 17.24 ft Top Width 15.88 ft Critical Depth 2.08 ft Critical Slope 0.02849 ft/ft Velocity 5.04 ft/s Velocity Head 0.40 ft Specific Energy 3.00 ft Froude Number 0.66 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.60 ft Critical Depth 2.08 ft Channel Slope 0.01180 ft/ft Critical Slope 0.02849 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:09:11 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06796 USA +1-203-755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet for XSC #6 - 2 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.00600 ft/ft Left Side Slope 10.99 ft/ft (H:V) Right Side Slope 7.52 ft/ft (H:V) Bottom Width 7.90 ft Discharge 72.40 ft3/s Results Normal Depth 1.45 ft Flow Area 30.75 ft2 Wetted Perimeter 34.81 ft Top Width 34.65 ft Critical Depth 0.96 ft Critical Slope 0.03465 ft/ft Velocity 2.35 ft/s Velocity Head 0.09 ft Specific Energy 1.53 ft Froude Number 0.44 Flow Type Subcritical GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.45 ft 0.96 ft 0.00600 ft/ft 0.03465 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4/22/2009 4:09:14 PM 27 Memons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1688 Page 1 of 1 Worksheet for XSC #6 - 10 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth in,-nput Data - -, Roughness Coefficient 0.045 Channel Slope 0.00600 ft/ft Left Side Slope 10.99 ft/ft (H:V) Right Side Slope 7.52 ft/ft (H:V) Bottom Width 7.90 ft Discharge 145.00 ft-/s Results Normal Depth 1.97 it Flow Area 51.51 ft= Wetted Perimeter 44.60 ft Top Width 44.38 ft Critical Depth 1.36 ft Critical Slope 0.03144 ft/ft Velocity 2.81 ft/s Velocity Head 0.12 ft Specific Energy 2.09 ft Froude Number 0.46 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.97 ft Critical Depth 1.36 ft Channel Slope 0.00600 ft /ft Critical Slope 0.03144 ft /ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4/2212009 4:09:18 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1-203-755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet for XSC #7 - 2 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.00800 ft/ft Left Side Slope 14.00 ft/ft (H:V) Right Side Slope 6.50 ft/ft (H:V) Bottom Width 18.00 ft Discharge 72.40 ft'/s Results Normal Depth 1.04 ft Flow Area 29.62 ft2 Wetted Perimeter 39.34 ft Top Width 39.22 ft Critical Depth 0.69 ft Critical Slope 0.03636 ft/ft Velocity 2.44 ft/s Velocity Head 0.09 ft Specific Energy 1.13 ft Froude Number 0.50 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.04 ft Critical Depth 0.69 ft Channel Slope 0.00800 ft/ft Critical Slope 0.03636 ft/ft 4/22/2009 4:09:25 PM Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.001 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-766-1666 Page 1 of 1 Worksheet for XSC #7 - 10 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input.Data Roughness Coefficient 0.045 Channel Slope 0.00800 ft/ft Left Side Slope 14.00 ft/ft (H:V) Right Side Slope 6.50 ft/ft (H:V) Bottom Width 18.00 ft Discharge 145.00 ft3/s Results Normal Depth 1.47 ft Flow Area 48.80 ftZ Wetted Perimeter 48.38 ft Top Width 48.22 ft Critical Depth 1.03 ft Critical Slope 0.03257 ft/ft Velocity 2.97 ft/s Velocity Head 0.14 ft Specific Energy 1.61 ft Froude Number 0.52 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.47 ft Critical Depth 1.03 ft Channel Slope 0.00800 ft/ft Critical Slope 0.03257 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4122/2009 4:09:29 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06796 USA +1-203-766-1666 Page 1 of 1 Worksheet for XSC #8 - 2 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.02900 ft/ft Left Side Slope 1.82 ft/ft (H:V) Right Side Slope 3.80 ft/ft (H:V) Bottom Width 5.61 ft Discharge 72.40 ft'/s Results Normal Depth 1.40 ft Flow Area 13.31 ft2 Wetted Perimeter 14.00 ft Top Width 13.46 ft Critical Depth 1.37 ft Critical Slope 0.03137 ft/ft Velocity 5.44 ft/s Velocity Head 0.46 ft Specific Energy 1.86 ft Froude Number 0.96 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.40 ft Critical Depth 1.37 ft Channel Slope 0.02900 ft/ft Critical Slope 0.03137 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:09:32 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #8 - 10 YR Pre Project Description Friction Method Manning Formula Solve For Normal Depth Input Data. Roughness Coefficient 0.045 Channel Slope 0.02900 ft/ft Left Side Slope 1.82 ft/ft (H:V) Right Side Slope 3.80 ft/ft (H:V) Bottom Width 5.61 ft Discharge 145.00 ft'/s Results Normal Depth 1.98 ft Flow Area 22.08 ft2 Wetted Perimeter 17.49 ft Top Width 16.72 ft Critical Depth 1.99 ft Critical Slope 0.02852 ft/ft Velocity 6.57 ft/s Velocity Head 0.67 ft Specific Energy 2.65 ft Froude Number 1.01 Flow Type Supercritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft /s Normal Depth 1.98 ft Critical Depth 1.99 ft Channel Slope 0.02900 ft/ft Critical Slope 0.02852 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.001 412212009 4:09:36 PM 27 Slemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #1 - 2 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.01750 ft/ft Left Side Slope 3.08 ft/ft (H:V) Right Side Slope 3.83 ft/ft (H:V) Bottom Width 5.35 ft Discharge 81.00 ft'/s Results Normal Depth 1.63 ft Flow Area 17.95 ft2 Wetted Perimeter 17.10 ft Top Width 16.63 ft Critical Depth 1.42 ft Critical Slope 0.03098 ft/ft Velocity 4.51 ft/s Velocity Head 0.32 ft Specific Energy 1.95 ft Froude Number 0.77 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.63 ft Critical Depth 1.42 ft Channel Slope 0.01750 ft/ft Critical Slope 0.03098 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.071.001 4/22/2009 4:10:08 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #1 - 10 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.01750 ft/ft Left Side Slope 3.08 ft/ft (H:V) Right Side Slope 3.83 ft/ft (H:V) Bottom Width 5.35 ft Discharge 172.00 ft'/s Results Normal Depth 2.33 ft Flow Area 31.28 ft2 Wetted Perimeter 22.14 ft Top Width 21.47 ft Critical Depth 2.09 ft Critical Slope 0.02793 ft/ft Velocity 5.50 ft/s Velocity Head 0.47 ft Specific Energy 2.80 ft Froude Number 0.80 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 It Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft /s Upstream Velocity Infinity ft /s Normal Depth 2.33 ft Critical Depth 2.09 it Channel Slope 0.01750 ft/ft Critical Slope 0.02793 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4122/2009 4:10:12 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet for XSC #2 - 2 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type Subcritical GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 0.045 0.02130 ft/ft 1.50 ft/ft (H:V) 5.50 ft/ft (H:V) 8.31 ft 81.00 ft3/s 1.34 ft 17.35 ft- 18.19 ft 17.66 ft 1.20 ft 0.03172 ft/ft 4.67 ft/s 0.34 ft 1.67 ft 0.83 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.34 ft 1.20 ft 0.02130 ft/ft 0.03172 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4/22/2009 4:10:16 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #2 - 10 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data, Roughness Coefficient 0.045 Channel Slope 0.02130 ft/ft Left Side Slope 1.50 ft/ft (H:V) Right Side Slope 5.50 ft/ft (H:V) Bottom Width 8.31 ft Discharge 172.00 ft'/s Results Normal Depth 1.97 ft Flow Area 29.85 ft2 Wetted Perimeter 22.84 ft Top Width 22.07 ft Critical Depth 1.83 ft Critical Slope 0.02847 ft/ft Velocity 5.76 ft/s Velocity Head 0.52 ft Specific Energy 2.48 ft Froude Number 0.87 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.97 ft Critical Depth 1.83 ft Channel Slope 0.02130 ft/ft Critical Slope 0.02847 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.001 412212009 4:10:19 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #3 - 2 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type Subcritical GVF Input Data° Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 0.045 0.01670 ft/ft 2.75 ft/ft (H:V) 1.50 ft/ft (H:V) 9.31 ft 81.00 ft'/s 1.44 ft 17.78 ftz 16.11 ft 15.42 ft 1.21 ft 0.03117 ft/ft 4.56 ft/s 0.32 ft 1.76 ft 0.75 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.44 ft 1.21 ft 0.01670 ft/ft 0.03117 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster (08.01.071.00] 412212009 4:10:22 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #3 - 10 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Ini out Data` Roughness Coefficient 0.045 Channel Slope 0.01670 ft/ft Left Side Slope 2.75 ft/ft (H:V) Right Side Slope 1.50 ft/ft (H:V) Bottom Width 9.31 ft Discharge 172.00 ft'/s Results Normal Depth 2.17 ft Flow Area 3019 ft' Wetted Perimeter 19.57 ft Top Width 18.53 ft Critical Depth 1.89 ft Critical Slope 0.02789 ft/ft Velocity 5.70 ft/s Velocity Head 0.50 ft Specific Energy 2.67 ft Froude Number 0.79 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 It Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.17 ft Critical Depth 1.89 ft Channel Slope 0.01670 ft/ft Critical Slope 0.02789 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4/2212009 4:10:24 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #4 - 2 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.00667 ft/ft Left Side Slope 2.73 ft/ft (H:V) Right Side Slope 2.73 ft/ft (H:V) Bottom Width 6.70 ft Discharge 81.00 ft3/s Results Normal Depth 2.02 ft Flow Area 24.73 ft2 Wetted Perimeter 18.46 ft Top Width 17.75 ft Critical Depth 1.37 ft Critical Slope 0.03080 ft/ft Velocity 3.28 ft/s Velocity Head 0.17 ft Specific Energy 2.19 ft Froude Number 0.49 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.02 ft Critical Depth 1.37 ft Channel Slope 0.00667 ft/ft Critical Slope 0.03080 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.001 412212009 4:10:27 PM 27 Slemons Company Drive Suits 200 W Watertown, CT 06796 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #4 - 10 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Inpuf Data Roughness Coefficient 0.045 Channel Slope 0.00667 ft/ft Left Side Slope 2.73 ft/ft (H:V) Right Side Slope 2.73 ft/ft (H:V) Bottom Width 6.70 ft Discharge 172.00 ft3/s Results Normal Depth 2.92 ft Flow Area 42.93 ft2 Wetted Perimeter 23.70 ft Top Width 22.67 ft Critical Depth 2.06 ft Critical Slope 0.02771 ft/ft Velocity 4.01 ft/s Velocity Head 0.25 ft Specific Energy 3.17 ft Froude Number 0.51 Flow Type Subcritical GVF Input, Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.92 ft Critical Depth 2.06 ft Channel Slope 0.00667 ft/ft Critical Slope 0.02771 f ift Bentley Systems, inc. Haestad Methods Solution Center Bentley FlowMaster (08.01.071.00] 412212009 4:10:31 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 1 1 1 1 Worksheet for XSC #5 - 2 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.01180 ft/ft Left Side Slope 1.45 ft/ft (H:V) Right Side Slope 2.27 ft/ft (H:V) Bottom Width 6.20 ft Discharge 81.00 ft'/s Results , Normal Depth 1.93 ft Flow Area 18.85 ft2 Wetted Perimeter 14.37 ft Top Width 13.37 ft Critical Depth 1.49 ft Critical Slope 0.03078 ft/ft Velocity 4.30 ff/s Velocity Head 0.29 ft Specific Energy 2.21 ft Froude Number 0.64 Flow Type Subcritical GVF_Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ff/s Normal Depth 1.93 ft Critical Depth 1.49 ft Channel Slope 0.01180 ft/ft Critical Slope 0.03078 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4/2212009 4:10:34 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #5 - 10 YR Post Project Description Friction Method Solve For Input Data,- Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Manning Formula Normal Depth 0.045 0.01180 ft/ft 1.45 ft/ft (H:V) 2.27 ft/ft (H:V) 6.20 ft 172.00 ft'/s Flow Type Subcritical GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 2.84 ft 32.57 ft2 18.24 it 16.76 ft 2.28 ft 0.02787 ft/ft 5.28 ft/s 0.43 ft 3.27 ft 0.67 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 2.84 ft 2.28 ft 0.01180 ft/ft 0.02787 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:10:37 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #6 - 2 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.00600 ft/ft Left Side Slope 10.99 ft/ft (H:V) Right Side Slope 7.52 ft/ft (H:V) Bottom Width 7.90 ft Discharge 81.00 fts/s Results Normal Depth 1.52 ft Flow Area 33.42 ft2 Wetted Perimeter 36.22 ft Top Width 36.05 ft Critical Depth 1.02 ft Critical Slope 0.03411 ft/ft Velocity 2.42 ft/s Velocity Head 0.09 ft Specific Energy 1.61 ft Froude'Number 0.44 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.52 ft Critical Depth 1.02 ft Channel Slope 0.00600 ft/ft Critical Slope 0.03411 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster ]08.01.071.00] 4/22/2009 4:10:39 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #6 - 10 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data: Roughness Coefficient 0.045 Channel Slope 0.00600 ft/ft Left Side Slope 10.99 ft/ft (H:V) Right Side Slope 7.52 ft/ft (H:V) Bottom Width 7.90 ft Discharge 172.00 ft /s Results Normal Depth 2.12 ft Flow Area 58.48 ft2 Wetted Perimeter 47.43 ft Top Width 47.19 ft Critical Depth 1.48 ft Critical Slope 0.03070 ft/ft Velocity 2.94 ft/s Velocity Head 0.13 ft Specific Energy 2.26 ft Froude Number 0.47 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity Ws Upstream Velocity Infinity ft/s Normal Depth 2.12 ft Critical Depth 1.48 ft Channel Slope 0.00600 ft/ft Critical Slope 0.03070 ft /ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:10:42 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #7 - 2 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.00800 ft/ft Left Side Slope 14.00 ft/ft (H:V) Right Side Slope 6.50 ft/ft (H:V) Bottom Width 18.00 ft Discharge 81.00 ft3/s Results Normal Depth 1.10 ft Flow Area 32.09 ft2 Wetted Perimeter 40.62 ft Top Width 40.49 ft Critical Depth 0.74 ft Critical Slope 0.03570 ft/ft Velocity 2.52 ft/s Velocity Head 0.10 ft Specific Energy 1.20 ft Froude Number 0.50 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.10 ft Critical Depth 0.74 ft Channel Slope 0.00800 ft/ft Critical Slope 0.03570 fuft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 4/2212009 4:10:45 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for XSC #7 - 10 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope Subcritical 0.045 0.00800 ft/ft 14.00 ft/ft (H:V) 6.50 ft/ft (H:V) 18.00 ft 172.00 ft-1/s 1.60 ft 55.26 ft2 51.07 ft 50.89 ft 1.13 ft 0.03173 ft/ft 3.11 ft/s 0.15 ft 1.75 ft 0.53 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.60 ft 1.13 ft 0.00800 ft/ft 0.03173 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.071.00] 412212009 4:10:48 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 ' F S i I ' L R B D N F T C C V V ' S Fr FI G D Le N G U 1 Pr Pr Do ' Up No Cr i Ch Cr Project Description riction Method olve For nput Data R oughness Coefficient C hannel Slope eft Side Slope ight Side Slope ottom Width ischarge R esults . ormal Depth l ow Area W etted Perimeter op Width ritical Depth ritical Slope elocity elocity Head pecifc Energy oude Number ow Type VF Input Data ownstream Depth ngth umber Of Steps VF Output Data pstream Depth ofle Description ofle Headloss wnstream Velocity stream Velocity rmal Depth itical Depth annel Slope itical Slope Worksheet for XSC #8 - 2 YR Post Manning Formula Normal Depth 0.045 0.02900 ft/ft 1.82 ft/ft (H:V) 3.80 ft/ft (H:V) 5.61 ft 81.00 ft3/s 1.48 ft 14.44 ft2 14.49 ft 13.92 ft 1.46 ft 0.03088 ft/ft 5.61 ft/s 0.49 ft 1.97 ft 0.97 Subcritical 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.48 ft 1.46 ft 0.02900 ft/ft 0.03088 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 M 412212009 4:10:50 PM Worksheet for XSC #8 - 10 YR Post Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.02900 ft/ft Left Side Slope 1.82 ft/ft (H:V) Right Side Slope 3.80 ft/ft (H:V) Bottom Width 5.61 It Discharge 172.00 ft'/s Results Normal Depth 2.15 ft Flow Area 25.02 ft2 Wetted Perimeter 18.51 ft Top Width 17.68 ft Critical Depth 2.17 ft Critical Slope 0.02787 ft/ft Velocity 6.87 ft/s Velocity Head 0.73 ft Specific Energy 2.88 ft Froude Number 1.02 Flow Type Supercritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft /s Upstream Velocity Infinity ft/s Normal Depth 2.15 ft Critical Depth 2.17 ft Channel Slope 0.02900 ft/ft Critical Slope 0.02787 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 412212009 4:10:53 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Section 6 Appendix 1 TOPOI map printed on 02/08/08 from "North Carolina.tpo" and "Untitled,tpg" 79044'00" W 79°43'00" W 79°42'00" W WG584 79°41'00" W 1 printed from TOPOI ®200 t Nationml Geogmphic Aoktitp (www.topo.wm) co M O O N ? V N N m co a ?o -o O Cl) A N Z O Cl) N O C/) U) m o n C U) o S o N NV C O Z O O co O O Cl) N ..?yN O O N C N.O j GI 7 y w C ZQ ZU ?lst? o c CL Napo U m _ m N ° ° rn v N `o - E V O y ca a) O .C E m N do 3 w ? Srn N Z d m ] a m C p y U C O M O co E to Q O 0 TE m m e Z i U U m^ rn a? m N y w ?Eo Z ° = of Q O. N N N> O N C Q O N N 'O L O N w CL m o U•oz N N !? U z- CL 2 y c O m Q ' 2 0.9 J- 5 C O ' O a) 3 O C - 3-0, ° o CL 5 ma a4) LL 0 o o -. QN 3 Eo o, 0c o a E''`° O v-0 E.0 Z N 0.0 y 0)O :1-: ?. .c O -? ? ° 12 T N co O O N m d. c m o m = J 's CO - y 7> m C- :s E CQ .c E m (n C v, t c.a) C N m T ID N y cm m (D m m E O m N C T 7 m E to ?° N N m_ U) N Q m cc O O t C d-a 'p c? m rna N U a; ° o c 3 c o y an 3 > y m M a m .? a c .c m E N v n N , m Cl) W o a m rn3 mn (D -r M 05 o f 0 ° n o in3: 0 U N !E F-•-c m. - °>in c 0 w E m E L- cg .E o m c 0 U r 0 0 z c 0 0 U v 0 l m O N N O n d n _ O U) m C m U ' m r ? i m (n C a H A y N Q C m _N O1 N m N O LL N m C E O = > O e U J N O r W U > > O tq C w O N J O LL L Lx 177 -1 41 . \ G 111 N L' NON V W V1 G ?' N ( e 0 a 3 W J Q ¢ N 1 .y to .o N O m o n a a ` ^ O C ° .. d o G O d > o - m C7 p m 3 ° O O cn 2 d n o n a? Q Q o , m m d o LL - ?, 3 3 o t T a 0 N a? m N LL w c > z o c c c m T > c a g T o . y Q o c o v) -p m o m m U o U C7 c9 m m J J m d a o o K m cn m E/) o U) w 05 m n N in a c A R Soil Map-Guilford County, North Carolina I Map Unit Legend Guilford County North Carolina (NC081) , Map Unit Symbol Map Unit Name Acres in AO1 Percent of AO1 ApB Appling sandy loam, 2 to 6 2.4 6.3%0 percent slopes CcB Cecil sandy loam, 2 to 6 percent 1.3 3.4% slopes EnB Enon fine sandy loam, 2 to 6 9.6 25.5% percent slopes EnC Enon fine sandy loam, 6 to 10 18.0 48.1% percent slopes W Water 6.3 16.8% I Totals for Area of Interest (AOI) I 37.51 100.0%1 ' USDA Natural Resourc i es Web Soil Survey 2.0 2/4/2008 Conservation Service National Cooperative Soil Survey Page 3 of 3 1 CO IT CDw 0 0 N ? N c O d c6 C O N U s 0 c 0 O U v 0 .3 0 'o U U O O "O 2 O ' :0 M 0 0 N O O Lo 0 a? Z T 0 C) N'0 TC/) 00 U) o c n o Do $ oU o m Z it M lO .0 z Q O C ? ym 7 N 1 ZU o ' C6 0 `m U tf 0 Z c O O U P 0 3 3 O O O V) U C" O O v T N N o c? o U) (D m E O v _0 U) 3 O E O -) 21 Ca - a to c c 2 ? Z' rLn 0 0 N ? ? 'C m E - U a) n ca > Cc: m c r m L. m w Z Z L O V E 0 a d a) a) c c' 'C N 'O O 2 ? C G a O 0 U• Z ? Z r Q ' ` O C O ? NL 8.0- m N w c c CT O? Q -O O L O 6 En r Y 7 0 E5 W ' z C6 ? n y O a) O N 3 E o ( a L a E O N m E s r o, a) U) ?- H- o6 O p ? . N Cc m ° o CL a C Y .cc E' o 2 :D m --' ?? T ' ?ai C?> N E nw L C ? ?? ZW E c ? m . 0w-N O co N 0 0 m 2 d(D y M Ito 0)2 N'a (D N Q? E m 00 -o T C ov m ° 0 y a V) 0 -0 O ; 3 c 0 m y N O ? a d m .N . CO CT m 0 f 6 O O C 8( O N n Q 3 T N L 'a 3 a) a c._ o ?;rna v O ? o O 0 a) N O > L te a) O 7 m o v a) E m E O> O E co H y cn co o HL co) o N N m m 0 O CC ? O _ L ? O Z ?.? Aux LU 0 W J a, a a a N o C m m 3 ai c `o co U c t = N 3 p Q o a m 'D ai Q N m w E a V L rn S m ?Q 'p C N mQa D 0 mmU?0 m Z w N 7 a, =? c c N m m C Mn p K -e O p c 0 cc to 1 aL p m m 0. LL v o .? .. W ?- m - m C W m - h Q N ` " 1 a ? F co C. 0 v? N 1 o? TC U) o 1 f > f C f a c N C ? a ?v 0 0 C n ? C a 3 u R c Z C ?k? Hydrologic Soil Group-Guilford County, North Carolina Hydrologic Soil Group Hydrologic Soil Group- Summary by Map Unit- Guilford County, North Carolina Map unit symbol Map unit name Rating Acres in AOI Perc nt of AO1 e ApB Appling sandy loam, 2 to B 2.4 6.3% 6 percent slopes CcB Cecil sandy loam, 2 to 6 B 1.3 3.4% percent slopes EnB Enon fine sandy loam, 2 C 9.6 25.5% to 6 percent slopes EnC Enon fine sandy loam, 6 C 18.0 48.1% to 10 percent slopes W Water 6.3 16.8% Totals for Area of Interest (AOI) r USDA Natural Resources Web Soil Survey 2.0 2/412008 1i" Conservation Service National Cooperative Soil Survey Page 3 of 4 1 37.51 100.0%1 1 Hydrologic Soil Group-Guilford County, North Carolina Description ' Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. ' The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, BID, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly ' wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These ' consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils ' have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. ' Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is ' for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method. Dominant Condition ' Component Percent Cutoff: None Specified Tie-break Rule: Lower LADA am- Natural Resources Web Soil Survey 2.0 2/412008 Conservation Service National Cooperative Soil Survey Page 4 of 4 y C 10-18-88 GREENSBORO, N DEPTH-DURATI ON-FREQUENCY TABLE • ?.-_ zaxxaacx.__- ______asasaasxsaaxssxsxxxaaaxaassxaxacaxaa_aaxasxxxa ___ 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr DURATION Cin] Cin] Cin] Cin] Cin] Cin] xxasaxsxaaaasxz:s=? =aaaaxasxasxxaaaaxaxxxaaxxaxsxssaxxaaaxxxxxx 5 min 0.47 0.54 0.60 0.68 0.73 0.81 10 min 0.73 0.86 0.96 1.11 1.22 1.34 15 min 0.91 1.09 1.21 1.40 1.55 1.70 30 min 1.26 1.54 1.74 2.04 2.27 2.49 60 min 1.62 2.01 2.29 2.70 3.01 3.32 hr 2 1.83 2.28 2.60 3.06 3.42 3.78 - 3 hr 2.03 2.55 2.91 3.43 3.84 4.24 6 hr 2.56 3.23 3.70 4.37 4.89 5.41 12 hr 3 3.84 4s40 5.21 5,83 6.46 24 hr' 0 3.5 .44 4 5.10 6.04 7 6.7 7.50 =asasxsxxaxaaaassxasxssaaa=xsaxas=asxxaasaxsaaaaaaaaxsaxsaaaaaa INTENSITY-DURATION-FREQUENCY TABLE ax.xsxaxaaxaxaaxxsxascaxaaasaaxaaxaaaacaa_an_aa_asaasasaaasxasa 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr DURATION [in/hr] Cin/hr] [in/hr] Cin/hr] [in/hr] Cin/hr] xaaaxc=xz:acz:xaxssaxaxaa== axaxxax=xxasxa=axaxxsxaz:axxa 5 min 5.66 6.52 7.17 8.16 8.94 9.72 10 min 4.38 5.18 5.77 6.64 7.33 8.01 15 min 3.64 4.34 4.86 5.62 6.21 6.80 30 min 2.52 3.08 3.49 4.07 4.53 4.99 SO min 1.62 2.01 2.29 2.70 3.01 3.32 2 hr 0.91 1.14 1.30 1.53 1.71 1.89 3 hr 0.68 0.85 0.97. 1.14 1.28 1.41 6 hr 0.43 0.54 0.62 0.73 0.82 0.90 12 hr 0.25 0.32 0.37 0.43 0.49 0.54 24 hr 0.15 0.19 0.21 0.25 0.28 0.31 axaxaa=aa== c==scca =saaa-.axaaxx ==xasxoxxxxxxx cxx==s.axsxaxsaasa IDF EQUATIONS R 9 h cxsxxxxa=xxax==a===ax==xa== I = g/(h + TO 2 127 19 5 161 21 VALID ONLY UP 10 185 22 TO 2 HOURS 25 220 23 50 246 24 Td a duration (mins) 100 273 24 axxaassxxaxaasaaaaxxaaaxaxa INPUT xsaxxxcxxxaxaxsxscaaaaaaacsaaxsaaxxscaaxxxxcaa 2-yr P 100=yr P Duration Cin] Cin] Source xxxxaxsaxxxasx=xxasaxacxs=sax=ssxxsaxxxxaaaas 5 min 0.47 .0.81 NOAA HYDR6=35 15 min. 0.91 1.70 NOAA HYDRO-S5 ?60 min 1.62 3.32 NOAA HYDRO-3.5 24 hr 3.50 7.50 USWB TP-40 sasxxoaaxz:x=xnxxx==xaacasaasxassxaa==axxsxasa 1 1 1 1 1 City of Greensboro Stormwater Management Manual Page 198 ' February 2000 171, t Appendices Table 8.03e Runoff curve numbers of urban areas' Curve number for --------------- ----Cover Description. --- --- ------hydrologic soil group----- Cover type and hydrologic condition Average percent A B C D impervious areal Fully developed urban areas (vegetation established) - Open space (lawns, parks, golf courses, cemeteries, etc.) 3: Poor condition (grass cover < 50%) ............................. 68 79 86 89 ' Fair condition (grass cover 50% to 75%) .. Good co diti > 75% 49 69 79 84 n on (grass. cover ) ............................ - 39 61 74 80 Impervious areas: Paved parking lots, roofs, driveways, etc. 98 98 9 (excluding right=of-way) ............................................... . 8 98 ' Streets and roads: Paved; curbs and storm sewers ( x ludi e c ng right=of--way) ................................................................. 98 98 98 98 Paved; open ditches (including right-of-way) ................ 83 89 92 93 Gravel (including right-of--way) ..•...,•,,, 76 85 89 91 Dirt (including right-of-way) ........................................... Urban districts: 72 82 87 89 Commercial and business ................................................. 85 89 92 94 95 ' ;Industrial ................. .......................................................... 72 81 88 91 93 Residential districts by average lot size: 1/8 acre or less (town houses) ....................................... . 65 77 85 90 92 1/4 acre ............................................................................ 38 61 75 83 ? 87 ' 1/3 acre ........................... ................... :............................. 30 1/2 acre 57 72 81 86 .................................................7""---"---- 25 54 70 80 85 1 acre ............................................................................... 20 51 68 79 84 ' 2 acres .............................................................................. 12 46 65 77 82 Developing urban areas ' Newly graded areas (pervious areas only, no vegetation) 4 ......... 77 86 91 94 Idle lands (CN's are determined using cover types ' similar to those in table 2-2c). 1. Average runoff condition, and la = 0.2S. 2. The average percent impervious area shown was used to develop the composite CN's. Oth areas are directly connected to the drainage system, impervious areas have a CN of 98 and er assumptions are as follows: impervious pervious areas are con id d , to open space in good hydrologic condition. CN's for other combinations of conditi b s ere eq uivalent ons may e computed using Fgure.8.03c or 8.03d. 3. CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type ' . 4. Composite CN s to use for the design of temporary measures during grading and construction should be computed using Figure 8.03c or 8.03d based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas . Rev. 6106 8.03.15 Table 8.03g Runoff curve numbers for *other agriculture lands' Appendices ' ----- - --- Cover description-- ---- - _---- Curve numbers for - hydrologic soil groups------- Hydrologic Cover type conditions3 A B C D Pasture,.grassland, or range- Poor 68 79 86 89 continuous forage for grazing. 2 ' Fair 49 69 79 84 Good 39 61 74 80 Meadow-continuous grass, protected - .30- ' 58 71 78 9 from grazing and generally mowed for hay. Brush-brush-weed-grass mixture with Poor 48 67 77 83 ' brush the major element. 3 Fair 35 56 70 77 Good .304 48 65 73 Woods-grass combination (orchard or Poor 57 73 82 86 tree farm). $ Fair 43 65 76 _ 82 Good 32 58 72 79 Woods, s Poor 45 66 77 83 ' Fair 36 60 73 79 Good 304 55 70 77 ' Farmsteads-buildings, lanes, - 59 .74 82 86 driveways, and surrounding lots. 1 Average runoff condition, and i,= 0.2S. ' 2 Poor. <50% ground cover or heavily grazed with no mulch. Fair 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and lightly or only occasionally grazed. 3 Poor. <50% ground cover. , Fair 50 to 75% ground cover. Good: >75% ground cover. 4Actual curve number is less than 30; use CN = 30 for runoff computations. 5 CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of ' conditions may be computed from the CN's for woods and pasture. 6 Poor. Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair. Woods are grazed but not burned. and.some forest. litter.covers the soil. ' Good: Woods are protected from grazing, and litter and brush adequately cover the soil. Rev. 6106 - r 8.03.17 1 1 1 1