Loading...
HomeMy WebLinkAbout20200632 Ver 1_Wet Pond Calculations_20200519ID#* 20200632 Version* 1 Select Reviewer:* Katie Merritt Initial Review Completed Date 05/19/2020 Mitigation Project Submittal - 5/19/2020 Is this a Prospectus, Technical Proposal or a New Site?* r Yes r No Type of Mitigation Project:* r" Stream r- Wetlands r` Buffer V Nutrient Offset (Select all that apply) Project Contact Information Company/Owner:* McAdams Contact Name:* Rebecca Stubbs Project Information Project Type: r DMS r Mitigation Bank Project Name: 2020-0632 Merrimont Park County: Wilson Document Information Email Address:* rstubbs@mcadamsco.com Mitigation Document Type:* Mitigation Technical Report File Upload: Wet Pond Calculations.pdf 7.16MB Rease upload only one RDF of the corrplete file that needs to be subrritted... Signature Print Name:* Rebecca Stubbs Signature:* MERRI MONT PARK WILSON, NC MODIFIED STORMWATER CALCULATIONS NUTRIENT CREDIT GENERATION PROJECT NUMBER: CWI-19000 DESIGNED BY: H. DEW, PE R. STUBBS, PE DATE: APRIL2020 Ac 2905 MERIDIAN PARKWAY DURHAM, NORTH CAROLINA 27713 NC LIC. # C-0293 <*`,`+ttirrrrf���� SEAL 49073 :� � • Fi�G N �� ••raj ;: CAS NARRATIVE > CWI-19000 2905 Meridian Parkway, Durham, NC 27713 / 919. 361. 5000creatingexperiences through experience MERRIMONT PARK Wet Pond Nutrient Credit Calculations GENERAL DESCRIPTION The existing wet pond located at Merrimont Park was previously approved by the City of Wilson in 2014 and constructed thereafter. The original design, signed July 28, 2014, can be found in the Appendix of this report. The project is located on a parcel in a residential area in Wilson, North Carolina and is owned by the City of Wilson. The Merrimont Park site is south of the intersection of Buckingham Road NW and Westminster Drive NW with Hampton Road NW to the west of the wet pond and Hominy Swamp stream east of the wet pond. The area south of the SCM is wooded. The site is within the Neuse River Basin. The site consists of a park with playground equipment, a small building with restrooms, and a picnic shelter in addition to the wet pond. CALCULATION METHODOLOGY These calculations provide the determination of nutrient credits, specifically nitrogen, generated by the existing wet pond in its current state with one proposed outlet structure modification. The wet pond design computations in this report are completed per NC DEQ’s MDC requirements at the time of construction and include the outlet structure modification. The stage-storage functions, drainage area value, and surface cover information included in the modified wet pond calculations were extracted from the originally approved stormwater wet pond calculations (see Appendix). The secondary orifice elevation included in the calculations was gathered from a site visit performed in October of 2019. The nitrogen load generated from the existing wet pond with the outlet structure modification was calculated using the Neuse Method 2 Nutrient Offset Calculations. Please note that the originally approved SIA (see Appendix) contained calculations for a level spreader that was not included in the plans and was not constructed and is therefore, not included in the nutrient calculations. The Method 2 calculations are included in this report. DISCUSSION OF RESULTS NUTRIENT CREDITS GENERATED Nutrient treatment was not required by the development in the original design, however, as the wet pond is providing nitrogen treatment and is sized for the drainage area and impervious area to the facility, the credits generated have been calculated to be utilized in the associated MBI. The total generated nitrogen credits were calculated to be 1,821.7 lbs. CONCLUSION If the development on this tract is built as proposed within the original report (see Appendix), then no additional stormwater control measures are needed to generate the calculated nitrogen credits associated with this project. However, modifications to the proposed development may require that this analysis be revised. Some modifications that would require this analysis to be revised include: 1.The proposed site impervious surface differs from the amount accounted for in this report. 2.The post-development watershed breaks change significantly from those used to prepare this report. The above modifications may result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward. Merrimont Park CWI-19000 Modified Wet Pond Calculations MERRIMONT PARK CWI-19000 STORMWATER CONTROL MEASURE SSFxn Above NP H. DEW, PE 4/7/2020 STAGE-STORAGE FUNCTION - ABOVE NORMAL POOL Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet)(feet)(SF)(SF)(CF)(CF)(feet) 123.00 0.00 92,691 124.00 1.00 108,728 100710 100710 100710 1.01 125.00 2.00 113,512 111120 111120 211830 1.99 126.00 3.00 118,353 115933 115933 327762 2.98 127.00 4.00 123,250 120802 120802 448564 3.97 128.00 5.00 128,204 125727 125727 574291 4.98 129.00 6.00 150,000 139102 139102 713393 6.08 1.088292753 11.5126512 99972.57751 KS = 99973 b =1.0883 y = 99973x1.0883 R² = 0.9998 0 100000 200000 300000 400000 500000 600000 700000 800000 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00Storage (CF)Stage (feet) Storage vs. Stage MERRIMONT PARK CWI-19000 STORMWATER CONTROL MEASURE SSFxn Main Pool H. DEW, PE 4/7/2020 STAGE-STORAGE FUNCTION - MAIN POOL Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet)(feet)(SF)(SF)(CF)(CF)(feet) 118.0 -1.00 7,446 119.0 0.00 71,573 120.0 1.00 75,711 73642 73642 73642 1.00 122.0 3.00 84,327 80019 160038 233680 2.97 123.0 4.00 92,691 88509 88509 322189 4.03 *surface area and volume used for avg. depth calculation 1.060889902 11.20511999 73505.82908 KS = 73506 b =1.0609 Sediment Storage y = 73506x1.0609 R² = 0.9999 0 50000 100000 150000 200000 250000 300000 350000 0.00 1.00 2.00 3.00 4.00 5.00Storage (CF)Stage (feet) Storage vs. Stage MERRIMONT PARK CWI-19000 STORMWATER CONTROL MEASURE SSFxn Forebay H. DEW, PE 4/7/2020 STAGE-STORAGE FUNCTION - FOREBAY Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet)(feet)(SF)(SF)(CF)(CF)(feet) 118.0 -1.00 7,446 119.0 0.00 8,437 120.0 1.00 9,484 8961 8961 8961 1.01 121.0 2.00 10,587 10036 10036 18996 1.97 122.0 3.00 11,747 11167 11167 30163 2.98 123.0 4.00 12,963 12355 12355 42518 4.05 1.120088343 9.091229513 8877.093845 KS = 8877.1 b =1.1201 Sediment Storage y = 8877.1x1.1201 R² = 0.9996 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 0.00 1.00 2.00 3.00 4.00 5.00Storage (CF)Stage (feet) Storage vs. Stage MERRIMONT PARK CWI-19000 STORMWATER CONTROL MEASURE Volume Calculation H. DEW, PE 4/7/2020 TOTAL VOLUME OF FACILITY Volume of Main Pool below Normal Pool=322,189 cf Volume of Forebay below Normal Pool=42,518 cf Total Volume Below Normal Pool =364,707 cf Total Volume Above Normal Pool=713,393 cf Total Volume of Facility =1,078,100 cf FOREBAY PERCENTAGE OF PERMANENT POOL VOLUME approximately 15-20% of the main pool volume. Total Main Pool Volume =322,189 cf Provided Forebay Volume =42,518 cf Provided Forebay Volume % =13% AVERAGE DEPTH OF MAIN POOL Main Pool Volume at Normal Pool =322,189 cf Main Pool Area at Normal Pool =92,691 sf Average Depth =3.48 ft Per NCDEQ Minimum Design Criteria, the forebay volume should equal MERRIMONT PARK CWI-19000 STORMWATER CONTROL MEASURE Surface Area Calculation H. DEW, PE 4/7/2020 WET DETENTION BASIN SUMMARY Enter the drainage area characteristics ==> 23.80 acres 8.69 acres Note The basin must be sized to treat all impervious surface runoff draining into the pond, not just the impervious surface from on-site development. Drainage area =23.80 acres @ 36.5%impervious Estimate the surface area required at pond normal pool elevation ==> Wet Detention Basins are based on an minimum average depth of =3.48 feet (Calculated) 3.0 3.48 4.0 Lower Boundary =>30.0 1.17 0.94 Site % impervious =>36.5 1.39 1.27 1.14 Upper Boundary =>40.0 1.51 1.24 Therefore, SA/DA required =1.27 Surface area required for main pool at normal pool = 13,166 ft2 =0.30 acres Surface area provided for main pool at normal pool = 92,691 ft2 Total drainage area to pond = Total impervious area to pond = MERRIMONT PARK CWI-19000 STORMWATER CONTROL MEASURE WQV Calculation H. DEW, PE 4/7/2020 DETERMINATION OF WATER QUALITY VOLUME WQ V = (P)(R V )(A)/12 where, WQV = water quality volume (in acre-ft) RV = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A =23.80 acres Impervious area =8.69 acres Percent impervious cover, I =36.5 % Rainfall, P =1.00 inches Calculated values: RV = 0.38 WQV = 0.75 acre-ft =32719 cf. ASSOCIATED DEPTH IN POND WQV = 32719 cf. Stage / Storage Data: Ks =99973 b =1.088 Zo =123.00 Volume in 1" rainfall =32719 cf. Calculated values: Depth of WQv in Basin =0.36 ft =4.30 inches Elevation =123.36 ft MERRIMONT PARK CWI-19000 STORMWATER CONTROL MEASURE WQV Drawdown Calculation H. DEW, PE 4/7/2020 DRAWDOWN ORIFICE DESIGN D orifice =6 inch # orifices =1 Ks =99973 b =1.0883 Cd orifice =0.60 Normal Pool Elevation =123.00 feet Volume @ Normal Pool =0 cf Orifice Invert =123.00 feet WSEL @ 1" Runoff Volume =123.36 feet WSEL Vol. Stored Orifice Flow Avg. Flow Incr. Vol.Incr. Time (feet)(cf)(cfs)(cfs)(cf)(sec) 123.36 32719 0.287 123.33 29600 0.250 0.269 3119 11607 123.30 26507 0.215 0.233 3093 13299 123.26 23444 0.181 0.198 3064 15459 123.23 20413 0.150 0.166 3031 18297 123.20 17417 0.120 0.135 2995 22155 123.17 14464 0.093 0.107 2954 27643 123.14 11558 0.068 0.081 2905 35935 123.11 8712 0.046 0.057 2847 49589 123.07 5940 0.027 0.037 2772 75221 123.04 3272 0.012 0.020 2668 135533 Drawdown Time =4.68 days By comparison, if calculated by the average head over the orifice (assuming average head is one-third the total depth), the result would be: Average driving head on orifice =0.036 feet Orifice composite loss coefficient =0.600 Cross-sectional area of siphon =0.196 sf Q =0.1796 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time =2.11 days MERRIMONT PARK CWI-19000 NITROGEN EXPORT CALCULATIONS SOR & Input H. DEW, PE 4/15/2020 TN-Loading Input Data Open Impervious Pond Total To SCM 12.98 8.69 2.13 23.80 Totals =12.98 8.69 2.13 23.80 TN-Loading Output Data To SCM 23.80 202.42 30%141.69 Wet Pond Totals =23.80 202.42 141.69 Total TN-Load After Treatment =141.69 lbs/yr =5.95 lbs/ac/yr Estimated TN Credits Generated Total Nitrogen Analysis Area =23.80 acres TN-Export Before Treatment =202.42 lbs/yr 8.50 lbs/ac/yr Total TN-Load Generated =60.72 lbs/yr 2.55 lbs/ac/yr # of Years requiring offset =30 yrs Total TN-Export Generated =1,821.7 lbs BMP Type Nitrogen Analysis Area [acres]Sub-basin ID Sub-basin ID Nitrogen Analysis Area [acres] TN-Load Before Treatment [lbs/yr]% Removal TN-Load After Treatment [lbs/yr] MERRIMONT PARK CWI-19000 NITROGEN EXPORT CALCULATIONS To SWMF H. DEW, PE 4/15/2020 METHOD 2: STEP 1:Determine the area for each type of land use and enter in Column (2). STEP 2:Total the areas for each type of land use and enter at the bottom of Column (2). STEP 3:Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4). STEP 4:Total the TN exports for each type of land use and enter at the bottom of Column (4). STEP 5:Determine the export coefficient for site by dividing the total TN export from uses at the bottom of Column (4) by the total area at the bottom of Column (2). (2)(3)(4) Area TN export coeff.TN export from use [acres](lbs/ac/yr)(lbs/yr) <== Includes SCM Area Impervious surfaces 8.69 21.20 184.29 23.80 ---202.42 Total TN Export =8.5 lbs/ac/yr TOTAL 18.13 0.000.00 15.11open space (grass, landscaping, etc.) Permanently protected managed 1.2 Quantifying TN Export from Residential / Industrial / Commercial Developments when Footprints of all Impervious Surfaces are Shown Type of Land Cover (1) 0.6Permanently protected undisturbed open space (forest, unmown meadow) Merrimont Park CWI-19000 Appendix – Original Stormwater Design Calculations City of Wilson-Merrimont Park Storm Water Calculations Located in: Wilson, North Carolina Prepared by: Green Engineering, PLLC PO Box 609 Wilson, NC 27894 11111i1►��/ 0 �[SS/ SEAL 029958 I' / W:\WILSO\09144\Engineering\Stormwater -Updated 04-28-14\Cover Sheet with TOC. doe TABLE OF CONTENTS Description Stormwater • Site Narrative S1 • Storm Sewer Pipe Calculations S2 • Wet Detention Pond Calculations S3 ■ Buoyancy Calculation S4 ■ Wet Detention Pond BMP Supplementary Forms S5 • Level Spreader BMP Supplementary Forms S6 • Neuse Nutrient Management Calculations S7 • Precipitation Data Sheets S8 Erosion & Sedimentation Control • Outlet Protection Calculations El • Ditch Liner Calculations E2 Appendix • USGS Map of Site • NRCS Soils Map of Site • Runoff/Drainage Maps W:\WILSO\09144\Engineering\Stormwater - Updated 04-28-14\Cover Sheet with TOC.doc r` Engineering Site Narrative Merrimont Park Stormwater Project Page 1 SITE NARRATIVE Background: The Merrimont Park Stormwater Project is part of an overall goal and plan to help rehabilitate and reduce the stormwater impacts on the Hominy Swamp Creek, which is listed in as a 303(d) impaired stream by the State of NC. The park is an existing property owned by the City of Wilson and contains some playground equipment, a small building with restrooms and a picnic shelter. The remaining portion of the property is undeveloped. A paved basketball court was present at one time, but has been removed from the premises within the last three years. The surrounding area is approximately 95% developed with residential homes. There is a small area directly adjacent to the park that has not been built out and is currently wooded. There are plans for future homes, but the project is not slated to start within the foreseeable future. Existing Pro'ect Area Information: Existing impervious breakdown: (onsite) • Property size: 7.85 acres • Existing Buildings/sidewalks: o Percent Impervious: 1,430 sf or 0.0042 Ac. 0.05 % Existing impervious beakdown: (offsite flow into proposed BMP) ■ Total drainage area: 18 Ac. • Existing Building/Roads: 8.66 Ac. ® Percent Impervious: 48.11% Water Basin: Neuse River Basin Flow to existing stream: 1. Piped flow along Buckingham Road to existing square culvert in Hominy Swamp Creek. 2. Overland flow from park grounds to Hominy Swamp Creek. Flood Zone: The site is located within Zone X of the flood designations per FEMA Flood map 370270 3713 J, dated April 16, 2013. Soils: Several soil types are represented within the project area, the predominant soils being loamy sand (Goldsboro GoA) and sandy loam (Norfolk, NoA and Rains, Ra). A soils bores and report was performed in two locations within the BMP area by S&ME. The report is attached with this book in the appendix as reference. Rainfall Data: The rainfall data was obtained from the National Weather Service, Hydrometeorlogical Design Studies Center. The rain gauge Wilson 3 SW at Latitude 35.69390, Longitude-77.94560 at an elevation of 110 Green Engineering, PLLC July 25, 2015 PN: 09-144 Merrimont Park Stormwater Project Page 2 feet was used for precipitation frequency estimates. The sheet is attached within the runoff calculations. Stormwater Drainage Patterns: Existing The site flows in one direction, to the east of the property to the Hominy Swamp Creek, which is protected by the Neuse Buffer. An existing street drainage system exists and currently connects to the creek through a direct discharge through the large culvert at the Buckingham Road creek crossing. The existing system at the point of discharge is currently a 24" RCP. Proposed: The project is slated to capture the existing street drainage system and discharge the flow into the proposed BMP. In addition, peak runoff from Hominy Swamp Creek is to be captured up to 5% of the total stream runoff and route through the proposed BMP. The BMP outlet is proposed to be on the south eastern portion of the property by direct discharge from the BMP with 5 cfs being routed to a level spreader and vegetative filter strip. The amount of flow through the filter strip is limited due to the location of the device. In addition, as there is stream flow uptake into the BMP, the amount of cleaning required for the outflow is reduced. This was discussed and approved with DENR stormwater engineering group (via telephone on 7/11/14). Stormwater/Nutrient Management: The project is not required to meet stormwater management regulations as the surrounding areas are 95% developed, the existing flow is currently discharging directly into Hominy Swamp Creek and the design of the project includes receiving peak runoff from the existing creek into the proposed Wet Pond (BMP). However, for evaluation purposes, the design of the BMP meets the following requirements for the surrounding development only (excludes the peak runoff from the creek): The project was reviewed for stormwater management as far as meeting the following requirements: a Pre vs. Post development runoff (for the 10 year, 24 hour storm) a Nutrient Management to regulatory limits Based on the above, the following is the pre development vs. post development runoff numbers for the various storms before routing through the BMPs and after routing through the BMPs designed onsite. The total area reviewed includes the total offsite acreage of 18 acres and 5.8 acres of onsite that flows through the BMP pond. Runoff Comparisons (Phase 1): Description 1-year 10-year 25-year 100-year Pre development 35.87 113.03 158.66 246.35 Total Post Development 0.71 1 13.09 19.84 52.99 Green Engineering, PLLC July 25, 2015 PN. 09-144 Merrimont Park Stormwater Project Page 3 As shown, the post development flow is significantly less than the pre development flow and meets the stormwater requirements. For nutrient management, the site drains into the Neuse River basin, however, as the site is a redevelopment of an existing site, the project does not need to meet the nutrient management. Based on the proposed impervious for the project and the various phases of development, the following is the breakdown for the nutrient management for the various phases of development: Nutrient Management: Area Size Impervious Pervious Wooded Nutrient Management (lb/yr) (ac) Area (ac) Area (ac) Area (ac) TN Current I TN Removed % Red Wet Pond 23.81 8.67 15.14 I 0 201.97 50.5 25% Based on the nutrient management requirements for 30% reduction, this project does not meet the minimum, however, as it is a redevelopment, the reduction is better than the current nutrient management rate. Project Description: The following will be performed for the project: • Removal of any trees and playground items (to be placed back after completion of project). ■ Abandoning in place drainage pipes and sections that are not being used. ■ Installation of new drainage system to proposed BMP. • Installation of Wet Detention Pond (BMP). Green Engineering, PLLC July 25, 2015 PN.• 09-144 Storm Sewer Pipe Calculations 2 FPI� Q Z 0 2 E a� m a N co() Cl) NO N N N N N N NW O W X �(1 N W W W WJL3 W0O M Mmmm NmW 4 O 0 O NW L N N N N N _ NN W W W xNOCOOO�O X co N W W W W W n E M o co O (O o O v v o w a D) CA NCR n (O O D) O r-: v N CW �2 �2 C7 � O qN (D u N (D ^O Ur n U� j G N v v r- CO D) LO co LO (O I,- LO (D C N N N N N N N N M M M M cM �+ O CO O � CO (D M O o v O) O M CL N LO O CO M M O (M M v > Cl) st n CO o0 D) LO M co r- O (D n C N N N N N N N co (M (M co M Cl) 41 07 C CA V N 1'- O CO O O CO C G> (O (M N N cM O (O O w a E O O N O o o o O o o o o O O 0 0 0 0 0 0 CD o CD0 O 0 `m E r y 0 0 0 o O 0 0 0 0 0 0 0 0 I $^, O O 0 o O O O O O o O O O z J t` (n (O O O (O O O (O n (O v J O (D M r- m Cl) M M (O N M M N co N N co CO { co co (O LO LO (O (O C N_ C - - - - - - - .- - Jrn •% 0) G O r- 0 v O CO O Cl) 0 (D n h C O CR a (D CO 0 q 0 oq 0 I- 0 O N N O v - Cl) Co M N CrO O tt N O ON7 t i Q Lf) Cl) Cl) (['7 (n (O - N N W (O M M a D) D) (O LO (O D) n N (D r- (M N N (O _ C) a G(D yy � CO (M (D v W Liz } O v O W W 00 r- N N v O r- v V (D N x C d N Co (D (D O O O O O (N N (D r- h n o O co F� N (q (O v Co x .V f` o 0 o Ih N M o N r- v vN co q q q M M 00 0 O O CO CD O O O II (q C v v v v o LO It v v o LO o a O of t O O O O O O O O O O O O O c C C_ (n (O 0 0 (n (P (� Lo O (A (O (� E N co O O O D) - It (O O O Q) M co N p (O (O O O O v M M O (O V' C p U 0 0 0 0 0 0 o O 0 0 0 0 0 M 7 V CO o C N m n 'V O O (D (O O O O p O E o r- o LO LO LO LO (n o LO LO LO LO v C a)v N � CD D1 (O ao O O y a > (O M N N M O � (O O � a T E O O N 0 0 0 O 0 0 0 0 O 0 H +r d C O O O O O O O O O O O O O C E E o ui ui o LO LO LO LO LO LO LO LO LO rn m (n LO o 0 0 0 0 0 0 0 0 (n O CD (O v l0 M (O cM M CO cM CO 0 N 0 N to N It 7 M CO - O N Z 11 Q Q C O) m O O (O N O O O O O O c0 O O O (O O !- C) C O f,1 CD O V: O - M CO CDN O M N O C W C N M tt LO (D CO O O Q' O O �Z g z N MO Cl) V 00 Cl)O N_ O O co W N N m N N N O N O N N O W W Cmi W W W W XN W XNX C G N W W W W J M M m N ([) V O 00 6 � — 6 O N C) m X O N O O O O O N ' W N N N N N N N co W W W W W W W W W W h M Cl � 0 LO'T O O 'T 't O w cc D) O N O r (o O O) O t` 00 00 0 N N 00 m CDcli N O CW 0 co � Lq 0) C N (D N . (D h O n0 N 't Iq � 00 m O M O (D t` O (o C N N N N N N N N M M M M (M O 00 0 00 (o (M O 0 O) O M a) G N O O O M M O O n (M cM It M � n co co a) O LL) to � O (o h C= N N N N N N N M M M M M M 0) C O) N C O O O M (0 r N r- h O m v 0) = G ([) N m N N O � V' O Cl) O — O 0 E O O - O O O o O O O O O O 0 0 O 0 0 0 O O o o O 0 O a E w d O CDO 0 0 O 00 O O 0 O 00 O O 0 O 0 O 0 O Cl O 0 O Z n (f) 6 O o 6 O 6 6 (-� 6 4 J (D (O M r-O Cl) coM LON Cl)m N O It � co 00 LO m co 0 � LO LO LO C N C Cl) N N d aO r- LOa CD CD O 0 r- r` C o O (D rn r- O rn st (D <t (q ao J F ._. O O O O O O O N co U') O O N (M Cl) O O N N to N (q W M r r N 'It. O O r-: N N O L to (M Nr O O h — W) V O 1,- Nt N a _ o v O co O N 07 N (D O N to 00 O U �E O O 01 O N 00 O O N O 00 (o 0 m N O O 0 W N N rl- N w O O O r- h O O O O O V (o cq N O 6) M O O N (D 00 CO O O ' t1 w C O O O O co N It O M M O O l�) N N H fD r-� 00 OMO 0MD fo f` O GMO CMO 00 II (n C O O (f) O O O O (('> O O O O O L M M O O m Cl) co co O (M M M M D- .� d 00 00 O O 00 co co co O 00 co co co C C_ (n (f) O O O O O O O O O O O N N q M O O O O O O (D O Nt •t O O M O O O O 0) ll� co V:i co p V o 0 0 0 0 0 0 0 0 0 0 0 0 co �V o C 00 LO to M — O O LOV — CD C.O 'S r Ih (C) O ((j (n (n O (n V7 07 (A (n N .� — t y Q) C O m CD M (o N. N r r� U.)O q m () O. LON 0) N N O Nt V: O (M O 7 O E a E o o o o o o 0 0 0 0 0 0 •+ d C O O O O O O O O O O O O O c E E o (ri o o LO LO ui (ri LO LO 0 ui LO — 1- Cl) LOO O O O O O O O O O LOO 0) (Op (p h O O O O c0 N N N cq O OI Q :9 Cl)M M coM M O O co(D coM N Z T C Q) 1p O O O O O O O O O O O O O � N C y v O N O O V — CO -: O 17 -: W O G Q cl) CD 0 O (M 0 (V 0 — Cl) — N 0 2 LU W _- (D N M v O to h 00 O O � 2 0 JZ Z Z w ♦L V O O O O M N N m m N N N N N N N N N �X( W V 00 X W W X W W C J N W M M m N W 4 W O W 00 6r` w Q) V p N m ' CD N N N N W N N N N N W N W W W W W W W W W r E M O M O LO IT O O V' V' CD ODCL .�. Q) 01 N M CO O 0) O h 't S 00 00 6 N N O 6 O N O O 0 C N cli -- Cl) Cl) - - N -- - -- W C7 m oo V N co O 0 v o O C M N (O (n N (q r U� h pl: Lq C N r- 00 O Lo M o (O h o (O N N N N N N N N M M M M M da N U� O 00 M (M O 1n r` Cl? (M (h V r- co 00 0) w) Lo(O N. 0) (D r Cl) C= N N N N N N N M M M M M Cl) N C Gf C 00 N (O 00 O LO M CO M P- h P Q, 7 a E Cl) o o 7 o N o O 0 M 0 Cl? 0 O 0 N 0 O 0 0 O 0 w- ° a E - 0 0 0 0 O O o 0 0 0 Cl o O y w o 0 0 0 0 0 0 0 0 0 0 0 0 rn o 0 0 o O o 0 0 0 0 0 o O Z J J r LO CO 0 0 (D o CO CO r- CD (D co (O M n O M co M LO N Cl) rM N M N N 00 00 - co 00 - - - - C N _ C — J N 0) a O N Q It O M O M O O n r- o o U (O � n r- Lq 0� v (O v (p o JC ... O LO O O O N O O O M O N r` M O W V M — O M O N a? V' V' M U� (M (O M V: W ,C t. QW Lo r m O 00 N O rn Lo N a ' Cl) M LO (O W 01 M 0 O V 00 m O N V' N � V: In V: n N .Y H M M N In .M- Ln O h O 0 O V' v r-:0 O O O OD V' N (O O a h N fM 0 O V' (O n } O -- H 00 M Lo N V' N N It r V II T L 00 0 (M V: u Lq V' � Lq � M C (O CO I-- I- r h I,. r- r- r` r- r- r- N (n Lq O O Lq U� U� Lq O U� rn (n U� E C C t` n o 0 r- h r- r- 0 rl- r- Ih rl N M O O O 07 V' LO O O m 00 00 C N U? O O (O V: Lq (M O Lq C o U O O O O O O O O O O O O O U fY o C O V' M 7 O O V' (M 7 O O O O •E h (D LO 0 LO LO LO LO LO LO vi LO LO N Q0) C CO N (O CO O LO M (O (n r r N . > (M N N O M M O N O O E a L° E o o o o 0 0 o 0 o o 0 0 H o 0 0 0 0 0 0 0 0 0 0 0 0 a� -0 c E o LO LO o ui LO 0 LO LO LO u'i LO 0 E LO Ln LO o o O o 0 00 O 0 0 0 (� I- LQ U� U� U� 00 N N N 7 00 O II O O (O v M — N Z C Or (p O In O O O O O LO O O CD 0 w E 90 N O O V' 00 7 O 7 7 0o O Z C f' Q C) O o 0 0 0) o (V O .-- C) — N 0 N M V' rD h o0 a) O N N W W w C C 0 JZ 2 Z a z w I CL CD i N CO Cl) V 00 M N_ O 00 (O O 00 W N N V m N N N N N N N N X �X( C G N W W ap W W W w W W W W V J_ M M m N p O_ c0 O n r Q) N N N N N m r j N N N 00 W W W W �N( W W XN W W W �NX( LLf E M O) o 0)N m o (n 00 r o (O CD O O) v O o r CO V m CL co 00 (c) (V N M M 0 N M 0 CW i7 M 00 t- � Oa "t Or N N . (O c) N V V h OD O (() M to (O h � (O C v' N N N N N N N N M M M M M O co O CO (O M O O O O M d G N Lq O r OO Cl? M O 19 r` Cl? (M M It r` M c0 0) M LO to n 0) co r- Cl) C' N N N N N N N M M M M M M r r r O) r O r to r 0o r LO r 0) r N r LO r v r (O r O r (O y C d d = O. A a E o o Cl) r o 0 O 0 N 0 M 0 O 0 N 0 O 0 0 O 0 L O O O O O O CD O O O O O E y O O O O O O O O O O O O O � r O O O O O O O O CD O O O CD N rn (n 0 6 0 (o o c o (o r� m 4 J (O (O M r` O co M M LON m M N M N N co co LO 00 00 0 LO In (n (n C N C r r r r r r r r r r y 0 O r- W, O M O M O 0 r-r- c o o U (m rn r� rn (� w v, (o v (O o J ... o O O O O 0 0 N r O V r (M d y (. W (O M V O O (O N (n (VO L m Q W LO It 00 00 O N N N CD co cor a r r � ' C w (_7 V co co 00 O O h N h N O (n O M (O ti O O) (O O M (() 0) (n r C F- 3 w co It It 't N M 0) N 1- r r- O V V w (() N N O O O V O O O h (O O M O O r- (O O 0) V U?O � 0 ._ C C C) M r O O N N M W O V N h W Lo W a) A CDf` O) O) CO r- r- 0) 0) 0) LO N II L ._ T v v v v (M M v v v v (q C r- r` 00 00 Oo 00 Oo 00 co 00 c0 00 00 O .. N rrn rn o o rn rn 0) rn O 0) 0) rn 0) a _ c It v o o It It It v o v v v v E E c 00 00 o c 00 00 00 00 6 00 00 0o 6 a� p N U� M Lq O O O O O O O V V Lq LO M O O O Lq O V a0 V 00 V i 0 U O O O O O O O O O O O 0 0 r �V o C O r` V N O O O V (I r O O O p 12 'E M M LO LO M W) LO LO LO In U) (n LO Cl? V O O O 00 mN LO v 00 0 Gf d C N M cl O N M O N O O E d> E o 0 0 0 0 0 0 0 0 0 0 0 F- a� - +r m o 0 0 0 0 0 0 0 0 0 0 0 0 E LO LO LO 0 LO LO LO LO LO ui LO ui ui N (p O (n O O O O O O O O O V) O (Op 7 0o N N N7 0o O II V M CO M CO O O CO V cM r (V Z_ Q _ � c Ol (p CD0 O O O O O LO O CD Ln O ~ 7 O 7 O r 7 00 O C f7 Q mO CD CD (M O (V O r (M r CV O _g w GI r N M V LO (O r- W O O N M w F- r r r JZr 2 Z Latitude: 340 19' 42" N Longitude: 780 38' 44" W Latitude: 340 19' 33" N Longitude: 780 37' 57" W d rn a _N MO Cl) V* W MO N O O O O co WN N CO m N N N N N N N N �, � x c6 x x x x x x x C C N W LY W W W W W W J CM A m N CA It O co W h CT N N m M lL N XN �N( XN N XN N XXN W W w LJJ W W W W W W E Cl) O Cl) O LO O O tt O co m O N OC) f� W O m O N 7 W W O N N W O O N M O CW r � C7 co r� W v W o O v o 0 d C M N CO O N co I- LO � � O > N a 't r- co (A CC) M M CO (- LO to C N N N N N N N N M M M M M O co O W W M O O 't m O M N a N CO O . W CM M O O h M M ll� Cl) n co W m O O CO n O) W C- C = N N N N N N N (M M M M M M a> C N O O N N O N O O O d E O O O a O Cj O O c) O O O 0 0 O 0 0 o O O O o O o O y 0 0 CD CD O O o O O CD0 C. 0 J t $ O O O O O O O O O O O O O r` )n (M O O 0 O W 0 h 0 It J W co M h m Cl) CM M LON co Cl) N C N C LO LO LO LO LO (m N N W W - co W J N N Q O I- O tt CD O M O W h r C C e O lC') co I- r- r- LO Cl) (0 14 co co J ..- O O O O O O O N O 4 M W CO (- V O W N. M N y H m W m M O Cl? W M N W Q W O O m N N N N (O N Ih r- N C w C- W C) O M O m (O W O H N .- It N N - M 6 ` O N O O O W N N O O W h m CY V N O M O O M O O O 7 W O C f�j lli O O N O t n O O O W m H N W a' O r m a) W co (- m m O) t M M W m m m m W W m m m m (n C 0) m m m O m m m (A m m m CA 0) 0) O O CA m 0) m O m m 0) C) _ L m m O O m m m m O m m m m C C 01 O O m m O N M O O O 0) O O O m co co p, O O O O (O ll� O M O O V a ll� (� O O O O O O O O O O Cj O 0 Ci Q' V H C W V M N O O O M M O O O O CO (0 CO O O O O O O O O O O = 0 W O M LO V O n v O W (O N O N N O N O O O •E O O O O O O O O O O O O C O O O O O O O O O O O O O E LO LO LO o LO LO ui LO ui ui LO LO ui O O o O 0 0 0 0 0 0 0 O O Cj (-, O O O O 7 W N Cl N 7 W O .�.+ h C) CM Co (M O O W V M _ N O O O O O O O LO O O O (O O fj O N O O W O W O N M v O m n W m O N co N lU f0 W, to lU C 0 O fU a E Z s v 0 cn In( gu L In( q:L u Inc £ :L ul Inc Z :U. ul In0 [ :u- ul 9' Ile.4n( O O O O O O � M M 19£'6ZI '13 'AUI - - a � -�-- 98'6E4 '13 WIH Til �M 1 bo l - 00' U+L IRIS \ '13 'AUI 56 M 88'8Z6 '13 'AUI ' '13 S I,U UaRI- 1 - 00' Lti+L IRIS — --I-- i EO'8Z6 '13 'nul -- --- - — - � - - - 9£'M '13 'AUI £Z'££6 '13 WIN { - 1 - 00' 60+9 IRIS I i A i l i d } � I 1 89'13 'AUI 89,17U '13 'Aul - -. - - - - - - 06'8ZL '13 WIN I - 00'LZ+Z IRIS I 1 BZtiZI 13'AUI oZ'EZI'13'AUILQ I E6'M '13 WIN o - 00'L9+I eIS I I :'ZU '13 TWO - 00'00+0 IRIS w o g o 0 Co m co m O O O I O Co 0 0 _ o 0 LO m -f o to 0 _ to LO 0 0 to 0 to { t N N 0 M M O 0 I Co f I o -f LO o 0 N J O (7 W LO Io � I O _I O 0 0 Co E c m E w c 0 E l N a jr 9 in 6: 0 0 0 0 L) N 0) (0 v v N N o M 0 OD O •� h I � - o O LO I 0 CN N U) - - --- - N I N f0 - -' _. 0 N L U f9 N Q' N l 0 $ o 0 0 0 0 1p N 0) 0 m N w LO n J O w � I L N = 0 a� 3 a� co E 0 U) co E 0 E L in( OL A u inc 6 :u u inc 8 :u u inc L:u ul ino L :u- ul 91 ilepnc 0 0 0 0 0 q q q q CD to C14 0) (D 6 co co m co Ce) C14 C14 i 6C'6C L 13 'AUI .. 1707K 13 WN I - 00,9s;+8 els 17LICL -13 'AUI tL'LC[ '13 'AUJ J761K '13 W116 I - 00'6L+8 elS fI OTM '13 'AUI 09'9CL '13 'AUI 00,0114 '13 WIH - 00*CL+9 elS OL'M '13 'AUJ 00,9U *13 'AUI 09*6U '13 w1b I - OO'Lg+g M 99TU '13 AUI OZ'CU '13 'AUI MBU *13 WN e I 00'L9+ [ elS 9C'ZU '13 'ALJI 00,00+0 elS LLI LO N 0 Cl) CN CN CD CY) co m a) co m 10 I - coCD 0 0 LO cu N La E 2 U) Inc Zl :u ul mo 8:u- ul mo 0 0 0 9 C! 9 9 of t- LO M 0 oo (D 04 CV D"LU '13 'AUJ St7*017t '13 wRl I - 00,09+0 8)s C 09'9£6 '1313'AUIAUj OTM '13 'AUJ WOK 13 WN 1- 00,99+0 LIs — II Lr DEM '13 'AUJ II DO'M '13 'AUJ )9'6C[ -13 Lul� 00*00+0 BIS LU 0) C, 0 0 9 9 q 1, LO ri CO 0 NEW 0 (D 0 v 0 CO E uI in0 L :u- i d 4- 0 1` LL L 3 ca E L ram+ V O O O O O O O O O m n ce) N 65.9£l '13 WIU jj II - 00'9Z+b eiS OEM '13 'nu1 E 00,M '13 'nul 1 f E )9'6£l '13 wRl 1 f 00'06+g eiS 1 1 1 1 II �11 E ! I v I I I 4 1 1 I V l I l9'£ZL '13 'nu1 1 1 1 )Z'EZ 6 '13 'nul 6'M '13 WIH �I• 0 0 0 0 0 ... ai rSri ri W O t2 v O LL•1 a� 3 d co 0 cn C FL N 0 N M V O Q Q 0 C 0 ■ w� W u�� W 1 d 3 d 0 E L 0 co 3 0 �a � IL r- 0 CL | � M co g , B� t� £ U q 't Aw \ 15 Ea Cl m k co § m a 0� o t k m G §A § k CL k § / ) C*4 @$ 8 o 8 o a) E m k ( 22 ? r 6 \ E z .. r N _ ) K So 7 2r # � k 0 3 CD C k� 0 0 / k CD � 7 %■ g Q ' §0 E 6 a ■ / — / . 7 f a a 2 co \ k E> G 2 IL a w , m e ki k o ® 0 ® 6 / � ■ = q 7 2 � a 3 o a % I_ . �J 2 2 ) oa ® 6 6 » 2 ( / 3 R § — k co @o g R o 2 2— CN R w � » ~ E 6 7 ) 0 2d 2z a z � IL r. 0 CL � | � � «o E § § - k� § ■a n 0 d F f OD§ m /i3 w o Cl) k� cli j j >CL � cli . 8 8 / m 0 k a) 7 ® 7 2 i / § § � 3? F 2 R £o o 0 0 k g c0 o a ■ U� 7 -E I r- � P- ] CL �ƒ E vi c� 7ƒ ] Cl . LO o 22 k o 6 Ia k 6 6 R \ §c g 5- C14 Q w 6 ,�� � ) 3 k » 0 C E } j @ / LO $ E E E \ E ■ » � - 4 U- \ § / 2 W O L. L 3 co E L a 4-0 co Ile,pr 0 O LO M 0 O O O O M O 04 M 0) N Cl) (a, C. 0 0 0 Cl aN c,2 _N W O O O cli LO 0 0 O 0 LO N un r` 0 LO O a� 3 a� co 0 CO � a it 0 CL � � � EC m w2 Cl) :a # § § G E k R k E� F § / k Iw j Cl Cl) S 8 8 ~ §� k 0 0 \ ) � \ \J 7 § f CD 2 2� 2 2 2 iF ' 2 M E ) Cl 2\ F C? C) C £ 7 § 7 / cc �O a o 6 %■ $ $ / - ■ Lo : $ LO \ I E co co, 7 r- \ k E� 2 R » } CL \ a w : C) . o o / r w w / . � - /J k o 6 + E a » e E \ r-a �a a 6 a _ ) § co § k co @o / 2-cli x I f / I .. LL \0 CL I- ) � a ■ ■ to c kw K k ) ) - � G k E a 7 m E 2 E § § ` Iw R R 2 ) / � / o o ~ CD6 \ §� k \ E 2 �� q § -1mC aC I ) \ �2 ° ° £ Culvert Report Hydraflow Express Extension for Autodesk® AutoCADS Civil 3D® by Autodesk, Inc. 4et Pond Outlet Pipe Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft) Elr, rR; 12e.C•D 126 DD 722 DD 126 DD 12'DD 124 DC• 123.C9 1226D 121 DD = 122.60 = 76.00 = 0.53 = 123.00 = 24.0 = Circular = 24.0 = 1 = 0.013 = Circular Concrete = Groove end w/headwall (C) = 0.0018, 2, 0.0292, 0.74, 0.2 = 128.20 = 13.00 = 20.00 Wet Pond outlet Pipe ClmWer ,Vlwt HGL Emhenk Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime Monday, Jul 28 2014 = 13.09 = 13.09 _ (dc+D)/2 = 13.09 = 13.09 = 0.00 = 4.72 = 6.05 = 124.25 = 124.30 = 124.90 = 0.95 = Inlet Control Hw Gepth SN 6 00 6 DD 4 DD 3 DD zoo 1.00 0W .100 -2 00 Flenh (e) Culvert Report 127.D 12E.DC 125 DC 124.01 123.CD 12 M Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. �irom Splitter Box to FES Out Invert Elev Dn (ft) = 123.49 Pipe Length (ft) = 20.00 Slope (%) = 0.55 Invert Elev Up (ft) = 123.60 Rise (in) = 24.0 Shape = Circular Span (in) = 24.0 No. Barrels = 1 n-Value = 0.013 Culvert Type = Circular Concrete Culvert Entrance = Groove end w/headwall (C) Coeff. K,M,c,Y,k = 0.0018, 2, 0.0292, 0.74, 0.2 Embankment Top Elevation (ft) = 127.50 Top Width (ft) = 15.00 Crest Width (ft) = 20.00 Elr"nt From Splltter Box to FES Out 125 DD I . e 1 1p 12 1e 16 16 2C 22 24 2E N Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime Monday, Jul 28 2014 = 8.09 = 8.09 = (dc+D)/2 = 8.09 = 8.09 = 0.00 = 3.19 = 5.07 = 125.00 = 124.61 = 125.02 = 0.71 = Inlet Control Ciraterr��erl HGL - Embank Reach i e. H, Ceplh (ft, 4.40 3.40 2.40 1.40 DAD •0.60 .1.60 Culvert Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Monday, Jul 28 2014 from Splitter to Level Spreader at 5 CFS Invert Elev Dn (ft) = 122.02 Calculations Pipe Length (ft) = 115.00 Qmin (cfs) = 1.00 Slope (%) = 0.50 Qmax (cfs) = 10.00 Invert Elev Up (ft) = 122.60 Tailwater Elev (ft) = (dc+D)/2 Rise (in) = 24.0 Shape = Circular Highlighted Span (in) = 24.0 Qtotal (cfs) = 1.00 No. Barrels = 1 Qpipe (cfs) = 1.00 n-Value = 0.012 Qovertop (cfs) = 0.00 Culvert Type = Circular Concrete Veloc Dn (ft/s) = 0.52 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 2.77 Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 123.19 HGL Up (ft) = 122.94 Embankment Hw Elev (ft) = 123.06 Top Elevation (ft) = 127.00 Hw/D (ft) = 0.23 Top Width (ft) = 20.00 Flow Regime = Inlet Control Crest Width (ft) = 100.00 Elr: ;tt From Splltter to Level Spreader at 5 CFS Hs Dep1h {a; 125.00 127 CO 12E, DO 125.0 124.00 123.DD 122.DD 121.DD 0 s �e S0 4D 50 60 7L a+ u• sr. a.n ��r. xe ..n .e.. .... Graf ar CV1,61 HGL Embnnl. Reach ?a, 5.40 4.40 3.40 2.40 1.40 0.40 -0.50 .1.60 Culvert Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Jul 8 2014 i . erflow Pipe Calculaton - 2 yr storm Invert Elev Dn (ft) = 123.55 Calculations Pipe Length (ft) = 76.00 Qmin (cfs) = 15.71 Slope (%) = 1.64 Qmax (cfs) = 15.71 Invert Elev Up (ft) = 124.80 Tailwater Elev (ft) = 124.67 Rise (in) = 30.0 Shape = Circular Highlighted Span (in) = 30.0 Qtotal (cfs) = 15.71 No. Barrels = 2 Qpipe (cfs) = 15.71 n-Value = 0.013 Qovertop (cfs) = 0.00 Culvert Type = Circular Concrete Veloc Dn (ft/s) = 3.69 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 4.72 Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 124.67 HGL Up (ft) = 125.73 Embankment Hw Elev (ft) = 126.08 Top Elevation (ft) = 128.50 Hw/D (ft) = 0.51 Top Width (ft) = 45.00 Flow Regime = Inlet Control Crest Width (ft) = 100.00 120 DO 127 DD 12400 12,00 122 DO Overflow Pipe Calculaton - 2 yr storm —._ D lD 20 c! c} E^ �c f7 1R7 110 Grcdor CV,0l HOL Embank 32D 2.20 120 D2D -D'RD AM •2.0D fiisTGh {a) Culvert Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. ,overflow Pipe Calculaton - 5 yr storm Invert Elev Dn (ft) = 123.55 Calculations Pipe Length (ft) = 76.00 Qmin (cfs) Slope (%) = 1.64 Qmax (cfs) Invert Elev Up (ft) = 124.80 Tailwater Elev (ft) Rise (in) = 30.0 Shape = Circular Highlighted Span (in) = 30.0 Qtotal (cfs) No. Barrels = 2 Qpipe (cfs) n-Value = 0.013 Qovertop (cfs) Culvert Type = Circular Concrete Veloc Dn (ft/s) Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) HGL Up (ft) Embankment Hw Elev (ft) Top Elevation (ft) = 128.50 Hw/D (ft) Top Width (ft) = 45.00 Flow Regime Crest Width (ft) = 100.00 128 DD 127,DD 126M 125.E D 124.DD 12W 122 DO Overflow Pipe Colculatan - 5 yr storm Tuesday, Jul 8 2014 = 23.96 = 23.96 = 125.11 = 23.96 = 23.96 = 0.00 = 3.72 5.37 = 125.11 = 125.96 = 126.45 = 0.66 = Inlet Control Ha ❑eNn lsl /J _ v� nn8rl lniel n 1D 3D 30 4a 56 L:• rG if,DD IM lip 12D @rwr9r CoWed "L Eb-b a2D a2D 2 2D 120 D211 • ["Ki -1 C D •2.8D P'mr ;' fm Culvert Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Jul 8 2014 ..derflow Pipe Calculaton -10 yr storm Invert Elev Dn (ft) = 123.55 Calculations Pipe Length (ft) = 76.00 Qmin (cfs) = 31.38 Slope (%) = 1.64 Qmax (cfs) = 31.38 Invert Elev Up (ft) = 124.80 Tailwater Elev (ft) = 125.58 Rise (in) = 30.0 Shape = Circular Highlighted Span (in) = 30.0 Qtotal (cfs) = 31.38 No. Barrels = 2 Qpipe (cfs) = 31.38 n-Value = 0.013 Qovertop (cfs) = 0.00 Culvert Type = Circular Concrete Veloc Dn (ft/s) = 3.68 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 5.88 Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 125.58 HGL Up (ft) = 126.14 Embankment Hw Elev (ft) = 126.75 Top Elevation (ft) = 128.50 Hw/D (ft) = 0.78 Top Width (ft) = 45.00 Flow Regime = Inlet Control Crest Width (ft) = 100.00 Ele,(n) tzI.w 128 DD 127 DD 126 D6 125 DD 124 D6 121, W 12200 Overflow Pipe Calculaton • 16 yr siorm Circular CW-d HOL Embank Hx VV04 [fl: azu z,2D 22D 12D nzu .unD LND -2BD Reach (ft) Culvert Report Hydraflow Express Extension for Autodesk0 AutoCADO Civil 3D0 by Autodesk, Inc. Tuesday, Jul 8 2014 .verflow Pipe Calculaton - 25 yr storm Invert Elev Dn (ft) = 123.55 Calculations Pipe Length (ft) = 76.00 Qmin (cfs) = 42.96 Slope (%) = 1.64 Qmax (cfs) = 42.96 Invert Elev Up (ft) = 124.80 Tailwater Elev (ft) = 126.40 Rise (in) = 30.0 Shape = Circular Highlighted Span (in) = 30.0 Qtotal (cfs) = 42.96 No. Barrels = 2 Qpipe (cfs) = 42.96 n-Value = 0.013 Qovertop (cfs) = 0.00 Culvert Type = Circular Concrete Veloc Dn (ft/s) = 4.38 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 6.60 Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 126.40 HGL Up (ft) = 126.37 Embankment Hw Elev (ft) = 127.22 Top Elevation (ft) = 128.50 Hw/D (ft) = 0.97 Top Width (ft) = 45.00 Flow Regime = Inlet Control Crest Width (ft) = 100.00 EW Ift 129 C.E. 12D DU 127 DD 12500 12600 12400 123 DO 122 OD Overflow Pipe Calculaton - 25 yr Mann C.VjOrCWverl HGL E.t—L' ft UeP1h I1t.i 51[I ., 1D 21U 11D U1U •DBD �1 DU .2,BD Rmh (ft] Culvert Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Jul 8 2014 ,overflow Pipe Calculaton -100 yr storm Invert Elev Dn (ft) = 123.55 Calculations Pipe Length (ft) = 76.00 Qmin (cfs) = 64.82 Slope (%) = 1.64 Qmax (cfs) = 64.82 Invert Elev Up (ft) = 124.80 Tailwater Elev (ft) = 127.63 Rise (in) = 30.0 Shape = Circular Highlighted Span (in) = 30.0 Qtotal (cfs) = 64.82 No. Barrels = 2 Qpipe (cfs) = 64.82 n-Value = 0.013 Qovertop (cfs) = 0.00 Culvert Type = Circular Concrete Veloc Dn (ft/s) = 6.60 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 6.60 Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 127.63 HGL Up (ft) = 128.11 Embankment Hw Elev (ft) = 129.12 Top Elevation (ft) = 129.50 Hw/D (ft) = 1.73 Top Width (ft) = 45.00 Flow Regime = Outlet Control Crest Width (ft) = 100.00 EW (n) Overflow Pipe Ealculelon - 100 yr 610nle Hr. De1Ah lel 13U,0n 129 CO — 771 125 DD 1n w 12E DO 125 CI 124.DD 12B 00 12200 0 10 20 zo SD E•^ �. .. fY� Ito 77P 17P Ch MID, Cul.ea MGL Embank Bnncfi {Hl . G A 2D 32D 221, 1?D D.2 -D 6[i 1 BD 2 6D Wet Detention Pond Calculations STORMWA TER DETEN T/ON POND CALCULA TONS SUMMARY Project Name Merrimont Park Stormwater Project Designer PWS Date 7/25/2014 Area Draining to Pond (ADP) Current Project 1036728 SF Contingency for Future Growth 0 SF Total 1036728 SF Built -Upon Area (BUA) Current Project: Building 1430 SF Drives/Parking 377229.6 SF Contingency for Future Growth 0 SF Total 378659.6 SF BUA/ADP Runoff from 1 " Rainfall 85% or 90% TSS Removal Pond Depth: (V permanent pool / A permanent pool) SA/ADP Ratio 23.800 AC 0.000 AC 23.800 AC 0.033 AC 8.660 AC 0.000 AC 8.693 AC 0.365 32719 CF 3.90 FT 1.90% Page 1 STORMWA TER DETENTION POND CAL CULA TONS SUMMARY Project Name Merrimont Park Stormwater Project Designer PWS Date 7/25/2014 Flood Storage Volumes Contour Z 123 124 124.5 125 126 127 128 129 Permanent Pool Volumes Contour Z Area DS ACC S 0 92691 0 0 1 108728 100709.5 100709.5 0.5 111094 54955.5 155665 0.5 113512 56151.5 211816.5 1 118353 57361.75 269178.25 1 123250 120801.5 389979.75 1 128204 125727 515706.75 1 150000 139102 654808.75 Area DS ACC S 118 0 7446 0 0 119 1 71573 39509.5 39509.5 120 1 75711 73642 113151.5 121 1 79959 77835 190986.5 122 1 84327 82143 273129.5 123 1 92691 88509 361638.5 Minimum Basin SA = 19654 SF Needed Basin SA = 92691 SF Provided Sediment Storage Zone: Acres of Disturbance = 4.00 Ac. Volume of Sedimen/Ac/Yr = 1800 Cf/Ac/yr Volume of Sediment = 7200 Cf of Sediment Forebay Volumes Contour Z Area DS ACC S 118 0 7446 0 0 119 1 8437 7941.5 7941.5 120 1 9484 8960.5 16902 121 1 10587 10035.5 26937.5 122 1 11747 11167 38104.5 Page 2 5TORMWA TER DETEN T/ON POND CALCULA TONS SUMMARY Project Name Merrimont Park Stormwater Project Designer PWS Date 7/25/2014 1Z3 1 12963 12355 50459.5 Permanent Pool Storage = 361638.5 Cf Minimum Forebay Storage = 72327.7 Cf (20% minimum of total storage) Designed Forebay Storage = 50459.5 Cf 14% of total Permanent Pool Storage Page 3 O N ++ Ln N O n a L. (LP Q O V1 ro a c O E a) a a ll� n M -:IV f� M N 000 — tV gyp) I tz N - V) O O O r N N Ln 00 V: 00 — M (D 00 N M LD O O N N O 06 r Sao `z O O — N N N V1 n V) (I0 r V) P� M N CO o0 tz 0 0 — N N N r- N a? 00 14: n M 0 0 — N N N N Ln cc V) M M CG M N U. OD M tz O O r — N N N l0 CC 17? V: n .M I*: � M M 00 •- — N N M N lD rV: O N V) 00 M m 0 N N M M FM M ILL O N N M M M ,N 00 L, N V1 W M (0 v tz 0 N N M M 00 M 00 M 00 N L' V) �+ O N N M M N M C) V) T V) M LO V) VI tz O r N M M N 5 Nc LnWr-wM OC e- N M N W h OD 01 a N m a , STORMWA TER DETENTION POND ORIFICE CAL CULA TONS Project Name Merrimont Park Stormwater Project Designer PWS Date 7/25/2014 (Enter Values in Green Cells onlyl) Is the pond based on 1-inch storm or the 1-Yr, 24 Hour storm? 1-yr, 24 1 " Storm Volume 32719 CF 1-Yr, 24 Hour Storm Volume 177767 CF (pull from Hydro Program) Total Volume use for orifice sizing: 177767 CF Total rate of flow through orifice Days to drain stored water 3 days Flow Rate (Q) 0.7000 CFS Total Height of Water 1.5 ft (difference between Orifice and Principle Spillway) Orifice Size Needed Coefficient for Orifice 0.6 Gravity 32.2 ft/s2 Cross Area 0.1187 ft2 Try using 5 in or 0.1364 ft2 Therefore, use the following orifice size 5 in. Orifice The water will drain in 2.5588 days Orifice Size is OKAY./ Project Name Merrimont Park Stormwater Project Designer PWS Date Area Draining to Stormwater Pond, DA Proposed Built -Upon Area Within Pond Drainage Area, BUA BUA to DA Ratio Design TSS Removal Proposed Depth from Permanent Pool Elevation to Bottom Minimum Permanent Pool Surface Area to DA Ratio Required Actual SA to DA Ratio Proposed Pond Bottom Elevation Permanent (Bottom of Orifice) Pool Elevation Temporary Elevation (Primary Spillway) Permanent Pool Surface Area Temporary Pool Surface Area Volume of Runoff from 1 " Rainfall Storage Between Permanent Pool and Temporary Pool Size of Orifice Drawdown Time Volume Between Permanent Pool and Bottom in Forebay Volume Between Permanent Pool and Bottom in Forebay & Main Pond Combined Pool Elevation at Q1, 24 Year Storm Minimum Top of Bank Elevation Emergency Spillway Elevation 7/7C/')/11A 23.8 acres 8.69282828 acres 36.52 90 5 feet 0.0190 0.0894 119 feet MSL 123.0 feet MSL 124.5 feet MSL 92691 square feet 111094 square feet 32,719 cubic feet 155,665 cubic feet 5 inches 2.56 days 50459.5 cubic feet 361,639 cubic feet 124.43 feet MSL 128.2 feet MSL 127.1 feet MSL Watershed Model SchematipdraflowHydrographsExtension for AutoCAD® Civil 3D®2015byAutodesk,Inc. v10.4 ED Project: 09144 Wet Pond w Stream Overflow 2.gpw PA Hydrograph Return Period FiyBefcnrograpns Extension for AutoCAD® Civil 3D0 2015 by Autodesk, Inc. v10.4 r - Hyd. Hydrograph Inflow Peak Outflow (cfs) Hydrograph type hyd(s) l Description (origin) 1-yr 2-yr $ryr 5-yr 10-yr f 25-yr 50 yr 100-yr 1 r�ul 1 SCS Runoff ------ 31.58 44.72 0.707 68.32 89.52 122.52 ------- 2 SCS Runoff 0.445 0.630 0.010 0.962 1.261 1.726 ------- 3 SCS Runoff ------ 224.62 319.16 9.947 485.49 634.47 866.66 ------- 4 Reach 3 220.69 314.24 9.694 479.28 627.58 859.14 ------- 5 Diversionl 4 11.03 15.71 0.485 23.96 31.38 42.96 ------- 6 Diversion2 4 209.65 298.53 9.210 455.32 596.20 816.19 i ------- 7 SCS Runoff ------ 2.354 5.147 0.000 10.70 16.16 25.32 ------- 8 Combine 1. 2, 5, 35.87 52.76 0.725 84.24 113.03 158.66 ------- 7 9 Reservoir 8 0.703 2.856 0.036 10.12 13.09 19.84 ------ 84.69 Main Lines 2.601 Small Line 05.21 Hominy Swamp Creek 96.34 Hominy Swamp Creek 64.82 Into Pond 31.52 Remain in Stream 44.03 Park Overland Flow 46.35 Sum of Hydrographs 52.99 Route thru Pond Proj. file: 09144 Wet Pond w Stream Overflow 2.gpw Monday, 07 / 28 / 2014 3 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D®2015 by Autodesk, Inc. 00.4 Monday, 07 / 28 / 2014 'lyd. No. 1 Main Lines Hydrograph type = SCS Runoff Peak discharge = 31.58 cfs Storm frequency = 1 yrs Time to peak = 12.00 hrs Time interval = 2 min Hyd. volume = 72,364 cuft Drainage area = 17.750 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 7.00 min Total precip. = 2.91 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 35.00 '0.00 25.00 20.00 15.00 10.00 5.00 Main Lines Hyd. No. 1 -- 1 Year Q (cfs) 35.00 30.00 25.00 20.00 15.00 10.00 5.00 0.00 -L�- - L - - -i i _ i iJ i i —r 1- 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Hyd No. 1 Time (hrs) ! Hydrograph Report 4 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D®2015 by Autodesk, Inc. 00.4 'iyd. No. 2 Small Line Monday, 07 / 28 / 2014 Hydrograph type = SCS Runoff Peak discharge = 0.445 cfs Storm frequency = 1 yrs Time to peak = 12.00 hrs Time interval = 2 min Hyd. volume = 1,019 CA Drainage area = 0.250 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 7.00 min Total precip. = 2.91 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 0.50 0.45 J.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 i i Small Line Hyd. No. 2 -- 1 Year 2 4 6 8 10 12 14 Hyd No. 2 Q (cfs) 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 16 18 20 22 24 26 Time (hrs) 5 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3DO 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 1yd. No. 3 Hominy Swamp Creek Hydrograph type = SCS Runoff Peak discharge = 224.62 cfs Storm frequency = 1 yrs Time to peak = 12.83 hrs Time interval = 2 min Hyd. volume = 2,087,682 cuft Drainage area = 460.000 ac Curve number = 81 Basin Slope = 3.1 % Hydraulic length = 8000 ft Tc method = LAG Time of conc. (Tc) = 92.40 min Total precip. = 2.91 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) = [(139.000 x 69) + (234.000 x 85)] / 460.000 Q (cfs 240.00 210.00 180.00 150.00 120.00 •1 11 •1 11 it 11 Hominy Swamp Creek Hyd. No. 3 -- 1 Year 000--- Q (cfs) 240.00 210.00 180.00 150.00 120.00 30.00 ff-sT�' 0 2 4 6 8 10 12 14 16 18 20 22 24 26 J Hyd No. 3 Time (hrs) Hydrograph Report 6 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 lyd. No. 4 Hominy Swamp Creek Hydrograph type = Reach Peak discharge Storm frequency = 1 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hyd. No. = 3 - Hominy Swamp Creek Section type Reach length = 4780.0 ft Channel slope Manning's n = 0.009 Bottom width Side slope = 2.0:1 Max. depth Rating curve x = 3.579 Rating curve m Ave. velocity = 0.00 ft/s Routing coeff. Modified Att-Kin routing method used. Q (cfs) 240.00 210.00 180.00 150.00 120.00 •m 30.00 Hominy Swamp Creek Hyd. No. 4 -- 1 Year Monday, 07 / 28 / 2014 = 220.69 cfs = 12.97 hrs = 2,087,678 cuft = Trapezoidal = 0.4 % = 5.0 ft = 10.0 ft = 1.375 = 0.3210 Q (cfs) 240.00 210.00 180.00 150.00 120.00 ,. O It It, 30.00 0.00 I I I I L i _.. ;---1�10.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Hyd No. 4 Hyd No. 3 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 --Iyd. No. 5 Into Pond 7 Monday, 07 / 28 / 2014 Hydrograph type = Diversion1 Peak discharge = 11.03 cfs Storm frequency = 1 yrs Time to peak = 12.97 hrs Time interval = 2 min Hyd. volume = 104,384 cuft Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd. = 6 Diversion method = Flow Ratio Flow ratio = 0.05 Into Pond Hyd. No. 5 -- 1 Year 210.00 180.00 150.00 120.00 .1 1I 30.00 Q (cfs) 240.00 210.00 180.00 150.00 120.00 de iff, IM -0111111 0.00 �.a, —L 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hyd No. 5 -- Q = 0.05 x Qin Hyd No. 4 -- Inflow --- Hyd No. 6 -- 4 minus 5 Hydrograph Report 8 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 ^jyd. No. 6 Remain in Stream Hydrograph type = Diversion2 Peak discharge = 209.65 cfs Storm frequency = 1 yrs Time to peak = 12.97 hrs Time interval = 2 min Hyd. volume = 1,983,294 cuft Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd. = 5 Diversion method = Flow Ratio Flow ratio = 0.05 Q (cfs) 240.00 210.00 180.00 150.00 120.00 .1 10 30.00 Remain in Stream Hyd. No. 6 -- 1 Year Q (cfs) 240.00 210.00 180.00 150.00 120.00 •m mom 30.00 0.00 -' 1 1 1 1 1� - I �''- 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hyd No. 6 -- Q = 0.95 x Qin Hyd No. 4 -- Inflow - - Hyd No. 5 Hydrograph Report 9 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D0 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 `iyd. No. 7 Park Overland Flow Hydrograph type = SCS Runoff Peak discharge = 2.354 cfs Storm frequency = 1 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 6,544 cuft Drainage area = 5.800 ac Curve number = 61 Basin Slope = 5.0 % Hydraulic length = 125 ft Tc method = LAG Time of conc. (Tc) = 4.50 min Total precip. = 2.91 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 3.00 2.00 1.00 0.00 0 2 4 6 8 Hyd No. 7 Park Overland Flow Hyd. No. 7 -- 1 Year Q (cfs) 3.00 2.00 1.00 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 10 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 `lyd. No. 8 Sum of Hydrographs Hydrograph type = Combine Peak discharge = 35.87 cfs Storm frequency = 1 yrs Time to peak = 12.00 hrs Time interval = 2 min Hyd. volume = 184,311 cuft Inflow hyds. = 1, 2, 5, 7 Contrib. drain. area = 23.800 ac Q (cfs) 40.00 30.00 20.00 10.00 Sum of Hydrographs Hyd. No. 8 -- 1 Year 2 4 6 8 10 12 14 16 Hyd No. 8 Hyd No. 1 Hyd No. 2 Hyd No. 7 18 20 22 24 Hyd No. 5 Q (cfs) 40.00 30.00 20.00 10.00 0.00 26 Time (hrs) Hydrograph Report 11 Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc. 00.4 '1yd. No. 9 Route thru Pond Hydrograph type = Reservoir Peak discharge Storm frequency = 1 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hyd. No. = 8 - Sum of Hydrographs Max. Elevation Reservoir name = Wet Pond Max. Storage Storage Indication method used Q (cfs) 40.00 30.00 20.00 Route thru Pond Hyd. No. 9 -- 1 Year Monday, 07 / 28 / 2014 = 0.703 cfs = 24.13 hrs = 150,094 cuft = 124.49 ft = 154,550 tuft 10 20 30 40 50 60 70 80 90 Hyd No. 9 Hyd No. 8 [ILL 1 Total storage used = 154,550 cuft Q (cfs) 40.00 30.00 20.00 i[OX1111 0.00 100 Time (hrs) Hydrograph Report 12 Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc 00.4 Monday, 07 / 28 / 2014 Ilyd. No. 1 Main Lines Hydrograph type = SCS Runoff Peak discharge = 0.707 cfs Storm frequency = 3-ym 1- 14Q4 Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 4,514 cuft Drainage area = 17.750 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = Oft Tc method = User Time of conc. (Tc) = 7.00 min Total precip. = 1.00 in Distribution = Type ll Storm duration = 24 hrs Shape factor = 484 Q (cfs) 1.00 0.90 J.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0 Main Lines Hyd. No. 1 -- 3 Year 2 4 6 8 10 12 14 Hyd No. 1 Q (cfs) 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 16 18. 20 22 24 26 Time (hrs) Hydrograph Report 13 Hydraflow Hydrographs Extension for AutoCAD® Civil 31D®2015 by Autodesk, Inc. 00.4 -`Iyd. No. 2 Small Line Monday, 07 / 28 / 2014 Hydrograph type = SCS Runoff Peak discharge = 0.010 cfs Storm frequency = 3-ym I - in1c.t4 Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 64 cuft Drainage area = 0.250 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method User Time of conc. (Tc) = 7.00 min Total precip. = 1.00 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 0.10 0.09 J.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 Small Line Hyd. No. 2 -- 3 Year 2 4 6 8 10 12 14 Hyd No. 2 Q (cfs) 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 16 18 20 22 24 26 Time (hrs) Hydrograph Report 14 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 -y)iyd. No. 3 Hominy Swamp Creek Hydrograph type = SCS Runoff Peak discharge = 9.947 cfs Storm frequency = 3 yrs Time to peak = 13.27 hrs Time interval = 2 min Hyd. volume = 164,322 cuft Drainage area = 460.000 ac Curve number = 81 * Basin Slope = 3.1 % Hydraulic length = 8000 ft Tc method = LAG Time of conc. (Tc) = 92.40 min Total precip. = 1.00 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 " Composite (Area/CN) = [(139.000 x 69) + (234.000 x 85)] / 460.000 8.00 6.00 4.00 2.00 0.00 0 2 4 6 8 Hyd No. 3 Hominy Swamp Creek Hyd. No. 3 -- 3 Year Q (cfs) 10.00 M 4.00 2.00 0.00 10 12 14 16 18 20 22 24 26 28 Time (hrs) Hydrograph Report 15 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D®2015 by Autodesk, Inc. 00.4 Monday, 07 / 28 / 2014 'yd. No. 4 Hominy Swamp Creek Hydrograph type = Reach Peak discharge = 9.694 cfs Storm frequency = 3 yrs Time to peak = 13.53 hrs Time interval = 2 min Hyd. volume = 164,314 cuft Inflow hyd. No. = 3 - Hominy Swamp Creek Section type = Trapezoidal Reach length = 4780.0 ft Channel slope = 0.4 % Manning's n = 0.009 Bottom width = 5.0 ft Side slope = 2.0:1 Max. depth = 10.0 ft Rating curve x = 3.579 Rating curve m = 1.375 Ave. velocity = 0.00 ft/s Routing coeff. = 0.1510 Modified Att-Kin routing method used. -we 6.00 4.00 2.00 0.00 0 2 4 6 8 Hyd No. 4 Hominy Swamp Creek Hyd. No. 4 -- 3 Year Q (cfs) 10.00 =11 M 4.00 2.00 0.00 10 12 14 16 18 20 22 24 26 28 Hyd No. 3 Time (hrs) Hydrograph Report 16 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 - Ayd. No. 5 Into Pond Hydrograph type = Diversion1 Peak discharge Storm frequency = 3 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd Diversion method = Flow Ratio Flow ratio .e 4.00 Into Pond Hyd. No. 5 -- 3 Year 2 4 6 8 10 12 14 16 18 Hyd No. 5 -- Q = 0.05 x Qin Hyd No. 4 -- Inflow Monday, 07 / 28 / 2014 = 0.485 cfs = 13.53 hrs = 8,216 cuft =6 = 0.05 Q (cfs) 10.00 M AM 4.00 well] - 0.00 20 22 24 26 28 Time (hrs) Hyd No. 6 -- 4 minus 5 Hydrograph Report 17 Hydraflow Hydrographs Extension for AutoCADO Civil 31DO 2015 by Autodesk, Inc. v10.4 _'Oyd. No. 6 Remain in Stream Hydrograph type = Diversion2 Peak discharge Storm frequency = 3 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd. Diversion method = Flow Ratio Flow ratio N . IR 4.00 2.00 2 4 6 8 Hyd No. 6 -- Q = 0.95 x Qin Remain in Stream Hyd. No. 6 -- 3 Year Monday, 07 / 28 / 2014 = 9.210 cfs = 13.53 hrs = 156,098 tuft =5 = 0.05 Q (cfs) 10.00 SH 4.00 2.00 0.00 10 12 14 16 18 20 22 24 26 28 Time (hrs) Hyd No. 4 -- Inflow Hyd No. 5 Hydrograph Report 18 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 Ayd. No. 7 Park Overland Flow Hydrograph type = SCS Runoff Peak discharge = 0.000 cfs Storm frequency = 3 yrs Time to peak = n/a Time interval = 2 min Hyd. volume = 0 cuft Drainage area = 5.800 ac Curve number = 61 Basin Slope = 5.0 % Hydraulic length = 125 ft Tc method = LAG Time of conc. (Tc) = 4.50 min Total precip. = 1.00 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 0.10 0.09 3.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0.0 Park Overland Flow Hyd. No. 7 -- 3 Year 0.3 0.7 1.0 1.3 1.7 Hyd No. 7 Q (cfs) 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 2.0 Time (hrs) Hydrograph Report 19 Hydraflow Hydrographs Extension for AutoCADO Civil 31DO 2015 by Autodesk, Inc. v10.4 ---I, yd. No. 8 Sum of Hydrographs Monday, 07 / 28 / 2014 Hydrograph type = Combine Peak discharge = 0.725 cfs Storm frequency = 3-Ws �- �n��,�} Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 12,793 cuft Inflow hyds. = 1, 2, 5, 7 Contrib. drain. area = 23.800 ac Q (cfs) 1.00 0.90 3.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0 2 4 6 8 Hyd No. 8 Sum of Hydrographs Hyd. No. 8 -- 3 Year Q (cfs) 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 10 12 14 16 18 20 22 24 26 28 Hyd No. 1 Hyd No. 2 Hyd No. 5 Time (hrs) Hyd No. 7 Hydrograph Report 20 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D@ 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 `yd. No. 9 Route thru Pond Hydrograph type = Reservoir Peak discharge = 0.036 cfs Storm frequency = 3-yrs I-1 Time to peak = 25.43 hrs Time interval = 2 min Hyd. volume = 6,683 cuft Inflow hyd. No. = 8 - Sum of Hydrographs Max. Elevation = 123.12 ft Reservoir name = Wet Pond Max. Storage = 11,694 cuft Storage Indication method used. Q (cfs) 1.00 0.90 1 J.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0 i Route thru Pond Hyd. No. 9 -- 3 Year 10 20 30 40 50 60 70 80 90 Hyd No. 9 Hyd No. 8 ffTTTTTI Total storage used = 11,694 cuft Q (cfs) 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 100 Time (hrs) Hydrograph Report 21 Hydraflow Hydrographs Extension for AutoCADO Civil 3D® 2015 by Autodesk, Inc. 00.4 `iyd. No. 1 Main Lines Monday, 07 / 28 / 2014 Hydrograph type = SCS Runoff Peak discharge = 89.52 cfs Storm frequency = 10 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 205,718 cuft Drainage area = 17.750 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of cone. (Tc) = 7.00 min Total precip. = 5.45 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 0 2 4 6 Hyd No. 1 Main Lines Hyd. No. 1 -- 10 Year Q (cfs) 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Deport 22 Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc. 00.4 -Hiyd. No. 2 Small Line Monday, 07 / 28 / 2014 Hydrograph type = SCS Runoff Peak discharge = 1.261 cfs Storm frequency = 10 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 2,897 cuft Drainage area = 0.250 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 7.00 min Total precip. = 5.45 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 2.00 1.00 0.00 0 Small Line Hyd. No. 2 -- 10 Year 2 4 6 8 10 12 14 16 18 20 22 24 Hyd No. 2 Q (cfs) 2.00 1.00 0.00 26 Time (hrs) Hydrograph Report 23 Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 `Iyd. No. 3 Hominy Swamp Creek Hydrograph type = SCS Runoff Peak discharge = 634.47 cfs Storm frequency = 10 yrs Time to peak = 12.83 hrs Time interval = 2 min Hyd. volume = 5,679,490 cuft Drainage area = 460.000 ac Curve number = 81 * Basin Slope = 3.1 % Hydraulic length = 8000 ft Tc method = LAG Time of conc. (Tc) = 92.40 min Total precip. = 5.45 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) = [(139.000 x 69) + (234.000 x 85)] / 460.000 Q (cfs) 720.00 630.00 r 540.00 450.00 360.00 270.00 180.00 tit I1, 0.00 0 2 4 - Hyd No. 3 0 Hominy Swamp Creek Hyd. No. 3 -- 10 Year Q (cfs) 720.00 630.00 540.00 450.00 360.00 270.00 180.00 0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 24 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 `lyd. No. 4 Hominy Swamp Creek Hydrograph type = Reach Peak discharge Storm frequency = 10 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hyd. No. = 3 - Hominy Swamp Creek Section type Reach length = 4780.0 ft Channel slope Manning's n = 0.009 Bottom width Side slope = 2.0:1 Max. depth Rating curve x = 3.579 Rating curve m Ave. velocity = 0.00 ft/s Routing coeff. Modified Att-Kin routing method used Hominy Swamp Creek Hyd. No. 4 -- 10 Year 630.00 540.00 450.00 360.00 270.00 180.00 Monday, 07 / 28 / 2014 = 627.58 cfs = 12.90 hrs = 5,679,491 tuft = Trapezoidal = 0.4 % = 5.0 ft = 10.0 ft = 1.375 = 0.4049 Q (cfs) 720.00 630.00 540.00 450.00 360.00 270.00 180.00 •M E1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 ' Hyd No. 4 Hyd No. 3 Time (hrs) Hydrograph Report 25 Hydraflow Hydrographs Extension for AutoCAD® Civil 3DO 2015 by Autodesk, Inc. 00.4 "iyd. No. 5 Into Pond Hydrograph type = Diversion1 Peak discharge Storm frequency = 10 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd Diversion method = Flow Ratio Flow ratio 5d0.00 1 450.00 C. Y] 270.00 180.00 2 4 6 8 Hyd No. 5 -- Q = 0.05 x Qin Into Pond Hyd. No. 5 -- 10 Year Monday, 07 / 28 / 2014 = 31.38 cfs = 12.90 hrs = 283,974 cuft =6 = 0.05 Q (cfs) 630.00 540.00 450.00 360.00 270.00 180.00 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hyd No. 4 -- Inflow -, - _ Hyd No. 6 -- 4 minus 5 Hydrograph Report 26 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. 004 Monday, 07 / 28 / 2014 --'Ayd. No. 6 Remain in Stream Hydrograph type = Diversion2 Peak discharge = 596.20 cfs Storm frequency = 10 yrs Time to peak = 12.90 hrs Time interval = 2 min Hyd. volume = 5,395,516 cuft Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd. = 5 Diversion method = Flow Ratio Flow ratio = 0.05 Q (cfs) 630.00 5Q0.00 450.00 360.00 270.00 180.00 i 2 4 6 8 Hyd No. 6 -- Q = 0.95 x Qin Remain in Stream Hyd. No. 6 -- 10 Year Q (cfs) 630.00 540.00 450.00 360.00 270.00 180.00 �911X$111 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hyd No. 4 -- Inflow — Hyd No. 5 Hydrograph Report 27 Hydraflow Hydrographs Extension for AUtoCAD® Civil 31D® 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 -Iyd. No. 7 Park Overland Flow Hydrograph type = SCS Runoff Peak discharge = 16.16 cfs Storm frequency = 10 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 32,508 cuft Drainage area = 5.800 ac Curve number = 61 Basin Slope = 5.0 % Hydraulic length = 125 ft Tc method = LAG Time of conc. (Tc) = 4.50 min Total precip. = 5.45 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 ) 00 12.00 9.00 6.00 3.00 0.00 0 2 4 6 8 Hyd No. 7 Park Overland Flow Hyd. No. 7 -- 10 Year Q (cfs) 18.00 15.00 12.00 M 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 28 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D@ 2015 by Autodesk, Inc. 00.4 Monday, 07 / 28 / 2014 --Ayd. No. 8 Sum of Hydrographs Hydrograph type = Combine Peak discharge = 113.03 cfs Storm frequency = 10 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 525,098 cuft Inflow hyds. = 1, 2, 5, 7 Contrib. drain. area = 23.800 ac 00 80.00 60.00 40.00 20.00 0.00 0 2 4 6 Hyd No. 8 Sum of Hydrographs Hyd. No. 8 -- 10 Year Q (cfs) 120.00 100.00 40.00 8 10 12 14 16 18 20 22 24 26 Hyd No. 1 --•- Hyd No. 2 Hyd No. 5 Time (hrs) Hyd No. 7 Hydrograph Report 29 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 �'iyd. No. 9 Route thru Pond Hydrograph type = Reservoir Peak discharge = 13.09 cfs Storm frequency = 10 yrs Time to peak = 14.53 hrs Time interval = 2 min Hyd. volume = 486,103 cuft Inflow hyd. No. = 8 - Sum of Hydrographs Max. Elevation = 125.72 ft Reservoir name = Wet Pond Max. Storage = 294,696 cuft Storage Indication method used Q (cfs) 120.00 00 .1i1Ui 4 40.00 20.00 Route thru Pond Hyd. No. 9 -- 10 Year Q (cfs) 120.00 100.00 . 1 1r; 40.00 20.00 0.00 - ' 1 0.00 0 10 20 30 40 50 60 70 80 90 100 Time (hrs) 11 Hyd No. 9 Hyd No. 8 Total storage used = 294,696 cult Hydrograph Report 30 Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc. 00.4 Monday, 07 / 28 / 2014 -�'lyd. No. 1 Main Lines Hydrograph type = SCS Runoff Peak discharge = 122.52 cfs Storm frequency = 25 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 284,201 cuft Drainage area = 17.750 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 7.00 min Total precip. = 6.81 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 100.00 l 100.00 80.00 60.00 40.00 20.00 0.00 0 2 4 6 Hyd No. 1 Main Lines Hyd. No. 1 -- 25 Year Q (cfs) 140.00 120.00 100.00 C.1 1O, 40.00 20.00 0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 31 Hydraflow Hydrographs Extension for AutoCAD® Civil 31DO 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 Hyd. No. 2 Small Line Hydrograph type = SCS Runoff Peak discharge = 1.726 cfs Storm frequency = 25 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 4,003 cuft Drainage area = 0.250 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 7.00 min Total precip. = 6.81 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 2.00 1.00 0.00 0 2 4 Hyd No. 2 Small Line Hyd. No. 2 -- 25 Year 6 8 10 12 14 16 18 20 22 24 Q (cfs) 2.00 1.00 0.00 26 Time (hrs) Hydrograph Report 32 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D®2015 by Autodesk, Inc 00.4 Monday, 07 / 28 / 2014 "jyd. No. 3 Hominy Swamp Creek Hydrograph type = SCS Runoff Peak discharge = 866.66 cfs Storm frequency = 25 yrs Time to peak = 12.83 hrs Time interval = 2 min Hyd. volume = 7,763,345 cuft Drainage area = 460.000 ac Curve number = 81 * Basin Slope = 3.1 % Hydraulic length = 8000 ft Tc method = LAG Time of conc. (Tc) = 92.40 min Total precip. = 6.81 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 " Composite (Area/CN) = [(139.000 x 69) + (234.000 x 85)] / 460.000 Q (cfs) 868.00 7^ 4.00 620.00 496.00 372.00 248.00 124.00 0.00 -` 0 2 4 6 Hyd No. 3 Hominy Swamp Creek Hyd. No. 3 -- 25 Year Q (cfs) 868.00 744.00 620.00 496.00 372.00 248.00 124.00 - 0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 33 Hydraflow Hydrographs Extension for AutoCAD® Civil 3DO 2015 by Autodesk, Inc. v10.4 -- lyd. No. 4 Hominy Swamp Creek Hydrograph type = Reach Peak discharge Storm frequency = 25 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hyd. No. = 3 - Hominy Swamp Creek Section type Reach length = 4780.0 ft Channel slope Manning's n = 0.009 Bottom width Side slope = 2.0:1 Max. depth Rating curve x = 3.579 Rating curve m Ave. velocity = 0.00 ft/s Routing coeff. Modified Att-Kin routing method used Q (cfs) 868.00 744.00 620.00 496.00 372.00 248.00 124.00 0.00 0 2 4 - Hyd No. 4 Hominy Swamp Creek Hyd. No. 4 -- 25 Year Monday, 07 / 28 / 2014 = 859.14 cfs = 12.90 hrs = 7,763,343 cuft Trapezoidal 0.4 % = 5.0 ft = 10.0 ft = 1.375 = 0.4331 Q (cfs) 868.00 744.00 620.00 496.00 372.00 248.00 124.00 0.00 6 8 10 12 14 16 18 20 22 24 26 -- — Hyd No. 3 Time (hrs) Hydrograph Report 34 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 '---'Ayd. No. 5 Into Pond Hydrograph type = Diversion1 Peak discharge Storm frequency = 25 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd Diversion method = Flow Ratio Flow ratio 718.00 615.00 492.00 369.00 246.00 123.00 M 2 4 6 8 Hyd No. 5 -- Q = 0.05 x Qin Into Pond Hyd. No. 5 -- 25 Year Monday, 07 / 28 / 2014 = 42.96 cfs = 12.90 hrs = 388,167 tuft =6 = 0.05 Q (cfs) 861.00 738.00 615.00 492.00 369.00 246.00 123.00 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hyd No. 4 -- Inflow — Hyd No. 6 -- 4 minus 5 Hydrograph Report 35 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D(D 2015 by Autodesk, Inc. v10.4 -ajyd. No. 6 Remain in Stream Hydrograph type = Diversion2 Peak discharge Storm frequency = 25 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd Diversion method = Flow Ratio Flow ratio 718.00 615.00 492.00 369.00 246.00 123.00 2 4 6 8 Hyd No. 6 -- Q = 0.95 x On Remain in Stream Hyd. No. 6 -- 25 Year Monday, 07128 / 2014 = 816.19 cfs = 12.90 hrs = 7,375,177 tuft =5 = 0.05 Q (cfs) 861.00 738.00 615.00 492.00 369.00 246.00 123.00 0.00 10 12 14 16 18 20 22 24 26 Hyd No. 4 -- Inflow — Hyd No. 5 Time (hrs) Hydrograph Report 36 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D®2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 -"iyd. No. 7 Park Overland Flow Hydrograph type = SCS Runoff Peak discharge = 25.32 cfs Storm frequency = 25 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 50,642 cuft Drainage area = 5.800 ac Curve number = 61 Basin Slope = 5.0 % Hydraulic length 125 ft Tc method = LAG Time of conc. (Tc) = 4.50 min Total precip. = 6.81 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 94.00 20.00 16.00 12.00 More 4.00 0.00 0 2 4 Hyd No. 7 Park Overland Flow Hyd. No. 7 -- 25 Year Q (cfs) 28.00 24.00 20.00 16.00 12.00 e 4.00 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 37 Hydraflow Hydrographs Extension for AutoCAD® Civil 31D®2015 by Autodesk, Inc. 00.4 Monday, 07 / 28 / 2014 .---.,Oyd. No. 8 Sum of Hydrographs Hydrograph type = Combine Peak discharge = 158.66 cfs Storm frequency = 25 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 727,013 cuft Inflow hyds. = 1, 2, 5, 7 Contrib. drain. area = 23.800 ac Q (Cf 160.00 160.00 140.00 140.00 120.00 120.00 100.00 100.00 80.00 80.00 60.00 - 60.00 A 40.00 40.00 20.00 20.00 0.00 - ` -� 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Hyd No. 8 Hyd No. 1 -� Hyd No. 2 - Hyd No. 5 Time (hrs) Hyd No. 7 Sum of Hydrographs s) Hyd. No. 8 -- 25 Year Hydrograph Report Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc. 00.4 'Iyd. No. 9 Route thru Pond Hydrograph type = Reservoir Peak discharge Storm frequency = 25 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hyd. No. = 8 - Sum of Hydrographs Max. Elevation Reservoir name = Wet Pond Max. Storage Storage Indication method used Q (cfs) 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 0 Route thru Pond Hyd. No. 9 -- 25 Year 38 Monday, 07 / 28 / 2014 = 19.84 cfs = 14.17 hrs = 687,336 tuft = 126.58 ft = 397.485 cult 10 20 30 40 50 60 70 80 90 Hyd No. 9 Hyd No. 8 Total storage used = 397,485 cuft Q (cfs) 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 100 Time (hrs) Hydrograph Report 39 Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 -'Iyd. No. 1 Main Lines Hydrograph type = SCS Runoff Peak discharge = 184.69 cfs Storm frequency = 100 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 436,584 cuft Drainage area = 17.750 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 7.00 min Total precip. = 9.35 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Main Lines Hyd. No. 1 -- 100 Year 1 R0.00 150.00 120.00 s9 A 30.00 Q (cfs) 210.00 180.00 150.00 120.00 .M 30.00 0.00 --i 1 1 - - 1.:.------- r- 1 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 Hyd No. 1 Time (hrs) Hydrograph Report 40 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 `/Iyd. No. 2 Small Line Hydrograph type = SCS Runoff Peak discharge = 2.601 cfs Storm frequency = 100 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 6,149 cuft Drainage area = 0.250 ac Curve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 7.00 min Total precip. = 9.35 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Q (cfs) 3.00 2.00 1.00 0.00 0 Small Line Hyd. No. 2 -- 100 Year 2 4 6 8 10 12 14 16 Hyd No. 2 Q (cfs) 3.00 2.00 1.00 0.00 18 20 22 24 Time (hrs) Hydrograph Report 41 Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 'ylyd. No. 3 Hominy Swamp Creek Hydrograph type = SCS Runoff Peak discharge = 1305.21 cfs Storm frequency = 100 yrs Time to peak = 12.83 hrs Time interval = 2 min Hyd. volume = 11,783,210 cuft Drainage area = 460.000 ac Curve number = 81 * Basin Slope = 3.1 % Hydraulic length = 8000 ft Tc method = LAG Time of conc. (Tc) = 92.40 min Total precip. = 9.35 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Composite (Area/CN) = [(139.000 x 69) + (234.000 x 85)] / 460.000 Q (cfs) 4onn nn 11`'9.00 935.00 748.00 561.00 374.00 187.00 Hominy Swamp Creek Hyd. No. 3 -- 100 Year Q (cfs) 1309.00 1122.00 935.00 748.00 561.00 374.00 187.00 0.00 -1 1 .1. __J - , I 1 _I I I J I I � i- 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Hyd No. 3 Time (hrs) Hydrograph Repoli 42 Hydraflow Hydrographs Extension for AutoCADO Civil 3DV 2015 by Autodesk, Inc. 00.4 -\Iyd. No. 4 Hominy Swamp Creek Hydrograph type = Reach Peak discharge Storm frequency = 100 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hyd. No. = 3 - Hominy Swamp Creek Section type Reach length = 4780.0 ft Channel slope Manning's n = 0.009 Bottom width Side slope = 2.0:1 Max. depth Rating curve x = 3.579 Rating curve m Ave. velocity = 0.00 ft/s Routing coeff. Modified Att-Kin routing method used Q (cfs) 1309.00 11,11) 00 } 935.00 748.00 561.00 374.00 187.00 0.00 0 2 4 Hyd No. 4 6 Hominy Swamp Creek Hyd. No. 4 -- 100 Year Monday, 07 / 28 / 2014 = 1296.34 cfs = 12.90 hrs 11,783,210 tuft = Trapezoidal = 0.4 % = 5.0 ft = 10.0 ft = 1.375 = 0.4722 Q (cfs) 1309.00 1122.00 935.00 748.00 561.00 374.00 187.00 0.00 8 10 12 14 16 18 20 22 24 26 Hyd No. 3 Time (hrs) Hydrograph Report 43 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D®2015 by Autodesk, Inc. 00.4 Monday, 07 / 28 / 2014 ylyd. No. 5 Into Pond Hydrograph type = Diversion1 Peak discharge = 64.82 cfs Storm frequency = 100 yrs Time to peak = 12.90 hrs Time interval = 2 min Hyd. volume = 589,160 cuft Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd. = 6 Diversion method = Flow Ratio Flow ratio = 0.05 Q (cfs) 1302.00 11 iR.00 1 930.00 744.00 558.00 372.00 it. Milli, 0.00 0 2 4 6 8 Hyd No. 5 -- Q = 0.05 x Qin Into Pond Hyd. No. 5 -- 100 Year Q (cfs) 1302.00 1116.00 930.00 744.00 558.00 372.00 186.00 0.00 10 12 14 16 18 20 22 24 26 Hyd No. 4 -- Inflow Time (hrs) y Hyd No. 6 -- 4 minus 5 Hydrograph Report 44 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 �lyd. No. 6 Remain in Stream Hydrograph type = Diversion2 Peak discharge Storm frequency = 100 yrs Time to peak Time interval = 2 min Hyd. volume Inflow hydrograph = 4 - Hominy Swamp Creek 2nd diverted hyd Diversion method = Flow Ratio Flow ratio Q (cfs) 1302.00 11 ' �.00 1 930.00 744.00 558.00 372.00 186.00 0.00 0 Remain in Stream Hyd. No. 6 -- 100 Year Monday, 07 / 28 / 2014 = 1231.52 cfs = 12.90 hrs = 11,194, 050 cuft =5 = 0.05 Q (cfs) 1302.00 1116.00 WiM1 744.00 558.00 372.00 is -I. eff 0.00 2 4 6 8 10 12 14 16 18 20 22 24 26 Hyd No. 6 -- Q = 0.95 x Qin Hyd No. 4 -- Inflow — Hyd No. 5 Time (hrs) Hydrograph Report 45 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D®2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 ' lyd. No. 7 Park Overland Flow Hydrograph type = SCS Runoff Peak discharge = 44.03 cfs Storm frequency = 100 yrs Time to peak = 11.93 hrs Time interval = 2 min Hyd. volume = 88,896 cuft Drainage area = 5.800 ac Curve number = 61 Basin Slope = 5.0 % Hydraulic length = 125 ft Tc method = LAG Time of conc. (Tc) = 4.50 min Total precip. = 9.35 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 '0.00 30.00 20.00 10.00 2 4 6 8 Hyd No. 7 Park Overland Flow Hyd. No. 7 -- 100 Year Q (cfs) 50.00 40.00 30.00 20.00 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 46 Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2015 by Autodesk, Inc. 00.4 Monday, 07 / 28 / 2014 � l yd. No. 8 Sum of Hydrographs Hydrograph type = Combine Peak discharge = 246.35 cfs Storm frequency = 100 yrs Time to peak = 11.97 hrs Time interval = 2 min Hyd. volume = 1,120,789 cult Inflow hyds. = 1, 2, 5, 7 Contrib. drain. area = 23.800 ac ''" 00 200.00 160.00 120.00 80.00 40.00 0.00 0 2 4 6 Hyd No. 8 Sum of Hydrographs Hyd. No. 8 -- 100 Year Q (cfs) 280.00 240.00 160.00 120.00 Om K 8 10 12 14 16 18 20 22 24 26 Hyd No. 1 - Hyd No. 2 - Hyd No. 5 Time (hrs) Hyd No. 7 Hydrograph Repo 47 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D(D 2015 by Autodesk, Inc. v10.4 Monday, 07 / 28 / 2014 'jyd. No. 9 Route thru Pond Hydrograph type = Reservoir Peak discharge = 52.99 cfs Storm frequency = 100 yrs Time to peak = 13.60 hrs Time interval = 2 min Hyd. volume = 1,080,076 cuft Inflow hyd. No. = 8 - Sum of Hydrographs Max. Elevation = 127.77 ft Reservoir name = Wet Pond Max. Storage = 545,014 cuft Storage Indication method used. 2AI)_00 200.00 i[•1 0H 120.00 :l eC 40.00 M 6 12 Hyd No. 9 Route thru Pond Hyd. No. 9 -- 100 Year Q (cfs) 280.00 240.00 200.00 160.00 120.00 40.00 0.00 18 24 30 36 42 48 54 60 Time (hrs) — Hyd No. 8 fL1f III] Total storage used = 545,014 cult Pond Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D®2015 by Autodesk, Inc v10A Pond No. 1 - Wet Pond )Pond Data Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 123.00 ft Stage / Storage Table Stage (ft) Elevation (ft) Contour area (sgft) Incr. Storage (cuft) Total storage (cult) 0.00 123.00 92,691 0 0 1.00 124.00 108,728 100,593 100,593 2.00 125.00 113,512 111,100 211,693 3.00 126.00 118,353 115,912 327,606 4.00 127.00 123,250 120,781 448,387 5.00 128.00 128,204 125,706 574,093 6.00 129.00 150,000 138,946 713,039 Monday, 07 / 28 / 2014 c;ulven / Urlrlce Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in) = 24.00 5.00 6.00 0.00 Crest Len (ft) = 16.00 0.00 20.00 0.00 Span (in) = 24.00 5.00 24.00 0.00 Crest El. (ft) = 126.00 0.00 127.10 0.00 No. Barrels = 1 1 3 0 Weir Coeff. = 3.33 3.33 2.60 3.33 Invert El. (ft) = 123.00 123.00 124.50 0.00 Weir Type = 1 --- Broad --- Length (ft) = 200.00 0.67 0.67 0.00 Multi -Stage = Yes No No No Slope (%) = 0.50 0.10 0.10 n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) Multi -Stage = n/a Yes Yes No TW Elev. (ft) = 0.00 Stage (ft) 6.00 5.00 4.00 3.00 2.00 1.00 0.00 0 100,000 Storage Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (to) and submergence (s) Stage / Storage 200,000 300,000 400,000 500,000 600,000 700,000 Elev (ft) 129.00 128.00 127.00 126.00 125.00 124.00 123.00 800,000 Storage(cuft) it I Buoyancy Calculation v W , LJ L r 3 E 0 co Y L d C .c O = p LO L +-' CV d � m }; cn m V .O IL a O > V a �r u �w a Co U � w � o O C 6. VJ O N N M � 0 N N N N N N U) 9 � Q In O m — LL m V� Li. — — — .O .Q O a) LL r O w Liz r We �O N M O O Ui .OQ LO LO c o N �, r r r u7 co r I- u) O) M O O I-- I I M O O M T M p N 1CJ M d1 r cp cp r v Q1 Q a Q1 O N m r c+•i 'Lo N N LO M to k c0 O N Ito O C d r v co 'z cu 7`1 IC Q H 0 � II a m e K o co N 1 O w. a II �'� �, co o m r N x d c 4 N L m000�O �°•' w 3 mmxuU) 5 CO o �, 0LL •o 0 o w E o w A g 0 w a� M m N c0 N = T N y co W W W ` a 1q: Ld co o m ao o a w v i r� CD en r � v G "r O O m = o z c_ IQ- 0 H cB U rr ^ O M k N t tt o c7 O y `LO N N 14 �� a o � N 11 d � co U Z w V) 67 o m C mho a�N a o� c`• kp a K ci c a m _ d J J M v to m �' � m ° o m ai 0) co 3: = G1 = i� C d m C E E ai Q 'a O N M G O W i s C ;>-CD O Q Q Wet Detention Pond BMP Supplementary Foams Permit (to be provided by DWQ) Ar. 2 NCDENR STORMWATER MANAGEMENT PERMIT APPLICATION FORM 401 CERTIFICATION APPLICATION FORM WET DETENTION BASIN SUPPLEMENT This form must be filled out, printed and submitted. The Required Items Checklist (Part lll) must be printed, filled out and submitted along with all of the required information. I. PROJECT INFORMATION Project name MERRIMONT PARK STORMWATER PROJECT Contact person PETER SOKALSKI Phone number 252-237-5365 Date 7/25/2014 Drainage area number THRU DA-6 and DA-Park o�oF wn r�Ra� r C.l Y 1I, DESIGN INFORMATION Sfte Characteristics Drainage area 1,036,728 ft2 Impervious area, post -development 378,660 ft2 % impervious 36.52 % Design rainfall depth 1.0 in Storage Volume: Non -SA Waters Minimum volume required Volume provided Storage Volume: SA Waters 1.5" runoff volume 're -development 1-yr, 24-hr runoff Post -development 1-yr, 24-hr runoff Minimum volume required Volume provided Peak Flow Calculations Is the pre/post control of the lyr 24hr storm peak flow required? 1-yr, 24-hr rainfall depth Rational C, pre -development Rational C, post -development Rainfall intensity: 1-yr, 24-hrstorm Pre -development 1-yr, 24-hr peak flow Post -development 1-yr, 24-hr peak flow Pre/Post 1-yr, 24-hr peak flow control Elevations Temporary pool elevation Permanent pool elevation SHWT elevation (approx. at the perm. pool elevation) Top of 1Oft vegetated shelf elevation Bottom of 1 Oft vegetated shelf elevation Sediment cleanout, top elevation (bottom of pond) Sediment cleanout, bottom elevation Sediment storage provided Is there additional volume stored above the state -required temp. pool? Elevation of the top of the additional volume 32,719 ft3 155,665 ft3 OK, volume provided is equal to or in excess of volume required. ft3 ft3 ft3 ft3 ft3 Y (Y or N) 2.9 in 0.35 (unitless) 0.54 (unitless) 0.12 in/hr OK 1.00 ft3/sec 1.54 ft3/sec 0.54 ft3/sec 124.50 fmsl 123.00 fmsl fmsl 123.50 fmsl 122.50 fmsl Data not needed for calculation option #1, but OK if provided. 119.00 fmsl 118.00 fmsl Data not needed for calculation option #1, but OK if provided. 1.00 it (Y or N) 124.5 fmsl OK Form SW401-Wet Detention Basin-Rev.9-4/18/12 Paris I. & 11 Design Summary, Page 1 of 2 Permit (to be provided by DWQ) II. DESIGN INFORMATION Surface Areas Area, temporary pool 111,094 ftz Area REQUIRED, permanent pool 30,480 ft SA/DA ratio 2 94 (unitless) Area PROVIDED, permanent pool, Apermpool 92,691 ft, OK Area, bottom of 1Oft vegetated shelf, Abol_shsll 72,770 ft2 Area, sediment cleanout, top elevation (bottom of pond), Abolpond 63,136 ft' Volumes Volume, temporary pool 155,665 ft3 OK Volume, permanent pool, Vpermpool 361,639 ft' Volume, forebay (sum of forebays if more than one forebay) 50,460 ft3 Forebay % of permanent pool volume 14.0% % Insufficient forebay volume. SA/DA Table Data Design TSS removal 90 % Coastal SA/DA Table Used? N (Y or N) Mountain/Piedmont SA/DA Table Used? Y (Y or N) SA/DA ratio 2.94 (unitless) Average depth (used in SA/DA table): Calculation option 1 used? (See Figure 10-2b) Y (Y or N) Volume, permanent pool, Vpermpml 361,639 ft' Area provided, permanent pool, Apermpool 92,691 ft2 Average depth calculated 3.90 ft OK Average depth used in SA/DA, dav, (Round to nearest 0.5ft) 4.0 ft OK Calculation option 2 used? (See Figure 10-2b) N (Y or N) Area provided, permanent pool, Apermpool 92,691 ft2 Area, bottom of 1 Oft vegetated shelf, Abol shelf 72,770 ft' Area, sediment cleanout, top elevation (bottom of pond), Abolpond 63,136 ftz "Depth" (distance b/w bottom of 1 Oft shelf and top of sediment) 350 ft Average depth calculated ft Average depth used in SA/DA, dav, (Round to down to nearest 0.5ft) ft Drawdown Calculations Drawdown through orifice? Y (Y or N) Diameter of orifice (if circular) 5.00 in Area of orifice (if -non -circular) in Coefficient of discharge (CD) 0.60 (unitless) Driving head (Ho) 1.50 ft Drawdown through weir? N (Y or N) Weir type (unitless) Coefficient of discharge (C.) (unitless) Length of weir (L) ft Driving head (H) ft Pre -development 1-yr, 24-hr peak flow 1.00 ft'/sec Post -development 1-yr, 24-hr peak flow 1.54 ft/sec Storage volume discharge rate (through discharge orifice or weir) 0.69 fit/sec Storage volume drawdown time 2.56 days OK, draws down in 2-5 days. Additional Information Vegetated side slopes 3 :1 OK Vegetated shelf slope 10 :1 OK Vegetated shelf width 10.0 ft OK Length of flowpath to width ratio 1 :1 Insufficient flow path to width ratio. Must not short-circuit pond. Length to width ratio 1.5 :1 OK Trash rack for overflow & orifice? Y (Y or N) OK Freeboard provided 1.0 ft OK Vegetated filter provided? Y (Y or N) OK Recorded drainage easement provided? N (Y or N) Insufficient. Recorded drainage easement required. 'apures all runoff at ultimate build -out? Y (Y or N) OK [rain mechanism for maintenance or emergencies is: Manual Pump Out Form SW401-Wet Detention Basin -Rev 9-4/18/12 Parts I. & II. Design Summary, Page 2 of 2 Level Spreader BMP Supplementary Forms A�i'2, L'2,. Op w�r�R } K HCDENR b Y STORMWATER MANAGEMENT PERMIT APPLICATION FORM 401 CERTIFICATION APPLICATION FORM LEVEL SPREADER - VEGETATED FILTER STRIP (LS-VFS) SUPPLEMENT This form must be completely filled out, printed, initialed, and submitted. I. PROJECT INFORMATION Project name Merrimont Park Stormwater Project Contact name Peter Sokalski Phone number 252-237-5365 Date July 25, 2014 Drainage area number II. DESIGN INFORMATION The purpose of the LS-VFS Buffer Rule: Diffuse Flow Stormwater enters LS-VFS from A BMP Type of VFS Protected riparian buffer (slope < 5%) Explanation of any "Other" responses above If Stormwater Enters the LS-VFS from the Drainage Area Drainage area f? Do not complete this section of the form. Impervious surface area fe Do not complete this section of the form. Percent impervious % Do not complete this section of the form. Rational C coefficient Do not complete this section of the form. Peak flow from the 1 inlhr storm cfs Do not complete this section of the form. me of concentration min Do not complete this section of the form. ,ainfall intensity, 10-yr storm inlhr Do not complete this section of the form. Peak flow from the 10-yr storm cfs Do not complete this section of the form. Design storm 10-year storm Maximum amount of flow directed to the LS-VFS cfs Do not complete this section of the form. Is a flow bypass system going to be used? (Y or N) Do not complete this section of the form. Explanation of any "Other" responses above System is designed to 5 cfs due to site constraints as well as site is accepting inflow from existing creek during peak flows. If Stormwater Enters the LS-VFS from a BMP Type of BMP Wet detention pond Peak discharge from the BMP during the design storm 5 cfs Peak discharge from the BMP during the 10-year storm 13.09 cfs Maximum capacity of a 100-foot long LS-VFS 2 cfs Peak flow directed to the LS-VFS 5 cfs Is a flow bypass system going to be used? y (Y or N) Explanation of any "Other" responses above Form SW401 - LS-VFS - 29June2012 - Rev.10 page 1 of 3 LS-VFS Design Forebay surface area Depth of forebay at stormwater entry point Depth of forebay at stormwater exit point eet of level lip needed per cfs omputed minimum length of the level lip needed Length of level lip provided Width of VFS Elevation at downslope base of level lip Elevation at the end of the VFS that is farthest from the LS Slope (from level lip to the end of the VFS) Are any draws present in the VFS? Is there a collector swale at the end of the VFS? Bypass System Design (if applicable) Is a bypass system provided? Is there an engineered flow splitting device? Dimensions of the channel (see diagram below): M B W y (flow depth for 10-year storm) freeboard (during the 10-year storm) Peak velocity in the channel during the 10-yr storm Channel lining material Does the bypass discharge through a wetland? Does the channel enter the stream at an angle? Explanation of any "Other" responses above 0 sq It No forebay is required, in in 50 fycfs 250 ft The flow is too high for a 100-foot level spreader, 50 ft Level spreader is too short to handle the flow. 30 It Width of VFS is not adegate. 122.00 fmsl 121.40 fmsl 2.00 % n (Y or N) n (Y or N) y (Y or N) y (Y or N) Please provide plan details of flow splitter & supporting calcs 3.00 It 2.00 It 6.00 It 0.50 ft 1.00 ft 3.61 ft/sec Rip -rap n (Y or N) y (Y or N) The LS design is 10 ft/s per cfs and VS is 30' wide per discussion with NCDENR stormwater engineer, dated 7/11/14 1i j B ± i Form SW401 - LS-VFS - 29June2012 - Rev.10 page 2 of 3 III. REQUIRED ITEMS CHECKLIST EDIT Please indicate the page or plan sheet numbers where the supporting documentation can be found. An incomplete submittal package will result in a request for additional information. This will delay final review and approval of the project. Initial in the space provided to indicate the —following aesign requirements have been met. If the applicant has designated an agent, the agent may initial below, If a requirement has not been met, Ittach justification. Requried Item: 1. Plans (V - 50' or larger) of the entire site showing: - Design at ultimate build -out, Off -site drainage (if applicable), Delineated drainage basins (include Rational C coefficient per basin), Forebay (if applicable), High flow bypass system, Maintenance access, Proposed drainage easement and public right of way (ROW), and Boundaries of drainage easement. 2. Plan details (1" = 30' or larger) for the level spreader showing: - Forebay (if applicable), High flow bypass system, One foot topo lines between the level lip and top of stream bank, Proposed drainage easement, and Design at ultimate build -out. 3. Section view of the level spreader (V = 20' or larger) showing. - Underdrain system (if applicable), Level lip, Upslope channel, and Downslope filter fabric. Plan details of the flow splitting device and supporting calculations (if applicable). 5. A construction sequence that shows how the level spreader will be protected from sediment until the entire drainage area is stabilized. 6. If a non -engineered VFS is being used, then provide a photograph of the VFS showing that no draws are present. 7. The supporting calculations. 8. A copy of the signed and notarized operation and maintenance (0&M) agreement. Initials Page or plan sheet number and any notes: Form SW401 - LS-VFS - 29June2012 - Rev.10 page 3 of 3 Neuse Nutrient Management Calculations METHOD 1: Residential Deveio ment Foo rints Not Shown Site Area TN Export TN Export by Land TN ExportFrom Type of Land Cover (Ac Coeff. Use Ibs/ r Site Ibs/ac/ r Open Space -OF- 0.6 0 Managed Open pace Oj 1.2 0 IRi ht of Way 0 11 0 Lots 0 4.0 0 Ibs/ r Totals 0 #DIV/0! 0 METHOD 2; Developments with Footprints Shown Open Space 0 0.6 0 Managed Open Space 15.14 1.2 18.168 Impervious surfaces 8.67 21.2 183.804 Totals 23.81 8.51 201.972 Ibs/ r Total from Methods 1 and 2 23.81 201.972 albs/yr Nutrient Removal Rate Wet Det. Pond 25% Tn Total LfBcen Tn %= 25% 'Total Tn Removed = 50.5 LBS/YR CD 1�- 04 M (D M LO I- V U� � a) Lf);0) Oi 70 q V) �: . . . Im 0 0 CD C:).� 0 r 0,0 ci co co co miiv- lcr:v-1 0 lao coito 0 ci Ottlri C4.Lq Un= 0)1 .w CO CO M lct'(D U).CD CM�T- 0 0) o :. 1 . q•7 -: c"! N " C'4:v� 0 9 O C) 0 0.6 o 6 0.6 o 0 616 6 0l�l0q q �o $'a: Si�g; oM"'j .0 010 C,r C;V6!c6[d olv- 0 U') U),o oj� 040 LWO Lf)'U') iO� (D co!w co� Lo �tD (7) LO 01CO. ce) CO (OfN 8 1 rz U') Do tO 0 OIN 01CO Olt-- 04 �i LOj.M its LO[cb Oi.,- q.1 j8 w 4* C,4:;�m LC; N,fj v- 6 T: 7! 8 v C,4 R 9 c lf) IV UM) T�O�— Precipitation Data Sheets Precipitation Frequency Data Server http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?st=nc&sta=31-.. NOAA Atlas 14, Volume 2, Version 3 WILSON 3 SW Station ID: 31-9476 Location name: Wilson, North Carolina, US*r- Latitude: 35.6939°, Longitude:-77.9456° Elevation: Elevation (station metadata): 110 W " source: Google Maps POINT PRECIPITATION FREQUENCY ESTIMATES G M Bonnin, D Martin, B Lin, T. Parzybok, M Yekla, and D Riley NOAA National Weather Service, Silver Spring, Maryland PF tabular I pF QraohicaJ I MU_ ria PF tabular PDS»based point precipitation frequency estimates with 90% confidence intervals (in inches)1 Average recurrence interval (years) E�i1 2 5 0000W 10 25 50 100 200 500 �2�� 1000 0.418 0.487 0.557 0.629 0.708 0.773 0.835 0.894 0.966 5-min (0.379-0.461) (A. 2 0.536) (0.506-0.613) (0.571-0.693) (0.640-0.778) (0.695-0.850} (0.747-0.917) (0.795-0.983) (0.851-1.06J 1.03 (0.902-1.14) 0.667 0.778 0.892 1.01 1.13 10-min 1.23 1.33 1.42 1.53 1.63 (0.606-0.736) (0.708-0.857.) (0.811-0.982) (0.913-1.11) (1.02-1.24) (1.11-1.35) (1.19-1.46) (1.26-1.56) (1.35-1.69) (1.42-1.80) 0 834 0.979 1.13 1.27 1.43 1.56 �15-min j 1.68 1.79 1.92 2.04 l[0.758-0.920) (0.890-1.08) (1.03-1.24) (1.16-1.40) (1.29-1.57) (1.40-1.71) (1.50-1.84) (1.59-1.97) (1.702.12) (1.78-2.25) 1.14 1.35 1.60 1.84 2.12 30-min 2.35 2.57 2.78 3.06 3.31 (1.04-1.26) 1 (1.23-1.49) (1.46-1.76) O 67-2.03) (1,92-2.33) (2.11-2.58) (2.30-2.82) (2.47-3 06) ( 2.70-3.37) (2.89-3.65) 1.43 1.70 2.06 2.40 60-min 2.82 3.18 3.54 3.90 4.39 4.83 (1.29-1.57) (1.54-1.87) (1.87-2.26) (2.18-2.65) (2.55-3.10) (2.86-3.50) (3.16-3.89) (3.47-4.29) (3.87-4.84) (4.21-5.33 ) 1.66 1.98 2.44 2.92 2-hr 3.53 4.08 4.64 5.26 6.13 F 6.92 (1.50-1.83) 1 (1.80-2.18) (2.22-2.69) (2.65-3.21) (3 18-3 87) (3.664A7) 1 (4.13-5.09) 1 (4.66-5.76) (5 37-6.71) (6.00-7.60) 1.75 2.10 2.60 3.14 3-hr 3.83 4.47 6.15 5.90 6.98 7.99 (1.60-1.94) (1.92-2.32) (2.37-2.87) (2.85-3.45) (3.45-4.20) (4.01-4.91) (4,58-5.64) (5.20-6.46) (6.08-7.65) (6.87-8.77) 2.10 2.51 3.12 3.75 6-hr 4.60 F 5.39 6.23 7.16 8.51 9.79 (1.92-2.31) (2.30-2.76) (2.84-3.42) (3.41-4.12) (4.16-5.03) (4.84-5.89) (5.54-6.80) (6.30-7.80) (7.40-9.28) (8.39-10.7) 2.46 2.94 3.67 4.44 12-hr 5.48 6.47 7.52 8.71 10.4 12.1 (2.25-2 69) (2 70-3.21) (3.36-4.01) (4.05 4.85) (4,96-5.96) (5.81-7.02) (6,69-8.15) (7.66-9,43) (9.03-11.3) (10.3-13.1) 2.91 3.53 4.56 5.45 24-hr 6.81 8.00 9.36 10.9 13.2 15.2 (2.70-3.16) (3.27-3.83) (4.22-4.94) {5.03-5.91) (6.22-7,38) (7.25-8.68) (8.38-10.2) (9.60-11.9) (11.4-14.5) (12.9-16.8) 3.37 4.08 5.22 6.20 7.69 2-da y 8.98 10.4 12.0 14.5 66.6 (3.13-3.66) (3.79-4.43) (4.83-5.67) (5.72-6.74) (7.03-8.35) (8.15-9.77) (9.36-11.4) (10.7-13.2) (12.6-16.0) (14.2-18.5) 3.59 4.33 5.51 6.52 8.02 3-da y 9.32 10.8 12.3 14.7 16.8 (3.33-3.89) (4.03-4.70) (5.11-5.98) (6.02-7.06) (7.35-8.70) (8.47-10.1) (9.68-11.7) (11.0-13.5) (12.8-16.2) LQLL18.7) 3.81 4.59 5.80 6.83 4-day 8.35 F 9.65 11.1 12.7 15.0 F 17.0 (3,54-4.12) (4.27-4.97) (5.39-6.28) (6.33-7.39) (7.68-9.04) (8.79-10.5) (9.99-12.1) (11.3-13.8) (13.1-16.5) (14.7-18.8) 4 5.34 6.70 7.82 9.46 7-da 10.8 12.3 13.9 16.2 18.2 (4.13-4.80) (6.22-7.25) (7.24 8.46) (8.70-10.2) (9.88-11.7) (11.1-13.4) (12.5-15.1) (14.3-17.8) (15.8-20.1) 6.08 6.06 7.61 8.71 10.4 10-day 11.8 13.4 15.0 17.4 19.3 (4,75-5.46) (5.68-6.54) (7.01-8.08) (8.10-9.35) (9.64-11.2) (10.9-12.8) (12.2-14.5) (13.5-16.3) (15.4-19.0) (17.0-21.2) 6.83 8.14 9.90 11.3 13.4 20-day 15.1 16.8 18.7 21.3 23.4 (6.41-7.32) (7.63-8.73) (9.27-10.6) (10.6-12.2) (12.4-14.3) (13.9-16.1) (15.4-18.1) (17.0-20.1) (19.1-23.1) (20.8-25.6) 8.49 10.1 12.1 13.7 15.9 30-day 17.6 19.4 21.3 23.8 25.9 (8.01-9.04) 0.7) (11 (9.49-1.4-12.8) (12.8-14.6) (14.8-16.9) (16.4-16.6) {18.0-20.6) (19.6-22.8) (21.7-25.7) (23.3-28.1) 10.7 12.6 15.0 16.8 45-day 19.3 21.3 23.4 25.4 28.3 30.5 (10.1-11.4) 1 (11.9-13.5) (14 1-15.9) (15.8-17.9) (18.1-20.6) (19.9-22.7) (21.7-24.9) (23.5-27.3) (25.8-30.5) (27.6-33.0) 12.9 15.2 17.7 19.7 60-day 22.4 24.4 5 28.6 31.3 33.3 (12.2-13.6) (14.4-16.0) (16.6-16.7) - 8 (18.6-20.9) (21,1-23.7) (23.0-25.9) (24.8-28.1) (26,6-30.4) (28.9-33.5) (30.6.35.8) Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Bach to To PF graphical 1 of 4 5/5/2014 10:21 AM Precipitation Frequency Data Server http://hdsc.nws.noaa. gov/hdsc/pfds/pfds_printpage.html?lat=35.6939&1., NOAA Atlas 14, Volume 2, Version 3 Location name: Wilson, North Carolina, US* FFFIIYWWW Latitude: 35.6939*, Longitude:-77.9456° Elevation: 111 W ` source: Google Maps., POINT PRECIPITATION FREQUENCY ESTIMATES G M Bonnin, D Martin, B Lin, T. Parzybok, M Yekta, and D Riley NOAA, National Weather Service, Silver Spring, Maryland PE-WkWU I PE nraohical I Wag & aerials PF tabular PaS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour)1 Duration Average recurrence interval (years) 1 2 5 10 ������� 25 50 100 200 500 1000 5-min 5.02 5.84 6.68 7.55 8.50 9.28 10.0 10.7 11.6 12.4 (4.55-5.53) (5.32-6.43) (6.07-7.36) (6.85-8.32) (7.68-9.34) (8.34-10.2) 7.39 (8.96-11.0) 7.96 (9.54-11-8) 8.61 (10.2-12.8) 9.17 (10.8-13 7) 9.76 10-min 4.00 4.67 5.35 6.04 6.77 (3.64-4.42) (4.25-5.14) (4.87-5.89) (5.48-6.65) (6.12-7-44) (6.64-8.12) (7.12-8 74) (7.56-9.35) (8.08-10.1) - 3.34 3.92 4.51 5.09 5.72 15-mm 6.24 6.71 7.15 7.70 8.17 (303-3.68) (3.5692 (4.10-4-97) (4.62-5.61) (5.17-6-29) (5.61-6.85) (6.00-7.37) (6.36-7.86) (6.78-8.48) (T13-9.02) 2.29 2.70 3.21 3.69 4.24 30-mm 4.70 6.14 5.67 6.12 6.61 (2.08-2.52) (2-46-2.98) (2.91-3.53) (3.35-406) (3.83-466) (4.22-5.16) (4.59-5.64) (4.95-6.12) (5.39-6-75) (5,77-7,30) 1.43 1.70 2.06 2.40 2.82 60-min 3.18 3.54 3.90 4.39 4.83 (1-29-1.57) (1.54-1.87) (1.87-226) (2.18-2.65) (255-3.10) (2.86-3.50) (3.16-3.89) (3.47-4.29) (3.87-4.84) (4.21-5-33) 2 hr 0.828 0.989 1.22 (0.750-0-9f4) {0.900-1.09) (1.11-1.34) 1.46 (1.32-1-61) 1.76 (1.59-1.94) 2.04 (1-83-2.24) 2.32 2.63 (2.07-2.54) (2.33-2.88) 3.06 3.46 (2-68-3.36) (3.00-3.80) 0.584 0.700 0.867 1.04 1.27 1.49 1.72 1.97 �3-hr 2.32 2.66 (0.532.0.646)1(0.639-0-772) ,(0.791-0.957) (0.948-1A5) (1.15 1.40) 11 (1,34-1.64) (1-52-1.88) (1.73-2.15) (2.02-2.55) (2.29-2.92) 0.350 0.419 0.520 0.626 0.768 0.900 1.04 6-hr 1.20 1.42 1.63 (0-32"-386) (0.383-0.461) (0,475-0.571 (0.570-0-687) (0.694-0.840) (0,808.0.984] (0.925-1,14) (1.05-1.30) 0.624 0.723 (0-555-0.677J (0.635-0.783) 0.389 0.453 (0.304 0-423} (0.4D0-0-494] (1.24-1.55) (1-40-1-78) 0.867 1.00 .'0-749-0.938) (0.855-1.09) 0.550 0.635 ('O.A% 0.604) (0-540-0.701} 12-hr 0.204 0.244 0.304 (0.187-0-224) (0.224.0267) (0,279-0.333] 24-hr 0.121 0.147 0.190 (0.112-0.132) (0.136-0,160) (0 176-0.2061 0.368 (0.336.0.403) 0.227 ('0210-0.246) 0.455 0.537 (0-412-0.495) (0-482.0-583) 0.284 0.333 ('0-259-0.308] (0.302-0.362) 0.070 0.085 0.109 0.129 0.160 0.187 0.217 0.251 0.302 2-da y 0.346 (0.065 0.076) (0.078-0-092} (0.101-0.118) (0.119-0 140) (0.146-0.174) (0.170-0.203) I0.195-0.237) (0.222-0.275) (0-262.0.334) (0-295-0-386) 0.050 0.060MI(D.084-0-098) 0.091 0.111 0.1 99 0.149 0.172 0.205 3-da y 0.233 (0.046-0.054j (0.056.0.065) (0.102-0.121)(0-118-0.141) 1;0.134-0.163) (0.152-0.187) Q0.176-0.226) (0200-0.258) 0.040 F 0.048 0.060 0.071 0.087 0.101 0.115Lml- 0.156 0.177 4-day ,(0.037-0.043] (0.044-0.052] (0.050.0.065 (0,066.0.077) (0.080-0.094) (0.092-0.109) (0.104-0.126) (0.137-0.172) (0-153-0.196J F-05-26 0.032 0.040 0.047 0.056 0.064 0.073 0.083 0.097 7-da 0.108 11 (0.025-0.029} (0-030-0,034) (0.037-0.043) (0.043-0.050 (0.052-0.061) (0.059-0-070} (0-066-0-0$0) (0.074-0-090) (0.085-0106) (0.094-0.119) 0.025 0.031 0.036 0.043 0.049 0.056 0.062 0.072 0.080 �0.021 10-da (0.020-0.0231 (0.024.0.027 (0-029-0.034) (0-034-0-039) (0.040-0-047) 1:0.045-0-053J (0.05'1-0.060) (0.056.0.068) (0.064-0.079) (0.071-0.088) 0.014 0.017 0.021 0.024 0.028 0.031 0.035 0.039 0.044 20-da y 0.049 [D.D13-0.015) (0.0164018) (0.019-0.022) (0.022.0,025) (0.026-0.030) (0-029-0.034) (0.032.0.038) (0.035-0.042) (0.040-0-048) (0.043.0.053) 0.012 0.014 0.017 0.019 -0.022---1 0.024 0.027 0.030 0.033 0.036 30 da y (0.011-0.013) (0.013.0.015) (0.016-0.018) (0.018-0020) (0.021-0.023) (0.023-0.026) (Q025-0.029) (0-027.0,032) (0.030.0.038) (0.032-0.039) 0.010 0.012 0.014 0.016 1 0.018 0.020 1 0.022 0.024 0.026 0.028 45-da y (0.009-0.011) (0.011-0.012) (0.013-0.015) (0.015-0.017) 1:0.017-0.019) (0.018-0.021) (0.020.0.023) (0.022-0.025) (0.024-0.028) (0.026-0.031) 0.009 0.091 0.012 0.014 0.016 0.017 0.018 0.020 0.022 0.023 60-day (0-DOB-0.009J (0.010-0.011) •(0.012-0.013) (0.013-0.014] (0.015-0.016) (0.016-0018) (0.017-0.020) {0.016-0.021) (0.0?0.0.023) {0.021-0.025) t Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS), (Numbers in parenthesis are PF estimates at lower and upper bounds of the 90 % confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Tom PF graphical 1 of 4 5/13/2014 l 1: l 2 AM Outlet Protection Calculations 303 Goldsboro St Wilson, NC 27894 252.237.5365 Engineering 252.243.7489 (fax) Date: 1 5/16/2014 Q 10 = 58.73 cfs v = 8.53 fps do = 36 inches La = 17 feet d 5o = 0.3 feet OUTLET PROTECTION CALCULATIONS Outlet IUD: FES #1 at 36" RCP Main Project: Merrimont Park stormwater Pro ect Desianer: i nws d50 Stone Size (in) NCDOT Class Gravel Rip Rap 1 Class -A 2-6" 2 Class B 6 to 15" Rock Rip Rap 6 Class 1 9 to 12" 9 Class II 15 to 18" 12 15 18 21 24 dmax = d50 x 1.5 dmax = stone size for outlet protection depth = dmax x 1.5 9 feet 10 feet Imo- 17 feet Place Class A Over Filter Fabric Depth = 9 Rip Rap inches 9 inches 5/16/20144:46 PM Outlet Protection or 09144 303 Goldsboro St OUTLET PROTECTION CALCULATIONS • R A Wilson, NC 27894 252.237.5365 Engineering 252.243.7489(fax) outlet ID: FES #3 at 24" RCP Storm Structure Project: Merrimont Park stormwater Project Date: 7/28/2014 Designer: I DWs Q 10 = 8.09 cfs v = 3.61 fps do = 24 inches La o 10 feet d 50 = 0.3 feet d5o Stone Size (in) NCDOT Class Gravel Rip Rap 1 Class A 2-6" 2 Class B 6 to 15" Rock Rip Rap 6 Class 1 9 to 12" 9 Class II 15 to 18" 12 15 18 21 24 dmax = d50 x 1.5 dmax = stone size for outlet protection depth = dmax x 1.5 6 feet 110 10 feet 6 feet 24 "RCP ti.yry. tir{ftir'..rt±4 r•r•✓•r•✓•r•r:r.r.r•r•r•r•r•r•r•r• stirs}r rti.y�z}tisti}:'} r r�r i%stir~ r�.%°, r�r r"r�r r r�r�} r�r ✓ ~r� 9 Inches y.y.g.y.�.y.ti.ti.�. �...ti.yy•yti•ti r•r•r•r•r•r•r•r.r r.f,r.✓.r. r.r.✓. .•S•r...2 y.ti.y.{.�,ti.y.....+..y.y Place Class A Rip Rap Over Filter Fabric Depth = 9 inches 7/28/20144:06 PM Outlet Protection or 09144 j= g 303 Goldsboro St Wilson, NC 27894 kit 252.237.5365 Engineering 252.243.7489 (fax) Date: 7/28/2014 Q 10 = 9.42 cfs v = 3.61 fps do = 24 inches La = 10 feet d 5o = 0.3 feet OUTLET PROTECTION CALCULATIONS Outlet ID: FES #3 at 24" RCP Storm Structure Project: Merrimont Park stormwater Project Designer: I nws d50 Stone Size (in) NCDOT Class Gravel Rip Rap 1 Class A 2-6" 2 Class B 6 to 15" Rock Rip Rap 6 Class 1 9 to 12" 9 Class II 15 to 18" 12 15 18 21 24 dmax =d50x1.5 dmax = stone size for outlet protection depth = dmax x 1.5 6 feet i 10 feet Place Class A Over Filter Fabric Depth = 9 Rip Rap inches 6 feet 9 inches 7/28/20149:48 AM Outlet Protection or 09144 303 Goldsboro St OUTLET PROTECTION CALCULATIONS Wilson, NC 27894 252.237.5365 Engineering 252.243.7489(fax) Outlet ID: FES at Twin 30" RCP Project: Merrimont Park stormwater Project tte: 7/28/2014 Desianer: I ows 010 = 31.38 cfs v = 5.88 fps do = 30 inches La = 8 feet d 5o = 0.6 feet (2) 30" RCP d5o Stone Size (in) Gravel Rip Rap 1 2 Rock Rip Rap 6 9 12 15 18 21 24 NCDOT Class Class A 2-6" Class B 6 to 15" Class 1 9 to 12" Class II 15 to 18" dmax = d50 x 1.5 dmax = stone size for outlet protection depth = dmax x 1.5 11 feet Place Class B Over Filter Fabric Depth = 17 11 feet 8 feet Rip Rap inches 17 inches 7/28/20149:47 AM Outlet Protection or 09144 .1 6 11 T 6' = Oo + 0 . -1 L a FES #1 t FES #2 FES P3 Discharge (fOlsec) Curves way not Of, t.?x1rapoiated Figure 8.06b D(---,-,.(gn of culk-, poto-.!inn ^rirn ;i ru.md ;j:pj I o valo hi'A n-,;iy.tm.'Jn talwatu! condl,on (T. (I 5danwtur) 8.06.4 FP.. 11 93 Ditch Liner Calculations Merrimont Park Stormwater DITCH LINING CALCULATIONS NAME DA C 1 0 70 SLOPE VELOCITY DEPTH SHEER LINER TD-1 0.2 0.6 7.54 0.90 3.6% 4.38 0.26 0.60 Fiberglass Net TD-2 0.55 0.6 7.54 3.49 1.6% 4.47 0.51 0.50 Fiberglass Net 0�' Engineering S = 0.0364 ft/ft D = 0.26 ft Q = 0.90 cfs L = 110 ft V = 4.38 fps TT in Channel = Tractive Force= 303 Goldsboro St DITCH LINER CALCULATIONS Wilson, NC 27894 No.: TD-1 JN: 09-144 252.237.5365 project: Merrimont Park Stormwater 252.243.7489 (fax) Designer: pws Date: 7/25/14 Sc = 0.0111 ft/ft VEE Channel Dc = 0.36 ft Bottom Width = 0 ft VC = 2.39 fps Left Side Slope = 3 :1 (n = 0.02 ) Right Side Slope = 3 :1 0.419 MIN 0.60 psf A temporary lining is needed. Use Fiberglass Net Apply seed, fertilizer, straw mulch and tack with a liquid emulsified asphalt blown from a sprayer. Use rapid setting IRS or CRS liquid asphalt at the rate of 10 gallons per 1000 SF. 0.26 ft 1 1 0.36 ft 3 3 + Vee Ditch w/Lining ft L E. ---F LJ —i ft —►I ft 1 1 ft i ft ft ft ft ft 303 Goldsboro St Wilson, NC 27894 252.237.5365 Engineering 252.243.7489 (fax) S = 0.0364 ft/ft D = 0.32 ft Q = 0.90 cfs L = 110 ft V = 2.88 fps TT in Channel = 0.637 MIN Tractive Force= 0.74 psf Im Sc = 0.0339 ft/ft Dc = 0.36 ft VC = 2.39 fps (n = 0.035 ) DITCH LINER CALCULATIONS TD-1 Grass JN: 09-144 Merrimont Park Stormwater pws I Date: 5/7/14 VEE Channel Bottom Width = 0 ft Left Side Slope = 3 :1 Right Side Slope = 3 : 1 A temporary lining is needed. Use Fiberglass Net Apply seed, fertilizer, straw mulch and tack with a liquid emulsified asphalt blown From a sprayer. Use rapid setting IRS or CRS liquid asphalt at the rate of 10 gallons per 1000 SF. 0.32 ft T X— I 1 1 0.36 ft 3 3 + Vee Ditch w/Lining ft I� ft �I ft 1 1 ft i ft ft ft ft ft Engineering S = 0.0156 ft/ft D = 0.51 ft Q = 3.49 cfs L = 257 ft V = 4.47 fps TT in Channel = Tractive Force= 303 Goldsboro St DITCH LINER CALCULATIONS Wilson, NC 27894 No.: TD-2 JN: 09-144 252.237.5365 252.243.7489 (fax) Pro'ect: Merrimont Park Stormwater Designer: pws Date: 517114 Sc = 0.0092 ft/ft VEE Channel Dc = 0.61 ft Bottom Width = 0 ft Vc = 3.13 fps Left Side Slope = 3 :1 (n = 0.02) Right Side Slope = 3 :1 0.959 MIN 0.50 psf A temporary lining is needed. Use Fiberglass Net Apply seed, fertilizer, straw mulch and tack with a liquid emulsified asphalt blown from a sprayer. Use rapid setting IRS or CRS liquid asphalt at the rate of 10 gallons per 1000 SF. 0.51 ft r 1 1 0.61 ft 3 3 Vee Ditch w/Lining �] ft I� ft �I ft 1 1 ft ft ft ft ft ft Ditch Liner Calculation.xls Copyright 2003 Rev. 1 i t 303 Goldsboro St i Wilson, NC 27894 No.: • 252.237.5365 e Eng�neering 252.243.7489 (fax) Pro S = 0.0156 ft/ft Sc = 0.0296 ft/ft D = 0.55 ft Dc = 0.53 ft Q = 2.49 cfs VC = 2.93 fps L = 257 ft (n = 0.035) V = 2.70 fps TT in Channel = 1.588 MIN Tractive Force= 0.54 psf DITCH LINER CALCULATIONS TD-2 Grass JN: 09-144 Merrimont Park Stormwater pws Date: 5/7/14 VEE Channel Bottom Width = 0 ft Left Side Slope = 3 :1 Right Side Slope = 3 :1 A temporary lining is needed. Use Fiberglass Net Apply seed, fertilizer, straw mulch and tack with a liquid emulsified asphalt blown from a sprayer. Use rapid setting IRS or CRS liquid asphalt at the rate of 10 gallons per 1000 SF. 0.55 ft T — — I 1 1 0.53 ft 3 _ 3 + Vee Ditch w/Lining E ftL-i T — I —i Imo--- ft --►I ft 1 1 ft i ft ft ft ft ft Ditch Liner Calculation.xls Copyright 2003 Rev. 1 0 y I JJ I ft w _ vb Awl- ■ * `-� r' ■ I■ *—-f w' SWAMP CREEK rt HOMINY U MR T - w ro Jjr ` Q or-72 + 1 U * #4 aoo o �'- p v, g r - C J Y n _ _ Y d = � � M lD cr W d O a e _ ^ Ln uj l II l7 Z M rf (n O w J cr Ln F rm W . r 0OF LL nn to r- W A ►#+ �A qa �' � ro a a a ro - oli 0 n. LU a) 0 0 Ln U cr z rl 0 cr- LU ,\/VAMP CREEK VA I 6 rI I 1 or GREEN ENGINEERING ` F ` WATM WA �.Et 7, UJRVEYM PLAN PROX-Cr WAhiA0Ew9 %7 3 NMMCAVAXM FM� ��� PA Sox we it �n. oeero yes FAK a� ASP ate! ol►ra i !f CITY OF WILSON MY IMELyRRrlI ONT PARK STORM■ W�yA,1TNEyR�PROJECT ►V fie■ ��GE AREA MAP \r11 1 OF ►TL90N Wf.� N OOL 1 , NO �1� Q.A{'[�{.ry�y agwftll� 29-,U -14 ■mmm 1 47-0(