Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
20000783 Ver 5_SW Information_20170117
STORMWATER IMPACT ANALYSIS & FINAL DESIGN OF TWO ON-SITE STORMWATER MANAGEMENT FACILITIES AND FINAL HYDRAULIC DESIGN OF ONE CULVERT CROSSING TRADITIONS — PHASES 26 & 2C JPM-14060 WAKE FOREST, NORTH CAROLINA DATE: DECEMBER 2015 'J McADAMS Raleigh/Durham ■ 2905 Meridian Parkway ■ Durham, NC 27713 Charlotte ■ 11301 Carmel Commons Blvd ■ Suite 111 ■ Charlotte, NC 28226 McAdamsCo.com Designing Tomorrow's Infrastructure & Communities ;fir+ TRADITIONS - PHASES 2B & 2C WAKE FOREST, NORTH CAROLINA STORMWATER IMPACT ANALYSIS & FINAL DESIGN OF TWO ON- SITE STORMWATER MANAGEMENT FACILITIES AND FINAL HYDRAULIC DESIGN OF ONE CULVERT CROSSING PROJECT NUMBER: JPM-14060 DESIGNED BY: DAVE BROWN, PE DATE: DECEMBER 2015 1 McADAMS 2905 MERIDIAN PARKWAY DURHAM, NORTH CAROLINA 27713 NC Lic. # C-0293 • pQ` oFessio � �.. Q d SEA 19 ey , ENGIN Z Z jr' Traditions — Phase 2B &2C Stormwater Impact Analysis and Final Design of Two Stormwater Wet Pond Facilities and Preliminary Design of One Culvert Crossing Proiect Description and Summar The site is an approximately 80 -acre + assemblage of land and is within Wake Forest's planning jurisdiction. The property is located east of the Jones Dairy Road/Hwy 98 Bypass in Wake Forest, North Carolina. The project is subject to the Town of Wake Forest Stormwater regulations, as well as, NCDENR DWQ 401 stormwater management regulations now administered by local municipalities per NPDES Phase II. According to the Stormwater Discharge Control Regulations for Wake Forest, North Carolina, the stormwater management facility is required to detain the 2- and 10 -year storm rainfall events. The proposed storm water management facility successfully reduces the runoff from these storms, and is adequately sized to manage the 100 -year event without causing flooding of adjacent structures. Per the above stormwater management requirements, the project is required to manage nutrients (e.g., total nitrogen) and to treat all impervious surfaces draining to a stormwater management facility for 85% TSS removal. In this stormwater impact analysis, the stormwater runoff from impervious areas that can be reasonably captured are collected in two wet ponds designed to provide 90% TSS removal and 25% TN removal. SWMF #2 is designed to provide 2- and 10 -year detention. Since the analysis point, to which SWMF #3 drains, is in FEMA regulated flood plain, 2- and 10 -year detention were not provided at SWMF #3. The most recent wet pond design standards promulgated in in the DWQ Stormwater BMP Manual were used in the preliminary design of the wet pond. Calculation Methodology • Rainfall data for this area in the Durham, NC, region is from NOAA Atlas 14. This data contains a depth -duration -frequency (DDF) table describing rainfall depth versus time for varying return periods in the area. These rainfall depths are input into the meteorological model within PondPack for peak flow rate calculations. Please reference the precipitation information section within this report for additional information. • Using maps contained within the Durham County Soil Survey, the onsite and offsite soils were determined to be a combination of hydrologic soil group (HSG) `B' and `D' soils. Since the method chosen to compute pre- and post - development peak flow rates and runoff volumes is dependent upon the soil type, care was taken when selecting the appropriate Soil Conservation Service Curve Number (SCS CN). • The times of concentration were calculated using SCS TR -55 (Segmental Approach, 1986). The Tc flow paths were divided into three segments: overland flow, concentrated flow, and channel flow. The travel times were then computed for each segment, from which the overall times of concentration were determined by taking the sum of each segmental time. • The post -development time of concentration to the proposed stormwater management facilities as well as the bypass areas were assumed conservatively to be 0.1 hours per TR -55 methodology. • PondPack Version V8i was used in determining the pre- and post -development peak flow rates for the 1-, 2-, 10-, 25-, and 100 -year (and 100 -year [worst case]) storm events as well as routing calculations for the proposed stormwater management facility. • Two stormwater wet ponds are proposed on this site to treat/manage stormwater runoff from the proposed development. Water quality sizing calculations for the proposed stormwater wet ponds were performed in accordance with the DWQ Stormwater Best Management Practices Manual (NCDENR, July 2007). The stormwater wet pond will provide 90% TSS removal, nutrient management, detention for the 2- and 10 -year storm events, and management of the 100 -year storm event. • For 100- year storm routing calculations, a "worst case condition" was modeled in at each SWMF in order to insure each proposed facility would safely pass the 100 -year storm event. The assumption used in this scenario is as follows: o The starting water surface elevation in each facility, just prior to the 100 - year storm event, is at the secondary spillway elevation. This scenario could occur as a result of a clogged siphon or a rainfall event that lingers for several days. This could also occur as a result of several rainfall events in a series, before the siphon has an opportunity to draw down the storage pool. o A freeboard of at least 12" was provided between the peak elevation during the "worst-case" scenario and the top of the dam for each facility. This freeboard neglects the 6" camber and the addition of 3" of topsoil on the top of the dam. • The on and off-site topography information used in the analysis is from survey data compiled by the McAdams Company and from multiple GIS and LIDAR sources, which have been spliced together. • Post -development nitrogen export loading rates for the entire tract were calculated using the spreadsheets developed under the Neuse Rules. Only on-site areas (including the drainage area to the ponds) were used in the calculations. • Regarding 85% TSS removal, the two stormwater wet ponds are designed as 90% TSS facilities, but only for those impervious areas on site that drain to the ponds. Given the presence of significant stream reaches on the site, there are some developed areas on the property that bypass the ponds. Discussion of Results It is the opinion of this engineer that the proposed stormwater wet ponds, as designed, meet Town of Wake Forest requirements for 2-, and 10 -year detention, nutrient management, and TSS removal. Please refer to the summary of results and complete calculations attached for any pertinent information. Roadway D Culvert Crossing Due to the lack of survey and final grading of the road and lots in the vicinity of the culvert crossing, the design of the culvert crossing is only preliminary in this submittal. Conclusion If the development on this tract is built as proposed within this report, and once the aforementioned culvert crossing design is finalized, all applicable stormwater regulations will be satisfied. However, modifications to the proposed development may require that this analysis be revisited. Some modifications that would require this analysis to be revisited include: 1. The proposed site impervious surface exceeds the amount accounted for in this report. 2. The post -development watershed breaks change significantly from those used to prepare this report. The above modifications may result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward. SUMMARY OF RESULTS TRADITIONS - PHASES 2B and 2C JPM-14060 TRADITIONS - PH 2 SUMMARY OF RESULTS D. BROWN, PE JPM-14060 12/2/2015 RELEASE RATE MANAGEMENT RESULTS POINT OF ANALYSIS#1 Return Period Pre Dev Post Dev [%] % Increase 83 [cfs] [cfs] 2-Year7 [%] l Year 5 03 1.91 —23.41 _. -62.03% 2 Year 8.37 2.76 -67.03% .. e. .. ._ 10 -Year ___.. .__..... 17.70 ...__ _ . _ 4.71 l . _._ -73.39% POINT _O_F_ANALYSIS #2�,��,�� Return Period Pre-Dev Post-Dev �% Increase POINT OF ANALYSIS #3[SWMF #21 Return Period Pre-Dev Post-Dev % Increase�� [cfs] [cfs] [%] 1 Year2 83 2.07 -26.86% 2-Year7 51 4.95 -34.09% _. 10 -Year_ _�.____.. —23.41 _. _. .__21.14_..._._._ -9.70% POINT OF ANALYSIS #3[SWMF #21 Return Period Pre-Dev Post-Dev % Increase�� POINT OF ANALYSIS #4 [SWMF #31 vK Peak runoff rates were not analyzed at POA #4 as the stream is a regulated FEMA floodplain, and, as such, 1-, 2- and 10 -yr detention is not required. y POINT OF ANALYSIS AT CULVERT Return PeriodPost-Dev [cfs_]_ 25 Year � 286.61 100 -Year 338.22 [cfs] [cfs] [%] 1 Year1 50 0.96 j -36.00% 2 -Year 3.69 1.71 -53.66% 10 -Year _ ( 10.71 4.06 -62.09% POINT OF ANALYSIS #4 [SWMF #31 vK Peak runoff rates were not analyzed at POA #4 as the stream is a regulated FEMA floodplain, and, as such, 1-, 2- and 10 -yr detention is not required. y POINT OF ANALYSIS AT CULVERT Return PeriodPost-Dev [cfs_]_ 25 Year � 286.61 100 -Year 338.22 TRADITIONS - PH 2 SUMMARY OF RESULTS ac D. BROWN, PE JPM-14060 ac % Impervious = 50.3% 12/2/2015 SrtQxiv�wATR MANAGEMENT "EACII:I')<'i'.#2 sCX1V1MAIt`Y ft NWSE = 323.00 Design Drainage Area = 2.35 ac ft Surface Area at NWSE = 14,247 Design Impervious Area = 0.95 ac sf Siphon Diameter = 2.00 % Impervious = 40.6% 321.75 ft Control Structure Type = Riser Box Top of Dam = 334.00 ft NWSE = 330.00 ft Average Depth = 3.00 ft Surface Area at NWSE = 5,879 sf Required Surface Area at NWSE = 2,590 sf Siphon Diameter = 1.00 in Easdjust WMS Penetration Elevation = 332.25 ft Control Structure Type = Riser Box Riser Type = 4'x4' Riser Crest = 332.00 ft Barrel Diameter = 18 in # of Barrels = 1 Invert In = 329.00 ft Invert Out = 326.00 ft Length = 201.34 ft Slope = 0.0149 ft/ft Return Period Inflow Outflow Max. WSE Freeboard [cfs] [cfs] [ft] [ft] 1 -Year 0.03 331.62 2.38 2 -Year 0.10 � 332.00 2.00 ---------8.31 10 -Year 12.11 � 2.89 332.10 1.90 25 -Year 13.87 MW 4.93 - 332.17 1.83 100 -Year 16.24 10.56 332.36 1.64 _ _ 100 -Year - Worst Case _ 16.24 12.49 332.43 1.57 Design Drainage Area = 13.25 ac Design Impervious Area = 6.67 ac % Impervious = 50.3% Top of Dam = 329.00 ft NWSE = 323.00 ft Average Depth = 4.39 ft Surface Area at NWSE = 14,247 sf Required Surface Area at NWSE = 13,388 sf Siphon Diameter = 2.00 in Easdjust WMS Penetration Elevation = 321.75 ft Control Structure Type = Riser Box TRADITIONS - PH 2 SUMMARY OF RESULTS JP M-14060 Riser Type = 5'x5' Riser Crest = 326.00 ft Barrel Diameter = 24 in # of Barrels = 1 ._.._._.._.__.�.2-Year Invert In = 321.75 ft Invert Out = 321.00 ft Length = 54.5 ft Slope = 0.0138 ft/ft D. BROWN, PE 12/2/2015 Return Period 1-Year29.5 Inflow [cfs] 8 Outflow [cfs] 4.33 Max. WSE [ft] 324.81 _.__. Freeboard [ft] 4.19 ._.._._.._.__.�.2-Year ----.._.39.79 _.� 8.40 _..�. 325.11 3.89 -��10-Year ---61.42_ 20.48 �- 326.05 _ 2.95 __..__..._.__._._ 25 -Year _.__.. 71.70 _ 326.47_ _.____.__327.06 � 2.53 100 -Year 85.77 -�-_� _29.51 33.94 ft 1.94 100 -Year - Worst Case _-_-- 85.77 rv_ _.._ 36.71 327.69 1.31 Twin Culvert Crossing Design Drainage Area = 67.35 ac Culvert Length = 115.00 ft Culvert Slope = 3.48% Riprap Class = Number of Barrels = 2.00 Culvert Material = Aluminum Diameter (Ea) = 72.00 in Burry Depth (Ea) = 12.00 in U/S Structural Inv (Ea) = 344.00 ft D/S Structural Inv (Ea) = 340.00 ft Road Crossing Crest El. = 357.65 100 -Yr WSE = 348.51 ft 100 -Yr Freeboard = 9.14 ft 25 -Yr WSE = 348.15 ft 25 -YR HW/D = 0.69 < 1.2 Riprap Energy Dissipation Basin (Plunge Pool) Overal Basin Length = 24.00 ft Overall Basin Width = 22.00 ft Pool Length = 18.00 ft Pool Depth (HS) = 1.18 ft Riprap Class = B MISCELLANEOUS SITE INFORMATION TRADITIONS - PHASES 2B and 2C JPM-14060 NC DENR - DIVISON OF WATER QUALITY .0315 NEUSE RIVER BASIN Name of Stream Description Class Class Date Index No. Smith Creek (Wake Forest From a point 0.3 mile WS-II;HQW,NSW,CA 08/03/92 27-23-(1.5) Reservoir) downstream of Franklin -Wake County Line to dam at Wake Reservoir Smith Creek From dam at Wake Forest C;NSW 05/01/88 27-23-(2) Reservoir to Neuse River Austin Creek (Mitchell Pond) From source to Smith Creek C;NSW 07/01/96 27-23-3 Hatters Branch From source to Smith Creek C;NSW 05/01/88 27-23-4 Spring Branch From source to Hatters C;NSW 05/01/88 27-23-4-1 Branch Sanford Creek From source to Smith Creek C;NSW 05/01/88 27-23-5 Toms Creek (Mill Creek) From source to Neuse River C;NSW 05/01/88 27-24 Perry Creek (Greshams Lake) From source to dam at B;NSW 05/01/88 27-25-(1) Greshams Lake Perry Creek From dam at Greshams Lake C;NSW 05/01/88 27-25-(2) to Neuse River Unnamed Tributary near Neuse From source to dam at Camp B;NSW 05/01/88 27-25-3-(1) Durant Unnamed Tributary near Neuse From dam at Camp Durant to C;NSW 05/01/88 27-25-3-(2) Perry Creek Harris Creek (Peeples From source to Neuse River C;NSW 05/01/88 27-26 Creek) (Wake Crossroads ;'ake ) Hodges Mill Creek (Lake From source to water intake B;NSW 05/01/88 27-26-1-(1) Mirl) at Lake Mirl Hodges Mill Creek From water intake at Lake C;NSW 05/01/88 27-26-1-(2) Mirl to Harris Creek Beaverdam Creek (west side From source to Neuse River C;NSW 05/01/88 27-27 of Neuse River) Rocky Creek From source to Neuse River C;NSW 05/01/88 27-28 Beaverdam Creek (east side From soruce to Neuse River C;NSW 05/01/88 27-29 of Neuse River) (Neuseco Lake, Beaverdam Lake) Bridges Creek (Bridges Lake) From source to Neuse River C;NSW 05/01/88 27-30 Milburnie Creek (Milburnie From source to Neuse River C;NSW 05/01/88 27-31 Lake) Mango Creek From source to Neuse River C;NSW 05/01/88 27-32 Crabtree Creek From source to backwaters C;NSW 05/01/88 27-33-(1) of Crabtree Lake Turkey Creek From source to Crabtree C;NSW 05/01/88 27-33-2 Creek Coles Branch From source to Crabtree C;NSW 05/01/88 27-33-3 Creek South Fork Coles Branch From source to Coles Branch C;NSW 05/01/88 27-33-3-1 Crabtree Creek (Crabtree From backwaters of Crabtree B;NSW 04/01/94 27-33-(3.5) Lake) Lake to mouth of Richlands Creek 2B .0300 Page 11 of 43 2013-12-09 10:50:02 mAi t1 AFA kms. , � NOW.,ir�i,ss /e►iI VO®RHIES � wri, , "mfAM Iffit��llF��J/Y�%i 1`�1�.i1.� A.4 � �r..�,` � a wr ,..,A tV.� F t t P._• y `� ��� , T.ylJ • fir 1 � ��5, r f 016 :�• AN s TTgq- .c wnwdi0 IV !I d- F• 17DY fir. } 4 ,,:.za. .. • ;�'y`' San P 1/ As a SST 1 � y TI �It- `~ -.. tAer m ' ..'4 �• �I_ r� :�4• Mme" �'���{'' Oy'•,-er�i? y ; To/ a� � y., r F iAt7�� � ,.S`.�•i 1Rr �� _. `^ •`� f - �` i.1*�� : 1-. f I- "�� �`• .ee. :wamau. $fir ,r„a.. -- — re•,,,.e �d ,. a,>,n ,.saw :,,000e.Ea. errePPe FLOOD HAZARD INFORMATION NOTES TO USERS SCALE NMDlN NOONAF100DPWNMAPPING PROGRAM NADONALROOD INSURANCE PROGRAM CC — IN5UNANCD FtATC AAP MEMBOMFWZGM ME INFORMATION DOCUMENTATIDN BBCIB7NSANBNMfAAp DEPICTED ON THIS MAP ANDSUPPORTINO AREALSO AVAILABLE IN DWAL FORMATAF �'^,Y:�•' � �Y//I{� I eerneamenu Uamv'wr HTTP://FRIS.NC.GGV/FRIS gwe�aweNmPPEI .s N.�or .r,P���.w.�-.. �,••••••F••• ,•.per vw NORTH CAROLINA —1941 1wA -soom L ,Z.o D m sGD Taco -weeeam WBIIBFE.BeFM1-11 ., AK— An a...mn.w.,r«.��...wa....•�.� OFe OMaMre MNARDA.REA�S' M/JFb7ReFNaaT www•+,ea+e'+� ^^�mum:�>®we+oe+xcrwn 0 75 150 000 r_ _BMza%%A ..tCh” "RRIoodRw—tth d'Ar '" PANEL LOCATOR iI rArn dIRFRI DNBTIMN,ORfaVMhD.Iby MaefL—PwOne Sgaere Mk CD w.ulefoxeer.mwn os o1M, tear � _ Falere COMRionc l%Mowat RaMN ...r.e C _ _ BIN9AN6A5� ROOBNALyp ch—Flood � Mea wah Redaced Roea Ritll dueW LeA:e See Notes :.,... mwcwlnr GRIRI�+A AA—nes De mrhW MOtlethe to aW .Alale , ate v ra "gym 'a ?tea mlree�s' VVO Adam GA—N. dCNaece r r r --_-. LTannd. CW,ert.m Slam Seax A�.,eaaeaaP<aemomRFAmeaBm ruvre.wws+�•r wnanmr.m.u..wss.nv. a.m�..ere�vuy Pa••°'�••�,•>•,>a,,.:a�,...a.n.�:..�w,�.w...w.w. xw.wryn..•eoenm.r.aoua.m r rr n �' �W Isee, Dike. wibedaNl urternauae rcxe,•civrrvortsmwoa r>mr. m.urma.�.s•w:mn n i n rm I C S1IWCIW6 r..rr •rr"•r. Nan-aamdAetl Leve, Dike. or FNwaeall �.vrre...o...ey.u.e.wm..n..,.m.or.ua ,r.um+a..-e�.rm.n r^•"°�"^"^'ca ,r r r n N.I,UIIIA,Geoddic Sal ryUenFllnurt aes,o w.ee ��`^""r eTM^^ "'^ = `"`�'�°'°" r �n r i� EC g Netlwal GeodeOc Survry Omeh meek CoebacrorEsI NCFMP SurveybenM nw,k �® Cross SadionswRN 1%Mnual lienee OnattotMoOenleWaaeAmon pNAWp eOAaTAaaAle1161REDDYIICF]aam011eaRgnolF Wale SUdxe El-b.IBFEI 0-----c-011rane6R ne r..n'•i•i.a�Mr,as, e`�aea y rRr r. —..—.._ C—IT,—BeseEae ® CBRSMY 1 IXhln nPmmo"A— ureslon proge Basabre Ik/MOBlaaic FeaWre xwancuwn MAPNVM.- .1 M.- 00� Lb*.fS� •' FEAURES -. --..- --.. 5/02/5 AAAAAO AecA is0000r n »»M I T AieWAA Sere I i♦ �, �'et 4 :5a �. .a ;r)e �q s f. r. f \s •,Af - r ry ys r- �7 t1 \; •4k :1 R .mmobs a. w qe.a ircame.�,a Ivx epi ex � an FLOOD HAZARD INFORMATION NOTES TO USERS SCALE NORTH CAROLINA ROOOPIAIN NAOONgLFL0001H5U11ANCEPROGRAM MAPPING PROGRAM ZOIEpBCpINN{TIOUPPOTIN �,,,,q,„.�,•,••,.,.,,,a .,.si e..m a,e,..,e.n- MENRM►eRFNR iNEINPoPMAlION OEaCTEOONTHIS MAPANDSUPPORTING c®c�y`�v� °"",a.irt�nia�n vsm ax°'�nun Pmxuonsm uo.c>_rool aAlxwnwRrMVP IeAetwm,ll � FLODD IN-viUr ANC[!Ui[g1aF' DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMATAi HTTP://FRIS.NC.GOV/FRIS • s.m ,*a ®w�ue+ellm �." :-° �""•'"" Ib NORTH CAROLINA � O 11nPh•500 feel fdd,WO D . NO l,ado - T!MSM1Bi14 8ir�0q ���A �. �. n. O• Ra1n 1851 t `� .,: ... .. rnei o Dmm,. , . ,. K N �� �« ma m .� gym. .... OF«L �Tl SIFCMLit00p N4FMUARFAS _�!�°,YFl°0mary .arn,m a..=w+.»v.. rneo.. u.,.+a •,_emaaw-a 0 ]s 150 000 0 75 IN � V •, _D.zx aRnRal chWee Road xam.e,Alw�s oil%gnnaal CAance Fl.d wim A—& ,..,m..r..wm usoom,n..w•.,e.o..+ m,wm Tavn PANEL LOCATOR- ____,_ _._._._._ �--Y ,�pC�J`1 Oeplh les maoaOWWFDDLOI WNh DIBMye = RONMA- CID PM6L SU- AnasWL Fan �CatlOion�lY Annual _,,,,,•„c C w.nProRes*. mvmoF irax,a lAs, i Chm RoodX n1 :.:z OTERDHAZARF AsM. RedlcedF R'Nkd WLb u..muww.s,w Ar.4.r. ..,o< v.. �,e •O ROOD NALARD SaeNmn ,_ •. OMR I � /YNSOP4R111neE„bWEIOYtrIda UM ewmw � �tl weourtr OImMAMCWInY O 0 '� 02YAnqutl fN flootlp1a11 ,c.-. 0—Lew-L.51-5— .wnx,aorw.uwvws.seua B ggERgL IeARe, Dna, FWd-1 I « n....w .w ,a..,ev. C s1AUCIIIRFe , ,,,,,,•,,,, Nwam,edk¢E Levee. Dike. a rloodWl ° O aMu,Oe+ Nath CaolMe Geodetic Snlxy bench mak Ansss,® NMbWl GeadeUc Survgkench nurch u.•e w w:e.�.nwu x�+�...'�"za�...a�sm.m+n e.cwao-n ro.. linXOf ModaMRW—ACBWOIMWA) � j:A R BLL55Aa® Coetraftor Est NCFMPSurvevbemD mak Z DOAITALMRALRREaouRce9fYssellGBRs)xmE �IIQ—Cons SeNR,SwItlI lY AnwsI CRaWe Walm Surface EMvaUPn(BRji,uew",a .e•++v'�R"'n,.,ru•,a aO--_--CgaMal Trdnsat __ nus ran.aYxa. •,aauav�iaewwm+e• ter.. ----- - Cws[al TeWstttBasekne ® CallSAM 01haRisa PoAleaed Ana loxvs,eneawR --- PARo BasagneAlft IITbPpapkk FeaWre xwn,ica�. NUMBFR 3]201861001 DINNER •^m® LM10MSWdF 1 WPRLNSED Fr.RMDYIAeletlonBWgdarF ._........ {/16/]013 WA TERSHED SOILS INFORMA TION TRADITIONS - PHASES 2B and 2C JPM-14060 W A USGS TOPOGRAPHIC MAP 0 1,050 2,100 4,200 Feet 1 inch = 2,000 feet TRADITIONS - PHASE 2 JPM-13030 WAKE FOREST, NC ml _« ODE_ .a« _ j 0 z _a« a o a »a: maE o_ m_E maE ) § % § § / \ �§ U) /\ /± co k R // , \ a � i\( � z ( ( ) R � k2 , 9-� ) ) § \ ] * ( 7 p = § b3 ) ~ \ ) @# °\ ) §k �k a CL ` o om %§ _@ Qz A z § & 0 Z W W J IL a� c p) N p tq l` C', O c N O U U U U @0 co CIU ai a lo m y Em.0 O c E E � N d f0 a) a Y a] N E (4 cu 0 > O =0 C a) — O O h a OC O > O C C C G O N T a L OOcu a) E n o a) cL mom> ca E c'Em- O O L •O 0 c M U 0 U a) y C c a) E t U U m W E a U O O N N Za m N ,It a UT N Z n N O Z 0 a) U = a) O a) U n �U a7 C O m N 0 a) m o w o Cco d a c U Ua) w• y C U r T L CL UO> 0 CM a) � O� a) -p O> O) 6 pUa 0 'O O O m 0) O .C O E a) aN E a cliC Em 0N (D � °�� c m m Na o 0U) ao a)� a) m N U E E T M a) a) N = .>_. c? o a>iC7 O. U 7 o f a) a) o U O M m o -r- .. M N U -O N a d Z U N N 0 ® L U E U yU N O Y NE OO L O Na@) C'LOQT)L 3N U uo) 0a CL Np UZ a a) coUa— O Q NOm a cc fl a) a)O _ a) E acu O y O d Q' "O O au) N co E O _ d E aO f0 L a) U a) D O. O 'O -p Y F 'O C M 0 cn 03 a s a) E @ (a 'J U N n C C N > O a U L N C O Z� E Q o aa) of "vi CO) c N id @ O or. -p -a N CO_ a) T ZU N U- 'O o O) Cc N D N E O O N O .2-0 'aa O C m �U) �L p 3 c p � Q E m p nm N•� aE U � 0— a) O E O O a) O O O '� c O O O Q d ca al L O a 0 Q C U 2 7 T Ui a7 a) `_ .0 N r O_ O d l9 coN.� 0—O.. E j u) > U a) U 2 d a Q U N> FL- .Lp. > (n (n N U) O a) N a)EmE IL-• U O O O N N Za m N ,It a UT N Z n N O Z 0 a) U = a) O a) U n �U a7 C O m N c y C U r T L CL "O tl1 y N O L O d N r O Y� o E a � la y U U ❑ Z fn G E Z) J •O Q 0 ® ® 0 CL Y a y N C C d y C O O _ C O 01 N d .� Q O W d no ❑ ❑ O o J ❑ ❑ ❑ d❑ o d ❑ 0 Q Q a m m U U❑ Z CD a m m U Z �,Q a m m ❑ ❑ ❑ ❑ ❑ ❑ y '0 0 cn '4X •0 .O Q h O O N N Za m N ,It a UT N Z n N O Z 0 a) U = a) O a) U n �U a7 C O Hydrologic Soil Group—Wake County, North Carolina Hydrologic Soil Group Traditions - Phase 2 Hydrologic Soil Group— Summary by Map Unit — Wake County, North Carolina (NC183) Map unit symbol Map unit name Rating Acres in AOI Percent of AOI ApB Appling sandy loam, 2 to B 1.4 1.6% 6 percent slopes �_ ApB2 Appling sandy loam, 2 to B 5.0 5.7% 6 percent slopes, moderately eroded ApC Appling sandy loam, 6 to B 2.7 3.1% 10 percent slopes BuB Buncombe loamy sand, A 3.8� 4.3% 0 to 5 percent slopes, frequently flooded CeB2 Cecil sandy loam, 2 to 6 B 18.0 20.5% percent slopes, moderately eroded CeC2 Cecil sandy loam, 6 to 10 B 26.9 30.7% percent slopes, moderately eroded CnA Colfax sandy loam, 0 to 3 C/D 1.9 2.2% percents HeC2 Helena sandy loam, 6 to D 3.1 3.6% 10 percent slopes, moderately eroded HeD Helena sandy loam, 10 to D 2.6 2.9% 15 percent slopes MeA Mantachie sandy loam, 0 B/D 0.7 0.8% to 2 percent slopes, rarely flooded PgF Pacolet-Gullied land B 2.2 2.5% complex, 4 to 25 percent slopes WmE Wedowee sandy loam, B 6.0 6.9% 15 to 25 percent slopes WwF Wilkes loam, 20 to 45 D 13.3 15.2% percent slopes Totals for Area of Interest 87.8 100.0% USDA Natural Resources Web Soil Survey 4/25/2014 I Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—Wake County, North Carolina Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Traditions - Phase 2 USDA Natural Resources Web Soil Survey 4/25/2014 �� Conservation Service National Cooperative Soil Survey Page 4 of 4 TRADITIONS - PHASE 2 WATERSHED SOIL INFORMATION J. ALLEN, PE, CFM JPM-13030 7/14/2014 __> Watershed soils Symbol Name Soil Classification �p ApB, ApB2, ApC Appling sandy loam__ ,_ _.._ B rpm n -�- Wooded Buncombe loamy sand _._ reN A mBuB CeB2, CeC2 Cecil sandy loam ------.B 98 .�. Open _ ..m... Colfax sandy loamm mra m C/D -y HeC2, HeD�ntachieHelena sandy loam .W -eP „W m N D MeA Masandy loam �... n� _. B/Dm.�R. A mm _ PgF_ _..., Pacolet-Gullied land complex B m kCover Condition Wedowee sandy loam ..... _..._ e B u-WmE _..R.r WwF .wN Wilk'es loam D References: 1) SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. __> Conclusion Watershed soils are from 'HSG B, 'HSG C" and 'HSG D'soils. Cover Condition SCS CN - HSG A --Impervious----,-,- 98 --- -,Open - _ _..�.��. 39 Wooded 30 Cover Condition SCS CN - HSG B Impervious 98 .�. Open _ ..m... 61 Wooded 55 Cover Condition SCS CN - HSG C Impervious .� , - -� 98..._,._... ��..n.. . Open Wooded 70 kCover Condition SCS CN - HSG D.��� a Impervious . 98 ...R..r. Open _. 80 Wooded 77 PRECIPITATION DATA TRADITIONS - PHASES 2B and 2C JPM-14060 7 � 000 Vi r. O O O N o O 'q R " DO M h M .� D\ D\ N 00 N Q• MIR M Q\ O b h W O O 4r H a 'O C) € € C 00 O. O O N N N T T T p p T T T O O V O O 10 M (sagas!) g3daa � O � ,D h Q\ O •--� N 7 vi �O DD To0 00 M orn O M M .-goo a' O+ V v,v w G M N M N N Nlz� r �FF h S 7 � G S Q x N h p, d; 7 M � O m V' N n 00 O O 'O M V1 M H H � � M V Vl 00 O� .•-i fV N Z N 4r O yy M O Oh+, r r� M N N N OM M of V h �O h 00 O\ O •--� p � v %UU M N M h N O O T 00 a M 0 O\ 10 10 V N Ih o0 N T O G IL o N� VT on c lL m n 00 Vl N M oo O l� v 10 M M 0o 7 ,n 4 h M r 00 O\ a �p Q et O\ M 00 00 O O .a,+ tO t - me S V .S � M O Lao pp �O O� M h N �D O 7 ODM ei G U p O p N fV t7 7 R V .Ni C, a p• „� p N IR a, N V: 00 r3 !>' ,,, .S ..r .ti .-, N N N M M til a y Q� OFF'L U ii2a• •e F •O v Q a O W ,.� �Mw1ryrn 10 m w Maio �o oo � e o o q o t- vC't, r .S � � is T � u7 c c •• � q G O D n O o d o o 0 o c o •+ o C ZO 9'� 0 LU g ohao�o ho �o o.�oo `n 0 o 0 0 0 o W Vl O N h 17 .� V v � 0 7 � 0 0 N O D O O O N o O O R " O O 4r H a C) € € C 00 O. O O N N N T T T p p T T T O O V O O O O O Cl O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Oi 00 ll- 10 vl a' m N — O (sagas!) g3daa U LL a. Q H Q 0 Z O YL U LLI w a. n� Lo U _N LIE V a^ Q H Q O Z O IL U NW w IL vtlO 00 '+ "t C, NIS WI.- MIS OI NI V'Ir O�M��I00 �Ir O N h CO IMI r I r r 00 00 00 00 00 O O O (O O O O O� O •� 0 0 0 0 0 0 C10 O OO O o 0 0 0 Oi0 O O O, OI OIO O O OI OV--: I I �•- 00000000000OOOIOO000001000i0000ooiol00 L M{7i vOl n WHO �•IN R Vii .N• N Mj VMi 00'O O N M ut X100 <71 OI MI VIS o� o oio 0 010 0 0 0,0 0 0 0 0 010 o c o 0 0 0 0 0 0 0 0 0 0 0 0 0,0 kn- V'10 N M VI !� 00 OiN M utj r 00 O NIM VI 1� 00 O NI MI vI h'COI OI NiM 1� 00 O{N L er - O r - -fb r1 - OI IN M V - h 00 O O� �- d vlv vj v, v, � v,I �I� �I�.,I- -�.o .old -I -:- - - ��� -I� � •� o 0 0 010 0 0 oIo 0 of ofo 0 00�00 0 o al of oo of o�olo c o of oio r O (h 17 f MIM NIN O DI O aD 00 1� r V V M M N N ^' O O\ 01 00I 00 LN M{d0' 7 7 7 7 7IV V�'1V of C, 0 h VMiI� Vl h aD VOID b �IiDI� ��� �'� E oio 0 0 0 01010 oIo 0 ojo aI0 oIo ojolololo�o o:olc; 0 oio o{o 60I �I Mol 10 j ^� O r t N O 100 IDI M f' M M M d' 7 V' V' I V' 7I V V 7I er 7 'ct C Vl VNI ut M i N vt Vl I M vl �D ID �D ID { 10 ol •C -E 0 0 0 0 0 0 (O O I O O O l O i 0 O O I O O O O O I O I O 1 C 0 1 0 0 1 0 O O O I O E!� O I O •--: M r 1 M O 1 O N 1001 V O �D 00 7 (� M DI M --: r I 'M-: DI 10I N 00 O I N OO I V R � NIN N N M MIM MI MIM MIM MIM MI M�MIM M M d''7 d' V' er V,� V'i VI�h V17I �' 0 0 0'0 0 0 0 d'd 0 0 oIo 0 010 0 0 0 0 0 0 oloio 0{0 0 of olo oIo 1 y� _ NIN M M 7 7 vl h b b I h r 00 00 O O O O I N N M M V a' h I vl I r r CO N D N N N N N N N N NIN N N N N1N M M M M M M M. M d •5 of ol0 0 0 0 0 0 0 0 0 oio 0 00 0 0 oIo{ol of of of of of o10 0 0 0010 .�-: O!Mlh O M h OiM h O M h O M�1�1O M �I OIM t�OIM � O M�t� O M ILIO M O W ID M O OO I O wt i M O 00; ID M M O{ 00 �D I VI M O 00 �D O 00 d w OI O O N M S vt h ID r 00 O\00I�IO O O N M 7� VII v1 to Io vio v o v o' of n o n o vl000' O O o to 11 b n r 00 00 O OI O O C M M M M M M I M M TIst1 VV : Q H Q 0 Z 0 CL /WU DD a l 0 1 O 00I M T v 00 N v 00 N v 00 O j N M M 00 j V N T I r 100' O_ N M 00 N I 100 N 'n / R r !` t` W 00)T T O O I NI MI- I - n�T ONIa ��O T M!��W O Nj LL T - +-+ .-+ I -r�� ��� j — N N N N N N + N N N N ( N fn a. T 200, M T v� M ^• 00 �O J M i a" N T h ,-•) h 00 a' O d' 00 Mi h 'r v� 00 V f� T N I r O M h 0 7 h 1� j O i 1l y ^C N M M M M— V d' — Vl --—— r 100' T A T O .-. � •-. I •-+ .. � '. � (.-� I .-. .-. I .--� i — r T I •-• 7 �O T N V t� O M 00 V' O (+n t� MIO b I T O h .M. O (� O h r N 00 �D T N 'n 1� O O� O O I N N (V M C � '. { -r .-. I �.1 .. � .-i j .-. .-i I .-. I .-•, •-• i •-' � •--� { •--i 1 "Ij N N' N N � N ! M j M V' V V � d' d' � d' dv� I v� vi I vi ` vi vi I vi vi I M' M M 7 et d' V' +n +n h 00 O N M M O 00 v�! M O V Ti M 00' M M o0+ N !� i0 O 00 vlI M I O 00 h r 00 O N M L_ r I T .-+ M 11� T •� M I t� O N <7' I i •-' �' O '/�' O v� T M 00 N I �D t N +n 0 a' T M 00 N h N h 00 O j M l� Q+ R O O N N N N M M M— V- ---- i 0 N' N N- m 00 O? d C— .-. — +-.I .-i .-� i .--i � 'ti j '. I S I •--� � ti .r .-i N i N' N E M I M' M M Na I ii�� II j iI II I! N I T T (T O O O O. O O I •-' N N � N M M �� �O h 00 , f� O •-' � N R +n 10 10 h! r 00 00 00 00 T T T T T � •� O I O I O O O O --' t --" i +-' � ^' ^' I "' ^' ^') ^' C "" -"' s NIN " M (M MIM M M M� M M M M' M M M M M M ti T' M i f� i V j CO N I �D O N i t� O N h 00' 00 T O T 100 h I �O I b i0 7 M N I O .--' I N M M� V 00 00 I O W rt 1� O M V IO M 00 T y 00 GD I Op 00 00 w 00 Cr T (T T T T T TIO O O NIM 00 T O N NIN MIM M M M M d' C C O O O O O O O O O O O O O C --� I— I i d �--� �--� I N N N N N i M M M M MM MIM M M MIM M M I I I I� �..�.�� .�j...!�I.� .�! C T OIN MI7 �OIr Tt OI T00 00 1��o hI TM 00 I�NI�OIO ISI M(OIh NI N ��M O f�IM O, d' 00 M_ hl• -'i +nl V' M .M.. N�--' O 'e M 7 �O l� 00 T (•-' N M V' I 00 •-' M ` i0 00 00 �O V '/� N � M 00 �D � N 00 M �D 00 � T O N M d' �+ L• b iD !` r I t` !` r t` r r W 00 00 00 T T' O ,-• N 7 j T � �'� O O OIO Oi0 O O OI OIO O O O OIO Ot OIO O OIO ^' ^I ^-' ININ N N N N N NiN N N'NiN N N N N N �" � � M M N N O r vl NI O�� N1+/1 h N 00 N +n�W W GDIW N'n 00 N'+n VIIh Vl V1 +n V1 M O 00 VtIM O w ClT N 00 v� _ .M.t 00 O I I N N N N N N N I N O T •^� O O O O (O I O O I O O O O I O I O O O O I O O I O O O O I 0; O� O •-' i r' I �' --' --'ININ NiN N NIN N I N I N N i N N N N I W O v M r OIM 1� O MIS OM h OIM ILIO MOIM �i0 M!h O M��Oi MIS V% 10 h CD T) O O N M +n �O h 00 I O O N M t' �D h 00 T O O+ ^-' N M �t ! +n W ^ 7 T T 0 0 0 O O D O J O I •-+ •-' •-+ --' ! ^' 1 •-"' ,N. N .N. N. I .N - N N M M s o — -�� S I I i�I���I� �i I� n o +n o vi j o +n O I p I o o +n o +n o 0 0 2'-' �O l� f 00 00 T TIO O N N M M 7 V I�+G e •n �.� ��� � � �I�(� � � .o��I���r �j�i�I�Ir n r r{r �Iooloo 00 i F ( I I (+ I z Z O r d W L M OOId 1O SIN WIMIU v MI WI �hIO Mi 00 V IUI NI 00I MI �; U`N dIr O M;� 00 (ey' iU NIv U v� �p �O �D 1� !` r 00 00 U U U j O O (O O .-• (� .-• .-• N I N I N NIM MIM M M d' a' w 00 00 w 00 00 00 0 w w 00 I v6 vd 6 w I w is C r [� r r r (� r � r r t` r !` !\ r' CO 100' 00 CO 00100 C0 00 W I W 00 00 00 00' 00 CO 00 00 00 00 r CO 00 00 L M O r d'--� 00 7^'(00 NIU_ MI O��IN 00 e} •--� h �I U'rnl..�f� M!U�iOIN OOIV OIiDI N00I7 (1'� Mi Ulrn _ U NI 1� O 00 M iD+UI 7 [�10 M 7 �O 00 U Nr7 -1rnIIq U:O N MIrn h 00 O M U O O O .-• N N N N M M M' M I t`' r !` r r r 00 W 00 M' � WI00 00 00 00�U UI OSI U,U U U oo 0 oo O Oi �i� �11 �I ipj ip r N t` 00 CD W 00 UI UI U�U Or0 N M !h c0 OINM I�OOjO NI MI v� h OOjO N'C)'rnll� 00 O N(M}rn L t� U M V1I l�lU IM v, M UIQ 7 i0j1�j 00 UIO .-. 7 b(�I001 O1. -SIN M V . . U1 O!. -•I NId' vi �D�h C^ l� t` n j W 0p 00 W 00 U U U U U 1 0 0 0 0 0^-! . (^! N N I- N N N I- I M M M M I M M ��I(IiII U �O N W �i.r OOI7 OII�IM U��OIN Ural 7�7j M'�I N�N ^-�I O�Uj UI00'00 f�I t` �I �i'/�(�(7 MI MSN N I O I O N M C 0 0 0 0 0 ^-. N N N N N N NIM M M M M M M MIM M M 7 7 I , C •s a 7I 7( 7I V V 7 7I V d-R17I 7�aj d' 7 Vj V d'j d'�etl VI7 d' 7I V' tj 7i I W U h U0 N----� O I M - - h V 00 U I U O N M M 7 j- b- r 00 U I O I O N M M 7I rn O0 O� a v (v v .n vi rn rn .o �c �o �o (� ! r r r r I m m m (I� oo . o0 0o o0 00 0o m m (oo ao MIM M I M I M M j M l MIM M M M M M I M M M •� �� !' j!; ij II ;{) ill�l 'i I1i II� C O p 7 �D h 00 O .-• (M 7 1� 00 U I r N 7� v� I .-. 1� M U� N SU0\ I� 00 U O N M 7 rn W W W U N M r W a, 00 00 00 W 00 00 U U U U I U U U U U U U 0 Na I i I j I I I l i i I I( G� C M Ml M M M M M j M' M M 7I 7 7 7 ? 7� 7 7 7 7 7 7 7 7 Vl, V1 Vl Vt vt Vl1 Vt V1 � Vt Vl M Vl ; vt � T e N (V i N N N N N N N N NIN N NIN N N� N N i N N N N N N (N N N N: N NIN N N N NIN (N N N N, N N W (i O W E 7 MM M 7 7 7 7 7 7 7 7 7 7I7 7I Vl Vl(Yl Vl v� vt Vl Vij.�.r� IM iib iD b �I� �I� r tiI �I� Y W O O O rn 0 O I 0 O O O h o O rn O rn O, vt O O vt O' rn O rn 0 O vi O h o rn h- 00 00 0 0 0 0( �" I ^-r N N M M 7 7 ( of �O (!� f� 00 00 U U 01 0 N N M M O d DO W 00 00 00 00 W GD W 00 00 00 00 00 W U U U U U!! U U U U U U U U U 1 U U U U U U 0 0 0 0 0 0 0 0 ��I 1 ISI I a H a 0 z 0 a_ U Q IN d O v D N IM100 Mia OIv 0 OI i�I NI00'MIOO V v lO W a r O N d I I o0I 00 TiO OI INIM MI V7v D+ O 00 OOi Ul O�O �y r o0 00 0o w o0 0o oo ao 0o I rn rn rn rn rn rn I rn rn rn Oil rn rn rn o� a� rn rn rn o 0 Y^� O •�, oo ao 00 0o co I o0 0o co 00 0o oo GO o0 0o I oo oo I ao oo (oo + oo ao 00 00 00 ( 00 00 06 w o 1 6 �• �D N 001 V' O 10 N 00 V � M Q+ h I r MI 01 110 I N 00 � V O 1D I N i 0011 � I t� M M a 00 00 01 Q\ (0� X 0 0 0 0 0 0 0 0 0{ 0 0 0 0 0 0 0 a,•.. ���I� � � �,� � rlc� � � � rl� � r�� r` sir; � � � �,� � ���Ir rn mIh --� ,nl -� � � 0 1DIN oo <t �It` m�oli ln�Nloo�vl 011olN rnj �I �I SIM o N �'� NIN N N N N NI NI NIN NI NIN NI �j M MI MIM MIM MMI M�M M M I M �'l� 00 Oil M'�I hI.-I CO SIO 10IM �I �I•-�I ��VIO 1D MIS 4 M V ,h 10 00 00 01 � I O � ^ ^� N M M i V � i ,/1 10 � t` 00 00 �� O •� N I M I M my td V V � a 7 V j 7 d' V' vi' vl I vl ,n vl vl I vl vl � vt �n vl �D i 10 i 1D 1D 10 1a N �•' �� i I I i i���i h 1��0'� .M. •-• � NIr MIDI 7O bi ^•I r�N GDi 71 UIh .-• � N rM � a'�O'� L [�j OO � O N N IM VI V ,ni1a 10Ih1 rICO GD'�I a\ O N N M M d'�MIM o •� vlaly v a a v mala vIv v vlvja a;a vIa �r v e� a � �I�rla,a;v L C "I O` a1 of a1 � N MIIC• vl i vl l f LD\ 10 Q` \ �•� 01ta\ a1, (o\I Ia\ �a1, Q` OI OHO O O OIO O'O O OO(O O O O+ Mr( V 1 1 01 M I h V 1 I Q+ I M �O J O I V' 00 N �D o 7 00 � I� I o V •� .�. M. O 2 ( n 00 00 00 01 N O E O O IN N N. N NIN N N N N N N NIN N N �•� M MI MIf�I MIM MfM MI M�M M MiM M MI MIM MSM M'M MI M�M�M MCMI MSM lo °i S O I l O I vl 100 .--� a I W .-, I V 1� O M II 1D 01 M 10 01 N I vl 00' .•r d' 00 i ^' ji V 1� I O 1 M d N N N N N N N N NIN N N N N N N N N N N N N N� N N N NIN N N lo N , W O N h0 M SIO M ISO M O M 1� O M �f0 M hl0 M�l� O M l� O M h_ O M Q k d �' b n W 0110 O SIN mIU OIr! li IR t W F I t; (00 0o I o0 ao I oo o0 00 0o (oo I o0 00 o0 0. I o; of a: i a: a. I a, o; o; o; ( a: N o (`7 Q �D 10 h 1� 00 a0 D\ D\ O O .•-�+ I N .Nr � .M. Mi .V- .d. � h b 1D N I � 00 GQ U Q\ i O O �g v 1 i IIII a 'Q Z O a. U W w a M w M' (.-� .-. .N .M. .M. + � V l �n i � I �D �O' 1� .N. GD a� O� O f 0 ' .• N N j M N N N N N N I N 01, Ni0jllO��D N I <t' O 00 N lair r�r rlrlr rIr hJl� l� h h I��I�if� t��h h l��hlh 1 I4 111 00 cf O ISO m rn 00� V O �O m a, .� 00I a o I M ol a, h ���,�i�► w I I W 7� Q\ � N i r M_ N I <t O �D .-• l� N I W: 7� D\ � ^' � N W cl0 0o0 W OHO i W � � � Q\ T m I U aa, of C � O� D` � I a\ C� I I I M�M I N�N N N NiN NiN�NiN N�N N N N NDN NjNIN NIN N Vi M1 O 00'�O M��+ O 00 �O vl M O 00 �a Vl M O 1� 00 Qt O O I N I N N N N N N N N N OM O M M M M M M � O M�M MiO111 M�� M O MIM Mjj OI M'MI� MIM d'�d'jI V' V � PRE -DEVELOPMENT HYDROLOGIC CALCULATIONS TRADITIONS - PHASES 2B and 2C JPM-14060 Ez /\ \ \ / � E / � \ r L k \ § % § ) b� . � k / � t � \ � ��: 2 o� � §/ ƒ : TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS JPM-13030 Pre -Development - Subbasin 1 (OFF) I. SCS CURVE NUMBERS HSG Imperious Oen Wooded__ 98 39 30 B 98 61 55 C __._. _ _.98 ..__ 74 _70 _..... ._. _ D 98. Assume: HSG'A'= 4.0% HSG'B' = 72.0% HSG'C'= 1.0% HSG'D' = 23.0% Cover Condition SCS CN Comments - Impervious _ _ 98 _ Offen_ _ 65_Assume good condition Wooded 59 Assume good condition IL POST -DEVELOPMENT A. Onsite Impervious Breakdown Contributin2 Area # of Units Area / Unit Area [sq Lot Roof Area 0 0 0 ._.__. LotDrivewa .__.. 0 �_._.O _.._.__._.0-.....__._._ Lot Sidewalk/Patio 0 0. _. _Building �_. 0 Roadway ea _ 0 -Driveway / Parking Lot - �_. _ ___-- 0 - Sidewalk / Patio 0 Other Totals. �.� 0 . B. Offsite Impervious Breakdown ffi Contributing Area x� # of Units Area / Unit Area (sf] Lot Roof Area 8.5 3 400 28,900 _ Lot Driveway - 8.5_ 2802,38_0 Lot Sidewalk/Patio 8.5 _ 320 _ Building -_ 0 _-Roadway Area- -0 _ Driveway / Parking Lot 0__ Sidewalk/ _ _. _... _ 0 _._..._-. Other _ 0 Totals ^ 34,000 C. Watershed Breakdown Contributing Area SCS CN Area sf n Area acres µ 0.00 0.00 0.00 0.00 0.00 0.00 Area ac 0.66 0.05 0.06 0.00 0.00 0.00 0.00 T 0.00 0.78 OnSltL�m Lprvious _ 98 0 0.00 - Onsite open 65 0 0.00 _ Assume good condition Onsite wooded 59 0 0.00 Assume good condition Onsite�ond _ 100 0 0.00 Offsite im ervious_ 98 34,000 0.78 1 Offsite open 65 - 154,900 3.56 T Assume good condition Offsite wooded-,---- _ _ 59 0 0.00_ Assume good condition Offsite pond �1000 0.00 Total area = 4.34 acres 0.0068 sq.mi. Composite SCS CN = 71 % Impervious = 18.0% D. BROWN, PE 7/15/2014 TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS D. BROWN, PE JPM-13030 Pre -Development - Subbasin I (OFF) 7/15/2014 D. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) Time Increment = 0.87 minutes = 0.29*SCS La TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS JPM-13030 Pre -Development - Subbasin 1 (ON) L SCS CARVE NUMBERS HSG Impervwus Open Wooded A 98 39 30 B 98 61 55 C 98 74 D_98 80 77 Assume: HSG'A'= 4.0% HSG'B'= 72.0% HSG'C'= 1.0% HSG'D' = 23.0% Cover Condition _ _ CS CN � � Comments __....Impervious N _ _ 98 Open mm 65_ A_ssu_me good condition__, Wooded 59 m Assume good condition II. POST -DEVELOPMENT A. Onsite Impervious Breakdown Contributing Area # of Units Area / Unit Area [sff Lot Roof Area 0 0 0 Lot Driveway 0 0 _ 0 _ Lot Sidewalk/Patio _ 0 _m 0 _0 ng Buildi�._ _ 0 Roadway Area _.. _ _._ r_ 00 �— Driveway / ParkinLot 0 Sidewalk/ 0 -� Other ._ _.__ ..___. _ 0 0�m B. Offsite Impervious Breakdown _Contributin Area # of Units _Area / Unit_Area [sf[�� Lot RoofArea 00 0 3,4 0 _Driveway � 0 280 Lot Sidewalk/Patio 0 320 _ 0 Building �_._._.._. 0 Roadway ea _ 0 Driveway/ Parkes Lot �T 0 Sidewalk/_Patio _ 0 __-Other =ra _ 0_ . Totals �.m4-ttr� 0^.� C. Watershed Breakdown '__ Contributing Area SCS CN Area lsfl Area [acres Onsite impervious _ 98 0 0.00 Onsite 0 0.00 Onsite wooded 59 _ 150,187 _ 3.45 Onsite pond ._.. _ loo __......_ _.0._.___._..! _ _. 0.00 Offsite impervious 98 .__... ._ ._ _...- . 0.00 Offsite.open ___._....DS ..�....._.___._,�._._ _.,.._0_00_ ....___.. j Offsite wooded 59 _ 0 Offsite pond ne ,s 1.00 ` � � �r� 0.00 Total area = 3.45 acres 0.0054 sq.mi. Composite SCS CN = 59 % Impervious = 0.0% Area 0.00 0.00 0.00 0.00 0.00 0000 0.00 0.00 0.00 Assume good condition Assume ood condition Assume good condition Assume good condition D. BROWN, PE 7/15/2014 TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS D. BROWN, PE JPM-13030 Pre -Development - Subbasin I (ON) 7/15/2014 D. Time of Concentration Information Time of concentration is calculated using the SCS Segmental Approach (TR -55). Segment 1: Overland Flow Length = 50.6 ft Height = 1.8 ft Slope = 0.0356 ft/ft Manning's n = 0.40 Woods, light underbrush P (2-year/24-hour) = 3.45 inches (Raleigh, NC) Segment Time = 9.52 minutes Segment 3: Channel Flow Length = 461.1 ft Height = 18.5 ft Slope = 0.0401 ft/ft Manning's n = 0.025 natural channel Flow Area = 1.00 sf (assume I' x P channel) Wetted Perimeter = 3.00 ft (assume I' x P channel) Channel Velocity = 5.74 ft/sec Segment Time = 1.34 minutes Segment 2: Concentrated Flow Length = 88 ft Height = 6.4 ft Slope = 0.0724 ft/ft Paved ? = No Velocity = 4.35 ft/sec Segment Time = 0.34 minutes Time of Concentration = 11.20 minutes SCS Lag Time = 6.72 minutes (SCS Lag = 0.6* Tc) Time Increment = 1.95 minutes (= 0.29*SCS Lag) TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS JPM-13030 Pre -Development - Subbasin 2 1. SCS CURVE NUMBERS ��_ HSG" x�j Impervious Open Wooded A98 30 .�...___.B 98..__..__.__ _ 61. v 55 _ 74 _ 70 _. DD 98 -_ v 80� 77 Assume HSG'A' = 4.0% HSG'B'= 72.0% HSG'C'= 1.0% HSG'D' = 23.0% Cover Condition SCS CN Comments �fF Impervious _98 �� Offen^ 65 Assume good condition Wooded — 59 Assume good condition R� II. POST -DEVELOPMENT A. Onsite Impervious Breakdown Contributin!Area # of Units Area / Unit _ Area [sq Lot Roof Area __. 0 �... 0_ �.. 0_ Lot Driveway m 0 0 _ 0 Lot Sidewalk/Patio _ ..__..0 .__0, ~� 0 Building _..._._ _-- 0 _ Roadway Area _ 0 Y Driveway/ ParkinLot _ 0� Sidewalk /_Patio _ _ 0 Totals - - � 0 B. Offsite Impervious Breakdown ContributiArea # of Units Area /Unit Area [sq Lot Roof Area 0 3,400 m 0 _ _Lot Driveway0 280 0 Lot Sidewalk/Patio 0 T 320 0__ .__.. ._. Roadway Area _ _ _—_ ___�....._.: Driveway / ParkingLot 0 Sidew_alk/Patio e Other _ 0 Totals n. »��. C. Watershed Breakdown ContributingArea~� m SCS CN Area sfl� Area acres Onsite impervious 98 0 TOnsite open _ _._ 65_ 0 0.00___.____ Onsite wooded 59 _ 820,532 _ 18.84 Onsite pond 100 0 0.00_ Offsite impervious 98 0 0.00 Offsite open 65 0 0.00 Offsite wooded 59 Offsite pond HI 100 0 0.00 y Total area = 18.84 acres 0.0294 sq.mi. Composite SCS CN = 59 % Impervious = 0.0% Area [ac 0,00 0.00 0.00 0.00 0.00 0000 0.00 0.00 0.00 0.00 0.00 0000 0.00 Assume good condition Assume good condition Assume good condition Assume Rood condition D. BROWN, PE 7/15/2014 TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS D. BROWN, PE JPM-13030 Pre -Development - Subbasin 2 7/15/2014 D. Time of Concentration Information Time of concentration is calculated using the SCS Segmental Approach (TR -55). Segment 1: Overland Flow Length = Height = Slope = Manning's n = P (2-year/24-hour) = Segment Time = Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 50.1 ft 2.9 ft 0.0579 ft/ft 0.40 Woods, light underbrush 3.45 inches (Raleigh, NC) 7.78 minutes 1191.5 ft 46.2 ft 0.0388 ft/ft 0.025 natural channel 1.00 sf (assume P x channel) 3.00 ft (assume P x P channel) 5.64 ft/sec 3,52 minutes Segment 2: Concentrated Flow Length = 457 ft Height = 25 ft Slope = 0.0548 ft/ft Paved ? = No Velocity = 3.78 ft/sec Segment Time = 2.01 minutes Time of Concentration = 13.31 minutes SCS Lag Time = 7.99 minutes (SCS Lag = 0.6* Tc) Time Increment = 2.32 minutes (= 0.29*SCS Lag) TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS JPM-13030 Pre -Development - Subbasin 3 1. SGS CURVE NUMBERS HSG Impernous Open Wooded F.� A 98 39 Lm F 30 B98 0.00 _ _. C 98 _ _ 74 70 ® D�� _.-98 _ 80- 77xK Assume. HSG'A'= 4.0% HSG'B'= 72.0% HSG'C'= 1.0% HSG'D'= 210% Cover Condition SCS CN Comments _ Impervious __ 98 Open _ _ 65 _ Assumeooh d condition Wooded �59 Assume good condition Il. POST -DEVELOPMENT A. Onsite Impervious Breakdown Coutributin2,Area— of Units Area / Unit Area [sfJ Area a [acres] Lot Roof Area 0 0 0 0.00 Lot Driveway__. _._ ^LotSidewalk/Patio _ 0 0 _. 0 _._ 0.00 Onsite pond _ 0 _ 0 0 .__ 0.00_ _ _ Building _. Roadway Area.---- � - � _ _.O .___.. 0.00 0.0.0 -- .00—Driveway/ Driveway /ParkinLLot 59 -------- _0 0� m �^ 0.00 Sidewalk / Patio W �. _.. _ . _ �y ry ._... �.._ 0 _ _ ... F m 0.00r _ _ Other � ___.. 0 0 �0.00 Totals 0.00 _ B. Offsite Impervious Breakdown __Lot Driveway Lot Sidewalk/Patio „ lding Roadway Area Drivel / Parking Lot Sidewalk / Patio Other —Totals C. Watershed Breakdown 0 3,400 0 0.00 0 280 . _ 1.. 0 0.00 0 320 0 0.00 0:00 0.00 0 0.00 0 0.00 0 0.00 Total area = 8.14 acres 0.0127 sq.mi. Composite SCS CN = Onsite open 65 41,844 0.96 Assume good condition Onsite wooded ___._ __ _ _ _ _ 59 312,528 7.17 ._ _ Assume food condition Onsite pond _ 100 0 0.00 ffsite impervious ` Offsite omen 98 0 0 0.00 0.00 good condition _ ____65 `----------6T— Offsite wooded 59 0 0.00 _Assume Assume good condition n ra a 1 nn n I n nn Total area = 8.14 acres 0.0127 sq.mi. Composite SCS CN = 60 % Impervious = 0.0% D. BROWN, PE 7/15/2014 TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS D. BROWN, PE JPM-13030 Pre -Development - Subbasin 3 7/15/2014 D. Time of Concentration Information Time of concentration is calculated using the SCS Segmental Approach (TR -55). Segment 1: Overland Flow Length = Height = Slope = Manning's n = P (2-year/24-hour) = Segment Time = Segment 3: Channel Flow Length = Height = Slope = Mannings n = Flow Area = Wetted Perimeter = Channel Velocity= Segment Time = 50.7 ft 1.6 ft 0.0316 ft/ft 0.40 Woods, light underbrush 3.45 inches (Raleigh, NC) 10.01 minutes 713.3 It 26.1 It 0.0366 ft/ft 0.025 natural channel 1.00 sf (assume F x F channel) 3.00 It (assume F x 1' channel) 5.48 Mee 2.17 minutes Segment 2: Concentrated Flow Length = 366 ft Height = 22.9 It Slope = 0.0626 ft/ft Paved ? = No Velocity= 4.04 Mee Segment Time = 1.51 minutes Time of Concentration = 13.69 minutes SCS Lag Time = 8.21 minutes (SCS Lag = 0.6* Tc) Time Increment = 2.38 minutes (= 0.29*SCS Lag) TRADITIONS - PH 2 HYDROLOGIC CALCULATIONS JPM-13030 Pre -Development - Subbasin Unanalyzed I. SCS CURVE NUMBERS HSG-��Impervious 98 _ 39 _._.30 Open Wooded B98 61 55 ® w D 9880 _ w 77� Assume: HSG'A' = 4.0% HSG 'B' = 72.0% HSG'C'= 1.0% HSG'D'= 23.0% Cover Condition �_ SCS CN Comments _ _.__ Impervious ,� Open mN 65 Assume good condition Wooded 59 Assume good condition It. POST -DEVELOPMENT A. Onsite Impervious Breakdown Contributin Area # of Units Area / Unit �p Area [sf] Area acs ma ,. a IL _ Lot R 8� Lot Roof Area 0 0 0 0.00 Lo_t Driveway 0 0 00.00_ Lot Sidewalk/Patio o_.. ._ O___ ._._...._._.__.. 0 _. 0.00 Building m 0 0.00 Roadway Area ._. _ ._._ _. _ 0 _ __. _. _ 0.00 _ Drivew_ay / Parking Lot _ __. - 11 .1,21— #REF! _ Sidewalk / Patio _ 0� 0.00 Other_ _. _ w _ ._O ._._.__. 0.00.. r Totals 11,211 y�. #REF! B. Offsite Impervious Breakdown ContributiF na Area # of Units ! Area / Unite Area [sf] Area acl Lot Roof Area �0 3,4_00 0 0.00 — Lot Drivewaym— ___.. 280 0 ~ Lot Sidewalk/Patio _,_ 0 320 ._. _._ ._..___O_._._.._.._.._ Build' ® ! _ 0 0.00 Roadway Area _ .- .___. _ 0 _ 0.00 0 __.._ 0.26 Sidewalk / Patio0 0.00 Other O. 0.00 ..�eu. Totals ����,. 0�„�.�, 0.26 C. Watershed Breakdown Contributing Area SCS CN f Areas Area [acres „ ja Comments Onsite impervious M - 98 11,211 Onsite open 65 335,798 __.._. M 7.71 _ 4 T Assume good condition _ _ -Onsite woodedp� 59 _j 2,150,642 49.37 Assume good condition _ Onsitepond 100 0 0.00 Offsite impervious 98 0 0.00 Offsite open 65 0 0.00 Assume good condition _ m �_. _.__....__ ._— _..._ __.-.. .._..__ ._ Offsite wooded 59r 0 0.00 Assume good condition Offsite pond A 100, 1 0 y 0.00 E s� Total area = 57.34 acres 0.0896 sq.mi. Composite SCS CN = 60 % Impervious = 0.4% D. BROWN, PE 7/15/2014 POA#3 SUB03 Scenario: Pre -Development 1 year SUB02-BYP SUB03 POA#2 SUB0I-OFF S'+I rVII SUB02 SUB02 SUB01 - ON E SUB01 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i JPM-13030.ppc Center [08.11.01.561 7/15/2014 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1-203-755-1666 Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (vears) (ac -ft) SUB01 - ON Y a Development 1 1 0.083 730.000 0.57 SUB01 - ON Y a Development 2 2 0.149 728.000 1.50 SUB01 - ON YeaDevelopment 10 10 0.378 727.000 4.60 SUBO1 - ON Pre -Development 25 25 0.538 726.000 6.49 year SUB01 - ON Pre -Development 100 100 0.828 726.000 9.40 ear SUB02 Pre -Development 1 1 0.451 731.000 2.83 year SUB02 Pre-YeaDevelopment 2 2 0.812 730.000 7.51 SUB02 Y a Development 10 10 2.063 728.000 23.41 SUB02 Pre -Development 25 25 2.935 728.000 33.02 year SUB02 Pre-YeaDevelopment 100 100 4.519 727.000 47.89 SUB03 YeaDevelopment 1 1 0.215 732.000 1.50 SUB03 Pre -Development 2 2 0.379 730.000 3.69 year SUB03 Pre -Development 10 10 0.938 728.000 10.71 year SUB03 YeaDevelopment 25 25 1.324 728.000 14.92 SUB03 eaDevelopment 100 100 2.023 728.000 21.33 SUB01-OFF Pre -Development 1 1 0.266 722.000 4.91 year SUB01-OFF Yea Development 2 2 0.400 722.000 7.65 SUB01-OFF Pre -Development 10 10 0.806 721.000 14.31 year SUB01-OFF Y a�Development 25 25 1.065 721.000 17.86 SUB01-OFF Y a Development 100 100 1.511 721.000 23.02 Node Summary Label Scenario POA#1 Pre -Development 1 year Return Event (years) 1 Hydrograph Time to Peak Peak Flow Volume (min) (ft3/s) 0.3491 722.0001 5.03 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i JPM-13030.ppc Center [08.11.01.56] 7/15/2014 27 Siemon Company Drive Suite 200 W Page 1 of 2 Watertown, CT 06795 USA +1-203-755-1666 Subsection: Master Network Summary Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) POA#1 Pre -Development 2 2 0.549 722.000 8.37 year POA#1 Pre -Development 10 10 1.184 722.000 17.70 year POA#1 Pre -Development 25 25 1.602 722.000 22.83 year POA#1 Pre -Development 100 100 2.339 722.000 30.46 year POA#2 Pre -Development 1 1 0.451 731.000 2.83 year POA#2 Pre -Development 2 2 0.812 730.000 7.51 year POA#2 Pre -Development 10 10 2.063 728.000 23.41 year POA#2 Pre -Development 25 25 2.935 728.000 33.02 year POA#2 Pre -Development 100 100 4.519 727.000 47.89 year POA#3 Pre -Development 1 1 0.215 732.000 1.50 year POA#3 Pre -Development 2 2 0.379 730.000 3.69 ear POA#3 Pre -Development 10 10 0.938 728.000 10.71 year POA#3 Pre -Development 25 25 1.324 728.000 14.92 year POA#3 Pre -Development 100 100 2.023 728.000 21.33 year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i JPM-13030.ppc Center [08.11.01.56] 7/15/2014 27 Siemon Company Drive Suite 200 W Page 2 of 2 Watertown. CT 06795 USA +1-203-755-1666 McADAMS Scenario: Pre-Development 1 year go A 3 SUB03 Traditions Ph. 2 JPM-13030.ppc POA#2 SUB02-BYP 0, SUB03 SUB02 SUB01-OFF SWMI ii SUB02 SUB01 - ON SUB01 D. Brown, PE 7/15/2014 M" Mc.ADAMS Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) SUB01 - ON Development 1 1 0.083 730.000 0.57 year SUB01 - ON Pre -Development 2 2 0.149 728.000 1.50 year SUB01 - ON Pre -Development 10 10 0.378 727.000 4.60 year SUB01 - ON Pre -Development 25 25 0.538 726.000 6.49 year SUB01 - ON Pre -Development 100 100 0.828 726.000 9.40 year SUB02 1 1 0.451 731.000 2.83 Development year SUB02 YeaDevelopment 2 2 0.812 730.000 7.51 SUB02 Development 10 10 2.063 728.000 23.41 year SUB02 Pre-YeaDevelopment 25 25 2.935 728.000 33.02 SUB02 Pre -Development 100 100 4.519 727.000 47.89 year SUB03 YeaDevelopment 1 1 0.215 732.000 1.50 SUB03 Pre -Development 2 2 0.379 730.000 3.69 year SUB03 Pre -Development 10 10 0.938 728.000 10.71 year SUB03 Pre -Development 25 25 1.324 728.000 14.92 year SUB03 YeaDevelopment 100 100 2.023 728.000 21.33 SUB01-OFF Y a Development 1 1 0.266 722.000 4.91 SUB01-OFF YeaDevelopment 2 2 0.400 722.000 7.65 SUB01-OFF Pre -Development 10 10 0.806 721.000 14.31 year SUB01-OFF YeaDevelopment 25 25 1.065 721.000 17.86 SUB01-OFF Pre -Development 100 100 1.511 721.000 23.02 year Node Summary Label Scenario Return Hydrograph Event Volume (years) (ac -ft) Time to Peak Peak Flow (min) (ft3/s) Traditions Ph. 2 D. Brown, PE JPM-13030.ppc 7/15/2014 '=':!'YM_cADA.MS Subsection: Master Network Summary Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) POA#1 re Development 1 1 0.349 722.000 5.03 yea POA#1 Pre -Development 2 2 0.549 722.000 8.37 year POA#1 re Development 10 10 1.184 722.000 17.70 yea POA#1 Pre -Development 25 25 1.602 722.000 22.83 year POA#i Pre -Development 100 100 2.339 722.000 30.46 year POA#2 Prrea�Development 1 1 0.451 731.000 2.83 POA#2 Y re-Development2 2 0.812 730.000 7.51 year POA#2 Pre -Development 10 10 2.063 728.000 23.41 year POA#2 Pre -Development 25 25 2.935 728.000 33.02 ear POA#2 100 100 4.519 727.000 47.89 Development year POA#3 Pre-Development e Development 1 1 0.215 732.000 1.50 POA#3 re Development 2 2 0.379 730.000 3.69 POA#3 Pre -Development 10 10 0.938 728.000 10.71 year POA#3 re Development 25 25 1.324 728.000 14.92 yea POA#3 Per -Development 100 100 2.023 728.000 21.33 Traditions Ph. 2 D. Brown, PE JPM-13030.ppc 7/15/2014 0 0 CF 0 m Q 0 00 O 00 0 L0 M 0 U 2 w 0 i 0 g I I m a.. .. U A 1- 5- X i X S I ' 1 ( , \ ' c) /1' I �\—� \ � \�^ . \ J, i - I + � \ (1� I ( � \ — —_ -/- / ~!-' \ C ,�-� /// / r -)/ ) ( 1 � ( /i \�\\ \ \ ( � -\ > 1 t� ) I �' \ -� / / r /, ' \\\ \ J > // _ \ 1� \ - 1 \ ///// II% , /" ( ( I / I ) / ( ( \ 1 ( ( / / / / l \ \ ) �� /� � t - / 1 I l \ l �- // \\ / r / a )lIY lf/ / I 1 ) ) I \ \� ` ` \ / / / / J /� ( / /// r/ i ' ( / / // ( \ \ \ \ / l �/ \\, \,_ I \ -3--- - J / ( ( \ \ \\\ \tire -\ \ I-/ / / / <; \ 1 \\ f\\ // -� ( / /��'�„'-- \\ \� � \\ ( ) ( ) ! / /% 1 I I � /i /i l (\ \ / \1 \ \ I I S 1 \ \ \ \� � / (� \\ \ \ �� `1 \ I / I /l l 1) ar l / 1 \� \ / �/ / \ \ \ ( \ 11 \/�� \-'1\ ( ( /�� I \\ \ ) " \-, �-"J / 1 \\ \\\ \ '/ l vi \ I/ a ) O ( 1 (/�( /�f /r �� / ; I I t I \ \� \� \\I \ (\(tt ) I / / / / \ ) ) / \\ \\ \ �\ \ C i/ J / \\ \� /� ! ( ) \ �t�.J� c / \ \ a / \a \ \ l \\\� _ �� ',\ / / / S J l / /{J/// ,/ /� / ( } \ \ / \ � (\ \ �,-, 1 ) / ( / I /� �� \\\ \ �) \ -\ ) ( l ( / / J, ( ti� l rI) \ (I )(I ) ( )I ) I \\ / O \ \ /, /� \ \ \ / ( ( , / / ii ) 1 / \ \ 1 \� \ o _ ���� S / / j / /� // /%ll `� �j i r i / I ( ( ( y ( ( l 1 1 } ) 1 \ t / // / / J I / 1 ) I / / ///� //// rl ( r/ 1 I ( / l ) I I 1 \ \ \ \ \\\ �/) / / ) /� I / `11 /S 1 \ ( ) / / [ 1 1 ) i \ ( I \\ \\\\) (�-_- /i��, ���- � _\ L 1 J / J l ) l I \\ �-2 /,% I / 1 0 o i �\ \C - I \�\ \/ 1 / \ > ( / S// ( / /( / //,/ �-// ) a ( f / / ( (I ; / / / 1 \ \ / 1 / 11 /' / Gil/ rs \ / / / ) ) \ / / ) \ 1 ( / \ \\\ \\\ \ (%( /_„r �; \ ��-��\ °� �_ -> ) / ) ( ) \ \_/\ \� _7 t/j ( / \�� `� ��/ / \�\( �II ( �\ (I /,% t �� �\ \ -,/ / / /� / � (}\�( t/{( /r 1 / l I I I / / / / / ) ) l I I l \\� �\ ) / ) 1 ( I 1 \ \III !4 l / / , / i s / I 1 I ( / ( \ ) I ( \\ l \ � ( I ) \ --\ ,` „/ (// ..\ / \� / /�� � 1\ \ \ \ ) ” / i / ) \\ I I�l l \ \< l \I I I l 1 / / ( � ( \ / �_ a \ / ( 1 ( �)tl / f f I I ,_ l I \ 1 ( \ /\ l ��\ _ ( ) / r, /�� ) �, _ \�\ / / - / / % ) J \ \ 1 If IIt� �k / I / ) ( / \ \ \ t I I I I \` \\ 1 �� ^� - /-__ ��� I f(\- / / /�/ \\ ,/ \ \ \� i ) 1 I 1 1 I J \ ) \ \ l 1 l \ \ 1 C I //i/ I \ \ / \ \ / / / > I VIII �� ' \ ( \ \ I l ` \ \ \ \ I \ \ \ / \ 1/ o ) \ 1 I \ �\ \I \ \ �� \ ` �� / \ I I \ ��� _)fvQ / / / \ r / \�\\)1/ \ \ \ � _, 1 \ � l f / // I �I ( ( \ 1 � I r \ \ \ l 1 J I �/ \ \ \ �-� \\\\\`.�'-� \ \_�---1---__, //--�`� / �/� rr _ S / / � \/// i\_ \ \ \ L / ( 1 ( I }� ( //JJI/\ f/ �� l( 1 l -) > ( ( ,/ ( 1 J 1 / /) 1 / 1 l \ \") ( \ �\/ \ \\ \�\� -_ -_ \� \- �--_ //_ \ /i \ � J //\ ////� \ \ �� I \ ) / //( �/ �1 l C `I ( / / � (\ \ `� / /( 1 ( (I / / I \ \ - \1 � - ; -A J \ \ I / �; \ ( (I \ - �` �` Z / l ii / r ( ) 1 J 1 ( )) (� I I �1 / > ( ( ( ! � ) I _ \ \ \ 1\� -- -, �` � _ / / l /// , ��� l \ a / f / o / / �( \ \ \ ) ) 1 1 1 \ I � t l t ( t / / / l 1 I \ I I O } S \ \ o\ \ _^ _�\ �� _�' / -/ i ) / \ f (/ji�i^\\ \ \ ) (( // /// � \ \ _ �r l / I ) / I ) ( \ (I (1 \ l\ ) I / - / >\ ( 1 1 ( \ \ \ 1 r`\` `��\ �- ��� �\--- (i��//-1 \/ '�(((\`\\\ \,\�\\ \ �_ \ / 0) \ `\\/�///11//,/ ) \ 1\ \\ \, - l / / I ))I� 1t\ \\ ir�l\ l 1/ l ( / / / / / ( / ,--) J �I (1/ ( 1 1 \ \ J / 1 / / / / l ` \ \ \ < __-- \ �\ �_� /I \ \\ \\\� \��� \ \�1 Z \\ \ \ \ l (/i/ i// J/ / /I 91 \\ \III I 1 ) / ) / // // ) \ \ / �) \ ( \\ 1 �~ \ ��\\ \�� ;-r ^ \ I 1`111111 \ a l \ \\ \\ \- \� \ \ / r \\ \ \ � 1 1 a h / �� �\ \ J / l I I I \ \ \ / � /� / ( \ \ / l o / J l ( \ -���_=- � \ 1 I I 11 / / \\ \� �� ( ` < < ` �1 ( I �� \ \ I\1 1 \ ( J ) ( / / / � � // / / / / I) / i - \ ( 1) I�( ,\ \\ \ } / \ \ \ \ ( a� 1 ) � � c II 1 \ r \ \ I ( / / ) / / / i ( / / J _ ) \ \ = = \ 1 I / \ \ l ( I �_ \ \ \ l I ( )l �)\ y ) \� �\ 1 ) ) l / / / i/ } �� ) /I \ \ ��// (� 1 �-_---,\ � � I )\ I\ll`\\�l_ a \ \\\\ Q �\ 7~ / / �)/ \ 11\ \�\>� \ / l ( / J )�/f/ / //)�)I� 1 1\ I � 1 I� ) I ( J ) l / f / // i / / / / /r ( - \ ) ( o / �� ) �,� �\ \ _ \ �X\ 1111 I\��(-2' \ \_ - \ o\\ / ( ) � % / \ 1 \ \ \� � `^� I \ ) \ (( I�((t ( \(�1 (i// r-�\ \I / ( 1 / 1 ( f l ( / / J / / J/-,--(- ( \ / // / \ ) \\�\ (1 �I\ \�\C;�\�\ \ \ �- / I ( ) / � � � \ ``— -� ' \ I / � ' ( t I (( I I >l I JIl I 1 ( I ( I ) / / ) / / / f q. 1 / ) / ( _\ _ \_ - - ) I 1 / \ \\\ 11 \\ \ \ �� 1 \\ \ \ \ \ / / l / i \ \ � --)-1 -l-)- �- � .�t/; J ( / / , 1 / ( ) I I I J / I I t I 1 ) f J / / / ) / / ♦ / / ( - 1 / / \\\ \ \ \ \l \ 1 \ I � l / f / 1 \ � \ I �) / —C , 1`1 ( ( ( ( ) \ >♦ / �( SUB 1 OFF - \ \ \\\\\\\\ I I I 1 \ � \ \ \ \ \ -, - \ / / I / / / \ \ (_ \ \ (I J / i / I / 1 J// /// l/ / l l�( ( \ \ \ \ \ 1�\' �\ I I \ } 1 ) ) / ( ( t r l� �I \ \ 1 i \� / / / \ \ \ Z 1 / I > I ///( l d \ oma, I ( _ ��� \ 1 (i/ / s \\��\) 1' (��\ \ \ \ \ _� ��� l f / \ \ \ / / ( oil r l� \ \ VI I I ) f �� - ; / ( I /I AREA 4.34 AC \ 1 s/// \ \�\\\�\ \� \ \>�) \\\ \ - �.� ( 1 / (' / ( �J-L \ \ \ \ I )�\/ / ) (� /iI 1 (I (�\` �� ��� 1 \\�\( i/)\ \ \ 1 ( 1 ( / ( t �r 1 a° ) \ JI J - _ � \ /// �µ ) \�\� \\ Lc\\ �\ l -� - / 1 ( / / \ ^\� \ \ \ ` \ \ I1 I1 (I r I I) (/': ( '/� �\ > ( ) ) ( / \ \ ) ) \ r, , ( , / / I CN 6 8 / �. ,/ �\\\\\\\` \ \� ,- I\�� � \ \ -, \ � � - s ')) ( / , / ' ` � \ \ \ \ \ \ / � I 1 \ _ � , \ / I / ) � / / J) ( ) } \ / / > / / // / /�\/ / r i / e 1/ �,/ Z - ( /� I Tc = 5 MIN l`'/ /�/� r� /� ��\\�\\\ \`ItC 11 - ��� � �� ( l ` / \ \ \� ( ( \ 1 / / / // l / jC J f,_ %: / // 1�\\\\ \� \ \ �r ( I(I) I l( - - y \\1 ` \C )' ! I I I > I I( 1\ �\ �\�\� `��. \,���� J>�(1II/// // / ///// //\ \_- �/ / \ ( ) 11/// ) \ \ �\\ \ \ \ f \ \ \ ) / l (I ( \ \ ���-\ -�< `�\ \ , (1 I // / /// / // / / / / l / T ( I \ l „lil/ 5 /J \\\ \\\\\ �� \\�''\ �� / ( I l I /) ( -- ''� \ \ Z �� I I 1 \ \ �♦ ��l I I 1 ( / / \ /r / \ \\\\ \ \ 1 \\ \ \ � 1 I) / /- - / \\ \ ) \ l / l \ 1 \ a �\ \ 1 I �J/�/ q/� / �-fo I ( / /� \�\ \\\ \ \\ \ I I ) \\ \ \�\ \ / /� ��.�\ \. �� \ I I 1 1 / /l // J / / //1- __11 ,,,, ,f / J / `�/ \ SUB 1 - ON �/ /� \� 1 \ \ > ( \ \ - � I ( `\\\.(/ /� / \\`\ \ (1(1111 f— `� I \ \1,k,k-,-,-I I / ii / //f/ t / ti c ( r f�L/ //- 1, AREA - 3.45 AC \\ �f iii 111\1'11\\\\\�>Np \( `�`\ \� ) / it \1 \ \ \�-�� \\ \ \\\\_, / % ( I 1 ~� 1 \\ \ �``I lII l Ii I(/I J ( I I �` / / / f/ - \ �// 11 t\ �\ \ \\ \ �__� / I \\ b,� II II I II( (l I(1► \ \ �� / ) / / \� CN - 59 \ \ f ii/ ii 1I) 1\ I - \ �\ / / l \\ l � \ \ \ ,-_ � \� I ,11( �� �>> //1 1 II (( 1 \ \ \ / �c- ��// ♦ l\ - - \� //�, (/ /////' tII IO \ \y- \ \ / I � ) I \,/ >)1 1 IV/1 I) t \ \ \ \ \ ( \ / / � \ J \ \\\\ 1 rte\ \ \� // / ) �) I 1I( (� r:�/I lll�/ I)(\1 \ \ \ �� \ \ r \I �/ / --� \ \ ~\ Tc = 11.20 MIN ) I\ /�//� /G%/ �I I I III ��-- \ \ \ ( \ i �\ \\ �� / J ( I \ I (I I } k r� "" 1/ // /(I \ \\ \ \\ \\ \ \\ \ �\ \ �� f /� - __ -- _ J r � _� )I�1- \ � ,X /J(/ ___�/ //l /1))1111((1 ( �\�\� �\ �\ \��` C \ \\\ \ I I \\ c ° ) ) ) I I t % / 1 \ > \\\) 1 \ \ \ \ \ \ - s / / II 1 SI4 ( //ljl/ 1(( \\ 1\ \ \\ \\ \ „I / / ° ( / - _ f / / _-- // / / 1\\ / - -� \\\� \ 1/� \ \ \ I �, o \ �\ �__ ( �� / / / l// 1) )/ l�/ '`l`. �/l f 11I\ \ \ \\\ \ \ \ \ \ 1 r, ,\ / ) r s'j // _I l) o x�..X it 1 /� / (/ -- %� / (/ / JIl`_� . ° \� \ , \\ `\ \ � \\ \ � / / / -, // , / /i �\ ,,� /// ( ( \ \\ \\ \ \ l( ,III( .\ t\\ \ \ \ a\ \ � I ~�-'\^ �i // / / /r )1' / i ) I� \\\ \ \ 1\ \ ) \ t \ / -\ \ \\1 \ \ ( \ \ � - ( / / ,, / �//J( \ 1 ( / I, �- / > -� J _ �\ / ( (` \� \ti - --\\ \ /� \\\ �\ \ \ � \ � ti \ \ � _ - / / / //// I \\ 1 \ 1 1 )/ / / \ r \ I t \ \ \ \ �� ` \\ \ � r� -- , �'� // //��j /i Y i���(1(\I I ((/J I \ 1 I / It l �., / \ J - -� \ \ �� \ ( \ \ \ \ \ c _ \ / / // / / �,, / r J ) 1 t I 1 I / f \ / / / / / / \\\� \ - t' �//l/(I ) / ) ( I �y ( ( I \ . t _ \ J �rJ �__ - / / / 1 ( / > 1 \ \ - ��\\ \� /�� _ \ \ \ \ / / � / f / / (/J / / I ^_ �, / L `1 \ ) \\ \ .. ���\� 1 (/ \\\\\\ \ \\ �� \� \� 1 // / // / / / �r/i / I I / I ( I 1 ( / / / ( ( 1 \ r ( ) t \ \ 1 � \ �( /r^`, \ I \ \ \ \ \ � / / i /// A �� r( / // 1 I I I / ) ( I 1 I \ \ "" / / '� / \ ( ~? ) \ �s\_- , ��/ / \ �f�\ \ \ �` \ >N\ "k, 111K`)(/ , - \�;\ \ \ \1\\`\ \ \ \ \ \ \ / / /J // � f / I \I �i I I I (t \ 1 1 i i t 1 ; \ I\ \� -^ //rte, \ ` > 1 - � ; - / / l \ ( �s ( ) \ t \ ��.�=o 1 ` \ , \ \ \\ �'� \ \ \ \\ UNANALYZED /i i� /i /�' / ✓�, \' 111(( I 1 \ \ I ) \ \ \ J / J I \ \ 1 h \\\ a. \ \ �\ ( \\ \ \ / I (- N' ) (% \ 1 ( - / �) (v \ 1 \ 1 ) \ (� \ \\ \t �\ \ \ \ \ \ \ \ AREA = 57 34 AC , /i (/ // / l/ � l , ( i ► I I ► \ t \ \ \ \\ \ \\ \ \ �/'� ti / / I � � / � - ; t t \ \\ '� rte. \ \ \ \ ( \ \ \ \ \ `1 "�`' _ \ // / ! 1, / 1 I I i ( ( t T ( 1 \ l t' - I t ' 1 / I ) �" \ \ \� \\ I (\\� I \ , I \ \\\ \\� CN = 60 ) �)/I %/�// �f].� / I \� \ \ \ 1 \\ \ ) \ \\ ` J� /j / 1 5 ` \\� �,, J- - �/ / \\ \( - ( 1 1 \\\��\\ �1\� \ \ ) \ \�I \ '� )/( r ,/ 1��\\l� \\ 1 IL. , !- �(l J 1� 3 ( �/ �= _ 1 1 '/ ( \ 1 1 1\\ '\\_\� \ �- / \\�\ 11 �� / �j /(l/ l/ ��/� } \�\\ \ �\ � \ �\ �`" / / \ I / ( � ) ���1. --- - �, '_� ' / \ \ l \ ` / (�) \ \\\,\-_ \ .\ �_�v \\\ \ \ - \ \ \ � / //, //// ���� I �� \\\\�\ \�'i\\\\\\ \ l /ii�> I (( / / )�_\ ) 1-0 \ \ ( ( )/ I ) �)--���- --� � ( I \ 1 �\ ( ( f J/ ( I II\� (rte`\ \� ---� \�� \ \ - /� iii// /�� lir Ji �� /�/_-� \ \� l / j 13 I I I1 I/ r ,a \ / 1 1�,) 1 //\,�:)/ /� (_ , - - '� \ ) \ �) I I \ ( / f I ) �� 1 l\\� �_r� \ \\\ \ t �\\\ \\ l / � / r/ / ��_ //l /( / ( / ) I x \ ) l I \ ) ,_ -_ _ _J a _ �_ / �/ / I I / \ f ( I \ / AREA - 18.84 AC •� \ ( I y\ \\\�� _ �.- - _ �) /i \ / f / l l J 1, \\\IO (� \\\ / ( I/)/ // y ///i /� /II/ / ) I / \\ \ ) ) I �/- CN = 59 \ > \ / \ \ �_ •� - / \ \ \\` ( I \ r / ,�� )\ /l / /� i l / *ftJ l \ ) ( I 1 1 \ 1 ) 1 \ \ I \ \ \� \ - -� _ --� \ \ \ / J / / l // >i a r i / // / / / / - � �- I / \ J ) l ) I ) \ \ 1 \ti ♦ \ ) 1 ) I -) \ \ \ b - r _� 1 I \ \ - / // ////r /): l /� , / (� / , ____ ,. . i J // / >/ /( / \ \ 1 t c / " Tc = 13.31 MIN I (� ( - - - — _ , r �\ \ \ / / �i( I / / r / / J / �I11 Jl I \ \ ) f > l � \ ♦ r l ..L..�.I. 1 -\ \~� \ _\ �'� / �� - �� - 1 1 '� \\\\�- //////// / /;'� y(((I( ( 1 ) ( / /�� J / J \ I \\ I l 1 // / I/ ) l llJ ( ) )) ) �}+n.r++ ) �� �\ 1 \\ \� i^�\�-ii�S3.� t l \� // /l ` l / 1 \ 1 ,--- -- / / / 1� / // 1 l / 1 ti /�, \ iS "�' \ \ \ iv'� \��•1� �� �� %i\ ) ``�\ _/ //)/(/ i �J/�/ //(1 )) \\\ \ ( 1 '/�/j IJ / / // ( f 2- ,� /////�� �\ 11 `� ` r I / ( I j(,\ I�\ I \ I _ \\ �l 1 I 1 } I I /%� ♦� �� \\ y��� \\�� j\�\�_)\ ( ���� / iI t I S 1 1I ( \ I o i J / / / > ( 1 � ,' \ ��� \ S2 1 (I ♦ \_ �,-,-` -- �•�\.y I \ \ l \ / (� // / l ) ) I c / ���,��� / / / / / / / \ l \ �o ) I I� l \ \ \ (� ) ?� " \ �� \ \ / / / ) ♦�° �\_ � � <� \\== \=:\\ S 1 \__I�, \ r " //) (t l / �I (1 C, / / ice, Imo, / // r/ 1 O' / / l o f l \ \ \\\ _ - \ ) / ) ♦ -`� _ � �✓';-- \\ , ) /\� ,, / /// �)li / / /� t 1 \ / / i 1J� r I- -.11 // \ I ( ') l ( �_ ) ) `` \ I \` \ \ 1 \ \ t -5 ^� �\ > I �� /� ) % \ ) I 1 ( 1 ♦ --- _��� �_�_-=_��\ 1 : ���\� \\\ 1( f-�// I �I /•/l�� 1 // / ( (1 �/ / )I \ \ \ > \ / �� 1 / i �-� //// / )I^ '/ // ( / / d'u, \ ) � I > i \t \ \\ ��\ \ 9a ��\ \ \ �/' / /��1 \ I / 1 ��►-./i _ -=__ ___: —`�~` I I o \ \ x� , // /�// ) / / / \ \ \ 1 / / �_ / / / :.,�\ \111( \ // l / ) / 1 ) 1 / � r l )c� - ,/ �� ( ��� l \ ( \ \ \ \ ( \ \ � J I \ - ,,\�__--- \\1 IIi) 1 �\ � �- ( /fill/,� ,(// / / / / / i // 1 / ) I / - / / ) I I/ / / / II „/ // / ) 1 \\ \ �� ( \ } J C I \ 1 1 } ( 1 1, . \\-\\\ \ \' a �� s / ) ) ( l I I / ) \ \ , / -� \ \---- \)11 1l11I •�v� \ \!\\ \�� \ /' � �/(.11� I/X// i / / ( / /) / / /) (I ( I CJI / /' / / ) I ) ,�---- -L 1) l/ ` ( " s / I 1 l 1 ( 11\( \ ( �'�\\\\ --L-�C � I /I i ) / \ A \ ) `* /n��--_�\ �_ - ) ( %(III�1�' ;.\ \\ `\ ) / I / / /�( )) / / / (1_1 yr/ / - / l \\ 1 ) `` 1 ( \ I \ - / / J I \ ( \ \� _ l I 1\ \� \ �\ I'� I / 1 / / / / / 1\ / j / / 5 / 1 J) \ \ l f I )� 1 \ (\ I I `l \ `� , \ \\ / ( / ( \ \ \ M J ) / / i I, 1�\ \I <�-, \\ I /)/ '� I / I i / ,- / / / � // /ll \\ 1 \ a �� \ (, /X11 ( / // // i / / J \ \ \ \ ` r / } � 1 ( // ( / ( ) II) I I \ \ \ �\ I► I i I / / / / (/J I r \ _ �r \ /� J / / / '� ( J \ / �\ \ / 1 r> ,� ( \ ? / / ( I 1111 1 \ \\ I \ \ I 1 (( / / / / / / / T� \ I \ / \ ( / \ / c / j / I / (( \ ")pv�\ \ ) \ \ I ( 1I I S), I I) I I l /, f / /� ( � � // / i- , -z —, \ I / / 1 1\\ � J \�I\\ -- SUB 3 \1 / \ i \ // / /I !j//J/)) (1 )}� \\ \ I )J)•1/� 1�I1 l I1\ /f // / (// // f // "-�\ Fr / 1 / s ( tl \ A lI \1 \ // / I/1y ( \11 \ \ )), I \ / /"// (I((1 4 \ \ \ 0} O II l( 1I \ / /� \ r_ _ - l - ( 11 I ( AREA 8.14 a c . / (/ / / I \ \ / / \ I I / / ( / //-_ -) —rte- '- --_ \ , / ti / I ( / ) / / / ( \ \\ \) 1 i \ \ `` \ \ < ( / c/\� / J \ \ \ 11 ) 1 (( \ \ \ / CN = 60 I \ \ \\ -) \ \ I /� i / / ) �// I J \ \ l �� /// // 4'O :� �\ 1 \ \ 0 I `\ \ \\ \\ \ \ `` `� / / (/ /,/ J� i �� J 7�-� `\ _ _ _ ) ) ✓ ` �\ \ I I 1(I I \ \ - / \ L \ \ l / i / / / j/ / / 1 \ 1 y 1 I \� \ / / / 11� `t \ \ \ t \ \\ \ /� ,j / r J�) /� f ( / J ) L \\ / \ r r ��\\ I \ \\ \\ \ \ � / r ,/ 1 \ �\ \` ��_1, Tc — 13.69 MIN // \ \ \� / / / / / / / \\ \ I\1 / (��l\ �\\ /r // �/) (, ( \ \ \ \\ \` \\ \\ \\� -- �� / / �`�� POINT OF ANALYSIS / ) ) ( 11 (` 1 \\� \ \ � _ � � \ \ \\ \ , / / / .j \ \ -�. \ 1 /� lr SII\ > \ \\ \ \ 1 , �/ � �� / \ \ \ \ \\ \\ \ � �\� \ / J '� . ) \ \ \\ ( ) / /r _/ / 1 � \ \ \ - � / �/ / , ( / 1 \ \ \ I/i 1 / \ 1 1 \ \ ,� f , ' C / r \ \ \ \ / r / / / / ( \ ,\ \\ \ \ \ \� / // / 1/ , t/ 1 \ ,- \ \ \\\ // / \ \ / / / # \ �l\ ) ) ) \\\�\\\1l\ �\ --�� ♦ // /(/ \ -�� / / / l \ \\( r/ , �\ \�I \ \\ �\\ \� / / /,//,("// \ J\ _ 7 o / (\ 1 \\ \\ \ ���\\\ \�� / \ \ \1-1--� / r \ \ \ y / I/ r :) / \ \ \ \ l ll/ `\ co \ )1� � \ y / ( X\\ \ \ , J J ) I l (\ \ \ \\ \ �\ _ � J i J (/ / / \ \ \ I ) r J \ ' \ 1 \ -\ ��r/ /// i �\ 1 \ r / \ j j1 I \\\\� ` �� \\ �� ( \ \ \ \\ \~�_, ) ( \� J� t _ 1 \ 1� I�/ / 1 / \1 / /%/ / l ( � /, / _/ 1 L \\ 1 \\ �// // J \ I\\ 1 ( / / (( tom\, , / ��l ( \\ \\� { 1\ 1 \ 1 ( / \�> (( \ \\�\/ / I \ I 1 / / /ice } 1 \ l \ 1 S / / (� \ \ / / / / /1\\ ( / S I \ \ r, /) i I Ill 1 )/� / \ /� / / \ / / II I \\ \ \ _ - ) l ( I \ 1 I 1 \ \l\\ \\ \\ �� �) / \ \ \ > 1 \ ,,` l I) 1 - `) I / \ r `/-�f \ I/I I)�I(I ( \ \L �_ _ � - 2 \ ) I � I I 1 - - - ( � \ - _ f c \l lJJ I - / / 11// � � I /js /' %iii / � i 1 \\ " /�` 1 ) \ �\ \ \\\ \\ o ) / / / / C \ \ \� ♦ )\ ) I / / / ra / / ( I / J l I /�! r f'' / / I / a ) l / /// // I J / r / i \ ) / /( ) \\\_, - �____ ��"I 1_ \ ( 11\ -'1\\\\� "I� _._ � / 1 l� ( , \ \_ ��/ r / -� / J l ) r/ d� �o J / l r __� / I / / / �// �� /� / // �i l 1 I \ ���- --� ��\ \� / ( I I \ 1 \ --L-� �j ) - ) l/j ��\ - / //l /l l/ ���/� r) �� / l//l /( / -J/ ///�/�-,- /j 1 / / /�% l / / ( / ,( i 1 \ \ -� � � \ ) I ` \\ \\ \\ \ J /l / I ' ) \\ ,/ / l , , / I � / l/ / / / -//�// /// / ) // � l/ / /l/ / / /\ \ /,� ( ) I 10\ I �� \I`� J�� \ \ c, \ - — \ \\\ \ \\ \- -1�1 - �/ / \� ^ ` I_���`, .(� ) I ) -----� `-/ i r / / / / // �/I f I \ _ /// l / / I ( t 1 I1 \ (- - \\ \ ) I ��--_ ,_ ) \ r \ I y� \ `\ � / � I / ( \\ \ \ - � ) ( , ` / // -/ i i / /i r // / i Z I (( /� / / / t / 1\1) �/i / / I \ \ -`--�o\ \\ ) , -\ \ \ \ --- _ � / ) / It ) \, � (, ) /) - \\ /// /i/) - / / /// // // / / ( / / / / , <(II) \\� �\ `,� _ /moi ) /�_ , r_ -_\f� / 11 �� ,� ► II1( I\ > / i c> J / �— J r-- —� moi/ / /�1/ i /. , //� // / / / / ~� / � I / / L -) / ` f I �a� �i < < � ) J `c�� _`-11 \ \ _�/ /i /��� \\ ��' J ,l/ . ///� t /)/ / % /// / / i / /l / /-� 1 11 I \\ \1 \ ti� / // - _� �/ J 1 /l/ \\ �L J l I I I \ " _: ��/ / / j �__ / // l ( \\ �-f t \ r� \'� ( _ > < / /)-'� " J r \\ �,/, -n� / / �( /l / / // / (/ / f ( /\-\ \/� ��) \ \ \ °\ / , /� o � ��� � — — � � / / ) (/ \ \ �r I I-- i o I/ I I \ _ � c v / / f / k=moi / -- / o /,/ - t o I ) / ____% / � / / / // / l / 1 / //l / / / / \ \ 1 \ \ \ \ \\ / ( \ �� r I I l/ ti - -- - - /.�`'- = �••a . �i ^ I / - `/ / / / / / C/ / / ` \ \ \ \ \ /� �> ; - -' / �/ I) I l \ �\ \ / ( r (I I 1 ti) < < �? - ANALYSIS - - _ I J / , / , %� �, //-_-� / (I r I( � I \-a \ \ \� / t I \ \ �� 2 - - - ----- > L I l / / // / / r \ \ ��.i 54�� / / / / / / \\ ,/ i/�__ _ C�- � =�- /, I\ 1 \ \I �� I JT I l lI 1 C/ / /�, # �y�_� \ �-� _ // moi ,' _. I\(II\/ /� �Y / ( l l r / / �„// / \ \ \\ \ \� \ �/=� --_ --=,� ` �� )� `�\\ ��t 1 \ _ �Iti < j L_ L� / �// I �Q \ \\� _ _71��'OINT OF ANALYSIS _J �� �,- _%� -- )I►Il�/J f ) / fl / ) , //,, / , \ \ \`� \ �� --�L 6 ,,= `._� — — \ = — _ ` i \ �< < I ( \\ \ \ � 'n �-/� "� /' / /�\ r :; — `� c % �/ �� `/�''f+ — , ) I ( \ 2 ) C_ � J / J ( ✓ \ \ \ _ (� ii ��z� ��--__-\1 /J 1 �\�\\ \\ 11\ ') \ ) ) I I / ^ x� �\ 1 ).r,�` i \ \`\ \ -Ly _�_- \'- �_ 1.1 i / / -Y'�' ( //j/ ) �0 / / �� / �1 - \ \ \\ \\� //////—� \ /—_ �� .�—,- 1 1)l 1 \� \� \\ / \� \/ / I ( ( � �/ _ \� \ / I 1)� \ \\ //r -� �\ f / / / / / l ( ) \ � ) 1 ( 1 ( \ / \ r _� - / =_ ^- � -_-� / I ( \\\ \\\1l \ , _J_ ( /\ /� ��` -_ \ \ II l I� �) )C\ \ (o( I) ,.�,' / � a-�-�,- � O \� \ r //� it ( S / \ / {1 \ R !r / / �.� 1 ! l (\ f 1 / ) / \ (\ \ !// / \ r l/ \ i _ J �(r I _ 1 \ ! (\\ \ / / v / - i I I ) ( \ \ ` ----� �\ ( / Ir \ \ \ \ \ r _ L\ I 1 (� / ( ) f / / � t �� 11�u�1) \ \\\ \_'� I) POINT OF ANALYSIS / \`�� ��\� 1� I \ \ ( 1 /° � r� o a I )JJ j )\ _ ✓ % j/J ` 1 - \ l - l ) �, / / /� (/) ( \ l I \ \\ \ /f/ I l � I ) I r J r, ) � \ ( 1 ) / / (-. 1 \ \ / �i l ) I \ — /( (� c i 1 f ) > ( \ -t- / )%� #4 J / l I J 1 - \1 / 1 l - \ ) I / I r �; \\\ 0 -> / 1f/� � i_� Lj�I J � \ ��� � � - �`- � )� / / � � - � � � ( / �\ `\ ( \ l�r' � � � / / / �� 1/ ) -) \ / � < � 1 1 J I � ( �/ -,-�_ \ \\\ l lI/I (\' i '( ) J I > l \ 1 ` f / ) tet/ /// �/ / / O \ \ )\ I \ // / . 1 I\' / / - - / ( r / / \'C\ , 0-, -, _ / I/1(1l r� I-) (/ / I I t ) 1 I l c� i\ C = n l 1 / % c: 1 1 ) 1) ( J _\\ ,�C, r / V'I' /,// / (� / l l 1 / -/ I �( /i / - J � 1 \\---�_� / 1 ( (.// 1 ( t \) \ \ ( \ ( i� X / � )) 1I ) (11\ \\ \ /lr I/ r ) / \\ /) / �� /( �/ / / //� r _ J) J ��) ( (, \ \ �� / /I \ I ( I \1 f / 1 j / / r^ / / .i ) l / ( � / �r I > \ l \ l / / / // / J J� \\ � \ � � ( 11 \ \ \ \ 1 1 ( \ \ < / �^ // / / 1 / / �/ 11 /l /( I-, ) \ X -/_ if Jj/l / \1) \ \ 1 ) ( /ii// -5. , /i( / O I//� /`� )/�JN / /J ( l/ 1 \��\ \\ I ) \\\ ( <.\ 1 1 � \\ \ - ro k /moi / i ) ) r/ T / / / 1 I/� K / / l �( /// (/))////�/ /i/---�.`" / , �/ ( / //////\ �- �// / ) \ \ \ t\ I I �� ) > \\� \ \ \\ ) I I I \ \ \1 / / � ) i 0 ) ( / ( l / , / / 1 / /( ) //// / // // // /�� / -- - / r / // / \ \ \ ) ) \ III \ \� 1I) 1 i \ \ ( \ / ( l // 1 / / ( r �- �/ // J l l `/� (?I , �/ moi/ ( // � i f // , \ / t r 1 /ilii % '- //-/ / J /- -- // i / / \\` \ \ J I ) h \ 1 \1 1 �� \ / / % \ / / ) �// ( / l� / �sl r / /,�///ii/ �� (/( /� ��� ,� ~" -�1 11( /// L 1 \ \ ` \ \ I 1 ) t/ (1111 / (1 \I 1 1 ( \ ✓ 1 / I ) J ( /) / \ % / / / ' / /� r / r / / I // o//�j / / \ \ s)/ '/ ( // 1 / / /// J� ( 1 / \ \\ \ /1 1 I� t\ I I ( \ ) \(I I , ) � 1 / /< / lj / , / �� /- / /////./ /� r,- - // � r., -- / / l \\ \ \\ \ / / 0111 / ( r \ ( ) l / / \� / %// /\ I I f� /) >� ( S / o, ��� / ( ( Y� l /� / ,��1'i� r% /)/////////�%//j�� J//// /�fr✓J�� �1 \ ll JJ( /(J/)l / -1 -7 ^(/ / // ( ) 1 t I ( ) / / )ll // �� l \ \ \ I ) ( ( I , ) r . ( �l (/ ( // � / ( ( f ) / / r/ l // ///// ��_ � � \ / S / /- \ i / 1 I ( I � \ 1 / / J / / / \ / ( ) ) J / f ' //// /// /// //// /// - / -) / J - i � y / /) ) ( 1 I II I I ( 1) ) / / ///)(�\ \ ( s I\) \ �� / r '/�/ ( ( ) ? ( r � �l / /' ////// /�' ( 1-/-� / �- \ I ) ( \ / J I (( )/ ( / )// \\ 'I 1\ > 11 / / -/ / / \ / t ) � �) % / /. ///////////, / // � / - // /( �/ ) \ )1,/ / (\/ ) D� 1 J/ l ) (1 (( \ I I / / (/ /� / ) / f / / / /////ii/ / / /f / --_� /l i i / / /J / / / / ( )I//)I /( ) / / ( 1 1 / Ilt S � ) / ) ) /'U/ / �/ / / / "`a. ( / %� / ,/ ///// i/ //� /// / r / / / / / / I ( / \ / ///// / / / / / / / � — J ( l f 1'y), � // // r ): /� // //�//j/i////i/ // S I f II - I //// ( / V / ( ( I (( 1 / o I 11 I (I ' I / ) / / / ) ( l , /n / (/ � . / ) t, \�, / , / �/ (/ I ) / `/ A ) ; ,� /.�// // %iii/��ii--� - / / � 1 f \ I / / l / / / � �' GC 1 1 / I 1 I J ) / / I t �\ \\� I ( //`�/ , / / I / ( \ � / / / / / / ./ �� \ /1 1 \/ U / /( / `� / / ( / / l� / i /- /I / //Di/ii/�i///// / l � � ( l� / I l I) I I > 1 1 1 l \ I / / / ) / , \ 1 �/� / / ( ) / /� / i 1 / t/ / / y ', / j / / / 'I '/ /� rte/ i ///i///// ///,/ //, /i / / , / J - i l ( ( I / ( / �11� \ / / / 1 / / / /1 /( /( , ri �// ( �l \ r / ` l) // / r L 1 I) / n J 1 I I I \ / / / ( // ( l / / / I� / / / / l / r / / /// / / �C GRAPHIC SCALE I \ I) \t 1 \ \ ) ' J /)l/1 / \I I I h 1 ) \ (\ 1 I ) ( t / / �/ / �/ I�` / / v r / / r/ l� / / /iii / //ir�// //, / S // \ 1, III / / I ) ) I 1 / l / / / 'l f/--1 \ \ G / I / I� / //%// / — ,/ / � 1 �_ I /J 1 \) / / \ / \ v v 120 0 I 120 240 / I ) 1 1 I \ I / / / (// / \ I ) I I ( / ( I I \ o ( ( / / / �/) > 1 I / \ \i 1� / /� �/ J ( / r/. I I/ lam"/////// ll/ l f /// / i / / - � ) I / / \ / ) / / \ \ \ I 1 I ( / (( II I I � T I ( I 1 I >* \ / ) r f�( / \\ \ \ 1 i) �I ( / / / / / / // /r // //// if (l (1(l 11 t / ^ � \ / / l I I ( I / / 1 ) f \ t l / I ( l / l ) 11 l �\ i\ 1 >�I �) 1 Y . r /( // / ( if J ( I ) , // - / \ - /)� / i inch = 1�0 ft. \\ l I) 1 l�) l ) ) \( J / /' ( ��� t \\1 \ i (� \ I J� (( (1.�( ,' //%!///%( /I) �IIII ((/ �� / / / / �- �I �( / j a Q 1 \� /�/// I I I \1 1) I) l ///(\� j \\\ II ( / l I / / 1 / 1 / ( / / / �// /I /)ti- \\ l \ r� ) I I L1I �% � 1//// / /// I 11111 �) ��/ 7-, ( o ' / / \� i PRELIMINARY DRAWING — NOT RELEASED FOR CONSTRUCTION M 8 �11N M Cc) N 4 goo d�. ,R Z0 1§, V0 4 2z ;s 38 o 1:100 0 Cq I m P 1 - Co ;� � A V 0 IIIIIIIIIIIIIII 0 ch w V. Q u a , O ZP4 Lo W U) � a�D ce)N W 1.4 W Z � � W O pq Z =aU)0 E4 d W O-!!4 w O � w ao Co o � (1) A z U O CqZ w a a �9 W Q a PROJECT NO. JPM-14060 FILENAME: JPM14060—PRE DESIGNED BY: D H B DRAWN BY: D H B SCALE: 1 "=120' DATE: 12/31/14 SHEET NO. P R E M MCADAMS POST -DEVELOPMENT HYDROLOGIC CALCULATIONS TRADITIONS - PHASES 2B and 2C JPM-14060 e \�D $ \ z ® i�) \)m TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS BROWN, D., PE JPM-14060 Post -Development - Subbasin 2 - Byp 4/9/2015 1. SCS CURVE NUMBERS HSG Impervious r a.. Open Wooded A o- 98 39 30 B98 61 55 _.. C ( 98 74 _7 70 D 98 lrtt 80 „ a.„n 77 Assume. HSG'A'= 4.0% HSG 'B' = 72.0%n HSG'C'= 1.0% HSG'D'= 23.0%, Cover Condition SCS CN Comments Impervious 98 Open 65 Assume good condition Wooded Wooded ( 59 goo Assume d condition,--- II. POST -DEVELOPMENT A. Onsite Impervious Breakdown Contributing Area # of Umts Area / Unit Area [sf[ Area (acres Lot Roof Area 4 i'060 12 000 ! 0.28 Lot Driveway _. 4 225 900 0 02 Lot Sidewalk/Patio4 1 275 1,100 0.03 Building 0 0.00 Roadway Area 6 0.00 Driveway / Pazking Lot 0 0 00 Sidewalk / Patio 129 0.00 Other Totals .�. v, 0 d.�_�,.. o 14 135 0.00 ._ 0 32 B. Offsite Impervious Breakdown Contributor Area j # of Units Area /Unit Area [sf) Area acres Lot Roof Area M 0 0.00 Lot Dnveway0 0 00 Lot Sidewalk/Patio _, ._ 0 0.00 .. Budding 0 0 00 Roadway Area y 0 0 00 _. _. Driveway / Parking LotJ LLSidewalk 0 0 00 / Patio ( 0 0.00 Other i 0 0 0 00 000 Totals X„ ley C. Watershed Breakdown Contributing Area SCS CN Area [sf] Area [acres �.. Comments . a Onsite impervious 98 14,135 0.32 Onsite open ... 65 63 566 1 46 - Assume good condition -- _. Onsite wooded 59 55 886 1.28 ( Assume good condition _ Onsite pond( 100 0 0.00 ( Offsite impervious 98 65 0 0 0.00 ;0 00 j Assume condition Offsite open good Offsite wooded 59 0 0 00 Assume good condition Offsite pond Total area = 3.07 acres 0.0048 sq.mi. Composite SCS CN = 66 % Impervious = 10.6% TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS BROWN, D., PE JPM-14060 Post -Development - Subbasin 2 - Byp 4/9/2015 D. Time of Concentration Information Time of Concentration = 6.00 minutes (Assumed Per TR -55) SCS Lag Time = 3.60 minutes (SCS Lag = 0.6* Tc) Time Increment = 1.04 minutes (= 0.29*SCS Lag) TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS JPM-13030 Post -Development - Subbasin 3 - To SWMF2 I' SCS CURVE NUMBERS 0.95 Onsite open HSG Impervious Open Wooded A j 98 39 ( 30 _.. B 98 61 55 C .. 9s ... 74 . . .. . 70 D 98 I F 77 Assume: HSG'A'= 4.0% 0 HSG 'B' = 72.0% 59 HSG'C'= 1.0% 0.00 HSG'D'= 23.0% Cover Condition SCS CN I Commentsv hnpervwus 98� 2.35 Open 65 F Assume good condition Wooded 59 ,_t Assume good condition 11. POST -DEVELOPMENT = 81 A. Onsite Impervious Breakdown % Impervious Could uting rea # of Units Area / Unit } Area [sf] f Lot Roof Area 6 25 3 000 _._._ 18 750 __.__...._ _ ..._.. _._..._Lot Driveway._._._ .._' _ ___. _. E ... 6.25 225 _.__..._.._.__...__._1,406..._..__...._.1 Lot Sidewalk/Patio i 6.25 275 1,719 Buildin .. _. Roadway Area14 465 ve/ Parkmg 1 of Driway i' p Patio Sidewalk / Pat _ ._ ... _ .....__ _ ._ .._ .... _ __... .. _ . 5,227 j Other 0 B. Offsite Impervious Breakdown NTContributing Area a„ Lot Roof Area _.._.._._.._.._._..__.._....._._..._. _Lot D_rivew_ay Lot Sidewalk/Patio _._.................._......_.__ _..__...._... _-......... . Building__ - _ Roadway Area Driveway / Parking Lot Sidewalk / Patio _._._.__._......._.... .__....._..__.___......_ Other C. Watershed Breakdown 0 0 ontribut� Area SCS CN [ reasI Afa'[' ac Onsite unpernous98 41,567 0.95 Onsite open 65 53,042 11 1.2 ' 2 Onsite wooded 59 0 0.00 _ Onsite and _ 100 7,716 0.18 Offsite unpervious i 98 00 00 _ .. Offsite open 65 0 0.00 Offsite wooded 59 0 0.00 Offsiteond m ,.,r. 100 �,� st , 000 Total area = 2.35 acres 0.0037 sq.mi. Composite SCS CN = 81 % Impervious = 40.6% Area a_c 0.43 0.03 0.04 0.00 _033 0.00 0.12 0.00 0.95 Area [ac 0._00 _...._. 0.00 0.00 _..._0.00 0.00 0.00 0.00 Assume good condition Assume good condition Assume good condition Assume good condition BROWN, D., PE 4/9/2015 TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS BROWN, D., PE JPM-13030 Post -Development - Subbasin 3 - To SWMF2 4/9/2015 D. Time of Concentration Information Time of Concentration = 6.00 minutes (Assumed Per TR -55) SCS Lag Time = 3.60 minutes (SCS Lag = 0.6* Tc) Time Increment = 1.04 minutes (= 0.29*SCS Lag) TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS JPM-14060 Post-Development - Subbasin 3 - Byp I SCS CURVE NUMBERS HSG Impervious Open Wooded -. .. A .,� - i 98 39 30 _ _.. B _ [ 98 6155 C 74.. 70 _98 _ . 8,. _89 1... v. 77______ Assume: HSG'A'= 4.0% HSG 'B'= 72.0% HSG'C'= 1.0% HSG'D'= 23.0% Cover SCS CN Comments Impervious 98 _._ Open 65 Assume good condition Wooded 59 Assume good condition 11. POST-DEVELOPMENT i A. Onsite Impervious Breakdown ContributinAreay # of Units Area / Unit Area [sf]Area�acres] unr Lot Roof Area 3 000 6 000 I 0 14 Lot Driveway . 2 �. 225 450 0 01 Lot Sidewalk/Patio 2 - 275 550 0.01 Building 0 0,00 _ Roadway Area _- 7 0.00 Driveway / Parking I of 0 0.00 Sidewalk / Patio 0 0.00 Other Totals Totals 0 7 007 0 00 0 16 p �M B. Offsite Impervious Breakdown Contributing ..Area sf Contributor Area # of Units 1 Area / Umt [ I Area (acresL Lot Roof Area 0 0 00 Lot Driveway. 0 0 00 _. Lot Sidewalk/Patio0 0.00 Building i 0 ._. _ 0 00 Roadway Area 0 Driveway /Parking Lot Sidewalk / Patio 1 0 0 0 00 0.00 Other Q , 0 I Totals 0 0.00 ... .„..,��.,.� C. Watershed Breakdown Contnbutm Area SCS CN YArea [sfI Area (acres ( Comments Onsite impervious11111111111-11-11 . 98 7 007 0 16 Onsite open 65 33 686 0.77 j _. Assumegood condition . Onsite wooded ; 59 23 542 0 54 1 Assume good condition Onsite pond 100 0 0.00 Offsite impervious 98 0 0.00 Offsite open 65 0 0.00 Assume good condition Offsite wooded ; 59 0 0.00 Assume good condition_ Offsite pond 100 .uu. U� iu. 0 , .,.� 1 0.00 Total area = 1.47 acres 0.0023 sq.mi. Composite SCS CN = 66 % Impervious = 10.9% BROWN, D., PE 4/9/2015 TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS BROWN, D., PE JPM-14060 Post -Development - Subbasin 3 - Byp 4/9/2015 D. Time of Concentration Information Time of Concentration = 6.00 minutes (Assumed Per TR -55) SCS Lag Time = 3.60 minutes (SCS Lag = 0.6* Tc) Time Increment = 1.04 minutes (= 0.29*SCS Lag) TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS JPM-13030 Post -Development - Subbasin 4 - To SWMF3 1. SCS CURVE NUMBERS ; HSG Impervious Oen Wooded A _ . . 98 ( 39 30 B98 61 55 C 98 74 .. 70 98.80. Assume: HSG'A'= 4.0% HSG B'= '72.0%, HSG'C'= 1.0% HSG'D'= 23.0% Cover Condition SCS CN Comments Impervious 98 Open 65 Assume good condition Wooded 59 Assume good condition I1. POST -DEVELOPMENT A. Onsite Impervious Breakdown Contributing Area Wo Units Area / Uni j Area Isf] i Lot Roof Area 56 5 3,000 169,500 Driveway 1_.._..__ 56.5 225 12,713 ..._Lot ._..._... Lot Sidewalk/Patio I 56.5 275 15,538 Building j0 Roadwa Area 68,998 Driveway / Parking Lot 0 Sidewalk / Patio ! 23 795 I Other 0 n Totals, ! s � 290 543 B. Offsite Impervious Breakdown Contributing Area # of Units Area / Unit( Area jsf� Lot Roof Area 0I Lot Driveway 0 _� Lot Sidewalk/Patio i _ 0 .. .... . ..._,_.� Building - 0 Roadway Area Driveway / Parking Lot Sidewalk / Patio .. w 4 0 p Other ,Totals, C. Watershed Breakdown Contributor Area u SCS CN Area (sf Area [acres� w Onsite impervious ( 98 ?90,543___ _,_____6.-67 Onsite open 65 272 448 6 25 _.. Onsite wooded 59 0 - 0.00 j 100 14 247 0 33 Offsite impervious i { 980 0.00 Oftsrte open 65 0 00 Offsite woo ded59 j - 0 0 00 Offsite and 100 0 0.00 Total area = 13.25 acres 0.0207 sq.imi. Composite SCS CN = 82 % Impervious = 50.3% 0.36 0.00 1 58 Q..00 0 55 0.00 6.67 0 00 0.._00 0-:99 0,00 0.00 0.100 0.00 0.00 Comments Assume good condition Assume good condition Assume good condition Assume good condition BROWN, D., PE 4/9/2015 TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS BROWN, D., PE JPM-13030 Post -D evelopment - Subbasin 4 - To SWMF3 4/9/2015 D. Time of Concentration Information Time of Concentration = 6.00 minutes (Assumed Per TR -55) SCS Lag Time = 3.60 minutes (SCS Lag = 0.6* Tc) Time Increment = 1.04 minutes (= 0.29*SCS Lag) TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS BROWN, D., PE JPM-13030 Post -Development - Subbasin 4 - Byp 4/9/2015 LSCS CURVE NUMBERS HSC Impervious Open Wooded -- A 98 { 39 i 30 C98 74_.___x....._.___70 ww98 1 .... , 80 77 Assume: HSG'A'= 4.0% HSG'B'= 72.0% HSG'C'= 1.0% HSG'D'= 23.0% Cover Cond�t�on � SCS CN � Comments Impervious 98 Open 65 a Wooded 59 F Assume good condition sume condition m good II. ,POST -DEVELOPMENT A. Onsite Impervious Breakdown ContrtbutinnAreap N # of Units Area / Umt Area lsf� Area acres f esl ,M Lot Roof Area 13.75 a s . R, 3,006 41 250 0 95 Lot Driveway13.75 225 3,094 { 0.07 Lot Sidewalk/Patio 13 75 275 _ 3 781 0 09 _ Building 0 0 00 __ Roadway Area _ 24 498 0.56 Dnvewa� /Parking Lot 0 0 00 Sidewalk / Patio Other 4 437 0 0.10 0.0 0 B. Offsite Impervious Breakdown . Contr�but�n�Area � # of Umts Area / Umt � Area [sfj � Area�acres�� Lot Roof Area � _ { 0 � i 0 00 _.. Lot Driveway 0 0.00 Lot Sidewalk/Patio ) 0 0.00 Bu�ldm .._. _ 0 0 00 Roadway Area{ _ .... 0 0.00 p Drivew�y/ Parking Lot _ _ ._.. ... - ---- 0 _— � . _.. _ 0.00. Sidewalk / Patio ( 0 0 00 Other 0.00 L0 totals j 0 n i 0.00 C. Watershed Breakdown ContributmgArea� SCS CN Area �sf�j Areaacres� Comments Onsite nnPernous 98 77 060 1.77 _ Onsite open 65 428 670 9 84 Assume good condition Onsite wooded 59 1,630,721 j 37.44 Assume good condition Onsite Pond 100 0 0.00 Offsite nnpervious 98 _ __ 0 0.00 Offsite open 65 0 0.00 Assume good condition i Offsite wooded 59 0 0 00 Assume good condition u,.,,OffsiCeond ]00 6-m, 000,,x. Total area = 49.05 acres 0.0766 sq.mi. Composite SCS CN = 62 % Impervious = 3.6% �� MCADAMS Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) SUB03-BYP Post -Development 1 1 0.064 723.000 0.94 year SUB03-BYP year Development 2 2 0.102 723.000 1.68 SUB03-BYP Post -Development 10 10 0.224 722.000 3.68 year SUB03-BYP Post- 25 25 0.304 722.000 4.78 year SUB03-BYP Worst Case 100 0.445 722.000 6.41 SUB03-BYP Post -Development 100 0.445 722.000 6.41 100 year SUB01 Post -Development 1 1 0.101 722.000 1.91 year SUB01 Post- 2 2 0.145 722.000 2.76 yea r SUB01 Post -Development 10 10 0.272 722.000 4.71 year SUB01 Post -Development 25 25 0.351 722.000 5.68 year SUB01 Worst Case 100 0.485 722.000 7.05 SUB01 Post -Development 100 0.485 722.000 7.05 100 year SUB02 Post- 1 1 1.983 722.000 38.34 yea r SUB02 Post -Development 2 2 2.795 722.000 53.98 year SUB02 Post- Development 10 10 5.120 722.000 88.81 year SUB02 Post -Development 25 25 6.549 722.000 105.92 year SUB02 Worst Case 100 8.961 722.000 129.76 SUB02 Post -Development 100 8.961 722.000 129.76 100 year SUB02-BYP year Development 1 1 0.134 723.000 1.96 SUB02-BYP Development 2 2 0.214 723.000 3.52 year SUB02-BYP Post -Development 10 10 0.467 722.000 7.69 year SUB02-BYP Post- 25 25 0.635 722.000 9.99 year SUB02-BYP Worst Case 100 0.928 722.000 13.39 SUB02-BYP Post -Development 100 0.928 722.000 13.39 100 year SUB03 Post- Development 1 1 0.318 722.000 6.42 year Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 J McADAMS Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow year Event Volume (min) (ft3/s) POA#1 Post- Development 2 (years) (ac -ft) 722.000 2.76 SUB03 Post -Development 2 2 0.422 722.000 8.31 POA#1 year 10 0.272 722.000 4.71 SUB03 Post- Development 10 10 0.706 722.000 12.11 POA#1 year 25 0.351 722.000 5.68 SUB03 Post -Development 25 25 0.874 722.000 13.87 POA#1 year 100 0.485 722.000 7.05 SUB03 Worst Case 100 1.152 722.000 16.24 SUB03 Post -Development 100 1.152 722.000 16.24 100 year SUB04 Post -Development 1 1 1.485 722.000 29.58 year SUB04 Post -Development 2 2 2.029 722.000 39.79 year SUB04 Post -Development 10 10 3.543 722.000 61.42 yea r SUB04 Post -Development 25 25 4.457 722.000 71.70 year SUB04 Worst Case 100 5.983 722.000 85.77 SUB04 Post -Development 100 5.983 722.000 85.77 100 year CULVERT Post -Development 1 1 9.104 729.000 128.55 year CULVERT Post- Development 2 2 12.082 728.000 167.32 year CULVERT Post- Development 10 10 20.181 727.000 248.19 year CULVERT Post -Development 25 25 24.994 727.000 286.61 year CULVERT Worst Case 100 32.959 727.000 338.22 CULVERT Post -Development 100 32.959 727.000 338.22 100 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) POA#1 Post- Development 1 1 0.101 722.000 1.91 year POA#1 Post- Development 2 2 0.145 722.000 2.76 year POA#1 Post- Development 10 10 0.272 722.000 4.71 year POA#1 Post -Development 25 25 0.351 722.000 5.68 year POA#1 Worst Case 100 0.485 722.000 7.05 Traditions Ph. 2 D. Brown, PE J PM -14060. ppc 12/2/2015 4f JUnWjMAWT67=A Subsection: Master Network Summary Node Summary Label POA#1 POA#2 POA#2 POA#2 POA#2 POA#2 POA#2 POA#3 POA#3 POA#3 POA#3 POA#3 POA#3 POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA CULVERT POA CULVERT POA CULVERT POA CULVERT POA CULVERT Scenario Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Return Event (years) 100 1 2 10 25 100 100 1 2 10 25 100 100 1 2 10 25 100 100 1 2 10 25 100 Hydrograph Volume (ac -ft) 0.485 0.734 1.618 4.178 5.767 8.638 8.468 0.095 0.159 0.563 0.811 1.595 1.230 0.872 1.411 2.917 3.828 5.972 5.351 9.104 12.082 20.181 24.994 32.959 Time to Peak (min) 722.000 723.000 781.000 752.000 732.000 725.000 727.000 723.000 723.000 751.000 729.000 724.000 725.000 755.000 752.000 732.000 730.000 730.000 731.000 729.000 728.000 727.000 727.000 727.000 Peak Flow (ft3/s) 7.05 2.07 4.95 21.14 39.48 111.23 87.87 0.96 1.71 4.06 7.13 18.01 15.34 4.33 8.40 20.48 29.51 36.71 33.94 128.55 167.32 248.19 286.61 338.22 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 M McADAMS Subsection: Master Network Summary Node Summary Label Scenario Return Hydrograph Event Volume (years) (ac -ft) POA CULVERT I Post -Development I 100 I 32.959 100 year Time to Peak (min) 727.000 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) Peak Flow (ft3/s) 338.22 Maximum Maximum Water Pond Storage Surface (ac -ft) Elevation (ft) Development Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Post- SWMF1 (IN) Development 1 1.983 722.000 38.34 (N/A) (N/A) 1 year SWMF1 Post - Development 1 0.600 908.000 1.09 356.56 1.406 (OUT) 1 year Post- SWMF1 (IN) Development 2 2.795 722.000 53.98 (N/A) (N/A) 2 year SWMFI Post - Development 2 1.404 782.000 4.51 356.80 1.548 (OUT) 2 year Post- SWMF1 (IN) Development 10 5.120 722.000 88.81 (N/A) (N/A) 10 year SWMFI Post - Development 10 3.711 753.000 18.99 358.08 2.339 (OUT) 10 year Post- SWMF1 (IN) Development 25 6.549 722.000 105.92 (N/A) (N/A) 25 year SWMF1 Post - Development 25 5.133 733.000 35.70 358.43 2.559 (OUT) 25 year SWMF1 (IN) Worst Case 100 8.961 722.000 129.76 (N/A) (N/A) SWMF1 Worst Case 100 7.710 725.000 100.28 359.42 3.201 (OUT) Post- SWMF1 (IN) Development 100 8.961 722.000 129.76 (N/A) (N/A) 100 year SWMF1 Post - Development 100 7.540 728.000 79.06 358.99 2.921 (OUT) 100 year Post- SWMF2 (IN) Development 1 0.318 722.000 6.42 (N/A) (N/A) 1 year Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 J McADAM-S Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) SWMF2 Post- Development 1 0.031 1,440.000 0.03 331.62 0.287 (OUT) 1 year Post- SWMF2 (IN) Development 2 0.422 722.000 8.31 (N/A) (N/A) 2 year SWMF2 Post- Development 2 0.056 1,387.000 0.10 332.00 0.366 (OUT) 2 year Post- SWMF2 (IN) Development 10 0.706 722.000 12.11 (N/A) (N/A) 10 year SWMF2 Post- Development 10 0.339 752.000 2.89 332.10 0.387 (OUT) 10 year Post- SWMF2 (IN) Development 25 0.874 722.000 13.87 (N/A) (N/A) 25 year SWMF2 Post- Development 25 0.507 731.000 4.93 332.17 0.402 (OUT) 25 year SWMF2 (IN) Worst Case 100 1.152 722.000 16.24 (N/A) (N/A) SWMF2 Worst Case 100 1.150 725.000 12.49 332.43 0.459 (OUT) Post- SWMF2 (IN) Development 100 1.152 722.000 16.24 (N/A) (N/A) 100 year SWMF2 Post- Development 100 0.785 727.000 10.56 332.36 0.445 (OUT) 100 year Post- SWMF3 (IN) Development 1 1.485 722.000 29.58 (N/A) (N/A) 1 year SWMF3 Post- Development 1 0.872 755.000 4.33 324.81 0.744 (OUT) 1 year Post- SWMF3 (IN) Development 2 2.029 722.000 39.79 (N/A) (N/A) 2 year SWMF3 Post- Development 2 1.411 752.000 8.40 325.11 0.882 (OUT) 2 year Post- SWMF3 (IN) Development 10 3.543 722.000 61.42 (N/A) (N/A) 10 year Traditions Ph. 2 J PM-14060. ppc D. Brown, PE 12/2/2015 CADAM Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) SWMF3 Post- I Development I 10 I 2.9171 732.000 I 20.481 326.05 I 1.342 (OUB SWMF3 (IN) SWMF3 (OUT) SWMF3 (IN) SWMF3 (OUT) SWMF3 (IN) SWMF3 (OU -0 10 year Post - Development 25 year Post - Development 25 year Worst Case Worst Case Post - Development 100 year Post - Development 100 vear 251 4.4571 722.000 i 71.701 25 100 100 100 100 1 3.828 5.983 5.972 5.983 5.351 1 730.000 722.000 730.000 722.000 731.000 1 29.51 85.77 36.71 85.77 33.941 (N/A) 326.47 (N/A) 327.69 (N/A) 327.06 (N/A) 1.558 (N/A) 2.233 (N/A) 1.878 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 C7 M Lr) r1) C6 (N U) 0 CD 0 C: Q - - - - - - - I oll" ------ -- k III, IN IV VVI6 Ilk IN I I I I - , k I I I sit I I I I I _ \ I I I IN IN I I I , # I I "", I/ I (- 11"I f W, I I I , IN NN It I t IN N IN lk If IN I I - - - - -- - - -- ;o IL t'oe %1E VPIS At* ------ AIN PG 64 /N IABT PT 3007 --- L Iff kit r 4ft if I IIe, I110 go Z IIIVitNIt IIt 'SUB TO CULVERT I , IIIAREA 56.95 AC,,,',, ItI ------ Tc N/A I-4 10 ----------------- - ---- - Y, ---------- /A ---- -- IN10 ---------- NIWIFEREE ------------ �07. PG N�, r -7 -1 1> I\,kt 4-, 1A I -y < f -401VO x 7 1 v -7N\ TO SWMFI SUB 2 _j/ \A AREA 21.63 AC k VERT\ ,e < \N TRIPPLE CMP T c 0.1 HR L a 6. 7151E IfME GL VIRAWN ACA�Y, , N '7 , I I ) , �: yj N/F If 'as *7 /0 1 f I A I IV ff t POINT OF AN kLYSIS A > /"yo, Row�k. EUNA N NX y -7 \A SUB 4BYP/UNAIN AREA 49.05 AC 47W NIF )a 13713. PC, Vo v 4 Tc N/A itIafT, L I9;p 7 SMT o W 8775. M 13M 1161- %19911 II I z INC. it IIAREA 2.35 AC lit ll17� t -A 4- *4 t1Tic = 0.1 HR [_ r I itP y 1-,7 Ire T SWMF3 SUB 4 Vis, 1z, -74 7' W AREA 13.25 AC Zj ICoto K t, 11 12147, P 752 I -A %V,\ IITc 0. 1 HR A II�Iv v PROPOSED �;WMF3 PROPOSLAu 0 TV ivi ET POND IALYSIS A�7 POINT OF AN ------ ---- VS #1 r I I itAREA 1.47 a c i SWMF1 Tic 0. 1 HR < ------- SUB I ------------- -4 A REA 1.23 AC It IITe 0. 1 HR GRAPHIC SCALE SUB 2B YP >XI 120 0 60 120 240 __7 AREA 3.07 ac.' 1------------- ALYSIS[ ------------ - 1 inch t20 ft. POINT OF AN Tic 0. 1 HR #2 ------ POINT OF ANALYSIS POINT OF ANA - # 4 -Z ------ #3 It -A ------------ PRELIMINARY DRAWING NOT RELEASED FOR CONSTRUCTION Co 0 rc-', U0 M w Cd 04 0 u o 00 z 9� W U C� C) Co (M C Cq t- 00 V) z 0 'e4 E.. z �T4 C/D Z W cc w z U) z 0 Cq P-4 PROJECT NO. 7M-14 6 FILENAME:JPM14060—POS DESIGNED BY: DHB DRAWN BY: DHB SCAM 1"=120' DATE: 04/16/2015 L7 NO. POST STORMWA TER MANA GEMENT FA CILIT Y DESIGN CALCULATIONS - SWMF #2 TRADITIONS - PHASES 2B and 2C JPM-14060 TRADITIONS PHS 2A/213 STORMWATER MANAGEMENT FACILITY #2 D. BROWN, PE JPM-14060 SSFxn Above NP 12/1/2015 STAGE -STORAGE FUNCTION - ABOVE NORMAL POOL Ks = 7346 b = 1.1472 Storage vs. Stage Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) NP 330.00 0.00 5,879 10000 330.50 0.50 7,568 6724 3362 3362 0.51 331.00 1.00 8,105 7837 3918 7280 0.99 332.00 2.00 9,222 8664 8664 15944 1.96 333.00 3.00 10,396 9251 18501 25781 2.99_ TOD 334.00 4.00 11,626 11011 11011 36792 4.07 Ks = 7346 b = 1.1472 Storage vs. Stage 40000 35000 y = 7346.1 x 1 1472 30000 R = 0.9997 LL 25000 20000 M ° 15000 10000 5000 0 0.00 1.00 2.00 3.00 4.00 5.00 Stage (feet) Ks = 7346 b = 1.1472 TRADITIONS PHS 2A/2B STORMWATER MANAGEMENT FACILITY #2 D. BROWN, PE JPM-14060 SSFxn Main Pool 12/1/2015 STAGE -STORAGE FUNCTION - MAIN POOL 321.00 1.00 282 215 215 215 1.12 322.00 2.00 441 362 362 576 1.94 323.00 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 320.00 0.00 147 326.00 6.00 1,329 1199 321.00 1.00 282 215 215 215 1.12 322.00 2.00 441 362 362 576 1.94 323.00 3.00 626 534 534 1110 2.80 324.00 4.00 835 638 1276 1852 3.72 325.00 5.00 1,069 755 2265 2841 4.73 326.00 6.00 1,329 1199 1199 4040 5.75 327.00 7.00 1,614 1028 5138 5714 6.98 328.00 8.00 1,924 1769 1769 7483 8.11 329.00 9.00 2,306 2115 2115 9598 9.32 329.50 9.50 2,488 2397 1199 10796 9.96 NP 330.00 10.00 3,559 3024 1512 12308 10.71 Storage vs. Stage 14000 12000 10000 LLv y = 176.03x'.7 s1 RZ = 0.9932 8000 CD 0 6000 4000 2000 0 0.00 2.00 4.00 6.00 8.00 10.00 12.00 Stage (feet) Ks = 176 b = 1.7910 TRADITIONS PHS 2A/213 STORMWATER MANAGEMENT FACILITY #2 D. BROWN, PE JPM-14060 SSFxn Forebay 12/1/2015 STAGE -STORAGE FUNCTION - FOREBAY Storage vs. Stage 6000 • 5000 y = 150.58x'.7775 -- 4000 RZ = 0.9948 LL V � 3000 M 0 U) 2000 1000 0 0.00 2.00 4.00 6.00 8.00 Stage (feet) Ks = 150.6 b = 1.7775 Average Incremental Accumulated a� Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 323.00 0.00 105 324.00 1.00 234 170 170 170 1.07 325.00 2.00 387 311 311 480 1.92 326.00 3.00_ 566 477 477 957 2.83 327.00 4.0_0770 668 668 1625 3.81 328.00 5.00 _ ^ 999 693 2079 2559 4.92 329.00 6.00 P 1,299 1149 1149 3708 6.06 329.50 6.50 1,433 1366 683 4391 6.67 NP 330.00 7.00 2,320 1877 938 5329 7.44 Storage vs. Stage 6000 • 5000 y = 150.58x'.7775 -- 4000 RZ = 0.9948 LL V � 3000 M 0 U) 2000 1000 0 0.00 2.00 4.00 6.00 8.00 Stage (feet) Ks = 150.6 b = 1.7775 TRADITIONS, PHS 2A/2B STORMWATER MANAGEMENT FACILITY #2 D. BROWN, PE JPM-14060 Volume Calculation 12/1/2015 Total Volume Above NWSE = 36,792 cf 0.84 acre -ft Total Volume of Facility = 54,429 cf 1.25 acre -ft Ft�REBAYI'ERCEN�"AGE OF PElELMA:NENT` P(�OL:VO)C,i11�IE` . .. , :., Per NCDWQ design guidelines, the forebay volume should equal approximately 20% of the total permanent pool volume. Total Volume Below NWSE = 17,637 cf Volume of Forebay = 5,329 cf % Forebay = 30.2% VEItAGE 1EZ'TH ©FPOND Total Volume Below NWSE = 17,637 cf Surface Area at NWSE = 5,879 sf Average Depth = 3.000 ft TRADITIONS, PHS 2A/2B STORMWATER MANAGEMENT FACILITY #2 D. BROWN, PE JPM-14060 Surface Area Calculation 12/1/2015 WET DETENTION BASIN SUMMARY Enter the drainage area characteristics ==> Total drainage area to pond = 2.35 acres Total impervious area to pond = 0.95 acres Note The basin must be sized to treat all impervious surface runoff draining into the pond, not just the impervious surface from on-site development. Drainage area = 2.35 acres @ 40.6% impervious Estimate the surface area required atpond normal pool elevation ==> Wet Detention Basins are based on an minimum average depth of = 3.000 feet (Calculated) From the DWQ BMP Handbook, the required SA/DA ratio for 90% TSS Removal ==> 3.0 3.000 3.5 Lower Boundary => 40.0 2.50 2.30 Site % impervious => 40.6 2.53 2.53 2.33 Upper Boundary => 50.0 3.00 2.80 Therefore, SADA required Surface area required at normal pool = 2,590 ft2 0.06 acres Surface area provided at normal pool = 5,879 ft2 TRADITIONS, PHS 2A/2B STORMWATER MANAGEMENT FACILITY #2 JPM-14060 WQV Calculation DETERMINATION OF WATER QUALITY VOLUME WQ v = (P) (R v) (A)/12 where, WQv= water quality volume (in acre -ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 2.35 acres Impervious area = 0.95 acres Percent impervious cover, I = 40.6 % Rainfall, P = 1.00 inches Calculated values: Rv = 0.42 WQv = 0.08 acre -ft 3544 cf. WQv = 3544 cf. Stage /Storage Data: Ks = 7346 b = 1.1472 Zo = 330.00 Volume in 1" rainfall = 3544 cu. ft Calculated values: Depth of WQv in Basin = 0.53 ft 6.36 inches Elevation = 330.53 ft D. BROWN, PE 12/1/2015 TRADITIONS, PHS 2A/2B STORMWATER MANAGEMENT FACILITY #2 JPM-14060 WQV Drawdown Calculation DRAWDOWN SIPHON DESIGN D orifice = 1 inch # orifices = 1 Ks = 7346 b = 1.1472 Cd siphon = 0.60 Normal Pool Elevation = 330.00 feet Volume @ Normal Pool = 0 cf Orifice Invert = 330.00 feet WSEL @ 1" Runoff Volume = 330.53 feet WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (Cf) Incr. Time (sec) 330.53 3544 0.018 330.48 3194 0.017 0.018 350 19558 330.44 2849 0.017 0.017 345 20315 330.39 2510 0.016 0.016 339 21199 330.35 2176 0.014 0.015 334 22250 330.30 1849 0.013 0.014 327 23533 330.25 1529 0.012 0.013 320 25155 330.21 1218 0.011 0.011 312 27307 330.16 916 0.009 0.010 302 30387 330.12 627 0.007 0.008 289 35419 330.07 354 0.004 0.006 273 47661 Drawdown Time = 3.16 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.163 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of siphon = 0.005 sf Q = 0.0106 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 3.87 days D. BROWN, PE 12/1/2015 TRADITIONS - PH 2 SWMF #2 D. BROWN, PE JPM-14060 12/2/2015 Square Riser/Barrel Anti -Flotation Calculation Sheet Input Data =_> Inside length of riser = 4.00 feet Inside width of riser = 4.00 feet Wall thickness of riser = 6.00 inches Base thickness of riser = 0.00 inches Base length of riser = 0.00 feet Base width of riser = 0.00 feet Inside height of riser = 6.00 feet Base length of riser invert = 4.00 feet Base width of riser invert = 4.00 feet Inside depth of riser invert = 15.00 inches Concrete unit weight = 142.0 PCF Note: NC Products lists unit wt. of OD of barrel exiting manhole = 24.00 inches manhole concrete at 142 PCF. Base width of collar = 5.00 feet Base height of collar = 5.00 feet Base thickness of collar = 1.50 feet Size of drain pipe (if present) = 4.0 inches Trash Rack water displacement = 18.75 CF Concrete Present in Riser Structure =_> Total amount of concrete: Base of Riser = 0.000 CF Invert of Riser = 20.000 CF Collar = 34.358 CF Note: Adjusted for barrel opening. Riser Walls = 54.000 CF Adjust for openings in riswr walls: Opening for barrel = 1.571 CF Opening for drain pipe = 0.044 CF Opening for 6" x 4' weir = 2.000 CF Total wall concrete present, adjusted for openings = 50.386 CF Total base, invert, and collar concrete, adjusted for openings = 54.358 CF Total concrete present = 104.744 CF Weight of concrete present = 14,874 lbs Amount of water displaced by Riser Structure =_> Displacement by concrete = 50.386 CF Displacement by open air in riser = 96.000 CF Displacement by trash rack = 18.750 CF Total water displaced by riser/barrel structure = 165.136 CF Weight of water displaced = 10,304 lbs TRADITIONS - PH 2 SWMF #2 D. BROWN, PE JPM-14060 12/2/2015 Calculate amount of concrete to be added to riser =_> Safety factor to use = 1.15 (recommend 1.15 or higher) Must add = -3024 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 69.22 PCF Therefore, must add = -43.681 CF of concrete Standard based described above = 0.000 CF of concrete Therefore, base design must have = -43.681 CF of concrete Calculate size of base for riser assembly ==> Length = 9.000 feet Width = 9.000 feet Thickness = 30.0 inches Concrete Present = 202.500 CF OK Check validity of base as designed ==> Total Water Displaced = 367.636 CF Total Concrete Present = 307.244 CF Total Water Displaced = 22,940 lbs Total Concrete Present = 43,629 lbs Actual safety factor = 1.90 OK Results of design ==> Base length = 9.00 feet Base width = 9.00 feet Base Thickness = 30.00 inches CY of concrete total in base = 7.50 CY Concrete unit weight in added base > 142 PCF 4 Q� r a N 4 N A GD L E E }. � 4- f6 Q. L Q L 4- v+- U h0 W= OA L Ln O it "P' O N wQ I -q 6 N 00 -1 00 I, N -4 N M 1-4 Q0 i -i M Lf tY z -i I I O Lu IZ E 0 - CL a O II II 1= O Q >� v� LU O CL E 0 n� C E E o =3 o > Co — ta O F- II II OD O) rocE �, � Q E m �0 a� IL E m a- 0 N X N O 00 IIIII . c �`A MS Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) SUB03-BYP Post- Development 1 1 0.064 723.000 0.94 year SUB03-BYP year Development 2 2 0.102 723.000 1.68 SUB03-BYP Post -Development 10 10 0.224 722.000 3.68 year SUB03-BYP year Development 25 25 0.304 722.000 4.78 SUB03-BYP Worst Case 100 0.445 722.000 6.41 SUB03-BYP Post -Development 100 0.445 722.000 6.41 100 year SUB01 Post -Development 1 1 0.101 722.000 1.91 year SUB01 Post- 2 2 0.145 722.000 2.76 year SUB01 Post -Development 10 10 0.272 722.000 4.71 year SUB01 Post -Development 25 25 0.351 722.000 5.68 year SUB01 Worst Case 100 0.485 722.000 7.05 SUB01 Post -Development 100 0.485 722.000 7.05 100 year SUB02 Post -Development 1 1 1.983 722.000 38.34 year SUB02 Post -Development 2 2 2.795 722.000 53.98 year SUB02 Post- 10 10 5.120 722.000 88.81ear SUB02 Post- Development 25 25 6.549 722.000 105.92 year SUB02 Worst Case 100 8.961 722.000 129.76 SUB02 Post -Development 100 8.961 722.000 129.76 100 year SUB02-BYP Post- Development 1 1 0.134 723.000 1.96 year SUB02-BYP Post -Development 2 2 0.214 723.000 3.52 year SUB02-BYP Post -Development 10 10 0.467 722.000 7.69 year SUB02-BYP Post- 25 25 0.635 722.000 9.99 e SUB02-BYP Worst Case 100 0.928 722.000 13.39 SUB02-BYP Post -Development 100 0.928 722.000 13.39 100 year SUB03 Post -Development 1 1 0.318 722.000 6.42 year Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 '=':!'J'M_c_A_DAM.S Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow year Event Volume (min) (ft3/s) POA#1 Post -Development 2 (years) (ac -ft) 722.000 2.76 SUB03 year Development 2 2 0.422 722.000 8.31 POA# 1 Post -Development 10 10 0.272 722.000 4.71 SUB03 Post -Development 10 10 0.706 722.000 12.11 POA#1 year 25 0.351 722.000 5.68 SUB03 Post -Development 25 25 0.874 722.000 13.87 POA#1 year 100 0.485 722.000 7.05 SUB03 Worst Case 100 1.152 722.000 16.24 SUB03 Post -Development 100 1.152 722.000 16.24 100 year SUB04 Post- Development 1 1 1.485 722.000 29.58 year SUB04 Post -Development 2 2 2.029 722.000 39.79 year SUB04 Post -Development 10 10 3.543 722.000 61.42 year SUB04 year Development 25 25 4.457 722.000 71.70 SUB04 Worst Case 100 5.983 722.000 85.77 SUB04 Post -Development 100 5.983 722.000 85.77 100 year CULVERT Post -Development 1 1 9.104 729.000 128.55 year CULVERT Post -Development 2 2 12.082 728.000 167.32 year CULVERT year Development 10 10 20.181 727.000 248.19 CULVERT Post -Development 25 25 24.994 727.000 286.61 year CULVERT Worst Case 100 32.959 727.000 338.22 CULVERT Post -Development 100 32.959 727.000 338.22 100 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) POA#1 Post- Development 1 1 0.101 722.000 1.91 year POA#1 Post -Development 2 2 0.145 722.000 2.76 year POA# 1 Post -Development 10 10 0.272 722.000 4.71 year POA#1 year Development 25 25 0.351 722.000 5.68 POA#1 Worst Case 100 0.485 722.000 7.05 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Subsection: Master Network Summary Node Summary Label POA#1 POA#2 POA#2 POA#2 POA#2 POA#2 POA#2 POA#3 POA#3 POA#3 POA#3 POA#3 POA#3 POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA CULVERT POA CULVERT POA CULVERT POA CULVERT POA CULVERT Scenario Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Return Event (years) 10( 1( 2' 10( 101 11 2' 101 101 1 2. 10 10 1 2 10 Hydrograph Volume (ac -ft) 0.485 0.734 1.618 4.178 5.767 8.638 8.468 0.095 0.159 0.563 0.811 1.595 1.230 0.872 1.411 2.917 3.828 5.972 5.351 9.104 12.082 20.181 24.994 32.959 Time to Peak (min) 722.000 723.000 781.000 752.000 732.000 725.000 727.000 723.000 723.000 751.000 729.000 724.000 725.000 755.000 752.000 732.000 730.000 730.000 731.000 729.000 728.000 727.000 727.000 727.000 Peak Flow (ft3/s) 7.05 2.07 4.95 21.14 39.48 111.23 87.87 0.96 1.71 4.06 7.13 18.01 15.34 4.33 8.40 20.48 29.51 36.71 33.94 128.55 167.32 248.19 286.61 338.22 Traditions Ph. 2 D. Brown, PE JPM-14060.ppe 12/2/2015 "11 g A-1,I)AMS Subsection: Master Network Summary Node Summary Label POA CULVERT Scenario Return Hydrograph Event Volume (years) (ac -ft) Post -Development( 100I 32.959 100 year Time to Peak (min) 727.000 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) Peak Flow (ft3/S) 338.22 Maximum Maximum Water Pond Storage Surface (ac -ft) Elevation (ft) Development Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Post- SWMF1 (IN) Development 1 1.983 722.000 38.34 (N/A) (N/A) 1 year SWMF1 Post - Development 1 0.600 908.000 1.09 356.56 1.406 (OUT) 1 year Post- SWMF1 (IN) Development 2 2.795 722.000 53.98 (N/A) (N/A) 2 year SWMF1 Post - Development 2 1.404 782.000 4.51 356.80 1.548 (OUT) 2 year Post- SWMF1 (IN) Development 10 5.120 722.000 88.81 (N/A) (N/A) 10 year SWMF1 Post - Development 10 3.711 753.000 18.99 358.08 2.339 (OUT) 10 year Post- SWMF1 (IN) Development 25 6.549 722.000 105.92 (N/A) (N/A) 25 year SWMF1 Post - Development 25 5.133 733.000 35.70 358.43 2.559 (OUT) 25 year SWMF1 (IN) Worst Case 100 8.961 722.000 129.76 (N/A) (N/A) SWMF1 Worst Case 100 7.710 725.000 100.28 359.42 3.201 (OUT) Post- SWMFI (IN) Development 100 8.961 722.000 129.76 (N/A) (N/A) 100 year SWMF1 Post - Development 100 7.540 728.000 79.06 358.99 2.921 (OUT) 100 year Post- SWMF2 (IN) Development 1 0.318 722.000 6.42 (N/A) (N/A) 1 year Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 I.I.-A-DAMS Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) SWMF2 Post- Development 1 0.031 1,440.000 0.03 331.62 0.287 (OUT) 1 year Post- SWMF2 (IN) Development 2 0.422 722.000 8.31 (N/A) (N/A) 2 year SWMF2 Post- Development 2 0.056 1,387.000 0.10 332.00 0.366 (OUT) 2 year Post- SWMF2 (IN) Development 10 0.706 722.000 12.11 (N/A) (N/A) 10 year SWMF2 Post- Development 10 0.339 752.000 2.89 332.10 0.387 (OUT) 10 year Post- SWMF2 (IN) Development 25 0.874 722.000 13.87 (N/A) (N/A) 25 year SWMF2 Post- Development 25 0.507 731.000 4.93 332.17 0.402 (OUT) 25 year SWMF2 (IN) Worst Case 100 1.152 722.000 16.24 (N/A) (N/A) SWMF2 Worst Case 100 1.150 725.000 12.49 332.43 0.459 (OUT) Post- SWMF2 (IN) Development 100 1.152 722.000 16.24 (N/A) (N/A) 100 year SWMF2 Post- Development 100 0.785 727.000 10.56 332.36 0.445 (OUT) 100 year Post- SWMF3 (IN) Development 1 1.485 722.000 29.58 (N/A) (N/A) 1 year SWMF3 Post- Development 1 0.872 755.000 4.33 324.81 0.744 (OUT) 1 year Post- SWMF3 (IN) Development 2 2.029 722.000 39.79 (N/A) (N/A) 2 year SWMF3 Post- Development 2 1.411 752.000 8.40 325.11 0.882 (OUT) 2 year Post- SWMF3 (IN) Development 10 3.543 722.000 61.42 (N/A) (N/A; 10 year Traditions Ph. 2 JPM-14060.ppc D. Brown, PE 12/2/2015 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3/s) Water Pond Storage (years) (ac -ft) Surface (ac -ft) Elevation (ft) SWMF3 -0 Post - Development 10 2.917 732.000 20.48 326.05 1.342 (OU 10 year Post- SWMF3 (IN) Development 25 4.457 722.000 71.70 (N/A) (N/A) 25 year SWMF3 Post - Development 25 3.828 730.000 29.51 326.47 1.558 (OUT) 25 year SWMF3 (IN) Worst Case 100 5.983 722.000 85.77 (N/A) (N/A) SWMF3 Worst Case 100 5.972 730.000 36.71 327.69 2.233 (OUT) Post- SWMF3 (IN) Development 100 5.983 722.000 85.77 (N/A) (N/A) 100 year SWMF3 Post - Development 100 5.351 731.000 33.94 327.06 1.878 (OUT) 100 vear Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Subsection: Elevation -Area Volume Curve Label: SWMF2 Elevation Planimeter Area Al+A2+sqr (ft) (ftz) (ft2) (A1*A2) (ftz) Return Event: 1 years Storm Event: 1 -Year Storm Volume Volume (Total) (ac -ft) (ac -ft) 330.00 0.0 5,879 0 0.000 0.000 330.50 0.0 7,568 20,117 0.077 0.077 331.00 0.0 8,105 23,505 0.090 0.167 332.00 0.0 9,222 25,972 0.199 0.366 333.00 0.0 10,396 29,409 0.225 0.591 334.00 0.0 11,626 33,016 0.253 0.843 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 mfurffl���� Subsection: Outlet Input Data Return Event: 1 years Label: SWMF2 Storm Event: 1 -Year Storm Requested Pond Water Surface Elevations Minimum (Headwater) 330.00 ft Increment (Headwater) 0.50 ft Maximum (Headwater) 334.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall El E2 (ft) (ft) Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Inlet Box Riser - 1 Forward Culvert - 1 332.00 334.00 Orifice -Circular Orifice - 1 Forward Culvert - 1 330.00 334.00 Culvert -Circular Culvert - 1 Forward TW 329.00 334.00 Tailwater Settings Tailwater (N/A) (N/A) Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Subsection: Outlet Input Data Return Event: 1 years Label: SWMF2 Storm Event: 1 -Year Storm Structure ID: Orifice - 1 Structure Type: Orifice -Circular Number of Openings 1 Elevation 330.00 ft Orifice Diameter 1.0 in Orifice Coefficient 0.600 Structure ID: Riser- 1 Structure Type: Inlet Box Number of Openings 1 Elevation 332.00 ft Orifice Area 14.0 ftz Orifice Coefficient 0.600 Weir Length 16.00 ft Weir Coefficient 3.00 (ft^0.5)/s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Structure ID: Culvert - 1 Structure Type: Culvert -Circular Number of Barrels 1 Diameter 18.0 in Length 201.34 ft Length (Computed Barrel) 201.36 ft Slope (Computed) 0.015 ft/ft Outlet Control Data Manning's n 0.013 Ke 0.200 Kb 0.018 Kr 0.000 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0045 M 2.0000 C 0.0317 Y 0.6900 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 J ►L1� � U Subsection: Outlet Input Data Return Event: 1 years Label: SWMF2 Storm Event: 1 -Year Storm Inlet Control Data T1 ratio (HW/D) 1.088 T2 ratio (HW/D) 1.190 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 330.63 ft Tl Flow 7.58 ft3/S T2 Elevation 330.78 ft T2 Flow 8.66 ft3/S Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 YMTU���� Subsection: Outlet Input Data Label: SWMF2 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3/s Flow Tolerance (Maximum) 10.000 ft3/s Return Event: 1 years Storm Event: 1 -Year Storm Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 n M-CADAMS Subsection: Composite Rating Curve Label: SWMF2 Composite Outflow Summary Return Event: 1 years Storm Event: 1 -Year Storm Water Surface Flow Tailwater Elevation Convergence Error Contributing Structures Elevation (ft3/s) (ft) (ft) (ft) 330.00 0.00 (N/A) 0.00 (no Q: Riser - S,Orifice - 1,Culvert - 1) 330.50 0.02 (N/A) 0.00 Orifice - 1,Culvert - 1 (no Q: Riser - 1) 331.00 0.03 (N/A) 0.00 Orifice - 1,Culvert - 1 (no Q: Riser - 1) 331.50 0.03 (N/A) 0.00 Orifice - 1,Culvert - 1 (no Q: Riser - 1) 332.00 0.04 (N/A) 0.00 Orifice - 1,Culvert - 1 (no Q: Riser - 1) 332.50 14.47 (N/A) 0.00 Riser - 1,Orifice - 1,Culvert - 1 333.00 15.13 (N/A) 0.00 Riser - 1,Culvert - 1 (no Q: Orifice - 1) 333.50 15.79 (N/A) 0.00 Riser - 1,Culvert - 1 (no Q: Orifice - 1) 334.00 16.42 (N/A) 0.00 1 Riser - 1,Culvert - 1 (no Q: Orifice - 1) -i . _,cions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 'JI MCADAM-S Subsection: Level Pool Pond Routing Summary Label: SWMF2 (IN) Infiltration 331.62 ft Infiltration Method No Infiltration (Computed) 0.287 ac -ft Initial Conditions Elevation (Water Surface, 330.00 ft Initial) 0.318 ac -ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 1 years Storm Event: 1 -Year Storm Flow (Peak In) 6.42 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 0.03 ft3/s Time to Peak (Flow, Outlet) 1,440.000 min Elevation (Water Surface, 331.62 ft Peak) Volume (Peak) 0.287 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 0.318 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 0.031 ac -ft Outflow) Volume (Retained) 0.287 ac -ft Volume (Unrouted) -0.001 ac -ft Error (Mass Balance) 0.2% Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 'J MCADAMS Subsection: Level Pool Pond Routing Summary Label: SWMF2 (IN) Infiltration 332.00 ft Infiltration Method No Infiltration (Computed) 0.366 ac -ft Initial Conditions Elevation (Water Surface, 330.00 ft Initial) 0.422 ac -ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/S Flow (Initial Infiltration) 0.00 ft3/S Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 2 years Storm Event: 2 -Year Storm Flow (Peak In) 8.31 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 0.10 ft3/s Time to Peak (Flow, Outlet) 1,387.000 min Elevation (Water Surface, 332.00 ft Peak) Volume (Peak) 0.366 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 0.422 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 0.056 ac -ft Outflow) Volume (Retained) 0.366 ac -ft Volume (Unrouted) 0.000 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Brown, PE JPM-14060. ppc 12/2/2015 J McADAMS Subsection: Level Pool Pond Routing Summary Label: SWMF2 (IN) Infiltration 12.11 ft3/s Infiltration Method No Infiltration (Computed) 2.89 ft3/s Time to Peak (Flow, Outlet) 752.000 min Initial Conditions Elevation (Water Surface, 330.00 ft Initial) 0.706 ac -ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 10 years Storm Event: 10 -Year Storm Flow (Peak In) 12.11 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 2.89 ft3/s Time to Peak (Flow, Outlet) 752.000 min Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Elevation (Water Surface, 332.10 ft Peak) Volume (Peak) 0.387 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 0.706 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 0.339 ac -ft Outflow) Volume (Retained) 0.366 ac -ft Volume (Unrouted) 0.000 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Subsection: Level Pool Pond Routing Summary Label: SWMF2 (IN) Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Elevation (Water Surface, 330.00 ft Initial) Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 25 years Storm Event: 25 -Year Storm Flow (Peak In) 13.87 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 4.93 ft3/s Time to Peak (Flow, Outlet) 731.000 min Elevation (Water Surface, 332.17 ft Peak) Volume (Peak) 0.402 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 0.874 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 0.507 ac -ft Outflow) Volume (Retained) 0.366 ac -ft Volume (Unrouted) 0.000 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 'J MCADAMS Subsection: Level Pool Pond Routing Summary Label: SWMF2 (IN) Infiltration 332.36 ft Infiltration Method No Infiltration (Computed) 0.445 ac -ft Initial Conditions Elevation (Water Surface, 330.00 ft Initial) 1.152 ac -ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 100 years Storm Event: 100 -Year Storm Flow (Peak In) 16.24 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 10.56 ft3/s Time to Peak (Flow, Outlet) 727.000 min Elevation (Water Surface, 332.36 ft Peak) Volume (Peak) 0.445 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 1.152 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 0.785 ac -ft Outflow) Volume (Retained) 0.366 ac -ft Volume (Unrouted) 0.000 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Drown, PE JPM-14060.ppc 12/2/2015 'J McADAMS Subsection: Level Pool Pond Routing Summary Label: SWMF2 (IN) Infiltration 332.43 ft Infiltration Method No Infiltration (Computed) 0.459 ac -ft Initial Conditions Elevation (Water Surface, 332.00 ft Initial) 1.152 ac -ft Volume (Initial) 0.366 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Return Event: 100 years Storm Event: 100 -Year Storm Inflow/Outflow Hydrograph Summary Flow (Peak In) 16.24 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 12.49 ft3/s Time to Peak (Flow, Outlet) 725.000 min Elevation (Water Surface, 332.43 ft Peak) Volume (Peak) 0.459 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.366 ac -ft Volume (Total Inflow) 1.152 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 1.150 ac -ft Outflow) Volume (Retained) 0.367 ac -ft Volume (Unrouted) 0.000 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 STORIVIWATER MANAGEMENT FACILITY DESIGN CALCULATIONS - SWMF #3 TRADITIONS - PHASES 2B and 2C JPM-14060 TRADITIONS PHS 2A/213 STORMWATER MANAGEMENT FACILITY #3 D. BROWN, PE JPM-14060 SSFxn Above NP 12/2/2015 STAGE -STORAGE FUNCTION - ABOVE NORMAL POOL Ks = 17123 b = 1.1216 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) NP 323.00 0.00 14,734 323.50 0.50 17,514 16124 8062 8062 0.51 324.00 1.00 18,282 _ 17898 8949 17011 0.99 325.00 2.00 20,201 19242 19242 36253 1.95 326.00 3.00 22,016 21109 21109 57361 2.94 327.00 4.00 23,887 22952 22952 80313 3.97 328.00 5.00 25,814 24851 24851 105163 5.04 TOD 329.00 6.00 27,798 26806 26806 131969 6.18 Ks = 17123 b = 1.1216 TRADITIONS PHS 2A/2B STORMWATER MANAGEMENT FACILITY #3 D. BROWN, PE JPM-14060 SSFxn Main Pool 12/2/2015 STAGE -STORAGE FUNCTION - MAIN POOL Ks = 2362 b = 1.3041 Storage vs. Stage Average Incremental Accumulated Estimated 40000 Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 314.00 0.00 2,360 N 15000 315.00 1.00 2,836 2598 2598 2598 1.08 316.00 2.00 3,337 3087 3087 5685 1.96 317.00 3.00 3,880 3609 3609 9293 2.86 318.00 4.00 4,431 4156 4156 13449 3.80 319.00 5.00 5,007 4719 4719 18168 4.78 320.00 6.00 5,609 5308 5308 23476 5.82 321.00 7.00 6,794 6202 6202 29677 6.96 322.00 8.00 7,464 7129 7129 36806 8.21 322.50 8.50 7,791 7628 3814 40620 8.86 NP 323.00 9.00 9,409 8600 4300 44920 9.57 Ks = 2362 b = 1.3041 Storage vs. Stage 50000 45000 _..._...,e .__ 40000 y = 2362.2x13041 35000 R = 0.9957 v 30000 25000 o 20000 N 15000 10000 5000 0 0.00 2.00 4.00 6.00 8.00 10.00 Stage (feet) Ks = 2362 b = 1.3041 TRADITIONS PHS 2A/213 STORMWATER MANAGEMENT FACILITY #3 D. BROWN, PE JPM-14060 SSFxn Forebay 12/2/2015 STAGE -STORAGE FUNCTION - FOREBAY Contour (feet) Stage (feet) Contour Area .(SF) Average Contour Area (SF) Incremental Contour Volume (CF) Accumulated Contour Volume (CF) Estimated Stage w/ S -S Fxn (feet) 315.00 0.00 790 V 12000 10000 316.00 1.00 1,051 921 921 921 1.08 317.00 2.00 1,338 1195 1195 2115 1.94 318.00 3.00 1,650 1494 1494 3609 2.83 319.00 4.00 1,986 1818 1818 5427 3.77 320.00 5.00 2,453 2220 2220 7647 4.81 321.00 6.00 2,867 2660 2660 10307 5.93 322.00 7.00. 3,355 3111 3111 13418 7.15 322.50 7.50 3,579 3467 1734 15151 7.79 NP 323.00 8.00 4,761 4170 2085 17236 8.53 Storage vs. Stage 20000 18000 16000 y = 827.2X1.4166 � 14000 R2 = 0.9946 V 12000 10000 `0 8000 Y N 6000 4000 2000 0 0.00 2.00 4.00 6.00 8.00 10.00 Stage (feet) Ks = 827.2 b = 1.4166 TRADITIONS, PHS 2A/2B STORMWATER MANAGEMENT FACILITY #3 JPM-14060 Volume Calculation MAO"A""If Volume of Main Pool = 44,920 cf Volume of Forebay = 17,236 cf Total Volume Below NWSE = 62,156 cf = 1.43 acre -ft Total Volume Above NWSE = 131,969 cf 3.03 acre -ft Total Volume of Facility= 194,125 cf 4.46 acre -ft FORE)E�AY PERCE1�iTAG�,O1N" �'1�RM.4NENT I'(�()L'�Ut.l()�YI>�„ , , Per NCDWQ design guidelines, the forebay volume should equal approximately 20% of the total permanent pool volume. Total Volume Below NWSE = 62,156 cf Volume of Forebay = 17,236 cf % Forebay = 27.7% Ai1�4C�r �J►.�F�;�1' Total Volume Below NWSE = 62,156 cf Surface Area at NWSE = 14,734 sf Average Depth = 4.219 ft D. BROWN, PE 12/2/2015 TRADITIONS, PHS 2A/213 STORMWATER MANAGEMENT FACILITY #3 D. BROWN, PE JPM-14060 Surface Area Calculation 12/2/2015 WET DETENTION BASIN SUMMARY Enter the drainage area characteristics ==> Total drainage area to pond = 13.25 acres Total impervious area to pond = 6.67 acres Note The basin must be sized to treat all impervious surface runoff draining into the pond, not just the impervious surface from on-site development. Drainage area = 13.25 acres @ 50.3% impervious Estimate the surface area required at pond normal pool elevation ==> Wet Detention Basins are based on an minimum average depth of = 4.219 feet (Calculated) From the DWQ BMP Handbook, the required SA/DA ratio for 90% TSS Removal ==> 4.0 4.219 5.0 Lower Boundary => 50.0 2.50 2.00 Site % impervious => 50.3 2.51 2.40 2.02 Upper Boundary => 60.0 2.80 2.50 Therefore, SA/DA required = 2.40 Surface area required at normal pool = 13,866 ftz 0.32 acres Surface area provided at normal pool = 14,247 ft TRADITIONS, PHS 2A/213 STORMWATER MANAGEMENT FACILITY #3 JPM-14060 WQV Calculation DETERMINATION OF WATER QUALITY VOLUME WQ v = (P)(R v)(A)/12 where, WQv = water quality volume (in acre -ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 13.25 acres Impervious area = 6.67 acres Percent impervious cover, I = 50.3 % Rainfall, P = 1.00 inches Calculated values: Rv = 0.50 WQv = 0.56 acre -ft 24196 cf. ASSOCIATED' DEPTH IN POND WQv = 24196 cf. Stage I Storage Data: Ks = 17123 b = 1.1216 Zo = 323.00 Volume in 1" rainfall = 24196 cu. ft Calculated values: Depth of WQv in Basin = 1.36 ft 16.33 inches Elevation = 324.36 ft D. BROWN, PE 12/2/2015 TRADITIONS, PHS 2A/213 STORMWATER MANAGEMENT FACILITY #3 JPM-14060 WQVDrawdown Calculation DRAWDOWN SIPHON DESIGN D orifice = 2 inch # orifices = 1 Ks = 17123 b = 1.1216 Cd siphon = 0.60 Normal Pool Elevation = 323.00 feet Volume @ Normal Pool = 0 cf Orifice Invert = 323.00 feet WSEL @ 1" Runoff Volume = 324.36 feet WSEL (feet) Vol. Stored (Cf) Siphon Flow (cfs) Avg. Flow (efs) Incr. Vol. (Cf) Iner. Time (sec) 324.36 24196 0.119 324.24 21843 0.113 0.116 2353 20328 324.12 19518 0.107 0.110 2325 21150 324.01 17222 0.101 0.104 2296 22108 323.89 14959 0.094 0.097 2263 23246 323.77 12733 0.087 0.090 2226 24631 323.65 10548 0.079 0.083 2185 26374 323.53 8412 0.070 0.075 2136 28670 323.41 6333 0.060 0.065 2079 31915 323.29 4327 0.048 0.054 2006 37089 323.17 2420 0.032 0.040 1907 47827 Drawdown Time = 3.28 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.426 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of siphon = 0.022 sf Q = 0.0686 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 4.08 days D. BROWN, PE 12/2/2015 TRADITIONS - PH 2 SWMF #3 D. BROWN, PE JPM-14060 12/2/2015 Square Riser/Barrel Anti -Flotation Calculation Sheet Input Data =_> Inside length of riser = 5.00 feet Inside width of riser = 5.00 feet Wall thickness of riser = 6.00 inches Base thickness of riser = 0.00 inches Base length of riser = 0.00 feet Base width of riser = 0.00 feet Inside height of riser = 7.25 feet Base length of riser invert = 5.00 feet Base width of riser invert = 5.00 feet Inside depth of riser invert = 27.00 inches Concrete unit weight = 142.0 PCF Note: NC Products lists unit wt. of OD of barrel exiting manhole = 30.00 inches manhole concrete at 142 PCF. Base width of collar = 6.00 feet Base height of collar = 6.08 feet Base thickness of collar = 1.50 feet Size of drain pipe (if present) = 4.0 inches Trash Rack water displacement = 27.00 CF Concrete Present in Riser Structure =_> Total amount of concrete: Base of Riser = 0.000 CF Invert of Riser = 56.250 CF Collar = 49.811 CF Note: Adjusted for barrel opening. Riser Walls = 79.750 CF Adjust for openings in riswr walls: Opening for barrel = 2.454 CF Opening for drain pipe = 0.044 CF Opening for 6" x 4' weir = 2.000 CF Total wall concrete present, adjusted for openings = 75.252 CF Total base, invert, and collar concrete, adjusted for openings = 106.061 CF Total concrete present = 181.313 CF Weight of concrete present = 25,746 lbs Amount of water displaced by Riser Structure =_> Displacement by concrete = 75.252 CF Displacement by open air in riser = 181.250 CF Displacement by trash rack = 27.000 CF Total water displaced by riser/barrel structure = 283.502 CF Weight of water displaced = 17,691 lbs TRADITIONS - PH 2 SWMF #3 JPM-14060 Calculate amount of concrete to be added to riser =_> D. BROWN, PE 12/2/2015 Safety factor to use = 1.15 (recommend 1.15 or higher) Must add = -5402 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 69.22 PCF Therefore, must add = -78.049 CF of concrete Standard based described above = 0.000 CF of concrete Therefore, base design must have = -78.049 CF of concrete Calculate size of base for riser assembly ==> Length = 9.000 feet Width = 9.000 feet Thickness = 30.0 inches Concrete Present = 202.500 CF OK Check validity of base as designed ==> Total Water Displaced = 486.002 CF Total Concrete Present = 383.813 CF Total Water Displaced = 30,327 lbs Total Concrete Present = 54,501 lbs Actual safety factor = 1.80 OK Results of design ==> Base length = 9.00 feet Base width = 9.00 feet Base Thickness = 30.00 inches CY of concrete total in base = 7.50 CY Concrete unit weight in added base > 142 PCF Project Project No. Outlet ID Flow, Q10_, Slope, S Pipe Diameter, Do Pipe Diameter, Do Number of pipes Pipe separation Manning's n DESIGN OF RIPRAP OUTLET PROTECTION WORKSHEET TRADITIONS PH 2B & 2C Date 4/15/2015 JPM-14060 Designer DHB SWMF #3 21.77 cfs 1.38 % 24 inches 2.0 feet 1 21.8 cfs 0 feet 0.013 9.5 ft/sec Figure 8.06.b.1 25- 20 one N 15 'u 10 on 5 ne-1 0 0 1 2 3 4 5 6 7 8 9 10 Pipe diameter (ft) Zone from graph above = 2 Diameter Thickness Length Width Outlet pipe diameter 24 in. Length = 12.0 ft. Outlet flowrate 21.8 cfs Width= 6.0 ft. Outlet velocity 9.5 ft/sec Stone diameter = 6 in. Material = Class B Thickness = 22 in. Zone Material Diameter Thickness Length Width 1 Class A 3 9 4 x D(o) 3 x D(o) 2 Class B 6 22 6 x D(o) 3 x D(o) 3 Class I 13 22 8 x D(o) 3 x D(o) 4 Class I 13 22 8 x D(o) 3 x D(o) 5 Class II 23 27 10 x D(o) 3 x D(o) _ 6 Class II 23 27 10 x D(o) 3 x D(o) 7 Special study required 1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual 2. Outlet velocity based on full -flow velocity Rip Rap Outlet Protection Design4/15/2015 V) zo o� r� �a E E Q L Q N-- L 4- at U tl(6q CO L OA L Ln 1'1 m O N r- m N �-I r� N w I- m m N m pl N ri N Ln rl- m In --I II II C "a3 O a i= E > O LU a) a-0 E o CL aj E E O 2 o > m — O cu U C C N a-+ 5= .c� G L v C N L O 4— cu E E Q O t10 C E L LL v' - N N N X u n @ c Q1 =3 U E O_ O E m � O. U X w io Q v o W L dCr CL cl r1 cu E E O M McADAMS Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) SUB03-BYP Post -Development 1 1 0.064 723.000 0.94 e SUB03-BYP Post -Development 2 2 0.102 723.000 1.68 year SUB03-BYP Post -Development 10 10 0.224 722.000 3.68 year SUB03-BYP Post -Development 25 25 0.304 722.000 4.78 year SUB03-BYP Worst Case 100 0.445 722.000 6.41 SUB03-BYP Post -Development 100 0.445 722.000 6.41 100 year SUB01 Post -Development 1 1 0.101 722.000 1.91 year SUB01 Post -Development 2 2 0.145 722.000 2.76 year SUB01 Post- 10 10 0.272 722.000 4.71 year SUB01 Post- Development 25 25 0.351 722.000 5.68 year SUB01 Worst Case 100 0.485 722.000 7.05 SUB01 Post -Development 100 0.485 722.000 7.05 100 year SUB02 Post -Development 1 1 1.983 722.000 38.34 year SUB02 Post- Development 2 2 2.795 722.000 53.98 year SUB02 Post -Development 10 10 5.120 722.000 88.81 year SUB02 Post -Development 25 25 6.549 722.000 105.92 year SUB02 Worst Case 100 8.961 722.000 129.76 SUB02 Post -Development 100 8.961 722.000 129.76 100 year SUB02-BYP Post- Development 1 1 0.134 723.000 1.96 year SUB02-BYP Post -Development 2 2 0.214 723.000 3.52 year SUB02-BYP Post -Development 10 10 0.467 722.000 7.69 year SUB02-BYP year Development 25 25 0.635 722.000 9.99 SUB02-BYP Worst Case 100 0.928 722.000 13.39 SUB02-BYP Post -Development 100 0.928 722.000 13.39 100 year SUB03 Post -Development 1 1 0.318 722.000 6.42 year Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 MM " C -ADAMS Subsection: Master Network Summary Catchments Summary Post -Development 1 1 0.101 722.000 Label Scenario Return Hydrograph Time to Peak Peak Flow POA#1 Event Volume (min) (ft3/s) 2.76 (years) (ac -ft) SUB03 Post -Development 2 2 0.422 722.000 8.31 4.71 year year SUB03 Post -Development 10 10 0.706 722.000 12.11 5.68 year year SUB03 Post -Development 25 25 0.874 722.000 13.87 7.05 year SUB03 Worst Case 100 1.152 722.000 16.24 SUB03 Post -Development 100 1.152 722.000 16.24 100 year SUB04 Post- Development 1 1 1.485 722.000 29.58 year SUB04 Post -Development 2 2 2.029 722.000 39.79 year SUB04 Post -Development 10 10 3.543 722.000 61.42 yea r SUB04 Post -Development 25 25 4.457 722.000 71.70 year SUB04 Worst Case 100 5.983 722.000 85.77 SUB04 Post -Development 100 5.983 722.000 85.77 100 year CULVERT Post -Development 1 1 9,104 729.000 128.55 year CULVERT Post- Development 2 2 12.082 728.000 167.32 year CULVERT Post -Development 10 10 20.181 727.000 248.19 year CULVERT Post- Development 25 25 24.994 727.000 286.61 year CULVERT Worst Case 100 32.959 727.000 338.22 CULVERT Post -Development 100 32.959 727.000 338.22 100 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (vears) (ac -ft) POA#1 Post -Development 1 1 0.101 722.000 1.91 year POA#1 Post- Development 2 2 0.145 722.000 2.76 year POA# 1 Post -Development 10 10 0.272 722.000 4.71 year POA# 1 Post- Development 25 25 0.351 722.000 5.68 year POA#1 Worst Case 100 0.485 722.000 7.05 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 T M( Subsection: Master Network Summary Node Summary Label POA#1 POA#2 POA#2 POA#2 POA#2 POA#2 POA#2 POA#3 POA#3 POA#3 POA#3 POA#3 POA#3 POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA CULVERT POA CULVERT POA CULVERT POA CULVERT POA CULVERT Scenario Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Return Event (years) 10( V 2! 10( 10( 1( 2! 10( 10( 11 2' 101 101 11 2. 101 Hydrograph Volume (ac -ft) 0.485 0.734 1.618 4.178 5.767 8.638 8.468 0.095 0.159 0.563 0.811 1.595 1.230 0.872 1.411 2.917 3.828 5.972 5.351 9.104 12.082 20.181 24.994 32.959 Time to Peak (min) 722.000 723.000 781.000 752.000 732.000 725.000 727.000 723.000 723.000 751.000 729.000 724.000 725.000 755.000 752.000 732.000 730.000 730.000 731.000 729.000 728.000 727.000 727.000 727.000 Peak Flow (ft3/s) 7.05 2.07 4.95 21.14 39.48 111.23 87.87 0.96 1.71 4.06 7.13 18.01 15.34 4.33 8.40 20.48 29.51 36.71 33.94 128.55 167.32 248.19 286.61 338.22 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 MMcADAMS Subsection: Master Network Summary Node Summary Label POA CULVERT Scenario Return Hydrograph Event Volume (years) (ac -ft) Post -Development( 1001 32.959 100 vear Development Time to Peak (min) 727.000 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) Peak Flow (ft3/S) 338.22 Maximum Maximum Water Pond Storage Surface (ac -ft) Elevation (ft) Development Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Post- SWMF1 (IN) Development 1 1.983 722.000 38.34 (N/A) (N/A) 1 year SWMF1 Post - Development 1 0.600 908.000 1.09 356.56 1.406 (OUT) 1 year Post- SWMF1 (IN) Development 2 2.795 722.000 53.98 (N/A) (N/A) 2 year SWMF1 Post - Development 2 1.404 782.000 4.51 356.80 1.548 (OUT) 2 year Post- SWMF1 (IN) Development 10 5.120 722.000 88.81 (N/A) (N/A) 10 year SWMF1 Post - Development 10 3.711 753.000 18.99 358.08 2.339 (OUT) 10 year Post- SWMF1 (IN) Development 25 6.549 722.000 105.92 (N/A) (N/A) 25 year SWMF1 Post - Development 25 5.133 733.000 35.70 358.43 2.559 (OUT) 25 year SWMF1 (IN) Worst Case 100 8.961 722.000 129.76 (N/A) (N/A) SWMF1 Worst Case 100 7.710 725.000 100.28 359.42 3.201 (OUT) Post- SWMF1 (IN) Development 100 8.961 722.000 129.76 (N/A) (N/A) 100 year SWMF1 Post - (OUT) Development 100 7.540 728.000 79.06 358.99 2.921 100 year Post- SWMF2 (IN) Development 1 0.318 722.000 6.42 (N/A) (N/A) 1 year Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 '='!'JM.cADAM.S Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) SWMF2 Post- (OUT) Development 1 0.031 1,440.000 0.03 331.62 0.287 1 year Post- SWMF2 (IN) Development 2 0.422 722.000 8.31 (N/A) (N/A) 2 year SWMF2 Post- Development 2 0.056 1,387.000 0.10 332.00 0.366 (OUT) 2 year Post- SWMF2 (IN) Development 10 0.706 722.000 12.11 (N/A) (N/A) 10 year SWMF2 Post- Development 10 0.339 752.000 2.89 332.10 0.387 (OUT) 10 year Post- SWMF2 (IN) Development 25 0.874 722.000 13.87 (N/A) (N/A) 25 year SWMF2 Post- Development 25 0.507 731.000 4.93 332.17 0.402 (OUT) 25 year SWMF2 (IN) Worst Case 100 1.152 722.000 16.24 (N/A) (N/A) SWMF2 Worst Case 100 1.150 725.000 12.49 332.43 0.459 (OUT) Post- SWMF2 (IN) Development 100 1.152 722.000 16.24 (N/A) (N/A) 100 year SWMF2 Post- Development 100 0.785 727.000 10.56 332.36 0.445 (OUT) 100 year Post- SWMF3 (IN) Development 1 1.485 722.000 29.58 (N/A) (N/A) 1 year SWMF3 Post- Development 1 0.872 755.000 4.33 324.81 0.744 (OUT) 1 year Post- SWMF3 (IN) Development 2 2.029 722.000 39.79 (N/A) (N/A) 2 year SWMF3 Post- Development 2 1.411 752.000 8.40 325.11 0.882 (OUT) 2 year Post- SWMF3 (IN) Development 10 3.543 722.000 61.42 (N/A) (N/A) 10 year Traditions Ph. 2 JPM-14060.ppc D. Brown, PE 12/2/2015 (',,A D AMAI S -A - Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) SWMF3 Post- Development 10 2.917 732.000 20.48 326.05 1.342 (OUT) 10 year Post- SWMF3 (IN) Development 25 4.457 722.000 71.70 (N/A) (N/A) 25 year SWMF3 Post- Development 25 3.828 730.000 29.51 326.47 1.558 (OUT) 25 year SWMF3 (IN) Worst Case 100 5.983 722.000 85.77 (N/A) (N/A) SWMF3 Worst Case 100 5.972 730.000 36.71 327.69 2.233 (OUT) Post- SWMF3 (IN) Development 100 5.983 722.000 85.77 (N/A) (N/A) 100 year SWMF3 Post- Development 100 5.351 731.000 33.94 327.06 1.878 (OUT) 100 vear Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 4f ffur . r�� Subsection: Elevation -Area Volume Curve Label: SWMF3 Return Event: 1 years Storm Event: 1 -Year Storm Elevation Planimeter Area Al+A2+sqr Volume Volume (Total) (ft) (ft2) (ft2) (Ai*A2) (ac -ft) (ac -ft) (ft2) 323.00 0.0 14,734 0 0.000 0.000 323.50 0.0 17,514 48,312 0.185 0.185 324.00 0.0 18,282 53,690 0.205 0.390 325.00 0.0 20,201 57,701 0.442 0.832 326.00 0.0 22,016 63,306 0.484 1.316 327.00 0.0 23,887 68,835 0.527 1.843 328.00 0.0 25,814 74,533 0.570 2.413 329.00 0.01 27,798 1 80,400 1 0.615 3.029 Traditions Ph. 2 D. Brown, PE J PM -14060. ppc 12/2/2015 J McADAMS Subsection: Outlet Input Data Return Event: 1 years Label: SWMF3 Storm Event: 1 -Year Storm Requested Pond Water Surface Elevations Minimum (Headwater) 323.00 ft Increment (Headwater) 0.50 ft Maximum (Headwater) 329.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall E1 E2 (ft) (ft) Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Orifice -Area Orifice - 2 Forward Culvert - 1 324.50 329.00 Inlet Box Riser - 1 Forward Culvert - 1 326.00 329.00 Orifice -Circular Orifice - 1 Forward Culvert - 1 323.00 329.00 Culvert -Circular Culvert - 1 Forward TW 322.00 329.00 Tailwater Settings Tailwater (N/A) (N/A) Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 '9' McADAMS Subsection: Outlet Input Data Label: SWMF3 Structure ID: Riser- 1 Structure Type: Inlet Box Number of Openings 1 Elevation 326.00 ft Orifice Area 25.0 ft2 Orifice Coefficient 0.600 Weir Length 20.00 ft Weir Coefficient 3.00 (ft^0.5)/s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Structure ID: Orifice - 1 Structure Type: Orifice -Circular Number of Openings 1 Elevation 323.00 ft Orifice Diameter 2.0 in Orifice Coefficient 0.600 Return Event: 1 years Storm Event: 1 -Year Storm Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 4f Funliff-sm Subsection: Outlet Input Data Label: SWMF3 Structure ID: Culvert - 1 Structure Type: Culvert -Circular Number of Barrels 1 Diameter 24.0 in Length 54.50 ft Length (Computed Barrel) 54.51 ft Slope (Computed) 0.018 ft/ft Outlet Control Data Manning's n 0.013 Ke 0.200 Kb 0.012 Kr 0.000 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0045 M 2.0000 C 0.0317 Y 0.6900 T1 ratio (HW/D) 1.086 T2 ratio (HW/D) 1.188 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... Return Event: 1 years Storm Event: 1 -Year Storm T1 Elevation 324.17 ft T1 Flow 15.55 ft3/s T2 Elevation 324.38 ft T2 Flow 17.77 ft3/s Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 M AM Subsection: Outlet Input Data Label: SWMF3 Structure ID: Orifice - 2 Structure Type: Orifice -Area Number of Openings 1 Elevation 324.50 ft Orifice Area 4.0 ftz Top Elevation 325.50 ft Datum Elevation 325.00 ft Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3/s Flow Tolerance (Maximum) 10.000 ft3/s Return Event: 1 years Storm Event: 1 -Year Storm Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 P q ,�J MCADAMS Subsection: Composite Rating Curve Label: SWMF3 Composite Outflow Summary Return Event: 1 years Storm Event: 1 -Year Storm Water Surface Flow Tailwater Elevation Convergence Error Contributing Structures Elevation (ft3/s) (ft) (ft) (ft) 323.00 0.00 (N/A) 0.00 (no Q: Orifice - 2,Riser - l,Orifice - 1,Culvert - 1) 323.50 0.07 (N/A) 0.00 Orifice - 1,Culvert - 1 (no Q: Orifice - 2,Riser - 1) 324.00 0.10 (N/A) 0.00 Orifice - 1,Culvert - 1 (no Q: Orifice - 2,Riser - 1) 324.50 0.13 (N/A) 0.00 Orifice - 1,Culvert - 1 (no Q: Orifice - 2,Riser - 1) 325.00 6.94 (N/A) 0.00 Orifice - 2,Orifice - 1,Culvert - 1 (no Q: Riser - 1) 325.50 13.73 (N/A) 0.00 Orifice - 2,Orifice - 1,Culvert - 1 (no Q: Riser - 1) 326.00 19.37 (N/A) 0.00 Orifice - 2,Orifice - 1,Culvert - 1 (no Q: Riser - 1) 326.50 30.17 (N/A) 0.00 Orifice - 2,Riser - i3Orifice - 1,Culvert - 327.00 33.65 (N/A) 0.00 Riser - 1,Culvert - 1 (no Q: Orifice - 2,Orifice - 1) 327.50 35.89 (N/A) 0.00 Riser - 1,Culvert - 1 (no Q: Orifice - 2,Orifice - 1) 328.00 38.00 (N/A) 0.00 Riser - 1,Culvert - 1 (no Q: Orifice - 2,Orifice - 1) 328.50 39.99 (N/A) 0.00 Riser - 1,Culvert - 1 (no Q: Orifice - 2,Orifice - 1) 329.00 41.90 (N/A) 0.00Riser - 1,Culvert - 1 (no Q: Orifice - 2,Orifice - 1) 1, .,ons Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 '� McADAMS Subsection: Level Pool Pond Routing Summary Label: SWMF3 (IN) Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Elevation (Water Surface, 323.00 ft Initial) Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Volume (Total Infiltration) 0.000 ac -ft Inflow/Outflow Hydrograph Summary Return Event: 1 years Storm Event: 1 -Year Storm Flow (Peak In) 29.58 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 4.33 ft3/s Time to Peak (Flow, Outlet) 755.000 min Elevation (Water Surface, 324.81 ft Peak) Volume (Peak) 0.744 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 1.485 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 0.872 ac -ft Outflow) Volume (Retained) 0.613 ac -ft Volume (Unrouted) -0.001 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Drown, PE JPM-14060.ppc 12/2/2015 Tj McADAMS Subsection: Level Pool Pond Routing Summary Label: SWMF3 (IN) Infiltration 325.11 ft Infiltration Method No Infiltration (Computed) 0.882 ac -ft Initial Conditions Elevation (Water Surface, 323.00 ft Initial) 2.029 ac -ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 2 years Storm Event: 2 -Year Storm Flow (Peak In) 39.79 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 8.40 ft3/s Time to Peak (Flow, Outlet) 752.000 min Elevation (Water Surface, 325.11 ft Peak) Volume (Peak) 0.882 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 2.029 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 1.411 ac -ft Outflow) Volume (Retained) 0.617 ac -ft Volume (Unrouted) -0.001 ac -ft Error (Mass Balance) 0.0% 1 raditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 McADAMS Subsection: Level Pool Pond Routing Summary Label: SWMF3 (IN) Infiltration 326.05 ft Infiltration Method No Infiltration (Computed) 1.342 ac -ft Initial Conditions Elevation (Water Surface, 323.00 ft Initial) 3.543 ac -ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 10 years Storm Event: 10 -Year Storm Flow (Peak In) 61.42 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 20.48 ft3/s Time to Peak (Flow, Outlet) 732.000 min Elevation (Water Surface, 326.05 ft Peak) Volume (Peak) 1.342 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 3.543 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 2,917 ac -ft Outflow) Volume (Retained) 0.625 ac -ft Volume (Unrouted) -0.001 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Subsection: Level Pool Pond Routing Summary Label: SWMF3 (IN) Infiltration 326.47 ft Infiltration Method No Infiltration (Computed) 1.558 ac -ft Initial Conditions Elevation (Water Surface, 323.00 ft Initial) 4.457 ac -ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 25 years Storm Event: 25 -Year Storm Flow (Peak In) 71.70 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 29.51 ft3/s Time to Peak (Flow, Outlet) 730.000 min Elevation (Water Surface, 326.47 ft Pea k) Volume (Peak) 1.558 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 4.457 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 3.828 ac -ft Outflow) Volume (Retained) 0.628 ac -ft Volume (Unrouted) -0.002 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 4fmffl���� Subsection: Level Pool Pond Routing Summary Label: SWMF3 (IN) Infiltration 327.06 ft Infiltration Method No Infiltration (Computed) 1.878 ac -ft Initial Conditions Elevation (Water Surface, 323.00 It Initial) 5.983 ac -ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary Return Event: 100 years Storm Event: 100 -Year Storm Flow (Peak In) 85.77 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 33.94 ft3/s Time to Peak (Flow, Outlet) 731.000 min Elevation (Water Surface, 327.06 ft Peak) Volume (Peak) 1.878 ac -ft Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 5.983 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 5.351 ac -ft Outflow) Volume (Retained) 0.630 ac -ft Volume (Unrouted) -0.002 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 Tj McADAM-S Subsection: Level Pool Pond Routing Summary Label: SWMF3 (IN) Infiltration 327.69 ft Infiltration Method No Infiltration (Computed) 2.234 ac -ft Initial Conditions Elevation (Water Surface, 326.00 ft Initial) 5.983 ac -ft Volume (Initial) 1.316 ac -ft Flow (Initial Outlet) 0.00 ft3/s Flow (Initial Infiltration) 0.00 ft3/s Flow (Initial, Total) 0.00 ft3/s Time Increment 1.000 min Inflow/Outflow Hydrograph Summary 61j" -d �G1 Return Event: 100 years Storm Event: 100 -Year Storm Flow (Peak In) 85.77 ft3/s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 36.71 ft3/s Time to Peak (Flow, Outlet) 730.000 min Elevation (Water Surface, 327.69 ft Peak) Volume (Peak) 2.234 ac -ft Mass Balance (ac -ft) Volume (Initial) 1.316 ac -ft Volume (Total Inflow) 5.983 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 5.972 ac -ft Outflow) Volume (Retained) 1.326 ac -ft Volume (Unrouted) -0.001 ac -ft Error (Mass Balance) 0.0% Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 12/2/2015 NUTRIENT LOADING CAL CULA TIONS TRADITIONS - PHASES 2B and 2C JPM-14060 TRADITIONS - PH 2 NUTRIENT EXPORT CALCULATION SUMMARY D. BROWN, PE JPM-14060 4/10/2015 TN -Analysis Area = 87.72 acres [Blue values are linked from TN Calc Spreadsheet] Nitrogen Loading Allowable = 315.80 lb/yr = 3.60 lb/ac/yr Post -Development TN -Loading w/o Treatment = 4.99 lb/ac/yr = 438.15 lb/ac/yr Drainage Area to SWMF System [On -Site Only] = 33.42 acres Post -Development TN -Loading to SWMF System [On -Site Only] = 10.36 lb/ac/yr = 346.24 lb/yr TN Removal Efficiency of SWMF1 = 25% TN -Loading Removed by SWMF System [On -Site Only] = 86.56'lb/yr Post -Development TN -Loading with Treatment = 229.24 lb/yr = 2.61 lb/ac/yr Total Onsite Nitrogen Removal Provided = 86.56 lb/yr Remaining TN -Load to be Offset by Payment = -86.56 lbs/yr _ -2,596.70 lbs over a 30 -year period (does not include transport factor) No Nitrogen Pa ment Required _ \ Q e j( ( k \ / y ? ) E � a ; \ o \ 2 m « \ Q G / . — o � ; � @ ww %R�] � 9 /, 2 of A — § } { � \ � ■ � \ 7 Q P CJ $ \ / ® 00/ \ / k ..... e , = R § § \ a �#a / / § 3 'A rA cr (n V) \ Q e j( 0 d L C � � U � i o � � z U � C °o °' Z visz U ° M O N N o w � m lzty cs y }" U p O N N . 00 M'.. y s Z, k v o to 0 2 4 p O O R 0. a. a. a. 0. w F. s w s w w w w w o r o w CULVERT CALCULATIONS TRADITIONS - PHASES 2B and 2C JPM-14060 TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS BROWN, D., PE JPM-14060 Post -Development - Subbasin To Culvert 4/13/2015 1. SCS CURVE NUMBERS' Zoning Category and % Imperviousness GR 10 GR -5 RMX i i NB HSGI 65% 380% 85% — 85% u .. - 89 89 B 85 75 92 92 83 ... 94 94 _ Note 1 %Iinperviousness and HSG Values Taken from Supplement to Elements of Urian Stormwater Design, H. Rooney Malcom, PE, 2003, and Correlated to the Current Town of Wake Forest Zoning Map Assume. HSG'A'= 0.0% HSG'B'= 85.0% HSG'C'= 0.0% HSG 'D' = 15.0% [All in GR -5] II. ZONING A. Total Drainage Area to Culvert 67.35 Ac B. Drainage Area Breakdown by Zoning ContrrbutmArea Zoning {% of Total DA %Imp Area �acres� GR 10 2%65% -- 1.35 GR-5 85% 38% 57.25 RMX11% 85% 7 41 Ng 2% 85% 135 l Totas ° d� 100,/0 ,�. .�a ,.._.,,67 35 C. Drainage Area Breakdown by Zoning and Curve Number (CN) Contrrbuting Area Zoning Soils HSG CN % of Total DA� Areaacres GR 10 D 92 2% 1 35 GR 5 D �. 87 1. 47.15 _. GR -5 _ _ . _ B _ _ 75 _,_.70% i 15% 1010 RMXD 95 11% 7 41 NB D 95 2% 135 a.z100% m v 6735..._ Total area = 67.35 acres 0.1052 sq.mi. Composite SCS CN = 86 % Impervious = 44.7% TRADITIONS, PH 2 HYDROLOGIC CALCULATIONS BROWN, D., PE JPM-14060 Post -Development - Subbasin To Culvert 4/13/2015 D. Time of Concentration Information Time of concentration is calculated using the SCS Segmental Approach (TK -SS). Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 52.7 It Length = 321 ft Height= 2.3 ft Height= 9.5 ft Slope = 0.0436 ft/ft Slope = 0.0296 ft/ft Manning's n = 0.24 Dense grass Paved ? = No P (2-year/24-hour) = 3.45 inches (Raleigh, NC) Velocity = 2.78 ft/sec Segment Time = 6.03 minutes Segment Time = L92 minutes Segment 3: Channel Flow Length = 2173.5 ft Channel Velocity = 5.00 ft/sec [Assumed Maximum Channel Flow Velocity] Segment Time = 7.25 minutes Time of Concentration = 15.19 minutes SCS Lag Time = 9.11 minutes (SCS Lag = 0.6* Tc) Time Increment = 2.64 minutes (= 0.29*SCS Lag) N USGS TOPOGRAPHIC MAP r'+ TRADITIONS - PHASE 2 0 1,050 2,100 4,200 JPM-13030 Feet 1 inch = 2,000 feet WAKE FOREST, NC ����.' � '� �' -Iv-1 s J Exhibit 5 SCS Curve Numbers for various cover conditions Cover Description Hydrologic Soil Group A B C D % Impervious Developed urban areas 69 79 84 39 61 Open space 80 30 58 71 78 Poor condition 68 79 86 89 56 (<50% grass) 77 30 48 65 73 Fair condition 49 69 79 84 65 (50 -75% grass) 82 32 58 72 79 Good condition 39 61 74 80 60 (>50% grass) 79 30 55 70 77 Impervious areas 78 85 89 65 75 Pavement, roofs 98 98 98 98 87 Gravel 76 85 89 91 Dirt 72 82 87 89 Urban districts /v/3 Commercial and '86 92 94 9 85 business Industrial 81 88 91 93 72 Residential areas (by lot size) -_. 1/8 acre (town houses, 77 85 90__--j 65 condos) (� 1/4 acre 61 75 83 87� 38 1/3 acre 57 72 81 86 30 1/2 acre 54 70 80 85 25 1 acre 51 68 79 84 20 2 acres 46 65 77 82 12 Agricultural areas Pasture, grassland Poor Fair Good Meadow (mowed) Brush Poor Fair Good Woods and grass (orchard) Poor Fair Good Woods Poor Fair Good Row crops, straight, good Row crops, contoured, good Small grain, good Farmsteads 68 79 86 89 49 69 79 84 39 61 74 80 30 58 71 78 48 67 77 83 35 56 70 77 30 48 65 73 57 73 82 86 43 65 76 82 32 58 72 79 45 66 77 83 36 60 73 79 30 55 70 77 67 78 85 89 65 75 82 86 63 75 83 87 59 74 82 86 Copyright H R- Malcom, 2003 [5-6] Exhibits DISTRICT PROVISIONS 2.1 OFFICIAL ZONING MAP 2 District Provisions 2.1 OFFICIAL ZONING MAP 2.1.1 ZONING MAP A. Zoning Districts: The boundaries of each zoning district are shown on a map entitled "Town of Wake Forest Official Zoning Map" which is hereby made a portion of this ordinance. The Official Zoning Map shall bear the adoption date of this ordinance and the signatures of the Mayor and Town Clerk. B. Overlay Districts: Certain overlay districts such as the Special Highway Overlay District, the Watershed Protection Districts, etc., are hereby established and incorporated by reference. The spatial data for such overlay(s) shall be presented with the Official Zoning Map as appropriate. C. Administration and Maintenance of Zoning Map: The Official Zoning Map shall be maintained in the Wake Forest Planning Department and a copy shall be kept on file with the Town Clerk. The Administrator shall separately maintain the digital files that comprise the map and record all map amendments in a separate metadata file. 2.1.2 INTERPRETATION OF BOUNDARIES When uncertainty exists with respect to the boundaries or districts as shown on the Official Zoning Map, the following rules shall apply: A. District boundary lines are generally intended to be along or parallel to property lines, lot lines, the center line of street, alleys, railroads, easements, other rights-of- way, and creeks, streams, or other water channels. B. In the absence of specified distances on the map, dimensions or distances shall be determined by the scale of the Official Zoning Map. C. Where the Zoning Map shows a district boundary dividing a lot, each part of the lot shall conform to the standards established by this ordinance for the land development or overlay district in which that part is located. D. When the street or property layout existing on the ground is at variance with that shown on the Official Zoning Map, the Planning Board shall interpret the district boundaries of this ordinance in accordance with Section 14.4. UNIFIED DEVELOPMENT ORDINANCE I Adopted July 16, 2013 2-1 2 I DISTRICT PROVISIONS 2.2 DISTRICT PROVISIONS 2.2 DISTRICT PROVISIONS 2.2.1 URBAN (FORM -BASED) DISTRICTS GENERAL OVERVIEW A number of the key districts for the Town of Wake Forest are ordered and classified according to the Rural -Urban Transect. The Transect is a method of classifying the natural and built environments as a continuum of six conditions, ranging from rural to urban. The value of the Transect is that it classifies development form with the appropriate land use and development context. For example, a rural street typically has no curbs or sidewalks and its buildings are often irregularly spaced. An urban street, depending on the intensity of urbanism, may have curbs and gutters, regularly placed street trees, sidewalks, and building forms that are more regular in form and spacing. Each urban zoning category has detailed provisions for the mix of uses, building type, density, height, street design, the design of parks and open space, the mix of uses, building design, parking, streetscape and other aspects of the human environment. In order to implement the intent of this ordinance, there are hereby created several base districts with the designations and general purposes listed under each and the specifically permitted uses, special uses, dimensional standards and permitted building types included. Each base district has a corresponding Conditional District designation which shall be administered in accordance with Section 2.6. DRAWING 3Y JAMES WAS3ELL Natural & Rural Areas The Transect begins with two areas that are rural in character: the Natural Area, which is made up of lands protected in perpetuity as natural, recreational or agricultural areas; and the Rural Area, which includes areas of high agricultural, scenic, or environmental value that should be protected. Suburban Area The transition area between countryside and town is called the Suburban Area. This area consists primarily of single family homes. Although this area is primarily a residential area, it may have other development types, such as schools and other civic uses. General Urban Area General Urban development is primarily residential, but more urban in character, having a higher density with a mix of housing types and a greater mix of uses, including neighborhood -serving commercial uses. Urban Center Area At the more urban end of the spectrum is the Urban Center Area. This can be a small neighborhood center or a larger Village/Town center, the latter serving more than one neighborhood. Urban Core Area The Urban Core or Downtown serves not only adjacent neighborhoods, but the entire town and the region. While it is typically the central business district where the greatest mix of uses occurs, the historic character and location of Wake Forest's downtown is too small in size and scale to serve as a primary urban core area. 2-2 TOWN OF WAKE FOREST, NC 0 DISTRICT PROVISIONS 2.2 DISTRICT PROVISIONS 2.2.2 URBAN DISTRICT DESCRIPTIONS UNIFIED DEVELOPMENT ORDINANCE I Adopted July 16, 2013 2-3 DESCRIPTIONBASE DISTRICT A. Urban Residential (UR) Previous District(s): R10 & R8 in urban contexts The Urban Residential District is established as a predominately residential district in which a variety of types of housing is permitted, including single-family and duplex residences, small apartment buildings and townhouses. B. Residential Mixed -Use (RMX) Previous District(s): R5 & 0-1 in urban contexts, MF, RA -C The Residential Mixed -Use District is established to accommodate a variety of housing types in a neighborhood setting. The regulations of this district are intended to provide areas of the community for those persons desiring small residences and multifamily in high density structures relatively neighborhoods within walking or biking distance from mixed-use \ centers as well as some limited commercial uses in sE pedestrian -scaled, residential -style structures. \�Y C. Neighborhood Mixed -Use (NMX) Previous District(s): 0-1 & NB in urban contexts, RA -C The Neighborhood Mixed -Use District is established as a pedestrian -scaled, mixed-use district which caters to the everyday needs of wearby neighborhoods, stressing accessibility by automobiles, bicycles, and pedestrians. ir. UNIFIED DEVELOPMENT ORDINANCE I Adopted July 16, 2013 2-3 DISTRICT PROVISIONS 2 2.2 DISTRICT PROVISIONS DESCRIPTIONBASE DISTRICT D. Renaissance Area Historic Core (RA -HC) The Historic Core of the Renaissance Area permits the "= sensitive continuation of the "Main Street' environment of White Street and its secondary streets. The ground floor of buildings on White Street should be comprised, of active uses including retail or restaurants with office ,�h tl• , and residential located on second stories. Side streets y. east of White Street may have a greater variety of ground floor uses. E. Urban Mixed -Use (UMX) Previous District(s): RA -UC a r ! The Urban Mixed -Use District accommodates an active, ~ pedestrian -friendly area of community -scale commercial, residential, office, and civic uses in both r vertically mixed-use, as well as free-standing buildings. Retail should be placed at street level, with residential uses in rear or upper stories. ®�. 2-4 TOWN OF WAKE FOREST, NC DISTRICT PROVISIONS 2.2 DISTRICT PROVISIONS 1 2 2.2.3 TABLE OF URBAN DISTRICT DEVELOPMENTSTANDARDS Base Districts UR RMX NMX RA -HC UNIX A. BUILDING TYPE (Section 5.4 — 5.8) Civic/Institutional Civic/Institutional Civic/Institutional Civic/Institutional Detached House Townhouse Townhouse Detached House Townhouse Apartment Apartment Townhouse Apartment Commercial Commercial Commercial B. PRIVATE FRONTAGE Section 5.3 1. Common Lawn Permitted Permitted Prohibited Prohibited 2. Porch & Fence Permitted Permitted Prohibited Prohibited 3. Terrace or Light Court Permitted Permitted Permitted Permitted 4. Forecourt Permitted Permitted Permitted Permitted 5. Stoop Permitted Permitted Permitted Permitted 6. Shopfront/Awning Prohibited Permitted Permitted Permitted 7. Gallery Prohibited Prohibited Permitted Permitted 8. Arcade Prohibited Prohibited Permitted Permitted C. DEVELOPMENT STANDARDS 1. Max. Density Units/Acre 10 dua 24 dua n/a n/a 2, Open Space (min) per CH 7 5% 510 2% for projects 5 2% for projects 5 acres or greater acres or greater 3. Park Space (min) per CH 7 210 210 2% for projects 5 2% for projects 5 acres or qreater acres or greater 4. Maximum Development Size if not 80 acres 40 acres n/a n/a in TND D. PRINCIPAL BUILDING 1. Principal Front Setback 20 ft max. 18 ft max. 12 ft max (NMX) ft max. 5 ft max.(RA-HC)E 2. Street Side/Secondary Front 5 ft min. 5 ft min. 12 ft max. 6 ft max. Setback 3. Side from adjacent lot Setback* 5 It min. 0 ft min. 4. Rear Setback 20 ft min. OR 5ft min. w/ rear 5 ft min. O ft min. O ft min. alley access 5. Frontage Buildout n/a n/a 60% 70% E. ACCESSORY STRUCTURE 1. Side Setback* 5 ft min. OR 5 ft min. OR 5 ft min. O ft for attached O ft for attached n/a structures structures 2. Rear Setback* 5 ft min. 5 ft min. 5 ft min. n/a 3. Garage Setback from Alley 15 ft from face of garaqe to centerline of aIle 3. Other Standards 20 ft min. behind building frontage line Rear Yard Only F. PARKING CONFIGURATION 1. Parking Requirements By Use - See Section 9.4 2. Parking Location By Building Type See Section 9.3 G. HEIGHT 1. Min. Height None None 16 ft 2 stories 2. Max. Height 6 Stories (May 6 Stories (May Exceed with an 6 Stories (May 3 stories Exceed with an SUP) (3 Stories Exceed with an SUP) along White SUP ) Street from Elm to Roosevelt * May be increased subject to building code standards UNIFIED DEVELOPMENT ORDINANCE I Adopted July 16, 2013 2-5 DISTRICT PROVISIONS 2.2 DISTRICT PROVISIONS 0 2.2.4 RURAL AND SUBURBAN DISTRICTS In order to maintain existing auto -oriented commercial and industrial areas, and conventionally developed residential subdivisions, there are hereby continued several base districts with the designations and general purposes listed under each and the specifically permitted uses, special uses, and dimensional standards included. It is expected that the expansion or enlargement of these districts will be minimal as more than sufficient area currently exists in accordance with the adopted Community Plan for such single -use categories. Each base district has a corresponding Conditional District designation which shall be administered in accordance with Section 2.6. 2-6 TOWN OF WAKE FOREST, NC DESCRIPTION BASE DISTRICT A. Open Space District (OS) The Open Space District is established to preserve and protect environmentally sensitive lands (e.g. floodways, wetlands) and properties that are already under public ownership and/or otherwise restricted for use for passive or active recreational use. B. Rural Holding District (RD) The Rural Holding District is established as a district in which the principal uses of the Previous District(s): RD land are restricted due to lack of available utilities, unsuitable soil types or steep slopes. C. General Residential (GR3, The General Residential Districts are established to maintain previously developed GR5, GR10) suburban residential subdivisions for their existing or approved low-to-medium density Previous District(s): R20, R15, R10, single-family dwellings and related recreational, religious and educational facilities. R5, MF, 04 Intended to act as a transitional zoning district between rural development in the county and the urban development of the town, these regulations are further intended R-20 & R-15 convert to GR3 to discourage any use which would be detrimental to the predominately residential R-10 converts to GR5 nature of the areas included within the district. R-5, MF & 04 convert to GR 1O where applicable D. Neighborhood Business (NB) The Neighborhood Business District is established as a district in which the principle Previous District(s): NB, 0-1 use of land is for retail trade and services purposes of a lower intensity than the Highway Business (HB) District. Such districts are generally located near residential areas and cater to the everyday needs of nearby residential neighborhoods, stressing accessibility by automobiles, bicycles, and pedestrians. E. Highway Business (HB) The Highway Business District is generally located on the major thoroughfares in town Previous District(s): HB and provides opportunities for the provision of offices, services and retail goods. The regulations for this district are intended to accommodate the predominately auto - oriented pattern of existing development while encouraging the creation of new pedestrian -friendly, mixed-use areas that avoid strip commercial development and establish more resilient land development patterns. F. Institutional Campus This district is intended to allow for the continued and future use, expansion, and new Development (ICD) development of academic and religious campuses and of governmental and health Previous District(s): ICD facilities, where the campus or facility has a total development size greater than 10 acres. The goal is to promote the many varied uses associated with such institutions while maintaining the overall design integrity of the campus setting and minimizing any adverse impacts on the neighboring residential and historic areas. In the attempt to meet this goal numerous requirements are included, such as but not limited to buffers, landscaping, outdoor lighting, parking, signage, building height, setbacks, and the like. G. Light Industrial (LI) The Light Industrial District is established to accommodate externally benign industrial Previous District(s): I and office uses that pose little nuisance to adjacent residential or mixed-use areas. H. Heavy Industrial (HI) The Heavy Industrial District is established to accommodate those industrial, manufacturing, or large-scale utility operations that are known to pose levels of noise, vibration, odor, or truck traffic that are considered nuisances to surrounding development. 2-6 TOWN OF WAKE FOREST, NC DISTRICT PROVISIONS 2.2 DISTRICT PROVIS ONS 2.2.5 TABLE OF RURAL AID, SUBURBANDiF STRICT DEVELOPMENT STANDARDS * For townhomes this standard applies to the entire townhome development, not individual townhome lots. Different requirements may apply if located in a Special Highway Overlay District. ** Different requirements may apply if located in a Special Highway Overlay District. *** .Subject to the provisions of the Wlatershed Protection Overlay Districts (where applicable) UNIFIED DEVELOPMENT ORDINANCE I Adopted July 16, 2013 2-7 Rural GeneralInstitutional Heavy . ,. .,. Highway Campus Light Industrial industrial DevelopmentStandard Holding Residential (GR3, District (RD) GR5, GR1 0) Business (NB) Business (HB) A. DEVELOPMENT STANDARDS 1. District/Development Area min n/a n/a n/a n/a 10 acres 10 acres 20 acres 2. Development/District Exterior 30 ft Setback 50 ft Buffer Setback/Buffer from exterior (Note: Along streets and 20 ft frontage of n/a n/a n/a n/a from existing 150 ft Buffer surrounding streets a 50 parcels ft setback shall apply) 3. Density (max) ** 1 unit per GR3: 3 units/acre determined by acre- GR5: 5 units/acre n/a n/a adopted master n/a n/a GR10: 10 units/acre plan 4.0 en Space minper CH 7 10% 10% n/a n/a 25% n/a n/a 5. Park Space minper CH 7 2.5% 2.5% n/a n/a n/a n/a n/a 6. Building Floor Area (Max) 100,000 sf (may n/a n/a 50,000 sf exceed max n/a n/a n/a with SUP 7. Development Floor Area Max n/a n/a 125,000 sf n/a n/a n/a n/a B. LOT STANDARDS 1. Lot Area (min)* GR3: 10,000 sq ft None except max. 40,000 sf 5 acres 40,000 sq ft GR5: 7,500 sq ft 15 acres for 20,000 sf n/a (interior lots (interior lots GRI 0: 5,000 sq ft Shoppinq Centers only) only) 2. Lot Width at Front Setback 60 ft 50 ft none 150 ft n/a n/a n/a (min)* C. PRINCIPAL BUILDING 1. Principal Front Setback (min)** 20 ft 20 ft 20 ft 30 ft n/a 30 ft nla 2. Street Side/Secondary Front 20 ft 20 ft 20 ft 30 ft n/a 30 ft n/a Setback (min)- min -3. 3.Side (from adjacent lot) Setback loft 8 ft 15 ft loft n/a 15 ft n/a (min)* 4. Rear Setback min 25 ft 25 ft 20 ft 30 ft n/a 20 ft n/a D. ACCESSORY STRUCTURE 1. Side Setback min loft loft loft loft loft loft loft 2. Rear Setback min loft loft loft loft loft loft loft 3. Other Standards See Section See Section 4.6 See Section 4.6 See Section 4.6 See Section 4.6 See Section See Section 4.6 4.6 4.6 E. PARKING CONFIGURATION 1. Parking Location Bv Buildin Tvoe - See Section 9.3 2. Specific Restrictions Parking in Parking in Parking in Front Parking in first Exterior setback Front Yard & Parking in n/a n/a Yard setback not 10 ft of Front not permitted Exterior Exterior permitted Yard setback except as part setback not setback not not permitted of an approved permitted permitted CD Ian F. BUILDING HEIGHT 1. Principal Building max 35 ft 3 stories 3 stories 3 stories 35 ft 35 ft 35 ft 2. Accessory Structure max 35 ft 2 stories 2 stories 2 stories 35 ft 35 ft 35 ft 3. Additional Height Permitted 1 ft additional w/Additional Setback (Subject 90 ft height height permitted to SUP) n/a n/a n/a permitted in US- with each 1 ft n/a n/a 1 Corridor Area horizontal setback * For townhomes this standard applies to the entire townhome development, not individual townhome lots. Different requirements may apply if located in a Special Highway Overlay District. ** Different requirements may apply if located in a Special Highway Overlay District. *** .Subject to the provisions of the Wlatershed Protection Overlay Districts (where applicable) UNIFIED DEVELOPMENT ORDINANCE I Adopted July 16, 2013 2-7 DISTRICT PROVISIONS 2.3 USES PERMITTED 2.3 USES PERMITTED 2.3.1 USE CATEGORIES All uses permitted in the UDO have been divided into 10 categories, defined as follows: A. Residential: Premises available for long-term human habitation by means of ownership and rental, excluding short-term leasing or rental of less than 1 month. B. Lodging: Premises available for short-term human habitation, including daily and weekly rental. C. Office/Service: Premises available for the transaction of general business and the provision of services, but excluding retail sales and manufacturing, except as a minority component. D. Commercial/Entertainment: Premises available for the commercial sale of merchandise, prepared foods, and food and drink consumption, but excluding manufacturing. E. Civic: Premises available for organizations dedicated to religion, government, arts and culture, recreation and sports, and other similar areas of public assembly. F. Educational/ Institutional: Uses and premises dedicated to education, social service, health care, and other similar functions. G. Automotive: Uses and premises accessed predominately by or dedicated to the sale, maintenance, servicing and/or storage of automobiles or similar vehicles. H. Industry/Wholesale/Storage: Premises available for the creation, assemblage, storage, and repair of items including their wholesale or retail sale. I. Agricultural: Premises for growing crops, raising animals, harvesting timber, and harvesting fish and other animals from a farm, ranch or their natural habitat and all related functions. J. Infrastructure: Uses and structures dedicated to transportation, communication, information, and utilities. 2.3.2 INTERPRETATION OF USE MATRICES A. Permitted/Prohibited Uses: Uses not listed as permitted (P); permitted with additional supplemental standards (PS); or requiring a special use permit (SUP) are presumed to be prohibited ( - ) from the applicable zoning district. B. Uses Not Listed: In the event that a particular use is not listed in the Use Matrix, and such use is not listed as a prohibited use and is not otherwise prohibited by law, the Administrator shall determine whether a materially similar use exists in this chapter. Should the .Administrator determine that a materially similar use does exist, the regulations governing that use shall apply to the particular use not listed and the Administrator's decision shall be recorded in writing. Should the Administrator determine that a materially similar use does not exist, this chapter may be amended to establish a specific listing for the use in question. C. Materially Similar Uses: The Administrator may determine that a use is materially similar if a permitted use is similarly classified by one or more of the following use classification systems: 1. American Planning Association Land -Based Classification Standards (LBCS) 2. North American Industrial Classification System (NAICS) 3. Institute of Transportation Engineers (ITS) Trip Generation Guide 2-$ TOWN OF WAKE FOREST, NC DISTRICT PROVISIONS 2.3 USES PERMITTED 2.3.3 USE TABLE Uses listed as (P) or (PS) which require an Enhanced Transportation Impact Analysis (according to Section 6.11.1), and all residential developments over 100 units, are subject to the Major. Site Plan Review Process established in Section 15.8.2. See Appendix A - Typical Development Review Process Chart for more information regarding how the development process will be administered according to the use allowances established below. RURAL I SUBURBAN I URBAN A. RESIDENTIAL Dwelling -Single Family OS -D - P P P P - - P - - P P - - - Dwelling -Duplex - - - P P - - P - - P P - - - Dwell in-Multifamil - - - - P - - P - - PS P P P P Dwelling -Accessory - PS PS PS PS - - PS - - PS PS PS PS PS Family Care Home 6 or fewer residents - PS - PS PS PS - PS - - PS PS PS PS PS Live -Work Units - - - - PS P P PS - - PS PS PS P P Manufactured Housing - Class A - PS - PS PS - - - - - SUP - - - - Manufactured Housing - Class B & C - SUP - SUP SUP - - P - - - - - - - Manufactured Home Park - SUPResidential - - - - - P P t - - - P P P P Care Facilities (More than 6 Residents PS PS PS PS PS P - PS PS PS PS PS LODGINGB. Bed and Breakfast Homes (Up to 8 Rooms OS •D GR3 GR5 GR10 NB HB ICD LI - SUP SUP SUP - - - PS - HI UR RMX RA -HC - SUP PS PS NMX PS UMX PS Boarding or Rooming House (12 or less persons) _ - PS PS - PS PS PS - - PS PS PS PS PS Dormitory - - - - - - - P - - - - - - - Hotel/Inn Less than 20 Rooms - - - - SUP P P P - - - P P P P Hotel/Inn (No Room Limit) - I - I - I - I - I P I P I P - I - I - I - I P I P I P C. • ATM OS •D - - - - - P P P P P - P P P P Banks, Credit Unions, Financial Services - - - - - P P P - - - P P P P Business Support Services - - - - - P P P P - - P P P P Dry Cleaning & Laundry Services - - - - - P P P - - - P P P P Funeral Homes/Crematoria - P - - - P P - - - - P P P P Home Occupation - PS PS PS PS P P P - - PS PS P P P Medical Clinic - - - - - P P P - - - P P P P Personal Services - - - - - P P P - - - P P P P Personal Services, Restricted - - - - - - P - - - - - - - - Post Office - - - - - P P P - - - P P P P Professional Services - - - - - P P F, - - - P P P P Small Equipment Repair/Rental - - - - - P P - I P P - - P P P Veterinary Services - - - - - P P P I P P - PS PS PS PS D. COMMERCIAL/ENTERTAINMENT OS RD GR3 GR5 GR10 NB HB ICD LI HI UR RMX RA -HC NMX UM) Adult aaaaaaaaaaaaaaa Alcoholic Beverage aaaaaooaaaa0000 Indooraaaaaooaoaaa000 UNIFIED DEVELOPMENT ORDINANCE I Adopted July 16, 2013 2-9 2 I DISTRICT PROVISIONS 2.3 USES PERMITTED USE TYPES Amusements, Outdoor RURAL OS -D — — — — SUBURBAN — — P — P — — — URBAN — — — Bar/Tavern — — — — — P P — — — — — P P P General Commercial — — — — — PS P P — — — PS P P P General Commercial — Use Greater than 100,000 sf — — — — — — SUP — — — — — — — — Internet Sweepstakes Facilities — — — — — — — — — — — — — — — Ni ht Club — — — — — P P — — — — — P P P Open Air Retail — — — — — P P SUP — — — PS PS PS PS Outside or Display Sales — — — — — PS P PS — — — PS PS PS PS Pawnshops — — — — — P P — — — — — P P P Racetrack — — — — — — I — — P P — — — — — Restaurant — — — — — P P P — — — P P P P Riding Stables — P P — — — — — — — — — — — P Shooting Range, Ran e, Outdoor — SUP — — — — — — SUP SUP — — — — — Theater, Indoor Movie or Live Performance — — — — — P P P — — — — P P P Theater, Outdoor — — — — — — P P — — — — PS PS PS E. CIVIC Cemetery OS -D PS PS GR3 PS GIR5 PS GR10 PS NEI PS HB PS ICD Ll PS — HI UR — PS RMXRA-HC PS PS NMX PS UMX PS Civic Meeting Facilities — P — — — P P P — — P P P P P Community or Cultural Facility — P P P P P P P — — P P P P P Conference/Convention Center — P — — — — P P — — — — — — P Public Safety Station — SUP SUP SUP SUP P P P P P P P P P P Recreation Facilities, Indoor — P P P P P P P — — P P P P P Recreation Facilities, Outdoor P P P P P P P P — — P P P P P Religious Institution — P P P P P I P P— — P PS PS PS PS Sports Arena/Stadium — — — — — — SUP SUP P — — — — — SUP F. EDUCATIONAL/INSTITUTIONAL OS Child/Adult Day Care Home 8 or less persons — -D P P P P P P P — — P P P P P Child/Adult Day Care Center (More than 8 — persons) PS — — — PS PS PS — — — PS PS PS PS College/University — — — — — — — P — — — — — — P— Community Support Support Facilit — PS PS PS PS PS P P — — PS PS PS PS SUP Correctional Institution — I — — — — — I — — I SUP I SUP — I — I — — I — I Halfway Homes — — — — — SUP — — — — — SUP — SUP — Hospital — — — — — — P P P — — — — — — Schools — Elementary & Secondary — PS PS PS PS PS PS PS — — PS PS PS PS PS Schools — Vocational/Technical — — — — — — — P — — — P P P P Studio — Art, dance, martial arts, music — — — — — P P P P — — P P P P G. AUTOMOTIVE OS -• GR3 GR5 Drive-Thru/Drive-In Facility — — — GR10 NIB — — PS HB P ICD LI HI UR — — — RMX RA -HC NMX — — SUP SUP UMX SUP Gas/Fueling Station — — — — — PS P — — — — — — PS PS Heavy Equipment/Manufactured Home _ _ _ Rental/Sales _ _ P P — P — — — — — — Parkin Lot/Structure — Principal Use — — — — — P P P P P — P P P P Theater, Drive -In — — — — — — I P— Vehicle Rental/Leasing/Sales — — — — — P P — P — — — — PS PS Vehicle Rental — Moving Trucks — — — — — P P — — — — PS PS PS PS 2-10 TOWN OF WAKE FOREST, NC DISTRICT PROVISIONS 2.4 OVERLAY DISTRICTS 2 RURAL I SUBURBAN I URBAN Vehicle Services — Minor Maintenance/Repair — — — — — PS P — P P — — — PS PS Vehicle Services — Major Repair/Body Work — — — — — — P — P P — — — — — H. INDUSTRY/WHOLESALE/STORAGE OS Industry,aaaaaamammaaaaa RD GR3 GR5 GR10 NB HB ICD LI HI UR RMX RA -HC NMX UMX •aaaaaaaaamaaaaa ICD Ll HI UR RIVIX RA -HC NIVIX UMX — — — — — — — Backyard Pens/Coops — P • aaaaaaaaa�aaaaa PS PS PS PS PS — — PS PS PS PS PS • Light.. • • • P P P P -- • - :. - . - . - aaoaaaaa�maaaaa P — — — — — — — Gardens(Community and Private P P Recyclinaaaaaooaooa0000 =• • •Stationsaaaaammmmmaaaaa P P P P P P P P P P P P • . • - • • • • • .. - . • aaaaaaoaooaaaaa — SUP I — I — I • • aaaaammaooaaaaa 1 — I P IP — I — I — — — Produce Stands — PS • . • - . - • - • • • • . • - aaaaaaaaooaaaaa PS PS PS PS PS — — PS PS PS PS PS • - . • . • • • aaaaaaaaooaaaaa — — — — 1. AGRICULTURE Animal Production OS -, — SUP GR3 SUP GR5 — GR10 NB HB — — — ICD Ll HI UR RIVIX RA -HC NIVIX UMX — — — — — — — Backyard Pens/Coops — P PS PS PS PS PS PS — — PS PS PS PS PS Nurseries & Garden Centers P P P P — — — P — — — — — — — Gardens(Community and Private P P P P P P P P P P P P P P P Kennels, Outdoor — SUP I — I — I — I — 1 PS 1 — I P IP — I — I — — — Produce Stands — PS PS PS PS PS PS PS — — PS PS PS PS PS Swine Farms — — — — — — — — — — — — — — — J. INFRASTRUCTURE Airstrip OS -D — SUP SUP — — — — — SUP SUP — — — — — Wireless Telecommunications Tower — SUP SUP SUP SUP SUP SUP SUP SUP SUP SUP SUP SUP SUP SUP Wireless Telecommunications Facility Non -Tower — PS PS PS PS PS PS PS PS PS PS PS PS PS PS Utilities — Class 1 — P P P P P P P P P P P P P P Utilities — Class 2 — P P P P P P P P P P P P P P Utilities — Class 3 — I — I — I — — — — — P P — — I — I — I — K. OTHER OS RD GR3 GR5 GR10 NB HB ICD LI HI UR RMX RA -HC NMX UMX Temporary Uses See Section 4.7 for Specific Provisions UNIFIED DEVELOPMENT ORDINANCE I Adopted July 16, 2013 2-11 Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) SUB03-BYP Post- Develop ment 1 1 0.064 723.000 0.94 year SUB03-BYP Post -Development 2 2 0.102 723.000 1.68 year SUB03-BYP year Development 10 10 0.224 722.000 3.68 SUB03-BYP Post -Development 25 25 0.304 722.000 4.78 year SUB03-BYP Worst Case 100 0.445 722.000 6.41 SUB03-BYP Post -Development 100 0.445 722.000 6.41 100 year SUB01 Post -Development 1 1 0.101 722.000 1.91 yea r SUB01 Post -Development 2 2 0.145 722.000 2.76 yea r SUB01 Post -Development 10 10 0.272 722.000 4.71 year SUB01 Post- Development 25 25 0.351 722.000 5.68 year SUB01 Worst Case 100 0.485 722.000 7.05 SUB01 Post -Development 100 0.485 722.000 7.05 100 year SUB02 Post -Development 1 1 1.983 722.000 38.34 year SUB02 Post -Development 2 2 2,795 722.000 53.98 year SUB02 Post- Development 10 10 5.120 722.000 88.81 yea r SUB02 Post -Development 25 25 6.549 722.000 105.92 year SUB02 Worst Case 100 8.961 722.000 129.76 SUB02 Post -Development 100 8.961 722.000 129.76 100 year SUB02-BYP Post -Development 1 1 0.134 723.000 1.96 year SUB02-BYP year Development 2 2 0.214 723.000 3.52 SUB02-BYP Post -Development 10 10 0.467 722.000 7.69 year SUB02-BYP Post -Development 25 25 0.635 722.000 9.99 year SUB02-BYP Worst Case 100 0.928 722.000 13.39 SUB02-BYP Post -Development 100 0.928 722.000 13.39 100 year SUB03 Post -Development 1 1 0.318 722.000 6.42 year Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 4/13/2015 Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow year Event Volume (min) (ft3/s) POA#1 Post -Development 2 (years) (ac -ft) 722.000 2.76 SUB03 Post -Development 2 2 0.422 722.000 8.31 POA#1 year 10 0.272 722.000 4.71 SUB03 Post- 10 10 0.706 722.000 12.11 POA#1 year 25 0.351 722.000 5.68 SUB03 Post -Development 25 25 0.874 722.000 13.87 POA#1 yea r 100 0.485 722.000 7.05 SUB03 Worst Case 100 1.152 722.000 16.24 SUB03 Post -Development 100 1.152 722.000 16.24 100 year SUB04 Post -Development 1 1 1.485 722.000 29.58 year SUB04 Post -Development 2 2 2.029 722.000 39.79 year SUB04 Post -Development 10 10 3.543 722.000 61.42 year SUB04 Post -Development 25 25 4.457 722.000 71.70 year SUB04 Worst Case 100 5.983 722.000 85.77 SUB04 Post -Development 100 5.983 722.000 85.77 100 year CULVERT Post -Development 1 1 9.104 729.000 128.55 year CULVERT Post -Development 2 2 12.082 728.000 167.32 year CULVERT Post -Development 10 10 20.181 727.000 248.19 year CULVERT Peosst-Development 25 25 24.994 727.000 286.61 CULVERT Worst Case 100 32.959 727.000 338.22 CULVERT Post -Development 100 32.959 727.000 338.22 100 year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) POA#1 Post -Development 1 1 0.101 722.000 1.91 year POA#1 Post -Development 2 2 0.145 722.000 2.76 year POA#1 Post- 10 10 0.272 722.000 4.71 yea r POA#1 Post -Development 25 25 0.351 722.000 5.68 year POA#1 Worst Case 100 0.485 722.000 7.05 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 4/13/2015 CJI MCADAMS Subsection: Master Network Summary Node Summary Label POA#1 POA#2 POA#2 POA#2 POA#2 POA#2 POA#2 POA#3 POA#3 POA#3 POA#3 POA#3 POA#3 POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA#4-UNANAL FOR DET POA CULVERT POA CULVERT POA CULVERT POA CULVERT POA CULVERT Scenario Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Post -Development 100 year Post -Development 1 year Post -Development 2 year Post -Development 10 year Post -Development 25 year Worst Case Return Event (years) 101 11 2' 101 101 11 2' 101 101 li 2. 10 10 1 2 10 Hydrograph Volume (ac -ft) 0.485 0.734 1.618 4.178 5.767 8.638 8.468 0.247 0.389 0.792 1.040 1.593 1.458 0.897 1.437 2.943 3.854 5.972 5.377 9.104 12.082 20.181 24.994 32.959 Time to Peak (min) 722.000 723.000 781.000 752.000 732.000 725.000 727.000 751.000 728.000 726.000 724.000 724.000 724.000 754.000 752.000 731.000 730.000 730.000 731.000 729.000 728.000 727.000 727.000 727.000 Peak Flow (ft3/s) 7.05 2.07 4.95 21.14 39.48 111.23 87.86 1.56 3.29 10.66 13.57 17.06 17.05 4.69 8.76 21.77 30.35 36.90 34.23 128.55 167.32 248.19 286.61 338.22 Traditions Ph. 2 n. Brown, PE JPM-14060.ppc 4/13/2015 M McADAMS Subsection: Master Network Summary Node Summary Label Scenario Return Hydrograph Event Volume (years) (ac -ft) POA CULVERT I Post -Development I 100 I 32.959 100 year Time to Peak (min) 727.000 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3/s) (years) (ac -ft) Peak Flow (ft3/s) 338.22 Maximum Maximum Water Pond Storage Surface (ac -ft) Elevation (ft) Development Traditions Ph. 2 D Rrnwn, PE JPM-14060.ppc 4/13/2015 Post- SWMF1 (IN) Development 1 1.983 722.000 38.34 (N/A) (N/A) 1 year SWMFI Post - Development 1 0.600 908.000 1.09 356.56 1.406 (OUT) 1 year Post- SWMF1 (IN) Development 2 2.795 722.000 53.98 (N/A) (N/A) 2 year SWMF1 Post - Development 2 1.404 782.000 4.51 356.80 1.548 (OUT) 2 year Post- SWMF1 (IN) Development 10 5.120 722.000 88.81 (N/A) (N/A) 10 year SWMFI Post - Development 10 3.711 753.000 18.99 358.08 2.339 (OUT) 10 year Post- SWMF1 (IN) Development 25 6.549 722.000 105.92 (N/A) (N/A) 25 year SWMFI Post - Development 25 5.133 733.000 35.70 358.43 2.559 (OUT) 25 year SWMFI (IN) Worst Case 100 8.961 722.000 129.76 (N/A) (N/A) SWMF1 Worst Case 100 7.710 725.000 100.28 359.42 3.201 (OUT) Post- SWMF1 (IN) Development 100 8.961 722.000 129.76 (N/A) (N/A) 100 year SWMF1 Post - Development 100 7.540 728.000 79.06 358.99 2.921 (OUT) 100 year Post- SWMF2 (IN) Development 1 0.318 722.000 6.42 (N/A) (N/A) 1 year Traditions Ph. 2 D Rrnwn, PE JPM-14060.ppc 4/13/2015 ''"McADAMS Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) SWMF2 Post- Development 1 0.182 753.000 1.21 333.86 0.158 (OU) 1 year Post- SWMF2 (IN) Development 2 0.422 722.000 8.31 (N/A) (N/A) 2 year SWMF2 Post- Development 2 0.286 732.000 2.42 333.98 0.181 (OUT) 2 year Post- SWMF2 (IN) Development 10 0.706 722.000 12.11 (N/A) (N/A) 10 year SWMF2 Post- Development 10 0.568 727.000 7.82 334.23 0.234 (OUT) 10 year Post- SWMF2 (IN) Development 25 0.874 722.000 13.87 (N/A) (N/A) 25 year SWMF2 Post- Development 25 0.736 726.000 9.68 334.32 0.252 (OUT) 25 year SWMF2 (IN) Worst Case 100 1.152 722.000 16.24 (N/A) (N/A) SWMF2 Worst Case 100 1.148 726.000 11.70 334.41 0.271 (OUT) Post- SWMF2 (IN) Development 100 1.152 722.000 16.24 (N/A) (N/A) 100 year SWMF2 Post- Development 100 1.014 726.000 11.70 334.41 0.271 (OUT) 100 year Post- SWMF3 (IN) Development 1 1.485 722.000 29.58 (N/A) (N/A) 1 year SWMF3 Post- Development 1 0.897 754.000 4.69 324.84 0.725 (OU 1 year Post- SWMF3 (IN) Development 2 2.029 722.000 39.79 (N/A) (N/A) 2 year SWMF3 Post- Development 2 1.437 752.000 8.76 325.13 0.858 (OUT) 2 year Post- SWMF3 (IN) Development 10 3.543 722.000 61.42 (N/A) (N/A) 10 year Traditions Ph. 2 JPM-14060.ppc D. Brown, PE 4/13/2015 McADAMS Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3/s) Water Pond Storage (years) (ac-ft) Surface (ac-ft) Elevation (ft) SWMF3 Post- I Development I 10 I 2.943 I 731.0001 21.771 326.11 I 1.316 (OUT) SWMF3 (IN) SWMF3 (OUT) SWMF3 (IN) SWMF3 (OUT) SWMF3 (IN) SWMF3 (OUT) 10 year Post - Development 25 year Post - Development 25 year Worst Case Worst Case Post - Development 100 year Post - Development 100 vear 25 1 25 100 100 100 1001 4.457 1 3.854 5.983 5.972 5.983 5.377 722.000 1 730.000 722.000 730.000 722.000 731.000 1 71.701 30.35 85.77 36.90 85.77 34.23 1 (N/A) 326.53 (N/A) 327.74 (N/A) 327.13 (N/A) 1.523 (N/A) 2.167 (N/A) 1.836 Traditions Ph. 2 D. Brown, PE JPM-14060.ppc 4/13/2015 HY-8 Culvert Analysis Report Crossing Discharge Data Discharge Selection Method: Recurrence Table 1 - Summary of Culvert Flows at Crossing: Trasitions Ph 2B & 2C Headwater Elevation (ft) Discharge Names Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (cfs) Iterations 348.15 25 year 286.61 286.61 0.00 1 348.51 100 year 338.22 338.22 0.00 1 357.65 Overtopping 721.36 r 721.36 0.00 Overtopping Rating Curve Plot for Crossing: Trasitions Ph 2B & 2C 358 357 -356 ® 355 } 354 w 353 352 351 350 3e49 3E43 Total Rating Curve Crossing: Trasitions Ph 2B & 2C Total Discharge (cfs) Table 2 - Culvert Summary Table: Culvert 1 Discharge Total Culvert Headwater Inlet Control Outlet Flow Normal Critical Outlet Depth Tailwater Outlet Names Discharge Discharge Elevation (ft) Depth (ft) Control Type Depth (ft) Depth (ft) (ft) Depth (ft) Velocity (cfs) (cfs) Depth (ft) (ft/s) 25 year 286.61 286.61 348.15 3.145 0.0` 1-S2n 2.415 2.750 2.415 2.972 10.655 100 year 338.22 338.22 348.51 3.511 0.0" 1-S2n 2.713 3.037 2.713 3.115 11.120 * Full Flow Headwater elevation is below inlet invert. Straight Culvert Inlet Elevation (invert): 345.00 ft, Outlet Elevation (invert): 341.00 ft Culvert Length: 115.07 ft, Culvert Slope: 0.0348 Culvert Performance Curve Plot: Culvert 1 358 356 C: 354 352 1: 350 348 PCI folinance Curve Ctilvert: C6 -en I w FA -1 Inlet Control Elev Outlet Control Elev Total DsCarge �.cfsj Water Surface Profile Plot for Culvert: Culvert 1 Crossing - Trasitions Ph 2B & 2C, Design Discharge - 338.2 cfs Cuh,ert - Cuh ert 1, Cuisvert Discharge - 338-2 cfs 358 356 354 352 c 350 0 348 W 346 344 342 340 1N 150 Station (ft) Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 344.00 ft Outlet Station: 115.00 ft Outlet Elevation: 340.00 ft Number of Barrels: 2 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 6.00 ft Barrel Material: Corrugated Aluminum Embedment: 12.00 in Barrel Manning's n: 0.0310 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: NONE Table 3 - Downstream Channel Rating Curve (Crossing: Trasitions Ph 2B & 2C) Flow (cfs) Water Surface Elev (ft) Depth (ft) Velocity (ft/s) Shear (psf) Froude Number 286.61 343.97 2.97 5.93 5.10 0.99 338.22 344.11 3.11 6.18 5.34 1.00 Tailwater Channel Data - Trasitions Ph 2B & 2C Tailwater Channel Option: Irregular Channel Roadway Data for Crossing: Trasitions Ph 2B & 2C Roadway Profile Shape: Constant Roadway Elevation Crest Length: 250.00 ft Crest Elevation: 357.65 ft Roadway Surface: Paved Roadway Top Width: 50.00 ft HY-8 Energy Dissipation Report External Energy Dissipator Parameter Value Units Select Culvert and Flow Crossing Trasitions Ph 2B & 2C Culvert Culvert 1 Flow 286.61 cfs Culvert Data Culvert Width (including multiple barrels) 12.0 ft Culvert Height 6.0 ft Outlet Depth 2.41 ft Outlet Velocity 10.66 ft/s Froude Number 1.21 Tailwater Depth 2.97 ft Tailwater Velocity 5.93 ft/s Tailwater Slope (SO) 0.0348 External Dissipator Data External Dissipator Category Streambed Level Structures External Dissipator Type Riprap Basin Restrictions Froude Number <3 Input Data Condition to be used to Compute Basin Outlet Velocity Best Fit Curve D50 of the Riprap Mixture Note: Minimum HS/D50 = 2 is Obtained if D50 = 0.584 ft D50 of the Riprap Mixture 0.584 ft DMax of the Riprap Mixture 1.000 ft Results Brink Depth 3.894 ft Brink Velocity 14.913ft/s Depth (YE) 3.667 ft Riprap Thickness 1.500 ft Riprap Foreslope 2.0000 ft Check HS/D50 Note: OK if HS/D50 > 2.0 HS/D50 2.014 HS/D50 Check HS/D50 is OK Check HS/D50 Note: OK if 0.1 < D50/YE < 0.7 Check D501YE 0.159 D50/YE Check D50/YE is OK Basin Length (LB) 24.000 ft Basin Width 22.000 ft Apron Length 6.000 ft Pool Length 18.000 ft Pool Depth (HS) 1.176 ft TW/YE 0.811 Tailwater Depth (TW) 12.972 ft verage Velocity with TW 13.450 ft/s Critical Depth (Yc) 1.652 ft Average Velocity with Yc 6.858 s Downstream Riprap for High TW Distance: 1 LB Velocity 9.688 ft/s Size 0.612 ft Distance: 2 LB Velocity 7.490 ft/s Size 0.366 ft Distance: 3 LB Velocity 5.257 ft/s Size 0.180 ft Distance: 4 LB Velocity 3.934 ft/s Size 0.101 ft M 00 U C IIIIIIIM-4 Ilk\ I k 'N' IV k 110� r IV -N k IV I N I — > ------- IN ---------- N, I I IN f N\ IN it tl IN I I / I 1 11 // if IV it -4 IN ki IN. 1k r IN 1\ it t N 41111, IN AID, \t as V- I NN IV IN N Aft IN IN IN k it V N, IN IN 1\7 N\ k\ IN r r L IV N 1 1, '\ e I, j j it so N IN IN I I\ 1\ - -1 N, I '\ IN k -I M V, /,\w r N, J j N, r IN I \\15 it I, IN \-J1- - - - - - - - - - p IN N IN N, IV N, If If moss I I I kI I I / - \1 If, I ) I \ I --, I I I- C. it j I IN it k I IN -1 IN A 1 0 if I ow N '75% N it I, it I,' IV if ------ I IN I/ N,, - - - - - - - - - - - N`\ t IN - - - - - - - - - - it -j 'o N, I k I, I % 1-N f, it - - - - - - NN IN j N I N xl I k I I N Ni 't IN - - - - - - - I - - - - - - - - IN '( if t!l X so N Ij e-1 If N IN k IN 11 V; N, rl I/ I N IV - / 1, q 'd 'k NN r If IN > 'N\ i N IN IN I'D x 1 /v r hal it - - - - - - # to N, IV if hi `SUB TO CULVERT V k IN fir f- I" I I z" A x %K�47, .40 "AREA 67.35 AC,'"I Z N, k IN 0 k It 'IN 'k - k IN CN 86 11, I'j ji0i z IN If kzl `lN, N, W I It I v r v -/j, N, , I it t I Te N/A I I /J1 t IF I \ f\ 4" V it N, I to It If -------- t IN N, N� \v It ------- to ow, -N. N� it ---------- IN X t Ij I, 2\ IN A `4v. -------------------- 11-7 N I I r ft �v I Q j, N- ------- If IN Ip V If IN j V- ---------- NNI\ It N. I,\ \ , \\ \ I " , , - 1\ w 11�1 N I!, *\ 1, 1 , / ; IN y IN t as I A 0\1� I N, 0 1 IN -N I t h, N f N "All '11) 11 ---------------- ANN ,_ft 74 A& I >1 fAft k AV& tAftft -YI fftAir �.y SUB 2 TO SWMFI t 7�\ \1 31— AREA 21.63 AC k I NTWIN 72" ALUM itTc 0. 1 HR L fIF T T IPN: 164191v"v It I 2452 j1j 09 %6. 1 z am AN N---- -------- N--- -------------- lIe14 IPOINT OF ANALY SIS I)e1 IIV 7- /11 - !\ A I x it�x N-�!TT L P/UNAN 05 a236, go f OV IN r-, IN, - - - - - - - SUB 4BY AREA 4U.tJO At, N NL k Tc N/A NA -7 08 0770. K 1329 it t------------ SWMF2 I If AREA 2.35 AC -7 BIT, Tf IE�A ftTc 0.1 HR f 44" 7114! ,1 L3 tt L-1 JL \1 1:j L-1 t1.25 AC 2 VA fHR q NfZ, IPOINT OF ANALYSIS WET P iA 77, AREA 1.47 ac. j vj I0. 1 HR SWMF1 1z SUB I titNN-AREA 1.23 AC 4-1 fki r Tc 0. 1 HR GRAPHIC SCALE SUB 2BYP 120 0 60 120 240 A— ---- ------- -- M� NEI �sm REA 3.07 ac. /< A 11 POINT OF ANALYSIS -T f N — I inch 120 ft. Ilk -------- -- N------ "k\ Tc 0. 1 HR #2 ---------- N------- -- POINT OF ANALYSIS ----------- -------- ---- - -- NALYSIS ---------- ----------- ------ #3 ---------- ------- ------ 1'POINT 0 F A ---- -- #4 ------------- - A- ------------- - PRELIMINARY DRAWING NOT RELEASED FOR CONSTRUCTION co 0 0 co w (Z 0) 9 A C9" -0 4 0 0 q t (D V 0 'ZI, 0 !1 e, (40 0-i U LO 0 C) 5 cl� N 00 0 C\2 CN,2 -14 C/D U 04 0 0 PROJECT NO. JPM-14060 FILENAME:JPM1 4060—POS DESIGNED BY: DHB DRAWN BY: DHB SCALE; 1 "=1 20' DATE': 08/04/15 1EET NO. POST fill =jMcADAMS