Loading...
HomeMy WebLinkAbout20120796 Ver 1_Restoration Information_201208221 t 1 1 1 1 1 1 1 i BIG CREEK II STREAM RESTORATION DESIGN REPORT r �S �fz,;''n�'T';+'�'� lyl�'i tt• ���i�( 1,'-d�*�i •7T � c, ilori� �`��' � i a � tP n �F� 1 Y ��r•�.�•.•.. ry u y'' �w�,kii`�• ..1`1- ,`�,,. .+• _ '^���t;t— sT J�"j`�' („ ��p;•pJ d _ My U Va ..� �•x!- y.z -yGy JULY 20120 CLEAR C 1317 Knopp Road, Jarrettsville, Maryland 21084 (410) 692 -2164 qapp.6d _ . Consuharns & Designers, Inc. "Integrating Engineering and Environment" 1.321 :Mercedes Drive. Suite C Phone: (410) 694 -9401 I lanm er. Maryland 21076 Far. (410) 694 -9405 http:ft%%w-.. havlandinc.com STREAM WALKER CONSULTING 99 BANBURY COURT WAYNESVILLE, NC 28786 (8281507 -7686 t 1 1 1 i i 1 1 1 1 1 1 t 1 1 1 i 1 1 BIG CREEK II STREAM RESTORATION DESIGN REPORT PREPARED FOR RESOURCE INSTITUTE, INC. PILOT VIEW RC &D, INC. and SURRY SOIL & WATER CONSERVATION DISTRICT PREPARED BY CLEAR CREEKS CONSULTING LLC IN COLLABORATION WITH BAYLAND CONSULTANTS AND DESIGNERS, INC and STREAM WALKER CONSULTING JULY 2012 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table of Contents Project Background 1 Technical Report I. Study Area 2 II. Scope of Studies 2 III. Watershed Characterization A. Physiography and Basin Morphometry 2 B. Climate 5 C. Geology, Soils, and Land Use 5 D. Hydrology 6 1. Hydrologic Modeling 6 2. Regional Regression Equations 7 3. Calibration of Hydrologic Model 8 4. Results 8 5. Bankfull Discharge Estimates 10 E. Hydraulics 11 1. Hydraulic Model 11 2. Hydraulic Analysis 12 3. Results 16 IV. Channel Morphology and Stability Assessment A. Rationale 17 B. Assessment Methods 17 1. Verifying Bankfull Channel Field Indicators 17 2. Upstream Channel Morphology and Sediment Sources 18 3. Level II — Morphological Description 18 4. Level III — Assessment of Stream Condition 18 C. Findings of Channel Morphology and Stability Assessment 1. Evaluation of Watershed Conditions and Upstream Channel Conditions 18 a. Historic Conditions 18 b. Current Conditions 19 2. Project Site — Channel Morphology and Stability Assessment 19 a. Historic Conditions 19 b. Current Conditions 20 Reach 1 20 Reach 2 26 Reach 3 34 Reach 4 41 V. Estimating Sediment Loadings 49 VI. Restoration Design 50 A. General Approach 55 B. Design Criteria 51 1. Reference Reach Data 51 2. Design Discharges 51 3. Channel Geometry 52 i 4. Sediment Entrainment Analysis 52 a. Sediment Entrainment Analysis Procedures 52 b. Big Creek Project Reaches 53 c. Existing Conditions 54 d. Proposed Conditions 54 References Appendix A. Watershed Characterization Supporting Documentation B. Bankfull Discharge and Channel Dimensions Validation Supporting Documentation C. Channel Morphology and Stability Assessment Supporting Documentation D. Hydrology and Hydraulic Analysis Supporting Documentation E. Design Criteria Supporting Documentation 1 PROJECT BACKGROUND Resource Institute, Pilot View RC &D and the Surry Soil and Water Conservation District have a history of working with interested landowners to improve the water quality of streams on their property. This project involves restoration of Big Creek along the Rogers, Brannock, Polk and Tilley Properties near Mount Airy, North Carolina close to the Surry and Stokes County line. This is the second project on Big Creek. In 2008, Pilot View RC &D and the Surry SWCD worked with landowners to restore 4036 linear feet of the upper reach of Big Creek. The current project, Big Creek 2, will restore 4515 linear feet of Big Creek and its tributaries immediately downstream of the first project. Completion of this phase of the overall ' restoration effort will lengthen the restored portion of Big Creek to more than 8000 linear feet. The project will improve the water quality of Big Creek by reducing sediment entering the stream corridor through unrestricted livestock grazing and stream bank erosion. It will also improve habitat for aquatic organisms. Big Creek is a third order tributary of the Dan River in the Roanoke River Basin. The Dan River is the main source of drinking water for the Town of Eden. The January 2008 Draft Report by the NC Division of Water Quality suggests that the North Carolina portion of the Dan River has some issues with turbidity and fecal coliform. The hydrologic and sediment regime of Big Creek and its tributaries have been historically altered by agricultural activities and development. The channels in the headwater areas have adjusted in response to direct impacts (i.e., channelization) as well as indirect impacts (i.e., alterations in watershed hydrology) by incising (i.e., down - cutting), widening, and eroding laterally. Clearing of riparian vegetation and unrestricted livestock access as resulted in trampled and unstable banks along some reaches. Sediment eroded from these impacted reaches is still being transported to downstream reaches within the watershed where deposition initiates lateral adjustments and instability. It is the intention of Pilot View RC &D and the Surry County Soil and Water Conservation District to correct the stream channel instability problems, improve ' water quality, enhance and/or restore natural floodplain characteristics, and reduce the loss of agricultural land by implementing an effective, long -term stream restoration plan for this section of Big Creek. 1 1 TECHNICAL REPORT I. Study Area The study area for the current project includes the stream reaches along Big Creek starting at a point approximately 1200 linear feet downstream of Albion Church Road and ending at a point approximately 4241 linear feet further downstream (Figs. 1 and 2). II. Scope of Studies Existing data was collected and field studies were conducted to: evaluate the current conditions along Big Creek II; determine which reaches to restore and the extent of the restoration effort required; develop reliable estimates of the design discharge(s) and other design parameters that guided the preparation of restoration design plans, and satisfy permitting requirements. This study did not include wetland delineations, identification of significant plant or animal habitat, archeological or historical studies, or other environmental studies that may be required by local, state or federal permitting agencies. III. Watershed Characterization Existing information on watershed characteristics and land use was collected, compiled and reviewed. The data collected included: topographic, soils, geology, and land use maps; meteorological data; hydrologic and hydraulic data; and published technical reports. The following characterization of Big Creek II watershed was developed from this information. A. Physiography and Basin Morphometry The Big Creek watershed is situated in the northeast corner of Surry County. Its headwaters are bounded by Chestnut Ridge on the north and west and on the south by NC 89. The watershed lies north of the Westfield and Woodville communities. This region is situated along the eastern edge of the Western Piedmont physiographic province and is characterized by gently rolling to hilly topography. The Big Creek II watershed area is 6.32 square miles (4,044 acres) at the downstream end of the project. For purposes of this current study the Big Creek 11 project is divided into four stream reaches. 1 � I it 1 � I I I I I I I � I 1 'I L o*� .•., �} / ! it - -+ ` - f} j _ � �Y 4•, '^.>f t f/ll�j��l ,,f�✓,✓ �^T + j "..� ' it `'� +, - 1��� p� �! I 1255 r ''" ,...., , .r.. „._ _, •__. —� ._... .... _ .. _ ? �, tit 3'!"J - h . . �1 i 0 0.3 0.6 0.9 1.2 1.5 km M* G 4 0.2 0.4 0.6 0.8 1 rni Map center is UTM 17 549118E 4040125N (WGS84 /NAD83) Claudville quadrangle M= -7.711 Projection is UTM Zone 17 NAD83 Datum G =0.326 Fig. 2 — Big Creek II Stream Restoration Project Site 3 tQ N I W cam' C7 CD (D CD 0) l CD 0 CD0 0 r 3 1� t 1 1 t 1 ri t t t J 1 1 1 t �J Reach 1 is approximately 800 feet and ends at small un -named tributary that enters on the right side of the stream. Reach 2 runs from the small tributary on creek right to an area where the creek is noticeably straighter and has a small farm path adjacent to the stream. This reach is approximately 1400 feet. Reach 3 begins at this "straight" section and flows to an existing stream crossing just downstream of another small tributary that enter from the left. This reach is approximately 850 feet. Reach 4 runs from the stream crossing to the property line. There is a bedrock/boulder outcropping on the right bank at the end of the reach. This reach is approximately 1191 feet. The upper Big Creek watershed is relatively steep and the valley bottoms are relatively narrow, confined by adjacent hill slopes. Upstream of the project area the floodplain along the mainstem widens and channel gradient flattens. Except where the channel flows adjacent to hill slopes, the project reaches are characterized by broad floodplains, increased sinuosity, and tight meander bends. B. Climate The climate of North Carolina is determined by its location in the warm temperate zone, but is modified by three important factors: the proximity of the Atlantic Ocean to the east, the distance of the state from the prevailing course of cyclonic storms, and the gradual rise in elevation of the land towards the west to the summit of Mt. Mitchell. Unlike the Coastal Plain, in the Western Piedmont extremes of temperature become greater and rainfall is less. Surry County experiences moderate winters and warm summers. Mean annual temperature is 58° F. Mean monthly temperatures range from 32 to 50 °F in January and 68 to 88 in July. There are no distinct wet and dry seasons. Most of the rainfall during the growing season comes from summer thunderstorms, but may vary widely from place to place and from season to season. Winter rainfall results mostly from low- pressure storms moving through the area and is less variable than summer rainfall. Mean annual precipitation is 44.2 inches, with mean monthly precipitation varying from a low of 2.8 inches in November to a high of 4.6 inches in July. Some snow falls every winter, with total amounts ranging from 1 inch to 2 feet. Mean annual snowfall is 9 inches. Generally, only a few inches accumulate at one time, and such accumulations usually melt within a few days. C. Geology, Soils, and Land Use According to the North Carolina Geological Survey, the Big Creek watershed is located within the Inner Piedmont Belt, which consists of a variety of metamorphic and igneous bedrock formations. More specifically, the study area 1 t i is underlain by Cenozoic biotite gneiss and schist rock, which is described as inequigranular, locally abundant potassic feldspar and garnet; interlayered and , gradational with calc- silicate, sillimanite -mica schist, mica schist, and amphibolite (NCGS, 1998). It also contains small masses of granitic rock. The dominant upland soils weathered from these rocks are Rhodhiss, P Fairview, Toast, and Woolwine loamy soils. These soils are moderately deep to very deep, well drained soils. Fairview soils have a sandy clay loam surface layer and clayey subsoil. Moderate permeability, low to high surface runoff, and moderate to severe erosion hazard characterize these soils. Rhodhiss soils have a sandy loam surface layer and sandy clay loam subsoil. Moderate permeability, low to high surface runoff, and moderate to severe erosion hazard characterize these soils. Toast soils have a coarse sandy loam surface layer and clay subsoil. Moderate permeability, low to high surface runoff, and moderate to severe , erosion hazard characterize these soils. Woolwine soils have a gravelly sandy loam surface layer and sandy clay loam, clay, and very gravelly sandy clay loam subsoils. Moderate permeability, low to high surface runoff, and moderate to severe erosion hazard characterize these soils. The dominant floodplain soils along Big Creek are of the Colvard and Suches , series. These very deep, well drained soils formed in sandy loamy alluvial deposits. They have a fine sandy loam surface layer and subsoil and are characterized by moderately rapid permeability, slow surface runoff, a moderate ' to high erosion hazard, and occasional flooding. The dominant land use in the watershed is forest (60 %) and old field, cultivated land and pasture (37 %) along the ridges, side slopes, and floodplain. Low - density single - family residential fronting along secondary roads makes up less than 3% of the land use. D. Hydrology One of the critical steps necessary for any geomorphic stream design project is developing accurate estimates of the flow regime, particularly the bankfull discharge. 1. Hydrologic Modeling The Big Creek watershed delineation was expanded from previous work t completed on the first phase of the Big Creek Restoration. The hydrologic model was expanded to include the drainage area to the limit of the second phase of restoration. The USDA Soil Conservation Service SCS TR -55 computer program was used to compute the runoff curve number (RCN) and time of concentration (Tc). The resulting RCN and Tcwere incorporated into Technical Release No. 20: Computer Program for Project Formulation Hydrology (TR -20), based upon Soil Conservation Service methodology. Peak discharges for the existing 6 [I 1 1 1 1 1 1 1 1 t drainage areas were computed with all computations assuming good hydrologic conditions. Table 1 shows the computed results for RCN and Tc for the drainage areas: Table 1 — Sub - Basins Drainage Area Characteristics Study Point Cumulative Area Acres Cumulative Area (Square Miles Runoff Curve Number (RCN) Time of Concentration Hours 1 3,656 5.71 58 2.12 2 3,770 5.89 58 2.16 3 4,010 6.27 58 2.27 4 4,044 6.32 58 2.32 SCS TR -20 computer model was then utilized to route selected storm events with the computed cumulative drainage area characteristics to develop peak discharges for the selected study points. The TR -20 model is a deterministic hydrologic model that synthesizes a single event runoff hydrograph as a function of a rainfall input and drainage area characteristics. The model is designed to operate on a time varying rainfall to produce a hydrograph that simulates the role of the watershed area; land cover; hydrologic soil types; antecedent runoff conditions; topography; storage basins; characteristics of the overland, shallow confined, and channel flow paths; and, storage attenuation such as that created by flood plains, wetlands, structures, and ponds. A cumulative analysis of the drainage area characteristics was used to not inflate the peak discharges when adding a small, short time of concentration hydrographs to large, long time of concentration hydrographs; however, the cumulative nature of the drainage areas analysis leads to a lengthening of the time of concentration that is not directly proportional to the increase in area. This is evident between study points 3 and 4. To offset these limitations of the TR -20 methodology, the highest peak discharge for a particular storm event was carried through to the cumulated drainage areas. The hydrologic model was calibrated as described within the Calibration of the Hydrologic Model section of this report. The full hydrologic model can be found in Appendix 1. 2. Regional Regression Equations Estimating flood frequency and magnitude based solely on gauged sites does not provide accurate spatial representation. Regression analysis utilizes a "region of influence" method to correlate gauged and ungauged sites and is useful in determining whether the hydrologic model has been sufficiently calibrated to provide the most accurate estimate of peak discharges for the reach. Regional regression equations from Scientific Investigations Report 2009 -5158 "Magnitude and Frequency of Rural Floods in the Southeastern United States, through 2006: Volume 2, North Carolina" by the U.S. Geological Survey, dated 2009 were employed to analyze the calibrated peak discharges of the hydrologic model. The hydrologic model was considered successfully calibrated if the peak discharges were within one standard error of the regional regression peak discharge estimates. Appendix 2 list the regional regression equations used to determine the success of the hydrologic model calibration. 3. Calibration of Hydrologic Model The hydrologic model drainage area characteristics and inputs are calibrated with statistical methods to overcome the inherent limitations of the SCS TR -20 hydrologic modeling software to over predict peak flows for all return periods. Regional regression equations use USGS stream gaging stations, they can provide a reasonable indication of existing runoff conditions and, therefore, can provide a base for calibration of the hydrologic model. Table 2 list the TR -20 input element and the application for calibration based on multiple storm frequency models. Table 2 list the calibrated inputs used for the various storm events for each drainage area. Table 2 — TR -20 Calibrated Inputs Storm Event Rainfall Distribution Rainfall Inches Selected ARC 1 -YR 24 -hr Type 11 3.0 2.0 2 -YR 24 -hr Type II 3.5 2.0 5 -YR 24 -hr Type II 4.3 2.0 10 -YR 24 -hr Type II 5.0 2.0 50 -YR 24 -hr Type II 6.2 2.0 100 -YR I 24 -hr Type II 7.1 2.0 1 1 1 Table 3 lists the computed calibrated peak discharges for each study point I Table 2 — Calibrated TR -20 Peak Discharges Study Point 1 -YR cfs ) 2 -YR (cfs) 5 -YR (cfs) 10 -YR (cfs) 50 -YR (cfs) 100 -YR (cfs 1 182 355 719 1122 1945 2643 2 184 357 732 1143 1982 2693 3 188 370 757 1181 2047 2780 4 1 188 1 370 1 757 1181 2047 2780 4. Results Table 5 through 8 compares the regional regression equations with the calibrated TR -20 peak discharges to determine whether the calibration was successful in achieving the target values within one standard error of the regional regression equations. 1 1 1 1 1 1 1 1 1 1 I� 1 I 1 Table 5 — Peak Discharge Results, Study Point 1 Storm Recurrence Regression Peak Standard Lower Limit Upper Limit TR -20 Peak Interval (yrs) Discharge Error ( %) (cfs) (cfs) Discharge (cam) cfs (cfs) (cfs) 2 2 490 34.5% 321 659 350 5 787 41.2% 463 1112 719 10 1166 35.1% 757 1576 1122 50 1881 39.6% 1136 2625 1945 100 2185 41.9% 1269 3100 2643 Table 6 — Peak Discharge Results, Study Point 2 Storm Regression Peak Standard Lower Limit Upper Limit TR -20 Peak Recurrence Interval (yrs) Discharge Discharge Error ( %) (cfs) (cfs) Discharge cfs (cfs) 2 499 34.5% 327 672 357 5 804 41.2% 473 1135 732 10 1189 35.1% 771 1606 1143 50 1915 39.6% 1157 2674 1982 100 2225 j 41.9% 1293 3157 2693 Table 7 — Peak Discharge Results, Study Point 3 Storm Recurrence Regression Peak Standard Lower Limit Upper Limit TR -20 Peak Interval (yrs) Discharge Error ( %) (cfs) (cfs) Discharge (cfs) cfs 2 520 34.5% 341 700 370 5 839 41.2% 493 1184 757 10 1235 35.1% 802 1669 1181 50 1989 39.6% 1201 2776 2047 100 2309 41.9% 1342 3277 2780 Table 8 — Peak Discharge Results, Study Point 4 Storm Recurrence Regression Peak Standard Lower Limit Upper Limit TR -20 Peak Interval rs (Y ) Discharge Error ( %) (cfs) (cfs) Discharge (cfs) cfs 2 523 34.5% 342 703 370 5 843 41.2% 496 1191 757 10 1241 35.1% 806 1677 1181 50 1998 39.6% 1207 2789 2047 100 2320 41.9% 1348 3292 2780 The comparison shows the TR -20 peak discharges for the associated drainage areas were within the standard error of the regression equations and was sufficiently calibrated. 5. Bankfull Discharge Estimates Four methods were used to develop bankfull discharge estimates. These included 1) updated regional regression equations developed in North Carolina (NCSU and NRCS, 2006), 2) TR -20 Hydrologic Model, and 3) Manning's equation and field data. a. Regional Regressions North Carolina State University (NCSU) and the U.S.D.A. Natural Resources Conservation Service (NRCS) cooperated to develop regional regression equations for bankfull discharge in the rural Piedmont area of North Carolina (NCSU and NRCS, 1999). Recently updated regional regressions (NCSU and NRCS, 2006) based on this original work were used as one method for estimating bankfull discharges. b. U.S. Geological Survey Regional Regressions Estimates for the 2 -YR peak discharge were developed using regional regression equations from Scientific Investigations Report 2009 -5158 "Magnitude and Frequency of Rural Floods in the Southeastern United States, through 2006: Volume 2, North Carolina" by the U.S. Geological Survey (2009). c. U.S.D.A. Soil Conservation Service TR -20 Methodology As part of this current study a range of flows varying in frequency from the 1 -year to the 100 -year discharge was developed using the U.S.D.A. Soil Conservation Service TR -20 Methodology. . The 1 and 2 -YR recurrence interval peak discharges were utilized to validate the discharge estimates developed using the other two methods. d. Manning's Equation Bankfull discharge estimates were developed using Manning's equation and cross - sectional data collected in the crossover (riffle) of relatively stable reaches along the project area. The slope used was the bankfull slope of the overall reach, and estimates of Manning's n were developed utilizing visual observations of the channel bottom and banks throughout the reach. As shown in Table 9, the bankfull discharge estimates developed for Big Creek using the rural regional regressions compare favorably with the Manning's equation estimates for Study Points 1 — 3. Both estimates fall within the range of discharges bound by the 1 and 2 -YR recurrence interval flood flows developed Ir 1 1 1 1 1 1 1 t 1 t 1 t 1 1 with the TR -20 model. The 2 -YR recurrence interval flood flows developed with the TR -20 model were verified with the 95% confidence limits for the 2 -YR peak developed using the USGS regional regression. Based on this analysis it was determined that utilizing the Rural Regional Regression estimates provides a reliable method for estimating bankfull discharge for the proposed project design. Table 9 — Bankfull Discharge Estimates Study NC USGS TR -20 Manning's Point Rural Regional Regional 1 YR/ 2YR Equation (DA mil) Regression (cfs) Regression (cfs) (cfs) 2YR (cfs) 1 217.9 490 182 355 221.4 5.71 ) (321-659) (219.6 - 222.3 2 223.3 499 184 357 225.2 5.89 ) (327-672) (222.5 - 228.5 3 234.6 520 188 370 235.5 6.27 ) (341-700) (232.7 — 239.2 LE. Hydraulics 1 1 1 1. Hydraulic Model HEC -RAS version 4.1.2 River Analysis System, developed by the U.S. Army Corps of Engineers, was used to establish the water surface, velocity, and channel shear stresses for Wheel Creek existing and proposed conditions. Table 10 describes the hydraulic cross sections for Wheel Creek Stream Restoration Project. Table 10 : Existing and Proposed River Stationing Descriptions River Stations Descriptions 39 Existing: Upstream Limit of Study Proposed: Natural Channel Design Section 1 38 -2 Existing: Mid Reach Cross Sections Proposed: Natural Channel Design Sections 2 -38 1 Existing: Downstream Limit of Study Proposed: Natural Channel Design Section 39 f Table 11 identifies the developed study point peak discharges with the associated cross section hydraulic models flow change locations. Table 11 - Peak Discharge Flow Change Locations River Station 1 -YR cfs ) 2 -YR (cfs) 5 -YR (cfs) 10 -YR (cfs) 50 YR (cfs) 100 -YR (cfs 39 182 355 719 1122 1945 2643 33 188 357 732 1143 1982 2693 14 188 370 757 1181 2047 2780 2. Hydraulic Analysis t Tables 12 though 15 detail the results of the hydraulic comparison between existing and proposed conditions for the 1 YR, 2YR, 10YR and 100YR Storm ' Events. The results highlight the changes within the Water Surface Elevation, Channel Velocity and Channel Shear Stresses. The full hydraulic results model can be found in Appendix 3. , Table 12 -1 -YR Storm Event Hydraulic Comparison River Station EX. W.S. Elevation PR. W.S. Elevation Change W.S. Elevation EX. Channel Velocity PR. Channel Velocity Change Channel Velocity EX. Channel Shear Stress PR. Channel Shear Stress Change Channel Shear Stress (ft) lft) (ft) (ft /s) (ft /s) (%) (lb /sq ft) (lb /sq ft) (%) 39 1091.49 1091.77 0.28 3.04 5.53 81.9% 0.25 0.94 276.0% 38 1091.09 1090.68 -0.41 4.18 3.75 -10.3% 0.49 0.38 -22.4% 37 1090.53 1090.35 -0.18 3.23 2.39 -26.0% 0.27 0.14 - 48.1% 36 1090.07 1090.23 0.16 3.95 2.32 -41.3% 0.43 0.14 -67.4% 35 1089.9 1089.64 -0.26 3.61 5.28 46.3% 0.4 0.85 112.5% 34 1089.22 1089.22 0 4.52 2.45 -45.8% 0.58 0.15 -74.1% 33 1088.35 1088.34 -0.01 3.78 5.38 42.3% 0.45 0.9 100.0% 32 1087.43 1087.71 0.28 3.52 3.5 -0.6% 0.38 0.34 -10.5% 31 1086.85 1087.44 0.59 2.92 2.33 -20.2% 0.24 0.14 -41.7% 30 1086.06 1086.39 0.33 4.79 6.42 34.0% 0.71 1.33 87.3% 29 1085.95 1086.01 0.06 3.34 2.95 -11.7% 0.34 0.23 -32.4% 28 1085.61 1085.92 0.31 2.84 2.31 -18.7% 0.21 0.13 -38.1% 27 1084.87 1085.31 0.44 4.05 5.04 24.4% 0.44 0.77 75.0% 26 1084.48 1083.91 -0.57 3.57 4.23 18.5% 0.37 0.52 40.5% 25 1083.99 1083.84 -0.15 4.99 2.81 -43.7% 0.72 0.2 -72.2% 24 1082.78 1083.64 0.86 5.58 2.79 -50.0% 1.08 0.21 -80.6% 23 1082.89 1083.62 0.73 1.16 2.06 77.6% 0.04 0.11 175.0% 22 1082.84 1083.18 0.34 1.76 4.75 169.9% 0.08 0.68 750.0% 21 1082.51 1083.23 0.72 4.26 2.29 -46.2% 0.57 0.13 -77.2% 20 1082.19 1082.53 0.34 3.85 5.99 55.6% 0.43 1.13 162.8% 19 1081.65 1082.28 0.63 4.41 2.44 -44.7% 0.55 0.15 -72.7% 18 1080.95 1081.16 0.21 3.43 6.5 89.5% 0.33 1.36 312.1% 17 1080.31 1080.89 0.58 4.9 2.46 -49.8% 0.74 0.14 -81.1% 16 d 1079.86 1080.37 0.51 4.92 5.3 7.7% 0.74 0.87 17.6% 15 1079.43 1079.95 0.52 3.12 2.52 -19.2% 0.26 0.16 -38.5% 12 t 1 1 1 1 1 1 1 1 Table 12 -1 -YR Storm Event Hydraulic Comparison River Station EX. W.S. Elevation PR. W.S. Elevation Change W S. Elevation EX. Channel Velocity PR. Channel Velocity Change Channel Velocity EX. Channel Shear Stress PR. Channel Shear Stress Change Channel Shear Stress 14 1078.77 1078.85 0.08 3.67 5.84 59.1% 0.39 1.09 179.5% 13 1078.83 1079.03 0.2 1.51 2.25 49.0% 0.06 0.12 100.0% 12 1078.52 1078.16 -0.36 3.44 6.14 78.5% 0.32 1.2 275.0% 11 1077.32 1077.74 0.42 6.3 2.73 -56.7% 1.3 0.18 -86.2% 10 1077.23 1077.67 0.44 2.3 2.63 14.3% 0.14 0.18 1 28.6% 9 1076.81 1077.61 0.8 4.64 2.24 -51.7% 0.62 0.13 -79.0% 8 1076.57 1077.19 0.62 4.02 4.54 12.9% 0.46 0.61 32.6% 7 1076.03 1077.25 1.22 5.87 2.2 -62.5% 1.1 0.12 -89.1% 6 1076.25 1076.92 0.67 2.15 4.35 102.3% 0.11 0.56 409.1% 5 1076.02 1076.89 0.87 3.77 2.84 -24.7% 0.4 0.22 -45.0% 4 1075.79 1076.34 0.55 2.5 4.22 68.8% 0.16 0.52 225.0% 3 1075.61 1075.8 0.19 3.03 5.18 71.0% 0.3 0.82 173.3% 2 1075.21 1075.85 0.64 4.06 2.38 -41.4% 0.55 0.14 -74.5% 1 1074.67 1075.32 0.65 3.82 4.82 26.2% 0.48 0.69 43.8% Table 13 - 2 -YR Storm Event Hydraulic Comparison River Station EX. W.S. Elevation PR. W.S. Elevation Change W.S. Elevation EX. Channel Velocity PR. Channel Velocity Change Channel Velocity EX. Channel Shear Stress PR. Channel Shear Stress Change Channel Shear Stress (ft) (ft) (ft) (ft /s) (ft /s) N (ib /sq ft) (lb /sq I ft) (%) 39 1092.7 1092.59 -0.11 3.54 6.74 90.4% 0.32 1.25 290.6% 38 1092.26 1091.86 -0.4 5.02 4.71 -6.2% 0.64 0.57 -10.9% 37 1091.61 1091.43 -0.18 4.31 3.38 -21.6% 0.45 0.27 -40.0% 36 1091 1091.25 0.25 5.35 3.28 -38.7% 0.72 0.25 -65.3% 35 1090.94 1090.53 -0.41 4.07 6.25 53.6% 0.44 1.06 140.9% 34 1090.06 1090.21 0.15 6.09 3.46 -43.2% 0.97 0.29 -70.1% 33 1089.01 1089.07 0.06 4.87 6.66 36.8% 0.67 1.24 85.1% 32 1088.26 1088.71 0.45 4.3 4.41 2.6% 0.5 0.5 0.0% 31 1087.79 1088.37 0.58 3.55 3.31 -6.8% 0.33 0.26 -21.2% 30 1087.11 1087.11 0 5.22 7.52 44.1% 0.73 1.65 126.0% 29 1087.11 1087.01 -0.1 3.53 3.91 10.8% 0.32 0.38 18.8% 28 1086.76 1086.88 0.12 3.32 3.3 -0.6% 0.26 0.25 -3.8% 27 1085.81 1086.07 0.26 5.55 6.25 12.6% 0.76 1.08 42.1% 26 1085.48 1084.99 -0.49 4.24 4.98 17.5% 0.47 0.65 38.3% 25 1084.71 1084.88 0.17 6.76 3.82 -43.5% 1.26 0.35 j -72.2% 24 1083.72 1084.61 0.89 5.42 3.74 -31.0% 0.87 0.34 -60.9% 23 1083.89 1 1084.59 0.7 1.38 2.92 111.6% 0.05 0.2 300.0% 22 1083.8 1084.1 0.3 2.48 5.45 119.8% 0.14 0.78 457.1% 21 1083.43 1084.18 0.75 4.82 3.24 -32.8% 0.64 0.25 -60.9% 13 Table 13 - 2 -YR Storm Event Hydraulic Comparison River Station EX. W.S. Elevation PR. W.S. Elevation Change W.S. Elevation EX. Channel Velocity PR. Channel Velocity Change Channel Velocity EX. Channel Shear Stress PR. Channel Shear Stress Change Channel Shear Stress 20 1083.18 1083.42 0.24 4.66 6.61 41.8% 0.56 1.22 117.9% 19 1082.59 1083.28 0.69 5.36 3.43 -36.0% 0.75 0.28 -62.7% 18 1081.85 1081.91 0.06 4.4 7.57 72.0% 0.49 1.64 234.7% 17 1081.15 1081.84 0.69 5.96 3.77 -36.7% 0.96 0.32 -66.7% 16 1080.84 1081.26 0.42 5.61 6.11 8.9% 0.84 1.01 20.2% 15 1080.55 1080.98 0.43 3.91 3.52 -10.0% 0.38 0.29 -23.7% 14 1079.89 1079.91 0.02 4.47 6.06 35.6% 0.51 1.01 98.0% 13 1079.99 1080.07 0.08 2.06 3.28 59.2% 0.1 0.25 150.0% 12 1079.52 1078.92 -0.6 4.62 7.51 62.6% 0.54 1.6 196.3% 11 1078.17 1078.79 0.62 7.19 4.19 -41.7% 1.46 0.4 -72.6% 10 1078.33 1078.71 0.38 2.91 3.65 25.4% 0.21 0.32 52.4% 9 1077.73 1078.63 0.9 5.89 3.25 -44.8% 0.92 0.25 -72.8% 8 1077.49 1078.26 0.77 5.09 4.75 -6.7% 0.67 0.58 -13.4% 7 1076.93 1078.29 1.36 6.6 3.06 -53.6% 1.23 0.22 -82.1% 6 1077.18 1078 0.82 3.19 4.72 48.0% 0.23 0.57 147.8% 5 1076.81 1077.9 1.09 5.19 3.86 -25.6% 0.7 0.36 -48.6% 4 1076.45 1077.25 0.8 3.87 5.34 38.0% 0.37 0.74 100.0% 3 1076.27 1076.79 0.52 3.77 5.91 56.8% 0.41 0.94 129.3% 2 1075.81 1076.87 1.06 5.18 3.4 -34.4% 0.79 0.27 -65.8% 1 1075.25 1 1076.17 0.92 5.07 6.06 19.5% 0.75 0.99 32.0% Table 14 - 10-YR Storm Event Hydraulic Comparison River Station EX. W.S. Elevation PR. W.S. Elevation Change W.S. Elevation EX. Channel Velocity PR. Channel Velocity Change Channel Velocity EX. Channel Shear Stress PR. Channel Shear Stress Change Channel Shear Stress (ft) (ft) (ft) (ft /s) (ft/s) ( %) (lb /sq ft) (lb /sq ft) (%) 39 1095.72 1094.88 -0.84 4.45 8.82 98.2% 0.42 1.87 345.2% 38 1095.05 1094.26 -0.79 7.12 7.61 6.9% 1.07 1.24 15.9% 37 1094 1093.58 -0.42 7.22 6.49 -10.1% 1.07 0.84 -21.5% 36 1093.39 1093.36 -0.03 6.94 5.47 -21.2% 1.02 0.61 -40.2% 35 1093.25 1093.11 -0.14 4.65 6.42 38.1% 0.48 0.86 79.2% 34 1092.81 1092.76 -0.05 6.01 5.15 -14.3% 0.79 0.53 -32.9% 33 1091.15 1091.51 0.36 7.43 8.77 18.0% 1.27 1.66 30.7% 32 1090.89 1091.29 0.4 6.14 6.73 9.6% 0.84 0.94 11.9% 31 1090.6 1091 0.4 4.87 5.46 12.1% 0.51 0.59 15.7% 30 1089.63 1089.17 -0.46 7.65 10.39 35.8% 1.26 2.43 92.9% 29 1089.87 1089.32 -0.55 4.82 6.66 38.2% 0.49 0.92 87.8% 28 1089.77 1089.19 -0.58 4.17 5.54 32.9% 0.36 0.61 69.4% 27 1087.7 1088.27 0.57 10.99 8.58 -21.9% 2.7 1.59 1 -41.1% 14 1 1 t F-- I I LI 1 1 1 1 1 F1 1 1 1 t 1 1 n [-,I 1 1 1 1 Table 14 - 10-YR Storm Event Hydraulic Comparison River Station EX. W.S. Elevation PR. W.S. Elevation Change W.S. Elevation EX. Channel Velocity PR. Channel Velocity Change Channel Velocity EX. Channel Shear Stress PR. Channel Shear Stress Change Channel Shear Stress 26 1088.02 1087.73 -0.29 5.44 6.14 12.9% 0.65 0.81 24.6% 25 1086.88 1087.47 0.59 8.89 6.24 -29.8% 1.92 0.78 -59.4% 24 1086.67 1087.15 0.48 5.71 6.03 5.6% 0.73 0.73 0.0% 23 1086.92 1087.21 0.29 1.99 4.65 133.7% 0.08 0.42 425.0% 22 1086.69 1086.83 0.14 4.01 6.51 62.3% 0.32 0.86 168.8% 21 1086.18 1086.78 0.6 6.44 5.55 -13.8% 0.9 0.61 -32.2% 20 1085.92 1086.02 0.1 6.73 8.25 22.6% 0.96 1.44 50.0% 19 1085.41 1085.94 0.53 7.22 6.08 -15.8% 1.1 0.72 -34.5% 18 1084.78 1084.53 -0.25 6.36 9.29 46.1% 0.86 1.86 116.3% 17 1083.87 1084.42 0.55 8.34 7.31 -12.4% 1.53 1.05 -31.4% 16 1083.68 1083.65 -0.03 7.75 8.95 15.5% 1.31 1.72 31.3% 15 1083.45 1083.49 0.04 6.18 6.38 3.2% 0.8 0.81 1.3% 14 1082.87 1082.77 -0.1 5.83 6.89 18.2% 0.72 0.98 36.1% 13 1083.02 1082.78 -0.24 3.43 5.58 62.7% 0.23 0.6 160.9% 12 1082.19 1081.22 -0.97 7.13 10.12 41.9% 1.08 2.26 j 109.3% 11 1080.68 1080.95 0.27 9.44 8.58 -9.1% 2.03 1.49 -26.6% 10 1081.23 1080.92 -0.31 4.13 6.76 63.7% 0.36 0.93 158.3% 9 1079.87 1080.83 0.96 9.46 6.08 -35.7% 1.97 0.74 -62.4% 8 1080.01 1080.61 0.6 6.46 6.07 -6.0% 0.89 0.76 -14.6% 7 1079.69 1080.66 0.97 7.09 4.48 -36.8% 1.12 0.4 -64.3% 6 1079.84 1080.62 0.78 5.01 4.72 -5.8% 0.5 0.45 -10.0% 5 1078.98 1080.28 1.3 8.08 5.61 -30.6% 1.54 0.64 -58.4% 4 1078.34 1079.61 1.27 7.44 7.34 -1.3% 1.2 1.12 -6.7% 3 1078.38 1079.47 1.09 5.34 6.45 20.8% 0.65 0.86 32.3% 2 1 1077.74 1079.47 1.73 7.45 5.13 -31.1% 1.31 0.52 - 60.3% 1 1 1077.05 1079 1.95 7.87 6.88 -12.6% 1 1.46 0.97 1077.05 Table 15 - 100 -YR Storm Event Hydraulic Comparison Change EX. PR. Change EX. PR. Change River EX. W.S. PR. W.S. W.S. Channel Channel Channel Channel Channel Channel Station Elevation Elevation Elevation Velocity Velocity Velocity Shear Shear Shear Stress Stress Stress (ft) (ft) (ft) (ft /s) (ft /s) (35) (lb /s4 (lb /s4 ( %1 ft) ft) 39 1097.69 1097.32 -0.37 6.34 9.01 42.1% 0.75 1.62 116.0% 38 1096.94 1096.3 -0.64 9.4 10.46 11.3% 1.68 2.09 24.4% 37 1095.4 1095.08 -0.32 10.2 9.96 -2.4% 1.97 1.84 -6.6% 36 1094.53 1094.71 0.18 8.35 6.8 -18.6% 1.38 0.88 -36.2% 35 1094.56 1094.62 0.06 5.6 6.58 17.5% 0.64 0.83 29.7% 34 1094.18 1094.27 0.09 6.78 6.26 -7.7% 0.92 0.73 -20.7% 33 1093.06 1093.35 0.29 8.45 9.37 10.9% 1.47 1.68 14.3% 15 Table 15 - 100-YR Storm Event Hydraulic Comparison River Station EX. W.S. Elevation PR. W.S. Elevation Change W.S. Elevation EX. Channel Velocity PR. Channel Velocity Change Channel Velocity EX. Channel Shear Stress PR. Channel Shear Stress Change Channel Shear Stress 32 1092.86 1093.15 0.29 7.18 7.81 8.8% 1.02 1.14 11.8% 31 1092.55 1092.62 0.07 6.01 7.4 23.1% 0.7 1 42.9% 30 1091.49 1091.67 0.18 9.74 10.22 4.9% 1.83 1.98 8.2% 29 1091.14 1090.81 -0.33 7.39 9.72 31.5% 1.08 1.81 67.6% 28 1091.07 1090.61 -0.46 6.23 7.77 24.7% 1 0.74 1.11 50.0% 27 1090.05 1090.03 -0.02 10.02 9.5 -5.2% 2.01 1.74 -13.4% 26 1089.86 1089.97 0.11 6.37 6.48 1.7% 0.8 0.79 -1.3% 25 1089.51 1089.57 0.06 7.29 7.71 5.8% 1.08 1.07 -0.9% 24 1089.13 1089.22 0.09 6.42 7.59 18.2% 0.8 1.05 31.3% 23 1089.34 1089.24 -0.1 2.95 6.31 113.9% 0.15 0.71 373.3% 22 1089.1 1089.14 0.04 5.14 6.95 35.2% 0.47 0.87 85.1% 21 1088.83 1088.97 0.14 6.7 6.89 2.8% 0.85 0.85 0.0% 20 1088.72 1088.78 0.06 6.88 7.82 13.7% 0.88 1.1 25.0% 19 1088.19 1088.48 0.29 8.17 7.36 -9.9% 1.21 0.95 -21.5% 18 1087.81 1087.81 0 7.07 8.88 25.6% 0.92 1.41 53.3% 17 1086.57 1087.3 0.73 10.48 9.61 -8.3% 2.09 1.64 -21.5% 16 1085.66 1085.95 0.29 11.7 12.18 4.1% 2.68 2.76 3.0% 15 1085.12 1085.15 0.03 8.79 9.15 4.1% 1.49 1.53 2.7% 14 1084.6 1084.75 0.15 7.01 7.24 3.3% 0.95 0.97 2.1% 13 1084.65 1084.54 -0.11 5.2 7.37 41.7% 0.49 0.97 98.0% 12 1084.32 1084.36 0.04 7.05 7.22 2.4% 0.94 0.95 1.1% it 1083.23 1083.3 0.07 10.09 10.84 7.4% 1.98 2.18 10.1% 10 1083.12 1082.61 -0.51 5.86 9.98 70.3% 0.65 1.86 186.2% 9 1082.25 1082.33 0.08 10.01 8.75 -12.6% 1.91 1.43 -25.1% 8 1081.61 1082.02 0.41 8.96 8.64 -3.6% 1.55 1.42 -8.4% 7 1081.65 1082.14 0.49 7.67 6.25 -18.5% 1.15 0.73 -36.5% 6 1081.69 1082.11 0.42 6.33 6.23 -1.6% 0.72 0.72 0.0% 5 1081.47 1081.75 0.28 6.75 7.51 11.3% 0.94 1.06 12.8% 4 1080.45 1081.17 0.72 9.2 8.94 -2.8% 1.65 1.51 -8.5% 3 1080.66 1080.9 0.24 6.01 8.26 37.4% 0.71 1.29 81.7% 2 1080.29 1080.8 0.51 7.5 7.42 -1.1% 1.12 1.02 -8.9% 1 1079.94 1080.53 0.59 7.68 8.24 7.3% 1.15 1.27 10.4% 3. Results t 1 1 1 1 1 1 The hydraulic analysis indicates that the proposed stream restoration project will reduce the water surface elevation, channel velocities and channel shear stress , at several cross sections, while several cross sections show increases in water surface elevation, channel velocities and channel shear stresses. These increases are attributed to the geomorphological changes of the spacing stream features (pools and riffles, etc...) along with stream meander geometry changes from the existing to the proposed conditions and do not reflect any adverse I 16 t 1 1 1 1 I� 1 changes to the proposed reach. The proposed channel velocities and shear stresses are non - erosive for the proposed stream restoration bed material and channel stability. The stream restoration project will focus on the addition of riverine structures and grade controls to prevent future degradation and provide habitat for aquatic species. Implementation of a vigorous, native landscaping and limitation of access by adjacent agricultural use will greatly improve the ascetics and prevent any future degradation of this reach. Flooding risks to landowners are not increased by the stream restoration. IV. Channel Morphology and Stability Assessment A. Rationale Stream stability is morphologically defined as the ability of the stream to maintain, over time, its dimension, pattern and profile in such a manner that it is neither aggrading or degrading and is able to effectively transport the flows and sediment delivered to it by its watershed. Morphologic stability permits the full expression of natural stream characteristics. Stream potential is defined as the best condition, based on quantifiable morphological characteristics, for a given stream type. Streams functioning at full potential exhibit a desired or preferred set of stability or condition characteristics that may be quantitatively described in terms of channel size and shape, bed stability /vertical control, and bank stability /lateral control - low bank erosion potential and gradual lateral migration rates. Stream classification as a morphologic stream assessment technique permits a quantitative analysis of the degree to which existing conditions differ from an accepted range of morphological values documented for different stable stream types. The degree of departure for an existing stream condition from its full stable operating potential can be determined in a number of ways including comparisons to: 1) geomorphologic databases; 2) historical photography or surveys of the same reach; and 3) stable reference reaches of the same stream type at different points in the watershed or adjacent watersheds. B. Assessment Methods 1. Verifying Bankfull Channel Field Indicators. Updated regional regressions for bankfull channel dimensions developed for use in the rural Piedmont Region of North Carolina (NCSU and NRCS, 2006) were utilized to verify field indicators associated with the bankfull channel in conducting the geomorphic stream assessments along Big Creek. 17 1 2. Upstream Channel Morphology and Sediment Sources A field reconnaissance was conducted to assess existing conditions in the Big ' Creek watershed and along the stream reaches upstream of the project site. It focused on characterizing stream channel morphology and condition, and identifying unstable reaches that could potentially impact the project area. Historic and current channel alterations were evaluated utilizing information gathered from historic aerial photographs available from the USDA — NRCS Office in Surry County. 3. Level II - Morphological Description. The reaches along Big Creek in the project area were classified into specific categories of stream types (i.e., 134c, C4, F4, etc.) utilizing the standard field procedures recommended by Rosgen (1996). 4. Level III - Assessment of Stream Condition I The geomorphic features of Big Creek were mapped and the overall stability assessed. The reaches along Big Creek were assessed for stream channel condition and influencing factors including riparian vegetation, meander pattern, depositional pattern, debris and channel blockages, sediment supply, vertical stability, and lateral stability. Lateral stability was evaluated using the bank erosion hazard index (BEHI), near bank stress (NBS), width /depth ratio state, and meander /width ratio. Vertical stability was evaluated using a measurement of the degree of incision or bank height to bankfull ratio and a sediment entrainment analysis. C. Findings of Channel Morphology and Stability Assessment 1. Evaluation of Watershed and Upstream Channel Conditions a. Historic Conditions An analysis of a series of historic aerial photographs covering the period 1936 — 1997 obtained from the USDA — NRCS Office in Surry County indicates the Big Creek watershed was predominantly forest and fields during that time period. There are large parcels with single family homes and other community buildings scattered throughout the watershed. Sediment sources were primarily associated with cropland, livestock impacts, and channel adjustment in response to straightening and channelization of some stream reaches. There were also miles of unpaved roads that contributed to sediment supply in the Big Creek watershed. I 18 1 1 b. Current Conditions The current conditions in the upper Big Creek watershed can be characterized as very unstable with localized areas of stability. Stability problems observed during the field reconnaissance of Big Creek included streambed and bank erosion, sedimentation, lack of riparian vegetation, and livestock access to the stream. These instability problems can be attributed to historic agricultural practices including straightening and channelization of stream reaches, removal of riparian vegetation, runoff from cultivated fields and eroding slopes, and livestock grazing impacts, as well as runoff from roads and building sites. Conditions will worsen unless existing channel and slope problems are corrected and best management practices are implemented to limit livestock access and control runoff from farm land and developed sites. Any additional development within the watershed will exacerbate already unstable conditions unless best management practices are incorporated into development plans. ' 2. Project Site — Channel Morphology and Stability Assessment a. Historic Conditions It appears that the morphology and stability of these Big Creek reaches have been directly affected by straightening and channelization, removal of riparian vegetation, and livestock grazing impacts. In addition, sediment from upland areas and erosion along headwater channels has lead to sedimentation and channel adjustments along the reaches within the project area. The following is one possible scenario for a series of channel adjustments that may have occurred in response to imposed conditions along the project reaches: t 1) streambank vegetation was removed and Big Creek was realigned to maximize pasture area and /or facilitate mowing for hay; 2) the increased slope caused the streambed to erode, incising the channel; 3) lowering of the streambed increased bank heights, confined the channel and increased stress on the banks; 4) hydraulic forces eroded the toe of the banks creating steeper bank angles and increasing susceptibility to gravitational failure; 5) failures became t common and the channel adjusted laterally; 6) bank retreat and subsequent widening decreased sediment transport capacity leading to deposition of sediment conveyed from upstream sources and the formation of lateral and mid - channel bar features. The result of the on -going adjustments that have occurred thus far defines the existing conditions along much of the project reaches. As lateral erosion continues, point bars and floodprone areas will develop at a new, lower elevation. Where the channel is not up against terraces or hill slopes, bank angles will be reduced eventually to a gentle angle of repose, grasses and iother perennial vegetation will colonize depositional features, and the channel 19 I!� 1 will begin to stabilize. Finally woody vegetation will be able to colonize and stabilize the banks and adjacent slopes. However, the channel adjustments required to reach this stable condition will contribute significant additional amounts of sediment to the Dan River. Where the channel is up against terraces and hill slopes instability and slope failure will continue for some time. b. Current Conditions Utilizing the data collected from the Level II stream classification and Level III ' channel condition assessment the current condition of Big Creek and the degree to which the existing condition of the reaches differ from an accepted range of morphological values documented for similar stable stream types was evaluated. This analysis indicates that widely varying conditions exist along the project reaches. The following is a summary of the findings of that analysis as it relates to the existing conditions within the project study area: Reach 1 The upper reach of the project area is an unstable G4c stream type. A comparison of channel geometry with that of the reference reach database indicates that this reach has a lower width to depth ratio (i.e., 9.5 — 11.4). Overall gradient is very flat (i.e., 0.00369 ft/ft). Riffles are relatively short with moderate slopes (i.e., 0.012 — 0.015 ft/ft). Pools are long and deep with very flat slopes (i.e., <0.001 ft/ft) Channel plan form is characterized by moderate sinuosity (i.e., 1.28) and tight meander geometry with low radii of curvature along the bends. The overall condition of the upper reach is characterized by lateral erosion, high sediment supply, severely undercut trees, and vertical instability (aggradation). Fine sediment deposition, lateral and mid - channel bars are evident throughout. Although the banks support scattered trees and shrubs, localized bank erosion was evident throughout. Bank height ratios range from a low of 1.1 to greater than 2.1 in some areas. The results of the stability analysis indicate that the 38.8% of the banks along this reach have BEHI scores and /or Near Bank Stress ratings in the high to extreme category. It is estimated that this reach undergoes 1261.7 cubic feet of erosion annually contributing 60.8 tons of sediment per year. 1 1 20 i MJ CL rU cu CD R. cn �71 Fig. 3 — Eroding banks at upstream end of reach Fig. 4 — Lateral bar along left bank, thalweg against right toe of opposite bank 22 1 1 1 1 t s 1 1 L 1 11 it H 1 P', Fig. 5 — Undercut and slumping trees Fig. 6 — Transverse bar forcing flow against opposite toe of bank 23 Fig. 7 — Lateral bar, eroding right bank with leaning tree v-4 Fig. 8 — Eroding left bank 24 Fig. 9 — Tributary confluence at downstream end of reach � I � I 1 1 � I 1 25 Reach 2 This reach is an unstable F4 and 134c. A'com arson of channel geometry with P 9 rY that of the reference reach database indicates that this reach has a width to depth ratio that ranges from a low (9.5) in' the 134c section to a high (17.0) in the F4 section. Neither is consistent with a stable 134c or C4 channel. Overall gradient is very flat (i.e., 0.0044 ft/ft). Riffles are relatively short with low to steep slopes (i.e., 0.009 — 0.031 ft/ft). Pools are long and deep with flat slopes (i.e., 0.001 — 0.004 ft/ft). Channel plan form is characterized by moderate sinuosity (1.46) and tight meander geometry with low radii of curvature along the bends. A very tight bend along the lower section of;the reach was undergoing a chute cutoff. Several years ago the landowner excavated the channel along the route the cutoff was taking. The abandoned channel along the outside of the meander has been slowly filling with sediment washed in during larger storms. The overall condition of the upper reach is characterized by lateral erosion, high sediment supply, severely undercut and fallen trees, large debris jams, and l vertical instability (aggradation). Fine sediment deposition, large point, lateral and mid - channel bars are evident througlout. Although the banks support scattered trees and shrubs, localized bank erosion was evident throughout. Numerous livestock trails are contributing! to overall streambank instability along the reach. Bank height ratios range from'a low of 1.0 to greater than 2.2 in some areas. The results of the stability analysis indicate that the 46.7% of the banks along this reach have BEHI scores and /or Near Bank Stress ratings in the high to extreme category. It is estimated that this reach undergoes 4556.5.7 cubic feet of erosion annually contributing 219.4 tons of sediment per year. 1 0 t 1 26 c�J iJ W u CC ?G_ 1 �ll y N O W O N _ 1 C '.f._ C. W N n L C'4 m l0 ID c�J `l �r. i' Fig. 10 — Debris jam at upstream end of Reach 2 Fig. 11 — Debris jam at upstream end of reach 28 ,) � � � ' Fig. 12— Large debris j@nl along upper middle section Fig. 13— Undercut banks and fallen trees 29 Fig. 14 — Fallen tree Fig. 15 — Undercut trees along right bank 30 `f Fig. 14 — Fallen tree Fig. 15 — Undercut trees along right bank 30 Figs. 16 and 17 — Bank erosion along left bank 31 Fig. 18 — Large lateral bars along both sides of channel Fig. 19 — Tight meander bend with cut -off channel in background and abandoned channel in foreground 32 Fig. 20 — Large lateral bar along right side of channel Fig. 21 — Bank erosion and collapsed trees 3 3 s, Reach 3 This reach is an unstable F4 and 134c. A comparison of channel geometry with that of the reference reach database indicates that this reach has a width to depth ratio that ranges from a low (7.5) in the 134c section to a high (16.1) in the F4 section. Neither is consistent with a stable 134c or C4 channel. Overall gradient is very flat (i.e., 0.00436 ft/ft). Riffles are relatively short with moderate to steep slopes (i.e., 0.01 — 0.027 ft/ft). Pools are short to long and deep with flat slopes (i.e., 0.0001 — 0.002 ft/ft). Channel plan form is characterized by very low sinuosity (1.05) and few meanders with tight bends. The overall condition of the upper reach is characterized by localized bank erosion, moderate - high sediment supply, and vertical instability (aggradation). Fine sediment deposition, as well as, large lateral and mid - channel bars are evident throughout. Bank height ratios range from a low of 1.0 to greater than 2.4 in some areas. The results of the stability analysis indicate that the 31.5% of the banks along this reach have BEHI scores and /or Near Bank Stress ratings in the high to extreme category. It is estimated that this reach undergoes 527.6 cubic feet of erosion annually contributing 25.4 tons of sediment per year. 34 1 1 1 1 1 1 1 t t 1 1 t 1 � i Q-1 rl) o� o� df)m m n.. ., V cr LL ftft � fv P w w �e� �r Fw To- W +ti5 A'44y p li$. Q-1 rl) Fig. 22 — Bank erosion along right bank and large lateral bar along left side of channel at upstream end of reach Fig. 23 — Bank erosion along right bank 36 1 1 it t J 1 e n 1 t t t 1 1 t t 1 fl 1 1 1 1 1 U f6 N L \H O c O U N cn N Q Q O) C O cc$ C O U) O L Q) Y C to m LO N C (a N N M M Fig. 26 — Large mid - channel bar in upper section Fig. 27 — Rip -rap along right bank, undercut tree along left bank 38 1 t 1 t 1 1 t t i1 1 L 1 1 r� c 0 U U _N 70 E Y c m .Q m U) N 0) lL c 0 U N E ^W W U c 0 0 a) Y c co o I M W N U) Lj- M Fig 30 — Large lateral bar in lower section Fig 31 — Downstream end of reach 40 1 1 1 t 1 LI t t t t 1 t 1 t t 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 Reach 4 This reach is an unstable G4c and 134c. A comparison of channel geometry with that of the reference reach database indicates that this reach has a width to depth ratio that ranges from a low (10.0) in the G4c section to a high (12.6) in the 134c section. Both are consistent with a stable 134c or C4 channel. Overall gradient is very flat (i.e., 0.0047 ft/ft). Riffles are relatively short with moderate to steep slopes (i.e., 0.01 — 0.027 ft/ft). Pools are moderate to long and deep with flat slopes (i.e., 0.0001 — 0.002 ft/ft). Channel plan form is characterized by moderate sinuosity (1.28) and several meanders with tight bends. The overall condition of the upper reach is characterized by localized bank erosion, moderate - high sediment supply, and vertical instability (aggradation). Fine sediment deposition, as well as, large lateral and mid - channel bars are evident throughout. Bank height ratios range from a low of 1.3 to greater than 2.0 in some areas. The results of the ;stability analysis indicate that the 40.6% of the banks along this reach have BEHI scores and /or Near Bank Stress ratings in the high to extreme category. It is estimated that this reach undergoes 1318.95 cubic feet of erosion annually contributing 63.5 tons of sediment per year. 41 W 2. LL QI c� ti r 0 v �j � A _ f � 4 Crw W LC r ■ `■ ca W Fig 32 — Ford crossing at upstream end of reach Fig 33 — Bank erosion, falling trees and mid - channel bars upstream end of reach 43 Fig 34 — Bank erosion, leaning trees and lateral bar upper section of reach Fig 35 — Bank erosion along upper section 44 1 1 1 1 t 1 t t t ri 1 1 1 1 1 t 1 t 1 1 Fig 36 — Bank erosion and mid - channel bar along upper middle section Fig 37 — Bank erosion and mid - channel bar along upper middle section 45 r � Fig 38 — Bank erosion along middle section Fig 39 — Bank erosion, leaning trees and mid - channel bar along middle section 46 1 t 1 1 1 1 1 11 1 t 1 Fig 40 — Bank erosion along upper lower section Fig 41 — Looking upstream at slope failure along right terrace in lower section 47 Fig 42 — Large lateral bar along left side and bedrock outcrop along right side in lower section .a e 2 3 i+• Fig 43 — Bank erosion, leaning trees and lateral bars along lower section 48 I V. Estimating Sediment Loadings Actual loadings of sediment should be determined through a comprehensive 9 9 p sediment discharge monitoring effort as well as geomorphic assessment that survey and resurvey of permanent cross - sections. Monitoring was not a component of this current study. Rosgen (1996) demonstrated that significant relations exist between stress in the near -bank region (NBS), stream bank erosion potential (i.e., BEHI ratings) and measured stream bank erosion rates. Utilizing relations developed for Colorado and Wyoming streams he has been able to predict, with a high degree of confidence, erosion rates for stream banks utilizing field data on near bank stress and bank erosion potential. As part of this study, field data on stress in the near -bank region and bank erosion potential (BEHI ratings) were collected for the stream banks along Big ' Creek and its tributaries within project area. Utilizing the data collected from Big Creek and near bank stress and bank erosion potential relations developed on North Carolina streams (USDA -NRCS and NCSU, 2002), predicted erosion rates were calculated for the stream banks evaluated along Big Creek and its tributaries within the project area. Estimates for sediment loadings were developed based on the existing bank height, length of stream bank evaluated and the predicted erosion rates. Based on these techniques it was estimated that approximately 7,666 cubic feet or 285 tons of sediment are being contributed annually to Big Creek from bank erosion in the project area. 1 1 1 49 VI. Restoration Design A. General Approach As pointed out in the Findings of Channel Morphology and Stability Assessment Overall channel geometry and slope will be modified to improve sediment Section, Big Creek has been affected by alterations in watershed hydrology and sediment supply associated with agricultural practices, roads and development in the upper watershed. In addition, direct impacts to the channel and adjacent and F4 reaches along the mainstem as stable B4c channels. Unstable C4 riparian area have occurred as a result of straightening and channelization, clearing of riparian vegetation, and unrestricted livestock grazing. ' 2. Lower reaches of tributaries and their confluences will be reconstructed to The restoration objectives for Big Creek and its tributaries include: 1. Overall channel geometry and slope will be modified to improve sediment transport capacity. This will be accomplished by reconstructing unstable G4 and F4 reaches along the mainstem as stable B4c channels. Unstable C4 reaches along the main stem Big Creek will be reconstructed as stable C4. ' 2. Lower reaches of tributaries and their confluences will be reconstructed to eliminate vertical stability problems in these areas. 3. Reaches with high width /depth ratios will be reconstructed with a narrower baseflow and bankfull channel to improve habitat as well as sediment transport. This will be accomplished by constructing bankfull benches along , the channel margin. 4. High, vertical banks on the outside of the meander bends as well as the adjacent floodplain will be excavated and graded to establish a better angle of repose on the banks, increase floodprone area, and lower the bankfull to bank height ratio. Particular emphasis will be placed on grading those banks , lacking woody vegetation and preserving those banks that are well vegetated with trees and shrubs. 5. Meander geometry will be modified to increase radii of curvature on bends where the radii of curvature are extremely low, that is smooth out the tight bends. This will reduce the backwater effect and sediment deposition caused by these tight bends and increase the overall channel gradient and sediment transport capacity. , 6. Where channel reaches are currently eroding terraces and steep hill slopes, they will be relocated away from these areas and the terraces and slopes reconstructed. ' 7. Log /boulder J- hooks, toe wood, and log /boulder step -pools will be installed at key locations along both tributaries and the main stem Big Creek to reduce near -bank stress, provide grade control, dissipate energy, and create habitat. 50 1 1 8. Long -term bank stabilization and lateral control will be provided by planting native grasses, trees, and shrubs on the lower and upper stream banks. 9. The ford crossing at the downstream end of Reach 3 will be appropriately relocated in a glide and stabilized to prevent future problems 10. Wetlands will be created along the floodplain of Tributary 1 creating vernal Lpools and temporarily flooded areas. 11. Finally, a conservation easement will be established along the stream corridor. The easement will be fenced to restrict livestock access. A riparian buffer will be established by planting native grasses, trees and shrubs. ' The restoration approach presented above is illustrated in the design drawings (i.e., plan view, profile, and cross - sections) attached to this report. The design criteria are summarized in the Appendix to this report. ' B. Design Criteria I1. Reference Reach Data After determining the targeted stream types (i.e., stable form for the reaches to be restored) for Big Creek, dimensionless ratios were taken from a reference reach data base developed from stable B4c and C4 streams in the Piedmont and Mountain Regions of North Carolina. The dimensionless ratios are presented in the Appendix to this report. 2. Design Discharges ' As noted in the Hydrology section of this report, three methods were used to develop bankfull discharge estimates. These included 1) updated regional regression equations developed in North Carolina (NCSU and NRCS, 1999), 2) TR -20 Hydrologic Model, and 3) Manning's equation and field data. 1 1 Based on this analysis it was determined that utilizing the Rural Regional Regression estimates provided a reliable method for estimating bankfull discharge for the proposed project design. The bankfull discharges used during the design process for design points 1, 2, and 3 were 217.9 cfs, 223.3 cfs, and 234.6 cfs, respectively. These flows as well as the peak discharge estimates for the 1 -, 2 -, 10 -, 50 -, and 100 -year storm events developed using the TR -20 model provided input for the HEC -RAS hydraulic model. 51 3. Channel Geometry Since aggradation is an on -going problem along Big Creek, one major objective of the restoration project was to improve sediment transport competency and capacity. This can generally be accomplished by adjusting channel cross - sectional dimensions and channel slope. The design criteria included maximizing the overall channel gradient for a given reach while maintaining a stable plan form. The preliminary channel plan form layout was developed during several site walks and sketched on the base maps. After the plan form was developed general concepts for the layout of the longitudinal profile and the location of bed features were developed. After the proposed channel plan form and longitudinal profile were completed, preliminary channel dimensions were developed utilizing the updated Bankfull Discharge and Hydraulic Geometry Regional Regressions for the Rural Piedmont Region of North Carolina (NCSU and NRCS, 2006) to determine channel cross - sectional area (A) based on the drainage area to a given reach. The calculated A and W/D ratios from our reference reach database were used to determine bankfull width Wbf = 4(Wbkf / dbkf) (Abkf) and bankfull mean depth Dbf = Wbkf / (Wbkf / dbkf). The proposed slope, bankfull cross - sectional area, width, depth and width /depth ratios were adjusted for each reach using an iterative process that included multiple sediment entrainment analyses. After each adjustment the latest channel dimensions and profile were checked against ratios from the reference reach database 4. Sediment Entrainment Analysis In restoration design, entrainment analysis is utilized to verify that the proposed channel generates the shear stress needed to entrain and transport the sediment expected to be moving through the project reach under bankfull flow conditions. Sediment data gathered from riffle pavement/subpavement and point bar samples along the Big Creek project reaches was utilized in the entrainment analysis to verify that the project channel dimensions and profile are appropriate to maintain the competency of the restored reaches. a. Sediment Entrainment Analysis Procedures • Critical Dimensionless Shear Stress Calculations Using the following equations, the critical shear stress required to mobilize and transport the largest particle from the bar sample is determined. 52 1 l Determine ratio D50/D5o" Where: D50 = bed material D50 of riffle D 50 = D50 of bar If ratio is 3.0 — 7.0, calculate the critical shear stress using: Tci = .0834 (D50 /D50") -0.872 If ratio D50 /D50A is not 3.0 — 7.0, calculate the ratio of Di /D50 Where: D; = largest particle from bar or riffle subpavement D50 = bed material D50 of riffle (100 count in riffle) 1 If ratio of Di /D50 is 1.3 — 3.0, calculate the critical shear stress using: ITci = .0384 (Di /D5o) -0.887 b. Big Creek Project Reaches Bulk sediment samples were collected along Big Creek. This effort included the collection of point bar samples. Based on our experience on other design projects and an analysis of the sediment sampling database those samples determined to be most representative of Big Creek sediment transport conditions were used in the sediment entrainment analysis to verify the competency of the proposed channel. 1. Calculate ratio of D50/D50" D50 = 45.7 mm (bed material D50) D50A = 13.1 mm (bar sample D50) D50/D50" = 45.7/13.1 = 3.5 t 1 1 If ratio is 3.0 — 7.0, calculate the critical shear stress using: Tci = .0834 (D5o /D50") - 0.872 Calculate critical shear stress (Tci) Tci = .0834 (D5o /D50") - 0.872 Tci = .0834 (45.7/13.1) -0,872 Tci = 0.028 53 c. Existing Conditions The critical shear stress values developed in these analyses were compared to the critical shear stress values calculated for riffle cross - sections along the existing channels. As shown in Table 13 below, this comparison provided verification of field observations regarding existing streambed stability and channel competency. Table 13 - Existin Conditions Sediment Entrainment Anal sis Reach Existing Slope (ftlft) Existing Mean Depth ft Required Mean Depth ft Ratio Existing Depth to Required Depth Geomorphic Condition 1 0.0037 2.3 3.9 0.59 Ag radin 2 0.0044 1.9 3.3 0..58 Aggrading 3 0.00436 2.0 3.3 0.61 Aggrading 4 0.0047 2.2 3.0 0.73 Aggrading d. Proposed Conditions During the design phase of the project, the critical shear stress developed in these analyses was utilized to verify that the project channel dimensions and profile are appropriate to maintain the competency of the restored reaches. Table 14 - Proposed Conditions Sediment Entrainment Analysis Reach Existing Slope (fttft) Proposed Mean Depth ft Required Mean Depth ft Ratio Existing Depth to Required Depth Geomorphic Condition 1 0.0044 2.7 3.1 0.87 Stable 2 0.0048 2.7 3.0 0.9 Stable 3 0.0045 2.7 1 3.1 J 0.87 Stable 4 0.0047 2.7 1 3.0 1 0.9 Stable 54 1 1 t F1 1 0 1 F1 References 1. Earth Satellite Corporation (EarthSat) Land Use, 1997 — 2003. 2. National Oceanographic and Atmospheric Administration - National Climate Data Center, Cooperative Station Data /Record Climatological Observations Website, 2004. Regional Precipitation, Snowfall, Temperature Records for Mount Airy, NC 1999 — 2004. 3. North Carolina Division of Water Quality, 2008. Roanoke Basinwide Water Quality Management Plan. 4. North Carolina Division of Water Quality, 2001. Standard Operating Procedures — Biological Monitoring. Biological Assessment Unit. Raleigh, NC. 5. North Carolina Division of Water Quality, 2002. Basinwide Assessment Report — Roanoke River Basin. Environmental Sciences Branch. Raleigh, NC. 6. North Carolina Department of Transportation GIS Database — River and Stream; Road; and National Wetland Inventory (NWI) mapping layers. 7. North Carolina State University, Cooperative Extension Service and U.S.D.A. Natural Resources Conservation Service, 2006. Hydraulic Geometry Relationships for the Rural Piedmont of North Carolina. Raleigh, N.C. 8. Rosgen, D.L., 1994. A Classification of Natural Rivers. Catena 22: 169 -199. 9. Rosgen, D.L., 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado. 10. U.S. Department of Agriculture, Natural Resource Conservation Service, Surry County, North Carolina — Historic Aerial Photograph Series 1936 - 1997. 11. U.S. Department of Agriculture, Natural Resource Conservation Service, Website - Soil Survey for Surry County, North Carolina 2004. 12. U.S. Geological Survey 7.5 Minute Quadrangle Topographic Map for Claudeville, Virginia. 13. U.S. Geological Survey 7.5 Minute Quadrangle Geologic Map for Pilot Mountain, North Carolina. Appendix ■ A. Watershed Characterization Supporting Documentation B. Bankfull Discharge and Channel Dimensions Validation Supporting Documentation C. Channel Morphology and Stability Assessment Supporting Documentation D. Hydrology and Hydraulic Analysis Supporting Documentation E. Design Criteria Supporting Documentation 1 1 t 1, 1 L Watershed Characterization Supporting Documentation J i 1 1 1 1 t 1 1 1 1 1 J 40 d- ..0 19Z .09 ,l£L 1 o09 o l7 N R A Nr 7 O � Np {Np f") O .10 .9Z .09 Zti N � O r � O CL T (D Z 0 U) wo LL > O N j Uj N f0 O N U1 O. �oO N O w ?iU `m m c O O �w N o z Oct m v x in m_ d N O O Q 01 C O � O � O C N a O O n � D O O m w o o a c �2 �c Z 2U Z.< .4L �LZ o08 QQ 1 �w N O O to 3> C l0�" Z m E m m mm t L CM d O1 �p � m m O N� d tl3J mN p C w d r C O w O C Y m _ r- CL o 9 8 c m re co o m � °wa o ' Z 0 E m m�M "' m N 20 co z UN Om a�i Ea m u E m o L aMEL t m ID O E V yz O °N rN O m C w m a 3 O C ' h a N, c Z mw z a E E L.. m o Q� O a o m =mm m ��.Q macifo� c A�OG�i c >. o c$ o � c iri v m v a- ° LL �° H o �aI0 Eo 0- c 'oc 0mmEE n (On Z m Q m aL 0o Uo ^m'0 c Wa o mW IL c o y a c m �a�i Oi,�m o a�i a o.t E Q m > >> amS300 3 y m a � � m� m� in ul Ec2o N ONO'= c Z� �N ;v m �m,mn�m m Gov m = m� `o o,m c o Z oc W�cn �am�i�yc m tc!�ao _ w a U 0 �' >u m ° o c o n Z a Z¢ E y c~ m •c m t.0 '7 0 CL CO N ImA N ` '0 O' m ca m c m ° °' m m z 0 t dm om °o tm 'o 'o 0 °='o m LEmE ' - E UU UU > o .-.0 o F m U a N Z to 0 co oU -00 3m V) O m c , O m U a N C s � 00 m U Ua Y v! N C z U o o Q, N U r z _01 V) N V N N a m N 0 O v O d U) N N TO a' U Z Lr IL r O �z N N U N W Q' p Y V C (9 to lJ U O W p 7 J ca LU CL c CL J a s m Q ¢ c a $ N N 3 n _ O c 5 W m T a m c° Z a o o m 'm d LL r `a O m �i t ¢ a U. I r°n = m m U U C7 (� m W c m o m a m c v o .R o dl o a X rn m U) 55 (no m w p c d a ° ' m w. CL ❑ ca ❑ N w C m O z 1 1 1 i r r i f 1 i Soil Map-Stokes County, North Carolina, and Surry County, North Carolina Map Unit Legend Big Creek Phase 2 - Soils Map Stokes County, North Carolina (NC169) Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI DaA Dan River and Comus soils, 0 to 4 percent slopes, occasionally flooded 16.8 6.6% DpB2 Danripple sandy day loam, 2 to 8 percent slopes, moderately eroded 0.2 0.1% DpC2 Danripple sandy day loam, 8 to 15 percent slopes, moderately eroded 6.6 2.6% FpC2 Fairview - Poplar Forest complex, 8 to 15 percent slopes, moderately eroded 31.7 12.4% FpD2 Fairview- Poplar Forest complex, 15 to 25 percent slopes, moderately eroded 16.6 6.5% RpE Rhodhiss, Fairview, and Stott Knob soils, 25 to 60 percent slopes 34.7 13.5% ToC Toast loam, 8 to 15 percent slopes 3.0 1.2% W Water 1.3 0.5% Subtotals for Soil Survey Area 110.8 43.3% Totals for Area of Interest 256.3 100.0% Surry County, North Carolina (NC171) Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI BbC Braddock fine sandy loam, 8 to 15 percent slopes 7.8 3.0% BbD Braddock fine sandy loam, 15 to 25 percent slopes 0.7 0.3% CsA Colvard and Suches soils, 0 to 3 percent slopes, occasionally flooded 35.1 13.7% FeC2 Fairview sandy day loam, 8 to 15 percent slopes, moderately eroded 20.5 8.0% FeD2 Fairview sandy day loam, 15 to 25 percent slopes, moderately eroded 7.3 2.8% FsE Fairview -Stott Knob complex, 25 to 45 percent slopes 23.3 9.1% RbD Rhodhiss - Bannertown complex, 15 to 25 percent slopes, very rocky 0.0 0.0% RrE Rhodhiss - Bannertown -Rock outcrop complex, 25 to 60 percent slopes, very bouldery 50.7 19.8% TtC Toast - Bannertown complex, 8 to 15 percent slopes, very rocky 0.1 0.0% Subtotals for Soil Survey Area 145.4 56.7% Totals for Area of Interest 256.3 100.0% Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 1/9/2011 Page 3 of 3 1 Bankfull Discharge and Channel Dimensions Validation Supporting Documentation t 1 1 1 �I J n 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 0 0 L V 0 o ow-- — •� — — — O E er �- cn - d a � cc L xa co cn cn O cl a Ln II - — Zu) N O O O O O r O r O r r (sio) afiaewma 1 I t t LJ 1 t 1 fl 1 r t u 1 1 O o i V 0 O _ O NOW �a tm C Cl -- o � V Z N N Cl) rn N O p� II T N II cr- O O T O T -LL O T (•14•bs) ee id leuoijoeS ssoao t t 1 t t [I 1 1 1 t t u t L 1 t 1 0 O 0 O VI O T _W ♦ E T NL cc co W cc C _ ■O O O LM N I _ V Z m a) O Oi X �o T N - O O O r r O O r O r r (1000 41PIM Inplue8 li t 1 1 1 1 r� 1 ii t t 1 1 ii t 1 t 1 0 0 0 L /m V ® • Ii ^ W 0 •E c E er a I a cap � c 0 c� L N V N N r. Z x O O T N o T T T (laal) tyldaa ueaw it J i0nr 00 � M MNM M W O t0 r 't t0 ^ t0 (O (O N N W n 0000 W NCO MOM O OW ' N N N N Cl) CO N N N N N 7 C C C— M r C7 0) M N st OR O (O W 0) O Q N n j 09 (0 00 LOO (O m (0 r (0 (0 00 c cva(oa m(n(n(nv(nvav m am) C4 ZOm 0 O WZ���LL �(q U o N _ =nOM(O (O (O U, n(fln (nou7 m O (o n rn n (O O O Of aD N rn m n a0 U L 2 W a c t0 M Cl) Of M T (A 01 O N CA N r O r M r Q (D C N r N V 7 C r 0 0 co N O N O lam. O O O O O O O O O O O O O O O CD fn " 0 0 0 c; 0 0 0 0 0 0 0 0 0 0 0 Cl (wO N O O O(q W r O 1N Ln0 (MO OA N r N N cn N N m M M -IT 't V 7 L CA O O N n U) O) co : O M M N fD N M (O m r Cl M N o ((O m ui M n n 001 C� m m Oni U O r O � � w ^ D V O n 7 O r � m Q 'q O O m O (00 (O O N O LO 4 Q O tan C07 (OO xIt It NNMMNMstvn m a m O V O M N CO 0 0 0 0 0 0 0 0 0 L Vf O W r w O O V n N '7 M 7 W o r N M O n n O N N V T ' n N N N N N M OL E m avwrn(Ocq(1 rrnnOD7wmLO G a V' r V) W 0) O W (O co N N O m mMNr NN 'qt aO wrl 0) N Q Emc� M Ur U�rrrrr�r M v v I m COU wC,MM(7c7 LL [Y] MMLL M COU nOo000000000000 0 0 0 I CD C L O 0 0� 0 0 0 C9 0 0( 0 0 m OMO0(D LO r V CON Of Mw �NOa OD n V rO Vq n (OO C N N (a7 Cl) V N N M N Ca9 m N c`n N N M CO J d cc m O m C > Y C ir I>D UmyU >_ m> Z m > m> > m LL O(D LL C 0 O :1 L O l C :2 cu m E L to C o O > L 51 N 7 m m O m O m Y m = m O C4 ZOm 0 O WZ���LL �(q J 1 1 Channel Morphology and Stability Assessment Supporting Documentation i 1 t La i� II u t 1 t 1 1 1 t t t t t 1 1 r 1 Worksheet 5-3. Field form for Level 11 stream classification ( Rosgen, 1996; Rosgen and Silvey, 2005). Stream: Big Creek Phase 2 Basin: Dan River Drainage Area: 3628.8 acres 5.67 miZ Location: Reach 1 Twp. &Rge: ; Sec. &Qtr.: ; Cross - Section Monuments (Lat. /Long.): Date: 02/25/20 Observers: Walker, Cartner Valley Type: VII I lankfull WIDTH ( bkf) IIDTH of the stream channel at bankfull stage elevation, in a riffle section. 26.35 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross - section, at bankfull stage elevation, in a riffle section (dbld = A / WbM). 2.36 Bankfull X- Section AREA (Abkf) AREA of the stream channel cross - section, at bankfull stage elevation, in a riffle section. 62.12 Width /Depth Ratio (Wbkf / dbid) Bankfull WIDTH divided by bankfull mean DEPTH, in a riffle section. 11.17 Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross - section, or distance between the bankfull stage and Thalweg elevations, in a riffle section. 2.96 WIDTH of Flood -Prone Area (W,pa) Twice maximum DEPTH, or (2 x dmbw) = the stage /elevation at which flood -prone area WIDTH is determined in a riffle section. 33.04 Entrenchment Ratio (ER) The ratio of flood -prone area WIDTH divided by bankfull channel WIDTH (Wfpa/ WWI (riffle section). 1.25 Channel Materials (Particle Size Index ) D50 The D50 particle size index represents the mean diameter of channel materials, as sampled from the channel surface, between the bankfull stage and Thalweg elevations. 4.85 Water Surface SLOPE (S) Channel slope = "rise over run" for a reach approximately 20-30 bankfull channel widths in length, with the "riffle -to -riffle" water surface slope representing the gradient at bankfull stage. 0.00369 Channel SINUOSITY (k) Sinuosity is an index of channel pattern, determined from a ratio of stream length divided by valley length (SL / VL); or estimated from a ratio of valley slope divided by channel slope (VS / S). 1.28 ft H ft m ft/ft Copyright © 2006 Wildland Hydrology WARSSS page 5 -29 n 1 1 1 1 1 1 1 t 1 1 I 1 1 1 1 1 1 1 Worksheet 5-4. Morphological relations, including dimensionless ratios of river reach sites (Rosgen and Silvey, 2005). }ft (Meander Length Ratio (Lmfflba) Ift Radius of Curvature /Riffle Width (R./WbM) ift Meander Width Ratio (Wbft ••bid) ift Pool Length/Riffle Width ft Pool to Pool Spacing/Riffle Width Ift Riffle Length/Riffle Width le Water Surface Slope (S) i 0.00369 }ft/ft Length (VL) 560 ;ft 6.39 f 4.39 ; 7.85 2.04.-' 1.441' 2.71 12. 2.03. 0.83 3.18 3119 ' 1.59,1' 5.01 0.72 ; 0.32 } 134 Sinuosity (VS /S) i 128 Sinuosity (SUVL) i 1.37 Meander Wavelength (Lm) } 158 } 109 } 194 a I Radius of Curvature (R°) } 50.5 } 35.6 1 67 c c Belt Width (WO i 50.7 } 26.8 1 96.4 VIndividual Pool Length i 50.2 } 20.6 } 78.8 % Gravel t Pool Slope (SP) ;0.001;0.000;0.001 ft/ft Pool Slope /Average Water Surface Slope (SP/ S) '0.214 }0.065 }0.312 Pool to Pool Spacing t 76.4 } 39.4 } 124 }0.425 }0.198 }0.797 Riffle Length } 17.7 7.99 } 33.1 Dimensionless Depth Ratios Mean Min Max D. } 75.68 Max Riffle Depth (dmazrd) } 3.2 } 2.96 i 3.49 }ft I Max Riffle Depth/Mean Riffle Depth (dma„ d, / dbd) Valley Slope (VS) } 0.0047 Max Run Depth (dmexmn) IAvera Max Run Depth/Mean Riffle Depth (d.... / dbid) Stream Length (SL) 765 ;ft IValley }ft (Meander Length Ratio (Lmfflba) Ift Radius of Curvature /Riffle Width (R./WbM) ift Meander Width Ratio (Wbft ••bid) ift Pool Length/Riffle Width ft Pool to Pool Spacing/Riffle Width Ift Riffle Length/Riffle Width le Water Surface Slope (S) i 0.00369 }ft/ft Length (VL) 560 ;ft 6.39 f 4.39 ; 7.85 2.04.-' 1.441' 2.71 12. 2.03. 0.83 3.18 3119 ' 1.59,1' 5.01 0.72 ; 0.32 } 134 Sinuosity (VS /S) i 128 Sinuosity (SUVL) i 1.37 a Low Bank Height start} 5.36 ift Max Riffle start! 2.87 }ft Bank- Height Ratio (BHR) start} 1.87_ Mean Min Max (LBH) end} 5�83'ft Depth end} 2.6 ft (LBH/Max Riffle Depth) end' 2.24 a Facet Slopes Mean Min Max Dimensionless Slope Ratios Mean Min Max a Riffle Slope (S,,,) 10.3}0 01.01210.015ift/ft I Riffle Slope /Average Water Surface Slope (Sn, / S) 13.49 3.136 }4.051 0 Run Slope (SNn) }0.016 }0.008 }0.030ift /ft Run Slope /Average Water Surface Slope (Smn / S) }4.355 }2.238 }8.168 0 28.76 D } 0.8 c % Gravel t Pool Slope (SP) ;0.001;0.000;0.001 ft/ft Pool Slope /Average Water Surface Slope (SP/ S) '0.214 }0.065 }0.312 U Glide Slope (S9) 1.0.00210.001 }0.003 }ft /ft Glide Slope /Average Water Surface Slope (S9 / S) }0.425 }0.198 }0.797 Feature Midpoint a Mean Min Max Dimensionless Depth Ratios Mean Min Max D. } 75.68 Max Riffle Depth (dmazrd) } 3.2 } 2.96 i 3.49 }ft I Max Riffle Depth/Mean Riffle Depth (dma„ d, / dbd) } 1.22 i 1.131 1.33 Max Run Depth (dmexmn) } 3.55 i 3.55 } 3.55 1 f Max Run Depth/Mean Riffle Depth (d.... / dbid) } 1.35 l 1.35 1 1.35 Max Pool Depth (dm,) } 4.11 } 3.86 .11 4.35 }ft I Max Pool Depth /Mean Riffle Depth (dm_p / dbM) } 1.57 i -1.471 1.66 Max Glide Depth (dm.0 } 3.55 } 3.1 } 4.00 IN I Max Glide Depth/Mean Riffle Depth (dm.9 / dbW) } 1.35 1 1.18: 1.53 a Bar Reach" Riffle` Bar Reach' d Silt/Clay } 0 0 } 0 7D, 021 1452 1 % Sand } 42.31 0 28.76 D } 0.8 c % Gravel 50.96 86.49 } 57.65 D50 } 4.85 t U % Cobble } 6.73 } 13.51 } 13.6 jFDsT } 36.38 %_Boulder i 0 0 0 D. } 75.68 % Bedrock s 0 } 0 0 D100 i 180 ° Min, max, mean depths are ave. mid -point values except pools: taken at deepest part of pool ° Composite sample of riffles and pools within the designated reach. Copyright © 2006 Wildland Hydrology Riffle" Bar Protrusion Hetgt 11.01 0 1 0 fmm 19.22 4.73 0 imm 29.18 1452 1 0 'Imm 60.82 1 59.87 0 1mm 87.39 80.51 i 0 -mm 180 90 0 ,mm Active bed of a riffle. ° Height of roughness feature above bed WARSSS page 5 -31 1 1 1 1 1 1 1 t 1 1 i 1 t 1 1 I 1 Worksheet 2 -2. Computations of velocity and bankfull discharge using various methods ( Rosgen, 2006b; Rosgen and Silvey, 2007). Bankfull VELOCITY & DISCHARGE Estimates Stream: Big Creek Phase 2 Location: Reach 1 Date: 7/15/2020 1 Stream Type: G4 Valley Type: VIII Observers: StreamWalker Consulting HUC: INPUT VARIABLES OUTPUT VARIABLES Bankfull Riffle Cross - Sectional 62 01 Abld Bankfull Riffle Mean DEPTH 2.35 I dd AREA ft /sec (ft) (2 * dbkf) + Wbkf (ft) Bankfull Riffle WIDTH 26.34 1 Wbid I Wetted PERMIMETER 28 71 Wp - -- ft /sec (ft) (2 * dbkf) + Wbkf (it) l I Dga at Riffle 60.82 Dim- D,,4 (mm) / 304.8 0.20 D&f - -- ft /sec (ft / ft) Abkf / WP (ft) Bankfull SLOPE 0.0037 1 SbIld Hydraulic RADIUS 2.16 R - -- ft /sec (ft / ft) Abkf / WP (ft) Gravitational Acceleration 32,2 1 9 Relative Roughness 10.80 u* 2.65 ft /sec (ft / secZ) R(ft) / D84 (ft) (ft/sec) Drainage Area 5,7 DA Shear Velocity 0.507 u* 2.65 ft /sec (mit) U = RS (ft/sec) - - - -- -- - - - -- ESTIMATION METHODS Bankfull Bankfull VELOCITY DISCHARGE 1. Friction Relative U=[2.83 t 5.66 * Lo R / D 9 f J] u FactorXRou 4.40 ft /sec r 272.81 cfs hness 2.65 ft /sec 164.33 cfs 2. Roughness Coefficient: a) Manning's n from Friction Factor / Relative 3.49 ft / sec I 216.70 cfs Roughness (Figs. 2 -18, 2 -19) u = 1.49 *R" *S r2/ n n 2.65 ft /sec 164.33 cfs 2. Roughness Coefficient: u = 1.49 *R" *S 12/ n 3.49 ft / sec I 216.70 cfs b) Manning's n from Stream Type (Fig. 2 -20) n = 1 0.057 2.65 ft /sec 164.33 cfs 2. Roughness Coefficient: u = 1.49 *Rm *S 12/ n c) Manning's n from Jarrett (USGS): n = 0.39 *S038 *R -0.16 3.68 ft / sec 228.20 cfs Note: This equation is applicable to steep, step /pool, high boundary roughness, cobble- and boulder- dominated stream n 9 systems; i.e., for 3. Other Methods (Hey, Darcy- Weisbach, Chezy C, etc.) 4.87 ft /sec 301.75 cfs 3. Other Methods (Hey, Darcy- Weisbach, Chezy C, etc.) II 0.00 I ft / sec I I 0.00 I cfs Chezy C 4. Continuity Equations: a) Regional Curves u = Q / A Retum Period for Bankfull Discharge Q = 1,2 year 3.49 ft / sec I 216.70 cfs 4. Continuity Equations: b) USGS Gage Data u = Q / A 0.00 1 ft / SeC 0.00 Cfs I Protrusion Heiaht ODtions for the De. Term in the Relative Roughness Relation (R /D -.1- Fctimatinn Matlwt i Option 1. For sand -bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of feature. Substitute the D84 sand dune protrusion height in ft for the D84 tern in method 1. Option 2. For boulder- dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the bed elevation to the top of the rock on -that side. - Substitute-the D84 boulder_ protrusion- height in ft for-the D84 term-in-method _1. _.___- _____- _ Option 3. For bedrock- dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces above channel bed elevation. Substitute the Ds, bedrock protrusion height in ft for the D84 term in method 1. Option 4. For log- influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters or the height of the log on upstream side if embedded. Substitute the D84 protrusion height in ft for the 084 term in method 1. Copyright © 2008 Wildland Hydrology River Stability Field Guide page 2 -41 1 t 1 1 t 1 t 1 1 1 I Worksheet 3-14. Sediment competence calculation form to assess bed stability. Stream: Big Creek Phase 2 Stream Type: G 4c Location: Reach 1 Valley Type: VIII Observers: StreamWalker Consulting Date: 07/17/2010 Enter Required Information for Existing Condition 46.3 D50 Riff le bed material D50 (mm) 14.5 D(50 Bar sample D50 (mm) 0.29 Dmax Largest particle from bar sample (ft) 90 (mm) 1304.8 mm /ft 0.00369 S Existing bankfull water surface slope (ft/ft) 2.35 d Existing bankfull mean depth (ft) 1.65 Ys -1 Immersed specific gravity of sediment Select the Appropriate Equation and Calculate Critical Dimensionless Shear Stress 3.19 D50I D50 Range: 3 — 7 Use EQUATION 1: T* = 0.0834 ( D501D5d —0.872 1.94 Dmax /D50 Range: 1.3-3.0 Use EQUATION 2: ti` = 0.0384 (Dm. /D5(,) -0.se7 0.0213 ti* Bankfull Dimensionless Shear Stress EQUATION USED: 2 Calculate Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample 2.76 d Required bankfull mean depth (ft) d = Z* (7sS1)Dmax (use Dmax in ft) Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle in Bar Sample 0.00434 S - Required bankfull water surface slope ( ft/ft) S. 2* (y s 1 >Dmex (use Dmax in ft) d Check: I- Stable T- Aggrading I-- Degrading Sediment Competence Using Dimensional Shear Stress 0.541 Bankfull shear stress T ='IdS (lbs /ft) (substitute hydraulic radius, R, with mean depth, d ) = 62.4, d = existing depth, S = existing slope Shields 37 co 92 Predicted largest moveable particle size (mm) at bankfull shear stress T (Figure 3 -11) Shields 1.15 co 0.49 Predicted shear stress required to initiate movement of measured Dm" (mm) (Figure 3 -11) Shields 4.99 co 2.13 Predicted mean depth required to initiate movement of measured D," (mm) Ir d — 'C = predicted shear stress, '� = 62.4, S = existing slope YS Shields 0.0078 co 0.0033 Predicted slope required to initiate movement of measured Dmax (mm) 't S — '1; = predicted shear stress, 7 = 62.4, d = existing depth yd Check: it Stable r- Aggrading r' Degrading ICopyright © 2008 Wildland Hydrology River Stability Field Guide page 3 -101 1 t 1 1 i 1 1 1 1 1 1 I 1 1 l Iuao 1095 1094 1093 0 1092 m W 1091 1090 1089 1088 0 5 10 Bankfull Dimensions 58.9 x- section area (ft.sq.) 24.1 width (ft) 2.4 mean depth (ft) 3.1 max depth (ft) 27.3 wetted parimeter (ft) 2.2 hyd radi (ft) 9.9 width -depth ratio Bankfull Flow 3.8 velocity (ft/s) 222.3 discharge rate (cfs) 0.45 Froude number Cross Section Riffle 15 20 Width Flood Dimensions 32.2 W flood prone area (ft) 13 entrenchment ratio 57 low bank height (ft) 1.8 low bank height ratio Flow Resistance 0.040 Manning's roughness 0.14 D'Arcy- Weisbach fric. - resistance factor u/u" - relative roughness reference ID ��-rojt instrument height UT7 o 5 - -- longitudinal station - Bankfull Stage FS �j, i!: = 109'1 88 elev elevation Low Bank Height armrr f. FS J 1= 1094 12 elev elevation S c Flood Prone Area ❑ width fpa 32.2 Channel Slope 110002 percent slope G�377 Flow Resistance Manning's "n" D'Arcy - Weisbach T R 9 Note: C� 25 30 35 Materials - D50 (mm) - D84 (mm) 24 threshold grain size (mm): Forces & Power 0.37 channel slope ( %) 0.50 shear stress (lb /sq.ft.) 0.51 shear velocity (ft/s) 2.1 unit strm power (IbHt/s) Distance BS HI FS Elevation Omit Notes ffh (ftl /ftl /ft) M Rkf 40 ��-rojt 1100.02 F..I' 1094.96 C 1100.02 9 iT 1094.85 armrr f. 1100.02 9a 1094.94 ❑ 110002 �1 Q= 1094.97 rl T 1100.02 R 9 1094.93 C� 1100.02 C 1094.56 ❑ Gs 1100.02 giWg 1094.23 ❑ V 1100.02 C' A,C, 1093.88 ❑ 1100.02 Q3 109364 El W.FjI 1100.02 D c v 109301 ❑ e) G 1100.02 &@,I 1091.98 ❑ G k' 1100.02 (l>% 1091.88 ❑ v r 1100.02 FiAv- 1091.4 1100.02 c.ilJ 1090.87 r 1100.02 �)430 1090.54 v 1100.02 &(Cv 1090.4 1100.02 Q-Wi 1090.23 i 4l 1100.02 1 S3 1089.9 i 110002 %,K 1089.26 f2� 1100.02 1089.18 Z. 1100.02 1089.03 El �� •, 1100.02 S t 1088.91 ❑ �= , - ��r i 1100.02 S',i..iCs 1088.88 ❑ 1100.02 G 1088.86 ❑ 1100 4i L 1088.84 0 2 PS, 1088 94 ❑ _;.c,r � ��.02 02 �l� Jb' 5 G i 02 U, W 1089 1 1 t 1 1 1 1 1 1 1 1 1 1 I 1 1 I UVO 1094 1093 1092 a 1091 m m 1090 w 1089 1088 1087 1086 0 5 10 Bankfull Dimensions 773 x- section area (ft sq.) 26.3 width (ft) 2.9 mean depth (ft) 4.3 max depth (ft) 291 wetted perimeter (ft) 2.7 hyd radi(ft) 9.0 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Pool 15 20 25 Width Flood Dimensions - entrenchment ratio 7.3 low bank height (ft) 1.7 low bank height ratio Flow Resistance reference ID k�7 instrument height - -- longitudinal station - Bankfull Stage C FSJ T, = 1091 1 elev elevation f o • i -- Love Bank Height T x -r C t_r-z� FS <'x = 1094 1 elev elevation FTJ W,� Flood Prone Area ❑ width fpa 429 Channel Slope 1098.86 percent slope - Flow Resistance Manning's "n' - D'Arcy - Weisbach ' -- Note: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u/u" - relative roughness Distance BS HI (ft) (ft) (ft) 30 35 40 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) -- unit strm power (Ib /ft/s) FS Elevation Omit Notes (ft) (ft) Bkf 45 k�7 1098.86 1094.1 tom= W` j cif-, C 1098.86 Cb IW, 1094.09 FI T x -r C t_r-z� v 1098.86 CX 1094.17 ❑ 1098.86 � 1094.21 1098.86 1094.19 1098.86 C, (LR 1094.2 Cif 1098.86 6,'�3 1094.08 1098.86 CM 1093.98 1 El G 1098.86 &1�5 1093.7 ❑ 1098.86 9�,e�?j 1093.37 ❑ 1098.86 �11(:g1 1093.21 El G 1098.86 1 109291 ❑ E 1098.86 & b 1092.08 ❑ �0 1098.86 i7,�g 1091.81 El 111; 1098.86 5L� 1091.53 SS G7 1098.86 W4� 1091.41 El 5 oD 1098.86 7n, 1091.1 ❑ F-77, %? 1098.86 F'A 1091 1L� 1098.86 9HT/ 1090.69 El 1098.86 C -,� 1090.41 ❑ C 1098.86 G 1089.97 ❑ �4 1098.86 2 1089.6 ❑ 1098.86 C.Ia�, 1089.38 ❑ TO-988-6 _T7-I__'__7_08917 `C X 1098.86 1088.85 ❑ C 6 1098.86 i o Cel 1088 81 ❑ 1098.86 i abi 1088.68 ❑ pEq iE 1098.86 1088.47 ❑ 1 1 1 1 1 1 1 1 1 1 1 1 1 t f 1 1 t i vav 1095 1094 1093 0 1092 m 1091 w 1090 1089 1088 1087 0 5 10 Bankfull Dimensions 59.8 x- section area (ft.sq.) 24.8 width (ft) 2.4 mean depth (ft) 3.1 max depth (ft) 26.6 wetted perimeter (ft) 2.3 hyd radi (ft) 103 width-depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Glide 15 20 25 Width Flood Dimensions 31.5 W flood prone area (ft) 1.3 entrenchment ratio 6.6 low bank height (ft) 2.1 low bank height ratio Flow Resistance Cross Section aD reference ID instrument height 5af fS - -- longitudinal station - Bankfull Stage 1098.86 FS F� = 1090 79 elev elevation i� - Low Bank Height FS Cd CL = 1094 24 elev elevation[ ❑ Flood Prone Area width fpa 31.5 Channel Slope 1094.68 percent slope Flow Resistance Manning's "n" � �M D'Arcy - Weisbach 7' - Note: C. 1098.86 - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u /u' - relative roughness Distance BS HI (ft) (ft) (ft) 30 35 40 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit stns power (lb /ft/s) FS Elevation Omit Notes (ft) (ft) Rkf aD 1098.86 , rz 1094.46 1098.86 U� 1094.4 1 1098.86 6111,33 1094.5 ❑ 1098.86 1094.68 1098.86 � �M 1094.63 C. 1098.86 1094.58 ❑ 1098.86 1094.43 ❑ G 1098.86 QY;9 1094.24 51 1098.86 C �@ 1093.91 ❑ 109886 E 109359 El 1098.86 9( jj 1092.88 El �. 1098.86 CAS 1092.48 ❑ i© 1098.86 G, 1091.95 ❑ 1098.86 C, TT 1090.79 ❑ �_�:;� u 1098.86 0 1090.54 1098.86 [1 1090.47 �4 109886 Q G5 1090.1 1098.86 G �-g 1089.87 ❑ i 1098.86 QJA.C, 1089.68 ❑ i 1 1098.86 1089.31 ❑ �s5 1098.86 QoT 1089.09 ❑ .� 1098.86 1088.88 ❑ i 1098.86 i (';al 1088.83 ❑ 1098.86 1088.59 ❑ �. 109886 108841 ❑ 109886 S T 1087.89 ❑ 1098.86 1087.74 El 1098.86 F, -O 1087.68 I I i 1 -1 I .1 1095 1094 1093 1092 °- 1091 .W m 1090 w 1089 1088 1087 1086 Glide 0 5 10 15 Bankfull Dimensions 99.8 x- section area (ft.sq.) 353 width (ft) 2.8 mean depth (ft) 4.1 max depth (ft) 38.0 wetted parimeter (ft) 2.6 hyd radi (ft) 12.5 width-depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section 20 25 30 Width Flood Dimensions - W flood prone area (ft) - entrenchment ratio 64 low bank height (ft) 1.6 low bank height ratio Flow Resistance refwence lD 4! instrument height fl - -- longitudinal station - Bankfull Stage 4 FSJ 1090 12 elev elevation �- -- Low Bank Height FS ©M- = 1093 45 elevation f Flood Prone Area ❑ width fpa 50.0 Channel Slope 1098.81 percent slope - Flow Resistance 3-9V o Manning's "n" - D'Arcy - Weisbach T' - Note: 71 i Q3a - Manning's roughness - D'Arcy- Weisbach tric. - resistance factor u /u* -- relative roughness 35 40 45 50 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft) - shear velocity (ft/s) - unit strm power (lb /ft/s) Distance BS - HI FS Elevation Omit Notes /ftl (ffl (ffl !ffl /Rl R4f @ia 1098.81 1093.36 El JLW 4 1098.81 Qi 1093.48 a 1098.81 F1 1093.45 ❑ Q D 1098.81 (gyp 1092.01 ❑ 3-9V o 1098.81 1090.97 71 i Q3a 1098.81 (i41<1 1090.67 ❑ QO 1098.81 E Cp 1090.12 ❑ WIF 109881 1089.97 (31Zi 1098.81 1088.42 ❑ DAl 1098.81 1087.95 ❑ 17� 1098.81 'H 1087.74 a� 1098.81 9flM 108767 VA 1 1098.81 'HM 1087.73 IMM EiD 1098.81 'H�V@ 1087.02 ❑ Q fl 1098.81 M1 1087.27 9 4145 1098.81 gti.i'J 1087.17 ❑ 43 1098.81 4l9 1087.58 ❑ o u r - 51�� 1098.81 UM 1087.53 ❑ 5JC�0 109881 U4 1087.41 El 1098.81 '9.�g 1087.32 El @@ '(Wghor, - 1098.81 'H.3 1087.21 ❑ LSD 1098.81 9%W 1087.78 ❑ GL'M 1098.81 41M6 1088.67 ❑ 9 1098.81 0) c 1089.03 m 1098.81 �)& 1089.59 ❑ 1098.81 1089.97 ❑ 1098.81 FN 1090.95 ❑ <�, 109881 QQel 1092.27 ❑ X77 109881 @M 109319 ❑ t e f 1 1 1 1 UU4 1093 1092 1091 1090 a� w 1089 1088 1087 1086 0 5 10 Bankfull Dimensions 59.8 x- section area (ft.sq.) 26.1 width (ft) 2.3 mean depth (ft) 2.9 max depth (ft) 28.4 wetted perimeter (ft) 2.1 hyd radi (ft) 11.4 width-depth ratio Bankfull Flow 3.7 velocity (ft/s) 222.2 discharge rate (cfs) 0.45 Froude number Cross Section Riffle 15 20 25 Width Flood Dimensions 32.2 W flood prone area (ft) 1.2 entrenchment ratio 5.9 low bank height (ft) 2.0 low bank height ratio Flow Resistance 0.040 Manning's roughness 0.14 D'Arcy- Weisbach fric. - resistance factor u /u' - relative roughness reference ID C instrument height ' --- - -- longitudinal station (, `0 - Bankfull Stage 1096.916 FS T-,7T = 1090 436132 elev elevation 5-%9 - -- Loan Bank Height 1092.881 FS Chi, = 1092 606132 elev elevation I u o -.0 1092.761 Flood Prone Area width fpa 32 2 Channel Slope 1092.609 percent slope Co, - -- Flow Resistance Manning's "n" QLK, ❑ D'Arcy - Weisbach T' C u ` - -- Note: 1092.166 ;rr - - Distance BS HI (ft) (ft) (ft) 30 35 40 45 Materials - D50 (mm) - D84 (mm) 24 threshold grain size (mm). Forces & Power 0.37 channel slope (%) 0.49 shear stress (lb /sq.ft.) 0.50 shear velocity (ft/s) 196 unit strm power (lb /ft/s) FS Elevation Omit Notes (ft) (ft) Rkf C 1096.916 ' 1092.916 El (, `0 O �r 1096.916 4.044065 4.035105 4.154641 4.307211 4.494833 4.749824 5.063922 5.635241 6.054613 6.214222 6.48093 6.868468 7.016627 7.228679 7.858805 8.383218 8.871343 9.204087 9.398131 9.564912 9682476 9.799994 9.810111 9.800216 9.673168 9.651686 9 63196 9.704401 1092.872 "4 1096.916 1092.881 ❑ 1096.916 1092.761 1096.916 1092.609 ,G 1096.916 1092.421 ❑ C u ` 1096.916 1092.166 C C 1096.916 1091.852 C; 1096.916 1091.281 �.0 1096.916 1090.862 fit 1096.916 1090.702 ❑ 1096.9161 1090.435 L C? CC 1096.916 1090.048 1096.916 1089.9 ❑ S, 1096.916 1089.687 ❑ & 1096 916 1089.057 ❑ F f " 1096.916 1088.533 ❑ 1096.916 1088.045 G 1096.916 1 1087.712 �C 1096 916 1087.518 El 1096.916 1087.351 11 1096.916 1087.234 ❑ z.� 1096.916 1087.116 ❑ 7 C,! 1096.916 1087.106 ❑ 1096.916 1087.116 1096.916 1087.243 ❑ - ". �i r v: 16 1087.264 5 ?'; b^ 6 1087 212 ❑ t 1 f 1 1 1 1 1 1 i 1 1 1 1 1 1 iva3 1092 1091 1090 0 1089 .i 1088 w 1087 1086 1085 1084 1083 0 10 Bankfull Dimensions 123.9 x- section area (ft-sq.) 37.2 width (ft) 3.3 mean depth (ft) 4.1 max depth (ft) 41.8 wetted perimeter (ft) 3.0 hyd radi (ft) 11.2 width-depth ratio Bankfull Flow -- velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Pool 20 30 40 50 60 70 Width Flood Dimensions Materials - W flood prone area (ft) - D50 (mm) - entrenchment ratio - D84 (mm) 6.4 low bank height (ft) - threshold grain size (mm): 15 low bank height ratio Flow Resistance referenceID F9, instrument height i'iI -- longitudinal station - Bankfull Stage FS J 1088 52 elev elevation i�W-93 -- Low Bank Height FS '777-1= 1090 79 elev elevation 7 7 77 Flood Prone Area ❑ width fpa 535 Channel Slope 109799 percent slope - Flow Resistance Manning's "n" D'Arcy - Weisbach Note: � ' G - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u /u' - relative roughness Distance BS HI (ft) (ft) (ft) Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit strm power (Ib/ft/s) FS Elevation Omit Notes (ft) (ftl Rkf �'L 1097.99 1092.07 1097.99 E 1092.01 Y 1097.99 07,0 1091.39 ❑ 109799 TIT 109079 ter) 1097.99 1089.26 � ' G 1097.99 U@ 1088.94 ❑ 1097.99 �Zz-( 1088.52 ❑ ;G 1097.99 4�c�71C 1087.25 ❑ 7L 1097.99 4 1086.6 El G 1097.99 < t M 1086.07 ❑ � 1097.99 7?1 1085.23 ix 1097.99 1084.83 El 3 i 1 1097.99 i �)2 1085.06 ❑ 5 1097.99 1 f �3 V 1084.38 1097.99 1084.47 ❑ i 1097.99 ti? ti 1084.84 ❑ <J.E 1097.99 93.-I 1085.33 ❑ �.� 1097.99 q, /.Fi' 1085.5 ❑ 1097.99 i. 5-Q 1084.95 1 ❑ 1097.99 S ? F`,tt 1085.1 rx 1097.99 1085.2 1097.99 ti (11 1086.12 ❑ C4 "' ; �C 1097.99 f .ci' 1086.08 ❑ 6th 1097.99 1 1086.48 [] F7 1097.99 ,�V 1086.68 ❑ 1097.99 7 7,T- 1086 79 ❑ s 1097.99 Q til 1087.36 ❑ i 1.09799 1088 06 1 ❑ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1090 1089 1088 0 1087 y 1086 uw 1085 1084 1083 1082 Pool - -------- --- ------- -- ----- - - - --- �,++ 0 10 Bankfull Dimensions 118.6 x- section area (ft.sq.) 447 width (ft) 2.7 mean depth (ft) 5.1 max depth (ft) 49.0 wetted parimeter (ft) 2.4 hyd radi (ft) 16.8 width-depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section 20 30 40 Width Flood Dimensions - W flood prone area (ft) - entrenchment ratio 5.7 low bank height (ft) 11 low bank height ratio Flow Resistance reference IDI Ste. instrument height uC�93 - -- longitudinal station - Bankfull Stage FSJ I= 1 087 47 elev elevation uQ 7,«7 -- Low Bank Height FS1 a <9 I= 1088 09 eiev elevation L, Flood Prone Area 109006 width fpa 63.0 Channel Slope percent slope - Flocs Resistance Manning's "n" -- D'Arcy - Weisbach "P' 1095.58 Note: 1090.22 - Manning's roughness - D'Arcy- Weisbach Eric. - resistance factor u /u' - relative roughness Distance BS HI 1111 (ftl /ftl 50 60 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit strm power (lb/ft1s) FS Elevation Omit Notes 1111 1111 RH d 1095.58 x, : 1090.04 1095.58. 1089.94 1095.58 109006 ❑ Y 1095.58 cJ41i 1090.17 1095.58 1090.22 1095.58 91&- 1090.33 El, M - 1095.58 3i 1090.24 %3 109558 1090.21 ❑ i E•. 1095 587 < 1089.84 ❑ 1095.58 � LT 1085.71 ❑ T 1095.58 �4,jW� 1084.54 ❑ , i 1095.58 v iC�V 1083.91 ❑ 3 1095.58 5i 1083.7 ❑ 1095.58 i'93 i 3 1083.43 ❑ 1095.58 4 L. 108325 ❑ 3 1095.58 1082.93 El c = 1095.58 U ' P 1082.61 ❑ 1095.58 SaSQ 1082.46 ❑ 1095.58 1 `M% 1082.4 ❑ 1095.58 a 31� 1082.53 Fl 1095.58 FY 71 1082.88 L2� 1095.58 �ZJS 1083.38 x 1095.58 9� Cr 1083.67 1095.58 -77a= 1083.73 ❑ 3: 1095.58 �' 1083.91 1095.58 i ;' has 1084.05 ❑ d.. 1095.58 f 3- 1084.23 c, 1095.58 1, 3 1084.45 1095.58 i 3 Q 1 108468 ❑ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T U cu N Cc N N cn cu Y N N L U Eel 2 U Y C C d U- m ?i m J W a a m 0 ca 70 c C 0 J 1 1 1 RIVERMORPH PARTICLE SUMMARY ---------------------------------------------------------------------- River Name: Big Creek Phase 2 Reach Name: Reach 1 - Phase 2 Sample Name: Reach 1 Classification Survey Date: 02/25/2009 ---------------------------------------------------------------------- Size (mm) TOT # ITEM % CUM ------.-------------------------------.--------------------------------- 0 - 0.062 0 0.00 0.00 0.062 - 0.125 6 5.77 5.77 - 0.25 16 15.38 21.15 '0.125 0.25 - 0.50 9 8.65 29.81 - 0.50 1.0 9 8.65 38.46 1.0 - 2.0 4 3.85 42.31 2.0 - 4.0 5 4.81 47.12 4.0 - 5.7 6 5.77 52.88 5.7 - 8.0 5 4.81 57.69 '8.0 - 11.3 11.3 - 16.0 5 8 4.81 7.69 62.50 70.19 - 16.0 22.6 5 4.81 75.00 22.6 - 32.0 7 6.73 81.73 - 45 7 6.73 88.46 '32 45 - 64 5 4.81 93.27 64 - 90 4 3.85 97.12 90 - 128 1 0.96 98.08 128 - 180 2 1.92 100.00 180 - 256 0 0.00 100.00 256 - 362 0 0.00 100.00 362 - 512 0 0.00 100.00 512 - 1024 0 0.00 100.00 1024 - 2048 0 0.00 100.00 Bedrock 0 0.00 100.00 D16 (mm) 0.21 D35 (mm) 0.8 D50 (mm) 4.85 D84 (mm) 36.38 D95 (mm) 75.68 D100 (mm) 180 o) Silt /Clay (/ Sand ( %) 42.31 Gravel (%) 50.96 cobble (%) Boulder (%) 6.73 0 Bedrock (%) 0 Total Particles = 104. 1 1 1 1 1 RIVERMORPH PARTICLE SUMMARY ---------------------------------------------------------------------- 1 River Name: Reach Name: Big Creek Phase 2 Reach 1 - Phase 2 Sample Name: Reach 1 Active Riffle Survey Date: 02/25/2009 ---------------------------------------------------------------------- Size (mm) TOT # ITEM % CUM 0 - 0.062 0 0.00 0.00 0.062 - 0.125 0 0.00 0.00 0.125 - 0.25 1 1.00 1.00 0.25 - 0.50 0 0.00 1.00 0.50 - 1.0 0 0.00 1.00 1.0 - 2.0 0 0.00 1.00 2.0 - 4.0 0 0.00 1.00 4.0 - 5.7 0 0.00 1.00 5.7 - 8.0 0 0.00 1.00 8.0 - 11.3 1 1.00 2.00 11.3 - 16.0 0 0.00 2.00 - 16.0 22.6 9 9.00 11.00 22.6 - 32.0 10 10.00 21.00 - 45 27 27.00 48.00 '32 45 - 64 29 29.00 77.00 64 - 90 21 21.00 98.00 '90 - 128 128 - 180 1 1 1.00 1.00 99.00 100.00 - 180 256 0 0.00 100.00 256 - 362 0 0.00 100.00 362 - 512 0 0.00 100.00 512 - 1024 0 0.00 100.00 1024 - 2048 0 0.00 100.00 Bedrock 0 0.00 100.00 D16 (mm) 27.3 D35 (mm) 38.74 D50 (mm) 46.31 D84 (mm) 72.67 D95 (mm) 86.29 D100 (mm) 179.99 'Silt /Clay ( %) 0 Sand ( %) 1 Gravel (%) 76 (%) 23 'Cobble Boulder (%) 0 Bedrock (%) 0 Total Particles = 100. - -- - ------------- - - - - -- - - - - - -- - - -- - - -- - - - -- - - - - -- -- -- -- -- - - - - - - -- - -- - - - -- - -- --- - - - - -- -- ----------------- - - - - -- 1 1 RIVERMORPH PARTICLE SUMMARY ---------------------------------------------------------------------- River Name: Big creek Phase 2 Reach Name: Reach 1 - Phase 2 Sample Name: Reach 1 Pavement Survey Date: 02/25/2009 ---------------------------------------------------------------------- SIEVE (mm) NET WT --------------------------------------------------------------------- 31.5 1 74 16 2.03 8 0.49 4 0.23 2 0.07 PAN 0.38 D16 (mm) 16.75 D35 (mm) 28.26 D50 (mm) D84 (mm) 41.77 77.97 D95 (mm) 89.68 D100 (mm) 95 silt /clay ( %) 0 Sand ( %) 4.79 Gravel ( %) 73.87 cobble (%) 21.34 'Boulder (%) 0 Bedrock (%) 0 Total Weight = 7.9300. Largest surface Particles: size(mm) Weight Particle 1: 95 1.79 Particle 2: 80 1.2 i 1 i 1 1 1 1 1 1 t RIVERMORPH PARTICLE SUMMARY ---------------------------------------------------------------------- River Name: Big Creek Phase 2 Reach Name: Reach 1 - Phase 2 Sample Name: Reach 1 SubPavement Survey Date: 02/25/2009 ---------------------------------------------------------------------- SIEVE (mm) NET WT 63 9.91 31.5 18.04 16 15.9 8 11.78 4 6.77 2 5.07 PAN 29.03 D16 (mm) 0 D35 (mm) D50 (mm) 4.73 14.52 D84 (mm) 59.87 D95 (mm) 80.51 t 0 t Silt/Clay ( %) 0 Sand ( %) 28.76 Gravel ( %) 57.65 'Cobble ( %) 13.6 Boulder (%) 0 Bedrock ( %) 0 Total weight = 100.9500. Largest surface Particles: Size(mm) weight Particle 1: 90 2.95 Particle 2: 90 1.5 1 1 1 1 1 t 1 t [I 1 1 1 1 1 1 1 cn O O 0) co U c O C O U z cu O co E U) N N V) (D Y a.. O 3 I� T O O O c _co co O O N O Q O O M m O W Ci co C N r O t CO) O C m ca LL .0 y N t U c r _ Q E E co O 3 X N ZA = N Q N E co N CL U) W o c (� ji, W > U Fn m N C 7 O N c� c O F- w oC M C Q O `o O O m :: O I >� g Q vi vi iri iri O _0 m >. m cC C >+ p } O dm M Y wO � � N cis > O Cfi O D � c m N A ca it c a—) m ca E U y U w U in U y M > U m O N N L> d E E E ca E co E d' N c�`u U o Y) m C Y ctS a) O C C C C U V O �i C /y�• IL E cu to ��� a -6 _y � � Y ) V' i� /� cz w m N __- -_ -___ � c a a2i V/ = N U) Q m 6 Q m m Iv c in T i V o Q r N > D p o m E y O R U m m 0 y y Q C C N °- m Op ? y x W cA j L o d �' C O a a N 0 a. 2 Z O � C C.) O iLf C U C Cf N • m N E Z �, = m d) % ca Qi O k Y O O r CV m 0 c W O N .. 9 _ = Q W E N U 0 O Y G Q r O M V _ co .. m C Q CO '-' a- f L p) O m U N c N x N w a I L L L C v m E a0i m m v U co a y o cn CO p ca N Q D _y U m m .O N -e CA W O V N V o a m= � W o N c,j _ o ti V c ca .. a ca � o O .� in M c as C k O O I� co d O Q c '� N in O ) 1 1 = ui co N m m E oC cu N v Q C) Co w , o 3 o d N w m_ °' U) C ?J p 0 c a� ? N (D N (/) .. .--• >. O O- p > m w c O U9 I� C O ° N� c� N� OCR Q o O C m m d CA co m CO O_ E O N co N ;� M O p r -- - - - -- U .. i E� CV w Y I L Ll L L L N U) O c0 M o m m g a) v E U) (� CV Y a0 . N U C!) o1S c �I CL O N U !L cn d Y O•- ¢ --- °- a U 1 c s L p m 'S CU N c U � * O � Cc)- 10 V N v c m as — c o °'� Q � oC a s I '0 S m co c c� L m C;a N N= >� a v -a j CO Z Z Z ci tC 4) m O O ca c cri O 0) co '� _N a J CM m m m N > m D co m J t` ° co C L t.... m U LL CJ fn m t c -p m T d C � .••. c 06 y y V. y $D ` Q W cr) C V O G O CA 3 3 E U W N N Cl) C E� N c .�+ = tJJ E r� C a i G t of N R a d W O d d= CU CA m = ce a ayi . w >� -Y � N E O E C O G) R 0� m O a m O = � (A O t V Jy m ma W � � m dV V cc N m .. N V T O O O c _co co O O N O Q O 1 1 1 t 1 1 1 1 1 1 A 1 1 1 t 1 Worksheet 5 -10. Summary form of annual streambank erosion estimates for various study reaches. Stream: Big Creek Location: Reach 1 Graph Used: NC Total Bank Length (ft): 765 Date: 2125 12009 Observers: Walker /Cartner Valley Type: VIII Stream Type: G 4c (1) (2) (3) (4) (5) (6) (7) (8) Station (ft) BEHI rating NBS rating Bank Length of Study bank Erosion Erosion (Worksheet (Worksheet erosion bank (ft) height (ft) subtotal Rate 5-8) 5 -9) rate [(4)x(5)x(6)] (tonslyr /ft) (adjective) (adjective) (Figure 5- (ft3/yr) {[(7)/27] x 38 or 5 -39) 1.3/(5)) (ft/yr) Left Bank 0 1. 27 Moderate Low 0.015 27 6 2.43 0.00 Right Bank 2. 0-35 Low Low 0.0022041 35 3.5 0.27 0.00 Left Bank 3. 27-60 Very Low Low 0.0016364 33 5 0.27 0.00 Right Bank 4. 35-60 High Moderate 0.1697143 25 3.5 14.85 0.03 Left Bank 5. 60-82 High High 0.6006198 22 6.6 87.21 0.19 Left Bank 6. 82-165 Moderate Low 0.0302473 83 5.7 14.31 0.01 Right Bank 7. 60-109 Moderate Low 0.0083488 49 3.3 1.35 0.00 Right Bank 8. 109-165 High High 0.2003387 56 5.8 65.07 0.06 Left Bank 9. 166-215 High Very High 0.8001 50 6 240.03 0.23 Right Bank 10. 165-220 Low Low 0.0077512 55 3.8 1.62 0.00 Left Bank 11. 215 - 250 Moderate Low 0.0295714 35 6 6.21 0.01 Right Bank 12. 220-326 Moderate Moderate 0.03 105 7.2 22.68 0.01 Left Bank 13. 250-280 Moderate Low 0.03 30 6 5.4 0.01 Left Bank 14. 280-325 Moderate Low 0.0085714 45 3.5 1.35 0.00 Lett an 15. 325-355 Moderate Extreme 0.06 30 6.3 11.34 0.02 Right Bank 16. 325-355 High Extreme 0.9998901 39 7 272.97 0.34 Left Bank 17.355-400 Moderate Moderate 0.07 45 6 18.9 0.02 Right Bank 18. 355-400 Moderate Low 0.0308571 45 3.5 4.86 0.01 Left Bank 19. 400 - 475 Moderate Low 0.0702 75 4 21.06 0.01 Right Bank 20.400-475 Low High 0.0997714 75 7 52.38 0.03 Lett an 21. 475 - 525 High High 0.2502857 50 6.3 78.84 0.08 Copyright 0 2006 Wildland Hydrology WARSSS page 5 -81 t L 1 1 1 1 1 1 t L� In 1 1 1 1 Worksheet 5 -10. Summary form of annual streambank erosion estimates for various study reaches. Stream: Big Creek BEHI, Reach - Total Length Location: Graph Used: Total Bank Length (ft): 765 Date: 1/10/2011 Observers: Valley Type: Vlll Stream Type: G 4c (1) (2) (3) (4) (5) (6) (7) (8) Station (ft) BEHI rating NBS rating Bank Length of Study bank Erosion Erosion (Worksheet (Worksheet erosion bank (ft) height (ft) subtotal Rate 5-8) 5 -9) rate [(4)x(5)x(6)] (tons /yr /ft) (adjective) (adjective) (Figure 5- (ft3/yr) {[(7)/27] x 38 or 5-39) 1.31(5)) (ft/yr) Right Bank 22.475-560 Low Low 0.00225 75 3.2 0.54 0.00 Left Bank 23. 525-585 Low High 0.08025 60 6 28.89 0.02 Right Bank 24. 550-585 Low High 0.0697959 35 6.3 15.39 0.02 Left Bank 25. 585-645 High High 0.2500714 60 7 105.03 0.08 Right Bank 26. 585-715 Moderate Low 0.0300607 130 3.8 14.85 0.01 Left Bank 27. 645-716 High High 0.2000204 70 7 98.01 0.07 Left Bank 28. 715-765 Moderate Low 0.0078545 50 5.5 2.16 0.00 Right Bank 29. 715-757 High High 0.1997802 42 6.5 54.54 0.06 Right Bank 30. 767-775 High Moderate 0.1693548 18 6.2 18.9 0.05 31. 32. 33. 34. 35. 36. Total Sum erosion subtotals in Column (7) for each BEHI/NBS combination erosion (ft3 r) 1261.71 Total Convert erosion in ft3 /yr to yds3 /yr {divide Total erosion (ft3 /yr) by 27} erosion ( ds3/ r) 46.73 Convert erosion in yds3 /yr to tons /yr {multiply Total erosion (yds3 /yr) Total by 1.3} erosion (tonstyr) 60.75 Calculate erosion per unit length of channel {divide Total erosion Total (tons /yr) by total length of stream (ft) surveyed} erosion (tons /yr/ft) 0.0794 Copyright © 2006 Wildland Hydrology WARSSS page 5 -81 ,7 'W . .. ,. , « 0 \ 6 .% 125 25 \ 375, . 500 . Fee \ . � . :. • » « . ± :: .. � � Worksheet 5 -3. Field form for Level II stream classification ( Rosgen, 1996; Rosgen and Silvey, 2005). Stream: Big Creek Phase 2 Basin: Dan River Drainage Area: 3852.8 acres 6.02 mil Location: Reach 2 Twp. &Rge: ; Sec. &Qtr.: ; Cross - Section Monuments (Lat. /Long.): 0 Lat / 0 Long Date: 02/25/09 Observers: Walker /Cartner Valley Type: VIII Bankfull WIDTH (Wbkf) WIDTH of the stream channel at bankfull stage elevation, in a riffle section. 32,11 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross - section, at bankfull stage elevation, in a riffle section (dbkf = A / Wbkf). :2:.l 6 Bankfull X- Section AREA (Abkf) AREA of the stream channel cross - section, at bankfull stage elevation, in a riffle section. 69.34 Width /Depth Ratio (Wbkf/ dbkf) Bankfull WIDTH divided by bankfull mean DEPTH, in a riffle section. 14.87 Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross - section, or distance between the bankfull stage and Thalweg elevations, in a riffle section. 3.42 WIDTH of Flood -Prone Area (WfPa) Twice maximum DEPTH, or (2 x dmbkf) = the stage /elevation at which flood -prone area WIDTH is determined in a riffle section. 46.54 Entrenchment Ratio (ER) The ratio of flood -prone area WIDTH divided by bankfull channel WIDTH (WfPa/ Wbkf) (riffle section). 1.45 Channel Materials (Particle Size Index ) D50 The D50 particle size index represents the mean diameter of channel materials, as sampled from the channel surface, between the bankfull stage and Thalweg elevations. 10.06 Water Surface SLOPE (S) Channel slope ='rise over run" for a reach approximately 20-30 bankfull channel widths in length, with the 'riffle -to- riffle" water surface slope representing the gradient at bankfull stage. 0.00444 Channel SINUOSITY (k) Sinuosity is an index of channel pattern, determined from a ratio of stream length divided by valley length (SL / VL); or estimated from a ratio of valley slope divided by channel slope (VS / S). 1.46 ft f +2 ft/ft F+ ft ft/ft mm ft/ft Copyright © 2006 Wildland Hydrology WARSSS page 5 -29 1 f 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 t Worksheet 5-4. Morphological relations, including dimensionless ratios of river reach sites (Rosgen and Silvey, 2005). Low Bank Height (LBH) start 4.6 Ift 61 Max Riffle Depth stand 2.56 Ift �9 Bank- Height Ratio (BHR) start 1.8 0 end' ft t end ft (LBH/Max Riffle Depth) end 2.27 o+ Readfb Riffle° Bar Rance fumes Bar Protnwdon Hei htd % Silt/Clay 1 2.91 I 1 l 0 Dt6 0.2'9 � 12.87 ) 0 0 jmm m 1% Sand 41.75 ; - 4 17.27 D 0.74 25.92 ; 12.22 0 7mm c% Gravel 1 48.54 i 82 11 68.71 D�, 11 10.06 1 34.74 2256 1 0 f mm t %Cobble 6.8 13 it 14.02 D. 42.98 ; 61.41 1 61.17 ) 0 Imm t7 1% Boulder 0 0 0 D,, 72.03 i 102.67 81.44 0 ;mm Bedrock I 0 I 0 0 Dim 128 t 179.99 91 I 0 mm ° Min, max, mean depths are ave. mid -point values except pools: taken at deepest part of pool. ° Active bed of a riffle. b Composite sample of riffles and pools within the designated reach. ° Height of roughness feature above bed. Copyright © 2006 Wildland Hydrology WARSSS page 5-31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet 2 -2. Computations of velocity and bankfull discharge using various methods ( Rosgen, 2006b; Rosgen and Silvey, 2007). Stream: 113ig Creek Phase 2 Location: Reach 2 - Phase 2 Date: 7/15/2010 1 Stream Type: F4 Valley Type: VIII Observers: Istrearnwalker Consulting HUC: INPUT VARIABLES OUTPUT VARIABLES Bankfull Riffle Cross - Sectional 1 60.62 Abkf 1 Bankfull Riffle Mean DEPTH 1 1 2.67 dbkf 1 AREA ft /sec ]l (ft) (2 * dbkf ) + Wbkf (ft) Bankfull Riffle WIDTH 22,72 1 Wbkt 1 Wetted PERMIMETER I 27 75 I Wp 5.21 ft /sec ]l (ft) (2 * dbkf ) + Wbkf (ft) D84 at Riffle 61.41 Dla. D84 (mm) / 304.8 0.20 D84 5.21 ft /sec ]l (mm) Abkf / Wp (ft) Bankfull SLOPE 0.0044 Sbkf Hydraulic RADIUS 2 18 R 5.21 ft /sec ]l (ft / ft) Abkf / Wp (ft) Gravitational Acceleration 32,2 DA Relative Roughness 10.85 R / D 5.21 ft /sec ]l (ft /gsecz) R(it) / D84 (it) (ft/sec) Drainage Area 6.0 DA Shear Velocity 0.558 u* 5.21 ft /sec ]l (mil) u* _ (gRS)''2 (ft/sec) ESTIMATION METHODS Bankfull Bankfull VELOCITY EARGE 1. Friction Relative u=[2.83+ 5.66 *Log { R / Da4 11U. 4.86 it / sec 294.35 cfs Factorou hness 5.21 ft /sec ]l 315.83 cis 2. Roughness Coefficient: a) Nllanning's n from Friction Factor / Relative 0.00 it /sec 0.00 cfs Roughness (Figs. 2 -18, 2 -19) u =1.49 *R213 *S 721 n n = 0.032 A 5.21 ft /sec ]l 315.83 cis 2. Roughness Coefficient: u = 1.49 *R22 *S 72/ n 0.00 it /sec 0.00 cfs b) Manning's n from Stream Type (Fig. 2 -20) n = 0.041 4.07 ft (S2C 246.72 "is 2. Roughness Coefficient: u= 1.49 *R 213 *S12 /n c) Manning's n from Jarrett (USGS): n = 0.39*So.3a *R -o.1e 3.80 it / sec 230.36 Cfs Note: This equation is applicable to steep, step /pool, high boundary roughness, cobble- and boulder- dominated stream systems; i.e., for n 3. Other Methods (Hey, Darcy - Weisbach, Chezy C, etc.) 5.73 ft /sec 347.34 cis Darc - Weisbach (Leopold, Wolman and Miller) IF 3. Other Methods (Hey, Darcy - Weisbach, Chezy C, etc.) 0.00 it /sec 0.00 cfs Chez C 4. Continuity Equations: a) Regional Curves u = Q / A For sand -bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of feature. Substitute the DB4 sand dune protrusion height in ft for the D84 term in method 1. Option 2. Return Period for Bankfull Discharge 0 = 1.2 year 3.74 IL ft /sec 227.00 cfs 4. Continuity Equations: b) USGS Gage Data u = Q / A 0.00 it / sec 0.00 Fcf S Protrusion Height Options for the D. Term in the Relative Roughness Relation (RID..) - Estimation Method 1 Option 1. For sand -bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of feature. Substitute the DB4 sand dune protrusion height in ft for the D84 term in method 1. Option 2. For boulder- dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the bed elevation to the top of the rock on that side. Substitute the D84 boulder protrusion height in ft for the D84 term in method 1. Option 3. For bedrock - dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces above channel bed elevation. Substitute the D84 bedrock protrusion height in ft for the D84 term in method 1. Option 4. For log- influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters or the height of the log on upstream side if embedded. Substitute the D84 protrusion height in ft for the D84 term in method 1. ICopyright © 2008 Wildland Hydrology Fi River Stability Field Guide page 2 -41 t 1 J t P, t f Worksheet 3 -14. Sediment competence calculation form to assess bed stability. Stream: Big Creek Phase 2 Stream Type: F 4 Location: Reach 2 - Phase 2 Valley Type: VIII Observers: StreamWalker Consulting Date: 02/25/2009 Enter Required Information for Existing Condition 34.7 D50 Riffle bed material D50 (mm) 22.6 D50 Bar sample D50 (mm) 0.30 Dmax Largest particle from bar sample (ft) 91 (mm) 1304.8 mm /ft 0.00444 S Existing bankfull water surface slope (ft/ft) 2.67 d Existing bankfull mean depth (ft) 1.65 7,-1 1 Immersed specific gravity of sediment Select the Appropriate Equation and Calculate Critical Dimensionless Shear Stress 1.54 Dso /DS„ Range: 3 — 7 Use EQUATION 1: T* = 0.0834 ( D50 /D5-j 872 2.62 Dmax /D50 Range: 1.3-3.0 Use EQUATION 2: ti` = 0.0384 (Dmax /D50) .887 0.016 T* Bankfull Dimensionless Shear Stress EQUATION USED: 2 Calculate Bankfull Mean Depth Required for Entrainment of Largest Particle in Barr Sample 1.75 d ' Required bankfull mean depth (ft) d = 2* (y ,, 1) Lhnax (use Dmax in ft) Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle in Bar Sample 0.00292 S Required bankfull water surface slope (ft/ft) S= s (use Dmax in ft) d Check: Stable Aggrading Degrading Sediment Competence Using Dimensional Shear Stress 0.740 Bankfull shear stress T = ydS (Ibs /ftz) (substitute hydraulic radius, R, with mean depth, d ) = 62.4, d = existing depth, S = existing slope Shields 45 co 125 Predicted largest moveable particle size (mm) at bankfull shear stress ti (Figure 3 -11) Shields 1.3 co 0.49 Predicted shear stress required to initiate movement of measured Dmax (mm) (Figure 3 -11) Shields 4.69 co 1.77 Predicted mean depth required to initiate movement of measured Dmax (mm) Z d =— ti = predicted shear stress, y = 62.4, S = existing slope yS Shields 0.0078 co 0.0029 Predicted slope required to initiate movement of measured Dmax (mm) T S — 'L = predicted shear stress, 'Y = 62.4, d = existing depth Yd Check: Stable Aggrading r Degrading ICopyright © 2008 Wildland Hydrology River Stability Field Guide page 3 -101 ivaz 1091 1090 1089 0 1088 1087 w 1086 1085 1084 1083 0 10 Bankfull Dimensions 82.5 x- section area (ft.sq.) 33.8 width (ft) 2.4 mean depth (ft) 3.4 max depth (ft) 36.3 wetted parimeter (ft) 2.3 hyd radi (ft) 13.8 width -depth ratio Bankfull Flow - -- velocity (ft/s) – discharge rate (cfs) — Froude number Glide 20 30 40 Width Flood Dimensions - -- W flood prone area - -- entrenchment ratio 6.3 low bank height (ft) 1.8 low bank height ratio Flow Resistance Cross Section reference ID instrument height + • • + -- longitudinal station — Bankfull Stage FS = 1087.57 e,a,. elevation +: --- Low Bank Height FS = 1090.43 elev elevation + + Flood Prone Area width fpa 56.3 Channel Slope percent slope — Flow Resistance Manning's "n" - -- D'Arcy - Weisbach "f' Note: - -- Manning's roughness - -- D'Arcy- Weisbach fric. - -- resistance factor u /u' - -- relative roughness 50 60 Materials - -- D50 (mm) -- D84 (mm) threshold grain size (mm): Forces & Power -- channel slope ( %) – shear stress (lb /sq.ft.) - -- shear velocity (ft/s) - -- unit strm power (lb /ft/s) Distance BS HI FS Elevation Omit Notes 70 l Uyz 1091 1090 1089 0 > 1088 a+ w 1087 1086 1085 1084 0 5 10 Bankfull Dimensions 64.3 x- section area (ft.sq.) 31.5 width (ft) 2.0 mean depth (ft) 2.8 max depth (ft) 33.7 wetted parimeter (ft) 1.9 hyd radi (ft) 15.5 width -depth ratio Bankfull Flow 3.5 velocity (ft/s) 224.6 discharge rate (cfs) 0.45 Froude number Cross Section Riffle 15 20 25 30 35 Width Flood Dimensions Materials 1.1 entrencnment ratio 6.0 low bank height (ft) 2.2 low bank height ratio Flow Resistance 0.044 Manning's roughness 0.18 D'Arcy- Weisbach fnc. - -- resistance factor u /u' - -- relative roughness reference ID instrument height +• longitudinal station Bankfull Stage FS = 1087.47 eiev elevation + Low Bank Height FS 1090.46 elevation + + Flood Prone Area width fpa 85.1 Channel Slope percent slope + Flow Resistance Manning's "n" + + D'Arcy - Weisbach "f -Note: 40 45 50 - -- D50 (mm) - -- D84 (mm) 26 threshold grain size (mm): Forces & Power 0.45 channel slope ( %) 0.54 shear stress (lb /sq.ft.) 0.53 shear velocity (ft/s) 2 unit strm power (lb /ft/s) Distance BS HI FS Elevation Omit Notes ivyi 1090 1089 c 1088 0 m 1087 a� w 1086 1085 1084 1083 20 25 30 Bankfull Dimensions 59.6 x- section area (ft.sq.) 23.6 width (ft) 2.5 mean depth (ft) 3.2 max depth (ft) 26.7 wetted parimeter (ft) 2.2 hyd radi (ft) 9.4 width -depth ratio Bankfull Flow 3.8 velocity (ft/s) 226.0 discharge rate (cfs) 0.45 Froude number Cross Section Riffle 35 40 45 Width Flood Dimensions 86.3 W flood prone area (ft) 3.7 entrenchment ratio 4.7 low bank height (ft) 1.5 low bank height ratio Flow Resistance 0.045 Manning's roughness 0.18 D'Arcy- Weisbach Eric. - -- resistance factor u /u* - -- relative roughness Distance BS HI (ft) (ft) (ft) reference tD instrument height +' 9.7 longitudinal station 11 1 Bankfull Stage 1 FS M= 1086.66 eiev 21. elevation +' • • • - -- 3 33.55 Low Bank Height 33.4 FS M= 1088.21 elev 33.8 elevation + 33.92 33.56 Flood Prone Area 33.59 width fpa 86.3 33.96 33.92 Channel Sloe 33.94 percent slope + -- 34.52 35.07 Flow Resistance 35.57 Manning's "n" - 35.61 D'Arcy - Weisbach 7' 35.85 35.66 Note: 37.07 38.39 39.96 41.5 43.54 50 55 60 Materials - D50 (mm) - -- D84 (mm) 31 threshold grain size (mm): Forces & Power 0.45 channel slope ( %) 0.63 shear stress (Ib /sq.ft.) 0.57 shear velocity (ft/s) 2.7 unit strm power (Ib /ft/s) 65 FS Elevation Omit Notes (ft) (ft) Rkf 1094.63 1 1089.67 i UV 1090 1089 1088 o 1087 m (D 1086 LL] 1085 1084 1083 1082 0 10 20 Bankfull Dimensions 63.2 x- section area (ft.sq.) 49.7 width (ft) 1.3 mean depth (ft) 2.8 max depth (ft) 53.3 wetted parimeter (ft) 12 hyd radi (ft) 39.1 width -depth ratio Bankfull Flow - -- velocity (ftls) - -- discharge rate (cfs) - Froude number Cross Section Run 30 40 50 Width Flood Dimensions 60.1 W flood prone area (ft) 1.2 entrenchment ratio 6.2 low bank height (ft) 2.2 low bank height ratio Flow Resistance - -- Manning's roughness - -- D'Arcy- Weisbach fric. - -- resistance factor u /u` -- relative roughness Distance BS (ft) (ft) 1.97 3.51 5.41 6.33 7.06 7.55 7.88 8.29 8.53 9.17 9.5 10.1 10.6 11.31 11.9 12.25 12.13 12.48 12.3 12.3 14.03 16.03 18.68 20.98 22.43 24.29 26.5 28.16 60 70 Materials - -- D50 (mm) - -- D84 (mm) - threshold grain size (mm): Forces & Power - -- channel slope ( %) - -- shear stress (lb /sq.ft.) - -- shear velocity (ft/s) - -- unit strm power (lb /ft/s) HI FS Elevation Omit Notes (ft) (ft) (ft) Bkf 80 I WI 1090 1089 1088 c co 0 1087 ' ) a 1086 W 1085 1084 1083 1082 0 5 10 Bankfull Dimensions 61.3 x- section area (ft.sq.) 24.1 width (ft) 2.5 mean depth (ft) 3.7 max depth (ft) 27.7 wetted parimeter (ft) 2.2 hyd radi (ft) 9.5 width -depth ratio Bankfull Flow - velocity (fUs) - -- discharge rate (cfs) - -- Froude number Pool 15 20 Width Flood Dimensions 27.7 W flood prone area 1.1 entrenchment ratio 6.5 low bank height (ft) 1.8 low bank height ratio Flow Resistance - -- Manning's roughness - -- D'Arcy- Weisbach fric. resistance factor u /u' -- relative roughness Cross Section reference ID instrument height longitudinal station - Bankfull Stage FS = 1086.059 elev elevation :. Low Bank Height FS = 1088.934 eiev elevation • • • Flood Prone Area width fpa 27.7 Channel Slope percent slope - Flow Resistance Manning's "n" D'Arcy - Weisbach "I" - Note. Distance BS (ft) 0.97 1.87 2.5 2.8 3.12 3.33 3.5 4.04 4.57 5.13 5.56 5.99 6.62 6.98 7.36 7.56 7.76 8.47 8.65 8.62 9.75 11.43 12.74 13.86 15.48 17.36 19.42 21.7 25 30 35 Materials - -- D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - -- snear srress (io/sq.rt.) - -- shear velocity (fUs) - -- unit strm power (lb /fUs) 40 HI FS Elevation Omit Notes (ft) (ft) (ft) Bkf iuZIc 1090 1088 0 1086 1084 w 1082 1080 1078 0 10 20 Bankfull Dimensions 90.8 x- section area (ft.sq.) 43.5 width (ft) 2.1 mean depth (ft) 5.3 max depth (ft) 46.5 wetted parimeter (ft) 2.0 hyd radi (ft) 20.8 width -depth ratio Bankfull Flow - -- velocity (ft/s) - -- discharge rate (cfs) - -- Froude number Cross Section Pool 30 40 50 Width Flood Dimensions - C[ IU CI iVl III ICI II IGUV 5.3 low bank height (ft) 1.0 low bank height ratio Flow Resistance reference ID instrument height longitudinal station — Bankfull Stage FS = 1085.31 elev elevation +: Low Bank Height FS = 1085.31 eiev elevation flood Prone Area width fpa 62.7 Channel Slope percent slope Flow Resistance Manning's "n" D'Arcy - Weisbach "f" Note: - -- Manning's roughness - -- D'Arcy- Weisbach fric . resistance factor u /u' relative roughness 60 70 80 90 Materials - -- D50 (mm) — D84 (mm) - -- threshold grain size (mm): Forces & Power - -- channel slope ( %) - -- shear stress (lb /sq.ft.) - -- shear velocity (ft/s) - -- unit strm power (Ib /ft/s) Distance BS HI FS Elevation Omit Notes 1 1 1 1 1 1 1 1 1 f f 1 1 1 t 1 1 1 IV71 1090 1089 1088 0 1087 'm 1086 w 1085 1084 1083 1082 1081 0 10 20 Bankfull Dimensions 65.1 x- section area (ft.sq.) 29.5 width (ft) 2.2 mean depth (ft) 3.1 max depth (ft) 32.5 wetted parimeter (ft) 2.0 hyd radi (ft) 13.4 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Glide 30 40 50 60 70 80 Width Flood Dimensions Materials 62.4 W flood prone area (ft) - D50 (mm) 2.1 entrenchment ratio - D84 (mm) 3.6 low bank height (ft) - threshold grain size (mm). 1.2 low bank height ratio Flow Resistance reference ID 1�41C instrument height o - -- longitudinal station Bankfull Stage FS ;4 j" ':., = 1085 13 elev elevation fof'IQ,03 - -- Low Bank Height FS ,.° CST = 1085 65 elev elevation u Flood Prone Area ❑ width fpa 62.4 Channel Slope 1092.02 percent slope 1087.11 Flow Resistance Manning's "n" -- D'Arcy - Weisbach 'Y' -- Note: M - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u/u' - relative roughness Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit strm power (lb/ft(s) Distance BS HI FS Elevation Omit Notes !ft) M rftl !ftl /ftl R4f 90 tx U5- 1092.02 3.:t� 1088.17 1092.02 1088.63 CL 1092.02 Y,SCC'. 1088.19 ❑ U L3 1092.02 C, 1087.11 f C 109202 9W- 1085.76 M 1092.02 C^--�T 1085.35 ❑ 4�)E- 1092.02 CXi 1085.13 ❑ F 1092.02 C G3 1085.4 D 1092.02 b,& e 1085.45 1092.02 C-7 1085.65 L o 1092.02 C,> 1085.31 ❑ WSJ 1 1092.02 Cf-'-@ 1085.13 ❑ I>` X9.0 1092.02 f4 1084.62 ❑ 'cap ' 41?�B 1092.02 V � 1084.45 El 1 cJ 1092.02 'fl -4, 1084.18 Cf 109202 -P,� 1084.09 ❑ < 35s 1092.02 CJ;' 1083.52 1092.02 1082.92 ❑ 1092.02 %,Ag 1082.53 ❑ FEE" 1092.02 1082.02 Ci.<113. 1092.02 Ck 1082.13 rG 1092.02 ClJ5 108216 1092.02 C Ex 1082.14 .00 1092.02 T 108223 ❑ 1092.02 1082.4 Cv ? 1092.02 1082.38 Y 1092.02 108234 ❑ �i c. = CJ� > 1092.02 C77 1082.24 ❑ C�J CJ 1092.02 E f? 1082.2 ❑ 1 1 1 l 1 1 1 1 1 f i r t i t Riffle 1090 1089 - - 1088 1087 - - - -- --- --- 0 1086 - 1085 w 1084 - 1083 1082 1081 - - - 1080 0 5 10 15 20 25 30 35 40 45 50 Width Bankfull Dimensions Flood Dimensions Materials 65.8 x- section area (ft.sq.) 46.1 W flood prone area (ft) — D50 (mm) 31.7 width (ft) 1.5 entrenchment ratio — D84 (mm) 2.1 mean depth (ft) 6.2 low bank height (ft) 27 threshold grain size (mm): 3.3 max depth (ft) 1,9 low bank height ratio 33.6 wetted perimeter (ft) 2.0 hyd radi (ft) 15.2 width-depth ratio Bankfull Flow Flow Resistance Forces & Power 3.5 velocity (ft/s) 0.045 Manning's roughness 0.45 channel slope ( %) 228.5 discharge rate (cfs) 0.19 D'Arcy- Weisbach fric. 0.55 shear stress (lb /sq.ft.) 0.44 Froude number -- resistance factor u /u' 0.53 shear velocity (ft/s) — relative roughness 2 unit strm power (lb /ft/s) Cross Section reference ID instrument height longitudinal station Bankfull Stage FS = 1084 55 elev elevation o -- Low Bank Height FS = 1087 46 elev elevation Flood Prone Area width fpa 46 1 Channel Slope percent slope e Flow Resistance Manning's "n" a -- D'Arcy - Weisbach "f Note: Distance BS HI FS Elevation Omit Notes 1 1 1 1 1 1 1 1 1 1 f I 1 1 t 1 1 1 iuoa 1087 1086 1085 c ° iu 1084 T 1083 w 1082 ,1081 1080 1079 0 10 20 Bankfull Dimensions 843 x- section area (ft.sq.) 38.8 width (ft) 2.2 mean depth (ft) 3.8 max depth (ft) 46.1 wetted parimeter (ft) 1.8 hyd radi (ft) 17.9 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Run 30 40 Width Flood Dimensions - W flood prone area (ft) - entrenchment ratio 6.2 low bank height (ft) 1.6 low bank height ratio Flow Resistance reference ID f'G instrument height -- longitudinal station - Bankfull Stage FS --+ E• Q = 1083 73 elev elevationi I Low Bank Height FS ° •NCO = 108613 elevation �Oo M't,� Flood Prone Area width fpa 80.7 Channel Slope percent slope[- Flow Resistance Manning's "n" - D'Arcy - Weisbach "f' -- Notre: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u/u" - relative roughness 50 60 70 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit strm power (lb /ft/s) Distance BS HI FS Elevation Omit Notes (ft) (ftl (ft) MI /ftl Rlrf 80 Qb3 1092.21 ' 5 1086.71 lljce Z� Cf 1092.21 @ u -ZN 1086.678 G > > 1092.21 Qjil 1086.699 f f. 109221 F� 9i, C7i u9�) 1086.695 ❑ fl 7i 109221 =, U c UQ 1086.735 f C 1092.21 �5 ) 1086.535 El f 9 1f 1092.21f uo 1 1086.095 ❑ i& 1092.21 Qq 1085 889 ❑ ff 1092.21 C1L&' W 1085.355 El f 1092.21 QkK1 1085.242 ❑ Zoo z�r 109221 T,2 3 1084.973 El I ,W <P-b 1 1092.21 S 13 1084.676 ❑ f3 1092.21 93,f 1084.085 fE 1092.21 1083.45 ❑ 1092.21 fli�Wf 1082.639 ❑ f�ZJ 109221 a 1081.127 109221 i i CX833t 1080.562 Ej 1092.21 f i> ° 1080.487 El icy 1092.21 u u 4 7J3 1080.538 ❑ 1092.21 f t f 93 1080.686 ❑ 1092.21 f f ZYzT(3 1080.732 ❑ 109221 tC 4 S? 1081.866 ❑ 1092.21 �) E N7t 1082.343 ❑ 1092.21 �YJ T/ �K 1082.755 ❑ I,G 1092.21 1082.917 ❑ 1092.21 0..: 1? 1083.125 s a 1092.21 a .Z _ 1083.787 ❑ 1092.21 Q f qM�V', 1084.093 ❑ C C °, 1092.21 c. a o .. 1084 15 ❑ 1 1 1 1 1 l 1 1 1 1 i 1 1 1 f 1 1 1 ivoi 1086 1085 1084 0 1083 m 1082 w 1081 1080 1079 1078 0 10 20 Bankfull Dimensions 126.0 x- section area (ft sq.) 60.8 width (ft) 2.1 mean depth (ft) 4.9 max depth (ft) 66.3 wetted parimeter (ft) 1.9 hyd radi (ft) 29.4 width-depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Pool 30 40 50 Width Flood Dimensions - W flood prone area (ft) - entrenchment ratio 6.7 low hank height (ft) 1.4 low bank height ratio Flow Resistance reference ID instrument height r r - longitudinal station - Bankfull Stage FS = 1083 41 elev elevation Low Bank Height FS = 1085 29 elev elevation r Flood Prone Area width fpa 83.9 Channel Slope percent slope - Flow Resistance Manning's "n" - D'Arcy - Weisbach 'T' - Note: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u /u' -- relative roughness Distance BS ft (ft) 1.9 3.97 5.57 6.18 6.33 7.08 7.41 8.35 9.14 9.2 10.18 11.46 12.11 12.69 12.97 14.14 1594 16.99 20.4 21.67 23.2 24.08 24.44 25.71 26.92 60 70 80 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (Ib /sq.ft.) - shear velocity (ft/s) - unit strm power (lb /ft/s) HI FS Elevation Omit Notes (ft) (ft) (ft) Bkf 1092.01 1086.51 1092.01 5.47418 1086.536 109201 5.536935 1086.473 1092.01 5.526888 1086.483 1092.01 5.707743 1086.302 1092.01 7.463673 1084.546 1092.01 6.755168 1085.255 1092.01 6.603156 1085.407 1092.01 6.611526 1085.398 1092.01 7.472965 1084 537 1092.01 8.605183 1083.405 1092.01 8.833718 1083.176 1092.01 9226661 1082.783 1092.01 9.754013 10.38356 1082 256 1081 626 1092.01 1092.01 11.0918 1080.918 109201 11.68897 1080.321 1092.01 11.90738 1080.103 1092.01 13.44815 1078.562 1092.01 12.34712 1079 663 1092.01 1180696 1080 203 1092.01 11.30107 1080.709 1092.01 11.22146 1080.789 1092.01 10.42185 1081.588 1092.01 9.953992 1092.01 9.575243 1092.01 9.1184 8.838751 ff1083.171 1092.01 1 1 1 1 1 1 r t t t ivoo 1087 1086 1085 0 1084 Q 1083 U.1 1082 1081 1080 1079 0 10 20 Bankfull Dimensions 74.0 x- section area (ft.sq.) 50.1 width (ft) 1.5 mean depth (ft) 3.3 max depth (ft) 53.4 wetted parimeter (ft) 1.4 hyd radi (ft) 33.9 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Glide 30 40 50 Width Flood Dimensions - W flood prone area (ft) - entrenchment ratio 4.3 low bank height (ft) 1.3 low bank height ratio Flow Resistance reference ID instrument height - longitudinal station Bankfull Stage FS = 1083 41 elev elevation ' Low Bank Height FS 1084.4 elev elevation ' Flood Prone Area width fpa 65.0 Channel Slope percent slope - Flow Resistance Manning's "n" - D'Arcy - Weisbach 'Y' - Note: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u /u* - relative roughness Distance BS (ft) (ft 1.91 3.56 641 9 10.72 12.32 13.02 13.43 13.86 14.09 14.71 15.41 16.76 17.35 17 74 19.28 20.75 21.86 22.83 24.81 26.43 2837 29.91 3036 31.53 32.18 32.95 60 70 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit stun power (Ib /ft/s) HI FS Elevation Omit Notes i i ivaa 1088 1087 1086 1085 ° 1084 (9 1083 w 1082 1081 1080 1079 1078 10 15 20 Bankfull Dimensions 63.3 x- section area (ft.sq.) 30.1 width (ft) 2.1 mean depth (ft) 4.5 max depth (ft) 35.2 wetted perimeter (ft) 1.8 hyd radi (ft) 14.3 width -depth ratio Bankfull Flow 3.5 velocity (ft/s) 222.5 discharge rate (cfs) 0.46 Froude number Riffle 25 30 35 Width Flood Dimensions 572 W flood prone area (ft) 1.9 entrenchment ratio 4.5 low bank height (ft) 1.0 low bank height ratio Flow Resistance 0.042 Manning's roughness 017 D'Arcy- Weisbach fnc - resistance factor u/u* - relative roughness Cross Section reference ID instrument height - longitudinal station - Bankfull Stage FS = 1083 48 elev elevation Low Bank Height FS = 1083 48 elev elevation Flood Prone Area width fpa 57 2 Channel Slope percent slope Flow Resistance Manning's "n" D'Arcy - Weisbach 'T' - -- Note: Distance BS (ft) (ft) 1.6 3.32 5.75 7.24 927 11.21 1267 14.16 15.59 16.29 17.2 17.69 1852 1874 19.15 19.36 19.12 20.47 21.6 22.86 24.16 25.61 2734 28.97 30.62 3223 3341 40 45 50 55 N. Materials - D50 (mm) - D84 (mm) 25 threshold grain size (mm): Forces & Power 0.45 channel slope ( %) 0.50 shear stress (lb /sq.ft.) 051 shear velocity (ft/s) 2.1 unit strm power (lb /ft/s) FS Elevation Omit Notes 1 1 1 1 1 1 1 1 1 1 1 1 1 IVU 1088 1086 c 0 a 1084 _m w 1082 1080 1078 20 25 30 35 Bankfull Dimensions 65.3 x- section area (ft.sq.) 27.5 width (ft) 2.4 mean depth (ft) 3.0 max depth (ft) 33.6 wetted parimeter (ft) 1.9 hyd radi (ft) 11.6 width -depth ratio Bankfull Flow 3.5 velocity (ft/s) 225.8 discharge rate (cfs) 0.44 Froude number Cross Section Riffle 40 45 50 Width Flood Dimensions 56.4 W flood prone area (ft) 2.1 entrenchment ratio 4.8 low bank height (ft) 1.6 low bank height ratio Flow Resistance 0.045 Manning's roughness 0.19 D'Arcy- Weisbach fric. - resistance factor Wu' - relative roughness reference ID instrument height - longitudinal station - Bankfull Stage FS = 1081 82 elev elevation m--- Low Bank Height FS = 1083 59 eiev elevation r Flood Prone Area width fpa 56.4 Channel Slope percent slope Flow Resistance Manning's "n" r r D'Arcy - Weisbach 'Y' - -- Note: Distance BS (ft) (ft 3 5 7 8.5 11 36.17 36.3 3649 36.5 37.12 37.52 37.53 55 60 65 Materials - D50 (mm) - D84 (mm) 27 threshold grain size (mm): Forces & Power 0.45 channel slope ( %) 0.55 shear stress (lb /sq.ft.) 0.53 shear velocity (ft/s) 2.3 unit strm power (lb /ft/s) HI (ft) FS Elevation Omit Notes (ft) (ft) Bkf 1086.37 LEP 1089.32 1089.32 3.76 1085.56 1085.47 1089.32 3.85 1089.32 4.6 1084.72 108932 5.72 1083.6 1089.32 6.03 1083.29 1089.32 6.24 1083.08 1089.32 6.65 1082.67 1089.32 6.6 1082.72 1089.32 6.16 1083.16 1089.32 5.88 1083.44 1089.32 5.72 1083.6 1089.32 5.8 1083.52 1089.32 573 1083.59 1089.32 5.84 1083.48 1089.32 5.98 1083.34 108932 6.3 1083.02 1089.32 672 1082.6 1089.32 6.92 6.74 1082.4 1089.32 1082.58 1089.32 698 7.27 108234 1089.32 1082.05 1089.32 7.5 1081.82 1089.32 7.7 108162 1089.32 7851 1081.47 1089.32 8.24 108108 1089.32 8.56 1080.76 1089.32 8.79 1080.53 3KF 70 BANKPIN 2 e t i 7 U 0 Q' N 0 U OI m U t c0 X m v m C C 2 0 0 a • m U ID O O X a 7 Y C ja I N 3 la I 4 0 N N ,,��11 V M N ■a � O � N O 1� N N '_VVV1 N Q N O N O cliN Q� N a O O Q Cc,,, Q O M a CO v O t Q O N r 0 d a c m L U 0 M Cl) 14 4 Lo rn co co d rn LO rn rn m aoo � aNO m m cno 0 0 0 0 0 0 0 0 0 (g) UORBAa13 0 0 L a)0 $Drn Total Particles = 103. KIVLKMUKPH NAKIILLL SUMMAKY ---------------------------------------------------------------------- River Name: Big Creek Phase 2 Reach Name: Reach 2 - Phase 2 Sample Name: Reach 2 Classification Survey Date: 04/25/2008 ---------------------------------------------------------------------- size (mm) TOT # ITEM % CUM % ---------------------------------------- - - - - - 0 - 0.062 3 2.91 2.91 0.062 - 0.125 3 2.91 5.83 0.125 - 0.25 8 7.77 13.59 0.25 - 0.50 14 13.59 27.18 0.50 - 1.0 17 16.50 43.69 1.0 - 2.0 1 0.97 44.66 2.0 - 4.0 1 0.97 45.63 4.0 - 5.7 1 0.97 46.60 5.7 - 8.0 1 0.97 47.57 8.0 - 11.3 11.3 - 16.0 4 3 3.88 2.91 51.46 54.37 - 16.0 22.6 8 7.77 62.14 22.6 - 32.0 9 8.74 70.87 32 - 45 16 15.53 86.41 45 - 64 7 6.80 93.20 64 - 90 6 5.83 99.03 90 - 128 1 0.97 100.00 128 - 180 0 0.00 100.00- 180 - 256 0 0.00 100.00 256 - 362 0 0.00 100.00 362 - 512 0 0.00 100.00 512 - 1024 0 0.00 100.00 1024 - 2048 0 0.00 100.00 Bedrock 0 0.00 100.00 D16 (mm) 0.29 D35 (mm) 0.74 D50 (mm) 10.06 D84 (mm) 42.98 D95 (mm) 72.03 D100 (mm) 128 silt /clay (%) 2.91 Sand ( %) 41.75 Gravel ( %) 48.54 ICobble (%) Boulder (%) 6.8 0 Bedrock (%) 0 Total Particles = 103. Total Particles = 100. 1 RIVERMORPH PARTICLE SUMMARY ---------------------------------------------------------------------- River Name: Reach Name: Big Creek Phase 2 Reach 2 - Phase 2 sample Name: Reach 2 Active Riffle Survey Date: 04/25/2008 ---------------------------------------------------------------------- Size (mm) TOT # ITEM % CUM % 0 - 0.062 1 1.00 1.00 0.062 - 0.125 0 0.00 1.00 0.125 - 0.25 3 3.00 4.00 0.25 - 0.50 0 0.00 4.00 0.50 - 1.0 1 1.00 5.00 1.0 - 2.0 0 0.00 5.00 2.0 - 4.0 0 0.00 5.00 4.0 - 5.7 0 0.00 5.00 5.7 - 8.0 1 1.00 6.00 8.0 - 11.3 8 8.00 14.00 11.3 - 16.0 6 6.00 20.00 16.0 - 22.6 9 9.00 29.00 22.6 - 32.0 17 17.00 46.00 32 - 45 19 19.00 65.00 45 - 64 22 22.00 87.00 64 - 90 6 6.00 93.00 90 - 128 128 - 180 6 1 6.00 1.00 99.00 100.00 - 180 256 0 0.00 100.00 256 - 362 0 0.00 100.00 362 - 512 0 0.00 100.00 512 - 1024 0 0.00 100.00 1024 - 2048 0 0.00 100.00 Bedrock 0 0.00 100.00 D16 (mm) 12.87 D35 (mm) 25.92 D50 (mm) 34.74 D84 (mm) 61.41 D95 (mm) 102.67 D100 (mm) 179.99 /( (/) sand 0 /)y 4 Gravel (%) 82 cobble (%) Boulder (%) 13 0 Bedrock (%) 0 Total Particles = 100. 1 RIVERMORPH PARTICLE SUMMARY ---------------------------------------------------------------------- River Name: Big creek Phase 2 1 Reach Name: Reach 2 - Phase 2 Sample Name: Reach 2 Bar Sample Survey Date: 02/25/2009 1 ---------------------------------------------------------------------- SIEVE (mm) NET WT ---------------------------------------------------------------------- 63 7.95 31.5 18.07 16.33 '16 8 10.05 4 5.13 2 3.36 ' PAN 13.43 D16 (mm) 0 'D35 (mm) D50 (mm) 12.22 22.56 D84 (mm) 61.17 D95 (mm) 81.44 0 1 silt /Clay (%) O Sand ( %) 17.27 Gravel (%) 68.71 fcobble (%) 14.02 Boulder (%) 0 Bedrock ( %) 0 Total Weight = 77.7600. Largest Surface Particles: 'Size(mm) Weight Particle 1: 91 2.25 Particle 2: 88 1.19 1 1 1 Pi 1 � I 1 1 t 7 O N 0 aai co U O O C O U 1 U) 0 cz N 1 M t to Y i O 3 O 6 C _co w 0 0 N L rn Q O r; W °o (D to ci N r „O M m L 1 N d~ w (0 j(D E .. y O x N m Q _ C E O E C/) a, Cl !A ---- w p = i C � >. > L U O C O U c w c0 L m to V N O O C N w m amo -0 o ° c a.05 F>- In q 15 CD c O `om W � � � CD N T L CC Y O Q fA (A (A 71 _> > u; I� T O ❑ (� c 0 a ca L .fir cc fi Cn f/� Ld E U U U U N O U i N m L> r E Y cC Y ca Y c6 Y c0 A !p .. y C T m 3 a) d N .a '' m N N N O CCt a 1 ao U E C Q d W O mL o.� oc a! fr �---T- ca E .a U) 1 LL LL o) N -- = c0 C O od O O C N D O Q N O C O 0 ir cc cl N� a N Z Q 'L' C OD S T❑ > O- 0 0 = O N •� N E N Z V X W U y O O O O ~ {Op O L C .7 j v E c H 0 a- C Z O as o m m N U • N O ❑ M N _ ( N fl. E V c a o L L L L J c° C O U -- ----- �' L Cl 0 hi U w o p 0 t0 N� p� i$ N = N O O m O � U r p �_� a�io >C �> c p X c p y ro cn Q ❑ Lr pW L CM U � m -- -- - -- a d: c o Y N K 0 0 � � ca o o T r C� •- p C P2 (L C := N r to CV -0 Tn ) i 1 0) = N M Y N ir E N O o cc v Q U C ❑L a O N a„ °o m rna �.. `m �� °i c a a� Q �� 1 � � a❑ a L m❑ U) (D 773S "a o y v� m� c Q M y G Q N Rf C N O N O N 'y o CL K t0 C N T N C r W a a t •!` a cu m r L Sc N U i -- _____ � E co T L., L L� L N d T C4 0 O� 0 N U -0 N O a N U D E O N M J Cn «S C T ca .' E U CL -- -- °- -- N a v L a•. U c� U N o ) O N �n co O is om�� o__ co O) L Q X ca �.2 `_ .:� N 0 2 -O � N� O -O E T O O O p U m °' Y cl rn E m t L L (a cu � Z Z Z J O ❑ m N j O0 0 N O o o N co N 3 l�L g Mir > > ) q 0 O n — — c — = y O' ;c p £ N U OC °' y c 0 is .. c F- R°° N N O1 N o N E Z c � ea _o = w E= W is Q' H N is i y a W y as d ao — Y� a�0>_s Ec as wU e*a ya yo N -� > > s y U U co V O 6 C _co w 0 0 N L rn Q O r; 1 1 1 1 1 1 1 1 1 1 1 Worksheet 5 -10. Summary form of annual streambank erosion estimates for various study reaches. Stream: Big Creek Location: Reach 2 Graph Used: NC Total Bank Length (ft): 1462 Date: 2/25/2009 Observers: Walker, Cartner Valley Type: VIII Stream Type: F 4 (1) (2) (3) (4) (5) (6) (7) (8) Station (ft) BEHI rating NBS rating Bank Length of Study bank Erosion Erosion (Worksheet (Worksheet erosion bank (ft) height (ft) subtotal Rate 5-8) 5 -9) rate [(4)x(5)x(6)] (tonstyr /ft) (adjective) (adjective) (Figure 5- (ft3/yr) {[(7)127] x 38 or 5 -39) 1.3/(5)) (ftlyr) Left Bank 1. 765-795 Moderate Moderate 0.0705 30 6 12.69 0.02 Left Bank 2. 796-830 Moderate Very High 0.2993143 35 5 52.38 0.07 Left Bank 3. 896-927 Moderate Moderate 0.0691875 32 5 11.07 0.02 Right Bank 4. 775-830 High Extreme 0.8002232 56 7.2 322.65 0.28 Left Bank 5. 830-895 Moderate Low 0.0299077 65 5 9.72 0.01 Right Bank 6. 830-890 Moderate High 0.1298077 60 7.8 60.75 0.05 Right Bank 7. 890-910 Very High Extreme 1.4993182 20 6.6 197.91 0.48 Left Bank 8. 927-965 High Very High 0.2996053 38 6 68.31 0.09 Left Bank 9. 965-1045 High High 0.5000625 80 6 240.03 0.14 Right Bank 10. 910-965 Low Low 0.0016364 55 6 0.54 0.00 Right Bank 11. 965 -1045 Low Low 0.0016875 80 4 0.54 0.00 Right Bank 12. 1045-1075 Moderate High 0.1305 30 4 15.66 0.03 Left Bank 13. 1045 -1075 High Low 0.1095 30 6 19.71 0.03 Right Bank 14. 1075-1155 Moderate Moderate 0.0700313 80 4 22.41 0.01 Left an 15. 1075-1150 Very High Extreme 1.5 75 6 675 0.43 Right Bank 16. 1165-1285 Moderate High 0.1500577 130 4 78.03 0.03 Left Bank 17. 1150-1215 Moderate Low 0.0301154 65 4 7.83 0.01 Left Bank 18. 1215-1255 Moderate Low 0.0077143 40 3.5 1.08 0.00 Left Bank 19. 1255-1285 High High 0.20025 30 4 24.03 0.04 Right Bank 20. 1285-1365 Moderate Moderate 0.0501429 70 5 17.55 0.01 Left an 21. 1285-1365 Low Low 0.0019286 70 6 0.81 0.00 Copyright © 2006 Wildland Hydrology WARSSS page 5 -81 1 1 1 1 1 fl k t 1 1 1 1 1 1 1 Worksheet 5 -10. Summary form of annual streambank erosion estimates for various study reaches. Stream: Big Creek Phase 2, Reach - Reach 2 - Ph Location: Graph Used: Total Bank Length (ft): 1462 Date: 2/25/2009 Observers: Valley Type: VIII Stream Type: F 4 (1) (2 ) (3 ) (4) (5) (6) 7) (8) Station (ft) BEHI rating NBS rating Bank Length of Study bank Erosion Erosion (Worksheet (Worksheet erosion bank (ft) height (ft) subtotal Rate 5-8) 5 -9) rate [(4)x(5)x(6)] (tonstyr /ft) (adjective) (adjective) (Figure 5- (ft3tyr) {[(7)127] x 38 or 5 -39) 1.3/(5)) (ft/yr) Right Bank 22. 1365-1415 High Moderate 0.17 60 4.5 45.9 0.04 Left Bank 23. 1365-1450 Moderate High 0.1499456 95 5.8 82.62 0.04 Right Bank 24. 1415-1460 Moderate Moderate 0.1 45 3 13.5 0.01 Left Bank 25. 1450-1495 Moderate Low 0.0696 45 5 15.66 0.02 Left Bank 26. 1495-1530 Moderate Low 0.0308571 35 3.5 3.78 0.01 Right Bank 27. 1460-1550 Moderate High 0.13 90 7.2 84.24 0.05 Left Bank 28. 1530-1575 Moderate Low 0.0076364 45 5.5 1.89 0.00 Right Bank 29. 1550-1575 Moderate High 0.0702 25 8 14.04 0.03 Left Bank 30.' 1575 -1617 Moderate Moderate 0.0298469 42 5.6 7.02 0.01 Right Bank 31. 1575-1617 Low Low 0.001978 42 6.5 0.54 0.00 Left Bank 32. 1617-1686 Moderate Low 0.0297794 68 4 8.1 0.01 Right Bank 33. 1617-1637 Low Moderate 0.0290769 20 6.5 3.78 0.01 Right Bank 34. 1637-1685 High High 0.4999362 48 9.8 235.17 0.24 Left Bank 35. 1685-1718 Moderate Moderate 0.1002273 33 4 13.23 0.02 Left an 36. 1718-1777 High High 0.2499348 59 6.5 95.85 0.08 Right Bank 37. 1685-1800 Low Low 0.008032 115 3.8 3.51 0.00 Left Bank 38. 1777-1800 High Very High 0.3009486 23 5.5 38.07 0.08 Right Bank 39. 1800-1851 Moderate Very High 0.2498824 51 7.5 95.58 0.09 Left Bank 40. 1800-1851 Low Low 0.0014308 51 3.7 0.27 0.00 Right Bank 41. 1851-1915 Low Moderate 0.0298828 64 4.8 9.18 0.01 Lett an 42. 1851-1955 Very High Very High 2.0000769 104 5 1040.04 0.48 Copyright © 2006 Wildland Hydrology WARSSS page 5 -81 L i [ -- I In lJ t 1 fl 1 t �J 1 1 1 1 1 1 Worksheet 5 -10. Summary form of annual streambank erosion estimates for various study reaches. Stream: Big Creek Phase 2, Reach - Reach 2 - Ph Location: Graph Used: Total Bank Length (ft): 1462 Date: 2/25/2009 Observers: Valley Type: VIII Stream Type: F 4 (1) (2) (3) 4) (5) (6) (7) (8) Station (ft) BEHI rating NBS rating Bank Length of Study bank Erosion Erosion (Worksheet (Worksheet erosion bank (ft) height (ft) subtotal Rate 5-8) 5 -9) rate [(4)x(5)x(6)] (tonstyr /ft) (adjective) (adjective) (Figure 5- (ft3/yr) {[(7)/27] x 38 or 5 -39) 1.3/(5)) (ft/yr) Left Bank 43. 1955 -1999 Low Moderate 0.0306818 44 3.6 4.86 0.01 Right Bank 44. 1915-2021 Moderate Low 0.0301639 106 3.8 12.15 0.01 Left Bank 45. 1999-2021 Moderate Very High 0.250869 22 6.8 37.53 0.08 Right Bank 46. 2021-2071 Moderate High 0.15012 50 5 37.53 0.04 Left Bank 47. 2021 - 2143 Low Low 0.0022131 122 5 1.35 0.00 Right Bank 48. 2071 - 2143 Very High High 0.9998354 62 9.8 607.5 0.47 Right Bank 49. 2143-2185 Moderate Moderate 0.0702857 42 7.5 22.14 0.03 Right Bank 50. 2185-2197 Very High Extreme 1.5 12 6 108 0.43 Right Bank 51. 2197-2227 Moderate High 0.15 30 5.7 25.65 0.04 Left Bank 52. 2143 - 2185 High Very High 0.3006303 42 3.4 42.93 0.05 Left Bank 53. 2185 - 2237 Moderate Low 0.0298558 52 4 6.21 0.01 54. 55. 56. 57. Total Sum erosion subtotals in Column (7) for each BEHI/NBS combination erosion (ft3 r) 4556.52 Total Convert erosion in ft3 /yr to yds3 /yr {divide Total erosion (ft3 /yr) by 27} erosion (yds3 / r 168.76 Convert erosion in yds3 /yr to tons /yr {multiply Total erosion (yds3 /yr) Total by 1.3} erosion (tonstyr) 219.39 Calculate erosion per unit length of channel {divide Total erosion Total (tons /yr) by total length of stream (ft) surveyed} erosion (tons /yr /ft) 0.1501 Copyright 0 2006 Wildland Hydrology WARSSS page 5 -81 1 1 u �l n 1 1 1 1 1 t 1 L �a 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 Worksheet 5 -3. Field form for Level II stream classification ( Rosgen, 1996; Rosgen and Silvey, 2005). Stream: Big Creek Phase 2 Basin: Drainage Area: 3852.8 acres 6.02 mil Location: Reach 3 Twp. &Rge: ; Sec. &Qtr.: ; Cross - Section Monuments (Lat. /Long.): 0 Lat / 0 Long Date: 01/12/11 Observers: Walker /Cartner Valley Type: VII I lankfull WIDTH (Wbkf) IIDTH of the stream channel at bankfull stage elevation, in a riffle section. T32,79 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross - section, at bankfull stage elevation, in a riffle section (dbe = A / Wba). 2.09 Bankfull X- Section AREA (Abkt) AREA of the stream channel cross - section, at bankfull stage elevation, in a riffle section. 68.47 Width /Depth Ratio (Wbkf / dbkf) Bankfull WIDTH divided by bankfull mean DEPTH, in a riffle section. 15.69 Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross - section, or distance between the bankfull stage and Thalweg elevations, in a riffle section. 3.23 WIDTH of Flood -Prone Area (Wfp,) Twice maximum DEPTH, or (2 x dmbK) = the stage /elevation at which flood -prone area WIDTH is determined in a riffle section. 38.48 Entrenchment Ratio (ER) The ratio of flood -prone area WIDTH divided by bankfull channel WIDTH (Wfpa/ Wb1a) (riffle section). 1.17 Channel Materials (Particle Size Index ) D60 The D50 particle size index represents the mean diameter of channel materials, as sampled from the channel surface, between the bankfull stage and Thalweg elevations. 14 Water Surface SLOPE (S) Channel slope = "rise over run" for a reach approximately 20-30 bankfull channel widths in length, with the "riffle -to -riffle" water surface slope representing the gradient at bankfull stage. 0.00436 Channel SINUOSITY (k) Sinuosity is an index of channel pattern, determined from a ratio of stream length divided by valley length (SL / VL); or estimated from a ratio of valley slope divided by channel slope (VS / S). 1.05 Fat fvft F+ mm Copyright © 2006 W ildland Hydrology WARSSS page 5 -29 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 Worksheet 5-4. Morphological relations, including dimensionless ratios of river reach sites (Rosgen and Silvey, 2005). c m Imeander Wavelength (L.) i 207 1 136 ; 289 L Radius of Curvature (R°) t 55.3 1 402 ; 762 c Belt Width (WaJ 1, 41.6 1 36 1 51.4 ' VIndividual Pool Length 136.71, 15.3 65 ; 1.25 1 1.081 1.54 Ift IPool .1 ; 1.10 Pool to Pool Spacing 78.6l 57.6 1 972 Pool to Pool Spacing/Riffle Width Riffle Length i 9.91 t 8.45 1 11.1 Ift I Riffle Length/Riffle Width ; 0.30 1 025 1 0.33 Valley Slope (VS) 0.0046 !ft/ft Avera Stream Length (SL) 1 700 ift IValley m F Dimensionless Geometry Raflos Mean Min Max 'ft Meander Length Ratio (Lw Wbm) 1 6.201 4.07 ; 8.64 Ift Radius of Curvature/Riffle Width (R°/Wb,) t 1.66 L-1 2V._228 ift Meander Width Ratio (Wm>Wwa) ; 1.25 1 1.081 1.54 Ift IPool Length/Riffle Width ; 1.10 1 0.46 ; 1.95 Ilft Pool to Pool Spacing/Riffle Width = 2.35 ; 1.72 ; 2.91 Ift I Riffle Length/Riffle Width ; 0.30 1 025 1 0.33 le Water Surface Slope (S) 0.00436 ;ft/ft ISinuosity (VS /S) 11.05 Length (VL) 580 ift ISinuosity (SLNL) ; 121 m F I Low Bank Height start; 6.2 ift °6- Max Riffle start) 3.15 ;ft Bank - Height Ratio (BHR) start-L1.97 o) Riffle Slope /Average Water Surface Slope (S / S - (LBH) 2--'ift end) Depth end; 3.01 ;ft (LBWMax Riffle Depth) end! 2.06 m F Facet Slopes M Mean Min Max D Dimensionless Slope Ratios M Mean Min Max a R Riffle Slope (Sr,) 1 10.01810.010�- 10.0271ft/ft o o) Riffle Slope /Average Water Surface Slope (S / S - -.'4.103 I2.381 ;'.6.1133 Reachb Riffle` Bar Reachb Riffles Bar Protrusion Hei htd EIt/Clay = 2 1 0 0 D,s 1 0.71 15.61 1 1.61 1 0 imm d g 1% Sand 23 0 26.05 D, 1 11.64 1 27.52 4.7 1 0 tmm 1% Gravel 60 1 89 68.37 1 D 17.89 35.1 1 12.13 1 0 'mm c r 1% Cobble 1 14 11 5.58 6; 1 62.54 1 59.87 4822 1 0 imm U Boulder 1 1 ! 0 1 0 D95 1 84 1 86.29 1 68.54 1 0 Imm %Bedrock 0 0 0 I D,. 1 511.98 1 128 105 1 0 tmm ...., �, 11-, ...ca.. u PLI­ arc ­V. uuu-Punn vdmes eacePL Puois: LdKerl dt UeepeSI pan or pool. ' ACIrve Deo of a rattle. b Composite sample of riffles and pools within the designated reach. d Height of roughness feature above bed. Copyright © 2006 Wildland Hydrology WARSSS page 5 -31 %Bedrock 0 0 0 I D,. 1 511.98 1 128 105 1 0 tmm ...., �, 11-, ...ca.. u PLI­ arc ­V. uuu-Punn vdmes eacePL Puois: LdKerl dt UeepeSI pan or pool. ' ACIrve Deo of a rattle. b Composite sample of riffles and pools within the designated reach. d Height of roughness feature above bed. Copyright © 2006 Wildland Hydrology WARSSS page 5 -31 1 1 1 1 1 1 1 f 1 1 1 1 1 1 1 t t 1 1 Worksheet 2 -2. Computations of velocity and bankfull discharge using various methods ( Rosgen, 2006b; Rosgen and Silvey, 2007). Bankfull VELOCITY & DISCHARGE Estimates Stream: Big Creek Phase 2 Location: I Reach 3 - Phase 2 Date: 7/10/2010 1 Stream Type: F4 Valley Type: VIII Observers: IStreamwalker Consulting HUC: INPUT VARIABLES IF OUTPUT VARIABLES Bankfull Riffle Cross - Sectional 73.43 Abkf Bankfull Riffle Mean DEPTH 2.20 dbkf AREA ft /sec a ^eM / WP channel bed elevation. Substitute the D84 bedrock protrusion height in it for the D84 term in method 1. (ft) Bankfull Riffle WIDTH 33.41 I WbM Wetted PERMIMETER 36.49 WP (ft) - (2 dbid) + WbM (ft) D84 at Riffle 59.87 Dia• I D84 (mm) / 304.8 0.20 D84 3.13 ft /sec (mm) ^eM / WP channel bed elevation. Substitute the D84 bedrock protrusion height in it for the D84 term in method 1. (ft) Bankfull SLOPE 0.0044 Sbkf 11 Hydraulic RADIUS 2 01 R 3.13 ft /sec (ft/ft) ^eM / WP channel bed elevation. Substitute the D84 bedrock protrusion height in it for the D84 term in method 1. (ft) Gravitational Acceleration 32,2 g Relative Roughness 10.26 R / D� 3.13 ft /sec (ft /sec z ) R(ft) / D84 (ft) channel bed elevation. Substitute the D84 bedrock protrusion height in it for the D84 term in method 1. () Drainage Area 6.0 I DA Shear Velocity 'A 0.531 u* 3.13 ft /sec (min) u* = RS channel bed elevation. Substitute the D84 bedrock protrusion height in it for the D84 term in method 1. () ESTIMATION METHODS Sankfull Bankfull VELOCITY DISCHARGE 1. Friction Relative u =[2-83 + 5.66 * Lo (RID D 9 { sa 11 U* 4.54 ft /sec IF333-68 0.00 cfs Factorou hness 3.13 ft /sec 229.84 cfs 2. Roughness Coefficient: a) Manning's n from Friction Factor / Relative 0.00 ft /sec 0.00 cfs Roughness (Figs. 2 -18, 2 -19) u= 1.49 *Rw *Sr2 /n n = 0.05 3.13 ft /sec 229.84 cfs 2. Roughness Coefficient: u = 1.49 *Rm *S 12/ n 0.00 ft /sec 0.00 cfs b) Manning's n from Stream Type (Fig. 2 -20) n = 0.05 3.13 ft / sec 229.84 cfs 2. Roughness Coefficient: u = 1.49 *Rm *S 12/ n c) Manning's n from Jarrett (USGS): n = 0.39 *So.38 *R -0.16 3.54 ft I sec 259.94 cfs Note: This equation is applicable to steep, step /pool, high boundary �, n= 0.044 roughness, cobble and boulder - dominated stream stems; i.e., for 3. Other Methods (Hey, Darc - Weisbac CNz y C, etc.) 5.13 ft / sec 377.00 cfs Darc - Weisbach He 3. Other Methods (Hey, Darc - Weisbach, Chezy C, etc. 0.00 ft /sec 0.00 cfs Chez C -___ __rock on -that side. Substitute the -D84 boulder_ protrusion height in-ft-for the D84 term_in- method 1._ _ ___ -____ -] Option 3. For bedrock -dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces above channel bed elevation. Substitute the D84 bedrock protrusion height in it for the D84 term in method 1. I Retum Period or Bankfull Discharge gto� Curves Q - u 1 2/ A year I) 3.09 I ft / sec 1,1 227.00 I cfs Irl ---]1 4. Continuity Equations: b) USGS Gage Data u = Q / A 0.00 1 ft / Sec 0.00 1 cfs I Protrusion Heiaht Ontions for the De. Term in the Relative Rnunhnr+sa Ralatinn tRtn__� Option 1. For sand -bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of feature. Substitute the D84 sand dune protrusion height in it for the D84 term in method 1. Option 2. For boulder- dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the bed elevation to the top of the -___ __rock on -that side. Substitute the -D84 boulder_ protrusion height in-ft-for the D84 term_in- method 1._ _ ___ -____ -] Option 3. For bedrock -dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces above channel bed elevation. Substitute the D84 bedrock protrusion height in it for the D84 term in method 1. Option 4. For log - influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters or the height of the log on upstream side if embedded. Substitute the 084 protrusion height in ft for the D84 term in method 1. Copyright © 2008 Wildland Hydrology v= M= River Stability Field Guide page 2 -41 1 t 1 'r 1 r 1 1 t f 1 1 L t t 'i I Worksheet 3-14. Sediment competence calculation form to assess bed stability. Stream: Big Creek Phase 2 Stream Type: F 4 Location: Reach 3 - Phase 2 Valley Type: VIII Observers: StreamWalker Consulting Date: 02125/2009 Enter Required Information for Existing Condition 35.1 D50 Riff le bed material D50 (mm) 12.1 EQ Bar sample D. (mm) 0.34 Dmax Largest particle from bar sample (ft) 105 I (mm) 1304.8 mm /ft 0.00436 S Existing bankfull water surface slope (ft/ft) 2.20 d Existing bankfull mean depth (ft) 1.65 7.,-1 Immersed specific gravity of sediment Select the Appropriate Equation and Calculate Critical Dimensionless Shear Stress 2.89 DSOI Dso Range: 3 — 7 Use EQUATION 1: T* = 0.0834 ( D5 ,ID5o) -0.872 2.99 Dmax /D50 Range: 1.3 -3.0 Use EQUATION 2: T* = 0.0384 (Dmax /D50) 887 0.0145 ti` Bankfull Dimensionless Shear Stress EQUATION USED: 2 Calculate Bankfull Mean Depth Required for Entrainment of Largest Particle in Barr Sample 1.87 d ' Required bankfull mean depth (ft) d= N * (7s S 1)L/max use Dma, in ft) Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle in Bar Sample 0.00370 $ Required bankfull water surface slope ( ft/ft) S= S (use Dmax in ft) d Check: !I— Stable T- Aggrading I— Degrading Sediment Competence Using Dimensional Shear Stress 0.599 Bankfull shear stress T = TdS (Ibs/ft2) (substitute hydraulic radius, R, with mean depth, d ) = 62.4, d = existing depth, S = existing slope Shields 35 co 100 Predicted largest moveable particle size (mm) at bankfull shear stress T (Figure 3 -11) Shields 1.4 co 0.58 Predicted shear stress required to initiate movement of measured Dmax (mm) (Figure 3 -11) Shields 5.15 co 2.13 Predicted mean depth required to initiate movement of measured Dmax (mm) 't d =- T = predicted shear stress, Y= 62.4, S = existing slope Y$ Shields 0.0102 co 0.0042 Predicted slope required to initiate movement of measured Dmax (mm) $ C S - — = predicted shear stress, 7= 62.4, d = existing depth yd Check: I– Stable Ff– Aggrading I✓ Degrading ICopyright © 2008 Wildland Hydrology River Stability Field Guide page 3 -101 1 1 1 t 1 1 1 1 1 1 f f 1 1 1 t 1 1 t 1089 1088 1087 1086 1085 °- 1084 .W _m 1083 U' 1082 1081 1080 1079 1078 0 10 Bankfull Dimensions 612 x- section area (ft.sq.) 22.6 width (ft) 2.7 mean depth (ft) 3.6 max depth (ft) 27.0 wetted parameter (ft) 2.3 hyd radi (ft) 8.3 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Glide 20 30 Width Flood Dimensions 45.4 W flood prone area (ft) 2.0 entrenchment ratio 5.2 low bank height (ft) 1.4 low bank height ratio Flow Resistance Cross Section reference ID instrument height - -- longitudinal station - Bankfull Stage FS = 1082 72 elev elevation -- Low Bank Height FS • r ' = 1084 29 elevation Em Flood Prone Area width fpa 45 4 Channel Slope percent slope - Flow Resistance Manning's "n" D'Arcy - Weisbach I' Note: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u /u' - relative roughness Distance BS HI (ft) (ft) (ft) 10 1 10 1.7 10 2 10 3 10 4 10 7 10 8 10 9 10 9.5 10 10 10 11 10 15 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 18.7 10 19 10 19.2 10' 19.5 10' 20 10' 206 10' 20.8 10, . 40 50 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit strm power (lb /ft/s) FS Elevation Omit Notes (ft) (ft) Bkf 1086.01 LEP 90.38 90.38 4.45 1085.93 90.38 4.77 1085.61 90.38 4.88 1085.5 90.38 5.19 1085.19 90.38 5.75 1084.63 30.38 6.59 1083.79 30.38 688 1083.5 30.38 7.01 1083.37 30.38 7.12 1083.26 30.38 6.98 1083.4 1083.64 30.38 6.74 30.38 6.56 1083.82 30.38 6.2 1084.18 30.38 6.09 1084.29 30.38 6.09 1084.29 10.38 6.19 1084.19 10.38 6.38 1084 10.38 6.58 1083.8 10.38 6.74 1083.64 10.38 7.01 1083.37 10.38 7.25 1083.13 10.38 7.43 1082.95 10.38 7.66 1082.72 10.38 8.03 1082.35 1038 8.03 108235 10.38 8.26 848 1082.12 10.38 1081.9 1081.57 10.38 881 3KF )rop off 1 1 f 1 1 1 1 f 1 1 t 1 1 1 1 1 1 1 r ,'o, 1086 1085 1084 c 1083 cc .2 1082 W 1081 1080 1079 1078 0 5 10 Bankfull Dimensions 64.2 x- section area (ft.sq.) 32.2 width (ft) 2.0 mean depth (ft) 3.1 max depth (ft) 35.1 wetted parimeter (ft) 1.8 hyd radi (ft) 16.1 width -depth ratio Bankfull Flow 3.7 velocity (ft/s) 239.2 discharge rate (cfs) 0.48 Froude number Cross Section Riffle 15 20 25 30 Width Flood Dimensions 38.5 W flood prone area (ft) 1.2 entrenchment ratio 6.7 low bank height (ft) 2.2 low bank height ratio Flow Resistance 0.044 Manning's roughness 0.18 D'Arcy- Weisbach Eric. - resistance factor u /u* -- relative roughness reference ID instrument height s longitudinal station Bankfull Stage FS M= t 681.95 elev elevation Low Bank Height FS = 1085 22 elev elevation o Flood Prone Area width fpa 38.5 Channel Slope percent slope � - -- Flow Resistance Manning's "n" - -- D'Arcy - Weisbach 'T' - Note: Distance BS 35 40 45 50 Materials - D50 (mm) - D84 (mm) 30 threshold grain size (mm): Forces & Power 0.54 channel slope ( %) 0 62 shear stress (lb /sq.ft.) 0.56 shear velocity (ft/s) 2.5 unit strm power (Ib/ft/s) HI (ft) FS Elevation Omit Notes (ft) ft) Bkf LEP 1090.75 1090.75 5.19 1090.75 5.13 1090.75 5.19 1090.75 5.28 1090.75 5.32 1090.75 5.525 1085.225 1090.75 5.87 1084.88 1090.75 6.54 108421 1090.75 7.15 1083.6 1090.75 7.77 1082.98 1082.48 1090.75 8 27 1090.75 8.49 1082.26 TC 1082.15 090.75 8 6 1090.75 8.8 BN 1081.95 1090.75 8.97 1081.78 1090 75 9 1 1081.65 1090.75 9.39 108136 1090.75 9.65 1081.1 1090.75 9 78 1080 97 1090.75 9.78 1080.97 1090.75 9.94 1080.81 1090.75 10 07 1080 68 TC 1090.75 10.1 10.56 11 25 1080 65 1090.75 1080.19 1090.75 1079.5 1090.75 11.4 11.48 1079.35 TC 1090.75 1079.27 E OF BAI F P OF BEI OF BEI 1 1 f 1 1 1 1 f 1 1 1 1 1 1 1 1 1 t iuoo 1085 1084 1083 0 1082 m w 1081 1080 1079 1078 0 5 10 Bankfull Dimensions 69.2 x- section area (ft-sq.) 29.0 width (ft) 2.4 mean depth (ft) 2.8 max depth (ft) 31.7 wetted parimeter (ft) 2.2 hyd radi (ft) 12.1 vwdth -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section s Glide 15 20 25 Width Flood Dimensions 38.6 W flood prone area (ft) 1.3 entrenchment ratio 5.3 low bank height (ft) 1.9 low bank height ratio Flow Resistance re refence ID instrument height - longitudinal station - Bankfull Stage FS = 1081 45 elev elevation Low Bank Height FS � = 1083 95 elev elevation • Flood Prone Area width fpa 38.6 Channel Slope percent slope Flow Resistance Manning's "n" D'Arcy - Weisbach "f' - -- Note: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u /u' - relative roughness 30 35 40 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit strm power (lb /ft/s) Distance BS HI FS Elevation Omit Notes (ft) (ft) (ft) (ft) (ft) Bkf 7 3.3 1090.99 1090.99 1090.99 109099 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 1090.99 5.52 5.55 5.62 5.91 715 8.01 8.99 9.54 10.29 10.94 11.54 11.84 12.1 12.15 12.25 12.24 12.17 12.1 12.2 12.2 12.11 1219 12.15 12.25 12.14 12.16 12.19 1085.61 1085.47 1085.44 1085.37 108508 1083.84 1082.98 1082 1081.45 1080.7 1080.05 1079.45 1079.15 1078.89 1078.84 1078.74 1078 75 1078.82 107889 1078.79 107879 1078.88 1078.8 1 107884 1078.74 1078.85 1078.83 1078.8 LEP left top bank 3KF •EW :ft scour ch. 1 1 1 t 1 1 1 f 1 1 1 1 1 1 1 1 1 1 1 "Jo" 1085 1084 1083 0 1082 V 1081 w 1080 1079 1078 1077 1076 0 5 10 Bankfull Dimensions 59.3 x- section area (ft.sq.) 30.8 width (ft) 1.9 mean depth (ft) 3.4 max depth (ft) 35.2 wetted parimeter (ft) 1.7 hyd radi (ft) 16.1 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section la Run 15 20 25 30 35 40 45 50 Width Flood Dimensions Materials 39.7 W flood prone area (ft) - D50 (mm) 13 entrenchment ratio - D84 (mm) 70 low bank height (ft) - threshold grain size (mm): 2.1 low bank height ratio Flow Resistance referencelD instrument height + + - -- longitudinal station - Bankfull Stage FS + = 1080 65 elev elevation + Low Bank Height FS = 1084.29 elev elevation + Flood Prone Area width fpa 39.7 Channel Slope percent slope - Flow Resistance Manning's "n" -- D'Arcy - Weisbach T Note: -- Manning's roughness - D'Arcy- Weisbach fric. resistance factor u /u* - relative roughness Forces & Power - channel slope (%) - shear stress (lb /sq.ft.) shear velocity (ft/s) - unit stns power (Ib /ft/s) Distance BS HI FS Elevation Omit Notes (ft) (ft) (ft) (ft) (ft) Bkf 1091.05 1085.55 lep 084 1091.05 + 1085.49 1.56 1091.05 + 1085 297 2.3 1091.05 1085.054 3.51 1091.05 1084.47 4.64 1091.05 :: + 1084.062 5.59 1091.05 1083.405 6.05 1091.05 : 1083.19 7.25 1091.05 + 1082.973 8.1 1091.05 + 1082.647 8.55 1091.05 1082.357 9.11 1091.05 1082107 9.68 1091 05 + • + :. 1081.541 1081.175 10.39 1091.05 10.87 1091.05 + 1080.653 BKF 11.76 1091.05 + + • 1080.344 12.84 1091.05 + : 1080.216 15.11 1091.05 1079.816 17.76 1091 05 : + : 1079.569 19.01 1091.05 : + 1079.682 20.13 1091.05 1079.291 22.39 1091.05 + : 1078.967 23.82 1091.05 1078.896 25.19 1091.05 1078.809 26.4 1091.05 1078.577 28.61 1091.05 1078.555 31.43 1091.05 + 1078 323 3376 1091.05 ... 11717A nA i 1 1 1 1 1 1 1 1 t 1 1 t 1 1 t t 1 t 1 ivoo 1086 1084 0 1082 a� U.1 1080 1078 1076 0 5 10 Bankfull Dimensions 73.0 x- section area (ft.sq.) 29.6 width (ft) 2.5 mean depth (ft) 4.4 max depth (ft) 37.0 wetted parimeter (ft) 20 hyd radi (ft) 12.0 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Pool 15 20 25 30 35 40 Width Flood Dimensions Materials 37.4 W flood prone area (ft) - D50 (mm) 1.3 entrenchment ratio - D84 (mm) 8.1 low bank height (ft) - threshold grain size (mm): 1.8 low bank height ratio Flow Resistance Cross Section reference ID instrument height 0• • -- longitudinal station - Bankfull Stage FS = 1080 97 elev elevation Low Bank Height FS = 1084 7 e elevation Flood Prone Area width fpa 37.4 Channel Slope percent slope Flow Resistance Manning's "n" D'Arcy - Weisbach 'T' - Note: - Manning's roughness - D'Arcy- Weisbach fhc. - resistance factor u /u" -- relative roughness Forces & Power - channel slope ( %) - shear stress (lb/sq. ft.) - shear velocity (ftls) - unit strm power (Ib/ft/s) Distance BS HI FS Elevation Omit Notes (ft) ft ft Bkf 1090.94 1090.94 485 4.84 4.84 5.02 578 6.67 7.61 7.92 8.33 872 9.2 9.66 9.97 10.18 10.49 10.97 11.08 11.25 11.26 1089 10.75 10.69 10.83 11.01 11 37 11.72 11.95 1086.03 1086.09 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 1090.94 109094 1090.94 1090.94 1086.1 1086.1 1085.92 1085.16 1084.27 1083.33 1083.02 1082.61 1082.22 1081.74 1081.28 1080 97 1080.76 1080.45 1079.97 1079.86 1079.69 1079.68 1080.05 1080.19 1080 25 1080.11 1079.93 1090.94 1090.94 1079.57 1079.22 1090.94 1078.99 ^ 45 LEP TOB Toe of Bank 3KF 'and THL 'op of Sand 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 IVOO 1085 1084 1083 0 1082 io 1081 w 1080 1079 1078 1077 1076 0 10 Bankfull Dimensions 57.8 x- section area (ft.sq.) 33.7 width (ft) 1.7 mean depth (ft) 3.0 max depth (ft) 34.9 wetted parimeter (ft) 1.7 hyd radi (ft) 19.6 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Glide 20 30 Width Flood Dimensions 39.7 W flood prone area (ft) 1.2 entrenchment ratio 7.3 low bank height (ft) 2.4 low bank height ratio Flow Resistance - Manning's roughness - DArcy- Weisbach fric. - resistance factor u /u* --- relative roughness Distance BS HI ft) (ft (ft) reference ID instrument height 4 longitudinal station - 7 _Bankfull Stage 8 FS � : = 1080 18 elev 9.3 elevation -- 8.85 94 Low Bank Height 10 FS = 1084 49 elev 11 elevation 12 13 Flood Prone Area 14 width fpa 39.7 15 16 Channel Slope 17 percent slope - 18 19 Flow Resistance 21 Manning's "n" - 23 D'Arcy - Weisbach "f' - 24.4 25 Note: 26 27 28 29 30 40 50 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (ib /sq.ft.) - shear velocity (ft/s) --- unit strm power (lb /ft/s) FS Elevation Omit Notes (ft) (ft) Bkf 1083.77 LEP 1090.99 2 1090.99 7.23 1083.76 1090.99 6.7 1084.29 6 1090.99 6.56 1084.43 1090.99 603 1084.96 1090.99 6.2 1084.79 1090.99 6.72 1084.27 1090.99 7.22 1083.77 1090.99 8.91 1082.08 1090.99 965 1081.34 1090.99 10.21 108078 1090.99 10.81 1080.18 1090.99 10.98 108001 1090.99 11.22 1079.77 1090.99 11.6 1079.39 1090.99 1203 107896 1090.99 12.41 1078.58 1090.99 12.62 1078.37 1090.99 12.56 1078.43 1090.99 12.87 1078.12 1090.99 13.06 1077.93 1090.99 13.25 1077.74 1090.99 13.38 1077.61 1090.99 13.39 10776 1090.99 13.44 1077.55 1090.99 13.53 1077.46 109099 1359 10774 1090.99 13.72 1077.27 r 3KF .EW 3KF .EW 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 i uo.uu 1084.00 1083.00 1082.00 0 1081.00 1080.00 A2 w 1079.00 1078.00 1077.00 1076.00 0 5 Bankfull Dimensions 59.3 x- section area (ft.sq.) 21.1 width (ft) 2.8 mean depth (ft) 3.5 max depth (ft) 24.9 wetted parimeter (ft) 2.4 hyd radi (ft) 7.5 width -depth ratio Bankfull Flow 4.0 velocity (ft/s) 236.7 discharge rate (cfs) 0.45 Froude number Cross Section Riffle 10 15 20 Width Flood Dimensions 33.7 W flood prone area (ft) 1.6 entrenchment ratio 5.0 low bank height (ft) 1.5 low bank height ratio Flow Resistance 0.049 Manning's roughness 0.21 D'Arcy- Weisbach fric. — resistance factor u/u' — relative roughness reference ID instrument height - -- longitudinal station — Bankfull Stage FS - 1080 24 elev elevation ' Low Bank Height FS = 1081 82 elev elevation ' Flood Prone Area width fpa 32 5 Channel Slope percent slope-- - Flow Resistance Manning's D'Arcy - Weisbach T --- Note: Distance BS HI 25 30 35 Materials — D50 (mm) — D84 (mm) 40 threshold grain size (mm): Forces & Power 0.54 channel slope (%) 0.80 shear stress (lb /sq.ft.) 0.64 shear velocity (ft/s) 3.8 unit strm power (lb/ft/s) FS Elevation Omit Notes 1 t 1 1 1 1 1 t 1 f 1 1 1 1 1 1 1 1 1 Vo7.UV 1084.00 1083.00 1082.00 0 1081.00 1080.00 w 1079.00 1078.00 1077.00 1076.00 1075.00 0 5 Bankfull Dimensions 53.6 x- section area (ft.sq.) 21.6 width (ft) 2.5 mean depth (ft) 3.7 max depth (ft) 26.0 wetted perimeter (ft) 2.1 hyd radi (ft) 8.7 width-depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Pool 10 15 20 Width Flood Dimensions W flood prone area (ft) - entrenchment ratio 3.7 low bank height (ft) 1.0 low bank height ratio Flow Resistance reference ID instrument height + - longitudinal station - Bankfull Stage FS = 1079 75 elev elevation e Low Bank Height FS = 1079 75 elev elevation Flood Prone Area width fpa 34 9 Channel Slope percent slope - Flow Resistance Manning's "n" D'Arcy - Weisbach' Note: - Manning's roughness - D'Arcy- Weisbach Eric. - resistance factor u /u" - relative roughness Distance BS HI (ft) (ft) (ft) 1088, 1.89 1088. 2.96 1088, 4.11 1088 4.85 1088. 5.11 1088. 5.62 1088. 5.95 1088. 6.3 1088. 738 1088. 7.02 1088. 6.29 1088. 7.01 1088. 7.78 1088. 9.78 1088. 11.18 1088. 11.95 1088. 13.9 1088. 15.3 1088. 16.91 1088. 18.23 1088. 19.46 1088. 2035 1088. 20.44 1088. 2121 1088., 21.55 1088., 22.17 1088., 25 30 35 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb/sq.ft.) - shear velocity (ft/s) - unit stns power (Ib /ft/s) FS Elevation Omit Notes (ft) (ft) Bkf 1 1 i t 1 1 f 1 1 f f 1 1 1 1 1 1 1 M U cz N cr N N N ciS a_ Y N N L- C) i LL U m w a a • o ► • o - K a Go W 0 (4) U011PA913 ? 0 a co c 'a w O J 1 t KlVtKMUKVH F'AK I ILLt JUMMAKT ---------------------------------------------------------------------- River Name: Big Creek Phase 2 Reach Name: Reach 3 - Phase 2 Sample Name: Reach 3 Classification Survey Date: 03/27/2009 ---------------------------------------------------------------------- Size (mm) TOT # ITEM % CUM ------- ----------------------- 0 - 0.062 - - 2 - - -- --- - - - 2 00 - -- ----------------------- 2 00 0.062 - 0.125 0 0.00 2.00" 0.125 - 0.25 0.25 - 0.50 0 8 0.00 8.00 2.00 10.00 - 0.50 1.0 14 14.00 24.00 1.0 - 2.0 1 1.00 25.00 2.0 - 4.0 2 2.00 27.00 4.0 - 5.7 3 3.00 30.00 5.7 - 8.0 1 1.00 31.00 8.0 - 11.3 3 3.00 34.00 11.3 - 16.0 14 14.00 48.00 16.0 - 22.6 7 7.00 55.00 22.6 - 32.0 10 10.00 65.00 32 - 45 7 7.00 72.00 45 - 64 13 13.00 85.00 64 - 90 13 13.00 98.00 90 - 128 1 1.00 99.00 128 - 180 0 0.00 99.00 180 - 256 0 0.00 99.00 256 - 362 0 0.00 99.00 362 - 512 1 1.00 100.00 512 - 1024 0 0.00 100.00 1024 - 2048 0 0.00 100.00 Bedrock 0 0.00 100.00 D16 (mm) 0.71 D35 (mm) 11.64 D50 (mm) D84 (mm) 17.89 62.54 D95 (mm) 84 D100 (mm) 511.98 Silt /Clay ( %) 2 Sand M 23 Gravel ( %) 60 Cobble ( %) 14 Boulder ( %) 1 Bedrock ( %) 0 Total Particles = 100. 1 t Total Particles = 100. d Fi t KIVLKMORPH PAK11CLL SUMMARY ---------------------------------------------------------------------- River Name: Big Creek Phase 2 Reach Name: Reach 3 - Phase 2 sample Name: Reach 3 Active Riffle Survey Date: 03/27/2009 j---------------------------------------------------------------------- size (mm) TOT # ITEM % CUM ------ - - - - -.00 - ----------------------- -. 0-----0--.0-6--2 0 0 0 00 0.062 - 0.125 0 0.00 0.00 0.125 - 0.25 0 0.00 0.00 0.25 - 0.50 0 0.00 0.00 0.50 - 1.0 0 0.00 0.00 1.0 - 2.0 0 0.00 0.00 2.0 - 4.0 0 0.00 0.00 4.0 - 5.7 0 0.00 0.00 5.7 - 8.0 1 1.00 1.00 8.0 - 11.3 11.3 - 16.0 4 12 4.00 12.00 5.00 17.00 - 16.0 22.6 7 7.00 24.00 22.6 - 32.0 21 21.00 45.00 32 - 45 21 21.00 66.00 45 - 64 23 23.00 89.00 64 - 90 7 7.00 96.00 90 - 128 4 4.00 100.00 1 128 - 180 0 0.00 100.00 180 - 256 0 0.00 100.00 256 - 362 0 0.00 100.00 362 - 512 0 0.00 100.00 512 - 1024 0 0.00 100.00 1024 - 2048 0 0.00 100.00 Bedrock 0 0.00 100.00 D16 (mm) 15.61 D35 (mm) 27.52 D50 (mm) 35.1 D84 (mm) 59.87 D95 (mm) 86.29 D100 (mm) 128 1 silt /Clay ( %) 0 sand (%) 0 Gravel (%) 89 cobble ( %) Boulder (%) 11 0 Bedrock (%) 0 Total Particles = 100. d Fi t t 1 1 1 RIVERMORPH PAR -11CLt SUMMARY ---------------------------------------------------------------------- River Name: Big creek Phase 2 Reach Name: Reach 3 - Phase 2 sample Name: Reach 3 Bar sample Survey Date: 03/27/2009 i---------------------------------------------------------------------- SIEVE (mm) NET WT ---------------------------------------------------- - - - - -= 63 4 31.5 32.56 16 23.08 8 21.39 4 13.71 2 10.97 1 38.85 PAN 0 D16 (mm) D35 (mm) 1.61 4.7 D50 (mm) 12.13 D84 (mm) 48.22 D95 (mm) 68.54 D100 (mm) 105 silt /clay (%) 0 Sand ( %) 26.05 Gravel ( %) 68.37 Cobble ( %) 5.58 Boulder (%) 0 Bedrock (%) 0 Total weight = 149.1500. Largest Surface Particles: Size(mm) weight Particle 1: 105 2.62 Particle 2: 75 1.97 t 1 1 1 1 1 1 1 f 1 tq 0 O _N U C O C O U co 0 co 1 E N N Ch d m J9 ■ L O 1 >, O O o N Cr) � Q ^ v E N (� CV .. p .._ N U y fn _ O O 0'' O �j IL Y O N - -- CV y 2 r L U U V O V_i O U d s V o a c n� _o o 1 Cc)- U c CM m m c ai X w o a� o a. I 3 L E O_ (ff ZA Y .L a) 2 a) — E O O O y O p �e CU Q _d E N Y �_ D N m (n Z Z Z J m U) U LL.2 ❑m �2 �2 co Jfn Jm L L O a _T d C O y N m E d C V r d _w C E Q V Co 'ti w :8 tl L w d C .Q = O O 3 3 _ O ca to _ ;+ m co ;c N v E L —= E c a• ca ca c 0 cEc m y L cc0i o� c1°i as w E c t ar a�i caN �a wUQ Apo c 'a co O V .� N m N �- > �- > �- R n V N t N V A _O O 'R co O O N s OL O A� Met ° P. U U O O O O O C C c c m m N r r O O U co U. - - .0 d d - -O m N a C C C O �_ c N U 1 13) a (if O E O O :3 X X C 2 O c_ o W C N C) ` p Z `o W W C Z ' L cn N p ca L m O O a r 4 O 2 O w� N r= O O ` `0 3 3 y y p � m O 2 2 2 = O � a) ¢ N r ¢ > > m m 2 2� 0 0 \ \ N N O N N N ul r Ca y y ] ], 2 2 X O C N to co ❑ ❑ c ca 3 3 c co � � U) U U) > CV) m > U O N -> _ Y Y Y Y Y Y Y m ` U O `° w N - L L _A Y y a E E E E E E E E E E O O Y lO . .• O Y C C 3 L) Q a O O O c y y O O a a) '' N N 0 0 ( () a a) a . .. v v C C6 C Co O O c c d d N d d C a a ' '� N N - - a C CC o oC a aC 00 C C; L LL 0 Q l l O N .2 Z pU ❑ ❑ d d 2 2 I Ir ❑ d a) C) ~ a) _ _r O O C O O O O O X 1 O O O a O a ~ d Tco N cN a Z p N N y y N N t d O co N E r d T N ❑ a. r. r Gal p O N N E r a a� vii G p E E � �= c cm 0 0) N N k to a > O O � d d H H : :- cUa = = W W c U t a c c a a. r 0 0 . g L w Q. 2 L L L � �. 2 _o g L�o�.. w wo L LA O N 2 2 Q Q C Cl a a7 Q c cU y v a y L O a a) m 0 0 3 3 p p � �_Z N \ 2 O x x O O c cyU O c cn c cfl p O O O y y U U > > O y y N N CO O p2 f O C ❑ L O L fw O II * * 4 4 1 1 C Lo O O� C IL C C> ❑ LL O O C C O O O O C I = - , � � � � o > W W o> > c� r r°. a a p p c 2 220 c c - = E n n N N L L L LN L L L L _ _ c ai C Cl) x x f f� E O O S a cis C fC O O o . L ° ° v .-. a a) U -O d CD a U � � t t a d E E - -e c co - d a a) � to a c c O O c c v v j j C C U U 5 \ \ o o y y C C\> 2 2� Q Q L L6 C C � �+ O 0 ca U U3 a 00 C^p n n O O C Cn 0 0 v C CV L Ln C O O O O C t t a a) a M E E O N ' ......... r U T T 2 2 r r N N 1 1 L L L L L L L L L N= I L A _O O 'R co O O N s OL O A� 1 1 a 1 1 1 f J Worksheet 5-10. Summary form of annual streambank erosion estimates for various study reaches. Stream: Big Creek Location: Reach 3 Graph Used: NC Total Bank Length (ft): 626 Date: 2/25 /2009 Observers: Walker, Cartner Valley Type: VIII Stream Type: F 4 1 2) 3) (4) 5 (6) (8) Station (ft) BEHI rating NBS rating Bank Length of Study bank Erosion Erosion (Worksheet (Worksheet erosion bank (ft) height (ft) subtotal Rate 5 -8) 5 -9) rate [(4)-(5)x(6)] (tons /yr /ft) (adjective) (adjective) (Figure 5- (ft3 /yr) {[(7)/27] x 38 or 5 -39) 1.3/(5)) (ft/yr) Right Bank 1. 2227-2263 Low Low 0.0019737 36 3.8 0.27 0.00 Left an 2. 2237-2363 Moderate Low 0.03 126 3.5 13.23 0.01 Right B-a-nlW- 3. 2263-2373 Moderate High 0.1500779 110 7 115.56 0.05 Left an 4. 2363-2465 Low High 0.069958 102 7 49.95 0.02 Right Bank 5. 2373-2465 Low Low 0.0020963 92 7 1.35 0.00 Left an 6. 2465-2523 Low Low 0.0021485 58 6.5 0.81 0.00 Left an 7. 2523-2585 High Moderate 0.1698387 62 7 73.71 0.06 Right an 8. 2465-2585 Moderate Moderate 0.0699545 120 5.5 46.17 0.02 Left an 9. 2585-2660 Low Low 0.0018947 75 3.8 0.54 0.00 Right an io. 2585 - 2628 High Very High 0.3003771 43 7.4 95.58 0.11 Right an 11. 2628 - 2660 Low High 0.0695524 32 7.4 16.47 0.02 Left an 12. 2660 - 2700 Low Low 0.0020455 40 6.6 0.54 0.00 Right an 13. 2660 - 2720 Low Low 0.0025714 60 3.5 0.54 0.00 Left an 14. 2700 - 2745 Low Very High 0.1302857 45 7 41.04 0.04 Left an 15. 2745 - 2825 Moderate Moderate 0.0700962 80 6.5 36.45 0.02 Left an 16. 2825 - 2853 Moderate Moderate 0.0698276 28 5.8 11.34 0.02 Right Bank 17. 2720 - 2853 Moderate Low 0.0301128 133 6 24.03 0.01 18. 19. 20. 21. ICopyright © 2006 Wildland Hydrology WARSSS page 5 -81 1 1 1 i 1 1 1 1 f 1 1 1 1 t 1 1 1 1 1 1 Worksheet 5-10. Summary form of annual streambank erosion estimates for various study reaches. Stream: Big Creek Location: Reach 3 Graph Used: NC Total Bank Length (ft): 626 Date: 1/12/2011 Observers: Walker, Cartner Valley Type: VIII Stream Type: F 4 1 (2 ) (3) 4 (5 ) (6) ( 8 Station (ft) BEHI rating NBS rating Bank Length of Study bank Erosion Erosion (Worksheet (Worksheet erosion bank (ft) height (ft) subtotal Rate 5 -8) 5 -9) rate [(4)-(5)x(6)] (tons /yr /ft) 28. (adjective) (adjective) (Figure 5- (ft3 /yr) {[(7)/27] x 38 or 5-39) 30. 1.3/(5)) (ft/yr) 31. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. Sum erosion subtotals in Column (7) for each BEHI/NBS combination Total erosion ft3/ 527.58 Convert erosion in ft3 /yr to yds3 /yr {divide Total erosion (ft3 /yr) by 271 Total erosion ds3! 19.54 Convert erosion in yds3 /yr to tons /yr {multiply Total erosion (yds3 /yr) by 1.31 erosion (tons /yr) 25.4 Calculate erosion per unit length of channel {divide Total erosion (tons /yr) by total length of stream (ft) surveyed} Total erosion tons/ /ft) 1 0.0406 Copyright © 2006 Wildland Hydrology WARSSS page 5 -81 a � L � 7 # Y^ �� q� .'. V �i A s 1 1 1 1 1 t 1 t 1 t 1 1 1 1 1 1 t 1 1 Worksheet 5-3. Field form for Level II stream classification ( Rosgen, 1996; Rosgen and Silvey, 2005). Stream: Big Creek Phase 2 Basin: Dan River Drainage Area: 4006.4 acres 6.26 mil Location: Reach 4 Twp. &Rge: ; Sec. &Qtr.: ; Cross - Section Monuments (Lat. /Long.): 0 Lat / 0 Long Date: 01/12/11 Observers: Walker /Cartner Valley Type: VIII ,ankfull WIDTH (Wbkf) WIDTH of the stream channel at bankfull stage elevation, in a riffle section. 26.18 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross - section, at bankfull stage elevation, in a riffle section (dbe = A / Wba). 2.33 Bankfull X- Section AREA (Abkf) AREA of the stream channel cross- section, at bankfull stage elevation, in a riffle section. 60.79 i Width /Depth Ratio (Wbkf/ dbkf) Bankfull WIDTH divided by bankfull mean DEPTH, in a riffle section. 11.24 Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross - section, or distance between the bankfull stage and Thalweg elevations, in a riffle section. 3.08 WIDTH of Flood -Prone Area (Wfpe) Twice maximum DEPTH, or (2 x dmba) = the stage /elevation at which flood -prone area WIDTH is determined in a riffle section. 42.6 Entrenchment Ratio (ER) The ratio of flood -prone area WIDTH divided by bankfull channel WIDTH (Wtpa/ Wb1) (riffle section). 1.63 Channel Materials (Particle Size Index ) D50 The D50 particle size index represents the mean diameter of channel materials, as sampled from the channel surface, between the bankfull stage and Thalweg elevations. 25.73 Water Surface SLOPE (S) Channel slope = "rise over run" for a reach approximately 20-30 bankfull channel widths in length, with the "riff le -to- riffle" water surface slope representing the gradient at bankfull stage. 0.00372 Channel SINUOSITY (k) Sinuosity is an index of channel pattern, determined from a ratio of stream length divided by valley length (SL / VL); or estimated from a ratio of valley slope divided by channel slope (VS / S). 1.28 ft MITI Copyright © 2006 Wildland Hydrology WARSSS page 5 -29 1 1 1 1 1 a i 1 Worksheet 5-4. Morphological relations, including.dimensionless ratios of river reach sites (Rosgen and Silvey, 2005). Ift (Meander Length Ratio (L,,,/WbM) Meander Wavelength (Lm) j 171 ; 155 ; 199 aRadius of Curvature (R°) 46.4 35.1 . 63.2 c Belt Width (Wb,J 84.6 ; 73.1- 111 VIndividual Pool Length ! 61.7 ; 35.4 = 79.5 ]. 5.04 Pool to Pool Spacing j 90.1 i 48.3 1 132 ; 123 Riffle Length ; 18.4 5.371 32.2 Glide Slope /Average Water Surface Slope (S9 / S) ;0.567;0.25010.875 le Water Surface Slope (S) 0.00372 I'ft/ft Sinuosity (VS /S) Mean Min Max Valley Slope (VS) = 0.0047 ;fUft jAvera Max Riffle Depth (d°,.,,,) Stream Length (SL) 1 960 ift IValley Ift (Meander Length Ratio (L,,,/WbM) 16.53 11 5.90 '17.59 ift Radius of Curvature /Riffle Width (R,/Wbm) 1 1.771 1.34 1 2.41 !ft Meander Width Ratio (Wbu/WWae) ; 3.23 ; 2.79 1422 lft Pool Length/Riffle Width = 236 ; 1.35 ; 3.04 ift I Pool to Pool Spacing/Riffle Width 13.441, 1.85 ]. 5.04 lit I Riffle Length/Riffle Width ; 0.70 ; 0.21 ; 123 Glide Slope (Se) ;0.00210.00110.0031ff/ft 0. -t Glide Slope /Average Water Surface Slope (S9 / S) ;0.567;0.25010.875 le Water Surface Slope (S) 0.00372 I'ft/ft Sinuosity (VS /S) Mean Min Max ; 1.28 Length (VL) 1 850 1" it ISinuosity (SUVL) Max Riffle Depth (d°,.,,,) ; 1.13 ? Low Bank Height start, 3.96 ;ft Max Riffle start; Ift Bank - Height Ratio (BHR) start; I Riffle Slope /Average Water Surface Slope (Sn, / S) (LBH) I end; 542 Ift Depth _3.3 end,, 2.74 ;ft (LBH/Max Riffle Depth) _1.2 end; 1.98 ? Facet Slopes Mean Min Max Dimensionless Slope Ratios Mean Min Max o a Riffle Slope (Sn,) 10.005,10.003',' .0071ftIft I Riffle Slope /Average Water Surface Slope (Sn, / S) 111.282,10.' 874 i 1 81: c Run Slope (S.„ 10.01510.000.0251ft/ft Run Slope/Average Water Surface Slope (SN°/ S) j4.121;1.659;6.681 t Pool Slope (Sp) 0.000, 0.000; 0.000 ft/ft Pool Slope /Average Water Surface Slope (Sp / S) 0.059-10.022 ; 0.111 V Glide Slope (Se) ;0.00210.00110.0031ff/ft 0. -t Glide Slope /Average Water Surface Slope (S9 / S) ;0.567;0.25010.875 %Cobble Feature Midpoint a Mean Min Max Dimensionless Depth Ratios Mean Min Max V Max Riffle Depth (d°,.,,,) 1 3.08 ; 3.01 ; 3.14 ;ft I Max Riffle Depth /Mean Riffle Depth (d,,,a„m / dbw) { 1.32 ; 1.29 1 1.35 D� 113.75 Max Run Depth (d__) 1 3.32 ; 2.93 ; 3.60 ;ft Max Run Depth /Mean Riffle Depth (dm� ° / dbM) ; 1.42 ? 1.26 ; 1.55 D,m ; 180 Max Pool Depth (d,.p) 1 4.02 ) 3.24 ; 4.77 ;ft Max Pool Depth/Mean Riffle Depth (d,°.p / db ,) ; 1.731 1.39 1 2.05 Max Glide Depth (dm a) ; 2.99 ; 2.99 ; 2.99 ;ft Max Glide Depth/Mean Riffle Depth (d,°.9 / db,) ( 1.281 1.281 1.28 H Bar Reach° Riffle Bar Reach" d SilUClay 8 ' 0 0 D,s 0.13 0 % Sand 22 i 0 i 59.49 F D35 1 16 0 °1° Gravel 49 28 80.81 D� 25.73 t %Cobble 21 0 f 2.75 D. 75.82 V Boulder 0 I 0 1 0 D� 113.75 % Bedrock 0 72 0 D,m ; 180 ° Min, max, mean depths are ave. mid -point values except pools: taken at deepest part of pool ° Composite sample of riffles and pools within the designated reach. Copyright © 2006 Wildland Hydrology Riffle' Bar Protrusion 0 0 = 0 0 6.8 0 0 13.06 0 0 42.35 0 0 i 59.49 1 0 0 90 0 `Active bed of a riffle. ° Height of roughness feature above bed WARSSS page 5 -31 1 1 1, t 1 1 1 t Li Worksheet 2 -2. Computations of velocity and bankfull discharge using various methods ( Rosgen, 2006b; Rosgen and Silvey, 2007). Bankfull VELOCITY & DISCHARGE Estimates Stream: Big Creek Phase 2 Location: Reach 4 -Phase 2 Date: 2/25/2009 1 Stream Type: G4 Valley Type: VIII Observers: Istreamwalker Consulting HUC: 11 INPUT VARIABLES 11 OUTPUT VARIABLES IBankfull Riffle Cross-Sectional 61.05 W Bankfull Riffle Mean DEPTH 2.47 dftk L ft / Sec I IF (ft) (2 * db,d) + Wbld (ft) Bankfull Riffle WIDTH 24.74 W Wetted PERMIMETER 27.94 Wy L ft / Sec I IF (ft) (2 * db,d) + Wbld (ft) D84 at Riffle 78.00 Dim' D84 (mm) / 304.8 0.26 D84 L ft / Sec I IF (mm) Abkt / WP (ft) Bankfull SLOPE 0.0037 Sbkf Hydraulic RADIUS 2'19 R L ft / Sec I IF (ft / ft) Abkt / WP (ft) Gravitational Acceleration 32.2 9 I F Relative Rou 9 hness 8,56 1 R / D84 L ft / Sec I IF (n / sec2) I I R(ft) / D84 (ft) (fUsec) (� Drainage Area IL6_3 DA 11 I Shear Velocity 0.512 U* L ft / Sec I IF (min) u' _ (gRS) (fUsec) ESTIMATION METHODS Bankfull Bankfull VELOCITY DISCHARGE 1. Friction Relative u c 2.83 + 5.66 * Lo R / D f 9 t' ea } 1 u 4.14 ft !sec 253.03 cfs Factor/ Rou hness L4.44 ft / Sec I IF 271.06 cfS 2. Roughness Coefficient: a) Manning's n from Friction Factor / Relative 0.00 ft /sec 0.00 cfs I Roughness (Figs. 2 -18, 2 -19) u = 1.49 *R2" *S 12/ n n = 0.0344 L4.44 ft / Sec I IF 271.06 cfS 2. Roughness Coefficient: u =1.49 *RZ" *Sf2 /n 0.00 ft /sec 0.00 cfs I b) Manning's n from Stream Type (Fig. 2 -20) n = 0.057 2.68 ft /sec 163.61 cfs I 2. Roughness Coefficient: u- 1.49 *R1" *S72 /n c) Manning's n from Jarrett (USGS): n = 0.39 *SOAa *R -o.is 3.71 ft /sec 226.50 cfs Note: This equation is applicable to steep, step /pool, high boundary n = 0.041 roughness, cobble- and boulder- dominated stream systems; i.e., for 3.45ther Methods (Hey, Darc - Weisbach, Chezy C, etc.) 4.74 ft / sec 1 289.52 cfs Darc -Weisbach He 3. Other Methods (Hey, Darc - Weisbach, Chezy C, etc. 0.00 ft /sec 0.00 cfs I Chez C 4. Continuity Equations: a) Regional Curves u = Q / A Retum Period for Bankfull Discharge Q= 3.83 ft / sec 234.00 cfs 1,2 year ---]1 4. Continuity Equations: b) USGS Gage Data u = Q / A 0.00 1 ft 7sec 0.00 1 cfs Protrusion Height Options for the Da, Term in the Relative Roughness Relation (R/D84) - Estimation Method 1 Option 1. For sand -bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of feature. Substitute the D84 sand dune protrusion height in it for the Da, term in method 1. Option 2. For boulder - dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the bed elevation to the top of the rock on that side. Substitute the D84 boulder protrusion height in it for the D84 term in method 1. Option 3. For bedrock- dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces above channel bed elevation. Substitute the D84 bedrock protrusion height in it for the D84 term in method 1. Option 4. For log - influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters or the height of the log on upstream side if embedded. Substitute the DB4 protrusion height in ft for the D84 term in method 1. ICopyright © 2008 Wildland Hydrology River Stability Field Guide page 2 -41 1 1 1 1 t 1 1 t IL t Worksheet 3-14. Sediment competence calculation form to assess bed stability. Stream: Big Creek Phase 2 Stream Type: G 4c Location: Reach 4 - Phase 2 Valley Type: VIII Observers: StreamWalker Consulting Date: 02/25/2009 Enter Required Information for Existing Condition 45.7 D50 Riffle bed material D50 (mm) 13.1 Dso Bar sample D50 (mm) 0.30 Dmax Largest particle from bar sample (ft) 90 (mm) 1304.8 mm /ft 0.00372 S Existing bankfull water surface slope (ft/ft) 2.33 d Existing bankfull mean depth (ft) 1.65 .7,-1 Immersed specific gravity of sediment Select the Appropriate Equation and Calculate Critical Dimensionless Shear Stress 3.50 DsoI Dso Range: 3 - 7 Use EQUATION 1: T* = 0.0834 ( D50ID5o) 872 1.97 Dmax /D50 Range: 1.3 - 3.0 Use EQUATION 2: T* = 0.0384 (Dm ,,ID50) -0.887 0.021 Bankfull Dimensionless Shear Stress EQUATION USED: 2 Calculate Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample 2.79 d 2�(y - i >omax Required bankfull mean depth (ft) d= SS (use Dmax in ft) Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle in Bar Sample 0.00446 S Required bankfull water surface slope (ft/ft) S= S (use Dm. in ft) d Check: F Stable T- Aggrading r- Sediment Competence Using Dimensional Shear Stress 0.541 Bankfull shear stress T ='YdS (lbs /ftz) (substitute hydraulic radius, R, with mean depth, d ) 7=62.4, d =existing depth, S =existing slope Shields 45 co 95 Predicted largest moveable particle size (mm) at bankfull shear stress T (Figure 3 -11) Shields 1.25 co 0.47 Predicted shear stress required to initiate movement of measured Dmax (mm) (Figure 3 -11) Shields 5.38 co 2.02 Predicted mean depth required to initiate movement of measured Dmax (mm) Z d - 'C = predicted shear stress, '�= 62.4, S = existing slope YS Shields 0.0086 co 0.0032 Predicted slope required to initiate movement of measured Dmax (mm) Z S - — 'C = predicted shear stress, 'Y = 62.4, d = existing depth yd Check: W Stable T- Aggrading r- Degrading ICopyright © 2008 Wildland Hydrology River Stability Field Guide page 3 -101 1 1 I 1 1 f i 1 1 1 1 1 1 1 t 1 1 1084 1083 1082 1081 0 1080 io 1079 w 1078 1077 1076 1075 1074 0 10 20 Bankfull Dimensions 1397 x- section area (ft sq.) 44.3 width (ft) 3.2 mean depth (ft) 4.1 max depth (ft) 49.7 wetted parimeter (ft) 2.8 hyd radi(ft) 14.0 width -depth ratio Bankfull Flow — velocity (ft/s) — discharge rate (cfs) — Froude number Cross Section Pool 30 40 Width Flood Dimensions 53.4 W flood prone area (ft) 1.2 entrenchment ratio 7.2 low bank height (ft) 1.8 low bank height ratio Flow Resistance reference heig ID instrument ht longitudinal station — Bankfull Stage FS r = 1079 22 elev elevation -- Low Bank Height FS 1082 37 elev elevation 10TTSM Flood Prone Area width fpa 53.4 Channel Slope percent slope Flow Resistance Manning's "n" D'Arcy - Weisbach 'Y' Note: — Manning's roughness — D'Arcy- Weisbach fric. — resistance factor u /u' — relative roughness Distance BS (ft) (ft) 3 07 4.45 5.44 50 60 70 Materials — D50 (mm) — D84 (mm) — threshold grain size (mm): Forces & Power -- channel slope ( %) — shear stress (lb /sq.ft.) — shear velocity (ft/s) unit strm power (lb /ft/s) HI FS Elevation Omit Notes (ft) (ft) (ft) Bkf 10.4 11.34 12.36 12.87 14.03 16.06 17.93 20.07 21.47 23.4 25.1 27.25 29.35 31.92 35.01 37.34 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l U04 1083 1082 1081 C 1080 .W m 1079 W 1078 1077 1076 1075 0 5 10 Bankfull Dimensions 60.5 x- section area (ft.sq.) 27.6 width (ft) 2.2 mean depth (ft) 30 max depth (ft) 30.3 wetted parimeter (ft) 2.0 hyd radi (ft) 12.6 width -depth ratio Bankfull Flow 3.9 velocity (ft/s) 233.3 discharge rate (cfs) 0.48 Froude number 15 Riffle 20 25 30 Width Flood Dimensions 38.4 W flood prone area (ft) 1.4 entrenchment ratio 5.5 low bank height (ft) 1.8 low bank height ratio Flow Resistance 0.032 Manning's roughness 009 D'Arcy- Weisbach fric. - resistance factor u/u' - relative roughness Cross Section reference ID instrument height - -- longitudinal station - Bankfull Stage FS = 1078.94 elev elevation Low Bank Height FS = 1081 4 elev elevation m Flood Prone Area width fpa 38.4 Channel Slope percent slope-- - Flow Resistance Manning's "n" D'Arcy - Weisbach I' - -- Note: Distance BS HI (ft) ft) (ft) 10.5 12.2 13 14 16.2 17.2 18 19 20 21.5 22 23 24 25 26 28 28.8 29 30 31 32 33 35 40 45 Materials - D50 (mm) - D84 (mm) 17 threshold grain size (mm): Forces & Power 0.273 channel slope ( %) 0.34 shear stress (lb /sq.ft.) 0.42 shear velocity (ft/s) 1.44 unit stns power (lb /ft/s) FS Elevation Omit Notes (ft) (ft) Bkf 1082.64 LEP 1088.38 2 1088.38 6.25 1082.13 3 1088.38 6.58 1081.8 4 1088.38 6.71 1081.67 7 1088.38 6.98 1081.4 9 1088.38 7.39 1080.99 1088.38 7.96 1080.42 1088.38 9.58 1078.8 1088.38 9.87 1078.51 1088.38 10.11 1078.27 1088.38 10.54 107784 1088.38 11.35 1077.03 1088.38 11.46 1076.92 1088.38 11.49 1076.89 1088.38 11.6 1076.78 1088.38 11.73 1076.65 1088.38 11.85 1076.53 1088.38 11.88 1076.5 1088.38 11.84 1076.54 1088.38 11.88 1076.5 1088.38 12.01 1076.37 1088.38 12.13 1076.25 1088.38 12.15 1076.23 1088.38 1221 1076.17 1088.38 12.22 A15 1088.38 12.21 1088.38 1223 1088.38 12.16 LEW 50 LEW 50 t i 1 1 1 1 1 1 1084 1083 1082 1081 1080 a 1079 m 1078 W 1077 1076 1075 1074 1073 0 10 Bankfull Dimensions 82.9 x- section area (fLsq.) 28.5 width (ft) 2.9 mean depth (ft) 5.0 max depth (ft) 31.7 wetted perimeter (ft) 2.6 hyd radi (ft) 9.8 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Pod 20 30 Width Flood Dimensions 42.6 W flood prone area (ft) 1.5 entrenchment ratio 7.5 low bank height (ft) 1.5 low bank height ratio Flow Resistance reference ID instrument height longitudinal station - Bankfull Stage FS M= 1079 e'ev elevation - -- Low Bank Height FS 1081 51 elev elevation Flood Prone Area width fpa 42.6 Channel Slope percent slope - Flow Resistance Manning's ' n" D'Arcy - Weisbach "t•' - Note: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u /u' - relative roughness Distance BS HI ft) (ft) (ft) 3 5 7 9 1 11 1 1 15 16 17 18 19 20.7 21.3 22 23 24 25 26 27 28 29 30 31 32 33 40 50 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit strm power (lb/ft/s) FS Elevation Omit Notes ft (ft) Bkf 1082 4 LEP 1088.38 1088.38 6 6.47 1 1081.91 1088.38 6 6.4 1 1081.98 1088.38 6 6.54 1 1081.84 1088.38 6 6.72 1 1081.66 BKF Tandy Point -EW /ery Soft Su /ery Soft Su i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1083.00 1082.00 1081.00 1080.00 C ° 1079.00 m 1078.00 w 1077.00 1076.00 1075.00 1074.00 0 5 10 Bankfull Dimensions 73.9 x- section area (ft.sq.) 28.5 width (ft) 2.6 mean depth (ft) 3.4 max depth (ft) 31.6 wetted parimeter (ft) 2.3 hyd radi (ft) 11.0 width -depth ratio Bankfull Flow — velocity (ft/s) — discharge rate (cfs) — Froude number Cross Section Run 15 20 25 Width Flood Dimensions — W flood prone area (ft) — entrenchment ratio 5.2 low bank height (ft) 1.5 low bank height ratio Flow Resistance reference ID instrument height + longitudinal station — Bankfull Stage FS = 1078 32 elev elevation + - -- Low Bank Height FS = 1080 15 elevation + r Flood Prone Area width fpa 43 2 Channel Slope percent slope — Flow Resistance Manning's "n" D'Arcy - Weisbach "f' Note: — Manning's roughness — D'Arcy- Weisbach fric. — resistance factor u/u' — relative roughness 30 35 40 Materials — D50 (mm) — D84 (mm) — threshold grain size (mm): Forces & Power — channel slope ( %) — shear stress (lb /sq.ft.) — shear velocity (ft/s) — unit strm power (lb /ft/s) Distance BS HI FS Elevation Omit Notes (ft) (ft) (ft) (ft) (ft) Bkf 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1083.00 1082.00 1081.00 1080.00 0 107900 io 1078.00 w 1077.00 1076.00 1075.00 107400 1073.00 0 10 20 Bankfull Dimensions 96.1 x- section area (ft.sq.) 47.2 width (ft) 2.0 mean depth (ft) 3.2 max depth (ft) 48.8 wetted parimeter (ft) 2.0 hyd radi (ft) 23.1 width -depth ratio Bankfull Flow — velocity (ft/s) — discharge rate (cfs) — Froude number Cross Section Pool 30 40 Width Flood Dimensions — W flood prone area (ft) — entrenchment ratio 5.9 low bank height (ft) 1.8 low bank height ratio Flow Resistance reference ID instrument height longitudinal station — Bankfull Stage FS = 1077 81 e'er, elevation v Low Bank Height FS = 1080.27 e!ev elevation s a Flood Prone Area width fpa 59 8 Channel Slope percent slope Flow Resistance Manning's "n" -- D'Arcy - Weisbach "t" — Note. -- Manning's roughness — D'Arcy- Weisbach fric. — resistance factor u/u` – relative roughness 50 60 Materials — D50 (mm) — D84 (mm) — threshold grain size (mm): Forces & Power — channel slope ( %) — shear stress (lb /sq.ft.) — shear velocity (ft/s) — unit stns power (Ib/ft/s) Distance BS HI FS Elevation Omit Notes (ft) (ft) (ft) (ft) (ft) Bkf 1 1 i 1 1 1 1 1 1 1 1 1 1 i t 1 1 1 1 1083 1082 1081 1080 0 1079 y 1078 w 1077 1076 1075 1074 30 40 Bankfull Dimensions 61.8 x- section area (fLsq.) 24.8 width (ft) 2.5 mean depth (ft) 3.2 max depth (ft) 28.0 wetted parimeter (ft) 2.2 hyd radi (ft) 10.0 width -depth ratio Bankfull Flow 3.8 velocity (ff/s) 232.7 discharge rate (cfs) 0.45 Froude number Cross Section Riffle 50 60 Width Flood Dimensions 48.5 W flood prone area (ft) 2.0 entrenchment ratio 3.8 low bank height (ft) 1.2 low bank height ratio Flow Resistance 0.035 Manning's roughness 0.11 D'Arcy- Weisbach fric. - resistance factor u/u• - relative roughness Distance BS HI (ft) (ft) (ft) reference ID instrument height longitudinal station - Bankfull Stage 10 FS 1077 67 elev 13 elevation M= -- 16 20 Low Bank Height 21 FS = 1078 29 elev 23 elevation 24 26 Flood Prone Area 28 width fpa 48.5 30 32 Channel Sloe 34 percent slope - 36 36.1 Flow Resistance 38 Manning's "n" r - -- 40 D'Arcy - Welsbach ' P' - -- 41 42 Note: 43 44 44.45 44.65 45.26 45.9 70 80 Materials - D50 (mm) - D84 (mm) 18 threshold grain size (mm). Forces & Power 0.273 channel slope ( %) 0.38 shear stress (lb /sq.ft.) 0.44 shear velocity (ft/s) 1.6 unit stns power (lb /ft/s) FS Elevation Omit Notes (ft) (ft) Bkf 1081.61 lep 1086.6 2 1086.6 5.33 1081.27 4 1086.6 5.6 1081 6 8 1086.6 5.54 1081.06 1086.6 5.6 1081 1086.6 5.94 1080.66 1086.6 5.64 1080.96 10866 5.78 1080.82 1086.6 5.81 1080.79 1086.6 5.73 1080.87 1086.6 5.56 1081.04 1086.6 5.25 1081.35 1086.6 5.31 1081.29 1086.6 5.38 1081.22 1086.6 5.32 1081.28 1086.6 5.13 1081.47 10866 4.88 1081.72 1086.6 4.85 1081.75 1086.6 4.87 1081.73 1086.6 5.15 1081.45 10866 6.2 1080.4 1086.6 6.29 1080.31 1086.6 6.64 1079.96 1086.6 723 1079.37 1086.6 7.79 1078.81 1086.6 7.86 1078.74 1086.6 8.06 1078.54 10866 8.93 1077.67 1086.6 9.6 1077 Flag BKF Flag BKF 1 1 1 1 1 1 A 1 t 1 1 1 1 1 t 1 1 1 1 1082.00 1081.00 1080.00 1079.00 0 1078.00 m w 1077.00 1076.00 1075.00 1074.00 0 5 10 Bankfull Dimensions 57.1 x- section area (ft.sq.) 287 width (ft) 2.0 mean depth (ft) 2.9 max depth (ft) 30.5 wetted parimeter (ft) 1.9 hyd radi (ft) 14.4 width -depth ratio Bankfull Flow — velocity (ft/s) — discharge rate (cfs) — Froude number Cross Section Run 15 20 25 Width Flood Dimensions 39.6 W flood prone area (ft) 1.4 entrenchment ratio 5.7 low bank height (ft) 2.0 low bank height ratio Flow Resistance reference ID instrument height - -- longitudinal station — Bankfull Stage FS = 1077 4 e!ev elevation + Low Bank Height FS = 1080 9 elev elevation KMM Flood Prone Area width fpa 396 Channel Slope percent slope — Flow Resistance Manning's "n" D'Arcy - Weisbach "f' — Note: — Manning's roughness — D'Arcy- Weisbach fric. — resistance factor u/u' relative roughness Distance BS HI 30 35 40 45 Materials — D50 (mm) — D84 (mm) — threshold grain size (mm): Forces & Power — channel slope ( %) — shear stress (lb /sq.ft.) — shear velocity (ft/s) — unit strm power (Ib/ft/s) FS Elevation Omit Notes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1084 1082 1080 0 1078 1076 w 1074 1072 1070 0 10 20 Bankfull Dimensions 104.1 x- section area (ft.sq.) 34.0 width (ft) 31 mean depth (ft) 4.6 max depth (ft) 38.1 wetted parimeter (ft) 2.7 hyd radi (ft) 11.1 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Pool 30 40 Width Flood Dimensions - W flood prone area (ft) - entrenchment ratio 6.1 low bank height (ft) 1.3 low bank height ratio Flow Resistance reference ID instrument height longitudinal station - Bankfull Stage FS • i = 1077 01 elev elevation • -- Low Bank Height FS = 1078 26 alev elevation Flood Prone Area width fpa #N /A Channel Slope percent slope Flow Resistance Manning's "n" D'Arcy - Weisbach "t" Note: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u/u' - relative roughness Distance BS 1.91 3.07 4.45 5.44 5.86 6.37 6.85 7.26 8.35 897 9.36 10.4 11.34 12.36 12.87 1403 16.06 17.93 20.07 21.47 23.4 25.1 27.25 29.35 31.92 35.01 3734 50 60 70 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq ft.) - shear velocity (ft/s) - unit stns power (Ib/ft/s) HI (ft) FS Elevation Omit Notes ft (ft) Bkf 1080 84 LEP 1086.04 1086.04 4.66 1081.38 1086 04 3.84 1082.2 1086.04 2.91 3.27 1083.13 1082.77 1086.04 1086.04 3.87 1082.17 1086.04 4.22 1081.82 1086.04 4.76 4.88 108128 1081.16 108604 1086.04 4.82 1081.22 1086.04 5.39 1080.65 1086.04 5.68 108036 1086.04 6.2 1079.84 1086.04 6.69 1079.35 1086.04 7.3 1078.74 1086.04 7.66 1078.38 1086.04 8.5 1077.54 1086.04 8.66 107738 1086.04 8.83 107721 1086.04 9.32 1076.72 1086.04 10.3 10.83 1075.74 107521 1086.04 1086.04 11.53 1074.51 1086.04 1345 107259 1086.04 13.62 1072.42 1086.04 13.86 1072.18 1086.04 13.59 1072.45 1086.04 13.12 1072.92 law toe pin 1 1 1 1 1 1 1 1 t 1 1 t 1 1 1 1 1 1 IVOO 1084 1082 0 1080 1078 W 1076 1074 1072 0 10 20 Bankfull Dimensions 74.6 x- section area (ft.sq.) 34.6 width (ft) 2.2 mean depth (ft) 2.9 max depth (ft) 36.8 wetted parimeter (ft) 2.0 hyd radi (ft) 16.0 width-depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Glide 30 40 50 Width Flood Dimensions 61.1 W flood prone area (ft) 1.8 entrenchment ratio 4.6 low bank height (ft) 1.6 low bank height ratio Flow Resistance Cross Section reference ID instrument height longitudinal station - Bankfull Stage FS M= 1077 11 elev elevation Low Bank Height FS = 1078 82 elev elevation Flood Prone Area width fpa 61.1 Channel Slope percent slope - Flow Resistance Manning's "n" - D'Arcy - Weisbach ,r - Note: - Manning's roughness - D'Arcy- Weisbach fric. - resistance factor u /u" - relative roughness Distance BS HI (ft) (ft) (ft) 3 5 7 8.5 10 12 15 17 21 213 24 26 28 29 30 31.5 33 34.1 35 36 37 38.3 39.5 40.5 40.9 41.4 60 70 80 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.fL) - shear velocity (ft(s) - unit strm power (lb /ft/s) FS Elevation Omit Notes (ft) (ft) Bkf 1080.59 lep 1088.71 8.59 108012 1088.71 1079.85 1088.71 8.86 1088.71 8.76 1079.95 1080.27 1088.71 8.44 1088.71 8.07 1080.64 1088.71 7.73 1080.98 1088.71 7.81 1080.9 1088.71 7.75 1080.96 1088.71 7.72 1080.99 1088.71 7.73 1080.98 1088.71 8.3 1080.41 108871 9.19 1079.52 1078.63 1078.34 108871 1008 10.37 1088.71 1088.71 10.44 1078.27 1088.71 10.37 1078.34 1088.71 10.02 107869 1088.71 9.89 1078.82 1088.71 9.91 1078.8 108871 9.91 1078.8 1088.71 10.17 1078.54 1088.71 10.67 1078.04 1088.71 11.02 1077.69 1088.71 11.33 1077.38 1088.71 11.39 1077.32 1088.71 11.6 1077.11 1088.71 11.91 10768 1088.71 11.92 1076.79 3KF 1 1 1 1 i 1 1 i 1 1 1 t 1 1 1 1 1 1 1 ivov.uu 1082.00 1080.00 0 io 1078.00 m W 1076.00 1074.00 1072.00 0 5 10 Bankfull Dimensions 67.2 x- section area (ft.sq.) 27.7 width (ft) 2.4 mean depth (ft) 3.6 max depth (ft) 31.2 wetted perimeter (ft) 2.2 hyd radi (ft) 11.4 width -depth ratio Bankfull Flow - velocity (ft/s) - discharge rate (cfs) - Froude number Cross Section Run 15 20 25 Width Flood Dimensions 34.9 W flood prone area (ft) 1.3 entrenchment ratio 7.2 low bank height (ft) 2.0 low bank height ratio Flow Resistance reference ID instrument height r -- longitudinal station - Bankfull Stage FS = 1076 93 elev elevation I - Low Bank Height FS = 1080 58 elev elevation e Flood Prone Area width fpa 34.9 Channel Slope percent slope Flow Resistance Manning's "n" - D'Arcy - Weisbach 'T' -- Note: -- Manning's roughness D'Arcy- Weisbach fnc. resistance factor u /u' - relative roughness Distance BS HI 30 35 40 Materials - D50 (mm) - D84 (mm) - threshold grain size (mm): Forces & Power - channel slope ( %) - shear stress (lb /sq.ft.) - shear velocity (ft/s) - unit sh in puwtii (lb /ft/s) FS Elevation Omit Notes (ft) (ft) Bkf 1080.58 lap 153 2 2.54 2.89 3.28 375 4.16 4.5 4.8 4.95 5.64 6.26 6.24 7.68 8.41 9.84 11.46 12.94 14 14.58 15.69 16.81 18.21 19.94 21.48 23.21 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 M, U co N Ir N N U) cCf CL Y N N U 2 U C � CL N LL 3 3 m w a a uoi;enal3 a) 0 d c =a c 0 J 1 Total Particles = 100. 1 t RIVERMORPH PARTICLE SUMMARY ---------------------------------------------------------------------- River Name: Big Creek Phase 2 Reach Name: Reach 4 - Phase 2 Sample Name: Reach 4 Classification Survey Date: 03/27/2009 ---------------------------------------------------------------------- Size (mm) TOT # ITEM % CUM % -------------------------------------------------------------------- 0 - 0.062 8 8 00 8 00 0.062 - 0.125 8 8.00 16.00 0.125 - 0.25 6 6.00 22.00 0.25 - 0.50 6 6.00 28.00 - 0.50 1.0 2 2.00 30.00 1.0 - 2.0 0 0.00 30.00 2.0 - 4.0 0 0.00 30.00 4.0 - 5.7 0 0.00 30.00 5.7 - 8.0 0 0.00 30.00 8.0 - 11.3 11.3 - 16.0 1 4 1.00 4.00 31.00 35.00 16.0 - 22.6 11 11.00 46.00 22.6 - 32.0 12 12.00 58.00 32 - 45 8 8.00 66.00 45 - 64 13 13.00 79.00 64 - 90 11 11.00 90.00 90 - 128 8 8.00 98.00 128 - 180 2 2.00 100.00 180 - 256 0 0.00 100.00 256 - 362 0 0.00 100.00 362 - 512 0 0.00 100.00 512 - 1024 0 0.00 100.00 1024 - 2048 0 0.00 100.00 Bedrock 0 0.00 100.00 tD16 (mm) 0.13 D35 (mm) 16 D50 (mm) 25.73 D84 (mm) 75.82 D95 (mm) 113.75 D100 (mm) 180 silt/ clay (/) 22 Gravel ( %) 49 'Cobble (%) Boulder (%) 21 0 Bedrock (%) 0 1 Total Particles = 100. 1 t RIVERMORPH PARTICLE SUMMARY 1 ---------------------------------------------------------------------- 1 1 1 11 F1 t t 1 1 t River Name: Big Creek Phase 2 Reach Name: Reach 4 - Phase 2 Sample Name: Reach 4 Active Riffle Survey Date: 03/27/2009 Size (mm) TOT # ITEM % CUM 0 - 0.062 0 0.00 ------- - - - - -- 0.00 0.062 - 0.125 0 0.00 0.00 0.125 - 0.25 0 0.00 0.00 0.25 - 0.50 0 0.00 0.00 0.50 - 1.0 0 0.00 0.00 1.0 - 2.0 0 0.00 0.00 2.0 - 4.0 0 0.00 0.00 4.0 - 5.7 0 0.00 0.00 5.7 - 8.0 0 0.00 0.00 8.0 - 11.3 0 0.00 0.00 11.3 - 16.0 2 2.00 2.00 16.0 - 22.6 10 10.00 12.00 22.6 - 32.0 14 14.00 26.00 32 - 45 23 23.00 49.00 45 - 64 28 28.00 77.00 64 - 90 13 13.00 90.00 90 - 128 9 9.00 99.00 128 - 180 1 1.00 100.00 180 - 256 0 0.00 100.00 256 - 362 0 0.00 100.00 362 - 512 0 0.00 100.00 512 - 1024 0 0.00 100.00 1024 - 2048 0 0.00 100.00 Bedrock 0 0.00 100.00 D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt /Clay (%) Sand (%) Gravel ( %) cobble (%) Boulder (%) Bedrock (%) Total Particles = 100. 25.29 37.09 45.68 78 111.11 179.99 0 77 23 0 i t i i RIVERMURPH FAR I LLt SUMMAKY ---------------------------------------------------------------------- River Name: Big creek Phase 2 Reach Name: Reach ,4 - Phase 2 Sample Name: Reach 4 Bar sample Survey Date: ---------------------------------------------------------------------- 03/27/2009 SIEVE (mm) NET WT 31.5 22.81 16 23.09 8 20.18 4 13.92 2 11.19 PAN 18.55 D16 (mm) 0 D35 (mm) 6.8 D50 (mm) 13.06 D84 (mm) 49.24 D95 (mm) 77.26 D100 (mm) 90 Silt /clay ( %) 0 Sand ( %) 16.44 Gravel ( %) 76.1 cobble ( %) 7.46 Boulder (%) 0 Bedrock (%) 0 Total weight = 112.8400. Largest surface Particles: Size(mm) weight Particle 1: 90 1.36 Particle 2: 85 1.74 1 1 1 �J U U O co U 0 0 c 0 U .L� cts U O ca rE p N N M 4) 0) N Y L t fl i1 1) 0 0 A 2 c co 00 O O N L 1L 0 A N co p 0 C'1 N N r O O D M LL d 0 •O m m G 1 r0+ m m L 0 O N = Cr a M j� O (� Ca y r 0 `0� VJ ° 3.X W c 05 al Q O c L E O C N C ------ c y >, L (n 07 N a) C (D a) C 0 0 C 3 Rr O p N ca c Y CD c m CD c a- u) CL H c ftf c O o L 0° 6 0 T E c 0 V W N Q 0 O m = .'-: >% >, in CL iri iri iri iri a) C7 O > im >, C _ = = CO) lL (n > > J N 0� sA ti N 3 p v O m CO) m m E v U v N > U COL N (1) > N N Y c0 Y m Y ctl Y 'd N1 iii y � 'O m U U 0 0 C `� co 0•• N N E N O O m 'O a) w 16 O BS Y m m N CL (r � Ir Q EL �—°� 0 m 0 �c CIS E D-a CZ LL m -- 3 c ass c CD = O Q d a) O— 0) i= rn 'c 0 p N Q V N t a) c^ N i5 ° 0 m Z rn .c Q 0 E N ■- x 0 I.IJ fn n O O O «s CL t o o t6 0- ID cts O O 0 O 0 O :: to w cts m U a CL o ai T (D � � O E cd f t0 Y >° p'a c i V (g . m p_ " CC J a U 4 r o O _ O U X 0 1, L ,T c y W 0 o, r g = o '8 Cl. m 3 0 its ° v y CO 0 N N E 0 a01 ❑ a) CC: U CIA tOn �+ c0 Or L) �� .0 N W O y N Q J r� r 0 ` 0¢ CO I to O m m �0 a) N p W N p II a) N O a) C NC ._ -�--- -- p 0 0 r c ttS � .. .=O. O cu a) .0 V C- ch c «f -� w C W O O V- O r d f ` O a m d o N r CV o. r � ) ) ) �ts eo N a) E — m ° ca o v U p Ni . 0 � a CL — v��c� 0 .T. - ��T� C �co 0 a�i g y N •V c-QO y .v) m C) p m C) m m o 5 - ° 0 c� pOC �¢ M c j O � _O, m �c o o No o c ,� m m c Of U a r = ma etf E 3 r N fn Ca C -- - - -- s]C m ri w T i. L N Ci E = Cu O O 0 04 p O �j y U) p N m CL C X .0 r L U w E y N N� -Ne -M co U °° aoco=� CL Z Z 2 v �°�' a) aa',���Qa, �_ O E m c L ca c a �� M pp a� > 0) co a J m y } 7,... L L L L m U fn 'I J �] = .0 C p , 0 co C 0 y i N �' a W y C N � O� O Of 3 3 R 'C Cl) � N d " « o _ W E+ E= W = 0 a— C t y N •O ca fn R d (D > cn c o-LL cc» W= m� �O c o ayiN m a�i m d E_ W U o J aaa m� = d= U W N > > = N U U i1 1) 0 0 A 2 c co 00 O O N L 1L 0 A 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 t 1 Worksheet 5-10. Summary form of annual streambank erosion estimates for various study reaches. : Big Creek Used: NC Total Bank Length (ft J ers: Walker, Cartner Valley Type 1 2 3 (4 1 (ft) BEHI rating NBS rating Bank (8 (Worksheet (Worksheet erosion Erosion 5 -8) 5-9) rate Rate (adjective) (adjective) (Figure 5- (tons /yr /ft - Right MR 38 or 5 -39) ([(7)/27] x (ttyr) Location: Reach 4 845 Date: 2/25/2009 VIII Stream Type: G 4c 5 6 ( (8 Length of Study bank Erosion Erosion bank (ft) height (ft) subtotal Rate 74 6.5 [(4)x(5)x(6)] (tons /yr /ft - Right MR (ft3 /yr) ([(7)/27] x 1.3/(5)) 1. Crossing Very Low 18 0 0 0.00 -Left an 2. 2871-2945 Moderate Moderate 0.0701663 74 6.5 33.75 0.02 - Right MR 3. 2871-3059 Low Low 0.0019809 188 5.8 2.16 0.00 Left n 4. 2945-3059 High High 0.1999624 114 7 159.57 0.07 Right Bank 5. 3059-3102 Very High Very High 1.0996634 43 7.6 359.37 0.40 Left an 6. 3059-3170 Low Low 0.0020849 111 3.5 0.81 0.00 Right Ba_nIF 7. 3102-3195 Low High 0.0599078 93 6.3 35.1 0.02 Right Bank 8. 3195-3240 Low Low 0.0026667 45 4.5 0.54 0.00 e an 9. 3170-3257 Moderate Very High 0.2500493 87 7 152.28 0.08 Right Ban F- 1 o. 3240 - 3315 Moderate Low 0.0301091 75 1 5.5 12.42 0.01 Left an 11. 3257 - 3320 Low Moderate 0.03 63 6 11.34 0.01 Left an 12. 3320 - 3410 High Very High 0.3 90 7.5 202.5 0.11 Right an 13. 3315 - 3434 Low Low 0.0021609 119 1 4.2 1.08 0.00 Right Bank 14. 3434 - 3449 Moderate High 0.1305 15 4 7.83 0.03 Left an 15. 3410 - 3435 Low High 0.0697846 25 6.5 11.34 0.02 Right an 16. 3449 - 3500 Low High 0.070019 51 1 6.2 22.14 0.02 Right Bank 17. 3500 - 3530 Moderate Moderate 0.076 30 4.5 10.26 0.02 Left an 18. 3435 - 3530 Moderate Low 0.0299573 95 3.7 10.53 0.01 Right an 19. 3530 - 3610 Moderate Low 0.0298929 80 1 3.5 8.37 0.01 Left an 2o. 3530 - 3610 Moderate Very High 0.2500962 80 7.8 156.06 0.09 Right an 21. 3610 - 3630 High Moderate 0.159 20 4.5 14.31 0.03 Copyright © 2006 Wildland Hydrology WARSSS page 5 -81 t t t 1 t t 1 t Worksheet 5-10. Summary form of annual streambank erosion estimates for various study reaches. Stream: Big Creek Location: Reach 4 Graph Used: NC Total Bank Length ft): 845 Date: 1/12/2011 Observers: Walker, Cartner Valley Type: VIII Stream Type: G 4c t) (2) (3) 4) (5 ) (6 8 Station (ft) BEHI rating NBS rating Bank Length of Study bank Erosion Erosion (Worksheet (Worksheet erosion bank (ft) height (ft) subtotal Rate 5 -8) 5 -9) rate [(4)x(5)x(6)] (tons /yr /ft) (adjective) (adjective) (Figure 5- (fts /yr) {[(7)/27] x 38 or 5-39) 1.3/(5)) (ftlyr) Left an 22. 3610 - 3667 Low Low 0.0021053 57 4.5 0.54 0.00 Right an 23. 3630 - 3676 High Moderate 0.1702174 46 6 46.98 0.05 Left n 24. 3667 - 3698 Low Low 0.0015553 31 1 5.6 0.27 0.00 Right Bank 25. 3676 - 3698 Moderate Very High 0.27 22 10 59.4 0.13 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. Total Sum erosion subtotals in Column (7) for each BEHI NBS combination erosion ft3/ 1318.95 Total Convert erosion in ft3 /yr to yds3 /yr {divide Total erosion (ft3 /yr) by 27} erosion dS3/ 48.85 Convert erosion in yds3 /yr to tons/yr {multiply Total erosion (yds3 /yr) by 1.3} erosion (tons /yr) 63.51 Calculate erosion per unit length of channel {divide Total erosion Total (tons /yr) by total length of stream (ft) surveyed} erosion 0.0752 (tons/ /ft) ICopyright 0 2006 Wildland Hydrology WARSSS page 5 -81 I� L' 1 1 1 t 1 1 t Hydrology and Hydraulic Analysis Supporting Documentation 1 1 i t u RUNOFF CURVE NUMBER COMPUTATION Version 2.00 Project : BIG CREEK User: CJS Date: County : SURRY State: NC Checked: Date: Subtitle: DRAINAGE AREA O1 Subarea : DA O1 ------------------------------------------------------------------------------- Hydrologic Soil Group COVER DESCRIPTION A B C D Acres (CN) ------------------------------------------------------------------------------- FULLY DEVELOPED URBAN AREAS (Veg Estab.) Open space (Lawns,parks etc.) Good condition; grass cover > 750 27.1(39) 1336(61) 2.22(74) - Impervious Areas Paved parking lots, roofs, driveways 2.64(98) 108(98) 0.34(98) - OTHER AGRICULTURAL LANDS Woods good 134(30) 2023(55) 22.7(70) - Total Area (by Hydrologic Soil Group) 163. 3467 25.2 ------------------------------------------------------------------------------- SUBAREA: DA O1 TOTAL DRAINAGE AREA: 3656 Acres ------------------------------------------------------------------------------- WEIGHTED CURVE NUMBER: 58* * - Generated for use by GRAPHIC method TIME OF CONCENTRATION AND TRAVEL TIME Version 2.00 Project BIG CREEK User: CJS Date: County SURRY State: NC Checked: Date: Subtitle: DRAINAGE AREA O1 Flow Type 2 year Length Slope Surface n Area WP Velocity Time rain (ft) (ft /ft) code (sq /ft) (ft) (ft /sec) (hr) Sheet 3.2 100 0.025 I 0.570 Shallow Concent'd 2100 0.082 U 0.126 Open Channel 25560 5 1.420 Time of Concentration = 2.12* - -- Sheet Flow Surface Codes - -- A Smooth Surface F Grass, Dense - -- Shallow Concentrated---- B Fallow (No Res.) G Grass, Burmuda - -- Surface Codes - -- C Cultivated < 20 o Res. H Woods, Light P Paved D Cultivated > 20 o Res. I Woods, Dense U Unpaved E Grass - Range, Short J Range, Natural * - Generated for use by GRAPHIC method ' GRAPHICAL PEAK DISCHARGE METHOD Version 2.00 1 1 Project : BIG CREEK User: CJS Date: County : SURRY State: NC Checked: Date: Subtitle: DRAINAGE AREA O1 Data: Drainaqe Area 3656 * Acres Runoff Curve Number 58 * Time of Concentration: 2.12 * Hours Rainfall Type Pond and Swamp Area II NONE I Storm Number I 1 1 2 1 3 1 4 1 5 1 6 1 7 1 - - - -1 ---------------------- 1------{------ Frequency (yrs) I 1 1 2 1------ 1 5 1------ 1 10 1------ 1 25 1------- 1 50 - 1 100 1 I I 124 -Hr Rainfall (in) { 3.0 I ► 3.5 I 1 4.2 I { 5.1 I 1 5.5 I { 6.3 I I I 7.3 1 I I I Ia /P Ratio 1 0.48 I 1 0.41 I 1 0.34 I i 0.28 I 1 0.26 I 1 0.23 I I 1 0.20 1 I I 1 Runoff (in) ► 0.27 I { 0.45 I { 0.76 I { 1.22 I i 1.45 I { 1.95 I I i 2.62 j I I 1 Unit Peak Discharge 10.180 I 10.219 I 10.255 I 10.283 I 10.289 I 10.299 1 I 10.308 1 1 (cfs /acre /in) I I I I I I I I I I I Pond and Swamp Factorl 1.00 I 1 1.00 I 1 1.00 I 1 1.00 I 1 1.00 I 1 1.00 I f 1 1.00 1 O.Oo Ponds Used I 1----------------------{------ I 1------ I 1------ I 1------ I 1------ I 1------ I I I- - - - - -I I Peak Discharge (cfs) 1 180 ------------------------------------------------------------------------- 1 363 1 707 1 1264 1 1535 1 2126 1 2948 1 ------------------------------------------------------------------------- * - Value(s) provided from TR -55 system routines 1 1 t 1 1 1 1 1 1 1 1 1 Page 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 01 02 05 10 50 99 BC2_24H.dat JOB TR -20 FULLPRINT TITLE BIG CREEK II TITLE EXISTING CONDITIONS HYDROLOGY - 24UH 6 RUNOFF 1 001 1 5.712 58. 2.12 6 RUNOFF 1 002 2 5.889 58. 2.16 6 RUNOFF 1 003 3 6.265 58. 2.27 6 RUNOFF 1 004 4 6.318 58. 2.32 7 ENDATA INCREM 6 .5 7 COMPUT 7 001 004 3.0 1.0 ENDCMP 1 7 COMPUT 7 001 004 3.5 1.0 ENDCMP 1 7 COMPUT 7 001 004 4.3 1.0 ENDCMP 1 7 COMPUT 7 001 004 5.0 1.0 ENDCMP 1 7 COMPUT 7 001 004 6.2 1.0 ENDCMP 1 7 COMPUT 7 001 004 7.1 1.0 ENDCMP ENDJOB 1 2 t 1 1 1 1 1 1 1 1 1 Page 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 01 02 05 10 50 99 t BC2_24H.OUT 1 TR20-------------------------------------------------------------- - - - - -- SCS - BIG CREEK II VERSION 05/07/ ** EXISTING CONDITIONS HYDROLOGY - 24UH 2.04TEST 10:26:12 PASS 1 JOB NO. 1 PAGE 1 IEXECUTIVE CONTROL INCREM MAIN TIME INCREMENT = .500 HOURS IOPERATION RUNOFF XSECTION 2 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 13.74 183.5 (RUNOFF) RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) .27 WATERSHED INCHES; 1040 CFS -HRS; 85.9 ACRE -FEET. OPERATION RUNOFF XSECTION 3 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 13.86 188.4 (RUNOFF) RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) .27 WATERSHED INCHES; 1107 CFS -HRS; 91.5 ACRE -FEET. i OPERATION RUNOFF XSECTION 4 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION- (FEET) 13.91 188.3 (RUNOFF) w RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) 1 27 WATERSHED INCHES; 1117 CFS - HRS; 923 ACRE -FEET. TR20 ----------------------------------------------- -- - - - -- - - - - - - -- SCS - BIG CREEK II VERSION 05/07/ ** EXISTING CONDITIONS HYDROLOGY - 24UH 2.04TEST 10:26:12 PASS 2 JOB NO. 1 PAGE 2 EXECUTIVE CONTROL ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 EXECUTIVE CONTROL COMPUT FROM XSECTION 1 TO XSECTION 4 STARTING TIME = .00 -ANT.- RUNOFF- COND. = 2 STARTING TIME = .00 RAIN DEPTH = 3.00 RAIN DURATION = 1.00 t ANT. RUNOFF COND. = 2 MAIN TIME INCREMENT = .500 HOURS ALTERNATE NO. = 0 STORM NO. = 1 RAIN TABLE NO. = 2 PEAK TIME(HRS) OPERATION RUNOFF XSECTION 1 13.58 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) '13.71 179.8 (RUNOFF) _ RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) .00 CFS) .27 WATERSHED INCHES; 1009 CFS -HRS; 83.3 ACRE -FEET. IOPERATION RUNOFF XSECTION 2 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 13.74 183.5 (RUNOFF) RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) .27 WATERSHED INCHES; 1040 CFS -HRS; 85.9 ACRE -FEET. OPERATION RUNOFF XSECTION 3 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 13.86 188.4 (RUNOFF) RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) .27 WATERSHED INCHES; 1107 CFS -HRS; 91.5 ACRE -FEET. i OPERATION RUNOFF XSECTION 4 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION- (FEET) 13.91 188.3 (RUNOFF) w RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) 1 27 WATERSHED INCHES; 1117 CFS - HRS; 923 ACRE -FEET. TR20 ----------------------------------------------- -- - - - -- - - - - - - -- SCS - BIG CREEK II VERSION 05/07/ ** EXISTING CONDITIONS HYDROLOGY - 24UH 2.04TEST 10:26:12 PASS 2 JOB NO. 1 PAGE 2 EXECUTIVE CONTROL ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 II EXECUTIVE CONTROL COMPUT FROM XSECTION 1 TO XSECTION 4 STARTING TIME = .00 -ANT.- RUNOFF- COND. = 2 RAIN DEPTH ---MAIN-TIME = 3.50 INCREMENT- _ RAIN DURATION = 1.00 ­-500--HOURS- ALTERNATE NO. = 0 STORM NO. = 2 RAIN TABLE NO. = 2 OPERATION RUNOFF XSECTION 1 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 13.58 349.9 (RUNOFF) RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) Page 1 II BC2_24H.OUT 2.47 WATERSHED INCHES; 10003 CFS -HRS; OPERATION RUNOFF XSECTION 4 PEAK TIME(HRS) PEAK DISCHARGE(CFS) 13.48 2764.2 RUNOFF ABOVE BASEFLOW ( BASEFLOW = .00 CFS) 2.48 WATERSHED INCHES; 10104 CFS -HRS; 826.6 ACRE -FEET. PEAK ELEVATION(FEET) (RUNOFF) 835.0 ACRE -FEET. EXECUTIVE CONTROL ENDCMP COMPUTATIONS COMPLETED FOR PASS 6 1 TR20-------------------------------------------------------------- - - - - -- SCS - BIG CREEK II VERSION 05/07/ -* EXISTING CONDITIONS HYDROLOGY - 24UH 2.04TEST 10:26:12 PASS 7 JOB NO. 1 PAGE 7 1 TR20-------------------------------------------------------------- BIG CREEK II - - - - -- SCS - VERSION 05/07/ -* EXISTING CONDITIONS HYDROLOGY - 24UH 2.04TEST 10:26:12 SUMMARY, JOB NO. 1 PAGE 8 SUMMARY TABLE 1 SELECTED --------------- RESULTS OF STANDARD AND EXECUTIVE CONTROL IN ORDER PERFORMED. A CHARACTER FOLLOWING THE PEAK DISCHARGE TIME AND RATE -(CFS) INDICATES: F -FLAT TOP HYDROGRAPH T- TRUNCATED HYDROGRAPH R- RISING TRUNCATED HYDROGRAPH XSECTION/ STANDARD PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE RUNOFF ------------------------------------ ID OPERATION AREA AMOUNT ELEVATION TIME RATE RATE (SQ MI) (IN) (FT) (HR) (CFS) (CSM) RAINFALL OF 3.00 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. RAINTABLE NUMBER 2, ARC 2 MAIN TIME INCREMENT .500 HOURS ALTERNATE 0 STORM 1 --------------------------- XSECTION 1 RUNOFF 5.71 .27 - -- 13.71 180 31.5 XSECTION 2 RUNOFF 5.89 .27 - -- 13.74 184 31.2 XSECTION 3 RUNOFF 6.26 .27 - -- 13.86 188 30.0 XSECTION 4 RUNOFF 6.32 .27 - -- 13.91 188 29.7 RAINFALL OF 3.50 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. ALTERNATE 0 STORM 2 XSECTION 1 RUNOFF 5.71 .45 - -- 13.58 350 61.3 XSECTION 2 RUNOFF 5.89 .45 - -- 13.61 357 60.6 XSECTION 3 RUNOFF 6.26 .45 - -- 13.69 370 59.1 XSECTION 4 RUNOFF 6.32 .45 - -- 13.72 368 58.2 RAINFALL OF 4.30 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. ALTERNATE 0 STORM 5 XSECTION 1 RUNOFF 5.71 .80 - -- 13.48 719 125.9 XSECTION 2 RUNOFF 5.89 .80 - -- 13.51 732 124.3 - XSECTION 3 XSEC-TION - - -4 RUNOFF 6.26 .81 - -- -- RUNOFF - -- - -6 -32 - -.81- - - - - -- 13.59 - - - 13.62 -- 757 - -- 7 -53 - - - 120.9 -- -119.1 -- - - -- -- - - -- RAINFALL OF 5.00 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. ALTERNATE 0 STORM 10 XSECTION 1 RUNOFF 5.71 1.17 - -- 13.43 1122 196.5 XSECTION 2 RUNOFF 5.89 1.17 - -- 13.46 1143 194.1 'XSECTION 3 1 RUNOFF 6.26 1.17 - -- 13.53 1181 188.7 Page 5 1 ----- ---- -- ---- BIG CREEK II VERSION 05/07/ ** EXISTING CONDITIONS HYDROLOGY - 24UH 2.04TEST ' 10:26:12 SUMMARY, JOB NO. 1 PAGE 9 SUMMARY TABLE 1 SELECTED RESULTS --------- - - - - -- OF STANDARD AND EXECUTIVE CONTROL IN ORDER PERFORMED. A CHARACTER FOLLOWING THE PEAK DISCHARGE TIME AND RATE (CFS) INDICATES: F -FLAT TOP HYDROGRAPH T- TRUNCATED HYDROGRAPH R- RISING TRUNCATED HYDROGRAPH XSECTION/ STANDARD PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE RUNOFF ------------------------------------ ID OPERATION AREA AMOUNT ELEVATION TIME RATE RATE (SQ MI) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 0 STORM 10 1 --------------------------- XSECTION 4 RUNOFF 6.32 1.17 - -- 13.57 1174 185.8 RAINFALL OF 6.20 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. ' ALTERNATE 0 STORM 50 XSECTION 1 RUNOFF 5.71 1.88 - -- 13.37 1945 340.6 XSECTION 2 RUNOFF 5.89 1.88 - -- 13.40 1982 336.5 XSECTION 3 RUNOFF 6.26 1.88 13.48 2047 327.0 XSECTION 4 ___ RUNOFF 6.32 1.89 13.51 2034 321.8 RAINFALL OF 7.10 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. ALTERNATE 0 STORM 99 --------------------------- XSECTION 1 RUNOFF 5.71 2.48 - -- 13.33 2643 462.9 XSECTION 2 RUNOFF 5.89 2.48 - -- 13.36 2693 457.2 XSECTION 3 RUNOFF 6.26 2.47 13.45 2780 444.1 4 RUNOFF 6.32 2.48 13.48 2764 437.3 1XSECTION TR20-------------------------------------------------------------- - - - - -- SCS - BIG CREEK II VERSION 05/07/ ** EXISTING CONDITIONS HYDROLOGY - 24UH 2.04TEST 10:26:12 SUMMARY, JOB NO. 1 PAGE 10 SUMMARY TABLE - -3 STORM DISCHARGES (CFS) AT XSECTIONS AND STRUCTURES FOR ALL ALTERNATES 'QUESTION XSECTION/ MARK ( ?) AFTER: OUTFLOW PEAK - RISING TRUNCATED HYDROGRAPH. DRAINAGE STRUCTURE AREA STORM NUMBERS.......... ID (SQ MI) 1 2 5 10 50 XSECTION 1 5.71 'ALTERNATE --------------------------- 0 180 350 719 1122 1945 XSECTION 2 5.89 --------------------------- ALTERNATE XSECTION 3 0 184 357 6.26 732 1143 1982 --------------------------- ALTERNATE 0 188 370 757 1181 2047 XSECTION 4 6.32 --------------------------- ALTERNATE 0 188 368 753 1174 2034 SUMMARY TABLE 3 Page 6 ' BC2_24H.OUT -------------- STORM DISCHARGES (CFS) AT XSECTIONS AND STRUCTURES FOR ALL ALTERNATES QUESTION MARK ( ?) AFTER: OUTFLOW PEAK - RISING TRUNCATED HYDROGRAPH. XSECTION/ DRAINAGE STRUCTURE AREA STORM NUMBERS.......... ID (SQ MI) 99 XSECTION 1 5.71 --------------------------- ALTERNATE 0 2643 XSECTION 2 5.89 --------------------------- ALTERNATE 0 2693 XSECTION 3 6.26 --------------------------- ALTERNATE 0 2780 'XSECTION 4 6.32 --------------------------- ALTERNATE 0 2764 ' 1 TR20 -------------------------------------------------------------- - - - - -- SCS - BIG CREEK II VERSION 05/07/ ** EXISTING CONDITIONS HYDROLOGY - 24UH 2.04TEST END OF 1 JOBS IN THIS RUN SCS TR -20, VERSION 2.04TEST FILES INPUT = c: \tr20 \bc2_24h.dat GIVEN DATA FILE OUTPUT = c: \tr20 \bc2_24h.OUT DATED 05/07/* *,10:26:12 FILES GENERATED - DATED 05/07/* *,10:26:12 NONE! TOTAL NUMBER OF WARNINGS = 0, MESSAGES = 0 * ** TR -20 RUN COMPLETED * ** Page 7 1 1 i 1 1 1 1 1 1 1 1 i 1 i 1 1 i 1 1 Table 5. North Carolina rural flood- frequency equations @A, drainage area, in square miles. Result will be in cubic feet per second] Bond Hydrologic arse i4drolggic men flood Dom BleeRidga- Riedorotd recur - reaee Blue Ridge. _ Coastal Plain Send Hills interval Piedmont Eep waled Asr3ua{learror Aflame error } bears) o1preditdlau tdprrl dian 135 DA 0.70' 64.7 DA 0.673 33.5 DA 0.712 5 242 DA 0.677 129 DA 0.635 55.5 DA 0.701 10 334 DA 0.662 lgg DA 0.615 72.9 DA 0.697 25 476 DA 0-''5 281 DA 0.593 98.1 DA 0.693 50 602 DA 0.635 367 DA 0579 120 DA 0.691 1000 745 DA 0.62.5 468 DA 0566 143 DA 0.688 200 908 DA 0.416 586 DA 0.554 170 DA 0.686 500 1,160 DA 0.605 773 DA 0.539 210 DA 0.634 T" 6. Average prefcfive errar$, in p$rsant, and equWe t yearsat rezord assay; at" with North Carufine rural flood -frequ imy egaa5ans Rom[ i4drolggic men Dom BleeRidga- Riedorotd Coamal Plain saadBilts recacraaoe itderval kierap error Equiwaletd Eep waled Asr3ua{learror Aflame error Eqawnleul bears) o1preditdlau tdprrl dian Cdgredictian is alrecard- 19 remit al 2 41.2 2.0 379 2.9 38.4 2.1 41.2 3.0 35.9 4.9 42.6 2.7 to 42.0 4.1 36.3 6.7 45.6 3.4 25 43.6 5.4 38.0 8.8 49.8 4 50 45.9 6.4 39.8 14.1 53.1 4.6 140 47.0 7.2 42.0 11.1 55.6 5.0 2fl0 48.9 79 44? 11.9 60.2 5.4 500 51.6 S. 47.3 12.7 65.1 5.7 L� 1 1 P, 1 r I 1 1 t 1 1 1 - -- -- 1 1 1 HEC -RAS R— BIGCREEN Reach PHASE 2 Reach River Sta ProGe Plan 0 Totai Min Ch El W S. E- Qt W S. E.G. Elev EG. Slope Vel Chnl Flow Area Top Wift Froude B Chl Ids) , (ft) (8 (6) (�) Vvs) (sq 6) (e) PHASE 2 391 IYR EXISTING 18200 108730 109151 1090 16 1091 65 0001982 301 6047 28581 036 PHASE 2 391 1YR PROPOSED 182 00 1099 70 109199 109156 1092351 0007050 481 3787 2345 0671 PHASE 2 391 2YR EXISTING 35500 108730 10SZ721 109097 1092911 0001940 351 10124 3774 0 38 PHASE 2 39.1 2YR PROPOSED 35500 108970 109284 109231 1083 40 0 007286 601 5909 2843 0 71 PHASE 2 391 5YR EXISTING 71900 108730 1094501 109221 109474 0001720 398 180.78 5094 037 PHASE 2 391 SYR PROPOSED 71900 1089701 1094171 1093 53 109497 0007634 719 10004 3549 075 PHASE 2 39.1 - 10YR EXISTING 112200 108730 ID95-741 109310 1096 03 00014511 4 43 31318 155 41 036 PHASE 2 391 10YR PROPOSED 1122 00 1089 70 1095 32 1094 55 1096 20 0 006393 7 80 174 49 140 40 072 PHASE 2 391 50YR EXISTING 1945 00 1087 30 7097 04 1084 45 1097 45 0001607 548 547 96 205 15 0 39 PHASE 2 391 50YR PROPOSED 1945 00 1089 70 1098 74 1096 20 1097 57 0004191 7 99j 41103 195 07 084 PHASE 2 39.1 100YR EXISTING 264300 1087301 109772 109573 109823 0001S461 631 68972 212 70 043 PHASE 2 391 100YR PROPOSED 2843 00 1089701 1097 48 109694 109837 0004316 Sao 56250 209781 064 1 PHASE 2 39 IYR EXISTING 18200 1087 30 109149 109163 0002022 304 5981 2844 037 PHASE 2 39 IYR IPROPOSED 18200 1089701 1091 77 1092 25 0 010712 5 53 32 92 22 70 0 81 PHASE 2 39 2YR EXISTING 355 00 108730 109270 1092 89 0001988 354 100 38 37(!2 038 PHASE 2 39 2YR PROPOSED 1 109330 0010163 6 74 5265 2556 083 PHASE 2 39 6YR EXISTING 71900 1087301 109447 1 1094721 0001750 400 17976 50 ael 037 PHASE 2 39 SYR PROPOSED 71900 108970 109386 109353 109487 001M 8 04 8943 33251 0 86 PHASE 2 39 10YR EXISTING 112200 108730 109572 1096 02 0001472 4 45 310 0.5 154 78) 038 PHASE 2 10YR PROPOSED 112200 108970 109488 109455 1096091 00100031 88 12718 40851 088 PHASE 2 39 50YR - EXISTING 194500 108730 1097 02 1097431 0001632 5 51 543 70 204 951 040 PHASE 2 39 50YR PROPOSED 1945 00 1089 70 1098 57 1096 20 1097521 00052081 .4i 380 113 188 23 068 PHASE 2 39 100YR EXISTING 2643 00 108730 1097 1098 21 0 001877 634 68450 212 401 0431 PHASE 2 39 100YR PROPOSED 2843 00 108970 _ 109732 109694 1098321 0 004913 901T 53041 207931 068 PHASE 2 , 38 1YR EXISTING 18200 1088401 1091 091 1091 36 0004038 4181 43 58 20 681 051 PHASE 2 PROPOSED 18200 108680 109088 109090 0002969 3751 48 -55 19 54 042 PHASE 2- EXISTING 35500 108840 1092.28 1092 68 0 004080 5 02 7070 25181 053 PHASE 2 PROPOSED 35500 108680 1091 86 1092 20 0003674 4711 7530 25951 049 PHASE 2 EXISTING 71900 108840 109388 109449 0 004179 626 11485 2905 055 PHASE 2 SYR PROPOSED 71900 1088 80 1093 36 109393 0003913 604 12081 3502 053 PHASE 2 - %385�GYR EXISTING 112200 108840 109505 1093 47 109580 0 003873 712 21783 137 73 056 PHASE 2 PROPOSED 112200 1086 80 109428 109291 109515 0004725 7 81 182 46 T3 85 81 PHASE 2 R EXISTING 1945 00 108840 1096 34 1095 77 109720 0 003912 832 447 12 205 34 0 % PHASE 2 _ PROPOSED 1945 00 108680 109545 109500 109582 0 005860 9 80 303 27 166 01 0 701 PHASE2 R EXISTING 2843.00 108840 109894 108659 109795 0004435 940 57337 214.17 083 PHASE 2 ' 38 100YR PROPOSED 254300 108880 109830 109628 109771 0 005805 1046 4114161 204 85 0701 PHASE 2 37 iYR EXISTING 18200 108670 109053 109069 00019741 323 5636 22-041 036 PHASE 2 37 IYR PROPOSED 18200 109570 109035 109044 0000815 2 39 7614 24 47 0 24 j PHASE 2 37 2YR , EXISTING 355 00 1086 70 1091 61 1097 90 0 002417 4 31 8257 25 86 0 42 PHASE 2 37 2YR PROPOSED 35500 1085 70 109143 109161 0001328 338 10508 29211 031 PHASE 2 37 5YR EXISTING 719001 1086 70 109316 1093 68 0 002849 5 83 13488 85 85 048 PHASE 2 37 SYR PROPOSED 719 00 1085 70 109287 109324 0001759 4 87 153 39 38 OS 0 38 PHASE 2 37 10YR EXISTING 112200 1086701 109400 1092 32 109475 0 003504 722 228 05 148 95 0 54 PHASE 2 37 10YR PROPOSED 1122 00 1085701 1093 58 1 OW-22 0002632 6491 219 48 120 08 0 48 PHASE 2 - 37 . 50YR 1EXISTING 194500 1086701 109491 109486 109592 0 004495 9 07j 46500 308 OS 083 PHASE 2 37 50YR PROPOSED 1945 00 1085.70 1094 35 1093 67 109554 0 004503 922 35825 24494 084 PHASE 2 37 ' t00YR EXISTING 264300 1086 70 'Mil 40 109546 1098 55 0005144 10201 62510 331 68 069 PHASE 2 37 - - t00YR PROPOSED 264300 1085 70 O9 1095 11 1098 31 0004560 998 56719 323 25 0 85 PHASE 2 38 1YR EXISTING 18200 1087 20 1090 07 109032 0003445 3951 46 07 21 01 0 47 PHASE 2 36 WR PROPOSED 182 00 1085 20 109023 1090 32 0000896 232 78 61 2743 024 PHASE 2 36 2YR EXISTING 355 00 1087 20 109100 1091451 0004471 5 35 86 39 22 761 055 PHASE 2 36 2YR PROPOSED 355 00 1085 20 1091 25 1091 41 0 001311 3 28 108 88 32 72 0370 PHASE2 36 SYR EXISTING 71900 708721 108232 109123 109314 0005682 729 10910 86591 064 PHASE 2 36 5YR PROPOSED 71900 108520 109284 1 1092961 00016M 463 20534 191281 0 37 PHASE 2 36 tOYR EXISTING 112200 108720 109339 1093391 109397 0003748 694 41428 441861 054 PHASE 2 38 10YR PROPOSED . 112200 108520 109336 100375 0001975 5 47 45457 43985 0401 PHASE 2 36 50YR JEXISTING 194500 108720 109358 1093 97 1094 84 0008432 1067 49826 454 51 0 82 PHASE 2 38 50YR PROPOSED 194600 108620 109417 7094 58 0002236 636 83383 489 26 044 PHASE 2 36 100YR - - EXISTING 284300 108720 —108520 109453 109508 0 004130 835 95733 49675 059 PHASE 2 36 t00YR PROPOSED 2643 00 7094 71 109511 0002299 680 109815 60105 0451 PHASE 2 35 IYR EXISTING 18200 108620 108990 109010 000481 1 361 50 46 34 12 052 PHASE 2 35 1YR PROPOSED 182 00 I 1087 50 1089 84 1090071 0 009481 5 26 34 46 23 251 076 PH45E 2 35 2YR EXISTING 355 00 1088 20 7090 94 1081 19 0003210 407 8765 4377 047 PHASE 2 35 2YR PROPOSED 35500 108750 1090531 1091 14 0 0083351 625 5684 2673 075 PHASE 2 35 5YR _ - EXISTING 71900 108820 109252 109277 0 0611 428 278 13 260.41 040 PHASE 2 35 SYR PROPOSED 71900 108750 109185 109137 109269 00063521 749 12578 113331 071 PHASE 2 35 10YR EXISTING 112200 108620 1093 25 109350 00019951 46 55380 465 02 040 PHASE 2 35 tOYR PROPOSED 1122 00 1087 50 1093 11 1082 81 1093 57 0003078 8 42 46959 443 28 0 52 PHASE 2 35 WYR EXISTING 1945 00 1086 20 1094 04 1094 30 0 002070 5 31 981 11 552921 042 PHASE 2 35 50YR PROPOSED 1945 00 108750 109405 109439 00024351 646 94986 553331 048 PHASE 2 35 100YR EXISTING 26430o 108020 109456 109482 0 002024 560 125432 566 85 042 PHASE 2 35 100YR PROPOSED 264300 108750 109402 109491 00022301 658 1265731 56831 047 PHASE 2— -4YR EXISTING -- 18200 - - -- 1088- 10 - - - -- 108922---- - - - - -- 108954- - 0005000 -- 452 - -- 4024 -- -2006 - -056 - PHASE 2 -'- 34'-"' - - tYR - -� --- PROPOSED-- 182001 109420 108922 108931 0 001019 245 7438 2807 026 PHASE 2 34 2YR EXISTING 355001 108610 1080 O6 1090841 0006787 609 5828 2305 068 PHASE 2 34 2YR PROPOSED 355 00 108420 109021 1 109040 0001583 346 102621 3080 033 PHASE 2 34 SVR EXISTING 719 00 108810 1091 26 1092 28 0008931 8 11 8882 27 90 080 PHASE 2 34 5YR PROPOSED 719 00 1084 20 1091 63 1092 00 0 002009 491 162 99 145 47 039 PHASE2 34 tOYR EXISTING 112200 108810 109281 108323 0003278 601 45773 42223 051 PHASE 2 34 tOVR PROPOSED 1122 00 7084 20 1092 76 1093 70 0001873 515 488 26 417271 037 t L t 11' 1� fl 1 1 1 1 it 1 1 1 i 1 u 1 HEC -RAS RNer SIGCREEX Reach PHASE 2 (Gontmued) Reach River Sta Profile Plan O Total Mm Ch El W S FJev Crd W S EG Elev EG Sbpe VeI Chnl Flow Area Top Width Frouda @ Chl (ds) (ft) (ft) (ft) (ft) fftlft) (ft) (eq ft) (ft) PHASE 2 34 SOYR EXISTING 194500 1088 10 109363 1094 071 0003098 858 833 92 506751 0 51 PHASE 2 34 SOYR PROPOSED 1945 00 1084 20 1093 70 1084 04 0001773 5 88 923 09 513 75 039 PHASE 2 34 100YR EXISTING 2843 00 1088 10 109418 109453 0 002885 a 781 1127 37 548 74 0 50 PHASE 2 34 t00YR PROPOSED 2843 00 1084 201 1094 27 1094 61 0 0018221 626 123056 551 70 0 40 1 PHASE 2 33 1YR EXISTING 18800 108580 1088 35 1088 57 00068371 378 49741 3544 056 PHASE 2 33 1YR - PROPOSED 18800 108630 108834 108879 00102541 538 34 95 24331 0791 PHASE 2 33 2YR EXISTING 35700 108580 108901 1089 38 0 005875 4 871 73271 36 101 0 801 PHASE 2 33 2YR PROPOSED 36700 108630 108907 1089 76 0 010248 6 IS 53571 26631 0831 PHASE 2 33 5YR EXISTING 732 00 1085 80 109011 1090 76 0 008173 644 113 75 37171 065 PHASE 2 33 5YR PROPOSED 732 00 1086 30 1090 26 1089 96 1091 34 00092521 8391 91331 3836 084 PHASE 2 33 WYR - EXISTING 1143 00 108580 1091 15 1090 12 1092 00 0005967 743 18722 101 53 066 PHASE 2 33 10YR PROPOSED 1143 00 7088 30 1091 57 1091 311 109262 0006422 8771 191 88 777 O8 0741 PHASE 2 33 SOYR EXISTING 198200 1085 80 1092 BS 7092 28 1093 33 0004169 7 37 53765 345 52 057 PHASE 2 33 SOYR PROPOSED 1982001 108630 1092 78 1092 78 1093 84 0004635 884 501 10 350 91 0 66 PHASE 2 33 100YR EXISTING 269300 1085 801 109308 1092 87 1093 871 0004960 B 45 881 51 362021 063 PHASE 2 33 100YR PROPOSED 2593 00 108630 1093351 1093 241 1094191 00045711 937 767021 371 831 0 66 1 PHASE 2 YR EXISTING 18800 108540 1087 431 1087 621 0 004108 352 53 47 34 88 050 PHASE 2 YR PROPOSED 18800 108420 1087711 1087901 0002877 350 5365 2500 0421 PHASE 2 q32 YR EXISTING 357 00 108540 1088 281 1088 55 0 003697 4 30 82 99 36 071 0 50 PHASE 2 YR PROPOSED 357 00 1084 20 1088 71 1089 O7 0 003297 4 411 8089 29 58 0 47 PHASE 2 YR EXISTING 732 00 108540 1089 73 1090 17 0 0032871 5 33 137 41 38 23 0 50 PHASE 2 YR PROPOSED 732 00 108420 1090131 109065 0 D03 21 584 13640 4857 0 51 PHASE 2 32 10YR EXISTING 1143 00 1085 40 109089 109147 00036191 a 14 195291 79 761 0 53 PHASE 2 32 10YR PROPOSED 7743 00 1064 20 109129 108962 109194 00031911 673 245 731 246 241 052 PHASE 2 32 SOYR EXISTING 1982 00 1085 40 1092 541 109298 0002238 595 68072 374981 044 PHASE 2 32 SOYR PROPOSED 1982 00 1084 20 1092 50 1092 10 109313 0 002968 744 63825 372901 052 PHASE 2 32 100YR EXISTING 2893 001 108540 1092 86 109346 0 003038 7181 80210 387 13 0 51 PHASE 2 32 100YR PROPOSED 259300 108420 1093151 109376, 0002869 7811 99132 392 33 051 1 I I I PHASE 2 31 tYR EXISTING 18800 1084 70 1086 85 1088 88 0 002198 292 84 40 34 95 038 PHASE 2 31 1YR PROPOSED 18800 108250 108744 1097531 0000871 2331 BO 74 27541 524 PHASE 2 31 2YR EXISTING 35700 10114.10 1087.79 108799 0002191, 355 10082 40 28 0.40 PHASE2 31 2YR PROPOSED 35700 108250 108837 108854 0.001312 331 10828 3615 031 PHASE EXISTING 73200 108410 108939 108968 00020073 430 17005 4671 040 PHASE 2 PROPOSED 732 00 1082.50 1089 76 109011 00017871 48 171 361 5959 038 PHASE 2 EXISTING 114300 108410 1090 80 1090 95 0001975 487 29020 186 W 0 41 PHASE 2 , R PROPOSED 114300 108250 109100 109141 0001730 546 36631 283 25 038 PHASE 2 R EXISTING 198200 7064 10 1092391 1092.65 0001215 466 85859 39296 033 PHASE 2 _ *301YR PROPOSED 1982 00 108250 1092 01 1092 53 0 002183 6 77 69817 375 83 044 PHASE 2 R EX (STING 2693 00 1084 10 109255 1092 97 0 001954 6 Ot 921 66 PHASE 2 R PROPOSED 2693 00 1082 50 109262 1093.18 0002339 7 40 938 73 403 32 0 46 PHASE 2 EXISTING 188 00 108420 1086 O6 1086 42 0 007936 4 79 39 23 26 51 0 69 PHASE 2 PROPOSED 188 00 1084 50 1086 39 108639 1087 03 0 0173381 6 42 2929 2338 1 011 PHASE 2 30 2YR EXISTING 35700 108420 108711 108753 00052741 522 6837 2929 060 PHASE 2 30 2YR PROPOSED 35700 108450 108711 1087 11 108799 00150281 752 4746 2747 101 PHASE 2 30 SYR EXISTING 732 00 1084 20 7088 67 108927 0004195 628 12201 4025 057 PHASE 2 30 SYR PROPOSED 73200 7084 50 1088 22 1088 22 108950 0012154 916 8642 4029 0 96 PHASE 2 30 10YR EXISTING 1143 00 1084 20 1089 83 1088 45 1090 52 0004808 765 16489 701 0831 PHASE 2 30 10YR PROPOSED - 114300 108450 108917 1089 17 109078 0010594 1039 128 50 47 757 0 094 PHASE 2 30 50YR EXISTING 1982 001 1084 20 1089 81 1089 87 1092 24 0 012692 12 70 180941 t 10 103 PHASE 2 30 50YR PROPOSED 198200 108450 1091 16 109116 1092 15 0004708 .20 507 45 313 03 0 BB PHASE 2 30 100YR EXISTING 269300 109420 109149 109149 1092 60 0005020 9 74l 62719 33824 068 PHASE 2 30 100YR PROPOSED 269300 1084 50 109167 109167 1092 77 0 D051951 1022 67709 350541 072 PHASE 2 29 1YR EXISTING 18800 108290 108595 108612 0 003880 3341 6637 37681 048 PHASE 2 29 1YR PROPOSED 188 00 1081 80 1088 Ot 1088 15 0 001729 2 95 83 68 25351 033 PHASE 2 29 2YR EXISTING 35700 108290 108711 108730 0002215 3531 101 26 39891 039 PHASE 2 29 ZYR PROPOSED 357 00 108180 108701 108725 0 002300 391 9123 2903 039 PHASE 2 29 SYR EXISTING i3 2051 108290 108875 108904 0001945 428 17381 89 49 039 PHASE 2 29 SYR PROPOSED 73200 1081 80 1088 41 108885 0002671 538 151 95 54 46 0 45 PHASE 2 29 10YR EXISTING 114300 1082 90 1089 87 109020 0 001829 4 82 34326 229251 039 PHASE 2 29 10YR PROPOSED 114300 1081 80 1089 32 108759 108997 0 003788 B 66 24149 17151 051 PHASE 2 29 50YR EXISTING 198200 1082 90 1090 53 1091 18 001327201 647 562601 31986 049 PHASE 2 29 50YR PROPOSED 1982 00 1081 80 109017 108966 119124 00047881 9 01 432 82 290 30 064 PHASE 2 29 100YR EXISTING 269300 1082 90 1091 14 1 109190 00031561 739 733 91 350 e4 053 PHASE 2 29 100YR PROPOSED 269300 108160 109081 1090801 109191 0 004893 972 831 40 330 58 0 85 PHASE 2 28 1YR EXISTING 18800 108280 108561 1085 73 1101 574 284 7970 52651 032 PHASE 2 28 1YR PROPOSED 18800 108110 108592 1086 O7 0 000748 2 31 81 51 25881 023 PHASE 2 28 2YR EXISTING 357 00 108280 1086 76 1088 81 0001320 332 14217 55 47 0311 PHASE 2 28 2YR PROPOSED 35700 108110 108688 1087 OS 0 0012151 331 10858 31 741 0301 PHASE 2 28 SYR EXISTING 73200 108280 108855 108874 0 001158 392 31065 161 61 031 PHASE 2 SYR PROPOSED 73200 108110, 108825 108859 00016881 47 20562 146 67 037 PHASE 2 k28 10YR EXISTING 114300 108280T 1089 T7 108995 0 001191 417 63674 3378 0 32 PHASE 2 10YR PROPOSED 114300 1081101 108919 108960 0 001800 554 410 46 29333 040 PHASE 2— - SOYR- EXISTING ---- 198200- - - -- 1082801---1090 55---- -- - - -- 108062 - 0001869 - --- -540 - -- 91898-- -37998 - -- -----038 - PHASE 2 - -` 28 - - - -' - 50YR - -- - PROPOSED -" 1982001 1081101 1090 OB 109059 0 002364 6941 69453 35367 047 100YR EXISTING 2693 00 1082 801 1091 07 1091 39 0 001997 6 23 1124 38 419 90 0 42 F28 28 100YR PROPOSED 2693 00 1081 10 1090 67 109121 00026791 777 89523 38369 050 PHASE 2 27 1YR EXISTING 18800 1081501 1084 87 1085121 0 003205 4051 46 37 18581 045 PHASE 2 27 1YR PROPOSED 188 00 1083 101 108531 1085 71 0 008227 5 04 37 31 24291 "'2 PHASE 2 27 2YR EXISTING 357 00 1081501 1085811 1086281 0 004417 5 55 84 28 19 53 054 1 1 1 1 1 1 1 C'] 1 1 1 1 t 1 1 1 1 1 HEC -RAS RwrBIGCREEK Reach PHASE 2(Cononued) Rearll R-818 P(ol9e Plan Q Total Min Ch EI W S Ow Crd W S I- C, E9ry E-G. Slope Vet CMI Flow Area Top WIdN Fmude 0 CN (cts) (8) (n) (ft) (ft) O (I8s) (a9 B) (8) PHASE 2 27 2YR PROPOSED 357 001 1083101 1086 07 1088 Be 0008702 8 25 57 11 27871 0 771 PHASE 2 27 SYR EXISTING 73200 1081 50 108704 1088 09 0007238 8" 89 19 2076 070 PHASE 2 27 5YR PROPOSED 73200 108310 108716 108686 108816 0 008358 8 12 102041 5219 0811 PHASE 2 27 10YR EXISTING 11430 108150 108770 108744 1 We 56 0011&361 10991 11406 60 88 088 PHASE 2 27 10YR PROPOSED- 114300 108310 108827 7088 14 108929 00062261 8581 218271 228 81 0 73 PHASE 27 50YR EXISTING 198200 108150 108953 108953 108043 0005807 923 51909 298171 064 PHASE 2 127 MR PROPOSED 1982 00 108310 108934 108934 109025 00052381 9151 523781 305 621 070 PHASE 2 27 t00YR EXISTING 2893001 108150 109005 1090051 109098 0.006165 10021 68822 358 321 067 PHASE 2 27 100YR PROPOSED 269300 108310 109003 1089 74 1090 88 0004807 9 50 748 33 361 03 1 068 PHASE 2 28 1YR EXISTING 188 00 11 108467 0 003655 3 57 5267 29 97 047 PHASE 2 2S -is tYR PROPOSED 18800 1080 70 1083 91 108419 0004774 4 23 4440 22 671 053 PHASE 2 EXISTING 35700 108120 1085 48 10857 0003245 4241 14231 33 47 047 PHASE 2 26 2YR PROPOSED 35700 108070 108499 1085 37 0004579 4981 71 84 27 97 1 0 55 PHASE 2 28 5YR EXISTING 73200 108120 1086 85 1087291 0003736 535 148811 619.1 0 52 PHASE 2 26 SYR PROPOSED 73200 108070 1088 49 108700 0 004154 5 85 140 BB 82 41 056 PHASE 2 26 10YR EXISTNG 114300 1081 20 1088 02 1088 42 0 062662 544 351 00 26644 046 PHASE 2 26 IOYR PROPOSED 114300 1080 70 1087 73 1086 32 1088 25 0003037 614 295011 24938 0 50 PHASE 2 25 50YR EXISTING 1982 00 7081 20 1089 11 1089 53 00025681 6 11 678 87 323 53 0 47 PHASE 2 25 50YR PROPOSED 198200 1080 70 1089 13 1089561 0 002280 F 634 708811 33039 0 451 PHASE 2 26 tODYR EXISTING 269300 108120 108986 10'0 28 0 002335 8 37 93904 371 45 045 PHASE 2 28 100YR PROPOSED 209300 108070 108997 1680 37 00 02003 648 1007 00 37815 043 1 PHASE 2 25 tYR EXISTING 18800 108020 108399 1084 37 0 008608 499 3770 1879 062 PHASE 2 25 tYR PROPOSED 18800 107960 1083 84 1083 961 00012MI 2811 86 94 2291 029 PHASE 2 25 2YR EXISTING 35700 1080201 1084711 1085 42 0 010701 8 76 5281 2302 079 PHASE 2 125 2YR PROPOSED 35700, 107960 1084881 1085101 0001918 3821 9356 2835 037 PHASE 2 25 SYR I EXISTING 73200 108020 108583 108576 1086921 00142S4 837 8746 3723 0 96 PHASE 2 25 SYR PROPOSED 732 00 107960 1086 33 1086761 0002300 528 15307 4703 0 43 PHASE 2 25 tOYR EXISTING 114300 108020 108688 108657 1088111 0010583 8 89 13240 94 68 087 PHASE 2 25 tOYR PROPOSED 114300 107960 1087 47 108536 1088031 0002 624F 28088 204741 046 PHASE 2 25 WYR EXISTING 198200 108020 10118 64 ION301 0004567 7 45 518 BZ 278 11 061 PHASEZ 25 50YR PROPOSED 198200 107960 IWO 79 108938 002 0374 711 87325 283431 047 PHASE2 25 t00YR EXISTING 2893.00 108020 108951 109008 0003514 729 78566 342481 055 PHASE 2 25 t00YR PROPOSED 2693 00 1079601 1089 57 1090 19 0002429 7711 SW 74 34575 --2-1 PHASE 2 24 - 1YR EXI571NG 188 -00 108080 1082781 108274 108327 0017 5 58 1 3369 3194 098 PHASE 2 24 1YR 1PROPOSED 186 00 107950 1083641 108378 0001504 2791 6733 28 971 031 PHASE 2 24 2YR EXISTING 357 00 108080 1083 72 1084 17 0 008557 54 85 91 37 45 0 72 PHASE 2 24 - ZYR PROPOSED 357 00 1079 50 1084 81 108483 0 001955 3 74 9632 3661 0 37 PHASE 2 24 SYR EXISTING 73200 108080 !08531 1085 77 0.004658 5 47 133 70 46 28 057 PHASE 2 24 SYR PROPOSED 732 00 107950 108603 108843 0002234 512 173 24 8035 D42 PHASE 2 24 10YR EXISTING 114300 108080 108667 108717 0003216 571 21672 9140 050 PHASE2 24 tOYR PROPOSED 114300 107950 108715 108766 0002321 603 302 80 18836 044 PHASE 2 24 SOYR EXISTING 1982 00 108080 1088 29 1 1088 77 0002389 604 55607 269 511 045 PHASE 2 24 SOYR PROPOSED 198200 107950 1088381 108899 0002555 721 59033 278 89 1 048 PHASE 224 t00YR EXISTING 269300 1080 80 108913 108963 0002234 642 818 65 333451 045 PHASE 2 24 I OOYR PROPOSED 2893 00 107950 108922 108982 0002429 759 85773 334731 o 48 I PHASE 2 23 tYR EXISTING 18800 107980 1082 89 1082 91 0 000342 1 16 161 65 85 87 015 PHASE 2 23 tYR PROPOSED 188 00 107880 108362 1083 69 0 000649 2 08 91 28 30 29 021 PHASE 2 23 ZYR EXISTING 35700 107980 1083 89 108392 0000318 1381 25796 9969 015 PHASE 2 23 2YR PROPOSED 35700 107860 108459 1684 72 0000954 2 92 126 66 49 32 0261 PHASE 2 23 5YR EXISTING 73200 107990 108553 108557 0000270 1 72 527 10577 015 PHASE 2 23 5YR PROPOSED 732 00 1078 80 1088 05 106628 0001165 404 243 22 102 60 0 3t PHASE 2 23 10YR EXISTING, 1143 00 107980 1086 92 108698 0000248 199 61690 19997 0151 2 23 10YR PROPOSED 1143 00 1078 60 1087 21 108749 0 001201 465 43803 218 40 0 32 23 50YR EXISTING 198200 1079 BO 1088 51 1080 60 0 000288 2 53 1023 67 320 98 017 WPHASE 23 50YR PROPOSED ' 1982 00 107860 1088 42 1088 81 0 001512 23 100YR EXISTING 269300 107980 1089 34 108946 0000336 295 130512 358421 0191 PHASE 2 23 100YR PROPOSED 259300 107860 108924 108965 0001532 631 103373 35446 038 PHASE 2 - 22 tYR EXISTING 18800 107790 108284 1082 88 0000450 1761 10680 3652 018 PHASE 2 22 1YR PROPOSED 18800, 108090 1083 18 1083 53 0007358 4 751 39 58 2601 —068 PHASE 2 71 2YR EXISTING 357001 107790 7083 80 1083 69 0000899 2481 143 93 4081 023 PHASE2 22 ZYR PROPOSED 35700 108090 108410 106455 0005543 545 6922 4229 063 PHASE 2 22 5YR EXISTING 732 00 1077 90 1085 35 1085 53 0 001003 344 213 50 51 BB 029 PHASE 2 22 SYR PROPOSED 732 00 108090 1085 57 108813 0 003841 6 30 158 87 77 63 0 57 PHASE 2 22 tOYR - EXISTING 114300 1077 90 1086 69 1088 94 0 000995 4 01 349 73 194 40 0301 PHASE 2 22 tOYR PROPOSED 114300 108090 108683 1087371 00027931 8 51 341 96 23234 0511 PHASE 2 22' 50YR EXISTING 198200 10779 108827 108866 00009851 4 68 767 77 338 32 0 31 PHASE 2 22 SOYR PROPOSED 198200 10809 1088 24 1088 72 0002258 8 90 739 43 336 OS 0 48 PHASE 2 22 100YR EXISTING 2693 00 107790 1089 10 108941 0001027 5 14 106390 377 271 0 32 PHASE 2 22 t00YR PROPOSED 269300 108090 108914 1089 55 0001930 6 95 1060 48 379 O9 U40 PHASE 2 21 m EXISTING 18800 107960 1082 51 1082 79 0 006823 4 26 44 10 31 04 0 63 PHASE 2 21 TYR PROPOSED 18800 —35700 107820 1083 23 109331 0 W0645 229 82 06 27 90 024 PHASE 2 21 2VR EXISTING 1079 60 108343 108370 0005010 482 7404 33 99 0581 PHASE2- -J21— ZYR ----- PROPOSED -- 35700- -- 107820 - -- 108416---- - - --- -- 108434---0001259 -- - -- 324 - - -- 11156 ----- -3696------ --030- PHASE2�— 21 -- - - " „ "_ SYR "___. "� E105TING - - -` 73200 107960 108490 108542 0004126 577 12687 3773 055 PHASE 2 21 SYR PROPOSED 73200, 107820 108562 108695 0001657 465 17884 5387 036 PHASE 2 21 10YR EXISTING 1143 00 107960 108818 1089 56 108682 0003630 644 18692 109 69 054 PHASE 2 21 tOYR PROPOSED 1143 00 7078 20 1086 78 1087 27 0 001801 5 55 314 88 189 15 039 PHASE 2 21 50YR EXISTING 188200 1079 60 1087 91 1088 47 0 002572 6 501 582 43 282 14 0 47 PHASE 2 21 60YR PROPOSED 1982 00 1078 20 1088 11 1088 81 000 1935 8 54 658119 292 74 0 42 PHASE 2 21 100YR EXISTING 2893 00 1079 80 7088 83 7089 33 0002239 8 70 831 31 307 03 0 45 1 [j [I u 1 1 r t 1 t 1 1 t 1 t 1 1 t HEC -R4S Rwr BIGCREEK Reach PHASE 2 (Continued) Reach I Rnw Sla Prone Plan 0 Total I Min Ch El W S. Elev Cr8 W S- E.G. El. E.G Skips Vel Chnl Flow Area Top WWOf Fronde 0 Chl I (mss) lrtl (rtl (rt) (ft) (rt/rt) O ($art) (rt) PHASE 21 t00YR PROPOSED 269300 107820 108897 108946 0001859 889 921351 313631 042, 1 PHASE 2 20 IYR EXISTING 18800 1079 70 108219 101242 00041281 385 48841 2718 051 PHASE 2 20 IYR PROPOSED MIX) 1080 50 1062 53 108243 1083 09 00136491 5 991 31 39J 2315 0911 �PHASE2 20 2YR EXISTING 35700 1079701 1083181 108351 0003773 4661 7658 2928 051 PHASE 2 20 2YR PROPOSED 357 00 108050 1083 42 1084 10 00103181 6611 54 00 272110 0 83 PHASE 2 20 SYR EXISTING 73200 1079701 108460 108518 0 004059 609 121 70 44 99 0 55 PHASE 2 20 SYR PROPOSED 1 732 00 1080 50 1 108476 1084 33 1 108570 00073471 7851 1 D4 64 54 47 077 PHASE 2 20 10YR EXISTING 1143 00 tU /9 70 1085 471 108660 0 OU3561 6 731 1419 16 72 78 U 54 PHASE 2 20 10YR PROPOSED 114300 1080 50 1086 02 1095371 108700 0 005254 8 25 1 184 13 80 57 068 PHASE 2 20 SOYR EXISTING 198200 1079 70 1087 78 1088 33 0002557 8 77 587 33 273 59 0 47 PHASE 2 20 SOYR PROPOSED 1982 00 108050 1087 671 1087 33 1088 47 0003567 836 540 88 27903741 0 59 PHASE 2 20 100YR EXISTING 2893 00 7078 70 1088 72 1089 22 0002196 6 881 859 94 302 971 045 PHASE 2 20 100YR PROPOSED 2693 00 108050 1088 78 108936 0 002503 1 7 82 885 74 304 85 0 51 PHASE 2 19 IYR EXISTING 188001 107880 1081651 108195 00049441 4 411 42831 2225 0 561 PHASE 2 19 IYR PROPOSED 188 00 1077 50 1082 28 1082 37 0 000871 244 76 95 24 831 0 241 PHASE 2 19 2YR EXISTING 357 00 1076 80 1082 59 108304 0005148 536 70 29 37561 0601 PHASE 2 19 2YR PROPOSED 357001 107750 1083 28 108346 0001405111 343 1D4 43 31621 0321 PHASE 2 19 SYR EXISTING 7320 1078 80 1084 12 108473 00043001 6 421 131 18 4222 058 PHASE 2 19 SYR PROPOSED 732 00 1077 50 1084 75 108511 0001809 4 89 16283 43 80 0 38 PHASE 2 19 IOYR EXI3TING 1143 00 1078 801 1085411 1088 16 0 003953 722 188 90 86 44 0 58 PHASE 2 19 tOYR PROPOSED 1143 001 1077501 1085 94 1086 49 00021041 6 081 247131 144 601 0 43 PHASE 2 19 50YR EXISTING 1982001 1078801 1087071 108536 1087 95 0 0035331 8 30 1 46287 227 01 1 0 57 I PHASE 2 19 SOYR PROPOSED 7982 00 1077 50 1087 47 16W 10 00021101 7051 560 77 241 54 0 45 PHASE 2 19 100YR EXISTING 2693001 1078 80 1 1088 19 1 1088 92 0002771 817 738 44 268 53 0 52 PHASE 2 19 100YR PROPOSED 2693001 1077501 1088481 1089 08 1 0001952 736 822 88 1 274 70 1 044 PHASE 2 18 IYR I EXISTING 18800 107790 1080 95 1081131 0002824 343 64 85 27 95 0 43 PHASE 2 18 IYR IMPOSED 18800 i 079301 1081161 1081 76 1081 81 0 017248 650 28 91 22 47 101 PHASE 2 18 ZYR EXISTING 35700 1077 90 1081851 7082.18 0003128 4401 8176 3019 047 PHASE 2 18 2YR PROPOSED 35700 1079301 108191 108188 10828DI 0.014819 7571 4718 25 —1 0 99 PHASE 2 18 5YR EXISTING 73200 1077901 1083431 108391 00031731 5571 13140 3372 0501 PHASE 2 18 SYR PROPOSED 732 DO 1079 30 108333 1083 03 1084 43 0 009242 8 44 89 81 3486 085 PHASE 2 18 10YR EXISTING 114300 7077 90 1084 78 108540 0003170 638 189 56 80 04 O 51 PHASE 2 118 10YR PROPOSED 1143 00 1 1079 30 108453 108400 108584 0 W72191 929 13816 6307 0 79 1 PHASE 2 18 SOYR EXISTING 198200 1077 80 1088 72 1087 33 0.002519 672 46284 16735 047 PHASE 2 18 50YR PROPOSED 1982001 1079301 108670 1088 70 1087 65 0003671 871 429 43 187 080 PHASE 2 18 t00YR EXISTING 259300 1077 90 108781 108843 0002254 70 850 OS 178 e1 046 046 PHASE 2 18 100YR PROPOSED 289300 107930 1087 -81 108868 0 003093 8 88 619181 176 T7 057 PHASE 2 17 1YR 1EXISTING 188001 1078 60 108031 1080 68 0 008219 4 90 3838 2514 070 PHASE 2 117 IYR IPROPOSED 18800 1076 20 108089 1080 981 0 0D0766 2 46J 80761 25 88 0211 IPHASE2 17 2YR EXISTING 35700 107860 108115 108170 0007419 596 5992 2835 070 PHASE 2 17 2YR PROPOSED 35700 1078 20 1087 84 1082 D5 000138191, 377 108 81 29 36 029 PHASE 2 17 5YR EXISTING 73200 107860 1082 651 1083 46 0 008405 7 23 101 28 28 81 2S. PHASE 2 17 SYR PROPOSED 73200 1076 201 108325 1083 74 0 002434 1 5 82 16035 42 59 0 39 PHASE 2 17 10YR EXISTING 7143 00 1078 80 108387 1 1084951 0 006348 I 34 737 15 3124 069 PHASE 2 17 10YR PROPOSED 7143 00 1078 20 108442 1085151 00031 7 31 225 B3 84 50 046 PHASE 2 17 SOYR EXISTING 198200 l 1078 60 1 108516 108505 1086871 0007788 10751 237441 10746 079 PHASE 2 17 SOYR PROPOSED 1982 00 1076201 108608 1087 12 0 003698 9291 412371 14817 PHASE 2 17 100YR EXISTING 2693 00 107880 1088 57 1088 20 1088 03 0005534 1048 42295 155 27 PHASE 2 17 100YR PROPOSED 2893 00 1078 20 1087 30 1088 27 0 003581 9 61 602 59 183 41 ]4. �PFIA HASE2 t8 tYR EXISTING 78800 107810 107988 108023 0008743 4921 3818 2693 SE 2 18 PROPOSED 188 00 1078 40 1080 37 1080 80 0 009840 530 35 44 24 38 HASE 2 18 EXISTING 357001 107810 108084 1081 33 0006101 se 1 6363 2680 064 PHASE 2 16 PROPOSED 357 00 107840 1081 28 1081 04 0 007817 6 11 58 41 26 81 0 73 PHASE 2 18 12YR EXISTING 73200 1078 10 1082 44 108314 0 005157 6 71 10902 29 82 0 82 PHASE 2 16 PROPOSED 732 00 1078 40 1082 80 1083 50 0 006697 7 60 100 42 36 67 PHASE 2 16 EXISTING 1143 00 1078 10 1083 68 108462 0 D05208 7 751 147 41 31 93 PHASE 2 10 PROPOSED 1143 00 1078 40 108365 1094 86 0006513 8951 13994 3902 075 PHASE 2 18 SOUR EXISTING 1982206 1078101 1084 78 1084 48 1086 44 0007783 1056 225251 94331 080 PHASE 2 16 50YR PROPOSED 1982 00 1078 40 1084 94 108494 108880 0007461 11351 2448 103461 083 PHASE 2 18 100YR EXISTING 2893 00 707810 1085 66 108566 108762 0007770 11 70 322881 12466 082 PHASE 2 18 100YR PROPOSED 269300 1078401 108595 108595 108784 0 006815 12181 385 03 132 55 0121 PHASE 2 15 1YR EXISTING 18800 1075701 107943 1079 58 0001897 112 60151 2531 0 38 PHASE 2 15 IYR PROPOSED 18800 1075 50 1079 95 708005 0000922 25 74 57 24 75 0 25 PHASE 2 115 2YR EXISTING 35700 1075 70 1080 55 1080 79 0002173 39 91 21 29 80 0 39 PHASE 2 15 2YR PROPOSED 35700 1075 50 1 108098 1081171 0001 3 52 101 47 28 75 0331 PHASE 2 15 SYR EXISTING 732 00 1075 70 1082 22 1082 62 0 002397 5 70 143 44 32 81 0431 PHASE 2 PHASE 2 15 15 5YR IOYR PROPOSED EXISTING 73200 11430D 1075501 1075 70 1082 40 1083 45 108280 1084041 00020281 00028491 510 618 151 09 188 061 43 00 8397 —04a] 047 PHASE 2 15 10YR - PROPOSED 1143 00 1075 50 1083 49 1084 11 0 002434 6 38 209 73 111 58 046 PHASE 2 15 60YR EXISTING 198200 1075701 108448 108269 1085 361 00038391 798 42829 278 54 0 57 PHASE 2 15 50YR PROPOSED 1982 00 107550 1084 71 1082 88 1085 49 1 00028311 7781 524151 29148 0 51 P SE 2 75 tOOYR EXISTING 2893 001 1075 70 1085 121 1084 78 1086 08 0 004084 8 79 811 91 298 38 0 59 PHA6E2 75— tODYR— PROPOSED— - -- 269300 - -- 107550 -- -108515 -- 108490 - - -- 108614 — 0003628 - -- —915 - -- -65297 -- -29889 - -- -058 -- PHASE 2 14 1YR EXISTING 188 00 1076 10 1078 77 1078 98 0 003577 3 67 51 27 27 02 0 47 PHASE 2 i4 m PROPOSED 188001 1077 00 1078 851 107876 1079381 00139171 584 32 211 2514 0 97 PHASE 2 14 2YR 1EXISTING 370 Bill 1076 10 1079 891 1080 20 000,32951 4471 82721 29871 047 PHASE 2 14 PHASE 2 14 j PHASE 2 ZYR 5YR PROPOOED EXISTING 370 00 757 00 1077 00 1078 10 1078 91 1081 51 1080 48 tOBi 99 0007989 0003 6 OB 5 58 61 04 742 85 29251 55 41 0 74 0 50 14 5YR PROPOSED 757 00 1077 00 1081 40 108064 1082 13 0 005250 6 95 127 14 07 14 0 65 1 t 1 t t 1 f �1 1 t 1 f� 1 t 1 HEC -RAS River BIGCREEK Reach PHASE 2 (Continued) Reach I River Sta Profile Plan O Total Min Ch El WS. Elev I Crd W.S. EG Elev EG Slope Val Chnl Flow Area Top Width Froude #Chl (ote) I (6) (6) I (6) (ft) (W) (NS) lac 0) I (6) PHASE 2 14 7DYR EXISTING 1181 001 107610 108287 1080 82 108335 00026811 5 831 32545 269 681 0 461 PHASE 2 14 10YR PROPOSED 1787 00 1077 00 108277 1081 BB 1083 40 0 003328 6891 31265 274 37 1 055 PHASE 2 74 50YR EXISTING 2047 00 1078 10 1083911 1084 42 0 0027611 6691 680761 373901 0481 PHASE 2 114 50YR PROPOSED 1 2047001 1077 00 10114!!3j 1084771 00017321 6041 917 95 1 404901 0421 PHASE 2 114 10UYR EXISTING 1 2780001 107610 1084 80 1085091 0002601 7 01 956 681 406181 048 PHASE 2 14 1DOYR PROPOSED 2780 00 1077 DO 1084761 1085 21 0002333 7i 1049 28 417251 049 PHASE 2 13 EXISTING 188001 107500 107883 1078 88 0 000363 1 1511 124 65 1 4821 016 PHASE 2 13 PROPOSED 18800 1074301 1079 03 1 107911 0 000694 1 2 251 8356 260 7 022 PHASE 2 73 j2YR EXISTING 370 00 1075 00 107999 1080 DS 0000451 2 OB 179 65 48 19 018 PHASE 2 13 PROPOSED 370 00 1074 30 7080 07 1080 24 0 001191 328 11293, 31 581 0 30 PHASE 2 13 EXISTING 757 00 107500 1081 1087 82 0000587 287 264 O8 1 50 85 022 PHASE 2 13 PROPOSED 757 00 1 107430 1081 56 1 108190 0001580 4 72 1 179 17 1 5971 036 PHASE 2 13 10YR EXISTING 1181 00 107500 108302 108320 0 000667 3 43 1 46041 305731 02 PHASE 2 13 10YR PROPOSED 1181 00 1074 30 1082 78 108322 0 001673 5581 33185 267 60 039 PHASE 2 - 13 50YR EXISTING 2047 00 1075 00 1084 00 1084281 0000969 4561 030 PHASE 2 13 SOYR PROPOSED 2047 00 107430 106434 1084701 0001359 5 801 88207 385 22 0 36 PHASE 2 13 7DDYR EXISTING 2780001 1075 00 108465 1084 98 0 001120 5 20 1 1055 76 392 33 033 PHASE 2 13 100YR PROPOSED 2780001 107430 1084 54 1085 70 0002119 7371 980 75 389 94 0 45 PHASE 2 12 1YR EXISTING 188 00 1075 00 1078521 1078 701 0 002483 344 54 661 23421 04n PHASE 2 12 1YR PROPOSED 188 00 1076 30 107810 1078101 1078751 001490937 614 30601 23 191 094 PHASE 2 12 2YR EXISTING 370 00 1075 00 107952 1079851 00033231 4 62 80041 2700 047 PHASE 2 12 2YR PROPOSED 370 00 1078 30 107892 107886 1079 80 ) 0014040 7511 49 27 1 2814 096 PHASE 2 112 5YR EXISTING 757001 107500 108094 1081 55 0 003899 6271 122 99 1 3899 054 PHASE 2 12 SYR PROPOSED 757001 1078 30 1080.34 1080 04 1081 45 0009025 8 47 94441 3954 084 L. PHASE 2 12 10YR EXISTING 1181001 107500 1082 19 108049 1082 95 0 003977 7 13 232 84 282 25 0 PHASE 2 12 10YR PROPOSED 1181 00 1076 30 1081 22 1081 131 1082 76 0008364 10 12 13765 6283 089 PHASE 2 12 SWR EXISTING 204700 107500 1083 54 7084 OB 0002827 7 OS 708 95 1 30987 049 PHASE 2 12 50YR PROPOSED 2047 00 1078 30 1084 24 7084 51 0 001327 5 55 1032.78 411 34 037 PHASE 2 12 100YR EXISTING 2780 00 1075 00 1084 32 7084 T8 0 002427 7 OS 1 1024 75 413 77 048 PHASE 2 12 100YR PROPOSED 278000 1076301 108436 1084 80 0 002198 7 221 10OZ611 41496 047 PHASE 2 Ill tYR EXISTING 188 00 107570 1077 32 107732 1OT7941 0 017453 630 29 84 24 48 101 PHASE 2 11 tYR PROPOSED 18800 107320 107774 1077 861 00010271 2 T31 71581 2431 023 PHASE 2 11 2YR EXISTING 370 00 107570 107817 107804 1078981 00125581 7 191 5144 2645 091 PHASE 2 11 2YR PROPOSED 37000 1073 20 1078791 107905 000161M 419 101.11 3215 03i PHASE 2 11 SYR EXISTING 75700 107570 107955 1079.19 1080 65 0009852 8411 9006 29 69 085 PHASE 2 11 SYR PROPOSED 75700 1073.20 108019 1080 T7 0 003087 0391 155741 4460 043 PHASE 2 11 10YR EXISTING 118100 107570 108068 108071 108206 0.009204 944 725761 3705 085 PHASE 2 11 10YR PROPOSED 118100 107320 1080 95 107925 108195 0004829 8581 195351 7323 055 PHASE 2 11 50YR EXISTING 204700 107570 108261 1082 61 108374 0005370 9 23 399641 250831 068 PHASE 2 11 SOYR 1PROPOSED, 204700 107320 108137 108107 108398 0011792 13901 23498 102901 087 PHASE 2 Ill 100YR EXISTING 278000 1075701 108323 108323 108445 0005587 10091 557231 258191 071 PHASE 2 11 10(YYR PROPOSED 278000 107320 108330 1 1083301 108446 00053611 10 841 64643 258 95 0 61 PHASE 2 10 tYR EXISTING 18800 107380 107723 10731 0001109 230 81871 3781 0 2 PHASE 2 10 tYR PROPOSED 18800 1073201 107767 1077 78 0001238 263 71491 26 .1i 62: PHASE 2 10 2YR EXISTING 37000 1073801 1078 33 107846 0 001267 2.91 127191 45191 031 PHASE 10 2YR PROPOSED 37000 107320 107871 107892 00017571 365 10177 34181 0351 PHASE 2 10 SYR EXISTING 75700 107380 1079 92 108013 00013151 3 66 20684 5278 033 PHASE 2 110 SYR PROPOSED 757 00 1073 20 108013 108054 0 002202 516 16016 5039 042 PHASE 2 10 10YR EXISTING 1181 00 707380 108123 1081 49 1 00013011 413 32351 14795 033 PHASE 2 10 10YR PROPOSED 1181 00 107320 108092 107902 108160 0 003077 6 761 22028 12823 050 PHASE 2 10 50YR EXISTING 2047001 1073 80 108256 7082 91 0001437 5041 64089 31703 036 PHASE 2 10 50YR PROPOSED 2047001 107320 108181 1081 33 108300 0 004801 9 31 362 67 22828 0134 PHASE 2 10 100YR EXISTING 2780001 107380 108312 108357 0 001721 588 822 47 32916 040 PHASE 2 110 100YR PROPOSED 2780001 1073 20 101261 108268 108384 0004712 1) W 31834 065 PHASE 2 9 IYR - EXISTING 18800 1074201 107681, 1077 15 0 005666 4 641 40481 2187 0 80 PHASE 2 9 tYR PROPOSED 188 00 1072.401 1077 61 1 1077 69 1 00007801 2241 83941 2751 023 PHASE 2 9 2YR EXISTING 37000 1074 20 107773 107827 0 OW557 5 891 82 77 26 24 067 PHASE 2 9 2YR PROPOSED 37000 107240 1078 63 107880 00012181 3251 118 55 40 34 0 29 PHASE 2 9 5YR EXISTING 75700 1074 20 1078 97 1079 90 0 007123 7 78 102 12 3503 074 PHASE 2 9 SYR PROPOSED 757 00 1072 40 108004 108038 0 001686 4 71 18369 8010 036 PHASE 2 9 10YR EXISTING 1781 00 1074 20 1079871 107939 108123 00081591 9 461 136 OZ 51 89 081 PHASE 2 9 10YR PROPOSED 118100 107240 1080831 108136 0002330 6081 302 26 211 68 044 PHASE 2 B SOYR EXISTING 204700 107420 1081 Be 1081 68 108271 0 004824 9161 477581 30342 066 PHASE 2 19 50YR PROPOSED 204700 1072 40 1081 75 1081 19 108252 0003206 785 54565 30634 053 PHASE 2 9 t00YR - EXISTING 278000 1074201 ]08225 108225 1083 34 0005093 10 01 857591 32466 069 PHASE 2 9 100YR PROPOSED 278000 1072401 108233 108197 1083 18 0003579 8751 729 73 325981 056 PHASE 2 8 1YR EXISTING 18800 107410 107657 1076821 0 004054 402 48137 2467 051 PHASE 2 a IYR PROPOSED 18800 107490 1077 19 IDT7501 0 006074 4541 4662 4596 062 PHASE 2 8 2YR EXISTING 37666 107410 107749 1077881 00044221 5 0911 83 T7 53 07 056 PHASE 2 8 2YR PROPOSED 370 00 1074 90 1078 26 7078 58 0 003814 4 75 107 O7 68 94 0531 PHASE 2 8 SYR EXISTING 757 00 1074 10 1078 88 1079 38 0 003990 5 91 173 47 71 78 055 PHASE 2 8 SYR PROPOSED 75700 107490 1079781 1080 11 0 002489 5251 241 89 11585 046 PHASE2— I— t0Y DISTING"—' --118100 --- --107410 -- 108001 - ---- 108054 ---0003335 — - -646 - ­281)24k- - 17326 ---- -053 - PHASE 2 8 10YR PROPOSED- - 1181001 107490 1080611 108101 0002605 6071 39530 23675 0 48 PHASE 2 8 50YR 1EXISTING 2047 001 1074 10 108104 1081 771 0003935 8 02! '22 111) 28196 0 59 PHASE 2 8 50YR PROPOSED 2047 00 107490 1081 51 1082 051 0003230 756 647 71 304871 056, 1 PHASE 2 8 700YR EXISTING 2780001 107410 1081 61 1082441 0004328 896 6884 309 28 0 63 PHASE 2 8 t00YR PROPOSED 2780 00 7074 90 1082 02 7082 67 0003757 864 804801 331081 0 61 PHASE 2 7 1YR JEXISTING 788 00 1074 00 1076 03 107592 1076561 00136711 587 32 02 1 24171 090 t t f] t 1 �l n �J 1 t 1 1 t h 1 t I 1 1 HFCAAS Rw, RI(d:RFFN P— PHARF 7 rr`nnM1n.— Reach 1 Rim Sta PmRe Plan O Total Mm Ch El WS Etev Cm W S E-G. EW E G. Slope Vel Chnl Flow Area Top Witlth Fronde *Chi , (ds) (ft) (ft) (ftl (ft) (ft/a) (fth) (sR ft) (n) PHASE 2 7 1YR PROPOSED 18800 107220 1077 25 1 107732 0 000768 1 220 88 82 1 41 191 0221 PHASE 2 7 ZYR EXISTING 37000 1074001 10709 107668 1077 61 00105231 8 80 5840 34 74 084 PHASE 2 7 2YR PROPOSED 370 00 107220 1078 29 107843 0001084 3 OB 14245 59 9B 0 27 PHASE 7 SYR EXISTING 75700 107400 107844 707914 0008327 8941 73215 5928 089 PHASE 2 7 SYR PROPOSED 75700 107220 1 1079791 1080 01 00012131 403 317251 233 04 0 37 PHASE 2 7 10YR EXISTING 1181 00 1074001 1079691 1078741 1080 37 0 004748 7 09 257 12 201 49 0 81 PHASE 2 7 IGYR PROPOSED 1181 001 1072 20 1080 66 1080 88 0007228 4 48 584731 328181 032 PHASE 2 7 50YR EXISTING 2047 00 107400 081041 1081551 0 0032M8 1 703 657 88 1 35815 0 53 PHASE 2 17 50YR PROPOSED 2047001 1072.201 1081591 1081 88 0001553 553 919 67 379 51 036 PHASE 2 7 100YR EXISTING 2780 00 1 107400 1081 B5 7082 20 0003373 767 885 30 38058 055 PHASE 2 7 100YR PROPOSED 278000 1072-2011 108214 1 1082 47 0 001794 625 1130 38 389 81 040 PHASE 6 7YR EXISTING 18800 107180 107825 107632 0000834 215 8763 2861 022 PHASE 2 6 1YR PROPOSED _ - 188001 1074 60� 107892 1077 21 0 005620 4 35 44 49 36 98 0 80 PHASE 2 6 2YR EXISTING 370 001 1071 801 107718 107734 0.001096 3 191 120 551 4660 029 PHASE 2 6 2YR PROPOSED 370001 107460 1078 DOI 1 107833 00037411 4 72 1 96631 6060 052 PHASE 2 6 5YR EXISTING 757 00 1071 60 1078 61 1078 91 0001819 4 48 204 i4 82 70 036 PHASE 2 8 - SYR PROPOSED 757001 1074 60 107966 1079 94 00019721 4791 318 63 271 11 0 41 PHASE 2 6 IOYR EXISTING 1181001 107160 1079841 1 1080181 0 D014881 5011 422571 313321 036 PHASE 2 8 10YR PROPOSED 1181001 1074 60 108062 108083 0 D014571 4721 82765 344801 037 PHASE 2 B 50YR EXISTING 2047001 1071 80 1081091 108143 0001444 5 61 858 B3 398 33 037 PHASE 2 6 60YR PROPOSED 2047 00 107460 1081 56 1081 81 0 001650 5 82 993 82 415 81 040 PHASE 2 6 100YR EXISTING 2780 00 107180 7081 69 108208 00016531 6 331 1102 981 418491 0401 PHASE 2 6 100YR PROPOSED 278000 107460 1082111 1082.39 0 001805 6 23 1226 85) 424 87 0431 PHASE 2 5 1YR EXISTING 18800 107360 1076 02 1076241 0 003510 377 49 93 28 031 0 48 PHASE 2 5 1VR PROPOSED 188 00 1072 80 1076 89 1077 01 0 601584 284 BB 22 2701 032 PHASE 2 5 2YR EXISTING 370 00 1073 BO 1078 81 1077 22 0004820 5191 7130 2889 0 58 1 PHASE 2 5 2YR PROPOSED 370 00 1072 60 1077 90 1078 13 0002055 388 9623 3246 038 PHASE 2 5 SYR EXISTING 75700 1073601 1078001 1078 75 0006224 6 9B 10876 34051 069 PHASE 2 5 SYR PROPOSED 75700 1072801 1079301 1079 72 0 002378 5 301 191 00 178 88 1 044 PHASE 2 5 tOYR EXISTING 1181001 1073801 1078 98J 107815 1079 991 0 0077851 8081 157 88 11819 0781 PHASE 2 5 tOYR PROPOSED 118100 1072 W 108028 1080671 0002001 5611 445 77 29251 042 PHASE 5 50YR EXISTING 2047001 107360 108088 1081321 0003071 617 64010 32895 051 PHASE 2 5 50YR PROPOSED 2047 001 107280 1 081201 1081671 0002459 679 740921 34348 047 PHASE 2 5 100YR EXISTING 278000 1073 60 1081471 1061 961 0003112 6.75 843.76 344 82 053 PHASE 2 15 100YR PROPOSED 278000 707280 1081 75 1082 271 0 002703 751 92946 346 -18 050 PHASE 2 4 1YR EXISTING 18800 107250 1075 79 1075 69 0007709 250 7516 3017 028 PHASE 2 4 7YR PROPOSED 18800 1073 90 1078 34 1078 et 0004889 422 4450 TS 42 0561 PHASE 2 4 2YR EXISTING 37000 107250 107045 1076 88 000,2102 387 9651 31 68 039 PHASE 2 4 2YR PROPOSED 37000 107390 107725 107769 0004997 534 6995 341 060 PHASE 2 4 SYR EXISTING 757 00 1 107250 107749 1078 02 1 0003568 585 12948 3374 053 PHASE 2 4 SYR PROPOSED 757 00 107390 1078511 107925 0004945 701 122.361 4428 064 PHASE 2 4 10YR EXISTING 118100 107250 1078341 107920 0004720 744 158861 3544 062 PHASE 2 4 10YR PROPOSED 118100 107390 1079611 107862 108031 0 003858 734 32683 287 76 059 PHASE 2 4 50YR EXISTING 21347 00 107250 107971 107855 108082 0 OD4999 8 871 395 43 292 30 066 PHASE 2 6 50YR PROPOSED 2047 00 107390 1060 71 108133 0003 6 7 86 669361 342711 057 PHASE 2 4 100YR EXISTING 278000 107250 108045 1080 35 108149 00043727 9 20 623851 320931 065 PHASE 2 14 100YR PROPOSED 278000 1073 90 1 1081 17 108191 0 003935 8 94 83388 372 82 062 PHASE 2 3 1YR JEXJ STING 188 001 1073601 1075 61 1075 75 0004115 3 031 62071 51 54 049 PHASE 2 3 1YR PROPOSED 188001 107370 1075801 107621 0009105 5181 36 28 24 49 075 PHASE 2 3 2YR EXISTING 370001 107360 1076 27 1078 49 0 003887 3771 9806 55391 050 PHASE 2 3 ZYR PROPOSED 370001 1073701 1078 79 1077 33 0 008947 5911 63 48 38 18 070 PHASE 2 3 5YR EXISTING 757001 1073 60 107739 1077 73 0 003323 4891 161 50 63 46 050 PHASE 2 3 5YR PROPOSED 757001 1073 70 107828 1077 53 1078 89 0004488 6 65F 15445 8091 061 PHASE 2 3 10YR EXISTING 1181001 107360 1078381 1078 82 1 0002950 534 233 10 91 79 049 PHASE 2 3 10YR PROPOSED 118100 107370 107947 1 107996 0002887 6 451 41100 30000 051 PHASE 2 3 50YR EXISTING 2047 00 107360 107999 108040 0001999 5531 65054 36013 042 PHASE 2 3 50YR PROPOSED 204700 107370 108036 108092 0003221 7621 72168 37680 056 PHASE 2 3 100YR EXISTING 278000 107360 108066 1081 09 0 00202, 6 01 900 57 362 99 043 PHASE 2 3 - 100YR PROPOSED 2780 00 1073 70 108090 108149 0003361 826 928 07 38825 058 PHASE 2 2 7YR EXISTING 188 00 107320 107521 1076481 0008045 4 - 48 34 4076 067 PHASE 2 2 1 VR PROPOSED 188 00 7070 90� 107585 1075 93 000092 2i 79 01 2716 025 PHASE 2 2 2YR EXISTING 37000 107320 1075811 1076231 0 007836 5181 7143 42361 070 PHASE 2 2 2YR PROPOSED 370001 107090 1076871 7077 OS 0 001404 3 401 110 871 4150 031 PHASE 2 2 SYR EXISTING 757001 107320 1076811 1077 48 0007357 8 57 115 15 l 45 01 072, PHASE 2 2 5YR PROPOSED 757001 1070 90 1078 35 1078 66 1 0 001878 468 208 58 175 70 036 PHASE 2 2 10YR - EXISTING 118100 7073 20� 1077 74 1078591 0 608521 74 168 85 6537 071 PHASE 2 2 10YR PROPOSED 1181 00 107090 107947 1079 811 0001553 5 73 481 27 315 59 036 PHASE 2 2 50YR EXISTING 204700 107320 107960 107865 7080 25 0.003530 70 528 23 32296 D55 PHASE 2 2 BOYR PROPOSED 204700 107090 1080 31 1080771 0002136 854 77568 38388 043 PHASE 2 2 100YR EXISTING 278000 107320 1080 2B 1080 95 0003358 7 50� 775 58 383 55 0 55 PHASE 2 2 100YR PROPOSED 278000 1070 1 1081 33 0 002519 7 42 96415 39331 0481 PHASE 2 1 7YR EXISTING 18800 107230 1074671 107430 1074 89 0006724 3 82 4915 404 0 81 WiASE — 7YR- -'PROPOSED -- -78800 �- 107310 -- 107532 — 107490 - -- 107588 - -- 0007159-- - -- --- 482 --- 3900 - - -- 2439- ----- -- -0671- PHASE 2 1 2YR ^'� EXISTING -` 370 00 1072 30 1075 25 1074 83 1075 65 0007300 5571 7296 41 34 067 PHASE 2 1 2YR PROPOSED 37000 1073101 1078 171 1076741 0007444 606 61 02 2151 07i PHASE 2 1 SYR' EXISTING 75700 1072 301 107620 107567 107690 0007488 669 113 43 4389 072 PHASE 2 1 7YR PROPOSED 757001 107310 1077 60 1076 89 1078 35 ) 0008221 751 114 43 49 82 071 PHASE 2 1 tOVR EXISTING 1181 00 1072 30 7077 OS 1078 42 1078 Ot 00074111 787 152 23 47 48 075 PHASE 2 i tOYR PROPOSED 1181 00 1073 10 1079 00 1076 10 7079 BO 00032461 688 35192 288 39 054 PHASE 2 i SOYR EXISTING 2047 00 107230 107904 1077 78 107990 0 004248 7 81 422801 301881 060 1 t 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 Reach River St. Profile Pl.. O Total Min Ch El 1 W S El- Cr W S - EG Elev G Se E h Vei Chnl Flow Area Top WK M Fronde 9 Chi (ds) (ft) (R) (ft) (ft) Ym I (Ms) I (sq ft) (ft) PHASE 2 1 50YR 1PROPOSED 2047001 1073101 108004 low6ol 0 D030291 75411 747291 414 861 0 54 PHASE 2 1 t00YR EXISTING 2780001 107230 107994 1079501 108066 000332 7 88 76832 41114 0 55 PHASE 2 1 t00YR PROPOSED 2780 00 1073 10 108053 1081 12 0 003255 8 24I 95387 42271 057 PHASE 2 09 tYR F)OSTMG 188001 1072-301 107431 1074311 1074761 00204001 5381 3495 40 01 1011 PHASE 2 09 1YR PROPOSED 188 00 107310 1074901 107490 1075551 0 017273 8 46 1 2909 22 84 1 01 PHASE 2 0.9 � ZYR F)OST84G 370 00 1072 30 1074 83 107483 107651 0 017404 8 65 5567 40 70 1 00 PHASE 2, 09 2YR PROPOSED 370 00 107310 1075 86 107566 107660 0 015475 7 79 47 50 25 84 1 01 PHASE -.1 ,09 bYN FIISI [Nu /bl uU 1u123u lulbb/ 1Wbb/ tulb /b UU1bJUb tldb aUW 41 a/ tun PHASE 2 09 5YR PROPOSED 757 00 107310 107889 1076 89 107822 0012253 928 9555 43191 098 PHASE 2 09 10YR F)(ISTING 1181 00 107230 1078 42 1078 42 1077 86 0 014120 964 123 13 44 84 1 00 PHASE 2 0.9 tOYR PROPOSED' 1181 00 1073101 1078 10 107810 1079481 0008405 971 156341 118 07 084 PHASE 2 0 9 50YR EXISTING 2047 001 1072301 1077781 1077 781 00119611 1121 189 041 54 40 0 98 PHASE 2 09 SOYR PROPOSED 2047 001 107310 1079711 1079711 1080 54 00044201 878 614 291 398 19 0 65 PHASE 2 09. 100YR EXISTING 2780001 107230 1079 50 107950 1080581 00050871 905 59284 386 82 0 67 PHASE 2 09 100YR PROPOSED 2780001 1073101 1080161 1080161 1081 051 00048351 968 799881 416 871 069 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 t 1 J i) > > O O O O O P7 O O O _N O N M f� °o LO N Z 1,11 N io W < o o 0 mN N C IL Y W L U W Y U � W 0 W � m °o U U' m 0 0 0 0 0 u� o - - o 0 m o in o 0 o co LO o r o o (g) U04BAB13 1 1 1 1 1 1 1 C] 1 t 1 L� 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 01 O >O O r O L O LO N N O c N N M Fz _z P 5R G ww U) o C X LOO ._ a V w w w U m O � LO cn 0 0 0 U') a co 0 0 o (U) UOIIBA81D 01 O >O 1 1 1 1 1 1 1 1 1 1 t i 1 1 1 t 1 1 M U) X U W w U) X t6 a N Y W W Ix U C7 (g) UOnen913 O O CJ O tf) N O Cl N F O c LO 0 3 n > r } ® O � 0 LO CIJ 7 0 J > m (g) UOnen913 O O CJ O tf) N O Cl N F O c LO 0 3 n 1 t L t t 1 0 t t fl t 11 1 1 1 J 1 u 1 1 t r� 1 1 1 1 r 1 1 1 1 1 1 1 1 f 1 1 i 1 1 1 1 i 1 1 >b- m O 10 0 C. 0 0 0 N r O o N .a r Cl) ti O O _Z P U) In Ww U) O c C X CD o l6 z FL N Y W W U C7 m O N O O O co O O T pNj co co (g) uogeAG13 � 3 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 i 1 1 N r O N Z p Xc W LL U. C h co a N Y W W lz U C9 m (n) uogen913 O O co O O 0 0 v O O cn m 0 0 N 7 7 V, e o > } Y c in J > CCD (n) uogen913 O O co O O 0 0 v O O cn m 0 0 N 7 7 V, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C>�- U.) N :3 2 O O O O 0 1 0 0 C14 Co CN Q ce) Fz O O ce) z ww U) X .0 CU C14 w W w L) 0 co C, rn oo G) m co co co (4) uoileAG13 1 1 !J 1 P, I rl t 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ® O O >O O O O �O 0 N O N � M ti 0 0 Z F CO W w U) X c m a cz N Y W cr) CD I.I.I O N Ix U C7 00 0 0 0 0 N O O aD 0 fp co O O O O (g) UOIJM8l3 ® O O >O 1 1 1 1 t 1 1 1 1 t 1 t 1 1 0 C', 0 0 _co N O N Cl) O O cli Z co O W W F + - F C X O En N Y W N W U C7 m 0 C4 CD co 0 0 o - - - O O O o °D co C, � F 0 0 (u) uollenal3 1 1 1 CD LO 1 1 1 1 t 1 1 1 1 1 1 1 i 1 1 m O � NN 7 � O O LO > O O O N O N Cl) 0 0 r� V M Z U W W C O a 0 N Y W CD w N it U C7 00 0 0 0 0 C4 CO /D O O O O O N O co (g) uogenaG m O � NN 7 � >O > >r 1 1 1 1 1 1 1 1 t 1 t N r O N r M V Z N_ W U W X a Y W W U C9 00 (g) u01leA813 O O O O Cl O O Cl) rR c 0 65 O 0 N 0 0 0 O O to �O N 7 (g) u01leA813 O O O O Cl O O Cl) rR c 0 65 O 0 N 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 N r O N c� 0 cD Z H W U w X d N Y W W w U C7 OD (g) u011en913 O O O O O 0 0 M 0 0 N 0 0 F- c 0 ® O � >0 (g) u011en913 O O O O O 0 0 M 0 0 N 0 0 F- c 0 1 1 1 l 1 1 i 1 1 7 _o N M C7 Z U) x W N Y W w U C9 m (4) u01;ena13 O O Lo 0 0 0 O 4 C 0 65 0 0 :V m O O F � N r G ®Y J > 7 m (4) u01;ena13 O O Lo 0 0 0 O 4 C 0 65 0 0 :V 1 1 1 1 1 1 1 i tf1 CD C, rro 0 0 a 0 N O N M 0 cr) O 0 CD M Z �LO W W Ex m O Y w w N w U C9 00 0 0 0 04 O O 0 O O co O O O 0 N O O co O O (g) uogenal3 tf1 I 1 1 1 1 1 I 1 1 10 N O LO CD CD In m 0 0 O M C) C) 04 Z co W5 X F U) U) c) CM 04 W W L) (9 GO N 6 c0 t0 CD C � O O 00 00 Go co co (4) U01leA913 1 1 1 1 1 U i 1 1 1 1 c in O O O Q co O N O N Cl) O O Cl) Z f- �� f wW X 0 o a in N Y W W o0 N U C7 00 0 0 0 0 0 0 co 00 0 0 0 OD o m 0 0 (g) u01;ena13 c in 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O O O co CD O It N O N LO r � ch o 0 0 cn Z F- co W W c o C ._ N X N Y W N III lz U C9 00 co 0 0 0 0 N O 00 rp 0 0 0 0 0 0 0 � r- (4) uo9en913 N � 7 � >� O O O co CD O It N O N LO r � ch o 0 0 cn Z F- co W W c o C ._ N X N Y W N III lz U C9 00 co 0 0 0 0 N O 00 rp 0 0 0 0 0 0 0 � r- (4) uo9en913 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O O O In M O O O O M O M O co _N O N r LO N Z D O W W U) O C C N O � X Y W U LD OD o 0 0 0 u� 0 N O GO <O Dt N O co co ao co ao n 0 0 0 0 0 0 0 0 0 (1y) uogeABID O j � ®Y � G O O O In M O O O O M O M O co _N O N r LO N Z D O W W U) O C C N O � X Y W U LD OD o 0 0 0 u� 0 N O GO <O Dt N O co co ao co ao n 0 0 0 0 0 0 0 0 0 (1y) uogeABID 1 1 1 LO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 clo- ° T m ° 0 ° Ln 0 0 N _N O N th n Z ° 0 F... N S2 O W U W c N o � X •Y CL to 0 _o Y W c U C9 m 0 0 0 u� 0 rn C* coo coo Go co n 0 0 0 0 0 0 0 0 (g) UOPA613 Ij clo- ° T m ° 0 ° Ln 0 0 N _N O N th n Z ° 0 F... N S2 O W U W c N o � X •Y CL to 0 _o Y W c U C9 m 0 0 0 u� 0 rn C* coo coo Go co n 0 0 0 0 0 0 0 0 (g) UOPA613 1 1 1 1 i 1 1 1 1 1 i 1 1 1 1 1 1 1 1 O O O O M Go 8-1 O O O � N N r O N Cl) ti Z N W W C C x O � x -Y O r Y W W C7 °D 0 m 0 0 0 u� o° rn o u� 0 o rn 0 0 0 0 0 (g) u011en813 � 61 r O O O O M Go 8-1 O O O � N N r O N Cl) ti Z N W W C C x O � x -Y O r Y W W C7 °D 0 m 0 0 0 u� o° rn o u� 0 o rn 0 0 0 0 0 (g) u011en813 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O O N O O m O O 0 O N N O N r- uD ch o 0 Z 1— N N W W F C x m X O O _ Y W W cc U 0 m OD 0 0 LO 0 co co C Go OND GOo � m o 0 0 0 0 0 0 (4) uogenal3 m O O 0 � N t 1 1 I 1 1 1 1 1 1 t 1 I--- L�- fl t t 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O LO N �_ O O N N o r O N M 0 0 Z f.. X U w W r c x C X o c d v, Y W U C� 00 Go co co C-4 0 0 0 0 0 0 0 0 o 0 o co o ro 0 0 0 (4) UOPA813 C1 O � � >O O LO N �_ O O N N o r O N M 0 0 Z f.. X U w W r c x C X o c d v, Y W U C� 00 Go co co C-4 0 0 0 0 0 0 0 0 o 0 o co o ro 0 0 0 (4) UOPA813 1 t 1 1 t t 1 1 1� 1 �l 1 t- - - -- Ll 1 t t i i 1 1 1 1 1 1 1 i t 1 1 1 1 1 1 ca O O 4] O O N r O N M rn V O C, O m Z F- D co W W U C X C O a N Y w N _o O (7 O m ■ O O OD O CD O O N 00 co O n n (g) u01len213 1 1 1 1 1 1 1 t 1 I 1 1 1 1 1 1 1 1 O O O O N T 0 N M 0 0 i� m 2 0 H N W w C X o (6 Y CL u, V 0 W N U C7 m Cn co 0 0 0 0 o o co 0 0 o 0 (g) U04BA013 1 1 1 1 i 1 1 1 1 1 1 t 1 1 1 1 1 1 1 � La O O LO O O a N_ 00 O N M ti O Cl) Z F- � i N W W M C x o 4 � X uj W N U 00 m 0 0 0 O TO O N O O O CD (p (U) uogenal3 � t 1 1 1 1 1 1 1 1 1 1 1 t 1 1 i 1 1 e o } } � � � c m O � � 1l) N to 7 ®Y > O O P7 O tq N N � CV o r Z D) � WW U) Lo ._ aX Y W W U M o � o m ° o o o o Go 0 0 0 0 (g) U04CA013 e o } } � � � c m O � � 1l) N to 7 ®Y > 1 1 1 1 i 1 1 1 t 1 1 I r i i i i 0 0 a a 0 0 0 N O N r M O CM N 0 Z Cl) O W U W U) X o CD c 0 0 N IO � !O CL Y W W U '- C7 00 o 0 0 0 0 LO 0 0 0 0° 0 0 (U) UOPAGO 1 1 1 1 1 1 1 1 1 1 t 1 r i i t 7 � Y >p > > >> O O O N M W O O O Cl) N r O N M o r �> ^^ O N ` V Z U) X" W U w CO X o0 0 N f0 a Y W W U C9 co m 0 0 0 0 LO 0 0 0 °0 0 0 0 0 0 (g) u01lenal3 t 7 � Y >p > > >> 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 m O O � N � 7 � >O O O go O O M O O M O N O N ch Z SQ N X Cl) W U w O c N CL U) Y W W o m ----------- - - - - - -- - - - - -- - - - -- - - - -- -- -- - - -- -- -- -- ---- - - - - -- 0 0 - - - --- rn I m 0 (10 0 m GNo coo 0 0 0 O r, to n 0 0 0 (g) UOQM91� ] m O O � N � 7 � >O 1 1 i I i 1 1 1 t 1 1 I 1 t 1 1 1 1 1 cn O O Ln co O p p N r- LO Cl) O N Cl) c n o p Z F C/) c) W U W C 0 a (n N lic W CD, Ill N U 0 0'0 o 0 0 m 0 coo 0 co 0 g co co m 0 0 0 0 n m n 0 0 0 ()J) uopen813 1 1 C CD 1 I i 1 1 t 1 1 1 i 1 i 1 1 m O � O O O co O Cl O N m tn C N M N 0 0 O Cl) Z W Cl) +c U NX c o CL N Y W LU N w U 0 m °O 0 0 0 o �n o c 0 o 0 Q0 u01;ena13 m O � � 1 1 1 I 1 1 1 1 1 t 1 1 1 rg; O N Cl) i` 0 Z LD LO X� W w N X a N Y W W It U 0 m m O 1} N (n LO 3 lo-1 �m 0 (g) uopenal3 1 1 1 i i 1 1 1 1 1 1 f 1 1 1 i 1 1 1 N r O N r M Z SQ co Xv W w C U) N X d Y W W U C7 m (8) u01len813 O O O O v 0 0 M u c 0 ® O O Lo Ln N } 7 •Y (8) u01len813 O O O O v 0 0 M u c 0 1 1 1 I 1 1 t 1 1 I 1 t 1 1 i 1 1 0 O I>,- � � N � 7 � O O O O O O _N O N M r- 0 O Cl) Z fA n co W U 0 W � C � X c � a � Y w N U C7 OD 0 0 0 co 0 co 0 co 0 CI P- 0 0 0 CM 0 0 0 (4) UOi;ena13 � � N � 7 � 1 1 0 CD CD cm 1 1 i 1 1 1 1 1 1 I 1 1 1 1 1 l{7 Y ca ca O O to O O N c O N M O O Z F- W W u� cn C N X C o c 0 a � Y W W o° N w U C9 ot] W 0 0 0 Go 0 co 0 co 0 co n 0 0 0 tnD n r- 0 0 0 (4) (4) u04ena13 l{7 Y 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 Lo } 7 � >N ME O -O W) O O O N O N th ti C) O 0 M Z � T M w U W C X c) M � t0 �p a U) N Y w w o0 N w U C9 OD OD 0 0 0 00 O co O O O O co O 0 n0 n N O O (g) u04enal3 N } 7 � >N 1 1 i 1 1 1 1 1 I 1 1 1 1 1 1 1 0 co O O 0 Lo O 0 0 N O N m O CD co Z M ~ w W Il M • O o � 0 CL CO W N W U 0 00 o 0 0 coo Go co 0 Goo n I-- r 0 0 0 0 0 0 0 0 (g) u04eA913 1 1 1 1 1 1 1 1 1 1 1 1 O O C �lJ r W, N 7 r CD O O O a 0 0 0 0 N_ 0 Cl) O N Cl) ti 0 0 W N 0 CL O C lO N Mn W O 0 Q C5 6 c a N C Y U jL W c C) m W W O o U 0 OD 0 0 0 0 0 o° rn rn co o 00 LO o n 0 0 0 � o (4) uolleABID 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 (� m O O 0 1} NN 7 y} O r O cn O O N N_ O N �- O Co N ti 0 W CO O O a w MO aX LL O O C � O O U (0 E Y W W V � Fn O O O O C O co O � � O p O (g) uogenal3 (� m O O 0 1} NN 7 y} 1 1 1 1 1 t 1 1 1 PY 1 1 1 O O Cl) O CD N N N >� O N � M o ti N W U O ° o IL O � U LU to X O c un o C � M d N Y W W � o o 0 in- Cn Cl) 0 �n 0 0 LO ° 0 0 o rn rn u� 0 ° 0 0 o (g) uogena13 N >� i rrO Lo cn O N N_ O N r" O V) N CD 0 W O IL O 0 N aL o .� w X o c in o C � c0 a Y W W U o m O uo LO M O co O O co O p co 0) N O co O O O (g) UWA9l3 0 O O !p � N N � 7 � BY CI O rrO Lo cn O N N_ O N r" O V) N CD 0 W O IL O 0 N aL o .� w X o c in o C � c0 a Y W W U o m O uo LO M O co O O co O p co 0) N O co O O O (g) UWA9l3 1 1 1 Ln i 1 i 1 i 1 1 1 1 1 1 i i 1 1 1 N J � 3 0 Ln �0 0 0 a _N O N T Cl) ti Q O W C � fh O a- 0 Ix a� w T X o ;3 C � Co d � 0 o N Y C W W U C7 m 0 0 0 0 o O ao �n 01 O N 0 O m 0 co O (g) u011en013 N J � 3 1 I t 1 1 d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 C>3, GI co 0 _o O � � N } 7 � 0 0 N_ tLO O N r m °o oco w� U) 0 a. o CL U _ W X o 0 Cl) '- C � _N a_ Y W W U O c 0 N m LO m A O O O O 0 0 W 0 0 O aoo Go 0 0 M uonenal3 O � � N } 7 � 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 Ln LO CD f0 Lp rrO O CD uo N O N c'> O O O w U) O O °O o � U .. uJ X o c o 0 Cl) - m C � a w w U O O N m O O Ln m O co O co O v 01 C O O O W (11) UORen213 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 O - O LO O O N o O � N c) ti O W oO Cl) O IL Lo a � o 4el w U c X o C CO � IO a N 0 o `4 Y W W U C) in 00 0 0 0 rn rn rn rn to 0 00 0 0 0 0 0 0 0 (g) UOi;ena13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O 0 5- co O CO O O O O 04 C) N LO W U) 0 a_ 0 w w a- L) LU ri) x CD C*4 LU w 00 Liz v 3) C� 0) I 0 �6 CD 00 C, (D co co co (4) UOI)eAgl:l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 >C- m U.) cc � N O O 4] O O Q _N O N ch 0 O w o0 CO O CD d O � C, aU w X o C � _N Y � � O O N w W U C7 m 0 0 m 0 CS) CD o o 0 00 co (4) UOIIBA813 0O � N - ------ in Lo N CL Lo co CL CN CD CD Do (4) U04BA913 1 1 1 rl 1 t 1 1 1 1 1 1 1 i r w i 1 i 1 )1-11 m O wo O O � t} 47 co O O O � _N O N >r r Cl) ti CO o O CL O of N a5 �— w `- U o X C 05 M IL N 0 0 N Y W W U C9 m 0 0 0 m 0 0 0 0 0 o (g) uonenal3 � t} N 7 � >r 1 1 i 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 O O �o co o a 0 N CD N M � T o M 0 W o0 O a O �c) U w T U o X M C � f l0 a I N 0 0 N Y W W W o U C� 00 0 0 O co O p co co O 0 O N co co O O O (g) UOPA813 1 1 1 1 1 1 f 1 1 1 t 1 1 1 1 N O N ch ti cl W U) O a O X v a5 -� w U) X C (O d Y W W cr- U C7 m x m O t} N 7 0 (g) uonen813 x 0 1 1 1 Lo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ® O � � � N � 7 � 0 to rr0 0 0 o _N O N m O W U �n o 0 c°n O d O ir � d U _ i W Xo c C _N d C. v N W W U C7 m o 0 0 0 C11 CD 0 0 0 o o o 0 o (g) UOIIBA813 ® O � � � N � 7 � 1 1 1 1 � 1 1 t i t t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 V it of w O O O O O N ao r o O N co fl- co O M O d 0 d w .- U) o. c X m C 65 f0 a N O o N Y W I.I.I U C7 00 o °o T T Go co Go O 0 N O co O O O O O O O O O (�) u0nenal3 1 1 1 I 1 t 1 1 1 1 0 1 1 1 ii t t 1 1 1 0 O OF W) N - 7 ,, LO 0 C ®m 0 �o a I 0 u� 0 0 0 0 m N cn � m LO O � N r M ti 0 D N LU 0 a a U CD0 0 X N '— C U Co a Y o W W o m 0 0 0 LO 0 04 CD V C14 0 00 0 0 0 0 0 0 0 0 0 (g) uo9en913 1 1 1 1 1 L 1 1 1 I 1 1 1 1 1 1 1 1 O O C� 0 C ° CD ° cn LO m 0 N o O N N r cf) r- ti w U) 0 ° ° 0 N Of N CL U F -� w X .y C � M a ° C2 co w 0 w U C9 m 0 0 ° N O GO W W O Go Go co co O O O O O O O O (g) U04BA013 1 1 1 cc t 1 1 1 1 1 1 f 1 1 1 1 1 1 1 0 C" o 0 0 cn cn O N N T c7 ti W U) O Cl a N O a- C) T � CO x _ CL o Y W � o U � 0 m o 0 0 LO 0 o 0) o �i o tn o w rn o c � (3y) uogenal3 � O � � � N ®Y ` 0 C" o 0 0 cn cn O N N T c7 ti W U) O Cl a N O a- C) T � CO x _ CL o Y W � o U � 0 m o 0 0 LO 0 o 0) o �i o tn o w rn o c � (3y) uogenal3 1 1 1 1 1 1 1 1 1 i 1 1 1 1 O O N O O O O N � LLy N O N c� L6 o� W CO 0 a- of N d N U _ X _ cn M a Y W W U 0 m co 0 O LO OD 0 rn coo Goo Goo ccoo coo °�° m 0 0 0 0 0 0 0 (g) uonenal3 � O � � LLy N 7O oY i 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LO clo O O N i O O O O N O N r M ti o t+� 0 W O a O CL � �� o 0 x — c 05 m C. W w U 0 in 0 0 0 u� 0 m M CM O co Go Go Do N O co O O O O O O O O O (g) uogena13 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 i t� O LLJ N O O N N r C O N o Ilr cr) I,- o IF u1i N � O a w N a U -- w U) LO o 0 X C � _N CL N 0 Y W W U C7 00 0 0 LO rn 0 rn 0 w 0 m m coo 0 0 coo GNo ado °n° 0 0 0 0 0 0 (g) UOIIEA813 t� i 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � O � O LO C7 O O fn O O N ° r Ln NN r ch ti W m ° � o a a O N X to N a0 —� w X o C (n a ° Y W W L U m m o 0 ° Cl 0 6 T 0 0 0 cli O o o 0 co co O 0 0 0 (g) UOIIBA913 � O � 1 1 1 t i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ln m O � t N .}- j fn >O >}fY 0 0 0 0 N_ O N M ti 0 w 0 o co O Cl) CL W co a0 � �w e- U X o C � co CL NryC. Y 0 N W W Ln U m 0 0 0 m 0 Go cc 0 0 0 0 co n o 0 (g) U04BA813 m O � t N .}- j fn >O >}fY 1 1 c C�' 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 0 fn O O O 01 O O O N_ O N Cl) ti W o 0 Cl) O � a o O N a� �U) a x C 65 l3 a O O N Y W I.I.I C U C7 DO `O Cl) O O O O O L - k CD OD 00 O 0 Go co r, O C6 r— r- (74) UOIWAOJ3 O A Y 01 O � � � � � � � � � � � � � � � � � � � a e� � 2 k$ 2 2 2 a) CD ) \ C14 / c $ O C) a � §� E k / � \ E C. w w a 0 0 m CD ) d o � o �° a e e 2 ) ) ) U en a e� � 2 k$ 2 2 2 a) 1 t 1 jw I x w lit 0� _ 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t m LO � 7 � >N O r o Cl) o N N O N M co o 0 0 N W CO 0 CL O Of CD N CL w �U) C o cx m a Y W c�i W c F3 o CD 0 0 co oho m co °n° v r.- 0 0 0 0 0 0 (4) uogen913 m � � 7 � >N 1 1 1 i 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 c o } Y � � c I N � O O >n > O O Cl) O O O C7 N_ O N M ti D 0 N W U) O a O Co d V � O c °- X c N C � _N 0- CN W 1O W U 00 0 0 o 0 O u� coo 00 cc Goo r- 0 n n 0 0 0 0 0 0 0 0 (g) uogenai3 c o } Y � � c I N � � 7 •Y >n > 1 1 ir lit 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � Cl) m O I>,- � LL N 7 co 0 _a a 0 LO 0 0 0 N O N u) � C, t\ o ti O 0 � N W U) 0 A 0 W M a U w °0 0 x N •- C � fd a Y o W W w L) � 0 m 0 0 Lo 0 co � N O O co O n co O O O (g) UOl ;eAO13 1 t 1 1 1 1 i 1 t 1 1 1 1 1 1 i 1 1 1 O O 0 1} } 7 >O >N > O O a O O � O O c7 Cl) _N O N r Cl) ti 0 W U O a O Er N a' U U) ° 0 X 0 N - C � f6 a Y W ao w 0 U C7 00 0 0 W co m Go N O 0 O (g) UORena13 1 1 t 1 1 t 1 1 i 1 1 1 1 1 1 1 1 1 to 0 LO 7 � En co O r O L Ll7 co O p p N O N M M o ti W U) o 0 Cl) CL w m CL M U `- W o X C U3 CL 0 N Ye W w W U o 0 m 0 0 Go co CD 0 to 0 0 0 0 0 0 0 0 0 (g) uoReAa13 0 7 � 1 r t 1 m O O � LL C-4 � O O LO co O OO C a N Ncoo � o M ti 0 W o O co) a M aW X C _N d 0 N y W W U °O 0 (7 m 0 0 0 u� co n o 0 o n 0 0 0 (g) uogenaI3 � 7 � O C 1 I 1 1 1 1 1 A 1 1 1 1 r i t t � O � O NN O O 7 co O LO C7 O O O f7 N O N M ti Q Ill U) 0 a_ 0 X CL w �� a o X N - C � (0 d Y W W o U (7 m 0 0 rn rn Goo ow 0 F 0 0 0 0 0 0 (g) uopenal3 � O � O NN >� 1 I i 1 1 1 1 1 1 1 1 1 1 1 1 t 1 O LO 9 O O WO O O N 'n r � O � N r ch ti W o0 O Cl) a M I CL w Cli o x .Y c m ro CL 0 0 Y N LU Ill O U 0 m 0 0 0 CO LO 0 0 0 0 � o (g) UOl ;en813 d1 i O � � r} 7 � >O > O LO 9 O O WO O O N 'n r � O � N r ch ti W o0 O Cl) a M I CL w Cli o x .Y c m ro CL 0 0 Y N LU Ill O U 0 m 0 0 0 CO LO 0 0 0 0 � o (g) UOl ;en813 1 I 1 i 1 t 1 1 1 1 1 t 1 1 1 F, c 13 c Ir O� X O O 0 0 N 7 0 0 LO 0 0 N O N ch ti W U °o O cn O cr- o Cl) aW x Y c w M a ry 0 0 N W LU U 0 C13 0 0 C. 0 co coo 0 m 0 cm co 0 CD coo n 0 0 0 n n n 0 0 0 (g) U04EABIB 1 I 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 i � 7 � O O 117 O O N O N o r CO ti w W :/) O O O Cl) Q IX co a V .- U, t � o c 0 X C 65 f0 a CN 0 N Y w UJ x U (5 m 0 0 0 (O 00 N O O Go 00 � O O O O 0 10 A O O O (g) UORBA013 � 7 � i XIX M 0 0 0 L:J n n l �I U 0 8 � 7 U) O O U') O O O O N_ O N M ti W °o co O a M a LO ^ W M r x p C X �� C a ry O O N w W U C7 m Go 0 Cl 0 0 co V' N co Go co co h O O O O O O (jj) u01leA813 J Design Criteria Supporting Documentation a r r e i 1 rl I r, I I� f� I� i i! L L r� r Big Creek II — Reach 1 (Station 0 +00 — 8 +50) Design Criteria Table Variables Existing Channel Proposed Reach Design Criteria Stream Types G4 B4c B4c Drainage Area mi 5.71 5.71 NA Bankfull Width (Wbkf) Note 1 23.4-26.1 27.0 Bankfull Mean Depth (dbkf) Note 1 2.3-2.5 2.7 Width /Depth Ratio (Wbkf /dbkt) Reference 9.5-11.4 10.0 Parameters, Note 1 Bankfull Cross - Sectional Area Note 1 Abkf 57.8-59.8 72.9 Bankfull Mean Velocity (Vbkf) Resistance Equations 3.6-3.75 3.1 Bankfull Discharge (cfs) Note 2 217 217 Bankfull Maximum Depth (dmax) Note 1 2.9-3.1 3.2 Dmax/Dbf Ratio Reference 1.17-1.25 1.15 Parameters Width of Floodprone Area (Wfpa) 27.4-39.9 48.6-54 Entrenchment Ratio (WfpalWbkf) 1.2-1.3 1.8-2.0 Meander Length (Lm) Existing Geometry 81-133 191-460 Ratio of Meander Length to Reference Bankfull Width (L/Wbkf) 3.24-5.32 7.07-17.0 Parameters Radius of Curvature (Rc) Existing Geometry 13.0-124.0 57.0 —149.0 Ratio of Radius of Curvature to Reference Bankfull Width (RI/Wbkf) 0.52-4.96 2.1-5.5 Parameters Belt Width (Wbit) Existing Geometry 45.0-179.0 44.0-173.0 Meander Width Ratio Reference (WbltMbkf) 1.8-7.16 1.63-6.4 Parameters Sinuosity (stream length/ Existing Geometry valley distance 1.28 1.30 Valley Slope Existing Geometry 0.0047 0.0047 Average Slope (S,,9) Note 3 0.0037 0.0044 Pool Slope (Sp ,01) 0.000 — 0.001 0.001 Ratio of Pool Slope to Average Reference Slope S ,I /Sbkf 0.065 — 0.312 0.227 Parameters Riffle Slope 0.012 — 0.015 0.0084 — 0.0086 Ratio of Riffle Slope to Reference Average Slope 3.14-4.05 1.9-1.95 Parameters i e i1 I I Big Creek II - Reach 2 (Station 8 +50 - 21 +22) Design Criteria Table Variables Existing Channel Proposed Reach Design Criteria Stream Types F4 /B4c B4c /C4 B4c /C4 Drainage Area (mi2) 5.89 5.89 NA Bankfull Width ( bkf) 29.35 Note 1 23.6 - 31.7 28.0 Bankfull Mean Depth (dbkf) 2.17 Note 1 (1.9-2.5) 2.4 Width /Depth Ratio (Wbkf /dbkf) Reference 9.4-17.0 11.7 Parameters, Note 1 Bankfull Cross - Sectional Area 62.9 Note 1 (Abkf) (59.0 - 65.8) 67.2 Bankfull Mean Velocity (Vbkf) Resistance Equations 3.5-3.8 3.3 Bankfull Discharge (cfs) Note 2 223 223 Bankfull Maximum Depth (dmax) 3.3 Note 1 2.8-4.5 3.1 Dmax/Dbf Ratio Reference 1.4-2.14 1.3 Parameters Width of Floodprone Area (Wfpa) 35.1-86.3 52-90 Entrenchment Ratio (Wfpa/Wbkf) 1.1-2.1 1.86-3.5 Meander Length (Lm) Existing Geometry 113-176 191-470 Ratio of Meander Length to Reference Bankfull Width (LmNVbkf) 3.84-5.99 7.07-17.4 Parameters Radius of Curvature (Rj Existing Geometry 19.0 -88.0 57.0 -116 Ratio of Radius of Curvature to Reference Bankfull Width (RdWbkf) 0.65-2.99 2.1-4.3 Parameters Belt Width (Wbe) Existing Geometry 82.0 -174.0 44.0 -98.0 Meander Width Ratio Reference (WbnNVbkf) 2.79-5.92 1.63-3.6 Parameters Sinuosity (stream length/ Existing Geometry valley distance ) 1.46 1.33 Valley Slope Existing Geometry 0.0064 0.0064 Average Slope (S,, g) Note 3 0.0044 0.0048 Pool Slope (Spool) 0.001 0.0001 - 0.004 0.001 Ratio of Pool Slope to Average Reference Slope S l/Sbkf 0.029 - 0.91 0.21 Parameters Riffle Slope 0.19 0.009 - 0.031 0.00875 - 0.0094 Ratio of Riffle Slope to Reference Average Sloe 1.94-6.99 1.99-2.14 Parameters 1 1 n 1 1 1 1 1 1 r� 1 1 1 1 Notes: Channel dimensions were initially developed by utilizing the updated Bankfull Discharge and Hydraulic Geometry Regional Regressions for the Rural Piedmont Region of North Carolina (NCSU and NRCS, 2006) to determine channel cross - sectional area (A) based on the drainage area to a given reach. The calculated A and W/D ratios from our reference reach database was used to determine bankfull width Wbf = 4(Wbkf / dbkf) (Abkf) and bankfull mean depth Dbf = Wbkf / (Wbkf / dbkf). After the proposed channel plan form and longitudinal profile were completed, bankfull cross - sectional area, width, depth and width /depth ratios were adjusted using information developed from the reference reach database, sediment entrainment analysis, and the output of the Flowsed /Powersed model. 2. Three methods were used to develop bankfull discharge estimates. These included: a) Regional regression equations developed in North Carolina (NCSU and NRCS, 2006), b) TR -20 Hydrologic Model, and c) Manning's Equation and field data. Based on this analysis it was determined that utilizing the NC regional regression estimates provides a reliable method for estimating bankfull discharge for the proposed project design. 3. Since aggradation is an on -going problem along Big Creek, one major objective of the restoration project was to improve sediment transport competency and capacity. This can generally be accomplished by adjusting channel cross - sectional dimensions and channel slope. The design criteria included maximizing the overall channel gradient for a given reach while maintaining a stable plan form. 4. Bulk sediment samples were collected along Big Creek. This effort included the collection of riffle pavement and subpavement samples, as well as point bar samples. Those samples were used in the sediment entrainment analysis to verify the competency of the proposed channel. 1 L� 1 1 1 1 it 1 II L_J Big Creek If - Reach 3 (Station 21 +22 - 28 +29) Design Criteria Table Variables Existing Channel Proposed Reach Design Criteria Stream Types F4 /B4c B4c B4c Drainage Area mi 6.02 6.02 NA Bankfull Width ( bkf) 26.7 Note 1 21.1 - 32.2 28.0 Bankfull Mean Depth (dbkf) 2.4 Note 1 (2.0-2.8 2.7 Width /Depth Ratio (Wbkf /dbkf) Reference 7.5 -16.1 10.3 Parameters, Note 1 Bankfull Cross - Sectional Area 61.8 Note 1 Abkr 59.3 - 64.2 75.6 Bankfull Mean Velocity (Vbkf) Resistance Equations 3.7-4.0 3.1 Bankfull Discharge (cfs) Note 2 234.6 234.6 Bankfull Maximum Depth (dmax) 3.3 Note 1 (3.1-3.5) 3.2 Dmax/Dbf Ratio Reference 1.25-1.55 1.19 Parameters Width of Floodprone Area (Wfpa) 33.7-38.5 42.0-66.0 Entrenchment Ratio (Wfp,/Wbkf) 1.2-1.6 1.5-2.35 Meander Length (Lm) Existing Geometry 136 -289 136 -289 Ratio of Meander Length to Existing Geometry Bankfull Width (L,,,/Wbkf) 5.1-10.8 4.85-10.3 Radius of Curvature (Rc) Existing Geometry 20.0-68.0 40.0-76.0 Ratio of Radius of Curvature to Existing Geometry Bankfull Width (R,/Wbkf) 0.74-2.55 1.43-2.7 Belt Width (Wbn) Existing Geometry 36.0-51.0 85.0 Meander Width Ratio Reference (WbltMbkf) 1.35 -1.91 3.03 Parameters Sinuosity (stream length/ Existing Geometry valley distance ) 1.05 1.02 Valley Slope Existing Geometry 0.0046 0.0046 Average Slope (Savg) Note 3 0.00436 0.0045 Pool Slope (SP(.,) 0.0001 - 0.002 0.001 Ratio of Pool Slope to Average Reference Slope S dSbkf 0.094 - 0.493 0.227 Parameters Riffle Slope 0.01-0.027 0.0084 - 0.0086 Ratio of Riffle Slope to Reference Average Slope 2.38-6.13 1.9-1.95 Parameters 1 1 i� 1 1 1 Variables Existing Channel Proposed Reach Design Criteria Riffle length 8.45-11.1 19.0-57.0 Reference Parameters Maximum Pool Depth (dam,) 3.35-4.39 5.7 Ratio of Pool Depth to Average Bankfull Depth (dp ,,, /db,f) 1.52-2.0 2.1 Reference Parameters Pool Width (W,,,,) 21.6-29.6 29 Ratio of Pool Width to Bankfull Width (Wpoo,/Wb,f) 0.81-1-11 1.04 Reference Parameters Pool to Pool Spacing P -P 57.6-97.2 57-90 Reference Parameters Ratio of P -P to Wbf 2.16-3.64 2.04-3.2 Reference Parameters Pool length (L oo, 15.3 -65.0 32 -59 Ratio of pool length to bankfull width L .,NVbkf 0.57-2.4 1.14-2.1 Reference Parameters Particle Size Distribution of Reach Bed Material: D 16 0.71 mm D 35 11.6 mm D 50 17.9 mm D84 62.5 mm D 95 84 mm D 100 512 mm Particle Size Distribution of Riffle Bed Material: D 16 15.6 mm D 35 27.5 mm D 50 35.1 mm Note 4 D 84 59.9 mm D 95 86.3 mm Largest size in pavement 128 mm Particle Size Distribution of Riffle Sub pavement Material: D 16 NA D 35 NA D 50 NA Note 4 D 84 NA D 95 NA Largest size in sub pavement NA Particle Size Distribution of Bar Sample D 16 1.6 mm D 35 4.7 mm D 50 12.1 mm D 84 48.2 mm D 95 68.5 mm Largest size on Bar 105 mm 105 mm Note 4 it 1 1 1 1 1 1 1 t 1 1 l 1 1 Notes: Channel dimensions were initially developed by utilizing the updated Bankfull Discharge and Hydraulic Geometry Regional Regressions for the Rural Piedmont Region of North Carolina (NCSU and NRCS, 2006) to determine channel cross - sectional area (A) based on the drainage area to a given reach. The calculated A and W/D ratios from our reference reach database was used to determine bankfull width Wbf = �(Wbkf / dbkf) (Abkf) and bankfull mean depth Dbf = Wbkf / (Wbkf / dbkf). After the proposed channel plan form and longitudinal profile were completed, bankfull cross - sectional area, width, depth and width /depth ratios were adjusted using information developed from the reference reach database, sediment entrainment analysis, and the output of the Flowsed /Powersed model. 2. Three methods were used to develop bankfull discharge estimates. These included: a) Regional regression equations developed in North Carolina (NCSU and NRCS, 2006), b) TR -20 Hydrologic Model, and c) Manning's Equation and field data. Based on this analysis it was determined that utilizing the NC regional regression estimates provides a reliable method for estimating bankfull discharge for the proposed project design. 3. Since aggradation is an on -going problem along Big Creek, one major objective of the restoration project was to improve sediment transport competency and capacity. This can generally be accomplished by adjusting channel cross - sectional dimensions and channel slope. The design criteria included maximizing the overall channel gradient for a given reach while maintaining a stable plan form. 4. Bulk sediment samples were collected along Big Creek. This effort included the collection of riffle pavement and subpavement samples, as well as point bar samples. Those samples were used in the sediment entrainment analysis to verify the competency of the proposed channel. fl 1 1 1 1 1 1 1 1 1 Big Creek II - Reach 4 (Station 28 +29 - 39 +41)) Design Criteria Table Variables Existing Channel Proposed Reach Design Criteria Stream Types G4c /B4c C4 C4 Drainage Area mi 6.27 6.27 NA Bankfull Width (Wbkf) 26.2 Note 1 24.8 - 27.6 28.0 Bankfull Mean Depth (dbkf) 2.35 Note 1 (2.2-2.5 2.7 Width /Depth Ratio (Wbkf /dbkf) Reference 10.0-12.6 10.3 Parameters, Note 1 Bankfull Cross - Sectional Area 61.2 Note 1 Abkf 60.5 - 61.8 75.6 Bankfull Mean Velocity (Vbkf) Resistance Equations 3.8-3.9 3.1 Bankfull Discharge (cfs) Note 2 234.6 234.6 Bankfull Maximum Depth (dm,,) 3.1 Note 1 (3.0-3.2) 3.2 Dmax/Dbf Ratio Reference 1.28-1.36 1.19 Parameters Width of Floodprone Area (Wfpa) 38.4-48.5 80-100 Entrenchment Ratio (Wfpa/Wbkf) 1.4 -2.0 2.85 -3.57 Meander Length (Lm) Existing Geometry 174-188 186 -206 Ratio of Meander Length to Existing Geometry Bankfull Width (Lm/Wbkf) 5.1-10.8 6.6-7.4 Radius of Curvature (Rc) Existing Geometry 22.0 -93.0 53.0 -86.0 Ratio of Radius of Curvature to Existing Geometry Bankfull Width (Rc/Wbkf) 0.83-3.5 1.89-3.1 Belt Width (Wbit) Existing Geometry 66.0-85.0 85.0 Meander Width Ratio Reference (WbnANbkf) 2.5-3.2 3.03 Parameters Sinuosity (stream length/ Existing Geometry valley distance ) 1.28 1.12 Valley Slope Existing Geometry 0.0047 0.0047 Average Slope (Savy) Note 3 0.00372 0.0042 Pool Slope (SP.,) 0.0001 - 0.002 0.001 Ratio of Pool Slope to Average Reference Slope S �Sbkf 0.094 - 0.493 0.227 Parameters Riffle Slope 0.01-0.027 0.0084 - 0.0086 Ratio of Riffle Slope to Reference Average Slope 2.38-6.13 1.9-1.95 Parameters 1 1 u 1 1 �I 1 1 1 Variables Existing Channel Proposed Reach Design Criteria Riffle length 5.37-32.2 17.0-52.0 Reference Parameters Maximum Pool Depth (dPOO,) 3.2-5.0 5.7 Ratio of Pool Depth to Average Bankfull Depth (dPOO, /dbkf) 1.36-2.1 2.1 Reference Parameters Pool Width (WPB,) 28.5-44.3 29 Ratio of Pool Width to Bankfull Width (WP.,/Wbkf) 1.08-1.69 1.04 Reference Parameters Pool to Pool Spacing P -P 48.3-132.0 63-100 Reference Parameters Ratio of P -P to Wbf 1.84-5.0 2.3-3.6 Reference Parameters Pool length (L of 35.4-79.5 33— 53 Ratio of pool length to bankfull Width L IO Mbkf 1.35-3.03 1.18-1.89 Reference Parameters Particle Size Distribution of Reach Bed Material: D 16 0.13 mm D 35 16 mm D 50 25.7 mm D 84 75.8 mm D 95 113.8 mm D 100 180 mm Particle Size Distribution of Riffle Bed Material: D 16 25.3 mm D 35 37.1 mm D 50 45.7 mm Note 4 D 84 78 mm D 95 111.1 mm Largest size in pavement 180 mm Particle Size Distribution of Riffle Sub pavement Material: D 16 NA D 35 NA D 50 NA Note 4 D 84 NA D 95 NA Largest size in sub pavement NA Particle Size Distribution of Bar Sample D16 0 m D 35 6.8 mm D 50 13.1 mm D 84 49.2 mm D 95 77.3 mm Largest size on Bar 90 mm 90 mm Note 4 t 1 1 1 1 1 1 1 Notes: Channel dimensions were initially developed by utilizing the updated Bankfull Discharge and Hydraulic Geometry Regional Regressions for the Rural Piedmont Region of North Carolina (NCSU and NRCS, 2006) to determine channel cross - sectional area (A) based on the drainage area to a given reach. The calculated A and W/D ratios from our reference reach database was used to determine bankfull width Wbf = 4(Wbkf / dbkf) (Abkf) and bankfull mean depth Dbf = Wbkf / (Wbkf / dbkf). After the proposed channel plan form and longitudinal profile were completed, bankfull cross - sectional area, width, depth and width /depth ratios were adjusted using information developed from the reference reach database, sediment entrainment analysis, and the output of the Flowsed /Powersed model. 2. Three methods were used to develop bankfull discharge estimates. These included: a) Regional regression equations developed in North Carolina (NCSU and NRCS, 2006), b) TR -20 Hydrologic Model, and c) Manning's Equation and field data. Based on this analysis it was determined that utilizing the NC regional regression estimates provides a reliable method for estimating bankfull discharge for the proposed project design. 3. Since aggradation is an on -going problem along Big Creek, one major objective of the restoration project was to improve sediment transport competency and capacity. This can generally be accomplished by adjusting channel cross - sectional dimensions and channel slope. The design criteria included maximizing the overall channel gradient for a given reach while maintaining a stable plan form. 4. Bulk sediment samples were collected along Big Creek. This effort included the collection of riffle pavement and subpavement samples, as well as point bar samples. Those samples were used in the sediment entrainment analysis to verify the competency of the proposed channel.