Loading...
HomeMy WebLinkAbout20120292 Ver 1_Report_20120316' SADDLE MOUNTAIN CREEK STREAM RESTORATION DESIGN REPORT 20120292 1 1 1 1 1 1 1 1 1 Ir h y a a,, �E ire � � d' ► "` r. W4p 0 MAR 1 6 2012 CLEAR CREEKS CONSULTING 1317 Knopp Road Jarrerrsville Maryland 21084 (410) 692 2164 ®Q c ENGINEERIN STREAM WALKER CONSULTING 99 BANBURY COURT WAYNESVILLE NC 28786 (9291 1;07 7696 1 1 1 1 1 1 1 1 1 1 1 1 1 SADDLE MOUNTAIN CREEK STREAM RESTORATION DESIGN REPORT PREPARED FOR PILOT VIEW RC &D, INC and SORRY SOIL & WATER CONSERVATION DISTRICT PREPARED BY CLEAR CREEKS CONSULTING LLC IN COLLABORATION WITH WOLF CREEK ENGINEERING and STREAM WALKER CONSULTING FEBRUARY 2012 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 i 1 1 Table of Contents Project Background 1 Technical Report I Study Area 3 II Scope of Studies 3 III Watershed Characterization A Physiography and Basin Morphometry 3 B Climate 5 C Geology Soils and Land Use 6 D Hydrology 6 1 TR 55 Methodology 6 2 USGS Regional Regressions 8 3 NC Regional Regressions 8 4 Manning s Equation 8 E Hydraulic Analysis g IV Channel Morphology and Stability Assessment A Rationale 10 B Assessment Methods 11 1 Verifying Bankfull Channel Field Indicators 11 2 Upstream Channel Morphology and Sediment Sources 11 3 Level II — Morphological Description 11 4 Level III —Assessment of Stream Condition 11 5 Level IV — Stream Stability Validation Monitoring 12 C Findings of Channel Morphology and Stability Assessment 1 Evaluation of Watershed Conditions and Upstream Channel Conditions 12 2 Project Site — Channel Morphology and Stability Assessment 12 a Historic Conditions 12 b Current Conditions 12 Reach 1 13 Reach 2 16 Reach 3 24 Reach 4 26 V Restoration Design 31 A General Approach 31 B Design Criteria 34 1 Reference Reach Data 34 2 Design Discharges 34 3 Channel Geometry 34 4 Sediment Entrainment Analysis 35 a Sediment Entrainment Analysis Procedures 35 b Saddle Mountain Creek 36 5 Flowsed /Powersed Model 38 t 1 References Appendix A Watershed Characterization Supporting Documentation B Bankfull Discharge and Channel Dimensions Validation Supporting Documentation C Channel Morphology and Stability Assessment Supporting Documentation D Hydrology and Hydraulic Analysis Supporting Documentation E Design Criteria Supporting Documentation 1 1 t 1 1 1 1 1 t t k PROJECT BACKGROUND Pilot View RC &D and the Surry Soil and Water Conservation District have a history of working with interested landowners to improve the water quality of streams on their property This project involves restoration of Saddle Mountain Creek along the Arcadia LLC Property near Devotion North Carolina Saddle Mountain Creek is a third order tributary of the Mitchell River in the Yadkin River Basin In the 1950 s the lower reaches of Saddle Mountain Creek were impacted by the construction of a recreational fishing pond located along the floodplain between Saddle Mountain Creek and Chadric Creek Construction of the pond required channelization and straightening and confined the creek between the pond embankment and the adjacent hillslopes In the 1990 s timber clear -cuts in the upper watershed created unstable channel conditions and contributed to significant sedimentation and channel adjustments Bank erosion along the pond embankment threatens to damage and ultimately breach the pond The restoration effort along Saddle Mountain Creek includes protecting the pond embankment stabilizing eroding streambanks restoring stable channel dimensions improving sediment transport capacity and installing in stream structures to provide grade control divert flow away from the stabilized banks and create in stream habitat I 1 1 1 t 1 t As outlined in the Mitchell River Watershed Protection Plan (2001) above the confluence with the South Fork the Mitchell River is classified as an Outstanding Resource Water (ORW) North Carolina s highest water quality designation The upper Mitchell is also classified as trout waters supporting the eastern most populations of pure southern strain native brook trout (Salvelinus fontinalis) Other significant species in the watershed include two species of freshwater mussels a threatened bog turtle and two species of salamander which are either threatened or of special concern The Plan states that the overall conservation goals for the Mitchell River are to maintain the ORW status through the protection of water quality and aquatic habitat in the upper reaches The primary pollutant of concern is sediment caused by streambank erosion and land disturbing activities To achieve the watershed goals project partners are working cooperatively to protect the forested headwaters of the Upper Mitchell River and to maintain or improve forested riparian buffers along the mainstem and tributaries through conservation easements and donations from interested landowners In impacted areas project partners are working with interested landowners to implement stream restoration projects that establish stable self - maintaining streams that reduce streambank erosion and create in stream habitat The Yadkin -Pee Dee River Basinwide Water Quality Management Plan (NCDWQ 1998) cites the outstanding water quality of the Upper Mitchell River It also notes that the effects of increasing development are evident The Plan highlights the efforts of the Surry Soil and Water Conservation District the Piedmont Land Conservancy and the North Carolina Clean Water Management Trust Fund to protect and restore the Upper Mitchell River Watershed as an example of the type of partnerships that are needed to the goals of the Plan The North Carolina Wildlife Action Plan (NCWRC 2005) notes that the recovery of aquatic species that are threatened or endangered requires the protection of the habitats which they currently occupy and the restoration of the habitats they t historically occupied The Upper Mitchell River Watershed is included in the eco regions of the southeast U S identified as critical to achieving the goals of the Action Plan It is the intention of Pilot View RC&D and the Surry Soil and Water Conservation District to work with the landowner to implement a long -term restoration plan for Saddle Mountain Creek that is consistent with the overall goals and objectives for the Mitchell River watershed 1 1 1 1 1 1 it 1� TECHNICAL REPORT ' I Study Area The study area for the current protect includes the stream reaches along Saddle Mountain Creek upstream of Haystack Road on the Arcadia LLC property The protect is approximately 2200 feet (Figs 1 and 2) II Scope of Studies 1 n 0 L t I t I Existing data was collected and field studies were conducted to evaluate the current conditions along Saddle Mountain Creek determine the extent of the restoration effort required develop reliable estimates of the design discharge(s) and other design parameters that will guide the preparation of restoration design plans and satisfy permitting requirements This study did not include wetland delineations identification of significant plant or animal habitat archeological or historical studies or other environmental studies that may be required by local state or federal permitting agencies III Watershed Characterization Existing information on watershed characteristics and land use was collected compiled and reviewed The data collected included topographic soils geology and land use maps meteorological data hydrologic and hydraulic data and published technical reports The following characterization of Saddle Mountain Creek watershed was developed from this information A Physiography and Basin Morphometry The Saddle Mountain Creek watershed is situated in the northwest corner of Surry County Its headwaters are located on the slopes of Saddle Mountain This region is situated along the eastern edge of the Blue Ridge Mountains where they meet the Western Piedmont physiographic province and is characterized by rolling to very steep topography Elevations within the watershed range from 3367 ft on the upper slopes of Saddle Mountain to 1327 ft at the downstream end of the protect at Haystack Road The Saddle Mountain Creek watershed area is 4 5 square miles (2 880 acres) at the downstream end of the protect The upper Saddle Mountain Creek watershed is relatively steep and the valley bottoms are relatively narrow confined by adjacent hill slopes Immediately upstream of the protect reaches the floodplain widens and channel gradient flattens Although the valley type changes sinuosity remains relatively low characterized by broad meanders except where the channel flows adjacent to hill slopes There are bedrock outcrops throughout ko� l �•It ' '= l�doN e l "� l % cp " e him c ♦..[SVy0M5 1 �'f _ 1-' _ P4 .. ��f _ �,dy� // I py - -... `�St[• rc ,y \ ,Pttfl E p J; ` � � U N cu cn R� �, }, �'�$� �"'P..�i>,/ as'1 -x,•47 � ♦ g - 42 Y 41 1 LJ r L' ice` � '�.> ♦�V cu y"ELY tW i v� R rc 1 tr Ik K c* i e k 0"*. 1 i " ' Fig. 2 — Saddle Mountain Creek Stream Restoration Project Limits B. Climate �. YiYPiYe's. The climate of North Carolina is determined by its location in the warm temperate zone, but is modified by three important factors: the proximity of the Atlantic Ocean to the east, the distance of the state from the prevailing course of cyclonic storms, and the gradual rise in elevation of the land towards the west to the summit of Mt. Mitchell. Unlike the Coastal Plain, in the Western Piedmont extremes of temperature become greater and rainfall is less. Surry County experiences moderate winters and warm summers. Mean annual temperature is 58° F. Mean monthly temperatures range from 32 to 50 °F in January and 68 to 88 in July. There are no distinct wet and dry seasons. Most of the rainfall during the growing season comes from summer thunderstorms, but may vary widely from place to place and from season to season. Winter rainfall results mostly from 5 I low pressure storms moving through the area and is less variable than summer , rainfall Mean annual precipitation is 44 2 inches with mean monthly precipitation varying from a low of 2 8 inches in November to a high of 4 6 inches in July Some snow falls eve ry winter with total amounts ranging from 1 inch to 2 feet Mean annual snowfall is 9 inches Generally only a few inches accumulate at one time and such accumulations usually melt within a few days C Geology Soils and Land Use According o the North Carolina Geological Survey the Saddle Mountain Creek 9 9 Y watershed is located within the Metasedimentary rock and mafic and felsic metavolcanic rock of the Ashe Metamorphic Suite Tallulah Falls and Alligator Bank Formation (NCGS 1998) The dominant upland sods weathered from these rocks are Braddock fine sandy loam Evard Cowee complex and Tate - Colvard complex The dominant floodplain soils along Saddle Mountain Creek are of the Colvard and Suches series The dominant land use in the watershed is forest (80 %) along the ridges and steep narrow valley Where the Saddle Mountain Creek watershed enters the I floodplain of the Mitchell River valley old field and pasture are the dominant land use D Hydrology ' One of the critical steps necessary for any geomorphic stream design project is developing accurate estimates of peak discharges particularly the bankfull discharge 1 TR 55 Methodology The peak discharges for Saddle Mountain Creek were evaluated using the NRCS TR -55 methodology USGS regional regression equations and regional hydraulic geometry curves The TR -55 procedure was developed specifically for urban and urbanizing watershed but can be applied to any small watershed within certain limitations The procedure involves the runoff curve number based on the soil group and drainage conditions along with calculating the time of concentration and the site drainage area The time of concentration calculations are the sum total of the sheet flow shallow concentrated flow and open channel flow I t 1 1 1 1 1 I t I 1 Tables 1 and 2 present the site parameters and peak discharge estimates for Saddle Mountain Creek developed from the TR 55 model Table 1 Site Values for Saddle Mountain Creek Soil Group B B CN =65 65 Rainfall Distribution Type II Drainage Area (ac) 2880 Sheet Flow flow path ft 50 land sloe 03 Manning s N 04 Shallow Concentrated Flow Path unpaved Flow Path Length ft 1000 sloe 048 Open Channel Flow Channel Length ft 24248 Channel Sloe 008 Cross Sectional Areas 11 Wetted Perimeter ft 1282 Mannin s N 0 045 Table 2 TR 55 Calculations for Saddle Mountain Storm Event 1 yr 2 r 10 yr 50 yr 100 yr 24 hr Rainfall in 2 5 3 5 4 5 9 6 9 CN 65 65 65 65 65 T1 (Sheet Flow) 7 87E 02 6 65E 02 6 22E- 02 5 12E 02 4 74E 02 T2 Shallow Conc Flow 2 48E -02 2 48E- 02 2 48E 1 02 2 48E 02 2 48E 02 T3 (Open Channel Flow 080 080 080 080 080 Total Tc (T1 +T2 +T3 090 089 088 087 087 Runoff in 030 075 1 03 228 303 Q cf /sec /in /s mi 223 312 326 359 369 Q p (cf/ sec 298 1054 1508 3682 5029 1 ' t 2 USGS Regional Regression The United States Geologic Survey provides regional regression equations in the report titled Estimating the Magnitude and Frequency of Floods in Rural Basins of North Carolina — Revised (Pope B F et al 2001) The methodology uses a log Pearson Type III distribution of annual peak flows for 317 gaged sites Regional regression analysis is used to develop predictive equations that t estimate the 2 yr 5 yr 10 yr 25 -yr 50 -yr 100 -yr 200 yr and 500 -yr recurrence interval discharges The methodology provides weighting procedures for sites located near stream gauges however do to the small size of the site watershed and its remoteness from the nearest gages only the standard regression equations were used In addition to the equations provided by USGS a regression equation was developed for the 1 3 -yr recurrence interval as an estimate for the bankfull discharge The following are the equations for the Blue Ridge — Piedmont hydro- physiographic region and the resulting discharge calculations Regression Equations and Results 0710 Q1 3 YR = 68 4 DA = 198cfs Q2 YR = 135 DA 0 702 = 387cfs Q10 YR = 334 DA 0 662 = g01 cfs f Q50 YR = 602 DA 0 635 = 1560cfs Q100 YR = 745 DA 0625 = 1902cfs 3 NC Regional Hydraulic Geometry Regional hydraulic geometry relationships were developed by North Carolina State University and by NRCS that relate bankfull geometry and discharge to watershed area Field indicators of bankfull features were used to establish the hydraulic geometry at 13 gaged sites in the Blue Ridge Piedmont hydro - physiographic province of North Carolina Among the various regional curve relationships the following equation was developed for bankfull discharge QBKF = 55 425 DA 07874 thus QBKF (Saddle Mtn ) = 181 cfs 4 Manning s Equation I Bankfull discharge estimates were developed using Manning s equation and cross sectional data collected in the crossover (riffle) of relatively stable reaches along the project area The slope used was the bankfull slope of the overall reach and estimates of Manning s n were developed utilizing visual observations of the channel bottom and banks throughout the reach The bankfull discharge estimates are summarized in Table 3 1 1 1 Table 4 — Bankfull Discharge Estimates Reach NC As shown in Table 3 the bankfull discharge estimates developed for Saddle Mountain Creek using the rural regional regressions are somewhat lower than the Manning s Manning s equation estimate Both estimates fall dust below the range of Rural Regional discharges bound by the 1 3 and 2 Year recurrence interval flood flows developed with the USGS regressions and TR 55 model Equation DA M12 Curve cfs ) Based on this analysis it was determined that utilizing the Rural Regional Regression estimate provides a reliable method for estimating bankfull discharge (cfs for the proposed project design 1 1 Table 4 — Bankfull Discharge Estimates Reach NC USGS/TR 55 Manning s Location Rural Regional 1 3 YR/ 2YR Equation DA M12 Curve cfs ) (cfs) (cfs 45 181 198 387 192 Table 4 — Bankfull discharge estimates (cfs) developed using four methods E Hydraulic Analysis The purpose of the hydraulic study was to analyze changes in water surface elevations channel velocities and other pertinent hydraulic parameters associated with the proposed channel modifications The hydraulic analysis was based on U S Army Corps of Engineers HEC RAS version 3 1 2 River Analysis System The hydraulic model was developed for existing conditions for the 1 2 10 and 100 year flow events Proposed conditions were modeled using the same peak discharges The figures the bankfull to 100 year water surfaces cross section profiles and summary tables are included in the Appendix of this report The proposed channel sections were evaluated for their ability to convey the bankfull flows and the flood flows of the watershed by performing a computational hydraulic analysis The analysis consisted of first modeling the existing conditions with the HEC RAS water surface profile model Cross sections were taken through the channel and the adjacent valley at representative locations throughout the project reach Existing hydraulic conditions were evaluated and the model calibrated based on available site data Manning s n was estimated from relative roughness calculations of the bed material and from observation of the channel flow conditions LI The existing conditions model for Saddle Mountain Creek provides a reasonably good conformity of bankfull discharge with bankfull field indicators along with expected bankfull velocities in the 4 to 5 fps range Proposed conditions were analyzed by revising the existing sections based on the proposed channel geometry and by editing the model to reflect proposed pattern conditions and anticipated roughness coefficients The modeling results indicate that hydraulic trespass will not be a concern since proposed water surface elevations at the upstream project limit are lower than the existing conditions Additionally the upstream end of the project terminates with the property boundaries thus eliminating the ability to negatively affect adjacent i property owners The proposed model indicates that water surface elevations and channel velocities are comparable to existing conditions with the exception that water surface elevations are significantly lower where the channel grade is proposed to be lowered The one area of concern is that the model returns Froude numbers near unity in several locations indicating that the flow regime is approaching critical depth This indicates that grade changes in the bed associated with in stream rock and log structures could initiate supercritical flow standing waves and hydraulic jumps This is not unexpected for moderately high gradient mountainous streams but it should be taken into consideration in the design of the stream bed material and the in stream structures The output for the HEC- RAS model is included in the Appendix to this report IV Channel Morphology and Stability Assessment A Rationale Stream stability is morphologically defined as the ability of the stream to maintain over time its dimension pattern and profile in such a manner that it is neither aggradmg or degrading and is able to effectively transport the flows and sediment delivered to it by its watershed Morphologic stability permits the full expression of natural stream characteristics ' Stream potential is defined as the best condition based on quantifiable morphological characteristics for a given stream type Streams functioning at full potential exhibit a desired or preferred set of stability or condition characteristics that may be quantitatively described in terms of channel size and shape bed stability /vertical control and bank stability /lateral control - low bank erosion potential and gradual lateral migration rates Stream classification as a morphologic stream assessment technique permits a quantitative analysis of the degree to which existing conditions differ from an accepted range of morphological values documented for different stable stream types The degree of departure for an existing stream condition from its full 10 1 t I t 1 F1 1 1 1 t 1 1 i 1 stable operating potential can be determined in a number of ways including comparisons to 1) geomorphologic databases 2) historical photography or surveys of the same reach and 3) stable reference reaches of the same stream type at different points in the watershed or adjacent watersheds B Assessment Methods 1 Verifying Bankfull Channel Field Indicators Updated regional regressions for bankfull channel dimensions developed for use in the rural Piedmont Region of North Carolina (NCSU and NRCS 2006) were utilized to verify field indicators associated with the bankfull channel in conducting the geomorphic stream assessments along Saddle Mountain Creek 2 Upstream Channel Morphology and Sediment Sources A field reconnaissance was conducted to assess existing conditions in the Saddle Mountain Creek watershed and along the stream reaches upstream of the project site It focused on characterizing stream channel morphology and condition and identifying unstable reaches that could potentially impact the project area 3 Level II Morphological Description The reaches along Saddle Mountain Creek in the project area were classified into specific categories of stream types (i a 134c C4 F4 etc ) utilizing the standard field procedures recommended by Rosgen (1996) 4 Level III - Assessment of Stream Condition The geomorphic features of Saddle Mountain Creek were mapped and the overall stability assessed The project reaches were assessed for stream channel condition and influencing factors including riparian vegetation meander pattern depositional pattern debris and channel blockages sediment supply vertical stability and lateral stability Lateral stability was evaluated using the bank erosion hazard index (BEHI) near bank stress (NBS) width /depth ratio state and meander /width ratio Vertical stability was evaluated using a measurement of the degree of incision or bank height to bankfull ratio and a sediment entrainment analysis Overall channel stability was evaluated using the Revised Pfankuch Channel Stability Procedure and channel evolution analysis In addition the Flowsed /Powersed model developed by Rosgen (2006) and incorporated into the RiverMorph program was utilized to evaluate the sediment transport competency and capacity of the existing channel 5 Level IV Stream Stability Validation Monitoring Verification of the assessment data through monitoring was not a component of this project C Findings of Channel Morphology and Stability Assessment 1 Evaluation of Watershed and Upstream Channel Conditions The current conditions in the upper Saddle Mountain Creek watershed can be characterized as relatively stable with localized areas of instability Stability problems observed during the field reconnaissance of Saddle Mountain Creek included minor stream bank erosion and sedimentation These instability problems can be attributed to channel adjustments in response to historic silva culture practices including clear cuts and construction of logging roads and landing areas 2 Project Site — Channel Morphology and Stability Assessment a Historic Conditions In the 1950 s the lower reaches of Saddle Mountain Creek were impacted by the construction of a recreational fishing pond located along the floodplain between Saddle Mountain Creek and Chadnc Creek Construction of the pond required channelization and straightening and confined the creek between the pond embankment and the adjacent hillslopes In the 1990 s timber clear -cuts in the upper watershed created unstable channel conditions and contributed to significant sedimentation and channel adjustments b Current Conditions Utilizing the data collected from the Level II stream classification and Level III channel condition assessment the current condition of Saddle Mountain Creek and the degree to which the existing condition of the reaches differ from an accepted range of morphological values documented for similar stable stream types was evaluated This analysis indicates that the morphology stability and in stream habitat of the Saddle Mountain Creek have been directly affected by the channelization and straightening of the creek and sediment washed from upstream during the timber clear -cuts The following is a summary of the findings of that analysis as it relates to the existing conditions within the project study area III t 1 1 F1 �i t Reach 1 The upper reach of the project area is a moderately stable F4 transitioning to a moderately stable but incised B4/1 c channel. A comparison of channel geometry with that of the reference reach database indicates that this reach has a width to depth ratios (i.e., 9.6 — 11.02) that are lower than reference conditions. Due to its incised condition, entrenchment ratio varies from 1.27 — 1.4. The channel plan form is characterized by very low sinuosity (1.1). The only meander bend is at the downstream end of the reach. Although the upper section is an F4 channel, the banks are relatively stable and well vegetated with native trees and shrubs. With the exception of the deep pool along the bend, the bed form along this reach is characterized by a few, shallow pools, very long flat to moderately sloping riffles, and long shallow glides. Grade control is currently provided by bedrock along various sections. Conditions along the remainder of the reach are characterized by minor localized lateral erosion and vertical instability (i.e., aggradation). A wooden bridge in the upper middle section appears to create a backwater effect, as evidenced by scour beneath the bridge and a mid - channel bar immediately downstream of the bridge. The tight radius of curvature on the downstream bend is contributing to severe lateral erosion into the remnants of an old dam embankment. Because the top of the embankment sits 6 - 8 feet above the floodplain on the downstream side of the embankment it has isolated the channel from the floodplain in this section. The tight bend, as well as debris in the channel are creating a backwater effect, as evidenced by a mid - channel bar immediately upstream of the bend. The results of the sediment entrainment analysis and the Flowsed /Powersed model applied to riffle cross - sections and bankfull slope of the existing channel confirmed field observations that the existing channel is evolving to a stable condition along some sections and developing the competency and capacity to transport the sediment conveyed from upstream reaches. 13 Fig. 3 — Looking upstream along upper section Fig. 4 — Looking downstream along upper section toward wooden bridge I 14 1 Fig. 5 — Eroding bank and mid - channel bar downstream of bridge Figs. 6 — High, vertical banks lower middle section 15 Figs. 6 — Eroding bank at downstream end of reach Reach 2 1 1 1 1 This reach is a very unstable F3 transitioning to an unstable B3 /1c channel. ' Width to depth ratios vary considerably over the reach. A comparison of channel geometry with that of the reference reach database indicates that the upper section has a width to depth ratio (i.e., 26.4) that is much wider than reference conditions. The middle section has a width to depth ratio (i.e., 8.4) that is much lower than reference conditions. The lower section has a width to depth ratio (i.e., 14.7) that is consistent with reference conditions. Entrenchment ratios vary from 1.2 — 1.6. The channel plan form is characterized by low sinuosity (1.14). Steeper than Reach 1, the bed form along this reach is characterized by a few, shallow pools, short steep riffles, and long shallow glides. Grade control is currently provided by bedrock along various sections. The overall condition of the upper reach is characterized by lateral erosion and vertical instability (i.e., aggradation) throughout. Bank erosion is occurring along every bend. The unstable channel along the upper bend is eroding into a high terrace. A very large mid - channel bar has formed along the over -wide upper section. The lower section is relatively stable with minor localized erosion and aggradation. The outfall pipe from the pond discharges at the downstream end of the reach. The bank is eroding along this area. a 16 1 The results of the sediment entrainment analysis and the Flowsed /Powersed model applied to riffle cross - sections and bankfull slope of the existing channel confirmed field observations that the existing channel along the upper section is unable to transport the sediment conveyed from upstream reaches. -- f,, . Fig. 8 — Erosion along high terrace at upstream end of reach 17 L Figs. 9 and 10 — Large mid - channel bar at upstream end of reach I 18 HI it f I Fig. 11 — Aggradation along upper middle section Fig. 12 — Bank erosion along middle section ILI Fig. 13 — Eroding bank along middle section Fig. 14 — Remnants of old road crossing in lower middle section I 20 a C I Fig. 15 — Bank erosion and old chain link fence adjacent to former road crossing IFig. 16 — Bank erosion along pond embankment along upper lower section 1 21 1 e 1 t Fig. 17 — Looking upstream along relatively stable lower section I Fig. 18 — Looking downstream along lower section 22 t IFig. 19 — Lateral bar and bank erosion along lower section II IFig. 20 — Pond's outfall pipe and bank erosion at downstream end of reach 1 23 Reach 3 t This reach is a stable B3/1 c channel. A comparison of channel geometry with that of the reference reach database indicates that this reach has a width to depth ratios (i.e., 11.8 — 12.2) that are consistent with reference conditions. Entrenchment ratios vary from 1.86 along the upper and middle sections to 1.2 along the lower section where the channel flows between the pond embankment to the left and a bedrock outcrop along a high terrace to the right. The channel plan form is characterized by low sinuosity (i.e., 1.12). The bed form along this reach is characterized by several steep boulder steps with shallow scour pools ' and long steep bouldery riffles. Grade control is currently provided by the boulder steps and riffles. The overall condition of this reach is characterized as stable with no evident erosion or aggradation. The results of the sediment entrainment analysis and the Flowsed /Powersed model applied to riffle cross - sections and bankfull slope of the existing channel confirmed field observations that the existing channel is generally competent to transport the sediment conveyed from upstream reaches. Fig. 21 — Looking upstream along stable upper section 24 1 1 1 1 1 1 Fig. 22 — Looking upstream along stable middle section IFig. 23 — Looking upstream along stable lower section 1 25 Reach 4 This reach is an over -wide, unstable F4 that transitions to a moderately stable but incised E4 channel. A comparison of channel geometry with that of the reference reach database indicates that upper section of this reach has a width to depth ratio (i.e., 25) that is much wider than reference conditions. The width to depth ratios (i.e., 7.5 — 9.4) of the middle and lower sections are narrower than reference conditions. Entrenchment ration ranges from 1.28 — 2.6. The channel plan form is characterized by low sinuosity. The condition along the upper section is characterized by lateral erosion, fallen trees and vertical instability (i.e., aggradation). The middle section is incised with localized bank erosion. The tight bend along the lower section is eroding into the side slope of Haystack Road. A very large mid - channel bar has formed along the upper section. The bed form along this reach is characterized by long flat to moderately sloping riffles. There is no grade control along the sections. The results of the sediment entrainment analysis and the Flowsed /Powersed model applied to riffle cross - sections and bankfull slope of the existing channel confirmed field observations that the existing channel in the upper section is unable to transport the sediment conveyed from upstream reaches. The middle and lower sections are very effective at transporting their sediment load. Fig. 24 — Fallen tree across channel at upstream end of reach Ott IJ t 1 v 1 1 26 1 Fig. 25 — Large gravel bar at upstream end of reach Fig. 26 — Looking downstream along upper section 27 Fig. 27 — Looking downstream along middle section I Fig. 28 — Minor bank erosion along middle section 28 L 1 1 IFig. 29 — Abandoned water line along lower middle section t FI 1 1 t Fig. 30 — Right floodplain adjacent to middle section 29 �'I 1 P 1 1 1 Fig. 31 — Eroding bank against side slope of Haystack Road I it 1 l� Fig. 32 — Looking downstream along lower section toward Haystack Road Bridge I 30 1 Ll S V Restoration Design A General Approach As pointed out in the Findings of Channel Morphology and Stability Assessment Section Saddle Mountain Creek was historically impacted by the construction of a recreational fishing pond located along the floodplam between Saddle Mountain Creek and Chadric Creek Construction of the pond required channelization and straightening and confined the creek between the pond embankment and the adjacent hillslopes In the 1990 s timber clear cuts in the upper watershed created unstable channel conditions and contributed to significant sedimentation and channel adjustments Bank erosion along the pond embankment threatens to damage and ultimately breach the pond ' The restoration objectives for Saddle Mountain Creek include 1 Protecting the pond embankment 2 Reducing sediment loads and improving water quality by stabilizing eroding streambanks 3 Improving in- stream habitat by increasing the pool to -riffle ratio creating deep pools with overhead cover for adult trout creating more diverse riffle habitat for juvenile trout and macromvertebrates and creating glides suitable for spawning 4 Ensuring the long -term success of the project by restoring stable channel dimensions improving sediment transport capacity and installing in stream structures to provide grade control and divert flow away from the stabilized banks To accomplish these objectives the restoration approach for Saddle Mountain Creek includes Reach 1 1 As previously noted the upper section is an F4 channel However the banks are relatively stable and well vegetated Therefore the only work proposed in this area is to increase the pool -to riffle ratio by constructing several pools The pools will be maintained by installing log- boulder J Hooks at the upstream end of the pools 2 A bankfull bench will be excavated along the incised 134c sections to reconnect the channel with a floodplain The over -wide sections will be narrowed to improve sediment transport capacity and in stream habitat 1 1 31 3 The existing wooden bridge will be removed to eliminate the backwater effect it is creating 4 The lower section will be shifted to the right away from the old dam embankment and reconstructed to provide a larger radius of curvature on the tight bend and create a smoother transition through the bend 5 The old dam embankment will be excavated and lowered to the floodplain level on the other side of the fill 6 To facilitate construction the upper section of Assessment Reach 2 has been included in Design Reach 1 This section will be shift to the left away from the high terrace on the right centered on the existing over -wide channel and reconstructed to provide a larger radius of curvature and create a smoother transition through the bend The floodplain will be reconstructed on both sides of the relocated channel 7 The graded streambanks will be stabilized with toe wood and alder transplants harvested from the perimeter of the fishing pond and seeding with native grasses Reach 2 As noted above the upper section of Assessment Reach 2 has been included in Design Reach 1 to facilitate construction 2 The middle section of Reach 2 will be shifted to the right and centered on the existing over -wide channel to provide a larger radius of curvature on the tight bend and create a smoother transition into the lower section The floodplain will be reconstructed on both sides of the relocated channel 3 Log /boulder step pools will be installed at the downstream end of the middle section to provide grade control dissipate energy and create in- stream habitat 4 Toe benches will be constructed at key locations along the lower section to stabilize the toe of the pond embankment and narrow the baseflow Particular emphasis will be placed on stabilizing the area below the pond outfall pipe 5 Graded banks and toe benches will be stabilized with alder transplants harvested from the perimeter of the fishing pond and seeding with native grasses 32 L 2 All disturbed areas impacted within the limits of the project will be seeded and planted with native trees and shrubs All disturbed areas impacted outside the limits of the project will be seeded with grasses and clover 3 Access to the upper reaches will be provided by repairing and extending the existing dirt road along the right terrace 4 Finally a conservation easement will be established along the stream corridor A riparian buffer will be established by planting native grasses trees and shrubs The restoration approach presented above is illustrated in the design drawings (i a plan view profile and cross sections) attached to this report The design criteria are summarized in the Appendix to this report 1 1 33 Reach 3 This reach is stable and will not be disturbed ' Reach 4 1 The upper section will be a reconstructed as stable 134c channel This will be accomplished by constructing toe benches along the channel margins The toe benches will be stabilized with alder transplants harvested from the S perimeter of the fishing pond and seeding with native grasses 2 The middle section will be relocated to the lawn area in the adjacent right J 9 ' floodplain The new channel will be constructed as a stable meandering E4 The reconstructed channel will increase sinuosity create a smoother transition into the lower section and eliminate the eroding bend along the side slope of Haystack Road The existing channel will be backfilled to create Ifloodplain 3 The lower section will be shifted to the left to allow reconstruction and stabilization of the side slope of Haystack Road 4 The streambanks will be stabilized with toe wood and alder transplants harvested from the perimeter of the fishing pond and seeding with native grasses fGeneral 1 Riffles along all new channel sections will be constructed with boulders ' hauled from an off site source and cobble and gravel harvested from existing on -site channels that will be abandoned and backfilled 2 All disturbed areas impacted within the limits of the project will be seeded and planted with native trees and shrubs All disturbed areas impacted outside the limits of the project will be seeded with grasses and clover 3 Access to the upper reaches will be provided by repairing and extending the existing dirt road along the right terrace 4 Finally a conservation easement will be established along the stream corridor A riparian buffer will be established by planting native grasses trees and shrubs The restoration approach presented above is illustrated in the design drawings (i a plan view profile and cross sections) attached to this report The design criteria are summarized in the Appendix to this report 1 1 33 t t B Design Criteria ' 1 Reference Reach Data After determining the targeted stream types (i a stable form for the reaches to t be restored) for Saddle Mountain Creek dimensionless ratios were taken from a reference reach data base developed from stable B4c and B3 streams in the Piedmont and Mountain Regions of North Carolina The dimensionless ratios are presented in the Appendix to this report 2 Design Discharges As noted in the Hydrology section of this report four methods were used to develop bankfull discharge estimates These included 1) USGS regional ' regression equations 2) bankfull regional regression equations developed in North Carolina (NCSU and NRCS 2006) 3) TR 55 Hydrologic Model and 4) Manning s equation and field data ' Based on this analysis it was determined that utilizing the Bankfull Regional Regression estimates provided a reliable method for estimating bankfull , discharge for the proposed project design The bankfull discharges used during the design process was 181 cfs This flow , as well as the peak discharge estimates for the 2 10- 50- and 100 -year storm events developed using the TR -55 model provided input for the HEC RAS hydraulic model , 3 Channel Geometry The preliminary channel plan form layout was developed in consultation with I Dave Rosgen during a site walk After the plan form was developed general concepts for the layout of the longitudinal profile and the location of bed features were developed in consultation with Rosgen as well After the proposed channel plan form and longitudinal profile were completed preliminary channel dimensions were developed utilizing the Bankfull Discharge and Hydraulic Geometry Regional Regressions for the Rural Piedmont Region of North Carolina (NCSU and NRCS 2006) to determine channel cross sectional area (A) based on the drainage area to a given reach The calculated A and W/D ratios from our reference reach database were used to determine bankfull width Wbf = 4(Wbkf / dbkf) (Abkf) and bankfull mean depth Dbf = Wbkf / (Wbkf / dbkf) The proposed slope bankfull cross - sectional area width depth and width /depth ratios were adjusted using an iterative process that included multiple sediment ' entrainment analyses and multiple runs of the Flowsed /Powersed model After t 34 1 Li r I u t 1 1 t 1 I I t 1 1 1 1 each adjustment the latest channel dimensions and profile were checked against ratios from the reference reach database 4 Sediment Entrainment Analysis In restoration design entrainment analysis is utilized to verify that the proposed channel generates the shear stress needed to entrain and transport the sediment expected to be moving through the project reach under bankfull flow conditions Sediment data gathered from riffle pavement/subpavement and point bar samples along the Saddle Mountain Creek project reaches was utilized in the entrainment analysis to verify that the project channel dimensions and profile are appropriate to maintain the competency of the restored reaches a Sediment Entrainment Analysis Procedures • Critical Dimensionless Shear Stress Calculations Using the following equations the critical shear stress required to mobilize and transport the largest particle from the bar sample is determined Determine ratio D50/D50" Where D50 = bed material D50 of riffle D50" = D50 of bar or riffle subpavement If ratio is 3 0 — 7 0 calculate the critical shear stress using Tci = 0834 (D5o /D50^) - o 872 If ratio D5o /D50A is not 3 0 — 7 0 calculate the ratio of Di /D50 Where D, = largest particle from bar or riffle subpavement D50 = bed material D50 of riffle (100 count in riffle) If ratio of Di /D50 is 1 3 — 3 0 calculate the critical shear stress using Tci = 0384 (Di /D50) -o$$' 35 b Saddle Mountain Creek A bulk sediment sample was collected along Saddle Mountain Creek during the field assessment This effort included the collection of riffle pavement and subpavement samples as well as point bar samples The data from the sample processing was used in the sediment entrainment analysis to verify the competency of the proposed channel 1) Calculated ratio of D50/D50" D50 = 124 mm (bed material D50) D50A = 43 56 mm (bar D50) D50/D50^ = 124/43 56 = 2 85 Ratio is not 3 0 — 7 0 cannot calculate the critical shear stress using Tci = 0834 (D50/D50") _ 0 872 2) Calculated ratio of Di /D50 D50 = 124 mm (bed material D50) Di = 132 mm (largest particle from bar sample) Di /D50 = 132/124 = 1 06 Ratio of is not 1 3 — 3 0 cannot calculate the critical shear stress using Tci = 0384 (Di /D50) -0887 Using the Shields and Colorado Curves the shear stress required to mobilize the Dmax (132 mm /0 43 ft ) was determined Shields Tc = 1 66 Ibs /ft2 Colorado Tc = 0 83 Ibs /ft2 Using the following equation R = Tc /g S and proposed channel slope the required hydraulic radii were calculated for each project reach 061 �1 t t t jThe hydraulic radii determined from the Colorado curve were determined to be inappropriate for Saddle Mountain Creek With the exception of Reach 1 the existing hydraulic radii for all reaches exceed the required shear stress values indicated Interestingly the results of this exercise indicate that none of the existing reaches generate the shear stress required by the Shields curve to mobilize the Dmax particle According to the Shields model even the stable Reaches 3 and 4 are not generating the required shear stress when in fact field conditions indicate the existing channels are competent Given these results it was determined that the Dmax particle may not be the appropriate particle size to evaluate The exercise was repeated using the D84 particle Using the Shields Curve the shear stress required to mobilize the D84 (115 mm /0 38 ft) was determined Shields Tc = 1 45 Ibs /ft2 The results of this exercise indicate that according to the Shields Curve only Reach 3 is competent to mobilize the D84 particle However field conditions indicate otherwise Reach 4 as well as the relatively stable sections of Reaches 1 and 2 appear to be effectively transporting their sediment load Where field observations indicate sediment transport is an issue this can be explained by channel hydraulic conditions created by specific localized channel features (e g 1 37 Hydraulic Parameters Existing by Reach Channel & 1 2 3 4 Curve Slope = 0 00585 Slope = 0 0104 Slope = 0 0127 Slope = 0 0094 Existing BF 22 21 21 25 Dmean ft 21 -23 19 -24 20 -22 23 -27 Existing BF 1 75 1 9 1 9 21 Rft 17 -18 18 -20 18 -21 Shear Stress 062-066 1 23 1 43-1 58 1 06-1 23 BF Ibs /ft2 Existing TOB (25-35) ND (20-24) (21-22) Shear Stress 104-146 ND 1 58-1 9 1 23-1 29 TOB (Ibs /ft2) Shields R (ft) 38 222 21 35 Colorado R (ft) 1 9 1 11 1 04 1 75 jThe hydraulic radii determined from the Colorado curve were determined to be inappropriate for Saddle Mountain Creek With the exception of Reach 1 the existing hydraulic radii for all reaches exceed the required shear stress values indicated Interestingly the results of this exercise indicate that none of the existing reaches generate the shear stress required by the Shields curve to mobilize the Dmax particle According to the Shields model even the stable Reaches 3 and 4 are not generating the required shear stress when in fact field conditions indicate the existing channels are competent Given these results it was determined that the Dmax particle may not be the appropriate particle size to evaluate The exercise was repeated using the D84 particle Using the Shields Curve the shear stress required to mobilize the D84 (115 mm /0 38 ft) was determined Shields Tc = 1 45 Ibs /ft2 The results of this exercise indicate that according to the Shields Curve only Reach 3 is competent to mobilize the D84 particle However field conditions indicate otherwise Reach 4 as well as the relatively stable sections of Reaches 1 and 2 appear to be effectively transporting their sediment load Where field observations indicate sediment transport is an issue this can be explained by channel hydraulic conditions created by specific localized channel features (e g 1 37 low level wooden bridge tight meander bends usually high width to depth ratio channel obstructions etc ) rather than the overall reach cross sectional geometry and slope Therefore the proposed bankfull cross - sectional geometry was developed from a stable cross - section surveyed in each reach Since the slopes in Reaches 1 and 2 will increase with the proposed plan form changes hydraulic conditions should improve over existing 5 Flowsed /Powersed Model The Flowsed /Powersed Model (Rosgen 2006) was used during the design process to evaluate the capacity of the restored channel to transport the sediment load contributed by the Saddle Mountain Creek watershed Flow duration discharge data and sediment loading data are required input for the model Because Saddle Mountain Creek is an ungaged watershed it was necessary to use flow data from another stream gage in the region The model runs conducted as part of the design process used flow data from a gage located on Norwood Creek near Troutman North Carolina (USGS #02143830) Developing a sediment - discharge rating curve for Saddle Mountain Creek watershed was not a component of this project Therefore the model runs conducted as part of the design process used total annual sediment yield data (i a suspended sediment bankfull bedload sediment and total sediment) provided by Allan Walker (personal communication 2011) 38 Hydraulic Parameters Proposed by Reach 1 2 3 4 Channel & Curve Slope = 0 0074 Slope = 0 0116 Slope = 0 0127 Slope = 0 011 Proposed BF 22 22 21 23 Dmean ft Proposed BF 2 0 2 0 1 9 2 0 R ft Shear Stress 092 145 1 51 1 37 BF (Ibs /ft) 5 Flowsed /Powersed Model The Flowsed /Powersed Model (Rosgen 2006) was used during the design process to evaluate the capacity of the restored channel to transport the sediment load contributed by the Saddle Mountain Creek watershed Flow duration discharge data and sediment loading data are required input for the model Because Saddle Mountain Creek is an ungaged watershed it was necessary to use flow data from another stream gage in the region The model runs conducted as part of the design process used flow data from a gage located on Norwood Creek near Troutman North Carolina (USGS #02143830) Developing a sediment - discharge rating curve for Saddle Mountain Creek watershed was not a component of this project Therefore the model runs conducted as part of the design process used total annual sediment yield data (i a suspended sediment bankfull bedload sediment and total sediment) provided by Allan Walker (personal communication 2011) 38 1 IReferences 1 1 Earth Satellite Corporation (EarthSat) Land Use 1997 — 2003 li 1 2 National Oceanographic and Atmospheric Administration - National Climate Data Center Cooperative Station Data /Record Climatological Observations Website 2004 Regional Precipitation Snowfall Temperature Records for Mount Airy NC 1999 — 2004 3 North Carolina Department of Transportation GIS Database — River and Stream Road and National Wetland Inventory (NWI) mapping layers 4 North Carolina Division of Water Quality 1998 Yadkin -Pee Dee River LBasinwide Water Quality Management Plan 5 North Carolina State University Cooperative Extension Service and U S D A t Natural Resources Conservation Service 1999 Hydraulic Geometry Relationships for the Rural Piedmont of North Carolina Raleigh N C 6 North Carolina Wildlife Resource Commission 2005 North Carolina Wildlife Action Plan 7 Piedmont Land Conservancy 2001 Mitchell River Watershed Protection Plan 8 Rosgen D L 1994 A Classification of Natural Rivers Catena 22 169 -199 9 Rosgen D L 1996 Applied River Morphology Wildland Hydrology Pagosa Springs Colorado 10 U S Department of Agriculture Natural Resource Conservation Service Website - Soil Survey for Surry County North Carolina 2004 ' 11 U S Geological Survey 7 5 Minute Quadrangle Topographic Map for Roaring Gap North Carolina li 1 t e i s t i Appendix A Watershed Characterization Supporting Documentation B Bankfull Discharge and Channel Dimensions Validation Supporting Documentation C Channel Morphology and Stability Assessment Supporting Documentation D Hydrology and Hydraulic Analysis Supporting Documentation E Design Criteria Supporting Documentation LI t 1 I 1 t fl t t t r t Watershed Characterization Supporting Documentation V Saddle Mtr ' re ti V11 13 . � ._W • ill /� -_ / - � - ����� -- -- - - - --_- - -- - - I69a t qq.sz. / �?�l�,� �t �f )��} f�c�, —=.•r t\,fl � J/� K -?it � / , `' ` `.��;; L'.�._���,� �J11 �Ij r lift, ! / Len•. Knob _ 11 ! I � � , � t ��'��, � L\J �1!��li��`�`' �'' � / e.�'��$' \1 / �/"' ��4 / •� I � „aµ .a �� 1:� U V t , Name: ROARING GAP Location: 036128'05.6" N 080 156' 12.5" W Date: 5/28/2011 Caption: Saddle Mountain Creek Scale: 1 inch equals 2666 feet Drainage Area = 4.53 sq. miles Surry County, NC Gopyrlght (G) 1991, Maptech, Inc. t r N fD N 069Z£04 009Z£04 ON COP OZ4Z£04 0££Z£04 04ZZ£04 ..BZ ,4S .09 jI C ■ N t I ' y v, � �"�'� - � � �►7 ,jam ,� _ � , ,f.,,r^."'� � r o Y All-. r c •.. p* $ o a� U— $ � f � V)v r cc ti r �1 y� .4,SS o08 069Z£04 009Z£04 OLSZ£04 OZ4 £04 0££Z£04 04ZZ£04 N �O "a i0 N .,BZ.4So08 N O n � N_ "' a O It 1 f"1 T Z 7 U) o Z� o >> N U) V) a �U 75 C O 15 Z 0 °m N 0 x co m N Z c O a °n 0 a °o c N o N a ui � n a y 4) p7 O �y C r N Z.< cc ..4.SS.09 Q O io N M � CL \ @\ \} /\ z0 ƒ) \f /� \\ 0 $\ cc \ _ \{ EL ƒ / \\ \\ $( \/ p $Q §\ \Q }k (1 § \ \ E o \ ° !\ \ \2� \ \ ƒ \ \ \\ ° c�\ f 2 ` 55 !§ k \ \( O x ( � }t2 § 0§ ` {\ \ \ \ cc 304 \§§ ))\ § \\ »`c @ / < 2 °� o ) ) ® 5 ® e f± ± \ \ \\ p « { m f @ ± 2',6 E ° % /± E; LL G ! §moo �k E2 : Gc o & oo « f / ) ) \ =g& !/ \} } )-)/ \ 0 \ o \r{ j� % b \£, � �� c:, / z 2 o N 0 ; a� a) 01.2 a [ b5$ /® ƒ 0c ..t7 TCO 2a o0 2§ s -t 0 co °G \\ k = CL ) ]. fE ` 0 _; )2 ® §< ) 0 \u U) 7 e) S ®t ` =! )t ƒ \ *(y \ / }k o \ } % L ( / .!_ \ $ 3 o f E &Sf (} / 5 _ \{ EL ƒ / \\ \\ $( \/ p $Q §\ \Q }k (1 ° \ \ ƒ U) f , \ \ f @ / 7 o ) ) ± m » t $ m = G e- « f / ) ) / / )/ !/ } )) / § 2 \ R ]. , ( - .2 . o ! (} / W � ` o o 0 & 2 0 & ± t f { \ ): ® & a cl w 3 ® I \ « \ \ ) - 7 - \ - { & & § 2 ! & -D - % _ ! _ - f % = J - f m _ t 2 , S k/ / 3 x 2 3§ // j j 2 k Iƒ)\)\± // c e f § % ] f N X + X o G# m q \ \ _ \{ EL ƒ / \\ \\ $( \/ p $Q §\ \Q }k (1 i_j Soil Map -Surry County, North Carolina Map Unit Legend Chadric Creek and Saddle Mountain Creek Soils Map Surry County, North Carolina (NC171) Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI BbC Braddock fine sandy loam, 8 to 15 percent slopes 9.4 13.0% - - - - - -- CsA Colvard and Suches soils, 0 to 3 percent slopes, 25.8 35.6% CwD Cooweee gravely loam, 15 to 25 percent slopes, stony 0.5 0. EcD Evard -Cowee complex, 15 to 25 percent slopes, j 7.6 . 10.5% stony EcE Evard -Cowee complex, 25 to 45 percent slopes, 26.0 35.8% stony i} — TcC Tate Colvard complex, 0 to 15 percent slopes, 0.1 0.1% frequently flooded W j Water - 3.1 4.3% Totals for Area of Interest 72.5 100.0% L ')i» Natural Resources wliiiiiiiiii� Conservation Service Web Soil Survey National Cooperative Soil Survey 5/27/2011 Page 3 of 3 �a c � f om U 'o r� OY Zd (3 c c U� O r0 o ,=, (n Co .N f0 i N Y lD N _ m VU r U C fp /v LLU .09 i u N � � 0 N N 9 A N a ry N O ..9Z 319.09 2 0 M a y N x N N Q C O g o C Cl! a � m t� I2 O Z .4 ,SS ,09 0 ow O O 00 N O r q 0 N � N � "' a m Z �o 2U) cn U a �U fG O O Z a� N 7 C CD r QC Z O `I Z A cm o � � N U 'o L U) 0 Y O N Z 0 TU � c 0 m 0 c 0 Q) o m U) O N N U 2? '00 c f0 E ° f0 LLO U y y y O ° O O @ o m � � J CL a c c -° E c c° c 3 d m C ^ E m O �� m f0o N N 3cw _ m 7 a Cd aoi v 'm m a o o y w E n n to E c c '6 0) o_ E Z _ n n m m o ` O -0 U c 'O N N - E O x E U Z O Q x y t6 0 0 o N E 00 .L., V7 'm o o m O N N T� N O Z t6 O m y E° ,�L, L j Q c°n Q a�° U o Q U o N a L 0 c mLa^ ° d m N °, mr m Z "aF- Z) ZQ ca 0 O�Q� O Q o m CD 4) 3 0 ° T o ma U. 0 y 0 c 0 y 0 0. o 0 �� 0 o a E2 mug 0 m Z V m c � E c a o El L ❑ ZN m m o N m IL Q a O v0, > > J (D � 0 �> 3 O a La) L LD C w @ (p L l0 z O N 0 71 C O N O v N •L.• N y m N .. N _ E 0 •L 'O 0 oc cc '�c Q� Va m�° N O U O T f0 m .c L C n m 0o OO d o o c o ZQ m =-0' n w En N mm U "6 Q y W� Up N y o N n a m cu yv a E 0�0 —2 o (D caE �� c°3iU H o COO) H 8E o y y y O ° O O @ o m � � J O 0 N N r� (D N 07 d T a> 7 U) o ZU) 7 0 0 U) a 4) U cc c O l0 Z d 3 0 = w �v R � N 3 z0 a -A a c `° o d m m -° E c c° c 3 d m a) E2 m° c 3 ^ -C6 N N S0m m oQ N JO E ,o ° m m E � v 'm �uoc aaa g� t y y E n n to E c c '6 0) G C O O i E D o Z C E O = -0 U c 'O Ed C O 7 C E U Om t > W N U« x y t6 0 0 o N E r°)vc 'm o o a m m °E .m O c x y d 0 E�ooCC m y E° m .� E o o E�oom c°n cc a�° a` aaco a` a`co°O°y' W d o> mLa^ ° d m ar °, mr m n y E J Ea °a a 7d� Ev ° E�4 c�m cip on `°E on mE oo mE ° m m ° i� y d `' d in ° o ° c d y a` o dw a` y L. IL._ x._ z m o Fl _ x Q � r El 11 ❑ ❑ ❑ ❑ e c a to 3 i � O 0 N N r� (D N 07 d T a> 7 U) o ZU) 7 0 0 U) a 4) U cc c O l0 Z d 3 0 = w �v R � N 3 z0 a -A a c `° o d m m -° E c c° c 3 d m a) E2 m° c 3 ^ S0m m oQ JO E ,o ° m m E � v �uoc aaa g� t y y E n -ac E c c '6 0) G C O O i E D o ca E O m W E �y E g E O7 Ed C E O7 0 Q o m E me wa°'7 �° rrn.0c 'm 2-S r°)vc co — a m m °E d E a� y P? o m Eoo= E y d 0 E�ooCC m y E° m .� E o o E�oom c°n m I,z° a�° a` aaco a` a`co°O°y' (L cc am °O'; m r c � 0 ❑ ❑ ❑ ❑ ❑ Fl Q 0 tNA O 0 N N r� (D N 07 d T a> 7 U) o ZU) 7 0 0 U) a 4) U cc c O l0 Z d 3 0 = w �v R � N 3 z0 a -A 1 t 1 1 I I Farmland Classification -Surry County North Carolina Farmland Classification Chadnc Creek and Saddle Mountain Creek Sods Map Farmland Classification— Summary by Map Unit — Surry County North Carolina Map unit symbol Map unit name Rating Acres in AOI Percent of AOI BbC Braddock fine sandy loam 8 to 15 Farmland of statewide 9 4 j 130/ percent slopes importance CsA Colvard and Suches sods 0 to 3 All areas are prime farmland 2581 356/ percent slopes occasionally flooded CwD Cowee gravelly loam 15 to 25 percent Not prime farmland 0 5 07/ slopes stony EcD Evard Cowee complex 15 to 25 Farmland of local importance 76 105/ � percent slopes stony EcE Evard Cowee complex 25 to 45 Not prime farmland 260 358/ percent slopes stony j TcC Tate Colvard complex 0 to 15 percent Farmland of local importance 01 1 01/ 1 slopes frequently flooded W Water Not prime farmland 31 43/ Totals for Area of Interest 72 5 11000/ Description Farmland classification Identifies map units as prime farmland farmland of statewide Importance farmland of local Importance or unique farmland It Identifies the location and extent of the soils that are best suited to food feed fiber forage and oilseed crops NRCS policy and procedures on prime and unique farmlands are published In the Federal Register Vol 43 No 21 January 31 1978 Rating Options Aggregation Method No Aggregation Necessary Aggregation Is the process by which a set of component attribute values Is reduced to a single value that represents the map unit as a whole A map unit Is typically composed of one or more components A component Is either some type of soil or some nonsoll entity e g rock outcrop For the attribute being aggregated the first step of the aggregation process Is to derive one attribute value for each of a map unit s components From this set of component attributes the next step of the aggregation process derives a single value that represents the map unit as a whole Once a single value for each map unit Is derived a thematic map for soil map units can be rendered Aggregation must be done because on any soil map map units are delineated but components are not For each of a map unit s components a corresponding percent composition Is recorded A percent composition of 60 Indicates that the corresponding component typically makes up approximately 60% of the map unit Percent composition Is a critical factor In some but not all aggregation methods Natural Resources Conservation Service Web Sod Survey National Cooperative Sod Survey 5/27/2011 Page 3 of 4 Bankfull Discharge and Channel Dimensions Validation Supporting Documentation t I 1 1 1 1 1 t 1 t Saddle Mountain Creek Predicted and Measured Values for Bankfull Channel Geometry and Bankfull Discharge Reach Area I Width I Depth Discharge NC Regional Regression UPS Reaches 51 2 1 303 T 168 180 Field Data and Manning's Equation Discharge Estimates Reach 1 528 (485-575) 241 (231-251) 219 (21-23) 201 (179 6 — 224 2) Reach 2 555 (46 8 — 63 4) 279 1 (221 — 40 89) 295 (22-34) 2244 (2098-239) NC Regional Regression DS Reaches 516 30 4 1 169 1816 Field Data and Manning's Equation Discharge Estimates Reach 3 55 (51 6-592) 262 (23 7 - 25 3) 21 (20-22) 2327 (224 6- 246 7) Reach 4 539 (509-587) 212 (200-221) 32 (27-37) 2022 (187-232) UPS DA = 4 48 mil DS DA = 4 53 mil NC Regional Regressions A = 19 233 X (0 6528) W= 1741 X (0 3612) D = 1 0971 X (0 2852) Q = 55 308 X (0 787) 0 t s t 1 1 0 m CD LAD CD (D V t W 0) o � O r� tl') n O (o V� (D N N Q) r O CO CO lD a0 (O aD (o O IA O O CO N N N N Cl) m N N N N N � C C— O M O Cl) N It CD O (f) 0) 0) O Q t0 r, CO O t° �(o CO 'qt (o �(o(DO C E -t 't (o 't (D 1n O in O d' RS c0 0) cr d \ U C T N 'O = r O Co to to (0 iA r O r 't w aD O X W O` d C � 7 (o 0) M O M O r O N 0 OD N p0) C7 CC C N 0 r lf) '7 a M Mt M 7 N O (n ��. 0 0 0 0000 0 0000000 CCD j — O O O O O O O O O O O O O O O t V N (o 007 CON OD NOr M(o a� (no CD OD 0 L X00) 0 v T N N C7 N N C7 C7 Cl) d' sF 0) (o r O C+)N N(o N 0(D 0) Cl) N N a � N r CO n 0� co co m b O _ _ '« 0 C;) (o O O (� (o r O M M r p O) 117 U) Nvvrn�(0)o(o0&0rcoicooUl) X N N M N M d (0 y 0� O(�7NO000000000 tr- V OCO OOIARrNSt(o� W o CM Cl) lnrr�r�r� d'nN N N N Cl) d E CD c N��n�nao0)vr0)raD m r T co 0) O CO (D CD N N r 0 lC N0 LO NNt r(N(o r 0)� N � m E N U U U U r r r r r Z~ m m U m a W Cl) co m mm LL LL mUmU 9 r O o 0 0 00 o 0 o o 0 o o o mC wOovot000_aDOOmOOOO is co mN(On OM n7r Oa Nn7(OO (D N Cl) �� N N co N C07 C9 N 0 N N C7 cr co O cc Y� 3 UaYid3� > m> Z O 0� Q > N (D V U p Q m C Y N� ((f C) O E (D N 0 C U 0 N L — mM > LL N L a) l0 N 7 cc (0 7 0 lD O (0 O (>E Y O y U N y f0 O coZOmUZ >- 2aWZi23LL 0(n I I 1 t r s t 0 I i t I I I I I I I I i I LM p III O O Cc coI, i I I I I I I I I I i l III LM J l _ c C-4 c 0) M N O �, i l III I III' T T O O O T O O T O T (:4 bs) eead leuoijoeS ssoao 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i O V O_ O O E .a_+ MID O cn a cm V ^_ = O V 'I lI' � I I III ICY I I IIII I 11 I II I . I Ili I it I li I � I_j I I I III I I.I II I III ' I,i i� I i I I (111 I I I I I i III I' Ili I I I 'I I I I I I i I I I 1 1 I jl I j ;'I I II i I' I I. j III I I TFTF- I II I I I II I I I I I I IIi l i I i i II I I I i I I I 611, � J 111 I �I I I I I I 4-4 1 111 1 1 1 'ICI I I I I j1 l l J-1- IIIII I I I III I Il � I I II 1 111 I I I ! T T 0 0 0 T T (sIO) GBJ843sia 0 T 0 0 0 T 0 0 T 0 T _d E N L cc C_ CO M co 0 un 11 L N II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i L V O O� E� v ^_ = O V Z O T (feel) uldea ueew I H I 0 T T N CD E cc N i CD cm cc C cc Lo R o aoo 0) o T tl , I I I I � I I I I li I I , I I I I I I I ' . -- � I I I i i I I I � I � , I � I I I I I I , O T (feel) uldea ueew I H I 0 T T N CD E cc N i CD cm cc C cc Lo R o aoo 0) o T tl 1 1 1 1 t 1 'J t t 1 1 0 0 I I i I I I I o � d I I I I I • I I I � I I *+ C� c III l I ca _ i II I I I I I I I O L �r • j Q Z Ch CID 0 CD o iI u n oC I 0 O O T r 0 O r o r T (jaal) ulPiM Inplue8 i 11 Channel Morphology and Stability Assessment Supporting Documentation 1 t J 1 1 t 1 t F 1 1 1 J t 1 t t 1 rl t 1 t 1 L� 1 1 1 1 i 1 1 t 1 i 1 1 1 1 1 1 1 i 1 a� U Q a� a� cz C: O _CD 70 cz cn T JGUIJ IUGOJGd 0 0 0 T 0 E E CD N_ CI) N o U 0 (z 0- 0 1 1 J RIVERMORPH PARTICLE SUMMARY I---------------------------------------------------------------------- River Name saddle Mountain Reach Name Entire Reach Sample Name wetted Riffle Survey Date 05/21/2011 ---------------------------------------------------------------------- Size (mm) TOT # ITEM % CUM % ---- ------------------- 0 -0062 ---------- 0 ---- 000 ------ ------------------------- 000 0 062 - 0 125 0 0 00 0 00 t025 0125 -025 -050 0 0 000 000 000 000 0 50 - 1 0 0 0 00 0 00 10 -20 0 000 000 20 -40 0 000 000 40- 5 7 0 000 000 5 7 -80 0 000 000 80 -113 3 300 300 113 - 160 0 000 300 16 0 - 22 6 1 1 00 4 00 226- 320 3 300 700 32 - 45 7 7 00 14 00 45 - 64 7 7 00 21 00 64 - 90 12 12 00 33 00 90 - 128 19 19 00 52 00 128 - 180 31 31 00 83 00 180 - 256 10 10 00 93 00 256 - 362 7 7 00 100 00 i362 - 512 512 - 1024 0 0 0 0 00 00 100 00 100 00 - 1024 2048 0 0 00 100 00 Bedrock 0 0 00 100 00 D16 (mm) 50 43 D35 (mm) 94 D50 (mm) 124 D84 (mm) 187 6 D95 (mm) 286 29 D100 (mm) 362 Silt /Clay ( %) 0 sand ( %) 0 Gravel ( %) 21 cobble ( %) 72 Boulder ( %) 7 Bedrock ( %) 0 Total Particles = 100 1 1 J t 1 1 t n 11 1 1 1 t 1 �J CL E cz cz co CO G 0 cz U) aauii IUGDJOd I-- N cn N U i as Q- 1 1 1 1 1 1 i i 1 1 i 1 1 1 1 1 1 1 1 RIVERMURPH PARTICLE SUMMARY ---------------------------------------------------------------------- River Name Saddle Mountain Reach Name Entire Reach Sample Name Bar Sample Survey Date 05/30/2011 ---------------------------------------------------------------------- SIEVE (mm) NET WT 63 17 69 31 5 26 65 16 11 44 8 7 96 4 6 46 2 7 52 PAN 13 62 D16 (mm) 3 25 D35 (mm) 22 07 D50 (mm) 43 56 D84 (mm) 115 33 D95 (mm) 144 67 D100 (mm) 158 /( ( %) 01 Sand 0 %)y 9 Gravel ( %) 53 08 cobble (%) 35 02 Boulder (%) 0 Bedrock ( %) 0 Total weight = 114 4100 Largest Surface Particles size(mm) weight Particle 1 158 16 2 Particle 2 132 6 87 t 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ^W W V♦ U C- CZ _ CZ o Q -- (D -�= ommm L. 700. cz U) T JOUTA IUODJOd E E _N Cn CD o U o i cz 0— 0 d t 1 1 r t [l t 1 1 t J 1 RIVERMORPH PARTICLE SUMMARY River Name saddle Mountain Reach Name saddle Mountain Reach 2 sample Name Petrusion Heights Survey Date 05/22/2011 Size (mm) TOT # ITEM % CUM 0 -0062 0 000 000 0 062 - 0 125 0 0 00 0 00 0 125 - 0 25 0 0 00 0 00 025 -050 0 000 000 0 50- 10 0 000 000 10 -20 0 000 000 20 -40 0 000 000 40- 5 7 0 000 000 5 7- 80 0 000 000 80- 113 0 000 000 113 - 160 0 000 000 160- 22 6 0 000 000 226 -320 0 000 000 32 -45 0 000 000 45 - 64 0 0 00 0 00 64 - 90 1 2 00 2 00 90 - 128 2 4 00 6 00 128 - 180 13 26 00 32 00 180 - 256 20 40 00 72 00 256 - 362 6 12 00 84 00 362 - 512 3 6 00 90 00 512 - 1024 5 10 00 100 00 1024 - 2048 0 0 00 100 00 Bedrock 0 0 00 100 00 D16 (mm) 148 D35 (mm) 185 7 D50 (mm) 214 2 D84 (mm) 362 D95 (mm) 768 D100 (mm) 1023 99 silt /clay (%) 0 sand (%) 0 Gravel ( %) 0 cobble ( %) 72 Boulder (%) 28 Bedrock ( %) 0 Total Particles = 50 (need at least 60) 1 1 1 1 1 t 1 t 1 1 1 f 1 t 1 1 1 1 Worksheet 5 3 Field form for Level II stream classification ( Rosgen 1996 Rosgen and Silvey 2005) Stream Saddle Mountain Creek Reach 1 Basin Drainage Area 2899 2 acres 453 M12 Location Twp &Rge Sec &Qtr , Cross Section Monuments (Lat /Long) 0 Lat / 0 Long Date 05/30/11 Observers SWC Valley Type VIII lankfull WIDTH (Wbkf) /IDTH of the stream channel at bankfull stage elevation in a riffle section 2506 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross section at bankfull stage elevation in a nffle section (dbf = A / Wbw) 23 Bankfull X Section AREA AM) AREA of the stream channel cross section at bankfull stage elevation in a nffle section 5753 Width /Depth Ratio (Wbkf/ dbkf) Bankfull WIDTH divided by bankfull mean DEPTH in a riffle section 109 Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross section or distance between the bankfull stage and Thalweg elevations in a riffle section 271 WIDTH of Flood Prone Area (Wfpa) Twice maximum DEPTH or (2 x dmym) = the stage /elevation at which flood prone area WIDTH is determined in a riffle section 35 Entrenchment Ratio (ER) The ratio of flood prone area WIDTH divided by bankfull channel WIDTH (W,,a/ Wbkf) (riffle section) 14 Channel Materials (Particle Size Index) D50 The D50 particle size index represents the mean diameter of channel materials as sampled from the channel surface between the bankfull stage and Thalweg elevations 545 Water Surface SLOPE (S) Channel slope = rise over run for a reach approximately 20 -30 bankfull channel widths in length with the nffle to riffle water surface slope representing the gradient at bankfull stage 000585 Channel SINUOSITY (k) Sinuosity is an index of channel pattern determined from a ratio of stream length divided by valley length (SL / VL) or estimated from a ratio of valley slope divided by channel slope (VS / S) 1 1 ft ft {f2 r+ mm Copyright © 2006 Wlldland Hydrology WARSSS page 5 29 1 I 1 1 11 fl t 1 r __1 Li 1 Worksheet 5-4 Morphological relations Including dimensionless ratios of river reach sites ( Rosgen and Sllvey 2007 Rosgen 2008) Stream Saddle Mountain Location Reach Saddle Mountain Reach 1 Observers SWC Date 05/30/11 Valley Type VIII Stream Type B 411 c Riffle Dimensions " "' River Reach Dimension Summary Data 1 Mean Min Max Riffle Dimensions & Dimensionless Rabos"" Mean Min Max Riffle Width (Wbw) 23 4 216 251 ft Riffle Cross - Sectional Area (Aw) (f?) 5173'48 47'57 53 Mean Riffle Depth (dba) 2 21 2 1 2 3 it I Riffle Width/Depth Ratio (Wwr / db,d) 10 63 9 60 11 02 rn Maximum Riffle Depth (dm� 2 72 2 44 31 ft Max Riffle Depth to Mean Riffle Depth (dine„ / dbM) 1231'1104'11403 c H Width of Flood Prone Area (Wipe) 338 305, 371 ft Entrenchment Ratio P. / Ww) 1 442 1 302 1 582 C m E Riffle Inner Berm Width (W.) 11 2 0 23 9 ft Riffle Inner Berm Width to Riffle Width / W (W� biif) 0 478 000010191 d Riffle Inner Berm Depth (dil) 0 52 0 1 07 ft Riffle Inner Berm Depth to Mean Depth (di,! dba) 0 235'0 000'0 484 Riffle Inner Bern Area (k) 117 0 24 4 Rdfle Inner Berm Area to Riffle Area (Aib / Abw) 0 226 0 000.0 472 Rdfle Inner Berm W/D Ratio (W b / dib) 108 0 23 4 Pnni Dimensions +* *+* Mean Min Max Pool Dimensions & Dimensionless Ratios"*' Mean Min Max Pool Width (WbkO 20 17 9 22 ft Pool Width to Riffle Width ( bidp I Wbw) 0 852'0 764'0 939 Mean Pool Depth (db,,,p) 295- 2636 3 26 ft Mean Pool Depth to Mean Riffle Depth (db,dp / dbw) 1 335'11190'1475 N Pool Cross - Sectional Area (Ab,dp) 595 471 7118 ft Pool Area to Riffle Area (Ab,ifp / &w) 1 149 0 911 1 388 o IMaximurn Pool Depth (d,) 44 3 36 5 44 ft Max Pool Depth to Mean Riffle Depth (dine, / dbw) '11991 1 520 2 462 q/ m I Pool Inner Berm Width (Wbp) 166, 158! 17 3 ft Pool Inner Berth Width to Pool Width (Wibp / Wbifp) 0 831 0 794 0 867 E F3 Pool Inner Berm Depth (d bp) 2 48 191 3 06 ft .- Pool Inner Berm Depth to Pool Depth (dap / dwdp) 0 841 0 647 1 037 noo. Pool Inner Berm Area (Abp) 40 7 33 s 48 5 fe Pool Inner Berm Area to Pool Area (Abp / Ab,dp) 0 685'0 555'0 815 Point Bar Slope (Spb) 0 470.0 440 0 510 ft/ft Pool Inner Berm Width/Depth Ratio (WO,/ dbp) 713 518 9 08 Run Dimensions Mean Min Max Run Dimensionless Ratios""' Mean Min Max rn Run Width (Wbidr) 216. 216. 21 6 It Run Width to Rrffie Width (Ww* / Wbw) 0 923,0 923,0 923 c o_ h Mean Run Depth (db,R,) 197' 197 1 97 ft Mean Run Depth to Mean Riffle Depth (db,d, / dbw) 0 891,0 891 0 891 C m 1 Run Cross - Sectional Area (Ab,if,) 425 42 5 42 5 ft Run Area to Riffle Area (Abw / Aba) 0 822 0 822 0 822 _E o c Maximum Run Depth (d..) 279 279 279 It Max Run Depth to Mean Riffle Depth (d. / dbv) 1 262 1 262 1 262 Run Width/Depth Ratio (W. ! db,d,) 11 11 11 ft Glide Dimensions Mean Min Max Glide Dimensions & Dimensionless Ratios""' Mean Min Max Glide Width (••bldg) 221 19 6 24 6 ft Glide Width to Riffle Width (Wbm / Wb,d) 0 943'0 836 1 050 Mean Glide Depth (dbkrg) 258 2 41 2 75 ft Mean Glide Depth to Mean Riffle Depth (d" / db f) 1 167 1090'112441 rn c 0 Glide Cross Sectional Area (Abm) 567 539 59 4 ft Glide Area to Riffle Area (Abm / Ahe) 1 095 1 042 1 148 m Maximum Glide Depth (dme g) 34 321 3 58 ft Max Glide Depth to Mean Riffle Depth (dmem / dbw) 1 538 1 452 1 620 E ei Glide Width/Depth Rabo (Wwde! dbmg) 867 713 10 2 ft/ft Glide Inner Berm Width/Depth Ratio (Wft / dbg) 13 63 10 06 1721 v jGhde Inner Berm Width (Wbe) 18 8 16 5 21 ft Glide Inner Berth Width to Glide Width (WbeMlb,de) 0 848'0 746O 950 Glide Inner Berth Depth (dae) 143 122 164 ft Glide Inner Berm Depth to Glide Depth (dwg / dbm) 0 554 0 473'0 636 Glide Inner Berm Area (A,.) 263 266 27 fe Glide Inner Berm Area to Glide Area (Abg / Abk%) 04650453 0 477 Step Dimensions" Mean Min Max Step Dimensionless Ratios -- Mean Min Max Step Width (Wb.) 0 0 0 it Step Width to Riffle Width (Wb,,,, / Wbit) 0 000 0 000 0 000 Mean Step Depth (dbki�j 0 0 0 It Mean Step Depth to Riffle Depth (db,re/ dbp) 0 000,0 000,0 000 a y rn Step Cross Sectional Area (Ab, j 0 0 0 ft Step Area to Riffle Area (Ab,de / Abb) 0 000 0 000.0 000 Maximum Step Depth (d.) 0 0 0 ft Max Step Depth to Mean Riffle Depth (dm �/ dbw) 0 000'0 000 0 000 Step Width/Depth Ratio (Wb./ dbias) 0 0 0 Riffle -Pool ystem ( C E F stream types) bed feat res ndud Was rims pools and glides "Step -Pool system ( e A B G stream types) bed features include riffles rapids chutes pools and steps (note ndude rapids and chat in riffle category) Convergence -D vergence system ( e 0 stream types) bed features rid de riffles and pools cross-sections taken at riffles fo dassdicabo purpose —Mean vai es are sed as the normalization parameter for all dmrens onless ratios e g minimum pool Width to nffle YAM ratio ses the mean riffle width value it 11 t 1 1 1 LI 1 t t U Worksheet 5-4 Morphological relations Including dimensionless ratios of river reach sites ( Rosgen and Sllvey 2007 Rosgen 2008) Stream Saddle Mountain Location Reach Saddle Mountain Reach 1 Observers SWC Date 05/30/11 Valley Type VIII Stream Type B 411 c U, River Reach Summary Data 2 0 Streamflow Estimated Mean Velocity at Bankfull Stage (ub,,,) 301 ft/sec IlEstimation Method Ulu = Streamflow Estimated Discharge at Bankfull Stage (Qba) 172 99 cfs I Drainage Area 453 mlz Valley Slope (Sr„) 00059 ft/ft jAverage Water Surface Slope (S) 00054 ft/ft Sinuosity (S , /S) 1 1 Stream Length (SL) 780 ft IValley Length (VL) 710 ft 7 Sinuosity (SL / VL) 1 1 f I Low Bank Height start 29, ft Max Depth I start 27 ft Bank Height Ratio (BHR) I start 107 m (LBH) end~ 3 2 ft (dam end 28 ft (LBH / d,,,,j end~ 114 Min max a mean aepms are measured from i na" to ba ildull at mid -pant of feature for Miles and runs th deepest part of pools & at the tail-out of glides Composite sample of Mies and pools within the designated reach Active bred of a nffl Height of roughness fe lure above bed ICopyright © 2009 Wlidland Hydrology WARSSS page 5 34 Facet Slopes Mean Mtn Max Dimensionless Facet Slope Ratios Mean Min Max Reach b Riffle Slope (S,n) 00080007 0 009 ft/ft Rffle Slope to Average Water Surface Slope (S , / S) 1 491 1 320 1 704 m Run Slope (S,,,,,) 00080008 0 008 ft/ft Run Slope to Average Water Surface Slope (Sri,,, / S) 1 483 1 483 148" s~ 0 Pool Slope (Sp) 0 002'0 002'0 002 ft/ft Pool Slope to Average Water Surface Slope (Sp / S) 0 354'0 354,0 3& c Glide Slope (Sg) 0 004 0 004 0 004 ft/ft Glide Slope to Average Water Surface Slope (Sg / S) 0665. 0 665.0 66; c = Step Slope (S) 0 000'0 000 0 000 ft/ft Step Slope to Average Water Surface Slope (S / S) 0 000'0 000'0 00( m a Max Danths Mean Mtn Max Dimensionless Depth Ratios Mean Min Max 2772 Max Riffle Depth (d,,,.,) 28 266 3 26 ft Max Riffle Depth to Mean Riffle Depth (dma,mf/ dbid) 127 '1158' 148 I A Gravel Max Run Depth (d111870 .) 366 35 3 81 ft Max Run Depth to Mean Riffle Depth (dn,.0 / dbid) 166 1 584 172 124 Max Pool Depth (dmav) 5 15 3 65 738 ft Max Pool Depth to Mean Riffle Depth (dmav / dba) 2 33 1652' 334 Max Glide Depth (dm.,y) 326 287 3 65 ft Max Glide Depth to Mean Rffle Depth (dma„ y / dba) 148 1 299 165 Man Step Depth (dm� 0 0 0 ft Max Step Depth to Mean Riffle Depth (d./ dbw) 0 0 0 Min max a mean aepms are measured from i na" to ba ildull at mid -pant of feature for Miles and runs th deepest part of pools & at the tail-out of glides Composite sample of Mies and pools within the designated reach Active bred of a nffl Height of roughness fe lure above bed ICopyright © 2009 Wlidland Hydrology WARSSS page 5 34 b Reach Rdflec - - -_ Bar Reach b Rifflec Bar Protrusion 11eighe U) slit/Clay 0 0 0 D16 813 5043 325 148 mm m /Sand 693 0 119 D, 2772 94 2207 1857 mm cc I A Gravel 4753 21 53 08 D. 546 124 4356 2142 mm I/ Cobble 4158'72 35 02 1 D 14796 1876 11533 362 mm m r / Boulder 297 7 0 D, 24269 28629 14467 768 mm V FA Bedrock 099 0 777071 D100 Bedrock 362 158 102399 mm Min max a mean aepms are measured from i na" to ba ildull at mid -pant of feature for Miles and runs th deepest part of pools & at the tail-out of glides Composite sample of Mies and pools within the designated reach Active bred of a nffl Height of roughness fe lure above bed ICopyright © 2009 Wlidland Hydrology WARSSS page 5 34 t 1 1 1 1 1 1 1 1 1 1 i 11 £5 6LL 3 UZGLI r Jus ["i t U ca oC Z t 8SS al 0 i S 48v loo a c vz Rev U 6 80b aW i J `1 U c� � b6 6LZ as C0 G Q) cli �t aI1Vli t co LL U m a a a a • O ► ♦ o + X (4) UOgIBna13 N c� N 0) C O N N U co U) 0 1 i I 1 i I 1 1 1 1 t i 1 1 1 1 1 E2 Or ULn C II E x m � M a a� c c C) T y C ) d W N R C1 J � N 1(i� d II i4 T 4-4 X X cz N O O 5 _U L � ^' C W � T� Y V f6 CjJ U) N w x 3 S d c 0 0 O (4) Uoi}en913 OV O co U C co O t+ N O N L O O C oli 1 1 1 1 1 1 1 1 1 1 i 1 1 i 1 I 1 O N _U Lo � II C W v co ID qt N�� a W U lC � OD _ 7 � N d � 11 N 3 W ® A O as � o O� Co N � m V, I _ N W x A 3 rn C O a c 0 C (4) UOIILIA913 W U c co O N O !q 1 1 1 1 t t 1 1 1 I 1 r i N Lr) O U� � II C E x m d C C m co o� i C V O IL U ate. l6 7 N M �j o W C/) .A X c O° C U G r -0 Cd cm c•� N W x 3 N C ao v c 0 O O (u) uoilena13 N °a 0 M O U C cz 0 N = O N i O 0 0 no 1 1 1 1 1 1 1 1 l I 1 1 1 1 1 Tu) 0 N Ua � II C W x m ° m c c a It N 00 N �a° CD 7 r m U) L � d w CO CO R X° c cd c o C U G v c _N TZ Y V C .0 ��/ m CDN (N W x 3 rn C O a c 0 i (11) UOIILA913 N a) U c co 0 c O N O ■r t w o id U � II C E m A M KC d C C ,LO L / O d O� O m LO ^ O m II CO w V` '' . x a ia N 0 t U 'O C Y � ld co K CO m co ♦ r W 3 N C 00 v c 0 I (4) UOIIEA913 0 v M N V C co 0 O N O �-■ 1 1 t t 1 1 t 1 1 om U� � II C w L x cz m m m c c 4 4-0 c U 0 N a O MLo 00 j N fd II � w Xo U_ C Y co Im O � N T� w cz 3 VJ C O a -o c 0 0 O (4) UOIILIAG13 N U C cz f� C 0 N 0 on 1 t i 1 1 1 r N OD t0 r U v u c E m a m m C C N u')� I� C s J � O� 0 3 N T M M W > W VJ a X c ia C� O c° cu S U G � ^' C _W 7 Y lti ® N VJ w x 3 C CL C 7 O C3 O (4) UOIIUA913 0 d 0 Cl) N C) CO O N O O O ON 1 1 1 l d t 1 1 1 N M O ri U N � II C E x d � m d c c LO ACY) 1 _ N C O W a' m J' m 0 N O II VJ ► s 0 X c rn `o Os W Y C ld /•�V (� rn VJ w x 3 N C a° v c 0 0 0 L (4) U011BA913 a N V N 0 C O N O O 0 11 u t e t 1 1 1 1 i t c O +-0 cz U N Cl) _co U T U (t JGUIJ IUGDJBd 0 0 0 0 0 N_ a� o U IL 0 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i Worksheet 2 2 Computations of velocity and bankfull discharge using various methods ( Rosgen 2006b Rosgen and Sllvey 2007) Bankfull VELOCITY & DISCHARGE Estimates Stream ISaddle Mountain I Location ISaddle Mountain Reach 1 Date I I Stream Type I 63c Valley Type I VIII Observers SWC HUC INPUT VARIABLES OUTPUT VARIABLES Bankfull RifflAe Cross Sectional Ei3 Abb)f Bankfull Riffle Mean DEPTH 2 30 dbkf rock on that side Substitute the D84 boulder protrusion height in it for the D84 term in method 1 (ft) - (2 dbkf ) + Wbkf (ft) F Bankfull Riffle WIDTH 25 06 Wbkf Wetted PERMIMETER 30 41 Wp rock on that side Substitute the D84 boulder protrusion height in it for the D84 term in method 1 (ft) - (2 dbkf ) + Wbkf (ft) D84 at Riffle 187 60 Dim) D84 (mm) / 304 8 0 62 084 rock on that side Substitute the D84 boulder protrusion height in it for the D84 term in method 1 (ft / ft) ^ekf / Wp (ft) Bankfull SLOPE I 0 0054 il Sbkf Hydraulic RADIUS 1 89 R rock on that side Substitute the D84 boulder protrusion height in it for the D84 term in method 1 (ft / ft) ^ekf / Wp (ft) Gravitational Acceleration 32 2 9 11 Relative Roughness 3 07 R / D 84 rock on that side Substitute the D84 boulder protrusion height in it for the D84 term in method 1 (ft / sec 2) R(ft) / D84 (ft) (ft/sec) Drainage Area 4 5 DA Shear Velocity 0 573 I u* I rock on that side Substitute the D84 boulder protrusion height in it for the D84 term in method 1 (ml 2) u = (gRS) (ft/sec) ESTIMATION METHODS Bankfull Bankfull VELOCITY DISCHARGE 1 Friction Relative u = jf 2 83 + 5 66 * Log { R / D as j j u* 321 ft/sec] 18445 cfs Factor Roughness 2 Roughness Coefficient a) Manning s n from Friction Factor / Relative 3 34 ft /sec 19215 cfs 1 Roughness (Figs 2 18 2 19) u = 149 R" S 121 n n= 0 05 rock on that side Substitute the D84 boulder protrusion height in it for the D84 term in method 1 Option 3 For bedrock dominated channels Measure 100 protrusion heights of rock separations steps joints or uplifted surfaces above 2 Roughness Coefficient u = 149 R"s S "2/ n b) Manning s n from Stream Type (Fig 2 20) n = 0 0557 300 ft /sec 172 59 [ cfs 2 Roughness Coefficient u= 149 R23 S "2 1n c) Manning s n from Jarrett (USGS) n = 0 39 S°-" R-0 16 3 45 ft /sec 198 48 cfs Note This equation is applicable to steep step /pool high boundary n a 0 048 roughness cobble- and boulder - dominated stream systems i e for Q - — T....a.n Al A All 01 09 927 P-3 2 CO 3 Other Methods He E)arcy Weisbach C C etc 387 ft/ sec 222 52 cfs Darcy Weisbach (Leopold Wolman and Miller 3 Other Methods (Hey Darcy Weisbach Chezy C etc 000 0 ft !sec 0 0 cfs Chez C 4 Continuity Equations a) Regional Curves u = Q / A 316 ft / sec 182 00 cfs Period Peod for Bankfull Discharge D = 1 2 year 4 Continuity Equations b) USGS Gage Data u = Q / A 0 00 ft / sec 000 cfs Protrusion Height Options for the D84 Term in the Relative Roughness Relation (R/D80) - Estimation Method 1 Option 1 For sand bed channels Measure 100 protrusion heights of sand dunes from the downstream side of feature to the top of feature Substitute the D84 sand dune protrusion height in ft for the D84 term in method 1 Option 2 For boulder- dominated channels Measure 100 protrusion heights of boulders on the sides from the bed elevation to the top of the rock on that side Substitute the D84 boulder protrusion height in it for the D84 term in method 1 Option 3 For bedrock dominated channels Measure 100 protrusion heights of rock separations steps joints or uplifted surfaces above channel bed elevation Substitute the D84 bedrock protrusion height in It for the D84 term in method 1 Option 4 For log influenced channels Measure protrustion heights proportionate to channel width of log diameters or the height of the log on upstream side if embedded Substitute the D84 protrusion height in ft for the D84 term in method 1 Copyright © 2008 Wlldland Hydrology River Stability Field Guide page 2 41 1 i 1 1 1 1 1 1 i 1 i 1 1 1 1 1 1 1 1 (O O O N U O 0 N (p C d U) 0 d O E m N 7 0 a a7 C (�C N N C C (6 L U LO 0 U Y C c6 d A G1 t Y 3 It Cl) 0 (O Nr M y N N :l lu �.7 'O lu >, O 0 C l0 co O O N t 0 0 0 U m o r N v O m IV m C 11 T CO C T 11 O t0 y t^ c� I N o m c r n m V L r C E W o S N m N w m LL OJ m y cCO j 2 Ld YES N °- m 7 m C > m a O. C � y O O. m 1] N O } a C O y C« C C C Il% E a N O m m 3 m y m (n V o O C— y x m ° c m OO d C C « W c m (p W O r` N m U C o c a_y x m m o ° c c m E m > E o c o \ N m ( 0 o° m.0 o m of y x r r a L G a 3 O c� m y N v �a o o o o y cm o m w m m m c m o f a W m N 10 N O N m N co N y T Y C 7 L li O'�p E A 0> J U C E O CD c v m m m `p £4 5@ ¢ .y. c o c E p m o 'm, 'a t 0) C c T .L. m C w ° v _C aE m�`m N o�� sum E BoID y> o0 om am v p rte\ °C yE C y f0 Omi v, N CD E R¢ m L am C E E 3o Q z rn w c m t J a m m N U m >° C 'C > m 0 o\ NII (D '0 m m a 'x m mp, C Q S O N m O C U O ¢_ m S Y O C U C O Q 'O m J N o) > C N O uo7 C 0 O O O o -Vi C Ol m C wm• C N E C 3_ n p O ` N C- m w U y LL m > N N m C 7 O C E O x E ° y m ,C « U L y C C m n' m m oo C' Es" O F� � E m (D m 0, o f `m m o m m O;; 0 CL m m LL i, 2 CL V> w m m N V O LL U ... C L M w a N a N Z m 2 E x 2 c 0_ t m N N m N � co � °r M Cq G m Qm m 0 0 M in m co c'> M O m C7 Ir m ° m �j N N m N^ m o L° C m C m C f0 N \ O 11 f, M° M m 7 m T y S m _ n� m a Fi O O> m m C v m m N p L w O m t+1 m°^ (� O m N a m^ O N m E /6 �£ L_ m y� O O) m 10 C L m 0) ° ° N^ C y C' .4 j 07 O > m V n v 2 � O R C L _°l L L O) 3 o E m y C p m ?� N LA C y H O 00 C m >. NO A IL w V O m° m Ip ^ a L� N y ^ n m O 7 S cc 0 � — W coo E 3�m E z �� Ny om 3 E " aaiyo Erma of rn rf C, w Q V C U > O 0 ¢ - J i� r 1 C W 0 N _ m C m\ (7 C C C ` ^ co O C m m m CD Co ca m C E 3 J K 7 y O 0 tm C N a m c—o C C C°1 _ 4 'A '� N tYJ _ a m y m O) O L O N N N N C m J m O - S E N O N L rn L C �% W m m C m N R) C m N y p 1 L p ° N m C m r- E N (n y U "' O° rn r 6 O N N ¢ CL m U C. C Y m .._ �. s C L m N m 0 .° m O C m m W U O c L m o ° Y JQ T a, m m 0 t o N m m G C O m N C m >> y m m ca D m a 13 Ifnf a l6 N-V Y (9 m K W m o ra 3 y Y 6 N O O C O1 lC N O C O E x O G ° m O o m m N m U O m dV tO n i?I N Nth �Em inE pa UV �E �ni MEcoiaadaE BOO m c et ? st N v co LO 10 N N v 0 O N V o w m� n o LL o cc Cl) m m In ^� m C C a E 6f O � T m N J C ° '6 a ¢ m ° cp J O a m L m U V m m U- N m �n E 2 y m an d = \ m co E N O m > O .0 r cm \ U y c °� m v = m E N E y (7 LO v o m C y 3 a O O (O t°n m n °v n a LL .O O c o G' a N� Y t E m� .2 OY cm m� > (D w B ca Q c m a+ m C L N m m co O O d0 N f0 E m N m(D �« 3 m m .O y L- f0 Cm m y C L L_ 3 J m y N E ^^ U >� N �II 7 2i C 0 >� L E m ° O co >. co L � U y m N y O �� m W m m a m LL N ° E a O ^ ` a ° N' C o E m ` E a a W e Q m v m O (L O a O C - ° 0p m m tc0 W ^ m m O) R7 E y C ` C m y C T _ O p E r m O Oa C N y os L E m N E E m 0 9 M y � v M c° m O °' o T <m o o LL (0 c E °m°v n�cmc i � 0 ts �y o �u� mo Um m O m ^ Vn ai m N Cl) N Cl) r N N v N v O O C,j m ch LO m m umi v 401 W o p^p W OD O ¢ °D LL O 11 LO m m v n C N N W m W v N E m > c a E m c C o O ca° cr] J m E oZ �� ' y v a °m m mm m coc°o� Q ^e�� ^^ J E c L o .S o m _ o c Y CO , a 45 3 in o �^ m o O V w O O " y ^ `m E m m ca — O W 7�( m m N c a— O) c O E J c E O ° z r U m E W W Q o `a C9 n W o y ^ ^"� CO _m w U v x morn > m\ c L mm^ a Cl) C m N m C a m(D a n O m 07 c0 0 y S O U C m m m CN y j L d o N ID O C1 ca O N O` C a atOO '$ a N m CL m ° C m �.m CU 9V ^ L E °'a O O Cy Cl° j D C N I L o UW .O C m a pm m N A n G m N d O y O mm C C CL m E 3 m\ U ca ca y E m O O L Ny��a C L U R N O m, m a c� m ci N C p v, C70 ° Y ° P? z t0 p N p ca 7 m y j m pG a co C m Z m r W U A N E m L¢ N A T .m ¢ a (n a, J J a m N /n 0 Q O O Z E V V Q a) m C r (Q Cl) N m C O O E w ° E m C > Y O C o N a N p m C 00 C Vv V) O am m 0 v C (0 o m N y m cU Y ` C m o m Y c m 5 E° y ca m r w 6 c a y m p O C a U CO tm O d r v Q I� 0 m ai N C, J y a m o a m U o O 3 m 0 O m O 'C In m > a ,O N (Q Lp (0 1� co O) r r r .�- LO H m m v c m c o o s )lueq jaddn s )lueq jamo-1 Wo808 m 2 0 € s fA (7 �i 0-1610 It Cl) 0 (O Nr M y N N :l lu �.7 'O lu >, O 0 C l0 co O O N t 0 0 0 U 1 1 Lj t t 1 1 1 Sediment competence calculation form to assess bed stability Worksheet 3 14 Sed p Y Stream Saddle Mountain Stream Type B 4/1c Location Saddle Mountain Reach 1 valley Type VIII Observers SWC Date 05/30/2011 Enter Required Information for Existing Condition 1240 D50 Riffle bed material D50 (mm) 436 Ds0 Bar sample D50 (mm) 042 Dmax Largest particle from bar sample (ft) 132 (mm) 304 8 mm /ft 000585 S Existing bankfull water surface slope (ft/ft) 230 d Existing bankfull mean depth (ft) 165 7s —1 Immersed specific gravity of sediment Select the Appropriate Equation and Calculate Critical Dimensionless Shear Stress 285 Dso�Dso Range 3 — 7 Use EQUATION 1 ti = 0 0834 ( D501D5a —0 872 127 Dmax/D50 Range 1 3 — 3 0 Use EQUATION 2 t* = 0 0384 (Dmax /D50) 887 00335 ti* Bankfull Dimensionless Shear Stress EQUATION USED 1 Calculate Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample 397 d z * (yS 1)DI.aX Required bankfull mean depth (ft) d = S (use Dmax in ft) Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle in Bar Sample 001009 S Required bankfull water surface slope (it/ft) i�D�,aX ft) S - s (use Dmax in ft) Check r Stable I✓ Aggrading I— Degrading Sediment Competence Using Dimensional Shear Stress 0 840 Bankfull shear stress '6 = ydS (lbs /fe) (substitute hydraulic radius R with mean depth d ) = 62 4 d = existing depth S = existing slope Shields 65 co 133 Predicted largest moveable particle size (mm) at bankfull shear stress T (Figure 3 11) Shields 165 CO 083 Predicted shear stress required to initiate movement of measured Dmax (mm) (Figure 3 11) Shields 452 co 227 Predicted mean depth required to initiate movement of measured Drr. (mm) _ Z d 'L = predicted shear stress 'Y= 62 4 S = existing slope YS Shields 00115 co 1000581 Predicted slope required to initiate movement of measured Dmax (mm) 't T = predicted shear stress Y = 62 4 d = existing depth S yd Check r Stabler Aggrading r Degrading Copyright © 2008 W ildland Hydrology River Stability Field Guide page 3 101 I t 1 1 � I t t LI 1 1 1 1 1 t 1 Worksheet 3 16 Stability ratings for corresponding successional stage shifts of stream types Check the appropriate stability rating Stream Saddle Mountain Creek Stream Type B 4/1 c Location Reach 1 Valley Type VI11 Observers SWC Date 05/30/2011 Stream Type Changes Due to Stability Rating (Check Successional Stage Shifts Appropriate Rating) (Figure 3 -14) Stream Type at potential (C --+E) r Stable (Fb--*B) (G--+B) (F —►Bc) (FCC) (D —C) (E --+C) (C--+High W/d C) r Moderately Unstable (G—F) (F—►D) (C —F) r Unstable (C—D) (B—>G) (D—G) (C —G) (E —G) [— Highly Unstable I c e 3 111 Copyright O 2008 Wildland Hydrology River Stability Field Guide page 1 1 1 1 1 1 t r� 1 1 ij t 1 di prediction Worksheet 3 17 Lateral stability summary Stream Saddle Mountain Creek Stream Type B 4/1c Location Reach 1 Valley Tye VIII Observers SWC Date 05/30/2011 Lateral Stability Categories Lateral stability criteria Selected (choose one stability Moderately Highly Points (from category for each criterion cate afe Stable Unstable bl Unstable Unstable each row) W/d Ratio State < 1 2 12-14 1 4 -1 6 > 1 6 2 1 (Worksheet 3 8) 09 (2) (4) (6) (8) Depositional Patterns B1 B2 B4 B8 B3 B5 B6 B7 1 2 (Worksheet 3 5) B1, B2 (1) (2) (3) (4) M2 M5 M6 M7 Meander Patterns M1 M3 M4 M8 1 3 (Worksheet 3 4) M3 (1) (3) MNH M /Ex H/L H/H H /Ex Ex/M Dominant BEHI i NBS UVL UL UM UH UVH MNL M/L M/M WH UEx H/L H/M H/H Ex/H ExNH 2 4 (Worksheet 3 13) VHNL Ex/VL VHNH Ex/Ex UL (2) (4) (6) (8) Degree of Confinement 08-10 0 3- 0 79 01-029 < 0 1 5 (MWR / MWRrf) 1 (Worksheet 3 9) 1 1 (1) (2) (3) (4) Total Points 7 Lateral Stability Category Point Range Overall Lateral Stability Moderately Highly Category (use total points Stable Unstable Unstable Unstable and check stability rating) 7-9 10 -12 13-21 > 21 P r r r ' Copyright O 2008 W iidland Hydrology River Stability Field Gui de page 3 114 1 IWorksheet 318 Vertical stability p rediction for excess deposition or a 99 radation t t 1 u t 1 t 1 1 1 1 t 1 Stream Saddle Mountain Stream Type B 4/1c Location Saddle Mountain Reach 1 Valley Type VIII Observers SWC Date 05/30/2011 Vertical Stability Vertical Stability Categories for Excess Deposition / Aggradation Selected Cntena (choose one Points stability category for each No Deposition Moderate Excess Aggradation (from each criterion 1-6) Deposition epos�on Deposition epos►�on row) Sufficient depth Trend toward Cannot move D35 Cannot move Dt6 of Sediment and/or slope to insufficient depth and /or slope of bed material bed material and /or 1 competence transport largest slightly and /or D100 of bar D100 of bar or sub 2 (Worksheet 314) size available incompetent material pavement size (2) (4) (6) (8) Sufficient Trend toward Reduction up to Reduction over capacity to insufficient 25 / of annual 25/ of annual 2 Sediment Capacity transport annual sediment sediment yield of sediment yield for 2 (POWERSED) load capacity bedload and /or bedload and /or suspended sand suspended sand (2) (4) (6) (8) W/d Ratio State 10-12 1 2 -1 4 14-16 >1 6 2 3 (Worksheet 3 8) 09 (2) (4) (6) (8) Current stream type at potential (C —•High W/d C) Stream Succession or does not (E,C) (B —•High W/d B) (C—•D) (F,D) 4 States (Worksheet 3 indicate (C,F) 2 16) deposition/ aggradation (2) (4) (6) (8) Depositional 131 B2 B4 B3 65 B6 67 B8 5 Patterns (Worksheet 1 3 5) B1 (1) (2) (3) (4) Debris / Blockages D1 D2 D3 D4 D7 D5 D8 D6 D9 D10 1 6 (Worksheet 3 6) D2 (1) (2) (3) (4) Total Points 10 Vertical Stability Category Point Range for Excess Deposition / Aggradation Vertical Stability for Excess Deposition / Moderate Excess Aggradation (use total No Deposition Deposition Deposition Aggradat►on points and check stability 10-14 15-20 21-30 > 30 rating) tr r r r Copynght © 2008 W ddland Hydrology River Stability Field Guide page 3 117 I Worksheet 3 19 Vertical stability prediction for channel incision or degradation Yp 9 1 t 1 Ll 1 1 t 1 t 1 �7 i! i! Stream Saddle Mountain Stream Type B 4/1c Location Saddle Mountain Reach 1 Valley Tye VIII Observers SWC Date 05/30/2011 Vertical Stability Vertical Stability Categories for Channel incision / Degradation Selected Criteria (choose one oints stability category for Not Incised Slightly Incised Moderately y Degradation (from each each cntenon 1-5) Incised row) Sediment Does not Trend to move larger sizes than D,00 of bed Particles much 1 Competence P indicate excess D,00 of bar or > 1 moved larger than D 10 2 competence D of bed of bed moved (Worksheet 3 14) (2) (4) (6) (8) Slight excess Excess energy Excess energy Does not energy up to suff icient to transporting more Sediment Capacity 2 P ty indicate excess 10 /o increase increase load up a than 50 /o of 4 (POWERSED) capacity above reference to 50% of annual annual load load (2) (4) (6) (8) Degree of Channel 100-1 10 1 11 -1 30 1 31 -1 50 > 1 50 3 Incision (BHR) 4 (Worksheet 3 7) (2) 114 (4) (6) (8) Does not if BHR > 1 1 and If BHR > 1 1 and Stream Succession indicate incision stream type has stream type has (13,13) (C—+G) 4 States (Worksheets or degradation /dObetween W/d less than 5 (E --�G) (D --•G) 4 3 16 and 3 7) (2) (4) (6) (8) Confinement 080 -100 030 -079 010 -029 <010 5 (MWR /MWR ref) 1 (Worksheet 3 9) 113 (1) (2) (3) (4) Total Points 15 Vertical Stability Category Point Range for Channel Incision / Degradation Vertical Stability for Channel Incision/ Moderately Degradation (use total Not Incised Slightly Incised Incised Degradation points and check 9-11 12-18 19-27 > 27 stability rating) r r r r ICopyright © 2008 Wddland Hydrology gy River Stability Field Guide page 3 119 IWorksheet 3 20 Channel enlargement prediction summary 1 t 1 L t 1 t t t t I Stream Saddle Mountain Stream Type B 4/1c Location Saddle Mountain Reach 1 Valley Type Vlll Observers SWC Date 05130/2011 Channel Enlargement Channel Enlargement Prediction Categories Prediction Criteria Selected (choose one stability Moderate Points (from category for each criterion No Increase Slight Increase Increase Extensive each row) 1-4) Stream Type at Potential (C->E) (C-> W/d C) (13,D) (B--+G) Successional Stage 1 (Fb -'B) (G->B) (E-'C) (E 2 Shift (Worksheet 3 16) (F->Bj (F -->C) (E-•G) (C-�F) (D—C) B4c /1 (2) (4) (6) (8) 2 Lateral Stability Stable Moderately Unstable Unstable Highly Unstable g y 2 (Worksheet 3 17) (2) (4) (6) (8) Vertical Stability Moderate 3 Excess Deposition or No Deposition Deposition Excess Deposition Aggradation 4 Aggradation (Worksheet 3 18) (2) (4) (6) (8) Vertical Stability Moderately Channel Incision or 4 Not Incised Slightly Incised Incised Degradation 4 Degradation (Worksheet 3 19) (2) (4) (6) (8) Total Points 12 Category Point Range Channel Enlargement Moderate Prediction (use total No Increase Slight Increase Increase Extensive points and check stability 8-10 11-16 17 - 24 > 24 rating) r r r r Copyright © 2008 Wildland Hydrology River Stability Field Guide page 3 121 1 t 1 t 1 1 t t t �1 F� t Worksheet 3 -21 Overall sediment supply rating determined from individual stability rating categories Stream Saddle Mountain Stream Type S 4/1c Location Saddle Mountain Reach 1 Valley Type VIII Observers Date 05/30/2011 Overall Sediment Supply Prediction Criteria (choose corresponding points for each criterion Stability Rating Points Selected Points 1 -5) Stable 1 Lateral Stability 1 (Worksheet 3 -17) 1 Mod Unstable 2 Unstable 3 Highly Unstable 4 Vertical Stability No Deposition 1 Mod Deposition 2 2 Excess Deposition or Aggradation 1 Excess Deposition 3 (Worksheet 3 -18) Aggradation 4 Vertical Stability Not Incised 1 Slightly Incised 2 3 Channel Incision or Degradation 2 Mod Incised 3 (Worksheet 3 19) Degradation 4 Channel Enlargement 4 Prediction (Worksheet 3 -20) No Increase 1 2 Slight Increase 2 Mod Increase 3 Extensive 4 Pfankuch Channel 5 Stability (Worksheet 3- Good Stable 1 2 Fafr Mod Unstable 2 10) Poor Unstable 4 Total Points 8 Category Point Range Overall Sediment Supply Rating (use total points and check stability rating) Low 5 Moderate 6-10 High 11-15 Very High 16-20 ■ Copynght O 2008 Wildland Hydrology River Stability Field Guide page 3 124 t 1 t t t t 1 ii t t t t t LO T lf� O v O d O r T °' N L d d sL p � O o cc W �/W W If 0 m L L (D O1 m VJ N m° Q E ++ cts p C cc i� O cis �V - > O L ,+ U N - C✓ C N W N O x c m _±. ° 47 li C 32 •L ' N r L L T N 0 p Y 0 7 O O > CL O J C a U) 05 W O O , O m > T Z5 � X N O V) N N tm p3 LO C O > W U) d> M o y — � ?� Y ca ca as m ca CO D o m �� (A U) M i y ca w 6 C � V N m (n > 'C N N Y Y Y _ ° ca ca ca cu ca C ± O^ > O r tY`a m Y p m Y a) Y N a CC � W C r o U ca F aEi 1 C Q .R. O O -- CO = L U) d W c� to N v E Qa rnH m Co O C o C a °� C y N N O C N CD G N L N M> 0 6 m v) E N = = c w e y O O N N o X +. 7 .. � p 0 - O N E co M CL >' LO M 6 O a Q J O O N m r N cli Rf > U ca C(a M r a) U) E Z _ N X W O N O M O c N a) Ct = Q O W m_ r d ca M m O O cz m c ac ca x a) L L L L J ca, U g A « >>a c°)� N c U W p O o t N v 0 as ° m et = O�- C U N ti E \ N U p O tQ >, H \ = ^` O Co to '.�_ r U N N CO W O cq ton N ' 0r aT O ` T M _v O i C 02 cm _ O c N L m UJoN N x Q =U = L U L C ca a c N 0 1 C k O O M r M ca E^ o rn .n a o c m a c -- a N Y �4) a oc r � o L L L L C Q S .r E 2 Z . — — O r L ` V I N Q m E a) C m 75 L y JQ C Qc � C tz o :s C) N � C O O N y m CV O Y ai M r V) 0 E ° N T 4) O r O O v m r p W cn a) s to mm -* co U °' E ca -E ti IL- L L L L L to C N 00 ti U 'n — p ca O C N a a� N m �0� p r N 7 w -3 O a N N --' ca V U E y0 y O .U) O c 4. _� rn m a) aQ ca i O m C m x 2 ca o= aa) `mom ° a E 1 ns c Q ca rn ca Y� °) -� -0 = 0) � CO � 2 Z Z J c� U «s (D Y I Q n a) E O c o � °-' () U) E cc �m �m L mo m> o 4)) aa))m g (a a) co �' L � cd L L L L L E io U) U LLB o cc cc JU) Jm U) C V m C N m m o c v N - r = E a L d di N d v G. W C C O of 0 7 !h w d d i C C R N d is r U� O Q C 0. N T lL E *.. W C 4) p t N N U) � C C N co 4) E� m C a d = W 3 CD `�° E O co a`� `a� w H �; � �°- �� �y EO O d ;; a) d d E Y C = V N m d a W V v d a d c m t cc U co N r I I 1 m O E 0 W w cr W O d 1 (D t cc a E R a f C 1 C L Q C • t C C C 'C O IC C7 m N M C IC N 'O C7 C fl to N C Id 0 O C) m N r i LO d d t Y t r r C r 1n M N O T m 10 r T O r 10 r m N N m O T O V) a m m c N r m M m M Of m O m m N a m m O) v N a r m q E td o O m r m M A a n M v w M A M m 0) W r M O) 1O N M M A a' 10 M A LO O N a O) N b CO O .o N m N O r 10 1O r r O r M r m to m N A C) CO M m M O o m N at N r O r m N D. a y M E Q - r M n A N m M M m O O N M O m M M A a m M A � O N M O N A 7 r Cy 0 N O O O O O 0 a a n 0 10 r Im O n r N O NN O O O O O O O O O O O O O N m m M r E K O O O O O O O O O O O O O O O O O co 10 N O y^ M co C ca N 0 'O � O O) r n A r O M r v n r O N M A C � Off) co � T N r E m V y N O) co IO n O co A w r O r Of co O N -e A N c N a c O O r r r N N N M 10 A O) U O r N A T ^ 4P CD C H `s N � O O O O O O O O O O O O O M IO M M 10 M CO id c 0 U) 0 0 0 0 0 0 0 0 0 0 0 0 0 r M n V a M —.- m V c c O O O O O O O O O O O O O O O O r M O) M cu m in o Ea - o m C3 M CD E E i', O u) O 10 O M O M O M o to O 10 O LO O 10 M Np N co O) 5; N M r m m m 10 m m 10 m {O m m CO IMO M IMO M IMO M co a E O M Co CO M M M M M M r r r O O O O O 5,-p ID N N E _ r (D m O O T O r O T O T O 0 T 0 O r O 0 r 0 O T O r O r r r r r O O O O O m W F C R m c C 0 n m M r a O) a M M N M A -e m N m F rm O O O O O O O O r r r N co - m m O )O M n a O O O O O O O O O O O O O O O 0 r r N M p E1 S O ~ O E N a m o m N o m m r O IO W T a m to m M m y m to O) n O 0v M 10 M O N M W m a N A m r K CL r O A m m Of r m r A M A n T L O N R y m O O O O O O O O O O r O O O O O O N O M O M O {M } O W O m O m O 7. m N N p a O) O) O) O) Of O) Of O) O) O) O) o m m o m m o m O) m � , L O W W W W W W W W F- ca t0 C) O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O S J Oa O O O O m 2 O O O O al O O O O O O O O O O O O O O O n N A r a A O 10 r N 10 m r m m A n O co r v lj O� 10 m 0 n n A m m O) O r N a M A 0 r u) M 1O O O O O O O O O O T T r r r r r N N N M p L CD r m r r N M N M N A N O) N M M m M M l aa m n 0 0 0 f M O 0 O M O) O O O O O O O O O O O O O O N CIA Im V j O N M O) m d' A n M r N a m A r M 10 O n r m v R to O a CO N m M O O m r n M a O n m 0 N t v o 10 n m Of O O) O N Rr a a of of M v a a N A T r r r r r r r N N N N N N N N N N N N N r R M W � N N O r O O 100 tNp W r W co Q O 1N0 ONE m COO y r N M a Q 10 10 A Of r r M T N T O) r M N n N N M r Ln 10 r m Y Q O m 4.1 m n n m IO O IO r O O r CO) r N 0 O O aN0 O E m O) m O) M m M r m m O a N r n M m C U V m 3 O r N N co M IO IO W r N co O N n C m co !0 C O 5 0 r r N 7 O m � m O r m m m A m M n N O M M O a O O N N N A m M O r- tm0 N d N v M M r A r N O m m A 10 m V O t O r N N M M a N A N � !TO , r 0 a 1A7 v) N c Y D v N 3 o O O a c O O O O O O O O O O O O O O O O O O O O 0 O O O 'f N O N c U O O po pCO n N R M N Or O M O a O M O N 1r O O r A O YO N O r O r m r O) 10O 0 C U ) O OD O IV Cn l0 CL cc El T 0I O O >, C N f0 O N O CL O U t 1 1 1 ID O E W 1n T- W a m 0) c y t PD CL E a ca C d CL m O C O U "O d CL 0 N l` cu log E: 1 td N a) m a 1 c CL N 7 N 'n cis N O V in r N N Y L� r S= m 0... ° b N M N O r b b 10 ° CD b a M M 10 N b O r a M NN f• O Cp w O r CD M M W O b O M 10 Q M a tD W a N b b W 10 11 S E v N at r Q O CD b M 1. a f• 10 A C� CO ° A N N aa l+l Irlf pp < N ONE N N n r O H C7 O fQ. 75 v a t= -� Cl) N O r b b r ° t0 b a O b b f• T b P to a O b N m N r b M b M W 0 O M t0 r 10 co 10 W r a N b d W M N b b a r W pp C+� WN eW+f m T 'y C" a O O O O O O O O O O O O O Cl) 1. W A o N O b M O M 0 0 0 0 0 M g o 0 Q o b r E O O O O O O O O O O O O O O O C° H W cq N ca m g O v O W (. Q M r N W C b t; CbD M n N $, a^ 02 N 10 E n b W M b O CO.) t� b N N a ID Q b p v -� n OCi m c t N c yC c O O r r r N N N M N P W r N M N M O W M 0 O tQ O N N O m m b r N v0i y r^ o o CQ .0 O O O O O O O O O O O O W b O P. O a W � b b c O 0 C 'H � co) T T6 m T c N O O O O O O O O O O O O O N b r N 'roQ N w 0 m c O O O O O O O O O O O O O O O N Q r N " o Q v m e m v m E 5 E m m y o b 0 b 0 b 0 N 0 b 0 b 0 W 0 0 o N N N N � N 01 N b a m m c b b b b b b b b W tb0 M 1b0 M t00 M O O O O O N o o N Q W F E M CIO, M M M M M M M r E m c 0 p m d C 3 > c rn O O n O f. O c0 O O1 O W O r co CD Q N N iD Y1 Iq h c0 b N ►. O p m r r r C+f Q W N P Q M 0 O O O O O O O O O O O O O O O N M O F- > Cmp O N N Cp N r N t1pp CO CbD a (O N O a (A T m C) O O O r r Q N Y07 M fb. Q OW1 b co O a W N M m ° X rn C) U-1 n T r N N N M M Q Iq N tCl O m oC rn m b N b b b N N b N b an b N b N N b N b 6- 0 0 0 0 0 0 0 0 J m �' W Q b f. b 1°ii O b N b t} t0 ►. b M !• Cp M W O r n N v b N n N W Q N y r r r N C N ip0 A CD O N � n N O O 1� n d O O O O O O O O O O O O N M M W O A Q M N CD O f. r n f. f. 0 N 0) N m W t M f00 r a r r a b M 10 1. r 1. O b N M C ` 00f 'Na M O �n0 r Ib. Ln O CIS N to sl CD Hf pN Q y r Cl) Q b N b b 1. W r r r CrOz� N QnQ ow n N r Q r CV M Q T AC .m. m tC m E Q W 1• 0 P a b W b M O a lh r Ir0 100 ° a N r IN. 1W+J COD O CND O C 0 0 `.O .cO CD a W C.7 O 5= r r C 0 O w M O O N N O 0) �mp {O to O to In0 IH () C O N N M M a Q b 1• r r O N aaN c�! a t0 co 0 W M 0 t`� v3i 4 0" v O a a o � E O T C °o O O O O O O O 0 O O oa° O O p. O O O n N N w IL to O d O O W O CD O 1. O b O 10 O a O M O N O b Q M N 100 r O 100 O O O p m to O oz to 1iE 1n cu CL T O O O V 0 N O m CL >, 0 U 1 1 i 1 t 1 1 1 1 1 1 1 1 i 1 1 1 f Worksheet 5 3 Field form for Level II stream classification ( Rosgen 1996 Rosgen and S1lvey 2005) Stream Saddle MountainCreek Basin Mitchell River Drainage Area 2899 2 acres 453 M12 Location Reach 2 Twp &Rge Sec &Qtr , Cross Section Monuments (Lat /Long) 0 Lat / 0 Long Date 05/30/11 Observers SWC Valley Type VIII Bankfull WIDTH (Wbkf) WIDTH of the stream channel at bankfull stage elevation in a riffle section 249 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross section at bankfull stage elevation in a riffle section (dbM = A / Wbu) 226 Bankfull X Section AREA (Abler) AREA of the stream channel cross section at bankfull stage elevation in a riffle section 563 Width /Depth Ratio (Wbkf/ dbkf) Bankfull WIDTH divided by bankfull mean DEPTH in a riffle section 1102 Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross section or distance between the bankfull stage and Thalweg elevations in a riffle section 291 WIDTH of Flood Prone Area (Wfp,) Twice maximum DEPTH or (2 x dmbw) = the stage /elevation at which flood prone area WIDTH is determined in a riffle section 39 96 Entrenchment Ratio (ER) The ratio of flood prone area WIDTH divided by bankfull channel WIDTH (W,pa/ Wb1d) (riffle section) 16 Channel Materials (Particle Size Index) D50 The D50 particle size index represents the mean diameter of channel materials as sampled from the channel surface between the bankfull stage and Thalweg elevations 8055 Water Surface SLOPE (S) Channel slope = rise over run for a reach approximately 20-30 bankfull channel widths in length with the riffle to riffle water surface slope representing the gradient at bankfull stage 001039 Channel SINUOSITY (k) Sinuosity is an index of channel pattern determined from a ratio of stream length divided by valley length (SL / VL) or estimated from a ratio of valley slope divided by channel slope (VS / S) 114 w ft ft/ft Copyright © 2006 W ildland Hydrology WARSSS page 5 29 1 1 1 1 1 t 1 t Worksheet 5-4 Morphological relations Including dimensionless ratios of river reach sites ( Rosgen and Silvey 2007 Rosgen 2008) t t 1 I Stream Saddle Mountain Location Reach Saddle Mountain Reach 2 Observers StreamWalker Consulting Date 05/30/11 Valley Type VIII Stream Type B 311 c Riffle Dimensions " "` River Reach Dimension Summary Data 1 Mean Mtn Max Riffle Dimensions & Dimensionless Ratios* Mean Mtn Max Rffe Width ( bid) 279 221 40 9 ft Riffle Cross - Sectional Area (Abler) (fl?) 55 53 46 79 63 43 Mean Riffle Depth (dbkt) 207 155 262 ft Riffle Width/Depth Ratio (Wbld / dbkf) 14 44778 7"7 26 38 rn Maximum Riffle Depth (dm.) 2 95 2 22 3 38 ft Max Riffle Depth to Mean Riffle Depth (dn. / dbm) '1425'1072'1633 c y Width of Flood Prone Area (Wrp,) 449 33 4 69 9 ft Entrenchment Ratio PIP. / Wbkr) 1 611 1 197.2 509 c m E 1 Riffle Inner Berm Width (Wb) 20 18 229 it Riffle Inner Berm Width to Riffle Width (Wb / Wbm) 0 716 0 648 0 821 m Riffle Inner Berm Depth (dib) 146' 1 27 185 ft Rffe Inner Berm Depth to Mean Depth (d,b / dba) 0 705'0 614'0 894 Riffle Inner Berm Area (k) 291 228, 35 2 ftZ Riffle Inner Berm Area to Riffle Area (A,7, / Able,) 0 524 0 411 0 635 Riffle Inner Berm W/D Ratio "ib / da) 14 10 3 161 I Dimensions Mean Min Max Pool Dimensions & Dimensionless Ratios"" Mean Min Max Pool Width ( bidp) 28 1 21 3 46 2 ft Pool Width to Riffle Width (Wbkra / Wbq) 1 010 0 766 1 659 Mean Pool Depth (dbkq,) 256 184 3 1 ft Mean Pool Depth to Mean Rffe Depth (dbkfp / dbm) 1237'0 889 1 498 N Pool Cross - Sectional Area (A..0) 674 581 849 ft Pool Area to Riffle Area (Abkp / Abler) 1 214 1 046 1 530 o Maximum Pool Depth (dmmv) 4 22 4 19 4 3 J1 Max Pool Depth to Mean Riffle Depth (dm.,p / dbki) 2 039 2 02i72 077 E m Pool Inner Berm Width (W p) 224, 176. 32 2 ft Pool Inner Berm Width to Pool Width (Wbp / Wbkfp) 0 794 0 6261 145 E p P Inner Berm Depth (dam) 162' 125' 1 97 ft Pool Inner Berm Depth to Pool Depth (dap / dbkfp) 0 633 0 488 0 770 a°o Pool Inner Berm Area (A�) 35 2 26 4 44 5 ftz Pool Inner Berm Area to Pool Area (A� / Abp) 0 521'0 391'0 660 Point Bar Slope (Spb) 140 120, 16 0 ft/ft JPOOI Inner Berm Width/Depth Ratio (Wibp/ d4) 14 73 9 27,23 34 Run Dimensions Mean Mtn Max Run Dimensionless Ratios— Mean Min Max rn Run Width (Wbk,) 245 245, 24 5 ft Run Width to Riffle Width (Wbldt / Wbkf) 0 879,0 879,0 879 c ° N Mean Run Depth (dbkf,) 2 25 2 25 2 25 ft Mean Run Depth to Mean Riffle Depth (dbkr, / dbm) '1087'11087* 087 1 087 1 087 c m E Run Cross Sectional Area (Aw&) 552 552 552 ft Run Area to Riffle Area (Abler, / AbM) 0 994 0 994.0 994 c Maximum Run Depth (d.) 319 319 319 it Max Run Depth to Mean Riffle Depth (d. / dbb) 1 541 1 541 1 541 a: Run Wrdth/Depth Ratio (Wbkf,/ dbkr,) 10 9 10 9 10 9 ft Glide Dimensions Mean Min Max Glide Dimensions & Dimensionless Ratios— Mean Min Max Glide Width (Wbkrs) 255 25 5 25 5 ft I Glide Width to Riffle Width (Wrbk% / Wbkr) 0 914'0 914'0 914 Mean Glide Depth (d") 246 246! 2 46 ft Mean Glide Depth to Mean Riffle Depth (dbkra / dud) 1 188 1 188 1 188 N C Ghde CrossSechonal Area (Abp) 627 627 627 ft I Glide Area to Riffle Area (Abkt / Aba) 1 129 1 129 1 129 m Maximum Glide Depth (d,) 3 27 3 27 3 27 ft Max Glide Depth to Mean Riffle Depth (dma)q / dbkr) .1580'1 580 1 580 E 0 Glide Width/Depth Ratio (Wbkra/ dbV) 104, 104. 10 4 ftfft I Glide Inner Berm Width/Depth Ratio (Wft/ dbg) 12 32 12 3-2,12 32 v Glide Inner Berm Width (Wft) 21 1 211 21 1 ft Glide Inner Berm Width to Glide Width (WrviFWbkra) 0 829'0 829'0 829 Glide Inner Berm Depth (dav) 1 71 171 171 ft Glide Inner Berm Depth to Glide Depth (dav / dbm,) 0 695 0 695'0 695 Glide Inner Benn Area (Alv) 362 362 362 ft2 Glide Inner Berm Area to Glide Area (Abg / Abktq) 0 578 0 578 0 578 Step Dimensions— Mean Min Max Step Dimensionless Ratios"" Mean Mtn Max IStep Width (Wbkk;) 0 0 0 ft Step Width to Riffle Width (Wbkrs / Wbta) 0 000 0 000 0 000 Mean Step Depth (dbj 0 0 0 ft Mean Step Depth to Riffle Depth (dbm/ dbu) 0 000 0 000 0 000 a Step CrossSechonal Area (Abler,) 0 0 0 ft Step Area to Riffle Area (Abm / Able,) 0 000 0 000 0 000 Maximum Step Depth (d.) 0 0 0 ft Max Step Depth to Mean Riffle Depth (d./ dbw) 0 000 0 000 0 000 Step Wtdth/Depth Ratio (Wbm/ dbkj 0 0 0 minie-raot system p e L. e r stream types) oea reanues ma ae times rims pools ana gives "Step -Pool system ( e A B G stream types) bed features include ti(ffes rapids chutes pools and steps (note include rapds and chutes in riffle category) —Con orgence- Divergence system ( e D stream types) bed features and de affles and pools cross - sections taken at nMes for dassrficabm purposes —Mean values are used as the normalization parameter for all d mensionless ratios e g m mmum pool width to riffle width rabo uses the mean rffe width value 1 1 1 F] F] Ij t t t r, Valley Slope (S w) 00118 ft/ft Average Water Surface Slope (S) 0 01024 ft/ft Sinuosity (S S) 1 14 Stream Length (SL) 649 It Valley Length (VL) 570 ft Sinuosity (SL / VL) 114:] Low Bank Height start 2 3 ft Worksheet 5-4 Morphological relations including dimensionless ratios of river reach sites (Rosgen and Sllvey 2007 Rosgen 2008) ft Bank Height Ratio (BHR) start Stream Saddle Mountain Location Reach Saddle Mountain Reach 2 (LBH) Observers StreamWalker Consulting Date 05/30/11 Valley Type VIII Stream Type B 311c (dmax) end f River Reach Summary Data 2 (LBH / d,,) end~ 1 0 772 0 666 0 879 c z Step Slope (S) 0 000 0 000'0 000 ft/ft Step Slope to Average Water Surface Slope (S / S) Streamflow Estimated Mean Velocity at Bankfull Stage (uba) 385 ft/sec I Estimation Method Ining s n by stream a Max Dooths v = Streamflow Estimated Discharge at Bankfull Stage (Qba) 216 75 cfs Drainage Area 453 m,2 12 Max Riffle Depth (dm.f) 29 227 3 37 ft Max Riffle Depth to Mean Riffle Depth (dmaxnf / dba) 14 1097' 1631 94 Max Run Depth (dm ,.) 365 311 401 ft Geometry Mean Mtn Max Dimensionless Geometry Ratios Mean Mtn Max Max Pool Depth (dm ..) 43 3 82 5 24 ft Linear Wavelength ().) 336 294 416 ft Linear Wavelength to Riffle Width (?. / Wba) 120 106 1491 Max Glide Depth (dmmy) 296 233 3 63 ft Stream Meander Length (Lm) 361 306 468 It Stream Meander Length Ratio (Lm / Wba) 129 110 1681 Max Step Depth (dm� 0 0 0 ft Radius of Curvature (R) 741 44 5 124 ft Radius of Curvature to Riffle Width (R,/Wba) 2 660 1 597 4451 8055 124 4356 2142 mm a I Belt Width (Wbft) 838 664 956 It IMeander Width Ratio (Wbn/ Wb.) 3 008 2 383 3 431 c Arc Length (La) 112 83 5 157 It Arc Length to Riffle Width (L / Wbkf) 4 013 2 997'5 625 UIRiffle Length (L,) 33 157 605 ft I Riffle Length to Riffle Width (L / Wba) 1 184 0 563 2 170 3502 D. Individual Pool Length (L.p) 441 389. 50 ft Individual Pool Length to Riffle Width (Lp/ Wba) 1581'1398'17941 362 mm Pool to Pool Spacing (P) 120 92 4 150 ft Pool to Pool Spacing to Riffle Width (P / Wba) 4 324 3 317 5 383 1 1 1 F] F] Ij t t t r, Valley Slope (S w) 00118 ft/ft Average Water Surface Slope (S) 0 01024 ft/ft Sinuosity (S S) 1 14 Stream Length (SL) 649 It Valley Length (VL) 570 ft Sinuosity (SL / VL) 114:] Min max a mean deptns are measured from Thaiweg to bankfull at mid-point of feature for riffles and runs the deepest part of pools & at theta rout of glides Compos to sample of riffles and pools wdh n th desrg ated reach Active bed of a nffle He gM f roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 Low Bank Height start 2 3 ft Max Depth start 2 2 ft Bank Height Ratio (BHR) start 1_05 0 023 0 008 0 032 ft/ft (LBH) end 3 4 ft (dmax) end 3 4 ft (LBH / d,,) end~ 1 Min max a mean deptns are measured from Thaiweg to bankfull at mid-point of feature for riffles and runs the deepest part of pools & at theta rout of glides Compos to sample of riffles and pools wdh n th desrg ated reach Active bed of a nffle He gM f roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 Facet Slopes Mean Mtn Max Dimensionless Facet Slope Ratios Mean Mtn Max Riffle Slope (S f) 0 031'0 015'0 049 tuft Riffle Slope to Average Water Surface Slope (Sin / S) 3 037 1 474 4 804 m Run Slope (S.) 0 023 0 008 0 032 ft/ft Run Slope to Average Water Surface Slope (Sr, / S) 2 289 0 827 3107 w a Pool Slope (Sp) 0 004 0 001 0 008 ft/ft Pool Slope to Average Water Surface Slope (Sp / S) 0 371 0 061 0 732 C Glide Slope (S9) 0 008 0 007 0 009 ft/ft Glide Slope to Average Water Surface Slope (Sy / S) 0 772 0 666 0 879 c z Step Slope (S) 0 000 0 000'0 000 ft/ft Step Slope to Average Water Surface Slope (S / S) 0 000 0 000 0 000 U a Max Dooths Mean Mtn Max Dimensionless Depth Ratios Mean Mtn Max 12 Max Riffle Depth (dm.f) 29 227 3 37 ft Max Riffle Depth to Mean Riffle Depth (dmaxnf / dba) 14 1097' 1631 94 Max Run Depth (dm ,.) 365 311 401 ft Max Run Depth to Mean Riffle Depth (dmaxnx, / dba) 1 76 1 502 194 Max Pool Depth (dm ..) 43 3 82 5 24 ft Max Pool Depth to Mean Riffle Depth (dm.. / dba) 208 '11845' 2 53 Max Glide Depth (dmmy) 296 233 3 63 ft Max Glide Depth to Mean Rdfle Depth (dm /dba) 143 .1 126, 1751 Max Step Depth (dm� 0 0 0 ft Max Step Depth to Mean Riffle Depth (dmaxs / dba) 0 0 0 Min max a mean deptns are measured from Thaiweg to bankfull at mid-point of feature for riffles and runs the deepest part of pools & at theta rout of glides Compos to sample of riffles and pools wdh n th desrg ated reach Active bed of a nffle He gM f roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 Reach b Rifflec Bar Rear b Rifflee Bar Protrusion Heiahtd / Silt/Clay 0 0 0 D16 723 5043 325 148 mm rA L /o Sand 12 0 119 D35 4314 94 2207 1857 mm m Gravel 31 21 6308 Dso 8055 124 4356 2142 mm / Cobble 47 72 3502 D. 20633 1876 11533 362 mm t 6 Boulder 7 7 0 D95 512 28629 14467 768 mm v A Bedrock 3 0 7770771 D100 Bedrock 362 158 102399 mm Min max a mean deptns are measured from Thaiweg to bankfull at mid-point of feature for riffles and runs the deepest part of pools & at theta rout of glides Compos to sample of riffles and pools wdh n th desrg ated reach Active bed of a nffle He gM f roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 1 1 I 1 1 1 l 1 1 1 I 1 1 1 1 rn • 0 9 106 81418 t t sx Z 698100d O t s' I,/" I I U. m a a a a ► e 0 + x (4) U011BA813 F o E o co N cn rn c O co U C c� J g S M I� 9 £6£t SPH OZ s -~ SL OL£t ap110 61 sx —� N l S9£l I00d 91 sx -4� Ul CIO 6 8LZ l altlJ8 L l sx e► 0 i a- C Z66ttP0d9tsx 66911alllIa9ts c I I 0 J 4 9601 100d 9l sx- (D U I I 9 9901 91,41a £ t sx c� I I � 0 m -0 L96 and Zl sx—'�* cz I 9 106 81418 t t sx Z 698100d O t s' I,/" I I U. m a a a a ► e 0 + x (4) U011BA813 F o E o co N cn rn c O co U C c� J g S M I� 1 1 1 1 �J I I I I N a O m Co � II C E x � A m FCt d C C CM U ^'O O W a Ln Ln T D X: A 0 c cd f� Oo U ^+ C _W = _7 70 Y C m CIO U) ♦ O Q' I W 0 a c 0 0 (3 (4) UOIIEA813 LO O 7 0 M U CO 0 O N 0 N i 0 O D �■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 f 1 1 N M O � U � � II C E x m a a� c N U r co o U lC 1 � N VJ w X► s 0 c i✓ y 02 co G U O _W 7 7 Y 7 C fC (u ® rn N I W 3 C_ O d C 7 O (4) UOIIUA813 O LO O co W U C 0 N � O N L O 0 t t t r I 1 t t e t i 1 1 y r- 0 - U C II E X Z5 4 M c N U (Z ` 0 Ci) a cr U ca r �o 1 D V� y T• � II w X0 c cZ c Oo U 5 L 'D ^' C W 70 m co \V ♦ N CO N I W x 3 c CL v c 3 O i (4) UOIIUA913 0 M N N LO U co 0 O N O D 2 T i 1 1 0 C CL C 7 O 0 L� e (4) UOIILIAB13 °v O co N () c ca 0 O N r- 0 4 .:7 0 La 00 o � U� 'O II C E X � A m � N C C N UY co o � a o ' � N II N W X VJ ► q X c ct N 00 � U G 'O W ^' C Y 70 � com � • M N I W A 3 0 C CL C 7 O 0 L� e (4) UOIILIAB13 °v O co N () c ca 0 O N r- 0 4 .:7 0 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 U cz OD w 0 CZ U� cn CZ to -1--a cz �U 0 � N cz U) T aauiJ IuaOaad • 00 0 T 1--w% O E O E a� N C) o N U cz T 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet 2 2 Computations of velocity and bankfull discharge using various methods ( Rosgen 2006b Rosgen and Sllvey 2007) Bankfull VELOCITY & DISCHARGE Estimates Stream Isaddle Mountain Creek I Location I Reach 2 Date I I Stream Type B3C Valley Type I VIII Observers SWC I HUC INPUT VARIABLES I OUTPUT VARIABLES Riff le ro s Sectional 00104 11 Sdkf Hydraulic RADIUS 198 R IBankfull 5630 �) Bankfull Riffle Mean DEPTH 2 26 dftkf Option 4 For log influenced channels Measure protrustion heights proportionate to channel width of log diameters or the height of the log on upstream side if embedded Substitute the D84 protrusion height in It for the D84 term in method 1 I Bankfull Riffle WIDTH I 2490 Wbkt Wetted PERMIMETER I 28 41 Y IJ (ft) - (2 dbld) + Wbld (ft) D84 at Riffle 187 60 Dia D84 (mm) / 304 8 062 D84 (mm) (ft) Bankfull SLOPE 1 00104 11 Sdkf Hydraulic RADIUS 198 R 3 62 ft /sec (ft / ft) Abkf / Wp (ft) I Gravitational Acceleration 32 2 9 Relative Roughness 3 22 RID. 3 62 ft /sec (ft / sec2) R(ft) / Dim (ft) (ft/sec) Drainage Area 4 5 DA Shear Velocity —][ 0 814 u* 3 62 ft /sec (mi) u = RS (ft/sec) I ESTIMATION METHODS Bankfull Bankfull VELOCITY 11 DISCHARGE 1 Friction Relative u=[283+566 Lo 9 { R / D ou hness j 1 u 464 ft /sec 26149 Factor R cfs 2 Roughness Coefficient a) Manning s n from Friction Factor / Relative Roughness (Figs 218 219) u= 149 Rw Sr2In n = 0 062 386 ft /sec 217 32 cfs 2 Roughness Coefficient u= 149 R24 S12 1n For sand bed channels Measure 100 protrusion heights of sand dunes from the downstream side of feature to the top of feature ft /sec 14919 1 cfs b) Manning s n from Stream Type (Fig 2 20) n o 0 066 3 62 ft /sec 203 81 cfs 2 Roughness Coefficient u= 149 R" ST2 1n c) Manning s n from Jarrett (USGS) n = 0 39 Se-4 R° i6 Note This equation is applicable to steep step /pool high boundary n a 0 062 roughness cobble- and boulderdommated stream systems i e for 3 Other Methods (He Darcy Weisbach C C etc Darcv Welsbach (Hev) 388 1 ft/ 218 44 cfs 550 It / sec 309 39 cfs I 3 Other Methods (Hey Darcy Weisbach Chezy C etc) For sand bed channels Measure 100 protrusion heights of sand dunes from the downstream side of feature to the top of feature ft /sec 14919 1 cfs Chez C J[:265 (I 4 Continuity Equations a) Regional Curves u = Q / A II 323 I ft / sec `I 181 60 cfs I Return Penod for Bankfull Discharge Q = �1 year 4 Continuity Equations b) USGS Gage Data u = Q / A 000 1 ft/sec] 000 cfs Protrusion Helaht ODtions for the De. Term m tha Relative Rnnahrtecc Rpiahnn fR /n .1 _ Fctimntinn Mathnri 1 Option 1 For sand bed channels Measure 100 protrusion heights of sand dunes from the downstream side of feature to the top of feature Substitute the D84 sand dune protrusion height in If for the Ds, term in method 1 Option 2 For boulder -dominated channels Measure 100 protrusion heights of boulders on the sides from the bed elevation to the top of the rock on that side Substitute the D84 boulder protrusion height in It for the Da, term in method 1 Option 3 For bedrock -dominated channels Measure 100 protrusion heights of rock separations steps joints or uplifted surfaces above channel bed elevation Substitute the D84 bedrock protrusion height in It for the D84 term in method 1 Option 4 For log influenced channels Measure protrustion heights proportionate to channel width of log diameters or the height of the log on upstream side if embedded Substitute the D84 protrusion height in It for the D84 term in method 1 Copyright © 2008 Wlldland Hydrology River Stability Field Guide page 2-41 1 1 1 1 1 (O ' O 0 N U O O N i `° c N rn 0 CC T) 0 E co (D N U O CL 0) a l9 N c C co LOL U r rn t U 7 Y ca CO) L Y 0 1 t n cr) 0 It Cl) V) ca CL -o Q LZ 'N VJ T 0] 0 0 C (0 CO O O N Q t rn k0 0 U OD N W a m CO a q w N C O C: co m m C 11 II r W C N m m c y m e v n^ m c m N m p C t0 II m = m W r N E c m m j 3vs y E O N w m m m N m E N } m tmA Eo 3 N T m C cQ a G 7 4 m p, r C% C � a 5 9 m _m�a cm N w � C N a a c �N y W 9 R 0 `0 C \ m 0) C N C N c N 0 2 '� B m m o° E 9 O E m O 7 o N m m m E c 02 a> N m W 2 C 2 d C 0 S d o to cm w° °m o N U m N ; $ a N o 10 0 0 c t6 0 i` N N0) y C 'p m c m V) CO N 0 w m �� $ m E ° E :7 W M N A m� EN �° erg^ �- $ N y% �jt ° $ E A J L m>, $o O m U TD m E m o 7 avi ,.,m�¢ m Ern O U m 7> o W m L �N am m C C _� °�E a O) C mo)E [0 m`-° L ?� aim C E Em 3 L a oc w m Cm o_° C° cm °' U c ?, m > �\ a N \ m m m m x m 1° CL 01 cc m O C C a) m 0 ¢ O_' U a Y L ° A m � U a Dm C 'C C m m > is N 0 0) a tC m N tp O N m w C me m mE E c 3. L ;a- °N mat O? °tmi m ym C o� f=/) E$ C°) O 10 N vmLm° C° L (p L cN tn0 m^ C �, �� C�° c o mm om ow`EDY Ei Dm gay EL mr mo m0 c'�iE ay m mx mm W LL % � n S w =� v `o LL Cmi � Q c w a �i to a w z m i E a m E N pp O N m w C c° W t° 0 co Ln f° co (7 0 c0 (p N m N ^ m O m O U 5 ') N N Ym g N O ° c C C N j II N m v y cm a _m m 2 c v Q m m c m O a N g r3 r u� o °OD o a °) \ h E 0 3 °'_ a p^ £ m .0 N L C C °f m C � L fQ °) N^ Qo 2 Zo m N c �0 3 v o� aL L 3 E w ° O` m 3 N c y y O O° C m >. l0 U. <O N V d o a « a p^ Qy) M C LL O C 7 7 ° > L N 0 N N It S m (Q 1 R y j a 0 C D w C m N O U N- N m^ 7 "O O )n$ a _ ca E m m omE -3p f7 m y> j,� N Iw p C cm 3 CD m E y O, C mNO O 0 Em f� m m O m C m N O t C N N 0 0) N c m\ C y U O ^ m^�' (j m N C C' L .SP C Q o 7 Q C O• )n CC°1 N` p O m q O m m 0 S N N N co r- COD m 0 E Y w m L C m p m C m C N m C (p N> b V E O. N Y O N^ T ¢ CL O cm mN U �� °g 2,L mm mo om o° C U mNmUOamc z j v b^ r`c,- (' d^ v�o^ m \ m 0Op �c�ppr U m N N `m N` N N C N m >> C m N f0 °) \ b 'O N N Y a^o `2 m o 3N aN gco o >o� o)co oam m pE N o m° �m�oc a Y mom N/ 01°D m C16 o(9 e� to d LL 22 my mv^ N V mEto mE oa0�5 2E 2 MEmm�daE tO m m ^ v co '7 •t 7 N M to co N N V' f0 Of N V LL ¢ 10 'D oN to �v0 �� o CL m c ca E ao m c 2 it _ � J c N '0 ¢ E m O Q ,- m m 0 V m w LL o <° Cl) ^ y rn N m 0 2 L N N- N$ m = 7+ \ N _o `- E c m \ o c m am a -= c m 00 m m 2E c E N mrn Cl) E o m $c 3$ cm O o �o SO n mo � LLa, c`Pi 0 `�°m N N -0 Y L E i N O N -0 m N cr� C m ^ L m E O^ ^ mtv V C Z. 1 v o O y N N of D U. o c ` m E m o �m O C m E .0 N O E d E° " N a N FL p N _1 N r- C ° O ID m m cm C 1mm co O co LL °6 O mC 0 m E \ N )nm CL m a) m m \ >p 0 °�my N c _o ya E N N O ° E O O � O 0 co N m m o LL o 0 w v 0 (n 0 cc co 2 o mo 'o U r. v N m om^ dm cc R N C7 N M N N 7 a - N a c° r Q a y rn rD n W C 11 3 O m W `f LL Y 0 O « inn m aqo m� rn W o 6r, C W E N > O c E Y m V c C 2 c m C O o ` o v r J C m E C m� a `m 3 m 0 a N 3 m a �i '° m a 0 U m m C 0) E _U m N m m m o ° mN E c ° A v= ri E m c n � ->, c m c E m E N o o ?� c m N= o y W rn W o c m in m v °$ ^ -- @ c m � p) Q m m cg t t > E c u� a o `a q� U A aa m m CL p N C m a £ .52£ n m °) 'r C C E) m 01 •o m m \ mg m L - N t0 C) ^ v tD C11 rn �d,p`G$�`° Y $ m c /aV m amm�NL� m a o O rEv�v pp� O U m o m fCOL m j O y N O) N CD O oc O c °1m Q 10 m 41 0 0 3E w3� c o c w°vc wy N� Nctd as Ua0 ao cm tD rn ^ V m m e C) E t a �' m Y a U m O O L d N N m N O w CU CL c C m N o N N C W m O° Z m N L W U j 0 A N ° m L° ¢ to N A 0 cp m ¢ G In t0 J V ppC J a L j fA N 7 m cn 0 t/N) 4) 0 0 O l0 Z E 0• V° N Q O) Q O m^ d CD C Q co ♦. 0 c O c 4D � C E NE p m C , O 1 N p d O c O co r c N Lo a c d Y _ _ N 0 t0 aND J w ° _ a 7 m O C o ca ,N m °v C.) °ao .a O 4 IM0 �0 > a l0 m WE c dd� � n cr) 0 It Cl) V) ca CL -o Q LZ 'N VJ T 0] 0 0 C (0 CO O O N Q t rn k0 0 U 1 1 t 1 d 1 1 1 1 Worksheet 3 14 Sediment competence calculation form to assess bed stability Stream Saddle Mountain Stream Type B 3c Location Reach 2 Valley Type VIII Observers SWC Date 05/30/2011 Enter Required Information for Existing Condition 1240 D50 Riffle bed material D50 (mm) 436 0550 Bar sample D50 (mm) 052 Climax Largest particle from bar sample (ft) 158 (mm) 1304 8 mm/ft 001037 S Existing bankfull water surface slope (ft/ft) 262 d Existing bankfull mean depth (ft) 165 Ys -1 Immersed specific gravity of sediment Select the Appropriate Equation and Calculate Critical Dimensionless Shear Stress 285 Ds01D50 Range 3 - 7 Use EQUATION 1 ti' = 0 0834 ( D50/D5a 872 127 DmaxID50 Range 13-30 Use EQUATION 2 T* = 0 0384 (Dmax /D50) -0887 0 032 1 C' Bankfull Dimensionless Shear Stress EQUATION USED 2 Calculate Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample 265 d z � Required bankfull mean depth (ft) d - cy s 1>DbaX (use Dmax in ft) Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle in Bar Sample 001048 $ Required bankfull water surface slope ( ft/ft) S. d 1)Dmax (use Dmax in ft) Check I- Stable r- i- Degrading Sediment Competence Using Dimensional Shear Stress 1 695 Bankfull shear stress T = ydS (Ibs /ft2) (substitute hydraulic radius R with mean depth d ) = 62 4 d = existing depth S = existing slope Shields 120 co 190 Predicted largest moveable particle size (mm) at bankfull shear stress ti (Figure 3 11) Shields 185 co 098 Predicted shear stress required to initiate movement of measured Dmax (mm) (Figure 3 11) Shields 286 co 151 Predicted mean depth required to initiate movement of measured Dmax (mm) 't 'C p d -- = predicted shear stress 7 = 62 4 S = existing slope YS Shields 00113 co 00060 Predicted slope required to initiate movement of measured Dmax (mm) $ S - — L = predicted shear stress 'Y = 62 4 d = existing depth yd Check F% Stable I- Aggrading I- Degrading ICopyright © 2008 W ildiand Hydrology River Stability Field Guide page 3 101 1 1 C! 1 1 1 t 1 t I� 1 1 1 1 Worksheet 3 16 Stability ratings for corresponding successional stage shifts of stream types Check the appropriate stability rating Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 2 Valley Type VIII Observers StreamWalker Consulting Date 05/30/2011 Stream Type Changes Due to Stability Rating (Check Successional Stage Shifts (Figure 3 -14) Appropriate Rating) Stream Type at potential (C--+E) Po Stable (Fb —B) (G—B) (F—Bj (F—►C) (D —C) (E -->C) (C- -*High W/d C) r- Unstable (G,F) (F,D) (C,F) I— Unstable (C—►D) (B—►G) (D—►G) (C,G) (E,G) I— Highly Unstable Copyright © 2008 Wildland Hydrology River Stability Field Guide page 3 111 1 1 1 1 LI t L� t 1 1 1 1 1 Worksheet 3 17 Lateral stability prediction summary Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 2 Valley Type Vill Observers StreamWalker Consulting Date 05/30/2011 Lateral Stability Categories Lateral stability criteria (choose one stability Selected category for each criterion g ry Stable Moderately Unstable Highly Points (from 1�) Unstable Unstable each row) W/d Ratio State < 1 2 12-14 1 4- 1 6 > 1 6 1 (Worksheet 3 8) 2 09 (2) (4) (6) (8) Depositional Patterns B1 B2 B4 B8 B3 B5 B6 B7 2 (Worksheet 3 5) 2 B1 (1) B4 (2) (3) (4) Meander Patterns M1 M3 M4 M2 M5 M6 M7 3 (Worksheet 3 4) M8 1 M3 (1) (3) UVL UL UM WL M/M M/H MNH M /Ex H/L H/H H /Ex Ex/M Dominant BEHI / NBS 4 UH WH MAIL UEx H/L H/M H/H Ex/H Ex/VH (Worksheet 3 13) VHNL Ex/VL VHNH Ex/Ex 2 L/L (2) (4) (6) (8) Degree of Confinement 08-10 0 3- 0 79 01-029 < 0 1 5 (MWR / MWRm) 2 (Worksheet 3 9) (1) 07 (2) (3) (4) Total Points 9 Lateral Stability Category Point Range Overall Lateral Stability Moderately Highly Category (use total points Stable Unstable Unstable Unstable and check stability rating) 7-9 10 -12 13-21 > 21 Wo r r r Copyright © 2008 Wildland Hydrology River Stability Field Guide page 3 114 1 1 I 1 L L� L 1 1 1 1 1 1 Worksheet 3 18 Vertical stability prediction for excess deposition or aggradation Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 2 Valley Type VIII Observers StreamWalker Consulting Date 05/30/2011 Vertical Stability Vertical Stability Categories for Excess Deposition / Aggradation Selected Criteria (choose one Points stability category for each No Deposition Moderate Excess Aggradation (from each criterion 1-6) Deposition Deposition row) Sufficient depth Trend toward Cannot move D35 Cannot move D16 of Sediment and/or slope to insufficient depth and/or slope of bed material bed material and /or 1 competence transport largest p g slightly and /or D of bar ,00 D of bar or sub ,o0 2 (Worksheet 3 14) size available incompetent material pavement size (2) (4) (6) (8) Sufficient Trend toward Reduction up to Reduction over capacity to insufficient 25/ of annual 25 /o of annual Sediment Capacity 2 transport annual sediment sediment yield of sediment yield for (POWERSED) load capacity bedload and /or bedload and /or 2 suspended sand suspended sand (2) (4) (6) (8) 3 W/d Ratio State 10-12 1 2 -1 4 14-16 >1 6 (Worksheet 3 8) 2 09 (2) (4) (6) (8) Current stream Stream Succession type at potential or does not (C —.High W/d C) 4 States (Worksheet 3 indicate (E,C) (B —•High W/d B) (C—•D) (F—•D ) 2 16) deposition/ (C -,F) aggradation (2) (4) (6) (8) Depositional B1 62 B4 133 135 136 137 68 5 Patterns (Worksheet 2 3 5) B1 (1) B4 (2) (3) (4) 6 Debris / Blockages D1 D2 D3 D4 D7 D5 D8 D6 D9 D10 (Worksheet 3 6) 1 (1) (2) (3) (4) Total Points 11 Vertical Stability Category Point Range for Excess Deposition / Aggradation Vertical Stability for Excess Deposition / Moderate Excess Aggradation (use total No Deposition Deposition Deposition Aggradation points and check stability 10-14 15-20 21-30 > 30 rating) r I— r r Copyright © 2008 Wddland Hydrology River Stability Field Guide page 3 117 r 1 it 1 1 t 1 t 1 C� I F] 1 iJ 11 Worksheet 3 19 Vertical stability prediction for channel incision or degradation Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 2 Valley Type VIII Observers StreamWalker Consulting Date 05/30/2011 Vertical Stability Vertical Stability Categories for Channel Incision / Degradation Selected Criteria (choose one Points stability category for Not Incised Slightly Incised Moderately Degradation (from each each cntenon 1-5) Incised row) Sediment Does not Trend to move larger sizes than 9 p 100 of bed Particles much 1 Com etence indicate excess D1oo of bar or > moved larger than D 100 2 (Worksheet 3 14) competence D84 of bed of bed moved (2) (4) (6) (8) Does not Slight excess Excess energy sufficient to Excess energy Sediment Capacity indicate excess energy up to 10% increase load up transporting more 2 (POWERSED) capacity increase above reference to 50% of annual than 50% of annual load 2 load (2) (4) (6) (8) Degree of Channel 3 Incision (BHR) 1 00-1 10 1 11 —1 30 1 31 —1 50 > 1 50 2 (Worksheet 3 7) 100 (2) (4) (6) (8) Stream Succession Does not If BHR > 1 1 and stream type has If BHR > 1 1 and (13 ,G) (C-,G) 4 States (Worksheets indicate incision or degradation W/d W/d between stream type has W/d less than 5 (E-,G) (D,G) 2 3 16 and 3 7) (2) (4) (6) (8) Confinement 5 (MWR / MWR�f) 0 80 -1 00 030-079 0 10 - 029 < 0 10 2 (Worksheet 3 9) (1) 067 (2) (3) (4) Total Points 10 Vertical Stability Category Point Range for Channel Incision ! Degradation Vertical Stability for Channel Incision/ Moderately Degradation (use total Not Incised Slightly Incised Incised Degradation points and check 9-11 12-18 19-27 > 27 stability rating) r r r r Copyright © 2008 Wildland Hydrology River Stability Field Guide page 3 119 t 1 1 1 1 i 1 1 i 1 1 i 1 1 1 1 1 Worksheet 3 20 Channel enlargement prediction summary Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 2 Valley Type VIII Observers StreamWalker Consulting Date 05/30/2011 Channel Enlargement Channel Enlargement Prediction Categories Prediction Criteria Selected (choose one stability Moderate Points (from category for each criterion No Increase Slight Increase Increase Extensive each row) 1-4) (2) Vertical Stability Excess Deposition or No Deposition 3 Aggradation (Worksheet 3 18) (2) Vertical Stability Channel Incision or Not Incised 4 Degradation (Worksheet 3 19) (2) (4) (6) Moderate Excess Deposition Aggradation Deposition (4) (6) Slightly Incised Moderately Degradation Incised (4) (6) Total Poi Category Point Range Channel Enlargement Moderate Prediction (use total No Increase Slight Increase Increase Extensive points and check stability 8-10 11-16 17-24 > 24 rating) r r r r Copyright © 2008 Wddland Hydrology (8) (8) 2 A River Stability Field Guide page 3 121 Stream Type at Potential (C-->E) (C—High /d C) (C,D) (B--.G) 1 Successional Stage (Fu-►B) (G-'B) �C (G-�F) (F-�D) (D-�G) (C,G) Shift (Worksheet 3 16) (F�Bc) (F -->C) (E,G) (C—F) (D -->C) (2) (4) (6) (8) 2 Lateral Stability Stable Moderately le Unstable Highly Unstable (Worksheet 3 17) (2) Vertical Stability Excess Deposition or No Deposition 3 Aggradation (Worksheet 3 18) (2) Vertical Stability Channel Incision or Not Incised 4 Degradation (Worksheet 3 19) (2) (4) (6) Moderate Excess Deposition Aggradation Deposition (4) (6) Slightly Incised Moderately Degradation Incised (4) (6) Total Poi Category Point Range Channel Enlargement Moderate Prediction (use total No Increase Slight Increase Increase Extensive points and check stability 8-10 11-16 17-24 > 24 rating) r r r r Copyright © 2008 Wddland Hydrology (8) (8) 2 A River Stability Field Guide page 3 121 1 1 1 1 t 1 t t t 1 1 1 1 1 t Worksheet 3 -21 Overall sediment supply rating determined from individual stability rating categories Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 2 Valley Type Vill Observers Date 05/30/2011 Overall Sediment Supply Prediction Criteria (choose corresponding points for each criterion 1-5) Stability Rating Points Selected points 1 Lateral Stability (Worksheet 3 -17) Stable 1 1 Mod Unstable 2 Unstable 3 Highly Unstable 4 Vertical Stability 2 Excess Deposition or Aggradation (Worksheet 3 -18) No Deposition 1 1 Mod Deposition 2 Excess Deposition 3 Aggradation 4 Vertical Stability 3 Channel Incision or Degradation (Worksheet 3 -19) Not Incised 1 1 Slightly Incised 2 Mod Incised 3 Degradation 4 Channel Enlargement 4 Prediction (Worksheet 3 -20) No Increase 1 1 Slight Increase 2 Mod Increase 3 Extensive 4 Pfankuch Channel 5 Stability (Worksheet 3- 10) Good Stable 1 2 Fair Mod Unstable 2 Poor Unstable 4 Total Points 6 Category Point Range Overall Sediment Supply Rating (use total points and check stability rating) Low 5 F Moderate 6-10 High 11-15 r Very High 16-20 r Copyright © 2008 Wildland Hydrology River Stability Field Guide page 3 124 1 1 1 J 1 [I 1 1 1 fl 1 t 1 1 1 CA r N G O M O m N N r O O � .�C ca N O ,. !L d .0 d A � T Cl) Cc L � R ca CD � g CL ca ° +' w O °� y uj C O N c a) cc co +- N N a Q N Q) 3 CD °� a Q L c T > U a) Cn CO 0 O V a) ° O c° + C'3 aa) O C a_ r o N 3i� +.' C� etc—. m in a FW M p O o O a) ° m 0 Ir W n°. N �� a) Cl) > C° � C� �' i' N O CL CO 0 V N N 0 N f� CO "t N >' '_ x W a) a) cn > CA N O O c C ca tt .�.. L O -p :� > > Y N N c3C c30 ca Cf) ° W Y U U Y U U Y n ! U c m > >` ,0 N N c`a Y 0 c V cc Y L .. 7 N CQ C ° a) a) a) () a) ° Cl) V- Cq r Q � c-a ca Cn QC _p LL p c N a> [r p o p a ��. W V c p N m �Fv N m 0` O Q ` ° c O O y 'O ai cr X° +� _N w a) ,= C S CO a) C1 L a) "' p � N It ° p p 0° p O U N i O a) N a) = E N Li X� L N w cn SN cq O O ~ C L CM C.0 p LL LL ° a ? a) W O o N U a U o E r c () Y W c a) E Z c °� o) Ria Y a) a) k O ca ao) 40 to L a) 0 y p rn o E a a o o m _J p - L L �a) L L c -) v a O r c a) � ip N OL ( a) p — a o U) M _ N U) co N U c 0 N p o x LU O O a y cts r co a 0 r ca >� v p O N Q V V O ° Tm TAN '-O O M T c N p E a° c a) ° ao '� co o 0 n a oW o ��a c0i c �ca T LO cca E;� W �` L L L L -a), N r a) E �O p ( r za � a) U c L co -° - 3: o ° ° 0.0 ° ca � � a Q C a� s o r L N a) r_ 0) v 4? o o o U� a �� Q w w V- ` :S O �+ = t _ T U N o co LO a a 0 a O a Y C p m N a V E O d (q r CD a) M T L d h. r CO U O 0) �� U0 h. V W c T � ca � 1 L L L L L W _ V N N _ O d a) N C) cn a) i/i oCS r c) E O Q co c a— 6 o 0 o- � pC r V L U U a) E m a) O 'c = a .. � �. E o a) O o m r- o o rD U a s d '� E a c° as rn x co�L c:� () a)= (D v? c I ° .. E co d co ° °) �� Y Co o m° OL �> CD E� �c O O m cn m� NN �° om �o L �m U. L L L L L `� IiaC lac 0� n c O c V y m N T m = Im C ?� ID � .-. C) N c m V C Rp.. dN W �= c c Cfa.V O a an d L '+A N ` C� c i0 V N E r c= lL0 w� y+ as CL�O = N. N ,O^ N VJ d o� _ >. {L E ..W c d OL c N N� W� c = co N c E d c �d aW —= d,Q �E �a2N cN EO o R `m Im W d� } °- E in0 �; c c c m m WrJ da m m c 4) C CD t v ? �y ma > >, > = U) O ss V m N V O U 1 1 1 m v O E O W Q W a ca m O c 1n L m m Q E 10 FL O C O U m Q r- 0 CL V) ca O m N E CD 4 U C W m V m CL U) m a C 16 'O O O m m N N C i 1 0 o m m CL cc G a O O O T a C 1C v 10 O O N L m C O_ U a cO 0 10 A 0 0 m M N M o1 'Q A co N 0 O N NA w to OM 0 0 0 1a0 NE co N r O r r N N N r .= ; m O -+ a r w G O O l0 A W O O O O to M O a 0 T 10 r N A A O 0 Ol a O 0 0 qr m e ... r o O N prp pWpD� C.' ^ A N im V A M O i0 O O N M T 10 co Im co co v' N r O CO COD " CN" 1 O 100 r N N N � N t- 0 N N r a m a o o 0 0 0 co, 0 0 0 0 0 0 o an 0 m A o 0 0 0 o o A m w O yr. O O O O O O O O O O co O r O1 r O O O O O O M CD O v c�' O O O O O O O O O O O O O O O O O O O O O r N r t=ames: c a N O E O W r N W to O /a T t0 a to M M W N M A M N to CO r N O r Cull aT O m S a a r r ?` d es o O r T r N N N C', R M CO O O r M r CL N c M PN7 Iq r N Co i00 g, p 1A N O D O O O H� v lE � v Em m o O 0 O O O O m N O O 0 0 0 ld y c 0 O O O O o O o O O O O O O a m c r a C, E . O O o m � 9 0) m E O m _ �• 0 M 0 b 0 0 0 0 0 O 0 0 0 LA 0 0 0 10 An N 11fo� t0 t00 11(0� W M N N N 'n $ Cca 5 c E m ca r m m E a M co M M M O M t0 co lN9 01 n S O m Q m C09 A A co M T O O O O O m c m N m O E. wog og$ o�������°�00000a C m _ N 14 10 o m ( 0 O O O O O O O T p p 7 H O E r mQ� N q W M 10 O v O N w N O C, N A 30 CO CL O r N N M M C O A N M N N m co ea} N 0 0 d M m m m c o O o O o 0 0 0 0 0 0 0 0 a 0 0 2 1n N _ a► a a v e 0 0 a 0 a 0 a 0 e 0 a 0 CD 0 0 0 e o a 0 e v o m° J E N 0 O O O O T O O r O O O T O O T O O r O O O T O O 0 T O _o O m � O O O O O O O O O O O O O O O O O O O O N N N N M M 0 A O M CD m O r r r r r N N N Q yes O O O O O O O O O O O O O O O �y O O O t r n n CD 01 r 1q 00f r 1r1 O N A N N W O co co O N 1M0 O n W R W 1N0 M CAD 0 1NO CD O1 m r N N N M M O N A CD O N O tp Y r Q r r r r r to W N E i^ r N r co O t00 W O 100 N N N ��pp 10 qq 19 m 30 r N 001 N 1(Af co O t00 O C09 N CO tp O N M O �p V O N c t00 C0D N 0 M C Y O io OE N m M cOD 40 1+1 CO :°- � v e 100 w uNi O 1°0 © rNi C T O N M M M Q as R 100 CO COD t0 al N A W �e0mpa r T M O 1AO N lO C0 (A a O v O C O O O O O O O O O O O O 3 iL m 0 0 0 0 0 0 0 0 0 0 m 0 Ol CD A 0 0 C M N !0 C M N r r O O O O lz° m in O m a E r 0 0 o m m CL cc G a O O O T a C 1C v 10 O O N L m C O_ U 1 N O E 0 W tr W O CL (D co r O) C_ 7 2 C Q g cl R 4 v i c C c C a `c C c C i M R C m `m lC E M CD C 1C fA C) co C N 7 N o C 4f O 'O cc m t Y I 1 r r 0- m O O CD A O O 01 O N O N O O CD co M n Q 10 N O M 10 N 10 co r M 10 q CO r ••• 3 m+ $ p O) r r a O A O) O N O n 0 O M M M n O O M r N C co r ~0 t0 O N U) O n tb N 110 r �" M O n N N er O 1D 0 N N CD O o r r r r lr9 N N m o m .� r a C y O o c0 n Co 0 0 ;� N�� N n a o A n -' 10 o '� -4 d r o H ° O Of r /0 Cp N n M M co 10 O r t0 CD m 3 CL U E M O r N A Uf M 10 O) n W aD O N lMf! r r M O T A U1 N a co 10 0! w O O N O O 7 N N F 1G co N .. r r r r r M n n N N U! T m O c O O O O O O O O O O O O O O r N M10 N On" N O Of M O O O O N on f OCAD > N a cl) co Ln m 0 r M A -e V N Q! U U! 0 m a E 0 C 0 D N co O co C tl CL O N N N 0 c T N M 0O D M N t n OO 0 G T D . N (0-0 T c y C O O O O O O O O O O Of O O) f a a 0 c O O O O O O M 0 M N n i 16 :5 c o D f c O O O O O O O O al O O O 0. O O co O co om rn m V �i ^ m E O U) O N O w O w O M O N O U) O M O U) N N U) M M M M r r r N N R i3' E E "6 O O O O O O O O O O 10 10 10 CD CD 0! 0/ Ol N M 0 E O M M M M M M M M M r M M M r r O O O O O -0 F' c c C 0 C) N r £ m \ \ p O \ O \ O \ O \ O \ O \ O \ O \ O \ \ \ \ \ \ p\ \ \ \ \ m E O 1fl r r r r r O O O O 0 0 _ O T r m O N 10 10 n 07 r N 01 Uf 01 10 CO 10 a m c O O O O O o O O O O O O O O O p oo3 O H co o E �' a 1Q• v o�i 1�n 11DO o a o '1°n N u1f'i 1'"n n Lo fn �. O r r N N M M a O A T N N N L 0 O� y r N r N a N M A M r M Uf R O N M m O O O O O O O O O O O O O O O m m Iii N c m m o o o o 0 0 0 0 0 o 0 0 0 0 W O r r r r r r r T CL O O O O O O O O O r O r O T O r O r O T O T O r O r O r O r O J 1Ey 2 O O O O 010 O O CIO O O O O O O O O O O m Z' -T N Uf N 10 O N M N N CO O 01 M r a co O O O O r r N M U7 10 O O O T r r r T r r T T r T T r N > ® GU) O. v n r M N a N a N a N m N o N o co aa M aD M T R co v o N r. w 10 t0 ® m O O O O O O O O O O O O O O O aA D V 7 co O to M N tT CD O A CD O 10 M n ` N L O 01 r r N M 10 t0 M A 01 O co A O! r 10 10 10 10 A r 10 CA r Uf n r r r r r r r N N N M M Co V N N CaD c* CAD r 00 O O � � CAD OOf 00! 1r0 C r N N M M aT N 10 CO eN- r N Q d U C m W 4) i0 N 1 a N O co 10 O M v M `� E OOf W 100 m Wo W .O .-c0 m o r N N M eT Uf 10 O r N N a N U o TO tO0 r M C L O N 7 Y O _ W d N c m m 0 W o► M o> CD A 10 T M M CD 10 M a m 0s m r b Ci N O 10 CO 1M�f M ... O r N M M O) 10 M CD t0 r NaN C 01 r N � v N pAf rM„ N w N N O Q V ,0 W m I'll lei N a E G C M O N N LL O On Oo OM 0 N r r N m OD 0 VON— N a N O O C 8 O E D_ CD O N tm a cc >1 O O a C N t0 O O N O Q U t rl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet 5 3 Field form for Level II stream classification ( Rosgen 1996 Rosgen and Sllvey 2005) Stream Saddle Mountain Creek Reach 3 Basin Drainage Area 2899 2 acres 453 M12 Location Twp &Rge , Sec &Qtr , Cross Section Monuments (Lat /Long } Date 05/30/11 Observers SWC Valley Type VIII Bankfull WIDTH (Wbkf) WIDTH of the stream channel at bankfull stage elevation in a nffle section 25 35 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross section at bankfull stage elevation in a riffle section (dtm = A / Wb,) 214 Bankfull X Section AREA (Abkf) AREA of the stream channel cross section at bankfull stage elevation in a riffle section 5422 1 Width /Depth Ratio (Wbkf/ dbkf) Bankfull WIDTH divided by bankfull mean DEPTH in a riffle section 11 85 Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross section or distance between the bankfull stage and Thalweg elevations in a riffle section 283 WIDTH of Flood Prone Area (W,pa) Twice maximum DEPTH or (2 x dmbM) = the stage /elevation at which flood prone area WIDTH is determined in a riffle section 47 13 Entrenchment Ratio (ER) The ratio of flood prone area WIDTH divided by bankfull channel WIDTH (Wfpa/ Wes) (nffle section) 186 Channel Materials (Particle Size Index ) D50 The D50 particle size index represents the mean diameter of channel materials as sampled from the channel surface between the bankfull stage and Thalweg elevations 7818 Water Surface SLOPE (S) Channel slope = rise over run for a reach approximately 20-30 bankfull channel widths in length with the riffle to riffle water surface slope representing the gradient at bankfull stage 001265 Channel SINUOSITY (k) Sinuosity is an index of channel pattern determined from a ratio of stream length divided by valley length (SL / VL) or estimated from a ratio of valley slope divided by channel slope (VS / S) 112 ft/ft liiiii Copyright © 2006 Wlldland Hydrology WARSSS page 5 29 1� 1 1 1 t 1 P H 1 t Worksheet 5-4 Morphological relations Including dimensionless ratios of river reach sites ( Rosgen and Silvey 2007 Rosgen 2008) Stream Saddle Mountain Location Reach Saddle Mountain Reach 3 Observers SWC Date 05/30/11 Valley Type VIII Stream Type B 311 c Riffle Dimensions '" '*' River Reach Dimension Summary Data 1 Mean Min Max Riffle Dimensions & Dimensionless Ratios"" Mean Min Max Riffle Width (W,,,) 254' 25 4 25 4'11 Riffle Cross - Sectional Area (Abe) (fl?) 54 22154 22 54 22 Mean Riffle Depth (dbe) 214 214 214 ft Riffle Width/Depth Ratio (Wba / dbe) 11 85 11 85 11851 rn Maximum Riffle Depth (dm.) 2 83 2 83 2 83 ft Max Riffle Depth to Mean Riffle Depth (dma„ / dbv) '1322 1 322 1 322 c y Width of Flood Prone Area 471 471 471 j It Entrenchment Ratio (W., / Wbe) 1859,11 859 1 859 c m E Rrffle Inner Berm Width (W,,) 225 225 225 It Riffle Inner Berm Width to Riffle Width (W b / Wbe) 0 886 0 886 0 886 m Riffle Inner Berm Depth (d.) 121 1 21 121 ft Riffle Inner Berm Depth to Mean Depth (da / dba) 0 565 0 565O 565 r e Inner Berm Area (A.) 271 271 271 fe Riffle Inner Berm Area to Riffle Area (A,b / Abe) 0 500 0 500 0 500 Lj Riffle Inner Berm W/D Ratio (W,b / die) 18 6 186' 18 6 Pont Dimensions ** *** Mean Min Max Pool Dimensions & Dimensionless Ratios— Mean Min Max Pool Width ( bidp) 29 9 299' 29 9 ft Pool Width to Riffle Width (Wbep / Wbe) 1 179 1 179'1 179 Mean Pool Depth (dbep) 2 45 2 45 2 45 ft Mean Pool Depth to Mean Riffle Depth (dbap / dba) 1 145 1 1451 145 Pool Cross - Sectional Area (Ab,,p) 732 732 732 it Pool Area to Riffle Area (Abap / Abby) 1 349 1 349 1 349 o Vl Maximum Pool Depth (d,) 3 45 3 45 345 ft Max Pool Depth to Mean Riffle Depth (dm., / dbm) '1612'1 612 1 612 Pool Inner Berm Width (Wibp) 237, 237. 23 7 ft Pool Inner Berm Width to Pool Width (W41 Wbep) .()795 0 7950795 15 Pool Inner Berm Depth (d,bp) 169 169' 1 69 ft Pool Inner Bern Depth to Pool Depth (dibp / dbap) 0 690 0 690'0 690 aPool Inner Berm Area (A-bp) 40 2 4026 40 2 ftz Pool Inner Berm Area to Pool Area (Aibp / A kip) 0 549 0 549.0 549 Point Bar Slope (Spb) 0 000.0 000.0 000 ft/ft jPool Inner Berm Width/Depth Ratio (W4/ dap) 14 04 14 04 14 04 Run Dimensions Mean Min Max Run Dimensionless Ratios"" Mean Min Max rn Run Width (Wber) 0 0 0 it Run Width to Riffle Width (Wbkfr / Wba) 0 000.0 000 0 000 c N Mean Run Depth (dber) 0 0 0 ft Mean Run Depth to Mean Riffle Depth (dDer / dbe) 0 000,0 000,0 000 C m E Run Cross - Sectional Area (Abar) 0 0 0 ft Run Area to Riffle Area (Aber / Abm) 0 000 _0_000 0 000 o c Maximum Run Depth (d,,.) 0 0 0 ft Max Run Depth to Mean Riffle Depth (dm.. / dbe) 0 000 0 000 0 000 W Run Widttt/Depth Ratio (Wbkfr/ dber) 0 0 0 ft Glide Dimensions Mean Min Max Glide Dimensions & Dimensionless Ratios"" Mean Min Max Glide Width (Wba.) 0 0 0 ft Glide Width to Riffle Width (Wbkrg / Wbm) 0 000,0 000,0 000 Mean Glide Depth (dbeg) 0 0 0 ft Mean Glide Depth to Mean Riffle Depth (dbe% / dbe) 0 000 0 000 0 000 a� o Glide Cross - Sectional Area (A6eg) 0 0 0 ft Glide Area to Riffle Area (Abet / Abw) 0 000 0 000 0 000 U) Maximum Glide Depth (dm�) 0 0 0 ft Max Glide Depth to Mean Riffle Depth (dm,, / d6e) 0 000 0 000 0 000 p Glide Width/Depth Ratio ( W bae / d b at) 0 0 0 ft/ft jGhcle Inner Berra Width/Depth Ratio (Wat/ dmd 0 00 0 00 0 00 -a Glide Inner Berm Width (Wfg) 0 0 0 ft Glide Inner Berm Width to Glide Width (Wily Wbag) Glide Inner Berm Depth (dit) 0 0 0 ft Glide Inner Berm Depth to Glide Depth (dot / dbe,) Glide Inner Berm Area (A,bt) 0 0 0 fe Glide Inner Berm Area to Glide Area (A,, / Abep) Step Dimensions" Mean Min Max Stop Dimensionless Ratios'*" Mean Min Max Step Width (Wbao 0 0 0 ft Step Width to Riffle Width \••bas / Wbkr) 0 000 0 000 0 000 Mean Step Depth (dbW 0 0 0 ft Mean Step Depth to Riffle Depth (duff/ dba) 0 000,0 000,0 000 a Step Cross - Sectional Area (Ab,O 0 0 0 ft Step Area to Riffle Area (Abm / Aba) 0 000 0 000 0 000 Maximum Step Depth (dm.) 0 0 0 it Max Step Depth to Mean Riffle Depth (dm./ dba) 0 000'0 000'0 000 Step Width/Depth Ratio (Wbas /db,,) 0 0 0 rtnn _. Y­'. i , c r 5ui=rri type-5) mu reanne mouae rim runs poois ana giia s "Step -Pool system (i e A B G stream types) bed features and de Was rapids chutes pools and steps (note ndude rapids and chutes riffle category) "'Convergence - Divergence system ( e D stream types) bed features rid d allies and pools cross - sections taken at riffles for classification purposes —Mean values are sed as the normalization parameter for all dimensionless ratios e g minim m pool width to We width rabo ses the mean riffle width al e i 1 r t 1 1 Worksheet 54 Morphological relations including dimensionless ratios of river reach sites Ros en and Sllve 2007 9 ( 9 Y Rosgen 2008) Stream Saddle Mountain Location Reach Saddle Mountain Reach 3 Observers SWC Date 05/30/11 Valley Type VIII Stream Type B 311 c H River Reach Summary Data 2 v Streamflow Estimated Mean Velocity at Bankfull Stage (ubkf) 404 ft/sec I Estimation Method v = Streamflow Estimated Discharge at Bankfull Stage (Qbkf) 219 05 cfs Drainage Area 463 Tni2 Geometry Mean Min Max Dimensionless Geometry Ratios Mean Min Max I I Linear Wavelength (k) 336 294 416 ft Linear Wavelength to Riffle Width (J / Wba) #### ##### wwww Slope (Svai) 00164 ft/ft jAverage Water Surface Slope (S) 0 01265 ft/ft Sinuosity (S / S) 1 12 i Length (SL) 0 ft IValley Length (VL) 0 ft I Sinuosity (SL / VL) Low Bank Height start 0 ft Max Depth start 0 _ ft Radius of Curvature (R,) 741 44 5 124 ft Radius of Curvature to Riffle Width (R / W„a) 2 923 1 755 4 892 M Belt Width (Wj 838 664 956 ft Meander Width Ratio (Wbb/ Wbkf) 3 306 2 619 3 771 c jArc Length (L.) 112 835 157 jArc Length to Riffle Width (L / Wbe) 4 410 3 294'6 181 c t Riffle Length (L-,) 76 7 70 9 82 5 ft Riffle Length to Riffle Width (L / Wbu) 3 027 2 797 U 7818 124 395 mm .32561 Individual Pool Length (Lp) 494' 494' 49 4 ft Individual Pool Length to Riffle Width (Lp / Wbkf) 1949' 1 949 1 949 Pool to Pool Spacing (P) 0 0 0 ft Pool to Pool Spacing to Riffle Width (P / Wes) 0 000 0 000 0 000 Slope (Svai) 00164 ft/ft jAverage Water Surface Slope (S) 0 01265 ft/ft Sinuosity (S / S) 1 12 i Length (SL) 0 ft IValley Length (VL) 0 ft I Sinuosity (SL / VL) Low Bank Height start 0 ft Max Depth start 0 _ ft Bank Height Ratio (BHR) start ~ (LBH) end 0 ft (dm.) end 0 ft (LBH / d,n,j end Riffle Slope (S f) ® Run Slope (S,,, ) a Pool Slope (Sp) Glide Slope (Sg) c t Step Slope (S ) U Max Riffle Depth (d,n.,,f) Max Run Depth (d. ) Max Pool Depth (dm .V) Max Glide Depth (d,a g) Max Step Depth (d—xj Mean Min Max Dimensionless Facet Slope Ratios Mean Min Max 0 015'0 040 016 ft/ft Riffle Slope to Average Water Surface Slope (Snf / S) 1 176 1 104'12471 0 000 0 000 0 000 ft/ft Run Slope to Average Water Surface Slope (S, / S) 0 000 0 000 0 000 0 003 0 003 0 003 ft/ft Pool Slope to Average Water Surface Slope (Sp / S) 0 259 0 259'0 259 00000000 0 000 ft/ft Glide Slope to Average Water Surface Slope (Sg / S) 0 000 0 000.0 000 0 000 0 000 0 000 ft/ft Step Slope to Average Water Surface Slope (S / S) 0 000 0 000 0 000 Mean Min Max Dimensionless Depth Ratios Mean Min Max 2 78 2 66 2 95 ft Max Riffle Depth to Mean Riffle Depth (d,,,,,wf/ dbkf) 13 '1243' 138 0 0 0 ft Max Run Depth to Mean Riffle Depth (d,,,.,,,, / dbkd) 0 0 0 3 48 3 48 3 48 ft Max Pool Depth to Mean Riffle Depth (d,,,. / db d) 163 1626' 163 0 0 3 43 ft Max Glide Depth to Mean Riffle Depth (d,,,,, / dbkf) 0 0 16 0 0 0 ft Max Step Depth to Mean Riffle Depth (d. / dbkf) 0 0 0 12n...Hb e Bar 0-0 G.M—C Bar u..._j d Mm max a. mean aepms are measures trofn i naiweg to nanxruu at mid -paint of feature for miles and runs the deepest part of pools & at the to I-out of glides Composite sample of riffles and pools within the designated reach Active bed of a nffie Height of roughness feature above bed ICopyright © 2001 Wlldland Hydrology WARSSS page 5 34 / SIIUCIay 0 0 0 D,s 1197 5043 295 mm L k Sand 4 0 1267 D35 46 9 94 1882 mm m A Gravel 40 21 5636 Do 7818 124 395 mm Z A Cobble 47 72 30 97 D, 19689 1876 10977 mm t /Boulder 8 7 0 D95 412 28629 14293 mm U Bedrock 1 0 0 D,. Bedrock 362 158 mm Mm max a. mean aepms are measures trofn i naiweg to nanxruu at mid -paint of feature for miles and runs the deepest part of pools & at the to I-out of glides Composite sample of riffles and pools within the designated reach Active bed of a nffie Height of roughness feature above bed ICopyright © 2001 Wlldland Hydrology WARSSS page 5 34 LL In v 3 m a a m • o P o o + x (4) UOIIEA013 M E ca rn c 0 cu U r_ N Id ! L M L U co N N O a c -v 0 J N N ! U _CES c0 G cz LL In v 3 m a a m • o P o o + x (4) UOIIEA013 M E ca rn c 0 cu U r_ N Id i 1 1 1 1 1 1 I 1 1 1 ql '� O Ur 'a II C E x m A m m C C M U co o a Ln T N N '^ w X A 0 c c-a cO G � U (' C W 70 C ca c m o" e a, N W x A 3 C a° v c 0 C7 (4) UOIIEA813 0 v O cn O Q) N (� co C ca 0 c O N i O O 0 h■ s t i t 1 1 1 1 li t e y N ca U un � II C E x m � N C C M U� RS o N a U lC a, 1 N � N N u w U) P VJ_ I A x ca c C N SO C G 6 U ^' C W = 7 Y C 0 RS m Cc u1 N w x sz 3 C_ O CL C 7 O J (4) UOIIEn913 co 0 LO O a o N c� U C (z N C O N L O N O Cu f 1 1 i 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 96 95 94 0 m 93 m M 92 91 90 89 Riffle I 77� 5 10 Bankfull Dimensions 5 10 Bankfull Dimensions 592 x section area (ftsq ) 297 width (ft) 20 mean depth (ft) 30 max depth (ft) 326 wetted panmeter (ft) 18 hyd radi (ft) 149 width -depth ratio Bankfull Flow 42 velocity (ft/s) 2467 discharge rate (cfs) 054 Froude number 15 20 25 Width Flood Dimensions — W flood prone area (ft) — entrenchment ratio — low bank height (ft) — low bank height ratio Cross Section reference ID 3 instrument height 41� longitudinal station — Bankfull Stage FS 93 1 elev elevation — Low Bank Height FS — elevation Flood Prone Area width fpa 45 0 Channel Slope percent slope Flow Resistance Manning s n , o DArcy Weisbach f Note Flow Resistance 0 060 Manning s roughness 034 DArcy Weisbach fnc — resistance factor u/u — relative roughness 30 Materials — #REFi — #REFi 71 threshold grain size (mm) Forces & Power 127 channel slope (0/) 144 shear stress (lb /sq ft ) 086 shear velocity (ft/s) 66 unit strm power (ib/ft/s) Distance BS HI FS Elevation Omit Notes /ftl /ftl /ftl /ftl (ft) Rkf 35 2 3 „ 1 0- " 9.35�0- 22. I�- " •i'G �0- i i s i i 1 1 f ao 94 93 92 c °– is 91 ID 90 w 89 88 87 86 10 15 Bankfull Dimensions 516 x section area (ftsq ) 237 width (ft) 22 mean depth (ft) 29 max depth (ft) 262 wetted panmeter (ft) 20 hyd radi (ft) 109 width -depth ratio Bankfull Flow 44 velocity (ft/s) 226 8 discharge rate (cfs) 055 Froude number Cross Section Riffle 20 25 30 Width Flood Dimensions 546 W flood prone area (ft) 23 entrenchment ratio — low bank height (ft) — low bank height ratio Flow Resistance reference ID d instrument height longitudinal station — Bankfull Stage FS � 9018 elev elevation — Low Bank Height FS — elevation Flood Prone Area width fpa 54 6 Channel Slope percent slope q�l Flow Resistance Manning s n &W DArcy Weisbach "f Note kr%GG'gj n Gb l vZC 0 060 Manning s roughness 033 DArcy Weisbach fnc — resistance factor u/u — relative roughness 35 40 45 Matenals — #REFI — #REFI 77 threshold grain size (mm) Forces & Power 127 channel slope (/) 156 shear stress (Ib/sq ft) 090 shear velocity (ft/s) 76 unit stmt power (IbMs) Distance BS HI FS Elevation Omd Notes (ft) (ft) (ft) (ft) (ftl Bkf 0 100 O.m 9334 g 100 a 5)6 9285 9 100 341 9249 ❑ 0 100 V VP 9223 ❑ 410 100 aff' 9193 ❑ 451 100 OM 9163 ❑ 413 100 ap 9141 ❑ 100 0 2i 9128 i 100 Q& 9095 El 5£3 100 0 9C9 9084 ❑ S 3 100 41049 8952 ❑ 410 100 w0 H 8929 ❑ 5)O El 100 >l N 8861 ❑ 410 100 4141B51 8839 1 ❑ 100 M% 8785 ❑ SJfl 100 SMe 8762 ❑ 100 4&221 8777 ❑ f�3 100 i3 8778 ❑ L 100 87 85 ❑ r31 100 0n `73 8822 ❑ r l 100 Utz@ 8811 ❑ 100 ,341 8756 [] p 100 MIOP 8753 ❑ SI 100 —67-5-8 Q 3r7 100 M9V 8743 ❑ 3 100 513a 873 Q 100 41 M 1 8752 100 Q0 1 8752 1 ❑ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vi i (z a) i U co O cz U) aauid IU90JOd 0 0 0 0 0 °o CD E E 0 m N_ co N co a. 1 1 1 1 1 1 1 F, t 1 1 Worksheet 2 2 Computations of velocity and bankfull discharge using various methods ( Rosgen 2006b Rosgen and Sllvey 2007) Bankfull VELOCITY & DISCHARGE Estimates Stream Isaddle Mountain Creek Location Reach 3 Date 5/30/2011 1 Stream Type I 133C I I Valley Type I VIII Observers 1SWC HUC INPUT VARIABLES OUTPUT VARIABLES Bankfull Riffle Cross Sectional 54 22 Wbkf Bankfull Riffle Mean DEPTH L214 d� AREA ft / sec (ft) (2 dbld) + Wbid (ft) Bankfull Riffle WIDTH 1 253-5 11 Wbkf Wetted PERMIMETER 3004 WP 376 ft / sec (ft) (2 dbld) + Wbid (ft) D at Riffle 187 60 D84 (mm / 304 8 0 62 � Dla ) D84 (mm) 11 11 1 (ft) - -- Bankfull SLOPE 0 0127 Sbft HydraAull WADIUS 180 R 376 ft / sec ft / secz) (ft/9 R(ft) / D84 (ft) (ft/sec) Gravitational Acceleration �— 1 32 2 g Relative Roughness 2 93 R / D 376 ft / sec ft / secz) (ft/9 R(ft) / D84 (ft) (ft/sec) Drainage Area 00 DA 2 Shear Velocity h 0 856 u* 376 ft / sec (mi) u = RS (ft/sec) 1 11 ESTIMATION METHODS Bankfull Bankfull VELOCITY DISCHARGE 1 Friction Relative u=[283+566 Lo { R / D 9 so } ] u 11 469 ft /sec 1 254 51 cfs Factor/ Ro hness 376 ft / sec 20387 cfs 2 Roughness Coefficient a) Manning s n from Friction Factor / Relative 376 ft /sec 203 87 cfs Roughness (Figs 2 18 2 19) u = 149 R2* S"21 n n = 0 066 376 ft / sec 20387 cfs 2 Roughness Coefficient u -149 R23 S12 1n cfs 14097 cfs 18160 b) Manning s n from Stream Type (Fig 2 20) n = 0 066 376 ft / sec 20387 cfs 2 Roughness Coefficient u =149 R" Srn /n c) Manning s n from Jarrett (USGS) n = 0 39 S0-'8 R -0 18 1 368 ft / sec 19953 cfs Note Th s equal on s applicable to steep step /pool high boundary n c 0 067 roughness, cobble- and boulder - dominated stream systems i e for 30052 cfs 14097 cfs 18160 cfs LO 00 cfs Protrusion Heiaht Options for the De. Term in the Relative Roughness Relation (R/D.A — Estimation Method 1 Option 1 For sand bed channels Measure 100 protrusion heights of sand dunes from the downstream side of feature to the top of feature Substitute the D84 sand dune protrusion height in it for the D84 term in method 1 Option 2 For boulder- dominated channels Measure 100 protrusion heights of boulders on the sides from the bed elevation to the top of the rock on that side Substitute the D84 boulder protrusion height in ft for the D84 term in method 1 Option 3 For bedrock- dominated channels Measure 100 protrusion heights of rock separations steps joints or uplifted surfaces above channel bed elevation Substitute the D84 bedrock protrusion height in it for the D84 term in method 1 Option 4 For log influenced channels Measure protrustion heights proportionate to channel width of log diameters or the height of the log on upstream side if embedded Substitute the D84 protrusion height in ft for the 084 term in method 1 Copyright © 2008 Wlldland Hydrology River Stability Field Guide page 2 41 1 1 1 1 1 cm O O N U O O N co (T C O N O cc 'a O E 0 c6 1 1 1 O r M d Z 1y Y I M O (O M V! N DS CL a 3 0 LZ rM VJ Et O 0 T C (O co O O N L co CL CL 0 0 c B co r O N V' co O t V c0 N R Q Go M M Cc m m c 11 O N m m m y I m m o -0 o c m W II W W O O T- C E cm c m cy a 3-0° N m y O c v N O) E o td t m y c m m m > r r 'o M O N m N H Jo c�° sr, y $E U m 7 > m > c o ((A n E r ro B N m ° Z ° ° C E C a E° g J U C_ � 3 m v m m U) ° o. 0) co aro C> N C m (°n N '° In __ m � N ° d ;, C W d W O W O mm NO) co m p_c 0_ 12 Y > o,o X00 m E_ p m E.o to \ to D1 m Ec po as ism .. Yi a W O d c \ O O C C m C N 7 0) N p N 0 0 3 m '� 0 0 C N Of c O m y C 0) m co O O) C O m E O W W W = co A m D J C o N E y m 3 a c p c0 c0 l` N T Y c co m a p''O E A p J t0 a >, m E 0 C U >C O « ¢ Y m C E o J N m ° ~ C U C (D >, r c6 O U L C ° 'p E + > co N N J a m m E C O m y a 0 '2 ° � io m N O) f0 — L CL c E ... _ 3 O fi�tl N O CL C >. m >N 'O C N N y 0 X O O C r y m o _ N 0 0 C .r N lCU a L Y C C m 0) U V m 'p C C 7 Ol y I N O O 10 C 1= (O m N r 0) 0) CL O m y C C U 0 mc3__�nm t = Y U O U — O _� p(° ¢ m C lC C_ y > C O '6 N w L O c0 C O r y W O c -voi me mE ° y maw y LL 2: (a N JL O E� N c'�iE vio 0) r° cy C N m ° Se E �_ I N 0 y E L m r ° 0 m >. CL C m 0 m c ca m m coo) LL . p m a i0 v Cro c m E lO m O V O LL U Q L W O. m° N m d N O N Z m ccd f0 E O x M .—�J. m LL� G N co y Em C ^ m co O N N W W O to O Cl) c0 O 2 2 OD 07 CO c0 Cl) r O m N C7 y N m (t co O ° m N N m (O .- y T _ C Ol C CO N = 11 W l7 n m N 0) o L m ° O C _ ° o> 3 ; m C -o mI m U y0 $ O m � m °° ° N Q °' o E E m v 01 E 2 Y fY 0) m C 'o m C C t0 3 O` n ° W L \ V N N O 3 v O. ^ O 'd L C L °� C °� E J U� Cl) L m (n c0 N y O) C W b an N� y v N m N N d O �Q C 3 O) O > 3 9 2 O D W L L O) >+ O m N O m C „y„ C— y 0 4) N ca LL U d y o t0 m C7 O y O 7 y� L 0) N 0 V m N — O 0> a O m r N m O M IL a J cC E c0 cis 3 l0 0 m 7 C cd (n O C l0 3 L °-' to «`. F- m N O E m ° m M N ,a 0 '_' ° > > °EE p o�¢ 0 'y N'° ov O (n C d C W E m\ Oco .° C c �` c V Uio. rn (7 n co ° N rn N C Q 0) Im m O .�' `o m L. C C 3 O cC0 r y p C U V Cl N m C c� U y y �.- O l0 r2 N O c0 C O t N N N C m 0 N ° S 7 0) U c]. U y m K m m m m I O s C Of C vni m y m a� O _ o m CL r U cn m 0 ID 0 E s a 0 `0 m c0 L C 0) N C y c0 O C C N N> O ° U (D y E l0 i) O Y 0 U O n C7 d n o co O CO) C m >, m N c0 y C N m \ _ Op m r> 0) i C l` c0 \ l0 N Y J T y N C O ° O C �nN O N 3 p 0 m O. O O) N m e C O) J J t0 y O N N m 3 ID M an m N O m y n ro mm oU, Onn gt-yo 00 P oc(o of %c 3` °n omd °m mMR V � to °0 � to � �! m LL M!�inmv maw No 2Em U)E U.00.0 m mEF) m0-mE m' 7 t N 7 Cl) m (O N N '7 (D O) N N c i co y co LL O F7 Q I Cl) n y N to da e°0 m v r c Y 11 0 ca 2 (D 0 co LL C y 0 L N cn 2 tti a >, \ m (O tD nm 0 U y 0 C 0 0 3 l0 O N M E m O m 3 ° R N y 'O O ac Q) x 'c m m0 g E E m v p p c o m O m o a co LL m N O .p — y E > of J y ° .-. 4) y m c N co c0 cm0 w 0 O 5) 0) E N m 3 3•-m N U o= m o C c0 cNn m m@ C L 3 N m O NL E ° N c) C L >` m N m 2— J O Q Lm T V m cC0 t6 � m y N N 0 0 m R too oyp y LL m N o° in o m 0 CL > oEm3m c E 0°o a) m R m C E C °' a O N `� E m E N N E o n C N V C cti Q N m 0 N lti a _ O 3 a d y w 0 m ^ II N V N C m C O >i N U N— 7+ C C C d m an d m OD V tD LL O y 0 y m •- C O 0) d O N m m L.. L o V. n a (O \ N N m m c C i c '° N 01 OD J m 0) c` n j\ m 0 m L :_. C O O Y C Q m m J y y y a > E N —_ L v Y D: a m C 0 E m m m y 04 E C y N E m C(a 7 'C cn t m m m r 0 N 0 3 N M E a E "O li m t°o t 0 O r co N y LL O O m N° OL_. 300 U U) m O U° U ¢ i o m U m n y co t C (L m 3 (°O t vJi cn u� 'y0 m <O Ii m m d c N o cm co r N N a r r N c0 r m m N W 0 7 C O t0 n rn r W rn (n r m m = L rn o LL `o C 11 m v uyi y io v cn m E N N v N C > v `Y 0 m x E i y v v c C m c c m c o m O ca ° m G m a o^ o J c a Y (D o a c0 O ► C \ E v vJ m i0 Y 3 d Q �i W o N n N r- m c 0 w o_0 O1 c o '� c0 E 07 C o c0 a r V w cli rn m K o C') c `o o "- c o °� c > o E c E `o o v o tan W m r W o Z` m o@ N m Im w 0) m ° 'p ? t C) r O > N\ m E c Q y a Uj W y 0 O .y° d N C m m L. £ n y E1 C C d1 m L m •O a y CD C N co O O) m y ID p m i0 p O) 7 O U (D m N j = o N O 0 C to Z E o `O C °� an a, m m m y N n Q Y' C C T c0 l0 c0 co 12 L_ L E D O c O` cm M `O C N C L co O C °° m td0 N rn ,Ni, CO d o a) 0— mm C °incya��m= 3 m m 3E3 cco3a N E O O L mm U m` U mn 'C l6 mia N O N (0C m t0 O N iy V C > O m m C N (D E �'. r Y \ c0 + _D V li m y C C N d1 �d„ \ C C C m ("! of C N m n co O Q f0 N L O) 7° O m N O N O c0 .m.. 7_ t0 C pp L J 7 N N> O m LL) m a m O C m C m Z O) W C1 A N m" m 0= A m O_ m J v -i O. (n N U3 C7 Q O Z E v 'O Q OI !. c °- y p c ° c (y m n ? Y W M m y t0 GD C £ 1 O c U m y= O m c v m y p d a m a c0 CO m W m N> m O U c m U C_ 0) 2p � U co to G V c C y c0 m C C O` N a C p in a '� d U 7 C cm t4i O o I a U m m Q Y N v Q m m r m 4i c0 O J y 0) 0 O o 0) c0 a L m U o to m 0 O S 7 U N a O m m m` cc to a O y m 'o m tU v Q 0 ¢> m V p w O N 00 st c0 O n co O N r m y yy m m a E W C E n o E d o o s)lueq jano-1 wo os W m a 0 h o 0 g N N (7 �i a° N C7 LL a M O (O M V! N DS CL a 3 0 LZ rM VJ Et O 0 T C (O co O O N L co CL CL 0 0 1 1 1 1 1 t t 1 t 1 1 t Worksheet 3 14 Sediment competence calculation form to assess bed stability Stream Saddle Mountain Creek Stream Type B 3/1c Location Reach 3 Valley Type VIII Observers SWC Date 05/30/2011 Enter Required Information for Existing Condition 1240 D50 Riffle bed material D50 (mm) 395 D(5"0 Bar sample D50 (mm) 043 Dmax Largest particle from bar sample (ft) 132 (mm) 1304 8 mm /ft 001265 S Existing bankfull water surface slope (ft/ft) 214 d Existing bankfull mean depth (ft) 165 YS —1 Immersed specific gravity of sediment Select the Appropriate Equation and Calculate Critical Dimensionless Shear Stress 314 Ds0/Ds0 Range 3 — 7 Use EQUATION 1 ti* = 0 0834 ( D50 1D5a 872 127 Dmax /D50 Range 1 3 — 3 0 Use EQUATION 2 ti' = 0 0384 (Dmax /D50) 887 00308 ti* Bankfull Dimensionless Shear Stress EQUATION USED 1 Calculate Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample 173 d Required bankfull mean depth (ft) d= Z * (7,Si >DmaX (use Elm. in ft) Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle in Bar Sample 001021 S Required bankfull water surface slope (ft/ft) S= (YS d 1)D... (use Dmax in ft) Check r Stable r Aggrading I— Degrading Sediment Competence Using Dimensional Shear Stress 1 689 Bankfull shear stress T = ydS (lbs /ftz) (substitute hydraulic radius R with mean depth d ) = 62 4 d = existing depth S = existing slope Shields 135 co 223 Predicted largest moveable particle size (mm) at bankfull shear stress ti (Figure 3 11) Shields 166 co 082 Predicted shear stress required to initiate movement of measured Dmax (mm) (Figure 3 11) Shields 210 co 104 Predicted mean depth required to initiate movement of measured Dmax (mm) 't d =— ti = predicted shear stress 'Y= 62 4 S = existing slope YS Shields 0 0124 co 00061 Predicted slope required to initiate movement of measured D,,. (mm) 'j, S 'L = predicted shear stress Y= 62 4 d = existing depth Yd Check 17%, Stabler Aggrading r Degrading ICopyright © 2008 Wlldland Hydrology River Stability Field Guide page 3 101 1 1 1 1 1 1 t 1 t it Worksheet 3 16 Stability ratings for corresponding successional stage shifts of stream types Check the appropriate stability rating Stream Saddle Mountain Creek Stream Type B 3/1c Location Saddle Mountain Reach 3 Valley Type VIII Observers SWC Date 05/30/2011 Stream Type Changes Due to Stability Rating (Check Successional Stage Shifts Appropriate Rating) (Figure 3 14) Stream Type at potential (C—+E) P Stable (Fb —>B) (G—B) (F —'Bc) (F --►C) (D—►C) (E --+C) (C —►High W/d C) r Moderately Unstable (G—►F) (F,D) (C,F) r Unstable (C—D) (B—►G) (D—►G) (C—G) (E,G) (— Highly Unstable ■ Copyright © 2008 Wddland Hydrology River Stability Field Guide page 3 111 1 1 t L 1 I, 1 1 1 1 t 1 1 Worksheet 3 17 Lateral stability prediction summary Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 3 Valley Type Vill Observers SWC Date 05/30/2011 Lateral Stability Categories Lateral stability criteria Selected (choose one stability Moderately Highly Points (from category for each criterion Stable Unstable Unstable Unstable each row) 1 �) WA Ratio State < 1 2 1 2 -1 4 1 4 -1 6 > 1 6 1 (Worksheet 3 8) 2 1 0 (2) (4) (6) (8) Depositional Patterns 61 B2 B4 B8 B3 B5 B6 B7 2 (Worksheet 3 5) 1 B1 (1) (2) (3) (4) Meander Patterns M1 M3 M4 M2 M5 M6 M7 M8 3 (Worksheet 3 4) 1 M3 (1) (3) UVL UL UM M/L M/M WH MNH M /Ex H/L H/H H /Ex Ex/M 4 Dominant BEHI / NBS UH LNH MNL UEx H/L H/M H/H Ex/H Ex/VH 2 (Worksheet 3 13) VHNL ExNL VHNH Ex/Ex UL (2) (4) (6) (8) Degree of Confinement 08-10 0 3- 0 79 01-029 < 0 1 5 (MWR / MWR,ef) 2 (Worksheet 3 9) (1)1 07 (2) (3) (4) Total Points 8 Lateral Stability Category Point Range Overall Lateral Stability Moderately Highly Category (use total points Stable Unstable Unstable Unstable and check stability rating) 7-9 10 -12 13-21 > 21 r r r ICopyright © 2008 Wildland Hydrology River Stability Field Guide page 3 114 1 1 I � 11 I 1 1 1 t I t t Worksheet 3-18 Vertical stability prediction for excess deposition or aggradation Stream Saddle Mountain Creek Stream Type B 3/1c Location Saddle Mountain Reach 3 Valley Type VIII Observers SWC Date 05/30/2011 Vertical Stability Vertical Stability Categories for Excess Deposition / Aggradation Selected Criteria (choose one Points stability category for each No Deposition Moderate Excess Aggradation (from each criterion 1-6) Deposition Deposition row) Sufficient depth Trend toward Cannot move D35 Cannot move D,g of Sediment and/or slope to insufficient depth and /or slope of bed material bed material and /or 1 competence transport largest p g slightly and /or D of bar ,00 D of bar or sub ,00 2 (Worksheet 3 14) size available incompetent material pavement size (2) (4) (6) (8) Sufficient Trend toward Reduction up to Reduction over capacity to insufficient 25 / of annual 25 / of annual 2 Sediment Capacity transport annual sediment sediment yield of sediment yield for 2 (POWERSED) load capacity bedload and/or bedload and/or suspended sand suspended sand (2) (4) (6) (8) W/d Ratio State 10-1 2 12-14 1 4 -1 6 >1 6 3 (Worksheet 3-8) 2 10 (2) (4) (6) (8) Current stream type at potential (C —High W/d C) Stream Succession or does not E —C ( ) ( B —Hi h W/d B ) (C —D) (F —D) 4 States (Worksheet 3 indicate (C---F) 2 16) deposition/ aggradation (2) (4) (6) (8) Depositional 61 62 B4 63 85 B6 137 B8 5 Patterns (Worksheet 1 3-5) B1 (1) (2) (3) (4) Debris /Blockages D1 D2 D3 D4 D7 D5 D8 D6 D9 D10 6 (Worksheet 3-6) 1 D3 (1) (2) (3) (4) Total Points 10 Vertical Stability Category Point Range for Excess Deposition / Aggradation F Vertical Stability for Excess Deposition / Moderate Excess Aggradation (use total No Deposition Deposition Deposition Aggradation points and check stability 10-14 15-20 21-30 > 30 rating) W, r r r ICopyright 0 2008 Wildland Hydrology River Stability Field Guidepage 3 117 t 1 Ij 1 1 1 1 t 11 Worksheet 3 19 Vertical stability prediction for channel incision or degradation Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 3 Valley Type VIII Observers SWC Date 05/30/2011 Vertical Stability Vertical Stability Categories for Channel Incision I Degradation Selected Criteria (choose one Points stability category for Not Incised Slightly Incised Moderately Degradation (from each each criterion 1-5) Incised row) Sediment Does not Trend to move larger sizes than D,00 of bed Particles much 1 Competence indicate excess D loo of bar or > moved larger than D 10 2 competence D84 of bed of bed moved (Worksheet 3-14) (2) (4) (6) (8) Slight excess Excess energy Excess energy Does not energy up to suff icient to transporting more Capacity Sediment Ca 2 p ty indicate excess 10 /o increase increase load up than 50,' of 2 (POWERSED) capacity above reference to 50 / of annual annual load load (2) (4) (6) (8) Degree of Channel 100-1 10 1 11 -1 30 1 31 -1 50 > 1 50 3 Incision (BHR) 2 (Worksheet 3 7) 104 (2) (4) (6) (8) Does not If BHR > 1 1 and If BHR > 1 1 and Stream Succession indicate incision cision stream type has stream type has (C--+G) (13,G) (C 4 States (Worksheets or degradation /d between W/d less than 5 -+G D-.G (E ) ( ) 2 3 16 and 3-7) (2) (4) (6) (8) Confinement 080-1 00 030-079 0 10 - 0 29 <010 5 (MWR / MWRJ 2 (Worksheet 3 9) (1) 1. 067 (2) 3) (3)1. (4) Total Points 10 Vertical Stability Category Point Range for Channel Incision / Degradation Vertical Stability for Channel Incision/ Moderately Degradation (use total Not Incised Slightly Incised Incised Degradation points and check 9-11 12-18 19-27 > 27 stability rating) I r r- r- ICopyright 0 2008 Wddland Hydrology River Stability Field Guide page 3 119 1 H t 1 F1 r� Ll 1 1 1 1 1 1 1 Worksheet 3 20 Channel enlargement prediction summary Stream Saddle Mountain Stream Type B 3/1c Location Saddle Mountain Reach 3 Valley Type VIII Observers SWC Date 05/30/2011 Channel Enlargement Channel Enlargement Prediction Categories Prediction Criteria Selected I (choose one stability Moderate Points (from category for each cntenon No Increase Slight Increase g Increase Extensive each row) 1-4) Stream Type at Potential (C -->E) (C—D) (B->G) Successional Stage (Fb 'B) (G -->B) (E —C) (G-.F) (F-.D) (D-.G) (C,G) 1 Shift (Worksheet 3 16) (F ->B�) (F->C) (E-�G) (C-•F) 2 (D —C) (2) (4) (6) (8) Lateral Stability Stable Moderately Unstable Unstable Highly Unstable 2 (Worksheet 3 17) 2 (2) (4) (6) (8) Vertical Stability Moderate 3 Excess Deposition or No Deposition Deposition Excess Deposition Aggradation 2 Aggradation (Worksheet 3 18) (2) (4) (6) (8) Vertical Stability Moderately 4 Channel Incision or Not Incised Slightly Incised Incised Degradation 2 Degradation (Worksheet 3 19) (2) (4) (6) (8) Total Points 8 Category Point Range Channel Enlargement Moderate Prediction (use total No Increase Slight Increase Increase Extensive points and check stability 8-10 11-16 17-24 > 24 rating) r r r r ICopynght © 2008 Wddland Hydrology River Stability Field Guide page 3 121 t ki 1 1 t 1 1 t I 1 t 1 Worksheet 3 -21 Overall sediment supply rating determined from individual stability rating categories Stream Saddle Mountain Creek Stream Type B 3/1c Location Saddle Mountain Reach 3 Valley Type VIII Observers Date 05/30/2011 Overall Sediment Supply Prediction Criteria (choose corresponding points for each criterion Stability Rating Points Selected Points 1-b) Stable 1 1 Lateral Stability (Worksheet 3 -17) Mod Unstable 2 1 Unstable 3 Highly Unstable 4 Vertical Stability No Deposition 1 Mod Deposition 2 2 Excess Deposition or Aggradation 1 Excess Deposition 3 (Worksheet 3 -18) Aggradation 4 Vertical Stability Not Incised 1 Slightly Incised 2 3 Channel Incision or Degradation 1 Mod Incised 3 (Worksheet 3 -19) Degradation 4 Channel Enlargement 4 Prediction (Worksheet 3 -20) No Increase 1 1 Slight Increase 2 Mod Increase 3 Extensive 4 Pfankuch Channel 5 Stability (Worksheet 3- Good Stable 1 2 Fair Mod Unstable 2 10) Poor Unstable 4 Total Points 6 Category Point Range Overall Sediment Supply Rating (use total points and check stability rating) Low 5 I- Moderate 6-10 r High 11-15 r Very High 16-20 F ICopyright 0 2008 Wildland Hydrology River Stability Field Guide page 3 124 t 1 t 0 N U C O f _0 O U U) 0 ca E N N L M O t Y I- 0 1 co N T- N tD V O O m V- N r T O O a M c d d a a m t0 W ia) m w co w LO co N as O CES tD y to O •- 'm j X La V _ O N cc f/! U) O p O O O (A Q W o w C Co _ FF. > E O C C p m r N U 4: O }, O>5, O :3 ttoo C ai ca o y w U p> m d fn ` � c7 � ty-a V) I- C fd W Ch C O p y O m ca O� � ch y > ca° y X O M y y y y to r N = o L =� W� m l=0 N cis N r d 7 _ 'O O D r ft! Ui y (� U N U y U y U y m C d a) N Y Y Y Y C U o `° >- U U � as cc E N E ca E N E N C U a a) CO ` `� Y Opp a� 45 to w i N N� cr c C M ° :� r °�' 7 co a N p a W co L = Q F-- m p u- N aoci is C d O V y a rn d O Q LA : , Cl Cr O C N a ° N w C w V�vc���oao� p a°Q�E �� fy0 win C o o ro Loa U) >, O 3:L \' co d Q oaf? p 7 tD p v o N ca ca U o r d U) N V Y ca N U a��i a to iv C o m d O Cl) d ° to .-. - m Q c f = Q O W cc r O a o r c mcoC a La y Q xm I L L L L J to U ° w 22 c 0 .) � O c U w ° 01 O FL o N m 0 to v N C N = r cm E 30 4 _ M �` N ca _ r U a �� �� O t0 W O y y U cu U r Co i y Q 0 ao N is c to 08 ° "0 O L II N C L NN T O o i C W O' 0 a MO CD Lca a E z C ty a`ai ca 0 coo Lo Y cca � W O) �, D p o$�d T E r a o L L L L JE y N a3 O E 0 La %' $ ca v r ° ^, to - m— 0 U) C II c o a m L D E ° ... M _ C to N p O to U cc tU p d p fJi ° !/) S rn o c� oC� Q T c Y co _ T O M a CO p E vo m N r N N N r a a t�I U D in ig M L ° mo N 1 L L L L L o ^�� U E C 04 a. U n Cn a2S CO r L as V m O N N IL Q m r �°_ 0 td U a> o y co Y r � a fl I 0 c m La tm ca L M Q 1 la -Y w° tU o a�i O a��i v� a 7 E io cu 65 3 J V +t,,, 0 a� c� ca a) U) Z Z Z ° d m ° oaC ai 3 rn ° ° a U) U) IiooC o0° 3m mm -jin L 30 m L L L L L c icn m v m m c ^ N 9 cc °� d w 'd M O L° R W N C E:yy: c R «. *' a o «' � as O O �_d) a W E UN '� W e O Z N Co La N 0 C C d aLL 3 m C. o W N W Lo ■. 0 i W d o m avi c >� �N In EO W V' 44) rn d (no t V -�N da J ;Q >� N U W N .. co N T- 1 N O W U) Cc W O d (D w C N 7 1 I 1 1 t t cc N LO t N Y O i 1 r 'O r O O co 4 N N O r CD O) O r M O) O N O O O O ap M r O N 10 O O r 0 CO CO n O O co N r r co M co N N ta0 + $ O O r a N r Ott O O) n M O) M O) N u0Y O r to E cY0 N e► O t0 n O) r r r N M t0 M 10 10 CA N O N -W Ln m ti C O 0 ) CO le 0 � d d C N O 0 O O) t0 0 O) N O OD n C 0 O N a O MN v r 0 r N N N v O O O O O 0 N N N O y O O O O r M 10 O LO mw M r O O O O O O O O O O O O O O O O O N t O7 � M N c a0i -OO r R � r O M 0 r O O O w M M tD N n O to n O n co -e N N n .�- E N a at co O O N C w N- co O r r r N N N M LL'! co r N ta7 N M �f Cp !! ... a O D N W N , ' o O O O 0) M C c o O O m >, O O O O O O O O M 0 O 1 u y a r O O O O O O O O O O O O O O O O M O N O P o E o CD V E g O (g to a) E y O O O 10 O N O N O N O N O to O N O 10 N N O M y co M r r r to to N V C) r N a) v O O O O O O O O O CO 40 t0 40 O co O) O) Ol M 0-0 E ci co) Co M M M M M M M r co co M r r O O O O O -> c H N y c CD E E r C) y p O r O r O r O r O T O r O r O r O r to r r r r r O O O 0 0 d 10 O) to) O le co) n N O) M r N r n M CO N M n ca N co) et v M O n O M to O) O) r n M V M m C 3 O O O O O O O O O r r r r r N N M -e 0 p 0 a ~ ca y N w N O 0 co O r n O co CO O r cu d O r N 00 N M M ON) M 1M0 00) l0 CO r r N N N Q 0 co LO O. M t V t0 N -e l0 n O) O M n -T N 10 N Q to O O) t0 r a r Ol tp H r N N N N N M M M to t0 t0 t0 t0 O O O M M (D N = O O O O O O O O O O O O O O O O O r r n n n n n 3 N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O JO O O O O O O O O O O O O O O O O O O O O C) O in M N CO CO O 10 O M M n O N CO <0 n n 0 O n o O N C9 Ln Ln w w 0 O M -7 t0 i0 n O N n N > r O O O O O O O O O O O O O O O O r r r r 0, O 10 M M O n to pppp to n O r O r O r O N O O N N t0 r N O) T " v to to N t0 10 f0 O n N n 10 n CO n r CO N O O) w O O) O � r n r n r O) r N N N = 3 r r N O N r t0 r Of C, r n 10 � O) N N N t0!! r M to c O (0 O M M CO O r N n N r r N N N N M M a? O t0 n M r � N N M C Q Y N n M O N a n n O) a La N a V 0 V COO OOf N C m E m O r O M CO M O) CO N COO C O O ,M C t6 'O_ -d m O c) r N N M M lf1 n O r r W r N N C M t0 N CD O CO N r r M O m C d O co ca d y n n O r O O) V r n O O c) r r r r n O r CD O) O) M O 1l1 N 90 r d N O m M n N r O O /0 M t0 N C N ,,rww V/ N CS m o rn \ \ O \ O O O O O O O O O O O to O N O N E � L N O O O O O O O O O O O O O N to N r O I 2 O O) n 0 N a CO N r r O O O O O ) E 00 O_ LO C) ca CL to co 2 T C) O O C l0 CD O O N L C) a O U 1 1 1 1 it N 10 O E D w Q w CL O CL N rn c N 7 L N d a T ca CL E 1 C CD O CL m `o C O U 'O d CL 0 O Q N C 11) co O IC (D (3 E .n 'O fO y "O N O C N a y 7 to a ' C t0 0 O N M a N N m Z s w O G i r a C O O Q N Ol r O) N w to 0� n o M n M N O O OO m r CL 0 m N O 10 O M 0 N N n M N 0 t0 to 0) N M N n t0 n N M m y N c m 0 N O Q n to a! �M„ Q O O N t0 M W Q M M n Q M Q O n N v N e N tp o E U N r m Y �„ 000 N a a r 0 N O O Q N r T O N b 10 0) n an r r O N n M 0 O m e $ .. c 0 M N O f0 O M O n M to 0) 40 N M o 0 N t0 CD ... $ O O r Q a Q N r C !p tD O M n M O N N W V 100 E a w `.- N Q tp t0 n 00 O r N M Q M Q Q n N Q n N Q N F N N N r Cc a O O O O O O O O O O O O O O M O O N m omi L M r N M M a w o 0 0 0 0 0 0 0 0 0 0 0 0 o N P. N r 0 rood �r ^� co a 0 ^Qg� ^od N m� ry m E $ n to Cl) r o Q M o M M to r r 0 0 0 n 0p W n 0 o 0 o to M tad c \Tn $ N a o m ?` N C 9 C:, r r r N N N M M to n O M r M to N n Q n n Q o) t0 n Q m c y O N O O vi N .� N n N c O v to a £ O $ d c 4 O c O O O O O O O O O O O O O M 0 N 0 to ro m c m � EO m0 o � 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N =O o m m V c ro ^ m m t` E C7 t9 H T O tp O to O tp O to O to O to O M O M O O O N to 0 M M M r r w N a a m � c a m m m 'i0O to to 10 0 t0 0 0 i0 10 tb to to to O O) 0) O) to M m 0 0 H pOj Q E O Cl) Cl) M M M M M M M M M M r O O O O O S a S H S c m m m 0) O C ID C 0 n E E �° of �° �° a° a° `o a. aE �° o a n m — r m m p 0 0 0 0 0 0 0 0 0 ,� r 0 0 0 0 0 > E O r r r r r r O m C co T �+ r u! 10 O W O M 10 M n N 0 0) to to O n n Q m N N N M Q to n W to N n 0 M O { (A n O O O O O O O O N N M O co O Z) CL ~ o f ° `ab N o e cm rn 1 a o r°. o 0 w 00i o r ro 'M too Q O N N M M M Q N O N N M Q tMO W Q N M M L M t0 n co W O r M t0 N CO M O n M 10 n n to Q o co W m y a r r r r N N N N M M Q N to t0 n M O M n N D] L m O O O O O O O O O O O O O O O O O r r r Q M m m n n n n n n n n n n n n n n n n n n n v ~ W 7 m oo N O N O N O N O N O N O N N O N O O N O N O N O N O O N N O N O N O N O N O J N B O O O O O O O O O O O O O O O O O O O O >` O O M 10 O) N t0 N M N W N O) n n r Q Q m 10 rn a n IS aJ W D! O O r N Q N n M O N u") n r i0 M m O O O O O r r r r r r r r N N N N M M Q En N M Q N n 0) N 0) t0 N n M r M 0 N O m L r N N N N N N N Q Q to t0 n W r N to O t0 cL O O O O O O O O O O O O O O O N N m O t0 t0 t0 N n O 10 N N t0 p N M n Q 00 tp to Cl) M n co co Q 10 r to f0 M n t0 r M O n OD 00 n r M Q tp t0 n n co M M W O N N M M Q M 3 N N N N N N N N W a co b - O 000 a w 0 Rr ONO i> A M co O Cl) 000 t00 19 C Q r N N M M Q Q tp t0 n W O r M r t0 r N N N M to p n m 10 p? n M 0 H Q n n o) Q 000 n R O tl� Qo) a IM 00) r 7 �+ C M m E a m O o r N t0 N M M M M M Q 0 Q aq N w n O Q 0 N go t0 r a� t0 to N V T6 U a 3 o H tgi Q co r r Cl) C Y O !0 E m c m m n n O r O Of n O t0.) too r m N m Ot M n to t0 O tg M Q t0 r tD M O C T v O r N M M Q Q Ip 10 O N N 000 Cl) n W N O t�qq 4) t!1 —° m D a 0 ° 0 0 0 0 0 0 0 0 0 m 0 ..m a O 0 0 0 o po 0 0 0 0 0 O O E 2 N LL .r. c 0 0 W 0 N 0 M N 0 0 N 0 Q 0 M 0 N 0 o n O to O N O O O N m V m r tD p in O a E z° 0 a El 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 Worksheet 5 3 Field form for Level II stream classification ( Rosgen 1996 Rosgen and Sllvey 2005) Stream Saddle Mountain Creek Basin Drainage Area 2899 2 acres 453 mil Location Reach 4 Twp &Rge , Sec &Qtr , Cross Section Monuments (Lat /Long) 0 Lat / 0 Long Date 05/30/11 Observers SWC Valley Type VIII Bankfull WIDTH (Wbkf) WIDTH of the stream channel at bankfull stage elevation in a riffle section 21 53 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross section at bankfull stage elevation in a riffle section (dbw = A / Ww) 2 73 Bankfull X Section AREA (Abkf) AREA of the stream channel cross section at bankfull stage elevation in a riffle section 5872 Width /Depth Ratio (Wbkf/ dbkf) Bankfull WIDTH divided by bankfull mean DEPTH in a riffle section 7 89 Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross section or distance between the bankfull stage and Thalweg elevations in a riffle section 32 WIDTH of Flood Prone Area (W,p,) Twice maximum DEPTH or (2 x dmbm) = the stage /elevation at which flood prone area WIDTH is determined in a riffle section 56 67 Entrenchment Ratio (ER) The ratio of flood prone area WIDTH divided by bankfull channel WIDTH (Wfpa/ Wes) (riffle section) 2 63 Channel Materials (Particle Size Index ) D50 The D50 particle size index represents the mean diameter of channel materials as sampled from the channel surface between the bankfull stage and Thalweg elevations 4129 Water Surface SLOPE (S) Channel slope = rise over run for a reach approximately 20-30 bankfull channel widths in length with the riffle to riffle water surface slope representing the gradient at bankfull stage 000765 Channel SINUOSITY (k) Sinuosity is an index of channel pattern determined from a ratio of stream length divided by valley length (SL / VL) or estimated from a ratio of valley slope divided by channel slope (VS / S) 107 ff2 ft/ft ff ft/ft mm Copyright © 2006 Wlldland Hydrology WARSSS page 5 29 1 I 1 I 1 d 1 1 I t 1 1 j Worksheet 5-4 Morphological relations including dimensionless ratios of river reach sites ( Rosgen and Sllvey 2007 Rosgen 2008) Stream Saddle Mountain Location Reach Saddle Mountain Reach 4 Observers SWC Date 05/30/11 Valley Type Vlll Stream Type E4 Riffle Dimensions " "" River Reach Dimension Summary Data 1 Mean Min Max Riffle Dimensions & Dimensionless Ratios"*' Mean Min Max Riffle Width (We„) 212- 20 221 ft Rdfle Cross - Sectional Area (A,,) ye) 53 85 50 95 58 72 Mean Riffle Depth (dbw) 254 235 273 it I Riffle Wtdth/Depth Ratio 1• wd ! db,d) 8 39 7 88 9 39 rn Maximum Riffle Depth (d„�J 321 272 3 72 ft IMax Riffle Depth to Mean Riffle Depth (d.. / dbm) 1 264'11071'14651 c y Width of Flood Prone Area (W,,) 372 273s 56 7 ft Entrenchment Ratio (W,, / Wbk,) 1 753 1 287 2 672 c m E Riffle Inner Berm Width (Wm) 185 161 202 ft Rdfle Inner Berm Width to Riffle Width (Wit / Wbe) 0 873 0 760 0 950 m Riffle Inner Berm Depth (d.) 144 12 m 1 79 ft Rdfle Inner Berm Depth to Mean Depth (dm / dbu) 0 567 0 472 0 705 Riffle Inner Berm Area (A-b) 262 242. 28 8 fiz Riffle Inner Berm Area to Riffle Area (Aib / Abu) 0 486 0 449.0 535 Riffle Inner Berm WID Ratio (Wit,! dib) 13 5 9 03 168 al Dimensiong »* Mean Min Max Pool Dimensions & Dimensionless Ratios"" Mean Min Max Pooi Width (Wb,o) 0 0 0 ft Po o) Width to Riffle Width (Wbkfp / Wwa) 0 000,0 000,0 000 Mean Pool Depth (db, p) 0 0 0 ft Mean Pool Depth to Mean Riffle Depth (dbkfp / dba) 0 00d 0 000 0 000 Pool Cross - Sectional Area (Abkh,) 0 0 0 ft Pool Area to Riffle Area (A.,, / Abk,) 0 000 0 000 0 000 N o Maximum Pool Depth (d,) 0 0 0 ft Max Pool Depth to Mean Riffle Depth (d., / dbm) 0 000'0 000'0 000 m Pool Inner Berm Width (W ") 0 0 0 ft Pool Inner Berm Width to Pool Width (W b, / Wbkfp) E j5 Pool Inner Berm Depth (d.) 0 0 0 it Pool Inner Berm Depth to Pool Depth (dam / dbkfp) ciPool Inner Berm Area (A p) 0 0 0 ftz Pool Inner Berm Area to Pool Area (Ap / Abkfp) Point Bar Slope (SPb) #### #### #### ft/ft Pool Inner Berm Width/Depth Ratio (W4/ d-bp) 000, 0 00 0 00 Run Dimensions Mean Min Max Run Dimensionless Ratios**** Mean Min Max N Run Width (V+/bkr,) 1187,1187 18 7 ft lRun Width to Riffle Width ( bkfr / Wbk,) 0 881 0 881 0 881 c OnMean N Run Depth (dbkfr) 244 2 44 2 44 ft Mean Run Depth to Mean Riffle Depth (dbk6 / dbu) 0 961'i 961 0 961 C m E Run Cross-Sectional Area (A,,,) 456 45 6 45 6 ft Run Area to Riffle Area (Ab,dr ! Awl 0 847 0 847.0 847 c Ma>amum Run Depth (dm�) 3 01 3 01 3 01 ft Max Run Depth to Mean Riffle Depth (d,,,a„ / dba) 1 185 1 185 1 185 Ce Run WidthlDepth Ratio (W./ dbkfr) 7 66 66 -166' 7 66 ft Glide Dimensions Mean Min Max Glide Dimensions & Dimensionless Ratios— Mean Min Max Glide Width (Wb, t) 0 0 0 ft I Glide Width to Riffle Width (Wbk% / W1e) 0 000,0 000,0 000 Mean Glide Depth (dbm) 0 0 0 ft IMean Glide Depth to Mean Riffle Depth (dbkfa / dbw) 0 000 0 000 0 000 N c 0 Glide Cross - Sectional Area (Ab,,.) 0 0 0 ft Glide Area to Riffle Area (Ab,,. / Ab„) 0 000 0 000 0 000 Maximum Glide Depth (d,,,,.) 0 0 0 ft Max Glide Depth to Mean Riffle Depth (d,,, .! dbk,) 0 000 0 000 0 000 E O Glide Wtdth/Depth Ratio (Wwd, / dbk,9) 0 0 0 ftfft Glide inner Berm Width/Depth Ratio (W„g / d,ba) 000, 000,000 -a Glide Inner Berm Width (W,,,.) 0 0 0 ft Glide Inner Berm Width to Glide Width ( fug' -•bvg) Glide Inner Berm Depth p (dam) 0 0 0 ft Glide Inner Berm Depth to Glide Depth (d bq / dbkg) Glide Inner Berm Area (A,ba) 0 0 0 ftz Glide Inner Berm Area to Glide Area (A� ! Abk,A) Step Dimensions'* Mean Min Max Step Dimensionless Ratios' Mean Min Max Step Width (Wb,,j 0 0 0 ft Step Width to Riffle Width (W,ki, / Wbm) 0 000 0 000 0 000 Mean Step Depth (dbm) 0 0 0 ft Mean Step Depth to Riffle Depth (dbkts/ dbk,) 0 000 0 000 0 000 a o N Step Cross - Sectional Area (Abkfs) 0 0 0 ft Step Area to Riffle Area (Abler, / Able,) 0 000 0 000 0 000 Maximum Step Depth (d.) 0 0 0 ft Max Step Depth to Mean Riffle Depth (d,,,. / dbm) 0 000 0 000 0 000 Step Width/Depth Ratio (Wbk,s /db,d,) 0 0 0 Rdfle --Pool cyst m ( e C E F tream types) bed feature nd de n<Fles runs pools and grdes "Step -Pool system (i e A B G stream types) bed features include riffles rapids chutes pools and steps (note ndude rapids and chutes n nrfle category) — Convergence- Divergence system ( e D stream types) bed features include riffles and pools cross - sections taken at Was for classification p rposes —Mean values are sad as the normalization parameter for all dime moniess ratios e g mm mum pool width to nffl width rat o ses the mea riffle width vat e 1 1 1 1 1 U- I t 1 t d Worksheet 5-4 Morphological relations Including dimensionless ratios of river reach sites (Rosgen and Sllvey 2007 Rosgen 2008) Stream Saddle Mountain Location Reach Saddle Mountain Reach 4 Observers SWC Date 05/30/11 Valley Type Vlll Stream Type E 4 N f River Reach Summary Data 2 2 R Streamflow Estimated Mean Velocity at Bankfull Stage (ub,,,) 444 ft/sec I Estimation Method aning n by Stream L v = Streamflow Estimated Discharge at Bankfull Stage (Qba) 26072 cfs Drainage Area 453 miz Linear Wavelength N Stream Meander Length (Lm) L Radius of Curvature (R ) V /�/�� � d Belt Width (W.J Arc Length (L.) s U Mean Min Max 336 294 416 ft 361 306 468 ft 741 44 5 124 ft 838 664 956 ft 112 835 157 ft Dimensionless Geometry Ratios ar Wavelength to Riffle Width OL / Wba) am Meander Length Ratio (Lm/ Wba) ius of Curvature to Riffle Width (R / Wba) inder Width Ratio (Wbit / Wba) Length to Riffle Width (La/ Wba) Mean Min Max 158, 139 196. 170 144 221 3 494 2098 5 846 3 951 3131 4 507 5 271 3 937 7 388 Slope (S a,) 00062 ft/ft I Average Water Surface Slope (S) 0 00577 ft/ft Sinuosity (S„a, / S) 10 i I s nnfh /GI 1 515 ft Vallev Length (VL) 480 ft Sinuosity (SL / VQ 107 Glide Slope (Sg) 0 000 0 000 0 000 ft/ft Glide Slope to Average Water Surface Slope (Sg / S) 0 000 0 000.0 000 c r IStep Slope (S) 0 000'0 000'0 000 ft/ft I Step Slope to Average Water Surface Slope (S / S) 0 000 0 000.0 000 Max U a Mean Min Max Dimensionless Depth Ratios Mean Min Max Max Riffle Depth (dmmo„) 257 218 316 ft Max Riffle Depth to Mean Riffle Depth (d.,,,f/ db,d) 101 0 858 124 Max Run Depth (d.) 314 28 3 73 ft I Max Run Depth to Mean Riffle Depth (dma,m, / dbkt) 124 .1102. 147 Max Pool Depth (dm y) 0 0 0 ft Max Pool Depth to Mean Riffle Depth (dmaxp / dba) 0 0 0 Max Glide Depth (dm,,,g) 0 0 0 ft Max Glide Depth to Mean Riffle Depth (dmmcg / dba) 0 0 0 Max Step Depth (dm.j 0 0 0 ft I Max Step Depth to Mean Riffle Depth (d./ dba) 0 0 0 I / SIIt/Clay 0 0 0 _N FA Sand 12 0 '119 `tb m k Gravel 47 21 6308 5: m A Cobble 39 72 3502 c / Boulder 2 7 0 v / Bedrock 0 0 0 Reach b HOW- Bar Protrusion Hqiaht d Die 442 5043 325 mm D35 182 94 2207 mm D. 4129 124 4356 mm D. 120 4 187 6 115 33 mm FD,5 180 286 29 14467 mm FD,, 36199 362 158 mm Min max & mean depths are measured from Thahveg to bankfull at mid-po m of texture for nines and runs me deepest part or pools a at me OH-ouc m gi des Composite sample of riffles and pools within the designated reach Active bed of a nine He ght of roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 Low Bank Height start _3 5 ft Max Depth I start 2 72 ft �ft Bank Height Ratio (BHR) I start _1 29 m R (LBH) end 4 35 ft (dmax) end 3 7 (LBH / dmax) end 1 18 Glide Slope (Sg) 0 000 0 000 0 000 ft/ft Glide Slope to Average Water Surface Slope (Sg / S) 0 000 0 000.0 000 c r IStep Slope (S) 0 000'0 000'0 000 ft/ft I Step Slope to Average Water Surface Slope (S / S) 0 000 0 000.0 000 Max U a Mean Min Max Dimensionless Depth Ratios Mean Min Max Max Riffle Depth (dmmo„) 257 218 316 ft Max Riffle Depth to Mean Riffle Depth (d.,,,f/ db,d) 101 0 858 124 Max Run Depth (d.) 314 28 3 73 ft I Max Run Depth to Mean Riffle Depth (dma,m, / dbkt) 124 .1102. 147 Max Pool Depth (dm y) 0 0 0 ft Max Pool Depth to Mean Riffle Depth (dmaxp / dba) 0 0 0 Max Glide Depth (dm,,,g) 0 0 0 ft Max Glide Depth to Mean Riffle Depth (dmmcg / dba) 0 0 0 Max Step Depth (dm.j 0 0 0 ft I Max Step Depth to Mean Riffle Depth (d./ dba) 0 0 0 I / SIIt/Clay 0 0 0 _N FA Sand 12 0 '119 `tb m k Gravel 47 21 6308 5: m A Cobble 39 72 3502 c / Boulder 2 7 0 v / Bedrock 0 0 0 Reach b HOW- Bar Protrusion Hqiaht d Die 442 5043 325 mm D35 182 94 2207 mm D. 4129 124 4356 mm D. 120 4 187 6 115 33 mm FD,5 180 286 29 14467 mm FD,, 36199 362 158 mm Min max & mean depths are measured from Thahveg to bankfull at mid-po m of texture for nines and runs me deepest part or pools a at me OH-ouc m gi des Composite sample of riffles and pools within the designated reach Active bed of a nine He ght of roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 Facet Slo as M Mean Min Max D Dimensionless Facet Slope Ratios M Mean Min Max Riffle Slope (S„,) 0 0 011 0 007 0 016 tuft R Riffle Slope to Average Water Surface Slope (S,x / S) 1 1 877 1 144 2 790 m R Run Slope (Sn, 0 0 000 0 000 0 000 ft/ft R Run Slope to Average Water Surface Slope (S. / S) 0 0 000 0 000 0 000 a Pool Slope (SP) 0 0 000'0 000'0 000 ft/ft P Pool Slope to Average Water Surface Slope (Sp / S) 0 0 000'0 000'0 000 I / SIIt/Clay 0 0 0 _N FA Sand 12 0 '119 `tb m k Gravel 47 21 6308 5: m A Cobble 39 72 3502 c / Boulder 2 7 0 v / Bedrock 0 0 0 Reach b HOW- Bar Protrusion Hqiaht d Die 442 5043 325 mm D35 182 94 2207 mm D. 4129 124 4356 mm D. 120 4 187 6 115 33 mm FD,5 180 286 29 14467 mm FD,, 36199 362 158 mm Min max & mean depths are measured from Thahveg to bankfull at mid-po m of texture for nines and runs me deepest part or pools a at me OH-ouc m gi des Composite sample of riffles and pools within the designated reach Active bed of a nine He ght of roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 Reach b HOW- Bar Protrusion Hqiaht d Die 442 5043 325 mm D35 182 94 2207 mm D. 4129 124 4356 mm D. 120 4 187 6 115 33 mm FD,5 180 286 29 14467 mm FD,, 36199 362 158 mm Min max & mean depths are measured from Thahveg to bankfull at mid-po m of texture for nines and runs me deepest part or pools a at me OH-ouc m gi des Composite sample of riffles and pools within the designated reach Active bed of a nine He ght of roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 Min max & mean depths are measured from Thahveg to bankfull at mid-po m of texture for nines and runs me deepest part or pools a at me OH-ouc m gi des Composite sample of riffles and pools within the designated reach Active bed of a nine He ght of roughness feature above bed ICopyright © 2009 Wlldland Hydrology WARSSS page 5 34 Cl _ O N i 0 I � n CL CL +x c°o W o N p p + N 0) Y C N CL ca m � W 8 + Q i CL J O - N X p O m O N V Of 4 O 7 0 O to rn i i i Cl) rn c N +x Q� p 1 L 0 a 3 N a� C O C L 0 m U O ✓C O O N L p D N t00 0 U +X Q LOO C N vi OD C i X U i a t m U m a o I T o m CL .- o � N I }3 1 V i _ n O p r +x Q n C N O O o t6 2 a 13L O LO O M N co M (07 N N N N N N CI) .M- m M V V V r V V V (4) U01;en813 t i i r a T rn O UN 'O II C E x N A CO 4 `m c c U co CD c 0 M N M V/ N X 3: x ^W p W L U c c N t� O U_ 0� 5 ctl 7C3 N C L � Y w` c �!J m N II W x A 3 N C_ O CL C 3 O 0 1 (4) UOIJUAa13 O co In N N LO (D ca CD 0 0 N L TO O 2 Lr) 0 1 1 1 1 1 1 I 1 1 1 t t 1 E On U� -5 II C E x N � m N C C U (TS N a (0 m U N � N X� o x P' o Qi i U c N c N U O� 3 Y co 1 W x A 3 C_ O IL v c 0 i (4) uoi}en913 O Cl) N N U C cz N 0 N i TO O 2 t t i I t e t 11 1 o � U p C 4 E Z N < m N C C U C13 �C li U N ; ca ", VJ CL) N X (D ^i^' X O W L U cd }' `o c _U Oa co Co c c G � ^' Y W co ♦ N I U) X S2 3 _C O (L c 0 0 C) C (4) UOIIUA913 0 co IN N LO U co 0 N i 0 o = to 0 s I 1 1 1 r 11 i r t c O cz U Cl) Cl) _cz U CTJ i U N Ir JOUIJ IU90JOd 0 0 0 0 0 0 0 0 0 N N_ aD o U cz 0 s e is t t I Worksheet 2 2 Computations of velocity and bankfull discharge using various methods ( Rosgen 2006b Rosgen and Sllvey 2007) Bankfull VELOCITY & DISCHARGE Estimates Stream ISaddle Mountain Location Reach Saddle Mountain Reach 4 Date 5/30/2011 1 Stream Type I E4 11 Valley Type I VIII Observers SWC I HUC INPUT VARIABLES OUTPUT VARIABLES Bankfull Riffle Cross Sectional 58 72 A bkf I Bankfull Riffle Mean DEPTH I I 2 73 d bkf I AREA ft /sec (ft) (2 dbkf ) + Wbkf (ft) Bankfull Riffle WIDTH 21 53 W Wetted PERMIMETER 27 97 W 444 ft /sec (ft) (2 dbkf ) + Wbkf (ft) D84 at Riffle 187 60 Dfa D. (mm) / 304 8 0 62 D84 444 ft /sec (mm) Abkf / WP (ft) Bankfull SLOPE 0 0077 Sbkf Hydraulic RADIUS 11 210 R 1 444 ft /sec (ft / ft) Abkf / WP (ft) Gravitational Acceleration 32 2 g Relative Roughness 3 42 R / D84 444 ft /sec (ft / sec2 ) R(ft) / D84 (ft) (ft/ Drainage Area 4 DA el el Shear Velocity 0 719 u * 444 ft /sec (mil) u = � (ft/ ESTIMATION METHODS Bankfull Bankfull VELOCITY DISCHARGE 1 Friction Relative U=[283+ 5 66 * Log (R / D w ] ] u 4 20 ft / sec 246 86 cfs Factor Rou hness ii I 2 Roughness Coefficient a) Manning s n from Friction Factor / Relative Roughness (Figs 218 219) u =149 R" S" n n = 6 048 444 ft /sec 26072 cfs 2 Roughness Coefficient u= 149 R" S12 /n 5 37 ft /sec 315 12 cfs I b) Manning s n from Stream Type (Fig 2 20) n = 0 048 444 ft /sec 260 72 cfs 2 Roughness Coefficient u= 149 R" S121n c) Manning s n from Jarrett (USGS) n = 0 39 S0-6 R-016 392 ft /sec [230 18 cfs Note This equation is applicable to steep step /pool high boundary n = 0 054 roughness cobble- and boulder - dominated stream systems i e for C m T rocJ! A� �!'3— RLA2._WA _(:7 R FQ 3 Other Methods (Hey Darc Weisbach Chez C etc) 5 37 ft /sec 315 12 cfs I Darcy Weisbach (Leopold Wolman and Miller 3 Other Methods (Hey Darcy Weisbach Chezy C etc) 313 ft /sec 183 79 cfs Chezy C 4 Continuity Equations a) Regional Curves u = Q / A Return Period for Bankfull Discharge Q = 1 2 year 3 09 ft /sec 181 60 cfs IFI 4 Continuity Equations b) USGS Gage Data u = Q / A 000 ft / sec lF000 cfs Protrusion Heiaht Options for the D— Term in the Relative Rouahness Relation (R/D..) — Estimation Method 1 Option 1 For sand bed channels Measure 100 protrusion heights of sand dunes from the downstream side of feature to the top of feature Substitute the D84 sand dune protrusion height in ft for the 084 term in method 1 Option 2 For boulder dominated channels Measure 100 protrusion heights of boulders on the sides from the bed elevation to the top of the rock on that side Substitute the D84 boulder protrusion height in ft for the D84 term in method 1 Option 3 For bedrock - dominated channels Measure 100 protrusion heights of rock separations steps joints or uplifted surfaces above channel bed elevation Substitute the D84 bedrock protrusion height in ft for the 084 term in method 1 Option 4 For log influenced channels Measure protrustion heights proportionate to channel width of log diameters or the height of the log on upstream side if embedded Substitute the D84 protrusion height in ft for the D84 term in method 1 ICopyright © 2008 Wlldland Hydrology River Stability Field Guide page 2 41 co co O N U O o N O O O c N N O O E N 7 U O CL rn c T «Q m N C c O L U U 7 Y C C) M d N 1 C`7 M N m N CL raR V w r� VJ m cc O 75 T U C l6 OD O O N L Off. O U a O N O N 7 O O 7 7 w N (Q W W � C II � r- C C >. II N m CO) m $^ Cr C m e ca 'D 16 O m �+ II 11 11 t v O C E cc 3 V ° N N m C N .,C—_ m U al m C m E al N N N } Q V V a O N N ICa N O �_ L Y $ N N O .6 U m 3 m C > m T d C O 3 N O O. r m Z C O '0 C Ln O ° m 3 5 ° 3 n _ m m In U o O 3 m N m E N m N O C m a q CO :; W m «0 FA IM N 0 i� _ mY$ m m cc m E� > E� C 0 \ N N CA oo W �m of d x: (A a� 0 Q C° \ m r C N co N V 'O O O y N 0 C O N m O) E W M N IL C 'O !/l p N `m N v a m O o R! c6 m N a m a) n p c m O m O E A 3 C E m 3° �' ' N N >, 7 `d L cL E 'O o J L U >, m �` m `° ° m at C Co m U C al >+ m LU $ m Q c C DoE U m — L m C c0 « of al U L M 0 'O O) E O7 R la N O N 3 O. O .m.. .°+ o m E ` N C y% 0 O N m C a m L\ ° C CD w E C N co m E L cli C E E m U T m NII y _a 0 c �, N m O '� ¢ m ca L Y L C° m` .O U m C C y 07 m w O O p� 1° C Z` m co N W h N m 0 o O m C Cm U O rn$ r t V ° co V U 3 > N 3 c W y° O N L 0 a w W °� ^ C Ul CO E C 3- 3 n m O N m w LL y N O« E d U E -o t0 m « U `O C m n N Y m 0 O— oRxE O D 2 \ U, 3 y y y3 C U mr _ O O m0 m �+ °N m m Ou, O d L C M mW LL >, om6 2 Q Lo v> N °�cOm m v m v O LL U .`. EL ¢ L w p. m° N d v°i z® taia E Ox .-3r m d O) m m ^ co °r to W to O co In cD o co co co tD � co N G m0 m � mo N 2 � � � N m ^^ W C O) C C m; N 3 11 1� co i V% Cm ?+ $ m a 0 C ° .0 O> j C 'D m o co L r r ^ W m0 m m (3 N L1 °� .- E p .- m E m Y cr m v L C c O cD u) �o m° V \ v N E 0 3 r G' m a C L C O) m c Cl) « ca of N C W n N^ v y L O N O O > o 3 O 2 °M L L E 3 0 N O C N m LL. U W O m^ (j N N N N W p C 3 L N m N O m a C 49 0 C m C N O° m O o U of p N d IL — a 3 m E at m 3 io 9 ° ,c,JQ� N c N I fA O C of 3 L m E y -` ..- m m o E is in O m c9 N O N m j ° 2 «Lm• N C o .� m O m\ O V C , O Y U n (s 0 0 N CD p Ol �..- O` o m trn C j O 4 CO � c 'O 'O C a y Co �� m N w O lyt, d W l6 C O L N N N C N 3 m '^ S N O cr ` L O 3 O) U C O. O m m 'O m td O) aJ m m of L d U m p m m N 0 N of O m ^^ O m N W n W C m d ° $ m N m r7 O m m E Y o �m °i S >. L of C L C co C W al CO C c` N p O U cV E a1 U 7 U m U O C7 O n O C T m O. C m a m \ m m m N N m m y m m co \ % o ld U) 7 T E y _ y C m m a O 3 O 8. " > C `� m m m C m m m �' y 'm0 4) O y N to LO C m a C a5° m O 07 U a) N SC ' a N g of U> o o YO rn m y o E o E a O O_ O al C d m aJ W^ ca ED m LL c my N mv� N t� � E o to E O O oa Uv � E � m � E co'aaa a`D E W m a co c N N cl7 tD N N 7 to W N U o m W N n ° LL O cc co n m y _ o. m .° t c II r 0 ° W N ca �O U m O U m N W LL ^ J lca ° O ¢ t E co) ° N m m.0 a \ m O > 0 " Oc cD m ID t- j U) m U N O C H` V a ca �' N O CO 2 O .p \ o o 4) a� x ai o o 3 :3 r E O co rn M v E o m M 0 U c 3 o O m o n li ^ N O c m m N-0 tE os E v a) N ca isa m v m w 'R V Cl) PI 1 m E N m N 3 N $ O L N m .D yw OF m C a1 ca N la '0-0 m C R L « 3 m NL N O .2 m L 7. m 0 _ O 3 d O C S- >� a C m ca Rf -0 L m U m (n Nm O D O m N� O a W _ LL W N ^ O 0 co (D $ ^ C N« m E Y U co O) E C OF H a o^ yp N ° E V E N m C°.0 a N V 6 C Co ¢ d' c�i m N co W CD CL _ 3 fl m N o m N d j m 'O m c m C 0 f>a U N —_ >. C C 0 m m O m O W v co LL O y O W ^ N C O an d O m O) m t t w a a (D \ N �n m N c a N C U m C O 'O N m m 3 y m c` n 7\ Z5 p a1 L .-. C O O °p_ c+c C Q m m 3 m m > E— y E v Sc L-' $¢ in m �Q C E m m E C N m w E of c K 3 �` U y L m a1 m S] O OJv� \; N M 'O ° E E U m O m 0 r Of N 0 LL p o N O � � W n W 0 •- CD C w LL E m 3 m 0 !n U� (�% o� U) U � (n � N � � �[7 m- U fa M W V W m d C m N PI N [h ^ N N .- ^ N tD ^ O m W W 40 W 0 OD cc �' o ° a u°Di C Q cD n rn r N N m ca C `Y m N LL C C ° e O 0 m O R W W N n N (i E 'O > C a E x 32 m 0 lCa C O m O of O o J C m c of m o $ m 3 o 'o ® m t v ° a v m v m m U N C y Q co W m \ 3 E oy ° �� o cYi in Y3 d' ^ in m o W rn m r, m v� o v w o c o,� ro m m w �� w �c E c m m c o L a 03 c w u� m y v CO W On (D m O_ C m N .° @ .. L_ «$ to rn .r C_ m m U V r > m E ¢ W ' vo N 0 l` O) O N m m Q m a = a v° m CM m C N Y.. O U = m ca C CL co -O ii «p y m mo C^ EO 3 0 O C 0 m a N m C ro L v^ L E m 'O :3 E = C N C O O °� i Q p W m p m Y ai O. O m �. co fO N O. t 3 Q a E C; ca O C O y C 0 O) V y m N �' U 2 L U co C L O C m la c� O' pp N d N V C > 0 m C C N m m E 2; t 3 m\ 0 U N E m O O a m o U m c` ° m m m r ca m ro N O N Q 'r-c cn W V Y 0 m C N �„ 0 Y m 0 °i LL'1 + cD Y m L p la m m Z Cp Cal L j j m ° N j N N ca O m m m m W W n c° C m p Z m L W U 7 n N E m m id m m Q N A O. cn cD J V J °. cA N fn C7 ¢ O O Z E V 'O .q3 Q 61 N T O 7 c� co y q a v m to co n 7 o � C 0 0 0 N m m °- 0 0 a co a v �o E -> of 0 m Z- O U .� m m .° N rn C ,_, U CO co) N C m Y m C ca Y r �' G Q Y 7 L N U O n 3 0 ca N a a 0 0 d U N 0 J N N mpp O a m R `O a L Co U co CO U ." 7 m UO c a 2 o ccaa O y O o m m > a m v 0 V m Y ^ N a Il co O N N m m N m CL m c 5 6e Es�ueq E%o0Ev `er ES], jaddn aalloueq wouos s ° N i a N ii a° C`7 M N m N CL raR V w r� VJ m cc O 75 T U C l6 OD O O N L Off. O U 1 1 1 1 1 1 1 t 1 Worksheet 3 14 Sediment competence calculation form to assess bed stability Stream Saddle Mountain Creek Stream Type E 4 Location Saddle Mountain Reach 4 Valley Type VIII Observers SWC Date 05/30/2011 Enter Required Information for Existing Condition 1240 D50 Riffle bed material D50 (mm) 436 D 50 Bar sample D50 (mm) 043 Dmax Largest particle from bar sample (ft) 132 (mm) 1304 8 mm /ft 000765 S Existing bankfull water surface slope (ft/ft) 273 d Existing bankfull mean depth (ft) 165 Y —1 Immersed specific gravity of sediment Select the Appropriate Equation and Calculate Critical Dimensionless Shear Stress 285 D,.I DA. Range 3 — 7 Use EQUATION 1 T* = 0 0834 ( D50 /D5a 872 127 Dmax1D50 Range 1 3-30 Use EQUATION 2 ti* = 0 0384 (Dmax/D50) '* 00335 ti* Bankfull Dimensionless Shear Stress EQUATION USED 1 Calculate Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample 311 d Required bankfull mean depth (ft) d= z (7.S1)Dmax (use Dim. in ft) Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle in Bar Sample 000871 S Required bankfull water surface slope (ft/ft) $= Z (YS 1)D... (use Dm. in ft) d Check r Stable F Aggrading I— Degrading Sediment Competence Using Dimensional Shear Stress 1 303 Bankfull shear stress T = ydS (lbs /fe) (substitute hydraulic radius R with mean depth d ) = 62 4 d = existing depth S = existing slope Shields 102 co 184 Predicted largest moveable particle size (mm) at bankfull shear stress T (Figure 3 11) Shields 166 co 082 Predicted shear stress required to initiate movement of measured Dmax (mm) (Figure 3 11) Shields 348 co 172 'r Predicted mean depth required to initiate movement of measured Dm. (mm) 'r d =— ti = predicted shear stress Y= 62 4 S = existing slope YS Shields 00097 co 00048 Predicted slope required to initiate movement of measured Dmax (mm) T S 'L = predicted shear stress 'Y= 62 4 d = existing depth Yd Check r Stable r Aggrading r Degrading Copyright © 2008 W ildland Hydrology River Stability Field Guide page 3 101 1 1 1 1 1 1 1 k 1 1 1 Worksheet 3-16 Stability ratings for corresponding successional stage shifts of stream types Check the appropriate stability rating Stream Saddle Mountain Stream Type E 4 Location Saddle Mountain Reach 4 Valley Type VIII Observers SWC Date 05/30/2011 Stream Type Changes Due to Stability Rating (Check Successional Stage Shifts Appropriate Rating) (Figure 3 -14) Stream Type at potential (C--+E) [,—,o Stable (Fb —B) (G—B) (F—Bj (F—>C) (D—C) (E --),C) (C —>High W/d C) (— Moderately Unstable (G -->F) (F-->D) (C--+F) I— Unstable (C—►D) (B—>G) (D—G) (C,G) (E,G) I— Highly Unstable Copyright © 2008 Wddland Hydrology River Stability Field Guide page 3 111 I 1 1 t 1 1 F1 t 'J t I 1 Worksheet 3 17 Lateral stability prediction summary Stream Saddle Mountain Stream Type E 4 Location Saddle Mountain Reach 4 Valley Type VIII Observers SWC Date 05/30/2011 Lateral Stability Categories Lateral stability criteria Selected (choose one stability Moderately Highly Points (from category for each criterion Stable Unstable Unstable Unstable each row) 1-5) W/d Ratio State < 1 2 12-14 1 4- 1 6 > 1 6 1 (Worksheet 3 8) 4 (2) 12 (4) (6) (8) Depositional Patterns B1 B2 B4 B8 B3 B5 B6 B7 2 (Worksheet 3 5) 2 B1 (1) B4 (2) (3) (4) Meander Patterns M1 M3 M4 M2 M5 M6 M7 M8 3 (Worksheet 3 4) 1 M3 (1) (3) UVL UL UM M/L M/M M/H MNH WEx H/L H/H H /Ex Ex/M 4 Dominant BEHI / NBS UH LNH MNL VEx H/L H/M H/H Ex/H Ex/VH 2 (Worksheet 3 13) VHNL ExNL VHNH Ex/Ex UL (2) (4) (6) (8) Degree of Confinement 08-10 0 3- 0 79 01-029 < 0 1 5 (MWR / MWRret) 2 (Worksheet 3 9) (1)1 07 (2) (3) (4) Total Points 11 Lateral Stability Category Point Range Overall Lateral Stability Moderately Highly Category (use total points Stable Unstable Unstable Unstable and check stability rating) 7-9 10 -12 13-21 > 21 r FV r r Copyright 0 2008 Wildland Hydrology River Stability Field Guide page 3 114 1 1 1 r� t 1 1 1 Worksheet 3 18 Vertical stability prediction for excess deposition or aggradafion Stream Saddle Mountain Stream Type E 4 Location Saddle Mountain Reach 4 Valley Type VIII Observers SWC Date 05/30/2011 Vertical Stability V Vertical Stability Categories for Excess Deposition / Aggradation S Selected Criteria (choose one P Points stability category for each N No Deposition M Moderate E Excess D Aggradation ( (from each criterion 1 -6) r Deposition D Deposition A row) Sufficient depth T Trend toward i Cannot move D35 C Cannot move D16 of Sediment a and/or slope to o insufficient depth C of bed material b bed material and /or 1 competence t transport largest a slightly o and /or D100 of bar D D100 of bar or sub 2 2 (Wo ksheet 3 14) s size available s ompetent m material p pavement size (2) ( (4) ( (6) ( (8) Sufficient T Trend toward R Reduction up to R Reduction over capacity to i insufficient 2 25 / of annual 2 25 / of annual 2 Sediment Capacity t transport annual s sediment s sediment yield of s sediment yield for 2 2 (POWERSED) l load c capacity b bedload and /or b bedload and /or suspended sand s suspended sand (2) ( (4) ( (6) ( (8) W/d Ratio State 1 10-12 1 2 -1 4 1 14-16 >1 6 3 2 2 07 (2) ( (4) ( (6) ( (8) Current stream type at potential ( (C —High W/d C) Stream Succession o or does not ( (E —C) ( (B —High W/d B) ( (C —D) (F —D) 4 States (Worksheet 3 i indicate ( (C —F) 2 2 16) d deposition/ aggradation (2) ( (4) ( (6) ( (8) Depositional B B1 B B2 64 B B3 B5 B B6 137 B8 5 Patterns (Worksheet 2 2 3 5) 6 61 (1) B B4 (2) ( (3) ( (4) Debris /Blockages D D1 D2 D3 D D4 D7 D D5 D8 D D6 D9 D10 6 1 1 D3 (1) 1 1 (2) ( (3) ( (4) Total Points 1 11 Vertical Stability Category Point Range for Excess Deposition / Aggradation Vertical Stability for Excess Deposition / M Moderate E Excess (use total N No Deposition D Deposition D Deposition A Aggradation points and check stability 1 10-14 1 15-20 2 21-30 > > 30 rating) r r r r Copynght © 2008 W ddland Hydrology River Stability Field Guide page 3 117 1 1 1 1 1 1 t li Worksheet 3 19 Vertical stability prediction for channel incision or degradation Stream Saddle Mountain Stream Type E 4 Location Saddle Mountain Reach 4 Valley Type VIII Observers SWC Date 05/30/2011 Vertical Stability Vertical Stability Categories for Channel Incision / Degradation Selected Criteria (choose one Points stability category for Not Incised Slightly Incised Moderately Degradation (from each each criterion 1-5) Incised ncise row) Sediment Does not Trend to move larger sizes than D100 of bed Particles much 1 Competence indicate excess D100 of bar or > moved larger than D 100 2 competence D64 of bed of bed moved (Worksheet 3 14) (2) (4) (6) (8) Slight excess Excess energy Excess energy Does not energy up to sufficient to transporting more Sediment Capacity 2 p tY indicate excess o 10 /o increase increase load up than 50% of 2 (POWERSED) capacity above reference to 500/ of annual annual load load (2) (4) (6) (8) Degree of Channel 1 00 -1 10 1 11-130 131-150 > 1 50 3 Incision (BHR) 4 (Worksheet 3 7) (2) 120 (4) (6) (8) Does not if BHR > 1 1 and If BHR > 1 1 and Stream Succession indicate incision stream type has stream type has (BAG) (C,G) 4 States (Worksheets or degradation /dObetween Wed less than 5 (E----(D---,G) ►G) (D,G) 4 3 16 and 3 7) (2) 1 2/7 9 (4) (6) (8) Confinement 0 80 -1 00 030-079 0 10 - 0 29 <010 5 (MWR / MWRret) 2 (Worksheet 3 9) (1) 067 (2) (3) (4) Total Points 14 Vertical Stability Category Point Range for Channel Incision / Degradation Vertical Stability for Channel Incision/ Moderately Degradation (use total Not Incised Slightly Incised Incised Degradation points and check 9-11 12-18 19-27 > 27 stability rating) r I✓ r r Copyright © 2008 Wildland Hydrology River Stability Field Guide page 3 119 1 1 1 1 1 1 1 1 1 1 t 1 1 t Worksheet 3-20 Channel enlargement prediction summary Stream Saddle Mountain Stream Type E 4 Location Saddle Mountain Reach 4 Valley Type VIII Observers SWC Date 05/30/2011 Channel Enlargement Channel Enlargement Prediction Categories Prediction Criteria Selected (choose one stability Moderate Points (from category for each criterion No Increase Slight Increase Increase Extensive each row) 1-4) Stream Type at Potential (C--+E) (C-' h C) (C-•D) (B-•G) Successional Stage (Fb —B) (G-'B) C /d `E (G,F) (F,D) (D,G) (C,G) 1 Shift (Worksheet 3 16) (F -�B.) (F —C) (E-+G) (C,F) 2 (D -->C) (2) (4) (6) (8) Lateral Stability Stable Moderately Unstable Unstable Highly Unstable Hi g hs 2 (Worksheet 3 17) q (2) (4) (6) (8) Vertical Stability Moderate 3 Excess Deposition or No Deposition Deposition Excess Deposition Aggradation 2 Aggradation (Worksheet 3 18) (2) (4) (6) (8) Vertical Stability Moderately y 4 Channel Incision or Not Incised Slightly Incised Degradation 4 Degradation (Worksheet 3 19) (2) (4) (6) (8) Total Points 12 Category Point Range Channel Enlargement Moderate Prediction (use total No Increase Slight Increase Increase Extensive points and check stability 8-10 11-16 17-24 > 24 rating) r r r— l— Copyright © 2008 Wddland Hydrology River Stability Field Guide page 3 121 1 t 1 1 t 1 t t 1 1 t L 1 1 Worksheet 3 -21 Overall sediment supply rating determined from individual stability rating categories Stream Saddle Mountain Stream Type E 4 Location Saddle Mountain Reach 4 Valley Type VIII Observers Date 05/30/2011 Overall Sediment Supply Prediction Criteria (choose corresponding points for each criterion Stability Rating Points Selected points 1 -5) Stable 1 Lateral Stability 1 (Worksheet 3 -17) 2 Mod Unstable 2 Unstable 3 Highly Unstable 4 Vertical Stability No Deposition 1 Mod Deposition 2 2 Excess Deposition or Aggradation 1 Excess Deposition 3 (Worksheet 3 -18) Aggradation 4 Vertical Stability Not Incised 1 Slightly Incised 2 3 Channel Incision or Degradation 2 Mod Incised 3 (Worksheet 3 -19) Degradation 4 Channel Enlargement 4 Prediction (Worksheet 3 -20) No Increase 1 2 Slight Increase 2 Mod Increase 3 Extensive 4 Pfankuch Channel 5 Stability (Worksheet 3- Good Stable 1 1 Fair Mod Unstable 2 10) Poor Unstable 4 Total Points 8 Category Point Range Overall Sediment Supply Rating (use total points and check stability rating) Low 5 r Moderate 6-10 I✓ High 11-15 r Very High 16-20 r Copyright © 2008 Wildland Hydrology River Stability Field Guide page 3 124 t 1 1 t 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 m 0 0) U C O "d O U _A Rf N O w E U) N M s L 0 co N W ti 0 p° M d N r O O 0 00 R d Z N C) m � C7 d y r C) E L C) 0 CIS 0) O= N 6 Q 45 ++ !o O E j x W C) (n T :3 V% C) (n O C ca r L _ (n N Oa L a) _ O C O O _0 p V cTJ O + n. + n ice ? R W 7 C O -a O o °N A O m r — a) O a) S M N > o cu O N m CM CL A �O 70 cn W N aNi N N a�'i y > c 0 Q T- �j >? 2 cu c0 ca c0 co 0 > C m r. cu i co U� E C] r y N N -m YN 'C C _ L) t m > _ A d ch c0 E cd E cd E CO E N l9 co -6 d U O y0 cc rt0+ d w y Y as N a1 d N N 3 0 N �� r E o u� �Q ti; •a C J O - N N a°1C d d co O M 0 Lj a) LU CC aa) a�i aai c~ � ,n C1 W ` O¢ > O c o y '0 O a Q OC p N 0 c.-o m O co CL c I� '� G� o o a m 0 m Q C) E c0 w in C o C o y cU OL �a N N d a O O O= 2? N- U o N cn ° oa _• c .0 N 4) V rn .. as O 0 Co c 0 o al a) CL = Q O W U J a C d r o 2 C a: `> Co N a L L L L 0� N x 0 v c z (D 0 02 ° v m c 13 O = a0 O U) co P� E 0 U= '2 3 _LM N O X W O O O co N T T C) Q 0 O r c ` N �� �� N O p L II N O 0 C L N 2 N O T m x °= P L C W O �N M T c °B E a' O rn N c cu �, = c k W O O �, M r -� o m2 � v r r E o a M ° L L L L 04 L CO O L t o C4 a' L J N O CC N a on m Ln ' cl > iD c Q N C .. N cs 0 -e d "' C0 L O " N O r M W O O O Y r aJ O U L 2� v to >1 1 L L L L L r �� O O N O cr) X V ( S 00 co 0 RT N rA cc U E U 7 O a v > «f ca v -- O a cgs Q) G1 - x c c,V 2 C) Sc E c a c0 c ca C Y L C «� Imo ca (D N 'O p O O to a7 (n Z Z Z J ad o �� CE o 0m ° a LL c �c �' J(n L Jm L L L L L C d m R V N CL i O d 'd in i W d C 0.. : ro 00 tm � O . E O 2 G 'm d c O p « . W Y� C W C D. c`a� 0 t N O t9 &- W C d do 0 w ACC a`d L. — j� �m m� �O C O NN d ;: �`- .. rn an d ca in0 v �v) O0 >a >� aU) V NaWVN _ ..i co N 1 1 1 d O E 0 W U) ir W O n. a� 1 .. C y 7 1 1 I t N_ N d t Y O 1 r r r O N O u9 O t0 n o N tr o V n O o n 0 Cr p C n n oO O W NM to M cd c t0 O le to ti O0N M tr0 � n � M On E ttN M O ll i T ♦E • �^ � E M M p C � l0 Of O 4 N N M N n O /0 10 n N n r M N r O o Ot N m Ct c O M O O O n n a Ot Ol O N in D. a y o O co n et N 10 n to o t0 O! M tn0 N M M M a r O m F M Cn0 co M T r r r r co n M to t0 a d 0 CO O O O O O O O O O O O r u M N " MOf co r O L 10 10 E .p coo O O O O O O O O O O O O O O O O O r N Of N y �!m!y� IL7 d 'O C -gyp O/ O tt M Uf N CD Of N Y! *' t0 t0 � p N M v d �. 04 to E c 0 t0 N n O M t0 O w to n N O! O! r N O co w w C Y O r r N N N M M V 10 OI N a N 10 Co.), N C O O O m cc, r M r O? N � c 0 o Cl) c O CL O O O O O O O O O O O O O O O O O O O O O O Cl) 40 M N Of to !6 r N C O O O O O O O O M co M - (A O O Ea oa) i0 E C) 0 U Cci E � o to O o O to O to o to O W O to O to O W to N W W to M r r r to N . V D O Z M M M m m M M M M M M M O O O O O _E C N N d _ r N E U O O O O O C O O O O r r r r r O O O O O y �- C n O r N M Q 10 CO M N M M n n to c0 C ca D a ~ G E m N r N CO r 9 ti N r O , N ON! co O Ln r d 3 O r r r N N N M -e 10 CO Or 0 co N L '- CO O r r N N M V 10 O M n O to O V M CIt O y � O r r r r r r r r N N N co M R d m L N O O O o O O o O O O O O O o O Q tQ N n n rz Pz rz n n � n ^ n n n n � n ^ n n n ^ n � A 1%. h n n n to 91 h J E C O O O O O O O O O O O O O O O O O O C O O O O O O O O O ro 41 CD r tq CO N tf� O n O r O tp et t0 o CO O O O r T N N V 0 M 0 T M YY O r r T T r r T T r T T N N N N Z N m n r N a of to n O v N O n to n -e X £ Ci E r r N N N N N N M M v M N 10 n Of M 0 tj O O O O O O O O O O O O O O O L V O d N M O n N Os r O n r Of 10 t0 r tf') to CO CO 49 � tL1 n n r n r M of /0 n n n W o CD Ot O r N C = j r T r r r T r r r r T N N N r C 0 a r PO'f O t! ON! M N 0 n y r N co M M Q to /0 n O/ r M r 1D r O N m Q M N M m E 0 N t� R N N t� CD r v r O r n M n t0 O 4N'f M co O N r C 'O N 3 U r N co M t} O ttY t0 Co. N N M 1M n ONE r 0 C14 LO M « 2 O 3 N C 7 O g m cab m N M n n M Of N Of N n O M N Of n t1Y o G n c N d N O tO O r t0 M O M N CO N O CO 01 n 'p V V r O N N M M 10 n O> N v b O O n 10 10 Ln M 0 W C >. CC* COO r r N R N rn c0 N 0-0 � o O O O o O N E m LL O O O O O O N O tp N r r 0 a co n 0 ! M N N a M N r r O O O O G to O a . CD O 0 m Im ca a T O O .O C ltJ c0 O O N 0 L lT Q O U 1 1 1 1 m a O E W U) M W O a CD r O7 fA L co N a d C CL E T Ctl C N O G r O C O U m n r 0 CL c m CD L O ld m (U a N a a C y (D a C (D &. C cis f0 0 v N m N m L Y O r t N O l0 W O 10 W N W N A t0 M O W M N A N N N A to Q O 10 N aD r CL O Q O A 10 M A N W M N W r W N E= n co W O M Nn r N Qr C.) Cl) y O H m O id m CD W W 10 ) N W Cl) r to A W 0 A m C C M O O Q O o CO 1C 0 w Cl) A W M W M N W W W D /O r m m Q 0 O O A N M M N co W A Cl) Q N Cl) •' W 4 E D co N Q 0 CD W r M Q Q A r N M Cl) M to .� .om .. F mm m my a m a roo m O O O O O O O O O O O O O O 0 O O O 0 O O m O m O O O O O O O O O O r O O O O COD O O W O O O O O O O O O O O O O O O O N O M F N '-. co Coo v m r m W O Q M M CO W N M A CD O W 10 M O N m 4 C7 N 10 E= O a v N A O M O W N A N CD CO N b to Q a ��`• C1 N m c a Q r N m m O N N N Cl) M Q 10 co r r N a N Cl) A 1WO mn o w Cl W al N .c°. Co m r r xc a m t 0 m CL m c ol m Q � po N O O O O O O O O O O O O O O O O O O O O O O O m 0� c w c0 O „ T m a r O o O O o 0 o N En E 0 a 3 E m nt a V m R E cE = m T m E m a as m C7 M E i O to O N O to O N O N O W O W O W O W O N H N W N M r r r N N a ,y m = O m p r m m 'C t0 10 10 f0 10 10 10 /0 /0 CD W W W W 1n M $ m o O m Q HM M M M M M M M M M M M ® mn d C O C a E — �e o \ e� \° 3° � a \° a \° a° \° a \° v CL m m m _ v E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o\° o N o d in (O O M N 0 A W O N N r O A O m CO r N N M Q 1!1 A W M ip (n 3 ? O O O O o o O O O O O O o 0 0 F- R a N N a OD r M n N r O r A N N W to GQ O H m ro o O r r N N N M Q l0 CD O M CO N (n CL I Q t V m y co O r r M r Q r to r to r t0 r A r CD r N N to N W N R M Q a to M m L N O O O O O O O O O O O O O O O Q Cn 4 is IZ 1 n rz rz rz rz rz rz rz 1� rz m F m 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N m O O O O O O O O O O O O O O O O O O O O O A W to W r to O 1A CO) �Cpp M N O 0 M W W O O N N Q to A W r Q r r r r N N [A X 10 M N A W N W A M to Q N o A t0 W W T I [1 O 0 O r t W � N Q N N O N W W Q W CO W O N W A CO A d 7 Q C m ttl t O Q O r A M Q r CO N Q W 0 ^ OD W O O CO W Q W L0 W W S ii: r r r N C O 7 pp !O 110o O O m A W A Q Q 10 r r Q W N m w N io CD 140 0 N 4 VD N M M Q Q Q 10 10 CD N Q V a m W N 14 4 (O Q N w CD r A W W M Q N M r 7 C7 !6 E `� N < N co Q O n N N O Co Q Q M CD m O r N M M Q 1A N to CD N N M N n N CZ P. M` U o � O inw N 0) C 0 O 4/ m m N M A A M W N W N A (O N M CO N W A N CD O n b to d N E Q O CQ 10 r t0 M O Q CD N O Cq W A N A (O M V V O N N M Q Q N l0 A W - - N M 0 O C �, 10 N C C% N 0 v o mrn p 0 \° \° � r m _ O 0 0 0 0 O N o\° O 0 N E m O O O N 0 m 0 W co A O O O 0 i O o E 0 zm ° m 0 Lo m m CL W t 1 1 1 1 1 1 1 1 Hydrology and Hydraulic Analysis Supporting Documentation 1 SADDLE MOUNTAIN CREEK RESTORATION SITE C � t 1 1 EXISTING SADDLE MOUNTAIN HEC -RAS 1 t F H&H REPORT IWoljCreekEngtnee tng Septemb 2011 1 IHEC RAS Plan Revised 1 I1 I t 1 1 t I Reach River Sta Profile 0 Total Min Ch El W S Elev Cnt W S E G Elev E G Slope Vel Chnl Flow Area Froude # Chi (cfs) (ft) (ft) (ft) (ft) (tuft) (ft/s) (sq ft) 1 11 Bankfull 18100 134227 134453 134473 0005359 357 5075 046 1 11 2 yr 38700 134227 134591 134620 0004367 430 9005 044 1 11 10 yr 90100 134227 134787 134840 0004283 592 16980 047 1 11 50 yr 156000 134227 134921 135006 0005191 766 269041 054 1 Ill 100 yr 190200 134227 134964 135069 0005923 856 31018 058 1 10 Bankfull 18100 134005 134330 134348 0003970 344 5268 039 1 10 2 yr 38700 134005 134465 134496 0004743 447 8653 045 1 10 10 yr 90100 134005 134670 134723 0004356 593 19497 047 1 10 50 yr 156000 134005 134812 134667 134873 0004185 687 43437 048 1 10 100 yr 190200 134005 134868 134754 134926 0003901 701 57409 047 1 9 Bankfull 18100 1339401 134231 1341 75 134269 0011194 497 3644 065 1 9 2 yr 38700 133940 134319 134280 134393 0015997 692 5594 080 1 9 10 yr 90100 133940 134443 134443 134610 0020698 1039 8908 098 1 9 50 yr 156000 133940 134652 134652 134789 0010182 996 25537 074 1 9 100 yr 190200 133940 134700 134700 134844 0010247 1055 31985 075 1 8 Bankfull 18100 133735 133918 133944 0009549 414 4373 059 1 8 2 yr 38700 133735 134020 134058 0007349 502 9310 056 1 8 10 yr 90100 133735 134188 134237 0005468 611 23216 053 1 8 50 yr 156000 133735 134341 134402 0004827 708 40183 052 1 8 100 yr 190200 133735 1344 03 134471 0004766 754 49955 053 1 7 Bankfull 18100 133464 133736 133675 133766 0008878 442 4091 057 1 7 2 yr 38700 133464 133845 133763 133898 0009211 585 6767 062 1 7 10 yr 90100 133464 134005 133945 134096 0009311 797 15926 067 1 7 50 yr 156000 133464 134155 134075 134272 0008767 941 30474 068 1 7 100 yr 190200 133464 134191 134081 134332 0010113 1051 36039 074 1 6 Bankfull 18100 133076 133266 133252 133320 0021133 592 3057 087 1 6 2 yr 38700 133076 133353 133341 133444 0020658 768 5072 092 1 6 10 yr 90100 133076 133505 133505 133663 0017979 1022 10243 094 1 6 50 yr 156000 133076 133642 133642 133859 0016996 1227 17054 096 1 6 100 yr 190200 133076 133743 133743 133943 0012733 1200 24187 086 1 5 Bankfull 18100 133011 133221 133245 0007758 395 4584 054 1 5 2 yr 38700 133011 1333291 133367 0006972 491 7904 055 1 5 10 yr 90100 133011 1335191 133581 0005471 635 15933 053 1 5 50 yr 156000 133011 133681 133769 0005393 776 25097 056 1 5 100 yr 190200 133011 133754 133853 0005286 830 29826 056 1 4 Bankfull 18100 132921 1331 11 133143 0010602 455 3975 063 1 4 2 yr 38700 132921 133242 133285 0007579 527 7344 057 1 4 10 yr 90100 132921 133438 133512 0006668 693 13634 058 1 4 50 yr 156000 132921 133550 133687 0009246 947 18491 070 1 14 100 yr 190200 132921 133595 133510 133765 0010509 1062 20685 076 1 3 Bankfull 18100 132659 132952 132980 0006565 422 4294 049 1 3 2 yr 38700 132659 133108 133148 0006329 506 7651 051 1 3 10 yr 90100 132659 133316 133146 133387 0005892 688 16043 053 1 3 50 yr 156000 132659 133474 133540 0004640 730 37579 050 1 3 100 yr 190200 132659 1335571 133614 0003799 714 49085 046 1 2 Bankfull 18100 132419 132707 132750 0011071 531 3410 063 1 2 2 yr 38700 132419 132816 132903 0012972 749 5359 073 1 2 10 yr 90100 132419 132999 132988 133148 0013386 1025 13382 080 1 2 50 yr 156000 132419 133234 133142 133368 0008317 1041 28192 067 1 2 100 yr 190200 132419 133318 133204 133461 0007981 1096 34129 067 2 1 Bankfull 210001 1323 57 1326 13 132667 0016213 5891 3564 077 2 1 2 yr 442001 1323 57 1327 58 1328 26 00106871 6591 67881 067 IHEC RAS Plan Revised (Continued) t 1 1 1 1 r� Reach River Sta Profile Q Total Min Ch El W S Elev Cnt W S E G Elev E G Slope Vel Chnl Flow Area Froude # Chi (cfs) (ft) (ft) (ft) (ft) (Wft) (ft/s) (sq ft) 2 1 10 yr 102200 132357 132924 132865 133066 0012710 963 11769 079 2 1 50 yr 176100 132357 133066 133047 133291 0014590 1233 17969 088 2 1 100 yr 214200 132357 133140 1331 35 133386 0014032 1304 21948 088 2 19 Bankfull 1 21000 132228 132575 132471 132607 0006702 457 4591 051 2 9 2 yr 44200 132228 132725 132585 132776 0006706 580 8673 053 2 9 10 yr 102200 132228 132925 132810 132995 0006701 730 19227 055 2 9 50 yr 176100 132228 1331 10 132944 133197 0006710 845 291491 056 2 9 100 yr 214200 132228 133193 132999 133288 0006704 892 336461 056 IHEC RAS PI Revised 1 1 1 1 1 Reach R Sta Profile Q Total V I Left V I Chnl V I R ght Sh LOB She Ch Shear ROB Powe Ch P war Total (Cfs) (ft/) (ff/s) (ft/) (lb /sq ft) (lb/sq ft) (lb /sq ft) (lb/ft s) (lb /ft s) 1 11 B kfull 18100 357 060 214 214 t 11 2y 38700 430 075 324 324 1 11 10 y 901 00 077 592 073 019 121 017 719 383 1 11 50 yr 156000 131 766 1 27 044 187 042 1434 547 1 11 100 yr 1 190200 154 8561 146 058 228 053 1955 676 1 10 Bankfull 181 00 344 053 181 181 1 110 2 yr 38700 447 082 365 365 1 10 toy 90100 070 593 069 016 122 016 725 214 1 10 50 y 156000 096 687 1 12 026 1 51 033 1034 174 1 10 100 yr 190200 089 701 134 023 1 53 042 1070 171 1 9 B kfuff 18100 497 1 18 588 588 1 9 2 yr 38700 692 213 1473 1473 1 9 10 y 901 00 095 1039 140 039 4181 068 4347 3574 1 9 50 yr 156000 150 996 1 59 064 329 069 3274 736 1 9 100 yr 190200 168 1055 1 92 075 359 092 3782 833 1 8 Be kfull 18100 414 087 358 358 1 8 2y 38700 029 502 082 007 1 08 031 545 271 1 8 10 y 901 00 099 811 155 038 135 075 827 3081 1 8 50 y 156000 1 17 708 1981 048 163 1051 1156 334 1 8 100 yr 190200 1 16 754 2131 047 179 1 17 1349 313 1 7 Bankfull 18100 442 094 416 416 1 7 2 yr 38700 031 585 029 008 144 007 844 560 1 7 10 y 90100 106 797 158 049 230 089 18331 660 1 17 50 y 156000 131 941 1 87 066 291 1 12 2738 581 1 7 100 yr 190200 1 51 1051 190 084 356 1 19 3739 696 1 6 Ba kfull 181 00 592 181 1070 1070 1 6 2 yr 38700 064 768 033 028 265 010 2038 1899 1 6 10 yr 90100 156 1022 1 38 102 394 085 4021 2249 1 6 50 yr 156000 215 1227 216 163 511 164 62701 2822 1 6 100 yr 1902 00 222 1200 194 160 459 1 31 5511 1848 1 5 Ba kfull 18100 395 077 302 302 1 15 2 yr 38700 0231 491 027 005 1 03 006 508 478 1 15 10 yr 90100 093 835 093 035 143 035 908 580 1 5 50 y 156000 142 7761 129 066 1 93 057 1497 804 1 5 100 yr 190200 161 8301 144 079 212 066 1759 894 1 4 Bankfull 181 00 455 1 03 467 467 1 4 2 yr 38700 527 1 17 619 619 1 4 10 y 90100 082 693 072 030 172 025 1189 894 1 4 50 y 156000 142 947 125 075 297 062 2814 1766 1 4 100 yr 190200 169 1062 149 101 365 084 3871 2290 1 3 B kTul1 18100 422 081 342 342 1 3 2 yr 38700 009 506 015 106 001 534 526 1 3 10 y 901 00 098 688 050 038 165 009 1133 241 1 3 50 yr 156000 127 730 166 053 169 052 1237 313 1 3 100 yr 190200 130 714 192 053 156 0611 11 11 305 t 12 Bankf ill 18100 531 693 692 1 2 2 yr 38700 053 749 084 024 013 17 05 1261 1 2 10 yr 90100 144 1025 136 106 3762 1235 1 2 50 yr 156000 209 1041 1661 164 M334 3478 1107 1 2 100 yr 1902 00 2 30 1096 1 66 1 89 39 10 11 99 2 1 Be kfull 21000 589 168 989 989 2 1 2 yr 44200 019 659 0 55 004 179 019 1178 1036 2 1 10 yr 102200 056 963 1 46 0 20 330 085 3182 1980 2 1 50 y 176100 1 36 12 33 2 12 0 79 495 154 6099 2862 2 1 100 yr 2142001 168 1304 252 1 07 533 197 6958 3071 2 9 B kfill 210001 457 1 092 421 421 1 1 1 1 1 r� 1 1 1 I 1 1 HEC RAS Pla R vised (Co bn ad) R ch Riv Sta Profile Q Total Vet L ft Val Ch 1 V I R ght Shear LOB Shear Chan Shea ROB Power Cha Powe Total (cfs) (ft/5) (ft/ ) (ft/s) (lb /sq ft) (lb/sq ft) (lb/sq ft) (Ib/ft s) (Ib/ft s) 2 9 2 yr 44200 070 580 015 1 31 761 330 2 9 10 yr 102200 231 730 093 185 1353 708 2 9 50 yr 176100 327 845 158 231 1957 11 48 2 9 100 yr 214200, 3 e3 892 184 251 2238, 13 601 1 t 1 1 1 1 1 I f 1051—CHAD Plan: Plan 01 8/29/2011 11 .045 � 1 1358 Legend 1 356 WS 100 yr 1354 WS 50 yr S 1352 —� o WS 1O yr 1350 WS2yr d w 1348- WS Bankfull 1346 �- Ground 1344- Bank Sta 1342 -200 -100 0 100 200 Station (ft) 1051—CHAD Plan: Plan 01 8/29/2011 10 1 '.045 1 1358 Legend 1356- 1354 WS 100 yr _ 1352 WS 50 yr 0 1350 W�— iO yr 1348 P=0 WS 2 yr w 1346 WS Bankfull 1344 Ground 1342 • Bank Sta 1340 200 -100 0 100 200 Station (ft) 1051—CHAD Plan: Plan 01 8/29/2011 9 1 IF .045 + 1 1350 Legend 1348 WS 100 yr 1346 WS 50 yr — WS 2 1344 + WS 2 yr w 1342 WS Bankfull Ground 1340 IneR 1338 Bak Sta -200 -100 0 100 200 Station (ft) 1051—CHAD Plan: Plan 01 8/29/2011 8 12 .045 — .12 — 1354 Legend 1352 1350 WS�— 1348 WS 50 yr 0 1346 WS 10 yr 1344 WS 2 yr w 1342 WS Bankfull 1340 �- Ground 1338- Bank Sta 1336 -200 150 -100 -50 0 50 100 Station (ft) I 1 1 t 1 t 1 1 1051 CHAD _ Plan: Plan 01 8/29/2011 7 .045— ��.12� 1344 Legend 1342 WS 100 _ ry WS 50 ry 0 1340 WS 10 yr WS2yr 1338 w WS Bankfull 1336 Ground • Bank Sta 1334 -200 -150 -100 -50 0 50 Station (ft) 1051—CHAD Plan: Plan 01 8/29/2011 6 .12 '� .045 - .12 1346 Legend 1344 —� WS 100 yr 1342- --�- WS 50 yr S 1340 o WS 10 yr 1338 + WS2yr w 1336 WS Bankfull 1334- —♦— Ground 1332 Bank Sta 1330 -80 -60 -40 -20 0 20 40 60 80 Station (ft) 1051—CHAD Plan: Plan 01 8/29/2011 5 12 .045 —�� .12 — 1344 Legend 1342 WS 100 1340 WS 50 yr 0 1338 WS 10 yr v 1336 WS 2 yr w 1334 WS Bankfull Ground 1332 • Bank Sta 1330 -100 -80 -60 -40 -20 0 20 40 Station (ft) 1051—CHAD Plan: Plan 01 8/29/2011 4 -- .12 .045 .12 — -� 1344 Legend 1342 WS 100 yr 1340 WS 50 yr 1338 °- WS 10 yr 1336 WS2yr w 1334 WS Bankfull 1332 —� Ground 1330 • Bank Sta 1328 -80 -60 -40 -20 0 20 40 60 Station (ft) 1336 c 1334 w 1332 1330 1326 1326 -100 -50 1051—CHAD Plan: Plan 01 8/29/2011 3 12 3L .045 �Ijk .09 .14— 1345 1340 1335 0 d 1330 w 1325 1320 -100 -50 c 1330 0 > 1328 w 1326 1324 1322 -200 1 1 c 1 0 > 1 d w 1 -50 0 50 100 150 Station (ft) 1051 CHAD Plan: Plan 01 8/29/2011 2 J_ .045 )-i., .14 d 0 50 Station (ft) 1051—CHAD Plan: Plan 01 8/29/2011 1 12 .045 .12 200 100 Legend WS 100 yr WS 50 yr Wes_ WS2yr WS Bankfull ■ Ground • Inert • Bank Sta Legend WS 100 yr WS 50 yr W—S U yr WS2yr WS Bankfull Ground • IneR • Bank Ste Legend WS 100 yr WS 50 yr iO yr — WS2yr WS Bankfull ■ Ground • Inert Bank Ste -150 -100 -50 0 50 100 150 Station (ft) 1051—CHAD Plan: Plan 01 8/29/2011 .9 i .09 )14 .045 -1 Legend • WS 100 yr WS 50 yr W —�- WS2yr WS Bankfull Ground Bank Sta -30 -20 -10 0 Station (ft) T C O O O O N tm C N � � � O O O N O O r O N N 00 r O C � nY � U U C m N 00 _N O C C L C_ Q f0 U I i 0 OO LO I M M O Cl) O Cl) N O N O � r (u) uogenel3 T C O O O O N C C N � � � 1 SADDLE MOUNTAIN CREEK RESTORATION SITE Li 1 1 1 I PROPOSED SADDLE MOUNTAIN HEGRAS t j 1 t i H &H REPORT IWolf Creek Engineenng Septemb 2011 t t IHEC -RAS Plan Revised 1 t � -1 1 1 ri i Reach River Sta Profile Q Total Mm Ch E! W S Elev Cnt W S E G Elev E G Slope Vel Chnl Flow Area Froude # Chi (cfs) (ft) (ft) (ft) (ft) (f ift) (ftfs) (sq ft) 1 11 Bankfull 18100 134180 134409 134445 0011299 477 3793 066 1 11 2 yr 38700 134180 134515 134571 0010037 603 6559 066 1 11 10 yr 90100 134180 134690 134T 87 0008864 803 13102 068 1 11 50 yr 156000 134180 134849 134762 134981 0008401 964 22303 070 1 11 100 yr 190200 134180 134907 134832 135058 0008673 1042 26868 072 1 10 Bankfull 18100 133950 134235 134254 0004571 352 5149 043 1 10 2 yr 38700 133950 134344 134380 0004934 486 8457 048 1 10 10 yr 90100 133950 134514 134587 0005839 705 15412 056 1 10 50 yr 156000 133950 134665 134526 134776 0006443 888 26108 062 1 10 100 yr 190200 133950 134726 134572 134847 0006462 9 45 344 08 063 1 9 Bankfull 18100 133900 134160 134082 134185 0006789 399 4531 052 1 9 2 yr 387 00 133900 134260 1341 75 134306 00072 11 5 45 7562 057 1 9 10 yr 90100 133900 134405. 134327 134497 0008790 794 14257 068 1 9 50 yr 156000 133900 134532 134478 134674 0010082 1011 22666 076 1 9 100 yr 190200 133900 134585 134507 134744 0010255 1084 27905 078 1 8 Bankfull 18100 133690 133951 133976 0006706 398 4551 052 1 8 2 yr 38700 133690 1340 52 134092 0006459 518 9852 054 1 8 10 yr 90100 133690 134208 134264 0005940 665 23497 056 1 8 50 yr 156000 133690 134354 134425 0005566 780 40367 057 1 8 100 yr 190200 133690 134419 134494 0 005368 8 22 51015 057 1 7 Bankfull 18100 133525 133732 133779 0016983 549 3295 079 1 7 2 yr 38700 133525 133825 133798 133901 0016368 699 5695 083 1 7 10 yr 90100 133525 133973 133960 134089 00137231 901 13962 083 1 7 50 yr 156000 133525 134109. 134076 134260 0012574 1062 25028 083, 1 7 100 yr 190200 133525 1341611 134080 134330 0012723 1141 31646 085 1 6 Bankfull 18100 133125 133379 133405 0007533 414 4369 054 1 6 2 yr 38700 133125 133480 133399 133527 0007620 553 7721 059 1 6 10 yr 90100 133125 133633 133552 133722 0008437 781 15098 066 1 6 50 yr 156000 133125 133772 133665 133899 0008825 963 25054 071 1 6 100 yr 190200 133125 133839 133769 133974 0008364 1010 30719 071 1 5 Bankfull 18100 133080 133263 133263 133329 0028252 654 2767 101 1 5 2 yr 38700 133080 133354 133354 133452 0025138 796 4866 101 1 5 10 yr 90100 133080 133507 133507 133651 0017735 986 11261 093 1 5 50 yr 156000 133080 133654 133642 133833 0014581 1130 19397 089 1 5 100 yr 190200 133080 133750 133701 133917 0011176 11 13 25513 081 1 4 Bankfull 18100 132870 133132 133156 0006590 395 4579 051 1 4 2 yr 38700 132870 133235 133280 0006878 5391 7395 056 1 4 10 yr 90100 132870 133388 133486 0008610 8-02F 12581 067 1 4 50 yr 156000 133475 133445 133671 0013815 1144 16068 088 1 4 100 yr 190200 133515 133515 133761 0015792 1286 17869 095 P 1 3 Bankfull 18100 132905 132953 0017726 558 3246 081 1 3 2 yr 38700 132999 133076 0016628 703 55 51 083 1 3 10 yr 901 00 1331 77 1331 29 1332 89 0 011490 8 67 123 52 077 1 3 50 yr 156000 132700 1333 78 133464 0006086 829 34311 —060 1 3 100 yr 190200 132700 1334 71 133541 0004484 783 47019 052 1 2 Bankfull 18100 132419 1327 02 132721 0004723 356 5094 044 1 2 2 yr 387 00 132419 1328 36 132868 0003959 456 8817 044 1 2 10 yr 90100 132419 1330601 1331 13 0003520 604 20091 045 1 2 50 yr — 156000 132419 133276 133344 0003114 705 34222 045 1 2 100 yr 1902 00 r 132419 133362 133439 0003120 757 40651 045 2 1 Bankfull 210001 132357 132613 132667 0 016213 5 89 35 64 077 2 1 2 yr 442001 132357 1327 58 132626 0010687 6591 6788. 0671 t IHEC -RAS Plan Revised (Continued) I t 1 L 1 i] 1 Reach River Sta Profile Q Total Min Ch El W S Elev Cnt W S E G Elev E G Slope Vel Chnl Flow Area Froude # Chi (cfs) (ft) (ft) (ft) (ft) (tuft) (ftts) (sq ft) 2 1 10 yr 102200 132357 132924 132865 133066 0012710 963 11769 079 2 1 50 yr 176100 132357 133066 133047 133291 0014590 1233 17969 088 2 1 100 yr 214200 132357 133140 133135 133386 0014032 1304 21948 088 2 9 Bankfull 21000 132228 132575 132471 1326 07 0006702 457 4591 051 2 9 2 yr 44200 132228 132725 132587 132776 0006706 580 8673 053 2 9 10 yr 102200 132228 132925 132810 132995 0006701 730 19227 055 2 9 50 yr 176100 132228 1331 10 132944 133197 0006710 845 29149 056 2 9 100 yr 214200 132228 133193 132999 133288 0006704 892 336 46 056 i! IHEC RAS Pla Re sed 1 1 t t 1 1 t t 1 1 e Lj t R ch R Ste Profile Q T tal Val Left Vet Chnl V I R ght Shea LOB Shea Ch Sh ar ROB Powe Ch Power Total (cfs) (ft/s) (ft/s) (f 1s) (lb /sq ft) (Ib/sq ft) (lb /sq ft) (lb /ft ) (Ib/ft s) 1 11 B kfull 181 00 477 1 12 533 533 1 11 2 yr 38700 069 603 069 020 154 020 931 778 1 11 10 yr 901 00 146 803 154 059 230 064 1847 1063 1 11 50 y 156000 182 964 183 081 298 082 2873 1097 1 ill 100 yr 190200 202 1042 197 0951 338 092 3523 11 77 1 10 Bankfull 18100 017 352 017 002 057 002 199 191 1 10 2 yr 38700 074 486 074 018 093 018 454 334 1 10 10 yr 90100 148 705 1 36 054 1 70 048 1200 662 1 10 50 yr 156000 210 888 1 11 094 246 036 2188 544 1 10 1100Y 190200 225 945, 124 104 271 042 2560 473 1 9 Be kfull 181 00 399 075 301 301 1 9 2 yr 38700 073 545 074 020 122 020 664 460 1 9 toy 901 00 1 53 794 154 063 225 064 1788 868 1 9 50 y 156000 199 1011 177 097 335 082 3386 1085 1 9 100 yr 190200 204 1084 203 101 374 100 4052 1136 1 8 B kfull 18100 398 075 297 297 1 8 2 yr 38700 052 518 079 015 1 10 029 570 211 1 8 toy 901 00 1 15 665 158 049 1 57 079 1042 327 1 8 50 y 156000 1 30 780 208 058 1 96 117 1528 367 1 8 100 yr 190200 1 32 822 218 059 210 124 1723 343 1 7 B nkfull 18100 549 1 53 840 840 1 17 2 yr 38700 045 699 045 015 218 015 1520 1062 1 7 toy 901 00 138 901 1 74 080 304 113 2742 1060 1 7 50 y 156000 1 62 1062 234 099 381 172 4052 1059 1 7 100 y 1 190200 1 721 1141 199 109 426 136 4858 1003 1 6 Bankfull 18100 414 082 339 339 1 6 2 yr 38700 071 553 069 025 1 26 024 699 440 1 6 10 yr 90100 137 781 147 070 218 077 1701 834 1 6 50 yr 156000 184 963 1 75 1 10 301 101 2901 1029 1 6 100 y 190200 199 1010 202 121 319 125 3226 1119 1 5 B kfull 181 00 654 226 1476 1476 1 5 2 yr 38700 013 796 013 294 2340 2236 1 5 toy 1 90100 1 58 986 182 104 372 1 28 3661 1947 1 5 50 y 1560 00 225 11 30 243 168 4 34 189 4902 2266 1 5 100 yr 190200 237 11 131 248 170 3971 182 4419 1919 1 4 Bankfull 18100 074 291 291 1 4 2 yr 38700 059 060 019 118 019 638 532 1 4 10 y 90100 126 LI 128 062 227 063 1824 1221 1 4 50y 156000 195 190 1 33 437 128 4997 2972 1 4 100 yr 190200 2 25 217 1 71 538 162 6913 3908 1 3 B kfull 181 00 558 1 58 881 881 1 3 2 yr 38700 044 7 03 0 58 015 2201 015 15 47 1373 1 3 10 yr 90100 135 8671 1 79 073 275 073 2386 1307 1 3 50 yr 156000 1 37 829 188 064 219 067 1818 430 1 3 100 yr 190200 1 53 783 211 070 1 87 074 1462 377 1 12 B kfull 18100 Oil 356 008 002 058 206 202 1 12 2 yr 38700 052 456 037 017 080 010 367 298 1 2 10 yr 901 00 090 604 062 037 119 021 718 311 1 2 50 y 156000 1 33 705 084 065 1461 033 1027 406 1 2 100 yr 190200 148 757 079 077 162 030 1228 443 2 1 Bankfull 21000 589 168 989 9891 2 1 2 yr 44200 019 659 055 004 179 019 1178 1036 2 1 10 yr 102200 056 963 146 020 330 085 31182 19 80 2 1 50 yr 176100 136 1233 212 079 4115 1 54 60 99 21162 2 1 100 yr 214200 168 1304 2 52 107 5331 1 97 6958 3071 2 9 B kfull 21000 4 57 0921 421 421 1 IHEC RAS PI R vised (Co 4 ued) t 1 t L 1 t I 1 1 Reach River Ste Profile Q Total Vel Left V I Ch I Vet R ght Shear LOB Shea Cha She ROB Pow Ch Power Total (cfs) (ft/) (ft/) (ft/) (Ib/sq ft) (lb/sq ft) (lb /sq ft) (Ib/ft ) (Ib/ft s) 2 9 2 yr 44200 070 580 015 131 761 330 2 9 10 yr 102200 231 730 093 185 1353 708 2 9 50 yr 176100 327 845 158 231 1957 1148 2 9 100 yr 2142 00 363, 892 1 84 251 2238 1360 1 1051—CHAD Plan: Plan 07 8/31/2011 11 1358 1 _i' .045 � 1 Legend 1356 1354_ m — WS 100 yr 1352 W3 50yr 0 1350 WS 10 yr > 1348 WS 2 yr 1346 WS Bankfull 1344 Ground 1342 Bank Sta 1340 -200 -100 0 100 Station (ft) 200 1051—CHAD Plan: Plan 07 8/31/2011 10 1 I' .045 .1 1358 J 1356 Legend 1354 WS 100 yr 1352- WS 50 yr 1350- WS 10 yr 1348 > ?2 1346 WS2yr w 1344 WS Bankfull 1342 Ground • 1340 Bank Sta 1338 -200 -100 0 100 Station (ft) 200 1051 CHAD Plan: Plan 07 8/31/2011 _ 9 J 1 .045 J � 1 1350 J Legend 1348 WS 100 ry 1346 WS 50 yr c —� WS 10 yr ° 1344- WS 2 yr 1342 WS Bankfull Ground 1340 Ineff • 13381 Bank Ste -200 -100 0 100 Station (ft) 1051 CHAD Plan: Plan 07 8/31/2011 200 _ 8 1354 12 .045 �1,— .12 1352 —� Legend 1350 WS— 1 yr 1348 WS 50 yr 0 1346 WS 10 yr 1344 WS 2 yr w 1342 WS Bankfull 1340 �- Ground 1338 1336 • Bank Sta -200 -150 -100 -50 0 50 Station (ft) 100 1 1 t 1 t t 1 1 H- t 1051—CHAD Plan: Plan 07 8/31/2011 7 12 .045��.12 1344 Legend 1342 WS—• -- _ WS 50 yr 0 1340- yy0 yr > WS2yr m 1338 w WS Bankfull 1336 Ground • Bank Sta 1334 -200 -150 -100 50 0 50 Station (ft) 1051—CHAD Plan: Plan 07 8/31/2011 6 .12 .045 � .12 1346 Legend 1344 ■ WS 100 yr 1342 --k— WS 50 yr S 1340 —� o WS 10 yr 1338 > WS 2 yr w 1336- WS Bankfull 1334 �- Ground 1332 • Bank Sta 1330 -80 -60 -40 -20 0 20 40 60 80 Station (ft) 1051—CHAD Plan: Plan 07 8/31/2011 5 .12 01( .045 1(.12 1344 Legend 1342 �- WS 100 yr 1340 WS 50 yr 0 1338 WS 10 yr 1336 WS 2 yr w 1334 WS Bankfull Ground 1332 • Bank Sta 1330 -100 80 -60 -40 -20 0 20 40 Station (ft) 1051—CHAD Plan: Plan 07 8/31/2011 4 .12 045 .12 1344 Legend 1342 - WS 100 yr 1340- WS 50 yr 1338- WS 10 yr 1336 WS2yr W2 1334 WS Bankfull 1332 Ground 1330 • Bank Sta 1328 80 60 -00 -20 0 20 40 60 Station (ft) 1 1 1 1 f] 1 1 I 1 1 1 1051—CHAD Plan: Plan 07 8/31/2011 3 12 _ .045— .09 _I I' 1342 Legend 1340- WS po 1336- —N— WS 50 yr � 1336 o WS 10 yr i 1334 WS2yr °' w 1332 WS Bankfull 1330 • Ground 1328 • Bank Sta 1326 100 -50 0 50 100 150 200 Station (ft) 1051—CHAD Plan: Plan 07 8/31/2011 2 .14 .045 .14 _I 1345 Legend 1340 WS 100 yr N WS 50 yr c 1335 WS 10 yr- O � _ WS2yr m w 1330 WS Bankfull Ground 1325 • lnefl Bank • Sta 1320 -100 -50 0 50 100 Station (ft) 1051—CHAD Plan: Plan 07 8/31/2011 1 12 .045 -- .12 1336 legend 1334 WS 1-00 yr 1332- 1332 --N-- WS 50 yr 0 \ 1330j! WS tOyr WS 2 yr > 1328 a w WS Bankfull 1326 �- Ground 1324 Ineff 1322 Bank Sta -200 -150 -100 -50 0 50 100 150 Station (ft) 1051—CHAD Plan: Plan 07 8/31/2011 .9 1332 .09 � 045' Legend 1330 WS 100 yr WS 50 yr o 1328 iO yr — a 1326 WS 2 yr WS Bankfull w 1324 Ground • Bank Sta 1322 -50 -40 -30 -20 -10 0 10 Station (ft) T T T C O O O w C l c m O N cu 11:3 >U-) > O O O N O O r O N M co rl- O G Y � a U N C ° °o O ca a cu U O C C t U Q C Q Fo U I LO O O 0 y_ (1) (0'0'0— N 4) (1) N O O LO M O O Cl) M A O M M M M M (u) u01len813 1 1 n 1 1 1 rl 1 1 1 Design Criteria Supporting Documentation 1 1 1 1 1 1 1 1 1 1 Saddle Mountain Creek Reach 1 Morphological Summary Table and Design Criteria Variables Existing Channel Proposed Reach Design Criteria Stream Types F4 /64c 64c 64c Drainage Area mi 448 448 Bankfull Width 216 25 25 Existing Geometry Bankfull Mean Depth 21-23 2 2 Existing Geometry Hydraulic Radius 19-20 2 0 Existing Geometry Width/Depth Ratio 96-1102 11 4 Existing Geometry Bankfull Cross Sectional Area 485-575 576 Existing Geometry Bankfull Discharge cfs 181 181 Note 1 Bankfull Mean Velocity 30-387 3 14 Continuity Equation Bankfull Maximum Depth 24-31 2 7 Existing Geometry Dmax/Dbf Ratio 1 1-12 1 2 Existing Geometry Width of Flood prone Area 305-370 40 50 Entrenchment Ratio 1 3-1 58 16-20 Reference Parameters Pool Width 179-220 250 Pool Width to Riffle Width Ratio 076-094 1 0 Reference Parameters & D Ros en Pool Mean Depth 263-326 2 4 Pool Max Depth 336-544 5 0 Ratio of Pool Max Depth to Average Bankfull Depth 1 19 —1 48 227 Reference Parameters & Max Habitat Pool Cross Sectional Area 47-71 8 732 Run Width 216 250 Run Width to Riffle Width Ratio 092 1 0 Reference Parameters & D Ros en Run Mean Depth 1 97 24 Run Max Depth 28 30 Ratio of Run Max Depth to Average Bankfull Depth 09 1 36 124-20 Reference Parameters Run Cross Sectional Area 425 600 Glide Width 196-246 25 Glide Width to Riffle Width Ratio 0 84 —1 0 1 0 Reference Parameters & D Ros en Glide Mean Depth 24-275 2 4 Glide Max Depth 32-36 3 2 Ratio of Glide Max Depth to Average Bankfull Depth 1 1 —1 24 145 1 24 —1 8 Reference Parameters Glide Cross Sectional Area 539-594 600 Meander Length (Lm) 319 —327 275 305 Ratio of Meander Length to Bankfull Width (Lm/Wbkt) 136-140 110-122 Existing Geometry and Reference Parameters Radius of Curvature Rj 42-119 83 —225 Ratio of Radius of Curvature to Bankfull Width (Rc/Wb,f) 1 79-5 1 332-90 Existing Geometry and Reference Parameters Belt Width blt 78 —162 142 172 Meander Width Ratio (Wbn/Wb,f) 33-69 5 7- 6 9 Existing Geometry and Reference Parameters 1 u I 1 1 I 1 I Variables Existing Channel Proposed Reach Design Criteria Sinuosity (stream length/ valley distance 1 1 1 1 Existing Geometry Valley Sloe 00059 00059 Existing Geometry Average Sloe 000585 00074 Existing Geometry Riffle Sloe 0008-0016 0 009 - 0 027 Ratio of Riffle Slope to Average Slope 1 36-28 122-365 Reference Parameters Pool Slope 0 001 0002-00029 Reference Parameters & D Ros en Ratio of Pool Slope to Average Slope 0115-0137 0 27 - 0 39 Existing Geometry Run Sloe 0007-0025 0 08 Ratio of Run Slope to Average Slope 10-478 10 8 Reference Parameters Glide Sloe 0001-0003 0 075 Ratio of Glide Slope to Average Slope 024-051 10 1 Reference Parameters Riffle length 498 278 48-111 5 Riffle Length to Riffle Width 2 07 —11 5 192-446 Existing Geometry and Reference Parameters Pool length 446-112 60 100 Ratio of pool length to bankfull width 1 85-467 24-40 Existing Geometry and Reference Parameters Pool to Pool Spacing 148 —206 50-111 5 Ratio of P P to Wbf 614-857 2 0 - 4 46 Reference Parameters & Habitat Particle Size Distribution of Reach Bed Material D 16 81 mm D 35 27 7 mm D50 545mm D84 1479mm D 95 242 7 mm D100 Bedrock Particle Size Distribution of Riffle Bed Material D16 504 mm D35 940mm D50 1240mm D84 1876mm D 95 286 4 mm Largest size in pavement 362 mm Particle Size Distribution of Bar Sample D 16 3 25 mm D 35 221 mm D 50 43 6 mm D84 1153mm D95 1447mm Largest size on Bar 158 mm I Notes 1 Four methods were used to develop bankfull discharge estimates These included a) USGS Regional regression equations b) Regional regression equations developed in North Carolina (NCSU and NRCS 2006) c) TR 20 Hydrologic Model and d) Manning s 1 I Equation and field data Based on this analysis it was determined that utilizing the NC regional regression estimates provides a reliable method for estimating bankfull discharge for the proposed project design 2 The existing cross sectional geometry values were compared to those predicted by the updated Bankfull Discharge and Hydraulic Geometry Regional Regressions for the Rural Piedmont Region of North Carolina (NCSU and NRCS 2006) to determine channel cross sectional area (A) based on the drainage area to a given reach The calculated A and W/D ratios from our reference reach database was used to verify bankfull width Wbf = �(Wbkf / dbkf) (Abkf) and bankfull mean depth Dbf = Wbkf / (Wbkf / dbkf) Because each reach of Saddle Mountain Creek had some sections with relatively stable channel dimensions the dimensions of the proposed channel were initially developed utilizing the existing channel plan form profile and cross sectional geometry along this reach as well as information from our reference reach database Bankfull cross sectional area width depth and width /depth ratios were adjusted using information from our reference reach database a sediment entrainment analysis and the output of the Flowsed /Powersed model Based on subsequent discussions with D Rosgen some cross sectional dimension and profile values were adjusted The new values were checked against the reference reach database and the final design values were checked against the output of the Flowsed /Powersed model 1 1 1 d 1 k 1 1 �7 t 1 r 1 Saddle Mountain Creek Reach 2 Morphological Summary Table and Design Criteria Variables Existing Channel Proposed Reach Design Criteria Stream Types 133/1c 133 /1c 133/1c Draina a Area mi 448 448 Bankfull Width 221-409 25 Existing Geometry Bankfull Mean Depth 1 55-262 22 Existing Geometry Hydraulic Radius 14-19 2 0 Existing Geometry Width/Depth Ratio 84-264 11 4 Existing Geometry Bankfull Cross Sectional Area 468-634 576 Existing Geometry Bankfull Discharge cfs 181 181 Note 1 Bankfull Mean Velocity 285-39 3 14 Continuity Equation Bankfull Maximum Depth 222-338 2 7 Existing Geometry Dmax/Dbf Ratio 1 07 —1 6 12 Existing Geometry Width of Flood prone Area 334-699 40 60 Entrenchment Ratio 1 19-25 16-24 Reference Parameters Pool Width 21 3-462 25 0 Pool Width to Riffle Width Ratio 0 77 —1 6 10 Reference Parameters & D Ros en Pool Mean Depth 184-31 2 4 Pool Max Depth 419-43 5 0 Ratio of Pool Max Depth to Average Bankfull Depth 202-208 2 27 Reference Parameters & Max Habitat Pool Cross Sectional Area 58-849 732 Run Width 245 250 Run Width to Riffle Width Ratio 088 1 0 Reference Parameters & D Ros en Run Mean Depth 225 24 Run Max Depth 319 30 Ratio of Run Max Depth to Average Bankfull Depth 1 54 1 36 124-20 Reference Parameters Run Cross Sectional Area 552 600 Glide Width 255 25 Glide Width to Riffle Width Ratio 0 914 10 Reference Parameters & D Ros en Glide Mean Depth 246 24 Glide Max Depth 327 32 Ratio of Glide Max Depth to Average Bankfull Depth 1 58 145 1 24 —1 8 Reference Parameters Glide Cross Sectional Area 627 600 Meander Length (Lm) 306-468 285 295 Ratio of Meander Length to Bankfull Width (Lm/Wbkf) 11 —16 8 114-118 Existing Geometry and Reference Parameters Radius of Curvature Rj 445-124 85-125 Ratio of Radius of Curvature to Bankfull Width (RI/Wb,f) 16-445 3 4 - 5 0 Existing Geometry and Reference Parameters Belt Width blt 664-956 59-63 Meander Width Ratio (Wbn/Wbkf) 24-34 2 36 - 2 52 Existing Geometry and Reference Parameters r I_ LI 1 t u 1 1 1 I] 1 Variables Existing Channel Proposed Reach Design Criteria Sinuosity (stream length/ valley distance 1 14 1 14 Existing Geometry Valley Sloe 00118 00118 Existing Geometry Average Sloe 001039 0 012 Existing Geometry Riffle Sloe 0006-0035 0 0082 - 0 035 Ratio of Riffle Slope to Average Slope 056-338 0 68 - 2 92 Reference Parameters Pool Slope 0002-0006 0 0016 — 0 0033 Reference Parameters & D Ros en Ratio of Pool Slope to Average Slope 0188-0574 0 133 - 0 275 Existing Geometry Run Sloe 0019-0055 0 08 Ratio of Run Slope to Average Slope 1 82-526 667 Reference Parameters Glide Sloe 0005-0011 0 075 Ratio of Glide Slope to Average Slope 0 52 —1 05 625 Reference Parameters Riffle length 195-664 31-857 Riffle Length to Riffle Width 0698-238 1 24 - 3 43 Existing Geometry and Reference Parameters Pool length 355-503 60-1293 Ratio of pool length to bankfull width 1 27 —1 81 24-517 Existing Geometry and Reference Parameters Pool to Pool Spacing 102-132 31-857 Ratio of P P to Wbf 365-474 1 24 - 3 43 Reference Parameters & Habitat Particle Size Distribution of Reach Bed Material D16 72 mm D 35 431 mm D 50 80 6 mm D 84 205 3 mm D95 5120mm D100 Bedrock Particle Size Distribution of Riffle Bed Material D16 504 mm D35 940mm D50 1240mm D84 1876mm D 95 286 4 mm Largest size in pavement 362 mm Particle Size Distribution of Bar Sample D 16 3 25 mm D 35 221 mm D 50 43 6 mm D84 1153mm D95 1447mm Largest size on Bar 158 mm I Notes 1 Four methods were used to develop bankfull discharge estimates These included a) USGS Regional regression equations b) Regional regression equations developed in North Carolina (NCSU and NRCS 2006) c) TR 20 Hydrologic Model and d) Manning s 1 Equation and field data Based on this analysis it was determined that utilizing the NC regional regression estimates provides a reliable method for estimating bankfull discharge for the proposed project design 2 The existing cross sectional geometry values were compared to those predicted by the updated Bankfull Discharge and Hydraulic Geometry Regional Regressions for the Rural Piedmont Region of North Carolina (NCSU and NRCS 2006) to determine channel cross sectional area (A) based on the drainage area to a given reach The calculated A and W/D ratios from our reference reach database was used to verify bankfull width Wbf = 4(Wbkf / dbkf) (Abkf) and bankfull mean depth Dbf = Wbkf / (Wbkf / dbkf) Because each reach of Saddle Mountain Creek had some sections with relatively stable channel dimensions the dimensions of the proposed channel were initially developed utilizing the existing channel plan form profile and cross sectional geometry along this reach as well as information from our reference reach database Bankfull cross sectional area width depth and width /depth ratios were adjusted using information from our reference reach database a sediment entrainment analysis and the output of the Flowsed /Powersed model Based on subsequent discussions with D Rosgen some cross sectional dimension and profile values were adjusted The new values were checked against the reference reach database and the final design values were checked against the output of the Flowsed /Powersed model I z 1 1 I t I J, 1 d 1 I Saddle Mountain Creek Reach 4 Morphological Summary Table and Design Criteria Variables Existing Channel Proposed Reach Design Criteria Stream Types F4 /E4 B4c/E4 E4 Draina a Area mi 45 45 Bankfull Width 200-220 25 Existing Geometry Bankfull Mean Depth 235-273 2 3 Existing Geometry Hydraulic Radius 18-21 2 0 Existing Geometry Width/Depth Ratio 788-9 39 109 Existing Geometry Bankfull Cross Sectional Area 5095-5872 576 Existing Geometry Bankfull Discharge cfs 1816 1816 Note 1 Bankfull Mean Velocity 309-356 3 16 Continuity Equation Bankfull Maximum Depth 272-372 2 8 Existing Geometry Dmax/Dbf Ratio 1 07 —1 47 12 Existing Geometry Width of Flood prone Area 273-5667 41 90 Entrenchment Ratio 129-267 1 6 - 3 6 Reference Parameters Pool Width NA 250 Pool Width to Riffle Width Ratio NA 10 Reference Parameters & D Ros en Pool Mean Depth NA 24 Pool Max Depth NA 50 Ratio of Pool Max Depth to Average Bankfull Depth NA 227 Reference Parameters & Max Habitat Pool Cross Sectional Area NA 732 Run Width 187 250 Run Width to Riffle Width Ratio 088 10 Reference Parameters & D Ros en Run Mean Depth 244 24 Run Max Depth 301 30 Ratio of Run Max Depth to Average Bankfull Depth 1 19 1 36 124-20 Reference Parameters Run Cross Sectional Area 456 600 Glide Width 208 25 Glide Width to Riffle Width Ratio 098 1 0 Reference Parameters & D Ros en Glide Mean Depth 278 24 Glide Max Depth 379 32 Ratio of Glide Max Depth to Average Bankfull Depth 149 145 1 24 —1 8 Reference Parameters Glide Cross Sectional Area 579 600 Meander Length (Lm) 306-468 315-365 Ratio of Meander Length to Bankfull Width (Lm/Wbkt) 144-220 126-146 Existing Geometry and Reference Parameters Radius of Curvature Rj 445-124 60-100 Ratio of Radius of Curvature to Bankfull Width (RI/Wbkt) 2 1 — 5 8 24-40 Existing Geometry and Reference Parameters Belt Width blt 664-956 153 Meander Width Ratio (Wb,t/Wb,f) 3 1 — 4 5 612 Existing Geometry and Reference Parameters 1 I I J Variables Existing Channel Proposed Reach Design Criteria Sinuosity (stream length/ valley distance 107 124 Existing Geometry Valley Sloe 00062 00062 Existing Geometry Average Sloe 00094 0 011 Existing Geometry Riffle Sloe 0007-0016 0 015 - 0 023 Ratio of Riffle Slope to Average Slope 0936-233 1 5 - 2 3 Reference Parameters Pool Slope NA 00029-0003 Reference Parameters & D Ros en Ratio of Pool Slope to Average Slope NA 029-030 Existing Geometry Run Sloe NA 008 Ratio of Run Slope to Average Slope NA 667 Reference Parameters Glide Sloe NA 0 075 Ratio of Glide Slope to Average Slope NA 625 Reference Parameters Riffle length 195-664 31-857 Riffle Length to Riffle Width 0698-238 1 24 - 3 43 Existing Geometry and Reference Parameters Pool length NA 60 —129 3 Ratio of pool length to bankfull width NA 24-517 Existing Geometry and Reference Parameters Pool to Pool Spacing NA 31-857 Ratio of P P to Wbf NA 124-343 Reference Parameters & Habitat Particle Size Distribution of Reach Bed Material D16 44mm D 35 18 2 mm D 50 413 mm D 84 120 4 mm D 95 180 0 mm D100 362 0 mm Particle Size Distribution of Riffle Bed Material D16 504 mm D35 940mm D 50 124 0 mm D84 1876mm D 95 286 4 mm Largest size in pavement 362 mm Particle Size Distribution of Bar Sample D 16 3 25 mm D 35 221 mm D 50 43 6 mm D84 1153mm D95 1447mm Largest size on Bar 158 mm Notes 1 Four methods were used to develop bankfull discharge estimates These included a) USGS Regional regression equations b) Regional regression equations developed in North Carolina (NCSU and NRCS 2006) c) TR 20 Hydrologic Model and d) Manning s I Equation and field data Based on this analysis it was determined that utilizing the NC regional regression estimates provides a reliable method for estimating bankfull discharge for the proposed project design 2 The existing cross sectional geometry values were compared to those predicted by the updated Bankfull Discharge and Hydraulic Geometry Regional Regressions for the Rural Piedmont Region of North Carolina (NCSU and NRCS 2006) to determine channel cross sectional area (A) based on the drainage area to a given reach The calculated A and W/D ratios from our reference reach database was used to verify bankfull width Wbf = 4(Wbkf / dbkf) (Abkf) and bankfull mean depth Dbf = Wbkf / (Wbkf / dbkf) Because each reach of Saddle Mountain Creek had some sections with relatively stable channel dimensions the dimensions of the proposed channel were initially developed utilizing the existing channel plan form profile and cross sectional geometry along this reach as well L as information from our reference reach database Bankfull cross sectional area width depth and width /depth ratios were adjusted using information from our reference reach database a sediment entrainment analysis and the output of the Flowsed /Powersed model Based on subsequent discussions with D Rosgen some cross sectional dimension and profile values were adjusted The new values were checked against the reference reach database and the final design values were checked against the output of the Flowsed /Powersed model t I �I