Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
SW3200102_Sealed Calcs_1/17/2020
EROSION CONTROL AND STORMWATER MANAGEMENT CALCULATIONS For HEILIG ROAD BUILDING EXPANSION GRANITE QUARRY, NORTH CAROLINA Prepared For: Synergy Resources Attention: Mr. Roger Cook Prepared By: Amicus Partners, PLLC 7140 Weddington Road Ste 140 Concord, North Carolina 28027 Firm License Number: C-1191 sll+SEAL - � � r: • 032006 _ f'.4�Gl�i�'ti� �i�Zl1S R. �f Original Submittal October 2018 Amicus Partners Project No: 17-18-092 SKIMMER BASIN CALCULATIONS mc Project No: 17-18-092 Sheet No: of Date: 10/23/2019 Calcs Performed By: MB Calcs Checked By: NRP Project Name: Heilig Road Expansion vnicus Partners, PLLC Subject: Skimmer Sediment Basins OBJECTIVE: Design temporary sediment control measures to contain 10-year peak runoff. The sediment control measures shall be designed per the North Carolina Erosion and Sediment Control Design Manual. THEORY/DESIGN CONSIDERATIONS: Design skimmer sediment traps that will be used during each phase of the proposed building expansion. For Phase I, evaluate the exiting basin to the southeast of the proposed expansion. For Phase II, evaluate the use of the proposed sand filter BMP prior to conversion. REFERENCES: 1. North Carolina Erosion and Sediment Control Manual, 2017. 2. "Proposed Phase I and Phase II Erosion Control Plan; Heilig Road Building Expansion," by Amicus Partners, PLLC, 10/23/2018. TERMS: Qio = 10-year peak flow, (ft3/s) QP = minimum flow through principal spillway, (ft3/s) Qv = minimum flow through emergency spillway, (ft3/s) cfs = cubic feet per second C = runoff coefficient i = rainfall intensity, (in/hr) A = drainage area, (acres) GIVEN/REQUIREMENTS: Minimum design storm = 10-year CALCULATIONS FOR EXISTING BASIN (PHASE I) 1. Basin Dimensions Exterior embankment side slope = 2:1 > 2:1 therefore ok. Interior embankment side slope =3:1 > 2:1 therefore ok. Length to width ratio = 2:1 therefore ok. Spillway side slope = 4:1 Top width of embankment = 8 ft therefore ok. �. SEAL • 032000 ' �• 4 rd•�3• Lal`� [Ref 1 ] [Ref: 3] [Ref: 2] [Ref: 1 ] [Ref: 1 ] 2. Determine peak flow for basin drainage area - Use rational method to determine peak flow based on conservatism and drainage area being less than 200 acres [Ref: 1] a. Determine time of concentration - tc = 5 minutes - conservative assumption Project No: 17-18-092 Sheet No: of Date: 10/23/2018 Calcs Performed By: MB Calcs Checked By: NRP Project Name: HeiIig Road Expansion Amicus Partners, PLLC Subject: Skimmer Sediment Basins b. Determine rainfall intensity based on t, - i = 7.26 inches/hour c. Determine runoff coefficient, C - Total drainage area = 2.46 acres - Weighted runoff coefficient, C = 0.75 d. Determine 10-year peak flow Q, 0 = CiA Q,0 = (0.75)(7.26in / hr)(2.46acres)=13.40cfs 3. Determine Basin Volume Volume for Skimmer Sediment Basin SB-1 [Ref 1, Table 8.03.c] [Ref: 1, Table 8.03b] Elevation (ft) Ref: 2] Area (ft2) Ref: 21 Height (ft) Volume (ft3) Cumulative 802 4,613 1 4,255 801 3,897 1 7,823 800 3,239 1 10,761 799 2,636 � 1 13,125 798 2,091 a. Total basin volume to principle spillway = 13,125 ft3 b. Determine required basin volume Minimum required basin volume = 1,800 ft3/acre [Ref: 1] Total volume required = (1,800 ft3/acre)(2.46 acres) = 4,428 ft3 - 4,428 ft3 < 13,125 ft3 therefore ok. c. Determine minimum surface area of skimmer sediment trap based on drainage area - Minimum surface area = (325 sq. ft.) x (Qio) [Ref: 1] - (325 sq. ft.) x (13.40 cfs) = 4,355 sq. ft. - 4,613sq. ft. > 4,355 sq. ft. therefore ok. (802 at emergency spillway) Amicus Partners, PLLC Project No: 17-18-092 Sheet No: of Date: 10/23/2018 Calcs Performed By: MB Calcs Checked By: NRP Project Name: Heilig Road Expansion Subject: Skimmer Sediment Basins 4. Check emergency spillway a. Determine required capacity for emergency spillway - Qe = Qio = 13.40 cfs [Ref 1] - Elevation of emergency spillway = 802.0 ft - Length of spillway = 15 ft [Ref: 2] - Depth of emergency spillway = 2.0 ft - Stage = 0.83 ft < 1.0 ft therefore ok. [Ref: 1, Table 8.07c] 5. Design Skimmer for required water storage volume a. Required water storage volume = 4,428 ft3 b. Desired dewatering time = 2 days c. A 2.0-inch skimmer is required [Ref 3] d. A 0.8-inch orifice radius is required [Ref: 3] e. A 1.6-inch orifice diameter is required CALCULATIONS FOR SKIMMER SEDIMENT BASIN SB-2 (PHASE 11) 1. Basin Dimensions Exterior embankment side slope = 3:1 > 2:1 therefore ok. [Ref: 2] Interior embankment side slope =3:1 > 2:1 therefore ok. [Ref: 2] Length to width ratio = 2:1 therefore ok. [Ref: 1] Spillway side slope = 4:1 Top width of embankment = 8 ft therefore ok. [Ref: 1 ] 2. Determine peak flow for basin drainage area - Use rational method to determine peak flow based on conservatism and drainage area being less than 200 acres [Ref: 1] a. Determine time of concentration - tc = 5 minutes - conservative assumption b. Determine rainfall intensity based on t, - i = 7.26 inches/hour c. Determine runoff coefficient, C - Total drainage area = 3.08 acres - Weighted runoff coefficient, C = 0.75 o Heavy Industrial Assumed d. Determine 10-year peak flow Q,o = DA Q, 0 = (0.66)(7.26in / hr)(3.08acres)=14.76cfs [Ref: 1, Table 8.03.c] [Ref: 1, Table 8.03b] Project No: 17-19-092 Sheet No: of Date: 10/23/2018 Calcs Performed By: MB Calcs Checked By: NRP Project Name: Heilig Road Expansion Amicus Partners, PLLc Subject: Skimmer Sediment Basins 3. Determine Basin Volume Volume for Skimmer Sediment Basin S13-2 Elevation (ft) [Ref: 2] Area (ft') [Ref: 2] Height (ft) Volume (ft) 812 1,828 1 2,332 813 2,837 1 5,702 814 3,903 1 10,071 815 4,835 a. Total basin volume to principle spillway = 10,071 ft3 b. Determine required basin volume - Minimum required basin volume = 1,800 ft3/acre [Ref: 1] Total volume required = (1,800 ft3/acre)(3.08 acres) = 5,544 ft3 - 5,544 ft3 < 10,071 ft3 therefore ok. c. Determine minimum surface area of skimmer sediment trap based on drainage area - Minimum surface area = (325 sq. ft.) x (Qlo) [Ref: 1] - (325 sq. ft.) x (14.76 cfs) = 4,797 sq. ft. - 4,797 sq. ft. < 4,835 sq. ft. therefore ok. (815 at emergency spillway) 4. Check emergency spillway a. Determine required capacity for emergency spillway - Qe = Qio = 14.76 cfs [Ref 1] - Elevation of emergency spillway = 815.0 ft - Length of spillway = 15 ft [Ref: 2] - Depth of emergency spillway = 2.0 ft - Stage = 0.83 ft < 1.0 ft therefore ok. [Ref: 1, Table 8.07c] 5. Design Skimmer for required water storage volume a. Required water storage volume = 5,544 ft3 b. Desired dewatering time = 2 days c. A 2.0-inch skimmer is required [Ref: 3] d. A 0.9-inch orifice radius is required [Ref: 3] e. A 1.8-inch orifice diameter is required 0 Table 8.03b Land Use C Land Use C Value of Runoff Coefficient (C) for Rational Formula Business: Lawns: Downtown areas 0.70-0.95 Sandy soil, flat, 2% 0.05-0.10 Neighborhood areas 0.50-0.70 Sandy soil, ave., 0.10-0.15 2-7% Residential: Sandy soil, steep, 0.15-0.20 Single-family areas 0.30-0.50 7% Multi units, detached 0.40-0.60 Heavy soil, flat, 2% 0.13-0.17 Multi units, Attached 0.60-0.75 Heavy soil, ave., 0.18-0.22 Suburban 0.25-0.40 2-7% Industrial: Heavy soil, steep, Light areas 0.50-0.80 7% .a Heavy areas 0.60-0.90 Agricultural land: Parks, cemeteries 0.10-0.25 Bare packed soil Smooth C-.3M.60 Playgrounds 0.20-0.35 Rough 0.20-0.50 Cultivated rows Railroad yard areas 0.20-0.40 Heavy soil no crop 0.30-0.60 Heavy soil with Unimproved areas 0.10-0.30 crop 0.20-0.50 Streets: Sandy soil no crop 0.20-0.40 Asphalt 0.70-0.95 Sandy soil with Concrete 0.80-0195 crop 0.10-0.25 Brick 0.70-0.85 Pasture Heavy soil 0.15-0.45 Drives and walks 0.75-0.85 Sandy soil 0.05-0.25 Woodlands 0.05-0.25 Roofs 0.75-0.85 NOTE: The designer must use judgement to select the appropriate C value within the range for the appropriate land use. Generally, larger areas with permeable soils, flat slopes, and dense vegetation should have lowest C values. Smaller areas with slowly permeable soils, steep slopes, and sparse vegetation should be assigned highest C values. Source: American Society of Civil Engineers 8.03.6 Rev. 6/Q6 Table 8.83c Intensity Duration Frequency For use with Rational Method** Murphy,North Carolina 35.0961 N. 84.0239W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 4.93 3.94 3.30 2.28 1.43 0.89 0.62 0.38 0.24 0.15 10 6.78 5.42 4.57 3.31 2.16 1.29 0.92 0.55 0.34 0.21 25 7.90 6.29 5.31 3.94 2.62 1.57 1.13 0.68 0.41 0.25 100 9.62 7.64 6.44 4.93 3.40 2.06 1.50 0.90 0.53 0.33 Asheville, North Carolina 35.4358N, 82.5392W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 5.21 4.16 3.46 2.41 1.51 0.89 0.63 0.38 0.24 0.14 10 7.06 5.65 4.76 3.45 2.25 1.30 0.91 0.55 0.34 0.20 25 8.09 6.44 5.45 4.03 2.69 1.56 1.10 0.66 0.40 0.24 100 9.68 7.69 6.48 4.96 3.42 2.00 1.43 0.86 0.50 0.30 Boone, North Carolina 36,2167N, 81.6667W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 5.71 4.57 3.83 2.64 1.66 1.00 0.72 0.48 0.31 0.18 10 7.50 6.00 5.06 3.67 2.39 1.46 1.06 0.69 0.44 0.28 25 8.59 6.85 5.78 4.28 2.85 1.77 1.29 0.83 0.52 0.34 100 10.38 8.25 6.95 5.32 3.67 2.35 1.72 1.08 0.65 0.44 Charlotte North Carolina 35.2333N 80.85W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 5.68 4.54 3.80 2.63 1.65 0.96 0.68 0.41 0.24 0.14 10 7.26 5.80 4.89 3.55 2.31 1.36 0.98 0.59 0.35 0.20 25 8.02 6.38 5.40 4.00 2.66 1.59 1.15 0.70 0.42 0.24 100 9.00 7.15 6.03 4.62 3.18 1.93 1.43 0.87 0.53 0.30 Greensboro, North Carolina 36.975N. 79.9436W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 5.46 4.36 3.66 2.52 1.58 0.93 0.66 0.40 0.23 0.14 10 6.85 5.48 4.62 3.35 2.18 1.30 0.92 0.56 0.33 0.20 25 7.39 5.89 4.98 3.69 2.46 1.49 1.06 0.65 0.39 0.23 100 7.93 6.30 5.31 4.07 2.80 1.75 1.24 0.78 0.48 0.29 * ART is the Average Return Interval. ** Intensity Duration Frequency table is measured in inches per hour. 8.03.9 0 Table 8.07c Design Table for Vegetated Spillways Excavated in Erosion Resistant Soils (side slopes-3 horizontalA vertical) Discharge Q CFS Slope Range Bottom Width Feet Stage Feet Minimum Percent Maximum Percent 15 3.3 12.2 8 .83 3.5 18.2 12 .69 20 3.1 8.9 8 .97 3.2 13.0 12 .81 3.3 17.3 16 .70 25 2.9 7.1 8 1.09 3.2 9.9 12 .91 3.3 13.2 16 .79 3.3 17.2 20 .70 30 2.9 6.0 8 1.20 3.0 8.2 12 1.01 3.0 10.7 16 .88 3.3 13.8 20 .78 35 2.8 5.1 8 1.30 2.9 6.9 12 1.10 3.1 9.0 16 .94 3.1 11.3 20 .85 3.2 14.1 24 .77 40 2.7 4.5 8 1.40 2.9 6.0 12 1.18 2.9 7.6 16 1.03 3.1 9.7 20 .91 3.1 11.9 24 .83 45 2.6 4.1 8 1.49 2.8 5.3 12 1.25 2.9 6.7 16 1.09 3.0 8.4 20 .98 3.0 10.4 24 .89 50 2.7 3.7 8 1.57 2.8 4.7 12 1.33 2.8 6.0 16 1.16 2.9 7.3 20 1.03 3.1 9.0 24 .94 60 2.6 3.1 8 1.73 2.7 3.9 12 1.47 2.7 4.8 16 1.28 2.9 5.9 20 1.15 2.9 7.3 24 1.05 3.0 8.6 28 .97 70 2.5 2.8 8 1.88 2.6 3.3 12 1.60 2.6 4.1 16 1.40 2.7 5.0 20 1.26 2.8 6.1 24 1.15 2.9 7.0 28 1.05 80 2.5 2.9 12 1.72 2.6 3.6 16 1.51 2.7 4.3 20 1.35 Discharge Q CFS Slope Range Bottom Width Feet Stage Feet Minimum Percent Maximum Percent 80 2.8 5.2 24 1.24 2.8 5.9 28 1.14 2.9 7.0 32 1.06 90 2.5 2.6 12 1.84 2.5 3.1 16 1.61 2.6 3.8 20 1.45 2.7 4.5 24 1.32 2.8 5.3 28 1.22 2.8 6.1 32 1.14 100 2.5 2.8 16 1.71 2.6 3.3 20 1.54 2.6 4.0 24 1.41 2.7 4.8 28 1.30 2.7 5.3 32 1.21 2.8 6.1 36 1.13 120 2.5 2.8 20 1.71 2.6 3.2 24 1.56 2.7 3.8 28 1.44 2.7 4.2 32 1.34 2.7 4.8 36 1.26 140 2.5 2.7 24 1.71 2.5 3.2 28 1.58 2.6 3.6 32 1.47 2.6 4.0 36 1.38 2.7 4.5 40 1.30 160 2.5 2.7 28 1.70 2.5 3.1 32 1.58 2.6 3.4 36 1.49 2.6 3.8 40 1.40 2.7 4.3 44 1.33 180 2.4 2.7 32 1.72 2.4 3.0 36 1.60 2.5 3.4 40 1.51 2.6 3.7 44 1.43 200 2.5 2.7 36 1.70 2.5 2.9 40 1.60 2.5 3.3 44 1.52 2.6 3.6 48 1.45 220 2.4 2.6 40 1.70 2.5 2.9 44 1.61 2.5 3.2 48 1.53 240 2.5 2.6 44 1.70 2.5 2.9 48 1.62 2.6 3.2 52 1.54 260 2.4 2.6 48 1.70 2.5 2.9 52 1.62 280 2.4 2.6 52 1.70 300 2.5 2.6 56 1.69 Example of Use Given: Discharge, Q = 87 c.f.s. Spillway slope, Exit section (from profile) = 4% Find: Bottom width and Stage in Spillway Procedure: Enter table from left at 90 c.f.s. Note that Spillway slope (4%) falls within slope ranges corresponding to bottom widths of 24, 28, and 32 ft. Use bottom width, 32 ft, to minimize velocity. State in Spillway will be 1.14 ft. Note: Computations based on: Roughness coefficient, n = 0.40. Maximum velocity 5.50 ft. per sec. 8.07.8 Rev. 5/13 Calculate Skimmer Size Basin Volume in Cubic Feet 4.428 Cu.Ft Skimmer Size 2.0 Inch Days to Drain* 2 Days Orifice Radius 0.8 Inch[es] Orifice Diameter 1.6 Inch[es] 'In NC assume 3 days to drain Estimate Volume of Basin Length width Top of water surface in feet Feet VOLUME 0 Cu. Ft. Bottom dimensions in feet Feet Depth in feet Feet Calculate Skimmer Size Basin Volume in Cubic Feet 5,544 Cu.Ft Skimmer Size 2.0 Inch Days to Drain* 2 Days Orifice Radius 0.9 Inch[es] Orifice Diameter 1.8 Inch[es] In NC assume 3 days to drain Estimate Volume of Basin Length width Top of water surface in feet Feet VOLUME 0 Cu. Ft. Bottom dimensions in feet Feet Depth in feet Feet PIPE HYDRA ULICS AND CR4 TE CAPACITY Project No: 17-18-092 Sheet No: 1 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Amicus Partners, PLLc Subject: Pipe Hydraulics and Grate Ca acit OBJECTIVE: Design a series of storm drainage pipes to adequately convey runoff during and after construction. Verify the grate capacity of all catch basins and drop inlets. REFERENCES: 1. North Carolina Erosion and Sediment Control Manual, 2018 2. "Stormwater Management Plan," by Amicus Partners PLLC, 10/23/2018_ 3. FHWA Urban Drainage Design Program, HY — 22. 4. "Water Resources Engineering," by Mays, Larry W., 2001. 5. NCDOT Roadway Standards TERMS: Qio = 10-year peak flow, (ft3/s) Qi = inlet capacity, (ft3/s) C = runoff coefficient Co = orifice coefficient d = depth of water ponded over grate, (ft) g = acceleration due to gravity, (ft/s2) i = rainfall intensity, (in/hr) A = drainage area, (acres) a = clear opening area of a grate, (ft) t, = time of concentration, (min) GIVEN/REQUIREMENTS: Minimum design storm = 10-year �— 4I- SEAL • 032006 = .�G' •. GILL r� [Ref: 1 ] Am:cus Partners, PLLC CALCULATIONS: Project No: 17-18-092 Sheet No: 2 Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Subject: Pipe Hydraulics and Grate Capacity 1. Determine grate capacity for catch basins and drop inlets a. Determine maximum inflow for 10-yr storm for drop inlets and catch basins Catch Total Drainage 10-yr Rainfall Weighted Runoff 10-yr Basin/ Area (Acres), A Intensity, i, (in/hr) Coefficient, C Flow, Qio Inlet [Ref 2] [Ref 1, [Ref: 1, (cfs) Table 8.03.10]a Table 8.03a DI1 0.56 7.26 0.30 1.22 1312 0.54 7.26 0.75 2.94 D14 0.44 7.26 0.90 2.87 Conservative estimate based on minimum time of concentration = 5 min. b. Determine grate capacity for inlets - Since inlets are in sag locations, assume orifice control and 50% clogging by debris. The maximum ponding depth will be evaluated as 0.5 foot. - Q; = CoA(2gd)05 [Ref: 4, Eq. 16.1.33] - Opening ratio = 0.46 [Ref: 5, NCDOT 840.03] - Co = 0.67 [Ref 4] - Grate capacity for aforementioned structures 0 O;= (0.67) [(0.46) x (6sq.ft)] [(2) x (32.2 fIS2)x(0.5ft)]O5 =10.49 ft3 IS (50%) Q; = (0.50) x (10.49 ft3 Is) = 5.25 ft3 Is o The grate capacity far exceeds the calculated ten-year flow Amicus Partners, PLLC Project No: 17-18-092 Sheet No: 3 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Subject: Pipe Hydraulics and Grate Capacity 2. Determine pipe sizes for pipes PI — P8 [Ref: 3 ] Drain Pipe Contributing Drainage areas [Ref 2] Flow, Q (cfs) P 1 DI1 1.22 EX. P2 DI1, EX. P2 2.88 P3 DI I, EX. P2, D12 5.82 P4 DI I, EX. P2, D12 5.82 P5 DI1, EX. P2, D12, SF 1 6.31 EX. P6 DI I, EX. P2, D12, SF1, TD2 14.04 P7 D14 2.87 P8 D14 2.87 Drain Pipe Flow, Q (cfs) Slope, S (ft/ft) [Ref 2] Manning's Coefficient, C Required Diameter (in) [Ref: 3] Actual Diameter (in) Velocity (ft/s)a [Ref: 3] P1 1.22 0.030 0.012 15 15 5.40 EX. P2 2.88 0.005 0.012 24 24 3.48 P3 5.82 0.007 0.012 24 24 4.78 P4 5.82 0.007 0.012 24 24 4.78 P5 6.31 0.013 0.012 24 24 6.12 EX. P6 14.04 0.006 0.012 30 30 5.64 P7 2.87 0.010 0.012 15 15 4.59 P8 2.87 0.048 0.012 15 15 8.16 Hydraulic Analysis Report Project Data Project Title: Designer: Project Date: Wednesday, October 24, 2018 Project Units: U.S. Customary Units Notes: Channel Analysis: Pipe P1 Notes: Input Parameters Channel Type: Circular Pipe Diameter: 1.2500 ft Longitudinal Slope: 0.0300 ft/ft Manning's n: 0.0150 Flow: 1.2200 cfs Result Parameters Depth: 0.2994 ft Area of Flow: 0.2259 ft^2 Wetted Perimeter: 1.2786 ft Hydraulic Radius: 0.1766 ft Average Velocity: 5.4018 ft/s Top Width: 1.0670 ft Froude Number: 2.0691 Critical Depth: 0.4355 ft Critical Velocity: 3.2073 ft/s Critical Slope: 0.0070 ft/ft Critical Top Width: 1.19 ft Calculated Max Shear Stress: 0.5605 Ib/ft^2 Calculated Avg Shear Stress: 0.3307 Ib/ft^2 Channel Analysis: Ex. Pipe P2 Notes: Input Parameters Channel Type: Circular Pipe Diameter: 2.0000 ft Longitudinal Slope: 0.0050 ft/ft Manning's n: 0.0150 Flow: 2.8800 cfs Result Parameters Depth: 0.6186 ft Area of Flow: 0.8269 ft^2 Wetted Perimeter: 2.3590 ft Hydraulic Radius: 0.3505 ft Average Velocity: 3.4829 ft/s Top Width: 1.8488 ft Froude Number: 0.9178 Critical Depth: 0.5918 ft Critical Velocity: 3.7034 ft/s Critical Slope: 0.0059 ft/ft Critical Top Width: 1.83 ft Calculated Max Shear Stress: 0.1930 Ib/ft^2 Calculated Avg Shear Stress: 0.1094 Ib/ft^2 Channel Analysis: Pipe P3 Notes: Input Parameters Channel Type: Circular Pipe Diameter: 2.0000 ft Longitudinal Slope: 0.0070 ft/ft Manning's n: 0.0150 Flow: 5.8200 cfs Result Parameters Depth: 0.8229 ft Area of Flow: 1.2185 ft^2 Wetted Perimeter: 2.7855 ft Hydraulic Radius: 0.4374 ft Average Velocity: 4.7765 ft/s Top Width: 1.9684 ft Froude Number: 1.0699 Critical Depth: 0.8525 ft Critical Velocity: 4.5577 ft/s Critical Slope: 0.0062 ft/ft Critical Top Width: 1.98 ft Calculated Max Shear Stress: 0.3594 Ib/ft^2 Calculated Avg Shear Stress: 0.1911 Ib/ft^2 Channel Analysis: Pipe P4 Notes: Input Parameters Channel Type: Circular Pipe Diameter: 2.0000 ft Longitudinal Slope: 0.0070 ft/ft Manning's n: 0.0150 Flow: 5.8200 cfs Result Parameters Depth: 0.8229 ft Area of Flow: 1.2185 ft^2 Wetted Perimeter: 2.7855 ft Hydraulic Radius: 0.4374 ft Average Velocity: 4.7765 ft/s Top Width: 1.9684 ft Froude Number: 1.0699 Critical Depth: 0.8525 ft Critical Velocity: 4.5577 ft/s Critical Slope: 0.0062 ft/ft Critical Top Width: 1.98 ft Calculated Max Shear Stress: 0.3594 Ib/ft^2 Calculated Avg Shear Stress: 0.1911 Ib/ft^2 Channel Analysis: Pipe P5 Notes: Input Parameters Channel Type: Circular Pipe Diameter: 2.0000 ft Longitudinal Slope: 0.0130 ft/ft Manning's n: 0.0150 Flow: 6.3100 cfs Result Parameters Depth: 0.7269 ft Area of Flow: 1.0315 ft^2 Wetted Perimeter: 2.5884 ft Hydraulic Radius: 0.3985 ft Average Velocity: 6.1171 ft/s Top Width: 1.9240 ft Froude Number: 1.4722 Critical Depth: 0.8892 ft Critical Velocity: 4.6756 ft/s Critical Slope: 0.0062 ft/ft Critical Top Width: 1.99 ft Calculated Max Shear Stress: 0.5897 lb/ft^2 Calculated Avg Shear Stress: 0.3233 Ib/ft"2 Channel Analysis: Pipe P6 Notes: Input Parameters Channel Type: Circular Pipe Diameter: 2.5000 ft Longitudinal Slope: 0.0060 ft/ft Manning's n: 0.0150 Flow: 14.0400 cfs Result Parameters Depth: 1.2646 ft Area of Flow: 2.4908 ft^2 Wetted Perimeter: 3.9561 ft Hydraulic Radius: 0.6296 ft Average Velocity: 5.6368 ft/s Top Width: 2.4998 ft Froude Number: 0.9952 Critical Depth: 1.2610 ft Critical Velocity: 5.6571 ft/s Critical Slope: 0.0061 ft/ft Critical Top Width: 2.50 ft Calculated Max Shear Stress: 0.4735 Ib/ft"2 Calculated Avg Shear Stress: 0.2357 Ib/ft^2 Channel Analysis: Pipe P7 Notes: Input Parameters Channel Type: Circular Pipe Diameter: 1.2500 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0150 Flow: 2.8700 cfs Result Parameters Depth: 0.6343 ft Area of Flow: 0.6252 ft^2 Wetted Perimeter: 1.9820 ft Hydraulic Radius: 0.3154 ft Average Velocity: 4.5907 ft/s Top Width: 1.2499 ft Froude Number: 1.1439 Critical Depth: 0.6805 ft Critical Velocity: 4.2025 ft/s Critical Slope: 0.0079 ft/ft Critical Top Width: 1.25 ft Calculated Max Shear Stress: 0.3958 Ib/ft^2 Calculated Avg Shear Stress: 0.1968 Ib/ft^2 Channel Analysis: Pipe P8 Notes: Input Parameters Channel Type: Circular Pipe Diameter: 1.2500 ft Longitudinal Slope: 0.0480 ft/ft Manning's n: 0.0150 Flow: 2.8700 cfs Result Parameters Depth: 0.4114 ft Area of Flow: 0.3519 ft^2 Wetted Perimeter: 1.5275 ft Hydraulic Radius: 0.2304 ft Average Velocity: 8.1563 ft/s Top Width: 1.1747 ft Froude Number: 2.6263 Critical Depth: 0.6805 ft Critical Velocity: 4.2025 ft/s Critical Slope: 0.0079 ft/ft Critical Top Wdth: 1.25 ft Calculated Max Shear Stress: 1.2322 Ib/ft^2 Calculated Avg Shear Stress: 0.6900 Ib/ft^2 OPEN CHANNEL HYDRA UL ICS Project No: 17-18-092 Sheet No: 1 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion °uS Partners, PLLC Subject: Open Channel Hydraulics _ OBJECTIVE: Design ditchline(s) to adequately convey runoff from various drainage basins. REFERENCES: 1. NCDEQ Erosion Control Manual, 2017. 2. "Storm Water Management Plan," by Amicus Partners, PLLC, 10/23/2018. 3. Erosion Control Materials Design Software, Ver. 5.0, by North American Green. 4. "Pipe Hydraulics and Grate Capacity," by Amicus Partners, PLLC, 10/23/2018. TERMS: Qio = 10-year peak flow, (ft3/s) Q; = inlet capacity, (ft3/s) C = runoff coefficient-- i = rainfall intensity, (in/hr) �� o'. CSSr ' •?�'� 4y� `�• A = drainage area, (acres) = cs-� 4 SEAL f tc = time of concentration' (min) . 032006 q GIVEN/REQUIREMENTS: `��' 0ry ��`:; � �,C,. GfPd�. Minimum design storm = 10-year %�� �, ; p�`' [Ref 1 ] CHANNEL TD1: a. Determine time of concentration - tc = 5 minutes - conservative assumption b. Determine rainfall intensity based on tc. [Ref: 1, Table 8.03.c] - i = 7.26 inches/hour c. Determine runoff coefficient, C - Total drainage area = 0.56 acres - Weighted runoff coefficient, C = 0.30 [Ref 1, Table 8.03b] d. Determine 10-year peak flow Q10 = CiA Q,o = (0.30)(7.26in / hr)(0.56acres)=1.22cfs See attached print outs for velocity and safety factor for shear stress 'owners, PLLc CHANNEL TD2: Project No: 17-18-092 Sheet No: 2 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Subject: Open Channel Hydraulics a. Determine time of concentration - tc = 5 minutes - conservative assumption b. Determine rainfall intensity based on tr. i = 7.26 inches/hour c. Total flow = 14.04 cfs [Ref: 1, Table 8.03.c] See attached print outs for velocity and safety factor for shear stress [Ref: 4] Table 8.03c Intensity Duration Frequency For use with Rational Method** Murphy. North Carolina 35.0961 N. 84.0239W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 4.93 3.94 3.30 2.28 1.43 0.89 0.62 0.38 0.24 0.15 10 6.78 5.42 4.57 3.31 2.16 1.29 0.92 0.55 0.34 0.21 25 7.90 6.29 5.31 3.94 2.62 1.57 1.13 0.68 0.41 0.25 100 9.62 7.64 6.44 4.93 3.40 2.06 1.50 0.90 0.53 0.33 Asheville North Carolina 35.4358N 82.5392W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 5.21 4.16 3.46 2.41 1.51 0.89 0.63 0.38 0.24 0.14 10 7.06 5.65 4.76 3.45 2.25 1.30 0.91 0.55 0.34 0.20 25 8.09 6.44 5.45 4.03 2.69 1.56 1.10 0.66 0.40 0.24 100 9.68 7.69 6.48 4.96 3.42 2.00 1.43 0.86 0.50 0.30 Boone, North Carolina 36.2167N, 81.6667W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 5.71 4.57 3.83 2.64 1.66 1.00 0.72 0.48 0.31 0.18 10 7.50 6.00 5.06 3.67 2.39 1.46 1.06 0.69 0.44 0.28 25 8.59 6.85 5.78 4.28 2.85 1.77 1.29 0.83 0.52 0.34 100 10.38 8.25 6.95 5.32 3.67 2.35 1.72 1.08 0.65 0.44 Charlotte, North Carolina, 35.2333N, 80.85W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 5.68 4.54 3.80 2.63 1.65 0.96 0.68 0.41 0.24 0.14 10 7.2 5.80 4.89 3.55 2.31 1.36 0.98 0.59 0.35 0.20 25 8.02 6.38 5.40 4.00 2.66 1.59 1.15 0.70 0.42 0.24 100 9.00 7.15 6.03 4.62 3.18 1.93 1.43 0.87 0.53 0.30 Greensboro. North Carolina 36.975N, 79.9436W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 5.46 4.36 3.66 2.52 1.58 0.93 0.66 0.40 0.23 0.14 10 6.85 5.48 4.62 3.35 2.18 1.30 0.92 0.56 0.33 0.20 25 7.39 5.89 4.98 3.69 2.46 1.49 1.06 0.65 0.39 0.23 100 7.93 6.30 5.31 4.07 2.80 1.75 1.24 0.78 0.48 0.29 * ART is the Average Return interval. ** Intensity Duration Frequency table is measured in inches per hour. 8.03.9 0 Table 8.03b Value of Runoff Coefficient (C) for Rational Formula Land Use C Land Use C Business: Lawns: Downtown areas 0.70-0.95 Sandy soil, flat, 2% 0.05-0.10 Neighborhood areas 0.50-0.70 Sandy soil, ave., 0.10-0.15 2-7% Residential: Sandy soil, steep, 0.15-0.20 Single-family areas 0.30-0.50 7% Multi units, detached 0.40-0.60 Heavy soil, flat, 2% 0.13-0.17 Multi units, Attached 0.60-0.75 Heavy soil, ave., 0.18-0.22 Suburban 0.25-0.40 2-7% Industrial: --p Heavy soil, steep, 0 0.25-0.35 Light areas 0.50-0.80 0.30 Heavy areas 0.60-0.90 Agricultural land: Parks, cemeteries 0.10-0.25 Bare packed soil Smooth 0.30-0.60 i Playgrounds 0.20-0.35 Rough 0.20-0.50 Cultivated rows Railroad yard areas 0.20-0.40 Heavy soil no crop 0.30-0.60 Heavy soil with Unimproved areas 0.10-0.30 crop 0.20-0.50 Streets: Sandy soil no crop 0.20-0.40 Asphalt 0.70-0.95 Sandy soil with Concrete 0.80-0.95 crop 0.10-0.25 Brick 0.70-0.85 Pasture Heavy soil 0.15-0.45 Drives and walks 0.75-0.85 Sandy soil 0.05-0.25 Woodlands 0.05-0.25 Roofs 0.75-0.85 NOTE: The designer must use judgement to select the appropriate C value within the range for the appropriate land use. Generally, larger areas with permeable soils, flat slopes, and dense vegetation should have lowest C values. Smaller areas with slowly permeable soils, steep slopes, and sparse vegetation should be assigned highest C values. Source: American Society of Civil Engineers 8.03.6 Rev. 6/06 10/24/2018 NORTH AMERICAN GREEN CHANNEL ANALYSIS > > > TD-1 ECMDS 6.0 Name TD-1 Discharge 1.22 Peak Flow Period 1 Channel Slope 0.023 Channel Bottom Width 1 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardence Class D 2-6 in Vegetation Type Bunch Type Vegetation Density Good 75-95% Soil Type Clay Loam Unreinforced Vegetation - Class D - Bunch Type - Good 75-95% North American Green 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 Tel. 800.772.2040 > Fax 812.867.0247 www.nagreen.com ECMDS v6.0 Phase Reach Discharge Velocity Normal Depth Mannings N Permissable Shear Stress Calculated Shear Stress Safety Factor Remarks Staple Pattern Unreinforced Straight 1.22 cfs 0.88 ft/s 0.54 ft 0.12 3.33 Ibs/ft2 0.77 Ibs/ft2 4.34 STABLE Vegetation Underlying Straight 1.22 cfs 0.88 ft/s 0.54 ft -- 0.05 Ibs/ft2 0.01 Ibs/ft2 7.7 STABLE Substrate S75BN Phase Reach Discharge I Velocity Normal Mannings N Permissable Calculated Safety Remarks Staple II Depth Shear Stress Shear Stress Factor Pattern S75BN Straight 1.22 cfs 0.88 ft/s 0.54 ft 0.12 1.6 Ibs/ft2 0.77 Ibs/ft2 2.08 STABLE D Unvegetated https://eemds.com/project/I 38090/channel-analysis/1 52235/show 1 /1 10/24/2018 NORTH AMERICAN GREEN' CHANNEL ANALYSIS > > > TD-2 ECMDS 6.0 Name TD-2 Discharge 14.04 Peak Flow Period 1 Channel Slope 0.01 Channel Bottom Width 2 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardence Class C 6-12 in Vegetation Type Mix (Sod and Bunch) Vegetation Density Good 75-95% Soil Type Clay Loam Unreinforced Vegetation - Class C - Mix (Sod & Bunch) - Good 75-95% North American Green 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 Tel. 800.772.2040 > Fax 812.867.0247 www.nagreen.com ECMDS v6.0 Phase Reach Discharge Velocity Normal Mannings N Permissable Calculated Safety Remarks Staple Depth Shear Stress Shear Stress I Factor Pattern unreintorcea Straight 14.04 cts 1.19 ft/s 1.68 ft 0.12 4.2 Ibs/ft2 1.05 Ibs/ft2 4 STABLE -- Vegetation Underlying Straight 14.04 cfs 1.19 ft/s 1.68 ft -- 0.05 Ibs/ft2 0 Ibs/ft2 11.28 STABLE -- Substrate S75BN Phase Reach Discharge Velocity Normal Mannings N Permissable Calculated Safety Remarks Staple Depth Shear Stress Shear Stress Factor Pattern S75BN Straight 14.04 cfs 1.19 ft/s 1.68 ft 0.12 1.6 Ibs/ft2 1.05 Ibs/ft2 1.53 STABLE D Unvegetated https:/fecmds.com/projecUl 38090/channel-analysis/152243/show 1 /1 HYDROLOGIC EVALUATION Project No: 17-18-092 Sheet No: 1 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Ex ansion Am!cus Partners, PLLC Subject: Hydrologic Evaluation _ OBJECTIVE: Design a sand filtration system to detain post -developed runoff for the equivalent net - increase in impervious area. Based on the proposed building expansion, the total net - increase in impervious area is 18,279 square feet. For the basis on this evaluation, 0.5-acres was used. DESIGN CONSIDERATIONS: The sand filtration system shall be designed according to the standards and requirements set forth in the North Carolina Manual of Storm Water Best Management Practices. The sand filters shall be designed to treat the 1-inch storm event while also maintaining pre -developed flow rates for the 2-yr, 24-hr, and 10-yr, 24-hr SCS storm events as well as safely pass the 25-yr, 24-hr SCS storm event. City of Charlotte storm Frequencies will be used as they are greater than those of Greensboro. REFERENCES: 1. "Manual of Storm Water Best Management Practices," by NCDEQ 2017. 2. NCDEQ Erosion and Sediment Control Manual, 2017. 3. "Stormwater Management Plan," by Amicus Partners, PLLC, 10/23/2018. 4. Design Hydrology and Sedimentology for Small Catchments, by C.T. Haan, 1994. 5. HEC-HMS version 4.1, Developed by the Army Corps of Engineers, 2009. 6. United States Department of Agriculture — Web Soil Survey 7. "Pipe Hydraulics and Grate Capacity," by Amicus Partners, PLLC, 10/23/2018. , TERMS: P,; = x-year 24-hour rainfall, (in) A = drainage area, (acres) n = manning's coefficient L = flow length, (ft) S = slope, (ft) v = velocity, (ft/s) tL = SCS lag time, (hrs) CN = SCS curve number Q% = x-year flow, W/s) a = surface flow coefficient SEAL yr; 032006 4 � t, = time of concentration, (hrs) ��I 11 � 111 `" /a•Z3.Za!> GIVEN/REQUIREMENTS: Maintain pre -developed runoff rates for 1-yr, 24-hr, and 10-yr, 24-hr storm events Safely pass the 50-yr, 24-hour storm event Treat the first inch of runoff up to 85% Total Suspended Solids (TSS) [Ref: 1] P2 = 3.37 inches [Ref: 2] Pio = 4.90 inches [Ref: 2] P25 = 5.82 inches [Ref: 2] Soil type = CeB2 [Ref 7] Soil Hydrologic Group = B [Ref: 7] Project No: 17-18-092 Sheet No: 2 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion _ Amcus Pons, PLLc Subject: Hydrologic Evaluation I. PRE -DEVELOPED FLOW CALCULATIONS: 1. Calculate composite Curve Number and Time of Concentration for pre -developed conditions It will be assumed that the site was primarily wooded prior to development and that the existing slope of the site was similar to that of post -developed conditions. Subbasin 1= 0.5 acres a. Comoosite curve number for Subbasin 1 Soil Type Ref: 7 Land Cover Area (acres) Ref 3 % Total Drainage Area Curve Number Ref 2, Table 8.03 B Woods 0.5 100 60 Pre -developed CN = 76 b. Determine physical properties of various flow segments Sheet flow Coefficient Ref: 4, Tables 3.20, 3.21 0.40 Slope ft/ft Ref: 3] 0.023 Length (ft) Ref: 3] 172 c. Determine tc associated with sheet flow. t _ 0.007(nL)08 _ 0.007[(0.40)(172 ft)�=O.Slhrs 1 ]p°s (I.a 4 A LJ (3.37in)n 5 (0.023) d. Determine total pre -developed time of concentration t, = ti = 0.51 hrs tL = 0.6(t,�) = 0.6(0.51 hrs) = 0.31 hrs Total Pre -Developed Runoff from Site Subbasin 1 Storm Event Peak Outflow cfs 2- r 0.14 10- r 0.49 [Ref: 3] [Ref: 4, Eq. 3.50] [Ref: 4, Eq. 3.52] [Ref: 5] Project No: 17-18-092 Sheet No: 3 of Date: 10/23/2018 Calcs Performed, By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion c"S Partners, PLLc Subject: Hydrologic Evaluation H. POST -DEVELOPED FLOW CALCULATIONS: 1. Calculate composite Curve Number and Time of Concentration for post -developed conditions Subbasin 1 = 0.5 acres a. Composite curve number for Subbasin 1 Soil Type Land Area % Total Curve Number [Ref: 7] Cover (acres) Drainage Area [Ref: 1, Table 2-10] Ref: 6 B Grass/Lawn 0.11 22 1 61 B Impervious 1 0.39 1 78 98 Post -developed weighted CN = 90 b. Determine phvsical Coefficient 4, Tables 3.20 Slope (ft/ft) [1 Leneth (ft) H erties of various flow seame Sheet Shallow flow flow , 3.21 0.24 20.3 Zef 3 0.023 0.023 Zef 31 45 127 [Ref: 61 c. Determine tc associated with sheet flow. 0.007 (nL)o s 0.0.07 [(0.2.4) (45fit)]" S — tl = os o.�+ _ �� 5 ,i.� — 0.12hrs [Ref: 4, Eq. 3.50] PZ S (3.37in) (0.023) d. Determine t, associated with 2°1 segment shallow concentrated flow. v = aSo 5 = (20.3) (0.023)"' = 3.08 ft / s [Ref 4, Eq. 3.48] _ L _ 127 ft _ tz O.Olhrs 3600v ^ 3600 (3.08 ft / s) e. Determine total post -developed time of concentration to = tl + t2 = 0.12 hrs + 0.01 hrs = 0.13 hrs tL = 0.6(te) = 0.6(0.13 hrs) = 0.08 hrs [Ref: 4, Eq. 3.52] *Use a minimum t, of 5 min. Project No: 17-18-092 Sheet No: 4 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Amicus Partners, PLLC Subject: Hydrologic Evaluation M. Determine storage volume available in proposed sand filter area Sand Filter SF-1 [Includes Sediment Forebay and Sand Filter] Elevation (ft) Ref: 2 Area (ft') Ref: 2 Height (ft) Volume (ft3) 812 473 1 1,109 813 1,744 1 3,260 814 2,559 1 6,268 815 3,456 1 10,212 816 4,433 a. Total volume available in SF-1 (elev. 816.00 ft) = 10,268 ft3 b. Total volume available to emergency spillway (elev. 815.00 ft) = 6,268 ft3 IV. POST -DEVELOPED HYDROLOGIC CONDITIONS: 1. Proposed SAND FILTER Area SF-1 Storm Event Peak Inflow (cfs) Peak Outflow (cfs) Peak Storage (acre-ft) Peak Elev. ft 1' Inch 0.29 0.00 0.01 812.43 2- r 1.74 0.12 0.06 813.64 10- r 2.76 0.39 0.08 814.14 25- r 3.37 0.49 0.10 814.40 2. Total Post -Developed Runoff Flowing Off Site Storm Event Peak Outflow cfs 2- r 0.12 10- r 0.39 3. Check Regulatory Requirements for Subbasin 1 Q2(p.9) = 0.12 cfs < Q2(pre) = 0.14 therefore ok. Qio(post) = 0.39 cfs < Qlo(pra) = 0.49 therefore ok. 4. For SF-1 Peak elev. For 25-year storm = 814.40 ft < 816.00 ft Free board = 1.60 feet > 0.50 feet therefore ok. [Ref: 6] [Ref: 7] Appendices , Table 8.03e Runoff curve numbers of urban areas' Curve number for --- _-_-------------------------- __-Cover Description ------------------------- ---------hydrologic soil group-------- Covertype and hydrologic condition Average percent A B C D impervious area Fully developed urban areas (vegetation established) Open space (lawns, parks, golf courses, cemeteries, etc.) 3: Poor condition (grass cover < 50%) ............................. Fair condition (grass cover 50% to 75%) ..................... Good condition (grass cover > 75%) ............................ Impervious areas: Paved parking lots, roofs, driveways, etc. (excluding right-of-way) ........................... ;..... .......... :.., I Streets and roads: Paved; curbs and storm sewers (excluding right-of-way).............. .............. ...- ............... ---- ......... Paved; open ditches (including right-of-way) .............,.. Gravel (including right-of-way) ...................................... Dirt (including right-of-way) ........................................... Urban districts: Commercial and business .......................................:........ Industrial........................................................................... Residential districts by average lot size: 1 /8 acre or less (town houses) ......................................... 1 /4 acre............................................................................ 1 /3 acre............................................................................. 1 /2 acre............................................................................. 1 acre............................................................................:.. 2 acres.............................................................................. Developing urban areas Newly graded areas (pervious areas only, no vegetation) 4 .............................. Idle lands (CN's are determined using cover types similar to those in table 2-2c). 68 79 86 89 49 69 79 84 39 61 74 80 98 98 / 98 98 98 98 98 98 83 89 92 93 76 85 89 91 72 82 87 89 85 89 92 94 95 72 81 88 91 93 65 77 85 90 92 38 61 75 83 87 30 57 72 81 86 25 54 70 80 85 20 51 68 79 84 12 46 65 77 82 77 86 91 94 1. Average runoff condition, and la = 0.2S. 2. The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using Figure 8.03c or 8.03d. 3. CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type. 4. Composite CN's to use for the design of temporary measures during grading and construction should be computed using Figure 8.03c or 8.03d based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas. Rev. 6/06 8.03.17 Appendices Table 8.03g Runoff curve numbers for other agriculture lands' Curve numbers for ---------------------------Cover description ------------------------------- --------------hydrologic soil groups----------- HydrologicCover type conditions3 A B C D Pasture, grassland, or range— Poor 68 79 86 89 continuous forage for grazing. 2 Meadow --continuous grass, protected from grazing and generally mowed for hay. Brush —brush -weed -grass mixture with brush the major element. 3 Woods —grass combination (orchard or tree farm). 5 Woods. 6 Farmsteads —buildings, lanes, driveways, and surrounding lots. Fair 49 69 79 84 Good 39 61 74 80 — 30 58 71 78 Poor 48 67 77 83 Fair 35 56 70 77 Good 304 48 65 73 Poor 57 73 82 86 Fair 43 65 76 82 Good 32 58 72 79 Poor 45 66 77 83 Fair 36 60 73 79 Good 301 55 70 77 — 59 74 82 86 1 Average runoff condition, and la = 0.2S. 2 Poor: <50% ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good. > 75% ground cover and lightly or only occasionally grazed. 3 Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover. 4 Actual curve number is less than 30; use CN = 30 For runoff computations. 5 CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture. 6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair. Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil. Rev. 6/06 8.03.19 0 Table 8.08j Precipitation Frequency Estimates For use with NRCS Method** Murpby, North C rolina 35.0961N 84.0239W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 0.41 0.66 0.83 1.14 1.43 1.71 1.85 2.29 2.90 3.48 10 0.56 0.90 1.14 1.66 2.16 2.57 2.76 3.32 4.14 6.08 25 0.66 1.05 1.33 1.97 2.62 3.14 3.38 4.05 4.95 6.08 100 0.80 1.27 1.61 2.47 3.40 4.13 4.50 5.38 6.33 7.93 AaKeville, North Carolina 35.4358N. 82.5392W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 0.43 0.69 0.87 1.21 1.51 1.77 1.88 2.30 2.91 3.47 10 0.59 0.94 1.19 1.72 2.25 2.60 2.74 3.29 4.10 4.91 25 0.67 1.07 1.36 2.02 2.69 3.13 3.31 3.96 4.83 5.79 100 0.81 1.28 1.62 2.48 3.42 4.00 4.29 5.12 6.04 7.24 Bonne, North Carolina 36.2167N, 81.6667W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 0.48 0.76 0.96 1.32 1.66 2.00 2.18 2.85 3.77 4.39 10 0.62 1.00 1.26 1.83 2.39 2.92 3.18 4.10 5.28 6.61 25 0.72 1.14 1.45 2.14 2.85 3.55 3.87 4.94 6.21 8.07 100 0.86 1.38 1.74 2.66 3.67 4.69 5.15 6.47 7.82 10.65 Charlotte, North Carolina. 35.2333N. 80.85W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) ;10 2 0.47 0.76 0.95 1.31 1.65 1.92 2.04 2.46 2.91 7 410 0.60 0.97 1.22 1.77 2.31 2.72 2.93 3.55 4.23 i 25 0.67 1.06 1.35 2.00 2.66 3.17 3.46 4.19 5.04 5.8 100 0.75 1.19 1.51 2.31 3.18 3.85 4.29 5.22 6.36 7.30 Greensboro, North Carolina 36.975N, 79.9436W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 0.46 0.73 0.91 1.26 1.58 1.85 1.98 2.36 2.81 3.31 10 0.57 0.91 1.16 1.68 2.18 2.60 2.77 3.37 4.02 4.76 25 0.62 0.98 1.25 1.84 2.46 2.98 3.17 3.90 4.71 5.26 100 0.66 1.05 1.33 2.03 2.80 3.46 3.72 4.68 5.81 7.00 * ART is the Average Return Interval. **Precipitation Frequency Estimates are measured in inches. 8.03.36 Rev. 6/06 Runoff Estimation Table 3.19 15-min Unit Hydrograph from S-Curve Time (min) S-curve (cfs) Smoothed S-curve Displaced S-curve, UHh (cfs) UH smoothed 0 0 0 0 0 0 15 29 29 0 58 58 30 68 68 29 78 78 45 122 122 68 108 112 60 168 168 122 92 100 75 217 217 168 98 96 90 251 251 217 68 85 105 285 285 251 68 64 120 305 305 285 40 44 135 331 331 305 52 36 150 337 342 331 22 28 165 359 355 342 26 20 180 353 360 355 10 14 195 372 368 360 16 12 210 361 375 368 14 10 225 379 377 375 4 6 240 366 378 377 2 4 255 383 379 378 2 2 270 369 382 379 6 0 285 385 383 382 2 0 300 370 383 383 0 0 315 386 383 383 0 0 330 370 383 383 0 0 345 386 383 383 0 0 360 370 383 383 0 0 k [ Sum 769 S(t—D') t eu(t) = [S(t) — S(t—D')1D/D' = [S(t) — S(t-15)130/15. Kne extensive and generally prevent direct derivation of it hydrographs for small catchments. Unit hydro - graphs represent direct stormwater runoff. Baseflow and/or ground water discharges to streams must be rernoved from the flow record before unit hydrographs can be defined from the record. Linsley et al. (1982) cars be consulted or details. For small catchments, tynthetic unit hydrographs are generally used. Syn- thetic unit hydrographs are discussed in detail in the following sections of this chapter. Several synthetic unit hydrograph models have been proposed. Gener- ally theY provide the ordinates of the unit hydrograph as a function of the time to peak, tF, peak flow rate, L. a mathematical or empirical shape description. 75 After presenting procedures for estimating these at- tributes, several unit hydrograph models are presented. Estimation of Time Parameters This section deals with the estimation of the time parameters D, tL, tp, and tb as shown in Fig. 3.22 and the time of concentration, tc. Several methods for estimating these parameters are available. The method that produces results consistent with good engineering judgement should be selected for a particular study area. The time of concentration is the time it takes for flow to reach the basin outlet from the hydraulically most remote point on the watershed. For some areas, this parameter can be estimated by summing the flow time for the various flow segments as the water travels toward the watershed outlet. These segments generally are overland flow, shallow channel flow toward larger channels, and flow in open channels, both natural and improved. The travel time in these various flow seg- ments depends on the length of travel and the flow velocity. Once the velocity in each flow segment is deter- mined, the time of concentration is determined from „ Li tc _ — , (3.47) —1 Ui where r1 is the number of flow segments and L, is the length and vi the flow velocity for the ith segment. Flow velocity of overland flow and shallow channel flow can be estimated using results such as those of lzzard (1946). Regan and Duru (1972), Overton and Meadows (1976), or from the relationship u = aS1i' (3.48) based on information in SCS (1975), where S is in ft/ft and v is in fps. The coefficient a is contained in Table 3.20. Regan and Duru (1972) present a method for esti- mating travel time, tt, over a plane surface based on the kinematic wave equation [Eq. (3.40)], The equation is valid for turbulent flow or when the product of the rainfall excess intensity, ie, in iph and the flow length, L. in feet is greater than 500. The equation is 0.0155 (nL)"' tt =. i° :1Sa 3 (3.49) e where t, is in hours, n is Manning's n, L is in feet, ie is in iph, and S is'the slope in ft/ft. Table 3.21 presents some values for it for overland flow surfaces. The Soil Conservation Service (1986) presents a rela- tionship attributed to Overton and Meadows (1976) for 76 Table 3.20 Coefficient a for Eq. (3.48)" Surface a Overland flow Ai Forest with heavy ground litter 2.5 Hay; meadow 2.5 Trash fallow; minimum tillage 5.1 Contour; strip cropped 5.1 Woodland 5.1 Short grass 7.0 Straight row cultivation 8.6 Bare; untilled 10.1 Paved 20.3 Shallow concentrated flow Alluvial fans 10.1 Grassed waterways 16.1 Small upland gullies 20.3 'Results in fps; multiply by 0.305 to get m/sec Table 3.21 Manning°s n for Travel Time Computations for Flow over Plane Surfaces (Soil Conservation Service, 1986) Chapter 3. Rainfall -Runoff Estimation in Storm Water Computations Surface description n" Smooth surfaces (concrete, asphalt, gravel, or bare soil 0.011 Fallow (no residue) 0.05 Cultivated soils Residue cover S20% 0.06 Residue cover >20% 0.17 Grass Short grass prairie 0.15 Dense grassesh 0.24 Bermudagrass 0.41 Range (natural) 0.13 Woods` Light underbrush 0.40 Dense underbrush 0.80 "The n values are a composite of information compiled by Engman (1986). hIncludes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures. `When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. travel time for sheet flow over plane surfaces based on Manning's equation and a kinematic approximation to the flow equations. The equation is for flow lengths of less than 300 ft. The friction value or Manning's n is an effective roughness coefficient that includes the effect of raindrop impact; drag over plane surfaces; obstacles such as litter, crop residue, ridges, and rocks; and the erosion and transport of sediment. These f1 values are for very shallow flow depths of about 0.1 ft or so. Table 3.21 gives Manning's n values for those conditions. The relationship for travel time is D.�07(rrL } a.8 T, - p2u.sso.a (3.50) where PZ is the 2-year, 24-hr rainfall in inches and the other terms are as defined for Eq. (3.49). This relation- ship is based on shallow, steady, uniform flow; a con- stant rainfall excess intensity; and minor effects from infiltration. In urban areas, the travel time may have to be based on a travel time to a storm drain inlet plus the travel time through the storm drain itself. Inlet travel time can generally be computed as the sum of overland flow and shallow channel flow travel times. Flow in storm drains would be considered as open channel flow with the storm drain pipe flowing full. Often large storms produce runoff rates that exceed the capacity of the storm drains and some of the runoff bypasses the drains in the form of concentrated surface flow as open channel flaw. Such flow should be considered in com- puting the time of concentration. Undersized culverts and bridge openings can cause ponding of flow and a reduction in the average flow velocity. For small ponds and situations where water is passing through the pond with little or no storage build up, the actual travel time through the pond may be very smalt. If significant storage results, the travel time is lengthened over that for normal channel flow, and flow routing as discussed in Chapter 6 must be used_ Flow velocity for open channels can be estimated from Manning's equation, which is treated in detail in Chapter 4. Other methods are available in the form of empirical equations for estimating t, One such relationship that is widely used but based on limited data is expressed by Kirpich (1940) tc = 0.0078L07(L/H)0.385, (3.51) where t, is in minutes, L is the maximum length of flow in feet, and H is the difference in elevation in feet between the outlet of the watershed and the hydrauli- cally most remote point in the watershed. Obviously, Eq. (3.51) does not consider flaw resistance in the form of overland flow and channel roughness. Several methods for estimating the lag time of a watershed are available. One simple method for lag s Project: Heilig Road Simulation Run: Pre-Dev 2-yr,24-hr Start of Run: 170ct2018, 00:00 End of Run: 190ct2018, 00:00 Compute Time: 240ct2018, 11.21:23 Basin Model: Pre -Developed Meteorologic Model: 2-yr, 24-hr Control Specifications: Control 1 Hydrologic Element Drainage Area (M12) Peak Dischar (CFS) eTime of Peak Volume (AC -FT) ' Subbasin-1 .00078125 0.14 170ct2018, 12:16 0.02 Sink-1 .00078125 0.14 170ct2018, 12:16 0.02 Project: Heilig Road Simulation Run: Pre-Dev 10-yr,24-hr Start of Run: 170ct2018, 00:00 Basin Model: Pre -Developed End of Run: 190ct2018, 00.00 Meteorologic Model: 10-yr, 24-hr Compute Time: 240ct2018, 11:21:28 Control Specifications: Control 1 Hydrologic Element Drainage Area (M12) Peak Dischar (CFS) eTime of Peak Volume (AC -FT) Subbasin-1 .00078125 0.49 170ct2018, 12:13 0.05 Sink-1 .00078125 0.49 170ct2018, 12:13 0.05 Project: Heilig Road Simulation Run: Post-Dev, 1st Inch Reservoir: Start of Run: 17Oct2018, 00:00 Basin Model: End of Run: 19Oct2018, 00:00 Meteorologic Model: Compute Time: 24Oct2018, 11:34:32 Control Specifications: Volume Units: AC -FT Computed Results Peak Inflow: 0.29 (CFS) Date/Time of Peak Inflow Peak Outflow: 0.00 (CFS) Date/Time of Peak Outflow Total Inflow : 0.01 (AC -FT) Peak Storage : Total Outflow: 0.00 (AC -FT) Peak Elevation SF-1 Post -Developed 1st Inch Control 1 17Oct2018, 04:37 17Oct2018, 00:00 0.01 (AC -FT) 812.43 (FT) U U v 0 LL Reservoir "SF-1" Results for Run "Post-Dev,1st Inch" 812.450 812,367 812,283 812.200 m w [OffiI►iIIIIIIIIIII 812.033 811.950 ,.0 0.9 0.8 0.7 0.B 0.5 0.4 0.3 0.2 I 0.1 I 0.0 002 12:00 00.00 12:00 00:00 I 17OcO18 I 180cf2018 Run:Post-Dev, lst Inch Element:SF-1 Rewh:Storage Run:Post-Dev, lst Inch Element:SF-1 Result:Pool Elevation Run:Post-Dev,lst Inch Element:SF-1 Result:0uttlow --- Run:Post-Dev,1st Inch Element:SF-1 Result:Combined Flow Project: Heilig Road Simulation Run: Post-Dev 2-yr,24-hr Reservoir: Start of Run: 17Oct2018, 00:00 Basin Model: End of Run: 19Oct2018, 00:00 Meteorologic Model: Compute Time. 24Oct2018, 11:34:40 Control Specifications: Volume Units: AC -FT Computed Results Peak Inflow : 1.74 (CFS) Date/Time of Peak Inflow: Peak Outflow : 0.12 (CFS) Date/Time of Peak Outflow Total Inflow : 0.10 (AC -FT) Peak Storage : Total Outflow 0.08 (AC -FT) Peak Elevation SF-1 Post -Developed 2-yr, 24-hr Control 1 17Oct2018, 11:58 17Oct2018, 12:49 0.06 (AC -FT) 813.64 (FT) a U Q 0 0 0 00:00 12:00 17Oct2018 Run:Post-Dev 2-yr,24-hr Element:SF-1 Result:Storage — Run:Post-Dev 2-yr,24-hr Element:SF-1 Result:OuMow Reservoir "SF-1" Results for Run "Post-Dev 2-yr,24-hr" 813.47 813.13 812.80 m w 4PI,yM 812.13 00:00 12.00 00;00 18Ocf2018 Run:Post-Dev 2-yr,24-hr Element:SF-1 Result:Pool Elevation --- Run:Post-Dev 2-yr,24-hr Element:SF-1 Result:Comdned Flow Project: Heilig Road Simulation Run: Post-Dev 10-yr,24-hr Reservoir: Start of Run: 17Oct2018, 00:00 Basin Model: End of Run: 19Oct2018, 00:00 Meteorologic Model: Compute Time: 24Oct2018, 11:34:49 Control Specifications Volume Units: AC -FT Computed Results Peak Inflow: 2.76 (CFS) Date/Time of Peak Inflow: Peak Outflow: 0.39 (CFS) Date/Time of Peak Outflow Total Inflow : 0.16 (AC -FT) Peak Storage : Total Outflow: 0.15 (AC -FT) Peak Elevation SF-1 Post -Developed 10-yr, 24-hr Control 1 17Oct2018, 11:58 17Oct2018, 12:18 0.08 (AC -FT) 814.14 (FT) I u- ,y v 0 N 3 0 IL 2.5 2.0 a,D 00:00 12.00 170ct2018 Reservoir "SF-1" Results for Run "Post-Dev 10-yr,24-hr" 00:00 12 00 180ct2018 Run:Post-Dev 10-yr,24hr Element:SF-1 Result:Storage Run:Post-Dev tayr,24-hr Element:SF-1 Result:Pool Elevation Run:PW-Dev 10-yr,24-hr Element:SF-1 Result:0utflow --- Run:Post-Dev 10-yr,24-hr Element:SF-1 Resufl:Combined Flow 814.20 813.93 813.67 813.40 813.13 812.87 w 812.60 812.33 812.07 811.80 Project: Heilig Road Simulation Run. Post-Dev 25-yr,24-hr Reservoir: Start of Run: 17Oct2018, 00:00 Basin Model: End of Run: 19Oct2018, 00:00 Meteorologic Model: Compute Time 24Oct2018, 11:34:22 Control Specifications: Volume Units: AC -FT Computed Results Peak Inflow : 3.37 (CFS) Date/Time of Peak Inflow: Peak Outflow: 0.49 (CFS) Date/Time of Peak Outflow Total Inflow : 0.19 (AC -FT) Peak Storage : Total Outflow : 0.18 (AC -FT) Peak Elevation SF-1 Post -Developed 25-yr, 24-hr Control 1 17Oct2018, 11:58 17Oct2018, 12:17 0.10 (AC -FT) 814.40 (FT) 0.10- F 0,08- L 0 Q 0.06 n� v w 0 N 0.04- 00:00 12:00 1 17Oc12018 Reservoir "SF-1" Results for Run "Post-Dev 25-yr,24-hr" 0000 1200 18O018 Run:Post-Dev 25yr,24-hr Element:SF-1 Result:Storage Run:Post-Dev 25-yr,24-hr Element:SF-1 Result:Pool Elevation Run:Post-Dev 25•yr,24-hr Element:SF-1 ResultAtIlow --- Run:Post-Dev 25•yr,24hr Element:SF-1 Result:Combined Flow 814.13 813.67 813,20 m w 4PAAM [-1i UM 00.00 35" 37 30' N 35° 37 14"N Hydrologic Soil Group —Rowan County, North Carolina 3 3 Map Scale: 1:2,450 T printed on A portrait (8.5" x 11'D sheet N Mctcrs o 35 70 too zto 0 100 200 400 wo Map projection: Web Mervtor Coaw coordinates: WGS84 Edge tics: UiM Zone 17N WGS84 3S° 3730"N 35° 37 14" N usnA Natural Resources Web Soil Survey 10/22/2018 Conservation Service National Cooperative Soil Survey Page 1 of 4 C 0 U L 0 O Z a C 7 O U 0 ry 1 0 C� O CO CD 0 0 T 0 Z 'W V W J a a _ a O O O N N 7 N m o m m m e m o m U T O °' Q U O V O (spy r U) 7 C ID 2E U CD m m N m m cu a N 7 E N �.- N CL O C — Q O E a1 Q m m f0 N `@ (b 6 U C E LO a7 N N m M a E m 0 m M L Q fp 7 m m U O cD O 7 y - c m N 0 L N N o m 0 N L N Z m U N N ° cLi E N ol CD 00 m d C N 7 m Q O (D ° m U Q c co ��;p�a3� E p U W pJ mmm�� Q r 0 O 7 N m L N E N U N O N m N c 4 m `p Z O• U a) U f` O O Q >, ' �+ > N U N ° m N L.+ C U Q O) O m Q E O O a) 7 T U 7 In N T ) d oL O N "O ° N aNi Lv ° a� c�0a 7 N U O N o� E N m E O �-0 Qj `� N Q' a' �° Z.o av Uo °' anti C O m'y 30 o m n 2 m ° T m �Ymo N E U .7.J om (n N a C m— °% 0 3 N a`�Qi7 L� O m E Q o o 5 -0 m Z -0 Q c ry 0 N r 1O ° o N o a �O N f6 E N L T L N m 3 m m a) rn m m +m.' N m 'Of c 7 C m? U w N Q .N+ m O Q m N O cn C m a) N myEm O E fn �cAm U E�mmc� O �'Ln `o � 0m•� — O 07 C m N U ._ (D a m N N O 'O C m U D O a) m U c�6 O O � L Q 7 T O. O m 0 m L O t: N 0 C c a d a) N N ` U N O c`CL) Q a) U) a7 E Cl .ou? .N_. O .a a) C a) E L``! f6 ° c o cmi w E—° N a E p a� p co � c� m o N a "v ¢ m L H o 0 0 cn to U) m inN m._ H N a m > f6 o C mb m C U % [ t T L Q La Vc (6 N N v m N O O m O E .Nm. o o fop N N fE O U U ❑ Z N E a)o f 5 D 0 a Q R m C © © Cl 0 " a [0 � H m 0 Q co fn f6 O 0 a) _ O C O N C W C O 'a N C O y N o Z% m o d a° ❑ ❑ ❑ ❑ ❑ ❑ o 0 ❑ ❑ m Q m m Q a m m U U ❑ Zo Q a m m U U ❑ Zg OI Q a m m R o-1on®nn�� o : o. o. o fo V) 0 N N N Q N 00-It 00 aN N 0) oa T m L Hydrologic Soil Group —Rowan County, North Carolina Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI ArA Armenia loam, 0 to 2 C/D 3.0 17.3% percent slopes, frequently flooded CeB2 Cecil sandy clay loam, 2 B 14.1 82.0% to 8 percent slopes, moderately eroded SeS Sedgefield fine sandy C/D 0.1 i0.7% loam, 1 to 6 percent slopes Totals for Area of Interest 17.2 100.0% USDA Natural Resources Web Soil Survey 10/22/2018 Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group —Rowan County, North Carolina USDA 2iillliiM Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff. None Specified Tie -break Rule: Higher Natural Resources Web Soil Survey 10/22/2018 Conservation Service National Cooperative Soil Survey Page 4 of 4 SAND FILTRATION CALCULATIONS Amicus PaMers, PLLC OBJECTIVE: Project No: 17-1.8-092 Date: 10/23/2018 Sheet No: 1 of Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Subject: Sand Filtration System _ Design a proposed sand filtration system to treat the required water quality volume and provide necessary volume control DESIGN CONSIDERATIONS: The following design is for a single sand filtration and sediment forebay facility designed to treat the 1 st-inch of runoff. REFERENCES: "NCDEQ Storm Water BMP Manual," Revised 2017. 2. "Stormwater Management PLan," by Amicus Partners, PLLC, 10/23/2018. 3. NCDEQ Erosion and Sediment Control Manual, 2017. 4. "Hydrologic Evaluation," by Amicus Partners, PLLC, 10/23/2018. 5. FHWA Urban Drainage Design Program, HY-22. TERMS:f WQv = water quality volume, (ft) �SS1� • ; °►� P = rainfall, (in) �Q AD = drainage area to sand filter, (ft) SE AL �- R,, = Volumetric runoff coefficient, (unitless) _ 032006 ha = average head, (ft) G[ms ••`�v . c • . hMaxFiher = maximum head on the sand filter, (ft) g 'QZ•4S AS = surface area of the sedimentation basin, (ft2) '/� r , , , I� • tl • z +r � Af = surface area of the sand filter bed, (ft2 ) Qo = Average rate of outflow from sedimentation chamber, (ft'/sec) E = trap efficiency of chamber = 0.9, (unitless) w = settling velocity of particle, (ft/sec) dF = Depth of the sand filter bed, (ft) k = coefficient of permeability for the sand filter bed, (ft/day) t = time required to draw down the WQV through the sand filter bed, (day) ha = Average head, (ft) WQP = Water Quality Peak Flow CPS = Channel Protection Volume CN = Curve Number Qa = total runoff for the 1-year, 24-hour storm event CS, = watershed runoff hf = average height of water above filter bed (ft) tf= design filter bed drain time (days) Project No: 17-18-092 Sheet No: 2 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Amicus Partners, PLLc Subject: Sand Filtration System GIVEN/REQUIREMENTS FOR SAND FILTERS: [Ref: 11 1. Design Requirements for Sand Filters a. The sand filtration systems shall meet or exceed 85% removal efficiency of Total Suspended Solids (TSS). b. A sediment chamber is required as a pretreatment device for all sand filters. The sedimentation chamber storage area above the filter media must be sized to hold 50 percent of the water quality volume. c. Sand filters require a sand filter media with a gravel and perforated pipe underdrain system. The underdrain system must not limit outflow more than the filter media and must be designed so that runoff exits the facility within the design duration. The underdrain system (pipe capacity and orifice capacity) must be designed assuming that 50 percent of the capacity is lost due to clogging. d. The underdrain collection system should be equipped with 6-inch minimum perforated Schedule 40 or stronger PVC pipe or double wall HDPE pipe. Perforations shall be per AASHTO M278 for PVC pipe, AASHTO M252 for double wall HDPE pipe, or be 3/8-inch in diameter spaced 3 inches on center along 4 longitudinal rows that are spaced 90' apart. The pipes shall have a minimum slope of 0.5% and a maximum spacing of 10 feet on center. e. An internal water storage (IWS) system is allowed, provided that the filter media and underdrain system are designed per requirements, specifications and calculations for infiltration provided in Chapter 18 of the NCDENR Stormwater BMP Manual. If IWS is used, the WQv should infiltrate the soil within 48 hours. f. Cleanouts of 6-inch solid PVC must be provided for every 50 linear feet of underdrain, at all bends, and ends of the system for maintenance purposes. The top of the cleanouts should extend 6 inches above the top of filter and have a watertight, vandal proof cap. At least one cleanout shall be installed as an emergency drain that is flush with the top of filter and have a 6-inch threaded extension pipe. The furthest cleanout from the outlet must have the minimum required filter media depth. g. Underdrain pipes must be placed in the bottom of a 12-inch minimum gravel layer. The gravel shall be #57 washed stone and must provide a minimum of 4 inches of cover over the pipe(s). h. The top of the sand filter media must be protected. Washed sod, filter fabric with number 2 stone on top, or a 1-inch thick debris screen should be used to prevent large floatables from clogging the system. Project No: 17-18-092 Sheet No: 3 of Date: 10/2312018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion icus Portners, PLLc Subject: Sand Filtration System i. The maximum contributing drainage area for a surface sand filter is 10 acres. The maximum drainage area for a perimeter sand filter is 2 acres. The maximum drainage area for an underground sand filter is 5 acres. j. Sand filter systems are designed for intermittent flow and must be allowed to drain and re -aerate between rainfall events. They must not be used on sites with a continuous flow from groundwater, sump pumps, or other sources. k. No runoff should enter the filter's sand bed until the upstream drainage area is completely stabilized and site construction if completed. Any disturbed areas within the drainage area must be identified and stabilized. Filtration controls must only be constructed after the construction site is stabilized. 1. The filtration media surface area should be sized using Darcy's equation using an average filtration rate of 1.75 inches/hour. m. Maximum ponding depth for the water quality storm event is 24 inches with an additional 36 inches for more severe storm events. n. All embankments shall be designed per the North Carolina Dam Safety Law of 1967, if applicable, and designed according to the requirements in Section 4.0.6 of this manual. o. The top of a sand filter must be flat. Project No: 17-18-092 Sheet No: 4 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Amlcus Portmt Subject: Sand Filtration System CALCULATIONS for SAND FILTER SF-1 1. Sand Filter SF-1 (Includes Sediment Foreba;y and Sand Filter) Elevation (ft) [Ref: 2] Area (ft2) Ref: 2 Height (ft) Volume (ft3) 812 473 1 1,109 813 1,744 1 3,260 814 2,559 1 6,268 815 3,456 1 10,212 816 4,433 a. Total volume available in SF-1 (elev. 816.00 ft) = 10,212 ft3 b. Total volume available to emergency spillway (elev. 815.00 ft) = 6,268 ft3 Ia. Sand Filter SF-1 Elevation (ft) [Ref: 2] Area (ft2) [Ref: 2 Height (ft) Volume (ft3) 812 473 1 638 813 803 1 1,612 814 1,145 1 2,975 815 1,580 1 4,740 816 1,950 a. Total volume available in SF-1 (elev. 816.00 ft) = 4,740 ft3 lb. Sand Filter FB-1 Elevation (ft) Ref: 2] Area (ft2) 1 Height (ft) Ref: 2] Volume (ft3) 812 0 1 471 813 941 1 1,648 814 1,414 1 3,293 815 1,876 1 5,472 816 2,483 a. Total volume available in FB-1 (elev. 816.00 ft) = 5,472 ft3 Project No: 17-18-092 Sheet No: 5 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion 'cus Port rs, PL Subject: Sand Filtration System 2. Compute Water Quality Volume (WQv) for area draining to SF-1 a. Compute Runoff Coefficient, Rv, using (Schueler's Method) i. Rv = 0.05 + 0.009(I) = 0.05 + 0.009(94) = 0.90 [Ref 1 ] b. Compute Water Quality Volume, WQv [Ref: 1] i. WQv = 1.0 RvA/12 = (1.0 inches)(0.90)(21,780 ft2)(1 foot/12 inches) ii. WQv = 1,634 ft3 = 0.038 ac-ft c. Compute Adjusted Water Quality Volume i. WQvadj = 0.75(WQv) = (0.75)( 1,634 ft3) = 1,226 ft3 [Ref: 1] ii. Volume Available SF-1 = 10,212 ft3 > 1,226 ft3 therefore ok 3. Determine the minimum surface area of sediment forebay FB-1 a. AS = 2° x In (1— E) [Ref: 1 ] w ; QmV lhr As — 24hr 3600 sec x In (1— 0.9) 0.004(ft/s) AS=0.066WQV= O.66(1,634ft3)=107ft2 Minimum surface area of FB-I = 107 ft2 < 941 ft2 therefore ok. 4. Determine the minimum surface area of the sand filter The available head is 4-feet and it will be assumed that the average head is 1- foot. (WQI')(dr) a. A = [Ref: 1 ] (k)(t)(hu +dr) — (1,634ft3)(2.Oft) =156� (3.5ft/day)(2.Odays)(lft+2.Oft) A A f =156 ft2 < 473 ft2 therefore ok. Project No: 17-18-092 Sheet No: 6 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion a„ icus Partners, PLLc Subject: Sand Filtration System 6. Determine the maximum allowable head a. AS(FB-1) = 941 ft' [Ref: 2] b. Af(SF-1) = 473 ft2 [Ref: 2] WOL i r 1 226,f 3 c. hM.,, ,1,,, _ `"' _= 0.87 ft [Ref: 1 ] At. + A1, (941 ft') +(473 ft' ) d. The maximum allowable head is 0.87 ft < 4.0 ft therefore ok. [Ref: 2] 7. Design Inlets and Underdrain System a. Compute minimum drawdown discharge i. Water Quality volume = 1,634 ft3 Drawdown = 1,634 ft3/[(40 hours)(3,600sec/hour)] = 0.011 cfs b. Compute perforation capacity i. Number of Perforations = (50 lf)(1 rows/ft)(4 holes/row) = 200 holes 50 percent of perforations = 100 holes Capacity of one hole = CA(2gh)o.s =(0.6)(3.1416)[(3/8in)(1/24)]2[(64.4)(3.2ft)]o.s = 0.017 cfs Total capacity = (0.017 cfs)(100) = 1.7 cfs ii. 1.7 cfs > 0.011 cfs therefore ok. c. Compute underdrain pipe capacity i. For 6-inch PVC underdrain pipe at 0.005 ft/ft slope: Capacity of pipe = 0.43 cfs [Ref: 5] Fifty percent assuming clogging = 0.22 cfs ii. 0.22 cfs > 0.011 cfs therefore ok NCDEQ Stormwater BMP Manual C-6. Sand Filter NZ _i A sand filter is a surface or subsurface device that percolates stormwater down through a sand media where pollutants are filtered out. Sand filter effluent is usually discharged. Sand filters are capable of removing a wide variety of pollutant concentrations in stormwater via settling, filtering, and adsorption processes. Sand filters have been a proven technology for drinking water treatment for many years and now have been demonstrated to be effective in removing urban stormwater pollutants including TSS, BOD, fecal coliform, hydrocarbons and metals. Since sand filters can be located underground, they can also be used in areas with limited surface space. Sand filters, as explained below, are designed to treat 0.75 times the design volume. This "discount" in their sizing is allowed because the water drains through the sand media so quickly that the stormwater is being treated by the sand filter concurrently with the storm event. Rule 15A NCAC 2H .1056. MDC for Sand Filters SCM Credit Document, C-6. Credit for Sand Filters C-6. Sand Filter 'I Revised: 1-3-2017 NCDEQ Starmwater BMP Manual Figure 1: Open Bottom Sand Filter Example: Cross -Section -- OPTIONAL FLOW DIVERSION - TEMPORARY WATER SURFACE GRAVEL/STONE SURFACE STRUCTURE r CLEANOUT ' SAND FILTER MEDIA PROPOSED GRADE SEDIMENT - (PROVIDE AT T (ASTM C-33 SAND OR INFLOW CHAMBER f LEAST ONE) EQUIVALENT) OVERFLOW �r (FOREBAY) 1 3:1 SLOPE L + + 1 PERFORATED STANDPIPE - i 3:1 DETENTION STRUCTURE m z - • J SLOPE r IN -SITU SOIL i OUTFLOW - PERFORATED PIPE 1 SOLID PIPE SEASONAL HIGH r WATER TABLE NOTES: —_ THE MINIMUM COMBINED VOLUME OF SEDIMENT CHAMBER AND STORAGE ABOVE SAND FILTER MEDIA IS 0.75 TIMES THE TREATMENT VOLUME. MAINTAIN SAND FILTER MEDIA SUCH THAT THE INFILTRATION RATE IS GREATER THAN OR EQUAL TO 2 INCHES PER HOUR (2"MR). Figure 2: Closed Bottom Sand Filter Example: Cross -Section OVERFLOW WEIR TRENCH COVER (SOLID) TRENCH GRATE Ol�E�PlfJHO '� • , ORIFICE WATER QUALITY TEMPORARY.POOL VOLUME PERMANENT POOL V - SAND FILTER MEDIA (ASTM C-33 OR EQUIVALENT) SEDIMENT SAND FILTER CHAMBER CHAMBER (FOREBAY) PERFORATED PIPE NOTES: THE MINIMUM COMBINED VOLUME OF SEDIMENT CHAMBER AND STORAGE ABOVE SAND FILTER MEDIA IS 0.75 TIMES THE TREATMENT VOLUME. MAINTAIN SAND FILTER MEDIA SUCH THAT THE INFILTRATION RATE IS GREATER THAN OR EQUAL TO 2 INCHES PER HOUR (2"IHR). C-6. Sand Filter 2 Revised: 1-3-2017 NCDEQ Stormwater BMP Manual SAND FILTER MDC 3. SEDIMENT/SAND CHAMBER SIZING. The volume of water that can be stored in the sediment chamber and the sand chamber above the sand surface combined shall be 0.75 times the treatment volume. The elevation of bypass devices shall be set above the ponding depth associated with this volume. The bypass device may be designed to attenuate peak flows. The area required for a sand filter device is calculated similarly to many other SCMs: 1. Calculate the design volume. 2. Multiply the design volume by 0.75, a "discount" that is allowed because stormwater infiltrates so rapidly through the sand media that the stormwater is treated throughout the storm event. By the end of the storm, the runoff from the beginning of the storm has already been treated and has exited the sand filter. 3. Divide the discounted design volume by the ponding depth, this will be the minimum surface area of the sand filter. There are no MDC related to the shape of the sand filter. One of the biggest advantages of sand filters is how easily they can be fit to the site. Open -bottom sand filters can be rectangular, square, circular or irregular. Closed bottom sand filters are usually rectangular. SAND FILTER MDC 4. MAXIMUM PONDING DEPTH. The maximum ponding depth from the top of the sand to the bypass device shall be six feet. The ponding depth is limited to six feet in order to avoid overloading the sand chamber. The designer is allowed to design the sand filter for peak flow attenuation as long as the six-foot ponding depth is not exceeded. SAND FILTER MDC 5. FLOW DISTRIBUTION. Incoming stormwater shall be evenly distributed over the surface of the sand chamber. Stormwater flow may be distributed over the surface of the sand chamber via a level spreader, a pipe distribution system, or a series of weirs. SAND FILTER MDC 6. SAND MEDIA SPECIFICATION. Sand media shall meet ASTM C33 or the equivalent. The media in the sand filter shall be cleaned, washed, course masonry sand such as ASTM C33 or the equivalent. The sand particles shall be less than 2 mm average diameter. SAND FILTER MDC 7. MEDIA DEPTH. The filter bed shall have a minimum depth of 18 inches the underdrain pipe shall be 12 inches. The minimum depth of sand above The filter bed shall have a minimum depth of 18 inches, with a minimum depth of sand above the drainage pipe of 12 inches. C-6. Sand Filter Revised: 1-3-2017 NCDEQ Stormwater BMP Manual SAND FILTER MDC 8. MAINTENANCE OF MEDIA. The sand filter shall be maintained in a manner that results in a drawdown of at least two inches per hour at the sand surface. The easiest way to determine if the sand media is infiltrating adequately is to divide the depth of sand by two inches per hour (the minimum allowed infiltration rate) to determine the maximum number of hours that stormwater should take to drain through the sand chamber. For example, if the sand is 18 inches deep, the sand chamber should drain in 9 hours or less. When the filtering capacity has diminished below this level, then remedial actions shall be taken. The first step is to remove the top few inches of media replace it with fresh media. The removed sediments should be disposed of in an acceptable manner (e.g., landfill). If the problem still persists, then all of the sand media may need to be replaced. SAND FILTER MDC 9. CLEAN -OUT PIPES. At least one clean -out pipe shall be provided at the low point of each underdrain line. Clean out pipes shall be capped. For the clean -out, it is recommended to specify a PVC pipe that has glued clean -out fittings with screw type caps. It is crucial that the cap be secure so that the stormwater will not leave the sand filter via the pipe rather than passing through the sand media as intended. In addition, the ends of each underdrain pipe should be capped to prevent clogging of the underdrain system. Recommendations SAND FILTER RECOMMENDATION 1. DRAINAGE AREA. It is recommended to grade pervious areas to drain away from sand filters and to limit the drainage area of a sand filter to five acres or less. Sand filters will function much better when the drainage area is highly built -upon because this will greatly reduce the amount of fines that reach the sand filter and potentially cause clogging. It is particularly important to grade pervious surfaces to drain away from the sand filter in areas with C and D soils. There is no maximum drainage area for sand filters; however, sand filters with smaller drainage areas (less than five acres) usually have fewer maintenance issues. Multiple sand filters can be used throughout a development to provide treatment for larger sites. SAND FILTER RECOMMENDATION 2. ACCESS TO UNDERGROUND SAND FILTERS. It is recommended to provide access to underground sand filters that applies with OSHA regulations. If a sand filter is to be located underground, safe access must be provided to facilitate cleaning and maintenance. It is recommended to consult OSHA standards for confined space entry. C-6. Sand Filter 6 Revised: 1-3-2017 WA Y Project No: 17-18-092 Sheet No: 1 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion _ Amicus Poorers, PLLC Subject: Concrete Spillway Design OBJECTIVE: Determine thickness of concrete spillway and reinforcement requirements for the riser and foundation/anti-flotation block. THEORY/DESIGN CONSIDERATIONS: The riser will be considered as four separate simply supported concrete slabs designed for the expected hydrostatic loads. REFERENCES: 1. "Hydrologic Evaluation" by Amicus Partners, PLLC, 10/23/18. 2. "Stormwater Management Plan' by Amicus Partners, PLLC, 10/23/18. 3. American Concrete Institute — Building Code Req. for Reinforced Concrete. 4. "Reinforced Concrete — Mechanics & Design," by McGregor, 1992. TERMS: H' = effective height of pressure distribution, (ft) 1= clear span for positive moment, (ft) P = factored net soil pressure, (lb/ft2) H = hydrostatic load, (lb/ft) Wu = factored hydrostatic load, (lb/ft) WW = weight of displaced water, (lb) WR = weight of riser, (lb) WF = weight of spread footing, (lb) W,: = weight of concrete riser and footing, (lb) Mu = Design moment, (ft-lb) Mcap = moment capacity of reinforcement, (ft-lb) AS = area of steel, (in2) a = depth of rectangular stress distribution, (in) D = depth of footing, (ft) d = effective depth of concrete, (in) b = width of critical section, (in) Vu = allowable shear force, (kips) V,� = shear capacity of concrete, (lb) fr = 28-day compressive strength of concrete, (lb/in) fy = yield strength of steel, (kips/in2) 0 = reduction factor psi = pounds per square inch plf = pounds per linear foot psf = pounds per square foot ksi = kips per square inch AF = area of footing, (ft2) Fs = factor of safety SF -AL ter; 0312006 ��• Z3• z ❑rp Project No: 17-18-092 Sheet No: 2 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Partners, PLLC Subject: Concrete SpillwaySpillw4y Design GIVEN/REQUIREMENTS — RISER IN SF-1: Exterior Dimensions of riser = 4.00-ft x 4.00-ft [Ref: 1] Bottom of sand filter = 812.00 feet [Ref: 1] Bottom Elevation of Riser = 810.50 feet [Ref: 2] Top of Riser = 815.00 feet [Ref: 2] Maximum Water Elevation = 814.40 feet [Ref 1] Diameter of Outlet Pipe = 24-inch [Ref 1] fe, = 3,500 psi fy = 60 ksi I. RISER CALCULATIONS: 1. Determine effective depth of concrete l (4.00 ft) (12in / ft) a. Minimum thickness = t = 20 — 20 2.40in [Ref: 3, Table 9.5(a)] b. Use a thickness of 6-inches c. Assume #5 rebar d. Minimum cover for reinforcement = 1.5-inches (Assume rebar mat will be located in middle of slab.) e. d = 6in — 3in — 6 in = 2.69in 2. Determine factored hydrostatic load a. H'=(814.40ft-410.50ft)=3.90ft b. H = yH' = (62.4yft3 )(3.90ft) = 243 p1f / ft c. W„ =1.6H =1.6 (243 plf) = 3 89 plf / ft 3. Determine design moment a. M. =W„(1)"—(389p1f)(3.00ft)2 = 438lb/ 8 8 ft ft [Ref: 3, 7.7.1] [Ref: 3, Eq. 9-6] Project No: 17-18-092 Sheet No: 3 of Date: 10/23/2018 Calcs Performed By: CAM Calcs Checked By: NRP Project Name; Heilig Road Building Expansion �cus Partners, PLLC Subject: Concrete Spillway Design 4. Determine flexural reinforcement based on moment capacity a. Assume #5 rebar @ 12-in on center (A = 0.31 in2) b. Determine depth of rectangular stress distribution of slab 0.85 fab = AS fy 0.85(3,500psi)(a)(12in)=(0.31in2)(60,000psi) [Ref 4, Eq. 4-11] a = 0.52in c. Determine moment capacity of reinforcement M,,=AOf,(d—a2) Map=(0.31in2)(0.85)(60ksi)(2.69in-0.52inl lft 12irt [Ref: 4, Eq. 4-12b] 2 Map = 3, 202 ft — lb d. 3,202 ft-lb/ft > 438 ft-lb/ft therefore ok. 5. Determine minimum reinforcement required for flexure 200bd 200( 12in)(2.69in) — a. AS(�) _ _ — 0.1 lint [Ref: 3, Eq. 10-3] fy 60000 psi b. Use #5 @ 12-in on center = 0.31 in 6. Determine minimum reinforcement required in perpendicular direction a. Shrinkage and temperature reinforcement shall be provided in the direction perpendicular to the flexural reinforcement. b. As(.,;.) = 0.0018bt = 0. 00 18 (12in) (6in) = 0.13in2 [Ref: 3, 7.12.2.1] c. Use #5 @ 12-in on center = 0.31 in Project No: 17-18-092 Sheet No: 4 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Am�cus Pam-ers, PLLc Subject: Concrete pillway Design 7. Check for shear at the bottom of the riser a. Determine factored shear strength V„ =1.15 W'Z =1.15 (438plf l ft)(3.00ft)=7561b/ ft [Ref: 3, 8.3.3] b. Determine nominal shear strength of concrete [Ref: 3, 7.12.2.11 Vn = 2 f,'bd = 2 ( 3, 500p,ri) (12in) (2.69in) = 3, 819lb / ft [Ref: 3, Eq. 11-3] c. OVn > Vu —> (0.85) 3, 8191b / ft = 3, 2471b / ft > 43 81b / ft [Ref: 3, Eq. 11-1 ] therefore ok. H. FOOTING CALCULATIONS: 1. Determine required area of footing a. Required area of footing based on buoyancy. b. Weight of water displaced at maximum pool elevation. H' = (814.40ft — 810.5ft) = 3.90ft W,, _ (4.00 ft) (4.00 ft) (3.90 ft) (62.4lb1 ft3) = 3, 8941b c. Weight of riser walls WR=[(4.00ft)(2)+(3.00ft)(2)]�12 ft)(4.50ft)(150lbl ft3)=6,3001b d. Size of footing required AF = FS (W„, —WR)=1.5(3, 8941b — 6, 3001b) � Olb e. Use 5.0-ft by 5.0-ft by 1.0-ft foundation for riser WF=(5. Oft) (5. Oft) (1.Oft) (1501bIft3)=3,7501b>—Olb, therefore o.k. 2. Determine factored net soil pressure a. Weight of footing WF=(5.Oft) (5.Oft) (1.Oft) (1501bI ft3)=3,7501b b. Total weight of riser and footing Wc =WF+WR=3,7501b+6,3301b=10,0801b Project No: 17-18-092 Sheet No: 5 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Amicus Partners, PLLC Subject: Concrete Spillway Design c. Factored net soil pressure P — FWD — (1.7)(10.08k) = 0.69ksf AF 25, l 3. Determine effective depth of concrete a. Minimum cover for reinforcement = 3-inches [Ref: 3, 7.7.1] b. Assume #5 rebar c. d =12in — 3in — (1) = 8in 4. Check footing for one-way shear a. V„ = (0.69ksf)(5.O ft) (2.5 ft — 2.112 f i — 0.67 ft) � Ok b OV° =02 f°bd [Ref: 3, Eq. 11-3] = (0.85) ` 3.500psi (60in) (Sin) = 56.8k c. K, > Vu therefore ok. [Ref: 3, Eq. 11-1] 5. Check footing for two-way shear a. V„ = 0.69ksf 125ft2 — 4.00 ft + 12 = 3.28k b OV, = 04 f� bd [Ref: 4, Eq. 11-35] = (0.85) 4 3, 500psi (160in) (8in) = 257k c. �V. > Vu therefore ok. [Ref: 4, Eq. 11-1] 6. Design reinforcement for footing a. M,, = 0.69kyf 5.fi x 2 = 0.77k— ft A _ M. — (0.77k— ft)(12in/ft) b Of,. (d—�/2) (0.85)(60ksi)(8in-0.52in,. [Ref: 4, Eq. 4-12b] AS 0.Oin2 Project No: 17-19-092 Sheet No: 6 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Amic'S Pon-ers, PLLc Subject: Concrete Spillway Desi c. Check minimum reinforcement requirements for temperature and shrinkage A,(..) = 0.0018bd = 0.0018(60in) (8in) = 0.86in2 [Ref: 3, 7.12.2.1] d. AS = 0.86in2 therefore use two mats of #5 at 12" on center in each direction dJeluawwo3 pue OPOO Suipf!ng 91e fib' s r f r i r a r sasea 0=09 ar xandJ Qrnmr== gew iaosoE asn of algensap aq ,Cep It 0sax s s� ranoa ieq aql In aot} aurrF a ,no¢ st ZI xaldeq, ar aart�' gloaal lQaQrdoEanap aq� ",4ql ara 01 posadxa ioa ivauraormi Job pazmbar JMA09 aql aerp ssaE 10II "AD'3 21-aMU o ansq mgleam agl tuo j adaaa;o. d a&pBmzn{a gpro& luanraaxo -,-Haar `V'r 30 m0lsrnord aql .r4= m3gjo nmplrm aql Lq Rana-Tdde aagiA 'V00 -4 P ,Cq p .nnbax ia,wa awxaaaa fsrn3q -tipps agl of luoEsnrnba axe ,iagl paprnoid aq .Seat xagleam i' laa�aou, ;=x aql 8agmard _fo spoglam aAgaaMTV Sjoa a IBIiLII[S -ro `go mu'a3Y; .4m dol pasodxa M03; 1,-*taIIp m SaogIPIIOQ QagYS �puao of anp 3egl $Qrpniaur 'guuap pas ,uqv& aleaiallT laafgns swlun pasodxa dpanp paiapptroo gnvnsn loQ f s►9 ;oa ITM mqL x0 geEg •s23caeg0 vmwmdmoal of lsnTloa r4aega.2nu910ur 01 amsodxa loa.rrp of sJa}ar ,�raglsaat g1J?a of pasodxa saaslms alamaoo„ aoq!paoa aqy [7ats Qatssaxlsaxd pauotsaal isod Qo lanp to nalilg pun aql of so ''-sazl xo sdnurls lnogjUm posy sr Ja,SeE aao Qml :lrn¢r sssq 10 -M4gE lsoraralno 9q1 0l 'sreq 13MUL sasolbaa asxansueg 1r sIRgds xo 'sacl 'sdnrrrls;o a9pa agl 01 p -inseaar sr 11 '.raquracu Ennlongs 10 ssulo a Jot a '1E*S41rE sr xaaoo arnurrunu axaqA� -sggdds lummaanbax aql go[gm of pals ag! 10 aaElxns lsoatralao aql of aoLl rna ararou,�a acEJ azozl pesnseaEa sc 310933a taglo pas laq)WAIL s luaaraaxolaraJ 10 uonaalox(1 se raA0a 912l3Q0Z) rtii.7rriaa.ro�ta-[ -rod r.�orlaa�o.zd a}a-zauv,� —L'G2I rI-dVj,j\IamvOO 1--------------------- ------ slvjfde `S{InJJI lS '5af1 Ivawawnpfl a XJL-Wud : SUw n joo 'suJeag ....... slslof 'sljeM lsgefs :punoJ6 iarna aaquoo u, Jo JaLIIEaM Ol POSOdk$ lOu alaJ0UO3 (3) ..---- sJequJaw Jaf40 sqels 'slaued peM :Jayleane Jo yIJEa of pasodxa alaJ3uo0 (q) gp'ea of pasodxa Aguamwed pUe;sufe6e Isen alalouo j (a) 'Uf 'JanoO wnwiuij q -L Pue ' 1'S L L 'S'L'L Aq pasnbaJ uer{I ssal aq Gov IIeUs }nq 's6u_gll� Pua pue '�np `Iuaw -aaJO;uraJ passallsaJduou Pus us Jo}. paprn -oJd aq l+134s MOD alaJOuna wnwiuiw Surnaolfa; eta (passaalsaJd) szejauoa aoaEd-of-Ise Ja+IeUJS pug 'aJIM LE© 10 REM'Jeq g -ON blE •-..-........_. JaBJEI Pua Jcct g -ON :sJagwau� aleld paploj 'sftayS ............................... .. ' SIEJidS `SdRJJIjS 'Sell `luewawoplai kIBLU ,d :suwnloO `sweeg ..................... JaEl2ws pue Jeq L 1 -ON �_....sJeq 9L 'ON pue bL -ON -SISJOPS}}EM `sgels- :Punol6 LWAA OPIUM UI JO JayleaM of pasodxa lou alaJOU00 (a) JajleuJs pue 'aJ.lnrl Lea Ja LEM 'Jeq 5 -ON Z sJeq SL 'ON yfinQJyl 9 'ON :Jayleann Jo 4jes of pasodxa alamoo (q) l pasodxa Aauauewjad PUIR lsule6e lsea alaJaU00 (e) 'UI'JaAOa wntululVV :LL L Pue .r,'L'L dq paimbaJ usyl ssal aq lou j'leys lnq 'TrrawaaJhfura-f .rrJ} pa{]r,� -oid aq Ile4s JanoU alaJouoa ]lnlunllir, ;iu±,�tirJlltJji}� (passallsaJduou) alaJouoa aaeld-ui-Isea — LWL juawaa,io;uiaa JO; u0113010.rd aja.lauo:3 3000 It"Jz-73 L a31clVH3 t?&881E/8Le 1ue;uawwoo pug apoo burplln8 OLE ITV -aotssatdmtoa ttt XVMOJM sr gsls aql WM gana +{l7aa_p Ians vawxam. anaq so3g1043ue jmpY hFPu4 Pa?4aq ses=xls aniss*xdmoa amigcn Mad atg pue g2po gsls Q% uowpaq ease aql aazo;u.w Xr-mb-age W Fm parldr% era wwol ?m s=Asasd aragrs saSlra gals �e pwR►bas sr �uaur�aiw�urrar PapII«l ieQOR?F'pe '-Grt gS spaWra }uamxira;t= astgesad -ura4 pie af'ouuga so; Pasn suopaw So 8u[aeds aq; aaghd sxnCosd_ saqumaa�sa�.a; uo pasn (Trt pans aaaq sgq `ease Qi=uoa ssos% aqi uo ?sd poi 421mtssag=d;o ltmome UU -1masoaso}mai amxresadmm pug 23 r4 utls possasls -93duou so; aaioj gl2uasts plat.( aql cq Len6o (Iawoco-i&k qop Zip ao aat01 a r4xaga ae apteosd 04 Maalas uaaq aegg sxnaaraimbu U==MP= PassaAsWd — E ZrL$ '617I Pug'8i'ZI '5I7I 'I'ZL qi aaaspmaos ar gl3aaqs plant pog.mds nw otr, m; par>$tsap aq o; 71e iaaars:rq{aaaz �tttleradma� pee a ms ;o sahlogcRM Pw Peg Swos -&mk ,ta= s9; kacgoe;n -xes pose nwq 9Agq Inq r6ztmf a) = 3txm antra PaPiam Pm mq p urmpp m_; aaa19 pog=& slunoms aqy — rZi-LZY qm ;=,(q posmeo gopra `umq i a! ¢eq -aHa osle ase,'sa nW m asMMUE ae Satsaeo lnoglrnd maao DI a--U)V qs MFq U=-Jd Ra?qa `pound IIng7tL4suoa aql $uFinp sdms lo4aoD -upwo jurLjooaoa -t aegyaj;a igoq aie laaarrato;ataz taolioq Peg doy (9I"L ��x?�I ems) Z"I'ZI'L � at lmomnro;mas Ism--aB aqI of [=oa im aalo;aw ;o Lunomv aql ommar of &ossaoaa aq ,(vm It 'ylmmaeom 'L'11�1 Pn .49rla qs of la!v4sat lmgtaots aprnosd sutanloa '33nj 10 SUM Iamlam W alagm sense rod 'MOOO o; pa Wed ass naamAotu =4=darol pug as npTrgl asagm imioe;sT-9 aaaq mq Zi'L Lq pasmbw laamawo; -ugaz astaeradtual peg a;-,,7.7ls 10 aare Q%L--Z'i'ZI'Lll ,,JU 111139ALK00 16->delE/8LE L HB1d papinoad aq Il84s e'aV,L of Buluualuoo luawaaioj -Ulw Q1rliviedwat pine oGWMu1J43 ARpuoq JaVujjIppv '-ut 1v9 sPeavxa suOPual ;o Butoeds ua4M —• rez, 'u 9 peaaxa;au lleLls suopual.;o 6uloedS— Z'E'Zl'L "9'9 L 4l!•u-0U'ep1C=g ul 'sassol gall$ 'ssailsaid anlpalla Bursn eaAV aza,auoa ssau6 uo isd OOL ;o sags anassaadwoO 86VJanxl umwlulw a apin -old o} pauo!vodoud aq !Is4s suop'al — L"£'ZL'L :Bu!ntiollol 84l 43IM eouePUo=e ur papinold aq II'84s 3u8wao1owras ainLt ladwal pue a6lluut4s lal pasn 9'g"E o; 6uiwloluoa Iaals 6ulssar;sajd E ZL'L 'ZL la1de4o LWm aauwplvws ul uolsual ul h1 LAU194.9 Play payloads oqq dgl8nap IMS SOSS9 9 a1rWadwel pue a6"Uvgs lol ;uatu -aoloitim 'pajmbm aaat4m suogaas Ire IV 'ul 8L uecp lrBde lawel aou `ssauDP![4 cleis eta sawp ar+ll umt.p, usde 1atn;ou paaBds aq 0e4s 41-1e111 -ao.tolu!w ain}e+adual pue a6"uu45 — Z•Z•ZL'L A, 000'09 x 8 LOo.O... ."............... pasn sl Luawad S6'0;o u1949 plan( a Ia peinseeul lsd 000'09 6ulpaeoxa ssails plal,G tpim Juawaralo;ulaj aiatim sgslS (a) BL00'0 ................pasn ale. (petulolap to weld) op". AAM paplatit:la sleq peuuolep 09 epe10 ala4m squIS (q) Ozoo'0 ........ ............. pass aye SJEq pauuvlaP:: 09 la ov apelE) a1a4tn sgelS (a) :K00'Q uai ssal }ou Inq 'Ea1e alaisuou SSOl6 01 sa1B luaulaalgUY to so¢g1 Sulnnollo; ma lsral le apinald I[egs luau owo . -ulai airgaradwa; pus a6g)luuys so galy — L'Z'ZL'L :BUIM01101 941 41JM aaugplooag ul pep!noid aq lla4? luawaolo;t,tlaa alnleladwaL pus q&e uu4s 1ol pad g•9•6 of 6Lluu01u03 lue"IsaloLula.t pauyolaQ — 67 ' I r.' paaap1suoo aq IIT! 4s E'Z'a Pus b•Z-9lo ,tuaE .- -ailnbaa 94l 'peuleilsal Aftmagtu6l.r�o�lt: ainie4adwaL pug a6eNulr4s 9l94N1 3a03 Aje:&uawwo0 Pula apo:c) Sulpiln9 a Le lad pig 53urvam iinTi a7amtptul pue aotsnlanoo sun-iioddns s.03ON9W P13IR zaUqoD dq s21pn7S -(Vg-1 '$H aas)ang10.uas .uoa aq as pnno; amm s;lnsw aq L -o.qw ]uouiQwoju!Qj aql ao Sa.puadap `luaosad OZ a; do angngr-0srpar Taaucoos rol p2ZACus arandL ,$rasdea .do nca Items g;um mgmam jem xag `slsa; an>su=2 wog pot mp saftit ogsgd;o equal pas SWUM 993son00 2?ugrunlJo sanlsn angsnsasaoo smsn 'span[ ageaapin;e -mgmam y anxag e;o sao>aaas ssom aiont jo ,Utosdaa RV aq];o nogezggn aq; ;tmiad saSual uguld aqy aog?pnm Sa.peol Quo Sam so; p=ggn Anvj Ion si laga f4nedsa aesasax a seq aogo,s gala °sagloas so; s;aau?om on41sod pau jumn8ussss $mpVol aao so; paunuza;op ate sl mnia anas$ao asmeoag •sisArem ogsela .Cq paled -moa asogl moxj siaamom anDisod;o sanlen aq; m asvQmm ae pas uot$as aaaig ogseld aq; m s;uamom angs2aa jo san -lei aql m aoganpaa a sr alnsa: Isnsn aq L •MaSarp ;aausom 34sej7 aql m W a asaaa pas Iuauxom ammixsaa;o slmod le doraeap saoiff= a2mq agseld asap, -saoaQj Qlm ogseld m itl. Dp wunb2pe ao tr pm dap s; aounqulsrpw leamon siaquiaml Iemxap snonuguoa ut slamorx ae.lgefau3o uorrnqu�srPa2i — -aogms ssosa in sQl=go ldamga se Bons `sogmurpmo tp *Uamcros mu sao�am pie `saogOeal so saoso; pa tn= -1100 M04 oarsrss sagmrzgioasip aam; ssaa modal sa gans `QUmrldd$ .IOU axe kmmu amxag 10 morl&mu m n[seq mg =qet saozlaj;o ,sap at pasn aq aea poq=aax u'rsap s.q,L -capon is palcaanoa m pas sings;o 2crgszsaoa sassma pajmof- nzd Ieag,q;odlCq Sum Pai2:imP pQe p=krm -Qq aao sa mongs alamnoo jo mopmd Imp nogdamsss qql aq pasuq g V xTaaddy al rapom vV-piE-1MS aiU — jr"E-S-g 'peonpal si Zuawow 4o1q,j 1, ualyaas aLA le SL00'0 uer{y aaZpaa6 jo fll lenbe sl J3 ua,4,A A+lu❑ spew I aq IIs4s sluaulow aAll36eu jo uognq-ulslpaa -- E-V g sueds a4a u'Lg!m stxvgaas;a sluawoua 6uge;naMso; pasn aq I1E4S sluawou! an4e8au paylpow a41— 'luaatad 6Z to wnwfxew a 4yea '1uaajad tgoODL ueq} aaam lou Aq luawa6ueue 6ulpeol pawnsse AuE Jo.l ssagwaw leJnxag sponuguflo to Gwoddns le rGo --agl opssla dq pale[noleo s;uacuoui ange6au asuajoap to aseaJaul o; PeWt ed aq I1e4s V 'pasn asB sluawow aol sanlen a;ewlxwdde OJG;gm Ideox3 — �-V-q sjagwaw lRinxeg snonu4uoi Ml SZUGWdl.0 anIIs6au jo uogngr sjpa& -- l?r•g .d xlp -uaddy aaS 'aia-�auoo [ernpa4s to u6isap aLg ui pasn eq 0I pa!puted eq IIs4s slapow aq-pua=Wins --- b'E'S ...................... .......... ............. ......----- woddns Ja440 JIB 10 aoe; IB Jsa4S Zf u, g L L-.......................... ...lJoddns joualul lssg to aoej Is siagwaw pua ui JaeyS 9L1,u;lym ""'------'""-uwnloo a sl poddns asayM yZ/z 7 "Ai "" weaq leapuads sl poddns asayM spoddns 4tIM AlIs16elul 3llnq ssegwow jol poddns -joualxe to 2081 louglux le luawOw anllefiaN ZL/zu7n ........................ ueds a4l do pua 4oee IS 1461a spaaoxa ssaul;lls weeq o f sasseullgs uwnloa to Ions to 0l1e1 6.ia4M sweaq pus 'll 0 L 6utpaaoxa lou sueds 4IIM sgelS -jol. spoddns Ile to aoe; le luawow anllsSeN AUVINMAMOD WOO 9 83-LdVHO B8-dBLE/SLE nre4uaurwo0 pus apoJ ourNIp1H tiLt; IJV -uogatnquiaa pao( ��!ica� s v< »�aaa .fa... �uaauon: u� .aas.�ov• av P— p-01 jays ur aoganpat a 'aseo 8 yans ul •suopoas uwnloo P2110.4aoo -uovum so} [ea4?3 aq OS[ —cum asea qurpeol uni •span( iag7o ;o slaa1;2 aql saonpat.peoj peap mg2rq w aragM area alll toy papn(au[ knvogtnads my Q60 qvm saarleuu[ujoo pgo( aqy •adAllwg7oue xq paonpoxd carp of asaas alisadda SO sfaaa};a aonpard dear luipBor;o ad,[i auo se 's�utpaol;o suogBatq -woo to; n dupq=*jap u[ uls of uand aq of sr pm2ar ana '-paranoa ale saseo an lag3 aumsm loa plaogs mugxsap atp 'popn[oat an sSut -pgo[;o suoRautgwoo [ensn a% jo lsoat a[tgM -aaaatmoao snoattel[cttats ;o .ClVgggotd aql of uana St aogaraptsuoo autos '$urpeo[;o suotplamquioo of Ti(n ; Imagism ul -speol ;o saopgutgmoa aUraads to; srolos; pea[ sand apon aqy -steags pae swamom mndatoa of pasn smCleae RMomns atp at Al.q!getzan to; ltmowu asp stoloe; pacrl spuol oe[[ aeg7 tolae; peal mmLo[ a paagisss we 'alge!tan sso[ pug pancunMa p d[alam=e grout ate 6agl asnacraq `speol peaQ aitgonns vp So autaaj_[ wu Aarmp pao[ aql at poj=(h a aq .g3jM MD uag¢?t$n aql Pm< papal -na[sa aq aea (avnsn poa;p peo[ qql gotgm ;o a2a2p aql ,Cq paoaanUm st peo( t[5ea rn paulisse taloq aqy -smlzwej: peol wsg&tdde .Cq pagd�l[nax apoa gaipjmg Taraua3 -jql air pogtaads speo[ am ata speoT patmza3 -V'*. S pas slammm 7-xrnox pole[at ra `speo[. Prows; ;o satrap q possatdxa st .a c9nums pwmbw aqt g72ua-P Pa nubag — z'6U •ioloe; aopanpat gl,Saags s diq gl$aa= teatmoa zp pas mloa; pao[ a Cq paoT aowas aql $aLC[dq[ntxr dq papin -oid m f4-2ps So ml= agl `wnpoowd aorsap giSu24s agl al n z (Tswilts lm=oL o 0 glBU2.QS patu w'd � glSQariS u319oQ :smo[[o; se passaidxa aq �Ceat agisop gaaaM to; laauralm6ai ojs¢q aq,L 'stagaraatararauoa (anRangs aaraotltodotdto; mogrp _UO3 4rETgsaotntas paw glooags otsuq aqL saugap 6 xa7dwgJ •a[galdanae pataptsaoo ate 910709; pao[ ;o pas iaglca So sllnsat aql lnq `lawaW aq [[tm sa$isap auras 'speo[ [esatej gptA% suo[}euiqu:oa sod'sapoo taglaa Pug 6661 agl;o sxoloe; paof pua aoganpat gp$uags dgl'Jtma pauMgo asog7 al a[gexadenoa aq [[ua speo[ KIFAvx3 xo; sugisap aql '£-6 uT sio7os; uogonpas glSuaxls ag7 " pasn ua% 'alasauoa aag7 iaglo s[artapeta ;o mqumut ipril at j gl satn7onris Su[pltnq wjmtloo ;o Susuo[lrodoid aql 2WMIPe; of pus `scroggutqutoo pas sropoe; pe0110 pas auo uo uo►s -sa;otd agisap wa �Cgan raglm; op apum aiaen saSaaga aqL tT? Vllg33l0IOO ,-dWgl ooL uet4tala8J6 si -r peal anll atll atayM SPAYS Ile pue 'Algwesse ollgnd;o saould se paidnwo `safisae6 j% ldeoxa g-p of peonpaj aq of pal7rUL, aq Ilegs (9-6) of (S-B) -b3 oy-7 uo lolae;'peol atU (e] :smopot su ldw. (L-6) 14W L +-go, L + awo = n (9-6) 149'L+M9'L+U6'0=n (S-6) sz-0+7o-L+3o'L+az'L=n 0,6) (HJog-Jo'7)9-o+lo-L+Ans-L+az-L=n (s-6) (m s•o to 70' L) + (Ei ao s to'7)9• L + az- L = n (H to s J0'7)S-0 + (Z-6) (H+7)9-L+U+j+a)z-L=n (L-6) (_f {-Wrt =n •pale6gs9nul aq Ileys Alsnoai -ellnwls 6ullae lou speo) ajow to aw to palla atl_ '(L-6) g6no_jyl (l -g) •b3 ul spear pajoloel to slaal}a ay of lenbs lseal le eq Iletlsll tReuails pannbalj — L'T gT6uaals pa.nnbaa -paU!Lwad aq lav (legs a xlpueddy to sjoloet uogonpai glBuajls ep m Wit -ounfuoa ui aaldeyo sit4 wait suoileulgwoo aoluel P901 to asn wllluyad aq 1p(4s 9 xfpueddy to voloet uocl -onpaj tll6ualls pue suorleufgwoo tolne:l petal acll 6ul'R saagwaw leinlonlls pue samlontis to udisav — E'L'6 'slanal peal �?+uas pe aouewioliad alenbape atnsua o; apoo slt{s to slaw' -annbal jaglo Ile laaw IfeCis osfe slagcuarvv — Z-t L6-u6LEl8LE 5 83ldVHO 3400 '!sd o0o'OS Oo'ob aaaeaioq `f;o s=p& ug pas 'sow iaaoaaazo; po!dA m3 'algq az[i a! paxa¢[saoa amgmmwjo ado I; Mjnsai anrsenxasaoo p[a!A pjnogs inq miazaoxaiddv �oaioo3 a< TftmS plat,S so; uogsarrpom agy -22M sm. at .[iron m asolo Rona amr) uagoa,aoa age asneooq Ci]Igi 5c tq Ptm OZI "q 3uM2!2A'so; aa-Alff sc aa!330aao3 off'ZI'6' 2pW fir sao!ssras!p pas silosai 2T ;o saipMS as pasuq aloagoo] u[ aiaraaoa iga!arnigar[ iol Wgg3V M aqM 1&-al qloq piwqs(q) Pm (8) =MmJ m boa eft 1 ma,wpuw mw3o Toq a -isd OW09 ump =W Q 2uwjs s SutAsq Epm Sp QNMaoo Vf*m'A q '(= CRA P2Wm4saa3 ssaqumim aieaaa o p awojum 'a M (a legaassa am olgei ags gieaaaq sWou aq,L 'Paso --� ;Ora z 09 Wwq Pue zxmu o lg^Z=,w sm:ou asq; -aaqOOtQp'kq P'�p 'CiFIR aoganus' w mq;o pas saopumd o; pogovue 41oddns xott :3ngOzam ot'Clvo 91dde sassaa�!g! mnar. . asagy "(S S 6 209) saagmam uttsod-O7 -ml P— °(Z9•6 sggs .Csee�ao pas smeaq Passzgsaiduoa io; S[dde i aigBL sassaa n naizmtmaa Q%L — i'Z S•6g [TM�-'�-�,�' *dQott) [[o[�►a:ysr[oa �it.�-au{] — Z'i6g -(N9'6 a[Qs.L ar saalaA agi oq paw fie `apoo agl;o saoA;»s a url &% aql ut of PQ=.;;U io asap d agt.Cq Pwqw[m aQ ppzogs saooagap nano[ ummu 212=03 P@=Mwd Zip- zol Poe 'suogaau--p Xq W29aMP -,%I o« S[aLg nagaa4=Qa ragf)o m Sa6Q . or NlfOaus as' m jroddn% F-Tp ix) 15,7= 14XFLT x ss W-PEIP RM =XF hoar ma op Tmp szagmzm pa =Swduau -a,; 'apoa az[i;o 31u7matmTxas agt 99 II1A E'E'576 PUB 'Z'E'9'6 'T-E"S-6 Kq PW-MbOl 9s ssas [i =MTUM 'vomtwsaov XIMI-Orel P2Ss2►SQ1dxm1E Md IWUQP ?mil dEq poRumep oq of SJOIq aogonPsaoo Jaglo aggxed of pagoslis w gtWoddus ioa m; Woo o siaaznam hw OT 4SUM Um (9)9-6 a[Qg.L S4 P�� �?� [P�a mnm� a ;o ao!strioud 'sragimai dawoio; pae'sT919 ?,a-azto pus Taxr:; q p@ssaximdaoa EI'6 SaUxlaa[f�P Zal[IC uua ioj. uoAcS aza spogiaar OM,L -p3I2p!suoj aq paaa alms u jggl peal aALT aqi;o aoDrod )Eqi Pas peoT PAP Ciao `paladaaro ais suogoal}ap anal -Snot avgrb •sTanaT wm2zs ig m000 ,Caul lEzfi saogeauopp io suoAoDUW 'C[ao paasaoaoo Qm 9-6 ;o saoptAosd aq,L — 1:'S621 sIIogaaUap. jo 1041MOD — TO A'dV1 33VKO3 'fooa wVj + b'a1 Aq wadrw--q V-,,a ""I� O'n ;5d'ooaas ue.A.,a ,W'ft ,e-J;s 'rt4'il W V4['FM WIA a'p q 44 aJUI�%'[A'i � I -q ta+ vw A1,WO — ,o-i! xq "Ogru, aq r,q A xn ' Iva Oat -fief deanasp Ll UX. q. &y�a� v[wx — VA .,.npy , �(' G�lE zuawaq li!� SWPA uaaalL" cm �o � f ,cnr sr t a] anon .,� uta aruuwi y{µ► s'mx'u �t uw�a pnsn rui u$. as 2„WA 1 al U" i �TNVM 8l7 LZ17 TOW 9iJ7 Sgels.itrM -auo pegqu 10 Stu" oll? BZJ? 6Z!? OW sge}s &M -aUD P9aS suarpoilgP -Jaqujaw a$1e� iq PTV fig 4i F1811p uru atp�gu law 1O SUORWed M PGW� JO ffUWOddris pnn S1aquja" ja► smnu.qucc wionfi4tmn Resod SPUp 4W8 PUG am -ems Xwwls q 'ssatmm umW!a-- ❑mmdWDO 3HV SNOLLuqiu2U S53-fAff, SMnS AVM-9NO UO SWV39 Q3SS3iLL5 UdNON -0 5S3N�f I' U wnVrrNrR--(u)Ts 3-Iabr_, -spa}la eajanpe lnatw^ pasn aq uw sseuw!Lq Jsssaf E salBDrpu! uag3aUsp So uow4nd -woo ssagrn 'srmq;aauDp a5mf ACI peftwup aq 01 Ajgajq uo4ort4SuOO aatllo to SU04E 'ed ai patpu4a iD a'uwod -dna fou UO[Pn4su03 damn-eua lal A[ddtt figs (e)5'6 aicPL ul peleindgs ssau>Piyq Wnw!uiW — k•Z•S-S (Pesswtselduou) u0-1pnusu00 Rent-auo — Z•g•6 'ampruls a }o AjijigsaqAues fo ipBuegs laagg AEaslanpe 1E41 suogeuuolap Aue Jo suog3al;ap j WII of ssauWp alenbape aney of paubpep aq lfegs alnxe of pal3afgns siagwaw alajouoo paaJolwaa — V916 sUOl1�aflaP 10 (OI4UO3 — g'g 3aOO 6 HgldVHO r� r � � ZOL-blUe/ef.e — 4•� Wkukr,j Nue apu-J 4uipuns aLE gov '3am7aro;m[ar Q.T gvaadraal puu a$sxqugs zap ZT'L Xq p—mbaz tsg7 sa zanouru gams qq, o] Vnba aq p[noge sggv lop parmbgs jv;QnmarojuT" mnrnttr= aqL T p-Tor •aArs='r3 aq p(no na Z: S-0 T -to T "S"0 i Xq pax_mb--,t Irmozus aql Qaar[Hi -V*graaur q2M ut la7uzaazoSMw pcog Type t=TO -Wna saprnazd world xa s. n •sls,[f tm ,Cq vauiubx wqt num mea.2 p.ggT--4ao lmT is ST l;m--,...'oprziar Bans aragns ldaoxa papraag st lnauraalOpn z rana.Mtl,% l2pttnsd arf of sr (£-01) .bj Cq P-"C=z iae azo�tnat oaltt�to[rzr aq� — i5 Or r -ssuaruorrx po aa�gnq? �srpar so; KlrTrgrssad oa st zr�[{l angmgmau� aka - aP C!Tsa.MS =mo pug =n.a[?laaa a; Czessaaa�r ,Cf�i -natlred sr tAatnaoxo�[rai aqua! umrmTrrrrr�a ln[toaza ia[�arq 6' -uom=dmoo ar aSSaug ain gipA uopos paguug a pn Tql so aogoas'Wiauelaar it so; reg3 warn; lnoge s! aopas pas=; -araran aql jo legl [¢nbo uowwe p=oparsr oql jo glBuaM 03 papQQU laaalaa:oja= apmm 3o lunourg 2q1 `u[Orsuel a[ 3! uopow a po aSaug aql aagm •Tsd optt sftrd-,'Juagad jllmgoK se cmmxz.ropararp tunaaze was MR SDAP (e-ol) aobg 7aa.rnpns izq lou ,Cam poq_mrs -ard ,{f=Ofa ante& "fl(107: aql 'Vrs sT sd 004ig lnagm agp sacd'-q gl� -j=Gov mmga •saadaz iva�orxt a�qe -$arr Pau atiq.Tsod gloq az T';'D T ,(q pazmbar st lU-amaaio;Uw aT 'al So lanoum umnr= s 'amTml it guns laonard oL -=ppns aq ago asev s g3ns mT amLm_q amTdmpo rn[npom sl! M04 palndam aogoas alm¢oa p=op=-mpuods moo oql po ImU uegl ssoT waioaaq sWICT m aognas parjezo Satsn oogoas Qpmaoo p=wpatara su gla-aags Immour palnd -atoo agl YaaozaarojMar aTrsaat To lanaare T[mars LOn S TpftaRw -ml parmEmr ueul uoRo-*s ssob ar -mgsq am 'moseat raglo to p4walrgaix mp t;otgm 's_:agmram p mxolg of satTdde l� .�'. Ojirlaz ;o lattoms mnl33catm s -rot aoLsuard aqL sxaq>IIam[ iejxaU 3o paauraaaojai umui T—,c-plil saogtpuoa Su}peol Kq pannbw =4 mx4a1 -sassaiotrr qu7'Ta1 Pnmddnsmr aql se as your aql 'sure4q chap 'mo-mm mp Ielaa ap amoaaq gatpeo[ g5ns ,tq do tas saoger wjjp pas sassags aogsaMiq lgggs qgm to (,iltor%aaora TeialeT) lalaao go patmol ,CTlaanhazp ale sarmaq paomgan ,Cjrw,,j i •aorslol sasaea legs F4mt4aaaoo julgM iuotgm popeol ga sareaq aql paprnoid STRonq Leta -1gI &q SEa nu asd Ttep low [Trm `moma pae chap ,Czars aaqu aana 'saotsuaarrp a[geuoma ,Cam jo smwq m=aoa Mrop -alai pao-qnu , Hwule[ Isgl amogs aneg t[.c)oor•otsjsgs ietll se au-ms eyl aq IIEUs ueds ayq }o uow, g • ul luawe0jo}ulaJ a}Isual;o ewe wnuz!ujuz ay; ss, u.ua!Iun ;o 56UQ.00l !3ue sgels fejr4on-49 jo. — b-To slSXfsue Aq pegnbai lay} UMzalea�6 WM-auo i 861 Ig sI pap!nojd juatua uoyufa aftsuaf ;0 Lair? aLn uo!fa:us rCra,ta IL' 1! Pa!ldde aq jot paau Z•5'0 L PUB VTO L W slueuaa.ljnb9j ;3QL — VTo l Jalletus sl aanaya!tlnn 'ar)tmll• ata to tflpinn 2lfl jo mqZ letlyla A' paoq& Mq 41fm (e 0 L) 'bs .Fr{ ue.lr6 EMMA stfl uecfl lalsaz8 10 of lanbs aq lle4s °rru-qv U se QLa 'uolsue; ul afiueg s Lwhe sJ.aqutaw glRUILwepp K[[uo!!gis jo- — Z 9'OC -4hV"gDoZ uetg ssal;ou Pug XCF u0ni6 ler{l uetf; ss-al aq lou hags papinozd elf craze aill 't,-To t pule g ❑! le g.4L u! paf7lnozd se ldaoxa 'sls,Cfeus Aq pajinbei st luawaorotu'pi a!Isual atarp�l lagwWu je.rnxeg a;a uaflaas,Czana ly --- L'9'0C saagwaur lBJnxall;o;uawao.lo;ulal wntuiulW---g-OL •slloddns leJalpl 10 6ul0eds 5u!uruzja;ap ul yun000e alul ua)fi4 aq lletfs psol;o,[!!alzlua*oe l�alel }o sl0af# �'p'Q1 ; r 'aoel �o a8ue!; ilaissaldwao;o 4 4lP!M lseal at{ti sauzrl pg oaaaxa you Ilny ; weaq a lob spoddns leialel l0 6ulaardS sngmm[[e•mgID saagWauj flu-lnxal;to sgoddns lvxagel: uaaA4-jq aauljstQ— b-01-d siloddns le,latel uaon,ilaq Qaue).sIQ — t,'o L AMVIINap VOD 3000 LL L->: M/8 LE 0 L d3lddHD Ajoluawwoo pus epoo 6u!pl!n9 aLe IOd 'sn01821-a apnlam asgl surds nags a! ,�gy�Jama axe `snoi2w Q aton8t xpigrn `szmpaa0ld u isap i 4 lenopipR4 aql suo�ax pagxmstp ;o aSrsap xeags art slapow op-pue-hugs 3o asn agi Smolie y xipuaddy ` u[ are saoudom�sse ;• i Y pae `Z,11 '1,11=�3a2I Pa�RP Au�sra paagaa! lu—gTa s Sulsneo xeags agi se uaxq R 7aP tiU=_mYa a3 mm qs :;nogl?b pue TpuA samq xo; auras {,�aq m panmsse sr'A olmaoo kq paptnoxd glSuaps x-qs aqL zuaviaaxojxnar wags aqi Sq xapaiewax aqi pas al= 40 aqi gq pop!Aoxd aq 03 pamn.4sa sr gisua4s xeogs aql jo dwod a `laamaaio arar xeags guns ngmam s III 'gaen arJM ava aq� Xq po"o ,aq of pamusse st xeags 'luJm23JOyuw ,qs tnoq�zm xaqu[am a -eq uopoas ssox r angaa a 1U3 as ssaus wags 22mgAs ue uo paseq st gaaaxls xsags aqL -Z L" L L xo '6'0 L' L L '9-9" L L WAm aoulap.iaa*e u! We- -aoxolu!ax xeays Aq PaP!Aold glSuaals mays leulwou SA PUe 'Z L" I. L x0 'tr' L L 'E" L 1. L4!M aouspa000s ul aia -uoo Aq pap!Aoid gl6uatls malts luulwou sl an ajagm (z- L 0 sA f '2A = uA :Aq palnd _woo 416u84s 1'eggs lEulwou sl "A pus paxeplsuoo uo!loas agl 1e awol xeays paJoWE; aql sl nA aaagM (L-W "A Z uA 4 wo paseq ag hags nags of loafgns suo!loas sso-10 10 uftap 'y xlpueddy q:pm aouspj000s ul pau6lsep sxagwew xo} ld9ax3 — V V L L ga$ua�gs xEagg — �•ii� yi6ua.1ls xeays — r L L E'6 aes 'iapvj uoganpai ql mis = P"4/st! = Aid uo!loes lsluozuoq 10 eajs alejauoo ssox6 of eaJe luawaojo4ulal xEags lwgjeA 10 ogpi = °d uoF439s leoWBA 10 ears alaJauoo ssox6 of e913 luawaololu!aj ,Isags lutuozlJog 10 ogex = wd pgl-7v = luawaoxolulal uolsual passaxlsaxduou to o. ex = d I;"tr"L' L aes 'uogoul 10 lualoylaoo = rf alwo -uoo to lg6ram llun of palelax lopul uogaayoa = uolsiol col 660 -lsus ssnfl ul slauoduip uoissaJdwoo 10 916us = B peaLpsegs to swis lsoquap! to legwnu = ;A — L = 1-'9'Z L' L L eas •suo!l -oauuoo urunloo-gels is hags 10 d4!oUlv9W9 ,Cq paualsuexl luewow paouelsqun to uolloell Z"E'S"E L aag "suo.pauuoo uwnloo-gels lE alnxeg Aq paiialst.lExl luawow paouelsqun to uo!loexl sgels passailsaid ul 'A alndwoo of pasn luslsuoo = dgr Eajs uolloom Jo peol palexluaouoo to ap!s pogs of apls 6uol 10 ogles = V q'b'ZL' 1- L 999 TO.4 -has gsls allsodwoo 6ulpunoxins aql to legl of uus peagxsags to .ssouh!ls lemxall to oqw s6u.qool pus sgels u! 'A aindwoo of pasn lueisuoo = s� aueld leags pus luawaoaolulaj uollou} xeays uoarvmlaq 916ue = lagwaw 10 slxe leu -!pnl!6ual pus sdn1alis paullaui uaamlaq 916ue = ;0 ul `uolsuaT ul laQ4 awagxa of 'luawaojolulax 6ul)3916au 'uolloas ssa6lo slxe lep!ojluao wo11 aouelslp = F� �isN�oD �ao� L L b3.Ld'dH� zbL-!de LEle LE I ti9{u8wwo3 pue apoo 6ulpling SLE joy `ZZZ'E' I lld 2os — £" t-£'ii2X FtmZ-t-E-lla 'IT'£'lliiggs t'i'£'IM sragtuata passes-gsardzrou zoj a;a muoa Sq Paprao zd gaaa-xls xu?gS — £•BTU •alaiaaoa aleva-tiN-21 tgnraM44rt Ieirttonas so s2U; ACa= ao E['rtqSa1 "'Q-V qTSP ao paseg ars sia?Id nrzr arty zrrt ai"oaoa 1�roraEt amu �n g7�ua s ai[saaa aq Q sogasg E»x;F s sr-4aArttrs jg2p& -tell ;o 1pgmw aTrsaaz oq1 lz T aogdmmsse 2q1 ao aoq. -sagtpoat aqt saseq ae.LUWIrs Paanas aqy — VI VII-a tr•rzv rn- L'9 °t VMW .0 emnrosdcl$ sr A� glzttaqs aP=01 2a43?[ aql •ai=wo lq-t71nia=au joa 'pasn R=q -4=aoo ;q'djsnuq$If aql so; .a� IIa�s a�rssardaraa aql pas j f gj9M2.Qs a5rsaa; BMUUds aaantaq drgsaogeiat atp ar ap of sM f-rolezogsi ao aor�eogrpotII aqz saseq angsaragia ]sig aRL - t'i'Z-IIZI -I L'�d� to suorivrrFp aq} mr �� �rmne7uoa sauaf aq� of XIao Mjd& aomMtppoar 21=1= rq!�Jn+lg2l[ �4I °lnstr sr a;=soo alai aMV Jtor2Anq3rf aagnt aossm pas =.qa so; saors -rnard aqi 4.WM of paprnoid ais sampaaaid angt; Mre oaj. a;axauoa ;gazaA4g2j'Z — Z-11-4 -rroddns agiIo aosj ag mag cly ss rtan awq glug4we nq aoryaas (PalZcm atg 10 ao4eaoE aq1 'stagaraar Passes-qsatd ar sausn KIPJaliag g asasaag — Z•E-I'IT-d IS.2 VIlei3iwfflOD s'Z's' l L 6ulsn apuw 9t s!a�[tnuv p-ll_i-p quou. s ,mejun 100,4, riot hu0. 01 pau6lsap aq IIEgs ;uawaaao;ulaj essays 'UoIsUa7 leixe;uE0glu61s ol;aafgns saagwaw ao=l — E'VE-11 Isd ul pessajdxa aq rlegs Bli/"N ftusnp pMq a� (,VaooZ+ L)Z — a N — 'uolssaidw03 leoce W pefgns saagwewlo l Z-L•g-�L fie- L L) p t q .V Z ='A o a�n -X;99 pus aeegisfu s 0; loafgns sjegwaw aoj — L L • L 'Z'E' L L L4VM avtMpuaraa ur epees sr uoppajan p$l.rMap aiow s ssalun 'g•L'£'LL 46noag; L'L'S-kL 40 aualsEA -aid Aq pelndwoo aq lieLls-A Wue4sJee4s— L-E- - srvgwaw Passagsaiduou Joi a;amuoa Aq paprno rd Louwjs jmeL4S — g• t L -pasn sr Wawaoeldaa pues lefl,sd uaLlm pellfuaaad aq IIaUs uor#slodaa;ul aEoull -9101ou00 ;g6rTgAgqdlf-puss ao; 99,0 pue a;aao -uoo PAB'Dw44 1-fie Jot SCo dq pefldlipw aq flegs }a senle<t flu 'pegloads 1ou Sl 01 ua4M -- Z-L'r -,y peacxa IOU NOW L'91''" to amen atii Inq ','� -ro; palnWgns aq fle4s L'9I PJ '3-9 tllrnn aotJEpi000e ur pauolllodoid sl alara+aoo pue Peg10ads sl +'1 ua4M — L"L'Z' L L P(Je 'ZE'ZVLL 'L'E'9-LL `6'9.'T E'b'9'LL Idooxa ' L f aalda4D wmlanoa p 1Y 0; Aidde lfe1ls sugp-:)_4 -lpow 6upoffol atg;o auo 'pasrz sl alaaauoa 91e6DA06 MO Maierte14sy ua4M •a;auouoo 146lan Imuou 01 Aiddu 416uaiis uo'9101 Pue AEags JOI suo{sfnvad — V6-LL 919.IOUO3 ;g6iann;g6i-j — Z• )_ L -[ldde ITeys ZL" L L tl6no14; B' L L fo suolsmid letoods aLg 's6urlaol pue sgals puE SIISM `SIOCIM PLM Sla3f0uaq 'swaaq daep joA 'Z/El a0uelslp a le poindr,uoa;aLa se i1 Jsegs awes aL41o} PGOIE ap aq 01 pan.iwtad acl IfBtfs poddns Ia XPE?f w0j; T(q aauelsrp a uer{I ssal pofeool suo49a3 `saaqutaw Passaa;sajd JOA --- zvr" k LL H3ldVf43 3000 9t4-d9LSI9LE L 0 L swea8 8;a-J3uo3 paouo4ui38;o sis leuy g—y Rv — pug �D sane'(Z/D — P) = PfP.00 Alol lenba s, 791a114en Ty _ .L 2u9nlUsgnS P.(L = "W SULS oL I--V•,7i3 ul D 'aaiol anissa.tduuoo aril jo uoq -oE;o autt at{; lnoge sluauuaur 8unumnS -p� _ °yl� nro pas¢u WN aroj Uopsnbg 'sttde.c$umd $utnnollol ate ni uury ut paiaptsuoo ase -J s Jsgtu •uojgseg Imgsuo;snauutpuuu e also 'pr _ uo paseq s�Cen� tasvnas at ° ¢ gtzs "yl;o suopauba alp ssydya of olgrssod sr ;I Q I-0 fs7g Q = n sauuooaq srq; •t—t, oldulsxg;o l dads at pamusn se rrsv D PP SzY�fq ssa-0s letng�aas laalenmbo ayl;o 'D 'q;dap aq; 'aio;alar .L =a 'uinr�gttmbe sl pue sr laals JEp ar `L 'aauol: ao[sa14 U2EEL aq('fgg,U) = ? sr a42xz oo aq), ? 'aa1o; antssa[duua--1 aq.E -L [—t: ' a? It nogs am2q xp sapFsuoa •rC pocf r luaruoM x1l Sugadum mF suouenba u&Lmp ol p2sn sq as:u airrp2aoxd amms aq= amq mllnnueI= s;a asea istna�=d 219 rpd -uo�ms sson Frsgaq seM_gmda io ticosdqu juauu -oUz aql =duioa ox pasn ara ,A tle(<ggeduuoa mggs pae mrtuggmba'aUpaas $UT 7:?Wd 2tp uI aulpla!A 19979 uotsua.L :uNo pun 'N Ioj suotlrmby 6iu0 luamaaz0;urad uorsu-as r.puri smeag xegl uspag jo stsXieUV '°mq-mlaEmaa.F a Qr m ro; pas sassa4S L I—vff u -uolingpislp ssails uo!tngjjpIp lelntlusloa) tuslsnlnb3 (a) sswts lentov co -uolpas sso.10 (s) -k ^' ---- Zrg—P=pl a ug 'r t:ro luleils 019Z W a1w) slxe lsjtnaN rw_ RIP RAP CALCULATIONS Am�'cus Portrers, PLLC Project No: 17-18-092 Sheet No: 1 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Subject: Rip Rap Aron OBJECTIVE: Design Riprap Apron to dissipate the 10-year flow discharging from FES-1 REFERENCES: 1. North Carolina Erosion and Sediment Control Manual, 2017. 2. "Hydraulics & Grate Capacity Calculations," by Amicus Partners, PLLC, 10/23/2018. TERMS: Qio = 10-year peak flow, (ft3/s) do = diameter of discharge pipe, (in) dso = median stone size in a well -graded riprap apron, (in) dma = maximum stone diameter in riprap apron, (in) La = length of riprap apron, (ft) W = downstream width of riprap apron, (ft) cfs = cubic feet per second Tw = Tailwater GIVEN/REQUIREMENTS: • -= Minimum design storm = 10-year = • �� SLAL�• [Ref: 2] Qio = 1.22 cfs _ 032006 : [Ref 2] V i o = 5, 40 ft/s '`.,:'y++*��i¢{rr�,= [Ref 2] do = 15 `�r; �(� PA�;,,` [Ref: 2] I A 2 3 tea! S CALCULATIONS: 1. Determine median and maximum stone diameter a. Determine median stone diameter - dso = 4" [Ref: 1, Fig. 8.06a] b. Determine maximum stone size - d..x. 1.5 x dso = 1.5(4") = 6.0" [Ref: 1] 2. Determine dimensions of riprap apron a. Determine minimum length of riprap apron - La = 6 ft [Ref: 1, Fig. 8.06a] b. Determine width of riprap apron - Upstream width = 34 = 3(1.25 ft) = 3.75 ft [Ref: 1, Fig. 8.06a] - Downstream width of apron o W=do+La=1.25ft+6ft=7.25ft Determine thickness of apron T = 1.5(dInax) = 1.5(6.0") = 9.0" [Ref: 1] Use T=9.0" - Use appropriate filter fabric underneath apron. Project No: 17-18-092 Sheet No: 2 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig ):toad Building Expansion Amicus Portners, PLLC SubjectRip Rap Apron OBJECTIVE: Design Riprap Apron to dissipate the 10-year flow discharging from FES-2 REFERENCES: 3. North Carolina Erosion and Sediment Control Manual, 2017. 4. "Hydraulics & Grate Capacity Calculations," by Amicus Partners, PLLC, 10/23/2018. TERMS: Qio = 10-year peak flow, (ft3/s) do = diameter of discharge pipe, (in) dso = median stone size in a well -graded riprap apron, (in) dma. = maximum stone diameter in riprap apron, (in) La = length of riprap apron, (ft) W = downstream width of riprap apron, (ft) cfs = cubic feet per second Tw = Tailwater GIVEN/REQUIREMENTS: Minimum design storm = 10-year Qio=6.21 cfs Vio=6.12ft/s do = 24" CALCULATIONS: 3. Determine median and maximum stone diameter a. Determine median stone diameter - dso = 6" b. Determine maximum stone size - dma. = 1.5 x dso = 1.5(6") = 9.0" 4. Determine dimensions of riprap apron a. Determine minimum length of riprap apron - La=8ft b. Determine width of riprap apron - Upstream width = 3do = 3(2.0 ft) = 6.0 ft - Downstream width of apron o W=do+La=2.0ft+8ft= l0.Oft c. Determine thickness of apron T = 1.5(dma.) = 1.5(9.0") = 13.5" Use T = 15" Use appropriate filter fabric underneath apron. [Ref: 2] [Ref: 2] [Ref: 2] [Ref: 2] [Ref: 1, Fig. 8.06a] [Ref: 1 ] [Ref: 1, Fig. 8.06a] [Ref: 1, Fig. 8.06a] [Ref: 1 ] Project No: 17-18-092 Sheet No: 3 of Date: 10/23/201.8 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Amcus Portrers, PL-C Subject: Rip Rap Aron OBJECTIVE: Design Riprap Apron to dissipate the 10-year flow discharging from FES-3 REFERENCES: 5. North Carolina Erosion and Sediment Control Manual, 2017. 6. "Hydraulics & Grate Capacity Calculations," by Amicus Partners, PLLC, 10/23/2018. TERMS: Q 1 o = 10-year peak flow, (ft3/s) do = diameter of discharge pipe, (in) dso = median stone size in a well -graded riprap apron, (in) dmax = maximum stone diameter in riprap apron, (in) La = length of riprap apron, (ft) W = downstream width of riprap apron, (ft) cfs = cubic feet per second Tw = Tailwater GIVEN/REQUIREMENTS: Minimum design storm = 10-year [Ref: 2] Qio = 14.04 cfs [Ref: 2] Vio = 5.64 ft/s [Ref: 2] do = 24" [Ref: 2] CALCULATIONS: 5. Determine median and maximum stone diameter a. Determine median stone diameter - dso = 6" [Ref: 1, Fig. 8.06a] b. Determine maximum stone size - dmax = 1.5 x dso = 1.5(6") = 9.0" [Ref: 1] 6. Determine dimensions of riprap apron a. Determine minimum length of riprap apron - La = 10 ft [Ref: 1, Fig. 8.06a] b. Determine width of riprap apron - Upstream width = 3do = 3(2.0 ft) = 6.0 ft [Ref: 1, Fig. 8.06a] - Downstream width of apron o W=do+La=2.Oft+l0ft=l2.Oft c. Determine thickness of apron T = 1.5(dmax) = 1.5(9.0") = 13.5" [Ref: 1] Use T = 15" Use appropriate filter fabric underneath apron. Project No: 17-18-092 Sheet No: 4 of Date: 10/23/2018 Calcs Performed By: CMM Calcs Checked By: NRP Project Name: Heilig Road Building Expansion Amicus Partners, PLLC Subject: -Rip Rap Apron OBJECTIVE: Design Riprap Apron to dissipate the 10-year flow discharging from FES-4 REFERENCES: 7. North Carolina Erosion and Sediment Control Manual, 2017. 8. "Hydraulics & Grate Capacity Calculations," by Amicus Partners, PLLC, 10/23/2018. TERMS: Qio = 10-year peak flow, (ft3/s) do = diameter of discharge pipe, (in) dso = median stone size in a well -graded riprap apron, (in) dm. = maximum stone diameter in riprap apron, (in) La = length of riprap apron, (ft) W = downstream width of riprap apron, (ft) cfs = cubic feet per second Tw = Tailwater GIVEN/REQUIREMENTS: Minimum design storm = 10-year Q10 = 14.04 cfs Vio = 5.64 ft/s do = 24" CALCULATIONS: 7. Determine median and maximum stone diameter a. Determine median stone diameter - dso = 6" b. Determine maximum stone size - dmax = 1.5 x dso = 1.5(6") = 9.0" 8. Determine dimensions of riprap apron a. Determine minimum length of riprap apron - La=6ft b. Determine width of riprap apron - Upstream width = 3do = 3(1.25 ft) = 3.75 ft - Downstream width of apron o W=do+La=1.25ft+6ft=7.25ft c. Determine thickness of apron T = 1.5(dmax) = 1.5(9.0") = 13.5" Use T = 15" Use appropriate filter fabric underneath apron. [Ref: 2] [Ref: 2] [Ref: 2] [Ref: 2] [Ref: 1, Fig. 8.06a] [Ref: 1 ] [Ref: 1, Fig. 8.06a] [Ref 1, Fig. 8.06a] [Ref: 1 ] Appendices FE - I 3 a _ Outlet W = Do + La Pipe I .. diameter (Do) 1 La 80�— T i water 0.51)o .,\ , .i I I o �-W 5 10 20 50 100 200 500 1000 S` L( 3 I a - Discharge (ft /sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (Tw < 0.5 diameter). Rev. 12/93 8.06.3 Fes — z' Appendices 1, I I I + . EI • I I 1 III j1�;1F1.11 ni , t / 1 • I iiii ii �rR 1 ���■ ��11� ��1�11111111111IiI11��1��:Alfll�,il 1 1I I A I!� ��� �I11otRfl���il�l�d I:n 1 fl� IISSIn � II i.! �i�FillfljiR� � rI.I�����' �����•��I 1------ �1binNn!:�p4gnj..•��II1 I .uii!A;i ! R•11;1f� % ��IJilu. 1 .1�11�i1��'j��: � � p •11� # f a , II III I r rllf', Ire, '1l�` 1 '�-.ai��.iil�►illdR E1� il;11I ;Jill1 .�IF.% Flip, li li��ll�l 11J il: Il�f pp ��r� pplAllnl llflll� 1 r /� 31II,I2��Ai Illllllln ' I,ni,s m ! i - ��� • � i�;� 'Ir 1 uiiEiinnlnn 31.11 IIIII''� IIIII • 1 1 1 1 11 11 11 111 r 1 •W.1- • •• •• • ••- • • • ••• • • •• • • •. Rev. 12/93 8.06.3 Appendices • 1 alW. p:1►1P� I ��ppII •' .1����1��� '•� •Yr�llf l � 1 • Ifs l� l N i��im • I ��`nli� !�i Ei liNll � It�l�»�mili,il ryry !!! i •►�� ��ji� ! ��j'�� � '����;l�li?iI�ii�{I� n� 1 I � IpIUF � it Ifi� ! '..•� •' �1".d��llllll���IIII1 Il��lll��ld� Ir��RH 1�� IINII�I I V" I II Y q•F' I • II II I ��.•ulklb...� I ,• ,.all�iil �� � •�"+� I�1jflllllll�'"' I EH•' 1 ",.I�Illrii��ii � ii �' + E;I III lilryt 1N►J _ a Fri.l{fF[Iil�l :0:fli ill ,1• IIIIfl111f urf�yi,l�'� Ilf! ++ II II pp .Hhl lit v �til� I! ��IiIIIfA • n ► F� Ip' il'll 1 II I I l t now 1 1 1 1 11 11 11 111 Rev. 12/93 8.06.3 (o ) (6 o F-Z5 - 4 t�l Outlet IW = Do + La PIPe 1 diameter (Do) T ilwater - 0.51)o ion ,50 ,;i.. . ,n `. o.. 40 Appetrdices 3 5 10 20 50 100 200 500 1000 )-: Z g�"r-� Discharge (ft3/sec) vto !9.(b �5 Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (Tw < 0.5 diameter). Rev. 12/93 8.06.3