

Via E-Mail

March 20, 2013

North Carolina Department of Environment and Natural Resources Inactive Hazardous Sites Branch REC Program 1646 Mail Service Center Raleigh, North Carolina 27699-1646

Attn: Ms. Janet K. Macdonald, PG

Re: Final Remedial Investigation Report Prestige Label 151 Industrial Drive Burgaw, Pender County, North Carolina Site ID No. NONCD0001143 <u>H&H Job No. HEY-002</u>

Dear Ms. Macdonald:

On behalf of HEY Realty, LLC, Hart & Hickman, PC (H&H) is submitting this electronic copy via email of the Final Remedial Investigation Report (RIR) for the above referenced site. This RIR has been prepared pursuant to 15A NCAC 13C .0306(g) of the REC Program rules and in accordance with the Administrative Agreement executed for the site on October 26, 2010. Additionally, this RIR has been prepared in accordance with NCGS 130A-310.65 to 310.77 to pursue risk-based corrective action. The signed and notarized *Remediating Party Document Certification Statement, Registered Site Manager Document Certification Statement, Phase I Remedial Investigation Completion Certification*, and *Remedial Investigation Completion Certification*, and Remedial Investigation Completion Certification Remedial Investigation Completion Certification Remedial Investigation Completion Certification Remedial Investigation Completion Certification Remedial Investigation Completion Certification, and Remedial Investigation Completion Certification Remedial Investigation Certification Remedial Remedial

3334 Hillsborough Street Raleigh, NC 27607 919.847.4241 main Ms. Janet Macdonald, PG March 20, 2013 Page 2

Should you have any questions or need any additional information, please feel free to contact me.

Sincerely,

Hart & Hickman, PC

Scamblett

Matt Bramblett, PE, RSM Principal

Attachments

cc: Mr. William Raney (2 hardcopies via US Mail and PDF via Email)

Final Remedial Investigation Report Prestige Labels (aka HEY Realty Property)

Burgaw, North Carolina DENR ID NONCD0001143

H&H Job No. HEY-002

March 20, 2013

SMARTER ENVIRONMENTAL SOLUTIONS

2923 South Tryon Street, Suite 100 Charlotte, NC 28203 704.586.0007 main 3334 Hillsborough Street Raleigh, NC 27607 919.847.4241 main

www.harthickman.com

Final Remedial Investigation Report Prestige Labels HEY Reality Property Burgaw, North Carolina <u>H&H Job No. HEY-002</u>

Table of Contents

1.0 Introduction	1
2.0 Site Background Information	
2.1 Site Location	3
2.2 Site Description	3
2.3 Land Usage and Zoning	4
2.4 Site Ownership	5
3.0 Environmental Setting	6
3.1 Climate	6
3.2 Surface Water Hydrology	6
3.3 Regional Geology and Hydrogeology	6
3.4 Site Geology	7
3.5 Site Hydrogeology	8
3.5.1 Groundwater Elevation and Flow Direction	8
3.5.2 Horizontal and Vertical Gradients	9
3.5.3 Hydraulic Conductivity and Groundwater Flow Velocity	
3.6 Water Supply	11
3.7 Environmentally Sensitive Areas	
4.0 Remedial Investigation Methods	
4.1 Remedial Investigation Objective	
4.2 Methodology	
4.3 Investigation Derived Waste	
4.4 Laboratory Analytical and Quality Assurance Samples	14
4.5 Screening Levels	
4.6 Site Photographs	

5.0 Phase I Remedial Investigation	18
5.1 Phase I Remedial Investigation Activities	18
5.2 Phase I Remedial Investigation Results	19
6.0 Final Remedial Investigation	23
6.1 Final Remedial Investigation Assessment	23
6.1.1 Soil Assessment Activities	23
6.1.2 Additional Groundwater Assessment Activities	24
6.2 Final Remedial Investigation Results	25
6.2.1 Soil Assessment Results	25
6.2.2 Groundwater Assessment Results	27
7.0 Conceptual Site Model	33
7.1 Potential Sources	33
7.2 Exposure Pathways and Receptors	35
8.0 Conclusions and Risk-Based Corrective Action Eligibility Evaluation	38
9.0 References	41

List of Tables

- Table 1
 Groundwater Elevations Summary
- Table 2Summary of Groundwater Analytical Data
- Table 3Summary of Soil Analytical Data

List of Figures

- Figure 1Site Location Map
- Figure 2 Site Plan and Cross-Section Location Map
- Figure 3 Generalized Geologic Cross Section A-A'
- Figure 4 Generalized Geologic Cross Section B-B'
- Figure 5 Shallow Groundwater Potentiometric Surface October 2012
- Figure 6 Deeper Groundwater Elevations October 2012
- Figure 7 Extent of VOC Plume in Shallow Groundwater
- Figure 8 Areas of Impact Exceeding Unrestricted Use Levels

List of Appendices

- Appendix A Registered Environmental Consultant Program Certification Statements
- Appendix B Laboratory Analytical Reports
- Appendix C Site Photographs
- Appendix D Soil Boring Logs and Well Construction Records

Final Remedial Investigation Report Prestige Labels HEY Reality Property Burgaw, North Carolina H&H Job No. HEY-002

1.0 Introduction

This Remedial Investigation Report (RIR) has been prepared by Hart & Hickman, PC (H&H) for the Prestige Labels site located at 151 Industrial Drive in Burgaw, Pender County, North Carolina (hereafter referred to as the site). This RIR has been prepared in accordance with an Administrative Agreement (AA) for a voluntary Registered Environmental Consultant (REC) directed assessment and remedial action executed on November 23, 2010 between the North Carolina Department of Environment and Natural Resources (DENR) Division of Waste Management Superfund Section and H.E.Y. Realty, LLC (HEY Realty). This RIR details the remedial investigation (RI) activities completed as proposed in the Phase I Remedial Investigation Work Plan (RI Work Plan) dated April 4, 2011 and the Phase I Remedial Investigation Work Plan Addendum (RI Work Plan Addendum) dated June 1, 2012. This report has also been prepared in support of risk-based remediation at industrial sites in accordance with North Carolina General Statutes (NCGS) 130A-310.65 to 310.73.

This RIR has been prepared to meet the specific requirements of the following:

- the AA for the site;
- the DENR *Registered Environmental Consultant Program Implementation Guidance* dated December 2012 (referred to herein as the REC Guidance);
- the requirements for RIR contained in North Carolina Administrative Code (NCAC) Title 15A 13C .0306(g); and
- the requirements for use of risk-based corrective action in NCGS 130A-310.65 to 310.73.

Remedial investigation activities and methods were conducted in general accordance with the REC Guidance and the latest version of the U.S. Environmental Protection Agency (EPA) Region 4 Science and Ecosystem Support (SESD) *Field Branches Quality System and Technical Procedures* guidance (hereafter referred to as the EPA SESD Guidance).

The report is organized into sections to include the following:

- Site Background Information (Section 2.0)
- Environmental Setting (Section 3.0)
- Remedial Investigation Methods (Section 4.0)
- Phase I Remedial Investigation (Section 5.0)
- Final Remedial Investigation (Section 6.0)
- Conceptual Site Model (Section 7.0)
- Conclusions and Risk-Based Corrective Action Eligibility Evaluation (Section 8.0)
- References (9.0)

The signed and notarized *Remediating Party Document Certification Statement*, the *Registered Site Manger Document Certification Statement*, the *Phase I Remedial Investigation Completion Certification* and the *Remedial Investigation Completion Certification* are included in Appendix A.

2.0 Site Background Information

2.1 Site Location

The HEY Realty property is located at 151 Industrial Drive in Burgaw, Pender County, North Carolina. Burgaw is located in the eastern portion of North Carolina near Interstate-40, approximately 30 miles from the Atlantic Ocean. The location of the site is shown on Figure 1, which is a United States Geological Survey (USGS) 7.5 Minute topographic map.

Figure 1 depicts topography within the immediate vicinity of the Site. As required in the REC Guidance, an original USGS quadrangle (Burgaw) map was previously provided with the RI Work Plan. The approximate coordinates of the site are latitude 34° 32' 30.55"N and longitude 77° 55' 9.67"W.

A site survey plat prepared by Paul Toti Surveying, a North Carolina professional land surveyor, was submitted previously with the RI Work Plan. The survey plat included building locations, pavement, property boundaries, monitoring well locations, drainage features, overhead and underground utilities, etc. As a supplement to the survey plat and for ease of reference, the general layout of the site (including buildings, pavement, drainage features, and vegetation) is illustrated on the site plan map (Figure 2).

2.2 Site Description

The HEY Realty property consists of approximately 5.68 acres of land situated on the southwest corner of the intersection of Industrial Drive and Progress Drive in the Pender Industrial Park. An approximate 15,000 square foot (sq ft) building of steel and concrete construction, with asphalt-paved parking areas, and a concrete loading dock is situated on the main parcel of the property. The facility was reportedly constructed in 1988 by Miller Building Corporation for Pres-Tige Label Corporation. In October 2004, McKinley Building Corporation began construction activities on a new 15,000 square ft addition for the facility tenant Prestige Label Corporation.

building at the site. A new asphalt-paved access drive and concrete loading docks were constructed in the southern portion of the site, and additional asphalt-paved parking spaces were added to the northern portion of the site. The new building, access drive, loading docks, and parking areas were completed in June 2005. The addition is a two-story building constructed of concrete block with a metal roof. The new building is used for office space, printing operations, shipping and receiving, and warehouse space.

A former 12 ft by 12 ft chemical storage shed (metal construction on a concrete slab) was identified as the primary area of environmental concern during previous assessment activities. The shed was located just south of the main facility described above and was utilized to store chemicals used by the facility including tetrachloroethene (PCE) which was used to clean printing plates prior to 1997. This chemical storage shed was removed in February 2000 during the preparation of the Corrective Action Plan (CAP) dated July 2000.

Prestige printed various types of self-adhesive labels and tags at the facility. The facility most recently utilized water-based inks for most printing operations. Glycols were sometimes added to inks to slow the drying process. As mentioned above, the facility operators used PCE as a printing plate wash solvent prior to 1997. The waste PCE was distilled in a PCE recovery unit for re-use. A non-hazardous commercial plate-washing compound comprised of ethyl acetate and benzyl alcohol was used from 1997 until operations ceased at the facility in 2012. The facility is currently vacant.

2.3 Land Usage and Zoning

The site and adjacent properties are zoned light industrial (I-1) by the Town of Burgaw. Industrial Drive is situated to the north of the site, while Progress Drive borders the site to the east. The property to the south is developed and zoned for light industrial use. Land adjacent to the west of the site is undeveloped, but zoned for light industrial use. The closest residence to the site is an apartment complex located approximately 450 ft to the southeast along Progress Drive.

The land use zoning within a half-mile radius of the site is a mixture of residential (R-7 and R-12), office and industrial (O&I), light industrial (I-1), and highway business district (B-2). The surrounding properties include the following:

- <u>North</u> Industrial Drive, then light industrial zoned land and production facilities owned by American Skin Food, LLC
- <u>South</u> Light industrial land owned by Zeljko Vesligaj and operated as Phoenix Technologies
- <u>Southwest</u> Undeveloped light industrial land owned by the Thankful Williams Heirs
- <u>West</u> Undeveloped light industrial properties owned by the Bertha Herring Heirs and James Carr
- <u>East</u> Progress Drive, then undeveloped properties zoned for office and industrial use.

2.4 Site Ownership

The Pender Progress Corporation originally purchased the undeveloped property from Katherine Lockey, Ann Sparkman, and Helen Sparkman in September 1980. The property was later sold to the Symex Realty Corporation on August 23, 1988 who in turn leased the property to Pres-Tige Label Corporation in 1988 to operate a label printing business. In April 1996, Pres-Tige Label Corporation sold its assets to Prestige Label Company, Inc., an unrelated company, which operated the facility until 2006. Symex Realty Corporation sold the property and buildings on September 26, 2003 to H.E.L. Realty, LLC, which is a North Carolina limited liability company. H.E.L. Realty, LLC changed its name to H.E.Y. Realty, LLC on November 19, 2003. As of July 31, 2006, the assets of Prestige were sold to the Atlantic Corporation of Wilmington, Inc., which leased the real property from H.E.Y. Realty, LLC. Atlantic Corporation continued to operate the facility under the trade name Prestige Label Company (no Inc.). Atlantic Corporation moved the Prestige Label operations to another facility in 2012 and the building has been vacant since that time. The most recent deed is recorded in Book 2228 Page 119 in the Pender County Registry.

3.0 Environmental Setting

3.1 Climate

The average annual precipitation of Pender County is approximately 55 inches, which includes two inches in the form of snow. Precipitation in Pender County is spread over an average of 107 days throughout the year. The warmest month is July, with an average high temperature of 90° F. The coolest month of the year is January with an average low temperature of 33° F.

3.2 Surface Water Hydrology

The site is relatively level and near grade with Progress Drive and Industrial Drive. Surface water would be expected to flow in the direction of drainage ditches running parallel to each property boundary along the edges of Industrial Drive and Progress Drive (Figure 2). Based on the Burgaw, NC USGS 7.5 minute topographic quadrangle map, these drainage ditches are expected to discharge to the intermittent stream known as Osgood Branch located 1,400 ft to the west of the subject property (Figure 1). Osgood Branch is a tributary of Burgaw Creek, and both are Class C waters. Groundwater discharge is generally expected to follow the groundwater flow direction to the northwest toward Osgood Branch. Osgood Branch discharges to Burgaw Creek, which ultimately discharges to the Northeast Cape Fear River.

3.3 Regional Geology and Hydrogeology

The Burgaw area, including the subject property, is located within the Coastal Plain Physiographic Province of North Carolina. The Coastal Plain consists of two (2) natural subdivisions - the Tidewater Region, or Outer Coastal Plain, and the Inner Coastal Plain. Burgaw is situated near the division between these two areas. The Tidewater Region consists of the coastal area where large streams and many of their tributaries are affected by ocean tides. This region is generally of low relief and can be swampy. The portion of the Inner Coastal Plain where Burgaw is located is characterized by low relief and circular depressions called Carolina Bays which are commonly filled with lakes or swamps.

The Coastal Plain sediments primarily consist of clastic rocks ranging from clay to gravel with lesser amounts of marine limestone. The sediments have a general eastward dip. Beds tend to thicken and the number of individual beds tends to increase towards the east.

The Coastal Plain groundwater flow system consists of aquifers composed of permeable sand, gravel and limestone layers separated by confining units composed of less permeable sediments. Because clay beds, which restrict vertical movement of groundwater, are scattered throughout the aquifer system, recharge to shallow-lying, unconfined aquifers is considerably greater than recharge that moves downward to confined aquifers.

Based on the 1985 Geologic Map of North Carolina, the site is situated within an area underlain by the Pee Dee Formation, which is described as sand, clayey sand and clay, greenish gray to olive black in color; massive, glauconitic, locally fossiliferous and calcareous, with patches of sandy molluscan mold limestone in the upper parts. According to the Hydrogeologic Framework of the North Carolina Coastal Plain Aquifer System (Winner and Clark, 1989), the Pee Dee confining unit overlies the Pee Dee aquifer. The Pee Dee confining unit generally consists of clay, silty clay and sandy clay and averages 25 ft thickness. The confining unit in areas of Bladen, Columbus and Pender Counties tends to be clayey sand with higher hydraulic conductivity than other regions. Surficial sands of more recent deposition overlie the Pee Dee confining unit in some areas.

3.4 Site Geology

Visual observation by H&H of soils sampled during drilling of soil borings and monitoring wells at the site indicate that a layer of gray to yellowish brown sandy clay is situated from near the surface to 25 ft below ground surface (bgs). Dark gray sandy silt to silty sand is situated below this clay layer. This observed clay layer, which is interpreted to be the Pee Dee confining unit, appears to act as a confining unit between shallow and deeper groundwater at the Site. This is evidenced both by the significant differences in hydraulic head between the shallow and deep wells at the Site, and by the lack of target compounds detected in the deeper wells. Generalized

geologic cross-sections are provided on Figure 3 and 4, and the geologic cross-section locations are provided on Figure 2.

3.5 Site Hydrogeology

The Pee Dee aquifer is interpreted to underlie the Pee Dee confining unit at the site and most likely discharges to the unnamed intermittent tributary of Burgaw Creek situated approximately 1,800 ft east-northeast of the Site at its closest point. Estimated groundwater elevations in Osgood Branch situated to the west of the Site are approximately 45 ft mean sea level (msl) while elevations of Burgaw Creek to the north of the site and the unnamed tributary of Burgaw Creek east-northeast of the Site range from 26 to 40 ft msl. Given that the Pee Dee aquifer elevations at the subject Site are approximately 40 ft msl, groundwater flow would be expected to be to the north and east in the directions of lower water elevations in Burgaw Creek. As discussed below, the estimated groundwater flow direction at the subject site based on water levels in the shallow confining unit is interpreted to the northwest in the direction of Osgood Branch.

3.5.1 Groundwater Elevation and Flow Direction

A total of 12 permanent monitoring wells have been installed and screened in the surficial aquifer, and three permanent monitoring wells have been installed and screened in the deeper aquifer at the site. Since the submittal of the RI Work Plan in April 2011, site wide gauging events have been completed in June 2012 following installation of monitoring wells MW-8 through MW-11 and October 2012. Partial gauging events were also conducted in April 2011 (during the Phase I RI sampling activities) and June 2012. Water level data were collected during each event with an electronic water level meter. The top of casing elevations for the previously installed site monitoring wells were surveyed by Paul Toti Surveying in December 2010. The top of casing elevations at the newly installed monitoring wells (MW-8 through MW-11) were estimated by H&H using a level and rod and known reference points.

During the site wide gauging event in June 2012, groundwater elevations of the surficial aquifer ranged from 46.47 ft above mean sea level (MSL) at MW-3R located in the south-central portion of the site to 48.23 ft above MSL at MW-4 located in the south-central portion of the site. Because monitoring wells MW-8 through MW-11 were installed immediately prior to this gauging event, groundwater levels at these wells had not equilibrated and are not representative of site groundwater elevations. During the October 2012 gauging event, groundwater elevations ranged from 44.21 ft above MSL at MW-11 to 47.79 ft MSL at MW-5. Groundwater elevation data for the site wide gauging events in 2011 and 2012 are provided on Table 1. The inferred shallow groundwater potentiometric surface based on the groundwater elevation data collected during the October 2012 gauging event is presented on Figure 5. The deeper aquifer elevations from the October 2012 event are presented on Figure 6.

As discussed during previously submitted groundwater monitoring reports, groundwater elevations at the site vary over time, which could be the result of the time needed for groundwater to equilibrate following rain events due to the tight clay formation observed at the site. Based on the current and most comprehensive gauging data collected in June and October 2012, the overall shallow groundwater flow direction is to the northwest (Figures 8). Shallow groundwater in the eastern portion of the site flows west and then northwest

3.5.2 Horizontal and Vertical Gradients

Because the dominant groundwater flow at the site appears to be to the northwest, horizontal hydraulic gradients were calculated for shallow groundwater based on comparisons of groundwater elevation data along the flow path between MW-3R and MW-11 during the June and October 2012 gauging events. The calculated hydraulic gradients are summarized below:

Gauging Event	Flow Path (ft/ft)
June 2012	0.015
October 2012	0.011

The mean hydraulic gradient in shallow groundwater across the site is approximately 0.013 ft/ft.

There are two monitoring well cluster pairs that include a shallow Type II monitoring well, and an adjacent deep Type III monitoring well installed in close proximity to each other at the site. The MW-5/MW-5D well pair is located on the eastern central portion of the site near Progress Drive. The MW-6/MW-6D well pair is located near the southern property boundary in the central portion of the site. Vertical gradients calculated from the June and October 2012 gauging events are summarized below:

Gauging Event	MW-5 and MW-5D	MW-6 and MW-6D	
	monitoring well cluster (ft/ft)	monitoring well cluster (ft/ft)	
June 2012	-0.4183	-0.3200	
October 2012	-0.3991	-0.2838	

* A negative number represents a downward vertical gradient, and a positive number represents an upward vertical gradient.

As seen in the table above, the vertical gradient was observed to be in the downward direction at both monitoring well pairs. The downward gradients suggest the potential for vertical migration of groundwater at the site. However, the primary constituents of concern at the site (PCE and its degradation products) have never been detected above laboratory method detection limits in the deeper aquifer with the exception of low-level detections of PCE and trichloroethene (TCE) at TW-1R in 1997. However, these detections were likely introduced during the installation of the well and not an indication of impacts migrating to the deeper aquifer. These data suggest the Pee Dee confining unit is limiting the vertical flow of groundwater between the surficial and deeper aquifers.

3.5.3 Hydraulic Conductivity and Groundwater Flow Velocity

Hydraulic Conductivity

H&H conducted slug tests on shallow wells MW-1, MW-2 and MW-3 and on deeper well T-I during preparation of the CAP previously submitted to DENR in June 2000. It should be noted that these well were abandoned to accommodate site redevelopment activities. Wells replaced following redevelopment are denoted with an "R" on the site map (Figure 2). The calculated hydraulic conductivities based on these slug tests are listed below:

Surficial Aquifer		
Monitoring Well	Hydraulic Conductivity (ft/day)	
MW-1	0.25	
W-2	0.12	
MW-3	0.18	
Geometric Mean	0.18	
Deeper Aquifer		
T-1	0.06	

As indicated above, the hydraulic conductivity in the deeper aquifer zone is lower than that in the shallow zone. T-I was screened in interbedded clays in the Pee Dee aquifer which likely explains the lower calculated hydraulic conductivity of this deeper well relative to the shallow wells.

Utilizing the mean hydraulic gradient calculated in Section 3.5.2 (0.013 ft/ft), the geometric mean hydraulic conductivity for the surficial aquifer calculated above (0.18 ft/day), and an assumed effective porosity of 0.2 (20%), the average groundwater flow velocity is estimated to be approximately 0.01 ft/day (4 ft/year).

3.6 Water Supply

In December 2010, an updated water supply well survey was conducted to include a half-mile search radius per the REC Guidance requirements. Several methods were utilized to complete the survey including confirming municipal water accounts with the Town of Burgaw, reviewing water supply well permits with the county, meeting with the Burgaw Public Works Director to review waterline and municipal water supply well locations, a drive by reconnaissance, and a door-to-door reconnaissance. The survey revealed eight water supply wells within the search radius, including the four previously identified during the CSA. Additional details of the water supply well survey were provided in the RI Work Plan dated April 14, 2011.

11

3.7 Environmentally Sensitive Areas

Details of the environmentally sensitive areas survey are available in the RI Work Plan dated April 14, 2011. At the time the RI Work Plan was submitted, responses to inquiries regarding sensitive environments had been received from each of the agencies required to be contacted as specified in the REC Guidance document with the exception of the North Carolina Division of Coastal Management (NC DCM). However, based on the property location and developed status, H&H does not believe that there are concerns relevant to the NC DCM. In general, only two minor concerns were expressed by the agencies contacted. In a response received from the DENR Division of Water Quality (DWQ), the subject site is located is in an area that is environmentally sensitive to runoff due to the proximity of Osgood Branch and Burgaw Creek. Burgaw Creek is listed as an impaired water body on the 2010 NC 303(d) list due to chlorophyll and copper standard violations.

4.0 Remedial Investigation Methods

4.1 Remedial Investigation Objective

Extensive site assessment activities have already been conducted at the site. As such, historical data, as well as the most recent groundwater data were used to establish the scope of the RI activities. Because the constituents of concern (COCs) at the site were identified to be volatile organic compounds (VOCs), most soil and groundwater samples collected at the site during previous assessment activities were analyzed exclusively for VOCs. Because the REC program requires samples be analyzed for semi-volatile organic compounds (SVOCs) and hazardous substance list (HSL) metals, the objective of the Phase I RI was to assess these additional REC parameters at previously installed monitoring wells at the site. However, because HSL metals were detected in groundwater samples collected during the Phase I RI at concentrations difficult to distinguish as impacts or naturally occurring, a Work Plan Addendum was prepared to further evaluate these detections. As such, the objective of the Final RI was to collect additional soil and groundwater data to further evaluate metals detected at the site.

4.2 Methodology

The RI activities were conducted in accordance with the Phase I RI Work Plan dated April 2011 and the RI Work Plan Addendum dated June 1, 2012. Sampling and decontamination activities also followed REC Guidance and SESD Guidance. General descriptions of the sampling procedures are provided by media in subsequent sections of this report.

4.3 Investigation Derived Waste

Investigation derived waste (IDW) was generated during the assessment activities in the form of soil cuttings, monitoring well purge and development water, and decontamination fluids. In accordance with Appendix A of the REC Guidance document, IDW can be discharged in the area of contamination as long as it will remain on-site, does not increase the spread of contamination, and does not introduce contamination to uncontaminated soil. As such, soil cuttings, purge water, and development water was discharged to ground surface in the immediate vicinity of the

monitoring well or soil boring from which it was generated. Off-site disposal of IDW did was not required during the remedial investigation.

4.4 Laboratory Analytical and Quality Assurance Samples

Prism Laboratories, Inc. (Prism) conducted the laboratory analysis of the groundwater samples collected during the Phase I RI activities (April 2011) and Pace Analytical Services, Inc. (Pace) conducted the laboratory analysis of the soil and groundwater samples collected during the Final RI activities (June 2012). During both phases of the RI, samples were shipped via FedEx to the laboratory under appropriate chain of custody documentation. Samples were received in good condition and met holding times and preservation requirements, with the exception that hexavalent chromium in the rinse place sample collected June 5, 2013. This sample was analyzed outside of the laboratory hold time for hexavalent chromium. The laboratory data are provided in data package formats in accordance with the REC Guidance. The laboratory analytical reports are provided in Appendix B.

The following quality assurance samples were collected during the field activities conducted in April 2011:

- One equipment rinseate blank (EB-042611) was collected from the groundwater sampling equipment to evaluate proper decontamination of the sampling equipment and to demonstrate that sample tubing had not been contaminated. To collect the rinse blank, laboratory supplied deionized water was purged from the container through new polyethylene sample tubing and into a laboratory sample container using a peristaltic pump.
- One blind duplicate groundwater sample (DUP-042611) was collected to document laboratory consistency. The blind duplicate sample was collected from monitoring well W-2R. This sample was submitted to the laboratory with a unique label so it could not be identified by the laboratory.

The following quality assurance samples were collected during the field activities conducted in June 2012:

- One equipment rinseate blank (Rinse Blank) was collected from the groundwater sampling equipment to evaluate proper decontamination of the sampling equipment and to demonstrate sample tubing had not been contaminated. To collect the rinse blank, laboratory supplied deionized water was purged from the container through new polyethylene sample tubing and into a laboratory sample container using a peristaltic pump.
- One duplicate groundwater sample (DUP-GW) and one duplicate soil sample (DUP-Soil) were collected to document laboratory consistency. The blind groundwater duplicate sample was collected from monitoring well W-2R. The blind soil sample was collected from soil boring SB-3 (1-2). These duplicate samples were submitted to the laboratory with a unique label so they could not be identified by the laboratory.

For soil duplicate samples, the samples were homogenized prior to placement into sample containers. Homogenization was performed by mixing the soil sample in a decontaminated glass bowl (Pyrex) and then sequentially placing aliquots of the mixed sample into the containers until full.

Internal laboratory QA/QC was conducted in accordance with method prescribed protocols.

Rinseate Blank Sampling and Results

Two rinse blanks (EB-042611 and Rinse Blank) were collected during the RI activities. The EB-042611 sample was analyzed for HSL metals, SVOCs, and 1,4-dioxane, while the Rinse Blank sample was analyzed for HSL metals and hexavalent chromium. Analytical results for both rinse blank samples did not indicate detectable impacts with the exception of a low-level detection of antimony (5.1 μ g/l) in the sample Rinse Blank indicating equipment was properly decontaminated between sample locations.

Duplicate Samples

In general, the analytical results of the duplicate samples were similar to the analytical results of the parent sample, which indicates good laboratory repeatability. The groundwater duplicate analytical results are summarized in Table 2. The soil duplicate results are summarized in Table 3.

4.5 Screening Levels

The REC Guidance indicates that soil concentrations must meet both a health-based screening level and a standard based upon soil leaching to groundwater. Health-based screening levels used in the soil data evaluation consisted of the IHSB residential and industrial health-based soil remediation goals (HBSRGs). Protection of groundwater screening levels used in the soil data evaluation consisted of the generic IHSB protection of groundwater soil remediation goals (PGSRGs) for potential leaching to groundwater. Additionally, detections of metals were compared to site-specific background concentrations. Although the site is utilized for commercial purposes, analytical results are compared to the IHSB residential HBSRGs and site-specific background metal concentrations to demonstrate that detections in soil above unrestricted use levels are not impacting off-site properties. Groundwater analytical results were compared to the NCAC 2L Groundwater Standards (2L standards) and site-specific background concentrations for metals to define the extent of impacted groundwater and to demonstrate that detections in groundwater above unrestricted use levels are not impacting off-site properties.

Additionally, manganese detections in groundwater were compared to data collected as part of the National Uranium Resource Evaluation (NURE) Program. In the late 1970s and early 1980s, the North Carolina Department of Environment, Health, and Natural Resources (currently known as DENR) collected surface water, stream sediment, and groundwater samples across the state as part of the NURE Program initiated by the US Atomic Energy Commission and subsequently funded through the US Department of Energy. The purpose of the NURE program was to evaluate uranium resources and to locate places favorable for uranium exploration (Reid, 1991). This evaluation was based on the collection of stream sediment, groundwater, and surface water

samples across the country for analysis of metals and geochemical parameters that may suggest uranium deposits. As part of the NURE program, nine groundwater samples were collected in Burgaw and 93 samples were collected across Pender County. Results of these samples indicate that manganese naturally occurs in groundwater at concentrations ranging from 0.031 mg/l to 0.198 mg/l near Burgaw and at concentrations ranging from 0.017 mg/l to 0.255 mg/l in groundwater across Pender County.

In some cases, analytical results will also be compared to site-specific remediation goals to be calculated for the constituents detected above unrestricted and/or site-specific background levels pursuant to the risk-based corrective action rules in NCGS 130A-310.65 to 310.73. Details of the calculated site-specific remediation goals will be provided in the Remedial Action Plan (RAP) to be submitted under separate cover. The site-specific remediation goals are intended to be final cleanup levels for the site.

4.6 Site Photographs

As required by REC Rules, color photographs of the site were taken during the RI field activities and copies of the photographs are provided in Appendix C.

5.0 Phase I Remedial Investigation

Previous assessment activities are detailed in the RI Work Plan dated April 14, 2011. However, because the intent of this RIR is to provide the basis to pursue risk-based corrective action pursuant to NCGS 130A-310.65 to 310.7 (House Bill 45), VOC detections and the extent of VOC impacted groundwater based on analytical data collected during the June 2010 groundwater monitoring event are provided on Figure 7. These data are being provided to demonstrate that VOC impacted groundwater above 2L standards is limited to the south central portion of the site and has not migrated off-site. Because VOC impacts were defined and well understood prior to the site entering the REC program, no additional soil or groundwater samples were collected for analysis of VOCs during the Phase I RI or Final RI and are not further discussed herein. For additional details of the June 2010 monitoring event, refer to the Annual Monitoring Report dated August 25, 2010, which was included with the RI Work Plan.

5.1 Phase I Remedial Investigation Activities

Because several REC Program required analytical parameters were not analyzed during past assessment activities, the purpose of the Phase I RI was to evaluate the presence of the VOC 1,4dioxane, SVOCs and HSL metals in site groundwater. As such, groundwater samples were collected from existing monitoring wells W-1, W-2R, MW-5, and MW-7 for analysis of the additional REC required parameters, as detailed below. The locations of these monitoring wells are presented on Figure 2.

On April 26, 2011, monitoring wells W-1, W-2R, MW-5, and MW-7 were low flow purged utilizing a peristaltic pump and dedicated disposable polyethylene tubing. Each monitoring well was purged until field measurements of pH, temperature, and specific conductivity stabilized and turbidity was near or below 10 NTU. Low flow purging methods were utilized to minimize sample turbidity. Once field measurements stabilized, disposable bailers were lowered into the water table at each of the sampling locations to facilitate sample collection. Groundwater samples were then transferred from the bailer directly into the laboratory supplied sample containers. It should be noted that despite the use of low flow purging methods, turbidity at

monitoring wells W-1 and MW-7 could not be reduced to below 10 NTU prior to sample collection. Turbidity levels are shown on Table 2.

Upon collection, groundwater samples were placed in a cooler on ice and shipped to Prism, a North Carolina certified laboratory, for analysis. Samples were maintained under an appropriate chain-of-custody from the time the samples were collected until receipt by the laboratory.

To satisfy the REC Phase I sampling requirements, groundwater samples collected from select monitoring wells (as detailed below) were analyzed for the following parameters:

- HSL metals by EPA Method 3030C preparation and EPA Methods 6010 and 7471 (W-1, W-2R, MW-5, and MW-7). In accordance with the REC Guidance, samples for filtered metals analysis were not collected.
- SVOCs by EPA Method 8270 plus tentatively identified compounds (TICs) for the 10 largest spectral peaks (W-1 and W-2R).
- 1,4-Dioxane (a former stabilizer used in some chlorinated VOC formulations) by EPA Method 8260 SIM (W-1 and W-2R).

Due to the extensive VOC data already available, groundwater samples collected from W-1, W-2R, MW-5, and MW-7 were not analyzed for VOCs (with the exception of 1,4-dioxane) as part of the Phase I RI.

5.2 Phase I Remedial Investigation Results

Analytical results of the groundwater samples collected during the Phase I RI activities indicated the presence of several metals above their respective 2L standards including cadmium, chromium, lead, manganese, and selenium. Because the concentrations at which these metals were detected, it was difficult to determine whether these metals were naturally occurring or the result of historic site operations. Results of metals detected above 2L standards are discussed

further below. SVOCs and 1,4-dioxane were not detected above laboratory method detections limits in the groundwater samples collected during the Phase I RI activities. As such, no additional assessment of these constituents is warranted. The laboratory analytical report is provided in Appendix B. Groundwater analytical results are summarized on Table 2.

<u>Cadmium</u>

Cadmium was detected at concentrations of 0.0063 mg/l and 0.0027 mg/l in the groundwater samples collected from monitoring wells W-1 and MW-5 respectively, which exceed its 2L standard of 0.002 mg/l. Cadmium was not detected above laboratory method detection limits in the groundwater samples collected from monitoring wells W-2R and MW-7. Because turbidity was elevated (45.4 NTU) in the groundwater sample collected from W-1 and low (2.97 NTU) in the groundwater sample collected from MW-5, it was difficult to determine whether these detections of cadmium are naturally occurring, the result of turbid samples, or potentially an indication of a release resulting from historic site operations. As such, it was determined additional assessment for cadmium was warranted (Section 6.0).

Chromium

Chromium was detected at concentrations of 0.036 mg/l and 0.057 mg/l in the groundwater samples collected from monitoring wells W-1 and MW-7 respectively, which exceed its 2L standard of 0.010 mg/l. However, these detections were evaluated likely to be the result of turbid groundwater samples (45.4 NTU at W-1 and 539.4 NTU at MW-7) and not resulting from historic site operations. This is supported by the fact that chromium was not detected above laboratory method detection limits in the groundwater samples collected from monitoring wells W-2R and MW-5 where turbidity was measured at 5.83 NTU and 2.97 NTU, respectively. However, it was determined additional assessment for chromium was warranted to further evaluate these detections (Section 6.0).

Lead

Lead was detected at concentrations of 0.022 mg/l and 0.023 mg/l in the groundwater samples collected from W-1 and MW-7, respectively which exceed its 2L standard of 0.015 mg/l. Similar

to the detections of chromium, these detections were evaluated to likely be the result of turbid groundwater samples, and not a release resulting from historical site operations. This is supported by the fact that lead was not detected above laboratory method detection limits in the groundwater samples collected from monitoring wells W-2R and MW-5 where turbidity was measured below 10 NTU as detailed above. However, it was determined additional assessment of lead was warranted to further evaluate these detections (Section 6.0).

Manganese

Manganese was detected at concentrations of 0.13 mg/l and 0.21 mg/l in the groundwater samples collected from monitoring wells W-1 and W-2R, respectively, which exceed the 2L standard of 0.050 mg/l. Manganese was detected in the groundwater samples collected from monitoring wells MW-5 and MW-7 at concentrations above laboratory method detection limits, but below its 2L standard. The detection of manganese in the groundwater sample from W-1 is likely the result of elevated turbidity and not an impact resulting from historical site operations. Because the concentration of manganese at W-2R was higher and associated with a low turbidity sample and because W-2R is located adjacent to the former chemical storage shed, this detection is potentially the result of historical site operations.

It is unknown whether manganese based dyes were used at the Prestige Labels facility. However, manganese is sometimes used in inks and dyes as a pigment and a drying agent. If such inks were utilized at the facility, it is possible they may have been stored in the former shed. As such, it was determined that additional assessment for manganese was warranted (Section 6.0).

<u>Selenium</u>

Selenium was detected at a concentration of 0.026 mg/l in the groundwater sample collected from monitoring well W-2R, which exceeds its 2L standard of 0.020 mg/l. Selenium was not detected above laboratory method detection limits in the groundwater samples collected from W-1, MW-5, and MW-7. Because the concentration of selenium at W-2R was notably higher than other detections and because W-2R is located adjacent to the former chemical storage shed, this detection is potentially the result of historical site operations.

It is unknown whether selenium based dyes were used at the Prestige Labels facility. However, selenium is sometimes used in inks and dyes for pigmentation. If such inks were utilized at the facility, it is possible they may have been stored in the former shed. As such, it was determined that additional assessment for selenium was warranted (Section 6.0).

Tentatively Identified Compounds

Squalene, which is a naturally occurring hydrocarbon produced by plants and animals was detected in the duplicate groundwater sample collected from monitoring well W-2R at a concentration of $16 \mu g/l$. There is no 2L standard or Interim Maximum Allowable Concentration (IMAC) standard for squalene. Squalene is sometimes used in the production of vaccines. It is not used in inks and dyes and does not appear to have a purpose in the printing industry. As such, this detection does not appear to be the result of historic site operations. Additionally, because squalene was only detected in the duplicate sample and not the parent sample, this detection may be a laboratory artifact. Based on this evaluation, it was determined that no additional assessment for squalene was warranted.

It should be noted that an "unknown compound" was detected at concentrations up to 58 μ g/l in the groundwater samples collected from W-1 and W-2R. In a conversation with REC Program staff on May 16, 2011, it was decided that additional assessment of this unknown compound was not warranted as any remedial activities including engineering and/or institutional controls implemented at the site would sufficiently address this compound. As such, no additional assessment of this unknown compound was conducted.

6.0 Final Remedial Investigation

Because various metals were detected in the groundwater samples collected during the Phase I RI at concentrations exceeding 2L standards, additional assessment was conducted to further evaluate these detections. The Final RI activities and results are detailed in the following sections.

6.1 Final Remedial Investigation Assessment

6.1.1 Soil Assessment Activities

On June 5 and 6, 2012, H&H advanced six soil borings to evaluate whether metal impacts resulting from historical site operations were present, and if present, contained within the property boundaries of the subject site. Four of the borings were advanced inside the facility at locations of historic printing operations and where dye staining was noted during previous assessment activities. Additionally, one boring was advanced adjacent to the former chemical storage building and one soil boring was advanced adjacent to monitoring well W-1, where potentially elevated metal concentrations were detected in groundwater. Because of shallow groundwater at the site, soil samples were generally collected from the 1 ft to 2 ft bgs interval to assess unsaturated zone conditions.

In addition to the six borings detailed above, six background soil borings were advanced in the western and eastern portions of the site, away from potential source areas. Samples were collected from these borings to established site-specific background metal concentrations. Due to the high water table encountered at the site, soil samples at each boring location were generally collected directly above the water table from the 1 ft to 2 ft bgs interval. Deeper soil samples were also collected at background borings BG-5 and BG-6 from the 4 ft to 5 ft interval to evaluate naturally occurring metal concentrations below the water table and to collect samples for analysis of bulk density and fraction organic carbon that will be utilized for development of site-specific remediation goals. Soil boring and background soil boring locations are presented on Figure 2.

23

In general, soil borings were advanced and soil samples were collected utilizing a decontaminated stainless steel hand auger. Soil borings BG-5 and BG-6 were advanced utilizing a direct push technology (DPT) drill rig to facilitate collection of undisturbed soil cores for analysis of bulk density and fraction organic carbon. Recovered soil at each boring location was field screened for the presence of ink staining and logged for lithological description. No ink staining was observed. Soil boring logs are provided in Appendix D.

Upon collection, soil samples were placed in a cooler on ice and shipped to Pace, a North Carolina certified laboratory for analysis. Samples were maintained under an appropriate chainof-custody from the time the samples were collected until receipt by the laboratory. Soil samples collected during the Final RI activities were submitted to Pace for analysis of HSL metals including hexavalent chromium.

6.1.2 Additional Groundwater Assessment Activities

Due to the potentially elevated concentrations of the HSL metals cadmium, chromium, lead, manganese, and selenium detected during the Phase I RI assessment activities conducted in April 2011; H&H installed four additional monitoring wells to further evaluate these detections. Monitoring well MW-8 was installed near MW-7 along the southern property boundary, MW-9 and MW-11 were installed along the western edge of the industrial portion of the property, and MW-10 was installed along the northern property boundary. Wells MW-9 through MW-11 were installed to serve as background sample locations, while MW-8 was installed to facilitate better sample collection (i.e. less turbid samples compared with MW-7) in the southern portion of the property.

On June 6, 2012, the four shallow monitoring wells were installed using hollow stem augers to approximate depths of 13 feet bgs. The shallow monitoring wells were completed with 10 ft of 2-inch diameter PVC 0.01-inch slot well screen and 3 ft of 2-inch diameter PVC casing. Filter sand was placed in the annulus space surrounding the screens extending to approximately one ft above the screens. An approximate 1 ft bentonite seal was placed on top of the filter sand. The remaining annulus space was filled with grout. The surface at each monitoring well location was

completed with an 8-inch steel manhole cover flush with the ground surface and secured with a 2 ft by 2 ft concrete pad. Well construction diagrams and well records are provided in Appendix D.

Following installation, the monitoring wells were properly developed, and then allowed to equilibrate. Once the wells equilibrated, H&H collected water level data from both new and existing monitoring wells. Groundwater samples were then collected from the newly installed wells via low flow purging methods to minimize sample turbidity as detailed in section 5.1. It should be noted that due to the tightness of the clay formation, water was not present in MW-11 following installation. As such, MW-11 was allowed to recharge, and a sample was collected on June 21, 2012.

Upon collection, groundwater samples were placed in a cooler on ice and shipped to Pace for analysis. Samples were maintained under an appropriate chain-of-custody from the time the samples were collected until receipt by the laboratory. Groundwater samples collected during the Final RI activities were submitted to Pace for analysis of HSL metals including hexavalent chromium.

6.2 Final Remedial Investigation Results

6.2.1 Soil Assessment Results

Several HSL metals were detected at concentrations above laboratory method detection limits in the soil samples collected from the assessment and background borings including arsenic, beryllium, cadmium, chromium, hexavalent chromium, copper, lead, manganese, mercury, nickel, and zinc. Of these HSL metals, only arsenic, hexavalent chromium, and mercury were detected in at least one sample at concentrations exceeding at least one of their respective IHSB soil remediation goals (SRGs). The results of these metals are discussed further below. A summary of soil analytical data is provided on Table 3. Soil boring locations are provided on Figure 2.

<u>Arsenic</u>

Arsenic was detected in three of the soil samples collected from the assessment borings at concentrations of 0.49 mg/kg (SB-4), 0.69 mg/kg (SB-2), and 1.6 mg/kg (SB-6) which exceed its residential HBSRG of 0.39 mg/kg. However, these detections are below the industrial HBSRG of 1.6 mg/kg and the PGSRG of 5.8 mg/kg. Additionally, these detections are comparable to the site-specific background concentrations (<0.48 mg/kg to 1.1 mg/kg) detected in the soil samples collected from B-1 through BG-6. As such, these detections are considered to be naturally occurring.

Arsenic was detected at a concentration of 2.1 mg/kg in the soil sample collected from boring SB-1, which exceeds its residential and industrial HBSRGs and is slightly outside the range of the site-specific background concentrations. This arsenic concentration is below its PGSRG of 5.8 mg/kg. Because this detection of arsenic only slightly exceeds site-specific background concentrations and because arsenic is not known to have been utilized by the facility, it does not appear to the result of historical site operations. SB-1 was collected under the site building. Because fill material was used during building construction, it is possible that the fill material was sourced at a nearby area with slightly higher levels of naturally occurring of arsenic. The published range of naturally occurring arsenic in North Carolina is 1 to 18 mg/kg (Elements in North American Soils), and the published range of arsenic in the eastern US is <1 to 73 mg/kg (USGS Element Concentrations in Soils and Other Surficial Materials of the Conterminous US). The detected arsenic concentrations. Based on these considerations, the detected arsenic is not considered to represent an impact to soil.

Even if the arsenic detection in SB-1 is not naturally occurring, the extent of arsenic above standards is defined by nearby borings SB-5, BG-1, SB-2, and SB-3. Therefore, no further assessment is warranted.

Hexavalent Chromium

Hexavalent chromium was detected at a concentration of 0.72 mg/kg in the soil sample collected

26

from boring BG-2, which exceeds its residential HBSRG of 0.29 mg/kg, but is below its industrial HBSRG of 5.6 mg/kg and its PGSRG of 3.8 mg/kg. The detected concentration is only slightly above its laboratory reporting limit. In that the hexavalent chromium detection was in a background soil sample location, the detection is considered to be naturally occurring. Because groundwater is observed within inches of ground surface at the site during wet periods and hexavalent chromium can occur naturally in groundwater, this detection may be due to the presence of shallow groundwater. Because this detection is considered naturally occurring and not the result of historical site activities and because hexavalent chromium was not detected above SRGs at the other locations, additional assessment is not warranted.

Mercury

Mercury was detected at a concentration of 1.7 mg/kg in the soil sample collected from boring BG-1, which exceeds its PGSRG of 1.0 mg/kg, but is below its residential and industrial HBSRGs of 2.0 mg/kg and 3.1 mg/kg, respectively. Because this detection was at a background boring location, it is considered a naturally occurring concentration. Although naturally occurring, it should be noted that mercury does not present a site-specific leaching concern, as mercury has not been detected in site groundwater as detailed in the following section. Because the detection of mercury is considered naturally occurring, and because it does not present a site-specific leaching concern, no additional assessment is warranted.

6.2.2 Groundwater Assessment Results

As previously stated, additional groundwater assessment was conducted to evaluate whether cadmium, chromium, lead, manganese, and selenium detected during the Phase I RI were naturally occurring or the result of historical site operations. These metals, along with antimony, are discussed in further detail below as each of these metals was detected in at least one groundwater sample at a concentration exceeding its respective 2L standard. HSL metals not discussed below where either not detected above laboratory method detection limits or were detected at concentrations below their respective 2L standards. Groundwater analytical results are summarized on Table 2.

27

It should be noted that because the predominate groundwater flow path is considered to be to the northwest (Section 3.5.1), previously installed well MW-5 and newly installed monitoring wells MW-9, MW-10, and MW-11 are considered to be background locations. As such, concentrations of metals detected at site monitoring wells are compared to their respective 2L standards as well as the range of naturally occurring metal concentrations at MW-5, MW-9, MW-10, and MW-11.

Antimony

Antimony was detected in background monitoring wells MW-9 and MW-10 at concentrations of 0.0054 mg/l and 0.0067 mg/l, respectively that exceeds its IMAC groundwater standard of 0.001 mg/l. However, because these detections were in samples collected from background monitoring wells, they are considered naturally occurring and not the result of historic site operations. This is supported by the fact that antimony was not detected in the soil samples collected as part of the Final RI.

It should be noted that antimony was not detected in groundwater samples collected during the Phase I RI from monitoring wells W-1, W-2R, MW-5, or MW-7. However, this could be the result of a higher laboratory method detection limits of 0.01 mg/l and not due to the absence of antimony at these locations. Because the detected concentrations of antimony are considered naturally occurring, no additional assessment is warranted.

<u>Cadmium</u>

Cadmium was detected at concentrations 0.0063 mg/l and 0.0027 mg/l in the groundwater samples collected from monitoring wells W-1 and MW-5, respectively during the Phase I RI. The groundwater standard for cadmium is 0.002 mg/l. Cadmium was not detected in the groundwater samples collected during the Final RI activities at concentration above laboratory method detection limits.

Because MW-5 is considered a background monitoring well, the detection of cadmium at this location is considered naturally occurring. Additionally, the detection of cadmium at the W-1

location is likely the result of elevated sample turbidity (45 NTU) and not an indication of a release resulting from historical site operations. This is supported by the fact that cadmium was not detected above laboratory method detection limits in the groundwater sample collected from MW-10 where sample turbidity was low (5.8 NTU), W-1 is upgradient of historical site operations, and cadmium was not detected in soil at concentrations exceeding its PGSRG. Because the detected concentrations of cadmium at the site are naturally occurring (MW-5) or the result of sample turbidity (W-1) and not the result of historical site operations, no additional assessment is warranted.

Chromium

Chromium was detected at concentrations of 0.036 mg/l and 0.057 mg/l in the groundwater samples collected from monitoring wells W-1 and MW-7, respectively during the Phase I RI. The groundwater standard for chromium is 0.010 mg/l. However, as stated is Section 5.2, these detections are likely the result of high sample turbidity (45.4 NTU at W-1 and 539.4 NTU at MW-7) and not the result of historical site operations. This is supported by the fact that chromium was not detected in groundwater samples collected from W-2R, MW-5 MW-8, MW-9, MW-10, or MW-11 where sample turbidity was less than 10 NTU. Because these detections of chromium are likely the result of sample turbidity and not the result of historical site operations, no additional assessment is warranted.

Lead

Lead was detected at concentrations of 0.022 mg/l and 0.023 mg/l in the groundwater samples collected from W-1 and MW-7, respectively during the Phase I RI. The groundwater standard for lead is 0.015 mg/l. However, as stated in section 5.2, these detections are likely the result of high sample turbidity (45.4 NTU at W-1 and 539.4 NTU at MW-7) and not the result of historical site operations. This is supported by the fact that lead was not detected in groundwater sample turbidity was less than 10 NTU. Because these detections of lead are likely the result of sample turbidity and not the result of historical site operations, no additional assessment is warranted.

29

Manganese

Manganese was detected at concentrations of 0.13 mg/l and 0.21 mg/l in the groundwater samples collected from monitoring wells W-1 and W-2R, during the Phase I RI. The groundwater standard for manganese is 0.05 mg/l. As such, groundwater samples were collected from newly installed monitoring wells MW-8 through MW-11 during the Final RI to further evaluate whether these detections of manganese were naturally occurring or the result of historic site operations.

Manganese was detected in the groundwater sample collected from MW-8 during the Final RI activities at a concentration of 0.0583 mg/l, which slightly exceeds its 2L standard of 0.050 mg/l. However, manganese was detected in background monitoring wells MW-5 and MW-9 through MW-11 at concentrations ranging from 0.011 mg/l (MW-5) to 0.0846 mg/l (MW-11). As such, the manganese detection at MW-8 is considered naturally occurring. The detections of manganese in W-1 and W-2R slightly exceed this range.

Although the manganese detections at W-1 and W-2R slightly exceed the site-specific background range, these detections may still represent naturally occurring concentrations as supported by results of groundwater samples collected in Burgaw and Pender County as part of the NURE Program. As part of the NURE program (Section 4.6), nine groundwater samples were collected in Burgaw and 93 samples were collected across Pender County. Results of these samples indicate that manganese naturally occurs in groundwater at concentrations ranging from 0.031 mg/l to 0.198 mg/l within Burgaw and at concentrations ranging from 0.017 mg/l to 0.255 mg/l in groundwater across Pender County. Because the detections of manganese at W-1 and W-2R are within these ranges, they could be considered naturally occurring.

However, because the REC program prefers site-specific data be used to establish naturally occurring concentrations of metals and to be conservative, these detections of manganese are considered impacts potentially related to historic site activities and will be addressed in the RAP. Because manganese was detected either below its 2L standard or within site-specific background range at the other monitoring well locations, the extent of manganese impacted groundwater is

defined to the north by MW-10, to the east by MW-5, to the south by MW-8 and to the west by MW-9 and MW-11. As such, the extent of manganese impacted groundwater is adequately defined and additional assessment is not warranted.

<u>Selenium</u>

Selenium was detected at a concentration of 0.026 mg/l in the groundwater sample collected from monitoring well W-2R during the Phase I RI. This detection was only slightly above the laboratory reporting limit. The groundwater standard for selenium is 0.02 mg/l. Groundwater samples were collected from newly installed monitoring wells MW-8 through MW-11 during the Final RI to further evaluate whether this detection of selenium was naturally occurring or the result of historic site operations. Analytical results of the additional groundwater samples collected from these perimeter monitoring wells indicate that selenium is not present at concentrations exceeding laboratory method detection limits. Published naturally occurring selenium levels in groundwater were not identified.

Because W-2R is located adjacent to the former chemical storage shed and to be conservative, the selenium detection may be an impact potentially related to historical site operations. This selenium detection will be addressed in the RAP. Because selenium was not detected at the other monitoring wells, the extent of selenium impacted groundwater is defined to the north by W-1 and MW-10, to the east by MW-5, to the south by MW-8 and to the west by MW-9 and MW-11. As such, the extent of selenium impacted groundwater is adequately defined and additional assessment is not warranted.

Vertical and Horizontal Extent

The vertical and horizontal extent of groundwater impacts is defined. Chlorinated VOC detections in groundwater were defined previously as described in the RI Work Plan. Chlorinated VOCs are limited to shallow groundwater. In addition, a confining unit separates shallow and deeper groundwater. The low levels of selenium and manganese in shallow groundwater are laterally defined and are not expected in the deeper aquifer based on the absence

31

of the more mobile VOCs in the deeper aquifer and the presence of the underlying confining unit. Impacted groundwater is within the boundaries of the subject property.

Results of the Phase I and Final Remedial Investigation activities indicate that impacts to groundwater are confined to the central area of the property. The extent of groundwater impacts above unrestricted use and/or background concentrations are provided on Figure 8.

7.0 Conceptual Site Model

The conceptual site model (CSM) describes the relationship of likely sources, potential release mechanisms, potential exposure routes, and potential receptors at the site. For the subject site, the following exposure pathways were evaluated:

- Direct contact with impacted soil;
- Wind transport of impacted soil;
- Stormwater runoff;
- Leaching to groundwater and groundwater use;
- Groundwater migration to surface water;
- Vapor Migration; and
- Ecological receptors.

The following sections provide a basis for the CSM.

7.1 Potential Sources

As detailed in the CAP dated May 18, 2000, a sump in the former chemical storage shed, which was located immediately southeast of the manufacturing building is considered the likely source of VOC impacts to groundwater at the site. As stated previously, PCE utilized at the facility to clean printing plates was likely stored in the former chemical storage shed. Prior to the RI assessment activities, the VOCs PCE, TCE, cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride were considered the primary COCs at the site.

However, results of the RI assessment activities indicate that manganese and selenium detections in groundwater are potentially the result of historical site operations as both these metals were detected near the former chemical storage shed at concentrations exceeding both their respective 2L standards and site-specific background concentrations. Manganese and selenium can be used in dyes and inks as pigments and/or drying agents. Because manganese and selenium containing

inks were potentially stored in the former chemical storage shed, the shed is also considered the likely source of the manganese and selenium impacts detected in groundwater. This is supported by the fact that soil samples collected under the facility building near former printing plate washing activities and label printing operations as part of the Final RI did not indicate the presence of the site COCs at concentrations exceeding IHSB soil remediation goals (SRGs) or site-specific background concentrations with the exception of arsenic.

The arsenic detection in the soil sample collected from SB-1 exceeds its IHSB SRGs and sitespecific background concentrations, but the source is unknown because arsenic containing materials are not known to have been utilized at the facility. Sample SB-1 was collected under the building. It is possible that fill material used during building construction was sourced from a nearby area with slightly higher naturally occurring arsenic levels than those found on the site. The highest detected on-site arsenic concentration of 2.1 mg/kg is on the low end of the range of naturally occurring arsenic for North Carolina and the Eastern US based on published sources. Based on these considerations, the detected arsenic is assumed to represent naturally occurring conditions.

The release mechanisms and release quantities that resulted in the groundwater impacts at the site are not known. However, development of this CSM assumes that contributing factors to groundwater impacts were the result of poor chemical handling procedures in and near the former chemical shed. Chemicals spilled or leaked in the former shed would likely accumulate within the concrete sump located in the shed. Because of the shallow groundwater in the vicinity of the shed (1 to 2 ft bgs), this sump was located at or below the water table. As such, chemicals that accumulated in this sump were likely discharged directly to groundwater and not to surficial soils. This is supported by the fact that soil samples collected below the shed upon demolition contained low level detections of the PCE degradation products TCE and cis-1,2-DCE at concentrations up to 0.270 mg/kg and 0.0084 mg/kg, respectively. Because PCE does not degrade under aerobic conditions such as typically present in unsaturated soils, and because TCE and cis-1,2-DCE were not used as raw products in Prestige operations, impacted groundwater brought these compounds to surface soils during high water table conditions. As such, low levels

of chlorinated VOCs detected in shallow soils during previous assessment activities are due to the presence of shallow groundwater. Additionally, the concentrations of chlorinated VOCs in groundwater have steadily declined over time which would not be expected if impacted soils were a continuing secondary source of groundwater impacts.

7.2 Exposure Pathways and Receptors

The following is an evaluation of potential exposure pathways at the site.

Direct Contact with Impacted Soil

Because the basis of this CSM is that groundwater impacts at the site are the result of a direct VOC release to groundwater and not the result of surficial soil impacts leaching to groundwater, exposure to impacted soil is not considered a completed pathway at the site. Concrete now covers the chlorinated VOC release area at the former chemical storage shed, which reduces or eliminates the exposure risk. As such, the direct contact with VOC impacted soil is not considered a completed exposure pathway at the site.

Wind Transport

Because the site is predominantly grass, concrete, or asphalt covered, dust generation is not judged to be a significant contributor to constituent migration. As such, wind transport is not considered to provide a potential exposure pathway at the site.

Stormwater Runoff

Stormwater runoff at the site is towards drainage ditches located along the northern, eastern, and southern property boundaries. These ditches are typically dry and only receive runoff during precipitation events. The drainage ditch to the north is deeper and may also receive groundwater discharge when water levels are high as detailed below. Because surficial soils are not impacted and/or are covered by concrete, contact with impacted stormwater runoff from the site is not likely. As such, direct contact with impacted stormwater is not considered a potential exposure pathway at the site.

Leaching to Groundwater and Groundwater Use

Because VOC groundwater impacts at the site are the result of a direct release to groundwater and not the result of impacted surficial soil leaching to groundwater, leaching to groundwater is not considered a completed pathway at the site. Metal concentrations do not exceed PGSRGs and/or background concentrations.

Groundwater is not used for any purpose at the site. As stated in the RI Work Plan, the closest water supply wells to the subject site are located on the Phoenix Technology property, which is located immediately to the south and upgradient of the subject site. These water supply wells are reportedly constructed to depths of 325 ft and are utilized for cooling water in a closed circuit system for the manufacturing processes conducted at the facility. The Town of Burgaw supplies potable water to the Phoenix Technology property (and the subject site). Groundwater impacts are confined to shallow groundwater within the subject property boundaries. Because groundwater is not used for any purpose on the subject site, the closest water supply wells are for industrial purposes, deeper groundwater is not impacted by the site COCs, and because municipal water is readily available in the area, human exposure to impacted groundwater through consumption is not considered a completed exposure pathway.

Groundwater Migration to Surface Water

VOC and metal impacts in groundwater are expected to migrate in the direction of groundwater flow which is interpreted to the northwest. As previously stated, drainage ditches to the north, east, and west border the subject property. A review of groundwater elevations across the property and the surface elevations at the base of the drainage ditches indicate that the bottom of the northern drainage ditch is likely below the water table. Because groundwater flow has a northern component, there is a potential that site groundwater impacts could discharge to the northern drainage ditch. However, site COCs have not been detected at monitoring wells W-1, MW-10, or MW-11 (with the exception of manganese at W-1) at concentrations exceeding their respective 2L standards suggesting that impacted groundwater is not currently discharging to this ditch. However, due to the relatively close proximity of the ditch to known groundwater impacts, groundwater migration to surface water is considered a potential exposure pathway.

Vapor Migration

In an email dated March 7, 2011, the IHSB toxicologist previously determined that vapor intrusion is not a concern at the site, as the cumulative risk of the VOCs in groundwater does not exceed the 1 x 10^{-4} threshold. Additionally, manganese and selenium have high volatilization points and do not present a vapor intrusion threat. As such, vapor intrusion from impacted groundwater is not considered to be a completed exposure pathway.

Ecological Evaluation

Ecological receptors were considered as part of the development of this CSM. As previously stated, the subject site is comprised of approximately 5.7 acres of land. The eastern portion of the property was developed for industrial use while the western portion of the site remains undeveloped wooded land. This wooded portion of the property may provide habitat for various mammals and/or avian species. However, because the site COCs have been defined and are limited to the industrial portion of the property, which does not provide necessary habitat, ecological receptors are not considered a completed exposure pathway at the site.

37

8.0 Conclusions and Risk-Based Corrective Action Eligibility Evaluation

Based upon the results of past assessment activities, the Phase I RI assessment activities, the Final RI assessment activities, and the CSM, H&H has developed the following conclusions:

- The likely source of groundwater impacts are the result of spill and leaks of chemicals stored in the former chemical shed entering a sump and discharging directly to groundwater.
- Unsaturated zone Soil at the site is not impacted with VOCs and does not represent a continuing source of groundwater impacts. VOCs detected at low concentrations in surficial soils during previous assessment activities are the result of impacted shallow groundwater.
- Metals detected in soil samples collected during the RI either are below their respective SRGs or were within range of their site-specific background concentrations with the exception of arsenic. Arsenic was detected in one sample at a concentration slightly above site-specific background concentrations. This sample was collected under the site building. It is possible that fill material used during building construction was sourced from a nearby area with slightly higher naturally occurring arsenic levels than those found on the site. The highest detected on-site arsenic concentration of 2.1 mg/kg is on the low end of the range of naturally occurring arsenic for North Carolina and the Eastern US based on published sources. Based on these considerations, the detected arsenic is assumed to represent naturally occurring conditions.
- Impacts to shallow groundwater include the VOCs PCE, TCE, cis-1,2-DCE, and vinyl chloride, and potentially the metals manganese and selenium.
- The detections of manganese and selenium in shallow groundwater could be naturally occurring. However, because both the elevated detections of manganese and selenium were near the former chemical storage shed, and because the REC program prefers comparison to site-specific background concentrations, these detections are being considered impacts potentially related to historical site operations and will be addressed in the subsequent RAP.

- The deeper aquifer at the site has not been impacted and a confining unit separates the shallow and deeper aquifers.
- Shallow groundwater flow at the site is interpreted to be to the northwest and could discharge to the ditch located along the northern property boundary. Shallow groundwater flow velocity was calculated to be approximately 4 ft/year.
- Based on the previous site assessment activities and the current RI activities summarized in this report, the extent of impacted groundwater has been defined on-site and has not migrated to off-site properties at concentrations exceeding unrestricted use levels.
- Impacted groundwater migrating to surface water is considered the most likely exposure pathway at the site.

Based on historical site information provided in the Phase I RI Work Plan and the results of the RI contained herein, H&H has determined the site to be eligible to pursue risk-based corrective action based on a review of the requirements detailed in the *Eligibility Requirements and Procedures for Risk-Based Remediation of Industrial Sites Pursuant to NCGS 130A-310.65* to *310.73* dated July 29, 2011 as summarized below:

- Groundwater contamination at concentrations exceeding 2L groundwater standards is within the boundaries of the subject property. Based on the long groundwater monitoring history and groundwater flow direction, the plume is not expected to migrate off-site in the future. Predictions on plume migration will be evaluated during the RAP.
- Remediation at the site is governed by voluntary actions under G.S. 130A-310.9 of the Inactive Hazardous Sites Response Act of 1987.
- The site has been utilized for production of a commercial product (ink) since development from pristine land when the first site building was constructed in 1988.
- Because groundwater impacts are the result of a direct release and not the result of impacted soil leaching to groundwater, it is not likely that noncontaminated media will be impacted above unrestricted use levels.

39

 Impacted groundwater was reported to the Department prior to March 1, 2011 as documented by the REC Administrative Agreement execution date of November 23, 2010 (and other reports).

Because the site appears eligible to pursue risk-based corrective action, the subsequent RAP will be prepared with that objective. The RAP will contain the following:

- An evaluation of the fate and transport of groundwater impacts;
- Calculation of risk-based remediation standards;
- A summary of the current and future uses of the property and site groundwater;
- A review of remedial technologies, if deemed warranted;
- A summary of proposed land use restrictions; and
- An evaluation of the risks and effectiveness of the proposed remedial action plan.

9.0 References

- A Geochemical Atlas of North Carolina, North Carolina Department of Environment, Health, and Natural Resources, May 1991 and Revised in 1993.
- Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, US Geological Survey, 1984.
- Elements in North American Soils, James Dragun, Ph.D. and Khaled Chekiri, Ph.D., 2004.
- Eligibility Requirements and Procedures for Risk-Based Remediation of Industrial Sites Pursuant to N.C.G.S. 130A-310.65 to 310.77, DENR Division of Waste Management, July 2011.
- General Assembly of North Carolina Session Law 2011-186 House Bill 45, June 2011.
- Listing of Concentrations of Variables of Stream Sediment, Stream Water, and Groundwater for the Elizabethtown 30 x 60 Minute Quadrangles – NURE Database, North Carolina Department of Environment, Health, and Natural Resources, July 1993.
- Listing of Concentrations of Variables of Stream Sediment, Stream Water, and Groundwater for the New River 30 x 60 Minute Quadrangles – NURE Database, North Carolina Department of Environment, Health, and Natural Resources, July 1993.
- Listing of Concentrations of Variables of Stream Sediment, Stream Water, and Groundwater for the Wilmington and Cape Fear 30 x 60 Minute Quadrangles – NURE Database, North Carolina Department of Environment, Health, and Natural Resources, July 1993.
- North Carolina Dry-Cleaning Solvent Cleanup Act (DSCA) Programs Risk-Based Corrective Action (RBCA), DENR Division of Waste Management, March 2007.
- Geologic Map of North Carolina, North Carolina Geological Survey, 1985.
- Registered Environmental Consultant Program Implementation Guidance, DENR Division of Waste Management Superfund Section Inactive Hazardous Sites Branch, August 2011 and December 2012.
- Soil Screening Guidance Technical Background Document, Environmental Protection Agency, July 1996.

- Soil Survey of Pender County, North Carolina, United States Department of Agriculture, April 1990.
- Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, Environmental Protection Agency, September 1998.

Table 1 (Page 1 of 2)Groundwater Elevations SummaryPrestige LabelBurgaw, North CarolinaH&H Project No. HEY-002

Well ID	Date	TOC Elevation (ft above MSL)	Depth to Water (ft below TOC)	Groundwater Elevation (ft above MSL)
	4/26/2011	50.16	1.66	48.50
\\/_1	6/6/2012	50.16	1.98	48.18
VV 1	10/24/2012	50.16	2.68	47.48
	4/26/2011	49.28	1.85	47.43
W-2R	6/6/2012	49.28	2.12	47.16
VV ZIX	10/24/2012	49.28	2.17	47.11
	6/6/2012	49.45	1.61	47.84
MW-1R	10/24/2012	49.45	2.42	47.03
	6/6/2012	48.25	1.78	46.47
MW-3R	10/24/2012	48.25	1.77	46.48
	6/6/2012	50.59	2.36	48.23
MW-4	10/24/2012	NG	NG	NG
	4/26/2011	49.56	1.00	48.56
M\\/_5	6/6/2012	49.56	1.41	48.15
10100-5	10/24/2012	49.56	1.77	47.79
	6/6/2012	50.47	2.75	47.72
MW-6	10/24/2012	50.47	2.97	47.50
	4/26/2011	53.90	6.11	47.79
M\\/-7	6/6/2012	53.90	6.32	47.58
	10/24/2012	53.90	6.42	47.48
	6/6/2012	49.84	9.01	40.83
M/\//_8	6/21/2012	49.84	2.79	47.05
	10/24/2012	49.84	2.41	47.43
	6/6/2012	50.48	9.02	41.46
M\\/_Q	6/21/2012	50.48	3.11	47.37
11111-3	10/24/2012	50.48	2.86	47.62

Table 1 (Page 2 of 2)Groundwater Elevations SummaryPrestige LabelBurgaw, North CarolinaH&H Project No. HEY-002

Well ID	Date	TOC Elevation (ft above MSL)	Depth to Water (ft below TOC)	Groundwater Elevation (ft above MSL)	
	6/6/2012	48.94	1.28	47.66	
M\\/_10	6/21/2012	48.94	1.72	47.22	
10100-10	10/24/2012	48.94	1.76	47.18	
	6/6/2012	50.16	DRY	NS	
N/I\A/_11	6/21/2012	50.16	7.26	42.90	
10100-11	10/24/2012	50.16	5.95	44.21	
	6/6/2012	49.66	10.67	38.99	
MW-5D	10/24/2012	49.66	10.19	39.47	
	6/6/2012	50.44	11.37	39.07	
MW-6D	10/24/2012	50.44	10.61	39.83	
	6/6/2012	50.42	10.47	39.95	
T-1R	10/24/2012	50.42	9.98	40.44	

Notes:

MSL = Mean Sea Level

TOC = Top-of-Casing

NG = Not gauged

MW-8 and MW-9 water levels were not at equilibrium when gauged 6/6/12

Table 2 Summary of Groundwater Analytical Data Prestige Label Burgaw, North Carolina H&H Job No. HEY-002

Sample ID		Screenir	ng Criteria			Asse	essment Monitoring	Wells		Background Monitoring Wells				
					W-1	W-2R	DUP-042611	MW-7	MW-8	MW-5	MW-9	MW-10	MW-10 (DUP)	MW-11
Sample Date	NC 2L Standard	Site-Sepcific Background Concentrations	NURE Database Burgaw Quadrangle Range	NURE Database Pender County Range	4/26/2011	4/26/2011	4/26/2011	4/26/2011	6/7/2012	4/26/2011	6/7/2012	6/7/2012	6/7/2012	6/21/2012
1,4-Dioxane (8260B SIM)	3				<3.0	<3.0	<3.0	NA	NA	NA	NA	NA	NA	NA
μg/L														
<u>SVOCs (8270C)</u>	NS				BRL	BRL	BRL	NA	NA	NA	NA	NA	NA	NA
<u>TICs (8270D)</u> μg/L Unknown Compound	NS				28	58	48	NA	NA	NA	NA	NA	NA	NA
<u>Turbidity</u> NTU					45.4	5.83	5.83	539.4	1.49	2.97	8.92	6.24	6.24	10.78
<u>RCRA Metals (6010C/7470A)</u> mg/L														
Antimony Cadmium Chromium	0.001* 0.002 0.010	<0.0050 to 0.0067 <0.0010 to 0.0027 <0.0050 to <0.0050	NA NA NA	NA NA NA	<0.010 0.0063 0.036	<0.010 <0.0010 <0.0050	<0.010 <0.0010 <0.0050	<0.010 <0.0010 0.057	<0.0050 <0.0010 <0.0050	<0.010 0.0027 <0.0050	0.0054 <0.0010 <0.0050	0.0067 <0.0010 <0.0050	<0.0050 <0.0010 <0.0050	<0.0050 <0.0010 <0.0050
Copper Lead	1.0 0.015	<0.0050 to <0.010 <0.0050 to <0.0050	NA NA	NA NA	0.014 0.022	<0.010 <0.0050	<0.010 <0.0050	<0.010 0.023	<0.0050 <0.0050	<0.010 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050
Manganese Nickel	0.050 0.10	0.011 to 0.0848	0.031 to 0.198 NA	0.017 to 0.255 NA	0.13 0.026	0.21 <0.010	0.21 <0.010	0.039 0.011	0.0583 <0.0050	0.011 <0.010	0.0511 <0.0050	0.052 <0.0050	0.051 <0.0050	0.0846 0.0094
Selenium Zinc	0.020	<0.010 to <0.020 0.0151 to 0.389	NA	NA	<0.020 0.34	0.026	0.025 0.035	<0.020 0.037	<0.010 0.188	<0.020 <0.030	<0.010	<0.010 0.0151	<0.010 0.016	<0.010 0.116

Notes: Units are in micrograms per liter (μ g/L) except for metals which are reported in milligrams per liter (mg/L) Only those compounds detected in at least one sample are shown above NURE = National Uranium Resources Evaluation Program

Burgaw Quadrangle data range based on 9 data points Pender County data range based on 93 data points

Bold indicates an exceedance of the NC 2L Standard (January 2010) and/or site-specific background concentration ranges

* NC 2L Interim Maximum Allowable Concentration (IMAC) Method number follows parameter in parenthesis

SVOCs = semi-volatile organic compounds

TICS = tentatively identified compounds NS = screening criteria not specified; NA = not analyzed; -- = Not applicable

Table 3 Summary of Soil Analytical Data Prestige Label Burgaw, North Carolina H&H Job No. HEY-002

Sample ID Depth (ft bgs)	Screening Criteria						Assessment Borings						Background Borings						
Sample Date							SB-1	SB-2	SB-3	SB-3 (DUP)	SB-4	SB-5	SB-6	BG-1	BG-2	BG-3	BG-4	BG-5	BG-6
		IHSB PSRGs			Background	Metal Ranges	0.5-1.5	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	4-5	4-5
	Residential Soil ¹	Industrial Soil ²	Protection of Groundwater ³	Site-Specific Background Concentrations	Elements in NA Soils ⁴	USGS Elements in Soils ⁵	6/5/12	6/5/12	6/5/12	6/5/12	6/5/12	6/5/12	6/5/12	6/5/12	6/5/12	6/5/12	6/5/12	6/6/2012	6/6/2012
<u>Hexavalent Chromium (7196)</u> mg/kg	0.29	5.6	3.8	<0.45 - 0.72	NS	NS	<0.46	<0.45	<0.54	<0.56	<0.43	<0.56	<0.62	<0.47	0.72	<0.47	<0.53	<0.45	<0.56
HSL Metals (6010C/7471*) mg/kg																			
Arsenic	0.39	1.6	5.8	<0.48 - 1.1	1.0 - 18	<1.0 - 73	2.1	0.69	<0.56	<0.42	0.49	<0.55	1.6	<0.48	<0.53	<0.50	1.1	0.55	0.51
Beryllium	32	400	63	<0.062 - 0.13	ND - 2.0	<1 - 7	<0.11	< 0.095	<0.11	<0.084	<0.096	<0.11	0.27	<0.097	<0.11	<0.099	0.13	<0.067	<0.062
Cadmium	14	160	3.0	<0.062 - <0.11	ND - 4.0 ⁺	NS	<0.11	< 0.095	<0.11	<0.084	<0.096	<0.11	0.55	<0.097	<0.11	<0.099	<0.11	<0.067	<0.062
Trivalent Chromium	24,000	100,000	360,000	2.6 - 6.8	7.0 - 300	1 - 1,000	10.9	5	5.3	8.4	3.1	4.2	8.1	3.3	3.6	2.6	6.8	2.9	2.9
Copper	620	8,200	700	<0.34 - 0.89	3.0 - 100	<1 - 700	2.7	0.67	<0.56	0.66	0.58	<0.55	1.6	<0.48	<0.53	<0.50	0.89	<0.34	0.36
Lead	400	800	270	2.7 - 5.8	ND - 50	<10 - 300	3.7	3.6	3.8	5.5	2.5	3.4	3.1	3.2	3.4	2.7	3.3	2.9	5.8
Manganese	360	4,600	65	0.011 - 4.1	<2.0 - 7.000+	<2 - 7,000	61.8	12.2	8.3	3.5	4.9	7.2	9.9	0.011	1.4	0.87	4.1	0.82	3.8
Mercury	2.0	3.1	1.0	0.0064 - 1.7	0.03 - 0.52	0.01 - 3.4	0.019	0.011	0.012	0.011	0.026	0.010	0.0097	1.7	0.013	0.0081	0.010	0.0065	0.0064
Nickel	300	4,000	130	<0.34 - 0.79	ND - 150	<20 - 6,800	5.9	1.9	1.3	2.8	0.82	0.89	1.7	< 0.48	< 0.53	<0.50	0.79	< 0.34	0.39
Zinc	4,600	62,000	1,200	0.81 - 5.0	25 - 124	<5 - 2,900	14.1	3.5	2.8	3.2	1.9	2.0	5.9	1.5	<1.1	1.1	3.6	0.81	5.0

 Notes:

 1. Inactive Hazardous Sites Branch (IHSB) Preliminary Residential Health-Based Soil Remediation Goal (February 2012)

 2. IHSB Preliminary Industrial Health-Based Soil Remediation Goal (February 2012)

 3. IHSB Protection of Groundwater Preliminary Soil Remediation Goal (February 2012)

 4. Elements in North American Soils: Second Edition, James Dragun, Ph.D and Khaled Chekiri, Ph.D

 5. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, USGS Professional Paper 1270 (Eastern United States range used)

 Only those compounds detected in at least one sample shown above

 Bold indicates an exceedance of the IHSB Preliminary Industrial Health-based Remediation Goal and site-specific background concentration

 <u>Bold</u> indicates an exceedance of the IHSB Protection of Groundwater Standard

 Mercurv analyzed using method 7471

Mercury analyzed using method 7471

⁺ If North Carolina range not specified then Eastern USA range used

Method number follows parameter in parenthesis NS = screening criteria not specified; NA = not analyzed; -- = Not applicable; ND = Not Detected

\hhsvrharthickman.loca\hmasterfiles\hAA-Master Projects\HEY Realty (Prestige Label)\HEY 002 REC HB 45\Remedial Investigation Report\Figures\Fig 7 extent of voc.dwg, Model, 3/19/2013 4:12:29 PM,

Appendix A

Remediation Party Certification Statement Registered Site Manager Certification Statement Phase I Remediation Investigation Completion Certification Remedial Investigation Completion Certification

 REC PROGRAM DOCUMENT CERTIFICATION FORM - PAGE 1 OF 2

 IHSB SITE NAME
 Prestige Labels NONCD0001143

 DATE & NAME OF DOCUMENT
 Remedial Investigation Report

 TYPE OF SUBMITTAL (oirole all that apply):
 Report

REMEDIATING PARTY DOCUMENT CERTIFICATION STATEMENT (.0306(B)(2))

"I certify under penalty of law that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this certification, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material and information contained herein is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for willfully submitting false, inaccurate or incomplete information."

Name of Rem Signature of Remediating Party

Date

NOTARIZATION

(OFFICIAL SEAL)

Notary Public (signature)

HILLEL TROPPER My commission expires Otory Public. Since of a W York No. 01715531.50 Qualified in Kines Jounty Commission Expire 1 directs, 2014

_ (Enter State)

Document Certification Form No. DC - I (Revised 8/11)

REC PROGRAM DOCUMENT CERTIFICATION FORM - PAGE 2 OF 2 IHSB SITE NAME Prestige Labels NONCD0001143 DATE & NAME OF DOCUMENT Remedial Investigation Report TYPE OF SUBMITTAL (circle all that apply): (Report,) Work plan, Work Phase Comp. Statement, Schedule Change

REGISTERED SITE MANAGER CERTIFICATION OF SIGNATURES

As the Registered Environmental Consultant for the Site for which this filing is made, I certify that the signatures included herewith are genuine and authentic original handwritten signatures and/or true, accurate, and complete copies of the genuine and authentic original handwritten signatures of the persons who purport to sign for this filing. I further certify that I have collected through reliable means the originals and/or copies of said signatures from the persons authorized to sign for this filing who, in fact, signed the original handwritten signatures, and I certify that any person for whom I am submitting a copy of their signature has provided me with their express consent to submit said copy. Additionally, I certify that I am authorized to attest to the genuineness and authenticity of the signatures, both originals and any copies, being submitted herewith and that by signing below, I do in fact attest to the genuineness and authenticity of all the signatures, both originals and copies, being submitted for this filing.

Matt Bramblett Signature of Registered Site Manager

3/20/13

REGISTERED SITE MANAGER DOCUMENT CERTIFICATION STATEMENT (.0306(b)(1))

"I certify under penalty of law that I am personally familiar with the information contained in this submittal, including any and all supporting documents accompanying this certification, and that the material and information contained herein is, to the best of my knowledge and belief, true, accurate and complete and complies with the Inactive Hazardous Sites Response Act G.S. 130A-310, et seq, and the remedial action program Rules 15A NCAC 13C .0300. I am aware that there are significant penalties for willfully submitting false, inaccurate or incomplete information."

natt Bramble: Name of Registered Site Manager

Signature of Registered Site Manager

NOTARIZATION Mowth Cave ling (Enter State)

en burg county

3/20/13

I, <u>Jennifer Shumaker</u>, a Notary Public of said County and State, do hereby certify that <u>Math Bramblett</u> did personally appear and sign before me this day, produced proper identification in the form of <u>SCD</u>, was duly sworn or affirmed, and declared that, he or she is the duly authorized environmental consultant of the remediating party of the property referenced above and that, to the best of his or her knowledge and belief, after thorough investigation, the information contained in the above certifications is true and accurate, and he or she then signed these Certifications in my presence.

TNESS my/hand and/official seal this 20 day of March Mumo (OFFICIAL SEAL) Notary Public (signature) My commission expires: \$

Document Certification Form No. DC - II (Revised 8/11)

PHASE I REMEDIAL INVESTIGATION COMPLETION CERTIFICATION 15A NCAC 13C.0306(b)(5)(A)

	2	1	
Media (check all that apply): 🗌 All Media 🗹 Soil	Ground water	Surface water	Sediment
Site Name Prestige Labels	Street Address	151 Indust	rial Or
County Pewder		Bulgaw N	IC 28425
Site ID No. NONCD ODD1143			
The Phase I remedial investigation, which is the su	bject of this certific	cation has, to the	best of my
130A-310, et seq. and the remedial action program	Rules 15A NCAC	13C .0300, and	Act 0.5.
Hart & Hickman, PC			
is in compliance with Rules .0305(b)(2) and .0305(b)	(3), of this section	. I am aware tha	t there are
significant penalties for willfully submitting false, i	naccurate or incon	nplete informatio	n.
Mittermilitt	2/20	1.2	
RSM Signature	$ \frac{3/60}{\text{Date}}$	//3	
Matt Bramblett			
RSM Name Hart & Hickman, PC	292	3 S. Trun St	Ste IDD
REC Name	Mailing A	ddress	
	<u>Char</u>	lotte, NC Z	8Z03
	City, State	z, ZIF	
NOTARIZATION			
Morth Cavoling (Enter State)			
Meckleohurs COUNTY			
I TRIDICITY CONTIN	is of said County a	nd Stata da harab	er aantifer that
Most Docuster did personally or	ne of salu County a	nu State, do nereo	
interview interview SCD1	pear and sign befor	e me this day, pro	duced proper
identification in the form of	, was duly sworn or	r affirmed, and dec	clared that, he
or she is the duly authorized environmental consultant	of the remediating	party of the proper	rty referenced
above and that, to the best of his or her knowledge and	belief, after thorou	gh investigation, t	he
information contained in the above certification is true	and accurate, and h	ne or she then sign	ed this
Certification in my presence.	nn 1 0		
WITNESS my hand and official seal this 20 day of $\frac{7}{10}$	March 2	013.	
Notary Public (signature)	(OFFICIAL	SEAL)	NIFER Still
My commission expires: 8-4-13		Safe N	On HUMA
		FICK	AN AK
		E S	2013 E. D.
Work Phase Completion Form No_WPC - I		IIIII BUD	IC US
(Revised 3/11)		" sugar CO	UNTY Nessesses
		00000	0600000

REMEDIAL INVESTIGATION COMPLETION CERTIFICATION 15A NCAC 13C.0306(b)(5)(B)

Media (check all that apply): \Box All Media \checkmark Soil Site Name $_{(estige Labels}$	Ground water Surface water Sediment Street Address 151 Industrial Dc
County Pender	Burgaw, NC 28425
Site ID No. NONCO 0001143	
The remedial investigation, which is the subject of knowledge, been completed in compliance with the 130A-310, et seq. and the remedial action program Hart & Hickman, Re [REC Name] is in compliance with Rules .0305(b)(2) and .0305(b significant penalties for willfully submitting false, i	this certification has, to the best of my Inactive Hazardous Sites Response Act G.S. Rules 15A NCAC 13C .0300, and (0)(3), of this section. I am aware that there are inaccurate or incomplete information.
Mattecambet	3/20/13
RSM Signature	Date
RSM Name Hart & Hickman, PC REC Name	
<u>0058</u>	Charlotte, NC 28203
REC No.	City, State, ZIP
NOTARIZATION	
10rth Carolina (Enter State)	
Mecklenburg COUNTY	
I, <u>Sennifer Shuma (Cer</u> , a Notary Pub <u>Matt Bramblet</u> did personally ap	lic of said County and State, do hereby certify that opear and sign before me this day, produced proper
identification in the form of $\underline{\mathcal{OC}}$, was duly sworn or affirmed, and declared that, he
or she is the duly authorized environmental consultant	of the remediating party of the property referenced
above and that, to the best of his or her knowledge and	d belief, after thorough investigation, the
information contained in the above certification is true	e and accurate, and he or she then signed this
Certification in my presence.	Ma de ADIA
WITNESS my hand and official seal this 20 day of	(OFFICIAL SEAL)
Notary Public (signature)	

My commission expires: 8-413.

Work Phase Completion Form No. WPC – II (Revised 3/11)

Appendix B

Laboratory Analytical Reports

Full-Service Analytical & Environmental Solutions

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert No. 37735

05/11/2011

Hart & Hickman (Charlotte) Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203 Project: Prestige Label

Lab Submittal Date: 04/28/2011 Prism Work Order: 1040602

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

VP Laboratory Services

Rost a. Jo

Reviewed By

Data Qualifiers Key Reference:

- L2 LCSD recovery outside of the QC limits. LCS recovery within the limits. No further action taken.
- LH High LCS recovery. Analyte not detected in the sample(s). No further action taken.
- SR Surrogate recovery outside the QC limits.
- BRL Below Reporting Limit
- MDL Method Detection Limit
- RPD Relative Percent Difference
- * Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and reporting limit indicated with a J.

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Sample Receipt Summary

05/11/2011

Prism Work Order: 1040602

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
W-1	1040602-01	Water	04/26/11	04/28/11
W-2R	1040602-02	Water	04/26/11	04/28/11
MW-5	1040602-03	Water	04/26/11	04/28/11
MW-7	1040602-04	Water	04/26/11	04/28/11
DUP-042611	1040602-05	Water	04/26/11	04/28/11
EB-042611	1040602-06	Water	04/26/11	04/28/11

Samples received in good condition at 3.1 degrees C unless otherwise noted.

Summary of Detections

05/11/2011 Prism Work Order: 1040602

Prism ID	Client ID	Parameter	Method	Result	Units
1040602-01	W-1	unknown (1)	*8270D	28	ug/L
1040602-01	W-1	Cadmium	*6010C	0.0063	mg/L
1040602-01	W-1	Chromium	*6010C	0.036	mg/L
1040602-01	W-1	Copper	*6010C	0.014	mg/L
1040602-01	W-1	Lead	*6010C	0.022	mg/L
1040602-01	W-1	Manganese	*6010C	0.13	mg/L
1040602-01	W-1	Nickel	*6010C	0.026	mg/L
1040602-01	W-1	Zinc	*6010C	0.34	mg/L
1040602-02	W-2R	unknown (1)	*8270D	58	ug/L
1040602-02	W-2R	Manganese	*6010C	0.21	mg/L
1040602-02	W-2R	Selenium	*6010C	0.026	mg/L
1040602-03	MW-5	Cadmium	*6010C	0.0027	mg/L
1040602-03	MW-5	Manganese	*6010C	0.011	mg/L
1040602-04	MW-7	Chromium	*6010C	0.057	mg/L
1040602-04	MW-7	Lead	*6010C	0.023	mg/L
1040602-04	MW-7	Manganese	*6010C	0.039	mg/L
1040602-04	MW-7	Nickel	*6010C	0.011	mg/L
1040602-04	MW-7	Zinc	*6010C	0.037	mg/L
1040602-05	DUP-042611	Squalene	*8270D	16	ug/L
1040602-05	DUP-042611	unknown (1)	*8270D	48	ug/L
1040602-05	DUP-042611	Manganese	*6010C	0.21	mg/L
1040602-05	DUP-042611	Selenium	*6010C	0.025	mg/L
1040602-05	DUP-042611	Zinc	*6010C	0.035	mg/L

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203 Project: Prestige Label

Sample Matrix: Water

Laboratory Report

05/11/2011

Client Sample ID: W-1 Prism Sample ID: 1040602-01 Prism Work Order: 1040602 Time Collected: 04/26/11 11:40 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Semivolatile Organic Compo	unds by GC/MS								
1,2,4-Trichlorobenzene	BRL	ug/L	10	2.2	1	*8270D	5/6/11 19:33	KC	P1E0019
1,2-Dichlorobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019
1,3-Dichlorobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019
1,4-Dichlorobenzene	BRL	ug/L	10	2.0	1	*8270D	5/6/11 19:33	KC	P1E0019
2,4,5-Trichlorophenol	BRL	ug/L	10	2.5	1	*8270D	5/6/11 19:33	KC	P1E0019
2,4,6-Trichlorophenol	BRL	ug/L	10	2.3	1	*8270D	5/6/11 19:33	KC	P1E0019
2,4-Dichlorophenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 19:33	KC	P1E0019
2,4-Dimethylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 19:33	KC	P1E0019
2,4-Dinitrophenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 19:33	KC	P1E0019
2,4-Dinitrotoluene	BRL	ug/L	10	0.95	1	*8270D	5/6/11 19:33	KC	P1E0019
2,6-Dinitrotoluene	BRL	ug/L	10	1.6	1	*8270D	5/6/11 19:33	KC	P1E0019
2-Chloronaphthalene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 19:33	KC	P1E0019
2-Chlorophenol	BRL	ug/L	10	2.1	1	*8270D	5/6/11 19:33	KC	P1E0019
2-Methylnaphthalene	BRL	ug/L	10	2.6	1	*8270D	5/6/11 19:33	KC	P1E0019
2-Methylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 19:33	KC	P1E0019
2-Nitroaniline	BRL	ug/L	10	1.9	1	*8270D	5/6/11 19:33	KC	P1E0019
2-Nitrophenol	BRL	ug/L	10	2.5	1	*8270D	5/6/11 19:33	KC	P1E0019
3,3'-Dichlorobenzidine	BRL	ug/L	10	0.96	1	*8270D	5/6/11 19:33	KC	P1E0019
3/4-Methylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 19:33	KC	P1E0019
3-Nitroaniline	BRL	ug/L	10	1.3	1	*8270D	5/6/11 19:33	KC	P1E0019
4,6-Dinitro-2-methylphenol	BRL	ug/L	10	2.7	1	*8270D	5/6/11 19:33	KC	P1E0019
4-Bromophenyl phenyl ether	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019
4-Chloro-3-methylphenol	BRL	ug/L	10	2.3	1	*8270D	5/6/11 19:33	KC	P1E0019
4-Chloroaniline	BRL	ug/L	10	2.5	1	*8270D	5/6/11 19:33	KC	P1E0019
4-Chlorophenyl phenyl ether	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019
4-Nitroaniline	BRL	ug/L	10	0.91	1	*8270D	5/6/11 19:33	KC	P1E0019
4-Nitrophenol	BRL	ug/L	10	2.6	1	*8270D	5/6/11 19:33	KC	P1E0019
Acenaphthene	BRL	ug/L	10	2.1	1	*8270D	5/6/11 19:33	KC	P1E0019
Acenaphthylene	BRL	ug/L	10	2.2	1	*8270D	5/6/11 19:33	KC	P1E0019
Aniline	BRL	ug/L	10	2.2	1	*8270D	5/6/11 19:33	KC	P1E0019
Anthracene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 19:33	KC	P1E0019
Azobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019
Benzo(a)anthracene	BRL	ug/L	10	0.95	1	*8270D	5/6/11 19:33	KC	P1E0019
Benzo(a)pyrene	BRL	ug/L	10	1.1	1	*8270D	5/6/11 19:33	KC	P1E0019
Benzo(b)fluoranthene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 19:33	KC	P1E0019
Benzo(g,h,i)perylene	BRL	ug/L	10	2.1	1	*8270D	5/6/11 19:33	KC	P1E0019
Benzo(k)fluoranthene	BRL	ug/L	10	1.1	1	*8270D	5/6/11 19:33	KC	P1E0019
Benzoic Acid	BRL	ug/L	100	50	1	*8270D	5/6/11 19:33	KC	P1E0019
Benzyl alcohol	BRL	ug/L	10	2.1	1	*8270D	5/6/11 19:33	KC	P1E0019
bis(2-Chloroethoxy)methane	BRL	ug/L	10	2.2	1	*8270D	5/6/11 19:33	KC	P1E0019
Bis(2-Chloroethyl)ether	BRL	ug/L	10	1.9	1	*8270D	5/6/11 19:33	KC	P1E0019
Bis(2-chloroisopropyl)ether	BRL	ug/L	10	2.3	1	*8270D	5/6/11 19:33	KC	P1E0019

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203 Project: Prestige Label

Sample Matrix: Water

05/11/2011

Client Sample ID: W-1 Prism Sample ID: 1040602-01 Prism Work Order: 1040602 Time Collected: 04/26/11 11:40 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID	
Bis(2-Ethylhexyl)phthalate	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019	
Butyl benzyl phthalate	BRL	ug/L	10	1.5	1	*8270D	5/6/11 19:33	KC	P1E0019	
Chrysene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 19:33	KC	P1E0019	
Dibenzo(a,h)anthracene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019	
Dibenzofuran	BRL	ug/L	10	2.2	1	*8270D	5/6/11 19:33	KC	P1E0019	
Diethyl phthalate	BRL	ug/L	10	1.4	1	*8270D	5/6/11 19:33	KC	P1E0019	
Dimethyl phthalate	BRL	ug/L	10	1.6	1	*8270D	5/6/11 19:33	KC	P1E0019	
Di-n-butyl phthalate	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019	
Di-n-octyl phthalate	BRL	ug/L	10	1.9	1	*8270D	5/6/11 19:33	KC	P1E0019	
Fluoranthene	BRL	ug/L	10	0.94	1	*8270D	5/6/11 19:33	KC	P1E0019	
Fluorene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019	
Hexachlorobenzene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 19:33	KC	P1E0019	
Hexachlorobutadiene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 19:33	KC	P1E0019	
Hexachlorocyclopentadiene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 19:33	KC	P1E0019	
Hexachloroethane	BRL	ug/L	10	1.9	1	*8270D	5/6/11 19:33	KC	P1E0019	
Indeno(1,2,3-cd)pyrene	BRL	ug/L	10	1.6	1	*8270D	5/6/11 19:33	KC	P1E0019	
Isophorone	BRL	ug/L	10	2.4	1	*8270D	5/6/11 19:33	KC	P1E0019	
Naphthalene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 19:33	KC	P1E0019	
Nitrobenzene	BRL	ug/L	10	2.0	1	*8270D	5/6/11 19:33	KC	P1E0019	
N-Nitroso-di-n-propylamine	BRL	ug/L	10	2.3	1	*8270D	5/6/11 19:33	KC	P1E0019	
N-Nitrosodiphenylamine	BRL	ug/L	10	1.6	1	*8270D	5/6/11 19:33	KC	P1E0019	
Pentachlorophenol	BRL	ug/L	10	1.6	1	*8270D	5/6/11 19:33	KC	P1E0019	
Phenanthrene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 19:33	KC	P1E0019	
Phenol	BRL	ug/L	10	2.2	1	*8270D	5/6/11 19:33	KC	P1E0019	
Pyrene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 19:33	KC	P1E0019	
TIC: unknown (1)	28	ug/L			1	*8270D	5/6/11 19:33	кс	P1E0019	
			Surrogate			Recovery			Control Limits	
			2,4,6-Tribro	omophenol		74	4 %	26-139		
			2-Fluorobip	henyl		6	7 %	41-112		
			2-Fluoroph	enol		30	0 %	10-48		
			Nitrobenze	ne-d5		50	0 %	34-102		
			Phenol-d5			23	5 %	10-34		
			Terphenyl-o	d14		84	4 %	31-165		
Total Metals										
Mercury	BRL	mg/L	0.00020	0.000014	1	*7470A	5/5/11 12:35	LTB	P1E0061	
Antimony	BRL	mg/L	0.010	0.0012	1	*6010C	5/3/11 17:49	DWR	P1D0563	
Arsenic	BRL	mg/L	0.010	0.0019	1	*6010C	5/3/11 17:49	DWR	P1D0563	
Beryllium	BRL	mg/L	0.0020	0.00026	1	*6010C	5/2/11 20:10	DWR	P1D0563	
Cadmium	0.0063	mg/L	0.0010	0.00015	1	*6010C	5/3/11 17:49	DWR	P1D0563	
Chromium	0.036	mg/L	0.0050	0.00051	1	*6010C	5/3/11 17:49	DWR	P1D0563	
Copper	0.014	mg/L	0.010	0.0011	1	*6010C	5/3/11 17:49	DWR	P1D0563	
Lead	0.022	mg/L	0.0050	0.00057	1	*6010C	5/3/11 17:49	DWR	P1D0563	
Manganese	0.13	mg/L	0.010	0.00066	1	*6010C	5/3/11 17:49	DWR	P1D0563	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Laboratory Report

05/11/2011

Project: Prestige Label

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Sample Matrix: Water

Client Sample ID: W-1 Prism Sample ID: 1040602-01 Prism Work Order: 1040602 Time Collected: 04/26/11 11:40 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Nickel	0.026	mg/L	0.010	0.0022	1	*6010C	5/3/11 17:49	DWR	P1D0563
Selenium	BRL	mg/L	0.020	0.0028	1	*6010C	5/2/11 20:10	DWR	P1D0563
Silver	BRL	mg/L	0.0050	0.00036	1	*6010C	5/3/11 17:49	DWR	P1D0563
Thallium	BRL	mg/L	0.010	0.0016	1	*6010C	5/3/11 17:49	DWR	P1D0563
Zinc	0.34	mg/L	0.030	0.0026	1	*6010C	5/3/11 17:49	DWR	P1D0563
Volatile Organic Compounds	by GC/MS SIM								
1,4-Dioxane	BRL	ug/L	3.0	0.80	1	*8260B SIM	5/2/11 20:42	MGB	P1D0585

Project: Prestige Label

Sample Matrix: Water

Laboratory Report

05/11/2011

Client Sample ID: W-2R Prism Sample ID: 1040602-02 Prism Work Order: 1040602 Time Collected: 04/26/11 14:55 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Semivolatile Organic Compo	unds by GC/MS								
1,2,4-Trichlorobenzene	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:11	KC	P1E0019
1,2-Dichlorobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
1,3-Dichlorobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
1,4-Dichlorobenzene	BRL	ug/L	10	2.0	1	*8270D	5/6/11 20:11	KC	P1E0019
2,4,5-Trichlorophenol	BRL	ug/L	10	2.5	1	*8270D	5/6/11 20:11	KC	P1E0019
2,4,6-Trichlorophenol	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:11	KC	P1E0019
2,4-Dichlorophenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:11	KC	P1E0019
2,4-Dimethylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:11	KC	P1E0019
2,4-Dinitrophenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:11	KC	P1E0019
2,4-Dinitrotoluene	BRL	ug/L	10	0.95	1	*8270D	5/6/11 20:11	KC	P1E0019
2,6-Dinitrotoluene	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:11	KC	P1E0019
2-Chloronaphthalene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:11	KC	P1E0019
2-Chlorophenol	BRL	ug/L	10	2.1	1	*8270D	5/6/11 20:11	KC	P1E0019
2-Methylnaphthalene	BRL	ug/L	10	2.6	1	*8270D	5/6/11 20:11	KC	P1E0019
2-Methylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:11	KC	P1E0019
2-Nitroaniline	BRL	ug/L	10	1.9	1	*8270D	5/6/11 20:11	KC	P1E0019
2-Nitrophenol	BRL	ug/L	10	2.5	1	*8270D	5/6/11 20:11	KC	P1E0019
3,3'-Dichlorobenzidine	BRL	ug/L	10	0.96	1	*8270D	5/6/11 20:11	KC	P1E0019
3/4-Methylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:11	KC	P1E0019
3-Nitroaniline	BRL	ug/L	10	1.3	1	*8270D	5/6/11 20:11	KC	P1E0019
4,6-Dinitro-2-methylphenol	BRL	ug/L	10	2.7	1	*8270D	5/6/11 20:11	KC	P1E0019
4-Bromophenyl phenyl ether	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
4-Chloro-3-methylphenol	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:11	KC	P1E0019
4-Chloroaniline	BRL	ug/L	10	2.5	1	*8270D	5/6/11 20:11	KC	P1E0019
4-Chlorophenyl phenyl ether	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
4-Nitroaniline	BRL	ug/L	10	0.91	1	*8270D	5/6/11 20:11	KC	P1E0019
4-Nitrophenol	BRL	ug/L	10	2.6	1	*8270D	5/6/11 20:11	KC	P1E0019
Acenaphthene	BRL	ug/L	10	2.1	1	*8270D	5/6/11 20:11	KC	P1E0019
Acenaphthylene	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:11	KC	P1E0019
Aniline	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:11	KC	P1E0019
Anthracene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 20:11	KC	P1E0019
Azobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
Benzo(a)anthracene	BRL	ug/L	10	0.95	1	*8270D	5/6/11 20:11	KC	P1E0019
Benzo(a)pyrene	BRL	ug/L	10	1.1	1	*8270D	5/6/11 20:11	KC	P1E0019
Benzo(b)fluoranthene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 20:11	KC	P1E0019
Benzo(g,h,i)perylene	BRL	ug/L	10	2.1	1	*8270D	5/6/11 20:11	KC	P1E0019
Benzo(k)fluoranthene	BRL	ug/L	10	1.1	1	*8270D	5/6/11 20:11	KC	P1E0019
Benzoic Acid	BRL	ug/L	100	50	1	*8270D	5/6/11 20:11	KC	P1E0019
Benzyl alcohol	BRL	ug/L	10	2.1	1	*8270D	5/6/11 20:11	KC	P1E0019
bis(2-Chloroethoxy)methane	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:11	KC	P1E0019
Bis(2-Chloroethyl)ether	BRL	ug/L	10	1.9	1	*8270D	5/6/11 20:11	KC	P1E0019
Bis(2-chloroisopropyl)ether	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:11	KC	P1E0019

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Project: Prestige Label

Sample Matrix: Water

05/11/2011

Client Sample ID: W-2R Prism Sample ID: 1040602-02 Prism Work Order: 1040602 Time Collected: 04/26/11 14:55 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bis(2-Ethylhexyl)phthalate	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
Butyl benzyl phthalate	BRL	ug/L	10	1.5	1	*8270D	5/6/11 20:11	KC	P1E0019
Chrysene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 20:11	KC	P1E0019
Dibenzo(a,h)anthracene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
Dibenzofuran	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:11	KC	P1E0019
Diethyl phthalate	BRL	ug/L	10	1.4	1	*8270D	5/6/11 20:11	KC	P1E0019
Dimethyl phthalate	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:11	KC	P1E0019
Di-n-butyl phthalate	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
Di-n-octyl phthalate	BRL	ug/L	10	1.9	1	*8270D	5/6/11 20:11	KC	P1E0019
Fluoranthene	BRL	ug/L	10	0.94	1	*8270D	5/6/11 20:11	KC	P1E0019
Fluorene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
Hexachlorobenzene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 20:11	KC	P1E0019
Hexachlorobutadiene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:11	KC	P1E0019
Hexachlorocyclopentadiene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:11	KC	P1E0019
Hexachloroethane	BRL	ug/L	10	1.9	1	*8270D	5/6/11 20:11	KC	P1E0019
Indeno(1,2,3-cd)pyrene	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:11	KC	P1E0019
Isophorone	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:11	KC	P1E0019
Naphthalene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:11	KC	P1E0019
Nitrobenzene	BRL	ug/L	10	2.0	1	*8270D	5/6/11 20:11	KC	P1E0019
N-Nitroso-di-n-propylamine	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:11	KC	P1E0019
N-Nitrosodiphenylamine	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:11	KC	P1E0019
Pentachlorophenol	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:11	KC	P1E0019
Phenanthrene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 20:11	KC	P1E0019
Phenol	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:11	KC	P1E0019
Pyrene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 20:11	KC	P1E0019
TIC: unknown (1)	58	ug/L			1	*8270D	5/6/11 20:11	кс	P1E0019
			Surrogate			Reco	very	Control	Limits
			2,4,6-Tribro	omophenol		7	8 %	26-139	
			2-Fluorobip	henyl		7	7 %	41-112	
			2-Fluoroph	enol		4	0 %	10-48	
			Nitrobenze	ne-d5		6	5 %	34-102	
			Phenol-d5			2	9 %	10-34	
			Terphenyl-	d14		10	08 %	31-165	
Total Metals									
Mercury	BRL	mg/L	0.00020	0.000014	+ 1	*7470A	5/5/11 12:39	LTB	P1E0061
Antimony	BRL	mg/L	0.010	0.0012	1	*6010C	5/3/11 17:24	DWR	P1D0563
Arsenic	BRL	mg/L	0.010	0.0019	1	*6010C	5/3/11 17:24	DWR	P1D0563
Beryllium	BRL	mg/L	0.0020	0.00026	1	*6010C	5/2/11 19:44	DWR	P1D0563
Cadmium	BRL	mg/L	0.0010	0.00015	1	*6010C	5/3/11 17:24	DWR	P1D0563
Chromium	BRL	mg/L	0.0050	0.00051	1	*6010C	5/3/11 17:24	DWR	P1D0563
Copper	BRL	mg/L	0.010	0.0011	1	*6010C	5/3/11 17:24	DWR	P1D0563
Lead	BRL	mg/L	0.0050	0.00057	1	*6010C	5/3/11 17:24	DWR	P1D0563
Manganese	0.21	mg/L	0.010	0.00066	1	*6010C	5/3/11 17:24	DWR	P1D0563

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Hart & Hickman (Charlotte)

2923 South Tryon St. Ste 100

Attn: Nathan O'Leary

Charlotte, NC 28203

Laboratory Report

05/11/2011

Project: Prestige Label

Sample Matrix: Water

Client Sample ID: W-2R Prism Sample ID: 1040602-02 Prism Work Order: 1040602 Time Collected: 04/26/11 14:55 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Nickel	BRL	mg/L	0.010	0.0022	1	*6010C	5/3/11 17:24	DWR	P1D0563
Selenium	0.026	mg/L	0.020	0.0028	1	*6010C	5/2/11 19:44	DWR	P1D0563
Silver	BRL	mg/L	0.0050	0.00036	1	*6010C	5/3/11 17:24	DWR	P1D0563
Thallium	BRL	mg/L	0.010	0.0016	1	*6010C	5/3/11 17:24	DWR	P1D0563
Zinc	BRL	mg/L	0.030	0.0026	1	*6010C	5/3/11 17:24	DWR	P1D0563
Volatile Organic Compounds	by GC/MS SIM								
1,4-Dioxane	BRL	ug/L	3.0	0.80	1	*8260B SIM	5/2/11 21:14	MGB	P1D0585

Project: Prestige Label

Sample Matrix: Water

Laboratory Report

05/11/2011

Client Sample ID: MW-5 Prism Sample ID: 1040602-03 Prism Work Order: 1040602 Time Collected: 04/26/11 16:20 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Total Metals									
Mercury	BRL	mg/L	0.00020	0.000014	1	*7470A	5/5/11 12:09	LTB	P1E0061
Antimony	BRL	mg/L	0.010	0.0012	1	*6010C	5/3/11 17:57	DWR	P1D0563
Arsenic	BRL	mg/L	0.010	0.0019	1	*6010C	5/3/11 17:57	DWR	P1D0563
Beryllium	BRL	mg/L	0.0020	0.00026	1	*6010C	5/2/11 20:18	DWR	P1D0563
Cadmium	0.0027	mg/L	0.0010	0.00015	1	*6010C	5/3/11 17:57	DWR	P1D0563
Chromium	BRL	mg/L	0.0050	0.00051	1	*6010C	5/3/11 17:57	DWR	P1D0563
Copper	BRL	mg/L	0.010	0.0011	1	*6010C	5/3/11 17:57	DWR	P1D0563
Lead	BRL	mg/L	0.0050	0.00057	1	*6010C	5/3/11 17:57	DWR	P1D0563
Manganese	0.011	mg/L	0.010	0.00066	1	*6010C	5/3/11 17:57	DWR	P1D0563
Nickel	BRL	mg/L	0.010	0.0022	1	*6010C	5/3/11 17:57	DWR	P1D0563
Selenium	BRL	mg/L	0.020	0.0028	1	*6010C	5/2/11 20:18	DWR	P1D0563
Silver	BRL	mg/L	0.0050	0.00036	1	*6010C	5/3/11 17:57	DWR	P1D0563
Thallium	BRL	mg/L	0.010	0.0016	1	*6010C	5/3/11 17:57	DWR	P1D0563
Zinc	BRL	mg/L	0.030	0.0026	1	*6010C	5/3/11 17:57	DWR	P1D0563

Project: Prestige Label

Sample Matrix: Water

Laboratory Report

05/11/2011

Client Sample ID: MW-7 Prism Sample ID: 1040602-04 Prism Work Order: 1040602 Time Collected: 04/26/11 16:40 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Total Metals									
Mercury	BRL	mg/L	0.00020	0.000014	1	*7470A	5/5/11 12:43	LTB	P1E0061
Antimony	BRL	mg/L	0.010	0.0012	1	*6010C	5/3/11 18:04	DWR	P1D0563
Arsenic	BRL	mg/L	0.010	0.0019	1	*6010C	5/3/11 18:04	DWR	P1D0563
Beryllium	BRL	mg/L	0.0020	0.00026	1	*6010C	5/2/11 20:25	DWR	P1D0563
Cadmium	BRL	mg/L	0.0010	0.00015	1	*6010C	5/3/11 18:04	DWR	P1D0563
Chromium	0.057	mg/L	0.0050	0.00051	1	*6010C	5/3/11 18:04	DWR	P1D0563
Copper	BRL	mg/L	0.010	0.0011	1	*6010C	5/3/11 18:04	DWR	P1D0563
Lead	0.023	mg/L	0.0050	0.00057	1	*6010C	5/3/11 18:04	DWR	P1D0563
Manganese	0.039	mg/L	0.010	0.00066	1	*6010C	5/3/11 18:04	DWR	P1D0563
Nickel	0.011	mg/L	0.010	0.0022	1	*6010C	5/3/11 18:04	DWR	P1D0563
Selenium	BRL	mg/L	0.020	0.0028	1	*6010C	5/2/11 20:25	DWR	P1D0563
Silver	BRL	mg/L	0.0050	0.00036	1	*6010C	5/3/11 18:04	DWR	P1D0563
Thallium	BRL	mg/L	0.010	0.0016	1	*6010C	5/3/11 18:04	DWR	P1D0563
Zinc	0.037	mg/L	0.030	0.0026	1	*6010C	5/3/11 18:04	DWR	P1D0563

Project: Prestige Label

Sample Matrix: Water

Laboratory Report

Analyst

05/11/2011

Client Sample ID: DUP-042611 Prism Sample ID: 1040602-05 Prism Work Order: 1040602 Time Collected: 04/26/11 00:00 Time Submitted: 04/28/11 08:10

Analysis

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Semivolatile Organic Comp	ounds by GC/MS								
1,2,4-Trichlorobenzene	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:48	KC	P1E0019
1,2-Dichlorobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
1,3-Dichlorobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
1,4-Dichlorobenzene	BRL	ug/L	10	2.0	1	*8270D	5/6/11 20:48	KC	P1E0019
2,4,5-Trichlorophenol	BRL	ug/L	10	2.5	1	*8270D	5/6/11 20:48	KC	P1E0019
2,4,6-Trichlorophenol	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:48	KC	P1E0019
2,4-Dichlorophenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:48	KC	P1E0019
2,4-Dimethylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:48	KC	P1E0019
2,4-Dinitrophenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:48	KC	P1E0019
2,4-Dinitrotoluene	BRL	ug/L	10	0.95	1	*8270D	5/6/11 20:48	KC	P1E0019
2,6-Dinitrotoluene	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:48	KC	P1E0019
2-Chloronaphthalene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:48	KC	P1E0019
2-Chlorophenol	BRL	ug/L	10	2.1	1	*8270D	5/6/11 20:48	KC	P1E0019
2-Methylnaphthalene	BRL	ug/L	10	2.6	1	*8270D	5/6/11 20:48	KC	P1E0019
2-Methylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:48	KC	P1E0019
2-Nitroaniline	BRL	ug/L	10	1.9	1	*8270D	5/6/11 20:48	KC	P1E0019
2-Nitrophenol	BRL	ug/L	10	2.5	1	*8270D	5/6/11 20:48	KC	P1E0019
3,3'-Dichlorobenzidine	BRL	ug/L	10	0.96	1	*8270D	5/6/11 20:48	KC	P1E0019
3/4-Methylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:48	KC	P1E0019
3-Nitroaniline	BRL	ug/L	10	1.3	1	*8270D	5/6/11 20:48	KC	P1E0019
4,6-Dinitro-2-methylphenol	BRL	ug/L	10	2.7	1	*8270D	5/6/11 20:48	KC	P1E0019
4-Bromophenyl phenyl ether	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
4-Chloro-3-methylphenol	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:48	KC	P1E0019
4-Chloroaniline	BRL	ug/L	10	2.5	1	*8270D	5/6/11 20:48	KC	P1E0019
4-Chlorophenyl phenyl ether	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
4-Nitroaniline	BRL	ug/L	10	0.91	1	*8270D	5/6/11 20:48	KC	P1E0019
4-Nitrophenol	BRL	ug/L	10	2.6	1	*8270D	5/6/11 20:48	KC	P1E0019
Acenaphthene	BRL	ug/L	10	2.1	1	*8270D	5/6/11 20:48	KC	P1E0019
Acenaphthylene	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:48	KC	P1E0019
Aniline	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:48	KC	P1E0019
Anthracene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 20:48	KC	P1E0019
Azobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
Benzo(a)anthracene	BRL	ug/L	10	0.95	1	*8270D	5/6/11 20:48	KC	P1E0019
Benzo(a)pyrene	BRL	ug/L	10	1.1	1	*8270D	5/6/11 20:48	KC	P1E0019
Benzo(b)fluoranthene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 20:48	KC	P1E0019
Benzo(g,h,i)perylene	BRL	ug/L	10	2.1	1	*8270D	5/6/11 20:48	KC	P1E0019
Benzo(k)fluoranthene	BRL	ug/L	10	1.1	1	*8270D	5/6/11 20:48	KC	P1E0019
Benzoic Acid	BRL	ug/L	100	50	1	*8270D	5/6/11 20:48	KC	P1E0019
Benzyl alcohol	BRL	ug/L	10	2.1	1	*8270D	5/6/11 20:48	KC	P1E0019
bis(2-Chloroethoxy)methane	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:48	KC	P1E0019
Bis(2-Chloroethyl)ether	BRL	ug/L	10	1.9	1	*8270D	5/6/11 20:48	KC	P1E0019
Bis(2-chloroisopropyl)ether	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:48	KC	P1E0019

Project: Prestige Label

Sample Matrix: Water

05/11/2011

Client Sample ID: DUP-042611 Prism Sample ID: 1040602-05 Prism Work Order: 1040602 Time Collected: 04/26/11 00:00 Time Submitted: 04/28/11 08:10

39 %

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bis(2-Ethylhexyl)phthalate	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
Butyl benzyl phthalate	BRL	ug/L	10	1.5	1	*8270D	5/6/11 20:48	KC	P1E0019
Chrysene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 20:48	KC	P1E0019
Dibenzo(a,h)anthracene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
Dibenzofuran	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:48	KC	P1E0019
Diethyl phthalate	BRL	ug/L	10	1.4	1	*8270D	5/6/11 20:48	KC	P1E0019
Dimethyl phthalate	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:48	KC	P1E0019
Di-n-butyl phthalate	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
Di-n-octyl phthalate	BRL	ug/L	10	1.9	1	*8270D	5/6/11 20:48	KC	P1E0019
Fluoranthene	BRL	ug/L	10	0.94	1	*8270D	5/6/11 20:48	KC	P1E0019
Fluorene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
Hexachlorobenzene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 20:48	KC	P1E0019
Hexachlorobutadiene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:48	KC	P1E0019
Hexachlorocyclopentadiene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 20:48	KC	P1E0019
Hexachloroethane	BRL	ug/L	10	1.9	1	*8270D	5/6/11 20:48	KC	P1E0019
Indeno(1,2,3-cd)pyrene	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:48	KC	P1E0019
Isophorone	BRL	ug/L	10	2.4	1	*8270D	5/6/11 20:48	KC	P1E0019
Naphthalene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:48	KC	P1E0019
Nitrobenzene	BRL	ug/L	10	2.0	1	*8270D	5/6/11 20:48	KC	P1E0019
N-Nitroso-di-n-propylamine	BRL	ug/L	10	2.3	1	*8270D	5/6/11 20:48	KC	P1E0019
N-Nitrosodiphenylamine	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:48	KC	P1E0019
Pentachlorophenol	BRL	ug/L	10	1.6	1	*8270D	5/6/11 20:48	KC	P1E0019
Phenanthrene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 20:48	KC	P1E0019
Phenol	BRL	ug/L	10	2.2	1	*8270D	5/6/11 20:48	KC	P1E0019
Pyrene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 20:48	KC	P1E0019
TIC: Squalene	16	ug/L			1	*8270D	5/6/11 20:48	кс	P1E0019
TIC: unknown (1)	48	ug/L			1	*8270D	5/6/11 20:48	кс	P1E0019
			Surrogate			Reco	very	Control	_imits
			2,4,6-Tribro	mophenol		11	4 %	26-139	
			2-Fluorobip	henyl		98	5 %	41-112	
			2-Fluorophenol			48 %		10-48	
			Nitrobenzene-d5			73	7 %	34-102	

			Terphenyl-o	114		13	2 %	31-165	
Total Metals									
Mercury	BRL	mg/L	0.00020	0.000014	1	*7470A	5/5/11 12:47	LTB	P1E0061
Antimony	BRL	mg/L	0.010	0.0012	1	*6010C	5/3/11 18:12	DWR	P1D0563
Arsenic	BRL	mg/L	0.010	0.0019	1	*6010C	5/3/11 18:12	DWR	P1D0563
Beryllium	BRL	mg/L	0.0020	0.00026	1	*6010C	5/2/11 20:33	DWR	P1D0563
Cadmium	BRL	mg/L	0.0010	0.00015	1	*6010C	5/3/11 18:12	DWR	P1D0563
Chromium	BRL	mg/L	0.0050	0.00051	1	*6010C	5/3/11 18:12	DWR	P1D0563
Copper	BRL	mg/L	0.010	0.0011	1	*6010C	5/3/11 18:12	DWR	P1D0563
Lead	BRL	mg/L	0.0050	0.00057	1	*6010C	5/3/11 18:12	DWR	P1D0563

Phenol-d5

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409 10-34

SR

Hart & Hickman (Charlotte)

Attn: Nathan O'Leary

Charlotte, NC 28203

Laboratory Report

05/11/2011

Project: Prestige Label

2923 South Tryon St. Ste 100 Sample Matrix: Water Client Sample ID: DUP-042611 Prism Sample ID: 1040602-05 Prism Work Order: 1040602 Time Collected: 04/26/11 00:00 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Manganese	0.21	mg/L	0.010	0.00066	1	*6010C	5/3/11 18:12	DWR	P1D0563
Nickel	BRL	mg/L	0.010	0.0022	1	*6010C	5/3/11 18:12	DWR	P1D0563
Selenium	0.025	mg/L	0.020	0.0028	1	*6010C	5/2/11 20:33	DWR	P1D0563
Silver	BRL	mg/L	0.0050	0.00036	1	*6010C	5/3/11 18:12	DWR	P1D0563
Thallium	BRL	mg/L	0.010	0.0016	1	*6010C	5/3/11 18:12	DWR	P1D0563
Zinc	0.035	mg/L	0.030	0.0026	1	*6010C	5/3/11 18:12	DWR	P1D0563
Volatile Organic Compounds	by GC/MS SIM								
1,4-Dioxane	BRL	ug/L	3.0	0.80	1	*8260B SIM	5/2/11 21:49	MGB	P1D0585

Project: Prestige Label

Sample Matrix: Water

Laboratory Report

Analyst

05/11/2011

Client Sample ID: EB-042611 Prism Sample ID: 1040602-06 Prism Work Order: 1040602 Time Collected: 04/26/11 10:45 Time Submitted: 04/28/11 08:10

Analysis

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Semivolatile Organic Compo	unds by GC/MS								
1,2,4-Trichlorobenzene	BRL	ug/L	10	2.2	1	*8270D	5/6/11 21:25	KC	P1E0019
1,2-Dichlorobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
1,3-Dichlorobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
1,4-Dichlorobenzene	BRL	ug/L	10	2.0	1	*8270D	5/6/11 21:25	KC	P1E0019
2,4,5-Trichlorophenol	BRL	ug/L	10	2.5	1	*8270D	5/6/11 21:25	KC	P1E0019
2,4,6-Trichlorophenol	BRL	ug/L	10	2.3	1	*8270D	5/6/11 21:25	KC	P1E0019
2,4-Dichlorophenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 21:25	KC	P1E0019
2,4-Dimethylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 21:25	KC	P1E0019
2,4-Dinitrophenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 21:25	KC	P1E0019
2,4-Dinitrotoluene	BRL	ug/L	10	0.95	1	*8270D	5/6/11 21:25	KC	P1E0019
2,6-Dinitrotoluene	BRL	ug/L	10	1.6	1	*8270D	5/6/11 21:25	KC	P1E0019
2-Chloronaphthalene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 21:25	KC	P1E0019
2-Chlorophenol	BRL	ug/L	10	2.1	1	*8270D	5/6/11 21:25	KC	P1E0019
2-Methylnaphthalene	BRL	ug/L	10	2.6	1	*8270D	5/6/11 21:25	KC	P1E0019
2-Methylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 21:25	KC	P1E0019
2-Nitroaniline	BRL	ug/L	10	1.9	1	*8270D	5/6/11 21:25	KC	P1E0019
2-Nitrophenol	BRL	ug/L	10	2.5	1	*8270D	5/6/11 21:25	KC	P1E0019
3,3'-Dichlorobenzidine	BRL	ug/L	10	0.96	1	*8270D	5/6/11 21:25	KC	P1E0019
3/4-Methylphenol	BRL	ug/L	10	2.4	1	*8270D	5/6/11 21:25	KC	P1E0019
3-Nitroaniline	BRL	ug/L	10	1.3	1	*8270D	5/6/11 21:25	KC	P1E0019
4,6-Dinitro-2-methylphenol	BRL	ug/L	10	2.7	1	*8270D	5/6/11 21:25	KC	P1E0019
4-Bromophenyl phenyl ether	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
4-Chloro-3-methylphenol	BRL	ug/L	10	2.3	1	*8270D	5/6/11 21:25	KC	P1E0019
4-Chloroaniline	BRL	ug/L	10	2.5	1	*8270D	5/6/11 21:25	KC	P1E0019
4-Chlorophenyl phenyl ether	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
4-Nitroaniline	BRL	ug/L	10	0.91	1	*8270D	5/6/11 21:25	KC	P1E0019
4-Nitrophenol	BRL	ug/L	10	2.6	1	*8270D	5/6/11 21:25	KC	P1E0019
Acenaphthene	BRL	ug/L	10	2.1	1	*8270D	5/6/11 21:25	KC	P1E0019
Acenaphthylene	BRL	ug/L	10	2.2	1	*8270D	5/6/11 21:25	KC	P1E0019
Aniline	BRL	ug/L	10	2.2	1	*8270D	5/6/11 21:25	KC	P1E0019
Anthracene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 21:25	KC	P1E0019
Azobenzene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
Benzo(a)anthracene	BRL	ug/L	10	0.95	1	*8270D	5/6/11 21:25	KC	P1E0019
Benzo(a)pyrene	BRL	ug/L	10	1.1	1	*8270D	5/6/11 21:25	KC	P1E0019
Benzo(b)fluoranthene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 21:25	KC	P1E0019
Benzo(g,h,i)perylene	BRL	ug/L	10	2.1	1	*8270D	5/6/11 21:25	KC	P1E0019
Benzo(k)fluoranthene	BRL	ug/L	10	1.1	1	*8270D	5/6/11 21:25	KC	P1E0019
Benzoic Acid	BRL	ug/L	100	50	1	*8270D	5/6/11 21:25	KC	P1E0019
Benzyl alcohol	BRL	ug/L	10	2.1	1	*8270D	5/6/11 21:25	KC	P1E0019
bis(2-Chloroethoxy)methane	BRL	ug/L	10	2.2	1	*8270D	5/6/11 21:25	KC	P1E0019
Bis(2-Chloroethyl)ether	BRL	ug/L	10	1.9	1	*8270D	5/6/11 21:25	KC	P1E0019
Bis(2-chloroisopropyl)ether	BRL	ug/L	10	2.3	1	*8270D	5/6/11 21:25	KC	P1E0019

Project: Prestige Label

Sample Matrix: Water

05/11/2011

Client Sample ID: EB-042611 Prism Sample ID: 1040602-06 Prism Work Order: 1040602 Time Collected: 04/26/11 10:45 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bis(2-Ethylhexyl)phthalate	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
Butyl benzyl phthalate	BRL	ug/L	10	1.5	1	*8270D	5/6/11 21:25	KC	P1E0019
Chrysene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 21:25	KC	P1E0019
Dibenzo(a,h)anthracene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
Dibenzofuran	BRL	ug/L	10	2.2	1	*8270D	5/6/11 21:25	KC	P1E0019
Diethyl phthalate	BRL	ug/L	10	1.4	1	*8270D	5/6/11 21:25	KC	P1E0019
Dimethyl phthalate	BRL	ug/L	10	1.6	1	*8270D	5/6/11 21:25	KC	P1E0019
Di-n-butyl phthalate	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
Di-n-octyl phthalate	BRL	ug/L	10	1.9	1	*8270D	5/6/11 21:25	KC	P1E0019
Fluoranthene	BRL	ug/L	10	0.94	1	*8270D	5/6/11 21:25	KC	P1E0019
Fluorene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
Hexachlorobenzene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 21:25	KC	P1E0019
Hexachlorobutadiene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 21:25	KC	P1E0019
Hexachlorocyclopentadiene	BRL	ug/L	10	1.8	1	*8270D	5/6/11 21:25	KC	P1E0019
Hexachloroethane	BRL	ug/L	10	1.9	1	*8270D	5/6/11 21:25	KC	P1E0019
Indeno(1,2,3-cd)pyrene	BRL	ug/L	10	1.6	1	*8270D	5/6/11 21:25	KC	P1E0019
Isophorone	BRL	ug/L	10	2.4	1	*8270D	5/6/11 21:25	KC	P1E0019
Naphthalene	BRL	ug/L	10	2.3	1	*8270D	5/6/11 21:25	KC	P1E0019
Nitrobenzene	BRL	ug/L	10	2.0	1	*8270D	5/6/11 21:25	KC	P1E0019
N-Nitroso-di-n-propylamine	BRL	ug/L	10	2.3	1	*8270D	5/6/11 21:25	KC	P1E0019
N-Nitrosodiphenylamine	BRL	ug/L	10	1.6	1	*8270D	5/6/11 21:25	KC	P1E0019
Pentachlorophenol	BRL	ug/L	10	1.6	1	*8270D	5/6/11 21:25	KC	P1E0019
Phenanthrene	BRL	ug/L	10	1.2	1	*8270D	5/6/11 21:25	KC	P1E0019
Phenol	BRL	ug/L	10	2.2	1	*8270D	5/6/11 21:25	KC	P1E0019
Pyrene	BRL	ug/L	10	1.4	1	*8270D	5/6/11 21:25	KC	P1E0019
TIC: Tentatively Identified Compounds (TIC	Not Detected	ug/L			1	*8270D	5/6/11 21:25	KC	P1E0019

		Surrogate				Recov	very	Control Limits	
			2,4,6-Tribro	mophenol		76	5 %	26-139	
			2-Fluorobip	henyl		74	4 %	41-112	
			2-Fluoroph	enol		45	5 %	10-48	
			Nitrobenze	ne-d5		75	5 %	34-102	
			Phenol-d5			28	3 %	10-34	
			Terphenyl-o	114		114 %		31-165	
Total Metals									
Mercury	BRL	mg/L	0.00020	0.000014	1	*7470A	5/5/11 12:51	LTB	P1E0061
Antimony	BRL	mg/L	0.010	0.0012	1	*6010C	5/3/11 18:20	DWR	P1D0563
Arsenic	BRL	mg/L	0.010	0.0019	1	*6010C	5/3/11 18:20	DWR	P1D0563
Beryllium	BRL	mg/L	0.0020	0.00026	1	*6010C	5/2/11 20:41	DWR	P1D0563
Cadmium	BRL	mg/L	0.0010	0.00015	1	*6010C	5/3/11 18:20	DWR	P1D0563
Chromium	BRL	mg/L	0.0050	0.00051	1	*6010C	5/3/11 18:20	DWR	P1D0563
Copper	BRL	mg/L	0.010	0.0011	1	*6010C	5/3/11 18:20	DWR	P1D0563
Lead	BRL	mg/L	0.0050	0.00057	1	*6010C	5/3/11 18:20	DWR	P1D0563

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Laboratory Report

05/11/2011

Project: Prestige Label

Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Hart & Hickman (Charlotte)

Sample Matrix: Water

Client Sample ID: EB-042611 Prism Sample ID: 1040602-06 Prism Work Order: 1040602 Time Collected: 04/26/11 10:45 Time Submitted: 04/28/11 08:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Manganese	BRL	mg/L	0.010	0.00066	1	*6010C	5/3/11 18:20	DWR	P1D0563
Nickel	BRL	mg/L	0.010	0.0022	1	*6010C	5/3/11 18:20	DWR	P1D0563
Selenium	BRL	mg/L	0.020	0.0028	1	*6010C	5/2/11 20:41	DWR	P1D0563
Silver	BRL	mg/L	0.0050	0.00036	1	*6010C	5/3/11 18:20	DWR	P1D0563
Thallium	BRL	mg/L	0.010	0.0016	1	*6010C	5/3/11 18:20	DWR	P1D0563
Zinc	BRL	mg/L	0.030	0.0026	1	*6010C	5/3/11 18:20	DWR	P1D0563
Volatile Organic Compounds b	y GC/MS SIM								
1,4-Dioxane	BRL	ug/L	3.0	0.80	1	*8260B SIM	5/2/11 20:05	MGB	P1D0585

Prism Work Order: 1040602 Time Submitted: 4/28/11 8:10:00AM

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Volatile Organic Compounds by GC/MS SIM - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1D0585 - 5030B										
Blank (P1D0585-BLK1)				Prepared:	04/29/11	Analyzed	: 05/02/11			
1,4-Dioxane	BRL	3.0	ug/L							
LCS (P1D0585-BS1)				Prepared:	04/29/11	Analyzed	: 05/02/11			
1,4-Dioxane	61.6	3.0	ug/L	50.0		123	70-130			
LCS Dup (P1D0585-BSD1)				Prepared:	04/29/11	Analyzed	: 05/02/11			
1,4-Dioxane	58.6	3.0	ug/L	50.0		117	70-130	5	200	

Prism Work Order: 1040602

Time Submitted: 4/28/11 8:10:00AM

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1E0019 - 3510C MS										
Blank (P1E0019-BLK1)				Prepared	: 05/02/11	Analvzed	: 05/06/11			
1.2.4-Trichlorobenzene	BRL	10	ua/L							
1.2-Dichlorobenzene	BRL	10	ua/L							
1,3-Dichlorobenzene	BRL	10	ug/L							
1,4-Dichlorobenzene	BRL	10	ug/L							
2,4,5-Trichlorophenol	BRL	10	ug/L							
2,4,6-Trichlorophenol	BRL	10	ug/L							
2,4-Dichlorophenol	BRL	10	ug/L							
2,4-Dimethylphenol	BRL	10	ug/L							
2,4-Dinitrophenol	BRL	10	ug/L							
2,4-Dinitrotoluene	BRL	10	ug/L							
2,6-Dinitrotoluene	BRL	10	ug/L							
2-Chloronaphthalene	BRL	10	ug/L							
2-Chlorophenol	BRL	10	ug/L							
2-Methylnaphthalene	BRL	10	ug/L							
2-Methylphenol	BRL	10	ug/L							
2-Nitroaniline	BRL	10	ug/L							
2-Nitrophenol	BRL	10	ug/L							
3,3'-Dichlorobenzidine	BRL	10	ug/L							
3/4-Methylphenol	BRL	10	ug/L							
3-Nitroaniline	BRL	10	ug/L							
4,6-Dinitro-2-methylphenol	BRL	10	ug/L							
4-Bromophenyl phenyl ether	BRL	10	ug/L							
4-Chloro-3-methylphenol	BRL	10	ug/L							
4-Chloroaniline	BRL	10	ug/L							
4-Chlorophenyl phenyl ether	BRL	10	ug/L							
4-Nitroaniline	BRL	10	ug/L							
4-Nitrophenol	BRL	10	ug/L							
Acenaphthene	BRL	10	ug/L							
Acenaphthylene	BRL	10	ug/L							
Aniline	BRL	10	ug/L							
Anthracene	BRL	10	ug/L							
Azobenzene	BRL	10	ug/L							
Benzo(a)anthracene	BRL	10	ug/L							
Benzo(a)pyrene	BRL	10	ug/L							
Benzo(b)fluoranthene	BRL	10	ug/L							
Benzo(g,h,i)perylene	BRL	10	ug/L							
Benzo(k)fluoranthene	BRL	10	ug/L							
Benzoic Acid	BRL	100	ug/L							
Benzyl alcohol	BRL	10	ug/L							
bis(2-Chloroethoxy)methane	BRL	10	ug/L							
Bis(2-Chloroethyl)ether	BRL	10	ug/L							
Bis(2-chloroisopropyl)ether	BRL	10	ug/L							
Bis(2-Ethylhexyl)phthalate	BRL	10	ug/L							
Butyl benzyl phthalate	BRL	10	ug/L							
Chrysene	BRL	10	ug/L							
Dibenzo(a,h)anthracene	BRL	10	ug/L							

Charlotte, NC 28203

Project: Prestige Label

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100

Prism Work Order: 1040602 Time Submitted: 4/28/11 8:10:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1E0019 - 3510C MS										
Blank (P1E0019-BLK1)				Prepared	: 05/02/11	Analyzed	: 05/06/11			
Dibenzofuran	BRL	10	ug/L							
Diethyl phthalate	BRL	10	ug/L							
Dimethyl phthalate	BRL	10	ug/L							
Di-n-butyl phthalate	BRL	10	ug/L							
Di-n-octyl phthalate	BRL	10	ug/L							
Fluoranthene	BRL	10	ug/L							
Fluorene	BRL	10	ug/L							
Hexachlorobenzene	BRL	10	ug/L							
Hexachlorobutadiene	BRL	10	ug/L							
Hexachlorocyclopentadiene	BRL	10	ug/L							
Hexachloroethane	BRL	10	ug/L							
Indeno(1,2,3-cd)pyrene	BRL	10	ug/L							
Isophorone	BRL	10	ug/L							
Naphthalene	BRL	10	ug/L							
Nitrobenzene	BRL	10	ug/L							
N-Nitroso-di-n-propylamine	BRL	10	ug/L							
N-Nitrosodiphenylamine	BRL	10	ug/L							
Pentachlorophenol	BRL	10	ug/L							
Phenanthrene	BRL	10	ug/L							
Phenol	BRL	10	ug/L							
Pyrene	BRL	10	ug/L							
Tentatively Identified Compounds	0.00		ug/L							
Surrogate: 2,4,6-Tribromophenol	84.4		ug/L	100		84	26-139			
Surrogate: 2-Fluorobiphenyl	40.4		ug/L	50.0		81	41-112			
Surrogate: 2-Fluorophenol	55.2		ug/L	100		55	10-48			SR
Surrogate: Nitrobenzene-d5	43.9		ug/L	50.0		88	34-102			
Surrogate: Phenol-d5	32.8		ug/L	100		33	10-34			
Surrogate: Terphenyl-d14	45.0		ug/L	50.0		90	31-165			

Level II QC Report 5/11/11

Prism Work Order: 1040602 Time Submitted: 4/28/11 8:10:00AM

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1E0019 - 3510C MS										
LCS (P1E0019-BS1)				Prepared	: 05/02/11	Analyzed	: 05/03/11			
1,2,4-Trichlorobenzene	38.1	10	ug/L	50.0		76	39-102			
1,2-Dichlorobenzene	36.6	10	ug/L	50.0		73	46-90			
1,3-Dichlorobenzene	34.4	10	ug/L	50.0		69	31-100			
1,4-Dichlorobenzene	35.8	10	ug/L	50.0		72	45-89			
2,4,5-Trichlorophenol	49.4	10	ug/L	50.0		99	60-108			
2,4,6-Trichlorophenol	49.9	10	ug/L	50.0		100	48-118			
2,4-Dichlorophenol	43.2	10	ug/L	50.0		86	38-107			
2,4-Dimethylphenol	43.3	10	ug/L	50.0		87	26-108			
2,4-Dinitrophenol	43.2	10	ug/L	50.0		86	10-157			
2,4-Dinitrotoluene	58.3	10	ug/L	50.0		117	61-139			
2,6-Dinitrotoluene	55.2	10	ug/L	50.0		110	55-141			
2-Chloronaphthalene	53.5	10	ug/L	50.0		107	46-114			
2-Chlorophenol	42.1	10	ug/L	50.0		84	39-80			LH
2-Methylnaphthalene	40.9	10	ug/L	50.0		82	39-107			
2-Methylphenol	39.7	10	ug/L	50.0		79	24-73			LH
2-Nitroaniline	53.2	10	ug/L	50.0		106	65-123			
2-Nitrophenol	42.8	10	ug/L	50.0		86	40-111			
3,3'-Dichlorobenzidine	51.0	10	ug/L	50.0		102	25-203			
3/4-Methylphenol	35.5	10	ug/L	50.0		71	22-84			
3-Nitroaniline	58.1	10	ug/L	50.0		116	66-131			
4,6-Dinitro-2-methylphenol	46.5	10	ug/L	50.0		93	31-155			
4-Bromophenyl phenyl ether	51.8	10	ug/L	50.0		104	50-131			
4-Chloro-3-methylphenol	46.9	10	ug/L	50.0		94	48-94			
4-Chloroaniline	49.8	10	ug/L	50.0		100	45-120			
4-Chlorophenyl phenyl ether	50.6	10	ug/L	50.0		101	55-125			
4-Nitroaniline	59.5	10	ug/L	50.0		119	63-138			
4-Nitrophenol	25.2	10	ug/L	50.0		50	10-89			
Acenaphthene	50.9	10	ug/L	50.0		102	53-118			
Acenaphthylene	49.5	10	ug/L	50.0		99	52-121			
Aniline	48.6	10	ug/L	50.0		97	24-105			
Anthracene	51.8	10	ug/L	50.0		104	59-138			
Azobenzene	54.7	10	ug/L	50.0		109	65-123			
Benzo(a)anthracene	53.5	10	ug/L	50.0		107	63-138			
Benzo(a)pyrene	51.7	10	ug/L	50.0		103	67-142			
Benzo(b)fluoranthene	52.2	10	ug/L	50.0		104	58-151			
Benzo(g,h,i)perylene	49.9	10	ug/L	50.0		100	47-151			
Benzo(k)fluoranthene	52.2	10	ug/L	50.0		104	45-155			
Benzoic Acid	BRL	100	ug/L	50.0			10-125			LH
Benzyl alcohol	41.4	10	ug/L	50.0		83	25-77			LH
bis(2-Chloroethoxy)methane	43.0	10	ug/L	50.0		86	42-119			
Bis(2-Chloroethyl)ether	40.4	10	ug/L	50.0		81	38-109			
Bis(2-chloroisopropyl)ether	36.2	10	ug/L	50.0		72	31-117			
Bis(2-Ethylhexyl)phthalate	51.8	10	ug/L	50.0		104	52-165			
Butyl benzyl phthalate	54.4	10	ug/L	50.0		109	51-162			
Chrysene	52.0	10	ug/L	50.0		104	59-137			
Dibenzo(a,h)anthracene	48.6	10	ug/L	50.0		97	43-161			

Level II QC Report 5/11/11

Prism Work Order: 1040602 Time Submitted: 4/28/11 8:10:00AM

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyta	Popult	Reporting	Unito	Spike	Source		%REC	חחם	RPD Limit	Notos
Analyte	Result	LIIIII	Units	Level	Result	70REC	LIIIIIIS	RFD	LIIIII	notes
Batch P1E0019 - 3510C MS										
LCS (P1E0019-BS1)				Prepared	: 05/02/11	Analyzed	: 05/03/11			
Dibenzofuran	47.8	10	ug/L	50.0		96	63-115			
Diethyl phthalate	55.1	10	ug/L	50.0		110	54-135			
Dimethyl phthalate	54.0	10	ug/L	50.0		108	46-135			
Di-n-butyl phthalate	53.5	10	ug/L	50.0		107	51-142			
Di-n-octyl phthalate	44.0	10	ug/L	50.0		88	54-160			
Fluoranthene	55.8	10	ug/L	50.0		112	52-137			
Fluorene	54.2	10	ug/L	50.0		108	56-122			
Hexachlorobenzene	50.0	10	ug/L	50.0		100	57-129			
Hexachlorobutadiene	37.0	10	ug/L	50.0		74	34-110			
Hexachlorocyclopentadiene	42.8	10	ug/L	50.0		86	27-120			
Hexachloroethane	35.4	10	ug/L	50.0		71	37-98			
Indeno(1,2,3-cd)pyrene	50.7	10	ug/L	50.0		101	24-172			
Isophorone	49.1	10	ug/L	50.0		98	44-117			
Naphthalene	40.3	10	ug/L	50.0		81	37-108			
Nitrobenzene	40.8	10	ug/L	50.0		82	29-120			
N-Nitroso-di-n-propylamine	42.5	10	ug/L	50.0		85	42-115			
N-Nitrosodiphenylamine	54.9	10	ug/L	50.0		110	69-142			
Pentachlorophenol	48.3	10	ug/L	50.0		97	42-156			
Phenanthrene	49.7	10	ug/L	50.0		99	60-133			
Phenol	16.3	10	ug/L	50.0		33	10-47			
Pyrene	44.4	10	ug/L	50.0		89	50-152			
Surrogate: 2,4,6-Tribromophenol	115		ug/L	100		115	26-139			
Surrogate: 2-Fluorobiphenyl	48.9		ug/L	50.0		98	41-112			
Surrogate: 2-Fluorophenol	65.7		ug/L	100		66	10-48			SF
Surrogate: Nitrobenzene-d5	45.0		ug/L	50.0		90	34-102			
Surrogate: Phenol-d5	35.6		ug/L	100		36	10-34			SF
Surrogate: Terphenyl-d14	46.9		ug/L	50.0		94	31-165			

Level II QC Report 5/11/11

Prism Work Order: 1040602 Time Submitted: 4/28/11 8:10:00AM

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyce Result Linit Linit Linit Note Batch P1E0019 - 3510C MS <th></th> <th></th> <th colspan="3">Reporting</th> <th colspan="2">Spike Source</th> <th>%REC</th> <th></th> <th colspan="2"></th>			Reporting			Spike Source		%REC			
Batch P1E0019-3510C MS Prepared: 05/02/11 Analyzed: 05/02/11 Analyzed: 05/02/11 12.4.1 frichlorobenzene 45.2 10 ugl. 60.0 90 36.102 17 200 13.10/01/00enzene 44.8 10 ugl. 60.0 90 46.40 20 200 13.10/01/00enzene 44.6 10 ugl. 60.0 115 60.0 22 200 12 24.6.5.11000000000 67.3 10 ugl. 60.0 116 60.00 116 200 22 24.6.5.11000000000 62.2 10 ugl. 60.0 117 81.01 200 24.2 24.4.5.11000000000 116 63.4 10 ugl. 60.0 116 81.14 8 200 24.2.5.1100000000000 58.8 10 ugl. 60.0 116 46.14 8 200 200 24.5.100000000000 59.8 10 ugl. 60.0 116 46.14 200 200	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Description Prepared: 05/02/11 Analyzer. US-03/11 12.A-1/inductobenzene 45.2 10 ugl. 50.0 90 46.90 20 20 1.3-Dichrobenzene 44.5 10 ugl. 50.0 89 34.90 25 200 22 20 12 2.4.5-frichlorophenol 57.3 10 ugl. 50.0 110 48.118 0 200 22 20 12 2.4.5-frichlorophenol 55.1 10 ugl. 60.0 110 48.118 0 200 2.4.Denknyphenol 25.2 10 ugl. 60.0 119 61.137 2 200 2.4.Denknyphenol 45.4 10 ugl. 60.0 118 46.14 9 200 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	Batch P1E0019 - 3510C MS										
12.4-Triblicobarszene 45.2 10 ugl. 60.0 90 34-02 17 200 13-Dichtorbarszene 44.8 10 ugl. 60.0 89 34-100 25 200 13-Dichtorbarszene 44.6 10 ugl. 60.0 89 34-100 25 200 L2 4.4.5 10 ugl. 60.0 110 64-108 12 200 L2 2.4.6 Fichioropherol 55.1 10 ugl. 60.0 104 38-107 21 200 2.4-Dichtoropherol 65.4 10 ugl. 60.0 104 16-163 2 200 2.4-Dichtoroblene 59.8 10 ugl. 60.0 110 64-114 9 200 L2 2.4-Dichtoroblene 69.8 10 ugl. 60.0 100 26.5 21.2 200 L4 2.4-Dichtoroblene 69.8 10 ugl. 60.0 10.2 54.41	LCS Dup (P1E0019-BSD1)				Prepared	: 05/02/11	Analyzed	: 05/03/11			
1.2.Dichronobenzone44.810ugL60.09046.9020201.4.Dichronobenzone44.610ugL60.08831.402220.01.22.4.5.Trinktorphend57.310ugL60.011048.1161020.01.22.4.Jehtnohyphend53.510ugL60.011048.1161020.01.22.4.Dichtorphend53.510ugL60.011424.161020.01.22.4.Dintrohyphend45.410ugL60.011961.13220.01.22.4.Dintrohyphend45.410ugL60.011961.13220.01.22.4.Dintrohume59.410ugL60.011846.14920.01.22.4.Dintrohume69.810ugL60.018849.41920.01.22.4.Dintrohume69.810ugL60.010824.731820.01.22.4.Dintrohume69.810ugL60.010264.131920.01.22.4.Dintrohume69.810ugL60.010449.111920.01.22.4.Dintrohume69.810ugL60.011469.1319.01.220.01.22.4.Dintrohume69.810ugL60.011469.1319.01.220.01.2	1,2,4-Trichlorobenzene	45.2	10	ug/L	50.0		90	39-102	17	200	
1.3-Dickhorebarzene44.510ug/L80.08931-00222001222.4.5-Trickhorephenol57.310ug/L80.011060-0815200122.4.5-Trickhorephenol55.110ug/L80.011048-118102002.4.5-Trickhorephenol55.510ug/L80.010738-107212002.4-Dehotophenol52.210ug/L80.011846-1148202.4-Dehotophenol56.410ug/L80.011846-1148201202.4-Dontophenol56.810ug/L80.011846-1148201202.Chotorophenol46.610ug/L80.010039-10720201202.Chotorophenol47.610ug/L80.010039-10720201202.Metryhaphenol57.810ug/L80.011846-1148201202.Metryhaphenol57.810ug/L80.011531-15212001202.Metryhaphenol57.410ug/L80.011531-16102001202.Metryhaphenol57.410ug/L80.011531-16102001202.Metryhaphenol57.410ug/L80.011531-16102001202.Metryhaphenol57.4 </td <td>1,2-Dichlorobenzene</td> <td>44.8</td> <td>10</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>90</td> <td>46-90</td> <td>20</td> <td>200</td> <td></td>	1,2-Dichlorobenzene	44.8	10	ug/L	50.0		90	46-90	20	200	
1.4-Dick Incompandia44.610ug/L60.08984.692.220.012.2.4.5-Trick Incompandi55.110ug/L60.011045.161020.02.4-Dick Incompandi55.510ug/L60.010145.161920.02.4-Dick Incompandi55.410ug/L60.011061.161920.02.4-Dink Incompandi56.410ug/L60.011061.5520.02.4-Dink Incompandi56.410ug/L60.010065.141820.012.22.4-Dink Incompandi58.810ug/L60.01009838.401620.012.22.6-Dink Incompandi58.810ug/L60.010.838.1020.012.220.012.22.4-Dink Incompandi60.010ug/L60.010.838.1012.220.0 <td>1,3-Dichlorobenzene</td> <td>44.5</td> <td>10</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>89</td> <td>31-100</td> <td>25</td> <td>200</td> <td></td>	1,3-Dichlorobenzene	44.5	10	ug/L	50.0		89	31-100	25	200	
24.54 Trichierophenol57.310ugL60.011048.101520.0122.4-Dinchorophenol53.510ugL50.010738.107212002.4-Dinchorophenol53.510ugL50.010148.107212002.4-Dinchorophenol62.210ugL50.010161.13922002.4-Dinchorophenol63.810ugL50.010161.139220022.4-Dinchorophenol68.810ugL50.010848.11492001242.Choropaphhalene68.810ugL50.010039.107202001242.Choropaphhalene48.810ugL50.010839.107202001242.Aktrophenol47.610ugL50.010863.2122001242.Aktrophenol55.810ugL50.011440.111192001242.Aktrophenol57.410ugL50.011531.155212001242.Aktrophenol57.410ugL50.011345.12122001242.Aktrophenol57.710ugL50.011351.15212001242.Aktrophenol57.710ugL50.011354.162001244.Aktrophenol66.410ugL5	1,4-Dichlorobenzene	44.6	10	ug/L	50.0		89	45-89	22	200	L2
2.4.6.Tichicrophenol55.110ugl50.011048-11810202.4-Dichicrophenol53.510ugl50.010426-10819202.4-Dintrophenol45.410ugl50.011961-15752002.4-Dintrophenol56.810ugl50.011961-15752002.4-Dintrophenol56.810ugl50.011848.448200122.Chicronphenol46.610ugl50.010838-00162001442.Adethriphenol47.610ugl50.010038-107202001442.Adethriphenol47.610ugl50.010440.111192001442.Adethriphenol60.010ugl50.011460.111192001442.Adethriphenol63.810ugl50.011466.131102001442.Adethriphenol64.410ugl50.011466.131102001444.Adethriphenol67.710ugl50.011465.12102001444.Adethriphenol67.710ugl50.011465.12102001444.Adethriphenol67.710ugl50.011465.12102001444.Adethriphenol67.710ugl50	2,4,5-Trichlorophenol	57.3	10	ug/L	50.0		115	60-108	15	200	L2
2.4-Dinkophenol53.510ugl.50.010738.107212002.4-Dinkophyphenol52.210ugl.50.01110.15752002.4-Dinkophyphenol63.410ugl.50.011061.13922002.4-Dinkophyphenol63.810ugl.50.011846.11492001202.Chorophenol63.810ugl.50.010039.407201202002.Chorophenol49.610ugl.50.010039.407201202002.Ahethynaphutalene49.610ugl.50.010039.407201202002.Ahethynaphutalene49.610ugl.50.012066.131102001202.Ahethynaphutalene55.810ugl.50.011225.0392001202.Ahethynaphutalene65.410ugl.50.01132001202012.Ahethynaphutalene65.710ugl.50.011456.131102001203.3'Dichorobenzitine65.410ugl.50.011456.131102001204.Ahethynhenol65.410ugl.50.011456.131102001204.Chorosaline67.710ugl.50.011456.131102001204.Chorosaline65.4 <td>2,4,6-Trichlorophenol</td> <td>55.1</td> <td>10</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>110</td> <td>48-118</td> <td>10</td> <td>200</td> <td></td>	2,4,6-Trichlorophenol	55.1	10	ug/L	50.0		110	48-118	10	200	
2.4-Dim 2.4-Dim tophenol45.410ug/L50.010426.16810102.4-Dim tophenol69.410ug/L50.011961.1922002.4-Dim tophenol69.810ug/L50.011864.1148200L22.4-Dim tophenol68.810ug/L50.011864.1148200L22.Choronphenol49.610ug/L50.010534.60200L42.Hehryhphenol47.610ug/L50.010664.1312200L42.Hehryhphenol61.910ug/L50.010446.1312200L42.Hehryhphenol51.910ug/L50.011425.239200L42.Hehryhphenol51.910ug/L50.011225.239200L43.N-Dichorobenziline54.410ug/L50.011225.24200L44.Henryhphenol57.210ug/L50.011331.15521200L44.Henryhphenol64.410ug/L50.011448.4418200L44.Honryhphenyl ether57.210ug/L50.011454.12200L44.Honryhphenyl ether67.710ug/L50.011354.13302004.Honryhphenyl ether57.210ug/	2,4-Dichlorophenol	53.5	10	ug/L	50.0		107	38-107	21	200	
2.4-Dinitophenol5.410ug/L5.09110-1675902.4-Dinitophune59.410ug/L50.012065.1418201222.Choropaphthalene58.810ug/L50.012065.1418201242.Choropaphthalene49.610ug/L50.019038-60162001442.Methyhaphthalene49.610ug/L50.010039-6712062.123122001442.Methyhaphthalene60.010ug/L50.011265.1231220012052.33920012354.1151020012354.1151020012454.1	2,4-Dimethylphenol	52.2	10	ug/L	50.0		104	26-108	19	200	
2.4-Dinktrobulene59.410ug/L50.011061.4139202.6-Dinktrobulene58.810ug/L50.011864.1149200L22.Chloronghtnalene58.810ug/L50.019839.8016200L12.Chloronghtnalene49.810ug/L50.010039.10720200L12.Methylaphenol47.810ug/L50.010440.11119200L12.Methylaphenol51.910ug/L50.011225.20392002003.3-Dichlorobenzidine54.810ug/L50.011225.20392002003.4-Methylphenol57.410ug/L50.011225.2392002004.Chlorob-anzidine64.410ug/L50.011331.155212002004.Chlorob-anzidine64.410ug/L50.011334.802002002004.Chlorob-anzidine67.710ug/L50.011348.94182002004.Chlorob-anzidine65.710ug/L50.011348.94182002004.Nitrobenol65.710ug/L50.011354.152002004.Nitrobenol65.710ug/L50.011354.152002004.Nitrobenol65.7 </td <td>2,4-Dinitrophenol</td> <td>45.4</td> <td>10</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>91</td> <td>10-157</td> <td>5</td> <td>200</td> <td></td>	2,4-Dinitrophenol	45.4	10	ug/L	50.0		91	10-157	5	200	
2.4-Dinitrobluene59.810ugl50.012055.4182002.Chlorophend58.810ugl50.011846.149200L22.Chlorophend49.610ugl50.010039.8020200L22.Methylphendi49.610ugl50.010059.724.7318200L42.Methylphendi60.010ugl50.012065.12312200L42.Nitrobendine60.010ugl50.011265.1312200L42.Nitrobendine64.410ugl50.012966.13110200L23.Vichklorobenzitine64.410ugl50.011348.9418200L24.Choron-2-methylphenol57.410ugl50.011361.3110200L24.Choron-3-methylphenol67.710ugl50.011363.1310200L24.Choron-3-methylphenol67.710ugl50.011363.1310200L24.Choron-166.410ugl50.011363.1310200L24.Choron-166.410ugl50.011363.1310200L24.Choron-166.410ugl50.011363.1310200L24.Choron-166.4	2,4-Dinitrotoluene	59.4	10	ug/L	50.0		119	61-139	2	200	
2-Chioronaphthalene58.810ug/L50.011846.1149200122-Chiorophenol48.610ug/L50.09939.8016200LH2-Methylophenol47.610ug/L50.09524.7318200LH2-Methylophenol47.610ug/L50.010265-12312200LH2-Nitroaniline51.910ug/L50.011225-20392002013.3'-Dichoroberzdine55.810ug/L50.011225-20392002013.4'-Methylopenol43.910ug/L50.011381-55212002023.4'-Methylopenol57.410ug/L50.011384-94182002024-Chioro-arnethylopenol66.410ug/L50.011363-138002024-Chioro-arnethylopenol67.710ug/L50.011363-138002024-Chioro-arnethylopenol67.710ug/L50.011363-138002024-Chioro-arnethylopenol67.710ug/L50.011363-138002024-Chioro-arnethylopenol67.710ug/L50.011363-138002024-Chioro-arnethylopenol67.710ug/L50.011363-138002024-Chioro-arnethylopenol <td>2,6-Dinitrotoluene</td> <td>59.8</td> <td>10</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>120</td> <td>55-141</td> <td>8</td> <td>200</td> <td></td>	2,6-Dinitrotoluene	59.8	10	ug/L	50.0		120	55-141	8	200	
2-Chlorophenol 49.6 10 ug/L 50.0 99 39-80 16 200 LH 2-Methylphenol 49.8 10 ug/L 50.0 100 39-107 20 200 2-Methylphenol 47.6 10 ug/L 50.0 120 65-123 12 200 2-Nitrophenol 51.9 10 ug/L 50.0 112 25.23 9 200 3/4-Methylphenol 43.9 10 ug/L 50.0 128 22.44 21 200 22 3/4-Methylphenol 43.9 10 ug/L 50.0 18 2.14 200 22 3/4-Methylphenol 57.4 10 ug/L 50.0 118 31.155 21 200 22 4-Chloro-amethylphenol 57.7 10 ug/L 50.0 113 48-94 18 200 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	2-Chloronaphthalene	58.8	10	ug/L	50.0		118	46-114	9	200	L2
2-Methy/naphthalene49.810ug/L50.010039-107202002-Methy/naphthalene47.6ug/L50.015024.7318200LH2-Mitrophenol51.910ug/L50.010440-111192002-Nitrophenol51.910ug/L50.011225-20392003.3'-Dichoroberzidine55.810ug/L50.011225-20392003.4'-Methy/henol43.910ug/L50.011328212002003.4'-Methy/henol43.910ug/L50.011631.155212002004.0'-Dinro-2-methy/phenol57.410ug/L50.011348-9418200124.0'-Dioro-3-methy/phenol56.410ug/L50.011348-9418200124.C'-Dioro-3-methy/phenol56.410ug/L50.011348-9418200124.Chioro-3-methy/phenol56.410ug/L50.011351.8132004.Nitrophenol56.410ug/L50.011351.8132004.Nitrophenol56.410ug/L50.011465.1342004.Nitrophenol57.710ug/L50.011456.13200124.Nitrophenol56.410ug/L50.0114	2-Chlorophenol	49.6	10	ug/L	50.0		99	39-80	16	200	LH
2-Methylphenol 47.6 10 ug/L 50.0 95 24.73 18 200 LH 2-Nitrophenol 60.0 10 ug/L 50.0 120 65-123 12 200 3.3-Dichlorobenzidine 55.8 10 ug/L 50.0 112 25.203 9 200 220 3.4-Methylphenol 43.9 10 ug/L 50.0 112 25.203 9 200 220 4.6-Dintro-2-methylphenol 67.4 10 ug/L 50.0 114 50.131 10 200 220 4.Foronomethylphenol 57.2 10 ug/L 50.0 114 50.131 10 200 22 4.Chloro-3-methylphenol 56.4 10 ug/L 50.0 113 48-44 200 22 4.Chloro-3-methylphenol 56.7 10 ug/L 50.0 113 54-52 10 200 4.Chloro-3-methylphenol 61.7 10 ug/L 50.0 115 53.18 13 200 20 4.Nitrophenol<	2-Methylnaphthalene	49.8	10	ug/L	50.0		100	39-107	20	200	
2-Nitroaniline 60.0 10 ug/L 50.0 120 65-123 12 200 2-Nitrophenol 51.9 00 ug/L 50.0 104 40-111 19 200 3/4-Methylphenol 43.9 10 ug/L 50.0 128 22.84 21 200 22 3/4-Methylphenol 64.4 10 ug/L 50.0 115 31.15 21 200 42 4-Dintro-Zmethylphenol 57.4 10 ug/L 50.0 113 48-94 18 200 22 4-Dintro-Zmethylphenol 56.4 10 ug/L 50.0 113 48-94 18 200 22 4-Chioroshrenylphenyl ether 55.7 10 ug/L 50.0 111 55-125 10 200 4-Nitrophenol 28.6 10 ug/L 50.0 111 55-125 200 20 4-Nitrophenol 28.6 10 ug/L 50.0 113	2-Methylphenol	47.6	10	ug/L	50.0		95	24-73	18	200	LH
2-Nitrophenol 51.9 10 ug/L 50.0 104 40.111 19 200 3.3'-Dichlorobenzidine 55.8 10 ug/L 50.0 112 25-23 9 200 3.4'Methylphenol 43.9 10 ug/L 50.0 188 22-84 21 200 123 4.6'Dintro-2-methylphenol 57.4 10 ug/L 50.0 115 31-155 21 200 124 4-Choro-3-methylphenol 56.4 10 ug/L 50.0 113 48-94 18 200 122 4-Choro-3-methylphenol 56.4 10 ug/L 50.0 113 56-13 200 124 4-Nitroaniline 61.0 10g/L 50.0 110 55-13 30 200 4-Nitroaniline 61.0 10g/L 50.0 113 54-13 30 200 4-Nitroaniline 61.0 10g/L 50.0 114 55-13 13 200	2-Nitroaniline	60.0	10	ug/L	50.0		120	65-123	12	200	
3.3-Dichlorobenzidine 55.8 10 ug/L 50.0 112 25-203 9 200 3/4-Methylphenol 43.9 10 ug/L 50.0 88 22-84 21 200 L2 3/M-toanine 64.4 10 ug/L 50.0 115 31-155 21 200 4.6-Donitor-2-methylphenol 57.4 10 ug/L 50.0 114 56.131 10 200 4.Chloroa-Imethylphenol 66.4 10 ug/L 50.0 113 48-94 18 200 L2 4.Chloroa-Imethylphenol 66.7 10 ug/L 50.0 113 54-120 20 L2 4.Chloroanine 60.0 10 ug/L 50.0 111 55.138 0.9 200 4.Nitroanine 66.4 10 ug/L 50.0 116 53-118 13 200 Acenaphthylene 57.7 10 ug/L 50.0 113 54-105 200 L2 Anthracene 57.7 10 ug/L 50.0 1	2-Nitrophenol	51.9	10	ug/L	50.0		104	40-111	19	200	
3/4-Methylphenol 43.9 10 ug/L 50.0 88 22.84 21 200 12 3-Nitroaniline 64.4 10 ug/L 50.0 112 66.131 10 200 4.6-Dinitro-2-methylphenol 57.4 10 ug/L 50.0 113 48-94 18 200 12 4-Choro-3-methylphenol 56.4 10 ug/L 50.0 113 48-94 18 200 12 4-Choro-3-methylphenyl ethery 66.7 10 ug/L 50.0 113 48-94 18 200 12 4-Choro-3-methylphenyl ethery 66.0 10 ug/L 50.0 113 48-94 18 200 12 4-Choro-3-methylphenyl ethery 66.0 10 ug/L 50.0 113 53-118 0.9 200 14 4-Nitroaniline 60.0 10 ug/L 50.0 113 24-15 15 200 12 4-Nitroaniline 54.0 10 ug/L 50.0 113 24-15 15 200 12<	3,3'-Dichlorobenzidine	55.8	10	ug/L	50.0		112	25-203	9	200	
3-Niroaniline 64.4 10 ug/L 50.0 129 66-131 10 200 4-Bointby-2-methylphenol 57.4 10 ug/L 50.0 115 31-155 21 200 4-Bromophenyl phenyl ether 57.2 10 ug/L 50.0 113 48-94 10 200 123 45-120 21 200 124 4-Choro-aniline 61.7 10 ug/L 50.0 111 55-125 10 200 124 4-Nitroaniline 61.0 10 ug/L 50.0 111 55-125 10 200 4-Nitroaniline 62.6 10 ug/L 50.0 115 53-118 13 200 Acenaphthene 57.7 10 ug/L 50.0 113 53-118 13 200 14 Acenaphthylene 55.4 10 ug/L 50.0 111 59-138 7 200 12 Acenaphthylene 55.4 <td< td=""><td>3/4-Methylphenol</td><td>43.9</td><td>10</td><td>ug/L</td><td>50.0</td><td></td><td>88</td><td>22-84</td><td>21</td><td>200</td><td>L2</td></td<>	3/4-Methylphenol	43.9	10	ug/L	50.0		88	22-84	21	200	L2
4.6.Dinitro-2-methylphenol 57.4 10 ug/L 50.0 115 31-155 21 200 4-Bromophenyl phenyl ether 57.2 10 ug/L 50.0 114 50-131 10 200 4-Chloro-3-methylphenol 56.4 10 ug/L 50.0 113 48-94 18 200 L2 4-Chloro-aniline 61.7 10 ug/L 50.0 111 55-125 10 200 L2 4-Nitrophenol 86.0 10 ug/L 50.0 115 53-118 13 200 Acenaphthylene 57.7 10 ug/L 50.0 115 53-118 13 200 Acenaphthylene 56.4 10 ug/L 50.0 113 24-105 15 201 Anthracene 56.4 10 ug/L 50.0 113 54-105 200 L2 Anthracene 57.0 10 ug/L 50.0 114 65-13 7 200 L2 Anthracene 56.4 10 ug/L 50.0	3-Nitroaniline	64.4	10	ug/L	50.0		129	66-131	10	200	
4-Bromophenyl phenyl ether 57.2 10 ug/L 50.0 114 50-131 10 200 4-Chloro-3-methylphenol 56.4 10 ug/L 50.0 113 48-94 18 200 L2 4-Chlorophenyl phenyl ether 55.7 10 ug/L 50.0 111 55.75 10 200 L2 4-Nitrophenyl phenyl ether 60.0 10 ug/L 50.0 77 10.89 13 200 4-Nitrophenol 28.6 10 ug/L 50.0 77 10.89 13 200 Acenaphthylene 57.7 10 ug/L 50.0 115 53.118 13 200 Acenaphthylene 56.4 10 ug/L 50.0 113 24.105 15 200 L2 Antiracene 57.7 10 ug/L 50.0 114 65.13 7 200 L2 Acebenzene 56.4 10 ug/L 50.0 114 65.13 5 200 L2 Aczobenzene 56.4 10 <td>4,6-Dinitro-2-methylphenol</td> <td>57.4</td> <td>10</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>115</td> <td>31-155</td> <td>21</td> <td>200</td> <td></td>	4,6-Dinitro-2-methylphenol	57.4	10	ug/L	50.0		115	31-155	21	200	
4-Chloro-3-methylphenol 56.4 10 ug/L 50.0 113 48-94 18 200 L2 4-Chloroaniline 61.7 10 ug/L 50.0 123 45-120 21 200 L2 4-Chloroaniline 60.0 10 ug/L 50.0 111 55-125 10 200 4-Nitroaniline 60.0 10 ug/L 50.0 123 45-120 21 200 L2 4-Nitropenol 28.6 10 ug/L 50.0 155 53-118 13 200 Acenaphthylene 54.0 10 ug/L 50.0 113 53-118 13 200 Anthracene 55.4 10 ug/L 50.0 113 54-125 4 200 L2 Anthracene 55.4 10 ug/L 50.0 114 65-123 4 200 L2 Actoeracene 55.4 10 ug/L 50.0 114 65-123 4 200 L2 Acthtracene 55.8 10 ug/	4-Bromophenyl phenyl ether	57.2	10	ug/L	50.0		114	50-131	10	200	
4-Chloroaniline 61.7 10 ug/L 50.0 123 45.120 21 200 L2 4-Chlorophenyl phenyl ether 55.7 10 ug/L 50.0 111 55.125 10 200 4-Nitrophenyl phenyl ether 60.0 10 ug/L 50.0 120 63.138 0.9 200 4-Nitrophenol 28.6 10 ug/L 50.0 115 53.118 13 200 Acenaphthene 57.7 10 ug/L 50.0 118 52.121 9 200 Acenaphthylene 54.0 10 ug/L 50.0 113 24.105 15 200 L2 Anthracene 55.4 10 ug/L 50.0 111 59.138 7 200 Benzo(a)phthoranthene 56.4 10 ug/L 50.0 113 63.138 5 200 Benzo(a)phtoranthene 56.4 10 ug/L 50.0 112 67.142 8 200 Benzo(a)phtoranthene 59.1 10 ug/L 50.0	4-Chloro-3-methylphenol	56.4	10	ug/L	50.0		113	48-94	18	200	L2
4-Chlorophenyl phenyl 55.7 10 ug/L 50.0 111 55.125 10 200 4-Nitroaniline 60.0 10 ug/L 50.0 120 63-138 0.9 200 4-Nitroaniline 28.6 10 ug/L 50.0 115 53-118 13 200 Acenaphthene 57.7 10 ug/L 50.0 108 52-121 9 200 Antinacene 56.4 10 ug/L 50.0 113 63-138 7 200 Acchaphthylene 56.4 10 ug/L 50.0 111 59-138 7 200 Arthracene 56.4 10 ug/L 50.0 111 59-138 7 200 Benzo(a)phrene 56.9 10 ug/L 50.0 113 63-138 5 200 Benzo(a)phrene 55.8 10 ug/L 50.0 112 67-142 8 200 Benzo(A)fluoranthene 59.1 10 ug/L	4-Chloroaniline	61.7	10	ug/L	50.0		123	45-120	21	200	L2
4-Nitroaniline 60.0 10 ug/L 50.0 120 63.138 0.9 200 4-Nitrophenol 28.6 10 ug/L 50.0 57 10-89 13 200 Acenaphthene 57.7 10 ug/L 50.0 115 53.118 13 200 Acenaphthylene 54.0 10 ug/L 50.0 113 24-105 15 200 L2 Antinacene 56.4 10 ug/L 50.0 111 59-138 7 200 L2 Azobenzene 57.0 10 ug/L 50.0 114 65-123 4 200 Benzo(a)anthracene 56.4 10 ug/L 50.0 113 63-138 5 200 Benzo(a)anthracene 56.4 10 ug/L 50.0 113 63-138 5 200 Benzo(a)(h)toranthene 54.9 10 ug/L 50.0 112 67-142 8 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 118 45-	4-Chlorophenyl phenyl ether	55.7	10	ug/L	50.0		111	55-125	10	200	
4-Nitrophenol 28.6 10 ug/L 50.0 57 10.89 13 200 Acenaphthene 57.7 10 ug/L 50.0 115 53.118 13 200 Acenaphthylene 54.0 10 ug/L 50.0 108 52.121 9 200 L2 Anline 56.4 10 ug/L 50.0 113 24.105 15 200 L2 Anthracene 55.4 10 ug/L 50.0 114 65.123 4 200 Benzo(a)anthracene 56.4 10 ug/L 50.0 112 67.142 8 200 Benzo(a)anthracene 56.9 10 ug/L 50.0 112 67.142 8 200 Benzo(a)(pyrene 55.8 10 ug/L 50.0 112 67.142 8 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 118 45.155 12 200 14 Benzo(k)fluoranthene 52.6 10 ug/L 50.0 105	4-Nitroaniline	60.0	10	ug/L	50.0		120	63-138	0.9	200	
Acenaphthene 57.7 10 ug/L 50.0 115 53.118 13 200 Acenaphthylene 54.0 10 ug/L 50.0 108 52.121 9 200 Aniline 56.4 10 ug/L 50.0 113 24.105 15 200 L2 Anthracene 55.4 10 ug/L 50.0 114 65.138 7 200 Azobenzene 57.0 10 ug/L 50.0 114 65.138 5 200 200 Benzo(a)anthracene 56.4 10 ug/L 50.0 113 63.138 5 200 Benzo(a)pyrene 55.9 10 ug/L 50.0 110 58.151 5 200 Benzo(b)fluoranthene 59.1 10 ug/L 50.0 110 58.151 5 200 14 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 10 12 47.151 11 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0	4-Nitrophenol	28.6	10	ug/L	50.0		57	10-89	13	200	
Acenaphthylene54.010ug/L50.010852.1219200Aniline56.410ug/L50.011324-10515200L2Anthracene55.410ug/L50.011159-1387200Azobenzene57.010ug/L50.011465-1234200Benzo(a)anthracene56.410ug/L50.011363-1385200Benzo(a)anthracene55.910ug/L50.011267-1428200Benzo(b/fluoranthene55.810ug/L50.011058-1515200Benzo(k/fluoranthene59.110ug/L50.011845-15512200Benzo(k/fluoranthene59.110ug/L50.011845-15512200Benzo(k/fluoranthene59.110ug/L50.011845-15512200LHBenzo(k/fluoranthene59.110ug/L50.010542-11920200LHBenzole AcidBRL100ug/L50.010542-11920200LHBenzole AcidBRL10ug/L50.010542-11920200LHBis(2-Chloroethxy)methane52.610ug/L50.011352-1659200Bis(2-Chloroethyl)phthalate56.610ug/L50.011352-165<	Acenaphthene	57.7	10	ug/L	50.0		115	53-118	13	200	
Aniline 56.4 10 ug/L 50.0 113 24-105 15 200 L2 Anthracene 55.4 10 ug/L 50.0 111 59-138 7 200 Azobenzene 57.0 10 ug/L 50.0 114 65-123 4 200 Benzo(a)anthracene 56.4 10 ug/L 50.0 113 63-138 5 200 Benzo(a)apyrene 55.9 10 ug/L 50.0 112 67-142 8 200 Benzo(a)pyrene 55.8 10 ug/L 50.0 110 58-151 5 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 112 47-151 11 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 118 45-155 12 200 LH Benzo(a)chlothowing the and 48.7 10 ug/L 50.0 105 42-119 20 200 Bis(2-Chloroethoxy)methane 52.6 10 ug/L 50.0 105<	Acenaphthylene	54.0	10	ug/L	50.0		108	52-121	9	200	
Anthracene55.410ug/L50.011159.1387200Azobenzene57.010ug/L50.011465.1234200Benzo(a)anthracene56.410ug/L50.011363.1385200Benzo(a)pyrene55.910ug/L50.011267.1428200Benzo(g), f, i)perylene55.810ug/L50.011267.1428200Benzo(k)fluoranthene59.110ug/L50.011247.15111200Benzo(k)fluoranthene59.110ug/L50.011247.15111200Benzo(k)fluoranthene59.110ug/L50.011845.15512200LHBenzo(k)fluoranthene59.110ug/L50.010.125200LHBenzo(k)fluoranthene59.110ug/L50.09725.7716200LHBenzyl alcohol48.710ug/L50.010542.11920200LHBis(2-Chloroethxy)methane52.610ug/L50.010542.11920200Bis(2-Chloroethyl)ether43.010ug/L50.011352.1659200Bis(2-Chloroethyl)pthhalate56.610ug/L50.011352.1659200Buryl benzyl phthalate55.310ug/L50.011151.162 <td>Aniline</td> <td>56.4</td> <td>10</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>113</td> <td>24-105</td> <td>15</td> <td>200</td> <td>L2</td>	Aniline	56.4	10	ug/L	50.0		113	24-105	15	200	L2
Azobenzene57.010ug/L50.011465.1234200Benzo(a)anthracene56.410ug/L50.011363.1385200Benzo(a)pyrene55.910ug/L50.011267.1428200Benzo(b)fluoranthene54.910ug/L50.011058.1515200Benzo(g,h,i)perylene55.810ug/L50.011247.15111200Benzo(k)fluoranthene59.110ug/L50.011845.15512200LHBenzo(k)fluoranthene59.110ug/L50.010.125200LHBenzo(k)fluoranthene59.110ug/L50.010.125200LHBenzo(k)fluoranthene59.110ug/L50.010.125200LHBenzo(k)fluoranthene59.110ug/L50.09725.7716200LHBenzo(k)fluoranthene52.610ug/L50.010542.11920200LHbis(2-Chloroethoxy)methane52.610ug/L50.011352.1659200Bis(2-Chloroethyl)ether43.010ug/L50.011352.1659200Bis(2-Ethylhexyl)phthalate56.610ug/L50.011352.1659200Buyl benzyl phthalate55.310ug/L50.011151.1622	Anthracene	55.4	10	ug/L	50.0		111	59-138	7	200	
Benzo(a)anthracene 56.4 10 ug/L 50.0 113 63.138 5 200 Benzo(a)pyrene 55.9 10 ug/L 50.0 112 67.142 8 200 Benzo(b)fluoranthene 54.9 10 ug/L 50.0 110 58.151 5 200 Benzo(g), h)perylene 55.8 10 ug/L 50.0 112 47.151 11 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 118 45.155 12 200 LH Benzo(k)fluoranthene 59.1 10 ug/L 50.0 10.125 200 LH Benzo(k)fluoranthene 52.6 10 ug/L 50.0 97 25.77 16 200 LH Benzo(2.Chloroethoxy)methane 52.6 10 ug/L 50.0 99 38.109 20 200 Bis(2-Chloroethyl)ether 49.6 10 ug/L 50.0 113 52.165 9 200 Bis(2-Chloroethyl)phthalate 56.6 10 ug/L 50	Azobenzene	57.0	10	ug/L	50.0		114	65-123	4	200	
Benzo(a)pyrene 55.9 10 ug/L 50.0 112 67.142 8 200 Benzo(b)fluoranthene 54.9 10 ug/L 50.0 110 58.151 5 200 Benzo(g), i)perylene 55.8 10 ug/L 50.0 112 47.151 11 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 10-125 200 LH Benzo(k)fluoranthene 59.1 10 ug/L 50.0 10-125 200 LH Benzo(k)fluoranthene 52.6 10 ug/L 50.0 97 25.77 16 200 LH Benzo(chloroethoxy)methane 52.6 10 ug/L 50.0 97 25.77 16 200 LH Bis(2-Chloroethoxy)methane 52.6 10 ug/L 50.0 99 38.109 20 200 Bis(2-Chloroethoxy)methalate 56.6 10 ug/L 50.0 113 52.165 9 200 Bis(2-Ethylhexyl)phthalate 56.6 10 ug/L 50.0	Benzo(a)anthracene	56.4	10	ug/L	50.0		113	63-138	5	200	
Benzo(b)fluoranthene 54.9 10 ug/L 50.0 110 58.151 5 200 Benzo(g),h,i)perylene 55.8 10 ug/L 50.0 112 47.151 11 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 118 45.155 12 200 Benzo(k)fluoranthene BRL 100 ug/L 50.0 10-125 200 LH Benzo(k)fluoranthene 8RL 100 ug/L 50.0 97 25.77 16 200 LH Benzo(chloroethoxy)methane 52.6 10 ug/L 50.0 97 25.77 16 200 LH Bis(2-Chloroethoxy)methane 52.6 10 ug/L 50.0 99 38.109 20 200 2	Benzo(a)pyrene	55.9	10	ug/L	50.0		112	67-142	8	200	
Benzo(g,h,i)perylene 55.8 10 ug/L 50.0 112 47-151 11 200 Benzo(k)fluoranthene 59.1 10 ug/L 50.0 118 45-155 12 200 LH Benzoic Acid BRL 100 ug/L 50.0 10-125 200 LH Benzoic Acid BRL 100 ug/L 50.0 97 25-77 16 200 LH Benzoic Acid 48.7 10 ug/L 50.0 97 25-77 16 200 LH bis(2-Chloroethoxy)methane 52.6 10 ug/L 50.0 99 38-109 20 200 Bis(2-Chloroethy)lether 43.0 10 ug/L 50.0 86 31-117 17 200 Bis(2-Ethylhexyl)phthalate 56.6 10 ug/L 50.0 113 52-165 9 200 Butyl benzyl phthalate 55.3 10 ug/L 50.0 111 51-162 2 200 Chrysene 54.2 10 ug/L 50.0	Benzo(b)fluoranthene	54.9	10	ug/L	50.0		110	58-151	5	200	
Benzo(k)fluoranthene 59.1 10 ug/L 50.0 118 45-155 12 200 Benzoic Acid BRL 100 ug/L 50.0 10-125 200 LH Benzyl alcohol 48.7 10 ug/L 50.0 97 25-77 16 200 LH bis(2-Chloroethoxy)methane 52.6 10 ug/L 50.0 97 25-77 16 200 200 Bis(2-Chloroethoxy)methane 49.6 10 ug/L 50.0 99 38-109 20 200 <td< td=""><td>Benzo(g,h,i)perylene</td><td>55.8</td><td>10</td><td>ug/L</td><td>50.0</td><td></td><td>112</td><td>47-151</td><td>11</td><td>200</td><td></td></td<>	Benzo(g,h,i)perylene	55.8	10	ug/L	50.0		112	47-151	11	200	
Benzoic Acid BRL 100 ug/L 50.0 10-125 200 LH Benzyl alcohol 48.7 10 ug/L 50.0 97 25-77 16 200 LH bis(2-Chloroethoxy)methane 52.6 10 ug/L 50.0 105 42-119 20 200 <td>Benzo(k)fluoranthene</td> <td>59.1</td> <td>10</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>118</td> <td>45-155</td> <td>12</td> <td>200</td> <td></td>	Benzo(k)fluoranthene	59.1	10	ug/L	50.0		118	45-155	12	200	
Benzyl alcohol 48.7 10 ug/L 50.0 97 25-77 16 200 LH bis(2-Chloroethoxy)methane 52.6 10 ug/L 50.0 105 42-119 20 200 Bis(2-Chloroethyl)ether 49.6 10 ug/L 50.0 99 38-109 20 200 Bis(2-Chloroethyl)ether 43.0 10 ug/L 50.0 86 31-117 17 200 Bis(2-Ethylhexyl)phthalate 56.6 10 ug/L 50.0 113 52-165 9 200 Butyl benzyl phthalate 55.3 10 ug/L 50.0 111 51-162 2 200 Chrysene 54.2 10 ug/L 50.0 118 59-137 4 200 Dibenzo(a,h)anthracene 57.3 10 ug/L 50.0 115 43-161 16 200	Benzoic Acid	BRL	100	ug/L	50.0			10-125		200	LH
bis(2-Chloroethoxy)methane52.610ug/L50.010542-11920200Bis(2-Chloroethyl)ether49.610ug/L50.09938-10920200Bis(2-chloroisopropyl)ether43.010ug/L50.08631-11717200Bis(2-Ethylhexyl)phthalate56.610ug/L50.011352-1659200Butyl benzyl phthalate55.310ug/L50.011151-1622200Chrysene54.210ug/L50.010859-1374200Dibenzo(a,h)anthracene57.310ug/L50.011543-16116200	Benzyl alcohol	48.7	10	ug/L	50.0		97	25-77	16	200	LH
Bis(2-Chloroethyl)ether49.610ug/L50.09938-10920200Bis(2-chloroisopropyl)ether43.010ug/L50.08631-11717200Bis(2-Ethylhexyl)phthalate56.610ug/L50.011352-1659200Butyl benzyl phthalate55.310ug/L50.011151-1622200Chrysene54.210ug/L50.010859-1374200Dibenzo(a,h)anthracene57.310ug/L50.011543-16116200	bis(2-Chloroethoxy)methane	52.6	10	ug/L	50.0		105	42-119	20	200	
Bis(2-chloroisopropyl)ether43.010ug/L50.08631-11717200Bis(2-Ethylhexyl)phthalate56.610ug/L50.011352-1659200Butyl benzyl phthalate55.310ug/L50.011151-1622200Chrysene54.210ug/L50.010859-1374200Dibenzo(a,h)anthracene57.310ug/L50.011543-16116200	Bis(2-Chloroethyl)ether	49.6	10	ug/L	50.0		99	38-109	20	200	
Bis(2-Ethylhexyl)phthalate56.610ug/L50.011352-1659200Butyl benzyl phthalate55.310ug/L50.011151-1622200Chrysene54.210ug/L50.010859-1374200Dibenzo(a,h)anthracene57.310ug/L50.011543-16116200	Bis(2-chloroisopropyl)ether	43.0	10	ug/L	50.0		86	31-117	17	200	
Butyl benzyl phthalate55.310ug/L50.011151-1622200Chrysene54.210ug/L50.010859-1374200Dibenzo(a,h)anthracene57.310ug/L50.011543-16116200	Bis(2-Ethylhexyl)phthalate	56.6	10	ug/L	50.0		113	52-165	9	200	
Chrysene 54.2 10 ug/L 50.0 108 59-137 4 200 Dibenzo(a,h)anthracene 57.3 10 ug/L 50.0 115 43-161 16 200	Butyl benzyl phthalate	55.3	10	ug/L	50.0		111	51-162	2	200	
Dibenzo(a,h)anthracene 57.3 10 ug/L 50.0 115 43-161 16 200	Chrysene	54.2	10	ug/L	50.0		108	59-137	4	200	
	Dibenzo(a,h)anthracene	57.3	10	ug/L	50.0		115	43-161	16	200	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Level II QC Report 5/11/11

Prism Work Order: 1040602 Time Submitted: 4/28/11 8:10:00AM

Hart & Hickman (Charlotte) Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1E0019 - 3510C MS										
LCS Dup (P1E0019-BSD1)				Prepared	: 05/02/11	Analyzed	: 05/03/11			
Dibenzofuran	54.3	10	ug/L	50.0		109	63-115	13	200	
Diethyl phthalate	58.1	10	ug/L	50.0		116	54-135	5	200	
Dimethyl phthalate	57.8	10	ug/L	50.0		116	46-135	7	200	
Di-n-butyl phthalate	59.0	10	ug/L	50.0		118	51-142	10	200	
Di-n-octyl phthalate	49.4	10	ug/L	50.0		99	54-160	12	200	
Fluoranthene	60.0	10	ug/L	50.0		120	52-137	7	200	
Fluorene	57.7	10	ug/L	50.0		115	56-122	6	200	
Hexachlorobenzene	56.8	10	ug/L	50.0		114	57-129	13	200	
Hexachlorobutadiene	43.3	10	ug/L	50.0		87	34-110	16	200	
Hexachlorocyclopentadiene	49.8	10	ug/L	50.0		100	27-120	15	200	
Hexachloroethane	42.9	10	ug/L	50.0		86	37-98	19	200	
Indeno(1,2,3-cd)pyrene	61.6	10	ug/L	50.0		123	24-172	19	200	
Isophorone	55.5	10	ug/L	50.0		111	44-117	12	200	
Naphthalene	50.1	10	ug/L	50.0		100	37-108	22	200	
Nitrobenzene	50.6	10	ug/L	50.0		101	29-120	22	200	
N-Nitroso-di-n-propylamine	49.9	10	ug/L	50.0		100	42-115	16	200	
N-Nitrosodiphenylamine	64.9	10	ug/L	50.0		130	69-142	17	200	
Pentachlorophenol	54.5	10	ug/L	50.0		109	42-156	12	200	
Phenanthrene	55.5	10	ug/L	50.0		111	60-133	11	200	
Phenol	21.4	10	ug/L	50.0		43	10-47	27	200	
Pyrene	48.9	10	ug/L	50.0		98	50-152	10	200	
Surrogate: 2,4,6-Tribromophenol	121		ug/L	100		121	26-139			
Surrogate: 2-Fluorobiphenyl	53.8		ug/L	50.0		108	41-112			
Surrogate: 2-Fluorophenol	76.4		ug/L	100		76	10-48			SR
Surrogate: Nitrobenzene-d5	51.6		ug/L	50.0		103	34-102			SR
Surrogate: Phenol-d5	42.7		ug/L	100		43	10-34			SR
Surrogate: Terphenyl-d14	48.9		ug/L	50.0		98	31-165			

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Project: Prestige Label

Prism Work Order: 1040602 Time Submitted: 4/28/11 8:10:00AM

Total Metals - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1D0563 - 3010A										
Blank (P1D0563-BLK1)				Prepared:	04/29/11	Analyzed:	05/03/11			
Antimony	BRL	0.010	mg/L							
Arsenic	BRL	0.010	mg/L							
Beryllium	BRL	0.0020	mg/L							
Cadmium	BRL	0.0010	mg/L							
Chromium	BRL	0.0050	mg/L							
Copper	BRL	0.010	mg/L							
Lead	BRL	0.0050	mg/L							
Manganese	BRL	0.010	mg/L							
Nickel	BRL	0.010	mg/L							
Selenium	BRL	0.020	mg/L							
Silver	BRL	0.0050	mg/L							
Thallium	BRL	0.010	mg/L							
Zinc	BRL	0.030	mg/L							
LCS (P1D0563-BS1)				Prepared:	04/29/11	Analyzed:	05/03/11			
Antimony	0.244	0.010	mg/L	0.250		97	80-120			
Arsenic	0.246	0.010	mg/L	0.250		98	80-120			
Beryllium	0.249	0.0020	mg/L	0.250		100	80-120			
Cadmium	0.251	0.0010	mg/L	0.250		100	80-120			
Chromium	0.253	0.0050	mg/L	0.250		101	80-120			
Copper	0.249	0.010	mg/L	0.250		100	80-120			
Lead	0.249	0.0050	mg/L	0.250		100	80-120			
Manganese	0.245	0.010	mg/L	0.250		98	80-120			
Nickel	0.250	0.010	mg/L	0.250		100	80-120			
Selenium	0.243	0.020	mg/L	0.250		97	80-120			
Silver	0.249	0.0050	mg/L	0.250		100	80-120			
Thallium	0.253	0.010	mg/L	0.250		101	80-120			
Zinc	0.249	0.030	mg/L	0.250		100	80-120			

Project: Prestige Label

Prism Work Order: 1040602 Time Submitted: 4/28/11 8:10:00AM

Total Metals - Quality Control

Analyte	Result	Reporting	l Inits	Spike	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Linne	Onits	Level	rtesuit	/orceo	LIIIIII		Linin	Notes
Batch P1D0563 - 3010A										
Matrix Spike (P1D0563-MS1)	Sou	rce: 1040602	-02	Prepared	: 04/29/11	Analyzed	: 05/03/11			
Antimony	0.241	0.010	mg/L	0.250	0.00176	96	75-125			
Arsenic	0.251	0.010	mg/L	0.250	0.00430	99	75-125			
Beryllium	0.248	0.0020	mg/L	0.250	BRL	99	75-125			
Cadmium	0.243	0.0010	mg/L	0.250	BRL	97	75-125			
Chromium	0.245	0.0050	mg/L	0.250	BRL	98	75-125			
Copper	0.253	0.010	mg/L	0.250	BRL	101	75-125			
Lead	0.235	0.0050	mg/L	0.250	BRL	94	75-125			
Manganese	0.441	0.010	mg/L	0.250	0.206	94	75-125			
Nickel	0.241	0.010	mg/L	0.250	BRL	96	75-125			
Selenium	0.261	0.020	mg/L	0.250	0.0264	94	75-125			
Silver	0.249	0.0050	mg/L	0.250	BRL	100	75-125			
Thallium	0.245	0.010	mg/L	0.250	BRL	98	75-125			
Zinc	0.247	0.030	mg/L	0.250	BRL	99	75-125			
Matrix Spike Dup (P1D0563-MSD1)	Sou	rce: 1040602	-02	Prepared	: 04/29/11	Analyzed	05/03/11			
Antimony	0.238	0.010	mg/L	0.250	0.00176	95	75-125	1	20	
Arsenic	0.250	0.010	mg/L	0.250	0.00430	98	75-125	0.5	20	
Beryllium	0.247	0.0020	mg/L	0.250	BRL	99	75-125	0.3	20	
Cadmium	0.243	0.0010	mg/L	0.250	BRL	97	75-125	0.07	20	
Chromium	0.245	0.0050	mg/L	0.250	BRL	98	75-125	0.2	20	
Copper	0.251	0.010	mg/L	0.250	BRL	100	75-125	0.8	20	
Lead	0.235	0.0050	mg/L	0.250	BRL	94	75-125	0.01	20	
Manganese	0.437	0.010	mg/L	0.250	0.206	92	75-125	0.9	20	
Nickel	0.242	0.010	mg/L	0.250	BRL	97	75-125	0.3	20	
Selenium	0.264	0.020	mg/L	0.250	0.0264	95	75-125	1	20	
Silver	0.247	0.0050	mg/L	0.250	BRL	99	75-125	0.9	20	
Thallium	0.242	0.010	mg/L	0.250	BRL	97	75-125	1	20	
Zinc	0.247	0.030	mg/L	0.250	BRL	99	75-125	0.2	20	

Mercury

Mercury

Mercury

Mercury

LCS (P1E0061-BS1)

Matrix Spike (P1E0061-MS1)

Matrix Spike Dup (P1E0061-MSD1)

Project: Prestige Label Prism Work Order: 1040602 Hart & Hickman (Charlotte) Time Submitted: 4/28/11 8:10:00AM Attn: Nathan O'Leary 2923 South Tryon St. Ste 100 Charlotte, NC 28203 **Total Metals - Quality Control** RPD Reporting Spike Source %REC Result Units Result %REC RPD Limit Analyte Limit Level Limits Notes Batch P1E0061 - 7470A Blank (P1E0061-BLK1) Prepared & Analyzed: 05/05/11 BRL

mg/L

mg/L

mg/L

mg/L

0.00938

0.00938

0.00938

Prepared & Analyzed: 05/05/11

Prepared & Analyzed: 05/05/11

BRL

Prepared & Analyzed: 05/05/11

BRL

106

105

106

80-120

80-120

80-120

0.9

20

0.00020

0.00020

0.00020

0.00020

Source: 1040602-03

Source: 1040602-03

0.00998

0.00984

0.00993

Sample Extraction Data

Prep Method: 3510C MS

Lab Number	Batch	Initial	Final	Date
1040602-01	P1E0019	1000 mL	1 mL	05/03/11
1040602-02	P1E0019	1000 mL	1 mL	05/03/11
1040602-05	P1E0019	1000 mL	1 mL	05/03/11
1040602-06	P1E0019	1000 mL	1 mL	05/03/11

Prep Method: 3010A

Lab Number	Batch	Initial	Final	Date	
1040602-01	P1D0563	50 mL	50 mL	04/29/11	
1040602-01	P1D0563	50 mL	50 mL	04/29/11	
1040602-02	P1D0563	50 mL	50 mL	04/29/11	
1040602-02	P1D0563	50 mL	50 mL	04/29/11	
1040602-03	P1D0563	50 mL	50 mL	04/29/11	
1040602-03	P1D0563	50 mL	50 mL	04/29/11	
1040602-04	P1D0563	50 mL	50 mL	04/29/11	
1040602-04	P1D0563	50 mL	50 mL	04/29/11	
1040602-05	P1D0563	50 mL	50 mL	04/29/11	
1040602-05	P1D0563	50 mL	50 mL	04/29/11	
1040602-06	P1D0563	50 mL	50 mL	04/29/11	
1040602-06	P1D0563	50 mL	50 mL	04/29/11	

Prep Method: 7470A

Lab Number	Batch	Initial	Final	Date	
1040602-01	P1E0061	20 mL	30 mL	05/05/11	
1040602-02	P1E0061	20 mL	30 mL	05/05/11	
1040602-03	P1E0061	20 mL	30 mL	05/05/11	
1040602-04	P1E0061	20 mL	30 mL	05/05/11	
1040602-05	P1E0061	20 mL	30 mL	05/05/11	
1040602-06	P1E0061	20 mL	30 mL	05/05/11	

Prep Method: 5030B

Lab Number	Batch	Initial	Final	Date
1040602-01	P1D0585	10 mL	10 mL	04/29/11
1040602-02	P1D0585	10 mL	10 mL	04/29/11
1040602-05	P1D0585	10 mL	10 mL	04/29/11
1040602-06	P1D0585	10 mL	10 mL	04/29/11

LAB USE ONLY namvary The USE on NA arrivary The No The	CLIENT/SAMPLING PERSONNEL CUSACEFLNC OTHERN/A /ESNO Dilection: YESNO	PRISM LAB ID NO.	50005 = 8270 01 +107105 02	1,4-Diexane 03 8260 SIN 04	451 metals = 56 05 As, Cd, Cr, Cu, Pb 06 Mn, 45, Ni, Se, Ag TI, Zn, Be	PRESS DOWN FIRMLY - 3 COPIES	PRISM USE ONLY all Comments: Site Arrival Time:	2-A, G 250 HNO3 3 HOLVAS 3 HOLVAS OHIGINAL
B Samples INTACT upo Received ON WET IO PROPER PRESERV PROPER PRESERV PROPER PRESERV PROPER PRESERV PROPER CONTAINE PROPER CONTAINE	 TO BE FILLED IN BY Certification: NELA SC Water Chlorinated: Sample Iced Upon Co 	IALYSES REQUESTED					must be 11 Milliarythours Addition 11 1.040 11 1.335 36	() <i>2810</i> No. 100 C ロ NO コ SC (Zero Head Space)
DDY RECOR	Days □ 4 Days □ 5 Days 0 days □ Rush Work Must Be ext business day. uding weekends and holidays. EGARDING SERVICES FO CLIENT)	SERVA- NES 255 25 6	XX XX XX 1	XX		Affiliation H+	e been initialized. Any changes been initialized. Date CL27 Date Date	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
A OF CUSTC auore # To ENSURE PRO Proc Arge Labe / alysis: (Yes) (No) H any project specific rep /or QC Requirements	ate L Day 2 Days 3 L ate 1 Day2 Days3 L 6-9 Days2 Standard 10 6-9 Days2 Standard 10 1 after 15:00 will be processed n after 15:00 will be processed	E CONTAINER NO. SIZE TI				Steven Voshell	ed with the analyses have changes after analyses have Dev OSS Je	WASTE: RCRA: DSC DNC DC CSC Tellon-Lined Cap VOA =
R FAGE / OF OF Project Name: Project Name: Project Name: Please ATTAC provisions and Invoice To: Address:	Purchase Orde Requested Due D "Working Days" Samples received Turnaround time (SEE REVER	VTRIX SAMPLE COLL, *TYPE JDGE) SEE BELOW	120 Verries			npled By (Print Name)	And the charges for any coce In Received By: (Signature) Received By: (Signature) Received By: Cagnature)	In the construction of the
ull-Service Analytical Environmental Solution 3 • Chartotte, NC 28224-0 09 Hickwey P.C.	er Rergen , NC	TIME MA COLLECTED (S MILITARY WAT HOURS SLI	H 0455	1620 1640	Blind lous	Me Sar	stody is your authorization in the state with the state of the state o	P V V V LERS SHOULD BE TAPED SI LERS SHOULD BE TAPED SI Isim Field Service Other Isim Field Service Other IDWATER: DRINKI IDSC INC Amber C = Clear G =
PERSING PROFINES INC. PERSI TOURSES INC. FERSI TOURSES-054 TERMINE INC. TOURSES-054 TERMINE INC. TERMINE INC. PROFINES	e:otheres:	ON COLLECTE	4/26/1				this Chain of Cu g to the Prism Pro-	Prusi Hand-delivered And-delivered GROUT C CODES: A =
449 Springbrook Roa Phone: 704/529-6364 Client Company Na Report To/Contact Reporting Address	EDD Type: PDF	CLIENT SAMPLE DESCRIPTI	W- 1 W- 2 K	5- MW	Dup-o426	Sampler's Signatur	Upon relinquishing submitted in writin Relinquished By: (Signati, Relinquished By: (Signati	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

July 18, 2012

Mr. Nathan O'Leary Hart & Hickman 2923 S. Tryon St Charlotte, NC 28203

RE: Project: PRESTIGE LABEL HEY-001 Pace Project No.: 92120686

Dear Mr. O'Leary:

Enclosed are the analytical results for sample(s) received by the laboratory on June 08, 2012. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kr Sod-

Kevin Godwin

kevin.godwin@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 South Carolina Drinking Water Cert. #: 99006003 Virginia Drinking Water Certification #: 00213

Asheville Certification IDs

2225 Riverside Dr., Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030 North Carolina Drinking Water Certification #: 37712 North Carolina Wastewater Certification #: 40 New York Certification #: 11888 North Carolina Certification #: 503 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 US Dept of Agriculture #: S-76505 Wisconsin Certification #: 405132750

Connecticut Certification #: PH-0104 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Louisiana DHH Drinking Water # LA 100031 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460144

South Carolina Certification #: 99030001 Virginia Certification #: 00072 West Virginia Certification #: 356 Virgina/VELAP Certification #: 460147

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE SUMMARY

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92120686001	SB-1 0.5-1.5'	Solid	06/05/12 11:30	06/08/12 09:50
92120686002	SB-2 1-2'	Solid	06/05/12 11:40	06/08/12 09:50
92120686003	SB-3 1-2'	Solid	06/05/12 12:00	06/08/12 09:50
92120686004	SB-4 1-2'	Solid	06/05/12 12:10	06/08/12 09:50
92120686005	BG-1 1-2'	Solid	06/05/12 14:00	06/08/12 09:50
92120686006	BG-2 1-2'	Solid	06/05/12 14:10	06/08/12 09:50
92120686007	BG-3 1-2'	Solid	06/05/12 14:20	06/08/12 09:50
92120686008	BG-4 1-2'	Solid	06/05/12 14:30	06/08/12 09:50
92120686009	SB-5 1-2'	Solid	06/05/12 14:50	06/08/12 09:50
92120686010	SB-6 1-2'	Solid	06/05/12 16:00	06/08/12 09:50
92120686011	DUP SOIL	Solid	06/05/12 00:00	06/08/12 09:50
92120686012	RINSE BLANK	Water	06/05/12 15:10	06/08/12 09:50
92120686013	BG-5 4-5'	Solid	06/06/12 09:15	06/08/12 09:50
92120686014	BG-5 6-7'	Solid	06/06/12 09:20	06/08/12 09:50
92120686015	BG-5 4-5'	Solid	06/06/12 10:45	06/08/12 09:50
92120686016	BG-5 6-7'	Solid	06/06/12 10:45	06/08/12 09:50
92120686017	BG-6 4-5'	Solid	06/06/12 14:45	06/08/12 09:50
92120686018	BG-6 6-7'	Solid	06/06/12 14:50	06/08/12 09:50
92120686019	MW-10	Water	06/07/12 10:40	06/08/12 09:50
92120686020	MW-8	Water	06/07/12 11:25	06/08/12 09:50
92120686021	MW-9	Water	06/07/12 12:20	06/08/12 09:50
92120686022	DUP-GW	Water	06/07/12 00:00	06/08/12 09:50

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE ANALYTE COUNT

Pace Project No.: 92120686

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92120686001	SB-1 0.5-1.5'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686002	SB-2 1-2'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686003	SB-3 1-2'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686004	SB-4 1-2'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686005	BG-1 1-2'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686006	BG-2 1-2'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686007	BG-3 1-2'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686008	BG-4 1-2'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686009	SB-5 1-2'	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686010	SB-6 1-2'	EPA 6010	JMW	13	PASI-A

REPORT OF LABORATORY ANALYSIS

Page 4 of 44

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE ANALYTE COUNT

Project: PRESTIG	E LABEL HEY-001
------------------	-----------------

Pace Project No.: 92120686

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686011	DUP SOIL	EPA 6010	JMW	13	PASI-A
		EPA 7471	JMW	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		EPA 7196	SDH	1	PASI-A
92120686012	RINSE BLANK	EPA 6010	JMW	13	PASI-A
		EPA 7470	JMW	1	PASI-A
		EPA 7196	SDH	1	PASI-A
92120686013	BG-5 4-5'	EPA 6010	JMW	13	PASI-A
		EPA 7471	SHB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		ASTM D2974-87	HKV	1	PASI-G
		EPA 7196	SDH	1	PASI-A
92120686014	BG-5 6-7'	ASTM D2974-87	HKV	1	PASI-G
92120686017	BG-6 4-5'	EPA 6010	JMW	13	PASI-A
		EPA 7471	SHB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
		ASTM D2974-87	HKV	1	PASI-G
		EPA 7196	SDH	1	PASI-A
92120686018	BG-6 6-7'	ASTM D2974-87	HKV	1	PASI-G
92120686019	MW-10	EPA 6010	JMW	13	PASI-A
		EPA 7470	JMW	1	PASI-A
92120686020	MW-8	EPA 6010	JMW	13	PASI-A
		EPA 7470	JMW	1	PASI-A
92120686021	MW-9	EPA 6010	JMW	13	PASI-A
		EPA 7470	JMW	1	PASI-A
92120686022	DUP-GW	EPA 6010	JMW	13	PASI-A
		EPA 7470	.IMW	1	PASI-A

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: SB-1 0.5-1.5'	Lab ID: 92120686001 Collected: 06/05/12 11:30			0 Received: 06	Received: 06/08/12 09:50 Matrix: Solid				
Results reported on a "dry-weigh	t" basis								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Me	thod: EPA 601	0 Preparation Meth	nod: EF	PA 3050				
Antimony	ND m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:04	7440-36-0		
Arsenic	2.1 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:04	7440-38-2		
Beryllium	ND m	ng/kg	0.11	1	06/13/12 16:00	06/13/12 21:04	7440-41-7		
Cadmium	ND m	ng/kg	0.11	1	06/13/12 16:00	06/13/12 21:04	7440-43-9		
Chromium	10.9 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:04	7440-47-3		
Copper	2.7 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:04	7440-50-8		
Lead	3.7 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:04	7439-92-1		
Manganese	61.8 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:04	7439-96-5		
Nickel	5.9 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:04	7440-02-0		
Selenium	ND m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:04	7782-49-2		
Silver	ND m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:04	7440-22-4		
Thallium	ND m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:04	7440-28-0		
Zinc	14.1 m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:04	7440-66-6		
7471 Mercury	Analytical Me	thod: EPA 747	1 Preparation Meth	nod: EF	PA 7471				
Mercury	0.019 m	ng/kg	0.0032	1	06/12/12 14:55	06/13/12 15:49	7439-97-6		
Percent Moisture	Analytical Me	thod: ASTM D	2974-87						
Percent Moisture	17.7 %	, D	0.10	1		06/11/12 15:56			
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 719	6 Preparation Meth	nod: EF	PA 7196				
Chromium, Hexavalent	ND m	ng/kg	0.46	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2	

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: SB-2 1-2'	Lab ID: 92120686002 Collected: 06/05/12 11:40				0 Received: 06	Received: 06/08/12 09:50 Matrix: Solid				
Results reported on a "dry-weigh	t" basis									
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010 MET ICP	Analytical Me	thod: EPA 60	010 Preparation Me	ethod: El	PA 3050					
Antimony	ND m	ng/kg	0.48	3 1	06/13/12 16:00	06/13/12 21:09	7440-36-0			
Arsenic	0.69 m	ng/kg	0.48	3 1	06/13/12 16:00	06/13/12 21:09	7440-38-2			
Beryllium	ND m	ng/kg	0.095	i 1	06/13/12 16:00	06/13/12 21:09	7440-41-7			
Cadmium	ND m	ng/kg	0.095	i 1	06/13/12 16:00	06/13/12 21:09	7440-43-9			
Chromium	5.0 m	ng/kg	0.48	3 1	06/13/12 16:00	06/13/12 21:09	7440-47-3			
Copper	0.67 m	ng/kg	0.48	3 1	06/13/12 16:00	06/13/12 21:09	7440-50-8			
Lead	3.6 m	ng/kg	0.48	3 1	06/13/12 16:00	06/13/12 21:09	7439-92-1			
Manganese	12.2 m	ng/kg	0.48	3 1	06/13/12 16:00	06/13/12 21:09	7439-96-5			
Nickel	1.9 m	ng/kg	0.48	3 1	06/13/12 16:00	06/13/12 21:09	7440-02-0			
Selenium	ND m	ng/kg	0.95	5 1	06/13/12 16:00	06/13/12 21:09	7782-49-2			
Silver	ND m	ng/kg	0.48	3 1	06/13/12 16:00	06/13/12 21:09	7440-22-4			
Thallium	ND m	ng/kg	0.95	i 1	06/13/12 16:00	06/13/12 21:09	7440-28-0			
Zinc	3.5 m	ng/kg	0.95	i 1	06/13/12 16:00	06/13/12 21:09	7440-66-6			
7471 Mercury	Analytical Me	thod: EPA 74	71 Preparation Me	ethod: El	PA 7471					
Mercury	0.011 m	ng/kg	0.0053	6 1	06/12/12 14:55	06/13/12 15:51	7439-97-6			
Percent Moisture	Analytical Me	thod: ASTM	D2974-87							
Percent Moisture	10.9 %	, 0	0.10) 1		06/11/12 15:56				
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 71	96 Preparation Me	ethod: El	PA 7196					
Chromium, Hexavalent	ND m	ng/kg	0.45	5 1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2		

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: SB-3 1-2'	Lab ID: 92	120686003	Collected: 06/05	/12 12:0	0 Received: 06	5/08/12 09:50 N	latrix: Solid	
Results reported on a "dry-weigh	ıt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	thod: EPA 60 ⁻	10 Preparation Me	thod: El	PA 3050			
Antimony	ND m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:13	7440-36-0	
Arsenic	ND m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:13	7440-38-2	
Beryllium	ND m	ng/kg	0.11	1	06/13/12 16:00	06/13/12 21:13	7440-41-7	
Cadmium	ND m	ng/kg	0.11	1	06/13/12 16:00	06/13/12 21:13	7440-43-9	
Chromium	5.3 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:13	7440-47-3	
Copper	ND m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:13	7440-50-8	
Lead	3.8 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:13	7439-92-1	
Manganese	8.3 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:13	7439-96-5	
Nickel	1.3 m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:13	7440-02-0	
Selenium	ND m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:13	7782-49-2	
Silver	ND m	ng/kg	0.56	1	06/13/12 16:00	06/13/12 21:13	7440-22-4	
Thallium	ND m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:13	7440-28-0	
Zinc	2.8 m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:13	7440-66-6	
7471 Mercury	Analytical Me	thod: EPA 74	71 Preparation Me	thod: El	PA 7471			
Mercury	0.012 m	ng/kg	0.0049	1	06/12/12 14:55	06/13/12 15:54	7439-97-6	
Percent Moisture	Analytical Me	thod: ASTM E	02974-87					
Percent Moisture	12.5 %	, 0	0.10	1		06/11/12 15:56		
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 719	96 Preparation Me	thod: El	PA 7196			
Chromium, Hexavalent	ND m	ng/kg	0.54	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: SB-4 1-2'	Lab ID: 92	120686004	Collected: 06/05/1	2 12:1	0 Received: 06	5/08/12 09:50 N	latrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	thod: EPA 601	0 Preparation Meth	nod: Ef	PA 3050			
Antimony	ND m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:26	7440-36-0	
Arsenic	0.49 m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:26	7440-38-2	
Beryllium	ND m	ng/kg	0.096	1	06/13/12 16:00	06/13/12 21:26	7440-41-7	
Cadmium	ND m	ng/kg	0.096	1	06/13/12 16:00	06/13/12 21:26	7440-43-9	
Chromium	3.1 m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:26	7440-47-3	
Copper	0.58 m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:26	7440-50-8	
Lead	2.5 m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:26	7439-92-1	
Manganese	4.9 m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:26	7439-96-5	
Nickel	0.82 m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:26	7440-02-0	
Selenium	ND m	ng/kg	0.96	1	06/13/12 16:00	06/13/12 21:26	7782-49-2	
Silver	ND m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:26	7440-22-4	
Thallium	ND m	ng/kg	0.96	1	06/13/12 16:00	06/13/12 21:26	7440-28-0	
Zinc	1.9 m	ng/kg	0.96	1	06/13/12 16:00	06/13/12 21:26	7440-66-6	
7471 Mercury	Analytical Me	thod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.026 m	ng/kg	0.0046	1	06/12/12 14:55	06/13/12 15:57	7439-97-6	
Percent Moisture	Analytical Me	thod: ASTM D	2974-87					
Percent Moisture	20.9 %	, D	0.10	1		06/11/12 15:57		
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 719	96 Preparation Meth	nod: EF	PA 7196			
Chromium, Hexavalent	ND m	ng/kg	0.43	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: BG-1 1-2'	Lab ID: 92	120686005	Collected: 06/05/	12 14:0	0 Received: 06	5/08/12 09:50 N	latrix: Solid		
Results reported on a "dry-weigh	ıt" basis								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Me	thod: EPA 60	10 Preparation Met	hod: EF	PA 3050				
Antimony	ND m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:29	7440-36-0		
Arsenic	ND mg/kg		0.48	1	06/13/12 16:00	06/13/12 21:29	7440-38-2		
Beryllium	ND m	ng/kg	0.097	1	06/13/12 16:00	06/13/12 21:29	7440-41-7		
Cadmium	ND m	ng/kg	0.097	1	06/13/12 16:00	06/13/12 21:29	7440-43-9		
Chromium	3.3 m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:29	7440-47-3		
Copper	ND mg/kg		0.48	1	06/13/12 16:00	06/13/12 21:29	7440-50-8		
Lead	3.2 mg/kg		0.48	1	06/13/12 16:00	06/13/12 21:29	7439-92-1		
Manganese	1.7 mg/kg		0.48	1	06/13/12 16:00	06/13/12 21:29	7439-96-5		
Nickel	ND m	ng/kg	0.48	1	06/13/12 16:00	06/13/12 21:29	7440-02-0		
Selenium	ND m	ng/kg	0.97	1	06/13/12 16:00	06/13/12 21:29	7782-49-2		
Silver	ND mg/kg		0.48	1	06/13/12 16:00	06/13/12 21:29	7440-22-4		
Thallium	ND mg/kg		0.97	1	06/13/12 16:00	06/13/12 21:29	7440-28-0		
Zinc	1.5 m	ng/kg	0.97	1	06/13/12 16:00	06/13/12 21:29	7440-66-6		
7471 Mercury	Analytical Method: EPA 7471 Preparation Method: EPA 7471								
Mercury	0.011 m	ng/kg	0.0055	1	06/12/12 14:55	06/13/12 15:59	7439-97-6		
Percent Moisture	Analytical Method: ASTM D2974-87								
Percent Moisture	15.2 %	, 0	0.10	1		06/11/12 15:57			
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 71	96 Preparation Met	hod: EF	PA 7196				
Chromium, Hexavalent	ND m	ng/kg	0.47	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2	

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: BG-2 1-2'	Lab ID: 92	120686006	Collected:	06/05/1	2 14:10	Received: 06	6/08/12 09:50 N	latrix: Solid		
Results reported on a "dry-weigh	nt" basis									
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Me	thod: EPA 60	010 Preparati	ion Meth	nod: EP/	A 3050				
Antimony	ND m	ng/kg		0.53	1	06/13/12 16:00	06/13/12 21:32	7440-36-0		
Arsenic	ND m	ng/kg		0.53	1	06/13/12 16:00	06/13/12 21:32	7440-38-2		
Beryllium	ND m	ng/kg		0.11	1	06/13/12 16:00	06/13/12 21:32	7440-41-7		
Cadmium	ND m	ng/kg		0.11	1	06/13/12 16:00	06/13/12 21:32	7440-43-9		
Chromium	3.6 m	ng/kg		0.53	1	06/13/12 16:00	06/13/12 21:32	7440-47-3		
Copper	ND m	ng/kg		0.53	1	06/13/12 16:00	06/13/12 21:32	7440-50-8		
Lead	3.4 m	ng/kg		0.53	1	06/13/12 16:00	06/13/12 21:32	7439-92-1		
Manganese	1.4 m	ng/kg		0.53	1	06/13/12 16:00	06/13/12 21:32	7439-96-5		
Nickel	ND m	ng/kg		0.53	1	06/13/12 16:00	06/13/12 21:32	7440-02-0		
Selenium	ND m	ng/kg		1.1	1	06/13/12 16:00	06/13/12 21:32	7782-49-2		
Silver	ND mg/kg			0.53	1	06/13/12 16:00	06/13/12 21:32	7440-22-4		
Thallium	ND mg/kg			1.1	1	06/13/12 16:00	06/13/12 21:32	7440-28-0		
Zinc	ND m	ng/kg		1.1	1	06/13/12 16:00	06/13/12 21:32	7440-66-6		
7471 Mercury	Analytical Method: EPA 7471 Preparation Method: EPA 7471									
Mercury	0.013 m	ng/kg	C	0.0046	1	06/12/12 14:55	06/13/12 16:02	7439-97-6		
Percent Moisture	Analytical Method: ASTM D2974-87									
Percent Moisture	15.0 %	, 0		0.10	1		06/11/12 15:57			
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 7	196 Preparati	ion Meth	nod: EP/	A 7196				
Chromium, Hexavalent	0.72 m	na/ka		0.51	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2	

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: BG-3 1-2'	Lab ID: 92120686007		Collected: 06/05/12 14:20		0 Received: 06	Received: 06/08/12 09:50 M			
Results reported on a "dry-weigh	t" basis								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Met	thod: EPA 60	010 Preparation Met	hod: EF	PA 3050				
Antimony	ND m	ig/kg	0.50	1	06/13/12 16:00	06/13/12 21:35	7440-36-0		
Arsenic	ND m	ig/kg	0.50	1	06/13/12 16:00	06/13/12 21:35	7440-38-2		
Beryllium	ND m	ig/kg	0.099	1	06/13/12 16:00	06/13/12 21:35	7440-41-7		
Cadmium	ND m	ig/kg	0.099	1	06/13/12 16:00	06/13/12 21:35	7440-43-9		
Chromium	2.6 m	ig/kg	0.50	1	06/13/12 16:00	06/13/12 21:35	7440-47-3		
Copper	ND m	ig/kg	0.50	1	06/13/12 16:00	06/13/12 21:35	7440-50-8		
Lead	2.7 m	ig/kg	0.50	1	06/13/12 16:00	06/13/12 21:35	7439-92-1		
Manganese	0.87 m	ig/kg	0.50	1	06/13/12 16:00	06/13/12 21:35	7439-96-5		
Nickel	ND m	ig/kg	0.50	1	06/13/12 16:00	06/13/12 21:35	7440-02-0		
Selenium	ND m	ig/kg	0.99	1	06/13/12 16:00	06/13/12 21:35	7782-49-2		
Silver	ND m	ig/kg	0.50	1	06/13/12 16:00	06/13/12 21:35	7440-22-4		
Thallium	ND m	ig/kg	0.99	1	06/13/12 16:00	06/13/12 21:35	7440-28-0		
Zinc	1.1 m	ig/kg	0.99	1	06/13/12 16:00	06/13/12 21:35	7440-66-6		
7471 Mercury	Analytical Method: EPA 7471 Preparation Method: EPA 7471								
Mercury	0.0081 m	ig/kg	0.0043	1	06/12/12 14:55	06/13/12 16:13	7439-97-6		
Percent Moisture	Analytical Method: ASTM D2974-87								
Percent Moisture	16.2 %	5	0.10	1		06/11/12 15:57			
7196 Chromium, Hexavalent	Analytical Met	thod: EPA 7	196 Preparation Met	hod: EF	PA 7196				
Chromium, Hexavalent	ND m	iq/kq	0.47	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2	

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: BG-4 1-2'	Lab ID: 92	120686008	Collected: 06/05/1	2 14:3	0 Received: 06	6/08/12 09:50 N	latrix: Solid	
Results reported on a "dry-weigh	ıt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	thod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Antimony	ND m	ng/kg	0.54	1	06/13/12 16:00	06/13/12 21:39	7440-36-0	
Arsenic	1.1 m	ng/kg	0.54	1	06/13/12 16:00	06/13/12 21:39	7440-38-2	
Beryllium	0.13 m	ng/kg	0.11	1	06/13/12 16:00	06/13/12 21:39	7440-41-7	
Cadmium	ND m	ng/kg	0.11	1	06/13/12 16:00	06/13/12 21:39	7440-43-9	
Chromium	6.8 m	ng/kg	0.54	1	06/13/12 16:00	06/13/12 21:39	7440-47-3	
Copper	0.89 m	ng/kg	0.54	1	06/13/12 16:00	06/13/12 21:39	7440-50-8	
Lead	3.3 m	ng/kg	0.54	1	06/13/12 16:00	06/13/12 21:39	7439-92-1	
Manganese	4.1 m	ng/kg	0.54	1	06/13/12 16:00	06/13/12 21:39	7439-96-5	
Nickel	0.79 m	ng/kg	0.54	1	06/13/12 16:00	06/13/12 21:39	7440-02-0	
Selenium	ND m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:39	7782-49-2	
Silver	ND m	ng/kg	0.54	1	06/13/12 16:00	06/13/12 21:39	7440-22-4	
Thallium	ND m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:39	7440-28-0	
Zinc	3.6 m	ng/kg	1.1	1	06/13/12 16:00	06/13/12 21:39	7440-66-6	
7471 Mercury	Analytical Me	thod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.010 m	ng/kg	0.0037	1	06/12/12 14:55	06/13/12 16:16	7439-97-6	
Percent Moisture	Analytical Me	thod: ASTM D	2974-87					
Percent Moisture	11.0 %	, 0	0.10	1		06/11/12 16:10		
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 719	6 Preparation Meth	nod: EF	PA 7196			
Chromium, Hexavalent	ND m	ng/kg	0.53	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: SB-5 1-2'	Lab ID: 92	120686009	Collected: 06/0	5/12 14:5	50 Received: 06	6/08/12 09:50 N	Aatrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	thod: EPA 60	10 Preparation M	ethod: E	PA 3050			
Antimony	ND n	ng/kg	0.5	5 1	06/13/12 16:00	06/13/12 21:42	7440-36-0	
Arsenic	ND n	ng/kg	0.5	51	06/13/12 16:00	06/13/12 21:42	7440-38-2	
Beryllium	ND n	ng/kg	0.1	1 1	06/13/12 16:00	06/13/12 21:42	7440-41-7	
Cadmium	ND n	ng/kg	0.1	1 1	06/13/12 16:00	06/13/12 21:42	7440-43-9	
Chromium	4.2 m	ng/kg	0.5	51	06/13/12 16:00	06/13/12 21:42	7440-47-3	
Copper	ND m	ng/kg	0.5	51	06/13/12 16:00	06/13/12 21:42	7440-50-8	
Lead	3.4 n	ng/kg	0.5	51	06/13/12 16:00	06/13/12 21:42	7439-92-1	
Manganese	7.2 m	ng/kg	0.5	51	06/13/12 16:00	06/13/12 21:42	7439-96-5	
Nickel	0.89 n	ng/kg	0.5	51	06/13/12 16:00	06/13/12 21:42	7440-02-0	
Selenium	ND m	ng/kg	1.	1 1	06/13/12 16:00	06/13/12 21:42	7782-49-2	
Silver	ND m	ng/kg	0.5	51	06/13/12 16:00	06/13/12 21:42	7440-22-4	
Thallium	ND m	ng/kg	1.	1 1	06/13/12 16:00	06/13/12 21:42	7440-28-0	
Zinc	2.0 m	ng/kg	1.	1 1	06/13/12 16:00	06/13/12 21:42	7440-66-6	
7471 Mercury	Analytical Me	thod: EPA 74	71 Preparation M	ethod: E	PA 7471			
Mercury	0.010 n	ng/kg	0.005	91	06/12/12 14:55	06/13/12 16:18	7439-97-6	
Percent Moisture	Analytical Me	thod: ASTM I	D2974-87					
Percent Moisture	14.6 %	, 0	0.1	0 1		06/11/12 18:49		
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 71	96 Preparation M	ethod: E	PA 7196			
Chromium, Hexavalent	ND n	ng/kg	0.5	5 1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: SB-6 1-2'	Lab ID: 92	120686010	Collected: 06/05/	12 16:0	0 Received: 06	6/08/12 09:50 N	latrix: Solid	
Results reported on a "dry-weigh	ıt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	thod: EPA 60	10 Preparation Met	hod: El	PA 3050			
Antimony	ND n	ng/kg	0.37	1	06/13/12 16:00	06/13/12 21:45	7440-36-0	
Arsenic	1.6 m	ng/kg	0.37	1	06/13/12 16:00	06/13/12 21:45	7440-38-2	
Beryllium	0.27 m	ng/kg	0.074	1	06/13/12 16:00	06/13/12 21:45	7440-41-7	
Cadmium	0.55 n	ng/kg	0.074	1	06/13/12 16:00	06/13/12 21:45	7440-43-9	
Chromium	8.1 m	ng/kg	0.37	1	06/13/12 16:00	06/13/12 21:45	7440-47-3	
Copper	1.6 m	ng/kg	0.37	1	06/13/12 16:00	06/13/12 21:45	7440-50-8	
Lead	3.1 n	ng/kg	0.37	1	06/13/12 16:00	06/13/12 21:45	7439-92-1	
Manganese	9.9 n	ng/kg	0.37	1	06/13/12 16:00	06/13/12 21:45	7439-96-5	
Nickel	1.7 n	ng/kg	0.37	1	06/13/12 16:00	06/13/12 21:45	7440-02-0	
Selenium	ND m	ng/kg	0.74	1	06/13/12 16:00	06/13/12 21:45	7782-49-2	
Silver	ND m	ng/kg	0.37	1	06/13/12 16:00	06/13/12 21:45	7440-22-4	
Thallium	ND n	ng/kg	0.74	1	06/13/12 16:00	06/13/12 21:45	7440-28-0	
Zinc	5.9 n	ng/kg	0.74	1	06/13/12 16:00	06/13/12 21:45	7440-66-6	
7471 Mercury	Analytical Me	thod: EPA 74	71 Preparation Met	hod: El	PA 7471			
Mercury	0.0097 n	ng/kg	0.0044	1	06/12/12 14:55	06/13/12 16:21	7439-97-6	
Percent Moisture	Analytical Me	thod: ASTM I	D2974-87					
Percent Moisture	23.2 %	0	0.10	1		06/11/12 18:50		
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 71	96 Preparation Met	hod: El	PA 7196			
Chromium. Hexavalent	ND n	na/ka	0.62	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: DUP SOIL	Lab ID: 92120686011 Collected: 06/05/12 00:00 Received: 06/08/12 09:50 Matrix: Solid							
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	thod: EPA 60	10 Preparation Met	hod: El	PA 3050			
Antimony	ND m	ng/kg	0.42	1	06/13/12 16:00	06/13/12 21:48	7440-36-0	
Arsenic	ND m	ng/kg	0.42	1	06/13/12 16:00	06/13/12 21:48	7440-38-2	
Beryllium	ND m	ng/kg	0.084	1	06/13/12 16:00	06/13/12 21:48	7440-41-7	
Cadmium	ND m	ng/kg	0.084	1	06/13/12 16:00	06/13/12 21:48	7440-43-9	
Chromium	8.4 m	ng/kg	0.42	1	06/13/12 16:00	06/13/12 21:48	7440-47-3	
Copper	0.66 m	ng/kg	0.42	1	06/13/12 16:00	06/13/12 21:48	7440-50-8	
Lead	5.5 m	ng/kg	0.42	1	06/13/12 16:00	06/13/12 21:48	7439-92-1	
Manganese	3.5 m	ng/kg	0.42	1	06/13/12 16:00	06/13/12 21:48	7439-96-5	
Nickel	2.8 m	ng/kg	0.42	1	06/13/12 16:00	06/13/12 21:48	7440-02-0	
Selenium	ND m	ng/kg	0.84	1	06/13/12 16:00	06/13/12 21:48	7782-49-2	
Silver	ND m	ng/kg	0.42	1	06/13/12 16:00	06/13/12 21:48	7440-22-4	
Thallium	ND m	ng/kg	0.84	1	06/13/12 16:00	06/13/12 21:48	7440-28-0	
Zinc	3.2 m	ng/kg	0.84	1	06/13/12 16:00	06/13/12 21:48	7440-66-6	
7471 Mercury	Analytical Me	thod: EPA 74	71 Preparation Met	hod: El	PA 7471			
Mercury	0.011 m	ng/kg	0.0047	1	06/12/12 14:55	06/13/12 16:23	7439-97-6	
Percent Moisture	Analytical Me	thod: ASTM [02974-87					
Percent Moisture	18.5 %	/ 0	0.10	1		06/11/12 18:50		
7196 Chromium, Hexavalent	Analytical Me	thod: EPA 71	96 Preparation Met	hod: El	PA 7196			
Chromium. Hexavalent	ND m	na/ka	0.56	1	06/13/12 11:24	06/13/12 15:44	18540-29-9	N2

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: RINSE BLANK	Lab ID: 92120686012	2 Collected: 06/05/1	12 15:10	Received: 06	6/08/12 09:50 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, 3030C	Analytical Method: EPA	6010 Preparation Met	hod: SM	3030C			
Antimony	5.1 ug/L	5.0	1	06/08/12 14:50	06/11/12 21:51	7440-36-0	
Arsenic	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:51	7440-38-2	
Beryllium	ND ug/L	1.0	1	06/08/12 14:50	06/11/12 21:51	7440-41-7	
Cadmium	ND ug/L	1.0	1	06/08/12 14:50	06/11/12 21:51	7440-43-9	
Chromium	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:51	7440-47-3	
Copper	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:51	7440-50-8	
Lead	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:51	7439-92-1	
Manganese	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:51	7439-96-5	
Nickel	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:51	7440-02-0	
Selenium	ND ug/L	10.0	1	06/08/12 14:50	06/11/12 21:51	7782-49-2	
Silver	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:51	7440-22-4	
Thallium	ND ug/L	10.0	1	06/08/12 14:50	06/11/12 21:51	7440-28-0	
Zinc	ND ug/L	10.0	1	06/08/12 14:50	06/11/12 21:51	7440-66-6	
7470 Mercury	Analytical Method: EPA	7470 Preparation Meth	hod: EP	A 7470			
Mercury	ND ug/L	0.20	1	06/12/12 11:40	06/13/12 13:33	7439-97-6	
7196 Chromium, Hexavalent	Analytical Method: EPA	7196					
Chromium, Hexavalent	ND mg/L	0.050	1		06/08/12 16:07	18540-29-9	H1,N2

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: BG-5 4-5'	Lab ID: 9212068	6013 Collected: 06/06/	12 09:1	5 Received: 06	5/08/12 09:50 N	latrix: Solid	
Results reported on a "dry-weigh	nt" basis						
Parameters	Results L	Jnits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method: E	EPA 6010 Preparation Met	hod: EF	PA 3050			
Antimony	ND mg/kg	0.34	1	07/12/12 08:50	07/13/12 16:55	7440-36-0	
Arsenic	0.55 mg/kg	0.34	1	07/12/12 08:50	07/12/12 17:44	7440-38-2	
Beryllium	ND mg/kg	0.067	1	07/12/12 08:50	07/12/12 17:44	7440-41-7	
Cadmium	ND mg/kg	0.067	1	07/12/12 08:50	07/12/12 17:44	7440-43-9	
Chromium	2.9 mg/kg	0.34	1	07/12/12 08:50	07/12/12 17:44	7440-47-3	
Copper	ND mg/kg	0.34	1	07/12/12 08:50	07/12/12 17:44	7440-50-8	
Lead	2.9 mg/kg	0.34	1	07/12/12 08:50	07/12/12 17:44	7439-92-1	
Manganese	0.82 mg/kg	0.34	1	07/12/12 08:50	07/12/12 17:44	7439-96-5	
Nickel	ND mg/kg	0.34	1	07/12/12 08:50	07/12/12 17:44	7440-02-0	
Selenium	ND mg/kg	0.67	1	07/12/12 08:50	07/12/12 17:44	7782-49-2	
Silver	ND mg/kg	0.34	1	07/12/12 08:50	07/12/12 17:44	7440-22-4	
Thallium	ND mg/kg	0.67	1	07/12/12 08:50	07/12/12 17:44	7440-28-0	
Zinc	0.81 mg/kg	0.67	1	07/12/12 08:50	07/12/12 17:44	7440-66-6	
7471 Mercury	Analytical Method: I	EPA 7471 Preparation Met	hod: EF	PA 7471			
Mercury	0.0065 mg/kg	0.0028	1	07/12/12 11:10	07/12/12 15:12	7439-97-6	H1,H2
Percent Moisture	Analytical Method: A	ASTM D2974-87					
Percent Moisture	12.3 %	0.10	1		07/12/12 09:09		
Fractional Organic Carbon	Analytical Method: A	ASTM D2974-87					
Fractional Organic Carbon	0.49 % (w/w) 0.058	1		06/13/12 08:51		
7196 Chromium, Hexavalent	Analytical Method: E	EPA 7196 Preparation Met	hod: EF	PA 7196			
Chromium, Hexavalent	ND mg/kg	0.45	1	07/18/12 14:48	07/18/12 15:46	18540-29-9	M1,N2

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: BG-5 6-7'	Lab ID: 921	20686014	Collected: 06/06/	12 09:20	Received: 06	6/08/12 09:50	Matrix: Solid	
Results reported on a "dry-weight	" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Fractional Organic Carbon	Analytical Met	hod: ASTM	D2974-87					
Fractional Organic Carbon	0.38 %	o (w/w)	0.058	1		06/13/12 08:5	54	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: BG-6 4-5'	Lab ID: 92120686	6017 Collected: 06/06/	12 14:4	5 Received: 06	5/08/12 09:50 N	latrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	ResultsU	Inits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method: E	PA 6010 Preparation Met	hod: EF	PA 3050			
Antimony	ND mg/kg	0.31	1	07/12/12 08:50	07/13/12 17:11	7440-36-0	
Arsenic	0.51 mg/kg	0.31	1	07/12/12 08:50	07/12/12 17:49	7440-38-2	
Beryllium	ND mg/kg	0.062	1	07/12/12 08:50	07/12/12 17:49	7440-41-7	
Cadmium	ND mg/kg	0.062	1	07/12/12 08:50	07/12/12 17:49	7440-43-9	
Chromium	2.9 mg/kg	0.31	1	07/12/12 08:50	07/12/12 17:49	7440-47-3	
Copper	0.36 mg/kg	0.31	1	07/12/12 08:50	07/12/12 17:49	7440-50-8	
Lead	5.8 mg/kg	0.31	1	07/12/12 08:50	07/12/12 17:49	7439-92-1	
Manganese	3.8 mg/kg	0.31	1	07/12/12 08:50	07/12/12 17:49	7439-96-5	
Nickel	0.39 mg/kg	0.31	1	07/12/12 08:50	07/12/12 17:49	7440-02-0	
Selenium	ND mg/kg	0.62	1	07/12/12 08:50	07/12/12 17:49	7782-49-2	
Silver	ND mg/kg	0.31	1	07/12/12 08:50	07/12/12 17:49	7440-22-4	
Thallium	ND mg/kg	0.62	1	07/12/12 08:50	07/12/12 17:49	7440-28-0	
Zinc	5.0 mg/kg	0.62	1	07/12/12 08:50	07/12/12 17:49	7440-66-6	
7471 Mercury	Analytical Method: E	PA 7471 Preparation Met	hod: EF	PA 7471			
Mercury	0.0064 mg/kg	0.0044	1	07/12/12 11:10	07/12/12 15:25	7439-97-6	H1,H2
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	16.6 %	0.10	1		07/12/12 09:10		
Fractional Organic Carbon	Analytical Method: A	STM D2974-87					
Fractional Organic Carbon	1.3 % (w/w)	0.058	1		06/13/12 08:56		
7196 Chromium, Hexavalent	Analytical Method: E	PA 7196 Preparation Met	hod: EF	PA 7196			
Chromium, Hexavalent	ND mg/kg	0.56	1	07/18/12 14:48	07/18/12 15:46	18540-29-9	N2

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: BG-6 6-7'	Lab ID: 921	20686018	Collected: 06/06/1	2 14:50	Received: 06	/08/12 09:50	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Fractional Organic Carbon	Analytical Met	hod: ASTM	D2974-87					
Fractional Organic Carbon	0.24 %	o (w/w)	0.058	1		06/13/12 08:5	58	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Lab ID: 92120686019	9 Collected: 06/07/12	10:40	Received: 06	/08/12 09:50 M	atrix: Water	
Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Method: EPA	6010 Preparation Method	I: SM :	3030C			
6.7 ug/L	5.0	1	06/08/12 14:50	06/11/12 21:58	7440-36-0	
ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:58	7440-38-2	
ND ug/L	1.0	1	06/08/12 14:50	06/11/12 21:58	7440-41-7	
ND ug/L	1.0	1	06/08/12 14:50	06/11/12 21:58	7440-43-9	
ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:58	7440-47-3	
ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:58	7440-50-8	
ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:58	7439-92-1	
52.0 ug/L	5.0	1	06/08/12 14:50	06/11/12 21:58	7439-96-5	
ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:58	7440-02-0	
ND ug/L	10.0	1	06/08/12 14:50	06/11/12 21:58	7782-49-2	
ND ug/L	5.0	1	06/08/12 14:50	06/11/12 21:58	7440-22-4	
ND ug/L	10.0	1	06/08/12 14:50	06/11/12 21:58	7440-28-0	
15.1 ug/L	10.0	1	06/08/12 14:50	06/11/12 21:58	7440-66-6	
Analytical Method: EPA	7470 Preparation Method	I: EPA	7470			
ND ug/L	0.20	1	06/12/12 11:40	06/13/12 13:41	7439-97-6	
	Lab ID: 92120686019 Results Units Analytical Method: EPA 6.7 ug/L ND ug/L ND ug/L Mug/L ND ug/L Analytical Method: EPA ND ug/L	Lab ID: 92120686019 Collected: 06/07/12 Results Units Report Limit I Analytical Method: EPA 6010 Preparation Method 6.7 ug/L 5.0 ND ug/L 5.0 ND ug/L 5.0 ND ug/L 1.0 ND ug/L 5.0 ND ug/L 10.0 15.1 ug/L 10.0 Analytical Method: EPA 7470 Preparation Method: ND ug/L 0.20 </td <td>Lab ID: 92120686019 Collected: 06/07/12 10:40 Results Units Report Limit DF Analytical Method: EPA 6010 Preparation Method: SM 6.7 ug/L 5.0 1 ND ug/L 5.0 1 ND ug/L 1.0 1 ND ug/L 5.0 1 ND ug/L 10.0 1 Analytical Method: EPA 7470 Preparation Method: ND ug/L 0.20 1</td> <td>Lab ID: 92120686019 Collected: 06/07/12 10:40 Received: 06/08/12 Results Units Report Limit DF Prepared Analytical Method: EPA 6010 Preparation Method: SM 3030C 6.7 ug/L 5.0 1 06/08/12 14:50 ND ug/L 5.0 1 06/08/12 14:50 ND ug/L 5.0 1 06/08/12 14:50 ND ug/L 1.0 1 06/08/12 14:50 ND ug/L 1.0 1 06/08/12 14:50 ND ug/L 1.0 1 06/08/12 14:50 ND ug/L 5.0 1 06/08/12 14:50 ND ug/L</td> <td>Lab ID: 92120686019 Collected: 06/07/12 10:40 Received: 06/08/12 09:50 M Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 6010 Preparation Method: SM 3030C 6.7 ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L<td>Lab ID: 92120686019 Collected: 06/07/12 10:40 Received: 06/08/12 09:50 Matrix: Water Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 6010 Preparation Method: SM 3030C 6.7 ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-36-0 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-38-2 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 7440-43-9 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1</td></td>	Lab ID: 92120686019 Collected: 06/07/12 10:40 Results Units Report Limit DF Analytical Method: EPA 6010 Preparation Method: SM 6.7 ug/L 5.0 1 ND ug/L 5.0 1 ND ug/L 1.0 1 ND ug/L 5.0 1 ND ug/L 10.0 1 Analytical Method: EPA 7470 Preparation Method: ND ug/L 0.20 1	Lab ID: 92120686019 Collected: 06/07/12 10:40 Received: 06/08/12 Results Units Report Limit DF Prepared Analytical Method: EPA 6010 Preparation Method: SM 3030C 6.7 ug/L 5.0 1 06/08/12 14:50 ND ug/L 5.0 1 06/08/12 14:50 ND ug/L 5.0 1 06/08/12 14:50 ND ug/L 1.0 1 06/08/12 14:50 ND ug/L 1.0 1 06/08/12 14:50 ND ug/L 1.0 1 06/08/12 14:50 ND ug/L 5.0 1 06/08/12 14:50 ND ug/L	Lab ID: 92120686019 Collected: 06/07/12 10:40 Received: 06/08/12 09:50 M Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 6010 Preparation Method: SM 3030C 6.7 ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 ND ug/L <td>Lab ID: 92120686019 Collected: 06/07/12 10:40 Received: 06/08/12 09:50 Matrix: Water Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 6010 Preparation Method: SM 3030C 6.7 ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-36-0 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-38-2 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 7440-43-9 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1</td>	Lab ID: 92120686019 Collected: 06/07/12 10:40 Received: 06/08/12 09:50 Matrix: Water Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 6010 Preparation Method: SM 3030C 6.7 ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-36-0 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-38-2 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 7440-43-9 ND ug/L 1.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1 06/08/12 14:50 06/11/12 21:58 7440-47-3 ND ug/L 5.0 1

REPORT OF LABORATORY ANALYSIS

Page 22 of 44

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: MW-8 Lab ID:	92120686020 Coll	ected: 06/07/12	11:25	Received: 06	/08/12 09:50 M	atrix: Water	
Parameters Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, 3030C Analytical	Method: EPA 6010 P	reparation Metho	od: SM	3030C			
Antimony N	D ug/L	5.0	1	06/08/12 14:50	06/11/12 22:15	7440-36-0	
Arsenic N	D ug/L	5.0	1	06/08/12 14:50	06/11/12 22:15	7440-38-2	
Beryllium N	D ug/L	1.0	1	06/08/12 14:50	06/11/12 22:15	7440-41-7	
Cadmium N	D ug/L	1.0	1	06/08/12 14:50	06/11/12 22:15	7440-43-9	
Chromium N	D ug/L	5.0	1	06/08/12 14:50	06/11/12 22:15	7440-47-3	
Copper N	D ug/L	5.0	1	06/08/12 14:50	06/11/12 22:15	7440-50-8	
Lead N	D ug/L	5.0	1	06/08/12 14:50	06/11/12 22:15	7439-92-1	
Manganese 58.	3 ug/L	5.0	1	06/08/12 14:50	06/11/12 22:15	7439-96-5	
Nickel N	D ug/L	5.0	1	06/08/12 14:50	06/11/12 22:15	7440-02-0	
Selenium N	D ug/L	10.0	1	06/08/12 14:50	06/11/12 22:15	7782-49-2	
Silver	D ug/L	5.0	1	06/08/12 14:50	06/11/12 22:15	7440-22-4	
Thallium N	D ug/L	10.0	1	06/08/12 14:50	06/11/12 22:15	7440-28-0	
Zinc 18	8 ug/L	10.0	1	06/08/12 14:50	06/11/12 22:15	7440-66-6	
7470 Mercury Analytical	Method: EPA 7470 P	reparation Metho	od: EPA	7470			
Mercury N	D ug/L	0.20	1	06/12/12 11:40	06/13/12 13:43	7439-97-6	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: MW-9 Lab ID	92120686021	Collected: 06/07/12	2 12:20	Received: 06	/08/12 09:50 M	atrix: Water	
Parameters Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, 3030C Analytica	I Method: EPA 601	0 Preparation Meth	od: SM	3030C			
Antimony	5.4 ug/L	5.0	1	06/08/12 14:50	06/11/12 22:18	7440-36-0	
Arsenic	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:18	7440-38-2	
Beryllium	ND ug/L	1.0	1	06/08/12 14:50	06/11/12 22:18	7440-41-7	
Cadmium	ND ug/L	1.0	1	06/08/12 14:50	06/11/12 22:18	7440-43-9	
Chromium I	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:18	7440-47-3	
Copper I	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:18	7440-50-8	
Lead	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:18	7439-92-1	
Manganese 5 ⁴	I .1 ug/L	5.0	1	06/08/12 14:50	06/11/12 22:18	7439-96-5	
Nickel	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:18	7440-02-0	
Selenium	ND ug/L	10.0	1	06/08/12 14:50	06/11/12 22:18	7782-49-2	
Silver	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:18	7440-22-4	
Thallium	ND ug/L	10.0	1	06/08/12 14:50	06/11/12 22:18	7440-28-0	
Zinc 3	89 ug/L	10.0	1	06/08/12 14:50	06/11/12 22:18	7440-66-6	
7470 Mercury Analytica	I Method: EPA 747	0 Preparation Meth	od: EPA	7470			
Mercury I	ND ug/L	0.20	1	06/12/12 11:40	06/13/12 13:46	7439-97-6	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Sample: DUP-GW	Lab ID: 92120686022	2 Collected: 06/07/12 0	0:00	Received: 06	/08/12 09:50 M	latrix: Water	
Parameters	Results Units	Report Limit D	F	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, 3030C	Analytical Method: EPA	6010 Preparation Method:	SM 3	3030C			
Antimony	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:21	7440-36-0	
Arsenic	ND ug/L	5.0	1 (06/08/12 14:50	06/11/12 22:21	7440-38-2	
Beryllium	ND ug/L	1.0	1	06/08/12 14:50	06/11/12 22:21	7440-41-7	
Cadmium	ND ug/L	1.0	1	06/08/12 14:50	06/11/12 22:21	7440-43-9	
Chromium	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:21	7440-47-3	
Copper	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:21	7440-50-8	
Lead	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:21	7439-92-1	
Manganese	51.0 ug/L	5.0	1	06/08/12 14:50	06/11/12 22:21	7439-96-5	
Nickel	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:21	7440-02-0	
Selenium	ND ug/L	10.0	1	06/08/12 14:50	06/11/12 22:21	7782-49-2	
Silver	ND ug/L	5.0	1	06/08/12 14:50	06/11/12 22:21	7440-22-4	
Thallium	ND ug/L	10.0	1	06/08/12 14:50	06/11/12 22:21	7440-28-0	
Zinc	16.0 ug/L	10.0	1	06/08/12 14:50	06/11/12 22:21	7440-66-6	
7470 Mercury	Analytical Method: EPA	7470 Preparation Method:	EPA	7470			
Mercury	ND ug/L	0.20	1	06/12/12 11:40	06/13/12 13:49	7439-97-6	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project:	PRESTIGE LAB	EL HEY-001										
Pace Project No.:	92120686											
QC Batch:	MERP/4286		Analysi	is Method:	E	PA 7470						
QC Batch Method:	EPA 7470		Analysi	is Descript	ion: 7	470 Mercury						
Associated Lab Sar	mples: 9212068	36012, 92120686019	, 921206860	020, 92120	0686021, 9	2120686022	2					
METHOD BLANK:	777100		N	latrix: Wat	ter							
Associated Lab Sar	mples: 9212068	36012, 92120686019	, 921206860	020, 92120	0686021, 9	2120686022	2					
			Blank	R	eporting							
Parar	neter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Mercury		ug/L		ND	0.20	06/13/12	13:28					
LABORATORY CO	NTROL SAMPLE:	777101										
			Spike	LCS	5	LCS	% Red	>				
Parar	neter	Units	Conc.	Resu	llt	% Rec	Limits	a Qu	alifiers			
Mercury		ug/L	2.5		2.1	82	80	-120		_		
MATRIX SPIKE & N	ATRIX SPIKE DU	JPLICATE: 77710	2		777103							
			MS	MSD								
		92120686012	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	ter	Units Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	ug	/L ND	2.5	2.5	2.1	2.0	83	80	75-125	3	25	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project: PRESTI	GE LABEL HEY-001						
Pace Project No.: 9212068	36						
QC Batch: MERP	/4288	Analysis Met	hod: I	EPA 7471			
QC Batch Method: EPA 74	171	Analysis Des	scription:	7471 Mercury			
Associated Lab Samples:	92120686001, 92120686002 92120686008, 92120686009	, 92120686003, 9 , 92120686010, 9	2120686004, 2120686011	92120686005, 92	2120686006,	92120686007,	
METHOD BLANK: 777110		Matrix:	Solid				
Associated Lab Samples:	92120686001, 92120686002 92120686008, 92120686009	, 92120686003, 9 , 92120686010, 9	2120686004, 2120686011	92120686005, 92	2120686006,	92120686007,	
Parameter	Units	Result	Limit	Analvzed	Qualit	fiers	
Mercury	mg/kg	ND	0.005	0 06/13/12 15:2			
LABORATORY CONTROL SA	AMPLE: 777111						
Parameter	Units	Spike Conc. F	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Mercury	mg/kg	.067	0.057	86	80-120		
MATRIX SPIKE SAMPLE:	777112						
Parameter	Units	92120557003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Mercury	mg/kg	0.013 ug	/g .061	0.046	Ę	56 75-12	5 M1
SAMPLE DUPLICATE: 777	113						
Parameter	Unite	92120635001 Result	Dup Result	RPD	Max RPD	Qualifiers	
Mercury		ND	.0035			20	·

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project: PRESTIGE LABE	LHEY-001						
Pace Project No.: 92120686							
QC Batch: MERP/4348		Analysis Met	hod:	EPA 7471			
QC Batch Method: EPA 7471		Analysis Des	cription:	7471 Mercury			
Associated Lab Samples: 9212068	6013, 92120686017						
METHOD BLANK: 792602		Matrix:	Solid				
Associated Lab Samples: 9212068	6013, 92120686017						
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifie	rs	
Mercury	mg/kg	ND	0.005	0 07/12/12 15:	07		
LABORATORY CONTROL SAMPLE:	792603						
Parameter	Units	Spike Conc. F	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Mercury	mg/kg	.067	0.061	92	80-120		
MATRIX SPIKE SAMPLE:	792604						
		92120686013	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mercury	mg/kg	0.006	.038	0.038	85	75-125	H1,H2
SAMPLE DUPLICATE: 792605							
Parameter	Units	92120686017 Result	Dup Result	RPD	Max RPD	Qualifiers	
Mercury	mg/kg	0.0064	0.008	1 2	3 2	0 D6,H1,H2	_

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

QC Batch:	MPRF	2/10799	Analysis Method:	EPA 6010
QC Batch Method:	EPA 3	050	Analysis Description:	6010 MET
Associated Lab Samp	les:	92120686001, 92120686002, 92 92120686008, 92120686009, 92	120686003, 92120686004, 120686010, 92120686011	92120686005, 92120686006, 92120686007,

Matrix: Solid

METHOD BLANK: 777882

Associated Lab Samples: 92120686001, 92120686002, 92120686003, 92120686004, 92120686005, 92120686006, 92120686007, 92120686008, 92120686009, 92120686010, 92120686011

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	mg/kg	ND	0.50	06/13/12 20:13	
Arsenic	mg/kg	ND	0.50	06/13/12 20:13	
Beryllium	mg/kg	ND	0.10	06/13/12 20:13	
Cadmium	mg/kg	ND	0.10	06/13/12 20:13	
Chromium	mg/kg	ND	0.50	06/13/12 20:13	
Copper	mg/kg	ND	0.50	06/13/12 20:13	
Lead	mg/kg	ND	0.50	06/13/12 20:13	
Manganese	mg/kg	ND	0.50	06/13/12 20:13	
Nickel	mg/kg	ND	0.50	06/13/12 20:13	
Selenium	mg/kg	ND	1.0	06/13/12 20:13	
Silver	mg/kg	ND	0.50	06/13/12 20:13	
Thallium	mg/kg	ND	1.0	06/13/12 20:13	
Zinc	mg/kg	ND	1.0	06/13/12 20:13	

LABORATORY CONTROL SAMPLE: 777883

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony	 ma/ka	50	50.2	100	80-120	
Arsenic	mg/kg	50	50.3	101	80-120	
Beryllium	mg/kg	50	51.8	104	80-120	
Cadmium	mg/kg	50	51.2	102	80-120	
Chromium	mg/kg	50	49.3	99	80-120	
Copper	mg/kg	50	50.2	100	80-120	
Lead	mg/kg	50	51.2	102	80-120	
Manganese	mg/kg	50	50.4	101	80-120	
Nickel	mg/kg	50	50.2	100	80-120	
Selenium	mg/kg	50	50.3	101	80-120	
Silver	mg/kg	25	25.1	100	80-120	
Thallium	mg/kg	50	47.0	94	80-120	
Zinc	mg/kg	50	51.0	102	80-120	

MATRIX SPIKE SAMPLE:

777004
///88/

Parameter	Units	92120557002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Antimony	mg/kg	ND	27.8	27.0	97	75-125	
Arsenic	mg/kg	ND	27.8	29.4	106	75-125	
Beryllium	mg/kg	ND	27.8	29.2	105	75-125	
Cadmium	mg/kg	ND	27.8	27.3	98	75-125	

Date: 07/18/2012 04:15 PM

REPORT OF LABORATORY ANALYSIS

Page 29 of 44

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

MATRIX SPIKE SAMPLE:	777884						
		92120557002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chromium	mg/kg	ND	27.8	27.9	100	75-125	
Copper	mg/kg	1.33 ug/g	27.8	29.4	101	75-125	
Lead	mg/kg	ND	27.8	26.6	95	75-125	
Manganese	mg/kg	ND	27.8	29.3	105	75-125	
Nickel	mg/kg	ND	27.8	27.9	100	75-125	
Selenium	mg/kg	ND	27.8	34.2	121	75-125	
Silver	mg/kg	ND	13.9	13.6	98	75-125	
Thallium	mg/kg	ND	27.8	22.2	80	75-125	
Zinc	mg/kg	1.31 ug/g	27.8	29.9	103	75-125	

SAMPLE DUPLICATE: 777885

			92120557003	Dup		Max	
Parar	meter	Units	Result	Result	RPD	RPD	Qualifiers
Antimony		mg/kg	ND	ND		20	
Arsenic		mg/kg	ND	ND		20	
Beryllium		mg/kg	ND	ND		20	
Cadmium		mg/kg	1.88 ug/g	0.39	131	20	D6
Chromium		mg/kg	ND	ND		20	
Copper		mg/kg	0.353 ug/g	.19J		20	
Lead		mg/kg	12.8 ug/g	2.8	129	20	D6
Manganese		mg/kg	ND	.026J		20	
Nickel		mg/kg	ND	ND		20	
Selenium		mg/kg	ND	ND		20	
Silver		mg/kg	ND	ND		20	
Thallium		mg/kg	ND	ND		20	
Zinc		mg/kg	1.11 ug/g	ND		20	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

PRESTIGE LABEL HEY-001 Project:

Doco Project No 02120696

Pace Project No.: 921	120686						
QC Batch: M	IPRP/10988	Analysis Meth	nod: EF	PA 6010			
QC Batch Method: E	PA 3050	Analysis Description:		6010 MET			
Associated Lab Samples: 92120686013, 92120686017							
METHOD BLANK: 793	3019	Matrix:	Matrix: Solid				
Associated Lab Samples	s: 92120686013, 92120686017						
		Blank	Reporting				
Paramete	r Units	Result	Limit	Analyzed	Qualifiers		
Antimony		ND	0.50	07/12/12 17:29			
Arsenic	mg/kg	ND	0.50	07/12/12 17:29			
Beryllium	mg/kg	ND	0.10	07/12/12 17:29			
Cadmium	mg/kg	ND	0.10	07/12/12 17:29			
Chromium	mg/kg	ND	0.50	07/12/12 17:29			
Copper	mg/kg	ND	0.50	07/12/12 17:29			
Lead	mg/kg	ND	0.50	07/12/12 17:29			
Manganese	mg/kg	ND	0.50	07/12/12 17:29			
Nickel	mg/kg	ND	0.50	07/12/12 17:29			
Selenium	mg/kg	ND	1.0	07/12/12 17:29			
Silver	mg/kg	ND	0.50	07/12/12 17:29			
Thallium	mg/kg	ND	1.0	07/12/12 17:29			
Zinc	mg/kg	ND	1.0	07/12/12 17:29			

LABORATORY CONTROL SAMPLE: 793020

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/kg	50	49.2	98	80-120	
Arsenic	mg/kg	50	49.2	98	80-120	
Beryllium	mg/kg	50	49.5	99	80-120	
Cadmium	mg/kg	50	49.1	98	80-120	
Chromium	mg/kg	50	48.3	97	80-120	
Copper	mg/kg	50	49.8	100	80-120	
Lead	mg/kg	50	48.8	98	80-120	
Manganese	mg/kg	50	48.8	98	80-120	
Nickel	mg/kg	50	48.9	98	80-120	
Selenium	mg/kg	50	50.0	100	80-120	
Silver	mg/kg	25	24.4	98	80-120	
Thallium	mg/kg	50	47.8	96	80-120	
Zinc	mg/kg	50	48.2	96	80-120	

MATRIX SPIKE SAMPLE:

793021

Par	ameter	Units	92120686013 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Antimony		mg/kg	ND	31.7	18.9	60	75-125	M1
Arsenic		mg/kg	0.55	31.7	28.9	89	75-125	
Beryllium		mg/kg	ND	31.7	31.9	100	75-125	
Cadmium		mg/kg	ND	31.7	31.2	98	75-125	
Chromium		mg/kg	2.9	31.7	34.2	99	75-125	
Copper		mg/kg	ND	31.7	30.9	98	75-125	

Date: 07/18/2012 04:15 PM

REPORT OF LABORATORY ANALYSIS

Page 31 of 44

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

MATRIX SPIKE SAMPLE:	793021						
		92120686013	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Lead	mg/kg	2.9	31.7	31.9	92	75-125	
Manganese	mg/kg	0.82	31.7	32.0	98	75-125	
Nickel	mg/kg	ND	31.7	31.1	97	75-125	
Selenium	mg/kg	ND	31.7	29.8	93	75-125	
Silver	mg/kg	ND	15.8	15.4	97	75-125	
Thallium	mg/kg	ND	31.7	28.9	91	75-125	
Zinc	mg/kg	0.81	31.7	32.6	100	75-125	

SAMPLE DUPLICATE: 793023

			92120686017	Dup		Max	
Parar	meter	Units	Result	Result	RPD	RPD	Qualifiers
Antimony		mg/kg	ND	ND		20	
Arsenic		mg/kg	0.51	0.44	14	20	
Beryllium		mg/kg	ND	.049J		20	
Cadmium		mg/kg	ND	ND		20	
Chromium		mg/kg	2.9	2.7	7	20	
Copper		mg/kg	0.36	.27J		20	
Lead		mg/kg	5.8	4.6	25	20 I	D6
Manganese		mg/kg	3.8	3.2	17	20	
Nickel		mg/kg	0.39	0.53	31	20 I	06
Selenium		mg/kg	ND	ND		20	
Silver		mg/kg	ND	ND		20	
Thallium		mg/kg	ND	ND		20	
Zinc		mg/kg	5.0	3.9	25	20	D6

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

QC Batch:	MPRP/10775	Analysis Method:	EPA 6010
QC Batch Method:	SM 3030C	Analysis Description:	6010 MET 3030C
Associated Lab Samp	bles: 92120686012, 92120686019, 9	2120686020, 92120686021	, 92120686022

Matrix: Water

METHOD BLANK: 776024

Associated Lab Samples: 92120686012, 92120686019, 92120686020, 92120686021, 92120686022

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	ND	5.0	06/11/12 21:44	
Arsenic	ug/L	ND	5.0	06/11/12 21:44	
Beryllium	ug/L	ND	1.0	06/11/12 21:44	
Cadmium	ug/L	ND	1.0	06/11/12 21:44	
Chromium	ug/L	ND	5.0	06/11/12 21:44	
Copper	ug/L	ND	5.0	06/11/12 21:44	
Lead	ug/L	ND	5.0	06/11/12 21:44	
Manganese	ug/L	ND	5.0	06/11/12 21:44	
Nickel	ug/L	ND	5.0	06/11/12 21:44	
Selenium	ug/L	ND	10.0	06/11/12 21:44	
Silver	ug/L	ND	5.0	06/11/12 21:44	
Thallium	ug/L	ND	10.0	06/11/12 21:44	
Zinc	ug/L	ND	10.0	06/11/12 21:44	

LABORATORY CONTROL SAMPLE: 776025

D		Spike	LCS	LCS	% Rec	0
Parame		Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	500	507	101	80-120	
Arsenic	ug/L	500	512	102	80-120	
Beryllium	ug/L	500	539	108	80-120	
Cadmium	ug/L	500	519	104	80-120	
Chromium	ug/L	500	494	99	80-120	
Copper	ug/L	500	495	99	80-120	
Lead	ug/L	500	516	103	80-120	
Manganese	ug/L	500	495	99	80-120	
Nickel	ug/L	500	508	102	80-120	
Selenium	ug/L	500	593	119	80-120	
Silver	ug/L	250	252	101	80-120	
Thallium	ug/L	500	426	85	80-120	
Zinc	ug/L	500	561	112	80-120	

MATRIX SPIKE SAMPLE:

776026

Parameter	Units	92120686012 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Antimony	ug/L	5.1	500	504	100	75-125	
Arsenic	ug/L	ND	500	506	101	75-125	
Beryllium	ug/L	ND	500	531	106	75-125	
Cadmium	ug/L	ND	500	516	103	75-125	
Chromium	ug/L	ND	500	493	99	75-125	
Copper	ug/L	ND	500	491	98	75-125	

Date: 07/18/2012 04:15 PM

REPORT OF LABORATORY ANALYSIS

Page 33 of 44

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

MATRIX SPIKE SAMPLE:	776026						
		92120686012	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Lead	ug/L	ND	500	515	103	75-125	
Manganese	ug/L	ND	500	495	99	75-125	
Nickel	ug/L	ND	500	505	101	75-125	
Selenium	ug/L	ND	500	566	113	75-125	
Silver	ug/L	ND	250	252	101	75-125	
Thallium	ug/L	ND	500	435	85	75-125	
Zinc	ug/L	ND	500	542	107	75-125	

SAMPLE DUPLICATE: 776027

		92120686019	Dup		Max	
Parameter	r Units	Result	Result	RPD	RPD	Qualifiers
Antimony	ug/L	6.7	4.5J		20	
Arsenic	ug/L	ND	ND		20	
Beryllium	ug/L	ND	ND		20	
Cadmium	ug/L	ND	ND		20	
Chromium	ug/L	ND	ND		20	
Copper	ug/L	ND	2.6J		20	
Lead	ug/L	ND	ND		20	
Manganese	ug/L	52.0	52.3	1	20	
Nickel	ug/L	ND	3.1J		20	
Selenium	ug/L	ND	ND		20	
Silver	ug/L	ND	ND		20	
Thallium	ug/L	ND	ND		20	
Zinc	ug/L	15.1	23.3	43	20	D6

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project:	PRES	FIGE LABEL H	IEY-001								
Pace Project No.:	92120	686									
QC Batch:	PMS	T/4807		Analysis Meth	od:	ASTM D2974-	87				
QC Batch Method:	AST	/I D2974-87		Analysis Desc	Analysis Description: Dry Weight/Percent Moisture						
Associated Lab Sar	nples:	9212068600 9212068600	1, 921206860 8	02, 92120686003, 92	120686004,	92120686005	, 9212(0686006,	92120	0686007,	
SAMPLE DUPLICA	TE: 77	6740									
				92120781001	Dup			Max			
Parar	neter		Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%)	8.6	8.	5	1		25		
SAMPLE DUPLICA	TE: 77	6741									
				92120741002	Dup			Max			
Parar	neter		Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%)	96.4	96.	6	0		25		

Date: 07/18/2012 04:15 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 35 of 44

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project:	PRESTIGE LABE	L HEY-001						
Pace Project No.:	92120686							
QC Batch:	PMST/4808		Analysis Method:		ASTM D2974-8	87		
QC Batch Method:	ASTM D2974-8	7	Analysis Desc	cription:	Dry Weight/Pe	rcent Moisture)	
Associated Lab San	nples: 92120686	6009, 921206860	10, 92120686011					
SAMPLE DUPLICA	TE: 776746							
			92120777001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	i
Percent Moisture		%	15.7	11.	9	27	25 R1	
SAMPLE DUPLICA	TE: 776747							
			92120762010	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	i
Percent Moisture		%	14.6	15.	1	3	25	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project:	PRESTIGE LABE	L HEY-001							
Pace Project No .:	92120686								
QC Batch:	PMST/4862		Analysis Meth	nod:	ASTM D2974-	87			
QC Batch Method:	ASTM D2974-87	7	Analysis Desc	cription:	Dry Weight/Pe	rcent Mo	isture		
Associated Lab San	nples: 92120686	6013, 92120686017							
SAMPLE DUPLICA	TE: 792520								
			92120686013	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	12.3	13	.0	5		25	
SAMPLE DUPLICA	TE: 792521								
			92123698004	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	20.4	20		2		25	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project:	PRESTIGE I	ABEL HEY-001						
Pace Project No.:	92120686							
QC Batch:	WET/1191	5	Analysis Meth	nod: A	STM D2974-87			
QC Batch Method:	ASTM D29	74-87	Analysis Des	cription: D	2974 Fractional Org	ganic Carbon		
Associated Lab San	nples: 9212	20686013, 92120686014	, 92120686017, 92	2120686018				
METHOD BLANK:	619900		Matrix:	Solid				
Associated Lab San	nples: 9212	20686013, 92120686014	, 92120686017, 92	2120686018				
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyzed	Qualifiers	3	
Fractional Organic (Carbon	% (w/w)	ND	0.058	06/13/12 08:47			
SAMPLE DUPLICA	TE: 619902							
			4061704006	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Fractional Organic C	Carbon	% (w/w)	0.31	0.40	24	10) R1	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project:	PREST	IGE LABE	L HEY-001										
Pace Project No.:	921206	86											
QC Batch:	WETA	/12325		Analysis N	letho	d:	E	PA 7196					
QC Batch Method:	EPA 7	196		Analysis D)escri	ption:	71	196 Chromium,	Hexa	avalent			
Associated Lab Sar	nples:	92120686 92120686	6001, 92120686002, 6008, 92120686009,	92120686003 92120686010	, 921 , 921	20686004 20686011	1, 9:	2120686005, 9	21206	386006,	9212	0686007,	
METHOD BLANK:	777566			Matr	ix: So	olid							
Associated Lab Sar	nples:	92120686 92120686	6001, 92120686002, 6008, 92120686009,	92120686003 92120686010 Blank	, 921 , 921	20686004 20686011 Reporting	1, 9: I	2120686005, 9	21206	386006,	9212	0686007,	
Paran	neter		Units	Result		Limit		Analyzed		Quali	fiers		
Chromium, Hexaval	lent		mg/kg	N	D	:	5.0	06/13/12 15:	44	N2			
LABORATORY CON	NTROL S	SAMPLE:	777567										
				Spike	LC	s		LCS	% R	ec			
Parar	neter		Units	Conc.	Res	sult		% Rec	Lim	its	Qu	alifiers	
Chromium, Hexaval	lent		mg/kg	50		51.6		103		90-110	N2		
MATRIX SPIKE SAI	MPLE:		777569										
Paran	neter		Units	921206860 Result	01	Spike Conc.		MS Result	%	MS 6 Rec		% Rec Limits	Qualifiers
Chromium, Hexaval	lent		mg/kg		ND	5.8	8	4.7		8	80	75-125	N2
MATRIX SPIKE SAI	MPLE:		777571										
Parar	neter		Units	921206860 Result	11	Spike Conc.		MS Result	9	MS 6 Rec		% Rec Limits	Qualifiers
Chromium, Hexaval	lent		mg/kg		ND	5.6	6	5.3		ģ	93	75-125	N2
SAMPLE DUPLICA	TE: 777	7568											
Parar	neter		Units	9212068600 ⁻ Result	1	Dup Result		RPD		Max RPD		Qualifiers	
Chromium, Hexaval	lent		mg/kg	N	D	I	ND				20	N2	
SAMPLE DUPLICA	.TE: 777	7570											
Paran	neter		Units	9212068601 ² Result	1	Dup Result		RPD		Max RPD		Qualifiers	
Chromium, Hexaval	lent		mg/kg	N	D	.1	11J				20	N2	

Date: 07/18/2012 04:15 PM

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Pace Project No.: 92120686 QC Batch: WETA/12661 Analysis Method: EPA 7196 QC Batch EPA 7196 Analysis Description: 7196 Chromium, Hexavalent Associated Lab Samples: 92120686013, 92120686017 Matrix: Solid METHOD BLANK: 796856 Matrix: Solid Associated Lab Samples: 92120686013, 92120686017 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Chromium, Hexavalent mg/kg ND 5.0 07/18/12 15:46 N2 LABORATORY CONTROL SAMPLE: 796857 LCS LCS % Rec Limits Qualifiers MATRIX SPIKE SAMPLE: 796859 92120686013 Spike Conc. Result % Rec Limits Qualifiers MATRIX SPIKE SAMPLE: 796859 92120686013 Spike MS % Rec Limits Qualifiers SAMPLE DUPLICATE: 796858 92120686013 Spike MS % Rec Limits Qualifiers SAMPLE DUPLICATE: 796858 92120686013 Dup Result RPD	Project: PRE	STIGE LABE	L HEY-001								
QC Batch: WETA/12661 Analysis Method: EPA 7196 QC Batch Method: EPA 7196 Analysis Description: 7196 Chromium, Hexavalent Associated Lab Samples: 92120686013, 92120686017 Matrix: Solid METHOD BLANK: 796856 Matrix: Solid Associated Lab Samples: 92120686013, 92120686017 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Chromium, Hexavalent mg/kg ND 5.0 07/18/12 15:46 N2 LABORATORY CONTROL SAMPLE: 796857 ECS % Rec Limits Qualifiers MATRIX SPIKE SAMPLE: 796859 92120686013 Spike Conc. MS % Rec Limits Qualifiers MATRIX SPIKE SAMPLE: 796859 92120686013 Spike MS % Rec Limits Qualifiers SAMPLE DUPLICATE: 796858 92120686013 Dup MS % Rec Limits Qualifiers SAMPLE DUPLICATE: 796859 92120686013 Dup MS % Rec Limits Qualifiers SAMPLE DUPLICATE:	Pace Project No.: 9212	20686									
QC Batch Method: EPA 7196 Analysis Description: 7196 Chromium, Hexavalent Associated Lab Samples: 92120686013, 92120686017 Matrix: Solid METHOD BLANK: 796856 Matrix: Solid Associated Lab Samples: 92120686013, 92120686017 Blank Reporting Parameter Units Blank Reporting Analyzed Qualifiers Limit ND 5.0 07/18/12 15:46 N2 N2 LABORATORY CONTROL SAMPLE: 796857 ECS LCS % Rec Limits Qualifiers Chromium, Hexavalent mg/kg 50 51.1 102 90-110 N2 MATRIX SPIKE SAMPLE: 796859 92120686013 Spike MS MS % Rec Limits Qualifiers MATRIX SPIKE SAMPLE: 796859 92120686013 Spike MS MS % Rec Limits Qualifiers SAMPLE DUPLICATE: 796858 92120686013 Dup Result Result Result Result MAx Qualifiers SAMPLE DUPLICATE: 796858 92120686013 Dup RPD	QC Batch: WE	TA/12661		Analysis	Metho	d: I	EPA 7196				
Associated Lab Samples: 92120686013, 92120686017 METHOD BLANK: 796856 Matrix: Solid Associated Lab Samples: 92120686013, 92120686017 Parameter Units Result Reporting Parameter Units Spike LCS AMPLE: 796857 Parameter Units Solid LABORATORY CONTROL SAMPLE: 796857 Parameter Units Solid MATRIX SPIKE SAMPLE: 796859 Parameter Units Parameter Units Spike Result ND 5.0 51.1 102 90.110 N2 MATRIX SPIKE SAMPLE: 796859 Parameter Units Spike Result ND 5.1 1.1 21 75-125 M1,N2 SAMPLE DUPLICATE: 796858 Parameter Units Result ND 5.1 1.1 21 75-125 M1,N2 SAMPLE DUPLICATE: 796858 Parameter Units Result ND 5.1 1.1 21 75-125 M1,N2 SAMPLE DUPLICATE: 796858 Parameter Units Result	QC Batch Method: EP	A 7196		Analysis	Descri	ption:	7196 Chromium,	Hexavalent			
METHOD BLANK: 796856 Matrix: Solid Associated Lab Samples: 92120686013, 92120686017 Blank Reporting Qualifiers Parameter Units Blank Reporting Analyzed Qualifiers Chromium, Hexavalent mg/kg ND 5.0 07/18/12 15:46 N2 LABORATORY CONTROL SAMPLE: 796857 Spike LCS % Rec Limits Qualifiers Chromium, Hexavalent mg/kg 50 51.1 102 90-110 N2 MATRIX SPIKE SAMPLE: 796859 92120686013 Spike MS MS % Rec Parameter Units 92120686013 Spike MS MS % Rec Limits mg/kg ND 5.1 1.1 21 75-125 M1,N2 SAMPLE DUPLICATE: 796858 92120686013 Dup Result RPD Max Parameter Units 92120686013 Result Result RPD Qualifiers SAMPLE DUPLICATE: 796858 01/15 01/15 01/15 01/15 01/15	Associated Lab Samples:	92120686	6013, 92120686017								
Associated Lab Samples:92120686013, 92120686017Blank ResultReporting LimitAnalyzed AnalyzedQualifiersParameterUnitsND5.007/18/12 15:46N2LABORATORY CONTROL SAMPLE:796857ParameterUnitsConc.Result% Rec ModeLimitsQualifiersChromium, Hexavalentmg/kg5051.110290-110N2MATRIX SPIKE SAMPLE:79685992120686013 ResultSpike Conc.MS ResultMS Result% Rec LimitsQualifiersMATRIX SPIKE SAMPLE:79685992120686013 ResultSpike Conc.MS ResultMS Result% Rec LimitsQualifiersMATRIX SPIKE DUPLICATE:79685892120686013 ResultSpike ResultMS ResultMS ResultMax RPD RPDQualifiersSAMPLE DUPLICATE:79685892120686013 ResultDup ResultResult ResultResult ResultRPD RPDQualifiersChromium, Hexavalentmg/kgNDND20N2	METHOD BLANK: 7968	356		Mat	rix: So	olid					
ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersChromium, Hexavalentmg/kgND5.007/18/12 15:46N2LABORATORY CONTROL SAMPLE:796857ParameterUnitsSpike Conc.LCS Result% Rec % RecLimitsQualifiersMATRIX SPIKE SAMPLE:796859ParameterUnits92120686013 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsMATRIX SPIKE SAMPLE:796859ParameterUnits92120686013 ResultSpike Conc.MS Result% Rec LimitsQualifiers QualifiersSAMPLE DUPLICATE:79685892120686013 ResultDup ResultMax RPDQualifiers QualifiersSAMPLE DUPLICATE:79685892120686013 ResultDup ResultRPD RPDMax RPDQualifiers QualifiersChromium, Hexavalentmg/kgNDNDND20N2	Associated Lab Samples:	92120686	6013, 92120686017								
ParameterUnitsResultLimitAnalyzedQualifiersChromium, Hexavalentmg/kgND5.007/18/12 15:46N2LABORATORY CONTROL SAMPLE:796857ParameterUnitsSpikeLCSLCS% RecChromium, Hexavalentmg/kg5051.110290-110N2MATRIX SPIKE SAMPLE:79685992120686013SpikeMSMS% RecParameterUnitsResultConc.Result% RecLimitsQualifiersMATRIX SPIKE SAMPLE:79685992120686013SpikeMSMS% RecLimitsQualifiersChromium, Hexavalentmg/kgND5.11.12175-125M1,N2SAMPLE DUPLICATE:79685892120686013DupResultRPDMaxParameterUnitsResultResultRPDQualifiersChromium, Hexavalentmg/kgNDND20N2				Blank		Reporting					
Chromium, Hexavalent mg/kg ND 5.0 07/18/12 15:46 N2 LABORATORY CONTROL SAMPLE: 796857 Parameter Units Spike LCS % Rec Limits Qualifiers Chromium, Hexavalent mg/kg 50 51.1 102 90-110 N2 MATRIX SPIKE SAMPLE: 796859 92120686013 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers MATRIX SPIKE SAMPLE: 796859 92120686013 Spike MS % Rec Limits Qualifiers Chromium, Hexavalent mg/kg ND 5.1 1.1 21 75-125 M1,N2 SAMPLE DUPLICATE: 796858 92120686013 Dup Result RPD Max Parameter Units Result Result RPD Aax Qualifiers Chromium, Hexavalent mg/kg ND ND ND 20 N2	Parameter		Units	Result		Limit	Analyzed	Qual	fiers		
LABORATORY CONTROL SAMPLE: 796857ParameterUnitsSpike Conc.LCS ResultLCS % Rec% Rec LimitsQualifiersChromium, Hexavalentmg/kg5051.110290-110N2MATRIX SPIKE SAMPLE:79685992120686013 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsQualifiersMATRIX SPIKE SAMPLE:79685992120686013 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsQualifiersMATRIX SPIKE DUPLICATE:79685892120686013 ResultSpike ResultMax ResultQualifiers QualifiersSAMPLE DUPLICATE:79685892120686013 ResultDup ResultMax RPDQualifiers QualifiersParameterUnits92120686013 ResultDup ResultMax RPDQualifiers QualifiersChromium, Hexavalentmg/kgNDND20N2	Chromium, Hexavalent		mg/kg	٢	1D	5.	0 07/18/12 15:	46 N2			
ParameterUnitsSpike Conc.LCS ResultLCS % Rec% Rec LimitsQualifiersChromium, Hexavalentmg/kg5051.110290-110N2MATRIX SPIKE SAMPLE:796859ParameterUnits92120686013 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsQualifiersChromium, Hexavalentmg/kgND5.11.12175-125M1,N2SAMPLE DUPLICATE: Chromium, HexavalentUnits92120686013 mg/kgDup ResultDup ResultMax RPDQualifiers QualifiersSAMPLE DUPLICATE: Chromium, HexavalentUnits92120686013 ResultDup ResultMax RPDQualifiers QualifiersMax RPDUnits92120686013 ResultDup ResultRPDMax RPDQualifiers QualifiersSAMPLE DUPLICATE: Chromium, Hexavalentmg/kgNDNDND20N2	LABORATORY CONTRO	L SAMPLE:	796857								
Chromium, Hexavalentmg/kg5051.110290-110N2MATRIX SPIKE SAMPLE:796859ParameterUnits92120686013 ResultSpike Conc.MS ResultMS % Rec Limits% Rec LimitsQualifiersChromium, Hexavalentmg/kgND5.11.12175-125M1,N2SAMPLE DUPLICATE:79685892120686013 ResultDup ResultMax ResultMax RPDQualifiers QualifiersChromium, Hexavalentmg/kgNDND20N2	Parameter		Units	Spike Conc.	LC Res	:S sult	LCS % Rec	% Rec Limits	Qı	alifiers	
MATRIX SPIKE SAMPLE:796859ParameterUnits92120686013 ResultSpike Conc.MS ResultMS % Rec LimitsQualifiersChromium, Hexavalentmg/kgND5.11.12175-125M1,N2SAMPLE DUPLICATE:79685892120686013 ResultDup ResultMax ResultMax RPDQualifiersParameterUnits92120686013 ResultDup ResultMax RPDQualifiersChromium, Hexavalentmg/kgNDND20N2	Chromium, Hexavalent		mg/kg	50		51.1	102	90-110	N2		
ParameterUnits92120686013 ResultSpike Conc.MSMS Result% Rec LimitsQualifiersChromium, Hexavalentmg/kgND5.11.12175-125M1,N2SAMPLE DUPLICATE:796858ParameterUnits92120686013 ResultDup ResultMax ResultRPDQualifiersChromium, Hexavalentmg/kgNDND20N2	MATRIX SPIKE SAMPLE	:	796859								
ParameterUnitsResultConc.Result% RecLimitsQualifiersChromium, Hexavalentmg/kgND5.11.12175-125M1, N2SAMPLE DUPLICATE:796858ParameterUnits92120686013 ResultDup ResultMax ResultRPDQualifiersChromium, Hexavalentmg/kgNDND20N2				92120686	013	Spike	MS	MS		% Rec	
Chromium, Hexavalentmg/kgND5.11.12175-125M1, N2SAMPLE DUPLICATE:796858ParameterUnits92120686013 ResultDup ResultMax RPDQualifiersChromium, Hexavalentmg/kgNDND20N2	Parameter		Units	Result		Conc.	Result	% Rec		Limits	Qualifiers
SAMPLE DUPLICATE: 796858 92120686013 Dup Max Parameter Units Result Result RPD Qualifiers Chromium, Hexavalent mg/kg ND ND 20 N2	Chromium, Hexavalent		mg/kg		ND	5.1	1.1		21	75-125	5 M1,N2
ParameterUnits92120686013 ResultDup ResultMax RPDQualifiersChromium, Hexavalentmg/kgNDND20 N2	SAMPLE DUPLICATE:	796858									
ParameterUnitsResultResultRPDRPDQualifiersChromium, Hexavalentmg/kgNDND20N2				9212068601	3	Dup		Max			
Chromium, Hexavalent mg/kg ND ND 20 N2	Parameter		Units	Result		Result	RPD	RPD		Qualifiers	
	Chromium, Hexavalent		mg/kg	Ν	ND	N)		20	N2	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: F	PRESTIGE LABE	L HEY-001									
Pace Project No.: 9	92120686										
QC Batch:	WETA/12286		Analysis M	lethod:	: E	PA 7196					
QC Batch Method:	EPA 7196		Analysis D	Analysis Description: 7196 Chromium, Hexavalent							
Associated Lab Samp	oles: 92120686	6012									
METHOD BLANK: 7	76106		Matri	x: Wa	ter						
Associated Lab Samp	oles: 92120686	6012									
_			Blank	R	eporting						
Parame	eter	Units	Result		Limit	Analyzed	Qual	ifiers	_		
Chromium, Hexavaler	nt	mg/L	NI	C	0.050	06/08/12 16:0)7 N2				
LABORATORY CONT	ROL SAMPLE:	776107									
			Spike	LCS	6	LCS	% Rec				
Parame	eter	Units	Conc.	Resu	ult	% Rec	Limits	Qu	alifiers		
Chromium, Hexavaler	nt	mg/L	.5		0.48	96	90-110	N2			
MATRIX SPIKE SAMI	PLE:	776109									
			921206860	12	Spike	MS	MS		% Rec		
Parame	eter	Units	Result		Conc.	Result	% Rec		Limits	Qualifiers	
Chromium, Hexavaler	nt	mg/L		ND	.5	0.48		91	75-12	5 H1,N2	
SAMPLE DUPLICATE	E: 776108										
			92120686012	2	Dup		Max				
Parame	eter	Units	Result		Result	RPD	RPD		Qualifiers	6	
Chromium, Hexavaler	nt	mg/L	N	5	NE)		20	H1,N2		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Acid preservation may not be appropriate for 2-Chloroethylvinyl ether, Styrene, and Vinyl chloride.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

- PASI-A Pace Analytical Services Asheville
- PASI-C Pace Analytical Services Charlotte
- PASI-G Pace Analytical Services Green Bay

ANALYTE QUALIFIERS

- D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
- H1 Analysis conducted outside the EPA method holding time.
- H2 Extraction or preparation conducted outside EPA method holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold TNI accreditation for this parameter.
- R1 RPD value was outside control limits.

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PRESTIGE LABEL HEY-001

Pace Project No.: 92120686

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92120686001	SB-1 0.5-1.5'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686002	SB-2 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686003	SB-3 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686004	SB-4 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686005	BG-1 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686006	BG-2 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686007	BG-3 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686008	BG-4 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686009	SB-5 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686010	SB-6 1-2'	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686011	DUP SOIL	EPA 3050	MPRP/10799	EPA 6010	ICP/9925
92120686013	BG-5 4-5'	EPA 3050	MPRP/10988	EPA 6010	ICP/10099
92120686017	BG-6 4-5'	EPA 3050	MPRP/10988	EPA 6010	ICP/10099
92120686012	RINSE BLANK	SM 3030C	MPRP/10775	EPA 6010	ICP/9899
92120686019	MW-10	SM 3030C	MPRP/10775	EPA 6010	ICP/9899
92120686020	MW-8	SM 3030C	MPRP/10775	EPA 6010	ICP/9899
92120686021	MW-9	SM 3030C	MPRP/10775	EPA 6010	ICP/9899
92120686022	DUP-GW	SM 3030C	MPRP/10775	EPA 6010	ICP/9899
92120686012	RINSE BLANK	EPA 7470	MERP/4286	EPA 7470	MERC/4204
92120686019	MW-10	EPA 7470	MERP/4286	EPA 7470	MERC/4204
92120686020	MW-8	EPA 7470	MERP/4286	EPA 7470	MERC/4204
92120686021	MW-9	EPA 7470	MERP/4286	EPA 7470	MERC/4204
92120686022	DUP-GW	EPA 7470	MERP/4286	EPA 7470	MERC/4204
92120686001	SB-1 0.5-1.5'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686002	SB-2 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686003	SB-3 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686004	SB-4 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686005	BG-1 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686006	BG-2 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686007	BG-3 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686008	BG-4 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686009	SB-5 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686010	SB-6 1-2'	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686011	DUP SOIL	EPA 7471	MERP/4288	EPA 7471	MERC/4206
92120686013	BG-5 4-5'	EPA 7471	MERP/4348	EPA 7471	MERC/4265
92120686017	BG-6 4-5'	EPA 7471	MERP/4348	EPA 7471	MERC/4265
92120686001	SB-1 0.5-1.5'	ASTM D2974-87	PMST/4807		
92120686002	SB-2 1-2'	ASTM D2974-87	PMST/4807		
92120686003	SB-3 1-2'	ASTM D2974-87	PMST/4807		
92120686004	SB-4 1-2'	ASTM D2974-87	PMST/4807		
92120686005	BG-1 1-2'	ASTM D2974-87	PMST/4807		
92120686006	BG-2 1-2'	ASTM D2974-87	PMST/4807		
92120686007	BG-3 1-2'	ASTM D2974-87	PMST/4807		
92120686008	BG-4 1-2'	ASTM D2974-87	PMST/4807		
92120686009	SB-5 1-2'	ASTM D2974-87	PMST/4808		

Date: 07/18/2012 04:15 PM

REPORT OF LABORATORY ANALYSIS

Page 43 of 44

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PRESTIGE LABEL HEY-001

Pace Project No .:	92120686
--------------------	----------

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92120686010	SB-6 1-2'	ASTM D2974-87	PMST/4808		
92120686011	DUP SOIL	ASTM D2974-87	PMST/4808		
92120686013	BG-5 4-5'	ASTM D2974-87	PMST/4862		
92120686017	BG-6 4-5'	ASTM D2974-87	PMST/4862		
92120686013	BG-5 4-5'	ASTM D2974-87	WET/11915		
92120686014	BG-5 6-7'	ASTM D2974-87	WET/11915		
92120686017	BG-6 4-5'	ASTM D2974-87	WET/11915		
92120686018	BG-6 6-7'	ASTM D2974-87	WET/11915		
92120686001	SB-1 0.5-1.5'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686002	SB-2 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686003	SB-3 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686004	SB-4 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686005	BG-1 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686006	BG-2 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686007	BG-3 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686008	BG-4 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686009	SB-5 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686010	SB-6 1-2'	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686011	DUP SOIL	EPA 7196	WETA/12325	EPA 7196	WETA/12337
92120686013	BG-5 4-5'	EPA 7196	WETA/12661	EPA 7196	WETA/12663
92120686017	BG-6 4-5'	EPA 7196	WETA/12661	EPA 7196	WETA/12663
92120686012	RINSE BLANK	EPA 7196	WETA/12286		

Report Number

12-163-0649

Page: 1 of 2

Account Number 45631

Send To: PACE ANALYTICAL SERVICES INC 9800 KINCEY AVENUE SUITE 100 HUNTERSVILLE, NC 28078

Client: WO 92120686 PRESTIGE LABEL

Purchase Order : CHS011726 Report Date : 6/18/2012 Date Received : 6/11/2012

REPORT OF ANALYSIS

www.aleastern.com

A&L Eastern Laboratories, Inc.

7621 Whitepine Road Richmond, Virginia 23237 (804) 743-9401 Fax (804) 271-6446

		Bulk Density, Undisturbed Soil BULK DENSITY
Lab No	Sample ID Sample Date and Time	g/cc
05033	BG5 4-5	1.122
05034	BG5 6-7	1.144
05035	BG6 4-5	1.069
05036	BG6 6-7	1.006

Paurie Mc Georg

Pauric McGroary

Report Number

12-163-0649

Account Number

45631

Send To : PACE ANALYTICAL SERVICES INC 9800 KINCEY AVENUE SUITE 100 HUNTERSVILLE, NC 28078

Client: WO 92120686 PRESTIGE LABEL

Page: 2 of 2

Purchase Order : CHS011726 **Report Date :** 6/18/2012 Date Received : 6/11/2012

REPORT OF ANALYSIS

Method Reference:

Methods of Soil Analysis, Part 3 - Chemical Methods, 2nd Ed. Rev. Soil Science Society of America, Black, C.A et al. 1982

Paurie Mc Georg

Pauric McGroary

www.aleastern.com

Section A Required Client Information: 12 \$ 5 ITEM # ø თ ς, 4 ω N Requested Due Date/TAT: Email To: Company: Hert + Hickn m phone: vddress: 58-5 DHP-SOIL 33 - 6 86-4 58-4 Required Client Information Section D <u> 86 - 1</u> Kinsale Blank B6-3 56-2 513-3 58-2 Sample IDs MUST BE UNIQUE 1- 25 Face Analytical" noicery Gharthidma 2923 S. myen St She loo *Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and Charlolle SAMPLE ID ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) 1-2' 1-2 1-2' 1-21 1-2' 0.5-1.5 رم ۱ 1-2' ī 1-2' Fax: 3 2 (Waste Water Product Soil/Solid Oil Wipe Air Tissue Other Drinking Water Water 2 Matrix Codes MATRIX / CODE Ė ORIGINAL Report To: Northan Copy To: Project Number; Project Name: Purchase Order No.; Required Project Information: Section B 9788828°°848 11 6 とい 3 MATRIX CODE RELINQUISHED BY / AFFILIATION 4 (see valid codes to left) Ł S SAMPLE TYPE (G=GRAB C=COMP) Prestize Labe 462-001 HEY - OOI DATE COMPOSITE START ß 0100-1 SAMPLER NAME AND SIGNATURE まや agreeing to late charges of 1.5% per month for any infloices not paid within 30 days. TIME COLLECTED PRINT Name of SAMPLER: SIGNATURE of SAMPLER: e The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. DATE 5 COMPOSITE END/GRAB Blind 1450 1420 6/2/12 1210 1400 1140 1600 1200 1430 1210 1410 11:30 TIME DATE SAMPLE TEMP AT COLLECTION 16000 Section C Invoice Information: Manager: Pace Profile #: Pace Quote Reference: Pace Project Company Name: Attention: 3 Address: 4 ۲ # OF CONTAINERS Steven TIME * Unpreserved H₂SO₄ Preservatives HNO₃ HCI 1++1 the ક્ષ NaOH Na₂S₂O₃ **ACCEPTED BY / AFFILIATION** Methanol والعدا 1 Other W Y/ N 🖡 Analysis Test DATE Signed (MM/DD/YY): HSL Metals **Requested Analysis Filtered (Y/N)** Cr Hex 06 06/12 REGULATORY AGENCY Site Location ٦ UST NPDES DATE STATE: 09:50 7 TIME RCRA **GROUND WATER** NC Page: 30 F-ALL-Q-020rev.07, 15-May-2007 Temp in °C Residual Chlorine (Y/N) 1212-068600 Received on 564329 Ice (Y/N) SAMPLE CONDITIONS Pace Project No./ Lab I.D. η <u>s</u> Custody Sealed Cooler OTHER DRINKING WATER (Y/N) 202 2 200 010 400 500 602 Samples Intact . (Y/N)

CHAIN-OF-CUSTODY / Analytical Request Document

The

								T	12	11	13	9	~	~	6	C1	4	es.	N		ITEM #	····		٦		v :	<u>i là</u>	ŋ		2 6	ი ფელი თ	L
•									Γ	Ι	7	Ĭ,	Mr	MM	86.	66.	86	<u>86-</u>	36.	ISC.	Sam		Section		odreater :			nail To:	Luiess.	ompany:	ection A equired C	
								ADD			19-0	<u>y-</u> 9	5 - 8	- 10	ç	6	ů	'n	4	1	A-J ple IDs A		1 D dClient In		Due Dat		clear		1977	Herry	lient Info	
1								ITIONAI			5			ľ	6 1	4-5	6.	4-5	61	2	NPLE Z, 0-97, MUST B		normation		ALVIN.		YGL	¥2	S.S.	+	ormation	-
•								LCOM									1-1-1	V.	4	S			2			Fax:		le .	TT X	chy		
			•					MENTS													UE						ich		2	Ne		
												•									Oil Wipe Air Tissue Other	Water Waste Produc					l.			ſ		
	9	с Н																				vy water Mater	atrix C					. 				
		MD					~														978유우(ר פאקעינצ	CODE		Project	Project	Purcha		Copy J	Report	Section Require	
	Ĵ r	Δ					\mathcal{A}	R	\vdash	-	~	~	-	5	*					Si		e valid codes	to (eff)	ł	Numbe	Name	Ise Ord		<u>.</u>	To:	on B red Pro	
			i				Λ				<	<		<u>`</u>				_		6	SAMPLE TYPE (G=0	RAB C=C	OMP)	1	∺ ₽	2	er No.:			Jan Ja	ject Info	
							Ŋ	SHED		-											DAT				うく	123				$\left\{ \right\}$	ormatio	
	Т	T	ş			ķ	2	BY I AF			-	-	_	_	_			_		_	<u>п</u>	SOMPOSI STARY			ç	ç.				0	3	
		ľ	MPLE			ł	J	FILIAT													TIME .	TE	õ		-	Le l				1.		
SIGN		PRIN	RNA					۹ <u>۵</u> .					-					-		6			LECT			22				Š		
ATURE	Name	Name	NE AN										-	4						6	ATE	COMPO: END/GF	8									
of SAN	OI SAN	of sA	D SIGN			K	1	ş				11			エン	4	104	69	60	29	TIM	SITE										
APLER	MPLEX		ATUR			Ē		TE	_		- 1	<u>}</u>	40	5			<u>~</u> [i	2	è	2		LECTION										
ñ			m				=		+		\uparrow		╈			+	+		-		# OF CONTAINERS	LLEGTION			Pac	Pac	Pac	Ado	8	Att	lav. Se	
	te	`				C	3	M		-				ļ	-	=		-	=	-	Unpreserved				e Profile	e Projec lager:	e Quote erence:	iress:	npany	ention:	ction (oice Inf	
	\$		ł	-	-		-+					-	- -	_			+				H ₂ SO ₄ HNO ₃		Pre		*				Name:	e l	ormatic	
5	k					N.		·	+			+	+		-	\rightarrow	+		-	-	HCI NaOH		serva					-	H·	5	5	
0	3))/	Ä	_				1	-							Na ₂ S ₂ O ₃		tives					2		-		
	È						7						+								Méthanol Other											
		ľ				ľ		BYIA	· · ·		 		-	Т	21	<u></u>	· .				Analysis Test		Y/ N 🖡							Γ,		
ATES								FFILIA						5	X	ঠ্য	冭	X	~/	7	Bulk Densi	tr		Req								
igned		ŀ						夏 -	_	+	42	×₽	Ŷ		-	-				-	456 Metals	30360	7_	ueste								
	-					\downarrow		ļ												╈				d Ang		ŝ	<u>_</u>					
		ľ				14		ӯ┝	╋	+			-	+		-		-	-	-				llysis	ST	te Log	USI	NP				
			: _			2	4	mi		\mp										1	· · · · · · · · · · · · · · · · · · ·			Filter	ATE:	ation		ЫS	AT DR			
		Į.				19.5		┋┝		+			+-		+		╇	-	-	+				ed (Y		יך	- - -		A A		·	
						ð								T		1	╈			1				ŝ	N		RCRA	GROU			Pag	l
Temp	ip in	۰°C				3.6		┢	┽	+-	+	+	╋	+		+		┿	+		Residual Chlorine (Y	/N)			1		i	ND			е 2	
Recei	ivec	d on NN	T		T	V		_Γ		T			1	T	1	\uparrow	\top		1	a i				F	. 13		ļ	ATER	ŀ		ľ	
	(1/I	· · · /	+			`													18			· .			 	ŀ	٦ -	٦.	k	ת		
cus ealed (Y)	stod d Co //N)	iy ooler)	r			×													101								HLO H	DRI	 K	Σ. Δ	۹. ۹	
				+-	+	+-				0	0	6		L					80									KING		С С		
ample	es li VM	ntact	t			X		"		5	La la	R	Z	21/	£	5	5)e	2		:	· [MAT:				
101			1		1					11		12			T		5	#F	50	31=		1	۰.	- I -		: I I	5	5		•		

.

÷

CHAIN-OF-CUSTODY / Analytical Request Document

.

T C
Pace Analytical*	Document Name: Sample Condition Up Receipt (SCUR)	Document Revised: October 19, 2011 Page 1 of 2
www.pagalabs.com	Document No.:	Issuing Authorities
	F-ASV-CS-003-rev.07	Pace Asheville Quality Office
Clier	nt Name: <u>///</u>	Project # 92120686
Where Received: Hunter	rsville 🔲 Eden	
Courier (Circle): Fed Ex UPS	USPS Client Commercial	Pace Other Optional Advances
Custody Seal on Cooler/Box Present:	yes no Seals intact:	/es ☐ no Prop Due Date Prot Name
Packing Material: Bubble Wrap	Bubble Bags None Other	
Circle Thermometer Used: IR Gun#2-8	344089 Type of Ice: Wet Blue None	Samples on ice, cooling process has begun
IR Gun Back	(Up- <u>111565135</u>	
Corrected Cooler Temp: 7	C Biological Tissue is Frozent Van	Date and Initials of person examining
Temp should be above freezing to 6°C	Comments:	contents: <u>C x 12</u>
Chain of Custody Present:	ØYes □No □N/A 1.	
Chain of Custody Filled Out:		
Chain of Custody Relinquished:	El Yes DNO DN/A 3.	
Sampler Name & Signature on COC:	Elves DNo DN/A 4.	
Samples Arrived within Hold Time:	Elyes ElNo EINIA 5. CR+C	for Rinsute Blank out of Hold
Short Hold Time Analysis (<72hr):	BYES DNO DN/A 6. C12+6	3030C
Rush Turn Around Time Requested:		
Sufficient Volume:	Pres DNO DN/A 8.	
Correct Containers Used:	Pres DNO DN/A 9. wenter	Read in 402 Dave
-Pace Containers Used:		
Containers Intact:	ZYes DNo. DN/A 10.	
Filtered volume received for Dissolved tes	sts Chres DNo DN/A 11,	
Sample Labels match COC:	Dres DNo DN/A 12.	
-Includes date/time/ID/Analysis Ma	atrix: <u>54/hT</u>	
All containers needing preservation have been ch	Hecked. Dres DNo DN/A 13.	
All containers needing preservation are found t compliance with EPA recommendation.		
exceptions: VOA, collform, TOC, O&G, WI-DRO (wat	er) TYes DNo Initial when complete	ed .
Samples checked for dechlorination:	DYes DNo DNA 14.	
Headspace in VOA Vials (>6mm):	OYes ONO DNA 15	
Trip Blank Present:		
Trip Blank Custody Seals Present		
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution		
Person Contacted: NCHWW	Contertime:	Field Data Required? Y / N
Comments/ Resolution: 11. /		
	Walls Beed Out of 14	
tun Rense B	lank out of Hold.	
SCURF Review: 1/2	Date: $Q/11/12$ SRF Review:	1/ P Date: G/11/12
Note: Whenever there is a discrepancy affectin Certification Office (i.e. out of hold, incorrect pr	ig North Carolina compliance samples, a copy of the eservative, out of temp, incorrect containers)	is form will be sent to the North Carolina DEHNR
	· · · · · · · · · · · · · · · · · · ·	
	•	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

June 28, 2012

Mr. Nathan O'Leary Hart & Hickman 2923 S. Tryon St Charlotte, NC 28203

RE: Project: HEY-002 BURGOW Pace Project No.: 92122140

Dear Mr. O'Leary:

Enclosed are the analytical results for sample(s) received by the laboratory on June 22, 2012. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kr Dod-

Kevin Godwin

kevin.godwin@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: HEY-002 BURGOW

Pace Project No.: 92122140

Asheville Certification IDs

2225 Riverside Dr., Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030 North Carolina Drinking Water Certification #: 37712 North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia Certification #: 00072 West Virginia Certification #: 356 Virgina/VELAP Certification #: 460147

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix	0
Pace Project No.:	92122140		
Project:	HEY-002 BURGOW		
	Project: Pace Project No.:	Project: HEY-002 BURGOW Pace Project No.: 92122140 Lab ID Sample ID	Project: HEY-002 BURGOW Pace Project No.: 92122140 Lab ID Sample ID Matrix

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92122140001	 MW-11	Water	06/21/12 16:55	06/22/12 09:50

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE ANALYTE COUNT

Project:	HEY-002 BURGOW
Pace Project No.:	92122140

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92122140001	MW-11	EPA 6010	JMW	13	PASI-A
		EPA 7470	SHB	1	PASI-A

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: HEY-002 BURGOW

Pace Project No.: 92122140

Sample: MW-11	Lab ID: 9212214000	01 Collected: 06/21/12	2 16:55	Received: 06	/22/12 09:50 M	latrix: Water	
Parameters	Results Unit	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, 3030C	Analytical Method: EP	A 6010 Preparation Meth	od: SM	3030C			
Antimony	ND ug/L	5.0	1	06/23/12 14:25	06/25/12 23:45	7440-36-0	
Arsenic	ND ug/L	5.0	1	06/23/12 14:25	06/27/12 15:40	7440-38-2	
Beryllium	ND ug/L	1.0	1	06/23/12 14:25	06/25/12 23:45	7440-41-7	
Cadmium	ND ug/L	1.0	1	06/23/12 14:25	06/25/12 23:45	7440-43-9	
Chromium	ND ug/L	5.0	1	06/23/12 14:25	06/25/12 23:45	7440-47-3	
Copper	ND ug/L	5.0	1	06/23/12 14:25	06/25/12 23:45	7440-50-8	
Lead	ND ug/L	5.0	1	06/23/12 14:25	06/25/12 23:45	7439-92-1	
Manganese	84.6 ug/L	5.0	1	06/23/12 14:25	06/25/12 23:45	7439-96-5	
Nickel	9.4 ug/L	5.0	1	06/23/12 14:25	06/25/12 23:45	7440-02-0	
Selenium	ND ug/L	10.0	1	06/23/12 14:25	06/25/12 23:45	7782-49-2	
Silver	ND ug/L	5.0	1	06/23/12 14:25	06/25/12 23:45	7440-22-4	
Thallium	ND ug/L	10.0	1	06/23/12 14:25	06/25/12 23:45	7440-28-0	
Zinc	116 ug/L	10.0	1	06/23/12 14:25	06/25/12 23:45	7440-66-6	
7470 Mercury	Analytical Method: EP	A 7470 Preparation Meth	od: EPA	7470			
Mercury	ND ug/L	0.20	1	06/23/12 17:20	06/26/12 11:58	7439-97-6	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project:	HEY-002 BUR	GOW											
Pace Project No.:	92122140												
QC Batch:	MERP/4315			Analys	is Method:	: E	PA 7470						
QC Batch Method:	EPA 7470			Analys	is Descript	tion: 7	470 Mercury	/					
Associated Lab San	nples: 921221	40001											
METHOD BLANK:	783841			Ν	Aatrix: Wa	ter							
Associated Lab San	nples: 921221	40001											
				Blank	R	eporting							
Paran	neter	l	Jnits	Resul	t	Limit	Analyz	ed	Qualifiers	_			
Mercury		ug/L			ND	0.20	06/26/12	11:18					
LABORATORY COM		: 783842	2										
				Spike	LCS	6	LCS	% Red	;				
Paran	neter	ι	Jnits	Conc.	Resu	ılt	% Rec	Limits	a Qu	ualifiers			
Mercury		ug/L		2.5		2.2	90	80	-120				
MATRIX SPIKE & M	IATRIX SPIKE D	UPLICATE	: 783843	3		783844							
				MS	MSD								
		9212	21813001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramet	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	u	g/L	ND	2.5	2.5	2.3	2.2	92	90	75-125	3	25	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: HEY-002 BURGOW

Pace Project No.: 92122140

QC Batch:	MPRP/10882		Analysis Meth	nod: Ef	PA 6010	
QC Batch Method:	SM 3030C		Analysis Desc	cription: 60	10 MET 3030C	
Associated Lab Samp	oles: 92122140001	I				
METHOD BLANK: 7	784495		Matrix:	Water		
Associated Lab Samp	oles: 9212214000	1				
			Blank	Reporting		
Parame	eter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug	/L	ND	5.0	06/25/12 23:39	
Arsenic	ug	/L	ND	5.0	06/25/12 23:39	
Beryllium	ug	/L	ND	1.0	06/25/12 23:39	
Cadmium	10	/I		10	06/25/12 23:39	

Beryllium	ug/L	ND	1.0	06/25/12 23:39	
Cadmium	ug/L	ND	1.0	06/25/12 23:39	
Chromium	ug/L	ND	5.0	06/25/12 23:39	
Copper	ug/L	ND	5.0	06/25/12 23:39	
Lead	ug/L	ND	5.0	06/25/12 23:39	
Manganese	ug/L	ND	5.0	06/25/12 23:39	
Nickel	ug/L	ND	5.0	06/25/12 23:39	
Selenium	ug/L	ND	10.0	06/25/12 23:39	
Silver	ug/L	ND	5.0	06/25/12 23:39	
Thallium	ug/L	ND	10.0	06/25/12 23:39	
Zinc	ug/L	ND	10.0	06/25/12 23:39	

LABORATORY CONTROL SAMPLE: 784496

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	500	460	92	80-120	
Arsenic	ug/L	500	480	96	80-120	
Beryllium	ug/L	500	466	93	80-120	
Cadmium	ug/L	500	480	96	80-120	
Chromium	ug/L	500	456	91	80-120	
Copper	ug/L	500	445	89	80-120	
Lead	ug/L	500	459	92	80-120	
Manganese	ug/L	500	448	90	80-120	
Nickel	ug/L	500	467	93	80-120	
Selenium	ug/L	500	510	102	80-120	
Silver	ug/L	250	232	93	80-120	
Thallium	ug/L	500	460	92	80-120	
Zinc	ug/L	500	471	94	80-120	

MATRIX SPIKE SAMPLE:

784497

Para	meter	Units	92122140001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Antimony	 ug	ı/L	ND	500	472	94	75-125	
Arsenic	ug	ı/L	ND	500	541	108	75-125	
Beryllium	ug	/L	ND	500	485	97	75-125	
Cadmium	ug	I/L	ND	500	484	97	75-125	
Chromium	ug	I/L	ND	500	468	94	75-125	
Copper	ug	I/L	ND	500	457	91	75-125	

Date: 06/28/2012 11:20 AM

REPORT OF LABORATORY ANALYSIS

Page 7 of 10

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: HEY-002 BURGOW

Pace Project No.: 92122140

MATRIX SPIKE SAMPLE: 784497 92122140001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers ND Lead ug/L 500 470 93 75-125 84.6 Manganese ug/L 500 538 91 75-125 Nickel ug/L 9.4 500 482 95 75-125 Selenium ug/L ND 500 506 101 75-125 Silver ug/L ND 250 234 93 75-125 Thallium ug/L ND 500 433 86 75-125 116 Zinc ug/L 500 578 93 75-125

SAMPLE DUPLICATE: 784498

		92122233002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Antimony	ug/L	ND	3.2J		20	
Arsenic	ug/L	ND	ND		20	
Beryllium	ug/L	ND	ND		20	
Cadmium	ug/L	ND	ND		20	
Chromium	ug/L	ND	ND		20	
Copper	ug/L	ND	.75J		20	
Lead	ug/L	ND	ND		20	
Manganese	ug/L	10.5	10.4	1	20	
Nickel	ug/L	ND	ND		20	
Selenium	ug/L	ND	5.5J		20	
Silver	ug/L	ND	ND		20	
Thallium	ug/L	ND	ND		20	
Zinc	ug/L	ND	1.8J		20	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: HEY-002 BURGOW

Pace Project No.: 92122140

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Acid preservation may not be appropriate for 2-Chloroethylvinyl ether, Styrene, and Vinyl chloride.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-A Pace Analytical Services - Asheville

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HEY-002 BURGOW Pace Project No.: 92122140

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92122140001	MW-11	SM 3030C	MPRP/10882	EPA 6010	ICP/10000
92122140001	MW-11	EPA 7470	MERP/4315	EPA 7470	MERC/4231

REPORT OF LABORATORY ANALYSIS

			[T Z	\$		12 13	E	5 9	œ	7	6	U)	4	ω	N		ITEM #	1	Rec	Pho	Ē		Add	Con	Sec	
Important Note: By signing th					StERT Hold And	ADDITIONAL COMM	ADDITIONAL COMMI											MW - 1	Section D Required Client Information SAMPLE ID (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE		quested Due Date/TAT:	one of 586 007 Fax:	nail To: No Lezny @ Mart huc	Charlette, NC	dress: 2923 S, They	mpany: Hart & Hecker	ction A quired Client Information:	Pace Analytical
nis form you are accepting Pa		ORIC			h sis n		ENTS												Matrix Codes MATRIX / CODE Drinking Water D Water W Product Soll/Solid 0 Oil Oil Wipe A Air 7 Tissue 7 Other 7		Shonf Madd Proje	Proje	Kom. Cran Purch	28263	MST. SAER COPY	Repo	Sect	
e's NE		NA			1.9	╇													₽₫₽₽₽₽₽₽₽₽		¢t Num	ct Nam	tase O		To:	rt To:	ion B	
T 30 da		ř-						_					_			-		2	MATRIX CODE (see valid codes to left)	_	iber:	le:	rder No			NA:	roject I	
y paym					5	200	sinor	_			+	_		-	-	-	. 	9	SAMPLE TYPE (G=GRAB C=COMP)			F	°.:			Tetan	nforma	
ent terms and		_	s				HED BY / A										14	121/12				1-00				いのだ	ation:	
agreein			AMPLI		4		FFILIA											165	TIME COLL			6				¢2,~		
g to late	SIGN	PRIN	ER NA		14		<u>ş</u>				-							6				20				2		Те С
charges	ATUR	T Nam	ME AI		o Virjan	•												21/12				8						HAII Chain-
s of 1.5	EofS	le of S	ND SIC		61													16:				C						-of-Cu
% per m	AMPLI	AMPLI	3NATI		1221	- - -	ĂTE			_	_						<u> </u>	ų	n l									stody i
onth fo	R	8	URE		1			-	+		+	_	-	+-						-	Pa	Ma	Pa Re	Ac	C	At	in Se	Sa E
r any in	1	e-	5		150	í	IME	_	_	-	+	_		+-	-		-	F		-	ce Profi	ce Proje inager:	ce Quot ference	ldress:	ompany	tention	iction/	
voices r	Г	LWN-	nor			<u>'</u>				1											e #:	ect			/ Name	0	1 C	DOCU
lot paid	(.	S	3			N		-	+			+		-	-	+	-	-	HNO3 re HCI						.0,6	1m(tion:	MEN"
within	\langle	S	â		I X	\mathcal{T}	्										-		NaOH		2	1		K		NY.		naly
30 days	Š 4	17					CCEF					+		+	-				Methanol		1			2		2		eleva
<i>"</i> (`					TED			1 1099 (J	aren ar		per ser	100			1.56.5	in de la compañía de	Other		Ŵ					<i>kell</i>		nt field
	<u>/</u>					$\ $	3Y / AI	944 K		5959# 				T	1				↓Analysis lest ↓ ۲/№. HSLNwhalk Unto Inutro	4						5		ts mus
	ATE S				the	H	FILIA												W/3030 Prep	Requ								st be o
	Signec				- V	× I	NOIA	_				_			_	-				leste								omple
	Ł				1				+			+		+					· · · · · · · · · · · · · · · · · · ·	d An		s	-	-	R			ocl
	12				Ś	2					_									alysis	s	ite Lo	US.	ZP	GUL			JMe
	4						ĀTE					_	+	-					· · · · · · · · · · · · · · · · · · ·		TATE	catio	17	DES	ATO			ely.
	•		1949) 2489 2484		6					+	+		+		+	+	+	+		ered		3	-		RY A			
					1		TIME													- R		>	RCF	GR	GEN			 1
-		<u> </u>				Ň	<u>, 1</u>	-+	+	+			_		-	_	-			-	11	2	Å	OUNE	CY			age:
-ALL-	Te	mp in	°C		`	-													Residual Chlorine (Y/N)					WAT				
Q-020rev	Ree Ic	ceived ce (Y/	d on N)		7		SAM											0	Pac				-			126	1	
.07, 15-M	C Sea	Custoo led Co (Y/N)	dy ooler)		2		PLE CONE											Ň	/ ンこ				OTHE	DRIN		566		<i>е</i> ,
ay-20					$+ \pm$	7	VITION												1997				ת 	(ING)		6	Ś	
107	Sam	iples I (Y/N)	Intact)				ß												C C Lab I.D.					WATER				
L				II							1					1			— ———————————————————————————————————	1.194			1		Alb ^{ani}			

Clie Where Received: Z Hunte	nt Name: Har & Hichn	Mainalle
Where Received: Image: Courier: Courier: Fed Ex		_ Project # <u>99/33/40</u>
	rsville 🗌 Asheville 📋 Eden	
	S Client Commercial Pace Other	Optional
Custody Seal on Cooler/Box Present	: 🗌 yes 🖆 no Seals intact: 🔲 yes	no / Proj. Due Date:
Packing Material: Bubble Wrap	□ Bubble Bacs Ø None □ Other	rtoj Nanie
Thermometer Used: IR Gun T1101	T1102 Type of Ice: Wet Blue None	Samples on ice, cooling process has be
Temp Correction Factor T1101:	No Correction T1102: No Correction	
Corrected Cooler Temp.: <u>3.1</u> Temp should be above freezing to 6°C	C Biological Tissue is Frozen: Yes N Comments:	Date and Initials of person examin contents: ////////////////////////////////////
Chain of Custody Present:		
Chain of Custody Filled Out:	✓ ŹYes □No □N/A 2.	
Chain of Custody Relinquished:	(ŹYes □No □N/A 3.	
Sampler Name & Signature on COC:	ZYes □No □N/A 4.	
Samples Arrived within Hold Time:	ÓYes □N/A 5.	
Short Hold Time Analysis (<72hr):	<u>β</u> ΩYes - ΩN/A 6.	
Rush Turn Around Time Requested:	□Yes ØNo □N/A 7.	
Sufficient Volume:	∕⊐Yes □No □N/A 8	
Correct Containers Used:	ØYes □No □N/A 9.	• • • • • • • •
-Pace Containers Used:	∭Yes □No □N/A	
Containers Intact:	<u> </u>	
Filtered volume received for Dissolved	tests DYes No DN/A 11.	
Sample Labels match COC:		
-Includes date/time/ID/Analysis All containers needing preservation have been	Matrix:	
All containers needing preservation are foun compliance with EPA recommendation.		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	d
Samples checked for dechlorination:	□Yes □No ⊉N/A 14.	
Headspace in VOA Vials (>6mm):	□Yes □No □/N/A 15.	
Trip Blank Present:	□Yes □No ÚN/A 16.	
Trip Blank Custody Seals Present	□Yes □No ∯N/A	
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution:		Field Data Required? Y / N
Person Contacted:	Date/Time:	
Comments/ Resolution:		·
		RYM 10/25/12

Appendix C

Site Photographs

Photograph 1: South side of the site as viewed from the east.

Photograph 2: East side of the manufacturing and office area building as viewed from the northeast.

Photograph 3: East side of the manufacturing and office area building as viewed from the east.

Photograph 4: East side of the manufacturing and office area building as viewed from the southeast.

Photograph 5: Northeast corner of the office area as viewed from the southeast.

Photograph 6: East side of the manufacturing and office area building as viewed from the south.

Photograph 7: Loading docks along the eastern side of the manufacturing area as viewed from the southeast.

Photograph 8: Loading docks along the east side of the manufacturing area as viewed from the east.

Photograph 9: North side of the office area as viewed from the east.

Photograph 10: North side of the office area as viewed from the north.

Photograph 11: North side of the site as viewed from the east.

Photograph 12: Northwest side of the site as viewed from the northwest.

Photograph 13: North side of the new building as viewed from the north.

Photograph 14: West side of the office area as viewed from the west.

Photograph 15: West side of the new building as viewed from the south.

Photograph 16: West side of the new building as viewed from the north.

Appendix D

Soil Boring Logs and Well Construction Records

DEPTH (ft)

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f)

RECOVERY (%)

DEPTH (ft) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER BG-1

PROJECT: Prestige Labels
JOB NUMBER: HEY-002

 IDEATION: Burgaw, NC

 Understand
 Image: state of the state of the

BORING LOG - HART HICKMAN.GDT - 10/16/12 16:21 - C.DOCUMENTS AND SETTINGSITDESAIDESKTOPIFOR NATHAN.GPJ

BORING COMPLETED: 6/5/12 TOTAL DEPTH: 2 ft.	Soil sample collected from 1 to 2 ft bgs.
BORING STARTED: 6/5/12	Remarks:
Bottom of borehole at 2.0 feet.	
	Bottom of borehole at 2.0 feet.

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER BG-2

PROJECT: Prestige Labels
JOB NUMBER: HEY-002

							3		
DEPTH	(ft)	OVERY (%)	APLE TYPE NUMBER		(mqq) UI4	тногосу	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
		REC	SAN	BKG.	AMP.				
	0				0	$\frac{\sqrt{T_{Z}}}{\sqrt{T_{Z}}} \frac{\sqrt{T_{Z}}}{\sqrt{T_{Z}}}$	TOPSOIL with grass		-0
						$\frac{1}{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{$			_
	_						Moist to wet, dark brown, fine sandy SILT	-	_
	_							-	_
	_							-	_
	_							-	-
	_							-	-
									_
GPJ	1 –							-	- 1
ATHAN.	_							-	_
VFOR N	_							-	-
ESKTOF	-							-	-
DESA\D	-							-	-
T/SO/I									_
ND SETI	_							-	_
ENTS AN	_							-	_
OCUME	_							-	-
21 - C:\L	2-						Bottom of borehole at 2.0 feet.		-2
6/12 16:									_
от - 10/1	_							-	_
MAN.GE	_								-
KT HICK	_							-	-
DRILLING CONTRACTOR:Troxler Geologic DRILL RIG/ METHOD: Geoprobe SAMPLING METHOD:DPT Sleeves LOGGED BY: SJV DRAWN BY: TCD							gic BORING STARTED: 6/5/12 Rem BORING COMPLETED: 6/5/12 Soil : TOTAL DEPTH: 2 ft. TOP OF CASING ELEV: DEPTH TO WATER:	arks: sample collected from 1 to 2 ft bgs.	

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f)

BORING LOG - HART HICKMAN.GDT - 10/16/12 16:21 - C:\DOCUMENTS AND SETTINGS\TDESA\DESKTOPFOR NATHAN.GDJ

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER BG-3

PROJECT: Prestige Labels
JOB NUMBER: HEY-002

			.,					
DEPTH (ft)	COVERY (%)	MPLE TYPE NUMBER		(mqq) Ula	тногосу	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
	REC	SAI	Ŭ	MP.				
			窗	SA				
					$\frac{\nabla u}{\partial x} = \frac{\nabla u}{\partial x}$	TOPSOIL with grass		
					1 × 1 × 1			-
_					<u> </u>			-
_						Moist to wet, dark brown, fine sandy SILT		_
_								-
								⊢
_								
-								-
1 –								- 1
_								_
_								-
_								-
_								_
_								
_								-
_								-
								-
-						Bottom of borehole at 2.0 feet.		
								\vdash
								-
-		001177	0765					<u> </u>
DRILLING CONTRACTOR: Troxler Geologic BORII					er Geolo e	gic BORING STARTED:6/5/12 Rem BORING COMPLETED:6/5/12	arks:	
SAMPLING METHOD: DPT Sleeves TOTAL DEPTH: 2 ft.					ves	TOTAL DEPTH: 2 ft.	sample collected from 1 to 2 ft bgs.	
LOG		BY:SJV				TOP OF CASING ELEV:		
UKA		1.100						

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER BG-4

PROJECT: Prestige Labels
JOB NUMBER: HEY-002

				,		EOCATION: Burgaw, NC		
DEPTH (ft)	OVERY (%)	MPLE TYPE NUMBER		(mqq) ury	тногосу	MATERIAL DESCRIPTION		(ft)
	REC	SAI	KG.	AMP.				
-0			B	Ś	<u>x, 1</u> , <u>x, 1</u> .	TOPSOIL with grass		0-
-					1/ <u>1/</u> <u>1</u>	-	-	
-	-						-	
-	-					Moist to wet, dark brown, fine sandy SILT	_	
-	-						-	
-	-						_	
-	-						_	
-	-						_	
-	-						_	
-	-						_	
Гар 1 —	-						_	1
ATHAN	-						-	
N N -	-						_	
- KTOP	-						-	
ANDES	-						_	
	-						-	
BNE -	-						-	
	-						-	
NTS AI	-						-	
– CUME	-						-	
00 ;;2			+			Bottom of borehole at 2.0 feet		·2—
16:21	-						_	
0/16/12	-							
- 101 - 14	-							
MAN.G	-							
DRILLING CONTRACTOR: Troxler Geologic DRILL RIG/ METHOD: Geoprobe SAMPLING METHOD: DPT Sleeves LOGGED BY: SJV DRAWN BY: TCD						gic BORING STARTED: 6/5/12 BORING COMPLETED: 6/5/12 TOTAL DEPTH: 2 ft. TOP OF CASING ELEV: DEPTH TO WATER:	Remarks: Soil sample collected from 1 to 2 ft bgs.	

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER MW-10

PROJECT: Prestige Labels

JOB NUMBER: HEY-002

LOCATION: Burgaw, NC

DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER		MP.	ГІТНОГОЄҮ	MATERIAL DESCRIPTION	BORING DIAGRAM (#) (#)			
-0.0-	Щ		Ř	SAN		Majatas unat dará basura Oli T				
AN.GDT - 10/16/12 16:21 - C:DOCUMENTS AND SETTINGS/TDESAIDESAIDES/TOPFOR NATHAN.GPJ						Moist to wet, dark brown, SILT Wet, gray, fine sandy SILT Moist to wet, orange and gray, mottled CLAY Bottom of borehole at 13.2 feet.				
· 전 15.0- 보							-15.0			
DRIL DRIL DRIL SAM LOG DRA	LING L RIG PLING GED E WN B	CONTRA / METHO G METHO BY: SJV Y: TCD	CTOR D:Geo D:DP ⁻	t:Troxl pprobe Γ Slee	Price indication: Boring Started: 01 DRILL RIG/ METHOD: Geoprobe BORING COMPLETED: 02 SAMPLING METHOD: DPT Sleeves TOTAL DEPTH: 10 LOGGED BY: SJV TOP OF CASING ELEV: 02 DRAWN BY: TCD DEPTH TO WATER:					

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f)

Τ

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER MW-11 / BG-6

PROJECT: Prestige Labels JOB NUMBER: HEY-002

LOCATION: Burgaw, NC

DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER	(G.	MP.	ГІТНОГОĞY	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
-0.0	-		Ē	SA		Moist, dark brown, SILT		-0.0
	-						 ✓ 2" PVC Riser 	
							- Bentonite Seal	
2.5	-							2.5
-	-					Moist to wet, orange and gray, mottled CLAY		
5.0	-							5.0
, GPJ	-							_
R NATHAN	-							
105/F01	-						Filter Sand	7.5
ESA\DES	-						0.010" Slotted PVC	
TINGS/TD	-							-
								-10.0
JMENTS	-							
- C:\DOCI								
12.5	-							-12.5
<u>от - 10/16</u>	-					Bottom of borehole at 13.0 feet.		
KMAN.G								
15.0		CONTRA		 				-15.0
	LLING	/ METHO	D:Geo	probe	er Geolo	BORING STARTED: 6/6/12 Re BORING COMPLETED: 6/6/12 Sc	bil samples collected from 4 to 5 ft bas	s
SAMPLING METHOD: DPT Sleeves LOGGED BY: SJV DRAWN BY: TCD			۲ Slee	ves	TOTAL DEPTH: 13 ft. ar TOP OF CASING ELEV: DEPTH TO WATER:	d 6 to 7 ft bgs.		

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER MW-8

PROJECT: Prestige Labels

JOB NUMBER: HEY-002

LOCATION: Burgaw, NC

DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER	KG.	MP.	ГІТНОГОСУ	MATERIAL DESCRIPTION	BORING DIAGRAM H (‡) G
-0.0-			ā	SA		Moist to wet, dark brown, SILT	0.0-
DPFOR NATHAN GPJ						Moist to wet, dark brown, SILT	- 2" PVC Riser - Bentonite Seal - 2.5 - 5.0 - 5.0
0/16/12 16:21 - C:\DOCUMENTS AND SETTINGS\!\DESA\DESA\D 7 1 1 - 5 1 1 - 1 - 1 1 1 1 - 1 - 1 1 - 1 1 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						Bottom of borehole at 13.0 feet.	2" DIA; 0.010" Slotted PVC Screen
DT - 10 							
HICKMAN.GI							
	LING	CONTRA		l t:Troxl	l er Geol	bgic BORING STARTED:6/5/12 Re	marks:
DRILL RIG/ METHOD: Geoprobe SAMPLING METHOD: DPT Sleeves LOGGED BY: SJV DRAWN BY: TCD				oprobe T Slee	ves	BORING COMPLETED: 6/5/12 No TOTAL DEPTH: 13 ft. TOP OF CASING ELEV: DEPTH TO WATER:	soil samples collected.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER MW-9 / BG-5

PROJECT: Prestige Labels

JOB NUMBER: HEY-002

LOCATION: Burgaw, NC

DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER	KG.	AMP.	ГІТНОГОСУ	MATERIAL DESCRIPTION	BORING DIAGRAM	(ft)
-0.0-			В	S,		Moist to wet, dark brown, SILT).0-
FOR NATHAN.GPJ						Wet, gray, fine sandy SILT		5.0
1 - 2.1 - C.DOCUMENTS AND SETTINGS/TDESA/DPW - 2.1						Moist to wet, orange and gray, mottled CLAY	Filter Sand -7 -2" DIA; 0.010" Slotted PVC Screen	7.5 0.0 2.5
- 10/16/1						Bottom of borehole at 13.0 feet.	1 E	
T HICKMAN.GDT -0.51								5.0
DRILLING CONTRACTOR: Troxler Geologic DRILL RIG/ METHOD: Geoprobe SAMPLING METHOD: DPT Sleeves LOGGED BY: SJV DRAWN BY: TCD					er Geol ves	bgic BORING STARTED: 6/6/12 Rem BORING COMPLETED: 6/6/12 Soil s TOTAL DEPTH: 13 ft. and 6 TOP OF CASING ELEV: DEPTH TO WATER:	arks: amples collected from 4 to 5 ft bgs to 7 ft bgs.	

BORING LOG - HART HICKMAN.GDT - 10/16/12 16:21 - C:DOCUMENTS AND SETTINGS\TDESA\DESKTOP\FOR NATHAN.GPJ

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-1

PROJECT: Prestige Labels
JOB NUMBER: HEY-002

LOCATION: Burgaw, NC

DEPTH (ft) :OVERY (%) APLE TYPE UUMBER PID (ppm)	MATERIAL DESCRIPTION	
REC SAMP.		
-0	CONCRETE	
		-
		-
		-
		-
	Wet, dark brown, SILT	
-		-
-		-
_		
1 –		- 1
	Bottom of borehole at 1.5 feet.	
2 -		
		Bemerke:
DRILLING CONTRACTOR: Troxler G DRILL RIG/ METHOD: Geoprobe SAMPLING METHOD: DPT Sleeves LOGGED BY: SJV DRAWN BY: TCD	BORING STARTED: 6/5/12 BORING COMPLETED: 6/5/12 TOTAL DEPTH: 1.5 ft. TOP OF CASING ELEV: DEPTH TO WATER:	Soil sample collected from 0.5 to 1.5 ft bgs.

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f)

ů C

BORING

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-2

PROJECT: Prestige Labels JOB NUMBER: HEY-002

LOCATION: Burgaw, NC PID (ppm) SAMPLE TYPE NUMBER RECOVERY (%) LITHOLOGY BORING DIAGRAM DEPTH (ft) DEPTH (ft) MATERIAL DESCRIPTION SAMP. BKG. CONCRETE 4 0.0 Dry, tan, SAND (backfill) HART HICKMAN.GDT - 10/16/12 16:21 - C:DOCUMENTS AND SETTINGS\TDESA\DESKTOP\FOR NATHAN.GPJ 1 1 Moist to wet, dark brown, SILT -2 Bottom of borehole at 2.0 feet. DRILLING CONTRACTOR: Troxler Geologic BORING STARTED: 6/5/12 Remarks: DRILL RIG/ METHOD: Geoprobe BORING COMPLETED: 6/5/12 Soil sample collected from 1 to 2 ft bgs. SAMPLING METHOD: DPT Sleeves TOTAL DEPTH: 2 ft. LOGGED BY: SJV TOP OF CASING ELEV: DRAWN BY: TCD **DEPTH TO WATER:**

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-3

PROJECT: Prestige Labels JOB NUMBER: HEY-002

DEPTH	(III) RECOVERY (%)	SAMPLE TYPE NUMBER	BKG.	SAMP.	ГІТНОГОСУ	MATERIAL DESCRIPTION	BORING DIAGRAM
RT HICKMAN.GDT - 10/16/12 16:21 - C:\DOCUMENTS AND SETTINGS\TDESKTOP\FOR NATHAN.GPJ						CONCRETE Dry, tan, SAND (backfill) Moist to wet, dark brown, SILT Bottom of borehole at 2.0 feet.	
DRILLING CONTRACTOR:Troxler Geologic DRILL RIG/ METHOD: Geoprobe SAMPLING METHOD:DPT Sleeves LOGGED BY: SJV DRAWN BY: TCD						gic BORING STARTED: 6/5/12 Remains BORING COMPLETED: 6/5/12 Soil started: 5/5/12 Soil started	arks: ample collected from 1 to 2 ft bgs.

BORING LOG - HART HICKMAN.GDT - 10/16/12 16:21 - C:DOCUMENTS AND SETTINGS\TDESA\DESKTOP\FOR NATHAN.GPJ

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-4

PROJECT: Prestige Labels JOB NUMBER: HEY-002

LOCATION: Burgaw, NC

DEPTH (ft)	COVERY (%)	MPLE TYPE NUMBER			ТНОГОСУ	MATERIAL DESCRIPTION	BORING DIAGRAM	
	RE	SA	3KG.	AMP				
-0-			ш	Ś	P 4 4 P 8	CONCRETE		
_					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		_	
_							_	
_					4 4 4 4 4 4 4 4 4			
_					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
_					2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
						Dry, tan, SAND (backfill)		
_								
_								
_								
1 –						Moist to wet, dark brown, SILT	- 1	
_							-	
_							-	
_							-	
_							-	
_							_	
_							_	
_							_	
_								
_								
2								
_						Bottom of borehole at 2.0 feet.		
-			стор	Trav	or Goole		omarke:	
DRILLING CONTRACTOR: Troxler Geologic BORING STARTED: 6/5/12 Remarks: DRILL RIG/ METHOD: Geoprobe BORING COMPLETED: 6/5/12 Soil sample collected from 1 to 2 ft bgs. SAMPLING METHOD: DPT Sleeves TOTAL DEPTH: 2 ft. Soil sample collected from 1 to 2 ft bgs. LOGGED BY: SJV TOP OF CASING ELEV: DEPTH TO WATER:								
Sheet 1 of 1

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-5

PROJECT: Prestige Labels JOB NUMBER: HEY-002

LOCATION: Burgaw, NC

						LOCATION. Bulgaw, NO	
DEPTH (ft)	(II) OVERY (%)	APLE TYPE JUMBER	PID (ppm)		гногосу	MATERIAL DESCRIPTION	
	REC	SAN	BKG.	SAMP.	5		
ART HICKMAN.GDT - 10/16/12 16:21 - C:DOCUMENTS AND SETTINGS\TDESADESKTOP\FOR NATHAN.GPJ		CONTRA	CIOR	·Trov		BORING STARTED: 6/5/42	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
H - DR SA LO DR DR	ILL RI MPLIN GGED AWN I	G/ METHO IG METHO BY: SJV BY: TCD	D:Geo D:DP	T Slee	ves	BORING COMPLETED: 6/5/12 BORING COMPLETED: 6/5/12 TOTAL DEPTH: 2 ft. TOP OF CASING ELEV: DEPTH TO WATER:	sample collected from 1 to 2 ft bgs.

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-6

PROJECT: Prestige Labels JOB NUMBER: HEY-002

LOCATION: Burgaw, NC

DEPTH (ff)	(ft)	SOVERY (%)	MPLE TYPE VUMBER			ГІТНОГОGY	MATERIAL DESCRIPTION		(ft)
		REC	SAI	MG.	AMP.				
	+				S S		ASPHALT		0-
	-							-	
	-								
	-						GRAVEL	-	
	-					00		-	
	+							-	
	+					$^{\circ}$		-	
	-					00			
	-						Moist to wet, orange, silty SAND	-	
	-							-	
N.GPJ	-							-	1
NATHA	-							-	
PFOR	-							-	
SKTOF	-							-	
SAIDE	-							-	
SNTDE	-							-	
NILLE	+							-	
AND SI	+							-	
ENTS	+							-	
DOCUN	+								
∛ö−2	:+			-			Bottom of borehole at 2.0 feet.		·2—
12 16:2	+								
10/16/	+								
.GDT -	+								
KMAN	+								
RTHIC	-			070-				<u> </u>	
DRILLING CONTRACTOR: Troxler Geologic DRILL RIG/ METHOD: Geoprobe SAMPLING METHOD: DPT Sleeves LOGGED BY: SJV DRAWN BY: TCD						ler Geolo e ves	gic BORING STARTED: 6/5/12 Ren BORING COMPLETED: 6/5/12 Soil TOTAL DEPTH: 2 ft. TOP OF CASING ELEV: DEPTH TO WATER:	narks: sample collected from 1 to 2 ft bgs.	