Loading...
HomeMy WebLinkAbout4406_BlueRidgePaper_VertExpSlopeStabilityEval_DIN27270_20170103 SLOPE STABILITY EVALUATION FOR LANDFILL NO. 6 AREA D VERTICAL INCREASE Prepared for EVERGREEN PACKAGING. CANTON, NORTH CAROLINA November 2016 ____________________ i 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 TABLE OF CONTENTS Section No. Title Page No. 1.0 INTRODUCTION............................................................................................................... 1-1 2.0 FIELD INVESTIGATION ................................................................................................... 2-1 3.0 LABORATORY INVESTIGATION .................................................................................... 3-1 4.0 SLOPE STABILITY EVALUATION OF PROPOSED VERICAL INCREASE .................... 4-1 4.1 Methods of Analysis ..........................................................................................4-1 4.2 Selection of Parameters ....................................................................................4-1 4.2.1 Landfill Waste. ............................................................................................4-1 4.2.2 Perimeter Dike. ...........................................................................................4-1 4.2.3 Foundation Materials. ..................................................................................4-2 4.2.4 Cover System. ............................................................................................4-2 4.2.5 Liner. ...........................................................................................................4-2 4.2.6 Piezometric Conditions. ...............................................................................4-3 4.3 Selection of Critical Slope Stability Cross-Section .............................................4-3 4.4 Slope Stability Analyses ....................................................................................4-5 5.0 CONCLUSIONS AND RECOMMENDATIONS ................................................................. 5-1 LIST OF APPENDICES APPENDIX A BORING LOGS APPENDIX B LABORATORY TEST RESULTS APPENDIX C SHEAR STRENGTH SELECTED FOR USE IN THE SLOPE STABILITY ANALYSIS APPENDIX D STABILITY ANALYSIS ____________________ ii 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 LIST OF FIGURES Figure No. Title Page No. 1 PROPOSED FINAL GRADING PLAN ............................................................................. 1-4 2 INTERPRETIVE GEOTECHNICAL PROFILE A-A’ .......................................................... 4-4 ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 1-1 SLOPE STABILITY EVALUATION FOR LANDFILL NO. 6 AREA D VERTICAL INCREASE This report was prepared to summarize a slope stability evaluation performed for the proposed vertical increase of the Area D of Landfill No. 6 at the Evergreen pulp and paper making facility in Canton, North Carolina. The evaluation shows that the height of Area D can be increased by 30 feet with calculated factors of safety for the increase being maintained in excess of 1.8 and 1.3 for post-closure static and earthquake conditions, respectively; and 1.9 for operational conditions. 1.0 INTRODUCTION Blue Ridge Paper Products, Inc. (BRPP), doing business as Evergreen Packaging (Evergreen), owns and operates a 240-acre landfill referred to as Landfill No. 6 (Landfill) in Canton, North Carolina. The Landfill is used for the disposal of papermill waste including: sludge, lime mud, boiler ash, and wood waste into discrete containments designated as Areas A, B, C, D, F, G, and H. In Areas B, C, F, G and H, the operating method was to dump the waste into the containment(s) and allow it to seek a final configuration by gravity with no supplemental grading or compaction. This filling practice resulted in a waste mass, which was poorly drained, and of relatively low shear strength. Because of these conditions, Areas B, C, D, F, G, and H were originally designed to be filled with waste to elevations no higher than the rim of the perimeter dikes, which surround each containment. Evergreen obtained permits from the North Carolina Department of Environmental Quality (NCDENR) for Area A East and Area A West, which allowed the final waste grade in those areas to extend to an elevation of 30 feet above the perimeter dikes for those areas. The permits were based on evaluations presented in SME (1999 and 2006). Area D, although permitted for final waste grades rising to the level of the rim of its perimeter dike, has been operated from the outset using waste placement practices intended to maintain a well-drained and compacted waste mass. Area D contains a leachate collection system that drains the operating area, allowing operation of trucks, crawler tractors, and other equipment on the waste, ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 1-2 which, in turn, results in compaction and increased shear strength. Moreover, the waste in Area D exhibits shear strength similar to that found in previously operated Landfill Areas A East and A West, for which Evergreen obtained permits to increase the final waste grades to an elevation 30 feet above the perimeter dikes. In 2016, Evergreen retained Sevee & Maher Engineers, Inc. (SME) to evaluate the slope stability of a redesigned Area D, where the waste would extend vertically above the rim of the existing perimeter dikes. The exterior final waste sideslopes would be sloped at 4 horizontal to 1 vertical (4H:1V), to a maximum final elevation of approximately 2795 feet National Geodetic Vertical Datum (NGVD), and have 3H:1V interim interior sideslopes where it is anticipated that the future Area E will overlap a portion of Area D. The proposed final grading plan of Area D is presented as Figure 1. Like the slope stability evaluation for Areas A-East and A-West, components of this slope stability evaluation included a field investigation to collect samples of the waste and perimeter dike soil, laboratory testing of those materials, review of previous site geotechnical evaluations, interpretation of subsurface conditions, and a slope stability analysis. In addition to this evaluation of the Area D, several other geotechnical investigations have previously been conducted at the Landfill. Testing has been performed by SME and others on the site wastes, landfill foundation and perimeter dike soils. Data from previous SME investigations and investigations previously conducted by others were used to augment the findings presented herein, namely:  Design Hydrogeologic Report Addendum for Landfill No. 6 Area D North (SME, 2013)  Geotechnical Evaluation for Landfill No. 6 Area A-West Closure Amendment (SME, 2011)  Stability Evaluation Landfill No. 6 Site Investigation – Areas D and E (SME, 2008)  Landfill Stability Evaluation for Vertical Expansion Area 6A-West (SME, 2006)  Landfill Stability Evaluation for Vertical Expansions, Area 6A-East (SME, 1999)  Operations Manual, Champion International Corporation Landfill No. 6 East, Canton, North Carolina, (SME, 1995a) ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 1-3  Landfill No. 6 Closure Report, Field and Laboratory Investigation Report (SME, 1995b)  Geotechnical Report for Landfill No. 6 Expansion Area A (Sirrine, 1989)  Revised Report of Geotechnical Exploration and Evaluation and Conceptual Site Development Recommendations, Landfill No. 6 (Law, 1982) SME ENVIRONMENTAL CIVIL GEOTECHNICAL WATER COMPLIANCE \\ N s e r v e r \ c f s \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ A c a d \ F i g u r e s \ S I T E - X S E C . d w g , 1 1 / 1 5 / 2 0 1 6 3 : 1 9 : 2 5 P M , p a f ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 2-1 2.0 FIELD INVESTIGATION Between September 12, 2016 and September 15, 2016, SME conducted a field investigation at the Landfill, which consisted mainly of drilling five borings at four locations within and around Area D. These boring locations were designated B16-101 through B16-104 and B16-104A. Boring B16-101 was drilled into the perimeter dike on the south side of Area D. Borings B16-102, B16-103, B16-104 and B16-104A were drilled in the Area D waste and terminated above the existing liner system. Figure 1 shows the boring locations The borings provided (1) landfill waste and perimeter dike material samples for laboratory testing and visual examination; (2) in-place shear strength data for the waste; (3) standard penetration test (SPT) data for the waste and perimeter dike materials; and (4) characterization of the piezometric conditions within Area D. Boring depths for B16-102, B16-103, B16-104 and B16-104A were specifically selected to terminate five to ten feet above Area D liner system. Borehole drilling, temporary piezometer installation and abandonment were performed by A.E. Drilling Services, LLC of Greenville, South Carolina, (a North Carolina Certified Well Contractor1) and the work was overseen by SME. The borings were advanced using hollow- stem auger boring techniques. Logs of the borings are presented in Appendix A. Samples of the perimeter dike soil were collected using split-spoon sampling methods and waste samples were collected using both split-spoon and thin-walled (Shelby) tube sampling techniques. In boring B16-104A, sampling generally alternated between down-hole field vane shear testing, followed by 3-inch diameter split-spoon sampling (of the shear test interval), and then thin- walled tube sampling for collection of undisturbed waste specimens. The results of these sample collection and shear tests are summarized on the boring logs and test reports provided in Appendix B. Representative waste samples were selected for moisture content, density determination, and consolidated-undrained (CU) triaxial strength testing. Representative perimeter dike samples were selected from B16-101 for moisture content testing and a composite sample was created for direct shear testing. All field and laboratory testing was 1 A.E. Drilling Services, LLC performed all drilling, temporary piezometer installation and abandonment in accordance with applicable regulations. The driller who performed the work is certified for the work performed. ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 2-2 performed in general accordance with applicable American Society for Testing and Materials (ASTM) or U.S. Army Corps of Engineers (US ACOE) methods. Temporary standpipe piezometers, identified as P16-102, P16-103 and P16-104, were installed in borings B16-102, B16-103, B16-104 to measure water levels in the waste2. Each piezometer consisted of one-inch diameter PVC pipe and slotted screen sections placed at the bottom of the respective borings. Installation diagrams for the piezometers are included on the boring logs. Water level measurements were performed in the piezometers during the period of drilling. No water levels were detected during that time, which was consistent with the condition of the soil and waste samples as well as the drill cuttings observed during drilling. It also became evident during drilling that no water table was present within the perimeter dike at B16- 101; therefore, no piezometer was installed at that location. 2 The piezometers were considered temporary, in accordance with North Carolina Well Contractor Certification Act requirements, and were abandoned in accordance with applicable regulations. ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 3-1 3.0 LABORATORY INVESTIGATION Water content, density, specific gravity, and shear strength tests were performed on selected waste and perimeter dike samples by SME’s geotechnical laboratory in Cumberland, Maine. The water content of the waste samples tested ranged from about 9 to 107 percent with the higher water content waste typically associated with shallow depth wastes and waste containing wood, whereas the lower water content waste was generally from deeper sampling locations and typically were associated with ash and lime mud. The variability in water content of the sludge is largely attributable to the process by which it is generated and managed prior to placement in the landfill as well as the tendency for it to increase in water content as it degrades. High water content sludge is generally considered soft waste, which is managed as required in the Operations Manual for the Landfill in order to maintain the slope stability of the waste mass. The results of the water content testing are included on the boring logs and in Appendix B. Total unit weight (i.e., density) for the waste was previously calculated using measured water content and specific gravity data collected in 1995 and averaged 86 pcf. The specific gravity of three of the waste samples collected in 2016 was determined to be 2.56, 2.26, and 2.69 (average = 2.50) which in turn resulted in a calculated total unit weight range of 76 and 104 pcf (average = 94 pcf). The results of the specific gravity tests are included in Appendix B. For purposes of the slope stability evaluation discussed in this report, a waste density of 90 pcf was selected. Shear strength of the mixed ash, sludge and lime mud was measured by conducting consolidated, undrained, triaxial compression tests with pore pressure measurement (CU) testing on three waste specimens. The results of the CU tests are included in Appendix B. The testing resulted in a waste effective friction angle of approximately 31 degrees and a cohesion of 215 psf. These strength values are generally consistent with previous shear strengths measured for the waste, which have shown effective friction angles ranging from approximately 32 to 58 degrees (Law, 1982; SME, 1995b; SME, 1999; and SME, 2006). Table C-1 and Figure C-1 of Appendix C summarizes the past and present shear strength testing results for the waste. ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 3-2 Shear strength of the perimeter dike soil was measured by direct shear testing of a re- compacted specimen of composited samples from boring B16-101. The direct shear testing was performed using a non-inundated (not saturated) condition. The non-inundated condition was intended to simulate the lack of water table observed in the field. The results of the direct shear testing are presented in Appendix B. These results are generally consistent with previous dike soil strength testing which indicated a range of effective friction angles of approximately 30 to 40 degrees with cohesion of up to 620 psf (Law, 1982; Sirrine, 1989; SME, 1999; SME, 2006; and SME, 2016). Table C-2 and Figure C-2 of Appendix C summarize the past and present shear strength testing results for the perimeter dike soil. ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 4-1 4.0 SLOPE STABILITY EVALUATION OF PROPOSED VERICAL INCREASE 4.1 Methods of Analysis Analyses for the Area D slope stability evaluation were performed using SLOPE/W software. SLOPE/W effectively analyzes both simple and complex slope configurations for a variety of slip surface shapes, pore-water pressure conditions, soil properties, and loading conditions. SME holds an active license with Geo-Slope for use of SLOPE/W. For this evaluation, the Simplified Bishop and Spencer methods were used to calculate factor of safety solutions for circular and block shaped failure surfaces, respectively. Slip surfaces were limited to those deeper than five feet below the surface. For each condition, thousands to tens of thousands of individual slip surfaces with a wide variety of depths and sizes were evaluated with the minimum value reported herein. Effective stress was used for the analyses owing to the lack of a water table being observed in both the exiting Area D waste and its perimeter dike. 4.2 Selection of Parameters A summary of the soil and waste materials and the associated geotechnical properties used for conducting the slope stability evaluation are presented in the following sections. 4.2.1 Landfill Waste. The relevant geotechnical properties for the Landfill Waste were selected based on the laboratory testing reported herein, as well as historical data as discussed in Section 1.0. The total unit weight and effective strength data for the waste are tabularized on Table C-1 in Appendix C. The selected effective shear strength for the waste is graphically presented relative to other available test data on Figure C-1 of Appendix C. The geotechnical property values selected for the Area D waste were an average total unit weight of 90 pcf and an average effective friction angle of 32 degrees and no cohesion. 4.2.2 Perimeter Dike. The geotechnical data collected for the Perimeter Dike soils from this and previous investigations are tabulated on Table C-2 of Appendix C. The direct shear data is plotted on Figure C-2 of Appendix C, along with available data from previous investigations and ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 4-2 borrow source investigations completed for other perimeter dikes at the Landfill. The geotechnical property values selected for the perimeter dike were a total unit weight of 120 pcf and an effective friction angle of 32 degrees and an effective cohesion of 115 psf.3 4.2.3 Foundation Materials. The foundation materials underlying Area D were assumed to have a slightly lower friction angle than the dike soils since they have not been mechanically compacted. The total unit weight and effective friction angles were selected based on undisturbed tube samples of foundation materials tested by Sirrine, 1989. A total unit weight of 115 pcf and an effective friction angle of 28.5 degrees and no cohesion were selected for use in the slope stability analyses. The foundation material strength data are graphically presented on Figure C-3 and tabularized on Table C-3, of Appendix C. 4.2.4 Cover System. The cover system was estimated to have an effective friction angle of 30 degrees and no cohesion, and was assumed to have a unit weight of 125 pcf. The cover system shear strength is based on the dike soil testing, since the cover is expected to consist primarily of a similar material to that used for the perimeter dike. 4.2.5 Liner. The Area D liner system consists of 15 inches of #78 stone, underlain by a 16- ounce geotextile and then a 60-mil HDPE textured geomembrane. On the lower and flatter portion of the base area, the 60-mil HDPE textured geomembrane is underlain by a geosynthetic clay liner. The liner system was assigned an overall effective friction angle of 35 degrees and no cohesion, and a unit weight of 125 pcf, based on SME’s experience with similar materials. This liner strength is higher than the overlying waste, which makes the liner system inherently more stable than the overlying waste. 3 The act of collecting split spoon samples of the Perimeter Dike results in damage to the large solid saprolite grains, producing a sample that is finer than actual field conditions. Therefore, strength testing on this material is biased low, which results in an underestimate of strength that in-turn produces artificially low factors of safety. ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 4-3 4.2.6 Piezometric Conditions. A regional phreatic surface, based on water level data presented by SME in 2013, was used to develop a groundwater phreatic surface (i.e., water table) in the foundation and dike soils (SME, 2013). The location of the phreatic surface is included on Figure 2. As indicated in Section 2.0, the perimeter dike boring was observed to be dry indicating an unsaturated soil condition. The unsaturated observation is consistent with Area D being a lined containment, represents the design condition, and is also consistent with historical site information. No phreatic surface was measured in the three piezometers installed in the Area D waste for this report. The lack of water table in Area D is expected, due to the extensive drainage placed in that area and adherence with waste management procedures in the Operations Manual. Accordingly, for the slope stability analyses presented herein, the waste in Area D (both current and proposed) was treated as being unsaturated to represent the design condition. It should be noted that although the described unsaturated piezometric conditions were observed and are expected to be present in the Area D waste, the slope stability evaluation also analyzed a hypothetical fully-saturated waste mass with a phreatic surface near the top of the waste. This assumed condition is considered conservative in that the waste mass would be undrained and the leachate collection system inoperable, making this analysis not representative of design conditions. 4.3 Selection of Critical Slope Stability Cross-Section One critical cross-section (i.e., Cross-Section A-A’) was selected as representative of the worst- case geometry for Area D, relative to slope stability. The cross-section is presented in Figure 2, and the cross-section location is shown on Figure 1. Cross-Section A-A’ was selected as critical for the following reasons: (1) it passes through the area with the proposed greatest waste thickness and steepest sloping base grades; and (2) it provides the greatest vertical change over the shortest distance between the highest waste grades (~Elevation 2795) and the edge of Landfill (~ Elevation 2658). NOTES: Soil Cover Waste Liner System Foundation Material Perimeter Dike Bedrock 125 90 125 115 120 Impenetrable 30 32 35 31.5 32 0 0 0 0 115 Material Total Unit Weight (pcf) Effective Friction Angle (degrees) Effective Cohesion (psf) Number and Color 1 2 4 5 6 3 NOTES: The surface of Material 3 (Waste) is based on the topographic Survey dated 1/29/2016. Phreatic surface, applied to Foundation Material and Perimeter Dike as indicated in Appendix D.SME ENVIRONMENTAL CIVIL GEOTECHNICAL WATER COMPLIANCE \\ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ A c a d \ F i g u r e s \ S I T E - X S E C . d w g , 1 2 / 1 6 / 2 0 1 6 1 : 3 1 : 3 8 P M , p a f ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 4-5 4.4 Slope Stability Analyses Effective stress conditions were used in the slope stability analysis. This approach is appropriate for free-draining materials such as the wastes landfilled in Area D. As described above, shear strengths were selected from the testing of the waste and dike materials. SME performed both static (i.e., non-earthquake) and seismic (i.e., earthquake) slope stability analyses for the proposed loads resulting from the final grading for Area D as shown on Figure 1.4 The seismic analysis consisted of a pseudo-static analysis in which a horizontal force is applied to the static model to simulate earthquake acceleration5. The results of the slope stability analyses are included in Appendix D and indicate adequate factors of safety for the proposed final grading configuration after closure of Area D. The calculated minimum factors of safety for the design conditions are summarized in Table 4-1. The factors of safety were calculated for three types of potential slip surface: (1) surfaces passing through the waste alone; (2) surfaces passing through the waste, perimeter dike and foundation soil; and (3) deeper surfaces passing through the waste and foundation soil. Potential slip surfaces through the liner system were considered; however, due to the landfill configuration and higher liner strength than that of the overlying waste, as described in Section 4.2.5, the factors of safety for slip surfaces through the waste will be lower than those passing through the waste and liner system. Factors of safety were calculated for potential slip surfaces moving from: (a) south to north (i.e., right to left on Cross-Section A-A’), which evaluated the operational slope stability of 4 A new landfill area north of Area D, called Area E is being planned. For this analysis, closure of the northern slope of Area D is not assumed, since this area is anticipated to be covered with waste as part of Area E. Should Area E not be constructed, a closure stability analysis for the northern slope of Area D North should be performed. 5 The seismic slope stability analyses followed the approach outlined in U.S.EPA Subtitle D – Design Guidance. Based on the work of Hynes and Franklin, 1984, for a factor of safety greater than or equal to 1.0, a maximum value of the seismic coefficient used in the pseudo-static analysis was one-half the maximum acceleration estimated at the base of the landfill in order to keep permanent cover and embankment deformations less than 12 inches after an earthquake. Six to 12 inches of seismically induced downslope displacement is generally considered tolerable in the design of landfill liners (Seed and Bonaparte, 1992). The maximum horizontal seismic acceleration (a.k.a., peak ground acceleration) at the Area D site was obtained from 2014 U.S Geological Survey Seismic Hazard Maps. This map provides a maximum acceleration at the bedrock surface of 0.26g (acceleration, as a percent of gravity) in the western North Carolina region, with a 90 percent probability of not being exceeded in 250 years. Based on Hynes and Franklin, 1984, the seismic coefficient to be used in the pseudo-static slope stability analysis is one-half of 0.26g or 0.13g. ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 4-6 the northern slope during operations and (b) north to south (i.e., left to right on cross-section A- A’), which evaluated the post-closure slope stability of the southern end of Area D (i.e., the side closest to the Pigeon River). TABLE 4-1 SUMMARY OF MINIMUM FACTORS OF SAFETY Potential Slip Surface Type Slip Surface Movement Direction and (Condition) Piezometric Condition (See Note 1) Minimum Calculated Factor of Safety and (Slip Shape) Results Located in Appendix D, on page1 Static Seismic Waste North to South (Post-Closure) Unsaturated Waste 2.4 (Circular) 1.5 (Circular) 1 – 4 Waste South to North (Operational) Unsaturated Waste 1.9 (Circular) NA 5 & 6 Waste, Perimeter Dike and Foundation North to South (Post-Closure) Phreatic in Foundation 1.7 (Block) 1.4 (Block) 7 - 10 Waste and Foundation North to South (Post-Closure) Phreatic in Foundation 2.5 (Block) 1.5 (Block) 11 & 12 Waste and Foundation South to North (Operational) Phreatic in Foundation 2.1 (Circular) NA 13 & 14 Notes: 1. The piezometric condition is represented by the dashed blue lines in Appendix D, which represent the phreatic surface in the specific materials. 2. Some of the results are provided on two separate pages, including the first showing the entire cross-section and the second zoomed in on the slip surface for clarity. Generally, factors of safety greater than 1.5 for post-closure and 1.3 for operational static cases and 1.0 for seismic cases are considered acceptable to the professional engineering community for slope stability evaluations. Since the seismic factors of safety calculated for the Area D slope stability exceed 1.0, permanent seismic deformations are expected to be less than 6 inches and are not expected to damage to the leachate collection system, liner or landfill slopes should earthquake conditions occur (Seed and Bonaparte, 1992). The sensitivity analysis, which evaluated a static fully-saturated waste mass with a phreatic surface at the top of the waste, yielded factors of safety of 1.2 or better for circular slip surfaces within the waste for slip surfaces moving from north to south (see Appendix D, pages 15 and 16). This demonstrates that under this un-realistic condition, the waste was will remain stable and not experience unacceptable movement beyond the confines of the Area D containment. For slip surface moving from south to north (see Appendix D, pages 17 and 18), the saturated ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 4-7 waste condition would result in a factor of safety less than 1.0, indicating that as the waste saturates it may slough inside the containment, as expected. The Operations Manual includes a requirement that waste be kept back at least 25 feet from the northern containment berm for just such an unexpected condition; therefore, even under this unrealistic situation the design ensures that the waste will remain within the containment. The critical slip surfaces in the waste are shallow and approach the infinite slope condition, which yields the lowest possible factor of safety for the sloped waste, with deeper surfaces indicating higher factors of safety. An infinite-slope analysis (Lambe and Whitman, 19696) was used to check the slope stability of the face of the closed landfill and cover (see Appendix D, pages 1 and 3). Based on discussions with Evergreen, it is expected that a cover system will be used for closure of Area D. No specific final cover system slope stability analysis was performed for this report other than this infinite slope analysis and inclusion of the cover in evaluation of post-closure-slope stability. Based on the selected shear strengths, and assuming no seepage parallel to the landfill slope faces, a minimum factor of safety of 2.3 was calculated, which is considered acceptable. 6 The infinite slope factor of safety is equal to {Tangent (effective friction angle) / Tangent (slope angle)}; results are shown in Appendix D on pages 1 and 3 for the waste and cover. ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 5-1 5.0 CONCLUSIONS AND RECOMMENDATIONS Based on the observations made at the Landfill, interpretation of the available field and laboratory test data, and the results of the slope stability evaluation completed for this report, the following conclusions and recommendations have been reached.  The critical cross-section used in the analysis was selected to represent the worst-case slope conditions, which will produce the lowest factors of safety, due to the slope height and geometry. Therefore, the factors of safety presented herein are considered the minimum values with higher factors of safety for typically deeper slip surfaces yielding higher factors of safety.  The results of the static and seismic slope stability analyses conducted for the proposed final grading plan for Area D exceed accepted safety factors for the worst-case slope stability cross-section analyzed. Accordingly, it is concluded that stable slope, foundation, and waste conditions will be maintained using the proposed final grading and waste streams described in this report.  Future wastes delivered to the landfill are assumed to consist mainly of the same sludge, ash, and lime mud as has historically been placed in Area D. It is recommended that if the future waste stream changes in apparent strength or character, or if saturation of the waste changes from that described within this report, then a reevaluation of the landfill slope stability should be conducted.  A revised Operations Manual for Landfill No. 6, including Area D Vertical Increase, will be issued under separate cover. It is recommended that layering of the ash and sludge continue during landfilling operations to maintain slope stability and otherwise follow the recommendations set forth in the Operations Manual, including the placement of any lower strength waste within the interior portion of the landfill, not less than 100 feet from the exterior slope faces.  In conducting the subsurface investigation, laboratory testing, engineering evaluation and reporting, SME endeavored to work in accordance with generally accepted professional geotechnical and geologic practices and principles consistent with the level of care and skill ordinarily exercised by members of the geotechnical profession currently practicing in same locality under similar ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 5-2 conditions. No other warranty, expressed or implied is made. During final design, construction and/or operations, if conditions are encountered which appear different from those described in this report7, SME requests that it be notified so that the evaluation and recommendations presented herein can be reviewed and modified as appropriate. 7 Differences that could affect slope stability include but are not limited to things like slope geometry, waste properties, soft waste management, and waste saturation. ____________________ 161028brpp-6D-VI-lfstab Sevee & Maher Engineers, Inc. November 2, 2016 REFERENCES Hynes, M.E. and A.G. Franklin, 1984. Rationalizing the Seismic Coefficient Method, Miscellaneous Paper GL-84-13, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, 34p. Lambe, T.W. and R.V. Whitman, 1969. Soil Mechanics; John Wiley & Sons, New York. Law, 1982. Revised Report of Geotechnical Exploration and Evaluation and Conceptual Site Development Recommendations, Landfill No. 6. Seed, R.B. and R. Bonaparte, 1992. Seismic Analysis and Design of Lined Waste Fills: Current Practice. Proc. Stability and Performance of Slopes and Embankments - II, Vol. 2, ASCE Geotechnical Special Publication No. 31, Berkeley, California, pp.1521-1545. SME, 1995a. Operations Manual, Champion International Corporation Landfill No. 6 East, Canton, North Carolina. SME, 1995b. Landfill No. 6 Closure Report, Field and Laboratory Investigation Report. SME, 1999. Landfill Stability Evaluation for Vertical Expansion, Area 6A-East. SME, 2006. Landfill Stability Evaluation for Vertical Expansion, Area 6A-West. SME, 2008b. Stability Evaluation Landfill No. 6 Site Investigation – Areas D and E. SME, 2013. Design Hydrogeologic Report Addendum for Landfill No. 6, Area D North Sirrine, 1989. Geotechnical Report for Landfill No. 6 Expansion Area A. U.S.EPA, 1995. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. United States Environmental Protection Agency, April. APPENDIX A BORING LOGS PROJECT: Evergreen Packaging Phase 6D-Vertical Expansion Investigation JOB NO.: 16144.00 DATE STARTED: 09/12/2016 DATE FINISHED: 09/13/2016 DRILLING METHOD: 3.25 ID HSA GROUND SURFACE ELEVATION (FT): 2659.8 DRILLING CONTRACTOR: A.E. Drilling Services, LLC LOGGED BY: BBJ of Sevee & Maher Engineers, Inc. Auger Refusal Depth: Not Encountered Rock Core Interval: None SPT with Automatic Hammer SHEET 1 OF 1 DEPTH (FT) SAMPLE NO. Sample Interval Geologic Unit SPT Blows per 6-inch Interval (See Note 2) SPT N-VALUE (bpf) Recovery Penetration (feet) Field Testing Lab Testing (see Note 2) Piezometer Log DEPTH (FT) (See Note 3) 5 10 15 20 25 30 35 40 45 50 NOTES: 2. Lab Testing: %w = water content (ASTM D-2216); DS = Direct Shear (ASTM D-3080) on composite of recovered soils. 3. Boring was damp at the end of drilling and the following morning; therefore, no piezometer was installed. Exploration backfilled with auger cuttings. S-2 1. The act of collecting the samples with a standard split spoon broke-down the re-compacted saprolite and yielded samples that as described below are finer in texture than exist in the dike, with the material more a Silty SAND with occasional gravel-sized particles. BORING NO.: B16-101 MATERIAL DESCRIPTION (See Note 1) S-1 3 - 5 Gray, Gravel (Road fill); Cuttings: Rust colored, SILT, little fine to medium sand, trace fine gravel and coarse sand, damp. 8/3/5/6 8 0.2/2.0 S-3 13 - 15 Rust colored to Brown, micaceous SILT, little fine to medium sand, trace coarse sand to fine gravel, damp. 7/7/6/8 13 8 - 10 Cuttings: Brown to Rust colored, SILT, little fine sand to coarse gravel, damp.8/7/9/10 16 0.0/2.0 1.0/2.0 Similar to above. 4/6/5/5 11 1.8/2.0 1.2/2.0 1.0/2.0S-5 23 - 25 Similar to above. 14/13/11/11 24 S-6 28 - 30 Similar to above, slightly damp. 5/7/6/7 13 Saprolite 24 1.6/2.0 S-10 48 - 50 Similar to above. 4/4/8/9 12 1.4/2.0 S-9 43 - 45 6/9/15/20 19.2%w S-4 S-8 38 - 40 Rust colored to brown, SILT, little fine to coarse sand; trace white with black specks (weathered granite) and mica, damp and crumbly. 10/11/12/14 23 Perimeter Dike Compacted Saprolite (Fill) 18 - 20 2.0/2.0 43-44': Similar to above. S-7 34 - 36 Similar to above, yellow/brown layers at 35.5 - 36 feet.19/10/10/14 20 12.9%w 13.6%w 9.4%w 15.7%w 12.9%w 15.6%w 15.2%w 16.7%w 18.1%w BOTTOM OF EXPLORATION AT 50 FEET 44-45': Rust colored to Brown, Saprolite (micacious silty sand), damp. 0.4/2.0 \\nserver\CFS\Brpp\NC\Vertical Increase\SSI\Boring Log\blue ridge borings 2016 Page 1 of 5 PROJECT: Evergreen Packaging Phase 6D-Vertical Expansion Investigation JOB NO.: 16144.00 DATE STARTED: 09/13/2016 DATE FINISHED: 09/13/2016 DRILLING METHOD: 3.25 ID HSA GROUND SURFACE ELEVATION (FT): 2689.8 DRILLING CONTRACTOR: A.E. Drilling Services, LLC LOGGED BY: BBJ of Sevee & Maher Engineers, Inc. Auger Refusal Depth: Not Encountered Rock Core Interval: None SPT with Automatic Hammer SHEET 1 OF 1 DEPTH (FT) SAMPLE NO. Sample Interval Geologic Unit SPT Blows per 6-inch Interval (See Note 1) SPT N-VALUE (bpf) Recovery Penetration (feet) Field Testing (See Note 4) Lab Testing (See Note 2) P16-102 Piezometer Log (See Note 3) DEPTH (FT) 5 10 15 20 25 PP: 0.25 TSF 94.3%w PP: 1.25 TSF 43.0%w 29 30 PP: 0.50 TSF 51.0%w PP: 0.25 TSF 61.8%w 31 34 35 PP: 0.25 TSF 47.4%w Not Cohesive 34.3%w 40 Not Cohesive PP: 0.25 TSF 51.7%w 43 45 NOTES: 1. Values are blows per 6-inch interval; or WOR = Weight of Rods 3. Boring was dry at the end of drilling, temporary piezometer was dry for 2 days following drilling. Piezometer abandoned 9/15/2016 by pulling PVC and grouting. 4. Field Testing Included: PP = Pocket Penetrometer. 2. Lab Testing: %w = water content (ASTM D-2216) BORING NO.: B16-102 MATERIAL DESCRIPTION S-1 4 - 6 Black and Blue, ASH and LIME, wet. 3/2/2/3 4 2.0/2.0 PP: 1.25-1.5 TSF 52.4%w S-2 9 - 11 Black, ASH, trace lime, wet. 1/WOR/1/1 1 2.0/2.0 PP: 0.5-1.0 TSF 61.9%w PP: 1.0-2.0 TSF 51.1%w 1.5/2.0 PP: 0.25-0.5 TSF 87.9%w S-3 14 - 16 Black and Blue, ASH and LIME, 3-inch layers, wet. 2/1/2/2 3 2.0/2.0 S-4 19 - 21 Black, ASH, trace wood chips, wet. 1/1/1/1 2 24 - 26 1/3/3/8 6 2.0/2.0 24-25': Black, ASH, wet. 25-24': Blue, LIME, trace ash, wet. S-7 34 - 36 1/2/18/21 20 2.0/2.0 34-35': Black, LIME, saturated. 35-36': Black, ASH with sawdust, gravel in 3-inch layers, wet. Papermill Wastes S-6 29 - 31 2/2/3/4 5 2.0/2.0 29-30': Black, ASH, wet. 30-31': Blue, LIME, dilatent, wet. S-5 Filter Sand 1" diam. PVC 0.001" Slotted Screen Bentonite Chips 1" diam. PVC Riser Backfilled with Neat Cement Grout BOTTOM OF EXPLORATION AT 43 FEET S-8 39 - 41 4/3/1/2 4 2.0/2.0 39-40': Black, ASH with sawdust and wood, gravel in 3-inch layers, wet. 40-41': Gray, SLUDGE; wet. \\nserver\CFS\Brpp\NC\Vertical Increase\SSI\Boring Log\blue ridge borings 2016 Page 2 of 5 PROJECT: Evergreen Packaging Phase 6D-Vertical Expansion Investigation JOB NO.: 16144.00 DATE STARTED: 09/12/2016 DATE FINISHED: 09/13/2016 DRILLING METHOD: 3.25 ID HSA GROUND SURFACE ELEVATION (FT): 2686.2 DRILLING CONTRACTOR: A.E. Drilling Services, LLC LOGGED BY: BBJ of Sevee & Maher Engineers, Inc. Auger Refusal Depth: Not Encountered Rock Core Interval: None SPT with Automatic Hammer SHEET 1 OF 1 DEPTH (FT) SAMPLE NO. Sample Interval Geologic Unit SPT Blows per 6-inch Interval SPT N-VALUE (bpf) Recovery Penetration (feet) Field Testing (See Note 3) Lab Testing (See Note 1) P16-103 Piezometer Log (See Note 2) DEPTH (FT) 5 10 PP: 0.25 TSF 47.3%w Not Cohesive 9.2%w 15 20 25 26 29 30 PP: 0.25 TSF Not Tested PP: 0.5 TSF 83.3%w 31 PP: 0.5 TSF 50.7%w 35 PP: 0.75 TSF 47.2%w Not Cohesive 20.0%w 40 Not Tested 55.7%w Not Cohesive 106.5%w 41 45 NOTES: 2. Boring was dry at the end of drilling, temporary piezometer was dry for 2 days following drilling. Piezometer abandoned 9/15/2016 by pulling PVC and grouting. 3. Field Testing Included: PP = Pocket Penetrometer. 1. Lab Testing: %w = water content (ASTM D-2216) BORING NO.: B16-103 MATERIAL DESCRIPTION S-1 4 - 6 Blue/Green, LIME, wet. 1/1/1/2 2 2.0/2.0 S-3 14 - 16 Black and Blue, ASH, little Lime, wet. 1/2/2/3 4 2.0/2.0 9 - 11 27 2.0/2.0 S-4 19 - 21 Black with Blue, ASH, trace lime, wet; hard layer at 20 ft.1/1/1/1 2 S-2 50.0%w PP: 0.5 TSF 55.7%w S-8 39 - 41 1/3/2/3 5.0 S-7 34 - 36 1/2/5/3 7 1.8/2.0 S-6 29 - 31 1/1/2/3 1/12/15/13 1" diam. PVC Riser 34-34.5': Black and Blue, ASH, trace lime, wet. 34.5-35': Gray SLUDGE. 35-36': Black, Cinders. Papermill Wastes 29-30 ft: Simmilar to above 30-31 ft: Black, ASH, trace wood fibers, wet. 39-40': Black and Blue; ASH and LIME, wet. 40-41': Wood with ASH, wet. Simmilar to above. Black, ASH, with coal and wood, hard. PP: 0.25-0.5 TSF 54.6%w PP: 0.25 - 0.5 TSF 60.4%w PP: 0.75 TSF Filter Sand Backfilled with Neat Cement Grout BOTTOM OF EXPLORATION AT 41 FEET Bentonite Chips 1" diam. PVC 0.001" Slotted Screen 1.6/2.0 3 2.0/2.0 2.0/2.0 2.0/2.0 S-5 24 - 26 Simmilar to above, no hard layer. 3/4/3/5 7 \\nserver\CFS\Brpp\NC\Vertical Increase\SSI\Boring Log\blue ridge borings 2016 Page 3 of 5 PROJECT: Evergreen Packaging Phase 6D-Vertical Expansion Investigation JOB NO.: 16144.00 DATE STARTED: 09/13/2016 DATE FINISHED: 09/13/2016 DRILLING METHOD: 3.25 ID HSA GROUND SURFACE ELEVATION (FT): 2703.9 DRILLING CONTRACTOR: A.E. Drilling Services, LLC LOGGED BY: BBJ of Sevee & Maher Engineers, Inc. Auger Refusal Depth: Not Encountered Rock Core Interval: None SPT with Automatic Hammer SHEET 1 OF 1 DEPTH (FT) SAMPLE NO. Sample Interval Geologic Unit SPT Blows per 6-inch Interval (See Note 1) SPT N- VALUE (bpf) Recovery Penetration (feet) Field Testing (See Note 4) Lab Testing (See Note 2) P16-104 Piezometer Log (See Note 3) DEPTH (FT) 5 10 Not Tested 15 52.7%w 20 PP: 1.25 TSF 49.6%w 25 PP: 1.25 TSF 43.1%w 30 PP: 0.5 TSF Not Tested 35 PP: 2.5 TSF 35.0%w 36 38 40 40 PP: 0.25 TSF 45 PP: 2.5 TSF Not Tested Not Tested Not Tested 49.7%w 50 Not Cohesive Not Tested 50 NOTES: 1. Values are blows per 6-inch interval; or WOR = Weight of Rods 3. Boring was dry at the end of drilling, temporary piezometer was dry for 2 days following drilling. Piezometer abandoned 9/15/2016 by pulling PVC and grouting. 4. Field Testing Included: PP = Pocket Penetrometer. 2. Lab Testing: %w = water content (ASTM D-2216) BORING NO.: B16-104 MATERIAL DESCRIPTION S-1 3 - 5 Black, ASH, trace Lime, moist. 2/2/1/2 3 1.2/2.0 PP: 0.5 TSF 42.5%w S-2 8 - 10 Gray-Black, ASH, moist. WOR/WOR/1/1 1 1.8/2.0 PP: 0.5 TSF 76.3%w S-3 13 - 15 1/2/1/2 3 2.0/2.0 13-14': Simmilar to above. 14-15': Blue, LIME, wet.PP: 1.5 TSF S-4 18 - 20 Blue, LIME, little Ash, wet. WOR/1/1/1 2 S-5 23 - 25 23-24': Similar to above.2/3/2/4 524-25': Gray/Blue, LIME, wet. Bentonite Chips S-7 33 - 35 33-34': Black, ASH, soft, wet.1/6/13/13 19 2.0/2.034-35': Black, ASH, very hard, wet. 49.5-50': Black; ASH, with sawdust and wood chips, wet. Gray, LIME, wet. Blue and Black, ASH and LIME, wet.S-8 38 - 40 S-6 28 - 30 1" diam. PVC 0.001" Slotted Screen Filter Sand 53.2%w BOTTOM OF EXPLORATION AT 50 FEET S-9 43 - 45 S-10 48 - 50 3/5/12/12 17 1.8/2.0 Papermill Wastes 48-49': Black and Blue, ASH and LIME, wet. 50.8%w 49-49.5': Gray SLUDGE, wet. Black and Blue, ASH and LIME, soft at top and hard at bottom, wet. PP: 0.25 TSF 63.0%w PP: 0.25-0.50 TSF 62.2%w1/WOR/WOR/1 WOR 2.0/2.0 WOR/WOR/1/W OR 1 2.0/2.0 1" diam. PVC Riser PP: 1.25 TSF 2.0/2.0 2.0/2.0 Backfilled with Neat Cement Grout \\nserver\CFS\Brpp\NC\Vertical Increase\SSI\Boring Log\blue ridge borings 2016 Page 4 of 5 PROJECT: Evergreen Packaging Phase 6D-Vertical Expansion Investigation JOB NO.: 16144.00 DATE STARTED: 09/13/2016 DATE FINISHED: 09/13/2016 DRILLING METHOD: 3.25 ID HSA GROUND SURFACE ELEVATION (FT): 2703.9 (approx)DRILLING CONTRACTOR: A.E. Drilling Services, LLC LOGGED BY: BBJ of Sevee & Maher Engineers, Inc. Auger Refusal Depth: Not Encountered Rock Core Interval: None SPT with Automatic Hammer SHEET 1 OF 1 DEPTH (FT) SAMPLE NO. Sample Interval Geologic Unit Recovery Penetration (feet) Field Testing (See Note 4) Lab Testing (See Note 2) Piezometer Log DEPTH (FT) (See Note 3) 5 V-1 & S-1 6 - 7 V-2 & S-1 7 - 8 10 15 V-3 & S-2 16 - 17 V-4 & S-2 17 - 18 20 25 V-5 & S-3 26 - 27 V-6 & S-3 27 - 28 30 V-7 & S-4 30 - 31 V-8 & S-4 31 - 32 35 V-9 & S-5 36 - 37 V-10 & S-5 37 - 38 40 45 50 NOTES: 2. Lab Testing: %w = water content (ASTM D-2216); SG = Specific Gravity; CU = Consolidated Undrained Triaxial Compression; DS = Direct Shear; T = Total Density (direct measure). 3. No piezometer installed, due to proximity to B16-104. 4. Field Testing Included: PP = Pocket Penetrometer. U-4R 40 - 42 60.4 to 85.2%w 23.8 to 65.9%w CU#3: 50%w, 102.1T & 2.69SG BORING NO.: B16-104A MATERIAL DESCRIPTION (See Note 1) Gray, SLUDGE and ASH, moist. NA PP: 0.25-0.5 TSF 47.0%w Field Vane (FV) Shear Test (Peak/Remoulded) PP: 0.50-0.75 TSF 42.6%wFV: 1000/428 psf Sample Disturbed by Vane Testing.41.9%wFV:857/514 psf U-3 28 - 30 Tube had long void, likely from pushing wood/rock Papermill Wastes U-2 18 - 20 U-1 See Tube Opening Summary 1.75/2.0 FV: 514/114 psf FV: 628/143 psf Black, ASH, trace Lime, wet. 1. 3-inch diameter split spoons were pushed over the interval where vane shear testing was performed, to provide sample for description, field testing and lab testing. No Recovery FV: 971/571 psf NA No Recovery No RecoveryFV: 1028/400 psf Black, ASH, trace Lime, wet. BOTTOM OF EXPLORATION AT 42 FEET U-4 CU#2: 74.1%w, 75.6T & 2.26SG CU#1:48.5%w, 103.6T & 2.56SG Sample Disturbed by Vane Testing.41.9%wFV: 628/200 psf FV: 657/371 psf 8 - 10 See Tube Opening Summary 1.2/2.0 See Tube Opening Summary 1.85/2.0 NA 38 - 40 No Recovery NA Black, ASH, trace Lime, wet.FV: 1000/857 psf NA FV: 2342/571 psf \\nserver\CFS\Brpp\NC\Vertical Increase\SSI\Boring Log\blue ridge borings 2016 Page 5 of 5 APPENDIX B LABORATORY TEST RESULTS BRPP/NC/Vertical Increase/Geotech/Appx B lab test results.pdf Page 1 of 13 B R P P / N C / V e r t i c a l I n c r e a s e / G e o t e c h / A p p x B l a b t e s t r e s u l t s . p d f P a g e 2 o f 1 3 B R P P / N C / V e r t i c a l I n c r e a s e / G e o t e c h / A p p x B l a b t e s t r e s u l t s . p d f P a g e 3 o f 1 3 B R P P / N C / V e r t i c a l I n c r e a s e / G e o t e c h / A p p x B l a b t e s t r e s u l t s . p d f P a g e 4 o f 1 3 No r m a l St r e s s Sh e a r St r e s s (p s i ) ( p s i ) 10 7 . 9 4 20 1 5 . 2 8 30 . 4 1 7 . 3 2 Se e t e s t r e p o r t s o n f o l l o w i n g p a g e s DI R E C T S H E A R T E S T - A S T M D 3 0 8 0 y  = 0. 4 5 8 x  + 4. 2 9 1 3 02468101214161820 0 5 1 0 1 5 2 0 2 5 3 0 3 5 S H E A R   S T R E S S ,   ( p s i ) NO R M A L  ST R E S S ,  (p s i ) Co m p o s i t e  of  B1 6 ‐10 1 Co m p o s i t e  of  B1 6 ‐10 1 Li n e a r  (C o m p o s i t e  of  B1 6 ‐10 1 ) Fr i c t i o n  An g l e  =   24 . 6  de g r e e s c  = 4. 3  ps i  (6 2 0  ps f ) BRPP/NC/Vertical Increase/Geotech/Appx B lab test results.pdf Page 5 of 13 B R P P / N C / V e r t i c a l I n c r e a s e / G e o t e c h / A p p x B l a b t e s t r e s u l t s . p d f P a g e 6 o f 1 3 B R P P / N C / V e r t i c a l I n c r e a s e / G e o t e c h / A p p x B l a b t e s t r e s u l t s . p d f P a g e 7 o f 1 3 B R P P / N C / V e r t i c a l I n c r e a s e / G e o t e c h / A p p x B l a b t e s t r e s u l t s . p d f P a g e 8 o f 1 3 BRPP/NC/Vertical Increase/Geotech/Appx B lab test results.pdf Page 9 of 13 BRPP/NC/Vertical Increase/Geotech/Appx B lab test results.pdf Page 10 of 13 BRPP/NC/Vertical Increase/Geotech/Appx B lab test results.pdf Page 11 of 13 BRPP/NC/Vertical Increase/Geotech/Appx B lab test results.pdf Page 12 of 13 BRPP/NC/Vertical Increase/Geotech/Appx B lab test results.pdf Page 13 of 13 APPENDIX C SHEAR STRENGTH SELECTED FOR USE IN THE SLOPE STABILITY ANALYSIS \\nserver\CFS\Brpp\NC\Vertical Increase\Geotech\Material Strengths 2016a Tab: F‐C‐1 Waste 0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000 Ef f e c t i v e  Sh e a r  St r e s s ,  (p s f ) Effective Normal Stress, (psf) Law, 1982, Assumed Waste, CU Test (φ' = 45°, c' = 50 psf) SME, 1995, Sludge/Ash, CU Test   (φ' = 43.7°, c' = 0 psf) SME, 1995, Sludge/Ash, CU Test (φ' = 39.5°, c' = 0 psf) SME, 1995, Sludge/Ash, CU Test (φ' = 39.3°, c' = 0 psf) SME, 1995, Sludge/Ash, CU Test (φ' = 35.7°, c' = 0 psf) SME, 1999, Lime Mud, CU Test (φ' = 39.5°, c' = 0 psf) SME, 1999, Sludge/Ash, CU Test (φ' = 57.9°, c' = 0 psf) SME, 1999, Sludge/Ash, CU Test (φ' = 45.6°, c' = 0 psf) SME, 2006, Sludge/Lime/Ash, CU Test (φ' = 36.9°, c' = 0 psf) SME, 2016, Lime w/ gravel layer, B16‐104A, CU‐20psi SME, 2016, Lime/Ash, B16‐104A, CU‐30psi SME, 2016, Ash/Sludge/Bark, B16‐104A, CU‐40psi Used in Stability Analysis   (φ' = 32°, c' = 0 psf)FIGURE C‐1 Plot of Available effective Shear Strengths for Landfill Waste Landfill 6 Area D ‐Vertical Increase Evergreen Products Canton, North Carolina Sevee & Maher Engineers, Inc. Page 1 of 6 \\nserver\CFS\Brpp\NC\Vertical Increase\Geotech\Material Strengths 2016a Tab: F‐C‐2 Dike 0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000 Sh e a r  St r e s s ,  (p s f ) Normal Stress, (psf)Sirrine, 1989, CU Test (φ = 40°, c = 0 psf) Sirrine, 1989, CU Test (φ = 32°, c = 115 psf) Law, 1982, CU Test (φ = 32°, c = 0 psf) Law, 1982, CU Test (φ = 30°, c = 0 psf) Law, 1982, CU Test (φ = 40°, c = 0 psf) SME, 1999, Direct Shear Test (Dry), Normal Stress <2200 psf (φ = 38°, c = 0 psf) SME, 1999, Direct Shear Test (Dry), Normal Stress > 2200 psf (φ = 34°, c = 260 psf) SME, 2006, Direct Shear Test (Dry) (φ = 32°, c = 144 psf) SME, 2016, Direct Shear Tests (Dry) Used in Stability Analysis (φ = 32°, c = 115 psf) FIGURE C‐2 Plot of Available effective Shear Strengths for Perimeter Dikes Landfill 6 Area D ‐Vertical Increase Evergreen Products Canton, North Carolina Sevee & Maher Engineers, Inc. Page 2 of 6 \\nserver\CFS\Brpp\NC\Vertical Increase\Geotech\Material Strengths 2016a Tab: F‐C‐3 Foundation 0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000 Sh e a r  St r e s s ,  (p s f ) Normal Stress, (psf) LAW, 1982, CU Test (φ = 34°, c = 200 psf) LAW, 1982, CU Test (φ = 31.5°, c = 100 psf) LAW, 1982, CU Test (φ = 28.5°, c = 600 psf) Used in Stability Analysis   (φ = 31.5°, c = 0 psf) FIGURE C‐3 Plot ofAvailable effective Shear Strengths for Foundation Materials Landfill 6 Area D ‐Vertical Increase Evergreen Products Canton, North Carolina Sevee & Maher Engineers, Inc. Page 3 of 6 Fr i c t i o n   An g l e   (d e g r e e s ) Co h e s i o n   (p s f ) Fr i c t i o n   An g l e   (d e g r e e s ) Co h e s i o n   (p s f ) 1 B u l k  #1 64 1 6 0 57 0 Sludge, UU 1 Bu l k  #2 82 1 6 0 55 0 Sludge/Ash, UU 1 Bu l k  #3 68 9 0 11 0 0 Sludge/Ash, UU 1 Sa m p l e  #1 N/ A 40 2 0 0 S l u d g e ,  Compaction  Test 1 Sa m p l e  #2 N/ A Sl u d g e / A s h ,  Compaction  Test 2 55 45 5 0 Assumed  Waste, CU 3 B 1 0 1 1 S 1 3 . 5 N / A 7 9 3 5 . 7 0 Ash, CU 3 B 1 0 1 3 S 3 2 . 5 7 8 7 9 3 9 . 3 0 Sludge/Ash, CU 3 B 1 0 1 4 S 4 0 . 5 8 0 7 5 4 3 . 7 0 Sludge/Ash, CU 3 B 1 0 2 1 S 1 2 . 5 N / A 7 9 3 9 . 5 0 Ash, some  Sludge 3 96 5 4 Li m e  mud, Density  Test 4 B 9 9 ‐10 2 U 2 2 0 . 5 8 5 7 1 . 1 4 5 . 6 0 Sludge/Ash, CU 4 B 9 9 ‐10 2 U 3 3 0 . 6 7 8 7 7 . 6 5 7 . 9 0 Sludge/Ash, CU 4 B 9 9 ‐10 3 U 4 4 0 . 5 9 6 39 . 5 0 Lime  mud, CU 5B ‐06 ‐01 1 S 6 . 5 ‐8. 5 8 1 5 0 3 6 . 9 0 Lime  mud, CU 5B ‐06 ‐01 2S 16 ‐18 8 4 9 4 Sludge/Ash/Lime, CU 5B ‐06 ‐02 2 S 3 5 . 5 ‐37 . 5 9 4 5 2 Lime/Sludge/Ash, CU 6B ‐16 ‐10 1 C o m p o s i t e 3 ‐50 7 5 ‐10 3 5 0 ‐74 3 1 2 1 5 Ash/Lime/Sludge, CU NO T E S : 1.  1  = Si r r i n e ,  19 8 9 ;  2  = La w ,  19 8 2 ;  3  = SM E ,  19 9 5 ;  4  = SM E ,  19 9 9 ;  5  = SM E ,  20 0 6 ;  an d  6  = SM E ,  20 1 6 . 2.    UU  = Un c o n s o l i d a t e d  Un d r a i n e d  Co m p r e s s i o n ;  CU  = Co n s o l i d a t e d  Un d r a i n e d  Tr i a x i a l  Co m p r e s s i o n . Ev e r g r e e n  Pa c k a g i n g ,  Ca n t o n ,  No r t h  Ca r o l i n a La n d f i l l  6  Ar e a  D  Ve r t i c a l  In c r e a s e Su m m a r y  of  Wa s t e  Ma t e r i a l s  Ge o t e c h n i c a l  Pr o p e r t i e s  Co n s i d e r e d  in  St a b i l i t y  An a l y s i s TA B L E  C ‐1 De s c r i p t i o n  (See  Note  2) Ef f e c t i v e  St r e s s To t a l  St r e s s Da t a   So u r c e  (se e   No t e  1 ) Bo r i n g  ID S a m p l e  ID De p t h  (f t .   be l o w   gr o u n d ) To t a l  Un i t   We i g h t   (p c f ) Wa t e r   Co n t e n t   (% ) \\ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l  In c r e a s e \ G e o t e c h \ M a t e r i a l  St r e n g t h s  20 1 6 a Ta b :  T ‐C ‐1  Wa s t e Pa g e 4 of 6 Fr i c t i o n  An g l e   (d e g r e e s ) Co h e s i o n   (p s f ) Fr i c t i o n  An g l e   (d e g r e e s ) Co h e s i o n   (p s f ) 1A P ‐18 1 8 . 5 ‐23 . 5 1 2 6 1 0 9 1 5 . 9 ( 3 ) Compaction  Test 1A P ‐14 2 8 . 5 ‐38 . 5 1 3 3 1 1 7 1 4 . 1 ( 3 ) Compaction  Test 1A P ‐5 1 8 . 5 ‐23 . 5 1 2 7 1 1 2 1 3 . 9 ( 3 ) 4 0 0 2 0 2 1 6 CU/Compaction  Test 1A P ‐31 4 ‐20 1 2 8 1 0 9 1 8 . 6 ( 3 ) Compaction  Test 1A P ‐14 2 0 ‐35 1 2 7 1 1 0 1 5 . 5 ( 3 ) 3 2 1 1 5 1 8 . 5 2 0 2 CU/Compaction  Test 2B ‐83 ‐12 1 2 7 1 0 7 1 7 . 9 ( 3 ) Compaction  Test 2B ‐10 1 ‐8 1 3 1 1 1 3 1 6 . 3 ( 3 ) 3 2 0 1 9 6 0 0 CU/Compaction  Test 2B ‐18 1 ‐8 1 2 9 1 1 1 1 6 . 3 ( 3 ) 3 0 0 1 9 9 0 0 CU/Compaction  Test 2B ‐18 1 8 ‐23 1 2 7 1 0 8 1 7 . 3 ( 3 ) Compaction  Test 3 B 9 9 ‐10 1 1 0 ‐60 1 1 7 14 . 6 3 4 2 6 0 DS ,  ru n  dry, normal  stress  > 15  psi 3 B 9 9 ‐10 1 1 0 ‐60 11 7 14 . 6 38 0 DS ,  ru n  dry, normal  stress  < 15  psi 3 B 9 9 ‐10 1 1 0 ‐60 1 1 7 16 . 4 4 0 0 DS, run  wet 4B ‐06 ‐04 4 ‐14 1 1 9 ‐12 4 17 . 8 3 2 1 4 4 DS, run  dry 5 NO T E S : 1.  Da t a  So u r c e :  1  = Si r r i n e ,  19 8 9 ;  2  = La w ,  19 8 2 ;  3  = SM E ,  19 9 9 ;  4  = SM E ,  20 0 6 ;  5  = SM E ,  20 1 6 . 2.  Wi t h  th e  ex c e p t i o n  of  th e  di r e c t  sh e a r  te s t ,  to t a l  un i t  we i g h t  is  ma s e d  on  Ma x .  dr y  de n s i t y  at  op t i m u m  wa t e r  co n t e n t . 3.  Op t i m u m  Wa t e r  Co n t e n t ,  as  de t e r m i n e d  by  St a n d a r d  Pr o c t o r  Co m p a c t i o n  Te s t i n g . 4.    CU  = Co n s o l i d a t e d  Un d r a i n e d  Tr i a x i a l  Co m p r e s s i o n ;  DS  = Di r e c t  Sh e a r  Te s t . TA B L E  C ‐2 Su m m a r y  of  Pe r i m e t e r  Di k e  Ge o t e c h n i c a l  Pr o p e r t i e s  Co n s i d e r e d  in  St a b i l i t y  An a l y s i s La n d f i l l  6  Ar e a  D  Ve r t i c a l  In c r e a s e Ev e r g r e e n  Pa c k a g i n g ,  Ca n t o n ,  No r t h  Ca r o l i n a Ef f e c t i v e  St r e s s To t a l  St r e s s De s c r i p t i o n  (See  Note  4) To t a l  Un i t   We i g h t   (p c f ) Da t a  So u r c e   (se e  No t e  1 ) Bo r i n g  ID De p t h  (f t .   be l o w   gr o u n d ) Dr y   De n s i t y   (p c f ) Wa t e r   Co n t e n t   (% ) \\ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l  In c r e a s e \ G e o t e c h \ M a t e r i a l  St r e n g t h s  20 1 6 a Ta b :  T ‐C ‐2  Di k e Pa g e 5 of 6 Fr i c t i o n  An g l e   (d e g r e e s ) Co h e s i o n   (p s f ) Fr i c t i o n  An g l e   (d e g r e e s ) Co h e s i o n   (p s f ) 1B ‐89 ‐11 1 1 7 1 3 0 1 3 . 2 3 4 2 0 0 2 7 . 5 3 0 0 Undisturbed  Sample 1B ‐10 1 3 ‐15 1 0 4 1 1 8 1 9 . 7 3 1 . 5 1 0 0 1 6 . 5 4 0 0 Undisturbed  Sample 1B ‐11 8 ‐11 1 2 4 1 2 5 2 8 . 3 2 8 . 5 6 0 0 1 7 . 5 8 0 0 Undisturbed  Sample NO T E S : 1.  Da t a  So u r c e :  1  = La w ,  19 8 2 . Ef f e c t i v e  St r e s s To t a l  St r e s s Description TA B L E  C ‐3 Su m m a r y  of  Fo u n d a t i o n  Ma t e r i a l  Ge o t e c h n i c a l  Pr o p e r t i e s  Co n s i d e r e d  in  St a b i l i t y  An a l y s i s La n d f i l l  6  Ar e a  D  Ve r t i c a l  In c r e a s e Ev e r g r e e n  Pa c k a g i n g ,  Ca n t o n ,  No r t h  Ca r o l i n a Da t a  So u r c e   (se e  No t e  1 ) Bo r i n g  ID De p t h  (f t .   be l o w   gr o u n d ) To t a l  Un i t   We i g h t   (p c f ) Sa t u r a t e d   Un i t   We i g h t   (p c f ) Wa t e r   Co n t e n t   (% ) \\ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l  In c r e a s e \ G e o t e c h \ M a t e r i a l  St r e n g t h s  20 1 6 a Ta b :  T ‐C ‐3  Fo u n d a t i o n Pa g e 6 of 6 APPENDIX D STABILITY ANALYSIS gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 C D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u An a l y s i s N a m e : 0 2 - C - W s t L - R Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : C l o s e d , W a s t e , l e f t t o r i g h t s l i p s , s t a t i c . Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u Fa c t o r o f S a f e t y : 2 . 3 9 Ho r z S e i s m i c L o a d : 0 Sl i p s u r f a c e s a r e 5 f e e t d e e p o r d e e p e r , t o e l i m i n a t e s u r f a c e s l o u g h i n g w h i c h a p p r o x i m a t e s i n f i n i t e s l o p e c o n d i t i o n s ( F S = 2 . 5 0 i n W a s t e f o r t h e 4 H : 1 V s l o p e ) an d ( F S = 2 . 3 1 i n C o v e r f o r t h e 4 H : 1 V S i d e s l o p e ) . NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 3 1 . 5 ° P h i - B : 0 ° Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r a b l e ) Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 ( 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 1 of 18 00 0 ) 1. 4 1 . 6 1 . 8 2 . 0 2 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 2 of 18 gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 C D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u An a l y s i s N a m e : 0 2 - C - W s t L - R - s Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : C l o s e d , W a s t e , l e f t t o r i g h t s l i p s , s e i s m i c . Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u Fa c t o r o f S a f e t y : 1 . 5 2 Ho r z S e i s m i c L o a d : 0 . 1 3 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 3 1 . 5 ° P h i - B : 0 ° Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r a b l e ) Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 ( 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 3 of 18 00 0 ) 1. 4 1 . 6 1 . 8 2 . 0 2 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 4 of 18 gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 C D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u An a l y s i s N a m e : 0 1 - O - W s t R - L Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : O p e r a t i o n s , W a s t e , r i g h t t o l e f t s l i p s , s t a t i c . Sl i p s u r f a c e s a r e 5 f e e t d e e p o r d e e p e r , t o e l i m i n a t e s u r f a c e s l o u g h s i n w a s t e , wh i c h a p p r o x i m a t e s i n f i n i t e s l o p e c o n d i t i o n s ( F S = 1 . 8 7 5 f o r t h e 3 H : 1 V s l o p e ) Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u Fa c t o r o f S a f e t y : 1 . 8 5 Ho r z S e i s m i c L o a d : 0 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 3 1 . 5 ° P h i - B : 0 ° Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r a b l e ) Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 ( 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 5 of 18 NO R T H 0. 0 0 . 2 0 . 4 0 . 6 505050 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 6 of 18 gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : S p e n c e r An a l y s i s N a m e : 0 6 - C - F n d & D i k e L - R - P S i n f n d Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : C l o s e d , F o u n d a t i o n & D i k e , l e f t t o r i g h t s l i p s , s t a t i c , s e a s o n a l h i g h p h r e a t i c s u r f a c e . Me t h o d : S p e n c e r Fa c t o r o f S a f e t y : 1 . 6 7 Ho r z S e i s m i c L o a d : 0 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 2 8 . 5 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r ab l e ) P i e z o m e t r i c L i n e : 1 Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 (x 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 7 of 18 1. 6 1 . 8 2 . 0 2 . 2 2 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 8 of 18 gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : S p e n c e r An a l y s i s N a m e : 0 6 - C - F n d & D i k e L - R - P S i n f n d - s Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : C l o s e d , F o u n d a t i o n & D i k e , l e f t t o r i g h t s l i p s , s e i s m i c , s e a s o n a l h i g h p h r e a t i c s u r f a c e . Me t h o d : S p e n c e r Fa c t o r o f S a f e t y : 1 . 4 1 Ho r z S e i s m i c L o a d : 0 . 1 3 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 2 8 . 5 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r ab l e ) P i e z o m e t r i c L i n e : 1 Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 (x 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 9 of 18 1. 6 1 . 8 2 . 0 2 . 2 2 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 10 of 18 gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : S p e n c e r An a l y s i s N a m e : 0 4 - C - F n d L - R - P S i n f n d Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : C l o s e d , F o u n d a t i o n , l e f t t o r i g h t s l i p s , s t a t i c , s e a s o n a l h i g h p h r e a t i c s u r f a c e . Me t h o d : S p e n c e r Fa c t o r o f S a f e t y : 2 . 5 4 Ho r z S e i s m i c L o a d : 0 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 2 8 . 5 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r ab l e ) P i e z o m e t r i c L i n e : 1 Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 (x 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 11 of 18 gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : S p e n c e r An a l y s i s N a m e : 0 4 - C - F n d L - R - P S i n f n d - s Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : C l o s e d , F o u n d a t i o n , l e f t t o r i g h t s l i p s , s e i s m i c , s e a s o n a l h i g h p h r e a t i c s u r f a c e . Me t h o d : S p e n c e r Fa c t o r o f S a f e t y : 1 . 5 4 Ho r z S e i s m i c L o a d : 0 . 1 3 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 2 8 . 5 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r ab l e ) P i e z o m e t r i c L i n e : 1 Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 (x 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 12 of 18 2.50 3.00 3.50 2. 1 0 gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u An a l y s i s N a m e : 0 3 - O - F n d R - L - P S i n f n d Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : O p e r a t i o n s , F o u n d a t i o n , r i g h t t o l e f t s l i p s , s t a t i c , s e a s o n a l h i g h p h r e a t i c s u r f a c e . Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u Fa c t o r o f S a f e t y : 2 . 1 0 Ho r z S e i s m i c L o a d : 0 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 2 8 . 5 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r ab l e ) P i e z o m e t r i c L i n e : 1 Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 (x 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 13 of 18 2.50 3.00 3.50 2. 1 0 Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u An a l y s i s N a m e : 0 3 - O - F n d R - L - P S i n f n d Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : O p e r a t i o n s , F o u n d a t i o n , r i g h t t o l e f t s l i p s , s t a t i c , s e a s o n a l h i g h p h r e a t i c s u r f a c e . Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u Fa c t o r o f S a f e t y : 2 . 1 0 Ho r z S e i s m i c L o a d : 0 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 2 8 . 5 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r ab l e ) P i e z o m e t r i c L i n e : 1 Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 (x 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 14 of 18 Ti t l e: E ve r g r e e n P ac k ag i ng D a t e: 10 / 2 7 / 2 0 1 6 Ti me : 12 :56 :16 PM Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n cr e a s e \ G e o t e c h \ F i l e N a m e : A A 6 C D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u An a l y s i s N a m e : S A - C - F n d & D i k e L - R - P S i n f n d & s a t w s t Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : S E N S I T I V I T Y A N A L Y S I S : C l o s e d , F o u n d a t i o n & D i k e , l e f t t o r i g h t s l i p s , st a t i c , s e a s o n a l h i g h p h r e a t i c s u r f a c e , a n d saturated waste. Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u Fa c t o r o f S a f e t y : 1 . 1 9 Ho r z S e i s m i c L o a d : 0 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n it W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° P i e z o m e t r i c L i n e : 2 Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i gh t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 3 1 . 5 ° P h i - B : 0 ° P i e z o m e t r i c L i n e : 1 Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r ab l e ) P i e z o m e t r i c L i n e : 1 Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 (x 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 15 of 18 00 0 ) 1. 4 1 . 6 1 . 8 2 . 0 2 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 16 of 18 0. 6 5 gg g Di r e c t o r y : \ \ n s e r v e r \ C F S \ B r p p \ N C \ V e r t i c a l I n c r e a s e \ G e o t e c h \ F i l e N a m e : A A 6 D V I . g s z Cr e a t e d B y : B r i a n B . J o h n s o n , ( S e v e e & M a h e r E n g i n e e r s , I n c . ) Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u An a l y s i s N a m e : S A - C - F n d & D i k e R - L - P S i n f n d & s a t w s t Co m m e n t s : C r o s s - S e c t i o n A - A ' De s c r i p t i o n : S E N S I T I V I T Y A N A L Y S I S : C l o s e d , F o u n d a t i o n & D i k e , r i gh t t o l e f t s l i p s , s t a t i c , s e a s o n a l h i g h p h r e a t i c s u r f a c e , a n d saturated waste. Me t h o d : B i s h o p , O r d i n a r y a n d J a n b u Fa c t o r o f S a f e t y : 0 . 6 5 Ho r z S e i s m i c L o a d : 0 NO R T H SOUTH Na m e : S o i l C o v e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 5 p c f C o h e s i o n : 0 p s f P h i : 3 0 ° P h i - B : 0 ° Na m e : W a s t e M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 9 0 p c f C o h e s i o n : 0 p s f P h i : 3 2 ° P h i - B : 0 ° P i e z o m e t r i c Line: 2 Na m e : P e r i m e t e r D i k e s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 1 1 5 p s f P h i : 3 2 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : F o u n d a t i o n M a t e r i a l s M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 1 5 p c f C o h e s i o n : 0 p s f P h i : 2 8 . 5 ° P h i - B : 0 ° Piezometric Line: 1 Na m e : L i n e r M o d e l : M o h r - C o u l o m b U n i t W e i g h t : 1 2 0 p c f C o h e s i o n : 0 p s f P h i : 3 5 ° P h i - B : 0 ° Na m e : B e d r o c k M o d e l : B e d r o c k ( I m p e n e t r ab l e ) P i e z o m e t r i c L i n e : 1 Di s t a n c e ( f t ) ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 (x 1000)2.352.402.452.502.552.602.652.702.752.802.852.90 ( x 1 0 0 0 ) 0. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 E l e v a t i o n ( f t ) ( x 1 0 0 0 ) 2. 3 5 2. 4 0 2. 4 5 2. 5 0 2. 5 5 2. 6 0 2. 6 5 2. 7 0 2. 7 5 2. 8 0 2. 8 5 2. 9 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 17 of 18 0. 4 0 . 6 0 . 8 1 . 0 CF S \ B r p p \ N C \ V e r t i c a l In c r e a s e \ G e o t e c h \ A p p x D St a b i l i t y Re s u l t s Pa g e 18 of 18