Loading...
HomeMy WebLinkAboutSW_F_5306-STRUCT-2015_03-11-2015_SP_AC.pdf hdrinc.com 440 S Church Street, Suite 1000, Charlotte, NC 28202-2075 704.338.6700 March 11, 2015 Mr. Ed Mussler, III, PE, Supervisor Permitting Branch, Solid Waste Section Division of Waste Management, NCDENR 1646 Mail Service Center Raleigh NC 27699 Dear Mr. Mussler, On behalf of Green Meadow, LLC and Charah, Inc., HDR provides the enclosed Addendum 2 regarding the permit application entitled: Permit Application, Colon Mine Site, Structural Fill, Charah, Inc., Sanford, North Carolina. Prepared for Charah, Inc. Prepared by HDR Inc. November 2014. DIN 22354. The purpose of this addendum is to relate proposed enhancement to certain design and engineering aspects of the proposed project, specifically regarding the liner system groundwater separation, stormwater and leachate management systems, and the water quality monitoring plan. In addition this addendum clarifies that a minimum five foot groundwater separation buffer is maintained in the design. The following provides a brief summary of the sections and revisions in this addendum. Facility Plan, Engineering Plan, Operations Plan The narrative of each of these plans has been edited based on the proposed design enhancements and associated calculations. Changes generally include reference to an increase in the minimum groundwater separation, accommodation of the 25-year 24-hour design storm for leachate management, reduction of the subcell sizes to reduce leachate generation potential of the larger design storm, and an increase in the leachate tank capacity. Calculations Revised calculations include HELP model runs using a more stringent lift thickness and design storm in order to model the head on the liner system and determine the required leachate pipe spacing. Additional revised calculations include; leachate generation calculations, pipe capacity and sizing calculations and stormwater calculations to ensure the basins adequately manage the design storm. Design Hydrogeological Plan The Plan is revised to reflect the inclusion of 8 background monitoring events, statistical evaluation, and reference to analysis for Appendix III constituents. 2 Technical Specifications Revisions to the geocomposite, GCL, and geotextiles technical specifications are included that align more specifically to management of coal combustion residuals. Drawings Drawing revisions include the reduction of subcell sized, inclusion of additional leachate collection piping, adjustment to associated drawing details, and modification to erosion control drawings and details to accommodate the larger design storm. Revisions in narrative documents are shown with deletions struckthrough (struckthrough) and additions underlined (underlined) along with a change line indicator in the left margin. In most cases, only revised pages of narrative documents have been provided. As requested, upon completion of the permit application process the revisions will be combined into a final permit application document for the record. Please contact me should you have any questions. We hope you find these design enhancements acceptable and we look forward to discussing them with you. Sincerely, HDR Engineering, Inc. of the Carolinas Michael D. Plummer, PE Project Manager Enclosures: Appendix to Lee County Application Facility Plan Engineering Plan Operations Plan Calculation D Leachate HELP Model Summary Memo Design of Leachate Collection System Narrative Attachment 1 Summary of Model Input Data and Results Attachment 2 HELP Model Output Files (Scenarios 1-7) Pipe Sizing Pipe Orifice Sizing Pipe Perforations Pipe Capacity Determination Leachate Tank Sizing Calculation E Stormwater Subcell Divider Berms Sediment Basins #3, 4, 6, 8, 9 3 Design Hydrogeological Report Figure 6 (revised) Technical Specifications 01060 – Special Conditions 02777 – Drainage Composite 02778 – Geotextiles 02800 – Geosynthetic Clay Liner (GCL) Drawings Site Work 00C-02 00C-03 00C-05 00C-06 00C-08 Erosion and Sedimentation Control 01C-11 01C-12 This page intentionally left blank. 1 APPENDIX TO LEE COUNTY APPLICATION This document is attached as an appendix to the application (Application) being submitted by Charah, Inc. for the permitting, construction and operation of a facility in Lee County (Facility) to receive coal combustion products (CCP) from one or more electric generating facilities operated by Duke Energy Progress, Inc. and Duke Energy Carolinas, LLC. For clarity, the applicant will only receive ash from Duke’s North Carolina facilities. The purpose of this Appendix is to describe the goals and philosophy reflected in the Application, which is intended to comply with all applicable environmental standards, including both (1) Session Law 2014-122, which enacted the Coal Ash Management Act of 2014 as a part of its terms (collectively, CAMA); and (2) the rules regarding Hazardous and Solid Waste Management system: Disposal of Coal Combustion Residuals from Electric Utilities, promulgated by the United States Environmental Protection Agency (EPA) submitted for publication on December 19, 2014 (CCR Rules). The Application is being submitted to the Division of Waste Management (DWM) of the North Carolina Department of Environment and Natural Resources to secure an individual permit (Permit) under G.S. § 130A-309.215 that would authorize the use of CCP as structural fill at the Facility to reclaim an open pit mine in accordance with G.S. § 130A-309.201(14). As such, the Application contains the information required under G.S. § 130A-309.215(b), which reflects the following:  the design, construction and operational requirements in G.S. § 130A-309.216(a);  the liner, leachate collection system, cap and groundwater monitoring system requirements in G.S. § 130A-309.216(b);  the siting requirements under G.S. § 130A-309.216(c); and 2  the financial assurance requirements of G.S. § 130A-309.217. The Application also reflects, to the extent necessary or appropriate, efforts that will be required to comply with the remaining terms of Subpart 3 of CAMA and other applicable provisions of Chapter 130 of the North Carolina General Statutes and Title 15A of the North Carolina Administrative Code (NC Requirements). While the Facility as proposed in the Application would meet the four (4) criteria applicable to unencapsulated beneficial use of the CCP, and the proposed use of the CCP as mine filling as a practical matter constitutes a beneficial use of the material, the Applicant will take the conservative approach of seeking compliance with the requirements of the applicable CCR Rules. While the Application requests a state permit from DWM under the NC Requirements, the Applicant is also voluntarily designing, siting, constructing, and operating the Facility in accordance with the CCR Rules including:  location restrictions, including placement above the uppermost aquifer (40 CFR § 257.60), wetlands (40 CFR § 257.61), fault areas (40 CFR § 257.62), seismic impact zones (40 CFR § 257.63), and unstable areas (40 CFR § 257.64);  design criteria (40 CFR § 257.70);  operating criteria, including air criteria (40 CFR § 257.80), run-on and run-off controls (40 CFR § 257.81), inspection requirements (40 CFR § 257.84), groundwater monitoring and potential groundwater corrective actions (40 CFR §§ 257.90-257.98 and Appendices III and IV), and closure and post-closure care (40 CFR §§ 257.101-275.104); and  recordkeeping (40 CFR § 257.105), notification (40 CFR § 257.106), and internet posting requirements (40 CFR § 257.107). It is presumed that any Permit that DWM issues for the Facility based on the Application will be consistent with this approach and design philosophy. Facility Plan Colon Mine Site Structural Fill Charah, Inc. Sanford, NC November 2014 Revised January 2015 Revised March 2015 Charah, Inc. | Colon Mine Site – Facility Plan Facility Plan 8 Table 1 Structural Fill Horizontal Separation Requirements Summary Feature Restriction: A structural fill cannot be within Property boundary 50 feet Private dwelling or well 300 feet Perennial stream or other surface water bodya 50 feet Floodplain A 100-year floodplainb Wetland 50 feetc a The structural fill cannot be within 50 feet of the top of the bank of a perennial stream or other surface water body. b In accordance with NCGS §130A-309.216 (c) (5), the structural fill cannot be placed “within a 100-year floodplain except as authorized under [NC]G.S. 143-215.54A(b). A site located in a floodplain shall not restrict the flow of the 100-year flood, reduce the temporary water storage capacity of the floodplain or result in washout of solid waste so as to pose a hazard to human life, wildlife, or land or water resources.” c In accordance with NCGS §130A-309.216 (c) (6), the structural fill cannot be placed “within 50 horizontal feet of a wetland, unless, after consideration of the chemical and physical impact on the wetland, the United States Army Corps of Engineers issues a permit or waiver for the fill.” The property boundary, private dwellings, groundwater wells, and floodplain buffers have been maintained as shown on Sheet G-02, Facility Plan and Buffers . Streams and wetlands were delineated and located onsite by Clearwater Environmental on August 8, 2014. The structural fill design impacts approximately 2,040 linear feet of streams and 0.62 acres of wetlands. Impacts to these will be permitted by the US Army Corp of Engineers and the NCDENR Division of Water Quality before construction occurs in these areas. 2.1.3.2 VERTICAL SEPARATION REQUIREMENT NCGS §130A-309.216 (c) also mandates a vertical separation requirement for CCPs used as structural fill. The structural fill can not be placed within four feet of the seasonal high groundwater table per NCGS §130A-309.216 (c) (4). For this application tThe bottom of ash the GCL liner has been designed to be a minimum four five feet above the estimated seasonal high groundwater table. The proposed design satisfies the vertical separation requirements as shown on drawings provided with the Design Hydrogeological Report included in this Permit Application. 2.1.4 Types of CCP The types of CCP specified for placement in the structural fill area are anticipated to be consistent with the CCP definition found in NCGS §130A-309.201 (4). This includes fly ash, bottom ash, boiler slag, or flue gas desulfurization materials. 2.1.5 Estimated Placement Rates The anticipated filling rates of 6,000 to 8,000 tons per day which equates to 130,000 to 140,000 tons per month or 1,560,000 to 1,680,000 tons per year. This material will be brought to the site by truck, rail, or a combination thereof. Placement methods are detailed in the Operations Plan included in this Permit Application. Based on these filling rates, an assumed CCP density of 1.25 tons per cy, and an overall CCP capacity of approximately 7.25 million cy, this structural fill should take approximately 5.4 TO 5.8 years to complete. 2.1.6 Service Area CCPs may come from power generation facilities located in North Carolina and South Carolina. Initial operations will receive ash from Duke Energy's Riverbend and Sutton facilities. Charah, Inc. | Colon Mine Site – Facility Plan Facility Plan 9 2.1.7 Procedures for CCP Acceptance The structural fill will only accept CCPs that it is permitted to receive. The appropriate toxicity characteristic leaching procedure (TCLP) analyses are included in the Related Documents section of this application. The process will be repeated if the source changes. Any load that contains materials or CCPs that the structural fill is not allowed to accept will not be placed in the structural fill. 2.1.8 Equipment Requirements Equipment requirements may vary in accordance with the method or scope of structural fill operations at any given time. Additional or different types of equipment may be provided as necessary to enhance operational efficiency; however, in order to ensure adequate operation of the proposed facility, arrangements shall be made to ensure that equipment is available for the following activities.  Excavation of onsite soil  Preparing the cells for CCP reception  Spreading and compacting the CCP  Moisture conditioning the CCP or structural fill  Excavating and transporting cover soil  Spreading and compacting cover soil  Site maintenance, dust control, and clean-up work The equipment onsite is currently used to manage mining operations. When the proposed structural fill is ready to accept CCPs, the equipment will use the procedures and techniques for spreading, compacting, and covering CCPs outlined in the Operations Plan included in this Permit Application. In the event the amount of CCP placement increases significantly, the need for additional equipment will be evaluated. Additional equipment may be rented to accommodate short term needs or purchased to accommodate increased CCP placement rates. 2.2 Containment and Environmental Control Systems The base liner and final cap system will be constructed in accordance with NCGS §130A- 309.216. 2.2.1 Base Liner System The purpose of the base liner system is to contain CCPs within the structural fill and prevent groundwater contamination by the CCPs. The base liner area for the structural fill is approximately 118 acres and is shown on Sheet No. 00C-03, Top of Liner. The post-settlement bottom elevation of the ash GCL liner will meet the minimum requirement of fourfive feet above the seasonal high groundwater table. North Carolina law allows two different types of baseliner systems. The following describes the components of the regulatory base liner system options from top down and as shown on the drawings. 2.2.1.1 COMPOSITE BASE LINER SYSTEM OPTION 1  60 mil HDPE geosynthetic liner  24 inches of compacted soil liner with a permeability of 1 x 10-7 cm/sec Charah, Inc. | Colon Mine Site – Facility Plan Facility Plan 10 2.2.1.2 COMPOSITE BASE LINER SYSTEM OPTION 2  60 mil HDPE geosynthetic liner  geosynthetic clay liner  18 inches of compacted soil liner with a permeability of 1 x 10-5 cm/sec Option 2 was used as the basis of design for this permit application. 2.2.2 Final Cap System The purpose of the final cap system is to contain CCP within the structural fill, prevent exposure of CCP, prevent infiltration into the structural fill, minimize erosion, and prevent stormwater from contacting CCP. The total area for the final cap system for the structural fill is approximately 118 acres (see Sheet 00C-04, Reclamation Plan). There are two proposed final cap system designs: a soil and geomembrane cap system option and a soil, geocomposite drainage layer and geomembrane cap system option. Each cap system has a top design and a side slope design. The components of the two proposed final cap systems are shown in Tables 2 and 3 below. The soil permeabilities are shown on the drawings. Table 2 Final Cap System Design: Soil and Geomembrane Option 2% Top Design 4:1 Sideslope Design  6 inches topsoil  6 inches topsoil  12 inches low permeable soil layer  12 inches low permeable soil layer  24 inches unclassified soil layer  12 inches unclassified soil layer  30 inches drainage soil layer  18 inches drainage soil layer  40 mil polyethylene geomembrane  40 mil polyethylene geomembrane Table 3 Final Cap System: Soil, Geocomposite Drainage Layer and Geomembrane Option 2% Top Design 4:1 Sideslope Design  6 inches topsoil  6 inches topsoil  66 inches soil layer  42 inches soil layer  250 mil geocomposite drainage layer  250 mil geocomposite drainage layer  40 mil polyethylene geomembrane  40 mil polyethylene geomembrane 2.2.3 Drainage, Erosion and Sediment Control The erosion and sediment control structures are designed and maintained to manage the run-off generated by the 25-year storm event, convey it to the sediment basins, and conform to the requirements of the Sedimentation Pollution Control Law. Sediment basins were designed to pass contain the 1025-year 24-hour design storm without employing use of the emergency spillways. Additional routing was performed to confirm that the emergency spillways can successfully pass the 25-year and 100-year storm events. As part of the final cap system, diversion berms, side slope swales, and slope drains will be constructed to intercept run-off and prevent erosion. The side slope swales and diversion berms will be longitudinally sloped will carry run-off to slope drains that discharge into a perimeter channel. Channels will direct stormwater flow to sediment basins within the property. Charah, Inc. | Colon Mine Site – Facility Plan Facility Plan 12 Based on the topography shown on Sheet 00C-01, Existing Conditions, approximately 1.83 million cy of cut and 250,000 cy of fill are anticipated to construct the structural fill basegrades, perimeter berms, and perimeter roads. This represents an excess of approximately 1.58 million cy of soil that can be used for liner system or final cover construction if the soil meets the applicable specifications. Soils unsuitable for these uses can be stockpiled for operations or sold under the existing mining permit. Since Table 4 indicates that approximately 1.4 million cy will be required for the base system and closure, a net soil surplus of approximately 180,000 cy is anticipated, assuming all the soils onsite are suitable for use in the construction. Should there be a deficit in soils, the soil necessary to compensate for this deficit will be obtained from onsite borrow areas unidentified at this time or offsite sources. Two areas on Sheet 00C-02, Base Grade Plan, identified locations for potential future stockpiling of onsite soils. Erosion and sedimentation controls will be designed and permitted and any other necessary permits will be obtained prior to construction. 2.4 Leachate Management The leachate management system includes features for collection, storage and disposal of leachate. 2.4.1 Leachate Collection System NCGS §130A-309.216 (b) (2) mandates that, “[a] leachate collection system, which is constructed directly above the base liner and shall be designed to effectively collect and remove leachate from the project.” The base liner system will be constructed to maintain positive drainage post settlement to encourage leachate to drain to the sump. The general leachate management system includes the collection, storage, treatment, and disposal of the leachate generated. The collection of leachate will be facilitated within the structural fill by the geocomposite drainage layer located directly on top of the base liner system and the use of perforated HDPE pipe laterals and header designed to hydraulically convey leachate to sump areas, which will contain submersible pumps. From there, leachate will be pumped through a solid wall HDPE forcemain to a leachate storage tank that will be located at the site. Clean-out riser pipes will be provided as shown on the drawings to allow for cleaning as necessary. Leachate storage is provided in a 250,0001,000,000 gallon storage tank with a secondary containment. Leachate storage may be managed in the structural fill as needed for periods not exceeding 72 hours. The Operator will dispose of the leachate properly at a wastewater treatment plant and will obtain a discharge permit and/or a pump and haul permit for the leachate. 2.4.2 Leachate Generation Rates Leachate is generated from a couple of sources: the liquids present in the ash at the time of placement and stormwater that infiltrates the CCP. Disposal of large quantities of liquid is currently prohibited in structural fills and unless it has rained during collection, most CCP is relatively dry; therefore, the majority of all leachate is derived from precipitation. Operations can Charah, Inc. | Colon Mine Site – Facility Plan Facility Plan 13 greatly influence the diversion of precipitation from the placed CCP and hence impact the amount entering the system to be collected as leachate at some future date. Construction of structural fill will result in a total lined area of approximately 118 acres. For the largest a subcell 15.331.9 acres in size and using an estimated leachate generation rate of 43,76178,144 cubic feet per acre per year as determined through HELP Model runs (see Calculations section of this Permit Application), a typical daily generation rate of 13,72151,085 gallons per day is anticipated. A 2501,000,000 gallon leachate storage tank represents approximately 18 23.5 days of storage capacity for the entire structural fill in operation. Storage capacity is also available within the subcell. Based on information provided by Charah, the leachate/contact water discharged from the Asheville airport site to the Buncombe County Metropolitan Sewer District (MSD) has averaged 1,418,000 gallons per month for Area 3 (30.8 acres) or 46,039 gallons per acre per month. This average includes varying surface conditions across the Area 3 containment area from open areas where all rainwater becomes contact water to areas that are above grade and covered with soil thereby diverting clean rain water to the sediment basins. The HELP Model results included in the Calculations section of the Permit Application estimates an average annual flow rate of 43,76059,786 cubic feet (327,325447,200 gallons) per acre assuming a 20 foot thick layer of ash across the acre. However, the worst case condition for leachate handling would be contact water from a storm event immediately upon activating an area. A 225-year 24-hour storm event was selected as the design storm since the largest subcell (15.3 acres) will take approximately five months to floor in the area with 20 feet of ash at the lower placement rate of 1,560,000 tons per year. The 2-year storm eventwhich for the area is 3.66.28 inches. This equates to approximately 1,495,5551,023,000 gallons within the largestover a 6 acre subcell area or 97,749 gallons per. The leachate pipes as shown in the Pipe Sizing calculation of the Leachate Calculation section have been designed to reduce the head on the liner system to below 30 cm convey for this storm event within 5.5 days 72 hours. The subcell divider berms have been designed to store the entire storm event as shown in the Stormwater Calculation section. The leachate/contact water from each subcell will be piped to the sump in solid pipes, out to the leachate tank, and then pumped to the treatment plant. 2.4.3 Leachate Management Systems 2.4.3.1 LEACHATE PIPELINE OPERATING CAPACITY The 8-inch diameter design for the leachate collection laterals and headers is sufficient to drain leachate and allow for pipe cleaning and video recording. The maximum drainage length is 950 feet, as modeled on a two percent slope. The required maximum drainage length will vary as the slope of the base liner varies. Leachate pipe spacing should be verified prior to leachate pipe placement. HDPE pipe will be used due to its chemical resistance to corrosion from leachate. The thickness and other physical properties of the pipe were selected to provide adequate structural strength to support the maximum static and dynamic loads and stresses imposed by the overlying materials and any equipment used in construction and operation of the structural fill. Charah, Inc. | Colon Mine Site – Facility Plan Facility Plan 14 The material surrounding the leachate collection pipes will consist of a coarse aggregate installed to provide a direct conduit between the pipe and CCP. The aggregate will be chemically compatible with the leachate generated and will be placed to provide adequate support to the pipes. Calculations for various materials and conditions are included in the Calculations portion this Permit Application. 2.4.3.2 CAPACITY OF STORAGE AND TREATMENT FACILITIES The primary leachate disposal will via private sewer line to a wastewater treatment plant. A discharge permit is currently being sought and will be provided prior to operation of the system 2.4.3.3 FINAL DISPOSAL PLANS AND DISCHARGE LIMITS Leachate will be hauled by tanker trucks for disposal at a wastewater treatment plant. A discharge permit has not yet been obtained from a wastewater treatment plant. A copy of the discharge permit for the leachate will be included in the Operations Plan. The industrial discharge permit will be provided prior to the placement of ash within the structural fill. A pump and haul permit may also be obtained. 2.5 Landowner Statement NCGS §130A-309.215 (b) (1) e. requires that this permit application include a signed and dated statement by the owner of the land on which the structural fill is to be placed, acknowledging and consenting to the use of CCP as structural fill on the property and agreeing to record the fill in accordance with the requirements of G.S. 130A-[309].219. The Landowner Statement can be found in Appendix A of this Facility Plan. 2.6 Generator Contact Information In accordance with NCGS §130A-309.215 (b) (1) f., the name, address, and contact information for the generator of the CCP is provided in Appendix B. Initial generators listed are Duke Energy's Riverbend and Sutton facilities. This information will be updated if new generators or new sources of CCP will be used as structural fill at the site. 2.7 Coal Combustion Product Generation Location In accordance with NCGS §130A-309.215 (b) (1) g. the physical location of the project at which the CCP were generated is provided in Appendix B. This information will be updated if new generators or new sources of CCP will be used as structural fill at the site. This page intentionally left blank. Engineering Plan Colon Mine Site Structural Fill Charah, Inc. Sanford, NC November 2014 Revised December 2014 Revised March 2015 Charah, Inc. | Colon Mine Site – Engineering Plan Base Liner System Design 2 Boring logs from the Design Hydrogeological Report were used to determine the soil types, depths and SPT values for each well and piezometer location within the structural fill footprint. Proposed base grades, final grades, and water table elevations were determined at each well and piezometer location. The existing vertical stress was calculated in each soil layer based on laboratory test data obtained for the foundation soils and published information for similar materials. The structural fill loading due to CCP and final cover was also determined using laboratory test data provided for compacted CCP obtained from the Riverbend Steam Station in Mount Holly, North Carolina. The total settlement was calculated using standard equations for elastic settlement and primary and secondary consolidation settlement as appropriate for the types of soils encountered at each location. The controlling surface (bedrock or water) was determined and the post settlement separation of the base grade from the controlling surface was verified. Also determined was the post settlement slope of the base grade. The pre- and post-settlement average slopes at several locations were analyzed for local settlement based on the anticipated loading and the boring log information. The calculations indicated positive drainage toward the leachate sumps would be maintained after settlement. 3 Base Liner System Design In accordance with NCGS §130A-309.216 a base liner consisting of one of two liner systems are allowed for CCP structural fills. 3.1 Base Liner System 1  A composite liner that consists of two components: a geomembrane liner installed above and in direct and uniform contact with a compacted clay liner with a minimum thickness of 24 inches (0.61 m) and a permeability of no more than 1.0 x 10-7 centimeters per second. 3.2 Base Liner System 2  A composite liner that consists of three components: a geomembrane liner installed above and in uniform contact with a geosynthetic clay liner overlying a compacted clay liner with a minimum thickness of 18 inches (0.46 m) and a permeability of no more than 1.0 x 10-5 centimeters per second. For the purposes of this Permit Application, Base Liner System 2 has been shown in the calculations; however, either liner system is allowed. 4 Leachate Management System Details The general leachate management system includes the collection, storage, treatment, and disposal of the leachate generated. The collection of leachate will be facilitated within the structural fill by use of a series of interconnected perforated and solid HDPE pipe laterals and headers designed to hydraulically convey leachate to a sump area along with a geocomposite that covers the geomembrane barrier layer. The leachate collection pipes are surrounded by stone and geotextile. The solid and perforated pipes contain valves to allow the pipes to convey either segregate stormwater or and leachate depending on whether the subcell has received Charah, Inc. | Colon Mine Site – Engineering Plan Stormwater Segregation Features 3 CCP. In addition to the valves each subcell divider berm will have a rain flap welded to the bottom geomembrane. When the Operator is ready to activate a subcell for CCP placement the valves will be opened and the rain flap removed to allow leachate to flow downstream to a sump area that will contain two submersible pumps. There are three sump locations with pumps installed in HDPE riser pipes that will pump the leachate into a forcemain which discharges to a leachate storage tank to be located south of Cell 1. The leachate will then be pumped from the tank to the receiving treatment plant or into trucks for hauling to and disposal at the local treatment plant. Depending on availability, the leachate may be discharged directly to the sanitary sewer system. Clean-out riser pipes will be provided for each lateral and header as shown on the drawings to allow for periodic cleaning and maintenance. The leachate collection system has been designed to manage a 225-year, 24 hour storm event during an open subcell condition and has been modeled through the HELP model for prediction of long term leachate generated at varying stages of fill. 5 Stormwater Segregation Features In order to minimize leachate generation during initial filling, stormwater will be segregated by using subcell divider berms, pipes, and a rain flap over the divider berms. The subcell divider berms have been sized to manage a 225-year 24-hour storm. The stormwater that is collected in the subcells will be pumped out to the perimeter channel. Stormwater that is in contact with the CCP structural fill will be collected and handled as leachate. As filling progresses, the areas where CCP has reached final grade will be covered with intermediate cover soil to minimize leachate generation. Site development is intended to comply with the North Carolina Sedimentation Pollution Control Act of 1973, as amended. The plans provide for a pre- and post-development erosion control plan that splits the onsite drainage areas into nine separate basins during the initial grading operations. As the fill project comes out of the ground and begins to take shape with permanent drainage, four of these initial basins will be removed and drainage redirected to one of the five remaining basins to serve as the final erosion control primary measures. The drainage areas for these basins range in size from 3 to 86 acres. The ponds are designed to discharge the 1025-year storm (Type II, 24 hour) through the principal spillways (Risers and Barrels) and are capable of passing the 100-year storm in a controlled manner through an emergency spillway with one foot of freeboard. Initial development will include the installation of all perimeter erosion control measures (construction entrance, silt fence, tree protection), and temporary diversion swales as necessary to direct sediment laden run-off to the primary treatment basins. Along all sensitive boundaries (streams and wetlands not to be disturbed), double silt fence will be installed. The ponds that are to exist in both pre and post conditions are to be installed for the most conservative condition and outlet protection is designed for the maximum flow that a particular basin and its drainage area may produce. Charah, Inc. | Colon Mine Site – Engineering Plan Leachate/Stormwater Storage and Treatment Facilities 6 materials. A detailed description of the parameter selection process is provided in the slope stability Calculations section of this permit application. A search routine within PCSTABL5M was used to determine the critical sliding block surface based on the modified Janbu method and critical circular arc surface using the modified Bishop method. Analyses were performed under both total stress and effective stress conditions. The estimated high groundwater potentiometric surface was also used in the analyses. Two types of circular arc analyses were performed by adjusting the limits of the search routine. These included global circular arc failure surfaces extending through the foundation soils and into or beyond the perimeter berm as well as failure surfaces originating and terminating within the CCP fill. A summary of the minimum factors of safety associated with each analysis under both static and seismic conditions is provided in the slope stability calculations included in this permit application. The critical analysis was determined to be the sliding block analysis along the bottom liner system under effective stress conditions with static and seismic factors of safety of 4.33 and 3.03, respectively. All factors of safety are satisfactory and meet EPA guidelines. Final cover veneer stability analyses were performed for both final cover options to determine the minimum interface friction angle required for the final cover system. The analysis for Option 1, which included an 18-inch thick soil drainage layer placed directly over the final cover geomembrane, assumed that this layer would be fully saturated due to lateral seepage. The analysis for Option 2, which included a geocomposite placed directly over the final cover geomembrane in lieu of the soil drainage layer used for Option 1, assumed the geocomposite would be designed to contain the lateral seepage and therefore the overlying soil would not become saturated. The analyses that were performed for the proposed final slope of 25% (4H:1V) under both static and seismic conditions resulted in a minimum required interface friction angle of 25.0 degrees for Option 1 and 20.5 degrees for Option 2. These minimum required interface friction angles should be readily achieved using geosynthetic products readily available in the market. Project specific interface testing, however, should be performed to confirm that the minimum required interface friction angle can be achieved using the actual materials that will be used during construction. 8 Leachate/Stormwater Storage and Treatment Facilities Determination of leachate storage capacity was based on average annual leachate collection rate from the HELP model. The maximum average annual leachate collection calculated was 43,76178,144 cf/acre. Based on the largest subcell at 15.331.9 acres the leachate generation volume is 669,5432,492,794 cf/year (13,72151,085 gal/day). Considering the 250,0001,000,000 gal capacity available onsite, the storage capability is approximately 18 23.5 days. Note that the above estimate is based on average leachate generation rate and the storage capacity needed could be significantly more if peak day leachate generation rates are used. Therefore, the owner may need increased leachate pumping and/or trucking capabilities during peak demands. Charah, Inc. | Colon Mine Site – Engineering Plan Site Access 7 Determination of storage capacity is based on the 225-year, 24-hr rain event which is 3.66.28 inches. Each subcell has been analyzed for its storage capacity based on grading and the height of the subcell divider berms. Most All subcells are capable of holding the design storm event. The largest subcell 2 (15.3 acres) will generate 1,495,554 gals of stormwater during the design event. Its holding capacity is 2,533,311 gals based on the containment berm height. Subcells 1B, 4B, and 5B can manage the stormwater generated in upper subcells meaning the owner can manage stormwater for both subcells within the lower subcell. Subcells 3B and 4D cannot manage the stormwater from the upstream subcell and therefore should be maintained independently. Storage capacity onsite is governed by average leachate generation rates based on HELP model. Since the peak storage capacity is greater than leachate subcell capacities, the methods of filling and leachate pumping from a subcell may need to be altered to facilitate filling. 9 Site Access Security for the site consists of fencing, gates, berms, and wooded buffers. Unauthorized vehicle access to the site is prevented around the property by woodlands, fencing, gates, and stormwater conveyance features. The access road to the site is of all-weather construction and will be maintained in good condition. Potholes, ruts, and debris on the road(s) will receive immediate attention in order to avoid damage to vehicles. 10 Construction Practices A test pad will be constructed of the soils proposed for use as the soil liner to determine the construction methods necessary to achieve the design criteria. Placement will begin by “ramping in” with material from a corner of the cell. Low ground pressure dozers will be used to spread the material. A minimum thickness of 24 inches will be maintained between the liner and the tracks of the spreading equipment and 24 inches above the HDPE pipes. The CCP material will be end-dumped onto previously placed material and then spread out by the dozer. A spotter assisting the operator will observe placement of protective cover material to ensure that spreading is not causing excessive wrinkling or other damage to the synthetic liner, pipes, or geocomposite drainage media. The spotter will measure the forward edge of material placement to ensure that the proper thickness is being applied. The contractor will confirm adequate thickness by surveying before and after placement. The operator shall observe the top of the completed protective cover layer for a smooth, uniform surface free of depressions or high-spots. Refer to the Technical Specifications and Construction Quality Assurance (CQA) Plan included in this Permit Application 11 Design Hydrogeologic Report The subsurface geology and hydrogeology beneath the proposed structural fill is detailed in the Design Hydrogeologic Report included in this Permit Application. This page intentionally left blank. Operations Plan Colon Mine Site Structural Fill Charah, Inc. Sanford, NC November 2014 Revised January 2015 Revised March 2015 Charah, Inc. | Colon Mine Site – Operations Plan Operations Management 3  Daily Operation Record  Employee Training Records and Materials  or anything else as indicated in the Operations Plan The above records are to be kept in the operating record for the active life of the Colon Mine Site and the 30-year post-closure period. Information contained in the operating record must be furnished upon request to the North Carolina Department of Environment and Natural Resources (NCDENR). Additional records kept onsite should include the following.  Facility permit application  Facility permits  Record of the amount of structural fill placed on a monthly basis  Regulatory agency inspection reports  Construction documents  Employee training records  As-built drawings and specifications  Health & Safety Plan  Emergency Action Plan 1.11 Permit Drawings Permit drawings are included in the structural fill permit application. 2 Operations Management The primary objective of operations management at the Colon Mine Site is to place structural fill in the form of CCPs in compliance with permit conditions while operating in a safe manner. Prior to placement of CCP in a new cell, new subcell, or portion of a new subcell, the Owner will submit to NCDENR the Construction Quality Assurance documentation for the constructed base liner for review. Should any discrepancies be indicated, NCDENR will contact the Owner for follow up. Placement of CCP in new cell, new subcell, or portion of a new subcell prior to approval by NCDENR will be at the owner’s risk. The structural fill site has been designed to provide separation of contact water from non- contact water. Contact water is defined as water that contacts CCP material within the geomembrane lined limits of structural fill. Contact water will be managed as leachate while non-contact water will be managed as stormwater. Contact water and non-contact water separation are further described in subsequent sections of this plan. Filling operations will generally proceed from high to low to high. The working face will be limited to as small an area as practical, at the owner’s discretion. Contact water from the active face will be directed to the leachate collection system. Intermediate cover will be placed as CCP fill reaches final grades to prevent contact water from entering the stormwater control features. Charah, Inc. | Colon Mine Site – Operations Plan Operations Management 4 2.1 Structural Fill Placement and Sequencing 2.1.1 Structural Fill Capacity The total anticipated airspace capacity for the Colon Mine Site is approximately 7.25million cubic yards and is based on a proposed 118-acre fill area. 2.1.2 Structural Fill Acceptance Requirements In accordance with NCGS §130A-309.216 (a) (2) CCPs shall be collected and transported in a manner that will prevent nuisances and hazards to public health and safety. CCPs shall be moisture conditioned, as necessary, and transported in covered trucks or rail cars to prevent dusting. As such, the Colon Mine Site can accept CCPs defined as fly ash, bottom ash, boiler slag, or flue gas desulfurization materials in NCGS §130A-309.216 (4). In accordance with NCGS §130A-309.215 (b) (1) d, a Toxicity Characteristic Leaching Procedure (TCLP) analysis has been performed on a representative sample from Duke Energy’s Sutton Plant and Riverbend Steam Station CCP sources to be used in the structural fill project. Each was analyzed for, at a minimum, the following constituents: arsenic, barium, cadmium, lead, chromium, mercury, selenium, and silver. The TCLP results are included in the Related Documents section of this application. TCLP tests will be performed on each new ash source and at least annually for each source. Asbestos containing material will not be placed in the structural fill site. In addition, the removal of CCP structural fill material from the site is prohibited without owner approval. Structural fill will be hauled and placed by dedicated and consistent operators. 2.1.3 Fill Sequencing The Colon Mine Site will be developed in sequence from Cell 1 through Cell 5. CCP product will be placed in three to five foot operational lifts, high to low to high. A conceptual schematic of fill sequencing from high to low to high is included in the permit drawings; however, actual fill sequencing and lift heights may be modified at the Owner’s discretion. More than one cell may be operational at a time. The cells may are also be subdivided into subcells. The following procedure shall be followed to activate an area for leachate collection prior to placing CCP.  Remove all stormwater (i.e., water that has not contacted ash) ponded within the area. Stormwater may be pumped directly into the perimeter channel.  Close the Stormwater valve. Ensure the valve is completely closed.  Open the leachate valve. Ensure the valve is opened fully.  Remove the rain flap by cutting above the weld to the sacrificial liner above the primary geomembrane (refer detail 8 on Drawing 00C-08). Visually inspect the area to confirm the integrity of the base liner. If the base liner appears damaged, repair it in accordance with the technical specifications. Charah, Inc. | Colon Mine Site – Operations Plan Operations Management 8  Modifying operations during dry and windy conditions The operator may use, and is not limited to, combinations of these dust control methods or any method that is technically sound to control dust for specific site conditions. If the operator intends to use a dust control method not presented above, the proposed dust control method will be evaluated on a case by case basis to assess the effectiveness with specific site conditions. For the purposes of this Operations Plan, interim cover soil will be defined as soil material applied at a suitable thickness to provide dust control. The effectiveness of the dust control methods implemented should be evaluated through visual observations of dust prone areas. Equipment operators shall continuously observe the active face and other areas within the facility for dust emissions. If fugitive dust emissions are observed and observations indicate dust control measures are not achieving their intended purpose, then appropriate corrective actions will be taken. Dust control measures should be reapplied, repaired, or added, as necessary, to control dust emissions. The operator will construct, install, apply, and/or repair dust control measures prior to the end of the work day to control dust emissions during non-operating hours. The operator shall also implement dust control measures as preventative controls rather than in response to fugitive dust emissions. A wheel wash system may be necessary to minimize dust and tracking of CCPs outside the facility. 2.2 Leachate and Contact Water Management In accordance with NCGS §130A-309.216 (a) (5) the CCP structural fill project will be effectively maintained and operated as a nondischarge system to prevent discharge to surface water resulting from the project. As previously described, the structural fill site has been designed to provide separation of contact water from non-contact water (stormwater). Contact water will be treated as leachate and conveyed to the LCS. Contact water which contacts exposed CCP material within the lined footprint will be conveyed through the LCS. Stormwater will be routed to onsite sediment basins prior to discharge from the site. 2.2.1 Leachate Collection System The LCS includes a synthetic composite drainage layer and leachate collection pipes with clean-outs. Leachate generated in each cell drains by gravity via perforated header pipes to a series of sumps and then pumped to a central lift station where it is then pumped into a 250,0001,000,000 gallon storage tank with a secondary containment. Leachate will either be transported to a wastewater treatment plant or discharged directly into a sanitary sewer system. All loading of leachate tankers will take place on the loading pad next to the storage tank. Prior to loading the operator will insure that the leachate diverter valve is open on the drain pad so any leachate that may be spilled during loading operations will drain back into the lift station. 1 Memo Date: Sunday, March 08, 2015 Project: Charah Colon Mine To: Michael Plummer From: Eric Wright Subject: HELP Model - Slope and Pipe Spacing vs Peak Head on Liner The HELP model was run for some initial lift conditions where no runoff was allowed. Most of the runs include a 25-year 24-hour storm event of 6.28 inches. The initial runs were done with the default data which had a 5.22 inch storm event. The runs adjusted drainage length for a group of slopes to maintain less than 30 cm (11.8 inches) of peak head on the liner system. The table below summarizes the results. The HELP model runs are provided in Attachment 2 to the Design of the Leachate Collection System narrative. These seven scenarios replace all HELP model runs previously provided in Attachments 2 and 6 (Attachment 6 has been deleted). Scenario HELP Model Max Storm (in) Ash Thickness (ft) Lift Thickness (ft) Floor Slope Drainage Length (ft) Peak Head (in) 1 5-2ft lifts no runoff 0.5% 6.28 10 2 0.5% 300 9.7 2 5-2ft lifts no runoff 1% 6.28 10 2 1% 425 11.6 3 5-2ft lifts no runoff 2% 6.28 10 2 2% 600 11.6 4 5-2ft lifts no runoff 3% 6.28 10 2 3% 840 9.5 5 10-2ft lifts no runoff 2% 6.28 20 2 2% 950 0.36 6 2-20ft lifts no runoff 2% 6.28 20 20 2% 950 0.32 7 3-20ft lifts no runoff 2% 6.28 20 20 2% 950 0.26 This page intentionally left blank. Computed: MDP Date: 3/8/15 Checked : PAW Date: 3/8/15 Page 1 of 2 Revised March 2015 Design of Leachate Collection System The HELP model Version 3.95D is used to design the leachate collection system for the Colon Mine Site in Sanford, NC. This section presents the design assumptions, decisions, background data, and calculations for the water balance model. The section outlines efforts to establish leachate generation rates and maximum hydraulic heads on the liner. The leachate generation rates established per acre should be used to design the leachate collection and removal system. The structural fill liner will consist of the following components, from bottom to top.  18-inch compacted soil liner  GCL  60-mil HDPE primary liner  300-mil biplanar drainage geocomposite HELP Model Scenarios and Input Data  Scenario 1 modeled a 10-foot depth of ash placed in five 2-foot lifts on the floor of the 0.5% liner based on a 5-year simulation period.  Scenario 2 modeled a 10-foot depth of ash placed in five 2-foot lifts on the floor of the 1.0% liner based on a 5-year simulation period.  Scenario 3 modeled a 10-foot depth of ash placed in five 2-foot lifts on the floor of the 2.0% liner based on a 5-year simulation period.  Scenario 4 modeled a 10-foot depth of ash placed in five 2-foot lifts on the floor of the 3.0% liner based on a 5-year simulation period.  Scenario 5 modeled ten 2-foot lifts based on the 2% floor of the liner on a  5-year simulation period.  Scenario 6 modeled two 20-foot lifts based on the 2% floor of the liner on a  5-year simulation period.  Scenario 7 modeled three 20-foot lifts based on 5-year simulation period. Each scenario was modeled as a 1-acre area. A major goal for the modeling was to demonstrate that the drainage layer capacity is not exceeded. The second aim of the modeling was to estimate leachate production. The table in Attachment 1 provided summarizes the model input data, and summarizes the results of the scenarios. HELP model output files for scenarios 1-7 are provided in Attachment 2. Temperature and solar radiation data were synthetically generated using coefficients from Raleigh, NC. Evapotranspiration data from Raleigh, NC was used in all scenarios. Sanford is located approximately 35 miles southeast of Raleigh, NC and should be accurately represented by weather data generated from Raleigh. Precipitation data was revised to capture the 25-year, 24-hour storm event with a rainfall of 6.28 inches in one day. Computed: MDP Date: 3/8/15 Checked : PAW Date: 3/8/15 Page 2 of 2 Revised March 2015 Material Properties and Structural Fill Geometry The maximum flow path for leachate in the leachate drainage layer geocomposite will vary between 300 and 950 feet depending on the slope of the floor, at which point the leachate will enter an interceptor perforated pipe surrounded by gravel trench for conveyance to the sumps. Material Properties Initial moisture content for ash after placement at the cell is set at optimum moisture content based on proctor test data for open-fill runs. The initial moisture content for ash is set to the field capacity of coal burning electric plant fly ash for the closed-fill runs. Refer to Attachment 4 for physical properties of material.  Default model parameters were used for the final cover layers and subgrade. Note the permeability for final cover layers was manually adjusted.  Structural fill base liner was modeled as material texture 35, HDPE.  Structural fill final cover liner was modeled as material texture 36, LLDPE  Pinhole density for the membrane liners was set at 1 per acre.  Installation defects were set at 1 per acre for the membrane liners, reflective of generally good installation procedures.  Membrane liner placement quality was assumed to be “good”.  Structural fill base leachate drainage layer was modeled as material texture 34, except the transmissivity was modified to reflect select material properties (Refer to Attachment 3). Transmissivity of the geocomposite should be determined based on site-specific ash and loading before selecting the material for installation. A detailed calculation of the bottom liner geocomposite’s required hydraulic conductivity is contained in Attachment 3. The maximum overburden pressure, based on 100 pcf density and approximately 50 foot ash/soil mixture is 5000 psf. Model Outputs and Conclusions The table in Attachment 1 summarizes the model outputs for each of the scenarios considered. The model demonstrates that the proposed design will comply with applicable design standards. More specifically:  The peak head on HDPE bottom liner in any HELP Model scenario is 11.6 inches.  Maximum leachate generated during filling is 1,822 cf/acre/day at a 3% floor slope.  Drainage length in the bottom ranges from 300 - 950 feet depending on the floor slopes.  As ash is placed the required drainage length to maintain head on the liner system increases. Attachment 1 (revised) Summary of Model Input Data and Results This page intentionally left blank. Input Data Scenario Scenario Scenario Scenario Scenario Scenario Scenario 12 34567 SCS runoff curve number 91.21 91.21 91.21 91.21 91.21 91.21 91.21 fraction of area allowing runoff (%) 0 0 0 0 0 0 0 area simulated (acres) 1 1 1 1 1 1 1 Ash k (cm/sec) 1.6x10^-4 1.6x10^-4 1.6x10^-4 1.6x10^-4 1.6x10^-4 1.6x10^-4 1.6x10^-4 Ash Thickness (ft)10 10 10 10 20 40 60 subgrade thickness (inches) 18 18 18 18 18 18 18 geocomposite thickness (inches) 0.26 0.26 0.26 0.26 0.26 0.26 0.26 geocomposite hydr. conductivity (cm/sec) 9.7 9.7 9.7 9.7 9.7 9.7 9.7 bottom liner drainage layer slope (%)0.5 1 2 3 2 2 2 bottom liner drainage length (feet)300 425 600 840 950 950 950 HDPE liner thickness (mils) 60 60 60 60 60 60 60 liner pinhole density (holes/acre) 1 1 1 1 1 1 1 liner installation defects (holes/acre) 1 1 1 1 1 1 1 liner placement quality good good good good good good good recirculation? (amount recirculated) N N N N N N N cap drainage layer thickness (inches) N/A N/A N/A N/A N/A N/A N/A cap drainage layer k (cm/sec) N/A N/A N/A N/A N/A N/A N/A cap liner thickness (mils) N/A N/A N/A N/A N/A N/A N/A cap liner pinhole density (holes/acre) N/A N/A N/A N/A N/A N/A N/A cap liner installation defects (holes/acre) N/A N/A N/A N/A N/A N/A N/A cap liner placement quality N/A N/A N/A N/A N/A N/A N/A number of years simulated 5 5 5 5 5 5 5 Output Data average annual leachate collected in base liner system collection layer (ft3)55,042 55,044 55,046 55,046 59,786 69,300 78,144 average annual head on primary base liner (inches) 0.18 0.10 0.04 0.02 0.04 0.05 0.05 peak day leachate collected in base liner system collection layer (ft3)984 1203 1703 1822 756 674 548 peak day max head on primary base liner (inches)11.53 11.58 11.64 9.50 0.36 0.32 0.26 Parameter Attachment 1 HELP Model Results Charah Colon Mine This page intentionally left blank. Attachment 2 (replaced) HELP Model Output Files (Scenarios 1-57) This page intentionally left blank. ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** ** ** HELP Version 3.95 D (10 August 2012) ** ** developed at ** ** Institute of Soil Science, University of Hamburg, Germany ** ** based on ** ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** TIME: 10.27 DATE: 8.03.2015 PRECIPITATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\SF Charah Sanford 25 yr storm y3m8d16.d4 TEMPERATURE DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d7 SOLAR RADIATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d13 EVAPOTRANSPIRATION DATA F. 1: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d11 SOIL AND DESIGN DATA FILE 1: C:\Users\mplummer\Desktop\HELP runs\Mike's runs\MPColon 5-2ft lifts no runoff 05% 300.d10 OUTPUT DATA FILE: C:\Users\mplummer\Desktop\HELP runs\0.5% MPRevised.out ****************************************************************************** TITLE: Coal Ash-First Lift (Five Lifts, No Runoff, 0.5% slope) ****************************************************************************** WEATHER DATA SOURCES ------------------------------------------------------------------------------ NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA WAS ENTERED BY THE USER. NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope Page 1 of 8 ------- ------- ------- ------- ------- ------- 39.60 41.60 49.30 59.50 67.20 73.90 77.70 77.00 71.00 59.70 50.00 42.00 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA AND STATION LATITUDE = 35.87 DEGREES ****************************************************************************** LAYER DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 3 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope Page 2 of 8 FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 4 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 5 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 6 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 0.26 INCHES POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC SLOPE = 0.50 PERCENT DRAINAGE LENGTH = 300.0 FEET LAYER 7 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope Page 3 of 8 FML PLACEMENT QUALITY = 3 - GOOD LAYER 8 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17 THICKNESS = 0.25 INCHES POROSITY = 0.7500 VOL/VOL FIELD CAPACITY = 0.7470 VOL/VOL WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC LAYER 9 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 16 THICKNESS = 18.00 INCHES POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC ****************************************************************************** GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 1000. FEET. SCS RUNOFF CURVE NUMBER = 91.21 FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 18.0 INCHES INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES INITIAL SNOW WATER = 0.000 INCHES INITIAL INTERCEPTION WATER = 0.000 INCHES INITIAL WATER IN LAYER MATERIALS = 44.914 INCHES TOTAL INITIAL WATER = 44.914 INCHES TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope Page 4 of 8 ****************************************************************************** EVAPOTRANSPIRATION DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RALEIGH NORTH CAROLINA STATION LATITUDE = 35.87 DEGREES MAXIMUM LEAF AREA INDEX = 4.50 START OF GROWING SEASON (JULIAN DATE) = 86 END OF GROWING SEASON (JULIAN DATE) = 310 EVAPORATIVE ZONE DEPTH = 18.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.70 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 % ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 5 ------------------------------------------------------------------------------ LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 7.0193 0.2925 2 6.3803 0.2658 3 4.8629 0.2026 4 5.4737 0.2281 5 5.6427 0.2351 6 0.0134 0.0522 7 0.0000 0.0000 8 0.1875 0.7500 9 7.5240 0.4180 TOTAL WATER IN LAYERS 37.104 SNOW WATER 0.000 INTERCEPTION WATER 0.000 TOTAL FINAL WATER 37.104 Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope Page 5 of 8 ****************************************************************************** ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.28 22796.400 RUNOFF 0.000 0.0000 DRAINAGE COLLECTED FROM LAYER 6 0.27121 984.47894 PERCOLATION/LEAKAGE THROUGH LAYER 8 0.000003 0.01162 AVERAGE HEAD ON TOP OF LAYER 7 9.696 MAXIMUM HEAD ON TOP OF LAYER 7 11.534 LOCATION OF MAXIMUM HEAD IN LAYER 6 (DISTANCE FROM DRAIN) 145.5 FEET PERCOLATION/LEAKAGE THROUGH LAYER 9 0.000003 0.01162 SNOW WATER 1.67 6061.1177 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 3.26 2.82 4.37 2.63 3.53 5.42 4.57 6.47 2.81 3.77 2.52 2.90 Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope Page 6 of 8 STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99 2.29 6.38 1.69 2.69 1.66 1.28 RUNOFF ------ TOTALS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 POTENTIAL EVAPOTRANSPIRATION ---------------------------- TOTALS 1.892 2.205 3.293 4.787 6.327 6.770 7.049 5.890 4.466 3.365 2.345 1.543 STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263 0.410 0.413 0.352 0.062 0.182 0.125 ACTUAL EVAPOTRANSPIRATION ------------------------- TOTALS 1.193 1.541 2.190 3.180 4.706 4.073 4.978 3.914 2.729 1.267 0.914 0.791 STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405 1.282 1.455 1.165 0.187 0.268 0.186 LATERAL DRAINAGE COLLECTED FROM LAYER 6 ---------------------------------------- TOTALS 1.0811 1.5403 1.7096 1.2263 1.4707 1.2420 1.1218 1.0789 1.7655 1.4896 0.8001 0.6373 STD. DEVIATIONS 1.1101 1.3009 1.5602 1.1621 0.6397 0.3121 0.1513 0.3646 2.0392 1.8273 0.6202 0.4161 LATERAL DRAINAGE RECIRCULATED FROM LAYER 6 INTO L. 1 ------------------------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 8 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 9 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope Page 7 of 8 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 7 ------------------------------------- AVERAGES 0.0381 0.1849 0.0602 0.0446 0.0518 0.0452 0.0395 0.0380 1.1528 0.4241 0.0291 0.0224 STD. DEVIATIONS 0.0391 0.3145 0.0549 0.0423 0.0225 0.0113 0.0053 0.0128 2.5079 0.8954 0.0226 0.0146 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 45.08 ( 10.212) 163625.9 100.00 RUNOFF 0.000 ( 0.0000) 0.00 0.000 POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19 ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827 LATERAL DRAINAGE COLLECTED 15.16304 ( 8.99294) 55041.844 33.63884 FROM LAYER 6 DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000 FROM LAYER 6 INTO L. 1 PERCOLATION/LEAKAGE THROUGH 0.00002 ( 0.00004) 0.071 0.00004 LAYER 8 AVERAGE HEAD ON TOP 0.178 ( 0.321) OF LAYER 7 PERCOLATION/LEAKAGE THROUGH 0.00002 ( 0.00004) 0.071 0.00004 LAYER 9 CHANGE IN WATER STORAGE -1.562 ( 4.5481) -5670.26 -3.465 ******************************************************************************* ******************************************************************************* Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope Page 8 of 8 ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** ** ** HELP Version 3.95 D (10 August 2012) ** ** developed at ** ** Institute of Soil Science, University of Hamburg, Germany ** ** based on ** ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** TIME: 9.48 DATE: 8.03.2015 PRECIPITATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\SF Charah Sanford 25 yr storm y3m8d16.d4 TEMPERATURE DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d7 SOLAR RADIATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d13 EVAPOTRANSPIRATION DATA F. 1: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d11 SOIL AND DESIGN DATA FILE 1: C:\Users\mplummer\Desktop\HELP runs\Eric's Runs\MPColon 5-2ft lifts no runoff 1%425.d10 OUTPUT DATA FILE: C:\Users\mplummer\Desktop\HELP runs\1.0% MPRevised.out ****************************************************************************** TITLE: Coal Ash-First Lift (Ten 2-foot Lifts, No Runoff, 1% slope) ****************************************************************************** WEATHER DATA SOURCES ------------------------------------------------------------------------------ NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA WAS ENTERED BY THE USER. NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope Page 1 of 8 ------- ------- ------- ------- ------- ------- 39.60 41.60 49.30 59.50 67.20 73.90 77.70 77.00 71.00 59.70 50.00 42.00 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA AND STATION LATITUDE = 35.87 DEGREES ****************************************************************************** LAYER DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 3 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope Page 2 of 8 FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 4 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 5 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 6 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 0.26 INCHES POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC SLOPE = 1.00 PERCENT DRAINAGE LENGTH = 425.0 FEET LAYER 7 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope Page 3 of 8 FML PLACEMENT QUALITY = 3 - GOOD LAYER 8 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17 THICKNESS = 0.25 INCHES POROSITY = 0.7500 VOL/VOL FIELD CAPACITY = 0.7470 VOL/VOL WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC LAYER 9 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 16 THICKNESS = 18.00 INCHES POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC ****************************************************************************** GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 1000. FEET. SCS RUNOFF CURVE NUMBER = 91.21 FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 18.0 INCHES INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES INITIAL SNOW WATER = 0.000 INCHES INITIAL INTERCEPTION WATER = 0.000 INCHES INITIAL WATER IN LAYER MATERIALS = 44.914 INCHES TOTAL INITIAL WATER = 44.914 INCHES TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope Page 4 of 8 ****************************************************************************** EVAPOTRANSPIRATION DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RALEIGH NORTH CAROLINA STATION LATITUDE = 35.87 DEGREES MAXIMUM LEAF AREA INDEX = 4.50 START OF GROWING SEASON (JULIAN DATE) = 86 END OF GROWING SEASON (JULIAN DATE) = 310 EVAPORATIVE ZONE DEPTH = 18.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.70 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 % ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 5 ------------------------------------------------------------------------------ LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 7.0193 0.2925 2 6.3803 0.2658 3 4.8629 0.2026 4 5.4737 0.2281 5 5.6427 0.2351 6 0.0102 0.0400 7 0.0000 0.0000 8 0.1875 0.7500 9 7.5240 0.4180 TOTAL WATER IN LAYERS 37.101 SNOW WATER 0.000 INTERCEPTION WATER 0.000 TOTAL FINAL WATER 37.101 Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope Page 5 of 8 ****************************************************************************** ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.28 22796.400 RUNOFF 0.000 0.0000 DRAINAGE COLLECTED FROM LAYER 6 0.33137 1202.88806 PERCOLATION/LEAKAGE THROUGH LAYER 8 0.000003 0.00928 AVERAGE HEAD ON TOP OF LAYER 7 8.229 MAXIMUM HEAD ON TOP OF LAYER 7 11.579 LOCATION OF MAXIMUM HEAD IN LAYER 6 (DISTANCE FROM DRAIN) 125.9 FEET PERCOLATION/LEAKAGE THROUGH LAYER 9 0.000003 0.00928 SNOW WATER 1.67 6061.1177 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 3.26 2.82 4.37 2.63 3.53 5.42 4.57 6.47 2.81 3.77 2.52 2.90 Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope Page 6 of 8 STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99 2.29 6.38 1.69 2.69 1.66 1.28 RUNOFF ------ TOTALS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 POTENTIAL EVAPOTRANSPIRATION ---------------------------- TOTALS 1.892 2.205 3.293 4.787 6.327 6.770 7.049 5.890 4.466 3.365 2.345 1.543 STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263 0.410 0.413 0.352 0.062 0.182 0.125 ACTUAL EVAPOTRANSPIRATION ------------------------- TOTALS 1.193 1.541 2.190 3.180 4.706 4.073 4.978 3.914 2.729 1.267 0.914 0.791 STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405 1.282 1.455 1.165 0.187 0.268 0.186 LATERAL DRAINAGE COLLECTED FROM LAYER 6 ---------------------------------------- TOTALS 1.0875 1.5479 1.6994 1.2303 1.4695 1.2391 1.1239 1.0751 1.9755 1.2807 0.7978 0.6370 STD. DEVIATIONS 1.1199 1.3097 1.5510 1.1613 0.6345 0.3115 0.1497 0.3632 2.5108 1.3641 0.6164 0.4172 LATERAL DRAINAGE RECIRCULATED FROM LAYER 6 INTO L. 1 ------------------------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 8 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 9 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope Page 7 of 8 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 7 ------------------------------------- AVERAGES 0.0271 0.0425 0.0424 0.0317 0.0366 0.0319 0.0280 0.0268 0.8151 0.0319 0.0206 0.0159 STD. DEVIATIONS 0.0279 0.0362 0.0387 0.0299 0.0158 0.0080 0.0037 0.0091 1.7732 0.0340 0.0159 0.0104 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 45.08 ( 10.212) 163625.9 100.00 RUNOFF 0.000 ( 0.0000) 0.00 0.000 POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19 ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827 LATERAL DRAINAGE COLLECTED 15.16367 ( 8.99710) 55044.137 33.64024 FROM LAYER 6 DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000 FROM LAYER 6 INTO L. 1 PERCOLATION/LEAKAGE THROUGH 0.00001 ( 0.00002) 0.039 0.00002 LAYER 8 AVERAGE HEAD ON TOP 0.096 ( 0.161) OF LAYER 7 PERCOLATION/LEAKAGE THROUGH 0.00001 ( 0.00002) 0.039 0.00002 LAYER 9 CHANGE IN WATER STORAGE -1.563 ( 4.5465) -5672.52 -3.467 ******************************************************************************* ******************************************************************************* Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope Page 8 of 8 ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** ** ** HELP Version 3.95 D (10 August 2012) ** ** developed at ** ** Institute of Soil Science, University of Hamburg, Germany ** ** based on ** ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** TIME: 9.58 DATE: 8.03.2015 PRECIPITATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\SF Charah Sanford 25 yr storm y3m8d16.d4 TEMPERATURE DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d7 SOLAR RADIATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d13 EVAPOTRANSPIRATION DATA F. 1: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d11 SOIL AND DESIGN DATA FILE 1: C:\Users\mplummer\Desktop\HELP runs\MP Colon 5-2ft lifts no runoff 2%.d10 OUTPUT DATA FILE: C:\Users\mplummer\Desktop\HELP runs\2.0% MPRevised.out ****************************************************************************** TITLE: Coal Ash-First Lift (Five 2-foot Lifts, No Runoff) ****************************************************************************** WEATHER DATA SOURCES ------------------------------------------------------------------------------ NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA WAS ENTERED BY THE USER. NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope Page 1 of 8 ------- ------- ------- ------- ------- ------- 39.60 41.60 49.30 59.50 67.20 73.90 77.70 77.00 71.00 59.70 50.00 42.00 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA AND STATION LATITUDE = 35.87 DEGREES ****************************************************************************** LAYER DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 3 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope Page 2 of 8 FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 4 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 5 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 6 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 0.26 INCHES POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 600.0 FEET LAYER 7 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope Page 3 of 8 FML PLACEMENT QUALITY = 3 - GOOD LAYER 8 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17 THICKNESS = 0.25 INCHES POROSITY = 0.7500 VOL/VOL FIELD CAPACITY = 0.7470 VOL/VOL WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC LAYER 9 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 16 THICKNESS = 18.00 INCHES POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC ****************************************************************************** GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 1000. FEET. SCS RUNOFF CURVE NUMBER = 91.21 FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 18.0 INCHES INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES INITIAL SNOW WATER = 0.000 INCHES INITIAL INTERCEPTION WATER = 0.000 INCHES INITIAL WATER IN LAYER MATERIALS = 44.914 INCHES TOTAL INITIAL WATER = 44.914 INCHES TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope Page 4 of 8 ****************************************************************************** EVAPOTRANSPIRATION DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RALEIGH NORTH CAROLINA STATION LATITUDE = 35.87 DEGREES MAXIMUM LEAF AREA INDEX = 4.50 START OF GROWING SEASON (JULIAN DATE) = 86 END OF GROWING SEASON (JULIAN DATE) = 310 EVAPORATIVE ZONE DEPTH = 18.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.70 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 % ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 5 ------------------------------------------------------------------------------ LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 7.0193 0.2925 2 6.3803 0.2658 3 4.8629 0.2026 4 5.4737 0.2281 5 5.6427 0.2351 6 0.0080 0.0313 7 0.0000 0.0000 8 0.1875 0.7500 9 7.5240 0.4180 TOTAL WATER IN LAYERS 37.098 SNOW WATER 0.000 INTERCEPTION WATER 0.000 TOTAL FINAL WATER 37.098 Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope Page 5 of 8 ****************************************************************************** ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.28 22796.400 RUNOFF 0.000 0.0000 DRAINAGE COLLECTED FROM LAYER 6 0.46927 1703.43982 PERCOLATION/LEAKAGE THROUGH LAYER 8 0.000002 0.00739 AVERAGE HEAD ON TOP OF LAYER 7 6.946 MAXIMUM HEAD ON TOP OF LAYER 7 11.642 LOCATION OF MAXIMUM HEAD IN LAYER 6 (DISTANCE FROM DRAIN) 97.0 FEET PERCOLATION/LEAKAGE THROUGH LAYER 9 0.000002 0.00739 SNOW WATER 1.67 6061.1177 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 3.26 2.82 4.37 2.63 3.53 5.42 4.57 6.47 2.81 3.77 2.52 2.90 Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope Page 6 of 8 STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99 2.29 6.38 1.69 2.69 1.66 1.28 RUNOFF ------ TOTALS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 POTENTIAL EVAPOTRANSPIRATION ---------------------------- TOTALS 1.892 2.205 3.293 4.787 6.327 6.770 7.049 5.890 4.466 3.365 2.345 1.543 STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263 0.410 0.413 0.352 0.062 0.182 0.125 ACTUAL EVAPOTRANSPIRATION ------------------------- TOTALS 1.193 1.541 2.190 3.180 4.706 4.073 4.978 3.914 2.729 1.267 0.914 0.791 STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405 1.282 1.455 1.165 0.187 0.268 0.186 LATERAL DRAINAGE COLLECTED FROM LAYER 6 ---------------------------------------- TOTALS 1.0921 1.5520 1.6936 1.2330 1.4686 1.2369 1.1256 1.0726 1.9861 1.2707 0.7960 0.6370 STD. DEVIATIONS 1.1270 1.3140 1.5478 1.1602 0.6308 0.3112 0.1489 0.3622 2.5376 1.3439 0.6135 0.4182 LATERAL DRAINAGE RECIRCULATED FROM LAYER 6 INTO L. 1 ------------------------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 8 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 9 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope Page 7 of 8 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 7 ------------------------------------- AVERAGES 0.0192 0.0301 0.0298 0.0224 0.0259 0.0225 0.0198 0.0189 0.1901 0.0224 0.0145 0.0112 STD. DEVIATIONS 0.0198 0.0256 0.0272 0.0211 0.0111 0.0057 0.0026 0.0064 0.3904 0.0237 0.0112 0.0074 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 45.08 ( 10.212) 163625.9 100.00 RUNOFF 0.000 ( 0.0000) 0.00 0.000 POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19 ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827 LATERAL DRAINAGE COLLECTED 15.16413 ( 9.00048) 55045.793 33.64125 FROM LAYER 6 DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000 FROM LAYER 6 INTO L. 1 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.017 0.00001 LAYER 8 AVERAGE HEAD ON TOP 0.036 ( 0.042) OF LAYER 7 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.017 0.00001 LAYER 9 CHANGE IN WATER STORAGE -1.563 ( 4.5454) -5674.15 -3.468 ******************************************************************************* ******************************************************************************* Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope Page 8 of 8 ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** ** ** HELP Version 3.95 D (10 August 2012) ** ** developed at ** ** Institute of Soil Science, University of Hamburg, Germany ** ** based on ** ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** TIME: 10.11 DATE: 8.03.2015 PRECIPITATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\SF Charah Sanford 25 yr storm y3m8d16.d4 TEMPERATURE DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d7 SOLAR RADIATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d13 EVAPOTRANSPIRATION DATA F. 1: C:\Users\mplummer\Desktop\HELP runs\Weather Data\Charah Sanford.d11 SOIL AND DESIGN DATA FILE 1: C:\Users\mplummer\Desktop\HELP runs\Mike's runs\MPColon 5-2ft lifts no runoff 3%.d10 OUTPUT DATA FILE: C:\Users\mplummer\Desktop\HELP runs\3.0% MPRevised.out ****************************************************************************** TITLE: Coal Ash-First Lift (Five 2-foot Lifts, No Runoff) ****************************************************************************** WEATHER DATA SOURCES ------------------------------------------------------------------------------ NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA WAS ENTERED BY THE USER. NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope Page 1 of 8 ------- ------- ------- ------- ------- ------- 39.60 41.60 49.30 59.50 67.20 73.90 77.70 77.00 71.00 59.70 50.00 42.00 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA AND STATION LATITUDE = 35.87 DEGREES ****************************************************************************** LAYER DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 3 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope Page 2 of 8 FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 4 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 5 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 6 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 0.26 INCHES POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC SLOPE = 3.00 PERCENT DRAINAGE LENGTH = 840.0 FEET LAYER 7 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope Page 3 of 8 FML PLACEMENT QUALITY = 3 - GOOD LAYER 8 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17 THICKNESS = 0.25 INCHES POROSITY = 0.7500 VOL/VOL FIELD CAPACITY = 0.7470 VOL/VOL WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC LAYER 9 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 16 THICKNESS = 18.00 INCHES POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC ****************************************************************************** GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 1000. FEET. SCS RUNOFF CURVE NUMBER = 91.21 FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 18.0 INCHES INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES INITIAL SNOW WATER = 0.000 INCHES INITIAL INTERCEPTION WATER = 0.000 INCHES INITIAL WATER IN LAYER MATERIALS = 44.914 INCHES TOTAL INITIAL WATER = 44.914 INCHES TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope Page 4 of 8 ****************************************************************************** EVAPOTRANSPIRATION DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RALEIGH NORTH CAROLINA STATION LATITUDE = 35.87 DEGREES MAXIMUM LEAF AREA INDEX = 4.50 START OF GROWING SEASON (JULIAN DATE) = 86 END OF GROWING SEASON (JULIAN DATE) = 310 EVAPORATIVE ZONE DEPTH = 18.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.70 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 % ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 5 ------------------------------------------------------------------------------ LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 7.0193 0.2925 2 6.3803 0.2658 3 4.8629 0.2026 4 5.4737 0.2281 5 5.6427 0.2351 6 0.0076 0.0299 7 0.0000 0.0000 8 0.1875 0.7500 9 7.5240 0.4180 TOTAL WATER IN LAYERS 37.098 SNOW WATER 0.000 INTERCEPTION WATER 0.000 TOTAL FINAL WATER 37.098 Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope Page 5 of 8 ****************************************************************************** ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.28 22796.400 RUNOFF 0.000 0.0000 DRAINAGE COLLECTED FROM LAYER 6 0.50193 1822.00183 PERCOLATION/LEAKAGE THROUGH LAYER 8 0.000002 0.00549 AVERAGE HEAD ON TOP OF LAYER 7 5.207 MAXIMUM HEAD ON TOP OF LAYER 7 9.504 LOCATION OF MAXIMUM HEAD IN LAYER 6 (DISTANCE FROM DRAIN) 71.8 FEET PERCOLATION/LEAKAGE THROUGH LAYER 9 0.000002 0.00549 SNOW WATER 1.67 6061.1177 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 3.26 2.82 4.37 2.63 3.53 5.42 4.57 6.47 2.81 3.77 2.52 2.90 Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope Page 6 of 8 STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99 2.29 6.38 1.69 2.69 1.66 1.28 RUNOFF ------ TOTALS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 POTENTIAL EVAPOTRANSPIRATION ---------------------------- TOTALS 1.892 2.205 3.293 4.787 6.327 6.770 7.049 5.890 4.466 3.365 2.345 1.543 STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263 0.410 0.413 0.352 0.062 0.182 0.125 ACTUAL EVAPOTRANSPIRATION ------------------------- TOTALS 1.193 1.541 2.190 3.180 4.706 4.073 4.978 3.914 2.729 1.267 0.914 0.791 STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405 1.282 1.455 1.165 0.187 0.268 0.186 LATERAL DRAINAGE COLLECTED FROM LAYER 6 ---------------------------------------- TOTALS 1.0928 1.5526 1.6927 1.2334 1.4685 1.2365 1.1259 1.0721 1.9870 1.2699 0.7958 0.6370 STD. DEVIATIONS 1.1282 1.3147 1.5474 1.1600 0.6302 0.3111 0.1489 0.3620 2.5399 1.3425 0.6131 0.4184 LATERAL DRAINAGE RECIRCULATED FROM LAYER 6 INTO L. 1 ------------------------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 8 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 9 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope Page 7 of 8 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 7 ------------------------------------- AVERAGES 0.0180 0.0281 0.0278 0.0210 0.0241 0.0210 0.0185 0.0176 0.0668 0.0209 0.0135 0.0105 STD. DEVIATIONS 0.0185 0.0240 0.0254 0.0197 0.0104 0.0053 0.0024 0.0060 0.1169 0.0221 0.0104 0.0069 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 45.08 ( 10.212) 163625.9 100.00 RUNOFF 0.000 ( 0.0000) 0.00 0.000 POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19 ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827 LATERAL DRAINAGE COLLECTED 15.16420 ( 9.00105) 55046.047 33.64141 FROM LAYER 6 DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000 FROM LAYER 6 INTO L. 1 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.013 0.00001 LAYER 8 AVERAGE HEAD ON TOP 0.024 ( 0.019) OF LAYER 7 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.013 0.00001 LAYER 9 CHANGE IN WATER STORAGE -1.563 ( 4.5452) -5674.41 -3.468 ******************************************************************************* ******************************************************************************* Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope Page 8 of 8 ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** ** ** HELP Version 3.95 D (10 August 2012) ** ** developed at ** ** Institute of Soil Science, University of Hamburg, Germany ** ** based on ** ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** TIME: 5.14 DATE: 7.03.2015 PRECIPITATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\SF Charah Sanford 25 yr storm y3m8d16.d4 TEMPERATURE DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d7 SOLAR RADIATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d13 EVAPOTRANSPIRATION DATA F. 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d11 SOIL AND DESIGN DATA FILE 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Actual Runs\SF Colon 10-2ft lifts no runoff.d10 OUTPUT DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Actual Runs\Scenario 2 Actual.out ****************************************************************************** TITLE: Coal Ash-Second Set of Lifts (Ten 2-foot Lifts, No Runoff) ****************************************************************************** WEATHER DATA SOURCES ------------------------------------------------------------------------------ NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA WAS ENTERED BY THE USER. NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 1 of 10 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- 39.60 41.60 49.30 59.50 67.20 73.90 77.70 77.00 71.00 59.70 50.00 42.00 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA AND STATION LATITUDE = 35.87 DEGREES ****************************************************************************** LAYER DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 3 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 2 of 10 POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 4 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 5 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 6 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 7 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 3 of 10 EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 8 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 9 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 10 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 24.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 11 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 0.26 INCHES POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 950.0 FEET Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 4 of 10 LAYER 12 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD LAYER 13 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17 THICKNESS = 0.25 INCHES POROSITY = 0.7500 VOL/VOL FIELD CAPACITY = 0.7470 VOL/VOL WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC LAYER 14 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 16 THICKNESS = 18.00 INCHES POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC ****************************************************************************** GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 1000. FEET. SCS RUNOFF CURVE NUMBER = 91.21 FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 18.0 INCHES Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 5 of 10 INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES INITIAL SNOW WATER = 0.000 INCHES INITIAL INTERCEPTION WATER = 0.000 INCHES INITIAL WATER IN LAYER MATERIALS = 82.114 INCHES TOTAL INITIAL WATER = 82.114 INCHES TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR ****************************************************************************** EVAPOTRANSPIRATION DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RALEIGH NORTH CAROLINA STATION LATITUDE = 35.87 DEGREES MAXIMUM LEAF AREA INDEX = 4.50 START OF GROWING SEASON (JULIAN DATE) = 86 END OF GROWING SEASON (JULIAN DATE) = 310 EVAPORATIVE ZONE DEPTH = 18.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.70 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 % ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 5 ------------------------------------------------------------------------------ LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 7.0193 0.2925 2 6.3803 0.2658 3 4.8629 0.2026 4 5.4737 0.2281 5 5.6427 0.2351 6 5.7991 0.2416 7 5.9906 0.2496 Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 6 of 10 8 6.1845 0.2577 9 6.2898 0.2621 10 6.3880 0.2662 11 0.0274 0.1070 12 0.0000 0.0000 13 0.1875 0.7500 14 7.5240 0.4180 TOTAL WATER IN LAYERS 67.770 SNOW WATER 0.000 INTERCEPTION WATER 0.000 TOTAL FINAL WATER 67.770 ****************************************************************************** ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.28 22796.400 RUNOFF 0.000 0.0000 DRAINAGE COLLECTED FROM LAYER 11 0.20818 755.70551 PERCOLATION/LEAKAGE THROUGH LAYER 13 0.000000 0.00013 AVERAGE HEAD ON TOP OF LAYER 12 0.180 MAXIMUM HEAD ON TOP OF LAYER 12 0.357 LOCATION OF MAXIMUM HEAD IN LAYER 11 (DISTANCE FROM DRAIN) 6.8 FEET PERCOLATION/LEAKAGE THROUGH LAYER 14 0.000000 0.00013 SNOW WATER 1.67 6061.1177 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470 *** Maximum heads are computed using McEnroe's equations. *** Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 7 of 10 Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 3.26 2.82 4.37 2.63 3.53 5.42 4.57 6.47 2.81 3.77 2.52 2.90 STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99 2.29 6.38 1.69 2.69 1.66 1.28 RUNOFF ------ TOTALS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 POTENTIAL EVAPOTRANSPIRATION ---------------------------- TOTALS 1.892 2.205 3.293 4.787 6.327 6.770 7.049 5.890 4.466 3.365 2.345 1.543 STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263 0.410 0.413 0.352 0.062 0.182 0.125 ACTUAL EVAPOTRANSPIRATION ------------------------- TOTALS 1.193 1.541 2.190 3.180 4.706 4.073 4.978 3.914 2.729 1.267 0.914 0.791 STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405 1.282 1.455 1.165 0.187 0.268 0.186 LATERAL DRAINAGE COLLECTED FROM LAYER 11 ---------------------------------------- TOTALS 1.5868 1.3126 1.4316 1.3161 1.6209 1.4440 1.2174 1.0987 1.0178 1.4159 1.6002 1.4077 STD. DEVIATIONS 0.9632 0.9105 1.0646 0.9410 1.1035 1.1316 0.7112 0.6882 0.4925 1.0880 1.5254 0.8678 LATERAL DRAINAGE RECIRCULATED FROM LAYER 11 INTO L. 1 ------------------------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 8 of 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 13 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 14 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 12 ------------------------------------- AVERAGES 0.0442 0.0402 0.0399 0.0379 0.0452 0.0416 0.0339 0.0306 0.0293 0.0395 0.0461 0.0392 STD. DEVIATIONS 0.0268 0.0280 0.0297 0.0271 0.0308 0.0326 0.0198 0.0192 0.0142 0.0303 0.0439 0.0242 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 45.08 ( 10.212) 163625.9 100.00 RUNOFF 0.000 ( 0.0000) 0.00 0.000 POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19 ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827 LATERAL DRAINAGE COLLECTED 16.46985 ( 8.58991) 59785.562 36.53797 FROM LAYER 11 DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000 FROM LAYER 11 INTO L. 1 Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 9 of 10 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.015 0.00001 LAYER 13 AVERAGE HEAD ON TOP 0.039 ( 0.020) OF LAYER 12 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.015 0.00001 LAYER 14 CHANGE IN WATER STORAGE -2.869 ( 8.7784) -10413.91 -6.364 ******************************************************************************* ******************************************************************************* Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope Page 10 of 10 ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** ** ** HELP Version 3.95 D (10 August 2012) ** ** developed at ** ** Institute of Soil Science, University of Hamburg, Germany ** ** based on ** ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** TIME: 6.00 DATE: 7.03.2015 PRECIPITATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\SF Charah Sanford 25 yr storm y3m8d16.d4 TEMPERATURE DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d7 SOLAR RADIATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d13 EVAPOTRANSPIRATION DATA F. 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d11 SOIL AND DESIGN DATA FILE 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Actual Runs\SF Charh Colon-second lift.d10 OUTPUT DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Actual Runs\Scenario 3 (old 2) Actual.out ****************************************************************************** TITLE: Charah Colon - Two 20-foot Lifts ****************************************************************************** WEATHER DATA SOURCES ------------------------------------------------------------------------------ NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA WAS ENTERED BY THE USER. NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope Page 1 of 8 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- 39.60 41.60 49.30 59.50 67.20 73.90 77.70 77.00 71.00 59.70 50.00 42.00 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA AND STATION LATITUDE = 35.87 DEGREES ****************************************************************************** LAYER DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 240.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 240.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 3 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 0.26 INCHES Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope Page 2 of 8 POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 950.0 FEET LAYER 4 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD LAYER 5 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17 THICKNESS = 0.25 INCHES POROSITY = 0.7500 VOL/VOL FIELD CAPACITY = 0.7470 VOL/VOL WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC LAYER 6 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 16 THICKNESS = 18.00 INCHES POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC ****************************************************************************** GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope Page 3 of 8 SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 1000. FEET. SCS RUNOFF CURVE NUMBER = 91.21 FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 18.0 INCHES INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES INITIAL SNOW WATER = 0.000 INCHES INITIAL INTERCEPTION WATER = 0.000 INCHES INITIAL WATER IN LAYER MATERIALS = 156.514 INCHES TOTAL INITIAL WATER = 156.514 INCHES TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR ****************************************************************************** EVAPOTRANSPIRATION DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RALEIGH NORTH CAROLINA STATION LATITUDE = 35.87 DEGREES MAXIMUM LEAF AREA INDEX = 4.50 START OF GROWING SEASON (JULIAN DATE) = 86 END OF GROWING SEASON (JULIAN DATE) = 310 EVAPORATIVE ZONE DEPTH = 18.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.70 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 % ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 5 ------------------------------------------------------------------------------ LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 58.8688 0.2453 2 62.4563 0.2602 3 0.0277 0.1081 Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope Page 4 of 8 4 0.0000 0.0000 5 0.1875 0.7500 6 7.5240 0.4180 TOTAL WATER IN LAYERS 129.064 SNOW WATER 0.000 INTERCEPTION WATER 0.000 TOTAL FINAL WATER 129.064 ****************************************************************************** ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.28 22796.400 RUNOFF 0.000 0.0000 DRAINAGE COLLECTED FROM LAYER 3 0.18561 673.77380 PERCOLATION/LEAKAGE THROUGH LAYER 5 0.000000 0.00012 AVERAGE HEAD ON TOP OF LAYER 4 0.160 MAXIMUM HEAD ON TOP OF LAYER 4 0.317 LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN) 11.4 FEET PERCOLATION/LEAKAGE THROUGH LAYER 6 0.000000 0.00012 SNOW WATER 1.67 6061.1177 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope Page 5 of 8 ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 3.26 2.82 4.37 2.63 3.53 5.42 4.57 6.47 2.81 3.77 2.52 2.90 STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99 2.29 6.38 1.69 2.69 1.66 1.28 RUNOFF ------ TOTALS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 POTENTIAL EVAPOTRANSPIRATION ---------------------------- TOTALS 1.892 2.205 3.293 4.787 6.327 6.770 7.049 5.890 4.466 3.365 2.345 1.543 STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263 0.410 0.413 0.352 0.062 0.182 0.125 ACTUAL EVAPOTRANSPIRATION ------------------------- TOTALS 1.193 1.541 2.190 3.180 4.706 4.073 4.978 3.914 2.729 1.267 0.914 0.791 STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405 1.282 1.455 1.165 0.187 0.268 0.186 LATERAL DRAINAGE COLLECTED FROM LAYER 3 ---------------------------------------- TOTALS 1.9890 1.6404 2.2497 1.5015 1.3223 1.2119 1.6952 1.4709 1.5327 1.1494 1.5154 1.8126 STD. DEVIATIONS 0.6801 0.6694 1.2875 1.0303 1.0225 1.0078 0.7345 1.0940 1.1075 0.8121 0.7054 0.9298 LATERAL DRAINAGE RECIRCULATED FROM LAYER 3 INTO L. 1 ------------------------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 5 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope Page 6 of 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 6 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 4 ------------------------------------- AVERAGES 0.0554 0.0502 0.0627 0.0432 0.0369 0.0349 0.0473 0.0410 0.0441 0.0320 0.0437 0.0505 STD. DEVIATIONS 0.0190 0.0203 0.0359 0.0297 0.0285 0.0290 0.0205 0.0305 0.0319 0.0226 0.0203 0.0259 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 45.08 ( 10.212) 163625.9 100.00 RUNOFF 0.000 ( 0.0000) 0.00 0.000 POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19 ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827 LATERAL DRAINAGE COLLECTED 19.09096 ( 8.58853) 69300.180 42.35283 FROM LAYER 3 DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000 FROM LAYER 3 INTO L. 1 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.015 0.00001 LAYER 5 AVERAGE HEAD ON TOP 0.045 ( 0.020) OF LAYER 4 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.015 0.00001 LAYER 6 Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope Page 7 of 8 CHANGE IN WATER STORAGE -5.490 ( 15.0323) -19928.54 -12.179 ******************************************************************************* ******************************************************************************* Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope Page 8 of 8 ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** ** ** HELP Version 3.95 D (10 August 2012) ** ** developed at ** ** Institute of Soil Science, University of Hamburg, Germany ** ** based on ** ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** TIME: 6.12 DATE: 7.03.2015 PRECIPITATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\SF Charah Sanford 25 yr storm y3m8d16.d4 TEMPERATURE DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d7 SOLAR RADIATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d13 EVAPOTRANSPIRATION DATA F. 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Charah Sanford.d11 SOIL AND DESIGN DATA FILE 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Actual Runs\SF Charah Colon-third lift.d10 OUTPUT DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4 Reruns\Actual Runs\Scenario 4 (old 3) Actual.out ****************************************************************************** TITLE: Charah Colon- Three 20-ft Lifts ****************************************************************************** WEATHER DATA SOURCES ------------------------------------------------------------------------------ NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA WAS ENTERED BY THE USER. NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope Page 1 of 8 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- 39.60 41.60 49.30 59.50 67.20 73.90 77.70 77.00 71.00 59.70 50.00 42.00 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR RALEIGH NORTH CAROLINA AND STATION LATITUDE = 35.87 DEGREES ****************************************************************************** LAYER DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 240.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 240.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 3 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 240.00 INCHES Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope Page 2 of 8 POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC LAYER 4 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 0.26 INCHES POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 950.0 FEET LAYER 5 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD LAYER 6 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17 THICKNESS = 0.25 INCHES POROSITY = 0.7500 VOL/VOL FIELD CAPACITY = 0.7470 VOL/VOL WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC LAYER 7 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 16 THICKNESS = 18.00 INCHES POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope Page 3 of 8 INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC ****************************************************************************** GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 1000. FEET. SCS RUNOFF CURVE NUMBER = 91.21 FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 18.0 INCHES INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES INITIAL SNOW WATER = 0.000 INCHES INITIAL INTERCEPTION WATER = 0.000 INCHES INITIAL WATER IN LAYER MATERIALS = 230.914 INCHES TOTAL INITIAL WATER = 230.914 INCHES TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR ****************************************************************************** EVAPOTRANSPIRATION DATA 1 ------------------------------------------------------------------------------ VALID FOR 5 YEARS NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RALEIGH NORTH CAROLINA STATION LATITUDE = 35.87 DEGREES MAXIMUM LEAF AREA INDEX = 4.50 START OF GROWING SEASON (JULIAN DATE) = 86 END OF GROWING SEASON (JULIAN DATE) = 310 EVAPORATIVE ZONE DEPTH = 18.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.70 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 % ****************************************************************************** Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope Page 4 of 8 ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 5 ------------------------------------------------------------------------------ LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 58.8688 0.2453 2 62.4563 0.2602 3 62.2274 0.2593 4 0.0191 0.0744 5 0.0000 0.0000 6 0.1875 0.7500 7 7.5240 0.4180 TOTAL WATER IN LAYERS 191.283 SNOW WATER 0.000 INTERCEPTION WATER 0.000 TOTAL FINAL WATER 191.283 ****************************************************************************** ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.28 22796.400 RUNOFF 0.000 0.0000 DRAINAGE COLLECTED FROM LAYER 4 0.15094 547.92310 PERCOLATION/LEAKAGE THROUGH LAYER 6 0.000000 0.00010 AVERAGE HEAD ON TOP OF LAYER 5 0.130 MAXIMUM HEAD ON TOP OF LAYER 5 0.259 LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN) 0.0 FEET PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000000 0.00010 SNOW WATER 1.67 6061.1177 Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope Page 5 of 8 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 3.26 2.82 4.37 2.63 3.53 5.42 4.57 6.47 2.81 3.77 2.52 2.90 STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99 2.29 6.38 1.69 2.69 1.66 1.28 RUNOFF ------ TOTALS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 POTENTIAL EVAPOTRANSPIRATION ---------------------------- TOTALS 1.892 2.205 3.293 4.787 6.327 6.770 7.049 5.890 4.466 3.365 2.345 1.543 STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263 0.410 0.413 0.352 0.062 0.182 0.125 ACTUAL EVAPOTRANSPIRATION ------------------------- TOTALS 1.193 1.541 2.190 3.180 4.706 4.073 4.978 3.914 2.729 1.267 0.914 0.791 STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405 1.282 1.455 1.165 0.187 0.268 0.186 LATERAL DRAINAGE COLLECTED FROM LAYER 4 ---------------------------------------- TOTALS 1.7299 1.8268 1.7892 2.0809 2.3858 2.0359 Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope Page 6 of 8 1.8881 1.6389 1.5860 1.5715 1.7124 1.2820 STD. DEVIATIONS 1.0674 0.9114 0.4574 0.8264 0.9691 0.7580 0.8076 0.9788 0.9477 0.9047 0.7171 0.9394 LATERAL DRAINAGE RECIRCULATED FROM LAYER 4 INTO L. 1 ------------------------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 6 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 7 ------------------------------------ TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 5 ------------------------------------- AVERAGES 0.0482 0.0560 0.0499 0.0599 0.0665 0.0586 0.0526 0.0457 0.0457 0.0438 0.0493 0.0357 STD. DEVIATIONS 0.0298 0.0281 0.0128 0.0238 0.0270 0.0218 0.0225 0.0273 0.0273 0.0252 0.0207 0.0262 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 45.08 ( 10.212) 163625.9 100.00 RUNOFF 0.000 ( 0.0000) 0.00 0.000 POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19 Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope Page 7 of 8 ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827 LATERAL DRAINAGE COLLECTED 21.52720 ( 9.29538) 78143.742 47.75758 FROM LAYER 4 DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000 FROM LAYER 4 INTO L. 1 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.016 0.00001 LAYER 6 AVERAGE HEAD ON TOP 0.051 ( 0.022) OF LAYER 5 PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.016 0.00001 LAYER 7 CHANGE IN WATER STORAGE -7.926 ( 18.5106) -28772.12 -17.584 ******************************************************************************* ******************************************************************************* Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope Page 8 of 8 Computed: M. Plummer Date: 3/6/2015 Checked : P. Westmoreland Date: 3/8/2015 Page 1 of 2 Revised March 2015 Determination of Leachate Collection Pipe Capacity Subject: Leachate Collection Pipe Flow Capacity for Colon Mine Site Scope Evaluate the maximum flow capacity of the leachate collection lines. References 1. Merritt, F.S., Standard Handbook for Civil Engineers, 3rd Ed., McGraw-Hill, New York, 1983. 2. CP Chem Performance Pipe “Municipal & Industrial Series/IPS Pipe Data,” May 2001. Basis  The leachate collection pipes are proposed to consist of 8-inch diameter SDR-11 HDPE pipes. The 8-inch pipes have a nominal outer diameter (OD) equal to 8.625-inches and an average inner diameter (ID) equal to 6.963-inches. The pipes must have adequate flow capacity to transport the leachate to the sumps. The flow capacity should be compared to the maximum amount of leachate expected to be generated.  Expected leachate flow rates were determined by using the Hydrologic Evaluation of Landfill Performance (HELP) program and a 25-year, 24-hour design storm. Results Leachate collection and conveyance system should be designed based on 8-inch diameter SDR 11 HDPE pipe. Analysis LEACHATE COLLECTION PIPE DESIGN BASED ON PEAK LEACHATE GENERATION RATE The leachate collection pipe system capacity analysis is based upon the cell layout and leachate collection pipe layout shown on the top of liner sheets. The leachate generation rate used to size the leachate collection pipes was based on a HELP run consisting of 5 - 2 ft coal combustion product (CCP) layers. The following parameters were also entered into the HELP model.  No recirculation.  Open cell conditions.  The initial moisture content at 31%.  Drainage length was determined at varying floor slopes from 0.5 to 3%. The leachate collection system has been designed to meet this requirement. The results of the HELP run predict that the peak daily drainage discharging from CCP is 1,822 cf/acre (9.46 gpm per acre). The largest area draining to a leachate collection pipe is 29.4 acres. Using a maximum generation rate of 9.46 gpm per acre and an area of 29.4 acres, the total flow rate to a collection pipe is 278.1 gpm. Qpeak day avg = 278.1 gpm Computed: M. Plummer Date: 3/6/2015 Checked : P. Westmoreland Date: 3/8/2015 Page 2 of 2 Revised March 2015 The following analysis illustrates the capacity of the 8-inch leachate collection lines in relationship to slope. Manning’s coefficient for HDPE pipe (n) is 0.009 The spreadsheet below calculates flow capacity in gpm based on Manning’s Equation for HDPE pipes. Qp = (1.49/n) A(RH⅔)S0.5 where: Qp = pipe capacity (gpm) n = Manning’s roughness coefficient RH = hydraulic radius A = pipe cross-sectional area S = slope of the pipe As shown in the above table, an HDPE SDR-11, 8-inch pipe with an average inner diameter equal to 6.963-inch at a minimum slope of 0.5% has a capacity of 383 gpm. Therefore, an 8- inch pipe can accommodate the maximum leachate generation rate from the 29.4 acre maximum drainage area at the Colon Mine Site. ANALYSIS BASED ON LEACHATE/STORMWATER COLLECTION: For initial stormwater/leachate drainage, assuming 6.28 inch depth in 24-hr 25-year storm event for Raleigh, NC, approximately 22,796 cf/ac/day of stormwater is collected. Total volume of stormwater/leachate collected within the largest (5.9 acre) subcell is 134,495 cf. An 8-inch diameter pipe with 0.5% slope can convey 383 gpm. Considering a FS of 1.5 (meaning that the pipe is partially occluded), the pipe capacity is 255.3 gpm. Accordingly, a 136,778 cf (1,023,099 gallons) of storage volume will be emptied in approximately 67 hours assuming no other rain events during that period. ANALYSIS FOR SOLID WALL LEACHATE CONVEYANCE PIPE: The header is designed based on the leachate generated from largest drainage area. The largest area draining to a header pipe is approximately 29.4 acres. At 1,822 cf/day generation rate, the header is sufficient to handle the required flow. Project Charah Colon Mine Computed MDP Date 3/6/2015 Subject Leachate Collection Pipes Checked PAW Date 3/8/2015 Task Leachate Pipe Sizing Sheet 1 Of 2 Objective:Determine the time to drain under several design conditions. Equations: Pipe capacity (Q)= (D/16)8/3/n*√s Mannings Equation Q = Cd * A * (2 * g * h)0.5 Orifice Equation Inside pipe diameter (D)= 16(Qn/√s)3/8 Q = cfs, discharge Inside pipe diameter (D)= Doutside - 2*Doutside/SDR Cd =0.6 coefficient of discharge Std Dimension Ratio (SDR)= Doutside/wall thickness A = sf, cross sectional area Amount Drained = Allowable Flow/FS g = 32.2 ft/sec2, gravity Allowable Flow = Minimum of gravity flow and orifice flow under head. h =ft, driving head (above center of the pipe) Assumptions: Use HDPE pipe w/ SDR =11 Pipe Size Min Factor of Safety =1.5 Manning roughness coefficient, n =0.009 HDPE Allowable design head on pipe =6 feet 7.48052 gallons/cf 86,400 sec/day Design Event 1: Peak HELP Model flowrate Peak Leachate flow (cf/acre/day)=1822 HELP Model analysis of Cell with 10' of fill at 3% Largest cell, for leachate collection 29.4 acres Peak Leachate flow 53,567 cf Design Event 2: 25 yr storm in an open subcell Design Storm (inches/day) =6.28 25 yr 24 hr Largest subcell for SW drainage 5.9 acres Design Storm event 134,499 cf Governing event 6.625 8.625 10.75 12.75 13.375 14 16 0.10% 11,288 22,811 41,041 64,687 73,492 83,011 118,517 0.20% 15,964 32,260 58,040 91,482 103,934 117,395 167,608 0.30% 19,552 39,510 71,085 112,042 127,293 143,779 205,277 0.40% 22,576 45,623 82,082 129,375 146,985 166,021 237,033 0.50% 25,241 51,008 91,770 144,646 164,334 185,618 265,011 0.60% 27,650 55,876 100,529 158,451 180,019 203,334 290,305 0.70% 29,866 60,353 108,584 171,147 194,443 219,626 313,566 0.80% 31,928 64,520 116,081 182,964 207,868 234,790 335,216 0.90% 33,864 68,434 123,122 194,062 220,477 249,032 355,550 1.00% 35,696 72,136 129,782 204,560 232,404 262,503 374,783 1.20% 39,103 79,021 142,169 224,084 254,585 287,558 410,554 1.40% 42,236 85,352 153,560 242,038 274,984 310,598 443,449 1.80% 47,891 96,780 174,121 274,446 311,802 352,185 502,824 2.00% 50,482 102,015 183,540 289,291 328,668 371,235 530,023 2.25% 53,544 108,204 194,673 306,840 348,606 393,755 562,174 2.50% 56,441 114,057 205,204 323,437 367,462 415,054 592,583 2.75% 59,195 119,624 215,220 339,224 385,398 435,312 598,664 3.00% 61,828 124,943 224,790 354,308 402,535 454,669 598,664 3.50% 66,781 134,954 242,800 382,696 422,609 461,919 598,664 4.00% 71,392 144,271 259,565 384,953 422,609 461,919 598,664 5.00% 79,819 161,300 275,733 384,953 422,609 461,919 598,664 6.00% 87,437 176,696 275,733 384,953 422,609 461,919 598,664 8.00% 100,964 178,906 275,733 384,953 422,609 461,919 598,664 Amount Drained (cf/day) Pi p e S l o p e Pipe Outside Diameter (inches) Leachate Collection Pipe Calcs.xlsx Pipe Capacity 3/9/2015 Project Charah Colon Mine Computed MDP Date 3/6/2015 Subject Leachate Collection Pipes Checked PAW Date 3/8/2015 Task Leachate Pipe Sizing Sheet 2 Of 2 Pipe X-Section (sf) 0.2 0.3 0.4 0.6 0.7 0.7 0.9 6.625 8.625 10.75 12.75 13.375 14 16 0.10% 0.2 0.4 0.7 1.1 1.3 1.4 2.1 0.20% 0.3 0.6 1.0 1.6 1.8 2.0 2.9 0.30% 0.3 0.7 1.2 1.9 2.2 2.5 3.6 0.40% 0.4 0.8 1.4 2.2 2.6 2.9 4.1 0.50% 0.4 0.9 1.6 2.5 2.9 3.2 4.6 0.60% 0.5 1.0 1.7 2.8 3.1 3.5 5.0 0.70% 0.5 1.0 1.9 3.0 3.4 3.8 5.4 0.80% 0.6 1.1 2.0 3.2 3.6 4.1 5.8 0.90% 0.6 1.2 2.1 3.4 3.8 4.3 6.2 1.00% 0.6 1.3 2.3 3.6 4.0 4.6 6.5 1.20% 0.7 1.4 2.5 3.9 4.4 5.0 7.1 1.40% 0.7 1.5 2.7 4.2 4.8 5.4 7.7 1.80% 0.8 1.7 3.0 4.8 5.4 6.1 8.7 2.00% 0.9 1.8 3.2 5.0 5.7 6.4 9.2 2.25% 0.9 1.9 3.4 5.3 6.1 6.8 9.8 2.50% 1.0 2.0 3.6 5.6 6.4 7.2 10.3 2.75% 1.0 2.1 3.7 5.9 6.7 7.6 10.4 3.00% 1.1 2.2 3.9 6.2 7.0 7.9 10.4 3.50% 1.2 2.3 4.2 6.6 7.3 8.0 10.4 4.00% 1.2 2.5 4.5 6.7 7.3 8.0 10.4 5.00% 1.4 2.8 4.8 6.7 7.3 8.0 10.4 6.00% 1.5 3.1 4.8 6.7 7.3 8.0 10.4 8.00% 1.8 3.1 4.8 6.7 7.3 8.0 10.4 Conclusions: Design storm generates greater amount of liquid to handle than is expected from the peak leachate production. As the prefered minimum pipe size is 8" and the minimum pipe slope for the site is 0.5% An 8 inch pipe with 0.5% slope can drain: Design 1: The peak leachate flow volume will drain in 25.2 hours Design 2: storm event volume will drain in 63.3 hours Pi p e S l o p e Allowable Flow in pipe Q (cfs) Pipe Outside Diameter (inches) Leachate Collection Pipe Calcs.xlsx Pipe Capacity 3/9/2015 HDR Computation Job Number 453925-235691-018 No. Project Charah Colon Mine Computed MDP Date 3/6/2015 Subject Permit Application Checked PAW Date 3/6/2015 Task Leachate Pipe Sizing Sheet 1 Of 1 Objective: Determine the required leachate collection pipe size based on drainage areas for each cell. References: 2. "Elements of Urban Stormwater Design"; H. Rooney Malcom; p. I-10 Calculations: (Ref. 2) Where: DREQD =theoretical pipe diamter (in.) for just-full flow Volume (ft3) = Peak Daily Volume (ft 3/acre) x Area (acre)n =Manning roughness coefficient (dimensionless) Peak Daily Volume is from the HELP Model runs s =longitudinal slope (ft/ft) Q =Volume/time (convert to ft3/sec)Q =Required flow volume to drain in 24 hrs. (cfs) Inputs: Peak Daily Volume* =1822 12 in/foot n =0.009 Ref. 1, Table 9.3, p. 472 (HDPE) 43,560 square feet/acre *24 hours/day 60 min/hour 60 sec/min Outputs: Pipe Use Area (AC)** Volume (ft3) Q (ft3/sec)*** Minimum Slope DREQD (in)DACT (in)Check Cell 1 Header 22.4 40,813 0.472 0.5%5.6 8 ok Cell 2 Header 15.3 27,877 0.323 0.5%4.8 8 ok Cell 3 Header 19.3 35,165 0.407 1.0%4.6 8 ok Cell 4 Header 31.9 58,122 0.673 0.5%6.4 8 ok Cell 5 Header 29.4 53,567 0.620 0.5%6.2 8 ok ** Denotes maximum drainage area for all laterals. *** Assumes the entire area will be drained in a 24 hour period Conclusion:8-inch pipe has adequate capacity at the design pipe slopes for the peak flow predicted by the HELP Model. Peak Daily Volume from HELP model run for 10' ash with geocomposite as lateral drainage feature. 1. "Waste Containment Systems, Waste Stabilization, and Landfills; Design and Evaluation"; Hari Sharma and Sangeeta ft3/Ac leachate collected in 24 hours 8 3 16   s QnDREQD 3/9/2015 HDR Engineering, Inc. of the Carolinas Leachate Pipe Sizing.xlsx This page intentionally left blank. HDR Computation Job Number 453925-235691-018 Project:Charah Colon Mine Computed:  MDP Date: 3/6/2015 Subject:Permit Application Checked  PAW Date: 3/8/2015 Task:Leachate Pipe Perforations Sheet 1Of 1 Objective Determine the perforations in the collection pipes Ensure that pipe perforations are sufficent for pipe flows Equations Q = Cd * A (2 * g * h)0.5 Orifice Equation Cd =0.6 Typical Default value 7.84052 gals/cf g =32.2 ft/sec2, gravity 60 sec/min A = sf, cross sectional area of pipe 86400 sec/day h = ft, driving head HELP Model Avg Annual Lateral Drainage Collected 78,144.0 cf/yr/ac 0.002 cfs/acre HELP Model Peak Daily Lateral Drainage Collected 1,822.0 cf/day/ac 0.021 cfs/acre Calculations Check Inlet Control of perforations for pipe under peak condition Basis Area to Drain (Acres) Q (cfs) Pipe Diameter (in) # of holes per ft of pipe Hole Diameter (in) Length (ft) Inlet Cross Sectional Area (sf) Required Head to fill pipe, h (in) Depth of liquid @ pipe (in) Entire Site 118.7 2.50 8303/828 0.6 7.8 11.8 Largest Cell 29.4 0.62 8303/8 7 0.2 7.7 11.7 Largest Subcell 6.0 0.13 8303/8 2 0.0 3.9 7.9 Only 12 inch depth of liquid is required to fill the pipe at the design flow rate, assumming liquid is available Conclusion There is adequate redundancy in pipe perforations to handle expected flows. Charah CM Site Leachate calcs.xlsx HDR Engineering Inc. of the Carolinas Perforations This page intentionally left blank. HDR Computation Job Number 453925-235691-018 No. Project:Charah Colon Mine Computed MDP Date:3/6/2015 Subject:Permit Application Checked PAW Date:3/8/2015 Task:Leachate Pipe Orifice Sizing Sheet:1 Of 2 Objective: Determine if the leachate pipes and perforations are large enough to handle the peak daily leachate flow. References: 1.Malcom, H. Rooney (1989). Elements of Urban Stormwater Design. Raleigh: NC State Univ. 2. Calculations: Conversion factors Eq. 1 Reference 17.48gal/cf 60 s/min 60 min/hr 24 hr/day Eq. 2 12 in/ft 43,560 sf/acre Where: Q =Flow Rate (cfs) Cd = Coefficient of Discharge (dimensionless) A =Cross‐sectional Area of Orifice (sf) g =gravity (ft/s2) h =head (ft) d =diameter of opening (ft) Given: Select the Flow Rate per Acre based on HELP model runs Qpeak daily = 1822.00 cf/acre/day From HELP model run: 10' of ash Qpeak daily = 9.46 gal/acre/min SDR Pipe Size (inches) 11 8 Maximum Drainage distance = 950 feet Area of Drainage per foot of pipe = 950 sf Area of Drainage per foot of pipe = 0.022 ac Required Drainage per foot of pipe = 0.206 gpm (actual flow rate per acre for the drainage area of the pipe) Determine the maximum allowable flow in the pipe based on the perforations in the pipe and a maximum head Diameter of perforation, dperforation = 0.375 in dperforation = 0.03125 ft Aperforation = 0.00077 ft2 Using Equation 1, determine the flow in the pipe Cd =0.6typical default value (Ref. 1) Aperforation = 0.00077 ft2 g =32.2ft/s2 h =8in The maximum head on the liner is 12 inches. The pipe is 8 inches in diameter.  h =0.67ft The head was therefore assumed to be from the center of the pipe  to 12 inches above the liner. Qperforation = 0.003 cfs Qperforation =1.35gpm per perforation Number of Perforations per foot of pipe =30perforations per foot of pipe Qper foot of pipe = 40.60 gpm Sharma, H. D., & Lewis, S. P. (1994). Waste Containment Systems, Waste Stabilization, and Landfills: Design and  Evaluation. New York: John Wiley & Sons, Inc. ghACQd2 2 2   dA Charah CM Site Leachate calcs.xlsx HDR Engineering, Inc. of the Carolinas Leachate flow HDR Computation Job Number 453925-235691-018 No. Project:Charah Colon Mine Computed MDP Date:3/6/2015 Subject:Permit Application Checked PAW Date:3/8/2015 Task:Leachate Pipe Orifice Sizing Sheet:2 Of 2 Required Flow Rate Allowable Flow Rate gpm gpm 0.206 40.60 Conclusion: Determine the maximum allowable flow in the pipe based on the pipe size and flowing full Eq. 3 Reference 1 Where: Q =Flow Rate (cfs) D =Theoretical Pipe Diameter (in) for just‐full flow n = Manning roughness coefficient (dimensionless) s = Longitudinal slope (ft/ft) D = 8in n = 0.009 Reference 2, page 472 Slope Allowable Q (cfs) Allowable Q (gpm) Check 0.10% 0.55 248 Allowable Q is greater than Required Q 0.25% 0.87 393 Allowable Q is greater than Required Q 0.50% 1.24 555 Allowable Q is greater than Required Q 0.75% 1.52 680 Allowable Q is greater than Required Q 1.00% 1.75 785 Allowable Q is greater than Required Q 1.25% 1.96 878 Allowable Q is greater than Required Q 1.50% 2.14 962 Allowable Q is greater than Required Q 1.75% 2.31 1,039 Allowable Q is greater than Required Q 2.00% 2.47 1,111 Allowable Q is greater than Required Q 2.25% 2.62 1,178 Allowable Q is greater than Required Q 2.50% 2.77 1,242 Allowable Q is greater than Required Q 2.75% 2.90 1,302 Allowable Q is greater than Required Q 3.00% 3.03 1,360 Allowable Q is greater than Required Q 3.25% 3.15 1,416 Allowable Q is greater than Required Q 3.50% 3.27 1,469 Allowable Q is greater than Required Q 3.75% 3.39 1,521 Allowable Q is greater than Required Q Conclusion: < The allowable flow rate is greater than the required flow rate. Therefore the allowable flow rate based on pipe  perforations will be sufficient to meet the actual expected flow rate. The allowable flow rate is greater than the required flow rate for slopes 0.1% and above. Smaller pipe slopes were not  run, but it is assumed that the bottom slope will not be smaller than 0.25% accounting for settlement. Therefore the  allowable flow based on pipe size will be sufficient to meet the actual expected flow rate. n sDQ3 8 16    Charah CM Site Leachate calcs.xlsx HDR Engineering, Inc. of the Carolinas Leachate flow HD R C o m p u t a t i o n Pr o j e c t C h a r a h C o l o n M i n e Co m p u t e d M D P D a t e 3 / 6 / 2 0 1 5 Su b j e c t P e r m i t A p p l i c a t i o n Ch e c k e d P A W D a t e 3 / 8 / 2 0 1 5 Ta s k L e a c h a t e T a n k S i z i n g Sh e e t 1 o f 1 Gi v e n : De t e r m i n e T a n k s i z i n g o p t i o n s b a s e d o n t h e r e q u i r e d s t o r a g e c a p a c i t y Ta n k s i z e s s e l e c t e d f r o m a t t a c h e d c h a r t f o r A q u a s t o r e T a n k s . Re q u i r e : 0. 5 f e e t o f f r e e b o a r d i n t a n k s 11 0 % C a p a c i t y o f p r i m a r y f o r s e c o n d a r y c o n t a i n m e n t t a n k Se c o n d a r y t a n k m u s t p r o v i d e s u f f i c i e n t s p a c e t o e v a l u a t e p r i m a r y t a n k c o n d i t i o n . Ev a l u a t e t h e d e t a i l s o f p r o v i d i n g t h e o r i g i n a l s c e n a r i o a n d r e v i e w v i a b l e a l t e r n a t i v e s . S c e n a r i o Pr i m a r y Di a m e t e r (f t ) Pr i m a r y He i g h t ( f t ) Nu m b e r Pr i m a r y Ta n k s Pr i m a r y Fo o t p r i n t (s f / t a n k ) P r i ma r y Si d e w a l l Ar e a (s f / t a n k ) Pr i m a r y Ca p a c i t y (g a l s / t a n k ) S ec o n d ar y Ca p a c i t y Re q u i r e d (G a l s ) Se c o n d a r y Di a m e t e r ( f t ) Se c o n d a r y He i g h t ( f t ) S ec o n d ar y Ta n k Fo o t p r i n t (s f ) Se c o n d a r y Si d e w a l l Ar e a ( s f ) S ec o n d ar y Ca p a c i t y Pr o v i d e d (g a l s ) 110% o f Primary Tank Ca p a c i t y ? T o t a l Tank Sidewall Area (sf)T o t a l Operating Capacity (gals)E s t . Space around tanks 1 7 2 . 7 3 3 3 . 0 1 1 4, 1 5 4 7 5 4 2 1 , 0 1 0 , 3 3 6 1 , 1 1 1 , 3 7 0 10 3 . 5 2 3 . 8 4 8, 4 1 3 7 , 7 5 2 1 , 4 6 8 , 9 3 7 Y e s 1 5 2 9 4 1 , 0 1 0 , 3 3 6 1 5 . 4 2 7 5 . 5 3 3 3 . 0 1 1 4, 4 8 1 7 8 3 3 1 , 0 8 9 , 6 2 6 1 , 1 9 8 , 5 8 9 10 3 . 5 2 3 . 8 4 8, 4 1 3 7 , 7 5 2 1 , 4 6 8 , 9 3 7 Y e s 1 5 5 8 4 1 , 0 8 9 , 6 2 6 1 4 . 0 3 7 8 . 3 2 2 8 . 4 3 1 4, 8 1 8 6 9 9 5 1 , 0 0 6 , 5 5 6 1 , 1 0 7 , 2 1 2 10 3 . 5 2 3 . 8 4 8, 4 1 3 7 , 7 5 2 1 , 4 6 8 , 9 3 7 Y e s 1 4 7 4 7 1 , 0 0 6 , 5 5 6 1 2 . 6 4 8 1 . 1 2 2 8 . 4 3 1 5, 1 6 8 7 2 4 5 1 , 0 7 9 , 8 1 3 1 , 1 8 7 , 7 9 4 10 3 . 5 2 3 . 8 4 8, 4 1 3 7 , 7 5 2 1 , 4 6 8 , 9 3 7 Y e s 1 4 9 9 7 1 , 0 7 9 , 8 1 3 1 1 . 2 5 8 3 . 9 2 2 8 . 4 3 1 5, 5 3 1 7 4 9 5 1 , 1 5 5 , 6 4 3 1 , 2 7 1 , 2 0 7 10 3 . 5 2 3 . 8 4 8, 4 1 3 7 , 7 5 2 1 , 4 6 8 , 9 3 7 Y e s 1 5 2 4 7 1 , 1 5 5 , 6 4 3 9 . 8 6 8 6 . 7 2 2 3 . 8 4 1 5, 9 0 6 6 4 9 5 1 , 0 3 1 , 2 4 3 1 , 1 3 4 , 3 6 7 10 3 . 5 2 3 . 8 4 8, 4 1 3 7 , 7 5 2 1 , 4 6 8 , 9 3 7 Y e s 1 4 2 4 7 1 , 0 3 1 , 2 4 3 8 . 4 7 8 9 . 5 1 2 3 . 8 4 1 6, 2 9 3 6 7 0 4 1 , 0 9 8 , 6 6 6 1 , 2 0 8 , 5 3 2 10 3 . 5 2 3 . 8 4 8, 4 1 3 7 , 7 5 2 1 , 4 6 8 , 9 3 7 Y e s 1 4 4 5 6 1 , 0 9 8 , 6 6 6 7 . 0 8 9 2 . 3 1 2 3 . 8 4 1 6, 6 9 2 6 9 1 4 1 , 1 6 8 , 4 7 7 1 , 2 8 5 , 3 2 4 16 0 1 0 20 , 1 0 6 5 , 0 2 7 1 , 4 2 8 , 8 4 5 Y e s 1 1 9 4 0 1 , 1 6 8 , 4 7 7 3 3 . 8 9 6 7 . 1 3 1 9 . 2 8 2 3, 5 3 9 4 0 6 6 4 9 7 , 2 2 2 5 4 6 , 9 4 4 15 0 1 0 17 , 6 7 1 4 , 7 1 2 1 , 0 0 4 , 2 9 8 Y e s 1 2 8 4 5 9 9 4 , 4 4 4 5.2 10 6 9 . 9 3 1 9 . 2 8 2 3, 8 4 1 4 2 3 6 5 3 9 , 5 6 6 5 9 3 , 5 2 2 15 0 1 0 17 , 6 7 1 4 , 7 1 2 9 8 2 , 8 7 8 Y e s 1 3 1 8 4 1 , 0 7 9 , 1 3 1 3 . 4 11 7 2 . 7 3 1 9 . 2 8 2 4, 1 5 4 4 4 0 5 5 8 3 , 6 3 9 6 4 2 , 0 0 3 15 0 1 0 17 , 6 7 1 4 , 7 1 2 9 6 0 , 5 8 3 Y e s 1 3 5 2 3 1 , 1 6 7 , 2 7 8 1 . 5 12 7 8 . 3 2 1 4 . 6 8 2 4, 8 1 8 3 6 1 2 5 1 1 , 0 2 6 5 6 2 , 1 2 9 17 5 1 0 24 , 0 5 3 5 , 4 9 8 1 , 3 6 6 , 9 4 6 Y e s 1 2 7 2 2 1 , 0 2 2 , 0 5 3 6 . 1 Ca l c u l a t e T a n k S t o r a g e C a p a c i t y ( a m o u n t o f e v e n t t h a t f i t s i n t a n k a s s u m i n g n o o t h e r f l o w s a n d e m p t y t a n k a t s t a r t ) Si t e E v e n t La r g e s t Su b c e l l A r e a (a c r e s ) Ga l l o n s P r o d u c e d Co l o n R a i n f a l l 2 5 - y e a r 2 4 - h r s t o r m 6 . 2 8 i n c h e s 5 . 9 1 , 0 0 6 , 0 5 1 Co l o n L e a c h a t e M a x A v g A n n u a l g e n e r a t i o n 7 8 1 4 4 c f / a c r e 5 . 9 5 8 4 , 5 1 7 Co n c l u s i o n : Se l e c t p r i m a r y a n d s e c o n d a r y t a n k s s c e n a r i o t o p r o v i d e f o r a p p r o x i m a t e o p e r a t i n g c a p a c i t y o f 1 , 0 0 0 , 0 0 0 g a l l o n s . S c e n a r i o 3 a n d 12 w o u l d m e e t t h e r e q u i r e d o p e r a t i n g c a p a c i t y f o r th e 2 5 y e a r s t o r m e v e n t . C o s t a n a y l s i s h a s n o t b e e n i n c l u d e d i n t h e s e c a l c u l a t i o n s . Ch a r a h C o l o n T a n k . x l s x Tank Sizing Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . HDR Computation Job Number 453925-235691-018 No. Project Charah Colon Mine Computed MDP Date 3/5/2015 Subject Permit Application Checked PAW Date 3/8/2015 Task Subcell Divider Berms Sheet 1 Of 1 Objective: Determine if the subcell berms are large enough to handle a 25-year, 24-hour storm event. References: 1. NC Erosion and Sediment Control Planning and Design Manual. Given: 6.28 in, 25-year, 24-hour precipitation event (Raleigh, NC) Ref 1 Where: VR =Precipitation event volume (ft3)V = Volume of Pond (pyramid) (ft3) A =Area (acres)h = Height of the berm (pyramid) (ft) p = precipitation event (in)A=Area of ponding (pyramid base) (ft2) Case 1: Will Subcell Divider Berm handle precipitation into one subcell? Subcell Subcell Area (acres) Required Volume (ft3) Berm Height (ft) Area of ponding behind berm (sf) Area of Ponding (acres) Available Volume (ft3) Factor of Safety Check 1A 5.8 132,219 4 196,710 4.52 262,280 2.0 OK 1B 5.7 129,939 4 149,607 3.43 199,476 1.5 OK 1C 5.5 125,380 4 164,101 3.77 218,802 1.7 OK 1D 5.6 127,660 8 77,152 1.77 205,739 1.6 OK 2A 5.0 113,982 5 80,998 1.86 134,997 1.2 OK 2B 5.1 116,262 5 77,584 1.78 129,306 1.1 OK 2C 5.2 118,541 5 137,167 3.15 228,612 1.9 OK 3A 4.9 111,702 8 73,538 1.69 196,101 1.8 OK 3B 4.9 111,702 8 54,946 1.26 146,521 1.3 OK 3C 4.8 109,423 7 73,368 1.68 171,191 1.6 OK 3D 4.7 107,143 5 75,723 1.74 126,204 1.2 OK 4A 5.5 125,380 4 119,310 2.74 159,080 1.3 OK 4B 5.7 129,939 6 69,575 1.60 139,150 1.1 OK 4C 5.0 113,982 6 63,507 1.46 127,013 1.1 OK 4D 5.5 125,380 8 70,683 1.62 188,488 1.5 OK 4E 5.4 123,101 8 68,510 1.57 182,692 1.5 OK 4F 4.7 107,143 8 48,898 1.12 130,395 1.2 OK 5A 5.9 134,499 8 76,860 1.76 204,961 1.5 OK 5B 5.9 134,499 8 70,705 1.62 188,548 1.4 OK 5C 5.9 134,499 7 57,921 1.33 135,148 1.0 OK 5D 5.9 134,499 5 130,176 2.99 216,961 1.6 OK 5E 5.8 132,219 6 75,553 1.73 151,106 1.1 OK Conclusion: All individual subcells can contain the design storm event. 1 ft should be added to the Berm Height to maintain freeboard. ft inpacre ftAVR 12560,43 2 hAV3 1 Subcell Divider Berms.xlsx HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #3 Sheet: 1 Of: 4 Objective Design the temporary sediment basin to contain the 25-year storm. References 1. NC Erosion and Sediment Control Planning and Design Manual. 2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E. 3. NOAA Atlas 14, Volume 2, Version 3 4. VA Erosion and Sediment Control Handbook Given Phase 1 1 Storm Event (yrs) =10 25 Total Drainage Area A (ac) =3.1 3.1 Disturbed Area (ac) =3.1 3.1 Curve Number CN =91 91 Hydrographs Rainfall Depth P (in) =5.28 6.28 (24-hr rainfall)Ref 3 Peak Flow Qp (cfs) =20.57 24.96 Hydrographs Design Criteria Required sediment storage 1,800 cf / acre of drainage Required sediment storage 5,580 cf Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs) Required Surface Area (SF)8,948 of the 10-yr storm peak flow (based on the largest Phase) Determine Shape of Basin: Measure the area of the Basin using AutoCADD. Calculate Volume of the Basin using Truncated Pyramid Method. Shape factor used in hydrographs basin depth may be gretaer than indicated below Cumulative Cumulative Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy) 244 0 0 --- 244 0 4,877 0 0 0 245 1 6,254 5,551 5,551 206 246 2 7,709 6,969 12,520 464 247 3 9,244 8,465 20,985 777 248 4 10,857 10,040 31,025 1,149 249 5 12,549 11,693 42,717 1,582 250 6 14,321 13,425 56,143 2,079 Design Sediment Depth (ft) =3 Sediment Storage (cf) =20,985 Required Sediment Storage Achieved Design Surface Area Depth (ft) =3 Surface Area (sf) =9,244 Required Surface Area Achieved SB 03 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #3 Sheet: 2 Of: 4 Select Skimmer A. R. Jarrett Method D = [Q / (2,310 * (H0.5)]0.5 D =Diameter of Orifice (inches) Q = Dewater Rate (cf/day) H = Head on orifice, varies based on skimmer size (ft) Skimmer Sizes Head (Inches)(ft) 1.5 0.125 2 0.167 2.5 0.167 3 0.250 4 0.333 5 0.333 6 0.417 8 0.500 Volume to Dewater (cf) =20,985 Number of Skimmers 1 Days to Drain =5 assumed Q each (cf/day) =4,197 0.05 cfs Selected Skimmer Size (inches) =2.5 Head on Skimmer (feet) =0.208 Diameter of Orifice (inches) =2.0 Route the flow through the Basin Riser is not perforated, but skimmer is attached. S =(1000/CN) - 10 Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4 TP (min) = 60.5(Q*)A/QP/1.39 Phase 1 1 Storm Event (yrs) =10 25 S =0.99 0.99 Runoff Depth Q* (inches) =4.25 5.23 Time to Peak Tp (min) =27.91 28.28 Determine Pond Storage Elevation (ZWater): Pick one point near max expected water surface and the other at the mid depth. Z1 (ft) = 3 S1 (cf)= 20,985 Z2 (ft) = 6 S2 (cf) = 56,143 b = ln(S2/S1)/ln(Z2/Z1) =1.4 Ref 2, III-8 KS = S2/Z2 b =4,411 SB 03 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #3 Sheet: 3 Of: 4 Determine Settling Velocity Conversion Factor = 3.281 ft/sec per m/sec Gravitational Acceleration, g (m/s2) =9.81 Specific Gravity of soil (ss)=2.6 Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11 Diameter of the Design Particle d15 =40.00E-06 m Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec Route the Storm through the Basin using the Hydrograph Model Set Height of Emergency Spillway at (ft) =5.00 Set Top of Dam at (ft) =6.00 Anti-Seep Collar: Anti-Seep Collar Size =2 * Barrel Dia Anti-Seep Collar Size (ft) =2 Use Anti-Seep Collar Size (ft) =2 x 2 Minimum Concrete Base for Riser: Diameter of Riser (in) = 24 From Hydrograph Avg Density of Concrete (lbs/cf) =87.6 Density of Water (lbs/cf) =62.4 Riser Displacement (cf) = 13.82 Pi * (DR/24)2 * Total Ht of Riser Convert cf to cy =27-1 Min Concrete Needed (cy) =0.36 Width & Length (ft) =3 Thickness (ft) =1.1 Anti-Vortex Device: Diameter of Riser (in) = 24 From Hydrograph Cylinder Diameter (in) = 36 Ref 4, III-104, Table 3.14-D Cylinder Thickness (gage) = 16 Cylinder Height (in) = 13 See Hydrograph SB 03 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #3 Sheet: 4 Of: 4 Determine Tailwater conditions to size outlet apron Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7 A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3 Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5) n =0.069 6-inch diameter Rip Rap, Lined Channel Vp (ft/sec) =9 Permissible Velocity for lining Side Slope (z) =5 enter X for X:1 s (ft/ft) =0.02 Outlet Slope (estimated) Bottom Width (ft) = 3 3 * Barrel Diameter QB (cfs) =4.1 Peak Flow out of the barrel 10-yr Hydrograph Q (cfs)Zreq Flow Depth d (ft)A (sf) R (ft)Zav V (ft/sec) 4.1 1.34 0.50 2.8 0.34 1.34 1.5 Flow Depth = Tailwater, d (ft) =0.50 0.5* Barrel Diameter (ft) =0.50 Ref 1, 8.06.3 Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions. Barrel Diameter (ft) Entrance (ft) Length (ft) Outlet Width (ft) Median Rip Rap Size d50 Selected Rip Rap Size (in) 1 3 8 9 0.4 Class A Conclusion The temporary basin can contain the 25-yr storm. SB 03 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet 1 Of 2 Diameter of Riser (in) = 24 Circumference of Riser (in) =75.4 Height of Riser from bottom of barrel (in) =53 From Hydrograph Vertical spacing between holes (in) =0 center to center Water Stage increment (ft)0.05 Orifice Equation Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11 Q =cfs, discharge Cd =0.6 coefficient of discharge A = sf, cross sectional area g =32.2 ft/sec2, gravity h =ft, driving head measured from the center of the pipe Skimmer Row 1 2 3 4 5 1 # of skimmers Holes per row 0 0 0 0 0 Hole Diameter (in)0.75 0.75 0.75 0.75 0.75 Spacing edge to edge (in) Inlet Area (sf)0.000 0.000 0.000 0.000 0.000 Hole Stage (in)0.50 0.50 0.50 0.50 0.50 Hole Stage (ft)0.04 0.04 0.04 0.04 0.04 Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.05 0.05 0.29 0.00 0.00 0.00 0.05 0.05 0.34 0.00 0.00 0.00 0.05 0.05 0.39 0.00 0.00 0.00 0.05 0.05 0.44 0.00 0.00 0.00 0.05 0.05 0.49 0.00 0.00 0.00 0.05 0.05 0.54 0.00 0.00 0.00 0.05 0.05 0.59 0.00 0.00 0.00 0.05 0.05 0.64 0.00 0.00 0.00 0.05 0.05 0.69 0.00 0.00 0.00 0.05 0.05 0.74 0.00 0.00 0.00 0.05 0.05 0.79 0.00 0.00 0.00 0.05 0.05 0.84 0.00 0.00 0.00 0.05 0.05 0.89 0.00 0.00 0.00 0.05 0.05 0.94 0.00 0.00 0.00 0.05 0.05 0.99 0.00 0.00 0.00 0.05 0.05 1.04 0.00 0.00 0.00 0.05 0.05 1.09 0.00 0.00 0.00 0.05 0.05 1.14 0.00 0.00 0.00 0.05 0.05 1.19 0.00 0.00 0.00 0.05 0.05 1.24 0.00 0.00 0.00 0.05 0.05 1.29 0.00 0.00 0.00 0.05 0.05 1.34 0.00 0.00 0.00 0.05 0.05 1.39 0.00 0.00 0.00 0.05 0.05 1.44 0.00 0.00 0.00 0.05 0.05 1.49 0.00 0.00 0.00 0.05 0.05 1.54 0.00 0.00 0.00 0.05 0.05 1.59 0.00 0.00 0.00 0.05 0.05 Perforations SB 03 Pipe Perf-Skimmer HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet 2 Of 2 1.64 0.00 0.00 0.00 0.05 0.05 1.69 0.00 0.00 0.00 0.05 0.05 1.74 0.00 0.00 0.00 0.05 0.05 1.79 0.00 0.00 0.00 0.05 0.05 1.84 0.00 0.00 0.00 0.05 0.05 1.89 0.00 0.00 0.00 0.05 0.05 1.94 0.00 0.00 0.00 0.05 0.05 1.99 0.00 0.00 0.00 0.05 0.05 2.04 0.00 0.00 0.00 0.05 0.05 2.09 0.00 0.00 0.00 0.05 0.05 2.14 0.00 0.00 0.00 0.05 0.05 2.19 0.00 0.00 0.00 0.05 0.05 2.24 0.00 0.00 0.00 0.05 0.05 2.29 0.00 0.00 0.00 0.05 0.05 2.34 0.00 0.00 0.00 0.05 0.05 2.39 0.00 0.00 0.00 0.05 0.05 2.44 0.00 0.00 0.00 0.05 0.05 2.49 0.00 0.00 0.00 0.05 0.05 2.54 0.00 0.00 0.00 0.05 0.05 2.59 0.00 0.00 0.00 0.05 0.05 2.64 0.00 0.00 0.00 0.05 0.05 2.69 0.00 0.00 0.00 0.05 0.05 2.74 0.00 0.00 0.00 0.05 0.05 2.79 0.00 0.00 0.00 0.05 0.05 2.84 0.00 0.00 0.00 0.05 0.05 2.89 0.00 0.00 0.00 0.05 0.05 2.94 0.00 0.00 0.00 0.05 0.05 2.99 0.00 0.00 0.00 0.05 0.05 3.04 0.00 0.00 0.00 0.05 0.05 3.09 0.00 0.00 0.00 0.05 0.05 3.14 0.00 0.00 0.00 0.05 0.05 3.19 0.00 0.00 0.00 0.05 0.05 3.24 0.00 0.00 0.00 0.05 0.05 3.29 0.00 0.00 0.00 0.05 0.05 3.34 0.00 0.00 0.00 0.05 0.05 3.39 0.00 0.00 0.00 0.05 0.05 3.44 0.00 0.00 0.00 0.05 0.05 3.49 0.00 0.00 0.00 0.05 0.05 3.54 0.00 0.00 0.00 0.05 0.05 3.59 0.00 0.00 0.00 0.05 0.05 3.64 0.00 0.00 0.00 0.05 0.05 3.69 0.00 0.00 0.00 0.05 0.05 3.74 0.00 0.00 0.00 0.05 0.05 3.79 0.00 0.00 0.00 0.05 0.05 3.84 0.00 0.00 0.00 0.05 0.05 3.89 0.00 0.00 0.00 0.05 0.05 3.94 0.00 0.00 0.00 0.05 0.05 3.99 0.00 0.00 0.00 0.05 0.05 SB 03 Pipe Perf-Skimmer Computed By: PAW Date: 3/05/15 Checked By: MDP Date: 3/06/15 Sheet: __1__of _2___ Qp = 20.57 cfs Sediment Basin #3 Colon Tp = 27.91 minutes Phase 1 dT = Max of 2 minutes 10 - year Storm Event or 1.0%of increment to peak b =1.4 Number of Riser/Barrel Assemblies 1 Ks =4,411 Diameter of Barrel =12 (in) Height of Riser above barrel =3.4 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=4.4 (ft) elevation 248.40 2 Effective number of cells (2 is construction site #) Emergency Spillway =5.0 (ft) elevation 249.00 98%Minimum Settling Efficiency Total Height of Dam =6.0 (ft) elevation 250.00 4.7 ft Maximum Stage 248.74 msl elevation Length of Emergency Spillway =10 (ft)4.1 cfs Peak outflow Diameter of Riser =24 (in)4.1 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 244.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 0.3 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 1.0 31 0.0 0.00 0.00 0.00 0.00 0.00 3.19 1,448 N/A 6 2.3 154 0.1 0.00 0.00 0.00 0.00 0.00 5.11 2,323 N/A 8 3.9 425 0.2 0.00 0.00 0.00 0.00 0.00 6.90 3,136 N/A 10 5.9 893 0.3 0.05 0.05 0.00 0.05 0.05 8.59 3,905 100% 12 8.0 1,590 0.5 0.05 0.05 0.00 0.05 0.05 10.19 4,631 100% 14 10.3 2,549 0.7 0.05 0.05 0.00 0.05 0.05 11.72 5,325 100% 16 12.6 3,784 0.9 0.05 0.05 0.00 0.05 0.05 13.17 5,985 100% 18 14.8 5,294 1.1 0.05 0.05 0.00 0.05 0.05 14.54 6,610 100% 20 16.8 7,066 1.4 0.05 0.05 0.00 0.05 0.05 15.84 7,198 100% 22 18.4 9,071 1.7 0.05 0.05 0.00 0.05 0.05 17.05 7,750 100% 24 19.6 11,271 1.9 0.05 0.05 0.00 0.05 0.05 18.18 8,264 100% 26 20.3 13,616 2.2 0.05 0.05 0.00 0.05 0.05 19.23 8,739 100% 28 20.6 16,050 2.5 0.05 0.05 0.00 0.05 0.05 20.18 9,174 100% 30 20.3 18,513 2.7 0.05 0.05 0.00 0.05 0.05 21.05 9,570 100% 32 19.5 20,941 3.0 0.05 0.05 0.00 0.05 0.05 21.83 9,925 100% 34 18.2 23,275 3.2 0.05 0.05 0.00 0.05 0.05 22.53 10,240 100% 36 16.7 25,458 3.4 0.05 0.05 0.00 0.05 0.05 23.13 10,515 100% 38 15.2 27,455 3.6 0.05 0.05 0.00 0.05 0.05 23.66 10,752 100% 40 13.9 29,273 3.8 0.05 0.05 0.00 0.05 0.05 24.11 10,958 100% 42 12.6 30,929 3.9 0.05 0.05 0.00 0.05 0.05 24.50 11,138 100% 44 11.5 32,438 4.1 0.05 0.05 0.00 0.05 0.05 24.85 11,296 100% 46 10.5 33,811 4.2 0.05 0.05 0.00 0.05 0.05 25.16 11,435 100% 48 9.5 35,062 4.3 0.05 0.05 0.00 0.05 0.05 25.43 11,559 100% 50 8.7 36,201 4.4 0.05 0.06 0.00 7.46 0.06 25.67 11,668 100% 52 7.9 37,238 4.5 0.05 0.64 0.00 7.54 0.64 25.89 11,766 100% 54 7.2 38,111 4.6 0.05 1.47 0.00 7.61 1.47 26.06 11,847 100% 56 6.6 38,801 4.6 0.05 2.27 0.00 7.67 2.27 26.20 11,910 99% 58 6.0 39,318 4.7 0.05 2.94 0.00 7.71 2.94 26.30 11,957 99% 60 5.5 39,684 4.7 0.05 3.44 0.00 7.74 3.44 26.38 11,990 98% 62 5.0 39,926 4.7 0.05 3.79 0.00 7.76 3.79 26.42 12,011 98% 64 4.5 40,068 4.7 0.05 4.00 0.00 7.77 4.00 26.45 12,024 98% 66 4.1 40,131 4.7 0.05 4.09 0.00 7.77 4.09 26.46 12,029 98% 68 3.8 40,135 4.7 0.05 4.10 0.00 7.77 4.10 26.47 12,030 98% 70 3.4 40,094 4.7 0.05 4.04 0.00 7.77 4.04 26.46 12,026 98% 72 3.1 40,020 4.7 0.05 3.93 0.00 7.76 3.93 26.44 12,020 98% 74 2.8 39,923 4.7 0.05 3.79 0.00 7.76 3.79 26.42 12,011 98% 76 2.6 39,810 4.7 0.05 3.62 0.00 7.75 3.62 26.40 12,001 98% 78 2.4 39,686 4.7 0.05 3.44 0.00 7.74 3.44 26.38 11,990 98% 80 2.1 39,556 4.7 0.05 3.26 0.00 7.73 3.26 26.35 11,978 99% 82 2.0 39,422 4.7 0.05 3.08 0.00 7.72 3.08 26.33 11,966 99% SB 03 SB 10-yr (P1) HG Computed By: PAW Date: 3/05/15 Checked By: MDP Date: 3/06/15 Sheet: __2__of _2___ 84 1.8 39,288 4.7 0.05 2.89 0.00 7.71 2.89 26.30 11,954 99% 86 1.6 39,155 4.7 0.05 2.72 0.00 7.70 2.72 26.27 11,942 99% 88 1.5 39,023 4.6 0.05 2.55 0.00 7.69 2.55 26.25 11,930 99% 90 1.3 38,896 4.6 0.05 2.38 0.00 7.68 2.38 26.22 11,919 99% 92 1.2 38,771 4.6 0.05 2.23 0.00 7.67 2.23 26.20 11,907 99% 94 1.1 38,651 4.6 0.05 2.08 0.00 7.66 2.08 26.17 11,896 99% 96 1.0 38,536 4.6 0.05 1.94 0.00 7.65 1.94 26.15 11,886 99% 98 0.9 38,425 4.6 0.05 1.82 0.00 7.64 1.82 26.13 11,876 99% 100 0.8 38,318 4.6 0.05 1.69 0.00 7.63 1.69 26.11 11,866 100% 102 0.8 38,217 4.6 0.05 1.58 0.00 7.62 1.58 26.08 11,857 100% 104 0.7 38,119 4.6 0.05 1.48 0.00 7.62 1.48 26.07 11,848 100% 106 0.6 38,027 4.6 0.05 1.38 0.00 7.61 1.38 26.05 11,839 100% 108 0.6 37,938 4.6 0.05 1.28 0.00 7.60 1.28 26.03 11,831 100% 110 0.5 37,854 4.5 0.05 1.20 0.00 7.59 1.20 26.01 11,823 100% 112 0.5 37,774 4.5 0.05 1.12 0.00 7.59 1.12 26.00 11,816 100% 114 0.4 37,698 4.5 0.05 1.05 0.00 7.58 1.05 25.98 11,809 100% 116 0.4 37,625 4.5 0.05 0.98 0.00 7.58 0.98 25.96 11,802 100% 118 0.4 37,556 4.5 0.05 0.91 0.00 7.57 0.91 25.95 11,796 100% 120 0.3 37,490 4.5 0.05 0.85 0.00 7.57 0.85 25.94 11,790 100% 122 0.3 37,428 4.5 0.05 0.80 0.00 7.56 0.80 25.92 11,784 100% 124 0.3 37,369 4.5 0.05 0.75 0.00 7.56 0.75 25.91 11,778 100% 126 0.3 37,312 4.5 0.05 0.70 0.00 7.55 0.70 25.90 11,773 100% 128 0.2 37,258 4.5 0.05 0.66 0.00 7.55 0.66 25.89 11,768 100% 130 0.2 37,207 4.5 0.05 0.61 0.00 7.54 0.61 25.88 11,763 100% 132 0.2 37,159 4.5 0.05 0.58 0.00 7.54 0.58 25.87 11,759 100% 134 0.2 37,112 4.5 0.05 0.54 0.00 7.53 0.54 25.86 11,754 100% 136 0.2 37,068 4.5 0.05 0.51 0.00 7.53 0.51 25.85 11,750 100% 138 0.1 37,026 4.5 0.05 0.48 0.00 7.53 0.48 25.84 11,746 100% 140 0.1 36,987 4.5 0.05 0.45 0.00 7.52 0.45 25.83 11,743 100% 142 0.1 36,949 4.5 0.05 0.42 0.00 7.52 0.42 25.83 11,739 100% 144 0.1 36,912 4.5 0.05 0.40 0.00 7.52 0.40 25.82 11,736 100% 146 0.1 36,878 4.5 0.05 0.37 0.00 7.52 0.37 25.81 11,732 100% 148 0.1 36,845 4.5 0.05 0.35 0.00 7.51 0.35 25.80 11,729 100% 150 0.1 36,814 4.5 0.05 0.33 0.00 7.51 0.33 25.80 11,726 100% 152 0.1 36,784 4.5 0.05 0.31 0.00 7.51 0.31 25.79 11,724 100% 154 0.1 36,755 4.5 0.05 0.30 0.00 7.51 0.30 25.79 11,721 100% 156 0.1 36,728 4.4 0.05 0.28 0.00 7.50 0.28 25.78 11,718 100% 158 0.1 36,702 4.4 0.05 0.26 0.00 7.50 0.26 25.77 11,716 100% 160 0.1 36,677 4.4 0.05 0.25 0.00 7.50 0.25 25.77 11,714 100% 162 0.0 36,653 4.4 0.05 0.24 0.00 7.50 0.24 25.76 11,711 100% 164 0.0 36,631 4.4 0.05 0.22 0.00 7.50 0.22 25.76 11,709 100% 166 0.0 36,609 4.4 0.05 0.21 0.00 7.49 0.21 25.76 11,707 100% 168 0.0 36,588 4.4 0.05 0.20 0.00 7.49 0.20 25.75 11,705 100% 170 0.0 36,568 4.4 0.05 0.19 0.00 7.49 0.19 25.75 11,703 100% 172 0.0 36,549 4.4 0.05 0.18 0.00 7.49 0.18 25.74 11,701 100% 174 0.0 36,531 4.4 0.05 0.17 0.00 7.49 0.17 25.74 11,700 100% 176 0.0 36,513 4.4 0.05 0.16 0.00 7.49 0.16 25.74 11,698 100% 178 0.0 36,497 4.4 0.05 0.16 0.00 7.49 0.16 25.73 11,696 100% 180 0.0 36,481 4.4 0.05 0.15 0.00 7.48 0.15 25.73 11,695 100% 182 0.0 36,465 4.4 0.05 0.14 0.00 7.48 0.14 25.73 11,693 100% 184 0.0 36,450 4.4 0.05 0.14 0.00 7.48 0.14 25.72 11,692 100% 186 0.0 36,436 4.4 0.05 0.13 0.00 7.48 0.13 25.72 11,691 100% 188 0.0 36,422 4.4 0.05 0.12 0.00 7.48 0.12 25.72 11,689 100% 190 0.0 36,409 4.4 0.05 0.12 0.00 7.48 0.12 25.71 11,688 100% 192 0.0 36,396 4.4 0.05 0.11 0.00 7.48 0.11 25.71 11,687 100% 194 0.0 36,384 4.4 0.05 0.11 0.00 7.48 0.11 25.71 11,686 100% 196 0.0 36,372 4.4 0.05 0.10 0.00 7.47 0.10 25.71 11,685 100% 198 0.0 36,361 4.4 0.05 0.10 0.00 7.47 0.10 25.70 11,684 100% 200 0.0 36,350 4.4 0.05 0.10 0.00 7.47 0.10 25.70 11,683 100% 202 0.0 36,339 4.4 0.05 0.09 0.00 7.47 0.09 25.70 11,682 100% 204 0.0 36,329 4.4 0.05 0.09 0.00 7.47 0.09 25.70 11,681 100% 206 0.0 36,319 4.4 0.05 0.09 0.00 7.47 0.09 25.70 11,680 100% SB 03 SB 10-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 3 C o l o n M i n e P h a s e 1 H y d r o g r a p h 10 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: __1__of _2___ Qp = 24.96 cfs Sediment Basin #3 Colon Tp = 28.28 minutes Phase 1 dT = Max of 2 minutes 25 - year Storm Event or 1.0%of increment to peak b =1.4 Number of Riser/Barrel Assemblies 1 Ks =4,411 Diameter of Barrel =12 (in) Height of Riser above barrel =3.4 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=4.4 (ft) elevation 248.40 2 Effective number of cells (2 is construction site #) Emergency Spillway =5.0 (ft) elevation 249.00 94%Minimum Settling Efficiency Total Height of Dam =6.0 (ft) elevation 250.00 5.0 ft Maximum Stage 248.98 msl elevation Length of Emergency Spillway =10 (ft)8.0 cfs Peak outflow Diameter of Riser =24 (in)8.0 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 244.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 0.3 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 1.2 37 0.0 0.00 0.00 0.00 0.00 0.00 3.35 1,521 N/A 6 2.7 182 0.1 0.00 0.00 0.00 0.00 0.00 5.37 2,441 N/A 8 4.6 503 0.2 0.00 0.00 0.00 0.00 0.00 7.25 3,295 N/A 10 6.9 1,056 0.4 0.05 0.05 0.00 0.05 0.05 9.03 4,104 100% 12 9.5 1,883 0.5 0.05 0.05 0.00 0.05 0.05 10.71 4,869 100% 14 12.3 3,022 0.8 0.05 0.05 0.00 0.05 0.05 12.32 5,600 100% 16 15.0 4,491 1.0 0.05 0.05 0.00 0.05 0.05 13.85 6,296 100% 18 17.7 6,290 1.3 0.05 0.05 0.00 0.05 0.05 15.30 6,955 100% 20 20.0 8,404 1.6 0.05 0.05 0.00 0.05 0.05 16.67 7,577 100% 22 22.0 10,803 1.9 0.05 0.05 0.00 0.05 0.05 17.95 8,161 100% 24 23.6 13,443 2.2 0.05 0.05 0.00 0.05 0.05 19.15 8,706 100% 26 24.6 16,266 2.5 0.05 0.05 0.00 0.05 0.05 20.26 9,211 100% 28 25.0 19,208 2.8 0.05 0.05 0.00 0.05 0.05 21.28 9,675 100% 30 24.7 22,196 3.1 0.05 0.05 0.00 0.05 0.05 22.21 10,097 100% 32 23.9 25,158 3.4 0.05 0.05 0.00 0.05 0.05 23.05 10,478 100% 34 22.5 28,022 3.7 0.05 0.05 0.00 0.05 0.05 23.80 10,817 100% 36 20.7 30,719 3.9 0.05 0.05 0.00 0.05 0.05 24.45 11,115 100% 38 18.9 33,197 4.1 0.05 0.05 0.00 0.05 0.05 25.02 11,373 100% 40 17.2 35,458 4.3 0.05 0.05 0.00 0.05 0.05 25.51 11,597 100% 42 15.7 37,519 4.5 0.05 0.88 0.00 7.57 0.88 25.94 11,792 100% 44 14.3 39,299 4.7 0.05 2.91 0.00 7.71 2.91 26.30 11,955 99% 46 13.1 40,670 4.8 0.05 4.93 0.00 7.81 4.93 26.57 12,077 97% 48 11.9 41,648 4.9 0.05 6.55 0.00 7.89 6.55 26.76 12,162 96% 50 10.9 42,292 4.9 0.05 7.70 0.00 7.93 7.70 26.88 12,217 94% 52 9.9 42,673 4.9 0.05 8.41 0.00 7.96 7.96 26.95 12,250 94% 54 9.1 42,908 5.0 0.05 8.85 0.00 7.98 7.98 26.99 12,270 94% 56 8.3 43,037 5.0 0.05 9.10 0.00 7.99 7.99 27.02 12,281 94% 58 7.5 43,069 5.0 0.05 9.16 0.00 7.99 7.99 27.02 12,283 94% 60 6.9 43,014 5.0 0.05 9.06 0.00 7.99 7.99 27.01 12,279 94% 62 6.3 42,880 5.0 0.05 8.80 0.00 7.98 7.98 26.99 12,267 94% 64 5.7 42,675 4.9 0.05 8.41 0.00 7.96 7.96 26.95 12,250 94% 66 5.2 42,405 4.9 0.05 7.91 0.00 7.94 7.91 26.90 12,227 94% 68 4.8 42,082 4.9 0.05 7.32 0.00 7.92 7.32 26.84 12,199 95% 70 4.3 41,774 4.9 0.05 6.77 0.00 7.89 6.77 26.78 12,173 95% 72 4.0 41,481 4.8 0.05 6.27 0.00 7.87 6.27 26.72 12,148 96% 74 3.6 41,204 4.8 0.05 5.80 0.00 7.85 5.80 26.67 12,124 96% 76 3.3 40,941 4.8 0.05 5.36 0.00 7.83 5.36 26.62 12,101 97% 78 3.0 40,693 4.8 0.05 4.96 0.00 7.81 4.96 26.57 12,079 97% 80 2.7 40,457 4.8 0.05 4.59 0.00 7.80 4.59 26.53 12,058 97% 82 2.5 40,235 4.7 0.05 4.25 0.00 7.78 4.25 26.48 12,039 98% SB 03 SB 25-yr (P1) HG Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: __2__of _2___ 84 2.3 40,025 4.7 0.05 3.94 0.00 7.76 3.94 26.44 12,020 98% 86 2.1 39,826 4.7 0.05 3.64 0.00 7.75 3.64 26.40 12,002 98% 88 1.9 39,638 4.7 0.05 3.38 0.00 7.73 3.38 26.37 11,985 98% 90 1.7 39,461 4.7 0.05 3.13 0.00 7.72 3.13 26.33 11,970 99% 92 1.6 39,293 4.7 0.05 2.90 0.00 7.71 2.90 26.30 11,955 99% 94 1.4 39,134 4.7 0.05 2.69 0.00 7.69 2.69 26.27 11,940 99% 96 1.3 38,984 4.6 0.05 2.50 0.00 7.68 2.50 26.24 11,927 99% 98 1.2 38,842 4.6 0.05 2.32 0.00 7.67 2.32 26.21 11,914 99% 100 1.1 38,708 4.6 0.05 2.15 0.00 7.66 2.15 26.18 11,902 99% 102 1.0 38,581 4.6 0.05 2.00 0.00 7.65 2.00 26.16 11,890 99% 104 0.9 38,460 4.6 0.05 1.86 0.00 7.64 1.86 26.13 11,879 99% 106 0.8 38,347 4.6 0.05 1.73 0.00 7.63 1.73 26.11 11,869 100% 108 0.8 38,239 4.6 0.05 1.61 0.00 7.62 1.61 26.09 11,859 100% 110 0.7 38,137 4.6 0.05 1.49 0.00 7.62 1.49 26.07 11,849 100% 112 0.6 38,041 4.6 0.05 1.39 0.00 7.61 1.39 26.05 11,841 100% 114 0.6 37,949 4.6 0.05 1.30 0.00 7.60 1.30 26.03 11,832 100% 116 0.5 37,863 4.5 0.05 1.21 0.00 7.59 1.21 26.01 11,824 100% 118 0.5 37,780 4.5 0.05 1.13 0.00 7.59 1.13 26.00 11,817 100% 120 0.4 37,703 4.5 0.05 1.05 0.00 7.58 1.05 25.98 11,809 100% 122 0.4 37,629 4.5 0.05 0.98 0.00 7.58 0.98 25.97 11,803 100% 124 0.4 37,559 4.5 0.05 0.92 0.00 7.57 0.92 25.95 11,796 100% 126 0.3 37,492 4.5 0.05 0.86 0.00 7.57 0.86 25.94 11,790 100% 128 0.3 37,429 4.5 0.05 0.80 0.00 7.56 0.80 25.92 11,784 100% 130 0.3 37,370 4.5 0.05 0.75 0.00 7.56 0.75 25.91 11,778 100% 132 0.3 37,313 4.5 0.05 0.70 0.00 7.55 0.70 25.90 11,773 100% 134 0.2 37,259 4.5 0.05 0.66 0.00 7.55 0.66 25.89 11,768 100% 136 0.2 37,208 4.5 0.05 0.61 0.00 7.54 0.61 25.88 11,763 100% 138 0.2 37,159 4.5 0.05 0.58 0.00 7.54 0.58 25.87 11,759 100% 140 0.2 37,113 4.5 0.05 0.54 0.00 7.53 0.54 25.86 11,754 100% 142 0.2 37,069 4.5 0.05 0.51 0.00 7.53 0.51 25.85 11,750 100% 144 0.1 37,027 4.5 0.05 0.48 0.00 7.53 0.48 25.84 11,746 100% 146 0.1 36,987 4.5 0.05 0.45 0.00 7.52 0.45 25.83 11,743 100% 148 0.1 36,949 4.5 0.05 0.42 0.00 7.52 0.42 25.83 11,739 100% 150 0.1 36,913 4.5 0.05 0.40 0.00 7.52 0.40 25.82 11,736 100% 152 0.1 36,878 4.5 0.05 0.37 0.00 7.52 0.37 25.81 11,732 100% 154 0.1 36,846 4.5 0.05 0.35 0.00 7.51 0.35 25.80 11,729 100% 156 0.1 36,814 4.5 0.05 0.33 0.00 7.51 0.33 25.80 11,726 100% 158 0.1 36,784 4.5 0.05 0.31 0.00 7.51 0.31 25.79 11,724 100% 160 0.1 36,756 4.5 0.05 0.30 0.00 7.51 0.30 25.79 11,721 100% 162 0.1 36,729 4.4 0.05 0.28 0.00 7.50 0.28 25.78 11,718 100% 164 0.1 36,703 4.4 0.05 0.26 0.00 7.50 0.26 25.78 11,716 100% 166 0.1 36,678 4.4 0.05 0.25 0.00 7.50 0.25 25.77 11,714 100% 168 0.0 36,654 4.4 0.05 0.24 0.00 7.50 0.24 25.76 11,711 100% 170 0.0 36,632 4.4 0.05 0.22 0.00 7.50 0.22 25.76 11,709 100% 172 0.0 36,610 4.4 0.05 0.21 0.00 7.49 0.21 25.76 11,707 100% 174 0.0 36,589 4.4 0.05 0.20 0.00 7.49 0.20 25.75 11,705 100% 176 0.0 36,569 4.4 0.05 0.19 0.00 7.49 0.19 25.75 11,703 100% 178 0.0 36,550 4.4 0.05 0.18 0.00 7.49 0.18 25.74 11,702 100% 180 0.0 36,532 4.4 0.05 0.17 0.00 7.49 0.17 25.74 11,700 100% 182 0.0 36,515 4.4 0.05 0.16 0.00 7.49 0.16 25.74 11,698 100% 184 0.0 36,498 4.4 0.05 0.16 0.00 7.49 0.16 25.73 11,697 100% 186 0.0 36,482 4.4 0.05 0.15 0.00 7.48 0.15 25.73 11,695 100% 188 0.0 36,466 4.4 0.05 0.14 0.00 7.48 0.14 25.73 11,694 100% 190 0.0 36,451 4.4 0.05 0.14 0.00 7.48 0.14 25.72 11,692 100% 192 0.0 36,437 4.4 0.05 0.13 0.00 7.48 0.13 25.72 11,691 100% 194 0.0 36,423 4.4 0.05 0.12 0.00 7.48 0.12 25.72 11,689 100% 196 0.0 36,410 4.4 0.05 0.12 0.00 7.48 0.12 25.71 11,688 100% 198 0.0 36,397 4.4 0.05 0.11 0.00 7.48 0.11 25.71 11,687 100% 200 0.0 36,385 4.4 0.05 0.11 0.00 7.48 0.11 25.71 11,686 100% 202 0.0 36,373 4.4 0.05 0.11 0.00 7.47 0.11 25.71 11,685 100% 204 0.0 36,362 4.4 0.05 0.10 0.00 7.47 0.10 25.70 11,684 100% 206 0.0 36,351 4.4 0.05 0.10 0.00 7.47 0.10 25.70 11,683 100% SB 03 SB 25-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 3 C o l o n M i n e P h a s e 1 H y d r o g r a p h 25 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #4 Sheet: 1 Of: 4 Objective Design the temporary sediment basin to contain the 25-year storm. References 1. NC Erosion and Sediment Control Planning and Design Manual. 2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E. 3. NOAA Atlas 14, Volume 2, Version 3 4. VA Erosion and Sediment Control Handbook Given Phase 1 1 Storm Event (yrs) =10 25 Total Drainage Area A (ac) =12.7 12.7 Disturbed Area (ac) =12.7 12.7 Curve Number CN =89 89 Hydrographs Rainfall Depth P (in) =5.28 6.28 (24-hr rainfall)Ref 3 Peak Flow Qp (cfs) =77.74 95.13 Hydrographs Design Criteria Required sediment storage 1,800 cf / acre of drainage Required sediment storage 22,860 cf Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs) Required Surface Area (SF)41,382 of the 10-yr storm peak flow (based on the largest Phase) Determine Shape of Basin: Measure the area of the Basin using AutoCADD. Calculate Volume of the Basin using Truncated Pyramid Method. Shape factor used in hydrographs basin depth may be gretaer than indicated below Cumulative Cumulative Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy) 261 0 26,486 0 0 0 262 1 29,254 27,859 27,859 1,032 263 2 32,108 30,670 58,528 2,168 264 3 35,046 33,566 92,095 3,411 265 4 38,057 36,541 128,636 4,764 266 5 41,127 39,582 168,218 6,230 267 6 44,258 42,683 210,901 7,811 Design Sediment Depth (ft) =3 Sediment Storage (cf) =92,095 Required Sediment Storage Achieved Design Surface Area Depth (ft) =3 Surface Area (sf) =35,046 Increase Surface Area SB 04 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #4 Sheet: 2 Of: 4 Select Skimmer A. R. Jarrett Method D = [Q / (2,310 * (H0.5)]0.5 D =Diameter of Orifice (inches) Q = Dewater Rate (cf/day) H = Head on orifice, varies based on skimmer size (ft) Skimmer Sizes Head (Inches)(ft) 1.5 0.125 2 0.167 2.5 0.167 3 0.250 4 0.333 5 0.333 6 0.417 8 0.500 Volume to Dewater (cf) =92,095 Number of Skimmers 1 Days to Drain =5 assumed Q each (cf/day) =18,419 0.21 cfs Selected Skimmer Size (inches) =4 Head on Skimmer (feet) =0.333 Diameter of Orifice (inches) =3.7 Route the flow through the Basin Riser is not perforated, but skimmer is attached. S =(1000/CN) - 10 Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4 TP (min) = 60.5(Q*)A/QP/1.39 Phase 1 1 Storm Event (yrs) =10 25 S =1.24 1.24 Runoff Depth Q* (inches) =4.04 5.01 Time to Peak Tp (min) =28.73 29.09 SB 04 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #4 Sheet: 3 Of: 4 Determine Pond Storage Elevation (ZWater): Pick one point near max expected water surface and the other at the mid depth. Z1 (ft) = 3 S1 (cf)= 92,095 Z2 (ft) = 5 S2 (cf) = 168,218 b = ln(S2/S1)/ln(Z2/Z1) =1.2 Ref 2, III-8 KS = S2/Z2 b =25,208 Determine Settling Velocity Conversion Factor = 3.281 ft/sec per m/sec Gravitational Acceleration, g (m/s2) =9.81 Specific Gravity of soil (ss)=2.6 Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11 Diameter of the Design Particle d15 =40.00E-06 m Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec Route the Storm through the Basin using the Hydrograph Model Set Height of Emergency Spillway at (ft) =6.00 Set Top of Dam at (ft) =6.60 Anti-Seep Collar: Anti-Seep Collar Size =2 * Barrel Dia Anti-Seep Collar Size (ft) =2 Use Anti-Seep Collar Size (ft) =2 x 2 Minimum Concrete Base for Riser: Diameter of Riser (in) = 24 From Hydrograph Avg Density of Concrete (lbs/cf) =87.6 Density of Water (lbs/cf) =62.4 Riser Displacement (cf) = 16.65 Pi * (DR/24)2 * Total Ht of Riser Convert cf to cy =27-1 Min Concrete Needed (cy) =0.44 Width & Length (ft) =3 Thickness (ft) =1.3 See Hydrograph SB 04 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #4 Sheet: 4 Of: 4 Anti-Vortex Device: Diameter of Riser (in) = 24 From Hydrograph Cylinder Diameter (in) = 36 Ref 4, III-104, Table 3.14-D Cylinder Thickness (gage) = 16 Cylinder Height (in) = 13 Determine Tailwater conditions to size outlet apron Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7 A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3 Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5) n =0.069 6-inch diameter Rip Rap, Lined Channel Vp (ft/sec) =9 Permissible Velocity for lining Side Slope (z) =5 enter X for X:1 s (ft/ft) =0.02 Outlet Slope (estimated) Bottom Width (ft) = 3 3 * Barrel Diameter QB (cfs) =0.7 Peak Flow out of the barrel 10-yr Hydrograph Q (cfs)Zreq Flow Depth d (ft)A (sf) R (ft)Zav V (ft/sec) 0.7 0.24 0.20 0.8 0.16 0.24 0.9 Flow Depth = Tailwater, d (ft) =0.20 0.5* Barrel Diameter (ft) =0.50 Ref 1, 8.06.3 Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions. Barrel Diameter (ft) Entrance (ft) Length (ft) Outlet Width (ft) Median Rip Rap Size d50 Selected Rip Rap Size (in) 1 3 8 9 0.4 Class A Conclusion The temporary basin can contain the 25-yr storm. SB 04 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet: 1 Of: 2 Diameter of Riser (in) = 24 Circumference of Riser (in) =75.4 Height of Riser from bottom of barrel (in) =64 From Hydrograph Vertical spacing between holes (in) =0 center to center Water Stage increment (ft)0.05 Orifice Equation Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11 Q =cfs, discharge Cd =0.6 coefficient of discharge A = sf, cross sectional area g =32.2 ft/sec2, gravity h =ft, driving head measured from the center of the pipe Skimmer Row 1 2 3 4 5 1 # of skimmers Holes per row 0 0 0 0 0 Hole Diameter (in)0.75 0.75 0.75 0.75 0.75 Spacing edge to edge (in) Inlet Area (sf)0.000 0.000 0.000 0.000 0.000 Hole Stage (in)0.50 0.50 0.50 0.50 0.50 Hole Stage (ft)0.04 0.04 0.04 0.04 0.04 Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.21 0.21 0.39 0.00 0.00 0.00 0.21 0.21 0.44 0.00 0.00 0.00 0.21 0.21 0.49 0.00 0.00 0.00 0.21 0.21 0.54 0.00 0.00 0.00 0.21 0.21 0.59 0.00 0.00 0.00 0.21 0.21 0.64 0.00 0.00 0.00 0.21 0.21 0.69 0.00 0.00 0.00 0.21 0.21 0.74 0.00 0.00 0.00 0.21 0.21 0.79 0.00 0.00 0.00 0.21 0.21 0.84 0.00 0.00 0.00 0.21 0.21 0.89 0.00 0.00 0.00 0.21 0.21 0.94 0.00 0.00 0.00 0.21 0.21 0.99 0.00 0.00 0.00 0.21 0.21 1.04 0.00 0.00 0.00 0.21 0.21 1.09 0.00 0.00 0.00 0.21 0.21 1.14 0.00 0.00 0.00 0.21 0.21 1.19 0.00 0.00 0.00 0.21 0.21 1.24 0.00 0.00 0.00 0.21 0.21 1.29 0.00 0.00 0.00 0.21 0.21 1.34 0.00 0.00 0.00 0.21 0.21 1.39 0.00 0.00 0.00 0.21 0.21 1.44 0.00 0.00 0.00 0.21 0.21 1.49 0.00 0.00 0.00 0.21 0.21 1.54 0.00 0.00 0.00 0.21 0.21 1.59 0.00 0.00 0.00 0.21 0.21 Perforations SB 04 Pipe Perf-Skimmer HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet: 2 Of: 2 1.64 0.00 0.00 0.00 0.21 0.21 1.69 0.00 0.00 0.00 0.21 0.21 1.74 0.00 0.00 0.00 0.21 0.21 1.79 0.00 0.00 0.00 0.21 0.21 1.84 0.00 0.00 0.00 0.21 0.21 1.89 0.00 0.00 0.00 0.21 0.21 1.94 0.00 0.00 0.00 0.21 0.21 1.99 0.00 0.00 0.00 0.21 0.21 2.04 0.00 0.00 0.00 0.21 0.21 2.09 0.00 0.00 0.00 0.21 0.21 2.14 0.00 0.00 0.00 0.21 0.21 2.19 0.00 0.00 0.00 0.21 0.21 2.24 0.00 0.00 0.00 0.21 0.21 2.29 0.00 0.00 0.00 0.21 0.21 2.34 0.00 0.00 0.00 0.21 0.21 2.39 0.00 0.00 0.00 0.21 0.21 2.44 0.00 0.00 0.00 0.21 0.21 2.49 0.00 0.00 0.00 0.21 0.21 2.54 0.00 0.00 0.00 0.21 0.21 2.59 0.00 0.00 0.00 0.21 0.21 2.64 0.00 0.00 0.00 0.21 0.21 2.69 0.00 0.00 0.00 0.21 0.21 2.74 0.00 0.00 0.00 0.21 0.21 2.79 0.00 0.00 0.00 0.21 0.21 2.84 0.00 0.00 0.00 0.21 0.21 2.89 0.00 0.00 0.00 0.21 0.21 2.94 0.00 0.00 0.00 0.21 0.21 2.99 0.00 0.00 0.00 0.21 0.21 3.04 0.00 0.00 0.00 0.21 0.21 3.09 0.00 0.00 0.00 0.21 0.21 3.14 0.00 0.00 0.00 0.21 0.21 3.19 0.00 0.00 0.00 0.21 0.21 3.24 0.00 0.00 0.00 0.21 0.21 3.29 0.00 0.00 0.00 0.21 0.21 3.34 0.00 0.00 0.00 0.21 0.21 3.39 0.00 0.00 0.00 0.21 0.21 3.44 0.00 0.00 0.00 0.21 0.21 3.49 0.00 0.00 0.00 0.21 0.21 3.54 0.00 0.00 0.00 0.21 0.21 3.59 0.00 0.00 0.00 0.21 0.21 3.64 0.00 0.00 0.00 0.21 0.21 3.69 0.00 0.00 0.00 0.21 0.21 3.74 0.00 0.00 0.00 0.21 0.21 3.79 0.00 0.00 0.00 0.21 0.21 3.84 0.00 0.00 0.00 0.21 0.21 3.89 0.00 0.00 0.00 0.21 0.21 3.94 0.00 0.00 0.00 0.21 0.21 3.99 0.00 0.00 0.00 0.21 0.21 SB 04 Pipe Perf-Skimmer Computed By: PAW Date: 3/05/15 Checked By: MDP Date: 3/0615 Sheet: __1_of __2_ Qp = 77.74 cfs Sediment Basin #4 Colon Tp = 28.73 minutes Phase 1 dT = Max of 2 minutes 10 - year Storm Event or 1.0%of increment to peak b =1.2 Number of Riser/Barrel Assemblies 1 Ks =25,208 Diameter of Barrel =12 (in) Height of Riser above barrel =4.3 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=5.3 (ft) elevation 266.30 2 Effective number of cells (2 is construction site #) Emergency Spillway =6.0 (ft) elevation 267.00 100%Minimum Settling Efficiency Total Height of Dam =6.6 (ft) elevation 267.60 5.4 ft Maximum Stage 266.39 msl elevation Length of Emergency Spillway =20 (ft)0.7 cfs Peak outflow Diameter of Riser =24 (in)0.7 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 261.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 0.9 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 3.7 111 0.0 0.00 0.00 0.00 0.00 0.00 28.66 13,029 N/A 6 8.1 550 0.0 0.00 0.00 0.00 0.00 0.00 36.56 16,618 N/A 8 13.9 1,519 0.1 0.00 0.00 0.00 0.00 0.00 42.66 19,393 N/A 10 21.0 3,192 0.2 0.00 0.00 0.00 0.00 0.00 47.77 21,712 N/A 12 28.9 5,714 0.3 0.00 0.00 0.00 0.00 0.00 52.19 23,722 N/A 14 37.3 9,185 0.4 0.21 0.21 0.00 0.21 0.21 56.10 25,498 100% 16 45.8 13,638 0.6 0.21 0.21 0.00 0.21 0.21 59.57 27,078 100% 18 53.9 19,106 0.8 0.21 0.21 0.00 0.21 0.21 62.71 28,502 100% 20 61.3 25,551 1.0 0.21 0.21 0.00 0.21 0.21 65.54 29,790 100% 22 67.7 32,885 1.3 0.21 0.21 0.00 0.21 0.21 68.10 30,956 100% 24 72.7 40,981 1.5 0.21 0.21 0.00 0.21 0.21 70.42 32,010 100% 26 76.0 49,674 1.8 0.21 0.21 0.00 0.21 0.21 72.51 32,960 100% 28 77.6 58,771 2.0 0.21 0.21 0.00 0.21 0.21 74.39 33,814 100% 30 77.4 68,060 2.3 0.21 0.21 0.00 0.21 0.21 76.07 34,577 100% 32 75.3 77,318 2.6 0.21 0.21 0.00 0.21 0.21 77.56 35,254 100% 34 71.5 86,326 2.8 0.21 0.21 0.00 0.21 0.21 78.87 35,850 100% 36 66.2 94,876 3.1 0.21 0.21 0.00 0.21 0.21 80.01 36,368 100% 38 60.4 102,791 3.3 0.21 0.21 0.00 0.21 0.21 80.99 36,814 100% 40 55.2 110,020 3.5 0.21 0.21 0.00 0.21 0.21 81.83 37,197 100% 42 50.4 116,620 3.7 0.21 0.21 0.00 0.21 0.21 82.56 37,528 100% 44 46.1 122,648 3.8 0.21 0.21 0.00 0.21 0.21 83.20 37,816 100% 46 42.1 128,151 4.0 0.21 0.21 0.00 0.21 0.21 83.75 38,070 100% 48 38.4 133,177 4.1 0.21 0.21 0.00 0.21 0.21 84.24 38,293 100% 50 35.1 137,765 4.2 0.21 0.21 0.00 0.21 0.21 84.68 38,491 100% 52 32.1 141,954 4.3 0.21 0.21 0.00 0.21 0.21 85.07 38,666 100% 54 29.3 145,778 4.4 0.21 0.21 0.00 0.21 0.21 85.41 38,823 100% 56 26.8 149,269 4.5 0.21 0.21 0.00 0.21 0.21 85.72 38,963 100% 58 24.5 152,456 4.6 0.21 0.21 0.00 0.21 0.21 85.99 39,088 100% 60 22.3 155,365 4.7 0.21 0.21 0.00 0.21 0.21 86.24 39,201 100% 62 20.4 158,020 4.7 0.21 0.21 0.00 0.21 0.21 86.46 39,302 100% 64 18.6 160,444 4.8 0.21 0.21 0.00 0.21 0.21 86.66 39,393 100% 66 17.0 162,655 4.9 0.21 0.21 0.00 0.21 0.21 86.85 39,475 100% 68 15.6 164,673 4.9 0.21 0.21 0.00 0.21 0.21 87.01 39,549 100% 70 14.2 166,514 5.0 0.21 0.21 0.00 0.21 0.21 87.16 39,616 100% 72 13.0 168,193 5.0 0.21 0.21 0.00 0.21 0.21 87.29 39,677 100% 74 11.9 169,725 5.0 0.21 0.21 0.00 0.21 0.21 87.41 39,731 100% 76 10.8 171,122 5.1 0.21 0.21 0.00 0.21 0.21 87.52 39,781 100% 78 9.9 172,396 5.1 0.21 0.21 0.00 0.21 0.21 87.62 39,826 100% 80 9.0 173,558 5.1 0.21 0.21 0.00 0.21 0.21 87.71 39,867 100% 82 8.3 174,617 5.2 0.21 0.21 0.00 0.21 0.21 87.79 39,904 100% SB 04 SB 10-yr (P1) HG Computed By: PAW Date: 3/05/15 Checked By: MDP Date: 3/0615 Sheet: __2_of __2_ 84 7.5 175,582 5.2 0.21 0.21 0.00 0.21 0.21 87.86 39,937 100% 86 6.9 176,461 5.2 0.21 0.21 0.00 0.21 0.21 87.93 39,967 100% 88 6.3 177,262 5.2 0.21 0.21 0.00 0.21 0.21 87.99 39,995 100% 90 5.7 177,992 5.2 0.21 0.21 0.00 0.21 0.21 88.04 40,020 100% 92 5.3 178,656 5.3 0.21 0.21 0.00 0.21 0.21 88.09 40,043 100% 94 4.8 179,260 5.3 0.21 0.21 0.00 0.21 0.21 88.14 40,063 100% 96 4.4 179,810 5.3 0.21 0.21 0.00 0.21 0.21 88.18 40,082 100% 98 4.0 180,311 5.3 0.21 0.22 0.00 8.27 0.22 88.22 40,099 100% 100 3.7 180,765 5.3 0.21 0.25 0.00 8.28 0.25 88.25 40,114 100% 102 3.3 181,174 5.3 0.21 0.29 0.00 8.29 0.29 88.28 40,128 100% 104 3.1 181,539 5.3 0.21 0.34 0.00 8.30 0.34 88.31 40,140 100% 106 2.8 181,864 5.3 0.21 0.39 0.00 8.31 0.39 88.33 40,151 100% 108 2.5 182,152 5.3 0.21 0.44 0.00 8.31 0.44 88.35 40,161 100% 110 2.3 182,405 5.4 0.21 0.48 0.00 8.32 0.48 88.37 40,169 100% 112 2.1 182,626 5.4 0.21 0.52 0.00 8.32 0.52 88.39 40,177 100% 114 1.9 182,818 5.4 0.21 0.56 0.00 8.33 0.56 88.40 40,183 100% 116 1.8 182,983 5.4 0.21 0.59 0.00 8.33 0.59 88.41 40,189 100% 118 1.6 183,125 5.4 0.21 0.62 0.00 8.33 0.62 88.43 40,193 100% 120 1.5 183,244 5.4 0.21 0.65 0.00 8.34 0.65 88.43 40,197 100% 122 1.4 183,343 5.4 0.21 0.67 0.00 8.34 0.67 88.44 40,201 100% 124 1.2 183,425 5.4 0.21 0.69 0.00 8.34 0.69 88.45 40,203 100% 126 1.1 183,491 5.4 0.21 0.70 0.00 8.34 0.70 88.45 40,205 100% 128 1.0 183,541 5.4 0.21 0.71 0.00 8.34 0.71 88.46 40,207 100% 130 0.9 183,579 5.4 0.21 0.72 0.00 8.34 0.72 88.46 40,208 100% 132 0.9 183,605 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,209 100% 134 0.8 183,621 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,210 100% 136 0.7 183,627 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,210 100% 138 0.7 183,625 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,210 100% 140 0.6 183,616 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,210 100% 142 0.5 183,600 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,209 100% 144 0.5 183,578 5.4 0.21 0.72 0.00 8.34 0.72 88.46 40,208 100% 146 0.5 183,552 5.4 0.21 0.72 0.00 8.34 0.72 88.46 40,207 100% 148 0.4 183,520 5.4 0.21 0.71 0.00 8.34 0.71 88.45 40,206 100% 150 0.4 183,485 5.4 0.21 0.70 0.00 8.34 0.70 88.45 40,205 100% 152 0.3 183,447 5.4 0.21 0.69 0.00 8.34 0.69 88.45 40,204 100% 154 0.3 183,405 5.4 0.21 0.68 0.00 8.34 0.68 88.45 40,203 100% 156 0.3 183,361 5.4 0.21 0.67 0.00 8.34 0.67 88.44 40,201 100% 158 0.3 183,315 5.4 0.21 0.66 0.00 8.34 0.66 88.44 40,200 100% 160 0.2 183,267 5.4 0.21 0.65 0.00 8.34 0.65 88.44 40,198 100% 162 0.2 183,217 5.4 0.21 0.64 0.00 8.34 0.64 88.43 40,196 100% 164 0.2 183,167 5.4 0.21 0.63 0.00 8.34 0.63 88.43 40,195 100% 166 0.2 183,115 5.4 0.21 0.62 0.00 8.33 0.62 88.42 40,193 100% 168 0.2 183,062 5.4 0.21 0.61 0.00 8.33 0.61 88.42 40,191 100% 170 0.2 183,009 5.4 0.21 0.60 0.00 8.33 0.60 88.42 40,189 100% 172 0.1 182,956 5.4 0.21 0.59 0.00 8.33 0.59 88.41 40,188 100% 174 0.1 182,902 5.4 0.21 0.58 0.00 8.33 0.58 88.41 40,186 100% 176 0.1 182,848 5.4 0.21 0.57 0.00 8.33 0.57 88.40 40,184 100% 178 0.1 182,794 5.4 0.21 0.56 0.00 8.33 0.56 88.40 40,182 100% 180 0.1 182,740 5.4 0.21 0.55 0.00 8.33 0.55 88.40 40,180 100% 182 0.1 182,686 5.4 0.21 0.54 0.00 8.33 0.54 88.39 40,179 100% 184 0.1 182,633 5.4 0.21 0.53 0.00 8.32 0.53 88.39 40,177 100% 186 0.1 182,579 5.4 0.21 0.52 0.00 8.32 0.52 88.39 40,175 100% 188 0.1 182,526 5.4 0.21 0.51 0.00 8.32 0.51 88.38 40,173 100% 190 0.1 182,474 5.4 0.21 0.50 0.00 8.32 0.50 88.38 40,172 100% 192 0.1 182,422 5.4 0.21 0.49 0.00 8.32 0.49 88.37 40,170 100% 194 0.1 182,370 5.4 0.21 0.48 0.00 8.32 0.48 88.37 40,168 100% 196 0.0 182,319 5.4 0.21 0.47 0.00 8.32 0.47 88.37 40,166 100% 198 0.0 182,269 5.4 0.21 0.46 0.00 8.32 0.46 88.36 40,165 100% 200 0.0 182,219 5.4 0.21 0.45 0.00 8.32 0.45 88.36 40,163 100% 202 0.0 182,170 5.3 0.21 0.44 0.00 8.31 0.44 88.35 40,161 100% 204 0.0 182,121 5.3 0.21 0.43 0.00 8.31 0.43 88.35 40,160 100% 206 0.0 182,073 5.3 0.21 0.42 0.00 8.31 0.42 88.35 40,158 100% SB 04 SB 10-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 4 C o l o n M i n e P h a s e 1 H y d r o g r a p h 10 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . Computed By: PAW Date: 3/05/15 Checked By: MDP Date: 3/0615 Sheet: __1_of __2_ Qp = 95.13 cfs Sediment Basin #4 Colon Tp = 29.09 minutes Phase 1 dT = Max of 2 minutes 25 - year Storm Event or 1.0%of increment to peak b =1.2 Number of Riser/Barrel Assemblies 1 Ks =25,208 Diameter of Barrel =12 (in) Height of Riser above barrel =4.3 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=5.3 (ft) elevation 266.30 2 Effective number of cells (2 is construction site #) Emergency Spillway =6 (ft) elevation 267.00 99%Minimum Settling Efficiency Total Height of Dam =6.6 (ft) elevation 267.60 6.0 ft Maximum Stage 266.95 msl elevation Length of Emergency Spillway =20 (ft)8.8 cfs Peak outflow Diameter of Riser =24 (in)8.8 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 261.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 1.1 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 4.4 133 0.0 0.00 0.00 0.00 0.00 0.00 29.45 13,384 N/A 6 9.6 657 0.0 0.00 0.00 0.00 0.00 0.00 37.56 17,072 N/A 8 16.7 1,813 0.1 0.00 0.00 0.00 0.00 0.00 43.83 19,923 N/A 10 25.1 3,814 0.2 0.00 0.00 0.00 0.00 0.00 49.08 22,308 N/A 12 34.6 6,830 0.3 0.00 0.00 0.00 0.00 0.00 53.62 24,375 N/A 14 44.8 10,988 0.5 0.21 0.21 0.00 0.21 0.21 57.65 26,203 100% 16 55.0 16,333 0.7 0.21 0.21 0.00 0.21 0.21 61.23 27,831 100% 18 64.9 22,907 0.9 0.21 0.21 0.00 0.21 0.21 64.46 29,300 100% 20 74.0 30,669 1.2 0.21 0.21 0.00 0.21 0.21 67.38 30,629 100% 22 81.8 39,521 1.5 0.21 0.21 0.00 0.21 0.21 70.03 31,833 100% 24 88.1 49,317 1.8 0.21 0.21 0.00 0.21 0.21 72.43 32,924 100% 26 92.5 59,865 2.1 0.21 0.21 0.00 0.21 0.21 74.60 33,909 100% 28 94.8 70,939 2.4 0.21 0.21 0.00 0.21 0.21 76.55 34,795 100% 30 94.9 82,289 2.7 0.21 0.21 0.00 0.21 0.21 78.30 35,589 100% 32 92.8 93,652 3.0 0.21 0.21 0.00 0.21 0.21 79.85 36,296 100% 34 88.6 104,763 3.3 0.21 0.21 0.00 0.21 0.21 81.23 36,921 100% 36 82.5 115,371 3.6 0.21 0.21 0.00 0.21 0.21 82.43 37,466 100% 38 75.6 125,246 3.9 0.21 0.21 0.00 0.21 0.21 83.46 37,937 100% 40 69.1 134,290 4.1 0.21 0.21 0.00 0.21 0.21 84.35 38,341 100% 42 63.2 142,559 4.3 0.21 0.21 0.00 0.21 0.21 85.12 38,691 100% 44 57.8 150,118 4.5 0.21 0.21 0.00 0.21 0.21 85.79 38,997 100% 46 52.9 157,029 4.7 0.21 0.21 0.00 0.21 0.21 86.38 39,264 100% 48 48.3 163,348 4.9 0.21 0.21 0.00 0.21 0.21 86.90 39,501 100% 50 44.2 169,123 5.0 0.21 0.21 0.00 0.21 0.21 87.36 39,710 100% 52 40.4 174,403 5.2 0.21 0.21 0.00 0.21 0.21 87.77 39,896 100% 54 37.0 179,229 5.3 0.21 0.21 0.00 0.21 0.21 88.14 40,062 100% 56 33.8 183,641 5.4 0.21 0.74 0.00 8.35 0.74 88.46 40,210 100% 58 30.9 187,610 5.5 0.21 1.86 0.00 8.43 1.86 88.75 40,341 100% 60 28.3 191,098 5.6 0.21 3.14 0.00 8.50 3.14 89.00 40,455 100% 62 25.9 194,115 5.6 0.21 4.42 0.00 8.56 4.42 89.21 40,551 100% 64 23.7 196,688 5.7 0.21 5.63 0.00 8.62 5.63 89.39 40,632 100% 66 21.6 198,850 5.8 0.21 6.72 0.00 8.66 6.72 89.54 40,700 99% 68 19.8 200,639 5.8 0.21 7.67 0.00 8.70 7.67 89.66 40,755 99% 70 18.1 202,091 5.8 0.21 8.48 0.00 8.73 8.48 89.76 40,800 99% 72 16.5 203,245 5.9 0.21 9.13 0.00 8.75 8.75 89.84 40,836 99% 74 15.1 204,180 5.9 0.21 9.67 0.00 8.77 8.77 89.90 40,864 99% 76 13.8 204,944 5.9 0.21 10.13 0.00 8.78 8.78 89.95 40,887 99% 78 12.7 205,550 5.9 0.21 10.49 0.00 8.80 8.80 89.99 40,906 99% 80 11.6 206,013 5.9 0.21 10.77 0.00 8.80 8.80 90.02 40,920 99% 82 10.6 206,345 5.9 0.21 10.97 0.00 8.81 8.81 90.05 40,930 99% SB 04 SB 25-yr (P1) HG Computed By: PAW Date: 3/05/15 Checked By: MDP Date: 3/0615 Sheet: __2_of __2_ 84 9.7 206,557 6.0 0.21 11.10 0.00 8.82 8.82 90.06 40,936 99% 86 8.9 206,661 6.0 0.21 11.16 0.00 8.82 8.82 90.07 40,939 99% 88 8.1 206,665 6.0 0.21 11.17 0.00 8.82 8.82 90.07 40,939 99% 90 7.4 206,578 6.0 0.21 11.11 0.00 8.82 8.82 90.06 40,937 99% 92 6.8 206,408 5.9 0.21 11.01 0.00 8.81 8.81 90.05 40,932 99% 94 6.2 206,163 5.9 0.21 10.86 0.00 8.81 8.81 90.03 40,924 99% 96 5.7 205,849 5.9 0.21 10.67 0.00 8.80 8.80 90.01 40,915 99% 98 5.2 205,472 5.9 0.21 10.44 0.00 8.79 8.79 89.99 40,903 99% 100 4.7 205,038 5.9 0.21 10.18 0.00 8.79 8.79 89.96 40,890 99% 102 4.3 204,552 5.9 0.21 9.89 0.00 8.78 8.78 89.93 40,875 99% 104 4.0 204,019 5.9 0.21 9.58 0.00 8.76 8.76 89.89 40,859 99% 106 3.6 203,442 5.9 0.21 9.25 0.00 8.75 8.75 89.85 40,842 99% 108 3.3 202,826 5.9 0.21 8.89 0.00 8.74 8.74 89.81 40,823 99% 110 3.0 202,175 5.8 0.21 8.52 0.00 8.73 8.52 89.77 40,803 99% 112 2.8 201,515 5.8 0.21 8.16 0.00 8.71 8.16 89.72 40,782 99% 114 2.5 200,869 5.8 0.21 7.80 0.00 8.70 7.80 89.68 40,763 99% 116 2.3 200,237 5.8 0.21 7.46 0.00 8.69 7.46 89.63 40,743 99% 118 2.1 199,620 5.8 0.21 7.13 0.00 8.68 7.13 89.59 40,724 99% 120 1.9 199,019 5.8 0.21 6.81 0.00 8.66 6.81 89.55 40,705 99% 122 1.8 198,434 5.8 0.21 6.51 0.00 8.65 6.51 89.51 40,687 99% 124 1.6 197,865 5.7 0.21 6.22 0.00 8.64 6.22 89.47 40,669 99% 126 1.5 197,313 5.7 0.21 5.94 0.00 8.63 5.94 89.43 40,652 100% 128 1.4 196,778 5.7 0.21 5.68 0.00 8.62 5.68 89.40 40,635 100% 130 1.2 196,259 5.7 0.21 5.43 0.00 8.61 5.43 89.36 40,619 100% 132 1.1 195,757 5.7 0.21 5.18 0.00 8.60 5.18 89.33 40,603 100% 134 1.0 195,271 5.7 0.21 4.95 0.00 8.59 4.95 89.29 40,588 100% 136 0.9 194,800 5.7 0.21 4.74 0.00 8.58 4.74 89.26 40,573 100% 138 0.9 194,346 5.7 0.21 4.53 0.00 8.57 4.53 89.23 40,558 100% 140 0.8 193,906 5.6 0.21 4.33 0.00 8.56 4.33 89.20 40,544 100% 142 0.7 193,482 5.6 0.21 4.14 0.00 8.55 4.14 89.17 40,531 100% 144 0.7 193,072 5.6 0.21 3.96 0.00 8.54 3.96 89.14 40,518 100% 146 0.6 192,676 5.6 0.21 3.79 0.00 8.54 3.79 89.11 40,505 100% 148 0.6 192,294 5.6 0.21 3.63 0.00 8.53 3.63 89.08 40,493 100% 150 0.5 191,925 5.6 0.21 3.47 0.00 8.52 3.47 89.06 40,481 100% 152 0.5 191,569 5.6 0.21 3.33 0.00 8.51 3.33 89.03 40,470 100% 154 0.4 191,225 5.6 0.21 3.19 0.00 8.51 3.19 89.01 40,459 100% 156 0.4 190,893 5.6 0.21 3.06 0.00 8.50 3.06 88.99 40,448 100% 158 0.4 190,573 5.6 0.21 2.93 0.00 8.49 2.93 88.96 40,438 100% 160 0.3 190,264 5.6 0.21 2.81 0.00 8.49 2.81 88.94 40,428 100% 162 0.3 189,966 5.5 0.21 2.70 0.00 8.48 2.70 88.92 40,418 100% 164 0.3 189,678 5.5 0.21 2.59 0.00 8.47 2.59 88.90 40,409 100% 166 0.2 189,400 5.5 0.21 2.48 0.00 8.47 2.48 88.88 40,400 100% 168 0.2 189,131 5.5 0.21 2.39 0.00 8.46 2.39 88.86 40,391 100% 170 0.2 188,872 5.5 0.21 2.29 0.00 8.46 2.29 88.84 40,383 100% 172 0.2 188,622 5.5 0.21 2.20 0.00 8.45 2.20 88.82 40,374 100% 174 0.2 188,380 5.5 0.21 2.12 0.00 8.45 2.12 88.81 40,367 100% 176 0.2 188,146 5.5 0.21 2.04 0.00 8.44 2.04 88.79 40,359 100% 178 0.1 187,921 5.5 0.21 1.96 0.00 8.44 1.96 88.77 40,352 100% 180 0.1 187,703 5.5 0.21 1.89 0.00 8.43 1.89 88.76 40,344 100% 182 0.1 187,492 5.5 0.21 1.82 0.00 8.43 1.82 88.74 40,338 100% 184 0.1 187,288 5.5 0.21 1.75 0.00 8.42 1.75 88.73 40,331 100% 186 0.1 187,091 5.5 0.21 1.69 0.00 8.42 1.69 88.71 40,324 100% 188 0.1 186,901 5.5 0.21 1.63 0.00 8.41 1.63 88.70 40,318 100% 190 0.1 186,716 5.5 0.21 1.57 0.00 8.41 1.57 88.69 40,312 100% 192 0.1 186,538 5.5 0.21 1.52 0.00 8.41 1.52 88.67 40,306 100% 194 0.1 186,365 5.5 0.21 1.46 0.00 8.40 1.46 88.66 40,301 100% 196 0.1 186,198 5.4 0.21 1.41 0.00 8.40 1.41 88.65 40,295 100% 198 0.1 186,037 5.4 0.21 1.37 0.00 8.40 1.37 88.64 40,290 100% 200 0.1 185,880 5.4 0.21 1.32 0.00 8.39 1.32 88.63 40,285 100% 202 0.0 185,728 5.4 0.21 1.28 0.00 8.39 1.28 88.62 40,280 100% 204 0.0 185,581 5.4 0.21 1.23 0.00 8.39 1.23 88.60 40,275 100% 206 0.0 185,438 5.4 0.21 1.19 0.00 8.38 1.19 88.59 40,270 100% SB 04 SB 25-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 4 C o l o n M i n e P h a s e 1 H y d r o g r a p h 25 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #6 Sheet: 1 Of: 4 Objective Design the temporary sediment basin to contain the 25-year storm. References 1. NC Erosion and Sediment Control Planning and Design Manual. 2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E. 3. NOAA Atlas 14, Volume 2, Version 3 4. VA Erosion and Sediment Control Handbook Given Phase 1 1 Storm Event (yrs) =10 25 Total Drainage Area A (ac) =15.3 15.3 Disturbed Area (ac) =15.3 15.3 Curve Number CN =89 89 Hydrographs Rainfall Depth P (in) =5.28 6.28 (24-hr rainfall)Ref 3 Peak Flow Qp (cfs) =93.60 114.53 Hydrographs Design Criteria Required sediment storage 1,800 cf / acre of drainage Required sediment storage 27,540 cf Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs) Required Surface Area (SF)49,821 of the 10-yr storm peak flow (based on the largest Phase) Determine Shape of Basin: Measure the area of the Basin using AutoCADD. Calculate Volume of the Basin using Truncated Pyramid Method. Shape factor used in hydrographs basin depth may be gretaer than indicated below Cumulative Cumulative Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy) 249 0 30,723 --- 250 1 34,084 32,389 32,389 1,200 251 2 37,519 35,788 68,177 2,525 252 3 41,027 39,260 107,437 3,979 253 4 44,808 42,904 150,340 5,568 254 5 48,997 46,887 197,227 7,305 255 6 52,981 50,976 248,203 9,193 Design Sediment Depth (ft) =3 Sediment Storage (cf) =107,437 Required Sediment Storage Achieved Design Surface Area Depth (ft) =3 Surface Area (sf) =41,027 Increase Surface Area SB 06 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #6 Sheet: 2 Of: 4 Select Skimmer A. R. Jarrett Method D = [Q / (2,310 * (H0.5)]0.5 D =Diameter of Orifice (inches) Q = Dewater Rate (cf/day) H = Head on orifice, varies based on skimmer size (ft) Skimmer Sizes Head (Inches)(ft) 1.5 0.125 2 0.167 2.5 0.167 3 0.250 4 0.333 5 0.333 6 0.417 8 0.500 Volume to Dewater (cf) =107,437 Number of Skimmers 1 Days to Drain =5 assumed Q each (cf/day) =21,487 0.25 cfs Selected Skimmer Size (inches) =5 Head on Skimmer (feet) =0.333 Diameter of Orifice (inches) =4.0 Route the flow through the Basin Riser is not perforated, but skimmer is attached. S =(1000/CN) - 10 Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4 TP (min) = 60.5(Q*)A/QP/1.39 Phase 1 1 Storm Event (yrs) =10 25 S =1.24 1.24 Runoff Depth Q* (inches) =4.04 5.01 Time to Peak Tp (min) =28.75 29.11 Determine Pond Storage Elevation (ZWater): Pick one point near max expected water surface and the other at the mid depth. Z1 (ft) = 3 S1 (cf)= 107,437 Z2 (ft) = 5 S2 (cf) = 197,227 b = ln(S2/S1)/ln(Z2/Z1) =1.2 Ref 2, III-8 KS = S2/Z2 b =29,092 SB 06 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #6 Sheet: 3 Of: 4 Determine Settling Velocity Conversion Factor = 3.281 ft/sec per m/sec Gravitational Acceleration, g (m/s2) =9.81 Specific Gravity of soil (ss)=2.6 Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11 Diameter of the Design Particle d15 =40.00E-06 m Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec Route the Storm through the Basin using the Hydrograph Model Set Height of Emergency Spillway at (ft) =6.10 Set Top of Dam at (ft) =7.00 Anti-Seep Collar: Anti-Seep Collar Size =2 * Barrel Dia Anti-Seep Collar Size (ft) =2 Use Anti-Seep Collar Size (ft) =2 x 2 Minimum Concrete Base for Riser: Diameter of Riser (in) = 18 From Hydrograph Avg Density of Concrete (lbs/cf) =87.6 Density of Water (lbs/cf) =62.4 Riser Displacement (cf) = 8.84 Pi * (DR/24)2 * Total Ht of Riser Convert cf to cy =27-1 Min Concrete Needed (cy) =0.23 Width & Length (ft) =2.5 Thickness (ft) =1.0 Anti-Vortex Device: Diameter of Riser (in) = 18 From Hydrograph Cylinder Diameter (in) = 27 Ref 4, III-104, Table 3.14-D Cylinder Thickness (gage) = 16 Cylinder Height (in) = 8 See Hydrograph SB 06 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #6 Sheet: 4 Of: 4 Determine Tailwater conditions to size outlet apron Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7 A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3 Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5) n =0.069 6-inch diameter Rip Rap, Lined Channel Vp (ft/sec) =9 Permissible Velocity for lining Side Slope (z) =5 enter X for X:1 s (ft/ft) =0.02 Outlet Slope (estimated) Bottom Width (ft) = 3 3 * Barrel Diameter QB (cfs) =3.6 Peak Flow out of the barrel 10-yr Hydrograph Q (cfs)Zreq Flow Depth d (ft)A (sf) R (ft)Zav V (ft/sec) 3.6 1.18 0.47 2.5 0.32 1.18 1.4 Flow Depth = Tailwater, d (ft) =0.47 0.5* Barrel Diameter (ft) =0.50 Ref 1, 8.06.3 Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions. Barrel Diameter (ft) Entrance (ft) Length (ft) Outlet Width (ft) Median Rip Rap Size d50 Selected Rip Rap Size (in) 1 3 8 9 0.3 Class A Conclusion The temporary basin can contain the 25-yr storm. SB 06 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet: 1 Of: 2 Diameter of Riser (in) = 18 Circumference of Riser (in) =56.5 Height of Riser from bottom of barrel (in) =60 From Hydrograph Vertical spacing between holes (in) =0 center to center Water Stage increment (ft)0.05 Orifice Equation Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11 Q =cfs, discharge Cd =0.6 coefficient of discharge A = sf, cross sectional area g =32.2 ft/sec2, gravity h =ft, driving head measured from the center of the pipe Skimmer Row 1 2 3 4 5 1 # of skimmers Holes per row 0 0 0 0 0 Hole Diameter (in)0.75 0.75 0.75 0.75 0.75 Spacing edge to edge (in) Inlet Area (sf)0.000 0.000 0.000 0.000 0.000 Hole Stage (in)0.50 0.50 0.50 0.50 0.50 Hole Stage (ft)0.04 0.04 0.04 0.04 0.04 Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.25 0.25 0.39 0.00 0.00 0.00 0.25 0.25 0.44 0.00 0.00 0.00 0.25 0.25 0.49 0.00 0.00 0.00 0.25 0.25 0.54 0.00 0.00 0.00 0.25 0.25 0.59 0.00 0.00 0.00 0.25 0.25 0.64 0.00 0.00 0.00 0.25 0.25 0.69 0.00 0.00 0.00 0.25 0.25 0.74 0.00 0.00 0.00 0.25 0.25 0.79 0.00 0.00 0.00 0.25 0.25 0.84 0.00 0.00 0.00 0.25 0.25 0.89 0.00 0.00 0.00 0.25 0.25 0.94 0.00 0.00 0.00 0.25 0.25 0.99 0.00 0.00 0.00 0.25 0.25 1.04 0.00 0.00 0.00 0.25 0.25 1.09 0.00 0.00 0.00 0.25 0.25 1.14 0.00 0.00 0.00 0.25 0.25 1.19 0.00 0.00 0.00 0.25 0.25 1.24 0.00 0.00 0.00 0.25 0.25 1.29 0.00 0.00 0.00 0.25 0.25 1.34 0.00 0.00 0.00 0.25 0.25 1.39 0.00 0.00 0.00 0.25 0.25 1.44 0.00 0.00 0.00 0.25 0.25 1.49 0.00 0.00 0.00 0.25 0.25 1.54 0.00 0.00 0.00 0.25 0.25 1.59 0.00 0.00 0.00 0.25 0.25 Perforations SB 06 Pipe Perf-Skimmer HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet: 2 Of: 2 1.64 0.00 0.00 0.00 0.25 0.25 1.69 0.00 0.00 0.00 0.25 0.25 1.74 0.00 0.00 0.00 0.25 0.25 1.79 0.00 0.00 0.00 0.25 0.25 1.84 0.00 0.00 0.00 0.25 0.25 1.89 0.00 0.00 0.00 0.25 0.25 1.94 0.00 0.00 0.00 0.25 0.25 1.99 0.00 0.00 0.00 0.25 0.25 2.04 0.00 0.00 0.00 0.25 0.25 2.09 0.00 0.00 0.00 0.25 0.25 2.14 0.00 0.00 0.00 0.25 0.25 2.19 0.00 0.00 0.00 0.25 0.25 2.24 0.00 0.00 0.00 0.25 0.25 2.29 0.00 0.00 0.00 0.25 0.25 2.34 0.00 0.00 0.00 0.25 0.25 2.39 0.00 0.00 0.00 0.25 0.25 2.44 0.00 0.00 0.00 0.25 0.25 2.49 0.00 0.00 0.00 0.25 0.25 2.54 0.00 0.00 0.00 0.25 0.25 2.59 0.00 0.00 0.00 0.25 0.25 2.64 0.00 0.00 0.00 0.25 0.25 2.69 0.00 0.00 0.00 0.25 0.25 2.74 0.00 0.00 0.00 0.25 0.25 2.79 0.00 0.00 0.00 0.25 0.25 2.84 0.00 0.00 0.00 0.25 0.25 2.89 0.00 0.00 0.00 0.25 0.25 2.94 0.00 0.00 0.00 0.25 0.25 2.99 0.00 0.00 0.00 0.25 0.25 3.04 0.00 0.00 0.00 0.25 0.25 3.09 0.00 0.00 0.00 0.25 0.25 3.14 0.00 0.00 0.00 0.25 0.25 3.19 0.00 0.00 0.00 0.25 0.25 3.24 0.00 0.00 0.00 0.25 0.25 3.29 0.00 0.00 0.00 0.25 0.25 3.34 0.00 0.00 0.00 0.25 0.25 3.39 0.00 0.00 0.00 0.25 0.25 3.44 0.00 0.00 0.00 0.25 0.25 3.49 0.00 0.00 0.00 0.25 0.25 3.54 0.00 0.00 0.00 0.25 0.25 3.59 0.00 0.00 0.00 0.25 0.25 3.64 0.00 0.00 0.00 0.25 0.25 3.69 0.00 0.00 0.00 0.25 0.25 3.74 0.00 0.00 0.00 0.25 0.25 3.79 0.00 0.00 0.00 0.25 0.25 3.84 0.00 0.00 0.00 0.25 0.25 3.89 0.00 0.00 0.00 0.25 0.25 3.94 0.00 0.00 0.00 0.25 0.25 3.99 0.00 0.00 0.00 0.25 0.25 SB 06 Pipe Perf-Skimmer Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _1__of _2__ Qp = 93.60 cfs Sediment Basin #6 Colon Tp = 28.75 minutes Phase 1 dT = Max of 2 minutes 10 - year Storm Event or 1.0%of increment to peak b =1.2 Number of Riser/Barrel Assemblies 1 Ks =29,092 Diameter of Barrel =12 (in) Height of Riser above barrel =4.0 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=5.0 (ft) elevation 254.00 2 Effective number of cells (2 is construction site #) Emergency Spillway =6.1 (ft) elevation 255.10 100%Minimum Settling Efficiency Total Height of Dam =7.0 (ft) elevation 256.00 5.4 ft Maximum Stage 254.36 msl elevation Length of Emergency Spillway =10 (ft)3.6 cfs Peak outflow Diameter of Riser =18 (in)3.6 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 249.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 1.1 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 4.4 134 0.0 0.00 0.00 0.00 0.00 0.00 32.33 14,693 N/A 6 9.7 662 0.0 0.00 0.00 0.00 0.00 0.00 41.69 18,952 N/A 8 16.8 1,826 0.1 0.00 0.00 0.00 0.00 0.00 49.00 22,273 N/A 10 25.3 3,839 0.2 0.00 0.00 0.00 0.00 0.00 55.15 25,068 N/A 12 34.8 6,872 0.3 0.00 0.00 0.00 0.00 0.00 60.50 27,500 N/A 14 44.9 11,048 0.4 0.25 0.25 0.00 0.25 0.25 65.25 29,657 100% 16 55.1 16,405 0.6 0.25 0.25 0.00 0.25 0.25 69.48 31,582 100% 18 64.9 22,984 0.8 0.25 0.25 0.00 0.25 0.25 73.31 33,322 100% 20 73.8 30,738 1.0 0.25 0.25 0.00 0.25 0.25 76.78 34,900 100% 22 81.4 39,564 1.3 0.25 0.25 0.00 0.25 0.25 79.92 36,329 100% 24 87.4 49,307 1.6 0.25 0.25 0.00 0.25 0.25 82.77 37,624 100% 26 91.5 59,770 1.8 0.25 0.25 0.00 0.25 0.25 85.35 38,794 100% 28 93.4 70,721 2.1 0.25 0.25 0.00 0.25 0.25 87.66 39,846 100% 30 93.2 81,905 2.4 0.25 0.25 0.00 0.25 0.25 89.73 40,787 100% 32 90.7 93,054 2.7 0.25 0.25 0.00 0.25 0.25 91.57 41,624 100% 34 86.1 103,905 2.9 0.25 0.25 0.00 0.25 0.25 93.19 42,361 100% 36 79.8 114,207 3.2 0.25 0.25 0.00 0.25 0.25 94.61 43,003 100% 38 72.9 123,747 3.4 0.25 0.25 0.00 0.25 0.25 95.82 43,555 100% 40 66.6 132,460 3.6 0.25 0.25 0.00 0.25 0.25 96.86 44,029 100% 42 60.8 140,417 3.8 0.25 0.25 0.00 0.25 0.25 97.77 44,439 100% 44 55.5 147,683 3.9 0.25 0.25 0.00 0.25 0.25 98.55 44,797 100% 46 50.7 154,318 4.1 0.25 0.25 0.00 0.25 0.25 99.25 45,112 100% 48 46.4 160,377 4.2 0.25 0.25 0.00 0.25 0.25 99.86 45,389 100% 50 42.3 165,910 4.3 0.25 0.25 0.00 0.25 0.25 100.40 45,634 100% 52 38.7 170,961 4.4 0.25 0.25 0.00 0.25 0.25 100.88 45,853 100% 54 35.3 175,573 4.5 0.25 0.25 0.00 0.25 0.25 101.30 46,047 100% 56 32.3 179,784 4.6 0.25 0.25 0.00 0.25 0.25 101.69 46,221 100% 58 29.5 183,627 4.7 0.25 0.25 0.00 0.25 0.25 102.03 46,377 100% 60 26.9 187,136 4.8 0.25 0.25 0.00 0.25 0.25 102.34 46,517 100% 62 24.6 190,339 4.9 0.25 0.25 0.00 0.25 0.25 102.61 46,643 100% 64 22.5 193,263 4.9 0.25 0.25 0.00 0.25 0.25 102.86 46,756 100% 66 20.5 195,931 5.0 0.25 0.25 0.00 0.25 0.25 103.09 46,858 100% 68 18.8 198,365 5.0 0.25 0.31 0.00 8.03 0.31 103.29 46,950 100% 70 17.1 200,580 5.1 0.25 0.55 0.00 8.07 0.55 103.47 47,033 100% 72 15.7 202,571 5.1 0.25 0.84 0.00 8.11 0.84 103.64 47,107 100% 74 14.3 204,349 5.2 0.25 1.16 0.00 8.14 1.16 103.78 47,172 100% 76 13.1 205,925 5.2 0.25 1.48 0.00 8.17 1.48 103.91 47,230 100% 78 11.9 207,315 5.2 0.25 1.79 0.00 8.20 1.79 104.02 47,281 100% 80 10.9 208,533 5.2 0.25 2.08 0.00 8.22 2.08 104.11 47,325 100% 82 10.0 209,592 5.3 0.25 2.34 0.00 8.24 2.34 104.20 47,363 100% SB 06 SB 10-yr (P1) HG Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _2__of _2__ 84 9.1 210,507 5.3 0.25 2.57 0.00 8.26 2.57 104.27 47,396 100% 86 8.3 211,290 5.3 0.25 2.78 0.00 8.27 2.78 104.33 47,424 100% 88 7.6 211,954 5.3 0.25 2.96 0.00 8.28 2.96 104.38 47,447 100% 90 6.9 212,510 5.3 0.25 3.11 0.00 8.29 3.11 104.43 47,467 100% 92 6.3 212,969 5.3 0.25 3.24 0.00 8.30 3.24 104.46 47,484 100% 94 5.8 213,340 5.3 0.25 3.35 0.00 8.31 3.35 104.49 47,497 100% 96 5.3 213,633 5.3 0.25 3.43 0.00 8.31 3.43 104.52 47,507 100% 98 4.8 213,855 5.4 0.25 3.50 0.00 8.32 3.50 104.53 47,515 100% 100 4.4 214,015 5.4 0.25 3.55 0.00 8.32 3.55 104.55 47,521 100% 102 4.0 214,119 5.4 0.25 3.58 0.00 8.32 3.58 104.55 47,524 100% 104 3.7 214,174 5.4 0.25 3.59 0.00 8.32 3.59 104.56 47,526 100% 106 3.4 214,185 5.4 0.25 3.60 0.00 8.32 3.60 104.56 47,527 100% 108 3.1 214,157 5.4 0.25 3.59 0.00 8.32 3.59 104.56 47,526 100% 110 2.8 214,096 5.4 0.25 3.57 0.00 8.32 3.57 104.55 47,523 100% 112 2.6 214,004 5.4 0.25 3.54 0.00 8.32 3.54 104.54 47,520 100% 114 2.3 213,887 5.4 0.25 3.51 0.00 8.32 3.51 104.54 47,516 100% 116 2.1 213,747 5.3 0.25 3.47 0.00 8.31 3.47 104.52 47,511 100% 118 2.0 213,588 5.3 0.25 3.42 0.00 8.31 3.42 104.51 47,505 100% 120 1.8 213,412 5.3 0.25 3.37 0.00 8.31 3.37 104.50 47,499 100% 122 1.6 213,222 5.3 0.25 3.32 0.00 8.31 3.32 104.48 47,493 100% 124 1.5 213,020 5.3 0.25 3.26 0.00 8.30 3.26 104.47 47,485 100% 126 1.4 212,808 5.3 0.25 3.20 0.00 8.30 3.20 104.45 47,478 100% 128 1.2 212,588 5.3 0.25 3.14 0.00 8.29 3.14 104.43 47,470 100% 130 1.1 212,360 5.3 0.25 3.07 0.00 8.29 3.07 104.42 47,462 100% 132 1.0 212,128 5.3 0.25 3.01 0.00 8.29 3.01 104.40 47,454 100% 134 0.9 211,892 5.3 0.25 2.94 0.00 8.28 2.94 104.38 47,445 100% 136 0.9 211,652 5.3 0.25 2.88 0.00 8.28 2.88 104.36 47,437 100% 138 0.8 211,411 5.3 0.25 2.81 0.00 8.27 2.81 104.34 47,428 100% 140 0.7 211,168 5.3 0.25 2.75 0.00 8.27 2.75 104.32 47,419 100% 142 0.7 210,925 5.3 0.25 2.68 0.00 8.26 2.68 104.30 47,411 100% 144 0.6 210,683 5.3 0.25 2.62 0.00 8.26 2.62 104.28 47,402 100% 146 0.6 210,441 5.3 0.25 2.56 0.00 8.26 2.56 104.27 47,393 100% 148 0.5 210,200 5.3 0.25 2.49 0.00 8.25 2.49 104.25 47,385 100% 150 0.5 209,962 5.3 0.25 2.43 0.00 8.25 2.43 104.23 47,376 100% 152 0.4 209,725 5.3 0.25 2.37 0.00 8.24 2.37 104.21 47,368 100% 154 0.4 209,491 5.3 0.25 2.31 0.00 8.24 2.31 104.19 47,359 100% 156 0.4 209,259 5.3 0.25 2.25 0.00 8.23 2.25 104.17 47,351 100% 158 0.3 209,031 5.3 0.25 2.20 0.00 8.23 2.20 104.15 47,343 100% 160 0.3 208,806 5.2 0.25 2.14 0.00 8.23 2.14 104.14 47,335 100% 162 0.3 208,584 5.2 0.25 2.09 0.00 8.22 2.09 104.12 47,327 100% 164 0.2 208,365 5.2 0.25 2.04 0.00 8.22 2.04 104.10 47,319 100% 166 0.2 208,150 5.2 0.25 1.98 0.00 8.21 1.98 104.08 47,311 100% 168 0.2 207,939 5.2 0.25 1.93 0.00 8.21 1.93 104.07 47,303 100% 170 0.2 207,731 5.2 0.25 1.89 0.00 8.21 1.89 104.05 47,296 100% 172 0.2 207,527 5.2 0.25 1.84 0.00 8.20 1.84 104.03 47,288 100% 174 0.2 207,327 5.2 0.25 1.79 0.00 8.20 1.79 104.02 47,281 100% 176 0.1 207,130 5.2 0.25 1.75 0.00 8.19 1.75 104.00 47,274 100% 178 0.1 206,937 5.2 0.25 1.70 0.00 8.19 1.70 103.99 47,267 100% 180 0.1 206,748 5.2 0.25 1.66 0.00 8.19 1.66 103.97 47,260 100% 182 0.1 206,563 5.2 0.25 1.62 0.00 8.18 1.62 103.96 47,253 100% 184 0.1 206,381 5.2 0.25 1.58 0.00 8.18 1.58 103.94 47,247 100% 186 0.1 206,203 5.2 0.25 1.54 0.00 8.18 1.54 103.93 47,240 100% 188 0.1 206,029 5.2 0.25 1.51 0.00 8.17 1.51 103.91 47,234 100% 190 0.1 205,858 5.2 0.25 1.47 0.00 8.17 1.47 103.90 47,228 100% 192 0.1 205,691 5.2 0.25 1.43 0.00 8.17 1.43 103.89 47,222 100% 194 0.1 205,527 5.2 0.25 1.40 0.00 8.16 1.40 103.87 47,216 100% 196 0.1 205,366 5.2 0.25 1.37 0.00 8.16 1.37 103.86 47,210 100% 198 0.1 205,209 5.2 0.25 1.34 0.00 8.16 1.34 103.85 47,204 100% 200 0.0 205,055 5.2 0.25 1.30 0.00 8.16 1.30 103.84 47,198 100% 202 0.0 204,905 5.2 0.25 1.27 0.00 8.15 1.27 103.82 47,193 100% 204 0.0 204,757 5.2 0.25 1.24 0.00 8.15 1.24 103.81 47,187 100% 206 0.0 204,612 5.2 0.25 1.22 0.00 8.15 1.22 103.80 47,182 100% SB 06 SB 10-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 6 C o l o n M i n e P h a s e 1 H y d r o g r a p h 10 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _1__of _2__ Qp = 114.53 cfs Sediment Basin #6 Colon Tp = 29.11 minutes Phase 1 dT = Max of 2 minutes 25 - year Storm Event or 1.0%of increment to peak b =1.2 Number of Riser/Barrel Assemblies 1 Ks =29,092 Diameter of Barrel =12 (in) Height of Riser above barrel =4 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=5 (ft) elevation 254.00 2 Effective number of cells (2 is construction site #) Emergency Spillway =6.1 (ft) elevation 255.10 99%Minimum Settling Efficiency Total Height of Dam =7 (ft) elevation 256.00 6.1 ft Maximum Stage 255.06 msl elevation Length of Emergency Spillway =10 (ft)8.9 cfs Peak outflow Diameter of Riser =18 (in)8.9 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 249.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 1.3 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 5.3 159 0.0 0.00 0.00 0.00 0.00 0.00 33.25 15,112 N/A 6 11.6 790 0.0 0.00 0.00 0.00 0.00 0.00 42.88 19,492 N/A 8 20.0 2,180 0.1 0.00 0.00 0.00 0.00 0.00 50.40 22,910 N/A 10 30.2 4,586 0.2 0.00 0.00 0.00 0.00 0.00 56.73 25,786 N/A 12 41.7 8,213 0.3 0.25 0.25 0.00 0.25 0.25 62.24 28,291 100% 14 53.8 13,183 0.5 0.25 0.25 0.00 0.25 0.25 67.11 30,503 100% 16 66.1 19,613 0.7 0.25 0.25 0.00 0.25 0.25 71.48 32,492 100% 18 78.1 27,521 1.0 0.25 0.25 0.00 0.25 0.25 75.44 34,291 100% 20 89.0 36,858 1.2 0.25 0.25 0.00 0.25 0.25 79.03 35,922 100% 22 98.5 47,508 1.5 0.25 0.25 0.00 0.25 0.25 82.29 37,402 100% 24 106.0 59,295 1.8 0.25 0.25 0.00 0.25 0.25 85.24 38,745 100% 26 111.3 71,989 2.1 0.25 0.25 0.00 0.25 0.25 87.91 39,959 100% 28 114.1 85,318 2.5 0.25 0.25 0.00 0.25 0.25 90.32 41,053 100% 30 114.3 98,983 2.8 0.25 0.25 0.00 0.25 0.25 92.48 42,035 100% 32 111.8 112,665 3.1 0.25 0.25 0.00 0.25 0.25 94.40 42,910 100% 34 106.8 126,048 3.4 0.25 0.25 0.00 0.25 0.25 96.10 43,683 100% 36 99.4 138,828 3.7 0.25 0.25 0.00 0.25 0.25 97.59 44,359 100% 38 91.1 150,730 4.0 0.25 0.25 0.00 0.25 0.25 98.87 44,943 100% 40 83.3 161,632 4.2 0.25 0.25 0.00 0.25 0.25 99.98 45,445 100% 42 76.2 171,599 4.4 0.25 0.25 0.00 0.25 0.25 100.94 45,880 100% 44 69.7 180,713 4.6 0.25 0.25 0.00 0.25 0.25 101.77 46,259 100% 46 63.7 189,045 4.8 0.25 0.25 0.00 0.25 0.25 102.50 46,592 100% 48 58.3 196,663 5.0 0.25 0.25 0.00 0.25 0.25 103.15 46,886 100% 50 53.3 203,627 5.1 0.25 1.03 0.00 8.13 1.03 103.72 47,146 100% 52 48.8 209,900 5.3 0.25 2.42 0.00 8.25 2.42 104.22 47,374 100% 54 44.6 215,461 5.4 0.25 3.98 0.00 8.35 3.98 104.66 47,571 100% 56 40.8 220,334 5.5 0.25 5.55 0.00 8.43 5.55 105.03 47,741 100% 58 37.3 224,561 5.6 0.25 7.06 0.00 8.51 7.06 105.35 47,886 100% 60 34.1 228,189 5.7 0.25 8.44 0.00 8.57 8.44 105.62 48,008 99% 62 31.2 231,269 5.7 0.25 9.68 0.00 8.62 8.62 105.84 48,110 99% 64 28.5 233,977 5.8 0.25 10.81 0.00 8.67 8.67 106.04 48,199 99% 66 26.1 236,360 5.8 0.25 11.84 0.00 8.71 8.71 106.21 48,277 99% 68 23.9 238,446 5.9 0.25 12.76 0.00 8.75 8.75 106.36 48,345 99% 70 21.8 240,260 5.9 0.25 13.59 0.00 8.78 8.78 106.49 48,403 99% 72 20.0 241,826 5.9 0.25 14.31 0.00 8.80 8.80 106.60 48,453 99% 74 18.3 243,165 6.0 0.25 14.94 0.00 8.82 8.82 106.69 48,496 99% 76 16.7 244,296 6.0 0.25 15.47 0.00 8.84 8.84 106.77 48,532 99% 78 15.3 245,238 6.0 0.25 15.93 0.00 8.86 8.86 106.83 48,561 99% 80 14.0 246,007 6.0 0.25 16.30 0.00 8.87 8.87 106.89 48,585 99% 82 12.8 246,618 6.0 0.25 16.59 0.00 8.88 8.88 106.93 48,605 99% SB 06 SB 25-yr (P1) HG Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _2__of _2__ 84 11.7 247,085 6.0 0.25 16.82 0.00 8.89 8.89 106.96 48,619 99% 86 10.7 247,420 6.1 0.25 16.99 0.00 8.90 8.90 106.99 48,630 99% 88 9.8 247,634 6.1 0.25 17.09 0.00 8.90 8.90 107.00 48,636 99% 90 8.9 247,739 6.1 0.25 17.14 0.00 8.90 8.90 107.01 48,640 99% 92 8.2 247,743 6.1 0.25 17.15 0.00 8.90 8.90 107.01 48,640 99% 94 7.5 247,655 6.1 0.25 17.10 0.00 8.90 8.90 107.00 48,637 99% 96 6.8 247,484 6.1 0.25 17.02 0.00 8.90 8.90 106.99 48,632 99% 98 6.3 247,237 6.0 0.25 16.90 0.00 8.89 8.89 106.97 48,624 99% 100 5.7 246,920 6.0 0.25 16.74 0.00 8.89 8.89 106.95 48,614 99% 102 5.2 246,540 6.0 0.25 16.56 0.00 8.88 8.88 106.92 48,602 99% 104 4.8 246,101 6.0 0.25 16.34 0.00 8.87 8.87 106.89 48,588 99% 106 4.4 245,610 6.0 0.25 16.10 0.00 8.87 8.87 106.86 48,573 99% 108 4.0 245,071 6.0 0.25 15.84 0.00 8.86 8.86 106.82 48,556 99% 110 3.7 244,488 6.0 0.25 15.57 0.00 8.85 8.85 106.78 48,538 99% 112 3.3 243,866 6.0 0.25 15.27 0.00 8.84 8.84 106.74 48,518 99% 114 3.1 243,207 6.0 0.25 14.96 0.00 8.83 8.83 106.69 48,497 99% 116 2.8 242,515 5.9 0.25 14.63 0.00 8.81 8.81 106.65 48,475 99% 118 2.6 241,793 5.9 0.25 14.29 0.00 8.80 8.80 106.59 48,452 99% 120 2.3 241,044 5.9 0.25 13.95 0.00 8.79 8.79 106.54 48,428 99% 122 2.1 240,270 5.9 0.25 13.59 0.00 8.78 8.78 106.49 48,403 99% 124 2.0 239,474 5.9 0.25 13.23 0.00 8.76 8.76 106.43 48,378 99% 126 1.8 238,657 5.9 0.25 12.86 0.00 8.75 8.75 106.37 48,352 99% 128 1.6 237,822 5.9 0.25 12.48 0.00 8.74 8.74 106.31 48,325 99% 130 1.5 236,970 5.8 0.25 12.11 0.00 8.72 8.72 106.25 48,297 99% 132 1.4 236,104 5.8 0.25 11.73 0.00 8.71 8.71 106.19 48,269 99% 134 1.3 235,223 5.8 0.25 11.34 0.00 8.69 8.69 106.13 48,240 99% 136 1.1 234,331 5.8 0.25 10.96 0.00 8.68 8.68 106.06 48,211 99% 138 1.0 233,427 5.8 0.25 10.58 0.00 8.66 8.66 106.00 48,181 99% 140 1.0 232,513 5.7 0.25 10.19 0.00 8.64 8.64 105.93 48,151 99% 142 0.9 231,591 5.7 0.25 9.81 0.00 8.63 8.63 105.87 48,121 99% 144 0.8 230,661 5.7 0.25 9.43 0.00 8.61 8.61 105.80 48,090 99% 146 0.7 229,723 5.7 0.25 9.05 0.00 8.60 8.60 105.73 48,059 99% 148 0.7 228,780 5.7 0.25 8.67 0.00 8.58 8.58 105.66 48,028 99% 150 0.6 227,830 5.6 0.25 8.30 0.00 8.56 8.30 105.59 47,996 99% 152 0.6 226,908 5.6 0.25 7.94 0.00 8.55 7.94 105.52 47,965 99% 154 0.5 226,022 5.6 0.25 7.61 0.00 8.53 7.61 105.46 47,935 99% 156 0.5 225,171 5.6 0.25 7.28 0.00 8.52 7.28 105.39 47,906 100% 158 0.4 224,353 5.6 0.25 6.98 0.00 8.50 6.98 105.33 47,879 100% 160 0.4 223,567 5.6 0.25 6.69 0.00 8.49 6.69 105.27 47,852 100% 162 0.4 222,811 5.5 0.25 6.42 0.00 8.48 6.42 105.22 47,826 100% 164 0.3 222,083 5.5 0.25 6.16 0.00 8.46 6.16 105.16 47,801 100% 166 0.3 221,383 5.5 0.25 5.92 0.00 8.45 5.92 105.11 47,777 100% 168 0.3 220,709 5.5 0.25 5.68 0.00 8.44 5.68 105.06 47,754 100% 170 0.3 220,061 5.5 0.25 5.46 0.00 8.43 5.46 105.01 47,732 100% 172 0.2 219,435 5.5 0.25 5.25 0.00 8.42 5.25 104.96 47,710 100% 174 0.2 218,833 5.5 0.25 5.05 0.00 8.41 5.05 104.92 47,689 100% 176 0.2 218,252 5.4 0.25 4.86 0.00 8.40 4.86 104.87 47,669 100% 178 0.2 217,692 5.4 0.25 4.68 0.00 8.39 4.68 104.83 47,650 100% 180 0.2 217,152 5.4 0.25 4.50 0.00 8.38 4.50 104.79 47,631 100% 182 0.1 216,631 5.4 0.25 4.34 0.00 8.37 4.34 104.75 47,612 100% 184 0.1 216,128 5.4 0.25 4.18 0.00 8.36 4.18 104.71 47,595 100% 186 0.1 215,642 5.4 0.25 4.03 0.00 8.35 4.03 104.67 47,578 100% 188 0.1 215,173 5.4 0.25 3.89 0.00 8.34 3.89 104.63 47,561 100% 190 0.1 214,720 5.4 0.25 3.75 0.00 8.33 3.75 104.60 47,545 100% 192 0.1 214,281 5.4 0.25 3.62 0.00 8.32 3.62 104.57 47,530 100% 194 0.1 213,858 5.4 0.25 3.50 0.00 8.32 3.50 104.53 47,515 100% 196 0.1 213,448 5.3 0.25 3.38 0.00 8.31 3.38 104.50 47,501 100% 198 0.1 213,052 5.3 0.25 3.27 0.00 8.30 3.27 104.47 47,486 100% 200 0.1 212,668 5.3 0.25 3.16 0.00 8.30 3.16 104.44 47,473 100% 202 0.1 212,297 5.3 0.25 3.06 0.00 8.29 3.06 104.41 47,460 100% 204 0.1 211,938 5.3 0.25 2.96 0.00 8.28 2.96 104.38 47,447 100% 206 0.1 211,590 5.3 0.25 2.86 0.00 8.28 2.86 104.36 47,434 100% SB 06 SB 25-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 6 C o l o n M i n e P h a s e 1 H y d r o g r a p h 25 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #8 Sheet: 1 Of: 4 Objective Design the temporary sediment basin to contain the 25-year storm. References 1. NC Erosion and Sediment Control Planning and Design Manual. 2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E. 3. NOAA Atlas 14, Volume 2, Version 3 4. VA Erosion and Sediment Control Handbook Given Phase 1 1 Storm Event (yrs) =10 25 Total Drainage Area A (ac) =11.8 11.8 Disturbed Area (ac) =11.8 11.8 Curve Number CN =86 86 Hydrographs Rainfall Depth P (in) =5.28 6.28 (24-hr rainfall)Ref 3 Peak Flow Qp (cfs) =71.25 88.20 Hydrographs Design Criteria Required sediment storage 1,800 cf / acre of drainage Required sediment storage 21,240 cf Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs) Required Surface Area (SF)38,367 of the 10-yr storm peak flow (based on the largest Phase) Determine Shape of Basin: Measure the area of the Basin using AutoCADD. Calculate Volume of the Basin using Truncated Pyramid Method. Shape factor used in hydrographs basin depth may be gretaer than indicated below Cumulative Cumulative Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy) 273 0 5,639 --- 274 1 18,291 11,362 11,362 421 275 2 28,277 23,103 34,465 1,276 276 3 38,333 33,178 67,643 2,505 277 4 47,710 42,936 110,579 4,096 278 5 59,010 53,260 163,839 6,068 279 6 69,292 64,082 227,922 8,442 Design Sediment Depth (ft) =3 Sediment Storage (cf) =67,643 Required Sediment Storage Achieved Design Surface Area Depth (ft) =3 Surface Area (sf) =38,333 Increase Surface Area SB 08 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #8 Sheet: 2 Of: 4 Select Skimmer A. R. Jarrett Method D = [Q / (2,310 * (H0.5)]0.5 D =Diameter of Orifice (inches) Q = Dewater Rate (cf/day) H = Head on orifice, varies based on skimmer size (ft) Skimmer Sizes Head (Inches)(ft) 1.5 0.125 2 0.167 2.5 0.167 3 0.250 4 0.333 5 0.333 6 0.417 8 0.500 Volume to Dewater (cf) =67,643 Number of Skimmers 1 Days to Drain =5 assumed Q each (cf/day) =13,529 0.16 cfs Selected Skimmer Size (inches) =4 Head on Skimmer (feet) =0.333 Diameter of Orifice (inches) =3.2 Route the flow through the Basin Riser is not perforated, but skimmer is attached. S =(1000/CN) - 10 Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4 TP (min) = 60.5(Q*)A/QP/1.39 Phase 1 1 Storm Event (yrs) =10 25 S =1.63 1.63 Runoff Depth Q* (inches) =3.73 4.68 Time to Peak Tp (min) =26.88 27.23 Determine Pond Storage Elevation (ZWater): Pick one point near max expected water surface and the other at the mid depth. Z1 (ft) = 3 S1 (cf)= 67,643 Z2 (ft) = 5 S2 (cf) = 163,839 b = ln(S2/S1)/ln(Z2/Z1) =1.7 Ref 2, III-8 KS = S2/Z2 b =10,091 SB 08 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #8 Sheet: 3 Of: 4 Determine Settling Velocity Conversion Factor = 3.281 ft/sec per m/sec Gravitational Acceleration, g (m/s2) =9.81 Specific Gravity of soil (ss)=2.6 Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11 Diameter of the Design Particle d15 =40.00E-06 m Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec Route the Storm through the Basin using the Hydrograph Model Set Height of Emergency Spillway at (ft) =5.30 Set Top of Dam at (ft) =6.00 Anti-Seep Collar: Anti-Seep Collar Size =2 * Barrel Dia Anti-Seep Collar Size (ft) =2 Use Anti-Seep Collar Size (ft) =2 x 2 Minimum Concrete Base for Riser: Diameter of Riser (in) = 18 From Hydrograph Avg Density of Concrete (lbs/cf) =87.6 Density of Water (lbs/cf) =62.4 Riser Displacement (cf) = 7.95 Pi * (DR/24)2 * Total Ht of Riser Convert cf to cy =27-1 Min Concrete Needed (cy) =0.21 Width & Length (ft) =2.5 Thickness (ft) =0.9 Anti-Vortex Device: Diameter of Riser (in) = 18 From Hydrograph Cylinder Diameter (in) = 27 Ref 4, III-104, Table 3.14-D Cylinder Thickness (gage) = 16 Cylinder Height (in) = 8 See Hydrograph SB 08 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #8 Sheet: 4 Of: 4 Determine Tailwater conditions to size outlet apron Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7 A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3 Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5) n =0.069 6-inch diameter Rip Rap, Lined Channel Vp (ft/sec) =9 Permissible Velocity for lining Side Slope (z) =5 enter X for X:1 s (ft/ft) =0.02 Outlet Slope (estimated) Bottom Width (ft) = 6 6 * Barrel Diameter QB (cfs) =2.6 Peak Flow out of the barrel 10-yr Hydrograph Q (cfs)Zreq Flow Depth d (ft)A (sf) R (ft)Zav V (ft/sec) 2.6 0.86 0.29 2.2 0.24 0.86 1.2 Flow Depth = Tailwater, d (ft) =0.29 0.5* Barrel Diameter (ft) =0.50 Ref 1, 8.06.3 Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions. Barrel Diameter (ft) Entrance (ft) Length (ft) Outlet Width (ft) Median Rip Rap Size d50 Selected Rip Rap Size (in) 1 3 8 9 0.3 Class A Conclusion The temporary basin can contain the 25-yr storm. SB 08 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet: 1 Of: 2 Diameter of Riser (in) = 18 Circumference of Riser (in) =56.5 Height of Riser from bottom of barrel (in) =54 From Hydrograph Vertical spacing between holes (in) =0 center to center Water Stage increment (ft)0.05 Orifice Equation Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11 Q =cfs, discharge Cd =0.6 coefficient of discharge A = sf, cross sectional area g =32.2 ft/sec2, gravity h =ft, driving head measured from the center of the pipe Skimmer Row 1 2 3 4 5 1 # of skimmers Holes per row 0 0 0 0 0 Hole Diameter (in)0.75 0.75 0.75 0.75 0.75 Spacing edge to edge (in)#DIV/0!#DIV/0!#DIV/0!#DIV/0!#DIV/0! Inlet Area (sf)0.000 0.000 0.000 0.000 0.000 Hole Stage (in)0.50 0.50 0.50 0.50 0.50 Hole Stage (ft)0.04 0.04 0.04 0.04 0.04 Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.16 0.16 0.39 0.00 0.00 0.00 0.16 0.16 0.44 0.00 0.00 0.00 0.16 0.16 0.49 0.00 0.00 0.00 0.16 0.16 0.54 0.00 0.00 0.00 0.16 0.16 0.59 0.00 0.00 0.00 0.16 0.16 0.64 0.00 0.00 0.00 0.16 0.16 0.69 0.00 0.00 0.00 0.16 0.16 0.74 0.00 0.00 0.00 0.16 0.16 0.79 0.00 0.00 0.00 0.16 0.16 0.84 0.00 0.00 0.00 0.16 0.16 0.89 0.00 0.00 0.00 0.16 0.16 0.94 0.00 0.00 0.00 0.16 0.16 0.99 0.00 0.00 0.00 0.16 0.16 1.04 0.00 0.00 0.00 0.16 0.16 1.09 0.00 0.00 0.00 0.16 0.16 1.14 0.00 0.00 0.00 0.16 0.16 1.19 0.00 0.00 0.00 0.16 0.16 1.24 0.00 0.00 0.00 0.16 0.16 1.29 0.00 0.00 0.00 0.16 0.16 1.34 0.00 0.00 0.00 0.16 0.16 1.39 0.00 0.00 0.00 0.16 0.16 1.44 0.00 0.00 0.00 0.16 0.16 1.49 0.00 0.00 0.00 0.16 0.16 1.54 0.00 0.00 0.00 0.16 0.16 1.59 0.00 0.00 0.00 0.16 0.16 Perforations SB 08 Pipe Perf-Skimmer HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/4/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet: 2 Of: 2 1.64 0.00 0.00 0.00 0.16 0.16 1.69 0.00 0.00 0.00 0.16 0.16 1.74 0.00 0.00 0.00 0.16 0.16 1.79 0.00 0.00 0.00 0.16 0.16 1.84 0.00 0.00 0.00 0.16 0.16 1.89 0.00 0.00 0.00 0.16 0.16 1.94 0.00 0.00 0.00 0.16 0.16 1.99 0.00 0.00 0.00 0.16 0.16 2.04 0.00 0.00 0.00 0.16 0.16 2.09 0.00 0.00 0.00 0.16 0.16 2.14 0.00 0.00 0.00 0.16 0.16 2.19 0.00 0.00 0.00 0.16 0.16 2.24 0.00 0.00 0.00 0.16 0.16 2.29 0.00 0.00 0.00 0.16 0.16 2.34 0.00 0.00 0.00 0.16 0.16 2.39 0.00 0.00 0.00 0.16 0.16 2.44 0.00 0.00 0.00 0.16 0.16 2.49 0.00 0.00 0.00 0.16 0.16 2.54 0.00 0.00 0.00 0.16 0.16 2.59 0.00 0.00 0.00 0.16 0.16 2.64 0.00 0.00 0.00 0.16 0.16 2.69 0.00 0.00 0.00 0.16 0.16 2.74 0.00 0.00 0.00 0.16 0.16 2.79 0.00 0.00 0.00 0.16 0.16 2.84 0.00 0.00 0.00 0.16 0.16 2.89 0.00 0.00 0.00 0.16 0.16 2.94 0.00 0.00 0.00 0.16 0.16 2.99 0.00 0.00 0.00 0.16 0.16 3.04 0.00 0.00 0.00 0.16 0.16 3.09 0.00 0.00 0.00 0.16 0.16 3.14 0.00 0.00 0.00 0.16 0.16 3.19 0.00 0.00 0.00 0.16 0.16 3.24 0.00 0.00 0.00 0.16 0.16 3.29 0.00 0.00 0.00 0.16 0.16 3.34 0.00 0.00 0.00 0.16 0.16 3.39 0.00 0.00 0.00 0.16 0.16 3.44 0.00 0.00 0.00 0.16 0.16 3.49 0.00 0.00 0.00 0.16 0.16 3.54 0.00 0.00 0.00 0.16 0.16 3.59 0.00 0.00 0.00 0.16 0.16 3.64 0.00 0.00 0.00 0.16 0.16 3.69 0.00 0.00 0.00 0.16 0.16 3.74 0.00 0.00 0.00 0.16 0.16 3.79 0.00 0.00 0.00 0.16 0.16 3.84 0.00 0.00 0.00 0.16 0.16 3.89 0.00 0.00 0.00 0.16 0.16 3.94 0.00 0.00 0.00 0.16 0.16 3.99 0.00 0.00 0.00 0.16 0.16 SB 08 Pipe Perf-Skimmer Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _1__of _2__ Qp = 71.25 cfs Sediment Basin #8 Colon Tp = 26.88 minutes Phase 1 dT = Max of 2 minutes 10 - year Storm Event or 1.0%of increment to peak b =1.7 Number of Riser/Barrel Assemblies 1 Ks =10,091 Diameter of Barrel =12 (in) Height of Riser above barrel =3.5 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=4.5 (ft) elevation 277.50 2 Effective number of cells (2 is construction site #) Emergency Spillway =5.3 (ft) elevation 278.30 100%Minimum Settling Efficiency Total Height of Dam =6.0 (ft) elevation 279.00 4.8 ft Maximum Stage 277.79 msl elevation Length of Emergency Spillway =10 (ft)2.6 cfs Peak outflow Diameter of Riser =18 (in)2.6 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 273.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 1.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 3.8 116 0.1 0.00 0.00 0.00 0.00 0.00 5.83 2,650 N/A 6 8.4 575 0.2 0.00 0.00 0.00 0.00 0.00 11.46 5,208 N/A 8 14.5 1,584 0.3 0.16 0.16 0.00 0.16 0.16 17.58 7,991 100% 10 21.7 3,301 0.5 0.16 0.16 0.00 0.16 0.16 23.98 10,899 100% 12 29.7 5,884 0.7 0.16 0.16 0.00 0.16 0.16 30.61 13,914 100% 14 38.0 9,424 1.0 0.16 0.16 0.00 0.16 0.16 37.35 16,978 100% 16 46.1 13,960 1.2 0.16 0.16 0.00 0.16 0.16 44.10 20,045 100% 18 53.7 19,476 1.5 0.16 0.16 0.00 0.16 0.16 50.76 23,073 100% 20 60.3 25,904 1.7 0.16 0.16 0.00 0.16 0.16 57.26 26,028 100% 22 65.6 33,126 2.0 0.16 0.16 0.00 0.16 0.16 63.53 28,879 100% 24 69.2 40,980 2.2 0.16 0.16 0.00 0.16 0.16 69.51 31,595 100% 26 71.1 49,271 2.5 0.16 0.16 0.00 0.16 0.16 75.14 34,154 100% 28 70.9 57,780 2.7 0.16 0.16 0.00 0.16 0.16 80.37 36,532 100% 30 68.9 66,274 3.0 0.16 0.16 0.00 0.16 0.16 85.17 38,712 100% 32 65.1 74,525 3.2 0.16 0.16 0.00 0.16 0.16 89.50 40,680 100% 34 59.7 82,313 3.4 0.16 0.16 0.00 0.16 0.16 93.33 42,425 100% 36 54.2 89,462 3.5 0.16 0.16 0.00 0.16 0.16 96.68 43,944 100% 38 49.2 95,950 3.7 0.16 0.16 0.00 0.16 0.16 99.58 45,264 100% 40 44.7 101,837 3.8 0.16 0.16 0.00 0.16 0.16 102.12 46,417 100% 42 40.6 107,181 3.9 0.16 0.16 0.00 0.16 0.16 104.35 47,431 100% 44 36.8 112,029 4.0 0.16 0.16 0.00 0.16 0.16 106.32 48,326 100% 46 33.4 116,430 4.1 0.16 0.16 0.00 0.16 0.16 108.06 49,119 100% 48 30.3 120,422 4.2 0.16 0.16 0.00 0.16 0.16 109.61 49,824 100% 50 27.5 124,045 4.3 0.16 0.16 0.00 0.16 0.16 110.99 50,452 100% 52 25.0 127,333 4.3 0.16 0.16 0.00 0.16 0.16 112.23 51,013 100% 54 22.7 130,315 4.4 0.16 0.16 0.00 0.16 0.16 113.33 51,514 100% 56 20.6 133,021 4.4 0.16 0.16 0.00 0.16 0.16 114.32 51,964 100% 58 18.7 135,475 4.5 0.16 0.16 0.00 0.16 0.16 115.21 52,367 100% 60 17.0 137,702 4.5 0.16 0.21 0.00 7.57 0.21 116.00 52,729 100% 62 15.4 139,715 4.6 0.16 0.39 0.00 7.61 0.39 116.72 53,053 100% 64 14.0 141,519 4.6 0.16 0.61 0.00 7.64 0.61 117.35 53,341 100% 66 12.7 143,125 4.6 0.16 0.84 0.00 7.67 0.84 117.91 53,597 100% 68 11.5 144,549 4.7 0.16 1.07 0.00 7.69 1.07 118.41 53,821 100% 70 10.5 145,805 4.7 0.16 1.29 0.00 7.71 1.29 118.84 54,018 100% 72 9.5 146,907 4.7 0.16 1.49 0.00 7.73 1.49 119.22 54,190 100% 74 8.6 147,869 4.7 0.16 1.68 0.00 7.75 1.68 119.55 54,340 100% 76 7.8 148,703 4.7 0.16 1.85 0.00 7.76 1.85 119.83 54,469 100% 78 7.1 149,422 4.7 0.16 2.00 0.00 7.78 2.00 120.08 54,580 100% 80 6.5 150,036 4.8 0.16 2.13 0.00 7.79 2.13 120.29 54,675 100% 82 5.9 150,555 4.8 0.16 2.24 0.00 7.79 2.24 120.46 54,755 100% SB 08 SB 10-yr (P1) HG Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _2__of _2__ 84 5.3 150,990 4.8 0.16 2.33 0.00 7.80 2.33 120.61 54,822 100% 86 4.8 151,348 4.8 0.16 2.41 0.00 7.81 2.41 120.73 54,877 100% 88 4.4 151,638 4.8 0.16 2.48 0.00 7.81 2.48 120.83 54,921 100% 90 4.0 151,867 4.8 0.16 2.53 0.00 7.82 2.53 120.90 54,956 100% 92 3.6 152,041 4.8 0.16 2.57 0.00 7.82 2.57 120.96 54,983 100% 94 3.3 152,166 4.8 0.16 2.60 0.00 7.82 2.60 121.00 55,002 100% 96 3.0 152,248 4.8 0.16 2.62 0.00 7.82 2.62 121.03 55,014 100% 98 2.7 152,292 4.8 0.16 2.63 0.00 7.82 2.63 121.05 55,021 100% 100 2.5 152,301 4.8 0.16 2.63 0.00 7.82 2.63 121.05 55,022 100% 102 2.2 152,280 4.8 0.16 2.62 0.00 7.82 2.62 121.04 55,019 100% 104 2.0 152,232 4.8 0.16 2.61 0.00 7.82 2.61 121.03 55,012 100% 106 1.8 152,161 4.8 0.16 2.60 0.00 7.82 2.60 121.00 55,001 100% 108 1.7 152,070 4.8 0.16 2.58 0.00 7.82 2.58 120.97 54,987 100% 110 1.5 151,961 4.8 0.16 2.55 0.00 7.82 2.55 120.93 54,970 100% 112 1.4 151,836 4.8 0.16 2.52 0.00 7.82 2.52 120.89 54,951 100% 114 1.2 151,698 4.8 0.16 2.49 0.00 7.81 2.49 120.85 54,930 100% 116 1.1 151,549 4.8 0.16 2.46 0.00 7.81 2.46 120.80 54,907 100% 118 1.0 151,389 4.8 0.16 2.42 0.00 7.81 2.42 120.74 54,883 100% 120 0.9 151,222 4.8 0.16 2.39 0.00 7.81 2.39 120.69 54,857 100% 122 0.8 151,048 4.8 0.16 2.35 0.00 7.80 2.35 120.63 54,831 100% 124 0.8 150,868 4.8 0.16 2.31 0.00 7.80 2.31 120.57 54,803 100% 126 0.7 150,683 4.8 0.16 2.27 0.00 7.80 2.27 120.50 54,775 100% 128 0.6 150,495 4.8 0.16 2.23 0.00 7.79 2.23 120.44 54,746 100% 130 0.6 150,304 4.8 0.16 2.18 0.00 7.79 2.18 120.38 54,716 100% 132 0.5 150,111 4.8 0.16 2.14 0.00 7.79 2.14 120.31 54,687 100% 134 0.5 149,916 4.8 0.16 2.10 0.00 7.78 2.10 120.24 54,657 100% 136 0.4 149,721 4.7 0.16 2.06 0.00 7.78 2.06 120.18 54,627 100% 138 0.4 149,525 4.7 0.16 2.02 0.00 7.78 2.02 120.11 54,596 100% 140 0.4 149,330 4.7 0.16 1.98 0.00 7.77 1.98 120.05 54,566 100% 142 0.3 149,135 4.7 0.16 1.94 0.00 7.77 1.94 119.98 54,536 100% 144 0.3 148,942 4.7 0.16 1.90 0.00 7.77 1.90 119.91 54,506 100% 146 0.3 148,749 4.7 0.16 1.86 0.00 7.76 1.86 119.85 54,477 100% 148 0.2 148,558 4.7 0.16 1.82 0.00 7.76 1.82 119.78 54,447 100% 150 0.2 148,369 4.7 0.16 1.78 0.00 7.76 1.78 119.72 54,418 100% 152 0.2 148,182 4.7 0.16 1.74 0.00 7.75 1.74 119.65 54,389 100% 154 0.2 147,996 4.7 0.16 1.71 0.00 7.75 1.71 119.59 54,360 100% 156 0.2 147,813 4.7 0.16 1.67 0.00 7.75 1.67 119.53 54,331 100% 158 0.1 147,633 4.7 0.16 1.63 0.00 7.75 1.63 119.47 54,303 100% 160 0.1 147,455 4.7 0.16 1.60 0.00 7.74 1.60 119.41 54,276 100% 162 0.1 147,279 4.7 0.16 1.56 0.00 7.74 1.56 119.35 54,248 100% 164 0.1 147,106 4.7 0.16 1.53 0.00 7.74 1.53 119.29 54,221 100% 166 0.1 146,935 4.7 0.16 1.50 0.00 7.73 1.50 119.23 54,195 100% 168 0.1 146,768 4.7 0.16 1.47 0.00 7.73 1.47 119.17 54,169 100% 170 0.1 146,603 4.7 0.16 1.44 0.00 7.73 1.44 119.11 54,143 100% 172 0.1 146,440 4.7 0.16 1.41 0.00 7.73 1.41 119.06 54,118 100% 174 0.1 146,281 4.7 0.16 1.38 0.00 7.72 1.38 119.00 54,093 100% 176 0.1 146,124 4.7 0.16 1.35 0.00 7.72 1.35 118.95 54,068 100% 178 0.1 145,970 4.7 0.16 1.32 0.00 7.72 1.32 118.90 54,044 100% 180 0.1 145,818 4.7 0.16 1.29 0.00 7.71 1.29 118.84 54,020 100% 182 0.0 145,669 4.7 0.16 1.26 0.00 7.71 1.26 118.79 53,997 100% 184 0.0 145,523 4.7 0.16 1.24 0.00 7.71 1.24 118.74 53,974 100% 186 0.0 145,380 4.7 0.16 1.21 0.00 7.71 1.21 118.69 53,952 100% 188 0.0 145,239 4.7 0.16 1.19 0.00 7.70 1.19 118.64 53,930 100% 190 0.0 145,100 4.7 0.16 1.16 0.00 7.70 1.16 118.60 53,908 100% 192 0.0 144,964 4.7 0.16 1.14 0.00 7.70 1.14 118.55 53,886 100% 194 0.0 144,831 4.7 0.16 1.12 0.00 7.70 1.12 118.50 53,865 100% 196 0.0 144,700 4.7 0.16 1.10 0.00 7.70 1.10 118.46 53,845 100% 198 0.0 144,571 4.7 0.16 1.07 0.00 7.69 1.07 118.41 53,825 100% 200 0.0 144,445 4.6 0.16 1.05 0.00 7.69 1.05 118.37 53,805 100% 202 0.0 144,321 4.6 0.16 1.03 0.00 7.69 1.03 118.33 53,785 100% 204 0.0 144,199 4.6 0.16 1.01 0.00 7.69 1.01 118.29 53,766 100% 206 0.0 144,080 4.6 0.16 0.99 0.00 7.68 0.99 118.24 53,747 100% SB 08 SB 10-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 8 C o l o n M i n e P h a s e 1 H y d r o g r a p h 10 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _1__of _2__ Qp = 88.20 cfs Sediment Basin #8 Colon Tp = 27.23 minutes Phase 1 dT = Max of 2 minutes 25 - year Storm Event or 1.0%of increment to peak b =1.7 Number of Riser/Barrel Assemblies 1 Ks =10,091 Diameter of Barrel =12 (in) Height of Riser above barrel =3.5 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=4.5 (ft) elevation 277.50 2 Effective number of cells (2 is construction site #) Emergency Spillway =5.3 (ft) elevation 278.30 100%Minimum Settling Efficiency Total Height of Dam =6.0 (ft) elevation 279.00 5.2 ft Maximum Stage 278.22 msl elevation Length of Emergency Spillway =10 (ft)8.2 cfs Peak outflow Diameter of Riser =18 (in)8.2 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 273.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 1.2 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 4.6 140 0.1 0.00 0.00 0.00 0.00 0.00 6.31 2,869 N/A 6 10.2 694 0.2 0.00 0.00 0.00 0.00 0.00 12.40 5,638 N/A 8 17.5 1,912 0.4 0.16 0.16 0.00 0.16 0.16 19.04 8,653 100% 10 26.2 3,992 0.6 0.16 0.16 0.00 0.16 0.16 25.98 11,810 100% 12 35.9 7,122 0.8 0.16 0.16 0.00 0.16 0.16 33.18 15,083 100% 14 46.1 11,415 1.1 0.16 0.16 0.00 0.16 0.16 40.50 18,410 100% 16 56.1 16,923 1.3 0.16 0.16 0.00 0.16 0.16 47.84 21,743 100% 18 65.5 23,635 1.6 0.16 0.16 0.00 0.16 0.16 55.09 25,039 100% 20 73.7 31,473 1.9 0.16 0.16 0.00 0.16 0.16 62.17 28,261 100% 22 80.4 40,302 2.2 0.16 0.16 0.00 0.16 0.16 69.02 31,373 100% 24 85.2 49,933 2.5 0.16 0.16 0.00 0.16 0.16 75.56 34,347 100% 26 87.8 60,135 2.8 0.16 0.16 0.00 0.16 0.16 81.74 37,154 100% 28 88.0 70,647 3.1 0.16 0.16 0.00 0.16 0.16 87.50 39,771 100% 30 86.0 81,191 3.3 0.16 0.16 0.00 0.16 0.16 92.79 42,179 100% 32 81.7 91,488 3.6 0.16 0.16 0.00 0.16 0.16 97.60 44,362 100% 34 75.4 101,272 3.8 0.16 0.16 0.00 0.16 0.16 101.88 46,308 100% 36 68.6 110,303 4.0 0.16 0.16 0.00 0.16 0.16 105.62 48,010 100% 38 62.4 118,519 4.1 0.16 0.16 0.00 0.16 0.16 108.88 49,490 100% 40 56.7 125,986 4.3 0.16 0.16 0.00 0.16 0.16 111.73 50,784 100% 42 51.5 132,771 4.4 0.16 0.16 0.00 0.16 0.16 114.23 51,923 100% 44 46.8 138,937 4.5 0.16 0.31 0.00 7.59 0.31 116.44 52,928 100% 46 42.6 144,520 4.7 0.16 1.07 0.00 7.69 1.07 118.40 53,817 100% 48 38.7 149,502 4.7 0.16 2.01 0.00 7.78 2.01 120.10 54,593 100% 50 35.2 153,904 4.8 0.16 3.01 0.00 7.85 3.01 121.59 55,266 100% 52 32.0 157,764 4.9 0.16 3.97 0.00 7.91 3.97 122.87 55,848 100% 54 29.1 161,124 5.0 0.16 4.88 0.00 7.97 4.88 123.96 56,347 100% 56 26.4 164,025 5.0 0.16 5.71 0.00 8.01 5.71 124.90 56,774 100% 58 24.0 166,509 5.0 0.16 6.45 0.00 8.05 6.45 125.70 57,136 100% 60 21.8 168,617 5.1 0.16 7.09 0.00 8.08 7.09 126.37 57,440 100% 62 19.8 170,384 5.1 0.16 7.65 0.00 8.11 7.65 126.93 57,694 100% 64 18.0 171,847 5.1 0.16 8.11 0.00 8.13 8.11 127.39 57,903 100% 66 16.4 173,037 5.2 0.16 8.50 0.00 8.15 8.15 127.76 58,072 100% 68 14.9 174,025 5.2 0.16 8.82 0.00 8.17 8.17 128.07 58,212 100% 70 13.5 174,832 5.2 0.16 9.09 0.00 8.18 8.18 128.32 58,326 100% 72 12.3 175,476 5.2 0.16 9.30 0.00 8.19 8.19 128.52 58,416 100% 74 11.2 175,970 5.2 0.16 9.47 0.00 8.19 8.19 128.67 58,486 100% 76 10.2 176,328 5.2 0.16 9.59 0.00 8.20 8.20 128.78 58,536 100% 78 9.2 176,564 5.2 0.16 9.67 0.00 8.20 8.20 128.85 58,569 100% 80 8.4 176,688 5.2 0.16 9.71 0.00 8.21 8.21 128.89 58,586 100% 82 7.6 176,712 5.2 0.16 9.72 0.00 8.21 8.21 128.90 58,590 100% SB 08 SB 25-yr (P1) HG Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _2__of _2__ 84 6.9 176,643 5.2 0.16 9.70 0.00 8.20 8.20 128.88 58,580 100% 86 6.3 176,491 5.2 0.16 9.65 0.00 8.20 8.20 128.83 58,559 100% 88 5.7 176,263 5.2 0.16 9.57 0.00 8.20 8.20 128.76 58,527 100% 90 5.2 175,967 5.2 0.16 9.47 0.00 8.19 8.19 128.67 58,485 100% 92 4.7 175,609 5.2 0.16 9.35 0.00 8.19 8.19 128.56 58,435 100% 94 4.3 175,195 5.2 0.16 9.21 0.00 8.18 8.18 128.43 58,377 100% 96 3.9 174,729 5.2 0.16 9.06 0.00 8.18 8.18 128.28 58,311 100% 98 3.6 174,218 5.2 0.16 8.89 0.00 8.17 8.17 128.13 58,239 100% 100 3.2 173,664 5.2 0.16 8.70 0.00 8.16 8.16 127.95 58,161 100% 102 2.9 173,073 5.2 0.16 8.51 0.00 8.15 8.15 127.77 58,077 100% 104 2.7 172,447 5.2 0.16 8.31 0.00 8.14 8.14 127.57 57,988 100% 106 2.4 171,791 5.1 0.16 8.09 0.00 8.13 8.09 127.37 57,895 100% 108 2.2 171,110 5.1 0.16 7.88 0.00 8.12 7.88 127.15 57,798 100% 110 2.0 170,430 5.1 0.16 7.66 0.00 8.11 7.66 126.94 57,700 100% 112 1.8 169,751 5.1 0.16 7.45 0.00 8.10 7.45 126.73 57,603 100% 114 1.7 169,077 5.1 0.16 7.23 0.00 8.09 7.23 126.51 57,506 100% 116 1.5 168,407 5.1 0.16 7.03 0.00 8.08 7.03 126.30 57,410 100% 118 1.4 167,745 5.1 0.16 6.82 0.00 8.07 6.82 126.09 57,315 100% 120 1.2 167,090 5.1 0.16 6.62 0.00 8.06 6.62 125.88 57,220 100% 122 1.1 166,445 5.0 0.16 6.43 0.00 8.05 6.43 125.68 57,126 100% 124 1.0 165,810 5.0 0.16 6.24 0.00 8.04 6.24 125.48 57,034 100% 126 0.9 165,185 5.0 0.16 6.05 0.00 8.03 6.05 125.28 56,943 100% 128 0.8 164,571 5.0 0.16 5.87 0.00 8.02 5.87 125.08 56,854 100% 130 0.8 163,968 5.0 0.16 5.69 0.00 8.01 5.69 124.88 56,766 100% 132 0.7 163,378 5.0 0.16 5.52 0.00 8.00 5.52 124.69 56,679 100% 134 0.6 162,800 5.0 0.16 5.35 0.00 7.99 5.35 124.51 56,594 100% 136 0.6 162,234 5.0 0.16 5.19 0.00 7.98 5.19 124.32 56,511 100% 138 0.5 161,680 5.0 0.16 5.04 0.00 7.98 5.04 124.15 56,430 100% 140 0.5 161,139 5.0 0.16 4.89 0.00 7.97 4.89 123.97 56,350 100% 142 0.4 160,610 4.9 0.16 4.74 0.00 7.96 4.74 123.80 56,271 100% 144 0.4 160,093 4.9 0.16 4.60 0.00 7.95 4.60 123.63 56,195 100% 146 0.4 159,589 4.9 0.16 4.46 0.00 7.94 4.46 123.46 56,120 100% 148 0.3 159,097 4.9 0.16 4.33 0.00 7.93 4.33 123.30 56,047 100% 150 0.3 158,617 4.9 0.16 4.20 0.00 7.93 4.20 123.15 55,975 100% 152 0.3 158,148 4.9 0.16 4.08 0.00 7.92 4.08 122.99 55,905 100% 154 0.2 157,692 4.9 0.16 3.96 0.00 7.91 3.96 122.84 55,837 100% 156 0.2 157,247 4.9 0.16 3.84 0.00 7.90 3.84 122.70 55,770 100% 158 0.2 156,813 4.9 0.16 3.73 0.00 7.90 3.73 122.55 55,705 100% 160 0.2 156,389 4.9 0.16 3.62 0.00 7.89 3.62 122.41 55,642 100% 162 0.2 155,977 4.9 0.16 3.52 0.00 7.88 3.52 122.28 55,580 100% 164 0.2 155,575 4.9 0.16 3.42 0.00 7.88 3.42 122.14 55,519 100% 166 0.1 155,184 4.8 0.16 3.32 0.00 7.87 3.32 122.01 55,460 100% 168 0.1 154,802 4.8 0.16 3.22 0.00 7.86 3.22 121.89 55,403 100% 170 0.1 154,431 4.8 0.16 3.13 0.00 7.86 3.13 121.76 55,346 100% 172 0.1 154,068 4.8 0.16 3.05 0.00 7.85 3.05 121.64 55,291 100% 174 0.1 153,715 4.8 0.16 2.96 0.00 7.85 2.96 121.52 55,238 100% 176 0.1 153,371 4.8 0.16 2.88 0.00 7.84 2.88 121.41 55,186 100% 178 0.1 153,036 4.8 0.16 2.80 0.00 7.84 2.80 121.30 55,135 100% 180 0.1 152,709 4.8 0.16 2.72 0.00 7.83 2.72 121.19 55,085 100% 182 0.1 152,391 4.8 0.16 2.65 0.00 7.83 2.65 121.08 55,036 100% 184 0.1 152,081 4.8 0.16 2.58 0.00 7.82 2.58 120.98 54,989 100% 186 0.1 151,778 4.8 0.16 2.51 0.00 7.81 2.51 120.87 54,943 100% 188 0.0 151,483 4.8 0.16 2.44 0.00 7.81 2.44 120.77 54,897 100% 190 0.0 151,196 4.8 0.16 2.38 0.00 7.81 2.38 120.68 54,853 100% 192 0.0 150,916 4.8 0.16 2.32 0.00 7.80 2.32 120.58 54,810 100% 194 0.0 150,642 4.8 0.16 2.26 0.00 7.80 2.26 120.49 54,768 100% 196 0.0 150,376 4.8 0.16 2.20 0.00 7.79 2.20 120.40 54,727 100% 198 0.0 150,116 4.8 0.16 2.14 0.00 7.79 2.14 120.31 54,687 100% 200 0.0 149,862 4.7 0.16 2.09 0.00 7.78 2.09 120.23 54,648 100% 202 0.0 149,614 4.7 0.16 2.04 0.00 7.78 2.04 120.14 54,610 100% 204 0.0 149,373 4.7 0.16 1.99 0.00 7.77 1.99 120.06 54,573 100% 206 0.0 149,137 4.7 0.16 1.94 0.00 7.77 1.94 119.98 54,537 100% SB 08 SB 25-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 8 C o l o n M i n e P h a s e 1 H y d r o g r a p h 25 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/5/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #9 Sheet: 1 Of: 4 Objective Design the sediment basin to contain the 25-year storm and pass the 100-year storm without over topping the berm. References 1. NC Erosion and Sediment Control Planning and Design Manual. 2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E. 3. NOAA Atlas 14, Volume 2, Version 3 4. VA Erosion and Sediment Control Handbook Given Phase 1 2 2 2 Storm Event (yrs) =10 10 25 100 Total Drainage Area A (ac) =62.8 85.9 85.9 85.9 Disturbed Area (ac) =46.7 65.9 65.9 65.9 Curve Number CN =72 72 72 72 Hydrographs Rainfall Depth P (in) =5.28 5.28 6.28 7.88 (24-hr rainfall)Ref 3 Peak Flow Qp (cfs) =145.70 199.50 268.73 384.06 Hydrographs Design Criteria Required sediment storage 1,800 cf / acre of drainage Required sediment storage 154,620 cf (based on largest Phase) Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs) Required Surface Area (SF)86,783 of the 10-yr storm peak flow (based on the largest Phase) Determine Shape of Basin: Measure the area of the Basin using AutoCADD. Calculate Volume of the Basin using Truncated Pyramid Method. Shape factor used in hydrographs basin depth may be gretaer than indicated below Cumulative Cumulative Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy) 262 0 88,670 0 0 0 263 1 92,409 90,533 90,533 3,353 264 2 96,226 94,311 184,844 6,846 265 3 100,091 98,152 282,996 10,481 266 4 103,992 102,035 385,032 14,260 267 5 107,938 105,959 490,990 18,185 268 6 111,933 109,929 600,920 22,256 Design Sediment Depth (ft) =3 Sediment Storage (cf) =282,996 Required Sediment Storage Achieved Design Surface Area Depth (ft) =3 Surface Area (sf) =100,091 Required Surface Area Achieved SB 09 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/5/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #9 Sheet: 2 Of: 4 Select Skimmer A. R. Jarrett Method D = [Q / (2,310 * (H0.5)]0.5 D =Diameter of Orifice (inches) Q = Dewater Rate (cf/day) H = Head on orifice, varies based on skimmer size (ft) Skimmer Sizes Head (Inches)(ft) 1.5 0.125 2 0.167 2.5 0.167 3 0.250 4 0.333 5 0.333 6 0.417 8 0.500 Volume to Dewater (cf) =282,996 Number of Skimmers 2 Days to Drain =5 assumed Q each (cf/day) =28,300 0.33 cfs Selected Skimmer Size (inches) =5 Head on Skimmer (feet) =0.333 Diameter of Orifice (inches) =4.6 Route the flow through the Basin Riser is not perforated, but skimmer is attached. S =(1000/CN) - 10 Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4 TP (min) = 60.5(Q*)A/QP/1.39 Phase 1 2 2 2 Storm Event (yrs) =10 10 25 100 S =3.89 3.89 3.89 3.89 Runoff Depth Q* (inches) =2.42 2.42 3.22 4.59 Time to Peak Tp (min) =45.32 45.27 44.85 44.68 Determine Pond Storage Elevation (ZWater): Pick one point near max expected water surface and the other at the mid depth. Z1 (ft) = 3 S1 (cf)= 282,996 Z2 (ft) = 6 S2 (cf) = 600,920 b = ln(S2/S1)/ln(Z2/Z1) =1.1 Ref 2, III-8 KS = S2/Z2 b =85,791 SB 09 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/5/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #9 Sheet: 3 Of: 4 Determine Settling Velocity Conversion Factor = 3.281 ft/sec per m/sec Gravitational Acceleration, g (m/s2) =9.81 Specific Gravity of soil (ss)=2.6 Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11 Diameter of the Design Particle d15 =40.00E-06 m Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec Route the Storm through the Basin using the Hydrograph Model Set Height of Emergency Spillway at (ft) =7.50 Set Top of Dam at (ft) =8.50 Emergency Spillway QE (cfs) = 100-Yr Storm QE (cfs) = 55.2 Cross Section =Trapezoid Channel Side Slope (z) =5 (enter X for X:1) n =0.03 Grass Lined Vp (ft/sec) =5.0 Permissible Velocity for lining Ref 2, II-7 Allowable Shear Stress (psf) =2.0 Allowable Shear Stress for lining Bottom Width, b (ft) =50 Calculate Required Depth of Spillway: Normal-Depth Procedure AR2/3=Qn/1.49s0.5 Q=VA Zreq=Qn/1.49s0.5 Area (A)= bd+z(d^2) Zav=AR2/3 R=Area/(b+2d((z^2)+1)^.5) Avg Shear Stress(T) = Kb*d*s*unit weight of water Channel Slope Depth, d A V T ft/ft (ft) (sf)Zreq R Z avail (ft/sec) (psf) 0.01 0.40 20.94 11.12 0.39 11.12 2.6 0.3 0.02 0.33 16.91 7.86 0.32 7.86 3.3 0.4 Construct the channel to be :50 ft, Bottom Width (measured at top of lining) 1.0 ft, depth (measured at top of lining) 1%slope Anti-Seep Collar: Anti-Seep Collar Size =2 * Barrel Dia Anti-Seep Collar Size (ft) =7 Use Anti-Seep Collar Size (ft) =7 x 7 See Hydrograph SB 09 SB Dims HDR Computation I Job No. 0453925-237673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/5/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Sediment Basin #9 Sheet: 4 Of: 4 Minimum Concrete Base for Riser: Diameter of Riser (in) = 72 From Hydrograph Avg Density of Concrete (lbs/cf) =87.6 Density of Water (lbs/cf) =62.4 Riser Displacement (cf) = 189.44 Pi * (DR/24)2 * Total Ht of Riser Convert cf to cy =27-1 Min Concrete Needed (cy) =5.00 Width & Length (ft) =7 Thickness (ft) =2.8 Anti-Vortex Device: Diameter of Riser (in) = 72 From Hydrograph Cylinder Diameter (in) = 102 Ref 4, III-104, Table 3.14-D Cylinder Thickness (gage) = 14 Cylinder Height (in) = 36 Determine Tailwater conditions to size outlet apron Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7 A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3 Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5) n =0.069 6-inch diameter Rip Rap, Lined Channel Vp (ft/sec) =9 Permissible Velocity for lining Side Slope (z) =5 enter X for X:1 s (ft/ft) =0.02 Outlet Slope (estimated) Bottom Width (ft) = 10.5 6 * Barrel Diameter QB (cfs) =85.1 Peak Flow out of the barrel 25-yr Hydrograph Q (cfs)Zreq Flow Depth d (ft)A (sf) R (ft)Zav V (ft/sec) 85.1 27.88 1.50 27.0 1.05 27.88 3.1 Flow Depth = Tailwater, d (ft) =1.50 0.5* Barrel Diameter (ft) =1.75 Ref 1, 8.06.3 Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions. Barrel Diameter (ft) Entrance (ft) Length (ft) Outlet Width (ft) Median Rip Rap Size d50 Selected Rip Rap Size (in) 3.5 10.5 22 26 0.7 Class B Conclusion The basin can contain the 25-yr storm and pass the 100-yr storm without overtopping the berm. SB 09 SB Dims HDR Computation I Job No. 0453925-23673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/5/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet 1 Of 2 Diameter of Riser (in) = 72 Circumference of Riser (in) =226.2 Height of Riser from bottom of barrel (in) =80 From Hydrograph Vertical spacing between holes (in) =0 center to center Water Stage increment (ft)0.05 Orifice Equation Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11 Q =cfs, discharge Cd =0.6 coefficient of discharge A = sf, cross sectional area g =32.2 ft/sec2, gravity h =ft, driving head measured from the center of the pipe Skimmer Row 1 2 3 4 5 2 # of skimmers Holes per row 0 0 0 0 0 Hole Diameter (in)0.75 0.75 0.75 0.75 0.75 Spacing edge to edge (in) Inlet Area (sf)0.000 0.000 0.000 0.000 0.000 Hole Stage (in)0.50 0.50 0.50 0.50 0.50 Hole Stage (ft)0.04 0.04 0.04 0.04 0.04 Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.66 0.66 0.39 0.00 0.00 0.00 0.66 0.66 0.44 0.00 0.00 0.00 0.66 0.66 0.49 0.00 0.00 0.00 0.66 0.66 0.54 0.00 0.00 0.00 0.66 0.66 0.59 0.00 0.00 0.00 0.66 0.66 0.64 0.00 0.00 0.00 0.66 0.66 0.69 0.00 0.00 0.00 0.66 0.66 0.74 0.00 0.00 0.00 0.66 0.66 0.79 0.00 0.00 0.00 0.66 0.66 0.84 0.00 0.00 0.00 0.66 0.66 0.89 0.00 0.00 0.00 0.66 0.66 0.94 0.00 0.00 0.00 0.66 0.66 0.99 0.00 0.00 0.00 0.66 0.66 1.04 0.00 0.00 0.00 0.66 0.66 1.09 0.00 0.00 0.00 0.66 0.66 1.14 0.00 0.00 0.00 0.66 0.66 1.19 0.00 0.00 0.00 0.66 0.66 1.24 0.00 0.00 0.00 0.66 0.66 1.29 0.00 0.00 0.00 0.66 0.66 1.34 0.00 0.00 0.00 0.66 0.66 1.39 0.00 0.00 0.00 0.66 0.66 1.44 0.00 0.00 0.00 0.66 0.66 1.49 0.00 0.00 0.00 0.66 0.66 1.54 0.00 0.00 0.00 0.66 0.66 1.59 0.00 0.00 0.00 0.66 0.66 Perforations SB 09 Pipe Perf-Skimmer HDR Computation I Job No. 0453925-23673-018 l Project: Charah Colon Mine Computed: PAW Date: 3/5/15 Subject: Permit Application Checked: MDP Date: 3/6/15 Task: Riser Pipe Perforations/Skimmer Flow Sheet 2 Of 2 1.64 0.00 0.00 0.00 0.66 0.66 1.69 0.00 0.00 0.00 0.66 0.66 1.74 0.00 0.00 0.00 0.66 0.66 1.79 0.00 0.00 0.00 0.66 0.66 1.84 0.00 0.00 0.00 0.66 0.66 1.89 0.00 0.00 0.00 0.66 0.66 1.94 0.00 0.00 0.00 0.66 0.66 1.99 0.00 0.00 0.00 0.66 0.66 2.04 0.00 0.00 0.00 0.66 0.66 2.09 0.00 0.00 0.00 0.66 0.66 2.14 0.00 0.00 0.00 0.66 0.66 2.19 0.00 0.00 0.00 0.66 0.66 2.24 0.00 0.00 0.00 0.66 0.66 2.29 0.00 0.00 0.00 0.66 0.66 2.34 0.00 0.00 0.00 0.66 0.66 2.39 0.00 0.00 0.00 0.66 0.66 2.44 0.00 0.00 0.00 0.66 0.66 2.49 0.00 0.00 0.00 0.66 0.66 2.54 0.00 0.00 0.00 0.66 0.66 2.59 0.00 0.00 0.00 0.66 0.66 2.64 0.00 0.00 0.00 0.66 0.66 2.69 0.00 0.00 0.00 0.66 0.66 2.74 0.00 0.00 0.00 0.66 0.66 2.79 0.00 0.00 0.00 0.66 0.66 2.84 0.00 0.00 0.00 0.66 0.66 2.89 0.00 0.00 0.00 0.66 0.66 2.94 0.00 0.00 0.00 0.66 0.66 2.99 0.00 0.00 0.00 0.66 0.66 3.04 0.00 0.00 0.00 0.66 0.66 3.09 0.00 0.00 0.00 0.66 0.66 3.14 0.00 0.00 0.00 0.66 0.66 3.19 0.00 0.00 0.00 0.66 0.66 3.24 0.00 0.00 0.00 0.66 0.66 3.29 0.00 0.00 0.00 0.66 0.66 3.34 0.00 0.00 0.00 0.66 0.66 3.39 0.00 0.00 0.00 0.66 0.66 3.44 0.00 0.00 0.00 0.66 0.66 3.49 0.00 0.00 0.00 0.66 0.66 3.54 0.00 0.00 0.00 0.66 0.66 3.59 0.00 0.00 0.00 0.66 0.66 3.64 0.00 0.00 0.00 0.66 0.66 3.69 0.00 0.00 0.00 0.66 0.66 3.74 0.00 0.00 0.00 0.66 0.66 3.79 0.00 0.00 0.00 0.66 0.66 3.84 0.00 0.00 0.00 0.66 0.66 3.89 0.00 0.00 0.00 0.66 0.66 3.94 0.00 0.00 0.00 0.66 0.66 3.99 0.00 0.00 0.00 0.66 0.66 SB 09 Pipe Perf-Skimmer Computed By: PAW Date:3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _1___of __2__ Qp = 145.70 cfs Sediment Basin #9 Colon Tp = 45.32 minutes Phase 1 dT = Max of 2 minutes 10 - year Storm Event or 1.0%of increment to peak b =1.1 Number of Riser/Barrel Assemblies 2 Ks =85,791 Diameter of Barrel =42 (in) Height of Riser above barrel =3.2 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=6.7 (ft) elevation 268.70 2 Effective number of cells (2 is construction site #) Emergency Spillway =7.5 (ft) elevation 269.50 100%Minimum Settling Efficiency Total Height of Dam =8.5 (ft) elevation 270.50 5.4 ft Maximum Stage 267.39 msl elevation Length of Emergency Spillway =50 (ft)1.3 cfs Peak outflow Diameter of Riser =72 (in)1.3 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 262.0 0.0 cfs Peak Weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 0.7 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 2.8 84 0.0 0.00 0.00 0.00 0.00 0.00 118.17 53,715 N/A 6 6.2 418 0.0 0.00 0.00 0.00 0.00 0.00 134.27 61,030 N/A 8 10.9 1,163 0.0 0.00 0.00 0.00 0.00 0.00 145.65 66,206 N/A 10 16.8 2,473 0.0 0.00 0.00 0.00 0.00 0.00 154.66 70,300 N/A 12 23.8 4,491 0.1 0.00 0.00 0.00 0.00 0.00 162.17 73,715 N/A 14 31.7 7,345 0.1 0.00 0.00 0.00 0.00 0.00 168.64 76,656 N/A 16 40.4 11,149 0.2 0.00 0.00 0.00 0.00 0.00 174.33 79,242 N/A 18 49.7 15,998 0.2 0.00 0.00 0.00 0.00 0.00 179.41 81,550 N/A 20 59.5 21,965 0.3 0.00 0.00 0.00 0.00 0.00 183.99 83,632 N/A 22 69.5 29,104 0.4 0.66 0.66 0.00 0.66 1.31 188.16 85,525 100% 24 79.6 37,290 0.5 0.66 0.66 0.00 0.66 1.31 191.90 87,227 100% 26 89.6 46,686 0.6 0.66 0.66 0.00 0.66 1.31 195.36 88,800 100% 28 99.2 57,277 0.7 0.66 0.66 0.00 0.66 1.31 198.56 90,256 100% 30 108.3 69,025 0.8 0.66 0.66 0.00 0.66 1.31 201.53 91,605 100% 32 116.8 81,869 1.0 0.66 0.66 0.00 0.66 1.31 204.28 92,856 100% 34 124.4 95,727 1.1 0.66 0.66 0.00 0.66 1.31 206.84 94,018 100% 36 131.0 110,498 1.3 0.66 0.66 0.00 0.66 1.31 209.21 95,097 100% 38 136.5 126,064 1.4 0.66 0.66 0.00 0.66 1.31 211.42 96,099 100% 40 140.8 142,289 1.6 0.66 0.66 0.00 0.66 1.31 213.46 97,029 100% 42 143.8 159,029 1.8 0.66 0.66 0.00 0.66 1.31 215.36 97,891 100% 44 145.4 176,125 1.9 0.66 0.66 0.00 0.66 1.31 217.12 98,689 100% 46 145.6 193,415 2.1 0.66 0.66 0.00 0.66 1.31 218.74 99,426 100% 48 144.4 210,732 2.3 0.66 0.66 0.00 0.66 1.31 220.23 100,107 100% 50 141.9 227,909 2.5 0.66 0.66 0.00 0.66 1.31 221.61 100,732 100% 52 138.0 244,779 2.6 0.66 0.66 0.00 0.66 1.31 222.87 101,306 100% 54 132.9 261,185 2.8 0.66 0.66 0.00 0.66 1.31 224.03 101,830 100% 56 126.6 276,976 2.9 0.66 0.66 0.00 0.66 1.31 225.07 102,306 100% 58 119.8 292,013 3.1 0.66 0.66 0.00 0.66 1.31 226.02 102,737 100% 60 113.1 306,229 3.2 0.66 0.66 0.00 0.66 1.31 226.88 103,126 100% 62 106.8 319,644 3.4 0.66 0.66 0.00 0.66 1.31 227.65 103,479 100% 64 100.8 332,302 3.5 0.66 0.66 0.00 0.66 1.31 228.36 103,799 100% 66 95.2 344,246 3.6 0.66 0.66 0.00 0.66 1.31 229.00 104,091 100% 68 89.9 355,514 3.7 0.66 0.66 0.00 0.66 1.31 229.59 104,357 100% 70 84.9 366,146 3.8 0.66 0.66 0.00 0.66 1.31 230.13 104,602 100% 72 80.2 376,176 3.9 0.66 0.66 0.00 0.66 1.31 230.62 104,827 100% 74 75.7 385,638 4.0 0.66 0.66 0.00 0.66 1.31 231.08 105,035 100% 76 71.5 394,564 4.1 0.66 0.66 0.00 0.66 1.31 231.50 105,226 100% 78 67.5 402,984 4.2 0.66 0.66 0.00 0.66 1.31 231.89 105,403 100% 80 63.7 410,925 4.2 0.66 0.66 0.00 0.66 1.31 232.25 105,566 100% 82 60.2 418,414 4.3 0.66 0.66 0.00 0.66 1.31 232.58 105,718 100% SB 09 SB 10-yr (P1) HG Computed By: PAW Date: 12/31/14 Checked By: EAW Date: 1/2/15 Sheet: _2___of __2__ 84 56.8 425,478 4.4 0.66 0.66 0.00 0.66 1.31 232.89 105,859 100% 86 53.6 432,138 4.4 0.66 0.66 0.00 0.66 1.31 233.18 105,990 100% 88 50.7 438,419 4.5 0.66 0.66 0.00 0.66 1.31 233.45 106,112 100% 90 47.8 444,340 4.5 0.66 0.66 0.00 0.66 1.31 233.69 106,225 100% 92 45.2 449,923 4.6 0.66 0.66 0.00 0.66 1.31 233.93 106,330 100% 94 42.6 455,185 4.6 0.66 0.66 0.00 0.66 1.31 234.14 106,429 100% 96 40.3 460,146 4.7 0.66 0.66 0.00 0.66 1.31 234.34 106,520 100% 98 38.0 464,821 4.7 0.66 0.66 0.00 0.66 1.31 234.53 106,606 100% 100 35.9 469,226 4.8 0.66 0.66 0.00 0.66 1.31 234.71 106,686 100% 102 33.9 473,378 4.8 0.66 0.66 0.00 0.66 1.31 234.87 106,761 100% 104 32.0 477,289 4.9 0.66 0.66 0.00 0.66 1.31 235.03 106,831 100% 106 30.2 480,973 4.9 0.66 0.66 0.00 0.66 1.31 235.17 106,896 100% 108 28.5 484,443 4.9 0.66 0.66 0.00 0.66 1.31 235.31 106,957 100% 110 26.9 487,710 5.0 0.66 0.66 0.00 0.66 1.31 235.43 107,014 100% 112 25.4 490,787 5.0 0.66 0.66 0.00 0.66 1.31 235.55 107,068 100% 114 24.0 493,684 5.0 0.66 0.66 0.00 0.66 1.31 235.66 107,118 100% 116 22.7 496,410 5.0 0.66 0.66 0.00 0.66 1.31 235.76 107,165 100% 118 21.4 498,975 5.1 0.66 0.66 0.00 0.66 1.31 235.86 107,209 100% 120 20.2 501,389 5.1 0.66 0.66 0.00 0.66 1.31 235.95 107,250 100% 122 19.1 503,659 5.1 0.66 0.66 0.00 0.66 1.31 236.03 107,289 100% 124 18.0 505,794 5.1 0.66 0.66 0.00 0.66 1.31 236.11 107,325 100% 126 17.0 507,801 5.1 0.66 0.66 0.00 0.66 1.31 236.19 107,358 100% 128 16.1 509,688 5.2 0.66 0.66 0.00 0.66 1.31 236.26 107,390 100% 130 15.2 511,460 5.2 0.66 0.66 0.00 0.66 1.31 236.32 107,420 100% 132 14.3 513,125 5.2 0.66 0.66 0.00 0.66 1.31 236.38 107,448 100% 134 13.5 514,688 5.2 0.66 0.66 0.00 0.66 1.31 236.44 107,474 100% 136 12.8 516,156 5.2 0.66 0.66 0.00 0.66 1.31 236.50 107,498 100% 138 12.1 517,532 5.2 0.66 0.66 0.00 0.66 1.31 236.55 107,521 100% 140 11.4 518,824 5.2 0.66 0.66 0.00 0.66 1.31 236.59 107,542 100% 142 10.8 520,034 5.3 0.66 0.66 0.00 0.66 1.31 236.64 107,562 100% 144 10.2 521,168 5.3 0.66 0.66 0.00 0.66 1.31 236.68 107,580 100% 146 9.6 522,231 5.3 0.66 0.66 0.00 0.66 1.31 236.72 107,598 100% 148 9.1 523,225 5.3 0.66 0.66 0.00 0.66 1.31 236.75 107,614 100% 150 8.6 524,155 5.3 0.66 0.66 0.00 0.66 1.31 236.78 107,629 100% 152 8.1 525,024 5.3 0.66 0.66 0.00 0.66 1.31 236.82 107,644 100% 154 7.6 525,836 5.3 0.66 0.66 0.00 0.66 1.31 236.84 107,657 100% 156 7.2 526,595 5.3 0.66 0.66 0.00 0.66 1.31 236.87 107,669 100% 158 6.8 527,302 5.3 0.66 0.66 0.00 0.66 1.31 236.90 107,681 100% 160 6.4 527,960 5.3 0.66 0.66 0.00 0.66 1.31 236.92 107,691 100% 162 6.1 528,574 5.3 0.66 0.66 0.00 0.66 1.31 236.94 107,701 100% 164 5.7 529,144 5.3 0.66 0.66 0.00 0.66 1.31 236.96 107,711 100% 166 5.4 529,674 5.3 0.66 0.66 0.00 0.66 1.31 236.98 107,719 100% 168 5.1 530,166 5.3 0.66 0.66 0.00 0.66 1.31 237.00 107,727 100% 170 4.8 530,621 5.4 0.66 0.66 0.00 0.66 1.31 237.02 107,734 100% 172 4.6 531,042 5.4 0.66 0.66 0.00 0.66 1.31 237.03 107,741 100% 174 4.3 531,431 5.4 0.66 0.66 0.00 0.66 1.31 237.04 107,747 100% 176 4.1 531,790 5.4 0.66 0.66 0.00 0.66 1.31 237.06 107,753 100% 178 3.8 532,119 5.4 0.66 0.66 0.00 0.66 1.31 237.07 107,759 100% 180 3.6 532,422 5.4 0.66 0.66 0.00 0.66 1.31 237.08 107,763 100% 182 3.4 532,699 5.4 0.66 0.66 0.00 0.66 1.31 237.09 107,768 100% 184 3.2 532,952 5.4 0.66 0.66 0.00 0.66 1.31 237.10 107,772 100% 186 3.0 533,182 5.4 0.66 0.66 0.00 0.66 1.31 237.11 107,776 100% 188 2.9 533,390 5.4 0.66 0.66 0.00 0.66 1.31 237.11 107,779 100% 190 2.7 533,578 5.4 0.66 0.66 0.00 0.66 1.31 237.12 107,782 100% 192 2.6 533,747 5.4 0.66 0.66 0.00 0.66 1.31 237.13 107,785 100% 194 2.4 533,897 5.4 0.66 0.66 0.00 0.66 1.31 237.13 107,787 100% 196 2.3 534,030 5.4 0.66 0.66 0.00 0.66 1.31 237.14 107,789 100% 198 2.2 534,148 5.4 0.66 0.66 0.00 0.66 1.31 237.14 107,791 100% 200 2.0 534,249 5.4 0.66 0.66 0.00 0.66 1.31 237.14 107,793 100% 202 1.9 534,337 5.4 0.66 0.66 0.00 0.66 1.31 237.15 107,794 100% 204 1.8 534,411 5.4 0.66 0.66 0.00 0.66 1.31 237.15 107,795 100% 206 1.7 534,471 5.4 0.66 0.66 0.00 0.66 1.31 237.15 107,796 100% SB 09 SB 10-yr (P1) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 9 C o l o n M i n e P h a s e 1 H y d r o g r a p h 10 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . Computed By: PAW Date: 12/31/14 Checked By: EAW Date: 1/2/15 Sheet: _1___of _2_ Qp = 199.50 cfs Sediment Basin # 9 Colon Tp =45.27 minutes Phase 2 dT = Max of 2 minutes 10 - year Storm Event or 1.0%of increment to peak b =1.1 Number of Riser/Barrel Assemblies 2 Ks =85,791 Diameter of Barrel =42 (in) Height of Riser above barrel =3.2 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=6.7 (ft) elevation 268.70 2 Effective number of cells (2 is construction site #) Emergency Spillway =7.5 (ft) elevation 269.50 100%Minimum Settling Efficiency Total Height of Dam =8.5 (ft) elevation 270.50 6.9 ft Maximum Stage 268.92 msl elevation Length of Emergency Spillway =50 (ft)14.3 cfs Peak outflow Diameter of Riser =72 (in)14.3 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 262.0 0.0 cfs peak weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACIT Y [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 1.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 3.8 115 0.0 0.00 0.00 0.00 0.00 0.00 121.18 55,083 N/A 6 8.5 573 0.0 0.00 0.00 0.00 0.00 0.00 137.69 62,584 N/A 8 15.0 1,596 0.0 0.00 0.00 0.00 0.00 0.00 149.36 67,893 N/A 10 23.1 3,394 0.1 0.00 0.00 0.00 0.00 0.00 158.60 72,091 N/A 12 32.6 6,162 0.1 0.00 0.00 0.00 0.00 0.00 166.30 75,592 N/A 14 43.5 10,078 0.1 0.00 0.00 0.00 0.00 0.00 172.94 78,608 N/A 16 55.4 15,296 0.2 0.00 0.00 0.00 0.00 0.00 178.77 81,260 N/A 18 68.2 21,947 0.3 0.00 0.00 0.00 0.00 0.00 183.98 83,627 N/A 20 81.6 30,132 0.4 0.66 0.66 0.00 0.66 1.31 188.68 85,761 100% 22 95.4 39,768 0.5 0.66 0.66 0.00 0.66 1.31 192.88 87,675 100% 24 109.2 51,053 0.6 0.66 0.66 0.00 0.66 1.31 196.75 89,434 100% 26 122.8 63,997 0.8 0.66 0.66 0.00 0.66 1.31 200.32 91,055 100% 28 136.0 78,579 0.9 0.66 0.66 0.00 0.66 1.31 203.62 92,554 100% 30 148.5 94,745 1.1 0.66 0.66 0.00 0.66 1.31 206.67 93,941 100% 32 160.1 112,413 1.3 0.66 0.66 0.00 0.66 1.31 209.50 95,227 100% 34 170.5 131,468 1.5 0.66 0.66 0.00 0.66 1.31 212.12 96,420 100% 36 179.6 151,772 1.7 0.66 0.66 0.00 0.66 1.31 214.56 97,528 100% 38 187.1 173,161 1.9 0.66 0.66 0.00 0.66 1.31 216.82 98,556 100% 40 192.9 195,452 2.1 0.66 0.66 0.00 0.66 1.31 218.92 99,509 100% 42 196.9 218,443 2.4 0.66 0.66 0.00 0.66 1.31 220.86 100,393 100% 44 199.1 241,919 2.6 0.66 0.66 0.00 0.66 1.31 222.66 101,211 100% 46 199.4 265,655 2.8 0.66 0.66 0.00 0.66 1.31 224.33 101,967 100% 48 197.7 289,422 3.1 0.66 0.66 0.00 0.66 1.31 225.86 102,665 100% 50 194.2 312,991 3.3 0.66 0.66 0.00 0.66 1.31 227.27 103,306 100% 52 188.8 336,135 3.5 0.66 0.66 0.00 0.66 1.31 228.57 103,893 100% 54 181.8 358,637 3.7 0.66 0.66 0.00 0.66 1.31 229.75 104,430 100% 56 173.1 380,290 3.9 0.66 0.66 0.00 0.66 1.31 230.82 104,918 100% 58 163.7 400,906 4.1 0.66 0.66 0.00 0.66 1.31 231.79 105,359 100% 60 154.6 420,396 4.3 0.66 0.66 0.00 0.66 1.31 232.67 105,758 100% 62 146.0 438,789 4.5 0.66 0.66 0.00 0.66 1.31 233.46 106,119 100% 64 137.8 456,147 4.7 0.66 0.66 0.00 0.66 1.31 234.18 106,447 100% 66 130.1 472,527 4.8 0.66 0.66 0.00 0.66 1.31 234.84 106,746 100% 68 122.9 487,984 5.0 0.66 0.66 0.00 0.66 1.31 235.44 107,019 100% 70 116.0 502,570 5.1 0.66 0.66 0.00 0.66 1.31 235.99 107,270 100% 72 109.5 516,332 5.2 0.66 0.66 0.00 0.66 1.31 236.50 107,501 100% 74 103.4 529,318 5.3 0.66 0.66 0.00 0.66 1.31 236.97 107,713 100% 76 97.6 541,571 5.5 0.66 0.66 0.00 0.66 1.31 237.40 107,910 100% 78 92.2 553,131 5.6 0.66 0.66 0.00 0.66 1.31 237.80 108,091 100% 80 87.0 564,036 5.7 0.66 0.66 0.00 0.66 1.31 238.17 108,259 100% 82 82.2 574,325 5.8 0.66 0.66 0.00 0.66 1.31 238.51 108,415 100% 84 77.6 584,030 5.8 0.66 0.66 0.00 0.66 1.31 238.83 108,559 100% SB 09 SB 10-yr (P2) HG Computed By: PAW Date: 12/31/14 Checked By: EAW Date: 1/2/15 Sheet: _2___of _2_ 86 73.3 593,185 5.9 0.66 0.66 0.00 0.66 1.31 239.13 108,693 100% 88 69.2 601,820 6.0 0.66 0.66 0.00 0.66 1.31 239.40 108,818 100% 90 65.3 609,964 6.1 0.66 0.66 0.00 0.66 1.31 239.66 108,935 100% 92 61.7 617,645 6.2 0.66 0.66 0.00 0.66 1.31 239.90 109,043 100% 94 58.2 624,889 6.2 0.66 0.66 0.00 0.66 1.31 240.12 109,144 100% 96 55.0 631,720 6.3 0.66 0.66 0.00 0.66 1.31 240.33 109,239 100% 98 51.9 638,160 6.3 0.66 0.66 0.00 0.66 1.31 240.52 109,327 100% 100 49.0 644,232 6.4 0.66 0.66 0.00 0.66 1.31 240.70 109,409 100% 102 46.3 649,957 6.4 0.66 0.66 0.00 0.66 1.31 240.87 109,486 100% 104 43.7 655,353 6.5 0.66 0.66 0.00 0.66 1.31 241.03 109,558 100% 106 41.3 660,440 6.5 0.66 0.66 0.00 0.66 1.31 241.18 109,626 100% 108 39.0 665,233 6.6 0.66 0.66 0.00 0.66 1.31 241.32 109,689 100% 110 36.8 669,751 6.6 0.66 0.66 0.00 0.66 1.31 241.45 109,748 100% 112 34.7 674,007 6.7 0.66 0.66 0.00 0.66 1.31 241.57 109,803 100% 114 32.8 678,017 6.7 0.66 0.68 0.00 102.96 1.36 241.68 109,855 100% 116 31.0 681,789 6.7 0.66 1.14 0.00 103.31 2.28 241.79 109,903 100% 118 29.2 685,230 6.8 0.66 1.83 0.00 103.64 3.65 241.88 109,947 100% 120 27.6 688,300 6.8 0.66 2.58 0.00 103.92 5.17 241.97 109,987 100% 122 26.1 690,992 6.8 0.66 3.34 0.00 104.18 6.69 242.05 110,021 100% 124 24.6 693,317 6.8 0.66 4.06 0.00 104.39 8.13 242.11 110,050 100% 126 23.2 695,294 6.9 0.66 4.72 0.00 104.58 9.44 242.16 110,075 100% 128 21.9 696,949 6.9 0.66 5.30 0.00 104.73 10.60 242.21 110,096 100% 130 20.7 698,310 6.9 0.66 5.79 0.00 104.86 11.58 242.25 110,113 100% 132 19.6 699,405 6.9 0.66 6.20 0.00 104.96 12.40 242.28 110,127 100% 134 18.5 700,264 6.9 0.66 6.53 0.00 105.04 13.06 242.30 110,137 100% 136 17.4 700,912 6.9 0.66 6.78 0.00 105.10 13.56 242.32 110,145 100% 138 16.5 701,377 6.9 0.66 6.96 0.00 105.14 13.93 242.33 110,151 100% 140 15.5 701,681 6.9 0.66 7.08 0.00 105.17 14.17 242.34 110,155 100% 142 14.7 701,846 6.9 0.66 7.15 0.00 105.18 14.30 242.35 110,157 100% 144 13.9 701,891 6.9 0.66 7.17 0.00 105.19 14.34 242.35 110,158 100% 146 13.1 701,833 6.9 0.66 7.14 0.00 105.18 14.29 242.35 110,157 100% 148 12.4 701,688 6.9 0.66 7.09 0.00 105.17 14.17 242.34 110,155 100% 150 11.7 701,469 6.9 0.66 7.00 0.00 105.15 14.00 242.34 110,152 100% 152 11.0 701,189 6.9 0.66 6.89 0.00 105.12 13.78 242.33 110,149 100% 154 10.4 700,857 6.9 0.66 6.76 0.00 105.09 13.52 242.32 110,145 100% 156 9.8 700,482 6.9 0.66 6.61 0.00 105.06 13.23 242.31 110,140 100% 158 9.3 700,073 6.9 0.66 6.46 0.00 105.02 12.91 242.30 110,135 100% 160 8.8 699,636 6.9 0.66 6.29 0.00 104.98 12.58 242.28 110,129 100% 162 8.3 699,177 6.9 0.66 6.11 0.00 104.94 12.23 242.27 110,124 100% 164 7.8 698,701 6.9 0.66 5.94 0.00 104.89 11.87 242.26 110,118 100% 166 7.4 698,212 6.9 0.66 5.76 0.00 104.85 11.51 242.25 110,112 100% 168 7.0 697,715 6.9 0.66 5.57 0.00 104.80 11.15 242.23 110,105 100% 170 6.6 697,212 6.9 0.66 5.39 0.00 104.76 10.78 242.22 110,099 100% 172 6.2 696,706 6.9 0.66 5.21 0.00 104.71 10.42 242.20 110,093 100% 174 5.9 696,199 6.9 0.66 5.03 0.00 104.66 10.07 242.19 110,086 100% 176 5.5 695,694 6.9 0.66 4.86 0.00 104.61 9.71 242.18 110,080 100% 178 5.2 695,191 6.9 0.66 4.68 0.00 104.57 9.37 242.16 110,074 100% 180 4.9 694,693 6.9 0.66 4.52 0.00 104.52 9.03 242.15 110,067 100% 182 4.7 694,201 6.9 0.66 4.35 0.00 104.48 8.70 242.13 110,061 100% 184 4.4 693,715 6.8 0.66 4.19 0.00 104.43 8.39 242.12 110,055 100% 186 4.1 693,236 6.8 0.66 4.04 0.00 104.39 8.07 242.11 110,049 100% 188 3.9 692,764 6.8 0.66 3.89 0.00 104.34 7.77 242.09 110,043 100% 190 3.7 692,301 6.8 0.66 3.74 0.00 104.30 7.48 242.08 110,037 100% 192 3.5 691,847 6.8 0.66 3.60 0.00 104.26 7.20 242.07 110,031 100% 194 3.3 691,402 6.8 0.66 3.47 0.00 104.21 6.93 242.06 110,026 100% 196 3.1 690,965 6.8 0.66 3.34 0.00 104.17 6.67 242.04 110,020 100% 198 2.9 690,538 6.8 0.66 3.21 0.00 104.13 6.42 242.03 110,015 100% 200 2.8 690,121 6.8 0.66 3.09 0.00 104.10 6.18 242.02 110,010 100% 202 2.6 689,713 6.8 0.66 2.97 0.00 104.06 5.94 242.01 110,004 100% 204 2.5 689,314 6.8 0.66 2.86 0.00 104.02 5.72 242.00 109,999 100% SB 09 SB 10-yr (P2) HG 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 STAGE (ft) F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 9 C o l o n M i n e P h a s e 2 H y d r o g r a p h 10 - Y r S t o r m TO T A L O U T F L O W [ c f s ] IN F L O W [ c f s ] ST A G E [ f t ] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . Computed By: PAW Date: 12/31/14 Checked By: EAW Date: 1/2/15 Sheet: __1__of __2__ Qp = 268.73 cfs Sediment Basin # 9 Colon Tp =44.85 minutes Phase 2 dT = Max of 2 minutes 25 - year Storm Event or 1.0%of increment to peak b =1.1 Number of Riser/Barrel Assemblies 2 Ks =85,791 Diameter of Barrel =42 (in) Height of Riser above barrel =3.2 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=6.7 (ft) elevation 268.70 2 Effective number of cells (2 is construction site #) Emergency Spillway =7.5 (ft) elevation 269.50 92%Minimum Settling Efficiency Total Height of Dam =8.5 (ft) elevation 270.50 7.5 ft Maximum Stage 269.5 msl elevation Length of Emergency Spillway =50 (ft)85.1 cfs Peak outflow Diameter of Riser =72 (in)85.1 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 262.0 0.0 cfs peak weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFL OW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 1.3 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 5.2 158 0.0 0.00 0.00 0.00 0.00 0.00 124.27 56,487 N/A 6 11.7 787 0.0 0.00 0.00 0.00 0.00 0.00 141.19 64,179 N/A 8 20.5 2,190 0.0 0.00 0.00 0.00 0.00 0.00 153.17 69,622 N/A 10 31.6 4,656 0.1 0.00 0.00 0.00 0.00 0.00 162.64 73,926 N/A 12 44.7 8,452 0.1 0.00 0.00 0.00 0.00 0.00 170.54 77,516 N/A 14 59.6 13,820 0.2 0.00 0.00 0.00 0.00 0.00 177.34 80,607 N/A 16 75.9 20,971 0.3 0.00 0.00 0.00 0.00 0.00 183.31 83,325 N/A 18 93.4 30,080 0.4 0.66 0.66 0.00 0.66 1.31 188.65 85,750 100% 20 111.6 41,128 0.5 0.66 0.66 0.00 0.66 1.31 193.40 87,909 100% 22 130.4 54,368 0.7 0.66 0.66 0.00 0.66 1.31 197.74 89,882 100% 24 149.2 69,854 0.8 0.66 0.66 0.00 0.66 1.31 201.72 91,692 100% 26 167.7 87,595 1.0 0.66 0.66 0.00 0.66 1.31 205.38 93,357 100% 28 185.5 107,556 1.2 0.66 0.66 0.00 0.66 1.31 208.77 94,893 100% 30 202.4 129,659 1.5 0.66 0.66 0.00 0.66 1.31 211.89 96,314 100% 32 217.9 153,785 1.7 0.66 0.66 0.00 0.66 1.31 214.79 97,630 100% 34 231.7 179,772 2.0 0.66 0.66 0.00 0.66 1.31 217.47 98,850 100% 36 243.7 207,424 2.3 0.66 0.66 0.00 0.66 1.31 219.96 99,981 100% 38 253.6 236,514 2.5 0.66 0.66 0.00 0.66 1.31 222.27 101,030 100% 40 261.0 266,783 2.8 0.66 0.66 0.00 0.66 1.31 224.40 102,002 100% 42 266.1 297,951 3.1 0.66 0.66 0.00 0.66 1.31 226.38 102,902 100% 44 268.5 329,721 3.5 0.66 0.66 0.00 0.66 1.31 228.22 103,734 100% 46 268.3 361,783 3.8 0.66 0.66 0.00 0.66 1.31 229.91 104,503 100% 48 265.5 393,821 4.1 0.66 0.66 0.00 0.66 1.31 231.46 105,210 100% 50 260.1 425,521 4.4 0.66 0.66 0.00 0.66 1.31 232.89 105,860 100% 52 252.2 456,574 4.7 0.66 0.66 0.00 0.66 1.31 234.20 106,454 100% 54 242.1 486,685 4.9 0.66 0.66 0.00 0.66 1.31 235.39 106,996 100% 56 229.8 515,577 5.2 0.66 0.66 0.00 0.66 1.31 236.47 107,488 100% 58 217.1 542,996 5.5 0.66 0.66 0.00 0.66 1.31 237.45 107,932 100% 60 204.9 568,894 5.7 0.66 0.66 0.00 0.66 1.31 238.33 108,333 100% 62 193.4 593,324 5.9 0.66 0.66 0.00 0.66 1.31 239.13 108,696 100% 64 182.5 616,370 6.1 0.66 0.66 0.00 0.66 1.31 239.86 109,025 100% 66 172.2 638,109 6.3 0.66 0.66 0.00 0.66 1.31 240.52 109,326 100% 68 162.5 658,614 6.5 0.66 0.66 0.00 0.66 1.31 241.12 109,602 100% 70 153.3 677,956 6.7 0.66 0.67 0.00 102.95 1.35 241.68 109,854 100% 72 144.7 696,195 6.9 0.66 5.03 0.00 104.66 10.06 242.19 110,086 100% 74 136.6 712,352 7.0 0.66 11.76 0.00 106.15 23.52 242.63 110,287 99% 76 128.9 725,917 7.1 0.66 18.81 0.00 107.38 37.61 243.00 110,453 98% 78 121.6 736,867 7.2 0.66 25.27 0.00 108.36 50.54 243.29 110,584 97% 80 114.8 745,394 7.3 0.66 30.74 0.00 109.12 61.47 243.51 110,686 95% 82 108.3 751,788 7.4 0.66 35.06 0.00 109.69 70.13 243.67 110,761 94% 84 102.2 756,368 7.4 0.66 38.28 0.00 110.09 76.56 243.79 110,814 93% SB 09 SB 25-yr HG (P2) Computed By: PAW Date: 3/5/15 Checked By: EAW Date: 3/615 Sheet: __2__of __2__ 86 96.4 759,445 7.4 0.66 40.49 0.00 110.36 80.98 243.87 110,850 93% 88 91.0 761,300 7.5 0.66 41.84 0.00 110.52 83.69 243.92 110,872 93% 90 85.9 762,179 7.5 0.66 42.49 0.00 110.60 84.98 243.94 110,882 92% 92 81.0 762,287 7.5 0.66 42.57 0.00 110.61 85.14 243.94 110,883 92% 94 76.5 761,796 7.5 0.66 42.21 0.00 110.56 84.41 243.93 110,877 92% 96 72.2 760,844 7.5 0.66 41.51 0.00 110.48 83.02 243.91 110,866 93% 98 68.1 759,543 7.4 0.66 40.56 0.00 110.37 81.12 243.87 110,851 93% 100 64.3 757,981 7.4 0.66 39.43 0.00 110.23 78.86 243.83 110,833 93% 102 60.7 756,230 7.4 0.66 38.18 0.00 110.08 76.36 243.79 110,813 93% 104 57.2 754,345 7.4 0.66 36.85 0.00 109.91 73.69 243.74 110,791 94% 106 54.0 752,370 7.4 0.66 35.47 0.00 109.74 70.93 243.69 110,768 94% 108 51.0 750,340 7.4 0.66 34.07 0.00 109.56 68.13 243.64 110,744 94% 110 48.1 748,280 7.3 0.66 32.67 0.00 109.38 65.33 243.58 110,720 95% 112 45.4 746,212 7.3 0.66 31.28 0.00 109.19 62.56 243.53 110,695 95% 114 42.8 744,152 7.3 0.66 29.92 0.00 109.01 59.84 243.48 110,671 95% 116 40.4 742,112 7.3 0.66 28.59 0.00 108.83 57.18 243.42 110,647 96% 118 38.1 740,101 7.3 0.66 27.30 0.00 108.65 54.60 243.37 110,623 96% 120 36.0 738,126 7.3 0.66 26.06 0.00 108.47 52.11 243.32 110,599 96% 122 34.0 736,192 7.2 0.66 24.86 0.00 108.30 49.71 243.27 110,576 97% 124 32.1 734,303 7.2 0.66 23.70 0.00 108.13 47.40 243.22 110,554 97% 126 30.3 732,462 7.2 0.66 22.59 0.00 107.97 45.19 243.17 110,532 97% 128 28.5 730,669 7.2 0.66 21.53 0.00 107.81 43.07 243.12 110,510 97% 130 26.9 728,927 7.2 0.66 20.52 0.00 107.65 41.04 243.08 110,489 98% 132 25.4 727,235 7.2 0.66 19.55 0.00 107.50 39.10 243.03 110,469 98% 134 24.0 725,594 7.1 0.66 18.63 0.00 107.35 37.25 242.99 110,449 98% 136 22.6 724,002 7.1 0.66 17.74 0.00 107.21 35.49 242.95 110,430 98% 138 21.4 722,460 7.1 0.66 16.90 0.00 107.07 33.81 242.90 110,411 98% 140 20.2 720,967 7.1 0.66 16.10 0.00 106.93 32.21 242.86 110,393 98% 142 19.0 719,521 7.1 0.66 15.34 0.00 106.80 30.69 242.83 110,375 99% 144 18.0 718,122 7.1 0.66 14.62 0.00 106.67 29.24 242.79 110,358 99% 146 16.9 716,768 7.1 0.66 13.93 0.00 106.55 27.86 242.75 110,342 99% 148 16.0 715,458 7.0 0.66 13.27 0.00 106.43 26.54 242.72 110,326 99% 150 15.1 714,192 7.0 0.66 12.65 0.00 106.32 25.29 242.68 110,310 99% 152 14.2 712,967 7.0 0.66 12.05 0.00 106.20 24.11 242.65 110,295 99% 154 13.4 711,783 7.0 0.66 11.49 0.00 106.10 22.98 242.62 110,280 99% 156 12.7 710,637 7.0 0.66 10.95 0.00 105.99 21.91 242.59 110,266 99% 158 12.0 709,530 7.0 0.66 10.44 0.00 105.89 20.89 242.56 110,253 99% 160 11.3 708,460 7.0 0.66 9.96 0.00 105.79 19.92 242.53 110,239 99% 162 10.7 707,425 7.0 0.66 9.50 0.00 105.70 18.99 242.50 110,226 99% 164 10.1 706,424 7.0 0.66 9.06 0.00 105.61 18.12 242.47 110,214 99% 166 9.5 705,457 7.0 0.66 8.64 0.00 105.52 17.28 242.44 110,202 99% 168 9.0 704,522 6.9 0.66 8.25 0.00 105.43 16.49 242.42 110,190 100% 170 8.5 703,617 6.9 0.66 7.87 0.00 105.35 15.74 242.39 110,179 100% 172 8.0 702,743 6.9 0.66 7.51 0.00 105.27 15.02 242.37 110,168 100% 174 7.5 701,897 6.9 0.66 7.17 0.00 105.19 14.34 242.35 110,158 100% 176 7.1 701,079 6.9 0.66 6.85 0.00 105.11 13.69 242.32 110,148 100% 178 6.7 700,288 6.9 0.66 6.54 0.00 105.04 13.08 242.30 110,138 100% 180 6.3 699,523 6.9 0.66 6.25 0.00 104.97 12.49 242.28 110,128 100% 182 6.0 698,783 6.9 0.66 5.97 0.00 104.90 11.93 242.26 110,119 100% 184 5.6 698,067 6.9 0.66 5.70 0.00 104.83 11.40 242.24 110,110 100% 186 5.3 697,375 6.9 0.66 5.45 0.00 104.77 10.90 242.22 110,101 100% 188 5.0 696,704 6.9 0.66 5.21 0.00 104.71 10.42 242.20 110,093 100% 190 4.7 696,056 6.9 0.66 4.98 0.00 104.65 9.96 242.19 110,085 100% 192 4.5 695,428 6.9 0.66 4.77 0.00 104.59 9.53 242.17 110,077 100% 194 4.2 694,820 6.9 0.66 4.56 0.00 104.53 9.12 242.15 110,069 100% 196 4.0 694,232 6.9 0.66 4.36 0.00 104.48 8.72 242.14 110,062 100% 198 3.8 693,662 6.8 0.66 4.18 0.00 104.43 8.35 242.12 110,054 100% 200 3.5 693,110 6.8 0.66 4.00 0.00 104.37 7.99 242.10 110,047 100% 202 3.3 692,576 6.8 0.66 3.83 0.00 104.32 7.66 242.09 110,041 100% 204 3.2 692,058 6.8 0.66 3.67 0.00 104.28 7.33 242.08 110,034 100% 206 3.0 691,557 6.8 0.66 3.51 0.00 104.23 7.03 242.06 110,028 100% SB 09 SB 25-yr HG (P2) 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 Stage (feet) F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 9 C o l o n M i n e P h a s e 2 H y d r o g r a p h 25 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _1__of __2_ Qp = 384.1 cfs Sediment Basin # 9 Colon Tp =44.7 minutes Phase 2 dT = Max of 2 minutes 100 - year Storm Event or 1.0%of increment to peak b =1.1 Number of Riser/Barrel Assemblies 2 Ks =85,791 Diameter of Barrel =42 (in) Height of Riser above barrel =3.2 (ft)4.0E-03 Settling Velocity of design particle (fps) Height of Riser from bottom of barrel=6.7 (ft) elevation 268.70 2 Effective number of cells (2 is construction site #) Emergency Spillway =7.5 (ft) elevation 269.50 73%Minimum Settling Efficiency Total Height of Dam =8.5 (ft) elevation 270.50 8.0 ft Maximum Stage 270.0 msl elevation Length of Emergency Spillway =50 (ft)243.8 cfs Peak outflow Diameter of Riser =72 (in)188.6 cfs Peak Riser/Barrel outflow Permanent Pond Stage =0 (ft) elevation 262.0 55.2 cfs peak weir flow Notes: 1. Length of emergency spillway is the bottom width of the emergency spillway. 2. Settling efficiency neglects permanent pond volume TIME (min) INFLOW [cfs] STORAGE [cu ft] STAGE [ft] Skimmer Flow [cfs] RISER CAPACIT Y [cfs] WEIR FLOW [cfs] BARREL CAPACITY [cfs] TOTAL OUTFLOW [cfs] Bound Discharge [cfs] Estimated Surface Area (sf) Settling Efficiency [%] 0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 2 1.9 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A 4 7.5 228 0.0 0.00 0.00 0.00 0.00 0.00 127.93 58,150 N/A 6 16.8 1,133 0.0 0.00 0.00 0.00 0.00 0.00 145.35 66,068 N/A 8 29.6 3,154 0.0 0.00 0.00 0.00 0.00 0.00 157.68 71,672 N/A 10 45.6 6,705 0.1 0.00 0.00 0.00 0.00 0.00 167.42 76,102 N/A 12 64.4 12,171 0.2 0.00 0.00 0.00 0.00 0.00 175.55 79,797 N/A 14 85.8 19,900 0.3 0.00 0.00 0.00 0.00 0.00 182.55 82,978 N/A 16 109.2 30,193 0.4 0.66 0.66 0.00 0.66 1.31 188.71 85,775 100% 18 134.4 43,145 0.5 0.66 0.66 0.00 0.66 1.31 194.14 88,245 100% 20 160.6 59,110 0.7 0.66 0.66 0.00 0.66 1.31 199.06 90,482 100% 22 187.5 78,225 0.9 0.66 0.66 0.00 0.66 1.31 203.55 92,521 100% 24 214.4 100,563 1.2 0.66 0.66 0.00 0.66 1.31 207.65 94,387 100% 26 240.9 126,135 1.4 0.66 0.66 0.00 0.66 1.31 211.43 96,103 100% 28 266.5 154,890 1.7 0.66 0.66 0.00 0.66 1.31 214.91 97,686 100% 30 290.6 186,710 2.0 0.66 0.66 0.00 0.66 1.31 218.12 99,148 100% 32 312.7 221,419 2.4 0.66 0.66 0.00 0.66 1.31 221.10 100,501 100% 34 332.4 258,784 2.8 0.66 0.66 0.00 0.66 1.31 223.86 101,755 100% 36 349.4 298,519 3.2 0.66 0.66 0.00 0.66 1.31 226.42 102,918 100% 38 363.3 340,291 3.6 0.66 0.66 0.00 0.66 1.31 228.79 103,995 100% 40 373.8 383,728 4.0 0.66 0.66 0.00 0.66 1.31 230.98 104,993 100% 42 380.7 428,423 4.4 0.66 0.66 0.00 0.66 1.31 233.02 105,917 100% 44 383.8 473,946 4.8 0.66 0.66 0.00 0.66 1.31 234.90 106,771 100% 46 383.2 519,850 5.3 0.66 0.66 0.00 0.66 1.31 236.63 107,559 100% 48 378.8 565,680 5.7 0.66 0.66 0.00 0.66 1.31 238.22 108,284 100% 50 370.8 610,984 6.1 0.66 0.66 0.00 0.66 1.31 239.69 108,949 100% 52 359.2 655,318 6.5 0.66 0.66 0.00 0.66 1.31 241.03 109,558 100% 54 344.2 698,260 6.9 0.66 5.77 0.00 104.85 11.55 242.25 110,112 100% 56 326.7 738,184 7.3 0.66 26.09 0.00 108.48 52.19 243.32 110,600 96% 58 308.3 771,132 7.5 0.66 49.26 1.59 111.37 100.11 244.17 110,985 90% 60 290.8 796,112 7.8 0.66 69.80 21.41 113.51 161.02 244.79 111,267 82% 62 274.4 811,692 7.9 0.66 83.76 39.82 114.82 207.33 245.16 111,438 77% 64 258.9 819,740 8.0 0.66 91.29 50.70 115.49 233.27 245.36 111,526 74% 66 244.3 822,814 8.0 0.66 94.22 55.08 115.75 243.52 245.43 111,559 73% 68 230.4 822,903 8.0 0.66 94.30 55.21 115.76 243.81 245.43 111,560 73% 70 217.4 821,299 8.0 0.66 92.77 52.91 115.62 238.44 245.39 111,543 73% 72 205.1 818,776 8.0 0.66 90.37 49.35 115.41 230.10 245.33 111,515 74% 74 193.5 815,779 7.9 0.66 87.56 45.23 115.16 220.35 245.26 111,483 75% 76 182.6 812,561 7.9 0.66 84.56 40.95 114.90 210.07 245.18 111,448 77% 78 172.3 809,263 7.9 0.66 81.53 36.71 114.62 199.76 245.11 111,412 78% 80 162.5 805,963 7.9 0.66 78.53 32.62 114.34 189.68 245.03 111,375 79% 82 153.3 802,705 7.8 0.66 75.61 28.74 114.07 179.95 244.95 111,340 80% 84 144.7 799,511 7.8 0.66 72.78 25.10 113.80 170.65 244.87 111,304 81% SB 09 SB 100-yr HG (P2) Computed By: PAW Date: 3/5/15 Checked By: MDP Date: 3/6/15 Sheet: _2__of __2_ 86 136.5 796,393 7.8 0.66 70.05 21.71 113.54 161.80 244.79 111,270 82% 88 128.8 793,356 7.7 0.66 67.42 18.56 113.28 153.41 244.72 111,236 83% 90 121.5 790,399 7.7 0.66 64.90 15.66 113.03 145.46 244.65 111,203 84% 92 114.6 787,523 7.7 0.66 62.48 13.00 112.78 137.95 244.58 111,171 85% 94 108.1 784,724 7.7 0.66 60.14 10.58 112.54 130.87 244.51 111,139 86% 96 102.0 781,997 7.6 0.66 57.90 8.38 112.31 124.19 244.44 111,108 87% 98 96.3 779,338 7.6 0.66 55.74 6.41 112.08 117.90 244.37 111,078 88% 100 90.8 776,741 7.6 0.66 53.66 4.66 111.86 111.99 244.31 111,049 89% 102 85.7 774,201 7.6 0.66 51.65 3.14 111.64 106.45 244.24 111,020 90% 104 80.8 771,710 7.6 0.66 49.71 1.86 111.42 101.27 244.18 110,992 90% 106 76.3 769,259 7.5 0.66 47.81 0.84 111.21 96.46 244.12 110,963 91% 108 72.0 766,835 7.5 0.66 45.97 0.14 111.00 92.08 244.06 110,936 91% 110 67.9 764,421 7.5 0.66 44.15 0.00 110.79 88.31 244.00 110,908 92% 112 64.1 761,972 7.5 0.66 42.34 0.00 110.58 84.67 243.93 110,879 92% 114 60.4 759,497 7.4 0.66 40.53 0.00 110.36 81.05 243.87 110,851 93% 116 57.0 757,022 7.4 0.66 38.74 0.00 110.15 77.49 243.81 110,822 93% 118 53.8 754,565 7.4 0.66 37.00 0.00 109.93 74.00 243.75 110,793 94% 120 50.8 752,140 7.4 0.66 35.31 0.00 109.72 70.61 243.68 110,765 94% 122 47.9 749,756 7.4 0.66 33.67 0.00 109.51 67.34 243.62 110,737 95% 124 45.2 747,422 7.3 0.66 32.09 0.00 109.30 64.18 243.56 110,710 95% 126 42.6 745,142 7.3 0.66 30.57 0.00 109.10 61.14 243.50 110,683 95% 128 40.2 742,919 7.3 0.66 29.11 0.00 108.90 58.23 243.44 110,656 96% 130 37.9 740,757 7.3 0.66 27.72 0.00 108.71 55.44 243.39 110,631 96% 132 35.8 738,657 7.3 0.66 26.39 0.00 108.52 52.78 243.33 110,606 96% 134 33.8 736,619 7.2 0.66 25.12 0.00 108.34 50.24 243.28 110,582 97% 136 31.9 734,643 7.2 0.66 23.91 0.00 108.16 47.81 243.23 110,558 97% 138 30.1 732,728 7.2 0.66 22.75 0.00 107.99 45.51 243.18 110,535 97% 140 28.4 730,875 7.2 0.66 21.65 0.00 107.83 43.31 243.13 110,513 97% 142 26.8 729,081 7.2 0.66 20.61 0.00 107.66 41.22 243.08 110,491 98% 144 25.2 727,346 7.2 0.66 19.61 0.00 107.51 39.23 243.03 110,470 98% 146 23.8 725,668 7.1 0.66 18.67 0.00 107.36 37.34 242.99 110,450 98% 148 22.5 724,045 7.1 0.66 17.77 0.00 107.21 35.54 242.95 110,430 98% 150 21.2 722,477 7.1 0.66 16.91 0.00 107.07 33.83 242.90 110,411 98% 152 20.0 720,962 7.1 0.66 16.10 0.00 106.93 32.20 242.86 110,393 98% 154 18.9 719,498 7.1 0.66 15.33 0.00 106.80 30.66 242.82 110,375 99% 156 17.8 718,083 7.1 0.66 14.60 0.00 106.67 29.20 242.79 110,358 99% 158 16.8 716,716 7.1 0.66 13.90 0.00 106.55 27.80 242.75 110,341 99% 160 15.8 715,395 7.0 0.66 13.24 0.00 106.43 26.48 242.71 110,325 99% 162 15.0 714,119 7.0 0.66 12.61 0.00 106.31 25.22 242.68 110,309 99% 164 14.1 712,886 7.0 0.66 12.02 0.00 106.20 24.03 242.65 110,294 99% 166 13.3 711,695 7.0 0.66 11.45 0.00 106.09 22.90 242.61 110,279 99% 168 12.6 710,545 7.0 0.66 10.91 0.00 105.98 21.82 242.58 110,265 99% 170 11.8 709,433 7.0 0.66 10.40 0.00 105.88 20.80 242.55 110,251 99% 172 11.2 708,359 7.0 0.66 9.91 0.00 105.78 19.83 242.52 110,238 99% 174 10.5 707,321 7.0 0.66 9.45 0.00 105.69 18.90 242.50 110,225 99% 176 9.9 706,318 7.0 0.66 9.01 0.00 105.60 18.02 242.47 110,213 99% 178 9.4 705,349 7.0 0.66 8.60 0.00 105.51 17.19 242.44 110,201 99% 180 8.9 704,413 6.9 0.66 8.20 0.00 105.42 16.40 242.42 110,189 100% 182 8.4 703,507 6.9 0.66 7.82 0.00 105.34 15.65 242.39 110,178 100% 184 7.9 702,632 6.9 0.66 7.47 0.00 105.26 14.93 242.37 110,167 100% 186 7.4 701,786 6.9 0.66 7.13 0.00 105.18 14.25 242.34 110,156 100% 188 7.0 700,969 6.9 0.66 6.80 0.00 105.10 13.61 242.32 110,146 100% 190 6.6 700,178 6.9 0.66 6.50 0.00 105.03 12.99 242.30 110,136 100% 192 6.2 699,413 6.9 0.66 6.20 0.00 104.96 12.41 242.28 110,127 100% 194 5.9 698,674 6.9 0.66 5.93 0.00 104.89 11.85 242.26 110,117 100% 196 5.6 697,959 6.9 0.66 5.66 0.00 104.82 11.32 242.24 110,108 100% 198 5.2 697,267 6.9 0.66 5.41 0.00 104.76 10.82 242.22 110,100 100% 200 4.9 696,597 6.9 0.66 5.17 0.00 104.70 10.35 242.20 110,091 100% 202 4.7 695,950 6.9 0.66 4.95 0.00 104.64 9.89 242.18 110,083 100% 204 4.4 695,323 6.9 0.66 4.73 0.00 104.58 9.46 242.17 110,075 100% SB 09 SB 100-yr HG (P2) 0.01.02.03.04.05.06.07.08.09.010.0 050 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 Stage (feet) F L O W ( c f s ) TI M E ( m i n ) Se d i m e n t B a s i n # 9 C o l o n M i n e P h a s e 2 H y d r o g r a p h 10 0 - Y r S t o r m OUTFLOW INFLOW [cfs]STAGE [ft] Th i s p a g e i n t e n t i o n a l l y l e f t b l a n k . DESIGN HYDROGEOLOGIC REPORT - ADDENDUM, REVISION 12 COLON MINE RECLAMATION STRUCTURAL FILL SITE 1303 BRICKYARD ROAD SANFORD, NORTH CAROLINA TABLE OF CONTENTS (continued) 10.0 NATURAL AND MAN-MADE ACTIVITIES AFFECTING THE WATER TABLE 23 11.0 OTHER GEOLOGIC AND HYDROGEOLOGIC CONSIDERATIONS 24 12.0 VERTICAL SEPARATION AND FOUNDATION STANDARDS 25 13.0 PROPOSED WATER QUALITY MONITORING PLAN 26 13.1 Groundwater Points of Compliance 26 13.2 Compliance Monitor Well Construction 26 13.3 Surface Water Sampling Locations 27 13.4 Leachate Sampling Location 27 13.5 Initial Background Groundwater and Surface Water Monitoring, with 27 Statistical Groundwater Evaluation 13.6 Semi-Annual Groundwater, Surface Water and Leachate Monitoring, with 28 Statistical Groundwater Evaluation 14.0 REFERENCES 29 LIST OF FIGURES 1. Site Location Map 2. Site Layout Map (Revised) 3. Proposed Colon Mine Reclamation Structural Fill Site Plan with Piezometer and Soil Boring Locations (Revised) 4. Geologic Map 5. Seasonal High - Shallow & Intermediate Groundwater Potentiometric Map 6. Seasonal High - Shallow & Intermediate Groundwater Potentiometric Map with Proposed Top of Liner Grades (Revised) 67. Water Quality Monitoring Plan (Revised) Page 1 DESIGN HYDROGEOLOGIC REPORT – ADDENDUM, REVISION 12 COLON MINE RECLAMATION STRUCTURAL FILL SITE 1303 BRICKYARD ROAD SANFORD, NORTH CAROLINA 1.0 INTRODUCTION Buxton Environmental, Inc., respectfully submits the Design Hydrogeologic Report – Addendum, Revision 12 prepared for the proposed Colon Mine Reclamation Structural Fill Site (RSFS) located at 1303 Brickyard Road (address for the former adjacent off-site manufacturing facility for Cherokee Sanford Group, LLC and General Shale Brick, Inc.) in Sanford, North Carolina. The subject property presently consists of Parcel No.: 9655-70-1612 (408.22 acres), which was consolidated from 5 parcels during the recent purchased by Green Meadow LLC, according to the Lee County GIS website. The proposed Colon Mine RSFS consist of 118.7 acres, which is located on the northern ¼ of the entire parcel. The primary purpose of this investigation is to provide detailed and localized hydrogeologic information for the engineering design of the proposed Colon Mine RSFS for coal combustion residuals and for the effective design of a water quality monitoring system. The investigation was conducted in general accordance with North Carolina Department of Environment and Natural Resources, Division of Waste Management-Solid Waste Section (NCSWS) rules and guidelines; the General Assembly of North Carolina Session 2013-Senate Bill 729 (ratified) regarding coal combustion residuals; and the HDR Engineering, Inc. of the Carolinas (HDR) Hydrogeologic Investigation and Reporting Scope-of-Work, Task 3 dated July 2014 which was prepared for Charah, Inc. The Design Hydrogeologic Report investigation was conducted by Buxton Environmental, Inc. on behalf of HDR. Site location, site layout and proposed Colon Mine RSFS plan maps are provided in Figures 1, 2 and 3, respectively. Photographic documentation is provided in Appendix A. The addendum, Revision 1, was prepared in response to comments presented in a December 19, 2014 Permit Application – Completeness Review letter from the NCSWS (Appendix A1); to update general ownership and site configuration information; to update hydrogeologic information at the site; and to document the findings of additional soil boring/piezometer installation activities conducted along the northeastern and eastern edge of the site. The addendum, Revision 2 changes were made in response to requested changes to the Water Quality Monitoring Plan by Ms. Elizabeth Werner with the NCSWS during a February 20, 2015 conversation with Buxton Environmental, Inc. A summary of background information, and the methods and results of the Design Hydrogeologic Report – Addendum, Revision 12 investigation is provided below. Page 25 12.0 VERTICAL SEPARATION AND FOUNDATION STANDARDS The vertical separation and foundation standard as required by the General Assembly of North Carolina Session 2013 – Senate Bill 729 (ratified) regarding coal combustion residuals will be discussed in detail in the engineering design report being prepared by HDR. Vertical settlement calculations will be submitted by HDR. The General Assembly of North Carolina Session 2013-Senate Bill 729 (ratified) regarding coal combustion residuals, requires that the bottom of ash (top of liner) be a minimum of 4 feet above the seasonal high groundwater table. The proposed bottom of ash (top of liner), which will be established by HDR, will meet or exceed these requirements. Buxton Environmental, Inc. recommends a minimum separation of 4.5 feet at the Colon Mine RSFS, based on seasonal high and long-term high groundwater evaluations. The Seasonal High - Shallow & Intermediate Groundwater Potentiometric Map with Proposed Top of Liner Grades is provided in Figure 6. (Revised) Page 26 13.0 PROPOSED WATER QUALITY MONITORING PLAN Water quality monitoring will be conducted at the proposed Colon Mine RSFS, in accordance with NCSWS rules and guidance documents, and General Assembly of North Carolina Session 2013-Senate Bill 729 (ratified) regarding coal combustion residuals, and requested changes to the Water Quality Monitoring Plan by Ms. Elizabeth Werner with the NCSWS during a February 20, 2015 conversation with Buxton Environmental, Inc. The water quality monitoring plan has been prepared to effectively provide early detection of any release of hazardous constituents, as to be protective of human health and the environment. Applicable NCSWS regulatory rules will be followed if a release of hazardous constituents is confirmed, however, required assessment and/or corrective measures have not been specifically outlined in this plan. The monitoring activities will also be conducted in general accordance with NCSWS memorandums dated October 27, 2006, February 23, 2007 and October 16, 2007 concerning changes to laboratory detection limits and reporting requirements, and the Solid Waste Section Guidelines for Groundwater, Soil and Surface Water Sampling dated April 2008. In developing the proposed water quality monitoring plan, we have considered structural fill configuration, waste stream, surrounding land use, site geologic and hydrogeologic characteristics (including but not limited to aquifer thickness, groundwater flow rate and direction, lithology, hydraulic conductivity, porosity and effective porosity). Supporting documentation concerning these considerations has been previously addressed in the report. 13.1 Groundwater Points of Compliance Buxton Environmental, Inc. proposes to conduct shallow groundwater quality monitoring at nine (9) permanent shallow compliance monitor wells (MW-1 through MW-9) (Figure 7). The wells will include the eight (8) downgradient/sidegradient compliance wells and one (1) upgradient background well (MW-3) (topographic high saddle along power line on near southwest corner of the site). Piezometers PZ-1 (MW-1) and PZ-7 (MW-2), which were installed during the Design Hydrogeologic investigation, will be utilized as compliance wells. The monitor wells will be generally installed at the review boundary (125 feet off the fill boundary) (where room allows); or ½ the distance from the fill boundary to the property boundary where the fill boundary is less than 250 feet off the property boundary. The permanent compliance wells should be completed prior to issuance of the Permit to Operate. 13.2 Compliance Monitor Well Construction The compliance monitor wells should be constructed in a manner in which shallow groundwater quality and hydrogeologic characteristics can be adequately monitored. The monitor wells will be installed by advancing a soil boring into the upper portion of the shallow aquifer. The wells will be constructed with 10 foot sections of 2-inch diameter mill slotted PVC screen attached to an appropriate length of 2-inch diameter PVC casing. A sand pack will be placed in the annual space of the boring to approximately 2-feet above the well screen, an approximately 2-foot thick bentonite seal will be placed above the sand, and the remaining annual space will be filled to Page 27 grade with bentonite grout. The wells will be completed at grade with a 3 x 3 foot x 6-inch thick concrete pad and lockable stand-up cover. Three well guard posts will be placed around each well to protect the well from vehicle damage. The proposed compliance monitor wells will be completed in accordance with North Carolina Well Construction Standards (15A NCAC 02C .0108). A typical compliance well construction diagram is provided in Appendix O. Following the completion activities, each well will be developed to the fullest extent possible. Following installation of new compliance wells, borings logs and Well Construction Records (Form GW-1b) should be submitted to the NCSWS in hard copy and electronic format (pdf). Boring logs and Well Construction Records for currently installed compliance wells PZ-1/MW-1 and PZ-7/MW-2 are provided in Appendix G. 13.3 Surface Water Sampling Locations Surface water sampling is proposed to be conducted at two locations, including the intermittent tributary of Roberts Creek located to the immediate northeast of the site (SW-1) and the head waters of Roberts Creek to the southeast of the site (SW-2) (Figure 7). Off-site access agreements may be required. 13.4 Leachate Sampling Location Buxton Environmental, Inc. understands that leachate from the Colon Mine RSFS will collect into three (3) sumps, which will then be pumped into an aboveground holding tank. One (1) composite leachate sample is proposed to be conducted from the aboveground holding tank, in order to determine site specific characteristics of the leachate. 13.5 Initial Background Groundwater and Surface Water Monitoring Activities, with Statistical Groundwater Evaluation A minimum of foureight (8) independent initial background groundwater monitoring events should be conducted at the nine (9) proposed compliance wells. Ms. Elizabeth Werner with the NCSWS indicated during the February 20, 2015 telephone conversation with Buxton Environmental, Inc. that only 1 initial independent background groundwater sampling event would be necessary, prior to placement of coal combustion residuals. A minimum of one initial background sampling event should be conducted at the two surface water sample locations. The initial background groundwater and surface water monitoring events should be conducted prior to issuance of the Permit to Operate. At each compliance monitor well, groundwater level measurements will be made to within 0.01 of a foot with a depth to water electrode. The purging and sampling of the wells will be conducted with low flow sampling techniques specified in the Solid Waste Section Guidelines for Groundwater, Soil and Surface Water Sampling dated April 2008. Field parameters including temperature, pH, specific conductance, temperature, dissolved oxygen and turbidity will be collected until field parameters have stabilized within specific tolerances for three consecutive readings. Page 28 The groundwater and surface water samples will be analyzed for Appendix III constituents (including additional Appendix I metals outlined in 40 CFR Part 258 and in general accordance with applicable NCSWS guidance and Senate Bill 729)Appendix I constituents (volatile organic compounds (VOC’s) and metals (including mercury) outlined in 40 CFR Part 258 and in general accordance with applicable NCSWS guidance and Senate Bill 729. For quality control purposes, one trip blank and one equipment blank will be analyzed for Appendix III constituents (including additional Appendix I metals outlined in 40 CFR Part 258 and in general accordance with applicable NCSWS guidance and Senate Bill 729)Appendix I VOC’s and metals (including mercury) during each event. The laboratory analyses will be conducted by a North Carolina certified laboratory in accordance with Level I (standard) QA/QC procedures. Sample collection, handling and storage will be conducted in general accordance with accepted protocol, including chain-of-custody documentation. The eight (8) background monitoring events will be conducted over a 1 year period of time with an approximately 1.5 month spacing commencing immediately following issuance of the Permit to Construct. The initial independent background groundwater sampling event will be conducted prior to issuance of the Permit to Operate and placement of coal combustion residuals. Statistical Groundwater Evaluation A statistical evaluation of the background groundwater data will be conducted in accordance with NCSWS rules utilizing the basic method outlined below. In order to determine the most appropriate statistical method to evaluate the groundwater data, a Shipiro-Wilk Test was first conducted to determine the normality (distribution) of the data. Based on the distribution (parametric or non-parametric) and percentage of detected target constituents at the site, the Kruskal-Wallis Test and/or the Wilcoxon Rank-Sum Test for Two Groups would likely be utilized to evaluate the background groundwater data. However, other approved statistical methods could be employed to more adequately analyze the data if needed, based on the groundwater analytical results. The background groundwater and surface water sampling with statistical evaluation report will be submitted within 90 days of completion of the eighth (8th) and final background sampling event. 13.6 Semi-Annual Groundwater, Surface Water and Leachate Monitoring Activities, with Statistical Groundwater Evaluation Semi-annual groundwater, surface water and leachate monitoring activities will be conducted at the site. These activities are anticipated to be conducted in April and October of each year during the active life and post-closure period of the proposed Colon Mine RSFS. At each compliance monitor well, groundwater level measurements will be made to within 0.01 of a foot with a depth to water electrode. The low flow purging and sampling of the wells should be conducted as specified in the Solid Waste Section Guidelines for Groundwater, Soil and Surface Water Sampling dated April 2008. Field Page 29 parameters including temperature, pH, specific conductance, temperature, dissolved oxygen and turbidity will be collected until field parameters have stabilized within specific tolerances for three consecutive readings. The groundwater, surface water and leachate samples will be analyzed for Appendix III constituents (including additional Appendix I metals outlined in 40 CFR Part 258 and in general accordance with applicable NCSWS guidance and Senate Bill 729)Appendix I constituents including VOC’s and metals (including mercury) outlined in 40 CFR Part 258 and in general accordance with applicable NCSWS memos and the Solid Waste Section Guidelines for Groundwater, Soil and Surface Water Sampling dated April 2008, and Senate Bill 729. The leachate sample will also be analyzed for biologic oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), sulfate, nitrate and phosphate. For quality control purposes, one trip blank and one equipment blank will be analyzed for Appendix III constituents (including additional Appendix I metals outlined in 40 CFR Part 258 and in general accordance with applicable NCSWS guidance and Senate Bill 729) Appendix I VOC’s and metals (including mercury) during each event. The laboratory analyses are proposed to be conducted by a North Carolina certified laboratory in accordance with Level I (standard) QA/QC procedures. Sample collection, handling and storage will be conducted in general accordance with accepted protocol, including chain-of-custody documentation. Statistical Evaluation of Historical Groundwater Quality Data A statistical evaluation of historical groundwater quality data will be conducted in accordance with NCSWS rules utilizing the basic method outlined below. Based on the distribution (parametric or non-parametric) and percentage of detected target constituents at the site, the Kruskal-Wallis Test and/or the Wilcoxon Rank-Sum Test for Two Groups would likely be utilized to evaluate the historical groundwater data. However, other approved statistical methods could be employed to more adequately analyze the data if needed, based on the groundwater analytical results. Following receipt of the analytical data, a groundwater, surface water and leachate monitoring report with statistical evaluation of groundwater will be prepared in general accordance NCSWS guidelines. The report will include an executive summary, methods, results, conclusions and recommendations, tables of gauging and sample results, groundwater flow rates and groundwater flow direction map. The report will be prepared by a North Carolina Professional Geologist or Engineer. A copy of the report should be submitted to the NCSWS within 120 days of the sampling date. The owner or operator shall notify the NCSWS of any exceedance of NCSWS, Groundwater Protection Standards (NCGPS’s) within 14 days of this finding. An Assessment Monitoring Program will be required to be implemented within 90 days following an exceedance of the NCGPS, unless a successful alternate source demonstration can be made justifying an alternate cause of the exceedance. This page intentionally left blank. 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - added January 2015 SPECIAL CONDITIONS revised February 2015 01060 - 1 SECTION 01060 1 SPECIAL CONDITIONS 2 PART 1 - GENERAL 3 1.1 CONDITIONS SPECIFIC TO THIS PROJECT 4 A. CQC/CQA Duties: In general, the CQC Consultant will perform all testing related to earthwork 5 and soil liner work and provide documentation to the CQA Consultant. The CQA Consultant 6 will conduct the destructive geosynthetic testing and provide geosynthetic documentation as per 7 these documents. CQC and CQA documentation will be used by the CQA Consultant to prepare 8 and submit final certification to NCDENRThe CQA Consultant may conduct all required testing 9 and certify the project. If utilized, the CQC Consultant will provide all documentation to the 10 CQA Consultant for review and inclusion in the certification to NCDENR. Refer to the CQA 11 Plan. 12 B. The CONTRACTOR is responsible for construction/maintenance of any additional access/haul 13 roads as approved by the OWNER. 14 C. The CONTRACTOR is responsible for maintaining the Erosion and Sediment Control measures. 15 D. CONTRACTOR is to obtain all soil material from on-site. Stockpiling of soil material shall be 16 within the limits of disturbance as shown on the Drawings. 17 E. Limits of Disturbance: 18 1. As defined on the Drawings. 19 F. Site Access: 20 1. The only access to the site available to the CONTRACTOR is entering through the existing 21 entrance on Colon Road. 22 G. Hours of Construction shall be as agreed by the OWNER. Construction may occur on Legal 23 Holidays with permission from the OWNER. The OWNER may allow the CONTRACTOR to 24 extend the Hours of Construction provided there are not complaints from the community and the 25 OWNER approves of the extension. If the OWNER receives any complaints, then the OWNER 26 may revoke the extended hours of construction. 27 1.2 PROJECT MEETINGS 28 A. A preconstruction conference shall be held at the site with the ENGINEER, CONTRACTOR's 29 Project Manager and Project Superintendent and CONTRACTOR's Subcontractor 30 Representatives. The purpose is to review sequence of work and communication procedures. 31 B. Pre-Installation Conferences: 32 1. Coordinate and schedule with Resident Project Representative and ENGINEER for each 33 material, product or system specified. Conferences to be held prior to initiating installation, 34 but not more than two (2) weeks before scheduled initiation of installation. 35 a. Conferences may be combined if installation schedule of multiple components occurs 36 within the same two (2) week interval. 37 b. Review manufacturers recommendations and Contract Documents Specifications. 38 2. CONTRACTOR's Superintendent and individual who will actually act as foreman of the 39 installation crew (installer), if other than the Superintendent, shall attend. 40 C. Construction Meetings: 41 1. The ENGINEER will conduct construction meetings involving: 42 a. CONTRACTOR's project manager. 43 b. CONTRACTOR's project superintendent. 44 c. OWNER's designated representative(s). 45 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - added January 2015 SPECIAL CONDITIONS revised February 2015 01060 - 2 d. ENGINEER's designated representative(s). 1 e. CONTRACTOR's subcontractors as appropriate to the work in progress. 2 f. OWNER's Construction Quality Control Consultant. 3 2. Frequency of meetings to be as agreed upon at the Pre-Construction Meeting. 4 3. The ENGINEER will take meeting minutes and submit copies of meeting minutes to 5 participants and designated recipients identified at the Preconstruction Conference. 6 Corrections, additions or deletions to the minutes shall be noted and addressed at the 7 following meeting. 8 4. The CONTRACTOR shall have available at each meeting up-to-date record drawings 9 1.3 DATA AND MEASUREMENTS 10 A. The data given in the Specifications and shown on the Drawings is believed to be accurate but 11 the accuracy is not guaranteed. The Contractor must take all levels, locations, measurements, 12 and verify all dimensions of the job site prior to construction and must adapt his work into the 13 exact construction. Larger scale Drawings take precedence over smaller scale Drawings, and 14 approved shop drawings take precedence over all others. 15 B. All survey’s shall be sealed by a North Carolina registered land surveyor and submitted to the 16 Engineer. The Contractor shall provide the Engineer with an electronic version of the sealed 17 survey in AutoCAD readable format. Provide unique layers for 1 FT contours, index contours, 18 text, water, vegetation, buildings, roads, etc. Utilize North Carolina grid coordinate system and 19 locate all features in x, y, and z dimensions. 20 C. Initial survey shall include the following: 21 1. Topography of the cell area 22 2. Topography of the stockpile areas. 23 3. Topography within limits of construction including: 24 a. Topography of all sediment basins. 25 b. Location of existing channels. 26 c. Location of structures. 27 d. Inverts of pipe, size, and pipe location. 28 D. Final as-built survey shall include the following, for example: 29 1. Topography of the entire area within limits of construction. 30 2. Limits of liner placement. 31 3. Topography of the stockpile areas and all other disturbed areas. 32 4. Location of roads. 33 5. Location of channels. 34 6. Topography of all sediment basins and associated outlet structures. 35 7. Culverts (invert, size, locations). 36 8. Location of utility poles on the property. 37 9. Other areas or items that were a part of the Work as directed by the Engineer. 38 10. Locations of leachate pipes, valves, sumps, and subcell divider berms. 39 E. During construction, the contractor shall submit to the Engineer for review preliminary surveys 40 that depict thickness verification of the soil layers. 41 F. Thickness verification may be done with a table or by electronic comparison of drawing files. 42 The method shall be agreed to by the CQA and ENGINEER prior to construction. If the table 43 method is selected, the same point on each soil layer must be used. The thickness is to be 44 measured perpendicular to the slope. Refer to the soil specifications for frequency of points. 45 G. Contractor shall preserve and protect all reference points and pay for replacement of any 46 destroyed referenced points. 47 H. Additional requirements are set forth in Section 9.0 of the CQA Plan. 48 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - added January 2015 SPECIAL CONDITIONS revised February 2015 01060 - 3 1.4 SPECIAL CONSIDERATIONS 1 A. CONTRACTOR shall be responsible for negotiations of any waivers or alternate arrangements 2 required to enable transportation of materials to the site. 3 B. Maintain conditions of access road to site such that access is not hindered as the result of 4 construction related deterioration. 5 C. Safety: 6 1. The CONTRACTOR alone shall be solely and completely responsible for conditions of the 7 job site in connection with his work, including safety of all personas and property, 8 preparatory to and during performance of the work. This requirement shall apply 9 continuously and not be limited to normal working hours. 10 2. The Construction Documents and the construction hereby contemplated, are to be governed, 11 at all times, by applicable provisions of local and state laws and regulations, and federal 12 laws, including, but not limited to, the latest amendments of the following: Department of 13 Labor, Bureau of Labor Standards Safety and Health Regulations for Construction, and 14 Williams and Steiger Occupational Safety and Health Act of 1970, including rules and 15 regulations pursuant thereto, applicable to the Work and performance of the Contract. 16 (OSHA). 17 3. The duty of the ENGINEER to conduct construction review of the CONTRACTOR’s 18 performance is not intended to include review of the adequacy of the CONTRACTOR’s 19 safety measures in, on, or near the construction site. 20 4. All explosives shall be stored in a secure manner and all storage places shall be marked 21 clearly “DANGEROUS EXPLOSIVES,” and shall be in the care of competent watchmen at 22 all times. 23 D. Inspections by Federal and State Agencies: Authorized representative and agents of the state 24 and federal government shall be permitted to inspect all work, materials, records of personnel, 25 invoices of materials, and other relevant data and records. 26 E. Water: 27 1. CONTRACTOR is responsible for all water necessary for the completion of the Work. 28 Water used on the project shall be fresh and of drinkable quality. The CONTRACTOR 29 shall make arrangements to obtain fresh water for his drinking. 30 2. Water for other uses such as dust control and moisture control of fill may be obtained from 31 storm water basins as approved by the CQC and CQA Consultants. The CONTRACTOR 32 shall obtain any required permits. 33 3. CONTRACTOR is responsible for coordinating use of, and all costs associated with use of, 34 water from local sources. 35 F. The CONTRACTOR shall provide sanitary facilities during construction. 36 G. Order of Construction: The CONTRACTOR will schedule construction operations to allow the 37 other contractors access to the site. 38 1.5 HISTORICAL AND ARCHAEOLOGICAL 39 A. If during the course of construction, evidence of deposits of historical or archeological interest is 40 found, the CONTRACTOR shall cease operations affecting the find and shall notify OWNER. 41 No further disturbance of the deposits shall ensue until the CONTRACTOR has been notified by 42 OWNER that CONTRACTOR may proceed. OWNER will issue a notice to proceed after 43 appropriate authorities have surveyed the find and made a determination to OWNER. 44 Compensation to the CONTRACTOR, if any, for lost time or changes in construction resulting 45 from the find, shall be determined in accordance with changed or extra work provisions of the 46 Contract Documents. The site has been previously investigated and has no known history of 47 historical or archaeological finds. 48 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - added January 2015 SPECIAL CONDITIONS revised February 2015 01060 - 4 PART 2 - PRODUCTS 1 2.1 INTERFACE FRICTION TESTS 2 A. Laboratory friction tests shall be conducted, on behalf of the OWNER by the CQA Consultant, 3 with representative samples of the materials selected by the CONTRACTOR for use in the 4 Work. The CQA Consultant must approve the testing laboratory used for these tests. The 5 CONTRACTOR is responsible for shipping materials to the testing laboratory. The initial set of 6 testing and subsequent conformance tests (if any) shall be paid for by the CQA Consultant. If 7 any interface doesn’t meet the requirements, or if the CONTRACTOR changes geosynthetic 8 materials, then the additional cost to qualify those materials shall be borne by the 9 CONTRACTOR. 10 B. Base Liner 11 1. Testing will include the interfaces between the following adjacent materials with a 12 minimum peak friction angle of 26 degrees is required for each interface. 13 14 MATERIAL SPECIFICATION SECTION Ash ---- Drainage Composite 02777 60 Mil HDPE (textured) 02775 Geosynthetic Clay Liner (GCL) 0277602800 Soil liner 02276 C. Cap System 15 1. The CONTRACTOR may select one of the following cap systems. Testing will include the 16 interfaces between the following adjacent materials with a minimum peak friction angle of 17 26 degrees is required for each interface. 18 a. Option 1 19 20 MATERIAL SPECIFICATION SECTION Drainage Soil N/A 40 Mil (textured HDPE or textured LLDPE) 02775 or 02774 Ash --- 21 b. Option 2 22 23 MATERIAL SPECIFICATION SECTION Unclassified Soil N/A Drainage Composite 02777 40 Mil (textured HDPE or textured LLDPE) 02775 or 02774 Ash ---- 24 D. Testing shall be performed in accordance with ASTM D6243. The liner system materials shall 25 be tested at normal stressed of 2,000, 4,000, and 6,250 psf. The cap system materials shall be 26 tested at normal stressed of 500, 1,000, and 1,500 psf. Displacement rates shall be in accordance 27 with ASTM D6243 Procedure A for geosynthetic to geosynthetic interfaces and Procedure B for 28 soil to geosynthetic interfaces. Soil components shall be compacted to the same moisture-29 density requirements specified for full-scale field placement and saturated prior to shear for 24 30 hours. All geosynthetic interfaces shall be tested in a wet condition. Geosynthetics shall be 31 oriented such that the shear force is parallel to the downslope orientation of these components in 32 the field. The testing laboratory shall confirm these criteria with the CQA firm prior to 33 performing the tests. 34 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - added January 2015 SPECIAL CONDITIONS revised February 2015 01060 - 5 D.E. Test results must be satisfactory for material shop drawings to be approved. Report 1 results in accordance with ASTM D6243 provide complete test data, including plots of shear 2 force versus horizontal displacement and a plot of peak shear stress versus normal stress for the 3 tests conducted. Test results must be satisfactory for material shop drawings to be approved. 4 PART 3 - EXECUTION (NOT USED) 5 END OF SECTION 6 This page intentionally left blank. 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 DRAINAGE COMPOSITE revised February 2015 02777 - 1 SECTION 02777 1 DRAINAGE COMPOSITE 2 PART 1 - GENERAL 3 1.1 SUMMARY 4 A. Section Includes: 5 1. Bonded geotextile-geonet drainage composite. 6 B. Related sections include but are not necessarily limited to: 7 1. Section 02774 – LLDPE Geomembrane. 8 2. Section 02775 – HDPE Geomembrane. 9 3. Section 02778 - Geotextiles. 10 4. Construction Quality Assurance Plan. 11 1.2 QUALITY ASSURANCE 12 A. Referenced Standards: 13 1. ASTM International (ASTM): 14 a. D413, Rubber Property - Adhesion to Flexible Substrate. 15 b. D792, Standard Test Methods for Density and Specific Gravity of Plastic by 16 Displacement. 17 c. D1238, Flow Rates of Thermoplastics by Extrusion Plastometer. 18 d. D1505, Density of Plastics by the Density-Gradient Technique. 19 e. D1603, Carbon Black in Olefin Plastics. 20 f. D4716, Constant Head Hydraulic Transmissivity (In-Plane Flow) of Geotextiles and 21 Geotextile Related Products. 22 g. D4873, Identification, Storage and Handling of Geosynthetic Rolls. 23 h. D5199, Standard Method for Measuring Nominal Thickness of Geotextiles and 24 Geomembranes. 25 i. D5321, Standard Test Method for Determining the Coefficient of Soil and Geosynthetic 26 or Geosynthetic and Geosynthetic Friction by the Direct Shear Method. 27 j. D6364, Standard Test Method for Determining Short-Term Compression Behavior of 28 Geosynthetics. 29 k. D7005, Standard Test Method for Determining the Bond Strength (Ply Adhesion) of 30 Geocomposites. 31 k.l. D7179, Standard Test Method for Determining Geonet Breaking Force. 32 B. Qualifications: 33 1. Each manufacturing and fabricating firm shall demonstrate 5 years continuous experience, 34 including a minimum of 5,000,000 SF of drainage composite production in the past 3 years. 35 2. Installer shall attend pre-installation conference. 36 1.3 DEFINITIONS: 37 A. Manufacturer: Manufacturer producing drainage composites from geonet cores and geotextiles. 38 B. Installer: The Installers are the individuals actually performing the hands-on work in the field. 39 C. MARV: Minimum average roll value. 40 1.4 SUBMITTALS 41 A. Shop Drawings: 42 1. Manufacturer's documentation that raw materials and roll materials comply with required 43 drainage composite physical properties. 44 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 DRAINAGE COMPOSITE revised February 2015 02777 - 2 2. Manufacturer and Installer quality control manuals. 1 3. Original test results for resins and roll material at frequency specified in respective quality 2 control manuals. Include or bracket the rolls delivered for use in the Work. 3 4. Layout plan with proposed size, number, position and sequencing of drainage composite 4 rolls and direction of all field seams. 5 5. Proposed details of anchor trench if different than included in Contract Documents. 6 B. Miscellaneous Submittals: 7 1. Qualification documentation specified in Article 1.2. 8 1.5 DELIVERY, STORAGE AND HANDLING 9 A. Label, handle, and store drainage composites in accordance with ASTM D4873 and as specified 10 herein. 11 B. Wrap each roll in an opaque and waterproof layer of plastic during shipment and storage. Do not 12 remove the plastic wrapping until deployment. 13 C. Label each roll with the manufacturer's name, drainage composite type, lot number, roll number, 14 and roll dimensions (length, width, gross weight). 15 D. Repair or replace, as directed by the Engineer, drainage composite or plastic wrapping damaged 16 as a result of storage or handling. 17 E. Do not expose drainage composite to temperatures in excess of 71 DegC (160 DegF) or below 0 18 DegC (32 DegF) unless recommended by the Manufacturer. 19 F. Do not use hooks, tongs or other sharp instruments for handling the drainage composite. 20 G. Do not lift rolls by use of cables or chains in contact with the drainage composite. 21 H. Do not drag drainage composite along the ground or across textured geomembranes. 22 PART 2 - PRODUCTS 23 2.1 ACCEPTABLE MANUFACTURERS 24 A. Subject to compliance with the Contract Documents, the following Manufacturers are 25 acceptable: 26 1. GSE Environmental. 27 2. Agru-American, Inc. 28 3. Engineer approved equal. 29 2.2 MATERIALS AND MANUFACTURE 30 A. Geonet Core: 31 1. Use nonthermally degraded polyethylene polymer which is clean and free of any foreign 32 contaminants. 33 2. Manufactured geonet to conform to the property requirements listed in Table 1 and be free 34 of defects including tears, nodules or other manufacturing defects which may affect its 35 serviceability. 36 TABLE 1 - GEONET PROPERTIES 37 PROPERTY TEST METHOD TEST VALUE Polymer Density ASTM D1505 >0.93 g/cc Polymer Melt Index ASTM D1238 <1.1 g/10 min. Carbon Black Content ASTM D1603 2-3 percent Thickness ASTM D5199 ≥0.300 in. Tensile Strength (MD) ASTM D7179 75 lb/in Compressive Strength ASTM D6364 25,000 psf 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 DRAINAGE COMPOSITE revised February 2015 02777 - 3 B. Geotextile: 1 1. Cover geonet core on both sides with a geotextile complying with requirements specified in 2 Section 02778: Geotextiles, Separator. 3 C. Drainage Composite: 4 1. Create a composite by heat bonding geotextiles to the geonet. The bond between the 5 geotextile and the geonet shall exhibit a MARV ply adhesion of 1 LBS/IN when tested in 6 accordance with ASTM D7005 7 2. Effective Transmissivity MARV of 3.3x10-3 square meters per second @ 100 hrs. 8 2.3 SOURCE QUALITY CONTROL 9 A. Transmissivity Testing: 10 1. Measure in place flow rate using water at 68 DegF with a normal compressive load of 6,250 11 psf, a hydraulic gradient of 0.02, and 100-hour loading. 12 2. Attach geotextiles to the geonet in the same configuration as will be used in the field. 13 3. Boundary conditions shall match the upper and lower interfaces to be used in the field. 14 4. Testing frequency: 1 test for every 50200,000 SF of installed product. 15 5. Report shall include: 16 a. Graph of flow rate vs. hydraulic gradient. 17 b. Calculate transmissivity under laminer flow conditions. 18 c. Calculated effective transmissivity at hydraulic gradient of 0.3. 19 B. Interface Friction Tests. 20 1. Test materials using ASTM D 6243. Section 01060-Special Conditions, outlines the 21 conditions under which this material shall be tested. 22 2. This material is part of a system. The system shall meet the requirements before the 23 component material can be deemed acceptable. 24 PART 3 - EXECUTION 25 3.1 EXAMINATION 26 A. Prior to placement of the drainage composite, clean the substrate of all soil, rock, and other 27 materials which could damage the composite. 28 B. The geocomponent drainage media shall be placed only on geomembrane that has been 29 approved by the Geomembrane Installer and accepted by the Geotech Engineer. 30 3.2 INSTALLATION 31 A. Install geocomposite drain in accordance with manufacturer’s written recommendations. 32 B. Deploy the drainage composite ensuring that the drainage composite and underlying materials 33 are not damaged. Replace or repair faulty or damaged drainage composite as directed by 34 Engineer. 35 C. Unroll drainage composite downslope keeping in slight tension to minimize wrinkles and folds. 36 D. Maintain free of dirt, mud, or any other foreign materials at all times during construction. Clean 37 or replace rolls which are contaminated. 38 E. Place adequate ballast to prevent uplift by wind. 39 F. Overlap adjacent rolls a minimum of 6 IN. Overlap new drainage composite over existing as 40 shown on the drawings. 41 G. Use manufacturer's fasteners to join adjacent rolls. Metallic fasteners will not be allowed. Space 42 fasteners a maximum of 5 FT along downslope roll overlaps and a maximum of 1 FT along cross 43 slope roll overlaps. Use fasteners of contrasting color from the drainage composite to facilitate 44 visual inspection. Do not weld drainage composite to geomembranes. 45 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 DRAINAGE COMPOSITE revised February 2015 02777 - 4 H. Heat tack overlap of the upper geotextile to the upper geotextile of the adjacent rolls. 1 I. Repairs holes or tears in the drainage composite by placing a patch of drainage composite 2 extending a minimum of 2 FT beyond the edges of the hole or tear. Use approved fasteners, 3 spaced every 6 IN around the patch, to fasten the patch to the original roll. 4 J. Penetration details shall be as recommended by the Manufacturer and as approved by the 5 Engineer. 6 3.3 FIELD QUALITY CONTROL 7 A. Provide as-constructed drawing showing roll number; layout; joint locations; and repair and 8 patch locations. 9 B. Prior to installation of the drainage composite, provide the Engineer quality control certificates 10 signed by the manufacturer's quality assurance manager for every 50,000 SF of geocomposite 11 drainage media to be installed. 12 C. Refer to Section 02778 for exposure limits of the geotextile. If the exposure limits are exceeded, 13 the drainage composite shall be replaced. 14 END OF SECTION 15 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 GEOTEXTILES revised February 2015 02778 - 1 SECTION 02778 1 GEOTEXTILES 2 PART 1 - GENERAL 3 1.1 SUMMARY 4 A. Section Includes: 5 1. Non-woven geotextile material. 6 2. Woven geotextile material. 7 B. Related Sections: 8 1. Section 02220 - Earthwork. 9 2. Section 02777 - Drainage Geocomposite. 10 3. Construction Quality Assurance Plan. 11 1.2 QUALITY ASSURANCE 12 A. Referenced Standards: 13 1. American Association of State Highway Transportation Officials (AASHTO): 14 a. M288, Standard Specification for Geotextile Specification for Highway Application. 15 2. ASTM International (ASTM): 16 a. D1987, Biological Clogging of Geotextile or Soil/Geotextile Filters. 17 b. D3766, Standard Terminology Relating to Catalysts and Catalysis. 18 c. D3776, Test Method for Mass Per Unit Area of Woven Fabric. 19 d. D3786, Test Method for Hydraulic Bursting Strength of Knitted Goods and Nonwoven 20 Fabrics - Diaphragm Bursting Strength Tester Method. 21 e. D4354, Sampling of Geosynthetics for Testing. 22 f. D4355, Deterioration of Geotextiles from Exposure to Ultraviolet Light and Water 23 (Xenon-Arc Type Apparatus). 24 g. D4491, Water Permeability of Geotextiles by Permittivity. 25 h. D4533, Trapezoid Tearing Strength of Geotextiles. 26 i. D4595, Tensile Properties of Geotextiles by the Wide-Width Strip Method. 27 j. D4632, Grab Breaking Load and Elongation of Geotextiles. 28 k. D4751, Determining Apparent Opening Size of A Geotextile. 29 l. D4759, Determining the Specification Conformance of Geosynthetics. 30 m. D4833, Index Puncture Resistance of Geotextiles, Geomembranes, and Related 31 Products. 32 n. D4873, Identification, Storage, and Handling of Geosynthetic Rolls. 33 o. D5261, Test Method for Measuring Mass Per Unit Area of Geotextiles. 34 p. D6193, Standard Practice for Stitches and Seams. 35 q. D6241, Standard Test Method for Static Puncture Strength of Geotextiles and 36 Geotextile-Related Products Using a 50-mm Probe. 37 q.r. D7238, Standard Test Method for Effect of Exposure of Unreinforced Polyolefin 38 Geomembrane Using Fluorescent UV Condensation Apparatus. 39 B. Qualifications: 40 1. Each manufacturing, fabricating firm shall demonstrate 5 years continuous experience, 41 including a minimum of 10,000,000 SF of geotextile installation in the past 3 years. 42 2. Installing firm shall demonstrate that the site Superintendent or Foreman has had 43 responsible charge for installation of a minimum of 1,000,000 SF of geotextile. 44 3. Installer shall attend pre-installation conference. 45 1.3 DEFINITIONS: 46 A. Manufacturer: Manufacturer producing geotextile sheets from resin and additives. 47 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 GEOTEXTILES revised February 2015 02778 - 2 B. Installer: The Installers are the individuals actually performing the hands-on work in the field. 1 C. MARV: Minimum Average Roll Value 2 1.4 SUBMITTALS 3 A. Shop Drawings: 4 1. Manufacturer's documentation that raw materials and roll materials comply with required 5 geotextile physical properties. 6 2. Manufacturer and Installer quality control manuals. 7 3. Original test results for resins, roll material and factory seam tests at frequency specified in 8 respective quality control manuals. Results shall include or bracket the rolls delivered for 9 use in the Work. 10 4. Proposed details of anchoring and overlapping if different than included in Contract 11 Documents. 12 B. Miscellaneous Submittals: 13 1. For needle punched geotextiles, the Manufacturer shall certify that the geotextile has been 14 continuously inspected using permanent on-line full-width metal detectors and does not 15 contain any needles which could damage other geosynthetic layers. 16 2. Qualification documentation specified in Article 1.2. 17 1.5 DELIVERY, STORAGE AND HANDLING 18 A. Label, handle, and store geotextiles in accordance with ASTM D4873 and as specified herein. 19 B. Wrap each roll in an opaque and waterproof layer of plastic during shipment and storage. Do not 20 remove the plastic wrapping until deployment. 21 C. Label each roll with the manufacturer's name, geotextile type, lot number, roll number, and roll 22 dimensions (length, width, gross weight). 23 D. Repair or replace geotextile or plastic wrapping damaged as a result of storage or handling, as 24 directed. 25 E. Do not expose geotextile to temperatures in excess of 71 DegC (160 DegF) or less than 0 DegC 26 (32 DegF) unless recommended by the manufacturer. 27 F. Do not use hooks, tongs or other sharp instruments for handling geotextile. Do not lift rolls lifted 28 by use of cables or chains in contact with the geotextile. Do not drag geotextile along the 29 ground. 30 PART 2 - PRODUCTS 31 2.1 ACCEPTABLE MANUFACTURERS 32 A. Subject to compliance with the Contract Documents, the following Manufacturers are 33 acceptable: 34 1. Agru America, Inc. 35 2. Carthage Mills. 36 3. GSE Environmental 37 3.4. TenCate Geosynthetics. 38 4. GSE Environmental 39 2.2 MATERIALS AND MANUFACTURE 40 A. Geotextile: 41 1. Geotextile fibers: 42 a. Long-chain synthetic polymer composed of at least 85 percent by weight polyolefins, 43 polyesters, or polyamides. 44 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 GEOTEXTILES revised February 2015 02778 - 3 b. Filaments resistant to deterioration by ultraviolet light, oxidation, and heat exposure. 1 c. Do not add reclaimed or recycled fibers or polymer to the formulation. 2 2. Form geotextile into a network such that the filaments or yarns retain dimensional stability 3 relative to each other, including the selvages. 4 3. The geotextile physical properties shall equal or exceed the minimum average roll values 5 listed below. Values shown are for the weaker principal direction. Acceptance of geotextile 6 shall be in accordance with ASTM D4759. 7 B. Cushion Separator Geotextile for Gecomposite: Non-woven, needle punched; polyester or 8 polypropylene; continuous filament or staple fibers; conforming to the following properties: 9 For base liner top of geocomposite only: 10 1. Top Geotextile: The geotextile intended as the filter shall be a hybrid geotextile consisting 11 of a woven and non-woven needle punched composite geotextile with the two geotextiles 12 bonded together mechanically. The two geotextiles shall form a monolithic filter product 13 with the woven side bonded to the top of the geonet. The top geotextile shall conform to the 14 following properties: 15 16 Property Test Method Minimum Average Roll Value ====== ====== ====== Composite mass per Unit Area, oz/yd2 ASTM D5261 14 Grab Tensile Strength, lb ASTM D4632 200 Puncture Strength, lb ASTM D48336241 100775 Trapezoidal Tear Strength, lb ASTM D4533 85 Apparent Opening Size, US Sieve (mm) ASTM D4751 170 (0.88) Permittivity, (sec -1) ASTM D4491 0.3 Flow Rate, gpm/ft2 ASTM D4491 20 UV Resistance, % Retained ASTM D4355 (after 500 hours) 90 17 The geotextile intended as the filter shall be a hybrid geotextile consisting of a woven and non-18 woven needle punched composite geotextile with the two geotextiles bonded together 19 mechanically. The two geotextiles shall form a monolithic filter product with the woven side 20 bonded to the geonet. 21 2. For all other locations: 22 23 2. Bottom Geotextile: A nonwoven geotextile conforming to the following properties: 24 25 Property Test Method Minimum Average Roll Value ====== ====== ====== Mass per Unit Area, oz/yd2 ASTM D5261 6 Grab Tensile Strength, lb ASTM D4632 160 Grab Elongation ASTM D4632 50% Puncture Strength, lb ASTM D6241 435 Trapezoidal Tear Strength, lb ASTM D4533 65 Apparent Opening Size, US Sieve (mm) ASTM D4751 70 (0.212) Permittivity, (sec -1) ASTM D4491 1.5 Flow Rate, gpm/ft2 ASTM D4491 110 UV Resistance, % Retained ASTM D4355 (after 500 hours) 70 26 C. Separator Geotextile 27 28 Property Test Method Minimum Average Roll Value ====== ====== ====== 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 GEOTEXTILES revised February 2015 02778 - 4 Unit Weight ASTM D5261 8 oz/sy Grab Tensile Strength ASTM D4632 210 lb Elongation ASTM D4632 50% Puncture Strength ASTM D4833 95 lb Maximum Apparent Opening Size ASTM D4751 #70 US Sieve Permittivity ASTM D4491 0.5 sec-1 1 D. Roadbed Geotextile Fabric: The geotextile shall be composed of synthetic fibers formed into a 2 woven fabric. Fibers used in the manufacture of the geotextile shall be polyolefins, polyesters 3 or polyamides and conform to the following properties. 4 5 Property Test Method Minimum Average Roll Value ====== ====== ====== Grab Tensile ASTM D4632 200 lbs Grab Elongation ASTM D4632 15 % Puncture Strength ASTM D4833 100 lbs Trapezoidal Tear ASTM D4533 75 UV Resistance ASTM D4355 or D7238 90 % C.E. Thread: 6 1. High-strength polyester, nylon, or other approved thread type. 7 2. Equivalent chemical compatibility and ultraviolet light stability as the geotextile. 8 3. Contrasting color with the geotextile. 9 D.F. The geotextile shall be able to withstand direct exposure to ultraviolet radiation from the sun for 10 up to 90 days without noticeable effect on index or performance properties If the geotextile is 11 exposed for greater than 75 days, additional index testing will be required to confirm that the 12 material still meets the specification properties. 13 PART 3 - EXECUTION 14 3.1 PREPARATION 15 A. Construct the surface underlying the geotextiles smooth and free of ruts or protrusions which 16 could damage the geotextiles. 17 3.2 INSTALLATION 18 A. Install geotextiles in accordance with manufacturer's written recommendations. 19 B. Hand place geotextile. No equipment will be permitted to traffic in direct contact with the 20 geotextile. 21 C. Lay geotextile smooth so as to be free of tensile stresses, folds, and wrinkles. 22 D. Seam Construction: 23 1. Geotextile seams may be sewn or overlapped. Construct overlapped seams in accordance 24 with manufacturer's recommendations or as shown on Drawings. 25 2. Sew seams continuously using an SSA flat seam with one row of a two-thread 401 chain 26 stitch unless otherwise recommended by the manufacturer. 27 3. Minimum distance from the geotextile edge to the stitch line nearest to that edge: 2 IN 28 unless otherwise recommended by the manufacturer. 29 4. Test seams at the frequency specified in Article 3.3. 30 5. Tie off thread at the end of each seam to prevent unraveling. 31 6. Construct seams on the top side of the geotextile to allow inspection. 32 7. Sew skipped stitches or discontinuities with an extra line of stitching with 18 IN of overlap. 33 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - revised January 2015 GEOTEXTILES revised February 2015 02778 - 5 8. Heat tack the geotextile overlaps as shown on the Drawings. 1 9. Overlap adjacent panels a minimum of 4 IN. Heat bond seam must develop a minimum of 2 60% of the tensile strength of the parent geotextile as measured in ASTM D4632. 3 E. Protect geotextiles from clogging, tears, and other damage during installation. 4 F. Geotextile Repair: 5 1. Place a patch of the same type of geotextile which extends a minimum of 12 inches beyond 6 the edge of the damage or defect. 7 2. Fasten patches continuously using a sewn seam or other approved method. 8 3. Align machine direction of the patch with the machine direction of the geotextile being 9 repaired. 10 4. Replace geotextile which cannot be repaired. 11 G. Use adequate ballast (e.g. sand bags) to prevent uplift by wind. 12 H. Do not use staples or pins to hold the geotextile in place. 13 I. Geotextile left uncovered for more than 90 days shall be replaced unless otherwise allowed by 14 Engineer. 15 END OF SECTION 16 This page intentionally left blank. 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - replaced January 2015 GEOSYNTHETIC CLAY LINER (GCL) revised February 2015 02800 - 1 SECTION 02800 1 GEOSYNTHETIC CLAY LINER (GCL) 2 PART 1 - GENERAL 3 1.1 SUMMARY 4 A. Section Includes: 5 1. Furnish all labor, material, and equipment to complete installation of the GCL in accordance 6 with the Contract Drawings and these Specifications. 7 2. Completely coordinate work with that of other trades. 8 3. Although such work is not specifically shown or specified, all supplementary or 9 miscellaneous items, appurtenances, and devices incidental to or necessary for a sound, 10 secure, complete, and compatible installation shall be furnished and installed as part of this 11 work. 12 4. Furnish CQC Consultant to monitor the work of GCL Installer and to perform CQA/CQC 13 testing in accordance with provisions of the Contract Documents. 14 B. Related Sections include but are not necessarily limited to: 15 1. Section 01060 – Special Conditions 16 2. Section 02220 - Earthwork. 17 3. Section 02775 - HDPE Geomembrane Liner System. 18 1.2 QUALITY STANDARDS 19 A. Referenced Standards: 20 1. ASTM International (ASTM): 21 a. D4632, Test Method for Grab Breaking Load and Elongation of Geotextiles. 22 b. D4643, Determination of Water Content of Soil by Microwave Oven Method. 23 c. D4833, Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and 24 Related Products. 25 d. D4873, Identification, Storage and Handling of Geosynthetic Rolls. 26 e. D5261, Measuring Mass Per Unit Area of Geotextiles. 27 f. D5321, Test Method for Determining the Coefficient of Soil and Geosynthetic or 28 Geosynthetic and Geosynthetic Friction by the Direct Shear Method. 29 g. D5887, Test Method for Measurement of Index Flux through Saturated GCL 30 Specimens Using a Flexible Wall Permeameter. 31 h. D5888, Guide for Storage and Handling of Geosynthetic Clay Liners. 32 i. D5889, Quality Control of GCL. 33 j. D5890, Swell Index of Clay Mineral Component of Geosynthetic Clay Liners. 34 k. D5891, Fluid Loss of Clay Component of Geosynthetic Clay Liners. 35 l. D5993, Test Method for Measuring Mass Per Unit Area of Geosynthetic Clay Liners. 36 m. D6072, Practice for Obtaining Samples of GCL 37 n. D6102, Guide for Installation of Geosynthetic Clay Liners. 38 o. D6243, Test Method for Determining the Internal and Interface Shear Resistance of 39 Geosynthetic Clay Liner by the Direct Shear Method. 40 p. D6496, Determining Average Bonding Peel Strength Between Top and Bottom Layers 41 of Needle Punched GCLs. 42 q. D6766, Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay 43 Liners Permeated with Potentially Incompatible Aqueous Solutions. 44 r. D6768, Test Method for Tensile Strength of Geosynthetic Clay Liner. 45 46 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - replaced January 2015 GEOSYNTHETIC CLAY LINER (GCL) revised February 2015 02800 - 2 2. Geosynthetic Research Institute (GRI): 1 a. GCL-3, Test Methods, Required Properties, and Testing Frequencies of Geosynthetic 2 Clay Liners (GCLs). 3 B. Quality Assurance: 4 1. The OWNER's representative will conduct independent testing to support construction 5 quality assurance program and to provide documentation of such to appropriate regulatory 6 agencies. Facilitate and provide opportunities as OWNER's representative require. 7 2. Manufacture, store, place, seam, test and protect GCL as described in ASTM D4873, D5888 8 and D6102. 9 C. Qualifications: 10 1. Each manufacturing firm shall demonstrate 5 years continuous experience, including a 11 minimum of 5,000,000 SF of the material for use in similar projects.. 12 D. CQA Plan Implementation: Construction Quality Assurance documentation for the GCL 13 installation will be performed for the Owner in accordance with the CQA Plan prepared for this 14 project. The Owner, CQC Consultant, and GCL Installer, however, should familiarize themselves 15 with the CQA Plan. 16 1.3 DEFINITIONS: 17 A. Manufacturer: Manufacturer produces geosynthetic clay liner panels from first quality 18 geotextiles and sodium bentonite. The manufacturer is responsible for producing panels which 19 comply with this Specification. These responsibilities include but are not limited to: 20 1. Acceptance of the geotextiles, bentonite, and additives from suppliers/manufacturers and 21 testing of these materials to ensure compliance with the manufacturer's specifications and 22 with this Specification. 23 2. Fabrication of the geotextiles and bentonite into GCL panels using mixing and extrusion 24 equipment. 25 3. Testing of the GCL to ensure compliance with manufacturer's specification and this 26 Specification. 27 4. Shipping of the GCL to fabricator/installer designated facilities. 28 5. Certification of the raw materials and finished GCL to comply with this Specification. 29 6. Certification of fabricator's and installer's training, experience, and methods for seaming and 30 inspecting GCL installations in compliance with manufacturer's standards and with Quality 31 Assurance requirements of this Specification (Article 1.2). 32 B. Installer: Installers of GCLs are responsible for storing, handling, fitting, seaming, and testing of 33 GCL panels in the field. These responsibilities include but are not limited to: 34 1. Acceptance (in writing) of the GCL rolls from the transporter. 35 2. Acceptance (in writing) of the soil material which will serve as a base for the GCL. This 36 acceptance shall precede installation of the GCL, and shall state that the installer has 37 inspected the surface, and reviewed the Specifications for material and placement, and finds 38 all conditions acceptable for placement of GCL liners. The written acceptance shall 39 explicitly state any and all exceptions to acceptance. 40 3. Handling, seaming, testing, and repair of GCL liners in compliance with this Specification 41 and with written procedure manuals prepared by the installer or the manufacturer. 42 4. Repair or replacement of defects in the GCL as required by the Inspector or the Owner. 43 5. Installer and manufacturer may be the same firm. 44 C. Inspector: Inspectors of GCL liner are responsible for observing field installation of the GCL 45 and providing the manufacturer, installer, and Owner with verbal and written documentation of the 46 compliance of the installation with this Specification and with written procedures manuals 47 prepared by the manufacturer. Inspector’s responsibilities include, but are not limited to: 48 1. Inspection of material, handling, and field installation of the GCL liner. Inspection of all 49 seams, repair, and test results. 50 2. All exceptions to material or installation shall be documented to the Engineer in writing 51 within 48 hours of discovery. 52 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - replaced January 2015 GEOSYNTHETIC CLAY LINER (GCL) revised February 2015 02800 - 3 D. Engineer: The Engineer is responsible for design of the geosynthetic liner system. 1 E. Hydrated GCL is defined as material which has become soft as determined by squeezing the 2 material with finger pressure, material which has exhibited swelling, or material which as a 3 moisture content greater than 100 percent as determined by ASTM D2216. 4 1.4 SUBMITTALS 5 A. Shop Drawings: 6 1. Product Data and Factory Test Results: Published product properties and specifications for 7 the proposed GCL, as well as factory test results of materials certified by the GCL 8 manufacturer, shall be submitted showing conformance with the requirements of these 9 Specifications. In addition, the Contractor shall submit the manufacturer's certification 10 stating that the material is similar to and of the same formulation as that for which test 11 results are submitted, and by which actual usage has been demonstrated to be satisfactory 12 for the intended application. 13 2. Samples: Samples of the GCL sheeting shall be provided to the CQA Consultant. Samples 14 shall have a width of 4.5 IN, and a length of 5 IN. 15 3. Delivery, Storage, and Handling Instructions: The manufacturer's recommendations for 16 delivery, storage, and handling shall be submitted to the CQA Consultant for review. 17 4. Delivery Date: The CQA Consultant shall be notified of the scheduled delivery date for the 18 materials. 19 5. Installation Drawings, Procedures, and Schedules: Installation drawings, procedures, and a 20 schedule for carrying out the work shall be provided by the Contractor to the CQA 21 Consultant for review. Procedures addressed by the Contractor shall include but not be 22 limited to material unloading, storage, installation, repair, and protection to be provided in 23 the event of rain. A schedule showing the order of placement, location of panels, seams, and 24 penetrations shall be submitted for the CQA Consultant’s review. Proposed methods of 25 seaming (overlapping) GCL panels. Submit drawings showing the panel layout, seams, and 26 associated details including pipe penetrations. Following review, these drawings will be 27 used for installation of the GCL. Any deviations from these drawings must be approved by 28 the CQA Consultant. 29 B. Miscellaneous Submittals: 30 1. Test results: 31 a. Bentonite, geotextile and GCL tests at frequency specified in respective quality control 32 manuals. Results shall include or bracket the rolls delivered for use in the Work. 33 2. Qualification documentation specified in Article 1.2. 34 3. Submit written certifications that: 35 a. The GCL delivered to site meets the requirements of this Specification. 36 b. The GCL was received and accepted in undamaged condition from shipper. 37 c. The subgrade has been properly prepared and acceptable for the placement of the GCL. 38 d. The GCL was installed in accordance with this Specification and with approved shop 39 drawings. 40 e. The materials placed on top of the GCL were placed properly and carefully. 41 4. Warranties. 42 5. Record Drawing Information: Record drawings including but not limited to drawings 43 showing the location of all seams, panels, repairs, patches, anchor trenches, pipe 44 penetrations, and other appurtenances, including measurements and dimensions, shall be 45 prepared by the Contractor and submitted to the Owner following completion of the project. 46 1.5 DELIVERY, STORAGE, AND HANDLING 47 A. Do not place GCL rolls directly on the ground. 48 B. Store and protect GCL from dirt, water, ultraviolet light and other sources of damage. 49 C. Label, handle, and store GCL in accordance with ASTM D4873 and as specified herein. 50 1. Wrap each roll in an opaque and waterproof layer of plastic during shipment and storage. 51 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - replaced January 2015 GEOSYNTHETIC CLAY LINER (GCL) revised February 2015 02800 - 4 2. Do not remove the plastic wrapping until deployment. 1 D. Label each roll with the manufacturers name, lot number, roll number, and roll dimensions 2 (length, width, gross weight). 3 1. Repair or replace GCL or plastic wrapping damaged as a result of storage or handling, as 4 directed. 5 2. Do not expose GCL to temperatures in excess of 71 Deg C (160 Deg F) or less than 0 Deg 6 C (32 Deg F) unless recommended by the Manufacturer. 7 E. Do not use hooks, tongs or other sharp instruments for handling the GCL. Do not lift rolls by use 8 of cables or chains in contact with the GCL. Do not drag GCL along the ground. 9 1.6 WARRANTY 10 1. The Manufacturer shall provide a warranty to the OWNER against manufacturing defects or 11 failures related to manufacture on a non-prorata basis for five (5) years after date of 12 shipment. 13 2. GCL Installer's Warranty: The GCL Installer's warranty shall warrant their workmanship to 14 be free of defects on a non-prorata basis for five (5) years after the final acceptance of the 15 Work. This warranty shall include but not be limited to overlapped seams, anchor trenches, 16 attachments to appurtenances, and penetration seals. 17 PART 2 - PRODUCTS 18 2.1 ACCEPTABLE MANUFACTURERS 19 A. Subject to compliance with the Contract Documents, the following Manufacturers are 20 acceptable: 21 1. Geosynthetic Clay Liners: 22 a. Agru America, Inc. 23 b. CETCO. 24 c. GSE Environmental. 25 2.2 MATERIALS 26 A. The GCL shall be GSE BentoLiner CAR NSL or Engineer approved equal. 27 A.B. General: 28 1. The GCL shall be reinforced. 29 2. The GCL shall consist of bentonite encased, front and back, with geotextile. The materials 30 supplied under these Specifications shall be first quality products designed and 31 manufactured specifically for the purposes of this work. 32 3. The GCL shall be supplied in rolls. The roll length shall be maximized to provide the largest 33 manageable sheet for the fewest overlaps. Labels on the roll shall identify the sheet number, 34 date of fabrication, proper direction of unrolling, and minimum recommended overlap. A 35 quality control certificate shall be supplied with each roll. 36 4. The active ingredient of the GCL shall be natural sodium bentonite. Polymer enhancement 37 shall be added to the sodium bentonite formulation as necessary to be chemical compatible 38 with typical CCR waste leachate. 39 4.5. Encapsulate bentonite between two geotextiles. A nominal 5 mil polypropylene resin shall 40 be impregnated in the carrier geotextile portion of the GCL (to be installed as the bottom 41 side) to lower the hydraulic conductivity. 42 5.6. Lock-stitch or heat-seal needle punched geotextile backed GCL with high strength 43 polypropylene thread, if required, to provide internal shear strength reinforcing. The internal 44 shear reinforcing mechanism shall resist failure due to thread pull-out over long-term creep 45 situations. 46 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - replaced January 2015 GEOSYNTHETIC CLAY LINER (GCL) revised February 2015 02800 - 5 6.7. Continuously adhere the bentonite to both geotextiles to ensure that the bentonite will not be 1 displaced during handling, transportation, storage and installation, including cutting, 2 patching and fitting around penetrations. The bentonite sealing compound or bentonite 3 granules used to seal penetrations and make repairs shall be made of the same natural 4 sodium bentonite as the GCL and shall be as recommended by the GCL manufacturer. The 5 permeability of the GCL overlap seams shall be equal to or less than the permeability of the 6 body of the GCL sheet. 7 B.C. Physical Properties: Physical properties of GCL shall be as shown in Table 1 of this 8 Section. The manufacturer shall certify that materials provided meet these criteria according to 9 ASTM 10 D5889 and GRI GCL3 as modified by this Specification. 11 12 TABLE 1: REQUIRED GCL PROPERTIES GCL PROPERTY TEST METHOD REQUIRED VALUE Cap Non Woven Geotextile, Mass/ Unit Area ASTM D5261 6.0 oz/sy MARV Carrier Woven Geotextile, Mass/ Unit Area ASTM D5261 3.1 oz/sy MARV Hydraulic Conductivity ASTM D5887 ≤ 5x10-9 10 cm/s Index Flux ASTM D5887 ≤ 1x10-9 cm/s Bentonite Content (@ 0% moisture) ASTM D5993 ≥ 0.75 lb/sf Hydrated Internal Shear Strength ASTM D6243 ≥ 500 psf Free Swell ASTM D5890 ≥ 24 mL Fluid Loss ASTM D5891 ≤ 18 mL Peel Strength, MD ASTM D6496 ≥ 3.5 ppi MARV Tensile Strength, MD ASTM D6768 ≥ 30 40 ppi MARV 13 C. The GCL shall be GSE BentoLiner CAR NSL, GSE BentoLiner CAR NWL, or Engineer 14 approved equal. 15 D. Interface Friction Tests. 16 1. Test this and adjacent materials using ASTM D 6243. Section 01060-Special Conditions, 17 outlines the conditions under which this material shall be tested. 18 2. This material is part of a system. The system shall meet the requirements before the 19 component material can be deemed acceptable. 20 PART 3 - EXECUTION 21 3.1 CONSTRUCTION 22 A. Shipping, Handling, and Storage: 23 1. During periods of shipment and storage, all GCL shall be protected from direct sunlight, 24 water, mud, dirt, dust, and debris. To the extent possible, the GCL shall be maintained 25 wrapped in heavy-duty protective covering until use. GCL delivered to the project site 26 without protective wrapping shall be rejected. 27 2. The Engineer shall approve the shipping and delivery schedule prior to shipment. The 28 Engineer shall approve the on-site storage area for the GCL. Unloading and storage of GCL 29 shall be the responsibility of the Contractor. 30 3. GCL that is damaged during shipping, handling, or storage shall be rejected and replaced at 31 Contractor’s expense. 32 B. Installation of GCL: 33 453925-235691-018 Colon Mine Site Structural Fill November 2014 Permit Application Technical Specifications - replaced January 2015 GEOSYNTHETIC CLAY LINER (GCL) revised February 2015 02800 - 6 1. Prior to placement, the surface must be prepared as follows: 1 a. Lines and grade must be verified by a Licensed Land Surveyor. 2 b. The surface must be proofrolled to verify the supporting soil condition. 3 c. The surface must be inspected for rocks larger than 0.75 IN. 4 d. Steel drum rolled in preparation for the GCL. 5 e. Thickness shall be verified by an approved method. Refer to Specification 01060 and 6 the CQA Plan. 7 2. GCL shall be placed to the lines and grades shown on the Contract Drawings. At the time of 8 installation, GCL shall be rejected by the CQA/CQC Consultant if it has defects, rips, holes, 9 flaws, evidence of deterioration, or other damage. 10 3. The surface receiving the GCL shall be prepared to a relatively smooth condition, free of 11 obstructions, excessive depressions, debris, and very soft or loose pockets of soil. This 12 surface shall be approved by the CQA Consultant prior to GCL placement. 13 4. The GCL shall be placed smooth and free of excessive wrinkles. 14 5. The GCL shall be installed on sideslopes with vertical seams only. 15 6. When GCL is placed with upslope and downslope portions, the upslope portion shall be 16 lapped such that it is the upper or exposed surface. 17 7. The GCL shall not be placed in standing water or while raining. Any material that becomes 18 partially/totally hydrated shall be removed and replaced. 19 8. The GCL seams shall be laid with a minimum overlap equal to 6 IN or the manufacturer's 20 recommendation, whichever is greater. Bentonite powder shall be placed at all GCL seams. 21 9. GCL shall be temporarily secured in a manner approved by the CQA Consultant prior to 22 placement of overlying materials. 23 10. Any GCL that is torn or punctured shall be repaired or replaced as directed by the Geotech 24 Engineer, by the Contractor at no additional cost to the Owner. The repair shall consist of a 25 patch of GCL placed over the failed areas and shall overlap the existing GCL a minimum of 26 12 IN from any point of the rupture. 27 11. If in-place GCL is not otherwise protected from hydration due to rainfall, the GCL shall be 28 covered with a minimum of 12 IN of the overlying design material within 12 hours of GCL 29 placement. 30 12. Take necessary precautions to protect underlying soil and geomembrane liners from damage 31 due to any construction activity. Damage to liners shall be repaired at Contractor’s expense. 32 13. The Contractor shall ensure that adequate dust control methods are in effect to prevent the 33 unnecessary accumulation of dust and dirt on geosynthetic surfaces, which hampers the 34 efficient field seaming of geosynthetic panels. 35 14. The Contractor shall maintain natural surface water drainage diversions around the work 36 area. The Contractor shall provide for the disposal of water that may collect in the work 37 area, from precipitation falling on the work or from inadequate diversion structures. 38 3.2 FIELD QUALITY CONTROL 39 A. The Geotech Engineer shall monitor and document the installation of GCL to ensure that the 40 installation and necessary repairs are made in accordance with these Specifications. 41 3.3 GCL ACCEPTANCE 42 A. The GCL Installer shall retain all ownership and responsibility for the GCL until final 43 acceptance by the Owner. The Owner will accept the GCL installation when the installation is 44 finished, all required submittals have been received and approved, and CQC/CQA verification of 45 the adequacy of all field seams and repairs, including associated testing, is complete. 46 END OF SECTION 47 2.5 2.5 6'