Loading...
HomeMy WebLinkAbout2019.06.04_CCO.p8_PPA Manufacturing Process Carbon Bed Inlet and Outlet Stack Emissions Test ReportIASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 PPA MANUFACTURING PROCESS CARBON BED INLET AND OUTLET STACK EMISSIONS TEST REPORT TEST DATES: 30 APRIL - 01 MAY 2019 THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA Prepared for: THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306 Prepared by: WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380 June 2019 W.O. No. 15418.002.012 IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 i TABLE OF CONTENTS Section Page 1. INTRODUCTION..............................................................................................................1  1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1  1.2 TEST OBJECTIVES ...............................................................................................1  1.3 TEST PROGRAM OVERVIEW .............................................................................1  2. SUMMARY OF TEST RESULTS ...................................................................................4  3. PROCESS DESCRIPTIONS ............................................................................................5  3.1 POLYMER PROCESSING AID (PPA) AREA ......................................................5  3.2 PROCESS OPERATIONS AND PARAMETERS .................................................5  4. DESCRIPTION OF TEST LOCATIONS .......................................................................6  4.1 PPA PROCESS STACK ..........................................................................................6  4.2 PPA CARBON BED INLET ...................................................................................6  5. SAMPLING AND ANALYTICAL METHODS .............................................................9  5.1 STACK GAS SAMPLING PROCEDURES ...........................................................9  5.1.1 Pre-Test Determinations ...........................................................................9  5.2 STACK PARAMETERS .........................................................................................9  5.2.1 EPA Method 0010.....................................................................................9  5.2.2 EPA Method 0010 – Sample Recovery ..................................................11  5.2.3 EPA Method 0010 – Sample Analysis ....................................................14  5.3 GAS COMPOSITION ...........................................................................................15  6. DETAILED TEST RESULTS AND DISCUSSION .....................................................17  APPENDIX A PROCESS OPERATIONS DATA APPENDIX B RAW AND REDUCED TEST DATA APPENDIX C LABORATORY ANALYTICAL REPORT APPENDIX D SAMPLE CALCULATIONS APPENDIX E EQUIPMENT CALIBRATION RECORDS APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 ii LIST OF FIGURES Title Page Figure 4-1 PPA Process Stack Test Port and Traverse Point Location ......................................... 7  Figure 4-2 PPA Carbon Bed Inlet Test Port and Traverse Point Location .................................... 8  Figure 5-1 EPA Method 0010 Sampling Train ............................................................................. 10  Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 13  Figure 5-3 WESTON Sampling System ...................................................................................... 16  IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 iii LIST OF TABLES Title Page Table 2-1 Summary of HFPO Dimer Acid Test Results ................................................................ 4  Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results PPA Process Stack ....... 18  Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results PPA Carbon Bed Inlet . 20  IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 1 1. INTRODUCTION 1.1 FACILITY AND BACKGROUND INFORMATION The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. The Chemours operating areas on the site include the Fluoromonomers, IXM and Polymer Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse. Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid emission testing on the PPA process stack (outlet) and PPA carbon bed inlet. Testing was performed on 30 April-1 May 2019 and generally followed the “Emissions Test Protocol” reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program. 1.2 TEST OBJECTIVES The specific objectives for this test program were as follows:  Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid from the PPA process stack and PPA carbon bed inlet which are located in the PPA process area.  Calculate the carbon bed removal efficiency for HFPO Dimer Acid.  Monitor and record process data in conjunction with the test program.  Provide representative emissions data. 1.3 TEST PROGRAM OVERVIEW During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured on the PPA process stack and the PPA carbon bed inlet. Tables 1-1 provides a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 2 Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test locations. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6. Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided in electronic format and on CD with each hard copy. IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 3 Table 1-1 Sampling Plan for PPA Carbon Bed Sampling Point & Location PPA Carbon Bed Number of Tests: 6 (3 inlet, 3 outlet) Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests EPA M3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size > 1m3 NA NA NA NA Total Number of Samples Collected1 6 6 3 3 6 Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0 Field Blank Trains1 1 per source 0 0 0 0 Proof Blanks1 1 per train 0 0 0 0 Trip Blanks1,2 1 set 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 105 6 3 3 6 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 4 2. SUMMARY OF TEST RESULTS A total of three test runs were performed on the PPA process stack (outlet) and on the PPA carbon bed inlet. Table 2-1 provides a summary of the HFPO Dimer Acid emission test results. Detailed test results summaries are provided in Section 6. It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds. Table 2-1 Summary of HFPO Dimer Acid Test Results Inlet Outlet (Process Stack) Removal Efficiency g/sec lb/hr g/sec lb/hr % PPA Carbon Bed R1 3.12E-04 2.48E-03 9.82E-06 7.80E-05 96.9 R2 3.54E-04 2.81E-03 1.13E-05 8.95E-05 96.8 R3 4.71E-04 3.74E-03 8.07E-06 6.41E-05 98.3 Average 3.79E-04 3.01E-03 9.72E-06 7.72E-05 97.3 IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 5 3. PROCESS DESCRIPTIONS The PPA area is included in the scope of this test program. 3.1 POLYMER PROCESSING AID (PPA) AREA The PPA facility produces surfactants used to produce fluoropolymer products, such as Teflon®, at other Chemours facilities, as well as sales to outside producers of fluoropolymers. Process streams are vented to a caustic wet scrubber (ACD-A1), carbon bed and vented to a process stack (AEP-A1). The process inside the building is under negative pressure and the building air is vented to the carbon bed and the process stack (AEP-A1). 3.2 PROCESS OPERATIONS AND PARAMETERS Source Operation/Product Batch or Continuous PPA AF Column Reboiler/Virgin Pressure Transfers/Virgin or Purified Continuous once it starts taking off to feed tank Batch (pressure transfers from one vessel to another – every 2 hours) During the test program, the following parameters were monitored by Chemours and are included in Appendix A.  PPA Process o Caustic Wet Scrubber (ACD-A1)  Caustic recirculation flow rate  Differential pressure across the packing     IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6 4. DESCRIPTION OF TEST LOCATIONS 4.1 PPA PROCESS STACK Two 4-inch ID test ports are in place on the 30-inch ID fiberglass stack. The ports are 12 feet (4.8 diameters) from the nearest downstream disturbance (carbon bed outlet) and 32 feet (12.8 diameters) from the nearest upstream disturbance (stack exit). Per EPA Method 1, a total of 24 traverse points (12 per axis) were used for M-0010 isokinetic sampling. See Figure 4-1 for a schematic of the test port and traverse point locations. Note: All measurements at the test location were confirmed prior to sampling. 4.2 PPA CARBON BED INLET Each fiberglass reinforced plastic (FRP) duct at the inlet of the PPA carbon bed is 34-inch ID. The test ports are located a minimum of 42 inches (> 1.2 duct diameters) from the nearest downstream disturbance and at least 57 inches (> 1.7 diameters) from the nearest upstream disturbance. Based on EPA Method 1, a total of 24 traverse points (12 per port) were used for HFPO Dimer Acid sampling. Figure 4-2 provides a schematic of the test port and traverse port locations. 30 " TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 7 8 9 10 11 12 FIGURE 4-1 PPA PROCESS STACK TEST PORT AND TRAVERSE POINT LOCATION IASDATA\CHEMOURS\15418.002.012\FIGURE 4-3 PPA PROCESS STACK7 32 ' 12 ' ID FAN DEMISTER DUCT (DISCONNECTED) ~ 33 ' 1 2 3 1/2 5 3/8 7 1/2 10 3/4 19 3/8 22 1/2 24 3/4 26 1/2 28 29 DRAWING NOT TO SCALE 34 " TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 7 8 9 10 11 12 FIGURE 4-2 PPA PROCESS CARBON BED INLET TEST PORT AND TRAVERSE POINT LOCATION IASDATA\CHEMOURS\15418.002.012\FIGURE 4-2 PPA PROCESS SCHEMATIC8 CARBON BED 3/4 2 1/4 4 6 8 1/2 12 1/8 21 5/8 25 1/2 28 30 31 3/4 33 1/4 DRAWING NOT TO SCALE 57 " 42 " IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 9 5. SAMPLING AND ANALYTICAL METHODS 5.1 STACK GAS SAMPLING PROCEDURES The purpose of this section is to describe the stack gas emissions sampling train and to provide details of the stack sampling and analytical procedures utilized during the emissions test program. 5.1.1 Pre-Test Determinations Preliminary test data was obtained at the test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements. A check for the presence or absence of cyclonic flow was previously conducted at the test locations. The cyclonic flow check was negative (< 20°) verifying that the sources were acceptable for testing. Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures. Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures. 5.2 STACK PARAMETERS 5.2.1 EPA Method 0010 The sampling train utilized to perform the HFPO Dimer Acid sampling was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter. 9(17:$//,&(:$7(55(&,5&8/$7,213803&21'(16$7(75$3,03,1*(56,&(%$7+9$&880/,1(0$,19$/9(7(03(5$785(6(16256%<3$669$/9($,57,*+73803'5<*$60(7(525,),&(0$120(7(5&+(&.9$/9(7(03(5$785(6(1625+($7('$5($),/7(5+2/'(525,),&(6,/,&$*(/&21'(16(5;$'625%(1702'8/(621($1'7:27(03(5$785(6(16257(03(5$785(6(16259$&880*$8*(,$6'$7$?&+(02856?2?),*85(0(7+2'),*85((3$0(7+2'6$03/,1*75$,1+($7('352%(%87721+22.12==/(5(9(56(7<3(3,72778%(10 127(7+(&21'(16(50$<%(326,7,21('+25,=217$//<7+(;$'625%(1702'8/(:,//$/:$<6%(,1$9(57,&$/326,7,215,*,'%2526,/,&$7(78%,1*25)/(;,%/(6$03/(/,1(,&(:$7(55(&,5&8/$7,21&21'(16$7(75$3,03,1*(5 IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 11 A section of borosilicate glass (or flexible polyethylene tubing) connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser and an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-L condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and the XAD-2 module to maintain method required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train. HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride undergoes hydrolysis instantaneously in water in the sampling train and during the sample recovery step and will be converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represents a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid. During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required), or during midpoint port changes. 5.2.2 EPA Method 0010 – Sample Recovery At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery. IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 12 A consistent procedure was employed for sample recovery: 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled. 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments. 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed. 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.   5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed. 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.   7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed. 8. The silica gel in the final impinger was weighed and the weight gain value recorded. 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis. Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool. During each test campaign, an M-0010 blank train was set up near the test location, leak checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis. See Figure 5-2 for a schematic of the M-0010 sample recovery process. ,$6'$7$?&+(02856?2?),*85((3$),*85(+)32',0(5$&,'6$03/(5(&29(5<352&('85(6)250(7+2'12==/(352%($1')5217+$/)),/7(5+2/'(56$03/()5$&7,21),/7(56$03/()5$&7,21%$&.+$/)),/7(5+2/'(5&211(&7256)/(;,%/(/,1(&21'(16(56$03/()5$&7,21;$'02'8/(21(6$03/()5$&7,215(029()520,03,1*(575$,1:$6+:,7+ 0(7+$12/$0021,80+<'52;,'(6($/,1/$%(/('32/<(7+</(1(%277/(&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/:$6+:+,/(%586+,1*:,7+ 0(7+$12/$0021,80+<'52;,'(6($/(1'6:,7+*/$66&$36&29(5/$%(/&203/(7(&8672'<)2506(&85(6$03/($7$1'.((3&22/75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/6($/:$6+,1*6,1/$%(/('32/<(7+</(1(%277/(0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/),567$1'6(&21'&21'(16$7(75$36$1',03,1*(5126$1'6$03/()5$&7,21,03,1*(512 6,/,&$*(/ :(,*+$1'5(&25'0($685(92/80(2)/,48,'$1'5(&25'75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/3:(,*+$1'5(&25'5(7$,1)255(*(1(5$7,21),567$1'6(&21'&21'(16$7(75$36$1',03,1*(5126$1'6$03/()5$&7,21:$6+:,7+ 0(7+$12/$0021,80+<'52;,'(75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/;$'02'8/(7:26$03/()5$&7,215(029()520,03,1*(575$,16($/(1'6:,7+*/$66&$36&29(5/$%(/&203/(7(&8672'<)2506(&85(6$03/($7$1'.((3&22/ IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 14 5.2.3 EPA Method 0010 – Sample Analysis The Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:  Front-Half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;  Back-Half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;  Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;  Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers. The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough. The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS. Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries. TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol. IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 15 5.3 GAS COMPOSITION The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3. The sample was collected at the exhaust of the Method 0010 sampling system. At the end of the line, a tee permitted the introduction of calibration gas. The sample was drawn through a heated Teflon® sample line to the sample conditioner. The output from the sampling system was recorded electronically, and one-minute averages were recorded and displayed on a data logger. Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintains the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment. The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to ensure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier. The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run. HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDER OR METHOD0010 SAMPLE TRAINHEATED SAMPLE LINESAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISTIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-3WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.012\FIGURE 5-5 WESTON SAMPLING SYSTEM16 IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 17 6. DETAILED TEST RESULTS AND DISCUSSION Preliminary testing and the associated analytical results required significant sample dilution to bring the HFPO Dimer Acid concentration within instrument calibration, therefore, sample times and sample volumes were reduced for the formal test program. This was approved by the North Carolina Department of Environmental Quality (NCDEQ). Each test was a minimum of 96 minutes in duration. A total of three test runs were performed on the PPA process stack and on the PPA carbon bed inlet. Tables 6-1 and 6-2 provide detailed test data and test results for the PPA process stack and PPA carbon bed inlet, respectively. The Method 3A sampling on all sources indicated that the O2 and CO2 concentrations were at ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all calculations. The carbon bed removal efficiency was calculated based upon the HFPO Dimer Acid inlet and outlet mass emission rates in lb/hr. TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS PPA PROCESS STACK Test Data Run number 1 2 3 Location PPA Stack PPA Stack PPA Stack Date 04/30/19 04/30/19 05/01/19 Time period 1010-1201 1330-1518 0830-1017 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.191 0.191 0.191 Cross sectional nozzle area, sq.ft.0.000199 0.000199 0.000199 Barometric pressure, in. Hg 30.20 30.20 30.30 Avg. orifice press. diff., in H2O 0.70 0.60 0.81 Avg. dry gas meter temp., deg F 81.5 102.3 79.6 Avg. abs. dry gas meter temp., deg. R 541 562 540 Total liquid collected by train, ml 11.9 24.3 19.4 Std. vol. of H2O vapor coll., cu.ft.0.6 1.1 0.9 Dry gas meter calibration factor 0.9944 0.9944 0.9944 Sample vol. at meter cond., dcf 43.943 41.735 47.697 Sample vol. at std. cond., dscf (1)43.066 39.377 47.071 Percent of isokinetic sampling 101.9 101.9 102.2 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.013 0.028 0.019 Mole fraction of dry gas 0.987 0.972 0.981 Molecular wt. of wet gas, lb/lb mole 28.70 28.53 28.63 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O 2.10 2.10 2.10 Absolute pressure, in. Hg 30.35 30.35 30.45 Avg. temperature, deg. F 87 89 83 Avg. absolute temperature, deg.R 547 549 543 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.38.2 35.6 41.4 Stack/duct cross sectional area, sq.ft.4.90 4.90 4.90 Avg. gas stream volumetric flow, wacf/min.11217 10454 12179 Avg. gas stream volumetric flow, dscf/min.10842 9911 11822 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 5/22/2019 10:43 AM 18 043019 PPA stack TEST DATA Run number 1 2 3 Location PPA Stack PPA Stack PPA Stack Date 04/30/19 04/30/19 05/01/19 Time period 1010-1201 1330-1518 0830-1017 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 2.3431 2.6870 1.9300 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 1.92 2.41 1.45 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 1.20E-10 1.50E-10 9.04E-11 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 7.80E-05 8.95E-05 6.41E-05 HFPO Dimer Acid (From Inlet Data)2.48E-03 2.81E-03 3.74E-03 EMISSION RESULTS, g/sec. HFPO Dimer Acid 9.82E-06 1.13E-05 8.07E-06 Carbon Bed Removal Efficiency, %96.9 96.8 98.3 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS PPA PROCESS STACK 5/22/2019 10:43 AM 19 043019 PPA stack TABLE 6-2 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS PPA CARBON BED INLET Test Data Run number 1 2 3 Location PPA CB Inlet PPA CB Inlet PPA CB Inlet Date 04/30/19 04/30/19 05/01/19 Time period 1010-1201 1330-1518 0830-1017 SAMPLING DATA: Sampling duration, min. 96.0 96.0 96.0 Nozzle diameter, in. 0.250 0.250 0.250 Cross sectional nozzle area, sq.ft. 0.000341 0.000341 0.000341 Barometric pressure, in. Hg 30.10 30.10 30.20 Avg. orifice press. diff., in H2O 1.82 1.86 1.75 Avg. dry gas meter temp., deg F 83.4 89.8 76.2 Avg. abs. dry gas meter temp., deg. R 543 550 536 Total liquid collected by train, ml 34.6 32.5 27.6 Std. vol. of H2O vapor coll., cu.ft.1.6 1.5 1.3 Dry gas meter calibration factor 1.0005 1.0005 1.0005 Sample vol. at meter cond., dcf 63.472 65.238 62.118 Sample vol. at std. cond., dscf (1)62.324 63.326 62.008 Percent of isokinetic sampling 99.9 100.6 100.7 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.025 0.024 0.021 Mole fraction of dry gas 0.975 0.976 0.979 Molecular wt. of wet gas, lb/lb mole 28.56 28.58 28.61 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -2.00 -2.00 -2.00 Absolute pressure, in. Hg 29.95 29.95 30.05 Avg. temperature, deg. F 78 83 75 Avg. absolute temperature, deg.R 538 543 535 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.33.2 33.7 32.3 Stack/duct cross sectional area, sq.ft.6.31 6.31 6.31 Avg. gas stream volumetric flow, wacf/min.12567 12772 12230 Avg. gas stream volumetric flow, dscf/min.12032 12144 11873 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 5/22/2019 10:56 AM 20 043019 PPA CBed TEST DATA Run number 1 2 3 Location PPA CB Inlet PPA CB Inlet PPA CB Inlet Date 04/30/19 04/30/19 05/01/19 Time period 1010-1201 1330-1518 0830-1017 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 97.0882 110.7296 147.6090 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 55.00 61.74 84.05 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 3.43E-09 3.85E-09 5.25E-09 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 2.48E-03 2.81E-03 3.74E-03 EMISSION RESULTS, g/sec. HFPO Dimer Acid 3.12E-04 3.54E-04 4.71E-04 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS PPA CARBON BED INLET 5/22/2019 10:56 AM 21 043019 PPA CBed IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 APPENDIX A PROCESS OPERATIONS DATA Date: 4/30/2019TimeStack TestingA/F column Feed Ratev (pounds per hour)Charging water to Hyd ‐ ventingXCharging Sulfuric acid  ‐ ventingHydrolysis ‐ Wash Tank pressure Transfer to Hydrolysis Hydrolysis ‐ Phase Settle Vap heels pressure transfer Vap cycle Venting after press tran from North/South Acid tank to HydDAF tran to Hyd ‐ venting during transferHydrolysis ‐ transfer to Waste Acid TrailerScrubber Recirculation FlowScrubber dP10:15 TO 10:5536.0 GPM37.2 GPM‐0.45 INWC‐.5 INWC1500RUN 1 1010‐1201 RUN 2 1330‐151811:00 TO 11:25800 900 1000 1100 1200 1300 1400 Date: 5/1/2019TimeStack TestingA/F column Feed Ratev (pounds per hour)Charging water to Hyd ‐ ventingCharging Sulfuric acid  ‐ ventingHydrolysis ‐ Wash Tank pressure Transfer to Hydrolysis Hydrolysis ‐ Phase Settle Vap heels pressure transfer Vap cycle Venting after press tran from North/South Acid tank to HydDAF tran to Hyd ‐ venting during transferHydrolysis ‐ transfer to Waste Acid TrailerScrubber Recirculation FlowScrubber dP37.5 GPM‐0.4 INWCRun 3 0830‐10179:30 TO 10:158:30 TO 9:458:40 TO 9:30600 700 800 900 1000 1100 1200 IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 APPENDIX B RAW AND REDUCED TEST DATA CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS PPA PROCESS STACK Test Data Run number 1 2 3 Location PPA Stack PPA Stack PPA Stack Date 04/30/19 04/30/19 05/01/19 Time period 1010-1201 1330-1518 0830-1017 Operator KA/BB/NG KA/NG/BB NG/KA/BB Inputs For Calcs. Sq. rt. delta P 0.67054 0.62199 0.73105 Delta H 0.7004 0.6021 0.8113 Stack temp. (deg.F) 86.9 88.8 82.9 Meter temp. (deg.F) 81.5 102.3 79.6 Sample volume (act.) 43.943 41.735 47.697 Barometric press. (in.Hg) 30.20 30.20 30.30 Volume H2O imp. (ml) 3.0 11.0 8.0 Weight change sil. gel (g) 8.9 13.3 11.4 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 4.900 4.900 4.900 Sample time (min.) 96.0 96.0 96.0 Static pressure (in.H2O) 2.10 2.10 2.10 Nozzle dia. (in.) 0.191 0.191 0.191 Meter box cal. 0.9944 0.9944 0.9944 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 5/22/2019 11:01 AM 043019 PPA stack ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam L ofdclientct,e~r,ours Stack Conditions Meter Box ID ~Factor CW.O.#15418 Assumed Actual Meter Box Y K ~ Project ID Chemours °/ Moisture ~.-deter Box Del H ~,}Iflltl8l Mid-Point FinalMode/Souroe ID PPA Impfnger Vol (ml)Probe ID /Length Sample Train (ft')fkj(7 . Samp. Loc. ID STK Silica gel (g)Probe Material Bono Leak Check @ (in Hg)~Run No.ID 1 CO2, % by Vol 3 Pftot /Thermocouple ID Pitot leak check good / no / no / noTest Method ID M0010 02, °/a by Vol ~(Pitot Coefficient 0.84 Pitot Inspection good / no / no ye / noDate ID 15APR2019 Temperature (°F)NonJe ID ;Method 3 System good yes / no yes / no yes / noSource/Location PPA Stack Meter Temp (F) NoaJe Measurements ,Temp Check Pre- est et POSt- est etSample Date ~p ~/ Static Press (In H2O) p , r',, ~4vg NoaJe Dla (in) ~Meter Box TempBaro. Press (in Hg), Area of Stack (HZ) , 1 Reference TempOperatorAmbient Temp (°F) 1 h Sample Time Pass/Fail (+/- 2°~ Pasa /Fab Pass / FaHTotal Traverse Pts ~Temp Change Response . yes / no yes / no O a 'L .'1 ~' API ~1. Q' ~17 ~ ~ i'L ~ 3 2 ~a ~,tiv ~ . ~~~o ti ~~, ab~ ~ ~-a~ ~6 c~ 5 ~s ~.,Av Delta Avg Delta H Total Volume Avg Ts Avg T Min/Max inlMax au Mau Vac Mi ax ~ Avg Sgrt Delta P Avg Sgrt Del H Comments: ~~$'y{, EPA Method 0010 from EPA SW-846 ~~~~ ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam ~ocNent w.o.# ct,enx,urs Stack Conditions ~ Assumed Meter Box ID Actual nnetereox v ti~ O, ~l K Factor ~,~j~s4~a Project ID Chemours %a Moisture ti Meter Box Del H Initial Mid-Point FinalMode/Source ID PPA Impinger Vol (ml)Prohe ID /Length (! Sample Train (ft3)p (Q 19Samp. Loc. ID STK Silica gel (g)Probe Material 8oro Leak Check @ Qn Hg)Run No.ID 2 CO2, % by Vol O Pitot /Thermocouple ID , Pitot leak check good / no / no / noTest Method ID M0010 02, % by Vol Pi of Coefficient 0.84 Pitot Inspectlon good / no J no / noDate ID 15APR2019 Temperature (°F) '~.ID I / McUwd 3 System good yes / no yes / no yes / noSource/Locatlon PPA Stack Meter Temp (F) ~ p~,~ ;.c( Noale Measurements , a . q Temp Check Pre- est et ost- est etSample Date 0 Static Press Qn H2O) Avg NoaJe Dla (in) , ~ q, Meter Box TempBaro. Press (in Hg) '2,. Area of St2ck (ftz) N Reference TempOperator 'Ambient Temp (°F) ~S Sample Time q Pass/Fail (+/- 2°~ Pasa / Fali Pess /FailTotal Traverse Pts _~ ~/ Temp Change Response ~ yes / no yes / no 1____.~ 1 { 1 1 1 1 1 n~ I~~ ~ Avg Sgrt Defta P •Av~Sq Del H Con r~v V ~~~~ v v2 ~`1~3 1 6fl EPA Method 0010 from EPA SW-846 ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Page~,or 1Client cherr,ours Stack Conditions Meter sox i~ ~ K Factor ~, s'w.o.# asa~e Assumed Actual Metereox v b.gqyljProject ID cnemours io Moisture Meter Box Del H j, q2 ~~ Initial Mid-Point FinalMode/Source ID PPA Impinger Vol (ml)~Probe ID /Length ~ 7p~Sample Traln (fl')o~a[) 6~y ~ _Samp. Loc. ID STK Silica gel (g)i Probe Material 8oro Leak Check (a~ (in Hg)1 ~~Run No.ID 3 CO2, °/ by Vol , 1 Pitot /Thermocouple ID P ]7J(a Pftot leak check good / no yes no y / noTest Method ID M0010 02, % by Vol ~Pitot Coefficient 0.84 Pitot Inspection good / no / no es 7 noDate ID 15APR2019 Temperature (°F)7 Nozzle ID ,, q McUiod 3 System goodSource/Locatlon PPA Stack Meter Temp (F) ~. No~Je Measurements 0. ql O. Q f , (~j 1 Temp Check re-Test et Post- est etSample Date Static Press (in H2O) . A~g NoaJe Dia (in) ~, ~G~ Meter Box TempBaro. Press (in Hg) Q Area of Stack (ftZ) y,~O~Reference TempOperator /[ Amb(ent Temp (°F) ~ ~ Sample Time Pass/Fail (+/- 2°~ Pass / FeU Pass /FabTotal Traverse Pts ~l~ Temp Change Response i 1 no yes I no 0¨ r~~ r . ~~~~~~~.~~~ss~m~~~~~~~~~~ ~~~~~~~~ ~~~«~~1~6~~~~~~~~~~~~r~~~'~~~► ~- r ~~~~d~~t3•~~~~y'~ i.t~il!•~~~~~~~~~-1 .~5~~~~~~~~0~~~~-• ~~~~~ ~ •!1!lI~~~CJ~~ti~~~~~~~- ~~-~~ r ~iid~~r ~~~~~_ ~~-~~~~~~}~~~s~~~- ~~-~~~ ~.i~3i~i SL1~~~~~- ~~L~i~'~~~~~~~~~~~~~- yNFS•T~ =;IV t~' , ~-J I ~q.flJ~gp,' I~~"4~~'~ I b (7 I nnau vac I ~~~~' I~'~ EPA Method 0010 from EPA SW-846 Avg Sgrt Delta P Avg 5.~ 31 ~ , 8q Wr' v SAMPLE RECUVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Client Chemours W.O. # 15418 Location/Plant Fayetteville, Nc Source &Location PPA stack Run No. 1 Sample Date ~/~~ Recovery Date Sample I.D. Chemours - PPA - STK - 1 - M0010 - Analyst ~~ Filter Number ~/~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empry HPLC H2O HPLC H2O Silica Gel Final ~~Q Z ~~~~ Initial ~goo goo ~soo Gain Z ~~0`2 ~~ ~j~~Q Impinger Color Labeled? ~ Silica Gel Condition C~ Sealed? Run No. 2 Sample Date ~ ~~d Recovery Date ~'f Sample I.D. Chemours - PPA - STK - 2 - M0010 - Analyst ~M~ Filter Number /~q Im in er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Silica Gel Final ~'~~ ~~ ~3~/3 3 Initial ~100 100 ~300 Gain •--2 ~ `~~ 1 X 3.3 Z `~7i ~(~ ~ ~/ i/Impinger Color C,~^~` Labeled? Silica Gel Condition l~a~.~. Sealed? "~ ~ L~ fj!- ~~~Run No. 3 Sample Date ,~~ ii Recovery Date Sample I.D. Chemours - PPA - STK - 3 - M0010 - Analyst ~~~ Filter Number f~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Silica GeI Final Z ~~~~~ Y't{ Initial ~100 100 v 300 Gain ~i 2, y f 1,.x'1 f~Y.'~ ~Impinger Color Labeled? Silica Gel Condition ~ a~~ Sealed? Check COC for Sample IDs of Media Blanks ~s ~Cvu.t~ 1 we ~o a g ~ ~Z ~ ~/i.~ CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS PPA CARBON BED INLET Test Data Run number 1 2 3 Location PPA CB Inlet PPA CB Inlet PPA CB Inlet Date 04/30/19 04/30/19 05/01/19 Time period 1010-1201 1330-1518 0830-1017 Operator AS/JL AS/JL AS/JL Inputs For Calcs. Sq. rt. delta P 0.58298 0.59008 0.57037 Delta H 1.8175 1.8579 1.7467 Stack temp. (deg.F) 77.8 82.6 74.9 Meter temp. (deg.F) 83.4 89.8 76.2 Sample volume (act.) 63.472 65.238 62.118 Barometric press. (in.Hg) 30.10 30.10 30.20 Volume H2O imp. (ml) 10.0 14.0 11.0 Weight change sil. gel (g) 24.6 18.5 16.6 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 6.310 6.310 6.310 Sample time (min.) 96.0 96.0 96.0 Static pressure (in.H2O) -2.00 -2.00 -2.00 Nozzle dia. (in.) 0.250 0.250 0.250 Meter box cal. 1.0005 1.0005 1.0005 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 5/22/2019 11:04 AM 043019 PPA CBed ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid client Chemours Stack Conditions Meter eox Iv W.O.#15418 Assumed Actual Meter Box Y V p 0 S Project ID Chemours °/ Moisture `Meter Box Del H . Z ~ (p Mode/Source ID PPA Impinger Vol (ml)~ ~/ Probe ID /Length Sample Train (ft9) Samp. Loc. ID Cbed Silica gel (g)Z y• (✓ Probe Material Leak Check @ (in Hg) Run No.ID 1 CO2, °/a by Vol (~ ~/ Pitot / Thermocouple ID = Pitot leak check good Test Method ID M0010 02, % by Vol Zp. Pitot Coefficient 0.84 Pitot Inspec8on goodDate ID Source/LocaUon APR2019 PPA Ca~bori Bed Inlet Temperature (°F) `Meter Temp ("F) NoaJe ID ~ Method 3 System good Page ~ of K Factor ~ , l 7 Initial Mid-Point Final ~, .~. . C~~mr~T~r~~~. t~ NoaJe Measurements ,~~~ ~ ~~ 2 ~ Temp Check - ~r l se t be os - I es eSample Date ~ f 7 ~ ~ 9 Static Press (fn H2O) ' ~""~,~ - Avg NoaJe Dla (in) 2 ~~ ~ Meter Box Temp -j —~ o~ Baro. Press (in Hg) _~. l Area of Stack (ftZ) (, 31 Reference Temp ~ v, ~ Operator (.J 5,~ ~'~ ~}~Amblent Temp (°F) ` 7,j ..;Sample Time Pass/Fail (+/- 2°) Pass Fafl a /Fail Total Traverse Pts L 1} Temp Change Response 5 / no / 0~~~ ~~—~~~~~~~~r~~~— ~~~~~~~~a~~~s~a ~~~s~~~~~r~~~~~~~a ~~~Q~s~rr~~ ~~~~~~~~~■~~~~t~~~~~m~~~~~~~~~~~~~~~~~~~~~~~~■~~~~~~~am~~~~~~~~~~~Q~~~~om~~~~~~~~~■~~ic~~~~o~~s~s~~~~~~~~rc~~~~~~~o~■~~~~~~~~~~t~m ~~~«~m~~~~~~~~~~~~~c~ ~s~~~~~~~~~~z~ ~~~d~~~ ~~0n~■~..y35t l.~e~~S L3, 4~Z "l~.l~ Ava Sart ~aRa Avn Snit flal H r~,........._._. S~Z°►~' ~ 1.3153 I ~ I m 5vac ~~ ~a ~ 5 EPA Method 0010 from EPA SW-846 v~L: (~2.3~ ,~ ISOKINETIC FIELD DATA SHEET client ci,arrwurs Stack Conditions w.o.#~ sal a Assumed Project ID Chemours %Moisture ModelSource ID PPA Impinger Vol (ml) Samp. Loc. ID Coed Sllfca gel (g) Run No.ID 2 CO2, % by Vol (~ Test Method ID M0010 02, °/ by Vol ~atq Date ID APR2019 Temperature (°F) c~ p Source/Locatlon PPA Carbon Bad Inlet Meter Temp ("F) k ~ Sample Date ~ ~3~~ ~q Static Press (in H2O) . Z Bam. Press (in Hg)~D. 1 Operator 1,~~~C_ Ambient Temp(°F) ~~ EPA Method 0010 - HFPO Dimer Acid Pam r ors Meter Box ID Actual Meter Box Y ` ppp~K Factor t—J 1 Meter Box Del H . Zq2 Initial Mid-Point Final ID /Length Sample Train (ft'). vp~~ ~~.~U~~Prnbe (1~.~ Probe Material oro Leak Check Q (in Hg)' "~'_~j, "` ~D ~_.,/Pftot /Thermocouple ID ~ 'rrj ~Pkot leak check good e ! no i no ye / no LiJ•"I ~/ Pitot Coefficient 0.84 Pitot Inspection good ye / no ye ! no / no NoaJe ID •'~'~Method 3 System good / no es no es~ / no Nome Measurements .2 70 , ~~ , 7 q~i Temp Check Pre-Test Se Post- est Set TAvg Noale Dia (in) . ~~ Meter Box Temp r~~, ~ Area of Stack (ft) 3 ~ Reference Temp '~ Sample Time Pass/Fail (+/- 2°~ s I Faii !Fail Total Traverse Pts L~ Temp Change Response 5 yes no t no 0 ~ ~~-~r r ~s ~~~~~- ~~-~~I ~a ~~~~~~- ~~-~~'ll~r7/~s~~~_~ ~~~~~~- ~~~~~~~y ~~~~~~- ~~-~~~~~~~m~~--11 ~~-~~~~~~~~~~v ~ ~~~I~~~~~~~~~~ nvy vcne r r~vy udud n i u~ai vuiume rivg i 5~ ~ ~~~s~~~ C~s.i ~~s Avg Sgrt Delta Avg Sgrt Del H Comments: Got ~.3y►3 ~~tI~S~ I ~2J1~L'oI l'1'(/~~~I (~`6 I nn~vac ~o'~u44l EPA Method 0010 from EPA SW-846 X3.33 ~' ISOHINETIC FIELD DATA SHEET CNent chemo~xs Stack Conditions w.o.#~ 5a~ a Assumed Project ID Chemours %Moisture —~~ Made/Source ID PPA Impinger Vol (ml) Samp. Loc. ID Cbed Silica gel (g) Run No.ID 3 CO2, % by Vol v Test Method ID M0010 02, % by Vol z,>. `-j Date 10 APR2019 Temperature (°F)S~ J Source/LocaUon PPA Card Bad Inlet Meter Temp ("F)~~ Sample Date ~ ~/Static Press (in HZO) —7 Baro. Press (In Hg)3 c~. Z Operator ~S/ f(_Ambient Temp (°F)~ p EPA Method 0010 - HFPO Dimer Acid Page r ors Meter Box ID K FaCfOfActual Meter Box Y J, n ovj 3 ' ~, Meter Box Del H 2.2q 2( Initial Mid-Point Final ~ ✓Probe ID /Length ~. ~ V ' Sample Traln (ft9) rJ ~y Probe Material Leak Check @ (in Hg) N O ~/ Pitot /Thermocouple ID `2 D Pitot leak check good e / no 'LD. ~I ,/ Pitot Coefficient 0.84 Pkot Inspection good y / no NoaJe ID ~ ~S~ Method 3 System good yes / no Oc~p : oc7'~ ""7'~ e no / no / no J no ye' / no ye / no Nome nneasurements . ~D I .2 ~ I • 2 S~ Temp Gheck Nre- I est~Et t'ost= i est Set --'Z Avg NoaJe Dia (in)~ ~/ Meter Box Temp ~~~ Area of Stack (ftZ)~ - 3 I Reference Temp vf', l ~4 . ~ Sample Time 9ip Pass/Fall (+/- 2°)Pa !Fail as /Fail Total Traverse Pts Z 4 ~/ Temp Change Response ~-yew/ no ~ye~ / no 1 ~~-~~~~I ~~~~~~- ~~~~~~~~~~~~—!:sli~llSl,li7m nvy uonn r r~vy va~ia n, .33~b ~ 1. J Avg Sgrt Delta P Avg Sgrt Del F ~5~0`~~ 1.2~~ i um~ vuwnln F~Vy 15~ AVy I ffl MINM3X MINM2X MBJC M87C V8C MINM3X ~ . ) Z.0 ~ ~2.1 1`d 1`I.f►'IS ~b•ZI 12°120 ~7,~~123 ~L (o (,Z `' nments: EPA Method 0010 from EPA SW-846 ~~ SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Dimer Acid Client Location/Plant Chemours Fayetteville, NC W.O. # Source &Location PPA Carbon Bed Inlet 15418 Run No. 1 Sample Date Recovery Date y/ /~ Sample I.D. Chemours - PPA - Cbed - 1 - M0010 - Analyst Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~q9`j~ (S Z! ~32 4-l~S3~-~ Initial U loo ioo ~2~"30o S~~' Gain S -~(5 / ~Z~ C,3 9 C, Impinger Color ('(per Labeled? Silica Gel Condition Sealed? -~ Run No. 2 Sample Date ~j,3~//~/ Recovery Date ~~,~~?f/ Sample I.D. Chemours - PPA - Cbed - 2 - M0010 - Analyst ~ Filter Number p- /"~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Emp HPLC H2O HPLC H2O Silica Gel Fina~I o ! o v u(3 ~ 1 `~3I8'~ 5~s3Z s Initial ~100 100 v 2~'~300 Gain ~ d ~l 3 14 ~~. 5~3~ ~ Impinger Color ~~a~ Labeled? Silica Gel Condition .5,/~fa Sealed? Run No. 3 Sample Date ,y - ! ~ (1 Recovery Date $~" (-1 `j' Sampie I.D. Chemours - PPA - Cbed - 3 - Moo10 - Analyst ~_ Filter N umber ~ ('~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel .,.: ~~7~~Final f2 q~l 9d'3 2 t 1 ~~(~~6 Initial (~100 100 ~ZOO 300 ~~~ Gain IZ — Z 'Z 3 i ~)K..2-r. (~ Impinger Color C~~ Labeled? ~ Silica Gel Condition 't" Sealed? ./ Check COC for Sample IDs of Media Blanks METHODS AND ANALYZERS Client: Location: Source: Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: File: C:\DATA\Chemours\April 2019\043019 Run 1 PPA.cem Program Version: 2.1, built 19 May 2017 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %16.6 CALIBRATION DATA Number 1 Client: Location: Source: Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: Start Time: 07:24 O2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.1 CC157024 21.0 SG9169108 Calibration Results Zero 7 mv Span, 21.0 %8006 mv Curve Coefficients Slope Intercept 380.9 7 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 9.0 CC157024 16.6 SG9169108 Calibration Results Zero 3 mv Span, 16.6 %8279 mv Curve Coefficients Slope Intercept 499.2 3 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: Start Time: 07:24 O2 Method: EPA 3A Span Conc. 21.0 % Slope 380.9 Intercept 7.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.1 12.1 0.0 0.0 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 % Slope 499.2 Intercept 3.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 9.0 8.7 -0.3 -1.8 Pass 16.6 16.6 0.0 0.0 Pass BIAS Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: Start Time: 07:29 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.1 0.1 0.5 Pass CO2Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.7 8.6 -0.1 -0.6 Pass RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:13 20.8 0.0 09:14 20.8 0.0 09:15 20.8 0.0 09:16 20.8 0.0 09:17 20.8 0.0 09:18 20.8 0.0 09:19 20.8 0.0 09:20 20.8 0.0 09:21 20.8 0.0 09:22 20.8 0.0 09:23 20.8 0.0 09:24 20.8 0.0 09:25 20.8 0.0 09:26 20.8 0.0 09:27 20.8 0.0 09:28 20.8 0.0 09:29 20.8 0.0 09:30 20.8 0.0 09:31 20.8 0.0 09:32 20.8 0.0 09:33 20.8 0.0 09:34 20.8 0.0 09:35 20.8 0.0 09:36 20.8 0.0 09:37 20.8 0.0 09:38 20.8 0.0 09:39 20.8 0.0 09:40 20.8 0.0 09:41 20.8 0.0 09:42 20.8 0.0 09:43 20.8 0.0 09:44 20.8 0.0 09:45 20.8 0.0 09:46 20.8 0.0 09:47 20.8 0.0 09:48 20.8 0.0 09:49 20.8 0.0 09:50 20.8 0.0 09:51 20.8 0.0 09:52 20.8 0.0 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:53 20.8 0.0 09:54 20.8 0.0 09:55 20.8 0.0 09:56 20.8 0.0 09:57 20.8 0.0 09:58 20.8 0.0 09:59 20.8 0.0 10:00 20.8 0.0 10:01 20.8 0.0 10:02 20.8 0.0 10:03 20.8 0.0 10:04 20.8 0.0 10:05 20.8 0.0 10:06 20.8 0.0 10:07 20.8 0.0 10:08 20.8 0.0 10:09 20.8 0.0 10:10 20.8 0.0 10:11 20.8 0.0 10:12 20.8 0.0 10:13 20.8 0.0 10:14 20.8 0.0 10:15 20.8 0.0 10:16 20.8 0.0 10:17 20.8 0.0 10:18 20.8 0.0 10:19 20.8 0.0 10:20 20.8 0.0 10:21 20.8 0.0 10:22 20.8 0.0 10:23 20.8 0.0 10:24 20.8 0.0 10:25 20.8 0.0 10:26 20.8 0.0 10:27 20.8 0.0 10:28 20.8 0.0 10:29 20.8 0.0 10:30 20.8 0.0 10:31 20.8 0.0 10:32 20.8 0.0 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:33 20.8 0.0 10:34 20.8 0.0 10:35 20.8 0.0 10:36 20.8 0.0 10:37 20.8 0.0 10:38 20.8 0.0 10:39 20.8 0.0 10:40 20.8 0.0 10:41 20.8 0.0 10:42 20.8 0.0 10:43 20.8 0.0 10:44 20.8 0.0 10:45 20.8 0.0 10:46 20.8 0.0 10:47 20.8 0.0 10:48 20.8 0.0 10:49 20.8 0.0 10:50 20.8 0.0 10:51 20.8 0.0 10:52 20.8 0.0 10:53 20.8 0.0 10:54 20.8 0.0 10:55 20.8 0.0 10:56 20.8 0.0 10:57 20.8 0.0 10:58 20.8 0.0 10:59 20.8 0.0 11:00 20.8 0.0 11:01 20.8 0.0 11:02 20.8 0.0 11:03 20.8 0.0 11:04 20.8 0.0 11:05 20.8 0.0 11:06 20.8 0.0 11:07 20.8 0.0 11:08 20.8 0.0 11:09 20.8 0.0 11:10 20.8 0.0 11:11 20.8 0.0 11:12 20.8 0.0 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 %%Time 11:13 20.8 0.0 11:14 20.8 0.0 11:15 20.8 0.0 11:16 20.8 0.0 11:17 20.8 0.0 11:18 20.8 0.0 11:19 20.8 0.0 11:20 20.8 0.0 11:21 20.8 0.0 11:22 20.8 0.0 11:23 20.8 0.0 11:24 20.8 0.0 11:25 20.8 0.0 11:26 20.8 0.0 11:27 20.8 0.0 11:28 20.8 0.0 11:29 20.8 0.0 11:30 20.8 0.0 11:31 20.8 0.0 11:32 20.8 0.0 11:33 20.8 0.0 11:34 20.8 0.0 11:35 20.8 0.0 11:36 20.8 0.0 11:37 20.8 0.0 11:38 20.8 0.0 11:39 20.8 0.0 11:40 20.8 0.0 11:41 20.8 0.0 11:42 20.8 0.0 11:43 20.8 0.0 11:44 20.8 0.0 11:45 20.8 0.0 11:46 20.8 0.0 11:47 20.8 0.0 11:48 20.8 0.0 11:49 20.8 0.0 11:50 20.8 0.0 11:51 20.8 0.0 11:52 20.8 0.0 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 %%Time 11:53 20.8 0.0 11:54 20.8 0.0 11:55 20.8 0.0 11:56 20.8 0.0 11:57 20.8 0.0 11:58 20.8 0.0 11:59 20.8 0.0 12:00 20.8 0.0 12:01 20.8 0.0 12:02 20.8 0.0 12:03 20.8 0.0 12:04 20.8 0.0 12:05 20.8 0.0 12:06 20.8 0.0 12:07 20.8 0.0 Avgs 20.8 0.0 RUN SUMMARY Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 09:12 to 12:07 Run Averages 20.8 0.0 Pre-run Bias at 07:29 Zero Bias Span Bias Span Gas 0.0 0.0 12.1 8.6 12.1 9.0 Post-run Bias at 12:09 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.6 12.1 9.0 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.0 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: Start Time: 12:09 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.1 12.0 -0.1 -0.5 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.7 8.6 -0.1 -0.6 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.6 0.0 0.0 Pass *Bias No. 1 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 %%Time 13:28 20.8 0.0 13:29 20.8 0.0 13:30 20.8 0.0 13:31 20.8 0.0 13:32 20.8 0.0 13:33 20.8 0.0 13:34 20.8 0.0 13:35 20.8 0.0 13:36 20.8 0.0 13:37 20.8 0.0 13:38 20.8 0.0 13:39 20.8 0.0 13:40 20.8 0.0 13:41 20.8 0.0 13:42 20.8 0.0 13:43 20.8 0.0 13:44 20.8 0.0 13:45 20.8 0.0 13:46 20.8 0.0 13:47 20.8 0.0 13:48 20.8 0.0 13:49 20.8 0.0 13:50 20.8 0.0 13:51 20.8 0.0 13:52 20.8 0.0 13:53 20.8 0.0 13:54 20.8 0.0 13:55 20.8 0.0 13:56 20.8 0.0 13:57 20.8 0.0 13:58 20.8 0.0 13:59 20.8 0.0 14:00 20.8 0.0 14:01 20.8 0.0 14:02 20.8 0.0 14:03 20.8 0.0 14:04 20.8 0.0 14:05 20.8 0.0 14:06 20.8 0.0 14:07 20.8 0.0 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:08 20.7 0.0 14:09 20.7 0.0 14:10 20.7 0.0 14:11 20.7 0.0 14:12 20.7 0.0 14:13 20.7 0.0 14:14 20.7 0.0 14:15 20.7 0.0 14:16 20.7 0.0 14:17 20.7 0.0 14:18 20.8 0.0 14:19 20.8 0.0 14:20 20.8 0.0 14:21 20.8 0.0 14:22 20.7 0.0 14:23 20.7 0.0 14:24 20.7 0.0 14:25 20.7 0.0 14:26 20.7 0.0 14:27 20.7 0.0 14:28 20.7 0.0 14:29 20.7 0.0 14:30 20.7 0.0 14:31 20.7 0.0 14:32 20.7 0.0 14:33 20.7 0.0 14:34 20.7 0.0 14:35 20.7 0.0 14:36 20.7 0.0 14:37 20.7 0.0 14:38 20.7 0.0 14:39 20.7 0.0 14:40 20.7 0.0 14:41 20.7 0.0 14:42 20.7 0.0 14:43 20.7 0.0 14:44 20.7 0.0 14:45 20.7 0.0 14:46 20.7 0.0 14:47 20.7 0.0 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:48 20.7 0.0 14:49 20.7 0.0 14:50 20.7 0.0 14:51 20.7 0.0 14:52 20.7 0.0 14:53 20.7 0.0 14:54 20.7 0.0 14:55 20.8 0.0 14:56 20.8 0.0 14:57 20.8 0.0 14:58 20.8 0.0 14:59 20.8 0.0 15:00 20.8 0.0 15:01 20.8 0.0 15:02 20.8 0.0 15:03 20.8 0.0 15:04 20.8 0.0 15:05 20.8 0.0 15:06 20.8 0.0 15:07 20.8 0.0 15:08 20.8 0.0 15:09 20.8 0.0 15:10 20.8 0.0 15:11 20.8 0.0 15:12 20.8 0.0 15:13 20.8 0.0 15:14 20.8 0.0 15:15 20.8 0.0 15:16 20.8 0.0 15:17 20.8 0.0 15:18 20.8 0.0 15:19 20.8 0.0 15:20 20.8 0.0 15:21 20.8 0.0 15:22 20.7 0.0 15:23 20.7 0.0 Avgs 20.8 0.0 RUN SUMMARY Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 13:27 to 15:23 Run Averages 20.8 0.0 Pre-run Bias at 12:09 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.6 12.1 9.0 Post-run Bias at 15:37 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.5 12.1 9.0 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.0 BIAS AND CALIBRATION DRIFT Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 30 Apr 2019 Project Number: Operator: Date: Start Time: 15:37 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.5 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 2 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.7 8.5 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.5 -0.1 -0.6 Pass *Bias No. 2 METHODS AND ANALYZERS Client: Location: Source: Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: File: C:\DATA\Chemours\April 2019\050119 Run 3 PPA.cem Program Version: 2.1, built 19 May 2017 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %16.6 CALIBRATION DATA Number 1 Client: Location: Source: Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: Start Time: 07:10 O2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.1 CC157024 21.0 SG9169108 Calibration Results Zero 7 mv Span, 21.0 %8004 mv Curve Coefficients Slope Intercept 380.8 7 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 9.0 CC157024 16.6 SG9169108 Calibration Results Zero 0 mv Span, 16.6 %8270 mv Curve Coefficients Slope Intercept 498.8 0 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: Start Time: 07:10 O2 Method: EPA 3A Span Conc. 21.0 % Slope 380.8 Intercept 7.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.1 12.1 0.0 0.0 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 % Slope 498.8 Intercept 0.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 9.0 8.9 -0.1 -0.6 Pass 16.6 16.6 0.0 0.0 Pass BIAS Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: Start Time: 07:16 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.1 0.0 0.0 Pass CO2Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.8 -0.1 -0.6 Pass RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: O2 CO2 %%Time 08:19 20.8 0.0 08:20 20.8 0.0 08:21 20.8 0.0 08:22 20.8 0.0 08:23 20.8 0.0 08:24 20.8 0.0 08:25 20.8 0.0 08:26 20.8 0.0 08:27 20.8 0.0 08:28 20.8 0.0 08:29 20.8 0.0 08:30 20.8 0.0 08:31 20.8 0.0 08:32 20.8 0.0 08:33 20.8 0.0 08:34 20.8 0.0 08:35 20.8 0.0 08:36 20.8 0.0 08:37 20.8 0.0 08:38 20.8 0.0 08:39 20.8 0.0 08:40 20.8 0.0 08:41 20.8 0.0 08:42 20.8 0.0 08:43 20.8 0.0 08:44 20.8 0.0 08:45 20.8 0.0 08:46 20.8 0.0 08:47 20.8 0.0 08:48 20.8 0.0 08:49 20.8 0.0 08:50 20.8 0.0 08:51 20.8 0.0 08:52 20.8 0.0 08:53 20.8 0.0 08:54 20.8 0.0 08:55 20.8 0.0 08:56 20.8 0.0 08:57 20.8 0.0 08:58 20.8 0.0 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: O2 CO2 %%Time 08:59 20.8 0.0 09:00 20.8 0.0 09:01 20.8 0.0 09:02 20.8 0.0 09:03 20.8 0.0 09:04 20.8 0.0 09:05 20.8 0.0 09:06 20.8 0.0 09:07 20.8 0.0 09:08 20.8 0.0 09:09 20.8 0.0 09:10 20.8 0.0 09:11 20.8 0.0 09:12 20.8 0.0 09:13 20.8 0.0 09:14 20.8 0.0 09:15 20.8 0.0 09:16 20.8 0.0 09:17 20.8 0.0 09:18 20.8 0.0 09:19 20.8 0.0 09:20 20.8 0.0 09:21 20.8 0.0 09:22 20.8 0.0 09:23 20.8 0.0 09:24 20.8 0.0 09:25 20.8 0.0 09:26 20.8 0.0 09:27 20.8 0.0 09:28 20.8 0.0 09:29 20.8 0.0 09:30 20.8 0.0 09:31 20.8 0.0 09:32 20.8 0.0 09:33 20.8 0.0 09:34 20.8 0.0 09:35 20.8 0.0 09:36 20.8 0.0 09:37 20.8 0.0 09:38 20.8 0.0 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:39 20.8 0.0 09:40 20.8 0.0 09:41 20.8 0.0 09:42 20.8 0.0 09:43 20.8 0.0 09:44 20.8 0.0 09:45 20.8 0.0 09:46 20.8 0.0 09:47 20.8 0.0 09:48 20.8 0.0 09:49 20.8 0.0 09:50 20.8 0.0 09:51 20.9 0.0 09:52 20.9 0.0 09:53 20.9 0.0 09:54 20.9 0.0 09:55 20.9 0.0 09:56 20.9 0.0 09:57 20.9 0.0 09:58 20.9 0.0 09:59 20.9 0.0 10:00 20.9 0.0 10:01 20.9 0.0 10:02 20.9 0.0 10:03 20.9 0.0 10:04 20.9 0.0 10:05 20.9 0.0 10:06 20.9 0.0 10:07 20.9 0.0 10:08 20.9 0.0 10:09 20.9 0.0 10:10 20.9 0.0 10:11 20.9 0.0 10:12 20.9 0.0 10:13 20.9 0.0 10:14 20.9 0.0 10:15 20.9 0.0 10:16 21.0 0.0 10:17 21.0 0.0 10:18 21.0 0.0 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:19 20.9 0.0 10:20 20.9 0.0 10:21 20.9 0.0 10:22 20.9 0.0 10:23 20.9 0.0 10:24 20.8 0.0 Avgs 20.8 0.0 RUN SUMMARY Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 08:18 to 10:24 Run Averages 20.8 0.0 Pre-run Bias at 07:16 Zero Bias Span Bias Span Gas 0.0 0.0 12.1 8.8 12.1 9.0 Post-run Bias at 10:59 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.8 12.1 9.0 Run averages corrected for the average of the pre-run and post-run bias 20.8 0.0 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: Start Time: 10:59 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.0 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.0 -0.1 -0.5 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.8 -0.1 -0.6 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.8 8.8 0.0 0.0 Pass *Bias No. 1 RUN DATA Number 0 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: O2 CO2 %%Time Run 1 Bag Scrubber inlet 11:13:47 18.5 0.2 11:14:02 18.5 0.3 11:14:17 18.5 0.3 11:14:32 18.5 0.3 11:14:47 18.5 0.3 11:15:02 18.5 0.3 11:15:17 18.5 0.3 11:15:32 18.5 0.3 Run 3 Bag Scrubber inlet 11:18:32 19.5 0.1 11:18:47 18.7 0.1 11:19:02 18.6 0.1 11:19:17 18.6 0.2 11:19:32 18.6 0.4 11:19:47 18.6 0.5 11:20:02 18.6 0.5 11:20:17 18.7 0.5 11:20:32 18.7 0.5 11:20:47 18.7 0.5 11:21:02 18.7 0.5 11:21:17 18.7 0.5 11:21:32 18.7 0.5 11:21:47 18.7 0.5 Avgs 18.6 0.4 RUN SUMMARY Number 0 Client: Location: Source: Calibration 1 Chemours Fayetteville PPA 15418.002.012 SR 1 May 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 11:13:32 to 11:21:47 Run Averages 18.6 0.4 Pre-run Bias at 10:59 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.8 12.1 9.0 No Post-run Bias Run averages corrected for the pre-run bias 18.7 0.4 IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 APPENDIX C LABORATORY ANALYTICAL REPORT Note: The complete analytical report is included on the attached CD. ANALYTICAL REPORT Job Number: 140-15200-1 Job Description: PPA Carbon Bed Outlet Contract Number: LBIO-67048 For: Chemours Company FC, LLC The c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, DE 19713 Attention: Michael Aucoin _____________________________________________ Approved for release. Courtney M Adkins Project Manager I 5/16/2019 10:54 AM Courtney M Adkins, Project Manager I 5815 Middlebrook Pike, Knoxville, TN, 37921 (865)291-3000 courtney.adkins@testamericainc.com 05/16/2019 This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike, Knoxville, TN 37921 Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com 05/16/2019Page 1 of 240 Table of Contents Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Manual Integration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Reagent Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 COAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 05/16/2019Page 2 of 240 Table of Contents 8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 05/16/2019Page 3 of 240       !"#$ %&'(          ))*+,'""-./                0 ''11"'*''2*    3) ")".  +' 4 4+' 5) "5)67''88"9 " "  "6#(59 )%)54 '") ) -"''#8  "."6)'"9 5 5'"6-9 ( 8"6#(59 (: 8:6#(59 ,% ,"%".6)'"9 , ,""6)'"9 , ,'" , ,.6-9 4 4"' 4 4"'*6,5829 : "": : : )5) ).5)6)'"9 ) )*)+'6)'"9 )  ). "88"8.'88"22 5 -"5+."6-9 5: -"5+.:6-9 58%";-. 05/16/2019Page 4 of 240     !"#$ %&'(        $)* +*, % - ( %%./ $)* +*, % (%' ($%./ %$( / "0 "'%./ %$( / "0 "'1'%./ %$( / "0 "'12%%./    $)* +345'.60$') "#"5'4'.'/67*+%'8'9 %$( 3%"$''(0 "'      %./3.1%"6 7 :;$%6'(* .<, ,=>,+  .1%"?@6 05/16/2019Page 5 of 240     !"#$ %&'(          ) * *  %&(+,-.  / % #0 #*  # #* *   ) *0 *  *1 %&(+,-.  &/ % #0 #*  # #* *   0 ) *  %&(+,-.  . 23,-$ 40 % #0 #*  # #* *   ) *5 %&(+,-.  &-,%)/-(+3/6%  -,$2+&, % #0 #*  # #* *   ) *7 ** %&(+,- .  / % #0 #*  # #* *   1 )      0 %&(+,- .  &/ % #0 #*  # #* *   5 )   %&(+,- .  . 23,-$ 40 % #0 #*  # #* *   7 )   %&(+,- .  &-,%)/-(+3/6%  -,$2+&, % #0 #*  # #* *   * )    1 %&(+,-0.  / % # #*  # #* *    )  5  7   %&(+,-0.  &/ % # #*  # #* *    )  * %&(+,-0.  . 23,-$ 40 % # #*  # #* *    )  %&(+,-0.  &-,%)/-(+3/6%  -,$2+&, % # #*  # #* * ,8%")9: 05/16/2019Page 6 of 240                                  !"#"#"#!"#      $      %#             & '()# *  ! '    *      & +   ,-   ! " #! "$  %& '          .         /0.  &  (.         +  &   12345+         6 7   (% '  '    *      & +   ,-    ) 8  )  98):+  )  9+): 12345+        +              .  8)+)&&  12345+       . & &  .     .         05/16/2019Page 7 of 240         !"#$ %&'(        !    ! "#  $  % "  % )* %+ ) *,- .#* $ #/% " &    !    ! "#  $  % "  % /  + -* -  -, %&(0123  &#/% % /  + -. %&(0123  &21%+42 #/% % /  , +      * %&(012 3  &#/% % /  ) +   %&(012 3  &21%+42 #/% % /   +  .  )   %&(012*3  &#/% % /   +  %&(012*3  &21%+42 #/% % /3& ) . .*#* % 3'&7 #/% % /3& ) . .*# % 3'&7 #/% % /$ ) . .*# % $ #/% " '    !    ! "#  $  % "  % /   + - -  %&(0123  4 #/% % /  + -) -- %&(012 3  4 #/% % /  - +    , %&(012*3  4 #/% % /3& ) ., .# % 3'&7 #/% % /$ ) ., .# % $ #/% " &    !    ! "#  $  % "  % /  * + -  %&(0123  3 /512$#/% % /  . +   %&(012 3  3 /512$#/% % /   +  - %&(012*3  3 /512$#/% % /3& ) .. *# % 3'&7 #/% % /$ ) .. *# % $ #/%   ('    !    ! "#  $  % "  % )* % . .*  + -* -  -, %&(0123  &#/% % )* % . .*  + -. %&(0123  &21%+42 #/% % )* % . .*  , +      * %&(012 3  &#/% % )* % . .*  ) +   %&(012 3  &21%+42 #/% % )* % . .*   +  .  )   %&(012*3  &#/% % )* % . .*   +  %&(012*3  &21%+42 #/% % )* % . .*3& ) . .*#* % 3'&7 #/% % )* % . .*3& ) . .*# % 3'&7 #/% % )* % . .*$ ) . .*# % $ #/%   ('    !    ! "#  $  % "  % )* % ., .   + - -  %&(0123  4 #/% % )* % ., .  + -) -- %&(012 3  4 #/% % )* % ., .  - +    , %&(012*3  4 #/% % )* % ., .3& ) ., .# % 3'&7 #/% % )* % ., .$ ) ., .# % $ #/% 19%"+:; 05/16/2019Page 8 of 240         !"#$ %&'(    ('    !    ! "#  $  % "  % )* % .. *  * + -  %&(0123  3 /512$#/% % )* % .. *  . +   %&(012 3  3 /512$#/% % )* % .. *   +  - %&(012*3  3 /512$#/% % )* % .. *3& ) .. *# % 3'&7 #/% % )* % .. *$ ) .. *# % $ #/% 19%"+:; 05/16/2019Page 9 of 240        !"#$ %&'(     !"#" $%& $ '(' )*+,-,   *.+,,  ) ''"'  $/)+0-%  +%   $ &%  1 ) * ) +* ,#$ # -#-  #+#-* +   2% * 23+' '+!    4 5'                  -6 !"#"  $& $ '(' )*+,-,   *.+,,  ) ''"'  $/)+0-%  +%   $ &%  17 8 ) ) ,#$ # .#-* #+#- +/   2% * 23+' '+!    4 5'                   -  !"#" $ $9:# ;- $ '(' )*+,-,   *.+,,  ) ''"'  $/)+0-&%   $ &%  10 8 )-* ) --- ,#$ # #-  #+#-. *   2% * 23+' '+!    4 5'                      7 !"#" $  #"& !:&< #9"!# $ '(' )*+,-,   *.+,,  ) ''"'  $/)+0-%  +%   $ 0 ( % 1 ) ) ,#$ # .#-* #+#-    2% * 23+' '+!    4 5'                 23%"456 05/16/2019Page 10 of 240        !"#$ %&'(    0 !"#" $%& $ '(' )*+,-,   *.+,,  ) ''"'  $/)+0-%  +%   $ &%  16 ) * ) +* ,#$ # -#-  #+#-* *   2% * 23+' '+!    4 5'                  6 - !"#"  $& $ '(' )*+,-,   *.+,,  ) ''"'  $/)+0-%  +%   $ &%  10 8 ) ) ,#$ # .#-* #+#-  /   2% * 23+' '+!    4 5'                   7  !"#" $ $9:# ;- $ '(' )*+,-,   *.+,,  ) ''"'  $/)+0-&%   $ &%  1 8 ) * )  ,#$ # #-  #+#-. -   2% * 23+' '+!    4 5'                     0  !"#" $  #"& !:&< #9"!# $ '(' )*+,-,   *.+,,  ) ''"'  $/)+0-%  +%   $ 0 ( % 1 ) ) ,#$ # .#-* #+#-    2% * 23+' '+!    4 5'                 23%"456 05/16/2019Page 11 of 240        !"#$ %&'(    6 !"#" -$%& $ '(' )*+,,   *.+,,  ) ''"'  $/)+0-%  +%   $ &%  1 ) . ) +. ,#$ # -#-  #+#-.   2% * 23+' '+!    4 5'                    70 !"#" - $& $ '(' )*+,,   *.+,,  ) ''"'  $/)+0-%  +%   $ &%  167 ) ) ,#$ # .#-* #+#-  /   2% * 23+' '+!    4 5'                     !"#" -$ $9:# ;- $ '(' )*+,,   *.+,,  ) ''"'  $/)+0-&%   $ &%  1- )  )  . ,#$ # #-  #+#-.+   2% * 23+' '+!    4 5'                     !"#" -$  #"& !:&< #9"!# $ '(' )*+,,   *.+,,  ) ''"'  $/)+0-%  +%   $ 0 ( % 1 ) ) ,#$ # .#-* #+#-*    2% * 23+' '+!    4 5'                 23%"456 05/16/2019Page 12 of 240             !"#$ %  &'(      )* (% +#$   !"  # ),   $   )* (% +#$   !"  # )- )* (% +#$ ) . /%  "0 12 05/16/2019Page 13 of 240 ANALYTICAL REPORT Job Number: 140-15199-1 Job Description: PPA Carbon Bed Inlet Contract Number: LBIO-67048 For: Chemours Company FC, LLC The c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, DE 19713 Attention: Michael Aucoin _____________________________________________ Approved for release. Courtney M Adkins Project Manager I 5/16/2019 10:53 AM Courtney M Adkins, Project Manager I 5815 Middlebrook Pike, Knoxville, TN, 37921 (865)291-3000 courtney.adkins@testamericainc.com 05/16/2019 This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike, Knoxville, TN 37921 Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com 05/16/2019Page 1 of 205 Table of Contents Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Manual Integration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 05/16/2019Page 2 of 205 Table of Contents 8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 05/16/2019Page 3 of 205        !"#$ %&'          $'(')*+,"-'""'(''.    //*01'""+-.              2 ''33"'*''4*    5/ "/"-  0' 6 60' 7/ "7/89''((": " "  "8#;7: /%/76 '"/ / +"''#(  "-"8/'": 7 7'"8+: ; ("8#;7: ;< (<8#;7: 1% 1"%"-8/'": 1 1""8/'": 1 1'" 1 1-8+: 6 6"' 6 6"'*817(4: < ""< < < /7/ /-7/8/'": / /*/0'8/'": /  /- "(("(-'(("44 7 +"70-"8+: 7< +"70-<8+: 7(%"=+- 05/16/2019Page 4 of 205      !"#$ %&'        $() *)+,% - . %%/0 $() *)+,% .%' .$%/0 %$. 0 "1 "'%/0 %$. 0 "1 "'2'%/0 %$. 0 "1 "'23%%/0    $() *456'/71$'( "#"6'5'/'07 )*%'8'9 %$. 4%"$''.1 "'      %/04/2%"7 :;$%7'.) ,/<+ +=>+*  /2%"?@7 05/16/2019Page 5 of 205      !"#$ %&'           ( ) ) ) %&*(+,  - % #. #   # )#      ) ( ) .) ) / %&*(+,  &- % #. #   # )#      . ( )  %&*(+,  , *0(+)1.2* % #. #   # )#      ( ) 3 %&*(+,  &+(%4-+250-6% ) +($*5&( % #. #   # )#      ( ) 7)  %&*(+),  - % #. #   # )#      / ( ) ) ) . %&*(+),  &- % #. #   # )#      3 ( ) ) %&*(+),  , *0(+)1.2* % #. #   # )#      7 ( )  %&*(+),  &+(%4-+250-6% ) +($*5&( % #. #   # )#      ( ) ) / %&*(+.,  - % # #   # )#       ( ) 3) 7)  %&*(+.,  &- % # #   # )#       ( )  %&*(+.,  , *0(+)1.2* % # #   # )#      )( ) %&*(+.,  &+(%4-+250-6% ) +($*5&( % # #   # )#   (8%"49: 05/16/2019Page 6 of 205                                   !"#"#"#!"#      $      %#             & '()# *  ! '    *      & +   ,-   ! " #! "$ % &' (          .         /0.  &  (.         +  &   12345+         6 7   )& (  '    *      & +   ,-    * 8  )  98):+  )  9+): 12345+        +              .  8)+)&&  12345+       . & &  .     .         05/16/2019Page 7 of 205          !"#$ %&'        !    ! "#  $  % "  % ()*%+*( ), -#) $ #.% " &    !    ! "#  $  % "  % .   * / * )* * , %&./01  &2 #.% % .   / * - %&./01  &0/%+203 #.% % .   , / * * * ) %&./0*1  &2 #.% % .   ( / *  %&./0*1  &0/%+203 #.% % .    / * -* (*  %&./0)1  &2 #.% % .   * / * %&./0)1  &0/%+203 #.% % .1&*( -*-)# % 1'&7 #.% % .$*( -*-)#* % $ #.% " '    !    ! "#  $  % "  % .    / * * * %&./01  2 #.% % .   / * (*  %&./0*1  2 #.% % .   / * * , %&./0)1  2 #.% % .1&*( -, -# % 1'&7 #.% % .$*( -, -#* % $ #.% " &    !    ! "#  $  % "  % .   ) / *  %&./01  1 .5/0*#.% % .   - / * * %&./0*1  1 .5/0*#.% % .    / *  %&./0)1  1 .5/0*#.% % .1&*( --*)# % 1'&7 #.% % .$*( --*)#* % $ #.%   ('    !    ! "#  $  % "  % ()*% -*-)   * / * )* * , %&./01  &2 #.% % ()*% -*-)   / * - %&./01  &0/%+203 #.% % ()*% -*-)   , / * * * ) %&./0*1  &2 #.% % ()*% -*-)   ( / *  %&./0*1  &0/%+203 #.% % ()*% -*-)    / * -* (*  %&./0)1  &2 #.% % ()*% -*-)   * / * %&./0)1  &0/%+203 #.% % ()*% -*-)1&*( -*-)# % 1'&7 #.% % ()*% -*-)$*( -*-)#* % $ #.%   ('    !    ! "#  $  % "  % ()*% -, -    / * * * %&./01  2 #.% % ()*% -, -   / * (*  %&./0*1  2 #.% % ()*% -, -   / * * , %&./0)1  2 #.% % ()*% -, -1&*( -, -# % 1'&7 #.% % ()*% -, -$*( -, -#* % $ #.%   ('    !    ! "#  $  % "  % ()*% --*)   ) / *  %&./01  1 .5/0*#.% /9%"+:; 05/16/2019Page 8 of 205          !"#$ %&'  )  %*   (')  %*    !    ! "#  $  % "  % ()*% --*)   - / * * %&./0*1  1 .5/0*#.% % ()*% --*)    / *  %&./0)1  1 .5/0*#.% % ()*% --*)1&*( --*)# % 1'&7 #.% % ()*% --*)$*( --*)#* % $ #.% /9%"+:; 05/16/2019Page 9 of 205         !"#$ %&'     ! "#$ " %&% '()*+*   (,)**  ' %%!%  "-').+#/ )#/  " $#/ 01 (  ( )#$ # #   #*# + *   2# ( 23)% %)4    5 6%                     +7 ! " $ " %&% '()*+*   (,)**  ' %%!%  "-').+#/ )#/  " $#/ 0++ (, ( )#$ # -# + #*#  .   2# ( 23)% %)4    5 6%                      +  ! "" 8  9+/  " %&% '()*+*   (,)**  ' %%!%  "-').+$#/  " $#/ 0. : ( + ( )#$ # # , #*# -+   2# ( 23)% %)4    5 6%                      1 ! "  ;!$ /48$<  !4 " %&% '()*+*   (,)**  ' %%!%  "-').+#/ )#/  " / 0 % 1 (, ( )#$ # -# + #*#  ,,   2# ( 23)% %)4    5 6%                    23%"456 05/16/2019Page 10 of 205         !"#$ %&'    . ! "#$ " %&% '()*+*   (,)**  ' %%!%  "-').+#/ )#/  " $#/ .(  ( )#$ # #   #*# + -   2# ( 23)% %)4    5 6%                     7 + ! " $ " %&% '()*+*   (,)**  ' %%!%  "-').+#/ )#/  " $#/ 07+ (,, ( )#$ # -# + #*#  ,   2# ( 23)% %)4    5 6%                      1  ! "" 8  9+/  " %&% '()*+*   (,)**  ' %%!%  "-').+$#/  " $#/ 07 : (, . (  + )#$ # # , #*# -   2# ( 23)% %)4    5 6%                     .  ! "  ;!$ /48$<  !4 " %&% '()*+*   (,)**  ' %%!%  "-').+#/ )#/  " / 0 % 1 (, ( )#$ # -# + #*#  ,.   2# ( 23)% %)4    5 6%                    23%"456 05/16/2019Page 11 of 205         !"#$ %&'    7 ! +"#$ " %&% '()**   (,)**  ' %%!%  "-').+#/ )#/  " $#/ 7 (  ( )#$ # #   #*# +   2# ( 23)% %)4    5 6%                      1. ! +" $ " %&% '()**   (,)**  ' %%!%  "-').+#/ )#/  " $#/ 0+ (,, ( )#$ # -# + #*#  *,   2# ( 23)% %)4    5 6%                        ! +"" 8  9+/  " %&% '()**   (,)**  ' %%!%  "-').+$#/  " $#/ 0 (, (  - )#$ # # , #*# -,*   2# ( 23)% %)4    5 6%                       ! +"  ;!$ /48$<  !4 " %&% '()**   (,)**  ' %%!%  "-').+#/ )#/  " / 0 % 1 (, ( )#$ # -# + #*#  *   2# ( 23)% %)4    5 6%                    23%"456 05/16/2019Page 12 of 205             !"#$ %  &'     ()* +% ,#$   !"  # ()-   $   ()* +% ,#$   !"  # (). (* +% ,#$ () / 0%  "1 23 05/16/2019Page 13 of 205 IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 APPENDIX D SAMPLE CALCULATIONS SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 3 Test Date: 05/01/19 Test Location: PPA Stack Test Period: 0830-1017 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 = ------------------------------ Vm(std) 1.9 x 2.2046 x 10-9 Conc1 = ------------------------------ 47.071 Conc1 = 9.04E-11 Where: W = Weight of HFPO Dimer Acid collected in sample in ug. Conc1 = PPA Stack HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 = Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 = W / ( Vm(std) x 0.02832) Conc2 = 1.9 / ( 47.071 x 0.02832 ) Conc2 = 1.45E+00 Where: Conc2 = PPA Stack HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. 6/4/20191:35 PM 043019 PPA stack 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Outlet)= Conc1 x Qs(std) x 60 min/hr MR1(Outlet)= 9.04E-11 x 11822 x 60 MR1(Outlet)= 6.41E-05 Where: MR1(Outlet)= PPA Stack HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Outlet)= PMR1 x 453.59 / 3600 MR2(Outlet)= 6.41E-05 x 453.59 /3600 MR2(Outlet)= 8.07E-06 Where: MR2(Outlet)= PPA Stack HFPO Dimer Acid mass emission rate, g/sec. 453.6 = Conversion factor from pounds to grams. 3600 = Conversion factor from hours to seconds. 5. HFPO Dimer Acid Removal Efficiency, % RE = MR1(Inlet) - MR1(Outlet) ------------------------------------------------ MR1(Inlet) RE = (3.74E-03) -(6.41E-05) --------------------------------------------- 3.74E-03 RE = 98.28 Where: RE = Carbon Bed Removal Efficiency. MR1(Inlet)= Carbon Bed HFPO Dimer Acid mass rate, lbs/hr. MR1(Outlet)= Scrubber Outlet HFPO Dimer Acid mass rate, lbs/hr. 6/4/20191:35 PM 043019 PPA stack EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Facility: Fayetteville, NC Test Number: Run 3 Test Date: 5/01/19 Test Location: PPA Stack Test Period: 0830-1017 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std) = -------------------------------------------- (Tm + 460) 0.811 17.64 x 0.9944 x 47.697 x ( 30.30 + --------------------- ) 13.6 Vm(std) = ------------------------------------------------------------ = 47.071 79.63 + 460 Where: Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb = Barometric Pressure, in Hg. delt H = Average pressure drop across the orifice meter, in H2O Tm = Average dry gas meter temperature , deg F. Y = Dry gas meter calibration factor. 17.64 = Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 = Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std) = (0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std) = ( 0.04707 x 8.0 ) + ( 0.04715 x 11.4 ) = 0.91 Where: Vw(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc = Volume of liquid condensed in impingers, ml. Wwsg = Weight of water vapor collected in silica gel, g. 0.04707 = Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 = Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 5/22/201911:28 AM 043019 PPA stack 3. Moisture content Vw(std) bws = ------------------------- Vw(std) + Vm(std) 0.91 bws = ------------------------- = 0.019 0.91 + 47.071 Where: bws = Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md = 1 - bws Md = 1 - 0.019 = 0.981 Where: Md = Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd = ( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd = ( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd = 28.84 Where: MWd = Dry molecular weight , lb/lb-mole. % CO2 = Percent carbon dioxide by volume, dry basis. % O2 = Percent oxygen by volume, dry basis. % N2 = Percent nitrogen by volume, dry basis. % CO = Percent carbon monoxide by volume, dry basis. 0.440 = Molecular weight of carbon dioxide, divided by 100. 0.320 = Molecular weight of oxygen, divided by 100. 0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs = ( MWd x Md ) + ( 18 x ( 1 - Md )) MWs = ( 28.84 x 0.981 ) +( 18 ( 1 - 0.981 )) = 28.63 Where: MWs = Molecular weight of wet gas, lb/lb-mole. 18 = Molecular weight of water, lb/lb-mole. 5/22/201911:28 AM 043019 PPA stack 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 543 Vs = 85.49 x 0.84 x 0.73105 x ( -------------------- )^1/2 = 41.4 30.45 x 28.63 Where: Vs = Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 = Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp = Pitot tube coefficient, dimensionless. Ts = Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps = Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p = Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act) = 60 x Vs x As Qs(act) = 60 x 41.4 x 4.90 = 12179 Where: Qs(act) = Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 = Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std) = 17.64 x Md x ----- x Qs(act) Ts 30.45 Qs(std) = 17.64 x 0.981 x -------------------- x 12179 542.9 Qs(std) = 11822 Where: Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 5/22/201911:28 AM 043019 PPA stack 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I = ----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 543 x 47.071 I = -------------------------------------------------- = 102.2 41.4 x 96 x 30.45 x 0.981 x (0.191)^2 Where: I = Percent of isokinetic sampling. O = Total sampling time, minutes. Dn = Diameter of nozzle, inches. 17.327 = Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 5/22/201911:28 AM 043019 PPA stack SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 3 Test Date: 05/01/19 Test Location: PPA CB Inlet Test Period: 0830-1017 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 = ------------------------------ Vm(std) 147.6 x 2.2046 x 10-9 Conc1 = ------------------------------ 62.008 Conc1 = 5.25E-09 Where: W = Weight of HFPO Dimer Acid collected in sample in ug. Conc1 = PPA Carbon Bed Inlet HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 = Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 = W / ( Vm(std) x 0.02832) Conc2 = 147.6 / ( 62.008 x 0.02832 ) Conc2 = 8.40E+01 Where: Conc2 = PPA Carbon Bed Inlet HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. 6/4/20191:39 PM 043019 PPA CBed 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Outlet)= Conc1 x Qs(std) x 60 min/hr MR1(Outlet)= 5.25E-09 x 11873 x 60 MR1(Outlet)= 3.74E-03 Where: MR1(Outlet)= PPA Carbon Bed Inlet HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Outlet)= PMR1 x 453.59 / 3600 MR2(Outlet)= 3.74E-03 x 453.59 /3600 MR2(Outlet)= 4.71E-04 Where: MR2(Outlet)= PPA Carbon Bed Inlet HFPO Dimer Acid mass emission rate, g/sec. 453.6 = Conversion factor from pounds to grams. 3600 = Conversion factor from hours to seconds. 6/4/20191:39 PM 043019 PPA CBed EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS PPA CARBON BED INLET Client: Chemours Facility: Fayetteville, NC Test Number: Run 3 Test Date: 5/01/19 Test Location: PPA Stack Test Period: 0830-1017 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std) = -------------------------------------------- (Tm + 460) 1.747 17.64 x 1.0005 x 62.118 x ( 30.20 + --------------------- ) 13.6 Vm(std) = ------------------------------------------------------------ = 62.008 76.21 + 460 Where: Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb = Barometric Pressure, in Hg. delt H = Average pressure drop across the orifice meter, in H2O Tm = Average dry gas meter temperature , deg F. Y = Dry gas meter calibration factor. 17.64 = Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 = Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std) = (0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std) = ( 0.04707 x 11.0 ) + ( 0.04715 x 16.6 ) = 1.30 Where: Vw(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc = Volume of liquid condensed in impingers, ml. Wwsg = Weight of water vapor collected in silica gel, g. 0.04707 = Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 = Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 5/22/201911:28 AM 043019 PPA CBed 3. Moisture content Vw(std) bws = ------------------------- Vw(std) + Vm(std) 1.30 bws = ------------------------- = 0.021 1.30 + 62.008 Where: bws = Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md = 1 - bws Md = 1 - 0.021 = 0.979 Where: Md = Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd = ( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd = ( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd = 28.84 Where: MWd = Dry molecular weight , lb/lb-mole. % CO2 = Percent carbon dioxide by volume, dry basis. % O2 = Percent oxygen by volume, dry basis. % N2 = Percent nitrogen by volume, dry basis. % CO = Percent carbon monoxide by volume, dry basis. 0.440 = Molecular weight of carbon dioxide, divided by 100. 0.320 = Molecular weight of oxygen, divided by 100. 0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs = ( MWd x Md ) + ( 18 x ( 1 - Md )) MWs = ( 28.84 x 0.979 ) +( 18 ( 1 - 0.979 )) = 28.61 Where: MWs = Molecular weight of wet gas, lb/lb-mole. 18 = Molecular weight of water, lb/lb-mole. 5/22/201911:28 AM 043019 PPA CBed 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 535 Vs = 85.49 x 0.84 x 0.57037 x ( -------------------- )^1/2 = 32.3 30.05 x 28.61 Where: Vs = Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 = Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp = Pitot tube coefficient, dimensionless. Ts = Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps = Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p = Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act) = 60 x Vs x As Qs(act) = 60 x 32.3 x 6.31 = 12230 Where: Qs(act) = Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 = Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std) = 17.64 x Md x ----- x Qs(act) Ts 30.05 Qs(std) = 17.64 x 0.979 x -------------------- x 12230 534.9 Qs(std) = 11873 Where: Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 5/22/201911:28 AM 043019 PPA CBed 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I = ----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 535 x 62.008 I = -------------------------------------------------- = 100.7 32.3 x 96 x 30.05 x 0.979 x (0.250)^2 Where: I = Percent of isokinetic sampling. O = Total sampling time, minutes. Dn = Diameter of nozzle, inches. 17.327 = Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 5/22/201911:28 AM 043019 PPA CBed IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 APPENDIX E EQUIPMENT CALIBRATION RECORDS Interference Check 2014.xlsO2-Servomex 4900 3/26/2019 Date: 12/4/14-12/5/14Analyzer Type: Servomex - O2Model No: 4900Serial No: 49000-652921Calibration Span: 21.09 %Pollutant: 21.09% O2 - CC418692 CO2 (30.17% CC199689)0.00 -0.01 0.00 . NO (445 ppm CC346681)0.00 0.02 0.11 NO2 (23.78 ppm CC500749)NA NA NA N2O (90.4 ppm CC352661)0.00 0.05 0.24 CO (461.5 ppm XC006064B)0.00 0.02 0.00 SO2 (451.2 ppm CC409079)0.00 0.05 0.23 CH4 (453.1 ppm SG901795)NA NA NA H2 (552 ppm ALM048043)0.00 0.09 0.44 HCl (45.1 ppm CC17830)0.00 0.03 0.14 NH3 (9.69 ppm CC58181)0.00 0.01 0.03 1.20 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) Interference Check 2014.xlsCO2-Servomex 4900 3/26/2019 Date: 12/4/14-12/5/14Analyzer Type: Servomex - CO2Model No: 4900Serial No: 49000-652921Calibration Span: 16.65%Pollutant: 16.65% CO2 - CC418692 CO2 (30.17% CC199689)NA NA NA . NO (445 ppm CC346681)0.00 0.02 0.10 NO2 (23.78 ppm CC500749)0.00 0.00 0.02 N2O (90.4 ppm CC352661)0.00 0.01 0.04 CO (461.5 ppm XC006064B)0.00 0.01 0.00 SO2 (451.2 ppm CC409079)0.00 0.11 0.64 CH4 (453.1 ppm SG901795)0.00 0.07 0.44 H2 (552 ppm ALM048043)0.00 0.04 0.22 HCl (45.1 ppm CC17830)0.10 0.06 0.60 NH3 (9.69 ppm CC58181)0.00 0.02 0.14 2.19 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI79E15A00E4 Reference Number:160-401424145-1 Cylinder Number:CC157024 Cylinder Volume:150.5 CF Laboratory:124 - Plumsteadville - PA Cylinder Pressure:2015 PSIG PGVP Number:A12019 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Feb 26, 2019 Expiration Date:Feb 26, 2027 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 9.000 %9.018 %G1 +/- 0.6% NIST Traceable 02/26/2019 OXYGEN 12.00 %12.06 %G1 +/- 0.3% NIST Traceable 02/26/2019 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 061507 K014984 13.94 % CARBON DIOXIDE/NITROGEN 0.57%Jan 30, 2024 NTRM 16060507 CC401541 23.204 % OXYGEN/NITROGEN 0.2%Dec 24, 2021 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration HORIBA VA5011 T5V6VU9P NDIR CO2 NDIR Feb 12, 2019 SIEMENS OXYMAT 61 S01062 O2 PARAMAGNETIC Feb 18, 2019 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 6141 Easton Road Bldg 1 Plumsteadville, PA 18949 Airgas.com Signature on file Approved for Release Page 1 of 160-401424145-1 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI62E15A0224 Reference Number:82-401044874-1 Cylinder Number:SG9169108 Cylinder Volume:157.2 CF Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG PGVP Number:B52017 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Nov 18, 2017 Expiration Date:Nov 18, 2025 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 17.00 %16.58 %G1 +/- 0.7% NIST Traceable 11/18/2017 OXYGEN 21.00 %21.00 %G1 +/- 0.5% NIST Traceable 11/18/2017 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 12061336 CC360792 11.002 % CARBON DIOXIDE/NITROGEN +/- 0.6%Jan 11, 2018 NTRM 09061415 CC273526 22.53 % OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Oct 30, 2017 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Oct 27, 2017 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401044874-1 P-706 all in one.MOD Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.45 PASS Distance to B Plane (PB) - inches 0.45 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.79 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.006 0.012 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-706 KS Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z P-701 all in one.MOD Pitot Tube Identification Number: Inspection Date 5/30/18 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.466 PASS Distance to B Plane (PB) - inches 0.466 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.89 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.008 0.02 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-701 SR Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z Long Cal Box 24 8_17_18 Calibrator MDW Meter Box Number 24 Ambient Temp 72 Date 17-Aug-18 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 17087363 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Inlet, oF (Tdi) Average, oF (Td) Time, min (O)Y ∆H 165.901 76.00 76.00 170.979 77.00 77.00 5.078 76.50 76.50 173.050 77.00 77.00 178.077 78.00 78.00 5.027 77.50 77.50 179.100 78.00 78.00 189.237 79.00 79.00 10.137 78.50 78.50 190.250 79.00 79.00 200.405 79.00 79.00 10.155 79.00 79.00201.439 80.00 80.00 211.615 80.00 80.00 10.176 80.00 80.00 Average 0.9944 1.9231 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 32 32 32 32 32 32.0 0.0% 212 212 212 212 212 212.0 0.0% 931 930 928 930 928 929.4 0.2% 1828 1831 1832 1828 1830 1829.8 0.1% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 2.0320 Calibration Results Baro Press, in Hg ( Pb)29.68 80.0 932 1832 Reference Temperature Select Temperature oC oF 212 32 1.9199 1.954413.2 0.9928 15.1 0.9948 1.0024 5.00 72.0 11.0 0.9901 78.5 79.0 Y - Ratio of accuracy of wet test meter to dry gas meter ∆H - Pressure differential across orifice 3.0 10.0 72.0 Temperatures Wet Test Meter 76.5 1.5 10.0 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume 1.86295.0 72.0 77.5 9.1 2.0 10.0 1.846312.8 0.9917 Dry Gas Meter 72.0 0.5 72.0 1.0 ()() ()()2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ()()()()()   + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN PPA STACK METER BOX NO. 24 04/30/2019 + 05/01/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis. 0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis. 20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.81.5 102.3 79.6 Tma = Ts + 460 Tma = 81.46 + 460 Tma = 541.46 562.29 539.63 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 0.70 0.60 0.81 Pb = Barometric Pressure, in Hg.30.20 30.20 30.30 Pm = Pb + (delta H / 13.6) Pm = 30.2 + ( 0.700416666666667 / 13.6) Pm = 30.25 30.24 30.36 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.43.943 41.735 47.697 Y = Dry gas meter calibration factor (based on full calibration)0.9944 0.9944 0.9944 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.9231 1.9231 1.9231 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 0.8229 0.7635 0.8940 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 43.94 ) * SQRT ( 0.0319 * 541.46 * 29 ) / ( 1.92 * 30.25 * 28.84 ) * 0.82 Yqa = 2.185 * SQRT 500.903 / 1,677.499 * 0.82 Yqa = 0.9823 0.9782 0.9798 Diff = Absolute difference between Yqa and Y 1.22 1.63 1.47 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 0.9944 - 0.982 ) / 0.9944 ) * 100 Average Diff = 1.44 Allowable = 5.0 5/22/20191:20 PM 043019 PPA stack Long Cal Box #23 2_11_19 Calibrator MDW Meter Box Number 23 Ambient Temp 72 Date 11-Feb-19 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 17087349 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Inlet, oF (Tdi) Average, oF (Td) Time, min (O)Y ∆H 531.257 73.00 73.00 536.085 73.00 73.00 4.828 73.00 73.00 537.085 73.00 73.00 542.070 74.00 74.00 4.985 73.50 73.50 543.080 76.00 76.00 553.215 76.00 76.00 10.135 76.00 76.00 554.221 77.00 77.00 564.420 77.00 77.00 10.199 77.00 77.00 565.462 77.00 77.00 575.635 77.00 77.00 10.173 77.00 77.00 Average 1.0005 2.2926 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 32 32 32 32 33 32.2 0.0% 212 213 213 212 213 212.6 -0.1% 931 932 931 932 933 931.8 0.0% 1831 1833 1833 1832 1833 1832.4 0.0% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 2.3416 Calibration Results Baro Press, in Hg ( Pb)30.7 77.0 932 1832 Reference Temperature Select Temperature oC oF 212 32 12.0 0.9871 2.3083 2.384114.8 0.9850 16.8 0.9905 3.0 10.0 72.0 2.0 10.0 72.0 72.0 2.1493 1.0 5.0 72.0 73.5 10.2 1.0034 76.0 Y - Ratio of accuracy of wet test meter to dry gas meter ∆H - Pressure differential across orifice Dry Gas Meter Temperatures Wet Test Meter 2.2797 73.0 14.0 1.036372.0 77.0 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume 5.00.5 1.5 10.0 ()() ()()2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ()()()()()   + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN PPA STACK METER BOX NO. 23 04/30/2019 + 05/01/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis. 0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis. 20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.83.4 89.8 76.2 Tma = Ts + 460 Tma = 83.42 + 460 Tma = 543.42 549.75 536.21 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.82 1.86 1.75 Pb = Barometric Pressure, in Hg.30.10 30.10 30.20 Pm = Pb + (delta H / 13.6) Pm = 30.1 + ( 1.8175 / 13.6) Pm = 30.23 30.24 30.33 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.63.472 65.238 62.118 Y = Dry gas meter calibration factor (based on full calibration)1.0005 1.0005 1.0005 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.2.2926 2.2926 2.2926 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.3254 1.3413 1.2969 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 63.47 ) * SQRT ( 0.0319 * 543.42 * 29 ) / ( 2.29 * 30.23 * 28.84 ) * 1.33 Yqa = 1.512 * SQRT 502.715 / 1,998.488 * 1.33 Yqa = 1.0054 0.9955 0.9969 Diff = Absolute difference between Yqa and Y 0.49 0.50 0.36 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0005 - 1.005 ) / 1.0005 ) * 100 Average Diff = 0.45 Allowable = 5.0 5/22/20191:05 PM 043019 PPA CBed IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.012\PPA REPORT MAY 2019-AMD 6/4/2019 The following Weston employees participated in this project: Paul Meeter Senior Project Manager Jacob Little Team Member Nicholas Guarino Team Member Austin Squires Team Member Kris Ansley Team Member Brandon Berger Team Member