Loading...
HomeMy WebLinkAbout2019.04.19_CCO.p8_Fluoromonomers Manufacturing Process Vinyl Ethers North Carbon Bed Removal Efficiency And Division Stack Test ReportIASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 FLUOROMONOMERS MANUFACTURING PROCESS VINYL ETHERS NORTH CARBON BED REMOVAL EFFICIENCY AND DIVISION STACK TEST REPORT TEST DATES: 25 AND 26 MARCH 2019 THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA Prepared for: THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306 Prepared by: WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380 April 2019 W.O. No. 15418.002.011 IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 i TABLE OF CONTENTS Section Page 1. INTRODUCTION..............................................................................................................1  1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1  1.2 TEST OBJECTIVES ...............................................................................................1  1.3 TEST PROGRAM OVERVIEW .............................................................................1  2. SUMMARY OF TEST RESULTS ...................................................................................4  3. PROCESS DESCRIPTIONS ............................................................................................6  3.1 FLUOROMONOMERS ..........................................................................................6  3.2 PROCESS OPERATIONS AND PARAMETERS .................................................6  4. DESCRIPTION OF TEST LOCATIONS .......................................................................7  4.1 DIVISION STACK ..................................................................................................7  4.2 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET .....................7  5. SAMPLING AND ANALYTICAL METHODS ...........................................................10  5.1 STACK GAS SAMPLING PROCEDURES .........................................................10  5.1.1 Pre-Test Determinations .........................................................................10  5.2 STACK PARAMETERS .......................................................................................10  5.2.1 EPA Method 0010...................................................................................10  5.2.2 EPA Method 0010 Sample Recovery .....................................................12  5.2.3 EPA Method 0010 Sample Analysis.......................................................14  5.3 GAS COMPOSITION ...........................................................................................16  6. DETAILED TEST RESULTS AND DISCUSSION .....................................................19  APPENDIX A PROCESS OPERATIONS DATA APPENDIX B RAW AND REDUCED TEST DATA APPENDIX C LABORATORY ANALYTICAL REPORT APPENDIX D SAMPLE CALCULATIONS APPENDIX E EQUIPMENT CALIBRATION RECORDS APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 ii LIST OF FIGURES Title Page Figure 4-1 Division Stack Test Port and Traverse Point Location ................................................ 8  Figure 4-2 VE North Process Carbon Bed Inlet and Outlet Schematic ......................................... 9  Figure 5-1 EPA Method 0010 Sampling Train ............................................................................. 11  Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 15  Figure 5-3 WESTON Sampling System ...................................................................................... 18  IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 iii LIST OF TABLES Title Page Table 1-1 Sampling Plan for VEN Carbon Bed Testing ................................................................. 3  Table 1-2 Sampling Plan for Division Stack .................................................................................. 4  Table 2-1 Summary of HFPO Dimer Acid VEN Carbon Bed and Division Stack Test Results ... 5  Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Inlet – Runs 1, 2, and 3 .............................................................................................................................. 20  Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Outlet – Runs 1, 2, and 3 .............................................................................................................................. 22  Table 6-3 Summary of HFPO Dimer Acid Test Data and Test Results Division Stack – Runs 1, 2 and 3 ................................................................................................................................... 24  IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 1 1. INTRODUCTION 1.1 FACILITY AND BACKGROUND INFORMATION The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse. Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid, emission testing on the Vinyl Ethers North (VEN) Carbon Bed and Division stack at the facility. Testing was performed on 25 and 26 March 2019 and generally followed the “Emission Test Protocol” reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program. 1.2 TEST OBJECTIVES The specific objectives for this test program were as follows:  Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the Carbon Bed inlet and outlet and Division stack which are located in the Fluoromonomers process area.  Calculate the Carbon Bed removal efficiency for HFPO Dimer Acid.  Monitor and record process and emissions control data in conjunction with the test program.  Provide representative emissions data. 1.3 TEST PROGRAM OVERVIEW During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured at three locations. Tables 1-1 and 1-2 provide a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 2 Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test locations. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6. Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided in electronic format and on CD with each hard copy. IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 3 Table 1-1 Sampling Plan for VEN Carbon Bed Testing Sampling Point & Location VEN Carbon Bed Number of Tests: 6 (3 Carbon Bed inlet, 3 Carbon Bed outlet) Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests EPA M3/3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size ≥ 1.5m3 NA NA NA NA Total Number of Samples Collected1 6 6 3 3 6 Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0 Field Blank Trains1 1 per source 0 0 0 0 Proof Blanks1 1 per train 0 0 0 0 Trip Blanks1,2 1 set 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 105 6 3 3 6 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 4 Table 1-2 Sampling Plan for Division Stack Sampling Point & Location Division Stack Number of Tests: 3 (3 Division Stack) Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests EPA M3/3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size ≥ 1.5m3 NA NA NA NA Total Number of Samples Collected1 3 3 3 3 3 Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0 Field Blank Trains1 1 per source 0 0 0 0 Proof Blanks1 1 per train 0 0 0 0 Trip Blanks1,2 1 set 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 45 3 3 3 3 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 5 2. SUMMARY OF TEST RESULTS A total of three test runs each were performed on the VEN Carbon Bed inlet and outlet and Division stack. Table 2-1 provides a summary of the HFPO Dimer Acid emissions test results and Carbon Bed removal efficiencies. Detailed test results summaries are provided in Section 6. It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided in Table 2-1 and in this report include a percentage of each of the three compounds. Table 2-1 Summary of HFPO Dimer Acid VEN Carbon Bed and Division Stack Test Results Inlet Outlet Removal Efficiency Division Stack g/sec lb/hr g/sec lb/hr % g/sec lb/hr R1 7.75E-02 6.16E-01 7.84E-04 6.23E-03 99.0 1.03E-03 8.20E-03 R2 6.23E-03 4.95E-02 3.74E-04 2.97E-03 94.0 6.50E-04 5.16E-03 R3 1.13E-02 8.98E-02 8.67E-04 6.89E-03 92.3 1.36E-03 1.08E-02 Average 3.17E-02 2.52E-01 6.75E-04 5.36E-03 95.1 1.01E-03 8.05E-03 IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 6 3. PROCESS DESCRIPTIONS The Fluoromonomers area is included in the scope of this test program. 3.1 FLUOROMONOMERS These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers. Process emissions are vented to the Division waste gas scrubber system (which includes the secondary scrubber) and vents to the Carbon Bed and then onto the Division Stack. The VE North building air systems are vented to the carbon bed and then onto the Division Stack. 3.2 PROCESS OPERATIONS AND PARAMETERS The following table is a summary of the operation and products from the specific areas tested. Source Operation/Product Batch or Continuous VE North PPVE Condensation is continuous. Agitated Bed Reactor and Refining are batch. During the test program, the following parameters were monitored by Chemours and are included in Appendix A.  Fluoromonomers Process o VEN Precurser Rate o VEN Condensation Rate o VEN ABR Rate IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 7 4. DESCRIPTION OF TEST LOCATIONS 4.1 DIVISION STACK Two 6-inch ID test ports were installed on the 36-inch ID fiberglass stack as shown below. The four vents that enter the top of the stack and the one vent ~11 feet below are catch pots which, under normal process operations, do not discharge to the stack. They are used to vent process gas to the stack in the event of a process upset and are not considered a flow contributor or a disturbance. Per EPA Method 1, a total of 12 traverse points (six per axis) were used for M-0010 isokinetic sampling. Figure 4-1 provides a schematic of the test ports and traverse point locations. 4.2 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET Each fiberglass reinforced plastic (FRP) duct at the inlet and outlet of the carbon bed is 34-inch ID. The test ports are located as shown below. Based on EPA Method 1, a total of 24 traverse points (12 per port) were required for HFPO Dimer Acid sampling at both locations. Figure 4-2 provides a schematic of the test port and traverse port locations. Location Distance from Flow Disturbance Downstream (B) Upstream (A) Carbon Bed Inlet 67 inches > 1.9 duct diameters 61 inches > 1.8 duct diameters Carbon Bed Outlet 58 inches > 1.7 duct diameters 57 inches > 1.5 duct diameters Division Stack 30 feet > 10 duct diameters 9 feet > 3 diameters 36 " TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 FIGURE 4-1 DIVISION STACK TEST PORT AND TRAVERSE POINT LOCATIONS IASDATA\CHEMOURS\15418.002.011\FIGURE 4-1 DIVISION STACK8 ~ 9 ' BUILDING EXHAUST ID FAN DISCHARGE CATCH POT ~ ~ ~ ~~~~~ CATCH POT VENTS DRAWING NOT TO SCALE ~ 30 ' ~ 128 " 1 5/8 5 3/8 10 7/8 26 31 5/8 33 3/8 34 "TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 7 8 9 10 11 12 FIGURE 4-2 VE NORTH PROCESS CARBON BED INLET AND OUTLET SCHEMATIC IASDATA\CHEMOURS\15418.002.011\FIGURE 4-2 VE NORTH PROCESS SCHEMATIC9 ID FAN CARBON BED 67 " 3/4 2 1/4 4 6 8 1/2 12 1/8 21 5/8 25 1/2 28 30 31 3/4 33 1/4 DRAWING NOT TO SCALE 57 " 58 " INLET OUTLET 61 " CEMENT BLOCK WALL IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 10 5. SAMPLING AND ANALYTICAL METHODS 5.1 STACK GAS SAMPLING PROCEDURES The purpose of this section is to describe the stack gas emissions sampling trains and to provide details of the stack sampling and analytical procedures utilized during the emissions test program. 5.1.1 Pre-Test Determinations Preliminary test data were obtained at each test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements. A check for the presence or absence of cyclonic flow was previously conducted at each test location. The cyclonic flow checks were negative (< 20°) verifying that the test locations were acceptable for testing. Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures. Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures. 5.2 STACK PARAMETERS 5.2.1 EPA Method 0010 The sampling train utilized to perform the HFPO Dimer Acid sampling at all three locations was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter. VENTWALLICE WATER RECIRCULATION PUMPCONDENSATE TRAPIMPINGERSICE BATHVACUUM LINEMAINVALVETEMPERATURESENSORSBY-PASS VALVEAIR-TIGHT PUMPDRY GAS METERORIFICEMANOMETERCHECKVALVETEMPERATURESENSORHEATED AREAFILTER HOLDERORIFICESILICA GELCONDENSERXAD-2 SORBENTMODULES ONE AND TWOTEMPERATURESENSORTEMPERATURESENSORVACUUMGAUGEIASDATA\CHEMOURS\15418.002.011\FIGURE 5-1 METHOD 0010FIGURE 5-1EPA METHOD 0010 SAMPLING TRAINHEATED PROBE/BUTTON HOOKNOZZLEREVERSE TYPEPITOT TUBE11 NOTE: THE CONDENSER MAY BE POSITIONED HORIZONTALLY. THE XAD-2 SORBENT MODULE WILL ALWAYS BE IN A VERTICAL POSITION..RIGID BOROSILICATE TUBINGOR FLEXIBLE SAMPLE LINEICE WATERRECIRCULATIONCONDENSATE TRAPIMPINGER IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 12 A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high-purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and both XAD-2 modules to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train. HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid. During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes. 5.2.2 EPA Method 0010 Sample Recovery At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery. A consistent procedure was employed for sample recovery: IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 13 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled. 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments. 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed. 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.   5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed. 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.   7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed. 8. The silica gel in the final impinger was weighed and the weight gain value recorded. 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis. Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool. During the Carbon Bed inlet and outlet test campaign, a Method 0010 blank train was set up near the test location, leak-checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis. See Figure 5-2 for a schematic of the Method 0010 sample recovery process. IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 14 5.2.3 EPA Method 0010 Sample Analysis Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:  Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;  Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;  Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;  Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers. The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough. The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS. IASDATA\CHEMOURS\15418.002.011\FIGURE 5-2 EPA 0010FIGURE 5-2HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010NOZZLE, PROBE ANDFRONT-HALF FILTER HOLDERSAMPLE FRACTION 2FILTERSAMPLE FRACTION 1BACK-HALF FILTER HOLDER CONNECTORS, FLEXIBLE LINE CONDENSER SAMPLE FRACTION 5XAD-2 MODULE ONESAMPLE FRACTION 3REMOVE FROM IMPINGER TRAINWASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDESEAL IN LABELED POLYETHYLENE BOTTLE. COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLWASH WHILE BRUSHING WITH NANOGRADE METHANOL/ AMMONIUM HYDROXIDESEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOLTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLSEAL WASHINGS IN LABELED POLYETHYLENE BOTTLE. MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 4IMPINGER NO. 4 (SILICA GEL)WEIGH AND RECORDMEASURE VOLUME OF LIQUID AND RECORDTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOL15 WEIGH AND RECORDRETAIN FOR REGENERATIONFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 6WASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDETRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLXAD-2 MODULE TWOSAMPLE FRACTION 7REMOVE FROM IMPINGER TRAINSEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOL IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 16 Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries. TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol. 5.3 GAS COMPOSITION The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3. For the Division stack test campaign, the sample was collected at the exhaust of the Method 0010 sampling system. At the end of the line, a tee permitted the introduction of calibration gas. The sample was drawn through a heated Teflon® sample line to the sample conditioner. The output from the sampling system was recorded electronically, and one minute averages were recorded and displayed on a data logger. Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintained the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment. The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to insure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier. IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 17 The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run. HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDER OR METHOD0010 SAMPLE TRAINHEATED SAMPLE LINESAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISTIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-3WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.011\FIGURE 5-3 WESTON SAMPLING SYSTEM218 IASDATA\CHEMOURS\15418.002.011\CBED IN OUT DIVISION REPORT MARCH 2019-AMD 4/19/2019 19 6. DETAILED TEST RESULTS AND DISCUSSION Each test was a minimum of 96 minutes in duration. A total of three test runs were performed at each location. Tables 6-1 through 6-3 provide detailed test data and test results for the Carbon Bed inlet, the Carbon Bed outlet and the Division stack, respectively. The Method 3A sampling on all sources indicated that the O2 and CO2 concentrations were at ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all calculations. The carbon bed removal efficiency was calculated based upon the HFPO Dimer Acid inlet and outlet mass emission rates in lb/hr. TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED INLET Test Data Run number 1 2 3 Location CBed Inlet CBed Inlet CBed Inlet Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1528 0852-1052 1510-1709 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.215 0.215 0.215 Cross sectional nozzle area, sq.ft.0.000252 0.000252 0.000252 Barometric pressure, in. Hg 30.02 30.06 30.06 Avg. orifice press. diff., in H2O 1.01 0.92 1.11 Avg. dry gas meter temp., deg F 78.0 53.5 64.5 Avg. abs. dry gas meter temp., deg. R 538 513 525 Total liquid collected by train, ml 30.1 24.6 31.7 Std. vol. of H2O vapor coll., cu.ft.1.4 1.2 1.5 Dry gas meter calibration factor 1.0001 0.9920 0.9920 Sample vol. at meter cond., dcf 57.651 49.926 55.610 Sample vol. at std. cond., dscf (1)56.888 51.262 55.917 Percent of isokinetic sampling 109.4 100.4 99.6 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.024 0.022 0.026 Mole fraction of dry gas 0.976 0.978 0.974 Molecular wt. of wet gas, lb/lb mole 28.57 28.60 28.55 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -6.50 -6.50 -6.50 Absolute pressure, in. Hg 29.54 29.58 29.58 Avg. temperature, deg. F 83 62 69 Avg. absolute temperature, deg.R 543 522 529 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.38.3 36.0 40.2 Stack/duct cross sectional area, sq.ft.6.31 6.31 6.31 Avg. gas stream volumetric flow, wacf/min.14478 13610 15217 Avg. gas stream volumetric flow, dscf/min.13551 13300 14624 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/8/2019 4:17 PM 20 032519 CBed IN CARBON BED INLET TEST DATA Run number 1 2 3 Location CBed Inlet CBed Inlet CBed Inlet Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1528 0852-1052 1510-1709 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 19542.00 1442.31 2596.11 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 12128.59 993.39 1639.22 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 7.57E-07 6.20E-08 1.02E-07 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 6.16E-01 4.95E-02 8.98E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 7.75E-02 6.23E-03 1.13E-02 TABLE 6-1 (cont.) SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CHEMOURS - FAYETTEVILLE, NC 4/12/2019 10:33 AM 21 032519 CBed IN TABLE 6-2 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED OUTLET Test Data Run number 1 2 3 Location CBed Outlet CBed Outlet CBed Outlet Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1529 0852-1052 1510-1709 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.215 0.215 0.215 Cross sectional nozzle area, sq.ft.0.000252 0.000252 0.000252 Barometric pressure, in. Hg 30.02 30.06 30.06 Avg. orifice press. diff., in H2O 1.43 1.38 1.46 Avg. dry gas meter temp., deg F 80.5 51.8 66.4 Avg. abs. dry gas meter temp., deg. R 541 512 526 Total liquid collected by train, ml 38.0 29.8 40.1 Std. vol. of H2O vapor coll., cu.ft.1.8 1.4 1.9 Dry gas meter calibration factor 1.0027 1.0027 1.0027 Sample vol. at meter cond., dcf 60.365 57.418 59.954 Sample vol. at std. cond., dscf (1)59.509 59.852 60.776 Percent of isokinetic sampling 104.4 103.3 102.2 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.029 0.023 0.030 Mole fraction of dry gas 0.971 0.977 0.970 Molecular wt. of wet gas, lb/lb mole 28.52 28.59 28.51 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O 3.50 3.50 3.50 Absolute pressure, in. Hg 30.28 30.32 30.32 Avg. temperature, deg. F 86 68 72 Avg. absolute temperature, deg.R 546 528 532 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.41.3 40.3 42.0 Stack/duct cross sectional area, sq.ft.6.31 6.31 6.31 Avg. gas stream volumetric flow, wacf/min.15630 15245 15895 Avg. gas stream volumetric flow, dscf/min.14856 15097 15491 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/8/2019 4:19 PM 22 032519 CBed OUT CARBON BED OUTLET TEST DATA Run number 1 2 3 Location CBed Outlet CBed Outlet CBed Outlet Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1529 0852-1052 1510-1709 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 188.630 89.00 204.25 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 111.91 52.50 118.66 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 6.99E-09 3.28E-09 7.41E-09 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 6.23E-03 2.97E-03 6.89E-03 HFPO Dimer Acid (From Inlet Data)6.16E-01 4.95E-02 8.98E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 7.84E-04 3.74E-04 8.67E-04 Carbon Bed Removal Efficiency, %99.0 94.0 92.3 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS 4/12/2019 10:30 AM 23 032519 CBed OUT TABLE 6-3 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK Test Data Run number 1 2 3 Location Divison Stack Divison Stack Divison Stack Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1528 0852-1052 1510-1709 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.160 0.160 0.160 Cross sectional nozzle area, sq.ft.0.000140 0.000140 0.000140 Barometric pressure, in. Hg 29.92 29.96 29.96 Avg. orifice press. diff., in H2O 1.34 1.39 1.42 Avg. dry gas meter temp., deg F 80.6 46.5 58.5 Avg. abs. dry gas meter temp., deg. R 541 507 519 Total liquid collected by train, ml 30.7 26.7 20.6 Std. vol. of H2O vapor coll., cu.ft.1.4 1.3 0.97 Dry gas meter calibration factor 1.0010 1.0010 1.0010 Sample vol. at meter cond., dcf 51.535 51.014 51.633 Sample vol. at std. cond., dscf (1)50.532 53.465 52.864 Percent of isokinetic sampling 97.5 98.9 97.3 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.1 0.0 0.0 O2, % by volume, dry basis 21.0 21.0 21.2 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.028 0.023 0.018 Mole fraction of dry gas 0.972 0.977 0.982 Molecular wt. of wet gas, lb/lb mole 28.53 28.59 28.64 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -0.70 -0.70 -0.70 Absolute pressure, in. Hg 29.87 29.91 29.91 Avg. temperature, deg. F 83 63 69 Avg. absolute temperature, deg.R 543 523 529 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 12 12 12 Avg. gas stream velocity, ft./sec.68.3 68.2 69.0 Stack/duct cross sectional area, sq.ft.7.07 7.07 7.07 Avg. gas stream volumetric flow, wacf/min.28976 28913 29265 Avg. gas stream volumetric flow, dscf/min.27357 28516 28665 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/8/2019 4:20 PM 24 032519 Division TEST DATA Run number 1 2 3 Location Divison Stack Divison Stack Divison Stack Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1528 0852-1052 1510-1709 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 114.45 73.19 150.62 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 79.97 48.33 100.60 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 4.99E-09 3.02E-09 6.28E-09 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 8.20E-03 5.16E-03 1.08E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 1.03E-03 6.50E-04 1.36E-03 TABLE 6-3 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK 4/8/2019 4:20 PM 25 032519 Division IASDATA\CHEMOURS\15418.002.009\CBED IN OUT DIVISION REPORT 01162019-AMD 4/15/2019 APPENDIX A PROCESS OPERATIONS DATA 4/22/2019 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT DIVISION REPORT 01162019-AMD 4/15/2019 APPENDIX B RAW AND REDUCED TEST DATA CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED INLET Test Data Run number 1 2 3 Location CBed Inlet CBed Inlet CBed Inlet Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1528 0852-1052 1510-1709 Operator RS/JL RS/JL RS/JL Inputs For Calcs. Sq. rt. delta P 0.66432 0.63766 0.70790 Delta H 1.0125 0.9221 1.1071 Stack temp. (deg.F) 83.2 62.2 68.8 Meter temp. (deg.F) 78.0 53.5 64.5 Sample volume (act.) 57.651 49.926 55.610 Barometric press. (in.Hg) 30.02 30.06 30.06 Volume H2O imp. (ml) 14.4 7.9 16.2 Weight change sil. gel (g) 15.7 16.7 15.5 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 6.305 6.305 6.305 Sample time (min.) 96.0 96.0 96.0 Static pressure (in.H2O) -6.50 -6.50 -6.50 Nozzle dia. (in.) 0.215 0.215 0.215 Meter box cal. 1.0001 0.9920 0.9920 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 4/12/2019 10:32 AM 032519 CBed IN ~~ ~ 6~ar~'ina~ po..~;•hS~ -~er ECitG. ,~oc'~ w.~.w«~~, , ~~_. 4~ `~ ~ ~~ ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid Page! of i Cnent chen,o~xs Stack Conditions Meter eox i~ ,~1~ ,`27 W.O.# 15418.002.011 Assumed Actual Meter Box Y t.o K Factor L, 32 Project ID chemours %Moisture Z Metar Box Del H 9 r-42 t3 Initial Mid-Point Final Mode/Source ID Samp. Loc. ID Run No.ID Test Method ID Date ID S /L ("F Carbon Bed IN 1 M0010 25MAR2019 7 Impinger Vol (ml) SIAca gel (g) CO2, % by Vol 02, % by Vol Temperature (°F) Mete T ' 0' ' ~D. Probe ID /Length Probe Material Pitot /Thermocouple ID Pltot Coefflclent Noale ID- "'Yd ~•Tc. '7 ~ Sample Tra(n (ft3) Bwo Leak Check Q Qn Hg) {$+~ a Pltot leak check good / no 0.8 ` ~/ Pitot Inspectlon good j / no . Z IS Method 3 System good p, Q a ~, '~S~~ ~ / no / no / no "? / no o ounce ocatlon VE North r~gt r emp )Noale Measurements , Z~S .215 . ZIS Temp Check Pre- est et Post-Test Set Sample Date ",S^ 25- Zo1`~ Static Press (in HZO) j ~ (~, ~j Avg NoaJe Dia (in), 2i5 Meter Box Temp Baro. Press (in Hg)3~. 0~.Area of Stack (ft')(o , 30.5 Reference Temp Operator o S 5L Ambient Temp (°~ f ~8 i Sample Tfine 9 (o ~/Pass/Fail (+/- 2°~ Pass /Fall Pass /Fall Total Traverse Pts ~,~}Temo Chance Response' ves / no vPc i rte, i0~~Jr ~~-~~~~~~~~~-~I ~~-~:.•~iL :J ~~~~ ~~~~~~~~~s~~~~v~~r~~~~:~m~A~~~~~~~~~o~~~~ ~o~~~~~~~~~~~~o~o~~~m~~~~~~sL~=•~~000~~ ------------- i ~~~~~~~~~~~~-~s~~~~~~~~~~ao~~ ~~~~~~~~r•~~~oo~~~~~■~~~~~~~~~~o~~~r~~~~~~~~~oo~■~~ ~~a~~~~~a■~~~~~~~,~0~~~~~~~~~~~_~-=~~m~~~~~ .'{~(Z9 ~ ~.oc2s J ~- Avg Sgrt Defta P Avg Sgrt Del I Y~ ~ 4+~'t 3u~~j ~ . oc~+'18 ~"o r/~/ ~/j/ ^ry 1jv ray 1~tIJ ~l~l'vi22 i'1q 122 ~s mac vac MINMBXS`7 . (vS I 83 ,Zo8 Z8 `{ 36 't0om~n s: EPA Method 0010 from EPA SW-846/ h~;d Po1h 1cgX L1,ca.K .v ~(rM = 7 -~i 368. ~~cbz ch4r~~ a.~- i„~~d Po~n~' 3~Z. q9~ '~ 3~3. 7S`~ ~ . Z~Z ~ 3 ~> ~ ~' '~' / ~v" b` ~4t ~-~ . ~ ~ ~~ ~J✓k~~"'1 ISOHINETIC FIELD DATA SHEET 5'~ EPA Method 0010 - I3FP0 Diener Acid Page~of~ cnent chea,ours Stack Conditions Meter Box ID AD 24 K Factorw.o.# 1sa~a_oo2.0~~ Assumed Actual Metereox v ,q42 2. Z'~- Project ID Chemours °/a Moisture Meter Box Del H ►.$(gyp Initial Mid-Point FinalMa1e/Source ID Samp. Loc. ID Run No.ID Test Method ID Date ID S /L tl Carbon Bed W 2 M0010 ~s~MAR2019 VE North Inlet Impinger Vol (ml) Silica gel (g) CO2, % by Vol 02, % by Vol Temperature (°F) Meter Tem ("F) (; 2~, [ (~C i Probe ID /Length Probe Material Pitot /Thermocouple ID Pitot Coefficient Noale ID P "rb'"/ ~;, ~ ' "^I 'Sample Train (ft') B Leak Check @ (in Hg) Pkot leak check good B4 ~/ Pitot Inspection goad . 2) ~ Method 3 System good ~ , O i~ 1$ ~~ i no / ro C ~ S•'~+ e / no ~s no Vii/ no s no no noounce oca on P LG_ NoaJe Measurements .215 -215 .2I~j Temp Check Pre-Test Set Post-Test SetSample Date 3.. ~ _ ZQ ~t~ Static Press (in Hz0) ; ~ /e„~ _ Avg NoaJe Dfa (in) , ~2) s Meter Box TempBaro. Press (in Hg) ~p , C ` Area of Stack (ftZ) (o , ~js' Reference TempOperator (Z~ 7~ Ambient Temp (°F) ; ~Q Sample Tlme a(o PasslFall (+/- p°) Pass /Fail Peaa:! Fall Total Traverse Pts ~} Temp Change Response ~ ves / no vos / no 0 ~~~-~~~~1 ~~~~~~~~~:~-~~~~~~~~~I~~~~~~~~-~~-~~~~~~~~~~~~~t~- ~~~s~~~~~~~~~~~r:~o~~~~~~~~tr~~~~~~~~~~~■~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~mo~~~~~~~~~~~~~~~~~~~~■~r~~~~~~~~~~~~~~~~~~~~~o~~~~am~~~~~~~~~~~m~~~o~~~~~~a ~~■~~~~~~~~~~~~~~~~~~~~~~om~~~~~~~~~~~~~o~~~~~_~~,..y ....~... ~ ` .~.y ...,~.o ~J p., o~ „ ~..~~~o .,.y ~ ~ J ..,,y i iu iv~numan mirurviau M3X w ~«b J , ~i22o ~ ya •92b dz.i S~.~ls J tit ~z~ i~a ~2i S~ Avg Sgrt Delta Avg Sgrt Del H Comm.e} s: ~~' a~ ` 562. 33 6 -~ 5~ 2 _ ~{~n ~ , ~2~-{ ~ MBJC V8C MINM2X `f 37 /4 b EPA Method 0010 from EPA SW-846 r^`3 ~. ~. ~v ~, ,. ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid Page t orbCuent ct~,p„rs Stack Conditions Meter Box ID Ac 2q K FactorW.O.# 15418.OQ2.D11 Assumed ACtuel MeterBox Y , q92 ~Z' z ~Project ID Chemours %Moisture 3 Meter Box Del H (~ Initial Mid-Point FinalMode/Sour~ce ID Carbon Bed Impfnger Vol (ml) Probe ID /Length P "'tp~7 Sample Train (ft') p, ~~iLSamp. Loc. ID IN Silica gel (g) ~ Probe Material Boro Leak Check (a~ (In Hg) ~ j' ~' 'iRun No.ID 3 CO2, % by Val o PRot /Thermocouple ID '?p'7 Pitot leak check good s~ / no / no ! noTest Method ID M0010 02, % by Vol 20 -q ~ Pitot Coefficient 0.84 Pitot Inspection good ~ / no ~ / no / noDate ID 'LV ~MAR2019 Temperature (°F) 'ZQ ' Noale ID ~ 7t$ Method 3 System good no o noSource/Location VE North Inlet Meter Tamp ("F) —~NonJe Measurements ,~ . 2($ . 21~ Temp Chetk Pfe- est Set Post- est etSample Date 3 - 2 (~ — 2C ~q Static Press (in H2O) - 1,, 5 Avg Noale Dfa (in) Meter Box TempBaro. Press (In Hg) ~ , pb , Area of Stack (HZ) p Reference TempOperator QS f ~ 'Ambient Temp (°F) ~gj Sample Time , ab ./ Pass/Fail (+1- 2°) Pesa !Fall Pass 1 FaU Total Traverse Pts 2~ Temp Change Response 5 yes / no yea / no • ~m—~~~t1~~~~0~— ~m—~~~~i't~~t2:!~~~~~— ~~—~~~'lt~s~~~~0~— I~~—~~~~~~~~~~— ~~~~~— ~~—~~~~~~~~~— i Hvg ue¢a r~/ r+vg uena ~r~~1 ~JC'~t5 v ~. ~O"tQ V Avg Sgrt Delta P Avg Sgrt Del F . ?o?`i V I.o~F$~F 0[01 VOIURI HV9 1 5` ~ ,vvg i m MINM2X MINM2X 55~~~~ ~$.g3v ~`t.5`~ J i~~~2t ii8/~2~ Comments: M87( I M37( V8C I MINM87( ~ S 36~y 1 EPA Method 0010 from EPA SW-846Vh• d P~'~n t ltq K tl~wl~ ~ ~ I o ~ ~~ SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Dimer Acid Client Chemours W.O. # Location/Plant Fayettevit~e, NC Source &Location 15418.002.011 VE North Inlet Run No. 1 Sample Date ~ ~ s ~~ Recovery Date ~ ~~ Sample I.D. Chemours -Carbon Bed - IN - 1 - M0010 - Analyst j Filter Number Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~ ~'~~D ~~ ~~,g a ~F~5 e Initial ~goo goo ~~ s ~y~,~soo Gain 3 p ~ , [~ ~~ ! ~~~~ t 1 Impinger Color Labeled? l/ r ~, Silica Gel Condition d Sealed? Run No. 2 Sample Date /' ~ l i Recovery Date f~' Sample I.D. Chemours -Carbon Bed - IN - 2 - Moo10 - Analyst Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empry HPLC H2O HPLC H2O Silica Gel Final v~~ J .~ ~c ~~p`~. 4 Initial (~100 100 ~~~ ~~ t~300 Gain ~(~~ ,Q ~~~ ~ ~i Impinger Color ~ Labeled? DSilica Gel Condition Sealed? Run No. 3 Sample Date /~'~ L g Recovery Date 3 /~ ~s Sample I.D. Chemours -Carbon Bed - IN - 3 - M0010 - Analyst Filter Number ~~ Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~~~ ~~~'~'~ r q, q Initial ~100 100 v ~~ ~~300 Gain . ~(~, !i Impinger Color ~ Labeled? Silica Gel Condition ~ Sealed? Check COC for Sample IDs of Media Blanks ` SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Cli@nt Location/Plant cnemours W.O. #~ 15418.002.011 Source &Location vE Norm InletFayetteville, NC Run No. BT Sample Date ~ Z (n ~O19 Recovery Date ,3 ~ L(o~ l9 Sample I.D. Chemours -Carbon Bed - IN - BT - M0010 - Analyst Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empry HPLC H2O HPLC H2O Silica Gel Final ~ co~ qb Z., Initial 100 100 ~300 Gain $~~—~`~Z--~0.2 ~~L Impinger Color ~~~Q Labeled? ~{~5 Silica Gel Condition ~~ Sealed? '~F_S Run No. BT Sample Date Recovery Date Sample I.D. Chemours -Carbon Bed - IN - BT - M0010 - Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final Initial goo goo soo Gain Impinger Color Labeled? Silica Gel Condition Sealed? Run No. BT Sample Date Recovery Date Sample I.D. Chemours -Carbon Bed - IN - BT - M0010 - Analyst Filter Number Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Siiica GeI Final Initial 100 100 300 Gain Impinger Color Labeled? Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED OUTLET Test Data Run number 1 2 3 Location CBed Outlet CBed Outlet CBed Outlet Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1529 0852-1052 1510-1709 Operator KA/AS KA/AS KA/AS Inputs For Calcs. Sq. rt. delta P 0.72388 0.71922 0.74565 Delta H 1.4258 1.3846 1.4621 Stack temp. (deg.F) 85.5 67.7 72.2 Meter temp. (deg.F) 80.5 51.8 66.4 Sample volume (act.) 60.365 57.418 59.954 Barometric press. (in.Hg) 30.02 30.06 30.06 Volume H2O imp. (ml) 18.7 14.8 20.3 Weight change sil. gel (g) 19.3 15.0 19.8 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 6.305 6.305 6.305 Sample time (min.) 96.0 96.0 96.0 Static pressure (in.H2O) 3.50 3.50 3.50 Nozzle dia. (in.) 0.215 0.215 0.215 Meter box cal. 1.0027 1.0027 1.0027 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 4/8/2019 4:23 PM 032519 CBed OUT ~~ ~~-~ ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid CUent c~~mo~Ks Stack Conditions Meter Box ID w.o.#isa~e.00z.oi~Assumed Actual nnetereox r , p Project ID Chemours % Moisture Meter Box Dal H Mode/Source ID Carbon Bed Impinger Vol (ml)_ Probe ID /Length _ j~ D Sample Train (ft9) Samp. Loc. ID OUT S1Nca gel (g)Probe Material or ', Leak Check @ (In Hg) Run No.ID 1 CO2, % by Vol ~, n Pitot /Thermocouple ID ~ Q PRot leak check good Test Method ID M0010 02, % by Vol J Pitot Coefficient 0.8 Pitot Inspection good Date ID 25MAR2019 Temperature (°F) Q 'S 5 Noale ID ~~ S Method 3 System good Page ~ of K Factor r 2. 6 Initial Mid-Point Final ~J.(~~7 lb 0 ~~~" e's / no `e / no y~g I no Ye 1 no yss I no %yes / no yes ! no yes / na yes / no Source/Locadon VE Noah Outlet .Meter Temp (F) ~ ~ IVonJe Measurements ~ Temp Check Pre-Test Set Post-Test Set Sample Date Static Press (in Hz0) Avg NoaJe Dia (in) Meter Box Temp Baro. Press (fn Hg) b'1.~ Area of Stack (ftZ) O Reference Temp Operator ~ S Ambient Temp (°F) ~ b ,Sample Time Pass/Fail (+/- p°~ Pasa / Faii Pass /Fell Total Traverse Pts 'L Temp Change Response 5 yes / no yea I no O~L~~~r{~7~~~ ~~~~1~~~1~~:~iL~m~m~~~~~~i~~~t~~~~~1~~r[~fl~'•~Q~~~!~t~~~~~C~~ ~~~~l~~~I11~~I~~f~it~ifEiG'~: +ti~[~c~[~~~~f~~ .,vy vo„o ~ y vo~~ ~ ~ ~ v~~ y6 1. ~-b `' , ~, ~~. ~ Avg Sgrt Delta P Avg Sgrt Del H Comments: ~~~~g ~. ~3~ HV9 I RI MINMB)C MINMBX 37C M2X V8C MINM2X EPA Method 0010 from EPA SW-846 " ~~ 0 ~~~~¢. sq. d~ ISOHINETIC FIELD DATA SHEET client ct,emo~xs Stack Conditions w.o.#i say a.00z.o i i Assumed Project ID Chemours °/, Moisture Mode/Souree ID Carbon Bed Impinger Vol (ml) Samp. Loc. ID OUT SIAca gel (g) Run No.ID 2 CO2, % by Vol pJ~— Test McUiod ID M0010 02, % by Vol 'LQ Date ID 25MAR2019 Temperature (°F) Source/Locatlon VE North O~ Nl~t 'Meter Temp ("F) Sample Date 6 Static Press (in HZO)~- Baro. Press (in Hg)00 Operator Am6lent Temp (°F) ~_ ~~ ~~ EPA Method 0010o - I3FP0 Dimer Acid Meter Box ID Z p Actual Meter Box Y ~ ~ 7 Meter Box Del H ~,. (9 $~ Page ~ of ~~ K Factor 2, S Initial Mid-Point Final y„~, e / no / no e / no e 1 no s / na 1 no yes / no 'yes / no yes./ no Probe ID /Length I Sample Train (ft') Probe Material ' Leak Check ~ (in Hg) Pftot /Thermocouple ID `] ~ Pitot leak check good Pitot Coefficient .8 Pitot Inspection good Noale ID .'L1S McUwd 3 System good ~Noale Measurements ,y~rj' ,1,~5 , 2 Temp Check Pre-Test Set Post-Test Set _Avg NoaJe Dia (In) ~r Meter Box Temp Area of Stack (ft2) Reference Temp 'Sample Time Pass/Fail (+/- 2°~ Pasa / FaN Pass / FaA J Total Traverse Pts Temp Change Response i yes / no yes' / no 0~~f ~r~o■~~~~~~~~t~~+ir~~~~~~i~c~~~~~:~~~~~~~~~~~~~r~~~~~~~~~~~~~ ~~~~~~~~~c~a~~:~~~~~~~~ -~~~ e~~~~►~d~~s:~~~~~c~~W~~~~~~■~~~~~~~~~~~Q~~~~~~~~~~~~~~~~r~~~~m~~.~~~~ i ~~~~~~~y~~I~~~~~~~~—J Oi~~63~' , r Gf~~G~r~f~i~iII~~►~i~~~~Oi~~~~~~.~~ -S . ~t1~~~'~OL'~~~~~~~i~~~Q~«.~~1G~f~i7yJii►~~~~.*~~ i~~~~l~.~ft3~~~Tc~~[~~~0~rf~~~i~IF~O~~~~~r:~~~~r~~r►~~~5;~~~~~~~~o~~r~~ir~-~~a~~~~~~i~~~~«R~i~~~~~~~■i~~:~~~I~r'f~~l~~[~Y~[~i~~~~4'~~~eft'J4`~~~~~r~i~~~ir~~fly3'~~:~1~i[ir~~y1'~~~i~Ofil~~ 5~. ~, 5?~Kl$ 6Z 67 SI,. Z llq/ ti Ilq/Itil `IS 5 ~l6 ~Avg Sgrt Delta Av Sgrt Del Commen EPA Method 0010 from EPA SW-846 ('~(~ ~~~~~" l '"~ _r~~ ~ ~~ ISOHINETIC FIELD DATA SHEET Client W.O.# Project ID Mode/Source ID Samp. Loc. ID Run No.ID Test Method ID Date ID Source/Location Sample Date Baro. Press (In Hg) Operator Chemours 15418.002.011 Chemours %Moisture Carbon Bed Impinger Vol (ml) OUT Silica gel (g) 3 CO2, % by Vol M0010 02, % by Vol 25MAR2019 Temperature (°F) ' VE NoFth O(~{Meter Temp ("F) '3 'y Cj Static Press (fn Hz0) Ambient Temp (°F) Stack Conditions s5 EPA Method 0010 - HFPO Diener Acid Page ~ or 1 Meter Box ID p K Factor /~Meter Box Y DOZ h 5 Meter Box Del H (J Initial Mid-Point Final Probe ID /Length p O ~ Sample Train (ft') Probe Material eoro Leak Check Q (in Hg) Pitot /Thermocouple ID p~ ~ Pitot leak check good Pitot Coefficient 0.84 J Pitot Inspection good NoaJe ID , 'L l Method 3 System good Q. Qrl 0 1 ~;, ; ~-~~ e / no e~ / no (yes/ no / no ~ / no / no yes / no yes / no yes ! no Noale Measurements ti~g ,1.~ ,'l,~s Temp Check Pre-Test Set Post-Test et Avg NoaJe Dia (in) -~ ~/ Meter Box Temp Area of Stack (ft2) Qr Reference Temp Sample Time Pass/Fall (+/- 2°~ Pasa !Fall Paes, / FaU Total Traverse Pts 'v{ Temp Change Response 5 yes / no yea / no J ~A Run No. 1 Sample Date ~~ ~ ~ Recovery Date ~ -~ Sample I.D. Chemours -Carbon Bed -OUT - 1 - M0o10 - Analyst 4~ ~S Filter Number ~/~r Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~~b ~~~O 6,3~~~. Initial D 100 100 ~I / o r 300 Gain ~~~~~ fl Impinger Color Lc l (~ Labeled? ~ `~ Silica Gel Condition ~ Sealed? J Run No. 2 Sample Date J ~ ~ ~f Recovery Date ?j Sample I.D. Chemours -Carbon Bed -OUT - 2 - M0010 - Analyst Filter Number j~+~~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Siiica Gel Final J~~ ~v~~~~ D~~~ /S. ~ Initial p 100 100 ~~tv ,~300 Gain . 'S ~d ~~6 ~, ~j , ~ 3Impinge[Color Labeled? Silica Gel Condition ~ ~ Sealed? Run No. 3 Sample Date ~1j~ l ~I Recovery Date 3 '~ L Sample I.D. Chemours -Carbon Bed -OUT - 3 - M0010 - Analyst ~ Filter Number ~ . Im in er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Silica Gel Final b e -t~ a ~r2- ,~3 ~~~ Initial O goo goo '~soo Gain O D y ~~~2.~~~~ r ''3/Impinger Color Labeled? Silica Gel Condition ~ ~ Sealed? '~ ~~ o~ ~ SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Cfleflt Chemours W.O. # 15418.002.011Locatiofl/Plant Fayetteville, NC Source & LoCetion VE North Outlet Check COC for Sample IDs of Media Blanks CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS DIVISION STACK Test Data Run number 1 2 3 Location Divison Stack Divison Stack Divison Stack Date 3/25/2019 3/26/2019 3/26/2019 Time period 1315-1528 0852-1052 1510-1709 Operator CH CH CH Inputs For Calcs. Sq. rt. delta P 1.19221 1.21398 1.22257 Delta H 1.3433 1.3925 1.4192 Stack temp. (deg.F) 82.5 62.6 68.9 Meter temp. (deg.F) 80.6 46.5 58.5 Sample volume (act.) 51.535 51.014 51.633 Barometric press. (in.Hg) 29.92 29.96 29.96 Volume H2O imp. (ml) 12.0 10.0 7.0 Weight change sil. gel (g) 18.7 16.7 13.6 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 7.070 7.070 7.070 Sample time (min.) 96.0 96.0 96.0 Static pressure (in.H2O) -0.70 -0.70 -0.70 Nozzle dia. (in.) 0.160 0.160 0.160 Meter box cal. 1.0010 1.0010 1.0010 Cp of pitot tube 0.84 0.84 0.84 Traverse points 12 12 12 4/8/2019 4:23 PM 032519 Division ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer AcidClientGhemoursStack Conditions Meter Box ID Z Zw.o.#~5418:oD2.o~~Assumed Actual Metereox v 1, bpto 3Project ID Chemours %Moisture p i Meter Box Del H 2 . ~/ 7 `(Mode/Source ID Division Impinger Vol (ml) ~-~1 2 Probe ID /Length p'7 C~ ( s'Sample Train (ft')Samp. Loc. ID STK SiNca gel (g)/ ~ , 7 Probe Material Bo[o Leak Check @ (In Hg)Run No.ID 1 CO2, % by Vol Q ,D , ~Pitot /Thermocouple ID ~ "~Q Pitot leak check goodTest Method ID M0010 02, % by Vol 2~, ~ !2~ , ~Pitot Coefficient 0.84 3 Pitot Inspectlon good Date ID 25MAR2019 Temperature (°F) 7 Noale ID (~ / S'p Method 3 System goodSource/Location division StacK Meter Temp ("F)~ p NoaJe Measurements Temp CheckSample Date 'j " ZS — IG SfaHc Press (fn H2O) .— p ,~j ~Avg Noale Dia (in)0 . j 66 3 Meter Box Temp Baro. Press (in Hg)~$, Q ~/Area of Stack (ft~)'7 , a'7 ~/Reference TempOperator[~ _ ~-Ambient Temp (°F) ~ rj Sample Time —~~ ~ (~ 3 Pass/Fail (+/- zo~ Total Traverse Pts ~ 2 ~/Temp Change Response Page ~ of ` K Factor.$-~~ Q~R~-~ Initial Mira-Point ~ ~ Filial t ~/ _• ~r V 4 rJ ~~w .rYi~► .:..a'yT,~ ~1i`~~~`^~lr ~!y ~ ri a- i oai oCi rear i cs~ oG~ ~~ ~~ ~'►~v~' ~~I0~ ~~-~~~~ry r ~~~~- ~~-~~~~~~~~~-~I ~~~~~~~V ~~~~~-r ♦ 1~ t 7 r --~--~-------~~L ~~-~~~~w ~~~~~~- ~v~~~~~~~~~~~~~~~~ ~~~~~~~r v ~~~~-1 ,A~9333 J i ,A~yU33 J 5 (0~5 0~5~ a~~ Avg Sgrt Detta PJ Avg Sgrt Del H Comments:[. L922 1,i5~-10 ~~9'b J I~~~"~z~~g~a51 ~~i 15.~s I ~," EPA Method 0010 from EPA SW-846 U~ ~' ISOHINETIC FIELD DATA SHEET Client Chemours Stack Conditions w.o.#~5a~8:aU2.ot ~Assumed Project ID Chemours %Moisture 2 . c7 Mode/Source ID Division Impinger Vol (ml)c Samp. Loc. ID STK Silica gel (g) Run No.ID 2 CO2, °/, by Vol ~ , ~ Test Method ID M0010 02, °/a by Vol 'Z~j , ~" Date ID 25MAR2019 Temperature (°F)~Q Source/Location DW( $teak Meter Temp ("F) ~p EPA Method 0010 - HFPO Dimer Acid Page! or Meter Box ID ~ Z Actual Meter sox v ~ ~ oa fd ~ K Factor ~ ~ c( C.~ ^Meter Box DeI H Z , ~ d ~ y Initial Mid-Point Final Probe ID /Length p'7p i Sample Train (ft3) Probe Material Bpro Leak Check @ (in Hg) Pitot /Thermocouple ID Pitot leak check good Pitot Coefficient 0.84 ,/ Pitot Inspection good NoaJe ID j, ~ Method 3 System good ~ •r W ~ ~Ai~`l~~Iri~M-i>•~~ ~~~~Noale Measurements Temp Check re- es e os =fes e Sample Date v 3 ~/ StaUc Press (in HZO) +{~,' O ~ Av9 Noale Dia (in) d , j ~ Meter Box Temp p Baro. Press (fn Hg) ~ q (~ ~/ Area of Stack (ftZ) ^7 , p "~ Reference Temp p Operator ~j Ambient Temp (°F) S;~Sample Tfine a~ (j q/, Pass/Fail (+/- z°~ as ;' Fefl F1"_ Total Traverse Pts ~ 'Z Temp Change Response i ~ i nn ~ r~o ~a~~~~~~~r~~~~~~~~~~ ~~~~~~~~~r~~cr~~~~~~~~~~~~~r~~~~~~~■~~~~~~~~~Q~~~~~~~~~~Q~~~~~~si~~~■~~~tr.~~r~.~n~m~~~■~ ~~-~~~~~~~~~-~ r ~~ m~-~~~~~ Y ~~~~- ~~-~~r ~~~~• r ~i ~~- ~~~~~~r~~~~~Er~~■ ~~~~~vl~ ~~~.w~wrw~~s~~~~w- ~~~ ~~~~ ~ ~ILJ►~~~~- nvy vcnn r[,~i~S33 Avg Sgrt Delta PA /~COY ~' ~ ~ ~ - , ~.2~wo r~vy ue~ i oiai vaume Hvg i s ~ v i J MINMax MW Max Mau Vac Min/Max[.'~~~ ~~ ail ~c~ i~.( 2~ ~D G~ ~ 3 5~~ itAvg Sgrt Del H Comments: EPA Method 0010 from EPA SW-846I.1`1~ ~— ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam ~ of ~ Client Cnemours Stack Conditions I Meter Box ID 2 2 K Factorw.o.# 15a~s.002.0~7 Assumed Actual nneter sox v ~ , vv ~ p ~. Protect ID Chemours °io Masture Meter Box Del H _~ , y ~ 7 ~ Initial Mid-Point Finalnnooeiaource iu Samp. Loc. ID urv~sion STK Impinger Vol (ml) Silica gel (g) ~ ~ Probe ID /Length Probe Material ~77p~~ ~, Fj' ~ Sample Train (ft3) Borg Leak Check @ (In Hg) , (~] ~ ~ ~; d,p~p / ~~ ~. ~~ ~T Run No.ID 3 CO2, % by Vol !j , ~Pitot /Thermocouple ID Pitot leak check good / no ~ / ~ /Test Method ID MQ010 02, % by Vol Pitot Coefficient 0.84 ~ Pitot Inspection good / ~q / rq / ~p Date ID 25MAR2019 Temperature (°F)~ Q ' Noale ID j c9 Method 3 System good yes / no / no yeg / ttoSouroe/Location Di~(si Stack Meter Temp ("F)c~ Noale Measurements as ~ 60 0, i 60 0. i 6p Temp Check re- est et ost-Test etSample Date Static Press (In H2O) «.~', C, Avg Noale Dia (fn) O. ~ d d 3 Meter Box Temp Baro. Press (in Hg) q Area of Stack ft~C ) ~, cS ~? 3 Reference Temp Jam' 3Operator ~~ Ambient Temp (°F) ,~ S Sample Time q ~ ~( Pass/Fail (+/- p°) +~F~;' Fall. 'Fall' Total Traverse Pts ~ 7 Temp Change Response i r~ ~a nr, 0~~~ '.~■■~~~~QQ~rza ~..~~~~■~~~~~e~~~r~-~~~~~~~~~~~~e~~~~~~~- ~~~~~~~~~~~~~~~~~~r~~~~~~■~~~~ ~~~~n~~~~~~~~~~~~aa■~ec~~r~~■~~~~~n~~~r~~-~~~~~~ 7~~Rl_. _R!~tf~i7~l~R[t1RI~1~~~~.w1~J~i z..~~;~ ~~ .~ Z~ R Avg Sgrt Del H,~, 21Z~, ... •.a •_ ~ ,••y .~.~ ~.,~ r.~~~4~r~w rv~nn Iv1aA vdl: m11 Vld]lL . ~ 33 ~S'. ~ 5~ . 6 i~o tc~ 3 Y6 ~ ~ I Z 5 ~ 5 + 5 `1`~ 5c-J mments: ~F ,~ EPA Method 001 from EPA SW-8460 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Client Location/Plant Chemours Fayetteville, NC W.O. # Source &Location Division Stack 15418.002.011 Run No. 1 Sample Date Recovery Date Sample I.D. Chemours -Division - STK - 1 - M0010 - Analyst ~^~'v~` Filter Number ~~ Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final 7 7 ~ l~~~y Initial a 100 100 ~300 Gain ~3 ~3 t Z ~~*~"5A,1 Impinger Color ~`~'►" Labeled? J Silica Gel Condition (~w~ Sealed? Run No. 2 Sample Date ~~ Recovery Date ~~ Sample I.D. Chemours -Division - 5TK - 2 - M0010 - Analyst r ~ w Filter Number N ~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~~'~w~2 ,~1~,~ Initial `~goo goo G 300 Gain 7 ~~~l~~t~s;"1 Z~~'7 Impinger Color U Labeled? J '/Silica Gel Condition ~~~j'~ Sealed? Run No. 3 Sample Date ~ ti ~► ~~ Recovery Date ~ ~ ~ ~~ Sample I.D. Chemours -Division - STK - 3 - M0010 - Analyst ~ Filter Number p Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~`t ~~ ~~'~,3 ~•3, initial ~goo goo b soo Gain ~-~"~3 ~~.i~dt~ Impinger Color ~4.s Labeled? `~ Silica Gel Condition ~~~ b Sealed? ~ Check COC for Sample IDs of Media Blanks Q ~~,~ ~~ r fig' ~ :~ ~~.~ METHODS AND ANALYZERS Client: Location: Source: Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: \Client Folders.A-F\Chemours Fayetteville\15418.002.011 Fayetteville March 2019 VEN Test\Data\15418 Chemours Program Version: 2.1, built 19 May 2017 File Version: 2.03 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %16.6 CALIBRATION DATA Number 1 Client: Location: Source: Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: Start Time: 09:26 O2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.0 CC18055 21.0 SG9169108 Calibration Results Zero 4 mv Span, 21.0 %7991 mv Curve Coefficients Slope Intercept 380.3 4 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 8.9 CC18055 16.6 SG9169108 Calibration Results Zero 1 mv Span, 16.6 %8293 mv Curve Coefficients Slope Intercept 500.1 1 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: Start Time: 09:26 O2 Method: EPA 3A Span Conc. 21.0 % Slope 380.3 Intercept 4.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.0 12.0 0.0 0.0 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 % Slope 500.1 Intercept 1.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 8.9 8.9 0.0 0.0 Pass 16.6 16.6 0.0 0.0 Pass BIAS Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: Start Time: 12:14 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass CO2Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.9 8.9 0.0 0.0 Pass RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 1 START PORT 1 13:15 21.0 0.1 13:16 21.0 0.1 13:17 21.0 0.1 13:18 21.0 0.1 13:19 21.0 0.1 13:20 21.0 0.1 13:21 21.0 0.1 13:22 21.0 0.1 13:23 21.0 0.1 13:24 21.0 0.1 13:25 21.0 0.1 13:26 21.0 0.1 13:27 21.0 0.1 13:28 21.0 0.1 13:29 21.0 0.1 13:30 21.0 0.1 13:31 21.0 0.1 13:32 21.0 0.1 13:33 21.0 0.1 13:34 21.0 0.1 13:35 21.0 0.1 13:36 21.0 0.1 13:37 21.0 0.1 13:38 21.0 0.1 13:39 21.0 0.1 13:40 21.0 0.1 13:41 21.0 0.1 13:42 21.0 0.1 13:43 21.0 0.1 13:44 21.0 0.1 13:45 21.0 0.1 13:46 21.0 0.1 13:47 21.0 0.1 13:48 21.0 0.1 13:49 21.0 0.1 13:50 21.0 0.1 13:51 21.0 0.1 13:52 21.0 0.1 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 13:53 21.0 0.1 13:54 21.0 0.1 13:55 21.0 0.1 13:56 21.0 0.1 13:57 21.0 0.1 13:58 21.0 0.1 13:59 21.0 0.1 14:00 21.0 0.1 14:01 21.0 0.1 14:02 21.0 0.1 14:03 21.0 0.1 PORT CHANGE PORT 2 14:40 21.0 0.1 14:41 21.0 0.1 14:42 21.0 0.1 14:43 21.0 0.1 14:44 21.0 0.1 14:45 21.0 0.1 14:46 21.0 0.1 14:47 21.0 0.1 14:48 21.0 0.1 14:49 21.0 0.1 14:50 21.0 0.1 14:51 21.0 0.1 14:52 21.0 0.1 14:53 21.0 0.1 14:54 21.0 0.1 14:55 21.0 0.1 14:56 21.0 0.1 14:57 21.0 0.1 14:58 21.0 0.1 14:59 21.0 0.1 15:00 21.1 0.1 15:01 21.1 0.1 15:02 21.1 0.1 15:03 21.1 0.1 15:04 21.1 0.1 15:05 21.1 0.1 15:06 21.1 0.1 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 15:07 21.1 0.1 15:08 21.1 0.1 15:09 21.1 0.1 15:10 21.1 0.1 15:11 21.1 0.1 15:12 21.1 0.1 15:13 21.1 0.1 15:14 21.1 0.1 15:15 21.1 0.1 15:16 21.1 0.1 15:17 21.1 0.1 15:18 21.1 0.1 15:19 21.1 0.1 15:20 21.1 0.1 15:21 21.1 0.1 15:22 21.1 0.1 15:23 21.1 0.1 15:24 21.1 0.1 15:25 21.1 0.1 15:26 21.1 0.1 15:27 21.1 0.1 15:28 21.1 0.1 Avgs 21.0 0.1 RUN SUMMARY Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 13:14 to 15:28 Run Averages 21.0 0.1 Pre-run Bias at 12:14 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Post-run Bias at 15:30 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.9 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 21.0 0.1 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 25 Mar 2019 Project Number: Operator: Date: Start Time: 15:30 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.9 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.6 Pass Span 8.9 8.9 0.0 0.0 Pass *Bias No. 1 CALIBRATION DATA Number 2 Client: Location: Source: Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: Start Time: 07:40 O2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.0 CC18055 21.0 SG9169108 Calibration Results Zero 16 mv Span, 21.0 %7985 mv Curve Coefficients Slope Intercept 379.5 16 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 8.9 CC18055 16.6 SG9169108 Calibration Results Zero 53 mv Span, 16.6 %8288 mv Curve Coefficients Slope Intercept 496.7 53 CALIBRATION ERROR DATA Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: Start Time: 07:40 O2 Method: EPA 3A Span Conc. 21.0 % Slope 380.3 Intercept 4.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.0 12.0 0.0 0.0 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 % Slope 500.1 Intercept 1.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 8.9 8.9 0.0 0.0 Pass 16.6 16.6 0.0 0.0 Pass BIAS AND CALIBRATION DRIFT Number 3 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: Start Time: 07:44 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 2 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.9 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.9 0.0 0.0 Pass *Bias No. 2 RUN DATA Number 2 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 2 START PORT 1 08:53 21.0 0.0 08:54 21.0 0.0 08:55 21.0 0.0 08:56 21.0 0.0 08:57 21.0 0.0 08:58 21.0 0.0 08:59 21.0 0.0 09:00 21.0 0.0 09:01 21.0 0.0 09:02 21.0 0.0 09:03 21.0 0.0 09:04 21.0 0.0 09:05 21.0 0.0 09:06 21.0 0.0 09:07 21.0 0.0 09:08 21.0 0.0 09:09 21.0 0.0 09:10 21.0 0.0 09:11 21.0 0.0 09:12 21.0 0.0 09:13 21.0 0.0 09:14 21.0 0.0 09:15 21.0 0.0 09:16 21.0 0.0 09:17 21.0 0.0 09:18 21.0 0.0 09:19 21.0 0.0 09:20 21.0 0.0 09:21 21.0 0.0 09:22 21.0 0.0 09:23 21.0 0.0 09:24 21.0 0.0 09:25 21.0 0.0 09:26 21.0 0.0 09:27 21.0 0.0 09:28 21.1 0.0 09:29 21.1 0.0 09:30 21.1 0.0 RUN DATA Number 2 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:31 21.1 0.0 09:32 21.1 0.0 09:33 21.1 0.0 09:34 21.1 0.0 09:35 21.1 0.0 09:36 21.1 0.0 09:37 21.1 0.0 09:38 21.1 0.0 09:39 21.1 0.0 09:40 21.1 0.0 PORT CHANGE PORT 2 10:04 21.1 0.0 10:05 21.1 0.0 10:06 21.1 0.0 10:07 21.1 0.0 10:08 21.0 0.0 10:09 21.1 0.0 10:10 21.1 0.0 10:11 21.1 0.0 10:12 21.1 0.0 10:13 21.1 0.0 10:14 21.1 0.0 10:15 21.1 0.0 10:16 21.1 0.0 10:17 21.1 0.0 10:18 21.1 0.0 10:19 21.1 0.0 10:20 21.1 0.0 10:21 21.1 0.0 10:22 21.1 0.0 10:23 21.1 0.0 10:24 21.1 0.0 10:25 21.1 0.0 10:26 21.2 0.0 10:27 21.2 0.0 10:28 21.1 0.0 10:29 21.2 0.0 10:30 21.2 0.0 10:31 21.2 0.0 RUN DATA Number 2 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:32 21.2 0.0 10:33 21.2 0.0 10:34 21.2 0.0 10:35 21.2 0.0 10:36 21.2 0.0 10:37 21.2 0.0 10:38 21.2 0.0 10:39 21.2 0.0 10:40 21.2 0.0 10:41 21.2 0.0 10:42 21.2 0.0 10:43 21.2 0.0 10:44 21.2 0.0 10:45 21.2 0.0 10:46 21.2 0.0 10:47 21.2 0.0 10:48 21.2 0.0 10:49 21.2 0.0 10:50 21.2 0.0 10:51 21.2 0.0 10:52 21.2 0.0 Avgs 21.1 0.0 RUN SUMMARY Number 2 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 08:52 to 10:52 Run Averages 21.1 0.0 Pre-run Bias at 07:44 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.9 12.0 8.9 Post-run Bias at 10:54 Zero Bias Span Bias Span Gas 0.0 0.0 12.1 8.9 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 21.0 0.0 BIAS AND CALIBRATION DRIFT Number 4 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: Start Time: 10:54 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.1 0.1 0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.1 0.1 0.5 Pass *Bias No. 3 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.9 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.9 0.0 0.0 Pass *Bias No. 3 BIAS AND CALIBRATION DRIFT Number 5 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: Start Time: 14:22 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.0 -0.1 -0.5 Pass *Bias No. 4 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.8 8.8 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.8 -0.1 -0.6 Pass *Bias No. 4 RUN DATA Number 3 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 3 START PORT 1 15:10 21.1 0.0 15:11 21.1 0.0 15:12 21.0 0.0 15:13 21.1 0.0 15:14 21.1 0.0 15:15 21.1 0.0 15:16 21.1 0.0 15:17 21.1 0.0 15:18 21.1 0.0 15:19 21.1 0.0 15:20 21.2 0.0 15:21 21.1 0.0 15:22 21.1 0.0 15:23 21.2 0.0 15:24 21.2 0.0 15:25 21.2 0.0 15:26 21.2 0.0 15:27 21.2 0.0 15:28 21.2 0.0 15:29 21.2 0.0 15:30 21.1 0.0 15:31 21.2 0.0 15:32 21.2 0.0 15:33 21.2 0.0 15:34 21.2 0.0 15:35 21.2 0.0 15:36 21.2 0.0 15:37 21.2 0.0 15:38 21.2 0.0 15:39 21.2 0.0 15:40 21.1 0.0 15:41 21.1 0.0 15:42 21.2 0.0 15:43 21.2 0.0 15:44 21.2 0.0 15:45 21.2 0.0 15:46 21.2 0.0 15:47 21.2 0.0 RUN DATA Number 3 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 15:48 21.2 0.0 15:49 21.2 0.0 15:50 21.2 0.0 15:51 21.2 0.0 15:52 21.2 0.0 15:53 21.2 0.0 15:54 21.2 0.0 15:55 21.2 0.0 15:56 21.2 0.0 15:57 21.2 0.0 15:58 21.2 0.0 PORT CHANGE PORT 2 16:21 21.1 0.0 16:22 21.1 0.0 16:23 21.1 0.0 16:24 21.1 0.0 16:25 21.1 0.0 16:26 21.1 0.0 16:27 21.1 0.0 16:28 21.2 0.0 16:29 21.2 0.0 16:30 21.2 0.0 16:31 21.2 0.0 16:32 21.2 0.0 16:33 21.2 0.0 16:34 21.2 0.0 16:35 21.2 0.0 16:36 21.2 0.0 16:37 21.2 0.0 16:38 21.2 0.0 16:39 21.2 0.0 16:40 21.2 0.0 16:41 21.2 0.0 16:42 21.2 0.0 16:43 21.2 0.0 16:44 21.2 0.0 16:45 21.2 0.0 16:46 21.2 0.0 16:47 21.2 0.0 RUN DATA Number 3 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 16:48 21.2 0.0 16:49 21.2 0.0 16:50 21.2 0.0 16:51 21.2 0.0 16:52 21.2 0.0 16:53 21.2 0.0 16:54 21.2 0.0 16:55 21.2 0.0 16:56 21.2 0.0 16:57 21.2 0.0 16:58 21.2 0.0 16:59 21.2 0.0 17:00 21.2 0.0 17:01 21.2 0.0 17:02 21.2 0.0 17:03 21.2 0.0 17:04 21.2 0.0 17:05 21.2 0.0 17:06 21.2 0.0 17:07 21.2 0.0 17:08 21.2 0.0 17:09 21.2 0.0 Avgs 21.2 0.0 RUN SUMMARY Number 3 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 15:09 to 17:09 Run Averages 21.2 0.0 Pre-run Bias at 14:22 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.8 12.0 8.9 Post-run Bias at 17:11 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.9 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 21.2 0.0 BIAS AND CALIBRATION DRIFT Number 6 Client: Location: Source: Calibration 2 Chemours Fayetteville, NC Division Stack 15418.002.011.0001 Dryden 26 Mar 2019 Project Number: Operator: Date: Start Time: 17:11 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 5 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.8 8.9 0.1 0.6 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.8 8.9 0.1 0.6 Pass *Bias No. 5 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT DIVISION REPORT 01162019-AMD 4/15/2019 APPENDIX C LABORATORY ANALYTICAL REPORT Note: The analytical report is included on the attached CD. \\ C T d T t r A s T b F o c \tafs\Lab\Knoxvil Corrected Result The following dilution of the • K-207 Rinse The original hat the valu recovery per A second an sample extra The recovery benchmark t Final recove original recov concentratio • K-207 Rinse Chem le\Public\Users F s for E-values HF g samples e e extracts be 72,2073,207 es) analysis con e provided is rcentage (%) nalysis conce act, but the v y percentage the instrume ry-corrected very value o ns are calcu 72,2073,207 es) mours VEN Tes Folders\AdkinsC FPO-DA_CB_IN xceeded the e performed 75 CB INLET ncentration w s estimated. ) however, is entration dis value is unco e presented nt quantifica d concentrati of the IDA an ulated as foll 75 CB INLET ሺʹ N Carbon B stAmerica Apr \Project Docume LET_04102019. e Method 83 : T R1 M0010 which displa . The 13C3 – s provided w plays an acc orrected for t with the sec ation of nativ ons of the n nd the diluted ows: T R1 M0010 ʹͺͲͲݑ݃ሻൈ Bed Inlet T Job No. 14 ril 10, 2019 ents\Special Rep docx Created o 321A calibrat 0 Back Half C ys the “E” fla – HFPO-DA with this anal curate conce the IDA reco cond concen ve HFPO-DA native HFPO d extract val 0 Back Half C ൈ൬ ͹Ͷ ͳͳ͹൰ൌ Test Analyt 40-14725-1 9 porting\Chemours on 01/30/2018 tion range fo Composite (X ag is provide isotope dilut lysis run. entration of t overy percen ntration repre A. O-DA are pro lues of the n Composite (X ͳͶͶʹͳݑ݃ tical Repor s Corrected Valu Last edited on 4 or HFPO-DA XAD-2 Resi ed with the d tion internal the HFPO-D ntage from t esents a pos ovided by cal native HFPO XAD-2 Resi rt ues\Fayetteville\C 4/11/2019 8:25 A A and require n and Glass data set indi standard (ID DA in the dilu he original m st-spike of ID lculation usi O-DA. The fi n and Glass Chemours AM ed that sware cating DA) uted matrix. DA to ng the nal sware 04/11/2019Page 8 of 217          !"#$%&'(      !"# ! $%&$ '()*++,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01& *) )*+ ,$% +$ -$- - $ +$-++*  & 2" (& 23)0$ $)4    5 6$                    *  !# ! $%&$ '()*++,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01& .  ) ) ,$% +$ .$- . $ +$-.  & 2" (& 23)0$ $)4    5 6$ ) ,$% $ .$- +- $ $- .  #"01& . #                               *   !!07* ! $%&$ '()*++,   (-)*++,.  ' $&$ $  !/').*&#"01&  ! #"01& *, ) ) ,$% +$ -$- + $ +$-   & 2" (& 23)0$ $)4    5 6$                     8  !  & # 149#:&  4 ! $%&$ '()*++,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01& ,.. ) ) ,$% +$ .$- . $ +$-    & 2" (& 23)0$ $)4    5 6$                   '/ 0#12& 04/11/2019Page 11 of 217          !"#$%&'(    .  !"# ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01& ;*)  ) - ,$% +$ -$- - $ +$-++-  & 2" (& 23)0$ $)4    5 6$                    8 ,..  !# ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01& *) +) ,$% +$ .$- . $ +$-   & 2" (& 23)0$ $)4    5 6$                      .  !!07* ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $  !/').*&#"01&  ! #"01& ;. ). ) . ,$% +$ -$- + $ +$-  . & 2" (& 23)0$ $)4    5 6$                    . .*  !  & # 149#:&  4 ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01& ; ) ) ,$% +$ .$- . $ +$-  .  & 2" (& 23)0$ $)4    5 6$                      , ..  *!"# ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01& .) * )+* ,$% +$ -$- - $ +$-+ *  & 2" (& 23)0$ $)4    5 6$ '/ 0#12& 04/11/2019Page 12 of 217          !"#$%&'(   , ..  *!"# ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $                      .8..,  *!# ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01&  ) ) ,$% +$ .$- . $ +$-   & 2" (& 23)0$ $)4    5 6$                      ..  *!!07* ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $  !/').*&#"01&  ! #"01& *; )  )   ,$% +$ -$- + $ +$- +  & 2" (& 23)0$ $)4    5 6$                     ,  *!  & # 149#:&  4 ! $%&$ '()*+8+,   (-)*++,.  ' $&$ $  !/').*&0"1& )0"1  ! #"01& .; ) ) ,$% +$ .$- . $ +$-   & 2" (& 23)0$ $)4    5 6$                   '/ 0#12& 04/11/2019Page 13 of 217 Client Sample Results Job ID: 140-14729-1Client: Chemours Company FC, LLC The Project/Site: Fayetteville Emissions CB Outlet Lab Sample ID: 140-14729-1Client Sample ID: E-2070,2071 CB OUTLET R1 M0010 FH Matrix: AirDate Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 140 1.26 0.136 ug/Sample 03/29/19 07:19 04/03/19 13:49 10 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 73 D 50 -200 03/29/19 07:19 04/03/19 13:49 10 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-2Client Sample ID: E-2072,2073,2075 CB OUTLET R1 M0010 BH Matrix: AirDate Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 39.3 0.250 0.0500 ug/Sample 03/28/19 08:51 04/03/19 12:21 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 17 X 50 -200 03/28/19 08:51 04/03/19 12:21 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-3Client Sample ID: E-2074 CB OUTLET R1 M0010 IMP 1,2&3 Matrix: AirDate Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 9.33 0.210 0.0107 ug/Sample 03/29/19 07:34 04/03/19 14:34 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 69 50 -200 03/29/19 07:34 04/03/19 14:34 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-4Client Sample ID: E-2076 CB OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 12:24 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 18 X 50 -200 03/28/19 08:51 04/03/19 12:24 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-5Client Sample ID: E-2077,2078 CB OUTLET R2 M0010 FH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 68.9 1.01 0.109 ug/Sample 03/29/19 07:19 04/03/19 13:52 10 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier Eurofins TestAmerica, Knoxville Client Sample Results Job ID: 140-14729-1Client: Chemours Company FC, LLC The Project/Site: Fayetteville Emissions CB Outlet Lab Sample ID: 140-14729-5Client Sample ID: E-2077,2078 CB OUTLET R2 M0010 FH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train 13C3 HFPO-DA 75 D 50 -200 03/29/19 07:19 04/03/19 13:52 10 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-6Client Sample ID: E-2079,2080,8082 CB OUTLET R2 M0010 BH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 20.1 0.250 0.0500 ug/Sample 03/28/19 08:51 04/03/19 12:27 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 13 X 50 -200 03/28/19 08:51 04/03/19 12:27 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-7Client Sample ID: E-2081 CB OUTLET R2 M0010 IMP 1,2&3 Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA ND 0.205 0.0105 ug/Sample 03/29/19 07:34 04/03/19 14:38 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 71 50 -200 03/29/19 07:34 04/03/19 14:38 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-8Client Sample ID: E-2081 CB OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 12:34 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 12 X 50 -200 03/28/19 08:51 04/03/19 12:34 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-9Client Sample ID: E-2084,2085 CB OUTLET R3 M0010 FH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 192 1.26 0.136 ug/Sample 03/29/19 07:19 04/03/19 13:55 10 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 72 D 50 -200 03/29/19 07:19 04/03/19 13:55 10 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Eurofins TestAmerica, Knoxville Client Sample Results Job ID: 140-14729-1Client: Chemours Company FC, LLC The Project/Site: Fayetteville Emissions CB Outlet Lab Sample ID: 140-14729-10Client Sample ID: E-2086,2087,2089 CB OUTLET R3 M0010 BH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 12.0 0.225 0.0450 ug/Sample 03/28/19 08:51 04/03/19 12:37 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 25 X 50 -200 03/28/19 08:51 04/03/19 12:37 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-11Client Sample ID: E-2088 CB OUTLET R3 M0010 IMP 1,2&3 Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA ND 0.210 0.0107 ug/Sample 03/29/19 07:34 04/03/19 14:41 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 73 50 -200 03/29/19 07:34 04/03/19 14:41 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14729-12Client Sample ID: E-2090 CB OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 0.253 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 12:40 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 21 X 50 -200 03/28/19 08:51 04/03/19 12:40 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Eurofins TestAmerica, Knoxville Client Sample Results Job ID: 140-14723-1Client: Chemours Company FC, LLC The Project/Site: Fayetteville Emissions Division Stack Lab Sample ID: 140-14723-1Client Sample ID: Q-1470,1471 DIV STACK R1 M0010 FH Matrix: AirDate Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 89.2 1.51 0.163 ug/Sample 03/29/19 07:19 04/03/19 13:26 10 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 76 D 50 -200 03/29/19 07:19 04/03/19 13:26 10 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-2Client Sample ID: Q-1472,1473,1475 DIV STACK R1 M0010 BH Matrix: AirDate Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 23.4 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 11:35 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 19 X 50 -200 03/28/19 08:51 04/03/19 11:35 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-3Client Sample ID: Q-1474 DIV STACK R1 M0010 IMP 1,2&3 Matrix: AirDate Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 1.85 0.202 0.0103 ug/Sample 03/29/19 07:34 04/03/19 14:12 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 70 50 -200 03/29/19 07:34 04/03/19 14:12 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-4Client Sample ID: Q-1476 DIV STACK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 11:38 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 23 X 50 -200 03/28/19 08:51 04/03/19 11:38 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-5Client Sample ID: Q-1477,1478 DIV STACK R2 M0010 FH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 60.0 1.02 0.110 ug/Sample 03/29/19 07:19 04/03/19 13:29 10 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier Eurofins TestAmerica, Knoxville Client Sample Results Job ID: 140-14723-1Client: Chemours Company FC, LLC The Project/Site: Fayetteville Emissions Division Stack Lab Sample ID: 140-14723-5Client Sample ID: Q-1477,1478 DIV STACK R2 M0010 FH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train 13C3 HFPO-DA 81 D 50 -200 03/29/19 07:19 04/03/19 13:29 10 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-6Client Sample ID: Q-1479,1480,1482 DIV STACK R2 M0010 BH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 12.8 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 11:42 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 18 X 50 -200 03/28/19 08:51 04/03/19 11:42 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-7Client Sample ID: Q-1481 DIV STACK R2 M0010 IMP 1,2&3 Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 0.0783 J 0.202 0.0103 ug/Sample 03/29/19 07:34 04/03/19 14:15 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 77 50 -200 03/29/19 07:34 04/03/19 14:15 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-8Client Sample ID: Q-1483 DIV STACK R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 0.309 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 11:45 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 16 X 50 -200 03/28/19 08:51 04/03/19 11:45 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-9Client Sample ID: Q-1484,1485 DIV STACK R3 M0010 FH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 144 1.02 0.110 ug/Sample 03/29/19 07:19 04/03/19 13:32 10 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 78 D 50 -200 03/29/19 07:19 04/03/19 13:32 10 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Eurofins TestAmerica, Knoxville Client Sample Results Job ID: 140-14723-1Client: Chemours Company FC, LLC The Project/Site: Fayetteville Emissions Division Stack Lab Sample ID: 140-14723-10Client Sample ID: Q-1486,1487,1489 DIV STACK R3 M0010 BH Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 6.62 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 11:48 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 23 X 50 -200 03/28/19 08:51 04/03/19 11:48 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-11Client Sample ID: Q-1488 DIV STACK R3 M0010 IMP 1,2&3 Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA ND 0.198 0.0101 ug/Sample 03/29/19 07:34 04/03/19 14:21 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 76 50 -200 03/29/19 07:34 04/03/19 14:21 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Lab Sample ID: 140-14723-12Client Sample ID: Q-1490 DIV STACK R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 03/28/19 08:51 04/03/19 11:51 1 Analyte Dil FacAnalyzedPreparedUnitDResultQualifier 13C3 HFPO-DA 24 X 50 -200 03/28/19 08:51 04/03/19 11:51 1 Surrogate Dil FacAnalyzedPreparedQualifierLimits%Recovery Eurofins TestAmerica, Knoxville IASDATA\CHEMOURS\15418.002.009\CBED IN OUT DIVISION REPORT 01162019-AMD 4/15/2019 APPENDIX D SAMPLE CALCULATIONS SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 1 Test Date: 3/25/2019 Test Location: CBed Inlet Test Period: 1315-1528 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 = ------------------------------ Vm(std) 19542.0 x 2.2046 x 10-9 Conc1 = ------------------------------ 56.888 Conc1 = 7.57E-07 Where: W = Weight of HFPO Dimer Acid collected in sample in ug Conc1 = HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 = Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 = W / ( Vm(std) x 0.02832) Conc2 = 19542.0 / ( 56.888 x 0.02832 ) Conc2 = 12128.6 Where: Conc2 = HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. 4/12/201910:34 AM 032519 CBed IN 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Inlet)= Conc1 x Qs(std) x 60 min/hr MR1(Inlet)= 7.57E-07 x 13551 x 60 MR1(Inlet)= 6.16E-01 Where: MR1(Inlet)= HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Inlet)= MR1(Inlet) x 453.59 / 3600 MR2(Inlet)= 6.16E-01 x 453.59 /3600 MR2(Inlet)= 7.75E-02 Where: MR2(Inlet)= HFPO Dimer Acid mass emission rate, g/sec. 453.59 = Conversion factor from pounds to grams. 3600 = Conversion factor from hours to seconds. 5. HFPO Dimer Acid Removal Efficiency, % RE = MR1(Inlet) - MR1(Outlet) -------------------------- MR1(Inlet) RE = (7.22E-01) - (6.23E-03) ---------------------- 7.22E-01 RE = 99.0 Where: RE = Carbon Bed Removal Efficiency. MR1(Inlet)= Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr. MR1(Outlet)= Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr. 4/12/201910:34 AM 032519 CBed IN EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Facility: Fayetteville, NC Test Number: Run 1 Test Date: 3/25/19 Test Location: VEN-Carbon Bed Inlet Test Period: 1315-1528 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std) = -------------------------------------------- (Tm + 460) 1.013 17.64 x 1.0001 x 57.651 x ( 30.02 + --------------------- ) 13.6 Vm(std) = ------------------------------------------------------------ = 56.888 78.04 + 460 Where: Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb = Barometric Pressure, in Hg. delt H = Average pressure drop across the orifice meter, in H2O Tm = Average dry gas meter temperature , deg F. Y = Dry gas meter calibration factor. 17.64 = Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 = Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std) = (0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std) = ( 0.04707 x 14.4 ) + ( 0.04715 x 15.7 ) = 1.42 Where: Vw(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc = Volume of liquid condensed in impingers, ml. Wwsg = Weight of water vapor collected in silica gel, g. 0.04707 = Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 = Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 4/8/20194:25 PM 032519 CBed IN 3. Moisture content Vw(std) bws = ------------------------- Vw(std) + Vm(std) 1.42 bws = ------------------------- = 0.024 1.42 + 56.888 Where: bws = Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md = 1 - bws Md = 1 - 0.024 = 0.976 Where: Md = Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd = ( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd = ( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd = 28.84 Where: MWd = Dry molecular weight , lb/lb-mole. % CO2 = Percent carbon dioxide by volume, dry basis. % O2 = Percent oxygen by volume, dry basis. % N2 = Percent nitrogen by volume, dry basis. % CO = Percent carbon monoxide by volume, dry basis. 0.440 = Molecular weight of carbon dioxide, divided by 100. 0.320 = Molecular weight of oxygen, divided by 100. 0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs = ( MWd x Md ) + ( 18 x ( 1 - Md )) MWs = ( 28.84 x 0.976 ) +( 18 ( 1 - 0.976 )) = 28.57 Where: MWs = Molecular weight of wet gas, lb/lb-mole. 18 = Molecular weight of water, lb/lb-mole. 4/8/20194:25 PM 032519 CBed IN 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 543 Vs = 85.49 x 0.84 x 0.66432 x ( -------------------- )^1/2 = 38.3 29.54 x 28.57 Where: Vs = Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 = Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp = Pitot tube coefficient, dimensionless. Ts = Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps = Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p = Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act) = 60 x Vs x As Qs(act) = 60 x 38.3 x 6.31 = 14478 Where: Qs(act) = Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 = Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std) = 17.64 x Md x ----- x Qs(act) Ts 29.54 Qs(std) = 17.64 x 0.976 x -------------------- x 14478 543.2 Qs(std) = 13551 Where: Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 4/8/20194:25 PM 032519 CBed IN 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I = ----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 543 x 56.888 I = -------------------------------------------------- = 109.4 38.3 x 96 x 29.54 x 0.976 x (0.215)^2 Where: I = Percent of isokinetic sampling. O = Total sampling time, minutes. Dn = Diameter of nozzle, inches. 17.327 = Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 4/8/20194:25 PM 032519 CBed IN SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 1 Test Date: 3/25/19 Test Location: CBed Outlet Test Period: 1315-1529 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 C1 = ------------------------------ Vm(std) 188.6 x 2.2046 x 10-9 C1 = ------------------------------ 59.509 = 6.99E-09 Where: W = Weight of HFPO Dimer Acid collected in sample in ug. C1 = HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 = Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. C2 = W / ( Vm(std) x 0.02832) C2 = 188.6 / ( 59.509 x 0.02832 ) = 1.12E+02 Where: C2 = HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. 4/8/20194:26 PM O:\S\A\FMC\032519 CBed OUT 3. HFPO Dimer Acid mass emission rate, lbs/hr. PMR1 = C1 x Qs(std) x 60 min/hr PMR1 = 6.99E-09 x 14856 x 60 = 6.23E-03 Where: PMR1 = HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. PMR2 = PMR1 x 453.59 / 3600 PMR2 = 6.23E-03 x 453.59 /3600 = 7.84E-04 Where: PMR2 = HFPO Dimer Acid mass emission rate, g/sec. 453.6 = Conversion factor from pounds to grams. 3600 = Conversion factor from hours to seconds. 4/8/20194:26 PM O:\S\A\FMC\032519 CBed OUT SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 3 Test Date: 3/26/2019 Test Location: Divison Stack Test Period: 1510-1709 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 = ------------------------------ Vm(std) 150.6 x 2.2046 x 10-9 Conc1 = ------------------------------ 52.864 Conc1 = 6.28E-09 Where: W = Weight of HFPO Dimer Acid collected in sample in ug. Conc1 = Division Stack HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 = Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 = W / ( Vm(std) x 0.02832) Conc2 = 150.6 / ( 52.864 x 0.02832 ) Conc2 = 1.01E+02 Where: Conc2 = Division Stack HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. 4/8/20194:27 PM 032519 Division 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Outlet)= Conc1 x Qs(std) x 60 min/hr MR1(Outlet)= 6.28E-09 x 28665 x 60 MR1(Outlet)= 1.08E-02 Where: MR1(Outlet)= Division Stack HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Outlet)= PMR1 x 453.59 / 3600 MR2(Outlet)= 1.08E-02 x 453.59 /3600 MR2(Outlet)= 1.36E-03 Where: MR2(Outlet)= Division Stack HFPO Dimer Acid mass emission rate, g/sec. 453.6 = Conversion factor from pounds to grams. 3600 = Conversion factor from hours to seconds. 4/8/20194:27 PM 032519 Division EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Facility: Fayetteville, NC Test Number: Run 3 Test Date: 3/26/2019 Test Location: Division Stack Test Period: 1510-1709 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std) = -------------------------------------------- (Tm + 460) 1.419 17.64 x 1.0010 x 51.633 x ( 29.96 + --------------------- ) 13.6 Vm(std) = ------------------------------------------------------------ = 52.864 58.50 + 460 Where: Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb = Barometric Pressure, in Hg. delt H = Average pressure drop across the orifice meter, in H2O Tm = Average dry gas meter temperature , deg F. Y = Dry gas meter calibration factor. 17.64 = Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 = Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std) = (0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std) = ( 0.04707 x 7.0 ) + ( 0.04715 x 13.6 ) = 0.97 Where: Vw(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc = Volume of liquid condensed in impingers, ml. Wwsg = Weight of water vapor collected in silica gel, g. 0.04707 = Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 = Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 4/8/20194:28 PM 032519 Division 3. Moisture content Vw(std) bws = ------------------------- Vw(std) + Vm(std) 0.97 bws = ------------------------- = 0.018 0.97 + 52.864 Where: bws = Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md = 1 - bws Md = 1 - 0.018 = 0.982 Where: Md = Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd = ( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd = ( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd = 28.84 Where: MWd = Dry molecular weight , lb/lb-mole. % CO2 = Percent carbon dioxide by volume, dry basis. % O2 = Percent oxygen by volume, dry basis. % N2 = Percent nitrogen by volume, dry basis. % CO = Percent carbon monoxide by volume, dry basis. 0.440 = Molecular weight of carbon dioxide, divided by 100. 0.320 = Molecular weight of oxygen, divided by 100. 0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs = ( MWd x Md ) + ( 18 x ( 1 - Md )) MWs = ( 28.84 x 0.982 ) +( 18 ( 1 - 0.982 )) = 28.64 Where: MWs = Molecular weight of wet gas, lb/lb-mole. 18 = Molecular weight of water, lb/lb-mole. 4/8/20194:28 PM 032519 Division 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 529 Vs = 85.49 x 0.84 x 1.22257 x ( -------------------- )^1/2 = 69.0 29.91 x 28.64 Where: Vs = Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 = Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp = Pitot tube coefficient, dimensionless. Ts = Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps = Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p = Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act) = 60 x Vs x As Qs(act) = 60 x 69.0 x 7.07 = 29265 Where: Qs(act) = Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 = Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std) = 17.64 x Md x ----- x Qs(act) Ts 29.91 Qs(std) = 17.64 x 0.982 x -------------------- x 29265 528.9 Qs(std) = 28665 Where: Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 4/8/20194:28 PM 032519 Division 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I = ----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 529 x 52.864 I = -------------------------------------------------- = 97.3 69.0 x 96 x 29.91 x 0.982 x (0.160)^2 Where: I = Percent of isokinetic sampling. O = Total sampling time, minutes. Dn = Diameter of nozzle, inches. 17.327 = Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 4/8/20194:28 PM 032519 Division IASDATA\CHEMOURS\15418.002.009\CBED IN OUT DIVISION REPORT 01162019-AMD 4/15/2019 APPENDIX E EQUIPMENT CALIBRATION RECORDS Interference Check 2014.xlsO2-Servomex 4900 3/26/2019 Date: 12/4/14-12/5/14Analyzer Type: Servomex - O2Model No: 4900Serial No: 49000-652921Calibration Span: 21.09 %Pollutant: 21.09% O2 - CC418692 CO2 (30.17% CC199689)0.00 -0.01 0.00 . NO (445 ppm CC346681)0.00 0.02 0.11 NO2 (23.78 ppm CC500749)NA NA NA N2O (90.4 ppm CC352661)0.00 0.05 0.24 CO (461.5 ppm XC006064B)0.00 0.02 0.00 SO2 (451.2 ppm CC409079)0.00 0.05 0.23 CH4 (453.1 ppm SG901795)NA NA NA H2 (552 ppm ALM048043)0.00 0.09 0.44 HCl (45.1 ppm CC17830)0.00 0.03 0.14 NH3 (9.69 ppm CC58181)0.00 0.01 0.03 1.20 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) Interference Check 2014.xlsCO2-Servomex 4900 3/26/2019 Date: 12/4/14-12/5/14Analyzer Type: Servomex - CO2Model No: 4900Serial No: 49000-652921Calibration Span: 16.65%Pollutant: 16.65% CO2 - CC418692 CO2 (30.17% CC199689)NA NA NA . NO (445 ppm CC346681)0.00 0.02 0.10 NO2 (23.78 ppm CC500749)0.00 0.00 0.02 N2O (90.4 ppm CC352661)0.00 0.01 0.04 CO (461.5 ppm XC006064B)0.00 0.01 0.00 SO2 (451.2 ppm CC409079)0.00 0.11 0.64 CH4 (453.1 ppm SG901795)0.00 0.07 0.44 H2 (552 ppm ALM048043)0.00 0.04 0.22 HCl (45.1 ppm CC17830)0.10 0.06 0.60 NH3 (9.69 ppm CC58181)0.00 0.02 0.14 2.19 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI79E15A00E4 Reference Number:82-401288926-1 Cylinder Number:CC18055 Cylinder Volume:150.5 CF Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG PGVP Number:B52018 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Sep 04, 2018 Expiration Date:Sep 04, 2026 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 9.000 %8.864 %G1 +/- 0.7% NIST Traceable 09/04/2018 OXYGEN 12.00 %12.00 %G1 +/- 0.4% NIST Traceable 09/04/2018 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 13060629 CC413730 13.359 % CARBON DIOXIDE/NITROGEN +/- 0.6%May 09, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Aug 09, 2018 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Aug 09, 2018 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401288926-1 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI62E15A0224 Reference Number:82-401044874-1 Cylinder Number:SG9169108 Cylinder Volume:157.2 CF Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG PGVP Number:B52017 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Nov 18, 2017 Expiration Date:Nov 18, 2025 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 17.00 %16.58 %G1 +/- 0.7% NIST Traceable 11/18/2017 OXYGEN 21.00 %21.00 %G1 +/- 0.5% NIST Traceable 11/18/2017 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 12061336 CC360792 11.002 % CARBON DIOXIDE/NITROGEN +/- 0.6%Jan 11, 2018 NTRM 09061415 CC273526 22.53 % OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Oct 30, 2017 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Oct 27, 2017 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401044874-1 Long Cal Box 27 2-21-19 Calibrator MDW Meter Box Number 27 Ambient Temp 72 Date 21-Feb-19 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 16787479 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Inlet, oF (Tdi) Average, oF (Td) Time, min (O)Y ∆H 272.601 75.00 75.00 277.620 75.00 75.005.019 75.00 75.00278.620 75.00 75.00 283.630 75.00 75.005.010 75.00 75.00284.300 75.00 75.00294.306 75.00 75.00 10.006 75.00 75.00295.740 76.00 76.00305.748 76.00 76.0010.008 76.00 76.00307.745 76.00 76.00 317.835 77.00 77.0010.090 76.50 76.50 Average 1.0001 1.9213 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 32 32 32 31 31 31.6 0.1% 212 212 212 211 211 211.6 0.1% 932 932 932 931 931 931.6 0.0% 1831 1831 1831 1830 1830 1830.6 0.1% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 1.9550 Calibration Results Baro Press, in Hg ( Pb)29.16 76.5 932 1832 Reference Temperature Select Temperature oC oF 212 32 1.9931 1.940213.0 1.0017 15.2 1.0012 1.0011 5.0 72.0 10.7 0.9957 75.0 76.0 Y - Ratio of accuracy of wet test meter to dry gas meter ∆H - Pressure differential across orifice 3.0 10.0 70.0 Temperatures Wet Test Meter 75.0 1.5 10.0 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume 1.86335.0 72.0 75.0 9.0 2.0 10.0 1.855112.7 1.0006 Dry Gas Meter 72.0 0.5 72.0 1.0 ()() ()()2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ()()()()()   + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo Y Factor Calibration Check Calculation METHOD 0010 TEST TRAIN CARBON BED INLET METER BOX NO. 27 RUN NO. 1 3/25/2019 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis. 0.0 % O2 = Percent oxygen by volume, dry basis. 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 Tma =Source Temperature, absolute(oR) Tm =Average dry gas meter temperature , deg F.78.0 Tma = Ts + 460 Tma = 78.0 + 460 Tma = 538.04 Ps = Absolute meter pressure, inches Hg. 13.6 = Specific gravity of mercury. delta H =Avg pressure drop across the orifice meter during sampling, in H2O 1.01 Pb =Barometric Pressure, in Hg.30.02 Pm = Pb + (delta H / 13.6) Pm = 30.02 + ( 1.0125 / 13.6) Pm = 30.09 Yqa = dry gas meter calibration check value, dimensionless. 0.0319 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. 57.651 Y = Dry gas meter calibration factor (based on full calibration) 1.0001 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.9213 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.0484 O = Total sampling time, minutes. 96 Yqa = (O / Vm ) * SQRT[( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) ] * avg SQRT Delta H Yqa = ( 96.00 / 57.65 ) * SQRT[ ( 0.0319 * 538.04 * 29 ) / ( 1.92 * 30.09 * 28.84 ) ] * 1.05 Yqa = 1.665 * SQRT[ 497.742 / 1,667.064] * 1.05 Yqa = 0.954 Diff = Absolute difference between Yqa and Y Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0001 - 0.954 ) / 1.0001 ) * 100 Diff = 4.61 4/8/2019 4:33 PM Z:\IASData\Client Folders.A-F\Chemours Fayetteville\15418.002.011 Fayetteville March 2019 VEN Test\Data\CBed IN\032519 CBed IN Y Factor Calibration Check Calculation METHOD 0010 TEST TRAIN CARBON BED INLET METER BOX NO. AO29 RUN NO. 3 3/26/2019 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis. 0.0 % O2 = Percent oxygen by volume, dry basis. 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 Tma =Source Temperature, absolute(oR) Tm =Average dry gas meter temperature , deg F.64.5 Tma = Ts + 460 Tma = 64.5 + 460 Tma = 524.54 Ps = Absolute meter pressure, inches Hg. 13.6 = Specific gravity of mercury. delta H =Avg pressure drop across the orifice meter during sampling, in H2O 1.11 Pb =Barometric Pressure, in Hg.30.06 Pm = Pb + (delta H / 13.6) Pm = 30.06 + ( 1.1071 / 13.6) Pm = 30.14 Yqa = dry gas meter calibration check value, dimensionless. 0.0319 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. 55.610 Y = Dry gas meter calibration factor (based on full calibration) 0.992 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.868 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.0484 O = Total sampling time, minutes. 96 Yqa = (O / Vm ) * SQRT[( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) ] * avg SQRT Delta H Yqa = ( 96.00 / 55.61 ) * SQRT[ ( 0.0319 * 524.54 * 29 ) / ( 1.87 * 30.14 * 28.84 ) ] * 1.05 Yqa = 1.726 * SQRT[ 485.253 / 1,623.511] * 1.05 Yqa = 0.990 Diff = Absolute difference between Yqa and Y Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 0.992 - 0.990 ) / 0.992 ) * 100 Diff = 0.2 4/8/2019 4:34 PM Z:\IASData\Client Folders.A-F\Chemours Fayetteville\15418.002.011 Fayetteville March 2019 VEN Test\Data\CBed IN\032519 CBed IN Long Cal Box#28 3-27-18.xls Calibrator MDW Meter Box Number 28 Ambient Temp 70 Date 27-Mar-18 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 15042594 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Inlet, oF (Tdi)Average, oF (Td) Time, min (O)Y ∆H 728.890 72.00 72.00 733.868 73.00 73.004.978 72.50 72.50734.860 73.00 73.00 739.855 74.00 74.004.995 73.50 73.50740.852 74.00 74.00 750.865 75.00 75.0010.013 74.50 74.50751.869 75.00 75.00761.915 76.00 76.0010.046 75.50 75.50762.921 76.00 76.00 773.009 77.00 77.0010.088 76.50 76.50 Average 1.0027 2.0895 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 32 32 32 32 33 32.2 0.0% 213 213 213 213 214 213.2 -0.2% 932 933 932 932 932 932.2 0.0%1832 1832 1831 1832 1834 1832.2 0.0% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % 2.0 10.0 1.968913.3 1.0060 Dry Gas Meter 70.0 0.5 71.0 1.0 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume 1.99785.0 70.0 73.5 9.5 Y - Ratio of accuracy of wet test meter to dry gas meter ∆H - Pressure differential across orifice 3.0 10.0 69.0 Temperatures Wet Test Meter 72.5 1.5 10.0 1.0052 5.0 70.0 11.3 0.9980 74.5 75.5 2.3108 2.069613.7 1.0009 16.7 1.0035 9321832 Reference Temperature Select Temperature oC oF 212 32 Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 2.1001 Calibration Results Baro Press, in Hg ( Pb)30.16 76.5 ()() ()()2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ()()()()()   + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN CARBON BED OUTLET METER BOX NO. WC 28 3/25/2019 + 3/26/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis. 0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis. 20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.80.5 51.8 66.4 Tma = Ts + 460 Tma = 80.50 + 460 Tma = 540.50 511.79 526.38 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.43 1.38 1.46 Pb = Barometric Pressure, in Hg.30.02 30.06 30.06 Pm = Pb + (delta H / 13.6) Pm = 30.02 + ( 1.42583333333333 / 13.6) Pm = 30.12 30.16 30.17 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.60.365 57.418 59.954 Y = Dry gas meter calibration factor (based on full calibration)1.0027 1.0027 1.0027 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.2.0895 2.0895 2.0895 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.1700 1.1454 1.1850 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 60.37 ) * SQRT ( 0.0319 * 540.50 * 29 ) / ( 2.09 * 30.12 * 28.84 ) * 1.17 Yqa = 1.590 * SQRT 500.017 / 1,814.815 * 1.17 Yqa = 0.9767 0.9775 0.9821 Diff = Absolute difference between Yqa and Y 2.59 2.51 2.05 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0027 - 0.977 ) / 1.0027 ) * 100 Average Diff = 2.38 Allowable = 5.0 4/8/20194:36 PM 032519 CBed OUT Long Cal box#22 5-23-18_bellows ChangeOut Calibrator MDW Meter Box Number 22 Ambient Temp 72 Date 23-May-18 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 15550528 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Inlet, oF (Tdi) Average, oF (Td) Time, min (O)Y ∆H 973.135 75.00 75.00 978.210 76.00 76.005.075 75.50 75.50985.000 76.00 76.00 990.010 77.00 77.005.010 76.50 76.50990.810 76.00 76.001000.780 77.00 77.009.970 76.50 76.504.162 77.00 77.0014.210 78.00 78.0010.048 77.50 77.5026.680 78.00 78.00 36.695 78.00 78.0010.015 78.00 78.00 Average 1.0010 2.4674 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 33 33 32 33 33 32.8 -0.2% 212 213 211 211 211 211.6 0.1% 933 933 933 933 932 932.8 -0.1% 1833 1833 1833 1832 1832 1832.6 0.0% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 2.3614 Calibration Results Baro Press, in Hg ( Pb)29.5 78.0 932 1832 Reference Temperature Select Temperature oC oF 212 32 11.80 1.0023 2.4864 2.412214.6 1.0005 17.1 1.0077 3.0 10.0 72.0 2.0 10.0 72.0 72.0 2.6243 1.0 5.0 72.0 76.5 10.4 1.0039 76.5 Y - Ratio of accuracy of wet test meter to dry gas meter ∆H - Pressure differential across orifice Dry Gas Meter Temperatures Wet Test Meter 2.4525 75.5 15.2 0.990572.0 77.5 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume 5.00.5 1.5 10.0 ()() ()()2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ()()()()()   + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN DIVISION STACK METER BOX NO. 22 3/25/2019 + 3/26/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis. 0.1 0.0 0.0 % O2 = Percent oxygen by volume, dry basis. 21.0 21.0 21.2 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 21 ) + ( 0.44 * 0.1 ) + ( 0.28 * ( 100 - ( 0.1 + 21 ))) MWd = ( 6.72 ) + ( 0.04 ) + ( 22.09 ) MWd = 28.86 28.84 28.85 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.80.6 46.5 58.5 Tma = Ts + 460 Tma = 80.58 + 460 Tma = 540.58 506.50 518.50 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.34 1.39 1.42 Pb = Barometric Pressure, in Hg.29.92 29.96 29.96 Pm = Pb + (delta H / 13.6) Pm = 29.92 + ( 1.34333333333333 / 13.6) Pm = 30.02 30.06 30.06 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.51.535 51.014 51.633 Y = Dry gas meter calibration factor (based on full calibration)1.0010 1.0010 1.0010 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.2.4674 2.4674 2.4674 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.1540 1.1762 1.1859 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 51.54 ) * SQRT ( 0.0319 * 540.58 * 29 ) / ( 2.47 * 30.02 * 28.86 ) * 1.15 Yqa = 1.863 * SQRT 500.094 / 2,137.403 * 1.15 Yqa = 1.0398 1.0359 1.0440 Diff = Absolute difference between Yqa and Y 3.88 3.49 4.30 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.001 - 1.040 ) / 1.001 ) * 100 Average Diff = 3.89 Allowable = 5.0 4/8/20194:37 PM 032519 Division P-699 all in one.MOD Pitot Tube Identification Number: Inspection Date 2/22/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.463 PASS Distance to B Plane (PB) - inches 0.463 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches P-699 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.85 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.005 0.016 Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA PASS PASS PASS Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NASample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z P-707 all in one.MOD Pitot Tube Identification Number: Inspection Date 6/15/18 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.44 PASS Distance to B Plane (PB) - inches 0.44 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches P-707 KS Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.86 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.007 0.018 Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA PASS PASS PASS Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NASample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z P-710 all in one.MOD Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.453 PASS Distance to B Plane (PB) - inches 0.453 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.87 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.012 0.022 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-710 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z P-701 all in one.MOD Pitot Tube Identification Number: Inspection Date 5/30/18 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.466 PASS Distance to B Plane (PB) - inches 0.466 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.89 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.008 0.02 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-701 SR Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z IASDATA\CHEMOURS\15418.002.009\CBED IN OUT DIVISION REPORT 01162019-AMD 4/15/2019 APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.009\CBED IN OUT DIVISION REPORT 01162019-AMD 4/15/2019 The following WESTON employees participated in this project. Paul Meeter Senior Project Manager Jeff O’Neill Senior Project Manager Steve Rathfon Team Member Robert Scroggins Team Member Jacob Little Team Member Austin Squires Team Member Kris Ansley Team Member