Loading...
HomeMy WebLinkAbout2019.04.10_CCO.p8_Fluoromonomers Manufacturing Process Vinyl Ethers North Carbon Bed Removal Efficiency Test ReportIASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 FLUOROMONOMERS MANUFACTURING PROCESS VINYL ETHERS NORTH CARBON BED REMOVAL EFFICIENCY TEST REPORT TEST DATES: 26-28 FEBRUARY, 1 MARCH 2019 THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA Prepared for: THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306 Prepared by: WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380 April 2019 W.O. No. 15418.002.010 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 i TABLE OF CONTENTS Section Page 1. INTRODUCTION..............................................................................................................1  1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1  1.2 TEST OBJECTIVES ...............................................................................................1  1.3 TEST PROGRAM OVERVIEW .............................................................................1  2. SUMMARY OF TEST RESULTS ...................................................................................3  3. PROCESS DESCRIPTIONS ............................................................................................4  3.1 FLUOROMONOMERS ..........................................................................................4  3.2 PROCESS OPERATIONS AND PARAMETERS .................................................4  4. DESCRIPTION OF TEST LOCATIONS .......................................................................6  4.1 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET .....................6  5. SAMPLING AND ANALYTICAL METHODS .............................................................8  5.1 STACK GAS SAMPLING PROCEDURES ...........................................................8  5.1.1 Pre-Test Determinations ...........................................................................8  5.2 STACK PARAMETERS .........................................................................................8  5.2.1 EPA Method 0010.....................................................................................8  5.2.2 EPA Method 0010 Sample Recovery .....................................................10  5.2.3 EPA Method 0010 Sample Analysis.......................................................13  5.3 GAS COMPOSITION ...........................................................................................14  6. DETAILED TEST RESULTS AND DISCUSSION .....................................................16  APPENDIX A PROCESS OPERATIONS DATA APPENDIX B RAW AND REDUCED TEST DATA APPENDIX C LABORATORY ANALYTICAL REPORT APPENDIX D SAMPLE CALCULATIONS APPENDIX E EQUIPMENT CALIBRATION RECORDS APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 ii LIST OF FIGURES Title Page Figure 4-1 VE North Process Carbon Bed Inlet and Outlet Schematic ......................................... 7  Figure 5-1 EPA Method 0010 Sampling Train ............................................................................... 9  Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 12  Figure 5-3 WESTON Sampling System ...................................................................................... 15  IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 iii LIST OF TABLES Title Page Table 1-1 Sampling Plan for VEN Carbon Bed Testing ................................................................. 2  Table 2-1 Summary of HFPO Dimer Acid VEN Carbon Bed Test Results ................................... 3  Table 3-1 Test Campaign Process Conditions ................................................................................ 5  Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Inlet – Runs 1-8 ......................................................................................................................................... 17  Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Outlet – Runs 1-8 ......................................................................................................................................... 23  IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 1 1. INTRODUCTION 1.1 FACILITY AND BACKGROUND INFORMATION The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse. Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid, emission testing on the Vinyl Ethers North (VEN) Carbon Bed at the facility. Testing was performed on 26-28 February and 1 March 2019 and generally followed the “Emission Test Protocol” reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program. 1.2 TEST OBJECTIVES The specific objectives for this test program were as follows:  Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the Carbon Bed inlet and outlet which are located in the Fluoromonomers process area.  Calculate the Carbon Bed removal efficiency for HFPO Dimer Acid.  Monitor and record process and emissions control data in conjunction with the test program.  Provide representative emissions data. 1.3 TEST PROGRAM OVERVIEW During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured at two locations. Table 1-1 provides a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 2 Table 1-1 Sampling Plan for VEN Carbon Bed Testing Sampling Point & Location VE North Carbon Bed Number of Tests: 16 (8 Carbon Bed inlet, 8 Carbon Bed outlet) Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests EPA M3/3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size ≥ 1.5m3 NA NA NA NA Total Number of Samples Collected1 16 16 16 16 16 Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0 Field Blank Trains1 1 per source 0 0 0 0 Proof Blanks1 1 per train 0 0 0 0 Trip Blanks1,2 1 set 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 205 16 16 16 16 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test locations. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6. Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided in electronic format and on CD with each hard copy. IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 3 2. SUMMARY OF TEST RESULTS A total of eight test runs each were performed on the VEN Carbon Bed inlet and outlet. Table 2- 1 provides a summary of the HFPO Dimer Acid emissions test results and Carbon Bed removal efficiencies. Detailed test results summaries are provided in Section 6. It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds. Table 2-1 Summary of HFPO Dimer Acid VEN Carbon Bed Test Results Run Number and Condition Inlet Outlet Removal Efficiency g/sec lb/hr g/sec lb/hr % R1 ABR Op. 1.25E-02 9.96E-02 6.92E-05 5.50E-04 99.4 R2 Burnout Run 1.41E-02 1.12E-01 2.14E-05 1.70E-04 99.8 R3 ABR Off 6.58E-03 5.23E-02 3.15E-05 2.50E-04 99.5 R4 ABR Op. 7.11E-03 5.65E-02 1.42E-03 1.13E-02 80.0 R5 ABR Op. 6.41E-03 5.09E-02 6.30E-06 5.00E-05 99.9 R6 Burnout Run 7.11E-03 5.64E-02 8.81E-06 7.00E-05 99.9 R7 ABR Op. 5.97E-03 4.74E-02 5.04E-06 4.00E-05 99.9 R8 Burnout Run 4.39E-03 3.49E-02 6.30E-06 5.00E-05 99.9 Average 8.02E-03 6.37E-02 1.96E-04 1.56E-03 97.3 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 4 3. PROCESS DESCRIPTIONS The Fluoromonomers area is included in the scope of this test program. 3.1 FLUOROMONOMERS These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers. Process emissions are vented to the Division waste gas scrubber system (which includes the secondary scrubber) which then vents to the Carbon Bed and then to the Division Stack. The VE North building air systems are also vented to the carbon bed and connected to the Tower Exhaust Blower. 3.2 PROCESS OPERATIONS AND PARAMETERS The following table is a summary of the operation and products from the specific areas tested. Source Operation/Product Batch or Continuous VE North PPVE Condensation is continuous. Agitated Bed Reactor and Refining are batch. During the test program, the following parameters were monitored by Chemours and are included in Appendix A.  Fluoromonomers Process o VEN Precurser Rate o VEN Condensation Rate o VEN ABR Rate IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 5 The following table provides a summary of the process conditions established for each of the eight test runs: Table 3-1 Test Campaign Process Conditions Run No. Date ABR 1 2/26/19 Feeding 2 2/26/19 Burnout 3 2/27/19 Off 4 2/27/19 Feeding 5 2/28/19 Feeding 6 2/28/19 Burnout 7 3/1/19 Feeding 8 3/1/19 Burnout IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 6 4. DESCRIPTION OF TEST LOCATIONS 4.1 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET The fiberglass reinforced plastic (FRP) ducts at the inlet and outlet of the carbon bed are 34” ID. The test ports are located as shown below. Based on EPA Method 1, a total of 24 traverse points (12 per port) were required for HFPO Dimer Acid sampling at both locations. Figure 4-1 provides a schematic of the test port and traverse port locations. Location Distance from Flow Disturbance Downstream (B) Upstream (A) Carbon Bed Inlet 67 inches > 1.9 duct diameters 61 inches > 1.8 duct diameters Carbon Bed Outlet 58 inches > 1.7 duct diameters 57 inches > 1.5 duct diameters 34 "TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 7 8 9 10 11 12 FIGURE 4-1 VE NORTH PROCESS CARBON BED INLET AND OUTLET SCHEMATIC IASDATA\CHEMOURS\15418.002.010\FIGURE 4-1 VE NORTH PROCESS SCHEMATIC 7 ID FAN CARBON BED 67 " 3/4 2 1/4 4 6 8 1/2 12 1/8 21 5/8 25 1/2 28 30 31 3/4 33 1/4 DRAWING NOT TO SCALE 57 " 58 " INLET OUTLET 61 " CEMENT BLOCK WALL IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 8 5. SAMPLING AND ANALYTICAL METHODS 5.1 STACK GAS SAMPLING PROCEDURES The purpose of this section is to describe the stack gas emissions sampling trains and to provide details of the stack sampling and analytical procedures utilized during the emissions test program. 5.1.1 Pre-Test Determinations Preliminary test data were obtained at each test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements. A check for the presence or absence of cyclonic flow was previously conducted at each test location. The cyclonic flow checks were negative (< 20°) verifying that the test locations were acceptable for testing. Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures. Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures. 5.2 STACK PARAMETERS 5.2.1 EPA Method 0010 The sampling train utilized to perform the HFPO Dimer Acid sampling at the outlet locations was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter. VENTWALLICE WATER RECIRCULATION PUMPCONDENSATE TRAPIMPINGERSICE BATHVACUUM LINEMAINVALVETEMPERATURESENSORSBY-PASS VALVEAIR-TIGHT PUMPDRY GAS METERORIFICEMANOMETERCHECKVALVETEMPERATURESENSORHEATED AREAFILTER HOLDERORIFICESILICA GELCONDENSERXAD-2 SORBENTMODULES ONE AND TWOTEMPERATURESENSORTEMPERATURESENSORVACUUMGAUGEIASDATA\CHEMOURS\15418.002.010\FIGURE 5-1 METHOD 0010FIGURE 5-1EPA METHOD 0010 SAMPLING TRAINHEATED PROBE/BUTTON HOOKNOZZLEREVERSE TYPEPITOT TUBE9 NOTE: THE CONDENSER MAY BE POSITIONED HORIZONTALLY. THE XAD-2 SORBENT MODULE WILL ALWAYS BE IN A VERTICAL POSITION..RIGID BOROSILICATE TUBINGOR FLEXIBLE SAMPLE LINEICE WATERRECIRCULATIONCONDENSATE TRAPIMPINGER IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 10 A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 g of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and both XAD-2 modules to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train. HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid. During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes. 5.2.2 EPA Method 0010 Sample Recovery At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery. A consistent procedure was employed for sample recovery: IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 11 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled. 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments. 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remains. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed. 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.   5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed. 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.   7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed. 8. The silica gel in the final impinger was weighed and the weight gain value recorded. 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis. Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool. During each test campaign, a Method 0010 blank train was set up near the test location, leak- checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis. See Figure 5-2 for a schematic of the Method 0010 sample recovery process. IASDATA\CHEMOURS\15418.002.010\FIGURE 5-2 EPA 0010FIGURE 5-2HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010NOZZLE, PROBE ANDFRONT-HALF FILTER HOLDERSAMPLE FRACTION 2FILTERSAMPLE FRACTION 1BACK-HALF FILTER HOLDER CONNECTORS, FLEXIBLE LINE CONDENSER SAMPLE FRACTION 5XAD-2 MODULE ONESAMPLE FRACTION 3REMOVE FROM IMPINGER TRAINWASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDESEAL IN LABELED POLYETHYLENE BOTTLE. COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLWASH WHILE BRUSHING WITH NANOGRADE METHANOL/ AMMONIUM HYDROXIDESEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOLTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLSEAL WASHINGS IN LABELED POLYETHYLENE BOTTLE. MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 4IMPINGER NO. 4 (SILICA GEL)WEIGH AND RECORDMEASURE VOLUME OF LIQUID AND RECORDTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOL12WEIGH AND RECORDRETAIN FOR REGENERATIONFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 6WASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDETRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLXAD-2 MODULE TWOSAMPLE FRACTION 7REMOVE FROM IMPINGER TRAINSEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOL IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 13 5.2.3 EPA Method 0010 Sample Analysis Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:  Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;  Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;  Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;  Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers. The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough. The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS. Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries. TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol. IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 14 5.3 GAS COMPOSITION The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3. Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintained the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment. The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to insure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier. The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run. HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDER OR METHOD0010 SAMPLE TRAINHEATED SAMPLE LINESAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISTIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-3WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.010\FIGURE 5-3 WESTON SAMPLING SYSTEM215 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 16 6. DETAILED TEST RESULTS AND DISCUSSION Each test was a minimum of 96 minutes in duration. A total of eight test runs were performed at each location. Tables 6-1 and 6-2 provide detailed test data and test results for the Carbon Bed inlet and the Carbon Bed outlet, respectively. The Method 3A sampling on all sources indicated that the O2 and CO2 concentrations were at ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all calculations. The carbon bed removal efficiency was calculated based upon the HFPO Dimer Acid inlet and outlet mass emission rates in lb/hr. Seven of the eight runs were >99% efficiency. The one run where the measured efficiency was 80% is being investigated further. TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED INLET Test Data Run number 1 2 3 Location CBed Inlet CBed Inlet CBed Inlet Date 2/26/2019 2/26/2019 2/27/2019 Time period 0927-1143 1335-1530 0840-1035 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.215 0.215 0.215 Cross sectional nozzle area, sq.ft.0.000252 0.000252 0.000252 Barometric pressure, in. Hg 30.29 30.20 30.22 Avg. orifice press. diff., in H2O 1.33 1.31 1.27 Avg. dry gas meter temp., deg F 58.7 74.0 60.2 Avg. abs. dry gas meter temp., deg. R 519 534 520 Total liquid collected by train, ml 24.7 20.4 28.5 Std. vol. of H2O vapor coll., cu.ft.1.2 1.0 1.3 Dry gas meter calibration factor 1.0027 1.0027 1.0027 Sample vol. at meter cond., dcf 52.809 56.260 55.079 Sample vol. at std. cond., dscf (1)54.721 56.462 56.773 Percent of isokinetic sampling 93.9 99.6 100.4 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.021 0.017 0.023 Mole fraction of dry gas 0.979 0.983 0.977 Molecular wt. of wet gas, lb/lb mole 28.61 28.65 28.59 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -6.50 -6.50 -6.50 Absolute pressure, in. Hg 29.81 29.72 29.74 Avg. temperature, deg. F 69 78 71 Avg. absolute temperature, deg.R 529 538 531 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.41.3 40.7 40.3 Stack/duct cross sectional area, sq.ft.6.31 6.31 6.31 Avg. gas stream volumetric flow, wacf/min.15613 15409 15264 Avg. gas stream volumetric flow, dscf/min.15187 14774 14739 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 3/22/2019 2:37 PM 17 022619 CBed IN 1-3 CARBON BED INLET TEST DATA Run number 1 2 3 Location CBed Inlet CBed Inlet CBed Inlet Date 2/26/2019 2/26/2019 2/27/2019 Time period 0927-1143 1335-1530 0840-1035 CONDITION ABR Op.Burnout Run ABR off LABORATORY REPORT DATA, ug. HFPO Dimer Acid 2713.12 3227.18 1521.59 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 1750.56 2018.04 946.27 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 1.09E-07 1.26E-07 5.91E-08 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 9.96E-02 1.12E-01 5.23E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 1.25E-02 1.41E-02 6.58E-03 TABLE 6-1 (cont.) SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CHEMOURS - FAYETTEVILLE, NC 4/10/2019 1:55 PM 18 022619 CBed IN 1-3 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED INLET Test Data Run number 4 5 6 Location CBed Inlet CBed Inlet CBed Inlet Date 2/27/2019 2/28/2019 2/28/2019 Time period 1231-1426 0823-1018 1429-1627 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.215 0.215 0.215 Cross sectional nozzle area, sq.ft.0.000252 0.000252 0.000252 Barometric pressure, in. Hg 30.17 29.95 29.95 Avg. orifice press. diff., in H2O 1.28 1.25 1.28 Avg. dry gas meter temp., deg F 68.8 59.5 70.9 Avg. abs. dry gas meter temp., deg. R 529 519 531 Total liquid collected by train, ml 31.8 28.5 33.1 Std. vol. of H2O vapor coll., cu.ft.1.5 1.3 1.6 Dry gas meter calibration factor 1.0027 1.0027 1.0027 Sample vol. at meter cond., dcf 58.052 57.133 58.141 Sample vol. at std. cond., dscf (1)58.762 58.444 58.199 Percent of isokinetic sampling 104.4 104.2 103.9 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.025 0.022 0.026 Mole fraction of dry gas 0.975 0.978 0.974 Molecular wt. of wet gas, lb/lb mole 28.57 28.59 28.55 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -6.50 -6.50 -6.50 Absolute pressure, in. Hg 29.69 29.47 29.47 Avg. temperature, deg. F 74 70 79 Avg. absolute temperature, deg.R 534 530 539 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.40.5 40.2 41.1 Stack/duct cross sectional area, sq.ft.6.31 6.31 6.31 Avg. gas stream volumetric flow, wacf/min.15335 15222 15534 Avg. gas stream volumetric flow, dscf/min.14667 14610 14589 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 3/22/2019 2:40 PM 19 022619 CBed IN 4-6 CARBON BED INLET TEST DATA Run number 4 5 6 Location CBed Inlet CBed Inlet CBed Inlet Date 2/27/2019 2/28/2019 2/28/2019 Time period 1231-1426 0823-1018 1429-1627 CONDITION ABR Op. ABR Op. Burnout Run LABORATORY REPORT DATA, ug. HFPO Dimer Acid 1711.1700 1540.6200 1702.1090 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 1028.16 930.72 1032.60 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 6.42E-08 5.81E-08 6.45E-08 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 5.65E-02 5.09E-02 5.64E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 7.11E-03 6.41E-03 7.11E-03 TABLE 6-1 (cont.) SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CHEMOURS - FAYETTEVILLE, NC 4/10/2019 1:48 PM 20 022619 CBed IN 4-6 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED INLET Test Data Run number 7 8 Location CBed Inlet CBed Inlet Date 3/1/2019 3/1/2019 Time period 0813-1008 1237-1433 SAMPLING DATA: Sampling duration, min.96.0 96.0 Nozzle diameter, in.0.215 0.215 Cross sectional nozzle area, sq.ft.0.000252 0.000252 Barometric pressure, in. Hg 30.09 30.08 Avg. orifice press. diff., in H2O 1.29 1.26 Avg. dry gas meter temp., deg F 53.7 61.9 Avg. abs. dry gas meter temp., deg. R 514 522 Total liquid collected by train, ml 28.1 29.5 Std. vol. of H2O vapor coll., cu.ft.1.3 1.4 Dry gas meter calibration factor 1.0027 1.0027 Sample vol. at meter cond., dcf 57.793 57.189 Sample vol. at std. cond., dscf (1)60.070 58.483 Percent of isokinetic sampling 104.9 104.7 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.022 0.023 Mole fraction of dry gas 0.978 0.977 Molecular wt. of wet gas, lb/lb mole 28.60 28.58 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -6.50 -6.50 Absolute pressure, in. Hg 29.61 29.60 Avg. temperature, deg. F 64 72 Avg. absolute temperature, deg.R 524 532 Pitot tube coefficient 0.84 0.84 Total number of traverse points 24 24 Avg. gas stream velocity, ft./sec.40.4 40.1 Stack/duct cross sectional area, sq.ft.6.31 6.31 Avg. gas stream volumetric flow, wacf/min.15295 15173 Avg. gas stream volumetric flow, dscf/min.14917 14557 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 3/22/2019 2:47 PM 21 022619 CBed IN 7-8 CARBON BED INLET TEST DATA Run number 7 8 Location CBed Inlet CBed Inlet Date 3/1/2019 3/1/2019 Time period 0813-1008 1237-1433 CONDITION ABR Op.Burnout Run LABORATORY REPORT DATA, ug. HFPO Dimer Acid 1.44E+03 1.06E+03 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 8.49E+02 6.39E+02 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 5.30E-08 3.99E-08 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 4.74E-02 3.49E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 5.97E-03 4.39E-03 TABLE 6-1 (cont.) SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULT CHEMOURS - FAYETTEVILLE, NC 4/10/2019 1:49 PM 22 022619 CBed IN 7-8 TABLE 6-2 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED OUTLET Test Data Run number 1 2 3 Location CBed Outlet CBed Outlet CBed Outlet Date 2/26/2019 2/26/2019 2/27/2019 Time period 0927-1143 1335-1530 0840-1035 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.215 0.215 0.215 Cross sectional nozzle area, sq.ft.0.000252 0.000252 0.000252 Barometric pressure, in. Hg 30.29 30.20 30.22 Avg. orifice press. diff., in H2O 1.61 1.65 1.64 Avg. dry gas meter temp., deg F 60.2 79.4 63.3 Avg. abs. dry gas meter temp., deg. R 520 539 523 Total liquid collected by train, ml 17.9 28.3 33.8 Std. vol. of H2O vapor coll., cu.ft.0.8 1.3 1.6 Dry gas meter calibration factor 1.0010 1.0010 1.0010 Sample vol. at meter cond., dcf 54.493 55.964 55.596 Sample vol. at std. cond., dscf (1)56.245 55.551 56.924 Percent of isokinetic sampling 95.3 93.6 98.6 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.015 0.023 0.027 Mole fraction of dry gas 0.985 0.977 0.973 Molecular wt. of wet gas, lb/lb mole 28.68 28.58 28.54 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O 3.50 3.50 3.50 Absolute pressure, in. Hg 30.55 30.46 30.48 Avg. temperature, deg. F 69 76 78 Avg. absolute temperature, deg.R 529 536 538 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.40.6 41.7 40.9 Stack/duct cross sectional area, sq.ft.6.31 6.31 6.31 Avg. gas stream volumetric flow, wacf/min.15341 15789 15489 Avg. gas stream volumetric flow, dscf/min.15383 15463 15044 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 3/22/2019 2:57 PM 23 022619 CBed OUT 1-3 CARBON BED OUTLET TEST DATA Run number 1 2 3 Location CBed Outlet CBed Outlet CBed Outlet Date 2/26/2019 2/26/2019 2/27/2019 Time period 0927-1143 1335-1530 0840-1035 CONDITION ABR Op.Burnout Run ABR Off LABORATORY REPORT DATA, ug. HFPO Dimer Acid 15.1080 4.6752 7.0900 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 9.48 2.97 4.40 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 5.92E-10 1.86E-10 2.75E-10 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 5.50E-04 1.70E-04 2.50E-04 HFPO Dimer Acid (From Inlet Data)9.96E-02 1.12E-01 5.23E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 6.92E-05 2.14E-05 3.15E-05 Carbon Bed Removal Efficiency, %99.4 99.8 99.5 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS 4/10/2019 1:53 PM 24 022619 CBed OUT 1-3 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED OUTLET Test Data Run number 4 5 6 Location CBed Outlet CBed Outlet CBed Outlet Date 2/27/2019 2/28/2019 2/27/2019 Time period 1231-1426 0823-1018 1429-1627 SAMPLING DATA: Sampling duration, min.320.1 96.0 1.3 Nozzle diameter, in.0.215 0.215 0.215 Cross sectional nozzle area, sq.ft.0.000252 0.000252 0.000252 Barometric pressure, in. Hg 30.17 29.95 29.95 Avg. orifice press. diff., in H2O 1.63 1.67 1.61 Avg. dry gas meter temp., deg F 71.5 61.4 76.7 Avg. abs. dry gas meter temp., deg. R 532 521 537 Total liquid collected by train, ml 32.8 35.1 39.8 Std. vol. of H2O vapor coll., cu.ft.1.5 1.7 1.9 Dry gas meter calibration factor 1.0010 1.0010 1.0010 Sample vol. at meter cond., dcf 56.016 56.152 55.732 Sample vol. at std. cond., dscf (1)56.369 57.190 55.132 Percent of isokinetic sampling 97.8 98.9 97.0 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.027 0.028 0.033 Mole fraction of dry gas 0.973 0.972 0.967 Molecular wt. of wet gas, lb/lb mole 28.55 28.53 28.48 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O 3.50 3.50 3.50 Absolute pressure, in. Hg 30.43 30.21 30.21 Avg. temperature, deg. F 82 78 81 Avg. absolute temperature, deg.R 542 538 541 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.41.2 41.4 41.1 Stack/duct cross sectional area, sq.ft.6.31 6.31 6.31 Avg. gas stream volumetric flow, wacf/min.15581 15647 15534 Avg. gas stream volumetric flow, dscf/min.15022 15065 14807 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 3/22/2019 3:07 PM 25 022619 CBed OUT 4-6 CARBON BED OUTLET TEST DATA Run number 4 5 6 Location CBed Outlet CBed Outlet CBed Outlet Date 2/27/2019 2/28/2019 2/27/2019 Time period 1231-1426 0823-1018 1429-1627 CONDITION ABR Op.ABR Op.Burnout Run LABORATORY REPORT DATA, ug. HFPO Dimer Acid 320.0500 1.3000 1.9400 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 200.46 0.80 1.24 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 1.25E-08 5.01E-11 7.76E-11 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 1.13E-02 5.00E-05 7.00E-05 HFPO Dimer Acid (From Inlet Data)5.65E-02 5.09E-02 5.64E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 1.42E-03 6.30E-06 8.81E-06 Carbon Bed Removal Efficiency, %80.0 99.9 99.9 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS 4/10/2019 1:56 PM 26 022619 CBed OUT 4-6 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED OUTLET Test Data Run number 7 8 Location CBed Outlet CBed Outlet Date 3/1/2019 3/1/2019 Time period 0813-1008 1237-1433 SAMPLING DATA: Sampling duration, min.96.0 96.0 Nozzle diameter, in.0.215 0.215 Cross sectional nozzle area, sq.ft.0.000252 0.000252 Barometric pressure, in. Hg 30.09 30.08 Avg. orifice press. diff., in H2O 1.67 1.64 Avg. dry gas meter temp., deg F 56.4 67.1 Avg. abs. dry gas meter temp., deg. R 516 527 Total liquid collected by train, ml 34.2 32.5 Std. vol. of H2O vapor coll., cu.ft.1.6 1.5 Dry gas meter calibration factor 1.0010 1.0010 Sample vol. at meter cond., dcf 55.779 55.822 Sample vol. at std. cond., dscf (1)57.623 56.473 Percent of isokinetic sampling 98.6 98.0 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.027 0.026 Mole fraction of dry gas 0.973 0.974 Molecular wt. of wet gas, lb/lb mole 28.54 28.55 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O 3.50 3.50 Absolute pressure, in. Hg 30.35 30.34 Avg. temperature, deg. F 72 77 Avg. absolute temperature, deg.R 532 537 Pitot tube coefficient 0.84 0.84 Total number of traverse points 24 24 Avg. gas stream velocity, ft./sec.41.2 40.9 Stack/duct cross sectional area, sq.ft.6.31 6.31 Avg. gas stream volumetric flow, wacf/min.15574 15486 Avg. gas stream volumetric flow, dscf/min.15233 15018 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 3/22/2019 3:12 PM 27 022619 CBed OUT 7-8 CARBON BED OUTLET TEST DATA Run number 7 8 Location CBed Outlet CBed Outlet Date 3/1/2019 3/1/2019 Time period 0813-1008 1237-1433 CONDITION ABR Op.Burnout Run LABORATORY REPORT DATA, ug. HFPO Dimer Acid 1.2200 1.4400 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 0.75 0.90 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 4.67E-11 5.62E-11 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 4.00E-05 5.00E-05 HFPO Dimer Acid (From Inlet Data)4.74E-02 3.49E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 5.04E-06 6.30E-06 Carbon Bed Removal Efficiency, %99.9 99.9 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS 4/10/2019 1:57 PM 28 022619 CBed OUT 7-8 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 APPENDIX A PROCESS OPERATIONS DATA 29 DateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowDateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowPPVE15000 kg/h75 kg/h98 kg/h140 kg/h125 kg/h145 kg/h1300140015001600Run 3Run 42/26/20198009001000110012002/27/2019Burnout15000 kg/h125 kg/h105 kg/h90 kg/h70 kg/h140015001600Run 1Run 2PPVE800900100011001200130030 DateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowDateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet Flow15000 kg/h120 kg/h80 kg/h 60 kg/h3/1/2019PPVEBurnout1300140015001600Run 7Run 82/28/2019800900100011001200Burnout15000 kg/h125 kg/h100 kg/h140015001600Run 5Run 6PPVE800900100011001200130031 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 APPENDIX B RAW AND REDUCED TEST DATA 32 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED INLET Test Data Run number 1 2 3 Location CBed Inlet CBed Inlet CBed Inlet Date 2/26/2019 2/26/2019 2/27/2019 Time period 0927-1143 1335-1530 0840-1035 Operator RS/JL RS/JL RS/JL Inputs For Calcs. Sq. rt. delta P 0.72952 0.71386 0.71111 Delta H 1.3292 1.3125 1.2667 Stack temp. (deg.F) 69.4 77.7 70.8 Meter temp. (deg.F) 58.7 74.0 60.2 Sample volume (act.) 52.809 56.260 55.079 Barometric press. (in.Hg) 30.29 30.20 30.22 Volume H2O imp. (ml) 13.5 6.4 10.6 Weight change sil. gel (g) 11.2 14.0 17.9 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 6.305 6.305 6.305 Sample time (min.) 96.0 96.0 96.0 Static pressure (in.H2O) -6.50 -6.50 -6.50 Nozzle dia. (in.) 0.215 0.215 0.215 Meter box cal. 1.0027 1.0027 1.0027 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 4/12/2019 9:34 AM 022619 CBed IN 1-3 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED INLET Test Data Run number 4 5 6 Location CBed Inlet CBed Inlet CBed Inlet Date 2/27/2019 2/28/2019 2/28/2019 Time period 1231-1426 0823-1018 1429-1627 Operator RS/JL/JD RS/JL RS/JL Inputs For Calcs. Sq. rt. delta P 0.71144 0.70689 0.71440 Delta H 1.2792 1.2542 1.2750 Stack temp. (deg.F) 74.0 69.5 79.1 Meter temp. (deg.F) 68.8 59.5 70.9 Sample volume (act.) 58.052 57.133 58.141 Barometric press. (in.Hg) 30.17 29.95 29.95 Volume H2O imp. (ml) 14.0 12.0 13.8 Weight change sil. gel (g) 17.8 16.5 19.3 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 6.305 6.305 6.305 Sample time (min.) 96.0 96.0 96.0 Static pressure (in.H2O) -6.50 -6.50 -6.50 Nozzle dia. (in.) 0.215 0.215 0.215 Meter box cal. 1.0027 1.0027 1.0027 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 4/12/2019 9:35 AM 022619 CBed IN 4-6 Test Data Run number 7 8 Location CBed Inlet CBed Inlet Date 3/1/2019 3/1/2019 Time period 0813-1008 1237-1433 Operator RS/JL RS/JL Inputs For Calcs. Sq. rt. delta P 0.71577 0.70463 Delta H 1.2917 1.2583 Stack temp. (deg.F) 64.0 71.7 Meter temp. (deg.F) 53.7 61.9 Sample volume (act.) 57.793 57.189 Barometric press. (in.Hg) 30.09 30.08 Volume H2O imp. (ml) 10.7 11.6 Weight change sil. gel (g) 17.4 17.9 % CO2 0.0 0.0 % O2 20.9 20.9 % N2 79.1 79.1 Area of stack (sq.ft.) 6.305 6.305 Sample time (min.) 96.0 96.0 Static pressure (in.H2O) -6.50 -6.50 Nozzle dia. (in.) 0.215 0.215 Meter box cal. 1.0027 1.0027 Cp of pitot tube 0.84 0.84 Traverse points 24 24 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED INLET 4/12/2019 9:36 AM 022619 CBed IN 7-8 36 ~..~a .8~ ISOHINETIC FIELD DATA SHEET ~ Client Chemours Stack Conditions w.o.#~sa~a Assumed Actual Project ID Chemours °/ Moisture 2 Mode/Source ID Carbon Bed Impinger Vol (ml) Samp. Loc. ID IN Silica gel (g) Run No.ID 1 CO2, % by Vol 'Q Test Method ID M0010 02, % by Vol ~,c~ Date ID 25FEB2019 Temperature (°F)~ Q Source/Locatlon VE Norlfi I~det Meter Temp ("F),~~ Sample Date 2- 2b Z~,q v Static Press (in HZO)- ~, Baro. Press (In Hg)3C , ~,<~ ~/ Operator / ~'L ~/Ambient Temp (°F),~s sou ~: ~ ~~ n G ~ ~~ l.,v~ a,.~ EPA Method 0010 - HFPO Diener Acid Page i of ~ Meter Box ID ~~ Meter Box Y r, ~~~7 K Factor 1 S Meter Box Del H 2. aE~~" Initial Mid-Point Final Probe ID /Length }~ r.t",<j ~- ~e;~; Sample Train (ft') Probe Material ' Bo Leak Check @ (in Hg) Pftot /Thermocouple ID ~T' ~,;~',-*p 7 t a Pitot leak check good Pitot Coefflclent .8 T- Pitot Inspectlon good Noale ID '~' i ~~ Method 3 System g~l~ I ~~ _G~'~~sli~ s w r ~_~,~+~Y~ ~ cz Noale Measurements : 2iS 2l5 2(S Temp Check ~ F ~r 'eStTae os -Ted e Avg NoaJe Dia (in)2 i S~-Meter Box Temp Area of Stack (ft)i, .3cs Reference Temp Sample Time 9 b Pass/Fafl (+/- 2°~ Pass /Fait Pass /Fad Total Traverse Pts ~.4 Twmn f:Fwnna Racrv~ncA s ,~ . i .,,, .,.. ~ ..,. ~3 ~ D `l'~ ~S, ,~" A ~.4~l.~~3~.c ~52 i2o ~Zo Ott,H7 2 ,'!. I yo . ~la$5Z 12n ill 45 4~ 3 12 .4e i . ~' 4 ~~S 5s f iq ~ 22 y ~I ~i8 `!IFS ,~l~i i.~3y~1~3 a`~53 ~2~i2~4,5 '+S5Zc. q I.2 41v. to ~ 4~5+{-i 2p 12c 4~}~I. S ~I S 6 L`~~ +i~~•2 yq.o 1~3 S~F ~zo ~zl 45 ~1~5 4q 7 2 , 5~1 i.3 35i . I (0"7 SS s 2c t2c '~5 4.5 '~~~'~ 32 roc f.s 353 ~b7 ~b ~2c liq 45 5 ~3~, b7 l.'1 3710.E b7 S~,r2c~i z-1 ~5 $,5 50 !t ~Cc , to'~~.1 ~ 358.9 f~`1 s~t2o a2c 410 S.5 ~~ 1 t 'l~b~1 . V b) .(c~SQ 12C ll~~7 `J~)~~ r1-y$Ic i5 ~ iob 1~ b b3.~Zg fc8 5~1 t2c 1 '{"7 ~. S SI ~`~~~~5~,5~i.3 3~.y ~~b~~2i ~2~5'~5 S~ ~2 E 5~~.3 6 .~~i2c;X22 5f 5 ~ 3 tl ~ Sc~i ~'✓X11.0 '7 p ~I21 X 2 2 5c S ~S ~1 .y ..2 3")3 3 7 iiq t2c ~t~1 5 55S.zc -t~~.3"75 ~+'7i i2c i2i 5e 4.5 55 2'~~ `I K I. z 3 ~ ~. ~,'I I b2 ~ 2c,~ ~.0 5c , s 5' '~JiQ ~S~i 1.$3bC.L ?~~2 12~1~-1 51 S.5 3~~1.5 3aZ.5 ~Z i~3 tzc ;iq ~~5 , b ~6 : eu J. 5 3~5 ~1 ~~(03 [~; 2u 5i ~5~ !0 4~•S7 I.`~37.5 ~2 ~,11a 1 1 1 52 5 ~`7 r r ~{+~. 53 a.3Pq S ~2 b~~z~~~~53 5 S7t~-Y8 i~: 43 :~~ n~~~ nok~ o ~.z e.,.. n,.x., u 392. a~~ r...,.. ~ ~_~..__ ~z ,,..- T- lib - ~_ ~Z~... ... ~ i t ~... ..53 ~.5 57 ~•y ~ ~ .,may ~ n~ muvman MINM2X nnax nnax vac MINMax. 535c [.32~f I 55. ~o ~ ~n-3~5 S~, "Zcg3 i~a~t2o ~iq~~22 53 s.5 ~+'7 57Avg Sgrt Delta P Avg Sgrt Del Comments: EPA Method 0010 from EPA SW-846 ~ ~~'~'~ y~0~r~ b~~l 7l ~ P~wt ~kf+~-Y ~~~ ~,,~~ ~ l~ <<K ~= 3(~4 ~ c o~ '~ 3U4~~~ 3~ - 3i~3- ~I2~. ~ , 211 'k fob a~ ~ ~7~ ~i %37 a~~ r 4 vv v ISOHINETIC FIELD DATA SI3EET EPA Method 0010 - HFPO Diener Acid Cent ct~r,ours Stack Conditions nneter sox i~Zvw.o.#15a~s Assumed Actual Metereox v i. ec~~-~ Project ID Chemours °/, Moisture Meter Box Del H '2. C~ gay s ModelSource ID Carbon Bed Impinger Vol (ml)Probe ID /Length '7 (p Sample Train (ft9) Samp. Loc. ID IN Silica gel (g)Probe Material Born Leak Check Q (in Hg) Run No.ID 2 CO2, % by Vol 4 Pitot /Thermocouple ID "'1(Q Pitot leak check good Test Method ID M0010 02, % by Vol 2C1. ~i Pitot Caefflcient O.B4 Pitot Inspection goodDate ID ZF;25~EB2019 Temperature (°F)"'(d I NoaJe ID t Method 3 System gDo~Source/Location VE North Inlet Meter Temp ("F)7 ~.~c Page l of K Factor Z, 57 Initial Mid-Point Final }5'']rr ~~-~~I ~`'e$~ / no s I na 5 1 no ~S / no s / no ~~e5 / no -Pitr-! xo Sample Date 2 - Z ~i - Zc icy S" Static Press (in H2O) Noale Measurements - E, . $' ~✓ Avg Noale Dia (in) ~~s , ~~ ~ .~~~Temp Check Pre-Test et Post- est Set Meter Box Temp. z ~ f' ~,/ Baro. Press (in Hg)~jC . ~/Area of Stack ft2( )'L, : 3 c S Reference Temp Operator 5 L Ambient Temp (°F) ~5 ~ Sample Time Cif ~/Pass/Fail (+/- 2°~ Pass /Fall Pass /Fail Total Traverse Pts 2H Temo Chance Response 5 vas / rx,, .Q ~ r,., O C~ .3"-~~92. 3~{0 t1 ~ti ~ ~i I.i ~1N.~Sc ~I izI i2o bi '~a~ -'i~,4?l .z ~7`i ~i I i Iq tz I 52 `f'1'-F Ie ,K~t-2 yo i•L "'1 -1~12o i2o 5c+~55 ~~~=:`i~t.2 X103.5 '1~1 71 i~zc r i ~tq ~}SH 4~7J-I i~ 2 y 0 5 b '"i ~7 '7 Z i 2 c;t 21 ~-} ~ Sze ~i.5 5y Q `~3 i,tii2~~~~'73 i~~2a '~9 ~l.5 5'~ t H ,ba t.5~4~ ."1 '73 iZc t2t ~1~1 y.5 5~{ t i y~l ~b"L i-b ~itg.c '~''~i2a ~Zo `1q S 5• t~iy~23 ~b ►.~~Zo, 535"~7 ~~1 +2o i2e `+~5 53 j3 r '~iy'`~2 e 1.3 +f23 0 7"T '75 izc i2 t 53 ~},5'-..~ Z ~,yq 1,3 425~y ~1~7 "7S 1 1 1 t20 53 ~'s ~'3 c2 ,'i8 ~~z NZ1.5 ~g ~S ~`ti ~Z►5c''t 5~ib ~4b t.2 Utz 78 7S I2~iZo ~O 'f 53szc~K4 r •)~t3z.c~78 ~5 Eta l20 'r ~f 53~2~i .yam r.2 ~_~,'3 7~'~~~2c rz►5~y 54 0?2 `I i .5 436. ~7 "lro 12 c I l ~l ~3.`i , s 5"`Fg32.Sl ~•S ~-f3q.3 ~9 7(~X20 ~z2 rte.-`N.5 ,~~3b :5~i ~5 H4i.Q '78 'tb n~~z~5i 4,S 5~1tco,53 i~'f ~W 3 7g ~b 12~i~q Sr 4,S SSr~yN ~y'7 ~.2 '14b.s ~8 -l~~2c Uzi .Sz y .SSiZyS~3~30 ,W5n....n.,u., o t,2 '-}48, 7~~1 "?4 7~(~9 !2v ~2 '-}.~~ ~i 12 J Avg Sgrt Delta P~~,3a ~ ~ ~~1~~~~ ~. ~3~Z$ St~:2~o ~ l3.95~ na f Uzi iia 1 tz:2. i~ri4vg Sgrt Del Comm t1 .W 3~ ~ m~d~~`,n-F~ ~e~,~ Gt,~oK = t}2c.535--~3 wZe. '. mux vac mn maxS 53 (~2 EPA Method 0010 from EPA SW-846porgy ~ ;.~,.,~ 38 ~~ ~ , A{ ISOHINETIC FIELD DATA SHEET c~~ent ~,ecnaMs Stack Conditions w.o.#i say a Assumed ProJectlD Chemours %Moisture ~ Mode/Source ID Carbon Bed Impinger Vol (ml) Samp. Loc. ID IN SiAca gel (g) Run No.ID 3 CO2, % by Vol Q Test Method ID M6010 02, % by Vol Z~.q Date ID Temperature (°F)—[ Source/Loratlon ^~"L~BFEB2019 VE North Inlet Meter Temp ("F)j~ Sample Date Z ~j> ~j q Static Press (In HZO).— Baro. Press (in Hg)~Q , u p 5OperatorS ~1~,~Ambient Temp (°F)~ Actual G ~ ~~ Probe ID /Length ""~ lt5 Sample Train (ft3) Probe Material oro 'Leak Check @ (in Hg) Pftot /Thermocouple ID t~ Pitot leak check good Pitot Coefficient .84 +l Pitot Inspection goad EPA Method 0010 - HFPO Dimer Acid Page! or l Meter Box ID lg K FaCtofMeterBox Y ~,~p~,'7 2' Meter BoxDeIH Z•oQ°{5 Initial Mid-Point Final Noale ID ~ ~~ ~7'~ Method 3 System good • • .G + a ~ ~ ~~~~~~1111l ~~~~t~1%:-+l~l~i P ~ ~!`~~'Noale Measurements ,~ .2~ . ?j~Temp Check re-des e os - I es e b,S ✓Avg Noale Dia (in), ~i5 Meter Box Temp Area of Stack (fl2)(~. 3p5 Reference Temp . S ~ Sample Time q Pass/Fail (+/- 2°~ /Fab I FaU Total Traverse Pts ai{Temp Change Response ; / no ~,/ no ~~-~~~~I ~~~~~~- ~~-~~t t r m ~~~~~- I~~-~~~~~~~~~~- ,vvg uena N ~ avg uetta n rib"75 L.2bb{o ry ayi i urine r nvy oyi i uoi n~ .-t~~~d ~,~234 V V OT21 VOIUff18 AV9 15 `' AV9 I fTl / MINM2X MINM2X .5. p?9 '7o.~ta~' ~o, tbbb~ Iw rizi ~~g f X21 nm~nty~ ►~;a po;~~ ttuK ~~<~ ~ . 2~3 ~ M2X M2X V8C MINM3X EPA Method 0010 from EPA SW-846 ~ 0~3/~~ ~~~~~y b ,~~Z ~/39 G~ ~~~ SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Cllent Chemours W.O. # Location/Plant Fayetteville, ►vc Source &Location Run No. 1 ~ ~ ~ Q ~ ~' Sample Date ~b ~ Recovery Date ~ l~~ ,~af/~Sample I.D. Chemours -Carbon Bed - IN - 1 - M0010 - Analyst ~5 Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O ~~~~Silica Gel Final i ~'~J'~~ ~'~2,~311 ~a Initial ~100 100 Q ~~, ov 300 Gain ~1 ~'d ~c O~ ~ ~~ ~~ ~ ~? Impinger Color ~ ~ le~ Labbl d~ ~ ~ 0 Silica Gel Condition ~ ~ Sealed? Run No. 2 T—' ~ _~.p ~ ~ ~ ~ ~ Sample Date ~'ar~ ~ Recovery Date o~ ~ d ~ ` Sample I.D. Chemours -Carbon Bed - IN - 2 - Moo10 - Analyst ~7 5 Filter Number NI"{ Impin er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O # ~1,~Silica Gel Final ~ ~0 ~~O`1.~31,G ~~' ~ Initial ~goo goo ~ ~ 7,l~soo Gain ~n l~fl ~Q ~'~' Impinger Color Labeled? V Silica Gel Condition ~~ Sealed? Run No. 3 ~ ~ ~ ~~ Sample Date .h ~ ~ g Recovery Date Q~ ~7 Sample I.D. Chemours -Carbon Bed - IN - 3 - M0010 - Analyst nj Qf' Filter Number /1/~ Impin er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Silica Gel Fina~~1~-~j r~ ~Z~7 ~o~ ~1 317 `1 Initial Q 100 100 ~~ ~300 Gain O ~~m ~ b / ~O '7.~, Impinger Color ,/~ Labeled? Silica Gel Condition ~ ~ Sealed? Check COC for Sample IDs of Media Blanks ~~~~~~6we~~,~,I"~~3-b ~ ~ c1 j pt~. ~~.~ ~1 ~q 15418 VE North Inlet ~~~--~ ~ ~t~', ~ ~~_ ~~~~ ~ ~" -,1T~: SdLUT10 N5 40 Al~~ G ~ 7' ~ ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam ~ ofdclient cnemou~s Stack Conditions nneter eox to Z~ K Factorw.o.# isms Assumed Actual Metersox v ~,o~~-~ ~ ~.$ Project ID chemours %Moisture Meter Box Del H 2. ~~qS Initial Mid-Point Finalnnoaeisource iu Samp. Loc. ID carbon Bed. IN Impinger Vol (ml) Silica gel (g) Probe ID /Length (3'7i0 ,,,,, ~ Probe Material Boro~ - Sample Train (ft') Leak Check @ (in Hg) ~ f~ r-~.<Cc o ~$~~ , l ~ s' `• Run No.ID 4 CO2, % by Vol ~ _~/ Pitot /Thermocouple ID ~ ~ ~Pitot leak check good ey / no ~ / no e / noTest Method ID M0010 02, % by Vol 2o.~j Pltot Coefficient 0.8 Pftot Inspection good e / no / no es / rroDate ID 2Z~BFE82019 Temperature (°F)"jQ Noz~e ID ~ S 'Method 3 System good at ye~yrrff no raSource/LocaHon VE Norlh Inlet Meter Tem FPC )Noale Measurements . Z~S . 21 , 2 Temp Check Pre-Test Set Post-Test etSample Date ~- 21_ ~~q StaUc Press (In HZO)~ b, ~ Avg Noale Dia (in)~Meter Box Temp b2,`7 ~Baro. Press (in Hg) ~, rJ Area of Stack (ftZ)(e • 305 Reference Temp ~~ , I `? 1. $Operator ~ Ambient Temp (°F) fp~L~ Sample Time q (~ ~/Pass/FaU (+/- z°~a /Fail /Fail T0121 Tf~veBB Pts 2~Tamn (:hannw Raannnca vae 1 m ~ i .. ~~-~~~~'r ~~~~~~~~ ~~~~~~~~~~~~~~~1~~:~ ~~~~~~~3'fF~~~~~m00i~L:• . ~~-~Y~~~~~~~~~O~~r:~. 1~~-~~~~~~~0~~ ~~-~~~~~~~~~~i~- ~~wf~r~ . S~ ~3 J Avg Sgrt delta .-~« J ~ ~ ~,i~q~ J ~ .~a.8g ~8H d5~- ~]'t•n b8.5833~ i~a M~ Po;.,~ i~qK ~h«ic PAM = 535 , 7 bo ~ 535, $'1'-F Iq I ~ I malt vac I mu~ 'St0 I i~.i s X37 EPA Method 0010 from EPA SW-846 ~ = . ~ i~ ~41 ~~ ~-1 OHINE IC FIELD DATA SHEETIS T c~~ent ct,em«xs Stack Conditions w.o.#15ai s Assumed Project ID Chemours °/a Moisture Z Mode/Source ID Carbon Bed Impinger Vol (ml) Samp. Loc. ID IN Silica gel (g) Run No.ID 5 CO2, % by Vol C> Test Method ID M0010 02, % by Vol :Z~ . c~ Date ID ~g~E82019 Temperature (°F)(,~. Source/Location VE Noth Inlet Meter Temp ("F)~ . Sample Date 2.Zg_ 7,,alq Static Press (In HZO)~ {o, 5 Baro. Press (in Hg)29.95 f o 53Operator~$ TL..Ambient Temp (°F) V ~ ~ l EPA Method 0010 - HFPO Dimer Acid Page ~ of ~ Meter Box Iv 28 K FactorMeter Box Y t . ot9~] Meter Box Del H 2.08'15 Initial Mid-Point Final Probe ID /Length Q?l0~_Sample Train (ft')~ O. ~ i . tProbe Material or ~ Leak Check Q (In Hg)~~j •'~ ~« Pitot /Thermocouple ID P'1 ~6 ', Pitot leak check good ~'sl / no 1 no / no Pitot Coefflclent 0.84 Pitot Inspection good es / no e / no / no Noale ID McUiod 3 System good ►~! Yes.Lrt6'o io Actual Noale Measurements . 2~5 - 2iS •21S Temp Check Pre-Test Set Post-Test Set—~,.5 Avg Noah Dla (in) . Z l $ Meter Box Temp r~.~ ~S Area of Stack (ft2) . 3 OS ~/ Reference Temp '.5$~ 1 i Sample Time (o Pass/Fail (+/- 2°) / FaH f~;9 / FaiiTotal Traverse Pts ,1~} Temp Change Response 5 yes / no yes /. no ~~—~~irZt:Ql~~~.'~~~~— ~m~~~~-~ir~0 ~~m~~~~~J~~~~~~Rl~1~~~~'!c -~0~~~~~~~~~~ ~ .~~~~lE~~t~O~~~~~~~~~~~~~L~O~~~~~~~~~~~~~~~00~~ OL~l~~t~~~~t~~~~~~~~i~~~~O~~L~~~~~~~7i~~'~~~ ~~!'l~A~~~~0 ~~~"~~~~~ ~ I~0~~~~~~~~~~~~~~~~!!.'~~~~~ r ~iYL•!~~~r~~'~E~3r~~~~~~~~~~~0 , ~c ~t~~'~a~~0~ ~~~A~~'~~~-~~~000~~~:~~~~~~~~~0~~~~ ~~~~~~~~J~~~~~~- qvg uerca r Avg uerta n i oral vowme✓ Avg i s Hvg i m v MINM3X nmrvmau nnax 5ot2 `, t, X54 t `~ S"t, t33 b9.5 5~1.'t5 8 3 ~~q ~~.t ~~'l t2l 5`f Avg Sgrt Delta P Avg Sgrt Del H Comm t blswl = X93 ."780 -~i Sy 3 . q ~ b ~k .13b~- Max Vac I Min/Max I I ~ ~ I S 3S ~ ~}o EPA Method 0010 from EPA SW-846 42 - a1 B1 • • ~ "~~~ ~ISOKINETIC FIELD DATA SHEET EPA Method 0010 - I3FP0 Dimer Acid Page ~ of ~ client ct,e~,o~xs Stack Conditions Meter Box ID w.o.#isaia Assumed Actual nnetersox v Project ID Chemours %Moisture 2 Meter Box Del H Mode/Source ID Carbon Bed Impinger Vol (ml)Probe ID /Length Samp. Loc. ID IN Silica gel (g)Probe Material Run No.ID 6 CO2, % by Vol cv Pftot /Thermocouple ID Test Method ID M0010 02, % by Vol ZO.q Pitot Coefficient Date ID ~Q~QFE82019 Temperature (°F)Noale ID Source/Locatlon VE rFb~ti Inlet .Meter Temp ("F)-25 NoaJe Measurements Sample Date 2~ . ~~q Static Press (in H2O).— ; 5 _ b,Avg Noale Dia (in) Baro. Press (in Hg)Lq .q 5 Area of Stack (ft2) Operator (~,~~- ~ '3 L ~r Ambient Temp (°F)~jg~ Sample Time Total Traverse Pts 2~ K Factor 2 , s 2 •a Initial Mid-Point Final ~~71b Sample Traln (ft9) Boro Leak Check @ (In Hg) f `7 ~ti Pitot leak check good 0.84 Pitot Inspectbn good • 2 'Method 3 System good ~y d, o ~"7 `b n :G tS,,~7 t s / no e ' / no / no esll no / no I no yes / no .y,.yes: P no • ZIS . 21$ •215 Temp Check Pre-Test Set Post-Test et .215 Meter Box Temp (uc~•-~ i (p. gyp$ Reference Temp (p$, $'~ ~ , ~ ~ Pass/Fall (+/- p°~(~~~l Fab ' as ~ ! Fail 2+{ Temo Chance Response S ves / no vim) ~,~, • ~~—~~~r ~~~~~~~— ~~~L77.~~<:2Yl~~l~~i~~~~5~— ~~—~~~~~m~~~—~~~0~~~~~~m ~~0v■~~■rs~~►~~~~~~~~■~~~mi~oo~~~~~~~~~~~~~~~m■~■~~~~~m~~~~~~~~~~~o~~ ~~~~~~~~[~~~~~00~~~1~~~~~ ~~T~=i.~.312n J t.2~5 J vg Sgrt Delta Avg Sgrt Del h ~i 1~{3 ~ t . l2'7 ~ ~ ,~ X58, i~t~J ~~q.[z5J~ '70. 8~SJ ~iia~~zi I ~~al~zi ~ b~ ~mrr~~ts: ~~a~o;~ ~cGk G~cC.~V p~r~ = b53. gby --~ ass .ties~ .i2t ~ max vac mnumaz -' 7 ~~~19 ~~~i f✓~1 EPA Method 0010 from EPA SW-846 l ~ 6~0 ~ ~8~~~43 C ~ 2~ 1.vt' SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Cllent Chemours W.O. # 15418 Location/Plant Fayetteviue, Nc Source &Location VE North inlet Run No. 4 Sample Date ~ ~ ~ Recovery Date ~ ~7 Sample I.D. Chemours -Carbon Bed - IN - 4 - M0010 - Analyst f~ ~ Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final S~/~~~~,1~'~'S •'i 4~ ,~~317 Initial ~goo goo fl ~j ~Q~j~soo Gain ~~~,~p ~`~', v Impinger Color V Labeled? Silica Gel Condition ~Sealed? Run No. 5 Sample Date ~ 7" ~ ~ Recovery Date ~ /~~ Sample I.D. Chemours -Carbon Bed - IN - 5 - M0010 - Analyst Filter Number _~_~ Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~G ~~~ ~ !r ~Z`~9.7 ~a~v. 7 /~ . 5 Iflit181 100 100 0 ~ay~a~~300 Gain ~(~~j~`5 ,/~ >~ Impinger Color ~ Labeled? ~~ Silica Gel Condition Sealed? Run No. 6 ~ ~ ~ ~Q ~ ~ Sample Date ✓` ~ v ~ ~ Recovery Date ~~ Sample I.D. Chemours -Carbon Bed - IN - 6 - M0010 - Analyst ~ Filter Number /r Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~ ~~ f~ ~~~~~~ ~5 ~.~.~31'r- ~ Initial ~100 100 ~~ ~t~i /~,300 Gain C/~~ ~j l`1°3 3 ~0 Impinger Color Silica Gel Condition ~ Labeled? Sealed? Check COC for Sample IDs of Media Blanks ~ a~~ l 1 ~i ~~Z~~~~~~ ~,~~.~ ~~,~ 1~ ~~ g, ~ 44 ~.-i~'a~ ISOHINETIC FIELD DATA SHEET Client Chemours SteCk COnditiOns W.o.#iaa~s Assumed Actual Project ID Chemours %Moisture Made/Source ID Carbon Bed Impinger Vol (mq Samp. Loc. ID IN Silica gel (g) Run No.ID 7 CO2, °/, by Vol (,• Test Method ID M0010 02, % by Vol 6 Date ID ~SF~1019 Temperature (°F) Source/LocaUon VE No~ih kiiet Meter Temp ("F)j~` Sample Date 3 - ~-2 p ~ Static Press (in H2O)__ ~ Baro. Press (in Hg) ~1 ~Operator AmWent Temp (°F) EPA Method 0010 - HFPO Diener Acid Meter Box ID Z$ Meter Box Y t , OC ~ Meter Box Del H Z • ~s P~be ID /Length p~7 t G Sample Train (fl') Probe Material oro Leak Check @ (in Hg) PRot / Thermocrouple ID t Pitot leak check good Pitot Ccefticfent 0.84 Pkot Inspection good Noale ID , L ~~ Method 3 System good ~J~ Page 1 of ~ K Factor ~~ $ Initial Mid-Point Final r;.[;iC ~~—~ .~.~.C.~~ ~~no —~'y 5; / no —)/ no ~_/ no ~! no y(~A no i~ Ye Y .Y~s-,~'TttfNoaJe Measurements _2~ 5 - 2~5 - 2l5 Temp Check Pre-Test Set Post-Test Set Avg Noale Dia (in), ~ 5 ~/ Meter Box Temp r{ g ~'Z Area of Stack (ftZ)Ip. C 5~.: ~/ Reference Temp S'i I,~ Sample Time ~(p Pass/Fafl (+/- 2°~as5 / FaH _... s /Fail ~Tot21 Traverse Pts 'Z+~} ~ Temp Change Response 5 yas ! no yes / no 0~~~~~ ~~—~~~~~~0~~—~~~~A~~~■~~~~~o~~cr~~es~~~-~~~~~~~~o~a■r~~,~~~.~~~~~~~~~~~~~■~0~~s~~~~~~~~~~~~~~~r.~~~~~■i ~~~:~~~~G~~~~~~i~~i~— ~~~—~~~~~~~~~0~— ~~~1~—~~}~~~~~~~~i~~~~—J ~ Hvg ue¢a r Mvg uena n i oral volume.s«~ ~ f,~~~ a 5,.~9~Avg Sgrt Deity Avg Sgrt Del H Commen~'~ ."115'7 ~, i 3~h) ~ P~J l~ Nvg i s Mvg i m ~ moon ~i . h~ 5.~ , in ~e LIQ / ~ w~ ~ ~i Pv,v►-~ tegk. cti.cck pfr~ = ~~ 2. s ~o --fir ~ ~2 - ~ ( q ~.~39~ {~ I Mss° 1~~1~~ I ~ ~v,v EPA Method 0010 from EPA SW-846 45 4` ISOHINETIC FIELD DATA SHEET client chess Stack Condit(ons w.o.#~ say a Assumed Project ID Chemours %Moisture 2 Mode/Source ID Carbon Bed Impinger Vol (ml) Samp. Loc. ID IN Spica gel (g) Run No.ID 8 CO2, % by Vol ~ Test Method ID M0010 02, % by Vol `Lc' ~'t Date ID ?,~EfeB2Q1g Temperature (°F) Source/Locatlon VE North Inlet ~ Meter Temp ("F) Sample Date 3 ~ ~ _ 20, 9 Static Press pn Hz0) ', - ~, ~' Baro. Press (in Hg)p . U Operator ~ L ~~Ambient Temp (°F) i ~3. ~ C^i~.~~ L t' — s no l no e / no s /no e /no e !no yes 1 no no }rae?"no Noale Measurements .215 •21S •21S Temp Check Pre-Test Set Post-Test Set Avg NoaJe Dia (in) _ 2~ s' ~/ Meter Box Temp ~ ~ ~_ Area of Stack (ftZ) b •30 S ~ Reference Temp ~ ; ],fC• .—Sample Time (~ ~p V Pass/Fail (+/- p°~ as ~ / Faii as / Faii TOiel Tf3veBe P~5 .2~ Ta,mn (^.hanna Raennnco ; i ~,., ~ .. ~~-~~~r ~~~~~- ~~-~~~~J ~~~~~- ~~-~~~~~ ~m~~O~- ~~-~~~~~m~~~- ------------- ~~~~~~m ~~~~~- ~~-~~~~~~~~~-_- ~~-~~~~~~~~~- ~~-~~~~~~~~~- ~~-~~~~~m~~~- ~~-~~~~~~~~~- ~~-~~~~~~~~~- ~~~~~~7 ~~ ~ ~rs~mr~w~~.w~~~~~~~~- ~~ ~ 7 ~. 5P3 $'~. ~~q "il-bb 1•B'?s It9 ►~~ t~qAvg Sgrt Delta Avg Sgrt Del H Comments: ~ i22 ~ Actual ~~ ~~~ EPA Method 0010 - HFPO Dimer Acid Pam ~ ofd Meter Box ID 7S K FactorMeter Box Y ~ , ~,Z 7 ~ ~, tvieter sox oei H Z, , a Initial Mid-Point FinalProbe ID /Length P'7 i p 'Sample Train (ft3) Probe Material Boro Leak Check @ (in Hg) V Pitot /Thermocouple ID '7 ( ; PltoYleak check good 3 Pitot Coefficient 0.84 Pitot Inspection good NoaJe ID , 21 ~ Method 3 System good ~ man rviax vac MINMBJ( 5`l 5.5 ~~.~5~. EPA Method 0010 from EPA SW-846 46 ~ ~'h~~ SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Dimer Acid Client Location/Plant Chemours W.O. # 15418 Source &Location vE Norm InletFayetteville, NC Run No. 7 Sample Date,~~~~~ Recovery Date 3 Sample I.D. Chemours -Carbon Bed - IN - 7 - M0010 - Analyst Filter Number Im In er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica GeI Final ~1.7 `~ ~l ~ ~~3//.. $~c~ ~C .~~' Initial 6 goo goo d D ~,(,, ~soo Gain C~~~6 Q ~~~ ~~ L .~ Impinger Color Labeled? ~~ V ~Silica Gel Condition Sealed? Run No. 8 Sample Date ~~~Jt1 I -I Recovery Date~-~—~ Sample I.D. Chemours -Carbon Bed - IN - 8 - M0010 - Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsE ty HPLC H2O HPLC H2O Silica Gel Final ,~~3~ 'I ~ ~.? (~~ Initial ~100 100 ~~ / ~~~300 Gain ~,~~5 ~~~~ 1 ~~,Q (7.~' Impinger Color L~~~/I Labeled? ~,Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Chemours -Carbon Bed - IN - 0 - M0o10 - Analyst Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Silica Gel Final Initial 100 100 300 Gain Impinger Color Labeled? Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks 47 SAMPLE RECOVERY FIELD DATA Client W.O. # ~'L`~~ L~) ~l~V V'Location/Plant „ n_ ~ Source & Location~~ ~~7 IT / ' n - - ~... ~v► 'NL ~ ~~ Run No. 1 )~ Sample Date J ~ Recovery Datet.f— Sample I.D. Analyst Filter Number Im in er 1 2 3 4 5 6 7 Im .Total 8 TotalContentsSilica Gel Final ~a~~Q ,7 ~D~~ Initial ~('~,~ ~,d.O'~ Gain Q Impinger Color 3 Labeled? Siliq Gel Condition ~ Sealed7 Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Silica Gel Final Initial Gain Impinger Color Labeled? Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Im in er 1 2 3 4 5 6 7 Im .Total 8 Total Corrtents Silica Gel Final Initial Gain Impinger Color Labeled? Silica Gel CondiBon Sealed? Check COC for Sample IDs of Media Blanks 48 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED OUTLET Test Data Run number 1 2 3 Location CBed Outlet CBed Outlet CBed Outlet Date 2/26/2019 2/26/2019 2/27/2019 Time period 0927-1143 1335-1530 0840-1035 Operator KA/AS KA/AS KA/AS Inputs For Calcs. Sq. rt. delta P 0.72636 0.74086 0.72467 Delta H 1.6079 1.6463 1.6433 Stack temp. (deg.F)69.5 75.8 78.5 Meter temp. (deg.F)60.2 79.4 63.3 Sample volume (act.)54.493 55.964 55.596 Barometric press. (in.Hg)30.29 30.20 30.22 Volume H2O imp. (ml)2.9 10.1 10.6 Weight change sil. gel (g)15.0 18.2 23.2 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.)6.305 6.305 6.305 Sample time (min.)96.0 96.0 96.0 Static pressure (in.H2O)3.50 3.50 3.50 Nozzle dia. (in.)0.215 0.215 0.215 Meter box cal.1.0010 1.0010 1.0010 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 3/22/2019 3:33 PM 022619 CBed OUT 1-3 49 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED OUTLET Test Data Run number 4 5 6 Location CBed Outlet CBed Outlet CBed Outlet Date 2/27/2019 2/28/2019 2/27/2019 Time period 1231-1426 0823-1018 1429-1627 Operator KA/AS/JO KA/AS/JO KA/AS/JO Inputs For Calcs. Sq. rt. delta P 0.72615 0.72908 0.72133 Delta H 1.6338 1.6721 1.6075 Stack temp. (deg.F)81.8 77.9 80.6 Meter temp. (deg.F)71.5 61.4 76.7 Sample volume (act.)56.016 56.152 55.732 Barometric press. (in.Hg)30.17 29.95 29.95 Volume H2O imp. (ml)10.3 14.1 17.8 Weight change sil. gel (g)22.5 21.0 22.0 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.)6.305 6.305 6.305 Sample time (min.)96.0 96.0 96.0 Static pressure (in.H2O)3.50 3.50 3.50 Nozzle dia. (in.)0.215 0.215 0.215 Meter box cal.1.0010 1.0010 1.0010 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 3/22/2019 3:34 PM 022619 CBed OUT 4-6 50 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED OUTLET Test Data Run number 7 8 Location CBed Outlet CBed Outlet Date 3/1/2019 3/1/2019 Time period 0813-1008 1237-1433 Operator KA/AS/JO KA/RS/JO/AS Inputs For Calcs. Sq. rt. delta P 0.73119 0.72378 Delta H 1.6713 1.6425 Stack temp. (deg.F)72.4 77.3 Meter temp. (deg.F)56.4 67.1 Sample volume (act.)55.779 55.822 Barometric press. (in.Hg)30.09 30.08 Volume H2O imp. (ml)16.8 12.8 Weight change sil. gel (g)17.4 19.7 % CO2 0.0 0.0 % O2 20.9 20.9 % N2 79.1 79.1 Area of stack (sq.ft.)6.305 6.305 Sample time (min.)96.0 96.0 Static pressure (in.H2O)3.50 3.50 Nozzle dia. (in.)0.215 0.215 Meter box cal.1.0010 1.0010 Cp of pitot tube 0.84 0.84 Traverse points 24 24 3/22/2019 3:34 PM 022619 CBed OUT 7-8 51 ~~~~ ~ Sample and Velocity Traverse Point Data Sheet -Method 1 Client (,,~ ~ Operator V~Ti of Loactlon/Plant~ VI ~ Date Source 1 V I! .O. Number Duct Type ~ Circular q Rectangular Duct ~"`~~0 ~PfO~"~~0 ~ Traverse Type ~, Particulate Traverse q Velocity Traverse q CEM Traverse Distance from far wall to outside of ort In. = C Port De th in. = D De th of Duct, diameter in. = C-D Area of Duct ft~ Total Traverse Points Total Traverse Points er Port Port Diameter in. —Flan e-Threaded-Hole Monorail Len th Rectan ular Ducts Onl Width of Duct, rectan ular duct onl in. Total Ports rattan ular duct onl E uivalent Diameter = 2`L'W L+W reverse Pol ocatlons Traverse Point % of Duct Distance from Inside Duct Wall in Distance from Outside of Port n .o ~ y 2 ' 7 /' 3 4 5 ~0 ~~ '~ 6 i 7 ~'8 a ~ 9 ~ 10 ~~ ~/ 11 ~~~/1 jJ CEM 3 Point(Lony M~asurmant Una) SfraUfleaton Point Locations 1 0.167 2 0.50 3 0.833 NOIB: IT SI2CK the < l'L If7C11 US8 th'A Me[I10tl lA (Sample port upsVeam of pilot port) Note: If stack die >24" then adjust traverse point to 1 loch from wall If stack die X24" then adjust traverse point to OS (nth from wall Flow Disturbances U stream - A ft Downstream - B ft ~ D ~ U stream - A duct diameters Downstream - B duct diameters Diagram tack 1r f~ lJ _r t/ ~ t> V ~-~-+ ~~ Duct Olamefers Upstream from Flow Disturbance (Distance A) o.s +.o ~.s 2.0 2ssa Stack Dfameter> 24 Inches ~.~~ t40 A~~%~ T --- t~ l~Minimum Number of B } ~ 30 pBrtiwtete Traverse PakNs zs ~arcwa.> zs ~rxm~au~e. duo zo zo Traverse Pdnta for Velocity 1e li nO~OOOOOOOmm~ ~'~s~~~~~~16~~'m~~ m~-_________~ m~~~~~~~s~~~~ 12 10 a fctdx) e (~ira~er)(D~Wrbance =Bend, Ecpansbn, ContracUa~, etc.) a 2 3 4 5 6 ~ 8 9 10 Dud Diameters Downstream from Fbw Dleturbance (Distance B) .000OOOOOOmmml ~~~~~~ '~~~~~~m ~~--~1 1 ~4"Ya~~~~~~ ~-----_-_m~~~~. W-----_-__-~~, m~~~~-~~~~~~~~ 52 ~~~ I50HINETIC FIELD DATA SHEET ~ L EPA Method 0010 - I3FP0 Diener Acid client Ghemours Stack Conditions nneter aox i~ 1, y w.o.#~5gaa,t~.v oi, of t? ~~,~ Assumed , Actual Meter eox r j , ~,, ~ P~ject ID Chemours %Moisture ~ ':.Meter Box Del H ~ ~ -' Mode/Source ID Carbon Bed Impinger Vol (m~Probe ID /Length ' Sample Train (ft') Samp. Loc. ID OUT SINca gel (g)Probe Material ~ Bo Leak Check @ Qn Hg) Run No.ID 1 CO2, °/ by Vol lj <~'Pitot /Thermocouple ID (~ ~Pitot leak check good Test Method ID M0010 02, % by Vol ' s ~ , r, , J Pitot Coefficient 0.84 Pitot Inspection good Date ID r~'~ £5FEB2019 Temperature (°F)Noale ID Method 3 System g Source/Location VE North O tlet Meter Tem ("F) Page l of K Factor '`Z , ~ /~ ~ 9 Initial Mirl-Point Final ~~ t~~~~v° ~~:: u P =, ~. NoaJe Measurements , ~ ~ , L ~S ~ Temp Check re- es B OS - es eSample Date Static Press (In HZO) ~ ; ~ Avg NonJe Dfa (in) , L Meter Box Temp Baro. Press (in Hg) ' , L~ Area of Stack (ft~) ~ Reference Temp Operator ~ ~ Ambient Temp ~`F) ~ ~~ Sample Time l Pass/Fail (+/- 2°~ Pass ; Fall Pass / F811 Total Traverse Pts l- Temp Change Response r y~ss nn yes rN, ~~~~~~c~r~~~r~~~«~■~~~~~~~~~~~~~~~~~~~~~~~~a~~~~e~~~~~i~r~~~~r~•~s~r~~~~~r~~~~~~~~~■~r~~~r~~~~~~~r~~~~a~a~r~~~~~~r~~~~~~~~~~~~■~~i~~~~~~~~~~~~~~r~~~~~~~~~~►~~i~ra~r~~r~~«~r~~■~~~~~~~■►~~~~~r~z~r~~~~~~~`~~~~~~a~f~is~~~~~~~~r~y~~~~~~~~.~~o~~~~~~~~«~~~■~~«~~~~~~~~~~u~~~~~~~~~~r~~i~r~~~■t~~r~~rr~~~i~~~~~-~~r~r~~~~~«r~~~~~~~~ ~~~,...~~~J Avg Sgrt D~fta P ,~-1'1-~ J ~ ,~~b~~ ~ uu'~J ~//. y ~.~ vg agrc uei n Comments;.v-t2J 1/ ~v .~ y / rvm uman mnuman mac vac mlfll 87( EPA Method 0010 from EPA SW-846 53 G~ V ~~ ISOHINETIC FIELD DATA SHEET EPA Method 0.010 - HFPO Diener Acid Page ~ ofCAent Chemours Stack Conditions Meter Box ID Z ~w.o.# 154 8 Assumed Actual Meter Box Y . (~~,(~' K Factor ~`~ Gil Pro)ect io Chemours %Moisture ~ Meter Box Del H Iflltlel Mid-Point FinalModelSource ID Carbon Bed Impinger Vol (ml) ~~ Probe ID /Length ~ Sample Train (ft') ~,J t ~ ~ ~_Samp. Loc. ID OUT Silica gel (g) Probe Material oro Leak Check @ ((n Hg) " t' ~~Run No.ID 2 CO2, % by Vol (s? , ~.' Pitot /Thermocouple ID Pitot leak check good / na / na / ~oTest Method ID M0010 02, % by Vol 2 ~D . C' Pkot Coefficient .84 Pitot Inspection good ! r10 I no s / noDate ID 25FEB2019 Temperature (°F) ~j ~ ~ Noale ID . ~,. Method 3 System c~"Source/Location 1!E Nprih putleti Meter Temp ("F) ~, } ~ C1,3 NoaJe Measurements ~~ Temp Check f8-T@St et ost- est etSample Date 7 ~P (~ ~ d~ Static Press (in HZO) ~ _Avg Noale Dia (in) , ` ~ Meter Box TempBaro. Press (in Hg) Q~10 l~~ V Area of Stack (ft2) p Reference TempOperator ` ~ ~ ` Ambient Temp (°F) ~ ~ Sample Time ~ Pass/Fafl (+/- 2°~ Prig / FaU pass /Fail Total Traverse Pts 2'~ Temp Change Response yes ,' rw ,vs rx~ 4 ~ ~V~ ~ i~- i -. 6 ~~5 ~~`~1 6 ~-1.1 C7 ~'c '~--2 - Z.3 1 t7, ~L ~2 ' 2 l`~1 G . S ~Z2J2 7 ti ~(,~l ~'L ~2. ~3 '-~2 3 ~t ,.U ~'-23.2t~~lU S Z ~~ 'L ~J,'L ~5 5 LID M~ Lc: 7 ~.~2 2 5 5 `l c -y p ~ 2 ~'-7 ~t 2 'L7'L 9 2.'L ~'L~ 2 ~ ~t . 6 . ~L ~(-S~o. t~~1~`i 2 811~I 2 ~3~S ~~1,L5 `iAv Delta P .5~9~ `~ Av D 1.6~t~ Total Volume Av Ts Av Tm 1 MIn/Max i au Max Max Vac MinlMa~c55.x,6 ~ 15.1~~ 7a. 7`i ~ 1251126 ~ti`~tio G'1- `~ 3~" ~' Comments: EPA Method 0010 from EPA SW-846Avg Sgrt Detta P Avg Sgrt Del A 54 ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid Client e/L Chemours Stack Conditions Meter Box ID 22 w.o.#~sa~a Assumed Actual nneteraox v ~,p~~~ Project ID Chemours %Moisture ;Meter Box Del H 2 Mode/Source ID Carbon Bed Impinger Vol (ml)Probe ID /Length ~ Sample Train (k') Samp. Loc. ID OUT Silica gel (g)Probe Material Boro ~ Leak Check Q (in Hg) Run No.ID 3 CO2, °/a by Vol Q,Q Pitot /Thermocouple ID ~Pftot leak check good Test Method ID M0010 02, °/a by Vol ~, ~~ Pitot Coefficient 0.84 Pitot Inspection good Date ID S ti 25FEB2019 VE Temperature (°F) Meter Tem ("F) 'r ~','~ Noale ID . 1 Method 3 System goon Page ~ of K Factor~ ~,p Initial Mir1-Point Final ~ ~~J 9•m ~~ ~~~~~~ ~V ~t1i'~Dort oca on Sample Date :North Outlet P ,'L Noale Measurements ,~~C~ •~,~l~ .'L~K '~+j, Temp Check ~fe-"1851 be o5 -18S 2 a Static Press (in H2O)Avg Nome Dia (in)Meter Box Temp ~'y 2 Baro. Press (in Hg)0.Area of Stack (ft2)Reference Temp ~~~ ~,r— Operator v Ambient Temp ~F)5~' Sample Time ~Pass/Fall (+/- p°~ as Fail ~ Fall Total Traverse Pts `L~ ~/Temp Change Response i y~cs ' r~yes " r ~V`i:~~~L".~i'i~~i:iii ~ f~rT~iYi~~~~~'~~L~~ ~`I'~~~+~a~~r~~~~'~~_~~i~~~~~~L~~i'~~i~~ii~~-~~ ~~~~~~~ ~ ~t%1V~~~~~~~~~—orn~~~~dt~r~~~~~•~~;~~~~~~r~.~~~.~~o~~~~n~r_~ -~~~s~~~~~~`~~o~'~s~~~~~r•~~~~~«~~~~r~L~~~~~~:~~~1Q~~1~~rr~ r c!F~~«~~Ql~~~,~~:~~~~ ~~~~~~~n~~~ ~~~~~~~.r~~~:~~ Avg qrt Delta ~ ~~~~~ r~i~;~~ Iti~~gr~'J IZ~."~~ .vg aq ~ ei n Commeryts: ,`~ ~~, /l I/ nv i ni muumnn rvmuman I a7c I m vac I MI ~~~d'3,z [~li~ [~l~tib 6 yQ EPA Method 0010 from EPA SW-846 J ~~,~ --f 55 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Client Location/Plant Chemours Fayetteville, NC W.O. # Source &Location VE North Outlet 15418 Run No. 1 ~ ~, ~ ~ ~j ~~ Sample Date ~ /' ~ ~ ~ Recovery Date j' ~~ Sample I.D. Chemours -Carbon Bed -OUT - 1 - M0010 - Analyst /tij Filter Number /~' Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O ~'~Silica Gel Final d,1 ~i~o ~ O Q /0~~l~ y~~i ~lS~' Initial goo goo ~O ~soo Gain ~'~~c~~~ /~ ~~~ Impinger Color ~j.~ Labeled? Silica Gel Condition ~~~ Sealed? Run No. 2 ~ ~. O ~ fl Sample Date ~' . ~'G~1 ~ Recovery Date Sample. I.D. Chemours -Carbon Bed OUT - 2 - M0010 - Anal st ,y~y ~~ f' Filter Number /~i'G Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~D~r ~~~,~~j Igo Initial p goo goo ,3 /soo Gain ~~/~/~~~j ~~ r~ ImpingerColor ~~ ~ Labeled. Silica Gel Condition Sealed? Run No. 3 ~ ~, a. ~;~ Sample Date ~ ~'/ ~ ~!Recovery Date ~ Sample I.D. Chemours -Carbon Bed -OUT - 3 - M0010 - Analyst ,~f' Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total S Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final D 71 ~ 9 ~~~. (✓~b~. ~i 3Z3.Z Initial ~goo goo ~~~soo Gain b r~O '~j ipr ~~ ImpingerColor a~1 r,1,~,~ Labeled? Silica Gel Condition ~ Sealed? Check COC for Sample IDs of Media Blanks 56 ~"" ISOHINETIC FIELD DATA SHEET o ~ EPA Method 0010 - HFPO Dimer Acidci~ent Cnamours Stack Conditions nneter sox i~ `'L'Lw.o.# ~Sa~B Assumed Actual Meter sox v ,pt~[Project ID Chemours %Moisture i Meter Box Del H Page ~ of,~ K Factor ~, j~ Initial Mid-Point Final f /s v • 'a ~I ~T~t'•~~E~%'r.~ Made/Source ID Carbon Bed Impinger Vol (ml)Probe ID /Length Sample Train (ft') ~~ Samp. Loc. ID OUT Sipca gel (g)P~be Material Bor Leak Check Q (in Hg)Run No.ID 4 CO2, % by Vol ~Pitot /Thermocouple ID Pitot leak check goodTest Method ID M0010 02, % by Vol ~ ~~ °Pitot Coefficient 0.Pitot Inspection goodDate ID 25FEB2019 Temperature (°F) =}, NonJe ID ~,: T"Method 3 System go/~Source/Location VE--North Outlet Meter Temp (F) "~ ~ t~; ' Noale Measurements i1, ~, ,y ,Z Temp Check ~1 e~ se t Sei I o WiestSample Date ~ StaUc Press (in H2O) '~, Avg NoaJe Dia (in) 15' Meter Box TempBaro. Press (in Hg) K , ~ D.~ Area of Stack (ft2) ,3 5 ~ Reference TempOperator ~ Ambient Temp (°F) ~ ~ Sample Time Pass/Fail (+/- z°) Pas r` Falt a / F80Total Traverse Pts Temp Change Resppnse i y?s r no yq3 ! po ~~r,~ry~ ~~-~~~~~LZ~l~~~~r ~~~~l~~~fi~- ~~~!rnL'~~~li~t1~~E6~~E~1~~~3~~1+~fir~L~'~~~.`~~I.~!~r~1~'~ati~~~b`~~I.~~~" ~G~~:~~~~Q~~~lL~~~'~~1~~ 0~~~~l~:~l~~~;~~~'~~~l~tL~itG~~~i'=~~'~C~~ ~i~L'~~~~tl~`,~f;~i'~iL~~~~~G~'!`~lLti~~ IIe~Tt~~~r~~[~~E%~~~~~~~[irll~lft~l~[~~~~Ci~~ ~~~~l~~~#I~E~~~~~~~~:~Ri1~~~~~~fi'liif~~ ~~~-~~~ i ~~~~~~~~~~-~i L ~[~L'L'~~6~~~~E7~~~~N~:~~r alt,.i~i1~~~ ,vv uetta r Av u n i oral v wme v i s~ r~vg i Avg Sgrt Delta P Avg Sgrt Del H CommenT~:~.~r►.6 ~~;~( ~.~~ J ~5~~~ I ~tis~i ~ ~ c~ ~~ ~ ~ ~e~ ~ ~ o ~S7 I I ~ ~' ~ v~EPA Method 0010 from EPA SW-846 ~~ e~ ~ ✓~57 ~ r/V ~/t ~/ ~i ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid client chemours Stack Conditions _ Meter eox io ti2 w.o.#~s41a Assumed Actual Meter Box Y , i'1p ~ Project ID Chemours %Moisture I i Meter Box Del H l{ Mode/Source ID Carbon Bed Impinger Vol (ml) !Probe ID /Length '~0 o Sample Traln (ft') Samp. Loc. ID OUT SIHca gel (g)Probe Material Leak Check @ (in Hg)Run No.ID 5 CO2, % by Vol 0 ~ ~Pitot /Thermocouple ID (?Pitot leak check good Test Method ID M0010 02, % by Vol ~ ~~,Pitot Coefficient .84 Pitot Inspection good Date1D Souroe/Location 25FEB2019 Temperature (°F) Meter Temp ("F) Noale ID ~ ~..j, N Method 3 System g~ VE North Outlet Page of K Factor ~'~~ Initial Mir1-Point Final J t ~1 + ~/ i ~~~~ ~ ~~~~~~_ oaJe Measurements ~~j S' ~ rj,~ ~ • Temp Check - es e os - I eS eSample Date Static Press (In HZO) ~ ~~ ~/ Avg NoaJe Dia (in) . `L~ ~/ Meter Box Temp C~' Baro. Press (fn Hg) 29 •Q$ - Area of Stack (ft2) 0 Reference Temp rj' ' rOperator ,(}~l S~ ~ AmWent Temp (°F) ~~j Sample Time Pass/Fail (+/- 2~ as Fail Pa Fa0 TOtal TrdVeBe Pts Temo Chancre Resrxinsw 5 vac ;' rn ~~t .;,. are.~~~~~~~~r~~~irr~~~~c~~~ ~R~~~~~~c~~~~~~~~~~`~~~~r~~~ s;~~~~~~a~~~~RE ~r~-_~~~e~~~~■rs~u~~~~~~~~~d~~~-a -~~~~~r~~~~~~~~~~~~~~F-~r~~~~-~~~~~~~~~~r~~~~~~~~~~~~~~— ~c~lE:~~~~~+~~ ~ ~~~~rnr~~~~=r•~~ou~~~~- r ~~r~r ~~~`~~~~r~~~o~~■~~~~~~u~r~i~r.~~r~~~~~ ~~~~~~[c~I~~~,C~~~i~Qi~l~~'~r3=~i~~~l4~~~f~L~#'r,iG'~~6Z~~~iI~~iL~~.L~■f~~fQ'~~~t~4RF~~~~~~~G~~41['~~~~~Ir~l~~~~~L'L'~~ ~~i~~~~~~~~'~r3~~~:i~Rill~~il~[.t~~74~~~~~fa~i~~~~~~~4~~iT~~~i!~~~t3~7~ic~L~~~OL['l~~~ .551 J Avg Sgrt Delta f .~~~ ~ ~ ~~ ~ ~, 1.~ J ~•~~~• o.. ~.~~~~~.~a.. ~ ian mru vac muuivia~cItis~i26 tisf i2~ G ( 7 `~1 g EPA Method 0010 from EPA SW-846 ~~~~q~~ j~ o~V~~o~ s ~ 7 ~~58 (~c~~l~~~~l ISOHINETIC FIELD DATA SHEET EPA Method 00!1~0^ - HF.PO Dimer Acid Client ChBmours StBCk Condl~ions Meter Box ID {~ w.o.# ~5ata Assumed Actual Meter eox r .DO ti_ ..._,Project ID Chemaurs % Moisture Meter Box Del H L Mode/Source ID Carbon Bed Impinger Vol (ml) ~ _ Probe ID /Length Sample Train (ft3) Samp. Loc. ID OUT Silica gel (g) Probe Material Leak Check @ (In Hg)Run No.ID ^6~ CO2, % by Vol ~'~~ ~ 3 Pitot /Thermocouple ID Pitot leak check goodTest Method ID M0010 02, % by Vol ~,¢~', ~1 Pttot Coefficient 0.84 Pitot Inspection goodDate ID ~ 25FEB2019 Temperature (°F) ~ y NonJe ID ~ Method 3 System goo Page ~ of K Factor ~ O Initial Mid-Point Final •i :7 ` t%A~~~•' Source/LocaUon U~ North Outlet Meter Temp (F) ~{ Noale Measurements ~ Temp Check ~eSt b2 OS - S2 t 5~Sample Date ~ Static Press (in HZO) , . ~/ Avg Noa1e Dia (in) ~ Meter Box Temp 7Baro. Press (In Hg) ~ Area of Stack (kZ) ~/ Reference TempOperator Ambient Temp (°F) ~q Sample Time Pass/Fail (+/- 2°~ Fell FaIC Total Traverse Pts Temp Change Response i y?s i np yres ! r~ oIL~4~ JTrc~a~~~~n~~~~~~m~~~~~~~~ ~i~~t~~■L*~'~L~G~~~~1_~i►L7'~llr~~i ~7~~~i~L'i~~~~~~~.'f~liL'' ~~" /~G11!l~i~1~lL'~~L~~.►`L'~~ ~~~~~~~~~~~~~~~~r~~■~~-r~~~~~~i~~~~~~■d~~~~~~~~~~~r~r~■rc~~~r,~~.7~:~~ ~~~~~~~~~~~Lfr~~~~~~~-Y ~7~~~i ~it~4 ~ '~~[~~~i~►'~t~«~~~~`'~4~~~~~~~R~~~~-r;~~r~~r~~~~~r"~~~~~~~~~~~-~~~~~~~~~~~r~~~c~~~~~~~d~~rrr~,~~~V~~~~~~r~-~~~~r~oe~~ih~~u avg uerta r/ ~~ bCl~~~ "J ~l ~I a1Z `~. Avg Sgrt De Avg Sgrt Del H Comm ts: J ~ ~r `L~i { ?b.70 ~m `~ ~ G~'IIti6 ~t~511ti6 ~ 6~~7~8~,~`1571 I ~ ~~0~ EPA Method 0010 from EPA SW-846 f r/ ~ ~ ~~v~59 ~~ c~~ ~.~ SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Cllent Chemours W.O. # 15418 Location/Plant Fayetteville, NC Source &Location vE North ouuet Run No. 4 Sample Date ~ ~7 f~ Recovery Date ~~ Sample I.D. Chemours -Carbon Bed -OUT - 4 - M0010 - Analyst ~ Filter Number /v~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final -Q a~Z'~~:i~3~ 3 ;g22.s' Initial goo goo ~ i soo Gain ~O ~0~~~j~~y Impinger Color ~ , (~' ti Labeled? 0 ~Silica Gel Condition Sealed? Run No. 5 Sample Date ~ ,'~ ~ "/ Recovery Date Sample I.D. Chemours -Carbon Bed -OUT - 5 - M0010 - Analyst ~ ~ Filter Number ~~ Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Fina~fJ/D ~~ ~p ?~~~i. ~3~ ~3z/ ~ Initial ~100 100 Q ~j i !~~,7 300 Gain V ~~~~ ~ ~~ ~~ Impinger Color ~ Labeled? / f Silica Gel Condition ~ Sealed? ~~ Run No. 6 ~ ~{ ~ ~~ '►/~ n Sample Date ~ /'~ ~ y Recovery Date ~~.i ~~ v Sample I.D. Chemours -Carbon Bed -OUT - 6 - M0010 - Analyst S Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Silica Gel Final ~1 ~~~~~~~. ~~ ~ 7, `~~ZZ.~; Initial ~goo goo ~ `~300 Gain ~`~~~,'1 ~~~ Z d / Impinger Color ,/I Labeled? ~ ~/~Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks f.,, ~ ~ Jc~~ r~~ ~~~1~~ I ~ ~o , ~ ~ ~ ~, ~ ~1 ~ 60 1 ,~/ v v s - v vv ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam I or ICuent Chemours Stack Conditions Meter sox to ~'L~-w.o.# ~5a18 Assumed Actual nneter sox r ~ ,Fjp ~ b ~ K Factor ~3 d Project ID Chemours °/a Moisture ~ MeterBox Del H ~_, ~ ~y Initial Mid-Point FinalMode/Source ID Carbon Bed Impinger Vol (ml) ~ Probe ID /Length ~ ~Q --T~~ Sample Train (ft3) p QT.„.t._Samp. Loc. ID OUT Silica gel (g) Probe Material Boro Leak Check @ (in Hg) ~ ~~Run No.ID 7 CO2, % by Vol ~ .~ ~ Pitot /Thermocouple ID ~ Pitot leak check good / no C no (noTest Method ID M0010 02, % by Vol •'~l ,/ Pitot Coefficient 0.84 3 Pitot Inspection good / no / na / noDate ID 25FEB2019 Temperature (°F) - ~ ~ NonJe ID , r Method 3 System good yerf-noSource/Locatlon VE North pullet Meter Temp ("F) ~ '~, ,+j~ NonJe Measurements ~'~,j5 ifs , 'Z ~ Temp Check fe- est 2t Ost- Bst etSample Date J~~ ~ ~q Static Press (in H2O) Avg Noale Dia (in) . '~5~—Meter Box Temp Baro. Press pn Hg) '3 ~i J Area of Stack (ft2) (~ Reference Temp "LOperator S ~' Ambient Temp (°F) ~~ Sample Time ~ V Pass/Fail (+/- z°~ Fap R FallTotal Traverse Pts 2 Temp Change Response i yes ,' rro yes i no ~~ ~l~~~~~~~~~~^,ft~tQ'~II~L"ji~i~i~~~ ii~~~R~~~~ir~GG~~!■l~r~~~~~~~~."~~ ~7~7~~~i'~~G~ ~i~~.'oiII~~~l~r~~.~~~~~~~it!! ~~J~~~~~~ ,Ri~~l~~~ ~ i!!i~fII~l~il~l~i`~fi~~~~ ~t~JE-~~■~3~~:~[[~~!~i7c~■cif r~l.~L'~~~~~~~~~l~~dC+~[t]II~~iT~~L'~'~~1r ~l~~L'l~~ic~i~i~~~7►~I~l~~~~ ~i~l~t~i`i~~~~II~l~~~L~~ii~~iF~sl~i~~10~l~~~~~..~'~~iTi ~~i i■f~~L`[~it•~~T~~. ~~~l~3'.~~~L~I~~I~~i~~-~II~l~II~~Tc~s.'~~~~~~I~~~~t3~~~i~~t~~ . '~~~'iL~~~r '~L~i7~~ifF3~~~5~~~~6~[~~~~i~~L'~i~~i~~~r~~.'Ti~~:~Q'~~ ~i~~' ;i~~lIIiT~i7F~~~'~~II~~~f~~~f~~3•~~1~i~i+'~/,I ,vv~~ rta r~~~~Avg~ ~a nJ6 Avg Sgrt Delia P,-~ 3 ~~q Avg Sgrt Del h1, ~~ ~ OI81 VOIUff18 HV9 I SJ avg i m MINM3X MINM2X M2X M2X V8C MINMaJ(5~5,~ Zq ~ l2~It7 SG,tit7 f ltisl nb I tiSl itib 5 L ~ `~51 u 9 EPA Method 0010 from EPA SW-846 i ~~ ~ o J~~~ ~ t~✓61 ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Page~of~client Chemnurs Stack Conditions Meter Box ID 2-w.o.#~54~8 Assumed Actual nneter eox r K Factor ~ Project ID Chemours °io Moisture ~Meter Box Del H Initial Mid-Point FinalMode/Source ID Carbon Bed Impinger Vol (ml)Probe ID /Length ,Sample Traln (ft')d:,,(If ~ ,Samp. Loc. ID OUT Silica gel (g)Probe Material 8oro Leak Check @ (in Hg)Run No.ID 8 CO2, °/a by Vol (^ ~+Pftot /Thermocouple ID 7 fj' Pitot leak check good / no / no / noTest Method ID M0010 02, % by Vol '~`,~/ Pitot Coefflclent 0.84 Pitot Inspection good / ~o / no j npDate ID 25FE82019 Temperature (°F)NoaJe ID , `~ Method 3 System good .yee-~-f~e ~ye6•E+gqSource/LocaUon VE Notth Outlet Meter Temp ("F)(,Noale Measurements ~ y ~ ti( , ~.~ Temp Check ~B- eSt et OSt-BSt BtSample Date ~ f~Ar ~ °Static Press (in HZO)`~3, Avg No~Je Dfa (in)~ Meter Box Temp 3Baro. Press (in Hg)~ E! V Area of Stack (ftZ)~ 0 Reference Temp ~LOperatort ~'T Ambient Temp (°F)~2„Sample Tlme Pass/Fafl (+/- 2°)a / Feif —i FaII Total Traverse Pts ~.~ Temp Change Response is res I no yes no ~~.ice ~~T~~~d~fi~~C~~iiZ~~~:~t~i~L~`~ir"~~ ~'~~~~~~~~e~~~7~'~C~i~,i`^~~l~i~Q~~ ~~~~~~~~~~~~r~~~~t~~'~~~~~~~~~~~~~7~~~«r~~~«'~~~~~:~~~~~~~~~~ ~~■~c~«~r~~i~r~'~~~~~~~~~~:~~~.~~~~~~~~~«~~~►rn~~~~~~~~ ~rl~~~~■■~~fr~~~i~r~~~~~~~~s.~~~~~~~t~~R~3i'~~~'-i~~-~~~~1►~L7~iE~s'~~ ~'~~~R~~~~~ii~fr~t ~~~~~L'f~i~~i~~~ ~~~~dti~~~~~~~r~r~m~~~a~~~~~~~~~ ~r~~ ~ lf~L~~~fl~~~f~alLs~iZ~I■rit~~~~~. ~L~it ~i~~■-~e~~1 J Avg Sgrt C .~2 n i oral vowme J Avg i s J Avg rm J Avg Sgrt Del Hl ~t ~' J l MINMax Min/Max Max Man Vac MIN ax~'l~,b 1251izs 58 7 ~7 Sti EPA Method 0010 from EPA SW-846 62 G ~ c~ SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Dimer Acid a Client Location/Plant Chemours Fayetteville, NC W.O. # Source &Location 15418 VE North Outlet Run No. 7 Sample Date ~ ~, ! Recovery Date /~ Sample I.D. Chemours -Carbon Bed -OUT - 7 -M0010 - Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ' J ~l ~~"~,31 ~ ~ 7 2 ~' ~- ~j I'7.4 Initial Q goo goo l~f ~~,~~j ~. 7 300 Gain ~~~Q ~~~ O r Impinger Color n Labeled? ySilica Gel Condition Sealed? Run No. 8 Sample Date J Recovery Date 3 Sample I.D. Chemours -Carbon Bed -OUT - 8 - M0010 - Analyst ~ ~ Filter Number !~ Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final 2 -`3 3J'L. ~,~I ~ ."7 Initial 100 100 ~~-i~,f 300 Gain ~ •Q /9 Impinger Color Q p Labeled? Silica Gel Condition l Sealed? Run No. Sample Date Recovery Date Sample I.D. Chemours -Carbon Bed -OUT - 0 - M0010 - Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final Initial 100 100 300 Gain Impinger Color Labeled? Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks ~l ~~ 1 ~ ~~ ~ v' ~~~fro ~ ~~t ~ 5 100 100 0 5 0 0 12.8 63 METHODS AND ANALYZERS Client: Location: Source: Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: Folders.A-F\Chemours Fayetteville\15418.002.010 VE North 2019\Data\FEBUARY_MARCH 2019\022519 DIVISION Program Version: 2.1, built 19 May 2017 File Version: 2.03 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %16.6 64 CALIBRATION DATA Number 1 Client: Location: Source: Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: Start Time: 10:59 O2Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.0 CC18055 21.0 SG9169108 Calibration Results Zero 6 mv Span, 21.0 %7997 mv Curve Coefficients Slope Intercept 380.5 6 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 8.9 CC18055 16.6 SG9169108 Calibration Results Zero 4 mv Span, 16.6 %8287 mv Curve Coefficients Slope Intercept 499.6 4 65 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: Start Time: 10:59 O2Method: EPA 3A Span Conc. 21.0 % Slope 380.5 Intercept 6.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.0 12.0 0.0 0.0 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 % Slope 499.6 Intercept 4.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 8.9 8.9 0.0 0.0 Pass 16.6 16.6 0.0 0.0 Pass 66 BIAS Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: Start Time: 11:05 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass CO2Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.8 -0.1 -0.6 Pass 67 RUN DATA Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time response times 11:07:50 12.1 8.8 11:08:00 16.9 4.7 11:08:10 20.4 0.9 11:08:20 20.7 0.4 11:08:30 12.4 2.0 11:08:40 1.6 0.6 11:08:50 0.1 0.1 O2/CO2 UP 11:09:00 0.0 0.0 11:09:10 0.0 0.0 11:09:20 0.0 0.0 11:09:30 3.0 1.8 11:09:40 10.4 7.1 11:09:50 11.8 8.6 11:10:00 12.0 8.8 O2/CO2 DOWN 11:10:10 12.0 8.8 11:10:20 12.0 8.8 11:10:30 12.0 8.8 11:10:40 9.6 7.2 11:10:50 1.5 1.8 11:11:00 0.1 0.3 11:11:10 0.0 0.1 END 11:11:20 0.0 0.1 11:11:30 0.0 0.1 Avgs 7.3 3.5 68 RUN SUMMARY Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 11:07:40 to 11:11:30 Run Averages 7.3 3.5 Pre-run Bias at 11:05 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.8 12.0 8.9 Post-run Bias at 07:37 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 7.3 3.4 69 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: Start Time: 07:37 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.9 8.9 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.8 8.9 0.1 0.6 Pass *Bias No. 1 70 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 1 PORT 1 09:27 20.9 0.1 09:28 20.9 0.1 09:29 20.9 0.1 09:30 20.9 0.1 09:31 20.9 0.1 09:32 20.9 0.1 09:33 20.9 0.2 09:34 20.9 0.2 09:35 20.9 0.2 09:36 20.9 0.2 09:37 20.9 0.2 09:38 20.9 0.2 09:39 20.9 0.2 09:40 20.9 0.2 09:41 20.9 0.2 09:42 20.9 0.2 09:43 20.9 0.2 09:44 20.9 0.2 09:45 20.9 0.2 09:46 20.9 0.2 09:47 20.9 0.2 09:48 20.9 0.2 09:49 20.9 0.2 09:50 20.9 0.2 09:51 20.9 0.2 09:52 20.9 0.2 09:53 20.9 0.2 09:54 20.9 0.2 09:55 20.9 0.2 09:56 20.9 0.2 09:57 20.9 0.2 09:58 20.9 0.2 09:59 20.9 0.2 10:00 20.9 0.2 10:01 20.9 0.2 10:02 20.9 0.2 10:03 20.9 0.2 10:04 20.9 0.2 71 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:05 20.9 0.2 10:06 20.9 0.2 10:07 20.9 0.2 10:08 20.9 0.2 10:09 20.9 0.2 10:10 20.9 0.2 10:11 20.9 0.2 10:12 20.9 0.2 10:13 20.9 0.2 10:14 20.9 0.2 10:15 20.9 0.2 PORT CHANGE PORT 2 10:55 20.9 0.1 10:56 20.9 0.1 10:57 20.8 0.1 10:58 20.8 0.2 10:59 20.8 0.2 11:00 20.9 0.2 11:01 20.9 0.3 11:02 20.9 0.3 11:03 20.9 0.3 11:04 20.9 0.2 11:05 20.9 0.2 11:06 20.9 0.2 11:07 20.9 0.2 11:08 20.9 0.2 11:09 20.9 0.2 11:10 20.9 0.2 11:11 20.9 0.2 11:12 20.9 0.2 11:13 20.9 0.2 11:14 20.9 0.2 11:15 20.9 0.2 11:16 20.9 0.2 11:17 20.9 0.2 11:18 20.9 0.2 11:19 20.9 0.2 11:20 20.9 0.2 11:21 20.9 0.2 72 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 11:22 20.9 0.2 11:23 20.9 0.2 11:24 20.9 0.2 11:25 20.9 0.2 11:26 20.9 0.2 11:27 20.9 0.2 11:28 20.9 0.2 11:29 20.9 0.2 11:30 20.9 0.1 11:31 20.9 0.1 11:32 20.9 0.1 11:33 20.9 0.1 11:34 20.9 0.1 11:35 20.9 0.1 11:36 20.9 0.1 11:37 20.9 0.1 11:38 20.9 0.1 11:39 20.9 0.1 11:40 20.9 0.1 11:41 20.9 0.1 11:42 20.9 0.1 11:43 20.9 0.1 Avgs 20.9 0.2 73 RUN SUMMARY Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 09:26 to 11:43 Run Averages 20.9 0.2 Pre-run Bias at 07:37 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Post-run Bias at 11:44 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.1 74 BIAS AND CALIBRATION DRIFT Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: Start Time: 11:44 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 2 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.9 8.9 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 8.9 8.9 0.0 0.0 Pass *Bias No. 2 75 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time R2 START 13:35 20.8 0.1 13:36 20.7 0.5 13:37 20.7 0.6 13:38 20.8 0.4 13:39 20.8 0.3 13:40 20.8 0.3 13:41 20.8 0.2 13:42 20.8 0.2 13:43 20.8 0.2 13:44 20.8 0.2 13:45 20.8 0.2 13:46 20.8 0.2 13:47 20.9 0.2 13:48 20.9 0.2 13:49 20.9 0.1 13:50 20.9 0.2 13:51 20.9 0.2 13:52 20.8 0.2 13:53 20.8 0.2 13:54 20.8 0.2 13:55 20.8 0.2 13:56 20.8 0.2 13:57 20.8 0.1 13:58 20.8 0.1 13:59 20.8 0.1 14:00 20.8 0.1 14:01 20.8 0.1 14:02 20.8 0.1 14:03 20.8 0.1 14:04 20.8 0.1 14:05 20.8 0.1 14:06 20.8 0.1 14:07 20.8 0.1 14:08 20.8 0.1 14:09 20.9 0.1 14:10 20.8 0.1 14:11 20.8 0.1 14:12 20.8 0.1 14:13 20.8 0.1 76 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:14 20.8 0.1 14:15 20.8 0.1 14:16 20.8 0.1 14:17 20.8 0.1 14:18 20.8 0.1 14:19 20.8 0.1 14:20 20.8 0.1 14:21 20.8 0.1 14:22 20.8 0.1 14:23 20.8 0.1 PORT CHANGE PORT 2 14:42 20.8 0.1 14:43 20.8 0.1 14:44 20.8 0.1 14:45 20.8 0.1 14:46 20.8 0.1 14:47 20.8 0.1 14:48 20.8 0.1 14:49 20.8 0.1 14:50 20.8 0.1 14:51 20.8 0.1 14:52 20.8 0.1 14:53 20.8 0.1 14:54 20.8 0.1 14:55 20.8 0.1 14:56 20.8 0.1 14:57 20.8 0.1 14:58 20.8 0.1 14:59 20.8 0.1 15:00 20.8 0.1 15:01 20.8 0.1 15:02 20.8 0.1 15:03 20.8 0.1 15:04 20.8 0.1 15:05 20.8 0.1 15:06 20.8 0.1 15:07 20.8 0.1 15:08 20.8 0.1 15:09 20.8 0.1 77 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 15:10 20.8 0.1 15:11 20.8 0.1 15:12 20.8 0.1 15:13 20.8 0.1 15:14 20.8 0.1 15:15 20.8 0.1 15:16 20.8 0.1 15:17 20.8 0.1 15:18 20.8 0.1 15:19 20.8 0.1 15:20 20.8 0.1 15:21 20.8 0.1 15:22 20.8 0.1 15:23 20.8 0.1 15:24 20.8 0.1 15:25 20.8 0.1 15:26 20.8 0.1 15:27 20.8 0.1 15:28 20.8 0.1 15:29 20.8 0.1 15:30 20.8 0.1 Avgs 20.8 0.1 78 RUN SUMMARY Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 13:34 to 15:30 Run Averages 20.8 0.1 Pre-run Bias at 11:44 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Post-run Bias at 15:33 Zero Bias Span Bias Span Gas 0.0 0.1 11.9 9.0 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.0 79 BIAS AND CALIBRATION DRIFT Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: Start Time: 15:33 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 11.9 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 11.9 -0.1 -0.5 Pass *Bias No. 3 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.9 9.0 0.1 0.6 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 8.9 9.0 0.1 0.6 Pass *Bias No. 3 80 METHODS AND ANALYZERS Client: Location: Source: Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Folders.A-F\Chemours Fayetteville\15418.002.010 VE North 2019\Data\FEBUARY_MARCH 2019\022719DIVISION Program Version: 2.1, built 19 May 2017 File Version: 2.03 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %16.6 81 CALIBRATION DATA Number 1 Client: Location: Source: Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 07:29 O2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.0 CC18055 21.0 SG9169108 Calibration Results Zero -3 mv Span, 21.0 %8006 mv Curve Coefficients Slope Intercept 381.4 -3 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 8.9 CC18055 16.6 SG9169108 Calibration Results Zero -5 mv Span, 16.6 %8288 mv Curve Coefficients Slope Intercept 500.2 -5 82 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 07:29 O2 Method: EPA 3A Span Conc. 21.0 % Slope 381.4 Intercept -3.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.0 12.1 0.1 0.5 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 % Slope 500.2 Intercept -5.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 8.9 8.6 -0.3 -1.8 Pass 16.6 16.6 0.0 0.0 Pass 83 BIAS Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 07:39 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.0 -0.1 -0.5 Pass CO2Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.6 8.4 -0.2 -1.2 Pass 84 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 3 POINT 1 08:40 20.8 0.1 08:41 20.7 0.1 08:42 20.8 0.1 08:43 20.8 0.1 08:44 20.8 0.1 08:45 20.8 0.1 08:46 20.8 0.1 08:47 20.8 0.1 08:48 20.8 0.1 08:49 20.8 0.1 08:50 20.8 0.1 08:51 20.8 0.1 08:52 20.8 0.1 08:53 20.8 0.1 08:54 20.8 0.1 08:55 20.9 0.1 08:56 20.9 0.1 08:57 20.9 0.1 08:58 20.9 0.1 08:59 20.9 0.1 09:00 20.9 0.1 09:01 20.9 0.1 09:02 20.9 0.1 09:03 20.9 0.1 09:04 20.9 0.1 09:05 20.9 0.1 09:06 20.9 0.1 09:07 20.9 0.1 09:08 20.9 0.1 09:09 20.9 0.1 09:10 20.9 0.1 09:11 20.9 0.1 09:12 20.9 0.1 09:13 20.9 0.1 09:14 20.9 0.1 09:15 20.9 0.1 09:16 20.9 0.1 09:17 20.9 0.1 85 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:18 20.9 0.1 09:19 20.9 0.1 09:20 20.9 0.1 09:21 20.9 0.1 09:22 20.9 0.1 09:23 20.9 0.1 09:24 20.9 0.1 09:25 20.9 0.1 09:26 20.9 0.1 09:27 20.9 0.1 09:28 20.9 0.1 PORT CHANGE PORT 2 09:47 20.8 0.1 09:48 20.8 0.1 09:49 20.8 0.1 09:50 20.8 0.1 09:51 20.7 0.1 09:52 20.7 0.1 09:53 20.7 0.1 09:54 20.8 0.1 09:55 20.9 0.1 09:56 20.9 0.1 09:57 20.9 0.1 09:58 20.9 0.1 09:59 20.9 0.1 10:00 20.9 0.1 10:01 20.9 0.1 10:02 20.9 0.1 10:03 20.9 0.1 10:04 20.9 0.1 10:05 20.9 0.1 10:06 20.9 0.1 10:07 20.9 0.1 10:08 20.9 0.1 10:09 20.9 0.1 10:10 20.9 0.1 10:11 20.9 0.1 10:12 20.9 0.1 10:13 20.9 0.1 86 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:14 20.9 0.1 10:15 20.9 0.1 10:16 20.9 0.1 10:17 20.9 0.1 10:18 20.9 0.1 10:19 20.9 0.1 10:20 20.9 0.1 10:21 20.9 0.1 10:22 20.9 0.1 10:23 20.9 0.1 10:24 20.9 0.1 10:25 20.9 0.1 10:26 20.9 0.1 10:27 20.9 0.1 10:28 20.9 0.1 10:29 20.9 0.1 10:30 20.9 0.1 10:31 20.9 0.1 10:32 20.9 0.1 10:33 20.9 0.1 10:34 20.9 0.1 10:35 20.9 0.1 Avgs 20.9 0.1 87 RUN SUMMARY Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 08:39 to 10:35 Run Averages 20.9 0.1 Pre-run Bias at 07:39 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.4 12.0 8.9 Post-run Bias at 10:36 Zero Bias Span Bias Span Gas 0.0 0.1 12.1 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.8 0.0 88 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 10:36 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.1 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.1 0.1 0.5 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 8.4 8.4 0.0 0.0 Pass *Bias No. 1 89 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 4 PORT 1 ONLY ( SEE NEXT RUN FOR SECOND PORT) 12:31 20.7 0.1 12:32 20.7 0.1 12:33 20.7 0.1 12:34 20.7 0.1 12:35 20.7 0.1 12:36 20.7 0.1 12:37 20.7 0.1 12:38 20.7 0.1 12:39 20.7 0.1 12:40 20.7 0.1 12:41 20.7 0.1 12:42 20.7 0.1 12:43 20.7 0.1 12:44 20.7 0.1 12:45 20.7 0.1 12:46 20.7 0.1 12:47 20.7 0.1 12:48 20.7 0.1 12:49 20.7 0.1 12:50 20.7 0.1 12:51 20.7 0.1 12:52 20.7 0.1 12:53 20.7 0.1 12:54 20.7 0.1 12:55 20.7 0.1 12:56 20.8 0.1 12:57 20.8 0.1 12:58 20.8 0.1 12:59 20.8 0.1 13:00 20.8 0.1 13:01 20.8 0.1 13:02 20.8 0.1 13:03 20.8 0.1 13:04 20.8 0.1 13:05 20.8 0.1 13:06 20.8 0.1 13:07 20.8 0.1 13:08 20.8 0.1 90 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 13:09 20.8 0.1 13:10 20.8 0.1 13:11 20.8 0.1 13:12 20.8 0.1 13:13 20.8 0.1 13:14 20.8 0.1 13:15 20.8 0.1 13:16 20.8 0.1 13:17 20.8 0.1 13:18 20.8 0.1 13:19 20.8 0.1 Avgs 20.7 0.1 91 RUN SUMMARY Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 12:30 to 13:19 Run Averages 20.7 0.1 Pre-run Bias at 10:36 Zero Bias Span Bias Span Gas 0.0 0.1 12.1 8.4 12.0 8.9 Post-run Bias at 13:21 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.7 0.1 92 BIAS AND CALIBRATION DRIFT Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 13:21 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.1 12.0 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.1 12.0 -0.1 -0.5 Pass *Bias No. 2 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.6 Pass Span 8.4 8.4 0.0 0.0 Pass *Bias No. 2 93 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 4 PORT 2 13:38 20.7 0.1 13:39 20.7 0.1 13:40 20.7 0.1 13:41 20.7 0.2 13:42 20.6 0.2 13:43 20.6 0.2 13:44 20.7 0.2 13:45 20.7 0.2 13:46 20.8 0.2 13:47 20.8 0.2 13:48 20.8 0.2 13:49 20.8 0.2 13:50 20.8 0.2 13:51 20.8 0.2 13:52 20.8 0.2 13:53 20.8 0.2 13:54 20.8 0.2 13:55 20.8 0.2 13:56 20.8 0.2 13:57 20.8 0.2 13:58 20.8 0.2 13:59 20.8 0.2 14:00 20.8 0.2 14:01 20.8 0.2 14:02 20.8 0.2 14:03 20.8 0.1 14:04 20.8 0.1 14:05 20.8 0.1 14:06 20.8 0.1 14:07 20.8 0.1 14:08 20.8 0.1 14:09 20.8 0.1 14:10 20.8 0.1 14:11 20.8 0.1 14:12 20.8 0.1 14:13 20.8 0.1 14:14 20.8 0.1 14:15 20.8 0.1 94 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:16 20.8 0.1 14:17 20.8 0.1 14:18 20.8 0.1 14:19 20.8 0.1 14:20 20.8 0.1 14:21 20.8 0.1 14:22 20.8 0.1 14:23 20.8 0.1 14:24 20.8 0.1 14:25 20.8 0.1 14:26 20.8 0.1 Avgs 20.8 0.1 95 RUN SUMMARY Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 13:37 to 14:26 Run Averages 20.8 0.1 Pre-run Bias at 13:21 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.4 12.0 8.9 Post-run Bias at 14:28 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.2 96 BIAS AND CALIBRATION DRIFT Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 14:28 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.1 12.0 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 3 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.4 8.4 0.0 0.0 Pass *Bias No. 3 97 BIAS AND CALIBRATION DRIFT Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: Start Time: 07:19 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 11.8 -0.3 -1.4 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.5 Pass Span 12.0 11.8 -0.2 -1.0 Pass *Bias No. 4 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.6 8.3 -0.3 -1.8 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.4 8.3 -0.1 -0.6 Pass *Bias No. 4 98 RUN DATA Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 08:14 20.6 0.1 08:15 20.6 0.1 08:16 20.6 0.1 08:17 20.6 0.1 08:18 20.6 0.1 08:19 20.6 0.1 08:20 20.6 0.1 08:21 20.6 0.1 08:22 20.6 0.1 RUN 5 PORT 1 08:23 20.6 0.1 08:24 20.6 0.1 08:25 20.6 0.1 08:26 20.6 0.1 08:27 20.6 0.1 08:28 20.6 0.1 08:29 20.6 0.1 08:30 20.6 0.1 08:31 20.6 0.1 08:32 20.6 0.1 08:33 20.6 0.1 08:34 20.6 0.1 08:35 20.6 0.1 08:36 20.6 0.1 08:37 20.6 0.1 08:38 20.6 0.1 08:39 20.6 0.1 08:40 20.6 0.1 08:41 20.6 0.1 08:42 20.6 0.1 08:43 20.6 0.1 08:44 20.6 0.1 08:45 20.6 0.1 08:46 20.6 0.1 08:47 20.6 0.1 08:48 20.6 0.1 08:49 20.6 0.1 08:50 20.6 0.1 08:51 20.6 0.1 99 RUN DATA Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 08:52 20.6 0.1 08:53 20.6 0.1 08:54 20.6 0.1 08:55 20.6 0.1 08:56 20.6 0.1 08:57 20.6 0.1 08:58 20.6 0.1 08:59 20.6 0.1 09:00 20.6 0.1 09:01 20.6 0.1 09:02 20.6 0.1 09:03 20.6 0.1 09:04 20.6 0.1 09:05 20.6 0.1 09:06 20.6 0.1 09:07 20.7 0.1 09:08 20.7 0.1 09:09 20.7 0.1 09:10 20.7 0.1 09:11 20.7 0.1 PORT CHANGE 09:12 20.7 0.1 09:13 20.7 0.1 09:14 20.7 0.1 09:15 20.7 0.1 09:16 20.6 0.1 09:17 20.6 0.1 09:18 20.6 0.1 09:19 20.6 0.1 09:20 20.6 0.1 09:21 20.6 0.1 09:22 20.6 0.1 09:23 20.6 0.1 09:24 20.6 0.1 09:25 20.6 0.1 09:26 20.6 0.1 09:27 20.6 0.1 09:28 20.6 0.1 09:29 20.6 0.1 100 RUN DATA Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time PORT 2 09:30 20.6 0.1 09:31 20.6 0.1 09:32 20.6 0.1 09:33 20.6 0.1 09:34 20.6 0.2 09:35 20.6 0.2 09:36 20.6 0.2 09:37 20.6 0.2 09:38 20.6 0.2 09:39 20.6 0.2 09:40 20.6 0.2 09:41 20.7 0.2 09:42 20.7 0.2 09:43 20.7 0.2 09:44 20.7 0.2 09:45 20.7 0.2 09:46 20.7 0.2 09:47 20.7 0.2 09:48 20.7 0.2 09:49 20.7 0.2 09:50 20.7 0.2 09:51 20.7 0.2 09:52 20.7 0.2 09:53 20.7 0.2 09:54 20.7 0.2 09:55 20.7 0.2 09:56 20.7 0.1 09:57 20.8 0.1 09:58 20.8 0.1 09:59 20.8 0.1 10:00 20.8 0.1 10:01 20.8 0.1 10:02 20.8 0.1 10:03 20.8 0.1 10:04 20.8 0.1 10:05 20.8 0.1 10:06 20.8 0.1 10:07 20.8 0.1 10:08 20.8 0.1 101 RUN DATA Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:09 20.8 0.1 10:10 20.8 0.1 10:11 20.8 0.1 10:12 20.8 0.1 10:13 20.8 0.1 10:14 20.8 0.1 10:15 20.8 0.1 10:16 20.8 0.1 10:17 20.8 0.1 10:18 20.8 0.1 Avgs 20.7 0.1 102 RUN SUMMARY Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 08:13 to 10:18 Run Averages 20.7 0.1 Pre-run Bias at 07:19 Zero Bias Span Bias Span Gas 0.0 0.1 11.8 8.3 12.0 8.9 Post-run Bias at 10:21 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.3 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.8 0.1 103 BIAS AND CALIBRATION DRIFT Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: Start Time: 10:21 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.0 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 11.8 12.0 0.2 1.0 Pass *Bias No. 5 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.3 -0.3 -1.8 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.6 Pass Span 8.3 8.3 0.0 0.0 Pass *Bias No. 5 104 RUN DATA Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:12 20.6 0.1 14:13 20.6 0.1 14:14 20.6 0.1 14:15 20.6 0.1 14:16 20.6 0.1 14:17 20.6 0.1 14:18 20.6 0.1 14:19 20.6 0.1 14:20 20.6 0.1 14:21 20.6 0.1 14:22 20.6 0.1 14:23 20.6 0.1 14:24 20.6 0.1 14:25 20.6 0.1 14:26 20.6 0.1 14:27 20.6 0.1 14:28 20.6 0.1 RUN 6 PORT 1 14:29 20.6 0.1 14:30 20.5 0.2 14:31 20.5 0.4 14:32 20.5 0.2 14:33 20.6 0.2 14:34 20.6 0.1 14:35 20.6 0.1 14:36 20.6 0.1 14:37 20.6 0.1 14:38 20.6 0.1 14:39 20.6 0.1 14:40 20.6 0.1 14:41 20.6 0.1 14:42 20.6 0.1 14:43 20.6 0.1 14:44 20.6 0.1 14:45 20.6 0.1 14:46 20.6 0.1 14:47 20.6 0.1 14:48 20.6 0.1 14:49 20.6 0.1 105 RUN DATA Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:50 20.6 0.1 14:51 20.6 0.1 14:52 20.6 0.1 14:53 20.6 0.1 14:54 20.6 0.1 14:55 20.6 0.1 14:56 20.6 0.1 14:57 20.6 0.1 14:58 20.6 0.1 14:59 20.6 0.1 15:00 20.6 0.1 15:01 20.6 0.1 15:02 20.6 0.1 15:03 20.6 0.1 15:04 20.6 0.1 15:05 20.6 0.1 15:06 20.6 0.1 15:07 20.6 0.1 15:08 20.6 0.1 15:09 20.6 0.1 15:10 20.6 0.1 15:11 20.6 0.1 15:12 20.6 0.1 15:13 20.7 0.1 15:14 20.7 0.1 15:15 20.7 0.1 15:16 20.7 0.1 15:17 20.7 0.1 PORT CHANGE 15:18 20.7 0.1 15:19 20.6 0.1 15:20 20.6 0.1 15:21 20.6 0.1 15:22 20.6 0.1 15:23 20.6 0.1 15:24 20.6 0.1 15:25 20.6 0.1 15:26 20.6 0.1 15:27 20.6 0.1 15:28 20.6 0.1 106 RUN DATA Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 15:29 20.6 0.1 15:30 20.6 0.1 15:31 20.6 0.1 15:32 20.6 0.1 15:33 20.6 0.1 15:34 20.6 0.1 15:35 20.6 0.1 15:36 20.6 0.1 15:37 20.6 0.1 15:38 20.6 0.1 PORT 2 15:39 20.6 0.1 15:40 20.6 0.1 15:41 20.6 0.1 15:42 20.6 0.1 15:43 20.6 0.1 15:44 20.6 0.1 15:45 20.6 0.1 15:46 20.6 0.1 15:47 20.6 0.1 15:48 20.7 0.1 15:49 20.7 0.1 15:50 20.7 0.1 15:51 20.7 0.1 15:52 20.7 0.1 15:53 20.7 0.1 15:54 20.7 0.1 15:55 20.7 0.1 15:56 20.7 0.1 15:57 20.7 0.1 15:58 20.7 0.1 15:59 20.7 0.1 16:00 20.7 0.1 16:01 20.7 0.1 16:02 20.7 0.1 16:03 20.7 0.1 16:04 20.7 0.1 16:05 20.7 0.1 16:06 20.7 0.1 16:07 20.7 0.1 107 RUN DATA Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 16:08 20.7 0.1 16:09 20.7 0.1 16:10 20.7 0.1 16:11 20.7 0.1 16:12 20.7 0.1 16:13 20.7 0.1 16:14 20.7 0.1 16:15 20.7 0.1 16:16 20.7 0.1 16:17 20.7 0.1 16:18 20.7 0.1 16:19 20.7 0.1 16:20 20.7 0.1 16:21 20.7 0.1 16:22 20.7 0.1 16:23 20.7 0.1 16:24 20.7 0.1 16:25 20.7 0.1 16:26 20.7 0.1 16:27 20.7 0.1 Avgs 20.6 0.1 108 RUN SUMMARY Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 14:11 to 16:27 Run Averages 20.6 0.1 Pre-run Bias at 10:21 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.3 12.0 8.9 Post-run Bias at 16:31 Zero Bias Span Bias Span Gas 0.0 0.0 11.9 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.7 0.1 109 BIAS AND CALIBRATION DRIFT Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: Start Time: 16:31 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 11.9 -0.2 -1.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 11.9 -0.1 -0.5 Pass *Bias No. 6 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.3 8.4 0.1 0.6 Pass *Bias No. 6 110 BIAS AND CALIBRATION DRIFT Number 8 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: Start Time: 07:24 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.2 0.1 0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 11.9 12.2 0.3 1.4 Pass *Bias No. 7 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.3 -0.3 -1.8 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.4 8.3 -0.1 -0.6 Pass *Bias No. 7 111 RUN DATA Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 7 PORT 1 08:13 21.2 0.1 08:14 21.0 0.7 08:15 21.1 0.5 08:16 21.1 0.3 08:17 21.1 0.2 08:18 21.1 0.2 08:19 21.2 0.1 08:20 21.1 0.1 08:21 21.2 0.1 08:22 21.2 0.1 08:23 21.2 0.1 08:24 21.2 0.1 08:25 21.2 0.1 08:26 21.2 0.1 08:27 21.2 0.1 08:28 21.2 0.1 08:29 21.2 0.1 08:30 21.2 0.1 08:31 21.2 0.1 08:32 21.2 0.1 08:33 21.2 0.1 08:34 21.2 0.1 08:35 21.2 0.1 08:36 21.2 0.1 08:37 21.2 0.1 08:38 21.2 0.1 08:39 21.2 0.1 08:40 21.2 0.1 08:41 21.2 0.1 08:42 21.2 0.1 08:43 21.2 0.1 08:44 21.2 0.1 08:45 21.2 0.1 08:46 21.2 0.1 08:47 21.2 0.1 08:48 21.2 0.1 08:49 21.2 0.1 08:50 21.2 0.1 112 RUN DATA Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 08:51 21.2 0.1 08:52 21.2 0.1 08:53 21.2 0.1 08:54 21.2 0.1 08:55 21.2 0.1 08:56 21.2 0.1 08:57 21.2 0.1 08:58 21.2 0.1 08:59 21.2 0.1 09:00 21.2 0.1 09:01 21.3 0.1 PORT CHANGE PORT 2 09:20 21.2 0.1 09:21 21.2 0.1 09:22 21.2 0.1 09:23 21.2 0.2 09:24 21.2 0.2 09:25 21.2 0.2 09:26 21.2 0.2 09:27 21.2 0.2 09:28 21.2 0.2 09:29 21.2 0.2 09:30 21.2 0.2 09:31 21.3 0.2 09:32 21.3 0.2 09:33 21.3 0.2 09:34 21.3 0.2 09:35 21.3 0.2 09:36 21.3 0.2 09:37 21.3 0.2 09:38 21.3 0.2 09:39 21.3 0.2 09:40 21.3 0.2 09:41 21.3 0.2 09:42 21.3 0.1 09:43 21.3 0.1 09:44 21.3 0.1 09:45 21.3 0.1 09:46 21.3 0.1 113 RUN DATA Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:47 21.3 0.1 09:48 21.3 0.1 09:49 21.3 0.1 09:50 21.3 0.1 09:51 21.3 0.1 09:52 21.3 0.1 09:53 21.3 0.1 09:54 21.3 0.1 09:55 21.3 0.1 09:56 21.3 0.1 09:57 21.3 0.1 09:58 21.3 0.1 09:59 21.3 0.1 10:00 21.3 0.1 10:01 21.3 0.1 10:02 21.3 0.1 10:03 21.3 0.1 10:04 21.3 0.1 10:05 21.3 0.1 10:06 21.3 0.1 10:07 21.3 0.1 10:08 21.3 0.1 Avgs 21.2 0.1 114 RUN SUMMARY Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 08:12 to 10:08 Run Averages 21.2 0.1 Pre-run Bias at 07:24 Zero Bias Span Bias Span Gas 0.0 0.0 12.2 8.3 12.0 8.9 Post-run Bias at 10:12 Zero Bias Span Bias Span Gas 0.0 0.0 12.2 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.1 115 BIAS AND CALIBRATION DRIFT Number 9 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: Start Time: 10:12 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.2 0.1 0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.2 12.2 0.0 0.0 Pass *Bias No. 8 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.3 8.4 0.1 0.6 Pass *Bias No. 8 116 RUN DATA Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 8 PORT 1 12:37 21.1 0.1 12:38 21.1 0.1 12:39 21.1 0.1 12:40 21.1 0.1 12:41 21.1 0.1 12:42 21.1 0.1 12:43 21.1 0.1 12:44 21.1 0.1 12:45 21.1 0.1 12:46 21.1 0.1 12:47 21.1 0.1 12:48 21.1 0.1 12:49 21.1 0.1 12:50 21.1 0.1 12:51 21.1 0.1 12:52 21.1 0.1 12:53 21.1 0.1 12:54 21.1 0.1 12:55 21.1 0.1 12:56 21.1 0.1 12:57 21.1 0.1 12:58 21.1 0.1 12:59 21.1 0.1 13:00 21.1 0.1 13:01 21.1 0.1 13:02 21.1 0.1 13:03 21.1 0.1 13:04 21.1 0.1 13:05 21.1 0.1 13:06 21.1 0.1 13:07 21.1 0.1 13:08 21.1 0.1 13:09 21.1 0.1 13:10 21.2 0.1 13:11 21.2 0.1 13:12 21.2 0.1 13:13 21.2 0.1 13:14 21.2 0.1 117 RUN DATA Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 13:15 21.2 0.1 13:16 21.2 0.1 13:17 21.2 0.1 13:18 21.2 0.1 13:19 21.2 0.1 13:20 21.2 0.1 13:21 21.2 0.1 13:22 21.2 0.1 13:23 21.2 0.1 13:24 21.3 0.1 PORT CHANGE PORT 2 13:45 21.1 0.1 13:46 21.1 0.1 13:47 21.1 0.1 13:48 21.1 0.1 13:49 21.1 0.1 13:50 21.1 0.1 13:51 21.1 0.1 13:52 21.1 0.1 13:53 21.1 0.1 13:54 21.1 0.1 13:55 21.1 0.1 13:56 21.2 0.1 13:57 21.2 0.1 13:58 21.2 0.1 13:59 21.2 0.1 14:00 21.2 0.1 14:01 21.2 0.1 14:02 21.2 0.1 14:03 21.2 0.1 14:04 21.2 0.1 14:05 21.2 0.1 14:06 21.3 0.1 14:07 21.2 0.1 14:08 21.2 0.1 14:09 21.2 0.1 14:10 21.2 0.1 14:11 21.2 0.1 14:12 21.2 0.1 118 RUN DATA Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:13 21.2 0.1 14:14 21.2 0.1 14:15 21.2 0.1 14:16 21.2 0.1 14:17 21.2 0.1 14:18 21.2 0.1 14:19 21.3 0.1 14:20 21.3 0.1 14:21 21.3 0.1 14:22 21.3 0.1 14:23 21.3 0.1 14:24 21.3 0.1 14:25 21.2 0.1 14:26 21.2 0.1 14:27 21.2 0.1 14:28 21.2 0.1 14:29 21.2 0.1 14:30 21.2 0.1 14:31 21.2 0.1 14:32 21.2 0.1 14:33 21.2 0.1 Avgs 21.2 0.1 119 RUN SUMMARY Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 12:36 to 14:33 Run Averages 21.2 0.1 Pre-run Bias at 10:12 Zero Bias Span Bias Span Gas 0.0 0.0 12.2 8.4 12.0 8.9 Post-run Bias at 14:35 Zero Bias Span Bias Span Gas 0.0 0.0 12.1 8.3 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.1 120 BIAS AND CALIBRATION DRIFT Number 10 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: Start Time: 14:35 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.1 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.2 12.1 -0.1 -0.5 Pass *Bias No. 9 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.3 -0.3 -1.8 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.4 8.3 -0.1 -0.6 Pass *Bias No. 9 121 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 APPENDIX C LABORATORY ANALYTICAL REPORT Note: The analytical report is included on the attached CD. 122        !"#$%&&%&'      !" # "#$%& $ '(' )*+,-,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!(  () *#$ # #+  ) # ,#+- )   4% * 45+3' '+6    7 8'                      0  !" #"#$ & $ '(' )*+,-,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!---( ( *#$ # #+  # ,#+     4% * 45+3' '+6    7 8'                      -  !" #"# $$39!" $ '(' )*+,-,.   */+,0,.-  ) '''  $1)+2&%3!  $ &%3!: ; (+ ( +)+ *#$ # )#+ )  # ,#+ -+   4% * 45+3' '+6    7 8'                      2  !" #"# $ #& !6<&= #"6 # $ '(' )*+,-,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ # #+  # ,#+    4% * 45+3' '+6    7 8'                    12/"345 04/04/2019Page 13 of 632123        !"#$%&&%&'    -0  !" # !6#$%& $ '(' )*+,-,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!:. (  ( ) *#$ # #+  ) # ,#+-   4% * 45+3' '+6    7 8'                     - 2.-  !" #!6#$ & $ '(' )*+,-,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!: (-- ( *#$ # #+  # ,#+  6   4% * 45+3' '+6    7 8'                      0 -  !" # !6#$$39!" $ '(' )*+,-,.   */+,0,.-  ) '''  $1)+2&%3!  $ &%3!:-2 ; (+) ( +++ *#$ # )#+ )  # ,#+  -   4% * 45+3' '+6    7 8'                     2 -  !" # !6#$ #& !6<&= #"6 # $ '(' )*+,-,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ # #+  # ,#+    4% * 45+3' '+6    7 8'                     12/"345 04/04/2019Page 14 of 632124        !"#$%&&%&'   0 &.  !" # "#$%& $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!:(  ( + *#$ # #+  ) # ,#+- +   4% * 45+3' '+6    7 8'                      2 &  !" #"#$ & $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!-( -( *#$ # #+  # ,#+  )  4% * 45+3' '+6    7 8'                     . &  !" #"# $$39!" $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+2&%3!  $ &%3!2 -( ( 6 *#$ # )#+ )  # ,#+    4% * 45+3' '+6    7 8'                       &  !" #"# $ #& !6<&= #"6 # $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!:00 (- ( *#$ # #+  # ,#+  +   4% * 45+3' '+6    7 8'                    12/"345 04/04/2019Page 15 of 632125        !"#$%&&%&'    .  !" # !6#$%& $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!: ( 6) ( ,-) *#$ # #+  ) # ,#+  -   4% * 45+3' '+6    7 8'                         !" #!6#$ & $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!2 -(6 ( *#$ # #+  # ,#+) -   4% * 45+3' '+6    7 8'                         !" # !6#$$39!" $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+2&%3!  $ . ' / 0 (- (  *#$ # )#+ )  # ,#+  -   4% * 45+3' '+6    7 8'                        !" # !6#$ #& !6<&= #"6 # $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ # #+  # ,#+) )   4% * 45+3' '+6    7 8'                     12/"345 04/04/2019Page 16 of 632126        !"#$%&&%&'   . .  !" # "#$%& $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!:(  ( + *#$ # 6#+ + , ##+    4% * 45+3' '+6    7 8'                    .   !" #"#$ & $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!-( -( *#$ # )#+ , + #,#+ --  4% * 45+3' '+6    7 8'                        .   !" #"# $$39!" $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+2&%3!  $ &%3!2: ( , ( - , *#$ # )#+-- ##+- - -  4% * 45+3' '+6    7 8'                    .   !" #"# $ #& !6<&= #"6 # $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!:2. (- ( *#$ # )#+ , + #,#+ -   4% * 45+3' '+6    7 8'                     12/"345 04/04/2019Page 17 of 632127        !"#$%&&%&'   . --  !" # !6#$%& $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!:0- (  (  + *#$ # 6#+ + , ##+    4% * 45+3' '+6    7 8'                    .- ----2  !" #!6#$ & $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ &%3!: (- ( *#$ # )#+ , + #,#+ -,   4% * 45+3' '+6    7 8'                        .0 -0  !" # !6#$$39!" $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+2&%3!  $ . ' / 0 (- (  *#$ # )#+-- ##+-   4% * 45+3' '+6    7 8'                    .2 -.  !" # !6#$ #& !6<&= #"6 # $ '(' )*+,0,.   */+,0,.-  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ # )#+ , + #,#+  -   4% * 45+3' '+6    7 8'                      12/"345 04/04/2019Page 18 of 632128        !"#$%&&%&'   - & "#$ %&<,& $ '(' )*+,-,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!:(-) ( ) *#$ # #+  ) # ,#+  )   4% * 45+3' '+6    7 8'                      - &0 "# $  &<,& $ '(' )*+,-,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!- ( ( *#$ # #+  # ,#+ -   4% * 45+3' '+6    7 8'                     - &- "#$ $3 9!"<,& $ '(' )*+,-,.   */+,,..  ) '''  $1)+2&%3!  $ &%3!: (- (  *#$ # )#+ )  # ,#+  ,   4% * 45+3' '+6    7 8'                     - &2 "#$  #& !6<&= #"6 #<,& $ '(' )*+,-,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!0:-2 (- ( *#$ # #+  # ,#+ -   4% * 45+3' '+6    7 8'                    12/"345 04/04/2019Page 19 of 632129        !"#$%&&%&'   -  !6#$ %&<,& $ '(' )*+,-,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!: (-) (  ) *#$ # #+  ) # ,#+  +   4% * 45+3' '+6    7 8'                       -- 0 !6# $  &<,& $ '(' )*+,-,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!:2 (-- ( *#$ # #+  # ,#+    4% * 45+3' '+6    7 8'                      -0 - !6#$  $39!"<,& $ '(' )*+,-,.   */+,,..  ) '''  $1)+2&%3!  $ &%3!:. ; (- , (  ) *#$ # )#+ )  # ,#+    4% * 45+3' '+6    7 8'                     -2 2 !6#$  #& !6<&= #"6 #<,& $ '(' )*+,-,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ # #+  # ,#+  +   4% * 45+3' '+6    7 8'                    12/"345 04/04/2019Page 20 of 632130        !"#$%&&%&'   -0 #-2-2 "#$ -%&<,& $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!: (-  ( -6 *#$ # 6#+ + , ##+ - -  4% * 45+3' '+6    7 8'                    -2 #-2--20-2. "# $ - &<,& $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3! ( -( *#$ # )#+ , + #,#+   4% * 45+3' '+6    7 8'                       -. #-22 "#$ -$3 9!"<,& $ '(' )*+,2,.   */+,,..  ) '''  $1)+2&%3!  $ &%3!(+, (  *#$ # )#+ )  # ,#+ -   4% * 45+3' '+6    7 8'                     - #-. "#$ -$3 #& !6<&= #"6 #<,& $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!:0. (- ( *#$ # )#+ , + #,#+  ,   4% * 45+3' '+6    7 8'                      12/"345 04/04/2019Page 21 of 632131        !"#$%&&%&'   - #-.-. "#$ 2%&<,& $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!2: ( ( *#$ # 6#+ + , ##+ -6  4% * 45+3' '+6    7 8'                    - #-.-.-.- "# $ 2 &<,& $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!.0  ( -( *#$ ##+ +-+ # #+ 6  4% * 45+3' '+6    7 8'                    - #-. "#$ 2$3 9!"<,& $ '(' )*+,,.   */+,,..  ) '''  $1)+2&%3!  $ &%3!-:(  (  *#$ # )#+ )  # ,#+ -,  4% * 45+3' '+6    7 8'                     - #-.0 "#$ 2 #& !6<&= #"6 #<,& $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!:. (- ( *#$ ##+ +-+ # #+-   4% * 45+3' '+6    7 8'                 12/"345 04/04/2019Page 22 of 632132        !"#$%&&%&'   - 22 !6#$ -%&<,& $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!:. (-) (  ) *#$ # 6#+ + , ##+    4% * 45+3' '+6    7 8'                    -- 2-202. !6# $ - &<,& $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ # )#+ , + #,#+    4% * 45+3' '+6    7 8'                        -0 22 !6#$ - $39!"<,& $ '(' )*+,2,.   */+,,..  ) '''  $1)+2&%3!  $ . ' / 0 (- (  6 *#$ # )#+ )  # ,#+     4% * 45+3' '+6    7 8'                     -2 . !6#$ - #& !6<&= #"6 #<,& $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ # )#+ , + #,#+   4% * 45+3' '+6    7 8'                      12/"345 04/04/2019Page 23 of 632133        !"#$%&&%&'   -. .. !6#$ 2%&<,& $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!: ( 6) ( ,- *#$ # 6#+ + , ##+    4% * 45+3' '+6    7 8'                    - ...- !6# $ 2 &<,& $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 ( ( ) *#$ ##+ +-+ # #+-   4% * 45+3' '+6    7 8'                     - . !6#$ 2 $39!"<,& $ '(' )*+,,.   */+,,..  ) '''  $1)+2&%3!  $ . ' / 0 (- (  6 *#$ # )#+ )  # ,#+    4% * 45+3' '+6    7 8'                     - .0 !6#$ 2 #& !6<&= #"6 #<,& $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ ##+ +-+ # #+- 6   4% * 45+3' '+6    7 8'                   12/"345 04/04/2019Page 24 of 632134        !"#$%&&%&'   -2    !" #"# $%& $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!:( - ( *#$ # 6#+ + , ##+    4% * 45+3' '+6    7 8'                     -2    !" # "#$ & $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!2-( -( *#$ ##+ +-+ # #+-  4% * 45+3' '+6    7 8'                   -2    !" #"#$ $39!" $ '(' )*+,2,.   */+,,..  ) '''  $1)+2&%3!  $ &%3!: (+) ( +++ *#$ # )#+-- ##+---   4% * 45+3' '+6    7 8'                   -2  -  !" #"#$ #& !6<&= #"6 # $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!:. (- ( *#$ ##+ +-+ # #+  -   4% * 45+3' '+6    7 8'                   12/"345 04/04/2019Page 25 of 632135        !"#$%&&%&'   -2  02 0 !" #"# $%& $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!:(-) ( ) *#$ # 6#+ + , ##+  )   4% * 45+3' '+6    7 8'                     -2-  .-- 0 !" # "#$ & $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!2-( -( *#$ ##+ +-+ # #+   4% * 45+3' '+6    7 8'                    -20  - 0 !" #"#$ $39!" $ '(' )*+,,.   */+,,..  ) '''  $1)+2&%3!  $ &%3!: (- (  6 *#$ # )#+-- ##+--   4% * 45+3' '+6    7 8'                    -22  - 0 !" #"#$ #& !6<&= #"6 # $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!: (- ( *#$ #-#+  , # #+ +   4% * 45+3' '+6    7 8'                   12/"345 04/04/2019Page 26 of 632136        !"#$%&&%&'   -2. <  !" #!6# $%& $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!: (  (  + *#$ # 6#+ + , ##+  +   4% * 45+3' '+6    7 8'                     -2 <  !" # !6#$ & $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 (-6 ( *#$ #-#+  , # #+ + ,   4% * 45+3' '+6    7 8'                     -2 <  !" #!6# $$39!" $ '(' )*+,2,.   */+,,..  ) '''  $1)+2&%3!  $ . ' / 0 (- (  6 *#$ # )#+-- ##+-    4% * 45+3' '+6    7 8'                   -2 <-  !" #!6# $ #& !6<&= #"6 # $ '(' )*+,2,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ #-#+  , # #+ +    4% * 45+3' '+6    7 8'                   12/"345 04/04/2019Page 27 of 632137        !"#$%&&%&'   -2 <02 0 !" #!6# $%& $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ &%3!: ( 6) ( ,-) *#$ # 6#+ + , ##+ -   4% * 45+3' '+6    7 8'                    -2 <.-- 0 !" # !6#$ & $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 ( ( ) *#$ #-#+  , # #+ +   4% * 45+3' '+6    7 8'                     -2 <- 0 !" #!6# $$39!" $ '(' )*+,,.   */+,,..  ) '''  $1)+2&%3!  $ . ' / 0 (- (  6 *#$ # )#+-- ##+-   4% * 45+3' '+6    7 8'                   -2- <- 0 !" #!6# $ #& !6<&= #"6 # $ '(' )*+,,.   */+,,..  ) '''  $1)+23%! +3%!  $ . ' / 0 (- ( *#$ #-#+  , # #+ + ,   4% * 45+3' '+6    7 8'                   12/"345 04/04/2019Page 28 of 632138            !"#$  %&&  %&'      ()* '+ ,#$   !"  # ()-   $   ()* '+ ,#$   !"  # (). (* '+ ,#$ () / 0+  "1 23 04/04/2019Page 29 of 632139 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 APPENDIX D SAMPLE CALCULATIONS 140 SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 1 Test Date: 2/26/2019 Test Location: CBed Inlet Test Period: 0927-1143 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 = ------------------------------ Vm(std) 2713.1 x 2.2046 x 10-9 Conc1 = ------------------------------ 54.721 Conc1 = 1.09E-07 Where: W = Weight of HFPO Dimer Acid collected in sample in ug Conc1 = HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 = Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 = W / ( Vm(std) x 0.02832) Conc2 = 2713.1 / ( 54.721 x 0.02832 ) Conc2 =1750.6 Where: Conc2 = HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. 3/22/20193:58 PM 022619 CBed IN 1-3 141 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Inlet)= Conc1 x Qs(std) x 60 min/hr MR1(Inlet)= 1.09E-07 x 15187 x 60 MR1(Inlet)= 9.96E-02 Where: MR1(Inlet)= HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Inlet)= MR1(Inlet) x 453.59 / 3600 MR2(Inlet)= 9.96E-02 x 453.59 /3600 MR2(Inlet)= 1.25E-02 Where: MR2(Inlet)= HFPO Dimer Acid mass emission rate, g/sec. 453.59 = Conversion factor from pounds to grams. 3600 = Conversion factor from hours to seconds. 5. HFPO Dimer Acid Removal Efficiency, % RE = MR1(Inlet) - MR1(Outlet) -------------------------- MR1(Inlet) RE = (9.96E-02) - (5.530E-04) ---------------------- 9.96E-02 RE = 99.4 Where: RE = Carbon Bed Removal Efficiency. MR1(Inlet)= Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr. MR1(Outlet)= Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr. 3/22/20193:58 PM 022619 CBed IN 1-3 142 EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Facility: Fayetteville, NC Test Number: Run 1 Test Date: 2/26/19 Test Location: VEN-Carbon Bed Inlet Test Period: 0927-1143 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std)= -------------------------------------------- (Tm + 460) 1.329 17.64 x 1.0027 x 52.809 x ( 30.29 + --------------------- ) 13.6 Vm(std)= ------------------------------------------------------------ = 54.721 58.71 + 460 Where: Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb = Barometric Pressure, in Hg. delt H = Average pressure drop across the orifice meter, in H2O Tm = Average dry gas meter temperature , deg F. Y = Dry gas meter calibration factor. 17.64 = Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 = Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std) = (0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std) = ( 0.04707 x 13.5 ) + ( 0.04715 x 11.2 ) = 1.16 Where: Vw(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc = Volume of liquid condensed in impingers, ml. Wwsg = Weight of water vapor collected in silica gel, g. 0.04707 = Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 = Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 3/22/20193:59 PM 022619 CBed IN 1-3 143 3. Moisture content Vw(std) bws = ------------------------- Vw(std) + Vm(std) 1.16 bws = ------------------------- = 0.021 1.16 + 54.721 Where: bws = Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md = 1 - bws Md = 1 - 0.021 = 0.979 Where: Md = Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd = ( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd = ( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd = 28.84 Where: MWd = Dry molecular weight , lb/lb-mole. % CO2 = Percent carbon dioxide by volume, dry basis. % O2 = Percent oxygen by volume, dry basis. % N2 = Percent nitrogen by volume, dry basis. % CO = Percent carbon monoxide by volume, dry basis. 0.440 = Molecular weight of carbon dioxide, divided by 100. 0.320 = Molecular weight of oxygen, divided by 100. 0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs = ( MWd x Md ) + ( 18 x ( 1 - Md )) MWs = ( 28.84 x 0.979 ) +( 18 ( 1 - 0.979 )) = 28.61 Where: MWs = Molecular weight of wet gas, lb/lb-mole. 18 = Molecular weight of water, lb/lb-mole. 3/22/20193:59 PM 022619 CBed IN 1-3 144 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 529 Vs = 85.49 x 0.84 x 0.72952 x ( -------------------- )^1/2 = 41.3 29.81 x 28.61 Where: Vs = Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 = Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp = Pitot tube coefficient, dimensionless. Ts = Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps = Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p = Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act) = 60 x Vs x As Qs(act) = 60 x 41.3 x 6.31 = 15613 Where: Qs(act) = Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 = Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std) = 17.64 x Md x ----- x Qs(act) Ts 29.81 Qs(std) = 17.64 x 0.979 x -------------------- x 15613 529.4 Qs(std) =15187 Where: Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 3/22/20193:59 PM 022619 CBed IN 1-3 145 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I = ----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 529 x 54.721 I = -------------------------------------------------- = 93.9 41.3 x 96 x 29.81 x 0.979 x (0.215)^2 Where: I = Percent of isokinetic sampling. O = Total sampling time, minutes. Dn = Diameter of nozzle, inches. 17.327 = Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 3/22/20193:59 PM 022619 CBed IN 1-3 146 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 APPENDIX E EQUIPMENT CALIBRATION RECORDS 147 Date: 12/4/14-12/5/14Analyzer Type: Servomex - O2Model No: 4900Serial No: 49000-652921Calibration Span: 21.09 %Pollutant: 21.09% O2 - CC418692 CO2 (30.17% CC199689)0.00 -0.01 0.00 . NO (445 ppm CC346681)0.00 0.02 0.11 NO2 (23.78 ppm CC500749)NA NA NA N2O (90.4 ppm CC352661)0.00 0.05 0.24 CO (461.5 ppm XC006064B)0.00 0.02 0.00 SO2 (451.2 ppm CC409079)0.00 0.05 0.23 CH4 (453.1 ppm SG901795)NA NA NA H2 (552 ppm ALM048043)0.00 0.09 0.44 HCl (45.1 ppm CC17830)0.00 0.03 0.14 NH3 (9.69 ppm CC58181)0.00 0.01 0.03 1.20 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) 148 Date: 12/4/14-12/5/14Analyzer Type: Servomex - CO2Model No: 4900Serial No: 49000-652921Calibration Span: 16.65%Pollutant: 16.65% CO2 - CC418692 CO2 (30.17% CC199689)NA NA NA . NO (445 ppm CC346681)0.00 0.02 0.10 NO2 (23.78 ppm CC500749)0.00 0.00 0.02 N2O (90.4 ppm CC352661)0.00 0.01 0.04 CO (461.5 ppm XC006064B)0.00 0.01 0.00 SO2 (451.2 ppm CC409079)0.00 0.11 0.64 CH4 (453.1 ppm SG901795)0.00 0.07 0.44 H2 (552 ppm ALM048043)0.00 0.04 0.22 HCl (45.1 ppm CC17830)0.10 0.06 0.60 NH3 (9.69 ppm CC58181)0.00 0.02 0.14 2.19 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) 149 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number: E03NI79E15A00E4 Reference Number: 82-401288926-1 Cylinder Number: CC18055 Cylinder Volume: 150.5 CF Laboratory: 124 - Riverton (SAP) - NJ Cylinder Pressure: 2015 PSIG PGVP Number: B52018 Valve Outlet: 590 Gas Code:CO2,O2,BALN Certification Date: Sep 04, 2018 Expiration Date:Sep 04, 2026 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 9.000 %8.864 %G1 +/- 0.7% NIST Traceable 09/04/2018 OXYGEN 12.00 %12.00 %G1 +/- 0.4% NIST Traceable 09/04/2018 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 13060629 CC413730 13.359 % CARBON DIOXIDE/NITROGEN +/- 0.6%May 09, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Aug 09, 2018 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Aug 09, 2018 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401288926-1150 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number: E03NI62E15A0224 Reference Number: 82-401044874-1 Cylinder Number: SG9169108 Cylinder Volume: 157.2 CF Laboratory: 124 - Riverton (SAP) - NJ Cylinder Pressure: 2015 PSIG PGVP Number: B52017 Valve Outlet: 590 Gas Code:CO2,O2,BALN Certification Date: Nov 18, 2017 Expiration Date:Nov 18, 2025 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 17.00 %16.58 %G1 +/- 0.7% NIST Traceable 11/18/2017 OXYGEN 21.00 %21.00 %G1 +/- 0.5% NIST Traceable 11/18/2017 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 12061336 CC360792 11.002 % CARBON DIOXIDE/NITROGEN +/- 0.6%Jan 11, 2018 NTRM 09061415 CC273526 22.53 % OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Oct 30, 2017 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Oct 27, 2017 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401044874-1151 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.46 PASS Distance to B Plane (PB) - inches 0.46 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.8 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.004 0.015 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-694 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A B Q1 Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 152 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.453 PASS Distance to B Plane (PB) - inches 0.453 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.87 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.012 0.022 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-710 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 153 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.45 PASS Distance to B Plane (PB) - inches 0.45 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.79 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.006 0.012 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-706 KS Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 154 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN CARBON BED INLET METER BOX NO. 28 2/26/2019 - 2/28/2019 & 3/1/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.58.7 74.0 60.2 Tma = Ts + 460 Tma = 58.71 + 460 Tma = 518.71 533.96 520.17 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.33 1.31 1.27 Pb = Barometric Pressure, in Hg.30.29 30.20 30.22 Pm = Pb + (delta H / 13.6) Pm = 30.29 + ( 1.32916666666667 / 13.6) Pm = 30.39 30.30 30.31 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.52.809 56.260 55.079 Y = Dry gas meter calibration factor (based on full calibration)1.0027 1.0027 1.0027 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.2.0895 2.0895 2.0895 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.1497 1.1436 1.1235 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 52.81 ) * SQRT ( 0.0319 * 518.71 * 29 ) / ( 2.09 * 30.39 * 28.84 ) * 1.15 Yqa = 1.818 * SQRT 479.857 / 1,831.083 * 1.15 Yqa = 1.070 1.015 1.005 Diff = Absolute difference between Yqa and Y 6.71 1.23 0.23 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0027 - 1.070 ) / 1.0027 ) * 100 Average Diff = 2.72 Allowable = 5.0 4/3/201910:30 AM 022619 CBed IN 1-3155 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN CARBON BED OUTLET METER BOX NO. WC22 2/26/2019 - 2/28/2019 & 3/1/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.60.2 79.4 63.3 Tma = Ts + 460 Tma = 60.21 + 460 Tma = 520.21 539.38 523.25 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.61 1.65 1.64 Pb = Barometric Pressure, in Hg.30.29 30.20 30.22 Pm = Pb + (delta H / 13.6) Pm = 30.29 + ( 1.60791666666667 / 13.6) Pm = 30.41 30.32 30.34 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.54.493 55.964 55.596 Y = Dry gas meter calibration factor (based on full calibration)1.0010 1.0010 1.0010 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.2.4674 2.4674 2.4674 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.2420 1.2604 1.2575 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 54.49 ) * SQRT ( 0.0319 * 520.21 * 29 ) / ( 2.47 * 30.41 * 28.84 ) * 1.24 Yqa = 1.762 * SQRT 481.245 / 2,163.670 * 1.24 Yqa = 1.0319 1.0398 1.0283 Diff = Absolute difference between Yqa and Y 3.09 3.88 2.73 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.001 - 1.032 ) / 1.001 ) * 100 Average Diff = 3.23 Allowable = 5.0 4/3/201910:32 AM 022619 CBed OUT 1-3156 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 APPENDIX F LIST OF PROJECT PARTICIPANTS 157 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT FEB 2019-AMD 4/10/2019 The following WESTON employees participated in this project. Paul Meeter Senior Project Manager Jeff O’Neill Robert Scroggins Team Member Jacob Little Team Member Kris Ansley Team Member Austin Squires Team Member 158 Team Member