Loading...
HomeMy WebLinkAbout2019.04.10_CCO.p8_Fluoromonomers Manufacturing Process Division Stack And Blower Intake Emissions Test ReportIASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 FLUOROMONOMERS MANUFACTURING PROCESS DIVISION STACK AND BLOWER INTAKE EMISSIONS TEST REPORT TEST DATES: 26-28 FEBRUARY, 1 MARCH 2019 THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA Prepared for: THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306 Prepared by: WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380 April 2019 W.O. No. 15418.002.010 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 i TABLE OF CONTENTS Section Page 1. INTRODUCTION..............................................................................................................1  1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1  1.2 TEST OBJECTIVES ...............................................................................................1  1.3 TEST PROGRAM OVERVIEW .............................................................................1  2. SUMMARY OF TEST RESULTS ...................................................................................3  3. PROCESS DESCRIPTIONS ............................................................................................5  3.1 FLUOROMONOMERS ..........................................................................................5  3.2 PROCESS OPERATIONS AND PARAMETERS .................................................5  4. DESCRIPTION OF TEST LOCATIONS .......................................................................7  4.1 DIVISION STACK ..................................................................................................7  4.2 BLOWER INTAKE .................................................................................................9  5. SAMPLING AND ANALYTICAL METHODS ...........................................................11  5.1 STACK GAS SAMPLING PROCEDURES .........................................................11  5.1.1 Pre-Test Determinations .........................................................................11  5.2 STACK PARAMETERS .......................................................................................11  5.2.1 EPA Method 0010...................................................................................11  5.2.2 EPA Method 0010 Sample Recovery .....................................................14  5.2.3 EPA Method 0010 Sample Analysis.......................................................17  5.3 GAS COMPOSITION ...........................................................................................18  6. DETAILED TEST RESULTS AND DISCUSSION .....................................................20  APPENDIX A PROCESS OPERATIONS DATA APPENDIX B RAW AND REDUCED TEST DATA APPENDIX C LABORATORY ANALYTICAL REPORT APPENDIX D SAMPLE CALCULATIONS APPENDIX E EQUIPMENT CALIBRATION RECORDS APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 ii LIST OF FIGURES Title Page Figure 4-1 Division Stack Test Port and Traverse Point Location ................................................ 8  Figure 4-2 Blower Intake Sampling Location .............................................................................. 10  Figure 5-1 EPA Method 0010 Sampling Train ............................................................................. 13  Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 16  Figure 5-3 WESTON Sampling System ...................................................................................... 19  IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 iii LIST OF TABLES Title Page Table 1-1 Sampling Plan for Division Stack and Blower Intake Testing ....................................... 2  Table 2-1 Summary of Division Stack HFPO Dimer Acid Test Results ........................................ 3  Table 2-2 Summary of Division Stack and Blower Intake HFPO Dimer Acid Test Results ......... 4  Table 3-1 Test Campaign Process Conditions ................................................................................ 6  Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Division Stack – Runs 1-8 ............................................................................................................................................... 21  Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Blower Intake – Runs 1-8 ............................................................................................................................................... 23  IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 1 1. INTRODUCTION 1.1 FACILITY AND BACKGROUND INFORMATION The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse. Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid, emission testing on the Division Stack at the facility. Simultaneously, ambient air sampling was conducted at the Blower Intake. Testing was performed on 26-28 February and 1 March 2019 and generally followed the “Emission Test Protocol” reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program. 1.2 TEST OBJECTIVES The specific objectives for this test program were as follows:  Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the Division stack which is located in the Fluoromonomers process area.  Measure the ambient air concentration of HFPO Dimer Acid Fluoride at the Blower Intake which supplies room air to the Fluoromonomers process building.  Monitor and record process and emissions control data in conjunction with the test program.  Provide representative emissions data. 1.3 TEST PROGRAM OVERVIEW During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured at two locations. Table 1-1 provides a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 2 Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test location. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6. Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data package is provided in electronic format and on CD with each hard copy. Table 1-1 Sampling Plan for Division Stack and Blower Intake Testing Sampling Point & Location Division Stack and Blower Intake Number of Tests: 16 (8 Division Stack, 8 Blower Intake) Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests EPA M3/3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size ≥ 1.5m3 NA NA NA NA Total Number of Samples Collected1 16 8 8 8 8 Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0 Field Blank Trains1 0 per source 0 0 0 0 Proof Blanks1 1 per train 0 0 0 0 Trip Blanks1,2 1 set 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 205 8 8 8 8 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 3 2. SUMMARY OF TEST RESULTS A total of eight test runs each were performed on the Division Stack and Blower Intake. Table 2- 1 provides a summary of the HFPO Dimer Acid emissions test results. The Blower Intake sample location only measured the HFPO Dimer Acid concentrations of ambient air entering the blower. Table 2-2 provides a comparison of the HFPO Dimer Acid concentrations at the Blower Intake and the Division Stack. Detailed test results summaries are provided in Section 6. It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and 2-2, and in this report, include a percentage of each of the three compounds. Table 2-1 Summary of Division Stack HFPO Dimer Acid Test Results Source Run No. Emission Rates g/sec lb/hr Division Stack 1 1.47E-02 1.17E-01 2 1.96E-03 1.56E-02 3 1.36E-03 1.08E-02 4 1.51E-02 1.20E-01 5 1.91E-02 1.51E-01 6 5.30E-03 4.21E-02 7 1.32E-02 1.05E-01 8 2.20E-03 1.75E-02 Average 9.12E-03 7.24E-02 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 4 Table 2-2 Summary of Division Stack and Blower Intake HFPO Dimer Acid Test Results Run No. Division Stack Blower Intake lb/dscf lb/dscf 1 6.87E-08 1.55E-11 2 9.22E-09 7.66E-12 3 6.41E-09 1.31E-11 4 7.06E-08 1.07E-11 5 8.87E-08 1.22E-11 6 2.44E-08 5.79E-11 7 6.01E-08 1.41E-11 8 1.00E-08 6.17E-12 Average 4.23E-08 1.72E-11 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 5 3. PROCESS DESCRIPTIONS The Fluoromonomers area is included in the scope of this test program. 3.1 FLUOROMONOMERS These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers. Process emissions are vented to the Division waste gas scrubber system (which includes the secondary scrubber) and vents to the Carbon Bed and then onto the Division Stack. The Blower Intake is located on the rooftop of the Fluormonomers Process building and provides room air to the building’s HVAC system. The VE North building air systems are also vented to the Carbon Bed and connected to the Tower Exhaust Blower. 3.2 PROCESS OPERATIONS AND PARAMETERS The following table is a summary of the operation and products from the specific areas tested. Source Operation/Product Batch or Continuous Division PPVE Condensation is a continuous. Agitated Bed Reactor and Refining are batch. During the test program, the following parameters were monitored by Chemours and are included in Appendix A.  Fluoromonomers Process o VEN Precurser Rate o VEN Condensation Rate o VEN ABR Rate IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 6 The following table provides a summary of the process conditions established for each of the eight test runs: Table 3-1 Test Campaign Process Conditions Run No. Date ABR 1 2/26/19 Feeding 2 2/26/19 Burnout 3 2/27/19 Off 4 2/27/19 Feeding 5 2/28/19 Feeding 6 2/28/19 Burnout 7 3/1/19 Feeding 8 3/1/19 Burnout IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 7 4. DESCRIPTION OF TEST LOCATIONS 4.1 DIVISION STACK Two 6-inch ID test ports were installed on the 36-inch ID fiberglass stack as shown below. The four vents that enter the top of the stack and the one vent ~11 feet below are catch pots which, under normal process operations, do not discharge to the stack. They are used to vent process gas to the stack in the event of a process upset and are not considered a flow contributor or a disturbance. Per EPA Method 1, a total of 12 traverse points (six per axis) were used for M-0010 isokinetic sampling. Figure 4-1 provides a schematic of the test ports and traverse point locations. Location Distance from Flow Disturbance Downstream (B) Upstream (A) Division Stack 30 feet > 10 duct diameters 9 feet > 3 diameters 36 " TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 FIGURE 4-1 DIVISION STACK TEST PORT AND TRAVERSE POINT LOCATIONS IASDATA\CHEMOURS\15418.002.010\FIGURE 4-1 DIVISION STACK8 ~ 9 ' BUILDING EXHAUST ID FAN DISCHARGE CATCH POT ~ ~ ~ ~~~~~ CATCH POT VENTS DRAWING NOT TO SCALE ~ 30 ' ~ 128 " 1 5/8 5 3/8 10 7/8 26 31 5/8 33 3/8 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 9 4.2 BLOWER INTAKE The Blower Intake is shown in Figure 4-2. Several air filters are located inside of the metal housing prior to the blower. The underside of the Blower Intake housing is open to allow the free flow of air into the system. The Method 0010 sample train probe was located below the metal housing and close to the inlet of the air filters. 10 Figure 4-2 Blower Intake Sampling Location IASDATA\CHEMOURS\15418.002.010\FIGURE 4-2 DIVISION STACK IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 11 5. SAMPLING AND ANALYTICAL METHODS 5.1 STACK GAS SAMPLING PROCEDURES The purpose of this section is to describe the stack gas emissions sampling trains and to provide details of the stack sampling and analytical procedures utilized during the emissions test program. The sample train used at the Blower Intake location was the same configuration as the standard Method 0010 described below. However, the sample train was only positioned at a single location below the Blower Intake air filters, was not moved during the test, and was sampled at a constant rate. 5.1.1 Pre-Test Determinations Preliminary test data were obtained at each test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements. A check for the presence or absence of cyclonic flow was previously conducted at the test location. The cyclonic flow checks were negative (< 20°) verifying that the test location was acceptable for testing. Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures. Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures. 5.2 STACK PARAMETERS 5.2.1 EPA Method 0010 The sampling train utilized to perform the HFPO Dimer Acid sampling at the outlet location was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 12 that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter. VENTWALLICE WATER RECIRCULATION PUMPCONDENSATE TRAPIMPINGERSICE BATHVACUUM LINEMAINVALVETEMPERATURESENSORSBY-PASS VALVEAIR-TIGHT PUMPDRY GAS METERORIFICEMANOMETERCHECKVALVETEMPERATURESENSORHEATED AREAFILTER HOLDERORIFICESILICA GELCONDENSERXAD-2 SORBENTMODULES ONE AND TWOTEMPERATURESENSORTEMPERATURESENSORVACUUMGAUGEIASDATA\CHEMOURS\15418.002.010\FIGURE 5-1 METHOD 0010FIGURE 5-1EPA METHOD 0010 SAMPLING TRAINHEATED PROBE/BUTTON HOOKNOZZLEREVERSE TYPEPITOT TUBE13 NOTE: THE CONDENSER MAY BE POSITIONED HORIZONTALLY. THE XAD-2 SORBENT MODULE WILL ALWAYS BE IN A VERTICAL POSITION..RIGID BOROSILICATE TUBINGOR FLEXIBLE SAMPLE LINEICE WATERRECIRCULATIONCONDENSATE TRAPIMPINGER IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 14 A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 g of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and both XAD-2 modules to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train. HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid. During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes. 5.2.2 EPA Method 0010 Sample Recovery At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery. A consistent procedure was employed for sample recovery: IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 15 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled. 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments. 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remains. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed. 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.   5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed. 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.   7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed. 8. The silica gel in the final impinger was weighed and the weight gain value recorded. 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis. Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool. See Figure 5-2 for a schematic of the Method 0010 sample recovery process. IASDATA\CHEMOURS\15418.002.010\FIGURE 5-2 EPA 0010FIGURE 5-2HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010NOZZLE, PROBE ANDFRONT-HALF FILTER HOLDERSAMPLE FRACTION 2FILTERSAMPLE FRACTION 1BACK-HALF FILTER HOLDER CONNECTORS, FLEXIBLE LINE CONDENSER SAMPLE FRACTION 5XAD-2 MODULE ONESAMPLE FRACTION 3REMOVE FROM IMPINGER TRAINWASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDESEAL IN LABELED POLYETHYLENE BOTTLE. COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLWASH WHILE BRUSHING WITH NANOGRADE METHANOL/ AMMONIUM HYDROXIDESEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOLTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLSEAL WASHINGS IN LABELED POLYETHYLENE BOTTLE. MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 4IMPINGER NO. 4 (SILICA GEL)WEIGH AND RECORDMEASURE VOLUME OF LIQUID AND RECORDTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOL16WEIGH AND RECORDRETAIN FOR REGENERATIONFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 6WASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDETRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLXAD-2 MODULE TWOSAMPLE FRACTION 7REMOVE FROM IMPINGER TRAINSEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOL IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 17 5.2.3 EPA Method 0010 Sample Analysis Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:  Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;  Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;  Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;  Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers. The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough. The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS. Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries. TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol. IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 18 5.3 GAS COMPOSITION The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3. The sample was collected at the exhaust of the Method 0010 sampling system. At the end of the line, a tee permitted the introduction of calibration gas. The sample was drawn through a heated Teflon® sample line to the sample conditioner. The output from the sampling system was recorded electronically, and one minute averages were recorded and displayed on a data logger. Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintained the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment. The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to insure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier. The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run. HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDER OR METHOD0010 SAMPLE TRAINHEATED SAMPLE LINESAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISTIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-3WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.010\FIGURE 5-3 WESTON SAMPLING SYSTEM219 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 20 6. DETAILED TEST RESULTS AND DISCUSSION Each test was a minimum of 96 minutes in duration. A total of eight test runs were performed at each location. Tables 6-1 and 6-2 provide detailed test data and test results for the Division stack and Blower Intake, respectively. The Method 3A sampling indicated that the O2 and CO2 concentrations were at ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all calculations. TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK Test Data Run number 1 2 3 Location Divison Stack Divison Stack Divison Stack Date 2/26/19 2/26/19 2/27/19 Time period 0927-1143 1335-1530 0840-1035 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.160 0.160 0.160 Cross sectional nozzle area, sq.ft.0.000140 0.000140 0.000140 Barometric pressure, in. Hg 30.19 30.10 30.12 Avg. orifice press. diff., in H2O 1.05 1.04 1.01 Avg. dry gas meter temp., deg F 68.7 74.3 54.8 Avg. abs. dry gas meter temp., deg. R 529 534 515 Total liquid collected by train, ml 25.2 20.2 18.7 Std. vol. of H2O vapor coll., cu.ft.1.2 1.0 0.9 Dry gas meter calibration factor 1.0069 1.0069 1.0069 Sample vol. at meter cond., dcf 52.225 52.835 51.040 Sample vol. at std. cond., dscf (1)53.107 53.006 53.177 Percent of isokinetic sampling 99.0 99.3 99.8 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.1 0.1 0.1 O2, % by volume, dry basis 20.8 20.8 20.8 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.85 28.85 28.85 H20 vapor in gas stream, prop. by vol.0.022 0.018 0.016 Mole fraction of dry gas 0.978 0.982 0.984 Molecular wt. of wet gas, lb/lb mole 28.61 28.66 28.67 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -0.70 -0.70 -0.70 Absolute pressure, in. Hg 30.14 30.05 30.07 Avg. temperature, deg. F 65 73 70 Avg. absolute temperature, deg.R 525 533 530 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 12 12 12 Avg. gas stream velocity, ft./sec.67.3 68.0 67.4 Stack/duct cross sectional area, sq.ft.7.07 7.07 7.07 Avg. gas stream volumetric flow, wacf/min.28544 28827 28576 Avg. gas stream volumetric flow, dscf/min.28291 28170 28117 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/2/2019 4:03 PM 21 02262019 Division 1-3 TEST DATA Run number 1 2 3 Location Divison Stack Divison Stack Divison Stack Date 2/26/19 2/26/19 2/27/19 Time period 0927-1143 1335-1530 0840-1035 CONDITION ABR Op. Burnout Run ABR Off LABORATORY REPORT DATA, ug. HFPO Dimer Acid 1656.00 221.72 154.60 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 1100.95 147.68 102.65 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 6.87E-08 9.22E-09 6.41E-09 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 1.17E-01 1.56E-02 1.08E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 1.47E-02 1.96E-03 1.36E-03 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK 4/10/2019 9:44 AM 22 02262019 Division 1-3 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK Test Data Run number 4 5 6 Location Divison Stack Divison Stack Divison Stack Date 2/27/19 2/28/19 2/28/19 Time period 1231-1426 0823-1018 1429-1627 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.160 0.160 0.160 Cross sectional nozzle area, sq.ft.0.000140 0.000140 0.000140 Barometric pressure, in. Hg 30.17 29.85 29.85 Avg. orifice press. diff., in H2O 1.06 0.98 1.10 Avg. dry gas meter temp., deg F 73.8 59.0 69.7 Avg. abs. dry gas meter temp., deg. R 534 519 530 Total liquid collected by train, ml 30.5 16.9 26.5 Std. vol. of H2O vapor coll., cu.ft.1.4 0.8 1.2 Dry gas meter calibration factor 1.0069 1.0069 1.0069 Sample vol. at meter cond., dcf 52.690 50.670 53.878 Sample vol. at std. cond., dscf (1)53.032 51.887 54.077 Percent of isokinetic sampling 98.6 96.3 99.2 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.1 0.1 0.1 O2, % by volume, dry basis 20.8 20.8 20.8 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.85 28.85 28.85 H20 vapor in gas stream, prop. by vol.0.026 0.015 0.023 Mole fraction of dry gas 0.974 0.985 0.977 Molecular wt. of wet gas, lb/lb mole 28.56 28.68 28.60 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -0.70 -0.70 -0.70 Absolute pressure, in. Hg 30.12 29.80 29.80 Avg. temperature, deg. F 75 70 76 Avg. absolute temperature, deg.R 535 530 536 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 12 12 12 Avg. gas stream velocity, ft./sec.69.2 68.6 70.8 Stack/duct cross sectional area, sq.ft.7.07 7.07 7.07 Avg. gas stream volumetric flow, wacf/min.29366 29099 30020 Avg. gas stream volumetric flow, dscf/min.28382 28433 28771 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/2/2019 4:06 PM 23 02262019 Division 4-6 TEST DATA Run number 4 5 6 Location Divison Stack Divison Stack Divison Stack Date 2/27/19 2/28/19 2/28/19 Time period 1231-1426 0823-1018 1429-1627 CONDITION ABR Op. ABR Op. Burnout Run LABORATORY REPORT DATA, ug. HFPO Dimer Acid 1699.08 2087.79 598.04 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 1131.18 1420.66 390.46 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 7.06E-08 8.87E-08 2.44E-08 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 1.20E-01 1.51E-01 4.21E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 1.51E-02 1.91E-02 5.30E-03 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK 4/10/2019 9:52 AM 24 02262019 Division 4-6 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK Test Data Run number 7 8 Location Divison Stack Divison Stack Date 3/01/19 3/01/19 Time period 0813-1008 1237-1433 SAMPLING DATA: Sampling duration, min.96.0 96.0 Nozzle diameter, in.0.160 0.160 Cross sectional nozzle area, sq.ft.0.000140 0.000140 Barometric pressure, in. Hg 29.99 29.99 Avg. orifice press. diff., in H2O 1.08 1.10 Avg. dry gas meter temp., deg F 53.9 64.9 Avg. abs. dry gas meter temp., deg. R 514 525 Total liquid collected by train, ml 16.9 24.9 Std. vol. of H2O vapor coll., cu.ft.0.8 1.2 Dry gas meter calibration factor 1.0069 1.0069 Sample vol. at meter cond., dcf 52.282 53.575 Sample vol. at std. cond., dscf (1)54.339 54.518 Percent of isokinetic sampling 98.3 98.9 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.1 0.1 O2, % by volume, dry basis 20.8 20.8 N2, % by volume, dry basis 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.85 28.85 H20 vapor in gas stream, prop. by vol.0.014 0.021 Mole fraction of dry gas 0.986 0.979 Molecular wt. of wet gas, lb/lb mole 28.69 28.62 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -0.70 -0.70 Absolute pressure, in. Hg 29.94 29.94 Avg. temperature, deg. F 66 71 Avg. absolute temperature, deg.R 526 531 Pitot tube coefficient 0.84 0.84 Total number of traverse points 12 12 Avg. gas stream velocity, ft./sec.69.4 70.5 Stack/duct cross sectional area, sq.ft.7.07 7.07 Avg. gas stream volumetric flow, wacf/min.29452 29901 Avg. gas stream volumetric flow, dscf/min.29166 29094 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/2/2019 4:38 PM 25 02262019 Division 7-8 TEST DATA Run number 7 8 Location Divison Stack Divison Stack Date 3/01/19 3/01/19 Time period 0813-1008 1237-1433 CONDITION ABR Op. Burnout Run LABORATORY REPORT DATA, ug. HFPO Dimer Acid 1480.24 248.02 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 961.80 160.62 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 6.01E-08 1.00E-08 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 1.05E-01 1.75E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 1.32E-02 2.20E-03 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK 4/10/2019 10:19 AM 26 02262019 Division 7-8 TABLE 6-2 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS BLOWER INTAKE Test Data Run number 1 2 3 Location Blower Intake Blower Intake Blower Intake Date 2/26/19 2/26/19 2/27/19 Time period 0927-1143 1335-1530 0840-1035 SAMPLING DATA: Sampling duration, min.135.0 115.0 115.0 Nozzle diameter, in.0.365 0.365 0.365 Cross sectional nozzle area, sq.ft.0.000727 0.000727 0.000727 Barometric pressure, in. Hg 29.29 30.20 30.22 Avg. orifice press. diff., in H2O 3.00 3.00 3.00 Avg. dry gas meter temp., deg F 60.4 78.3 65.1 Avg. abs. dry gas meter temp., deg. R 520 538 525 Total liquid collected by train, ml 27.6 27.5 29.4 Std. vol. of H2O vapor coll., cu.ft.1.3 1.3 1.4 Dry gas meter calibration factor 1.0100 1.0100 1.0100 Sample vol. at meter cond., dcf 128.621 109.397 107.605 Sample vol. at std. cond., dscf (1)129.951 110.154 111.132 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.010 0.012 0.012 Mole fraction of dry gas 0.990 0.988 0.988 Molecular wt. of wet gas, lb/lb mole 28.73 28.71 28.70 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/2/2019 4:41 PM 27 02262019 Blower Intake 1-3 TEST DATA Run number 1 2 3 Location Blower Intake Blower Intak Blower Intake Date 2/26/19 2/26/19 2/27/19 Time period 0927-1143 1335-1530 0840-1035 CONDITION ABR Op. Burnout Run ABR Off LABORATORY REPORT DATA, ug. HFPO Dimer Acid 0.92 0.38 0.66 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 0.25 0.12 0.21 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 1.55E-11 7.66E-12 1.31E-11 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS BLOWER INTAKE 4/10/2019 10:54 AM 28 02262019 Blower Intake 1-3 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS BLOWER INTAKE Test Data Run number 4 5 6 Location Blower Intake Blower Intake Blower Intake Date 2/27/19 2/28/19 2/28/19 Time period 1231-1426 0823-1018 1429-1627 SAMPLING DATA: Sampling duration, min.115.0 0.6 118.0 Nozzle diameter, in.0.365 0.365 0.365 Cross sectional nozzle area, sq.ft.0.000727 0.000727 0.000727 Barometric pressure, in. Hg 30.17 29.95 29.95 Avg. orifice press. diff., in H2O 3.00 3.00 3.00 Avg. dry gas meter temp., deg F 73.6 63.4 81.8 Avg. abs. dry gas meter temp., deg. R 534 523 542 Total liquid collected by train, ml 45.9 40.7 36.4 Std. vol. of H2O vapor coll., cu.ft.2.2 1.9 1.7 Dry gas meter calibration factor 1.0100 1.0100 1.0100 Sample vol. at meter cond., dcf 106.883 106.308 110.497 Sample vol. at std. cond., dscf (1)108.454 109.171 109.630 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.020 0.017 0.015 Mole fraction of dry gas 0.980 0.983 0.985 Molecular wt. of wet gas, lb/lb mole 28.62 28.65 28.67 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/2/2019 4:43 PM 29 02262019 Blower Intake 4-6 TEST DATA Run number 4 5 6 Location Blower Intake Blower Intake Blower Intake Date 2/27/19 2/28/19 2/28/19 Time period 1231-1426 0823-1018 1429-1627 CONDITION ABR Op. ABR Op. Burnout Run LABORATORY REPORT DATA, ug. HFPO Dimer Acid 0.53 0.60 2.88 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 0.17 0.19 0.93 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 1.07E-11 1.22E-11 5.79E-11 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS BLOWER INTAKE 4/10/2019 10:57 AM 30 02262019 Blower Intake 4-6 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS BLOWER INTAKE Test Data Run number 7 8 Location Blower Intake Blower Intake Date 3/1/19 3/1/19 Time period 0813-1008 1237-1433 SAMPLING DATA: Sampling duration, min.115.0 115.0 Nozzle diameter, in.0.365 0.365 Cross sectional nozzle area, sq.ft.0.000727 0.000727 Barometric pressure, in. Hg 30.09 30.09 Avg. orifice press. diff., in H2O 3.00 3.00 Avg. dry gas meter temp., deg F 61.0 70.2 Avg. abs. dry gas meter temp., deg. R 521 530 Total liquid collected by train, ml 32.5 36.0 Std. vol. of H2O vapor coll., cu.ft.1.5 1.7 Dry gas meter calibration factor 1.0100 1.0100 Sample vol. at meter cond., dcf 105.079 106.831 Sample vol. at std. cond., dscf (1)108.916 108.807 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.014 0.015 Mole fraction of dry gas 0.986 0.985 Molecular wt. of wet gas, lb/lb mole 28.69 28.67 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 4/2/2019 4:45 PM 31 02262019 Blower Intake 7-8 TEST DATA Run number 7 8 Location Blower Intake Blower Intake Date 3/1/19 3/1/19 Time period 0813-1008 1237-1433 CONDITION ABR Op. Burnout Run LABORATORY REPORT DATA, ug. HFPO Dimer Acid 0.69 0.30 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 0.23 0.10 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 1.41E-11 6.17E-12 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS BLOWER INTAKE 4/10/2019 10:58 AM 32 02262019 Blower Intake 7-8 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 APPENDIX A PROCESS OPERATIONS DATA 33 DateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowDateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowPPVE15000 kg/h75 kg/h98 kg/h140 kg/h125 kg/h145 kg/h1300140015001600Run 3Run 42/26/20198009001000110012002/27/2019Burnout15000 kg/h125 kg/h105 kg/h90 kg/h70 kg/h140015001600Run 1Run 2PPVE800900100011001200130034 DateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowDateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet Flow15000 kg/h120 kg/h80 kg/h 60 kg/h3/1/2019PPVEBurnout1300140015001600Run 7Run 82/28/2019800900100011001200Burnout15000 kg/h125 kg/h100 kg/h140015001600Run 5Run 6PPVE800900100011001200130035 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 APPENDIX B RAW AND REDUCED TEST DATA 36 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS DIVISION STACK Test Data Run number 1 2 3 Location Divison Stack Divison Stack Divison Stack Date 2/26/19 2/26/19 2/27/19 Time period 0927-1143 1335-1530 0840-1035 Operator MW MW MW Inputs For Calcs. Sq. rt. delta P 1.20126 1.20298 1.19608 Delta H 1.0488 1.0367 1.0107 Stack temp. (deg.F)64.7 72.8 70.3 Meter temp. (deg.F)68.7 74.3 54.8 Sample volume (act.)52.225 52.835 51.040 Barometric press. (in.Hg)30.19 30.10 30.12 Volume H2O imp. (ml)10.0 3.0 6.0 Weight change sil. gel (g)15.2 17.2 12.7 % CO2 0.1 0.1 0.1 % O2 20.8 20.8 20.8 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 7.070 7.070 7.070 Sample time (min.)96.0 96.0 96.0 Static pressure (in.H2O)-0.70 -0.70 -0.70 Nozzle dia. (in.)0.160 0.160 0.160 Meter box cal.1.0069 1.0069 1.0069 Cp of pitot tube 0.84 0.84 0.84 Traverse points 12 12 12 4/2/2019 4:28 PM 02262019 Division 1-3 37 !j ISOHINETIC FIELD DATA SI3EET EPA Method 0010 - HFPO Diener Acid Page~of~ a client Chemours Stack Conditions Meter eox io ~ K FactorW.O.# 15418 Assum2d Actual Meter Box Y ~ Project ID cnemours °ro nnoisture t~ . ~ Mecer eox Lei H $ ~ Initial Mid-Point Final Mode/Source ID Division Impinger Vol (ml)~J Probe ID /Length ~G~ ~ ,$~ ~ Sample Train (k')~ Samp. Loc. ID STK Silica gel (g) ~%t7 l,5, ~— Probe Material Boro Leak Check Q (in Hg)/ ~,,, t+ Run No.ID 1 CO2, % by Vol J Pitot /Thermocouple ID "] ^+,~ Pitot leak check good / ~o ! no / np Test Method ID M0010 02, % by Vol ~~ Pitot Coefficient 0.84 Pftot Inspect}on good / rto— P ~4 / no J Date ID n_..___n _ 25FE82019 e.~_..._.:__ ..._..... Temperature (°F) \I..~..~T....... iv~~r. . ~ NoaJe ID .. _. , ~~.~~7 Method 3 System good ~ R 1 / no / ~p / np ~uu~~x,~vcauun urvisrar ~~cR, ~~,~,a~ ~ =~~~N ~ ~ ~ ~ ~~ Nome nneasurements ~j 1 @(17P GhECK rre- i est Set F'OSt- I @St 58t Sample Date ~ (p Static Press (in H2O) ~~ D Av Noale Dia in\7 9 ~~) ~ Meter Box Temp ;Z,,, , Baro. Press (in Hg) 3 I Area of Stack (ft2) Reference Temp S Operator „ L y~ VAmbient Temp (°F) ~°"J^ y ~ Sample Time Pass/Fail (+/- 2°~ Fall a Fall Total Traverse Pts JL Temp Change Response ; ! no s no O'-r_ G~~ ~~~~~~~a~~~~~~~~~~~~ ~~~~~~~~«cfJ. ~~~~~'tL3~~i~~'~i'~~~7~~~~~~~~~bI7~-c~~~~7I,~~L''~i."~~~~~~~.'~~c~~~~'r:~~l~~L~~r ~~~~~ic~~t~/f►Z~~'L~i'~I~~:1.7~~~~+~~~~'~tlR~~~~. 'I~r~~i~~~`'~~~~ ~~1~`~i~~1~7~~~ ~~~,i~~E~i~~L]~..~~0~~~~D~~~~~~+ ►~l~.~3t~«i1~m~~l~!►l~~~m~ -L~~~~~J~~+ ~F~~~~d~~ii~[Z~I~7~~~DE~~~~~i7~~~~~~~~1~~t~i~3J ~~L+]~tl*7~l~~iDE~r~~ ~~~~~c~~:~s~■r~~~~~~a~~~~r~:.~~~m ..rmr~~~F~■~~~~~~~~«~,~ -~.~s~~rn~~~a~~~ i7~~~~6i~~~~~~7~~~~-r~~rlaE~~,iE~~~~~3'~J~~i~~«ii~~'1~3~J .•i7C~~~~ir.~~~~~1~ ~~ii~i~~!~~~~.1C~~~t'1'~~~~`'~0~~~~~~ia~UL'~i~i~~1~~r7C?~~~~~~i'~7~~0~~~ W~•T`~ ~~I K v,:ZSo .o~,~J Avg Sgrt Delta P Avg Sgrt Del H~ <,~a(~2 L~ t.a i 7.1a~' ..n.ni~a rvm umnn rvw m mun maJc vac~ ~~ ~~.~ ~m~lh'~ Ivy ~ S~9 y EPA Method 0010 from'EPA SW-846 J ~~~38 ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HF~O Diener Acid Page ~ CNent Chemours Stack Conditions ►v~eter eox io or~ w.o.#~sa~a Assumed Actual Meter Box Y K Factor b '~ I "~~Pro)ect Iv Chemours % nnoisture ~t Z, l.~Meter Box Del H L Initial Mid-Point FinalMode/Source ID Division Impinger Vol (mq ~Probe ID /Length ~j~~ay Sample Traln (ft3)(j ~'~~_ Samp. Loc. ID STK SiNca gel (g)j 7 Z Probe Material Boro Leak Check (c~ (in Hg)Fs ~+:"~'Run No.ID 2 CO2, % by Vol ~~pitot /Thermocouple ID (7~ Pitot leak check good / no (gyp / rpTest Method ID M0010 02, % by Vol ~ ~Pitot Coefficient 0.84 Pitot Inspection good / no / no / ~pDate ID So r /L ti 25FE82019 DI 'slort Star Temperature (°F) Meter Tem ("F) t- -a —'NonJe ID Method 3 System good yes / po ygs' / flo s / nou ce oca on vi k P Noale Measurements Q~ ~ Temp Check Pfe- est et Post- est etSample Date `^~.,._ ~(, Static Press (in HZO) _ , ~/ Avg NoaJe Dia (in) ~/ Meter Box TempBaro. Press (fn Hg)`_'~ 3 '0 ) p~~ Area of Stack (ft2) ~/ Reference Temp p ~yOperator y 1 Nmbient Temp l~F) ~' W ~ Sample Time Pass/Fail (+/- 2°~ ss Falf ~ /Fait 12, . _ t ..r 1~ti1 ~:~ Total Traverse Pts / ' Temo Change Response r / no r~, ~~~~.~~— ~l~v~i>1~~~~1~E~~~i~~l~~t~~~~~E1.'-'~~~~~17~~r,~~i~'~~~i~3~l~~Il.~~~~~~0~~i~~~~5~«~' ~f~~~/~~f~~~~~~~~~~i~~i~~~~~~~►~~~~~0~~ ~~~s~~~~«~~~~i~r- ~r~«~■~r~~ ~~~~~~Y~~~~rRr~~~~~p~- ~~~~~~~r~~a~~~~~~~r~r~~~~i~~~~~~.~~~nrr~~~r~r~~~r~~■~~r~~~~~~~R~~~~~i~~- -r~om~~~~~~R~~~~.~r.~~r~r~~~~~~~~m~~~rr~~~~~~~~~~~~•~0■~~~ ~"~~r~J~t~~■~i~~l~~I1~7/~~~fiit'~~~iis~~~~~fi~i1L'~F~~iII■~~• •~~l~~~~~5"F~~~~~i'~l~Z~~iZ'~~1:~~~~E~iO~~ ..~~.~._.~ I i ys ~J~JI.~, Avg Sgrt CJ ~~z~~ r.~ a - ~ ~~ sz ~ - ~s~ ~yAvg Sgrt Del H Comments: t~ x`12.2 r~ry rv~~~uman Inn ulvldR mdJl MdX V8C7'~ , 3 iof~ f63 ~~ ~~~3 H ~J ~( EPA Method 0010 from EPA SW-846 39 ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam ! o,~ client Chamours Stack Conditions nneter sox i~ K Factorw.o.# 15418 Assumed Actual Meter eox r ~ Project ID Chemours %Moisture ~ ~' Meter Box Del H 8 Initial Mid-Point FinalMode/Source ID Division Impinger Vol (ml) ~ Probe ID (Length Sample Train (ft3) ,, ~ Samp. Loc. ID STK Silica gel (g) _~, +-L_ Probe Material Bpro Leak Check @ (in Hg) G' ~ ~„ ~—Run No.ID 3 CO2, °/ by Vol d • ~ V Pitot /Thermocouple ID Pitot leak check good / no / ~q / ,rpTest Method ID MOD10 02, % by Vol PRot Coefficient 0.84 Pitot Inspection good / no / no ~ ~pDate ID 25FEB2019 Temperature (°F) Noale ID l~ Method 3 System good yes / no / np yes / ~pSource/Location Alvislon Stack Meter Temp ("F) ~„ , j u Noale Measurements i ~ u Temp Check re- est et oSt- eSt etSample Date Static Press (in HZO) •~•U, N Avg Noale Dia (in) ~ Meter Box Temp (~ Baro. Press (in Hg) ~ 2 Area of Stack (ft2) '~ J Reference Temp ~Operator ~ ~~c;t is Ambient Temp (°F) /}. , j ~'~' Sample Time C+ Pass/Fail (+/- p°~ as ` FSII ,fail Total Traverse Pts f ~ ~/ Temp Change Response i 1GAti no ~ no ~~~~~~:iC1'~'.~C.~G~t7-rte r~7~i~~~a~~~ ~~-~~~~ r ~`=ice ~~~~~- ~~~-~~~i ~~~~~- ~~~3a1~~~a '~GF~+~%~t~I~I1~~i~~lS.'~~ ~1~~L'~~~~~~i~[g7L'~~L'~=!~!~►»~~~~~del :~~' -~~`1~~~.7~rYr7 , .t~~~~0~~~~ ~~~~~ '~~~y ~M7~~~~- ~~-~~~+lbi ~~~'~~/l~~/~L~-~7!~~~1~~i~i~ fi/I/~~~irt~~L:i~~~~~-~ ~:flll~7~~~~~i~~ La~~ ~~~—~~ ~f[il'~~f!~~~~~~0~— i wi vu un vy i 5` '~ '~'~I I (07 1, c~ toy ~ , I ~,3~ Avg Sgrt DeR Avg Sgrt Del H Comments:'. Iq 6tr~ 9.~o taa J MI ax MINMax Max Max VacIlan fR3 Ih.~,r~ ~ 4~ i~ EPA'Method 0010'~rom EPA SW-846 ~~~40 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Client Location/Plant Chemours Fayetteville, NC W.O. # Source &Location Division Stack 15418 Run No. 1 Sample Date ~-~~ ~+~ Recovery Date Z~1~ Sample I.D. Chemours -Gas - STK - 1 - M0010 - Analyst ~j~ Filter Number /L►~ Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~C~~'t c~'~~~C~`'L Initial ~100 100 ~300 Gain Z ~''~3 ! ~~~ Z Impinger Color Labeled? 3 J ~~Silica Gel Condition Sealed? Run No. 2 Sample Date ~2~1~ Recovery Date ~'Z-~ ~`~ ~Sample I.D. Chemours -Gas - STK - 2 - M0010 - Analyst Filter Number /v~ Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final r "j ~i7. Initial i.~1 'goo goo ~soo Gain '~''~3 ~'3 ~1 l . Z Impinger Color ~•4~q,~r' Labeled? Silica Gel Condition dCio~ Sealed? Run No. 3 Sample Date 7~CZZ ~ ~ Recovery Date 2 2'~ Sample I.D. Chemours -Gas - STK - 3 - Mo010 - Analyst j~ ~'~' Filter Number Impinger 1 2 3 4 5 6 7 Imp.Total S Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~r3.~ 2., Initial ~100 100 (~300 Gain i ~j ^~'~']C2 Impinger Color '~"' Labeled? Silica Gel Condition ~9 d 4 Sealed? Check COC for Sample IDs of Media Blanks 41 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS DIVISION STACK Test Data Run number 4 5 6 Location Divison Stack Divison Stack Divison Stack Date 2/27/19 2/28/19 2/28/19 Time period 1231-1426 0823-1018 1429-1627 Operator MW MW MW Inputs For Calcs. Sq. rt. delta P 1.22215 1.21328 1.24262 Delta H 1.0642 0.9783 1.0988 Stack temp. (deg.F)75.2 69.8 76.1 Meter temp. (deg.F)73.8 59.0 69.7 Sample volume (act.)52.690 50.670 53.878 Barometric press. (in.Hg)30.17 29.85 29.85 Volume H2O imp. (ml)14.0 3.0 7.0 Weight change sil. gel (g)16.5 13.9 19.5 % CO2 0.1 0.1 0.1 % O2 20.8 20.8 20.8 % N2 79.1 79.1 79.1 Area of stack (sq.ft.) 7.070 7.070 7.070 Sample time (min.)96.0 96.0 96.0 Static pressure (in.H2O)-0.70 -0.70 -0.70 Nozzle dia. (in.)0.160 0.160 0.160 Meter box cal.1.0069 1.0069 1.0069 Cp of pitot tube 0.84 0.84 0.84 Traverse points 12 12 12 4/2/2019 4:29 PM 02262019 Division 4-6 42 ISOHINETIC FIELD DATA SHEET Client Chemours Stack Conditions w.o.#~5aha Assumed Protect ID Chemours %Moisture— ModeJSource ID Division Impinger Vol (ml) Samp. Loc. 1D STK Silica gel (g) Run No.ID 4 CO2, % by Vol ~ ~; Test Method ID M0010 02, % by Vol EPA Method 0 10 - HFPO Diener Acid Pam of Meter eox l0 2 K FactorActual Meter Box Y ~ 3 ~ ~i 3 'Meter Box Del H ~Z Initial Mid-Point Final{ Probe ID /Length Sample Train (ft') Probe Material 8oro Leak Check Q (In Hg) Pitot /Thermocouple ID Pitot leak check good Pitot Coefficient 0.84 Pitot Inspection good Date ID 25FEB2019 Temperature (F) ~y NoaJe ID (7 Method 3 System good Source/Locatlon DiWsion Stack Meter Temp ("F) ,r.s~Noale Measurements {p Temp Check re- 2S e OS - I es eSample Date '7 Static Press (in H2O) ~ ~y p Avg NoaJe Dia (in) ~ ~ ~Meter Box Temp Baro. Press (in Hg) -~ p `Area of Stack (ft2) '~:s, Li Reference Temp ! Operator ~ 4.Y .-(.Ambient Temp (°F) sj.. Vv Sample Tima Pass/Fafl (+/- z°~FaN Pass ' FaiF Total Traverse Pts `Temp Change Response i ~ no yes r~~ ir7E~~irl~.~i~►~t-»Y:~"g7~~7~~,~~~~1'~~~~iL'~~~~~~~~-~~/~i~f~~F~i~Il~3~I~i~~~~L'~~~~~~~~~~«n~~~~~r~~~t~~~~~~~~~ic~~~~~~IN!~G~ii37m~i►~~~~1~~~~~~~~~~~f~~~G~~~~~~i1~~~.~~L''1~0~ir~~ ~i'iL7~~~~~ii~,~ir'~Q+L~7~7~~LIE~L'L~~ ~~~~~~~G~~~~~~~~~~~i~~~~~~• '~ir~i~~'~.c~~i~'z-~~~i'~~ ~~—~~~~i_~i~~~iiiT/~La~L~~—~~~~i~~~— ~~—~~RW[~~R•1~~~~~~~~~m—~~~—~~/~LiY~~~~m~~m— ~~~~~~~~~r a~~~r~r~~~:a~~~~~a~p~~r~f~r~■~~...~_~_r~r~~~~~~~ . ~~ ~ I ~ j , ~~`~i I~Avg Sgrt Delta Avg Sgrt Del H l,aa~ ~ s I, bd~1a,4~ im3 .~Marx Max Vac 7 ti EPA Method EPA SW-846 ~ ~~~~d~j'~1~~► ~~~~ `~.rte: ' J ~43 ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid Page~or~ client Chemours Stack Conditions Meter Box ID w.o.#15418 Assumed Actual Meter Box Y Project ID Chemours %Moisture ~'; Meter Box Del H Mode/Source ID Division Impinger Vol (ml) ~ ~__ Probe ID /Length SBmp. Loc. ID STK SIAca gel (g)Probe Material Run No.ID 5 CO2, % by Vol U, ~Pitot !Thermocouple ID Test Method ID MQ010 02, % by Vol :Pitot Coefficient Date ID 25FEB2019 Temperature (°F)Noale ID Source/Location Divtslon Stack Meter Temp ("F)-~ S~NonJe Measurements Sample Date Static Press (in H2~~Avg Noale Dia (in) Baro. Press (in Hg)S Area of Stack (H2) Operator /~.7 Ambient Temp (°F)r~ ~3 Sample Time Total Traverse Pts ~2` ~~q, ~ K Factor ~~ 7~ `7 34 L Initial Mid-Point Final ,~ Sample Train (ft') Born Leak Check (a~ Qn Hg) S Pitot leak check good 0.84 Pitot Inspection good Method 3 System good ~ ~r ~Cr~1+I+7~~i~t. ~~~~~~~ Al~:L•Llr'a~~..~~~~~~~ r'+~"rr1s4~~~ ~, ((~ Mete Box Temp ~~e O ~ 11, Tem Check re- es et os - I e '7 , ~ ~ Reference Temp Q(7 Pass/Fail (+/- 2°) s ' FaN' P Fali Temp Change Response ; np ~ nr ~j~~~~~~i~,J~llJ~;~~~w~~~~~~-~- ~~~-~tr~t/~~a~~~~~~-'~ ~~~~~~~i~~r~~r~r~s~~■~~~~~~~■rr~r~~c~r~v~r~s~~~~~,~~~~~r~~~r7~~~f~1►~~~~~'aia~~iE~~~l~~i~~~~'~~5~-~IF~~~~''~i'~~~~~i7~~~b~~~•~~~~5r`'~~1~7L~~~~l~~~fll~ ~I~~~c-~~~~~: ,i~~k~i~..~~~~~~~~iT~~i~~l~~R~l~~iL'~cP~'~~~7~~afi~~l7~~~~'L~~~"~t'I~~ ~~~~~~~1l~'~~L'~f~~~7~/~F7~~A~~i'r~i"~~~~~~~~~i~~~~~~;era ~rr~a~i~~.a~ss~~~~~~s~~«~~~a~s~~~~z~~r~~~~~~■~~ ~~ ~~~~~rg Sgrt Delta Avg Sgrt Del~r3.~ c~.9~~~SC7 . Ei J 6 $ S`lm~ ,9 ti7L ~t /~~ JZ M~~c EPA Method 0010 from EPA SW-846 J_~,~~44 ISOHINETIC FIELD DATA SHEET Ci~ent Chemours Stack Conditions w.o.#X5418 Assumed Actual Project ID Chemours %Moisture / ' r Mode/Source ID Division Impinger Vol (ml) Samp. Loc. ID STK Silica gel (g) Run No.ID 6 CO2, % by Vol C Feec~rr~~;~ ice.- 13v, %t.n) 1c ~,~r—) EPA Method 0010 - HFPO Diener Acid Page or Meter Box ID Meter Box Y Meter Box Del H Probe ID !Length Probe Material Pitot /Thermocouple ID Test Method ID M0010 02, % by Vol ;Z , Pitot Ccefficfent Date ID 25FE82019 Temperature (°F) .!,~ Noale ID Source/Location Dials on Stack Meter Temp ("F) ~ Noale Measurements Sample Date Z ~? .,Static Press (In HZO) — ~ , ~'` Avg Noale Dia (In) Baro. Press (in Hg) ~ Area of Stack (ftZ) Operator ~ "' ( ,, Ambient Temp (°F) <~^ ~~ Sample Time ~ ~ ~;~ (S~ — ~ ~ ~'~ Total Treverse Pts L ~► '7 ~'7K Factor (. 8 1 Initial Mid-Point Final Sample Trafn (ft3) Boro Leak Check @ (in Hg) Pitot leak check good 0.84 Pitot Inspection good Method 3 System good s ,. A .x II ..~ r ~'S~2! ~~~'.`' _~~~'~:i ~ ~ Temp Check re- es e os - es e Meter Box Temp R ~ Reference Tamp Pass/Fail (+/- p°~ as / F8t( a /Fall Temp Change Response P ~o ye / rvi ~~~~~~~r~~r.~~e~m~.:~~r~~Qrr.~~~t~~r~c~~~~r+~.~~r~~ ~r~~~a~r~~~~~~o■~rr~~r~~~Q~r~ric~~■r~■~a~~~~~~■~~~~~~~~~~~~7 ~r~«r~f~~~ ~~~~~u~~~~~~~►~r~r~~~m~ ~~~~~~~~a~a~c~~~~r.~r~~~~■~~~~~~~r~~~i~~~u - : _f►z~r~r~»~~E~~~►~r ~►~~~~~~~,~~~ir..na~s~~z~r~r~~~~~~~i~~~~iK'~i~fh~?1~'T=~i~lirZ~r~~J~t=~c~s;~~i~~~~~~i~'~~~Sr~~~~ic~L'L'~I~~~1~!I,~7~~J~d~i'~~~ ~~l~i~~~~~~►~~■i'~~~~r~7~~~:~~c~t~~ ~~~'~ii~I~f1C~~l~~t.7il~l~!M[~~ ~I~.7~~~~~c~~~7~ '~'~l'J~~l~XFa~IF~~~i1~~JL~I~~I~]~~:~ii~~1~'c~~_ . 5~~ 5 v ~~ ~ ~o„ Avg Sgrt Delta Avg Sgrt DEr.~w~+~ ~ow~E J ,~A~ n h\~1 `~ i gym, vu'uuia~ hvy L'~ ~v Comments:"v I~U~ /f0~ IZ `r ~~) I ~~ I Max~ac I 1J~`~~ EPA Method 0010 from EPA SW-846 45 SAMPLE RECOVERY FIELD DATA Client Location/Plant EPA Method 0010 - HFPO Dimer Acid Chemours W.O. # 15418 Fayetteville, NC SOUfC2 & LOCBtIOn Division Stack Run No. 4 Sample Date 2~~1--`~ (,Q Recovery Date ~~(~ Sample I.D. Chemours -Gas - STK - 4 - Mo010 - Analyst ~~'~ Filter Number /~~ Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~`~j~D ~< <'3 !, ~.,f Initial d ioo goo soo Gain ~Z'Q (t ~~E~J~ Impinger Color ~ Labeled? ~/ Silica Gel Condition ~'~ Sealed? Run No. ZG~~"~5 Sample Date Recovery Date Sample I.D. Chemours -Gas - STK - 5 - Moo10 - Analyst ~(~' Filter Number ~~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~d r C~'~jt`3`' Initial 0 100 100 ~300 Gain ~C ~~~,'~ Impinger Color Labeled? Silica Gel Condition ~~ Sealed? ~ Run No. 6 'Z' ~~~ ~t ~~-~ fSample Date Recovery Date ~ Sample I.D. Chemours -Gas - STK - 6 - M0010 - Analyst / ~ ~ Filter Number ~~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~.qtQ ~3 ~~ 4 Initial C`]100 100 Q 300 Gain ~~•. K 3 !~ Impinger Color Labeled? Silica Gel Condition GO'rD~ Sealed? ~ Check COC for Sample IDs of Media Blanks 46 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS DIVISION STACK Test Data Run number 7 8 Location Divison Stack Divison Stack Date 3/01/19 3/01/19 Time period 0813-1008 1237-1433 Operator MW MW Inputs For Calcs. Sq. rt. delta P 1.23598 1.24646 Delta H 1.0832 1.0996 Stack temp. (deg.F)65.6 71.3 Meter temp. (deg.F)53.9 64.9 Sample volume (act.)52.282 53.575 Barometric press. (in.Hg)29.99 29.99 Volume H2O imp. (ml)3.0 10.0 Weight change sil. gel (g)13.9 14.9 % CO2 0.1 0.1 % O2 20.8 20.8 % N2 79.1 79.1 Area of stack (sq.ft.) 7.070 7.070 Sample time (min.)96.0 96.0 Static pressure (in.H2O)-0.70 -0.70 Nozzle dia. (in.)0.160 0.160 Meter box cal.1.0069 1.0069 Cp of pitot tube 0.84 0.84 Traverse points 12 12 4/2/2019 4:29 PM 02262019 Division 7-8 47 ISOKINETIC FIELD DATA SHEET client Cnemours Stack Conditions w.o.# 15418 Assumed ~ Actual roJect ID Chemours °/a Moisture e/Source ID Division Impinger Vol (ml) Samp. Loc. ID STK Silica gel (g) Run No.ID 7 CO2, % by Vol Test Method ID M0010 02, °/ by Vol Date ID 25FEB2019 Temperature (°F) Source/Location D(vislon Stack Meter Temp ("F) Sample Date )/Static Press (In H2O) Baro. Press (in Hg) Operator ~ C N ,Ambient Temp (°F) EPA Method 0010 - HFPO Diener Acid Page_ of Meter Box ID ~Z' J K FactorMeter Box Y , v Meter Box Del H L Initial id-Point Final Probe ID /Length Sample Train (ft') ~~ Probe Material Boro Leak Check @ (In Hg) . ~ +/ Pftot / Thermxouple ID Pkot leak check good ~ v v Pitot Coefficient 0.84 Pitot Inspection good Noale ID J Method 3 System good 'S ~ NoaJe Measurements , ~ly~ ~ ~ Temp Check 'eS 38t OS - fes e --"- i ~ Avg Noale Dfa (in) ~ Meter Box Temp • ~Area of Stack (it') ~i Reference Temp i _ Sample Time Pass/Fail (+/- 2°~ FeN ! .Fail' Total Traverse Pts ~ y Temp Change Response i_ s na ~s no 0~~ ~~-~r ~~~~~~~~~~~-~~~ ~~~~~~~~~r~~~~~~r~a~~~~~~~~~~~~r7l~~irt~l~~~f~~~i~~~a~~~~~rr~c~~ro~«rmr~m~~~~~~~~~o~~~~~r~~~~~rr.~~~~~~~~■~~E~~~~o~~~..~~~~~~~~~~•~~~~~~~~~~r~~~~~~s ~~~ir~~~~w~~rz~~«~r~~~~~~r~~~+ Ri~i'I~L~[«►7 ~I7~r~~c~~~~.~~ ~~~~s~a~n~s~~~~~~~~~~~~~~~~~~~~~~~~~~~t~~~~~~~~~~~~~~~~~r~~c~~~r~r~~~~~~~~~~~e~~.~~fr.~~~~s~■r~~~~~o~►~■~ a 1 ~y~ Q„~~ ~ ~o~~ y ~ v~n~ v 7 ~ ~ ~, ~ rev i m Muu 0X MIN5 5 ~ .ti t'vv vvg Sgrt Detta Avg Sgrt Del Comments:` ,~35~ ~ 1,s taw ;~ I.a~' S3~~ M ~ I M2X V8C~ s~~ -~ EPA Method 0010 from EPA SW-846 ~~1i4~1~, a.~~ ~ I~ "jiirL ~'"J~4a~~~~!'! ~r~~~~ 48 C,~e~~Q~.~ ~~ e e. Csv 8~.~ o~~ ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid Pe~ spent chemours Stack Conditions Meter Box ID w.o.#15x98 Assumed Actual Meter aox Y ~K Factor ~~ Project ID Chemours Rio Moisture ~-!Meter Box Del H L.Initial Mid-Point Final 'Mode/Source ID Division Impfnger Vol (ml)Probe ID /Length f Sample Train (ft') Samp. Loc. ID STK Silica gel (g) ;~ ~Probe Material Boro Leak Check @ (in Hg)C 'Y.~ Run No.ID 8 CO2, % by Vol Pitot /Thermocouple ID ~ Pitot leak check good no / na j ~p Test Method ID M0010 02, % by Vol "Z . ?~Pitot Ccefficfent 0.8 Pitot Inspection good / pn / np / pp Date ID S /L ti 25FEB2019 ~ Temperature (°F) ~ - Metar Tem ("F) NoaJe ID Method 3 System good / ~p yes / rp / ~oounce oca on Div s on: Stasis P Noale Measurements ~ ~j Temp Check fe- est et Ost- es et Sample Date d ► Static Press (in HZO) „r ~ , v ~ Avg Noale Dia (in) ~ Meter Box Temp Baro. Press Qn Hg) Area of Stack (ft2) ~ Reference Temp 3Operator f ~i~ ' ' Ambient Temp ~~F) ~ i~' ~; Sample Time / Pass/Fall (+/- 2°~ Fail -- Pass 'Fall-w ~o ~ QeiY' _ i C>— f~c ~ ~ Ai \.. ~L 1Total Traverse Pts ~_ Temp Change Response i f~ i no ves no ~~~—~~~~~111~~~~~~~~— ~~~~~~~~~a~rr~_ -~r~~~~~ ~m~~~1~~~lJ~~7ir1~~9~~I1~L~~~l~'~~~~~t~~~~+~t~~ii1~~Fi►~f~•7~IT.y~t'l~~~E'~~~~~~~~i~~~r~~~~~~r~~~~~~~~~~~~~~~~~-~~~~r~~~r~~~~r~~~~r:~~~~s~~~~~~~r a~~~~~r~r~■~e~~~~~~~w~r~rr~r~r~~r~_r~s-~~~o~a~r~~~~~~c~f~~r~~~~~`~~~~~~~~~rr~~~i~r~~s~iov~i~rm~~~~~~~ic~~r~~'~~~~~~' '~fiL~«~~i~~~~~ii'~~~ ~~~~~~rJ~'T~~~~~-ra'~~~~~~a~~ ~~~`J~~~J ~~~~~- ~~~~~~~~~I '~~~~~~-~i~~~a~~■~arr~~~~r,~r~~~~~~~~ ~w~rw!~~~~~wrs~~..~~~~~~~~~ ~ ~ $~7a~3 Avg Sgrt Delta F~t~°I~1/(~I ~3~ ~~~7~i ~ I ~ ly 1 v Il~~'~~~'7,I '1, -{',vvg ~qr[ uei Comments: 1 ~+~~oZ ~ ~''W ~I ;Mi a i.i.1 ,~ ~GL ~ O) ~ ~ ~~ I rviar a~ I Vf`~ EPA Method 0010 from EPA SW-846 ~ ~~49 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Dimer Acid Client chemours W.O. # Location/Plant Fayettevi~~e, Nc Source &Location 15418 Division Stack Run No. 7 Sample Date ~ `ti IL`C Recovery Date 3 ! t Sample I.D. Chemours -Gas - STK - 7 - M0010 - Analyst ~~ Filter Number ~~ Im anger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final 2 C~ 3 .~ ~ ~~ Q' Initial ~goo goo o soo Gain 't''—?j ~~'3 ~~j, ~!(~,9 Impinger Color G ~ Labeled? Silica Gel Condition CD@.~~ Sealed? ~ Run No. 8 ~ll~ts'Sample Date ~ ~ Recovery Date Sample I.D. Chemours -Gas - STK - 8 - M0o10 - Analyst f~~ Filter Number ~'d Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final P dP l~ ~Z ~,I` ~~Initial goo goo 300 Gain c~0 Z G!~ ~~~t 3 2~( q, Impinger Color Labeled? ~Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Chemours -Gas - STK - 0 - M0010 - Analyst Filter Number Impinger 1 2 3 4 5 6 7 Imp.Total S Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final Initial goo goo soo Gain Impinger Color Labeled? Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks 50 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS BLOWER INTAKE Test Data Run number 1 2 3 Location Blower Intake Blower Intake Blower Intake Date 2/26/19 2/26/19 2/27/19 Time period 0927-1143 1335-1530 0840-1035 Operator JM JM JM Inputs For Calcs. Delta H 3.0000 3.0000 3.0000 Stack temp. (deg.F)59.9 68.4 60.3 Meter temp. (deg.F)60.4 78.3 65.1 Sample volume (act.)128.621 109.397 107.605 Barometric press. (in.Hg)29.29 30.20 30.22 Volume H2O imp. (ml)0.0 0.0 7.0 Weight change sil. gel (g)27.6 27.5 22.4 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Sample time (min.) 135.0 115.0 115.0 Nozzle dia. (in.)0.365 0.365 0.365 Meter box cal.1.0100 1.0100 1.0100 Traverse points 1 1 1 4/2/2019 4:31 PM 02262019 Blower Intake 1-3 51 ISOHINETIC FIELD DATA SHEET EPA Method 0010 -APO Diener Acid Page,Lor~ client ohemours Stack Conditions Meter Box ID ~ d` `T K Factorw.o.# 1Sa~8.o02:o~o.000~ Assumed Actual Meter sox v p Protect ID Chemours %Moisture Meter Box Del H Initial Mid-Point Final Mode/Source ID Bbwer Intake Impinger Vol (ml) ~ Probe ID /Length / Sample Train (ft') Samp. Loc. ID Intake Sflica gel (g) Probe Material Bpro Leak Check @ (In Hg) ~~_ Run No.ID 1 CO2, °/a by Vol C '' ' Pitot /Thermocouple ID _ ~ ~ Pitot leak check good ~/~^ Test Method ID PA0010 02, % by Vol .~ `~ Pitot Coefficient ~f/ cA:9d~~ Pitot Inspection good ^/ Date ID 25FEB2019 Temperature (°F) NoaJe ID ~ Method 3 System good free-f-t1 rtp /-~T1a-- Source/Location BWWer lcita cfl Meter Temp ("F) ~ NoaJe Measurements Temp Chetk ~ re- est of OSt- GSt Bt Sample Date / StaUc Press (in H2O) Avg NoaJe Dla (in) Meter Box Temp ~ y Biro. Press (in Hg) Area of Stack (ftZ) Reference Temp y / 'r- O~eretor ,: ~ Ambient Temp (°F) Sample Time Pass/Fail (+/- 2°) / Faif ~ `~s ~ Fa1i Total Traverse Pts /~~ Temp Change Response S ~ Ps ! nn ~e no O ~r ,- ~i i ~~ ~2/t~S v C '1 a 2 /~ r ~~l ~4 ~ v ~2 ~~' ZO C7 ~ S ~~ t t ~a nv ~r s p ~~~.2. ~~~~v •a ~~T ~"~l ~l ~~b ~~ ~~a ~1,1 `~' ~-- ~,~ ~b t 1.I ~ `z. 1,t ~ S ~r .~'~! Z1It ~-~(I Avg Delta P Avg Delta H Total Volume Avg Ts Avg Tm Min/Max Min/Max Max Max Vac Min/Max Avg Sgrt Delta P Avg Sgrt Dal H Comments: EPA Method 0010 from EPA SW-846 52 ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid Client Source Sample. Lx. Chemours Blower Intake Operator j /~/ ~~Run No.1 Date ~ ~KFactor Page v of~ __ O (~ L ~a~. c~~~ , ~/62 ~~3 ~y a7 -~~~~ (~-z~,~-, ~~i■~~d _ ~ Avg Delta P Avg Sqrt Delta P Avg Delta H Avg Sgrt Del H Total Volume Avg Ts Avg Tm Min/Max Min/Max Max Temp Max Vac Max Temp Comments:^'~n~ tom'!53 ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid client chemours Stack Conditions Meter Box ID w.o.#~~ate.002.0~o.000t Assumed Actual Meter Box Y , Project ID Chemours %Moisture Meter Box Del H Mode/Source ID Bbwer Intake Impinger Vol (ml)Probe ID /Length Sample Train (k') C Samp. Loc. ID Intake Silica gel (g) (Probe Material Boro Leak Check @ (in Hg) Run No.ID 2 CO2, % by Vol °Ci V Pitot / Thermocrouple ID Pitot leak check good~~ Test Method ID M0010 02, °/ by Vol ,Pitot Coefficient ~ ~9:'L~' Pitot Inspection good ,r~//~ Date ID 25FEB2019 Temperature (°F)No~Je ID Method 3 System good Source/Location BI Nerl ake Meter Temp ("F)' No~Je Measurements Temp Check Sample Date Static Press Qn Hz0)Avg Noale Dia (in)Metar Box Temp Baro. Press (in Hg)• Z .~Area of Stack (ftZ)Reference Temp Operator y Ambient Temp (°F)Sample Tima Pass/Fall (+/- 20) Total Traverse Pts 1} /✓Y Temp Change Response Page ~ of! K Factor Initial Mid-Point Final no I Yes /'no ~ yes t no ~e-hest et Post-Test ~--- :~ y—` S.f s ~ k Fail i FaH no -- ye5 i' rro ~~~~.!'ly~~i~V~~ ~~■~~~~~.~ ,r~r~.~~~ro~~~~~r~r~~~~-~~~r~,-~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~p~~~~ ~i~~~~~~.~~~~s~~s~~~~~~~~s~~ ~r~~~~~~~~~~~~Il~~~-~~S~t9~i~~~R~~~~~r~~~l~y'~~~Si /~■~l~~~~i~~~~~~~~~~~~~~s~r~~~~r~ir~~■~■r~~~~r~■~~~~~~~~~~~r~c~~~~~~~~ —r~~~~~~Q~i~~.z~r~~■c~d~~~~ ~r~~~~~~~~~~~:~rr~~c~~~~~~~~~ Avg Sgrt Delta P Avg Sgrt Del H Comments: nvy i ui ~ rvunnv~an ~ rvmumen ~ man ~ mac vac ~ mnuma~c EPA Method 0010 from EPA SW-846 .. 54 ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HF,~~ Dimer Acid Page~of1,-r- . ~ ~ ~' i ~ '~ ~ - - • - _ ~ . - _ _ _ - .'r~~~~.. ~, - - - ::~r- o ~~ ~~~~~~~~~~rr;~r~v~■~tra~~~~~~~■~~~ic~~~~r~rss~■nr~~~~~~s~~~~~~x~~~i~~~~~~~s~~ ~~z~~~~~c~s ~.~~~~~~~■m~~ss.;~~t~~~~~~~~~~~~■~~~~~~~~~~s~r~t~~~ ~~~~~~~~~~~i~..~~r~~~~r~~~~~~~~~~~~~~~~~~~~~~~~ss~~~ ~~~~~~~~r:~rr~~~~~~r~r:~~~~~r~~~~E~sraa~~~~~~~r~~r~r~~~■~~s~~~~~~~a~~~~~:~■~c~;~~,~~err-~~:~■c~~~~~~~~ ~i~~r~~~~~~~r~~~r~~~~■~~ vu~'T:F =,ru ,. , ~~~~ 55 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Dimer Acid Client Location/Plant Chemours Fayetteville, NC W.O. # Source &Location Blower Intake 15418.002.010.0001 ~ G~Run No. 1 Sample Date ~"~-~ Recovery Date Sample I.D. Chemours -Blower Intake -Intake - 1 - M0010 - Analyst _ ~ ~~ Filter Number ~7'► Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~(s{ Initial 8 goo goo O soo Gain ~~~r3 ~l ~ Impinger Color f- Labeled? Silica Gel Condition ~~~ Sealed? Run No. 2 Sample Date ~, Z~ ~, Recovery Date Sample I.D. Chemours -Blower Intake -Intake - 2 - M0010 - Analyst i ~"""'l- Filter Number ~M Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final `~-~) ~~Q ~ ~~~'" Initial (~goo goo ~'soo Gain `~'"'' u ~ ti ~.~1 Impinger Color ~'~'~ Labeled? ` /Silica Gel Condition Sealed? Run No. 3 Sample Date 7-"L F~ Recovery Date Sample I.D. Chemours -Blower Intake -Intake - 3 - M0010 - Analyst ~ Filter Number jt A Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O ~ HPLC H 0 Silica Gel Final ~~Z2, Initial ~100 100 ~300 Gain ~'~ ~~~,2 Impinger Color Labeled? Silica Gel Condition ~ '~ Sealed? Check COC for Sample IDs of Media Blanks 56 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS BLOWER INTAKE Test Data Run number 4 5 6 Location Blower Intake Blower Intake Blower Intake Date 2/27/19 2/28/19 2/28/19 Time period 1231-1426 0823-1018 1429-1627 Operator JM JM JM Inputs For Calcs. Delta H 3.0000 3.0000 3.0000 Stack temp. (deg.F)64.1 57.3 70.8 Meter temp. (deg.F)73.6 63.4 81.8 Sample volume (act.)106.883 106.308 110.497 Barometric press. (in.Hg)30.17 29.95 29.95 Volume H2O imp. (ml)22.0 15.0 6.0 Weight change sil. gel (g)23.9 25.7 30.4 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Sample time (min.) 115.0 115.0 118.0 Nozzle dia. (in.)0.365 0.365 0.365 Meter box cal.1.0100 1.0100 1.0100 Traverse points 1 1 1 4/2/2019 4:32 PM 02262019 Blower Intake 4-6 57 ISOKINETIC FIELD DATA SHEET CNent Chemours Stack Conditions w.o.#15a18.oR2Ato.oOpt Assumed Actual Project ID Chemours %Moisture ~~" Mode/Source ID Bbwer Intake Impinger Vol (ml) ~w .~..«..«.r,.4-Samp. Loc. ID Intake SIUca gel (g) Run No.ID 4 CO2, % by Vol Test Method ID M0010 02, % by Vol (~ ~ Date ID 25FEB2019 Temperature (°F) Source/LocaBon BlgWef! ke Meter Temp("F)Q Sample Date $taUc Press (in HZO) Barn. Press (in Hg)~J Operator Ambient Temp (°F) EPA Method 0010 - HFPO Dimer Acid ~, Meter Box ID Pam _ of _ e ~~K FactorMeter Box Y Meter Box Del H Initial Mid-Point Final Probe ID / Langth Sample Train (ft').~r~y 'i Probe Material Bpro Leak Check (d~ (in Hg) PRot /Thermocouple ID Pftot leak check goo~~ ~.~-+Yr PRot Coefficient r/ .~.BA-- Pitot Inspecllon goodrt~~ NoaJa ID Method 3 System goo~~-~~~~~— NoaJe Measurements Temp Check fe- est et Post- est et Avg Noale Dia (in)Meter Box Temp Area of Stack (ft2) Reference Temp Sample Time Pass/Fail (+/- 20~ Total Traverse Pts Temp Change Response ~~ .~ _ Pa /Fail /Fall yc l no y I no 58 I50HINETIC FIELD DATA SHEET EPA Method 0010 - HF~O Dimer Acid Page _ of - _ •- . •. • _ l~~-~~.. _ -...,. , _ r _ - o - - ~ _ - - i~ I. - ~oYC~~ ~~1 ~~~~~~~~~r~~r ~~~~r~~~~zy~s-~~i~~~~~~~~~r~~~r~~cv~r~■rrr„~~~~~■a~~►r~~r~r~~~~■~~~r~~-~~~~~~l~.~~~~iF~C~ylf~~s ~~i~~i'~~~7~~~~~~_~~.l~rre~i~~.!~~~~,5~~~~~~~~~'■~~G~7~~Ii~~~~L'~~~~~ ~~~1~~~~~i~~r~■~S~.~~~~i~'~~l3rA~~■E'~~iL~/J~~~1~~~~~■I~~~~~i'/~~E~~~~~~ ~~i~~~~~G3i~~~5'r7sr~~7~+~:~~'~~il~'~~lir~~0~~i1~tr'~~~~~'~~e~~~:'~~1~~~~1!~~'l~~~~~~~r ' ~~-__~~'ll~~~~~~~~I~~~-~4a~1~ L ~~~~~~~~~i~■igi~ic~~ti'~~+~C~~ii~'~~~~~~S~ir7~ ~~~~~L`:~~~i/~i~ic ~~'~11'Z~~~~'Il~~i~:~l~a~i~~%~~~~iil''.~J,~V~~~~~~~~~~~~~~,~ilt~~~~~~~~~~ yy~•T"~: =~fV ~~ ~~ ~~,59 ISOKINETIC FIELD DATA SI3E 0010 Dimer Acid sT k conditions EtPB XMethod ~,HFPO Page_of_ w.o.#~~a18.Wz.o1o.000~Assumed Actual nneter eox v ~K Factor Project ID cnemours ^io Molstura ;Meter Box Del H Iflltiel Mid-Point Final Mode/Source ID Bbwer Intake Impinger Vol (ml)Probe ID /Length j Sample Train (ft3) Samp. Loc. ID Intake Silica gel (g)Probe Material Bwo Leak Check Q (In Hg) ~ Run No.ID 6 CO2, % by Vol ~J ~f Pltot /Thermocouple ID Pitot leak check good ;Q" ~~'~ rye!-{-n p.h.pa— Test Method ID M0010 02, °/ by Vol ~ ~Pitot Coefficient /j/ ---8~84~ Pitot Inspection good ~--~y~/-~m-.- Date ID 25FE82019 Temperature (°F)NoaJe ID Method 3 System goodN Source/Location B►a lust ltrt ke Meter Temp ("F)Noale Measurements Temp Check re-Test et Post- est etSample Date Static Press (In HZO)Avg NoaJe Dia (in)~ y Meter Box Temp ~ ~ ~ , Baro. Press (in Hg)?i Area of Stack (ftZ)Reference Temp Operator '~Ambient Temp (°F)Sample Time Pass/Fail (+/- 2°)_,,,.ass `Fail as Fa0 Total Traverse Pts Temp Change Response i yc rug ,~ no ~~~~~n~~~.~i'~ir~~arrt~r~~~~r~~~~~ ~~~~~~~c~~~~~~~~~~~~~~~ ~~~~~~~~z~~~~~~~~~~~~~~~~~~■~~~~~~~~~~~~f~r~~~~~~~~r~■~~~~r~.~~~r~~~~~~~~~ir~~~~~•~~=~~r~r~~■r~- ~r~~~~ s■i~~~~~~~■~~~-i~1~~~~~L~,+~■~~~~~frlr~a O/Af-~~~~~~•~r iZ~!~»li'»~'~l~~ -~'~~~~~ic~~~~~ri1~S3~J~~'~~~~• .OJT~~~~~~''~li~~ :irl~• 'i~'~~~~~~i~rff~~~~~~~~~~~itr +~ir3~ifr/~~~~~~~~~~~S'J}~~~~~~~il7~r~i~i~~~i~~~~~~~~~~~I~l~~~~~~~~~~~~IC~r/l~~%ii~~QL~~►»~~~~~~~~g~~~~I'~fA~~~~I/~'~~~~~~3~'r~s~~~lld~~[E.~i~~~~l~~i~~~~CL~~rZ~~~'~L`~~~~1~~~~r'~l~J~.T~■~ ~~iii~1iilri►1~~~~~~~~~~~~ i ~~ ~Avg Sgrt De o a o ume vg I s vg m arc ax Max Max Vac Min/Max EPA Method 0010 from EPA SW-846 60 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Cllent Chemours W.O. # Location/Plant Fayetteville, Nc Source &Location 15418.002.010.0001 Blower Intake Run No. 4 Sample Date 'YID-`71 ~ Recovery Date 2 /[ Sample I.D. Chemours -Blower Intake -Intake - 4 - M0010 - Analyst ~~'~' Filter Number /'~~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica GeI Final ~fQ ~~~~~~.3. ~{ Initial ~100 100 300 Gain G~^ (`~-~~2.`L-~,3~~~t~`,~`~ Impinger Color ~' Labeled? Silica Gel Condition ~- Sealed? Run No. 5 Sample Date ~'— ~ ~`~ Recovery Date ~f C Sample I.D. Chemours -Blower Intake -Intake - 5 - M0010 - Analyst f~ r•~~ Filter Number '~ Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Final ~ ~. c~~,Z ~. Initial D 100 100 ~300 Gain ~ ~^~`~~~~,~ ImpingerColor C..~`e~Y Labeled? ` A~'1 .2.Fy7Silica Gel Condition ~~ Sealed?V Run No. `U ~{ 4~ "~1 ~!~6 Sample Date Recovery Date Sample I.D. Chemours -Blower Intake -Intake - 6 - M0010 - Analyst ~ ~"~ Filter Number 4' Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~`~i n} Initial c~goo ~goo ~~soo Gain L •-'t ,~-~~~~, y ~3 ~, `? Impinger Color (i Labeled? 3 Silica Gei Condition ~~ Sealed? Check COC for Sample IDs of Media Blanks 61 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS BLOWER INTAKE Test Data Run number 7 8 Location Blower Intake Blower Intake Date 3/1/19 3/1/19 Time period 0813-1008 1237-1433 Operator JM JM Inputs For Calcs. Delta H 3.0000 3.0000 Stack temp. (deg.F)51.4 61.4 Meter temp. (deg.F)61.0 70.2 Sample volume (act.)105.079 106.831 Barometric press. (in.Hg)30.09 30.09 Volume H2O imp. (ml)10.0 2.0 Weight change sil. gel (g)22.5 34.0 % CO2 0.0 0.0 % O2 20.9 20.9 % N2 79.1 79.1 Sample time (min.) 115.0 115.0 Nozzle dia. (in.)0.365 0.365 Meter box cal.1.0100 1.0100 Traverse points 1 1 4/2/2019 4:32 PM 02262019 Blower Intake 7-8 62 ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Client Chemours Stack Conditions Meter Box ID ~~' 2~ W.O.#15418.902sOT0.0001 AssumBd Actual Meter Box Y , Q ~~~— Project ID Chemours %Moisture ;Meter Box Del H Mode/Source ID Bbwer Intake Impinger Vol (ml) ~ ,',Probe ID /Length ~Sample Train (fl Samp. Loc. ID Intake SiAca gel (g)Probe Material Bono Leak Check ~ Run No.ID 7 CO2, % by Vol CJ 1,J Pitot /Thermocouple ID Pitot leak check Test Method ID M0010 02, % by Vol v.Picot Coefflclent Picot Inspection Date ID 25FE82019 Temperature (°F)NoaJe ID Method 3 Systei Source/Location Bio rltrtake Meter Temp ("F)NoaJe Measurements Temp Check Sample Date ~Static Press (in HZO)Avg Noale Dfa (in)Meter Box Temp Baro. Press (in Hg)~Area of Stack (ft~)Reference Temp Operator cif '-/~ ~""Ambient Temp ~'F)Sample Time Pass/Fail (+/- 2` ~~Tofal Traverse Pts /~} yJj _Temp Change F •~~■~~~ ~~'~~~~~,~►■~~l~~iPrfi~tll~~l~~~~c~~ ~~i~~~~i~~i~~l~~~~/cl~~t"~i~~l~t~f~~ ~~l~~~~~~~1.7C:'~'~7~E~~~rt~E~E~~~~~~+~^~ -f~~~~~~t ~~~I il~C~~~~~~~~'~~~1~;~~~fIE3~~l~~~i~'~+~~r'I~'~~~~~'i~~l~~~[~'~~~~~G~~~f~~~~~~if~~L~l:~l~E~~~i~iflld~~f~~i''1~~~~~~~~~~~~~L~~~~i,~Ill'~l~3'~~.~~~~~~~I~l~~~i~~L'~a~r~~~~1~~~~lE~L~l~-l~~~~r~~~~~~~~r-~~~~3~~~i~~~~~~~~ ~~i~111~►'l~I~~Lc~r7~~/.~~~1L'~~~t"j-s.~S~LZ'~~~~~~~~~l~I~~iii~r i~~~r~~ r..y vow ~ I r~ry vvna i i I i viol vu~u~i~a I nvy i a I Mvy I III I MIIUMdJ( I MIfYM3X I M3J( I M2X V8C I MINMeX I. Avg Sgrt Delta P Avg Sgrt Del H Comments: EPA Method 0010 from EPA SW-846 ~~j~-y` U V Page _ of _ K Factor Initial Mid-Point Final 63 \~ ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Page ~ .~~~ • l0 1 e 111 ~• ~j 1 _ ~ . ~ •~ ~~7+~ . /•r(/'~ ,. . ~~ _ ~ 1 r A~i~~f~a.,.___... n 11 1 • _ ~ - i• _ ~~~ 1 _ 1 1 t _ _ _ e_ —~.•-~~.~ • y ~ ` ' ~ c t•e ,~/t - ~ -t - ~~. ~ - r / - - `~Ol~~ 0'~~~L~~ ~~■~~l~rc~■c~~~r~~~~~~~~~~~~~~~~~r~~r~~~r~~~~~~F,~~~~~.'~~~i~~ll~~i~fi~~t~~!~E'rP~~~~~~~~~~~~7~1I~'~~~~~I~~.~~~~a~~~~~~~~~~~~t~C~-'~~~~l~~lji~c~~~'l~~ ~iL~~~~~~~~~~i'~l~I~il1l•~~~~~~.~~~~i~~~'~l -~-~-~IIIIIII~~~~~~~~~~~~~- ~~,~~~~~~'~~~f~~~~~~~~Y~l~~~I~~~~~~~'l~~I'/6~~~i►~C.7irrl~~~~~~~~~~~~~~'~i~~~~~~y~Il~~~t~~~l~~~~fll~~~l~►~~~~~~~~~~~~~~r~~~~c~~~~~s:~~~ ~r~~~~~~r~~r~~r~~~~c~~■~~~z~~~■~~I~~~r~~~~r~~~r , ~ r ~~~~~~~~~~~~~i~rr~~rr~~~~~ui~~~~~~~~~~ _,.T~:'N i_- C ~y64 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Dimer Acid Client cnemours W.O.,# 15418.002.010.0001 Location/Plant Fayetteville, Nc Source &Location Blower Intake Intake Run No. 7 Sample Date . ~ l C~( Recovery Date ~11c~ Sample I.D. Chemours -Blower Intake - - 7 - M0010 - Analyst ~~~ Filter Number /~+ Impinger 1 2 3 4 5 6 7' Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~~'~ 2.'~ Initial 100 100 ~300 Gain ~~^ ~'~,4 Z~~ Z .~ Impinger Color Labeled? J ~Silica Gel Condition ~Dc1C QG Sealed? Run No. 8 Sample Date ~ ~~ 1~~1 Recovery Date ~ ~[_ Sample I.D. Chemours -Blower Intake - - 8 - M0010 - Analyst ~ ~"`u1 Filter Number /~~ Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC 20 Silica GeI Fina~~,1ft Z ~ 3ti_~' Initial goo goo ~soo Gain "~`~'~~~.~ ~~~~~- Impinger Color Labeled? 3 Silica Gel Condition Sealed? ~ Run No. Sample Date Recovery Date Sample I.D. Chemours -Blower Intake - - 0 - M0010 - Analyst Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gei Final Initial goo goo soo Gain Impinger Color Labeled? Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks 65 METHODS AND ANALYZERS Client: Location: Source: Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: Folders.A-F\Chemours Fayetteville\15418.002.010 VE North 2019\Data\FEBUARY_MARCH 2019\022519 DIVISION Program Version: 2.1, built 19 May 2017 File Version: 2.03 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %16.6 66 CALIBRATION DATA Number 1 Client: Location: Source: Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: Start Time: 10:59 O2Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.0 CC18055 21.0 SG9169108 Calibration Results Zero 6 mv Span, 21.0 %7997 mv Curve Coefficients Slope Intercept 380.5 6 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 8.9 CC18055 16.6 SG9169108 Calibration Results Zero 4 mv Span, 16.6 %8287 mv Curve Coefficients Slope Intercept 499.6 4 67 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: Start Time: 10:59 O2Method: EPA 3A Span Conc. 21.0 % Slope 380.5 Intercept 6.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.0 12.0 0.0 0.0 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 % Slope 499.6 Intercept 4.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 8.9 8.9 0.0 0.0 Pass 16.6 16.6 0.0 0.0 Pass 68 BIAS Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: Start Time: 11:05 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass CO2Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.9 8.8 -0.1 -0.6 Pass 69 RUN DATA Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time response times 11:07:50 12.1 8.8 11:08:00 16.9 4.7 11:08:10 20.4 0.9 11:08:20 20.7 0.4 11:08:30 12.4 2.0 11:08:40 1.6 0.6 11:08:50 0.1 0.1 O2/CO2 UP 11:09:00 0.0 0.0 11:09:10 0.0 0.0 11:09:20 0.0 0.0 11:09:30 3.0 1.8 11:09:40 10.4 7.1 11:09:50 11.8 8.6 11:10:00 12.0 8.8 O2/CO2 DOWN 11:10:10 12.0 8.8 11:10:20 12.0 8.8 11:10:30 12.0 8.8 11:10:40 9.6 7.2 11:10:50 1.5 1.8 11:11:00 0.1 0.3 11:11:10 0.0 0.1 END 11:11:20 0.0 0.1 11:11:30 0.0 0.1 Avgs 7.3 3.5 70 RUN SUMMARY Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 25 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 11:07:40 to 11:11:30 Run Averages 7.3 3.5 Pre-run Bias at 11:05 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.8 12.0 8.9 Post-run Bias at 07:37 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 7.3 3.4 71 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: Start Time: 07:37 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.9 8.9 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.8 8.9 0.1 0.6 Pass *Bias No. 1 72 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 1 PORT 1 09:27 20.9 0.1 09:28 20.9 0.1 09:29 20.9 0.1 09:30 20.9 0.1 09:31 20.9 0.1 09:32 20.9 0.1 09:33 20.9 0.2 09:34 20.9 0.2 09:35 20.9 0.2 09:36 20.9 0.2 09:37 20.9 0.2 09:38 20.9 0.2 09:39 20.9 0.2 09:40 20.9 0.2 09:41 20.9 0.2 09:42 20.9 0.2 09:43 20.9 0.2 09:44 20.9 0.2 09:45 20.9 0.2 09:46 20.9 0.2 09:47 20.9 0.2 09:48 20.9 0.2 09:49 20.9 0.2 09:50 20.9 0.2 09:51 20.9 0.2 09:52 20.9 0.2 09:53 20.9 0.2 09:54 20.9 0.2 09:55 20.9 0.2 09:56 20.9 0.2 09:57 20.9 0.2 09:58 20.9 0.2 09:59 20.9 0.2 10:00 20.9 0.2 10:01 20.9 0.2 10:02 20.9 0.2 10:03 20.9 0.2 10:04 20.9 0.2 73 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:05 20.9 0.2 10:06 20.9 0.2 10:07 20.9 0.2 10:08 20.9 0.2 10:09 20.9 0.2 10:10 20.9 0.2 10:11 20.9 0.2 10:12 20.9 0.2 10:13 20.9 0.2 10:14 20.9 0.2 10:15 20.9 0.2 PORT CHANGE PORT 2 10:55 20.9 0.1 10:56 20.9 0.1 10:57 20.8 0.1 10:58 20.8 0.2 10:59 20.8 0.2 11:00 20.9 0.2 11:01 20.9 0.3 11:02 20.9 0.3 11:03 20.9 0.3 11:04 20.9 0.2 11:05 20.9 0.2 11:06 20.9 0.2 11:07 20.9 0.2 11:08 20.9 0.2 11:09 20.9 0.2 11:10 20.9 0.2 11:11 20.9 0.2 11:12 20.9 0.2 11:13 20.9 0.2 11:14 20.9 0.2 11:15 20.9 0.2 11:16 20.9 0.2 11:17 20.9 0.2 11:18 20.9 0.2 11:19 20.9 0.2 11:20 20.9 0.2 11:21 20.9 0.2 74 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 11:22 20.9 0.2 11:23 20.9 0.2 11:24 20.9 0.2 11:25 20.9 0.2 11:26 20.9 0.2 11:27 20.9 0.2 11:28 20.9 0.2 11:29 20.9 0.2 11:30 20.9 0.1 11:31 20.9 0.1 11:32 20.9 0.1 11:33 20.9 0.1 11:34 20.9 0.1 11:35 20.9 0.1 11:36 20.9 0.1 11:37 20.9 0.1 11:38 20.9 0.1 11:39 20.9 0.1 11:40 20.9 0.1 11:41 20.9 0.1 11:42 20.9 0.1 11:43 20.9 0.1 Avgs 20.9 0.2 75 RUN SUMMARY Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 09:26 to 11:43 Run Averages 20.9 0.2 Pre-run Bias at 07:37 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Post-run Bias at 11:44 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.1 76 BIAS AND CALIBRATION DRIFT Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: Start Time: 11:44 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 2 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.9 8.9 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 8.9 8.9 0.0 0.0 Pass *Bias No. 2 77 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time R2 START 13:35 20.8 0.1 13:36 20.7 0.5 13:37 20.7 0.6 13:38 20.8 0.4 13:39 20.8 0.3 13:40 20.8 0.3 13:41 20.8 0.2 13:42 20.8 0.2 13:43 20.8 0.2 13:44 20.8 0.2 13:45 20.8 0.2 13:46 20.8 0.2 13:47 20.9 0.2 13:48 20.9 0.2 13:49 20.9 0.1 13:50 20.9 0.2 13:51 20.9 0.2 13:52 20.8 0.2 13:53 20.8 0.2 13:54 20.8 0.2 13:55 20.8 0.2 13:56 20.8 0.2 13:57 20.8 0.1 13:58 20.8 0.1 13:59 20.8 0.1 14:00 20.8 0.1 14:01 20.8 0.1 14:02 20.8 0.1 14:03 20.8 0.1 14:04 20.8 0.1 14:05 20.8 0.1 14:06 20.8 0.1 14:07 20.8 0.1 14:08 20.8 0.1 14:09 20.9 0.1 14:10 20.8 0.1 14:11 20.8 0.1 14:12 20.8 0.1 14:13 20.8 0.1 78 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:14 20.8 0.1 14:15 20.8 0.1 14:16 20.8 0.1 14:17 20.8 0.1 14:18 20.8 0.1 14:19 20.8 0.1 14:20 20.8 0.1 14:21 20.8 0.1 14:22 20.8 0.1 14:23 20.8 0.1 PORT CHANGE PORT 2 14:42 20.8 0.1 14:43 20.8 0.1 14:44 20.8 0.1 14:45 20.8 0.1 14:46 20.8 0.1 14:47 20.8 0.1 14:48 20.8 0.1 14:49 20.8 0.1 14:50 20.8 0.1 14:51 20.8 0.1 14:52 20.8 0.1 14:53 20.8 0.1 14:54 20.8 0.1 14:55 20.8 0.1 14:56 20.8 0.1 14:57 20.8 0.1 14:58 20.8 0.1 14:59 20.8 0.1 15:00 20.8 0.1 15:01 20.8 0.1 15:02 20.8 0.1 15:03 20.8 0.1 15:04 20.8 0.1 15:05 20.8 0.1 15:06 20.8 0.1 15:07 20.8 0.1 15:08 20.8 0.1 15:09 20.8 0.1 79 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 15:10 20.8 0.1 15:11 20.8 0.1 15:12 20.8 0.1 15:13 20.8 0.1 15:14 20.8 0.1 15:15 20.8 0.1 15:16 20.8 0.1 15:17 20.8 0.1 15:18 20.8 0.1 15:19 20.8 0.1 15:20 20.8 0.1 15:21 20.8 0.1 15:22 20.8 0.1 15:23 20.8 0.1 15:24 20.8 0.1 15:25 20.8 0.1 15:26 20.8 0.1 15:27 20.8 0.1 15:28 20.8 0.1 15:29 20.8 0.1 15:30 20.8 0.1 Avgs 20.8 0.1 80 RUN SUMMARY Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 13:34 to 15:30 Run Averages 20.8 0.1 Pre-run Bias at 11:44 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.9 12.0 8.9 Post-run Bias at 15:33 Zero Bias Span Bias Span Gas 0.0 0.1 11.9 9.0 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.0 81 BIAS AND CALIBRATION DRIFT Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 26 Feb 2019 Project Number: Operator: Date: Start Time: 15:33 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 11.9 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 11.9 -0.1 -0.5 Pass *Bias No. 3 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.9 9.0 0.1 0.6 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 8.9 9.0 0.1 0.6 Pass *Bias No. 3 82 METHODS AND ANALYZERS Client: Location: Source: Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Folders.A-F\Chemours Fayetteville\15418.002.010 VE North 2019\Data\FEBUARY_MARCH 2019\022719DIVISION Program Version: 2.1, built 19 May 2017 File Version: 2.03 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %16.6 83 CALIBRATION DATA Number 1 Client: Location: Source: Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 07:29 O2Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.0 CC18055 21.0 SG9169108 Calibration Results Zero -3 mv Span, 21.0 %8006 mv Curve Coefficients Slope Intercept 381.4 -3 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 8.9 CC18055 16.6 SG9169108 Calibration Results Zero -5 mv Span, 16.6 %8288 mv Curve Coefficients Slope Intercept 500.2 -5 84 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 07:29 O2Method: EPA 3A Span Conc. 21.0 % Slope 381.4 Intercept -3.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.0 12.1 0.1 0.5 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 % Slope 500.2 Intercept -5.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 8.9 8.6 -0.3 -1.8 Pass 16.6 16.6 0.0 0.0 Pass 85 BIAS Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 07:39 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.0 -0.1 -0.5 Pass CO2Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.6 8.4 -0.2 -1.2 Pass 86 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 3 POINT 1 08:40 20.8 0.1 08:41 20.7 0.1 08:42 20.8 0.1 08:43 20.8 0.1 08:44 20.8 0.1 08:45 20.8 0.1 08:46 20.8 0.1 08:47 20.8 0.1 08:48 20.8 0.1 08:49 20.8 0.1 08:50 20.8 0.1 08:51 20.8 0.1 08:52 20.8 0.1 08:53 20.8 0.1 08:54 20.8 0.1 08:55 20.9 0.1 08:56 20.9 0.1 08:57 20.9 0.1 08:58 20.9 0.1 08:59 20.9 0.1 09:00 20.9 0.1 09:01 20.9 0.1 09:02 20.9 0.1 09:03 20.9 0.1 09:04 20.9 0.1 09:05 20.9 0.1 09:06 20.9 0.1 09:07 20.9 0.1 09:08 20.9 0.1 09:09 20.9 0.1 09:10 20.9 0.1 09:11 20.9 0.1 09:12 20.9 0.1 09:13 20.9 0.1 09:14 20.9 0.1 09:15 20.9 0.1 09:16 20.9 0.1 09:17 20.9 0.1 87 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:18 20.9 0.1 09:19 20.9 0.1 09:20 20.9 0.1 09:21 20.9 0.1 09:22 20.9 0.1 09:23 20.9 0.1 09:24 20.9 0.1 09:25 20.9 0.1 09:26 20.9 0.1 09:27 20.9 0.1 09:28 20.9 0.1 PORT CHANGE PORT 2 09:47 20.8 0.1 09:48 20.8 0.1 09:49 20.8 0.1 09:50 20.8 0.1 09:51 20.7 0.1 09:52 20.7 0.1 09:53 20.7 0.1 09:54 20.8 0.1 09:55 20.9 0.1 09:56 20.9 0.1 09:57 20.9 0.1 09:58 20.9 0.1 09:59 20.9 0.1 10:00 20.9 0.1 10:01 20.9 0.1 10:02 20.9 0.1 10:03 20.9 0.1 10:04 20.9 0.1 10:05 20.9 0.1 10:06 20.9 0.1 10:07 20.9 0.1 10:08 20.9 0.1 10:09 20.9 0.1 10:10 20.9 0.1 10:11 20.9 0.1 10:12 20.9 0.1 10:13 20.9 0.1 88 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:14 20.9 0.1 10:15 20.9 0.1 10:16 20.9 0.1 10:17 20.9 0.1 10:18 20.9 0.1 10:19 20.9 0.1 10:20 20.9 0.1 10:21 20.9 0.1 10:22 20.9 0.1 10:23 20.9 0.1 10:24 20.9 0.1 10:25 20.9 0.1 10:26 20.9 0.1 10:27 20.9 0.1 10:28 20.9 0.1 10:29 20.9 0.1 10:30 20.9 0.1 10:31 20.9 0.1 10:32 20.9 0.1 10:33 20.9 0.1 10:34 20.9 0.1 10:35 20.9 0.1 Avgs 20.9 0.1 89 RUN SUMMARY Number 1 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 08:39 to 10:35 Run Averages 20.9 0.1 Pre-run Bias at 07:39 Zero Bias Span Bias Span Gas 0.0 0.1 12.0 8.4 12.0 8.9 Post-run Bias at 10:36 Zero Bias Span Bias Span Gas 0.0 0.1 12.1 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.8 0.0 90 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 10:36 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.1 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.1 0.1 0.5 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 8.4 8.4 0.0 0.0 Pass *Bias No. 1 91 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 4 PORT 1 ONLY ( SEE NEXT RUN FOR SECOND PORT) 12:31 20.7 0.1 12:32 20.7 0.1 12:33 20.7 0.1 12:34 20.7 0.1 12:35 20.7 0.1 12:36 20.7 0.1 12:37 20.7 0.1 12:38 20.7 0.1 12:39 20.7 0.1 12:40 20.7 0.1 12:41 20.7 0.1 12:42 20.7 0.1 12:43 20.7 0.1 12:44 20.7 0.1 12:45 20.7 0.1 12:46 20.7 0.1 12:47 20.7 0.1 12:48 20.7 0.1 12:49 20.7 0.1 12:50 20.7 0.1 12:51 20.7 0.1 12:52 20.7 0.1 12:53 20.7 0.1 12:54 20.7 0.1 12:55 20.7 0.1 12:56 20.8 0.1 12:57 20.8 0.1 12:58 20.8 0.1 12:59 20.8 0.1 13:00 20.8 0.1 13:01 20.8 0.1 13:02 20.8 0.1 13:03 20.8 0.1 13:04 20.8 0.1 13:05 20.8 0.1 13:06 20.8 0.1 13:07 20.8 0.1 13:08 20.8 0.1 92 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 13:09 20.8 0.1 13:10 20.8 0.1 13:11 20.8 0.1 13:12 20.8 0.1 13:13 20.8 0.1 13:14 20.8 0.1 13:15 20.8 0.1 13:16 20.8 0.1 13:17 20.8 0.1 13:18 20.8 0.1 13:19 20.8 0.1 Avgs 20.7 0.1 93 RUN SUMMARY Number 2 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 12:30 to 13:19 Run Averages 20.7 0.1 Pre-run Bias at 10:36 Zero Bias Span Bias Span Gas 0.0 0.1 12.1 8.4 12.0 8.9 Post-run Bias at 13:21 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.7 0.1 94 BIAS AND CALIBRATION DRIFT Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 13:21 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.1 12.0 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.1 12.0 -0.1 -0.5 Pass *Bias No. 2 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.6 Pass Span 8.4 8.4 0.0 0.0 Pass *Bias No. 2 95 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 4 PORT 2 13:38 20.7 0.1 13:39 20.7 0.1 13:40 20.7 0.1 13:41 20.7 0.2 13:42 20.6 0.2 13:43 20.6 0.2 13:44 20.7 0.2 13:45 20.7 0.2 13:46 20.8 0.2 13:47 20.8 0.2 13:48 20.8 0.2 13:49 20.8 0.2 13:50 20.8 0.2 13:51 20.8 0.2 13:52 20.8 0.2 13:53 20.8 0.2 13:54 20.8 0.2 13:55 20.8 0.2 13:56 20.8 0.2 13:57 20.8 0.2 13:58 20.8 0.2 13:59 20.8 0.2 14:00 20.8 0.2 14:01 20.8 0.2 14:02 20.8 0.2 14:03 20.8 0.1 14:04 20.8 0.1 14:05 20.8 0.1 14:06 20.8 0.1 14:07 20.8 0.1 14:08 20.8 0.1 14:09 20.8 0.1 14:10 20.8 0.1 14:11 20.8 0.1 14:12 20.8 0.1 14:13 20.8 0.1 14:14 20.8 0.1 14:15 20.8 0.1 96 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:16 20.8 0.1 14:17 20.8 0.1 14:18 20.8 0.1 14:19 20.8 0.1 14:20 20.8 0.1 14:21 20.8 0.1 14:22 20.8 0.1 14:23 20.8 0.1 14:24 20.8 0.1 14:25 20.8 0.1 14:26 20.8 0.1 Avgs 20.8 0.1 97 RUN SUMMARY Number 3 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 13:37 to 14:26 Run Averages 20.8 0.1 Pre-run Bias at 13:21 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.4 12.0 8.9 Post-run Bias at 14:28 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.2 98 BIAS AND CALIBRATION DRIFT Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 27 Feb 2019 Project Number: Operator: Date: Start Time: 14:28 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.1 12.0 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass *Bias No. 3 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.4 8.4 0.0 0.0 Pass *Bias No. 3 99 BIAS AND CALIBRATION DRIFT Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: Start Time: 07:19 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 11.8 -0.3 -1.4 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.5 Pass Span 12.0 11.8 -0.2 -1.0 Pass *Bias No. 4 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.6 8.3 -0.3 -1.8 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.4 8.3 -0.1 -0.6 Pass *Bias No. 4 100 RUN DATA Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 08:14 20.6 0.1 08:15 20.6 0.1 08:16 20.6 0.1 08:17 20.6 0.1 08:18 20.6 0.1 08:19 20.6 0.1 08:20 20.6 0.1 08:21 20.6 0.1 08:22 20.6 0.1 RUN 5 PORT 1 08:23 20.6 0.1 08:24 20.6 0.1 08:25 20.6 0.1 08:26 20.6 0.1 08:27 20.6 0.1 08:28 20.6 0.1 08:29 20.6 0.1 08:30 20.6 0.1 08:31 20.6 0.1 08:32 20.6 0.1 08:33 20.6 0.1 08:34 20.6 0.1 08:35 20.6 0.1 08:36 20.6 0.1 08:37 20.6 0.1 08:38 20.6 0.1 08:39 20.6 0.1 08:40 20.6 0.1 08:41 20.6 0.1 08:42 20.6 0.1 08:43 20.6 0.1 08:44 20.6 0.1 08:45 20.6 0.1 08:46 20.6 0.1 08:47 20.6 0.1 08:48 20.6 0.1 08:49 20.6 0.1 08:50 20.6 0.1 08:51 20.6 0.1 101 RUN DATA Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 08:52 20.6 0.1 08:53 20.6 0.1 08:54 20.6 0.1 08:55 20.6 0.1 08:56 20.6 0.1 08:57 20.6 0.1 08:58 20.6 0.1 08:59 20.6 0.1 09:00 20.6 0.1 09:01 20.6 0.1 09:02 20.6 0.1 09:03 20.6 0.1 09:04 20.6 0.1 09:05 20.6 0.1 09:06 20.6 0.1 09:07 20.7 0.1 09:08 20.7 0.1 09:09 20.7 0.1 09:10 20.7 0.1 09:11 20.7 0.1 PORT CHANGE 09:12 20.7 0.1 09:13 20.7 0.1 09:14 20.7 0.1 09:15 20.7 0.1 09:16 20.6 0.1 09:17 20.6 0.1 09:18 20.6 0.1 09:19 20.6 0.1 09:20 20.6 0.1 09:21 20.6 0.1 09:22 20.6 0.1 09:23 20.6 0.1 09:24 20.6 0.1 09:25 20.6 0.1 09:26 20.6 0.1 09:27 20.6 0.1 09:28 20.6 0.1 09:29 20.6 0.1 102 RUN DATA Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time PORT 2 09:30 20.6 0.1 09:31 20.6 0.1 09:32 20.6 0.1 09:33 20.6 0.1 09:34 20.6 0.2 09:35 20.6 0.2 09:36 20.6 0.2 09:37 20.6 0.2 09:38 20.6 0.2 09:39 20.6 0.2 09:40 20.6 0.2 09:41 20.7 0.2 09:42 20.7 0.2 09:43 20.7 0.2 09:44 20.7 0.2 09:45 20.7 0.2 09:46 20.7 0.2 09:47 20.7 0.2 09:48 20.7 0.2 09:49 20.7 0.2 09:50 20.7 0.2 09:51 20.7 0.2 09:52 20.7 0.2 09:53 20.7 0.2 09:54 20.7 0.2 09:55 20.7 0.2 09:56 20.7 0.1 09:57 20.8 0.1 09:58 20.8 0.1 09:59 20.8 0.1 10:00 20.8 0.1 10:01 20.8 0.1 10:02 20.8 0.1 10:03 20.8 0.1 10:04 20.8 0.1 10:05 20.8 0.1 10:06 20.8 0.1 10:07 20.8 0.1 10:08 20.8 0.1 103 RUN DATA Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:09 20.8 0.1 10:10 20.8 0.1 10:11 20.8 0.1 10:12 20.8 0.1 10:13 20.8 0.1 10:14 20.8 0.1 10:15 20.8 0.1 10:16 20.8 0.1 10:17 20.8 0.1 10:18 20.8 0.1 Avgs 20.7 0.1 104 RUN SUMMARY Number 4 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 08:13 to 10:18 Run Averages 20.7 0.1 Pre-run Bias at 07:19 Zero Bias Span Bias Span Gas 0.0 0.1 11.8 8.3 12.0 8.9 Post-run Bias at 10:21 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.3 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.8 0.1 105 BIAS AND CALIBRATION DRIFT Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: Start Time: 10:21 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.0 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 11.8 12.0 0.2 1.0 Pass *Bias No. 5 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.3 -0.3 -1.8 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.6 Pass Span 8.3 8.3 0.0 0.0 Pass *Bias No. 5 106 RUN DATA Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:12 20.6 0.1 14:13 20.6 0.1 14:14 20.6 0.1 14:15 20.6 0.1 14:16 20.6 0.1 14:17 20.6 0.1 14:18 20.6 0.1 14:19 20.6 0.1 14:20 20.6 0.1 14:21 20.6 0.1 14:22 20.6 0.1 14:23 20.6 0.1 14:24 20.6 0.1 14:25 20.6 0.1 14:26 20.6 0.1 14:27 20.6 0.1 14:28 20.6 0.1 RUN 6 PORT 1 14:29 20.6 0.1 14:30 20.5 0.2 14:31 20.5 0.4 14:32 20.5 0.2 14:33 20.6 0.2 14:34 20.6 0.1 14:35 20.6 0.1 14:36 20.6 0.1 14:37 20.6 0.1 14:38 20.6 0.1 14:39 20.6 0.1 14:40 20.6 0.1 14:41 20.6 0.1 14:42 20.6 0.1 14:43 20.6 0.1 14:44 20.6 0.1 14:45 20.6 0.1 14:46 20.6 0.1 14:47 20.6 0.1 14:48 20.6 0.1 14:49 20.6 0.1 107 RUN DATA Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:50 20.6 0.1 14:51 20.6 0.1 14:52 20.6 0.1 14:53 20.6 0.1 14:54 20.6 0.1 14:55 20.6 0.1 14:56 20.6 0.1 14:57 20.6 0.1 14:58 20.6 0.1 14:59 20.6 0.1 15:00 20.6 0.1 15:01 20.6 0.1 15:02 20.6 0.1 15:03 20.6 0.1 15:04 20.6 0.1 15:05 20.6 0.1 15:06 20.6 0.1 15:07 20.6 0.1 15:08 20.6 0.1 15:09 20.6 0.1 15:10 20.6 0.1 15:11 20.6 0.1 15:12 20.6 0.1 15:13 20.7 0.1 15:14 20.7 0.1 15:15 20.7 0.1 15:16 20.7 0.1 15:17 20.7 0.1 PORT CHANGE 15:18 20.7 0.1 15:19 20.6 0.1 15:20 20.6 0.1 15:21 20.6 0.1 15:22 20.6 0.1 15:23 20.6 0.1 15:24 20.6 0.1 15:25 20.6 0.1 15:26 20.6 0.1 15:27 20.6 0.1 15:28 20.6 0.1 108 RUN DATA Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 15:29 20.6 0.1 15:30 20.6 0.1 15:31 20.6 0.1 15:32 20.6 0.1 15:33 20.6 0.1 15:34 20.6 0.1 15:35 20.6 0.1 15:36 20.6 0.1 15:37 20.6 0.1 15:38 20.6 0.1 PORT 2 15:39 20.6 0.1 15:40 20.6 0.1 15:41 20.6 0.1 15:42 20.6 0.1 15:43 20.6 0.1 15:44 20.6 0.1 15:45 20.6 0.1 15:46 20.6 0.1 15:47 20.6 0.1 15:48 20.7 0.1 15:49 20.7 0.1 15:50 20.7 0.1 15:51 20.7 0.1 15:52 20.7 0.1 15:53 20.7 0.1 15:54 20.7 0.1 15:55 20.7 0.1 15:56 20.7 0.1 15:57 20.7 0.1 15:58 20.7 0.1 15:59 20.7 0.1 16:00 20.7 0.1 16:01 20.7 0.1 16:02 20.7 0.1 16:03 20.7 0.1 16:04 20.7 0.1 16:05 20.7 0.1 16:06 20.7 0.1 16:07 20.7 0.1 109 RUN DATA Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 %%Time 16:08 20.7 0.1 16:09 20.7 0.1 16:10 20.7 0.1 16:11 20.7 0.1 16:12 20.7 0.1 16:13 20.7 0.1 16:14 20.7 0.1 16:15 20.7 0.1 16:16 20.7 0.1 16:17 20.7 0.1 16:18 20.7 0.1 16:19 20.7 0.1 16:20 20.7 0.1 16:21 20.7 0.1 16:22 20.7 0.1 16:23 20.7 0.1 16:24 20.7 0.1 16:25 20.7 0.1 16:26 20.7 0.1 16:27 20.7 0.1 Avgs 20.6 0.1 110 RUN SUMMARY Number 5 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 14:11 to 16:27 Run Averages 20.6 0.1 Pre-run Bias at 10:21 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.3 12.0 8.9 Post-run Bias at 16:31 Zero Bias Span Bias Span Gas 0.0 0.0 11.9 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.7 0.1 111 BIAS AND CALIBRATION DRIFT Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 28 Feb 2019 Project Number: Operator: Date: Start Time: 16:31 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 11.9 -0.2 -1.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 11.9 -0.1 -0.5 Pass *Bias No. 6 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.3 8.4 0.1 0.6 Pass *Bias No. 6 112 BIAS AND CALIBRATION DRIFT Number 8 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: Start Time: 07:24 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.2 0.1 0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 11.9 12.2 0.3 1.4 Pass *Bias No. 7 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.3 -0.3 -1.8 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.4 8.3 -0.1 -0.6 Pass *Bias No. 7 113 RUN DATA Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 7 PORT 1 08:13 21.2 0.1 08:14 21.0 0.7 08:15 21.1 0.5 08:16 21.1 0.3 08:17 21.1 0.2 08:18 21.1 0.2 08:19 21.2 0.1 08:20 21.1 0.1 08:21 21.2 0.1 08:22 21.2 0.1 08:23 21.2 0.1 08:24 21.2 0.1 08:25 21.2 0.1 08:26 21.2 0.1 08:27 21.2 0.1 08:28 21.2 0.1 08:29 21.2 0.1 08:30 21.2 0.1 08:31 21.2 0.1 08:32 21.2 0.1 08:33 21.2 0.1 08:34 21.2 0.1 08:35 21.2 0.1 08:36 21.2 0.1 08:37 21.2 0.1 08:38 21.2 0.1 08:39 21.2 0.1 08:40 21.2 0.1 08:41 21.2 0.1 08:42 21.2 0.1 08:43 21.2 0.1 08:44 21.2 0.1 08:45 21.2 0.1 08:46 21.2 0.1 08:47 21.2 0.1 08:48 21.2 0.1 08:49 21.2 0.1 08:50 21.2 0.1 114 RUN DATA Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 08:51 21.2 0.1 08:52 21.2 0.1 08:53 21.2 0.1 08:54 21.2 0.1 08:55 21.2 0.1 08:56 21.2 0.1 08:57 21.2 0.1 08:58 21.2 0.1 08:59 21.2 0.1 09:00 21.2 0.1 09:01 21.3 0.1 PORT CHANGE PORT 2 09:20 21.2 0.1 09:21 21.2 0.1 09:22 21.2 0.1 09:23 21.2 0.2 09:24 21.2 0.2 09:25 21.2 0.2 09:26 21.2 0.2 09:27 21.2 0.2 09:28 21.2 0.2 09:29 21.2 0.2 09:30 21.2 0.2 09:31 21.3 0.2 09:32 21.3 0.2 09:33 21.3 0.2 09:34 21.3 0.2 09:35 21.3 0.2 09:36 21.3 0.2 09:37 21.3 0.2 09:38 21.3 0.2 09:39 21.3 0.2 09:40 21.3 0.2 09:41 21.3 0.2 09:42 21.3 0.1 09:43 21.3 0.1 09:44 21.3 0.1 09:45 21.3 0.1 09:46 21.3 0.1 115 RUN DATA Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:47 21.3 0.1 09:48 21.3 0.1 09:49 21.3 0.1 09:50 21.3 0.1 09:51 21.3 0.1 09:52 21.3 0.1 09:53 21.3 0.1 09:54 21.3 0.1 09:55 21.3 0.1 09:56 21.3 0.1 09:57 21.3 0.1 09:58 21.3 0.1 09:59 21.3 0.1 10:00 21.3 0.1 10:01 21.3 0.1 10:02 21.3 0.1 10:03 21.3 0.1 10:04 21.3 0.1 10:05 21.3 0.1 10:06 21.3 0.1 10:07 21.3 0.1 10:08 21.3 0.1 Avgs 21.2 0.1 116 RUN SUMMARY Number 6 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 08:12 to 10:08 Run Averages 21.2 0.1 Pre-run Bias at 07:24 Zero Bias Span Bias Span Gas 0.0 0.0 12.2 8.3 12.0 8.9 Post-run Bias at 10:12 Zero Bias Span Bias Span Gas 0.0 0.0 12.2 8.4 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.1 117 BIAS AND CALIBRATION DRIFT Number 9 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: Start Time: 10:12 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.2 0.1 0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.2 12.2 0.0 0.0 Pass *Bias No. 8 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.3 8.4 0.1 0.6 Pass *Bias No. 8 118 RUN DATA Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time RUN 8 PORT 1 12:37 21.1 0.1 12:38 21.1 0.1 12:39 21.1 0.1 12:40 21.1 0.1 12:41 21.1 0.1 12:42 21.1 0.1 12:43 21.1 0.1 12:44 21.1 0.1 12:45 21.1 0.1 12:46 21.1 0.1 12:47 21.1 0.1 12:48 21.1 0.1 12:49 21.1 0.1 12:50 21.1 0.1 12:51 21.1 0.1 12:52 21.1 0.1 12:53 21.1 0.1 12:54 21.1 0.1 12:55 21.1 0.1 12:56 21.1 0.1 12:57 21.1 0.1 12:58 21.1 0.1 12:59 21.1 0.1 13:00 21.1 0.1 13:01 21.1 0.1 13:02 21.1 0.1 13:03 21.1 0.1 13:04 21.1 0.1 13:05 21.1 0.1 13:06 21.1 0.1 13:07 21.1 0.1 13:08 21.1 0.1 13:09 21.1 0.1 13:10 21.2 0.1 13:11 21.2 0.1 13:12 21.2 0.1 13:13 21.2 0.1 13:14 21.2 0.1 119 RUN DATA Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 13:15 21.2 0.1 13:16 21.2 0.1 13:17 21.2 0.1 13:18 21.2 0.1 13:19 21.2 0.1 13:20 21.2 0.1 13:21 21.2 0.1 13:22 21.2 0.1 13:23 21.2 0.1 13:24 21.3 0.1 PORT CHANGE PORT 2 13:45 21.1 0.1 13:46 21.1 0.1 13:47 21.1 0.1 13:48 21.1 0.1 13:49 21.1 0.1 13:50 21.1 0.1 13:51 21.1 0.1 13:52 21.1 0.1 13:53 21.1 0.1 13:54 21.1 0.1 13:55 21.1 0.1 13:56 21.2 0.1 13:57 21.2 0.1 13:58 21.2 0.1 13:59 21.2 0.1 14:00 21.2 0.1 14:01 21.2 0.1 14:02 21.2 0.1 14:03 21.2 0.1 14:04 21.2 0.1 14:05 21.2 0.1 14:06 21.3 0.1 14:07 21.2 0.1 14:08 21.2 0.1 14:09 21.2 0.1 14:10 21.2 0.1 14:11 21.2 0.1 14:12 21.2 0.1 120 RUN DATA Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:13 21.2 0.1 14:14 21.2 0.1 14:15 21.2 0.1 14:16 21.2 0.1 14:17 21.2 0.1 14:18 21.2 0.1 14:19 21.3 0.1 14:20 21.3 0.1 14:21 21.3 0.1 14:22 21.3 0.1 14:23 21.3 0.1 14:24 21.3 0.1 14:25 21.2 0.1 14:26 21.2 0.1 14:27 21.2 0.1 14:28 21.2 0.1 14:29 21.2 0.1 14:30 21.2 0.1 14:31 21.2 0.1 14:32 21.2 0.1 14:33 21.2 0.1 Avgs 21.2 0.1 121 RUN SUMMARY Number 7 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 12:36 to 14:33 Run Averages 21.2 0.1 Pre-run Bias at 10:12 Zero Bias Span Bias Span Gas 0.0 0.0 12.2 8.4 12.0 8.9 Post-run Bias at 14:35 Zero Bias Span Bias Span Gas 0.0 0.0 12.1 8.3 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.1 122 BIAS AND CALIBRATION DRIFT Number 10 Client: Location: Source: Calibration 1 Chemours CHEMOURS VE North Carbon Bed/Division 15418.002.010 SD 1 Mar 2019 Project Number: Operator: Date: Start Time: 14:35 O2Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.1 12.1 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.2 12.1 -0.1 -0.5 Pass *Bias No. 9 CO2 Method: EPA 3A Span Conc. 16.6 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.3 -0.3 -1.8 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.4 8.3 -0.1 -0.6 Pass *Bias No. 9 123 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 APPENDIX C LABORATORY ANALYTICAL REPORT Note: The analytical report is included on the attached CD. 124        !"#$%$"&'()&      !"#$%& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"*+  +*, -#$ # #.  / # 0#.* * " 2% *" 23+0' '+4     5'                     //  !"#$ 6& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"* + + -#$ # #.  # 0#.  ,  " 2% *" 23+0' '+4     5'                         !"#$$07 18 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ 1 2 3 4 +. + .0. -#$ # /#. /  # 0#.   " 2% *" 23+0' '+4     5'                      /  !"#$ 6 9"#!& 14:&;" 98!469 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # #.  # 0#.   " 2% *" 23+0' '+4     5'                     563"78% 04/04/2019Page 14 of 664125        !"#$%$"&'()&    9  !"#8!"#9 61<9 $%& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= +  +  -#$ # #.  / # 0#.* /  " 2% *" 23+0' '+4     5'                      9  !"#8!"#9 61<9 $6& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= > +* + -#$ # #.  # 0#.   " 2% *" 23+0' '+4     5'                       9  !"#8!"#961<9  $$0718 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"=/ > +* +  * -#$ # /#. /  # 0#.  *  " 2% *" 23+0' '+4     5'                      9  !"#8!"#961<9  $6 9"#!& 14:&;" 98!469 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # #.  # 0#. ,  " 2% *" 23+0' '+4     5'                    563"78% 04/04/2019Page 15 of 664126        !"#$%$"&'()&    #  !"#$%& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"+*/ + / -#$ # ,#. . 0 ##.    " 2% *" 23+0' '+4     5'                      #  !"#$6& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"/ + *+ -#$ # /#. 0 . #0#.  . " 2% *" 23+0' '+4     5'                     #  !"#$$07 18 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"=/ > +* / +  -#$ # /#. /  # 0#.   " 2% *" 23+0' '+4     5'                     / #  !"#$ 6 9"#!& 14:&;" 98!469 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # /#. 0 . #0#. *  " 2% *" 23+0' '+4     5'                   563"78% 04/04/2019Page 16 of 664127        !"#$%$"&'()&    9  !"#8!"#9 61<9 $%& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"=/ + ,/ + 0*/ -#$ # ,#. . 0 ##.  ,  " 2% *" 23+0' '+4     5'                      9/  !"#8!"#9 61<9 $6& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= > +* + -#$ # /#. 0 . #0#.   " 2% *" 23+0' '+4     5'                     9  !"#8!"#961<9  $$0718 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"=// > +*0 +  -#$ # /#. /  # 0#.    " 2% *" 23+0' '+4     5'                      9  !"#8!"#961<9  $6 9"#!& 14:&;" 98!469 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # /#. 0 . #0#. .  " 2% *" 23+0' '+4     5'                  563"78% 04/04/2019Page 17 of 664128        !"#$%$"&'()&    //  !"#$%& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"=+*/ + / -#$ # ,#. . 0 ##. ,  " 2% *" 23+0' '+4     5'                      ///  !"#$6& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"=*+ + -#$ # /#. 0 . #0#.  0  " 2% *" 23+0' '+4     5'                     /  !"#$$07 18 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ 1 2 3 4 +* +  * -#$ # /#.** ##.* .  " 2% *" 23+0' '+4     5'                     //  !"#$ 6 9"#!& 14:&;" 98!469 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # /#. 0 . #0#.    " 2% *" 23+0' '+4     5'                   563"78% 04/04/2019Page 18 of 664129        !"#$%$"&'()&    9/  !"#8!"#9 61<9 $%& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= +  +  . -#$ # ,#. . 0 ##. *  " 2% *" 23+0' '+4     5'                      9  !"#8!"#9 61<9 $6& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= +* + -#$ # /#. 0 . #0#.  0  " 2% *" 23+0' '+4     5'                     9  !"#8!"#961<9  $$0718 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"= > +* +  , -#$ # /#.** ##.**  " 2% *" 23+0' '+4     5'                     9  !"#8!"#961<9  $6 9"#!& 14:&;" 98!469 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # /#. 0 . #0#.    " 2% *" 23+0' '+4     5'                   563"78% 04/04/2019Page 19 of 664130        !"#$%$"&'()&    # !"#$ %& #:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"=+  +/ -#$ # #.  / # 0#. /  " 2% *" 23+0' '+4     5'                     #/ !"#$ 6& #:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"*+ + -#$ # #.  # 0#.   " 2% *" 23+0' '+4     5'                        # !"#$ $07 18#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"= +. + .0. -#$ # /#. /  # 0#.   " 2% *" 23+0' '+4     5'                      # !"#$  6 9"#!& 14:&;" 98!469#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # #.  # 0#.  /  " 2% *" 23+0' '+4     5'                     563"78% 04/04/2019Page 20 of 664131        !"#$%$"&'()&    9 !"#8!"#961<9  $ %&#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"=/ +*/ +  / -#$ # #.  / # 0#. .  " 2% *" 23+0' '+4     5'                     9/ !"#8!"#9 61<9 $ 6&#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"=/ > +* + -#$ # #.  # 0#.  .  " 2% *" 23+0' '+4     5'                        9 !"#8!"#961<9 $ $0718#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ 1 2 3 4 +0* + .*0 -#$ # /#. /  # 0#. 0  " 2% *" 23+0' '+4     5'                      9 !"#8!"#961<9 $ 6 9"#!& 14:&;" 98!469#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # #.  # 0#.   " 2% *" 23+0' '+4     5'                      563"78% 04/04/2019Page 21 of 664132        !"#$%$"&'()&    &// !"#$ %& #:,& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"+  +/ -#$ # ,#. . 0 ##.   " 2% *" 23+0' '+4     5'                      &/// !"#$ 6& #:,& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01" + *+ -#$ # /#. 0 . #0#. , " 2% *" 23+0' '+4     5'                      &// !"#$ $07 18#:,& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"= > +* +  * -#$ # /#. /  # 0#.  ,  " 2% *" 23+0' '+4     5'                      & !"#$  6 9"#!& 14:&;" 98!469#:,& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ # /#. 0 . #0#.  " 2% *" 23+0' '+4     5'                   563"78% 04/04/2019Page 22 of 664133        !"#$%$"&'()&    & !"#$ /%& #:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"/=+*/ + / -#$ # ,#. . 0 ##.  /  " 2% *" 23+0' '+4     5'                     / & !"#$ /6& #:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"*+ + -#$ ##. .*. # #.*  " 2% *" 23+0' '+4     5'                       & !"#$ /$07 18#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"= +* +  , -#$ # /#. /  # 0#.    " 2% *" 23+0' '+4     5'                      & !"#$ / 6 9"#!& 14:&;" 98!469#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ ##. .*. # #.*  " 2% *" 23+0' '+4     5'                     563"78% 04/04/2019Page 23 of 664134        !"#$%$"&'()&    // !"#8!"#961<9  $ %&#:,& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= +  +  . -#$ # ,#. . 0 ##.  .  " 2% *" 23+0' '+4     5'                      /// !"#8!"#9 61<9 $ 6&#:,& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= +* + -#$ # /#. 0 . #0#.,  " 2% *" 23+0' '+4     5'                     // !"#8!"#961<9 $ $0718#:,& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"&%01"  $ 1 2 3 4 +0/ + . . -#$ # /#. /  # 0#.  .  " 2% *" 23+0' '+4     5'                       !"#8!"#961<9 $ 6 9"#!& 14:&;" 98!469#:,& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= > +* + -#$ # /#. 0 . #0#.*  " 2% *" 23+0' '+4     5'                  563"78% 04/04/2019Page 24 of 664135        !"#$%$"&'()&     !"#8!"#961<9  $ /%&#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= + ,/ + 0*/ -#$ # ,#. . 0 ##.   " 2% *" 23+0' '+4     5'                        !"#8!"#9 61<9 $ /6&#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= > +* + -#$ ##. .*. # #.*/  " 2% *" 23+0' '+4     5'                       !"#8!"#961<9 $ /$0718#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"= > +* +  * -#$ # /#. /  # 0#.  0  " 2% *" 23+0' '+4     5'                      /  !"#8!"#961<9 $ /6 9"#!& 14:&;" 98!469#:,& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ ##. .*. # #.**  " 2% *" 23+0' '+4     5'                    563"78% 04/04/2019Page 25 of 664136        !"#$%$"&'()&   / !  !"#$%& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"+*/ + / -#$ #*#.  # #.   " 2% *" 23+0' '+4     5'                     // !  !"#$6& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"* + + -#$ #*#.  0 # #. .   " 2% *" 23+0' '+4     5'                       / !  !"#$$07 18 $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"= +. + .0. -#$ # /#.** ##.*   " 2% *" 23+0' '+4     5'                    / !  !"#$ 6 9"#!& 14:&;" 98!469 $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= +* + -#$ #*#.  0 # #. .  " 2% *" 23+0' '+4     5'                        / !/  !"#$%& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"+ * +/ -#$ #*#.  # #. 0 * " 2% *" 23+0' '+4     5' 563"78% 04/04/2019Page 26 of 664137        !"#$%$"&'()&   / !/  !"#$%& $ '("' )*+,,   *-+,,  ) '"'!'                     / !  !"#$6& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01" + *+ -#$ #*#.  0 # #. . 0 " 2% *" 23+0' '+4     5'                       / !  !"#$$07 18 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"= +.* + .,. -#$ # /#.** ##.*  " 2% *" 23+0' '+4     5'                    / !  !"#$ 6 9"#!& 14:&;" 98!469 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ #*#.  0 # #.   " 2% *" 23+0' '+4     5'                      / 9  8!"#961<9  $%& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= +*/ +  / -#$ #*#.  # #. *  " 2% *" 23+0' '+4     5' 563"78% 04/04/2019Page 27 of 664138        !"#$%$"&'()&   / 9  8!"#961<9  $%& $ '("' )*+,/,   *-+,,  ) '"'!'                     / 9  8!"#961<9  $6& $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"=/ +* + -#$ #*#.  0 # #.  0  " 2% *" 23+0' '+4     5'                    / 9  8!"#961<9 $$0 718 $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"=/ > +* * +  -#$ # /#.** ##.* 0  " 2% *" 23+0' '+4     5'                    // 9  8!"#961<9 $ 6 9"#!& 14:&;" 98!469 $ '("' )*+,/,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ 1 2 3 4 +* + -#$ #*#.  0 # #.   " 2% *" 23+0' '+4     5'                   563"78% 04/04/2019Page 28 of 664139        !"#$%$"&'()&   / 9/  8!"#961<9  $%& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= + * +  -#$ #*#.  # #. *  " 2% *" 23+0' '+4     5'                      / 9  8!"#961<9  $6& $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"=/ > +* + -#$ #*#.  0 # #. ,  " 2% *" 23+0' '+4     5'                     / 9  8!"#961<9 $$0 718 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"&%01"  $ &%01"= > +./ + ... -#$ # /#.** ##.*   " 2% *" 23+0' '+4     5'                     / 9  8!"#961<9 $ 6 9"#!& 14:&;" 98!469 $ '("' )*+,,   *-+,,  ) '"'!'  $.)+/"0%1" +0%1  $ &%01"= > +* + -#$ #*#.  0 # #. *  " 2% *" 23+0' '+4     5'                   563"78% 04/04/2019Page 29 of 664140 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 APPENDIX D SAMPLE CALCULATIONS 141 SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 3 Test Date: 2/27/19 Test Location: Divison Stack Test Period: 0840-1035 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 = ------------------------------ Vm(std) 154.6 x 2.2046 x 10-9 Conc1 = ------------------------------ 53.177 Conc1 = 6.41E-09 Where: W = Weight of HFPO Dimer Acid collected in sample in ug. Conc1 = Division Stack HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 = Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 = W / ( Vm(std) x 0.02832) Conc2 = 154.6 / ( 53.177 x 0.02832 ) Conc2 = 1.03E+02 Where: Conc2 = Division Stack HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. 4/2/20195:11 PM 02262019 Division 1-3 142 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Outlet)= Conc1 x Qs(std) x 60 min/hr MR1(Outlet)= 6.41E-09 x 28117 x 60 MR1(Outlet)= 1.08E-02 Where: MR1(Outlet)= Division Stack HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Outlet)= PMR1 x 453.59 / 3600 MR2(Outlet)= 1.08E-02 x 453.59 /3600 MR2(Outlet)= 1.36E-03 Where: MR2(Outlet)= Division Stack HFPO Dimer Acid mass emission rate, g/sec. 453.6 = Conversion factor from pounds to grams. 3600 = Conversion factor from hours to seconds. 4/2/20195:11 PM 02262019 Division 1-3 143 EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Facility: Fayetteville, NC Test Number: Run 3 Test Date: 2/27/19 Test Location: Division Stack Test Period: 840-1035 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std) = -------------------------------------------- (Tm + 460) 1.011 17.64 x 1.0069 x 51.040 x ( 30.12 + --------------------- ) 13.6 Vm(std) = ------------------------------------------------------------ = 53.177 54.75 + 460 Where: Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb = Barometric Pressure, in Hg. delt H = Average pressure drop across the orifice meter, in H2O Tm = Average dry gas meter temperature , deg F. Y = Dry gas meter calibration factor. 17.64 = Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 = Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std) = (0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std) = ( 0.04707 x 6.0 ) + ( 0.04715 x 12.7 ) = 0.88 Where: Vw(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc = Volume of liquid condensed in impingers, ml. Wwsg = Weight of water vapor collected in silica gel, g. 0.04707 = Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 = Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 4/2/20195:11 PM 02262019 Division 1-3 144 3. Moisture content Vw(std) bws = ------------------------- Vw(std) + Vm(std) 0.88 bws = ------------------------- = 0.016 0.88 + 53.177 Where: bws = Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md = 1 - bws Md = 1 - 0.016 = 0.984 Where: Md = Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd = ( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd = ( 0.440 x 0.1 ) + ( 0.320 x 20.8 ) + (0.280 x ( 79.1 + 0.00 )) MWd = 28.85 Where: MWd = Dry molecular weight , lb/lb-mole. % CO2 = Percent carbon dioxide by volume, dry basis. % O2 = Percent oxygen by volume, dry basis. % N2 = Percent nitrogen by volume, dry basis. % CO = Percent carbon monoxide by volume, dry basis. 0.440 = Molecular weight of carbon dioxide, divided by 100. 0.320 = Molecular weight of oxygen, divided by 100. 0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs = ( MWd x Md ) + ( 18 x ( 1 - Md )) MWs = ( 28.85 x 0.984 ) +( 18 ( 1 - 0.984 )) = 28.67 Where: MWs = Molecular weight of wet gas, lb/lb-mole. 18 = Molecular weight of water, lb/lb-mole. 4/2/20195:11 PM 02262019 Division 1-3 145 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 530 Vs = 85.49 x 0.84 x 1.19608 x ( -------------------- )^1/2 = 67.4 30.07 x 28.67 Where: Vs = Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 = Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp = Pitot tube coefficient, dimensionless. Ts = Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps = Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p = Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act) = 60 x Vs x As Qs(act) = 60 x 67.4 x 7.07 = 28576 Where: Qs(act) = Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 = Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std) = 17.64 x Md x ----- x Qs(act) Ts 30.07 Qs(std) = 17.64 x 0.984 x -------------------- x 28576 530.3 Qs(std) =28117 Where: Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 4/2/20195:11 PM 02262019 Division 1-3 146 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I = ----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 530 x 53.177 I = -------------------------------------------------- = 99.8 67.4 x 96 x 30.07 x 0.984 x (0.160)^2 Where: I = Percent of isokinetic sampling. O = Total sampling time, minutes. Dn = Diameter of nozzle, inches. 17.327 = Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 4/2/20195:11 PM 02262019 Division 1-3 147 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 APPENDIX E EQUIPMENT CALIBRATION RECORDS 148 Date: 12/4/14-12/5/14Analyzer Type: Servomex - O2Model No: 4900Serial No: 49000-652921Calibration Span: 21.09 %Pollutant: 21.09% O2 - CC418692 CO2 (30.17% CC199689)0.00 -0.01 0.00 . NO (445 ppm CC346681)0.00 0.02 0.11 NO2 (23.78 ppm CC500749)NA NA NA N2O (90.4 ppm CC352661)0.00 0.05 0.24 CO (461.5 ppm XC006064B)0.00 0.02 0.00 SO2 (451.2 ppm CC409079)0.00 0.05 0.23 CH4 (453.1 ppm SG901795)NA NA NA H2 (552 ppm ALM048043)0.00 0.09 0.44 HCl (45.1 ppm CC17830)0.00 0.03 0.14 NH3 (9.69 ppm CC58181)0.00 0.01 0.03 1.20 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) 149 Date: 12/4/14-12/5/14Analyzer Type: Servomex - CO2Model No: 4900Serial No: 49000-652921Calibration Span: 16.65%Pollutant: 16.65% CO2 - CC418692 CO2 (30.17% CC199689)NA NA NA . NO (445 ppm CC346681)0.00 0.02 0.10 NO2 (23.78 ppm CC500749)0.00 0.00 0.02 N2O (90.4 ppm CC352661)0.00 0.01 0.04 CO (461.5 ppm XC006064B)0.00 0.01 0.00 SO2 (451.2 ppm CC409079)0.00 0.11 0.64 CH4 (453.1 ppm SG901795)0.00 0.07 0.44 H2 (552 ppm ALM048043)0.00 0.04 0.22 HCl (45.1 ppm CC17830)0.10 0.06 0.60 NH3 (9.69 ppm CC58181)0.00 0.02 0.14 2.19 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) 150 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI79E15A00E4 Reference Number:82-401288926-1 Cylinder Number:CC18055 Cylinder Volume:150.5 CF Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG PGVP Number:B52018 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Sep 04, 2018 Expiration Date:Sep 04, 2026 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 9.000 %8.864 %G1 +/- 0.7% NIST Traceable 09/04/2018 OXYGEN 12.00 %12.00 %G1 +/- 0.4% NIST Traceable 09/04/2018 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 13060629 CC413730 13.359 % CARBON DIOXIDE/NITROGEN +/- 0.6%May 09, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Aug 09, 2018 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Aug 09, 2018 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401288926-1151 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI62E15A0224 Reference Number:82-401044874-1 Cylinder Number:SG9169108 Cylinder Volume:157.2 CF Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG PGVP Number:B52017 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Nov 18, 2017 Expiration Date:Nov 18, 2025 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 17.00 %16.58 %G1 +/- 0.7% NIST Traceable 11/18/2017 OXYGEN 21.00 %21.00 %G1 +/- 0.5% NIST Traceable 11/18/2017 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 12061336 CC360792 11.002 % CARBON DIOXIDE/NITROGEN +/- 0.6%Jan 11, 2018 NTRM 09061415 CC273526 22.53 % OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Oct 30, 2017 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Oct 27, 2017 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401044874-1152 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.459 PASS Distance to B Plane (PB) - inches 0.459 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches P-700 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.93 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.003 0.012 Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA PASS PASS PASS Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NASample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 153 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.46 PASS Distance to B Plane (PB) - inches 0.46 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches P-695 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS0 1 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.78 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.006 0.018 Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA PASS PASS PASS Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NASample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A B Q1 Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 154 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN DIVISION STACK METER BOX NO. 12 2/26/2019 - 2/28/2019 & 3/1/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis.0.1 0.1 0.1 % O2 = Percent oxygen by volume, dry basis.20.8 20.8 20.8 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.8 ) + ( 0.44 * 0.1 ) + ( 0.28 * ( 100 - ( 0.1 + 20.8 ))) MWd = ( 6.66 ) + ( 0.04 ) + ( 22.15 ) MWd = 28.85 28.85 28.85 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.68.7 74.3 54.8 Tma = Ts + 460 Tma = 68.67 + 460 Tma = 528.67 534.25 514.75 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.05 1.04 1.01 Pb = Barometric Pressure, in Hg.30.19 30.10 30.12 Pm = Pb + (delta H / 13.6) Pm = 30.19 + ( 1.04883333333333 / 13.6) Pm = 30.27 30.18 30.19 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.52.225 52.835 51.040 Y = Dry gas meter calibration factor (based on full calibration)1.0069 1.0069 1.0069 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.8812 1.8812 1.8812 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.0172 1.0142 1.0012 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 52.23 ) * SQRT ( 0.0319 * 528.67 * 29 ) / ( 1.88 * 30.27 * 28.85 ) * 1.02 Yqa = 1.838 * SQRT 489.070 / 1,642.718 * 1.02 Yqa = 1.0203 1.0123 1.0153 Diff = Absolute difference between Yqa and Y 1.33 0.54 0.83 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0069 - 1.020 ) / 1.0069 ) * 100 Average Diff = 0.9 Allowable = 5.0 4/3/20199:57 AM 02262019 Division 1-3155 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN BLOWER INTAKE METER BOX NO. 29 2/26/2019 - 2/2/2019 & 3/1/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.60.4 78.3 65.1 Tma = Ts + 460 Tma = 60.39 + 460 Tma = 520.39 538.26 525.13 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 3.00 3.00 3.00 Pb = Barometric Pressure, in Hg.29.29 30.20 30.22 Pm = Pb + (delta H / 13.6) Pm = 29.29 + ( 3 / 13.6) Pm = 29.51 30.42 30.44 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.128.621 109.397 107.605 Y = Dry gas meter calibration factor (based on full calibration)1.0100 1.0100 1.0100 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.9363 1.9363 1.9363 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.7321 1.7321 1.7321 O = Total sampling time, minutes.135 115 115 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 135.00 / 128.62 ) * SQRT ( 0.0319 * 520.39 * 29 ) / ( 1.94 * 29.51 * 28.84 ) * 1.73 Yqa = 1.050 * SQRT 481.414 / 1,647.695 * 1.73 Yqa = 0.9827 0.9858 0.9896 Diff = Absolute difference between Yqa and Y 2.70 2.40 2.02 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.01 - 0.983 ) / 1.01 ) * 100 Average Diff = 2.37 Allowable = 5.0 4/3/20199:55 AM 02262019 Blower Intake 1-3156 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 APPENDIX F LIST OF PROJECT PARTICIPANTS 157 IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 The following WESTON employees participated in this project. Paul Meeter Senior Project Manager Matt Winkeler Team Member Jack Mills Team Member Kyle Schweitzer Team Member 158