HomeMy WebLinkAbout1101_BuncombeCounty_GWMR_DIN28332_20160411
Old Buncombe County Landfill
Permit No. 1101
Spring 2016 Semi-Annual Monitoring and
Monitored Natural Attenuation Sampling Report
Presented to:
Buncombe County Solid Waste Department
81 Panther Branch Road
Alexander, North Carolina 28701
(828)250-5460
Presented by:
SCS ENGINEERS, PC
4767 New Broad Street, Suite 222
Orlando, FL 32814
(407) 514-2766
June 16, 2016
File No. 09204072.14
Offices Nationwide www.scsengineers.co
Solid Waste Services
Old Buncombe County Landfill i MNA Sampling Report
Table of Contents
Section Page
1 Introduction .......................................................................................................................................... 1-2
2 Semi-Annual Sampling ...................................................................................................................... 2-3
3 Conclusion ............................................................................................................................................ 3-5
4 References ........................................................................................................................................... 4-5
Appendices
Appendix A
Figures
Appendix B
Tables
Appendix C
Well Condition Summary
Appendix D
Sampling Forms
Appendix E
Summary of Detections
Appendix F
Summary of Exceedances
Solid Waste Services
Old Buncombe County Landfill 1 -2 MNA Sampling Report
1 INTRODUCTION
The Buncombe County unlined municipal solid waste landfill located at 2726 Riverview Road
near Asheville NC, has commenced Monitored Natural Attenuation (MNA) monitoring in
accordance with the Corrective Action Plan (CAP) approved September 24, 2014. The Fall
sampling event was performed between October 12 and October 19, 2015 along with traditional
semi-annual sampling.
The Old Buncombe County Landfill (OBCL) is closed and currently monitored under post-
closure care. The OBCL collected waste streams in unlined waste areas approved to receive
municipal, industrial, and construction solid wastes, along with household waste and yard debris.
Leachate from the waste areas have contaminated the groundwater as evidenced from the
presence of chlorinated solvents detected in groundwater from down-gradient monitoring wells
in excess of North Carolina Department of Environment and Natural Resources (NCDENR)
standards beginning in 1985 to the present.
Waste Areas A, B, and C stopped receiving waste prior to October 9, 1991. Area D stopped
accepting waste on September 27, 1997 in accordance with the North Carolina Solid Waste
Management Rule T15A: 13B .1627(c)(10)(A). Institutional controls are in place which restricts
the use of, access to the site, and eliminates or minimizes exposure to site contaminants. All
disposal areas have been closed and capped in accordance with permit modifications for closure
under 15A North Carolina Administrative Code (NCAC) Chapter 13B.
The landfill site has controlled access and perimeter fencing to limit site access. An active gas
collection system was constructed and is operated by Enerdyne. This system generates power
from a small facility located on the property. The County has constructed a Safety Training
Facility on property outside of the waste fill area but within the original landfill property limits.
Multiple buildings have already been constructed and others are in the planning stages. This area
has controlled access and perimeter fencing that isolates its development from the balance of the
landfill property. The habitable buildings in this area are equipped with sub floor vapor
extraction systems and gas detectors that are monitored continuously by on-site personnel. While
these vapor intrusion controls have been installed specifically to address potential methane gas
issues, it is expected that the vapor systems in permanently occupied spaces will also help to
mitigate any potential issues arising from a vapor intrusion pathway.
The groundwater plume has been monitored over the years by a series of monitoring wells
around the perimeter of the landfill (see Figure 1, Appendix A). Currently 24 monitoring wells
are sampled semi-annually (DPL-2 was converted to an Injection Well prior to the October 2015
sampling event). Groundwater samples collected from these wells have been analyzed for the
typical landfill parameters (metals, semi-volatile organic compounds, volatile organic
compounds, etc.). Concentrations in excess of the Title 15A NCAC Subchapter 2L (NC2L)
groundwater standards have been reported primarily for metals and volatile organic compounds
(VOCs). The extent of the groundwater plume has been delineated and concentrations of
contaminants have generally been declining. Additional remedial measures, enhanced in-situ
bioremediation (EIB) were performed in September 2015 in accordance with the March 2015
CAP Addendum and the Injection Permit WI0100353.
Five main groundwater flow paths, referred to as transects, have been identified down-gradient
from the OBCL waste piles presented below.
Transect 1 Transect 2 Transect 3 Transect 4 Transect 5
MW-4A MW-B MW-3 MW-DPL-2 MW-6
MW-12-25 MW-17-60 MW-21-21 MW-4 MW-6-192
MW-13-35 MW-17-137 MW-21-94 MW-19-75 MW-5
MW-13-132 MW-19-110 DPL-1
MW-24-45 MW-18-78
MW-24-160
Italicized- EIB Injection Well
Bold-MNA Performance Well
Bold & Italicized-MNA Sentinel Well
Transects 1 and 5 appear to be long enough to naturally attenuate VOCs observed immediately
down-gradient from the waste piles prior to reaching the French Broad River. MNA is the only
remedial activity for Transects 1 and 5. Transect 2 appears to have been successfully remediated
following the pilot testing of EIB using hydrogen release compound injection. Transect 3 and 4
show contaminants reach the French Broad River before natural attenuation processes may
completely de-chlorinate site VOCs. Therefore more aggressive clean-up actions consisting of
enhancing natural attenuation through substrate addition were implemented along the short flow
path system.
DPL-2 and the newly installed IW-1 were used as the fractured bedrock injection points for
substrate addition based on their close proximity to the source plume. Direct injection to the base
of the regolith, TW-1-3, was also used to treat the high flow zone which may be used to
remediate both short and long fracture controlled flow paths along Transects 3 and 4. Substrate
addition was conducted in September, 2015 prior to the Fall 2015 semi-annual sampling event.
Temporary injection wells were abandoned following substrate addition.
2 SEMI-ANNUAL SAMPLING
Metals and VOCs were detected in ground water samples which exceeded NC2L Groundwater
Standards in concentrations which are consistent with previous sampling results. Surface water
sampling demonstrated no constituents were above their SWS reporting limits. NA - Not
Analyzed
Twenty monitoring wells were sampled during the Spring 2016 event, two monitoring wells
were dry and no samples were collected (MW-24-45, and MW-7). DPL-1 was dry following
collection of metals samples. MW-3 was not sampled due to a miscommunication with the
sample team. Groundwater samples were collected from April 11th through 15th, 2016. The four
surface water samples were collected on April 11th, 2016. All samples were collected and
analyzed by Pace Laboratories in Asheville, NC for analysis of Appendix I constituents list as
well as MNA parameters as specified in Appendix B, Table 1.
Groundwater elevations were also measured and a groundwater contour map for both the shallow
and deep flow regimes as presented in Appendix A. Field parameters and the well condition
were evaluated as presented in Appendix C Well Condition Summary and Appendix D
Sampling Forms. Field parameters included: pH, specific conductivity, temperature, dissolved
oxygen, and oxidation/reduction potential, temperature, and turbidity. Field parameters were also
measured at the surface water sampling locations.
Nine of the 21 monitoring wells had concentrations in excess of the NC2L Groundwater
Standards. No surface water samples had concentrations in excess of the SWS reporting limits. A
summary of detections is provided in Appendix E; a summary of exceedances is provided as
Appendix F. The exceedances were consistent with historic concentrations at their respective
wells. A summary of the contaminants exceeding the NC2Ls is presented as Appendix B, Table
2.
VOC constituents detected include 1,1-dichloroethane, 1,2-dichloropropane, 1,4-
dichlorobenzene, 2-butanone, 2-hexanone, 4-methyl-2-pentanone, acetone, benzene,
chlorobenzene, chloroethane, cis-1,2-dichloroethene, ethylbenzene, tetrachloroethene, toluene,
trichloroethene, vinyl chloride, and xylene. 1,1-dichloroethane was detected above the maximum
contaminant level of 6 ug/L in MW-4 (16.3 ug/L). 1,2-dichloropropane was detected above the
maximum contaminant level of 700 ug/L in MW-13-132 (1.3 ug/L). 1,4-dichlorobenzene was
detected above the maximum contaminant level of 6 ug/L in MW-13-35 (49.9 ug/L), MW-21-21
(13.1 ug/L), MW-4 (12.8 ug/L), MW-4A (67.1 ug/L), and MW-5 (7.7 ug/L). Benzene was
detected above the maximum contaminant level of 1 ug/L in MW-21-21 (2.8 ug/L), MW-13-35
(2.6 ug/L), MW-4A (3.9 ug/L), and MW-6 (1.3 ug/L). Tetrachloroethene was detected above the
maximum contaminant level of 0.7 ug/L in MW-4 (1.5 ug/L). Vinyl chloride was detected above
the maximum contaminant level of 0.03 ug/L in MW-18-78 (1.7 ug/L), MW-21-21 (2.6 ug/L),
MW-4 (2.7 ug/L), and MW-B (1.5 ug/L).
Metal constituents detected include antimony, barium chromium, cobalt, iron, lead, manganese,
nickel, selenium, vanadium, and zinc. Antimony was detected above the maximum contaminant
level of 1 ug/L in MW-15 (12.8 ug/L), and DPL-1 (5.1 ug/L). Barium was detected above the
maximum contaminant level of 700 ug/L in MW-4A (840 ug/L), and MW-6 (1190 ug/L).
Cobalt was detected above the maximum contaminant level of 1 ug/L in MW-21-94 (24.1 ug/L),
MW-B (11.1ug/L), MW-13-132 (16.7 ug/L), MW-19-75 (17.7 ug/L), DPL-1 (23.7 ug/L), MW-6
(37.2 ug/L), MW-21-21 (32.2 ug/L), MW-18-78 (18.3 ug/L), MW-4 (75.5 ug/L), MW-4A (102
ug/L), and MW-5 (26 ug/L). Nickel was detected above the maximum contaminant level of 100
ug/L in MW-4 (109 ug/L). Vanadium was detected above the maximum contaminant level of 0.3
ug/L in DPL-1 (37.1 ug/L).
Metals were detected in the surface water samples including: barium, chromium, cobalt, copper,
nickel, vanadium, and zinc. Concentrations were below their SWS reporting limits.
Pace analytical laboratories collected groundwater samples, to be tested for MNA parameters,
from 10 monitoring wells (MW-2, MW-4, MW-6, MW-13-132, MW-18-78, MW-19-75, MW-
19-110, MW-21-21, MW-21-94, and MW-24-160). Sampling was conducted per the
methodology listed in the approved CAP Groundwater and Surface Water Sampling and
Analysis Plan for the constituents listed in Appendix B, Table 3. These results were evaluated
using the EPA Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents
(EPA 1998). A summary table of baseline MNA sampling results is presented as Appendix B,
Table 4. Screening results indicate that there is strong information to suggest natural attenuation
is occurring at the performance well locations. Further, screening results indicate that there is
strong to adequate information to suggest natural attenuation is occurring at the sentinel wells
well locations on transects 3, 4, and 5.
The range of hydrogen concentrations for a given terminal electron-accepting process show
sulfate reduction as the likely MNA process for all four rounds of MNA parameter sampling
with some evidence of methanogenesis in the very deep flow regimes based on elevated
hydrogen concentrations during the Spring 2016 sampling event.
3 CONCLUSION
The OBCL data presented in this report provides evidence to demonstrate natural attenuation is
occurring on site in accordance with EPA Technical Protocol for Evaluating Natural Attenuation
of Chlorinated Solvents (EPA 1998). Overall contaminant concentrations of highly chlorinated
VOCs have been decreasing. Spring 2016 MNA sampling data were evaluated using EPA’s
MNA screening tool, screening values indicate that there is strong information to suggest natural
attenuation is occurring in all four MNA performance wells. The two year MNA Baseline
Sampling has been completed, a separate letter will be forthcoming requesting a reduction in
MNA sampling.
4 REFERENCES
EPA. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in
Ground Water. EPA/600/R-98/128, U.S. Environmental Protection Agency, Office of Research
and Development, Washington D.C. .
Solid Waste Services
Old Buncombe County Landfill MNA Sampling Report
APPENDIX A
FIGURES
L
E
G
E
N
D
MW-B DPL-2DPL-1 MW-24-160 MW-24-45 MW-21-94 MW-21-21 MW-19-110 MW-AMW-19-75 MW-23-186MW-18-78 MW-23-119MW-17-310 MW-22-143MW-17-137 MW-22-78MW-17-60 MW-21-4MW-15 MW-20-32MW-13-132 MW-20-3MW-13-35 MW-19-4MW-12-25 MW-18-3MW-7 MW-16MW-6-192 MW-14MW-6 SW-9SW-4 MW-13-10MW-5 SW-8SW-3 MW-12-10MW-4A SW-7SW-2A MW-10MW-4 SW-6SW-2 MW-9MW-3 SW-5SW-1MW-8MW-2 INACTIVE SURFACEWATERSAMPLING LOCATIONS ACTIVE SURFACEWATERSAMPLING LOCATIONS INACTIVEMONITORING WELLS ACTIVEMONITORING WELLSNOTE: ACTIVE SAMPLING MONITORING WELLS AND SURFACE LOCATIONS ARE TO BESAMPLED AND TESTED TWICE ANNUALLY. INACTIVE MONITORING WELLS ARE TO BECHECKED FOR DEPTH TO GROUNDWATER ONLY.
M
W
-
2
M
W
-
8
S
W
-
1
S
W
-
5
A
C
T
I
V
E
G
R
O
U
N
D
W
A
T
E
R
M
O
N
I
T
O
R
I
N
G
W
E
L
L
I
N
A
C
T
I
V
E
G
R
O
U
N
D
W
A
T
E
R
M
O
N
I
T
O
R
I
N
G
W
E
L
L
A
C
T
I
V
E
S
U
R
F
A
C
E
W
A
T
E
R
M
O
N
I
T
O
R
I
N
G
L
O
C
A
T
I
O
N
I
N
A
C
T
I
V
E
S
U
R
F
A
C
E
W
A
T
E
R
M
O
N
I
T
O
R
I
N
G
L
O
C
A
T
I
O
N
P
R
O
P
E
R
T
Y
B
O
U
N
D
A
R
Y
A
B
A
N
D
O
N
E
D
T
E
M
P
O
R
A
R
Y
I
N
J
E
C
T
I
O
N
W
E
L
L
S
I
N
J
E
C
T
I
O
N
W
E
L
L
MW-17 ABANDONEDMONITORING WELLS ABANDONED TEMPORARYINJECTIONWELLS NOTE: ONE INJECTIONEVENT 09/2015.INJECTIONWELL TW-3 TW-2 TW-1DPL-2 I-W1
Old Buncombe County Landfill MNA Sampling Report
APPENDIX B
TABLES
Site ID Total
Depth Type Semi-Annual
MNA
Semi-Annual
Appendix I Metals
& Volatiles
Annual
Appendix II
Field
Parameters
MW-B 15.4 Compliance Yes Yes
MW-2 175 Background Yes Yes Yes Yes
MW-3 90 Compliance Yes Yes
MW-4 75 Performance Yes Yes Yes
MW-4A 77 Compliance Yes Yes
MW-5 80 Compliance Yes Yes Yes
MW-6 40 Performance Yes Yes Yes Yes
MW-6-192 192 Compliance Yes Yes
MW-7 29 Compliance Yes Yes
MW-12-25 26 Compliance Yes Yes
MW-13-35 35 Compliance Yes Yes
MW-13-132 132 Performance Yes Yes Yes
MW-15 72 Compliance Yes Yes
MW-17-60 60 Compliance Yes Yes
MW-17-137 137 Compliance Yes Yes
MW-17-310 310 Compliance Yes Yes
MW-18-78 78 Sentinel Yes Yes Yes
MW-19-75 75 Compliance Yes Yes Yes
MW-19-110 110 Sentinel Yes Yes Yes
MW-21-21 21 Performance Yes Yes Yes
MW-21-94 94 Sentinel Yes Yes Yes
MW-24-45 45 Compliance Yes Yes
MW-24-160 160 Sentinel Yes Yes Yes
DPL-1 65 Compliance Yes Yes Yes
DPL-2 97 EIB Well Yes* Yes* Yes*
*This well has been removed from the sampling schedule following enhancement application.
EIB Well-This well was used as injection wells for Enhanced In-Situ Bioremediation (EIB).
MONITORING WELL SAMPLING SUMMARY
TABLE 1
Fe
n
c
e
Tr
a
n
s
e
c
t
2
T
r
a
n
s
e
c
t
5
Mo
n
i
t
o
r
i
n
g
W
e
l
l
N
u
m
b
e
r
MC
L
1
5
4
A
1
3
-
3
5
1
3
-
1
3
2
2
4
-
1
6
0
B
3
2
1
-
2
1
2
1
-
9
4
4
1
9
-
7
5
1
9
-
1
1
0
D
P
L
-
1
6
5
1
8
-
7
8
VO
C
s
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
6
u
g
/
L
BD
L
B
D
L
B
D
L
2
B
D
L
B
D
L
N
A
5
.
6
B
D
L
16
.
3
1.5
D
6
B
D
L
B
D
L
5
.
9
B
D
L
1
.
7
1,
2
-
D
i
c
h
l
o
r
o
p
r
o
p
a
n
e
0.
6
u
g
/
L
BD
L
B
D
L
B
D
L
1.
3
BD
L
B
D
L
N
A
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
1,
4
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
6
u
g
/
L
BD
L
67
.
1
4
9
.
9
BD
L
B
D
L
B
D
L
N
A
13
.
1
1.8
12
.
8
4.8
D
6
B
D
L
B
D
L
4
.
8
7.7 1.2
Be
n
z
e
n
e
1
u
g
/
L
BD
L
3.
9
2
.
6
BD
L
B
D
L
B
D
L
N
A
2.
8
BD
L
B
D
L
B
D
L
B
D
L
B
D
L
1.3 1
B
D
L
Te
t
r
a
c
h
l
o
r
o
e
t
h
e
n
e
0.
7
u
g
/
L
BD
L
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
N
A
B
D
L
B
D
L
1.
5
BD
L
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
Vi
n
y
l
c
h
l
o
r
i
d
e
0.0
3
u
g
/
L
BD
L
B
D
L
B
D
L
B
D
L
B
D
L
1.
5
NA
2.
6
BD
L
2.
7
BD
L
B
D
L
B
D
L
B
D
L
B
D
L
1.7
Me
t
a
l
s
An
t
i
m
o
n
y
1
u
g
/
L
12
.
8
BD
L
B
D
L
B
D
L
B
D
L
B
D
L
N
A
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
5.1 BDL
B
D
L
B
D
L
Ba
r
i
u
m
70
0
u
g
/
L
24
4
84
0
17
4
2
4
.
5
8
.
7
2
2
6
N
A
1
1
7
4
4
.
3
5
7
7
1
0
0
1
0
.
7
1
8
4
1190 162
4
5
.
5
Co
b
a
l
t
1
u
g
/
L
BD
L
10
2
BD
L
16
.
7
BD
L
11
.
1
NA
32
.
2
2
4
.
1
7
5
.
5
1
7
.
7
BD
L
23.7
3
7
.
2
2
6
1
8
.
3
Ni
c
k
e
l
10
0
u
g
/
L
10
.
6
1
1
5
.
2
B
D
L
B
D
L
B
D
L
N
A
7
.
5
8
.
6
10
9
17
B
D
L
3
5
.
8
6
.
7
1
4
.
1
B
D
L
Va
n
a
d
i
u
m
0.
3
u
g
/
L
BD
L
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
N
A
B
D
L
B
D
L
B
D
L
B
D
L
B
D
L
37.1 BDL
B
D
L
B
D
L
No
t
e
s
:
BD
L
-
B
e
l
o
w
D
e
t
e
c
t
i
o
n
L
i
m
i
t
s
ug
/
L
-
M
i
c
r
o
g
r
a
m
s
P
e
r
L
i
t
e
r
MC
L
-
M
a
x
i
m
u
m
C
o
n
t
a
m
i
n
a
n
t
L
e
v
e
l
VO
C
s
-
V
o
l
a
t
i
l
e
O
r
g
a
n
i
c
C
o
m
p
o
u
n
d
s
NA
-
N
o
t
A
n
a
l
y
z
e
d
D6
-
T
h
e
p
r
e
c
i
s
i
o
n
b
e
t
w
e
e
n
t
h
e
s
a
m
p
l
e
a
n
d
t
h
e
s
a
m
p
l
e
d
u
p
l
i
c
a
t
e
e
x
c
e
e
d
e
d
l
a
b
o
r
a
t
o
r
y
c
o
n
t
r
o
l
l
i
m
i
t
s
Bo
l
d
t
e
x
t
–
C
o
n
c
e
n
t
r
a
t
i
o
n
e
x
c
e
e
d
s
M
C
L
TA
B
L
E
2
SU
M
M
A
R
Y
O
F
E
X
C
E
E
D
A
N
C
E
S
Tr
a
n
s
e
c
t
3
Tr
a
n
s
e
c
t
1
T
r
a
n
s
e
c
t
4
Table 3
Analytical Methods to Monitor Natural Attenuation
Analysis Method Data Use
Dissolved
Oxygen
Field meter
SM 4500 O G
The most thermodynamically favored electron
acceptor used by microbes.
Nitrate EPA 353.2 Used as an electron acceptor by denitrifying
bacteria if oxygen is depleted.
Iron (II) EPA 6010 Indicator of iron reducing bacteria.
Sulfate EPA 300.0 Used as electron acceptor. Provide evidence of
sulfate reducing bacteria.
Sulfide Field meter
SM 4500 S D
Daughter product of sulfate reduction. May not be
detected even if sulfate-reducing bacteria are
active because it can react with various
oxygenated chemical species and metals.
Methane, ethane,
ethene
Bubble Strip Sampler
AM 20 GAX
Provide evidence of complete dechlorination of
chlorinated ethenes, and ethanes. Methane also
indicates activity of methanogenic bacteria.
Oxidation
Reduction
Potential
Field meter
A2580B
Influences and is influenced by the nature of
biologically mediated degradation of
contaminants.
pH/
Temperature/
Conductivity
Field meter
Biological processes are optimal at pH range of 5
to 9/ Temp>20°C/ measure of ion concentrations.
Turbidity EPA 180.1 Possible interference.
Total Organic
Carbon (TOC)
SM 5310 B
Used to classify plume and to determine if
reductive dechlorination is possible.
Biological
Oxygen Demand
(BOD)
SM 5210 B
Measure of the total concentration of dissolved
oxygen that would eventually be demanded as
plume degrades.
Chemical
Oxygen Demand
(COD)
SM 5220 D Measure of the total quantity of oxygen required to
oxidize all organic material into carbon dioxide
and water.
CO2 AM 20 GAX Ultimate oxidative daughter product.
Alkalinity SM 2320 B Increased levels indicative of carbon dioxide
production (mineralization of organic compounds).
Chloride SM 4500 Cl E Provides evidence of dechlorination, possible use
in mass balancing, may serve as conservative
tracer.
Dissolved
Hydrogen
Bubble Strip Sampler
AM 20 GAX
Determine type of anaerobic activity (i.e.,
methanogenesis, sulfate and iron reduction)
Volatile Fatty
Acids
AM 21 G May provide insight into the types of microbial
activity and serve as electron donors.
EPA Biodegradation Parameters Units
Analytical Result/
Screening Value
Date MW‐2MW‐4MW‐6MW‐13‐132 MW‐18‐78 MW‐19‐75 MW‐19‐110 MW‐21‐21 MW‐21‐94 MW‐24‐160
Fall 2014 6.1 6.1 6.1 6.7 6.4 ‐‐‐7.3 6.3 6.4 7.2
Spring 2015 6.1 6.0 6.0 6.8 6.4 ‐‐‐7.3 6.2 6.5 7.2
Fall 2015 6.3 6.1 6.1 7 6.5 6.2 7.2 6.2 6.7 7.1
Spring 2016 6.0 5.9 5.8 6.9 6.2 5.9 7.2 6.1 6.3 7.0
Screening Value Spring 2016 ‐‐‐000000000
Fall 2014 21.7 14.3 24.5 15.7 16.3 ‐‐‐16.5 16.3 19.5 14.5
Spring 2015 20.8 15.0 16.4 17.3 17.3 ‐‐‐18.1 13.6 14.1 12.7
Fall 2015 12.9 16.5 18.9 13.9 16.1 17.1 16.9 17.8 18.5 18.4
Spring 2016 14.9 19.5 15.2 14.4 14.2 16.5 18.0 17.4 17.4 18.4
Screening Value Spring 2016 ‐‐‐000000000
Fall 2014 120 987 1292 249 701 ‐‐‐607 1337 909 147
Spring 2015 122 973 1241 302 651 ‐‐‐560 1228 964 149
Fall 2015 118 970 1263 305 678 1089 550 1157 960 151
Spring 2016 122 990 1232 314 709 1112 527 1419 878 174
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 2.88 2.58 0.82 1.14 0.12 ‐‐‐1.1 2.42 1.21 4.6
Spring 2015 3.91 2.9 1.03 1.09 0.81 ‐‐‐0.76 1.57 1.62 3.71
Fall 2015 4.66 1.6 0.6 0.38 0.16 0.57 0.63 0.29 0.38 3.01
Spring 2016 3.25 2.87 0.97 1.04 0.66 0.6 1.43 0.67 0.7 1.96
Screening Value Spring 2016 0000000000
Fall 2014 277 1.91 2.05 1.59 2.15 ‐‐‐2.2 2.04 1.93 4.8
Spring 2015 3.2 3.14 4.09 4.22 29 ‐‐‐3.13 16.7 4.01 5.7
Fall 2015 1.74 6.93 24.78 0.42 0.35 1.78 3.05 2.51 6.68 3.79
Spring 2016 2.78 2.15 1.17 1.15 3.9 25.48 9.37 5.66 30.9 7.2
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 165.8 31.2 ‐39 ‐46.9 ‐56.9 ‐‐‐ ‐114.6 ‐331 ‐58.4 147.3
Spring 2015 203.1 86.4 ‐2.1 ‐50.8 ‐29.8 ‐‐‐ ‐92.7 ‐16.5 ‐40.5 49.6
Fall 2015 163.6 24.8 ‐33.2 ‐82.4 ‐84.4 ‐26.4 ‐49.7 ‐33 ‐109.9 138.3
Spring 2016 121.2 45.9 ‐10 ‐56.4 ‐39.9 17.1 65 ‐24 ‐75.2 134.8
Screening Value Spring 2016 0111111110
Fall 2014 50.1 390 529 111 241 ‐‐‐227 580 299 41.6
Spring 2015 45.6 346 464 101 195 ‐‐‐179 475 308 39.5
Fall 2015 50.1 380 477 115 207 321 173 430 299 45.2
Spring 2016 57.6 437 490 130 223 361 193 672 306 51
Screening Value Spring 2016 ‐‐‐111111110
Fall 2014 2 85.6 113 5 78.4 ‐‐‐54.7 105 107 7.1
Spring 2015 1.96 74.2 113 4.19 76.2 ‐‐‐49.8 101 119 6.5
Fall 2015 2.16 84.8 110 4.9 87.3 153 46.5 108 119 8.05
Spring 2016 2.16 74.8 140 4.99 102 160 59.3 91.4 21.8 7.72
Screening Value Spring 2016 ‐‐‐222222222
Fall 2014 4850 3010 37200 3000 25400 ‐‐‐2600 21400 16800 209
Spring 2015 720 3380 34400 5010 22600 ‐‐‐1880 19800 19800 276
Fall 2015 94.8 3970 40700 14800 21800 8580 1660 13800 17400 92.2
Spring 2016 252 5730 26800 11400 21500 11700 946 15000 16800 136
Screening Value Spring 2016 ‐‐‐333330330
Fall 2014 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U ‐‐‐0.02 U 0.02 U 0.02 U 0.066
Spring 2015 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U ‐‐‐0.02 U 0.02 U 0.02 U 0.066
Fall 2015 51.5 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 74.7
Spring 2016 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 62.4
Screening Value Spring 2016 ‐‐‐222222220
Fall 2014 4.4 32.1 3.5 8.6 2 U ‐‐‐13.2 34.3 8.1 9.8
Spring 2015 4.56 32.9 4.87 11.4 2 U ‐‐‐15.8 37.6 4.76 10.4
Fall 2015 3.99 31.1 4.26 10.5 2 U 21 16.4 36.5 3.26 10.3
Spring 2016 3.87 31.2 7.46 11 2 U 20.4 16 46.9 4.22 14.4
Screening Value Spring 2016 ‐‐‐022202022
Fall 2014 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U ‐‐‐0.1 U 0.1 U 0.12 0.1 U
Spring 2015 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U ‐‐‐0.1 U 0.1 U 0.1 U 0.1 U
Fall 2015 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U
Spring 2016 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U
Screening Value Spring 2016 ‐‐‐000000000
Fall 2014 8.7 30.5 38 26 44.7 ‐‐‐27.4 75.7 15 5.3
Spring 2015 1 U 7.54 11.2 1 U 3.87 ‐‐‐4 13.6 10.7 1 U
Fall 2015 1 U 5.12 7.12 1 U 3.12 8.62 3.31 10.7 7.94 1 U
Spring 2016 1 U 6.92 6.77 1 U 3.88 9.84 2.82 17 8 1 U
Screening Value Spring 2016 ‐‐‐000000000
Fall 2014 36000 470000 550000 35000 160000 ‐‐‐24000 510000 170000 6000
Spring 2015 54000 110000 450000 20000 100000 ‐‐‐12000 370000 79000 5300
Fall 2015 38000 300000 410000 13000 100000 320000 11000 250000 83000 5800
Spring 2016 52000 420000 490000 13000 200000 130000 11000 460000 110000 6500
Screening Value Spring 2016 ‐‐‐110110110
Fall 2014 0.0099 J 0.065 0.23 0.051 0.51 ‐‐‐0.094 0.36 1.2 0.0099 J
Spring 2015 0.009 J 0.0087 J 0.26 0.037 0.24 ‐‐‐0.048 0.16 0.94 0.008 U
Fall 2015 0.0063 J 0.023 0.18 0.019 0.18 0.029 0.027 0.078 0.27 0.0056 J
Spring 2016 0.0076 J 0.045 0.3 0.1 0.47 0.05 0.05 0.27 2.5 0.012
Screening Value Spring 2016 ‐‐‐232322332
Fall 2014 0.0022 J 0.23 0.52 0.099 1.6 ‐‐‐0.2 0.18 0.46 0.0078 J
Spring 2015 0.0012 J 0.02 0.62 0.04 1.3 ‐‐‐0.13 0.13 0.75 0.0015 J
Fall 2015 0.0011 J 0.061 0.23 0.023 0.42 0.03 0.017 0.025 0.057 0.0011 J
Spring 2016 0.0011 0.084 0.63 0.05 2 0.093 0.021 0.089 0.4 0.0034
Screening Value Spring 2016 ‐‐‐232322230
Fall 2014 1.3 1.4 1.7 1.2 1.3 ‐‐‐1.1 1.3 1.5 1.5
Spring 2015 1.3 1.4 1.9 54 1.3 ‐‐‐1.4 1.1 10 1.2
Fall 2015 1.1 1.3 1.4 1.2 1.5 1.3 1.9 1.2 4.5 1.2
Spring 2016 2 1.4 8.4 1.4 2.4 2 1.8 1.4 1.5 9
Screening Value Spring 2016 ‐‐‐333333333
Fall 2014 0.18 1900 3200 840 3300 ‐‐‐630 1400 2000 0.71
Spring 2015 0.074 140 3000 320 2100 ‐‐‐310 370 1700 0.3
Fall 2015 0.066 440 900 160 760 47 37 170 240 0.057
Spring 2016 0.091 470 1900 330 5000 130 30 1400 1500 0.32
Screening Value Spring 2016 ‐‐‐030300330
Fall 2014 810 U 810 U 810 U 810 U 810 U ‐‐‐810 U 810 U 810 U 810 U
Spring 2015 890 U 980 J 890 U 890 U 1100 J ‐‐‐890 U 890 U 1300 J 890 U
Fall 2015 240 J 230 J 150 J 180 J 200 J 210 J 150 J 190 J 210 J 180 J
Spring 2016 2600 J 1900 J 200 J 2200 J 890 U 1000 J 1800 J 1700 J 1800 J 2100 J
Screening Value Spring 2016 ‐‐‐222022222
Fall 2014 700 U 700 U 700 U 700 U 700 U ‐‐‐700 U 700 U 700 U 700 U
Spring 2015 1400 U 1400 U 1400 U 1400 U 1400 U ‐‐‐1400 U 1400 U 1400 U 1400 U
Fall 2015 160 J66 J81 J 130 J 120 J 120 J50 U 130 J 110 J 110 J
Spring 2016 1400 U 1400 U 1400 U 1400 U 1400 U 1400 U 1400 U 1400 U 1400 U 1400 U
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 2500 U 2500 U 4100 J 2500 J 2500 U ‐‐‐2500 U 2500 U 2500 U 2500 U
Spring 2015 2400 U 2400 U 2400 U 2400 U 2400 U ‐‐‐2400 U 2400 U 2400 U 2400 U
Fall 2015 88 J51 J 170 J93 J 110 J70 J 130 J 440 J 110 J95 J
Spring 2016 2400 U 2400 U 2400 U 2400 U 2400 U 2400 U 2400 U 2400 U 2400 U 2400 U
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 660 U 660 U 660 U 660 U 660 U ‐‐‐660 U 660 U 660 U 660 U
Spring 2015 730 U 730 U 730 U 730 U 730 U ‐‐‐730 U 730 U 730 U 730 U
Fall 2015 34 J27 J19 J32 J30 J28 J14 J27 J29 J33 J
Spring 2016 730 U 730 U 730 U 730 U 730 U 730 U 730 U 730 U 730 U 730 U
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 770 U 770 U 770 U 770 U 770 U ‐‐‐770 U 770 U 770 U 770 U
Spring 2015 640 J 410 U 410 U 410 U 810 J ‐‐‐870 J 710 J 1200 J 950 J
Fall 2015 120 U 120 U 120 U 120 U 120 U 120 U 120 U 120 U 120 U 120 U
Spring 2016 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 1 U 1.8 1 U1 U1 U1 U1 U1 U1 U1 U
Spring 2015 1 U 1.4 1 U1 U1 U1 U1 U1 U1 U1 U
Fall 2015 1 U 1.2 1 U1 U1 U1 U1 U1 U1 U1 U
Spring 2016 1 U 1.5 1 U1 U1 U1 U1 U1 U1 U1 U
Screening Value Spring 2016 ‐‐‐000000000
Fall 2014 1 U 1.8 1 U1 U1 U1 U1 U1 U1 U1 U
Spring 2015 1 U 1.7 1 U1 U1 U1 U1 U1 U1 U1 U
Fall 2015 1 U 1.3 1 U1 U1 U1 U1 U1 U1 U1 U
Spring 2016 1 U 1.3 1 U1 U1 U1 U1 U1 U1 U1 U
Screening Value Spring 2016 ‐‐‐2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 1 U 19.5 1 U 23.1 1 U1 U 1 19.7 4.9 1 U
Spring 2015 1 U 22 1.1 23.1 1 U1 U1 U 18.2 4.1 1 U
Fall 2015 1 U 18.7 1 U 26.6 1 U1 U1 U 11.8 3.4 1 U
Spring 2016 1 U 20.3 1.1 19.4 1 U1 U1 U 13 3.5 1 U
Screening Value Spring 2016 ‐‐‐222000220
Fall 2014 1 U 2.7 1 U1 U 2.2 1 U1 U 3.4 1 U1 U
Spring 2015 1 U 2.6 1 U1 U 1.6 1 U1 U 2.5 1 U1 U
Fall 2015 1 U 3.1 1 U1 U 1.6 1 U1 U 2.4 1 U1 U
Spring 2016 1 U 2.7 1 U1 U 1.7 1 U1 U 2.6 1 U1 U
Screening Value Spring 2016 ‐‐‐200200200
Fall 2014 1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U
Spring 2015 1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U
Fall 2015 1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U
Spring 2016 1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 1 U1 U 4.5 1 U1 U1 U1 U 3.8 6 1 U
Spring 2015 1 U 2.8 5.2 1 U1 U1 U1 U 3.6 5.8 1 U
Fall 2015 1 U1 U 4.2 1 U1 U1 U 2.7 1 U 4.1 1 U
Spring 2016 1 U 3.4 4.1 1 U 1.3 1 U 1.4 3.6 5 1 U
Screening Value Spring 2016 ‐‐‐220202220
Fall 2014 2 U2 U152 U 5.1 ‐‐‐2 U 4.6 12.6 2 U
Spring 2015 14.2 5.2 11.1 4.75 3.3 ‐‐‐2 2.53 5.85 4.9
Fall 2015 2 U2 U 7.3 2 U 6.1 2 U2 U2 U 11.3 2 U
Spring 2016 2 U2 U 5.32 2 U 4.79 2.51 2 U 4.59 4.89 2 U
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
Fall 2014 25 U36 2925 U25 U ‐‐‐25 U4825 U25 U
Spring 2015 25 U30 4425 U25 U ‐‐‐25 U44 32 25
Fall 2015 25 U25 U25 U25 U25 U25 U25 U25 U25 U25 U
Spring 2016 25 U37 3425 U25 U4525 U78 2925 U
Screening Value Spring 2016 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐
29 30 22 28 19 19 29 30 11
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
Analytical Result
nM
Std. Units
Sum of Screening Values
m/VOxidation Reduction Potential
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
Total Organic Carbon
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
ug/L
Vinyl chloride
1,1,1‐Trichloroethane
Chloroethane
Biological Oxygen Demand, 5 day (B
Chemical Oxygen Demand (COD)
Hydrogen
Methane
Acetic Acid
Ethane
Ethene
cis‐1,2‐Dichloroethene
Butyric Acid
Lactic Acid
Propionic Acid
Pyruvic Acid
Tetrachloroethene
Trichloroethene
ug/L
ug/L
Sulfide
Sulfate
Nitrogen, Nitrate
Carbon Dioxide
ug/LIron
Chloride
Alkalinity, as CaCO3
NTUTurbidity
umhos/cm
mg/L
deg C
Field pH
Dissolved Oxygen
Field Specific Conductance
Field Temperature
Analytical Result
Old Buncombe County Landfill MNA Sampling Report
APPENDIX C
WELL CONDITION SUMMARY
Old Buncombe County Landfill MNA Sampling Report
APPENDIX D
SAMPLING FORMS
Page 27 of 27
Page 84 of 86
Page 85 of 86
Page 86 of 86
Old Buncombe County Landfill MNA Sampling Report
APPENDIX E
SUMMARY OF DETECTIONS
Detections By Date Range
Buncombe County Old Facility
From:4/11/2016 To:4/15/2016
Site ID Analyte Date Result
DPL-1
Antimony
4/11/2016 5.1 ug/L
Barium
4/11/2016 184 ug/L
Beryllium
4/11/2016 1.8 ug/L
Chromium
4/11/2016 18.1 ug/L
Cobalt
4/11/2016 23.7 ug/L
Copper
4/11/2016 45.2 ug/L
Lead
4/11/2016 12.3 ug/L
Nickel
4/11/2016 35.8 ug/L
Static Water Level
4/11/2016 66.07 feet
Vanadium
4/11/2016 37.1 ug/L
Zinc
4/11/2016 61.7 ug/L
Tuesday, May 17, 2016 Page 1 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-12-25
1,2-Dichlorobenzene
4/13/2016 1.7 ug/L
1,4-Dichlorobenzene
4/13/2016 3.8 ug/L
Barium
4/13/2016 118 ug/L
Chlorobenzene
4/13/2016 5.6 ug/L
Field pH
4/13/2016 6.6 Std.
Field Specific Conductance
4/13/2016 565 umh
Field Temperature
4/13/2016 13.1 deg
Nickel
4/13/2016 19.6 ug/L
ORP
4/13/2016 170.3 mV
Oxygen, Dissolved, Dissolved
4/13/2016 6.43 mg/L
Static Water Level
4/13/2016 7.78 feet
Turbidity
4/13/2016 1.8 NTU
Zinc
4/13/2016 11.3 ug/L
Tuesday, May 17, 2016 Page 2 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-13-132
1,1-Dichloroethane
4/14/2016 2 ug/L
1,2-Dichloropropane
4/14/2016 1.3 ug/L
Acetic Acid
4/14/2016 2200 J ug/L
Alkalinity, Total as CaCO3
4/14/2016 130000 ug/L
Barium
4/14/2016 24.5 ug/L
Carbon Dioxide
4/14/2016 13000 ug/L
Chloride
4/14/2016 4990 ug/L
cis-1,2-Dichloroethene
4/14/2016 19.4 ug/L
Cobalt
4/14/2016 16.7 ug/L
Ethane
4/14/2016 0.05 ug/L
Ethene
4/14/2016 0.1 ug/L
Field pH
4/14/2016 6.9 Std.
Field Specific Conductance
4/14/2016 314 umh
Field Temperature
4/14/2016 14.4 deg
Hydrogen
4/14/2016 1.4 nM
Iron
4/14/2016 11400 ug/L
Methane
4/14/2016 330 ug/L
ORP
4/14/2016 -56.4 mV
Oxygen, Dissolved, Dissolved
4/14/2016 1.04 mg/L
Static Water Level
4/14/2016 24 feet
Sulfate
4/14/2016 11000 ug/L
Turbidity
4/14/2016 1.15 NTU
Tuesday, May 17, 2016 Page 3 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-13-35
1,2-Dichlorobenzene
4/13/2016 9.5 ug/L
1,4-Dichlorobenzene
4/13/2016 49.9 ug/L
Barium
4/13/2016 174 ug/L
Benzene
4/13/2016 2.6 ug/L
Chlorobenzene
4/13/2016 10.6 ug/L
cis-1,2-Dichloroethene
4/13/2016 7.5 ug/L
Field pH
4/13/2016 6.1 Std.
Field Specific Conductance
4/13/2016 355 umh
Field Temperature
4/13/2016 12.2 deg
Nickel
4/13/2016 5.2 ug/L
ORP
4/13/2016 158.1 mV
Oxygen, Dissolved, Dissolved
4/13/2016 5.84 mg/L
Static Water Level
4/13/2016 5.5 feet
Turbidity
4/13/2016 0.9 NTU
Tuesday, May 17, 2016 Page 4 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-15
Antimony
4/11/2016 12.8 ug/L
Barium
4/11/2016 244 ug/L
Beryllium
4/11/2016 2.1 ug/L
Chromium
4/11/2016 8.2 ug/L
Copper
4/11/2016 5.4 ug/L
Field pH
4/11/2016 12.3 Std.
Field Specific Conductance
4/11/2016 8059 umh
Field Temperature
4/11/2016 14.9 deg
Lead
4/11/2016 11.9 ug/L
Nickel
4/11/2016 10.6 ug/L
ORP
4/11/2016 85.2 mV
Oxygen, Dissolved, Dissolved
4/11/2016 6 mg/L
Static Water Level
4/11/2016 5.3 feet
Turbidity
4/11/2016 0.32 NTU
Tuesday, May 17, 2016 Page 5 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-17-137
1,1-Dichloroethane
4/12/2016 1.1 ug/L
Barium
4/12/2016 30.2 ug/L
Chloroethane
4/12/2016 1.2 ug/L
Field pH
4/12/2016 7 Std.
Field Specific Conductance
4/12/2016 892 umh
Field Temperature
4/12/2016 13.8 deg
ORP
4/12/2016 -77.3 mV
Oxygen, Dissolved, Dissolved
4/12/2016 0.34 mg/L
Static Water Level
4/12/2016 22.14 feet
Turbidity
4/12/2016 2.96 NTU
MW-17-310
Barium
4/15/2016 5.6 ug/L
Copper
4/15/2016 5.2 ug/L
Field pH
4/15/2016 7.2 Std.
Field Specific Conductance
4/15/2016 165 umh
Field Temperature
4/15/2016 14.9 deg
Methylene Chloride
4/15/2016 1.3 C9 ug/L
ORP
4/15/2016 147.8 mV
Oxygen, Dissolved, Dissolved
4/15/2016 4.45 mg/L
Static Water Level
4/15/2016 0 feet
Turbidity
4/15/2016 5.86 NTU
Tuesday, May 17, 2016 Page 6 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-17-60
1,1-Dichloroethane
4/12/2016 1.2 ug/L
Barium
4/12/2016 20 ug/L
Field pH
4/12/2016 6.7 Std.
Field Specific Conductance
4/12/2016 554 umh
Field Temperature
4/12/2016 13.5 deg
ORP
4/12/2016 -39.4 mV
Oxygen, Dissolved, Dissolved
4/12/2016 0.42 mg/L
Static Water Level
4/12/2016 23.49 feet
Turbidity
4/12/2016 29.99 NTU
Tuesday, May 17, 2016 Page 7 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-18-78
1,1-Dichloroethane
4/12/2016 1.7 ug/L
1,4-Dichlorobenzene
4/12/2016 1.2 ug/L
Alkalinity, Total as CaCO3
4/12/2016 223000 ug/L
Barium
4/12/2016 45.5 ug/L
BOD, 5 day
4/12/2016 4790 ug/L
Carbon Dioxide
4/13/2016 200000 ug/L
Chloride
4/12/2016 102000 M1 ug/L
Chlorobenzene
4/12/2016 2.6 ug/L
Chloroethane
4/12/2016 1.3 ug/L
Cobalt
4/12/2016 18.3 ug/L
Ethane
4/12/2016 2 ug/L
Ethene
4/12/2016 0.47 ug/L
Field pH
4/12/2016 6.2 Std.
Field Specific Conductance
4/12/2016 709 umh
Field Temperature
4/12/2016 14.2 deg
Hydrogen
4/12/2016 2.4 nM
Iron
4/12/2016 21600 ug/L
Methane
4/12/2016 5000 ug/L
ORP
4/12/2016 -39.9 mV
Oxygen, Dissolved, Dissolved
4/12/2016 0.66 mg/L
Static Water Level
4/12/2016 6.69 feet
Total Organic Carbon
4/12/2016 3880 ug/L
Tuesday, May 17, 2016 Page 8 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-18-78
Turbidity
4/12/2016 3.9 NTU
Vinyl chloride
4/12/2016 1.7 ug/L
MW-19-110
Acetic Acid
4/13/2016 1800 J ug/L
Alkalinity, Total as CaCO3
4/13/2016 193000 ug/L
Barium
4/13/2016 10.7 ug/L
Carbon Dioxide
4/13/2016 11000 ug/L
Chloride
4/13/2016 59300 ug/L
Chloroethane
4/13/2016 1.4 ug/L
Ethane
4/13/2016 0.021 ug/L
Ethene
4/13/2016 0.05 ug/L
Field pH
4/13/2016 7.2 Std.
Field Specific Conductance
4/13/2016 527 umh
Field Temperature
4/13/2016 18 deg
Hydrogen
4/13/2016 1.8 nM
Iron
4/13/2016 946 ug/L
Methane
4/13/2016 30 ug/L
ORP
4/13/2016 65 mV
Oxygen, Dissolved, Dissolved
4/13/2016 1.43 mg/L
Static Water Level
4/13/2016 10.59 feet
Sulfate
4/13/2016 16000 ug/L
Total Organic Carbon
4/13/2016 2820 ug/L
Turbidity
4/13/2016 9.37 NTU
Tuesday, May 17, 2016 Page 9 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-19-75
1,1-Dichloroethane
4/13/2016 1.5 D6 ug/L
1,4-Dichlorobenzene
4/13/2016 4.8 D6 ug/L
Acetic Acid
4/13/2016 1000 J ug/L
Alkalinity, Total as CaCO3
4/13/2016 361000 ug/L
Barium
4/13/2016 100 ug/L
BOD, 5 day
4/13/2016 2510 ug/L
Carbon Dioxide
4/13/2016 130000 ug/L
Chemical Oxygen Demand
4/13/2016 45000 ug/L
Chloride
4/13/2016 160000 ug/L
Chlorobenzene
4/13/2016 4.3 D6 ug/L
Cobalt
4/13/2016 17.7 ug/L
Ethane
4/13/2016 0.093 ug/L
Ethene
4/13/2016 0.05 ug/L
Field pH
4/13/2016 5.9 Std.
Field Specific Conductance
4/13/2016 1112 umh
Field Temperature
4/13/2016 16.5 deg
Hydrogen
4/13/2016 2 nM
Iron
4/13/2016 11700 ug/L
Methane
4/13/2016 130 ug/L
Nickel
4/13/2016 17 ug/L
ORP
4/13/2016 17.1 mV
Oxygen, Dissolved, Dissolved
4/13/2016 0.6 mg/L
Tuesday, May 17, 2016 Page 10 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-19-75
Static Water Level
4/13/2016 9.89 feet
Sulfate
4/13/2016 20400 ug/L
Total Organic Carbon
4/13/2016 9840 ug/L
Turbidity
4/13/2016 25.48 NTU
MW-2
Acetic Acid
4/15/2016 2600 J ug/L
Alkalinity, Total as CaCO3
4/15/2016 57600 ug/L
Barium
4/15/2016 21.3 ug/L
Carbon Dioxide
4/15/2016 52000 ug/L
Chloride
4/15/2016 2160 ug/L
Ethane
4/15/2016 0.0011 J ug/L
Ethene
4/15/2016 0.0076 J ug/L
Field pH
4/15/2016 6 Std.
Field Specific Conductance
4/15/2016 122 umh
Field Temperature
4/15/2016 14.9 deg
Hydrogen
4/15/2016 2 nM
Iron
4/15/2016 252 ug/L
Methane
4/15/2016 0.091 ug/L
ORP
4/15/2016 121.2 mV
Oxygen, Dissolved, Dissolved
4/15/2016 3.25 mg/L
Static Water Level
4/15/2016 109.04 feet
Sulfate
4/15/2016 3870 ug/L
Turbidity
4/15/2016 2.78 NTU
Tuesday, May 17, 2016 Page 11 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-21-21
1,1-Dichloroethane
4/14/2016 5.6 ug/L
1,2-Dichlorobenzene
4/14/2016 4.4 ug/L
1,4-Dichlorobenzene
4/14/2016 13.1 ug/L
Acetic Acid
4/14/2016 1700 J ug/L
Alkalinity, Total as CaCO3
4/14/2016 672000 ug/L
Barium
4/14/2016 117 ug/L
Benzene
4/14/2016 2.8 ug/L
BOD, 5 day
4/14/2016 4590 ug/L
Carbon Dioxide
4/14/2016 460000 ug/L
Chemical Oxygen Demand
4/14/2016 78000 ug/L
Chloride
4/14/2016 91400 ug/L
Chlorobenzene
4/14/2016 22.8 ug/L
Chloroethane
4/14/2016 3.6 ug/L
cis-1,2-Dichloroethene
4/14/2016 13 ug/L
Cobalt
4/14/2016 32.2 ug/L
Ethane
4/14/2016 0.089 ug/L
Ethene
4/14/2016 0.27 ug/L
Field pH
4/14/2016 6.1 Std.
Field Specific Conductance
4/14/2016 1419 umh
Field Temperature
4/14/2016 17.4 deg
Hydrogen
4/14/2016 1.4 nM
Iron
4/14/2016 15000 ug/L
Tuesday, May 17, 2016 Page 12 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-21-21
Methane
4/14/2016 1400 ug/L
Nickel
4/14/2016 7.5 ug/L
ORP
4/14/2016 -24 mV
Oxygen, Dissolved, Dissolved
4/14/2016 0.67 mg/L
Static Water Level
4/14/2016 6.08 feet
Sulfate
4/14/2016 46900 ug/L
Total Organic Carbon
4/14/2016 17000 ug/L
Turbidity
4/14/2016 5.66 NTU
Vinyl chloride
4/14/2016 2.6 ug/L
Tuesday, May 17, 2016 Page 13 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-21-94
1,4-Dichlorobenzene
4/14/2016 1.8 ug/L
Acetic Acid
4/14/2016 1800 J ug/L
Alkalinity, Total as CaCO3
4/14/2016 306000 ug/L
Barium
4/14/2016 44.3 ug/L
BOD, 5 day
4/14/2016 4890 ug/L
Carbon Dioxide
4/14/2016 110000 ug/L
Chemical Oxygen Demand
4/14/2016 29000 ug/L
Chloride
4/14/2016 21800 ug/L
Chlorobenzene
4/14/2016 1.5 ug/L
Chloroethane
4/14/2016 5 ug/L
cis-1,2-Dichloroethene
4/14/2016 3.5 ug/L
Cobalt
4/14/2016 24.1 ug/L
Ethane
4/14/2016 0.4 ug/L
Ethene
4/14/2016 2.5 ug/L
Field pH
4/14/2016 6.3 Std.
Field Specific Conductance
4/14/2016 878 umh
Field Temperature
4/14/2016 17.4 deg
Hydrogen
4/14/2016 1.5 nM
Iron
4/14/2016 16800 ug/L
Methane
4/14/2016 1500 ug/L
Nickel
4/14/2016 8.6 ug/L
ORP
4/14/2016 -75.2 mV
Tuesday, May 17, 2016 Page 14 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-21-94
Oxygen, Dissolved, Dissolved
4/14/2016 0.7 mg/L
Static Water Level
4/14/2016 8.14 feet
Sulfate
4/14/2016 4220 ug/L
Total Organic Carbon
4/14/2016 8000 ug/L
Turbidity
4/14/2016 30.9 NTU
Tuesday, May 17, 2016 Page 15 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-24-160
Acetic Acid
4/15/2016 2100 J ug/L
Alkalinity, Total as CaCO3
4/15/2016 51000 ug/L
Barium
4/15/2016 8.7 ug/L
Carbon Dioxide
4/15/2016 6500 ug/L
Chloride
4/15/2016 7720 ug/L
Ethane
4/15/2016 0.0034 J ug/L
Ethene
4/15/2016 0.012 ug/L
Field pH
4/15/2016 7 Std.
Field Specific Conductance
4/15/2016 174 umh
Field Temperature
4/15/2016 18.4 deg
Hydrogen
4/15/2016 9 nM
Iron
4/15/2016 136 ug/L
Methane
4/15/2016 0.32 ug/L
Methylene Chloride
4/15/2016 1.7 C9 ug/L
Nitrogen, Nitrate
4/15/2016 62.4 ug/L
ORP
4/15/2016 134.8 mV
Oxygen, Dissolved, Dissolved
4/15/2016 1.96 mg/L
Static Water Level
4/15/2016 90.4 feet
Sulfate
4/15/2016 14400 ug/L
Turbidity
4/15/2016 7.2 NTU
Tuesday, May 17, 2016 Page 16 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-4
1,1-Dichloroethane
4/14/2016 16.3 ug/L
1,2-Dichlorobenzene
4/14/2016 1.2 ug/L
1,4-Dichlorobenzene
4/14/2016 12.8 ug/L
Acetic Acid
4/14/2016 1900 J ug/L
Alkalinity, Total as CaCO3
4/14/2016 437000 ug/L
Barium
4/14/2016 577 ug/L
BOD, 5 day
4/14/2016 2800 B2 ug/L
Cadmium
4/14/2016 133 ug/L
Carbon Dioxide
4/14/2016 420000 ug/L
Chemical Oxygen Demand
4/14/2016 37000 ug/L
Chloride
4/14/2016 74800 ug/L
Chlorobenzene
4/14/2016 3.6 ug/L
Chloroethane
4/14/2016 3.4 ug/L
cis-1,2-Dichloroethene
4/14/2016 20.3 ug/L
Cobalt
4/14/2016 75.5 ug/L
Copper
4/14/2016 71 ug/L
Ethane
4/14/2016 0.084 ug/L
Ethene
4/14/2016 0.045 ug/L
Field pH
4/14/2016 5.9 Std.
Field Specific Conductance
4/14/2016 990 umh
Field Temperature
4/14/2016 19.5 deg
Hydrogen
4/14/2016 1.4 nM
Tuesday, May 17, 2016 Page 17 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-4
Iron
4/14/2016 5730 ug/L
Lead
4/14/2016 8.9 ug/L
Methane
4/14/2016 470 ug/L
Nickel
4/14/2016 109 ug/L
ORP
4/14/2016 45.9 mV
Oxygen, Dissolved, Dissolved
4/14/2016 2.87 mg/L
Static Water Level
4/14/2016 70.8 feet
Sulfate
4/14/2016 31200 ug/L
Tetrachloroethene
4/14/2016 1.5 ug/L
Thallium
4/14/2016 5.6 ug/L
Total Organic Carbon
4/14/2016 6920 ug/L
Trichloroethene
4/14/2016 1.3 ug/L
Turbidity
4/14/2016 2.15 NTU
Vinyl chloride
4/14/2016 2.7 ug/L
Zinc
4/14/2016 72.3 ug/L
Tuesday, May 17, 2016 Page 18 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-4A
1,2-Dichlorobenzene
4/12/2016 7.6 ug/L
1,4-Dichlorobenzene
4/12/2016 67.1 ug/L
Barium
4/12/2016 840 ug/L
Benzene
4/12/2016 3.9 ug/L
Beryllium
4/12/2016 1.6 ug/L
Chlorobenzene
4/12/2016 11.1 ug/L
Cobalt
4/12/2016 102 ug/L
Ethylbenzene
4/12/2016 3.1 ug/L
Field pH
4/12/2016 6.4 Std.
Field Specific Conductance
4/12/2016 852 umh
Field Temperature
4/12/2016 16.5 deg
Iron
4/12/2016 75700 M1 ug/L
m&p-Xylene
4/12/2016 2.6 ug/L
Nickel
4/12/2016 11 ug/L
ORP
4/12/2016 -1.4 mV
Oxygen, Dissolved, Dissolved
4/12/2016 2.07 mg/L
o-Xylene
4/12/2016 3.4 ug/L
Static Water Level
4/12/2016 68.78 feet
Thallium
4/12/2016 8.6 ug/L
Toluene
4/12/2016 1.8 ug/L
Turbidity
4/12/2016 5 NTU
Xylene (Total)
4/12/2016 6 ug/L
Tuesday, May 17, 2016 Page 19 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-5
1,4-Dichlorobenzene
4/11/2016 7.7 ug/L
Barium
4/11/2016 162 ug/L
Benzene
4/11/2016 1 ug/L
Chlorobenzene
4/11/2016 11.5 ug/L
Chloroethane
4/11/2016 1.6 ug/L
Cobalt
4/11/2016 26 ug/L
Field pH
4/11/2016 6.6 Std.
Field Specific Conductance
4/11/2016 1351 umh
Field Temperature
4/11/2016 15 deg
Nickel
4/11/2016 14.1 ug/L
ORP
4/11/2016 73.2 mV
Oxygen, Dissolved, Dissolved
4/11/2016 2.91 mg/L
Static Water Level
4/11/2016 48.44 feet
Turbidity
4/11/2016 1.18 NTU
Tuesday, May 17, 2016 Page 20 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-6
1,1-Dichloroethane
4/13/2016 5.9 ug/L
1,4-Dichlorobenzene
4/13/2016 4.8 ug/L
Acetic Acid
4/13/2016 2 J ug/L
Alkalinity, Total as CaCO3
4/13/2016 490000 ug/L
Barium
4/13/2016 1190 ug/L
Benzene
4/13/2016 1.3 ug/L
BOD, 5 day
4/13/2016 5320 ug/L
Carbon Dioxide
4/13/2016 490000 ug/L
Chemical Oxygen Demand
4/13/2016 34000 ug/L
Chloride
4/13/2016 140000 ug/L
Chlorobenzene
4/13/2016 13.8 ug/L
Chloroethane
4/13/2016 4.1 ug/L
cis-1,2-Dichloroethene
4/13/2016 1.1 ug/L
Cobalt
4/13/2016 37.2 ug/L
Ethane
4/13/2016 0.63 ug/L
Ethene
4/13/2016 0.3 ug/L
Field pH
4/13/2016 5.8 Std.
Field Specific Conductance
4/13/2016 1232 umh
Field Temperature
4/13/2016 15.2 deg
Hydrogen
4/14/2016 8.4 nM
Iron
4/13/2016 26800 ug/L
Methane
4/13/2016 1900 ug/L
Tuesday, May 17, 2016 Page 21 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-6
Nickel
4/13/2016 6.7 ug/L
ORP
4/13/2016 -10 mV
Oxygen, Dissolved, Dissolved
4/13/2016 0.97 mg/L
Static Water Level
4/13/2016 0 feet
Sulfate
4/13/2016 7460 ug/L
Total Organic Carbon
4/13/2016 6770 ug/L
Turbidity
4/13/2016 1.17 NTU
Tuesday, May 17, 2016 Page 22 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-6-192
1,1-Dichloroethane
4/13/2016 1.2 ug/L
1,4-Dichlorobenzene
4/13/2016 1.2 ug/L
Antimony
4/13/2016 5 ug/L
Barium
4/13/2016 45 ug/L
Chlorobenzene
4/13/2016 1.8 ug/L
Chloroethane
4/13/2016 1 ug/L
Cobalt
4/13/2016 6 ug/L
Copper
4/13/2016 5.1 ug/L
Field pH
4/13/2016 6.7 Std.
Field Specific Conductance
4/13/2016 439 umh
Field Temperature
4/13/2016 14.7 deg
ORP
4/13/2016 41 mV
Oxygen, Dissolved, Dissolved
4/13/2016 2.63 mg/L
Static Water Level
4/13/2016 24.66 feet
Turbidity
4/13/2016 20.14 NTU
Zinc
4/13/2016 14.7 ug/L
Tuesday, May 17, 2016 Page 23 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-B
Barium
4/11/2016 226 ug/L
cis-1,2-Dichloroethene
4/11/2016 4.8 ug/L
Cobalt
4/11/2016 11.1 ug/L
Field pH
4/11/2016 6.7 Std.
Field Specific Conductance
4/11/2016 505 umh
Field Temperature
4/11/2016 13.2 deg
ORP
4/11/2016 42.6 mV
Oxygen, Dissolved, Dissolved
4/11/2016 4.94 mg/L
Static Water Level
4/11/2016 4.63 feet
Turbidity
4/11/2016 9.97 NTU
Vinyl chloride
4/11/2016 1.5 ug/L
Tuesday, May 17, 2016 Page 24 of 24
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Detections By Date Range
Buncombe County Old Facility
From:4/11/2016 To:4/11/2016
Site ID Analyte Date Result
SW-1
Barium
4/11/2016 14.2 ug/L
Field pH
4/11/2016 7.7 Std.
Field Specific Conductance
4/11/2016 88 umh
Field Temperature
4/11/2016 11.6 deg
Methylene Chloride
4/11/2016 1.2 C9 ug/L
ORP
4/11/2016 126.7 mV
Oxygen, Dissolved, Dissolved
4/11/2016 8.99 mg/L
Turbidity
4/11/2016 4.72 NTU
Zinc
4/11/2016 18.4 ug/L
SW-2
Barium
4/11/2016 14.3 ug/L
Field pH
4/11/2016 8.4 Std.
Field Specific Conductance
4/11/2016 53 umh
Field Temperature
4/11/2016 11.7 deg
ORP
4/11/2016 114.3 mV
Oxygen, Dissolved, Dissolved
4/11/2016 10.36 mg/L
Turbidity
4/11/2016 3.73 NTU
Friday, May 13, 2016 Page 1 of 3
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
SW-2A
Barium
4/11/2016 33.4 ug/L
Field pH
4/11/2016 7.9 Std.
Field Specific Conductance
4/11/2016 394 umh
Field Temperature
4/11/2016 12.2 deg
ORP
4/11/2016 139.7 mV
Oxygen, Dissolved, Dissolved
4/11/2016 8.87 mg/L
Turbidity
4/11/2016 1.99 NTU
SW-3
Barium
4/11/2016 135 ug/L
Cobalt
4/11/2016 5.5 ug/L
Field pH
4/11/2016 7.3 Std.
Field Specific Conductance
4/11/2016 592 umh
Field Temperature
4/11/2016 14.2 deg
ORP
4/11/2016 138.4 mV
Oxygen, Dissolved, Dissolved
4/11/2016 7.52 mg/L
Turbidity
4/11/2016 30.37 NTU
Friday, May 13, 2016 Page 2 of 3
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
SW-4
Barium
4/11/2016 136 ug/L
Cobalt
4/11/2016 19.7 ug/L
Field pH
4/11/2016 7.4 Std.
Field Specific Conductance
4/11/2016 1454 umh
Field Temperature
4/11/2016 14.3 deg
Nickel
4/11/2016 20.7 ug/L
ORP
4/11/2016 152.3 mV
Oxygen, Dissolved, Dissolved
4/11/2016 8.19 mg/L
Turbidity
4/11/2016 70.95 NTU
Friday, May 13, 2016 Page 3 of 3
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Old Buncombe County Landfill MNA Sampling Report
APPENDIX F
SUMMARY OF EXCEEDANCES
Exceedances by Date Range
Buncombe County Old Facility
From:4/11/2016 To:4/14/2016
Site ID Analyte Date Result
DPL-1
Antimony
MCL:1ug/L
4/11/2016 5.1 ug/L
Chromium
MCL:10 ug/L
4/11/2016 18.1 ug/L
Cobalt
MCL:1ug/L
4/11/2016 23.7 ug/L
Vanadium
MCL:0.3 ug/L
4/11/2016 37.1 ug/L
MW-13-132
1,2-Dichloropropane
MCL:0.6 ug/L
4/14/2016 1.3 ug/L
Cobalt
MCL:1ug/L
4/14/2016 16.7 ug/L
Iron
MCL:300 ug/L
4/14/2016 11400 ug/L
MW-13-35
1,4-Dichlorobenzene
MCL:6ug/L
4/13/2016 49.9 ug/L
Benzene
MCL:1ug/L
4/13/2016 2.6 ug/L
MW-15
Antimony
MCL:1ug/L
4/11/2016 12.8 ug/L
Friday, May 13, 2016 Page 1 of 2
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.
Site ID Analyte Date Result
MW-18-78
Cobalt
MCL:1ug/L
4/12/2016 18.3 ug/L
Iron
MCL:300 ug/L
4/12/2016 21600 ug/L
Vinyl chloride
MCL:0.03 ug/L
4/12/2016 1.7 ug/L
MW-19-110
Iron
MCL:300 ug/L
4/13/2016 946 ug/L
MW-19-75
Cobalt
MCL:1ug/L
4/13/2016 17.7 ug/L
Iron
MCL:300 ug/L
4/13/2016 11700 ug/L
MW-21-21
1,4-Dichlorobenzene
MCL:6ug/L
4/14/2016 13.1 ug/L
Benzene
MCL:1ug/L
4/14/2016 2.8 ug/L
Cobalt
MCL:1ug/L
4/14/2016 32.2 ug/L
Iron
MCL:300 ug/L
4/14/2016 15000 ug/L
Vinyl chloride
MCL:0.03 ug/L
4/14/2016 2.6 ug/L
MW-21-94
Cobalt
MCL:1ug/L
4/14/2016 24.1 ug/L
Friday, May 13, 2016 Page 2 of 2
I = The reported value is between the laboratory method detection limit and the laboratory practical quatitation limit.
V = Indicates the anlyte was detected in both the sample and the associated method blank.