Loading...
HomeMy WebLinkAbout20086_Chadbourne_Mill_VIA_20170217 Via Email February 17, 2017 Faison & Associates 121 W. Trade Street, Suite 2800 Charlotte, North Carolina 28202 Attention: Mr. Kris Fetter Subject: Brownfields Assessment Report Chadbourn Mill 451 Jordan Place & 2625 N. Davidson Street Charlotte, North Carolina Brownfields Project ID# 20086-16-060 H&H Project No. FAI-028 Dear Kris: 1.0 Introduction Background Hart & Hickman, PC (H&H) has prepared this report to document recent Brownfields Assessment activities conducted at the former Chadbourn Mill property located at 451 Jordan Place and 2625 N. Davidson Street in Charlotte, Mecklenburg County, North Carolina (Site or subject Site). A Site location map is provided as Figure 1. The Site is comprised of two parcels identified as Mecklenburg County parcels 08306707 (451 Jordan Place) and 08306701 (2625 N. Davidson Street) that total approximately 5.75 acres and contain an approximately 120,000 sq. ft former hosiery mill facility. Original portions of the mill building in the western portion of the Site were constructed in the mid to late 1930s. Additions to the mill building constructed from the 1940s through the 1960s included a dye house, boiler building and smokestack, offices and warehouses. The mill facility operated as a hosiery manufacturer from the 1930s until the 1970s. Since the 1970s, the mill building has been periodically used for storage and warehousing. Mr. Kris Fetter February 17, 2017 Page 2 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc 2.0 Background Terracon conducted assessment activities at the Site in August 2016 in potential areas of concern associated with historical mill operations. The assessment included collection of sub-slab vapor samples in the boiler building and lower level of the original mill building to evaluate the potential for vapor intrusion. Laboratory analytical results indicated that the chlorinated solvent compound trichloroethene (TCE) was detected at concentrations exceeding the North Carolina Department of Environmental Quality (DEQ) Division of Waste Management (DWM) Non- Residential Vapor Intrusion Screening Level (VISL) in the sample collected in the boiler building. No compounds were detected above the DWM VISLs in the sub-slab vapor samples collected in the lower level of the mill building. Results of the Terracon assessment are documented in their Limited Site Investigation Report dated September 7, 2016. To further evaluate the potential for impacts associated with historical mill operations, and to evaluate the potential for impacts in areas of the Site where proposed redevelopment will occur, H&H conducted soil, groundwater, soil vapor, sub-slab vapor, and indoor air assessment activities at the Site in late September and early October 2016. Results of the H&H assessment activities are documented in the Phase I and II Environmental Site Assessment report dated November 9, 2016. The results of the Phase II ESA indicated the following:  Analytical results of soil samples collected at the Site did not identify significant impacts.  Analytical results of groundwater samples identified a low level TCE concentration downgradient (northwest) of the dye house above the 2L Standard and the Residential and Non-Residential VISLs. Additionally, manganese was detected at concentrations exceeding the 2L Standard in groundwater downgradient of the dye house and the mill building, although the manganese detections may in whole or part be due to naturally occurring levels. Bromodichloromethane was detected at trace concentrations above the 2L Standard downgradient of the boiler building and the mill building. However, the Mr. Kris Fetter February 17, 2017 Page 3 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc bromodichloromethane detections are likely associated with leaking chlorinated drinking water infrastructure and not historical Site operations.  Results of soil vapor assessment activities identified the potential for vapor intrusion at levels of concern into one future mixed-use building proposed along Jordan Place in the south-central portion of the Site.  Results of sub-slab vapor assessment activities conducted in the boiler building confirmed the presence of elevated concentrations of TCE detected previously by Terracon. However, results of a concurrent indoor air sample collected in the boiler building indicated that there is not a completed vapor intrusion pathway for TCE beneath the slab to migrate into the building at levels of concern.  Results of sub-slab vapor assessment activities conducted in the lower level of the original mill building, which will remain as part of the proposed redevelopment plan, indicated the potential for vapor intrusion at levels of concern into the building. The Site received eligibility into the DEQ Brownfields Program via a Letter of Eligibility dated December 8, 2016. Faison-Chadbourn Mill, LLC subsequently elected to participate in the Brownfields Program Redevelopment Now Pilot option. As part of this process, a kick-off/data gap meeting was held at the DEQ Regional office in Raleigh, NC on January 10, 2017 to discuss prior Site history, proposed redevelopment plans, previous assessment results, data gaps, and the proposed schedule for completing the Brownfields Agreement. Prior to the meeting, a draft Environmental Management Plan (EMP) and a Brownfields Information Package were submitted to DEQ Brownfields for review. In addition, Brownfields Program personnel visited the Site with a representative of Faison-Chadbourn Mill, LLC and H&H on January 18, 2017. Based upon discussions during the meeting on January 10 and the Site visit on January 18, H&H submitted a work plan for additional assessment to DEQ on January 25, 2017, and DEQ approved the work plan in a letter dated January 26, 2017. Subsequently, H&H conducted soil, Mr. Kris Fetter February 17, 2017 Page 4 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc groundwater, and indoor air assessment activities on January 27, 2017 to further evaluate the potential for impacts associated with historical mill operations, and to evaluate the potential for vapor intrusion into the lower level of the mill building. 3.0 Brownfields Assessment Activities The assessment activities were performed in general accordance with DEQ Inactive Hazardous Sites Branch (IHSB) Guidelines for Assessment and Cleanup dated October 2015, the DEQ DWM Vapor Intrusion Guidance dated April 2014, and most recent version of the U.S. Environmental Protection Agency (EPA) Region IV Science and Ecosystem Support (SESD) Field Branches Quality System and Technical Procedures guidance. Prior to conducting field activities, H&H contacted NC One-Call, the public utility locator, to mark subsurface utilities at the Site. H&H also contracted with a private utility locator to mark utilities which were not identified by the public locator. Additionally, H&H directed the drilling contractor to hand clear each boring to a depth of approximately 5 feet (ft) below ground surface (bgs) to further screen the boring locations for the presence of subsurface utilities. In accordance with Mecklenburg County rules, H&H obtained a Subsurface Investigation Permit (SIP) from Mecklenburg County (SIP# 70002379) prior to temporary monitoring well installation and sampling. A discussion of the sampling methods, analytical results, and conclusions associated with the recent assessment activities is provided in the following sections. Mr. Kris Fetter February 17, 2017 Page 5 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc 3.1 Soil Sampling H&H contracted with Innovative Environmental Technologies, Inc. (IET) to advance two soil borings (SB-6 and SB-6B) east of the boiler building to evaluate the potential for impacts associated with historical coal storage. Soil boring locations are depicted on Figure 2. The soil borings were advanced to approximately 15 ft bgs with a track-mounted drill rig utilizing direct push technology (DPT) drilling techniques. Continuous soil samples were collected from the borings using acetate lined macrocore sleeves. The soil samples were logged for lithological description and inspected for indication of potential impacts by observation for staining and evidence of coal, and for the presence of volatile organic vapors using a calibrated photoionization detector (PID). Results of field screening did not identify obvious evidence of impacts or the presence of coal. Boring logs including field screening results are provided in Appendix A. Because no obvious evidence of impact or obvious evidence of historical coal storage was identified in either soil boring, H&H collected one shallow soil sample for laboratory analysis from the SB-6 boring at the depth interval interpreted to be the surface of native soil (2-4 ft bgs) where coal would have been stored which is now below fill in this area. The soil sample was placed directly into dedicated laboratory-supplied sample containers, labeled with the sample identification, date, and requested analysis, and placed in a laboratory supplied cooler with ice. The sample was delivered to Con-Test Analytical Laboratory for analysis of semi-volatile organic compounds (SVOCs) by EPA Method 8270D and hazardous site list (HSL) metals plus hexavalent chromium by EPA Method 6010/7471/7196. The laboratory analytical report and chain of custody record are provided as Appendix B. Upon completion of soil sampling, the borings were properly abandoned and the locations were estimated using a hand-held GPS unit. Mr. Kris Fetter February 17, 2017 Page 6 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc 3.2 Soil Sample Results Results of the soil sample analyses are summarized in Table 1. The analytical results were compared to IHSB Residential and Non-Residential Preliminary Soil Remediation Goals (PSRGs). In addition to the PSRGs, metals results were compared to Site-specific background concentrations for metals and published concentrations for naturally occurring metals. Analytical results indicate that no SVOCs were detected above laboratory reporting limits in the coal storage yard soil sample. As expected, several metals were detected at concentrations above laboratory reporting limits. No metals concentrations were detected at levels exceeding PSRGs with the exception of manganese. Manganese was detected at 1,000 mg/kg which exceeds the Residential PSRG of 360 mg/kg, but is well below the Non-Residential PSRG of 5,200 mg/kg. The detected manganese concentration slightly exceeds the Site-specific background range for manganese (370–590 mg/kg) based on laboratory analytical results for previously collected background soil samples. However, the detected manganese concentration in the coal yard soil sample is consistent with manganese concentrations detected in soil samples from other portions of the Site and consistent with regional background levels. Therefore, it appears that manganese concentrations detected in soil at the Site are naturally occurring. Although manganese appears to be naturally occurring, H&H utilized the IHSB-Brownfields Residential Soil Risk Calculator (November 2015 RSL) to further evaluate potential risks associated with soil in the historical coal storage area. The risk calculator uses detected concentrations of compounds (conservatively including naturally occurring metals) to calculate a cumulative excess lifetime incremental cancer risk (LICR) and a non-carcinogenic hazard index (HI) values for a residential scenario. Results of the risk calculations indicate that the cumulative LICR is 8.54 x 10-7 and the cumulative HI is 0.64 for compounds detected in SB-6. The cumulative LICR is less than the 1 x10-6 to 1 x 10-4 acceptable risk range for carcinogenic effects and the HI is below the acceptable Mr. Kris Fetter February 17, 2017 Page 7 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc risk threshold of 1 for non-carcinogenic effects. Based on results of the cumulative risk calculations, there is not a significant risk for soil in the former coal yard. The risk calculator results are provided in Appendix C. 3.3 Groundwater Sampling A temporary groundwater monitoring well (TMW-4) was installed south of the mill building along Jordan Place to evaluate the potential for impacted groundwater migrating off-Site in that direction. The location of the temporary monitoring well is depicted on Figure 2. IET advanced the TMW-4 temporary monitor well boring with a track-mounted drill rig utilizing DPT drilling methods. Continuous soil samples were collected from the boring using acetate lined macrocore sleeves. The soil samples were described for lithologic purposes and inspected for the presence of staining, unusual odors, and field screened for volatile organic vapors using a calibrated PID. Field screening results did not identify obvious evidence of impact in soil samples collected from the TMW-4 boring. TMW-4 was installed with a 10 ft section of 1-inch diameter PVC well screen set to bracket the water table and 23 ft of 1-inch PVC well riser to the ground surface. A sand filter pack was placed from the bottom of the boring to approximately 2 ft above the top of the well screen and a hydrated bentonite seal was placed from the top of the sand filter pack to the ground surface. The boring log including field screening results and well construction details are included in Appendix A. Upon installation, the temporary monitoring well was allowed to equilibrate to static conditions and a decontaminated electronic water level indicator was used to measure the depth to the water table relative to the ground surface. The measured depth to water in the well was approximately 24.85 ft bgs. The well was then developed by removing volumes of water from the screened Mr. Kris Fetter February 17, 2017 Page 8 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc portion of the temporary well until field parameters had stabilized (pH ± 0.1 SU and conductivity varies no more than 5%). Following development, a groundwater sample was collected for laboratory analysis using low flow/low stress purging techniques with a peristaltic pump and dedicated polyethylene tubing. The intake point of the pump tubing was placed in the approximate mid-portion of the well screen and groundwater was removed at a rate of approximately 200 milliliters per minute. A water quality meter was utilized to collect measurements of pH, temperature, dissolved oxygen, oxidation reduction potential, turbidity, and specific conductivity at 3-5 minute intervals during the purging process. Purging was considered complete when field parameters stabilized (pH ± 0.1 SU and conductivity varied no more than 5%). The groundwater sample was collected directly into laboratory supplied sample containers using the “soda straw” method. The sample containers were labeled with the sample identification, date, and requested analysis, placed in a laboratory supplied cooler with ice, and shipped via overnight courier under chain-of-custody protocol to Con-Test Analytical Laboratory for analysis of volatile organic compounds (VOCs) by EPA Method 8260B. The chain-of-custody record and laboratory data sheets are provided in Appendix A. Following sample collection, the monitoring well was properly abandoned by IET personnel and the well location was recorded using a hand-held GPS unit. 3.4 Groundwater Sample Results Laboratory analytical results indicate that no VOCs were detected above laboratory reporting limits in the groundwater sample collected south of the mill building. Mr. Kris Fetter February 17, 2017 Page 9 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc 3.5 Indoor Air Assessment To evaluate the potential for sub-slab vapors to pose an indoor air concern for the lower level of the mill building, H&H collected two indoor air samples (IAS-2 and IAS-3) for laboratory analysis. The indoor air samples were collected adjacent to the previous sub-slab vapor sample locations (SV-02 and SV-03). Additionally, one exterior background sample (BAS-2) was collected upwind during the indoor air sampling event for comparison of indoor air compound concentrations to ambient outdoor air concentrations. The indoor, outdoor, and previous sub- slab vapor sample locations are depicted on Figure 2. In order to collect the indoor air samples under conservative conditions, during sample collection, the windows of the building were closed and building ingress and egress were limited to that necessary for sample collection and monitoring. The background and indoor air samples were collected using laboratory supplied, 6-liter stainless steel sample canisters (i.e., Summas) connected to in-line flow controllers with a laboratory certified vacuum gauge. The flow controllers were set so that the air samples were collected over an 8-hour period. A 3 ft long sampling cane was connected to the flow controller so that the sample intake point was approximately 5 ft above grade (typical breathing zone height) when the sample canister was set on its base. During the sampling activities, indoor/outdoor air pressure differential was measured near the start, middle, and end of the 8-hour sampling period using a manometer sensitive to 0.001 inches of water. In addition, atmospheric conditions were also recorded near the start, middle, and end of the sampling period by an on-Site weather station set in an open area east of the mill building. Pressure differential measurements indicate that outdoor pressure was higher than indoor pressure (up to 0.012 inches of water) for the duration of the sampling event. Wind direction was predominantly from the south and ranged in speed from approximately 2 mph to 6 mph. Barometric pressure decreased over the course of the sampling event from 29.92 inches of Hg to Mr. Kris Fetter February 17, 2017 Page 10 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc 29.80 inches of Hg. Differential pressure measurements and atmospheric condition measurements are summarized in Appendix D. Prior to and after the collection of the indoor and background air samples, vacuum in the canisters was measured using a laboratory-supplied vacuum gauge. The starting and ending vacuum in each canister were recorded by sampling personnel and documented on the sample chain of custody. The sample canisters were shipped under standard chain-of-custody protocols to Con-Test Analytical Laboratory for analysis of 1,4-dichlorobenzene and naphthalene by EPA Method TO-15, which are the only two compounds detected above screening levels in previous sub-slab vapor samples SV-02 and SV-03. The laboratory analytical report and chain of custody record are provided as Appendix A. 3.6 Indoor Air Results Analytical results of the indoor air sample analyses are summarized in Table 3. The current redevelopment plans for the mill building are for non-residential uses only. Therefore, the results were compared to DEQ DWM Non-Residential Indoor Air Screening Levels (IASLs). The analytical results indicate that naphthalene was detected at concentrations above laboratory reporting limits in both IAS-2 (0.87 µg/m3) and IAS-3 (3.0 µg/m3). The naphthalene detection in IAS-3 slightly exceeds the Non-Residential IASL of 2.63 µg/m3. In addition to naphthalene, a trace level of 1,4-dichlorobenzene (0.068 J µg/m3) was detected at a concentration above the laboratory method detection limit in IAS-3, but below the Non-Residential IASL of 11.1 µg/m3. A trace level of naphthalene (0.16 J µg/m3) was also detected above the laboratory method detection limit in the upwind background air sample (BAS-2). 1,4-Dichlorobenzene was not detected above laboratory reporting limits in indoor air sample IAS-2 or in the background air sample. Please note that the “J flag” designations indicate that the compounds were detected above the laboratory method detection limit, but below the laboratory reporting limit resulting in laboratory estimated concentrations. Mr. Kris Fetter February 17, 2017 Page 11 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc The default DEQ IHSB IASLs are conservative and are based upon a LICR of 1 x 10-5 for potential carcinogenic effects and a HI of 0.2 for potential non-carcinogenic effects. Vapor intrusion mitigation for occupied industrial/commercial structures is not typically considered unless the LICR exceeds 1 x 10-4 for potential carcinogenic effects and/or a HI exceeds 1 for potential non-carcinogenic effects. Because a low level of naphthalene was detected above the Non-Residential IASL in IAS-3, H&H utilized the IHSB Brownfields Vapor Intrusion Calculator to further evaluate potential risks to future occupants in the lower level of the mill building. Please note that the assumptions used in the calculations are based upon standard, conservative, default exposure scenarios which include a person working at the Site 250 days per year for 25 years and 8 hours per day. Risk calculator results for compound concentrations detected in the indoor air samples collected in the lower level of the mill building indicate that under a non-residential use scenario the cumulative LICR for potential carcinogenic risk is 8.4 x 10-6 and the cumulative HI for potential non-carcinogenic risk is 0.23, which are within the acceptable LICR risk range (1 x10-6 and 1 x 10-4) and below an HI of 1. Although current plans for redevelopment of the mill building do not include residential use, the risk calculator was also used to evaluate cumulative risks under a residential scenario to provide an even more conservative evaluation. Residential risk calculator results indicate that the cumulative LICR is 3.7 x 10-5 and the cumulative HI is 0.96 which are also within the acceptable LICR range and below a HI of 1. Risk calculator results are provided in Appendix C. 4.0 Conclusions and Recommendation H&H has completed Brownfields Assessment activities on the Chadbourn Mill property located at 451 Jordan Place and 2625 N. Davidson Street in Charlotte, Mecklenburg County, North Carolina. The assessment activities included soil, groundwater, and indoor air sampling to further evaluate potential impacts associated with historical mill operations and potential risks Mr. Kris Fetter February 17, 2017 Page 12 S:\AAA-Master Projects\Faison - FAI\FAI-028 Chadbourn Mill - Charlotte\Brownfields\BF Assessment Report\Chadbourne Mill_ Brownfields Assessment Report.doc associated with redevelopment of the Site. A summary of the Brownfields Assessment results is provided below.  No SVOCs were detected above laboratory reporting limits in the soil sample collected in the historical coal storage area located east of the boiler building. Several metals were detected at concentrations above laboratory reporting limits in the soil sample. Manganese was detected above the Non-Residential PSRG, but is consistent with manganese concentrations detected in other soil samples collected at the Site and regional background levels. Results of cumulative risk calculations using the sample data indicate a cumulative LICR within the acceptable risk range and a cumulative HI less than 1 for a residential scenario.  Laboratory analytical results for the groundwater sample collected south of the mill building indicate that no compounds were detected above laboratory reporting limits. Based on analytical data for groundwater samples collected at the Site, it appears that chlorinated solvent impacts in shallow groundwater are limited to the vicinity of the former dye house and do not extend off-Site to the southwest. Additional groundwater assessment at the Site is not warranted.  Results of analysis of the indoor air samples collected in the lower level of the mill building indicate that a low level of naphthalene was detected slightly above the DWM Non-Residential IASL in one sample. Cumulative risk calculations indicate that the cumulative LICR is within the acceptable range and the cumulative HI is less than 1 under residential and non-residential scenarios. H&H recommends that impacts identified at the Site during these and previous assessment activities be managed in accordance with an approved EMP. Results of the recent Brownfields Ta b l e 1 ( P a g e 1 o f 1 ) Su m m a r y o f S o i l A n a l y t i c a l D a t a Fo r m e r C h a d b o u r n M i l l 45 1 J o r d a n P l a c e Ch a r l o t t e , N o r t h C a r o l i n a H& H J o b N o . F A I - 0 2 8 S a m p l e I D SB - 1 S B - 2 S B - 3 S B - 4 S B - 5 S B - 6 B K G - 1 B K G - 2 D e p t h (ft b g s ) 5- 7 8 - 1 0 2 - 4 7 - 9 1 - 3 2 - 4 3 - 3 . 5 3 - 3 . 5 S a m p l e D a t e 9/ 2 9 / 2 0 1 6 9 / 3 0 / 2 0 1 6 9 / 2 9 / 2 0 1 6 9 / 3 0 / 2 0 1 6 9 / 3 0 / 2 0 1 6 1 / 2 7 / 2 0 1 7 9 / 2 9 / 2 0 1 6 9 / 2 9 / 2 0 1 6 Range M e a n R e f U n i t s VO C s ( 8 2 6 0 B ) 1, 4 - D i c h l o r o b e n z e n e <0 . 0 0 2 5 < 0 . 0 0 3 2 < 0 . 0 0 2 5 0. 0 0 2 5 <0 . 0 0 2 1 N A N A N A 2.60 1 1 . 0 N A N A N A SV O C s ( 8 2 7 0 D ) AL L B R L A L L B R L A L L B R L A L L B R L A L L B R L A L L B R L N A N A NA N A N A N A N A HS L M e t a l s ( 6 0 1 0 D / 7 4 7 1 B / 7 1 9 6 A ) Ar s e n i c 0 . 5 8 0 . 6 9 2 . 9 0 . 9 7 0 . 3 6 0 . 5 8 2 . 0 1 . 2 0 . 6 8 0 3 . 0 0 1 . 0 - 1 8 4 . 8 A Be r y l l i u m 1. 0 3 . 0 0 . 4 6 0 . 9 7 0 . 4 0 0 . 3 9 0 . 6 3 0 . 7 1 32.0 4 6 0 B R L - 2 . 0 0 . 1 1 A Ch r o m i u m <8 . 7 41 2 6 2 0 3 0 8 . 5 3 5 2 0 NE N E 7 . 0 - 3 0 0 6 5 A Ch r o m i u m ( V I ) <0 . 4 4 < 0 . 4 8 < 1 . 0 < 0 . 4 3 < 0 . 3 8 < 0 . 3 8 N A N A 0.300 6 . 3 0 N E N E - - Ch r o m i u m ( I I I ) <8 . 7 41 2 6 2 0 3 0 8 . 5 NA N A 24,000 1 0 0 , 0 0 0 N E N E - - Co p p e r 11 0 9 1 2 9 1 1 0 4 9 3 9 2 3 1 6 620 9 , 4 0 0 3 . 0 - 1 0 0 3 4 A Le a d 8. 3 5 . 6 1 1 8 . 8 4 . 3 4 . 3 9 . 6 5 . 8 400 8 0 0 B R L - 5 0 1 6 A Ma n g a n e s e 1, 6 0 0 2 , 8 0 0 2 5 0 1 , 3 0 0 1 , 4 0 0 1 , 0 0 0 5 9 0 3 7 0 360 5 , 2 0 0 8 . 0 - 3 , 3 9 4 5 9 4 B Me r c u r y <0 . 0 3 5 < 0 . 0 3 9 < 0 . 0 3 2 < 0 . 0 3 4 < 0 . 0 3 0 0. 0 1 9 0 . 0 4 2 <0 . 0 3 7 2.20 3 . 1 3 0 . 0 3 - 0 . 5 2 0 . 1 2 1 A Ni c k e l <8 . 7 45 <7 . 8 < 8 . 4 38 5 . 9 <8 . 1 < 8 . 7 300 4 , 4 0 0 B R L - 1 5 0 2 3 A Si l v e r <0 . 1 5 0. 2 7 <0 . 1 4 < 0 . 1 5 < 0 . 1 3 0. 0 1 5 <0 . 1 4 0. 2 3 7 8 . 0 1 , 1 6 0 B R L - 5 . 0 N E C Th a l l i u m 0 . 1 1 0 . 6 3 <0 . 1 0 < 0 . 1 1 < 0 . 0 9 4 0. 0 3 2 0 . 1 6 0 . 2 3 0 . 1 5 6 2 . 4 0 < 0 . 1 - 1 . 8 N E D Zi n c 5 2 1 2 0 <1 6 28 9 4 3 9 <1 6 22 4 , 6 0 0 7 0 , 0 0 0 2 5 - 1 2 4 5 6 A No t e s : 1) N o r t h C a r o l i n a D e p a r t m e n t o f E n v i r o n m e n t a l Q u a l i t y ( D E Q ) I n a c t i v e H a z a r d o u s S i t e s B r a n c h ( I H S B ) P r e l i m i n a r y S o i l R e m e d i a t i o n G o a l s ( P S R G s ) ( A p r i l 2 0 1 6 ) . 2 ) R a n g e a n d m e a n v a l u e s o f b a c k g ro u n d m e t a l s f o r N o r t h C a r o l i n a s o i l s t a k e n f r o m El e m e n t s i n N o r t h A m e r i c a n S o i l s b y D r a g un a n d C h e k i r i , 2 0 0 5 . Re f . A. N o r t h C a r o l i n a s o i l s B. S o u t h e a s t e r n U S A s o i l s C. S o i l s o f t h e c o n t e r m i n o u s U S A D. M a j o r - a n d T r a c e - E l e m e n t C o n c e n t r a t i o n s i n S o i l s f r o m T w o C o n t i n e n t i a l - S c a l e T r a n s e c t s o f t h e U n i t e d S t a t e s a n d C a n a d a , U . S . D e p a r t m e n t o f I n t e r i o r , U . S . G e o l o g i c S u r v e y . O p e n - F i l e R e p o r t 2 0 0 5 - 1 2 5 3 , T a b l e 3 . 2 0 0 5 . On l y c o m p o u n d s d e t e c t e d i n a t l e a s t o n e s a m p l e a r e s h o w n . So i l c o n c e n t r a t i o n s a r e r e p o r t e d i n m i l l i g r a m s p e r k i l o g r a m ( m g / k g ) . La b o r a t o r y a n a l y t i c a l m e t h o d s a r e s h o w n i n p a r e n t h e s e s . VO C s = v o l a t i l e o r g a n i c c o m p o u n d s ; S V O C s = s e m i - v o l a t i l e o r g a n i c c o m p o u n d s ; H S L = H a z a r d o u s S i t e L i s t NA = N o t A p p l i c a b l e o r N o t A n a l y z e d ; N E = n o t e s t a b l i s h e d ; B R L = b e l o w r e p o r t i n g l i m i t ; f t b g s = f e e t b e l o w t h e g r o u n d s u r f a c e Ba c k g r o u n d mg / k g Residential PSRGs (1) Industrial/ Commercial PSRGs (1)Regional Background Metals in Soil (2) S:\ A A A - M a s t e r P r o j e c t s \ F a i s o n - F A I \ F A I - 0 2 8 C h a d b o u r n M i l l - C h a r l o t t e \ B r o w n f i e l d s \ B F A s s e s s m e n t R e p o r t \ T a b l e s \ S o i l a n d G W _ D a t a T a b l e ( c o m p r e h e n s i v e ) . x l s m 2/9 / 2 0 1 7 Table 1 (Page 1 of 1)Hart & Hickman, PC Ta b l e 2 Su m m a r y o f G r o u n d w a t e r A n a l y t i c a l D a t a Fo r m e r C h a d b o u r n M i l l 45 1 J o r d a n P l a c e Ch a r l o t t e , N o r t h C a r o l i n a H& H J o b N o . F A I - 0 2 8 Lo c a t i o n Bo i l e r B u i l d i n g D y e H o u s e D o w n g r a d i e n t So u t h o f M i l l Bu i l d i n g Sa m p l e I D TM W - 1 T M W - 2 T M W - 3 T M W - 4 Sa m p l e D a t e 9/ 3 0 / 2 0 1 6 1 0 / 3 / 2 0 1 6 9 / 3 0 / 2 0 1 6 1 / 2 7 / 2 0 1 7 Un i t s VO C s ( 8 2 6 0 B ) Br o m o d i c h l o r o m e t h a n e 0. 8 0 <0 . 5 0 0. 9 6 <0 . 5 0 0. 6 8 . 7 6 3 8 . 2 Ch l o r o f o r m 2 . 2 <2 . 0 2. 4 <2 . 0 70 8 . 1 4 3 5 . 5 Tr i c h l o r o e t h e n e <1 . 0 11 <1 . 0 <1 . 0 3 1 . 0 4 4 . 3 5 SV O C s ( 8 2 7 0 D ) AL L B R L AL L B R L A L L B R L N A - - - - - - HS L M e t a l s ( 6 0 2 0 A - B / 7 4 7 0 A ) Ch r o m i u m 3. 0 4. 3 2 . 6 N A 1 0 N S N S Le a d <2 . 0 2. 7 <2 . 0 NA 1 5 N S N S Ma n g a n e s e 35 2, 5 0 0 9 4 NA 5 0 N S N S No t e s : 1) N o r t h C a r o l i n a D e p a r t m e n t o f E n v i r o n m e n t a l Q u a l i t y ( D E Q ) 1 5 A N o r t h C a r o l i n a A d m i n i s t r a t i v e C o d e 0 2 L . 0 2 0 2 G r o u n d w a t e r Q u a l i t y S t a n d a r d 2) D E Q D i v i s i o n o f W a s t e M a n a g e m e n t ( D W M ) R e s i d e n t i a l V a p o r I n t r u s i o n G r o u n d w a t e r S c r e e n i n g L e v e l s ( G W S L s ) ( M a r c h 2 0 1 6 ) 3) D E Q D W M N o n - R e s i d e n t i a l V a p o r I n t r u s i o n G W S L s ( M a r c h 2 0 1 6 ) On l y t h o s e c o m p o u n d s d e t e c t e d i n a t l e a s t o n e s a m p l e s h o w n a b o v e Bo l d i n d i c a t e s a n e x c e e d a n c e i n t h e N C A C 2 L G r o u n d w a t e r S t a n d a r d Un d e r l i n e i n d i c a t e s a n e x c e e d a n c e i n t h e D E Q D W M R e s i d e n t i a l G W S L Hi g h l i g h t i n d i c a t e s a n e x c e e d a n c e o f t h e D E Q D W M N o n - R e s i d e n t i a l G W S L Me t h o d n u m b e r f o l l o w s p a r a m e t e r i n p a r e n t h e s i s VO C s = v o l a t i l e o r g a n i c c o m p o u n d s ; S V O C s = S e m i - V O C s ; H S L = H a z a r d o u s S u b s t a n c e L i s t ; B R L = b e l o w l a b o r a t o r y r e p o r t i n g l i m i t s NA = n o t a n a l y z e d ; N S = n o t s p e c i f i e d NC A C 2 L Gr o u n d w a t e r St a n d a r d (1 ) µg/ L DWM Vapor Intrusion GWSLs Residential (2) Non-Residential (3) S: \ A A A - M a s t e r P r o j e c t s \ F a i s o n - F A I \ F A I - 0 2 8 C h a d b o u r n M i l l - C h a r l o t t e \ B r o w n f i e l d s \ B F A s s e s s m e n t R e p o r t \ T a b l e s \ S o i l a n d G W _ D a t a T a b l e ( c o m p r e h e n s i v e ) . x l s m 2/1 4 / 2 0 1 7 Table 2 Hart & Hickman, PC Ta b l e 3 ( P a g e 1 o f 2 ) Su m m a r y o f I n d o o r a n d A m b i e n t A i r A n a l y t i c a l D a t a Fo r m e r C h a d b o u r n M i l l 45 1 J o r d a n P l a c e Ch a r l o t t e , N o r t h C a r o l i n a H& H J o b N o . F A I - 0 2 8 A c e t o n e B e n z e n e 2 - B u t a n o n e ( M E K ) C a r b o n D i s u l f i d e C a r b o n T e t r a c h l o r i d e C h l o r o f o r m C h l o r o m e t h a n e 1 , 4 - D i c h l o r o b e n z e n e D i c h l o r o d i f l u o r o m e t h a n e ( F r e o n 1 2 ) E t h a n o l Ethyl Acetate Ethylbenzene 4-Ethyltoluene Heptane Hexane 2-Hexanone (MBK)Isopropanol IA S - 1 B o i l e r B u i l d i n g 0 9 / 3 0 / 1 6 12 . 0 0 . 3 6 1 . 5 J <1 . 1 0. 4 3 0 . 0 6 9 J 1 . 3 0 . 0 6 8 J 0 . 6 7 L - 0 3 5 . 5 <0.13 0.13 J 0 . 0 6 6 J 0 . 5 7 0 . 9 0 J 0 . 3 3 0 . 7 7 J IA S - 2 M i l l B u i l d i n g 0 1 / 2 7 / 1 7 NA N A N A N A N A N A N A <0 . 2 1 NA N A N A N A N A N A N A N A N A IA S - 3 M i l l B u i l d i n g 0 1 / 2 7 / 1 7 NA N A N A N A N A N A N A 0 . 0 6 8 J N A N A N A N A N A N A N A N A N A BA S - 1 U p w i n d 0 9 / 3 0 / 1 6 17 . 0 0 . 4 1 2 . 2 J 0 . 7 6 J 0 . 4 2 0 . 0 7 5 J 1 . 3 0 . 8 2 0 . 7 0 L - 0 3 8 . 0 0 . 6 3 0 . 1 7 0 . 0 9 0 J 0 . 2 9 0 . 6 7 J 0 . 3 4 1 . 1 J BA S - 2 U p w i n d 0 1 / 2 7 / 1 7 NA N A N A N A N A N A N A <0 . 2 1 NA N A N A N A N A N A N A N A N A 6, 4 7 0 3 . 6 0 1 , 0 4 0 1 4 6 4 . 6 8 1 . 2 2 1 8 . 8 2 . 5 5 2 0 . 9 N S 1 4 . 6 1 1 . 2 N S N S 1 4 6 6 . 2 6 4 1 . 7 27 , 2 0 0 1 5 . 7 4 , 3 8 0 6 1 3 2 0 . 4 5 . 3 3 7 8 . 8 1 1 . 1 8 7 . 6 N S 6 1 . 3 4 9 . 1 N S N S 6 1 3 2 6 . 3 1 7 5 No t e s : 1) N o r t h C a r o l i n a D e p a r t m e n t o f E n v i r o n m e n t a l Q u a l i t y ( D E Q ) D i v i s i o n o f W a s t e M a n a g e m e n t ( D W M ) R e s i d e n t i a l I n d o o r A i r a n d C r a w l sp a c e S c r e e n i n g L e v e l s ( I A S L s ) ( O c t o b e r 2 0 1 6 ) 2) N o r t h C a r o l i n a D E Q D W M N o n - R e s i d e n t i a l I A S L s ( O c t o b e r 2 0 1 6 ) On l y c o m p o u n d s d e t e c t e d i n a t l e a s t o n e s a m p l e s h o w n Bo l d i n d i c a t e s c o n c e n t r a t i o n e x c e e d s D W M R e s i d e n t i a l I n d o o r A i r S c r e e n i n g L e v e l ( O c t o b e r 2 0 1 6 t a b l e ) Un d e r l i n e i n d i c a t e s c o n c e n t r a t i o n e x c e e d s D W M R e s i d e n t i a l a n d N o n - R e s i d e n t i a l I n d o o r A i r S c r e e n i n g L e v e l ( O c t o b e r 2 0 1 6 t a b l e ) µg / m 3 = m i c r o g r a m s p e r c u b i c m e t e r ; N S = N o t S p e c i f i e d ; N A = N o t A n a l y z e d J = d e t e c t e d c o n c e n t r a t i o n i s a b o v e t h e l a b o r a t o r y m e t h o d d e t e c t i o n l i m i t , b u t b e l o w t h e l a b o r a t o r y r e p o r t i n g l i m i t . T h e r e f o r e , t h e r e p o r t e d c o n c e n t r a t i o n i s a n e s t i m a t e d v a l u e . V- 0 6 = c o n t i n u i n g c a l i b r a t i o n d i d n o t m e e t m e t h o d s p e c i f i c a t i o n s a n d v a l u e i s b i a s e d o n t h e h i g h s i d e . L- 0 3 = l a b o r a t o r y f o r t i f i e d b l a n k / l a b o r a t o r y c o n t r o l s a m p l e r e c o v e r y is o u t s i d e o f c o n t r o l l i m i t s . R e p o r t e d v a l u e f o r t h i s c o m po u n d i s l i k e l y t o b e b i a s e d o n t h e l o w s i d e . µg / m 3 No n - R e s i d e n t i a l I n d o o r A i r a n d C r a w l s p a c e S c r e e n i n g L e v e l ( 2 ) (T C R = 1 x 1 0 -5 a n d T H Q = 0 . 2 ) A n a l y t i c a l M e t h o d Re s i d e n t i a l I n d o o r A i r a n d C r a w l s p a c e S c r e e n i n g L e v e l (1 ) (T C R = 1 x 1 0 -5 a n d T H Q = 0 . 2 ) TO - 1 5 S a m p l e I D S a m p l i n g D a t e S a m p l e L o c a t i o n Fil e : S : \ A A A - M a s t e r P r o j e c t s \ F a i s o n - F A I \ F A I - 0 2 8 C h a d b o u r n M i l l - C h a r l o t t e \ B r o w n f i e l d s \ B F A s s e s s m e n t R e p o r t \ T a b l e s \ V I D a t a T a ble s ( c o m p r e h e n s i v e ) . x l s V I D a t a T a b l e s ( c o m p r e h e n s i v e ) . x l s Da t e : 2 / 1 4 / 2 0 1 7 Table 3 (Page 1 of 2)Hart & Hickman, PC Ta b l e 3 ( P a g e 2 o f 2 ) Su m m a r y o f I n d o o r a n d A m b i e n t A i r A n a l y t i c a l D a t a Fo r m e r C h a d b o u r n M i l l 45 1 J o r d a n P l a c e Ch a r l o t t e , N o r t h C a r o l i n a H& H J o b N o . F A I - 0 2 8 M e t h y l e n e C h l o r i d e 4 - M e t h y l - 2 - p e n t a n o n e ( M I B K ) N a p h t h a l e n e P r o p e n e ( P r o p y l e n e ) S t y r e n e T e t r a c h l o r o e t h e n e ( P C E ) T o l u e n e T r i c h l o r o e t h y l e n e ( T C E ) T r i c h l o r o f l u o r o m e t h a n e ( F r e o n 1 1 ) 1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Acetate Xylene, m- & p-Xylene, o- IA S - 1 B o i l e r B u i l d i n g 0 9 / 3 0 / 1 6 0. 6 4 J <0 . 1 4 0. 1 9 0 . 7 3 J , V - 0 6 0 . 0 5 7 J 0 . 1 5 J 0 . 7 9 0 . 2 0 1 . 1 0 . 5 2 J 0 . 2 1 0 . 0 5 9 J 1 . 8 J , L - 0 3 0 . 4 2 0 . 1 7 IA S - 2 M i l l B u i l d i n g 0 1 / 2 7 / 1 7 NA N A 0. 8 7 NA N A N A N A N A N A N A N A N A N A N A N A IA S - 3 M i l l B u i l d i n g 0 1 / 2 7 / 1 7 NA N A 3. 0 NA N A N A N A N A N A N A N A N A N A N A N A BA S - 1 U p w i n d 0 9 / 3 0 / 1 6 0. 7 4 J 0 . 0 9 8 J 0 . 3 <2 . 4 0. 3 2 0 . 4 5 0 . 9 5 <0 . 1 9 1. 1 0 . 5 2 J 0 . 3 5 0 . 1 0 J 2 . 6 L - 0 3 0 . 6 0 . 2 6 BA S - 2 U p w i n d 0 1 / 2 7 / 1 7 NA N A 0 . 1 6 J N A N A N A N A N A N A N A N A N A N A N A N A 12 5 6 2 6 0 . 6 2 6 6 2 6 2 0 9 8 . 3 4 1 , 0 4 0 0 . 4 1 7 N S 6 , 2 6 0 1 . 4 6 N S 4 1 . 7 2 0 . 9 2 0 . 9 52 6 2 , 6 3 0 2 . 6 3 2 , 6 3 0 8 7 6 3 5 . 0 4 , 3 8 0 1 . 7 5 N S 2 6 , 3 0 0 6 . 1 3 N S 1 7 5 8 7 . 6 8 7 . 6 No t e s : 1) N o r t h C a r o l i n a D e p a r t m e n t o f E n v i r o n m e n t a l Q u a l i t y ( D E Q ) D i v i s i o n o f W a s t e M a n a g e m e n t ( D W M ) R e s i d e n t i a l I n d o o r A i r a n d C r a w l sp a c e S c r e e n i n g L e v e l s ( I A S L s ) ( O c t o b e r 2 0 1 6 ) 2) N o r t h C a r o l i n a D E Q D W M N o n - R e s i d e n t i a l I A S L s ( O c t o b e r 2 0 1 6 ) On l y c o m p o u n d s d e t e c t e d i n a t l e a s t o n e s a m p l e s h o w n Bo l d i n d i c a t e s c o n c e n t r a t i o n e x c e e d s D W M R e s i d e n t i a l I n d o o r A i r S c r e e n i n g L e v e l ( O c t o b e r 2 0 1 6 t a b l e ) Un d e r l i n e i n d i c a t e s c o n c e n t r a t i o n e x c e e d s D W M R e s i d e n t i a l a n d N o n - R e s i d e n t i a l I n d o o r A i r S c r e e n i n g L e v e l ( O c t o b e r 2 0 1 6 t a b l e ) µg / m 3 = m i c r o g r a m s p e r c u b i c m e t e r ; N S = N o t S p e c i f i e d ; N A = N o t A n a l y z e d J = d e t e c t e d c o n c e n t r a t i o n i s a b o v e t h e l a b o r a t o r y m e t h o d d e t e c t i o n l i m i t , b u t b e l o w t h e l a b o r a t o r y r e p o r t i n g l i m i t . T h e r e f o r e , t h e r e p o r t e d c o n c e n t r a t i o n i s a n e s t i m a t e d v a l u e . V- 0 6 = c o n t i n u i n g c a l i b r a t i o n d i d n o t m e e t m e t h o d s p e c i f i c a t i o n s a n d v a l u e i s b i a s e d o n t h e h i g h s i d e . L- 0 3 = l a b o r a t o r y f o r t i f i e d b l a n k / l a b o r a t o r y c o n t r o l s a m p l e r e c o v e r y i s o u t s i d e o f c o n t r o l l i m i t s . R e p o r t e d v a l u e f o r t h i s c o m po u n d i s l i k e l y t o b e b i a s e d o n t h e l o w s i d e . µg / m 3 No n - R e s i d e n t i a l I n d o o r A i r a n d C r a w l s p a c e S c r e e n i n g L e v e l (2 ) (T C R = 1 x 1 0 -5 a n d T H Q = 0 . 2 ) S a m p l e I D S a m p l i n g D a t e A n a l y t i c a l M e t h o d Re s i d e n t i a l I n d o o r A i r a n d C r a w l s p a c e S c r e e n i n g L e v e l ( 1 ) (T C R = 1 x 1 0 -5 a n d T H Q = 0 . 2 ) TO - 1 5 S a m p l e L o c a t i o n Fil e : S : \ A A A - M a s t e r P r o j e c t s \ F a i s o n - F A I \ F A I - 0 2 8 C h a d b o u r n M i l l - C h a r l o t t e \ B r o w n f i e l d s \ B F A s s e s s m e n t R e p o r t \ T a b l e s \ V I D a t a T a ble s ( c o m p r e h e n s i v e ) . x l s V I D a t a T a b l e s ( c o m p r e h e n s i v e ) . x l s Da t e : 2 / 1 4 / 2 0 1 7 Table 3 (Page 2 of 2)Hart & Hickman, PC 0 2000 4000 APPROXIMATE SCALE IN FEET N U.S.G.S. QUADRANGLE MAP QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC) CHARLOTTE EAST, NORTH CAROLINA 1991 TITLE PROJECT SITE LOCATION MAP FORMER CHADBOURN MILL 451 JORDAN PLACE CHARLOTTE, NORTH CAROLINA DATE: JOB NO: REVISION NO: FIGURE: 10-19-16 0 1FAI-028 SITE Appendix A Boring Logs (FILL) Vesicular volcanic rock fill (FILL) Moist, loose, tan, fine to medium silty SAND fillmaterial (SM) Moist, loose to slightly firm, white, black, and brownsilty SAND, trace amounts of red clay Bottom of borehole at 15.0 feet. 1.8 2.3 2.3 2.1 2.5 4.1 3.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 DRAWN BY:SQM BORING COMPLETED:1/27/17 DRILLING CONTRACTOR:IET, Inc Remarks: DRILL RIG/ METHOD:Powerprobe 9510 / DPT SAMPLING METHOD:Macro-Core Hand augered to 5 ft bgs. Encounteredfirst native soils at 2.0' bgs. Soil samplecollected from 2-4 ft bgs for SVOCs,HSL metals plus hexavalent chromium. BORING STARTED:1/27/17 LOGGED BY:SQM TOTAL DEPTH: 15 ft. TOP OF CASING ELEV: DEPTH TO WATER: DE P T H (f t ) DE P T H (f t )MATERIAL DESCRIPTION LI T H O L O G Y SA M P . BK G . OV A ( p p m ) RE C O V E R Y ( % ) SA M P L E T Y P E NU M B E R BL O W CO U N T S (N V A L U E ) WELL DIAGRAM Sheet 1 of 1 BORING NUMBER SB-6 PROJECT:Former Chadbourn Mill JOB NUMBER:FAI-028 LOCATION:Charlotte, NC WE L L L O G - H A R T H I C K M A N . G D T - 2 / 1 / 1 7 0 8 : 5 5 - S : \ B B B M A S T E R G I N T P R O J E C T S \ F A I - 0 2 8 . G P J 2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f) 0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 (FILL) Vesicular volcanic rock fill (FILL) Moist, loose, tan, fine to medium silty SAND fill material (SM) Moist, loose to slightly firm, white, black, and brown siltySAND, trace amounts of red clay No Recovery (SM) Moist, loose to slightly firm, white, black, and brown siltySAND, trace amounts of red clay Bottom of borehole at 15.0 feet. DRAWN BY:SQM BORING COMPLETED:1/27/17 DRILLING CONTRACTOR:IET, Inc Remarks: DRILL RIG/ METHOD:Powerprobe 9510 / DPT SAMPLING METHOD:Macro-Core Hand augered to 5 ft bgs. Encounteredfirst native soils at 2.0' bgs. No recoveryfrom 7 to 10' bgs BORING STARTED:1/27/17 LOGGED BY:SQM TOTAL DEPTH: 15 ft. TOP OF CASING ELEV: DEPTH TO WATER: DE P T H (f t ) DE P T H (f t ) LI T H O L O G Y MATERIAL DESCRIPTION RE C O V E R Y ( % ) SA M P L E T Y P E NU M B E R OV A ( p p m ) BORING DIAGRAM BK G . SA M P . Sheet 1 of 1 BORING NUMBER SB-6B PROJECT:Former Chadbourn Mill JOB NUMBER:FAI-028 LOCATION:Charlotte, NC BO R I N G L O G - H A R T H I C K M A N . G D T - 2 / 1 0 / 1 7 1 0 : 2 1 - S : \ B B B M A S T E R G I N T P R O J E C T S \ F A I - 0 2 8 . G P J 2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f) 0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 Topsoil/grass/roots (CLML) Moist, slightly firm, dull red silty CLAY, some tan mottling with sand-sized black and white rock fragments at 8-8.5' bgs (CSML) Moist, slightly firm, dull red sandy silty CLAY (CSML) Wet, slightly firm to soft, dull red sandy silty CLAY (CSML) Wet, soft, brown sandy silty CLAY, some black relict structures at 28' bgs (SC) Wet, soft, brown clayey SAND, trace silt-sized sediment Bottom of borehole at 34.0 feet. 1" PVC Riser Hydrated BentoniteSeal Sand Filter Pack 1" PVC 0.01 SlottedScreen 0.0 0.1 0.1 0.1 0.1 0.1 1.9 2.0 1.9 2.4 2.6 1.8 DRAWN BY:SQM DRILLING CONTRACTOR:IET, Inc Remarks: DRILL RIG/ METHOD:Powerprobe 9510 / DPT SAMPLING METHOD:Macro-Core Hand augered to 5 ft bgs. LOGGED BY:SQM BORING STARTED: 1/27/17 BORING COMPLETED: 1/27/17 TOTAL DEPTH: 34 ft. TOP OF CASING ELEV: DEPTH TO WATER: 24.85 ft. DE P T H (f t ) DE P T H (f t ) LI T H O L O G Y MATERIAL DESCRIPTION RE C O V E R Y ( % ) SA M P L E T Y P E NU M B E R OV A ( p p m ) BORING DIAGRAM BK G . SA M P . Sheet 1 of 1 BORING NUMBER TMW-4 PROJECT:Former Chadbourn Mill JOB NUMBER:FAI-028 LOCATION:Charlotte, NC BO R I N G L O G - H A R T H I C K M A N . G D T - 2 / 1 0 / 1 7 1 3 : 2 7 - S : \ B B B M A S T E R G I N T P R O J E C T S \ F A I - 0 2 8 . G P J 2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f) 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 Appendix B Laboratory Analytical Reports Page 1 of 35 Table of Contents Table of Contents Sample Summary 3 Case Narrative 4 Sample Results 7 17A1315-01 7 17A1315-02 11 Sample Preparation Information 13 QC Data 14 Volatile Organic Compounds by GC/MS 14 B169410 14 Semivolatile Organic Compounds by GC/MS 19 B169206 19 Metals Analyses (Total) 24 B169221 24 B169315 25 Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) 26 B169227 26 Flag/Qualifier Summary 27 Certifications 28 Chain of Custody/Sample Receipt 33 Page 2 of 35 Table of Contents Page 3 of 35 Table of Contents Page 4 of 35 Table of Contents Page 5 of 35 Table of Contents Page 6 of 35 Table of Contents Page 7 of 35 Table of Contents Page 8 of 35 Table of Contents Page 9 of 35 Table of Contents Page 10 of 35 Table of Contents Page 11 of 35 Table of Contents Page 12 of 35 Table of Contents Page 13 of 35 Table of Contents Page 14 of 35 Table of Contents Page 15 of 35 Table of Contents Page 16 of 35 Table of Contents Page 17 of 35 Table of Contents Page 18 of 35 Table of Contents Page 19 of 35 Table of Contents Page 20 of 35 Table of Contents Page 21 of 35 Table of Contents Page 22 of 35 Table of Contents Page 23 of 35 Table of Contents Page 24 of 35 Table of Contents Page 25 of 35 Table of Contents Page 26 of 35 Table of Contents Page 27 of 35 Table of Contents Page 28 of 35 Table of Contents Page 29 of 35 Table of Contents Page 30 of 35 Table of Contents Page 31 of 35 Table of Contents Page 32 of 35 Table of Contents Page 33 of 35 Table of Contents Page 34 of 35 Table of Contents Page 35 of 35 Table of Contents Page 1 of 13 Page 2 of 13 Page 3 of 13 Page 4 of 13 Page 5 of 13 Page 6 of 13 Page 7 of 13 Page 8 of 13 Page 9 of 13 Page 10 of 13 Page 11 of 13 Page 12 of 13 Page 13 of 13 Appendix C IHSB Brownfields Risk Calculator Results IH S B ‐BR O W N F I E L D S  Re s i d e n t i a l  So i l  Ri s k  Ca l c u l a t o r  (N o v e m b e r  20 1 5  RS L ) C sa t (m g / k g ) Co n t a m i n a n t C A S  No . Pr e l i m i n a r y  Re s i d e n t i a l   He a l t h  Ba s e d  So i l   Re m e d i a t i o n  Go a l  (P S R G )   (m g / k g ) Ba s i s  Si t e  So i l   Co n c e n t r a t i o n   (m g / k g ) Ca n c e r  Ri s k N o n  ‐ Cancer  HQSample Location   Ar s e n i c ,  In o r g a n i c 7 4 4 0 ‐38 ‐2 6. 8 0 E ‐01 C 5 . 8 0 E ‐01 8 . 5 3 E ‐07 1 . 6 6 E ‐02 SB ‐6  (2 ‐4)   Be r y l l i u m  an d  co m p o u n d s 7 4 4 0 ‐41 ‐7 3. 2 0 E + 0 1 N 3 . 9 0 E ‐01 2 . 4 4 E ‐10 2 . 4 4 E ‐03 SB ‐6  (2 ‐4)   Ch r o m i u m ( I I I ) ,  In s o l u b l e  Sa l t s 1 6 0 6 5 ‐83 ‐1 2. 4 0 E + 0 4 N 8 . 5 0 E + 0 0 ‐‐ 7. 0 8 E ‐05 SB ‐6  (2 ‐4)   Co p p e r 7 4 4 0 ‐50 ‐8 6. 2 0 E + 0 2 N 3 . 9 0 E + 0 1 ‐‐ 1. 2 6 E ‐02 SB ‐6  (2 ‐4)   ~L e a d  an d  Co m p o u n d s 7 4 3 9 ‐92 ‐1 4. 0 0 E + 0 2 N 4 . 3 0 E + 0 0 ‐‐ NA SB ‐6  (2 ‐4)   Ma n g a n e s e  (N o n ‐di e t ) 7 4 3 9 ‐96 ‐5 3. 6 0 E + 0 2 N 1. 0 0 E + 0 3 ‐‐ 5. 5 6 E ‐01 SB ‐6  (2 ‐4) 3. 1 E + 0 0 ~ M e r c u r y  (e l e m e n t a l ) 7 4 3 9 ‐97 ‐6 2. 2 0 E + 0 0 N 1 . 9 0 E ‐02 ‐‐ 1. 7 3 E ‐03 SB ‐6  (2 ‐4)   Ni c k e l  So l u b l e  Sa l t s 7 4 4 0 ‐02 ‐0 3. 0 0 E + 0 2 N 5 . 9 0 E + 0 0 3 . 9 3 E ‐10 3 . 9 3 E ‐03 SB ‐6  (2 ‐4)   Si l v e r 7 4 4 0 ‐22 ‐4 7. 8 0 E + 0 1 N 1 . 5 0 E ‐02 ‐‐ 3. 8 5 E ‐05 SB ‐6  (2 ‐4)   Th a l l i u m  (S o l u b l e  Sa l t s ) 7 4 4 0 ‐28 ‐0 1. 5 6 E ‐01 N 3 . 2 0 E ‐02 ‐‐ 4. 1 0 E ‐02 SB ‐6  (2 ‐4)   Zi n c  an d  Co m p o u n d s 7 4 4 0 ‐66 ‐6 4. 6 0 E + 0 3 N 3 . 9 0 E + 0 1 ‐‐ 1. 7 0 E ‐03 SB ‐6  (2 ‐4) SB ‐6 8. 5 4 E ‐7 6. 3 6 E ‐1 Pa g e  1  of  1 x x In d o o r A i r C o n c e n t r a t i o n t o R i s k ( I A C - R i s k ) C a l c u l a t o r V e r s i o n 3 . 4 5 , N o v e m b e r 2 0 1 5 R S L s x x Pa r a m e t e r S y m b o l V a l u e x Ex p o s u r e S c e n a r i o Sc e n a r i o Re s i d e n t i a l x Ta r g e t R i s k f o r C a r c i n o g e n s TC R 1 . 0 0 E - 0 5 x Ta r g e t H a z a r d Q u o t i e n t f o r N o n - C a r c i n o g e n s TH Q 0 . 2 x IA S - 3 3. 7 E - 0 5 9 . 6 E - 0 1 x Si t e I n d o o r A i r Co n c e n t r a t i o n VI Ca r c i n o g e n i c Ri s k VI H a z a r d In h a l a t i o n U n i t Ri s k Re f e r e n c e Co n c e n t r a t i o n x Ci a IU R R f C x CA S C h e m i c a l N a m e (u g / m 3 ) ( u g / m 3 )-1 (m g / m 3 ) i 10 6 - 4 6 - 7 D i c h l o r o b e n z e n e , 1 , 4 - 6 . 8 0 E - 0 2 2 . 7 E - 0 7 8 . 2 E - 0 5 2 . 5 5 E + 0 0 1 . 1 0 E - 0 5 C A 8 . 0 0 E - 0 1 I 91 - 2 0 - 3 N a p h t h a l e n e 3. 0 0 E + 0 0 3 . 6 E - 0 5 9 . 6 E - 0 1 6.2 6 E - 0 1 3 . 4 0 E - 0 5 C A 3 . 0 0 E - 0 3 I (2 ) Ge n e r i c A t t e n u a t i o n F a c t o r s : So u r c e M e d i u m o f V a p o r s S y m b o l V a l u e S y m b o l V a l u e S y m b o l V a l u e Gr o u n d w a t e r ( - ) A F g w _ R _ I A 0. 0 0 1 AF g w _ C _ I A 0. 0 0 1 AF g w _ I A 0. 0 0 1 Su b - S l a b a n d E x t e r i o r S o i l G a s ( - ) A F s s _ R _ I A 0. 0 3 AF s s _ C _ I A 0. 0 1 AF s s _ I A 0. 0 3 (3 ) Fo r m u l a s Cia , t a r g e t = M I N ( C i a , c ; C i a , n c ) Cia , c ( u g / m 3 ) = T C R x A T c x ( 3 6 5 d a y s / y r ) x ( 2 4 h r s / d a y ) / ( E D x E F x E T x I U R ) Cia , n c ( u g / m 3 ) = T H Q x A T n c x ( 3 6 5 d a y s / y r ) x ( 2 4 h r s / d a y ) x R f C x ( 1 0 0 0 u g / m g ) / ( E D x E F x E T ) (4 ) Sp e c i a l C a s e C h e m i c a l s Tr i c h l o r o e t h y l e n e Sy m b o l V a l u e S y m b o l V a l u e S y m b o l V a l u e mI U R T C E _ R _ I A 1.0 0 E - 0 6 mI U R T C E _ C _ I A 0. 0 0 E + 0 0 m I U R T C E _ I A 1 . 0 0 E - 0 6 IU R T C E _ R _ I A 3.1 0 E - 0 6 IU R T C E _ C _ I A 4. 1 0 E - 0 6 I U R T C E _ I A 3 . 1 0 E - 0 6 Mu t a g e n i c C h e m i c a l s T h e e x p o s u r e d u r a t i o n s a n d a g e - d e p e n d e n t a d j u s t m e n t f a c t o r s f o r m u t a g e n i c - m o d e - o f - a c t i o n a r e l i s t e d i n t h e t ab l e b e l o w : 0 - 2 y e a r s 2 2 - 6 y e a r s 4 6 - 1 6 y e a r s 1 0 16 - 2 6 y e a r s 1 0 Mu t a g e n i c - m o d e - o f - a c t i o n ( M M O A ) a d j u s t m e n t f a c t o r Th i s f a c t o r i s u s e d i n t h e e q u a t i o n s f o r m u t a g e n i c c h e m i c a l s . Vi n y l C h l o r i d e Se e t h e N a v i g a t i o n G u i d e e q u a t i o n f o r C i a , c f o r v i n y l c h l o r i d e . No t a t i o n : I = I R I S : E P A I n t e g r a t e d R i s k I n f o r m a t i o n S y s t e m ( I R I S ) . A v a i l a b l e o n l i n e a t : h t t p : / / w w w . e p a . g o v / i r i s / s u b s t / i n d e x . h t m l P = P P R T V . E P A P r o v i s i o n a l P e e r R e v i e w e d T o x i c i t y V a l u e s ( P P R T V s ) . A v a i l a b l e o n l i n e a t : ht t p : / / h h p p r t v . o r n l . g o v / p p r t v . s h t m l A = A g e n c y f o r T o x i c S u b s t a n c e s a n d D i s e a s e R e g i s t r y ( A T S D R ) M i n i m u m R i s k L e v e l s ( M R L s ) . A v a i l a b l e o n l i n e a t : ht t p : / / w w w . a t s d r . c d c . g o v / m r l s / i n d e x . h t m l CA = C a l i f o r n i a E n v i r o n m e n t a l P r o t e c t i o n A g e n c y / O f f i c e o f E n v i r o n m e n t a l H e a l t h H a z a r d A s s e s s m e n t a s s e s s m e n t s . A v a i l a b l e o n l i n e a t : ht t p : / / w w w . o e h h a . c a . g o v / r i s k / C h e m i c a l D B / i n d e x . a s p H = H E A S T . E P A S u p e r f u n d H e a l t h E f f e c t s A s s e s s m e n t S u m m a r y T a b l e s ( H E A S T ) d a t a b a s e . A v a i l a b l e o n l i n e a t : ht t p : / / e p a - h e a s t . o r n l . g o v / h e a s t . s h t m l S = S e e R S L U s e r G u i d e , S e c t i o n 5 X = P P R T V A p p e n d i x Mu t = C h e m i c a l a c t s a c c o r d i n g t o t h e m u t a g e n i c - m o d e - o f - a c t i o n , s p e c i a l e x p o s u r e p a r a m e t e r s a p p l y ( s e e f o o t n o t e ( 4 ) a b o v e ) . VC = S p e c i a l e x p o s u r e e q u a t i o n f o r v i n y l c h l o r i d e a p p l i e s ( s e e N a v i g a t i o n G u i d e f o r e q u a t i o n ) . TC E = S p e c i a l m u t a g e n i c a n d n o n - m u t a g e n i c I U R s f o r t r i c h l o r o e t h y l e n e a p p l y ( s e e f o o t n o t e ( 4 ) a b o v e ) . Ye l l o w h i g h l i g h t i n g i n d i c a t e s s i t e - s p e c i f i c p a r a m e t e r s t h a t m a y b e e d i t e d b y t h e u s e r . Bl u e h i g h l i g h t i n g i n d i c a t e s e x p o s u r e f a c t o r s t h a t a r e b a s e d o n R i s k A s s e s s m e n t G u i d a n c e f o r S u p e r f u n d ( R A G S ) o r E P A v a p o r i n t r u si o n g u i d a n c e , w h i c h g e n e r a l l y s h o u l d n o t b e c h a n g e d . Pi n k h i g h l i g h t i n g i n d i c a t e s V I c a r c i n o g e n i c r i s k g r e a t e r t h a n t h e t a r g e t r i s k f o r c a r c i n o g e n s ( T C R ) o r V I H a z a r d g r e a t e r t h a n o r e q u a l t o t h e t a r g e t h a z a r d q u o t i e n t f o r n o n - c a r c i n o g e n s ( T H Q ) . Sit e N a m e , S i t e I D C i t y , C o u n t y Sa m p l e s e t : IH S B - B r o w n f i e l d s V a p o r I n t r u s i o n C a l c u l a t o r - B a s e d o n O S W E R V A P O R I N T R U S I O N A S S E S S M E N T 3 Se l e c t e d ( b a s e d o n sc e n a r i o ) Se l e c t e d ( b a s e d o n sc e n a r i o ) No t e : T h i s s e c t i o n a p p l i e s t o t r i c h l o r o e t h y l e n e an d o t h e r m u t a g e n i c c h e m i c a l s , b u t n o t t o v i n y l ch l o r i d e . Ag e C o h o r t Ex p o s u r e Du r a t i o n IU R So u r c e * RF C So u r c e * Mu t a g e n i c In d i c a t o r 1 72 Re s i d e n t i a l C o m m e r c i a l Re s i d e n t i a l C o m m e r c i a l Ag e - d e p e n d e n t a d j u s t m e n t fa c t o r 10 3 In d o o r A i r Sc r e e n i n g Le v e l ( u g / m 3 ) CR H Q In s t r u c t i o n s Se l e c t r e s i d e n t i a l o r c o m m e r c i a l s c e n a r i o f r o m p u l l d o w n l i s t En t e r t a r g e t r i s k f o r c a r c i n o g e n s ( f o r c o m p a r i s o n t o t h e c a l c u l a t e d V I c a r c i n o g e n i c r i s k i n c o l u m n E ) En t e r t a r g e t h a z a r d q u o t i e n t f o r n o n - c a r c i n o g e n s ( f o r c o m p a r i s o n t o t h e c a l c u l a t e d V I h a z a r d i n c o l u m n F ) VI S L C a l c u l a t o r V e r s i o n 3 . 4 . 5 , N o v e m b e r 2 0 1 5 R S L s Page 1 of 1 x x In d o o r A i r C o n c e n t r a t i o n t o R i s k ( I A C - R i s k ) C a l c u l a t o r V e r s i o n 3 . 4 5 , N o v e m b e r 2 0 1 5 R S L s x x Pa r a m e t e r S y m b o l V a l u e x Ex p o s u r e S c e n a r i o Sc e n a r i o Co m m e r c i a l x Ta r g e t R i s k f o r C a r c i n o g e n s TC R 1 . 0 0 E - 0 5 x Ta r g e t H a z a r d Q u o t i e n t f o r N o n - C a r c i n o g e n s TH Q 0 . 2 x IA S - 3 8. 4 E - 0 6 2 . 3 E - 0 1 x Si t e I n d o o r A i r Co n c e n t r a t i o n VI Ca r c i n o g e n i c Ri s k VI H a z a r d In h a l a t i o n U n i t Ri s k Re f e r e n c e Co n c e n t r a t i o n x Ci a IU R R f C x CA S C h e m i c a l N a m e (u g / m 3 ) (u g / m 3 )-1 (m g / m 3 ) i 10 6 - 4 6 - 7 D i c h l o r o b e n z e n e , 1 , 4 - 6 . 8 0 E - 0 2 6 . 1 E - 0 8 1 . 9 E - 0 5 1 . 1 1 E + 0 1 1 . 1 0 E - 0 5 C A 8 . 0 0 E - 0 1 I 91 - 2 0 - 3 N a p h t h a l e n e 3. 0 0 E + 0 0 8. 3 E - 0 6 2. 3 E - 0 1 2. 6 3 E + 0 0 3 . 4 0 E - 0 5 C A 3 . 0 0 E - 0 3 I (2 ) Ge n e r i c A t t e n u a t i o n F a c t o r s : So u r c e M e d i u m o f V a p o r s S y m b o l V a l u e S y m b o l V a l u e S y m b o l V a l u e Gr o u n d w a t e r ( - ) A F g w _ R _ I A 0. 0 0 1 AF g w _ C _ I A 0. 0 0 1 AFgw_IA 0.001 Su b - S l a b a n d E x t e r i o r S o i l G a s ( - ) A F s s _ R _ I A 0. 0 3 AF s s _ C _ I A 0. 0 1 AFss_IA 0.01 (3 ) Fo r m u l a s Ci a , t a r g e t = M I N ( C i a , c ; C i a , n c ) Ci a , c ( u g / m 3 ) = T C R x A T c x ( 3 6 5 d a y s / y r ) x ( 2 4 h r s / d a y ) / ( E D x E F x E T x I U R ) Ci a , n c ( u g / m 3 ) = T H Q x A T n c x ( 3 6 5 d a y s / y r ) x ( 2 4 h r s / d a y ) x R f C x ( 1 0 0 0 u g / m g ) / ( E D x E F x E T ) (4 ) Sp e c i a l C a s e C h e m i c a l s Tr i c h l o r o e t h y l e n e Sy m b o l V a l u e S y m b o l V a l u e S y m b o l V a l u e mI U R T C E _ R _ I A 1. 0 0 E - 0 6 mI U R T C E _ C _ I A 0. 0 0 E + 0 0 m I U R T C E _ I A 0 . 0 0 E + 0 0 IU R T C E _ R _ I A 3. 1 0 E - 0 6 IU R T C E _ C _ I A 4. 1 0 E - 0 6 I U R T C E _ I A 4 . 1 0 E - 0 6 Mu t a g e n i c C h e m i c a l s T h e e x p o s u r e d u r a t i o n s a n d a g e - d e p e n d e n t a d j u s t m e n t f a c t o r s f o r m u t a g e n i c - m o d e - o f - a c t i o n a r e l i s t e d i n t h e t ab l e b e l o w : 0 - 2 y e a r s 2 2 - 6 y e a r s 4 6 - 1 6 y e a r s 1 0 16 - 2 6 y e a r s 1 0 Mu t a g e n i c - m o d e - o f - a c t i o n ( M M O A ) a d j u s t m e n t f a c t o r Th i s f a c t o r i s u s e d i n t h e e q u a t i o n s f o r m u t a g e n i c c h e m i c a l s . Vi n y l C h l o r i d e Se e t h e N a v i g a t i o n G u i d e e q u a t i o n f o r C i a , c f o r v i n y l c h l o r i d e . No t a t i o n : I = I R I S : E P A I n t e g r a t e d R i s k I n f o r m a t i o n S y s t e m ( I R I S ) . A v a i l a b l e o n l i n e a t : h t t p : / / w w w . e p a . g o v / i r i s / s u b s t / i n d e x . h t m l P = P P R T V . E P A P r o v i s i o n a l P e e r R e v i e w e d T o x i c i t y V a l u e s ( P P R T V s ) . A v a i l a b l e o n l i n e a t : ht t p : / / h h p p r t v . o r n l . g o v / p p r t v . s h t m l A = A g e n c y f o r T o x i c S u b s t a n c e s a n d D i s e a s e R e g i s t r y ( A T S D R ) M i n i m u m R i s k L e v e l s ( M R L s ) . A v a i l a b l e o n l i n e a t : ht t p : / / w w w . a t s d r . c d c . g o v / m r l s / i n d e x . h t m l CA = C a l i f o r n i a E n v i r o n m e n t a l P r o t e c t i o n A g e n c y / O f f i c e o f E n v i r o n m e n t a l H e a l t h H a z a r d A s s e s s m e n t a s s e s s m e n t s . A v a i l a b l e o n l i n e a t : ht t p : / / w w w . o e h h a . c a . g o v / r i s k / C h e m i c a l D B / i n d e x . a s p H = H E A S T . E P A S u p e r f u n d H e a l t h E f f e c t s A s s e s s m e n t S u m m a r y T a b l e s ( H E A S T ) d a t a b a s e . A v a i l a b l e o n l i n e a t : ht t p : / / e p a - h e a s t . o r n l . g o v / h e a s t . s h t m l S = S e e R S L U s e r G u i d e , S e c t i o n 5 X = P P R T V A p p e n d i x Mu t = C h e m i c a l a c t s a c c o r d i n g t o t h e m u t a g e n i c - m o d e - o f - a c t i o n , s p e c i a l e x p o s u r e p a r a m e t e r s a p p l y ( s e e f o o t n o t e ( 4 ) a b o v e ) . VC = S p e c i a l e x p o s u r e e q u a t i o n f o r v i n y l c h l o r i d e a p p l i e s ( s e e N a v i g a t i o n G u i d e f o r e q u a t i o n ) . TC E = S p e c i a l m u t a g e n i c a n d n o n - m u t a g e n i c I U R s f o r t r i c h l o r o e t h y l e n e a p p l y ( s e e f o o t n o t e ( 4 ) a b o v e ) . Ye l l o w h i g h l i g h t i n g i n d i c a t e s s i t e - s p e c i f i c p a r a m e t e r s t h a t m a y b e e d i t e d b y t h e u s e r . Bl u e h i g hl i g ht i n g i n d i c a t e s e x p o s u r e f a c t o r s t h a t a r e b a s e d o n R i s k A s s e s s m e n t G u i d a n c e f o r S u p e r f u n d (RA G S ) o r E P A v a p o r i n t r u s i o n g ui d a n c e , w h i c h g en e r a l l y s h o u l d n o t b e c h a n g ed . Pi n k h i g h l i g h t i n g i n d i c a t e s V I c a r c i n o g e n i c r i s k g r e a t e r t h a n t h e t a r g e t r i s k f o r c a r c i n o g e n s ( T C R ) o r V I H a z a r d g r e a t e r t h a n o r e q u a l t o t h e t a r g e t h a z a r d q u o t i e n t f o r n o n - c a r c i n o g e n s ( T H Q ) . Si t e N a m e , S i t e I D C i t y , C o u n t y Sa m p l e s e t : IH S B - B r o w n f i e l d s V a p o r I n t r u s i o n C a l c u l a t o r - B a s e d o n O S W E R V A P O R I N T R U S I O N A S S E S S M E N T 3 Selected (based on scenario)Selected (based on scenario) No t e : T h i s s e c t i o n a p p l i e s t o t r i c h l o r o e t h y l e n e an d o t h e r m u t a g e n i c c h e m i c a l s , b u t n o t t o v i n y l ch l o r i d e . Ag e C o h o r t Ex p o s u r e Du r a t i o n IU R So u r c e * RF C So u r c e * Mutagenic Indicator 1 25 Re s i d e n t i a l C o m m e r c i a l Re s i d e n t i a l C o m m e r c i a l Ag e - d e p e n d e n t a d j u s t m e n t fa c t o r 10 3 In d o o r A i r Sc r e e n i n g Le v e l ( u g / m 3 ) CR H Q In s t r u c t i o n s Se l e c t r e s i d e n t i a l o r c o m m e r c i a l s c e n a r i o f r o m p u l l d o w n l i s t En t e r t a r g e t r i s k f o r c a r c i n o g e n s ( f o r c o m p a r i s o n t o t h e c a l c u l a t e d V I c a r c i n o g e n i c r i s k i n c o l u m n E ) En t e r t a r g e t h a z a r d q u o t i e n t f o r n o n - c a r c i n o g e n s ( f o r c o m p a r i s o n t o t h e c a l c u l a t e d V I h a z a r d i n c o l u m n F ) VI S L C a l c u l a t o r V e r s i o n 3 . 4 . 5 , N o v e m b e r 2 0 1 5 R S L s Page 1 of 1 Appendix D Indoor Air Assessment Field Measurements Ap p e n d i x D ( P a g e 1 o f 1 ) Su m m a r y o f A t m o s p h e r i c C o n d i t i o n s Fo r m e r C h a d b o u r n M i l l Ch a r l o t t e , N o r t h C a r o l i n a H& H J o b N o . F A I - 0 2 8 Sa m p l e I D S a m p l e L o c a t i o n S U M M A I D R e g u l a t o r I D Ca n i s t e r Pr e s s u r e Ti m e D u r i n g Ev e n t Ea s t e r n St a n d a r d T i m e Te m p . °F Pr e s s u r e Di f f e r e n t i a l (i n c h e s H 2 O) Temp.o F Precipitation (inches)Barometric Pressure (inches Hg)Wind Direction Wind Speed (mph) 28 Be g i n n i n g 8 : 1 0 N A N A 4 5 0 . 0 0 29.92 →S2 19 Mi d d l e 1 2 : 1 0 N A N A 5 0 0 . 0 0 29.86 ↘SW 6 6 E n d 1 6 : 1 0 NA NA 5 2 0 . 0 0 29.80 ↘S 6 28 Be g i n n i n g 8 : 1 4 4 9 0 . 0 0 8 17 Mi d d l e 1 2 : 1 4 6 0 0 . 0 0 9 5 E n d 1 6 : 1 4 67 0 . 0 1 2 29 Be g i n n i n g 8 : 1 2 4 9 0 . 0 0 8 18 Mi d d l e 1 2 : 1 2 6 0 0 . 0 0 9 6 E n d 1 6 : 1 2 67 0 . 0 1 2 No t e s : In f o r m a t i o n f r o m o n - s i t e w e a t h e r s t a t i o n s e t u p b y H & H o n J a n u a r y 2 7 , 2 0 1 7 d u r i n g i n d o o r a i r s a m p l i n g e v e n t . Th e s y m b o l ↘ d i s t i n g u i s h e s b a r o m e t r i c p r e s s u r e a s f a l l i n g . Po s i t i v e d i f f e r e n t i a l p r e s s u r e i n d i c a t e s t h a t t h e p r e s s u r e o u t s i d e t h e b u i l d i n g w a s h i g h e r t h a n t h e i n s i d e p r e s s u r e . NA = N o t A p p l i c a b l e In d o o r Outdoo r 19 6 3 3 5 2 5 12 4 5 3 3 4 9 BA S - 2 E a s t e r n u n d e v e l o p e d a r e a 19 8 0 3 3 5 0 IA S - 2 Lo w e r L e v e l M i l l B u i l d i n g (a d j a c e n t t o S V - 0 2 ) IA S - 3 Lo w e r L e v e l M i l l B u i l d i n g (a d j a c e n t t o S V - 0 3 ) Fil e : S : \ A A A - M a s t e r P r o j e c t s \ F a i s o n - F A I \ F A I - 0 2 8 C h a d b o u r n M i l l - C h a r l o t t e \ B r o w n f i e l d s \ B F A s s e s s m e n t R e p o r t \ T a b l e s \ V I D a t a T a bl e s ( J a n u a r y 2 0 1 7 A s s e s s m e n t O n l y ) . x l s V I D a t a T a b l e s ( J a n u a r y 2 0 1 7 A s s e s s m e n t O n l y ) . x l s Da t e : 2 / 9 / 2 0 1 7 Appendix D (Page 1 of 1)Hart & Hickman, PC