HomeMy WebLinkAbout7803_Robeson_CDLF_Expansion_WQMP_DIN27636_20170331
PREPARED FOR:
ROBESON COUNTY
SOLID WASTE DEPARTMENT
P. O. BOX 366 ST. PAULS, NC 28384
ROBESON COUNTY LANDFILL
PERMIT NUMBER 78-03
WATER QUALITY MONITORING PLAN
REVISED MARCH 2017
PREPARED BY:
2211 WEST MEADOWVIEW ROAD, SUITE 101 GREENSBORO, NORTH CAROLINA 27407 NC LICENSE NUMBER C-0782 PHONE: (336) 323-0092 FAX: (336) 323-0093 JOYCE PROJECT NO. 277.1602.12
WATER QUALITY MONITORING PLAN
ROBESON COUNTY LANDFILL
PERMIT # 78-03 ROBESON COUNTY, NC MARCH 2017
Prepared by:
2211 West Meadowview Road, Suite 101
Greensboro, North Carolina 27407 NC LICENSE NUMBER C-0782
Prepared by: _____________________________ G. Van Ness Burbach, Ph.D., P.G. NC License # 1349
Water Quality Monitoring Certification Statement: We certify that the Water Quality Monitoring Plan presented in this report, when implemented, will be
effective in providing early detection of any release of hazardous constituents to the uppermost aquifer, so as to be protective of public health and the environment. JOYCE Project # 820.1703.11, Task 01
WATER QUALITY MONITORING PLAN Robeson County Landfill - Robeson County, NC
Permit No. 78-03 TABLE OF CONTENTS
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 ii Revised March 2017
1.0 INTRODUCTION................................................................................................................. 1 1.1 Site Background .................................................................................................................. 1 1.2 Site Geology and Hydrology .............................................................................................. 1
1.2.1 Site Geology ............................................................................................................ 1
1.2.2 Site Hydrogeology ................................................................................................... 2
1.3 Groundwater Flow Regime ................................................................................................. 2 1.4 History and Regulatory Status ............................................................................................ 2
1.4.1 Monitoring & Corrective Action History ................................................................ 2
1.4.2 Regulatory Status .................................................................................................... 4 2.1 Groundwater Monitoring Program ..................................................................................... 4
2.2 Surface Water Monitoring Program .................................................................................... 5
3.0 SAMPLING PROTOCOLS ................................................................................................. 5 3.1 Groundwater Sampling Methodology.................................................................................. 5 3.2 Surface Water Sampling Methodology ................................................................................ 9 3.3 Sample Analytical Requirements ......................................................................................... 9
3.3.1 Analytical Requirements .............................................................................................. 9
3.3.2 Reporting and Record Keeping ................................................................................. 10 3.4 Well Abandonment ........................................................................................................... 10 3.5 Comparison to GPS........................................................................................................... 11 3.6 Statistical Analyses ........................................................................................................... 11
3.6.1 Treatment of Censored Data ..................................................................................... 11
3.6.2 Assumption of Normality ........................................................................................... 12
3.6.3 Parametric Upper Tolerance Limit ........................................................................... 12
3.6.4 Aitchison’s Adjusted Parametric Upper Prediction Limit ........................................ 12
3.6.5 Non-parametric Upper Tolerance Limit ................................................................... 12
3.6.6 Poisson Upper Prediction Limit ................................................................................ 12 3.7 Surface Water Monitoring ................................................................................................ 12 3.8 Leachate Monitoring ......................................................................................................... 13
4.0 ABILITY TO EFFECTIVELY MONITOR RELEASES .............................................. 13
5.0 REFERENCES .................................................................................................................... 13
6.0 ACRONYMS ....................................................................................................................... 14
WATER QUALITY MONITORING PLAN Robeson County Landfill - Robeson County, NC
Permit No. 78-03 TABLE OF CONTENTS
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 iii Revised March 2017
TABLES
Table 1 Groundwater Gradients and Flow Velocity
Table 2 Monitoring Well Construction Details FIGURE
Figure 1 Site Location Map
DRAWING
Drawing WQMP-01 Water Quality Monitoring Plan - March 2017
APPENDICES
Appendix A Well Boring and Construction Logs Appendix B Example Field Log and Chain-of-Custody
Appendix C NC Appendix I & II Constituents with NC2L Standards and GWPS
Appendix D NC2B Surface Water Standards
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 1 Revised March 2017
1.0 INTRODUCTION
On behalf of Robeson County, Joyce Engineering (JOYCE) has prepared this Water Quality
Monitoring Plan (WQMP) for the Robeson County Landfill (facility) in accordance with the North Carolina Solid Waste Management Rules (NCSWMR) codified in 15A NCAC 13B.1632-.1637. The facility is currently in assessment monitoring (§.1634) and corrective action (§.1637). This revision of the Water Quality Monitoring Plan was prepared for the proposed
Phase 5 MSW and 1 C&D landfill expansion Permit to Construct Application.
1.1 Site Background
The Robeson County Landfill is located at 246 Landfill Road, just off of Route 20, in St. Pauls,
North Carolina (Figure 1). The facility is owned and operated by Robeson County under Permit
Number 78-03, issued by the North Carolina Department of Environmental Quality (NCDEQ) Solid Waste Section (SWS). The facility occupies 462 acres with the permitted landfill boundaries consisting of approximately 90 acres.
The permitted area is comprised of three active municipal solid waste (MSW) landfill phases
(Phase 2, 3 and 4) and one closed phase (Phase 1). See Drawing WQMP-01, the Site Map, for site layout and features. Phase 1 was opened in 1985 and was closed in accordance with applicable regulations in 1997. Phases 2 through 4 are lined Subtitle-D landfills. Currently, Robeson County has a permit to operate Phases 2 through 4 and a construction and demolition
(C&D) debris landfill on top of the closed Phase 1 landfill. Currently, all MSW is being disposed
in Phase 4 and C&D waste is being disposed in Phase 1. A future C&D waste cell is planned for the area west of Phase 1, and Phase 5 for MSW is proposed for a Permit-to-Construct.
1.2 Site Geology and Hydrology
1.2.1 Site Geology
The Robeson County Landfill is located in the Coastal Plane geologic province. According to the geologic map of the area, the landfill is underlain by the late-Cretaceous (Campanian) Bladen Formation of the Black Creek Group, which is comprised of black clay and light colored micaceous sand deposited in a delta-shelf environment. The Bladen Formation dips gently
toward the east and is underlain by the Tar Heel Formation which is comprised of cross bedded
sands and variegated clays with some gravel. Previous reports indicated that on-site borings encountered surficial geology made up of sand and clay, consistent with the description of the Bladen Formation. A mixture of sand and clay is
present in the shallower portions of borings. Distinct clay layers were identified at
approximately 25 feet and 40 feet below grade.
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 2 Revised March 2017
1.2.2 Site Hydrogeology
The primary aquifer at the site is an unconfined, relatively homogeneous, sedimentary aquifer present from the water table, approximately 4 to 24 feet below ground surface (ft-bgs), to the first confining clay layer at a depth of approximately 25 to 40 ft-bgs. The aquifer is comprised of silt and fine sand and clayey silts and clayey fine sands. Secondary, partially or largely confined aquifers are present below the clay layers. The confining clay layers may not be
contiguous across the entire site. Depth to water ranges from approximately 4 feet at the downgradient, south end of the property to approximately 24 feet at the upgradient, north end of the property. Groundwater flows to the south and southeast, toward Big Marshy Creek.
1.3 Groundwater Flow Regime
Groundwater flow beneath the facility is consistently southward toward Big Marsh Swamp. Linear groundwater flow velocities were computed along selected flow paths perpendicular to groundwater potentiometric surface contours based on water levels measured in April 2015 using
the following modified Darcy equation: V = Ki/n , where V = average linear velocity, K = hydraulic conductivity, i = horizontal hydraulic gradient, and n = effective porosity. The average hydraulic conductivity of the uppermost aquifer at the site is 4.36 feet/day based on slug tests conducted in April 2015 (Joyce, 2015). The effective porosity value is estimated at 85% of
the laboratory-determined porosity for soil samples collected in March-April 2015 (Joyce, 2015).
The average groundwater gradient observed during the April 2015 event was approximately 0.0043. The average estimated linear groundwater flow velocity under the facility was calculated at 22 feet/year (Table 1). The linear velocity equation makes the simplifying assumptions of a homogeneous and isotropic aquifer.
1.4 History and Regulatory Status
1.4.1 Monitoring & Corrective Action History
Robeson County has been performing groundwater monitoring since 1993. Several monitoring wells have had volatile organic compounds (VOCs) present in concentrations that exceed 2L
groundwater standards (15A NCAC 2L.0202) Specifically, contaminants of concern (COCs) at
the site include the organic compounds benzene, 1,1-dichloroethane (1,1-DCA) 1,2-dichloroethane (1,2-DCA) and vinyl chloride and the metals arsenic, chromium, lead and selenium. Following is a summary of the corrective action history of the facility.
● In 2000, a Corrective Action Plan (CAP) was prepared that called for the installation of a
landfill gas recovery trench, with the belief that the VOCs in groundwater were the result
of migrating landfill gas. The trench, which included a number of passive gas vents, was installed in 2000. The trench, approximately 900 feet long, with 10 vents, ran across the eastern portion of the northern side of the Phase 1 landfill.
● In December 2004, in an Assessment of Corrective Measures (ACM) Report, G.N.
Richardson & Associates concluded that the trench did not effectively reduce the
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 3 Revised March 2017
concentrations of VOCs in groundwater collected from monitoring wells MW-9A,
MW-13R, MW-14 and MW-15. The December 2004 ACM report proposed other possible remedies.
● In January 2008, Richardson, Smith, Gardner & Associates (RSGA) prepared a second ACM report. That ACM reported that the trench length was increased and that additional individual vent flares were added. The 2008 ACM also indicated that although there
were decreases in concentrations, some VOCs were still above NC 2L standards. Because of the ongoing exceedances, RSGA included in their ACM report an assessment of potential alternatives for additional remediation efforts at the site. Their assessment looked at monitored natural attenuation, enhanced bioremediation, and groundwater recovery and treatment.
● In June 2008, RSGA submitted a Preliminary CAP that called for supplemental landfill gas recovery [in conjunction with a landfill gas to energy (LFGTE) project that had already been initiated] and enhanced bioremediation. The proposed CAP was approved by NCDEQ on February 11, 2011.
● In 2008 a network of gas extraction wells was installed. The gas collection system was
ultimately hooked up to power generators at the site. The original gas collection trench had been hooked up to the collection system, but because the gas from the trench was not of adequate quality due to its methane content being too low for the generator engine, the trench was disconnected from the collection system. Because gas migration was
controlled by the gas collection system, the collection trench is being decommissioned to
allow for drainage improvements at the site.
● In January 2009, David Garrett & Associates submitted a Sampling and Analysis Plan
Update with Sampling Location Amendments.
● In July 2011, Robeson County conducted an enhanced bioremediation pilot test to assess
the effectiveness of adding a hydrogen (electron donor) supplement to the aquifer to more
rapidly degrade the chlorinated VOCs in groundwater. Prior to the test, three injection points and two additional monitoring points were installed at the site, south of and downgradient from Phase 1, in the vicinity of monitoring well MW-5. In the period since the completion of the pilot test, semi-annual groundwater monitoring has continued.
● In September 2012, Brown & Caldwell issued a letter report on the pilot test and the
subsequent monitoring results that concluded that the addition of the supplement did not effectively improve degradation.
● In January 2013, the NCDEQ approved cessation of sampling for herbicides and pesticides for the facility wells under assessment monitoring.
● In August 2013, Joyce Engineering (JOYCE) submitted a Corrective Action Evaluation
Report (CAER) for the facility. The CAER concluded that enhanced bioremediation would not be effective for this facility and recommended that the facility pursue control of landfill gas plus monitored natural attenuation (MNA) as the remedy.
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 4 Revised March 2017
● In July 2014, JOYCE submitted and NCDEQ approved a request to change MW-13R,
MW-14, & MW-15A to Assessment Monitoring and to let MW-3R, MW-10, & MW-11 revert back to Detection Monitoring.
1.4.2 Regulatory Status
The Robeson County Landfill operates under permit 78-03. Phase 1 is a closed unlined MSW
landfill, which opened in 1985 and operated until 1997. It is covered with a 24-inch soil cap. The County has operated a C&D landfill on top of the closed MSW landfill since 1998. Phases 2, 3, and 4 are lined Subtitle-D landfills, permitted and constructed in accordance with the NCSWMR.
Both detection and assessment monitoring are being performed at the site. The wells associated with Phase 1 are in assessment monitoring under §.1634 of the NCSWMR. Phase 1 is also under corrective action under §.1637 of the NCSWMR because of the presence of VOCs and metals in exceedance of groundwater protection standards (GPS) as defined in §.1634.g of the NCSWMR. The wells associated Phases 2, 3, and 4 are in detection monitoring under §.1633 of
the NCSWMR.
2.1 Groundwater Monitoring Program
The following table summarizes the compliance monitoring wells for the facility.
WELL ID Classification Monitoring Program Required Analytes (1st Semiannual Event) Required Analytes (2nd Semiannual Event) MW-6 Background (Phase 1) Assessment Appendix II** + C&D App. I + Detects + C&D MW-12 Background (Phases 2,3,4) Detection Appendix I Appendix I MW-3R Phase 1 Compliance Detection* Appendix I + C&D Appendix I + C&D MW-5 Phase 1 Compliance Assessment Appendix II** + C&D App. I + Detects + C&D
MW-8 Phase 1 Compliance Assessment Appendix II** + C&D App. I + Detects + C&D
MW-9A Phase 1 Compliance Assessment Appendix II** + C&D App. I + Detects + C&D
MW-10 Phase 1 Compliance Detection* Appendix I + C&D Appendix I + C&D MW-11 Phase 1 Compliance Detection* Appendix I + C&D Appendix I + C&D MW-13R Phase 2 Compliance Assessment* Appendix II** App. I + Detects MW-14R Phase 2 Compliance Assessment* Appendix II** App. I + Detects
MW-15A Phase 2 Compliance Assessment* Appendix II** App. I + Detects
MW-16 Phase 2 Compliance Detection Appendix I Appendix I
MW-17R Phase 2 Compliance Detection Appendix I Appendix I
MW-18 Phase 2 Compliance Detection Appendix I Appendix I MW-21 Phase 3 Compliance Detection Appendix I Appendix I MW-22 Phase 3 Compliance Detection Appendix I Appendix I MW-23 Phase 3 Compliance Detection Appendix I Appendix I
MW-24 Phase 4 Compliance*** Detection Appendix I Appendix I
MW-25R Phase 4 Compliance Detection Appendix I Appendix I
MW-26 Phase 4 Compliance Detection Appendix I Appendix I MW-19 To be Abandoned**** Currently Inactive MW-20 To be Abandoned**** Currently Inactive MW-19R Future C&D Compliance Proposed**** Appendix I + C&D Appendix I + C&D
MW-20R Future C&D Compliance Proposed**** Appendix I + C&D Appendix I + C&D
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 5 Revised March 2017
* In July 2014, NCDEQ approved a request to change MW-13R, MW-14, & MW-15A to Assessment Monitoring and to let MW-3R, MW-10, & MW-11 revert back to Detection Monitoring. This table reflects those changes. ** In January 2013, NCDEQ approved removing the requirement of sampling for herbicides and pesticides. *** MW-24 will be abandoned once construction of Phase 5 is approved. **** MW-19 and MW-20 will be abandoned prior to construction of the C&D expansion and will be replaced by proposed wells MW-19R and MW-20R.
There are currently 20 monitoring wells that are part of the active compliance monitoring
network for the facility. Monitoring wells MW-6 and MW-12 serve as upgradient background wells for the facility. Six down-gradient wells associated with Phase 1, including MW-3R, MW-5, MW-8, MW-9A, MW-10 and MW-11. Eleven wells are associated with Phases 2, 3, 4, and 5 including MW-13R, MW-14R, MW-15A, MW-16, MW-17R, MW-18, MW-21, MW-22,
MW-23, MW-24, MW-25R and MW-26. MW-24 must be abandoned prior to construction of
Phase 5; therefore, it will be removed from the monitoring network at that time. A future C&D cell is planned for the area immediately west of Phase 1. Monitoring wells MW-19 and MW-20 are downgradient of the future C&D cell; however, they will need to be
abandoned prior to construction. Replacement wells MW-19R and MW-20R are proposed further downgradient of the future C&D cell, but within the relevant point of compliance (< 250 feet from the edge of waste). MW-21 is located upgradient of the future C&D Cell, but downgradient of Phase 3, and it is currently sampled for Phase 3 compliance.
The locations of the facility monitoring wells are shown on Drawing WQMP-01, and proposed new wells are shown in red. Construction specifications for these monitoring wells are summarized in Table 2 and available well boring and construction logs are included in Appendix A.
2.2 Surface Water Monitoring Program
The two surface water sampling locations are monitored at the facility. Sampling point SW-1 is located at the outfall of the sedimentation basin on the south side of Phase 1. Surface water sampling point SW-2 is across the access road in the southeast corner of Phase 2. Samples are collected from SW-1 and SW-2 during each semiannual sampling event if there is sufficient
water flow. These locations are shown in red on Drawing WQMP-01. Due to the distance to Big Marsh Creek, NCDEQ has not required Robeson County to sample water from the creek. The surface water samples are analyzed for the NCSWMR Appendix I list of constituents during both semiannual events.
3.0 SAMPLING PROTOCOLS
3.1 Groundwater Sampling Methodology
Groundwater samples will be collected in accordance with NCSWMR §.1630 through §.1633 and guidance provided in the Draft North Carolina Water Quality Monitoring Guidance
Document for Solid Waste Facilities; Solid Waste Section, Division of Solid Waste Management;
Department of Environment, Health and Natural Resources (March 1995). Details of well
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 6 Revised March 2017
purging, sample withdrawal, and decontamination methods, as well as chain-of-custody
procedures are outlined below. Static water elevations and the total well depth will be measured to the nearest 0.01 of a foot in each well prior to the sampling of each well. An electronic water level meter will be used for the measurements. The distance from the top of the well casing to the water surface and to the
bottom of the well will be measured using the tape attached to the probe. Reference elevations of the proposed wells have been obtained from a North Carolina registered land surveyor. A low-yield well (one that is incapable of yielding three well volumes within a reasonable time) will be purged so that water is removed from the bottom of the screened interval. Low-yield
wells will be evacuated to dryness once. Within 24 hours of purging, the first sample will be field tested for pH, temperature, and specific conductance. Samples will then be collected and containerized in the order of the parameters' volatilization sensitivity (i.e., volatile organics then total metals).
A high-yield well (one that is capable of yielding more than three well volumes during purging) will be purged so that water is drawn down from the uppermost part of the water column to ensure that fresh water from the formation will move upward in the screen. At no time will a well be evacuated to dryness if the recharge rate causes the formation water to vigorously
cascade down the sides of the screen, which could cause an accelerated loss of volatiles.
A minimum of three well volumes will be evacuated from high-yield wells prior to sampling. A well volume is defined as the water contained within the well casing and pore spaces of the surrounding filter pack. The well volume will be calculated using the following formulas:
Vc = (dc2/4) x3.14 x hw x (7.48 gallons/cubic foot) Vc (gallons) = 0.163 x hw (for a 2-inch well) where: Vc = volume in the well casing in gallons
dc = casing diameter in feet (dc = 0.167 for a 2-inch well)
hw = height of the water column in feet (i.e., well depth minus depth to water) Each well will be evacuated (purged) and sampled with a disposable bailer or a sampling pump. The bailer or pump will be lowered gently into the well to minimize the possibility of causing
degassing of the water. If sampled with a pump, flow rates will be regulated to minimize
turbidity and degassing of the water. All equipment used for sampling will be handled in such a manner to ensure that the equipment remains decontaminated prior to use. In between wells and following completion of the field
sampling, water level meters, sampling pumps, or any other reusable sampling equipment will be
properly decontaminated. Clean disposable gloves will be worn by sampling personnel and changed between wells.
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 7 Revised March 2017
The upgradient/background well will be sampled first, followed by the downgradient wells. The
order of sampling of the downgradient wells will be evaluated each sampling event to provide a sequence going from less contaminated to more contaminated, if applicable, based on the previous sampling event. Field measurements of temperature, pH, specific conductance, and turbidity will be made before sample collection. The direct reading equipment used at each well will be calibrated according to the manufacturer's specifications prior to each sampling event.
Groundwater samples will be collected and containerized in the order of the volatilization sensitivity as follows (as required):
Volatile and purgeable organics;
Base neutral and acid extractable organics;
Total metals;
Dissolved metals; and
BOD, COD, dissolved methane, nitrate, sulfate. Pre-preserved sample containers will be supplied by the laboratory. The VOC vials will be filled in such a manner that no headspace or entrapped air bubbles remain after filling. Immediately
upon collection, all samples will be placed in coolers on ice where they will be stored prior to and during transit to the laboratory. In between wells and following completion of the field sampling, the electronic depth meter will
be decontaminated using the following procedure:
1) Phosphate-free soap and distilled water wash; 2) Distilled water rinse; and 3) Air dry.
Samples collected will be properly containerized, packed into pre-cooled coolers, and either
hand-delivered or shipped via overnight courier to the laboratory for analysis. The chain-of-custody program will allow for tracing of possession and handling of samples from the time of field collection through laboratory analysis. The chain-of-custody program will include sample labels and seals, field logs, chain-of-custody records, and laboratory logs. Example field logs
and an example chain-of-custody form are included in Appendix B.
Labels sufficiently durable to remain legible when wet will contain the following information:
Job and sample identification;
Monitoring well number or other location;
Date and time of collection;
Name of collector;
Parameter to be analyzed; and
Preservative, if applicable. The shipping container will be sealed to ensure that the samples have not been disturbed during
transport to the laboratory. If the sample cannot be analyzed because of damage or disturbance, whenever possible, the damaged sample will be replaced during the same compliance period. The field log will contain sheets documenting the following information:
Identification of the well;
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 8 Revised March 2017
Well depth;
Static water level depth;
Presence of immiscible layers, odors or other indications of potential contamination;
Purge volume (given in gallons or number of bailers);
Time well was purged;
Date and time of collection;
Well sampling sequence;
Field analysis data and methods;
Field observations on sampling event;
Name of collector(s);
Climatic conditions (temperature, precipitation).
The chain-of-custody record is required to establish the documentation necessary to trace sample
possession from time of collection to time of receipt at destination. A chain-of-custody record will accompany each individual shipment. The record will contain the following information:
Sample destination and transporter;
Sample identification numbers;
Signature of collector;
Date and time of collection;
Sample type;
Identification of well;
Number of sample containers in shipping container;
Parameters requested for analysis;
Signature of person(s) involved in the chain of possession;
Inclusive dates of possession; and
Internal temperature of shipping container upon opening (noted by the laboratory). A copy of the completed chain-of-custody sheet will accompany the shipment and will be returned to the shipper with the analytical results. The chain of custody record will also be used
as the analysis request sheet.
A field blank and/or an equipment blank will be collected and analyzed during each sampling event to verify that the sample collection and handling processes have not affected the integrity of the field samples. The field/equipment blank(s) will be prepared in the field from distilled
water (type II reagent grade water) supplied by the laboratory. At least one field/equipment blank will be prepared for each sampling event. Equipment blank will be generated by exposing the laboratory-distilled water to the sampling environment and sampling equipment/media in the same manner as actual field samples being collected. A field blank will be generated by exposing the laboratory-distilled water to the sampling environment at each sampling location
during the sampling event. The laboratory will provide appropriate sample containers for generation of the field/equipment blank(s). The field/equipment blank(s) will be subjected to the same analyses as the groundwater samples. As with all other samples, the time(s) of the field/equipment blank collection will be recorded so that the sampling sequence is documented. The field/equipment blank monitors for contamination from the sampling equipment/media, or
from cross-contamination that might occur between samples and sample containers as they are opened and exposed to the sampling environment.
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 9 Revised March 2017
Whenever groundwater samples are being collected for volatiles analysis, a trip blank will be
generated by the laboratory using laboratory-distilled water prior to shipment of sampling containers and coolers to the field. The trip blank shall be transported with the empty sampling containers to the field, but will not be opened at any time prior to analysis at the laboratory. The trip blank will accompany the groundwater samples in the cooler(s) back to the laboratory and will be analyzed by the same volatile methods as the associated field samples. The trip blank
monitors for potential cross-contamination that might occur between samples or that may be a result of the shipping environment. Detectable levels of contaminants found in the field/equipment blanks or trip blanks will not be used to correct the groundwater data, but will be noted accordingly. Constituents detected in
trip blanks or field/equipment blanks at concentrations within an order of magnitude of those observed in the corresponding groundwater or surface water samples may justify discounting the detections in samples as ‘blank-qualified”, or may be cause for resampling.
3.2 Surface Water Sampling Methodology
Surface water samples will be collected from flowing water at the designated sample locations in conjunction with the semiannual groundwater sampling events. Surface water can be sampled either by: 1) collecting the sample using a properly-decontaminated dipper and filling laboratory-prepared sample containers from the dipper; or 2) by dipping laboratory-prepared
sampled containers directly into the stream flow. If using the direct sampling method, great care
should be taken to not overflow containers containing preservatives to prevent loss of preservative. Use of an unpreserved laboratory container to collect the sample and then carefully dispense it into the preserved container is acceptable. For unpreserved containers, it is preferable to completely submerge the closed container, remove the lid underwater, and then replace the lid
when the container is full before removing it from the water; however, this method is only
acceptable if there is sufficient depth of flowing water. No matter what method is used to collect samples, great care should be taken to not disturb creek bed sediment during sampling and to obtain samples from the least turbid location available. Downstream samples should be collected first and upstream samples second. Samplers should wear clean, dedicated sampling gloves at all
times while collecting or handling samples. Field parameters, including temperature, pH, and
turbidity, shall be monitored at each sample location using the same sample collection technique used to collect the laboratory samples, as appropriate. Sampling techniques and protocols describe above for groundwater, including sample labeling, field log entry, and chain-of-custody procedures, shall also be followed for surface water samples.
3.3 Sample Analytical Requirements
3.3.1 Analytical Requirements
The groundwater from wells in detection monitoring and surface water samples will be analyzed for the NCSWMR Appendix I list of constituents (by reference, RCRA Subtitle-D, Appendix I of
40 CFR.258). Groundwater from monitoring wells in assessment monitoring shall be analyzed
for the NCSWMR Appendix II list of constituents (by reference, RCRA Subtitle-D, Appendix II of 40 CFR.258) during the first semiannual sampling event of each year. During the second
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 10 Revised March 2017
semiannual sampling event, these wells shall be sampled for the Appendix I list of constituents
plus previously detected Appendix II constituents. Note that in a letter dated January 24, 2013, the NCDEQ approved cessation of sampling for herbicides and pesticides for the facility wells under assessment monitoring, so the Appendix II list for this facility no longer includes herbicides or pesticides.
In addition to the above requirements, samples from compliance wells that monitor a C&D waste unit (currently Phase 1) shall be analyzed for C&D parameters: mercury, chloride, manganese, sulfate, iron, alkalinity, and total dissolved solids (TDS) in accordance with §.0544(b)(1)(D). All groundwater and surface water samples shall also be analyzed for the following field parameters: pH, specific conductivity, temperature, and turbidity.
Analysis of groundwater and surface water samples shall be performed in accordance with U.S. EPA SW-846 methods as described in Test Methods for Evaluating Solid Waste -
Physical/Chemical Methods (SW-846) or Methods for the Chemical Analysis of Water and
Wastes. All laboratory analyses will be performed by laboratories certified by the NCDEQ for
the required analytical methods and parameters. Appendix C includes a table of all Appendix I and Appendix II constituents with their respective analytical methods, CAS numbers, NCDEQ Solid Waste Section Limits (SWSL), 15A NCAC 2L (NC2L) groundwater standards, and Solid Waste Section groundwater protection standards (GWPS). Appendix D includes a summary of
15A NCAC 2B (NC2B) Surface Water Standards. Analyses shall be consistent with NCDEQ
policies regarding analytical methods, SWSLs, and practical quantitation limits (PQLs), as appropriate.
3.3.2 Reporting and Record Keeping
The laboratory analytical results shall be submitted to the Solid Waste Section semiannually.
The following measurements, analytical data, calculations, and other relevant groundwater monitoring records will be kept throughout the active life of the facility and the post-closure care period:
Records of all groundwater quality data; Associated sample collection field logs and measurements, such as static water level
measured in compliance wells at the time of sample collection; and
Notices and reports of GPS exceedances, reporting or data error, missing data, etc.
3.4 Well Abandonment
Any monitoring wells at the site which need to be abandoned due to damage, construction activities, or approved changes in the monitoring network will be properly abandoned in accordance with the procedures for permanent abandonment, as described in 15A NCAC 2C § .0113(d). Prior to abandonment, approval must be received from the SWS and will also be certified by a licensed geologist. No wells will be abandoned without prior approval from the
SWS.
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 11 Revised March 2017
3.5 Comparison to GPS
Constituents detected in the samples collected from the compliance well network shall be compared to the appropriate GPS for that constituent in accordance with NCSWMR §.1634.g-h.
The comparison will be performed using a value-to-value procedure. If a suspect GPS
exceedance is noted during the value-to-value comparison, a confirmation sample may be collected. The results from a confirmation sample will be compared to the GPS in a value-to-value comparison, or the value may be statistically compared to background.
In most cases, the GPS will be equal to the Groundwater Standard established for a given
constituent in 15A NCAC 2L.0202 (NC2L Standards). For constituents without listed NC2L Standards, the groundwater protection standards (GWPS) established by the NCDEQ Solid Waste Section may be used. In the event that a site-specific statistical background value can be established for a given constituent which is higher that the NC2L standard, GWPS, or other
appropriate listed standard, the background may be used as the GPS with NCDEQ approval per
NCSWMR §.1634.g.5.
3.6 Statistical Analyses
With the April 2011 revision to the NCSWMR, routine statistical comparison to background for
all detected constituents is no longer required for landfills regulated under §.1600 of the
NCSWMR; however, statistical analyses may be used to establish an alternate GPS for constituents with the approval of the NCDEQ if desired by the facility. For C&D landfills regulated under §.0500 of the NCSWMR, statistical comparison to background is required for all detected constituents. The following guidelines will be used to determine statistical background
values.
Statistical analyses shall be conducted in compliance with the EPA guidance document,
Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (US-EPA, 2009). The background data are to be evaluated through the use of Parametric Prediction
Limits, Parametric Tolerance Intervals, Non-Parametric Prediction Limits, or Poisson Prediction
Limits as appropriate. Tests for normality, outliers, Aitchison’s adjustment, tolerance intervals, or prediction limits are to be included as appropriate based on the background data. The statistical test by which downgradient data are compared to facility background data is based upon the nature of the data and the number of data values that are less than the laboratory limit of
detection. All statistical tests are evaluated at the 0.05 level of significance, 95% confidence
level, and are conducted as one-tailed tests. These methods and the criteria for their use are discussed below.
3.6.1 Treatment of Censored Data
Generally, background data are censored as follows. When less than or equal to 15% of the
background data values are less than the applicable reporting limit or quantitation limit (generally, the SWSL), any data reported at less than the applicable limit will be treated as one-half the limit.
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 12 Revised March 2017
3.6.2 Assumption of Normality
Prior to conducting statistical tests that are based on the assumption of normally distributed data, normality of the background data shall be evaluated using the Shapiro-Wilk statistic (W). Normality shall be assessed at the 95% confidence level. In the event that the raw data fail to follow a normal distribution, the data shall be transformed using a base-10 logarithm. The
transformed data shall then be tested for normality using the Shapiro-Wilk statistic. In the event that the log-transformed data also fail to follow a normal distribution, a non-parametric approach shall be applied.
3.6.3 Parametric Upper Tolerance Limit
When the background data consist of a minimum of eight independent data values and less than or equal to 15% of the background data values are less than the DL for a given analyte, the downgradient values are then compared to the parametric upper tolerance limit in accordance with the procedure summarized in the EPA guidance document (US-EPA, 2009).
3.6.4 Aitchison’s Adjusted Parametric Upper Prediction Limit
In those cases where the background data consist of a minimum of eight independent data values and more than 15%, but less than or equal to 50%, of the background data values are truncated (below than the DL) for a given analyte, the mean and standard deviation are adjusted. This is
done in accordance with the procedure described by Aitchison and summarized in the EPA
guidance document (US-EPA, 2009). After the adjustments are made, the downgradient values are compared to the Aitchison’s adjusted parametric upper prediction limit in accordance with the procedures summarized in the EPA guidance document (US-EPA, 2009).
3.6.5 Non-parametric Upper Tolerance Limit
In those cases where more than 50%, but less than or equal to 90%, of the background data values are truncated (below than the DL) for a given analyte or the background data fail to follow a normal or log-normal distribution, downgradient values are compared to the non-parametric upper tolerance limit. This procedure is done in accordance with the procedures
summarized in the EPA guidance document (US-EPA, 2009).
3.6.6 Poisson Upper Prediction Limit
In those cases where more than 90% of the background data values are truncated (below than the DL) for a given analyte, the downgradient values are compared to the Poisson upper prediction
limit. These comparisons are made in accordance with the procedure summarized in the EPA
guidance document (US-EPA, 2009).
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 13 Revised March 2017
3.7 Surface Water Monitoring
Surface water at the facility is currently monitored semiannually in conjunction with the groundwater sampling events. Samples are collected from two surface water monitoring points, SW-1 and SW-2, when there is sufficient flow. Surface water samples will be collected and analyzed for the NCSWMR Appendix I list of constituents during both semiannual monitoring events. The results will be compared to 15A NCAC 2B (NC2B) Surface Water Standards in a
value-to-value comparison. See Section 3.2 for surface water sampling methodology.
3.8 Leachate Monitoring
Leachate samples for Phases 2, 3, 4 and 5 shall be collected from the site on a semiannual basis. These samples are collected from the piping in the leachate treatment building prior to the
treatment process. Phase 2, 3 and 5 leachate samples are collected from the respective line valves linked to the generator. The Phase 4 leachate samples are collected from the line pump station G1-D located on the east end of Phase 4. The locations for collecting leachate samples are shown on Drawing WQMP-01.
Leachate samples shall be collected and analyzed for Appendix I parameters plus BOD, COD, nitrates, phosphates, and sulfates in accordance with NCDEQ requirements. These data shall be reported in the facility’s semiannual Water Quality Monitoring Reports to NCDEQ on a semiannual basis.
4.0 ABILITY TO EFFECTIVELY MONITOR RELEASES
Based on the hydrogeologic data available for the Robeson County Landfill, no geological or hydrological conditions have been identified which are likely to interfere with effective monitoring of groundwater beneath the facility. The existing monitoring network is considered
adequate to monitor this facility. This Water Quality Monitoring Plan will be effective in
providing detection of any release of landfill constituents to the uppermost aquifer beneath the facility as well as monitoring of existing releases, so as to be protective of public health and the environment.
5.0 REFERENCES
The references cited herein were used to prepare this document and may or may not be cited in the text of this report. Butler, J. Robert, and Secor, Jr., Donald T., 1991, The Central Piedmont, in Horton, J. W., Jr.,
and Zullo, V. A., eds., The Geology of the Carolinas: The University of Tennessee Press,
p. 59-78. David Garrett & Associates, 2009. Water Quality Monitoring Plan, Sampling and Analysis Plan
Update with Sampling Location Amendments, Robeson County MSWLF (Phase 4), North
Carolina Solid Waste Permit # 78-03. January 2009.
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 14 Revised March 2017
Joyce Engineering (JOYCE), 2013. Corrective Action Evaluation Report - Robeson County
Landfill, Permit Number 78-03. August 2013. Joyce Engineering (JOYCE), 2015. Phase 5 Design Hydrgeologic Report - Robeson County
Landfill, Permit Number 78-03. July 2015.
North Carolina Department of Environment and Natural Resources (NC-DENR), 2011. North Carolina Solid Waste Management Rules. 15 NCAC 13B. Amended April 2011. NC-DENR, 2007. North Carolina Solid Waste Section Guidelines for Corrective Action at
Solid Waste Management Facilities. March 2007. North Carolina Geological Survey (NCGS), 1985, Geologic Map of North Carolina: North Carolina Department of Natural Resources and Community Development, scale 1:500000.
PSCI Engineers (PSCI), 2014. Robeson County Landfill Phases 1, 2, 3 & 4 Water Quality
Monitoring Report March 2014 Semi-annual Monitoring Event. June 2014.
United Stated Environmental Protection Agency (US-EPA), 2009. Statistical Analysis of
Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. EPA
530/R-09-007. March 2009. Richardson, Smith, Gardner, and Associates, 2008. Water Quality Monitoring Plan, Robeson
County Landfill, St. Pauls, North Carolina, NC Solid Waste Permit No.78-03. June 2008.
6.0 ACRONYMS
ACM Assessment of Corrective Measures (report) AOC Area of Concern
BOD Biological Oxygen Demand
C&D Construction and Demolition Waste CAP Corrective Action Plan (report) CAER Corrective Action Evaluation Report (report) CDLF Construction and Demolition Debris Landfill
CFR Code of Federal Regulations
COC Contaminant of Concern or Constituent of Concern COC Chain of Custody (for samples to laboratory) COD Chemical Oxygen Demand 1,1-DCA 1,1-Dichloroethane
1,2-DCA 1,2-Dichloroethane
DL Detection Limit (for laboratory data) DO Dissolved Oxygen EPA United States Environmental Protection Agency
Water Quality Monitoring Plan Joyce Engineering Robeson Co. Landfill, Permit No. 78-03 15 Revised March 2017
GEU Gas Extraction Unit
GPS Groundwater Protection Standard (per §.1604.g-h of the NCSWMR) GWPS Groundwater Protection Standard (issued by the NCDEQ-SWS) HASP Site-specific Health and Safety Plan HDPE High-density Polyethylene JOYCE Joyce Engineering, Inc.
LFG Landfill Gas LEL Lower Explosive Limit MNA Monitored Natural Attenuation MSW Municipal Solid Waste NC2B North Carolina Surface Water Standards found in 15A NCAC 2B.0101
NC2L North Carolina Groundwater Standards found in 15A NCAC 2L.0202 NCAC North Carolina Administrative Code NCDENR North Carolina Department of Environment and Natural Resources (now the NCDEQ) NCDEQ North Carolina Department of Environmental Quality (formerly NCDENR)
NCSWMR North Carolina Solid Waste Management Regulations (15A NCAC 13B) ND Not Detected (for laboratory data) NES Nature and Extent Study (report) O&M Operations and Maintenance
OSHA Occupational Health and Safety Association
PCE Tetrachloroethylene PQL Practical Quantitation Limit (for laboratory data) PVC Poly Vinyl Chloride QL Quantitation Limit (for laboratory data)
QRA Quantitative Risk Assessment (report)
RL Reporting Limit (for laboratory data) SWQS Surface Water Quality Standards SWS NCDEQ, Division of Waste Management, Solid Waste Section SWSL North Carolina Solid Waste Section Reporting Limit (for laboratory data)
TCE Trichloroethylene
US-EPA United States Environmental Protection Agency VOC Volatile Organic Compound WQMP Water Quality Monitoring Plan (report)
TABLES
SE
G
M
E
N
T
H
O
R
I
Z
.
H
Y
D
R
A
U
L
I
C
E
F
F
E
C
T
I
V
E
L
I
N
E
A
R
FL
O
W
B
E
G
I
N
&
E
N
D
G
R
A
D
I
E
N
T
C
O
N
D
U
C
T
I
V
I
T
Y
P
O
R
O
S
I
T
Y
V
E
L
O
C
I
T
Y
DI
R
E
C
T
I
O
N
G
W
E
L
E
V
A
T
I
O
N
iK
n e V
(f
e
e
t
-
A
M
S
L
)
(
f
t
/
f
t
)
(
f
t
/
d
a
y
)
(
f
t
/
y
e
a
r
)
14
3
12
7
14
0
12
6
Av
e
r
a
g
e
0
.
0
0
4
3
A
v
e
r
a
g
e
2
1
.
9
8
No
t
e
s
:
Li
n
e
a
r
f
l
o
w
v
e
l
o
c
i
t
y
:
V
=
K
i
/
n
e
(
m
o
d
i
f
i
e
d
D
a
r
c
y
e
q
u
a
t
i
o
n
)
.
Hy
d
r
a
u
l
i
c
c
o
n
d
u
c
t
i
v
i
t
y
(
K )
i
s
t
h
e
a
v
e
r
a
g
e
o
f
v
a
l
u
e
s
f
r
o
m
s
l
u
g
t
e
s
t
s
c
o
n
d
u
c
t
e
d
i
n
A
p
r
i
l
2
0
1
5
.
Ef
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
(
n
e
)
v
a
l
u
e
i
s
e
s
t
i
m
a
t
e
d
a
t
8
5
%
o
f
t
h
e
l
a
b
o
r
a
t
o
r
y
-
d
e
t
e
r
m
i
n
e
d
p
o
r
o
s
i
t
y
f
o
r
s
o
i
l
s
a
m
p
l
e
s
c
o
l
l
e
c
t
e
d
i
n
M
a
r
c
h
-
A
p
r
i
l
2
0
1
5
.
Re
f
e
r
t
o
D
r
a
w
i
n
g
1
f
o
r
f
l
o
w
l
i
n
e
s
e
g
m
e
n
t
s
.
TA
B
L
E
1
:
G
r
o
u
n
d
w
a
t
e
r
G
r
a
d
i
e
n
t
s
a
n
d
F
l
o
w
V
e
l
o
c
i
t
i
e
s
Ap
r
i
l
1
4
,
2
0
1
5
FL
O
W
L
I
N
E
SE
G
M
E
N
T
SE
G
M
E
N
T
LE
N
G
T
H
(f
e
e
t
)
i
2
41
0
8
N
E
0
.
0
0
3
4
4
.
3
6
E
+
0
0
0
.
3
1
1
7
.
5
0
0.31
2
6
.
4
7
i
1
31
0
3
N
E
0
.
0
0
5
2
4
.
3
6
E
+
0
0
Fr
a
n
k
l
i
n
C
o
u
n
t
y
L
a
n
d
f
i
l
l
Pe
r
m
i
t
#
0
7
2
Joyce Engineering
We
l
l
/
P
Z
D
a
t
e
TO
C
E
l
e
v
.
G
r
o
u
n
d
E
l
e
v
.
S
t
i
c
k
u
p
ID
I
n
s
t
a
l
l
e
d
(F
t
-
A
M
S
L
)
(
F
t
-
A
M
S
L
)
(
F
e
e
t
)
Depth
E
l
e
v
.
D
e
p
t
h
E
l
e
v
.
D
e
p
t
h
E
l
e
v
.
MW
-
3
R
2
/
2
5
/
1
9
8
5
P
h
a
s
e
1
C
o
m
p
l
i
a
n
c
e
37
7
4
8
6
.
8
9
9
2
0
2
7
3
1
0
.
1
5
1
13
6
.
4
7
1
3
4
.
3
8
2
.
0
9
1
5
.
0
1
1
9
.
3
8
4
.
0
1
3
0
.
3
8
1
4
.
0
1
2
0
.
3
8
MW
-
5
1
0
/
2
5
/
1
9
9
0
P
h
a
s
e
1
C
o
m
p
l
i
a
n
c
e
37
6
4
7
6
.
6
9
1
2
0
2
6
6
8
2
.
1
1
9
12
8
.
8
4
1
2
7
.
3
4
1
.
5
0
2
3
.
0
1
0
4
.
3
4
1
3
.
0
1
1
6
.
0
0
2
3
.
0
1
0
6
.
0
0
MW
-
6
1
2
/
1
/
1
9
9
3
P
h
a
s
e
s
1
,
2
,
4
B
a
c
k
g
r
o
u
n
d
38
1
2
5
5
.
2
1
3
2
0
2
7
4
6
7
.
6
9
2
15
0
.
9
0
1
4
7
.
7
8
3
.
1
2
3
9
.
0
1
0
8
.
7
8
2
9
.
0
1
1
8
.
7
8
3
9
.
0
1
0
8
.
7
8
MW
-
8
1
2
/
1
/
1
9
9
3
P
h
a
s
e
1
C
o
m
p
l
i
a
n
c
e
37
7
3
2
0
.
0
3
3
2
0
2
7
0
9
6
.
3
3
1
13
1
.
1
4
1
2
9
.
2
1
1
.
9
3
2
0
.
0
1
0
9
.
2
1
1
0
.
0
1
1
9
.
2
1
2
0
.
0
1
0
9
.
2
1
MW
-
9
A
5
/
2
/
1
9
9
4
P
h
a
s
e
1
C
o
m
p
l
i
a
n
c
e
37
7
3
3
4
.
6
3
4
2
0
2
6
7
5
5
.
4
8
3
13
1
.
5
0
1
2
9
.
0
6
2
.
4
4
3
2
.
5
9
6
.
5
6
2
0
.
0
1
0
9
.
0
6
3
0
.
0
9
9
.
0
6
MW
-
1
0
1
2
/
2
/
1
9
9
3
P
h
a
s
e
1
C
o
m
p
l
i
a
n
c
e
37
7
3
5
6
.
4
2
3
2
0
2
6
1
3
7
.
7
9
8
13
3
.
0
8
1
3
0
.
5
1
2
.
5
7
1
5
.
0
1
1
5
.
5
1
5
.
0
1
2
5
.
5
1
1
5
.
0
1
1
5
.
5
1
MW
-
1
1
8
/
3
1
/
1
9
9
6
P
h
a
s
e
1
C
o
m
p
l
i
a
n
c
e
37
7
5
7
6
.
4
5
4
2
0
2
6
2
6
8
.
7
3
8
13
6
.
6
5
1
3
3
.
0
2
3
.
6
3
1
2
.
5
1
2
0
.
5
2
2
.
5
1
3
0
.
5
2
1
2
.
5
1
2
0
.
5
2
MW
-
1
2
1
1
/
3
0
/
1
9
9
4
P
h
a
s
e
s
1
,
3
,
5
B
a
c
k
g
r
o
u
n
d
38
0
4
7
2
.
2
6
2
2
0
2
5
7
9
0
.
1
5
6
15
8
.
8
4
1
5
4
.
8
9
3
.
9
5
2
6
.
5
1
2
8
.
3
9
1
3
.
5
1
4
1
.
3
9
2
3
.
5
1
3
1
.
3
9
MW
-
1
3
R
1
2
/
1
8
/
1
9
9
7
P
h
a
s
e
2
,
3
C
o
m
p
l
i
a
n
c
e
37
8
7
6
6
.
6
9
9
2
0
2
6
0
6
4
.
8
4
6
15
5
.
9
7
1
5
1
.
9
9
3
.
9
8
2
5
.
0
1
2
6
.
9
9
1
5
.
0
1
3
6
.
9
9
2
5
.
0
1
2
6
.
9
9
MW
-
1
4
R
2
/
1
4
/
2
0
0
6
P
h
a
s
e
2
C
o
m
p
l
i
a
n
c
e
37
8
7
4
5
.
8
4
9
2
0
2
6
3
8
5
.
9
1
8
15
5
.
5
5
1
5
2
.
9
0
2
.
6
5
3
0
.
0
1
2
2
.
9
0
2
0
.
0
1
3
2
.
9
0
3
0
.
0
1
2
2
.
9
0
MW
-
1
5
A
6
/
1
2
/
2
0
0
6
P
h
a
s
e
2
C
o
m
p
l
i
a
n
c
e
37
8
7
2
9
.
7
4
1
2
0
2
6
7
0
0
.
7
9
3
15
2
.
8
5
1
4
9
.
8
5
3
.
0
0
2
7
.
0
1
2
2
.
8
5
1
2
.
0
1
3
7
.
8
5
2
7
.
0
1
2
2
.
8
5
MW
-
1
6
7
/
1
8
/
1
9
9
5
P
h
a
s
e
2
C
o
m
p
l
i
a
n
c
e
3
7
8
7
3
2
.
8
8
3
2
0
2
6
9
9
3
.
0
9
2
15
2
.
1
1
1
4
8
.
8
7
3
.
2
4
2
0
.
0
1
2
8
.
8
7
7
.
0
1
4
1
.
8
7
1
7
.
0
1
3
1
.
8
7
MW
-
1
7
R
1
2
/
1
8
/
1
9
9
7
P
h
a
s
e
2
C
o
m
p
l
i
a
n
c
e
37
8
7
2
4
.
3
9
9
2
0
2
7
3
4
1
.
0
2
9
15
1
.
4
4
1
4
7
.
9
2
3
.
5
2
2
0
.
0
1
2
7
.
9
2
1
0
.
0
1
3
7
.
9
2
2
0
.
0
1
2
7
.
9
2
MW
-
1
8
7
/
1
4
/
1
9
9
5
P
h
a
s
e
2
C
o
m
p
l
i
a
n
c
e
37
9
0
0
5
.
2
3
7
2
0
2
7
4
0
7
.
6
7
1
15
1
.
3
1
1
4
8
.
3
0
3
.
0
1
2
0
.
0
1
2
8
.
3
0
8
.
0
1
4
0
.
3
0
1
8
.
0
1
3
0
.
3
0
MW
-
1
9
u
n
k
n
o
w
n
C
&
D
N
o
t
M
o
n
i
t
o
r
e
d
37
7
6
7
4
.
0
8
8
2
0
2
5
0
9
3
.
9
2
4
14
7
.
1
6
1
4
3
.
6
5
3
.
5
1
MW
-
2
0
8
/
6
/
1
9
9
7
C
&
D
N
o
t
M
o
n
i
t
o
r
e
d
37
7
6
8
9
.
0
1
2
2
0
2
5
3
4
7
.
4
4
8
14
0
.
1
5
1
3
7
.
1
5
3
.
0
0
1
8
.
0
1
1
9
.
1
5
7
.
5
1
2
9
.
6
5
1
7
.
5
1
1
9
.
6
5
MW
-
2
1
6
/
1
2
/
2
0
0
0
P
h
.
3
/
C
&
D
C
o
m
p
l
i
a
n
c
e
37
8
7
5
5
.
1
8
1
2
0
2
5
4
6
4
.
4
0
9
15
0
.
9
4
1
4
7
.
9
4
3
.
0
0
1
6
.
0
1
3
1
.
9
4
6
.
0
1
4
1
.
9
4
1
6
.
0
1
3
1
.
9
4
MW
-
2
2
5
/
2
0
/
2
0
0
2
P
h
a
s
e
3
C
o
m
p
l
i
a
n
c
e
37
8
7
4
5
.
7
4
2
2
0
2
5
7
6
3
.
0
1
0
15
2
.
3
9
1
4
9
.
3
9
3
.
0
0
2
5
.
0
1
2
4
.
3
9
1
5
.
0
1
3
4
.
3
9
2
5
.
0
1
2
4
.
3
9
MW
-
2
3
5
/
2
0
/
2
0
0
2
P
h
a
s
e
3
C
o
m
p
l
i
a
n
c
e
37
9
1
9
5
.
1
6
7
2
0
2
5
0
0
2
.
1
8
1
15
1
.
9
4
1
4
8
.
9
4
3
.
0
0
2
5
.
0
1
2
3
.
9
4
1
5
.
0
1
3
3
.
9
4
2
5
.
0
1
2
3
.
9
4
MW
-
2
4
7
/
2
4
/
2
0
0
9
P
h
a
s
e
4
A
b
a
n
d
o
n
f
o
r
P
T
C
P
h
5
37
9
9
4
1
.
5
2
7
2
0
2
6
0
7
6
.
7
5
3
15
4
.
8
4
1
5
1
.
3
4
3
.
5
0
1
8
.
5
1
3
2
.
8
4
8
.
5
1
4
2
.
8
4
1
8
.
5
1
3
2
.
8
4
MW
-
2
5
R
4
/
1
2
/
2
0
1
0
P
h
a
s
e
4
C
o
m
p
l
i
a
n
c
e
37
9
8
6
5
.
0
6
0
2
0
2
7
3
9
7
.
6
4
7
15
5
.
0
4
2
0
.
0
1
0
.
0
1
0
.
0
MW
-
2
6
7
/
2
4
/
2
0
0
9
P
h
a
s
e
4
C
o
m
p
l
i
a
n
c
e
38
0
3
6
5
.
5
5
3
2
0
2
6
5
5
5
.
6
4
7
15
3
.
7
0
1
5
0
.
7
0
3
.
0
0
2
3
.
0
1
2
7
.
7
0
8
.
0
1
4
2
.
7
0
2
3
.
0
1
2
7
.
7
0
MW
-
1
9
R
P
r
o
p
o
s
e
d
C
&
D
P
r
o
p
o
s
e
d
C
o
m
p
l
i
a
n
c
e
~20
~
1
0
~
2
0
MW
-
2
0
R
P
r
o
p
o
s
e
d
C
&
D
P
r
o
p
o
s
e
d
C
o
m
p
l
i
a
n
c
e
~20
~
1
0
~
2
0
Ro
b
e
s
o
n
C
o
u
n
t
y
L
a
n
d
f
i
l
l
Joyce Engineering
Pe
r
m
i
t
N
o
.
7
8
-
0
3
March 2017Boring TD
T
o
p
o
f
Screen
B
o
t
t
o
m
o
f
S
c
r
e
e
n
No
t
e
s
Ph
a
s
e
N
o
r
t
h
i
n
g
E
a
s
t
i
n
g
TA
B
L
E
2
:
M
o
n
i
t
o
r
i
n
g
W
e
l
l
C
o
n
s
t
r
u
c
t
i
o
n
D
e
t
a
i
l
s
FIGURE
A
P
P
R
O
X
I
M
A
T
E
L
O
C
A
T
I
O
N
O
F
P
R
O
P
E
R
T
Y
L
I
N
E
M
S
W
L
A
N
D
F
I
L
L
P
H
A
S
E
1
-
4
C
&
D
L
A
N
D
F
I
L
L
P
R
O
P
O
S
E
D
M
S
W
L
A
N
D
F
I
L
L
P
H
A
S
E
5
A
l
l
r
i
g
h
t
s
r
e
s
e
r
v
e
d
.
J
o
y
c
e
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
P
H
O
N
E
:
(
3
3
6
)
3
2
3
-
0
0
9
2
2
0
1
5
G
R
E
E
N
S
B
O
R
O
,
N
.
C
.
2
7
4
0
7
2
2
1
1
W
E
S
T
M
E
A
D
O
W
V
I
E
W
R
O
A
D
DRAWING
BIG
MA
R
S
H
SW
A
M
P
PHASE 1
(CLOSED
MSW)
N
C
S
T
A
T
E
H
I
G
H
W
A
Y
2
0
B
U
F
F
E
R
(
T
Y
P
)
3
0
0
'
-
0
"
PHASE 1
(ACTIVE C & D)
PHASE 3
(PERMITTED
MSW)
PROPERTY LINE
PHASE 2
(PERMITTED MSW)
BUFFER (TYP)
100'-0"
M
H
TOC = 155.18GROUND = 151.92
RCL04
RCL05
RCL01
RCL07
RCL06
1
3
0
1
5
0
OW-9
OW-9A
PZ-G8
PZ-G7
PZ-G9S
PZ-G9D
SW-2
SW-1
MMW-3
(TO BE ABD)
MMW-2
(TO BE ABD)MMW-1A
(TO BE ABD)
MMW-4
MMW-11
MMW-10
MMW-9MMW-8MMW-7
MMW-4A
MMW-14
MMW-12
MMW-13
MMW-16
MMW-17R
MMW-18R
PHASE 4
(ACTIVE MSW)
2024500 E
2025000 E
2025500 E
2026000 E
2026500 E
2027000 E
2027500 E
2028000 E
2028500 E
3
7
6
0
0
0
N
3
7
6
5
0
0
N
3
7
7
0
0
0
N
3
7
7
5
0
0
N
3
7
8
0
0
0
N
3
7
8
5
0
0
N
3
7
9
0
0
0
N
3
7
9
5
0
0
N
3
8
0
0
0
0
N
3
8
0
5
0
0
N
3
8
1
0
0
0
N
3
8
1
5
0
0
N
3
8
2
0
0
0
N
2022500 E
2023000 E
2023500 E
2024000 E2024000 E
2024500 E
2025000 E
2025500 E
2026000 E
2026500 E
2027000 E
2027500 E
2028000 E
LEACHATE PRE-TREATMENT
AND STORAGE FACILITY
ANIMAL SHELTER ENTRANCE
VEHICLE FUELING STATION
VEHICLE WASH
YARD WASTE STORAGE
SEDIMENT BASIN NO.1
WHITE GOODS
HANDLING AREA
TIRE
STORAGE
AREA
1
4
0
1
5
0
1
6
0
1
7
0
1
8
0
1
9
0
2
0
0
2
1
0
2
0
0
1
9
0
1
8
0
1
7
0
1
6
0
1
5
0
1
5
0
1
6
0
1
7
0
1
8
0
1
9
0
2
0
0
2
1
0
2
1
0
2
0
0
1
9
0
1
8
0
1
8
0
1
7
0
1
6
0
150
150
1
5
0
16
0
170
1
7
0
1
6
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
1
5
0
160
170
18
0
1
5
0
1
5
0
1
5
0
15
0
1
5
0
1
5
0
150
1
6
0
1
7
0
1
8
0
1
9
0
2
0
0
150150160
170180
190
2
0
0
210
1
6
0
1
7
0
1
8
0
1
9
0
2
0
0
2
1
0
2
1
0
2
0
0
1
9
0
1
8
0
1
7
0
1
6
0
1
3
0
1
4
0
130
1
3
0
1
5
0
1
4
0
1
4
0
1
5
0
160
1
6
0
1
5
0
1
6
0
1
5
0
1
5
0
1
5
0
150
1
5
0
1
5
0
150
180
170160
2
0
0
1
6
0
150
1
6
0
170
1
8
0
190
1
5
0
1
5
0
150
140
150
1
4
0
1
3
0
1
3
0
1
3
0
14
0
15
0
1
3
0
1
3
0
130
1
3
0
150
1
5
0
1
5
0
1
5
0
UNDISTURBED
ARCHAEOLOGICAL
SITE
CLOSED LCID
LANDFILL
PROPOSED
MW-19R
MW-20
(TO BE ABD)
MW-21
MW-22
MW-13R
MW-14R
MW-15A
MW-16
MW-17R
MW-18
MW-4A
MW-12
MW-10
MW-2
MW-11
MW-8
MW-9
MW-3R
MW-7
PZ-G10S/10D
MW-23
MW-24
MW-25R
MW-26
MW-5
MW-5A
MW-1 (AB)
MW-6MW-25(ABANDONED)
(ABANDONED)
(ABANDONED)
(ABANDONED)
PZ-31D
PZ-31S
PZ-34
PZ-32S
PZ-32D
MW-30
PZ-33S
PZ-33D
MMW-15
MMW-6
(TO BE ABD)
PROPOSED
MMW-21 PROPOSED
MMW-20
PROPOSED
MMW-19
PROPOSED
MW-20R
MW-19
(TO BE ABD)
BUFFER CURRENTLY IN
PROCESS OF PURCHASE
PROPOSED
PHASE 5 LIMITS
OF WASTE
PROPOSED
C & D EXPANSION
LIMITS OF WASTE
PROJECT NO.
AP
P
R
O
V
E
D
CH
E
C
K
E
D
DR
A
W
N
DE
S
I
G
N
E
D
DA
T
E
DA
T
E
RE
V
I
S
I
O
N
S
A
N
D
R
E
C
O
R
D
O
F
I
S
S
U
E
BY
NO
AP
P
CK
SCALE
A
l
l
r
i
g
h
t
s
r
e
s
e
r
v
e
d
.
Ó
J
o
y
c
e
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
DRAWING NO.
L:
\
R
o
b
e
s
o
n
c
o
u
n
t
y
\
2
0
1
6
C
&
D
L
A
T
E
R
A
L
E
X
P
A
N
S
I
O
N
\
L
F
G
A
N
D
W
Q
M
P
2
0
1
7
\
L
F
G
0
1
A
N
D
W
Q
M
P
0
1
L
.
d
w
g
L
a
y
o
u
t
=
W
Q
M
P
22
1
1
W
.
M
E
A
D
O
W
V
I
E
W
R
O
A
D
GR
E
E
N
S
B
O
R
O
,
N
C
2
7
4
0
7
PH
O
N
E
:
(
3
3
6
)
3
2
3
-
0
0
9
2
820
RO
B
E
S
O
N
C
O
U
N
T
Y
L
A
N
D
F
I
L
L
ST
.
P
A
U
L
S
,
N
O
R
T
H
C
A
R
O
L
I
N
A
20
1
7
WQMP-01
AS SHOWN
WA
T
E
R
Q
U
A
L
I
T
Y
MO
N
I
T
O
R
I
N
G
P
L
A
N
RW
H
RW
H
VB VB
04
/
0
1
/
1
7
0
(FEET)
GRAPHIC SCALE
600300150
APPENDIX A
Well Boring/Construction Logs
G. N. Richardson and Assoc.
14 North Boylan Avenue, Raleigh NC 27603
(919) 828-0577
FIELD BOREHOLE LOG 1 BOREHOLE NUMBER MW-14r Page 1 of 1
- HSA
PROJECT NAME: Robeson County Landfill TOTAL DEPTH: 30
GROUND SURFACE ELEVATION: TBD St. Pauls, NC TOP OF CASING ELEVATION: TBD URlLLlNG CO: Engineering Tectonics, P.A. STATIC WATER LEVEL (TOC)
DRILLING METHOD: HSA Depth (ft)
FIELD PARTY: D. Barron
Time GEOLOGIST: J. Smyth
DATE BEGUN: 2114106 DATE COMPLETED: 2/14/06
- - ( CLAYEY SAND: Reddish grayish tan clayey sand to sandy clay, I - -1
I I- a W o
I- z
3 0 0
3 S m
n ? I-
H a
>.
(3 9 P
b -I DESCRIPTION
22
0" $6 a0 U a
z 52 I- Q
I -I
I- -I -I a U iij z
0 3 2
0 P
2
-I
IY n
PROJECT NAME: Robeson County Landfill
?CATION: St. Pauls, NC
AILLING CO: Engineering Tectonics, P.A.
DRILLING METHOD: HSA
FIELD PARTY: D. Barron
GEOLOGIST: J. Smyth
DATE BEGUN: 6/12/06 DATE COMPLETED: 6/12/06
I I I I I
6. N. Richardson and Assoc.
14 North Boylan Avenue, Raleigh NC 27603
(9191 828-0577
TOTAL DEPTH: 27
GROUND SURFACE ELEVATION: TED
TOP OF CASING ELEVATION: TBD
FIELD BOREHOLE LOG
BOREHOLE NUMBER MW-15a Page 1 of 1
STATIC WATER LEVEL (TOC)
Depth (ft)
Time
Date
HSA
APPENDIX B
Example Field Log and
Chain of Custody
DATE:
GROUND WATER SAMPLING LOG
Project Name: Project No./Task No.:
Well ID: Sampler(s):
Well Location:
Well Diameter: inches
Initial Depth to Water (DTW): feet
Depth to Bottom (DTB): feet
Water Column Thickness (WCT): feet [DTB-DTW]
Calculation for One Well Volume (WV):
For 2” Well: WCT X 0.163 = gallons
For 4” Well: WCT X 0.653 = gallons
For THREE Well Volumes: WV X 3 = gallons
Actual Amount Purged/Bailed : gallons
Purged with:
Sampled with:
Depth to Water before Sampling : feet
Gallons Time Temp(°°°°C) pH Cond. (µµµµS) Turb.(ntu) Initials
Before Sampling
Comments (weather conditions, odor, color, silt, etc.):
Signature: ________________________________ Date: ________________________
QA/QC Sign Off: __________________________ Date: ________________________
DATE:
SURFACE WATER MONITORING LOG
Project Name: Project/Task No.: ____________
Surface Point ID: Sampler(s):
Location:
Field Parameters:
Time of Sampling:
pH:
Temperature : (°C)
Conductivity : (µµµµS)
Turbidity : (ntu)
Comments/Sample Description(weather conditions, odor, color, silt, etc.):
Signature:________________________________ Date:_________________________
QA/QC Sign Off:__________________________ Date:_________________________
Sketch of Sample Location (include flow direction, drainage pathways, etc.):
CH
A
I
N
-
O
F
-
C
U
S
T
O
D
Y
/
A
n
a
l
y
t
i
c
a
l
R
e
q
u
e
s
t
D
o
c
u
m
e
n
t
Th
e
C
h
a
i
n
-
o
f
-
C
u
s
t
o
d
y
i
s
a
L
E
G
A
L
D
O
C
U
M
E
N
T
.
A
l
l
r
e
l
e
v
an
t
f
i
e
l
d
s
m
u
s
t
b
e
c
o
m
p
l
e
t
e
d
a
c
c
u
r
a
t
e
l
y
.
Se
c
t
i
o
n
A
Se
c
t
i
o
n
B
Se
c
t
i
o
n
C
Re
q
u
i
r
e
d
C
l
i
e
n
t
I
n
f
o
r
m
a
t
i
o
n
:
R
e
q
u
i
r
e
d
P
r
o
j
e
c
t
I
n
f
o
r
m
ati
o
n
:
I
n
v
o
i
c
e
I
n
f
o
r
m
a
t
i
o
n
:
Fa
x
:
Y
/
N
DA
T
E
T
I
M
E
D
A
T
E
T
I
M
E
1 2 3 4 5 6 7 8 9 10 11 12
Samples Intact (Y/N)
PR
I
N
T
N
a
m
e
o
f
S
A
M
P
L
E
R
:
SI
G
N
A
T
U
R
E
o
f
S
A
M
P
L
E
R
:
DA
T
E
S
i
g
n
e
d
:
SA
M
P
L
E
R
N
A
M
E
A
N
D
S
I
G
N
A
T
U
R
E
TEMP in C Received on Ice (Y/N)Custody Sealed Cooler (Y/N)
TIM
E
S
A
M
P
L
E
C
O
N
D
I
T
I
O
N
S
AD
D
I
T
I
O
N
A
L
C
O
M
M
E
N
T
S
R
E
L
I
N
Q
U
I
S
H
E
D
B
Y
/
A
F
F
I
L
I
A
T
I
O
N
D
A
T
E
T
I
M
E
A
C
C
E
P
T
E
D
B
Y
/
A
F
F
I
L
I
A
T
I
O
N
D
A
T
E
Residual Chlorine (Y/N)
On
e
C
h
a
r
a
c
t
e
r
p
e
r
b
o
x
.
(A
-
Z
,
0
-
9
/
,
-
)
Sa
m
p
l
e
I
d
s
m
u
s
t
b
e
u
n
i
q
u
e
N
a
2
S
2
O
3
M
e
t
h
a
n
o
l
O
t
h
e
r
A
n
a
l
y
s
e
s
T
e
s
t
#
O
F
C
O
N
T
A
I
N
E
R
S
Pr
e
s
e
r
v
a
t
i
v
e
s
SA
M
P
L
E
I
D
ST
A
R
T
E
N
D
U
n
p
r
e
s
e
r
v
e
d
H
2
S
O
4
H
N
O
3
H
C
I
N
a
O
H
Re
q
u
e
s
t
e
d
A
n
a
l
y
s
i
s
F
i
l
t
e
r
e
d
(
Y
/
N
)
I
T
E
M
#
MA
T
R
I
X
Dri
n
k
i
n
g
W
a
t
e
r
Wa
t
e
r
Wa
s
t
e
W
a
t
e
r
Pro
d
u
c
t
So
i
l
/
S
o
l
i
d
Oil
Wip
e
Air
Oth
e
r
Tis
s
u
e
CO
D
E
DW
WT
WW
P
SL
OL
WP
AR
OT
TS
M
A
T
R
I
X
C
O
D
E
(
s
e
e
v
a
l
i
d
c
o
d
e
s
t
o
l
e
f
t
)
S
A
M
P
L
E
T
Y
P
E
(
G
=
G
R
A
B
C
=
C
O
M
P
)
CO
L
L
E
C
T
E
D
S
A
M
P
L
E
T
E
M
P
A
T
C
O
L
L
E
C
T
I
O
N
Re
q
u
e
s
t
e
d
D
u
e
D
a
t
e
/
T
A
T
:
Co
n
t
a
i
n
e
r
O
r
d
e
r
N
u
m
b
e
r
:
Pr
o
f
i
l
e
#
:
Ph
o
n
e
:
Cli
e
n
t
P
r
o
j
e
c
t
I
D
:
Pr
o
j
e
c
t
M
a
n
a
g
e
r
:
St
a
t
e
/
L
o
c
a
t
i
o
n
Ad
d
r
e
s
s
:
Re
g
u
l
a
t
o
r
y
A
g
e
n
c
y
Em
a
i
l
T
o
:
Pu
r
c
h
a
s
e
O
r
d
e
r
N
o
.
Qu
o
t
e
R
e
f
e
r
e
n
c
e
:
Ad
d
r
e
s
s
:
Co
p
y
T
o
:
Co
m
p
a
n
y
N
a
m
e
:
Page :
O
f
Co
m
p
a
n
y
:
Re
p
o
r
t
T
o
:
At
t
e
n
t
i
o
n
:
APPENDIX C
Appendix I and Appendix II Constituents with NC2L Standards and GWPS
NCSWMR Appendix I + II Constituents with NC-2L Standards
NC SWSL NC 2L SWS-GWPS
1 App. I Antimony metal 7440-36-0 6010 6-12 App. I Arsenic metal 7440-38-2 6010 10 10 -(RCRA METAL)3 App. I Barium metal 7440-39-3 6010 100 700 -(RCRA METAL)
4 App. I Beryllium metal 7440-41-7 6010 1-4
5 App. I Cadmium metal 7440-43-9 6010 12-(RCRA METAL)6 App. I Chromium metal 7440-47-3 6010 10 10 -(RCRA METAL)7 App. I Cobalt metal 7440-48-4 6010 10 - 1
8 App. I Copper metal 7440-50-8 6010 10 1,000 -EPA MCL is a secondary standard.
9 App. I Lead metal 7439-92-1 6010 10 15 -EPA MCL is an action level. (RCRA METAL)10 App. I Nickel metal 7440-02-0 6010 50 100 -
11 App. I Selenium metal 7782-49-2 6010 10 20 -(RCRA METAL)
12 App. I Silver metal 7440-22-4 6010 10 20 -EPA MCL is a secondary standard. (RCRA METAL).13 App. I Thallium metal 7440-28-0 6010 5.5 - 0.2814 App. I Vanadium metal 7440-62-2 6010 25 - 0.3
15 App. I Zinc metal 7440-66-6 6010 10 1,000 -EPA MCL is a secondary standard. (AL)= NC2B Action Level
16 App. II Mercury metal 7439-97-6 7470 0.2 1 -(RCRA METAL)17 App. II Tin metal 7440-31-5 6010 100 - 2,000
NC SWSL NC 2L SWS-GWPS
1 App. II Cyanide inorganic 57-12-5 9012A 10 70 -
2 App. II Sulfide inorganic 18496-25-8 9030B 1,000 - -
NC SWSL NC 2L SWS-GWPS
1 C&D Alkalinity inorganic SW337 SM 2320B ---2 C&D Chloride inorganic SW301 SM 4500-Cl-E - 250,000 -
3 C&D Iron metal 7439-89-6 6010 300 300 -4 C&D Manganese metal 7439-96-5 6010 50 50 -5 C&D Mercury metal 7439-97-6 7470 0.2 1 -(RCRA Metal)6 C&D Sulfate inorganic 14808-79-8 300.0 250,000 250,000 -
7 C&D Total Dissolved Solids (TDS)inorganic SW311 SM 2540C - 500,000 -8 C&D Tetrahydrofuran (THF)volatile 109-99-9 8260B ---Per NCDEQ Memo dated June 25, 2010.
6 C&D pH SW-320 Field Test ---7 C&D Temperature SW-325 Field Test ---8 C&D Specific Conductance SW-323 Field Test ---
NC SWSL NC 2L SWS-GWPS
1 App. I Acetone volatile 67-64-1 8260B 100 6,000 -
2 App. I Acrylonitrile volatile 107-13-1 8260B 200 - -3 App. I Benzene volatile 71-43-2 8260B 11-4 App. I Bromochloromethane volatile 74-97-5 8260B 3-0.6
5 App. I Bromodichloromethane volatile 75-27-4 8260B 10.6-*MCL for total trihalomethanes
6 App. I Bromoform volatile 75-25-2 8260B 34-*MCL for total trihalomethanes7 App. I Carbon disulfide volatile 75-15-0 8260B 100 700 -
8 App. I Carbon tetrachloride volatile 56-23-5 8260B 10.3-
9 App. I Chlorobenzene volatile 108-90-7 8260B 350-10 App. I Chloroethane volatile 75-00-3 8260B 10 3,000 -11 App. I Chloroform volatile 67-66-3 8260B 570-*MCL for total trihalomethanes
12 App. I Dibromochloromethane volatile 124-48-1 8260B 3 0.4 0.41 *MCL for total trihalomethanes
13 App. I 1,2-Dibromo-3-chloropropane (DBCP)volatile 96-12-8 8260B 13 0.04 -14 App. I 1,2-Dibromoethane (EDB)volatile 106-93-4 8260B 10.02-
15 App. I o-Dichlorobenzene / 1,2-Dichlorobenzene volatile 95-50-1 8260B 520-
16 App. I p-Dichlorobenzene / 1,4-Dichlorobenzene volatile 106-46-7 8260B 16-17 App. I trans-1,4-Dichloro-2-butene volatile 110-57-6 8260B 100 - -18 App. I 1,1-Dichloroethane volatile 75-34-3 8260B 56-
19 App. I 1,2-Dichloroethane volatile 107-06-2 8260B 10.4-
20 App. I 1,1-Dichloroethylene volatile 75-35-4 8260B 5 350 -
Changed from 7 (MCL) to 350 µg/L in April 2013 (for public water supplies or drinking wells, the MCL = 7 µg/L still applies.)21 App. I cis-1,2-Dichloroethylene volatile 156-59-2 8260B 570-
22 App. I trans-1,2-Dichloroethylene volatile 156-60-5 8260B 5 100 -23 App. I 1,2-Dichloropropane volatile 78-87-5 8260B 10.6-24 App. I cis-1,3-Dichloropropene volatile 10061-01-5 8260B 10.4-
25 App. I trans-1,3-Dichloropropene volatile 10061-02-6 8260B 10.4-
26 App. I Ethylbenzene volatile 100-41-4 8260B 1 600 -27 App. I 2-Hexanone / Methyl butyl ketone (MBK)volatile 591-78-6 8260B 50 - 28028 App. I Methyl bromide / Bromomethane volatile 74-83-9 8260B 10 - 10
29 App. I Methyl chloride / Chloromethane volatile 74-87-3 8260B 13-
30 App. I Methylene bromide / Dibromomethane volatile 74-95-3 8260B 10 - 7031 App. I Methylene chloride / Dichloromethane volatile 75-09-2 8260B 15-
32 App. I Methyl ethyl ketone / 2-Butanone (MEK)volatile 78-93-3 8260B 100 4,000 -
33 App. I Methyl iodide / Iodomethane volatile 74-88-4 8260B 10 - -34 App. I 4-Methyl-2-pentanone / Methyl isobutyl ketone volatile 108-10-1 8260B 100 - 56035 App. I Styrene volatile 100-42-5 8260B 170-
36 App. I 1,1,1,2-Tetrachloroethane volatile 630-20-6 8260B 5-1
37 App. I 1,1,2,2-Tetrachloroethane volatile 79-34-5 8260B 3 0.2 0.1838 App. I Tetrachloroethylene (PCE)volatile 127-18-4 8260B 10.7-
39 App. I Toluene volatile 108-88-3 8260B 1 600 -
40 App. I 1,1,1-Trichloroethane volatile 71-55-6 8260B 1 200 -41 App. I 1,1,2-Trichloroethane volatile 79-00-5 8260B 1-0.642 App. I Trichloroethylene volatile 79-01-6 8260B 13-
43 App. I Trichlorofluoromethane (CFC-11) volatile 75-69-4 8260B 1 2,000 -
44 App. I 1,2,3-Trichloropropane volatile 96-18-4 8260B 1 0.005 -45 App. I Vinyl acetate volatile 108-05-4 8260B 50 - 8846 App. I Vinyl chloride volatile 75-01-4 8260B 10.03-
47 App. I Xylenes (total) volatile see note 8260B 5 500 -
Includes o-xylene, p-xylene, and unspecified xylenes [dimethyl benzenes (CAS RN 1330-20-7].
NC SWSL NC 2L SWS-GWPS
48 App. II Acetonitrile (methyl cyanide)volatile 75-05-8 8260B 55 - 4249 App. II Acrolein volatile 107-02-8 8260B 53 - 4
50 App. II Allyl chloride (3-chloroprene)volatile 107-05-1 8260B 10 - -
51 App. II Chloroprene volatile 126-99-8 8260B 20 - -52 App. II m-Dichlorobenzene / 1,3-Dichlorobenzene volatile 541-73-1 8260B 5 200 -53 App. II Dichlorodifluoromethane volatile 75-71-8 8260B 5 1,000 -
54 App. II 1,3-Dichloropropane volatile 142-28-9 8260B 1--
55 App. II 2,2-Dichloropropane volatile 594-20-7 8260B 15 - -56 App. II 1,1-Dichloropropene volatile 563-58-6 8260B 5--
57 App. II Isobutyl alcohol volatile 78-83-1 8260B 100 - -
58 App. II Methacrylonitrile volatile 126-98-7 8260B 100 - -59 App. II Methyl methacrylate volatile 80-62-6 8260B 30 - 2560 App. II Propionitrile volatile 107-12-0 8260B 150 - -
61 App. II 1,2,4-Trichlorobenzene volatile 120-82-1 8260B 10 70 70
62 App. II Naphthalene volatile 91-20-3 8260B or 8270C 10 6 -63 App. II Hexachlorobutadiene semivolatile 87-68-3 8270C or 8260B 10 0.4 0.44
64 App. II Ethyl methacrylate semivolatile 97-63-2 8270C or 8260B 10 - -
NC App. I & II - Total Metals
NC App. II - Cyanide/ Sulfide
NC App. I & II - Method 8260
GROUNDWATER STANDARDS (µg/L)
GROUNDWATER STANDARDS (µg/L)
NC App. II - Method 8260
GROUNDWATER STANDARDS (µg/L)NC App. #
NOTES
NOTESNumber
ANALYTICAL
METHOD
CLASS CAS RN
Number
NOTES
Number NC App. # ANALYTE CLASS CAS RN
ANALYTICAL METHOD NOTES
Number NC App. # ANALYTE CLASS CAS RN
ANALYTICAL
METHOD
NC - Additional Constituents for C&D Landfills
NOTESNumber
ANALYTE CLASS CAS RN
ANALYTICAL METHOD
GROUNDWATER STANDARDS (µg/L)NC App. # ANALYTE
GROUNDWATER STANDARDS (µg/L)ANALYTE CLASS CAS RNNC App. #
ANALYTICAL METHOD
Joyce Engineering Page 1 of 3 Revised: May 2016
NCSWMR Appendix I + II Constituents with NC-2L Standards
NC SWSL NC 2L SWS-GWPS1 App. II Acenaphthene semivolatile 83-32-9 8270C 10 80 -
2 App. II Acenaphthylene semivolatile 208-96-8 8270C 10 200 -
3 App. II Acetophenone semivolatile 98-86-2 8270C 10 - 7004 App. II 2-Acetylaminofluorene semivolatile 53-96-3 8270C 20 - -
5 App. II 4-Aminobiphenyl semivolatile 92-67-1 8270C 20 - -
6 App. II Anthracene PAH 120-12-7 8270C 10 2,000 -7 App. II Benz[a]anthracene; Benzanthracene PAH 56-55-3 8270C 10 0.05 -8 App. II Benzo[b]fluoranthene PAH 205-99-2 8270C 10 0.05 -
9 App. II Benzo[k]fluoranthene PAH 207-08-9 8270C 10 0.5 -
10 App. II Benzo[g,h,i]perylene PAH 191-24-2 8270C 10 200 -11 App. II Benzo[a]pyrene PAH 50-32-8 8270C 10 0.005 -12 App. II Benzyl alcohol semivolatile 100-51-6 8270C 20 - 700
13 App. II Bis(2-chloroethoxy)methane semivolatile 111-91-1 8270C 10 - -14 App. II Bis(2-chloroethyl)ether semivolatile 111-44-4 8270C 10 - 0.03115 App. II Bis(2-chloro-1-methylethyl)ether semivolatile 108-60-1 8270C 10 - -Bis (2-chloroisopropyl) ether
16 App. II Bis(2-ethylhexyl)phthalate semivolatile 117-81-7 8270C 15 3 -
17 App. II 4-Bromophenyl phenyl ether semivolatile 101-55-3 8270C 10 - -18 App. II Butyl benzyl phthalate semivolatile 85-68-7 8270C 10 1,000 -19 App. II p-Chloroaniline (4-Chloroaniline)semivolatile 106-47-8 8270C 20 - -
20 App. II Chlorobenzilate semivolatile 510-15-6 8270C 10 - -
21 App. II p-Chloro-m-cresol (4-chloro-3-methylphenol)semivolatile 59-50-7 8270C 20 - -22 App. II 2-Chloronaphthalene semivolatile 91-58-7 8270C 10 - -
23 App. II 2-Chlorophenol semivolatile 95-57-8 8270C 10 0.4 -
24 App. II 4-Chlorophenyl phenyl ether semivolatile 7005-72-3 8270C 10 - -25 App. II Chrysene PAH 218-01-9 8270C 10 5 -26 App. II m-Cresol (3-Methylphenol)semivolatile 108-39-4 8270C 10 400 -
27 App. II o-Cresol semivolatile 95-48-7 8270C 10 - 400
28 App. II p-Cresol (4-Methylphenol)semivolatile 106-44-5 8270C 10 40 -29 App. II Diallate semivolatile 2303-16-4 8270C 10 - -
30 App. II Dibenz[a,h]anthracene PAH 53-70-3 8270C 10 0.005 -
31 App. II Dibenzofuran semivolatile 132-64-9 8270C 10 - 2832 App. II Di-n-butyl phthalate semivolatile 84-74-2 8270C 10 700 -33 App. II 3,3'-Dichlorobenzidine semivolatile 91-94-1 8270C 20 - -
34 App. II 2,4-Dichlorophenol semivolatile 120-83-2 8270C 10 - 0.98
35 App. II 2,6-Dichlorophenol semivolatile 87-65-0 8270C 10 - -36 App. II Diethyl phthalate semivolatile 84-66-2 8270C 6,000 6,000 -37 App. II O,O-Diethyl O-2-pyrazinyl phosphorothioate OP pesticide 297-97-2 8270C 20 - -Thionazine
38 App. II Dimethoate OP pesticide 60-51-5 8270C 20 - -39 App. II p-(Dimethylamino)azobenzene semivolatile 60-11-7 8270C 10 - -40 App. II 7,12-Dimethylbenz[a]anthracene semivolatile 57-97-6 8270C 10 - -
41 App. II 3,3'-Dimethylbenzidine semivolatile 119-93-7 8270C 10 - -
42 App. II 2,4-Dimethylphenol (M-xylenol)semivolatile 105-67-9 8270C 10 100 -43 App. II Dimethyl phthalate semivolatile 131-11-3 8270C 10 - -44 App. II m-Dinitrobenzene semivolatile 99-65-0 8270C 20 - -
45 App. II 4,6-Dinitro-o-cresol (2-methyl 4,6-dinitrolphenol)semivolatile 534-52-1 8270C 50 - -
46 App. II 2,4-Dinitrophenol semivolatile 51-28-5 8270C 50 - -47 App. II 2,4-Dinitrotoluene semivolatile 121-14-2 8270C 10 - 0.1
48 App. II 2,6-Dinitrotoluene semivolatile 606-20-2 8270C 10 - -
49 App. II Di-n-octyl phthalate semivolatile 117-84-0 8270C 10 100 -50 App. II Diphenylamine semivolatile 122-39-4 8270C 10 - -51 App. II Disulfoton OP pesticide 298-04-4 8270C 10 0.3 -
52 App. II Ethyl methanesulfonate semivolatile 62-50-0 8270C 20 - -
53 App. II Famphur semivolatile 52-85-7 8270C 20 - -54 App. II Fluoranthene PAH 206-44-0 8270C 10 300 -
55 App. II Fluorene PAH 86-73-7 8270C 10 300 -
NC SWSL NC 2L SWS-GWPS56 App. II Hexachlorobenzene semivolatile 118-74-1 8270C 10 0.02 -
57 App. II Hexachlorocylopentadiene semivolatile 77-47-4 8270C 10 - 50
58 App. II Hexachloroethane semivolatile 67-72-1 8270C 10 - 2.559 App. II Hexachloropropene semivolatile 1888-71-7 8270C 10 - -60 App. II Indeno[1,2,3-cd]pyrene PAH 193-39-5 8270C 10 0.05 -
61 App. II Isodrin semivolatile 465-73-6 8270C 20 - -62 App. II Isophorone semivolatile 78-59-1 8270C 10 40 -63 App. II Isosafrole semivolatile 120-58-1 8270C 10 - -
64 App. II Kepone pesticide 143-50-0 8270C 20 - -
65 App. II Methapyrilene semivolatile 91-80-5 8270C 100 - -66 App. II 3-Methylcholanthrene semivolatile 56-49-5 8270C 10 - -67 App. II Methyl methanesulfonate semivolatile 66-27-3 8270C 10 - -
68 App. II 2-Methylnaphthalene semivolatile 91-57-6 8270C 10 30 -
69 App. II Methyl parathion semivolatile 298-00-0 8270C 10 - -70 App. II 1,4-Naphthoquinone semivolatile 130-15-4 8270C 10 - -
71 App. II 1-Naphthylamine semivolatile 134-32-7 8270C 10 - -
72 App. II 2-Naphthylamine semivolatile 91-59-8 8270C 10 - -73 App. II o-Nitroaniline (2-Nitroaniline)semivolatile 88-74-4 8270C 50 - -74 App. II m-Nitroaniline (3-Nitroaniline)semivolatile 99-09-2 8270C 50 - -
75 App. II p-Nitroaniline (4-Nitroaniline)semivolatile 100-01-6 8270C 20 - -
76 App. II Nitrobenzene semivolatile 98-95-3 8270C 10 - -77 App. II 5-Nitro-o-toluidine semivolatile 99-55-8 8270C 10 - -
78 App. II o-Nitrophenol (2-Nitrophenol)semivolatile 88-75-5 8270C 10 - -
79 App. II p-Nitrophenol (4-Nitrophenol)semivolatile 100-02-7 8270C 50 - -80 App. II N-Nitrosodiethylamine semivolatile 55-18-5 8270C 20 - -81 App. II N-Nitrosodimethylamine semivolatile 62-75-9 8270C 10 0.0007 -
82 App. II N-Nitrosodi-n-butylamine semivolatile 924-16-3 8270C 10 - -
83 App. II N-Nitrosodiphenylamine semivolatile 86-30-6 8270C 10 - -84 App. II N-Nitrosodipropylamine semivolatile 621-64-7 8270C 10 - -85 App. II N-Nitrosomethylethylamine semivolatile 10595-95-6 8270C 10 - -
86 App. II N-Nitrosopiperidine semivolatile 100-75-4 8270C 20 - -87 App. II N-Nitrosopyrrolidine semivolatile 930-55-2 8270C 10 - -88 App. II Parathion OP pesticide 56-38-2 8270C 10 - -
89 App. II Pentachlorobenzene semivolatile 608-93-5 8270C 10 - -
90 App. II Pentachloronitrobenzene semivolatile 82-68-8 8270C 20 - -91 App. II Phenacetin semivolatile 62-44-2 8270C 20 - -92 App. II Phenanthrene PAH 85-01-8 8270C 10 200 -
93 App. II Phenol semivolatile 108-95-2 8270C 10 30 -
94 App. II p-Phenylenediamine semivolatile 106-50-3 8270C 10 - -95 App. II Phorate OP pesticide 298-02-2 8270C 10 1 -
96 App. II Pronamide semivolatile 23950-58-5 8270C 10 - -
97 App. II Pyrene PAH 129-00-0 8270C 10 200 -98 App. II Safrole semivolatile 94-59-7 8270C 10 - -99 App. II 1,2,4,5-Tetrachlorobenzene semivolatile 95-94-3 8270C 10 - 2
100 App. II 2,3,4,6-Tetrachlorophenol semivolatile 58-90-2 8270C 10 200 -
101 App. II o-Toluidine semivolatile 95-53-4 8270C 10 - -102 App. II 2,4,5-Trichlorophenol semivolatile 95-95-4 8270C 10 - 63
103 App. II 2,4,6-Trichlorophenol semivolatile 88-06-2 8270C 10 - 4
104 App. II O,O,O-Triethyl phosphorothioate semivolatile 126-68-1 8270C 10 - -105 App. II 1,3,5-Trinitrobenzene semivolatile 99-35-4 8270C 10 - -106 App. II Hexachlorobutadiene semivolatile 87-68-3 8270C or 8260 10 0.4 0.44
107 App. II Ethyl methacrylate semivolatile 97-63-2 8270C or 8270 10 - -
108 App. II Naphthalene volatile 91-20-3 8260B or 8270 10 6 -109 App. II Pentachlorophenol herbicide 87-86-5 8151 or 8270 25 0.3 -
GROUNDWATER STANDARDS (µg/L)
GROUNDWATER STANDARDS (µg/L)
NOTES
NC App. II - Method 8270
ANALYTICAL METHOD NOTES
Number NC App. #
ANALYTICAL METHOD
NC App. II - Method 8270
Number NC App. # ANALYTE CLASS CAS RN
ANALYTE CLASS CAS RN
Joyce Engineering Page 2 of 3 Revised: May 2016
NCSWMR Appendix I + II Constituents with NC-2L Standards
NC SWSL NC 2L SWS-GWPS1 App. II Aldrin pesticide 309-00-2 8081A 0.05 - 0.002
2 App. II alpha-BHC pesticide 319-84-6 8081A 0.05 - 0.006
3 App. II beta-BHC pesticide 319-85-7 8081A 0.05 - 0.0194 App. II delta-BHC pesticide 319-86-8 8081A 0.05 - 0.019
5 App. II gamma-BHC (Lindane)pesticide 58-89-9 8081A 0.05 0.03 -
6 App. II Chlordane pesticide see note 8081A 0.5 0.1 -
This entry includes alpha-chlordane (CAS RN 5103-71-9), beta chlordane (CAS RN 5103-74-2), gamma-chlordane (CAS RN 566-34-7), and constituents of chlordane (CAS RN 57-74-9 and 12672-29 6)7 App. II 4,4'-DDD pesticide 72-54-8 8081A 0.1 0.1 -8 App. II 4,4'-DDE pesticide 72-55-9 8081A 0.1 - -9 App. II 4-4'-DDT pesticide 50-29-3 8081A 0.1 0.1 -
10 App. II Dieldrin pesticide 60-57-1 8081A 0.075 0.002 -
11 App. II Endosulfan I pesticide 959-96-8 8081A 0.1 40 -12 App. II Endosulfan II pesticide 33213-65-9 8081A 0.1 42 -13 App. II Endosulfan sulfate pesticide 1031-07-8 8081A 0.1 - 40
14 App. II Endrin pesticide 72-20-8 8081A 0.1 2 -
15 App. II Endrin aldehyde pesticide 7421-93-4 8081A 0.1 2 -16 App. II Heptachlor pesticide 76-44-8 8081A 0.05 0.008 -
17 App. II Heptachlor epoxide pesticide 1024-57-3 8081A 0.075 0.004 -
18 App. II Methoxychlor pesticide 72-43-5 8081A 140-
19 App. II Toxaphene pesticide see note 8081A 1.5 0.03 -
Includes congener chemicals contained in technical toxaphene
(CAS RN 8001-35-2) such as chlorinated camphene.
NC SWSL NC 2L SWS-GWPS
1-6 App. II Polychlorinated Biphenyls (PCBs) PCB 1336-36-3 8082 2 - 0.09
This category contains congener chemicals, including constituents
of Aroclor 1016 (CAS RN 12674-11-2), Aroclor 1221 (CAS RN
11104-28-2), Aroclor 1232 (CAS RN 11141-16-5), Aroclor 1242
(CAS RN 53469-21-9), Aroclor 1248 (CAS RN 12672-29-6),
Aroclor 1254 (CAS RN 11097-69-1)).
NC SWSL NC 2L SWS-GWPS1 App. II 2,4-Dichlorophenoxyacetic acid (2,4-D)herbicide 94-75-7 8151A 270-
2 App. II Dinoseb (DNBP); 2-sec-Butyl-4,6-dinitrophenol herbicide 86-85-7 8151A 1-7
3 App. II Silvex (2,4,5-TP)herbicide 93-72-1 8151A 250-4 App. II 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)herbicide 93-76-5 8151A 2--
5 App. II Pentachlorophenol herbicide 87-86-5 8151 or 8270 25 0.3 -
Notes:
Color denotes NC App. I Constituents.All concentrations in micrograms per liter (µg/L) = parts per bilion (ppb).
Color denotes remaining NC App. II Constituents.NC-SWSL = NC-DENR Solid Wastre Section Reporting Limits NC 2L = NC Groundwater Protection Standards from 15A NCAC 2l.0202. Color denotes C&D Constituents.SWS-GWPS = Groundwater Protection Standards established by the NC-DENR Solid Waste Section for constituents with no NC 2L Standard.
App. I & App. II = Solid Waste Constituent Lists incorporated into NC Solid Waste Management Rules from CFR-40 Appendix I and Appendix II. Color denotes constituents that can be analyzed by more than one method.C&D = Construction & Demolition Debris (referencing Landfills).
CAS RN: Chemical Abstracts Service Registry Number. Where 'Total' is entered, all species that contain the element are included.
Class: General type of compound.
OP = orthophosphate.PAH = polynuclear aromatic hydrocarbon.
Volatile EQL of 1 µg/L is based on a 25-mL purge per SW-846, Final Update III, Revision 2, December 1996, page 8260B-35 (most recent revision to method 8260 in SW-846).
" - " = not available/not applicableReferenced from North Carolina Division of Waste Management website (http://www.wastenotnc.org/sw/swenvmonitoringlist.asp) as of 4/16/2015.
NC App. II - PCB's Method 8082
GROUNDWATER STANDARDS (µg/L)
NC App. II - Pesticides Method 8081
GROUNDWATER STANDARDS (µg/L)
GROUNDWATER STANDARDS (µg/L)
NC App. II - Herbicides 8151
NOTES
Number NC App. #
NOTESNumber NC App. # ANALYTE CLASS CAS RN
ANALYTICAL METHOD
Number NC App. # ANALYTE CLASS
ANALYTICAL METHODCAS RN
ANALYTE CLASS CAS RN
ANALYTICAL METHOD NOTES
Joyce Engineering Page 3 of 3 Revised: May 2016
APPENDIX D
NC2B Surface Water Standards
CA
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
Li
f
e
Tr
o
u
t
1
Sa
l
t
w
a
t
e
r
Aq
u
a
t
i
c
Lif
e
Wa
t
e
r
Su
p
p
l
y
2
Hu
m
a
n
He
a
l
t
h
3
Hi
g
h
Qu
a
l
i
t
y
Wa
t
e
r
s
4
Sw
a
m
p
Wa
t
e
r
s
5
Sy
n
o
n
y
m
s
& Ot
h
e
r
In
f
o
r
m
a
t
i
o
n
Ca
r
c
i
n
o
g
e
n
6
Da
t
a
Re
f
e
r
e
n
c
e
So
u
r
c
e
15A NCAC 02B Standard?Metal?Total Recoverable, Dissolved or Hardness ‐Dependent Metal?
30
9
‐00
‐2
0.
0
0
2
0
.
0
0
3
0
.
0
5
ng
/
L
0.0
5
ng
/
L
Y
e
s
N
R
W
Q
C
06
;
RA
I
S
1/
0
7
Y
e
s
71
‐43
‐2
1.
1
9
5
1
Ye
s
N
C
Y
e
s
56
‐23
‐5
0.2
5
4
1
.
6
Be
n
z
i
n
o
f
o
r
m
,
Ca
r
b
o
n
Ch
l
o
r
i
d
e
Y
e
s
N
C
Y
e
s
57
‐74
‐9
0.
0
0
4
0
.
0
0
4
0
.
8
ng
/
L
0.
8
ng
/
L
Y
e
s
N
C
Y
e
s
16
8
8
7
‐00
‐6
23
0
mg
/
L
(A
L
)
25
0
mg
/
L
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
fo
r
in
f
o
r
m
a
t
i
o
n
on
Ac
t
i
o
n
Le
v
e
l
s
No
N
C
Y
e
s
77
8
2
‐50
‐5
17
7.
5
T
R
C
N
o
N
C
;
NR
W
Q
C
06
Y
e
s
Ch
l
o
r
o
b
e
n
z
e
n
e
1
0
8
‐90
‐7
1
4
0
(
L
D
)
48
8
(t
o
t
a
l
)
1
.
6
mg
/
L
Ch
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
,
Ph
e
n
y
l
Ch
l
o
r
i
d
e
No
NC
;
NR
W
Q
C
06
;
EC
O
T
O
X
& RA
I
S
2/
1
1
Yes
1,
2
‐(o
)
‐Dic
h
l
o
r
o
b
e
n
z
e
n
e
95
‐50
‐1
4
7
0
7
9
3
7
0
48
8
(t
o
t
a
l
)
1
.
3
mg
/
L
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
N
o
NC
;
NR
W
Q
C
06
;
EC
O
T
O
X
& RA
I
S
1/
0
7
Yes
1,3
‐(m
)
‐Di
c
h
l
o
r
o
b
e
n
z
e
n
e
54
1
‐73
‐1
3
9
0
3
9
0
48
8
(t
o
t
a
l
)
9
6
0
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
N
o
NC
;
NR
W
Q
C
06
;
EC
O
T
O
X
& RA
I
S
1/
0
7
Yes
1,
4
‐(p
)
‐Dic
h
l
o
r
o
b
e
n
z
e
n
e
54
1
‐73
‐1
1
0
0
5
6
48
8
(t
o
t
a
l
)
1
9
0
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
N
o
NC
;
NR
W
Q
C
06
;
EC
O
T
O
X
& RA
I
S
1/
0
7
Yes
He
x
a
c
h
l
o
r
o
b
e
n
z
e
n
e
11
8
‐74
‐1
‐
48
8
(t
o
t
a
l
)
0
.
2
9
ng
/
L
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
Y
e
s
NC
,
NR
W
Q
C
06
;
RA
I
S
01
/
0
7
Yes
Pe
n
t
a
c
h
l
o
r
o
b
e
n
z
e
n
e
60
8
‐93
‐50
.
5
1
48
8
(t
o
t
a
l
)
1
.
5
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
N
o
NC
;
NR
W
Q
C
06
;
EC
O
T
O
X
& RA
I
S
2 /07
Yes
1,
2
,
4
,
5
‐
Te
t
r
a
c
h
l
o
r
o
b
e
n
z
e
n
e
95
‐94
‐3
‐
48
8
(t
o
t
a
l
)
1
.
1
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
N
o
NC
;
NR
W
Q
C
06
;
RA
I
S
2 /07
Yes
1,2
,
4
‐Tr
i
c
h
l
o
r
o
b
e
n
z
e
n
e
12
0
‐82
‐16
1
2
7
48
8
(t
o
t
a
l
)
7
0
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
N
o
NC
;
NR
W
Q
C
06
;
EC
O
T
O
X
& RA
I
S
2 /07
Yes
1.
0
(N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
1
2
NA
N
C
Y
e
s
40
(N
)
15
(N
)
40
(N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
NA
N
C
Y
e
s
57
‐12
‐5
5 (N
)
1 (N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
No
N
C
Y
e
s
94
‐75
‐76
0
(
L
D
)
70
2.
5
mg
/
L
2,
4
‐Di
c
h
l
o
r
o
p
h
e
n
o
x
y
Ac
e
t
i
c
Ac
i
d
,
Ch
l
o
r
o
p
h
e
n
o
x
y
He
r
b
i
c
i
d
e
No
NC
;
EC
O
T
O
X
& RA
I
S
3/
0
9
Yes
50
‐29
‐3
0.
0
0
1
0
.
0
0
1
0
.
2
ng
/
L
0.
2
ng
/
L
Dic
h
l
o
r
o
d
i
p
h
e
n
y
l
t
r
i
c
h
l
o
r
o
e
t
h
a
ne
Ye
s
N
C
Y
e
s
60
‐57
‐1
0.
0
0
2
0
.
0
0
2
0
.
0
5
ng
/
L
0.0
5
ng
/
L
Y
e
s
N
C
Y
e
s
17
4
6
‐01
‐6
0.
0
0
0
0
0
5
ng
/
L
0.0
0
0
0
0
5
ng
/
L
2,
3
,
7
,
8
‐Te
t
r
a
c
h
l
o
r
o
d
i
b
e
n
z
o
‐p ‐
di
o
x
i
n
Ye
s
N
C
Y
e
s
Cy
a
n
i
d
e
,
To
t
a
l
2,4
‐D
4,
4
’
‐DD
T
Di
e
l
d
r
i
n
Dio
x
i
n
(2
,
3
,
7
,
8
‐TC
D
D
)
Ch
l
o
r
o
p
h
y
l
l
‐a,
Co
r
r
e
c
t
e
d
All
va
l
u
e
s
in
ug
/
L
un
l
e
s
s
no
t
e
d
be
l
o
w
.
Va
l
u
e
s
in
re
d
ar
e
15
A
NC
A
C
02
B
Wa
t
e
r
Qu
a
l
i
t
y
St
a
n
d
a
r
d
s
.
Al
d
r
i
n
Ch
l
o
r
i
d
e
Ch
l
o
r
i
n
e
,
To
t
a
l
Re
s
i
d
u
a
l
Ch
l
o
r
d
a
n
e
Be
n
z
e
n
e
Ca
r
b
o
n
Te
t
r
a
c
h
l
o
r
i
d
e
Po
l
l
u
t
a
n
t
or
Pa
r
a
m
e
t
e
r
No
r
t
h
C
a
r
o
l
i
n
a
1
5
A
N
C
A
C
0
2
B
S
u
r
f
a
c
e
W
a
t
e
r
S
t
a
n
d
a
r
d
s
a
n
d
P
r
o
t
e
c
t
i
v
e
V
a
l
u
e
s
&
E
P
A
Na
t
i
o
n
a
l
l
y
R
e
c
o
m
m
e
n
d
e
d
W
a
t
e
r
Q
u
a
l
i
t
y
C
r
i
t
e
r
i
a
Up
d
a
t
e
d
3/
2
0
1
6
‐
Cl
i
c
k
he
r
e
fo
r
mo
s
t
re
c
e
n
t
ve
r
s
i
o
n
.
Ch
l
o
r
i
n
a
t
e
d
Ph
e
n
o
l
s
C
h
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
s
Pa
g
e
1 of
4
CA
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
Li
f
e
Tr
o
u
t
1
Sa
l
t
w
a
t
e
r
Aq
u
a
t
i
c
Lif
e
Wa
t
e
r
Su
p
p
l
y
2
Hu
m
a
n
He
a
l
t
h
3
Hi
g
h
Qu
a
l
i
t
y
Wa
t
e
r
s
4
Sw
a
m
p
Wa
t
e
r
s
5
Sy
n
o
n
y
m
s
& Ot
h
e
r
In
f
o
r
m
a
t
i
o
n
Ca
r
c
i
n
o
g
e
n
6
Da
t
a
Re
f
e
r
e
n
c
e
So
u
r
c
e
15A NCAC 02B Standard?Metal?Total Recoverable, Dissolved or Hardness ‐Dependent Metal?
Po
l
l
u
t
a
n
t
or
Pa
r
a
m
e
t
e
r
11
0
%
sa
t
(N
)
11
0
%
sa
t
(N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
NA
N
C
Y
e
s
≥5.
0
mg
/
L
(N
)
≥6.
0
mg
/
L
(N )
≥5.
0
mg
/
L
(N
)
(
N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
NA
N
C
Y
e
s
≤ 20
0
/
1
0
0
mL
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
fo
r
≤ 35
/
1
0
0
mL
Se
e
15
A
NC
A
C
02
B
.0
2
2
0
fo
r
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
fo
r
de
t
a
i
l
s
.
NA
N
C
Y
e
s
16
9
8
4
‐48
‐8
1.8
mg
/
L
(
L
D
)
NA
NC
,
EC
O
T
O
X
&
KO
W
W
I
N
3/
0
8
Yes
58
‐89
‐9
0.
0
1
0
.
0
0
4
Li
n
d
a
n
e
,
ga
m
m
a
‐BH
C
,
g ‐HC
H
N
o
N
C
;
PA
N
3/
0
7
Y
e
s
86
‐68
‐3
0.
0
1
0
.
0
1
No
N
C
Y
e
s
10
0
mg
/
L
Ca
C
O
3
or
Ca
+
M
g
NA
N
C
Y
e
s
76
‐44
‐8
0.
0
0
4
0
.
0
0
4
0
.
0
8
ng
/
L
0.0
8
ng
/
L
Y
e
s
N
C
Y
e
s
87
‐68
‐3
0.
4
4
1
8
HC
B
D
Y
e
s
N
C
Y
e
s
58
‐89
‐9
0.
0
1
0
.
0
0
4
Ga
m
m
a
‐BH
C
,
g ‐HC
H
N
o
Y
e
s
72
‐43
‐5
0.
0
3
0
.
0
3
No
N
C
Y
e
s
23
8
5
‐85
‐5
0.
0
0
1
0
.
0
0
1
No
N
C
Y
e
s
14
7
9
7
‐55
‐8
10
mg
/
L
Nu
t
r
i
e
n
t
pa
r
a
m
e
t
e
r
s
ma
y
be
re
g
u
l
a
t
e
d
in
nu
t
r
i
e
n
t
se
n
s
i
t
i
v
e
wa
t
e
r
s
(N
S
W
)
.
Se
e
15
A
NC
A
C
02
B
.0
2
2
3
.
No
N
C
Y
e
s
(N
)
(
N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
.
NA
N
C
Y
e
s
56
‐38
‐2
0.
0
1
3
0
.
1
7
8
‐
No
Y
e
s
0.
0
0
1
(N
)
0.0
0
1
(N
)
0
.
0
6
4
ng
/
L
0.
0
6
4
ng
/
L
To
t
a
l
of
all
po
l
y
c
h
l
o
r
i
n
a
t
e
d
bi
p
h
e
n
y
l
s
(P
C
B
s
)
an
d
al
l
Ye
s
Y
e
s
6.
0
‐9.
0
(N
)
6.
8
‐8.
5
(N
)
(N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
NA
Y
e
s
30
0
(P
)
30
0
(P
)
(
P
)
= pu
b
l
i
c
po
l
i
c
y
do
c
u
m
e
n
t
.
NA
N
C
Y
e
s
Be
n
z
(
a
)
A
n
t
h
r
a
c
e
n
e
5
6
‐55
‐3(
L
D
)
0.
0
0
2
8
(T
o
t
a
l
)
0.
0
3
1
1
(T
o
t
a
l
)
PA
H
Y
e
s
N
C
Y
e
s
Be
n
z
o
(
a
)
P
y
r
e
n
e
5
0
‐32
‐8
(
L
D
)
(
L
D
)
0.
0
0
2
8
(T
o
t
a
l
)
0.
0
3
1
1
(T
o
t
a
l
)
PA
H
Y
e
s
N
C
Y
e
s
3,
4
‐
Be
n
z
o
(
b
)
f
l
o
u
r
a
n
t
h
e
n
e
20
5
‐99
‐2
0.
0
0
2
8
(T
o
t
a
l
)
0.
0
3
1
1
(T
o
t
a
l
)
PA
H
Y
e
s
N
C
Y
e
s
Be
n
z
o
(
k
)
f
l
u
o
r
a
n
t
h
e
n
e
2
0
7
‐08
‐9
0.
0
0
2
8
(T
o
t
a
l
)
0.
0
3
1
1
(T
o
t
a
l
)
PA
H
Y
e
s
N
C
Y
e
s
Ch
r
y
s
e
n
e
2
1
8
‐01
‐9(
L
D
)
0.
0
0
2
8
(T
o
t
a
l
)
0.
0
3
1
1
(T
o
t
a
l
)
PA
H
Y
e
s
N
R
W
Q
C
06
;
RA
I
S
1/
0
7
Y
e
s
Di
b
e
n
z
o
(
a
,
h
)
a
n
t
h
r
a
c
e
ne
53
‐70
‐3(
L
D
)
0.
0
0
2
8
(T
o
t
a
l
)
0.
0
3
1
1
(T
o
t
a
l
)
PA
H
Y
e
s
N
C
Y
e
s
In
d
e
n
o
(
1
,
2
,
3
‐cd
)
Py
r
e
n
e
19
3
‐39
‐5
0.
0
0
2
8
(T
o
t
a
l
)
0.
0
3
1
1
(T
o
t
a
l
)
PA
H
Y
e
s
N
C
Y
e
s
Li
n
d
a
n
e
,
g ‐BH
C
Me
t
h
o
x
y
c
h
l
o
r
Mir
e
x
Nit
r
a
t
e
ni
t
r
o
g
e
n
Oil
an
d
Gr
e
a
s
e
Pa
r
a
t
h
i
o
n
PC
B
,
To
t
a
l
pH
Ph
e
n
o
l
i
c
Co
m
p
o
u
n
d
s
T
o
t
a
l
P
A
H
s
He
x
a
c
h
l
o
r
o
b
u
t
a
d
i
e
n
e
Dis
s
o
l
v
e
d
Ga
s
e
s
Di
s
s
o
l
v
e
d
Ox
y
g
e
n
En
t
e
r
o
c
o
c
c
u
s
& Fe
c
a
l
Co
l
i
f
o
r
m
s
Fl
u
o
r
i
d
e
Gu
t
h
i
o
n
Ha
r
d
n
e
s
s
,
To
t
a
l
He
p
t
a
c
h
l
o
r
g ‐BH
C
Pa
g
e
2 of
4
CA
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
Li
f
e
Tr
o
u
t
1
Sa
l
t
w
a
t
e
r
Aq
u
a
t
i
c
Lif
e
Wa
t
e
r
Su
p
p
l
y
2
Hu
m
a
n
He
a
l
t
h
3
Hi
g
h
Qu
a
l
i
t
y
Wa
t
e
r
s
4
Sw
a
m
p
Wa
t
e
r
s
5
Sy
n
o
n
y
m
s
& Ot
h
e
r
In
f
o
r
m
a
t
i
o
n
Ca
r
c
i
n
o
g
e
n
6
Da
t
a
Re
f
e
r
e
n
c
e
So
u
r
c
e
15A NCAC 02B Standard?Metal?Total Recoverable, Dissolved or Hardness ‐Dependent Metal?
Po
l
l
u
t
a
n
t
or
Pa
r
a
m
e
t
e
r
(N
)
(
N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
NA
N
C
Y
e
s
(N
)
Se
e
15
A
NC
A
C
02
B
.
0
2
2
0
NA
N
C
Y
e
s
(N
)
(
N
)
(
N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
,
.0
2
1
2
an
d
.0
2
2
0
NA
N
C
Y
e
s
93
‐72
‐1(
L
D
)
1
.
5
mg
/
L
10
2,
4
,
5
‐TP
,
2,4
,
5
‐
Tr
i
c
h
l
o
r
o
p
h
e
n
o
x
y
p
r
o
p
i
o
n
o
i
c
Ac
i
d
No
NC
;
EC
O
T
O
X
& RA
I
S
2/
0
7
Yes
(N
)
(
N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
.
A
l
s
o
in
c
l
u
d
e
s
fl
o
a
t
i
n
g
NA
N
C
Y
e
s
50
0
mg
/
L
‐
NA
N
C
Y
e
s
10
mg
/
L
(E
)
20
mg
/
L
(E
)
Se
e
15
A
NC
A
C
02
B
.0
2
2
4
N
A
N
C
Y
e
s
25
0
mg
/
L
No
N
C
Y
e
s
(N
)
(
N
)
(
N
)
NC
A
C
02
B
.0
2
0
8
,
.0
2
1
1
,
an
d
.0
2
2
0
NA
N
C
Y
e
s
79
‐34
‐5
1
0
0
0
(
L
D
)
0.
1
7
4
Ac
e
t
o
s
o
l
,
Ac
e
t
y
l
e
n
e
Te
t
r
a
c
h
l
o
r
i
d
e
Ye
s
N
C
Y
e
s
12
7
‐18
‐4
1
2
0
6
5
0.
7
3
.
3
PE
R
C
,
PC
E
,
Pe
r
c
h
l
o
r
o
e
t
h
y
l
e
n
e
Y
e
s
N
C
Y
e
s
10
8
‐88
‐3
11
0
.
3
6
37
0
Me
t
h
y
l
Be
n
z
e
n
e
,
Ph
e
n
y
l
Me
t
h
a
n
e
No
NC
;
EC
O
T
O
X
& RA
I
S
8/
0
7
Yes
80
0
1
‐35
‐2
0.2
ng
/
L
0.
2
ng
/
L
Ye
s
N
C
Y
e
s
50
/
2
5
NT
U
(N
)
10
NT
U
(N
)
25
NT
U
(N
)
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
an
d
.0
2
2
0
.
NT
U
= Ne
p
h
e
l
o
m
e
t
r
i
c
Tu
r
b
i
d
i
t
y
Un
i
t
s
NA
N
C
Y
e
s
75
‐01
‐4
0.0
2
5
2
.
4
Ch
l
o
r
o
e
t
h
y
l
e
n
e
Y
e
s
N
C
Y
e
s
(d
)
= di
s
s
o
l
v
e
d
me
t
a
l
st
a
n
d
a
r
d
.
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
fo
r
mo
r
e
in
f
o
r
m
a
t
i
o
n
.
(E
)
= ef
f
l
u
e
n
t
li
m
i
t
fo
r
Hi
g
h
Qu
a
l
i
t
y
Wa
t
e
r
s
.
Se
e
15
A
NC
A
C
02
B
.0
2
2
4
.
(L
D
)
= li
m
i
t
e
d
da
t
a
.
(N
)
= na
r
r
a
t
i
v
e
st
a
n
d
a
r
d
.
(P
)
= pu
b
l
i
c
po
l
i
c
y
do
c
u
m
e
n
t
.
(s
)
= to
x
i
c
i
t
y
ex
c
e
e
d
s
so
l
u
b
i
l
i
t
y
,
no
vi
s
i
b
l
e
sh
e
e
n
or
fr
e
e
pr
o
d
u
c
t
in
wa
t
e
r
or
on
se
d
i
m
e
n
t
or
sh
o
r
e
l
i
n
e
pe
r
15
A
NC
A
C
02
B
.0
2
1
1
& .0
2
2
0
(t
)
= ba
s
e
d
up
o
n
me
a
s
u
r
e
m
e
n
t
of
to
t
a
l
re
c
o
v
e
r
a
b
l
e
me
t
a
l
.
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
fo
r
mo
r
e
in
f
o
r
m
a
t
i
o
n
.
Vi
n
y
l
Ch
l
o
r
i
d
e
Fo
o
t
n
o
t
e
s
,
Co
d
e
s
an
d
Ad
d
i
t
i
o
n
a
l
In
f
o
r
m
a
t
i
o
n
wi
t
h
Re
f
e
r
e
n
c
e
to
Cl
a
s
s
i
f
i
c
a
t
i
o
n
s
& St
a
n
d
a
r
d
s
Va
l
u
e
s
in
re
d
fo
n
t
ar
e
15
A
NC
A
C
02
B
st
a
n
d
a
r
d
s
(h
)
= ha
r
d
n
e
s
s
‐de
p
e
n
d
e
n
t
di
s
s
o
l
v
e
d
me
t
a
l
st
a
n
d
a
r
d
.
Al
l
ha
r
d
n
e
s
s
‐de
p
e
n
d
e
n
t
di
s
s
o
l
v
e
d
me
t
a
l
st
a
n
d
a
r
d
s
in
th
i
s
ta
b
l
e
as
s
u
m
e
≤
25
mg
/
L
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
.
Se
e
pa
g
e
16
fo
r
Tu
r
b
i
d
i
t
y
Se
w
a
g
e
Si
l
v
e
x
So
l
i
d
s
,
Se
t
t
l
e
a
b
l
e
So
l
i
d
s
,
To
t
a
l
Di
s
s
o
l
v
e
d
So
l
i
d
s
,
To
t
a
l
Su
s
p
e
n
d
e
d
Su
l
f
a
t
e
s
Te
m
p
e
r
a
t
u
r
e
Te
t
r
a
c
h
l
o
r
o
e
t
h
a
n
e
Te
t
r
a
c
h
l
o
r
o
e
t
h
y
l
e
n
e
To
l
u
e
n
e
To
x
a
p
h
e
n
e
Sa
l
i
n
i
t
y
Ra
d
i
o
a
c
t
i
v
e
Su
b
s
t
a
n
c
e
s
Pa
g
e
3 of
4
CA
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
Li
f
e
Tr
o
u
t
1
Sa
l
t
w
a
t
e
r
Aq
u
a
t
i
c
Lif
e
Wa
t
e
r
Su
p
p
l
y
2
Hu
m
a
n
He
a
l
t
h
3
Hi
g
h
Qu
a
l
i
t
y
Wa
t
e
r
s
4
Sw
a
m
p
Wa
t
e
r
s
5
Sy
n
o
n
y
m
s
& Ot
h
e
r
In
f
o
r
m
a
t
i
o
n
Ca
r
c
i
n
o
g
e
n
6
Da
t
a
Re
f
e
r
e
n
c
e
So
u
r
c
e
15A NCAC 02B Standard?Metal?Total Recoverable, Dissolved or Hardness ‐Dependent Metal?
Po
l
l
u
t
a
n
t
or
Pa
r
a
m
e
t
e
r
Th
e
st
a
n
d
a
r
d
s
in
th
i
s
ta
b
l
e
ar
e
de
v
e
l
o
p
e
d
pe
r
se
c
t
i
o
n
15
A
NC
A
C
02
B
of
th
e
No
r
t
h
Ca
r
o
l
i
n
a
Ad
m
i
n
i
s
t
r
a
t
i
v
e
Co
d
e
.
To
de
t
e
r
m
i
n
e
th
e
ap
p
r
o
p
r
i
a
t
e
st
a
n
d
a
r
d
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
al
l
ap
p
l
i
c
a
b
l
e
co
l
u
m
n
s
as
de
s
c
r
i
b
e
d
be
l
o
w
.
Fo
r
Cl
a
s
s
C wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
an
d
Hu
m
a
n
He
a
l
t
h
.
Fo
r
Cl
a
s
s
SC
wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Sa
l
t
w
a
t
e
r
an
d
Hu
m
a
n
He
a
l
t
h
.
Fo
r
Wa
t
e
r
Su
p
p
l
y
wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
,
Wa
t
e
r
Su
p
p
l
y
,
an
d
Hu
m
a
n
He
a
l
t
h
.
Fo
r
Sw
a
m
p
Wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
or
Sw
a
m
p
fo
r
fr
e
s
h
w
a
t
e
r
s
or
Sa
l
t
w
a
t
e
r
or
Sw
a
m
p
fo
r
ti
d
a
l
wa
t
e
r
s
.
(1
)
Tr
o
u
t
Wa
t
e
r
s
ar
e
pr
o
t
e
c
t
e
d
fo
r
na
t
u
r
a
l
tr
o
u
t
pr
o
p
a
g
a
t
i
o
n
an
d
su
r
v
i
v
a
l
of
st
o
c
k
e
d
tr
o
u
t
.
Se
e
15
A
NC
A
C
02
B
.0
1
0
1
an
d
.0
3
0
1
(3
)
Hu
m
a
n
He
a
l
t
h
st
a
n
d
a
r
d
s
ar
e
ba
s
e
d
on
th
e
co
n
s
u
m
p
t
i
o
n
of
fi
s
h
on
l
y
un
l
e
s
s
de
r
m
a
l
co
n
t
a
c
t
st
u
d
i
e
s
ar
e
av
a
i
l
a
b
l
e
.
Se
e
15
A
NC
A
C
02
B
.0
2
0
8
.
(4
)
Hi
g
h
Qu
a
l
i
t
y
Wa
t
e
r
s
ar
e
a su
b
s
e
t
of
wa
t
e
r
s
wit
h
qu
a
l
i
t
y
hi
g
h
e
r
th
a
n
th
e
st
a
n
d
a
r
d
s
an
d
ar
e
de
s
c
r
i
b
e
d
in
15
A
NC
A
C
02
B
.0
1
0
1
an
d
.0
2
2
4
.
(5
)
Sw
a
m
p
Wa
t
e
r
s
ha
v
e
lo
w
ve
l
o
c
i
t
i
e
s
an
d
ot
h
e
r
na
t
u
r
a
l
ch
a
r
a
c
t
e
r
i
s
t
i
c
s
wh
i
c
h
ar
e
dif
f
e
r
e
n
t
fr
o
m
ad
j
a
c
e
n
t
st
r
e
a
m
s
.
Se
e
15
A
NC
A
C
02
B
.0
1
0
1
.
(6
)
Ca
r
c
i
n
o
g
e
n
s
ar
e
lis
t
e
d
in
15
A
NC
A
C
02
B
.0
2
0
8
.
Ha
r
d
n
e
s
s
‐De
p
e
n
d
e
n
t
Di
s
s
o
l
v
e
d
Me
t
a
l
St
a
n
d
a
r
d
Gu
i
d
e
l
i
n
e
s
an
d
Eq
u
a
t
i
o
n
s
Us
e
th
e
gu
i
d
e
l
i
n
e
s
an
d
eq
u
a
t
i
o
n
s
be
l
o
w
fo
r
de
t
e
r
m
i
n
i
n
g
ha
r
d
n
e
s
s
‐de
p
e
n
d
e
n
t
di
s
s
o
l
v
e
d
me
t
a
l
st
a
n
d
a
r
d
s
:
If
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
≤
25
mg
/
L
,
ca
l
c
u
l
a
t
e
at
25
mg
/
L
ha
r
d
n
e
s
s
If
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
>2
5
,
bu
t
<4
0
0
mg
/
L
,
ca
l
c
u
l
a
t
e
at
ac
t
u
a
l
st
r
e
a
m
ha
r
d
n
e
s
s
If
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
≥
40
0
,
ca
l
c
u
l
a
t
e
at
40
0
mg
/
L
ha
r
d
n
e
s
s
Fo
r
Tr
o
u
t
Wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
,
Hu
m
a
n
He
a
l
t
h
,
an
d
Tr
o
u
t
.
If
Tr
o
u
t
Wa
t
e
r
s
ar
e
lo
c
a
t
e
d
wi
t
h
i
n
a Wa
t
e
r
Su
p
p
l
y
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
,
Hu
m
a
n
He
a
l
t
h
,
Wa
t
e
r
Su
p
p
l
y
,
an
d
Tr
o
u
t
.
Fo
r
Hig
h
Qu
a
l
i
t
y
Wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
,
Wa
t
e
r
Su
p
p
l
y
,
Tr
o
u
t
,
an
d
Hi
g
h
Qu
a
l
i
t
y
or
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Sa
l
t
w
a
t
e
r
an
d
Hi
g
h
Qu
a
l
i
t
y
.
(2
)
Wa
t
e
r
Su
p
p
l
y
st
a
n
d
a
r
d
s
ar
e
ap
p
l
i
c
a
b
l
e
to
al
l
Wa
t
e
r
Su
p
p
l
y
Cla
s
s
i
f
i
c
a
t
i
o
n
s
an
d
ar
e
ba
s
e
d
on
co
n
s
u
m
p
t
i
o
n
of
fi
s
h
an
d
wa
t
e
r
.
Se
e
15
A
NC
A
C
02
B
.0
2
0
8
,
.0
2
1
2
,
.0
2
1
4
,
.0
2
1
5
,
.0
2
1
6
,
an
d
.0
2
1
8
.
Pa
g
e
4 of
4
CA
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
Lif
e
Tr
o
u
t
1
Sa
l
t
w
a
t
e
r
Aq
u
a
t
i
c
Li
f
e
Wa
t
e
r
Su
p
p
l
y
2
Hu
m
a
n
He
a
l
t
h
3
Hig
h
Qu
a
l
i
t
y
Wa
t
e
r
s
4
Sw
a
m
p
Wa
t
e
r
s
5
Sy
n
o
n
y
m
s
& Ot
h
e
r
In
f
o
r
m
a
t
i
o
n
Ca
r
c
i
n
o
g
e
n
6
Da
t
a
Re
f
e
r
e
n
c
e
So
u
r
c
e
15
A
NCAC 02B Standard?Metal?Total Recoverable, Dissolved or Hardness ‐Dependent Metal?
74
4
0
‐38
‐2
Ac
u
t
e
:
34
0
(d
)
Ch
r
o
n
i
c
:
15
0
(d
)
Ac
u
t
e
:
69
(d
)
Ch
r
o
n
i
c
:
36
(d
)
10
(t
)
10
(t
)
Y
e
s
N
C
Y
e
s
Y
e
s
D
i
s
s
o
l
v
e
d
74
4
0
‐39
‐3
(
L
D
)
(
L
D
)
1.
0
mg
/
L
(t
)
2
0
0
mg
/
L
(t
)
N
o
NC
;
IR
I
S
,
EC
O
T
O
X
&
RA
I
S
11
/
0
8
Yes
Y
e
s
74
4
0
‐41
‐7
Ac
u
t
e
:
65
(d
)
Ch
r
o
n
i
c
:
6.5
(d
)
No
N
C
Y
e
s
Y
e
s
D
i
s
s
o
l
v
e
d
74
4
0
‐43
‐9
Ac
u
t
e
:
0.
8
2
(d
,
h
)
Ch
r
o
n
i
c
:
0.
1
5
(d
,
h
)
Ac
u
t
e
:
0.
5
1
(d
,
h
)
Ac
u
t
e
:
40
(d
)
Ch
r
o
n
i
c
:
8.
8
(d
)
No
N
C
Y
e
s
Y
e
s
H
a
r
d
n
e
s
s
‐Dependent
16
0
6
5
‐83
‐1
Ac
u
t
e
:
18
0
(d
,
h
)
Ch
r
o
n
i
c
:
24
(d
,
h
)
Tr
i
v
a
l
e
n
t
Ch
r
o
m
i
u
m
N
o
N
C
Y
e
s
Y
e
s
H
a
r
d
n
e
s
s
‐Dependent
18
5
4
0
‐29
‐9
Ac
u
t
e
:
16
(d
,
h
)
Ch
r
o
n
i
c
:
11
(d
,
h
)
Ac
u
t
e
:
11
0
0
(d
)
Ch
r
o
n
i
c
:
3.
1
(d
,
h
)
He
x
a
v
a
l
e
n
t
Ch
r
o
m
i
u
m
N
o
N
C
Y
e
s
Y
e
s
D
i
s
s
o
l
v
e
d
74
4
0
‐50
‐8
Ac
u
t
e
:
3.
6
(d
,
h
)
Ch
r
o
n
i
c
:
2.7
(d
)
Ac
u
t
e
:
4.
8
(d
)
Ch
r
o
n
i
c
:
3.
1
(d
)
Als
o
se
e
EP
A
Co
p
p
e
r
20
0
7
Re
v
i
s
i
o
n
(E
P
A
‐82
2
‐R ‐07
‐01
)
No
N
C
Y
e
s
Y
e
s
H
a
r
d
n
e
s
s
‐Dependent
74
3
9
‐92
‐1
Ac
u
t
e
:
14
(d
,
h
)
Ch
r
o
n
i
c
:
0.
5
4
(d
,
h
)
Ac
u
t
e
:
21
0
(d
)
Ch
r
o
n
i
c
:
8.
1
(d
)
No
N
C
Y
e
s
Y
e
s
H
a
r
d
n
e
s
s
‐Dependent
74
3
9
‐97
‐6
0.
0
1
2
(t
)
0.
0
2
5
(t
)
No
N
C
Y
e
s
Y
e
s
T
o
t
a
l
Recoverable
74
4
0
‐20
‐3
Ac
u
t
e
:
14
0
(d
,
h
)
Ch
r
o
n
i
c
:
16
(d
,
h
)
Ac
u
t
e
:
74
(d
)
Ch
r
o
n
i
c
:
8.
2
(d
)
25
(t
)
No
N
C
Y
e
s
Y
e
s
H
a
r
d
n
e
s
s
‐Dependent
77
8
2
‐49
‐2
5 (t
)
71
(t
)
No
N
C
Y
e
s
Y
e
s
T
o
t
a
l
Recoverable
74
4
0
‐22
‐4
Ac
u
t
e
:
30
(d
,
h
)
Ch
r
o
n
i
c
:
0.
0
6
(d
,
h
)
Ac
u
t
e
:
1.
9
(d
)
Ch
r
o
n
i
c
:
0.
1
(d
)
No
N
C
Y
e
s
Y
e
s
Acute: Hardness ‐Dependent, Chronic: Dissolved
74
4
0
‐66
‐6
Ac
u
t
e
:
36
(d
,
h
)
Ch
r
o
n
i
c
:
36
(d
,
h
)
Ac
u
t
e
:
90
(d
)
Ch
r
o
n
i
c
:
81
(d
)
No
N
C
Y
e
s
Y
e
s
H
a
r
d
n
e
s
s
‐Dependent
Al
l
me
t
a
l
s
st
a
n
d
a
r
d
s
ca
l
c
u
l
a
t
e
d
at
25
mg
/
L
Ha
r
d
n
e
s
s
fo
r
ill
u
s
t
r
a
t
i
v
e
pu
r
p
o
s
e
s
.
Cl
i
c
k
he
r
e
to
ca
l
c
u
l
a
t
e
sp
e
c
i
f
i
c
me
t
a
l
s
st
a
n
d
a
r
d
s
.
Se
l
e
n
i
u
m
Si
l
v
e
r
Zin
c
Po
l
l
u
t
a
n
t
or
Pa
r
a
m
e
t
e
r
No
r
t
h
C
a
r
o
l
i
n
a
1
5
A
N
C
A
C
0
2
B
S
u
r
f
a
c
e
W
a
t
e
r
S
t
a
n
d
a
r
d
s
a
n
d
P
r
o
t
e
c
t
i
v
e
V
a
l
u
e
s
&
E
P
A
Na
t
i
o
n
a
l
l
y
R
e
c
o
m
m
e
n
d
e
d
W
a
t
e
r
Q
u
a
l
i
t
y
C
r
i
t
e
r
i
a
Up
d
a
t
e
d
3/
2
0
1
6
‐
Cl
i
c
k
he
r
e
fo
r
mo
s
t
re
c
e
n
t
ve
r
s
i
o
n
.
Le
a
d
Co
p
p
e
r
Me
r
c
u
r
y
All
va
l
u
e
s
in
ug
/
L
un
l
e
s
s
no
t
e
d
be
l
o
w
.
Va
l
u
e
s
in
re
d
ar
e
15
A
NC
A
C
02
B
Wa
t
e
r
Qu
a
l
i
t
y
St
a
n
d
a
r
d
s
.
Ar
s
e
n
i
c
Ch
r
o
m
i
u
m
III
Ch
r
o
m
i
u
m
VI
Ca
d
m
i
u
m
Ba
r
i
u
m
Be
r
y
l
l
i
u
m
Nic
k
e
l
Pa
g
e
1 of
3
CA
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
Lif
e
Tr
o
u
t
1
Sa
l
t
w
a
t
e
r
Aq
u
a
t
i
c
Li
f
e
Wa
t
e
r
Su
p
p
l
y
2
Hu
m
a
n
He
a
l
t
h
3
Hig
h
Qu
a
l
i
t
y
Wa
t
e
r
s
4
Sw
a
m
p
Wa
t
e
r
s
5
Sy
n
o
n
y
m
s
& Ot
h
e
r
In
f
o
r
m
a
t
i
o
n
Ca
r
c
i
n
o
g
e
n
6
Da
t
a
Re
f
e
r
e
n
c
e
So
u
r
c
e
15
A
NCAC 02B Standard?Metal?Total Recoverable, Dissolved or Hardness ‐Dependent Metal?
Po
l
l
u
t
a
n
t
or
Pa
r
a
m
e
t
e
r
(d
)
= di
s
s
o
l
v
e
d
me
t
a
l
st
a
n
d
a
r
d
.
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
fo
r
mo
r
e
in
f
o
r
m
a
t
i
o
n
.
(E
)
= ef
f
l
u
e
n
t
li
m
i
t
fo
r
Hig
h
Qu
a
l
i
t
y
Wa
t
e
r
s
.
Se
e
15
A
NC
A
C
02
B
.0
2
2
4
.
(L
D
)
= lim
i
t
e
d
da
t
a
.
(N
)
= na
r
r
a
t
i
v
e
st
a
n
d
a
r
d
.
(P
)
= pu
b
l
i
c
po
l
i
c
y
do
c
u
m
e
n
t
.
(s
)
= to
x
i
c
i
t
y
ex
c
e
e
d
s
so
l
u
b
i
l
i
t
y
,
no
vi
s
i
b
l
e
sh
e
e
n
or
fr
e
e
pr
o
d
u
c
t
in
wa
t
e
r
or
on
se
d
i
m
e
n
t
or
sh
o
r
e
l
i
n
e
pe
r
15
A
NC
A
C
02
B
.0
2
1
1
& .0
2
2
0
(t
)
= ba
s
e
d
up
o
n
me
a
s
u
r
e
m
e
n
t
of
to
t
a
l
re
c
o
v
e
r
a
b
l
e
me
t
a
l
.
Se
e
15
A
NC
A
C
02
B
.0
2
1
1
fo
r
mo
r
e
in
f
o
r
m
a
t
i
o
n
.
Th
e
st
a
n
d
a
r
d
s
in
th
i
s
ta
b
l
e
ar
e
de
v
e
l
o
p
e
d
pe
r
se
c
t
i
o
n
15
A
NC
A
C
02
B
of
th
e
No
r
t
h
Ca
r
o
l
i
n
a
Ad
m
i
n
i
s
t
r
a
t
i
v
e
Co
d
e
.
To
de
t
e
r
m
i
n
e
th
e
ap
p
r
o
p
r
i
a
t
e
st
a
n
d
a
r
d
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
al
l
ap
p
l
i
c
a
b
l
e
co
l
u
m
n
s
as
de
s
c
r
i
b
e
d
be
l
o
w
.
Fo
r
Cl
a
s
s
C wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
an
d
Hu
m
a
n
He
a
l
t
h
.
Fo
r
Cl
a
s
s
SC
wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Sa
l
t
w
a
t
e
r
an
d
Hu
m
a
n
He
a
l
t
h
.
Fo
r
Wa
t
e
r
Su
p
p
l
y
wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
,
Wa
t
e
r
Su
p
p
l
y
,
an
d
Hu
m
a
n
He
a
l
t
h
.
Fo
r
Sw
a
m
p
Wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
or
Sw
a
m
p
fo
r
fr
e
s
h
w
a
t
e
r
s
or
Sa
l
t
w
a
t
e
r
or
Sw
a
m
p
fo
r
tid
a
l
wa
t
e
r
s
.
(1
)
Tr
o
u
t
Wa
t
e
r
s
ar
e
pr
o
t
e
c
t
e
d
fo
r
na
t
u
r
a
l
tr
o
u
t
pr
o
p
a
g
a
t
i
o
n
an
d
su
r
v
i
v
a
l
of
st
o
c
k
e
d
tr
o
u
t
.
Se
e
15
A
NC
A
C
02
B
.0
1
0
1
an
d
.0
3
0
1
(3
)
Hu
m
a
n
He
a
l
t
h
st
a
n
d
a
r
d
s
ar
e
ba
s
e
d
on
th
e
co
n
s
u
m
p
t
i
o
n
of
fi
s
h
on
l
y
un
l
e
s
s
de
r
m
a
l
co
n
t
a
c
t
st
u
d
i
e
s
ar
e
av
a
i
l
a
b
l
e
.
Se
e
15
A
NC
A
C
02
B
.0
2
0
8
.
(4
)
Hi
g
h
Qu
a
l
i
t
y
Wa
t
e
r
s
ar
e
a su
b
s
e
t
of
wa
t
e
r
s
wi
t
h
qu
a
l
i
t
y
hi
g
h
e
r
th
a
n
th
e
st
a
n
d
a
r
d
s
an
d
ar
e
de
s
c
r
i
b
e
d
in
15
A
NC
A
C
02
B
.0
1
0
1
an
d
.0
2
2
4
.
(5
)
Sw
a
m
p
Wa
t
e
r
s
ha
v
e
lo
w
ve
l
o
c
i
t
i
e
s
an
d
ot
h
e
r
na
t
u
r
a
l
ch
a
r
a
c
t
e
r
i
s
t
i
c
s
wh
i
c
h
ar
e
di
f
f
e
r
e
n
t
fr
o
m
ad
j
a
c
e
n
t
st
r
e
a
m
s
.
Se
e
15
A
NC
A
C
02
B
.0
1
0
1
.
(6
)
Ca
r
c
i
n
o
g
e
n
s
ar
e
li
s
t
e
d
in
15
A
NC
A
C
02
B
.0
2
0
8
.
Fo
o
t
n
o
t
e
s
,
Co
d
e
s
an
d
Ad
d
i
t
i
o
n
a
l
In
f
o
r
m
a
t
i
o
n
wi
t
h
Re
f
e
r
e
n
c
e
to
Cl
a
s
s
i
f
i
c
a
t
i
o
n
s
& St
a
n
d
a
r
d
s
Va
l
u
e
s
in
re
d
fo
n
t
ar
e
15
A
NC
A
C
02
B
st
a
n
d
a
r
d
s
(h
)
= ha
r
d
n
e
s
s
‐de
p
e
n
d
e
n
t
di
s
s
o
l
v
e
d
me
t
a
l
st
a
n
d
a
r
d
.
Al
l
ha
r
d
n
e
s
s
‐de
p
e
n
d
e
n
t
dis
s
o
l
v
e
d
me
t
a
l
st
a
n
d
a
r
d
s
in
th
i
s
ta
b
l
e
as
s
u
m
e
≤
25
mg
/
L
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
.
Se
e
pa
g
e
16
fo
r
Fo
r
Hi
g
h
Qu
a
l
i
t
y
Wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
,
Wa
t
e
r
Su
p
p
l
y
,
Tr
o
u
t
,
an
d
Hi
g
h
Qu
a
l
i
t
y
or
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Sa
l
t
w
a
t
e
r
an
d
Hi
g
h
Qu
a
l
i
t
y
.
(2
)
Wa
t
e
r
Su
p
p
l
y
st
a
n
d
a
r
d
s
ar
e
ap
p
l
i
c
a
b
l
e
to
al
l
Wa
t
e
r
Su
p
p
l
y
Cl
a
s
s
i
f
i
c
a
t
i
o
n
s
an
d
ar
e
ba
s
e
d
on
co
n
s
u
m
p
t
i
o
n
of
fi
s
h
an
d
wa
t
e
r
.
Se
e
15
A
NC
A
C
02
B
.0
2
0
8
,
.0
2
1
2
,
.0
2
1
4
,
.0
2
1
5
,
.0
2
1
6
,
an
d
.0
2
1
8
.
Fo
r
Tr
o
u
t
Wa
t
e
r
s
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
,
Hu
m
a
n
He
a
l
t
h
,
an
d
Tr
o
u
t
.
If
Tr
o
u
t
Wa
t
e
r
s
ar
e
lo
c
a
t
e
d
wi
t
h
i
n
a Wa
t
e
r
Su
p
p
l
y
,
us
e
th
e
mo
s
t
st
r
i
n
g
e
n
t
of
Fr
e
s
h
w
a
t
e
r
,
Hu
m
a
n
He
a
l
t
h
,
Wa
t
e
r
Su
p
p
l
y
,
an
d
Tr
o
u
t
.
Pa
g
e
2 of
3
CA
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
Lif
e
Tr
o
u
t
1
Sa
l
t
w
a
t
e
r
Aq
u
a
t
i
c
Li
f
e
Wa
t
e
r
Su
p
p
l
y
2
Hu
m
a
n
He
a
l
t
h
3
Hig
h
Qu
a
l
i
t
y
Wa
t
e
r
s
4
Sw
a
m
p
Wa
t
e
r
s
5
Sy
n
o
n
y
m
s
& Ot
h
e
r
In
f
o
r
m
a
t
i
o
n
Ca
r
c
i
n
o
g
e
n
6
Da
t
a
Re
f
e
r
e
n
c
e
So
u
r
c
e
15
A
NCAC 02B Standard?Metal?Total Recoverable, Dissolved or Hardness ‐Dependent Metal?
Po
l
l
u
t
a
n
t
or
Pa
r
a
m
e
t
e
r
Ha
r
d
n
e
s
s
‐De
p
e
n
d
e
n
t
Di
s
s
o
l
v
e
d
Me
t
a
l
St
a
n
d
a
r
d
Gu
i
d
e
l
i
n
e
s
an
d
Eq
u
a
t
i
o
n
s
Us
e
th
e
gu
i
d
e
l
i
n
e
s
an
d
eq
u
a
t
i
o
n
s
be
l
o
w
fo
r
de
t
e
r
m
i
n
i
n
g
ha
r
d
n
e
s
s
‐de
p
e
n
d
e
n
t
di
s
s
o
l
v
e
d
me
t
a
l
st
a
n
d
a
r
d
s
:
If
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
≤
25
mg
/
L
,
ca
l
c
u
l
a
t
e
at
25
mg
/
L
ha
r
d
n
e
s
s
If
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
>2
5
,
bu
t
<4
0
0
mg
/
L
,
ca
l
c
u
l
a
t
e
at
ac
t
u
a
l
st
r
e
a
m
ha
r
d
n
e
s
s
If
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
≥
40
0
,
ca
l
c
u
l
a
t
e
at
40
0
mg
/
L
ha
r
d
n
e
s
s
St
a
n
d
a
r
d
@ 25
mg
/
L
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
(u
g
/
L
)
En
t
e
r
in
‐
st
r
e
a
m
ha
r
d
n
e
s
s
(m
g /L
)
Cla
c
u
l
a
t
e
d
st
a
n
d
a
r
d
at
in
‐st
r
e
a
m
ha
r
d
n
e
s
s
(u
g
/
L
)
0.
8
2
25
0.
8
2
0.
1
5
25
0.
1
5
0.
5
1
25
0.
5
1
18
0
25
18
3
.
0
7
24
25
23
.
8
1
3.6
25
3.
6
4
2.7
25
2.
7
4
14
25
13
.
8
8
0.
5
4
25
0.
5
4
14
0
25
14
4
.
9
2
16
25
16
.
1
0
0.3
25
0.
3
0
36
25
36
.
2
0
36
25
36
.
5
0
Zin
c
,
ac
u
t
e
W
E
R
*
[
0
.
9
7
8
*
e
^
{
0
.
8
4
7
3
[
ln
ha
r
d
n
e
s
s
]
+
0
.
8
8
4
}
]
Zi
n
c
,
ch
r
o
n
i
c
W
E
R
*
[
0
.
9
8
6
*
e
^
{
0
.
8
4
7
3
[
ln
ha
r
d
n
e
s
s
]
+
0
.
8
8
4
}
]
Ni
c
k
e
l
,
ac
u
t
e
W
E
R
*
[
0
.
9
9
8
*
e
^
{
0
.
8
4
6
0
[
ln
ha
r
d
n
e
s
s
]
+
2
.
2
5
5
}
]
Nic
k
e
l
,
ch
r
o
n
i
c
W
E
R
*
[
0
.
9
9
7
*
e
^
{
0
.
8
4
6
0
[
ln
ha
r
d
n
e
s
s
]
+
0
.
0
5
8
4
}
]
Sil
v
e
r
,
ac
u
t
e
W
E
R
*
[
0
.
8
5
*
e
^
{
1
.
7
2
[
ln
ha
r
d
n
e
s
s
]
‐6.
5
9
}
]
Co
p
p
e
r
,
ch
r
o
n
i
c
W
E
R
*
[
0
.
9
6
0
*
e
^
{
0
.
8
5
4
5
[
ln
ha
r
d
n
e
s
s
]
‐1.7
0
2
}
]
Le
a
d
,
ac
u
t
e
W
E
R
*
[
{
1
.
4
6
2
0
3
‐[ln
ha
r
d
n
e
s
s
]
(
0
.
1
4
5
7
1
2
)
}
*
e
^
{
1
.
2
7
3
[
ln
ha
r
d
n
e
s
s
]
‐1.
4
6
0
}
]
Le
a
d
,
ch
r
o
n
i
c
Ca
d
m
i
u
m
,
ac
u
t
e
,
tr
o
u
t
wa
t
e
r
s
W
E
R
*
[
{
1
.
1
3
6
6
7
2
‐[ln
ha
r
d
n
e
s
s
]
(
0
.
0
4
1
8
3
8
)
}
*
e
^
{
0
.
9
1
5
1
[
ln
ha
r
d
n
e
s
s
]
‐
3.
6
2
3
6
}
]
WE
R
*
[
{
1
.
4
6
2
0
3
‐[ln
ha
r
d
n
e
s
s
]
(
0
.
1
4
5
7
1
2
)
}
*
e
^
{
1
.
2
7
3
[
ln
ha
r
d
n
e
s
s
]
‐4.
7
0
5
}
]
Ch
r
o
m
i
u
m
II
I
,
ac
u
t
e
W
E
R
*
[
0
.
3
1
6
*
e
^
{
0
.
8
1
9
0
[
ln
ha
r
d
n
e
s
s
]
+
3
.
7
2
5
6
}
]
Ch
r
o
m
i
u
m
II
I
,
ch
r
o
n
i
c
W
E
R
*
[
0
.
8
6
0
*
e
^
{
0
.
8
1
9
0
[
ln
ha
r
d
n
e
s
s
]
+
0
.
6
8
4
8
}
]
Co
p
p
e
r
,
ac
u
t
e
W
E
R
*
[
0
.
9
6
0
*
e
^
{
0
.
9
4
2
2
[
ln
ha
r
d
n
e
s
s
]
‐1.7
0
0
}
]
Ca
d
m
i
u
m
,
ch
r
o
n
i
c
W
E
R
*
[
{
1
.
1
0
1
6
7
2
‐[ln
ha
r
d
n
e
s
s
]
(
0
.
0
4
1
8
3
8
)
}
*
e
^
{
0
.
7
9
9
8
[
ln
ha
r
d
n
e
s
s
]
‐4.4
4
5
1
}
]
Th
e
Wa
t
e
r
Ef
f
e
c
t
s
Ra
t
i
o
(W
E
R
)
in
th
e
eq
u
a
t
i
o
n
s
be
l
o
w
= 1. Se
e
15
A
NC
A
C
02
B
.0
2
1
1
& .0
2
2
0
fo
r
mo
r
e
in
f
o
r
m
a
t
i
o
n
.
Me
t
a
l
Ca
d
m
i
u
m
,
ac
u
t
e
W
E
R
*
[
{
1
.
1
3
6
6
7
2
‐[ln
ha
r
d
n
e
s
s
]
(
0
.
0
4
1
8
3
8
)
}
*
e
^
{
0
.
9
1
5
1
[
ln
ha
r
d
n
e
s
s
]
‐3.1
4
8
5
}
]
Eq
u
a
t
i
o
n
s
fo
r
Ha
r
d
n
e
s
s
‐De
p
e
n
d
e
n
t
Me
t
a
l
s
(u
g
/
L
)
Pa
g
e
3 of
3