Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAbout0403_Chambers_Ph3_4_DesignHydroReport_DIN26671_20170213Environmental Consultants
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
5HSRUW
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
3KDVHVDQG
6XEPLWWHGWR
6ROLG:DVWH6HFWLRQ
:-RQHV6WUHHW
5DOHLJK1&
3UHVHQWHGWR
'R]HU'ULYH
3RONWRQ1RUWK&DUROLQD
3UHVHQWHGE\
6&6(1*,1((563&
&KDSDQRNH5RDG
5DOHLJK1&
'HFHPEHU
)LOH1R
2IILFHV1DWLRQZLGH
ZZZVFVHQJLQHHUVFRP
david.garrett@a
mecfw.com
Digitally signed by
david.garrett@amecfw.com
DN: cn=david.garrett@amecfw.com
Date: 2017.02.13 16:10:17 -05'00'
Amec Foster Wheeler Environment & Infrastructure, Inc.
4021 Stirrup Creek Drive, Suite 100 Registered in North Carolina
Durham, North Carolina 27703 Engineering and Land Surveying License No. F-0653
919.381.9900 Geology License No. C-247
amecfw.com
December 6, 2016
Nelson Breeden, P.E.
Waste Connections of the Carolinas
375 Dozer Drive
Polkton, NC 28135
Permit No. 0403-MSWLF
Chambers Development MSWLF - Anson County
Response to Regulatory Review Comments
Phases 3 and 4 Design Hydro Report and Monitoring Plan
Amec Foster Wheeler is pleased to offer the following response to comments provided by the NCDEQ
Solid Waste Section in their letter dated August 19, 2016 (DIN 26670). The Design Hydrogeologic Report
for the proposed Phases 3 and 4 expansion was prepared by SCS Engineers under my direction. My
records show the date of the submitted document as December 1, 2015. The Water Quality Monitoring
Plan is dated July 2, 2015. I have made simple corrections to the document text, except for Drawings
M1 and M2 of the Water Quality Monitoring Plan, for which I prepared new drawings based on the
previous submittals. The following response addresses the individual comments in the order presented
in the NCDEQ letter and specifies where the requested changes may be found within the work.
Design Hydrogeologic Report – ref. 15A NCAC 13B .1623(b)
Change the plan sheets from ‘Draft’ to ‘Final.’
The word ‘Draft’ has been removed from each of the plan sheets and replaced with ‘Final.’ During
discussions with the design team, it was realized that the order of the proposed phases was incorrect in
the December 2015 submittal. I have swapped the designations for Phase 3 and Phase 4 on the pdf files
(paper and electronic submittals).
Water Quality Monitoring Plan – ref. 15A NCAC 13B .1623(b)(3)
Section 2.0: Note whether MW-10S has been installed and sampled for Phase 2 activation since
submittal of this report.
As of this writing, the well MW-10S has not been installed. This well is scheduled for installation
concurrent with Phase 2D construction, anticipated for early-mid 2017. Arrangements will be made to
have this well installed and activated. Page 2 of the text shows a table that has been so amended.
Section 2.0: Note when the compliance wells for Phase 3 and Phase 4 are planned to be installed and
sampled.
W a te r Q u a l it y Mo n i to r i n g P l a n U pd ate
A n s o n Wa ste M a na ge m e nt F a c il i ty
2
2.0 RATIONALE FOR MONITORING LOCATIONS
Two upgradient wells serve as background, MW-2S (shallow) and MW-2D (deep), located along
the southern side Phase 1. Down-gradient compliance wells are located in pairs, generally to the
northeast of Phases 1 and 2 at a horizontal spacing appropriate to the subsurface conditions, plus
one pair to the southwest. These wells were located based on earlier studies and tend to focus on
the former drainage features. The well couplets (or pairs) monitor the upper saprolite aquifer
(Units 1 and 2 described in Phases 3 and 4 Design Hydrogeologic Report) and the upper bedrock
aquifer (Unit 3). Four wells, MW-6S/D and MW-7S/D, formerly located within the Phase 2
footprint, were abandoned. Figures M1 and M2 depict the monitoring locations.
New monitoring wells are proposed to the north and west of Phases 3 and 4, focusing again on
the drainage features that align with the regional joint pattern visible in the topography. The
potentiometric map found in the Design Hydrogeologic Report depicts a groundwater divide
aligned with the original ridgeline, with the saturated layer residing near the base of the saprolite
overburden (Units 1and 2). Well spacing on the north and west sides appears closer than on the
east side because surface drainage features originally converged to the east but not the other
directions. The presence of diabase dikes and a major geologic contact have not been shown to
affect the monitoring program. In keeping with recent modifications to the groundwater
monitoring program, only shallow wells extending to “auger refusal” are proposed at this time.
Background Well Bottom Depth
• MW-2S and MW-2D 31.0’ and 38.0’ respectively
Phase 1 Compliance Wells
• MW-1D 45.5’
• MW-3S and MW-3D 20.0’ and 40.0’
• MW-4S and MW-4D 30.0’ and 60.5’
• MW-5S and MW-5D 30.0’ and 49.0’
• MW-8S and MW-8D 35.0’ and 49.0’
Phase 2 Compliance Wells
• MW-9S 27.5’
• MW-10S 50’ anticipated based on Piez PH-29A*
Phase 3 Compliance Wells Anticipated Depth**
• MW-11S 50’ based on PH-29A
• MW-12S 30’ based on Old MW20-OB
• MW-13S 30’ based on Old MW20-OB
• MW-14S 45’ based on Old MW17A-BZE
• MW-15S 25’ based on Old MW17A-BZW
Phase 4 Compliance Wells Anticipated Depth**
• MW-16S 25’ based on Piez B-15
• MW-17S 20’ based on Piez B-10Dp
• MW-18S 20’ based on Piez B-9Dp
• MW-19S 40’ based on Piez B-2Dp
• MW-20S 35’ based on Piez B-3p
* Scheduled for installation in 2017 concurrent with Phase 2E construction
** Depths may vary – do not use these depths for absolute budgeting
W a te r Q u a l it y Mo n i to r i n g P l a n U pd ate
A n s o n Wa ste M a na ge m e nt F a c il i ty
3
Provisions have been incorporated into current sampling protocols that require sampling of deep
wells in the event there is insufficient water in the shallow wells. This practice will be continued
at the Phase 3 and 4 wells. By selecting locations near the drainage features, new wells are
expected to provide early detection of a release of contaminants onto the uppermost aquifer.
Based on the distance to the facility boundary, a point of compliance exists closer to the footprint
than the facility boundary, at distance of approximately 250 to 300 feet, so the review boundary
for well locations is 125 to 150 feet, allowing leeway to accommodate the topography. Well
screen intervals will be selected in the field based on existing conditions. Well installations will
be performed under the direction of a qualified geologist. Future amendments may be required
to ensure the wells provide representative monitoring results.
3.0 S URFACE SAMPLING
Surface water sampling locations are as follows:
Upstream
• Pinch Gut Creek Upstream (BG-1)
• Brown Creek Upstream (BG-2)
Downstream
• Brown Creek Downstream (SG-3)
• Pinch Gut Creek Downstream (SG-4)
Underdrains installed beneath certain cells have designated sampling points as follows:
UD-1
• Cell 2B East Formerly SG-5discharges to a sediment basin nearest MW-9
UD-2
• Cell 2C South includes Cell 2B West discharges to a swale leading to the
sediment basin nearest MW-10
UD-3
• Cell 2C North discharges to the sediment basin nearest MW-10,
downstream of UD-2
Please take note of the following conditions:
1. Samples will be acquired from within the pipe to avoid cross contamination with surface
water.
2. The drains are expected to stop flowing within a few months after installation; Note 5 on
Drawing M-1 specifies observation to detect flow (with record keeping) on a monthly
basis.
3. An internal inspection (e.g. camera survey) is required for UD-3 (see Note 5E on
Drawing M1).
332 Chapanoke Road 919 662-3015
Environmental Consultants Suite 101 FAX 919 662-3017
and Contractors Raleigh, NC 27603-3415 www.scsengineers.com
Offices Nationwide
December 1, 2015
File No. 02214709.00
Mr. Ed Mussler, PE
Permitting Branch, Solid Waste Section
NCDEQ Division of Waste Management
Green Square, 217 West Jones Street
Raleigh, North Carolina 27603
Subject: Design Hydrogeologic Investigation Report
Chambers Development of North Carolina
Anson Waste Management Facility, Phases 3 and 4
Polkton, North Carolina (Anson County)
Facility Permit No. 0403-MSWLF-2010
Dear Ed:
On behalf of Waste Connections, Inc., SCS Engineers, PC (SCS) has prepared the following Design
Hydrogeologic Report, prepared in accordance with North Carolina Solid Waste Rule 15 NCAC 13B
.1623, et seq. This report covers Phases 3 and 4 of the MSWLF site, covering 62 acres of footprints.
The site has been known as Chambers Development of North Carolina in the SWS files through
various changes in ownership. This work builds upon studies dating to the early 1990’s, including
the Phases 3 and 4 Design Hydrogeologic Report prepared in 2009 by David Garrett & Associates
and the earlier Site Suitability study prepared by others.
This study was conducted under the supervision of a qualified, licensed geologist and includes data
from 32 new test borings, most with piezometers, and 50 or more relevant borings from the earlier
work. Continuous ground water observation data extends back to 2001 for several monitoring wells.
This study was conducted during a wet winter/spring season, with observed water levels very close to
historic maximums. A six-month period of ground water observation was performed, i.e., December
2014 through June 2015, per prior discussions with SWS staff. Based on our familiarity with the
site, we believe this is a sufficient time period for data collection.
We appreciate the Section’s cooperation with this project. Please contact us if you have any
questions regarding this submittal.
Sincerely,
G. David Garrett, PG, PE Steven C. Lamb, PE
Project Manager Vice President
6&6(1*,1((563& 6&6(1*,1((563&
cc: Nelson Breeden, PE, Region Engineer, Waste Connections
C:\Users\3921gdg\Documents\Projects\Waste Connections\documents\DH transmittal letter 8-5-2015.doc
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
L
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ5HSRUW
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\3KDVHVDQG
6XEPLWWHGWR
1&'(4'LYLVLRQRI:DVWH0DQDJHPHQW
6ROLG:DVWH6HFWLRQ
:-RQHV6WUHHW
5DOHLJK1&
3UHVHQWHGWR
:DVWH&RQQHFWLRQV,QFRI1RUWK&DUROLQD
'R]HU'ULYH
3RONWRQ1RUWK&DUROLQD
6&6(1*,1((563&
&KDSDQRNH5RDG
5DOHLJK1&
'HFHPEHU
)LOH1R
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
LL
7DEOHRI&RQWHQWV
6HFWLRQ3DJH
,QWURGXFWLRQ
3URMHFW'HVFULSWLRQ
&XUUHQW6LWH&RQGLWLRQV
352-(&7+,6725<
6LWH6XLWDELOLW\,QYHVWLJDWLRQ
'HVLJQ+\GURJHRORJLF6WXGLHVIRU3KDVH
'HVLJQ+\GURJHRORJLF6WXGLHVIRU3KDVH
+\GURJHRORJLF,QYHVWLJDWLRQ
/RFDODQG5HJLRQDO*HRORJ\D
6LWH5HFRQQDLVVDQFHD
7RSRJUDSK\DQG'UDLQDJH
%HGURFN&KDUDFWHULVWLFV
6SULQJV6HHSVDQG*URXQG:DWHU'LVFKDUJH)HDWXUHV
)LHOGDQG/DERUDWRU\7HVWLQJDDQG
7HVW%RULQJ'DWDD$
/DERUDWRU\'DWDD%DQG&
)RUPDWLRQ'HVFULSWLRQVD'
)LHOG+\GURORJLF7HVWLQJD(
2WKHU,QYHVWLJDWLYH7HFKQLTXHVD
6WUDWLJUDSKLFDQG+\GURJHRORJLF8QLWVD
:DWHU7DEOH,QIRUPDWLRQD$'
6KRUW7HUP:DWHU/HYHOVD$
/RQJ7HUP:DWHU/HYHOVD%
(VWLPDWHG6HDVRQDO+LJK:DWHU7DEOHD&
)DFWRUV7KDW,QIOXHQFH:DWHU7DEOHD'
+RUL]RQWDODQG9HUWLFDO*URXQG:DWHU)ORZ'LPHQVLRQVD
*URXQG:DWHU&RQWRXUVD
)LHOG,QYHVWLJDWLRQ5HFRUGVDDQGDQG
2WKHU*HRORJLF+\GURJHRORJLF&RQVLGHUDWLRQVD
6LWH6SHFLILF,QIRUPDWLRQ
*URXQG:DWHU0RQLWRULQJ&RQVLGHUDWLRQVE%
5HOHYDQW3RLQWRI&RPSOLDQFHE&
%HGURFN5RFN&RULQJ'DWDE'
%HGURFN&RQWRXU0DSE)
+\GURJHRORJLF&URVV6HFWLRQVE*
$UHD*URXQG:DWHU)ORZ5HJLPHE+
3LH]RPHWHU7HVW%RULQJ$EDQGRQPHQWE,
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
LLL
/LVWRI7DEOHV
1R 7LWOH
7HVW%RULQJ3LH]RPHWHU'DWD
*HRWHFKQLFDO/DERUDWRU\'DWD
)LHOG+\GUDXOLF&RQGXFWLYLW\'DWD
*URXQG:DWHU2EVHUYDWLRQ'DWD
9HUWLFDO*URXQG:DWHU*UDGLHQWV
+RUL]RQWDO*URXQG:DWHU*UDGLHQWV
*URXQG:DWHU+\GURJUDSKVIROORZWKHWDEOHV
/LVWRI'UDZLQJV
'UDZLQJ 'UDZLQJ 7LWOH
&&RYHU'UDZLQJ
6 ([LVWLQJ&RQGLWLRQV:KROH6LWH
6 7HVW%RULQJ/RFDWLRQV3KDVHVDQG
6 )HEUXDU\*URXQG:DWHU&RQWRXUV
6 (VWLPDWHG0D[LPXP6HDVRQDO+LJK*URXQG:DWHU&RQWRXUV
6 *HQHUDOL]HG%HGURFN$XJHU5HIXVDO&RQWRXUV
0 *URXQG:DWHUDQG/DQGILOO*DV0RQLWRULQJ/RFDWLRQV
; +\GURJHRORJLFDO&URVV6HFWLRQVRI
; +\GURJHRORJLFDO&URVV6HFWLRQVRI
; +\GURJHRORJLFDO&URVV6HFWLRQVRI
$SSHQGLFHV
'DWD7DEOHV
'UDZLQJV
7HVW%RULQJ/RJV
*HRWHFKQLFDO/DERUDWRU\'DWD
6OXJ7HVW3HUPHDELOLW\&DOFXODWLRQV
6XSSOHPHQWDO'DWD
:DWHU4XDOLW\0RQLWRULQJ3ODQ
/DQGILOO*DV0RQLWRULQJ3ODQ
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
,1752'8&7,21
SCS Engineers, PC (SCS) performed a Design Hydrogeologic investigation for the Anson
Waste Management Facility, Phases 3 and 4. The site is near Polkton, in Anson County,
North Carolina. The purpose of the study is to verify that subsurface conditions, i.e., base
grade separation to groundwater and bedrock, are consistent with the findings of earlier
studies for the design of the 60-acre expansion area. This study was performed in accordance
with North Carolina Solid Waste Management Rule 15A NCAC 13B .1623 (b), in support of
a Permit to Construct application. The report follows the order of presentation in the rules.
352-(&7'(6&5,37,21
Chambers Development of North Carolina, Inc. (now a subsidiary of Waste Connections,
Inc.) owns and operates the 1200-acre Anson Waste Management Facility (Permit No. 04-03).
Phase 1 became operational ca. 2001. Phase 2 is a contiguous expansion north of Phase 1,
permitted ca. 2009. Phase 3 is a 30-acre expansion to the north of Phase 2, while Phase 4 is
another 30-acre expansion to the west of Phase 2. All phases were included in the original
site permitting. Tentative base grades for Phases 3 and 4, previously developed by others,
have been revised to meet the 4 foot minimum vertical separation requirement, but these are
subject to further revision. Both phases are subdivided into three or four lined cells.
&855(176,7(&21',7,216
Portions of study area have been used for soil borrow, which altered the original topography.
An estimated average of 25 feet of soil has been removed from the borrow areas. Current
topo, updated for this investigation, is shown in Drawing S1. Ground surface elevations
within Phase 4 vary from El. 330 feet (MSL) within the northern end of the footprint to El.
310 in the south end. Phase 3 ground surfaces vary from El. 350 feet along a ridge within the
western side of the footprint to El. 260 feet near the northeastern corner. The original topo
consisted of a dissected ridge oriented north-south within the western side of the site, which
divided surface drainage east and west. To the west, ground surfaces slope steeply (15%)
through thick woods to Brown Creek; to the east the ground is sparsely vegetated slopes
gently (2-5%) to Pinch Gut Creek. The creeks flow north, forming the property boundary.
Many of the on-site drainage features were classified as ephemeral streams and were
evaluated for 401/404 jurisdiction. A former drainage feature extending into Phases 1 and 2
was mitigated under an approved mitigation plan, ca. 2000. The original delineation did not
show any stream or wetlands features in Phases 3 or 4. The removal of vegetation and borrow
activities have resulted in poor surface drainage and water uptake, thus water tends to pond
within the upper few feet beneath the surface in the central higher elevations of the site. This
impacts ground water recharge and is believed to have produced atypically high water levels
in portions of the site. The region experienced normal to high rainfall during the
investigation. No rock outcrops were observed in the Phases 3 and 4 areas, but some cobble-
size “float” was observed.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
352-(&7+,6725<
The following recaps the various historical documents reviewed for the preparation of this
Design Hydrogeologic study of the Phases 3 and 4 footprints. Throughout the following text,
references will be made to the following works. Relevant data from the earlier work has been
incorporated into this report, referenced as appropriate.
6,7(68,7$%,/,7<,19(67,*$7,21
The initial Site Suitability work was performed ca. 1992 by GZA Environmental, Inc. The
work included test borings with numerous piezometers (the old MW-series and P-series), field
and laboratory testing, rock coring, approximately 100 test pits to evaluate clayey soils, and a
magnetometer study to delineate two diabase dikes contained within the site. The earlier
work included the Phase 3 and 4 foot prints and characterized the basic ground water flow
regime, which has been expanded upon (but remains consistent) within the later detailed
design-stage investigations. The earlier work is reported in the May 28, 1992 Site
Application, Volumes I – III, with follow up reports including the May 1995 Supplement to
Hydrogeological Study and an undated volume containing Appendices A – G.
'(6,*1+<'52*(2/2*,&678',(6)253+$6(
Several documents containing hydrogeologic information, prepared subsequent to the initial
Site Suitability report, have been reviewed. The Construction Permit Application prepared by
GZA with a revised date of November 12, 1996, approved by Solid Waste Section on June 1,
2000, includes references to a separate volume titled Section 7.0, Design Hydrogeologic
Report, prepared by TRC Environmental, dated December 1998. This document included the
Water Quality Monitoring Plan and deep coring data that extended into Phases 3 and 4. The
monitoring well installation records were found in an archive file at the Solid Waste Section.
The earlier studies focused on the diabase dikes and included borings extending to depths up
to 200 feet. Additional evaluation of the diabase dike and ground water conditions within
Cells 1D and 1E were performed in September 2002 under the direction of the author. The
earlier studies culminated with some 133 soil test borings, piezometers and monitoring wells
over the entire site, which included 24 borings (about half extending into bedrock) located
within proximity to the Phases 3 and 4 study areas, and another dozen in close proximity.
'(6,*1+<'52*(2/2*,&678',(6)253+$6(
The Phase 2 study was completed by ESP Associates and David Garrett & Associates
between 2003 and 2007. The investigation included an additional 41 soil test borings with
piezometers at 34 locations, including 7 nested pairs. Ten of these borings are in close
proximity to Phases 3 and 4. The study included 35 slug tests to determine the in-situ
coefficient of hydraulic conductivity, along with laboratory testing of representative soil
samples and bedrock cores. Several of the Phase 2 borings were located in close proximity to
Phases 3 and 4. Relevant test boring, field and laboratory test data are included in this report.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
+<'52*(2/2*,&,19(67,*$7,21
%$DQG$
Drawing S-2 shows the locations of test borings and piezometers installed within and near
Phases 3 and 4. Groundwater potentiometric surface maps are presented in Drawing S3 and S4,
representing the February 2015 observations and estimated maximum long-term seasonal high
(MLSH) ground water elevations, respectively. Drawing S-5 presents the bedrock surface map
based on auger refusal data. The data are presented in cross-sectional views in Drawings X1
through X3. Tabulated subsurface data, groundwater observations, field and laboratory data, and
calculated gradients and velocities are presented on Tables 1 through 6. Supporting data are
presented in Appendices 1 through 6.
/2&$/$1'5(*,21$/*(2/2*<$
The site is located in the southern central Piedmont physiographic and geologic province of
North Carolina, specifically along the contact between the Carolina Slate Belt to the west and the
Deep River Triassic Basin to the east (see Figures 1 and 2). Published mapping 1 shows the site
slightly east of the contact, i.e., the site is mostly within the basin, but contacts mapped at that
scale can vary – the site investigation revealed rock units associated with the Slate Belt in the
western portions of the site and rocks associated with the Triassic basin to the east, with the
contact passing through the Phases 3 and 4 footprints.
SITE
Figure 1 – North Carolina Geologic Map
The southern Appalachian Piedmont has experienced a complex geologic history involving
multiple compression events (mountain-building uplifts) and at least one tension event (rifting).
Based on the literature, ancient sutures between the many former exotic terranes that comprise
the Piedmont contain no active faults, and no active seismicity is known. Three principal rock
formations are mapped in proximity to the site:
1 North Carolina Geological Map, Scale 1:62,500, NC Geological Survey, 1985.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
Triassic – sedimentary “red beds” associated with the
Chatham group in the Deep River Basin; described as gray,
reddish brown to maroon, non-marine (fluvial) sandstone,
siltstone, fanglomerate or conglomerate; occurring in
undifferentiated, lenticular beds; locally referred to as the
Wadesboro Formation according to some texts (such are
references made within this work); typically associated with
post-Appalachian rifting during the Triassic period (240 –
205 m.y.). Conjugate jointing suggests possible
emplacement during back limb tension concurrent with the
late-stage compression stages of the Appalachian uplift.
Such tectonic events were recorded throughout the Paleozoic
rocks in the region. Fig. 2 – NC Geologic Map (Excerpt)
Argillite – metasedimentary and metavolcanic formations associated with either the Cid or Floyd
Church formations, described as light gray (often silvery gray) to bluish gray or brown, well
bedded, mainly clay and silt size particles, laminated with prominent bedding plane cleavage
(“Slate Belt”); also present are beds of mudstone, silty sandstone (greywacke), or conglomerate;
associated with the pre-Appalachian archipelago of the late-Proterozoic to late-Cambrian periods
(620 – 560 m.y.)
Diabase – intrusive gabbroic rocks described as dense, dark gray-black, medium grained dikes
and sills, Jurassic in age (205 – 138 m.y.), mobilized during post-Appalachian tension events; the
linear characteristics and deep, near-vertical orientation bring an interest for potential
groundwater movement in environmental site evaluations; these rocks contain iron-oxides
(spinels) that produce a strong magnetic signature, useful for non-intrusive mapping, but
experience has demonstrated that the anomaly patterns typically present much larger than the
actual units, which can mislead investigators in the determination of unit boundaries.
None of these formations typically form outcrops, except along sharply incised streams, and
none were noted on the site although exposures are present in nearby road cuts. The Triassic and
Slate Belt rocks are easily distinguished based on color and texture and have unique soil
characteristics. Triassic formations near the site are typically dull red or dark gray-maroon and
present as hard clayey silt, often with a friable “chunky” texture, while the Slate Belt rocks are
silvery-gray when fresh and weather to bright yellow to red or mottled gray silt, typically clayey.
Soils in this region typically occur as a mix of fine grained sands, silts and clays that weather in-
situ from the underlying bedrock, called “saprolite” (or “residual soils”). These materials
typically become less weathered and denser with increasing depth, transitioning to “partially
weathered rock” or PWR, an engineering term in regional use that is commonly applied to
residual soils exhibiting standard penetration resistance values in excess of 100 blows per foot.
Depths to the PWR vary with the bedrock mineralogy, typically shallower in the higher areas and
deeper in the low areas; i.e., the density of the subsurface material, in conjunction with fracture
patterns, gives rise to the topography. PWR can contain boulders and zones of harder material,
and thicknesses vary considerably, sometimes extending several tens of feet below the surface.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
The PWR is of interest as a primary groundwater pathway – these soils tend to be coarse grained,
hence they are highly porous and often “opened” with secondary porosity, e.g., jointing and
exfoliation fractures. Within a typical piedmont soil profile, upper soils are often clay-rich and
less permeable than the PWR, forming an upper boundary to the more transmissive zone. The
deeper, unweathered bedrock is also less permeable, providing a lower boundary – this can lead
to partially to fully confined conditions within the PWR aquifer. Boundaries between soil, PWR
and bedrock can be gradual and spatially variable. Sometimes a zone of PWR can extend along
fractures deep into the bedrock, creating “slots” – these are separate but interconnected aquifers
– but typically the PWR is thought to mantle the bedrock, connecting the water bearing zones.
Either rock type on this site may weather to plastic clay near the surface, but localized sand or
gravel lenses are possible, especially in the Slate Belt rocks, which tend to contain stringers of
quartz or other small inclusions. The near-surface clay tends to occur in lenticular pockets of
unpredictable depth and extent. Deeper soils tend to become sandy or gravelly in the Slate Belt
rocks; chunky and rock-like (but usually friable) in the Triassic rocks. Diabase typically
weathers deeply to highly plastic clay beneath highlands (outcrops are rare), but the relatively
small surface area limits soil availability; deeper diabase soils tend to be stony.
6,7(5(&211$,66$1&($
7RSRJUDSK\DQG'UDLQDJH
The Anson Waste Management Facility is
located in western Anson County, North
Carolina, approximately 4 miles east of
Polkton, accessed from US 74. Figure 3
shows the topo as a large dissected ridge,
oriented to the northeast-southwest, along the
regional strike of the geologic formations. The
site is bounded on two sides by converging
perennial streams – the facility boundary is
roughly triangular – on the north and west by
Brown Creek and on the east by Pinch Gut
Creek. Drainage is directed toward the two
boundary streams via a dendritic network of
numerous smaller streams (some seasonal) and
normally dry seasonal drainage features.
Ground surface elevations within Phase 4 vary
from approximately El. 330 feet (MSL) near
the northern end to approximately El. 310 in
the south end. Within Phase 3 ground surface
varies from approximately El. 350 feet along
the remnant ridge in the western side of the
footprint to approximately El. 260 feet along
Figure 3 – USGS Topographic Map the eastern margin.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
Phases 3 and 4 are situated across the crest of the ridge, which splits the drainage from west to
southwest in Phase 4 and northeast to east in Phase 3. Drainage patterns are not complex:
toward the east two normally dry drainage features dissect the surface, draining east and
northeast toward spring-fed streams in the lower elevations (outside the footprint), which lead to
the large boundary streams; to the west and north are numerous deep drainage features, some
wet, most are not, that lead to the boundary streams. The drainage features align with regional
jointing and reflect fracture patterns that extend beneath the Phases 3 and 4 footprints, making
the drainage features surrounding the footprint the logical places to monitor ground water.
The site is hydraulically isolated from its surroundings, but surface drainage from up-gradient of
Phase 1 has been diverted to perimeter channels leading toward storm water basins. The maps
show a 100-year floodplain located near both boundary creeks, but none within Phases 3 and 4.
Some sluggish drainage was observed along flatter, central portions of the study area, resulting
from recent grading activities. Nothing concerning topography and drainage, observed either on
the maps or per reconnaissance, indicates any detriment to monitoring the site.
%HGURFN&KDUDFWHULVWLFV
Rock exposures are not common in any of the mapped formations near the site, thus the
opportunity for in-situ characterization is limited. No natural outcrops have been identified
within the Phases 3 and 4 footprints, except for some “float” consisting of quartz cobbles,
remnant of quartz “stringers” or veinlets, and scattered diabase nodules of various sizes. The
saprolite exposed in the deep grade cuts provided clues to the deeper bedrock, including both the
friable, angular (highly jointed) argillite and a sandy, rounded pebble-conglomerate associated
with the Triassic formation. Within a deep cut for an underdrain being installed beneath Cell 2C
in Phase 2, the weathered diabase dike was exposed and the contact between the argillite and the
Triassic sediments was discernable approximately where it is shown in the site mapping.
Rock core descriptions presented in the test boring records indicate the following characteristics,
typical of the formations known elsewhere in the region:
Triassic – hard, pinkish gray, fine to coarse sandstone with low-angle to moderately
dipping joints, slightly weathered to unweathered, interbedded with hard, dusky red
siltstone with few shallow unweathered joints/fractures; zones called “greywacke” (very
silty sandstone) were noted; RQD varies from 77 to 100 percent. This formation was
sampled via coring techniques and/or rotary-air drilling at borings P-12D, MW-26SB,
MW-27SB, MW-27DB, MW-32SB, and MW-33SB from prior investigations.
Argillite – hard, pale gray, half-inch thick beds dipping 30 to 45 degrees, with highly
weathered zones, brecciated (pulverized) zones; other minor fractures (some annealed
with calcic minerals) and clay-filled zones; highly weathered and strongly oxidized (iron-
stained) joints throughout; RQD varies from 27 in fractured and weathered zones to 100
percent. Representative borings from the recent investigation include B-4, B-18, B-24
and from the older investigations P-1D, P-14D, MW-12SB, MW-13 SB, MW-13DB,
MW-14BZW, MW-14A-SB, MW-16DB, MW-16SB, MW-17SB, and MW-17A-BZW.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
Diabase – hard to very hard, dark bluish gray, highly fractured low-angle to steeply
dipping fractures (closely spaced), some clay-filled; heavy iron-oxide stains, white quartz
fragments; RQD varies from 5 in fractured and weathered zones to 65 percent. Borings
penetrating into the unit are P-13D, MW-14B-BZW, MW-14B-DD, MW-17A-BZE,
MW-17A-DD, and MW-1D from prior investigations.
6SULQJV6HHSVDQG*URXQG:DWHU'LVFKDUJH)HDWXUHV
Perennial or seasonal springs and seeps (with associated wetlands) were noted down gradient of
the Phases 3 and 4 study area. These features serve as localized groundwater discharge features
for the uppermost aquifer. Streams leading from these features become well-developed creeks
further down gradient and lead to the named streams along the facility boundary. The larger
creeks and boundary streams serve as discharge features for the deeper reaches of the uppermost
aquifer. Observation during the wet season suggests that the smaller drainage features within the
interior of Phases 3 and 4 may discharge “perched” water, e.g., infiltrated water impounded in
the near-surface soils, or “attenuate” runoff, as well as conveying direct runoff following periods
of heavy rainfall, but these are not technically ground water discharge features.
),(/'$1'/$%25$725<7(67,1*
$$1'
7HVW%RULQJ'DWDD$
Table 1 presents a summary of the test boring data, e.g. depths to bedrock, weathered rock,
ground-water depths, total boring depths, and piezometer screen intervals, arranged by
hydrogeologic unit. Test boring logs and piezometer completion records are presented in
Appendix 3, providing relative density data, lithologic characteristics, USCS classifications, and
groundwater depths. Supplemental data from earlier investigations are presented in Appendix 6.
Borings for Phases 3 and 4, i.e., the B-series, were contracted to Red Dog Drilling, Inc., NC Well
Contractor Certification #2789.
Test boring locations were selected using the original topographic features as a guide to the
fracture pattern and existing landmarks as references. Each piezometer and boring was surveyed
by a professional surveyor and tied into the North Carolina Grid Coordinate System (NAD 88).
A total of 34 test borings were completed. All but four encountered water and were converted to
temporary standpipe piezometers, i.e., 2-inch diameter PVC pipe, screened across water bearing
zone with a sand pack, a 2-foot thick bentonite seal and grout to the surface. Nested pairs or
“couplets” were constructed at two locations (B-2S & B-2D, and B-25S & B-25D).
The recent soil test borings extended to depths ranging from 15 feet (B-32) to 50 feet (B-5) using
hollow-stem augers turned by an ATV-mounted drill rig. Standard penetration tests (SPT) were
performed at designated intervals in accordance with ASTM D 1586-84 to provide an index for
estimating soil strength and relative density. Split-spoon samples were field classified and
representative samples were submitted to laboratory classification and index testing. Earlier
investigations included undisturbed samples subjected to laboratory testing (B-17, B-22).
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
Thirty (30) of the thirty-four (34) recent borings were advanced to auger refusal to characterize
the top of bedrock surface (Table 1); forty-four (44) of the earlier fifty-eight (58) borings
encountered refusal. Rock was cored at three locations (B-4, B-18 and B-24) in the recent
investigation, and eight of the relevant earlier borings were cored (PH2-14A, PH2-24A, old
borings MW-8D, MW-26SB, MW-14A-BZE, P-14D, MW-16DB and MW-17SB).
/DERUDWRU\'DWDD%DQG&
Table 2 presents laboratory test data used to describe the hydrologic properties of the soils, e.g.
grain size distribution, Atterberg limits, and classification, along with standard Proctor,
consolidation, consolidated undrained triaxial shear, and triaxial permeability testing. The
number and types of laboratory tests completed are summarized below:
Triaxial Shear Strength, CU - remolded D4767-95 1
Flexible wall permeability – remolded D5084 1
Standard Proctor Compaction D698 1
Grain Size w/Hydrometer D422, D1140 14
Atterberg Limits D4318 9
Natural Moisture D2216 14
The laboratory data are considered representative of soil conditions within the study area. Soils
were classified in the laboratory according to the Unified Soil Classification System (USCS), and
these descriptions were matched to the boring logs to verify the visual soil classifications.
Laboratory data are presented in Appendix 4, including relevant data from earlier investigations.
The soils at the site generally classify as silty clay and clayey silt (ML or CL), with minor silty
sand (SM) and high plasticity clays (CH). Remolded samples of the higher plasticity soils
(earlier data) exhibit laboratory hydraulic conductivity test values ranging from 10-5 cm/sec to
10-8 cm/sec. The low permeability soils are distinguished by a reddish-orange color and clay-
like appearance, as opposed to the more granular, tan-brown to gray clayey silt. The lower
permeability soils are typically limited to the upper few feet beneath the surface, are not present
at all test-boring locations, and occur in “pockets.” near the surface are common throughout the
piedmont. A discussion of field hydraulic conductivity values measured at the piezometer
locations is presented in Section 3.3.4.
)RUPDWLRQ'HVFULSWLRQVD'
Six generalized hydrogeological cross-sections (Drawings X1 – X3) provide a graphical
presentation of the subsurface data. Soils encountered by the test borings comprise clayey and
sandy silt, and silty sand, weathered from the underlying bedrock. The near surface soils exhibit
SPT values generally ranging from 10 to 50 blows per foot (bpf). These soils transition with
depth to very dense saprolite, which exhibits a relict rock-like texture and SPT values of 50 bpf
to over 100 bpf, but which can still be penetrated by a hollow stem auger. The upper rock
surface is transitional; that is, the overlying soils grade into rock at variable depths, resulting in a
differential weathering profile.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
In general, sandy silty clays to silty clayey sands extend to depths of approximately 5 or less feet
varying to 44 feet below the ground surface, underlain by partially weathered rock (see Table 1).
Partially weathered rock is clearly visible at the surface in the borrow areas, and encountered less
than 5 feet deep at B-2, B-3, B-7, B-11and B-16. Outside the borrow areas, PWR was
encountered at depths ranging from 10 to 25 feet.
During advancement of soil test borings, extra care was taken to identify the first split spoon
sample exhibiting the presence of groundwater. Groundwater is normally encountered within the
PWR or in the overlying less-dense saprolite. The borings were typically dry above discrete
water bearing zones (see following table). Based on the visual classifications in the field and
laboratory testing, little difference exists with respect to grain size and texture of the soils with
the water bearing zone soils (PWR) and the overlying, non-saturated soils.
Bedrock depths, typically defined by “auger refusal” conditions in the test borings, occur at
depths varying from 15 to 50 feet across the Phases 3 and 4 study area. The differential
weathering patterns extend below “auger refusal” depths based on description of the rock cores
(Section 4.3). High angle jointing was observed in the rock cores, with deep weathering and
secondary mineral staining present in the upper reaches of the cores. Percolation of groundwater
into the jointing promotes internal weathering (chiefly the breakdown of feldspars and
amphiboles or pyroxenes, if present, into clay minerals). The test borings indicate no voids,
faults, compressible zones or other potentially unstable features.
)LHOG+\GURORJLF7HVWLQJD(
In-situ permeability tests were performed in 24 piezometers to characterize the horizontal
permeability or hydraulic conductivity of the subsurface materials. In-situ tests were performed
using both falling head and rising-head “slug test” techniques, analyzed by the Bouwer and Rice
method. Earlier field tests (discussed below) used both slug tests and packer tests, which
measure the water intake under pressure within discrete depth intervals in open-hole wells.
Hydraulic conductivity test data are presented in Appendix 5 and summarized on Table 3.
Observed field conductivity values vary as follows:
+LJK9DOXH /RZ9DOXH *HRPHWULF0HDQ
Units 1 and 2 7.57E-04 ft/min 2.74E-07 ft/min 8.43E-05 ft/min
3.85E-04 cm/sec 1.39E-07 cm/sec 4.29E-05 cm/sec
B-13 B-29
Unit 3 6.79E-03 ft/min 3.79E-06 ft/min 1.48E-03 ft/min
3.45E-03 cm/sec 1.92E-06 cm/sec 7.53E-04 cm/sec
B-24 B-03
Earlier studies of Phase 2 reported field conductivity values varying from 6.76 x10-4 cm/sec to
2.14 x10-4 cm/sec, with a mean value of 4.81 x10-4 cm/sec within Unit 1, and values varying
from 7.1 x10-4 cm/sec to 5.5 x10-4 cm/sec with a mean value of 6.16 x10-4 cm/sec within Unit 3.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
2WKHU,QYHVWLJDWLYH7HFKQLTXHVD
Test Pits – Some 75 or more test pits were excavated (by others) during the Site Suitability
investigation, more during the Phase 1 Design Hydro study. The test pits were used to identify
areas of potential soil borrow for liner construction and other uses.
Visual Observations – Many soil exposures have resulted from various soil borrow activities.
These exposures are soil pedestals left around some of the old piezometers and cut banks along
the margins of the borrow areas. Representative photographs of the Triassic soils, weathered
argillite (PWR), and soils formed above the diabase are shown in Figures 4 – 6, respectively.
Magnetometer Survey – Diabase dikes are
linear magnetite-bearing rock formations that
commonly occur throughout the Piedmont.
The rocks are easily identified by their color,
hardness, density, grain size, and weathering
pattern when sufficient exposures exist.
These features are of interest for
environmental site monitoring due to a once
popular but unproven belief that the dikes
may serve as conduits (when fractured) or as
impediments to groundwater flow (non-
fractured portions). Most of the dikes
observed first-hand by the author at other sites
(and within Cell 1D) follow existing joint
patterns in the host bedrock, that is, the dikes
intruded along pre-existing planes of
weakness mobilized along earlier stress fields.
Many of the major dikes have been mapped
by the NC Geological Survey and/or the US
Geological Survey.2
Earlier studies included a proton-precession
magnetometer survey, which identified two
dikes oriented north- south (see Drawing S2)
and slightly northwest. Regional mapping
Figure 4 – Argillite PWR in Phase 3 (Unit 2) indicates two orientations for two intrusive
episodes. The bend could be caused by the intersection of two dikes at different orientations.
Detailed work (by the author) 3 found the thickness of the actual dike in Cell 1D to be much less
2 Burt, E.R. et al, Diabase Dikes of the Eastern Piedmont of North Carolina, Information Circular 23,
North Carolina Geological Survey, 1978
3 Report of Findings of Additional Hydrogeologic Investigations at Anson Waste Management Facility,
ENSR International (unpublished report to Allied Waste, submitted NC DENR), 9/18/02
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
than the anomalies shown in the plan views of the earlier reports. The cause of this discrepancy
is believed to be the dip of the dikes toward the southwest, determined from drilling data and test
pits. The dip causes a larger anomaly pattern that would be observed if the dikes were vertical.
Whereas the magnetic anomaly pattern shown on the earlier maps is linear and many tens of feet
wide, the actual rock units are estimated to be only 5 to 10 feet thick.
While the easternmost dike does extend into
Phases 3 and 4 (Drawing S2), the drilling data
indicate a plunge (decrease in elevation) toward
the north, which lessens the influence on the
near-surface hydrology. Earlier studies focused
on the dikes with test borings to satisfy
regulatory concerns, including portions of Phases
3 and 4. Based on the data, the dikes are
sufficiently well understood to incorporate into
the monitoring program, thus no additional
studies were performed during this Design
Hydrogeologic study for Phases 3 and 4.
6WUDWLJUDSKLFDQG+\GURJHRORJLF8QLWV
D
Drawings X1, X2 and X3 present generalized
subsurface profiles prepared from the test boring
and laboratory data, which indicate the
hydrogeologic and lithologic units for this site.
In general, the hydrogeologic units were based
on the relative density of the saturated residuum
(saprolite) and underlying bedrock: Figure 5 – Triassic conglomerate in Phase 3 (Unit 1)
Unit 1 is defined as the variably dense saprolite (in-situ weathering products of the
underlying bedrock) existing beneath the water table that exhibits standard penetration
resistance values less than 100 bpf. At some test boring locations, Unit 1 exhibits grain
size differentiation with depth, i.e., finer grain materials were encountered near the
surface, underlain by somewhat coarser materials. This weathering profile is not
ubiquitous – at some locations the coarser grain soils were minimal or absent, owing to
the generally fine grain nature of the parent bedrock.
Unit 2 is the generally denser – but often more porous – saprolite existing beneath the
water table that exhibits standard penetration resistance values over 100 bpf. Typically, a
machine driven hollow stem auger can penetrate PWR. The boundary between Unit 1
and Unit 2 is gradational. These units collectively make up the unconfined “water table”
aquifer and are considered the uppermost aquifer at the site, but depending on clay
content, Unit 1 can act as a partial confining layer and Unit 2 serves as the primary water
conveyance, often exhibiting artesian conditions.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
Unit 3 is the upper fractured bedrock (typically weathered), which typically yields auger
refusal and requires rotary coring and/or air-hammer techniques to penetrate. These
materials typically become denser and less weathered with increasing depth. The
boundary between Unit 2 and Unit 3 is often gradational, and these units can exhibit
similar physical characteristics hydraulic properties. The entire hydrogeologic profile
can be considered as a gradual transition from the deeply weathered soil through less
weathered (denser) saprolite to eventual non-weathered bedrock.
The geologic formations exhibit similar weathering characteristics; density may vary within
short distances, both vertically and laterally, thus boundaries are irregular and gradational
between the soil and weathered rock. The diabase is typically harder than Triassic sediments, and
the high ridge on the western side of the site formed over the harder yet argillite. The subsurface
profiles show irregular unit boundaries that reflect deeper weathering beneath drainage features,
following regional jointing.
Units 1 and 2 typically
exhibit porous media flow
conditions, characteristic of
an unconfined “water table”
aquifer. One or both units
are ubiquitous across the site,
but due to local variation in
mineralogy and fracturing,
either unit may not be
present everywhere. Unit 3,
the upper fractured bedrock
aquifer, exhibits a discrete
fracture flow along relatively
widely spaced joints – often
accompanied by weathered
zones – which imparts
partially confined conditions,
e.g., elevated hydrostatic
Figure 6 – Apparent nodular weathering of diabase (Unit 1) pressure at depth. The
“partially weathered rock” (Unit 2) can exhibit both conditions – porous flow and elevated pore
pressures – at different locations. These conditions are typical throughout the piedmont region.
Top-of-bedrock contours, represented on Drawing S5 and on the cross-sections, generally reflect
a subdued expression of the surface topography. The contours exhibit a smooth transition
between the rock types. The hydrogeologic units are similar to conditions observed elsewhere
on the site. Ancient faulting (not active in Holocene time) may be present along the argillite-
Triassic sandstone contact; other geologic features observed within the study area include the
two diabase dikes running approximately parallel to one another in the northwestern portion of
the study area. These geologic and ground water conditions are typical of the piedmont region.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
:$7(57$%/(,1)250$7,21$$'
6KRUW7HUP:DWHU/HYHOVD$
Table 4 presents a summary of short-term ground-water levels observed at the end of drilling
and stabilized readings obtained after a period of one to fourteen days after completion of the
piezometers. The vast majority of the borings exhibited water levels that stabilized above their
initial levels, averaging several feet higher than their initial readings. Many of the borings were
initially dry or exhibited damp soils, indicating slow recharge.
/RQJ7HUP:DWHU/HYHOVD%
Table 4 also presents a summary of long-term water level observations within the Phases 3 and 4
study areas, covering a 6+ month period during and following the investigation in 2014-2015.
Ground water hydrographs for selected piezometers follow Table 4, from which the long-term
trends can be discerned. Historic monitoring well observation data is presented in Appendix 6,
covering a period from 2001 through present, to which the piezometer data can be correlated.
An examination of the regional climatic trends provides a useful correlation with historic ground
water trends. Long-term regional climatic data (Figure 7) indicate that the summer and winter
months of 2002 experienced severe drought, based on Palmer Hydrologic Drought Severity
Index (PHDI).4 The use of the Palmer indices provides a more complete description of climatic
trends than precipitation data alone, since evapo-transpiration effects (e.g., temperature, solar
radiation, leaf cover, relative humidity, and winds) are factored into the overall moisture balance
in the atmosphere and at the ground surface. The data show a good correlation between climatic
trends and historic ground water levels observed in the monitoring well network.
The climatic trends in the region show moderate to historically severe drought from mid-1998
through late 2002, after which a sudden reversal put the region into an unusually wet spell
persisting through mid-2003. This caused long-term lowering the water table at several
monitored sites throughout the Piedmont region known to the author, which include Anson
County (this facility), High Point, Rutherford County, and CMS,5 followed by record high water
levels that were observed throughout 2003 and continuing into 2004.
This trend is reflected in the monitoring well network at Anson County (see Figure 9), where the
initial 24 months of data shows relatively low ground water levels, albeit there could be some
aquifer relaxation, i.e., pore-pressure stabilization during this period, followed by a significant
increase in the latter portion of 2002 to maximum recorded values in mid-2003. Then after the
“peak” in 2003 the water levels exhibit seasonal fluctuation within a fairly consistent range with
a gradual decrease through 2007 (reflecting the PHDI exactly).
4 Time Bias Corrected Divisional Temperature-Precipitation-Drought Index, (TD-9640),
National Oceanic and Atmospheric Administration, March 1994.
5 Site Suitability Application Report, Kersey Valley MSW Landfill Phase 3, High Point, North Carolina,
Permit 41-04, March 1999, Design Hydrogeologic Evaluation for CMS Landfill V Phases 3 and 4 ,
Concord, North Carolina, Permit 13-04, November 2005.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
Figure 7 – NOAA Historic Palmer Hydrologic Drought Index Data (Regional)
Figure 8 – NOAA Palmer Hydrologic Drought Index Data (Regional)
Upon closer inspection of the last 4 years, a similar trend is repeated, though not as drastically,
during the 2013-2014 season (Figure 8).
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
Figure 9 – On-Site Monitoring Well Trends (Selected Wells)
Figure 10 – On-Site Monitoring Well Trends (Selected Wells)
ϮϲϮ
Ϯϲϲ
ϮϳϬ
Ϯϳϰ
Ϯϳϴ
ϮϴϮ
Ϯϴϲ
ϮϵϬ
Ϯϵϰ
Ϯϵϴ
ϯϬϮ
ϯϬϲ
ϭͬ
Ϯ
ϰ
ͬ
Ϭ
ϭ
ϳͬ
Ϯ
ϯ
ͬ
Ϭ
ϭ
ϭͬ
ϭ
ϵ
ͬ
Ϭ
Ϯ
ϳͬ
ϭ
ϴ
ͬ
Ϭ
Ϯ
ϭͬ
ϭ
ϰ
ͬ
Ϭ
ϯ
ϳͬ
ϭ
ϯ
ͬ
Ϭ
ϯ
ϭͬ
ϵ
ͬ
Ϭ
ϰ
ϳͬ
ϳ
ͬ
Ϭ
ϰ
ϭͬ
ϯ
ͬ
Ϭ
ϱ
ϳͬ
Ϯ
ͬ
Ϭ
ϱ
ϭϮ
ͬ
Ϯ
ϵ
ͬ
Ϭ
ϱ
ϲͬ
Ϯ
ϳ
ͬ
Ϭ
ϲ
ϭϮ
ͬ
Ϯ
ϰ
ͬ
Ϭ
ϲ
ϲͬ
Ϯ
Ϯ
ͬ
Ϭ
ϳ
'ƌ
Ž
Ƶ
Ŷ
Ě
ǁ
Ă
ƚ
Ğ
ƌ
ů
Ğ
ǀ
Ă
ƚ
ŝ
Ž
Ŷ
;
Ĩ
ƚ
͘
Ϳ
DĞĂƐƵƌĞŵĞŶƚĂƚĞ
,ŝƐƚŽƌŝĐĂů'ƌŽƵŶĚǁĂƚĞƌůĞǀĂƚŝŽŶƐǀƐ͘dŝŵĞ
:EϮϬϬϭͲ KdϮϬϬϳ
DtͲϰDtͲϰ^DtͲϱDtͲϱ^
DtͲϮDtͲϮ^DtͲϴDtͲϴ^
DtͲϭDtͲϯDtͲϯ^
ZĞƐƉŽŶƐĞƚŽůŝŵĂƚŝĐŶŽŵĂůLJ DĂdž^ĞĂƐŽŶĂů,ŝŐŚ
ĂƚĂKƵƚůŝĞƌ
ϮϲϮ
Ϯϲϲ
ϮϳϬ
Ϯϳϰ
Ϯϳϴ
ϮϴϮ
Ϯϴϲ
ϮϵϬ
Ϯϵϰ
Ϯϵϴ
ϯϬϮ
ϯϬϲ
ϲͬ
ϭ
ϲ
ͬ
Ϭ
ϴ
ϭϮ
ͬ
ϭ
ϯ
ͬ
Ϭ
ϴ
ϲͬ
ϭ
ϭ
ͬ
Ϭ
ϵ
ϭϮ
ͬ
ϴ
ͬ
Ϭ
ϵ
ϲͬ
ϲ
ͬ
ϭ
Ϭ
ϭϮ
ͬ
ϯ
ͬ
ϭ
Ϭ
ϲͬ
ϭ
ͬ
ϭ
ϭ
ϭϭ
ͬ
Ϯ
ϴ
ͬ
ϭ
ϭ
ϱͬ
Ϯ
ϲ
ͬ
ϭ
Ϯ
ϭϭ
ͬ
Ϯ
Ϯ
ͬ
ϭ
Ϯ
ϱͬ
Ϯ
ϭ
ͬ
ϭ
ϯ
ϭϭ
ͬ
ϭ
ϳ
ͬ
ϭ
ϯ
ϱͬ
ϭ
ϲ
ͬ
ϭ
ϰ
ϭϭ
ͬ
ϭ
Ϯ
ͬ
ϭ
ϰ
'ƌ
Ž
Ƶ
Ŷ
Ě
ǁ
Ă
ƚ
Ğ
ƌ
ů
Ğ
ǀ
Ă
ƚ
ŝ
Ž
Ŷ
;
Ĩ
ƚ
͘
Ϳ
DĞĂƐƵƌĞŵĞŶƚĂƚĞ
:hEϮϬϬϴͲ WZϮϬϭϱ
/ŶǀĞƐƚŝŐĂƚŝŽŶŽŵŵĞŶĐĞĚ
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
The wet conditions shown in Figure 8 persisted to the time this investigation started at the end of
2014. These trends influence seasonal ground water recharge, whereas the climatic moisture
balance directly correlates to the availability of meteoric water at the surface for groundwater
recharge.6 Water levels in the monitoring wells show a steady increase beginning sooner than the
climate turned wet, shown in Figure 10, but the water level increase is disproportional to the
degree of wetness by comparison to the 2003 peak. In fact, some of the highest water levels
were observed during the Spring 2015 sampling event, namely the couplets at MW-3, MW-4,
and MW-5, all of which show a steady increase starting in early 2008 with the most recent
observations exceeding the 2003 peak.
This indicates another factor influencing the water levels, namely the grading activity all around
the landfill that has removed vegetation and changed drainage patterns, thus altering the recharge
conditions. Much grading occurred in proximity to these wells with the commencement of the
Phase 2 construction ca. 2009, which is believed to have affected the water levels. Likewise,
grading within the Phases 3 and 4 study area began about this same time, which removed an
average of 20 feet of overburden from the recharge area, exposing the more porous PWR and
significantly increasing recharge.
These conditions, along with the fact that the water levels in monitoring wells meet or exceed the
historic reference in 2003, despite the fact that PHDI has not been abnormally wet, leads to the
following conclusions:
1. The investigation captured a significant seasonal high ground water condition, occurring
from February to June 2015.
2. From these data a reasonably accurate, if not conservative, estimate of the long-term
maximum can be made.
3. Since approximately 2008 ground water levels in the Phases 3 and 4 study area have been
influenced significantly by grading activities within and adjacent to the footprints.
4. Site conditions that contribute to high ground water recharge at the time this report was
prepared will be eliminated once the low permeability cell construction is completed.
(VWLPDWHG6HDVRQDO+LJK:DWHU7DEOHD&
Data from the monitoring wells is summarized below:
%RULQJ 'DWH 'LIIHUHQFHEHWZHHQ
1XPEHU 0D[LPXP 2EVHUYHG 0D[DQG
MW-1D* 293.95 5/5/03 0.00
MW-2D* 305.37 5/1/07 3.92
6 Garrett, G.D., “Climatological Hydrologic Correlations Using Palmer Indices,” presented to the
Association of Engineering Geologists (Carolina Section) Tools of the Trade Seminar,
Charlotte, North Carolina, March 21, 2003
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
%RULQJ 'DWH 'LIIHUHQFHEHWZHHQ
1XPEHU 0D[LPXP 2EVHUYHG 0D[DQG
MW-2S* 304.99 2/21/15 3.39
MW-3D 289.51 2/21/15 5.01
MW-3S 292.09 2/21/15 8.10
MW-4D 285.48 2/21/15 4.56
MW-4S 286.05 2/21/15 4.84
MW-5D 276.26 2/21/15 1.64
MW-5S 275.95 2/21/15 1.51
MW-8D* 297.60 5/5/03 0.00
MW-8S* 299.64 5/5/03 0.00
Whole site average 3.00
*Close to study area 1.46
Based on the foregoing analysis, adding 3 feet to the monitoring well readings observed in
Spring 2015 would closely approximate the maximum seasonal values reported in 2003. By
applying this logic to the early 2015 piezometer observations in the Phases 3 and 4 study area,
the probable maximum long-term seasonal high (MLSH) ground water levels can be
approximated. This is a conservative approach, whereas factors that contribute to present-day
ground water recharge are bound to change. However, adding 3 feet to the Spring 2015 high
water level observations in the piezometers results in the following conservative design values:
-DQ -DQ +LJKHVW 'DWH
%RULQJ 2EVHUYHG 2EVHUYDWLRQ 5HFRUGHG +LJKHVW
1XPEHU (OHYDWLRQ SOXVIHHW (OHYDWLRQ 2EVHUYHG
B-01 294.08 297.08 298.62 04/2015
B-02S 305.48 308.48 307.84 01/2015
B-02D 292.69 295.69 301.13 02/2015
B-03 294.61 297.61 298.67 02/2015
B-04 308.65 311.65 311.55 01/2015
B-05 289.42 292.42 294.26 03/2015
B-06 292.13 295.13 297.79 04/2015
B-07 302.46 305.46 305.93 04/2015
B-08 301.71 304.71 305.36 04/2015
B-09 282.47 285.47 286.81 04/2015
B-10 294.24 297.24 298.10 02/2015
B-11 291.17 294.17 294.52 04/2015
B-12 290.23 293.23 292.77 02/2015
B-13 294.62 297.62 298.86 04/2015
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
-DQ -DQ +LJKHVW 'DWH
%RULQJ 2EVHUYHG 2EVHUYDWLRQ 5HFRUGHG +LJKHVW
1XPEHU (OHYDWLRQ SOXVIHHW (OHYDWLRQ 2EVHUYHG
B-14 --- --- --- ---
B-15 --- --- --- ---
B-16 --- --- --- ---
B-17 --- --- --- ---
B-18 315.79 318.79 318.50 01/2015
B-19 301.95 304.95 304.99 03/2015
B-20 301.90 304.90 304.56 03/2015
B-21 292.85 295.85 296.76 03/2015
B-22 290.88 293.88 293.52 01/2015
B-23 288.46 291.46 293.03 02/2015
B-24 302.80 305.80 305.32 01/2015
B-25S 285.56 288.56 288.35 01/2015
B-25D 277.49 280.49 281.46 04/2015
B-26 269.08 272.08 275.03 04/2015
B-27 258.84 261.84 263.84 04/2015
B-28 261.71 264.71 264.15 01/2015
B-29 270.04 273.04 273.97 04/2015
B-30 274.48 277.48 277.40 01/2015
B-31 --- --- 276.01 04/2015
B-32 --- --- 275.50 04/2015
)DFWRUV7KDW,QIOXHQFH:DWHU7DEOHD'
Several natural and man-made factors are present which could influence long-term ground-water
levels. Vegetation conditions, surface drainage, and climate have already been discussed. Site
conditions contributing to high recharge will be corrected, which will mitigate the effects of
seasonal climate effects. In the future, the lined waste disposal cells and other impervious
surfaces located associated with the landfill expansion will impose a loss of recharge within the
permitted footprints. This is not expected to have a negative impact far down gradient, but
ground water levels may gradually decrease in close proximity to the footprints. There is ground
water flow from the south passing beneath the footprints (seeking the boundary streams) and
future construction of impervious surfaces south of the landfill could further reduce ground water
recharge within the site boundary.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
+25,=217$/ $1' 9(57,&$/ *5281':$7(5 )/2:
',0(16,216$
Drawings X1 – X2 present generalized hydrogeologic cross-sections that show the horizontal
and vertical extent of the upper-most aquifer and ground water flow directions. The residual
soils and partially weathered rock (Units 1 and 2) comprise a ubiquitous mantle of saprolite
above the competent bedrock, also known as the “regolith,” with a transitional vertical boundary
along the upper bedrock surface. Ground water movement through the deeper PWR formation
(Unit 2) is generally porous media flow but partially confined conditions are typical, as discussed
in the next paragraph. Based on observed water levels and inferred pore pressure relationships,
the upper saprolite (Units 1 and 2) appears to be inter-connected hydraulically with the lower
bedrock (Unit 3) with no discrete confining layers. The regolith acts as a groundwater reservoir
that slowly recharges the underlying bedrock aquifer by drainage in the Piedmont groundwater
system.7 The regolith varies in thickness up to 150 feet and generally consists of an
unconsolidated or semi-consolidated mixture of clay and fragmental material ranging in size
from silt to boulders formed by the in-situ weathering of the bedrock.
The cross-sections show areas of recharge (downward ground-water movement) occurring over a
majority of the site. Discharge (upward ground-water movement) occurs in the lower elevations
leading toward the springs or seeps (at the wetlands), chiefly north and west of the Phases 3 and
4 footprints, which feed the unnamed tributaries flowing to Brown Creek. The cross-sections are
tied to old test borings near the streams, which do not provide current water level data, but the
streams provide ample elevation data as they are the location the ground water intersects the
surface. It should be kept in mind that the upper flow line represents potentiometric head within
the saturated Units 1 and 2 saprolite aquifers. Ground water may not occur everywhere in the
profile due to possible discontinuities in the pore-space, as was seen in dry borings.
Table 5 presents a summary of vertical ground-water gradients for several nested piezometer
couplets. The vertical gradient calculations compare water levels between the deeper and
shallower well screen intervals, which typically indicate whether a portion of the site is
experiencing recharge or discharge. The data indicate upward (negative) gradients, indicative of
discharge conditions, exist most of the time near B-25S/25D, and near MW-5S/5D; downward
gradients occur part of the time near PH2-24A/24B, near MW-4S/4D, and near B-02S/02D. All
of these wells and piezometers are located near the main drainage features in the eastern portion
of the Phases 3 and 4 footprints. The variable gradients, showing recharge sometimes, discharge
tendencies others, is common in upper reaches of the water bearing zone (all three units), where
partially confined conditions and slow vertical percolation can bias the data.
The Units 1 and 2 aquifers are more prone to seasonal fluctuation, i.e., the top of the zone of
saturation actually raises and lowers in response to precipitation and other climatic conditions.
7 Daniel, III, Charles C. and Paul R. Dahlen, 2002, Preliminary hydrogeologic assessment and study plan for a
regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina, U.S.
Geological Survey Water-Resources Investigations Report 02-4105, 60p.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
During dry weather, when surface recharge is reduced, the deeper aquifer often yields a higher
piezometer reading although the net movement of water over the course of time is downward,
not upward. The partially confined bedrock aquifer is pressurized by the overlying,
interconnected pore space within the upper saprolite units, which causes water levels observed in
the piezometers to fluctuate but the actual zone of saturation remains in the same location.
Ground water flow directions in both upper and lower aquifers are strongly horizontal, but the
upper saprolite will exhibit a vertical flow component in response to climatic and topographic
conditions, which typically recharges the deeper bedrock aquifer “reservoir” when there is
sufficient surface percolation.
Table 6 presents horizontal ground-water flow data for selected piezometers, based on the
potentiometric contours shown on Drawing S3 and the horizontal gradients calculated from the
field conductivity tests (Table 3) and the effective porosity values (Table 2) developed for the
soil samples based on grain size distribution. Ground water velocities vary somewhat across the
site. Based on Table 2, there is no significant difference in effective porosity, Șe, between the
Triassic formations and the argillite, nor is there much difference based on relative density,
however the grain size distribution does make a difference. Typical observed values summarized
from Table 2 are as follows:
Sandy Clay Șe = 3 – 4%
Sandy Silt Șe = 11 – 12%
Silty Sand Șe = 16 – 22%
In keeping with the previously defined hydrogeologic units, the calculated ground-water flow
velocities in Phases 3 and 4 (Table 6) generally vary as follows:
Unit 1 – 0.01 ft/day (B-21) Avg. = 0.01 ft/day = 2 ft/year
Unit 2 – 1.14E-04 (B-29) to 4.61E-01 ft/day (B-13) Avg. = 0.05 ft/day = 19 ft/year
Unit 3 – 3.04E-03 (B-03) to 2.04E-01 ft/day (B-18) Avg. = 0.14 ft/day = 51 ft/year
*5281':$7(5&2172856$
Drawing S3 and S4 show ground-water potentiometric contours based on water level
observations made in February 2015 and the Maximum Long-Term Seasonal High (MLSH)
water levels discussed in Section 3.6.3. The potentiometric contours reflect a subdued
expression of the surface topography, characteristic of the piedmont. A divide occurs west of the
Phases 3 and 4 footprints, such that surface drainage and ground-water flow within Phases 3 and
4 is entirely toward the northeast. The potentiometric contours tie into ground elevations at
surface drainage features with wetlands (seasonal or perennial springs), located 300 to 400 feet
beyond the Phases 3 and 4 footprints, toward the northeast.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
),(/',19(67,*$7,215(&25'6
$$1'$1'
Appendix 4 contains test boring/piezometer installation records for the borings pertinent to the
study area. Relevant data from earlier investigations are presented in Appendix 6.
27+(5*(2/2*,&+<'52*(2/2*,&&216,'(5$7,216
$
No unusual geologic features have been found which would affect the ground-water flow to the
detriment of effectively monitoring the site. The contact between the argillite of the “slate belt”
and the sandstone of the Triassic Basin is mapped as a normal fault, albeit an ancient one. No
seismicity has been recorded in Holocene time due to movement along this geologic boundary.8
Site conditions appear typical of the North Carolina piedmont region.
The following information was taken from the document, Pee Dee Lumber Regional Hazard
Mitigation Plan, August 2012,9 which references several sources compiled by the North Carolina
Geological Survey.10 The Pee Dee Lumber Region is located in the southǦcentral part of North
Carolina and includes the counties of Anson, Montgomery, Richmond, and Scotland.
“Earthquakes are measured in terms of their magnitude and intensity. Magnitude is
measured using the Richter Scale, an openǦended logarithmic scale that describes the energy
release of an earthquake through a measure of shock wave amplitude. Each unit increase in
magnitude on the Richter Scale corresponds to a 10Ǧfold increase in wave amplitude, or a 32Ǧ
fold increase in energy. Intensity is most commonly measured using the Modified Mercalli
Intensity (MMI) Scale based on direct and indirect measurements of seismic effects. The
scale levels are typically described using roman numerals, ranging from “I” corresponding to
imperceptible (instrumental) events to “XII” for catastrophic (total destruction).
The state is affected by both the Charleston Fault in South Carolina and New Madrid Fault in
[western] Tennessee. Both of these faults have generated earthquakes measuring greater than
8 on the Richter Scale during the last 200 years . . . In addition, there are several smaller fault
lines throughout North Carolina. Figure [11] is a map showing geological and seismic
information for North Carolina. At least 14 earthquakes are known to have affected the Pee
Dee Lumber Region since 1886. The strongest of these measured a VII on the Modified
Mercalli Intensity (MMI) scale.”
8 Goldberg, Steven A., University of North Carolina, Chapel Hill, personal comm., 1995
9 http://www.scotlandcounty.org/Data/Sites/1/media/departments/publicsafety/em/eop/pee_dee_lumber_
regional_hmp_1112_final[1].pdf
and
http://www.co.anson.nc.us/minutes/agenda/dspfile.php?file=Dec412RegAGN.doc
10 North Carolina Geological Survey, on-line at www.geology.enr.state.nc.us/haz/quake
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
Figure 11 – Seismicity of North Carolina
None of the stronger earthquakes in the region were centered within the region. Figure 11 shows
four earthquakes centered within the region, with Richter Scale magnitudes from 2.1 to 4.
Earthquakes of these magnitudes are seldom noticed by the general population and do not result
in damage. The crustal faults in the region, including those bounding the Triassic Basins, are not
active seismic features. Figure [12] from the same source shows . . .
“. . . the intensity level
associated with the Pee Dee
Lumber Region, based on
the national USGS map of
peak acceleration with 10
percent probability of
exceedance in 50 years
[i.e.] the probability that
ground motion will reach a
certain level during an
earthquake. The data show
peak horizontal ground
acceleration [PGA] (the
fastest measured change in
speed, for a particle at
ground level that is moving
horizontally due to an
earthquake) with a 10
percent probability of
exceedance in 50 years.”
Figure 12 – Seismic Acceleration Potential
The PGA value is used in slope and foundation stability calculations. Based on these data, a
design PGA value for this project is 0.04 g (4% of the acceleration of gravity).
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
_____________________________________________________________________________
6,7(63(&,),&,1)250$7,21
*5281':$7(5021,725,1*&216,'(5$7,216
%%
Existing wells: The landfill is now monitored with 12 groundwater monitoring wells, shown in
Drawings M1 and M2. The monitoring wells were installed at various dates in accordance with
the approved ground-water monitoring plan. Based on the potentiometric surface mapping for
Phase 1 and site-wide (by others), ground-water flow is to the northeast – toward the
convergence of Pinch Gut Creek and Brown Creek, which serves as a regional discharge feature.
Private dwellings and other buildings are located to the southeast of the waste footprints –
presumably still served by wells – which are up gradient of the facility. Currently, the
monitoring well network includes:
Up gradient background wells are MW-1, MW-2S and 2D, located south and west of the landfill
(two wells listed together indicate shallow/deep well couplets). MW-1 is located in the western
diabase dike; MW-2S and 2D are located in the Triassic sandstone formation.
Permanent down-gradient wells (in counterclockwise order on the map, beginning south of the
landfill) include MW-3S and 3D (near the southeast corner), MW-4S and 4D (near the northeast
corner), and MW5S and 5D (beyond the northeast corner) MW-8S and 8D, MW-9 (west of the
footprints). Based on the drilling records for the monitoring wells (Appendix 3), all of the wells
are located in the Triassic formation, except MW-4D and 4S, which are situated along the
contact zone between the Triassic and the eastern diabase dike.
Proposed wells: New monitoring wells are proposed on two sides of Phases 3 and 4 at
appropriate intervals, focusing on the primary drainage features (i.e., traces of subsurface
fractures) and the eastern diabase dike. Each well screen must exist beneath water table, based
on the reference data. The reference borings were characterized as being dry until depths of
discrete water-bearing zones was reached (see Section 3.6.3). Based on these conditions, it may
not be practical to place a screen interval across the water table, but to pursue that typical goal of
the NCDEQ Division of Waste Management, the deep borings will be installed first, taking them
either to “auger refusal” or to a depth where a water-bearing seam is encountered, and allowed to
stabilize. The shallow boring then will be installed to target the stabilized water level in the
adjacent deep boring. Division staff will be kept apprised of the conditions encountered during
the well installations. Adjustments of depths may be required based on field conditions.
The proposed new well locations are shown in Drawing M1 of the drawing set. No changes to
the surface water sampling locations are proposed. The Water Quality Monitoring Plan
(Appendix 7) will be modified accordingly, including a summary data table and drilling records
for the installed wells. The new monitoring wells will be designed and constructed in
accordance with 15A NCAC 2C guidelines. The locations for the planned new monitoring wells
and surface water sampling locations are considered adequate to provide early detection of a
release of constituents from the facility into the ground water.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
24
5(/(9$1732,172)&203/,$1&(
%&
Selection of monitoring well locations for compliance monitoring of the uppermost aquifer is
based on an understanding of hydrogeological conditions presented in this report. North
Carolina solid waste Rule .1631 (a)(2)(B), incorporated by reference to Rule .1623 (b)(2)(C),
makes a provision for the relevant point of compliance to be located no more than 250 feet from
the waste boundary but at least 50 feet within the facility boundary. Historical NC DEQ,
Division of Waste Management (DWM) policy has been to locate the compliance wells within
125-150 feet of the waste boundary, or approximately half the distance between the edge of
waste and the compliance boundary. Based on the site studies, it appears that this spacing for
compliance wells is appropriate for this facility.
The following requirements of Rule 15A NCAC 13B .1631 (a)(2)(B) are met by this report, in
support of determining the relevant point of compliance:
Hydrogeologic characteristics of the facility and surrounding land – The site and local
vicinity are characterized by highly dissected ridges, following a prominent joint pattern, which
limit ground-water flow to relatively short-segmented, closed-loop hydrologic cycles. Recharge
occurs within the higher elevations, discharge occurs along local streams. Ground water
typically occurs within the near-surface unconfined saprolite (porous flow media), underlain by
bedrock (fracture flow media), sometimes with a transitional boundary and often with a
differential weathering pattern. Pinch Gut Creek and Brown Creek, which converge at the north
corner of the site, serve as regional ground-water discharge features. The proposed expansion is
hydrologically isolated between the streams, with no down gradient ground water users.
Volume and physical and chemical characteristics of leachate – Leachate is stored on-site in
two tanks and batch-discharged periodically (after sampling) to the Anson County Wastewater
Treatment Plant, whose records document 305,811 gallons discharged from July 2005 – June
2006 and 331,623 gallons discharged from July 2006 – November 2007. Representative leachate
quality sampling data (summarized below) typically indicates low levels of certain organic
constituents:
&RQVWLWXHQW 6XPS 6XPS 6XPS ::3LSH 6XPS
Benzene (ug/L) <1 5.2 <1 11.5(D) 3.9
Ethylbenzene (ug/L) 1.9 5.9 <1 22.5(D) 14
m+p-Xylenes (ug/L) 2.7 12 <1 43 35
o-Xylene (ug/L) 1 5.7 <1 14 15
Toluene (ug/L) 8.6 5.4 2 28(D) 25
TPH - Gasoline (ug/L) 150 1300 <80 n/a 190
TPH - Diesel (ug/L) 1300 2600 4300 n/a 2200
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
25
Leachate sampling includes Appendix I constituents; other analyzed constituents were not detected,
including the metals. The detected constituents are not considered unusual in modern MSW leachate at
the detected concentrations.
Quantity, quality and direction of ground water flow – Considering hydrogeologic Units 1, 2
and 3 collectively and using an average aquifer thickness of 40 feet (including the upper portion
of Unit 3), the estimated groundwater flow volume in the uppermost aquifer beneath each of the
Phase 3 and 4 footprints is:
33 ac. * 40’ sat’d thickness * 0.20 effective porosity = 57.9M cf = 433M gallons
Ground water quality analytical data (reported by others) indicate no definitive ground-water
impacts that have been attributed to the current landfill operation. Up through May 2005, no
Appendix I organic constituents had been detected above the practical quantitative limits.
Several inorganic compounds have been detected, summarized as follows (in mg/l) for the May
2005 sampling event:
3DUDPHWHU 0:
0:G 0:G 0:G 0:G 0:G %&'
3&'
/VWG
0:V 0:V 0:V 0:V 0:V %&8
3&8
Arsenic
(0.05) 0.014
Barium 0.11 0.27 0.017 0.077 0.21 0.76 0.023 0.11
(2.0) 0.056 0.50 0.11 0.075 0.42 0.038
Beryllium 0.0015
(NA) 0.0011
Cadmium
(0.00175)
Chromium 0.0031
(0.05) 0.0023
Cobalt 0.0059 0.0068
(NA)
Copper 0.34 0.0067 0.026 0.033
(1.0) 0.075 1.2 0.12
Lead 0.0054
(0.015)
Nickel 0.012 0.0093 0.015 0.018 0.0066
(0.010) 0.0055 0.058 0.0052 0.0057 0.0075
Selenium 0.0083 0.0057 0.0058
(0.05) 0.015
Silver 2.7 0.28 0.64
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
26
(0.0175) 2.9 0.9
Thallium 0.017
(NA) 0.015
Vanadium 0.0096
(NA)
Zinc 0.021 0.044 0.038
(1.05) 0.011 0.025 0.013 0.012
*Background Location **BCD = Brown Creek Downstream **PCD = Pinch Gut Creek Downstream
***15A NCAC 2L .0200 **BCU = Brown Creek Upstream **PCU = Pinch Gut Creek Upstream
It should be noted that the foregoing data represents total metals analyses (unfiltered samples),
which is subject to the effects of turbidity and can reflect background geochemistry. The author
oversaw split-sampling (for Anson County) during the initial four baseline samples, prior to
opening the landfill. Based on that work, reported to the County in 2001, the following
inorganic parameters were detected:
/6WG 0:V 0:V 0:V 0:G
Turbidity, NTU none 977 203 530 879
Chromium, mg/l 0.05 <2L 0.126 0.376 0.14
Lead, mg/l 0.15 0.030 0.025 0.018 <2L
Nickel, mg/l 0.10 <2L 0.137 0.204 <2L
Relative to the downstream sample on Pinch Gut Creek, it should be noted that the sediment
basins serving the borrow site discharge to that general drainage basin. Turbidity could be a
factor in the numbers and concentrations of metals detected in that sample. From the foregoing
data, the following generalizations can be made:
1. Most of the detected constituents are below the North Carolina 2L groundwater
standards, except copper, nickel, and silver (it should be kept in mind these data
represent only a single sampling event).
2. Nickel was detected in the pre-operational background sampling events.
3. Barium, copper, nickel, and silver (among others) were detected at the upstream
surface sampling location on Pinch Gut Creek; barium and nickel were detected at
the background wells MW-1 and MW-8S and 8D.
4. No organic compounds have been detected that can be tied to the landfill; records
show occasional detects of methylene chloride (an agent used in labs for cleaning
glassware) and other laboratory contaminants, all minor concentrations below
respective 2L standards. All of the detected inorganic constituents are commonly
associated with sulfide forming minerals, which are common in volcanic rock
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
27
formations, i.e., the Slate Belt rocks (Cid formation) on the western side of the
site; the Cid formation is known as the host rock to a prodigious historic mining
district, chiefly known for silver and associated sulfide minerals. Thus, it can be
concluded that these detects are probably caused by background geochemistry.
North Carolina Geologic Survey Section data, available on-line, indicates that several of the
inorganic constituents of interest have been found in the background geochemistry from the
National Uranium Resource Evaluation (NURE) program.11 Based on data compiled for North
Carolina stream sediment analyses (and some ground water analyses) by the NC Geologic
Survey Section for central Anson County (on-line maps), the following generalizations can be
drawn regarding the natural background occurrence of certain compounds:
1. Beryllium was reported at concentrations of 1 ppm.
2. Cobalt was reported at concentrations of 15 to 20 ppm.
3. Copper was reported at concentrations of 8 to 16 ppm.
4. Lead was reported at concentrations of 10 to 15 ppm.
5. Nickel was reported at concentrations of 10 to 15 ppm.
6. Vanadium was reported at concentrations of 45 to 90 ppm.
7. Silver was reported at concentrations of 0.125 to 0.25 ppm.
8. Zinc was reported at concentrations of 25 ppm.
It should be noted that the NURE data are not comprehensive or complete with respect to what
maximum background values should be expected for a given compound, but the data provide an
indication of several background constituents.
Proximity and withdrawal rate of ground-water users – An area water well survey was
completed during the “site suitability” stage of the permitting process. Since then, public utilities
have been extended into the vicinity and area reliance on ground water use has decreased. No
ground-water users exist down gradient of the current landfill or the proposed expansions, i.e., no
residences or wells exist between the landfill and the ground-water discharge features.
Residences and other buildings to the south of the facility are up gradient of the current landfill
and the proposed expansion. The site is hydraulically isolated from its surroundings by
numerous ground-water divides, i.e., the river and creeks, which are localized ground water
discharge features for the uppermost aquifer.
Availability of alternative drinking water supplies – Municipal water is available near the
landfill and serves most, if not all, of the local vicinity.
Existing quality of ground water, including other sources of contamination – Ground-water
quality investigations have not been conducted outside the landfill property for this permit
11 Reid, Jeffrey C., 1993a. A Geochemical Atlas of North Carolina, U.S.A., in F.W. Dickson and L.C.
Hsu (Editors), Geochemical Exploration 1991, J. Geochemical Exploration, v. 47, p. 11-27.
Data are available on-line at http://www.geology.enr.state.nc.us/NUREgeochem/geochem2.htm
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
28
application. Other potential sources of ground-water contamination near the proposed landfill
include businesses and manufacturing facilities located on US 74, upstream along the Rocky
River (addressed during Site Suitability). Identification of potential sources of contamination is
required, but for the purposes of this report, no off-site contamination is known or implied.
Public health safety and welfare effects – Based on the relative distances to the nearest
privately owned structures (over 500 feet, located across regional ground-water divides) and the
presence of on-site ground-water discharge features, it is unlikely that a potential release of solid
waste constituents from the proposed landfill expansion will pose a risk to public health, safety
or welfare. The Construction Quality Assurance program and proposed upgrades to the Water
Quality Monitoring Program will assist in providing early detection of potential releases of
constituents into the ground water so as to minimize public risk.
Practical capability of owner/operator – Chambers Development, Inc., a subsidiary of Allied
Waste Management, Inc., is the owner/operator of the facility, has demonstrated its capability to
operate the landfill in a safe and efficient manner with its history of compliance with North
Carolina solid waste regulations. Currently, existing ground water and surface water monitoring
data show no impact that has been attributed to the landfill.
%('52&.52&.&25,1*'$7$%'
The following rock core descriptions were prepared based on visual inspection (B-series), six
core locations in the Phase 2 borings (ESP) and nine core locations were completed in the earlier
borings (GZA). Test boring records (Appendix 3) contain descriptions of rock type and quality
based on standard nomenclature. A brief summary of each rock core follows:
%25,1* /2&$7,21'(6&5,37,21
PH2-24A Higher elevations within argillite Blue gray siltstone, RQD: 96%
(45° to 60° fractures)
P-14D Higher elevations within argillite Light blue-gray, thin beds, RQD: 95-100%
(steep dipping joints, pyrite present)
MW-16DB Mid-elevations within argillite Highly weathered, fractured, RQD: 20-74%
(45° bedding dip, secondary Ca-filling)
MW-17SB Mid-elevations within argillite Highly weathered, fractured, RQD: 0-100%
(reported as “annealed breccia” w/ iron- and
calcite-filled vugs) – could be conglomerate
MW-17A
BZE
Mid-elevations within argillite
(encountered diabase)
Highly fractured, dark blue-gray, RQD: 5-65%
(iron oxide stained, mod. Dipping fractures)
MW-34SB Mid-elevations within diabase Dark gray-black, fractured, RQD: 36-96%
(close, weathered fractures, Ca-filling)
B-04 Mid-elevations within argillite Blue-gray siltstone, RQD: 95-100%
(iron oxide staining along dipping fractures)
B-18 Mid-elevations within argillite Fractured blue-gray siltstone, RQD: 90-100%
(iron oxide staining along dipping fractures)
B-24 Mid-elevations within argillite Moderately fractured blue-gray siltstone, RQD:
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
29
0-90% (iron oxide staining along fractures)
The core data indicate that all three formations at the site, Triassic sandstone, argillite, and
diabase, are variably fractured or jointed. Fracture orientations vary from shallow to moderate
(typically construed as less than 30 degrees) to very steep (in the range of 45 to 60 degrees). The
fracturing was identified with shallow angle bedding to high angle jointing. Earlier workers
described “brecciation” within the argillite that might have been relict fault-induced
pulverization associated with the formation of the Triassic basin, although this might be difficult
to distinguish from a normal texture of a conglomerate, which is mapped in the area.
Regardless of the origin of the “breccia” – noted within the argillite close to an occurrence of
diabase that fell outside the magnetic anomalies (at MW-17SB and MW-17B-BZE) in the earlier
investigations – the geologist in the field noted secondary calcite and iron-oxide infilling
(“annealing”), suggesting that these features are ancient and not indicative of any recent seismic
activity. The mineral pyrite (iron-sulfide) was also noted in the argillite, indicative of local
sulfide mineralization that may a key to many background metallic species.
Within the Triassic formations (sandstone, siltstone and conglomerates were noted), dark
pigmentation suggests the rocks have been stained either during the intrusion of the dark colored
diabase (within the “bake-zone”) or due to migration of iron-manganese oxides with normal
groundwater movement. Again, the presence of sulfide minerals is a potential factor, in that
sulfides are easily oxidized and the oxide compounds are typically highly mobile in groundwater.
Similarly, the argillite exhibits iron-oxide staining (more brightly colored yellow and red-orange
due to pyrite deterioration) and variable degrees of weathering along fractures originating as
primary bedding (typically thin lamination) and steep jointing.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
30
Rock Core at B-18
Rock Core at B-4
Rock Core at B-24
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
31
The diabase is highly fractured within the investigated depths, heavily stained with dark iron- or
iron-manganese-oxides, deeply weathered along steep, often conchoidal fractures. These
formations should not be jointed, per se, whereas they are younger than the regional joint pattern
and have not undergone the compression tectonic events that caused the jointing, rather, the
diabase intruded during tension events. However, diabase observed on other sites exhibits a
closely spaced cubic cleavage, along which deep weathering has occurred. In addition, these
features are linear – often extending for thousands of feet – which brings the upper reaches of
these units into interest from a monitoring standpoint. The relatively high RQD values and the
presence of abundant clay along the weathered fractures suggest the dikes on this site function
similarly to the other formations and do not serve as highly conductive “conduits.”
Rock Quality Designation (RQD) – an engineering index used to describe the relative degree of
fracturing and weathering. Predominantly fracture-flow characteristics are expected where RQD
values are higher than about 80, and predominantly porous flow is expected at RQD values less
than about 30, with mixed characteristics in between, based on the author’s experience. RQD
values typically increase with depth, i.e., the deeper, fresher (less weathered) rock of Unit 3 will
behave more as fracture-flow media, while the more weathered and upper reaches of the bedrock
of Units 1 and 2 will behave more like porous-flow media. The rock cores indicate the
gradational transition between the units. Whereas fracturing and weathering tends to be deeper
beneath the surface drainage features (i.e., fracture traces), as indicated by RQD values, a
monitoring program that focuses on the structural trends is appropriate.
%('52&.&2172850$3%)
Drawing S5 presents a generalized top of bedrock contour map based on the recent test borings
and earlier work (by others). The bedrock data for the landfill expansion area are consistent with
that for the existing Phase 1. Bedrock elevations are highest in the southwest and west portions
of the study area, where original ground surface elevations were highest. Auger refusal was
encountered from 16 feet below the ground surface at B-28 (in the Triassic sandstone) to depths
of 51 feet at B-05 (in the argillite), less than 500 feet away. The bedrock elevations gradually
decrease to the north and east, reflecting a subdued expression of the surface topography. No
surface exposures of bedrock were noted within the Phases 3 and 4 study area, although the
borrow activities exposed rather hard PWR.
+<'52*(2/2*,&&52666(&7,216%*
Six hydrogeologic cross-sections are presented with this report (Drawings X1 – X3). Four
sections are oriented in the principal groundwater (and surface water) flow direction, roughly
down the axes of the four planned cells; four are oriented perpendicular to the principal drainage
direction. The cross-sections show relevant data compiled for this investigation, including soil
and bedrock lithology, standard penetration resistance values, Maximum Long-Term Seasonal
High ground-water levels, estimated seasonal high ground-water levels, zones of ground-water
recharge and discharge and ground-water flow directions.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
32
$5($*5281':$7(5)/2:5(*,0(
%+
Based on various hydrogeologic studies for the Anson Waste Management facility, as well as
past experience with similar sites in the piedmont region, the groundwater flow regime at the
landfill site consists of a closed loop hydrologic system, associated with relatively short
segmented drainage features that developed along regional jointing and/or lithologic contacts.
Published mapping indicates that geologic formations described within the study area are
contiguous throughout a several-mile radius from the site. The various bedrock types exhibit a
prominent regional jointing that result in ground-water pathways and surface drainage features. ,
Two diabase dikes are younger intrusive rocks formed along both the regional joint pattern and
tensional features that cut across the regional jointing – these features are of historical interest as
potential groundwater conduits and merit consideration in groundwater monitoring programs, but
the on-site data does not indicate any unique behavior relative to ground water flow.
Ground water flow patterns in the area are not expected to change significantly due to seasonal
climatic variation, except that ground-water levels in the recharge zones are expected to undergo
a normal seasonal fluctuation. The uppermost “water table” aquifer is an unconfined saprolite
(described as Units 1 and 2), which consists of variably dense silty-clayey sand and silt, derived
by in-situ weathering of the bedrock. Partially to fully confined, fractured bedrock (Unit 3)
underlies the area at depths that vary due to differential weathering. The bedrock fractures
typically become more confined with increasing depth, which restricts ground-water flow deeper
than several tens of feet.
Ground water recharge typically occurs over the flatter uplands, gently sloping mid-elevations,
and normally dry drainage swales. Relatively little recharge occurs within areas of steeper
topography (where higher runoff occurs). Typically, ground water is localized within a
relatively porous zone of partially weathered rock, which transitions with depth to bedrock. The
saprolite (including PWR) serves as a localized ground-water medium with secondary porosity
pathways defined by post-formational structures. Ground water collects along weathered
fracture zones formed along the regional joint pattern and moves under local gradient conditions
to the lower elevations. Localized gradients, grain size and relative density of the unconfined
saprolite aquifer influence ground water flow rates. Discharge occurs along area streams, i.e.,
(Brown Creek and Pinch Gut Creek, which converge at the northern corner of the site).
In the immediate vicinity of these streams, horizontal ground-water flow has a minor
downstream component. Elsewhere, horizontal ground-water gradients typically reflect a
subdued expression of the gently rolling surface topography. This relationship can be seen in the
ground-water potentiometric surfaces map. Horizontal ground-water gradients within the study
area are considered typical for the area. Based on the relative depths of ground water and
bedrock, it can be concluded that ground water (rather than bedrock) is the controlling factor for
meeting the vertical separation requirements. For monitoring purposes, the saprolite aquifer is
the dominant, upper-most flow regime. Thus, it can be concluded that an effective monitoring
program can be developed for the site by focusing on the unconfined saprolite.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
33
3,(=20(7(57(67%25,1*$%$1'210(17
%,
North Carolina solid waste regulations require that test borings and piezometers installed at the
site, which are not converted to permanent monitoring wells, must be abandoned in accordance
with 15A NCAC 2C Rule .0113 (a) (2). Typically this requires over-drilling the piezometer with
a larger diameter boring and pressure grouting the boring to the surface with bentonite-cement
grout. This is to certify that the owner/operator has been made aware of these requirements and,
to the extent of the Licensed Geologist’s control, that the piezometers will be abandoned in
accordance with these regulations upon approval of the Permit to Construct application.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
_____________________________________________________________________________
$33(1',;
'DWD7DEOHV
27
5
28
0
28
5
29
0
29
5
30
0
30
5
31
0
31
5
Gr
o
u
n
d
w
a
t
e
r
El
e
v
a
t
i
o
n
vs
.
Ti
m
e
B Ͳ 01 B Ͳ 02S B Ͳ 02D B Ͳ 03 B Ͳ 04 B Ͳ 05
26
5
27
0
27
5
28
0
28
5
29
0
29
5
30
0
30
5
Gr
o
u
n
d
w
a
t
e
r
El
e
v
a
t
i
o
n
vs
.
Ti
m
e
B Ͳ 06 B Ͳ 07 B Ͳ 08 B Ͳ 09 B Ͳ 10 B Ͳ 11
27
5
28
0
28
5
29
0
29
5
30
0
30
5
31
0
31
5
32
0
Gr
o
u
n
d
w
a
t
e
r
El
e
v
a
t
i
o
n
vs
.
Ti
m
e
B Ͳ 11 B Ͳ 12 B Ͳ 13 B Ͳ 18 B Ͳ 19 B Ͳ 20
25
5
26
0
26
5
27
0
27
5
28
0
28
5
29
0
29
5
30
0
30
5
31
0
Gr
o
u
n
d
w
a
t
e
r
El
e
v
a
t
i
o
n
vs
.
Ti
m
e
B Ͳ 21 B Ͳ 22 B Ͳ 23 B Ͳ 24 B Ͳ 25S B Ͳ 25D
24
5
25
0
25
5
26
0
26
5
27
0
27
5
28
0
Gr
o
u
n
d
w
a
t
e
r
El
e
v
a
t
i
o
n
vs
.
Ti
m
e
B Ͳ 26 B Ͳ 27 B Ͳ 28 B Ͳ 29 B Ͳ 30
Bo
r
i
n
g
B
o
r
i
n
g
P
V
C
P
i
p
e
G
r
o
u
n
d
S
t
i
c
k
u
p
T
o
t
a
l
B
o
t
t
o
m
P
W
R
P
W
R
R
e
f
u
s
a
l
R
e
f
u
s
a
l
Nu
m
b
e
r
D
a
t
e
E
l
e
v
.
E
l
e
v
.
(
f
e
e
t
)
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
B-
0
1
1
2
/
0
9
/
2
0
1
4
3
1
6
.
2
8
3
1
3
.
6
3
2
.
6
5
4
4
.
3
2
6
9
.
3
3
2
5
.
0
2
8
8
.
6
3
4
4
.
3
2
6
9
.
3
3
3
4
.
3
2
7
9
.
3
3
4
4
.
3
2
6
9
.
3
3
1
,
2
-
A
r
g
i
l
l
i
t
e
B-
0
2
S
0
1
/
2
7
/
2
0
1
5
3
1
0
.
2
0
3
0
7
.
8
4
2
.
3
6
1
5
.
0
2
9
2
.
8
4
5
.
0
3
0
2
.
8
4
-
-
-
--
-
5
.
0
3
0
2
.
8
4
1
5
.
0
2
9
2
.
8
4
1
,
2
-
A
r
g
i
l
l
i
t
e
B-
0
2
D
1
2
/
1
5
/
2
0
1
4
3
1
0
.
8
3
3
0
8
.
2
5
2
.
5
8
4
0
.
1
2
6
8
.
1
5
0
.
0
3
0
8
.
2
5
4
0
.
1
2
6
8
.
1
5
3
0
.
1
2
7
8
.
1
5
4
0
.
1
2
6
8
.
1
5
1
,
2
-
T
r
i
a
s
s
i
c
B-
0
3
1
2
/
1
5
/
2
0
1
4
2
1
6
.
5
3
3
1
4
.
1
2
2
.
4
1
3
5
.
0
2
7
9
.
1
2
5
.
0
3
0
9
.
1
2
3
5
.
0
2
7
9
.
1
2
2
5
.
0
2
8
9
.
1
2
3
5
.
0
2
7
9
.
1
2
1
-
A
r
g
i
l
l
i
t
e
B-
0
4
©
0
1
/
2
6
/
2
0
1
5
3
1
4
.
4
5
3
1
1
.
5
5
2
.
9
0
4
2
.
3
2
6
9
.
2
5
1
0
.
0
3
0
1
.
5
5
2
8
.
3
2
8
3
.
2
5
1
8
.
3
2
9
3
.
2
5
2
8
.
3
2
8
3
.
2
5
3
-
A
r
g
i
l
l
i
t
e
B-
0
5
1
2
/
0
9
/
2
0
1
4
3
2
2
.
0
7
3
1
8
.
8
7
3
.
2
0
5
0
.
8
2
6
8
.
0
7
2
0
.
0
2
9
8
.
8
7
5
0
.
8
2
6
8
.
0
7
4
0
.
8
2
7
8
.
0
7
5
0
.
8
2
6
8
.
0
7
1
-
A
r
g
i
l
l
i
t
e
B-
0
6
1
2
/
1
6
/
2
0
1
4
2
9
7
.
7
9
2
9
4
.
9
6
2
.
8
3
2
5
.
0
2
6
9
.
9
6
2
5
.
0
0
2
6
9
.
9
6
2
5
.
0
2
6
9
.
9
6
1
5
.
0
2
7
9
.
9
6
2
5
.
0
2
6
9
.
9
6
1
-
A
r
g
i
l
l
i
t
e
B-
0
7
1
2
/
0
8
/
2
0
1
4
3
1
7
.
0
3
3
1
3
.
9
7
3
.
0
6
2
7
.
3
2
8
6
.
7
5
.
0
3
0
8
.
9
7
2
7
.
3
2
8
6
.
6
7
1
7
.
3
2
9
6
.
6
7
2
7
.
3
2
8
6
.
6
7
1
-
A
r
g
i
l
l
i
t
e
B-
0
8
1
2
/
1
7
/
2
0
1
4
3
1
6
.
5
8
3
1
3
.
2
7
3
.
3
1
3
1
.
5
2
8
1
.
8
1
5
.
0
2
9
8
.
2
7
3
1
.
5
2
8
1
.
7
7
2
1
.
5
2
9
1
.
7
7
3
1
.
5
2
8
1
.
7
7
1
-
A
r
g
i
l
l
i
t
e
B-
0
9
1
2
/
1
6
/
2
0
1
4
2
9
4
.
2
0
2
9
1
.
0
6
3
.
1
4
2
0
.
5
2
7
0
.
6
2
0
.
0
2
7
1
.
0
6
2
0
.
5
2
7
0
.
5
6
1
0
.
5
2
8
0
.
5
6
2
0
.
5
2
7
0
.
5
6
1
-
A
r
g
i
l
l
i
t
e
B-
1
0
1
2
/
1
7
/
2
0
1
4
3
0
2
.
4
5
2
9
9
.
9
2
2
.
5
3
1
8
.
2
2
8
1
.
7
2
1
5
.
0
2
8
4
.
9
2
1
8
.
2
2
8
1
.
7
2
8
.
2
2
9
1
.
7
2
1
8
.
2
2
8
1
.
7
2
1
-
A
r
g
i
l
l
i
t
e
B-
1
1
1
2
/
2
2
/
2
0
1
4
3
1
4
.
5
2
3
1
2
.
3
2
2
.
2
0
2
3
.
5
2
8
8
.
8
2
5
.
0
3
0
7
.
3
2
2
3
.
5
2
8
8
.
8
2
1
3
.
5
2
9
8
.
8
2
2
3
.
5
2
8
8
.
8
2
1
-
A
r
g
i
l
l
i
t
e
B-
1
2
1
2
/
1
2
/
2
0
1
4
3
1
6
.
5
9
3
1
4
.
8
7
1
.
7
2
3
1
.
6
2
8
3
.
2
7
1
0
.
0
3
0
4
.
8
7
3
1
.
6
2
8
3
.
2
7
2
1
.
6
2
9
3
.
2
7
3
1
.
6
2
8
3
.
2
7
1
-
A
r
g
i
l
l
i
t
e
B-
1
3
1
2
/
1
2
/
2
0
1
4
3
1
7
.
7
4
3
1
5
.
4
8
2
.
2
6
4
6
.
1
2
6
9
.
3
8
1
0
.
0
3
0
5
.
4
8
4
6
.
1
2
6
9
.
3
8
3
6
.
1
2
7
9
.
3
8
4
6
.
1
2
6
9
.
3
8
1
-
A
r
g
i
l
l
i
t
e
B-
1
4
1
2
/
1
1
/
2
0
1
4
-
-
-
3
1
2
.
1
7
-
-
-
2
2
.
3
2
8
9
.
8
7
2
0
.
0
2
9
2
.
1
7
2
2
.
3
2
8
9
.
8
7
-
-
-
--
-
------
1
-
A
r
g
i
l
l
i
t
e
B-
1
5
1
2
/
1
1
/
2
0
1
4
-
-
-
3
1
6
.
5
3
-
-
-
2
2
.
5
2
9
4
.
0
3
1
0
.
0
3
0
6
.
5
3
2
2
.
5
2
9
4
.
0
3
-
-
-
--
-
------
1
-
A
r
g
i
l
l
i
t
e
B-
1
6
1
2
/
1
0
/
2
0
1
4
-
-
-
3
1
5
.
4
0
-
-
-
3
8
.
8
2
7
6
.
6
0
5
.
0
3
1
0
.
4
0
3
8
.
8
2
7
6
.
6
0
-
-
-
--
-
------
1
-
A
r
g
i
l
l
i
t
e
B-
1
7
1
2
/
1
1
/
2
0
1
4
-
-
-
3
1
5
.
2
9
-
-
-
4
3
.
6
2
7
1
.
6
9
4
3
.
6
2
7
1
.
6
9
4
3
.
6
2
7
1
.
6
9
-
-
-
--
-
------
1
-
A
r
g
i
l
l
i
t
e
B-
1
8
©
1
2
/
0
9
/
2
0
1
4
3
2
1
.
2
1
3
1
8
.
5
0
2
.
7
1
4
0
.
5
2
7
8
.
0
0
2
0
.
0
2
9
8
.
5
0
2
5
.
5
2
9
3
.
0
0
1
5
.
5
3
0
3
.
0
0
2
5
.
5
2
9
3
.
0
0
3
-
A
r
g
i
l
l
i
t
e
B-
1
9
1
2
/
1
0
/
2
0
1
4
3
1
9
.
6
5
3
1
6
.
7
5
2
.
9
0
3
5
.
5
2
8
1
.
2
5
1
5
.
0
3
0
1
.
7
5
3
5
.
5
2
8
1
.
2
5
2
5
.
5
2
9
1
.
2
5
3
5
.
5
2
8
1
.
2
5
1
-
A
r
g
i
l
l
i
t
e
B-
2
0
1
2
/
1
7
/
2
0
1
4
3
1
9
.
3
2
3
1
7
.
3
1
2
.
0
1
2
7
.
7
2
8
9
.
6
1
1
0
.
0
3
0
7
.
3
1
2
7
.
7
2
8
9
.
6
1
1
7
.
7
2
9
9
.
6
1
2
7
.
7
2
8
9
.
6
1
1
-
A
r
g
i
l
l
i
t
e
B-
2
1
1
2
/
2
2
/
2
0
1
4
3
0
9
.
4
5
3
0
5
.
9
0
3
.
5
5
2
2
.
0
2
8
3
.
9
0
1
0
.
0
0
2
9
5
.
9
0
-
-
-
--
-
1
2
.
0
2
9
3
.
9
0
2
2
.
0
2
8
3
.
9
0
1
-
A
r
g
i
l
l
i
t
e
B-
2
2
1
2
/
2
2
/
2
0
1
4
2
9
9
.
9
6
2
9
7
.
3
2
2
.
6
4
1
7
.
2
2
8
0
.
1
2
1
0
.
0
2
8
7
.
3
2
1
7
.
2
2
8
0
.
1
2
7
.
2
2
9
0
.
1
2
1
7
.
2
2
8
0
.
1
2
1
-
A
r
g
i
l
l
i
t
e
B-
2
3
1
2
/
1
8
/
2
0
1
4
3
0
6
.
8
7
3
0
5
.
0
8
1
.
7
9
3
0
.
0
2
7
5
.
0
8
1
8
.
7
2
8
6
.
3
8
2
7
.
7
2
7
7
.
3
8
2
0
.
0
2
8
5
.
0
8
3
0
.
0
2
7
5
.
0
8
1
-
A
r
g
i
l
l
i
t
e
B-
2
4
©
1
2
/
1
8
/
2
0
1
4
3
0
7
.
8
4
3
0
5
.
3
2
2
.
5
2
3
0
.
5
2
7
4
.
8
2
1
5
.
0
2
9
0
.
3
2
1
5
.
2
2
9
0
.
1
2
5
.
2
3
0
0
.
1
2
1
5
.
2
2
9
0
.
1
2
3
-
A
r
g
i
l
l
i
t
e
B-
2
5
S
0
1
/
2
8
/
2
0
1
5
2
9
1
.
1
4
2
8
8
.
3
5
2
.
7
9
1
5
.
0
2
7
3
.
3
5
-
-
-
-
-
-
1
5
.
0
2
7
3
.
3
5
5
.
0
2
8
3
.
3
5
1
5
.
0
2
7
3
.
3
5
1
-
A
r
g
i
l
l
i
t
e
B-
2
5
D
1
2
/
1
8
/
2
0
1
4
2
9
2
.
5
7
2
8
9
.
5
3
3
.
0
4
3
0
.
2
2
5
9
.
3
3
1
5
.
0
2
7
4
.
5
3
3
0
.
2
2
5
9
.
3
3
2
0
.
2
2
6
9
.
3
3
3
0
.
2
2
5
9
.
3
3
1
,
2
-
A
r
g
i
l
l
i
t
e
Ta
b
l
e
1
Te
s
t
B
o
r
i
n
g
/
P
i
e
z
o
m
e
t
e
r
D
a
t
a
Bo
r
i
n
g
s
W
i
t
h
P
i
e
z
o
m
e
t
e
r
s
I
n
s
t
a
l
l
e
d
F
o
r
T
h
e
P
h
a
s
e
3
&
4
D
e
s
i
g
n
H
y
d
r
o
I
n
v
e
s
t
i
g
a
t
i
o
n
:
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
Hydrogeologic Unit
El
e
v
a
t
i
o
n
D
a
t
a
T
e
s
t
B
o
r
i
n
g
D
a
t
a
P
i
e
z
o
m
e
t
e
r
C
o
n
s
t
r
u
c
t
i
o
n
D
a
t
a
To
p
o
f
P
i
e
z
.
S
c
r
e
e
n
B
o
t
t
o
m
o
f
P
i
e
z
.
S
c
r
e
e
n
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
P
h
a
s
e
3&
4
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Bo
r
i
n
g
B
o
r
i
n
g
P
V
C
P
i
p
e
G
r
o
u
n
d
S
t
i
c
k
u
p
T
o
t
a
l
B
o
t
t
o
m
P
W
R
P
W
R
R
e
f
u
s
a
l
R
e
f
u
s
a
l
Nu
m
b
e
r
D
a
t
e
E
l
e
v
.
E
l
e
v
.
(
f
e
e
t
)
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
Ta
b
l
e
1
Te
s
t
B
o
r
i
n
g
/
P
i
e
z
o
m
e
t
e
r
D
a
t
a
Bo
r
i
n
g
s
W
i
t
h
P
i
e
z
o
m
e
t
e
r
s
I
n
s
t
a
l
l
e
d
F
o
r
T
h
e
P
h
a
s
e
3
&
4
D
e
s
i
g
n
H
y
d
r
o
I
n
v
e
s
t
i
g
a
t
i
o
n
:
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
Hydrogeologic Unit
El
e
v
a
t
i
o
n
D
a
t
a
T
e
s
t
B
o
r
i
n
g
D
a
t
a
P
i
e
z
o
m
e
t
e
r
C
o
n
s
t
r
u
c
t
i
o
n
D
a
t
a
To
p
o
f
P
i
e
z
.
S
c
r
e
e
n
B
o
t
t
o
m
o
f
P
i
e
z
.
S
c
r
e
e
n
B-
2
6
1
2
/
1
8
/
2
0
1
4
2
7
9
.
6
3
2
7
7
.
1
3
2
.
5
0
1
5
.
8
2
6
1
.
3
3
8
.
5
2
6
8
.
6
3
1
5
.
8
2
6
1
.
3
3
5
.
8
2
7
1
.
3
3
1
5
.
8
2
6
1
.
3
3
1
-
T
r
i
a
s
s
i
c
B-
2
7
1
2
/
1
9
/
2
0
1
4
2
7
3
.
2
2
2
7
0
.
2
3
2
.
9
9
2
5
.
9
2
4
4
.
3
3
1
0
.
0
2
6
0
.
2
3
2
5
.
9
2
4
4
.
3
3
1
5
.
9
2
5
4
.
3
3
2
5
.
9
2
4
4
.
3
3
1
-
T
r
i
a
s
s
i
c
B-
2
8
1
2
/
1
9
/
2
0
1
4
2
7
3
.
5
7
2
7
1
.
1
3
2
.
4
4
1
6
.
0
2
5
5
.
1
3
5
.
0
2
6
6
.
1
3
1
6
.
0
2
5
5
.
1
3
6
.
0
2
6
5
.
1
3
1
6
.
0
2
5
5
.
1
3
1
-
T
r
i
a
s
s
i
c
B-
2
9
1
2
/
1
9
/
2
0
1
4
2
8
1
.
1
8
2
7
8
.
0
3
3
.
1
5
2
0
.
8
2
5
7
.
2
3
1
0
.
0
2
6
8
.
0
3
2
0
.
8
2
5
7
.
2
3
1
0
.
8
2
6
7
.
2
3
2
0
.
8
2
5
7
.
2
3
2
-
A
r
g
i
l
l
i
t
e
B-
3
0
1
2
/
1
8
/
2
0
1
4
2
8
3
.
0
7
2
8
0
.
1
5
2
.
9
2
2
9
.
0
2
5
1
.
1
5
1
0
.
0
2
7
0
.
1
5
2
9
.
0
2
5
1
.
1
5
1
9
.
0
2
6
1
.
1
5
2
9
.
0
2
5
1
.
1
5
1
-
A
r
g
i
l
l
i
t
e
B-
3
1
3
/
3
1
/
2
0
1
5
2
8
1
.
4
4
2
7
8
.
2
1
3
.
2
3
1
5
.
0
2
6
3
.
2
-
-
-
-
-
-
-
-
-
--
-
1
0
.
0
2
6
8
.
2
1
5
.
0
2
6
3
.
2
1
-
A
r
g
i
l
l
i
t
e
B-
3
2
3
/
3
1
/
2
0
1
5
2
8
1
.
9
0
2
7
8
.
5
0
3
.
4
0
1
5
.
0
2
6
3
.
5
-
-
-
-
-
-
-
-
-
--
-
1
0
.
0
2
6
8
.
5
1
5
.
0
2
6
3
.
5
1
-
A
r
g
i
l
l
i
t
e
No
t
e
s
:
1
.
R
e
f
e
r
e
n
c
e
e
l
e
v
a
t
i
o
n
s
f
o
r
a
b
o
v
e
p
i
e
z
o
m
e
t
e
r
s
b
a
s
e
d
o
n
s
u
r
v
e
y
d
a
t
a
r
e
p
o
r
t
e
d
b
y
L
a
w
r
e
n
c
e
a
n
d
A
s
s
o
c
i
a
t
e
s
2.
A
u
g
e
r
r
e
f
u
s
a
l
d
e
p
t
h
s
a
n
d
e
l
e
v
a
t
i
o
n
s
i
n
d
i
c
a
t
e
t
o
p
o
f
b
e
d
r
o
c
k
3.
P
W
R
i
s
d
e
f
i
n
e
d
b
y
s
t
a
n
d
a
r
d
p
e
n
e
t
r
a
t
i
o
n
t
e
s
t
v
a
l
u
e
o
f
1
0
0
b
l
o
w
s
p
e
r
f
o
o
t
,
o
r
h
i
g
h
e
r
.
4.
A
l
l
d
e
p
t
h
s
r
e
f
e
r
e
n
c
e
d
f
r
o
m
g
r
o
u
n
d
s
u
r
f
a
c
e
©
C
o
r
e
l
o
c
a
t
i
o
n
Hy
d
r
o
U
n
i
t
s
Tr
i
a
s
s
i
c
V
a
r
i
a
b
l
y
w
e
a
t
h
e
r
e
d
s
i
l
t
s
t
o
n
e
a
n
d
s
a
n
d
s
t
o
n
e
c
o
n
g
l
o
m
e
r
a
t
e
o
f
t
h
e
W
a
d
e
s
b
o
r
o
B
a
s
i
n
1
S
a
p
r
o
l
i
t
e
w
i
t
h
S
P
T
v
a
l
u
e
<
1
0
0
b
p
f
Ar
g
i
l
l
i
t
e
L
a
m
i
n
a
t
e
d
m
e
t
a
-
v
o
l
c
a
n
i
c
p
h
y
l
l
i
t
e
,
s
c
h
i
s
t
,
a
n
d
/
o
r
s
i
l
t
s
t
o
n
e
o
f
t
h
e
C
a
r
o
l
i
n
a
S
l
a
t
e
B
e
l
t
2
S
a
p
r
o
l
i
t
e
w
i
t
h
S
P
T
v
a
l
u
e
>
1
0
0
b
pf, PWR
Di
a
b
a
s
e
M
a
f
i
c
i
n
t
r
u
s
i
o
n
s
(
d
i
k
e
s
a
n
d
/
o
r
s
i
l
l
s
)
a
s
s
o
c
i
a
t
e
d
w
i
t
h
p
o
s
t
-
A
p
p
a
l
a
c
h
i
a
n
t
e
c
t
o
n
i
c
r
i
f
t
i
n
g
3
B
e
d
r
o
c
k
b
e
l
o
w
A
u
g
e
r
R
e
f
u
s
a
l
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
P
h
a
s
e
3&
4
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Bo
r
i
n
g
B
o
r
i
n
g
P
V
C
P
i
p
e
G
r
o
u
n
d
S
t
i
c
k
u
p
T
o
t
a
l
B
o
t
t
o
m
P
W
R
P
W
R
R
e
f
u
s
a
l
R
e
f
u
s
a
l
Nu
m
b
e
r
D
a
t
e
E
l
e
v
.
E
l
e
v
.
(
f
e
e
t
)
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
va
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
Bo
r
i
n
g
s
c
o
m
p
l
e
t
e
d
i
n
T
r
i
a
s
s
i
c
s
a
n
d
s
t
o
n
e
MW
-
2
7
O
B
2
/
1
0
/
1
9
9
2
U
n
k
.
2
3
8
.
3
0
U
n
k
.
2
5
.
0
0
2
1
3
.
3
0
1
7
.
0
0
2
2
1
.
3
0
2
8
.
0
0
2
1
0
.
3
0
5
.
0
0
3
0
3
.
3
6
2
5
.
0
0
2
8
6
.
3
6
1
-
T
r
i
a
s
s
i
c
P-
1
0
1
6
/
2
5
/
1
9
9
7
3
2
0
.
7
5
3
1
8
.
3
6
2
.
3
9
3
2
.
0
0
2
8
6
.
3
6
-
-
-
-
-
-
-
-
-
-
-
-
1
5
.
0
0
3
0
3
.
3
6
3
2
.
0
0
2
8
6
.
3
6
1
-
T
r
i
a
s
s
i
c
P-
1
0
7
6
/
2
6
/
1
9
9
7
3
2
1
.
9
1
3
1
9
.
3
5
2
.
5
6
3
2
.
0
0
2
8
7
.
3
5
-
-
-
-
-
-
3
2
.
0
0
2
8
7
.
3
5
2
5
.
0
0
2
9
4
.
3
5
3
2
.
0
0
2
8
7
.
3
5
1
-
T
r
i
a
s
s
i
c
P-
1
0
8
6
/
3
0
/
1
9
9
7
3
1
5
.
7
0
3
1
3
.
2
2
2
.
4
8
1
5
.
0
0
2
9
8
.
2
2
-
-
-
-
-
-
1
5
.
0
0
2
9
8
.
2
2
1
3
.
2
5
2
9
9
.
9
7
1
5
.
0
0
2
9
8
.
2
2
1
-
T
r
i
a
s
s
i
c
MW
-
3
2
O
B
3
/
3
/
1
9
9
2
3
0
0
.
5
4
2
9
8
.
2
3
2
.
3
1
3
6
.
0
0
2
6
2
.
2
3
-
-
-
-
-
-
-
-
-
-
-
-
6
.
0
0
2
9
2
.
2
3
3
6
.
0
0
2
6
2
.
2
3
1
-
T
r
i
a
s
s
i
c
MW
-
3
3
O
B
2
/
2
7
/
1
9
9
2
2
8
4
.
4
7
2
8
2
.
3
4
2
.
1
3
1
8
.
0
0
2
6
4
.
3
4
-
-
-
-
-
-
-
-
-
-
-
-
3
.
0
0
2
7
9
.
3
4
1
8
.
0
0
2
6
4
.
3
4
1
-
T
r
i
a
s
s
i
c
PH
2
-
1
8
1
1
/
1
7
/
2
0
0
3
3
0
4
.
2
9
3
0
0
.
7
2
3
.
5
7
2
8
.
5
0
2
7
2
.
2
2
1
7
.
0
0
2
8
3
.
7
2
2
8
.
5
0
2
7
2
.
2
2
1
8
.
5
0
2
8
2
.
2
2
2
8
.
5
0
2
7
2
.
2
2
2
-
T
r
i
a
s
s
i
c
PH
2
-
2
9
1
2
/
9
/
2
0
0
3
2
6
9
.
4
6
2
6
5
.
9
6
3
.
5
0
5
0
.
0
0
2
1
5
.
9
6
8
.
0
0
2
5
7
.
9
6
-
-
-
-
-
-
4
0
.
0
0
2
2
5
.
9
6
5
0
.
0
0
2
1
5
.
9
6
2
-
T
r
i
a
s
s
i
c
PH
2
-
3
0
1
2
/
3
/
2
0
0
3
2
7
3
.
6
8
2
7
0
.
4
9
3
.
1
9
3
5
.
0
0
2
3
5
.
4
9
8
.
0
0
2
6
2
.
4
9
-
-
-
-
-
-
2
5
.
0
0
2
4
5
.
4
9
3
5
.
0
0
2
3
5
.
4
9
2
-
T
r
i
a
s
s
i
c
B-
2
1
0
/
3
/
1
9
9
1
3
2
1
.
2
5
3
1
7
.
0
1
4
.
2
4
2
6
.
5
0
2
9
0
.
5
1
-
-
-
-
-
-
2
6
.
5
0
2
9
0
.
5
1
1
0
.
5
0
3
0
6
.
5
1
2
0
.
5
0
2
9
6
.
5
1
1
,
2
-
T
r
i
a
s
s
i
c
P-
1
2
S
5
/
1
0
/
1
9
9
6
3
1
0
.
5
1
3
0
7
.
4
4
3
.
0
7
2
9
.
0
0
2
7
8
.
4
4
-
-
-
-
-
-
n
/
a
n
/
a
1
4
.
0
0
2
9
3
.
4
4
2
9
.
0
0
2
7
8
.
4
4
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
2
0
-
O
B
2
/
3
/
1
9
9
2
2
8
0
.
5
4
2
7
8
.
3
7
2
.
1
7
2
5
.
8
0
2
5
2
.
5
7
2
3
.
5
0
2
5
4
.
8
7
<
2
5
.
8
<
2
5
2
.
5
7
5
.
8
0
2
7
2
.
5
7
2
5
.
8
0
2
5
2
.
5
7
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
2
6
-
O
B
S
2
/
1
4
/
1
9
9
2
2
5
4
.
4
4
2
5
1
.
4
4
U
n
k
.
1
3
.
5
0
2
3
7
.
9
4
6
.
5
0
2
4
4
.
9
4
-
-
-
<
2
3
8
.
2
3
.
0
0
2
4
8
.
4
4
1
3
.
0
0
2
3
8
.
4
4
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
2
S
*
1
0
/
1
2
/
2
0
0
0
3
1
8
.
0
0
3
1
5
.
4
4
2
.
5
6
3
1
.
0
0
2
8
4
.
4
4
1
5
.
0
0
3
0
0
.
4
4
-
-
-
-
-
-
1
6
.
0
0
2
9
9
.
4
4
3
1
.
0
0
2
8
4
.
4
4
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
3
S
*
1
0
/
1
8
/
2
0
0
0
2
9
5
.
8
7
2
9
3
.
1
8
2
.
6
9
2
0
.
0
0
2
7
3
.
1
8
1
4
.
0
0
2
7
9
.
1
8
-
-
-
-
-
-
5
.
0
0
2
8
8
.
1
8
2
0
.
0
0
2
7
3
.
1
8
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
4
S
*
1
0
/
1
7
/
2
0
0
0
2
9
4
.
2
9
2
9
2
.
2
3
2
.
0
6
3
0
.
0
0
2
6
2
.
2
3
2
9
.
0
0
2
6
3
.
2
3
-
-
-
-
-
-
1
5
.
0
0
2
7
7
.
2
3
3
0
.
0
0
2
6
2
.
2
3
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
5
S
*
1
0
/
9
/
2
0
0
0
2
8
2
.
1
5
2
7
8
.
8
0
3
.
3
5
3
0
.
0
0
2
4
8
.
8
0
9
.
0
0
2
6
9
.
8
0
-
-
-
-
-
-
1
5
.
0
0
2
6
3
.
8
0
3
0
.
0
0
2
4
8
.
8
0
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
8
S
*
5
/
8
/
1
9
9
6
3
1
1
.
8
5
3
0
9
.
3
0
2
.
5
5
3
5
.
0
0
2
7
4
.
3
0
1
4
.
0
0
2
9
5
.
3
0
-
-
-
-
-
-
2
0
.
0
0
2
8
9
.
3
0
3
5
.
0
0
2
7
4
.
3
0
1
,
2
-
T
r
i
a
s
s
i
c
B-
6
9
/
3
0
/
1
9
9
1
2
7
2
.
2
3
2
6
9
.
2
3
U
n
k
.
3
5
.
0
0
2
3
4
.
2
3
2
3
.
5
0
2
4
5
.
7
3
-
-
-
<
2
3
4
.
2
3
-
-
-
-
-
-
3
5
.
0
0
2
3
4
.
2
3
2
-
T
r
i
a
s
s
i
c
MW
-
2
6
O
B
2
/
1
7
/
1
9
9
2
2
5
4
.
2
3
2
5
1
.
2
3
U
n
k
.
2
2
.
0
0
2
2
9
.
2
3
6
.
5
0
2
4
4
.
7
3
2
2
.
0
0
2
2
9
.
2
3
1
2
.
0
0
2
3
9
.
2
3
2
2
.
0
0
2
2
9
.
2
3
2
-
T
r
i
a
s
s
i
c
MW
-
9
*
5
/
1
9
/
2
0
1
1
2
7
4
.
5
8
2
7
1
.
5
8
3
.
0
0
2
7
.
5
0
2
4
4
.
0
8
-
-
-
-
-
-
4
7
.
5
0
2
2
4
.
0
8
3
2
.
5
0
2
3
9
.
0
8
4
7
.
5
0
2
2
4
.
0
8
2
-
T
r
i
a
s
s
i
c
MW
-
2
D
*
©
1
0
/
1
0
/
2
0
0
0
3
1
7
.
7
4
3
1
5
.
1
4
2
.
6
0
3
8
.
0
0
2
7
7
.
1
4
1
5
.
0
0
3
0
0
.
1
4
3
5
.
0
0
2
8
0
.
1
4
3
3
.
0
0
2
8
2
.
1
4
3
8
.
0
0
2
7
7
.
1
4
2
,
3
-
T
r
i
a
s
s
i
c
MW
-
3
D
*
©
1
0
/
1
7
/
2
0
0
0
2
9
5
.
6
0
2
9
3
.
1
0
2
.
5
0
4
0
.
0
0
2
5
3
.
1
0
1
4
.
0
0
2
7
9
.
1
0
3
4
.
0
0
2
5
9
.
1
0
3
0
.
0
0
2
6
3
.
1
0
4
0
.
0
0
2
5
3
.
1
0
2
,
3
-
T
r
i
a
s
s
i
c
MW
-
4
D
*
©
1
0
/
1
7
/
2
0
0
0
2
9
4
.
1
6
2
9
1
.
5
9
2
.
5
7
6
0
.
5
0
2
3
1
.
0
9
2
9
.
0
0
2
6
2
.
5
9
5
4
.
0
0
2
3
7
.
5
9
5
0
.
5
0
2
4
1
.
0
9
6
0
.
5
0
2
3
1
.
0
9
2
,
3
-
T
r
i
a
s
s
i
c
MW
-
5
D
*
©
1
0
/
9
/
2
0
0
0
2
8
1
.
9
4
2
7
8
.
9
8
2
.
9
6
4
7
.
0
0
2
3
1
.
9
8
9
.
0
0
2
6
9
.
9
8
4
2
.
0
0
2
3
6
.
9
8
3
7
.
0
0
2
4
1
.
9
8
4
7
.
0
0
2
3
1
.
9
8
2
,
3
-
T
r
i
a
s
s
i
c
MW
-
8
D
*
©
5
/
7
/
1
9
9
6
3
1
1
.
6
1
3
0
9
.
4
5
2
.
1
6
4
9
.
0
0
2
6
0
.
4
5
1
4
.
0
0
2
9
5
.
4
5
3
9
.
0
0
2
7
0
.
4
5
3
8
.
0
0
2
7
1
.
4
5
4
8
.
0
0
2
6
1
.
4
5
2
,
3
-
T
r
i
a
s
s
i
c
P-
1
2
D
5
/
1
0
/
1
9
9
6
3
1
0
.
4
4
3
0
7
.
7
1
2
.
7
3
4
2
.
0
0
2
6
5
.
7
1
-
-
-
-
-
-
3
0
.
0
0
2
7
7
.
7
1
3
2
.
0
0
2
7
5
.
7
1
4
2
.
0
0
2
6
5
.
7
1
3
-
T
r
i
a
s
s
i
c
MW
-
1
5
-
0
B
2
/
1
3
/
1
9
9
2
3
0
4
.
5
6
3
0
2
.
1
0
2
.
4
6
2
5
.
0
0
2
7
7
.
1
0
-
-
-
-
-
-
-
-
-
--
-
5
.
0
0
2
9
7
.
1
0
2
5
.
0
0
2
7
7
.
1
0
3
-
T
r
i
a
s
s
i
c
Ta
b
l
e
1
A
Te
s
t
B
o
r
i
n
g
/
P
i
e
z
o
m
e
t
e
r
D
a
t
a
Ea
r
l
i
e
r
B
o
r
i
n
g
s
W
i
t
h
P
i
e
z
o
m
e
t
e
r
s
R
e
l
e
v
a
n
t
t
o
T
h
e
P
h
a
s
e
3
&
4
D
e
s
i
g
n
H
y
d
r
o
I
n
v
e
s
t
i
g
a
t
i
o
n
:
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
El
e
v
a
t
i
o
n
D
a
t
a
Te
s
t
B
o
r
i
n
g
D
a
t
a
Pi
e
z
o
m
e
t
e
r
C
o
n
s
t
r
u
c
t
i
o
n
D
a
t
a
Hydrogeologic Unit
To
p
o
f
P
i
e
z
.
S
c
r
e
e
n
B
o
t
t
o
m
o
f
P
i
e
z
.
S
c
r
e
e
n
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
P
h
a
s
e
3&
4
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Bo
r
i
n
g
B
o
r
i
n
g
P
V
C
P
i
p
e
G
r
o
u
n
d
S
t
i
c
k
u
p
T
o
t
a
l
B
o
t
t
o
m
P
W
R
P
W
R
R
e
f
u
s
a
l
R
e
f
u
s
a
l
Nu
m
b
e
r
D
a
t
e
E
l
e
v
.
E
l
e
v
.
(
f
e
e
t
)
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
va
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
Ta
b
l
e
1
A
Te
s
t
B
o
r
i
n
g
/
P
i
e
z
o
m
e
t
e
r
D
a
t
a
Ea
r
l
i
e
r
B
o
r
i
n
g
s
W
i
t
h
P
i
e
z
o
m
e
t
e
r
s
R
e
l
e
v
a
n
t
t
o
T
h
e
P
h
a
s
e
3
&
4
D
e
s
i
g
n
H
y
d
r
o
I
n
v
e
s
t
i
g
a
t
i
o
n
:
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
El
e
v
a
t
i
o
n
D
a
t
a
Te
s
t
B
o
r
i
n
g
D
a
t
a
Pi
e
z
o
m
e
t
e
r
C
o
n
s
t
r
u
c
t
i
o
n
D
a
t
a
Hydrogeologic Unit
To
p
o
f
P
i
e
z
.
S
c
r
e
e
n
B
o
t
t
o
m
o
f
P
i
e
z
.
S
c
r
e
e
n
MW
-
1
5
S
B
2
/
1
3
/
1
9
9
2
3
0
5
.
0
4
3
0
2
.
2
6
2
.
7
8
5
9
.
0
0
2
4
3
.
2
6
-
-
-
-
-
-
-
-
-
--
-
7
9
.
8
3
2
5
4
.
2
6
8
9
.
3
3
2
4
3
.
2
3
3
-
T
r
i
a
s
s
i
c
MW
-
1
5
-
D
B
2
/
1
3
/
1
9
9
2
3
0
5
.
1
4
3
0
2
.
4
3
2
.
7
1
8
9
.
5
0
2
1
2
.
9
3
-
-
-
-
-
-
4
8
.
0
0
2
5
5
.
4
3
8
0
.
0
0
2
2
2
.
4
3
8
9
.
5
0
2
1
2
.
9
3
3
-
T
r
i
a
s
s
i
c
MW
-
2
6
S
B
©
2
/
1
7
/
1
9
9
2
2
5
4
.
6
7
2
5
1
.
6
7
U
n
k
.
4
2
.
2
0
2
0
9
.
4
7
6
.
5
0
2
4
5
.
1
7
2
3
.
0
0
2
2
8
.
6
7
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3 - Triassic
MW
-
2
7
S
B
2
/
7
/
1
9
9
2
2
3
9
.
4
8
2
3
6
.
4
8
U
n
k
.
4
2
.
0
0
1
9
4
.
4
8
1
7
.
0
0
2
1
9
.
4
8
2
8
.
0
0
2
0
8
.
4
8
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3 - Triassic
MW
-
2
7
D
B
1
/
3
0
/
1
9
9
2
2
4
2
.
3
9
2
3
9
.
3
9
U
n
k
.
6
7
.
5
0
1
7
1
.
8
9
1
7
.
0
0
2
2
2
.
3
9
2
8
.
0
0
2
1
1
.
3
9
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3 - Triassic
MW
-
3
2
S
B
2
/
2
6
/
1
9
9
2
3
0
0
.
8
8
2
9
8
.
2
7
2
.
6
1
7
3
.
0
0
2
2
5
.
2
7
-
-
-
-
-
-
4
0
.
0
0
2
5
8
.
2
7
4
0
.
0
0
2
5
8
.
2
7
7
3
.
0
0
2
2
5
.
2
7
3
-
T
r
i
a
s
s
i
c
MW
-
3
3
S
B
2
/
2
6
/
1
9
9
2
2
8
5
.
4
0
2
8
3
.
3
8
2
.
0
2
4
7
.
5
0
2
3
5
.
8
8
-
-
-
-
-
-
2
0
.
0
0
2
6
3
.
3
8
2
2
.
0
0
2
6
1
.
3
8
4
7
.
5
0
2
3
5
.
8
8
3
-
T
r
i
a
s
s
i
c
Bo
r
i
n
g
s
c
o
m
p
l
e
t
e
d
i
n
d
i
a
b
a
s
e
P-
1
3
S
5
/
7
/
1
9
9
6
3
2
8
.
7
9
3
2
6
.
6
1
2
.
1
8
4
3
.
0
0
2
8
3
.
6
1
-
-
-
-
-
-
-
-
-
--
-
2
8
.
0
0
2
9
8
.
6
1
4
3
.
0
0
2
8
3
.
6
1
1
-
D
i
a
b
a
s
e
P-
1
3
S
-
R
1
0
/
6
/
1
9
9
7
3
2
8
.
9
0
3
2
6
.
4
1
2
.
4
9
3
1
.
0
0
2
9
5
.
4
1
-
-
-
-
-
-
-
-
-
--
-
2
6
.
0
0
3
0
0
.
4
1
3
1
.
0
0
2
9
5
.
4
1
1
-
D
i
a
b
a
s
e
P-
1
3
-
D
-
R
1
0
/
6
/
1
9
9
7
3
2
8
.
2
9
3
2
6
.
3
0
1
.
9
9
3
9
.
9
0
2
8
6
.
4
0
-
-
-
-
-
-
-
-
-
--
-
3
4
.
9
0
2
9
1
.
4
0
3
9
.
9
0
2
8
6
.
4
0
1
-
D
i
a
b
a
s
e
PH
2
-
3
1
1
2
/
2
/
2
0
0
3
2
8
3
.
8
8
2
8
0
.
1
6
3
.
7
2
7
3
.
5
0
2
0
6
.
6
6
0
.
0
0
2
8
0
.
1
6
-
-
-
--
-
6
3
.
5
0
2
1
6
.
6
6
7
3
.
5
0
2
0
6
.
6
6
1
-
D
i
a
b
a
s
e
MW
-
3
4
O
B
2
/
2
7
/
1
9
9
2
2
7
6
.
3
5
2
7
6
.
2
0
0
.
1
5
6
.
0
0
2
7
0
.
2
0
4
.
5
0
2
7
1
.
7
0
-
-
-
--
-
3
.
7
0
2
7
2
.
5
0
6
.
0
0
2
7
0
.
2
0
1
-
D
i
a
b
a
s
e
P-
1
3
D
5
/
7
/
1
9
9
6
3
2
9
.
0
3
3
2
6
.
3
5
2
.
6
8
5
5
.
0
0
2
7
1
.
3
5
-
-
-
-
-
-
4
4
.
0
0
2
8
2
.
3
5
4
5
.
0
0
2
8
1
.
3
5
5
5
.
0
0
2
7
1
.
3
5
3
-
D
i
a
b
a
s
e
MW
-
1
4
B
-
B
Z
W
5
/
1
1
/
1
9
9
5
3
3
4
.
2
3
3
3
4
.
2
3
0
.
0
0
8
0
.
0
0
2
5
4
.
2
3
-
-
-
-
-
-
4
3
.
0
0
2
9
1
.
2
3
5
9
.
9
8
2
7
4
.
2
5
7
9
.
9
8
2
5
4
.
2
5
3
-
D
i
a
b
a
s
e
MW
-
1
4
B
-
D
D
5
/
1
7
/
1
9
9
5
3
3
3
.
6
9
3
3
3
.
6
9
0
.
0
0
1
2
0
.
0
0
2
1
3
.
6
9
2
4
.
0
0
3
0
9
.
6
9
3
6
.
0
0
2
9
7
.
6
9
5
4
.
0
0
2
7
9
.
6
9
1
2
0
.
0
0
2
1
3
.
6
9
3
-
D
i
a
b
a
s
e
MW
-
1
7
A
-
B
Z
E
©
5
/
1
6
/
1
9
9
5
3
2
7
.
1
0
3
2
7
.
1
0
0
.
0
0
1
1
8
.
0
0
2
0
9
.
1
0
4
2
.
0
0
2
8
5
.
1
0
4
4
.
0
0
2
8
3
.
1
0
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3 - Diabase
MW
-
1
7
A
-
D
D
5
/
1
7
/
1
9
9
5
3
2
7
.
6
3
3
2
7
.
6
3
0
.
0
0
1
1
5
.
0
0
2
1
2
.
6
3
-
-
-
--
-
3
1
.
5
0
2
9
6
.
1
3
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3 - Diabase
MW
-
3
4
S
B
©
2
/
6
/
1
9
9
2
2
7
8
.
0
5
2
7
6
.
2
2
1
.
8
3
4
0
.
3
4
2
3
5
.
8
8
4
.
5
0
2
7
1
.
7
2
1
0
.
0
0
2
6
6
.
2
2
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3 - Diabase
MW
-
1
D
*
©
1
1
/
1
0
/
2
0
0
0
3
0
9
.
7
0
3
0
7
.
3
0
2
.
4
0
4
5
.
5
0
2
6
1
.
8
0
2
0
.
0
0
2
8
7
.
3
0
3
3
.
0
0
2
7
4
.
3
0
3
5
.
5
0
2
7
1
.
8
0
4
5
.
5
0
2
6
1
.
8
0
3
-
D
i
a
b
a
s
e
Bo
r
i
n
g
s
c
o
m
p
l
e
t
e
d
i
n
a
r
g
i
l
l
i
t
e
B-
1
1
0
/
1
/
1
9
9
1
3
2
6
.
9
5
3
2
3
.
6
9
3
.
2
6
1
6
.
5
0
3
0
7
.
1
9
-
-
-
-
-
-
1
6
.
5
0
3
0
7
.
1
9
6
.
5
0
3
1
7
.
1
9
1
6
.
5
0
3
0
7
.
1
9
1
-
A
r
g
i
l
l
i
t
e
MW
-
1
4
-
O
B
2
/
4
/
1
9
9
2
3
0
5
.
7
2
3
0
3
.
3
1
2
.
4
1
1
9
.
5
0
2
8
3
.
8
1
1
1
.
5
0
2
9
1
.
8
1
1
9
.
7
0
2
8
3
.
6
1
9
.
5
0
2
9
3
.
8
1
1
9
.
5
0
2
8
3
.
8
1
1
-
A
r
g
i
l
l
i
t
e
MW
-
1
4
A
-
O
B
2
/
2
5
/
1
9
9
2
3
3
7
.
4
8
3
3
4
.
9
4
2
.
5
4
3
1
.
0
0
3
0
3
.
9
4
-
-
-
-
-
-
<
3
1
n
/
a
1
5
.
9
9
3
1
8
.
9
5
3
1
.
0
0
3
0
3
.
9
4
1
-
A
r
g
i
l
l
i
t
e
MW
-
1
6
O
B
2
/
4
/
1
9
9
2
3
1
5
.
2
2
3
1
2
.
8
3
2
.
3
9
4
5
.
0
0
2
6
7
.
8
3
1
8
.
5
0
2
9
4
.
3
3
4
5
.
0
0
2
6
7
.
8
3
1
5
.
0
0
2
9
7
.
8
3
4
5
.
0
0
2
6
7
.
8
3
1
-
A
r
g
i
l
l
i
t
e
MW
-
1
7
O
B
S
2
/
4
/
1
9
9
2
3
1
2
.
5
4
3
1
0
.
7
3
1
.
8
1
1
0
.
0
0
3
0
0
.
7
3
9
.
5
0
3
0
1
.
2
3
-
-
-
--
-
5
.
0
0
3
0
5
.
7
3
1
0
.
0
0
3
0
0
.
7
3
1
-
A
r
g
i
l
l
i
t
e
P-
1
1
S
5
/
7
/
1
9
9
6
3
2
9
.
8
8
3
2
6
.
8
4
3
.
0
4
3
0
.
0
0
2
9
6
.
8
4
-
-
-
-
-
-
n
/
a
n
/
a
1
5
.
0
0
3
1
1
.
8
4
3
0
.
0
0
2
9
6
.
8
4
1
-
A
r
g
i
l
l
i
t
e
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
P
h
a
s
e
3&
4
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Bo
r
i
n
g
B
o
r
i
n
g
P
V
C
P
i
p
e
G
r
o
u
n
d
S
t
i
c
k
u
p
T
o
t
a
l
B
o
t
t
o
m
P
W
R
P
W
R
R
e
f
u
s
a
l
R
e
f
u
s
a
l
Nu
m
b
e
r
D
a
t
e
E
l
e
v
.
E
l
e
v
.
(
f
e
e
t
)
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
va
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
a
t
i
o
n
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
D
e
p
t
h
(
f
e
e
t
)
E
l
e
v
.
Ta
b
l
e
1
A
Te
s
t
B
o
r
i
n
g
/
P
i
e
z
o
m
e
t
e
r
D
a
t
a
Ea
r
l
i
e
r
B
o
r
i
n
g
s
W
i
t
h
P
i
e
z
o
m
e
t
e
r
s
R
e
l
e
v
a
n
t
t
o
T
h
e
P
h
a
s
e
3
&
4
D
e
s
i
g
n
H
y
d
r
o
I
n
v
e
s
t
i
g
a
t
i
o
n
:
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
El
e
v
a
t
i
o
n
D
a
t
a
Te
s
t
B
o
r
i
n
g
D
a
t
a
Pi
e
z
o
m
e
t
e
r
C
o
n
s
t
r
u
c
t
i
o
n
D
a
t
a
Hydrogeologic Unit
To
p
o
f
P
i
e
z
.
S
c
r
e
e
n
B
o
t
t
o
m
o
f
P
i
e
z
.
S
c
r
e
e
n
PH
2
-
2
5
1
1
/
2
0
/
2
0
0
3
3
1
8
.
6
3
3
1
5
.
5
3
3
.
1
0
3
7
.
5
0
2
7
8
.
0
3
2
7
.
0
0
2
8
8
.
5
3
3
7
.
5
0
2
7
8
.
0
3
2
7
.
5
0
2
8
8
.
0
3
3
7
.
5
0
2
7
8
.
0
3
1
-
A
r
g
i
l
l
i
t
e
PH
2
-
3
3
1
1
/
2
0
/
2
0
0
3
3
2
6
.
0
0
3
2
2
.
9
9
3
.
0
1
4
3
.
5
2
7
9
.
4
9
3
9
.
0
0
2
8
3
.
9
9
4
3
.
5
0
2
7
9
.
4
9
3
3
.
5
0
2
8
9
.
4
9
4
3
.
5
2
7
9
.
4
9
1
,
2
-
A
r
g
i
l
l
i
t
e
B-
3
1
0
/
2
/
1
9
9
1
3
3
4
.
0
1
3
3
0
.
5
1
3
.
5
0
3
0
.
0
0
3
0
0
.
5
1
-
-
-
-
-
-
<
3
0
<
3
0
0
.
5
1
2
0
.
0
0
3
1
0
.
5
1
3
0
.
0
0
3
0
0
.
5
1
1
,
2
-
A
r
g
i
l
l
i
t
e
B-
4
1
0
/
1
/
1
9
9
1
3
3
2
.
6
4
3
2
9
.
0
7
3
.
5
7
4
0
.
0
0
2
8
9
.
0
7
1
8
.
5
0
3
1
0
.
5
7
<
4
0
<
2
8
9
.
0
7
3
0
.
0
0
2
9
9
.
0
7
4
0
.
0
0
2
8
9
.
0
7
1
,
2
-
A
r
g
i
l
l
i
t
e
P-
1
S
5
/
2
/
1
9
9
6
3
2
4
.
7
2
3
2
2
.
0
3
2
.
6
9
2
5
.
5
0
2
9
6
.
5
3
-
-
-
-
-
-
-
-
-
-
-
-
1
5
.
5
0
3
0
6
.
5
3
2
5
.
5
0
2
9
6
.
5
3
1
,
2
-
A
r
g
i
l
l
i
t
e
PH
2
-
2
4
B
1
1
/
1
8
/
2
0
0
3
3
2
4
.
9
1
3
2
1
.
4
0
3
.
5
1
3
8
.
5
0
2
8
2
.
9
0
2
7
.
0
0
2
9
4
.
4
0
-
-
-
-
-
-
2
8
.
5
0
2
9
2
.
9
0
3
8
.
5
0
2
8
2
.
9
0
2
-
A
r
g
i
l
l
i
t
e
PH
2
-
3
2
1
1
/
2
5
/
2
0
0
3
2
9
1
.
8
6
2
8
8
.
3
3
3
.
5
3
5
0
.
0
0
2
3
8
.
3
3
1
2
.
0
0
2
7
6
.
3
3
5
0
.
0
0
2
3
8
.
3
3
4
0
.
0
0
2
4
8
.
3
3
5
0
.
0
0
2
3
8
.
3
3
2
-
A
r
g
i
l
l
i
t
e
PH
2
-
3
4
1
1
/
1
7
/
2
0
0
3
3
3
2
.
5
7
3
2
8
.
9
6
3
.
6
1
5
3
.
5
0
2
7
5
.
4
6
-
-
-
-
-
-
-
-
-
-
-
-
4
3
.
5
0
2
8
5
.
4
6
5
3
.
5
0
2
7
5
.
4
6
2
-
A
r
g
i
l
l
i
t
e
P-
1
4
S
5
/
1
5
/
1
9
9
6
3
2
4
.
3
0
3
2
2
.
2
5
2
.
0
5
3
6
.
0
0
2
8
6
.
2
5
1
9
.
3
0
3
6
.
0
0
2
8
6
.
2
5
2
1
.
0
0
3
0
1
.
2
5
3
6
.
0
0
2
8
6
.
2
5
2
-
A
r
g
i
l
l
i
t
e
P-
1
D
5
/
2
/
1
9
9
6
3
2
4
.
7
1
3
2
2
.
0
2
2
.
6
9
4
1
.
0
0
2
8
1
.
0
2
-
-
-
-
-
-
2
7
.
5
0
2
9
4
.
5
2
3
1
.
0
0
2
9
1
.
0
2
4
1
.
0
0
2
8
1
.
0
2
3
-
A
r
g
i
l
l
i
t
e
P-
1
1
D
5
/
1
0
/
1
9
9
6
3
3
0
.
3
0
3
2
6
.
9
3
3
.
3
7
4
6
.
0
0
2
8
0
.
9
3
-
-
-
-
-
-
3
6
.
0
0
2
9
0
.
9
3
3
6
.
0
0
2
9
0
.
9
3
4
6
.
0
0
2
8
0
.
9
3
3
-
A
r
g
i
l
l
i
t
e
P-
1
4
D
©
5
/
1
4
/
1
9
9
6
3
2
4
.
5
8
3
2
2
.
4
9
2
.
0
9
4
8
.
0
0
2
7
4
.
4
9
1
9
.
3
0
3
0
3
.
1
9
3
7
.
0
0
2
8
5
.
4
9
3
8
.
0
0
2
8
4
.
4
9
4
8
.
0
0
2
7
4
.
4
9
3
-
A
r
g
i
l
l
i
t
e
MW
-
9
S
B
2
/
5
/
1
9
9
2
2
6
0
.
5
1
2
5
7
.
5
1
U
n
k
.
3
2
.
0
0
2
2
5
.
5
1
-
-
-
-
-
-
-
-
-
-
-
-
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
9
D
B
1
/
2
9
/
1
9
9
2
2
6
0
.
5
1
2
5
7
.
5
1
U
n
k
.
6
3
.
5
0
1
9
4
.
0
1
-
-
-
2
.
0
0
2
5
5
.
5
1
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
PH
2
-
2
4
A
©
1
1
/
1
8
/
2
0
0
3
3
2
4
.
6
1
3
2
1
.
2
6
3
.
3
5
5
3
.
5
0
2
6
7
.
7
6
2
7
.
0
0
2
9
4
.
2
6
4
3
.
5
0
2
7
7
.
7
6
4
3
.
5
0
2
7
7
.
7
6
5
3
.
5
0
2
6
7
.
7
6
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
2
-
S
B
2
/
5
/
1
9
9
2
3
2
6
.
1
0
3
2
3
.
6
3
2
.
4
7
6
0
.
0
0
2
6
3
.
6
3
9
.
0
0
1
5
.
7
0
3
0
7
.
9
3
O
P
E
N
B
O
R
E
H
26
8
.
6
3
6
0
.
0
0
2
6
3
.
6
3
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
3
-
S
B
2
/
5
/
1
9
9
2
2
7
3
.
2
9
2
7
0
.
2
9
U
n
k
.
3
2
.
0
0
2
3
8
.
2
9
-
-
-
-
-
-
1
0
.
5
0
2
5
9
.
7
9
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
3
D
B
1
/
2
7
/
1
9
9
2
2
7
3
.
8
8
2
7
0
.
8
8
U
n
k
.
6
0
.
0
0
2
1
0
.
8
8
8
.
5
0
2
6
2
.
3
8
1
0
.
5
0
2
6
0
.
3
8
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
4
A
-
B
Z
W
5
/
1
7
/
1
9
9
5
3
3
7
.
7
5
3
3
7
.
7
5
0
.
0
0
1
2
0
.
0
0
2
1
7
.
7
5
-
-
-
-
-
-
3
3
.
6
0
n
/
a
1
3
.
0
0
3
2
4
.
7
5
1
2
0
.
0
0
2
1
7
.
7
5
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
4
A
-
S
B
2
/
6
/
1
9
9
2
3
3
6
.
7
3
3
3
4
.
7
3
2
.
0
0
5
2
.
4
0
2
8
2
.
3
3
7
.
5
0
3
2
7
.
2
3
3
3
.
6
0
3
0
0
.
7
3
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
6
-
D
B
©
2
/
2
0
/
1
9
9
2
3
1
4
.
7
1
3
1
2
.
3
7
2
.
3
4
1
0
0
.
0
0
2
1
2
.
3
7
1
8
.
5
0
2
9
3
.
8
7
4
5
.
0
0
2
6
7
.
3
7
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
6
S
B
2
/
4
/
1
9
9
2
3
1
3
.
7
7
3
1
1
.
2
1
2
.
5
6
5
9
.
0
0
2
5
2
.
2
1
1
8
.
5
0
2
9
2
.
7
1
4
5
.
0
0
2
6
6
.
2
1
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
7
-
S
B
©
2
/
2
8
/
1
9
9
2
3
1
3
.
8
4
3
1
0
.
7
0
3
.
1
4
6
2
.
0
0
2
4
8
.
7
0
3
2
.
0
0
2
7
8
.
7
0
4
2
.
0
0
2
6
8
.
7
0
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
7
A
-
B
Z
W
5
/
1
1
/
1
9
9
5
3
2
8
.
0
1
3
2
8
.
0
1
0
.
0
0
1
2
6
.
0
0
2
0
2
.
0
1
1
5
.
0
0
3
1
3
.
0
1
2
4
.
0
0
3
0
4
.
0
1
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
8
S
B
2
/
1
2
/
1
9
9
2
2
5
9
.
8
9
2
5
6
.
8
9
3
.
0
0
3
0
.
0
0
2
2
6
.
8
9
-
-
-
-
-
-
1
2
.
0
0
2
4
4
.
8
9
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
8
D
B
2
/
6
/
1
9
9
2
2
5
8
.
6
9
2
5
5
.
6
9
3
.
0
0
6
3
.
0
0
1
9
2
.
6
9
8
.
5
0
2
4
7
.
1
9
1
2
.
0
0
2
4
3
.
6
9
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
9
-
S
B
2
/
3
/
1
9
9
2
2
4
7
.
2
8
2
4
6
.
6
9
0
.
5
9
5
1
.
0
0
1
9
6
.
2
8
-
-
-
-
-
-
1
1
.
6
0
2
3
5
.
6
8
O
P
E
N
B
O
R
E
H
O
L
E
I
N
B
E
D
R
O
C
K
3
-
A
r
g
i
l
l
i
t
e
*F
a
c
i
l
i
t
y
m
o
n
i
t
o
r
i
n
g
w
e
l
l
©
R
o
c
k
c
o
r
e
l
o
c
a
t
i
o
n
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
P
h
a
s
e
3&
4
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Bo
r
i
n
g
S
a
m
p
l
e
S
a
m
p
l
e
Li
q
u
i
d
P
l
a
s
t
i
c
i
t
y
U
S
C
S
H
y
d
r
o
g
e
o
l
o
g
i
c
Nu
m
b
e
r
I
D
D
e
p
t
h
C
o
a
r
s
e
F
i
n
e
C
o
a
r
s
e
M
e
d
i
u
m
F
i
n
e
S
i
l
t
C
l
a
y
C
o
m
b
i
n
e
d
L
i
m
i
t
I
n
d
e
x
C
l
a
s
s
D
e
s
c
r
i
p
t
i
o
n
*
(f
e
e
t
)
(%
)
(
%
)
B-
1
B
-
1
3
3
.
5
-
3
5
.
0
0
.
0
0
.
0
2
.
9
1
8
.
9
3
5
.
9
3
6
.
7
5
.
6
4
2
.
3
4
1
1
4
S
M
L
i
g
h
t
y
e
l
l
o
w
a
n
d
b
r
o
w
n
s
i
l
t
y
f
i
.
-
m
e
d
.
S
a
n
d
B-
5
B
-
5
1
3
.
5
-
1
5
.
0
0
.
0
2
.
9
2
.
5
2
7
.
3
2
5
.
5
2
9
.
6
1
2
.
2
4
1
.
8
2
9
5
S
M
L
i
g
h
t
brown silty fi.-med. Sand
B-
1
2
B
-
1
2
3
.
5
-
5
.
0
0
.
0
1
1
.
5
9
.
3
1
8.
4
8
.
9
3
4
.
2
1
7
.
7
5
1
.
9
3
6
8
M
L
G
r
ey fi.-co. Sandy Silt
B-
1
7
B
-
1
7
2
8
.
5
-
3
0
.
0
0
.
0
0
.
0
0
.
0
2
.
6
2
3
.
8
6
0
.
2
1
3
.
4
7
3
.
6
5
3
1
1
M
H
G
r
e
y
f
i
.
S
a
n
d
y
E
l
a
s
t
i
c
S
i
l
t
B-
1
7
A
B
-
1
7
A
1
.
0
-
3
.
0
4
.
6
1
.
8
4
.
5
6
.
1
6
.0
4
3
.
5
3
3
.
5
7
7
.
0
3
6
1
3
C
L
L
i
g
h
t
y
e
l
l
o
w and brown fi.-co. Sandy Clay
B-
2
1
B
-
2
1
3
.
5
-
5
.
0
0
.
0
5
.
9
6
.
9
2
2
.
6
8.
9
3
0
.
5
2
5
.
2
5
5
.
7
4
5
1
7
M
L
B
r
o
w
n
and grey fi.-co. Sandy Silt
B-
2
2
B
-
2
2
1
2
.
0
-
1
7
.
2
0
.
0
7
.
1
7
.
3
1
4
.
4
1
1
.
0
3
0
.
1
3
0
.
1
6
0
.
2
2
9
1
0
C
L
Y
e
l
l
o
w
a
n
d
b
r
o
w
n
f
i
.
-
c
o
.
S
a
n
d
y
C
l
a
y
B-
2
3
B
-
2
3
8
.
5
-
1
0
.
0
0
.
0
3
.
5
9
.
8
1
5
.
0
6
.
4
1
8
.
5
4
6
.
8
6
5
.
3
5
9
2
5
M
H
L
i
g
h
t
b
r
o
w
n fi.-co. Sandy Elastic Silt
PH
2
-
2
4
B
S
-
8
3
3
.
5
-
-
-
0
.
0
-
-
-
-
-
-
1
8
.
4
7
4
.
2
7
.
4
8
1
.
6
-
-
-
-
-
-
M
L
S
a
n
d
y
s
i
l
t
(
1
0
0
+
b
p
f
,
A
r
g
i
l
l
i
t
e
)
PH
2
-
2
6
B
S
-
6
2
8
.
5
-
-
-
0
.
0
-
-
-
-
-
-
3
.
3
8
4
.
9
1
1
.
8
9
6
.
7
3
5
1
8
M
L
S
i
l
t
(
1
0
0
+
b
p
f
,
A
r
g
i
l
l
i
t
e
)
% G
r
a
v
e
l
%
S
a
n
d
Ta
b
l
e
2
Ge
o
t
e
c
h
n
i
c
a
l
L
a
b
o
r
a
t
o
r
y
D
a
t
a
Gr
a
i
n
S
i
z
e
D
i
s
t
r
i
b
u
t
i
o
n
a
n
d
S
o
i
l
C
l
a
s
s
i
f
i
c
a
t
i
o
n
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
%
F
i
n
e
s
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
P
h
a
s
e
3 &4 De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Bu
l
k
S
a
m
p
l
e
s
Re
m
o
l
d
e
d
M
o
i
s
t
u
r
e
-
D
e
n
s
i
t
y
D
a
t
a
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
D
a
t
a
Pe
r
m
e
a
b
i
l
i
t
y
D
a
t
a
Sa
m
p
l
e
S
a
m
p
l
e
S
a
m
p
l
e
M
a
x
.
D
r
y
O
p
t
i
m
u
m
T
o
t
a
l
M
a
x
.
D
r
y
%
P
a
s
s
i
n
g
%
M
a
x
T
e
s
t
e
d
K
Nu
m
b
e
r
T
y
p
e
D
e
p
t
h
,
f
t
.
D
e
n
s
i
t
y
,
p
c
f
M
o
i
s
t
u
r
e
,
%
P
o
r
o
s
i
t
y
,
%
D
e
n
s
i
t
y
,
p
c
f
N
o
.
2
0
0
S
i
e
v
e
D
r
y
D
e
n
s
i
t
y
M
o
i
s
t
u
r
e
c
m
/
s
e
c
B-
2
2
B
U
L
K
1
2
.
0
-
1
7
.
2
1
1
7
.
7
1
2
.
2
34
%
96
%
60
.
2
98
%
+3%
1
.
5
0
E
-
0
7
Un
d
i
s
t
u
r
b
e
d
S
a
m
p
l
e
s
Sh
e
a
r
S
t
r
e
n
g
t
h
D
a
t
a
Sa
m
p
l
e
S
a
m
p
l
e
S
a
m
p
l
e
P
h
i
Co
h
.
Ph
i
'
Co
h
.
'
Nu
m
b
e
r
T
y
p
e
D
e
p
t
h
,
f
t
.
d
e
g
r
e
e
s
p
s
f
d
e
g
r
e
e
s
p
s
f
B-
1
7
T
U
B
E
1
.
0
-
3
.
0
2
1
.
9
8
41
3
31
.
8
6
22
6
Ge
o
t
e
c
h
n
i
c
a
l
L
a
b
o
r
a
t
o
r
y
D
a
t
a
Mo
i
s
t
u
r
e
-
D
e
n
s
i
t
y
,
C
o
n
d
u
c
t
i
v
i
t
y
,
a
n
d
S
t
r
e
n
g
t
h
D
a
t
a
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
Ta
b
l
e
2
A
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
Ph
a
s
e
3&
4
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Ta
b
l
e
3
Fi
e
l
d
H
y
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
D
a
t
a
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
Pi
e
z
o
m
e
t
e
r
H
y
d
r
o
g
e
o
l
o
g
i
c
H
y
d
r
o
g
e
o
l
o
g
i
c
a
l
A
v
e
r
a
g
e
R
Q
D
E
f
f
e
c
t
i
v
e
T
o
t
a
l
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
(
k
)
(4
,
5
)
Nu
m
b
e
r
U
n
i
t
De
s
c
r
i
p
t
i
o
n
(1
)
Fo
r
S
c
r
e
e
n
I
n
t
e
r
v
a
l
Po
r
o
s
i
t
y
(2
,
3
)
Po
r
o
s
i
t
y
(2
,
3
)
ft
/
m
i
n
ft
/
d
a
y
c
m
/
s
e
c
B-
0
1
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
7
.
5
3
E
-
0
5
1
.
0
8
E
-
0
1
3
.
8
3
E
-
0
5
B-
0
2
S
3
F
r
a
c
t
u
r
e
d
B
e
d
r
o
c
k
NA
5%
10
%
N/
A
N/
A
N/A
B-
0
2
D
3
F
r
a
c
t
u
r
e
d
B
e
d
r
o
c
k
NA
5%
10
%
4
.
4
1
E
-
0
4
6
.
3
5
E
-
0
1
2
.
2
4
E
-
0
4
B-
0
3
3
F
r
a
c
t
u
r
e
d
B
e
d
r
o
c
k
NA
5%
10
%
3
.
7
9
E
-
0
6
5
.
4
5
E
-
0
3
1
.
9
2
E
-
0
6
B-
0
4
3
F
r
a
c
t
u
r
e
d
B
e
d
r
o
c
k
9
8
%
5%
10
%
7
.
0
7
E
-
0
5
1
.
0
2
E
-
0
1
3
.
5
9
E
-
0
5
B-
0
5
2
S
i
l
t
y
S
a
n
d
/
P
W
R
N/
A
15
%
40
%
1
.
2
5
E
-
0
4
1
.
8
0
E
-
0
1
6
.
3
5
E
-
0
5
B-
0
6
2
S
i
l
t
y
S
a
n
d
/
P
W
R
N/
A
15
%
40
%
1
.
1
0
E
-
0
6
1
.
5
8
E
-
0
3
5
.
5
6
3
E
-
0
7
B-
0
7
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
1
.
4
0
E
-
0
4
2
.
0
1
E
-
0
1
7
.
1
0
E
-
0
5
B-
0
8
2
S
i
l
t
y
S
a
n
d
/
P
W
R
NA
15
%
40
%
2
.
3
3
E
-
0
6
3
.
3
6
E
-
0
3
1
.
1
9
E
-
0
6
B-
0
9
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
2
.
1
2
E
-
0
4
3
.
0
5
E
-
0
1
1
.
0
8
E
-
0
4
B-
1
0
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
7
.
0
6
E
-
0
6
1
.
0
2
E
-
0
2
3
.
5
8
E
-
0
6
B-
1
1
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
6
.
2
6
E
-
0
5
9
.
0
1
E
-
0
2
3
.
1
8
E
-
0
5
B-
1
2
2
S
i
l
t
y
S
a
n
d
/
P
W
R
NA
15
%
40
%
N/
A
N/
A
N/A
B-
1
3
2
S
i
l
t
y
S
a
n
d
/
P
W
R
NA
15
%
40
%
7
.
5
7
E
-
0
4
1
.
0
9
E
+
0
0
3
.
8
5
E
-
0
4
B-
1
8
3
F
r
a
c
t
u
r
e
d
B
e
d
r
o
c
k
9
7
%
5%
10
%
9
.
8
8
E
-
0
5
1
.
4
2
E
-
0
1
5
.
0
2
E
-
0
5
B-
1
9
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
1
.
2
4
E
-
0
4
1
.
7
8
E
-
0
1
6
.
2
8
E
-
0
5
B-
2
0
2
S
i
l
t
y
S
a
n
d
/
P
W
R
NA
15
%
40
%
5
.
7
3
E
-
0
7
8
.
2
5
E
-
0
4
2
.
9
1
E
-
0
7
B-
2
1
1
S
a
n
d
y
S
i
l
t
NA
12
%
45
%
1
.
9
1
E
-
0
5
2
.
7
5
E
-
0
2
9
.
7
1
E
-
0
6
B-
2
2
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
1
.
7
5
E
-
0
5
2
.
5
2
E
-
0
2
8
.
9
0
E
-
0
6
B-
2
3
2
S
i
l
t
y
S
a
n
d
/
P
W
R
NA
15
%
40
%
1
.
9
1
E
-
0
5
2
.
7
6
E
-
0
2
9
.
7
3
E
-
0
6
B-
2
4
3
F
r
a
c
t
u
r
e
d
B
e
d
r
o
c
k
6
6
%
5%
10
%
6
.
7
9
E
-
0
3
9
.
7
8
E
+
0
0
3
.
4
5
E
-
0
3
B-
2
5
S
1
C
l
a
y
e
y
S
a
n
d
NA
12
%
45
%
N/
A
N/
A
N/A
B-
2
5
D
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
3
.
2
1
E
-
0
5
4
.
6
2
E
-
0
2
1
.
6
3
E
-
0
5
B-
2
6
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
3
.
6
2
E
-
0
7
5
.
2
1
E
-
0
4
1
.
8
3
E
-
0
7
B-
2
7
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
4
.
0
9
E
-
0
7
5
.
8
9
E
-
0
4
2
.
0
8
E
-
0
7
B-
2
8
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
N/
A
N/
A
N/A
B-
2
9
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
15
%
40
%
2
.
7
4
E
-
0
7
3
.
9
4
E
-
0
4
1
.
3
9
E
-
0
7
B-
3
0
2
S
i
l
t
y
S
a
n
d
/
P
W
R
NA
15
%
40
%
7
.
5
8
E
-
0
6
1
.
0
9
E
-
0
2
3
.
8
5
E
-
0
6
No
t
e
s
(
1
)
Un
i
t
1
-
p
r
e
d
o
m
i
n
a
n
t
l
y
s
a
n
d
y
s
i
l
t
,
v
a
r
i
a
b
l
y
s
a
n
d
y
a
n
d
c
l
a
y
e
y
,
o
v
e
r
l
a
i
n
i
n
s
o
m
e
a
r
e
a
s
b
y
s
a
n
d
y
c
l
a
y
(
S
P
T
g
e
n
e
r
a
l
l
y
<
5
0
b
pf)
Un
i
t
2
-
d
e
n
s
e
s
a
p
r
o
l
i
t
e
-
p
r
e
d
o
m
i
n
a
n
t
l
y
s
a
n
d
y
s
i
l
t
a
n
d
s
i
l
t
y
s
a
n
d
(
S
P
T
g
e
n
e
r
a
l
l
y
<
1
0
0
b
p
f
)
Un
i
t
3
-
c
o
n
s
o
l
i
d
a
t
e
d
,
f
r
a
c
t
u
r
e
d
r
o
c
k
(
v
a
r
i
a
b
l
y
w
e
a
t
h
e
r
s
i
l
t
s
t
o
n
e
a
n
d
s
a
n
d
s
t
o
n
e
)
(2
)
(3
)
To
t
a
l
a
n
d
E
f
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
v
a
l
u
e
s
f
o
r
b
e
d
r
o
c
k
a
d
j
u
s
t
e
d
f
o
r
a
v
g
.
r
o
c
k
c
o
r
e
R
Q
D
v
a
l
u
e
s
,
r
e
f
.
S
i
n
h
a
l
a
n
d
G
u
p
t
a
,
1
9
9
9
(4
)
Sl
u
g
t
e
s
t
s
p
e
r
f
o
r
m
e
d
b
y
S
C
S
E
n
g
i
n
e
e
r
s
i
n
M
a
r
c
h
2
0
1
5
(5
)
N/
A
i
n
d
i
c
a
t
e
s
t
h
a
t
t
h
e
r
e
w
a
s
i
n
s
u
f
f
i
c
i
e
n
t
w
a
t
e
r
c
o
l
u
m
n
t
o
c
o
n
d
u
c
t
h
y
d
r
a
u
l
i
c
c
o
n
d
u
c
t
i
v
i
t
y
t
e
s
t
i
n
g
To
t
a
l
a
n
d
E
f
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
v
a
l
u
e
s
f
o
r
s
o
i
l
s
c
a
l
c
u
l
a
t
e
d
f
r
o
m
T
e
x
t
u
r
a
l
C
l
a
s
s
i
f
i
c
a
t
i
o
n
T
r
i
a
n
g
l
e
m
e
t
h
o
d
,
r
e
f
.
A
.
I
.
J
o
h
n
s
o
n
,
U
S
Ge
o
l
o
g
i
c
a
l
S
u
r
v
e
y
W
a
t
e
r
S
u
p
p
l
y
P
a
p
e
r
1
6
6
2
-
D
,
1
9
6
7
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
Ph
a
s
e
3&
4
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Ta
b
l
e
4
Sh
o
r
t
-
t
e
r
m
a
n
d
L
o
n
g
-
t
e
r
m
G
r
o
u
n
d
W
a
t
e
r
O
b
s
e
r
v
a
t
i
o
n
D
a
t
a
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
Gr
o
u
n
d
T
o
p
o
f
P
V
C
H
e
i
g
h
t
o
f
B
o
r
i
n
g
S
c
r
e
e
n
e
d
Bo
r
i
n
g
S
u
r
f
a
c
e
C
a
s
i
n
g
S
t
i
c
k
-
u
p
D
e
p
t
h
I
n
t
e
r
v
a
l
T
.
O
.
B
.
2
4
-
h
o
u
r
s
Nu
m
b
e
r
E
l
e
v
a
t
i
o
n
E
l
e
v
a
t
i
o
n
(
f
e
e
t
)
(
f
e
e
t
)
(
B
S
G
)
D
e
p
t
h
*
E
l
e
v
a
t
i
o
n
D
e
p
t
h
*
E
l
e
v
a
t
i
o
n
D
e
p
t
h
*
E
l
e
v
a
t
i
o
n
D
e
p
t
h
*
E
l
e
v
a
t
i
o
n
D
e
p
t
h
*
E
l
e
v
a
t
i
o
n
D
e
p
t
h
*
E
l
e
v
a
tion
D
e
p
t
h
*
E
l
e
v
a
t
i
o
n
D
e
p
t
h
*
E
l
e
v
a
t
i
o
n
B-
0
1
3
1
3
.
6
3
3
1
6
.
2
8
2
.
6
5
4
4
.
3
3
4
.
3
-
4
4
.
3
3
5
.
0
0
2
7
8
.
6
3
2
2
.
8
0
2
9
0
.
8
3
1
9
.
5
5
2
9
4
.
0
8
1
9
.
8
5
2
9
3
.
7
8
1
8
.
1
5
2
9
5
.
4
8
1
7
.
6
6
2
9
5
.
9
7
1
9
.
9
6
2
9
3
.
6
7
2
0
.
2
5
2
9
3
.
3
8
B-
0
2
S
3
0
7
.
8
4
3
1
0
.
2
0
2
.
3
6
1
5
.
0
5
.
0
-
1
5
.
0
-
-
-
-
-
-
6
.
3
4
3
0
1
.
5
0
2
.
3
6
3
0
5
.
4
8
8
.
7
0
2
9
9
.
1
4
1
3
.
7
2
2
9
4
.
1
2
5
.
1
0
3
0
2
.
7
4
1
5
.
0
6
2
9
2
.
7
8
1
2
.
8
3
2
9
5
.
0
1
B-
0
2
D
3
0
8
.
2
5
3
1
0
.
8
3
2
.
5
8
4
0
.
1
3
0
.
1
-
4
0
.
1
2
0
.
1
0
2
8
8
.
1
5
1
7
.
9
0
2
9
0
.
3
5
1
5
.
5
6
2
9
2
.
6
9
9
.
7
0
2
9
8
.
5
5
1
7
.
0
0
2
9
1
.
2
5
1
0
.
8
2
2
9
7
.
4
3
2
0
.
3
2
2
8
7
.
9
3
1
8
.
8
9
2
8
9
.
3
6
B-
0
3
3
1
4
.
1
2
3
1
6
.
5
3
2
.
4
1
3
5
.
0
2
5
.
0
-
3
5
.
0
-
-
-
-
-
-
1
9
.
0
0
2
9
5
.
1
2
1
9
.
5
1
2
9
4
.
6
1
1
7
.
8
6
2
9
6
.
2
6
2
0
.
0
6
2
9
4
.
0
6
1
8
.
2
0
2
9
5
.
9
2
2
1
.
5
8
2
9
2
.
5
4
2
1
.
8
9
2
9
2
.
2
3
B-
0
4
3
1
1
.
5
5
3
1
4
.
4
5
2
.
9
0
4
2
.
3
3
2
.
3
-
4
2
.
3
-
-
-
-
-
-
1
3
.
0
0
2
9
8
.
5
5
2
.
9
0
3
0
8
.
6
5
1
5
.
8
6
2
9
5
.
6
9
1
7
.
5
5
2
9
4
.
0
0
1
5
.
6
9
2
9
5
.
8
6
2
0
.
3
9
2
9
1
.
1
6
1
9
.
2
0
2
9
2
.
3
5
B-
0
5
3
1
8
.
8
7
3
2
2
.
0
7
3
.
2
0
5
0
.
8
4
0
.
8
-
5
0
.
8
4
6
.
0
0
2
7
2
.
8
7
2
6
.
3
0
2
9
2
.
5
7
2
9
.
4
5
2
8
9
.
4
2
2
8
.
3
8
2
9
0
.
4
9
2
7
.
8
1
2
9
1
.
0
6
2
8
.
0
2
2
9
0
.
8
5
2
9
.
1
6
2
8
9
.
7
1
2
9
.
9
4
2
8
8
.
9
3
B-
0
6
2
9
4
.
9
6
2
9
7
.
7
9
2
.
8
3
2
5
.
0
1
5
.
0
-
2
5
.
0
0
.
0
0
2
9
4
.
9
6
2
.
6
0
2
9
2
.
3
6
2
.
8
3
2
9
2
.
1
3
4
.
4
3
2
9
0
.
5
3
2
.
8
3
2
9
2
.
1
3
0
.
0
0
2
9
4
.
9
6
3
.
9
5
2
9
1
.
0
1
6
.
5
1
2
8
8
.
4
5
B-
0
7
3
1
3
.
9
7
3
1
7
.
0
3
3
.
0
6
2
7
.
3
1
7
.
3
-
2
7
.
3
1
9
.
2
0
2
9
4
.
7
7
8
.
4
5
3
0
5
.
5
2
1
1
.
5
1
3
0
2
.
4
6
1
2
.
8
0
3
0
1
.
1
7
1
1
.
4
1
3
0
2
.
5
6
1
1
.
1
0
3
0
2
.
8
7
1
5
.
1
4
2
9
8
.
8
3
1
7
.
7
4
2
9
6
.
2
3
B-
0
8
3
1
3
.
2
7
3
1
6
.
5
8
3
.
3
1
3
1
.
5
2
1
.
5
-
3
1
.
5
-
-
-
-
-
-
8
.
2
5
3
0
5
.
0
2
1
1
.
5
6
3
0
1
.
7
1
1
2
.
9
6
3
0
0
.
3
1
1
1
.
5
5
3
0
1
.
7
2
1
1
.
2
2
3
0
2
.
0
5
1
4
.
2
5
2
9
9
.
0
2
1
6
.
2
9
2
9
6
.
9
8
B-
0
9
2
9
1
.
0
6
2
9
4
.
2
0
3
.
1
4
2
0
.
5
1
0
.
5
-
2
0
.
5
1
5
.
0
0
2
7
6
.
0
6
2
0
.
0
0
2
7
1
.
0
6
8
.
5
9
2
8
2
.
4
7
9
.
5
4
2
8
1
.
5
2
8
.
3
9
2
8
2
.
6
7
7
.
3
9
2
8
3
.
6
7
1
0
.
5
7
2
8
0
.
4
9
1
1
.
4
4
2
7
9
.
6
2
B-
1
0
2
9
9
.
9
2
3
0
2
.
4
5
2
.
5
3
1
8
.
2
8
.
2
-
1
8
.
2
-
-
-
-
-
-
3
.
1
5
2
9
6
.
7
7
5
.
6
8
2
9
4
.
2
4
4
.
3
5
2
9
5
.
5
7
6
.
6
6
2
9
3
.
2
6
5
.
1
5
2
9
4
.
7
7
8
.
4
4
2
9
1
.
4
8
8
.
6
7
2
9
1
.
2
5
B-
1
1
3
1
2
.
3
2
3
1
4
.
5
2
2
.
2
0
2
3
.
5
1
3
.
5
-
2
3
.
5
-
-
-
-
-
-
1
9
.
0
0
2
9
3
.
3
2
2
1
.
1
5
2
9
1
.
1
7
2
0
.
7
3
2
9
1
.
5
9
2
0
.
1
0
2
9
2
.
2
2
2
0
.
0
0
2
9
2
.
3
2
2
1
.
6
1
2
9
0
.
7
1
2
2
.
3
5
2
8
9
.
9
7
B-
1
2
3
1
4
.
8
7
3
1
6
.
5
9
1
.
7
2
3
1
.
6
2
1
.
6
-
3
1
.
6
2
5
.
7
0
2
8
9
.
1
7
2
4
.
8
0
2
9
0
.
0
7
2
4
.
6
4
2
9
0
.
2
3
2
3
.
8
2
2
9
1
.
0
5
2
3
.
9
2
2
9
0
.
9
5
2
3
.
8
9
2
9
0
.
9
8
2
5
.
0
8
2
8
9
.
7
9
2
5
.
5
2
2
8
9
.
3
5
B-
1
3
3
1
5
.
4
8
3
1
7
.
7
4
2
.
2
6
4
6
.
1
3
6
.
1
-
4
6
.
1
3
2
.
0
0
2
8
3
.
4
8
1
1
.
5
0
3
0
3
.
9
8
2
0
.
8
6
2
9
4
.
6
2
2
0
.
7
6
2
9
4
.
7
2
1
9
.
0
0
2
9
6
.
4
8
1
8
.
8
8
2
9
6
.
6
0
2
0
.
1
9
2
9
5
.
2
9
2
2
.
3
2
2
9
3
.
1
6
B-
1
4
3
1
2
.
1
7
-
-
-
-
-
-
2
2
.
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B-
1
5
3
1
6
.
5
3
-
-
-
-
-
-
2
2
.
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B-
1
6
3
1
5
.
4
0
-
-
-
-
-
-
3
8
.
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B-
1
7
3
1
5
.
2
9
-
-
-
-
-
-
4
3
.
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B-
1
8
3
1
8
.
5
0
3
2
1
.
2
1
2
.
7
1
4
0
.
5
3
0
.
5
-
4
0
.
5
-
-
-
-
-
-
1
2
.
9
0
3
0
5
.
6
0
2
.
7
1
3
1
5
.
7
9
1
5
.
5
6
3
0
2
.
9
4
1
6
.
9
0
3
0
1
.
6
0
1
6
.
5
9
3
0
1
.
9
1
2
1
.
5
9
2
9
6
.
9
1
2
1
.
4
3
2
9
7
.
0
7
B-
1
9
3
1
6
.
7
5
3
1
9
.
6
5
2
.
9
0
3
5
.
5
2
5
.
5
-
3
5
.
5
3
3
.
6
0
2
8
3
.
1
5
1
1
.
9
0
3
0
4
.
8
5
1
4
.
8
3
0
1
.
9
5
1
4
.
9
0
3
0
1
.
8
5
1
4
.
6
6
3
0
2
.
0
9
1
5
.
6
8
3
0
1
.
0
7
2
0
.
4
0
2
9
6
.
3
5
1
9
.
9
7
2
9
6
.
7
8
B-
2
0
3
1
7
.
3
1
3
1
9
.
3
2
2
.
0
1
2
7
.
7
1
7
.
7
-
2
7
.
7
-
-
-
-
-
-
1
3
.
4
0
3
0
3
.
9
1
1
5
.
4
1
3
0
1
.
9
0
1
5
.
2
1
3
0
2
.
1
0
1
4
.
7
6
3
0
2
.
5
5
1
4
.
8
0
3
0
2
.
5
1
1
5
.
7
2
3
0
1
.
5
9
1
6
.
9
9
3
0
0
.
3
2
B-
2
1
3
0
5
.
9
0
3
0
9
.
4
5
3
.
5
5
2
2
.
0
1
2
.
0
-
2
2
.
0
-
-
-
-
-
-
9
.
5
0
2
9
6
.
4
0
1
3
.
0
5
2
9
2
.
8
5
1
3
.
3
6
2
9
2
.
5
4
1
2
.
6
9
2
9
3
.
2
1
1
2
.
7
2
2
9
3
.
1
8
1
3
.
7
1
2
9
2
.
1
9
1
5
.
7
2
2
9
0
.
1
8
B-
2
2
2
9
7
.
3
2
2
9
9
.
9
6
2
.
6
4
1
7
.
2
7
.
2
-
1
7
.
2
-
-
-
-
-
-
3
.
8
0
2
9
3
.
5
2
6
.
4
4
2
9
0
.
8
8
7
.
3
5
2
8
9
.
9
7
6
.
8
4
2
9
0
.
4
8
6
.
5
1
2
9
0
.
8
1
8
.
5
7
2
8
8
.
7
5
9
.
6
7
2
8
7
.
6
5
B-
2
3
3
0
5
.
0
8
3
0
6
.
8
7
1
.
7
9
3
0
.
0
2
0
.
0
-
3
0
.
0
-
-
-
-
-
-
1
4
.
8
0
2
9
0
.
2
8
1
6
.
6
2
2
8
8
.
4
6
1
3
.
8
4
2
9
1
.
2
4
1
6
.
7
9
2
8
8
.
2
9
1
6
.
6
8
2
8
8
.
4
0
1
8
.
7
4
2
8
6
.
3
4
2
0
.
4
2
2
8
4
.
6
6
B-
2
4
3
0
5
.
3
2
3
0
7
.
8
4
2
.
5
2
3
0
.
5
2
0
.
5
-
3
0
.
5
-
-
-
-
-
-
1
5
.
7
0
2
8
9
.
6
2
2
.
5
2
3
0
2
.
8
0
1
8
.
1
7
2
8
7
.
1
5
2
0
.
1
1
2
8
5
.
2
1
1
9
.
9
6
2
8
5
.
3
6
2
1
.
6
0
2
8
3
.
7
2
2
3
.
0
2
2
8
2
.
3
0
B-
2
5
S
2
8
8
.
3
5
2
9
1
.
1
4
2
.
7
9
1
5
.
0
5
.
0
-
1
5
.
0
-
-
-
-
-
-
1
3
.
0
0
2
7
5
.
3
5
2
.
7
9
2
8
5
.
5
6
1
5
.
7
9
2
7
2
.
5
6
1
5
.
5
0
2
7
2
.
8
5
1
3
.
9
7
2
7
4
.
3
8
1
3
.
6
6
2
7
4
.
6
9
1
3
.
2
1
2
7
5
.
1
4
B-
2
5
D
2
8
9
.
5
3
2
9
2
.
5
7
3
.
0
4
3
0
.
2
2
0
.
2
-
3
0
.
2
-
-
-
-
-
-
9
.
0
0
2
8
0
.
5
3
1
2
.
0
4
2
7
7
.
4
9
1
2
.
6
4
2
7
6
.
8
9
1
1
.
7
9
2
7
7
.
7
4
1
1
.
1
1
2
7
8
.
4
2
1
2
.
1
2
2
7
7
.
4
1
1
2
.
9
6
2
7
6
.
5
7
B-
2
6
2
7
7
.
1
3
2
7
9
.
6
3
2
.
5
0
1
5
.
8
5
.
8
-
1
5
.
8
-
-
-
-
-
-
5
.
5
5
2
7
1
.
5
8
8
.
0
5
2
6
9
.
0
8
6
.
0
5
2
7
1
.
0
8
4
.
9
8
2
7
2
.
1
5
4
.
6
0
2
7
2
.
5
3
5
.
5
5
2
7
1
.
5
8
4
.
5
8
2
7
2
.
5
5
B-
2
7
2
7
0
.
2
3
2
7
3
.
2
2
2
.
9
9
2
5
.
9
1
5
.
9
-
2
5
.
9
-
-
-
-
-
-
8
.
4
0
2
6
1
.
8
3
1
1
.
3
9
2
5
8
.
8
4
1
1
.
2
8
2
5
8
.
9
5
1
0
.
3
9
2
5
9
.
8
4
9
.
3
8
2
6
0
.
8
5
1
0
.
2
2
2
6
0
.
0
1
1
1
.
0
0
2
5
9
.
2
3
B-
2
8
2
7
1
.
1
3
2
7
3
.
5
7
2
.
4
4
1
6
.
0
6
.
0
-
1
6
.
0
-
-
-
-
-
-
6
.
9
8
2
6
4
.
1
5
9
.
4
2
2
6
1
.
7
1
1
0
.
0
5
2
6
1
.
0
8
1
3
.
7
0
2
5
7
.
4
3
1
1
.
6
1
2
5
9
.
5
2
1
0
.
7
6
2
6
0
.
3
7
9
.
5
9
2
6
1
.
5
4
B-
2
9
2
7
8
.
0
3
2
8
1
.
1
8
3
.
1
5
2
0
.
8
1
0
.
8
-
2
0
.
8
-
-
-
-
-
-
4
.
8
4
2
7
3
.
1
9
7
.
9
9
2
7
0
.
0
4
8
.
5
0
2
6
9
.
5
3
8
.
0
5
2
6
9
.
9
8
7
.
2
1
2
7
0
.
8
2
7
.
4
7
2
7
0
.
5
6
7
.
6
9
2
7
0
.
3
4
B-
3
0
2
8
0
.
1
5
2
8
3
.
0
7
2
.
9
2
2
9
.
0
1
9
.
0
-
2
9
.
0
2
7
.
5
0
2
5
2
.
6
5
2
.
7
5
2
7
7
.
4
0
5
.
6
7
2
7
4
.
4
8
6
.
9
7
2
7
3
.
1
8
6
.
8
2
2
7
3
.
3
3
6
.
5
0
2
7
3
.
6
5
7
.
3
7
2
7
2
.
7
8
7
.
9
6
2
7
2
.
1
9
B-
3
1
27
8
.
2
1
2
8
1
.
4
4
3
.
2
3
1
5
.
0
1
0
.
0
Ͳ
15
.
0
7.
9
4
27
0
.
2
7
ͲͲ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
5.43
2
6
9
.
5
5
6
.
2
4
2
6
8
.
7
4
7.02 267.96
B-
3
2
27
8
.
5
2
8
1
.
9
3.4
15
.
0
1
0
.
0
Ͳ
15
.
0
8
.
1
5
2
7
0
.
3
5
ͲͲ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
Ͳ
6.40
2
6
8
.
7
0
9
.
9
8
2
6
5
.
1
2
13.15 261.95
No
t
e
s
:
1.
G
r
o
u
n
d
a
n
d
T
o
p
o
f
C
a
s
i
n
g
e
l
e
v
a
t
i
o
n
s
b
a
s
e
d
o
n
m
a
p
p
i
n
g
p
r
e
p
a
r
e
d
F
e
b
r
u
a
r
y
2
0
1
5
b
y
L
a
w
r
e
n
c
e
&
A
s
s
o
c
i
a
t
e
s
.
2.
B
e
d
r
o
c
k
d
e
p
t
h
s
a
n
d
e
l
e
v
a
t
i
o
n
s
s
h
o
w
n
a
r
e
t
a
k
e
n
f
r
o
m
2
0
1
5
S
C
S
w
e
l
l
i
n
s
t
a
l
l
a
t
i
o
n
r
e
c
o
r
d
s
.
3.
T
.
O
.
B
.
D
e
p
t
h
s
m
a
r
k
e
d
w
i
t
h
"
-
-
-
"
i
n
d
i
c
a
t
e
n
o
w
a
t
e
r
p
r
e
s
e
n
t
a
t
t
i
m
e
o
f
b
o
r
i
n
g
o
r
w
a
t
e
r
a
d
d
e
d
d
u
r
i
n
g
d
r
i
l
l
i
n
g
t
o
r
e
m
o
v
e
c
u
t
t
i
n
gs
.
4.
M
a
n
y
o
f
t
h
e
b
o
r
i
n
g
s
a
r
e
s
l
o
w
t
o
r
e
c
h
a
r
g
e
.
Jun-15
Wa
t
e
r
L
e
v
e
l
M
e
a
s
u
r
e
d
F
r
o
m
T
o
p
o
f
P
V
C
C
a
s
i
n
g
Apr-15
Ja
n
-
1
5
F
e
b
-
1
5
M
a
r
-
1
5
M
a
y
-
1
5
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
Ph
a
s
e
3&
4
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
Table 5
Vertical Ground Water Gradient Calculations
Anson County MSW Landfill, Phase 3 & 4
Data Presented for Selected Dates of Ground Water Observation
Nested Piezometers: B-02S Unit 3 - Fractured Rock Aquifer
B-02D Unit 3 - Fractured Rock Aquifer
Piezometer Top of Bottom of 1/20/2015 2/27/2015 3/16/2015 4/29/2015 5/14/2015 June July August Sept.
No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E.
B-02S 302.84 292.84 305.48 299.14 294.12 302.74 292.78
B-02D 278.15 268.15 292.69 298.55 291.25 297.43 287.93
midpoint saturated interval -upper 297.84 295.99 293.48 297.79 292.81 146.42 146.42 146.42 146.42
midpoint saturated interval - lower 273.15 273.15 273.15 273.15 273.15 134.08 134.08 134.08 134.08
delta-saturated interval 24.69 22.84 20.33 24.64 19.66 12.35 12.35 12.35 12.35
delta-W.T.E. (see note 1) 1.28E+01 5.90E-01 2.87E+00 5.31E+00 4.85E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Vertical Gradient (see note 2) 5.18E-01 2.58E-02 1.41E-01 2.16E-01 2.47E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Down Down Down Down Down Up Up Up Up
Nested Piezometers: B-25S Unit 1 - Clayey Sand
B-25D Unit 2 - PWR; Dense Saprolite-Sandy Silt Aquifer
Piezometer Top of Bottom of 1/20/2015 2/27/2015 3/16/2015 4/29/2015 5/14/2015 June July August Sept.
No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E.
B-25S 283.35 273.35 285.56 272.56 272.85 274.38 274.69
B-25D 269.33 259.33 277.49 276.89 277.74 278.42 277.41
midpoint saturated interval -upper 278.35 272.96 273.10 273.87 274.02 136.68 136.68 136.68 136.68
midpoint saturated interval - lower 264.33 264.33 264.33 264.33 264.33 129.67 129.67 129.67 129.67
delta-saturated interval 14.02 8.63 8.77 9.54 9.69 7.01 7.01 7.01 7.01
delta-W.T.E. (see note 1) 8.07E+00 -4.33E+00 -4.89E+00 -4.04E+00 -2.72E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Vertical Gradient (see note 2) 5.76E-01 -5.02E-01 -5.58E-01 -4.24E-01 -2.81E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Down Up Up Up Up Up Up Up Up
Notes:
1 delta-W.T.E. = difference in water level (shallow well minus deep well)
2 Vertical Gradient = delta-W.T.E. / delta-Saturated Interval
3 Negative vertical gradients are upward, positive gradients are downward
4 Wells denoted with "D" are deep wells and those with "S" are shallow wells
AnsonWasteManagementFacility Phase3DesignHydrogeologicStudy
Nested Piezometers: PH2-24A Unit 3 - Fractured Rock Aquifer
PH2-24B Unit 2 - PWR; Dense Saprolite-Sandy Silt Aquifer
Piezometer Top of Bottom of 12/5/03 12/9/03 12/16/03 12/18/03 12/24/03 1/2/04 1/12/04 2/10/04 2/25/04 3/30/04 5/18/04 6/14/04 7/8/04 8/13/04 9/16/04 9/12/07
No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E.
PH2-24B 292.90 282.90 295.71 296.21 296.13 297.16 296.21 295.99 295.90 295.12 295.65 297.60 297.76 297.03 296.20 295.22 294.99 294.98
PH2-24A 277.76 267.76 296.19 295.24 295.12 295.21 295.24 295.01 295.76 294.98 295.47 297.36 297.51 296.84 296.05 295.12 294.76 294.93
midpoint saturated interval -upper 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.9 287.9 287.9
midpoint saturated interval - lower 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76
delta-saturated interval 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14
delta-W.T.E. (see note 1) -4.80E-01 9.70E-01 1.01E+00 1.95E+00 9.70E-01 9.80E-01 1.40E-01 1.40E-01 1.80E-01 2.40E-01 2.50E-01 1.90E-01 1.50E-01 1.00E-01 2.30E-01 5.00E-02
Vertical Gradient (see note 2) -3.17E-02 6.41E-02 6.67E-02 1.29E-01 6.41E-02 6.47E-02 9.25E-03 9.25E-03 1.19E-02 1.59E-02 1.65E-02 1.25E-02 9.91E-03 6.61E-03 1.52E-02 3.30E-03
Up Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down
Nested Piezometers: MW-4D Unit 3 - Bedrock (Triassic)
MW-4S Unit 1 - Sandy, Clayey Silt
Piezometer Top of Bottom of 1/24/01 6/25/01 11/1/01 5/6/02 7/9/02 5/5/03 10/27/03 5/1/04 10/31/04 5/1/05 10/31/05 5/1/06 11/1/06 5/1/07 10/1/07
No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E.
MW-4D 241.10 231.10 275.64 276.34 274.46 275.68 280.92 279.61 279.97 279.68 280.99 279.20 280.45 278.91 280.31
MW-4S 272.20 262.20 276.13 275.67 274.72 275.79 281.21 279.91 280.26 279.84 281.36 279.59 280.86 279.36 280.50
midpoint saturated interval -upper 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.1
midpoint saturated interval - lower 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.2
delta-saturated interval -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.1
delta-W.T.E. (see note 1) -4.90E-01 6.70E-01 -2.60E-01 -1.10E-01 -2.90E-01 -3.00E-01 -2.90E-01 -1.60E-01 -3.70E-01 -3.90E-01 -4.10E-01 -4.50E-01 -1.90E-01
Vertical Gradient (see note 2) 1.58E-02 -2.15E-02 8.36E-03 3.54E-03 9.32E-03 9.65E-03 9.32E-03 5.14E-03 1.19E-02 1.25E-02 1.32E-02 1.45E-02 6.11E-03
Down Up Down Down Down Down Down Down Down Down Down Down Down
Nested Piezometers: MW-5D 2, 3 - Triassic
MW-5S 1, 2 - Triassic
Piezometer Top of Bottom of 1/24/01 6/25/01 11/1/01 5/6/02 7/9/02 5/5/03 10/27/03 5/1/04 10/31/04 5/1/05 10/31/05 5/1/06 11/1/06 5/1/07 10/1/07
No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E.
MW-5D 242.00 232.00 264.67 264.39 265.96 269.19 274.62 271.90 274.10 272.38 274.44 271.41 273.81 270.73 272.70
MW-5S 263.80 248.80 264.37 263.80 265.65 269.03 274.44 271.64 273.99 272.29 274.45 271.29 274.34 270.67 272.50
midpoint saturated interval -upper 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237
midpoint saturated interval - lower 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.3
delta-saturated interval -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.3
delta-W.T.E. (see note 1) 3.00E-01 5.90E-01 3.10E-01 1.60E-01 1.80E-01 2.60E-01 1.10E-01 9.00E-02 -1.00E-02 1.20E-01 -5.30E-01 6.00E-02 2.00E-01
Vertical Gradient (see note 2) -1.55E-02 -3.06E-02 -1.61E-02 -8.29E-03 -9.33E-03 -1.35E-02 -5.70E-03 -4.66E-03 5.18E-04 -6.22E-03 2.75E-02 -3.11E-03 -1.04E-02
Up Up Up Up Up Up Up Up Down Up Down Up Up
Notes to Above:
1 delta-W.T.E. = difference in water level (shallow well minus deep well)
2 Vertical Gradient = delta-W.T.E. / delta-Saturated Interval
3 Negative vertical gradients are upward, positive gradients are downward
4 Wells denoted with "A" are deep wells
Table 5A
Supplemental Vertical Ground Water Gradient Calculations
Anson County MSW Landfill, Phase 3 & 4
AnsonWasteManagementFacility Phase3&4DesignHydrogeologicStudy
We
l
l
/
P
i
e
z
.
H
y
d
r
o
l
o
g
i
c
H
y
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
(
k
)
G
r
d
.
W
a
t
e
r
R
e
f
e
r
e
n
c
e
d
e
l
t
a
-
E
l
e
v
.
M
a
p
L
e
n
g
t
h
H
y
d
r
a
u
l
i
c
E
f
f
e
c
t
i
v
e
G
W
V
e
l
o
c
i
t
y
U
n
i
t
A
v
e
r
a
g
e
U
n
i
t
A
v
e
r
a
g
e
No
.
U
n
i
t
f
t
/
m
i
n
f
t
/
d
a
y
c
m
/
s
e
c
E
l
e
v
a
t
i
o
n
*
E
l
e
v
a
t
i
o
n
*
i
n
f
e
e
t
i
n
f
e
e
t
G
r
a
d
i
e
n
t
(
I
)
P
o
r
o
s
i
t
y
(
n
)
(
V
)
,
f
t
/
d
a
y
V
e
l
o
c
i
t
y
,
f
t
/
d
a
y
V
e
l
o
c
i
t
y
,
f
t
/
y
r
B-
2
1
1
1
.
9
1
E
-
0
5
2
.
7
5
E
-
0
2
9
.
7
1
E
-
0
6
2
9
2
.
1
9
2
9
5
.
0
0
2
.
8
1
1
2
1
.
5
1
0
.
0
2
0
.
1
2
0
.
0
0
5
3
0
.
0
1
1.9
B-
0
1
2
7
.
5
3
E
-
0
5
1
.
0
8
E
-
0
1
3
.
8
3
E
-
0
5
2
9
3
.
6
7
2
8
5
.
0
0
8
.
6
7
1
2
5
.
0
4
0
.
0
7
0
.
1
5
0
.
0
5
0
1
B-
0
5
2
1
.
2
5
E
-
0
4
1
.
8
0
E
-
0
1
6
.
3
5
E
-
0
5
2
8
9
.
7
1
2
8
0
.
0
0
9
.
7
1
2
1
3
.
6
4
0
.
0
5
0
.
1
5
0
.
0
5
4
5
B-
0
6
2
1
.
1
0
E
-
0
6
1
.
5
8
E
-
0
3
5
.
5
6
E
-
0
7
2
9
1
.
0
1
2
8
5
.
0
0
6
.
0
1
1
1
8
.
0
2
0
.
0
5
0
.
1
5
0
.
0
0
0
5
B-
0
7
2
1
.
4
0
E
-
0
4
2
.
0
1
E
-
0
1
7
.
1
0
E
-
0
5
2
9
8
.
8
3
2
9
0
.
0
0
8
.
8
3
1
4
9
.
3
3
0
.
0
6
0
.
1
5
0
.
0
7
9
3
B-
0
8
2
2
.
3
3
E
-
0
6
3
.
3
6
E
-
0
3
1
.
1
9
E
-
0
6
2
9
9
.
0
2
2
9
5
.
0
0
4
.
0
2
1
9
6
.
8
9
0
.
0
2
0
.
1
5
0
.
0
0
0
5
B-
0
9
2
2
.
1
2
E
-
0
4
3
.
0
5
E
-
0
1
1
.
0
8
E
-
0
4
2
8
0
.
4
9
2
8
0
.
0
0
0
.
4
9
8
9
.
3
8
0
.
0
1
0
.
1
5
0
.
0
1
1
2
B-
1
0
2
7
.
0
6
E
-
0
6
1
.
0
2
E
-
0
2
3
.
5
8
E
-
0
6
2
9
1
.
4
8
3
0
0
.
0
0
8
.
5
2
1
4
2
.
9
0
.
0
6
0
.
1
5
0
.
0
0
4
0
B-
1
1
2
6
.
2
6
E
-
0
5
9
.
0
1
E
-
0
2
3
.
1
8
E
-
0
5
2
9
0
.
7
1
2
8
5
.
0
0
5
.
7
1
1
3
4
.
7
3
0
.
0
4
0
.
1
5
0
.
0
2
5
5
B-
1
3
2
7
.
5
7
E
-
0
4
1
.
0
9
E
+
0
0
3
.
8
5
E
-
0
4
2
9
5
.
2
9
2
8
5
.
0
0
1
0
.
2
9
1
6
2
.
0
5
0
.
0
6
0
.
1
5
0
.
4
6
1
4
B-
1
9
2
1
.
2
4
E
-
0
4
1
.
7
8
E
-
0
1
6
.
2
8
E
-
0
5
2
9
6
.
3
5
3
0
5
.
0
0
8
.
6
5
7
4
0
.
1
2
0
.
1
5
0
.
1
3
8
7
B-
2
0
2
5
.
7
3
E
-
0
7
8
.
2
5
E
-
0
4
2
.
9
1
E
-
0
7
3
0
1
.
5
9
2
9
5
.
0
0
6
.
5
9
1
3
4
.
4
1
0
.
0
5
0
.
1
5
0
.
0
0
0
3
B-
2
2
2
1
.
7
5
E
-
0
5
2
.
5
2
E
-
0
2
8
.
9
0
E
-
0
6
2
8
8
.
7
5
2
9
0
.
0
0
1
.
2
5
4
0
.
8
7
0
.
0
3
0
.
1
5
0
.
0
0
5
1
B-
2
3
2
1
.
9
1
E
-
0
5
2
.
7
6
E
-
0
2
9
.
7
3
E
-
0
6
2
8
6
.
3
4
2
7
5
.
0
0
1
1
.
3
4
2
2
3
.
7
1
0
.
0
5
0
.
1
5
0
.
0
0
9
3
B-
2
5
D
2
3
.
2
1
E
-
0
5
4
.
6
2
E
-
0
2
1
.
6
3
E
-
0
5
2
7
7
.
4
1
2
9
0
.
0
0
1
2
.
5
9
7
7
.
0
1
0
.
1
6
0
.
1
5
0
.
0
5
0
3
B-
2
6
2
3
.
6
2
E
-
0
7
5
.
2
1
E
-
0
4
1
.
8
3
E
-
0
7
2
7
1
.
5
8
2
6
0
.
0
0
1
1
.
5
8
1
7
5
.
2
3
0
.
0
7
0
.
1
5
0
.
0
0
0
2
B-
2
7
2
4
.
0
9
1
E
-
0
7
0
.
0
0
0
5
8
9
1
2
.
0
7
8
E
-
0
7
2
6
0
.
0
1
2
5
5
.
0
0
5
.
0
1
1
3
5
.
7
0
.
0
4
0
.
1
5
0
.
0
0
0
1
B-
2
9
2
2
.
7
4
E
-
0
7
3
.
9
4
E
-
0
4
1
.
3
9
E
-
0
7
2
7
0
.
5
6
2
8
0
.
0
0
9
.
4
4
2
1
8
.
4
3
0
.
0
4
0
.
1
5
0
.
0
0
0
1
B-
3
0
2
7
.
5
7
6
4
E
-
0
6
0
.
0
1
0
9
1
3
.
8
4
8
E
-
0
6
2
7
2
.
7
8
2
7
0
.
0
0
2
.
7
8
1
3
9
.
1
3
0
.
0
2
0
.
1
5
0
.
0
0
1
5
0
.
0
5
19.1
B-
0
2
D
3
4
.
4
1
E
-
0
4
6
.
3
5
E
-
0
1
2
.
2
4
E
-
0
4
2
8
7
.
9
3
2
9
0
.
0
0
2
.
0
7
1
4
2
.
7
9
0
.
0
1
0
.
0
5
0
.
1
8
4
1
B-
0
3
3
3
.
7
9
E
-
0
6
5
.
4
5
E
-
0
3
1
.
9
2
E
-
0
6
2
9
2
.
5
4
2
9
0
.
0
0
2
.
5
4
9
1
.
2
3
0
.
0
3
0
.
0
5
0
.
0
0
3
0
B-
0
4
3
7
.
0
7
E
-
0
5
1
.
0
2
E
-
0
1
3
.
5
9
E
-
0
5
2
9
1
.
1
6
3
0
0
.
0
0
8
.
8
4
1
0
9
.
9
7
0
.
0
8
0
.
0
5
0
.
1
6
3
7
B-
1
8
3
9
.
8
8
E
-
0
5
1
.
4
2
E
-
0
1
5
.
0
2
E
-
0
5
2
9
6
.
9
1
3
0
5
.
0
0
8
.
0
9
1
1
2
.
6
4
0
.
0
7
0
.
0
5
0
.
2
0
4
3
0
.
1
4
50.6
No
t
e
s
:
1
.
G
r
o
u
n
d
W
a
t
e
r
V
e
l
o
c
i
t
y
C
a
l
c
u
l
a
t
e
d
f
r
o
m
E
q
u
a
t
i
o
n
V=
K
I
/
n
w
h
e
r
e
K
=
H
y
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
u
n
i
t
s
o
f
f
t
/
d
a
y
I
=
H
y
d
r
a
u
l
i
c
G
r
a
d
i
e
n
t
i
n
u
n
i
t
s
o
f
f
t
/
f
t
n
=
E
f
f
e
c
t
i
v
e
P
o
r
o
s
i
t
y
(
u
n
i
t
l
e
s
s
)
2.
H
y
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
v
a
l
u
e
s
f
r
o
m
a
q
u
i
f
e
r
s
l
u
g
t
e
s
t
i
n
g
u
s
i
n
g
t
h
e
B
o
u
w
e
r
-
R
i
c
e
m
e
t
h
o
d
;
c
o
n
d
u
c
t
e
d
b
y
E
S
P
p
e
r
s
o
n
n
e
l
3.
H
y
d
r
a
u
l
i
c
G
r
a
d
i
e
n
t
v
a
l
u
e
s
w
e
r
e
c
a
l
c
u
l
a
t
e
d
f
r
o
m
t
h
e
p
o
t
e
n
t
i
o
m
e
t
r
i
c
s
u
r
f
a
c
e
m
a
p
(
S
h
e
e
t
4
)
4.
E
f
f
e
c
t
i
v
e
P
o
r
o
s
i
t
y
v
a
l
u
e
s
f
o
r
s
o
i
l
s
w
e
r
e
d
e
r
i
v
e
d
f
r
o
m
T
a
b
l
e
3
5.
E
f
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
v
a
l
u
e
s
f
o
r
b
e
d
r
o
c
k
w
e
r
e
d
e
r
i
v
e
d
f
r
o
m
D
r
i
s
c
o
l
l
,
G
r
o
u
n
d
w
a
t
e
r
a
n
d
W
e
l
l
s
,
1
9
8
6
(
p
g
.
6
7
)
,
6.
D
o
m
e
n
i
c
o
a
n
d
S
c
h
w
a
r
t
z
,
P
h
y
s
i
c
a
l
a
n
d
C
h
e
m
i
c
a
l
H
y
d
r
o
g
e
o
l
o
g
y
,
1
9
9
0
(
p
g
.
2
1
)
,
7.
F
r
e
e
z
e
a
n
d
C
h
e
r
r
y
,
G
r
o
u
n
d
w
a
t
e
r
,
1
9
7
9
(
p
g
.
3
7
)
;
8.
T
h
e
d
e
s
i
g
n
v
a
l
u
e
s
a
r
e
c
o
l
l
a
b
o
r
a
t
e
d
b
y
e
a
r
l
i
e
r
s
i
t
e
s
t
u
d
i
e
s
(
G
Z
A
,
1
9
9
2
a
n
d
T
R
C
,
1
9
9
9
)
a
n
d
a
r
e
c
o
n
s
e
r
v
a
t
i
v
e
(
e
.
g
.
,
o
n
t
h
e
h
i
g
h
s
i
d
e
)
.
*G
r
o
u
n
d
w
a
t
e
r
e
l
e
v
a
t
i
o
n
s
a
n
d
p
o
t
e
n
t
i
o
m
e
t
r
i
c
s
u
r
f
a
c
e
s
f
o
r
r
e
f
e
r
e
n
c
e
e
l
e
v
a
t
i
o
n
s
d
e
r
i
v
e
d
f
r
o
m
w
a
t
e
r
l
e
v
e
l
o
b
s
e
r
v
a
t
i
o
n
s
m
a
d
e
5
/
1
4
/
2
015
Ta
b
l
e
6
Ho
r
i
z
o
n
t
a
l
G
r
o
u
n
d
W
a
t
e
r
G
r
a
d
i
e
n
t
a
n
d
V
e
l
o
c
i
t
y
C
a
l
c
u
l
a
t
i
o
n
s
An
s
o
n
C
o
u
n
t
y
M
S
W
L
a
n
d
f
i
l
l
,
P
h
a
s
e
3
&
4
An
s
o
n
Co
u
n
t
y
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
Ph
a
s
e
3 De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
$33(1',;
'UDZLQJV
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
C1
CO
V
E
R
S
H
E
E
T
PH
A
S
E
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
A
L
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
SCS ENGINEERS, PC
ANSON WASTE MANAGEMENT FACILITY
375 DOZER DRIVE
POLKTON, NORTH CAROLINA 28135
2520 WHITEHALL PARK DRIVE, SUITE 450
CHARLOTTE, NORTH CAROLINA 28273
(704) 504-3107
JOB NO. 02214709.00
JULY 2015
DESIGN HYDROGEOLOGIC STUDY
PHASES 3 AND 4
ANSON WASTE MANAGEMENT FACILITY
NCDENR SOLID WASTE PERMIT NO. 04-03
WASTE CONNECTIONS OF THE CAROLINAS
SEAL
25462
FINAL ISSUE
D
D'
C'
C
E
E'
B'
N
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
EX
I
S
T
I
N
G
C
O
N
D
T
I
O
N
S
S1
PH
A
S
E
S
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
SEAL
25462
FINAL ISSUE
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
S2
TE
S
T
B
O
R
I
N
G
L
O
C
A
T
I
O
N
S
PH
A
S
E
S
3
A
N
D
4
PH
A
S
E
S
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
SEAL
25462
FINAL ISSUE
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
S3
FE
B
R
U
A
R
Y
2
0
1
5
GR
O
U
N
D
W
A
T
E
R
C
O
N
T
O
U
R
S
PH
A
S
E
S
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
270
SEAL
25462
FINAL REVIEW
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
S4
ES
T
I
M
A
T
E
D
M
A
X
I
M
U
M
SE
A
S
O
N
A
L
H
I
G
H
G
R
O
U
N
D
W
A
T
E
R
C
O
N
T
O
U
R
S
PH
A
S
E
S
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
310
SEAL
25462
FINAL ISSUE
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
S5
GE
N
E
R
A
L
I
Z
E
D
B
E
D
R
O
C
K
(A
U
G
E
R
R
E
F
U
S
A
L
)
C
O
N
T
O
U
R
S
PH
A
S
E
S
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
280
SEAL
25462
FINAL ISSUE
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
CR
O
S
S
S
E
C
T
I
O
N
S
(
S
H
T
1
O
F
3
)
X1
PH
A
S
E
S
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
SEAL
25462
FINAL ISSUE
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
CR
O
S
S
S
E
C
T
I
O
N
S
(
S
H
T
2
O
F
3
)
X2
PH
A
S
E
S
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
SEAL
25462
FINAL ISSUE
SC
S
E
N
G
I
N
E
E
R
S
,
P
C
25
2
0
W
H
I
T
E
H
A
L
L
P
A
R
K
D
R
I
V
E
,
S
U
I
T
E
4
5
0
CH
A
R
L
O
T
T
E
,
N
O
R
T
H
C
A
R
O
L
I
N
A
2
8
2
7
3
PH
O
N
E
:
(
7
0
4
)
5
0
4
-
3
1
0
7
F
A
X
:
(
7
0
4
)
5
0
4
-
3
1
7
4
CR
O
S
S
S
E
C
T
I
O
N
S
(
S
H
T
3
O
F
3
)
X3
PH
A
S
E
S
3
A
N
D
4
WA
S
T
E
C
O
N
N
E
C
T
I
O
N
S
OF
T
H
E
C
A
R
O
L
I
N
A
S
37
5
D
O
Z
E
R
D
R
I
V
E
DE
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
S
T
U
D
Y
PO
L
K
T
O
N
,
N
C
2
8
1
3
5
SEAL
25462
FINAL ISSUE
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
$33(1',;
7HVW%RULQJ/RJV
S C S E N G I N E E R S Test Boring Log B-01
Environmental Consultants Northing 458970.85
2520 Whitehall Park Drive, Suite 450 Easting 1650788.25
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 44.3'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/9/2014 Completion Water Level: 35 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/9/2014 24 Hour Water Level:22.8 below top of casing
Boring Diameter: 4-inch
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
313.63 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
316.28 Casing Elev.
1
2
3.5221
5
6
4
31
7
828.5345
9
10
11
12
13 3 13.5 3
14 Grout
15
16
17
19
20
18 4 18.5 14 18 29
25
26
27
Solid 2" PVC Pipe22
23 5 23.5 40
21
50/5
24
33 7 33.5
29
30
28 6 28.5 23 15 16
31
Bentonite
36
Sand Pack
37
38 8 38.5 40 23
39
40
Slotted 2" PVC Pipe
42
43 9 43.5 50/1
44 313.63 Auger Refusal at 44.3 feet
Gray, brown PWR10 44.3 50/0
49
50
47
48
46
Gray, brown sandy silt
Orange, gray sandy silt
Brown, orange sandy silt
Tan, black silty sand
Tan, black PWR
Brown, orange silty sand
Brown, orange silty sand
Brown, gray PWR
45
41
50/3
91020
35
32
34
613
S C S E N G I N E E R S Test Boring Log B-02D
Environmental Consultants Northing 459357.24
2520 Whitehall Park Drive, Suite 450 Easting 1650504.41
Charlotte, NC 28273 Logged By: Adam Smith, PE
704 504-3107 FAX 704 504-3174 Total Bore Depth: 40.1'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/15/2014 Completion Water Level: 20.1 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/15/2014 24 Hour Water Level:17.9 below top of casing
Boring Diameter: 4-inch
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
SCS Project No. 02214709.00
9 40.1 50/1
308.25 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
310.83 Casing Elev.
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
2
3.5 50/1.5 Gray sand and rock, PWR
5
6
4
31
7
8 2 8.5 50/1
9
10
11
12
13 3 13.5 50/0.75
14 Grout
15
16
17
18 4 18.5 50/.05
19
20
21 Solid 2" PVC Pipe22
23 5 23.5 50/0.25
24
25
26
27
29
30
28 6 28.5 50/0.5
32
Bentonite
34
33 7 33.5 50/1
31 Sand Pack
37
38 8 38.5 50/1
35
36
41
Slotted 2" PVC Pipe
42
39
40
44
45
46
47
48
308.25
Auger Refusal at 40.1 feet
43
49
50
S C S E N G I N E E R S Test Boring Log B-02S
Environmental Consultants Northing 459358.96
2520 Whitehall Park Drive, Suite 450 Easting 1650498.34
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 15'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 1/27/2015 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended: 1/27/2015 24 Hour Water Level:6.34 below top of casing
Boring Diameter: 4-inch
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
307.84 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
Grout
3
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
310.20 Casing Elev.
1
2
5
6
4
9
10
7
8
13
11
12
Solid 2" PVC Pipe
15
16
17
18
307.8414
21
22
23
20
30
24
26
27
29
28
31
25
19
Bentonite
Drilled to 15'; shallow nested well
33
32
Sand Pack
37
38
35
36
34
41
Slotted 2" PVC Pipe
42
39
40
43
49
44
45
50
47
48
46
S C S E N G I N E E R S Test Boring Log B-03
Environmental Consultants Northing 459135.67
2520 Whitehall Park Drive, Suite 450 Easting 1650467.32
Charlotte, NC 28273 Logged By: Adam Smith, PE
704 504-3107 FAX 704 504-3174 Total Bore Depth: 35'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/16/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/16/2014 24 Hour Water Level:19 below top of casing
Boring Diameter: 4-inch
Orange, gray, brown silty sand
Orange, gray, brown silty sand
Orange, gray, brown silty sand
Orange, gray, brow silty sand
Gray sand, rock, PWR
PWR
PWR
PWR8 35.0 50/0.5
49
50
47
48
46
44
45
41
39
38
42
43
40
314.12
Auger Refusal at 35.0 feet
Slotted 2" PVC Pipe
36
37
34
35
33 7 33.5 50/0.5
31
Sand Pack
32
29
30
28 6 28.5 50/0.5
26
Bentonite
27
24
25
22
23 5 23.5 50/0.8
19
17
18 4 18.5 50/8
20
21
15
16
14
Grout
13 3 13.5 50/9
11
12
9
10
Solid 2" PVC Pipe
7
828.52950/5
5
6
4
31
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
2
3.5203040
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
SCS Project No. 02214709.00
314.12 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
316.53 Casing Elev.
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S C S E N G I N E E R S Test Boring Log B-04
Environmental Consultants Northing 459199.71
2520 Whitehall Park Drive, Suite 450 Easting 1650755.58
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 42.3'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/9/2014 Completion Water Level: N/A below top of casing
Core Started:1/26/2015
Drilling Method:Rotary Hollow Stem Auger Date Ended: 12/9/2014 24 Hour Water Level:13.0 below top of casing
Core Ended:1/26/2015
Boring Diameter: 4-inch
Orange, tan, gray sandy silt
Orange, tan, gray sandy silt, PWR
Orange, tan, gray sandy silt, PWR
Orange, tan, gray sandy silt, PWR
Orange, tan, gray sandy silt, PWR
PWR
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
314.45 Casing Elev.
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
311.55 Ground Elev.
1
2
3.5 5 8 12
5
6
4
31
7
828.5142450/6
9
10
11
12
13 3 13.5 50/6
14 Grout
15
16
17
18 4 18.5 50/2
19
20
25
26
27
Solid 2" PVC Pipe22
23 5 23.5 50/1
21
24
29
30
28 6 28.5 50/0
Auger Refusal at 28.3 feet
32
Bentonite
34
33
31
35
36
Sand Pack
37
38
39
40
Slotted 2" PVC Pipe
42 296.55
Cored to 42.3 feet
44
311.55
45
43
41
46
49
50
47
48
S C S E N G I N E E R S Test Boring Log B-05
Environmental Consultants Northing 459235.39
2520 Whitehall Park Drive, Suite 450 Easting 1651012.02
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 50.8'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/9/2014 Completion Water Level: 46 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/9/2014 24 Hour Water Level:26.25 below top of casing
Boring Diameter: 4-inch
Tan silty sand
Orange, tan silty sand
Orange, tan silty sand
Brown, tan silty sand, PWR
Brown, tan silty sand, PWR
Brown, tan silty sand, PWR
Gray, white, tan silty sand, PWR
Gray, white, tan silty sand, PWR
Gray micaceous silty sand, PWR
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
318.87 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
322.07 Casing Elev.
1
2
3.5213146
5
6
4
31
7
8 2 8.5 23 50/6
9
10
11
12
13 3 13.5 14 17 21
14 Grout
15
16
17
18 4 18.5 32 50/6
19
20
25
26
27
Solid 2" PVC Pipe22
23 5 23.5 50/3
21
24
29
30
28 6 28.5 50/3
31
32
Bentonite
34
33 7 33.5 50/3
35
36
Sand Pack
37
38 8 38.5 50/1
39
40
41 Slotted 2" PVC Pipe
42
43 9 43.5 50/4
44
45
46
50
47
48
Rock
10 48.5
318.8749
50/.5
11 50.8 50/0
White, gray sand, PWR
Auger Refusal at 50.8 feet
S C S E N G I N E E R S Test Boring Log B-06
Environmental Consultants Northing 459650.34
2520 Whitehall Park Drive, Suite 450 Easting 1650600.03
Charlotte, NC 28273 Logged By: Adam Smith, PE
704 504-3107 FAX 704 504-3174 Total Bore Depth: 26'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/16/2014 Completion Water Level: 0 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/16/2014 24 Hour Water Level:2.6 below top of casing
Boring Diameter: 4-inch
Orange clay and sandy silt
Gray, orange clay and sandy silt
Gray silty sand
Gray, red, brown silty sand
Gray, red, brown silty sand, PWR
Gray, red, brown silty sand, PWR6 26.0 32 50/6
49
50
47
48
46
44
45
42
43
40
Auger Refusal at 26.0 feet
41
39
38
31
26 294.96
Slotted 2" PVC Pipe
36
37
34
35
33
Sand Pack
32
29
30
28
Bentonite
27
24
25
41 50/5
19
22
23 5 23.5 18
17
18 4 18.5 20 24
20
21
28
15
16
14
Grout
13 3 13.5 9 20 28
11
12
9
10
7
8 28.5559
Solid 2" PVC Pipe
5
6
4
31
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
2
3.5356
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
SCS Project No. 02214709.00
294.96 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
297.79 Casing Elev.
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S C S E N G I N E E R S Test Boring Log B-07
Environmental Consultants Northing 459471.63
2520 Whitehall Park Drive, Suite 450 Easting 1651011.28
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 27.3'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/8/2014 Completion Water Level: 19.2 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/8/2014 24 Hour Water Level:8.45 below top of casing
Boring Diameter: 4-inch
Tan and brown sandy silt, PWR
Tan and brown sandy silt, PWR
Tan and brown sandy silt, PWR
Tan and brown sandy silt, PWR
Tan and brown sandy silt, PWR
6 27.3 50/.5 Tan and brown sandy silt, PWR
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
313.97 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
317.03 Casing Elev.
1
2
3.5 50/6
6
4
31
8 2 8.5 50/3
5
11
12
9
10
7
14
Grout
13 3 13.5 50/2
15
16
17
18 4 18.5 50/.75
19
Solid 2" PVC Pipe
22
23 5 23.5 50/2
20
21
24
25
26
27
29
30
28
Bentonite
34
33
31
Sand Pack
37
38
35
36
Slotted 2" PVC Pipe
42
39
40
44
313.97
45
43
41
32
49
50
47
48
46
Auger Refusal at 27.3 feet
S C S E N G I N E E R S Test Boring Log B-08
Environmental Consultants Northing 459894.55
2520 Whitehall Park Drive, Suite 450 Easting 1651042.58
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 31.5' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/17/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/17/2014 24 Hour Water Level:8.25 below top of casing
Boring Diameter: 4-inch
Drilling halted at 31.5 feet
Gray, brown, orange silty sand
Gray, brown, orange silty sand
Gray, red micaceous silty sand
Gray, white silty sand, PWR
Red, tan silty sand, PWR
Gray, white silty sand
Orange, tan silty sand
7 31.5 24 28 39
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
313.27 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
316.58 Casing Elev.
1
2
3 1 3.5 7 11 16
Grout
4
6
7
5 Solid 2" PVC Pipe
9
8 28.5162941
10
11
31 50/6
12
13 3 13.5 20
18 4 18.5 25 40 50/3
16
17
14
15
20
21
Bentonite
25 Slotted 2" PVC Pipe
22
23 5 23.5 20 13
Sand Pack
19
26
27
24
25
30
28
29
313.27
33
31
32
34
35
36
37
38
39
40
41
42
43
44
45
49
50
47
48
46
628.5282944
S C S E N G I N E E R S Test Boring Log B-09
Environmental Consultants Northing 459904.3
2520 Whitehall Park Drive, Suite 450 Easting 1650717.9
Charlotte, NC 28273 Logged By: Adam Smith, PE
704 504-3107 FAX 704 504-3174 Total Bore Depth: 20.5'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/15/2014 Completion Water Level: 0 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/15/2014 24 Hour Water Level:2.6 below top of casing
Boring Diameter: 4-inch
Orange, tan silty sand, quartz
Gray silty sand, PWR
Gray silty sand, PWR5 20.5
50/0.75
49
50
47
48
46
44
45
42
43
40
41
37
38
39
34
35
33
36
32
31
25
28
29
30
27
20 291.06
26
Auger Refusal at 20.5 feet
24
Slotted 2" PVC Pipe
22
23
21
19
18 4 18.5 50/2
14
Sand Pack
15
61216
16
17
Bentonite
12
13 3 13.5
10
11
9
8 28.5656Tan clayey sand
7
Solid 2" PVC Pipe
6
4
5
Orange, tan sandy silt313.56911
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
2 Grout
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
SCS Project No. 02214709.00
291.06 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
294.20 Casing Elev.
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S C S E N G I N E E R S Test Boring Log B-10
Environmental Consultants Northing 460077.69
2520 Whitehall Park Drive, Suite 450 Easting 1650791.91
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 18.2' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/17/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/17/2014 24 Hour Water Level:3.15 below top of casing
Boring Diameter: 4-inch
PWR
Brown, tan sandy silt
Orange, tan sandy silt
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
299.92 Ground Elev.
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
3
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
302.45 Casing Elev.
1
2
3.5 6
5 Bentonite
1
4
811
6
7
8 2 8.5 8 10 12
11
12
9
10
Sand Pack
14
Grout
13 3 13.5 15 50/.75
17
18
15
16
Rock
19
Solid 2" PVC Pipe
22
23
20
21
24
25
26
27
29
30
28
31
33
34
35
36
37
38
Slotted 2" PVC Pipe
42
39
40
44
299.92
45
43
41
32
49
50
47
48
46
4 18.2 50/0
Auger Refusal at 18.2 feet
S C S E N G I N E E R S Test Boring Log B-11
Environmental Consultants Northing 459568.56
2520 Whitehall Park Drive, Suite 450 Easting 1651182.16
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 23.5' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/22/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/22/2014 24 Hour Water Level:18.95 below top of casing
Boring Diameter: 4-inch
50/.25 No recovery
No recovery
Tan sandy silt, PWR
Tan sandy silt, PWR
Tan sandy silt, PWR
Anson Solid Waste Management
29 50/6
Polkton, NC (Permit # 04-03)
312.32 Ground Elev.
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
3
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
314.52 Casing Elev.
1
2
3.5 5
5 Solid 2" PVC Pipe
1
4
7
8 2 8.5 50/5
11
12
9
10 Bentonite
6
14
Grout
13 3 13.5 50/1
15
16
17
18 4 18.5 50/.25
19
22
23
20
21
5 23.5
24
25
26
27
29
30
28
31
33
34
Sand Pack
37
38
35
36
Slotted 2" PVC Pipe
42
39
40
44
312.32
45
43
41
32
49
50
47
48
46
Auger Refusal at 23.5 feet
S C S E N G I N E E R S Test Boring Log B-12
Environmental Consultants Northing 459778.75
2520 Whitehall Park Drive, Suite 450 Easting 1651278.85
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 31.6'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/12/2014 Completion Water Level: 25.7 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/12/2014 24 Hour Water Level:24.8 below top of casing
Boring Diameter: 4-inch
PWR
Orange, gray silty sand, PWR
Orange, gray silty sand
47
48
49
50
43
44
45
46
39
40
41
42
35
36
37
38
32
7 31.6 50/6
33
34
29
30
28 6 28.5 50/0.5
31
Auger Refusal at 31.6 feet
24
25
26
27
314.87
21
22
23 5 23.5 23 50/6
PWR
PWR
Brown, tan silty sand, PWR
Slotted 2" PVC Pipe
17
18 4 18.5 16
Sand Pack
Bentonite
20
16
50/8
19
PWr
14
13 3 13.5 50/1.5
15
10
11
12
7
9
Solid 2" PVC Pipe
4
5
6
8 2 8.5 50/3
Grout
313.5142350/5
2
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
SCS Project No. 02214709.00
314.87 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
316.59 Casing Elev.
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S C S E N G I N E E R S Test Boring Log B-13
Environmental Consultants Northing 460107.18
2520 Whitehall Park Drive, Suite 450 Easting 1651272.07
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 46.1' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/12/2014 Completion Water Level: 32 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended: 12/12/2014 24 Hour Water Level:11.5 below top of casing
Boring Diameter: 4-inch
PWR
Gray, brown silty sand, PWR
Gray silty sand, PWR
Gray silty sand, PWR
Gray, tan silty sand
Tan, orange silty sand
Tan, orange, silty sand
11 46.1 50/0 No recovery
PWR
PWR
8 33.5 50/5
9 38.5 50/5
PWR
10 43.5 50/3
Auger Refusal at 46.1 feet
7 30.0 50/5
2 8.5 21 29 50/4
3 13.5 23 27 36
4 18.5 17 18 44
5 23.5
W
A
T
E
R
L
E
V
E
L
23 50/3
6 28.5
13.551932
50/4
23
13
14
15
3
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
2
4
5
6
7
8
0
1
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
16
19
20
21
22
9
10
11
12
50
43
44
45
46
47
48
37
38
39
40
41
42
49
31
32
33
34
35
36
25
26
27
28
29
30
24
17
18
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
SCS Project No. 02214709.00
PIEZOMETER DATA
315.48
317.74
315.48 Ground Elev.
Casing Elev.
Grout
Solid 2" PVC Pipe
Bentonite
Slotted 2" PVC Pipe
Sand Pack
S C S E N G I N E E R S Test Boring Log B-14
Environmental Consultants Northing 460188.73
2520 Whitehall Park Drive, Suite 450 Easting 1651031.17
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 22.3' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/11/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/11/2014 24 Hour Water Level:N/A below top of casing
Boring Diameter: 4-inch
Red, tan sandy clayey silt
5 22.3 50/0 No recovery
Gray sandy silt, PWR
Tan, gray sandy silt
Orange, tan sandy silt
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
312.17 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
NO PIEZOMETER
1 Grout
313.54912
2
4
5
6
7
8 28.5101319
9
10
11
12
14
15
16
13 3 13.5 30 50/3
17
18 4 18.5 50/2
19
20
21
22 312.17
23 Auger Refusal at 22.3 feet
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
49
50
47
48
S C S E N G I N E E R S Test Boring Log B-15
Environmental Consultants Northing 460509.1
2520 Whitehall Park Drive, Suite 450 Easting 1651042.22
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 22.5'below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/11/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/11/2014 24 Hour Water Level:N/A below top of casing
Boring Diameter: 4-inch
Gray mudstone, PWR
Gray sandy silt, PWR
Olive, brown sandy silt
5 22.5 50/0
49
50
47
48
46
44
45
41
42
43
39
38
40
36
37
32
33
34
35
31
Auger Refusal at 22.5 feet
30
29
26
24
25
28
27
23
No recovery22 316.53
20
21
19
18 4 18.5 50/0.5 No recovery
16
50/8
17
13 3 13.5 50/1
14
15
9
10
11
12
8 2 8.5 50/5
7
5 Grout6
4
31
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
2
3.5243849
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
SCS Project No. 02214709.00
316.53 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S C S E N G I N E E R S Test Boring Log B-16
Environmental Consultants Northing 460294.49
2520 Whitehall Park Drive, Suite 450 Easting 1651297.11
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 38.8' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/10/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/10/2014 24 Hour Water Level:N/A below top of casing
Boring Diameter: 4-inch
Brown, tan silty sand, PWR
Brown, tan silty sand, PWR
Brown, tan silty sand, PWR
Orange, tan sandy silt, PWR
Orange, tan sandy silt
Gray, brown sandy silt, PWR
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
315.40 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
NO PIEZOMETER
Grout
3 1 3.5 30 50/5
2
4
5
6
7
828.5151633
9
10
11
12
14
15
16
13 3 13.5 30 50/5
50/6
17
18 4 18.5 41
20
21
22
19
23 5 23.5 50/124
25
28
26
27
29
30
31
32
33 7 33.5 50/.5 Gray mudstone, PWR
34
35
38
36
37
315.4039
40
38.8 50/.75
43
44
49
50
47
48
46
6 28.5 50/5
45
41
42
8 Gray mudstone, PWR
Auger Refusal at 38.8 feet
S C S E N G I N E E R S Test Boring Log B-17
Environmental Consultants Northing 460621.82
2520 Whitehall Park Drive, Suite 450 Easting 1651127.72
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 43.6' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/11/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/11/2014 24 Hour Water Level:N/A below top of casing
Boring Diameter: 4-inch
Red, tan sitly sand
Red, gray sandy silt - gray, red seam of red, tan
sandy silt
315.29 PWR
Tan, brown sandy silt
Olive, brown silt
Olive, tan, orange silt
Olive, tan silt
Olive, tan silt
45
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
315.29 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
NO PIEZOMETER
1 Grout
313.5323
2
4
5
6
7
828.5323Tan, white silt
9
10
11
12
14
15
16
13 3 13.5 3 2 3
17
18 4 18.5 3
19
20
21
22
23 5 23.5 50/124
25
26
27
28 6 28.5 50/529
30
31
32
34
35
33 7 33.5 50/.5
36
37
38 8 38.8 50/.75
39
40
44
45
43
41
42
Auger Refusal at 43.6 feet
9 43.5 50/.75
49
50
47
48
46
S C S E N G I N E E R S Test Boring Log B-18
Environmental Consultants Northing 460556.15
2520 Whitehall Park Drive, Suite 450 Easting 1651219.53
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 40.5' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/9/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/9/2014 24 Hour Water Level:12.85 below top of casing
Boring Diameter: 4-inch
Gray, orange silty sand, PWR
Brown, tan, orange silty sand, PWR
Gray, orange silty sand
Tan, orange silty sand
Orange, tan silty sand
278.00
Slotted 2" PVC Pipe
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
318.50 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
321.21 Casing Elev.
2
3.5111416
6
4
31
8 28.5181416
5
11
12
9
10
7
14
Grout
13 3 13.5 16 50/6
15
16
17
18 4 18.5 41 50/3
19
29 50/4
Solid 2" PVC Pipe
22
23 5 23.5 33
20
21
24
25
26
27
6 50/0 No recovery
29
30
28
Bentonite
34
33
31 Sand Pack
37
38
35
36
42
39
40
44
318.50
45
43
41
32
49
50
47
48
46
Cored to 40.5 feet
Auger Refusal at 25.5 feet
S C S E N G I N E E R S Test Boring Log B-19
Environmental Consultants Northing 460780.03
2520 Whitehall Park Drive, Suite 450 Easting 1651259.84
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 35.5' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/10/2014 Completion Water Level: 33.60 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/10/2014 24 Hour Water Level:11.90 below top of casing
Boring Diameter: 4-inch
White, orange, tan silty sand, PWR
White, orange, tan silty sand, PWR
Tan, brown silty sand, PWR
Tan, brown silty sand
Brown, tan silty sand
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
316.75 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
319.65 Casing Elev.
2
3.5 6 8 10
6
4
31
8 28.5182429
5
11
12
9
10
7
14
Grout
13 3 13.5 30 50/3
15
16
17
18 4 18.5 50/6
19
Solid 2" PVC Pipe
22
23 5 23.5 50/6
20
21
24
25
26
27
PWR
30
28 6 28.5 50/1
32
PWR
29
Bentonite
34
33 7 33.5 50/.5
31
Sand Pack
37
38
35
36
35.5 50/1
Slotted 2" PVC Pipe
42
39
40
44
316.75
45
43
41
8
49
50
47
48
46
Auger Refusal at 35.5 feet
Tan silty sand, PWR
S C S E N G I N E E R S Test Boring Log B-20
Environmental Consultants Northing 460712.37
2520 Whitehall Park Drive, Suite 450 Easting 1651468.86
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 27.7' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/17/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/17/2014 24 Hour Water Level:13.40 below top of casing
Boring Diameter: 4-inch
No recovery
Tan silty sand, PWR
Tan silty sand, PWR
Tan, orange sandy silt, PWR
Orange sandy silt
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
317.31 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
319.32 Casing Elev.
2
3.5 9 10 23
5
6
4 Grout
31
828.52450/6
7
9 Solid 2" PVC Pipe10
11
12
13 3 13.5 15 50/2
14
15
16
17
20
18 4 18.5 24 50/4
Bentonite
22
23 5 23.5 50/.5
21
19 Sand Pack
27
24
25
28
26
Auger Refusal at 27.7 feet
6 27.7 50/0 No recovery
Slotted 2" PVC Pipe
31
32
29
30
34
317.31
35
33
36
37
38
39
40
41
42
43
44
45
46
47
49
50
48
S C S E N G I N E E R S Test Boring Log B-21
Environmental Consultants Northing 460710.17
2520 Whitehall Park Drive, Suite 450 Easting 1651739.21
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 22' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/22/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/22/2014 24 Hour Water Level:9.50 below top of casing
Boring Diameter: 4-inch
Orange, brown, tan sandy silt
Tank, orange, black sandy silt
Tan, Orange, black sandy silt
Orange, tan sandy silt
Brown, tan sandy silt
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
305.90 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
309.45 Casing Elev.
2 Grout
5
6
4
313.56912
9
Solid 2" PVC Pipe
10
8 28.5668
7
11
12
Bentonite
14
13 3 13.5 5 6 7
15
Sand Pack
17
18 4 18.5 7 11
15
16
Slotted 2" PVC Pipe
23
21
22
19
20
Drilling halted at 22 feet
26
305.9
27
24
25
28
29
30
31
32
33
34
35
36
37
38
40
41
42
43
44
39
48
46
45
49
50
47
5 22.0 4 6 15
S C S E N G I N E E R S Test Boring Log B-22
Environmental Consultants Northing 460919.6
2520 Whitehall Park Drive, Suite 450 Easting 1651739.47
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 17.2' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/22/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/22/2014 24 Hour Water Level:3.80 below top of casing
Boring Diameter: 4-inch
4 17.2 50/0 No recovery
PWR
Tan, brown sandy silt, PWR
Tan, brown sandy silt
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
297.32 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
299.96 Casing Elev.
1 Grout
2
Bentonite
6
Solid 2" PVC Pipe
4
3 13.5132224
8 2 8.5 50/6
5
9
7
Sand Pack
12
13 3 13.5 50/.75
10
11
Slotted 2" PVC Pipe
18
16
17
14
15
Auger refusal at 17.2 feet
21
297.32
22
19
20
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
49
50
47
48
46
S C S E N G I N E E R S Test Boring Log B-23
Environmental Consultants Northing 461014.48
2520 Whitehall Park Drive, Suite 450 Easting 1651547.59
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 30' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/18/2014 24 Hour Water Level:14.83 below top of casing
Boring Diameter: 4-inch
Orange sandy silt
Orange sandy silt
7 30.0 50/0 No recovery
PWR
Tan silty sand, PWR
Tan silty sand, PWR
1
13.5 8 12 22
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
305.08 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
306.87 Casing Elev.
1
2
3.5 7 11 16
5
6
4 Grout
3
8 28.5489
7
9 Solid 2" PVC Pipe10
11
12
13 3 Brown, black, orange sandy silt
Bentonite
14
15
16
Sand Pack
17
18 4 18.5 50/2
19
20
21
22 Slotted 2" PVC Pipe235 23.5 50/1
26
305.08
27
24
25
28
29
30 Auger Refusal at 30.0 feet31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
49
50
47
48
46
6 28.5 50/0
S C S E N G I N E E R S Test Boring Log B-24
Environmental Consultants Northing 461076.66
2520 Whitehall Park Drive, Suite 450 Easting 1651670.32
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 30.5' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/18/2014 24 Hour Water Level:15.65 below top of casing
Boring Diameter: 4-inch
Orange, gray silty sand
Tan, white, brown silty sand
274.82
Grout
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
305.32 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
307.84 Casing Elev.
2
3.52325281
1
5
6
4 Solid 2" PVC Pipe
3
828.56515
7
9
10
11
12
13 3 13.5 18 19 50/2
14
15 305.32 4 15.2 50/3 PWR
Orange, gray silty sand, PWR
Bentonite16
Sand Pack
17
18
19
20
21
22
Slotted 2" PVC Pipe
23
24
25
26
27
Auger Refusal at 15.2 feet
29
30
28
31
32
33
34
35
36
37
44
38
39
48
46
40
41
42
43
45
49
50
47
Cored to 30.5 feet
S C S E N G I N E E R S Test Boring Log B-25D
Environmental Consultants Northing 461063.93
2520 Whitehall Park Drive, Suite 450 Easting 1651845.49
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 30.2' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/18/2014 24 Hour Water Level:9 below top of casing
Boring Diameter: 4-inch
Red micaceous sandy silt
Orange, gray sandy, clayey silt
7 30.2 50/2 Red, gray sandy silt, PWR
Red, gray sandy silt, PWR
Gray, red micaceous silty sand, PWR
Gray micaceous silty sand, PWR
red micaceous sandy silt
1
13.5 15 26 50/5
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
289.53 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
292.57 Casing Elev.
1
2
3.5546
5
6
4 Grout
3
8 28.5121723
7
9 Solid 2" PVC Pipe10
11
12
13 3
Bentonite
14
15
16
Sand Pack
17
18 4 18.5 50/5
19
20
21
22 Slotted 2" PVC Pipe235 23.5 29 50/6
26
289.53
27
24
25
28
29
30 Auger Refusal at 30.2 feet31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
49
50
47
48
46
6 28.5 50/3
S C S E N G I N E E R S Test Boring Log B-25S
Environmental Consultants Northing 461064.85
2520 Whitehall Park Drive, Suite 450 Easting 1651852.58
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 15' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 1/28/2015 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended: 1/28/2015 24 Hour Water Level:13 below top of casing
Boring Diameter: 4-inch
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
288.35 Ground Elev.0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
291.14 Casing Elev.
Grout1Solid 2" PVC Pipe2Bentonite3
4
5
6
8
7
9 Sand Pack10
Slotted 2" PVC Pipe13
11
12
14 288.3515 Drilled to 15'; shallow nested well16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
47
48
46
49
50
S C S E N G I N E E R S Test Boring Log B-26
Environmental Consultants Northing 460885.94
2520 Whitehall Park Drive, Suite 450 Easting 1652205.6
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 15.8' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended: 12/18/2014 24 Hour Water Level:5.55 below top of casing
Boring Diameter: 4-inch
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
Grout1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
277.13 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
279.63 Casing Elev.
Solid 2" PVC Pipe2Bentonite3
4
13.561325Tan, white silty sand
5
6
828.5283350/6
7
9 Sand Pack10
Red, gray sandy silt, PWR
Slotted 2" PVC Pipe13 3 13.5 50/4
11
12
14
Red, gray sandy silt, PWR
277.13 4 15.8 50/3 Red, gray sandy silt, PWR15
Auger Refusal at 15.8 feet16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
49
50
47
48
46
S C S E N G I N E E R S Test Boring Log B-27
Environmental Consultants Northing 460965.24
2520 Whitehall Park Drive, Suite 450 Easting 1652401.45
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 25.9' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/19/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/19/2014 24 Hour Water Level:8.40 below top of casing
Boring Diameter: 4-inch
Tan micaceous silty sand, PWR
Tan micaceous silty sand, PWR
Tan micaceous silty sand, PWR
Tan micaceous silty sand
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
270.23 Ground Elev.
273.22 Casing Elev.
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
1
2
3.5 6 17 4731
5
6
4 Grout
7
11
12
9 Solid 2" PVC Pipe10
8 2 8.5 50/4
13 3 13.5 11 17 22
Bentonite
16
14
15
50/3 Sand Pack
17
18 4 18.5 15 38
19
20
21
22
Tan micaceous silty sand, PWR Slotted 2" PVC Pipe23 5 23.5 50/3
24
25
26
27 Auger Refusal at 25.9 feet
29
30
28
6 25.9 50/4 Tan micaceous silty sand, PWR270.23
31
32
33
34
35
36
37
38
44
39
40
41
42
43
45
49
50
47
48
46
S C S E N G I N E E R S Test Boring Log B-28
Environmental Consultants Northing 461193.01
2520 Whitehall Park Drive, Suite 450 Easting 1652443.83
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 16' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/19/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended: 12/19/2014 24 Hour Water Level:6.98 below top of casing
Boring Diameter: 4-inch
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
Grout1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
271.13 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
273.57 Casing Elev.
Solid 2" PVC Pipe2Bentonite3
4
1 3.5 23 43 50/6
5
6
Red, gray sandy silt, PWR
8 2 8.5 43 50/5
7
9 Sand Pack10
Red, gray sandy silt, PWR
Slotted 2" PVC Pipe13 3 13.5 50/5
11
12
14
Red, gray sandy silt, PWR
271.13 4 16.0 50/5 Red, gray sandy silt, PWR15
Auger Refusal at 16 feet16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
40
41
42
43
44
39
48
46
45
49
50
47
S C S E N G I N E E R S Test Boring Log B-29
Environmental Consultants Northing 461049.51
2520 Whitehall Park Drive, Suite 450 Easting 1652141.65
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 20.8' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/19/2014 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/19/2014 24 Hour Water Level:4.84 below top of casing
Boring Diameter: 4-inch
Red sandy silt, PWR
Gray, red silty sand, PWR
White, tan silty sand
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
278.03 Ground Elev.
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
281.18 Casing Elev.
2
Grout
5
6
4
3 13.5131618 Solid 2" PVC Pipe
8 2 8.5 50/4
7
9
Sand Pack
10
11
12
18 4 18.5 44 50/.5
Bentonite
14
13 3 13.5 50/5
20
16
17
Auger Refusal at 20.8 feet
5 20.8 50/4
15
Red sandy silt, PWR
Red sandy silt, PWR
Slotted 2" PVC Pipe
23
21
22
19
26
278.03
27
24
25
28
29
30
31
32
33
34
35
36
37
38
44
39
40
41
42
43
45
49
50
47
48
46
S C S E N G I N E E R S Test Boring Log B-30
Environmental Consultants Northing 461121.72
2520 Whitehall Park Drive, Suite 450 Easting 1651951.32
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 29' below ground surface
Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: 27.5 below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended:12/18/2014 24 Hour Water Level:2.75 below top of casing
Boring Diameter: 4-inch
6 29.0 50/6 Red, gray silty sand, PWR
Gray, white, olive silty sand, PWR
Gray, red clayey, silty sand, PWR
Gray, red clayey, silty sand, PWR
Gray, red clayey, silty sand
Gray, red clayey, silty sand, PWR
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
280.15 Ground Elev.
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
283.07 Casing Elev.
1
2
3
5
6
4 Grout
3.5222530
13
1
8 2 8.5 30 50/5
7
9 Solid 2" PVC Pipe10
11
12
Bentonite14
15
16
313.5101624
Sand Pack
17
18 4 18.5 50/4
19
20
21
22 Slotted 2" PVC Pipe235 23.5 50/3
24
25
26
280.15
27
28
29 Auger Refusal at 29 feet30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
47
48
46
49
50
S C S E N G I N E E R S Test Boring Log B-31
Environmental Consultants Northing 461252.5106
2520 Whitehall Park Drive, Suite 450 Easting 1651978.082
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 15' below ground surface
Drilling Company: American Environmental Drilling, Inc. Date Started: 3/31/2015 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended: 3/31/2015 24 Hour Water Level: N/A below top of casing
Boring Diameter: 8-inch
49
50
47
48
46
44
45
40
41
42
43
36
37
38
39
33
34
35
29
30
31
32
25
26
27
28
21
22
23
24
17
18
19
20
14 266.915 Drilled to 15'; shallow well16
9 Sand Pack10
Slotted 2" PVC Pipe13
11
12
8
7
5
6 Bentonite
4
Solid 2" PVC Pipe
3
2
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
281.44 Casing Elev.
Grout1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
281.90 Ground Elev.
S C S E N G I N E E R S Test Boring Log B-32
Environmental Consultants Northing 461361.3109
2520 Whitehall Park Drive, Suite 450 Easting 1652452.817
Charlotte, NC 28273 Logged By: Mike Cobb, PG
704 504-3107 FAX 704 504-3174 Total Bore Depth: 15' below ground surface
Drilling Company: American Environmental Drilling, Inc. Date Started: 3/31/2015 Completion Water Level: N/A below top of casing
Drilling Method:Rotary Hollow Stem Auger Date Ended: 3/31/2015 24 Hour Water Level: N/A below top of casing
Boring Diameter: 8-inch
49
50
47
48
46
44
45
40
41
42
43
36
37
38
39
33
34
35
29
30
31
32
25
26
27
28
21
22
23
24
17
18
19
20
14 263.515 Drilled to 15'; shallow well16
9 Sand Pack10
Slotted 2" PVC Pipe13
11
12
8
7
5
6 Bentonite
4
Solid 2" PVC Pipe
3
2
SCS Project No. 02214709.00
D
E
P
T
H
I
N
F
T
.
EL
E
V
A
T
I
O
N
S
A
M
P
L
E
#
D
E
P
T
H
I
N
F
T
.
6
"
S
P
T
V
A
L
U
E
0
6
"
S
P
T
V
A
L
U
E
6
"
S
P
T
V
A
L
U
E
STRATIGRAPHIC DESCRIPTION
W
A
T
E
R
L
E
V
E
L
PIEZOMETER DATA
281.90 Casing Elev.
Grout1
Anson Solid Waste Management
Polkton, NC (Permit # 04-03)
278.50 Ground Elev.
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
$33(1',;
*HRWHFKQLFDO/DERUDWRU\'DWD
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
$33(1',;
6OXJ7HVW3HUPHDELOLW\&DOFXODWLRQV
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
$33(1',;
6XSSOHPHQWDO'DWD
26
2
26
4
26
6
26
8
27
0
27
2
27
4
27
6
27
8
28
0
28
2
28
4
28
6
28
8
29
0
29
2
29
4
29
6
29
8
30
0
30
2
30
4
30
6
30
8
1
/
2
4
/
0
1
7
/
2
3
/
0
1
1
/
1
9
/
0
2
7
/
1
8
/
0
2
1
/
1
4
/
0
3
7
/
1
3
/
0
3
1
/
9
/
0
4
7
/
7
/
0
4
1
/
3
/
0
5
7
/
2
/
0
5
1
2
/
2
9
/
0
5
6
/
2
7
/
0
6
1
2
/
2
4
/
0
6
6
/
2
2
/
0
7
G
r
o
u
n
d
w
a
t
e
r
E
l
e
v
a
t
i
o
n
(
f
t
.
)
Me
a
s
u
r
e
m
e
n
t
Da
t
e
Hi
s
t
o
r
i
c
a
l
Gr
o
u
n
d
w
a
t
e
r
El
e
v
a
t
i
o
n
s
vs
.
Ti
m
e
JA
N
20
0
1
Ͳ
OC
T
20
0
7
MW
Ͳ 4D
MW
Ͳ 4S
MW
Ͳ 5D
MW
Ͳ 5S
MW
Ͳ 2D
MW
Ͳ 2S
MW
Ͳ 8D
MW
Ͳ 8S
MW
Ͳ 1D
MW
Ͳ 3D
MW
Ͳ 3S
Re
s
p
o
n
s
e
to
Cl
i
m
a
t
i
c
An
o
m
a
l
y
Da
t
a
Ou
t
l
i
e
r
in
De
e
p
,
Pa
r
t
l
y
Co
n
f
i
n
e
d
Aq
u
i
f
e
r
Ma
x
Se
a
s
o
n
a
l
Hi
g
h
26
2
26
4
26
6
26
8
27
0
27
2
27
4
27
6
27
8
28
0
28
2
28
4
28
6
28
8
29
0
29
2
29
4
29
6
29
8
30
0
30
2
30
4
30
6
30
8
6
/
1
6
/
0
8
1
2
/
1
3
/
0
8
6
/
1
1
/
0
9
1
2
/
8
/
0
9
6
/
6
/
1
0
1
2
/
3
/
1
0
6
/
1
/
1
1
1
1
/
2
8
/
1
1
5
/
2
6
/
1
2
1
1
/
2
2
/
1
2
5
/
2
1
/
1
3
1
1
/
1
7
/
1
3
5
/
1
6
/
1
4
1
1
/
1
2
/
1
4
G
r
o
u
n
d
w
a
t
e
r
E
l
e
v
a
t
i
o
n
(
f
t
.
)
Me
a
s
u
r
e
m
e
n
t
Da
t
e
Hi
s
t
o
r
i
c
a
l
Gr
o
u
n
d
w
a
t
e
r
El
e
v
a
t
i
o
n
s
vs
.
Ti
m
e
JU
N
20
0
8
Ͳ
AP
R
20
1
5
MW
Ͳ 4D
MW
Ͳ 4S
MW
Ͳ 5D
MW
Ͳ 5S
MW
Ͳ 2D
MW
Ͳ 2S
MW
Ͳ 8D
MW
Ͳ 8S
MW
Ͳ 1D
MW
Ͳ 3D
MW
Ͳ 3S
Hi
g
h
Wa
t
e
r
Le
v
e
l
s
in
Re
s
p
o
n
s
e
to
Gr
o
u
n
d
Di
s
t
u
r
b
a
n
c
e
s
Ta
b
l
e
3
A
Su
p
p
l
e
m
e
n
t
a
l
H
y
d
r
o
g
e
o
l
o
g
i
c
P
r
o
p
e
r
t
i
e
s
o
f
L
i
t
h
o
l
o
g
i
c
U
n
i
t
Pi
e
z
o
m
e
t
e
r
Hy
d
r
o
g
e
o
l
o
g
i
c Hy
d
r
o
g
e
o
l
o
g
i
c
a
l
A ve
r
a
g
e
R
Q
D
E
f
f
e
c
t
i
v
e
T
o
t
a
l
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
(
k
Nu
m
b
e
r
U
n
i
t
De
s
c
r
i
p
t
i
o
n
(1
)
fo
r
S
c
r
e
e
n
I
n
t
e
r
v
a
l
Po
r
o
s
i
t
y
(2
,
3
)
Po
r
o
s
i
t
y
(2
,
3
)
ft
/
m
i
n
f
t
/
d
a
y
c
m
/
s
e
c
PH
2
-
3
3
1
/
2
S
a
n
d
y
S
i
l
t
/
P
W
R
NA
12
%
4
5
%
7
.
7
4
E
-
0
4
1
.
1
1
E
+
0
0
3
.
9
3
E
-
0
4
PH
2
-
1
8
2
PW
R
-
S
a
n
d
y
S
i
l
t
NA
15
%
4
0
%
8
.
9
5
E
-
0
4
1
.
2
9
E
+
0
0
4
.
5
5
E
-
0
4
PH
2
-
2
4
B
2
PW
R
-
S
a
n
d
y
S
i
l
t
NA
14
%
4
0
%
6
.
8
1
E
-
0
4
9
.
8
0
E
-
0
1
3
.
4
6
E
-
0
4
PH
2
-
2
5
2
PW
R
-
S
a
n
d
y
S
i
l
t
NA
15
%
4
0
%
7
.
7
1
E
-
0
4
1
.
1
1
E
+
0
0
3
.
9
2
E
-
0
4
PH
2
-
2
6
A
2
P
W
R
-
S
i
l
t
y
S
a
n
d
,
S
a
n
d
y
S
i
l
t
NA
15
%
4
0
%
1
.
0
5
E
-
0
3
1
.
5
2
E
+
0
0
5
.
3
6
E
-
0
4
PH
2
-
2
6
B
2
PW
R
-
S
a
n
d
y
S
i
l
t
NA
11
%
4
0
%
9
.
4
5
E
-
0
4
1
.
3
6
E
+
0
0
4
.
8
0
E
-
0
4
PH
2
-
2
8
A
2
P
W
R
-
S
i
l
t
y
S
a
n
d
,
S
a
n
d
y
S
i
l
t
NA
15
%
4
0
%
1
.
0
6
E
-
0
3
1
.
5
3
E
+
0
0
5
.
3
8
E
-
0
4
PH
2
-
2
8
B
2
P
W
R
-
S
i
l
t
y
S
a
n
d
,
S
a
n
d
y
S
i
l
t
NA
15
%
4
0
%
9
.
1
8
E
-
0
4
1
.
3
2
E
+
0
0
4
.
6
7
E
-
0
4
PH
2
-
3
0
2
PW
R
-
S
a
n
d
y
S
i
l
t
NA
25
%
4
0
%
9
.
0
5
E
-
0
4
1
.
3
0
E
+
0
0
4
.
6
0
E
-
0
4
PH
2
-
3
1
2
P
W
R
-
S
i
l
t
y
S
a
n
d
,
S
a
n
d
y
S
i
l
t
NA
15
%
4
0
%
1
.
0
2
E
-
0
3
1
.
4
7
E
+
0
0
5
.
1
8
E
-
0
4
PH
2
-
3
2
2
PW
R
-
S
a
n
d
y
S
i
l
t
NA
21
%
4
0
%
8
.
9
4
E
-
0
4
1
.
2
9
E
+
0
0
4
.
5
4
E
-
0
4
PH
2
-
3
4
2
PW
R
-
S
a
n
d
y
S
i
l
t
NA
15
%
4
0
%
9
.
0
4
E
-
0
4
1
.
3
0
E
+
0
0
4
.
5
9
E
-
0
4
PH
2
-
2
4
A
3
Fr
a
c
t
u
r
e
d
B
e
d
r
o
c
k
(4
)
82
.
9
%
5%
1
0
%
1
.
1
0
E
-
0
3
1
.
5
8
E
+
0
0
5
.
5
7
E
-
0
4
MW
-
1
6
-
D
B
3
Fr
a
c
t
u
r
e
d
B
e
d
r
o
c
k
(5
)
8.23E-01
2
.
9
0
E
-
0
4
MW
-
1
7
-
S
B
3
Fr
a
c
t
u
r
e
d
B
e
d
r
o
c
k
(5
)
4.75E+00
1
.
6
8
E
-
0
3
MW
-
3
4
-
S
B
3
Fr
a
c
t
u
r
e
d
B
e
d
r
o
c
k
(5
)
1.33E+00
4
.
6
8
E
-
0
4
No
t
e
s
(
1
)
U
n
i
t
1
-
p
r
e
d
o
m
i
n
a
n
t
l
y
s
a
n
d
y
s
i
l
t
,
v
a
r
i
a
b
l
y
s
a
n
d
y
a
n
d
c
l
a
y
e
y
,
o
v
e
r
l
a
i
n
i
n
s
o
m
e
a
r
e
a
s
b
y
s
a
n
d
y
c
l
a
y
(
S
P
T
g
e
n
e
r
a
l
l
y
<
5
0
b
Un
i
t
2
-
D
e
n
s
e
s
a
p
r
o
l
i
t
e
-
p
r
e
d
o
m
i
n
a
n
t
l
y
s
a
n
d
y
s
i
l
t
a
n
d
s
i
l
t
y
s
a
n
d
(
g
e
n
e
r
a
l
l
y
w
i
t
h
S
P
T
v
a
l
u
e
s
i
n
e
x
c
e
s
s
o
f
1
0
0
b
p
Un
i
t
3
-
C
o
n
s
o
l
i
d
a
t
e
d
,
f
r
a
c
t
u
r
e
d
r
o
c
k
(
v
a
r
i
a
b
l
y
w
e
a
t
h
e
r
e
d
)
,
s
i
l
t
s
t
o
n
e
a
n
d
s
a
n
d
s
t
o
n
(2
)
T
o
t
a
l
a
n
d
E
f
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
v
a
l
u
e
s
f
o
r
s
o
i
l
s
b
a
s
e
d
o
n
l
a
b
o
r
a
t
o
r
y
t
e
s
t
i
n
g
(
s
e
e
T
a
b
l
e
2
)
,
r
e
f
.
S
i
n
h
a
l
a
n
d
G
u
p
t
a
,
1
9
9
(3
)
To
t
a
l
a
n
d
E
f
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
v
a
l
u
e
s
f
o
r
b
e
d
r
o
c
k
a
d
j
u
s
t
e
d
f
o
r
a
v
g
.
r
o
c
k
c
o
r
e
R
Q
D
v
a
l
u
e
s
,
r
e
f
.
S
i
n
h
a
l
a
n
d
G
u
p
t
a
,
1
9
9
(4
)
Sl
u
g
t
e
s
t
s
p
e
r
f
o
r
m
e
d
b
y
E
S
P
A
s
s
o
c
i
a
t
e
s
,
c
a
.
2
0
0
3
-
p
i
e
z
o
m
e
t
e
r
s
c
r
e
e
n
u
s
e
d
(5
)
Pa
c
k
e
r
T
e
s
t
s
p
e
r
f
o
r
m
e
d
b
y
G
Z
A
E
n
v
i
r
o
n
m
e
n
t
a
l
,
c
a
.
1
9
9
2
-
o
p
e
n
b
o
r
e
h
o
l
e
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
6/30/2015
Ta
b
l
e
5
A
Su
p
p
l
e
m
e
n
t
a
l
V
e
r
t
i
c
a
l
G
r
o
u
n
d
W
a
t
e
r
G
r
a
d
i
e
n
t
C
a
l
c
u
l
a
t
i
o
n
s
Da
t
a
P
r
e
s
e
n
t
e
d
f
o
r
S
e
l
e
c
t
e
d
D
a
t
e
s
o
f
G
r
o
u
n
d
W
a
t
e
r
O
b
s
e
r
v
a
t
i
o
n
Ne
s
t
e
d
P
i
e
z
o
m
e
t
e
r
s
:
P
H
2
-
2
4
A
U
n
i
t
3
-
F
r
a
c
t
u
r
e
d
R
o
c
k
A
q
u
i
f
e
r
PH
2
-
2
4
B
U
n
i
t
2
-
P
W
R
;
D
e
n
s
e
S
a
p
r
o
l
i
t
e
-
S
a
n
d
y
S
i
l
t
A
q
u
i
f
e
r
Pie
z
o
m
e
t
e
r
T
o
p
o
f
B
o
t
t
o
m
o
f
1
2
/
5
/
0
3
1
2
/
9
/
0
3
1
2
/
1
6
/
0
3
1
2
/
1
8
/
0
3
1
2
/
2
4
/
0
3
1
/
2
/
0
4
1
/
1
2
/
0
4
2
/
1
0
/
0
4
2
/
2
5
/
0
4
3
/
3
0
/
0
4
5
/
1
8
/
0
4
6
/
1
4
/
0
4
7
/
8
/
0
4
8
/
1
3
/
0
4
9
/
1
6/04
9
/
1
2
/
0
7
No
.
S
c
r
e
e
n
E
l
e
v
.
S
c
r
e
e
n
E
l
e
v
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
PH
2
-
2
4
B
2
9
2
.
9
0
2
8
2
.
9
0
2
9
5
.
7
1
2
9
6
.
2
1
2
9
6
.
1
3
2
9
7
.
1
6
2
9
6
.
2
1
2
9
5
.
9
9
2
9
5
.
9
0
2
9
5
.
1
2
2
9
5
.
6
5
2
9
7
.
6
0
2
9
7
.
7
6
2
9
7
.
0
3
2
9
6
.
2
0
2
9
5
.
2
2
2
9
4
.
9
9
2
9
4
.
9
8
PH
2
-
2
4
A
2
7
7
.
7
6
2
6
7
.
7
6
2
9
6
.
1
9
2
9
5
.
2
4
2
9
5
.
1
2
2
9
5
.
2
1
2
9
5
.
2
4
2
9
5
.
0
1
2
9
5
.
7
6
2
9
4
.
9
8
2
9
5
.
4
7
2
9
7
.
3
6
2
9
7
.
5
1
2
9
6
.
8
4
2
9
6
.
0
5
2
9
5
.
1
2
2
9
4
.
7
6
2
9
4
.
9
3
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
u
p
p
e
r
28
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
0
2
8
7
.
9
2
8
7
.
9
2
8
7
.
9
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
l
o
w
e
r
27
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2
.
7
6
2
7
2.76
de
l
t
a
-
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
15
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
1
5
.
1
4
de
l
t
a
-
W
.
T
.
E
.
(
s
e
e
n
o
t
e
1
)
-4
.
8
0
E
-
0
1
9
.
7
0
E
-
0
1
1
.
0
1
E
+
0
0
1
.
9
5
E
+
0
0
9
.
7
0
E
-
0
1
9
.
8
0
E
-
0
1
1
.
4
0
E
-
0
1
1
.
4
0
E
-
0
1
1
.
8
0
E
-
0
1
2
.
4
0
E
-
0
1
2
.
5
0
E
-
0
1
1
.
9
0
E
-
0
1
1
.
5
0
E
-01
1
.
0
0
E
-
0
1
2
.
3
0
E
-
0
1
5
.
0
0
E
-
0
2
Ve
r
t
i
c
a
l
G
r
a
d
i
e
n
t
(
s
e
e
n
o
t
e
2
)
-3
.
1
7
E
-
0
2
6
.
4
1
E
-
0
2
6
.
6
7
E
-
0
2
1
.
2
9
E
-
0
1
6
.
4
1
E
-
0
2
6
.
4
7
E
-
0
2
9
.
2
5
E
-
0
3
9
.
2
5
E
-
0
3
1
.
1
9
E
-
0
2
1
.
5
9
E
-
0
2
1
.
6
5
E
-
0
2
1
.
2
5
E
-
0
2
9.91E-03
6
.
6
1
E
-
0
3
1
.
5
2
E
-
0
2
3
.
3
0
E
-
0
3
Up
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
Ne
s
t
e
d
P
i
e
z
o
m
e
t
e
r
s
:
P
H
2
-
2
6
A
U
n
i
t
2
-
P
W
R
;
D
e
n
s
e
S
a
p
r
o
l
i
t
e
-
S
a
n
d
y
S
i
l
t
A
q
u
i
f
e
r
PH
2
-
2
6
B
U
n
i
t
2
-
P
W
R
;
D
e
n
s
e
S
a
p
r
o
l
i
t
e
-
S
a
n
d
y
S
i
l
t
A
q
u
i
f
e
r
Pie
z
o
m
e
t
e
r
T
o
p
o
f
B
o
t
t
o
m
o
f
1
2
/
5
/
0
3
1
2
/
9
/
0
3
1
2
/
1
6
/
0
3
1
2
/
1
8
/
0
3
1
2
/
2
4
/
0
3
1
/
2
/
0
4
1
/
1
2
/
0
4
2
/
1
0
/
0
4
2
/
2
5
/
0
4
3
/
3
0
/
0
4
5
/
1
8
/
0
4
6
/
1
4
/
0
4
7
/
8
/
0
4
8
/
1
3
/
0
4
9
/
1
6/04
9
/
1
2
/
0
7
No
.
S
c
r
e
e
n
E
l
e
v
.
S
c
r
e
e
n
E
l
e
v
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
PH
2
-
2
6
B
2
6
2
.
9
4
2
5
2
.
9
4
2
8
3
.
8
9
2
8
5
.
6
1
2
8
5
.
6
6
2
8
5
.
8
9
2
8
5
.
8
6
2
8
2
.
3
0
2
8
2
.
3
1
2
8
1
.
9
4
2
8
2
.
9
0
2
8
4
.
0
1
2
8
4
.
0
1
2
8
2
.
9
9
2
8
2
.
8
6
2
8
1
.
7
3
2
8
1
.
4
8
2
8
0
.
4
0
PH
2
-
2
6
A
2
3
4
.
1
2
2
2
4
.
1
2
2
8
2
.
3
5
2
8
2
.
3
1
2
8
2
.
4
1
2
8
2
.
5
6
2
8
2
.
5
4
2
8
2
.
2
6
2
8
2
.
2
7
2
8
1
.
9
1
2
8
2
.
8
4
2
8
3
.
9
9
2
8
4
.
0
3
2
8
3
.
0
1
2
8
2
.
8
8
2
8
1
.
7
6
2
8
1
.
4
3
2
8
0
.
4
4
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
u
p
p
e
r
25
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.
9
4
2
5
7
.94
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
l
o
w
e
r
22
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9
.
1
2
2
2
9.12
de
l
t
a
-
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
28
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
2
8
.
8
2
de
l
t
a
-
W
.
T
.
E
.
(
s
e
e
n
o
t
e
1
)
1.
5
4
E
+
0
0
3
.
3
0
E
+
0
0
3
.
2
5
E
+
0
0
3
.
3
3
E
+
0
0
3
.
3
2
E
+
0
0
4
.
0
0
E
-
0
2
4
.
0
0
E
-
0
2
3
.
0
0
E
-
0
2
6
.
0
0
E
-
0
2
2
.
0
0
E
-
0
2
-
2
.
0
0
E
-
0
2
-
2
.
0
0
E
-
0
2
-
2
.
0
0E-02
-
3
.
0
0
E
-
0
2
5
.
0
0
E
-
0
2
-
4
.
0
0
E
-
0
2
Ve
r
t
i
c
a
l
G
r
a
d
i
e
n
t
(
s
e
e
n
o
t
e
2
)
5.
3
4
E
-
0
2
1
.
1
5
E
-
0
1
1
.
1
3
E
-
0
1
1
.
1
6
E
-
0
1
1
.
1
5
E
-
0
1
1
.
3
9
E
-
0
3
1
.
3
9
E
-
0
3
1
.
0
4
E
-
0
3
2
.
0
8
E
-
0
3
6
.
9
4
E
-
0
4
-
6
.
9
4
E
-
0
4
-
6
.
9
4
E
-
0
4
-
6
.
9
4
E
-
0
4
-
1
.
0
4
E
-
0
3
1
.
7
3
E
-
0
3
-
1
.
3
9
E
-
0
3
Do
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
U
p
U
p
U
p
U
p
D
o
w
n
U
p
Ne
s
t
e
d
P
i
e
z
o
m
e
t
e
r
s
:
P
H
2
-
2
8
A
U
n
i
t
2
-
P
W
R
;
D
e
n
s
e
S
a
p
r
o
l
i
t
e
-
S
a
n
d
y
S
i
l
t
A
q
u
i
f
e
r
PH
2
-
2
8
B
U
n
i
t
2
-
P
W
R
;
D
e
n
s
e
S
a
p
r
o
l
i
t
e
-
S
a
n
d
y
S
i
l
t
A
q
u
i
f
e
r
Pie
z
o
m
e
t
e
r
T
o
p
o
f
B
o
t
t
o
m
o
f
12
/
9
/
0
3
1
2
/
1
6
/
0
3
1
2
/
1
8
/
0
3
1
2
/
2
4
/
0
3
1
/
2
/
0
4
1
/
1
2
/
0
4
2
/
1
0
/
0
4
2
/
2
5
/
0
4
3
/
3
0
/
0
4
5
/
1
8
/
0
4
6
/
1
4
/
0
4
7
/
8
/
0
4
8
/
1
3
/
0
4
9
/
1
6
/
0
4
9
/
1
2/07
No
.
S
c
r
e
e
n
E
l
e
v
.
S
c
r
e
e
n
E
l
e
v
.
W.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
PH
2
-
2
8
B
2
4
9
.
2
6
2
3
9
.
2
6
26
2
.
9
4
2
6
3
.
4
6
2
6
3
.
6
9
2
6
3
.
7
9
2
6
4
.
2
9
2
6
4
.
3
7
2
6
4
.
1
9
2
6
5
.
0
5
2
6
7
.
5
6
2
6
6
.
9
4
2
6
5
.
8
7
2
6
5
.
8
0
2
6
4
.
7
9
2
6
4
.
1
4
2
6
4
.
3
5
PH
2
-
2
8
A
2
1
5
.
7
6
2
0
5
.
7
6
26
0
.
5
7
2
7
0
.
8
1
2
7
1
.
2
7
2
7
1
.
0
1
2
7
0
.
9
3
2
6
8
.
5
8
2
6
8
.
3
5
2
6
9
.
7
3
2
7
0
.
6
6
2
7
1
.
0
1
2
6
9
.
8
1
2
6
9
.
8
4
2
6
8
.
8
1
2
6
8
.
3
1
2
6
8
.
7
8
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
u
p
p
e
r
24
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
2
4
4
.
2
6
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
l
o
w
e
r
21
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
2
1
0
.
7
6
de
l
t
a
-
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
33
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
0
3
3
.
5
3
3
.
5
de
l
t
a
-
W
.
T
.
E
.
(
s
e
e
n
o
t
e
1
)
2.
3
7
E
+
0
0
-
7
.
3
5
E
+
0
0
-
7
.
5
8
E
+
0
0
-
7
.
2
2
E
+
0
0
-
6
.
6
4
E
+
0
0
-
4
.
2
1
E
+
0
0
-
4
.
1
6
E
+
0
0
-
4
.
6
8
E
+
0
0
-
3
.
1
0
E
+
0
0
-
4
.
0
7
E
+
0
0
-
3
.
9
4
E
+
0
0
-
4
.
0
4E+00
-
4
.
0
2
E
+
0
0
-
4
.
1
7
E
+
0
0
-
4
.
4
3
E
+
0
0
Ve
r
t
i
c
a
l
G
r
a
d
i
e
n
t
(
s
e
e
n
o
t
e
2
)
7.
0
7
E
-
0
2
-
2
.
1
9
E
-
0
1
-
2
.
2
6
E
-
0
1
-
2
.
1
6
E
-
0
1
-
1
.
9
8
E
-
0
1
-
1
.
2
6
E
-
0
1
-
1
.
2
4
E
-
0
1
-
1
.
4
0
E
-
0
1
-
9
.
2
5
E
-
0
2
-
1
.
2
1
E
-
0
1
-
1
.
1
8
E
-
0
1
-
1
.
2
1
E
-
0
1
-
1
.
2
0
E
-
0
1
-
1
.
2
4
E
-
0
1
-
1
.
3
2
E
-
0
1
Do
w
n
U
p
U
p
U
p
U
p
U
p
U
p
U
p
U
p
U
p
U
p
U
p
U
p
U
p
U
p
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
6/30/2015
Ta
b
l
e
5
A
Su
p
p
l
e
m
e
n
t
a
l
V
e
r
t
i
c
a
l
G
r
o
u
n
d
W
a
t
e
r
G
r
a
d
i
e
n
t
C
a
l
c
u
l
a
t
i
o
n
s
Ne
s
t
e
d
P
i
e
z
o
m
e
t
e
r
s
:
M
W
-
4
D
U
n
i
t
3
-
B
e
d
r
o
c
k
(
T
r
i
a
s
s
i
c
)
MW
-
4
S
U
n
i
t
1
-
S
a
n
d
y
,
C
l
a
y
e
y
S
i
l
t
Pie
z
o
m
e
t
e
r
T
o
p
o
f
B
o
t
t
o
m
o
f
1/
2
4
/
0
1
6
/
2
5
/
0
1
1
1
/
1
/
0
1
5
/
6
/
0
2
7
/
9
/
0
2
5
/
5
/
0
3
1
0
/
2
7
/
0
3
5
/
1
/
0
4
1
0
/
3
1
/
0
4
5
/
1
/
0
5
1
0
/
3
1
/
0
5
5
/
1
/
0
6
1
1
/
1
/
0
6
5
/
1
/
0
7
1
0
/
1
/
0
7
No
.
S
c
r
e
e
n
E
l
e
v
.
S
c
r
e
e
n
E
l
e
v
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
MW
-
4
D
2
4
1
.
1
0
2
3
1
.
1
0
2
7
5
.
6
4
2
7
6
.
3
4
2
7
4
.
4
6
2
7
5
.
6
8
2
8
0
.
9
2
2
7
9
.
6
1
2
7
9
.
9
7
2
7
9
.
6
8
2
8
0
.
9
9
2
7
9
.
2
0
2
8
0
.
4
5
2
7
8
.
9
1
2
8
0
.
3
1
MW
-
4
S
2
7
2
.
2
0
2
6
2
.
2
0
2
7
6
.
1
3
2
7
5
.
6
7
2
7
4
.
7
2
2
7
5
.
7
9
2
8
1
.
2
1
2
7
9
.
9
1
2
8
0
.
2
6
2
7
9
.
8
4
2
8
1
.
3
6
2
7
9
.
5
9
2
8
0
.
8
6
2
7
9
.
3
6
2
8
0
.
5
0
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
u
p
p
e
r
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
0
2
3
6
.
1
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
l
o
w
e
r
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
0
2
6
7
.
2
de
l
t
a
-
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
0
-
3
1
.
1
de
l
t
a
-
W
.
T
.
E
.
(
s
e
e
n
o
t
e
1
)
-
4
.
9
0
E
-
0
1
6
.
7
0
E
-
0
1
-
2
.
6
0
E
-
0
1
-
1
.
1
0
E
-
0
1
-
2
.
9
0
E
-
0
1
-
3
.
0
0
E
-
0
1
-
2
.
9
0
E
-
0
1
-
1
.
6
0
E
-
0
1
-
3
.
7
0
E
-
0
1
-
3
.
9
0
E
-
0
1
-
4
.
1
0
E
-
0
1
-
4
.
5
0E-01
-
1
.
9
0
E
-
0
1
Ve
r
t
i
c
a
l
G
r
a
d
i
e
n
t
(
s
e
e
n
o
t
e
2
)
1
.
5
8
E
-
0
2
-
2
.
1
5
E
-
0
2
8
.
3
6
E
-
0
3
3
.
5
4
E
-
0
3
9
.
3
2
E
-
0
3
9
.
6
5
E
-
0
3
9
.
3
2
E
-
0
3
5
.
1
4
E
-
0
3
1
.
1
9
E
-
0
2
1
.
2
5
E
-
0
2
1
.
3
2
E
-
0
2
1
.
4
5
E
-
0
2
6.11E-03
Do
w
n
U
p
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
Ne
s
t
e
d
P
i
e
z
o
m
e
t
e
r
s
:
M
W
-
5
D
2
,
3
-
T
r
i
a
s
s
i
c
MW
-
5
S
1
,
2
-
T
r
i
a
s
s
i
c
Pie
z
o
m
e
t
e
r
T
o
p
o
f
B
o
t
t
o
m
o
f
1/
2
4
/
0
1
6
/
2
5
/
0
1
1
1
/
1
/
0
1
5
/
6
/
0
2
7
/
9
/
0
2
5
/
5
/
0
3
1
0
/
2
7
/
0
3
5
/
1
/
0
4
1
0
/
3
1
/
0
4
5
/
1
/
0
5
1
0
/
3
1
/
0
5
5
/
1
/
0
6
1
1
/
1
/
0
6
5
/
1
/
0
7
1
0
/
1
/
0
7
No
.
S
c
r
e
e
n
E
l
e
v
.
S
c
r
e
e
n
E
l
e
v
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
W
.
T
.
E
.
MW
-
5
D
2
4
2
.
0
0
2
3
2
.
0
0
2
6
4
.
6
7
2
6
4
.
3
9
2
6
5
.
9
6
2
6
9
.
1
9
2
7
4
.
6
2
2
7
1
.
9
0
2
7
4
.
1
0
2
7
2
.
3
8
2
7
4
.
4
4
2
7
1
.
4
1
2
7
3
.
8
1
2
7
0
.
7
3
2
7
2
.
7
0
MW
-
5
S
2
6
3
.
8
0
2
4
8
.
8
0
2
6
4
.
3
7
2
6
3
.
8
0
2
6
5
.
6
5
2
6
9
.
0
3
2
7
4
.
4
4
2
7
1
.
6
4
2
7
3
.
9
9
2
7
2
.
2
9
2
7
4
.
4
5
2
7
1
.
2
9
2
7
4
.
3
4
2
7
0
.
6
7
2
7
2
.
5
0
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
u
p
p
e
r
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
.
0
0
2
3
7
mid
p
o
i
n
t
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
l
o
w
e
r
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
0
2
5
6
.
3
de
l
t
a
-
s
a
t
u
r
a
t
e
d
i
n
t
e
r
v
a
l
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
0
-
1
9
.
3
de
l
t
a
-
W
.
T
.
E
.
(
s
e
e
n
o
t
e
1
)
3
.
0
0
E
-
0
1
5
.
9
0
E
-
0
1
3
.
1
0
E
-
0
1
1
.
6
0
E
-
0
1
1
.
8
0
E
-
0
1
2
.
6
0
E
-
0
1
1
.
1
0
E
-
0
1
9
.
0
0
E
-
0
2
-
1
.
0
0
E
-
0
2
1
.
2
0
E
-
0
1
-
5
.
3
0
E
-
0
1
6
.
0
0
E
-
0
2
2
.
0
0
E-01
Ve
r
t
i
c
a
l
G
r
a
d
i
e
n
t
(
s
e
e
n
o
t
e
2
)
-
1
.
5
5
E
-
0
2
-
3
.
0
6
E
-
0
2
-
1
.
6
1
E
-
0
2
-
8
.
2
9
E
-
0
3
-
9
.
3
3
E
-
0
3
-
1
.
3
5
E
-
0
2
-
5
.
7
0
E
-
0
3
-
4
.
6
6
E
-
0
3
5
.
1
8
E
-
0
4
-
6
.
2
2
E
-
0
3
2
.
7
5
E
-
0
2
-3.11E-03
-
1
.
0
4
E
-
0
2
Up
U
p
U
p
U
p
U
p
U
p
U
p
U
p
D
o
w
n
U
p
D
o
w
n
U
p
U
p
Do
w
n
D
o
w
n
D
o
w
n
U
p
D
o
w
n
D
o
w
n
U
p
D
o
w
n
D
o
w
n
D
o
w
n
D
o
w
n
No
t
e
s
t
o
A
b
o
v
e
:
1
d
e
l
t
a
-
W
.
T
.
E
.
=
d
i
f
f
e
r
e
n
c
e
i
n
w
a
t
e
r
l
e
v
e
l
(
s
h
a
l
l
o
w
w
e
l
l
m
i
n
u
s
d
e
e
p
w
e
l
l
)
2
V
e
r
t
i
c
a
l
G
r
a
d
i
e
n
t
=
d
e
l
t
a
-
W
.
T
.
E
.
/
d
e
l
t
a
-
S
a
t
u
r
a
t
e
d
I
n
t
e
r
v
a
l
3
N
e
g
a
t
i
v
e
v
e
r
t
i
c
a
l
g
r
a
d
i
e
n
t
s
a
r
e
u
p
w
a
r
d
,
p
o
s
i
t
i
v
e
g
r
a
d
i
e
n
t
s
a
r
e
d
o
w
n
w
a
r
d
4
W
e
l
l
s
d
e
n
o
t
e
d
w
i
t
h
"
A
"
a
r
e
d
e
e
p
w
e
l
l
s
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
6/30/2015
Ta
b
l
e
2
A
Su
p
p
l
e
m
e
n
t
a
l
G
e
o
t
e
c
h
n
i
c
a
l
L
a
b
o
r
a
t
o
r
y
D
a
t
a
Gr
a
i
n
S
i
z
e
D
i
s
t
r
i
b
u
t
i
o
n
a
n
d
S
o
i
l
C
l
a
s
s
i
f
i
c
a
t
i
o
n
Bo
r
i
n
g
S
a
m
p
l
e
S
a
m
p
l
e
%
G
r
a
v
e
l
%
S
a
n
d
%
F
i
n
e
s
*
%
S
i
l
t
%
C
l
a
y
Liq
u
i
d
P
l
a
s
t
i
c
i
t
y
E
f
f
e
c
t
i
v
e
U
S
C
S
Hydrogeologi c
Nu
m
b
e
r
ID
D
e
p
t
h
,
f
t
.
>
4
.
5
m
m
4
.
5
-
-
0
.
0
7
5
m
m
0
.
0
7
5
m
m
>
0
.
0
7
5
-
-
0
.
0
0
5
m
m
0
.
0
0
5
m
m
>
L
i
m
i
t
I
n
d
e
x
Po
r
o
s
i
t
y
C
l
a
s
s
Description **
PH
2
-
2
4
B
S
-
8
3
3
.
5
0
.
0
18
.
4
81
.
6
74
.
2
7.
4
--
-
-
-
-
1
4
%
M
L
S
a
n
d
y
s
i
l
t
(
1
0
0
+
b
p
f
,
A
r
g
i
l
l
i
t
e
)
PH
2
-
2
6
B
S
-
6
2
8
.
5
0
.
0
3.
3
96
.
7
84
.
9
11
.
8
3
5
1
8
1
1
%
M
L
Silt (100+ bpf, Argillite)
PH
2
-
2
6
B
S
-
7
3
3
.
5
0
.
0
22
.
2
77
.
8
71
.
3
6.
5
--
-
-
-
-
1
6
%
M
L
S
a
n
d
y
s
i
l
t
(
1
0
0
+
b
p
f
,
A
r
g
i
l
l
i
t
e
)
PH
2
-
3
0
S
-
6
2
3
0
.
8
58
.
7
40
.
5
36
.
1
4.
4
--
-
-
-
-
2
5
%
S
M
S
i
l
t
y
s
a
n
d
(
1
0
0
+
b
p
f
,
T
r
i
a
s
s
i
c
)
PH
2
-
3
2
U
D
-
2
(
i
)
3
3
.
5
0
.
7
40
.
2
59
.
1
53
.
5
5.
6
--
-
-
-
-
2
1
%
S
M
-
M
L
S
i
l
t
a
n
d
s
a
n
d
(
1
0
0
+
b
p
f
,
A
r
g
i
l
l
i
t
e
)
PH
2
-
3
4
U
D
-
2
(
i
i
)
4
3
.
5
0
.
0
14
.
3
85
.
7
75
.
8
9.
9
--
-
-
-
-
1
6
%
M
L
S
l
.
S
a
n
d
y
s
i
l
t
(
1
0
0
+
b
p
f
,
A
r
g
i
l
l
i
t
e
)
No
t
e
s
t
o
A
b
o
v
e
:
M
o
i
s
t
u
r
e
c
o
n
t
e
n
t
s
a
r
e
D
r
y
U
n
i
t
W
e
i
g
h
t
b
a
s
e
d
Ef
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
v
a
l
u
e
s
c
a
l
c
u
l
a
t
e
d
f
r
o
m
T
e
x
t
u
r
a
l
C
l
a
s
s
i
f
i
c
a
t
i
o
n
T
r
i
a
n
g
l
e
m
e
t
h
o
d
r
e
f
e
r
e
n
c
e
d
t
o
A
.
I
.
J
o
h
n
s
o
n
,
U
S
G
e
o
l
o
g
i
c
a
l
S
u
r
v
e
y
W
a
t
e
r
S
u
p
p
l
y
P
a
p
e
r
1
6
6
2
-
D
,
1
9
6
7
*R
e
p
r
e
s
e
n
t
s (a
f
t
e
r
C
.
W
.
F
e
t
t
e
r
,
A
p
p
l
i
e
d
H
y
d
r
o
g
e
o
l
o
g
y
,
3
r
d
e
d
.
1
9
8
8
)
**
B
a
s
e
d
o
n
l
a
b
o
r
a
t
o
r
y
g
r
a
i
n
s
i
z
e
a
n
a
l
y
s
i
s
Mo
i
s
t
u
r
e
d
a
t
a
f
o
r
b
u
l
k
s
a
m
p
l
e
s
a
c
q
u
i
r
e
d
f
r
o
m
i
n
d
i
v
i
d
u
a
l
j
a
r
s
a
m
p
l
e
s
c
o
l
l
e
c
t
e
d
w
i
t
h
t
h
e
b
u
l
k
s
a
m
p
l
e
.
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
De
s
i
g
n
Hy
d
r
o
g
e
o
l
g
i
c
St
u
d
y
6/30/2015
Ta
b
l
e
6
A
Su
p
p
l
e
m
e
n
t
a
l
H
o
r
i
z
o
n
t
a
l
G
r
o
u
n
d
W
a
t
e
r
G
r
a
d
i
e
n
t
a
n
d
V
e
l
o
c
i
t
y
C
a
l
c
u
l
a
t
i
o
n
s
We
l
l
/
P
i
e
z
.
H
y
d
r
o
l
o
g
i
c
H
y
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
(
k
)
G
r
d
.
W
a
t
e
r
R
e
f
e
r
e
n
c
e
d
e
l
t
a
-
E
l
e
v
.
M
a
p
L
e
n
g
t
h
H
y
d
r
a
u
l
i
c
E
f
f
e
c
t
i
v
e
G
W
V
e
l
o
c
i
t
y
U
n
i
t
A
v
e
r
a
g
e
U
n
i
t
A
v
e
r
a
g
e
No
.
U
n
i
t
f
t
/
m
i
n
f
t
/
d
a
y
c
m
/
s
e
c
E
l
e
v
a
t
i
o
n
*
E
l
e
v
a
t
i
o
n
*
i
n
f
e
e
t
i
n
f
e
e
t
G
r
a
d
i
e
n
t
(
I
)
P
o
r
o
s
i
t
y
(
n
)
(
V
)
,
f
t
/
d
a
y
V elocity, ft/da y Velocity, ft/yr
PH
2
-
3
3
1
/
2
7
.
7
4
E
-
0
4
1
.
1
1
E
+
0
0
3
.
9
3
E
-
0
4
2
9
5
.
1
4
2
9
0
.
0
0
5
.
1
4
2
0
0
.
1
2
0
.
0
3
0
.
1
2
0
.
2
4
0
.
2
4
8
7
.
0
6
PH
2
-
1
8
2
8
.
9
5
E
-
0
4
1
.
2
9
E
+
0
0
4
.
5
5
E
-
0
4
2
9
3
.
7
4
2
9
0
.
0
0
3
.
7
4
4
0
.
8
6
0
.
0
9
0
.
1
5
0
.
7
9
PH
2
-
2
5
2
7
.
7
1
E
-
0
4
1
.
1
1
E
+
0
0
3
.
9
2
E
-
0
4
2
9
5
.
0
8
2
9
0
.
0
0
5
.
0
8
1
6
8
.
6
7
0
.
0
3
0
.
1
5
0
.
2
2
PH
2
-
2
6
A
2
1
.
0
5
E
-
0
3
1
.
5
2
E
+
0
0
5
.
3
6
E
-
0
4
2
8
0
.
4
4
2
7
5
.
0
0
5
.
4
4
1
1
9
.
9
1
0
.
0
5
0
.
1
5
0
.
4
6
PH
2
-
2
6
B
2
9
.
4
5
E
-
0
4
1
.
3
6
E
+
0
0
4
.
8
0
E
-
0
4
2
8
0
.
4
0
2
7
5
.
0
0
5
.
4
0
1
2
8
.
2
1
0
.
0
4
0
.
1
1
0
.
5
2
PH
2
-
2
8
A
2
1
.
0
6
E
-
0
3
1
.
5
3
E
+
0
0
5
.
3
8
E
-
0
4
2
6
8
.
7
8
2
6
0
.
0
0
8
.
7
8
2
5
7
.
3
5
0
.
0
3
0
.
1
5
0
.
3
5
PH
2
-
2
8
B
2
9
.
1
8
E
-
0
4
1
.
3
2
E
+
0
0
4
.
6
7
E
-
0
4
2
6
4
.
3
5
2
6
0
.
0
0
4
.
3
5
2
6
4
.
9
1
0
.
0
2
0
.
1
5
0
.
1
4
PH
2
-
3
0
2
9
.
0
5
E
-
0
4
1
.
3
0
E
+
0
0
4
.
6
0
E
-
0
4
2
6
2
.
7
4
2
6
0
.
0
0
2
.
7
4
2
1
1
.
8
5
0
.
0
1
0
.
2
5
0
.
0
7
PH
2
-
3
1
2
1
.
0
2
E
-
0
3
1
.
4
7
E
+
0
0
5
.
1
8
E
-
0
4
2
7
2
.
6
9
2
7
0
.
0
0
2
.
6
9
9
8
.
0
8
0
.
0
3
0
.
1
5
0
.
2
7
PH
2
-
3
2
2
8
.
9
4
E
-
0
4
1
.
2
9
E
+
0
0
4
.
5
4
E
-
0
4
2
7
7
.
5
8
2
7
5
.
0
0
2
.
5
8
1
0
3
.
8
0
.
0
2
0
.
2
1
0
.
1
5
0
.
1
3
4
7
.
1
1
PH
2
-
1
4
A
3
1
.
0
8
E
-
0
3
1
.
5
6
E
+
0
0
5
.
5
0
E
-
0
4
2
6
7
.
1
5
2
6
5
.
0
0
2
.
1
5
5
6
.
5
7
0
.
0
4
0
.
2
0
0
.
3
0
0
.
3
0
1
0
8
.
0
4
No
t
e
s
:
G
r
o
u
n
d
W
a
t
e
r
V
e
l
o
c
i
t
y
C
a
l
c
u
l
a
t
e
d
f
r
o
m
E
q
u
a
t
i
o
n
V=
K
I
/
n
w
h
e
r
e
K
=
H
y
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
u
n
i
t
s
o
f
f
t
/
d
a
y
I
=
H
y
d
r
a
u
l
i
c
G
r
a
d
i
e
n
t
i
n
u
n
i
t
s
o
f
f
t
/
f
t
n
=
E
f
f
e
c
t
i
v
e
P
o
r
o
s
i
t
y
(
u
n
i
t
l
e
s
s
)
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
v
a
l
u
e
s
f
r
o
m
a
q
u
i
f
e
r
s
l
u
g
t
e
s
t
i
n
g
u
s
i
n
g
t
h
e
B
o
u
w
e
r
-
R
i
c
e
m
e
t
h
o
d
;
c
o
n
d
u
c
t
e
d
b
y
E
S
P
p
e
r
s
o
n
n
e
l
Hy
d
r
a
u
l
i
c
G
r
a
d
i
e
n
t
v
a
l
u
e
s
w
e
r
e
c
a
l
c
u
l
a
t
e
d
f
r
o
m
t
h
e
p
o
t
e
n
t
i
o
m
e
t
r
i
c
s
u
r
f
a
c
e
m
a
p
(
S
h
e
e
t
4
)
Ef
f
e
c
t
i
v
e
P
o
r
o
s
i
t
y
v
a
l
u
e
s
f
o
r
s
o
i
l
s
w
e
r
e
d
e
r
i
v
e
d
f
r
o
m
T
a
b
l
e
3
Ef
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
v
a
l
u
e
s
f
o
r
b
e
d
r
o
c
k
w
e
r
e
d
e
r
i
v
e
d
f
r
o
m
D
r
i
s
c
o
l
l
,
G
r
o
u
n
d
w
a
t
e
r
a
n
d
W
e
l
l
s
,
1
9
8
6
(
p
g
.
6
7
)
,
Do
m
e
n
i
c
o
a
n
d
S
c
h
w
a
r
t
z
,
P
h
y
s
i
c
a
l
a
n
d
C
h
e
m
i
c
a
l
H
y
d
r
o
g
e
o
l
o
g
y
,
1
9
9
0
(
p
g
.
2
1
)
,
Fr
e
e
z
e
a
n
d
C
h
e
r
r
y
,
G
r
o
u
n
d
w
a
t
e
r
,
1
9
7
9
(
p
g
.
3
7
)
;
*G
r
o
u
n
d
w
a
t
e
r
e
l
e
v
a
t
i
o
n
s
a
n
d
p
o
t
e
n
t
i
o
m
e
t
r
i
c
s
u
r
f
a
c
e
s
f
o
r
r
e
f
e
r
e
n
c
e
e
l
e
v
a
t
i
o
n
s
d
e
r
i
v
e
d
f
r
o
m
w
a
t
e
r
l
e
v
e
l
o
b
s
e
r
v
a
t
i
o
n
s
m
a
d
e
9
/
1
2
/
2
00
7
An
s
o
n
Co
u
n
t
y
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
6/30/2015
Ta
b
l
e
1
A
Su
p
p
l
e
m
e
n
t
a
l
T
e
s
t
B
o
r
i
n
g
/
P
i
e
z
o
m
e
t
e
r
D
a
t
a
Bo
r
i
n
g
B
o
r
i
n
g
E
l
e
v
a
t
i
o
n
D
a
t
a
T
e
s
t
B
o
r
i
n
g
D
a
t
a
P
i
e
z
o
m
e
t
e
r
C
o
n
s
t
r
u
c
t
i
o
n
D
a
t
a
Nu
m
b
e
r
Da
t
e
P
V
C
P
i
p
e
G
r
o
u
n
d
S
t
i
c
k
u
p
T
o
t
a
l
B
o
t
t
o
m
P
W
R
P
W
R
R
e
f
u
s
a
l
R
e
f
u
s
a
l
T
o
p
o
f
P
i
e
z
.
S
c
r
e
e
n
B
o
t
t
o
m
o
f
P
i
e
z
.
S
c
r
e
e
n
Ele
v
.
E
l
e
v
.
f
e
e
t
D
e
p
t
h
,
f
t
.
E
l
e
v
a
t
i
o
n
D
e
p
t
h
,
f
t
.
E
l
e
v
a
t
i
o
n
D
e
p
t
h
,
f
t
.
E
l
e
v
a
t
i
o
n
D
e
p
t
h
,
f
t
.
E
l
e
v
.
D
e
p
t
h
,
f
t
.
E
l
e
v
.
PH
2
-
1
8
1
1
/
1
7
/
2
0
0
3
3
0
4
.
2
9
3
0
0
.
7
2
3
.
5
7
2
8
.
5
0
2
7
2
.
2
2
1
7
.
0
0
2
8
3
.
7
2
2
8
.
5
0
2
7
2
.
2
2
1
8
.
5
0
2
8
2
.
2
2
2
8
.
5
0
2
7
2
.
2
2
2
-
T
r
i
a
s
s
i
c
PH
2
-
2
4
A
©
1
1
/
1
8
/
2
0
0
3
3
2
4
.
6
1
3
2
1
.
2
6
3
.
3
5
5
3
.
5
0
2
6
7
.
7
6
2
7
.
0
0
2
9
4
.
2
6
4
3
.
5
0
2
7
7
.
7
6
4
3
.
5
0
2
7
7
.
7
6
5
3
.
5
0
2
6
7
.
7
6
3
-
A
r
g
i
l
l
i
t
e
PH
2
-
2
4
B
1
1
/
1
8
/
2
0
0
3
3
2
4
.
9
1
3
2
1
.
4
0
3
.
5
1
3
8
.
5
0
2
8
2
.
9
0
2
7
.
0
0
2
9
4
.
4
0
-
-
-
-
-
-
2
8
.
5
0
2
9
2
.
9
0
3
8
.
5
0
2
8
2
.
9
0
2
-
A
r
g
i
l
l
i
t
e
PH
2
-
2
5
1
1
/
2
0
/
2
0
0
3
3
1
8
.
6
3
3
1
5
.
5
3
3
.
1
0
3
7
.
5
0
2
7
8
.
0
3
2
7
.
0
0
2
8
8
.
5
3
3
7
.
5
0
2
7
8
.
0
3
2
7
.
5
0
2
8
8
.
0
3
3
7
.
5
0
2
7
8
.
0
3
1
-
A
r
g
i
l
l
i
t
e
PH
2
-
2
9
1
2
/
9
/
2
0
0
3
2
6
9
.
4
6
2
6
5
.
9
6
3
.
5
0
5
0
.
0
0
2
1
5
.
9
6
8
.
0
0
2
5
7
.
9
6
-
-
-
-
-
-
4
0
.
0
0
2
2
5
.
9
6
5
0
.
0
0
2
1
5
.
9
6
2
-
T
r
i
a
s
s
i
c
PH
2
-
3
0
1
2
/
3
/
2
0
0
3
2
7
3
.
6
8
2
7
0
.
4
9
3
.
1
9
3
5
.
0
0
2
3
5
.
4
9
8
.
0
0
2
6
2
.
4
9
-
-
-
-
-
-
2
5
.
0
0
2
4
5
.
4
9
3
5
.
0
0
2
3
5
.
4
9
2
-
T
r
i
a
s
s
i
c
PH
2
-
3
1
1
2
/
2
/
2
0
0
3
2
8
3
.
8
8
2
8
0
.
1
6
3
.
7
2
7
3
.
5
0
2
0
6
.
6
6
0
.
0
0
2
8
0
.
1
6
-
-
-
-
-
-
6
3
.
5
0
2
1
6
.
6
6
7
3
.
5
0
2
0
6
.
6
6
2
-
D
i
a
b
a
s
e
PH
2
-
3
2
1
1
/
2
5
/
2
0
0
3
2
9
1
.
8
6
2
8
8
.
3
3
3
.
5
3
5
0
.
0
0
2
3
8
.
3
3
1
2
.
0
0
2
7
6
.
3
3
5
0
.
0
0
2
3
8
.
3
3
4
0
.
0
0
2
4
8
.
3
3
5
0
.
0
0
2
3
8
.
3
3
2
-
A
r
g
i
l
l
i
t
e
PH
2
-
3
3
1
1
/
2
0
/
2
0
0
3
3
2
6
.
0
0
3
2
2
.
9
9
3
.
0
1
4
3
.
5
2
7
9
.
4
9
3
9
.
0
0
2
8
3
.
9
9
4
3
.
5
0
2
7
9
.
4
9
3
3
.
5
0
2
8
9
.
4
9
4
3
.
5
2
7
9
.
4
9
1
,
2
-
A
r
g
i
l
l
i
t
e
PH
2
-
3
4
1
1
/
1
7
/
2
0
0
3
3
3
2
.
5
7
3
2
8
.
9
6
3
.
6
1
5
3
.
5
0
2
7
5
.
4
6
-
-
-
-
-
-
-
-
-
-
-
-
4
3
.
5
0
2
8
5
.
4
6
5
3
.
5
0
2
7
5
.
4
6
2
-
A
r
g
i
l
l
i
t
e
B-
1
1
0
/
1
/
1
9
9
1
3
2
6
.
9
5
3
2
3
.
6
9
3
.
2
6
1
6
.
5
0
3
0
7
.
1
9
1
6
.
5
0
3
0
7
.
1
9
6
.
5
0
3
1
7
.
1
9
1
6
.
5
0
3
0
7
.
1
9
B-
2
1
0
/
3
/
1
9
9
1
3
2
1
.
2
5
3
1
7
.
0
1
4
.
2
4
2
6
.
5
0
2
9
0
.
5
1
2
6
.
5
0
2
9
0
.
5
1
1
0
.
5
0
3
0
6
.
5
1
2
0
.
5
0
2
9
6
.
5
1
B-
3
1
0
/
2
/
1
9
9
1
3
3
4
.
0
1
3
3
0
.
5
1
3
.
5
0
3
0
.
0
0
3
0
0
.
5
1
<
3
0
<
3
0
0
.
5
1
2
0
.
0
0
3
1
0
.
5
1
3
0
.
0
0
3
0
0
.
5
1
DR Y
B-
4
1
0
/
1
/
1
9
9
1
3
3
2
.
6
4
3
2
9
.
0
7
3
.
5
7
4
0
.
0
0
2
8
9
.
0
7
1
8
.
5
0
3
1
0
.
5
7
<
4
0
<
2
8
9
.
0
7
3
0
.
0
0
2
9
9
.
0
7
4
0
.
0
0
2
8
9
.
0
7
2
-
T
r
i
a
s
s
i
c
P-
1
S
5
/
2
/
1
9
9
6
3
2
4
.
7
2
3
2
2
.
0
3
2
.
6
9
2
5
.
5
0
2
9
6
.
5
3
n
/
a
n
/
a
1
5
.
5
0
3
0
6
.
5
3
2
5
.
5
0
2
9
6
.
5
3
P-
1
D
5
/
2
/
1
9
9
6
3
2
4
.
7
1
3
2
2
.
0
2
2
.
6
9
4
1
.
0
0
2
8
1
.
0
2
2
7
.
5
0
2
9
4
.
5
2
3
1
.
0
0
2
9
1
.
0
2
4
1
.
0
0
2
8
1
.
0
2
P-
1
1
S
5
/
7
/
1
9
9
6
3
2
9
.
8
8
3
2
6
.
8
4
3
.
0
4
3
0
.
0
0
2
9
6
.
8
4
n
/
a
n
/
a
1
5
.
0
0
3
1
1
.
8
4
3
0
.
0
0
2
9
6
.
8
4
P-
1
1
D
5
/
1
0
/
1
9
9
6
3
3
0
.
3
0
3
2
6
.
9
3
3
.
3
7
4
6
.
0
0
2
8
0
.
9
3
3
6
.
0
0
2
9
0
.
9
3
3
6
.
0
0
2
9
0
.
9
3
4
6
.
0
0
2
8
0
.
9
3
P-
1
2
D
5
/
1
0
/
1
9
9
6
3
1
0
.
4
4
3
0
7
.
7
1
2
.
7
3
4
2
.
0
0
2
6
5
.
7
1
3
0
.
0
0
2
7
7
.
7
1
3
2
.
0
0
2
7
5
.
7
1
4
2
.
0
0
2
6
5
.
7
1
P-
1
2
S
5
/
1
0
/
1
9
9
6
3
1
0
.
5
1
3
0
7
.
4
4
3
.
0
7
2
9
.
0
0
2
7
8
.
4
4
n
/
a
n
/
a
1
4
.
0
0
2
9
3
.
4
4
2
9
.
0
0
2
7
8
.
4
4
P-
1
3
D
5
/
7
/
1
9
9
6
3
2
9
.
0
3
3
2
6
.
3
5
2
.
6
8
5
5
.
0
0
2
7
1
.
3
5
4
4
.
0
0
2
8
2
.
3
5
4
5
.
0
0
2
8
1
.
3
5
5
5
.
0
0
2
7
1
.
3
5
P-
1
3
S
5
/
7
/
1
9
9
6
3
2
8
.
7
9
3
2
6
.
6
1
2
.
1
8
4
3
.
0
0
2
8
3
.
6
1
n
/
a
n
/
a
2
8
.
0
0
2
9
8
.
6
1
4
3
.
0
0
2
8
3
.
6
1
P-
1
3
S
-
R
1
0
/
6
/
1
9
9
7
3
2
8
.
9
0
3
2
6
.
4
1
2
.
4
9
3
1
.
0
0
2
9
5
.
4
1
n
/
a
n
/
a
2
6
.
0
0
3
0
0
.
4
1
3
1
.
0
0
2
9
5
.
4
1
P-
1
3
-
D
-
R
1
0
/
6
/
1
9
9
7
3
2
8
.
2
9
3
2
6
.
3
0
1
.
9
9
3
9
.
9
0
2
8
6
.
4
0
n
/
a
n
/
a
3
4
.
9
0
2
9
1
.
4
0
3
9
.
9
0
2
8
6
.
4
0
P-
1
4
D
*
©
5
/
1
4
/
1
9
9
6
3
2
4
.
5
8
3
2
2
.
4
9
2
.
0
9
4
8
.
0
0
2
7
4
.
4
9
1
9
.
3
0
3
0
3
.
1
9
3
7
.
0
0
2
8
5
.
4
9
3
8
.
0
0
2
8
4
.
4
9
4
8
.
0
0
2
7
4
.
4
9
3
-
A
r
g
i
l
l
i
t
e
P-
1
4
S
*
5
/
1
5
/
1
9
9
6
3
2
4
.
3
0
3
2
2
.
2
5
2
.
0
5
3
6
.
0
0
2
8
6
.
2
5
1
9
.
3
0
3
6
.
0
0
n
/
a
2
1
.
0
0
3
0
1
.
2
5
3
6
.
0
0
2
8
6
.
2
5
2
-
A
r
g
i
l
l
i
t
e
P-
1
0
6
6
/
2
6
/
1
9
9
7
n
/
a
3
1
8
.
9
0
n
/
a
n
/
a
2
7
.
0
0
2
9
1
.
9
0
n
/
a
n
/
a
n
/
a
n
/
a
P-
1
0
7
6
/
2
6
/
1
9
9
7
3
2
1
.
9
1
3
1
9
.
3
5
2
.
5
6
3
2
.
0
0
2
8
7
.
3
5
3
2
.
0
0
2
8
7
.
3
5
2
5
.
0
0
2
9
4
.
3
5
3
2
.
0
0
2
8
7
.
3
5
P-
1
0
8
6
/
3
0
/
1
9
9
7
3
1
5
.
7
0
3
1
3
.
2
2
2
.
4
8
1
5
.
0
0
2
9
8
.
2
2
1
5
.
0
0
2
9
8
.
2
2
1
3
.
2
5
2
9
9
.
9
7
1
5
.
0
0
2
9
8
.
2
2
MW
-
1
0
-
O
B
S
2
/
1
2
/
1
9
9
2
2
9
0
.
3
8
2
8
7
.
9
1
2
.
4
7
2
2
.
2
1
2
6
5
.
7
0
2
3
.
0
0
2
6
5
.
0
9
2
.
2
1
2
8
5
.
7
0
2
2
.
2
1
2
6
5
.
7
0
MW
-
1
0
-
S
B
2
/
1
8
/
1
9
9
2
2
8
9
.
7
8
2
8
7
.
8
6
1
.
9
2
7
3
.
7
7
2
1
4
.
0
9
2
3
.
0
0
2
4
4
.
0
9
4
5
.
7
7
2
4
2
.
0
9
7
3
.
7
7
2
1
4
.
0
9
MW
-
1
0
-
O
B
2
/
1
2
/
1
9
9
2
2
9
0
.
3
2
2
8
7
.
6
4
2
.
6
8
4
0
.
7
6
2
4
6
.
8
8
2
3
.
0
0
n
/
a
5
.
7
6
2
8
1
.
8
8
4
0
.
7
6
2
4
6
.
8
8
MW
-
1
0
-
S
1
0
/
8
/
1
9
9
7
2
8
9
.
5
1
2
8
7
.
7
8
1
.
7
3
2
1
.
1
5
n
/
a
n
/
a
1
6
.
1
7
2
7
1
.
6
1
2
1
.
1
5
2
6
6
.
6
3
MW
-
1
0
-
D
1
0
/
8
/
1
9
9
7
2
8
9
.
3
0
2
8
7
.
6
1
1
.
6
9
3
8
.
2
0
n
/
a
n
/
a
3
3
.
2
0
2
5
4
.
4
1
3
8
.
2
0
2
4
9
.
4
1
MW
-
1
2
-
S
B
2
/
5
/
1
9
9
2
3
2
6
.
1
0
3
2
3
.
6
3
2
.
4
7
6
0
.
0
0
2
6
3
.
6
3
9
.
0
0
1
5
.
7
0
3
0
7
.
9
3
5
5
.
0
0
2
6
8
.
6
3
6
0
.
0
0
2
6
3
.
6
3
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
4
-
O
B
2
/
4
/
1
9
9
2
3
0
5
.
7
2
3
0
3
.
3
1
2
.
4
1
1
9
.
5
0
2
8
3
.
8
1
1
1
.
5
0
1
9
.
7
0
2
8
3
.
6
1
9
.
5
0
2
9
3
.
8
1
1
9
.
5
0
2
8
3
.
8
1
1
-
A
r
g
i
l
l
i
t
e
MW
-
1
4
A
-
B
Z
W
5
/
1
7
/
1
9
9
5
3
3
7
.
7
5
3
3
7
.
7
5
0
.
0
0
1
2
0
.
0
0
2
1
7
.
7
5
3
3
.
6
0
n
/
a
1
3
.
0
0
3
2
4
.
7
5
1
2
0
.
0
0
2
1
7
.
7
5
MW
-
1
4
A
-
O
B
2
/
2
5
/
1
9
9
2
3
3
7
.
4
8
3
3
4
.
9
4
2
.
5
4
3
1
.
0
0
3
0
3
.
9
4
<
3
1
n
/
a
1
5
.
9
9
3
1
8
.
9
5
3
1
.
0
0
3
0
3
.
9
4
1
-
A
r
g
i
l
l
i
t
e
MW
-
1
4
A
-
S
B
2
/
6
/
1
9
9
2
3
3
6
.
7
3
3
3
4
.
7
3
2
.
0
0
5
2
.
4
0
2
8
2
.
3
3
7
.
5
0
3
3
.
6
0
3
0
0
.
7
3
3
6
.
0
0
2
9
8
.
7
3
5
2
.
4
0
2
8
2
.
3
3
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
4
B
-
B
Z
W
5
/
1
1
/
1
9
9
5
3
3
4
.
2
3
3
3
4
.
2
3
0
.
0
0
8
0
.
0
0
2
5
4
.
2
3
4
3
.
0
0
2
9
1
.
2
3
5
9
.
9
8
2
7
4
.
2
5
7
9
.
9
8
2
5
4
.
2
5
D
i
a
b
a
s
e
a
t
5
7
f
e
e
t
MW
-
1
4
B
-
D
D
5
/
1
7
/
1
9
9
5
3
3
3
.
6
9
3
3
3
.
6
9
0
.
0
0
1
2
0
.
0
0
2
1
3
.
6
9
3
6
.
0
0
2
9
7
.
6
9
5
4
.
0
0
2
7
9
.
6
9
1
2
0
.
0
0
2
1
3
.
6
9
D
i
a
b
a
s
e
a
t
4
4
f
e
e
t
MW
-
1
5
-
D
B
2
/
1
3
/
1
9
9
2
3
0
5
.
1
4
3
0
2
.
4
3
2
.
7
1
8
9
.
5
0
2
1
2
.
9
3
4
8
.
0
0
2
5
5
.
4
3
8
0
.
0
0
2
2
2
.
4
3
8
9
.
5
0
2
1
2
.
9
3
MW
-
1
5
S
B
2
/
1
3
/
1
9
9
2
3
0
5
.
0
4
3
0
2
.
2
6
2
.
7
8
8
9
.
3
3
2
1
2
.
9
3
n
/
a
n
/
a
7
9
.
8
3
2
5
4
.
2
6
8
9
.
3
3
2
4
3
.
2
3
MW
-
1
5
-
0
B
2
/
1
3
/
1
9
9
2
3
0
4
.
5
6
3
0
2
.
1
0
2
.
4
6
2
5
.
0
0
2
7
7
.
1
0
n
/
a
n
/
a
5
.
0
0
2
9
7
.
1
0
2
5
.
0
0
2
7
7
.
1
0
MW
-
1
6
D
B
*
©
2
/
2
0
/
1
9
9
2
3
1
4
.
7
1
3
1
2
.
3
7
2
.
3
4
1
0
0
.
0
0
2
1
2
.
3
7
1
8
.
5
0
2
9
3
.
8
7
4
5
.
0
0
2
6
7
.
3
7
7
5
.
0
0
2
3
7
.
3
7
1
0
0
.
0
0
2
1
2
.
3
7
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
6
O
B
*
2
/
4
/
1
9
9
2
3
1
5
.
2
2
3
1
2
.
8
3
2
.
3
9
4
5
.
0
0
2
6
7
.
8
3
1
8
.
5
0
2
9
4
.
3
3
4
5
.
0
0
2
6
7
.
8
3
1
5
.
0
0
2
9
7
.
8
3
4
5
.
0
0
2
6
7
.
8
3
1
-
A
r
g
i
l
l
i
t
e
MW
-
1
6
S
B
*
2
/
4
/
1
9
9
2
3
1
3
.
7
7
3
1
1
.
2
1
2
.
5
6
5
9
.
0
0
2
5
2
.
2
1
1
8
.
5
0
2
9
2
.
7
1
4
5
.
0
0
2
6
6
.
2
1
5
4
.
0
0
2
5
7
.
2
1
5
9
.
0
0
2
5
2
.
2
1
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
6
D
*
1
0
/
6
/
1
9
9
7
3
1
4
.
2
5
3
1
1
.
8
0
2
.
4
5
3
8
.
0
0
2
7
3
.
8
0
2
8
.
0
0
2
8
3
.
8
0
3
8
.
0
0
2
7
3
.
8
0
3
3
.
0
0
2
7
8
.
8
0
3
8
.
0
0
2
7
3
.
8
0
2
-
A
r
g
i
l
l
i
t
e
MW
-
1
7
O
B
S
*
2
/
4
/
1
9
9
2
3
1
2
.
5
4
3
1
0
.
7
3
1
.
8
1
1
0
.
0
0
3
0
0
.
7
3
9
.
5
0
3
0
1
.
2
3
n
/
a
n
/
a
5
.
0
0
3
0
5
.
7
3
1
0
.
0
0
3
0
0
.
7
3
1
-
A
r
g
i
l
l
i
t
e
MW
-
1
7
S
B
*
©
2
/
2
8
/
1
9
9
2
3
1
3
.
8
4
3
1
0
.
7
0
3
.
1
4
6
2
.
0
0
2
4
8
.
7
0
3
2
.
0
0
2
7
8
.
7
0
4
2
.
0
0
2
6
8
.
7
0
4
2
.
0
0
2
6
8
.
7
0
6
2
.
0
0
2
4
8
.
7
0
3
-
A
r
g
i
l
l
i
t
e
MW
-
1
7
A
-
B
Z
E
*
©
5
/
1
6
/
1
9
9
5
3
2
7
.
1
0
3
2
7
.
1
0
0
.
0
0
1
1
8
.
0
0
2
0
9
.
1
0
4
2
.
0
0
2
8
5
.
1
0
4
4
.
0
0
2
8
3
.
1
0
4
4
.
0
0
2
8
3
.
1
0
1
1
8
.
0
0
2
0
9
.
1
0
3
-
D
i
a
b
a
s
e
MW
-
1
7
A
-
B
Z
W
*
5
/
1
1
/
1
9
9
5
3
2
8
.
0
1
3
2
8
.
0
1
0
.
0
0
1
2
6
.
0
0
2
0
2
.
0
1
1
5
.
0
0
3
1
3
.
0
1
2
4
.
0
0
3
0
4
.
0
1
2
4
.
0
0
3
0
4
.
0
1
1
2
5
.
0
0
2
0
3
.
0
1
3
-
A
r
g
i
l
l
i
t
e
Hydrogeologic Unit
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
6/30/2015
MW
-
1
7
A
-
D
D
*
5
/
1
7
/
1
9
9
5
3
2
7
.
6
3
3
2
7
.
6
3
0
.
0
0
1
1
5
.
0
0
2
1
2
.
6
3
-
-
-
--
-
3
1
.
5
0
2
9
6
.
1
3
5
2
.
5
0
2
7
5
.
1
3
1
1
5
.
0
0
2
1
2
.
6
3
3
-
D
i
a
b
a
s
e
MW
-
2
0
-
O
B
2
/
3
/
1
9
9
2
2
8
0
.
5
4
2
7
8
.
3
7
2
.
1
7
2
5
.
8
0
2
5
2
.
5
7
2
3
.
5
0
<2
5
.
8
<
2
5
2
.
5
7
5
.
8
0
2
7
2
.
5
7
2
5
.
8
0
2
5
2
.
5
7
1
-
A
r
g
i
l
l
i
t
e
MW
-
3
2
S
B
2
/
2
6
/
1
9
9
2
3
0
0
.
8
8
2
9
8
.
2
7
2
.
6
1
7
3
.
0
0
2
2
5
.
2
7
40
.
0
0
2
5
8
.
2
7
4
0
.
0
0
2
5
8
.
2
7
7
3
.
0
0
2
2
5
.
2
7
MW
-
3
2
O
B
3
/
3
/
1
9
9
2
3
0
0
.
5
4
2
9
8
.
2
3
2
.
3
1
3
6
.
0
0
2
6
2
.
2
3
n/
a
n/
a
6
.
0
0
2
9
2
.
2
3
3
6
.
0
0
2
6
2
.
2
3
MW
-
3
3
S
B
2
/
2
6
/
1
9
9
2
2
8
5
.
4
0
2
8
3
.
3
8
2
.
0
2
4
7
.
5
0
2
3
5
.
8
8
20
.
0
0
2
6
3
.
3
8
2
2
.
0
0
2
6
1
.
3
8
4
7
.
5
0
2
3
5
.
8
8
MW
-
3
3
O
B
2
/
2
7
/
1
9
9
2
2
8
4
.
4
7
2
8
2
.
3
4
2
.
1
3
1
8
.
0
0
2
6
4
.
3
4
n/
a
n/
a
3
.
0
0
2
7
9
.
3
4
1
8
.
0
0
2
6
4
.
3
4
MW
-
3
4
O
B
*
2
/
2
7
/
1
9
9
2
2
7
6
.
3
5
2
7
6
.
2
0
0
.
1
5
6
.
0
0
2
7
0
.
2
0
4
.
5
0
2
7
1
.
7
0
n
/
a
n/
a
3
.
7
0
2
7
2
.
5
0
6
.
0
0
2
7
0
.
2
0
1
-
D
i
a
b
a
s
e
MW
-
3
4
S
B
*
©
2
/
6
/
1
9
9
2
2
7
8
.
0
5
2
7
6
.
2
2
1
.
8
3
4
0
.
3
4
2
3
5
.
8
8
4
.
5
0
2
7
1
.
7
2
1
0
.
0
0
2
6
6
.
2
2
1
4
.
8
4
2
6
1
.
3
8
4
0
.
3
4
2
3
5
.
8
8
3
-
D
i
a
b
a
s
e
MW
-
1
D
©
1
1
/
1
0
/
2
0
0
0
3
0
9
.
7
0
3
0
7
.
3
0
2
.
4
0
4
5
.
5
0
2
6
1
.
8
0
2
0
.
0
0
2
8
7
.
3
0
3
3
.
0
0
2
7
4
.
3
0
3
5
.
5
0
2
7
1
.
8
0
4
5
.
5
0
2
6
1
.
8
0
3
-
D
i
a
b
a
s
e
MW
-
2
D
©
1
0
/
1
0
/
2
0
0
0
3
1
7
.
7
4
3
1
5
.
1
4
2
.
6
0
3
8
.
0
0
2
7
7
.
1
4
1
5
.
0
0
3
0
0
.
1
4
3
5
.
0
0
2
8
0
.
1
4
3
3
.
0
0
2
8
2
.
1
4
3
8
.
0
0
2
7
7
.
1
4
2
,
3
-
T
r
i
a
s
s
i
c
MW
-
2
S
1
0
/
1
2
/
2
0
0
0
3
1
8
.
0
0
3
1
5
.
4
4
2
.
5
6
3
1
.
0
0
2
8
4
.
4
4
1
5
.
0
0
3
0
0
.
4
4
-
-
-
--
-
1
6
.
0
0
2
9
9
.
4
4
3
1
.
0
0
2
8
4
.
4
4
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
3
D
©
1
0
/
1
7
/
2
0
0
0
2
9
5
.
6
0
2
9
3
.
1
0
2
.
5
0
4
0
.
0
0
2
5
3
.
1
0
1
4
.
0
0
2
7
9
.
1
0
3
4
.
0
0
2
5
9
.
1
0
3
0
.
0
0
2
6
3
.
1
0
4
0
.
0
0
2
5
3
.
1
0
2
,
3
-
T
r
i
a
s
s
i
c
MW
-
3
S
1
0
/
1
8
/
2
0
0
0
2
9
5
.
8
7
2
9
3
.
1
8
2
.
6
9
2
0
.
0
0
2
7
3
.
1
8
1
4
.
0
0
2
7
9
.
1
8
-
-
-
--
-
5.
0
0
2
8
8
.
1
8
2
0
.
0
0
2
7
3
.
1
8
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
4
D
©
1
0
/
1
7
/
2
0
0
0
2
9
4
.
1
6
2
9
1
.
5
9
2
.
5
7
6
0
.
5
0
2
3
1
.
0
9
2
9
.
0
0
2
6
2
.
5
9
5
4
.
0
0
2
3
7
.
5
9
5
0
.
5
0
2
4
1
.
0
9
6
0
.
5
0
2
3
1
.
0
9
2
,
3
-
T
r
i
a
s
s
i
c
*
MW
-
4
S
1
0
/
1
7
/
2
0
0
0
2
9
4
.
2
9
2
9
2
.
2
3
2
.
0
6
3
0
.
0
0
2
6
2
.
2
3
2
9
.
0
0
2
6
3
.
2
3
-
-
-
--
-
1
5
.
0
0
2
7
7
.
2
3
3
0
.
0
0
2
6
2
.
2
3
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
5
D
©
1
0
/
9
/
2
0
0
0
2
8
1
.
9
4
2
7
8
.
9
8
2
.
9
6
4
7
.
0
0
2
3
1
.
9
8
9
.
0
0
2
6
9
.
9
8
4
2
.
0
0
2
3
6
.
9
8
3
7
.
0
0
2
4
1
.
9
8
4
7
.
0
0
2
3
1
.
9
8
2
,
3
-
T
r
i
a
s
s
i
c
MW
-
5
S
1
0
/
9
/
2
0
0
0
2
8
2
.
1
5
2
7
8
.
8
0
3
.
3
5
3
0
.
0
0
2
4
8
.
8
0
9
.
0
0
2
6
9
.
8
0
-
-
-
--
-
1
5
.
0
0
2
6
3
.
8
0
3
0
.
0
0
2
4
8
.
8
0
1
,
2
-
T
r
i
a
s
s
i
c
MW
-
8
D
*
*
*
©
5
/
7
/
1
9
9
6
3
1
1
.
6
1
3
0
9
.
4
5
2
.
1
6
4
9
.
0
0
2
6
0
.
4
5
1
4
.
0
0
2
9
5
.
4
5
3
9
.
0
0
2
7
0
.
4
5
3
8
.
0
0
2
7
1
.
4
5
4
8
.
0
0
2
6
1
.
4
5
2
,
3
-
G
r
a
y
w
a
c
k
e
*
*
MW
-
8
S
*
*
*
5
/
8
/
1
9
9
6
3
1
1
.
8
5
3
0
9
.
3
0
2
.
5
5
3
5
.
0
0
2
7
4
.
3
0
1
4
.
0
0
2
9
5
.
3
0
-
-
-
--
-
2
0
.
0
0
2
8
9
.
3
0
3
5
.
0
0
2
7
4
.
3
0
1
,
2
-
G
r
a
y
w
a
c
k
e
MW
-
9
5
/
1
9
/
2
0
1
1
2
7
4
.
5
8
2
7
1
.
5
8
3
.
0
0
2
7
.
5
0
2
4
4
.
0
8
47
.
5
0
2
2
4
.
0
8
3
2
.
5
0
2
3
9
.
0
8
4
7
.
5
0
2
2
4
.
0
8
An
s
o
n
Wa
s
t
e
Ma
n
a
g
e
m
e
n
t
Fa
c
i
l
i
t
y
De
s
i
g
n
Hy
d
r
o
g
e
o
l
o
g
i
c
St
u
d
y
6/30/2015
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
$33(1',;
:DWHU4XDOLW\0RQLWRULQJ3ODQ
Environmental Consultants
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
3KDVHV
6XEPLWWHGWR
6ROLG:DVWH6HFWLRQ
:-RQHV6WUHHW
5DOHLJK1&
3UHVHQWHGWR
'R]HU'ULYH
3RONWRQ1RUWK&DUROLQD
3UHVHQWHGE\
6&6(1*,1((563&
&KDSDQRNH5RDG
5DOHLJK1&
-XO\
)LOH1R
2IILFHV1DWLRQZLGH
ZZZVFVHQJLQHHUVFRP
Environmental Consultants 322 Chapanoke Road 919 662-3015
and Contractors Suite 101 FAX 919 662-3017
Raleigh, NC 27603-3415 www.scsengineers.com
July 2, 2015
File No. 02214709.00
Mr. Ed Mussler, P.E., Permitting Branch Head
NC DENR Division of Waste Management
Solid Waste Section
217 W Jones Street
Raleigh, NC 27603
Subject: Water Quality Monitoring Plan Update,
Anson Waste Management Facility Phases 1 - 4, (a.k.a. Chambers Development)
Polkville (Anson County), North Carolina
NC DENR Solid Waste Permit #04-03
Dear Mr. Mussler:
On behalf of Waste Connections, Inc. of North Carolina, we are pleased to present this update of the Water
Quality Monitoring Plan for the referenced facility in support of a Permit to Construct application for Phases 3
and 4. The original Water Quality Monitoring Plan was prepared ca. 1999 by TRC Environmental for Phase 1,
modified in 2008 by David Garrett & Associates for Phase 2. Over the course of time, ground water monitoring
points (both wells and surface water locations) have been amended as the facility was developed, in addition to
standardization of monitoring protocols by the Solid Waste Section (“Section”) ca. 2008.
The 2008 Update included the sampling plan presented in the document “Solid Waste Section Guidelines for
Groundwater, Soil, and Surface Water Sampling” (Attachment 1), available on the Solid Waste Section web site.
The following document reflects subsequent changes to detection-stage monitoring approved by the Section in
2012, discussed in the most recent semi-annual monitoring report prepared by Jett Environmental Consulting,
whereas only the shallow wells are sampled and water levels only are recorded for the deep wells on a semi-
annual basis. In addition, semi-annual leachate sampling is performed at this facility.
Please contact us if you have any questions or comments.
Sincerely,
G. David Garrett, PE, PG Steven C. Lamb, PE
Project Manager Vice President
6&6(1*,1((563& 6&6(1*,1((563&
cc Mr. Nelson Breeden, PE – Regional Engineer, Waste Connection of North Carolina, Inc.
Mr. Perry Sugg, PG – NCDENR Division of Waste Management, Solid Waste Section
Mr. Steve Jett, PG – Jett Environmental Consulting
Enclosures
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\3KDVHV
6XEPLWWHGWR
1&'(15'LYLVLRQRI:DVWH0DQDJHPHQW
6ROLG:DVWH6HFWLRQ
:-RQHV6WUHHW
5DOHLJK1&
3UHVHQWHGWR
:DVWH&RQQHFWLRQV,QFRI1RUWK&DUROLQD
'R]HU'ULYH
3RONWRQ1RUWK&DUROLQD
6&6(1*,1((563&
&KDSDQRNH5RDG
5DOHLJK1&
-XO\
)LOH1R
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
L
7DEOHRI&RQWHQWV
6HFWLRQ3DJH
&XUUHQW0RQLWRULQJ3ODQ2YHUYLHZ
5DWLRQDOHIRU0RQLWRULQJ/RFDWLRQV
6XUIDFH6DPSOLQJ
/HDFKDWH6DPSOLQJ
(QKDQFHG/LQHU6\VWHP
3URSRVHG3ODQ$PHQGPHQWV
&HUWLILFDWLRQ
5HYLVLRQV
/LVWRI)LJXUHV
1R
/RFDWLRQVIRU6XUIDFH:DWHU0RQLWRULQJ
/RFDWLRQVIRU*URXQG:DWHU0RQLWRULQJ:HOOV
/LVWRI7DEOHV
1R
0RQLWRULQJ:HOO&RPSOHWLRQ'DWD
5HTXLUHG0RQLWRULQJ3DUDPHWHUV
$WWDFKPHQWV
6ROLG:DVWH6HFWLRQ*XLGHOLQHVIRU*URXQGZDWHU6RLODQG6XUIDFH:DWHU
6DPSOLQJ²IURP1&'(15'LYLVLRQRI:DVWH0DQDJHPHQW
:HOOFRQVWUXFWLRQVFKHPDWLFV
1HZ*XLGHOLQHVIRUWKH6XEPLWWDORI(QYLURQPHQWDO0RQLWRULQJ'DWD2FWREHU
(QYLURQPHQWDO0RQLWRULQJ'DWD)RUP
$GGHQGXPWRWKH2FWREHU1RUWK&DUROLQD6ROLG:DVWH6HFWLRQ0HPRUDQGXP
)HEUXDU\
(QYLURQPHQWDO0RQLWRULQJ'DWDIRU1RUWK&DUROLQD6ROLG:DVWH)DFLOLWLHV2FWREHU
*URXQGZDWHU 6XUIDFH :DWHU6RLO 6HGLPHQW DQG /DQGILOO *DV (OHFWURQLF 'RFXPHQW
6XEPLWWDO1RYHPEHU
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
&855(17021,725,1*3/$129(59,(:
The original Water Quality Monitoring Plan included paired wells (S for “shallow”, D for
“deep”), which was intended to monitor the saprolite overburden and the fractured bedrock
aquifers, respectively. North Carolina Solid Waste Rule 15A NCAC 13B .1631 requires
detection monitoring of the “uppermost” aquifer, which in this case there is a sufficient thickness
of saturated overburden outside the waste footprint to serve as the uppermost aquifer. In 2012 it
was recognized that monitoring the bedrock aquifer was redundant, so the Solid Waste Section
authorized a modification for sampling only the shallow wells. During semi-annual sampling
events, water levels are measured in the deep wells.
Historically, well installations have been incremental, as the footprint has grown. In the 2008
WQMP Update, plans were approved to install wells MW-9 and MW-10S/D on the northeast
side of Phase 2. MW-9 was installed ca. 2011 as a shallow well, but MW-10 has not, nor has a
temporary well pair on the north side of Phase 2, MW-11, within the footprint of future Phase 4.
Whereas the final portions of Phase 2 are under construction, it is time (as of this plan revision)
to install MW-10S and provide the required four independent sampling events prior to activating
Cells 2C and 2D. MW-11 has been relocated as shown on the monitoring plan drawing.
All monitoring wells have been (and will continue to be) installed in accordance with 15A
NCAC 2C. Generally, the wells are fitted with dedicated sampling pumps except MW-9. A
summary of the well construction data, along with anticipated conditions for future wells, is
presented on Table 1. Well construction records are provided in Attachment 2.
Surface water sampling is conducted upstream and downstream on both of the boundary streams,
plus the outlet of an underdrain installed in Cells 2A and 2B. Appendix I analyses are performed
during each sampling event for the metals and organic constituents shown on Table 2. Sampling
is performed in the spring and autumn seasons. A third-party consultant performs statistical
analyses on the data and makes formal submittals to the Solid Waste Section on behalf of the
facility. The semi-annual reports include the laboratory data, statistical analyses, and ground
water potentiometric surface maps prepared for each sampling event.
The data have shown a handful of Appendix I constituents above the SWSLs in the wells,
including inorganic constituents that have been identified as background constituents in the
Phases 3 and 4 Design Hydrogeologic Report. No organic constituents have been detected in the
ground water samples. Erratic detection of organic constituents has been observed in the surface
samples, believed to be laboratory contaminants. No conclusions are drawn in this document
regarding any monitoring results; no known regulatory action is presently under contemplation.
The Site Suitability Study and Design Hydrogeologic studies show ground water flow within the
facility boundary is radial but generally northward. The entire site is within the Yadkin-Pee Dee
watershed and not subject to riparian buffers. Onsite ground water discharge occurs in numerous
unnamed tributaries. No downgradient ground water users are present, and the site is isolated
from the surrounding areas by large converging streams at the facility boundary that serve as
ground water divides. This document amends the Appendix I sampling locations but does not
modify the schedule or any monitoring protocols.
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
5$7,21$/()25021,725,1*/2&$7,216
Two upgradient wells serve as background, MW-2S (shallow) and MW-2D (deep), located along
the southern side Phase 1. Down-gradient compliance wells are located in pairs, generally to the
northeast of Phases 1 and 2 at a horizontal spacing appropriate to the subsurface conditions, plus
one pair to the southwest. These wells were located based on earlier studies and tend to focus on
the former drainage features. The well couplets (or pairs) monitor the upper saprolite aquifer
(Units 1 and 2 described in Phases 3 and 4 Design Hydrogeologic Report) and the upper bedrock
aquifer (Unit 3). Four wells, MW-6S/D and MW-7S/D, formerly located within the Phase 2
footprint, were abandoned. Figures M1 and M2 depict the monitoring locations.
New monitoring wells are proposed to the north and west of Phases 3 and 4, focusing again on
the drainage features that align with the regional joint pattern visible in the topography. The
potentiometric map found in the Design Hydrogeologic Report depicts a groundwater divide
aligned with the original ridgeline, with the saturated layer residing near the base of the saprolite
overburden (Units 1and 2). Well spacing on the north and west sides appears closer than on the
east side because surface drainage features originally converged to the east but not the other
directions. The presence of diabase dikes and a major geologic contact have not been shown to
affect the monitoring program. In keeping with recent modifications to the groundwater
monitoring program, only shallow wells extending to “auger refusal” are proposed at this time.
Background Well Bottom Depth
• MW-2S and MW-2D 31.0’ and 38.0’ respectively
Phase 1 Compliance Wells
• MW-1D 45.5’
• MW-3S and MW-3D 20.0’ and 40.0’
• MW-4S and MW-4D 30.0’ and 60.5’
• MW-5S and MW-5D 30.0’ and 49.0’
• MW-8S and MW-8D 35.0’ and 49.0’
Phase 2 Compliance Wells
• MW-9S 27.5’
• MW-10S 50’ anticipated based on Piez PH-29A*
Phase 3 Compliance Wells Anticipated Depth**
• MW-11S 50’ based on PH-29A
• MW-12S 30’ based on Old MW20-OB
• MW-13S 30’ based on Old MW20-OB
• MW-14S 45’ based on Old MW17A-BZE
• MW-15S 25’ based on Old MW17A-BZW
Phase 4 Compliance Wells Anticipated Depth**
• MW-16S 25’ based on Piez B-15
• MW-17S 20’ based on Piez B-10Dp
• MW-18S 20’ based on Piez B-9Dp
• MW-19S 40’ based on Piez B-2Dp
• MW-20S 35’ based on Piez B-3p
* Scheduled for installation in 2017 concurrent with Phase 2D construction
** Depths may vary – do not use these depths for absolute budgeting
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
Provisions have been incorporated into current sampling protocols that require sampling of deep
wells in the event there is insufficient water in the shallow wells. This practice will be continued
at the Phase 3 and 4 wells. By selecting locations near the drainage features, new wells are
expected to provide early detection of a release of contaminants onto the uppermost aquifer.
Based on the distance to the facility boundary, a point of compliance exists closer to the footprint
than the facility boundary, at distance of approximately 250 to 300 feet, so the review boundary
for well locations is 125 to 150 feet, allowing leeway to accommodate the topography. Well
screen intervals will be selected in the field based on existing conditions. Well installations will
be performed under the direction of a qualified geologist. Future amendments may be required
to ensure the wells provide representative monitoring results.
685)$&(6$03/,1*
Surface water sampling locations are as follows:
Upstream
• Pinch Gut Creek Upstream (BG-1)
• Brown Creek Upstream (BG-2)
Downstream
• Brown Creek Downstream (SG-3)
• Pinch Gut Creek Downstream (SG-4)
Underdrains installed beneath certain cells have designated sampling points as follows:
UD-1
• Cell 2B East Formerly SG-5discharges to a sediment basin nearest MW-9
UD-2
• Cell 2C South includes Cell 2B West discharges to a swale leading to the
sediment basin nearest MW-10
UD-3
• Cell 2C North discharges to the sediment basin nearest MW-10,
downstream of UD-2
Please take note of the following conditions:
1. Samples will be acquired from within the pipe to avoid cross contamination with surface
water.
2. The drains are expected to stop flowing within a few months after installation; Note 5 on
Drawing M-1 specifies observation to detect flow (with record keeping) on a monthly
basis.
3. An internal inspection (e.g. camera survey) is required for UD-3 (see Note 5E on
Drawing M1).
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
/($&+$7(6$03/,1*
Provisions were made in the original Water Quality Monitoring Plan for monitoring of the
leachate from a sampling port in the force main connecting the individual sumps with the
leachate collection/storage tanks and/or another location in the tanks. No amendment to the
leachate sampling plan is under consideration, except for the future sampling of new sumps
associated with the future phases.
(1+$1&('/,1(56<67(0
The October 2008 Water Quality Monitoring Plan prepared by David Garrett and Associates
includes an evaluation is to be made semi-annually of the volume of free liquid removed from
the Enhanced Liner System (ELS) sump. This feature is a leak detection layer incorporated into
Phase 1 but not subsequent cells. The results of the evaluation and the VOC analysis of the ELS
sump liquids are to be included in the semi-annual groundwater report. As reported in the
Second Semi-Annual 2014 sampling report, liquids were present at ELS sumps #5 and #7 during
the last six month monitoring period, thus a sample was collected during the Second Semi-
Annual 2014 event and analyzed for the required VOCs. Results indicate that the ELS sump
samples were reported as non-detect for VOCs. Some metals were present. The total volume of
liquids measured in ELS sumps #5 and #7 was 522 gallons and 106,143 gallons, respectively.
352326('3/$1$0(1'0(176
New monitoring wells for Phase 3 shall be located to the west and southwest of the phase, along
drainage features that align with regional bedrock joints (minor fracture zones), which serve as
potential ground water pathways. Future monitoring wells for Phase 4 will be located per similar
criteria at an appropriate time. Planned monitoring well MW-10S and a new surface monitoring
location (SG-6) will be activated prior to operation of Phase 2C, under construction in 2015.
Based on the data and the governing rules, no changes to the sampling parameters or statistical
evaluations appear to be required at this time.
Sampling and analysis criteria will remain unchanged. Wells will be evacuated and samples will
be obtained using conventional techniques (in accordance with SWS Guidelines), but future
consideration may be given to adopting low-flow techniques and/or the use of dedicated pumps
in all wells, including the future wells for Phases 3 and 4. The Guidelines cover the use of
dedicated pumps (but not the low-flow techniques). Any changes involving purging and
sampling techniques should be reviewed by a qualified groundwater scientist and reflected in a
future plan update. Future updates also will be warranted as new cells are completed and wells
are installed. Likewise, any new surface sampling locations that may be required for future
underdrains should be documented with a plan update.
The prior-approved Water Quality Monitoring Plan appears to be sufficient for ongoing
monitoring of the facility, requiring only an adjustment of the monitoring wells to accommodate
Phases 3 and 4. The sampling protocols outlined in the Solid Waste Section “Guidelines”
(Attachment 1) shall be followed. Specific protocols for sampling ground water wells are
provided in Appendix C of that document, with a section pertaining to the use of dedicated
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
pumps. The required sampling procedures retain the determination of initial water levels and
volumes that must be purged. If low-flow purging and sampling procedures are adopted,
product-specific protocols described in the manufacturer’s literature should be reviewed and
incorporated into this plan. Other documents issued by the NCDENR Solid Waste Section,
which are incorporated into this plan, including:
• October 2006 New Guidelines for the Submittal of Environmental Monitoring Data
(Attachment 3), which introduced the requirement for the Environmental Monitoring
Data Form (Attachment 4), and
• February 2007 Addendum to the October 27, 2006 North Carolina Solid Waste
Section Memorandum (Attachment 5), i.e., the, which required the use of “Solid
Waste Section Limit” (SWSL) in lieu of Practical Quantification Limits (PQL) for
reporting the data, referencing changes to the North Carolina 2L Ground Water
Protection Standards, and encouraging electronic data submittal – analytical data is
required in a .xls file, and
• October 2007 Environmental Monitoring Data for North Carolina Solid Waste
• Facilities (Attachment 6), which provided clarification on certain issues.
• November 2014 memo titled Groundwater, Surface Water, Soil, Sediment, and
Landfill Gas Electronic Document Submittal (Attachment 7).
These documents can be viewed at http://www.wastenotnc.org/swhome/enviro_monitoring.asp.
No changes are proposed to the current leachate monitoring program or sampling for the
Enhanced Liner System. Future changes to leachate sampling, if any, will be documented in
another plan revision. Upon approval by NC DENR Division of Waste Management, Solid
Waste Section, these amendments to this plan will be implemented at an appropriate time
(relative to the construction sequence) and sampling will be conducted accordingly. Solid Waste
Section protocols typically require four independent background samples from new wells prior to
opening a new phase (i.e., issuance of the Permit to Operate).
:DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
&(57,),&$7,21
This water quality monitoring plan has been prepared by a qualified geologist who is licensed to
practice in the State of North Carolina. The plan is based on first-hand knowledge of site
conditions and familiarity with North Carolina solid waste rules and industry standard protocol.
This certification is made in accordance with North Carolina Solid Waste Regulations, indicating
that this Water Quality Monitoring Plan should provide early detection of any release of
hazardous constituents into the uppermost aquifer, so as to be protective of public health and the
environment. No other warranties, expressed or implied, are made.
Signed
Printed Name G. David Garrett
Date July 2, 2015
5(9,6,216
References to earlier plan versions include:
1. Water Quality Monitoring Plan, Phase 1, 1999
2. Sampling and Analysis Plan Update, Phase 2, October 2008 (Rev. 1)
3. Water Quality Monitoring Plan Update, September 28, 2012 (Rev. 2)
'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ
$QVRQ:DVWH0DQDJHPHQW)DFLOLW\
___________________________________________________________________________
$33(1',;
/DQGILOO*DV0RQLWRULQJ3ODQ
Landfill Gas Monitoring Plan
Anson Waste Management Facility
Phases 1 through 3
Submitted to:
11 &'(15'LYLVLRQRI:DVWH0DQDJHPHQW
Solid Waste Section
217 W Jones Street
Raleigh, NC 27603
Presented to:
:DVWH&RQQHFWLRQV,QFRI1RUWK&DUROLQD
375 Dozer Drive
Polkton, North Carolina 28135
Presented by:
SCS ENGINEERS, PC
322 Chapanoke Road
Raleigh, NC 27603
(919) 662-3015
July 28, 2015
File No. 02214709.00
Offices Nationwide
www.scsengineers.com
Environmental Consultants 322 Chapanoke Road 919 662-3015
and Contractors Suite 101 FAX 919 662-3017
Raleigh, NC 27603-3415 www.scsengineers.com
File No. 02214709.00
July 28, 2015
Mr. Ed Mussler, P.E., Permitting Branch Head
NC DENR Division of Waste Management
Solid Waste Section
217 W Jones StreetRaleigh, NC 27603
RE: Landfill Gas Monitoring Plan
Anson Waste Management Facility
Polkville (Anson County), North CarolinaNC DENR Solid Waste Permit #04-03
Dear Mr. Mussler:
On behalf of Waste Connections, Inc. of North Carolina, we are pleased to present the following Landfill Gas (LFG) Monitoring Plan, prepared in accordance with Solid Waste Rule 15A NCAC
13B .1626 (4). This plan discusses (in brief) the nature of landfill gas, allowable concentrations
for explosive gas around the facility, monitoring locations, well depths (i.e., gas probes), and
methodology, sampling schedule, procedures and record keeping.
Emphasis will be placed on protecting human health and safety for persons working at the facility – there are no known occupied structures in proximity except for facility buildings
(offices and garages). This plan focuses on monitoring to detect subsurface gas migration from
the waste containment cells. The plan does not amend any previous submittal and will be
implemented immediately upon approval by the Solid Waste Section.
Please contact us if you have questions or comments.
Sincerely,
G. David Garrett, PG, PE Steven C. Lamb, PE
Project Manager Vice President
SCS ENGINEERS, PC SCS ENGINEERS, PC
7/28/2015
cc: Mr. Nelson Breeden, PE – Regional Engineer, Waste Connection of North Carolina, Inc.
Mr. John Murray, PE – NCDENR Division of Waste Management, Solid Waste Section
Landfill Gas Monitoring Plan
Anson Waste Management Facility
Landfill Gas Monitoring Plan
Anson County Solid Waste Facility
Submitted to:
NCDENR Division of Waste Management
Solid Waste Section
217 W Jones Street
Raleigh, NC 27603
Presented to:
Waste Connections, Inc. of North Carolina
375 Dozer Drive
Polkton, North Carolina 28135
SCS ENGINEERS, PC
322 Chapanoke Road
Raleigh, NC 27603
(919) 662-3015
July 28, 2015
File No. 02214709.00
Landfill Gas Monitoring Plan
Anson Waste Management Facility
i
Table of Contents
Section Page
1.0 INTRODUCTION ..................................................................................................................................... 1
1.1 Background Information .............................................................................................................. 1
1.2 Regulatory Requirements ........................................................................................................... 1
1.3 Current Site Conditions ............................................................................................................... 2
1.4 Monitoring Location Criteria ...................................................................................................... 2
2.0 LFG MONITORING................................................................................................................................ 3
2.1 Monitoring Devices and Procedures ......................................................................................... 3
2.2 Monitoring Schedule .................................................................................................................... 4
3.0 CONTINGENCY PLAN .......................................................................................................................... 4
4.0 CERTIFICATION ...................................................................................................................................... 5
List of Tables
No. Page
1 Summary of Gas Monitoring Probe Locations
Attachments
A Landfill Gas Monitoring Guidance – from NCDENR Division of Waste Management
B LFG Monitoring Locations Site – Figure 1
C LFG Well Construction Schematic
D Landfill Gas Monitoring Field Log
Landfill Gas Monitoring Plan
Anson Waste Management Facility
1
1.0 INTRODUCTION
The following plan has been prepared as a standalone document in accordance with current NCDENR Solid Waste Section (SWS) guidance. The monitoring locations, methods, and thresholds for action are based on the SWS document “Landfill Gas Monitoring Guidance,”
November 2010, available online at
http://portal.ncdenr.org/c/document_library/get_file?uuid=da699f7e-8c13-4249-9012-
16af8aefdc7b&groupId=38361.
The guidance contains specific requirements for well construction, equipment calibration, sampling procedures, and data keeping, in a plan that is organized in a standardized format. This document is
found in Attachment A.
1.1 BACKGROUND INFORMATION
Landfill gas (LFG) is a by-product from the decomposition of organic waste in a landfill, which
includes methane, carbon dioxide, hydrogen sulfide, water, and other constituents. Methane can be
explosive under certain conditions, and LFG migration has been known to transfer certain contaminants into ground water. The Solid Waste Rules typically focus on the explosive propertiesof LFG from a public safety standpoint. Subsurface gas normally migrates above the ground water
table and is restricted laterally by streams. Pipelines or trenches (if present) can serve as
potential conduits for off-site LFG migration; although the soils existing just above the bedrock are
often very porous and can potentially serve as gas migration pathways. No occupied structures off-siteappear to be at risk for gas migration.
Active gas recovery is the primary means of controlling gas at this facility. A Landfill Gas Control
Plan was implemented soon after landfill operations commenced. A network of extraction wells
installed in the waste are connected to a blower station and the collected LFG flared.
Methane monitoring wells (landfill gas probes) are installed above the water table usingconstruction techniques that are otherwise similar to ground water monitoring wells. Components
of the active gas recovery system are not to be monitored. LFG monitoring will be performed
during the active life of the landfill and throughout the post- closure care period. Quarterly
monitoring will be conducted at all probes and in occupied structures located on the landfillproperty.
1.2 REGULATORY REQUIREMENTS
NCAC 15A 13B .1626 (4) (a) requires monitoring for the following explosive gas limits:
x 25% of the Lower Explosive Limit (LEL), o r 5% methane in standard atmosphere
within occupied structures – excluding the gas recovery systems
x 100% LEL at the facility boundary
x No detectable concentration at off-site occupied structures.
Landfill Gas Monitoring Plan
Anson Waste Management Facility
2
Solid Waste Section guidance requires that LFG be monitored with a calibrated meter that is
capable of detecting hydrogen sulfide, whereas action limits are 4% by volume at 100% LEL and
1% by volume at 25% LEL.
1.3 CURRENT SITE CONDITIONS
The subject landfill is situated high on a ridge bounded on three sides by blue line streams, which
act as natural barriers to gas migration. Potentiometric contours reflect the surface topography, which slopes moderately to the north but diverges sharply to the east and west toward the streams located along the facility boundary. Topographic relief near the west stream is steep, with elevation
changes from the footprint to the streams on the order of 70 feet with up to 20% slopes, but the topo
slopes gently to the east stream with slopes generally less than 5%. The landfill is lined and is
mostly excavated to the approved base grades on the west side, while the footprint is built up with a constructed 15-foot high perimeter embankment along the east side.
Onsite soils are slightly porous silt and clay weathered from meta-volcanic argillite and Triassic
sedimentary formations – typically exhibiting low permeability – which originally extended 20 to
40 feet beneath the surface. The soils gradually transition with depth to a variably thick layer of
porous “partially weathered rock” overlying hard, low porosity non-weathered rock. On the west and north sides of the disposal footprint deep wide-spread excavation has removed much of the overburden soil. The water table is approximately 10 to 30 feet deep over most of the site,
including the up-gradient side of the landfill, except near the streams where water levels are 5 to 8
feet deep. The approved base grades are 30 feet or more above the level of the streams and a
minimum of 4 feet above groundwater and/or bedrock. Lateral separation to the streams is 50 feet minimum; these dimensions provide little opportunity for gas to migrate beyond the facility boundary on the three sides bound by streams.
The nearest know residence exists approximately 1700 feet to the south and east of the MSWLF.
Other occupied structures include a maintenance building (metal shell on concrete slab) located
approximately 500 feet south east of the footprint and approximately 800 feet east of the gas flare. The scale house (mobile building) is located approximately 1000 feet south of the waste boundary. A small cemetery exists approximately 400 feet east of the Phase 1 footprint. The facility offices
are approximately one-half mile south of the waste boundary. .
1.4 MONITORING LOCATION CRITERIA
Gas migration is a process of diffusion through porous media, affected by porosity and
permeability, similar to ground water within an unconfined or partly confined soil aquifer. For gas,
pressures and concentrations are higher near the source and gradually decrease with distance –unless a distinct conduit is present – thus a “halo effect” is often discernable. The gas can beconfined in the soil by lower permeability clay layers and saturated layers – impermeable to gas –
that can occur either above or below the porous layer. At this site, horizontal permeability for
ground water flow appears to exceed vertical permeability, due in part to the shape of the
saprolite (PWR) aquifer, as it conforms to the topography and upper bedrock surface; true for water and gas. The unsaturated saprolite is the likely gas conveyance and is the target of the gas monitoring plan.
Landfill Gas Monitoring Plan
Anson Waste Management Facility
3
Placement of perforated pipe for gas monitoring above the water table is standard practice. The
required horizontal placement for gas monitoring appurtenances (either wells or bar-hole punch
locations) is not defined. Considering the similarities of gas migration to ground water, with a
compliance boundary established at property lines, a sensible criteria for test locations is outsidethe perimeter of any gas conveyances (such as recovery system pipelines) and approximately halfthe distance from the source to the compliance boundary – or no more than 150 feet if the property
line is more than 300 feet from the source – thus establishing a review boundary. Gas probe
locations are shown on Figure 1 (Attachment B). Distances between the probes are approximately
250 feet.
2.0 LFG MONITORING
2.1 MONITORING DEVICES AND PROCEDURES
Equipment: A portable gas monitoring device, e.g., LandGEM 5000 shall be used to measure
methane gas in the probes. Concentrations shall be reported in units of percent methane or percent
of the lower explosive limit (LEL). The LEL for methane is approximately 5%. SWS Guidelines
require monitoring for hydrogen sulfide (H2S) in addition to methane gas. General sampling procedures are discussed below, relative to different types of monitoring appurtenances and
locations, but the instructions for the specific monitoring device should be followed.
Occupied Buildings: Monitoring of on-site structures will be conducted during regular monitoring
events at the earliest possible time after the structure has been unused (e.g., early morning).
Methane and hydrogen sulfide are both heavier than air and tend to accumulate in the lower zones with restricted circulations, i.e., crawlspaces, closets, corners of rooms near the floor, cracks in
walls, floor slabs, foundations, crawlspace vents, drainage pipes, and utility vaults. Alternatively,
the buildings may be equipped with continuous explosive gas detection devices. Gas monitoring
will also be conducted in any confined space requiring the entry of personnel for maintenanceor inspection. The monitoring will take place prior to entry by personnel in accordance with OSHAregulations. Within the buildings, atmospheric sampling for methane and hydrogen sulfide shall be
conducted.
Ambient monitoring: This includes a “walk-around” at the toe of landfill slopes to survey for gas
that may be seeping through the intermediate or permanent cover. A key to potential side slope seepage includes stained soil, wetness with visible bubbling, or distressed (or absent) vegetation. Any detection of methane or hydrogen sulfide in the ambient monitoring should be noted on a site
map and a special notation recorded in the monitoring report.
Bar-Hole Punch Locations: Gas monitoring in bar-hole punches will consist of punching a hole
with a 3-foot probe. Tubing that is open-ended and perforated on the bottom should be placed in the bottom of the hole, taking care not to plug the bottom of the tubing with soil. The peak methane reading should then be recorded for each bar-hole probe location.
Methane Monitoring Wells: Also called “landfill gas probes,” appropriate monitoring depths for
this site have been established as 15 feet, or the water table, whichever is encountered first, which implies the need for permanent gas monitoring wells. Each gas monitoring well will be constructed
Landfill Gas Monitoring Plan
Anson Waste Management Facility
4
with a 10-foot perforated section sealed below a bentonite plug, similar to ground water monitoring
well construction, with appropriate stickups for visibility and locking covers. Each well shall be
“sniffed” with a gas meter (calibrated for methane) equipped with a probe or open-ended tube that
can inserted into the sampling port set within the well cap. Readings should be taken over a five-minute period (or as recommended by the equipment manufacturer) and the peak methane reading should then be recorded, either as percent methane or percent LEL, depending on the meter output.
SWS guidelines include a well construction schematic, found in Attachment C.
Record Keeping: The sampling technician shall record the date, time, location, sampling personnel,
atmospheric temperature, reported barometric pressure, and general weather conditions at the time
of sampling, in addition to the concentration of combustible gases. The sampling results are to be
recorded on a form, such as the example Landfill Gas Monitoring Field Log shown in Attachment
D.The records will be maintained in the landfill operating record for the life of the facility.
2.2 MONITORING SCHEDULE
The Solid Waste Rules require quarterly monitoring. Landfill gas monitoring will be performed during the active life of the landfill, currently estimated at 20+ years, and throughout the post-
closure care period, 30 years unless future data warrant a revision and subject to approval by the
SWS.
3.0 CONTINGENCY PLAN
Solid Waste Rule NCAC 15A 13B .1626 (4) (c) specifies that, upon detection of methane
exceeding the threshold values (described above), the facility management must perform the
following:
x Immediately take steps required to protect human health and notify the Division
x Within seven days place in the operating record a report of the methane gas levels
and the location of the detection, along with a description of the response to protect
human health
x Within 60 days implement a remediation plan for the methane gas release, place a copy
of the plan in the Operating Record and notify the Division that the plan has been
implemented – the plan shall describe the nature and extent of the problem and the
proposed remedy.
Landfill Gas Monitoring Plan
Anson Waste Management Facility
5
4.0 CERTIFICATION
The certification statement below must be signed and sealed by a North Carolina Professional Geologist or Professional Engineer and submitted with the Landfill Gas Monitoring Plan.
The Landfill Gas Monitoring Plan for this facility has been prepared by a qualified geologist or
engineer who is licensed to practice in the State of North Carolina. The plan has been prepared based on first-hand knowledge of site conditions and familiarity with North Carolina solid waste rules and industry standard protocol. This certification is made in accordance with North Carolina
Solid Waste Regulations, indicating this Landfill Gas Monitoring Plan should provide early
detection of any release of hazardous constituents to the uppermost aquifer, so as to be protective of public health and the environment. No other warranties, expressed or implied, are made.
Signed __________________________
Printed G. David Garrett, PG, PE
Date July 6, 2015
Not valid unless this document bears the seal of the above mentioned licensed professional. If wells are
installed in the future, the well locations shall be shown on a topographic map that is signed and sealed
by a registered surveyor. Well construction shall conform to the current Solid Waste Section standards,
including a sampling port on the cap.
Landfill Gas Monitoring Plan
Anson Waste Management Facility
6
Table 1
Summary of Gas Monitoring Probe Locations
Probe Location
GP-1 Southeast corner of Phase1, near maintenance building
GP-2 South of Phase1, near gas works
GP-3 East of Phase1, over diabase dike
GP-4 South of Phase1, near southwest corner
GP-5 South of Phase1, near Phase 2 line
GP-6 East of Phase 2
GP-7 South of Phase1, near railroad cut
GP-8 West of Phase , near future southwest corner
GP -9 West of Phase
GP -10 West of Phase
GP -11 North of Phase
GP -12 North of Phase
Landfill Gas Monitoring Plan
Anson Waste Management Facility
Attachment A
Landfill Gas Monitoring Guidance
NCDENR Division of Waste Management
1257+&$52/,1$'(3$570(172)
(19,5210(17$1'1$785$/5(6285&(6
',9,6,212):$67(0$1$*(0(17
62/,':$67(6(&7,21
/$1'),//*$6021,725,1**8,'$1&(
129(0%(5
7$%/(2)&217(176
6HFWLRQ±,QWURGXFWLRQ«««««««««««««««««««««3DJH
6HFWLRQ±)DFWRUV,QIOXHQFLQJ/DQGILOO*DV*HQHUDWLRQDQG0LJUDWLRQ««««««««««3DJH
6HFWLRQ&XUUHQW6ROLG:DVWH6HFWLRQ5XOHV3HUWDLQLQJWR/DQGILOO*DV0RQLWRULQJ««««3DJH
6HFWLRQ±/DQGILOO*DV,QFLGHQWVDQG([SORVLRQV««««««««««««««««««3DJH
6HFWLRQ±/DQGILOO*DV0RQLWRULQJ:HOOV«««««««««««««««««««««3DJH
6HFWLRQ±/DQGILOO*DV0RQLWRULQJ,QVWUXPHQWDWLRQ«««««««««««««««««3DJH
6HFWLRQ±5HIHUHQFHV«««««««««««««««««««««««««««««3DJH
SECTION 1 - Introduction
1RUWK&DUROLQD6ROLG:DVWH0DQDJHPHQW5XOHV$1&$&%UHTXLUHTXDUWHUO\PRQLWRULQJRIPHWKDQH
JDVDW06:ODQGILOOVDQGTXDUWHUO\PRQLWRULQJRIPHWKDQHDQGRWKHUH[SORVLYHODQGILOOJDVHV/)*DW
& 'DQGRWKHUODQGILOOVWRHQVXUHWKDWODQGILOOJDVGRHVQRWH[FHHGWKHORZHUH[SORVLYHOLPLW/(/DWWKH
IDFLOLW\SURSHUW\ERXQGDU\RUSHUFHQWRIWKHORZHUH[SORVLYHOLPLWLQIDFLOLW\VWUXFWXUHV,IWKH
FRQFHQWUDWLRQH[FHHGVWKHVSHFLILHGOLPLWVVWHSVPXVWEHWDNHQWRHQVXUHWKHSURWHFWLRQRISXEOLFKHDOWK
DQGDUHPHGLDWLRQSODQPXVWEHLPSOHPHQWHGLPPHGLDWHO\$ODQGILOOJDVPRQLWRULQJSODQLVQHFHVVDU\WR
HQVXUHWKDWWKHVHSHUIRUPDQFHVWDQGDUGVDUHPHWDQGWKLVJXLGDQFHGRFXPHQWZDVGHYHORSHGWRDVVLVWLQ
HVWDEOLVKLQJDVWDQGDUGL]HGSURFHGXUHIRUWKHPRQLWRULQJRIODQGILOOJDV
Background
2UJDQLFPDWWHULQODQGILOOVEHJLQVWRGHFRPSRVHDOPRVWLPPHGLDWHO\DIWHUEHLQJSODFHGLQDGLVSRVDOVLWH
3XWUHVFLEOHZDVWHVVXFKDVIRRGSURGXFWVDQGVHZDJHVOXGJHVEHJLQWREUHDNGRZQE\ELRORJLFDOSURFHVVHV
YHU\UDSLGO\ZKHUHDVSDSHUFDUGERDUGRUFHOOXORVHEDVHGPDWHULDOVDUHVORZHUWRGHFRPSRVH+RZHYHU
ZKHQFRQGLWLRQVEHFRPHIDYRUDEOHPRVWRUJDQLFPDWWHUZLOOGHFRPSRVH7KHGHFRPSRVLWLRQSURFHVV
W\SLFDOO\JRHVWKURXJKVHYHUDOVWDJHVWKDWGHSHQGRQFRQGLWLRQVVXFKDVS+WHPSHUDWXUHDQGPRLVWXUH
FRQWHQW7KHILQDOVWDJHUHVXOWVLQWKHSURGXFWLRQRIPHWKDQHDQGDOWKRXJKWKHUDWHRISURGXFWLRQPD\
YDU\PRVWODQGILOOVSURGXFHPHWKDQH
Landfill Gas Generation
/DQGILOOJDVLVDQDWXUDOE\SURGXFWRIWKHDQDHURELFGHFRPSRVLWLRQRIRUJDQLFZDVWHLQDODQGILOO7KH
FRPSRVLWLRQTXDQWLW\DQGUDWHRIODQGILOOJDVJHQHUDWLRQDUHGHSHQGHQWRQWKHW\SHVRIZDVWHWKDWDUH
GHFRPSRVLQJDQGWKHOHYHORIPLFURELDODFWLYLW\ZLWKLQWKHZDVWHV7KHGHFRPSRVLWLRQRIELRGHJUDGDEOH
ZDVWHEHJLQVZLWKDHURELFGHFRPSRVLWLRQZKLFKODVWVXQWLOWKHR[\JHQLQWKHODQGILOOLVGHSOHWHG7KH
DQDHURELFSKDVHWKHQEHJLQVUHVXOWLQJLQODQGILOOJDVSURGXFWLRQ
7KHUHDUHIRXUVWDJHVRIODQGILOOJDVFRPSRVLWLRQWKHILUVWVWDJHLVFKDUDFWHUL]HGE\HOHYDWHGQLWURJHQ
OHYHOVDQGRFFXUVZKHQWKHODQGILOOLVQHZ7KHVHFRQGVWDJHLVFKDUDFWHUL]HGE\HOHYDWHGFDUERQGLR[LGH
OHYHOVDQGRFFXUVIRUDUHODWLYHO\VKRUWSHULRGRIWLPHDIWHUWKHLQLWLDOVWDJHLVFRPSOHWH7KHWKLUGDQG
IRXUWKVWDJHVDUHFKDUDFWHUL]HGE\HOHYDWHGPHWKDQHFRQFHQWUDWLRQVDQGUHSUHVHQWWKHDFWLYHOLIHRID
ODQGILOODQGWKHSRVWFORVXUHWLPHIUDPH
/DQGILOOJDVLVJHQHUDOO\FRPSRVHGRIPHWKDQH&+FDUERQGLR[LGH&2OHVVWKDQ
QLWURJHQ1DQGOHVVWKDQQRQPHWKDQHRUJDQLFFRPSRXQGV7KHVHLQGLYLGXDOJDVHVJHQHUDOO\
UHPDLQFRPLQJOHGDQGGRQRWQDWXUDOO\VHSDUDWH7KH6ROLG:DVWH6HFWLRQ6:65XOHVW\SLFDOO\IRFXV
RQPHWKDQH&+DQGLWVH[SORVLYHSURSHUWLHVGXHWRSXEOLFVDIHW\LVVXHV+\GURJHQVXOILGH+6LV
DOVRRISDUWLFXODUFRQFHUQLQODQGILOOVDQGLVW\SLFDOO\UHFRJQL]HGE\LWVURWWHQHJJRGRU+6LV
LPPHGLDWHO\GDQJHURXVWROLIHDQGKHDOWKDWFRQFHQWUDWLRQVRISDUWVSHUPLOOLRQSSP
Landfill Gas Migration
7KHSURGXFWLRQRIODQGILOOJDVFUHDWHVDSRVLWLYHSUHVVXUHZLWKLQWKHODQGILOOWKDWIRUFHVWKHJDVWRPLJUDWH
/DQGILOOJDVPLJUDWHVIURPSODFHWRSODFHE\GLIIXVLRQDQGSUHVVXUHJUDGLHQWDQGZLOOIROORZWKHSDWKRI
OHDVWUHVLVWDQFH6XEVXUIDFHJDVW\SLFDOO\PLJUDWHVDERYHWKHJURXQGZDWHUWDEOHDQGLVUHVWULFWHGODWHUDOO\
E\VWUHDPV3RURXVVRLOVO\LQJDERYHWKHEHGURFNFDQVHUYHDVSDWKZD\VWRWUDQVPLWODUJHYROXPHVRIJDV
8QGHUJURXQGRIIVLWHPLJUDWLRQLVFRPPRQDQGFDQEHIDFLOLWDWHGE\WKHSUHVHQFHRISLSHOLQHVEXULHG
XWLOLW\FRUULGRUVRUWUHQFKHVORFDWHGZLWKLQRUDGMDFHQWWRWKHODQGILOOERXQGDULHV0RYHPHQWGHSHQGVRQ
VRLOW\SHDQGPRLVWXUHDQGPLJUDWLRQGLVWDQFHVRIIHHWKDYHEHHQREVHUYHG%DURPHWULFSUHVVXUH
DOVRLQIOXHQFHVPRYHPHQW)DOOLQJEDURPHWULFSUHVVXUHDOORZVPHWKDQHWRPLJUDWHRXWRIWKHODQGILOODQG
LQWRVXUURXQGLQJDUHDV
SECTION 2 - Factors Influencing Landfill Gas Generation and Migration
)DFWRUVWKDWDIIHFWODQGILOOJDVJHQHUDWLRQDQGPLJUDWLRQWKURXJKWKHVXEVXUIDFHLQFOXGHWKHIROORZLQJ
Waste Composition
7KHSURGXFWLRQRIODQGILOOJDVLVGLUHFWO\UHODWHGWRWKHDPRXQWRIRUJDQLFPDWWHUSUHVHQWLQZDVWH7KH
EDFWHULDWKDWEUHDNGRZQWKHZDVWHUHTXLUHVPDOODPRXQWVRIVSHFLILFPLQHUDOVVXFKDVFDOFLXPSRWDVVLXP
PDJQHVLXPDQGRWKHUPLFURQXWULHQWV%DFWHULDDUHDEOHWRWKULYHDQGSURGXFHODQGILOOJDVLIWKH
PLQHUDOVPLFURQXWULHQWVDUHSUHVHQW,IWKHPLQHUDOVPLFURQXWULHQWVDUHQRWSUHVHQWRULIVXEVWDQFHVWKDW
LQKLELWEDFWHULDOJURZWKH[LVWODQGILOOJDVSURGXFWLRQZLOORFFXUDWDUHGXFHGUDWH6RPHIRUPVRIRUJDQLF
PDWWHUVXFKDVFHOOXORVHEUHDNGRZQTXLFNO\ZKHUHDVPDWWHUVXFKDVOLJQLQEUHDNVGRZQPRUHVORZO\
7KHUDWHDWZKLFKODQGILOOJDVLVSURGXFHGGHSHQGVRQWKHSURSRUWLRQVRIHDFKW\SHRIRUJDQLFPDWWHU
SUHVHQWLQWKHZDVWH
Moisture Content
/DQGILOOVZLWKKLJKHUPRLVWXUHFRQWHQWJHQHUDWHKLJKHUFRQFHQWUDWLRQVRIODQGILOOJDVLQHDUOLHUVWDJHVRI
GHYHORSPHQWVXFKDVGXULQJOHDFKDWHUHFLUFXODWLRQ0RLVWXUHDFFHOHUDWHVWKHPHWKDQRJHQLFSURFHVV
Temperature
/DQGILOOEDFWHULDDUHWHPSHUDWXUHGHSHQGDQW7KH\DUHDEOHWRVXUYLYHDQGIXQFWLRQEHORZWKHIUHH]LQJ
SRLQWEXWWKH\DOVRIXQFWLRQZHOODWWHPSHUDWXUHVXSWR&$QDHURELFEDFWHULDSURGXFHVPDOODPRXQWV
RIKHDWDQGPD\QRWEHDEOHWRPDLQWDLQWKHWHPSHUDWXUHRIDVKDOORZODQGILOOZKHQH[WHUQDOWHPSHUDWXUHV
GHFUHDVHVR/)*JHQHUDWLRQPD\H[KLELWVHDVRQDOYDULDWLRQV6DWXUDWHGODQGILOOVPD\QRWDFKLHYHLGHDO
WHPSHUDWXUHVEHFDXVHWKHEDFWHULDGRQRWJHQHUDWHVXIILFLHQWKHDWWRUDLVHWKHWHPSHUDWXUHRIWKHH[FHVV
ZDWHU+LJKHUWHPSHUDWXUHVSURPRWHYRODWLOL]DWLRQDQGFKHPLFDOUHDFWLRQVZLWKWKHZDVWHVRWKHWUDFHJDV
FRPSRQHQWRIODQGILOOJDVWHQGVWRLQFUHDVHZLWKKLJKHUODQGILOOWHPSHUDWXUHV
Age of Landfill
7\SLFDOO\ODQGILOOVKDYHDQLQFUHDVLQJJHQHUDWLRQRIODQGILOOJDVIRUDQXPEHURI\HDUVXQWLOFORVXUHDW
ZKLFKWLPHODQGILOOJDVJHQHUDWLRQUHDFKHVDSHDNDQGEHJLQVWRVXEVLGH$QHYDOXDWLRQRIWKHDJHRIWKH
ODQGILOODQGXVHRIDODQGILOOJDVJHQHUDWLRQFXUYHFDQEHKHOSIXOLQGHWHUPLQLQJWKHOLNHOLKRRGRI
VLJQLILFDQWODQGILOOJDVFRQFHQWUDWLRQVIURPWKHODQGILOO
Landfill Cap
7KHW\SHRUSUHVHQFHRIODQGILOOFRYHUFDQLQIOXHQFHODQGILOOJDVJHQHUDWLRQDQGPLJUDWLRQ$OWKRXJKDORZ
SHUPHDELOLW\FDSZLOOUHGXFHPRLVWXUHDQGODQGILOOJDVJHQHUDWLRQRYHUWKHORQJHUWHUPLQLWLDOO\WKH
LQVWDOODWLRQRIDODQGILOOFDSFRXOGGULYHODQGILOOJDVPLJUDWLRQIXUWKHUIURPWKHODQGILOOLQWKHVXEVXUIDFH
ZLWKRXWSURSHUYHQWLODWLRQHLWKHUSDVVLYHRUDFWLYH7KLVLVHVSHFLDOO\WUXHLQWKHFDVHRIXQOLQHG
XQYHQWHGODQGILOOV
Water Table
/DQGILOOJDVPRYHPHQWLQXQOLQHGODQGILOOVPD\EHLQIOXHQFHGE\JURXQGZDWHUWDEOHYDULDWLRQV$ULVLQJ
ZDWHUWDEOHFRXOGFDXVHGLVSODFHPHQWDQGIRUFHXSZDUGPRYHPHQWRIODQGILOOJDV
Man-made and Natural Conduits
6WUXFWXUHVVXFKDVGUDLQVWUHQFKHVDQGEXULHGXWLOLW\FRUULGRUVFDQDFWDVFRQGXLWVIRUODQGILOOJDV
PLJUDWLRQ*HRORJLFIHDWXUHVLQFOXGLQJIUDFWXUHGEHGURFNSRURXVVRLODQGSHUPHDEOHVWUDWDDOVRSURYLGH
FRQGXLWVIRUODQGILOOJDVPLJUDWLRQ
Landfill Liner Conditions
7KHSUHVHQFHRID6XEWLWOH'RUHTXLYDOHQWODQGILOOOLQHUKDVWKHFDSDELOLW\WROLPLWWKHODWHUDOPLJUDWLRQ
RIODQGILOOJDVLQWKHVXEVXUIDFH8QOLQHGODQGILOOVKDYHQREDUULHUWRSUHYHQWODWHUDOODQGILOOJDVPLJUDWLRQ
LQWKHVXEVXUIDFH
Weather Conditions
%DURPHWULFSUHVVXUHDQGSUHFLSLWDWLRQKDYHVLJQLILFDQWHIIHFWVRQODQGILOOJDVPLJUDWLRQ,QFUHDVHG
EDURPHWULFSUHVVXUH\LHOGVGHFUHDVHGODQGILOOJDVYHQWLQJIURPWKHVXEVXUIDFHXQWLOWKHSUHVVXUHZLWKLQWKH
VXEVXUIDFHLVJUHDWHUWKDQWKHDWPRVSKHULFEDURPHWULFSUHVVXUH&RQYHUVHO\DVWKHEDURPHWULFSUHVVXUH
GHFUHDVHVWKHODQGILOOZLOOYHQWWKHVWRUHGJDVXQWLOSUHVVXUHHTXLOLEULXPLVUHDFKHG&DSSLQJRIDODQGILOO
FDQLQIOXHQFHWKHHIIHFWRIEDURPHWULFSUHVVXUHRQODQGILOOJDVPLJUDWLRQ*HQHUDOO\DPRUHSHUPHDEOH
ODQGILOOFDSZLOODOORZJUHDWHULQIOXHQFHE\EDURPHWULFSUHVVXUHWKDQDOHVVSHUPHDEOHODQGILOOFDS
SECTION 3 – Current Solid Waste Section Rules Pertaining to Landfill Gas
Monitoring
Web link to the 15A NCAC 13B rules - KWWSSRUWDOQFGHQURUJZHEZPVZUXOHV
15A NCAC 13B
.0101- DEFINITIONS
([SORVLYHJDVPHDQV0HWKDQH&+
/RZHUH[SORVLYHOLPLW/(/PHDQVWKHORZHVWSHUFHQWE\YROXPHRIDPL[WXUHRIH[SORVLYH
JDVHVZKLFKZLOOSURSDJDWHDIODPHLQDLUDWGHJUHHV&HOVLXVDQGDWPRVSKHULFSUHVVXUH
.0503 - SITING AND DESIGN REQUIREMENTS FOR DISPOSAL FACILITIES
$VLWHVKDOOPHHWWKHIROORZLQJGHVLJQUHTXLUHPHQWV
D7KHFRQFHQWUDWLRQRIH[SORVLYHJDVHVJHQHUDWHGE\WKHVLWHVKDOOQRWH[FHHG
LWZHQW\ILYHSHUFHQWRIWKHOLPLWIRUWKHJDVHVLQVLWHVWUXFWXUHVH[FOXGLQJJDVFRQWURORU
UHFRYHU\V\VWHPFRPSRQHQWVDQG
LLWKHORZHUH[SORVLYHOLPLWIRUWKHJDVHVDWWKHSURSHUW\ERXQGDU\
.0543 - CLOSURE AND POST-CLOSURE REQUIREMENTS FOR C&DLF FACILITIES
H3RVWFORVXUHFULWHULD
)ROORZLQJFORVXUHRIHDFK& '/)XQLWWKHRZQHUDQGRSHUDWRUPXVWFRQGXFWSRVWFORVXUH
FDUH3RVWFORVXUHFDUHPXVWEHFRQGXFWHGIRU\HDUVH[FHSWDVSURYLGHGXQGHU6XESDUDJUDSK
RIWKLV3DUDJUDSKDQGFRQVLVWRIDWOHDVWWKHIROORZLQJ
&PDLQWDLQLQJDQGRSHUDWLQJWKHJDVPRQLWRULQJV\VWHPLQDFFRUGDQFHZLWKWKH
UHTXLUHPHQWVRI5XOHRIWKLV6HFWLRQDQG
7KHOHQJWKRIWKHSRVWFORVXUHFDUHSHULRGPD\EH
$GHFUHDVHGE\WKH'LYLVLRQLIWKHRZQHURURSHUDWRUGHPRQVWUDWHVWKDW
WKHUHGXFHGSHULRGLVVXIILFLHQWWRSURWHFWKXPDQKHDOWKDQGWKHHQYLURQPHQWDQGWKLV
GHPRQVWUDWLRQLVDSSURYHGE\WKH'LYLVLRQRU
%LQFUHDVHGE\WKH'LYLVLRQLIWKH'LYLVLRQGHWHUPLQHVWKDWWKHOHQJWKHQHGSHULRGLV
QHFHVVDU\WRSURWHFWKXPDQKHDOWKDQGWKHHQYLURQPHQW
.0544 - MONITORING PLANS AND REQUIREMENTS FOR C&DLF FACILITIES
G*DV&RQWURO3ODQ
2ZQHUVDQGRSHUDWRUVRIDOO& '/)XQLWVPXVWHQVXUHWKDW
$WKHFRQFHQWUDWLRQRIPHWKDQHJDVRURWKHUH[SORVLYHJDVHVJHQHUDWHGE\WKHIDFLOLW\
GRHVQRWH[FHHGSHUFHQWRIWKHORZHUH[SORVLYHOLPLWLQRQVLWHIDFLOLW\VWUXFWXUHV
H[FOXGLQJJDVFRQWURORUUHFRYHU\V\VWHPFRPSRQHQWV
%WKHFRQFHQWUDWLRQRIPHWKDQHJDVRURWKHUH[SORVLYHJDVHVGRHVQRWH[FHHGWKHORZHU
H[SORVLYHOLPLWIRUPHWKDQHRURWKHUH[SORVLYHJDVHVDWWKHIDFLOLW\SURSHUW\ERXQGDU\DQG
&WKHIDFLOLW\GRHVQRWUHOHDVHPHWKDQHJDVRURWKHUH[SORVLYHJDVHVLQDQ\FRQFHQWUDWLRQ
WKDWFDQEHGHWHFWHGLQRIIVLWHVWUXFWXUHV
2ZQHUVDQGRSHUDWRUVRIDOO& '/)XQLWVPXVWLPSOHPHQWDURXWLQHPHWKDQHPRQLWRULQJ
SURJUDPWRHQVXUHWKDWWKHVWDQGDUGVRIWKLV3DUDJUDSKDUHPHW
$7KHW\SHRIPRQLWRULQJPXVWEHGHWHUPLQHGEDVHGRQVRLOFRQGLWLRQVWKH
+\GURJHRORJLFFRQGLWLRQVXQGHUDQGVXUURXQGLQJWKHIDFLOLW\K\GUDXOLFFRQGLWLRQVRQDQG
VXUURXQGLQJWKHIDFLOLW\WKHORFDWLRQRIIDFLOLW\VWUXFWXUHVDQGSURSHUW\ERXQGDULHVDQGWKH
ORFDWLRQRIDOORIIVLWHVWUXFWXUHVDGMDFHQWWRSURSHUW\ERXQGDULHV
%7KHIUHTXHQF\RIPRQLWRULQJVKDOOEHTXDUWHUO\RUDVDSSURYHGE\WKH'LYLVLRQ
,IPHWKDQHRUH[SORVLYHJDVOHYHOVH[FHHGLQJWKHOLPLWVVSHFLILHGLQ6XESDUDJUDSKGRIWKLV
5XOHDUHGHWHFWHGWKHRZQHUDQGRSHUDWRUPXVW
$LPPHGLDWHO\WDNHDOOVWHSVQHFHVVDU\WRHQVXUHSURWHFWLRQRIKXPDQKHDOWKDQGQRWLI\
WKH'LYLVLRQ
%ZLWKLQVHYHQGD\VRIGHWHFWLRQSODFHLQWKHRSHUDWLQJUHFRUGWKHPHWKDQHRUH[SORVLYH
JDVOHYHOVGHWHFWHGDQGDGHVFULSWLRQRIWKHVWHSVWDNHQWRSURWHFWKXPDQKHDOWKDQG
&ZLWKLQGD\VRIGHWHFWLRQLPSOHPHQWDUHPHGLDWLRQSODQIRUWKHPHWKDQHRU
H[SORVLYHJDVUHOHDVHVSODFHDFRS\RIWKHSODQLQWKHRSHUDWLQJUHFRUGDQGQRWLI\WKH
'LYLVLRQWKDWWKHSODQKDVEHHQLPSOHPHQWHG7KHSODQPXVWGHVFULEHWKHQDWXUHDQGH[WHQW
RIWKHSUREOHPDQGWKHSURSRVHGUHPHG\
%DVHGRQWKHQHHGIRUDQH[WHQVLRQGHPRQVWUDWHGE\WKHRSHUDWRUWKH'LYLVLRQPD\HVWDEOLVK
DOWHUQDWLYHVFKHGXOHVIRUGHPRQVWUDWLQJFRPSOLDQFHZLWK3DUWV%DQG&RIWKLV3DUDJUDSK
)RUSXUSRVHVRIWKLV,WHPORZHUH[SORVLYHOLPLWPHDQVWKHORZHVWSHUFHQWE\YROXPHRID
PL[WXUHRIH[SORVLYHJDVHVLQDLUWKDWZLOOSURSDJDWHDIODPHDW&DQGDWPRVSKHULFSUHVVXUH
.0566 - OPERATIONAL REQUIREMENTS FOR LAND CLEARING/INERT DEBRIS (LCID)
LANDFILLS
7KHFRQFHQWUDWLRQRIH[SORVLYHJDVHVJHQHUDWHGE\WKHIDFLOLW\VKDOOQRWH[FHHG
D7ZHQW\ILYHSHUFHQWRIWKHORZHUH[SORVLYHOLPLWIRUWKHJDVHVLQIDFLOLW\VWUXFWXUHV
E7KHORZHUH[SORVLYHOLPLWIRUWKHJDVHVDWWKHSURSHUW\ERXQGDU\
.1626 – OPERATIONAL REQUIREMENTS FOR MSWLF FACILITIES
([SORVLYHJDVHVFRQWURO
D2ZQHUVRURSHUDWRUVRIDOO06:/)XQLWVPXVWHQVXUHWKDW
L7KHFRQFHQWUDWLRQRIPHWKDQHJDVJHQHUDWHGE\WKHIDFLOLW\GRHVQRWH[FHHGSHUFHQW
RIWKHORZHUH[SORVLYHOLPLWIRUPHWKDQHLQIDFLOLW\VWUXFWXUHVH[FOXGLQJJDVFRQWURORU
UHFRYHU\V\VWHPFRPSRQHQWVDQG
LL7KHFRQFHQWUDWLRQRIPHWKDQHJDVGRHVQRWH[FHHGWKHORZHUH[SORVLYHOLPLWIRU
PHWKDQHDWWKHIDFLOLW\SURSHUW\ERXQGDU\
E2ZQHUVRURSHUDWRUVRIDOO06:/)XQLWVPXVWLPSOHPHQWDURXWLQHPHWKDQHPRQLWRULQJ
SURJUDPWRHQVXUHWKDWWKHVWDQGDUGVRIDDUHPHW$SHUPDQHQWPRQLWRULQJV\VWHPVKDOOEH
FRQVWUXFWHGRQRUEHIRUH2FWREHU$WHPSRUDU\PRQLWRULQJV\VWHPVKDOOEHXVHGSULRUWR
FRQVWUXFWLRQRIWKHSHUPDQHQWV\VWHP
L7KHW\SHDQGIUHTXHQF\RIPRQLWRULQJPXVWEHGHWHUPLQHGEDVHGRQWKHIROORZLQJ
IDFWRUV
$6RLOFRQGLWLRQV
%7KHK\GURJHRORJLFFRQGLWLRQVVXUURXQGLQJWKHIDFLOLW\
&7KHK\GUDXOLFFRQGLWLRQVVXUURXQGLQJWKHIDFLOLW\DQG
'7KHORFDWLRQRIIDFLOLW\VWUXFWXUHVDQGSURSHUW\ERXQGDULHV
LL7KHPLQLPXPIUHTXHQF\RIPRQLWRULQJVKDOOEHTXDUWHUO\
F,IPHWKDQHJDVOHYHOVH[FHHGLQJWKHOLPLWVVSHFLILHGLQDDUHGHWHFWHGWKHRZQHURU
RSHUDWRUPXVW
L,PPHGLDWHO\WDNHDOOQHFHVVDU\VWHSVWRHQVXUHSURWHFWLRQRIKXPDQKHDOWKDQGQRWLI\WKH
'LYLVLRQ
LL:LWKLQVHYHQGD\VRIGHWHFWLRQSODFHLQWKHRSHUDWLQJUHFRUGWKHPHWKDQHJDVOHYHOV
GHWHFWHGDQGDGHVFULSWLRQRIWKHVWHSVWDNHQWRSURWHFWKXPDQKHDOWKDQG
LLL:LWKLQGD\VRIGHWHFWLRQLPSOHPHQWDUHPHGLDWLRQSODQIRUWKHPHWKDQHJDV
UHOHDVHVSODFHDFRS\RIWKHSODQLQWKHRSHUDWLQJUHFRUGDQGQRWLI\WKH'LYLVLRQWKDWWKH
SODQKDVEHHQLPSOHPHQWHG7KHSODQVKDOOGHVFULEHWKHQDWXUHDQGH[WHQWRIWKHSUREOHP
DQGWKHSURSRVHGUHPHG\
LY%DVHGRQWKHQHHGIRUDQH[WHQVLRQGHPRQVWUDWHGE\WKHRSHUDWRUWKH'LYLVLRQPD\
HVWDEOLVKDOWHUQDWLYHVFKHGXOHVIRUGHPRQVWUDWLQJFRPSOLDQFHZLWKFLLDQGLLLRIWKLV
5XOH
G)RUSXUSRVHVRIWKLV,WHPORZHUH[SORVLYHOLPLWPHDQVWKHORZHVWSHUFHQWE\YROXPHRID
PL[WXUHRIH[SORVLYHJDVHVLQDLUWKDWZLOOSURSDJDWHDIODPHDW&DQGDWPRVSKHULFSUHVVXUH
5HFRUGNHHSLQJUHTXLUHPHQWV
D7KHRZQHURURSHUDWRURID06:/)XQLWPXVWUHFRUGDQGUHWDLQDWWKHIDFLOLW\RUDQDOWHUQDWLYH
ORFDWLRQQHDUWKHIDFLOLW\DSSURYHGE\WKH'LYLVLRQLQDQRSHUDWLQJUHFRUGWKHIROORZLQJ
LQIRUPDWLRQDVLWEHFRPHVDYDLODEOH
LLL*DVPRQLWRULQJUHVXOWVDQGDQ\UHPHGLDWLRQSODQVUHTXLUHGE\,WHPRIWKLV5XOH
.1627 – CLOSURE AND POST CLOSURE REQUIREMENTS FOR MSWLF ACTIVITES
G3RVW&ORVXUH&ULWHULD
)ROORZLQJFORVXUHRIHDFK06:/)XQLWWKHRZQHURURSHUDWRUVKDOOFRQGXFWSRVWFORVXUHFDUH
3RVWFORVXUHFDUHVKDOOEHFRQGXFWHGIRU\HDUVH[FHSWDVSURYLGHGXQGHU6XESDUDJUDSKRI
WKLV3DUDJUDSKDQGFRQVLVWRIDWOHDVWWKHIROORZLQJ
'0DLQWDLQLQJDQGRSHUDWLQJWKHJDVPRQLWRULQJV\VWHPLQDFFRUGDQFHZLWKWKH
UHTXLUHPHQWVRI5XOHRIWKLV6HFWLRQ
7KHOHQJWKRIWKHSRVWFORVXUHFDUHSHULRGPD\EH
$'HFUHDVHGE\WKH'LYLVLRQLIWKHRZQHURURSHUDWRUGHPRQVWUDWHVWKDWWKHUHGXFHG
SHULRGLVVXIILFLHQWWRSURWHFWKXPDQKHDOWKDQGWKHHQYLURQPHQWDQGWKLVGHPRQVWUDWLRQLV
DSSURYHGE\WKH'LYLVLRQRU
%,QFUHDVHGE\WKH'LYLVLRQLIWKH'LYLVLRQGHWHUPLQHVWKDWWKHOHQJWKHQHGSHULRGLV
QHFHVVDU\WRSURWHFWKXPDQKHDOWKDQGWKHHQYLURQPHQW
)ROORZLQJFRPSOHWLRQRIWKHSRVWFORVXUHFDUHSHULRGIRUHDFK06:/)XQLWWKHRZQHURU
RSHUDWRUVKDOOQRWLI\WKH'LYLVLRQWKDWDFHUWLILFDWLRQVLJQHGE\DUHJLVWHUHGSURIHVVLRQDOHQJLQHHU
YHULI\LQJWKDWSRVWFORVXUHFDUHKDVEHHQFRPSOHWHGLQDFFRUGDQFHZLWKWKHSRVWFORVXUHSODQKDV
EHHQSODFHGLQWKHRSHUDWLQJUHFRUG
NOTES:
%DVHGRQWKHUHIHUHQFHGUXOHVDERYHWKHIROORZLQJZRUGVSKUDVHVDUHSUHVHQWO\LQWKH6ROLG:DVWH
6HFWLRQUXOHVSHUWDLQLQJWRPHWKDQHDQGH[SORVLYHODQGILOOJDV
5XOHVWDWHV“Explosive gas means Methane (CH)”
5XOHDUHIHUVWR“explosive gases”
5XOHGUHIHUVWR³Gas Control Plan”
5XOHGUHIHUVWR“methane or other explosive gases”
5XOHGUHIHUVWR³methane monitoring program´
5XOHGUHIHUVWR“methane or explosive gas levels´
5XOHUHIHUVWR“explosive gases”
5XOHUHIHUVWR“explosive gases control”
5XOHDEUHIHUVWR³methane monitoring”DQG³methane monitoring program”.
Monitoring Goals
/DQGILOOGHVLJQDQGODQGILOOJDVPRQLWRULQJUHJXODWLRQVLQ1RUWK&DUROLQDUHTXLUHWKDWWKHUHQRWEHDQ
H[FHHGDQFHRIRIWKH/RZHU([SORVLRQ/LPLW/(/HTXLYDOHQWWRPHWKDQHDWWKHSURSHUW\
ERXQGDU\RU/(/LQRQVLWHVWUXFWXUHV7KHVHUHJXODWLRQVZHUHGHYHORSHGRYHUWLPHWRSURWHFWWKH
KHDOWKDQGVDIHW\RIWKHFLWL]HQVRI1RUWK&DUROLQDDQGWKH86IURPWKHDVSK\[LDWLRQDQGH[SORVLYH
KD]DUGVRIODQGILOOJDV
NC Rule History
$UHYLHZRI1&ODQGILOOJXLGDQFHGRFXPHQWVDQGUHJXODWLRQVIURPWRWKHSUHVHQWLQGLFDWHVWKDWIURP
WKURXJKWKHUHZDVQRPHQWLRQRIGHVLJQUHTXLUHPHQWVUHJDUGLQJWKHFRQWURORIODQGILOOJDVQRU
ZHUHWKHUHDQ\ODQGILOOPRQLWRULQJUHTXLUHPHQWVIRUODQGILOOJDV,QWKHUHJXODWLRQVZHUHFKDQJHGWR
UHTXLUHWKDWVDQLWDU\ODQGILOOGHVLJQSUHYHQWODQGILOOJDVFRQFHQWUDWLRQVRI/(/DWWKHSURSHUW\
ERXQGDU\OLQHDQGLQVLGHRQVLWHVWUXFWXUHV$OWKRXJKDGHVLJQUHTXLUHPHQWZDVDGGHGQRGHVLJQ
UHTXLUHPHQWZDVHVWDEOLVKHGWRGHWHUPLQHLIWKHGHVLJQUHTXLUHPHQWZDVEHLQJPHW,QZLWKWKH
HVWDEOLVKPHQWRIUXOHVUHTXLUHPHQWVIRUGHVLJQVWROLPLWODQGILOOJDVOHYHOVWREHORZDWWKH
SURSHUW\ERXQGDU\OLQHDQGLQRQVLWHVWUXFWXUHVDQGPRQLWRULQJRIODQGILOOJDVFRQFHQWUDWLRQVDURXQG
WKHSHULPHWHURIWKHODQGILOODQGLQVLGHRQVLWHVWUXFWXUHVZHUHDGRSWHG
SECTION 4 – Landfill Gas Incidents and Explosions
Hazards Involving Landfill Gas
/DQGILOOILUHVPD\RUPD\QRWEHGLUHFWO\FDXVHGE\ODQGILOOJDV7KHSULPDU\FRQFHUQZLWKWKHVHILUHVLV
DLUFRQWDPLQDWLRQIURPWKHUHVXOWLQJVPRNHKRZHYHUWKH\DOVRSUHVHQWDYDULHW\RIDGGLWLRQDOSUREOHPV,Q
DGGLWLRQWRFRQFHUQVZLWKFRQWDLQLQJDQGH[WLQJXLVKLQJODQGILOOILUHVSRWHQWLDOUHDFWLRQVLQYROYLQJ
XQNQRZQFKHPLFDOVLQWKHODQGILOOFDQFDXVHXQFHUWDLQKD]DUGV'LVFDUGHGFRQVXPHUSURGXFWVLQD
ODQGILOOVXFKDVSHVWLFLGHVSDLQWVVROYHQWVFOHDQHUVDQGRWKHUPDWHULDOFDQEHWKHVRXUFHRIFKHPLFDO
UHOHDVHV+HDWIURPWKHILUHFDQFDXVHFKHPLFDOVWRYRODWLOL]HEUHDNGRZQDQGHQWHUWKHHQYLURQPHQW$OVR
WREHFRQVLGHUHGLVWKHSUHVHQFHRIRWKHUFRPEXVWLEOHJDVHVLQDGGLWLRQWRPHWKDQH:KHQHYHUDQ
HQYLURQPHQWDOLQYHVWLJDWLRQRIDODQGILOOLVSURPSWHGE\RGRURXVFRPSRXQGVRUH[SORVLYHJDVHVWKH
SUHVHQFHRIWR[LFVXEVWDQFHVVKRXOGDOVREHLQYHVWLJDWHG2QHH[DPSOHLVK\GURJHQVXOILGH+6WKDWFDQ
FDXVHDVSK\[LDWLRQDQGLVIODPPDEOH$QDQDO\VLVVKRXOGLQFOXGHDON\OEHQ]HQHVVXOIXUFRPSRXQGVYLQ\O
FKORULGHDQGPHWKDQHDQGRWKHUSURGXFWVDVVRFLDWHGZLWKLQGXVWULDOZDVWHVFRQVWUXFWLRQDQGGHEULV
ZDVWHDQGQRUPDORUJDQLFDQGLQRUJDQLFZDVWH
)LUHVDQGH[SORVLRQKD]DUGVEHFRPHDFRQFHUQZKHQJDVHVFROOHFWLQFRQILQHGVSDFHV%XLOGLQJV
EDVHPHQWVDQGSLWVDUHW\SLFDOO\UHJDUGHGDVFRQILQHGVSDFHV+RZHYHUODQGILOOJDVHVDOVRFROOHFWLQDQG
PLJUDWHWRFUDFNVLQWKHODQGILOOFRYHUOHDFKDWH³VSULQJV´FUDFNVLQDGMDFHQWVWUXFWXUHVSDYHGSDUNLQJ
DUHDVHWF)LUHVFDQRFFXURQWKHVXUIDFHDQGXQGHUJURXQG6XUIDFHILUHVLQYROYHUHFHQWO\EXULHGZDVWH
QHDUWKHVXUIDFHLQDQDHURELFGHFRPSRVLQJOD\HUW\SLFDOO\WRIHHWEHORZJURXQG7KHVHILUHVFDQEH
LQWHQVLILHGE\VXEVXUIDFHODQGILOOJDVDQGVSUHDGWKURXJKRXWWKHODQGILOO6XEVXUIDFHILUHVRFFXUGHHSHU
ZLWKLQWKHODQGILOOLQYROYHPDWHULDOEXULHGIRUPRQWKVRU\HDUVDQGFDQEXUQIRUGD\VDQGPRQWKV
7KHIROORZLQJLVDEULHIVXPPDU\RIVRPHLQFLGHQWVLQYROYLQJODQGILOOJDVPLJUDWLRQIURPODQGILOOV
)RXUHPSOR\HHVGLHGDVDUHVXOWRIH[SRVXUHWRKLJKFRQFHQWUDWLRQVRIK\GURJHQVXOILGHZKLOH
DWWHPSWLQJWRUHSDLUDOHDFKDWHSXPSDWD& 'ODQGILOOLQ6XSHULRU:LVFRQVLQ-RXUQDORI
(QYLURQPHQWDO+HDWK
$Q\HDUROGJLUOZDVEXUQHGRQKHUDUPVDQGOHJVZKHQSOD\LQJLQDQ$WODQWD*HRUJLD
SOD\JURXQG7KHDUHDZDVUHSRUWHGO\XVHGDVDQLOOHJDOGXPSLQJJURXQGPDQ\\HDUVDJR$WODQWD
-RXUQDO&RQVWLWXWLRQ
:KLOHSOD\LQJVRFFHULQDSDUNEXLOWRYHUDQROGODQGILOOLQ&KDUORWWH1RUWK&DUROLQDDZRPDQZDV
VHULRXVO\EXUQHGE\DPHWKDQHH[SORVLRQ&KDUORWWH2EVHUYHU
2IIVLWHODQGILOOJDVPLJUDWLRQLVVXVSHFWHGWRKDYHFDXVHGDKRXVHWRH[SORGHLQ3LWWVEXUJK
3HQQV\OYDQLD(3$
/DQGILOOJDVPLJUDWHGWRDQGGHVWUR\HGRQHKRXVHQHDUDODQGILOOLQ$NURQ2KLR7HQKRXVHVZHUH
WHPSRUDULO\HYDFXDWHG(3$
$QH[SORVLRQGHVWUR\HGDUHVLGHQFHDFURVVWKHVWUHHWIURPDODQGILOOLQ&LQFLQQDWL2KLR0LQRU
LQMXULHVZHUHUHSRUWHG(3$
,Q6KHULGDQ&RORUDGRODQGILOOJDVDFFXPXODWHGLQDVWRUPGUDLQSLSHWKDWUDQWKURXJKDODQGILOO$Q
H[SORVLRQRFFXUUHGZKHQVHYHUDOFKLOGUHQSOD\LQJLQWKHSLSHOLWDFDQGOHUHVXOWLQJLQVHULRXV
LQMXU\
0HWKDQHJDVPLJUDWHGIURPDQDGMDFHQWODQGILOOLQWRWKHEDVHPHQWRIDQDUPRU\LQ:LQVWRQ6DOHP
1RUWK&DUROLQD$OLWFLJDUHWWHFDXVHGWKHJDVWRH[SORGHNLOOLQJWKUHHPHQDQGVHULRXVO\LQMXULQJ
ILYHRWKHUV86$&(
SECTION 5 - Landfill Gas Monitoring Wells
Locations
/DQGILOOJDVPRQLWRULQJZHOOORFDWLRQVZLOOEHVLWHVSHFLILFGHSHQGLQJXSRQVLWHJHRORJ\GHSWKWR
JURXQGZDWHUVXUIDFHZDWHUIHDWXUHVRQVLWHDQGRIIVLWHVWUXFWXUHVDQGVHQVLWLYHUHFHSWRUV7KHODQGILOO
JDVPRQLWRULQJZHOOVPXVWEHVSDFHGQRPRUHWKDQIHHWDSDUWGHSHQGLQJXSRQVLWHVSHFLILFV$UHDGLO\
DFFHVVLEOHXQREVWUXFWHGSDWKPXVWEHPDLQWDLQHGVRWKDWODQGILOOJDVPRQLWRULQJZHOOVDUHDOZD\V
DFFHVVLEOHXVLQJIRXUZKHHOGULYHYHKLFOHV5HJDUGOHVVRIVLWHVSHFLILFVWKHSHUPLWWHHPXVWREWDLQ
DSSURYDOIURPWKH6ROLG:DVWH6HFWLRQIRUWKHGHVLJQDQGLQVWDOODWLRQRIDQ\ODQGILOOJDVPRQLWRULQJZHOO
V\VWHP
Well Construction and Installation
/DQGILOOJDVPRQLWRULQJZHOOVDUHWKHVDPHDVJURXQGZDWHUPRQLWRULQJZHOOVZLWKWZRH[FHSWLRQV/DQGILOO
JDVPRQLWRULQJZHOOVDUHLQVWDOOHGMXVWDERYHWKHZDWHUWDEOHZLWKLQWKHXQVDWXUDWHG]RQHDQGDUHHTXLSSHG
ZLWKDVWRSFRFNYDOYHRUDTXLFNFRQQHFWFRXSOLQJRQWKHFDSZKLFKDOORZVIRUDFFXUDWHODQGILOOJDV
PHDVXUHPHQWV7KHVWRSFRFNYDOYHPXVWEHHTXLSSHGZLWKIOH[LEOHWXELQJDQGDEDUEFRQQHFWLRQWKDWZLOO
ILWWKHJDVPHWHU¶VLQOHWWXEH7KHVWRSFRFNYDOYHRUDTXLFNFRQQHFWFRXSOLQJPXVWEHFORVHGEHWZHHQ
PRQLWRULQJHYHQWV7KHODQGILOOJDVPRQLWRULQJZHOOPXVWDOVREHFDSSHGORFNHGDQGODEHOHGZLWKD
SHUPDQHQWO\DIIL[HGLGHQWLILFDWLRQSODWHVWDWLQJWKHZHOOFRQWUDFWRUQDPHDQGFHUWLILFDWLRQQXPEHUGDWHRI
ZHOOFRPSHWLWLRQWRWDOGHSWKRIZHOOVFUHHQOHQJWKDQGZHOO,'QXPEHU6HHGHWDLOHGVFKHPDWLFVRID
ODQGILOOJDVPRQLWRULQJZHOO)LJXUH
7KHGHSWKRIHDFKODQGILOOJDVPRQLWRULQJZHOOZLOOEHVLWHVSHFLILFGHSHQGLQJXSRQGHSWKWRJURXQGZDWHU
/DQGILOOJDVPRQLWRULQJZHOOVPXVWEHFRQVWUXFWHGWKHVDPHDVJURXQGZDWHUPRQLWRULQJZHOOVDVGHVFULEHG
LQ$1&$&6XEFKDSWHU&7\SLFDOO\ODQGILOOJDVPRQLWRULQJZHOOVPXVWEHLQVWDOOHGXVLQJ´39&
SLSLQJDQGVFUHHQ7KHVFUHHQOHQJWKDOVRVLWHVSHFLILFPXVWVSDQWKHPDMRULW\RIWKHXQVDWXUDWHG]RQH
ZKLOHVWLOODOORZLQJIRUSURSHUZHOOFRQVWUXFWLRQ$1RUWK&DUROLQD3URIHVVLRQDO*HRORJLVWRU3URIHVVLRQDO
(QJLQHHUPXVWEHSUHVHQWWRVXSHUYLVHWKHLQVWDOODWLRQRIDOOODQGILOOJDVPRQLWRULQJZHOOV7KHH[DFW
ORFDWLRQVVFUHHQHGLQWHUYDOVDQGQHVWLQJRIWKHZHOOVPXVWEHDSSURYHGE\WKH6ROLG:DVWH6HFWLRQ
+\GURJHRORJLVWSULRUWRODQGILOOJDVPRQLWRULQJZHOOLQVWDOODWLRQ(DFKODQGILOOJDVPRQLWRULQJZHOOPXVW
EHVXUYH\HGIRUORFDWLRQDQGHOHYDWLRQE\D1RUWK&DUROLQD5HJLVWHUHG/DQG6XUYH\RU:LWKLQWKLUW\
GD\VRIWKHFRPSOHWHGFRQVWUXFWLRQRIHDFKQHZODQGILOOJDVPRQLWRULQJZHOOWKHERULQJORJDQGDGLDJUDP
RIHDFKZHOOLQFOXGLQJEXWQRWOLPLWHGWRWRWDOGHSWKVFUHHQHGLQWHUYDODQGGLVWDQFHDERYHVHDVRQDOKLJK
ZDWHUWDEOHPXVWEHVXEPLWWHGWRWKH6ROLG:DVWH6HFWLRQ7KHVXEPLWWDOPXVWDOVRLQFOXGHDVFDOHG
WRSRJUDSKLFPDSVKRZLQJWKHORFDWLRQDQGLGHQWLILFDWLRQRIQHZH[LVWLQJDQGDEDQGRQHGODQGILOOJDV
PRQLWRULQJZHOOV
Nested and Clustered Landfill Gas Monitoring Wells
1HVWHGDQGRUFOXVWHUHGODQGILOOJDVPRQLWRULQJZHOOVPD\EHUHTXLUHGLQXQVDWXUDWHG]RQHVRIIHHWRU
PRUHWRPHDVXUHVSHFLILFGHSWKVRIWKHXQVDWXUDWHG]RQH,QLWLDOO\WKHLQVWDOODWLRQRIRQHORQJVFUHHQVKDOO
EHVXIILFLHQW,IDPRQLWRULQJHYHQWVKRZVDQH[FHHGDQFHRIWKHORZHUH[SORVLYHOLPLWWKHQWKH6ROLG
:DVWH6HFWLRQPD\UHTXLUHWKHLQVWDOODWLRQRIQHVWHGDQGRUFOXVWHUHGODQGILOOJDVPRQLWRULQJZHOOV
Abandonment of Wells
$QDEDQGRQPHQWUHFRUGPXVWEHVXEPLWWHGWRWKH6ROLG:DVWH6HFWLRQZLWKLQWKLUW\GD\VRIWKH
DEDQGRQPHQWRIDODQGILOOJDVPRQLWRULQJZHOO7KHODQGILOOJDVPRQLWRULQJZHOOVPXVWEHRYHUGULOOHG
DQGVHDOHGZLWKJURXWLQDFFRUGDQFHZLWK$1&$&&GDQGFHUWLILHGE\D1RUWK&DUROLQD
3URIHVVLRQDO*HRORJLVWRU3URIHVVLRQDO(QJLQHHU
SECTION 6 – Landfill Gas Monitoring Instrumentation
7KHSHUVRQXVLQJWKHODQGILOOJDVPRQLWRULQJLQVWUXPHQWPXVWXQGHUVWDQGWKHSULQFLSOHVRIRSHUDWLRQDQG
IROORZWKHPDQXIDFWXUHU
VLQVWUXFWLRQV7KLVLQFOXGHVFDOLEUDWLQJWKHLQVWUXPHQWDFFRUGLQJWRWKH
PDQXIDFWXUHU¶VVSHFLILFDWLRQV,QFOXGHWKHIROORZLQJRQWKHWRSSRUWLRQRIWKHODQGILOOJDVPRQLWRULQJ
IRUP6HHH[DPSOHEHORZIDFLOLW\QDPHSHUPLWQXPEHUW\SHDQGVHULDOQXPEHURIJDVPRQLWRULQJ
LQVWUXPHQWFDOLEUDWLRQGDWHRIWKHLQVWUXPHQWGDWHDQGWLPHRIILHOGFDOLEUDWLRQW\SHRIJDVXVHGIRUILHOG
FDOLEUDWLRQRUH[SLUDWLRQGDWHRIILHOGFDOLEUDWLRQJDVFDQLVWHUGDWHRIODQGILOOJDV
PRQLWRULQJHYHQWQDPHDQGSRVLWLRQRIVDPSOHFROOHFWRUSXPSUDWHRILQVWUXPHQWEHLQJXVHGDPELHQWDLU
WHPSHUDWXUHDQGJHQHUDOZHDWKHUFRQGLWLRQV9HULILFDWLRQWKDWWKHHTXLSPHQWZDVFDOLEUDWHGLQ
DFFRUGDQFHZLWKWKHPDQXIDFWXUHU¶VVSHFLILFDWLRQVLVDOVRUHTXLUHG:KHQGHWHUPLQLQJZKLFKILHOG
FDOLEUDWLRQJDVWRXVHWDNHLQWRFRQVLGHUDWLRQWKHH[SHFWHGOHYHOVRIPHWKDQHLQWKHODQGILOOJDVPRQLWRULQJ
ZHOOV,IWKHPHWKDQHOHYHOVDUHH[SHFWHGWREHORZXVHWKHJDVFDQLVWHU&2&+,I
WKHPHWKDQHOHYHOVDUHH[SHFWHGWREHKLJKXVHWKHJDVFDQLVWHU&2&+
)RUHYHU\ODQGILOOJDVPRQLWRULQJZHOOSOHDVHLQFOXGHWKHIROORZLQJYHULILFDWLRQRIVDPSOHWXEHSXUJH
SULRUWRHDFKVDPSOHWDNHQVKRXOGEHRQHPLQXWHWKHWLPHSXPSHGLQVHFRQGVVKRXOGEHDWOHDVWRQH
PLQXWHEDURPHWULFSUHVVXUHWLPHVWDELOL]HGUHDGLQJFROOHFWHGSHUFHQWORZHUH[SORVLYHOLPLWSHUFHQW
PHWKDQHE\YROXPHSHUFHQWR[\JHQSHUFHQWFDUERQGLR[LGHDQGDQ\REVHUYDWLRQVRUFRPPHQWV
7KHODQGILOOJDVPRQLWRULQJGDWDIRUP6HHH[DPSOHEHORZDQGUHVXOWVVKRXOGEHUHWDLQHGLQWKHIDFLOLW\¶V
RSHUDWLQJUHFRUGXQOHVVDQH[FHHGDQFHKDVRFFXUUHGDQGRULVUHTXHVWHGE\WKH6ROLG:DVWH6HFWLRQ
/DQGILOOJDVPRQLWRULQJUHDGLQJVIURPQRQFDOLEUDWHGRULQDFFXUDWHO\FDOLEUDWHGLQVWUXPHQWVDUHQRW
UHOLDEOHDQGZLOOWKHUHIRUHEHUHMHFWHGE\WKH6ROLG:DVWH6HFWLRQ/DQGILOOJDVPRQLWRULQJUHDGLQJV
FROOHFWHGZLWKPRQLWRULQJHTXLSPHQWWKDWZDVQRWGHVLJQHGIRUODQGILOOJDVPRQLWRULQJZLOODOVREH
UHMHFWHGE\WKH6ROLG:DVWH6HFWLRQ7KHUHDUHVHYHUDOGLIIHUHQWODQGILOOJDVPRQLWRULQJLQVWUXPHQWVRQ
WKHPDUNHWZKLFKPD\EHXVHGLQRUGHUWRREWDLQDOORIWKHLQIRUPDWLRQUHTXLUHGE\WKH6ROLG:DVWH
6HFWLRQ
Monitoring Times
0RQLWRULQJWLPHVDUHDOVRLPSRUWDQWZKHQFRQGXFWLQJODQGILOOJDVPRQLWRULQJ3URSHUODQGILOOJDV
PRQLWRULQJVKRXOGLQFOXGHVDPSOLQJGXULQJWLPHVZKHQODQGILOOJDVLVPRVWOLNHO\WRPLJUDWH/DQGILOOJDV
FDQPLJUDWHDQGDFFXPXODWHQRWRQO\LQODQGILOOJDVPRQLWRULQJZHOOVLWFDQDOVRPLJUDWHDQGDFFXPXODWH
LQEXLOGLQJVDQGRWKHUVWUXFWXUHV%HFDXVHVXEVXUIDFHJDVSUHVVXUHVDUHFRQVLGHUHGWREHDWDPD[LPXP
GXULQJWKHDIWHUQRRQKRXUVPRQLWRULQJVKRXOGEHFRQGXFWHGLQWKHDIWHUQRRQRUZKHQHYHUWKHEDURPHWULF
SUHVVXUHLVORZ
6FLHQWLILFHYLGHQFHDOVRLQGLFDWHVWKDWZHDWKHUDQGVRLOFRQGLWLRQVLQIOXHQFHWKHPLJUDWLRQRIODQGILOOJDV
%DURPHWULFSUHVVXUHDQGSUHFLSLWDWLRQKDYHVLJQLILFDQWHIIHFWVRQODQGILOOJDVPLJUDWLRQ,QFUHDVHG
EDURPHWULFSUHVVXUHJHQHUDWHVGHFUHDVHGODQGILOOJDVYHQWLQJIURPWKHVXEVXUIDFHXQWLOWKHSUHVVXUHZLWKLQ
WKHVXEVXUIDFHLVJUHDWHUWKDQWKHDWPRVSKHULFEDURPHWULFSUHVVXUH2QWKHRWKHUKDQGZKHQWKH
EDURPHWULF SUHVVXUHGHFUHDVHVWKHODQGILOOZLOOYHQWWKHVWRUHGJDVXQWLODSUHVVXUHHTXLOLEULXPLVUHDFKHG
&DSSLQJRIDODQGILOOFDQLQIOXHQFHWKHHIIHFWRIEDURPHWULFSUHVVXUHRQODQGILOOJDVPLJUDWLRQ *HQHUDOO\
DPRUHSHUPHDEOHODQGILOOFDSZLOODOORZJUHDWHULQIOXHQFHE\EDURPHWULFSUHVVXUHWKDQ DOHVVSHUPHDEOH
ODQGILOOFDS$VDUHVXOWODQGILOOJDVPRQLWRULQJVKRXOGEHFRQGXFWHGZKHQWKHEDURPHWULFSUHVVXUHLVORZ
DQGVRLOVDUHVDWXUDWHG'XULQJWKHZLQWHUVHDVRQZKHQVQRZFRYHULVMXVWEHJLQQLQJWRPHOWRUZKHQWKH
JURXQGLVIUR]HQRULFHFRYHUHGODQGILOOJDVPRQLWRULQJVKRXOGEHFRQGXFWHGZKHQWKHEDURPHWULF
SUHVVXUHLVORZ
Landfill Gas Sampling Procedures
$Q\DFFXPXODWLRQRIODQGILOOJDVLQWKHODQGILOOJDVPRQLWRULQJZHOOVLVWKHUHVXOWRIODQGILOOJDVPLJUDWLRQ
7KHIROORZLQJSURFHGXUHLVDUHFRPPHQGHGH[DPSOHIRUFRQGXFWLQJODQGILOOJDVPRQLWRULQJZHOO
VDPSOLQJEXWDOZD\VUHDGDQGIROORZWKHPDQXIDFWXUHU¶VLQVWUXFWLRQVEHFDXVHHDFKLQVWUXPHQWZLOOEH
GLIIHUHQW
Step 1±&DOLEUDWHWKHLQVWUXPHQWDFFRUGLQJWRWKHPDQXIDFWXUHU¶VVSHFLILFDWLRQV,QDGGLWLRQSUHSDUHWKH
LQVWUXPHQWIRUPRQLWRULQJE\DOORZLQJLWWRSURSHUO\ZDUPXSDVGLUHFWHGE\WKHPDQXIDFWXUHU0DNHVXUH
WKHVWDWLFSUHVVXUHVKRZVDUHDGLQJRI]HURRQWKHLQVWUXPHQWSULRUWRWDNLQJWKHILUVWVDPSOH
Step 2±3XUJHVDPSOHWXEHIRUDWOHDVWRQHPLQXWHSULRUWRWDNLQJUHDGLQJ&RQQHFWWKHLQVWUXPHQWWXELQJ
WRWKHODQGILOOJDVPRQLWRULQJZHOOFDSILWWHGZLWKDVWRSFRFNYDOYHRUTXLFNFRQQHFWFRXSOLQJ
Step 3±2SHQWKHYDOYHDQGUHFRUGWKHLQLWLDOUHDGLQJDQGWKHQWKHVWDELOL]HGUHDGLQJ$VWDEOHUHDGLQJLV
RQHWKDWGRHVQRWYDU\PRUHWKDQSHUFHQWE\YROXPHRQWKHLQVWUXPHQW¶VVFDOH
Step 45HFRUGWKHVWDELOL]HGUHDGLQJLQFOXGLQJWKHR[\JHQFRQFHQWUDWLRQDQGEDURPHWULFSUHVVXUH$
SURSHUUHDGLQJVKRXOGKDYHWZRSHUFHQWR[\JHQE\YROXPHRUOHVV,IOHYHOVRIR[\JHQDUHKLJKHULWPD\
LQGLFDWHWKDWDLULVEHLQJGUDZQLQWRWKHV\VWHPJLYLQJDIDOVHUHDGLQJ
Step 5±7XUQWKHVWRSFRFNYDOYHWRWKHRIISRVLWLRQDQGGLVFRQQHFWWKHWXELQJ
Step 6±3URFHHGWRWKHQH[WODQGILOOJDVPRQLWRULQJZHOODQGUHSHDW6WHSV±
Landfill Gas Constituent Sampling and Analysis
6DPSOLQJRIODQGILOOJDVWRGHWHUPLQHYROXPHSHUFHQWDJHVFRQFHQWUDWLRQVRIHDFKFRQVWLWXHQWFDQEH
DFFRPSOLVKHGWKURXJKWKHXVHRIFDQLVWHUVZKLFKDUHVSHFLILFDOO\GHVLJQHGIRUODQGILOOJDVDQDO\VLV
6HYHUDODQDO\WLFDOPHWKRGVDUHDYDLODEOHWRGHWHUPLQHWKHFRQFHQWUDWLRQVRIDYDULHW\RIFRQVWLWXHQWV
7\SLFDOO\ODQGILOOJDVDQDO\VLVRIWKLVW\SHLVSHUIRUPHGWRGHWHUPLQHWKHQRQPHWKDQHRUJDQLF
FRPSRXQGVHPLVVLRQUDWHIRU7LHUWHVWLQJXQGHUWKH&OHDQ$LU$FW7LWOH96XESDUW:::
,VRWURSLFLGHQWLILFDWLRQRIODQGILOOPHWKDQHFDQEHDFFRPSOLVKHGWRLGHQWLI\RQHVRXUFHRIPHWKDQHIURP
DQRWKHU,QWKLVFDVHLVRWRSHVRIFDUERQDQGK\GURJHQLQWKHPHWKDQHDUHDQDO\]HGWRGHWHUPLQHWKH
PHWKDQHVRXUFH
SECTION 7 - References
$JHQF\IRU7R[LF6XEVWDQFHV 'LVHDVH5HJLVWU\³/DQGILOO*DV3ULPHU$Q2YHUYLHZIRU(QYLURQPHQWDO
+HDOWK3URIHVVLRQDOV´KWWSZZZDWVGUFGFJRY+$&ODQGILOOKWPOWRFKWPODFFHVVHG)HEUXDU\
&DOLIRUQLD(QYLURQPHQWDO3URWHFWLRQ$JHQF\³/DQGILOO*DV0RQLWRULQJ:HOO)XQFWLRQDOLW\DW
&DOLIRUQLD/DQGILOOV´KWWSZZZFDOUHF\FOHFDJRY3XEOLFDWLRQV2UJDQLFVSGIDFFHVVHG
)HEUXDU\
)ORULGD'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ*DV0DQDJHPHQW6\VWHPVXQGHU5XOH
KWWSZZZGHSVWDWHIOXVZDVWHTXLFNBWRSLFVUXOHVGHIDXOWKWPDFFHVVHG)HEUXDU\
0LVVRXUL'HSDUWPHQWRI1DWXUDO5HVRXUFHV)ORRG*UDQW7HDP³$Q$QDO\VLVRI/DQGILOO*DV0RQLWRULQJ
:HOO'HVLJQDQG&RQVWUXFWLRQ´KWWSZZZFOX
LQRUJFRQILWUFGLUHFWSXVKSUH]0LVVRXULB6WXG\SGIDFFHVVHG)HEUXDU\
0LVVRXUL'HSDUWPHQWRI1DWXUDO5HVRXUFHV³'HVLJQDQG&RQVWUXFWLRQRI/DQGILOO*DV0RQLWRULQJ:HOOV´
KWWSZZZGQUPLVVRXULJRYSXEVSXESGIDFFHVVHG)HEUXDU\
:LVFRQVLQ'HSDUWPHQWRI1DWXUDO5HVRXUFHV(QYLURQPHQWDO0RQLWRULQJIRU/DQGILOOVXQGHU&KDSWHU15
KWWSZZZGQUVWDWHZLXVRUJDZZPLQIRUPDWLRQZLDFVVVKWP
DFFHVVHG)HEUXDU\
³/DQGILOO*DVDQ2YHUYLHZ´/DQGILOOJDVFRP:HE)HE
KWWSZZZODQGILOOJDVFRPZHESDJH/)*RYHUYLHZGRF
Landfill Gas Monitoring Plan
Anson Waste Management Facility
Attachment B
LFG Monitoring Locations Site – Figure 1
SCS ENGINEERS, PC 2520 WHITEHALL PARK DRIVE, SUITE 450 CHARLOTTE, NORTH CAROLINA 28273 PHONE: (704) 504-3107 FAX: (704) 504-3174 LFG1LANDFILL GAS MONITORING LOCATIONS LANDFILL GAS MONITORING PLAN WASTE CONNECTIONS OF THE CAROLINAS 375 DOZER DRIVE POLKTON, NC 28135
N
Landfill Gas Monitoring Plan
Anson Waste Management Facility
Attachment C
LFG Well Construction Schematic
Landfill Gas Monitoring Plan
Anson Waste Management Facility
Attachment D
Landfill Gas Monitoring Field Log
Revised – March 6, 2017
NC Division of Waste Management - Solid Waste Section
Landfill Gas Monitoring Data Form
Notice: This form and any information attached to it are "Public Records" as defined in NC General Statute 132-1. As such, these documents are
available for inspection and examination by any person upon request (NC General Statute 132-6).
Facility Name: Permit Number:
Sampling Date: NC Landfill Rule (.0500 or .1600):
Sample Collector Name & Position:
Gas Meter Type & Serial Number: Gas Meter Calibration Date:
Field Calibration Date & Time:
Field Calibration Gas Type (15/15 or 35/50): Field Calibration Gas Canister Expiration Date:
Gas Meter Pump Rate:
Ambient Air Temperature: Barometric Pressure (in. or mm Hg): Weather Conditions:
Instructions: Under “Location or LFG Well”, list monitoring well # or describe monitoring location (e.g., inside field office). Attach a test location map or drawing. Report methane readings as both % LEL and % CH4 by volume.
Convert % CH4 (by volume) to % LEL as follows: % methane (by volume)/20 = % LEL. *Hydrogen Sulfide (H2S) gas monitoring may be required for Construction & Demolition Landfills (CDLFs). See
individual permit conditions and/or Facility LFG monitoring plan.
Location or
LFG Well ID
Sample
Tube
Purge
Time of Day
Time
Pumped
(sec)
Initial % LEL Stabilized % LEL % CH4 (volume)
% O2 (volume)
% CO2 (volume)
% H2S* (volume)
NOTES
NOTE: If needed, attach additional data forms to include additional LFG monitoring data locations for the facility.
ACTION LEVELS: Methane: >1.25% by volume (inside structures) AND >5% by volume (at facility boundary)
Hydrogen Sulfide: >1% by volume (inside structures) AND >4% by volume (at facility boundary)
Certification
To the best of my knowledge, the information reported and statements made on this data submittal and attachments
are true and correct. I am aware that there are significant penalties for making any false statement, representation,
or certification including the possibility of a fine and imprisonment.
SIGNATURE TITLE