Loading...
HomeMy WebLinkAbout0403_Chambers_Ph3_4_DesignHydroReport_DIN26671_20170213Environmental Consultants 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ 5HSRUW $QVRQ:DVWH0DQDJHPHQW)DFLOLW\ 3KDVHVDQG  6XEPLWWHGWR  6ROLG:DVWH6HFWLRQ :-RQHV6WUHHW 5DOHLJK1&    3UHVHQWHGWR 'R]HU'ULYH 3RONWRQ1RUWK&DUROLQD   3UHVHQWHGE\  6&6(1*,1((563& &KDSDQRNH5RDG 5DOHLJK1&    'HFHPEHU )LOH1R   2IILFHV1DWLRQZLGH ZZZVFVHQJLQHHUVFRP david.garrett@a mecfw.com Digitally signed by david.garrett@amecfw.com DN: cn=david.garrett@amecfw.com Date: 2017.02.13 16:10:17 -05'00' Amec Foster Wheeler Environment & Infrastructure, Inc. 4021 Stirrup Creek Drive, Suite 100 Registered in North Carolina Durham, North Carolina 27703 Engineering and Land Surveying License No. F-0653 919.381.9900 Geology License No. C-247 amecfw.com December 6, 2016 Nelson Breeden, P.E. Waste Connections of the Carolinas 375 Dozer Drive Polkton, NC 28135 Permit No. 0403-MSWLF Chambers Development MSWLF - Anson County Response to Regulatory Review Comments Phases 3 and 4 Design Hydro Report and Monitoring Plan Amec Foster Wheeler is pleased to offer the following response to comments provided by the NCDEQ Solid Waste Section in their letter dated August 19, 2016 (DIN 26670). The Design Hydrogeologic Report for the proposed Phases 3 and 4 expansion was prepared by SCS Engineers under my direction. My records show the date of the submitted document as December 1, 2015. The Water Quality Monitoring Plan is dated July 2, 2015. I have made simple corrections to the document text, except for Drawings M1 and M2 of the Water Quality Monitoring Plan, for which I prepared new drawings based on the previous submittals. The following response addresses the individual comments in the order presented in the NCDEQ letter and specifies where the requested changes may be found within the work. Design Hydrogeologic Report – ref. 15A NCAC 13B .1623(b) Change the plan sheets from ‘Draft’ to ‘Final.’ The word ‘Draft’ has been removed from each of the plan sheets and replaced with ‘Final.’ During discussions with the design team, it was realized that the order of the proposed phases was incorrect in the December 2015 submittal. I have swapped the designations for Phase 3 and Phase 4 on the pdf files (paper and electronic submittals). Water Quality Monitoring Plan – ref. 15A NCAC 13B .1623(b)(3) Section 2.0: Note whether MW-10S has been installed and sampled for Phase 2 activation since submittal of this report. As of this writing, the well MW-10S has not been installed. This well is scheduled for installation concurrent with Phase 2D construction, anticipated for early-mid 2017. Arrangements will be made to have this well installed and activated. Page 2 of the text shows a table that has been so amended. Section 2.0: Note when the compliance wells for Phase 3 and Phase 4 are planned to be installed and sampled. W a te r Q u a l it y Mo n i to r i n g P l a n U pd ate A n s o n Wa ste M a na ge m e nt F a c il i ty 2 2.0 RATIONALE FOR MONITORING LOCATIONS Two upgradient wells serve as background, MW-2S (shallow) and MW-2D (deep), located along the southern side Phase 1. Down-gradient compliance wells are located in pairs, generally to the northeast of Phases 1 and 2 at a horizontal spacing appropriate to the subsurface conditions, plus one pair to the southwest. These wells were located based on earlier studies and tend to focus on the former drainage features. The well couplets (or pairs) monitor the upper saprolite aquifer (Units 1 and 2 described in Phases 3 and 4 Design Hydrogeologic Report) and the upper bedrock aquifer (Unit 3). Four wells, MW-6S/D and MW-7S/D, formerly located within the Phase 2 footprint, were abandoned. Figures M1 and M2 depict the monitoring locations. New monitoring wells are proposed to the north and west of Phases 3 and 4, focusing again on the drainage features that align with the regional joint pattern visible in the topography. The potentiometric map found in the Design Hydrogeologic Report depicts a groundwater divide aligned with the original ridgeline, with the saturated layer residing near the base of the saprolite overburden (Units 1and 2). Well spacing on the north and west sides appears closer than on the east side because surface drainage features originally converged to the east but not the other directions. The presence of diabase dikes and a major geologic contact have not been shown to affect the monitoring program. In keeping with recent modifications to the groundwater monitoring program, only shallow wells extending to “auger refusal” are proposed at this time. Background Well Bottom Depth • MW-2S and MW-2D 31.0’ and 38.0’ respectively Phase 1 Compliance Wells • MW-1D 45.5’ • MW-3S and MW-3D 20.0’ and 40.0’ • MW-4S and MW-4D 30.0’ and 60.5’ • MW-5S and MW-5D 30.0’ and 49.0’ • MW-8S and MW-8D 35.0’ and 49.0’ Phase 2 Compliance Wells • MW-9S 27.5’ • MW-10S 50’ anticipated based on Piez PH-29A* Phase 3 Compliance Wells Anticipated Depth** • MW-11S 50’ based on PH-29A • MW-12S 30’ based on Old MW20-OB • MW-13S 30’ based on Old MW20-OB • MW-14S 45’ based on Old MW17A-BZE • MW-15S 25’ based on Old MW17A-BZW Phase 4 Compliance Wells Anticipated Depth** • MW-16S 25’ based on Piez B-15 • MW-17S 20’ based on Piez B-10Dp • MW-18S 20’ based on Piez B-9Dp • MW-19S 40’ based on Piez B-2Dp • MW-20S 35’ based on Piez B-3p * Scheduled for installation in 2017 concurrent with Phase 2E construction ** Depths may vary – do not use these depths for absolute budgeting W a te r Q u a l it y Mo n i to r i n g P l a n U pd ate A n s o n Wa ste M a na ge m e nt F a c il i ty 3 Provisions have been incorporated into current sampling protocols that require sampling of deep wells in the event there is insufficient water in the shallow wells. This practice will be continued at the Phase 3 and 4 wells. By selecting locations near the drainage features, new wells are expected to provide early detection of a release of contaminants onto the uppermost aquifer. Based on the distance to the facility boundary, a point of compliance exists closer to the footprint than the facility boundary, at distance of approximately 250 to 300 feet, so the review boundary for well locations is 125 to 150 feet, allowing leeway to accommodate the topography. Well screen intervals will be selected in the field based on existing conditions. Well installations will be performed under the direction of a qualified geologist. Future amendments may be required to ensure the wells provide representative monitoring results. 3.0 S URFACE SAMPLING Surface water sampling locations are as follows: Upstream • Pinch Gut Creek Upstream (BG-1) • Brown Creek Upstream (BG-2) Downstream • Brown Creek Downstream (SG-3) • Pinch Gut Creek Downstream (SG-4) Underdrains installed beneath certain cells have designated sampling points as follows: UD-1 • Cell 2B East Formerly SG-5discharges to a sediment basin nearest MW-9 UD-2 • Cell 2C South includes Cell 2B West discharges to a swale leading to the sediment basin nearest MW-10 UD-3 • Cell 2C North discharges to the sediment basin nearest MW-10, downstream of UD-2 Please take note of the following conditions: 1. Samples will be acquired from within the pipe to avoid cross contamination with surface water. 2. The drains are expected to stop flowing within a few months after installation; Note 5 on Drawing M-1 specifies observation to detect flow (with record keeping) on a monthly basis. 3. An internal inspection (e.g. camera survey) is required for UD-3 (see Note 5E on Drawing M1). 332 Chapanoke Road 919 662-3015 Environmental Consultants Suite 101 FAX 919 662-3017 and Contractors Raleigh, NC 27603-3415 www.scsengineers.com Offices Nationwide December 1, 2015 File No. 02214709.00 Mr. Ed Mussler, PE Permitting Branch, Solid Waste Section NCDEQ Division of Waste Management Green Square, 217 West Jones Street Raleigh, North Carolina 27603 Subject: Design Hydrogeologic Investigation Report Chambers Development of North Carolina Anson Waste Management Facility, Phases 3 and 4 Polkton, North Carolina (Anson County) Facility Permit No. 0403-MSWLF-2010  Dear Ed: On behalf of Waste Connections, Inc., SCS Engineers, PC (SCS) has prepared the following Design Hydrogeologic Report, prepared in accordance with North Carolina Solid Waste Rule 15 NCAC 13B .1623, et seq. This report covers Phases 3 and 4 of the MSWLF site, covering 62 acres of footprints. The site has been known as Chambers Development of North Carolina in the SWS files through various changes in ownership. This work builds upon studies dating to the early 1990’s, including the Phases 3 and 4 Design Hydrogeologic Report prepared in 2009 by David Garrett & Associates and the earlier Site Suitability study prepared by others. This study was conducted under the supervision of a qualified, licensed geologist and includes data from 32 new test borings, most with piezometers, and 50 or more relevant borings from the earlier work. Continuous ground water observation data extends back to 2001 for several monitoring wells. This study was conducted during a wet winter/spring season, with observed water levels very close to historic maximums. A six-month period of ground water observation was performed, i.e., December 2014 through June 2015, per prior discussions with SWS staff. Based on our familiarity with the site, we believe this is a sufficient time period for data collection. We appreciate the Section’s cooperation with this project. Please contact us if you have any questions regarding this submittal. Sincerely, G. David Garrett, PG, PE Steven C. Lamb, PE Project Manager Vice President 6&6(1*,1((563&    6&6(1*,1((563&     cc: Nelson Breeden, PE, Region Engineer, Waste Connections C:\Users\3921gdg\Documents\Projects\Waste Connections\documents\DH transmittal letter 8-5-2015.doc 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\   L 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ5HSRUW $QVRQ:DVWH0DQDJHPHQW)DFLOLW\3KDVHVDQG 6XEPLWWHGWR 1&'(4'LYLVLRQRI:DVWH0DQDJHPHQW 6ROLG:DVWH6HFWLRQ :-RQHV6WUHHW 5DOHLJK1&    3UHVHQWHGWR :DVWH&RQQHFWLRQV,QFRI1RUWK&DUROLQD 'R]HU'ULYH 3RONWRQ1RUWK&DUROLQD    6&6(1*,1((563& &KDSDQRNH5RDG 5DOHLJK1&     'HFHPEHU )LOH1R 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\   LL 7DEOHRI&RQWHQWV  6HFWLRQ3DJH ,QWURGXFWLRQ 3URMHFW'HVFULSWLRQ &XUUHQW6LWH&RQGLWLRQV 352-(&7+,6725< 6LWH6XLWDELOLW\,QYHVWLJDWLRQ 'HVLJQ+\GURJHRORJLF6WXGLHVIRU3KDVH 'HVLJQ+\GURJHRORJLF6WXGLHVIRU3KDVH +\GURJHRORJLF,QYHVWLJDWLRQ /RFDODQG5HJLRQDO*HRORJ\ D   6LWH5HFRQQDLVVDQFH D   7RSRJUDSK\DQG'UDLQDJH %HGURFN&KDUDFWHULVWLFV 6SULQJV6HHSVDQG*URXQG:DWHU'LVFKDUJH)HDWXUHV )LHOGDQG/DERUDWRU\7HVWLQJ D  DQG   7HVW%RULQJ'DWD D  $  /DERUDWRU\'DWD D  % DQG &  )RUPDWLRQ'HVFULSWLRQV D  '  )LHOG+\GURORJLF7HVWLQJ D  (  2WKHU,QYHVWLJDWLYH7HFKQLTXHV D   6WUDWLJUDSKLFDQG+\GURJHRORJLF8QLWV D   :DWHU7DEOH,QIRUPDWLRQ D  $'  6KRUW7HUP:DWHU/HYHOV D  $  /RQJ7HUP:DWHU/HYHOV D  %  (VWLPDWHG6HDVRQDO+LJK:DWHU7DEOH D  &  )DFWRUV7KDW,QIOXHQFH:DWHU7DEOH D  '  +RUL]RQWDODQG9HUWLFDO*URXQG:DWHU)ORZ'LPHQVLRQV D   *URXQG:DWHU&RQWRXUV D   )LHOG,QYHVWLJDWLRQ5HFRUGV D  DQG  DQG   2WKHU*HRORJLF+\GURJHRORJLF&RQVLGHUDWLRQV D   6LWH6SHFLILF,QIRUPDWLRQ *URXQG:DWHU0RQLWRULQJ&RQVLGHUDWLRQV E  %  5HOHYDQW3RLQWRI&RPSOLDQFH E  &  %HGURFN 5RFN&RULQJ 'DWD E  '  %HGURFN&RQWRXU0DS E  )  +\GURJHRORJLF&URVV6HFWLRQV E  *  $UHD*URXQG:DWHU)ORZ5HJLPH E  +  3LH]RPHWHU7HVW%RULQJ$EDQGRQPHQW E  ,     'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    LLL /LVWRI7DEOHV   1R 7LWOH  7HVW%RULQJ3LH]RPHWHU'DWD  *HRWHFKQLFDO/DERUDWRU\'DWD  )LHOG+\GUDXOLF&RQGXFWLYLW\'DWD  *URXQG:DWHU2EVHUYDWLRQ'DWD  9HUWLFDO*URXQG:DWHU*UDGLHQWV  +RUL]RQWDO*URXQG:DWHU*UDGLHQWV  *URXQG:DWHU+\GURJUDSKVIROORZWKHWDEOHV   /LVWRI'UDZLQJV  'UDZLQJ 'UDZLQJ 7LWOH    &&RYHU'UDZLQJ   6  ([LVWLQJ&RQGLWLRQV :KROH6LWH    6  7HVW%RULQJ/RFDWLRQV 3KDVHVDQG    6  )HEUXDU\*URXQG:DWHU&RQWRXUV   6  (VWLPDWHG0D[LPXP6HDVRQDO+LJK*URXQG:DWHU&RQWRXUV   6  *HQHUDOL]HG%HGURFN $XJHU5HIXVDO &RQWRXUV   0  *URXQG:DWHUDQG/DQGILOO*DV0RQLWRULQJ/RFDWLRQV     ;  +\GURJHRORJLFDO&URVV6HFWLRQV RI    ;  +\GURJHRORJLFDO&URVV6HFWLRQV RI    ;  +\GURJHRORJLFDO&URVV6HFWLRQV RI      $SSHQGLFHV  'DWD7DEOHV  'UDZLQJV  7HVW%RULQJ/RJV  *HRWHFKQLFDO/DERUDWRU\'DWD  6OXJ7HVW3HUPHDELOLW\&DOFXODWLRQV  6XSSOHPHQWDO'DWD  :DWHU4XDOLW\0RQLWRULQJ3ODQ  /DQGILOO*DV0RQLWRULQJ3ODQ 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________   ,1752'8&7,21 SCS Engineers, PC (SCS) performed a Design Hydrogeologic investigation for the Anson Waste Management Facility, Phases 3 and 4. The site is near Polkton, in Anson County, North Carolina. The purpose of the study is to verify that subsurface conditions, i.e., base grade separation to groundwater and bedrock, are consistent with the findings of earlier studies for the design of the 60-acre expansion area. This study was performed in accordance with North Carolina Solid Waste Management Rule 15A NCAC 13B .1623 (b), in support of a Permit to Construct application. The report follows the order of presentation in the rules.  352-(&7'(6&5,37,21 Chambers Development of North Carolina, Inc. (now a subsidiary of Waste Connections, Inc.) owns and operates the 1200-acre Anson Waste Management Facility (Permit No. 04-03). Phase 1 became operational ca. 2001. Phase 2 is a contiguous expansion north of Phase 1, permitted ca. 2009. Phase 3 is a 30-acre expansion to the north of Phase 2, while Phase 4 is another 30-acre expansion to the west of Phase 2. All phases were included in the original site permitting. Tentative base grades for Phases 3 and 4, previously developed by others, have been revised to meet the 4 foot minimum vertical separation requirement, but these are subject to further revision. Both phases are subdivided into three or four lined cells.  &855(176,7(&21',7,216 Portions of study area have been used for soil borrow, which altered the original topography. An estimated average of 25 feet of soil has been removed from the borrow areas. Current topo, updated for this investigation, is shown in Drawing S1. Ground surface elevations within Phase 4 vary from El. 330 feet (MSL) within the northern end of the footprint to El. 310 in the south end. Phase 3 ground surfaces vary from El. 350 feet along a ridge within the western side of the footprint to El. 260 feet near the northeastern corner. The original topo consisted of a dissected ridge oriented north-south within the western side of the site, which divided surface drainage east and west. To the west, ground surfaces slope steeply (15%) through thick woods to Brown Creek; to the east the ground is sparsely vegetated slopes gently (2-5%) to Pinch Gut Creek. The creeks flow north, forming the property boundary. Many of the on-site drainage features were classified as ephemeral streams and were evaluated for 401/404 jurisdiction. A former drainage feature extending into Phases 1 and 2 was mitigated under an approved mitigation plan, ca. 2000. The original delineation did not show any stream or wetlands features in Phases 3 or 4. The removal of vegetation and borrow activities have resulted in poor surface drainage and water uptake, thus water tends to pond within the upper few feet beneath the surface in the central higher elevations of the site. This impacts ground water recharge and is believed to have produced atypically high water levels in portions of the site. The region experienced normal to high rainfall during the investigation. No rock outcrops were observed in the Phases 3 and 4 areas, but some cobble- size “float” was observed. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________   352-(&7+,6725< The following recaps the various historical documents reviewed for the preparation of this Design Hydrogeologic study of the Phases 3 and 4 footprints. Throughout the following text, references will be made to the following works. Relevant data from the earlier work has been incorporated into this report, referenced as appropriate.  6,7(68,7$%,/,7<,19(67,*$7,21 The initial Site Suitability work was performed ca. 1992 by GZA Environmental, Inc. The work included test borings with numerous piezometers (the old MW-series and P-series), field and laboratory testing, rock coring, approximately 100 test pits to evaluate clayey soils, and a magnetometer study to delineate two diabase dikes contained within the site. The earlier work included the Phase 3 and 4 foot prints and characterized the basic ground water flow regime, which has been expanded upon (but remains consistent) within the later detailed design-stage investigations. The earlier work is reported in the May 28, 1992 Site Application, Volumes I – III, with follow up reports including the May 1995 Supplement to Hydrogeological Study and an undated volume containing Appendices A – G.  '(6,*1+<'52*(2/2*,&678',(6)253+$6( Several documents containing hydrogeologic information, prepared subsequent to the initial Site Suitability report, have been reviewed. The Construction Permit Application prepared by GZA with a revised date of November 12, 1996, approved by Solid Waste Section on June 1, 2000, includes references to a separate volume titled Section 7.0, Design Hydrogeologic Report, prepared by TRC Environmental, dated December 1998. This document included the Water Quality Monitoring Plan and deep coring data that extended into Phases 3 and 4. The monitoring well installation records were found in an archive file at the Solid Waste Section. The earlier studies focused on the diabase dikes and included borings extending to depths up to 200 feet. Additional evaluation of the diabase dike and ground water conditions within Cells 1D and 1E were performed in September 2002 under the direction of the author. The earlier studies culminated with some 133 soil test borings, piezometers and monitoring wells over the entire site, which included 24 borings (about half extending into bedrock) located within proximity to the Phases 3 and 4 study areas, and another dozen in close proximity.  '(6,*1+<'52*(2/2*,&678',(6)253+$6( The Phase 2 study was completed by ESP Associates and David Garrett & Associates between 2003 and 2007. The investigation included an additional 41 soil test borings with piezometers at 34 locations, including 7 nested pairs. Ten of these borings are in close proximity to Phases 3 and 4. The study included 35 slug tests to determine the in-situ coefficient of hydraulic conductivity, along with laboratory testing of representative soil samples and bedrock cores. Several of the Phase 2 borings were located in close proximity to Phases 3 and 4. Relevant test boring, field and laboratory test data are included in this report. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________   +<'52*(2/2*,&,19(67,*$7,21   %  $ DQG $   Drawing S-2 shows the locations of test borings and piezometers installed within and near Phases 3 and 4. Groundwater potentiometric surface maps are presented in Drawing S3 and S4, representing the February 2015 observations and estimated maximum long-term seasonal high (MLSH) ground water elevations, respectively. Drawing S-5 presents the bedrock surface map based on auger refusal data. The data are presented in cross-sectional views in Drawings X1 through X3. Tabulated subsurface data, groundwater observations, field and laboratory data, and calculated gradients and velocities are presented on Tables 1 through 6. Supporting data are presented in Appendices 1 through 6.  /2&$/$1'5(*,21$/*(2/2*< $   The site is located in the southern central Piedmont physiographic and geologic province of North Carolina, specifically along the contact between the Carolina Slate Belt to the west and the Deep River Triassic Basin to the east (see Figures 1 and 2). Published mapping 1 shows the site slightly east of the contact, i.e., the site is mostly within the basin, but contacts mapped at that scale can vary – the site investigation revealed rock units associated with the Slate Belt in the western portions of the site and rocks associated with the Triassic basin to the east, with the contact passing through the Phases 3 and 4 footprints. SITE Figure 1 – North Carolina Geologic Map The southern Appalachian Piedmont has experienced a complex geologic history involving multiple compression events (mountain-building uplifts) and at least one tension event (rifting). Based on the literature, ancient sutures between the many former exotic terranes that comprise the Piedmont contain no active faults, and no active seismicity is known. Three principal rock formations are mapped in proximity to the site: 1 North Carolina Geological Map, Scale 1:62,500, NC Geological Survey, 1985. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  Triassic – sedimentary “red beds” associated with the Chatham group in the Deep River Basin; described as gray, reddish brown to maroon, non-marine (fluvial) sandstone, siltstone, fanglomerate or conglomerate; occurring in undifferentiated, lenticular beds; locally referred to as the Wadesboro Formation according to some texts (such are references made within this work); typically associated with post-Appalachian rifting during the Triassic period (240 – 205 m.y.). Conjugate jointing suggests possible emplacement during back limb tension concurrent with the late-stage compression stages of the Appalachian uplift. Such tectonic events were recorded throughout the Paleozoic rocks in the region. Fig. 2 – NC Geologic Map (Excerpt) Argillite – metasedimentary and metavolcanic formations associated with either the Cid or Floyd Church formations, described as light gray (often silvery gray) to bluish gray or brown, well bedded, mainly clay and silt size particles, laminated with prominent bedding plane cleavage (“Slate Belt”); also present are beds of mudstone, silty sandstone (greywacke), or conglomerate; associated with the pre-Appalachian archipelago of the late-Proterozoic to late-Cambrian periods (620 – 560 m.y.) Diabase – intrusive gabbroic rocks described as dense, dark gray-black, medium grained dikes and sills, Jurassic in age (205 – 138 m.y.), mobilized during post-Appalachian tension events; the linear characteristics and deep, near-vertical orientation bring an interest for potential groundwater movement in environmental site evaluations; these rocks contain iron-oxides (spinels) that produce a strong magnetic signature, useful for non-intrusive mapping, but experience has demonstrated that the anomaly patterns typically present much larger than the actual units, which can mislead investigators in the determination of unit boundaries. None of these formations typically form outcrops, except along sharply incised streams, and none were noted on the site although exposures are present in nearby road cuts. The Triassic and Slate Belt rocks are easily distinguished based on color and texture and have unique soil characteristics. Triassic formations near the site are typically dull red or dark gray-maroon and present as hard clayey silt, often with a friable “chunky” texture, while the Slate Belt rocks are silvery-gray when fresh and weather to bright yellow to red or mottled gray silt, typically clayey. Soils in this region typically occur as a mix of fine grained sands, silts and clays that weather in- situ from the underlying bedrock, called “saprolite” (or “residual soils”). These materials typically become less weathered and denser with increasing depth, transitioning to “partially weathered rock” or PWR, an engineering term in regional use that is commonly applied to residual soils exhibiting standard penetration resistance values in excess of 100 blows per foot. Depths to the PWR vary with the bedrock mineralogy, typically shallower in the higher areas and deeper in the low areas; i.e., the density of the subsurface material, in conjunction with fracture patterns, gives rise to the topography. PWR can contain boulders and zones of harder material, and thicknesses vary considerably, sometimes extending several tens of feet below the surface. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  The PWR is of interest as a primary groundwater pathway – these soils tend to be coarse grained, hence they are highly porous and often “opened” with secondary porosity, e.g., jointing and exfoliation fractures. Within a typical piedmont soil profile, upper soils are often clay-rich and less permeable than the PWR, forming an upper boundary to the more transmissive zone. The deeper, unweathered bedrock is also less permeable, providing a lower boundary – this can lead to partially to fully confined conditions within the PWR aquifer. Boundaries between soil, PWR and bedrock can be gradual and spatially variable. Sometimes a zone of PWR can extend along fractures deep into the bedrock, creating “slots” – these are separate but interconnected aquifers – but typically the PWR is thought to mantle the bedrock, connecting the water bearing zones. Either rock type on this site may weather to plastic clay near the surface, but localized sand or gravel lenses are possible, especially in the Slate Belt rocks, which tend to contain stringers of quartz or other small inclusions. The near-surface clay tends to occur in lenticular pockets of unpredictable depth and extent. Deeper soils tend to become sandy or gravelly in the Slate Belt rocks; chunky and rock-like (but usually friable) in the Triassic rocks. Diabase typically weathers deeply to highly plastic clay beneath highlands (outcrops are rare), but the relatively small surface area limits soil availability; deeper diabase soils tend to be stony.  6,7(5(&211$,66$1&( $    7RSRJUDSK\DQG'UDLQDJH The Anson Waste Management Facility is located in western Anson County, North Carolina, approximately 4 miles east of Polkton, accessed from US 74. Figure 3 shows the topo as a large dissected ridge, oriented to the northeast-southwest, along the regional strike of the geologic formations. The site is bounded on two sides by converging perennial streams – the facility boundary is roughly triangular – on the north and west by Brown Creek and on the east by Pinch Gut Creek. Drainage is directed toward the two boundary streams via a dendritic network of numerous smaller streams (some seasonal) and normally dry seasonal drainage features. Ground surface elevations within Phase 4 vary from approximately El. 330 feet (MSL) near the northern end to approximately El. 310 in the south end. Within Phase 3 ground surface varies from approximately El. 350 feet along the remnant ridge in the western side of the footprint to approximately El. 260 feet along Figure 3 – USGS Topographic Map the eastern margin. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  Phases 3 and 4 are situated across the crest of the ridge, which splits the drainage from west to southwest in Phase 4 and northeast to east in Phase 3. Drainage patterns are not complex: toward the east two normally dry drainage features dissect the surface, draining east and northeast toward spring-fed streams in the lower elevations (outside the footprint), which lead to the large boundary streams; to the west and north are numerous deep drainage features, some wet, most are not, that lead to the boundary streams. The drainage features align with regional jointing and reflect fracture patterns that extend beneath the Phases 3 and 4 footprints, making the drainage features surrounding the footprint the logical places to monitor ground water. The site is hydraulically isolated from its surroundings, but surface drainage from up-gradient of Phase 1 has been diverted to perimeter channels leading toward storm water basins. The maps show a 100-year floodplain located near both boundary creeks, but none within Phases 3 and 4. Some sluggish drainage was observed along flatter, central portions of the study area, resulting from recent grading activities. Nothing concerning topography and drainage, observed either on the maps or per reconnaissance, indicates any detriment to monitoring the site.  %HGURFN&KDUDFWHULVWLFV Rock exposures are not common in any of the mapped formations near the site, thus the opportunity for in-situ characterization is limited. No natural outcrops have been identified within the Phases 3 and 4 footprints, except for some “float” consisting of quartz cobbles, remnant of quartz “stringers” or veinlets, and scattered diabase nodules of various sizes. The saprolite exposed in the deep grade cuts provided clues to the deeper bedrock, including both the friable, angular (highly jointed) argillite and a sandy, rounded pebble-conglomerate associated with the Triassic formation. Within a deep cut for an underdrain being installed beneath Cell 2C in Phase 2, the weathered diabase dike was exposed and the contact between the argillite and the Triassic sediments was discernable approximately where it is shown in the site mapping. Rock core descriptions presented in the test boring records indicate the following characteristics, typical of the formations known elsewhere in the region: Triassic – hard, pinkish gray, fine to coarse sandstone with low-angle to moderately dipping joints, slightly weathered to unweathered, interbedded with hard, dusky red siltstone with few shallow unweathered joints/fractures; zones called “greywacke” (very silty sandstone) were noted; RQD varies from 77 to 100 percent. This formation was sampled via coring techniques and/or rotary-air drilling at borings P-12D, MW-26SB, MW-27SB, MW-27DB, MW-32SB, and MW-33SB from prior investigations. Argillite – hard, pale gray, half-inch thick beds dipping 30 to 45 degrees, with highly weathered zones, brecciated (pulverized) zones; other minor fractures (some annealed with calcic minerals) and clay-filled zones; highly weathered and strongly oxidized (iron- stained) joints throughout; RQD varies from 27 in fractured and weathered zones to 100 percent. Representative borings from the recent investigation include B-4, B-18, B-24 and from the older investigations P-1D, P-14D, MW-12SB, MW-13 SB, MW-13DB, MW-14BZW, MW-14A-SB, MW-16DB, MW-16SB, MW-17SB, and MW-17A-BZW. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  Diabase – hard to very hard, dark bluish gray, highly fractured low-angle to steeply dipping fractures (closely spaced), some clay-filled; heavy iron-oxide stains, white quartz fragments; RQD varies from 5 in fractured and weathered zones to 65 percent. Borings penetrating into the unit are P-13D, MW-14B-BZW, MW-14B-DD, MW-17A-BZE, MW-17A-DD, and MW-1D from prior investigations.  6SULQJV6HHSVDQG*URXQG:DWHU'LVFKDUJH)HDWXUHV Perennial or seasonal springs and seeps (with associated wetlands) were noted down gradient of the Phases 3 and 4 study area. These features serve as localized groundwater discharge features for the uppermost aquifer. Streams leading from these features become well-developed creeks further down gradient and lead to the named streams along the facility boundary. The larger creeks and boundary streams serve as discharge features for the deeper reaches of the uppermost aquifer. Observation during the wet season suggests that the smaller drainage features within the interior of Phases 3 and 4 may discharge “perched” water, e.g., infiltrated water impounded in the near-surface soils, or “attenuate” runoff, as well as conveying direct runoff following periods of heavy rainfall, but these are not technically ground water discharge features.  ),(/'$1'/$%25$725<7(67,1*    $  $1'    7HVW%RULQJ'DWD D  $  Table 1 presents a summary of the test boring data, e.g. depths to bedrock, weathered rock, ground-water depths, total boring depths, and piezometer screen intervals, arranged by hydrogeologic unit. Test boring logs and piezometer completion records are presented in Appendix 3, providing relative density data, lithologic characteristics, USCS classifications, and groundwater depths. Supplemental data from earlier investigations are presented in Appendix 6. Borings for Phases 3 and 4, i.e., the B-series, were contracted to Red Dog Drilling, Inc., NC Well Contractor Certification #2789. Test boring locations were selected using the original topographic features as a guide to the fracture pattern and existing landmarks as references. Each piezometer and boring was surveyed by a professional surveyor and tied into the North Carolina Grid Coordinate System (NAD 88). A total of 34 test borings were completed. All but four encountered water and were converted to temporary standpipe piezometers, i.e., 2-inch diameter PVC pipe, screened across water bearing zone with a sand pack, a 2-foot thick bentonite seal and grout to the surface. Nested pairs or “couplets” were constructed at two locations (B-2S & B-2D, and B-25S & B-25D). The recent soil test borings extended to depths ranging from 15 feet (B-32) to 50 feet (B-5) using hollow-stem augers turned by an ATV-mounted drill rig. Standard penetration tests (SPT) were performed at designated intervals in accordance with ASTM D 1586-84 to provide an index for estimating soil strength and relative density. Split-spoon samples were field classified and representative samples were submitted to laboratory classification and index testing. Earlier investigations included undisturbed samples subjected to laboratory testing (B-17, B-22). 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  Thirty (30) of the thirty-four (34) recent borings were advanced to auger refusal to characterize the top of bedrock surface (Table 1); forty-four (44) of the earlier fifty-eight (58) borings encountered refusal. Rock was cored at three locations (B-4, B-18 and B-24) in the recent investigation, and eight of the relevant earlier borings were cored (PH2-14A, PH2-24A, old borings MW-8D, MW-26SB, MW-14A-BZE, P-14D, MW-16DB and MW-17SB).  /DERUDWRU\'DWD D  % DQG &  Table 2 presents laboratory test data used to describe the hydrologic properties of the soils, e.g. grain size distribution, Atterberg limits, and classification, along with standard Proctor, consolidation, consolidated undrained triaxial shear, and triaxial permeability testing. The number and types of laboratory tests completed are summarized below: Triaxial Shear Strength, CU - remolded D4767-95 1 Flexible wall permeability – remolded D5084 1 Standard Proctor Compaction D698 1 Grain Size w/Hydrometer D422, D1140 14 Atterberg Limits D4318 9 Natural Moisture D2216 14 The laboratory data are considered representative of soil conditions within the study area. Soils were classified in the laboratory according to the Unified Soil Classification System (USCS), and these descriptions were matched to the boring logs to verify the visual soil classifications. Laboratory data are presented in Appendix 4, including relevant data from earlier investigations. The soils at the site generally classify as silty clay and clayey silt (ML or CL), with minor silty sand (SM) and high plasticity clays (CH). Remolded samples of the higher plasticity soils (earlier data) exhibit laboratory hydraulic conductivity test values ranging from 10-5 cm/sec to 10-8 cm/sec. The low permeability soils are distinguished by a reddish-orange color and clay- like appearance, as opposed to the more granular, tan-brown to gray clayey silt. The lower permeability soils are typically limited to the upper few feet beneath the surface, are not present at all test-boring locations, and occur in “pockets.” near the surface are common throughout the piedmont. A discussion of field hydraulic conductivity values measured at the piezometer locations is presented in Section 3.3.4.  )RUPDWLRQ'HVFULSWLRQV D  '  Six generalized hydrogeological cross-sections (Drawings X1 – X3) provide a graphical presentation of the subsurface data. Soils encountered by the test borings comprise clayey and sandy silt, and silty sand, weathered from the underlying bedrock. The near surface soils exhibit SPT values generally ranging from 10 to 50 blows per foot (bpf). These soils transition with depth to very dense saprolite, which exhibits a relict rock-like texture and SPT values of 50 bpf to over 100 bpf, but which can still be penetrated by a hollow stem auger. The upper rock surface is transitional; that is, the overlying soils grade into rock at variable depths, resulting in a differential weathering profile. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  In general, sandy silty clays to silty clayey sands extend to depths of approximately 5 or less feet varying to 44 feet below the ground surface, underlain by partially weathered rock (see Table 1). Partially weathered rock is clearly visible at the surface in the borrow areas, and encountered less than 5 feet deep at B-2, B-3, B-7, B-11and B-16. Outside the borrow areas, PWR was encountered at depths ranging from 10 to 25 feet. During advancement of soil test borings, extra care was taken to identify the first split spoon sample exhibiting the presence of groundwater. Groundwater is normally encountered within the PWR or in the overlying less-dense saprolite. The borings were typically dry above discrete water bearing zones (see following table). Based on the visual classifications in the field and laboratory testing, little difference exists with respect to grain size and texture of the soils with the water bearing zone soils (PWR) and the overlying, non-saturated soils. Bedrock depths, typically defined by “auger refusal” conditions in the test borings, occur at depths varying from 15 to 50 feet across the Phases 3 and 4 study area. The differential weathering patterns extend below “auger refusal” depths based on description of the rock cores (Section 4.3). High angle jointing was observed in the rock cores, with deep weathering and secondary mineral staining present in the upper reaches of the cores. Percolation of groundwater into the jointing promotes internal weathering (chiefly the breakdown of feldspars and amphiboles or pyroxenes, if present, into clay minerals). The test borings indicate no voids, faults, compressible zones or other potentially unstable features.  )LHOG+\GURORJLF7HVWLQJ D  (  In-situ permeability tests were performed in 24 piezometers to characterize the horizontal permeability or hydraulic conductivity of the subsurface materials. In-situ tests were performed using both falling head and rising-head “slug test” techniques, analyzed by the Bouwer and Rice method. Earlier field tests (discussed below) used both slug tests and packer tests, which measure the water intake under pressure within discrete depth intervals in open-hole wells. Hydraulic conductivity test data are presented in Appendix 5 and summarized on Table 3. Observed field conductivity values vary as follows: +LJK9DOXH  /RZ9DOXH   *HRPHWULF0HDQ Units 1 and 2 7.57E-04 ft/min 2.74E-07 ft/min 8.43E-05 ft/min 3.85E-04 cm/sec 1.39E-07 cm/sec 4.29E-05 cm/sec B-13 B-29 Unit 3 6.79E-03 ft/min 3.79E-06 ft/min 1.48E-03 ft/min 3.45E-03 cm/sec 1.92E-06 cm/sec 7.53E-04 cm/sec B-24 B-03 Earlier studies of Phase 2 reported field conductivity values varying from 6.76 x10-4 cm/sec to 2.14 x10-4 cm/sec, with a mean value of 4.81 x10-4 cm/sec within Unit 1, and values varying from 7.1 x10-4 cm/sec to 5.5 x10-4 cm/sec with a mean value of 6.16 x10-4 cm/sec within Unit 3. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________   2WKHU,QYHVWLJDWLYH7HFKQLTXHV D   Test Pits – Some 75 or more test pits were excavated (by others) during the Site Suitability investigation, more during the Phase 1 Design Hydro study. The test pits were used to identify areas of potential soil borrow for liner construction and other uses. Visual Observations – Many soil exposures have resulted from various soil borrow activities. These exposures are soil pedestals left around some of the old piezometers and cut banks along the margins of the borrow areas. Representative photographs of the Triassic soils, weathered argillite (PWR), and soils formed above the diabase are shown in Figures 4 – 6, respectively. Magnetometer Survey – Diabase dikes are linear magnetite-bearing rock formations that commonly occur throughout the Piedmont. The rocks are easily identified by their color, hardness, density, grain size, and weathering pattern when sufficient exposures exist. These features are of interest for environmental site monitoring due to a once popular but unproven belief that the dikes may serve as conduits (when fractured) or as impediments to groundwater flow (non- fractured portions). Most of the dikes observed first-hand by the author at other sites (and within Cell 1D) follow existing joint patterns in the host bedrock, that is, the dikes intruded along pre-existing planes of weakness mobilized along earlier stress fields. Many of the major dikes have been mapped by the NC Geological Survey and/or the US Geological Survey.2 Earlier studies included a proton-precession magnetometer survey, which identified two dikes oriented north- south (see Drawing S2) and slightly northwest. Regional mapping Figure 4 – Argillite PWR in Phase 3 (Unit 2) indicates two orientations for two intrusive episodes. The bend could be caused by the intersection of two dikes at different orientations. Detailed work (by the author) 3 found the thickness of the actual dike in Cell 1D to be much less 2 Burt, E.R. et al, Diabase Dikes of the Eastern Piedmont of North Carolina, Information Circular 23, North Carolina Geological Survey, 1978 3 Report of Findings of Additional Hydrogeologic Investigations at Anson Waste Management Facility, ENSR International (unpublished report to Allied Waste, submitted NC DENR), 9/18/02 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  than the anomalies shown in the plan views of the earlier reports. The cause of this discrepancy is believed to be the dip of the dikes toward the southwest, determined from drilling data and test pits. The dip causes a larger anomaly pattern that would be observed if the dikes were vertical. Whereas the magnetic anomaly pattern shown on the earlier maps is linear and many tens of feet wide, the actual rock units are estimated to be only 5 to 10 feet thick. While the easternmost dike does extend into Phases 3 and 4 (Drawing S2), the drilling data indicate a plunge (decrease in elevation) toward the north, which lessens the influence on the near-surface hydrology. Earlier studies focused on the dikes with test borings to satisfy regulatory concerns, including portions of Phases 3 and 4. Based on the data, the dikes are sufficiently well understood to incorporate into the monitoring program, thus no additional studies were performed during this Design Hydrogeologic study for Phases 3 and 4.  6WUDWLJUDSKLFDQG+\GURJHRORJLF8QLWV  D   Drawings X1, X2 and X3 present generalized subsurface profiles prepared from the test boring and laboratory data, which indicate the hydrogeologic and lithologic units for this site. In general, the hydrogeologic units were based on the relative density of the saturated residuum (saprolite) and underlying bedrock: Figure 5 – Triassic conglomerate in Phase 3 (Unit 1) Unit 1 is defined as the variably dense saprolite (in-situ weathering products of the underlying bedrock) existing beneath the water table that exhibits standard penetration resistance values less than 100 bpf. At some test boring locations, Unit 1 exhibits grain size differentiation with depth, i.e., finer grain materials were encountered near the surface, underlain by somewhat coarser materials. This weathering profile is not ubiquitous – at some locations the coarser grain soils were minimal or absent, owing to the generally fine grain nature of the parent bedrock. Unit 2 is the generally denser – but often more porous – saprolite existing beneath the water table that exhibits standard penetration resistance values over 100 bpf. Typically, a machine driven hollow stem auger can penetrate PWR. The boundary between Unit 1 and Unit 2 is gradational. These units collectively make up the unconfined “water table” aquifer and are considered the uppermost aquifer at the site, but depending on clay content, Unit 1 can act as a partial confining layer and Unit 2 serves as the primary water conveyance, often exhibiting artesian conditions. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  Unit 3 is the upper fractured bedrock (typically weathered), which typically yields auger refusal and requires rotary coring and/or air-hammer techniques to penetrate. These materials typically become denser and less weathered with increasing depth. The boundary between Unit 2 and Unit 3 is often gradational, and these units can exhibit similar physical characteristics hydraulic properties. The entire hydrogeologic profile can be considered as a gradual transition from the deeply weathered soil through less weathered (denser) saprolite to eventual non-weathered bedrock. The geologic formations exhibit similar weathering characteristics; density may vary within short distances, both vertically and laterally, thus boundaries are irregular and gradational between the soil and weathered rock. The diabase is typically harder than Triassic sediments, and the high ridge on the western side of the site formed over the harder yet argillite. The subsurface profiles show irregular unit boundaries that reflect deeper weathering beneath drainage features, following regional jointing. Units 1 and 2 typically exhibit porous media flow conditions, characteristic of an unconfined “water table” aquifer. One or both units are ubiquitous across the site, but due to local variation in mineralogy and fracturing, either unit may not be present everywhere. Unit 3, the upper fractured bedrock aquifer, exhibits a discrete fracture flow along relatively widely spaced joints – often accompanied by weathered zones – which imparts partially confined conditions, e.g., elevated hydrostatic Figure 6 – Apparent nodular weathering of diabase (Unit 1) pressure at depth. The “partially weathered rock” (Unit 2) can exhibit both conditions – porous flow and elevated pore pressures – at different locations. These conditions are typical throughout the piedmont region. Top-of-bedrock contours, represented on Drawing S5 and on the cross-sections, generally reflect a subdued expression of the surface topography. The contours exhibit a smooth transition between the rock types. The hydrogeologic units are similar to conditions observed elsewhere on the site. Ancient faulting (not active in Holocene time) may be present along the argillite- Triassic sandstone contact; other geologic features observed within the study area include the two diabase dikes running approximately parallel to one another in the northwestern portion of the study area. These geologic and ground water conditions are typical of the piedmont region. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________   :$7(57$%/(,1)250$7,21 $  $'   6KRUW7HUP:DWHU/HYHOV D  $  Table 4 presents a summary of short-term ground-water levels observed at the end of drilling and stabilized readings obtained after a period of one to fourteen days after completion of the piezometers. The vast majority of the borings exhibited water levels that stabilized above their initial levels, averaging several feet higher than their initial readings. Many of the borings were initially dry or exhibited damp soils, indicating slow recharge.  /RQJ7HUP:DWHU/HYHOV D  %  Table 4 also presents a summary of long-term water level observations within the Phases 3 and 4 study areas, covering a 6+ month period during and following the investigation in 2014-2015. Ground water hydrographs for selected piezometers follow Table 4, from which the long-term trends can be discerned. Historic monitoring well observation data is presented in Appendix 6, covering a period from 2001 through present, to which the piezometer data can be correlated. An examination of the regional climatic trends provides a useful correlation with historic ground water trends. Long-term regional climatic data (Figure 7) indicate that the summer and winter months of 2002 experienced severe drought, based on Palmer Hydrologic Drought Severity Index (PHDI).4 The use of the Palmer indices provides a more complete description of climatic trends than precipitation data alone, since evapo-transpiration effects (e.g., temperature, solar radiation, leaf cover, relative humidity, and winds) are factored into the overall moisture balance in the atmosphere and at the ground surface. The data show a good correlation between climatic trends and historic ground water levels observed in the monitoring well network. The climatic trends in the region show moderate to historically severe drought from mid-1998 through late 2002, after which a sudden reversal put the region into an unusually wet spell persisting through mid-2003. This caused long-term lowering the water table at several monitored sites throughout the Piedmont region known to the author, which include Anson County (this facility), High Point, Rutherford County, and CMS,5 followed by record high water levels that were observed throughout 2003 and continuing into 2004. This trend is reflected in the monitoring well network at Anson County (see Figure 9), where the initial 24 months of data shows relatively low ground water levels, albeit there could be some aquifer relaxation, i.e., pore-pressure stabilization during this period, followed by a significant increase in the latter portion of 2002 to maximum recorded values in mid-2003. Then after the “peak” in 2003 the water levels exhibit seasonal fluctuation within a fairly consistent range with a gradual decrease through 2007 (reflecting the PHDI exactly). 4 Time Bias Corrected Divisional Temperature-Precipitation-Drought Index, (TD-9640), National Oceanic and Atmospheric Administration, March 1994. 5 Site Suitability Application Report, Kersey Valley MSW Landfill Phase 3, High Point, North Carolina, Permit 41-04, March 1999, Design Hydrogeologic Evaluation for CMS Landfill V Phases 3 and 4 , Concord, North Carolina, Permit 13-04, November 2005. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  Figure 7 – NOAA Historic Palmer Hydrologic Drought Index Data (Regional) Figure 8 – NOAA Palmer Hydrologic Drought Index Data (Regional) Upon closer inspection of the last 4 years, a similar trend is repeated, though not as drastically, during the 2013-2014 season (Figure 8). 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  Figure 9 – On-Site Monitoring Well Trends (Selected Wells) Figure 10 – On-Site Monitoring Well Trends (Selected Wells) ϮϲϮ Ϯϲϲ ϮϳϬ Ϯϳϰ Ϯϳϴ ϮϴϮ Ϯϴϲ ϮϵϬ Ϯϵϰ Ϯϵϴ ϯϬϮ ϯϬϲ ϭͬ Ϯ ϰ ͬ Ϭ ϭ ϳͬ Ϯ ϯ ͬ Ϭ ϭ ϭͬ ϭ ϵ ͬ Ϭ Ϯ ϳͬ ϭ ϴ ͬ Ϭ Ϯ ϭͬ ϭ ϰ ͬ Ϭ ϯ ϳͬ ϭ ϯ ͬ Ϭ ϯ ϭͬ ϵ ͬ Ϭ ϰ ϳͬ ϳ ͬ Ϭ ϰ ϭͬ ϯ ͬ Ϭ ϱ ϳͬ Ϯ ͬ Ϭ ϱ ϭϮ ͬ Ϯ ϵ ͬ Ϭ ϱ ϲͬ Ϯ ϳ ͬ Ϭ ϲ ϭϮ ͬ Ϯ ϰ ͬ Ϭ ϲ ϲͬ Ϯ Ϯ ͬ Ϭ ϳ 'ƌ Ž Ƶ Ŷ Ě ǁ Ă ƚ Ğ ƌ   ů Ğ ǀ Ă ƚ ŝ Ž Ŷ  ; Ĩ ƚ ͘ Ϳ DĞĂƐƵƌĞŵĞŶƚĂƚĞ ,ŝƐƚŽƌŝĐĂů'ƌŽƵŶĚǁĂƚĞƌůĞǀĂƚŝŽŶƐǀƐ͘dŝŵĞ :EϮϬϬϭͲ KdϮϬϬϳ DtͲϰDtͲϰ^DtͲϱDtͲϱ^ DtͲϮDtͲϮ^DtͲϴDtͲϴ^ DtͲϭDtͲϯDtͲϯ^ ZĞƐƉŽŶƐĞƚŽůŝŵĂƚŝĐŶŽŵĂůLJ DĂdž^ĞĂƐŽŶĂů,ŝŐŚ ĂƚĂKƵƚůŝĞƌ ϮϲϮ Ϯϲϲ ϮϳϬ Ϯϳϰ Ϯϳϴ ϮϴϮ Ϯϴϲ ϮϵϬ Ϯϵϰ Ϯϵϴ ϯϬϮ ϯϬϲ ϲͬ ϭ ϲ ͬ Ϭ ϴ ϭϮ ͬ ϭ ϯ ͬ Ϭ ϴ ϲͬ ϭ ϭ ͬ Ϭ ϵ ϭϮ ͬ ϴ ͬ Ϭ ϵ ϲͬ ϲ ͬ ϭ Ϭ ϭϮ ͬ ϯ ͬ ϭ Ϭ ϲͬ ϭ ͬ ϭ ϭ ϭϭ ͬ Ϯ ϴ ͬ ϭ ϭ ϱͬ Ϯ ϲ ͬ ϭ Ϯ ϭϭ ͬ Ϯ Ϯ ͬ ϭ Ϯ ϱͬ Ϯ ϭ ͬ ϭ ϯ ϭϭ ͬ ϭ ϳ ͬ ϭ ϯ ϱͬ ϭ ϲ ͬ ϭ ϰ ϭϭ ͬ ϭ Ϯ ͬ ϭ ϰ 'ƌ Ž Ƶ Ŷ Ě ǁ Ă ƚ Ğ ƌ   ů Ğ ǀ Ă ƚ ŝ Ž Ŷ  ; Ĩ ƚ ͘ Ϳ DĞĂƐƵƌĞŵĞŶƚĂƚĞ :hEϮϬϬϴͲ WZϮϬϭϱ /ŶǀĞƐƚŝŐĂƚŝŽŶŽŵŵĞŶĐĞĚ 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  The wet conditions shown in Figure 8 persisted to the time this investigation started at the end of 2014. These trends influence seasonal ground water recharge, whereas the climatic moisture balance directly correlates to the availability of meteoric water at the surface for groundwater recharge.6 Water levels in the monitoring wells show a steady increase beginning sooner than the climate turned wet, shown in Figure 10, but the water level increase is disproportional to the degree of wetness by comparison to the 2003 peak. In fact, some of the highest water levels were observed during the Spring 2015 sampling event, namely the couplets at MW-3, MW-4, and MW-5, all of which show a steady increase starting in early 2008 with the most recent observations exceeding the 2003 peak. This indicates another factor influencing the water levels, namely the grading activity all around the landfill that has removed vegetation and changed drainage patterns, thus altering the recharge conditions. Much grading occurred in proximity to these wells with the commencement of the Phase 2 construction ca. 2009, which is believed to have affected the water levels. Likewise, grading within the Phases 3 and 4 study area began about this same time, which removed an average of 20 feet of overburden from the recharge area, exposing the more porous PWR and significantly increasing recharge. These conditions, along with the fact that the water levels in monitoring wells meet or exceed the historic reference in 2003, despite the fact that PHDI has not been abnormally wet, leads to the following conclusions: 1. The investigation captured a significant seasonal high ground water condition, occurring from February to June 2015. 2. From these data a reasonably accurate, if not conservative, estimate of the long-term maximum can be made. 3. Since approximately 2008 ground water levels in the Phases 3 and 4 study area have been influenced significantly by grading activities within and adjacent to the footprints. 4. Site conditions that contribute to high ground water recharge at the time this report was prepared will be eliminated once the low permeability cell construction is completed.  (VWLPDWHG6HDVRQDO+LJK:DWHU7DEOH D  &  Data from the monitoring wells is summarized below: %RULQJ 'DWH 'LIIHUHQFHEHWZHHQ 1XPEHU 0D[LPXP 2EVHUYHG 0D[DQG MW-1D* 293.95 5/5/03 0.00 MW-2D* 305.37 5/1/07 3.92 6 Garrett, G.D., “Climatological Hydrologic Correlations Using Palmer Indices,” presented to the Association of Engineering Geologists (Carolina Section) Tools of the Trade Seminar, Charlotte, North Carolina, March 21, 2003 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  %RULQJ 'DWH 'LIIHUHQFHEHWZHHQ 1XPEHU 0D[LPXP 2EVHUYHG 0D[DQG MW-2S* 304.99 2/21/15 3.39 MW-3D 289.51 2/21/15 5.01 MW-3S 292.09 2/21/15 8.10 MW-4D 285.48 2/21/15 4.56 MW-4S 286.05 2/21/15 4.84 MW-5D 276.26 2/21/15 1.64 MW-5S 275.95 2/21/15 1.51 MW-8D* 297.60 5/5/03 0.00 MW-8S* 299.64 5/5/03 0.00 Whole site average 3.00 *Close to study area 1.46 Based on the foregoing analysis, adding 3 feet to the monitoring well readings observed in Spring 2015 would closely approximate the maximum seasonal values reported in 2003. By applying this logic to the early 2015 piezometer observations in the Phases 3 and 4 study area, the probable maximum long-term seasonal high (MLSH) ground water levels can be approximated. This is a conservative approach, whereas factors that contribute to present-day ground water recharge are bound to change. However, adding 3 feet to the Spring 2015 high water level observations in the piezometers results in the following conservative design values: -DQ -DQ +LJKHVW 'DWH %RULQJ 2EVHUYHG 2EVHUYDWLRQ 5HFRUGHG +LJKHVW 1XPEHU (OHYDWLRQ SOXVIHHW (OHYDWLRQ 2EVHUYHG B-01 294.08 297.08 298.62 04/2015 B-02S 305.48 308.48 307.84 01/2015 B-02D 292.69 295.69 301.13 02/2015 B-03 294.61 297.61 298.67 02/2015 B-04 308.65 311.65 311.55 01/2015 B-05 289.42 292.42 294.26 03/2015 B-06 292.13 295.13 297.79 04/2015 B-07 302.46 305.46 305.93 04/2015 B-08 301.71 304.71 305.36 04/2015 B-09 282.47 285.47 286.81 04/2015 B-10 294.24 297.24 298.10 02/2015 B-11 291.17 294.17 294.52 04/2015 B-12 290.23 293.23 292.77 02/2015 B-13 294.62 297.62 298.86 04/2015 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  -DQ -DQ +LJKHVW 'DWH %RULQJ 2EVHUYHG 2EVHUYDWLRQ 5HFRUGHG +LJKHVW 1XPEHU (OHYDWLRQ SOXVIHHW (OHYDWLRQ 2EVHUYHG B-14 --- --- --- --- B-15 --- --- --- --- B-16 --- --- --- --- B-17 --- --- --- --- B-18 315.79 318.79 318.50 01/2015 B-19 301.95 304.95 304.99 03/2015 B-20 301.90 304.90 304.56 03/2015 B-21 292.85 295.85 296.76 03/2015 B-22 290.88 293.88 293.52 01/2015 B-23 288.46 291.46 293.03 02/2015 B-24 302.80 305.80 305.32 01/2015 B-25S 285.56 288.56 288.35 01/2015 B-25D 277.49 280.49 281.46 04/2015 B-26 269.08 272.08 275.03 04/2015 B-27 258.84 261.84 263.84 04/2015 B-28 261.71 264.71 264.15 01/2015 B-29 270.04 273.04 273.97 04/2015 B-30 274.48 277.48 277.40 01/2015 B-31 --- --- 276.01 04/2015 B-32 --- --- 275.50 04/2015  )DFWRUV7KDW,QIOXHQFH:DWHU7DEOH D  '  Several natural and man-made factors are present which could influence long-term ground-water levels. Vegetation conditions, surface drainage, and climate have already been discussed. Site conditions contributing to high recharge will be corrected, which will mitigate the effects of seasonal climate effects. In the future, the lined waste disposal cells and other impervious surfaces located associated with the landfill expansion will impose a loss of recharge within the permitted footprints. This is not expected to have a negative impact far down gradient, but ground water levels may gradually decrease in close proximity to the footprints. There is ground water flow from the south passing beneath the footprints (seeking the boundary streams) and future construction of impervious surfaces south of the landfill could further reduce ground water recharge within the site boundary. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________   +25,=217$/ $1' 9(57,&$/ *5281':$7(5 )/2: ',0(16,216 $   Drawings X1 – X2 present generalized hydrogeologic cross-sections that show the horizontal and vertical extent of the upper-most aquifer and ground water flow directions. The residual soils and partially weathered rock (Units 1 and 2) comprise a ubiquitous mantle of saprolite above the competent bedrock, also known as the “regolith,” with a transitional vertical boundary along the upper bedrock surface. Ground water movement through the deeper PWR formation (Unit 2) is generally porous media flow but partially confined conditions are typical, as discussed in the next paragraph. Based on observed water levels and inferred pore pressure relationships, the upper saprolite (Units 1 and 2) appears to be inter-connected hydraulically with the lower bedrock (Unit 3) with no discrete confining layers. The regolith acts as a groundwater reservoir that slowly recharges the underlying bedrock aquifer by drainage in the Piedmont groundwater system.7 The regolith varies in thickness up to 150 feet and generally consists of an unconsolidated or semi-consolidated mixture of clay and fragmental material ranging in size from silt to boulders formed by the in-situ weathering of the bedrock. The cross-sections show areas of recharge (downward ground-water movement) occurring over a majority of the site. Discharge (upward ground-water movement) occurs in the lower elevations leading toward the springs or seeps (at the wetlands), chiefly north and west of the Phases 3 and 4 footprints, which feed the unnamed tributaries flowing to Brown Creek. The cross-sections are tied to old test borings near the streams, which do not provide current water level data, but the streams provide ample elevation data as they are the location the ground water intersects the surface. It should be kept in mind that the upper flow line represents potentiometric head within the saturated Units 1 and 2 saprolite aquifers. Ground water may not occur everywhere in the profile due to possible discontinuities in the pore-space, as was seen in dry borings. Table 5 presents a summary of vertical ground-water gradients for several nested piezometer couplets. The vertical gradient calculations compare water levels between the deeper and shallower well screen intervals, which typically indicate whether a portion of the site is experiencing recharge or discharge. The data indicate upward (negative) gradients, indicative of discharge conditions, exist most of the time near B-25S/25D, and near MW-5S/5D; downward gradients occur part of the time near PH2-24A/24B, near MW-4S/4D, and near B-02S/02D. All of these wells and piezometers are located near the main drainage features in the eastern portion of the Phases 3 and 4 footprints. The variable gradients, showing recharge sometimes, discharge tendencies others, is common in upper reaches of the water bearing zone (all three units), where partially confined conditions and slow vertical percolation can bias the data. The Units 1 and 2 aquifers are more prone to seasonal fluctuation, i.e., the top of the zone of saturation actually raises and lowers in response to precipitation and other climatic conditions. 7 Daniel, III, Charles C. and Paul R. Dahlen, 2002, Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina, U.S. Geological Survey Water-Resources Investigations Report 02-4105, 60p. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  During dry weather, when surface recharge is reduced, the deeper aquifer often yields a higher piezometer reading although the net movement of water over the course of time is downward, not upward. The partially confined bedrock aquifer is pressurized by the overlying, interconnected pore space within the upper saprolite units, which causes water levels observed in the piezometers to fluctuate but the actual zone of saturation remains in the same location. Ground water flow directions in both upper and lower aquifers are strongly horizontal, but the upper saprolite will exhibit a vertical flow component in response to climatic and topographic conditions, which typically recharges the deeper bedrock aquifer “reservoir” when there is sufficient surface percolation. Table 6 presents horizontal ground-water flow data for selected piezometers, based on the potentiometric contours shown on Drawing S3 and the horizontal gradients calculated from the field conductivity tests (Table 3) and the effective porosity values (Table 2) developed for the soil samples based on grain size distribution. Ground water velocities vary somewhat across the site. Based on Table 2, there is no significant difference in effective porosity, Șe, between the Triassic formations and the argillite, nor is there much difference based on relative density, however the grain size distribution does make a difference. Typical observed values summarized from Table 2 are as follows: Sandy Clay Șe = 3 – 4% Sandy Silt Șe = 11 – 12% Silty Sand Șe = 16 – 22% In keeping with the previously defined hydrogeologic units, the calculated ground-water flow velocities in Phases 3 and 4 (Table 6) generally vary as follows: Unit 1 – 0.01 ft/day (B-21) Avg. = 0.01 ft/day = 2 ft/year Unit 2 – 1.14E-04 (B-29) to 4.61E-01 ft/day (B-13) Avg. = 0.05 ft/day = 19 ft/year Unit 3 – 3.04E-03 (B-03) to 2.04E-01 ft/day (B-18) Avg. = 0.14 ft/day = 51 ft/year  *5281':$7(5&2172856 $   Drawing S3 and S4 show ground-water potentiometric contours based on water level observations made in February 2015 and the Maximum Long-Term Seasonal High (MLSH) water levels discussed in Section 3.6.3. The potentiometric contours reflect a subdued expression of the surface topography, characteristic of the piedmont. A divide occurs west of the Phases 3 and 4 footprints, such that surface drainage and ground-water flow within Phases 3 and 4 is entirely toward the northeast. The potentiometric contours tie into ground elevations at surface drainage features with wetlands (seasonal or perennial springs), located 300 to 400 feet beyond the Phases 3 and 4 footprints, toward the northeast. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________   ),(/',19(67,*$7,215(&25'6    $  $1'  $1'   Appendix 4 contains test boring/piezometer installation records for the borings pertinent to the study area. Relevant data from earlier investigations are presented in Appendix 6.  27+(5*(2/2*,&+<'52*(2/2*,&&216,'(5$7,216  $   No unusual geologic features have been found which would affect the ground-water flow to the detriment of effectively monitoring the site. The contact between the argillite of the “slate belt” and the sandstone of the Triassic Basin is mapped as a normal fault, albeit an ancient one. No seismicity has been recorded in Holocene time due to movement along this geologic boundary.8 Site conditions appear typical of the North Carolina piedmont region. The following information was taken from the document, Pee Dee Lumber Regional Hazard Mitigation Plan, August 2012,9 which references several sources compiled by the North Carolina Geological Survey.10 The Pee Dee Lumber Region is located in the southǦcentral part of North Carolina and includes the counties of Anson, Montgomery, Richmond, and Scotland. “Earthquakes are measured in terms of their magnitude and intensity. Magnitude is measured using the Richter Scale, an openǦended logarithmic scale that describes the energy release of an earthquake through a measure of shock wave amplitude. Each unit increase in magnitude on the Richter Scale corresponds to a 10Ǧfold increase in wave amplitude, or a 32Ǧ fold increase in energy. Intensity is most commonly measured using the Modified Mercalli Intensity (MMI) Scale based on direct and indirect measurements of seismic effects. The scale levels are typically described using roman numerals, ranging from “I” corresponding to imperceptible (instrumental) events to “XII” for catastrophic (total destruction). The state is affected by both the Charleston Fault in South Carolina and New Madrid Fault in [western] Tennessee. Both of these faults have generated earthquakes measuring greater than 8 on the Richter Scale during the last 200 years . . . In addition, there are several smaller fault lines throughout North Carolina. Figure [11] is a map showing geological and seismic information for North Carolina. At least 14 earthquakes are known to have affected the Pee Dee Lumber Region since 1886. The strongest of these measured a VII on the Modified Mercalli Intensity (MMI) scale.” 8 Goldberg, Steven A., University of North Carolina, Chapel Hill, personal comm., 1995 9 http://www.scotlandcounty.org/Data/Sites/1/media/departments/publicsafety/em/eop/pee_dee_lumber_ regional_hmp_1112_final[1].pdf and http://www.co.anson.nc.us/minutes/agenda/dspfile.php?file=Dec412RegAGN.doc 10 North Carolina Geological Survey, on-line at www.geology.enr.state.nc.us/haz/quake 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________  Figure 11 – Seismicity of North Carolina None of the stronger earthquakes in the region were centered within the region. Figure 11 shows four earthquakes centered within the region, with Richter Scale magnitudes from 2.1 to 4. Earthquakes of these magnitudes are seldom noticed by the general population and do not result in damage. The crustal faults in the region, including those bounding the Triassic Basins, are not active seismic features. Figure [12] from the same source shows . . . “. . . the intensity level associated with the Pee Dee Lumber Region, based on the national USGS map of peak acceleration with 10 percent probability of exceedance in 50 years [i.e.] the probability that ground motion will reach a certain level during an earthquake. The data show peak horizontal ground acceleration [PGA] (the fastest measured change in speed, for a particle at ground level that is moving horizontally due to an earthquake) with a 10 percent probability of exceedance in 50 years.” Figure 12 – Seismic Acceleration Potential The PGA value is used in slope and foundation stability calculations. Based on these data, a design PGA value for this project is 0.04 g (4% of the acceleration of gravity). 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\   _____________________________________________________________________________   6,7(63(&,),&,1)250$7,21  *5281':$7(5021,725,1*&216,'(5$7,216  %  %  Existing wells: The landfill is now monitored with 12 groundwater monitoring wells, shown in Drawings M1 and M2. The monitoring wells were installed at various dates in accordance with the approved ground-water monitoring plan. Based on the potentiometric surface mapping for Phase 1 and site-wide (by others), ground-water flow is to the northeast – toward the convergence of Pinch Gut Creek and Brown Creek, which serves as a regional discharge feature. Private dwellings and other buildings are located to the southeast of the waste footprints – presumably still served by wells – which are up gradient of the facility. Currently, the monitoring well network includes: Up gradient background wells are MW-1, MW-2S and 2D, located south and west of the landfill (two wells listed together indicate shallow/deep well couplets). MW-1 is located in the western diabase dike; MW-2S and 2D are located in the Triassic sandstone formation. Permanent down-gradient wells (in counterclockwise order on the map, beginning south of the landfill) include MW-3S and 3D (near the southeast corner), MW-4S and 4D (near the northeast corner), and MW5S and 5D (beyond the northeast corner) MW-8S and 8D, MW-9 (west of the footprints). Based on the drilling records for the monitoring wells (Appendix 3), all of the wells are located in the Triassic formation, except MW-4D and 4S, which are situated along the contact zone between the Triassic and the eastern diabase dike. Proposed wells: New monitoring wells are proposed on two sides of Phases 3 and 4 at appropriate intervals, focusing on the primary drainage features (i.e., traces of subsurface fractures) and the eastern diabase dike. Each well screen must exist beneath water table, based on the reference data. The reference borings were characterized as being dry until depths of discrete water-bearing zones was reached (see Section 3.6.3). Based on these conditions, it may not be practical to place a screen interval across the water table, but to pursue that typical goal of the NCDEQ Division of Waste Management, the deep borings will be installed first, taking them either to “auger refusal” or to a depth where a water-bearing seam is encountered, and allowed to stabilize. The shallow boring then will be installed to target the stabilized water level in the adjacent deep boring. Division staff will be kept apprised of the conditions encountered during the well installations. Adjustments of depths may be required based on field conditions. The proposed new well locations are shown in Drawing M1 of the drawing set. No changes to the surface water sampling locations are proposed. The Water Quality Monitoring Plan (Appendix 7) will be modified accordingly, including a summary data table and drilling records for the installed wells. The new monitoring wells will be designed and constructed in accordance with 15A NCAC 2C guidelines. The locations for the planned new monitoring wells and surface water sampling locations are considered adequate to provide early detection of a release of constituents from the facility into the ground water. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 24  5(/(9$1732,172)&203/,$1&(    %  &  Selection of monitoring well locations for compliance monitoring of the uppermost aquifer is based on an understanding of hydrogeological conditions presented in this report. North Carolina solid waste Rule .1631 (a)(2)(B), incorporated by reference to Rule .1623 (b)(2)(C), makes a provision for the relevant point of compliance to be located no more than 250 feet from the waste boundary but at least 50 feet within the facility boundary. Historical NC DEQ, Division of Waste Management (DWM) policy has been to locate the compliance wells within 125-150 feet of the waste boundary, or approximately half the distance between the edge of waste and the compliance boundary. Based on the site studies, it appears that this spacing for compliance wells is appropriate for this facility. The following requirements of Rule 15A NCAC 13B .1631 (a)(2)(B) are met by this report, in support of determining the relevant point of compliance: Hydrogeologic characteristics of the facility and surrounding land – The site and local vicinity are characterized by highly dissected ridges, following a prominent joint pattern, which limit ground-water flow to relatively short-segmented, closed-loop hydrologic cycles. Recharge occurs within the higher elevations, discharge occurs along local streams. Ground water typically occurs within the near-surface unconfined saprolite (porous flow media), underlain by bedrock (fracture flow media), sometimes with a transitional boundary and often with a differential weathering pattern. Pinch Gut Creek and Brown Creek, which converge at the north corner of the site, serve as regional ground-water discharge features. The proposed expansion is hydrologically isolated between the streams, with no down gradient ground water users. Volume and physical and chemical characteristics of leachate – Leachate is stored on-site in two tanks and batch-discharged periodically (after sampling) to the Anson County Wastewater Treatment Plant, whose records document 305,811 gallons discharged from July 2005 – June 2006 and 331,623 gallons discharged from July 2006 – November 2007. Representative leachate quality sampling data (summarized below) typically indicates low levels of certain organic constituents: &RQVWLWXHQW 6XPS 6XPS 6XPS ::3LSH 6XPS       Benzene (ug/L) <1 5.2 <1 11.5(D) 3.9 Ethylbenzene (ug/L) 1.9 5.9 <1 22.5(D) 14 m+p-Xylenes (ug/L) 2.7 12 <1 43 35 o-Xylene (ug/L) 1 5.7 <1 14 15 Toluene (ug/L) 8.6 5.4 2 28(D) 25 TPH - Gasoline (ug/L) 150 1300 <80 n/a 190 TPH - Diesel (ug/L) 1300 2600 4300 n/a 2200 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 25 Leachate sampling includes Appendix I constituents; other analyzed constituents were not detected, including the metals. The detected constituents are not considered unusual in modern MSW leachate at the detected concentrations. Quantity, quality and direction of ground water flow – Considering hydrogeologic Units 1, 2 and 3 collectively and using an average aquifer thickness of 40 feet (including the upper portion of Unit 3), the estimated groundwater flow volume in the uppermost aquifer beneath each of the Phase 3 and 4 footprints is: 33 ac. * 40’ sat’d thickness * 0.20 effective porosity = 57.9M cf = 433M gallons Ground water quality analytical data (reported by others) indicate no definitive ground-water impacts that have been attributed to the current landfill operation. Up through May 2005, no Appendix I organic constituents had been detected above the practical quantitative limits. Several inorganic compounds have been detected, summarized as follows (in mg/l) for the May 2005 sampling event: 3DUDPHWHU 0:  0:G 0:G 0:G 0:G 0:G %&'  3&'  /VWG   0:V 0:V 0:V 0:V 0:V %&8  3&8  Arsenic (0.05) 0.014 Barium 0.11 0.27 0.017 0.077 0.21 0.76 0.023 0.11 (2.0) 0.056 0.50 0.11 0.075 0.42 0.038 Beryllium 0.0015 (NA) 0.0011 Cadmium (0.00175) Chromium 0.0031 (0.05) 0.0023 Cobalt 0.0059 0.0068 (NA) Copper 0.34 0.0067 0.026 0.033 (1.0) 0.075 1.2 0.12 Lead 0.0054 (0.015) Nickel 0.012 0.0093 0.015 0.018 0.0066 (0.010) 0.0055 0.058 0.0052 0.0057 0.0075 Selenium 0.0083 0.0057 0.0058 (0.05) 0.015 Silver 2.7 0.28 0.64 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 26 (0.0175) 2.9 0.9 Thallium 0.017 (NA) 0.015 Vanadium 0.0096 (NA) Zinc 0.021 0.044 0.038 (1.05) 0.011 0.025 0.013 0.012 *Background Location **BCD = Brown Creek Downstream **PCD = Pinch Gut Creek Downstream ***15A NCAC 2L .0200 **BCU = Brown Creek Upstream **PCU = Pinch Gut Creek Upstream It should be noted that the foregoing data represents total metals analyses (unfiltered samples), which is subject to the effects of turbidity and can reflect background geochemistry. The author oversaw split-sampling (for Anson County) during the initial four baseline samples, prior to opening the landfill. Based on that work, reported to the County in 2001, the following inorganic parameters were detected: /6WG 0:V 0:V 0:V 0:G Turbidity, NTU none 977 203 530 879 Chromium, mg/l 0.05 <2L 0.126 0.376 0.14 Lead, mg/l 0.15 0.030 0.025 0.018 <2L Nickel, mg/l 0.10 <2L 0.137 0.204 <2L Relative to the downstream sample on Pinch Gut Creek, it should be noted that the sediment basins serving the borrow site discharge to that general drainage basin. Turbidity could be a factor in the numbers and concentrations of metals detected in that sample. From the foregoing data, the following generalizations can be made: 1. Most of the detected constituents are below the North Carolina 2L groundwater standards, except copper, nickel, and silver (it should be kept in mind these data represent only a single sampling event). 2. Nickel was detected in the pre-operational background sampling events. 3. Barium, copper, nickel, and silver (among others) were detected at the upstream surface sampling location on Pinch Gut Creek; barium and nickel were detected at the background wells MW-1 and MW-8S and 8D. 4. No organic compounds have been detected that can be tied to the landfill; records show occasional detects of methylene chloride (an agent used in labs for cleaning glassware) and other laboratory contaminants, all minor concentrations below respective 2L standards. All of the detected inorganic constituents are commonly associated with sulfide forming minerals, which are common in volcanic rock 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 27 formations, i.e., the Slate Belt rocks (Cid formation) on the western side of the site; the Cid formation is known as the host rock to a prodigious historic mining district, chiefly known for silver and associated sulfide minerals. Thus, it can be concluded that these detects are probably caused by background geochemistry. North Carolina Geologic Survey Section data, available on-line, indicates that several of the inorganic constituents of interest have been found in the background geochemistry from the National Uranium Resource Evaluation (NURE) program.11 Based on data compiled for North Carolina stream sediment analyses (and some ground water analyses) by the NC Geologic Survey Section for central Anson County (on-line maps), the following generalizations can be drawn regarding the natural background occurrence of certain compounds: 1. Beryllium was reported at concentrations of 1 ppm. 2. Cobalt was reported at concentrations of 15 to 20 ppm. 3. Copper was reported at concentrations of 8 to 16 ppm. 4. Lead was reported at concentrations of 10 to 15 ppm. 5. Nickel was reported at concentrations of 10 to 15 ppm. 6. Vanadium was reported at concentrations of 45 to 90 ppm. 7. Silver was reported at concentrations of 0.125 to 0.25 ppm. 8. Zinc was reported at concentrations of 25 ppm. It should be noted that the NURE data are not comprehensive or complete with respect to what maximum background values should be expected for a given compound, but the data provide an indication of several background constituents. Proximity and withdrawal rate of ground-water users – An area water well survey was completed during the “site suitability” stage of the permitting process. Since then, public utilities have been extended into the vicinity and area reliance on ground water use has decreased. No ground-water users exist down gradient of the current landfill or the proposed expansions, i.e., no residences or wells exist between the landfill and the ground-water discharge features. Residences and other buildings to the south of the facility are up gradient of the current landfill and the proposed expansion. The site is hydraulically isolated from its surroundings by numerous ground-water divides, i.e., the river and creeks, which are localized ground water discharge features for the uppermost aquifer. Availability of alternative drinking water supplies – Municipal water is available near the landfill and serves most, if not all, of the local vicinity. Existing quality of ground water, including other sources of contamination – Ground-water quality investigations have not been conducted outside the landfill property for this permit 11 Reid, Jeffrey C., 1993a. A Geochemical Atlas of North Carolina, U.S.A., in F.W. Dickson and L.C. Hsu (Editors), Geochemical Exploration 1991, J. Geochemical Exploration, v. 47, p. 11-27. Data are available on-line at http://www.geology.enr.state.nc.us/NUREgeochem/geochem2.htm 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 28 application. Other potential sources of ground-water contamination near the proposed landfill include businesses and manufacturing facilities located on US 74, upstream along the Rocky River (addressed during Site Suitability). Identification of potential sources of contamination is required, but for the purposes of this report, no off-site contamination is known or implied. Public health safety and welfare effects – Based on the relative distances to the nearest privately owned structures (over 500 feet, located across regional ground-water divides) and the presence of on-site ground-water discharge features, it is unlikely that a potential release of solid waste constituents from the proposed landfill expansion will pose a risk to public health, safety or welfare. The Construction Quality Assurance program and proposed upgrades to the Water Quality Monitoring Program will assist in providing early detection of potential releases of constituents into the ground water so as to minimize public risk. Practical capability of owner/operator – Chambers Development, Inc., a subsidiary of Allied Waste Management, Inc., is the owner/operator of the facility, has demonstrated its capability to operate the landfill in a safe and efficient manner with its history of compliance with North Carolina solid waste regulations. Currently, existing ground water and surface water monitoring data show no impact that has been attributed to the landfill.  %('52&. 52&.&25,1* '$7$ %  '  The following rock core descriptions were prepared based on visual inspection (B-series), six core locations in the Phase 2 borings (ESP) and nine core locations were completed in the earlier borings (GZA). Test boring records (Appendix 3) contain descriptions of rock type and quality based on standard nomenclature. A brief summary of each rock core follows: %25,1* /2&$7,21'(6&5,37,21 PH2-24A Higher elevations within argillite Blue gray siltstone, RQD: 96% (45° to 60° fractures) P-14D Higher elevations within argillite Light blue-gray, thin beds, RQD: 95-100% (steep dipping joints, pyrite present) MW-16DB Mid-elevations within argillite Highly weathered, fractured, RQD: 20-74% (45° bedding dip, secondary Ca-filling) MW-17SB Mid-elevations within argillite Highly weathered, fractured, RQD: 0-100% (reported as “annealed breccia” w/ iron- and calcite-filled vugs) – could be conglomerate MW-17A BZE Mid-elevations within argillite (encountered diabase) Highly fractured, dark blue-gray, RQD: 5-65% (iron oxide stained, mod. Dipping fractures) MW-34SB Mid-elevations within diabase Dark gray-black, fractured, RQD: 36-96% (close, weathered fractures, Ca-filling) B-04 Mid-elevations within argillite Blue-gray siltstone, RQD: 95-100% (iron oxide staining along dipping fractures) B-18 Mid-elevations within argillite Fractured blue-gray siltstone, RQD: 90-100% (iron oxide staining along dipping fractures) B-24 Mid-elevations within argillite Moderately fractured blue-gray siltstone, RQD: 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 29 0-90% (iron oxide staining along fractures) The core data indicate that all three formations at the site, Triassic sandstone, argillite, and diabase, are variably fractured or jointed. Fracture orientations vary from shallow to moderate (typically construed as less than 30 degrees) to very steep (in the range of 45 to 60 degrees). The fracturing was identified with shallow angle bedding to high angle jointing. Earlier workers described “brecciation” within the argillite that might have been relict fault-induced pulverization associated with the formation of the Triassic basin, although this might be difficult to distinguish from a normal texture of a conglomerate, which is mapped in the area. Regardless of the origin of the “breccia” – noted within the argillite close to an occurrence of diabase that fell outside the magnetic anomalies (at MW-17SB and MW-17B-BZE) in the earlier investigations – the geologist in the field noted secondary calcite and iron-oxide infilling (“annealing”), suggesting that these features are ancient and not indicative of any recent seismic activity. The mineral pyrite (iron-sulfide) was also noted in the argillite, indicative of local sulfide mineralization that may a key to many background metallic species. Within the Triassic formations (sandstone, siltstone and conglomerates were noted), dark pigmentation suggests the rocks have been stained either during the intrusion of the dark colored diabase (within the “bake-zone”) or due to migration of iron-manganese oxides with normal groundwater movement. Again, the presence of sulfide minerals is a potential factor, in that sulfides are easily oxidized and the oxide compounds are typically highly mobile in groundwater. Similarly, the argillite exhibits iron-oxide staining (more brightly colored yellow and red-orange due to pyrite deterioration) and variable degrees of weathering along fractures originating as primary bedding (typically thin lamination) and steep jointing. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 30 Rock Core at B-18 Rock Core at B-4 Rock Core at B-24 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 31 The diabase is highly fractured within the investigated depths, heavily stained with dark iron- or iron-manganese-oxides, deeply weathered along steep, often conchoidal fractures. These formations should not be jointed, per se, whereas they are younger than the regional joint pattern and have not undergone the compression tectonic events that caused the jointing, rather, the diabase intruded during tension events. However, diabase observed on other sites exhibits a closely spaced cubic cleavage, along which deep weathering has occurred. In addition, these features are linear – often extending for thousands of feet – which brings the upper reaches of these units into interest from a monitoring standpoint. The relatively high RQD values and the presence of abundant clay along the weathered fractures suggest the dikes on this site function similarly to the other formations and do not serve as highly conductive “conduits.” Rock Quality Designation (RQD) – an engineering index used to describe the relative degree of fracturing and weathering. Predominantly fracture-flow characteristics are expected where RQD values are higher than about 80, and predominantly porous flow is expected at RQD values less than about 30, with mixed characteristics in between, based on the author’s experience. RQD values typically increase with depth, i.e., the deeper, fresher (less weathered) rock of Unit 3 will behave more as fracture-flow media, while the more weathered and upper reaches of the bedrock of Units 1 and 2 will behave more like porous-flow media. The rock cores indicate the gradational transition between the units. Whereas fracturing and weathering tends to be deeper beneath the surface drainage features (i.e., fracture traces), as indicated by RQD values, a monitoring program that focuses on the structural trends is appropriate.  %('52&.&2172850$3 %  )  Drawing S5 presents a generalized top of bedrock contour map based on the recent test borings and earlier work (by others). The bedrock data for the landfill expansion area are consistent with that for the existing Phase 1. Bedrock elevations are highest in the southwest and west portions of the study area, where original ground surface elevations were highest. Auger refusal was encountered from 16 feet below the ground surface at B-28 (in the Triassic sandstone) to depths of 51 feet at B-05 (in the argillite), less than 500 feet away. The bedrock elevations gradually decrease to the north and east, reflecting a subdued expression of the surface topography. No surface exposures of bedrock were noted within the Phases 3 and 4 study area, although the borrow activities exposed rather hard PWR.  +<'52*(2/2*,&&52666(&7,216 %  *  Six hydrogeologic cross-sections are presented with this report (Drawings X1 – X3). Four sections are oriented in the principal groundwater (and surface water) flow direction, roughly down the axes of the four planned cells; four are oriented perpendicular to the principal drainage direction. The cross-sections show relevant data compiled for this investigation, including soil and bedrock lithology, standard penetration resistance values, Maximum Long-Term Seasonal High ground-water levels, estimated seasonal high ground-water levels, zones of ground-water recharge and discharge and ground-water flow directions. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 32  $5($*5281':$7(5)/2:5(*,0(   %  +  Based on various hydrogeologic studies for the Anson Waste Management facility, as well as past experience with similar sites in the piedmont region, the groundwater flow regime at the landfill site consists of a closed loop hydrologic system, associated with relatively short segmented drainage features that developed along regional jointing and/or lithologic contacts. Published mapping indicates that geologic formations described within the study area are contiguous throughout a several-mile radius from the site. The various bedrock types exhibit a prominent regional jointing that result in ground-water pathways and surface drainage features. , Two diabase dikes are younger intrusive rocks formed along both the regional joint pattern and tensional features that cut across the regional jointing – these features are of historical interest as potential groundwater conduits and merit consideration in groundwater monitoring programs, but the on-site data does not indicate any unique behavior relative to ground water flow. Ground water flow patterns in the area are not expected to change significantly due to seasonal climatic variation, except that ground-water levels in the recharge zones are expected to undergo a normal seasonal fluctuation. The uppermost “water table” aquifer is an unconfined saprolite (described as Units 1 and 2), which consists of variably dense silty-clayey sand and silt, derived by in-situ weathering of the bedrock. Partially to fully confined, fractured bedrock (Unit 3) underlies the area at depths that vary due to differential weathering. The bedrock fractures typically become more confined with increasing depth, which restricts ground-water flow deeper than several tens of feet. Ground water recharge typically occurs over the flatter uplands, gently sloping mid-elevations, and normally dry drainage swales. Relatively little recharge occurs within areas of steeper topography (where higher runoff occurs). Typically, ground water is localized within a relatively porous zone of partially weathered rock, which transitions with depth to bedrock. The saprolite (including PWR) serves as a localized ground-water medium with secondary porosity pathways defined by post-formational structures. Ground water collects along weathered fracture zones formed along the regional joint pattern and moves under local gradient conditions to the lower elevations. Localized gradients, grain size and relative density of the unconfined saprolite aquifer influence ground water flow rates. Discharge occurs along area streams, i.e., (Brown Creek and Pinch Gut Creek, which converge at the northern corner of the site). In the immediate vicinity of these streams, horizontal ground-water flow has a minor downstream component. Elsewhere, horizontal ground-water gradients typically reflect a subdued expression of the gently rolling surface topography. This relationship can be seen in the ground-water potentiometric surfaces map. Horizontal ground-water gradients within the study area are considered typical for the area. Based on the relative depths of ground water and bedrock, it can be concluded that ground water (rather than bedrock) is the controlling factor for meeting the vertical separation requirements. For monitoring purposes, the saprolite aquifer is the dominant, upper-most flow regime. Thus, it can be concluded that an effective monitoring program can be developed for the site by focusing on the unconfined saprolite. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________ 33  3,(=20(7(57(67%25,1*$%$1'210(17  %  ,  North Carolina solid waste regulations require that test borings and piezometers installed at the site, which are not converted to permanent monitoring wells, must be abandoned in accordance with 15A NCAC 2C Rule .0113 (a) (2). Typically this requires over-drilling the piezometer with a larger diameter boring and pressure grouting the boring to the surface with bentonite-cement grout. This is to certify that the owner/operator has been made aware of these requirements and, to the extent of the Licensed Geologist’s control, that the piezometers will be abandoned in accordance with these regulations upon approval of the Permit to Construct application. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\   _____________________________________________________________________________        $33(1',; 'DWD7DEOHV  27 5 28 0 28 5 29 0 29 5 30 0 30 5 31 0 31 5 Gr o u n d w a t e r El e v a t i o n vs . Ti m e B Ͳ 01 B Ͳ 02S B Ͳ 02D B Ͳ 03 B Ͳ 04 B Ͳ 05 26 5 27 0 27 5 28 0 28 5 29 0 29 5 30 0 30 5 Gr o u n d w a t e r El e v a t i o n vs . Ti m e B Ͳ 06 B Ͳ 07 B Ͳ 08 B Ͳ 09 B Ͳ 10 B Ͳ 11 27 5 28 0 28 5 29 0 29 5 30 0 30 5 31 0 31 5 32 0 Gr o u n d w a t e r El e v a t i o n vs . Ti m e B Ͳ 11 B Ͳ 12 B Ͳ 13 B Ͳ 18 B Ͳ 19 B Ͳ 20 25 5 26 0 26 5 27 0 27 5 28 0 28 5 29 0 29 5 30 0 30 5 31 0 Gr o u n d w a t e r El e v a t i o n vs . Ti m e B Ͳ 21 B Ͳ 22 B Ͳ 23 B Ͳ 24 B Ͳ 25S B Ͳ 25D 24 5 25 0 25 5 26 0 26 5 27 0 27 5 28 0 Gr o u n d w a t e r El e v a t i o n vs . Ti m e B Ͳ 26 B Ͳ 27 B Ͳ 28 B Ͳ 29 B Ͳ 30 Bo r i n g B o r i n g P V C P i p e G r o u n d S t i c k u p T o t a l B o t t o m P W R P W R R e f u s a l R e f u s a l Nu m b e r D a t e E l e v . E l e v . ( f e e t ) D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v . D e p t h ( f e e t ) E l e v . B- 0 1 1 2 / 0 9 / 2 0 1 4 3 1 6 . 2 8 3 1 3 . 6 3 2 . 6 5 4 4 . 3 2 6 9 . 3 3 2 5 . 0 2 8 8 . 6 3 4 4 . 3 2 6 9 . 3 3 3 4 . 3 2 7 9 . 3 3 4 4 . 3 2 6 9 . 3 3 1 , 2 - A r g i l l i t e B- 0 2 S 0 1 / 2 7 / 2 0 1 5 3 1 0 . 2 0 3 0 7 . 8 4 2 . 3 6 1 5 . 0 2 9 2 . 8 4 5 . 0 3 0 2 . 8 4 - - - -- - 5 . 0 3 0 2 . 8 4 1 5 . 0 2 9 2 . 8 4 1 , 2 - A r g i l l i t e B- 0 2 D 1 2 / 1 5 / 2 0 1 4 3 1 0 . 8 3 3 0 8 . 2 5 2 . 5 8 4 0 . 1 2 6 8 . 1 5 0 . 0 3 0 8 . 2 5 4 0 . 1 2 6 8 . 1 5 3 0 . 1 2 7 8 . 1 5 4 0 . 1 2 6 8 . 1 5 1 , 2 - T r i a s s i c B- 0 3 1 2 / 1 5 / 2 0 1 4 2 1 6 . 5 3 3 1 4 . 1 2 2 . 4 1 3 5 . 0 2 7 9 . 1 2 5 . 0 3 0 9 . 1 2 3 5 . 0 2 7 9 . 1 2 2 5 . 0 2 8 9 . 1 2 3 5 . 0 2 7 9 . 1 2 1 - A r g i l l i t e B- 0 4 © 0 1 / 2 6 / 2 0 1 5 3 1 4 . 4 5 3 1 1 . 5 5 2 . 9 0 4 2 . 3 2 6 9 . 2 5 1 0 . 0 3 0 1 . 5 5 2 8 . 3 2 8 3 . 2 5 1 8 . 3 2 9 3 . 2 5 2 8 . 3 2 8 3 . 2 5 3 - A r g i l l i t e B- 0 5 1 2 / 0 9 / 2 0 1 4 3 2 2 . 0 7 3 1 8 . 8 7 3 . 2 0 5 0 . 8 2 6 8 . 0 7 2 0 . 0 2 9 8 . 8 7 5 0 . 8 2 6 8 . 0 7 4 0 . 8 2 7 8 . 0 7 5 0 . 8 2 6 8 . 0 7 1 - A r g i l l i t e B- 0 6 1 2 / 1 6 / 2 0 1 4 2 9 7 . 7 9 2 9 4 . 9 6 2 . 8 3 2 5 . 0 2 6 9 . 9 6 2 5 . 0 0 2 6 9 . 9 6 2 5 . 0 2 6 9 . 9 6 1 5 . 0 2 7 9 . 9 6 2 5 . 0 2 6 9 . 9 6 1 - A r g i l l i t e B- 0 7 1 2 / 0 8 / 2 0 1 4 3 1 7 . 0 3 3 1 3 . 9 7 3 . 0 6 2 7 . 3 2 8 6 . 7 5 . 0 3 0 8 . 9 7 2 7 . 3 2 8 6 . 6 7 1 7 . 3 2 9 6 . 6 7 2 7 . 3 2 8 6 . 6 7 1 - A r g i l l i t e B- 0 8 1 2 / 1 7 / 2 0 1 4 3 1 6 . 5 8 3 1 3 . 2 7 3 . 3 1 3 1 . 5 2 8 1 . 8 1 5 . 0 2 9 8 . 2 7 3 1 . 5 2 8 1 . 7 7 2 1 . 5 2 9 1 . 7 7 3 1 . 5 2 8 1 . 7 7 1 - A r g i l l i t e B- 0 9 1 2 / 1 6 / 2 0 1 4 2 9 4 . 2 0 2 9 1 . 0 6 3 . 1 4 2 0 . 5 2 7 0 . 6 2 0 . 0 2 7 1 . 0 6 2 0 . 5 2 7 0 . 5 6 1 0 . 5 2 8 0 . 5 6 2 0 . 5 2 7 0 . 5 6 1 - A r g i l l i t e B- 1 0 1 2 / 1 7 / 2 0 1 4 3 0 2 . 4 5 2 9 9 . 9 2 2 . 5 3 1 8 . 2 2 8 1 . 7 2 1 5 . 0 2 8 4 . 9 2 1 8 . 2 2 8 1 . 7 2 8 . 2 2 9 1 . 7 2 1 8 . 2 2 8 1 . 7 2 1 - A r g i l l i t e B- 1 1 1 2 / 2 2 / 2 0 1 4 3 1 4 . 5 2 3 1 2 . 3 2 2 . 2 0 2 3 . 5 2 8 8 . 8 2 5 . 0 3 0 7 . 3 2 2 3 . 5 2 8 8 . 8 2 1 3 . 5 2 9 8 . 8 2 2 3 . 5 2 8 8 . 8 2 1 - A r g i l l i t e B- 1 2 1 2 / 1 2 / 2 0 1 4 3 1 6 . 5 9 3 1 4 . 8 7 1 . 7 2 3 1 . 6 2 8 3 . 2 7 1 0 . 0 3 0 4 . 8 7 3 1 . 6 2 8 3 . 2 7 2 1 . 6 2 9 3 . 2 7 3 1 . 6 2 8 3 . 2 7 1 - A r g i l l i t e B- 1 3 1 2 / 1 2 / 2 0 1 4 3 1 7 . 7 4 3 1 5 . 4 8 2 . 2 6 4 6 . 1 2 6 9 . 3 8 1 0 . 0 3 0 5 . 4 8 4 6 . 1 2 6 9 . 3 8 3 6 . 1 2 7 9 . 3 8 4 6 . 1 2 6 9 . 3 8 1 - A r g i l l i t e B- 1 4 1 2 / 1 1 / 2 0 1 4 - - - 3 1 2 . 1 7 - - - 2 2 . 3 2 8 9 . 8 7 2 0 . 0 2 9 2 . 1 7 2 2 . 3 2 8 9 . 8 7 - - - -- - ------ 1 - A r g i l l i t e B- 1 5 1 2 / 1 1 / 2 0 1 4 - - - 3 1 6 . 5 3 - - - 2 2 . 5 2 9 4 . 0 3 1 0 . 0 3 0 6 . 5 3 2 2 . 5 2 9 4 . 0 3 - - - -- - ------ 1 - A r g i l l i t e B- 1 6 1 2 / 1 0 / 2 0 1 4 - - - 3 1 5 . 4 0 - - - 3 8 . 8 2 7 6 . 6 0 5 . 0 3 1 0 . 4 0 3 8 . 8 2 7 6 . 6 0 - - - -- - ------ 1 - A r g i l l i t e B- 1 7 1 2 / 1 1 / 2 0 1 4 - - - 3 1 5 . 2 9 - - - 4 3 . 6 2 7 1 . 6 9 4 3 . 6 2 7 1 . 6 9 4 3 . 6 2 7 1 . 6 9 - - - -- - ------ 1 - A r g i l l i t e B- 1 8 © 1 2 / 0 9 / 2 0 1 4 3 2 1 . 2 1 3 1 8 . 5 0 2 . 7 1 4 0 . 5 2 7 8 . 0 0 2 0 . 0 2 9 8 . 5 0 2 5 . 5 2 9 3 . 0 0 1 5 . 5 3 0 3 . 0 0 2 5 . 5 2 9 3 . 0 0 3 - A r g i l l i t e B- 1 9 1 2 / 1 0 / 2 0 1 4 3 1 9 . 6 5 3 1 6 . 7 5 2 . 9 0 3 5 . 5 2 8 1 . 2 5 1 5 . 0 3 0 1 . 7 5 3 5 . 5 2 8 1 . 2 5 2 5 . 5 2 9 1 . 2 5 3 5 . 5 2 8 1 . 2 5 1 - A r g i l l i t e B- 2 0 1 2 / 1 7 / 2 0 1 4 3 1 9 . 3 2 3 1 7 . 3 1 2 . 0 1 2 7 . 7 2 8 9 . 6 1 1 0 . 0 3 0 7 . 3 1 2 7 . 7 2 8 9 . 6 1 1 7 . 7 2 9 9 . 6 1 2 7 . 7 2 8 9 . 6 1 1 - A r g i l l i t e B- 2 1 1 2 / 2 2 / 2 0 1 4 3 0 9 . 4 5 3 0 5 . 9 0 3 . 5 5 2 2 . 0 2 8 3 . 9 0 1 0 . 0 0 2 9 5 . 9 0 - - - -- - 1 2 . 0 2 9 3 . 9 0 2 2 . 0 2 8 3 . 9 0 1 - A r g i l l i t e B- 2 2 1 2 / 2 2 / 2 0 1 4 2 9 9 . 9 6 2 9 7 . 3 2 2 . 6 4 1 7 . 2 2 8 0 . 1 2 1 0 . 0 2 8 7 . 3 2 1 7 . 2 2 8 0 . 1 2 7 . 2 2 9 0 . 1 2 1 7 . 2 2 8 0 . 1 2 1 - A r g i l l i t e B- 2 3 1 2 / 1 8 / 2 0 1 4 3 0 6 . 8 7 3 0 5 . 0 8 1 . 7 9 3 0 . 0 2 7 5 . 0 8 1 8 . 7 2 8 6 . 3 8 2 7 . 7 2 7 7 . 3 8 2 0 . 0 2 8 5 . 0 8 3 0 . 0 2 7 5 . 0 8 1 - A r g i l l i t e B- 2 4 © 1 2 / 1 8 / 2 0 1 4 3 0 7 . 8 4 3 0 5 . 3 2 2 . 5 2 3 0 . 5 2 7 4 . 8 2 1 5 . 0 2 9 0 . 3 2 1 5 . 2 2 9 0 . 1 2 5 . 2 3 0 0 . 1 2 1 5 . 2 2 9 0 . 1 2 3 - A r g i l l i t e B- 2 5 S 0 1 / 2 8 / 2 0 1 5 2 9 1 . 1 4 2 8 8 . 3 5 2 . 7 9 1 5 . 0 2 7 3 . 3 5 - - - - - - 1 5 . 0 2 7 3 . 3 5 5 . 0 2 8 3 . 3 5 1 5 . 0 2 7 3 . 3 5 1 - A r g i l l i t e B- 2 5 D 1 2 / 1 8 / 2 0 1 4 2 9 2 . 5 7 2 8 9 . 5 3 3 . 0 4 3 0 . 2 2 5 9 . 3 3 1 5 . 0 2 7 4 . 5 3 3 0 . 2 2 5 9 . 3 3 2 0 . 2 2 6 9 . 3 3 3 0 . 2 2 5 9 . 3 3 1 , 2 - A r g i l l i t e Ta b l e 1 Te s t B o r i n g / P i e z o m e t e r D a t a Bo r i n g s W i t h P i e z o m e t e r s I n s t a l l e d F o r T h e P h a s e 3 & 4 D e s i g n H y d r o I n v e s t i g a t i o n : An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 Hydrogeologic Unit El e v a t i o n D a t a T e s t B o r i n g D a t a P i e z o m e t e r C o n s t r u c t i o n D a t a To p o f P i e z . S c r e e n B o t t o m o f P i e z . S c r e e n An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y P h a s e 3& 4 De s i g n Hy d r o g e o l o g i c St u d y Bo r i n g B o r i n g P V C P i p e G r o u n d S t i c k u p T o t a l B o t t o m P W R P W R R e f u s a l R e f u s a l Nu m b e r D a t e E l e v . E l e v . ( f e e t ) D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v . D e p t h ( f e e t ) E l e v . Ta b l e 1 Te s t B o r i n g / P i e z o m e t e r D a t a Bo r i n g s W i t h P i e z o m e t e r s I n s t a l l e d F o r T h e P h a s e 3 & 4 D e s i g n H y d r o I n v e s t i g a t i o n : An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 Hydrogeologic Unit El e v a t i o n D a t a T e s t B o r i n g D a t a P i e z o m e t e r C o n s t r u c t i o n D a t a To p o f P i e z . S c r e e n B o t t o m o f P i e z . S c r e e n B- 2 6 1 2 / 1 8 / 2 0 1 4 2 7 9 . 6 3 2 7 7 . 1 3 2 . 5 0 1 5 . 8 2 6 1 . 3 3 8 . 5 2 6 8 . 6 3 1 5 . 8 2 6 1 . 3 3 5 . 8 2 7 1 . 3 3 1 5 . 8 2 6 1 . 3 3 1 - T r i a s s i c B- 2 7 1 2 / 1 9 / 2 0 1 4 2 7 3 . 2 2 2 7 0 . 2 3 2 . 9 9 2 5 . 9 2 4 4 . 3 3 1 0 . 0 2 6 0 . 2 3 2 5 . 9 2 4 4 . 3 3 1 5 . 9 2 5 4 . 3 3 2 5 . 9 2 4 4 . 3 3 1 - T r i a s s i c B- 2 8 1 2 / 1 9 / 2 0 1 4 2 7 3 . 5 7 2 7 1 . 1 3 2 . 4 4 1 6 . 0 2 5 5 . 1 3 5 . 0 2 6 6 . 1 3 1 6 . 0 2 5 5 . 1 3 6 . 0 2 6 5 . 1 3 1 6 . 0 2 5 5 . 1 3 1 - T r i a s s i c B- 2 9 1 2 / 1 9 / 2 0 1 4 2 8 1 . 1 8 2 7 8 . 0 3 3 . 1 5 2 0 . 8 2 5 7 . 2 3 1 0 . 0 2 6 8 . 0 3 2 0 . 8 2 5 7 . 2 3 1 0 . 8 2 6 7 . 2 3 2 0 . 8 2 5 7 . 2 3 2 - A r g i l l i t e B- 3 0 1 2 / 1 8 / 2 0 1 4 2 8 3 . 0 7 2 8 0 . 1 5 2 . 9 2 2 9 . 0 2 5 1 . 1 5 1 0 . 0 2 7 0 . 1 5 2 9 . 0 2 5 1 . 1 5 1 9 . 0 2 6 1 . 1 5 2 9 . 0 2 5 1 . 1 5 1 - A r g i l l i t e B- 3 1 3 / 3 1 / 2 0 1 5 2 8 1 . 4 4 2 7 8 . 2 1 3 . 2 3 1 5 . 0 2 6 3 . 2 - - - - - - - - - -- - 1 0 . 0 2 6 8 . 2 1 5 . 0 2 6 3 . 2 1 - A r g i l l i t e B- 3 2 3 / 3 1 / 2 0 1 5 2 8 1 . 9 0 2 7 8 . 5 0 3 . 4 0 1 5 . 0 2 6 3 . 5 - - - - - - - - - -- - 1 0 . 0 2 6 8 . 5 1 5 . 0 2 6 3 . 5 1 - A r g i l l i t e No t e s : 1 . R e f e r e n c e e l e v a t i o n s f o r a b o v e p i e z o m e t e r s b a s e d o n s u r v e y d a t a r e p o r t e d b y L a w r e n c e a n d A s s o c i a t e s 2. A u g e r r e f u s a l d e p t h s a n d e l e v a t i o n s i n d i c a t e t o p o f b e d r o c k 3. P W R i s d e f i n e d b y s t a n d a r d p e n e t r a t i o n t e s t v a l u e o f 1 0 0 b l o w s p e r f o o t , o r h i g h e r . 4. A l l d e p t h s r e f e r e n c e d f r o m g r o u n d s u r f a c e © C o r e l o c a t i o n Hy d r o U n i t s Tr i a s s i c V a r i a b l y w e a t h e r e d s i l t s t o n e a n d s a n d s t o n e c o n g l o m e r a t e o f t h e W a d e s b o r o B a s i n 1 S a p r o l i t e w i t h S P T v a l u e < 1 0 0 b p f Ar g i l l i t e L a m i n a t e d m e t a - v o l c a n i c p h y l l i t e , s c h i s t , a n d / o r s i l t s t o n e o f t h e C a r o l i n a S l a t e B e l t 2 S a p r o l i t e w i t h S P T v a l u e > 1 0 0 b pf, PWR Di a b a s e M a f i c i n t r u s i o n s ( d i k e s a n d / o r s i l l s ) a s s o c i a t e d w i t h p o s t - A p p a l a c h i a n t e c t o n i c r i f t i n g 3 B e d r o c k b e l o w A u g e r R e f u s a l An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y P h a s e 3& 4 De s i g n Hy d r o g e o l o g i c St u d y Bo r i n g B o r i n g P V C P i p e G r o u n d S t i c k u p T o t a l B o t t o m P W R P W R R e f u s a l R e f u s a l Nu m b e r D a t e E l e v . E l e v . ( f e e t ) D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e va t i o n D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v . D e p t h ( f e e t ) E l e v . Bo r i n g s c o m p l e t e d i n T r i a s s i c s a n d s t o n e MW - 2 7 O B 2 / 1 0 / 1 9 9 2 U n k . 2 3 8 . 3 0 U n k . 2 5 . 0 0 2 1 3 . 3 0 1 7 . 0 0 2 2 1 . 3 0 2 8 . 0 0 2 1 0 . 3 0 5 . 0 0 3 0 3 . 3 6 2 5 . 0 0 2 8 6 . 3 6 1 - T r i a s s i c P- 1 0 1 6 / 2 5 / 1 9 9 7 3 2 0 . 7 5 3 1 8 . 3 6 2 . 3 9 3 2 . 0 0 2 8 6 . 3 6 - - - - - - - - - - - - 1 5 . 0 0 3 0 3 . 3 6 3 2 . 0 0 2 8 6 . 3 6 1 - T r i a s s i c P- 1 0 7 6 / 2 6 / 1 9 9 7 3 2 1 . 9 1 3 1 9 . 3 5 2 . 5 6 3 2 . 0 0 2 8 7 . 3 5 - - - - - - 3 2 . 0 0 2 8 7 . 3 5 2 5 . 0 0 2 9 4 . 3 5 3 2 . 0 0 2 8 7 . 3 5 1 - T r i a s s i c P- 1 0 8 6 / 3 0 / 1 9 9 7 3 1 5 . 7 0 3 1 3 . 2 2 2 . 4 8 1 5 . 0 0 2 9 8 . 2 2 - - - - - - 1 5 . 0 0 2 9 8 . 2 2 1 3 . 2 5 2 9 9 . 9 7 1 5 . 0 0 2 9 8 . 2 2 1 - T r i a s s i c MW - 3 2 O B 3 / 3 / 1 9 9 2 3 0 0 . 5 4 2 9 8 . 2 3 2 . 3 1 3 6 . 0 0 2 6 2 . 2 3 - - - - - - - - - - - - 6 . 0 0 2 9 2 . 2 3 3 6 . 0 0 2 6 2 . 2 3 1 - T r i a s s i c MW - 3 3 O B 2 / 2 7 / 1 9 9 2 2 8 4 . 4 7 2 8 2 . 3 4 2 . 1 3 1 8 . 0 0 2 6 4 . 3 4 - - - - - - - - - - - - 3 . 0 0 2 7 9 . 3 4 1 8 . 0 0 2 6 4 . 3 4 1 - T r i a s s i c PH 2 - 1 8 1 1 / 1 7 / 2 0 0 3 3 0 4 . 2 9 3 0 0 . 7 2 3 . 5 7 2 8 . 5 0 2 7 2 . 2 2 1 7 . 0 0 2 8 3 . 7 2 2 8 . 5 0 2 7 2 . 2 2 1 8 . 5 0 2 8 2 . 2 2 2 8 . 5 0 2 7 2 . 2 2 2 - T r i a s s i c PH 2 - 2 9 1 2 / 9 / 2 0 0 3 2 6 9 . 4 6 2 6 5 . 9 6 3 . 5 0 5 0 . 0 0 2 1 5 . 9 6 8 . 0 0 2 5 7 . 9 6 - - - - - - 4 0 . 0 0 2 2 5 . 9 6 5 0 . 0 0 2 1 5 . 9 6 2 - T r i a s s i c PH 2 - 3 0 1 2 / 3 / 2 0 0 3 2 7 3 . 6 8 2 7 0 . 4 9 3 . 1 9 3 5 . 0 0 2 3 5 . 4 9 8 . 0 0 2 6 2 . 4 9 - - - - - - 2 5 . 0 0 2 4 5 . 4 9 3 5 . 0 0 2 3 5 . 4 9 2 - T r i a s s i c B- 2 1 0 / 3 / 1 9 9 1 3 2 1 . 2 5 3 1 7 . 0 1 4 . 2 4 2 6 . 5 0 2 9 0 . 5 1 - - - - - - 2 6 . 5 0 2 9 0 . 5 1 1 0 . 5 0 3 0 6 . 5 1 2 0 . 5 0 2 9 6 . 5 1 1 , 2 - T r i a s s i c P- 1 2 S 5 / 1 0 / 1 9 9 6 3 1 0 . 5 1 3 0 7 . 4 4 3 . 0 7 2 9 . 0 0 2 7 8 . 4 4 - - - - - - n / a n / a 1 4 . 0 0 2 9 3 . 4 4 2 9 . 0 0 2 7 8 . 4 4 1 , 2 - T r i a s s i c MW - 2 0 - O B 2 / 3 / 1 9 9 2 2 8 0 . 5 4 2 7 8 . 3 7 2 . 1 7 2 5 . 8 0 2 5 2 . 5 7 2 3 . 5 0 2 5 4 . 8 7 < 2 5 . 8 < 2 5 2 . 5 7 5 . 8 0 2 7 2 . 5 7 2 5 . 8 0 2 5 2 . 5 7 1 , 2 - T r i a s s i c MW - 2 6 - O B S 2 / 1 4 / 1 9 9 2 2 5 4 . 4 4 2 5 1 . 4 4 U n k . 1 3 . 5 0 2 3 7 . 9 4 6 . 5 0 2 4 4 . 9 4 - - - < 2 3 8 . 2 3 . 0 0 2 4 8 . 4 4 1 3 . 0 0 2 3 8 . 4 4 1 , 2 - T r i a s s i c MW - 2 S * 1 0 / 1 2 / 2 0 0 0 3 1 8 . 0 0 3 1 5 . 4 4 2 . 5 6 3 1 . 0 0 2 8 4 . 4 4 1 5 . 0 0 3 0 0 . 4 4 - - - - - - 1 6 . 0 0 2 9 9 . 4 4 3 1 . 0 0 2 8 4 . 4 4 1 , 2 - T r i a s s i c MW - 3 S * 1 0 / 1 8 / 2 0 0 0 2 9 5 . 8 7 2 9 3 . 1 8 2 . 6 9 2 0 . 0 0 2 7 3 . 1 8 1 4 . 0 0 2 7 9 . 1 8 - - - - - - 5 . 0 0 2 8 8 . 1 8 2 0 . 0 0 2 7 3 . 1 8 1 , 2 - T r i a s s i c MW - 4 S * 1 0 / 1 7 / 2 0 0 0 2 9 4 . 2 9 2 9 2 . 2 3 2 . 0 6 3 0 . 0 0 2 6 2 . 2 3 2 9 . 0 0 2 6 3 . 2 3 - - - - - - 1 5 . 0 0 2 7 7 . 2 3 3 0 . 0 0 2 6 2 . 2 3 1 , 2 - T r i a s s i c MW - 5 S * 1 0 / 9 / 2 0 0 0 2 8 2 . 1 5 2 7 8 . 8 0 3 . 3 5 3 0 . 0 0 2 4 8 . 8 0 9 . 0 0 2 6 9 . 8 0 - - - - - - 1 5 . 0 0 2 6 3 . 8 0 3 0 . 0 0 2 4 8 . 8 0 1 , 2 - T r i a s s i c MW - 8 S * 5 / 8 / 1 9 9 6 3 1 1 . 8 5 3 0 9 . 3 0 2 . 5 5 3 5 . 0 0 2 7 4 . 3 0 1 4 . 0 0 2 9 5 . 3 0 - - - - - - 2 0 . 0 0 2 8 9 . 3 0 3 5 . 0 0 2 7 4 . 3 0 1 , 2 - T r i a s s i c B- 6 9 / 3 0 / 1 9 9 1 2 7 2 . 2 3 2 6 9 . 2 3 U n k . 3 5 . 0 0 2 3 4 . 2 3 2 3 . 5 0 2 4 5 . 7 3 - - - < 2 3 4 . 2 3 - - - - - - 3 5 . 0 0 2 3 4 . 2 3 2 - T r i a s s i c MW - 2 6 O B 2 / 1 7 / 1 9 9 2 2 5 4 . 2 3 2 5 1 . 2 3 U n k . 2 2 . 0 0 2 2 9 . 2 3 6 . 5 0 2 4 4 . 7 3 2 2 . 0 0 2 2 9 . 2 3 1 2 . 0 0 2 3 9 . 2 3 2 2 . 0 0 2 2 9 . 2 3 2 - T r i a s s i c MW - 9 * 5 / 1 9 / 2 0 1 1 2 7 4 . 5 8 2 7 1 . 5 8 3 . 0 0 2 7 . 5 0 2 4 4 . 0 8 - - - - - - 4 7 . 5 0 2 2 4 . 0 8 3 2 . 5 0 2 3 9 . 0 8 4 7 . 5 0 2 2 4 . 0 8 2 - T r i a s s i c MW - 2 D * © 1 0 / 1 0 / 2 0 0 0 3 1 7 . 7 4 3 1 5 . 1 4 2 . 6 0 3 8 . 0 0 2 7 7 . 1 4 1 5 . 0 0 3 0 0 . 1 4 3 5 . 0 0 2 8 0 . 1 4 3 3 . 0 0 2 8 2 . 1 4 3 8 . 0 0 2 7 7 . 1 4 2 , 3 - T r i a s s i c MW - 3 D * © 1 0 / 1 7 / 2 0 0 0 2 9 5 . 6 0 2 9 3 . 1 0 2 . 5 0 4 0 . 0 0 2 5 3 . 1 0 1 4 . 0 0 2 7 9 . 1 0 3 4 . 0 0 2 5 9 . 1 0 3 0 . 0 0 2 6 3 . 1 0 4 0 . 0 0 2 5 3 . 1 0 2 , 3 - T r i a s s i c MW - 4 D * © 1 0 / 1 7 / 2 0 0 0 2 9 4 . 1 6 2 9 1 . 5 9 2 . 5 7 6 0 . 5 0 2 3 1 . 0 9 2 9 . 0 0 2 6 2 . 5 9 5 4 . 0 0 2 3 7 . 5 9 5 0 . 5 0 2 4 1 . 0 9 6 0 . 5 0 2 3 1 . 0 9 2 , 3 - T r i a s s i c MW - 5 D * © 1 0 / 9 / 2 0 0 0 2 8 1 . 9 4 2 7 8 . 9 8 2 . 9 6 4 7 . 0 0 2 3 1 . 9 8 9 . 0 0 2 6 9 . 9 8 4 2 . 0 0 2 3 6 . 9 8 3 7 . 0 0 2 4 1 . 9 8 4 7 . 0 0 2 3 1 . 9 8 2 , 3 - T r i a s s i c MW - 8 D * © 5 / 7 / 1 9 9 6 3 1 1 . 6 1 3 0 9 . 4 5 2 . 1 6 4 9 . 0 0 2 6 0 . 4 5 1 4 . 0 0 2 9 5 . 4 5 3 9 . 0 0 2 7 0 . 4 5 3 8 . 0 0 2 7 1 . 4 5 4 8 . 0 0 2 6 1 . 4 5 2 , 3 - T r i a s s i c P- 1 2 D 5 / 1 0 / 1 9 9 6 3 1 0 . 4 4 3 0 7 . 7 1 2 . 7 3 4 2 . 0 0 2 6 5 . 7 1 - - - - - - 3 0 . 0 0 2 7 7 . 7 1 3 2 . 0 0 2 7 5 . 7 1 4 2 . 0 0 2 6 5 . 7 1 3 - T r i a s s i c MW - 1 5 - 0 B 2 / 1 3 / 1 9 9 2 3 0 4 . 5 6 3 0 2 . 1 0 2 . 4 6 2 5 . 0 0 2 7 7 . 1 0 - - - - - - - - - -- - 5 . 0 0 2 9 7 . 1 0 2 5 . 0 0 2 7 7 . 1 0 3 - T r i a s s i c Ta b l e 1 A Te s t B o r i n g / P i e z o m e t e r D a t a Ea r l i e r B o r i n g s W i t h P i e z o m e t e r s R e l e v a n t t o T h e P h a s e 3 & 4 D e s i g n H y d r o I n v e s t i g a t i o n : An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 El e v a t i o n D a t a Te s t B o r i n g D a t a Pi e z o m e t e r C o n s t r u c t i o n D a t a Hydrogeologic Unit To p o f P i e z . S c r e e n B o t t o m o f P i e z . S c r e e n An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y P h a s e 3& 4 De s i g n Hy d r o g e o l o g i c St u d y Bo r i n g B o r i n g P V C P i p e G r o u n d S t i c k u p T o t a l B o t t o m P W R P W R R e f u s a l R e f u s a l Nu m b e r D a t e E l e v . E l e v . ( f e e t ) D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e va t i o n D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v . D e p t h ( f e e t ) E l e v . Ta b l e 1 A Te s t B o r i n g / P i e z o m e t e r D a t a Ea r l i e r B o r i n g s W i t h P i e z o m e t e r s R e l e v a n t t o T h e P h a s e 3 & 4 D e s i g n H y d r o I n v e s t i g a t i o n : An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 El e v a t i o n D a t a Te s t B o r i n g D a t a Pi e z o m e t e r C o n s t r u c t i o n D a t a Hydrogeologic Unit To p o f P i e z . S c r e e n B o t t o m o f P i e z . S c r e e n MW - 1 5 S B 2 / 1 3 / 1 9 9 2 3 0 5 . 0 4 3 0 2 . 2 6 2 . 7 8 5 9 . 0 0 2 4 3 . 2 6 - - - - - - - - - -- - 7 9 . 8 3 2 5 4 . 2 6 8 9 . 3 3 2 4 3 . 2 3 3 - T r i a s s i c MW - 1 5 - D B 2 / 1 3 / 1 9 9 2 3 0 5 . 1 4 3 0 2 . 4 3 2 . 7 1 8 9 . 5 0 2 1 2 . 9 3 - - - - - - 4 8 . 0 0 2 5 5 . 4 3 8 0 . 0 0 2 2 2 . 4 3 8 9 . 5 0 2 1 2 . 9 3 3 - T r i a s s i c MW - 2 6 S B © 2 / 1 7 / 1 9 9 2 2 5 4 . 6 7 2 5 1 . 6 7 U n k . 4 2 . 2 0 2 0 9 . 4 7 6 . 5 0 2 4 5 . 1 7 2 3 . 0 0 2 2 8 . 6 7 O P E N B O R E H O L E I N B E D R O C K 3 - Triassic MW - 2 7 S B 2 / 7 / 1 9 9 2 2 3 9 . 4 8 2 3 6 . 4 8 U n k . 4 2 . 0 0 1 9 4 . 4 8 1 7 . 0 0 2 1 9 . 4 8 2 8 . 0 0 2 0 8 . 4 8 O P E N B O R E H O L E I N B E D R O C K 3 - Triassic MW - 2 7 D B 1 / 3 0 / 1 9 9 2 2 4 2 . 3 9 2 3 9 . 3 9 U n k . 6 7 . 5 0 1 7 1 . 8 9 1 7 . 0 0 2 2 2 . 3 9 2 8 . 0 0 2 1 1 . 3 9 O P E N B O R E H O L E I N B E D R O C K 3 - Triassic MW - 3 2 S B 2 / 2 6 / 1 9 9 2 3 0 0 . 8 8 2 9 8 . 2 7 2 . 6 1 7 3 . 0 0 2 2 5 . 2 7 - - - - - - 4 0 . 0 0 2 5 8 . 2 7 4 0 . 0 0 2 5 8 . 2 7 7 3 . 0 0 2 2 5 . 2 7 3 - T r i a s s i c MW - 3 3 S B 2 / 2 6 / 1 9 9 2 2 8 5 . 4 0 2 8 3 . 3 8 2 . 0 2 4 7 . 5 0 2 3 5 . 8 8 - - - - - - 2 0 . 0 0 2 6 3 . 3 8 2 2 . 0 0 2 6 1 . 3 8 4 7 . 5 0 2 3 5 . 8 8 3 - T r i a s s i c Bo r i n g s c o m p l e t e d i n d i a b a s e P- 1 3 S 5 / 7 / 1 9 9 6 3 2 8 . 7 9 3 2 6 . 6 1 2 . 1 8 4 3 . 0 0 2 8 3 . 6 1 - - - - - - - - - -- - 2 8 . 0 0 2 9 8 . 6 1 4 3 . 0 0 2 8 3 . 6 1 1 - D i a b a s e P- 1 3 S - R 1 0 / 6 / 1 9 9 7 3 2 8 . 9 0 3 2 6 . 4 1 2 . 4 9 3 1 . 0 0 2 9 5 . 4 1 - - - - - - - - - -- - 2 6 . 0 0 3 0 0 . 4 1 3 1 . 0 0 2 9 5 . 4 1 1 - D i a b a s e P- 1 3 - D - R 1 0 / 6 / 1 9 9 7 3 2 8 . 2 9 3 2 6 . 3 0 1 . 9 9 3 9 . 9 0 2 8 6 . 4 0 - - - - - - - - - -- - 3 4 . 9 0 2 9 1 . 4 0 3 9 . 9 0 2 8 6 . 4 0 1 - D i a b a s e PH 2 - 3 1 1 2 / 2 / 2 0 0 3 2 8 3 . 8 8 2 8 0 . 1 6 3 . 7 2 7 3 . 5 0 2 0 6 . 6 6 0 . 0 0 2 8 0 . 1 6 - - - -- - 6 3 . 5 0 2 1 6 . 6 6 7 3 . 5 0 2 0 6 . 6 6 1 - D i a b a s e MW - 3 4 O B 2 / 2 7 / 1 9 9 2 2 7 6 . 3 5 2 7 6 . 2 0 0 . 1 5 6 . 0 0 2 7 0 . 2 0 4 . 5 0 2 7 1 . 7 0 - - - -- - 3 . 7 0 2 7 2 . 5 0 6 . 0 0 2 7 0 . 2 0 1 - D i a b a s e P- 1 3 D 5 / 7 / 1 9 9 6 3 2 9 . 0 3 3 2 6 . 3 5 2 . 6 8 5 5 . 0 0 2 7 1 . 3 5 - - - - - - 4 4 . 0 0 2 8 2 . 3 5 4 5 . 0 0 2 8 1 . 3 5 5 5 . 0 0 2 7 1 . 3 5 3 - D i a b a s e MW - 1 4 B - B Z W 5 / 1 1 / 1 9 9 5 3 3 4 . 2 3 3 3 4 . 2 3 0 . 0 0 8 0 . 0 0 2 5 4 . 2 3 - - - - - - 4 3 . 0 0 2 9 1 . 2 3 5 9 . 9 8 2 7 4 . 2 5 7 9 . 9 8 2 5 4 . 2 5 3 - D i a b a s e MW - 1 4 B - D D 5 / 1 7 / 1 9 9 5 3 3 3 . 6 9 3 3 3 . 6 9 0 . 0 0 1 2 0 . 0 0 2 1 3 . 6 9 2 4 . 0 0 3 0 9 . 6 9 3 6 . 0 0 2 9 7 . 6 9 5 4 . 0 0 2 7 9 . 6 9 1 2 0 . 0 0 2 1 3 . 6 9 3 - D i a b a s e MW - 1 7 A - B Z E © 5 / 1 6 / 1 9 9 5 3 2 7 . 1 0 3 2 7 . 1 0 0 . 0 0 1 1 8 . 0 0 2 0 9 . 1 0 4 2 . 0 0 2 8 5 . 1 0 4 4 . 0 0 2 8 3 . 1 0 O P E N B O R E H O L E I N B E D R O C K 3 - Diabase MW - 1 7 A - D D 5 / 1 7 / 1 9 9 5 3 2 7 . 6 3 3 2 7 . 6 3 0 . 0 0 1 1 5 . 0 0 2 1 2 . 6 3 - - - -- - 3 1 . 5 0 2 9 6 . 1 3 O P E N B O R E H O L E I N B E D R O C K 3 - Diabase MW - 3 4 S B © 2 / 6 / 1 9 9 2 2 7 8 . 0 5 2 7 6 . 2 2 1 . 8 3 4 0 . 3 4 2 3 5 . 8 8 4 . 5 0 2 7 1 . 7 2 1 0 . 0 0 2 6 6 . 2 2 O P E N B O R E H O L E I N B E D R O C K 3 - Diabase MW - 1 D * © 1 1 / 1 0 / 2 0 0 0 3 0 9 . 7 0 3 0 7 . 3 0 2 . 4 0 4 5 . 5 0 2 6 1 . 8 0 2 0 . 0 0 2 8 7 . 3 0 3 3 . 0 0 2 7 4 . 3 0 3 5 . 5 0 2 7 1 . 8 0 4 5 . 5 0 2 6 1 . 8 0 3 - D i a b a s e Bo r i n g s c o m p l e t e d i n a r g i l l i t e B- 1 1 0 / 1 / 1 9 9 1 3 2 6 . 9 5 3 2 3 . 6 9 3 . 2 6 1 6 . 5 0 3 0 7 . 1 9 - - - - - - 1 6 . 5 0 3 0 7 . 1 9 6 . 5 0 3 1 7 . 1 9 1 6 . 5 0 3 0 7 . 1 9 1 - A r g i l l i t e MW - 1 4 - O B 2 / 4 / 1 9 9 2 3 0 5 . 7 2 3 0 3 . 3 1 2 . 4 1 1 9 . 5 0 2 8 3 . 8 1 1 1 . 5 0 2 9 1 . 8 1 1 9 . 7 0 2 8 3 . 6 1 9 . 5 0 2 9 3 . 8 1 1 9 . 5 0 2 8 3 . 8 1 1 - A r g i l l i t e MW - 1 4 A - O B 2 / 2 5 / 1 9 9 2 3 3 7 . 4 8 3 3 4 . 9 4 2 . 5 4 3 1 . 0 0 3 0 3 . 9 4 - - - - - - < 3 1 n / a 1 5 . 9 9 3 1 8 . 9 5 3 1 . 0 0 3 0 3 . 9 4 1 - A r g i l l i t e MW - 1 6 O B 2 / 4 / 1 9 9 2 3 1 5 . 2 2 3 1 2 . 8 3 2 . 3 9 4 5 . 0 0 2 6 7 . 8 3 1 8 . 5 0 2 9 4 . 3 3 4 5 . 0 0 2 6 7 . 8 3 1 5 . 0 0 2 9 7 . 8 3 4 5 . 0 0 2 6 7 . 8 3 1 - A r g i l l i t e MW - 1 7 O B S 2 / 4 / 1 9 9 2 3 1 2 . 5 4 3 1 0 . 7 3 1 . 8 1 1 0 . 0 0 3 0 0 . 7 3 9 . 5 0 3 0 1 . 2 3 - - - -- - 5 . 0 0 3 0 5 . 7 3 1 0 . 0 0 3 0 0 . 7 3 1 - A r g i l l i t e P- 1 1 S 5 / 7 / 1 9 9 6 3 2 9 . 8 8 3 2 6 . 8 4 3 . 0 4 3 0 . 0 0 2 9 6 . 8 4 - - - - - - n / a n / a 1 5 . 0 0 3 1 1 . 8 4 3 0 . 0 0 2 9 6 . 8 4 1 - A r g i l l i t e An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y P h a s e 3& 4 De s i g n Hy d r o g e o l o g i c St u d y Bo r i n g B o r i n g P V C P i p e G r o u n d S t i c k u p T o t a l B o t t o m P W R P W R R e f u s a l R e f u s a l Nu m b e r D a t e E l e v . E l e v . ( f e e t ) D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e va t i o n D e p t h ( f e e t ) E l e v a t i o n D e p t h ( f e e t ) E l e v . D e p t h ( f e e t ) E l e v . Ta b l e 1 A Te s t B o r i n g / P i e z o m e t e r D a t a Ea r l i e r B o r i n g s W i t h P i e z o m e t e r s R e l e v a n t t o T h e P h a s e 3 & 4 D e s i g n H y d r o I n v e s t i g a t i o n : An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 El e v a t i o n D a t a Te s t B o r i n g D a t a Pi e z o m e t e r C o n s t r u c t i o n D a t a Hydrogeologic Unit To p o f P i e z . S c r e e n B o t t o m o f P i e z . S c r e e n PH 2 - 2 5 1 1 / 2 0 / 2 0 0 3 3 1 8 . 6 3 3 1 5 . 5 3 3 . 1 0 3 7 . 5 0 2 7 8 . 0 3 2 7 . 0 0 2 8 8 . 5 3 3 7 . 5 0 2 7 8 . 0 3 2 7 . 5 0 2 8 8 . 0 3 3 7 . 5 0 2 7 8 . 0 3 1 - A r g i l l i t e PH 2 - 3 3 1 1 / 2 0 / 2 0 0 3 3 2 6 . 0 0 3 2 2 . 9 9 3 . 0 1 4 3 . 5 2 7 9 . 4 9 3 9 . 0 0 2 8 3 . 9 9 4 3 . 5 0 2 7 9 . 4 9 3 3 . 5 0 2 8 9 . 4 9 4 3 . 5 2 7 9 . 4 9 1 , 2 - A r g i l l i t e B- 3 1 0 / 2 / 1 9 9 1 3 3 4 . 0 1 3 3 0 . 5 1 3 . 5 0 3 0 . 0 0 3 0 0 . 5 1 - - - - - - < 3 0 < 3 0 0 . 5 1 2 0 . 0 0 3 1 0 . 5 1 3 0 . 0 0 3 0 0 . 5 1 1 , 2 - A r g i l l i t e B- 4 1 0 / 1 / 1 9 9 1 3 3 2 . 6 4 3 2 9 . 0 7 3 . 5 7 4 0 . 0 0 2 8 9 . 0 7 1 8 . 5 0 3 1 0 . 5 7 < 4 0 < 2 8 9 . 0 7 3 0 . 0 0 2 9 9 . 0 7 4 0 . 0 0 2 8 9 . 0 7 1 , 2 - A r g i l l i t e P- 1 S 5 / 2 / 1 9 9 6 3 2 4 . 7 2 3 2 2 . 0 3 2 . 6 9 2 5 . 5 0 2 9 6 . 5 3 - - - - - - - - - - - - 1 5 . 5 0 3 0 6 . 5 3 2 5 . 5 0 2 9 6 . 5 3 1 , 2 - A r g i l l i t e PH 2 - 2 4 B 1 1 / 1 8 / 2 0 0 3 3 2 4 . 9 1 3 2 1 . 4 0 3 . 5 1 3 8 . 5 0 2 8 2 . 9 0 2 7 . 0 0 2 9 4 . 4 0 - - - - - - 2 8 . 5 0 2 9 2 . 9 0 3 8 . 5 0 2 8 2 . 9 0 2 - A r g i l l i t e PH 2 - 3 2 1 1 / 2 5 / 2 0 0 3 2 9 1 . 8 6 2 8 8 . 3 3 3 . 5 3 5 0 . 0 0 2 3 8 . 3 3 1 2 . 0 0 2 7 6 . 3 3 5 0 . 0 0 2 3 8 . 3 3 4 0 . 0 0 2 4 8 . 3 3 5 0 . 0 0 2 3 8 . 3 3 2 - A r g i l l i t e PH 2 - 3 4 1 1 / 1 7 / 2 0 0 3 3 3 2 . 5 7 3 2 8 . 9 6 3 . 6 1 5 3 . 5 0 2 7 5 . 4 6 - - - - - - - - - - - - 4 3 . 5 0 2 8 5 . 4 6 5 3 . 5 0 2 7 5 . 4 6 2 - A r g i l l i t e P- 1 4 S 5 / 1 5 / 1 9 9 6 3 2 4 . 3 0 3 2 2 . 2 5 2 . 0 5 3 6 . 0 0 2 8 6 . 2 5 1 9 . 3 0 3 6 . 0 0 2 8 6 . 2 5 2 1 . 0 0 3 0 1 . 2 5 3 6 . 0 0 2 8 6 . 2 5 2 - A r g i l l i t e P- 1 D 5 / 2 / 1 9 9 6 3 2 4 . 7 1 3 2 2 . 0 2 2 . 6 9 4 1 . 0 0 2 8 1 . 0 2 - - - - - - 2 7 . 5 0 2 9 4 . 5 2 3 1 . 0 0 2 9 1 . 0 2 4 1 . 0 0 2 8 1 . 0 2 3 - A r g i l l i t e P- 1 1 D 5 / 1 0 / 1 9 9 6 3 3 0 . 3 0 3 2 6 . 9 3 3 . 3 7 4 6 . 0 0 2 8 0 . 9 3 - - - - - - 3 6 . 0 0 2 9 0 . 9 3 3 6 . 0 0 2 9 0 . 9 3 4 6 . 0 0 2 8 0 . 9 3 3 - A r g i l l i t e P- 1 4 D © 5 / 1 4 / 1 9 9 6 3 2 4 . 5 8 3 2 2 . 4 9 2 . 0 9 4 8 . 0 0 2 7 4 . 4 9 1 9 . 3 0 3 0 3 . 1 9 3 7 . 0 0 2 8 5 . 4 9 3 8 . 0 0 2 8 4 . 4 9 4 8 . 0 0 2 7 4 . 4 9 3 - A r g i l l i t e MW - 9 S B 2 / 5 / 1 9 9 2 2 6 0 . 5 1 2 5 7 . 5 1 U n k . 3 2 . 0 0 2 2 5 . 5 1 - - - - - - - - - - - - O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 9 D B 1 / 2 9 / 1 9 9 2 2 6 0 . 5 1 2 5 7 . 5 1 U n k . 6 3 . 5 0 1 9 4 . 0 1 - - - 2 . 0 0 2 5 5 . 5 1 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e PH 2 - 2 4 A © 1 1 / 1 8 / 2 0 0 3 3 2 4 . 6 1 3 2 1 . 2 6 3 . 3 5 5 3 . 5 0 2 6 7 . 7 6 2 7 . 0 0 2 9 4 . 2 6 4 3 . 5 0 2 7 7 . 7 6 4 3 . 5 0 2 7 7 . 7 6 5 3 . 5 0 2 6 7 . 7 6 3 - A r g i l l i t e MW - 1 2 - S B 2 / 5 / 1 9 9 2 3 2 6 . 1 0 3 2 3 . 6 3 2 . 4 7 6 0 . 0 0 2 6 3 . 6 3 9 . 0 0 1 5 . 7 0 3 0 7 . 9 3 O P E N B O R E H 26 8 . 6 3 6 0 . 0 0 2 6 3 . 6 3 3 - A r g i l l i t e MW - 1 3 - S B 2 / 5 / 1 9 9 2 2 7 3 . 2 9 2 7 0 . 2 9 U n k . 3 2 . 0 0 2 3 8 . 2 9 - - - - - - 1 0 . 5 0 2 5 9 . 7 9 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 3 D B 1 / 2 7 / 1 9 9 2 2 7 3 . 8 8 2 7 0 . 8 8 U n k . 6 0 . 0 0 2 1 0 . 8 8 8 . 5 0 2 6 2 . 3 8 1 0 . 5 0 2 6 0 . 3 8 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 4 A - B Z W 5 / 1 7 / 1 9 9 5 3 3 7 . 7 5 3 3 7 . 7 5 0 . 0 0 1 2 0 . 0 0 2 1 7 . 7 5 - - - - - - 3 3 . 6 0 n / a 1 3 . 0 0 3 2 4 . 7 5 1 2 0 . 0 0 2 1 7 . 7 5 3 - A r g i l l i t e MW - 1 4 A - S B 2 / 6 / 1 9 9 2 3 3 6 . 7 3 3 3 4 . 7 3 2 . 0 0 5 2 . 4 0 2 8 2 . 3 3 7 . 5 0 3 2 7 . 2 3 3 3 . 6 0 3 0 0 . 7 3 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 6 - D B © 2 / 2 0 / 1 9 9 2 3 1 4 . 7 1 3 1 2 . 3 7 2 . 3 4 1 0 0 . 0 0 2 1 2 . 3 7 1 8 . 5 0 2 9 3 . 8 7 4 5 . 0 0 2 6 7 . 3 7 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 6 S B 2 / 4 / 1 9 9 2 3 1 3 . 7 7 3 1 1 . 2 1 2 . 5 6 5 9 . 0 0 2 5 2 . 2 1 1 8 . 5 0 2 9 2 . 7 1 4 5 . 0 0 2 6 6 . 2 1 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 7 - S B © 2 / 2 8 / 1 9 9 2 3 1 3 . 8 4 3 1 0 . 7 0 3 . 1 4 6 2 . 0 0 2 4 8 . 7 0 3 2 . 0 0 2 7 8 . 7 0 4 2 . 0 0 2 6 8 . 7 0 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 7 A - B Z W 5 / 1 1 / 1 9 9 5 3 2 8 . 0 1 3 2 8 . 0 1 0 . 0 0 1 2 6 . 0 0 2 0 2 . 0 1 1 5 . 0 0 3 1 3 . 0 1 2 4 . 0 0 3 0 4 . 0 1 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 8 S B 2 / 1 2 / 1 9 9 2 2 5 9 . 8 9 2 5 6 . 8 9 3 . 0 0 3 0 . 0 0 2 2 6 . 8 9 - - - - - - 1 2 . 0 0 2 4 4 . 8 9 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 8 D B 2 / 6 / 1 9 9 2 2 5 8 . 6 9 2 5 5 . 6 9 3 . 0 0 6 3 . 0 0 1 9 2 . 6 9 8 . 5 0 2 4 7 . 1 9 1 2 . 0 0 2 4 3 . 6 9 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e MW - 1 9 - S B 2 / 3 / 1 9 9 2 2 4 7 . 2 8 2 4 6 . 6 9 0 . 5 9 5 1 . 0 0 1 9 6 . 2 8 - - - - - - 1 1 . 6 0 2 3 5 . 6 8 O P E N B O R E H O L E I N B E D R O C K 3 - A r g i l l i t e *F a c i l i t y m o n i t o r i n g w e l l © R o c k c o r e l o c a t i o n An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y P h a s e 3& 4 De s i g n Hy d r o g e o l o g i c St u d y Bo r i n g S a m p l e S a m p l e Li q u i d P l a s t i c i t y U S C S H y d r o g e o l o g i c Nu m b e r I D D e p t h C o a r s e F i n e C o a r s e M e d i u m F i n e S i l t C l a y C o m b i n e d L i m i t I n d e x C l a s s D e s c r i p t i o n * (f e e t ) (% ) ( % ) B- 1 B - 1 3 3 . 5 - 3 5 . 0 0 . 0 0 . 0 2 . 9 1 8 . 9 3 5 . 9 3 6 . 7 5 . 6 4 2 . 3 4 1 1 4 S M L i g h t y e l l o w a n d b r o w n s i l t y f i . - m e d . S a n d B- 5 B - 5 1 3 . 5 - 1 5 . 0 0 . 0 2 . 9 2 . 5 2 7 . 3 2 5 . 5 2 9 . 6 1 2 . 2 4 1 . 8 2 9 5 S M L i g h t brown silty fi.-med. Sand B- 1 2 B - 1 2 3 . 5 - 5 . 0 0 . 0 1 1 . 5 9 . 3 1 8. 4 8 . 9 3 4 . 2 1 7 . 7 5 1 . 9 3 6 8 M L G r ey fi.-co. Sandy Silt B- 1 7 B - 1 7 2 8 . 5 - 3 0 . 0 0 . 0 0 . 0 0 . 0 2 . 6 2 3 . 8 6 0 . 2 1 3 . 4 7 3 . 6 5 3 1 1 M H G r e y f i . S a n d y E l a s t i c S i l t B- 1 7 A B - 1 7 A 1 . 0 - 3 . 0 4 . 6 1 . 8 4 . 5 6 . 1 6 .0 4 3 . 5 3 3 . 5 7 7 . 0 3 6 1 3 C L L i g h t y e l l o w and brown fi.-co. Sandy Clay B- 2 1 B - 2 1 3 . 5 - 5 . 0 0 . 0 5 . 9 6 . 9 2 2 . 6 8. 9 3 0 . 5 2 5 . 2 5 5 . 7 4 5 1 7 M L B r o w n and grey fi.-co. Sandy Silt B- 2 2 B - 2 2 1 2 . 0 - 1 7 . 2 0 . 0 7 . 1 7 . 3 1 4 . 4 1 1 . 0 3 0 . 1 3 0 . 1 6 0 . 2 2 9 1 0 C L Y e l l o w a n d b r o w n f i . - c o . S a n d y C l a y B- 2 3 B - 2 3 8 . 5 - 1 0 . 0 0 . 0 3 . 5 9 . 8 1 5 . 0 6 . 4 1 8 . 5 4 6 . 8 6 5 . 3 5 9 2 5 M H L i g h t b r o w n fi.-co. Sandy Elastic Silt PH 2 - 2 4 B S - 8 3 3 . 5 - - - 0 . 0 - - - - - - 1 8 . 4 7 4 . 2 7 . 4 8 1 . 6 - - - - - - M L S a n d y s i l t ( 1 0 0 + b p f , A r g i l l i t e ) PH 2 - 2 6 B S - 6 2 8 . 5 - - - 0 . 0 - - - - - - 3 . 3 8 4 . 9 1 1 . 8 9 6 . 7 3 5 1 8 M L S i l t ( 1 0 0 + b p f , A r g i l l i t e ) % G r a v e l % S a n d Ta b l e 2 Ge o t e c h n i c a l L a b o r a t o r y D a t a Gr a i n S i z e D i s t r i b u t i o n a n d S o i l C l a s s i f i c a t i o n An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 % F i n e s An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y P h a s e 3 &4 De s i g n Hy d r o g e o l o g i c St u d y Bu l k S a m p l e s Re m o l d e d M o i s t u r e - D e n s i t y D a t a Hy d r a u l i c C o n d u c t i v i t y D a t a Pe r m e a b i l i t y D a t a Sa m p l e S a m p l e S a m p l e M a x . D r y O p t i m u m T o t a l M a x . D r y % P a s s i n g % M a x T e s t e d K Nu m b e r T y p e D e p t h , f t . D e n s i t y , p c f M o i s t u r e , % P o r o s i t y , % D e n s i t y , p c f N o . 2 0 0 S i e v e D r y D e n s i t y M o i s t u r e c m / s e c B- 2 2 B U L K 1 2 . 0 - 1 7 . 2 1 1 7 . 7 1 2 . 2 34 % 96 % 60 . 2 98 % +3% 1 . 5 0 E - 0 7 Un d i s t u r b e d S a m p l e s Sh e a r S t r e n g t h D a t a Sa m p l e S a m p l e S a m p l e P h i Co h . Ph i ' Co h . ' Nu m b e r T y p e D e p t h , f t . d e g r e e s p s f d e g r e e s p s f B- 1 7 T U B E 1 . 0 - 3 . 0 2 1 . 9 8 41 3 31 . 8 6 22 6 Ge o t e c h n i c a l L a b o r a t o r y D a t a Mo i s t u r e - D e n s i t y , C o n d u c t i v i t y , a n d S t r e n g t h D a t a An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 Ta b l e 2 A An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y Ph a s e 3& 4 De s i g n Hy d r o g e o l o g i c St u d y Ta b l e 3 Fi e l d H y d r a u l i c C o n d u c t i v i t y D a t a An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 Pi e z o m e t e r H y d r o g e o l o g i c H y d r o g e o l o g i c a l A v e r a g e R Q D E f f e c t i v e T o t a l Hy d r a u l i c C o n d u c t i v i t y ( k ) (4 , 5 ) Nu m b e r U n i t De s c r i p t i o n (1 ) Fo r S c r e e n I n t e r v a l Po r o s i t y (2 , 3 ) Po r o s i t y (2 , 3 ) ft / m i n ft / d a y c m / s e c B- 0 1 2 S a n d y S i l t / P W R NA 15 % 40 % 7 . 5 3 E - 0 5 1 . 0 8 E - 0 1 3 . 8 3 E - 0 5 B- 0 2 S 3 F r a c t u r e d B e d r o c k NA 5% 10 % N/ A N/ A N/A B- 0 2 D 3 F r a c t u r e d B e d r o c k NA 5% 10 % 4 . 4 1 E - 0 4 6 . 3 5 E - 0 1 2 . 2 4 E - 0 4 B- 0 3 3 F r a c t u r e d B e d r o c k NA 5% 10 % 3 . 7 9 E - 0 6 5 . 4 5 E - 0 3 1 . 9 2 E - 0 6 B- 0 4 3 F r a c t u r e d B e d r o c k 9 8 % 5% 10 % 7 . 0 7 E - 0 5 1 . 0 2 E - 0 1 3 . 5 9 E - 0 5 B- 0 5 2 S i l t y S a n d / P W R N/ A 15 % 40 % 1 . 2 5 E - 0 4 1 . 8 0 E - 0 1 6 . 3 5 E - 0 5 B- 0 6 2 S i l t y S a n d / P W R N/ A 15 % 40 % 1 . 1 0 E - 0 6 1 . 5 8 E - 0 3 5 . 5 6 3 E - 0 7 B- 0 7 2 S a n d y S i l t / P W R NA 15 % 40 % 1 . 4 0 E - 0 4 2 . 0 1 E - 0 1 7 . 1 0 E - 0 5 B- 0 8 2 S i l t y S a n d / P W R NA 15 % 40 % 2 . 3 3 E - 0 6 3 . 3 6 E - 0 3 1 . 1 9 E - 0 6 B- 0 9 2 S a n d y S i l t / P W R NA 15 % 40 % 2 . 1 2 E - 0 4 3 . 0 5 E - 0 1 1 . 0 8 E - 0 4 B- 1 0 2 S a n d y S i l t / P W R NA 15 % 40 % 7 . 0 6 E - 0 6 1 . 0 2 E - 0 2 3 . 5 8 E - 0 6 B- 1 1 2 S a n d y S i l t / P W R NA 15 % 40 % 6 . 2 6 E - 0 5 9 . 0 1 E - 0 2 3 . 1 8 E - 0 5 B- 1 2 2 S i l t y S a n d / P W R NA 15 % 40 % N/ A N/ A N/A B- 1 3 2 S i l t y S a n d / P W R NA 15 % 40 % 7 . 5 7 E - 0 4 1 . 0 9 E + 0 0 3 . 8 5 E - 0 4 B- 1 8 3 F r a c t u r e d B e d r o c k 9 7 % 5% 10 % 9 . 8 8 E - 0 5 1 . 4 2 E - 0 1 5 . 0 2 E - 0 5 B- 1 9 2 S a n d y S i l t / P W R NA 15 % 40 % 1 . 2 4 E - 0 4 1 . 7 8 E - 0 1 6 . 2 8 E - 0 5 B- 2 0 2 S i l t y S a n d / P W R NA 15 % 40 % 5 . 7 3 E - 0 7 8 . 2 5 E - 0 4 2 . 9 1 E - 0 7 B- 2 1 1 S a n d y S i l t NA 12 % 45 % 1 . 9 1 E - 0 5 2 . 7 5 E - 0 2 9 . 7 1 E - 0 6 B- 2 2 2 S a n d y S i l t / P W R NA 15 % 40 % 1 . 7 5 E - 0 5 2 . 5 2 E - 0 2 8 . 9 0 E - 0 6 B- 2 3 2 S i l t y S a n d / P W R NA 15 % 40 % 1 . 9 1 E - 0 5 2 . 7 6 E - 0 2 9 . 7 3 E - 0 6 B- 2 4 3 F r a c t u r e d B e d r o c k 6 6 % 5% 10 % 6 . 7 9 E - 0 3 9 . 7 8 E + 0 0 3 . 4 5 E - 0 3 B- 2 5 S 1 C l a y e y S a n d NA 12 % 45 % N/ A N/ A N/A B- 2 5 D 2 S a n d y S i l t / P W R NA 15 % 40 % 3 . 2 1 E - 0 5 4 . 6 2 E - 0 2 1 . 6 3 E - 0 5 B- 2 6 2 S a n d y S i l t / P W R NA 15 % 40 % 3 . 6 2 E - 0 7 5 . 2 1 E - 0 4 1 . 8 3 E - 0 7 B- 2 7 2 S a n d y S i l t / P W R NA 15 % 40 % 4 . 0 9 E - 0 7 5 . 8 9 E - 0 4 2 . 0 8 E - 0 7 B- 2 8 2 S a n d y S i l t / P W R NA 15 % 40 % N/ A N/ A N/A B- 2 9 2 S a n d y S i l t / P W R NA 15 % 40 % 2 . 7 4 E - 0 7 3 . 9 4 E - 0 4 1 . 3 9 E - 0 7 B- 3 0 2 S i l t y S a n d / P W R NA 15 % 40 % 7 . 5 8 E - 0 6 1 . 0 9 E - 0 2 3 . 8 5 E - 0 6 No t e s ( 1 ) Un i t 1 - p r e d o m i n a n t l y s a n d y s i l t , v a r i a b l y s a n d y a n d c l a y e y , o v e r l a i n i n s o m e a r e a s b y s a n d y c l a y ( S P T g e n e r a l l y < 5 0 b pf) Un i t 2 - d e n s e s a p r o l i t e - p r e d o m i n a n t l y s a n d y s i l t a n d s i l t y s a n d ( S P T g e n e r a l l y < 1 0 0 b p f ) Un i t 3 - c o n s o l i d a t e d , f r a c t u r e d r o c k ( v a r i a b l y w e a t h e r s i l t s t o n e a n d s a n d s t o n e ) (2 ) (3 ) To t a l a n d E f f e c t i v e p o r o s i t y v a l u e s f o r b e d r o c k a d j u s t e d f o r a v g . r o c k c o r e R Q D v a l u e s , r e f . S i n h a l a n d G u p t a , 1 9 9 9 (4 ) Sl u g t e s t s p e r f o r m e d b y S C S E n g i n e e r s i n M a r c h 2 0 1 5 (5 ) N/ A i n d i c a t e s t h a t t h e r e w a s i n s u f f i c i e n t w a t e r c o l u m n t o c o n d u c t h y d r a u l i c c o n d u c t i v i t y t e s t i n g To t a l a n d E f f e c t i v e p o r o s i t y v a l u e s f o r s o i l s c a l c u l a t e d f r o m T e x t u r a l C l a s s i f i c a t i o n T r i a n g l e m e t h o d , r e f . A . I . J o h n s o n , U S Ge o l o g i c a l S u r v e y W a t e r S u p p l y P a p e r 1 6 6 2 - D , 1 9 6 7 An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y Ph a s e 3& 4 De s i g n Hy d r o g e o l o g i c St u d y Ta b l e 4 Sh o r t - t e r m a n d L o n g - t e r m G r o u n d W a t e r O b s e r v a t i o n D a t a An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 Gr o u n d T o p o f P V C H e i g h t o f B o r i n g S c r e e n e d Bo r i n g S u r f a c e C a s i n g S t i c k - u p D e p t h I n t e r v a l T . O . B . 2 4 - h o u r s Nu m b e r E l e v a t i o n E l e v a t i o n ( f e e t ) ( f e e t ) ( B S G ) D e p t h * E l e v a t i o n D e p t h * E l e v a t i o n D e p t h * E l e v a t i o n D e p t h * E l e v a t i o n D e p t h * E l e v a t i o n D e p t h * E l e v a tion D e p t h * E l e v a t i o n D e p t h * E l e v a t i o n B- 0 1 3 1 3 . 6 3 3 1 6 . 2 8 2 . 6 5 4 4 . 3 3 4 . 3 - 4 4 . 3 3 5 . 0 0 2 7 8 . 6 3 2 2 . 8 0 2 9 0 . 8 3 1 9 . 5 5 2 9 4 . 0 8 1 9 . 8 5 2 9 3 . 7 8 1 8 . 1 5 2 9 5 . 4 8 1 7 . 6 6 2 9 5 . 9 7 1 9 . 9 6 2 9 3 . 6 7 2 0 . 2 5 2 9 3 . 3 8 B- 0 2 S 3 0 7 . 8 4 3 1 0 . 2 0 2 . 3 6 1 5 . 0 5 . 0 - 1 5 . 0 - - - - - - 6 . 3 4 3 0 1 . 5 0 2 . 3 6 3 0 5 . 4 8 8 . 7 0 2 9 9 . 1 4 1 3 . 7 2 2 9 4 . 1 2 5 . 1 0 3 0 2 . 7 4 1 5 . 0 6 2 9 2 . 7 8 1 2 . 8 3 2 9 5 . 0 1 B- 0 2 D 3 0 8 . 2 5 3 1 0 . 8 3 2 . 5 8 4 0 . 1 3 0 . 1 - 4 0 . 1 2 0 . 1 0 2 8 8 . 1 5 1 7 . 9 0 2 9 0 . 3 5 1 5 . 5 6 2 9 2 . 6 9 9 . 7 0 2 9 8 . 5 5 1 7 . 0 0 2 9 1 . 2 5 1 0 . 8 2 2 9 7 . 4 3 2 0 . 3 2 2 8 7 . 9 3 1 8 . 8 9 2 8 9 . 3 6 B- 0 3 3 1 4 . 1 2 3 1 6 . 5 3 2 . 4 1 3 5 . 0 2 5 . 0 - 3 5 . 0 - - - - - - 1 9 . 0 0 2 9 5 . 1 2 1 9 . 5 1 2 9 4 . 6 1 1 7 . 8 6 2 9 6 . 2 6 2 0 . 0 6 2 9 4 . 0 6 1 8 . 2 0 2 9 5 . 9 2 2 1 . 5 8 2 9 2 . 5 4 2 1 . 8 9 2 9 2 . 2 3 B- 0 4 3 1 1 . 5 5 3 1 4 . 4 5 2 . 9 0 4 2 . 3 3 2 . 3 - 4 2 . 3 - - - - - - 1 3 . 0 0 2 9 8 . 5 5 2 . 9 0 3 0 8 . 6 5 1 5 . 8 6 2 9 5 . 6 9 1 7 . 5 5 2 9 4 . 0 0 1 5 . 6 9 2 9 5 . 8 6 2 0 . 3 9 2 9 1 . 1 6 1 9 . 2 0 2 9 2 . 3 5 B- 0 5 3 1 8 . 8 7 3 2 2 . 0 7 3 . 2 0 5 0 . 8 4 0 . 8 - 5 0 . 8 4 6 . 0 0 2 7 2 . 8 7 2 6 . 3 0 2 9 2 . 5 7 2 9 . 4 5 2 8 9 . 4 2 2 8 . 3 8 2 9 0 . 4 9 2 7 . 8 1 2 9 1 . 0 6 2 8 . 0 2 2 9 0 . 8 5 2 9 . 1 6 2 8 9 . 7 1 2 9 . 9 4 2 8 8 . 9 3 B- 0 6 2 9 4 . 9 6 2 9 7 . 7 9 2 . 8 3 2 5 . 0 1 5 . 0 - 2 5 . 0 0 . 0 0 2 9 4 . 9 6 2 . 6 0 2 9 2 . 3 6 2 . 8 3 2 9 2 . 1 3 4 . 4 3 2 9 0 . 5 3 2 . 8 3 2 9 2 . 1 3 0 . 0 0 2 9 4 . 9 6 3 . 9 5 2 9 1 . 0 1 6 . 5 1 2 8 8 . 4 5 B- 0 7 3 1 3 . 9 7 3 1 7 . 0 3 3 . 0 6 2 7 . 3 1 7 . 3 - 2 7 . 3 1 9 . 2 0 2 9 4 . 7 7 8 . 4 5 3 0 5 . 5 2 1 1 . 5 1 3 0 2 . 4 6 1 2 . 8 0 3 0 1 . 1 7 1 1 . 4 1 3 0 2 . 5 6 1 1 . 1 0 3 0 2 . 8 7 1 5 . 1 4 2 9 8 . 8 3 1 7 . 7 4 2 9 6 . 2 3 B- 0 8 3 1 3 . 2 7 3 1 6 . 5 8 3 . 3 1 3 1 . 5 2 1 . 5 - 3 1 . 5 - - - - - - 8 . 2 5 3 0 5 . 0 2 1 1 . 5 6 3 0 1 . 7 1 1 2 . 9 6 3 0 0 . 3 1 1 1 . 5 5 3 0 1 . 7 2 1 1 . 2 2 3 0 2 . 0 5 1 4 . 2 5 2 9 9 . 0 2 1 6 . 2 9 2 9 6 . 9 8 B- 0 9 2 9 1 . 0 6 2 9 4 . 2 0 3 . 1 4 2 0 . 5 1 0 . 5 - 2 0 . 5 1 5 . 0 0 2 7 6 . 0 6 2 0 . 0 0 2 7 1 . 0 6 8 . 5 9 2 8 2 . 4 7 9 . 5 4 2 8 1 . 5 2 8 . 3 9 2 8 2 . 6 7 7 . 3 9 2 8 3 . 6 7 1 0 . 5 7 2 8 0 . 4 9 1 1 . 4 4 2 7 9 . 6 2 B- 1 0 2 9 9 . 9 2 3 0 2 . 4 5 2 . 5 3 1 8 . 2 8 . 2 - 1 8 . 2 - - - - - - 3 . 1 5 2 9 6 . 7 7 5 . 6 8 2 9 4 . 2 4 4 . 3 5 2 9 5 . 5 7 6 . 6 6 2 9 3 . 2 6 5 . 1 5 2 9 4 . 7 7 8 . 4 4 2 9 1 . 4 8 8 . 6 7 2 9 1 . 2 5 B- 1 1 3 1 2 . 3 2 3 1 4 . 5 2 2 . 2 0 2 3 . 5 1 3 . 5 - 2 3 . 5 - - - - - - 1 9 . 0 0 2 9 3 . 3 2 2 1 . 1 5 2 9 1 . 1 7 2 0 . 7 3 2 9 1 . 5 9 2 0 . 1 0 2 9 2 . 2 2 2 0 . 0 0 2 9 2 . 3 2 2 1 . 6 1 2 9 0 . 7 1 2 2 . 3 5 2 8 9 . 9 7 B- 1 2 3 1 4 . 8 7 3 1 6 . 5 9 1 . 7 2 3 1 . 6 2 1 . 6 - 3 1 . 6 2 5 . 7 0 2 8 9 . 1 7 2 4 . 8 0 2 9 0 . 0 7 2 4 . 6 4 2 9 0 . 2 3 2 3 . 8 2 2 9 1 . 0 5 2 3 . 9 2 2 9 0 . 9 5 2 3 . 8 9 2 9 0 . 9 8 2 5 . 0 8 2 8 9 . 7 9 2 5 . 5 2 2 8 9 . 3 5 B- 1 3 3 1 5 . 4 8 3 1 7 . 7 4 2 . 2 6 4 6 . 1 3 6 . 1 - 4 6 . 1 3 2 . 0 0 2 8 3 . 4 8 1 1 . 5 0 3 0 3 . 9 8 2 0 . 8 6 2 9 4 . 6 2 2 0 . 7 6 2 9 4 . 7 2 1 9 . 0 0 2 9 6 . 4 8 1 8 . 8 8 2 9 6 . 6 0 2 0 . 1 9 2 9 5 . 2 9 2 2 . 3 2 2 9 3 . 1 6 B- 1 4 3 1 2 . 1 7 - - - - - - 2 2 . 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - B- 1 5 3 1 6 . 5 3 - - - - - - 2 2 . 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - B- 1 6 3 1 5 . 4 0 - - - - - - 3 8 . 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - B- 1 7 3 1 5 . 2 9 - - - - - - 4 3 . 6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - B- 1 8 3 1 8 . 5 0 3 2 1 . 2 1 2 . 7 1 4 0 . 5 3 0 . 5 - 4 0 . 5 - - - - - - 1 2 . 9 0 3 0 5 . 6 0 2 . 7 1 3 1 5 . 7 9 1 5 . 5 6 3 0 2 . 9 4 1 6 . 9 0 3 0 1 . 6 0 1 6 . 5 9 3 0 1 . 9 1 2 1 . 5 9 2 9 6 . 9 1 2 1 . 4 3 2 9 7 . 0 7 B- 1 9 3 1 6 . 7 5 3 1 9 . 6 5 2 . 9 0 3 5 . 5 2 5 . 5 - 3 5 . 5 3 3 . 6 0 2 8 3 . 1 5 1 1 . 9 0 3 0 4 . 8 5 1 4 . 8 3 0 1 . 9 5 1 4 . 9 0 3 0 1 . 8 5 1 4 . 6 6 3 0 2 . 0 9 1 5 . 6 8 3 0 1 . 0 7 2 0 . 4 0 2 9 6 . 3 5 1 9 . 9 7 2 9 6 . 7 8 B- 2 0 3 1 7 . 3 1 3 1 9 . 3 2 2 . 0 1 2 7 . 7 1 7 . 7 - 2 7 . 7 - - - - - - 1 3 . 4 0 3 0 3 . 9 1 1 5 . 4 1 3 0 1 . 9 0 1 5 . 2 1 3 0 2 . 1 0 1 4 . 7 6 3 0 2 . 5 5 1 4 . 8 0 3 0 2 . 5 1 1 5 . 7 2 3 0 1 . 5 9 1 6 . 9 9 3 0 0 . 3 2 B- 2 1 3 0 5 . 9 0 3 0 9 . 4 5 3 . 5 5 2 2 . 0 1 2 . 0 - 2 2 . 0 - - - - - - 9 . 5 0 2 9 6 . 4 0 1 3 . 0 5 2 9 2 . 8 5 1 3 . 3 6 2 9 2 . 5 4 1 2 . 6 9 2 9 3 . 2 1 1 2 . 7 2 2 9 3 . 1 8 1 3 . 7 1 2 9 2 . 1 9 1 5 . 7 2 2 9 0 . 1 8 B- 2 2 2 9 7 . 3 2 2 9 9 . 9 6 2 . 6 4 1 7 . 2 7 . 2 - 1 7 . 2 - - - - - - 3 . 8 0 2 9 3 . 5 2 6 . 4 4 2 9 0 . 8 8 7 . 3 5 2 8 9 . 9 7 6 . 8 4 2 9 0 . 4 8 6 . 5 1 2 9 0 . 8 1 8 . 5 7 2 8 8 . 7 5 9 . 6 7 2 8 7 . 6 5 B- 2 3 3 0 5 . 0 8 3 0 6 . 8 7 1 . 7 9 3 0 . 0 2 0 . 0 - 3 0 . 0 - - - - - - 1 4 . 8 0 2 9 0 . 2 8 1 6 . 6 2 2 8 8 . 4 6 1 3 . 8 4 2 9 1 . 2 4 1 6 . 7 9 2 8 8 . 2 9 1 6 . 6 8 2 8 8 . 4 0 1 8 . 7 4 2 8 6 . 3 4 2 0 . 4 2 2 8 4 . 6 6 B- 2 4 3 0 5 . 3 2 3 0 7 . 8 4 2 . 5 2 3 0 . 5 2 0 . 5 - 3 0 . 5 - - - - - - 1 5 . 7 0 2 8 9 . 6 2 2 . 5 2 3 0 2 . 8 0 1 8 . 1 7 2 8 7 . 1 5 2 0 . 1 1 2 8 5 . 2 1 1 9 . 9 6 2 8 5 . 3 6 2 1 . 6 0 2 8 3 . 7 2 2 3 . 0 2 2 8 2 . 3 0 B- 2 5 S 2 8 8 . 3 5 2 9 1 . 1 4 2 . 7 9 1 5 . 0 5 . 0 - 1 5 . 0 - - - - - - 1 3 . 0 0 2 7 5 . 3 5 2 . 7 9 2 8 5 . 5 6 1 5 . 7 9 2 7 2 . 5 6 1 5 . 5 0 2 7 2 . 8 5 1 3 . 9 7 2 7 4 . 3 8 1 3 . 6 6 2 7 4 . 6 9 1 3 . 2 1 2 7 5 . 1 4 B- 2 5 D 2 8 9 . 5 3 2 9 2 . 5 7 3 . 0 4 3 0 . 2 2 0 . 2 - 3 0 . 2 - - - - - - 9 . 0 0 2 8 0 . 5 3 1 2 . 0 4 2 7 7 . 4 9 1 2 . 6 4 2 7 6 . 8 9 1 1 . 7 9 2 7 7 . 7 4 1 1 . 1 1 2 7 8 . 4 2 1 2 . 1 2 2 7 7 . 4 1 1 2 . 9 6 2 7 6 . 5 7 B- 2 6 2 7 7 . 1 3 2 7 9 . 6 3 2 . 5 0 1 5 . 8 5 . 8 - 1 5 . 8 - - - - - - 5 . 5 5 2 7 1 . 5 8 8 . 0 5 2 6 9 . 0 8 6 . 0 5 2 7 1 . 0 8 4 . 9 8 2 7 2 . 1 5 4 . 6 0 2 7 2 . 5 3 5 . 5 5 2 7 1 . 5 8 4 . 5 8 2 7 2 . 5 5 B- 2 7 2 7 0 . 2 3 2 7 3 . 2 2 2 . 9 9 2 5 . 9 1 5 . 9 - 2 5 . 9 - - - - - - 8 . 4 0 2 6 1 . 8 3 1 1 . 3 9 2 5 8 . 8 4 1 1 . 2 8 2 5 8 . 9 5 1 0 . 3 9 2 5 9 . 8 4 9 . 3 8 2 6 0 . 8 5 1 0 . 2 2 2 6 0 . 0 1 1 1 . 0 0 2 5 9 . 2 3 B- 2 8 2 7 1 . 1 3 2 7 3 . 5 7 2 . 4 4 1 6 . 0 6 . 0 - 1 6 . 0 - - - - - - 6 . 9 8 2 6 4 . 1 5 9 . 4 2 2 6 1 . 7 1 1 0 . 0 5 2 6 1 . 0 8 1 3 . 7 0 2 5 7 . 4 3 1 1 . 6 1 2 5 9 . 5 2 1 0 . 7 6 2 6 0 . 3 7 9 . 5 9 2 6 1 . 5 4 B- 2 9 2 7 8 . 0 3 2 8 1 . 1 8 3 . 1 5 2 0 . 8 1 0 . 8 - 2 0 . 8 - - - - - - 4 . 8 4 2 7 3 . 1 9 7 . 9 9 2 7 0 . 0 4 8 . 5 0 2 6 9 . 5 3 8 . 0 5 2 6 9 . 9 8 7 . 2 1 2 7 0 . 8 2 7 . 4 7 2 7 0 . 5 6 7 . 6 9 2 7 0 . 3 4 B- 3 0 2 8 0 . 1 5 2 8 3 . 0 7 2 . 9 2 2 9 . 0 1 9 . 0 - 2 9 . 0 2 7 . 5 0 2 5 2 . 6 5 2 . 7 5 2 7 7 . 4 0 5 . 6 7 2 7 4 . 4 8 6 . 9 7 2 7 3 . 1 8 6 . 8 2 2 7 3 . 3 3 6 . 5 0 2 7 3 . 6 5 7 . 3 7 2 7 2 . 7 8 7 . 9 6 2 7 2 . 1 9 B- 3 1 27 8 . 2 1 2 8 1 . 4 4 3 . 2 3 1 5 . 0 1 0 . 0 Ͳ  15 . 0 7. 9 4 27 0 . 2 7 ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ 5.43 2 6 9 . 5 5 6 . 2 4 2 6 8 . 7 4 7.02 267.96 B- 3 2 27 8 . 5 2 8 1 . 9 3.4 15 . 0 1 0 . 0 Ͳ  15 . 0 8 . 1 5 2 7 0 . 3 5 ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ 6.40 2 6 8 . 7 0 9 . 9 8 2 6 5 . 1 2 13.15 261.95 No t e s : 1. G r o u n d a n d T o p o f C a s i n g e l e v a t i o n s b a s e d o n m a p p i n g p r e p a r e d F e b r u a r y 2 0 1 5 b y L a w r e n c e & A s s o c i a t e s . 2. B e d r o c k d e p t h s a n d e l e v a t i o n s s h o w n a r e t a k e n f r o m 2 0 1 5 S C S w e l l i n s t a l l a t i o n r e c o r d s . 3. T . O . B . D e p t h s m a r k e d w i t h " - - - " i n d i c a t e n o w a t e r p r e s e n t a t t i m e o f b o r i n g o r w a t e r a d d e d d u r i n g d r i l l i n g t o r e m o v e c u t t i n gs . 4. M a n y o f t h e b o r i n g s a r e s l o w t o r e c h a r g e . Jun-15 Wa t e r L e v e l M e a s u r e d F r o m T o p o f P V C C a s i n g Apr-15 Ja n - 1 5 F e b - 1 5 M a r - 1 5 M a y - 1 5 An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y Ph a s e 3& 4 De s i g n Hy d r o g e o l o g i c St u d y Table 5 Vertical Ground Water Gradient Calculations Anson County MSW Landfill, Phase 3 & 4 Data Presented for Selected Dates of Ground Water Observation Nested Piezometers: B-02S Unit 3 - Fractured Rock Aquifer B-02D Unit 3 - Fractured Rock Aquifer Piezometer Top of Bottom of 1/20/2015 2/27/2015 3/16/2015 4/29/2015 5/14/2015 June July August Sept. No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. B-02S 302.84 292.84 305.48 299.14 294.12 302.74 292.78 B-02D 278.15 268.15 292.69 298.55 291.25 297.43 287.93 midpoint saturated interval -upper 297.84 295.99 293.48 297.79 292.81 146.42 146.42 146.42 146.42 midpoint saturated interval - lower 273.15 273.15 273.15 273.15 273.15 134.08 134.08 134.08 134.08 delta-saturated interval 24.69 22.84 20.33 24.64 19.66 12.35 12.35 12.35 12.35 delta-W.T.E. (see note 1) 1.28E+01 5.90E-01 2.87E+00 5.31E+00 4.85E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Vertical Gradient (see note 2) 5.18E-01 2.58E-02 1.41E-01 2.16E-01 2.47E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Down Down Down Down Down Up Up Up Up Nested Piezometers: B-25S Unit 1 - Clayey Sand B-25D Unit 2 - PWR; Dense Saprolite-Sandy Silt Aquifer Piezometer Top of Bottom of 1/20/2015 2/27/2015 3/16/2015 4/29/2015 5/14/2015 June July August Sept. No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. B-25S 283.35 273.35 285.56 272.56 272.85 274.38 274.69 B-25D 269.33 259.33 277.49 276.89 277.74 278.42 277.41 midpoint saturated interval -upper 278.35 272.96 273.10 273.87 274.02 136.68 136.68 136.68 136.68 midpoint saturated interval - lower 264.33 264.33 264.33 264.33 264.33 129.67 129.67 129.67 129.67 delta-saturated interval 14.02 8.63 8.77 9.54 9.69 7.01 7.01 7.01 7.01 delta-W.T.E. (see note 1) 8.07E+00 -4.33E+00 -4.89E+00 -4.04E+00 -2.72E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Vertical Gradient (see note 2) 5.76E-01 -5.02E-01 -5.58E-01 -4.24E-01 -2.81E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Down Up Up Up Up Up Up Up Up Notes: 1 delta-W.T.E. = difference in water level (shallow well minus deep well) 2 Vertical Gradient = delta-W.T.E. / delta-Saturated Interval 3 Negative vertical gradients are upward, positive gradients are downward 4 Wells denoted with "D" are deep wells and those with "S" are shallow wells AnsonWasteManagementFacility Phase3DesignHydrogeologicStudy Nested Piezometers: PH2-24A Unit 3 - Fractured Rock Aquifer PH2-24B Unit 2 - PWR; Dense Saprolite-Sandy Silt Aquifer Piezometer Top of Bottom of 12/5/03 12/9/03 12/16/03 12/18/03 12/24/03 1/2/04 1/12/04 2/10/04 2/25/04 3/30/04 5/18/04 6/14/04 7/8/04 8/13/04 9/16/04 9/12/07 No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. PH2-24B 292.90 282.90 295.71 296.21 296.13 297.16 296.21 295.99 295.90 295.12 295.65 297.60 297.76 297.03 296.20 295.22 294.99 294.98 PH2-24A 277.76 267.76 296.19 295.24 295.12 295.21 295.24 295.01 295.76 294.98 295.47 297.36 297.51 296.84 296.05 295.12 294.76 294.93 midpoint saturated interval -upper 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.90 287.9 287.9 287.9 midpoint saturated interval - lower 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 272.76 delta-saturated interval 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 15.14 delta-W.T.E. (see note 1) -4.80E-01 9.70E-01 1.01E+00 1.95E+00 9.70E-01 9.80E-01 1.40E-01 1.40E-01 1.80E-01 2.40E-01 2.50E-01 1.90E-01 1.50E-01 1.00E-01 2.30E-01 5.00E-02 Vertical Gradient (see note 2) -3.17E-02 6.41E-02 6.67E-02 1.29E-01 6.41E-02 6.47E-02 9.25E-03 9.25E-03 1.19E-02 1.59E-02 1.65E-02 1.25E-02 9.91E-03 6.61E-03 1.52E-02 3.30E-03 Up Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Nested Piezometers: MW-4D Unit 3 - Bedrock (Triassic) MW-4S Unit 1 - Sandy, Clayey Silt Piezometer Top of Bottom of 1/24/01 6/25/01 11/1/01 5/6/02 7/9/02 5/5/03 10/27/03 5/1/04 10/31/04 5/1/05 10/31/05 5/1/06 11/1/06 5/1/07 10/1/07 No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. MW-4D 241.10 231.10 275.64 276.34 274.46 275.68 280.92 279.61 279.97 279.68 280.99 279.20 280.45 278.91 280.31 MW-4S 272.20 262.20 276.13 275.67 274.72 275.79 281.21 279.91 280.26 279.84 281.36 279.59 280.86 279.36 280.50 midpoint saturated interval -upper 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.10 236.1 midpoint saturated interval - lower 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.20 267.2 delta-saturated interval -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.10 -31.1 delta-W.T.E. (see note 1) -4.90E-01 6.70E-01 -2.60E-01 -1.10E-01 -2.90E-01 -3.00E-01 -2.90E-01 -1.60E-01 -3.70E-01 -3.90E-01 -4.10E-01 -4.50E-01 -1.90E-01 Vertical Gradient (see note 2) 1.58E-02 -2.15E-02 8.36E-03 3.54E-03 9.32E-03 9.65E-03 9.32E-03 5.14E-03 1.19E-02 1.25E-02 1.32E-02 1.45E-02 6.11E-03 Down Up Down Down Down Down Down Down Down Down Down Down Down Nested Piezometers: MW-5D 2, 3 - Triassic MW-5S 1, 2 - Triassic Piezometer Top of Bottom of 1/24/01 6/25/01 11/1/01 5/6/02 7/9/02 5/5/03 10/27/03 5/1/04 10/31/04 5/1/05 10/31/05 5/1/06 11/1/06 5/1/07 10/1/07 No. Screen Elev. Screen Elev. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. W.T.E. MW-5D 242.00 232.00 264.67 264.39 265.96 269.19 274.62 271.90 274.10 272.38 274.44 271.41 273.81 270.73 272.70 MW-5S 263.80 248.80 264.37 263.80 265.65 269.03 274.44 271.64 273.99 272.29 274.45 271.29 274.34 270.67 272.50 midpoint saturated interval -upper 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237 midpoint saturated interval - lower 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.30 256.3 delta-saturated interval -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.30 -19.3 delta-W.T.E. (see note 1) 3.00E-01 5.90E-01 3.10E-01 1.60E-01 1.80E-01 2.60E-01 1.10E-01 9.00E-02 -1.00E-02 1.20E-01 -5.30E-01 6.00E-02 2.00E-01 Vertical Gradient (see note 2) -1.55E-02 -3.06E-02 -1.61E-02 -8.29E-03 -9.33E-03 -1.35E-02 -5.70E-03 -4.66E-03 5.18E-04 -6.22E-03 2.75E-02 -3.11E-03 -1.04E-02 Up Up Up Up Up Up Up Up Down Up Down Up Up Notes to Above: 1 delta-W.T.E. = difference in water level (shallow well minus deep well) 2 Vertical Gradient = delta-W.T.E. / delta-Saturated Interval 3 Negative vertical gradients are upward, positive gradients are downward 4 Wells denoted with "A" are deep wells Table 5A Supplemental Vertical Ground Water Gradient Calculations Anson County MSW Landfill, Phase 3 & 4 AnsonWasteManagementFacility Phase3&4DesignHydrogeologicStudy We l l / P i e z . H y d r o l o g i c H y d r a u l i c C o n d u c t i v i t y ( k ) G r d . W a t e r R e f e r e n c e d e l t a - E l e v . M a p L e n g t h H y d r a u l i c E f f e c t i v e G W V e l o c i t y U n i t A v e r a g e U n i t A v e r a g e No . U n i t f t / m i n f t / d a y c m / s e c E l e v a t i o n * E l e v a t i o n * i n f e e t i n f e e t G r a d i e n t ( I ) P o r o s i t y ( n ) ( V ) , f t / d a y V e l o c i t y , f t / d a y V e l o c i t y , f t / y r B- 2 1 1 1 . 9 1 E - 0 5 2 . 7 5 E - 0 2 9 . 7 1 E - 0 6 2 9 2 . 1 9 2 9 5 . 0 0 2 . 8 1 1 2 1 . 5 1 0 . 0 2 0 . 1 2 0 . 0 0 5 3 0 . 0 1 1.9 B- 0 1 2 7 . 5 3 E - 0 5 1 . 0 8 E - 0 1 3 . 8 3 E - 0 5 2 9 3 . 6 7 2 8 5 . 0 0 8 . 6 7 1 2 5 . 0 4 0 . 0 7 0 . 1 5 0 . 0 5 0 1 B- 0 5 2 1 . 2 5 E - 0 4 1 . 8 0 E - 0 1 6 . 3 5 E - 0 5 2 8 9 . 7 1 2 8 0 . 0 0 9 . 7 1 2 1 3 . 6 4 0 . 0 5 0 . 1 5 0 . 0 5 4 5 B- 0 6 2 1 . 1 0 E - 0 6 1 . 5 8 E - 0 3 5 . 5 6 E - 0 7 2 9 1 . 0 1 2 8 5 . 0 0 6 . 0 1 1 1 8 . 0 2 0 . 0 5 0 . 1 5 0 . 0 0 0 5 B- 0 7 2 1 . 4 0 E - 0 4 2 . 0 1 E - 0 1 7 . 1 0 E - 0 5 2 9 8 . 8 3 2 9 0 . 0 0 8 . 8 3 1 4 9 . 3 3 0 . 0 6 0 . 1 5 0 . 0 7 9 3 B- 0 8 2 2 . 3 3 E - 0 6 3 . 3 6 E - 0 3 1 . 1 9 E - 0 6 2 9 9 . 0 2 2 9 5 . 0 0 4 . 0 2 1 9 6 . 8 9 0 . 0 2 0 . 1 5 0 . 0 0 0 5 B- 0 9 2 2 . 1 2 E - 0 4 3 . 0 5 E - 0 1 1 . 0 8 E - 0 4 2 8 0 . 4 9 2 8 0 . 0 0 0 . 4 9 8 9 . 3 8 0 . 0 1 0 . 1 5 0 . 0 1 1 2 B- 1 0 2 7 . 0 6 E - 0 6 1 . 0 2 E - 0 2 3 . 5 8 E - 0 6 2 9 1 . 4 8 3 0 0 . 0 0 8 . 5 2 1 4 2 . 9 0 . 0 6 0 . 1 5 0 . 0 0 4 0 B- 1 1 2 6 . 2 6 E - 0 5 9 . 0 1 E - 0 2 3 . 1 8 E - 0 5 2 9 0 . 7 1 2 8 5 . 0 0 5 . 7 1 1 3 4 . 7 3 0 . 0 4 0 . 1 5 0 . 0 2 5 5 B- 1 3 2 7 . 5 7 E - 0 4 1 . 0 9 E + 0 0 3 . 8 5 E - 0 4 2 9 5 . 2 9 2 8 5 . 0 0 1 0 . 2 9 1 6 2 . 0 5 0 . 0 6 0 . 1 5 0 . 4 6 1 4 B- 1 9 2 1 . 2 4 E - 0 4 1 . 7 8 E - 0 1 6 . 2 8 E - 0 5 2 9 6 . 3 5 3 0 5 . 0 0 8 . 6 5 7 4 0 . 1 2 0 . 1 5 0 . 1 3 8 7 B- 2 0 2 5 . 7 3 E - 0 7 8 . 2 5 E - 0 4 2 . 9 1 E - 0 7 3 0 1 . 5 9 2 9 5 . 0 0 6 . 5 9 1 3 4 . 4 1 0 . 0 5 0 . 1 5 0 . 0 0 0 3 B- 2 2 2 1 . 7 5 E - 0 5 2 . 5 2 E - 0 2 8 . 9 0 E - 0 6 2 8 8 . 7 5 2 9 0 . 0 0 1 . 2 5 4 0 . 8 7 0 . 0 3 0 . 1 5 0 . 0 0 5 1 B- 2 3 2 1 . 9 1 E - 0 5 2 . 7 6 E - 0 2 9 . 7 3 E - 0 6 2 8 6 . 3 4 2 7 5 . 0 0 1 1 . 3 4 2 2 3 . 7 1 0 . 0 5 0 . 1 5 0 . 0 0 9 3 B- 2 5 D 2 3 . 2 1 E - 0 5 4 . 6 2 E - 0 2 1 . 6 3 E - 0 5 2 7 7 . 4 1 2 9 0 . 0 0 1 2 . 5 9 7 7 . 0 1 0 . 1 6 0 . 1 5 0 . 0 5 0 3 B- 2 6 2 3 . 6 2 E - 0 7 5 . 2 1 E - 0 4 1 . 8 3 E - 0 7 2 7 1 . 5 8 2 6 0 . 0 0 1 1 . 5 8 1 7 5 . 2 3 0 . 0 7 0 . 1 5 0 . 0 0 0 2 B- 2 7 2 4 . 0 9 1 E - 0 7 0 . 0 0 0 5 8 9 1 2 . 0 7 8 E - 0 7 2 6 0 . 0 1 2 5 5 . 0 0 5 . 0 1 1 3 5 . 7 0 . 0 4 0 . 1 5 0 . 0 0 0 1 B- 2 9 2 2 . 7 4 E - 0 7 3 . 9 4 E - 0 4 1 . 3 9 E - 0 7 2 7 0 . 5 6 2 8 0 . 0 0 9 . 4 4 2 1 8 . 4 3 0 . 0 4 0 . 1 5 0 . 0 0 0 1 B- 3 0 2 7 . 5 7 6 4 E - 0 6 0 . 0 1 0 9 1 3 . 8 4 8 E - 0 6 2 7 2 . 7 8 2 7 0 . 0 0 2 . 7 8 1 3 9 . 1 3 0 . 0 2 0 . 1 5 0 . 0 0 1 5 0 . 0 5 19.1 B- 0 2 D 3 4 . 4 1 E - 0 4 6 . 3 5 E - 0 1 2 . 2 4 E - 0 4 2 8 7 . 9 3 2 9 0 . 0 0 2 . 0 7 1 4 2 . 7 9 0 . 0 1 0 . 0 5 0 . 1 8 4 1 B- 0 3 3 3 . 7 9 E - 0 6 5 . 4 5 E - 0 3 1 . 9 2 E - 0 6 2 9 2 . 5 4 2 9 0 . 0 0 2 . 5 4 9 1 . 2 3 0 . 0 3 0 . 0 5 0 . 0 0 3 0 B- 0 4 3 7 . 0 7 E - 0 5 1 . 0 2 E - 0 1 3 . 5 9 E - 0 5 2 9 1 . 1 6 3 0 0 . 0 0 8 . 8 4 1 0 9 . 9 7 0 . 0 8 0 . 0 5 0 . 1 6 3 7 B- 1 8 3 9 . 8 8 E - 0 5 1 . 4 2 E - 0 1 5 . 0 2 E - 0 5 2 9 6 . 9 1 3 0 5 . 0 0 8 . 0 9 1 1 2 . 6 4 0 . 0 7 0 . 0 5 0 . 2 0 4 3 0 . 1 4 50.6 No t e s : 1 . G r o u n d W a t e r V e l o c i t y C a l c u l a t e d f r o m E q u a t i o n V= K I / n w h e r e K = H y d r a u l i c C o n d u c t i v i t y i n u n i t s o f f t / d a y I = H y d r a u l i c G r a d i e n t i n u n i t s o f f t / f t n = E f f e c t i v e P o r o s i t y ( u n i t l e s s ) 2. H y d r a u l i c C o n d u c t i v i t y v a l u e s f r o m a q u i f e r s l u g t e s t i n g u s i n g t h e B o u w e r - R i c e m e t h o d ; c o n d u c t e d b y E S P p e r s o n n e l 3. H y d r a u l i c G r a d i e n t v a l u e s w e r e c a l c u l a t e d f r o m t h e p o t e n t i o m e t r i c s u r f a c e m a p ( S h e e t 4 ) 4. E f f e c t i v e P o r o s i t y v a l u e s f o r s o i l s w e r e d e r i v e d f r o m T a b l e 3 5. E f f e c t i v e p o r o s i t y v a l u e s f o r b e d r o c k w e r e d e r i v e d f r o m D r i s c o l l , G r o u n d w a t e r a n d W e l l s , 1 9 8 6 ( p g . 6 7 ) , 6. D o m e n i c o a n d S c h w a r t z , P h y s i c a l a n d C h e m i c a l H y d r o g e o l o g y , 1 9 9 0 ( p g . 2 1 ) , 7. F r e e z e a n d C h e r r y , G r o u n d w a t e r , 1 9 7 9 ( p g . 3 7 ) ; 8. T h e d e s i g n v a l u e s a r e c o l l a b o r a t e d b y e a r l i e r s i t e s t u d i e s ( G Z A , 1 9 9 2 a n d T R C , 1 9 9 9 ) a n d a r e c o n s e r v a t i v e ( e . g . , o n t h e h i g h s i d e ) . *G r o u n d w a t e r e l e v a t i o n s a n d p o t e n t i o m e t r i c s u r f a c e s f o r r e f e r e n c e e l e v a t i o n s d e r i v e d f r o m w a t e r l e v e l o b s e r v a t i o n s m a d e 5 / 1 4 / 2 015 Ta b l e 6 Ho r i z o n t a l G r o u n d W a t e r G r a d i e n t a n d V e l o c i t y C a l c u l a t i o n s An s o n C o u n t y M S W L a n d f i l l , P h a s e 3 & 4 An s o n Co u n t y Wa s t e Ma n a g e m e n t Fa c i l i t y Ph a s e 3 De s i g n Hy d r o g e o l o g i c St u d y 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________       $33(1',; 'UDZLQJV  SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 C1 CO V E R S H E E T PH A S E 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C A L S T U D Y PO L K T O N , N C 2 8 1 3 5 SCS ENGINEERS, PC ANSON WASTE MANAGEMENT FACILITY 375 DOZER DRIVE POLKTON, NORTH CAROLINA 28135 2520 WHITEHALL PARK DRIVE, SUITE 450 CHARLOTTE, NORTH CAROLINA 28273 (704) 504-3107 JOB NO. 02214709.00 JULY 2015 DESIGN HYDROGEOLOGIC STUDY PHASES 3 AND 4 ANSON WASTE MANAGEMENT FACILITY NCDENR SOLID WASTE PERMIT NO. 04-03 WASTE CONNECTIONS OF THE CAROLINAS SEAL 25462 FINAL ISSUE D D' C' C E E' B' N SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 EX I S T I N G C O N D T I O N S S1 PH A S E S 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C S T U D Y PO L K T O N , N C 2 8 1 3 5 SEAL 25462 FINAL ISSUE SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 S2 TE S T B O R I N G L O C A T I O N S PH A S E S 3 A N D 4 PH A S E S 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C S T U D Y PO L K T O N , N C 2 8 1 3 5 SEAL 25462 FINAL ISSUE SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 S3 FE B R U A R Y 2 0 1 5 GR O U N D W A T E R C O N T O U R S PH A S E S 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C S T U D Y PO L K T O N , N C 2 8 1 3 5 270 SEAL 25462 FINAL REVIEW SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 S4 ES T I M A T E D M A X I M U M SE A S O N A L H I G H G R O U N D W A T E R C O N T O U R S PH A S E S 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C S T U D Y PO L K T O N , N C 2 8 1 3 5 310 SEAL 25462 FINAL ISSUE SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 S5 GE N E R A L I Z E D B E D R O C K (A U G E R R E F U S A L ) C O N T O U R S PH A S E S 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C S T U D Y PO L K T O N , N C 2 8 1 3 5 280 SEAL 25462 FINAL ISSUE SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 CR O S S S E C T I O N S ( S H T 1 O F 3 ) X1 PH A S E S 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C S T U D Y PO L K T O N , N C 2 8 1 3 5 SEAL 25462 FINAL ISSUE SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 CR O S S S E C T I O N S ( S H T 2 O F 3 ) X2 PH A S E S 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C S T U D Y PO L K T O N , N C 2 8 1 3 5 SEAL 25462 FINAL ISSUE SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 CR O S S S E C T I O N S ( S H T 3 O F 3 ) X3 PH A S E S 3 A N D 4 WA S T E C O N N E C T I O N S OF T H E C A R O L I N A S 37 5 D O Z E R D R I V E DE S I G N H Y D R O G E O L O G I C S T U D Y PO L K T O N , N C 2 8 1 3 5 SEAL 25462 FINAL ISSUE 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________       $33(1',; 7HVW%RULQJ/RJV  S C S E N G I N E E R S Test Boring Log B-01 Environmental Consultants Northing 458970.85 2520 Whitehall Park Drive, Suite 450 Easting 1650788.25 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 44.3'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/9/2014 Completion Water Level: 35 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/9/2014 24 Hour Water Level:22.8 below top of casing Boring Diameter: 4-inch SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 313.63 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 316.28 Casing Elev. 1 2 3.5221 5 6 4 31 7 828.5345 9 10 11 12 13 3 13.5 3 14 Grout 15 16 17 19 20 18 4 18.5 14 18 29 25 26 27 Solid 2" PVC Pipe22 23 5 23.5 40 21 50/5 24 33 7 33.5 29 30 28 6 28.5 23 15 16 31 Bentonite 36 Sand Pack 37 38 8 38.5 40 23 39 40 Slotted 2" PVC Pipe 42 43 9 43.5 50/1 44 313.63 Auger Refusal at 44.3 feet Gray, brown PWR10 44.3 50/0 49 50 47 48 46 Gray, brown sandy silt Orange, gray sandy silt Brown, orange sandy silt Tan, black silty sand Tan, black PWR Brown, orange silty sand Brown, orange silty sand Brown, gray PWR 45 41 50/3 91020 35 32 34 613 S C S E N G I N E E R S Test Boring Log B-02D Environmental Consultants Northing 459357.24 2520 Whitehall Park Drive, Suite 450 Easting 1650504.41 Charlotte, NC 28273 Logged By: Adam Smith, PE 704 504-3107 FAX 704 504-3174 Total Bore Depth: 40.1'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/15/2014 Completion Water Level: 20.1 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/15/2014 24 Hour Water Level:17.9 below top of casing Boring Diameter: 4-inch PWR PWR PWR PWR PWR PWR PWR PWR Anson Solid Waste Management Polkton, NC (Permit # 04-03) SCS Project No. 02214709.00 9 40.1 50/1 308.25 Ground Elev.0 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 310.83 Casing Elev. D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 6 " S P T V A L U E 1 2 3.5 50/1.5 Gray sand and rock, PWR 5 6 4 31 7 8 2 8.5 50/1 9 10 11 12 13 3 13.5 50/0.75 14 Grout 15 16 17 18 4 18.5 50/.05 19 20 21 Solid 2" PVC Pipe22 23 5 23.5 50/0.25 24 25 26 27 29 30 28 6 28.5 50/0.5 32 Bentonite 34 33 7 33.5 50/1 31 Sand Pack 37 38 8 38.5 50/1 35 36 41 Slotted 2" PVC Pipe 42 39 40 44 45 46 47 48 308.25 Auger Refusal at 40.1 feet 43 49 50 S C S E N G I N E E R S Test Boring Log B-02S Environmental Consultants Northing 459358.96 2520 Whitehall Park Drive, Suite 450 Easting 1650498.34 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 15'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 1/27/2015 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended: 1/27/2015 24 Hour Water Level:6.34 below top of casing Boring Diameter: 4-inch SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 307.84 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E Grout 3 STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 310.20 Casing Elev. 1 2 5 6 4 9 10 7 8 13 11 12 Solid 2" PVC Pipe 15 16 17 18 307.8414 21 22 23 20 30 24 26 27 29 28 31 25 19 Bentonite Drilled to 15'; shallow nested well 33 32 Sand Pack 37 38 35 36 34 41 Slotted 2" PVC Pipe 42 39 40 43 49 44 45 50 47 48 46 S C S E N G I N E E R S Test Boring Log B-03 Environmental Consultants Northing 459135.67 2520 Whitehall Park Drive, Suite 450 Easting 1650467.32 Charlotte, NC 28273 Logged By: Adam Smith, PE 704 504-3107 FAX 704 504-3174 Total Bore Depth: 35'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/16/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/16/2014 24 Hour Water Level:19 below top of casing Boring Diameter: 4-inch Orange, gray, brown silty sand Orange, gray, brown silty sand Orange, gray, brown silty sand Orange, gray, brow silty sand Gray sand, rock, PWR PWR PWR PWR8 35.0 50/0.5 49 50 47 48 46 44 45 41 39 38 42 43 40 314.12 Auger Refusal at 35.0 feet Slotted 2" PVC Pipe 36 37 34 35 33 7 33.5 50/0.5 31 Sand Pack 32 29 30 28 6 28.5 50/0.5 26 Bentonite 27 24 25 22 23 5 23.5 50/0.8 19 17 18 4 18.5 50/8 20 21 15 16 14 Grout 13 3 13.5 50/9 11 12 9 10 Solid 2" PVC Pipe 7 828.52950/5 5 6 4 31 S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 6 " S P T V A L U E 1 2 3.5203040 Anson Solid Waste Management Polkton, NC (Permit # 04-03) SCS Project No. 02214709.00 314.12 Ground Elev.0 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 316.53 Casing Elev. D E P T H I N F T . EL E V A T I O N S C S E N G I N E E R S Test Boring Log B-04 Environmental Consultants Northing 459199.71 2520 Whitehall Park Drive, Suite 450 Easting 1650755.58 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 42.3'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/9/2014 Completion Water Level: N/A below top of casing Core Started:1/26/2015 Drilling Method:Rotary Hollow Stem Auger Date Ended: 12/9/2014 24 Hour Water Level:13.0 below top of casing Core Ended:1/26/2015 Boring Diameter: 4-inch Orange, tan, gray sandy silt Orange, tan, gray sandy silt, PWR Orange, tan, gray sandy silt, PWR Orange, tan, gray sandy silt, PWR Orange, tan, gray sandy silt, PWR PWR SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 314.45 Casing Elev. Anson Solid Waste Management Polkton, NC (Permit # 04-03) 311.55 Ground Elev. 1 2 3.5 5 8 12 5 6 4 31 7 828.5142450/6 9 10 11 12 13 3 13.5 50/6 14 Grout 15 16 17 18 4 18.5 50/2 19 20 25 26 27 Solid 2" PVC Pipe22 23 5 23.5 50/1 21 24 29 30 28 6 28.5 50/0 Auger Refusal at 28.3 feet 32 Bentonite 34 33 31 35 36 Sand Pack 37 38 39 40 Slotted 2" PVC Pipe 42 296.55 Cored to 42.3 feet 44 311.55 45 43 41 46 49 50 47 48 S C S E N G I N E E R S Test Boring Log B-05 Environmental Consultants Northing 459235.39 2520 Whitehall Park Drive, Suite 450 Easting 1651012.02 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 50.8'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/9/2014 Completion Water Level: 46 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/9/2014 24 Hour Water Level:26.25 below top of casing Boring Diameter: 4-inch Tan silty sand Orange, tan silty sand Orange, tan silty sand Brown, tan silty sand, PWR Brown, tan silty sand, PWR Brown, tan silty sand, PWR Gray, white, tan silty sand, PWR Gray, white, tan silty sand, PWR Gray micaceous silty sand, PWR SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 318.87 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 322.07 Casing Elev. 1 2 3.5213146 5 6 4 31 7 8 2 8.5 23 50/6 9 10 11 12 13 3 13.5 14 17 21 14 Grout 15 16 17 18 4 18.5 32 50/6 19 20 25 26 27 Solid 2" PVC Pipe22 23 5 23.5 50/3 21 24 29 30 28 6 28.5 50/3 31 32 Bentonite 34 33 7 33.5 50/3 35 36 Sand Pack 37 38 8 38.5 50/1 39 40 41 Slotted 2" PVC Pipe 42 43 9 43.5 50/4 44 45 46 50 47 48 Rock 10 48.5 318.8749 50/.5 11 50.8 50/0 White, gray sand, PWR Auger Refusal at 50.8 feet S C S E N G I N E E R S Test Boring Log B-06 Environmental Consultants Northing 459650.34 2520 Whitehall Park Drive, Suite 450 Easting 1650600.03 Charlotte, NC 28273 Logged By: Adam Smith, PE 704 504-3107 FAX 704 504-3174 Total Bore Depth: 26'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/16/2014 Completion Water Level: 0 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/16/2014 24 Hour Water Level:2.6 below top of casing Boring Diameter: 4-inch Orange clay and sandy silt Gray, orange clay and sandy silt Gray silty sand Gray, red, brown silty sand Gray, red, brown silty sand, PWR Gray, red, brown silty sand, PWR6 26.0 32 50/6 49 50 47 48 46 44 45 42 43 40 Auger Refusal at 26.0 feet 41 39 38 31 26 294.96 Slotted 2" PVC Pipe 36 37 34 35 33 Sand Pack 32 29 30 28 Bentonite 27 24 25 41 50/5 19 22 23 5 23.5 18 17 18 4 18.5 20 24 20 21 28 15 16 14 Grout 13 3 13.5 9 20 28 11 12 9 10 7 8 28.5559 Solid 2" PVC Pipe 5 6 4 31 S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 6 " S P T V A L U E 1 2 3.5356 Anson Solid Waste Management Polkton, NC (Permit # 04-03) SCS Project No. 02214709.00 294.96 Ground Elev.0 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 297.79 Casing Elev. D E P T H I N F T . EL E V A T I O N S C S E N G I N E E R S Test Boring Log B-07 Environmental Consultants Northing 459471.63 2520 Whitehall Park Drive, Suite 450 Easting 1651011.28 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 27.3'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/8/2014 Completion Water Level: 19.2 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/8/2014 24 Hour Water Level:8.45 below top of casing Boring Diameter: 4-inch Tan and brown sandy silt, PWR Tan and brown sandy silt, PWR Tan and brown sandy silt, PWR Tan and brown sandy silt, PWR Tan and brown sandy silt, PWR 6 27.3 50/.5 Tan and brown sandy silt, PWR SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 313.97 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 317.03 Casing Elev. 1 2 3.5 50/6 6 4 31 8 2 8.5 50/3 5 11 12 9 10 7 14 Grout 13 3 13.5 50/2 15 16 17 18 4 18.5 50/.75 19 Solid 2" PVC Pipe 22 23 5 23.5 50/2 20 21 24 25 26 27 29 30 28 Bentonite 34 33 31 Sand Pack 37 38 35 36 Slotted 2" PVC Pipe 42 39 40 44 313.97 45 43 41 32 49 50 47 48 46 Auger Refusal at 27.3 feet S C S E N G I N E E R S Test Boring Log B-08 Environmental Consultants Northing 459894.55 2520 Whitehall Park Drive, Suite 450 Easting 1651042.58 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 31.5' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/17/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/17/2014 24 Hour Water Level:8.25 below top of casing Boring Diameter: 4-inch Drilling halted at 31.5 feet Gray, brown, orange silty sand Gray, brown, orange silty sand Gray, red micaceous silty sand Gray, white silty sand, PWR Red, tan silty sand, PWR Gray, white silty sand Orange, tan silty sand 7 31.5 24 28 39 SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 313.27 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 316.58 Casing Elev. 1 2 3 1 3.5 7 11 16 Grout 4 6 7 5 Solid 2" PVC Pipe 9 8 28.5162941 10 11 31 50/6 12 13 3 13.5 20 18 4 18.5 25 40 50/3 16 17 14 15 20 21 Bentonite 25 Slotted 2" PVC Pipe 22 23 5 23.5 20 13 Sand Pack 19 26 27 24 25 30 28 29 313.27 33 31 32 34 35 36 37 38 39 40 41 42 43 44 45 49 50 47 48 46 628.5282944 S C S E N G I N E E R S Test Boring Log B-09 Environmental Consultants Northing 459904.3 2520 Whitehall Park Drive, Suite 450 Easting 1650717.9 Charlotte, NC 28273 Logged By: Adam Smith, PE 704 504-3107 FAX 704 504-3174 Total Bore Depth: 20.5'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/15/2014 Completion Water Level: 0 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/15/2014 24 Hour Water Level:2.6 below top of casing Boring Diameter: 4-inch Orange, tan silty sand, quartz Gray silty sand, PWR Gray silty sand, PWR5 20.5 50/0.75 49 50 47 48 46 44 45 42 43 40 41 37 38 39 34 35 33 36 32 31 25 28 29 30 27 20 291.06 26 Auger Refusal at 20.5 feet 24 Slotted 2" PVC Pipe 22 23 21 19 18 4 18.5 50/2 14 Sand Pack 15 61216 16 17 Bentonite 12 13 3 13.5 10 11 9 8 28.5656Tan clayey sand 7 Solid 2" PVC Pipe 6 4 5 Orange, tan sandy silt313.56911 S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 6 " S P T V A L U E 1 2 Grout Anson Solid Waste Management Polkton, NC (Permit # 04-03) SCS Project No. 02214709.00 291.06 Ground Elev.0 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 294.20 Casing Elev. D E P T H I N F T . EL E V A T I O N S C S E N G I N E E R S Test Boring Log B-10 Environmental Consultants Northing 460077.69 2520 Whitehall Park Drive, Suite 450 Easting 1650791.91 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 18.2' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/17/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/17/2014 24 Hour Water Level:3.15 below top of casing Boring Diameter: 4-inch PWR Brown, tan sandy silt Orange, tan sandy silt Anson Solid Waste Management Polkton, NC (Permit # 04-03) 299.92 Ground Elev. SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E 3 STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 302.45 Casing Elev. 1 2 3.5 6 5 Bentonite 1 4 811 6 7 8 2 8.5 8 10 12 11 12 9 10 Sand Pack 14 Grout 13 3 13.5 15 50/.75 17 18 15 16 Rock 19 Solid 2" PVC Pipe 22 23 20 21 24 25 26 27 29 30 28 31 33 34 35 36 37 38 Slotted 2" PVC Pipe 42 39 40 44 299.92 45 43 41 32 49 50 47 48 46 4 18.2 50/0 Auger Refusal at 18.2 feet S C S E N G I N E E R S Test Boring Log B-11 Environmental Consultants Northing 459568.56 2520 Whitehall Park Drive, Suite 450 Easting 1651182.16 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 23.5' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/22/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/22/2014 24 Hour Water Level:18.95 below top of casing Boring Diameter: 4-inch 50/.25 No recovery No recovery Tan sandy silt, PWR Tan sandy silt, PWR Tan sandy silt, PWR Anson Solid Waste Management 29 50/6 Polkton, NC (Permit # 04-03) 312.32 Ground Elev. SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E 3 STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 314.52 Casing Elev. 1 2 3.5 5 5 Solid 2" PVC Pipe 1 4 7 8 2 8.5 50/5 11 12 9 10 Bentonite 6 14 Grout 13 3 13.5 50/1 15 16 17 18 4 18.5 50/.25 19 22 23 20 21 5 23.5 24 25 26 27 29 30 28 31 33 34 Sand Pack 37 38 35 36 Slotted 2" PVC Pipe 42 39 40 44 312.32 45 43 41 32 49 50 47 48 46 Auger Refusal at 23.5 feet S C S E N G I N E E R S Test Boring Log B-12 Environmental Consultants Northing 459778.75 2520 Whitehall Park Drive, Suite 450 Easting 1651278.85 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 31.6'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/12/2014 Completion Water Level: 25.7 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/12/2014 24 Hour Water Level:24.8 below top of casing Boring Diameter: 4-inch PWR Orange, gray silty sand, PWR Orange, gray silty sand 47 48 49 50 43 44 45 46 39 40 41 42 35 36 37 38 32 7 31.6 50/6 33 34 29 30 28 6 28.5 50/0.5 31 Auger Refusal at 31.6 feet 24 25 26 27 314.87 21 22 23 5 23.5 23 50/6 PWR PWR Brown, tan silty sand, PWR Slotted 2" PVC Pipe 17 18 4 18.5 16 Sand Pack Bentonite 20 16 50/8 19 PWr 14 13 3 13.5 50/1.5 15 10 11 12 7 9 Solid 2" PVC Pipe 4 5 6 8 2 8.5 50/3 Grout 313.5142350/5 2 S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 6 " S P T V A L U E 1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) SCS Project No. 02214709.00 314.87 Ground Elev.0 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 316.59 Casing Elev. D E P T H I N F T . EL E V A T I O N S C S E N G I N E E R S Test Boring Log B-13 Environmental Consultants Northing 460107.18 2520 Whitehall Park Drive, Suite 450 Easting 1651272.07 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 46.1' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/12/2014 Completion Water Level: 32 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended: 12/12/2014 24 Hour Water Level:11.5 below top of casing Boring Diameter: 4-inch PWR Gray, brown silty sand, PWR Gray silty sand, PWR Gray silty sand, PWR Gray, tan silty sand Tan, orange silty sand Tan, orange, silty sand 11 46.1 50/0 No recovery PWR PWR 8 33.5 50/5 9 38.5 50/5 PWR 10 43.5 50/3 Auger Refusal at 46.1 feet 7 30.0 50/5 2 8.5 21 29 50/4 3 13.5 23 27 36 4 18.5 17 18 44 5 23.5 W A T E R L E V E L 23 50/3 6 28.5 13.551932 50/4 23 13 14 15 3 S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION 2 4 5 6 7 8 0 1 D E P T H I N F T . EL E V A T I O N 16 19 20 21 22 9 10 11 12 50 43 44 45 46 47 48 37 38 39 40 41 42 49 31 32 33 34 35 36 25 26 27 28 29 30 24 17 18 Anson Solid Waste Management Polkton, NC (Permit # 04-03) SCS Project No. 02214709.00 PIEZOMETER DATA 315.48 317.74 315.48 Ground Elev. Casing Elev. Grout Solid 2" PVC Pipe Bentonite Slotted 2" PVC Pipe Sand Pack S C S E N G I N E E R S Test Boring Log B-14 Environmental Consultants Northing 460188.73 2520 Whitehall Park Drive, Suite 450 Easting 1651031.17 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 22.3' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/11/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/11/2014 24 Hour Water Level:N/A below top of casing Boring Diameter: 4-inch Red, tan sandy clayey silt 5 22.3 50/0 No recovery Gray sandy silt, PWR Tan, gray sandy silt Orange, tan sandy silt SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 312.17 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L NO PIEZOMETER 1 Grout 313.54912 2 4 5 6 7 8 28.5101319 9 10 11 12 14 15 16 13 3 13.5 30 50/3 17 18 4 18.5 50/2 19 20 21 22 312.17 23 Auger Refusal at 22.3 feet 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 49 50 47 48 S C S E N G I N E E R S Test Boring Log B-15 Environmental Consultants Northing 460509.1 2520 Whitehall Park Drive, Suite 450 Easting 1651042.22 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 22.5'below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/11/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/11/2014 24 Hour Water Level:N/A below top of casing Boring Diameter: 4-inch Gray mudstone, PWR Gray sandy silt, PWR Olive, brown sandy silt 5 22.5 50/0 49 50 47 48 46 44 45 41 42 43 39 38 40 36 37 32 33 34 35 31 Auger Refusal at 22.5 feet 30 29 26 24 25 28 27 23 No recovery22 316.53 20 21 19 18 4 18.5 50/0.5 No recovery 16 50/8 17 13 3 13.5 50/1 14 15 9 10 11 12 8 2 8.5 50/5 7 5 Grout6 4 31 S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 6 " S P T V A L U E 1 2 3.5243849 Anson Solid Waste Management Polkton, NC (Permit # 04-03) SCS Project No. 02214709.00 316.53 Ground Elev.0 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA D E P T H I N F T . EL E V A T I O N S C S E N G I N E E R S Test Boring Log B-16 Environmental Consultants Northing 460294.49 2520 Whitehall Park Drive, Suite 450 Easting 1651297.11 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 38.8' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/10/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/10/2014 24 Hour Water Level:N/A below top of casing Boring Diameter: 4-inch Brown, tan silty sand, PWR Brown, tan silty sand, PWR Brown, tan silty sand, PWR Orange, tan sandy silt, PWR Orange, tan sandy silt Gray, brown sandy silt, PWR SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E 1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 315.40 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L NO PIEZOMETER Grout 3 1 3.5 30 50/5 2 4 5 6 7 828.5151633 9 10 11 12 14 15 16 13 3 13.5 30 50/5 50/6 17 18 4 18.5 41 20 21 22 19 23 5 23.5 50/124 25 28 26 27 29 30 31 32 33 7 33.5 50/.5 Gray mudstone, PWR 34 35 38 36 37 315.4039 40 38.8 50/.75 43 44 49 50 47 48 46 6 28.5 50/5 45 41 42 8 Gray mudstone, PWR Auger Refusal at 38.8 feet S C S E N G I N E E R S Test Boring Log B-17 Environmental Consultants Northing 460621.82 2520 Whitehall Park Drive, Suite 450 Easting 1651127.72 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 43.6' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/11/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/11/2014 24 Hour Water Level:N/A below top of casing Boring Diameter: 4-inch Red, tan sitly sand Red, gray sandy silt - gray, red seam of red, tan sandy silt 315.29 PWR Tan, brown sandy silt Olive, brown silt Olive, tan, orange silt Olive, tan silt Olive, tan silt 45 SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 315.29 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L NO PIEZOMETER 1 Grout 313.5323 2 4 5 6 7 828.5323Tan, white silt 9 10 11 12 14 15 16 13 3 13.5 3 2 3 17 18 4 18.5 3 19 20 21 22 23 5 23.5 50/124 25 26 27 28 6 28.5 50/529 30 31 32 34 35 33 7 33.5 50/.5 36 37 38 8 38.8 50/.75 39 40 44 45 43 41 42 Auger Refusal at 43.6 feet 9 43.5 50/.75 49 50 47 48 46 S C S E N G I N E E R S Test Boring Log B-18 Environmental Consultants Northing 460556.15 2520 Whitehall Park Drive, Suite 450 Easting 1651219.53 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 40.5' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/9/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/9/2014 24 Hour Water Level:12.85 below top of casing Boring Diameter: 4-inch Gray, orange silty sand, PWR Brown, tan, orange silty sand, PWR Gray, orange silty sand Tan, orange silty sand Orange, tan silty sand 278.00 Slotted 2" PVC Pipe SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E 1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 318.50 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 321.21 Casing Elev. 2 3.5111416 6 4 31 8 28.5181416 5 11 12 9 10 7 14 Grout 13 3 13.5 16 50/6 15 16 17 18 4 18.5 41 50/3 19 29 50/4 Solid 2" PVC Pipe 22 23 5 23.5 33 20 21 24 25 26 27 6 50/0 No recovery 29 30 28 Bentonite 34 33 31 Sand Pack 37 38 35 36 42 39 40 44 318.50 45 43 41 32 49 50 47 48 46 Cored to 40.5 feet Auger Refusal at 25.5 feet S C S E N G I N E E R S Test Boring Log B-19 Environmental Consultants Northing 460780.03 2520 Whitehall Park Drive, Suite 450 Easting 1651259.84 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 35.5' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/10/2014 Completion Water Level: 33.60 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/10/2014 24 Hour Water Level:11.90 below top of casing Boring Diameter: 4-inch White, orange, tan silty sand, PWR White, orange, tan silty sand, PWR Tan, brown silty sand, PWR Tan, brown silty sand Brown, tan silty sand SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E 1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 316.75 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 319.65 Casing Elev. 2 3.5 6 8 10 6 4 31 8 28.5182429 5 11 12 9 10 7 14 Grout 13 3 13.5 30 50/3 15 16 17 18 4 18.5 50/6 19 Solid 2" PVC Pipe 22 23 5 23.5 50/6 20 21 24 25 26 27 PWR 30 28 6 28.5 50/1 32 PWR 29 Bentonite 34 33 7 33.5 50/.5 31 Sand Pack 37 38 35 36 35.5 50/1 Slotted 2" PVC Pipe 42 39 40 44 316.75 45 43 41 8 49 50 47 48 46 Auger Refusal at 35.5 feet Tan silty sand, PWR S C S E N G I N E E R S Test Boring Log B-20 Environmental Consultants Northing 460712.37 2520 Whitehall Park Drive, Suite 450 Easting 1651468.86 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 27.7' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/17/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/17/2014 24 Hour Water Level:13.40 below top of casing Boring Diameter: 4-inch No recovery Tan silty sand, PWR Tan silty sand, PWR Tan, orange sandy silt, PWR Orange sandy silt SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E 1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 317.31 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 319.32 Casing Elev. 2 3.5 9 10 23 5 6 4 Grout 31 828.52450/6 7 9 Solid 2" PVC Pipe10 11 12 13 3 13.5 15 50/2 14 15 16 17 20 18 4 18.5 24 50/4 Bentonite 22 23 5 23.5 50/.5 21 19 Sand Pack 27 24 25 28 26 Auger Refusal at 27.7 feet 6 27.7 50/0 No recovery Slotted 2" PVC Pipe 31 32 29 30 34 317.31 35 33 36 37 38 39 40 41 42 43 44 45 46 47 49 50 48 S C S E N G I N E E R S Test Boring Log B-21 Environmental Consultants Northing 460710.17 2520 Whitehall Park Drive, Suite 450 Easting 1651739.21 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 22' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/22/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/22/2014 24 Hour Water Level:9.50 below top of casing Boring Diameter: 4-inch Orange, brown, tan sandy silt Tank, orange, black sandy silt Tan, Orange, black sandy silt Orange, tan sandy silt Brown, tan sandy silt SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E 1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 305.90 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 309.45 Casing Elev. 2 Grout 5 6 4 313.56912 9 Solid 2" PVC Pipe 10 8 28.5668 7 11 12 Bentonite 14 13 3 13.5 5 6 7 15 Sand Pack 17 18 4 18.5 7 11 15 16 Slotted 2" PVC Pipe 23 21 22 19 20 Drilling halted at 22 feet 26 305.9 27 24 25 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 39 48 46 45 49 50 47 5 22.0 4 6 15 S C S E N G I N E E R S Test Boring Log B-22 Environmental Consultants Northing 460919.6 2520 Whitehall Park Drive, Suite 450 Easting 1651739.47 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 17.2' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/22/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/22/2014 24 Hour Water Level:3.80 below top of casing Boring Diameter: 4-inch 4 17.2 50/0 No recovery PWR Tan, brown sandy silt, PWR Tan, brown sandy silt SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 297.32 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 299.96 Casing Elev. 1 Grout 2 Bentonite 6 Solid 2" PVC Pipe 4 3 13.5132224 8 2 8.5 50/6 5 9 7 Sand Pack 12 13 3 13.5 50/.75 10 11 Slotted 2" PVC Pipe 18 16 17 14 15 Auger refusal at 17.2 feet 21 297.32 22 19 20 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 49 50 47 48 46 S C S E N G I N E E R S Test Boring Log B-23 Environmental Consultants Northing 461014.48 2520 Whitehall Park Drive, Suite 450 Easting 1651547.59 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 30' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/18/2014 24 Hour Water Level:14.83 below top of casing Boring Diameter: 4-inch Orange sandy silt Orange sandy silt 7 30.0 50/0 No recovery PWR Tan silty sand, PWR Tan silty sand, PWR 1 13.5 8 12 22 SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 305.08 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 306.87 Casing Elev. 1 2 3.5 7 11 16 5 6 4 Grout 3 8 28.5489 7 9 Solid 2" PVC Pipe10 11 12 13 3 Brown, black, orange sandy silt Bentonite 14 15 16 Sand Pack 17 18 4 18.5 50/2 19 20 21 22 Slotted 2" PVC Pipe235 23.5 50/1 26 305.08 27 24 25 28 29 30 Auger Refusal at 30.0 feet31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 49 50 47 48 46 6 28.5 50/0 S C S E N G I N E E R S Test Boring Log B-24 Environmental Consultants Northing 461076.66 2520 Whitehall Park Drive, Suite 450 Easting 1651670.32 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 30.5' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/18/2014 24 Hour Water Level:15.65 below top of casing Boring Diameter: 4-inch Orange, gray silty sand Tan, white, brown silty sand 274.82 Grout SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 305.32 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 307.84 Casing Elev. 2 3.52325281 1 5 6 4 Solid 2" PVC Pipe 3 828.56515 7 9 10 11 12 13 3 13.5 18 19 50/2 14 15 305.32 4 15.2 50/3 PWR Orange, gray silty sand, PWR Bentonite16 Sand Pack 17 18 19 20 21 22 Slotted 2" PVC Pipe 23 24 25 26 27 Auger Refusal at 15.2 feet 29 30 28 31 32 33 34 35 36 37 44 38 39 48 46 40 41 42 43 45 49 50 47 Cored to 30.5 feet S C S E N G I N E E R S Test Boring Log B-25D Environmental Consultants Northing 461063.93 2520 Whitehall Park Drive, Suite 450 Easting 1651845.49 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 30.2' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/18/2014 24 Hour Water Level:9 below top of casing Boring Diameter: 4-inch Red micaceous sandy silt Orange, gray sandy, clayey silt 7 30.2 50/2 Red, gray sandy silt, PWR Red, gray sandy silt, PWR Gray, red micaceous silty sand, PWR Gray micaceous silty sand, PWR red micaceous sandy silt 1 13.5 15 26 50/5 SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 289.53 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 292.57 Casing Elev. 1 2 3.5546 5 6 4 Grout 3 8 28.5121723 7 9 Solid 2" PVC Pipe10 11 12 13 3 Bentonite 14 15 16 Sand Pack 17 18 4 18.5 50/5 19 20 21 22 Slotted 2" PVC Pipe235 23.5 29 50/6 26 289.53 27 24 25 28 29 30 Auger Refusal at 30.2 feet31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 49 50 47 48 46 6 28.5 50/3 S C S E N G I N E E R S Test Boring Log B-25S Environmental Consultants Northing 461064.85 2520 Whitehall Park Drive, Suite 450 Easting 1651852.58 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 15' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 1/28/2015 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended: 1/28/2015 24 Hour Water Level:13 below top of casing Boring Diameter: 4-inch SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E Anson Solid Waste Management Polkton, NC (Permit # 04-03) 288.35 Ground Elev.0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 291.14 Casing Elev. Grout1Solid 2" PVC Pipe2Bentonite3 4 5 6 8 7 9 Sand Pack10 Slotted 2" PVC Pipe13 11 12 14 288.3515 Drilled to 15'; shallow nested well16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 47 48 46 49 50 S C S E N G I N E E R S Test Boring Log B-26 Environmental Consultants Northing 460885.94 2520 Whitehall Park Drive, Suite 450 Easting 1652205.6 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 15.8' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended: 12/18/2014 24 Hour Water Level:5.55 below top of casing Boring Diameter: 4-inch SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E Grout1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 277.13 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 279.63 Casing Elev. Solid 2" PVC Pipe2Bentonite3 4 13.561325Tan, white silty sand 5 6 828.5283350/6 7 9 Sand Pack10 Red, gray sandy silt, PWR Slotted 2" PVC Pipe13 3 13.5 50/4 11 12 14 Red, gray sandy silt, PWR 277.13 4 15.8 50/3 Red, gray sandy silt, PWR15 Auger Refusal at 15.8 feet16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 49 50 47 48 46 S C S E N G I N E E R S Test Boring Log B-27 Environmental Consultants Northing 460965.24 2520 Whitehall Park Drive, Suite 450 Easting 1652401.45 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 25.9' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/19/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/19/2014 24 Hour Water Level:8.40 below top of casing Boring Diameter: 4-inch Tan micaceous silty sand, PWR Tan micaceous silty sand, PWR Tan micaceous silty sand, PWR Tan micaceous silty sand Anson Solid Waste Management Polkton, NC (Permit # 04-03) 270.23 Ground Elev. 273.22 Casing Elev. SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 1 2 3.5 6 17 4731 5 6 4 Grout 7 11 12 9 Solid 2" PVC Pipe10 8 2 8.5 50/4 13 3 13.5 11 17 22 Bentonite 16 14 15 50/3 Sand Pack 17 18 4 18.5 15 38 19 20 21 22 Tan micaceous silty sand, PWR Slotted 2" PVC Pipe23 5 23.5 50/3 24 25 26 27 Auger Refusal at 25.9 feet 29 30 28 6 25.9 50/4 Tan micaceous silty sand, PWR270.23 31 32 33 34 35 36 37 38 44 39 40 41 42 43 45 49 50 47 48 46 S C S E N G I N E E R S Test Boring Log B-28 Environmental Consultants Northing 461193.01 2520 Whitehall Park Drive, Suite 450 Easting 1652443.83 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 16' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/19/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended: 12/19/2014 24 Hour Water Level:6.98 below top of casing Boring Diameter: 4-inch SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E Grout1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 271.13 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 273.57 Casing Elev. Solid 2" PVC Pipe2Bentonite3 4 1 3.5 23 43 50/6 5 6 Red, gray sandy silt, PWR 8 2 8.5 43 50/5 7 9 Sand Pack10 Red, gray sandy silt, PWR Slotted 2" PVC Pipe13 3 13.5 50/5 11 12 14 Red, gray sandy silt, PWR 271.13 4 16.0 50/5 Red, gray sandy silt, PWR15 Auger Refusal at 16 feet16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 39 48 46 45 49 50 47 S C S E N G I N E E R S Test Boring Log B-29 Environmental Consultants Northing 461049.51 2520 Whitehall Park Drive, Suite 450 Easting 1652141.65 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 20.8' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/19/2014 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/19/2014 24 Hour Water Level:4.84 below top of casing Boring Diameter: 4-inch Red sandy silt, PWR Gray, red silty sand, PWR White, tan silty sand SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E 1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 278.03 Ground Elev. STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 281.18 Casing Elev. 2 Grout 5 6 4 3 13.5131618 Solid 2" PVC Pipe 8 2 8.5 50/4 7 9 Sand Pack 10 11 12 18 4 18.5 44 50/.5 Bentonite 14 13 3 13.5 50/5 20 16 17 Auger Refusal at 20.8 feet 5 20.8 50/4 15 Red sandy silt, PWR Red sandy silt, PWR Slotted 2" PVC Pipe 23 21 22 19 26 278.03 27 24 25 28 29 30 31 32 33 34 35 36 37 38 44 39 40 41 42 43 45 49 50 47 48 46 S C S E N G I N E E R S Test Boring Log B-30 Environmental Consultants Northing 461121.72 2520 Whitehall Park Drive, Suite 450 Easting 1651951.32 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 29' below ground surface Drilling Company: Soil Drilling Services, Inc.Date Started: 12/18/2014 Completion Water Level: 27.5 below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended:12/18/2014 24 Hour Water Level:2.75 below top of casing Boring Diameter: 4-inch 6 29.0 50/6 Red, gray silty sand, PWR Gray, white, olive silty sand, PWR Gray, red clayey, silty sand, PWR Gray, red clayey, silty sand, PWR Gray, red clayey, silty sand Gray, red clayey, silty sand, PWR Anson Solid Waste Management Polkton, NC (Permit # 04-03) 280.15 Ground Elev. SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 283.07 Casing Elev. 1 2 3 5 6 4 Grout 3.5222530 13 1 8 2 8.5 30 50/5 7 9 Solid 2" PVC Pipe10 11 12 Bentonite14 15 16 313.5101624 Sand Pack 17 18 4 18.5 50/4 19 20 21 22 Slotted 2" PVC Pipe235 23.5 50/3 24 25 26 280.15 27 28 29 Auger Refusal at 29 feet30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 47 48 46 49 50 S C S E N G I N E E R S Test Boring Log B-31 Environmental Consultants Northing 461252.5106 2520 Whitehall Park Drive, Suite 450 Easting 1651978.082 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 15' below ground surface Drilling Company: American Environmental Drilling, Inc. Date Started: 3/31/2015 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended: 3/31/2015 24 Hour Water Level: N/A below top of casing Boring Diameter: 8-inch 49 50 47 48 46 44 45 40 41 42 43 36 37 38 39 33 34 35 29 30 31 32 25 26 27 28 21 22 23 24 17 18 19 20 14 266.915 Drilled to 15'; shallow well16 9 Sand Pack10 Slotted 2" PVC Pipe13 11 12 8 7 5 6 Bentonite 4 Solid 2" PVC Pipe 3 2 SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 281.44 Casing Elev. Grout1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 281.90 Ground Elev. S C S E N G I N E E R S Test Boring Log B-32 Environmental Consultants Northing 461361.3109 2520 Whitehall Park Drive, Suite 450 Easting 1652452.817 Charlotte, NC 28273 Logged By: Mike Cobb, PG 704 504-3107 FAX 704 504-3174 Total Bore Depth: 15' below ground surface Drilling Company: American Environmental Drilling, Inc. Date Started: 3/31/2015 Completion Water Level: N/A below top of casing Drilling Method:Rotary Hollow Stem Auger Date Ended: 3/31/2015 24 Hour Water Level: N/A below top of casing Boring Diameter: 8-inch 49 50 47 48 46 44 45 40 41 42 43 36 37 38 39 33 34 35 29 30 31 32 25 26 27 28 21 22 23 24 17 18 19 20 14 263.515 Drilled to 15'; shallow well16 9 Sand Pack10 Slotted 2" PVC Pipe13 11 12 8 7 5 6 Bentonite 4 Solid 2" PVC Pipe 3 2 SCS Project No. 02214709.00 D E P T H I N F T . EL E V A T I O N S A M P L E # D E P T H I N F T . 6 " S P T V A L U E 0 6 " S P T V A L U E 6 " S P T V A L U E STRATIGRAPHIC DESCRIPTION W A T E R L E V E L PIEZOMETER DATA 281.90 Casing Elev. Grout1 Anson Solid Waste Management Polkton, NC (Permit # 04-03) 278.50 Ground Elev. 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________       $33(1',; *HRWHFKQLFDO/DERUDWRU\'DWD  'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________       $33(1',; 6OXJ7HVW3HUPHDELOLW\&DOFXODWLRQV  'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________       $33(1',; 6XSSOHPHQWDO'DWD  26 2 26 4 26 6 26 8 27 0 27 2 27 4 27 6 27 8 28 0 28 2 28 4 28 6 28 8 29 0 29 2 29 4 29 6 29 8 30 0 30 2 30 4 30 6 30 8 1 / 2 4 / 0 1 7 / 2 3 / 0 1 1 / 1 9 / 0 2 7 / 1 8 / 0 2 1 / 1 4 / 0 3 7 / 1 3 / 0 3 1 / 9 / 0 4 7 / 7 / 0 4 1 / 3 / 0 5 7 / 2 / 0 5 1 2 / 2 9 / 0 5 6 / 2 7 / 0 6 1 2 / 2 4 / 0 6 6 / 2 2 / 0 7 G r o u n d w a t e r  E l e v a t i o n  ( f t . ) Me a s u r e m e n t Da t e Hi s t o r i c a l Gr o u n d w a t e r El e v a t i o n s vs . Ti m e JA N 20 0 1 Ͳ OC T 20 0 7 MW Ͳ 4D MW Ͳ 4S MW Ͳ 5D MW Ͳ 5S MW Ͳ 2D MW Ͳ 2S MW Ͳ 8D MW Ͳ 8S MW Ͳ 1D MW Ͳ 3D MW Ͳ 3S Re s p o n s e to Cl i m a t i c An o m a l y Da t a Ou t l i e r in De e p , Pa r t l y Co n f i n e d Aq u i f e r Ma x Se a s o n a l Hi g h 26 2 26 4 26 6 26 8 27 0 27 2 27 4 27 6 27 8 28 0 28 2 28 4 28 6 28 8 29 0 29 2 29 4 29 6 29 8 30 0 30 2 30 4 30 6 30 8 6 / 1 6 / 0 8 1 2 / 1 3 / 0 8 6 / 1 1 / 0 9 1 2 / 8 / 0 9 6 / 6 / 1 0 1 2 / 3 / 1 0 6 / 1 / 1 1 1 1 / 2 8 / 1 1 5 / 2 6 / 1 2 1 1 / 2 2 / 1 2 5 / 2 1 / 1 3 1 1 / 1 7 / 1 3 5 / 1 6 / 1 4 1 1 / 1 2 / 1 4 G r o u n d w a t e r  E l e v a t i o n  ( f t . ) Me a s u r e m e n t Da t e Hi s t o r i c a l Gr o u n d w a t e r El e v a t i o n s vs . Ti m e JU N 20 0 8 Ͳ AP R 20 1 5 MW Ͳ 4D MW Ͳ 4S MW Ͳ 5D MW Ͳ 5S MW Ͳ 2D MW Ͳ 2S MW Ͳ 8D MW Ͳ 8S MW Ͳ 1D MW Ͳ 3D MW Ͳ 3S Hi g h Wa t e r Le v e l s in Re s p o n s e to Gr o u n d Di s t u r b a n c e s Ta b l e 3 A Su p p l e m e n t a l H y d r o g e o l o g i c P r o p e r t i e s o f L i t h o l o g i c U n i t Pi e z o m e t e r Hy d r o g e o l o g i c Hy d r o g e o l o g i c a l A ve r a g e R Q D E f f e c t i v e T o t a l Hy d r a u l i c C o n d u c t i v i t y ( k Nu m b e r U n i t De s c r i p t i o n (1 ) fo r S c r e e n I n t e r v a l Po r o s i t y (2 , 3 ) Po r o s i t y (2 , 3 ) ft / m i n f t / d a y c m / s e c PH 2 - 3 3 1 / 2 S a n d y S i l t / P W R NA 12 % 4 5 % 7 . 7 4 E - 0 4 1 . 1 1 E + 0 0 3 . 9 3 E - 0 4 PH 2 - 1 8 2 PW R - S a n d y S i l t NA 15 % 4 0 % 8 . 9 5 E - 0 4 1 . 2 9 E + 0 0 4 . 5 5 E - 0 4 PH 2 - 2 4 B 2 PW R - S a n d y S i l t NA 14 % 4 0 % 6 . 8 1 E - 0 4 9 . 8 0 E - 0 1 3 . 4 6 E - 0 4 PH 2 - 2 5 2 PW R - S a n d y S i l t NA 15 % 4 0 % 7 . 7 1 E - 0 4 1 . 1 1 E + 0 0 3 . 9 2 E - 0 4 PH 2 - 2 6 A 2 P W R - S i l t y S a n d , S a n d y S i l t NA 15 % 4 0 % 1 . 0 5 E - 0 3 1 . 5 2 E + 0 0 5 . 3 6 E - 0 4 PH 2 - 2 6 B 2 PW R - S a n d y S i l t NA 11 % 4 0 % 9 . 4 5 E - 0 4 1 . 3 6 E + 0 0 4 . 8 0 E - 0 4 PH 2 - 2 8 A 2 P W R - S i l t y S a n d , S a n d y S i l t NA 15 % 4 0 % 1 . 0 6 E - 0 3 1 . 5 3 E + 0 0 5 . 3 8 E - 0 4 PH 2 - 2 8 B 2 P W R - S i l t y S a n d , S a n d y S i l t NA 15 % 4 0 % 9 . 1 8 E - 0 4 1 . 3 2 E + 0 0 4 . 6 7 E - 0 4 PH 2 - 3 0 2 PW R - S a n d y S i l t NA 25 % 4 0 % 9 . 0 5 E - 0 4 1 . 3 0 E + 0 0 4 . 6 0 E - 0 4 PH 2 - 3 1 2 P W R - S i l t y S a n d , S a n d y S i l t NA 15 % 4 0 % 1 . 0 2 E - 0 3 1 . 4 7 E + 0 0 5 . 1 8 E - 0 4 PH 2 - 3 2 2 PW R - S a n d y S i l t NA 21 % 4 0 % 8 . 9 4 E - 0 4 1 . 2 9 E + 0 0 4 . 5 4 E - 0 4 PH 2 - 3 4 2 PW R - S a n d y S i l t NA 15 % 4 0 % 9 . 0 4 E - 0 4 1 . 3 0 E + 0 0 4 . 5 9 E - 0 4 PH 2 - 2 4 A 3 Fr a c t u r e d B e d r o c k (4 ) 82 . 9 % 5% 1 0 % 1 . 1 0 E - 0 3 1 . 5 8 E + 0 0 5 . 5 7 E - 0 4 MW - 1 6 - D B 3 Fr a c t u r e d B e d r o c k (5 ) 8.23E-01 2 . 9 0 E - 0 4 MW - 1 7 - S B 3 Fr a c t u r e d B e d r o c k (5 ) 4.75E+00 1 . 6 8 E - 0 3 MW - 3 4 - S B 3 Fr a c t u r e d B e d r o c k (5 ) 1.33E+00 4 . 6 8 E - 0 4 No t e s ( 1 ) U n i t 1 - p r e d o m i n a n t l y s a n d y s i l t , v a r i a b l y s a n d y a n d c l a y e y , o v e r l a i n i n s o m e a r e a s b y s a n d y c l a y ( S P T g e n e r a l l y < 5 0 b Un i t 2 - D e n s e s a p r o l i t e - p r e d o m i n a n t l y s a n d y s i l t a n d s i l t y s a n d ( g e n e r a l l y w i t h S P T v a l u e s i n e x c e s s o f 1 0 0 b p Un i t 3 - C o n s o l i d a t e d , f r a c t u r e d r o c k ( v a r i a b l y w e a t h e r e d ) , s i l t s t o n e a n d s a n d s t o n (2 ) T o t a l a n d E f f e c t i v e p o r o s i t y v a l u e s f o r s o i l s b a s e d o n l a b o r a t o r y t e s t i n g ( s e e T a b l e 2 ) , r e f . S i n h a l a n d G u p t a , 1 9 9 (3 ) To t a l a n d E f f e c t i v e p o r o s i t y v a l u e s f o r b e d r o c k a d j u s t e d f o r a v g . r o c k c o r e R Q D v a l u e s , r e f . S i n h a l a n d G u p t a , 1 9 9 (4 ) Sl u g t e s t s p e r f o r m e d b y E S P A s s o c i a t e s , c a . 2 0 0 3 - p i e z o m e t e r s c r e e n u s e d (5 ) Pa c k e r T e s t s p e r f o r m e d b y G Z A E n v i r o n m e n t a l , c a . 1 9 9 2 - o p e n b o r e h o l e An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y De s i g n Hy d r o g e o l o g i c St u d y 6/30/2015 Ta b l e 5 A Su p p l e m e n t a l V e r t i c a l G r o u n d W a t e r G r a d i e n t C a l c u l a t i o n s Da t a P r e s e n t e d f o r S e l e c t e d D a t e s o f G r o u n d W a t e r O b s e r v a t i o n Ne s t e d P i e z o m e t e r s : P H 2 - 2 4 A U n i t 3 - F r a c t u r e d R o c k A q u i f e r PH 2 - 2 4 B U n i t 2 - P W R ; D e n s e S a p r o l i t e - S a n d y S i l t A q u i f e r Pie z o m e t e r T o p o f B o t t o m o f 1 2 / 5 / 0 3 1 2 / 9 / 0 3 1 2 / 1 6 / 0 3 1 2 / 1 8 / 0 3 1 2 / 2 4 / 0 3 1 / 2 / 0 4 1 / 1 2 / 0 4 2 / 1 0 / 0 4 2 / 2 5 / 0 4 3 / 3 0 / 0 4 5 / 1 8 / 0 4 6 / 1 4 / 0 4 7 / 8 / 0 4 8 / 1 3 / 0 4 9 / 1 6/04 9 / 1 2 / 0 7 No . S c r e e n E l e v . S c r e e n E l e v . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . PH 2 - 2 4 B 2 9 2 . 9 0 2 8 2 . 9 0 2 9 5 . 7 1 2 9 6 . 2 1 2 9 6 . 1 3 2 9 7 . 1 6 2 9 6 . 2 1 2 9 5 . 9 9 2 9 5 . 9 0 2 9 5 . 1 2 2 9 5 . 6 5 2 9 7 . 6 0 2 9 7 . 7 6 2 9 7 . 0 3 2 9 6 . 2 0 2 9 5 . 2 2 2 9 4 . 9 9 2 9 4 . 9 8 PH 2 - 2 4 A 2 7 7 . 7 6 2 6 7 . 7 6 2 9 6 . 1 9 2 9 5 . 2 4 2 9 5 . 1 2 2 9 5 . 2 1 2 9 5 . 2 4 2 9 5 . 0 1 2 9 5 . 7 6 2 9 4 . 9 8 2 9 5 . 4 7 2 9 7 . 3 6 2 9 7 . 5 1 2 9 6 . 8 4 2 9 6 . 0 5 2 9 5 . 1 2 2 9 4 . 7 6 2 9 4 . 9 3 mid p o i n t s a t u r a t e d i n t e r v a l - u p p e r 28 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 0 2 8 7 . 9 2 8 7 . 9 2 8 7 . 9 mid p o i n t s a t u r a t e d i n t e r v a l - l o w e r 27 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2 . 7 6 2 7 2.76 de l t a - s a t u r a t e d i n t e r v a l 15 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 1 5 . 1 4 de l t a - W . T . E . ( s e e n o t e 1 ) -4 . 8 0 E - 0 1 9 . 7 0 E - 0 1 1 . 0 1 E + 0 0 1 . 9 5 E + 0 0 9 . 7 0 E - 0 1 9 . 8 0 E - 0 1 1 . 4 0 E - 0 1 1 . 4 0 E - 0 1 1 . 8 0 E - 0 1 2 . 4 0 E - 0 1 2 . 5 0 E - 0 1 1 . 9 0 E - 0 1 1 . 5 0 E -01 1 . 0 0 E - 0 1 2 . 3 0 E - 0 1 5 . 0 0 E - 0 2 Ve r t i c a l G r a d i e n t ( s e e n o t e 2 ) -3 . 1 7 E - 0 2 6 . 4 1 E - 0 2 6 . 6 7 E - 0 2 1 . 2 9 E - 0 1 6 . 4 1 E - 0 2 6 . 4 7 E - 0 2 9 . 2 5 E - 0 3 9 . 2 5 E - 0 3 1 . 1 9 E - 0 2 1 . 5 9 E - 0 2 1 . 6 5 E - 0 2 1 . 2 5 E - 0 2 9.91E-03 6 . 6 1 E - 0 3 1 . 5 2 E - 0 2 3 . 3 0 E - 0 3 Up D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n Ne s t e d P i e z o m e t e r s : P H 2 - 2 6 A U n i t 2 - P W R ; D e n s e S a p r o l i t e - S a n d y S i l t A q u i f e r PH 2 - 2 6 B U n i t 2 - P W R ; D e n s e S a p r o l i t e - S a n d y S i l t A q u i f e r Pie z o m e t e r T o p o f B o t t o m o f 1 2 / 5 / 0 3 1 2 / 9 / 0 3 1 2 / 1 6 / 0 3 1 2 / 1 8 / 0 3 1 2 / 2 4 / 0 3 1 / 2 / 0 4 1 / 1 2 / 0 4 2 / 1 0 / 0 4 2 / 2 5 / 0 4 3 / 3 0 / 0 4 5 / 1 8 / 0 4 6 / 1 4 / 0 4 7 / 8 / 0 4 8 / 1 3 / 0 4 9 / 1 6/04 9 / 1 2 / 0 7 No . S c r e e n E l e v . S c r e e n E l e v . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . PH 2 - 2 6 B 2 6 2 . 9 4 2 5 2 . 9 4 2 8 3 . 8 9 2 8 5 . 6 1 2 8 5 . 6 6 2 8 5 . 8 9 2 8 5 . 8 6 2 8 2 . 3 0 2 8 2 . 3 1 2 8 1 . 9 4 2 8 2 . 9 0 2 8 4 . 0 1 2 8 4 . 0 1 2 8 2 . 9 9 2 8 2 . 8 6 2 8 1 . 7 3 2 8 1 . 4 8 2 8 0 . 4 0 PH 2 - 2 6 A 2 3 4 . 1 2 2 2 4 . 1 2 2 8 2 . 3 5 2 8 2 . 3 1 2 8 2 . 4 1 2 8 2 . 5 6 2 8 2 . 5 4 2 8 2 . 2 6 2 8 2 . 2 7 2 8 1 . 9 1 2 8 2 . 8 4 2 8 3 . 9 9 2 8 4 . 0 3 2 8 3 . 0 1 2 8 2 . 8 8 2 8 1 . 7 6 2 8 1 . 4 3 2 8 0 . 4 4 mid p o i n t s a t u r a t e d i n t e r v a l - u p p e r 25 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 . 9 4 2 5 7 .94 mid p o i n t s a t u r a t e d i n t e r v a l - l o w e r 22 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9 . 1 2 2 2 9.12 de l t a - s a t u r a t e d i n t e r v a l 28 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 2 8 . 8 2 de l t a - W . T . E . ( s e e n o t e 1 ) 1. 5 4 E + 0 0 3 . 3 0 E + 0 0 3 . 2 5 E + 0 0 3 . 3 3 E + 0 0 3 . 3 2 E + 0 0 4 . 0 0 E - 0 2 4 . 0 0 E - 0 2 3 . 0 0 E - 0 2 6 . 0 0 E - 0 2 2 . 0 0 E - 0 2 - 2 . 0 0 E - 0 2 - 2 . 0 0 E - 0 2 - 2 . 0 0E-02 - 3 . 0 0 E - 0 2 5 . 0 0 E - 0 2 - 4 . 0 0 E - 0 2 Ve r t i c a l G r a d i e n t ( s e e n o t e 2 ) 5. 3 4 E - 0 2 1 . 1 5 E - 0 1 1 . 1 3 E - 0 1 1 . 1 6 E - 0 1 1 . 1 5 E - 0 1 1 . 3 9 E - 0 3 1 . 3 9 E - 0 3 1 . 0 4 E - 0 3 2 . 0 8 E - 0 3 6 . 9 4 E - 0 4 - 6 . 9 4 E - 0 4 - 6 . 9 4 E - 0 4 - 6 . 9 4 E - 0 4 - 1 . 0 4 E - 0 3 1 . 7 3 E - 0 3 - 1 . 3 9 E - 0 3 Do w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n U p U p U p U p D o w n U p Ne s t e d P i e z o m e t e r s : P H 2 - 2 8 A U n i t 2 - P W R ; D e n s e S a p r o l i t e - S a n d y S i l t A q u i f e r PH 2 - 2 8 B U n i t 2 - P W R ; D e n s e S a p r o l i t e - S a n d y S i l t A q u i f e r Pie z o m e t e r T o p o f B o t t o m o f 12 / 9 / 0 3 1 2 / 1 6 / 0 3 1 2 / 1 8 / 0 3 1 2 / 2 4 / 0 3 1 / 2 / 0 4 1 / 1 2 / 0 4 2 / 1 0 / 0 4 2 / 2 5 / 0 4 3 / 3 0 / 0 4 5 / 1 8 / 0 4 6 / 1 4 / 0 4 7 / 8 / 0 4 8 / 1 3 / 0 4 9 / 1 6 / 0 4 9 / 1 2/07 No . S c r e e n E l e v . S c r e e n E l e v . W. T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . PH 2 - 2 8 B 2 4 9 . 2 6 2 3 9 . 2 6 26 2 . 9 4 2 6 3 . 4 6 2 6 3 . 6 9 2 6 3 . 7 9 2 6 4 . 2 9 2 6 4 . 3 7 2 6 4 . 1 9 2 6 5 . 0 5 2 6 7 . 5 6 2 6 6 . 9 4 2 6 5 . 8 7 2 6 5 . 8 0 2 6 4 . 7 9 2 6 4 . 1 4 2 6 4 . 3 5 PH 2 - 2 8 A 2 1 5 . 7 6 2 0 5 . 7 6 26 0 . 5 7 2 7 0 . 8 1 2 7 1 . 2 7 2 7 1 . 0 1 2 7 0 . 9 3 2 6 8 . 5 8 2 6 8 . 3 5 2 6 9 . 7 3 2 7 0 . 6 6 2 7 1 . 0 1 2 6 9 . 8 1 2 6 9 . 8 4 2 6 8 . 8 1 2 6 8 . 3 1 2 6 8 . 7 8 mid p o i n t s a t u r a t e d i n t e r v a l - u p p e r 24 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 2 4 4 . 2 6 mid p o i n t s a t u r a t e d i n t e r v a l - l o w e r 21 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 2 1 0 . 7 6 de l t a - s a t u r a t e d i n t e r v a l 33 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 0 3 3 . 5 3 3 . 5 de l t a - W . T . E . ( s e e n o t e 1 ) 2. 3 7 E + 0 0 - 7 . 3 5 E + 0 0 - 7 . 5 8 E + 0 0 - 7 . 2 2 E + 0 0 - 6 . 6 4 E + 0 0 - 4 . 2 1 E + 0 0 - 4 . 1 6 E + 0 0 - 4 . 6 8 E + 0 0 - 3 . 1 0 E + 0 0 - 4 . 0 7 E + 0 0 - 3 . 9 4 E + 0 0 - 4 . 0 4E+00 - 4 . 0 2 E + 0 0 - 4 . 1 7 E + 0 0 - 4 . 4 3 E + 0 0 Ve r t i c a l G r a d i e n t ( s e e n o t e 2 ) 7. 0 7 E - 0 2 - 2 . 1 9 E - 0 1 - 2 . 2 6 E - 0 1 - 2 . 1 6 E - 0 1 - 1 . 9 8 E - 0 1 - 1 . 2 6 E - 0 1 - 1 . 2 4 E - 0 1 - 1 . 4 0 E - 0 1 - 9 . 2 5 E - 0 2 - 1 . 2 1 E - 0 1 - 1 . 1 8 E - 0 1 - 1 . 2 1 E - 0 1 - 1 . 2 0 E - 0 1 - 1 . 2 4 E - 0 1 - 1 . 3 2 E - 0 1 Do w n U p U p U p U p U p U p U p U p U p U p U p U p U p U p An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y De s i g n Hy d r o g e o l o g i c St u d y 6/30/2015 Ta b l e 5 A Su p p l e m e n t a l V e r t i c a l G r o u n d W a t e r G r a d i e n t C a l c u l a t i o n s Ne s t e d P i e z o m e t e r s : M W - 4 D U n i t 3 - B e d r o c k ( T r i a s s i c ) MW - 4 S U n i t 1 - S a n d y , C l a y e y S i l t Pie z o m e t e r T o p o f B o t t o m o f 1/ 2 4 / 0 1 6 / 2 5 / 0 1 1 1 / 1 / 0 1 5 / 6 / 0 2 7 / 9 / 0 2 5 / 5 / 0 3 1 0 / 2 7 / 0 3 5 / 1 / 0 4 1 0 / 3 1 / 0 4 5 / 1 / 0 5 1 0 / 3 1 / 0 5 5 / 1 / 0 6 1 1 / 1 / 0 6 5 / 1 / 0 7 1 0 / 1 / 0 7 No . S c r e e n E l e v . S c r e e n E l e v . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . MW - 4 D 2 4 1 . 1 0 2 3 1 . 1 0 2 7 5 . 6 4 2 7 6 . 3 4 2 7 4 . 4 6 2 7 5 . 6 8 2 8 0 . 9 2 2 7 9 . 6 1 2 7 9 . 9 7 2 7 9 . 6 8 2 8 0 . 9 9 2 7 9 . 2 0 2 8 0 . 4 5 2 7 8 . 9 1 2 8 0 . 3 1 MW - 4 S 2 7 2 . 2 0 2 6 2 . 2 0 2 7 6 . 1 3 2 7 5 . 6 7 2 7 4 . 7 2 2 7 5 . 7 9 2 8 1 . 2 1 2 7 9 . 9 1 2 8 0 . 2 6 2 7 9 . 8 4 2 8 1 . 3 6 2 7 9 . 5 9 2 8 0 . 8 6 2 7 9 . 3 6 2 8 0 . 5 0 mid p o i n t s a t u r a t e d i n t e r v a l - u p p e r 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 0 2 3 6 . 1 mid p o i n t s a t u r a t e d i n t e r v a l - l o w e r 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 0 2 6 7 . 2 de l t a - s a t u r a t e d i n t e r v a l - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 0 - 3 1 . 1 de l t a - W . T . E . ( s e e n o t e 1 ) - 4 . 9 0 E - 0 1 6 . 7 0 E - 0 1 - 2 . 6 0 E - 0 1 - 1 . 1 0 E - 0 1 - 2 . 9 0 E - 0 1 - 3 . 0 0 E - 0 1 - 2 . 9 0 E - 0 1 - 1 . 6 0 E - 0 1 - 3 . 7 0 E - 0 1 - 3 . 9 0 E - 0 1 - 4 . 1 0 E - 0 1 - 4 . 5 0E-01 - 1 . 9 0 E - 0 1 Ve r t i c a l G r a d i e n t ( s e e n o t e 2 ) 1 . 5 8 E - 0 2 - 2 . 1 5 E - 0 2 8 . 3 6 E - 0 3 3 . 5 4 E - 0 3 9 . 3 2 E - 0 3 9 . 6 5 E - 0 3 9 . 3 2 E - 0 3 5 . 1 4 E - 0 3 1 . 1 9 E - 0 2 1 . 2 5 E - 0 2 1 . 3 2 E - 0 2 1 . 4 5 E - 0 2 6.11E-03 Do w n U p D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n D o w n Ne s t e d P i e z o m e t e r s : M W - 5 D 2 , 3 - T r i a s s i c MW - 5 S 1 , 2 - T r i a s s i c Pie z o m e t e r T o p o f B o t t o m o f 1/ 2 4 / 0 1 6 / 2 5 / 0 1 1 1 / 1 / 0 1 5 / 6 / 0 2 7 / 9 / 0 2 5 / 5 / 0 3 1 0 / 2 7 / 0 3 5 / 1 / 0 4 1 0 / 3 1 / 0 4 5 / 1 / 0 5 1 0 / 3 1 / 0 5 5 / 1 / 0 6 1 1 / 1 / 0 6 5 / 1 / 0 7 1 0 / 1 / 0 7 No . S c r e e n E l e v . S c r e e n E l e v . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . W . T . E . MW - 5 D 2 4 2 . 0 0 2 3 2 . 0 0 2 6 4 . 6 7 2 6 4 . 3 9 2 6 5 . 9 6 2 6 9 . 1 9 2 7 4 . 6 2 2 7 1 . 9 0 2 7 4 . 1 0 2 7 2 . 3 8 2 7 4 . 4 4 2 7 1 . 4 1 2 7 3 . 8 1 2 7 0 . 7 3 2 7 2 . 7 0 MW - 5 S 2 6 3 . 8 0 2 4 8 . 8 0 2 6 4 . 3 7 2 6 3 . 8 0 2 6 5 . 6 5 2 6 9 . 0 3 2 7 4 . 4 4 2 7 1 . 6 4 2 7 3 . 9 9 2 7 2 . 2 9 2 7 4 . 4 5 2 7 1 . 2 9 2 7 4 . 3 4 2 7 0 . 6 7 2 7 2 . 5 0 mid p o i n t s a t u r a t e d i n t e r v a l - u p p e r 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 . 0 0 2 3 7 mid p o i n t s a t u r a t e d i n t e r v a l - l o w e r 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 0 2 5 6 . 3 de l t a - s a t u r a t e d i n t e r v a l - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 0 - 1 9 . 3 de l t a - W . T . E . ( s e e n o t e 1 ) 3 . 0 0 E - 0 1 5 . 9 0 E - 0 1 3 . 1 0 E - 0 1 1 . 6 0 E - 0 1 1 . 8 0 E - 0 1 2 . 6 0 E - 0 1 1 . 1 0 E - 0 1 9 . 0 0 E - 0 2 - 1 . 0 0 E - 0 2 1 . 2 0 E - 0 1 - 5 . 3 0 E - 0 1 6 . 0 0 E - 0 2 2 . 0 0 E-01 Ve r t i c a l G r a d i e n t ( s e e n o t e 2 ) - 1 . 5 5 E - 0 2 - 3 . 0 6 E - 0 2 - 1 . 6 1 E - 0 2 - 8 . 2 9 E - 0 3 - 9 . 3 3 E - 0 3 - 1 . 3 5 E - 0 2 - 5 . 7 0 E - 0 3 - 4 . 6 6 E - 0 3 5 . 1 8 E - 0 4 - 6 . 2 2 E - 0 3 2 . 7 5 E - 0 2 -3.11E-03 - 1 . 0 4 E - 0 2 Up U p U p U p U p U p U p U p D o w n U p D o w n U p U p Do w n D o w n D o w n U p D o w n D o w n U p D o w n D o w n D o w n D o w n No t e s t o A b o v e : 1 d e l t a - W . T . E . = d i f f e r e n c e i n w a t e r l e v e l ( s h a l l o w w e l l m i n u s d e e p w e l l ) 2 V e r t i c a l G r a d i e n t = d e l t a - W . T . E . / d e l t a - S a t u r a t e d I n t e r v a l 3 N e g a t i v e v e r t i c a l g r a d i e n t s a r e u p w a r d , p o s i t i v e g r a d i e n t s a r e d o w n w a r d 4 W e l l s d e n o t e d w i t h " A " a r e d e e p w e l l s An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y De s i g n Hy d r o g e o l o g i c St u d y 6/30/2015 Ta b l e 2 A Su p p l e m e n t a l G e o t e c h n i c a l L a b o r a t o r y D a t a Gr a i n S i z e D i s t r i b u t i o n a n d S o i l C l a s s i f i c a t i o n Bo r i n g S a m p l e S a m p l e % G r a v e l % S a n d % F i n e s * % S i l t % C l a y Liq u i d P l a s t i c i t y E f f e c t i v e U S C S Hydrogeologi c Nu m b e r ID D e p t h , f t . > 4 . 5 m m 4 . 5 - - 0 . 0 7 5 m m 0 . 0 7 5 m m > 0 . 0 7 5 - - 0 . 0 0 5 m m 0 . 0 0 5 m m > L i m i t I n d e x Po r o s i t y C l a s s Description ** PH 2 - 2 4 B S - 8 3 3 . 5 0 . 0 18 . 4 81 . 6 74 . 2 7. 4 -- - - - - 1 4 % M L S a n d y s i l t ( 1 0 0 + b p f , A r g i l l i t e ) PH 2 - 2 6 B S - 6 2 8 . 5 0 . 0 3. 3 96 . 7 84 . 9 11 . 8 3 5 1 8 1 1 % M L Silt (100+ bpf, Argillite) PH 2 - 2 6 B S - 7 3 3 . 5 0 . 0 22 . 2 77 . 8 71 . 3 6. 5 -- - - - - 1 6 % M L S a n d y s i l t ( 1 0 0 + b p f , A r g i l l i t e ) PH 2 - 3 0 S - 6 2 3 0 . 8 58 . 7 40 . 5 36 . 1 4. 4 -- - - - - 2 5 % S M S i l t y s a n d ( 1 0 0 + b p f , T r i a s s i c ) PH 2 - 3 2 U D - 2 ( i ) 3 3 . 5 0 . 7 40 . 2 59 . 1 53 . 5 5. 6 -- - - - - 2 1 % S M - M L S i l t a n d s a n d ( 1 0 0 + b p f , A r g i l l i t e ) PH 2 - 3 4 U D - 2 ( i i ) 4 3 . 5 0 . 0 14 . 3 85 . 7 75 . 8 9. 9 -- - - - - 1 6 % M L S l . S a n d y s i l t ( 1 0 0 + b p f , A r g i l l i t e ) No t e s t o A b o v e : M o i s t u r e c o n t e n t s a r e D r y U n i t W e i g h t b a s e d Ef f e c t i v e p o r o s i t y v a l u e s c a l c u l a t e d f r o m T e x t u r a l C l a s s i f i c a t i o n T r i a n g l e m e t h o d r e f e r e n c e d t o A . I . J o h n s o n , U S G e o l o g i c a l S u r v e y W a t e r S u p p l y P a p e r 1 6 6 2 - D , 1 9 6 7 *R e p r e s e n t s (a f t e r C . W . F e t t e r , A p p l i e d H y d r o g e o l o g y , 3 r d e d . 1 9 8 8 ) ** B a s e d o n l a b o r a t o r y g r a i n s i z e a n a l y s i s Mo i s t u r e d a t a f o r b u l k s a m p l e s a c q u i r e d f r o m i n d i v i d u a l j a r s a m p l e s c o l l e c t e d w i t h t h e b u l k s a m p l e . An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y De s i g n Hy d r o g e o l g i c St u d y 6/30/2015 Ta b l e 6 A Su p p l e m e n t a l H o r i z o n t a l G r o u n d W a t e r G r a d i e n t a n d V e l o c i t y C a l c u l a t i o n s We l l / P i e z . H y d r o l o g i c H y d r a u l i c C o n d u c t i v i t y ( k ) G r d . W a t e r R e f e r e n c e d e l t a - E l e v . M a p L e n g t h H y d r a u l i c E f f e c t i v e G W V e l o c i t y U n i t A v e r a g e U n i t A v e r a g e No . U n i t f t / m i n f t / d a y c m / s e c E l e v a t i o n * E l e v a t i o n * i n f e e t i n f e e t G r a d i e n t ( I ) P o r o s i t y ( n ) ( V ) , f t / d a y V elocity, ft/da y Velocity, ft/yr PH 2 - 3 3 1 / 2 7 . 7 4 E - 0 4 1 . 1 1 E + 0 0 3 . 9 3 E - 0 4 2 9 5 . 1 4 2 9 0 . 0 0 5 . 1 4 2 0 0 . 1 2 0 . 0 3 0 . 1 2 0 . 2 4 0 . 2 4 8 7 . 0 6 PH 2 - 1 8 2 8 . 9 5 E - 0 4 1 . 2 9 E + 0 0 4 . 5 5 E - 0 4 2 9 3 . 7 4 2 9 0 . 0 0 3 . 7 4 4 0 . 8 6 0 . 0 9 0 . 1 5 0 . 7 9 PH 2 - 2 5 2 7 . 7 1 E - 0 4 1 . 1 1 E + 0 0 3 . 9 2 E - 0 4 2 9 5 . 0 8 2 9 0 . 0 0 5 . 0 8 1 6 8 . 6 7 0 . 0 3 0 . 1 5 0 . 2 2 PH 2 - 2 6 A 2 1 . 0 5 E - 0 3 1 . 5 2 E + 0 0 5 . 3 6 E - 0 4 2 8 0 . 4 4 2 7 5 . 0 0 5 . 4 4 1 1 9 . 9 1 0 . 0 5 0 . 1 5 0 . 4 6 PH 2 - 2 6 B 2 9 . 4 5 E - 0 4 1 . 3 6 E + 0 0 4 . 8 0 E - 0 4 2 8 0 . 4 0 2 7 5 . 0 0 5 . 4 0 1 2 8 . 2 1 0 . 0 4 0 . 1 1 0 . 5 2 PH 2 - 2 8 A 2 1 . 0 6 E - 0 3 1 . 5 3 E + 0 0 5 . 3 8 E - 0 4 2 6 8 . 7 8 2 6 0 . 0 0 8 . 7 8 2 5 7 . 3 5 0 . 0 3 0 . 1 5 0 . 3 5 PH 2 - 2 8 B 2 9 . 1 8 E - 0 4 1 . 3 2 E + 0 0 4 . 6 7 E - 0 4 2 6 4 . 3 5 2 6 0 . 0 0 4 . 3 5 2 6 4 . 9 1 0 . 0 2 0 . 1 5 0 . 1 4 PH 2 - 3 0 2 9 . 0 5 E - 0 4 1 . 3 0 E + 0 0 4 . 6 0 E - 0 4 2 6 2 . 7 4 2 6 0 . 0 0 2 . 7 4 2 1 1 . 8 5 0 . 0 1 0 . 2 5 0 . 0 7 PH 2 - 3 1 2 1 . 0 2 E - 0 3 1 . 4 7 E + 0 0 5 . 1 8 E - 0 4 2 7 2 . 6 9 2 7 0 . 0 0 2 . 6 9 9 8 . 0 8 0 . 0 3 0 . 1 5 0 . 2 7 PH 2 - 3 2 2 8 . 9 4 E - 0 4 1 . 2 9 E + 0 0 4 . 5 4 E - 0 4 2 7 7 . 5 8 2 7 5 . 0 0 2 . 5 8 1 0 3 . 8 0 . 0 2 0 . 2 1 0 . 1 5 0 . 1 3 4 7 . 1 1 PH 2 - 1 4 A 3 1 . 0 8 E - 0 3 1 . 5 6 E + 0 0 5 . 5 0 E - 0 4 2 6 7 . 1 5 2 6 5 . 0 0 2 . 1 5 5 6 . 5 7 0 . 0 4 0 . 2 0 0 . 3 0 0 . 3 0 1 0 8 . 0 4 No t e s : G r o u n d W a t e r V e l o c i t y C a l c u l a t e d f r o m E q u a t i o n V= K I / n w h e r e K = H y d r a u l i c C o n d u c t i v i t y i n u n i t s o f f t / d a y I = H y d r a u l i c G r a d i e n t i n u n i t s o f f t / f t n = E f f e c t i v e P o r o s i t y ( u n i t l e s s ) Hy d r a u l i c C o n d u c t i v i t y v a l u e s f r o m a q u i f e r s l u g t e s t i n g u s i n g t h e B o u w e r - R i c e m e t h o d ; c o n d u c t e d b y E S P p e r s o n n e l Hy d r a u l i c G r a d i e n t v a l u e s w e r e c a l c u l a t e d f r o m t h e p o t e n t i o m e t r i c s u r f a c e m a p ( S h e e t 4 ) Ef f e c t i v e P o r o s i t y v a l u e s f o r s o i l s w e r e d e r i v e d f r o m T a b l e 3 Ef f e c t i v e p o r o s i t y v a l u e s f o r b e d r o c k w e r e d e r i v e d f r o m D r i s c o l l , G r o u n d w a t e r a n d W e l l s , 1 9 8 6 ( p g . 6 7 ) , Do m e n i c o a n d S c h w a r t z , P h y s i c a l a n d C h e m i c a l H y d r o g e o l o g y , 1 9 9 0 ( p g . 2 1 ) , Fr e e z e a n d C h e r r y , G r o u n d w a t e r , 1 9 7 9 ( p g . 3 7 ) ; *G r o u n d w a t e r e l e v a t i o n s a n d p o t e n t i o m e t r i c s u r f a c e s f o r r e f e r e n c e e l e v a t i o n s d e r i v e d f r o m w a t e r l e v e l o b s e r v a t i o n s m a d e 9 / 1 2 / 2 00 7 An s o n Co u n t y Wa s t e Ma n a g e m e n t Fa c i l i t y De s i g n Hy d r o g e o l o g i c St u d y 6/30/2015 Ta b l e 1 A Su p p l e m e n t a l T e s t B o r i n g / P i e z o m e t e r D a t a Bo r i n g B o r i n g E l e v a t i o n D a t a T e s t B o r i n g D a t a P i e z o m e t e r C o n s t r u c t i o n D a t a Nu m b e r Da t e P V C P i p e G r o u n d S t i c k u p T o t a l B o t t o m P W R P W R R e f u s a l R e f u s a l T o p o f P i e z . S c r e e n B o t t o m o f P i e z . S c r e e n Ele v . E l e v . f e e t D e p t h , f t . E l e v a t i o n D e p t h , f t . E l e v a t i o n D e p t h , f t . E l e v a t i o n D e p t h , f t . E l e v . D e p t h , f t . E l e v . PH 2 - 1 8 1 1 / 1 7 / 2 0 0 3 3 0 4 . 2 9 3 0 0 . 7 2 3 . 5 7 2 8 . 5 0 2 7 2 . 2 2 1 7 . 0 0 2 8 3 . 7 2 2 8 . 5 0 2 7 2 . 2 2 1 8 . 5 0 2 8 2 . 2 2 2 8 . 5 0 2 7 2 . 2 2 2 - T r i a s s i c PH 2 - 2 4 A © 1 1 / 1 8 / 2 0 0 3 3 2 4 . 6 1 3 2 1 . 2 6 3 . 3 5 5 3 . 5 0 2 6 7 . 7 6 2 7 . 0 0 2 9 4 . 2 6 4 3 . 5 0 2 7 7 . 7 6 4 3 . 5 0 2 7 7 . 7 6 5 3 . 5 0 2 6 7 . 7 6 3 - A r g i l l i t e PH 2 - 2 4 B 1 1 / 1 8 / 2 0 0 3 3 2 4 . 9 1 3 2 1 . 4 0 3 . 5 1 3 8 . 5 0 2 8 2 . 9 0 2 7 . 0 0 2 9 4 . 4 0 - - - - - - 2 8 . 5 0 2 9 2 . 9 0 3 8 . 5 0 2 8 2 . 9 0 2 - A r g i l l i t e PH 2 - 2 5 1 1 / 2 0 / 2 0 0 3 3 1 8 . 6 3 3 1 5 . 5 3 3 . 1 0 3 7 . 5 0 2 7 8 . 0 3 2 7 . 0 0 2 8 8 . 5 3 3 7 . 5 0 2 7 8 . 0 3 2 7 . 5 0 2 8 8 . 0 3 3 7 . 5 0 2 7 8 . 0 3 1 - A r g i l l i t e PH 2 - 2 9 1 2 / 9 / 2 0 0 3 2 6 9 . 4 6 2 6 5 . 9 6 3 . 5 0 5 0 . 0 0 2 1 5 . 9 6 8 . 0 0 2 5 7 . 9 6 - - - - - - 4 0 . 0 0 2 2 5 . 9 6 5 0 . 0 0 2 1 5 . 9 6 2 - T r i a s s i c PH 2 - 3 0 1 2 / 3 / 2 0 0 3 2 7 3 . 6 8 2 7 0 . 4 9 3 . 1 9 3 5 . 0 0 2 3 5 . 4 9 8 . 0 0 2 6 2 . 4 9 - - - - - - 2 5 . 0 0 2 4 5 . 4 9 3 5 . 0 0 2 3 5 . 4 9 2 - T r i a s s i c PH 2 - 3 1 1 2 / 2 / 2 0 0 3 2 8 3 . 8 8 2 8 0 . 1 6 3 . 7 2 7 3 . 5 0 2 0 6 . 6 6 0 . 0 0 2 8 0 . 1 6 - - - - - - 6 3 . 5 0 2 1 6 . 6 6 7 3 . 5 0 2 0 6 . 6 6 2 - D i a b a s e PH 2 - 3 2 1 1 / 2 5 / 2 0 0 3 2 9 1 . 8 6 2 8 8 . 3 3 3 . 5 3 5 0 . 0 0 2 3 8 . 3 3 1 2 . 0 0 2 7 6 . 3 3 5 0 . 0 0 2 3 8 . 3 3 4 0 . 0 0 2 4 8 . 3 3 5 0 . 0 0 2 3 8 . 3 3 2 - A r g i l l i t e PH 2 - 3 3 1 1 / 2 0 / 2 0 0 3 3 2 6 . 0 0 3 2 2 . 9 9 3 . 0 1 4 3 . 5 2 7 9 . 4 9 3 9 . 0 0 2 8 3 . 9 9 4 3 . 5 0 2 7 9 . 4 9 3 3 . 5 0 2 8 9 . 4 9 4 3 . 5 2 7 9 . 4 9 1 , 2 - A r g i l l i t e PH 2 - 3 4 1 1 / 1 7 / 2 0 0 3 3 3 2 . 5 7 3 2 8 . 9 6 3 . 6 1 5 3 . 5 0 2 7 5 . 4 6 - - - - - - - - - - - - 4 3 . 5 0 2 8 5 . 4 6 5 3 . 5 0 2 7 5 . 4 6 2 - A r g i l l i t e B- 1 1 0 / 1 / 1 9 9 1 3 2 6 . 9 5 3 2 3 . 6 9 3 . 2 6 1 6 . 5 0 3 0 7 . 1 9 1 6 . 5 0 3 0 7 . 1 9 6 . 5 0 3 1 7 . 1 9 1 6 . 5 0 3 0 7 . 1 9 B- 2 1 0 / 3 / 1 9 9 1 3 2 1 . 2 5 3 1 7 . 0 1 4 . 2 4 2 6 . 5 0 2 9 0 . 5 1 2 6 . 5 0 2 9 0 . 5 1 1 0 . 5 0 3 0 6 . 5 1 2 0 . 5 0 2 9 6 . 5 1 B- 3 1 0 / 2 / 1 9 9 1 3 3 4 . 0 1 3 3 0 . 5 1 3 . 5 0 3 0 . 0 0 3 0 0 . 5 1 < 3 0 < 3 0 0 . 5 1 2 0 . 0 0 3 1 0 . 5 1 3 0 . 0 0 3 0 0 . 5 1 DR Y B- 4 1 0 / 1 / 1 9 9 1 3 3 2 . 6 4 3 2 9 . 0 7 3 . 5 7 4 0 . 0 0 2 8 9 . 0 7 1 8 . 5 0 3 1 0 . 5 7 < 4 0 < 2 8 9 . 0 7 3 0 . 0 0 2 9 9 . 0 7 4 0 . 0 0 2 8 9 . 0 7 2 - T r i a s s i c P- 1 S 5 / 2 / 1 9 9 6 3 2 4 . 7 2 3 2 2 . 0 3 2 . 6 9 2 5 . 5 0 2 9 6 . 5 3 n / a n / a 1 5 . 5 0 3 0 6 . 5 3 2 5 . 5 0 2 9 6 . 5 3 P- 1 D 5 / 2 / 1 9 9 6 3 2 4 . 7 1 3 2 2 . 0 2 2 . 6 9 4 1 . 0 0 2 8 1 . 0 2 2 7 . 5 0 2 9 4 . 5 2 3 1 . 0 0 2 9 1 . 0 2 4 1 . 0 0 2 8 1 . 0 2 P- 1 1 S 5 / 7 / 1 9 9 6 3 2 9 . 8 8 3 2 6 . 8 4 3 . 0 4 3 0 . 0 0 2 9 6 . 8 4 n / a n / a 1 5 . 0 0 3 1 1 . 8 4 3 0 . 0 0 2 9 6 . 8 4 P- 1 1 D 5 / 1 0 / 1 9 9 6 3 3 0 . 3 0 3 2 6 . 9 3 3 . 3 7 4 6 . 0 0 2 8 0 . 9 3 3 6 . 0 0 2 9 0 . 9 3 3 6 . 0 0 2 9 0 . 9 3 4 6 . 0 0 2 8 0 . 9 3 P- 1 2 D 5 / 1 0 / 1 9 9 6 3 1 0 . 4 4 3 0 7 . 7 1 2 . 7 3 4 2 . 0 0 2 6 5 . 7 1 3 0 . 0 0 2 7 7 . 7 1 3 2 . 0 0 2 7 5 . 7 1 4 2 . 0 0 2 6 5 . 7 1 P- 1 2 S 5 / 1 0 / 1 9 9 6 3 1 0 . 5 1 3 0 7 . 4 4 3 . 0 7 2 9 . 0 0 2 7 8 . 4 4 n / a n / a 1 4 . 0 0 2 9 3 . 4 4 2 9 . 0 0 2 7 8 . 4 4 P- 1 3 D 5 / 7 / 1 9 9 6 3 2 9 . 0 3 3 2 6 . 3 5 2 . 6 8 5 5 . 0 0 2 7 1 . 3 5 4 4 . 0 0 2 8 2 . 3 5 4 5 . 0 0 2 8 1 . 3 5 5 5 . 0 0 2 7 1 . 3 5 P- 1 3 S 5 / 7 / 1 9 9 6 3 2 8 . 7 9 3 2 6 . 6 1 2 . 1 8 4 3 . 0 0 2 8 3 . 6 1 n / a n / a 2 8 . 0 0 2 9 8 . 6 1 4 3 . 0 0 2 8 3 . 6 1 P- 1 3 S - R 1 0 / 6 / 1 9 9 7 3 2 8 . 9 0 3 2 6 . 4 1 2 . 4 9 3 1 . 0 0 2 9 5 . 4 1 n / a n / a 2 6 . 0 0 3 0 0 . 4 1 3 1 . 0 0 2 9 5 . 4 1 P- 1 3 - D - R 1 0 / 6 / 1 9 9 7 3 2 8 . 2 9 3 2 6 . 3 0 1 . 9 9 3 9 . 9 0 2 8 6 . 4 0 n / a n / a 3 4 . 9 0 2 9 1 . 4 0 3 9 . 9 0 2 8 6 . 4 0 P- 1 4 D * © 5 / 1 4 / 1 9 9 6 3 2 4 . 5 8 3 2 2 . 4 9 2 . 0 9 4 8 . 0 0 2 7 4 . 4 9 1 9 . 3 0 3 0 3 . 1 9 3 7 . 0 0 2 8 5 . 4 9 3 8 . 0 0 2 8 4 . 4 9 4 8 . 0 0 2 7 4 . 4 9 3 - A r g i l l i t e P- 1 4 S * 5 / 1 5 / 1 9 9 6 3 2 4 . 3 0 3 2 2 . 2 5 2 . 0 5 3 6 . 0 0 2 8 6 . 2 5 1 9 . 3 0 3 6 . 0 0 n / a 2 1 . 0 0 3 0 1 . 2 5 3 6 . 0 0 2 8 6 . 2 5 2 - A r g i l l i t e P- 1 0 6 6 / 2 6 / 1 9 9 7 n / a 3 1 8 . 9 0 n / a n / a 2 7 . 0 0 2 9 1 . 9 0 n / a n / a n / a n / a P- 1 0 7 6 / 2 6 / 1 9 9 7 3 2 1 . 9 1 3 1 9 . 3 5 2 . 5 6 3 2 . 0 0 2 8 7 . 3 5 3 2 . 0 0 2 8 7 . 3 5 2 5 . 0 0 2 9 4 . 3 5 3 2 . 0 0 2 8 7 . 3 5 P- 1 0 8 6 / 3 0 / 1 9 9 7 3 1 5 . 7 0 3 1 3 . 2 2 2 . 4 8 1 5 . 0 0 2 9 8 . 2 2 1 5 . 0 0 2 9 8 . 2 2 1 3 . 2 5 2 9 9 . 9 7 1 5 . 0 0 2 9 8 . 2 2 MW - 1 0 - O B S 2 / 1 2 / 1 9 9 2 2 9 0 . 3 8 2 8 7 . 9 1 2 . 4 7 2 2 . 2 1 2 6 5 . 7 0 2 3 . 0 0 2 6 5 . 0 9 2 . 2 1 2 8 5 . 7 0 2 2 . 2 1 2 6 5 . 7 0 MW - 1 0 - S B 2 / 1 8 / 1 9 9 2 2 8 9 . 7 8 2 8 7 . 8 6 1 . 9 2 7 3 . 7 7 2 1 4 . 0 9 2 3 . 0 0 2 4 4 . 0 9 4 5 . 7 7 2 4 2 . 0 9 7 3 . 7 7 2 1 4 . 0 9 MW - 1 0 - O B 2 / 1 2 / 1 9 9 2 2 9 0 . 3 2 2 8 7 . 6 4 2 . 6 8 4 0 . 7 6 2 4 6 . 8 8 2 3 . 0 0 n / a 5 . 7 6 2 8 1 . 8 8 4 0 . 7 6 2 4 6 . 8 8 MW - 1 0 - S 1 0 / 8 / 1 9 9 7 2 8 9 . 5 1 2 8 7 . 7 8 1 . 7 3 2 1 . 1 5 n / a n / a 1 6 . 1 7 2 7 1 . 6 1 2 1 . 1 5 2 6 6 . 6 3 MW - 1 0 - D 1 0 / 8 / 1 9 9 7 2 8 9 . 3 0 2 8 7 . 6 1 1 . 6 9 3 8 . 2 0 n / a n / a 3 3 . 2 0 2 5 4 . 4 1 3 8 . 2 0 2 4 9 . 4 1 MW - 1 2 - S B 2 / 5 / 1 9 9 2 3 2 6 . 1 0 3 2 3 . 6 3 2 . 4 7 6 0 . 0 0 2 6 3 . 6 3 9 . 0 0 1 5 . 7 0 3 0 7 . 9 3 5 5 . 0 0 2 6 8 . 6 3 6 0 . 0 0 2 6 3 . 6 3 3 - A r g i l l i t e MW - 1 4 - O B 2 / 4 / 1 9 9 2 3 0 5 . 7 2 3 0 3 . 3 1 2 . 4 1 1 9 . 5 0 2 8 3 . 8 1 1 1 . 5 0 1 9 . 7 0 2 8 3 . 6 1 9 . 5 0 2 9 3 . 8 1 1 9 . 5 0 2 8 3 . 8 1 1 - A r g i l l i t e MW - 1 4 A - B Z W 5 / 1 7 / 1 9 9 5 3 3 7 . 7 5 3 3 7 . 7 5 0 . 0 0 1 2 0 . 0 0 2 1 7 . 7 5 3 3 . 6 0 n / a 1 3 . 0 0 3 2 4 . 7 5 1 2 0 . 0 0 2 1 7 . 7 5 MW - 1 4 A - O B 2 / 2 5 / 1 9 9 2 3 3 7 . 4 8 3 3 4 . 9 4 2 . 5 4 3 1 . 0 0 3 0 3 . 9 4 < 3 1 n / a 1 5 . 9 9 3 1 8 . 9 5 3 1 . 0 0 3 0 3 . 9 4 1 - A r g i l l i t e MW - 1 4 A - S B 2 / 6 / 1 9 9 2 3 3 6 . 7 3 3 3 4 . 7 3 2 . 0 0 5 2 . 4 0 2 8 2 . 3 3 7 . 5 0 3 3 . 6 0 3 0 0 . 7 3 3 6 . 0 0 2 9 8 . 7 3 5 2 . 4 0 2 8 2 . 3 3 3 - A r g i l l i t e MW - 1 4 B - B Z W 5 / 1 1 / 1 9 9 5 3 3 4 . 2 3 3 3 4 . 2 3 0 . 0 0 8 0 . 0 0 2 5 4 . 2 3 4 3 . 0 0 2 9 1 . 2 3 5 9 . 9 8 2 7 4 . 2 5 7 9 . 9 8 2 5 4 . 2 5 D i a b a s e a t 5 7 f e e t MW - 1 4 B - D D 5 / 1 7 / 1 9 9 5 3 3 3 . 6 9 3 3 3 . 6 9 0 . 0 0 1 2 0 . 0 0 2 1 3 . 6 9 3 6 . 0 0 2 9 7 . 6 9 5 4 . 0 0 2 7 9 . 6 9 1 2 0 . 0 0 2 1 3 . 6 9 D i a b a s e a t 4 4 f e e t MW - 1 5 - D B 2 / 1 3 / 1 9 9 2 3 0 5 . 1 4 3 0 2 . 4 3 2 . 7 1 8 9 . 5 0 2 1 2 . 9 3 4 8 . 0 0 2 5 5 . 4 3 8 0 . 0 0 2 2 2 . 4 3 8 9 . 5 0 2 1 2 . 9 3 MW - 1 5 S B 2 / 1 3 / 1 9 9 2 3 0 5 . 0 4 3 0 2 . 2 6 2 . 7 8 8 9 . 3 3 2 1 2 . 9 3 n / a n / a 7 9 . 8 3 2 5 4 . 2 6 8 9 . 3 3 2 4 3 . 2 3 MW - 1 5 - 0 B 2 / 1 3 / 1 9 9 2 3 0 4 . 5 6 3 0 2 . 1 0 2 . 4 6 2 5 . 0 0 2 7 7 . 1 0 n / a n / a 5 . 0 0 2 9 7 . 1 0 2 5 . 0 0 2 7 7 . 1 0 MW - 1 6 D B * © 2 / 2 0 / 1 9 9 2 3 1 4 . 7 1 3 1 2 . 3 7 2 . 3 4 1 0 0 . 0 0 2 1 2 . 3 7 1 8 . 5 0 2 9 3 . 8 7 4 5 . 0 0 2 6 7 . 3 7 7 5 . 0 0 2 3 7 . 3 7 1 0 0 . 0 0 2 1 2 . 3 7 3 - A r g i l l i t e MW - 1 6 O B * 2 / 4 / 1 9 9 2 3 1 5 . 2 2 3 1 2 . 8 3 2 . 3 9 4 5 . 0 0 2 6 7 . 8 3 1 8 . 5 0 2 9 4 . 3 3 4 5 . 0 0 2 6 7 . 8 3 1 5 . 0 0 2 9 7 . 8 3 4 5 . 0 0 2 6 7 . 8 3 1 - A r g i l l i t e MW - 1 6 S B * 2 / 4 / 1 9 9 2 3 1 3 . 7 7 3 1 1 . 2 1 2 . 5 6 5 9 . 0 0 2 5 2 . 2 1 1 8 . 5 0 2 9 2 . 7 1 4 5 . 0 0 2 6 6 . 2 1 5 4 . 0 0 2 5 7 . 2 1 5 9 . 0 0 2 5 2 . 2 1 3 - A r g i l l i t e MW - 1 6 D * 1 0 / 6 / 1 9 9 7 3 1 4 . 2 5 3 1 1 . 8 0 2 . 4 5 3 8 . 0 0 2 7 3 . 8 0 2 8 . 0 0 2 8 3 . 8 0 3 8 . 0 0 2 7 3 . 8 0 3 3 . 0 0 2 7 8 . 8 0 3 8 . 0 0 2 7 3 . 8 0 2 - A r g i l l i t e MW - 1 7 O B S * 2 / 4 / 1 9 9 2 3 1 2 . 5 4 3 1 0 . 7 3 1 . 8 1 1 0 . 0 0 3 0 0 . 7 3 9 . 5 0 3 0 1 . 2 3 n / a n / a 5 . 0 0 3 0 5 . 7 3 1 0 . 0 0 3 0 0 . 7 3 1 - A r g i l l i t e MW - 1 7 S B * © 2 / 2 8 / 1 9 9 2 3 1 3 . 8 4 3 1 0 . 7 0 3 . 1 4 6 2 . 0 0 2 4 8 . 7 0 3 2 . 0 0 2 7 8 . 7 0 4 2 . 0 0 2 6 8 . 7 0 4 2 . 0 0 2 6 8 . 7 0 6 2 . 0 0 2 4 8 . 7 0 3 - A r g i l l i t e MW - 1 7 A - B Z E * © 5 / 1 6 / 1 9 9 5 3 2 7 . 1 0 3 2 7 . 1 0 0 . 0 0 1 1 8 . 0 0 2 0 9 . 1 0 4 2 . 0 0 2 8 5 . 1 0 4 4 . 0 0 2 8 3 . 1 0 4 4 . 0 0 2 8 3 . 1 0 1 1 8 . 0 0 2 0 9 . 1 0 3 - D i a b a s e MW - 1 7 A - B Z W * 5 / 1 1 / 1 9 9 5 3 2 8 . 0 1 3 2 8 . 0 1 0 . 0 0 1 2 6 . 0 0 2 0 2 . 0 1 1 5 . 0 0 3 1 3 . 0 1 2 4 . 0 0 3 0 4 . 0 1 2 4 . 0 0 3 0 4 . 0 1 1 2 5 . 0 0 2 0 3 . 0 1 3 - A r g i l l i t e Hydrogeologic Unit An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y De s i g n Hy d r o g e o l o g i c St u d y 6/30/2015 MW - 1 7 A - D D * 5 / 1 7 / 1 9 9 5 3 2 7 . 6 3 3 2 7 . 6 3 0 . 0 0 1 1 5 . 0 0 2 1 2 . 6 3 - - - -- - 3 1 . 5 0 2 9 6 . 1 3 5 2 . 5 0 2 7 5 . 1 3 1 1 5 . 0 0 2 1 2 . 6 3 3 - D i a b a s e MW - 2 0 - O B 2 / 3 / 1 9 9 2 2 8 0 . 5 4 2 7 8 . 3 7 2 . 1 7 2 5 . 8 0 2 5 2 . 5 7 2 3 . 5 0 <2 5 . 8 < 2 5 2 . 5 7 5 . 8 0 2 7 2 . 5 7 2 5 . 8 0 2 5 2 . 5 7 1 - A r g i l l i t e MW - 3 2 S B 2 / 2 6 / 1 9 9 2 3 0 0 . 8 8 2 9 8 . 2 7 2 . 6 1 7 3 . 0 0 2 2 5 . 2 7 40 . 0 0 2 5 8 . 2 7 4 0 . 0 0 2 5 8 . 2 7 7 3 . 0 0 2 2 5 . 2 7 MW - 3 2 O B 3 / 3 / 1 9 9 2 3 0 0 . 5 4 2 9 8 . 2 3 2 . 3 1 3 6 . 0 0 2 6 2 . 2 3 n/ a n/ a 6 . 0 0 2 9 2 . 2 3 3 6 . 0 0 2 6 2 . 2 3 MW - 3 3 S B 2 / 2 6 / 1 9 9 2 2 8 5 . 4 0 2 8 3 . 3 8 2 . 0 2 4 7 . 5 0 2 3 5 . 8 8 20 . 0 0 2 6 3 . 3 8 2 2 . 0 0 2 6 1 . 3 8 4 7 . 5 0 2 3 5 . 8 8 MW - 3 3 O B 2 / 2 7 / 1 9 9 2 2 8 4 . 4 7 2 8 2 . 3 4 2 . 1 3 1 8 . 0 0 2 6 4 . 3 4 n/ a n/ a 3 . 0 0 2 7 9 . 3 4 1 8 . 0 0 2 6 4 . 3 4 MW - 3 4 O B * 2 / 2 7 / 1 9 9 2 2 7 6 . 3 5 2 7 6 . 2 0 0 . 1 5 6 . 0 0 2 7 0 . 2 0 4 . 5 0 2 7 1 . 7 0 n / a n/ a 3 . 7 0 2 7 2 . 5 0 6 . 0 0 2 7 0 . 2 0 1 - D i a b a s e MW - 3 4 S B * © 2 / 6 / 1 9 9 2 2 7 8 . 0 5 2 7 6 . 2 2 1 . 8 3 4 0 . 3 4 2 3 5 . 8 8 4 . 5 0 2 7 1 . 7 2 1 0 . 0 0 2 6 6 . 2 2 1 4 . 8 4 2 6 1 . 3 8 4 0 . 3 4 2 3 5 . 8 8 3 - D i a b a s e MW - 1 D © 1 1 / 1 0 / 2 0 0 0 3 0 9 . 7 0 3 0 7 . 3 0 2 . 4 0 4 5 . 5 0 2 6 1 . 8 0 2 0 . 0 0 2 8 7 . 3 0 3 3 . 0 0 2 7 4 . 3 0 3 5 . 5 0 2 7 1 . 8 0 4 5 . 5 0 2 6 1 . 8 0 3 - D i a b a s e MW - 2 D © 1 0 / 1 0 / 2 0 0 0 3 1 7 . 7 4 3 1 5 . 1 4 2 . 6 0 3 8 . 0 0 2 7 7 . 1 4 1 5 . 0 0 3 0 0 . 1 4 3 5 . 0 0 2 8 0 . 1 4 3 3 . 0 0 2 8 2 . 1 4 3 8 . 0 0 2 7 7 . 1 4 2 , 3 - T r i a s s i c MW - 2 S 1 0 / 1 2 / 2 0 0 0 3 1 8 . 0 0 3 1 5 . 4 4 2 . 5 6 3 1 . 0 0 2 8 4 . 4 4 1 5 . 0 0 3 0 0 . 4 4 - - - -- - 1 6 . 0 0 2 9 9 . 4 4 3 1 . 0 0 2 8 4 . 4 4 1 , 2 - T r i a s s i c MW - 3 D © 1 0 / 1 7 / 2 0 0 0 2 9 5 . 6 0 2 9 3 . 1 0 2 . 5 0 4 0 . 0 0 2 5 3 . 1 0 1 4 . 0 0 2 7 9 . 1 0 3 4 . 0 0 2 5 9 . 1 0 3 0 . 0 0 2 6 3 . 1 0 4 0 . 0 0 2 5 3 . 1 0 2 , 3 - T r i a s s i c MW - 3 S 1 0 / 1 8 / 2 0 0 0 2 9 5 . 8 7 2 9 3 . 1 8 2 . 6 9 2 0 . 0 0 2 7 3 . 1 8 1 4 . 0 0 2 7 9 . 1 8 - - - -- - 5. 0 0 2 8 8 . 1 8 2 0 . 0 0 2 7 3 . 1 8 1 , 2 - T r i a s s i c MW - 4 D © 1 0 / 1 7 / 2 0 0 0 2 9 4 . 1 6 2 9 1 . 5 9 2 . 5 7 6 0 . 5 0 2 3 1 . 0 9 2 9 . 0 0 2 6 2 . 5 9 5 4 . 0 0 2 3 7 . 5 9 5 0 . 5 0 2 4 1 . 0 9 6 0 . 5 0 2 3 1 . 0 9 2 , 3 - T r i a s s i c * MW - 4 S 1 0 / 1 7 / 2 0 0 0 2 9 4 . 2 9 2 9 2 . 2 3 2 . 0 6 3 0 . 0 0 2 6 2 . 2 3 2 9 . 0 0 2 6 3 . 2 3 - - - -- - 1 5 . 0 0 2 7 7 . 2 3 3 0 . 0 0 2 6 2 . 2 3 1 , 2 - T r i a s s i c MW - 5 D © 1 0 / 9 / 2 0 0 0 2 8 1 . 9 4 2 7 8 . 9 8 2 . 9 6 4 7 . 0 0 2 3 1 . 9 8 9 . 0 0 2 6 9 . 9 8 4 2 . 0 0 2 3 6 . 9 8 3 7 . 0 0 2 4 1 . 9 8 4 7 . 0 0 2 3 1 . 9 8 2 , 3 - T r i a s s i c MW - 5 S 1 0 / 9 / 2 0 0 0 2 8 2 . 1 5 2 7 8 . 8 0 3 . 3 5 3 0 . 0 0 2 4 8 . 8 0 9 . 0 0 2 6 9 . 8 0 - - - -- - 1 5 . 0 0 2 6 3 . 8 0 3 0 . 0 0 2 4 8 . 8 0 1 , 2 - T r i a s s i c MW - 8 D * * * © 5 / 7 / 1 9 9 6 3 1 1 . 6 1 3 0 9 . 4 5 2 . 1 6 4 9 . 0 0 2 6 0 . 4 5 1 4 . 0 0 2 9 5 . 4 5 3 9 . 0 0 2 7 0 . 4 5 3 8 . 0 0 2 7 1 . 4 5 4 8 . 0 0 2 6 1 . 4 5 2 , 3 - G r a y w a c k e * * MW - 8 S * * * 5 / 8 / 1 9 9 6 3 1 1 . 8 5 3 0 9 . 3 0 2 . 5 5 3 5 . 0 0 2 7 4 . 3 0 1 4 . 0 0 2 9 5 . 3 0 - - - -- - 2 0 . 0 0 2 8 9 . 3 0 3 5 . 0 0 2 7 4 . 3 0 1 , 2 - G r a y w a c k e MW - 9 5 / 1 9 / 2 0 1 1 2 7 4 . 5 8 2 7 1 . 5 8 3 . 0 0 2 7 . 5 0 2 4 4 . 0 8 47 . 5 0 2 2 4 . 0 8 3 2 . 5 0 2 3 9 . 0 8 4 7 . 5 0 2 2 4 . 0 8 An s o n Wa s t e Ma n a g e m e n t Fa c i l i t y De s i g n Hy d r o g e o l o g i c St u d y 6/30/2015 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________       $33(1',; :DWHU4XDOLW\0RQLWRULQJ3ODQ  Environmental Consultants  :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\ 3KDVHV  6XEPLWWHGWR  6ROLG:DVWH6HFWLRQ :-RQHV6WUHHW 5DOHLJK1&     3UHVHQWHGWR 'R]HU'ULYH 3RONWRQ1RUWK&DUROLQD   3UHVHQWHGE\  6&6(1*,1((563& &KDSDQRNH5RDG 5DOHLJK1&    -XO\ )LOH1R   2IILFHV1DWLRQZLGH ZZZVFVHQJLQHHUVFRP Environmental Consultants 322 Chapanoke Road 919 662-3015 and Contractors Suite 101 FAX 919 662-3017 Raleigh, NC 27603-3415 www.scsengineers.com   July 2, 2015 File No. 02214709.00 Mr. Ed Mussler, P.E., Permitting Branch Head NC DENR Division of Waste Management Solid Waste Section 217 W Jones Street Raleigh, NC 27603 Subject: Water Quality Monitoring Plan Update, Anson Waste Management Facility Phases 1 - 4, (a.k.a. Chambers Development) Polkville (Anson County), North Carolina NC DENR Solid Waste Permit #04-03 Dear Mr. Mussler: On behalf of Waste Connections, Inc. of North Carolina, we are pleased to present this update of the Water Quality Monitoring Plan for the referenced facility in support of a Permit to Construct application for Phases 3 and 4. The original Water Quality Monitoring Plan was prepared ca. 1999 by TRC Environmental for Phase 1, modified in 2008 by David Garrett & Associates for Phase 2. Over the course of time, ground water monitoring points (both wells and surface water locations) have been amended as the facility was developed, in addition to standardization of monitoring protocols by the Solid Waste Section (“Section”) ca. 2008. The 2008 Update included the sampling plan presented in the document “Solid Waste Section Guidelines for Groundwater, Soil, and Surface Water Sampling” (Attachment 1), available on the Solid Waste Section web site. The following document reflects subsequent changes to detection-stage monitoring approved by the Section in 2012, discussed in the most recent semi-annual monitoring report prepared by Jett Environmental Consulting, whereas only the shallow wells are sampled and water levels only are recorded for the deep wells on a semi- annual basis. In addition, semi-annual leachate sampling is performed at this facility. Please contact us if you have any questions or comments. Sincerely, G. David Garrett, PE, PG Steven C. Lamb, PE Project Manager Vice President 6&6(1*,1((563&  6&6(1*,1((563&  cc Mr. Nelson Breeden, PE – Regional Engineer, Waste Connection of North Carolina, Inc. Mr. Perry Sugg, PG – NCDENR Division of Waste Management, Solid Waste Section Mr. Steve Jett, PG – Jett Environmental Consulting Enclosures :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\3KDVHV 6XEPLWWHGWR 1&'(15'LYLVLRQRI:DVWH0DQDJHPHQW 6ROLG:DVWH6HFWLRQ :-RQHV6WUHHW 5DOHLJK1&    3UHVHQWHGWR :DVWH&RQQHFWLRQV,QFRI1RUWK&DUROLQD 'R]HU'ULYH 3RONWRQ1RUWK&DUROLQD    6&6(1*,1((563& &KDSDQRNH5RDG 5DOHLJK1&    -XO\ )LOH1R :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\   L 7DEOHRI&RQWHQWV 6HFWLRQ3DJH  &XUUHQW0RQLWRULQJ3ODQ2YHUYLHZ 5DWLRQDOHIRU0RQLWRULQJ/RFDWLRQV 6XUIDFH6DPSOLQJ /HDFKDWH6DPSOLQJ (QKDQFHG/LQHU6\VWHP 3URSRVHG3ODQ$PHQGPHQWV &HUWLILFDWLRQ 5HYLVLRQV   /LVWRI)LJXUHV  1R  /RFDWLRQVIRU6XUIDFH:DWHU0RQLWRULQJ  /RFDWLRQVIRU*URXQG:DWHU0RQLWRULQJ:HOOV  /LVWRI7DEOHV  1R   0RQLWRULQJ:HOO&RPSOHWLRQ'DWD  5HTXLUHG0RQLWRULQJ3DUDPHWHUV  $WWDFKPHQWV  6ROLG:DVWH6HFWLRQ*XLGHOLQHVIRU*URXQGZDWHU6RLODQG6XUIDFH:DWHU 6DPSOLQJ²IURP1&'(15'LYLVLRQRI:DVWH0DQDJHPHQW  :HOOFRQVWUXFWLRQVFKHPDWLFV  1HZ*XLGHOLQHVIRUWKH6XEPLWWDORI(QYLURQPHQWDO0RQLWRULQJ'DWD2FWREHU  (QYLURQPHQWDO0RQLWRULQJ'DWD)RUP  $GGHQGXPWRWKH2FWREHU1RUWK&DUROLQD6ROLG:DVWH6HFWLRQ0HPRUDQGXP )HEUXDU\  (QYLURQPHQWDO0RQLWRULQJ'DWDIRU1RUWK&DUROLQD6ROLG:DVWH)DFLOLWLHV2FWREHU  *URXQGZDWHU 6XUIDFH :DWHU6RLO 6HGLPHQW DQG /DQGILOO *DV (OHFWURQLF 'RFXPHQW 6XEPLWWDO1RYHPEHU  :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\     &855(17021,725,1*3/$129(59,(: The original Water Quality Monitoring Plan included paired wells (S for “shallow”, D for “deep”), which was intended to monitor the saprolite overburden and the fractured bedrock aquifers, respectively. North Carolina Solid Waste Rule 15A NCAC 13B .1631 requires detection monitoring of the “uppermost” aquifer, which in this case there is a sufficient thickness of saturated overburden outside the waste footprint to serve as the uppermost aquifer. In 2012 it was recognized that monitoring the bedrock aquifer was redundant, so the Solid Waste Section authorized a modification for sampling only the shallow wells. During semi-annual sampling events, water levels are measured in the deep wells. Historically, well installations have been incremental, as the footprint has grown. In the 2008 WQMP Update, plans were approved to install wells MW-9 and MW-10S/D on the northeast side of Phase 2. MW-9 was installed ca. 2011 as a shallow well, but MW-10 has not, nor has a temporary well pair on the north side of Phase 2, MW-11, within the footprint of future Phase 4. Whereas the final portions of Phase 2 are under construction, it is time (as of this plan revision) to install MW-10S and provide the required four independent sampling events prior to activating Cells 2C and 2D. MW-11 has been relocated as shown on the monitoring plan drawing. All monitoring wells have been (and will continue to be) installed in accordance with 15A NCAC 2C. Generally, the wells are fitted with dedicated sampling pumps except MW-9. A summary of the well construction data, along with anticipated conditions for future wells, is presented on Table 1. Well construction records are provided in Attachment 2. Surface water sampling is conducted upstream and downstream on both of the boundary streams, plus the outlet of an underdrain installed in Cells 2A and 2B. Appendix I analyses are performed during each sampling event for the metals and organic constituents shown on Table 2. Sampling is performed in the spring and autumn seasons. A third-party consultant performs statistical analyses on the data and makes formal submittals to the Solid Waste Section on behalf of the facility. The semi-annual reports include the laboratory data, statistical analyses, and ground water potentiometric surface maps prepared for each sampling event. The data have shown a handful of Appendix I constituents above the SWSLs in the wells, including inorganic constituents that have been identified as background constituents in the Phases 3 and 4 Design Hydrogeologic Report. No organic constituents have been detected in the ground water samples. Erratic detection of organic constituents has been observed in the surface samples, believed to be laboratory contaminants. No conclusions are drawn in this document regarding any monitoring results; no known regulatory action is presently under contemplation. The Site Suitability Study and Design Hydrogeologic studies show ground water flow within the facility boundary is radial but generally northward. The entire site is within the Yadkin-Pee Dee watershed and not subject to riparian buffers. Onsite ground water discharge occurs in numerous unnamed tributaries. No downgradient ground water users are present, and the site is isolated from the surrounding areas by large converging streams at the facility boundary that serve as ground water divides. This document amends the Appendix I sampling locations but does not modify the schedule or any monitoring protocols. :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\     5$7,21$/()25021,725,1*/2&$7,216 Two upgradient wells serve as background, MW-2S (shallow) and MW-2D (deep), located along the southern side Phase 1. Down-gradient compliance wells are located in pairs, generally to the northeast of Phases 1 and 2 at a horizontal spacing appropriate to the subsurface conditions, plus one pair to the southwest. These wells were located based on earlier studies and tend to focus on the former drainage features. The well couplets (or pairs) monitor the upper saprolite aquifer (Units 1 and 2 described in Phases 3 and 4 Design Hydrogeologic Report) and the upper bedrock aquifer (Unit 3). Four wells, MW-6S/D and MW-7S/D, formerly located within the Phase 2 footprint, were abandoned. Figures M1 and M2 depict the monitoring locations. New monitoring wells are proposed to the north and west of Phases 3 and 4, focusing again on the drainage features that align with the regional joint pattern visible in the topography. The potentiometric map found in the Design Hydrogeologic Report depicts a groundwater divide aligned with the original ridgeline, with the saturated layer residing near the base of the saprolite overburden (Units 1and 2). Well spacing on the north and west sides appears closer than on the east side because surface drainage features originally converged to the east but not the other directions. The presence of diabase dikes and a major geologic contact have not been shown to affect the monitoring program. In keeping with recent modifications to the groundwater monitoring program, only shallow wells extending to “auger refusal” are proposed at this time. Background Well Bottom Depth • MW-2S and MW-2D 31.0’ and 38.0’ respectively Phase 1 Compliance Wells • MW-1D 45.5’ • MW-3S and MW-3D 20.0’ and 40.0’ • MW-4S and MW-4D 30.0’ and 60.5’ • MW-5S and MW-5D 30.0’ and 49.0’ • MW-8S and MW-8D 35.0’ and 49.0’ Phase 2 Compliance Wells • MW-9S 27.5’ • MW-10S 50’ anticipated based on Piez PH-29A* Phase 3 Compliance Wells Anticipated Depth** • MW-11S 50’ based on PH-29A • MW-12S 30’ based on Old MW20-OB • MW-13S 30’ based on Old MW20-OB • MW-14S 45’ based on Old MW17A-BZE • MW-15S 25’ based on Old MW17A-BZW Phase 4 Compliance Wells Anticipated Depth** • MW-16S 25’ based on Piez B-15 • MW-17S 20’ based on Piez B-10Dp • MW-18S 20’ based on Piez B-9Dp • MW-19S 40’ based on Piez B-2Dp • MW-20S 35’ based on Piez B-3p * Scheduled for installation in 2017 concurrent with Phase 2D construction ** Depths may vary – do not use these depths for absolute budgeting :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    Provisions have been incorporated into current sampling protocols that require sampling of deep wells in the event there is insufficient water in the shallow wells. This practice will be continued at the Phase 3 and 4 wells. By selecting locations near the drainage features, new wells are expected to provide early detection of a release of contaminants onto the uppermost aquifer. Based on the distance to the facility boundary, a point of compliance exists closer to the footprint than the facility boundary, at distance of approximately 250 to 300 feet, so the review boundary for well locations is 125 to 150 feet, allowing leeway to accommodate the topography. Well screen intervals will be selected in the field based on existing conditions. Well installations will be performed under the direction of a qualified geologist. Future amendments may be required to ensure the wells provide representative monitoring results.  685)$&(6$03/,1* Surface water sampling locations are as follows: Upstream • Pinch Gut Creek Upstream (BG-1) • Brown Creek Upstream (BG-2) Downstream • Brown Creek Downstream (SG-3) • Pinch Gut Creek Downstream (SG-4) Underdrains installed beneath certain cells have designated sampling points as follows: UD-1 • Cell 2B East Formerly SG-5discharges to a sediment basin nearest MW-9 UD-2 • Cell 2C South includes Cell 2B West discharges to a swale leading to the sediment basin nearest MW-10 UD-3 • Cell 2C North discharges to the sediment basin nearest MW-10, downstream of UD-2 Please take note of the following conditions: 1. Samples will be acquired from within the pipe to avoid cross contamination with surface water. 2. The drains are expected to stop flowing within a few months after installation; Note 5 on Drawing M-1 specifies observation to detect flow (with record keeping) on a monthly basis. 3. An internal inspection (e.g. camera survey) is required for UD-3 (see Note 5E on Drawing M1). :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    /($&+$7(6$03/,1* Provisions were made in the original Water Quality Monitoring Plan for monitoring of the leachate from a sampling port in the force main connecting the individual sumps with the leachate collection/storage tanks and/or another location in the tanks. No amendment to the leachate sampling plan is under consideration, except for the future sampling of new sumps associated with the future phases.  (1+$1&('/,1(56<67(0 The October 2008 Water Quality Monitoring Plan prepared by David Garrett and Associates includes an evaluation is to be made semi-annually of the volume of free liquid removed from the Enhanced Liner System (ELS) sump. This feature is a leak detection layer incorporated into Phase 1 but not subsequent cells. The results of the evaluation and the VOC analysis of the ELS sump liquids are to be included in the semi-annual groundwater report. As reported in the Second Semi-Annual 2014 sampling report, liquids were present at ELS sumps #5 and #7 during the last six month monitoring period, thus a sample was collected during the Second Semi- Annual 2014 event and analyzed for the required VOCs. Results indicate that the ELS sump samples were reported as non-detect for VOCs. Some metals were present. The total volume of liquids measured in ELS sumps #5 and #7 was 522 gallons and 106,143 gallons, respectively.  352326('3/$1$0(1'0(176 New monitoring wells for Phase 3 shall be located to the west and southwest of the phase, along drainage features that align with regional bedrock joints (minor fracture zones), which serve as potential ground water pathways. Future monitoring wells for Phase 4 will be located per similar criteria at an appropriate time. Planned monitoring well MW-10S and a new surface monitoring location (SG-6) will be activated prior to operation of Phase 2C, under construction in 2015. Based on the data and the governing rules, no changes to the sampling parameters or statistical evaluations appear to be required at this time. Sampling and analysis criteria will remain unchanged. Wells will be evacuated and samples will be obtained using conventional techniques (in accordance with SWS Guidelines), but future consideration may be given to adopting low-flow techniques and/or the use of dedicated pumps in all wells, including the future wells for Phases 3 and 4. The Guidelines cover the use of dedicated pumps (but not the low-flow techniques). Any changes involving purging and sampling techniques should be reviewed by a qualified groundwater scientist and reflected in a future plan update. Future updates also will be warranted as new cells are completed and wells are installed. Likewise, any new surface sampling locations that may be required for future underdrains should be documented with a plan update. The prior-approved Water Quality Monitoring Plan appears to be sufficient for ongoing monitoring of the facility, requiring only an adjustment of the monitoring wells to accommodate Phases 3 and 4. The sampling protocols outlined in the Solid Waste Section “Guidelines” (Attachment 1) shall be followed. Specific protocols for sampling ground water wells are provided in Appendix C of that document, with a section pertaining to the use of dedicated :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    pumps. The required sampling procedures retain the determination of initial water levels and volumes that must be purged. If low-flow purging and sampling procedures are adopted, product-specific protocols described in the manufacturer’s literature should be reviewed and incorporated into this plan. Other documents issued by the NCDENR Solid Waste Section, which are incorporated into this plan, including: • October 2006 New Guidelines for the Submittal of Environmental Monitoring Data (Attachment 3), which introduced the requirement for the Environmental Monitoring Data Form (Attachment 4), and • February 2007 Addendum to the October 27, 2006 North Carolina Solid Waste Section Memorandum (Attachment 5), i.e., the, which required the use of “Solid Waste Section Limit” (SWSL) in lieu of Practical Quantification Limits (PQL) for reporting the data, referencing changes to the North Carolina 2L Ground Water Protection Standards, and encouraging electronic data submittal – analytical data is required in a .xls file, and • October 2007 Environmental Monitoring Data for North Carolina Solid Waste • Facilities (Attachment 6), which provided clarification on certain issues. • November 2014 memo titled Groundwater, Surface Water, Soil, Sediment, and Landfill Gas Electronic Document Submittal (Attachment 7). These documents can be viewed at http://www.wastenotnc.org/swhome/enviro_monitoring.asp. No changes are proposed to the current leachate monitoring program or sampling for the Enhanced Liner System. Future changes to leachate sampling, if any, will be documented in another plan revision. Upon approval by NC DENR Division of Waste Management, Solid Waste Section, these amendments to this plan will be implemented at an appropriate time (relative to the construction sequence) and sampling will be conducted accordingly. Solid Waste Section protocols typically require four independent background samples from new wells prior to opening a new phase (i.e., issuance of the Permit to Operate). :DWHU4XDOLW\0RQLWRULQJ3ODQ8SGDWH $QVRQ:DVWH0DQDJHPHQW)DFLOLW\     &(57,),&$7,21 This water quality monitoring plan has been prepared by a qualified geologist who is licensed to practice in the State of North Carolina. The plan is based on first-hand knowledge of site conditions and familiarity with North Carolina solid waste rules and industry standard protocol. This certification is made in accordance with North Carolina Solid Waste Regulations, indicating that this Water Quality Monitoring Plan should provide early detection of any release of hazardous constituents into the uppermost aquifer, so as to be protective of public health and the environment. No other warranties, expressed or implied, are made. Signed Printed Name G. David Garrett Date July 2, 2015  5(9,6,216 References to earlier plan versions include: 1. Water Quality Monitoring Plan, Phase 1, 1999 2. Sampling and Analysis Plan Update, Phase 2, October 2008 (Rev. 1) 3. Water Quality Monitoring Plan Update, September 28, 2012 (Rev. 2) 'HVLJQ+\GURJHRORJLF,QYHVWLJDWLRQ $QVRQ:DVWH0DQDJHPHQW)DFLOLW\    ___________________________________________________________________________       $33(1',; /DQGILOO*DV0RQLWRULQJ3ODQ Landfill Gas Monitoring Plan Anson Waste Management Facility Phases 1 through 3 Submitted to: 11 &'(15'LYLVLRQRI:DVWH0DQDJHPHQW Solid Waste Section 217 W Jones Street Raleigh, NC 27603 Presented to: :DVWH&RQQHFWLRQV,QFRI1RUWK&DUROLQD 375 Dozer Drive Polkton, North Carolina 28135 Presented by: SCS ENGINEERS, PC 322 Chapanoke Road Raleigh, NC 27603 (919) 662-3015 July 28, 2015 File No. 02214709.00 Offices Nationwide www.scsengineers.com Environmental Consultants 322 Chapanoke Road 919 662-3015 and Contractors Suite 101 FAX 919 662-3017 Raleigh, NC 27603-3415 www.scsengineers.com File No. 02214709.00 July 28, 2015 Mr. Ed Mussler, P.E., Permitting Branch Head NC DENR Division of Waste Management Solid Waste Section 217 W Jones StreetRaleigh, NC 27603 RE: Landfill Gas Monitoring Plan Anson Waste Management Facility Polkville (Anson County), North CarolinaNC DENR Solid Waste Permit #04-03 Dear Mr. Mussler: On behalf of Waste Connections, Inc. of North Carolina, we are pleased to present the following Landfill Gas (LFG) Monitoring Plan, prepared in accordance with Solid Waste Rule 15A NCAC 13B .1626 (4). This plan discusses (in brief) the nature of landfill gas, allowable concentrations for explosive gas around the facility, monitoring locations, well depths (i.e., gas probes), and methodology, sampling schedule, procedures and record keeping. Emphasis will be placed on protecting human health and safety for persons working at the facility – there are no known occupied structures in proximity except for facility buildings (offices and garages). This plan focuses on monitoring to detect subsurface gas migration from the waste containment cells. The plan does not amend any previous submittal and will be implemented immediately upon approval by the Solid Waste Section. Please contact us if you have questions or comments. Sincerely, G. David Garrett, PG, PE Steven C. Lamb, PE Project Manager Vice President SCS ENGINEERS, PC SCS ENGINEERS, PC 7/28/2015 cc: Mr. Nelson Breeden, PE – Regional Engineer, Waste Connection of North Carolina, Inc. Mr. John Murray, PE – NCDENR Division of Waste Management, Solid Waste Section Landfill Gas Monitoring Plan Anson Waste Management Facility Landfill Gas Monitoring Plan Anson County Solid Waste Facility Submitted to: NCDENR Division of Waste Management Solid Waste Section 217 W Jones Street Raleigh, NC 27603 Presented to: Waste Connections, Inc. of North Carolina 375 Dozer Drive Polkton, North Carolina 28135 SCS ENGINEERS, PC 322 Chapanoke Road Raleigh, NC 27603 (919) 662-3015 July 28, 2015 File No. 02214709.00 Landfill Gas Monitoring Plan Anson Waste Management Facility i Table of Contents Section Page 1.0 INTRODUCTION ..................................................................................................................................... 1 1.1 Background Information .............................................................................................................. 1 1.2 Regulatory Requirements ........................................................................................................... 1 1.3 Current Site Conditions ............................................................................................................... 2 1.4 Monitoring Location Criteria ...................................................................................................... 2 2.0 LFG MONITORING................................................................................................................................ 3 2.1 Monitoring Devices and Procedures ......................................................................................... 3 2.2 Monitoring Schedule .................................................................................................................... 4 3.0 CONTINGENCY PLAN .......................................................................................................................... 4 4.0 CERTIFICATION ...................................................................................................................................... 5 List of Tables No. Page 1 Summary of Gas Monitoring Probe Locations Attachments A Landfill Gas Monitoring Guidance – from NCDENR Division of Waste Management B LFG Monitoring Locations Site – Figure 1 C LFG Well Construction Schematic D Landfill Gas Monitoring Field Log Landfill Gas Monitoring Plan Anson Waste Management Facility 1 1.0 INTRODUCTION The following plan has been prepared as a standalone document in accordance with current NCDENR Solid Waste Section (SWS) guidance. The monitoring locations, methods, and thresholds for action are based on the SWS document “Landfill Gas Monitoring Guidance,” November 2010, available online at http://portal.ncdenr.org/c/document_library/get_file?uuid=da699f7e-8c13-4249-9012- 16af8aefdc7b&groupId=38361. The guidance contains specific requirements for well construction, equipment calibration, sampling procedures, and data keeping, in a plan that is organized in a standardized format. This document is found in Attachment A. 1.1 BACKGROUND INFORMATION Landfill gas (LFG) is a by-product from the decomposition of organic waste in a landfill, which includes methane, carbon dioxide, hydrogen sulfide, water, and other constituents. Methane can be explosive under certain conditions, and LFG migration has been known to transfer certain contaminants into ground water. The Solid Waste Rules typically focus on the explosive propertiesof LFG from a public safety standpoint. Subsurface gas normally migrates above the ground water table and is restricted laterally by streams. Pipelines or trenches (if present) can serve as potential conduits for off-site LFG migration; although the soils existing just above the bedrock are often very porous and can potentially serve as gas migration pathways. No occupied structures off-siteappear to be at risk for gas migration. Active gas recovery is the primary means of controlling gas at this facility. A Landfill Gas Control Plan was implemented soon after landfill operations commenced. A network of extraction wells installed in the waste are connected to a blower station and the collected LFG flared. Methane monitoring wells (landfill gas probes) are installed above the water table usingconstruction techniques that are otherwise similar to ground water monitoring wells. Components of the active gas recovery system are not to be monitored. LFG monitoring will be performed during the active life of the landfill and throughout the post- closure care period. Quarterly monitoring will be conducted at all probes and in occupied structures located on the landfillproperty. 1.2 REGULATORY REQUIREMENTS NCAC 15A 13B .1626 (4) (a) requires monitoring for the following explosive gas limits: x 25% of the Lower Explosive Limit (LEL), o r 5% methane in standard atmosphere within occupied structures – excluding the gas recovery systems x 100% LEL at the facility boundary x No detectable concentration at off-site occupied structures. Landfill Gas Monitoring Plan Anson Waste Management Facility 2 Solid Waste Section guidance requires that LFG be monitored with a calibrated meter that is capable of detecting hydrogen sulfide, whereas action limits are 4% by volume at 100% LEL and 1% by volume at 25% LEL. 1.3 CURRENT SITE CONDITIONS The subject landfill is situated high on a ridge bounded on three sides by blue line streams, which act as natural barriers to gas migration. Potentiometric contours reflect the surface topography, which slopes moderately to the north but diverges sharply to the east and west toward the streams located along the facility boundary. Topographic relief near the west stream is steep, with elevation changes from the footprint to the streams on the order of 70 feet with up to 20% slopes, but the topo slopes gently to the east stream with slopes generally less than 5%. The landfill is lined and is mostly excavated to the approved base grades on the west side, while the footprint is built up with a constructed 15-foot high perimeter embankment along the east side. Onsite soils are slightly porous silt and clay weathered from meta-volcanic argillite and Triassic sedimentary formations – typically exhibiting low permeability – which originally extended 20 to 40 feet beneath the surface. The soils gradually transition with depth to a variably thick layer of porous “partially weathered rock” overlying hard, low porosity non-weathered rock. On the west and north sides of the disposal footprint deep wide-spread excavation has removed much of the overburden soil. The water table is approximately 10 to 30 feet deep over most of the site, including the up-gradient side of the landfill, except near the streams where water levels are 5 to 8 feet deep. The approved base grades are 30 feet or more above the level of the streams and a minimum of 4 feet above groundwater and/or bedrock. Lateral separation to the streams is 50 feet minimum; these dimensions provide little opportunity for gas to migrate beyond the facility boundary on the three sides bound by streams. The nearest know residence exists approximately 1700 feet to the south and east of the MSWLF. Other occupied structures include a maintenance building (metal shell on concrete slab) located approximately 500 feet south east of the footprint and approximately 800 feet east of the gas flare. The scale house (mobile building) is located approximately 1000 feet south of the waste boundary. A small cemetery exists approximately 400 feet east of the Phase 1 footprint. The facility offices are approximately one-half mile south of the waste boundary. . 1.4 MONITORING LOCATION CRITERIA Gas migration is a process of diffusion through porous media, affected by porosity and permeability, similar to ground water within an unconfined or partly confined soil aquifer. For gas, pressures and concentrations are higher near the source and gradually decrease with distance –unless a distinct conduit is present – thus a “halo effect” is often discernable. The gas can beconfined in the soil by lower permeability clay layers and saturated layers – impermeable to gas – that can occur either above or below the porous layer. At this site, horizontal permeability for ground water flow appears to exceed vertical permeability, due in part to the shape of the saprolite (PWR) aquifer, as it conforms to the topography and upper bedrock surface; true for water and gas. The unsaturated saprolite is the likely gas conveyance and is the target of the gas monitoring plan. Landfill Gas Monitoring Plan Anson Waste Management Facility 3 Placement of perforated pipe for gas monitoring above the water table is standard practice. The required horizontal placement for gas monitoring appurtenances (either wells or bar-hole punch locations) is not defined. Considering the similarities of gas migration to ground water, with a compliance boundary established at property lines, a sensible criteria for test locations is outsidethe perimeter of any gas conveyances (such as recovery system pipelines) and approximately halfthe distance from the source to the compliance boundary – or no more than 150 feet if the property line is more than 300 feet from the source – thus establishing a review boundary. Gas probe locations are shown on Figure 1 (Attachment B). Distances between the probes are approximately 250 feet. 2.0 LFG MONITORING 2.1 MONITORING DEVICES AND PROCEDURES Equipment: A portable gas monitoring device, e.g., LandGEM 5000 shall be used to measure methane gas in the probes. Concentrations shall be reported in units of percent methane or percent of the lower explosive limit (LEL). The LEL for methane is approximately 5%. SWS Guidelines require monitoring for hydrogen sulfide (H2S) in addition to methane gas. General sampling procedures are discussed below, relative to different types of monitoring appurtenances and locations, but the instructions for the specific monitoring device should be followed. Occupied Buildings: Monitoring of on-site structures will be conducted during regular monitoring events at the earliest possible time after the structure has been unused (e.g., early morning). Methane and hydrogen sulfide are both heavier than air and tend to accumulate in the lower zones with restricted circulations, i.e., crawlspaces, closets, corners of rooms near the floor, cracks in walls, floor slabs, foundations, crawlspace vents, drainage pipes, and utility vaults. Alternatively, the buildings may be equipped with continuous explosive gas detection devices. Gas monitoring will also be conducted in any confined space requiring the entry of personnel for maintenanceor inspection. The monitoring will take place prior to entry by personnel in accordance with OSHAregulations. Within the buildings, atmospheric sampling for methane and hydrogen sulfide shall be conducted. Ambient monitoring: This includes a “walk-around” at the toe of landfill slopes to survey for gas that may be seeping through the intermediate or permanent cover. A key to potential side slope seepage includes stained soil, wetness with visible bubbling, or distressed (or absent) vegetation. Any detection of methane or hydrogen sulfide in the ambient monitoring should be noted on a site map and a special notation recorded in the monitoring report. Bar-Hole Punch Locations: Gas monitoring in bar-hole punches will consist of punching a hole with a 3-foot probe. Tubing that is open-ended and perforated on the bottom should be placed in the bottom of the hole, taking care not to plug the bottom of the tubing with soil. The peak methane reading should then be recorded for each bar-hole probe location. Methane Monitoring Wells: Also called “landfill gas probes,” appropriate monitoring depths for this site have been established as 15 feet, or the water table, whichever is encountered first, which implies the need for permanent gas monitoring wells. Each gas monitoring well will be constructed Landfill Gas Monitoring Plan Anson Waste Management Facility 4 with a 10-foot perforated section sealed below a bentonite plug, similar to ground water monitoring well construction, with appropriate stickups for visibility and locking covers. Each well shall be “sniffed” with a gas meter (calibrated for methane) equipped with a probe or open-ended tube that can inserted into the sampling port set within the well cap. Readings should be taken over a five-minute period (or as recommended by the equipment manufacturer) and the peak methane reading should then be recorded, either as percent methane or percent LEL, depending on the meter output. SWS guidelines include a well construction schematic, found in Attachment C. Record Keeping: The sampling technician shall record the date, time, location, sampling personnel, atmospheric temperature, reported barometric pressure, and general weather conditions at the time of sampling, in addition to the concentration of combustible gases. The sampling results are to be recorded on a form, such as the example Landfill Gas Monitoring Field Log shown in Attachment D.The records will be maintained in the landfill operating record for the life of the facility. 2.2 MONITORING SCHEDULE The Solid Waste Rules require quarterly monitoring. Landfill gas monitoring will be performed during the active life of the landfill, currently estimated at 20+ years, and throughout the post- closure care period, 30 years unless future data warrant a revision and subject to approval by the SWS. 3.0 CONTINGENCY PLAN Solid Waste Rule NCAC 15A 13B .1626 (4) (c) specifies that, upon detection of methane exceeding the threshold values (described above), the facility management must perform the following: x Immediately take steps required to protect human health and notify the Division x Within seven days place in the operating record a report of the methane gas levels and the location of the detection, along with a description of the response to protect human health x Within 60 days implement a remediation plan for the methane gas release, place a copy of the plan in the Operating Record and notify the Division that the plan has been implemented – the plan shall describe the nature and extent of the problem and the proposed remedy. Landfill Gas Monitoring Plan Anson Waste Management Facility 5 4.0 CERTIFICATION The certification statement below must be signed and sealed by a North Carolina Professional Geologist or Professional Engineer and submitted with the Landfill Gas Monitoring Plan. The Landfill Gas Monitoring Plan for this facility has been prepared by a qualified geologist or engineer who is licensed to practice in the State of North Carolina. The plan has been prepared based on first-hand knowledge of site conditions and familiarity with North Carolina solid waste rules and industry standard protocol. This certification is made in accordance with North Carolina Solid Waste Regulations, indicating this Landfill Gas Monitoring Plan should provide early detection of any release of hazardous constituents to the uppermost aquifer, so as to be protective of public health and the environment. No other warranties, expressed or implied, are made. Signed __________________________ Printed G. David Garrett, PG, PE Date July 6, 2015 Not valid unless this document bears the seal of the above mentioned licensed professional. If wells are installed in the future, the well locations shall be shown on a topographic map that is signed and sealed by a registered surveyor. Well construction shall conform to the current Solid Waste Section standards, including a sampling port on the cap. Landfill Gas Monitoring Plan Anson Waste Management Facility 6 Table 1 Summary of Gas Monitoring Probe Locations Probe Location GP-1 Southeast corner of Phase1, near maintenance building GP-2 South of Phase1, near gas works GP-3 East of Phase1, over diabase dike GP-4 South of Phase1, near southwest corner GP-5 South of Phase1, near Phase 2 line GP-6 East of Phase 2 GP-7 South of Phase1, near railroad cut GP-8 West of Phase , near future southwest corner GP -9 West of Phase  GP -10 West of Phase  GP -11 North of Phase  GP -12 North of Phase  Landfill Gas Monitoring Plan Anson Waste Management Facility Attachment A Landfill Gas Monitoring Guidance NCDENR Division of Waste Management    1257+&$52/,1$'(3$570(172) (19,5210(17$1'1$785$/5(6285&(6  ',9,6,212):$67(0$1$*(0(17  62/,':$67(6(&7,21  /$1'),//*$6021,725,1**8,'$1&(  129(0%(5 7$%/(2)&217(176 6HFWLRQ±,QWURGXFWLRQ«««««««««««««««««««««3DJH 6HFWLRQ±)DFWRUV,QIOXHQFLQJ/DQGILOO*DV*HQHUDWLRQDQG0LJUDWLRQ««««««««««3DJH 6HFWLRQ&XUUHQW6ROLG:DVWH6HFWLRQ5XOHV3HUWDLQLQJWR/DQGILOO*DV0RQLWRULQJ««««3DJH 6HFWLRQ±/DQGILOO*DV,QFLGHQWVDQG([SORVLRQV««««««««««««««««««3DJH 6HFWLRQ±/DQGILOO*DV0RQLWRULQJ:HOOV«««««««««««««««««««««3DJH 6HFWLRQ±/DQGILOO*DV0RQLWRULQJ,QVWUXPHQWDWLRQ«««««««««««««««««3DJH 6HFWLRQ±5HIHUHQFHV«««««««««««««««««««««««««««««3DJH     SECTION 1 - Introduction 1RUWK&DUROLQD6ROLG:DVWH0DQDJHPHQW5XOHV$1&$&%UHTXLUHTXDUWHUO\PRQLWRULQJRIPHWKDQH JDV DW06:ODQGILOOV DQGTXDUWHUO\PRQLWRULQJRIPHWKDQHDQGRWKHUH[SORVLYHODQGILOOJDVHV /)*  DW & 'DQGRWKHUODQGILOOV WRHQVXUHWKDWODQGILOOJDVGRHVQRWH[FHHGWKHORZHUH[SORVLYHOLPLW /(/ DWWKH IDFLOLW\SURSHUW\ERXQGDU\RUSHUFHQWRIWKHORZHUH[SORVLYHOLPLWLQIDFLOLW\VWUXFWXUHV,IWKH FRQFHQWUDWLRQH[FHHGVWKHVSHFLILHGOLPLWVVWHSVPXVWEHWDNHQWRHQVXUHWKHSURWHFWLRQRISXEOLFKHDOWK DQGDUHPHGLDWLRQSODQPXVWEHLPSOHPHQWHGLPPHGLDWHO\$ODQGILOOJDVPRQLWRULQJSODQLVQHFHVVDU\WR HQVXUHWKDWWKHVHSHUIRUPDQFHVWDQGDUGVDUHPHWDQGWKLVJXLGDQFHGRFXPHQWZDVGHYHORSHGWRDVVLVWLQ HVWDEOLVKLQJDVWDQGDUGL]HGSURFHGXUHIRUWKHPRQLWRULQJRIODQGILOOJDV Background 2UJDQLFPDWWHULQODQGILOOVEHJLQVWRGHFRPSRVHDOPRVWLPPHGLDWHO\DIWHUEHLQJSODFHGLQDGLVSRVDOVLWH 3XWUHVFLEOHZDVWHVVXFKDVIRRGSURGXFWVDQGVHZDJHVOXGJHVEHJLQWREUHDNGRZQE\ELRORJLFDOSURFHVVHV YHU\UDSLGO\ZKHUHDVSDSHUFDUGERDUGRUFHOOXORVHEDVHGPDWHULDOVDUHVORZHUWRGHFRPSRVH+RZHYHU ZKHQFRQGLWLRQVEHFRPHIDYRUDEOHPRVWRUJDQLFPDWWHUZLOOGHFRPSRVH7KHGHFRPSRVLWLRQSURFHVV W\SLFDOO\JRHVWKURXJKVHYHUDOVWDJHVWKDWGHSHQGRQFRQGLWLRQVVXFKDVS+WHPSHUDWXUHDQGPRLVWXUH FRQWHQW7KHILQDOVWDJHUHVXOWVLQWKHSURGXFWLRQRIPHWKDQHDQGDOWKRXJKWKHUDWHRISURGXFWLRQPD\ YDU\PRVWODQGILOOVSURGXFHPHWKDQH Landfill Gas Generation /DQGILOOJDVLVDQDWXUDOE\SURGXFWRIWKHDQDHURELFGHFRPSRVLWLRQRIRUJDQLFZDVWHLQDODQGILOO7KH FRPSRVLWLRQTXDQWLW\DQGUDWHRIODQGILOOJDVJHQHUDWLRQDUHGHSHQGHQWRQWKHW\SHVRIZDVWHWKDWDUH GHFRPSRVLQJDQGWKHOHYHORIPLFURELDODFWLYLW\ZLWKLQWKHZDVWHV7KHGHFRPSRVLWLRQRIELRGHJUDGDEOH ZDVWHEHJLQVZLWKDHURELFGHFRPSRVLWLRQZKLFKODVWVXQWLOWKHR[\JHQLQWKHODQGILOOLVGHSOHWHG7KH DQDHURELFSKDVHWKHQEHJLQVUHVXOWLQJLQODQGILOOJDVSURGXFWLRQ 7KHUHDUHIRXUVWDJHVRIODQGILOOJDVFRPSRVLWLRQWKHILUVWVWDJHLVFKDUDFWHUL]HGE\HOHYDWHGQLWURJHQ OHYHOVDQGRFFXUVZKHQWKHODQGILOOLVQHZ7KHVHFRQGVWDJHLVFKDUDFWHUL]HGE\HOHYDWHGFDUERQGLR[LGH OHYHOVDQGRFFXUVIRUDUHODWLYHO\VKRUWSHULRGRIWLPHDIWHUWKHLQLWLDOVWDJHLVFRPSOHWH7KHWKLUGDQG IRXUWKVWDJHVDUHFKDUDFWHUL]HGE\HOHYDWHGPHWKDQHFRQFHQWUDWLRQVDQGUHSUHVHQWWKHDFWLYHOLIHRID ODQGILOODQGWKHSRVWFORVXUHWLPHIUDPH /DQGILOOJDVLVJHQHUDOO\FRPSRVHGRIPHWKDQH &+ FDUERQGLR[LGH &2 OHVVWKDQ QLWURJHQ 1 DQGOHVVWKDQQRQPHWKDQHRUJDQLFFRPSRXQGV7KHVHLQGLYLGXDOJDVHVJHQHUDOO\ UHPDLQFRPLQJOHGDQGGRQRWQDWXUDOO\VHSDUDWH7KH6ROLG:DVWH6HFWLRQ 6:6 5XOHVW\SLFDOO\IRFXV RQPHWKDQH &+ DQGLWVH[SORVLYHSURSHUWLHVGXHWRSXEOLFVDIHW\LVVXHV+\GURJHQVXOILGH +6 LV DOVRRISDUWLFXODUFRQFHUQLQODQGILOOVDQGLVW\SLFDOO\UHFRJQL]HGE\LWVURWWHQHJJRGRU+6LV LPPHGLDWHO\GDQJHURXVWROLIHDQGKHDOWKDWFRQFHQWUDWLRQVRISDUWVSHUPLOOLRQ SSP  Landfill Gas Migration 7KHSURGXFWLRQRIODQGILOOJDVFUHDWHVDSRVLWLYHSUHVVXUHZLWKLQWKHODQGILOOWKDWIRUFHVWKHJDVWRPLJUDWH /DQGILOOJDVPLJUDWHVIURPSODFHWRSODFHE\GLIIXVLRQDQGSUHVVXUHJUDGLHQWDQGZLOOIROORZWKHSDWKRI OHDVWUHVLVWDQFH6XEVXUIDFHJDVW\SLFDOO\PLJUDWHVDERYHWKHJURXQGZDWHUWDEOHDQGLVUHVWULFWHGODWHUDOO\ E\VWUHDPV3RURXVVRLOVO\LQJDERYHWKHEHGURFNFDQVHUYHDVSDWKZD\VWRWUDQVPLWODUJHYROXPHVRIJDV 8QGHUJURXQGRIIVLWHPLJUDWLRQLVFRPPRQDQGFDQEHIDFLOLWDWHGE\WKHSUHVHQFHRISLSHOLQHVEXULHG XWLOLW\FRUULGRUVRUWUHQFKHVORFDWHGZLWKLQRUDGMDFHQWWRWKHODQGILOOERXQGDULHV0RYHPHQWGHSHQGVRQ VRLOW\SHDQGPRLVWXUHDQGPLJUDWLRQGLVWDQFHVRIIHHWKDYHEHHQREVHUYHG%DURPHWULFSUHVVXUH DOVRLQIOXHQFHVPRYHPHQW)DOOLQJEDURPHWULFSUHVVXUHDOORZVPHWKDQHWRPLJUDWHRXWRIWKHODQGILOODQG LQWRVXUURXQGLQJDUHDV    SECTION 2 - Factors Influencing Landfill Gas Generation and Migration )DFWRUVWKDWDIIHFWODQGILOOJDVJHQHUDWLRQDQGPLJUDWLRQWKURXJKWKHVXEVXUIDFHLQFOXGHWKHIROORZLQJ  Waste Composition 7KHSURGXFWLRQRIODQGILOOJDVLVGLUHFWO\UHODWHGWRWKHDPRXQWRIRUJDQLFPDWWHUSUHVHQWLQZDVWH7KH EDFWHULDWKDWEUHDNGRZQWKHZDVWHUHTXLUHVPDOODPRXQWVRIVSHFLILFPLQHUDOVVXFKDVFDOFLXPSRWDVVLXP PDJQHVLXPDQGRWKHUPLFURQXWULHQWV%DFWHULDDUHDEOHWRWKULYHDQGSURGXFHODQGILOOJDVLIWKH PLQHUDOVPLFURQXWULHQWVDUHSUHVHQW,IWKHPLQHUDOVPLFURQXWULHQWVDUHQRWSUHVHQWRULIVXEVWDQFHVWKDW LQKLELWEDFWHULDOJURZWKH[LVWODQGILOOJDVSURGXFWLRQZLOORFFXUDWDUHGXFHGUDWH6RPHIRUPVRIRUJDQLF PDWWHUVXFKDVFHOOXORVHEUHDNGRZQTXLFNO\ZKHUHDVPDWWHUVXFKDVOLJQLQEUHDNVGRZQPRUHVORZO\ 7KHUDWHDWZKLFKODQGILOOJDVLVSURGXFHGGHSHQGVRQWKHSURSRUWLRQVRIHDFKW\SHRIRUJDQLFPDWWHU SUHVHQWLQWKHZDVWH  Moisture Content /DQGILOOVZLWKKLJKHUPRLVWXUHFRQWHQWJHQHUDWHKLJKHUFRQFHQWUDWLRQVRIODQGILOOJDVLQHDUOLHUVWDJHVRI GHYHORSPHQW VXFKDVGXULQJOHDFKDWHUHFLUFXODWLRQ 0RLVWXUHDFFHOHUDWHVWKHPHWKDQRJHQLFSURFHVV  Temperature /DQGILOOEDFWHULDDUHWHPSHUDWXUHGHSHQGDQW7KH\DUHDEOHWRVXUYLYHDQGIXQFWLRQEHORZWKHIUHH]LQJ SRLQWEXWWKH\DOVRIXQFWLRQZHOODWWHPSHUDWXUHVXSWRƒ&$QDHURELFEDFWHULDSURGXFHVPDOODPRXQWV RIKHDWDQGPD\QRWEHDEOHWRPDLQWDLQWKHWHPSHUDWXUHRIDVKDOORZODQGILOOZKHQH[WHUQDOWHPSHUDWXUHV GHFUHDVHVR/)*JHQHUDWLRQPD\H[KLELWVHDVRQDOYDULDWLRQV6DWXUDWHGODQGILOOVPD\QRWDFKLHYHLGHDO WHPSHUDWXUHVEHFDXVHWKHEDFWHULDGRQRWJHQHUDWHVXIILFLHQWKHDWWRUDLVHWKHWHPSHUDWXUHRIWKHH[FHVV ZDWHU+LJKHUWHPSHUDWXUHVSURPRWHYRODWLOL]DWLRQDQGFKHPLFDOUHDFWLRQVZLWKWKHZDVWHVRWKHWUDFHJDV FRPSRQHQWRIODQGILOOJDVWHQGVWRLQFUHDVHZLWKKLJKHUODQGILOOWHPSHUDWXUHV Age of Landfill 7\SLFDOO\ODQGILOOVKDYHDQLQFUHDVLQJJHQHUDWLRQRIODQGILOOJDVIRUDQXPEHURI\HDUVXQWLOFORVXUHDW ZKLFKWLPHODQGILOOJDVJHQHUDWLRQUHDFKHVDSHDNDQGEHJLQVWRVXEVLGH$QHYDOXDWLRQRIWKHDJHRIWKH ODQGILOODQGXVHRIDODQGILOOJDVJHQHUDWLRQFXUYHFDQEHKHOSIXOLQGHWHUPLQLQJWKHOLNHOLKRRGRI VLJQLILFDQWODQGILOOJDVFRQFHQWUDWLRQVIURPWKHODQGILOO  Landfill Cap 7KHW\SHRUSUHVHQFHRIODQGILOOFRYHUFDQLQIOXHQFHODQGILOOJDVJHQHUDWLRQDQGPLJUDWLRQ$OWKRXJKDORZ SHUPHDELOLW\FDSZLOOUHGXFHPRLVWXUHDQGODQGILOOJDVJHQHUDWLRQRYHUWKHORQJHUWHUPLQLWLDOO\WKH LQVWDOODWLRQRIDODQGILOOFDSFRXOGGULYHODQGILOOJDVPLJUDWLRQIXUWKHUIURPWKHODQGILOOLQWKHVXEVXUIDFH ZLWKRXWSURSHUYHQWLODWLRQ HLWKHUSDVVLYHRUDFWLYH 7KLVLVHVSHFLDOO\WUXHLQWKHFDVHRIXQOLQHG XQYHQWHG ODQGILOOV  Water Table /DQGILOOJDVPRYHPHQWLQXQOLQHGODQGILOOVPD\EHLQIOXHQFHGE\JURXQGZDWHUWDEOHYDULDWLRQV$ULVLQJ ZDWHUWDEOHFRXOGFDXVHGLVSODFHPHQWDQGIRUFHXSZDUGPRYHPHQWRIODQGILOOJDV     Man-made and Natural Conduits 6WUXFWXUHVVXFKDVGUDLQVWUHQFKHVDQGEXULHGXWLOLW\FRUULGRUVFDQDFWDVFRQGXLWVIRUODQGILOOJDV PLJUDWLRQ*HRORJLFIHDWXUHVLQFOXGLQJIUDFWXUHGEHGURFNSRURXVVRLODQGSHUPHDEOHVWUDWDDOVRSURYLGH FRQGXLWVIRUODQGILOOJDVPLJUDWLRQ  Landfill Liner Conditions 7KHSUHVHQFHRID6XEWLWOH' RUHTXLYDOHQW ODQGILOOOLQHUKDVWKHFDSDELOLW\WROLPLWWKHODWHUDOPLJUDWLRQ RIODQGILOOJDVLQWKHVXEVXUIDFH8QOLQHGODQGILOOVKDYHQREDUULHUWRSUHYHQWODWHUDOODQGILOOJDVPLJUDWLRQ LQWKHVXEVXUIDFH  Weather Conditions %DURPHWULFSUHVVXUHDQGSUHFLSLWDWLRQKDYHVLJQLILFDQWHIIHFWVRQODQGILOOJDVPLJUDWLRQ,QFUHDVHG EDURPHWULFSUHVVXUH\LHOGVGHFUHDVHGODQGILOOJDVYHQWLQJIURPWKHVXEVXUIDFHXQWLOWKHSUHVVXUHZLWKLQWKH VXEVXUIDFHLVJUHDWHUWKDQWKHDWPRVSKHULF EDURPHWULF SUHVVXUH&RQYHUVHO\DVWKHEDURPHWULFSUHVVXUH GHFUHDVHVWKHODQGILOOZLOOYHQWWKHVWRUHGJDVXQWLOSUHVVXUHHTXLOLEULXPLVUHDFKHG&DSSLQJRIDODQGILOO FDQLQIOXHQFHWKHHIIHFWRIEDURPHWULFSUHVVXUHRQODQGILOOJDVPLJUDWLRQ*HQHUDOO\DPRUHSHUPHDEOH ODQGILOOFDSZLOODOORZJUHDWHULQIOXHQFHE\EDURPHWULFSUHVVXUHWKDQDOHVVSHUPHDEOHODQGILOOFDS    SECTION 3 – Current Solid Waste Section Rules Pertaining to Landfill Gas Monitoring Web link to the 15A NCAC 13B rules - KWWSSRUWDOQFGHQURUJZHEZPVZUXOHV 15A NCAC 13B .0101- DEFINITIONS   ([SORVLYHJDVPHDQV0HWKDQH &+    /RZHUH[SORVLYHOLPLW /(/ PHDQVWKHORZHVWSHUFHQWE\YROXPHRIDPL[WXUHRIH[SORVLYH JDVHVZKLFKZLOOSURSDJDWHDIODPHLQDLUDWGHJUHHV&HOVLXVDQGDWPRVSKHULFSUHVVXUH  .0503 - SITING AND DESIGN REQUIREMENTS FOR DISPOSAL FACILITIES   $VLWHVKDOOPHHWWKHIROORZLQJGHVLJQUHTXLUHPHQWV D 7KHFRQFHQWUDWLRQRIH[SORVLYHJDVHVJHQHUDWHGE\WKHVLWHVKDOOQRWH[FHHG L WZHQW\ILYHSHUFHQWRIWKHOLPLWIRUWKHJDVHVLQVLWHVWUXFWXUHV H[FOXGLQJJDVFRQWURORU UHFRYHU\V\VWHPFRPSRQHQWV DQG LL WKHORZHUH[SORVLYHOLPLWIRUWKHJDVHVDWWKHSURSHUW\ERXQGDU\ .0543 - CLOSURE AND POST-CLOSURE REQUIREMENTS FOR C&DLF FACILITIES  H 3RVWFORVXUHFULWHULD  )ROORZLQJFORVXUHRIHDFK& '/)XQLWWKHRZQHUDQGRSHUDWRUPXVWFRQGXFWSRVWFORVXUH FDUH3RVWFORVXUHFDUHPXVWEHFRQGXFWHGIRU\HDUVH[FHSWDVSURYLGHGXQGHU6XESDUDJUDSK   RIWKLV3DUDJUDSKDQGFRQVLVWRIDWOHDVWWKHIROORZLQJ & PDLQWDLQLQJDQGRSHUDWLQJWKHJDVPRQLWRULQJV\VWHPLQDFFRUGDQFHZLWKWKH UHTXLUHPHQWVRI5XOHRIWKLV6HFWLRQDQG   7KHOHQJWKRIWKHSRVWFORVXUHFDUHSHULRGPD\EH $ GHFUHDVHGE\WKH'LYLVLRQLIWKHRZQHURURSHUDWRUGHPRQVWUDWHVWKDW WKHUHGXFHGSHULRGLVVXIILFLHQWWRSURWHFWKXPDQKHDOWKDQGWKHHQYLURQPHQWDQGWKLV GHPRQVWUDWLRQLVDSSURYHGE\WKH'LYLVLRQRU % LQFUHDVHGE\WKH'LYLVLRQLIWKH'LYLVLRQGHWHUPLQHVWKDWWKHOHQJWKHQHGSHULRGLV QHFHVVDU\WRSURWHFWKXPDQKHDOWKDQGWKHHQYLURQPHQW .0544 - MONITORING PLANS AND REQUIREMENTS FOR C&DLF FACILITIES  G *DV&RQWURO3ODQ   2ZQHUVDQGRSHUDWRUVRIDOO& '/)XQLWVPXVWHQVXUHWKDW $ WKHFRQFHQWUDWLRQRIPHWKDQHJDVRURWKHUH[SORVLYHJDVHVJHQHUDWHGE\WKHIDFLOLW\ GRHVQRWH[FHHGSHUFHQWRIWKHORZHUH[SORVLYHOLPLWLQRQVLWHIDFLOLW\VWUXFWXUHV H[FOXGLQJJDVFRQWURORUUHFRYHU\V\VWHPFRPSRQHQWV  % WKHFRQFHQWUDWLRQRIPHWKDQHJDVRURWKHUH[SORVLYHJDVHVGRHVQRWH[FHHGWKHORZHU H[SORVLYHOLPLWIRUPHWKDQHRURWKHUH[SORVLYHJDVHVDWWKHIDFLOLW\SURSHUW\ERXQGDU\DQG & WKHIDFLOLW\GRHVQRWUHOHDVHPHWKDQHJDVRURWKHUH[SORVLYHJDVHVLQDQ\FRQFHQWUDWLRQ WKDWFDQEHGHWHFWHGLQRIIVLWHVWUXFWXUHV  2ZQHUVDQGRSHUDWRUVRIDOO& '/)XQLWVPXVWLPSOHPHQWDURXWLQHPHWKDQHPRQLWRULQJ SURJUDPWRHQVXUHWKDWWKHVWDQGDUGVRIWKLV3DUDJUDSKDUHPHW $ 7KHW\SHRIPRQLWRULQJPXVWEHGHWHUPLQHGEDVHGRQVRLOFRQGLWLRQVWKH +\GURJHRORJLFFRQGLWLRQVXQGHUDQGVXUURXQGLQJWKHIDFLOLW\K\GUDXOLFFRQGLWLRQVRQDQG VXUURXQGLQJWKHIDFLOLW\WKHORFDWLRQRIIDFLOLW\VWUXFWXUHVDQGSURSHUW\ERXQGDULHVDQGWKH ORFDWLRQRIDOORIIVLWHVWUXFWXUHVDGMDFHQWWRSURSHUW\ERXQGDULHV    % 7KHIUHTXHQF\RIPRQLWRULQJVKDOOEHTXDUWHUO\RUDVDSSURYHGE\WKH'LYLVLRQ  ,IPHWKDQHRUH[SORVLYHJDVOHYHOVH[FHHGLQJWKHOLPLWVVSHFLILHGLQ6XESDUDJUDSK G  RIWKLV 5XOHDUHGHWHFWHGWKHRZQHUDQGRSHUDWRUPXVW $ LPPHGLDWHO\WDNHDOOVWHSVQHFHVVDU\WRHQVXUHSURWHFWLRQRIKXPDQKHDOWKDQGQRWLI\ WKH'LYLVLRQ % ZLWKLQVHYHQGD\VRIGHWHFWLRQSODFHLQWKHRSHUDWLQJUHFRUGWKHPHWKDQHRUH[SORVLYH JDVOHYHOVGHWHFWHGDQGDGHVFULSWLRQRIWKHVWHSVWDNHQWRSURWHFWKXPDQKHDOWKDQG & ZLWKLQGD\VRIGHWHFWLRQLPSOHPHQWDUHPHGLDWLRQSODQIRUWKHPHWKDQHRU H[SORVLYHJDVUHOHDVHVSODFHDFRS\RIWKHSODQLQWKHRSHUDWLQJUHFRUGDQGQRWLI\WKH 'LYLVLRQWKDWWKHSODQKDVEHHQLPSOHPHQWHG7KHSODQPXVWGHVFULEHWKHQDWXUHDQGH[WHQW RIWKHSUREOHPDQGWKHSURSRVHGUHPHG\  %DVHGRQWKHQHHGIRUDQH[WHQVLRQGHPRQVWUDWHGE\WKHRSHUDWRUWKH'LYLVLRQPD\HVWDEOLVK DOWHUQDWLYHVFKHGXOHVIRUGHPRQVWUDWLQJFRPSOLDQFHZLWK3DUWV  % DQG  & RIWKLV3DUDJUDSK  )RUSXUSRVHVRIWKLV,WHPORZHUH[SORVLYHOLPLWPHDQVWKHORZHVWSHUFHQWE\YROXPHRID PL[WXUHRIH[SORVLYHJDVHVLQDLUWKDWZLOOSURSDJDWHDIODPHDW&DQGDWPRVSKHULFSUHVVXUH .0566 - OPERATIONAL REQUIREMENTS FOR LAND CLEARING/INERT DEBRIS (LCID) LANDFILLS   7KHFRQFHQWUDWLRQRIH[SORVLYHJDVHVJHQHUDWHGE\WKHIDFLOLW\VKDOOQRWH[FHHG D 7ZHQW\ILYHSHUFHQWRIWKHORZHUH[SORVLYHOLPLWIRUWKHJDVHVLQIDFLOLW\VWUXFWXUHV E 7KHORZHUH[SORVLYHOLPLWIRUWKHJDVHVDWWKHSURSHUW\ERXQGDU\ .1626 – OPERATIONAL REQUIREMENTS FOR MSWLF FACILITIES   ([SORVLYHJDVHVFRQWURO D 2ZQHUVRURSHUDWRUVRIDOO06:/)XQLWVPXVWHQVXUHWKDW L 7KHFRQFHQWUDWLRQRIPHWKDQHJDVJHQHUDWHGE\WKHIDFLOLW\GRHVQRWH[FHHGSHUFHQW RIWKHORZHUH[SORVLYHOLPLWIRUPHWKDQHLQIDFLOLW\VWUXFWXUHV H[FOXGLQJJDVFRQWURORU UHFRYHU\V\VWHPFRPSRQHQWV DQG LL 7KHFRQFHQWUDWLRQRIPHWKDQHJDVGRHVQRWH[FHHGWKHORZHUH[SORVLYHOLPLWIRU PHWKDQHDWWKHIDFLOLW\SURSHUW\ERXQGDU\ E 2ZQHUVRURSHUDWRUVRIDOO06:/)XQLWVPXVWLPSOHPHQWDURXWLQHPHWKDQHPRQLWRULQJ SURJUDPWRHQVXUHWKDWWKHVWDQGDUGVRI  D DUHPHW$SHUPDQHQWPRQLWRULQJV\VWHPVKDOOEH FRQVWUXFWHGRQRUEHIRUH2FWREHU$WHPSRUDU\PRQLWRULQJV\VWHPVKDOOEHXVHGSULRUWR FRQVWUXFWLRQRIWKHSHUPDQHQWV\VWHP L 7KHW\SHDQGIUHTXHQF\RIPRQLWRULQJPXVWEHGHWHUPLQHGEDVHGRQWKHIROORZLQJ IDFWRUV $ 6RLOFRQGLWLRQV % 7KHK\GURJHRORJLFFRQGLWLRQVVXUURXQGLQJWKHIDFLOLW\ & 7KHK\GUDXOLFFRQGLWLRQVVXUURXQGLQJWKHIDFLOLW\DQG ' 7KHORFDWLRQRIIDFLOLW\VWUXFWXUHVDQGSURSHUW\ERXQGDULHV LL 7KHPLQLPXPIUHTXHQF\RIPRQLWRULQJVKDOOEHTXDUWHUO\ F ,IPHWKDQHJDVOHYHOVH[FHHGLQJWKHOLPLWVVSHFLILHGLQ  D DUHGHWHFWHGWKHRZQHURU RSHUDWRUPXVW L ,PPHGLDWHO\WDNHDOOQHFHVVDU\VWHSVWRHQVXUHSURWHFWLRQRIKXPDQKHDOWKDQGQRWLI\WKH 'LYLVLRQ LL :LWKLQVHYHQGD\VRIGHWHFWLRQSODFHLQWKHRSHUDWLQJUHFRUGWKHPHWKDQHJDVOHYHOV GHWHFWHGDQGDGHVFULSWLRQRIWKHVWHSVWDNHQWRSURWHFWKXPDQKHDOWKDQG LLL :LWKLQGD\VRIGHWHFWLRQLPSOHPHQWDUHPHGLDWLRQSODQIRUWKHPHWKDQHJDV UHOHDVHVSODFHDFRS\RIWKHSODQLQWKHRSHUDWLQJUHFRUGDQGQRWLI\WKH'LYLVLRQWKDWWKH    SODQKDVEHHQLPSOHPHQWHG7KHSODQVKDOOGHVFULEHWKHQDWXUHDQGH[WHQWRIWKHSUREOHP DQGWKHSURSRVHGUHPHG\ LY %DVHGRQWKHQHHGIRUDQH[WHQVLRQGHPRQVWUDWHGE\WKHRSHUDWRUWKH'LYLVLRQPD\ HVWDEOLVKDOWHUQDWLYHVFKHGXOHVIRUGHPRQVWUDWLQJFRPSOLDQFHZLWK  F LL DQG LLL RIWKLV 5XOH G )RUSXUSRVHVRIWKLV,WHPORZHUH[SORVLYHOLPLWPHDQVWKHORZHVWSHUFHQWE\YROXPHRID PL[WXUHRIH[SORVLYHJDVHVLQDLUWKDWZLOOSURSDJDWHDIODPHDWƒ&DQGDWPRVSKHULFSUHVVXUH   5HFRUGNHHSLQJUHTXLUHPHQWV D 7KHRZQHURURSHUDWRURID06:/)XQLWPXVWUHFRUGDQGUHWDLQDWWKHIDFLOLW\RUDQDOWHUQDWLYH ORFDWLRQQHDUWKHIDFLOLW\DSSURYHGE\WKH'LYLVLRQLQDQRSHUDWLQJUHFRUGWKHIROORZLQJ LQIRUPDWLRQDVLWEHFRPHVDYDLODEOH LLL *DVPRQLWRULQJUHVXOWVDQGDQ\UHPHGLDWLRQSODQVUHTXLUHGE\,WHP  RIWKLV5XOH  .1627 – CLOSURE AND POST CLOSURE REQUIREMENTS FOR MSWLF ACTIVITES  G 3RVW&ORVXUH&ULWHULD  )ROORZLQJFORVXUHRIHDFK06:/)XQLWWKHRZQHURURSHUDWRUVKDOOFRQGXFWSRVWFORVXUHFDUH 3RVWFORVXUHFDUHVKDOOEHFRQGXFWHGIRU\HDUVH[FHSWDVSURYLGHGXQGHU6XESDUDJUDSK  RI WKLV3DUDJUDSKDQGFRQVLVWRIDWOHDVWWKHIROORZLQJ ' 0DLQWDLQLQJDQGRSHUDWLQJWKHJDVPRQLWRULQJV\VWHPLQDFFRUGDQFHZLWKWKH UHTXLUHPHQWVRI5XOHRIWKLV6HFWLRQ   7KHOHQJWKRIWKHSRVWFORVXUHFDUHSHULRGPD\EH $ 'HFUHDVHGE\WKH'LYLVLRQLIWKHRZQHURURSHUDWRUGHPRQVWUDWHVWKDWWKHUHGXFHG SHULRGLVVXIILFLHQWWRSURWHFWKXPDQKHDOWKDQGWKHHQYLURQPHQWDQGWKLVGHPRQVWUDWLRQLV DSSURYHGE\WKH'LYLVLRQRU % ,QFUHDVHGE\WKH'LYLVLRQLIWKH'LYLVLRQGHWHUPLQHVWKDWWKHOHQJWKHQHGSHULRGLV QHFHVVDU\WRSURWHFWKXPDQKHDOWKDQGWKHHQYLURQPHQW  )ROORZLQJFRPSOHWLRQRIWKHSRVWFORVXUHFDUHSHULRGIRUHDFK06:/)XQLWWKHRZQHURU RSHUDWRUVKDOOQRWLI\WKH'LYLVLRQWKDWDFHUWLILFDWLRQVLJQHGE\DUHJLVWHUHGSURIHVVLRQDOHQJLQHHU YHULI\LQJWKDWSRVWFORVXUHFDUHKDVEHHQFRPSOHWHGLQDFFRUGDQFHZLWKWKHSRVWFORVXUHSODQKDV EHHQSODFHGLQWKHRSHUDWLQJUHFRUG NOTES: %DVHGRQWKHUHIHUHQFHGUXOHVDERYHWKHIROORZLQJZRUGVSKUDVHVDUHSUHVHQWO\LQWKH6ROLG:DVWH 6HFWLRQUXOHVSHUWDLQLQJWRPHWKDQHDQGH[SORVLYHODQGILOOJDV  5XOH  VWDWHV“Explosive gas means Methane (CH)” 5XOH  D UHIHUVWR“explosive gases” 5XOH G UHIHUVWR³Gas Control Plan” 5XOH G  UHIHUVWR“methane or other explosive gases” 5XOH G  UHIHUVWR³methane monitoring program´ 5XOH G  UHIHUVWR“methane or explosive gas levels´ 5XOH  UHIHUVWR“explosive gases” 5XOH  UHIHUVWR“explosive gases control” 5XOH  DE UHIHUVWR³methane monitoring”DQG³methane monitoring program”.    Monitoring Goals /DQGILOOGHVLJQDQGODQGILOOJDVPRQLWRULQJUHJXODWLRQVLQ1RUWK&DUROLQDUHTXLUHWKDWWKHUHQRWEHDQ H[FHHGDQFHRIRIWKH/RZHU([SORVLRQ/LPLW /(/  HTXLYDOHQWWRPHWKDQH DWWKHSURSHUW\ ERXQGDU\RU/(/LQRQVLWHVWUXFWXUHV7KHVHUHJXODWLRQVZHUHGHYHORSHGRYHUWLPHWRSURWHFWWKH KHDOWKDQGVDIHW\RIWKHFLWL]HQVRI1RUWK&DUROLQDDQGWKH86IURPWKHDVSK\[LDWLRQDQGH[SORVLYH KD]DUGVRIODQGILOOJDV NC Rule History $UHYLHZRI1&ODQGILOOJXLGDQFHGRFXPHQWVDQGUHJXODWLRQVIURPWRWKHSUHVHQWLQGLFDWHVWKDWIURP WKURXJKWKHUHZDVQRPHQWLRQRIGHVLJQUHTXLUHPHQWVUHJDUGLQJWKHFRQWURORIODQGILOOJDVQRU ZHUHWKHUHDQ\ODQGILOOPRQLWRULQJUHTXLUHPHQWVIRUODQGILOOJDV,QWKHUHJXODWLRQVZHUHFKDQJHGWR UHTXLUHWKDWVDQLWDU\ODQGILOOGHVLJQSUHYHQWODQGILOOJDVFRQFHQWUDWLRQVRI/(/DWWKHSURSHUW\ ERXQGDU\OLQHDQGLQVLGHRQVLWHVWUXFWXUHV$OWKRXJKDGHVLJQUHTXLUHPHQWZDVDGGHGQRGHVLJQ UHTXLUHPHQWZDVHVWDEOLVKHGWRGHWHUPLQHLIWKHGHVLJQUHTXLUHPHQWZDVEHLQJPHW,QZLWKWKH HVWDEOLVKPHQWRIUXOHVUHTXLUHPHQWVIRUGHVLJQVWROLPLWODQGILOOJDVOHYHOVWREHORZDWWKH SURSHUW\ERXQGDU\OLQHDQGLQRQVLWHVWUXFWXUHVDQGPRQLWRULQJRIODQGILOOJDVFRQFHQWUDWLRQVDURXQG WKHSHULPHWHURIWKHODQGILOODQGLQVLGHRQVLWHVWUXFWXUHVZHUHDGRSWHG    SECTION 4 – Landfill Gas Incidents and Explosions Hazards Involving Landfill Gas /DQGILOOILUHVPD\RUPD\QRWEHGLUHFWO\FDXVHGE\ODQGILOOJDV7KHSULPDU\FRQFHUQZLWKWKHVHILUHVLV DLUFRQWDPLQDWLRQIURPWKHUHVXOWLQJVPRNHKRZHYHUWKH\DOVRSUHVHQWDYDULHW\RIDGGLWLRQDOSUREOHPV,Q DGGLWLRQWRFRQFHUQVZLWKFRQWDLQLQJDQGH[WLQJXLVKLQJODQGILOOILUHVSRWHQWLDOUHDFWLRQVLQYROYLQJ XQNQRZQFKHPLFDOVLQWKHODQGILOOFDQFDXVHXQFHUWDLQKD]DUGV'LVFDUGHGFRQVXPHUSURGXFWVLQD ODQGILOOVXFKDVSHVWLFLGHVSDLQWVVROYHQWVFOHDQHUVDQGRWKHUPDWHULDOFDQEHWKHVRXUFHRIFKHPLFDO UHOHDVHV+HDWIURPWKHILUHFDQFDXVHFKHPLFDOVWRYRODWLOL]HEUHDNGRZQDQGHQWHUWKHHQYLURQPHQW$OVR WREHFRQVLGHUHGLVWKHSUHVHQFHRIRWKHUFRPEXVWLEOHJDVHVLQDGGLWLRQWRPHWKDQH:KHQHYHUDQ HQYLURQPHQWDOLQYHVWLJDWLRQRIDODQGILOOLVSURPSWHGE\RGRURXVFRPSRXQGVRUH[SORVLYHJDVHVWKH SUHVHQFHRIWR[LFVXEVWDQFHVVKRXOGDOVREHLQYHVWLJDWHG2QHH[DPSOHLVK\GURJHQVXOILGH +6 WKDWFDQ FDXVHDVSK\[LDWLRQDQGLVIODPPDEOH$QDQDO\VLVVKRXOGLQFOXGHDON\OEHQ]HQHVVXOIXUFRPSRXQGVYLQ\O FKORULGHDQGPHWKDQHDQGRWKHUSURGXFWVDVVRFLDWHGZLWKLQGXVWULDOZDVWHVFRQVWUXFWLRQDQGGHEULV ZDVWHDQGQRUPDORUJDQLFDQGLQRUJDQLFZDVWH  )LUHVDQGH[SORVLRQKD]DUGVEHFRPHDFRQFHUQZKHQJDVHVFROOHFWLQFRQILQHGVSDFHV%XLOGLQJV EDVHPHQWVDQGSLWVDUHW\SLFDOO\UHJDUGHGDVFRQILQHGVSDFHV+RZHYHUODQGILOOJDVHVDOVRFROOHFWLQDQG PLJUDWHWRFUDFNVLQWKHODQGILOOFRYHUOHDFKDWH³VSULQJV´FUDFNVLQDGMDFHQWVWUXFWXUHVSDYHGSDUNLQJ DUHDVHWF)LUHVFDQRFFXURQWKHVXUIDFHDQGXQGHUJURXQG6XUIDFHILUHVLQYROYHUHFHQWO\EXULHGZDVWH QHDUWKHVXUIDFHLQDQDHURELFGHFRPSRVLQJOD\HUW\SLFDOO\WRIHHWEHORZJURXQG7KHVHILUHVFDQEH LQWHQVLILHGE\VXEVXUIDFHODQGILOOJDVDQGVSUHDGWKURXJKRXWWKHODQGILOO6XEVXUIDFHILUHVRFFXUGHHSHU ZLWKLQWKHODQGILOOLQYROYHPDWHULDOEXULHGIRUPRQWKVRU\HDUVDQGFDQEXUQIRUGD\VDQGPRQWKV  7KHIROORZLQJLVDEULHIVXPPDU\RIVRPHLQFLGHQWVLQYROYLQJODQGILOOJDVPLJUDWLRQIURPODQGILOOV  )RXUHPSOR\HHVGLHGDVDUHVXOWRIH[SRVXUHWRKLJKFRQFHQWUDWLRQVRIK\GURJHQVXOILGHZKLOH DWWHPSWLQJWRUHSDLUDOHDFKDWHSXPSDWD& 'ODQGILOOLQ6XSHULRU:LVFRQVLQ -RXUQDORI (QYLURQPHQWDO+HDWK   $Q\HDUROGJLUOZDVEXUQHGRQKHUDUPVDQGOHJVZKHQSOD\LQJLQDQ$WODQWD*HRUJLD SOD\JURXQG7KHDUHDZDVUHSRUWHGO\XVHGDVDQLOOHJDOGXPSLQJJURXQGPDQ\\HDUVDJR $WODQWD -RXUQDO&RQVWLWXWLRQ   :KLOHSOD\LQJVRFFHULQDSDUNEXLOWRYHUDQROGODQGILOOLQ&KDUORWWH1RUWK&DUROLQDDZRPDQZDV VHULRXVO\EXUQHGE\DPHWKDQHH[SORVLRQ &KDUORWWH2EVHUYHU   2IIVLWHODQGILOOJDVPLJUDWLRQLVVXVSHFWHGWRKDYHFDXVHGDKRXVHWRH[SORGHLQ3LWWVEXUJK 3HQQV\OYDQLD (3$   /DQGILOOJDVPLJUDWHGWRDQGGHVWUR\HGRQHKRXVHQHDUDODQGILOOLQ$NURQ2KLR7HQKRXVHVZHUH WHPSRUDULO\HYDFXDWHG (3$   $QH[SORVLRQGHVWUR\HGDUHVLGHQFHDFURVVWKHVWUHHWIURPDODQGILOOLQ&LQFLQQDWL2KLR0LQRU LQMXULHVZHUHUHSRUWHG (3$   ,Q6KHULGDQ&RORUDGRODQGILOOJDVDFFXPXODWHGLQDVWRUPGUDLQSLSHWKDWUDQWKURXJKDODQGILOO$Q H[SORVLRQRFFXUUHGZKHQVHYHUDOFKLOGUHQSOD\LQJLQWKHSLSHOLWDFDQGOHUHVXOWLQJLQVHULRXV LQMXU\     0HWKDQHJDVPLJUDWHGIURPDQDGMDFHQWODQGILOOLQWRWKHEDVHPHQWRIDQDUPRU\LQ:LQVWRQ6DOHP 1RUWK&DUROLQD$OLWFLJDUHWWHFDXVHGWKHJDVWRH[SORGHNLOOLQJWKUHHPHQDQGVHULRXVO\LQMXULQJ ILYHRWKHUV 86$&(    SECTION 5 - Landfill Gas Monitoring Wells Locations /DQGILOOJDVPRQLWRULQJZHOOORFDWLRQVZLOOEHVLWHVSHFLILFGHSHQGLQJXSRQVLWHJHRORJ\GHSWKWR JURXQGZDWHUVXUIDFHZDWHUIHDWXUHVRQVLWHDQGRIIVLWHVWUXFWXUHVDQGVHQVLWLYHUHFHSWRUV7KHODQGILOO JDVPRQLWRULQJZHOOVPXVWEHVSDFHGQRPRUHWKDQIHHWDSDUWGHSHQGLQJXSRQVLWHVSHFLILFV$UHDGLO\ DFFHVVLEOHXQREVWUXFWHGSDWKPXVWEHPDLQWDLQHGVRWKDWODQGILOOJDVPRQLWRULQJZHOOVDUHDOZD\V DFFHVVLEOHXVLQJIRXUZKHHOGULYHYHKLFOHV5HJDUGOHVVRIVLWHVSHFLILFVWKHSHUPLWWHHPXVWREWDLQ DSSURYDOIURPWKH6ROLG:DVWH6HFWLRQIRUWKHGHVLJQDQGLQVWDOODWLRQRIDQ\ODQGILOOJDVPRQLWRULQJZHOO V\VWHP Well Construction and Installation /DQGILOOJDVPRQLWRULQJZHOOVDUHWKHVDPHDVJURXQGZDWHUPRQLWRULQJZHOOVZLWKWZRH[FHSWLRQV/DQGILOO JDVPRQLWRULQJZHOOVDUHLQVWDOOHGMXVWDERYHWKHZDWHUWDEOHZLWKLQWKHXQVDWXUDWHG]RQHDQGDUHHTXLSSHG ZLWKDVWRSFRFNYDOYHRUDTXLFNFRQQHFWFRXSOLQJRQWKHFDSZKLFKDOORZVIRUDFFXUDWHODQGILOOJDV PHDVXUHPHQWV7KHVWRSFRFNYDOYHPXVWEHHTXLSSHGZLWKIOH[LEOHWXELQJDQGDEDUEFRQQHFWLRQWKDWZLOO ILWWKHJDVPHWHU¶VLQOHWWXEH7KHVWRSFRFNYDOYHRUDTXLFNFRQQHFWFRXSOLQJPXVWEHFORVHGEHWZHHQ PRQLWRULQJHYHQWV7KHODQGILOOJDVPRQLWRULQJZHOOPXVWDOVREHFDSSHGORFNHGDQGODEHOHGZLWKD SHUPDQHQWO\DIIL[HGLGHQWLILFDWLRQSODWHVWDWLQJWKHZHOOFRQWUDFWRUQDPHDQGFHUWLILFDWLRQQXPEHUGDWHRI ZHOOFRPSHWLWLRQWRWDOGHSWKRIZHOOVFUHHQOHQJWKDQGZHOO,'QXPEHU6HHGHWDLOHGVFKHPDWLFVRID ODQGILOOJDVPRQLWRULQJZHOO )LJXUH  7KHGHSWKRIHDFKODQGILOOJDVPRQLWRULQJZHOOZLOOEHVLWHVSHFLILFGHSHQGLQJXSRQGHSWKWRJURXQGZDWHU /DQGILOOJDVPRQLWRULQJZHOOVPXVWEHFRQVWUXFWHGWKHVDPHDVJURXQGZDWHUPRQLWRULQJZHOOVDVGHVFULEHG LQ$1&$&6XEFKDSWHU&7\SLFDOO\ODQGILOOJDVPRQLWRULQJZHOOVPXVWEHLQVWDOOHGXVLQJ´39& SLSLQJDQGVFUHHQ7KHVFUHHQOHQJWKDOVRVLWHVSHFLILFPXVWVSDQWKHPDMRULW\RIWKHXQVDWXUDWHG]RQH ZKLOHVWLOODOORZLQJIRUSURSHUZHOOFRQVWUXFWLRQ$1RUWK&DUROLQD3URIHVVLRQDO*HRORJLVWRU3URIHVVLRQDO (QJLQHHUPXVWEHSUHVHQWWRVXSHUYLVHWKHLQVWDOODWLRQRIDOOODQGILOOJDVPRQLWRULQJZHOOV7KHH[DFW ORFDWLRQVVFUHHQHGLQWHUYDOVDQGQHVWLQJRIWKHZHOOVPXVWEHDSSURYHGE\WKH6ROLG:DVWH6HFWLRQ +\GURJHRORJLVWSULRUWRODQGILOOJDVPRQLWRULQJZHOOLQVWDOODWLRQ(DFKODQGILOOJDVPRQLWRULQJZHOOPXVW EHVXUYH\HGIRUORFDWLRQDQGHOHYDWLRQE\D1RUWK&DUROLQD5HJLVWHUHG/DQG6XUYH\RU:LWKLQWKLUW\   GD\VRIWKHFRPSOHWHGFRQVWUXFWLRQRIHDFKQHZODQGILOOJDVPRQLWRULQJZHOOWKHERULQJORJDQGDGLDJUDP RIHDFKZHOOLQFOXGLQJEXWQRWOLPLWHGWRWRWDOGHSWKVFUHHQHGLQWHUYDODQGGLVWDQFHDERYHVHDVRQDOKLJK ZDWHUWDEOHPXVWEHVXEPLWWHGWRWKH6ROLG:DVWH6HFWLRQ7KHVXEPLWWDOPXVWDOVRLQFOXGHDVFDOHG WRSRJUDSKLFPDSVKRZLQJWKHORFDWLRQDQGLGHQWLILFDWLRQRIQHZH[LVWLQJDQGDEDQGRQHGODQGILOOJDV PRQLWRULQJZHOOV Nested and Clustered Landfill Gas Monitoring Wells 1HVWHGDQGRUFOXVWHUHGODQGILOOJDVPRQLWRULQJZHOOVPD\EHUHTXLUHGLQXQVDWXUDWHG]RQHVRIIHHWRU PRUHWRPHDVXUHVSHFLILFGHSWKVRIWKHXQVDWXUDWHG]RQH,QLWLDOO\WKHLQVWDOODWLRQRIRQHORQJVFUHHQVKDOO EHVXIILFLHQW,IDPRQLWRULQJHYHQWVKRZVDQH[FHHGDQFHRIWKHORZHUH[SORVLYHOLPLWWKHQWKH6ROLG :DVWH6HFWLRQPD\UHTXLUHWKHLQVWDOODWLRQRIQHVWHGDQGRUFOXVWHUHGODQGILOOJDVPRQLWRULQJZHOOV Abandonment of Wells $QDEDQGRQPHQWUHFRUGPXVWEHVXEPLWWHGWRWKH6ROLG:DVWH6HFWLRQZLWKLQ WKLUW\ GD\VRIWKH DEDQGRQPHQWRIDODQGILOOJDVPRQLWRULQJZHOO7KHODQGILOOJDVPRQLWRULQJZHOO V PXVWEHRYHUGULOOHG DQGVHDOHGZLWKJURXWLQDFFRUGDQFHZLWK$1&$&& G DQGFHUWLILHGE\D1RUWK&DUROLQD 3URIHVVLRQDO*HRORJLVWRU3URIHVVLRQDO(QJLQHHU  SECTION 6 – Landfill Gas Monitoring Instrumentation 7KHSHUVRQXVLQJWKHODQGILOOJDVPRQLWRULQJLQVWUXPHQWPXVWXQGHUVWDQGWKHSULQFLSOHVRIRSHUDWLRQDQG IROORZWKHPDQXIDFWXUHU VLQVWUXFWLRQV7KLVLQFOXGHVFDOLEUDWLQJWKHLQVWUXPHQWDFFRUGLQJWRWKH PDQXIDFWXUHU¶VVSHFLILFDWLRQV,QFOXGHWKHIROORZLQJRQWKHWRSSRUWLRQRIWKHODQGILOOJDVPRQLWRULQJ IRUP 6HHH[DPSOHEHORZ IDFLOLW\QDPHSHUPLWQXPEHUW\SHDQGVHULDOQXPEHURIJDVPRQLWRULQJ LQVWUXPHQWFDOLEUDWLRQGDWHRIWKHLQVWUXPHQWGDWHDQGWLPHRIILHOGFDOLEUDWLRQW\SHRIJDVXVHGIRUILHOG FDOLEUDWLRQ RU H[SLUDWLRQGDWHRIILHOGFDOLEUDWLRQJDVFDQLVWHUGDWHRIODQGILOOJDV PRQLWRULQJHYHQWQDPHDQGSRVLWLRQRIVDPSOHFROOHFWRUSXPSUDWHRILQVWUXPHQWEHLQJXVHGDPELHQWDLU WHPSHUDWXUHDQGJHQHUDOZHDWKHUFRQGLWLRQV9HULILFDWLRQWKDWWKHHTXLSPHQWZDVFDOLEUDWHGLQ DFFRUGDQFHZLWKWKHPDQXIDFWXUHU¶VVSHFLILFDWLRQVLVDOVRUHTXLUHG:KHQGHWHUPLQLQJZKLFKILHOG FDOLEUDWLRQJDVWRXVHWDNHLQWRFRQVLGHUDWLRQWKHH[SHFWHGOHYHOVRIPHWKDQHLQWKHODQGILOOJDVPRQLWRULQJ ZHOOV,IWKHPHWKDQHOHYHOVDUHH[SHFWHGWREHORZXVHWKHJDVFDQLVWHU &2&+ ,I WKHPHWKDQHOHYHOVDUHH[SHFWHGWREHKLJKXVHWKHJDVFDQLVWHU &2&+  )RUHYHU\ODQGILOOJDVPRQLWRULQJZHOOSOHDVHLQFOXGHWKHIROORZLQJYHULILFDWLRQRIVDPSOHWXEHSXUJH SULRUWRHDFKVDPSOHWDNHQ VKRXOGEHRQHPLQXWH WKHWLPHSXPSHGLQVHFRQGV VKRXOGEHDWOHDVWRQH PLQXWH EDURPHWULFSUHVVXUHWLPHVWDELOL]HGUHDGLQJFROOHFWHGSHUFHQWORZHUH[SORVLYHOLPLWSHUFHQW PHWKDQHE\YROXPHSHUFHQWR[\JHQSHUFHQWFDUERQGLR[LGHDQGDQ\REVHUYDWLRQVRUFRPPHQWV 7KHODQGILOOJDVPRQLWRULQJGDWDIRUP 6HHH[DPSOHEHORZ DQGUHVXOWVVKRXOGEHUHWDLQHGLQWKHIDFLOLW\¶V RSHUDWLQJUHFRUGXQOHVVDQH[FHHGDQFHKDVRFFXUUHGDQGRULVUHTXHVWHGE\WKH6ROLG:DVWH6HFWLRQ /DQGILOOJDVPRQLWRULQJUHDGLQJVIURPQRQFDOLEUDWHGRULQDFFXUDWHO\FDOLEUDWHGLQVWUXPHQWVDUHQRW UHOLDEOHDQGZLOOWKHUHIRUHEHUHMHFWHGE\WKH6ROLG:DVWH6HFWLRQ/DQGILOOJDVPRQLWRULQJUHDGLQJV FROOHFWHGZLWKPRQLWRULQJHTXLSPHQWWKDWZDVQRWGHVLJQHGIRUODQGILOOJDVPRQLWRULQJZLOODOVREH UHMHFWHGE\WKH6ROLG:DVWH6HFWLRQ7KHUHDUHVHYHUDOGLIIHUHQWODQGILOOJDVPRQLWRULQJLQVWUXPHQWVRQ WKHPDUNHWZKLFKPD\EHXVHGLQRUGHUWRREWDLQDOORIWKHLQIRUPDWLRQUHTXLUHGE\WKH6ROLG:DVWH 6HFWLRQ Monitoring Times 0RQLWRULQJWLPHVDUHDOVRLPSRUWDQWZKHQFRQGXFWLQJODQGILOOJDVPRQLWRULQJ3URSHUODQGILOOJDV PRQLWRULQJVKRXOGLQFOXGHVDPSOLQJGXULQJWLPHVZKHQODQGILOOJDVLVPRVWOLNHO\WRPLJUDWH/DQGILOOJDV FDQPLJUDWHDQGDFFXPXODWHQRWRQO\LQODQGILOOJDVPRQLWRULQJZHOOVLWFDQDOVRPLJUDWHDQGDFFXPXODWH LQEXLOGLQJVDQGRWKHUVWUXFWXUHV%HFDXVHVXEVXUIDFHJDVSUHVVXUHVDUHFRQVLGHUHGWREHDWDPD[LPXP GXULQJWKHDIWHUQRRQKRXUVPRQLWRULQJVKRXOGEHFRQGXFWHGLQWKHDIWHUQRRQRUZKHQHYHUWKHEDURPHWULF SUHVVXUHLVORZ 6FLHQWLILFHYLGHQFHDOVRLQGLFDWHVWKDWZHDWKHUDQGVRLOFRQGLWLRQVLQIOXHQFHWKHPLJUDWLRQRIODQGILOOJDV %DURPHWULFSUHVVXUHDQGSUHFLSLWDWLRQKDYHVLJQLILFDQWHIIHFWVRQODQGILOOJDVPLJUDWLRQ,QFUHDVHG EDURPHWULFSUHVVXUHJHQHUDWHVGHFUHDVHGODQGILOOJDVYHQWLQJIURPWKHVXEVXUIDFHXQWLOWKHSUHVVXUHZLWKLQ WKHVXEVXUIDFHLVJUHDWHUWKDQWKHDWPRVSKHULF EDURPHWULF SUHVVXUH2QWKHRWKHUKDQGZKHQWKH EDURPHWULF SUHVVXUHGHFUHDVHVWKHODQGILOOZLOOYHQWWKHVWRUHGJDVXQWLODSUHVVXUHHTXLOLEULXPLVUHDFKHG &DSSLQJRIDODQGILOOFDQLQIOXHQFHWKHHIIHFWRIEDURPHWULFSUHVVXUHRQODQGILOOJDVPLJUDWLRQ *HQHUDOO\ DPRUHSHUPHDEOHODQGILOOFDSZLOODOORZJUHDWHULQIOXHQFHE\EDURPHWULFSUHVVXUHWKDQ DOHVVSHUPHDEOH ODQGILOOFDS$VDUHVXOWODQGILOOJDVPRQLWRULQJVKRXOGEHFRQGXFWHGZKHQWKHEDURPHWULFSUHVVXUHLVORZ DQGVRLOVDUHVDWXUDWHG'XULQJWKHZLQWHUVHDVRQZKHQVQRZFRYHULVMXVWEHJLQQLQJWRPHOWRUZKHQWKH JURXQGLVIUR]HQRULFHFRYHUHGODQGILOOJDVPRQLWRULQJVKRXOGEHFRQGXFWHGZKHQWKHEDURPHWULF SUHVVXUHLVORZ  Landfill Gas Sampling Procedures $Q\DFFXPXODWLRQRIODQGILOOJDVLQWKHODQGILOOJDVPRQLWRULQJZHOOVLVWKHUHVXOWRIODQGILOOJDVPLJUDWLRQ 7KHIROORZLQJSURFHGXUHLVDUHFRPPHQGHGH[DPSOHIRUFRQGXFWLQJODQGILOOJDVPRQLWRULQJZHOO VDPSOLQJEXWDOZD\VUHDGDQGIROORZWKHPDQXIDFWXUHU¶VLQVWUXFWLRQVEHFDXVHHDFKLQVWUXPHQWZLOOEH GLIIHUHQW Step 1±&DOLEUDWHWKHLQVWUXPHQWDFFRUGLQJWRWKHPDQXIDFWXUHU¶VVSHFLILFDWLRQV,QDGGLWLRQSUHSDUHWKH LQVWUXPHQWIRUPRQLWRULQJE\DOORZLQJLWWRSURSHUO\ZDUPXSDVGLUHFWHGE\WKHPDQXIDFWXUHU0DNHVXUH WKHVWDWLFSUHVVXUHVKRZVDUHDGLQJRI]HURRQWKHLQVWUXPHQWSULRUWRWDNLQJWKHILUVWVDPSOH Step 2±3XUJHVDPSOHWXEHIRUDWOHDVWRQHPLQXWHSULRUWRWDNLQJUHDGLQJ&RQQHFWWKHLQVWUXPHQWWXELQJ WRWKHODQGILOOJDVPRQLWRULQJZHOOFDSILWWHGZLWKDVWRSFRFNYDOYHRUTXLFNFRQQHFWFRXSOLQJ Step 3±2SHQWKHYDOYHDQGUHFRUGWKHLQLWLDOUHDGLQJDQGWKHQWKHVWDELOL]HGUHDGLQJ$VWDEOHUHDGLQJLV RQHWKDWGRHVQRWYDU\PRUHWKDQSHUFHQWE\YROXPHRQWKHLQVWUXPHQW¶VVFDOH Step 45HFRUGWKHVWDELOL]HGUHDGLQJLQFOXGLQJWKHR[\JHQFRQFHQWUDWLRQDQGEDURPHWULFSUHVVXUH$ SURSHUUHDGLQJVKRXOGKDYHWZRSHUFHQWR[\JHQE\YROXPHRUOHVV,IOHYHOVRIR[\JHQDUHKLJKHULWPD\ LQGLFDWHWKDWDLULVEHLQJGUDZQLQWRWKHV\VWHPJLYLQJDIDOVHUHDGLQJ Step 5±7XUQWKHVWRSFRFNYDOYHWRWKHRIISRVLWLRQDQGGLVFRQQHFWWKHWXELQJ Step 6±3URFHHGWRWKHQH[WODQGILOOJDVPRQLWRULQJZHOODQGUHSHDW6WHSV± Landfill Gas Constituent Sampling and Analysis 6DPSOLQJRIODQGILOOJDVWRGHWHUPLQHYROXPHSHUFHQWDJHVFRQFHQWUDWLRQVRIHDFKFRQVWLWXHQWFDQEH DFFRPSOLVKHGWKURXJKWKHXVHRIFDQLVWHUVZKLFKDUHVSHFLILFDOO\GHVLJQHGIRUODQGILOOJDVDQDO\VLV 6HYHUDODQDO\WLFDOPHWKRGVDUHDYDLODEOHWRGHWHUPLQHWKHFRQFHQWUDWLRQVRIDYDULHW\RIFRQVWLWXHQWV 7\SLFDOO\ODQGILOOJDVDQDO\VLVRIWKLVW\SHLVSHUIRUPHGWRGHWHUPLQHWKHQRQPHWKDQHRUJDQLF FRPSRXQGVHPLVVLRQUDWHIRU7LHUWHVWLQJXQGHUWKH&OHDQ$LU$FW 7LWOH96XESDUW:::  ,VRWURSLFLGHQWLILFDWLRQRIODQGILOOPHWKDQHFDQEHDFFRPSOLVKHGWRLGHQWLI\RQHVRXUFHRIPHWKDQHIURP DQRWKHU,QWKLVFDVHLVRWRSHVRIFDUERQDQGK\GURJHQLQWKHPHWKDQHDUHDQDO\]HGWRGHWHUPLQHWKH PHWKDQHVRXUFH  SECTION 7 - References $JHQF\IRU7R[LF6XEVWDQFHV 'LVHDVH5HJLVWU\³/DQGILOO*DV3ULPHU$Q2YHUYLHZIRU(QYLURQPHQWDO +HDOWK3URIHVVLRQDOV´KWWSZZZDWVGUFGFJRY+$&ODQGILOOKWPOWRFKWPO DFFHVVHG)HEUXDU\   &DOLIRUQLD(QYLURQPHQWDO3URWHFWLRQ$JHQF\³/DQGILOO*DV0RQLWRULQJ:HOO)XQFWLRQDOLW\DW &DOLIRUQLD/DQGILOOV´KWWSZZZFDOUHF\FOHFDJRY3XEOLFDWLRQV2UJDQLFVSGI DFFHVVHG )HEUXDU\  )ORULGD'HSDUWPHQWRI(QYLURQPHQWDO3URWHFWLRQ*DV0DQDJHPHQW6\VWHPVXQGHU5XOH KWWSZZZGHSVWDWHIOXVZDVWHTXLFNBWRSLFVUXOHVGHIDXOWKWP DFFHVVHG)HEUXDU\  0LVVRXUL'HSDUWPHQWRI1DWXUDO5HVRXUFHV)ORRG*UDQW7HDP³$Q$QDO\VLVRI/DQGILOO*DV0RQLWRULQJ :HOO'HVLJQDQG&RQVWUXFWLRQ´KWWSZZZFOX LQRUJFRQILWUFGLUHFWSXVKSUH]0LVVRXULB6WXG\SGI DFFHVVHG)HEUXDU\  0LVVRXUL'HSDUWPHQWRI1DWXUDO5HVRXUFHV³'HVLJQDQG&RQVWUXFWLRQRI/DQGILOO*DV0RQLWRULQJ:HOOV´ KWWSZZZGQUPLVVRXULJRYSXEVSXESGI DFFHVVHG)HEUXDU\  :LVFRQVLQ'HSDUWPHQWRI1DWXUDO5HVRXUFHV(QYLURQPHQWDO0RQLWRULQJIRU/DQGILOOVXQGHU&KDSWHU15 KWWSZZZGQUVWDWHZLXVRUJDZZPLQIRUPDWLRQZLDFVVVKWP DFFHVVHG)HEUXDU\  ³/DQGILOO*DVDQ2YHUYLHZ´/DQGILOOJDVFRP:HE)HE KWWSZZZODQGILOOJDVFRPZHESDJH/)*RYHUYLHZGRF Landfill Gas Monitoring Plan Anson Waste Management Facility Attachment B LFG Monitoring Locations Site – Figure 1 SCS ENGINEERS, PC 2520 WHITEHALL PARK DRIVE, SUITE 450 CHARLOTTE, NORTH CAROLINA 28273 PHONE: (704) 504-3107 FAX: (704) 504-3174 LFG1LANDFILL GAS MONITORING LOCATIONS LANDFILL GAS MONITORING PLAN WASTE CONNECTIONS OF THE CAROLINAS 375 DOZER DRIVE POLKTON, NC 28135 N Landfill Gas Monitoring Plan Anson Waste Management Facility Attachment C LFG Well Construction Schematic   Landfill Gas Monitoring Plan Anson Waste Management Facility Attachment D Landfill Gas Monitoring Field Log Revised – March 6, 2017 NC Division of Waste Management - Solid Waste Section Landfill Gas Monitoring Data Form Notice: This form and any information attached to it are "Public Records" as defined in NC General Statute 132-1. As such, these documents are available for inspection and examination by any person upon request (NC General Statute 132-6). Facility Name: Permit Number: Sampling Date: NC Landfill Rule (.0500 or .1600): Sample Collector Name & Position: Gas Meter Type & Serial Number: Gas Meter Calibration Date: Field Calibration Date & Time: Field Calibration Gas Type (15/15 or 35/50): Field Calibration Gas Canister Expiration Date: Gas Meter Pump Rate: Ambient Air Temperature: Barometric Pressure (in. or mm Hg): Weather Conditions: Instructions: Under “Location or LFG Well”, list monitoring well # or describe monitoring location (e.g., inside field office). Attach a test location map or drawing. Report methane readings as both % LEL and % CH4 by volume. Convert % CH4 (by volume) to % LEL as follows: % methane (by volume)/20 = % LEL. *Hydrogen Sulfide (H2S) gas monitoring may be required for Construction & Demolition Landfills (CDLFs). See individual permit conditions and/or Facility LFG monitoring plan. Location or LFG Well ID Sample Tube Purge Time of Day Time Pumped (sec) Initial % LEL Stabilized % LEL % CH4 (volume) % O2 (volume) % CO2 (volume) % H2S* (volume) NOTES NOTE: If needed, attach additional data forms to include additional LFG monitoring data locations for the facility. ACTION LEVELS: Methane: >1.25% by volume (inside structures) AND >5% by volume (at facility boundary) Hydrogen Sulfide: >1% by volume (inside structures) AND >4% by volume (at facility boundary) Certification To the best of my knowledge, the information reported and statements made on this data submittal and attachments are true and correct. I am aware that there are significant penalties for making any false statement, representation, or certification including the possibility of a fine and imprisonment. SIGNATURE TITLE