HomeMy WebLinkAbout7304_UpperPiedmontMSWLF_ASDMetalsRpt_DIN27402_20161221
PREPARED FOR:
REPUBLIC SERVICES OF NORTH CAROLINA, LLC
D.B.A. UPPER PIEDMONT ENVIRONMENTAL
9650 OXFORD ROAD
ROUGEMOUNT, NORTH CAROLINA 27572
UPPER PIEDMONT REGIONAL LANDFILL
PERMIT NO. 73-04
ALTERNATE SOURCE DEMONSTRATION
FOR COBALT, IRON, AND MANGANESE
DECEMBER 2016
PREPARED BY:
2211 WEST MEADOWVIEW ROAD, SUITE 101
GREENSBORO, NORTH CAROLINA 27407
NC LICENSE NUMBER C-0782
PHONE: (336) 323-0092
FAX: (336) 323-0093
JOYCE ENGINEERING PROJECT NO. 00893.1602.12
______________________________________________________________________________
Alternate Source Demonstration Joyce Engineering
Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016
i
Alternate Source Demonstration for Cobalt, Iron, & Manganese,
Upper Piedmont Regional Landfill, Permit No. 73-04
TABLE OF CONTENTS
1.0 INTRODUCTION..............................................................................................................1
1.1 Site Description and Background ................................................................................ 1
1.2 Compliance Monitoring History .................................................................................. 1
1.3 Hydrogeologic Setting ................................................................................................... 2
2.0 CONCENTRATIONS IN GROUNDWATER ................................................................2
2.1 Comparisons to Groundwater Standards ................................................................... 2
2.2 Statistical Evaluation of Background ......................................................................... 3
2.2.1 Statistical Background for Cobalt .................................................................................. 3
2.2.2 Statistical Background for Iron ...................................................................................... 4
2.2.3 Statistical Background for Manganese ........................................................................... 4
2.0 SOURCE DETERMINATION .........................................................................................4
2.1 Landfill Leachate .......................................................................................................... 4
2.2 Natural Sources of Cobalt, Iron, and Manganese ...................................................... 5
3.0 CONCLUSIONS ................................................................................................................5
4.0 REFERENCES ...................................................................................................................6
TABLES
Table 1: Historical Detections of Cobalt, Iron, and Manganese
Table 2: Results of Statistical Analyses
CHARTS
Chart 1: Cobalt Concentrations vs. Time
Chart 2: Iron Concentrations vs. Time
Chart 3: Manganese Concentrations vs. Time
DRAWING
Drawing 1: Groundwater Potentiometric Surface Map (July 2016)
APPENDICES
Appendix A: Laboratory Report for July 2016 Sampling Event
Appendix B: Statistical Analysis Worksheets
Appendix C: Cobalt, Iron, and Manganese in NC Stream Sediments
______________________________________________________________________________
Alternate Source Demonstration Joyce Engineering
Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016
1
1.0 INTRODUCTION
On behalf of Republic Services of North Carolina, LLC (Republic), Joyce Engineering (JOYCE)
presents this Alternate Source Demonstration (ASD) for the Upper Piedmont Regional Landfill
in accordance with 15A NCAC 13B .1633(c)(3). This ASD addresses recent and historic
detections of cobalt, iron, and manganese above groundwater protection standards (GPS), as
requested in a Letter from the NCDEQ to Republic dated October 10, 2016.
1.1 Site Description and Background
The Upper Piedmont Regional Landfill is an active municipal solid waste landfill located in
Person County, North Carolina. It is owned and operated by Republic Services of North
Carolina, LLC (Republic) under Permit No. 73-04 issued by the North Carolina Department of
Environmental Quality (NCDEQ). The Upper Piedmont Regional Landfill is located
approximately nine miles east-southeast of the town of Roxboro on U.S. Highway 158, in Person
County, North Carolina. The landfill is bounded to the north by U.S. Highway 158, tributaries of
Club Creek to the east and south, and Rock Fork Branch to the west. Surrounding land use is
primarily rural residential, silvicultural, and agricultural. Access to the facility is via the drive
off of Oxford Road (U.S. Highway 158).
1.2 Compliance Monitoring History
Water quality monitoring at the facility was initiated in May 1997 under the Detection
Monitoring Program for municipal solid waste landfills. The facility’s monitoring network is
comprised of ten monitoring wells (GW-1R through GW-10), which monitor the uppermost
aquifer beneath the facility. Upstream surface water monitoring point SW-1 and downstream
surface water monitoring point SW-2 are also sampled semiannually in accordance with the
approved monitoring plan. A sample from the facility’s leachate collection system is also
sampled semiannually as part of the facility’s environmental monitoring program.
The only Appendix I constituent that has been detected consistently at quantified values above
the Groundwater Protection Standard found in 15A NCAC 2L.0202 (NC2L Standards) or the
Solid Waste Section Groundwater Protection Standards (GWPS – for constituents with no listed
NC2L Standard) is cobalt in monitoring well GW-8. Historically, cobalt has been detected
sporadically above its GWPS in several other monitoring wells; however, there have been no
quantified exceedances for cobalt in any well other than GW-8 in the last three sampling events.
Iron and Manganese are not required Appendix I or II parameters; however, the semiannual
groundwater and surface water samples from the facility have been analyzed for iron and
manganese as additional indicator parameters since 2007 per a NCDEQ request in a letter dated
September 28, 2007. Iron and manganese have been consistently detected in exceedance of their
respective NC2L Standards in several of the monitoring wells at the facility.
______________________________________________________________________________
Alternate Source Demonstration Joyce Engineering
Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016
2
1.3 Hydrogeologic Setting
Geologically, the facility is located within the Carolina Slate Belt of the Piedmont Physiographic
Province of North Carolina (NCGS, 1985). The Carolina Slate Belt is composed of Late
Proterozoic to Cambrian meta-sedimentary and meta-volcanic rocks that locally have been
intruded by diabase dikes and felsic intrusive suites. The rocks underlying the facility are
mapped as felsic meta-volcanics (dacitic and rhyolitic tuffs and flows interbedded with mafic
meta-volcanics (NCGS, 1985).
The uppermost groundwater beneath the facility is contained in a shallow, unconfined aquifer
comprised of partially weathered, fractured, meta-volcanic rock. Groundwater occurs at depths
of approximately 30 feet below grade along the western, upgradient side of the waste disposal
area, and at an average depth of five feet below grade along the eastern boundary. Depth-to-
water measurements obtained during the July 26, 2016, monitoring event were used to prepare a
groundwater potentiometric surface map presented as Drawing 1. The groundwater flow in the
uppermost aquifer beneath the site is towards the east, with the flow appearing to converge on
the easterly flowing perennial tributary streams of Club Creek.
2.0 CONCENTRATIONS IN GROUNDWATER
2.1 Comparisons to Groundwater Standards
For most constituents, the Groundwater Protection Standards (GPS) are the standards found in
15A NCAC 2L.0202 (NC2L Standards); however, the NCDEQ Solid Waste Section (SWS) has
established alternate groundwater protection standards for constituents with no listed NC2L
Standard, referred to herein as the GWPS. The SWS has also established reporting limits for
constituents, referred to as the Solid Waste Section Limits (SWSL), below which detections are
considered estimated (not quantified).
There is no NC2L standard established for cobalt. The SWS GWPS for cobalt is 1 µg/L;
however, this is less than the SWSL of 10 µg/L. Estimated detections (below the SWSL) are not
considered exceedances, so the effective GPS for cobalt is the SWSL, or 10 µg/L. The NC2L
Standards (therefore the GPS) for iron and manganese are 300 µg/L and 50 µg/L, respectively.
Table 1 presents all of the historical detections for cobalt, iron, and manganese at the Upper
Piedmont Landfill from May 1997 through July 2016. Charts 1, 2, and 3 show cobalt, iron, and
manganese concentrations vs. time, respectively. The full laboratory analytical report from the
July 2016 sampling event is included as Appendix A.
Cobalt was detected in GW-8 above the GPS during the most recent (July 26, 2016) monitoring
event with a concentration of 12.6 µg/L. No other Appendix I constituents were detected at
quantified concentrations above their respective GPS during the July 26, 2016, monitoring event.
Cobalt has periodically been detected above its GPS in a few other wells at the site, but not
during the last three sampling events. Note that cobalt was detected above its GPS in the pre-
waste background samples from wells GW-7 and GW-8, indicating that cobalt occurs naturally
above the GPS.
______________________________________________________________________________
Alternate Source Demonstration Joyce Engineering
Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016
3
Iron was detected above its GPS in wells GW-4, GW-5, GW-7, and GW-9 during the July 2016
sampling event. Manganese was detected above its GPS in wells GW-2, GW-3, GW-5, GW-7,
GW-8, GW-9, and GW-10 during the July 2016 sampling event. These results are generally
consistent with historical detections of iron and manganese at the facility. Note that iron and
manganese were detected above their respective GPS in the pre-waste background samples from
wells GW-7, GW-8, GW-9, and GW-10, indicating that these metals occur naturally above the
GPS.
2.2 Statistical Evaluation of Background
The data were evaluated through the use of the Shapiro-Wilk Test, Parametric Prediction Limits,
Parametric Tolerance Intervals, Aitchison’s Adjustment, Non-parametric Prediction Limits, and
Poisson Prediction Limits, as appropriate. Background data, tests for normality, outliers,
Aitchison’s adjustment, tolerance interval, or prediction limits are used, as appropriate based on
the background data. The statistical test by which downgradient data are compared to facility
background data is based upon the nature of the data and the number of data values that are less
than the laboratory limit of detection. All statistical tests are evaluated at the 0.05 level of
significance, 95% confidence level, and are conducted as one-tailed tests.
GW-1 was the upgradient background well for the facility from May 1997 through the July 2009
sampling event. GW-1 was decommissioned following the July 2009 event. Monitoring well
GW-1R was installed in July 2009 as a replacement for background well GW-1 and was sampled
for the first time during the January 2010 sampling event, and has been the upgradient
background well for the facility since that date. Downgradient wells GW-9 and GW-10 were
installed in July 2009 and wells GW-7 and GW-8 were installed in April 2012 to monitor
groundwater downgradient of the new Phase 3 waste unit (Cells 5A and 6A). Pre-waste
background sampling for these four wells was performed in May, June, July, and August 2012.
The data used for interwell statistical analysis of the background consists of all the data available
for GW-1 and GW-1R from August 1998 through July 2016 as well as the pre-waste background
data from GW-7, GW-8, GW-9, and GW-10.
Due to geologic variation in the bedrock and derived soils, the background concentrations for
naturally-occurring metals in the groundwater can vary significantly across a site. As a result,
interwell statistical comparisons are sometimes insufficient to evaluate whether detected
concentrations in a given well are naturally-occurring. In these cases, intrawell statistical
background can be calculated using older historical data or pre-waste background data from that
well.
2.2.1 Statistical Background for Cobalt
Cobalt was detected in GW-8 at a quantified concentration of 12.6 µg/L during the July 26,
2016, monitoring event. The cobalt detection was statistically evaluated in accordance with the
procedures outlined in 15A NCAC 13B.1632.(g) and (h) to determine if the quantified
concentration exceeded the facility background concentration. Statistical analysis indicated an
interwell background level of 31.5 µg/L for cobalt. There have been no detections of cobalt
______________________________________________________________________________
Alternate Source Demonstration Joyce Engineering
Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016
4
above the statistical background in the history of the facility. The historical cobalt
concentrations compared to the statistical background are shown on Chart 1. The results of the
statistical analyses are summarized in Table 2, and the statistical worksheets are presented in
Appendix A. The fact that cobalt in MW-8 is below the interwell statistical limit indicates the
results that exceed the GPS are due to natural, background variations in groundwater quality.
2.2.2 Statistical Background for Iron
Iron was detected above its GPS in wells GW-4, GW-5, GW-7, and GW-9 during the July 2016
sampling event, with the highest concentration in GW-7 at 106 mg/L. The interwell statistical
background for iron was 53.6 mg/L; however, the intrawell background based on the pre-waste
background data from GW-7 was 385 mg/L. Based on these data, there have been no
statistically significant exceedances of the background for iron at this facility. The historical iron
concentrations compared to the statistical background are shown on Chart 2. The results of the
statistical analyses are summarized in Table 2, and the statistical worksheets are presented in
Appendix A. The fact that iron in MW-7 is below the interwell statistical limit indicates the
results that exceed the GPS are due to natural, background variations in groundwater quality.
2.2.3 Statistical Background for Manganese
Manganese was detected above its GPS in wells GW-2, GW-3, GW-5, GW-7, GW-8, GW-9, and
GW-10 during the July 2016 sampling event, with the highest concentration in GW-7 at 14.6
mg/L. The interwell statistical background for iron was 6.58 mg/L; however, the intrawell
background based on the pre-waste background data from GW-7 was 14.9 mg/L. Based on these
data, there have been no statistically significant exceedances of the background for manganese at
this facility. The historical manganese concentrations compared to the statistical background are
shown on Chart 3. The results of the statistical analyses are summarized in Table 2, and the
statistical worksheets are presented in Appendix A. The fact that manganese in MW-7 is below
the interwell statistical limit indicates the results that exceed the GPS are due to natural,
background variations in groundwater quality.
2.0 SOURCE DETERMINATION
2.1 Landfill Leachate
There is no evidence suggesting that the detected concentrations of cobalt, iron, or manganese
are a result of a leachate release from the landfill. If the exceeding wells were impacted by
leachate, one would expect organic constituents as well as metals to be detected. There have
been no organic constituents detected in any of the wells with high levels of metals, including
GW-7 and GW-8.
If the metals detected in groundwater were a result of a leachate release, one would expect the
concentrations in the leachate to be significantly higher than in the groundwater. The EPA
default dilution factor for a lined landfill is 20 (USEPA, 1996). Cobalt was detected in the
facility leachate at 58.9 µg/L during the July 2016 sampling event, which at a dilution factor of
20, would be expected to result in a concentration in the groundwater of no more than 2.9 µg/L.
______________________________________________________________________________
Alternate Source Demonstration Joyce Engineering
Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016
5
This is significantly lower than the 12.6 µg/L detected in GW-8. Iron and Manganese were
detected in the leachate at 6.31 mg/L and 0.934 mg/L, respectively, during the July 2016
sampling event. These concentrations are much lower than the concentrations of iron and
manganese found in GW-7, ignoring any dilution factors, so it is very unlikely that the leachate
could be the source of the iron and manganese in the groundwater at GW-7.
2.2 Natural Sources of Cobalt, Iron, and Manganese
Cobalt, iron, and manganese are common elements occurring naturally in minerals commonly
found in the bedrock, soil, and sediments in the North Carolina Piedmont. Appendix B presents
three plates from A Geochemical Atlas of North Carolina (Reid, 1993), which show the
distribution of cobalt, iron, and manganese in stream sediments across the state. Person County
has been highlighted. Note that cobalt is found at concentrations as high as 10 mg/kg in stream
sediments in Person County. Iron is found as high as 39,400-358,000 mg/kg and manganese as
high as 970-11,620 mg/kg. Please note also that there is a significant amount of variability, with
metals concentrations ranging over as much as two orders of magnitude within the County.
Metals in the soil and bedrock can easily leach into the groundwater, especially if the
groundwater is acidic (pH < 7.0). The pH of groundwater samples from the Upper Piedmont
Landfill during the July 2016 sampling event averaged 6.55, which is only slightly acidic;
however, the pH of groundwater from GW-8 was lower than average, with a value of 6.16.
Since metals analyses required for the facility are for total metals, any suspended or dissolved
sediment in the collected groundwater sample will be detected and included in the reported
results. Turbidity was relatively low (<10 NTU) for most wells, including GW-7 and GW-8,
during the July 2016 sampling event; however, even small amounts of sediment in a sample can
significantly affect total metals concentrations.
Cobalt was detected above its GPS in the pre-waste background samples from wells GW-7 and
GW-8, and iron and manganese were detected above their respective GPS in the pre-waste
background samples from wells GW-7, GW-8, GW-9, and GW-10. This clearly supports the
contention that these metals are naturally-occurring in the groundwater in the vicinity of these
wells. The facts that the all cobalt detections are below the interwell statistical background, and
the detections of iron and manganese are below the intrawell statistical background in MW-7
also support this contention.
3.0 CONCLUSIONS
Cobalt, iron, and manganese are naturally-occurring elements if the bedrock, soil, and sediment
in the North Carolina Piedmont; therefore, they are expected to be naturally-occurring in the
groundwater. The variations in concentrations of these metals in the groundwater are believed to
reflect natural geologic variation at the site. Based on statistical evaluation, the cobalt, iron, and
manganese detections at this facility are not statistically significant and are considered
representative of background concentrations. The facility requests that the background value of
31.5 µg/L be considered the applicable groundwater protection standard for cobalt at the Upper
Piedmont Landfill in accordance with 15A NCAC 13B.1634.(g).(5). Since iron and manganese
______________________________________________________________________________
Alternate Source Demonstration Joyce Engineering
Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016
6
are not required Appendix I constituents, the facility requests to cease monitoring for iron and
manganese.
4.0 REFERENCES
U.S. EPA, 1996. Soil Screening Guidance: Technical Background Document. EPA/540/R-
.95/128.
North Carolina Geologic Survey, 1985, Geologic Map of North Carolina; North Carolina
Department of Natural Resources and Community Development, Geological Survey Section;
scale 1:500,000.
Reid, Jeffery C., 1993. A Geochemical Atlas of North Carolina. North Carolina Geological
Survey, Bulletin 93. May 1991, Revised 1993.
TABLES
TA
B
L
E
1
:
H
i
s
t
o
r
i
c
a
l
D
e
t
e
c
t
i
o
n
s
o
f
C
o
b
a
l
t
,
I
r
o
n
,
a
n
d
M
a
n
g
a
n
e
s
e
An
a
l
y
t
e
Sa
m
p
l
e
Co
l
l
e
c
t
i
o
n
D
a
t
e
Me
t
h
o
d
D
L
R
L
GW
-
1
G
W
-
1
R
G
W
-
2
G
W
-
3
G
W
-
4
G
W
-
5
G
W
-
6
G
W
-
7
G
W
-
8
G
W
-
9
G
W
-
1
0
Blanks
Co
b
a
l
t
05
/
2
3
/
9
7
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
GW
P
S
=
1
µ
g
/
L
06
/
1
6
/
9
7
-
-
-
-
-
-
1
0
.
0
N
D
NI
10
.
0
ND
ND
ND
--
-
NI
NI
NI NI ND
08
/
1
4
/
9
7
-
-
-
-
-
-
1
0
.
0
10
.
0
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
09
/
3
0
/
9
7
-
-
-
-
-
-
4
0
.
0
D
r
y
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
04
/
3
0
/
9
8
-
-
-
-
-
-
4
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
09
/
1
5
/
9
8
-
-
-
-
-
-
4
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
04
/
0
8
/
9
9
-
-
-
-
-
-
4
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
09
/
0
9
/
9
9
-
-
-
-
-
-
1
0
.
0
D
r
y
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
04
/
1
3
/
0
0
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
10
/
1
7
/
0
0
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
04
/
2
3
/
0
1
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
10
/
1
8
/
0
1
-
-
-
-
-
-
1
0
.
0
D
r
y
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
04
/
2
9
/
0
2
-
-
-
-
-
-
1
0
.
0
D
r
y
NI
ND
20
.
0
2
0
.
0
2
0
.
0
--
-
NI
NI
NI NI ND
10
/
2
3
/
0
2
-
-
-
-
-
-
1
0
.
0
D
r
y
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
04
/
1
4
/
0
3
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
10
/
3
0
/
0
3
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
--
-
NI
NI
NI NI ND
03
/
1
9
/
0
4
-
-
-
-
-
-
1
0
.
0
-
-
-
NI
--
-
--
-
--
-
--
-
ND
NI
NI
NI NI ND
04
/
2
8
/
0
4
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
ND
NI
NI
NI NI ND
10
/
2
7
/
0
4
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
ND
NI
NI
NI NI ND
03
/
1
6
/
0
5
-
-
-
-
-
-
1
0
.
0
N
D
NI
15
.
0
ND
ND
ND
ND
NI
NI
NI NI ND
07
/
2
1
/
0
5
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
ND
NI
NI
NI NI ND
01
/
2
6
/
0
6
-
-
-
-
-
-
1
0
.
0
D
r
y
NI
ND
ND
ND
ND
ND
NI
NI
NI NI ND
07
/
2
1
/
0
6
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
ND
NI
NI
NI NI ND
01
/
2
2
/
0
7
-
-
-
-
-
-
1
0
.
0
N
D
NI
16
.
4
ND
ND
2.
7
J
N
D
NI
NI
NI NI ND
04
/
1
0
/
0
7
-
-
-
-
-
-
1
0
.
0
-
-
-
NI
8.1
J
-
-
-
--
-
--
-
--
-
NI
NI
NI NI ND
07
/
2
3
/
0
7
-
-
-
-
-
-
1
0
.
0
N
D
NI
ND
ND
ND
ND
ND
NI
NI
NI NI ND
01
/
1
0
/
0
8
-
-
-
-
-
-
1
0
.
0
D
r
y
NI
ND
ND
ND
ND
ND
NI
NI
NI NI ND
07
/
2
1
/
0
8
-
-
-
-
-
-
1
0
.
0
D
r
y
NI
ND
3.2
J
N
D
3.
1
J
N
D
NI
NI
NI NI ND
01
/
2
9
/
0
9
-
-
-
-
-
-
1
0
.
0
D
r
y
NI
4.6
3
J
1
.
5
3
J
N
D
1
.
8
7
J
N
D
NI
NI
NI NI ND
07
/
3
0
/
0
9
-
-
-
-
-
-
1
0
.
0
2
.
5
5
J
N
I
1.8
5
J
2
.
3
7
J
N
D
2
.
9
1
J
N
D
NI
NI
NI NI ND
01
/
1
4
/
1
0
-
-
-
-
-
-
1
0
.
0
-
-
-
0
.
7
5
7
J
3
J
2
.
4
5
J
N
D
1
.
8
2
J
N
D
NI
NI
NI NI ND
07
/
1
5
/
1
0
-
-
-
-
-
-
1
0
.
0
-
-
-
ND
2
.
2
5
J
1
.
8
4
J
N
D
2
.
2
1
J
N
D
NI
NI
NI NI ND
01
/
2
0
/
1
1
-
-
-
-
-
-
1
0
.
0
-
-
-
ND
2
.
4
6
J
2
.
4
3
J
N
D
ND
ND
NI
NI
NI NI ND
07
/
1
4
/
1
1
-
-
-
-
-
-
1
0
.
0
-
-
-
ND
2
.
3
3
J
1
.
3
1
J
N
D
1
.
6
1
J
N
D
NI
NI
NI NI ND
01
/
3
0
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
0.1
8
J
4
.
0
J
3
.
6
6
J
0
.
3
J
0
.
5
J
0
.
2
4
J
N
I
NI
NI NI ND
Ba
c
k
g
r
o
u
n
d
*
>
0
5
/
2
4
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
26
.
2
1
9
.
0
0.93
J
2
.
9
4
J
N
D
Ba
c
k
g
r
o
u
n
d
*
>
0
6
/
2
8
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
25
.
1
1
4
.
5
0.17
J
2
.
2
7
J
N
D
Ba
c
k
g
r
o
u
n
d
*
>
0
7
/
2
5
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
0.4
4
J
1
.
6
J
3
.
5
4
J
1
.
1
4
J
1
.
8
J
0
.
2
2
J
31
.
5
1
9
.
4
1.12
J
2
.
1
3
J
N
D
Ba
c
k
g
r
o
u
n
d
*
>
0
8
/
2
4
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
29
.
6
1
6
.
9
1.12
J
3
.
8
5
J
N
D
02
/
0
4
/
1
3
-
-
-
-
-
-
1
0
.
0
-
-
-
0.2
4
J
4
.
1
J
2
.
1
8
J
1
.
0
2
J
0
.
6
J
0
.
2
9
J
19
.
7
1
1
.
2
0.61
J
3
.
0
0
J
N
D
07
/
0
8
/
1
3
-
-
-
-
-
-
1
0
.
0
-
-
-
2.7
3
J
3
.
6
2
J
1
.
8
8
J
0
.
5
7
J
1
.
2
3
J
0
.
3
9
J
12
.
5
1
0
.
7
1
0
.
6
8.14
J
N
D
01
/
2
1
/
1
4
E
P
A
6
0
2
0
A
0
.
1
2
1
0
.
0
-
-
-
0.5
3
J
6
.
2
4
J
4
.
2
9
J
0
.
3
2
J
0
.
6
8
J
0
.
6
5
J
13
.
7
1
1
.
2
3.11
J
3
.
4
9
J
N
D
07
/
2
1
/
1
4
E
P
A
6
0
2
0
A
0
.
2
6
1
0
.
0
-
-
-
ND
2
.
2
1
J
1
.
8
7
J
0
.
3
6
J
0
.
8
6
J
N
D
16
.
8
2
0
.
7
4.51
J
11.5 ND
01
/
2
9
/
1
5
E
P
A
6
0
2
0
A
0
.
2
6
1
0
.
0
-
-
-
ND
25
.
8
3.
7
2
J
0
.
2
7
J
0
.
6
3
J
0
.
2
8
J
8
.
3
4
J
16
.
5
2
0
.
3
4.50
J
N
D
07
/
2
7
/
1
5
E
P
A
6
0
2
0
A
0
.
2
9
1
0
.
0
-
-
-
ND
0
.
9
3
J
0
.
8
J
N
D
ND
ND
7
.
5
5
J
16
.
1
5.50
J
3
.
3
7
J
N
D
01
/
2
6
/
1
6
E
P
A
6
0
2
0
B
0
.
2
9
1
0
.
0
-
-
-
ND
5
.
0
6
J
5
.
5
8
J
N
D
1
.
0
3
J
N
D
6
.
8
9
J
14
.
2
8.81
J
4
.
7
6
J
N
D
07
/
2
6
/
1
6
E
P
A
6
0
2
0
B
0
.
2
9
1
0
.
0
-
-
-
ND
1
.
7
3
J
1
.
0
4
J
N
D
1
.
3
8
J
N
D
6
.
3
3
J
12
.
6
3.70
J
3
.
8
4
J
N
D
BA
C
K
G
R
O
U
N
D
DO
W
N
G
R
A
D
I
E
N
T
Up
p
e
r
P
i
e
d
m
o
n
t
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
,
P
e
r
m
i
t
#
7
3
-
0
4
Re
p
u
b
l
i
c
S
e
r
v
i
c
e
s
Pa
g
e
1
o
f
2
Joyce Engineering December 2016
TA
B
L
E
1
:
H
i
s
t
o
r
i
c
a
l
D
e
t
e
c
t
i
o
n
s
o
f
C
o
b
a
l
t
,
I
r
o
n
,
a
n
d
M
a
n
g
a
n
e
s
e
An
a
l
y
t
e
Sa
m
p
l
e
Co
l
l
e
c
t
i
o
n
D
a
t
e
Me
t
h
o
d
D
L
R
L
GW
-
1
G
W
-
1
R
G
W
-
2
G
W
-
3
G
W
-
4
G
W
-
5
G
W
-
6
G
W
-
7
G
W
-
8
G
W
-
9
G
W
-
1
0
Blanks
BA
C
K
G
R
O
U
N
D
D
O
W
N
G
R
A
D
I
E
N
T
Ir
o
n
07
/
2
3
/
0
7
-
-
-
-
-
-
3
0
0
2
,
2
0
0
N
I
20
.
0
44
20
.
0
7,
3
4
0
6
7
6
NI
NI
NI NI ND
NC
2
L
=
3
0
0
µ
g
/
L
01
/
1
0
/
0
8
-
-
-
-
-
-
3
0
0
D
r
y
NI
38
.
0
J
7
1
J
N
D
4,
6
0
0
5
7
5
NI
NI
NI NI ND
07
/
2
1
/
0
8
-
-
-
-
-
-
3
0
0
D
r
y
NI
18
4
J
4
7
J
N
D
10
,
4
0
0
1
,
9
5
0
NI
NI
NI NI ND
01
/
2
9
/
0
9
-
-
-
-
-
-
3
0
0
D
r
y
NI
62
2
14
2
J
5
6
.
1
B
3,
5
2
0
5
8
5
NI
NI
NI NI 33.8
J
07
/
3
0
/
0
9
-
-
-
-
-
-
3
0
0
2
,
5
4
0
N
I
11
4
J
9
2
J
9
5
.
0
J
10
,
9
0
0
8
5
1
NI
NI
NI NI ND
01
/
1
4
/
1
0
-
-
-
-
-
-
3
0
0
-
-
-
1,
6
3
0
24
9
J
2
2
2
J
8
7
.
0
J
5,
2
0
0
5
9
7
NI
NI
NI NI ND
07
/
1
5
/
1
0
-
-
-
-
-
-
3
0
0
-
-
-
51
7
18
5
J
8
4
J
4
7
.
7
J
7,
8
8
0
1
,
3
5
0
NI
NI
NI NI ND
01
/
2
0
/
1
1
-
-
-
-
-
-
3
0
0
-
-
-
35
9
3
2
5
10
6
J
6
0
.
4
J
2,
0
0
0
4
8
9
NI
NI
NI NI ND
07
/
1
4
/
1
1
-
-
-
-
-
-
3
0
0
-
-
-
49
0
23
9
J
9
7
J
6
4
.
6
J
3,
2
2
0
7
7
3
NI
NI
NI NI ND
01
/
3
0
/
1
2
-
-
-
-
-
-
4
0
.
0
-
-
-
14
6
1
8
9
77
5
44
6
1
,
7
6
0
7
2
2
NI
NI
NI NI 8.11
J
Ba
c
k
g
r
o
u
n
d
*
>
0
5
/
2
4
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
1
9
,
1
0
0
1
6
3
3
,
4
8
0
3
1
1
ND
Ba
c
k
g
r
o
u
n
d
*
>
0
6
/
2
8
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
1
8
,
4
0
0
1
9
4
540 220 ND
Ba
c
k
g
r
o
u
n
d
*
>
0
7
/
2
5
/
1
2
-
-
-
-
-
-
4
0
.
0
-
-
-
22
1
15
7
1
,
4
0
0
4,5
9
0
1
0
,
2
0
0
7
0
8
33
,
4
0
0
8
0
.
0
2
,
4
0
0
3
3
0
ND
Ba
c
k
g
r
o
u
n
d
*
>
0
8
/
2
4
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
5
3
,
6
0
0
1
3
0
1
,
6
2
0
3
1
1
ND
02
/
0
4
/
1
3
-
-
-
-
-
-
3
0
.
0
-
-
-
15
6
31
8
1
,
7
9
0
5
,
4
3
0
1
,
8
4
0
9
5
0
8
3
,
7
0
0
50
.
9
B
2
0
3
186
5
.
5
3
J
07
/
0
8
/
1
3
-
-
-
-
-
-
3
0
.
0
-
-
-
5,
2
8
0
20
4
7,1
8
0
2
,
1
6
0
1
,
5
0
0
1
,
0
5
0
4
5
,
6
0
0
44
.
5
14,300
1
,
4
4
0
ND
01
/
2
1
/
1
4
E
P
A
6
0
2
0
A
3
.
0
2
3
0
.
0
-
-
-
78
3
45
7
7
,
9
9
0
1
,
0
6
0
1
,
5
9
0
2
,
5
4
0
8
7
,
0
0
0
13
2
3,730 271
4
.
9
6
J
07
/
2
1
/
1
4
E
P
A
6
0
2
0
A
3
.
1
4
0
.
0
-
-
-
93
.
8
13
8
2,1
2
0
1
,
7
0
0
3
,
0
0
0
8
6
0
8
1
,
9
0
0
17
8
1,810
1
,
9
3
0
ND
01
/
2
9
/
1
5
E
P
A
6
0
2
0
A
3
.
1
0
4
0
.
0
-
-
-
63
.
0
2,
9
5
0
6
5
6
57
9
1
,
7
2
0
7
2
6
6
5
,
9
0
0
82
.
1
14,400 225
4
.
3
4
J
07
/
2
7
/
1
5
E
P
A
6
0
2
0
A
5
.
7
2
4
0
.
0
-
-
-
14
0
15
3
16
8
10
4
56
1
20
1
89
,
9
0
0
14
.
9
J
3,810 103 ND
01
/
2
6
/
1
6
E
P
A
6
0
2
0
B
5
.
7
2
3
0
0
-
-
-
25
3
J
1
9
7
J
2
4
9
J
1,0
5
0
3
,
4
3
0
4
0
8
9
8
,
3
0
0
20
9
J
9,020 231
J
9
.
5
J
07
/
2
6
/
1
6
E
P
A
6
0
2
0
B
5
.
7
2
3
0
0
-
-
-
10
2
J
1
0
4
J
1
9
4
J
1,1
0
0
2
,
3
4
0
20
8
J
10
6
,
0
0
0
16
9
J
10,400 180
J
N
D
Ma
n
g
a
n
e
s
e
07
/
2
3
/
0
7
-
-
-
-
-
-
5
0
.
0
7
7
.
7
NI
31
.
6
J
31
4
5
9
.
2
4
,
1
3
0
21
.
4
J
N
I
NI
NI NI ND
NC
2
L
=
5
0
µ
g
/
L
01
/
1
0
/
0
8
-
-
-
-
-
-
5
0
.
0
D
r
y
NI
21
.
6
J
24
9
30
.
0
J
2,
1
3
0
23
.
0
J
N
I
NI
NI NI ND
07
/
2
1
/
0
8
-
-
-
-
-
-
5
0
.
0
D
r
y
NI
35
.
8
J
34
1
41
.
1
J
4,
8
4
0
23
.
6
J
N
I
NI
NI NI 2.8
J
01
/
2
9
/
0
9
-
-
-
-
-
-
5
0
.
0
D
r
y
NI
48
1
22
5
25
.
0
B
3,
2
5
0
15
.
6
B
N
I
NI
NI NI 13.3
J
07
/
3
0
/
0
9
-
-
-
-
-
-
5
0
.
0
4
8
.
8
J
N
I
19
1
28
1
5
5
.
7
4
,
5
2
0
17
.
1
J
N
I
NI
NI NI ND
01
/
1
4
/
1
0
-
-
-
-
-
-
5
0
.
0
-
-
-
12
3
35
5
29
4
23
.
8
J
3,
6
8
0
19
.
5
J
N
I
NI
NI NI ND
07
/
1
5
/
1
0
-
-
-
-
-
-
5
0
.
0
-
-
-
45
.
6
J
20
3
20
3
45
.
5
J
3,
5
0
0
25
.
0
J
N
I
NI
NI NI ND
01
/
2
0
/
1
1
-
-
-
-
-
-
5
0
.
0
-
-
-
94
.
3
2
2
4
29
1
26
.
3
J
1,
1
5
0
10
.
7
J
N
I
NI
NI NI ND
07
/
1
4
/
1
1
-
-
-
-
-
-
5
0
.
0
-
-
-
83
.
7
1
9
8
16
7
49
.
2
3,
0
5
0
13
.
7
NI
NI
NI NI 1.16
J
01
/
3
0
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
27
.
1
35
3
27
3
38
.
0
1,
1
4
0
11
.
0
NI
NI
NI NI ND
Ba
c
k
g
r
o
u
n
d
*
>
0
5
/
2
4
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
5,3
6
0
7
8
4
6
2
.
5
1
0
4
ND
Ba
c
k
g
r
o
u
n
d
*
>
0
6
/
2
8
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
4,0
3
0
7
3
0
10 80 ND
Ba
c
k
g
r
o
u
n
d
*
>
0
7
/
2
5
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
67
.
2
1
6
4
27
2
21
8
3
,
6
9
0
9.
1
3
J
5,4
2
0
7
1
0
50 70 ND
Ba
c
k
g
r
o
u
n
d
*
>
0
8
/
2
4
/
1
2
-
-
-
-
-
-
1
0
.
0
-
-
-
NS
NS
NS
NS
NS
NS
6,5
8
0
7
6
2
6
0
.
2
1
2
1
ND
02
/
0
4
/
1
3
-
-
-
-
-
-
5
0
.
0
-
-
-
30
.
4
J
40
6
14
1
39
3
1
,
5
6
0
13
.
9
J
5,1
9
0
5
8
5
30.3
J
90.2 ND
07
/
0
8
/
1
3
-
-
-
-
-
-
5
0
.
0
-
-
-
22
1
36
3
18
2
20
2
3
,
8
6
0
24
.
2
J
4,4
9
0
4
4
2
636 206 0.64
J
01
/
2
1
/
1
4
E
P
A
6
0
2
0
A
0
.
5
5
0
5
0
.
0
-
-
-
10
1
57
7
31
0
5
2
.
0
1
,
4
4
0
33
.
2
J
9,0
3
0
4
3
0
184 108 ND
07
/
2
1
/
1
4
E
P
A
6
0
2
0
A
0
.
3
9
5
5
0
.
0
-
-
-
10
.
7
B
15
3
7
2
.
0
13
6
2
,
9
5
0
10
.
4
B
13
,
6
0
0
9
2
0
181 249 2.27
J
01
/
2
9
/
1
5
E
P
A
6
0
2
0
A
0
.
3
9
5
5
0
.
0
-
-
-
5.
6
B
1,
9
5
0
2
2
2
25
.
1
J
1,
2
1
0
48
.
9
J
6,0
5
0
5
6
1
1
,
6
1
0
1
1
0
1.33
J
07
/
2
7
/
1
5
E
P
A
6
0
2
0
A
1
.
0
4
5
0
.
0
-
-
-
12
.
9
J
14
1
5
1
.
9
41
.
0
J
1,
2
0
0
13
.
6
J
12
,
4
0
0
5
3
6
214 119 ND
01
/
2
6
/
1
6
E
P
A
6
0
2
0
B
1
.
0
4
5
0
.
0
-
-
-
24
.
0
J
57
2
30
6
26
.
1
J
2,
6
9
0
28
.
0
J
12
,
3
0
0
51
4
680 142 ND
07
/
2
6
/
1
6
E
P
A
6
0
2
0
B
1
.
0
4
5
0
.
0
-
-
-
1
4
.
5
J
22
8
6
1
.
4
40
.
1
J
3,
4
8
0
19
.
4
J
14
,
6
0
0
4
6
0
1
9
7
1
2
0
ND
No
t
e
s
:
DL
=
M
e
t
h
o
d
D
e
t
e
c
t
i
o
n
L
i
m
i
t
.
Al
l
r
e
s
u
l
t
s
a
r
e
i
n
m
i
c
r
o
g
r
a
m
s
p
e
r
l
i
t
e
r
(
µ
g
/
l
)
.
RL
=
R
e
p
o
r
t
i
n
g
L
i
m
i
t
=
P
Q
L
p
r
i
o
r
t
o
2
0
0
7
a
n
d
S
W
S
L
s
t
a
r
t
i
n
g
J
a
n
u
a
r
y
2
0
0
7
.
Bo
l
d
=
C
o
n
c
e
n
t
r
a
t
i
o
n
s
a
b
o
v
e
t
h
e
N
C
2
L
o
r
G
r
o
u
n
d
w
a
t
e
r
P
r
o
t
e
c
t
i
o
n
s
t
a
n
d
a
r
d
s
(
G
W
P
S
)
h
a
v
e
b
e
e
n
b
o
l
d
e
d
.
PQ
L
=
P
r
a
c
t
i
c
a
l
Q
u
a
n
t
i
t
a
t
i
o
n
L
i
m
i
t
.
ND
=
N
o
t
d
e
t
e
c
t
e
d
a
b
o
v
e
t
h
e
D
L
.
SW
S
L
=
N
C
-
D
E
Q
S
o
l
i
d
W
a
s
t
e
S
e
c
t
i
o
n
L
i
m
i
t
.
J
=
E
s
t
i
m
a
t
e
d
c
o
n
c
e
n
t
r
a
t
i
o
n
b
e
l
o
w
t
h
e
R
L
.
NC
2
L
=
G
r
o
u
n
d
w
a
t
e
r
S
t
a
n
d
a
r
d
e
s
t
a
b
l
i
s
h
e
d
i
n
1
5
A
N
C
A
C
2
L
.
0
2
0
2
.
B
=
B
l
a
n
k
-
q
u
a
l
i
f
i
e
d
d
a
t
a
(
a
n
a
l
y
t
e
d
e
t
e
c
t
e
d
i
n
o
n
e
o
r
m
o
r
e
b
l
a
n
k
s
a
t
s
i
m
i
l
a
r
c
o
n
c
e
n
t
r
a
t
i
o
n
)
.
GW
P
S
=
N
C
D
E
Q
S
o
l
i
d
W
a
s
t
e
S
e
c
t
i
o
n
G
r
o
u
n
d
w
a
t
e
r
P
r
o
t
e
c
t
i
o
n
S
t
a
n
d
a
r
d
f
o
r
c
o
n
s
t
i
t
u
e
n
t
s
w
i
t
h
n
o
l
i
s
t
e
d
N
C
2
L
.
d
r
y
=
i
n
s
u
f
f
i
c
i
e
n
t
w
a
t
e
r
t
o
s
a
m
p
l
e
.
Bla
n
k
s
=
H
i
g
h
e
s
t
o
f
r
e
s
u
l
t
s
f
r
o
m
f
i
e
l
d
,
t
r
i
p
a
n
d
/
o
r
m
e
t
h
o
d
b
l
a
n
k
s
.
-
-
-
=
N
o
d
a
t
a
.
Al
l
d
a
t
a
p
r
i
o
r
t
o
2
0
1
2
t
a
k
e
n
f
r
o
m
p
r
e
v
i
o
u
s
r
e
p
o
r
t
s
b
y
G
o
l
d
e
r
A
s
s
o
c
i
a
t
e
s
N
C
,
I
n
c
.
*
S
h
a
d
e
d
r
e
s
u
l
t
s
a
r
e
f
r
o
m
p
r
e
-
w
a
s
t
e
b
a
c
k
g
r
o
u
n
d
s
a
m
p
l
i
n
g
f
o
r
G
W
-
7
,
G
W
-
8
,
G
W
-
9
,
&
G
W
-
1
0
.
Up
p
e
r
P
i
e
d
m
o
n
t
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
,
P
e
r
m
i
t
#
7
3
-
0
4
Re
p
u
b
l
i
c
S
e
r
v
i
c
e
s
Pa
g
e
2
o
f
2
Joyce Engineering December 2016
TA
B
L
E
2
:
R
e
s
u
l
t
s
o
f
S
t
a
t
i
s
t
i
c
a
l
A
n
a
l
y
s
e
s
Co
n
s
t
i
t
u
e
n
t
N
C
2
L
G
W
P
S
Da
t
a
Di
s
t
r
i
b
u
t
i
o
n
St
a
t
i
s
t
i
c
a
l
M
e
t
h
o
d
u
s
e
d
t
o
E
s
t
a
b
l
i
s
h
Ba
c
k
g
r
o
u
n
d
Ca
l
c
u
l
a
t
e
d
Ba
c
k
g
r
o
u
n
d
Co
n
c
e
n
t
r
a
t
i
o
n
Hi
g
h
e
s
t
R
e
p
o
r
t
e
d
Co
n
c
e
n
t
r
a
t
i
o
n
July 2016Noted SSI
Co
b
a
l
t
N
/
E
1
µ
g
/
L
5
3
%
T
r
u
n
c
a
t
e
d
No
n
p
a
r
m
e
t
r
i
c
P
r
e
d
i
c
t
i
o
n
I
n
t
e
r
v
a
l
(I
n
t
e
r
w
e
l
l
)
31
.
5
µ
g
/
l
1
2
.
6
µ
g
/
l
i
n
G
W
-
8
N
o
n
e
Ir
o
n
3
0
0
µ
g
/
L
N
/
E
0%
T
r
u
n
c
a
t
e
d
,
no
n
-
n
o
r
m
a
l
,
no
n
-
l
o
g
n
o
r
m
a
l
No
n
p
a
r
m
e
t
r
i
c
P
r
e
d
i
c
t
i
o
n
I
n
t
e
r
v
a
l
(I
n
t
e
r
w
e
l
l
)
53
.
6
m
g
/
l
1
0
6
m
g
/
l
i
n
G
W
-
7
G
W
-
7
Ir
o
n
3
0
0
µ
g
/
L
N
/
E
0%
T
r
u
n
c
a
t
e
d
,
no
r
m
a
l
a
n
d
lo
g
n
o
r
m
a
l
Pa
r
m
e
t
r
i
c
U
p
p
e
r
T
o
l
e
r
a
n
c
e
L
i
m
i
t
(I
n
t
r
a
w
e
l
l
-
G
W
-
7
)
38
5
m
g
/
l
10
6
m
g
/
l
i
n
G
W
-
7
N
o
n
e
Ma
n
g
a
n
e
s
e
5
0
µ
g
/
L
N
/
E
0%
T
r
u
n
c
a
t
e
d
,
no
n
-
n
o
r
m
a
l
,
no
n
-
l
o
g
n
o
r
m
a
l
No
n
p
a
r
m
e
t
r
i
c
P
r
e
d
i
c
t
i
o
n
I
n
t
e
r
v
a
l
(I
n
t
e
r
w
e
l
l
)
6.
5
8
m
g
/
l
14
.
6
m
g
/
l
i
n
G
W
-
7
G
W
-
7
Ma
n
g
a
n
e
s
e
5
0
µ
g
/
L
N
/
E
0%
T
r
u
n
c
a
t
e
d
,
no
r
m
a
l
a
n
d
lo
g
n
o
r
m
a
l
Pa
r
m
e
t
r
i
c
U
p
p
e
r
T
o
l
e
r
a
n
c
e
L
i
m
i
t
(I
n
t
r
a
w
e
l
l
-
G
W
-
7
)
14
.
9
m
g
/
l
1
4
.
6
m
g
/
l
i
n
G
W
-
7
N
o
n
e
No
t
e
s
:
NC
2
L
=
N
o
r
t
h
C
a
r
o
l
i
n
a
G
r
o
u
n
d
w
a
t
e
r
S
t
a
n
d
a
r
d
f
r
o
m
1
5
A
N
C
A
C
2
L
.
0
2
0
2
.
N/
E
=
N
o
t
e
s
t
a
b
l
i
s
h
e
d
.
GW
P
S
=
S
o
l
i
d
W
a
s
t
e
S
e
c
t
i
o
n
G
r
o
u
n
d
w
a
t
e
r
P
r
o
t
e
c
t
S
t
a
n
d
a
r
d
.
SS
I
=
S
t
a
t
i
s
t
i
c
a
l
l
y
S
i
g
n
i
f
i
c
a
n
t
I
n
c
r
e
a
s
e
a
b
o
v
e
B
a
c
k
g
r
o
u
n
d
.
In
t
e
r
w
e
l
l
s
t
a
t
i
s
t
i
c
s
b
a
s
e
d
o
n
a
l
l
a
v
a
i
l
a
b
l
e
d
a
t
a
f
r
o
m
b
a
c
k
g
r
o
u
n
d
w
e
l
l
s
(
G
W
-
1
&
G
W
-
1
R
)
a
n
d
p
r
e
-
w
a
s
t
e
b
a
c
k
g
r
o
u
n
d
d
a
t
a
f
r
o
m
G
W
-
7
,
G
W
-
8
,
G
W
-
9
,
&
G
W
-
1
0
.
In
t
r
a
w
e
l
l
s
t
a
t
i
s
t
i
c
s
b
a
s
e
d
o
n
l
y
o
n
p
r
e
-
w
a
s
t
e
b
a
c
k
g
r
o
u
n
d
d
a
t
a
f
r
o
m
G
W
-
7
.
Up
p
e
r
P
i
e
d
m
o
n
t
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
,
P
e
r
m
i
t
N
o
.
7
3
-
0
4
Re
p
u
b
l
i
c
S
e
r
v
i
c
e
s
Joyce Engineering November 2016
CHARTS
Up
p
e
r
P
i
e
d
m
o
n
t
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
,
P
e
r
m
i
t
#
7
3
-
0
4
Re
p
u
b
l
i
c
S
e
r
v
i
c
e
s
Joyce Engingeering December 2016
05101520253035
M
a
y
‐
9
7
N
o
v
‐
9
7
M
a
y
‐
9
8
N
o
v
‐
9
8
M
a
y
‐
9
9
N
o
v
‐
9
9
M
a
y
‐
0
0
N
o
v
‐
0
0
M
a
y
‐
0
1
N
o
v
‐
0
1
M
a
y
‐
0
2
N
o
v
‐
0
2
M
a
y
‐
0
3
N
o
v
‐
0
3
M
a
y
‐
0
4
N
o
v
‐
0
4
M
a
y
‐
0
5
N
o
v
‐
0
5
M
a
y
‐
0
6
N
o
v
‐
0
6
M
a
y
‐
0
7
N
o
v
‐
0
7
M
a
y
‐
0
8
N
o
v
‐
0
8
M
a
y
‐
0
9
N
o
v
‐
0
9
M
a
y
‐
1
0
N
o
v
‐
1
0
M
a
y
‐
1
1
N
o
v
‐
1
1
M
a
y
‐
1
2
N
o
v
‐
1
2
M
a
y
‐
1
3
N
o
v
‐
1
3
M
a
y
‐
1
4
N
o
v
‐
1
4
M
a
y
‐
1
5
Nov‐15 May‐16
C
o
n
c
e
n
t
r
a
t
i
o
n
(
µ
g
/
l
)
CH
A
R
T
1:
Co
b
a
l
t
Co
n
c
e
n
t
r
a
t
i
o
n
s
vs
.
Ti
m
e
GW ‐1 GW ‐1R GW ‐2 GW ‐3 GW ‐4 GW ‐5 GW ‐6 GW ‐7 GW ‐8 GW ‐9 GW ‐10 GPS (SWSL)Background (Interwell)
Up
p
e
r
P
i
e
d
m
o
n
t
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
,
P
e
r
m
i
t
#
7
3
-
0
4
Re
p
u
b
l
i
c
S
e
r
v
i
c
e
s
Joyce Engineering November 2016
0
20
,
0
0
0
40
,
0
0
0
60
,
0
0
0
80
,
0
0
0
10
0
,
0
0
0
12
0
,
0
0
0
14
0
,
0
0
0
16
0
,
0
0
0
18
0
,
0
0
0
20
0
,
0
0
0
22
0
,
0
0
0
24
0
,
0
0
0
26
0
,
0
0
0
28
0
,
0
0
0
30
0
,
0
0
0
32
0
,
0
0
0
34
0
,
0
0
0
36
0
,
0
0
0
38
0
,
0
0
0
40
0
,
0
0
0
J
u
l
‐
0
7
O
c
t
‐
0
7
J
a
n
‐
0
8
A
p
r
‐
0
8
J
u
l
‐
0
8
O
c
t
‐
0
8
J
a
n
‐
0
9
A
p
r
‐
0
9
J
u
l
‐
0
9
O
c
t
‐
0
9
J
a
n
‐
1
0
A
p
r
‐
1
0
J
u
l
‐
1
0
O
c
t
‐
1
0
J
a
n
‐
1
1
A
p
r
‐
1
1
J
u
l
‐
1
1
O
c
t
‐
1
1
J
a
n
‐
1
2
A
p
r
‐
1
2
J
u
l
‐
1
2
O
c
t
‐
1
2
J
a
n
‐
1
3
A
p
r
‐
1
3
J
u
l
‐
1
3
O
c
t
‐
1
3
J
a
n
‐
1
4
A
p
r
‐
1
4
J
u
l
‐
1
4
O
c
t
‐
1
4
J
a
n
‐
1
5
A
p
r
‐
1
5
J
u
l
‐
1
5
O
c
t
‐
1
5
Jan‐16 Apr‐16 Jul‐16
C
o
n
c
e
n
t
r
a
t
i
o
n
(
µ
g
/
l
)
CH
A
R
T
2:
Ir
o
n
Co
n
c
e
n
t
r
a
t
i
o
n
s
vs
.
Ti
m
e
GW ‐1 GW ‐1R GW ‐2 GW ‐3 GW ‐4 GW ‐5 GW ‐6 GW ‐7 GW ‐8 GW ‐9 GW ‐10 GPS (NC2L)Background (Interwell)Background (GW ‐7)
Up
p
e
r
P
i
e
d
m
o
n
t
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
,
P
e
r
m
i
t
#
7
3
-
0
4
Re
p
u
b
l
i
c
S
e
r
v
i
c
e
s
Joyce Engineering November 2016
0
2,
0
0
0
4,
0
0
0
6,
0
0
0
8,
0
0
0
10
,
0
0
0
12
,
0
0
0
14
,
0
0
0
16
,
0
0
0
18
,
0
0
0
20
,
0
0
0
J
u
l
‐
0
7
O
c
t
‐
0
7
J
a
n
‐
0
8
A
p
r
‐
0
8
J
u
l
‐
0
8
O
c
t
‐
0
8
J
a
n
‐
0
9
A
p
r
‐
0
9
J
u
l
‐
0
9
O
c
t
‐
0
9
J
a
n
‐
1
0
A
p
r
‐
1
0
J
u
l
‐
1
0
O
c
t
‐
1
0
J
a
n
‐
1
1
A
p
r
‐
1
1
J
u
l
‐
1
1
O
c
t
‐
1
1
J
a
n
‐
1
2
A
p
r
‐
1
2
J
u
l
‐
1
2
O
c
t
‐
1
2
J
a
n
‐
1
3
A
p
r
‐
1
3
J
u
l
‐
1
3
O
c
t
‐
1
3
J
a
n
‐
1
4
A
p
r
‐
1
4
J
u
l
‐
1
4
O
c
t
‐
1
4
J
a
n
‐
1
5
A
p
r
‐
1
5
J
u
l
‐
1
5
O
c
t
‐
1
5
Jan‐16 Apr‐16 Jul‐16
C
o
n
c
e
n
t
r
a
t
i
o
n
(
µ
g
/
l
)
CH
A
R
T
3:
Ma
n
g
a
n
e
s
e
Co
n
c
e
n
t
r
a
t
i
o
n
s
vs
.
Ti
m
e
GW ‐1 GW ‐1R GW ‐2 GW ‐3 GW ‐4 GW ‐5 GW ‐6 GW ‐7 GW ‐8 GW ‐9 GW ‐10 GPS (NC2L)Background (Interwell)Background (GW ‐7)
DRAWING
Appendix A
Laboratory Report
July 2016 Sampling Event
Appendix B
Statistical Analysis Work Sheets
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Analyte:Cobalt Quantitation
Concentration Limit
Sample No. Sample Date Location (µg/L) (µg/L)
1 23-May-97 GW-1 ND 10 0.170 31.5
2 16-Jun-97 GW-1 ND 10 0.180 29.6
3 14-Aug-97 GW-1 10.0 10 0.240 26.2
4 30-Apr-98 GW-1 ND 40 0.440 25.1
5 15-Sep-98 GW-1 ND 40 0.530 19.4
6 08-Apr-99 GW-1 ND 40 0.757 19.0
7 13-Apr-00 GW-1 ND 10 1.12 16.9
8 17-Oct-00 GW-1 ND 10 1.12 14.5
9 23-Apr-01 GW-1 ND 10 2.13 10.0
10 14-Apr-03 GW-1 ND 10 2.27 2.94
11 30-Oct-03 GW-1 ND 10 2.55 2.73
12 28-Apr-04 GW-1 ND 10 2.73 2.55
13 27-Oct-04 GW-1 ND 10 2.94 2.27
14 16-Mar-05 GW-1 ND 10 10.0 2.13
15 21-Jul-05 GW-1 ND 10 14.5 1.12
16 21-Jul-06 GW-1 ND 10 16.9 1.12
17 22-Jan-07 GW-1 ND 10 19.0 0.757
18 23-Jul-07 GW-1 ND 10 19.4 0.530
19 30-Jul-09 GW-1 2.55 J 10 25.1 0.440
20 14-Jan-10 GW-1R 0.757 J 10 26.2 0.240
21 15-Jul-10 GW-1R ND 10 29.6 0.180
22 20-Jan-11 GW-1R ND 10 31.5 0.170
23 14-Jul-11 GW-1R ND 10
24 30-Jan-12 GW-1R 0.180 J 10
25 25-Jul-12 GW-1R 0.440 J 10
26 04-Feb-13 GW-1R 0.240 J 10
27 08-Jul-13 GW-1R 2.73 J 10
28 21-Jan-14 GW-1R 0.530 J 10
29 21-Jul-14 GW-1R ND 10
30 29-Jan-15 GW-1R ND 10
31 27-Jul-15 GW-1R ND 10
32 26-Jan-16 GW-1R ND 10
33 26-Jul-16 GW-1R ND 10
34 24-May-12 GW-7 26.2 10
35 28-Jun-12 GW-7 25.1 10
36 25-Jul-12 GW-7 31.5 10
37 24-Aug-12 GW-7 29.6 10
38 24-May-12 GW-8 19.0 10
39 28-Jun-12 GW-8 14.5 10
40 25-Jul-12 GW-8 19.4 10
41 24-Aug-12 GW-8 16.9 10
42 28-Jun-12 GW-9 0.170 J 10
43 25-Jul-12 GW-9 1.12 J 10
44 24-Aug-12 GW-9 1.12 J 10
45 24-May-12 GW-10 2.94 J 10
46 28-Jun-12 GW-10 2.27 J 10
47 25-Jul-12 GW-10 2.13 J 10
Number of Data 47
Number of Truncated Data 25
Percentage of Truncated Data 53%
Non-Parmetric Prediction Interval: 31.5 µg/L
Notes:
All concentrations in micrograms per liter (µg/L).
ND = Not detected (truncated).
J = Estimated concentration below the reporting limit.
B = Blank-qualified data not used in statistical analysis.
Sorted
Concentration (µg/L)
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date: Nov. 2016
Analyte:Iron Quantitation
Concentration Limit
Sample No. Sample Date Location (µg/L)(µg/L)
1 23-Jul-07 GW-1 2,200 300 63.0 53,600
2 30-Jul-09 GW-1 2,540 300 80.0 33,400
3 14-Jan-10 GW-1R 1,630 300 93.8 19,100
4 15-Jul-10 GW-1R 517 300 102 18,400
5 20-Jan-11 GW-1R 359 300 130 5,280
6 14-Jul-11 GW-1R 490 300 140 3,480
7 30-Jan-12 GW-1R 146 40 146 2,540
8 25-Jul-12 GW-1R 221 10 156 2,400
9 04-Feb-13 GW-1R 156 30 163 2,200
10 08-Jul-13 GW-1R 5,280 30 194 1,630
11 21-Jan-14 GW-1R 783 30 220 1,620
12 21-Jul-14 GW-1R 93.8 40 221 783
13 29-Jan-15 GW-1R 63.0 40 253 540
14 27-Jul-15 GW-1R 140 40 311 517
15 26-Jan-16 GW-1R 253 J 300 311 490
16 26-Jul-16 GW-1R 102 J 300 330 359
17 24-May-12 GW-7 19,100 10 359 330
18 28-Jun-12 GW-7 18,400 10 490 311
19 25-Jul-12 GW-7 33,400 10 517 311
20 24-Aug-12 GW-7 53,600 10 540 253
21 24-May-12 GW-8 163 10 783 221
22 28-Jun-12 GW-8 194 10 1,620 220
23 25-Jul-12 GW-8 80.0 10 1,630 194
24 24-Aug-12 GW-8 130 10 2,200 163
25 24-May-12 GW-9 3,480 10 2,400 156
26 28-Jun-12 GW-9 540 10 2,540 146
27 25-Jul-12 GW-9 2,400 10 3,480 140
28 24-Aug-12 GW-9 1,620 10 5,280 130
29 24-May-12 GW-10 311 10 18,400 102
30 28-Jun-12 GW-10 220 10 19,100 93.8
31 25-Jul-12 GW-10 330 10 33,400 80.0
32 24-Aug-12 GW-10 311 10 53,600 63.0
Number of Data 32
Number of Truncated Data 0
Percentage of Truncated Data 0%
Non-Parmetric Prediction Interval: 53,600 µg/L
Notes:
All concentrations in micrograms per liter (µg/L).
ND = Not detected (truncated).
J = Estimated concentration below the reporting limit.
B = Blank-qualified data not used in statistical analysis.
Sorted
Concentration (µg/L)
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date: Nov. 2016
Shapiro Wilk Test Statistic (W) for normality of total Iron
Complete the following table where
i = ordered value of sample, arranged from smallest to largest
X(i) = sample values arranged from smallest to largest
X(n-i+1) = sample values arranged from largest to smallest
A(n-i+1) = coefficient from table A-1, Statistical Analysis of Ground-Water
Data at RCRA Facilities
B(i) = summation of (X(n-i+1)-X(i))A(n-i+1)
i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i)
1 63.0 53600.00 53,537 0.4188 22,421
2 80.0 33400.00 33,320 0.2898 9,656
3 93.8 19100.00 19,006 0.2463 4,681
4 102 18400.00 18,298 0.2141 3,918
5 130 5280.00 5,150 0.1878 967.2
6 140 3480.00 3,340 0.1651 551.4
7 146 2540.00 2,394 0.1449 346.9
8 156 2400.00 2,244 0.1265 283.9
9 163 2200.00 2,037 0.1093 222.6
10 194 1630.00 1,436 0.0931 133.7
11 220 1620.00 1,400 0.0777 108.8
12 221 783.00 562 0.0629 35.35
13 253 540.00 287 0.0485 13.92
14 311 517.00 206 0.0344 7.086
15 311 490.00 179 0.0206 3.687
16 330 359.00 29.0 0.0068 0.1972
17 359 330.00 -29.0
18 490 311.00 -179
19 517 311.00 -206
20 540 253.00 -287
21 783 221.00 -562
22 1,620 220.00 -1,400
23 1,630 194.00 -1,436
24 2,200 163.00 -2,037
25 2,400 156.00 -2,244
26 2,540 146.00 -2,394
27 3,480 140.00 -3,340
28 5,280 130.00 -5,150
29 18,400 102.00 -18,298
30 19,100 93.80 -19,006
31 33,400 80.00 -33,320
32 53,600 63.00 -53,537
The test statistic W can be found using:
W = SQR[B/(SD x SQRT(n-1))]
where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 43,351
SD = standard deviation of the data group = 11,444
n = number of samples = 32
W = 0.463
Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water
Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft)
July, 1992, to determine if the data is normally distributed.
From Table A-2 with (n) samples and a 95% confidence level, the critical value is
W(crit) = 0.930
and the calculated W = 0.463
Therefore the data is Non-Normal
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date: Nov. 2016
Shapiro Wilk Test Statistic (W) for normality of total Iron
Complete the following table where
i = ordered value of sample, arranged from smallest to largest
X(i) = sample values arranged from smallest to largest
X(n-i+1) = sample values arranged from largest to smallest
A(n-i+1) = coefficient from table A-1, Statistical Analysis of Ground-Water
Data at RCRA Facilities
B(i) = summation of (X(n-i+1)-X(i))A(n-i+1)
i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i)
1 4.14 10.89 6.75 0.4188 2.83
2 4.38 10.42 6.03 0.2898 1.75
3 4.54 9.86 5.32 0.2463 1.31
4 4.62 9.82 5.20 0.2141 1.11
5 4.87 8.57 3.70 0.1878 0.70
6 4.94 8.15 3.21 0.1651 0.53
7 4.98 7.84 2.86 0.1449 0.41
8 5.05 7.78 2.73 0.1265 0.35
9 5.09 7.70 2.60 0.1093 0.28
10 5.27 7.40 2.13 0.0931 0.20
11 5.39 7.39 2.00 0.0777 0.16
12 5.40 6.66 1.26 0.0629 0.08
13 5.53 6.29 0.76 0.0485 0.04
14 5.74 6.25 0.51 0.0344 0.02
15 5.74 6.19 0.45 0.0206 0.01
16 5.80 5.88 0.08 0.0068 0.00
17 5.88 5.80 -0.08
18 6.19 5.74 -0.45
19 6.25 5.74 -0.51
20 6.29 5.53 -0.76
21 6.66 5.40 -1.26
22 7.39 5.39 -2.00
23 7.40 5.27 -2.13
24 7.70 5.09 -2.60
25 7.78 5.05 -2.73
26 7.84 4.98 -2.86
27 8.15 4.94 -3.21
28 8.57 4.87 -3.70
29 9.82 4.62 -5.20
30 9.86 4.54 -5.32
31 10.42 4.38 -6.03
32 10.89 4.14 -6.75
The test statistic W can be found using:
W = SQR[B/(SD x SQRT(n-1))]
where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 9.76
SD = standard deviation of the data group = 1.85
n = number of samples = 32
W = 0.896
Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water
Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft)
July, 1992, to determine if the data is normally distributed.
From Table A-2 with (n) samples and a 95% confidence level, the critical value is
W(crit) = 0.930
and the calculated W = 0.896
Therefore the data is Non-Log-Normal.
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Analyte:Iron (GW-7)Quantitation
Concentration Limit
Sample No. Sample Date Location (µg/L)(µg/L)
1 24-May-12 GW-7 19,100 10 18,400 53,600
2 28-Jun-12 GW-7 18,400 10 19,100 33,400
3 25-Jul-12 GW-7 33,400 10 33,400 19,100
4 24-Aug-12 GW-7 53,600 10 53,600 18,400
Number of Data 4
Number of Truncated Data 0
Percentage of Truncated Data 0%
Upper Tolerance Limit (UTL) = 384,869 µg/L
Notes:
All concentrations in micrograms per liter (µg/L).
ND = Not detected (truncated).
J = Estimated concentration below the reporting limit.
B = Blank-qualified data not used in statistical analysis.
Sorted
Concentration (µg/L)
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Shapiro Wilk Test Statistic (W) for normality of total Iron (GW-7)
Complete the following table where
i = ordered value of sample, arranged from smallest to largest
X(i) = sample values arranged from smallest to largest
X(n-i+1) = sample values arranged from largest to smallest
A(n-i+1) = coefficient from table A-1, Statistical Analysis of Groundwater
Data at RCRA Facilities
B(i) = summation of (X(n-i+1)-X(i))A(n-i+1)
i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i)
1 9.82 10.89 1.07 0.6872 0.735
2 9.86 10.42 0.56 0.1677 0.094
3 10.42 9.86 -0.56
4 10.89 9.82 -1.07
The test statistic W can be found using:
W = SQR[B/(SD x SQRT(n-1))]
where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 0.828
SD = standard deviation of the data group = 0.508
n = number of samples = 4
W = 0.885
Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water
Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft)
July, 1992, to determine if the data is normally distributed.
From Table A-2 with (n) samples and a 95% confidence level, the critical value is
W(crit) = 0.748
and the calculated W = 0.885
Therefore the data set is Lognormal.
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date: Nov. 2016
Probability Plots to determine the distribution of Iron (GW-7)
Complete the following table where
i = ordered value of sample, arranged from smallest to largest
X(i) = sample values arranged from smallest to largest
LN[X(i)] = Natural Log Value of sample concentrations arranged from
smallest to largest
[i/(n+1)] = Cumulative probability
n = number of samples = 4
X(i)LN[X(i)] i Rank [Rank/(n+1)]Quantiles
18,400 9.82 1 1 0.200 -0.84
19,100 9.86 2 2 0.400 -0.25
33,400 10.42 3 3 0.600 0.25
53,600 10.89 4 4 0.800 0.84
Plot analysis indicates that the data more closely follow a normal distribution in the
normal format.
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Probability Plots to determine the distribution of Iron (GW-7)
R² = 0.8759
-2.00-1.50-1.00-0.500.000.501.001.502.002.50
0 10,000 20,000 30,000 40,000 50,000 60,000
Qu
a
n
t
i
l
e
Concentration (micrograms per liter)
Normal Probability Plot
R² = 0.9056
-2.00
-1.50
-1.00
-0.50
0.00
0.50
1.00
1.50
9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00
Qu
a
n
t
i
l
e
Ln [Concentration (micrograms per liter)]
Log Normal Probability Plot
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Determination of reported background value as an outlier
Analyte:Iron (GW-7)
Background Data
ln(Concentration) QL/RL
Sample No. Sample Date Location (µg/l) (µg/l)
1 24-May-12 GW-7 9.857 10
2 28-Jun-12 GW-7 9.820 10
3 25-Jul-12 GW-7 10.416 10
4 24-Aug-12 GW-7 10.889 10
mean = 10.246
STD = 0.508
Note: All concentrations are micrograms per liter
Using the data listed above, form the statisitc Tn:
Tn = (Xn - mean) / STD
where: Xn = largest observed sample value
mean = mean of the background values
STD = standard deviation of the background values
For Xn = 10.889
mean = 10.246
STD = 0.508
Tn = 1.266
From Table 8 included in the Staistical Analysis of Groundwater Monitoring Data at
RCRA Facilities - Interim Final Guidance, the critical value for the given sample group is
Number of samples = 4
Tc = 1.463
Since Tc>Tn, the sample result is not considered to be an outlier
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date: Nov. 2016
Parametric Tolerance Interval for log normally distributed data
Analyte:Iron (GW-7)
Background Data: Note use of log(concentration)
Background Data Quantitation
Concentration Limit Natural Log
Sample No. Sample Date Location (µg/l) (µg/l) Concentration
1 05/24/12 GW-7 19,100 10 9.8574
2 06/28/12 GW-7 18,400 10 9.8201
3 07/25/12 GW-7 33,400 10 10.4163
4 08/24/12 GW-7 53,600 10 10.8893
Note: All sample concentrations are micrograms per liter
Using the background data, the upper Tolerance Limit can be determined using:
Upper Tolerance Limit = antilog((Mean Concentration)+K x (Standard Deviation Samples))
where: Mean Conc = mean concentration background samples
K = factor for constructing one sided normal tolerance limit
taken from table 4-2, page 87, Statistical Methods for Groundwater
Monitoring, Gibbons, 1994
STDS = Standard Deviation Samples
n = number of background samples
For: n = 4
K = 5.144
Mean Conc = 10.246
STDS = 0.508
UTL = 384,869 µg/l
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date: Nov. 2016
Analyte:Manganese Quantitation
Concentration Limit
Sample No. Sample Date Location (µg/L) (µg/L)
1 23-Jul-07 GW-1 77.7 50 10.0 6,580
2 30-Jul-09 GW-1 48.8 J 50 12.9 5,420
3 14-Jan-10 GW-1R 123 300 14.5 5,360
4 15-Jul-10 GW-1R 45.6 J 300 24.0 4,030
5 20-Jan-11 GW-1R 94.3 300 27.1 784
6 14-Jul-11 GW-1R 83.7 300 30.4 762
7 30-Jan-12 GW-1R 27.1 40 45.6 730
8 25-Jul-12 GW-1R 67.2 10 48.8 710
9 04-Feb-13 GW-1R 30.4 J 50 50.0 221
10 08-Jul-13 GW-1R 221 50 60.2 123
11 21-Jan-14 GW-1R 101 50 62.5 121
12 27-Jul-15 GW-1R 12.9 J 50 67.2 104
13 26-Jan-16 GW-1R 24.0 J 50 70.0 101
14 26-Jul-16 GW-1R 14.5 J 50 77.7 94.3
15 24-May-12 GW-7 5,360 10 80.0 83.7
16 28-Jun-12 GW-7 4,030 10 83.7 80.0
17 25-Jul-12 GW-7 5,420 10 94.3 77.7
18 24-Aug-12 GW-7 6,580 10 101 70.0
19 24-May-12 GW-8 784 10 104 67.2
20 28-Jun-12 GW-8 730 10 121 62.5
21 25-Jul-12 GW-8 710 10 123 60.2
22 24-Aug-12 GW-8 762 10 221 50.0
23 24-May-12 GW-9 62.5 10 710 48.8
24 28-Jun-12 GW-9 10.0 10 730 45.6
25 25-Jul-12 GW-9 50.0 10 762 30.4
26 24-Aug-12 GW-9 60.2 10 784 27.1
27 24-May-12 GW-10 104 10 4,030 24.0
28 28-Jun-12 GW-10 80.0 10 5,360 14.5
29 25-Jul-12 GW-10 70.0 10 5,420 12.9
30 24-Aug-12 GW-10 121 10 6,580 10.0
Number of Data 30
Number of Truncated Data 0
Percentage of Truncated Data 0%
Non-Parmetric Prediction Interval: 6,580 µg/L
Notes:
All concentrations in micrograms per liter (µg/L).
ND = Not detected (truncated).
J = Estimated concentration below the reporting limit.
B = Blank-qualified data not used in statistical analysis.
Sorted
Concentration (µg/L)
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Shapiro Wilk Test Statistic (W) for normality of total Manganese
Complete the following table where
i = ordered value of sample, arranged from smallest to largest
X(i) = sample values arranged from smallest to largest
X(n-i+1) = sample values arranged from largest to smallest
A(n-i+1) = coefficient from table A-1, Statistical Analysis of Ground-Water
Data at RCRA Facilities
B(i) = summation of (X(n-i+1)-X(i))A(n-i+1)
i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i)
1 10.0 6580.00 6,570 0.4254 2,795
2 12.9 5420.00 5,407 0.2944 1,592
3 14.5 5360.00 5,346 0.2487 1,329
4 24 4030.00 4,006 0.2148 860
5 27 784.00 757 0.187 141.5
6 30 762.00 732 0.1630 119.3
7 46 730.00 684 0.1415 96.8
8 49 710.00 661 0.1219 80.6
9 50 221.00 171 0.1036 17.7
10 60 123.00 63 0.0862 5.4
11 63 121.00 59 0.0697 4.1
12 67 104.00 37 0.0537 1.98
13 70 101.00 31 0.0381 1.18
14 78 94.30 17 0.0227 0.377
15 80 83.70 4 0.0076 0.028
16 84 80.00 -3.7
17 94 77.70 -16.6
18 101 70.00 -31
19 104 67.20 -37
20 121 62.50 -59
21 123 60.20 -63
22 221 50.00 -171
23 710 48.80 -661
24 730 45.60 -684
25 762 30.40 -732
26 784 27.10 -757
27 4,030 24.00 -4,006
28 5,360 14.50 -5,346
29 5,420 12.90 -5,407
30 6,580 10.00 -6,570
The test statistic W can be found using:
W = SQR[B/(SD x SQRT(n-1))]
where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 7,046
SD = standard deviation of the data group = 1,835
n = number of samples = 30
W = 0.508
Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water
Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft)
July, 1992, to determine if the data is normally distributed.
From Table A-2 with (n) samples and a 95% confidence level, the critical value is
W(crit) = 0.930
and the calculated W = 0.508
Therefore the data is Non-Normal
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Shapiro Wilk Test Statistic (W) for normality of total Manganese
Complete the following table where
i = ordered value of sample, arranged from smallest to largest
X(i) = sample values arranged from smallest to largest
X(n-i+1) = sample values arranged from largest to smallest
A(n-i+1) = coefficient from table A-1, Statistical Analysis of Ground-Water
Data at RCRA Facilities
B(i) = summation of (X(n-i+1)-X(i))A(n-i+1)
i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i)
1 2.30 8.79 6.49 0.4254 2.76
2 2.56 8.60 6.04 0.2944 1.78
3 2.67 8.59 5.91 0.2487 1.47
4 3.18 8.30 5.12 0.2148 1.10
5 3.30 6.66 3.36 0.187 0.63
6 3.41 6.64 3.22 0.163 0.53
7 3.82 6.59 2.77 0.1415 0.39
8 3.89 6.57 2.68 0.1219 0.33
9 3.91 5.40 1.49 0.1036 0.15
10 4.10 4.81 0.71 0.0862 0.06
11 4.14 4.80 0.66 0.0697 0.05
12 4.21 4.64 0.44 0.0537 0.02
13 4.25 4.62 0.37 0.0381 0.01
14 4.35 4.55 0.19 0.0227 0.00
15 4.38 4.43 0.05 0.0076 0.00
16 4.43 4.38 -0.05
17 4.55 4.35 -0.19
18 4.62 4.25 -0.37
19 4.64 4.21 -0.44
20 4.80 4.14 -0.66
21 4.81 4.10 -0.71
22 5.40 3.91 -1.49
23 6.57 3.89 -2.68
24 6.59 3.82 -2.77
25 6.64 3.41 -3.22
26 6.66 3.30 -3.36
27 8.30 3.18 -5.12
28 8.59 2.67 -5.91
29 8.60 2.56 -6.04
30 8.79 2.30 -6.49
The test statistic W can be found using:
W = SQR[B/(SD x SQRT(n-1))]
where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 9.29
SD = standard deviation of the data group = 1.83
n = number of samples = 30
W = 0.887
Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water
Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft)
July, 1992, to determine if the data is normally distributed.
From Table A-2 with (n) samples and a 95% confidence level, the critical value is
W(crit) = 0.930
and the calculated W = 0.887
Therefore the data is Non-Log-Normal.
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Analyte:Manganese (GW-7)Quantitation
Concentration Limit
Sample No. Sample Date Location (µg/L)(µg/L)
1 24-May-12 GW-7 5,360 10 4,030 6,580
2 28-Jun-12 GW-7 4,030 10 5,360 5,420
3 25-Jul-12 GW-7 5,420 10 5,420 5,360
4 24-Aug-12 GW-7 6,580 10 6,580 4,030
Number of Data 4
Number of Truncated Data 0
Percentage of Truncated Data 0%
Upper Tolerance Limit (UTL) = 14,886 µg/L
Notes:
All concentrations in micrograms per liter (µg/L).
ND = Not detected (truncated).
J = Estimated concentration below the reporting limit.
B = Blank-qualified data not used in statistical analysis.
Sorted
Concentration (µg/L)
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Shapiro Wilk Test Statistic (W) for normality of total Manganese (GW-7)
Complete the following table where
i = ordered value of sample, arranged from smallest to largest
X(i) = sample values arranged from smallest to largest
X(n-i+1) = sample values arranged from largest to smallest
A(n-i+1) = coefficient from table A-1, Statistical Analysis of Groundwater
Data at RCRA Facilities
B(i) = summation of (X(n-i+1)-X(i))A(n-i+1)
i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i)
1 8.30 8.79 0.49 0.6872 0.337
2 8.59 8.60 0.01 0.1677 0.002
3 8.60 8.59 -0.01
4 8.79 8.30 -0.49
The test statistic W can be found using:
W = SQR[B/(SD x SQRT(n-1))]
where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 0.339
SD = standard deviation of the data group = 0.202
n = number of samples = 4
W = 0.938
Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water
Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft)
July, 1992, to determine if the data is normally distributed.
From Table A-2 with (n) samples and a 95% confidence level, the critical value is
W(crit) = 0.748
and the calculated W = 0.938
Therefore the data set is Lognormal.
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Probability Plots to determine the distribution of Manganese (GW-7)
R² = 0.9274
-2.00-1.50-1.00-0.500.000.501.001.502.002.50
0 2,000 4,000 6,000 8,000
Qu
a
n
t
i
l
e
Concentration (micrograms per liter)
Normal Probability Plot
R² = 0.9132
-2.00
-1.50
-1.00
-0.50
0.00
0.50
1.00
8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90
Qu
a
n
t
i
l
e
Ln [Concentration (micrograms per liter)]
Lognormal Probability Plot
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Probability Plots to determine the distribution of Manganese (GW-7)
Complete the following table where
i = ordered value of sample, arranged from smallest to largest
X(i) = sample values arranged from smallest to largest
LN[X(i)] = Natural Log Value of sample concentrations arranged from
smallest to largest
[i/(n+1)] = Cumulative probability
n = number of samples = 4
X(i) LN[X(i)] i Rank [Rank/(n+1)]Quantiles
4,030 8.30 1 1 0.200 -0.84
5,360 8.59 2 2 0.400 -0.25
5,420 8.60 3 3 0.600 0.25
6,580 8.79 4 4 0.800 0.84
Plot analysis indicates that the data more closely follow a normal distribution in the
normal format.
JOYCE Project:Upper Piedmont Landfill
Project No: 893.1603.12
Date:Nov. 2016
Determination of reported background value as an outlier
Analyte:Manganese (GW-7)
Background Data
ln(Concentration) QL/RL
Sample No. Sample Date Location (µg/l) (µg/l)
1 24-May-12 GW-7 8.587 10
2 28-Jun-12 GW-7 8.302 10
3 25-Jul-12 GW-7 8.598 10
4 24-Aug-12 GW-7 8.792 10
mean = 8.569
STD = 0.202
Note: All concentrations are micrograms per liter
Using the data listed above, form the statisitc Tn:
Tn = (Xn - mean) / STD
where: Xn = largest observed sample value
mean = mean of the background values
STD = standard deviation of the background values
For Xn = 8.792
mean = 8.569
STD = 0.202
Tn = 1.101
From Table 8 included in the Staistical Analysis of Groundwater Monitoring Data at
RCRA Facilities - Interim Final Guidance, the critical value for the given sample group is
Number of samples = 4
Tc = 1.463
Since Tc>Tn, the sample result is not considered to be an outlier
Parametric Tolerance Interval for log normally distributed data
Analyte:Manganese (GW-7)
Background Data: Note use of log(concentration)
Background Data Quantitation
Concentration Limit Natural Log
Sample No. Sample Date Location (ug/l) (ug/l) Concentration
1 05/24/12 GW-7 5,360 10.0 8.5867
2 06/28/12 GW-7 4,030 10.0 8.3015
3 07/25/12 GW-7 5,420 10.0 8.5979
4 08/24/12 GW-7 6,580 10.0 8.7918
Note: All sample concentrations are micrograms per liter
Using the background data, the upper Tolerance Limit can be determined using:
Upper Tolerance Limit = antilog((Mean Concentration)+K x (Standard Deviation Samples))
where:Mean Conc = mean concentration background samples
K = factor for constructing one sided normal tolerance limit
taken from table 4-2, page 87, Statistical Methods for Groundwater
Monitoring, Gibbons, 1994
STDS = Standard Deviation Samples
n = number of background samples
For: n = 4
K = 5.144
Mean Conc = 8.569
STDS = 0.202
UTL = 14,886 µg/l
Appendix C
Cobalt, Iron, & Manganese
in NC Stream Sediments