Loading...
HomeMy WebLinkAbout7304_UpperPiedmontMSWLF_ASDMetalsRpt_DIN27402_20161221 PREPARED FOR: REPUBLIC SERVICES OF NORTH CAROLINA, LLC D.B.A. UPPER PIEDMONT ENVIRONMENTAL 9650 OXFORD ROAD ROUGEMOUNT, NORTH CAROLINA 27572 UPPER PIEDMONT REGIONAL LANDFILL PERMIT NO. 73-04 ALTERNATE SOURCE DEMONSTRATION FOR COBALT, IRON, AND MANGANESE DECEMBER 2016 PREPARED BY: 2211 WEST MEADOWVIEW ROAD, SUITE 101 GREENSBORO, NORTH CAROLINA 27407 NC LICENSE NUMBER C-0782 PHONE: (336) 323-0092 FAX: (336) 323-0093 JOYCE ENGINEERING PROJECT NO. 00893.1602.12 ______________________________________________________________________________ Alternate Source Demonstration Joyce Engineering Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016 i Alternate Source Demonstration for Cobalt, Iron, & Manganese, Upper Piedmont Regional Landfill, Permit No. 73-04 TABLE OF CONTENTS 1.0 INTRODUCTION..............................................................................................................1  1.1  Site Description and Background ................................................................................ 1  1.2 Compliance Monitoring History .................................................................................. 1  1.3 Hydrogeologic Setting ................................................................................................... 2  2.0 CONCENTRATIONS IN GROUNDWATER ................................................................2  2.1 Comparisons to Groundwater Standards ................................................................... 2  2.2 Statistical Evaluation of Background ......................................................................... 3  2.2.1 Statistical Background for Cobalt .................................................................................. 3  2.2.2 Statistical Background for Iron ...................................................................................... 4  2.2.3 Statistical Background for Manganese ........................................................................... 4  2.0 SOURCE DETERMINATION .........................................................................................4  2.1 Landfill Leachate .......................................................................................................... 4  2.2 Natural Sources of Cobalt, Iron, and Manganese ...................................................... 5  3.0 CONCLUSIONS ................................................................................................................5  4.0 REFERENCES ...................................................................................................................6  TABLES Table 1: Historical Detections of Cobalt, Iron, and Manganese Table 2: Results of Statistical Analyses CHARTS Chart 1: Cobalt Concentrations vs. Time Chart 2: Iron Concentrations vs. Time Chart 3: Manganese Concentrations vs. Time DRAWING Drawing 1: Groundwater Potentiometric Surface Map (July 2016) APPENDICES Appendix A: Laboratory Report for July 2016 Sampling Event Appendix B: Statistical Analysis Worksheets Appendix C: Cobalt, Iron, and Manganese in NC Stream Sediments ______________________________________________________________________________ Alternate Source Demonstration Joyce Engineering Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016 1 1.0 INTRODUCTION On behalf of Republic Services of North Carolina, LLC (Republic), Joyce Engineering (JOYCE) presents this Alternate Source Demonstration (ASD) for the Upper Piedmont Regional Landfill in accordance with 15A NCAC 13B .1633(c)(3). This ASD addresses recent and historic detections of cobalt, iron, and manganese above groundwater protection standards (GPS), as requested in a Letter from the NCDEQ to Republic dated October 10, 2016. 1.1 Site Description and Background The Upper Piedmont Regional Landfill is an active municipal solid waste landfill located in Person County, North Carolina. It is owned and operated by Republic Services of North Carolina, LLC (Republic) under Permit No. 73-04 issued by the North Carolina Department of Environmental Quality (NCDEQ). The Upper Piedmont Regional Landfill is located approximately nine miles east-southeast of the town of Roxboro on U.S. Highway 158, in Person County, North Carolina. The landfill is bounded to the north by U.S. Highway 158, tributaries of Club Creek to the east and south, and Rock Fork Branch to the west. Surrounding land use is primarily rural residential, silvicultural, and agricultural. Access to the facility is via the drive off of Oxford Road (U.S. Highway 158). 1.2 Compliance Monitoring History Water quality monitoring at the facility was initiated in May 1997 under the Detection Monitoring Program for municipal solid waste landfills. The facility’s monitoring network is comprised of ten monitoring wells (GW-1R through GW-10), which monitor the uppermost aquifer beneath the facility. Upstream surface water monitoring point SW-1 and downstream surface water monitoring point SW-2 are also sampled semiannually in accordance with the approved monitoring plan. A sample from the facility’s leachate collection system is also sampled semiannually as part of the facility’s environmental monitoring program. The only Appendix I constituent that has been detected consistently at quantified values above the Groundwater Protection Standard found in 15A NCAC 2L.0202 (NC2L Standards) or the Solid Waste Section Groundwater Protection Standards (GWPS – for constituents with no listed NC2L Standard) is cobalt in monitoring well GW-8. Historically, cobalt has been detected sporadically above its GWPS in several other monitoring wells; however, there have been no quantified exceedances for cobalt in any well other than GW-8 in the last three sampling events. Iron and Manganese are not required Appendix I or II parameters; however, the semiannual groundwater and surface water samples from the facility have been analyzed for iron and manganese as additional indicator parameters since 2007 per a NCDEQ request in a letter dated September 28, 2007. Iron and manganese have been consistently detected in exceedance of their respective NC2L Standards in several of the monitoring wells at the facility. ______________________________________________________________________________ Alternate Source Demonstration Joyce Engineering Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016 2 1.3 Hydrogeologic Setting Geologically, the facility is located within the Carolina Slate Belt of the Piedmont Physiographic Province of North Carolina (NCGS, 1985). The Carolina Slate Belt is composed of Late Proterozoic to Cambrian meta-sedimentary and meta-volcanic rocks that locally have been intruded by diabase dikes and felsic intrusive suites. The rocks underlying the facility are mapped as felsic meta-volcanics (dacitic and rhyolitic tuffs and flows interbedded with mafic meta-volcanics (NCGS, 1985). The uppermost groundwater beneath the facility is contained in a shallow, unconfined aquifer comprised of partially weathered, fractured, meta-volcanic rock. Groundwater occurs at depths of approximately 30 feet below grade along the western, upgradient side of the waste disposal area, and at an average depth of five feet below grade along the eastern boundary. Depth-to- water measurements obtained during the July 26, 2016, monitoring event were used to prepare a groundwater potentiometric surface map presented as Drawing 1. The groundwater flow in the uppermost aquifer beneath the site is towards the east, with the flow appearing to converge on the easterly flowing perennial tributary streams of Club Creek. 2.0 CONCENTRATIONS IN GROUNDWATER 2.1 Comparisons to Groundwater Standards For most constituents, the Groundwater Protection Standards (GPS) are the standards found in 15A NCAC 2L.0202 (NC2L Standards); however, the NCDEQ Solid Waste Section (SWS) has established alternate groundwater protection standards for constituents with no listed NC2L Standard, referred to herein as the GWPS. The SWS has also established reporting limits for constituents, referred to as the Solid Waste Section Limits (SWSL), below which detections are considered estimated (not quantified). There is no NC2L standard established for cobalt. The SWS GWPS for cobalt is 1 µg/L; however, this is less than the SWSL of 10 µg/L. Estimated detections (below the SWSL) are not considered exceedances, so the effective GPS for cobalt is the SWSL, or 10 µg/L. The NC2L Standards (therefore the GPS) for iron and manganese are 300 µg/L and 50 µg/L, respectively. Table 1 presents all of the historical detections for cobalt, iron, and manganese at the Upper Piedmont Landfill from May 1997 through July 2016. Charts 1, 2, and 3 show cobalt, iron, and manganese concentrations vs. time, respectively. The full laboratory analytical report from the July 2016 sampling event is included as Appendix A. Cobalt was detected in GW-8 above the GPS during the most recent (July 26, 2016) monitoring event with a concentration of 12.6 µg/L. No other Appendix I constituents were detected at quantified concentrations above their respective GPS during the July 26, 2016, monitoring event. Cobalt has periodically been detected above its GPS in a few other wells at the site, but not during the last three sampling events. Note that cobalt was detected above its GPS in the pre- waste background samples from wells GW-7 and GW-8, indicating that cobalt occurs naturally above the GPS. ______________________________________________________________________________ Alternate Source Demonstration Joyce Engineering Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016 3 Iron was detected above its GPS in wells GW-4, GW-5, GW-7, and GW-9 during the July 2016 sampling event. Manganese was detected above its GPS in wells GW-2, GW-3, GW-5, GW-7, GW-8, GW-9, and GW-10 during the July 2016 sampling event. These results are generally consistent with historical detections of iron and manganese at the facility. Note that iron and manganese were detected above their respective GPS in the pre-waste background samples from wells GW-7, GW-8, GW-9, and GW-10, indicating that these metals occur naturally above the GPS. 2.2 Statistical Evaluation of Background The data were evaluated through the use of the Shapiro-Wilk Test, Parametric Prediction Limits, Parametric Tolerance Intervals, Aitchison’s Adjustment, Non-parametric Prediction Limits, and Poisson Prediction Limits, as appropriate. Background data, tests for normality, outliers, Aitchison’s adjustment, tolerance interval, or prediction limits are used, as appropriate based on the background data. The statistical test by which downgradient data are compared to facility background data is based upon the nature of the data and the number of data values that are less than the laboratory limit of detection. All statistical tests are evaluated at the 0.05 level of significance, 95% confidence level, and are conducted as one-tailed tests. GW-1 was the upgradient background well for the facility from May 1997 through the July 2009 sampling event. GW-1 was decommissioned following the July 2009 event. Monitoring well GW-1R was installed in July 2009 as a replacement for background well GW-1 and was sampled for the first time during the January 2010 sampling event, and has been the upgradient background well for the facility since that date. Downgradient wells GW-9 and GW-10 were installed in July 2009 and wells GW-7 and GW-8 were installed in April 2012 to monitor groundwater downgradient of the new Phase 3 waste unit (Cells 5A and 6A). Pre-waste background sampling for these four wells was performed in May, June, July, and August 2012. The data used for interwell statistical analysis of the background consists of all the data available for GW-1 and GW-1R from August 1998 through July 2016 as well as the pre-waste background data from GW-7, GW-8, GW-9, and GW-10. Due to geologic variation in the bedrock and derived soils, the background concentrations for naturally-occurring metals in the groundwater can vary significantly across a site. As a result, interwell statistical comparisons are sometimes insufficient to evaluate whether detected concentrations in a given well are naturally-occurring. In these cases, intrawell statistical background can be calculated using older historical data or pre-waste background data from that well. 2.2.1 Statistical Background for Cobalt Cobalt was detected in GW-8 at a quantified concentration of 12.6 µg/L during the July 26, 2016, monitoring event. The cobalt detection was statistically evaluated in accordance with the procedures outlined in 15A NCAC 13B.1632.(g) and (h) to determine if the quantified concentration exceeded the facility background concentration. Statistical analysis indicated an interwell background level of 31.5 µg/L for cobalt. There have been no detections of cobalt ______________________________________________________________________________ Alternate Source Demonstration Joyce Engineering Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016 4 above the statistical background in the history of the facility. The historical cobalt concentrations compared to the statistical background are shown on Chart 1. The results of the statistical analyses are summarized in Table 2, and the statistical worksheets are presented in Appendix A. The fact that cobalt in MW-8 is below the interwell statistical limit indicates the results that exceed the GPS are due to natural, background variations in groundwater quality. 2.2.2 Statistical Background for Iron Iron was detected above its GPS in wells GW-4, GW-5, GW-7, and GW-9 during the July 2016 sampling event, with the highest concentration in GW-7 at 106 mg/L. The interwell statistical background for iron was 53.6 mg/L; however, the intrawell background based on the pre-waste background data from GW-7 was 385 mg/L. Based on these data, there have been no statistically significant exceedances of the background for iron at this facility. The historical iron concentrations compared to the statistical background are shown on Chart 2. The results of the statistical analyses are summarized in Table 2, and the statistical worksheets are presented in Appendix A. The fact that iron in MW-7 is below the interwell statistical limit indicates the results that exceed the GPS are due to natural, background variations in groundwater quality. 2.2.3 Statistical Background for Manganese Manganese was detected above its GPS in wells GW-2, GW-3, GW-5, GW-7, GW-8, GW-9, and GW-10 during the July 2016 sampling event, with the highest concentration in GW-7 at 14.6 mg/L. The interwell statistical background for iron was 6.58 mg/L; however, the intrawell background based on the pre-waste background data from GW-7 was 14.9 mg/L. Based on these data, there have been no statistically significant exceedances of the background for manganese at this facility. The historical manganese concentrations compared to the statistical background are shown on Chart 3. The results of the statistical analyses are summarized in Table 2, and the statistical worksheets are presented in Appendix A. The fact that manganese in MW-7 is below the interwell statistical limit indicates the results that exceed the GPS are due to natural, background variations in groundwater quality. 2.0 SOURCE DETERMINATION 2.1 Landfill Leachate There is no evidence suggesting that the detected concentrations of cobalt, iron, or manganese are a result of a leachate release from the landfill. If the exceeding wells were impacted by leachate, one would expect organic constituents as well as metals to be detected. There have been no organic constituents detected in any of the wells with high levels of metals, including GW-7 and GW-8. If the metals detected in groundwater were a result of a leachate release, one would expect the concentrations in the leachate to be significantly higher than in the groundwater. The EPA default dilution factor for a lined landfill is 20 (USEPA, 1996). Cobalt was detected in the facility leachate at 58.9 µg/L during the July 2016 sampling event, which at a dilution factor of 20, would be expected to result in a concentration in the groundwater of no more than 2.9 µg/L. ______________________________________________________________________________ Alternate Source Demonstration Joyce Engineering Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016 5 This is significantly lower than the 12.6 µg/L detected in GW-8. Iron and Manganese were detected in the leachate at 6.31 mg/L and 0.934 mg/L, respectively, during the July 2016 sampling event. These concentrations are much lower than the concentrations of iron and manganese found in GW-7, ignoring any dilution factors, so it is very unlikely that the leachate could be the source of the iron and manganese in the groundwater at GW-7. 2.2 Natural Sources of Cobalt, Iron, and Manganese Cobalt, iron, and manganese are common elements occurring naturally in minerals commonly found in the bedrock, soil, and sediments in the North Carolina Piedmont. Appendix B presents three plates from A Geochemical Atlas of North Carolina (Reid, 1993), which show the distribution of cobalt, iron, and manganese in stream sediments across the state. Person County has been highlighted. Note that cobalt is found at concentrations as high as 10 mg/kg in stream sediments in Person County. Iron is found as high as 39,400-358,000 mg/kg and manganese as high as 970-11,620 mg/kg. Please note also that there is a significant amount of variability, with metals concentrations ranging over as much as two orders of magnitude within the County. Metals in the soil and bedrock can easily leach into the groundwater, especially if the groundwater is acidic (pH < 7.0). The pH of groundwater samples from the Upper Piedmont Landfill during the July 2016 sampling event averaged 6.55, which is only slightly acidic; however, the pH of groundwater from GW-8 was lower than average, with a value of 6.16. Since metals analyses required for the facility are for total metals, any suspended or dissolved sediment in the collected groundwater sample will be detected and included in the reported results. Turbidity was relatively low (<10 NTU) for most wells, including GW-7 and GW-8, during the July 2016 sampling event; however, even small amounts of sediment in a sample can significantly affect total metals concentrations. Cobalt was detected above its GPS in the pre-waste background samples from wells GW-7 and GW-8, and iron and manganese were detected above their respective GPS in the pre-waste background samples from wells GW-7, GW-8, GW-9, and GW-10. This clearly supports the contention that these metals are naturally-occurring in the groundwater in the vicinity of these wells. The facts that the all cobalt detections are below the interwell statistical background, and the detections of iron and manganese are below the intrawell statistical background in MW-7 also support this contention. 3.0 CONCLUSIONS Cobalt, iron, and manganese are naturally-occurring elements if the bedrock, soil, and sediment in the North Carolina Piedmont; therefore, they are expected to be naturally-occurring in the groundwater. The variations in concentrations of these metals in the groundwater are believed to reflect natural geologic variation at the site. Based on statistical evaluation, the cobalt, iron, and manganese detections at this facility are not statistically significant and are considered representative of background concentrations. The facility requests that the background value of 31.5 µg/L be considered the applicable groundwater protection standard for cobalt at the Upper Piedmont Landfill in accordance with 15A NCAC 13B.1634.(g).(5). Since iron and manganese ______________________________________________________________________________ Alternate Source Demonstration Joyce Engineering Upper Piedmont Regional Landfill, Permit No. 73-04 December 2016 6 are not required Appendix I constituents, the facility requests to cease monitoring for iron and manganese. 4.0 REFERENCES U.S. EPA, 1996. Soil Screening Guidance: Technical Background Document. EPA/540/R- .95/128. North Carolina Geologic Survey, 1985, Geologic Map of North Carolina; North Carolina Department of Natural Resources and Community Development, Geological Survey Section; scale 1:500,000. Reid, Jeffery C., 1993. A Geochemical Atlas of North Carolina. North Carolina Geological Survey, Bulletin 93. May 1991, Revised 1993. TABLES TA B L E 1 : H i s t o r i c a l D e t e c t i o n s o f C o b a l t , I r o n , a n d M a n g a n e s e An a l y t e Sa m p l e Co l l e c t i o n D a t e Me t h o d D L R L GW - 1 G W - 1 R G W - 2 G W - 3 G W - 4 G W - 5 G W - 6 G W - 7 G W - 8 G W - 9 G W - 1 0 Blanks Co b a l t 05 / 2 3 / 9 7 - - - - - - 1 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND GW P S = 1 µ g / L 06 / 1 6 / 9 7 - - - - - - 1 0 . 0 N D NI 10 . 0 ND ND ND -- - NI NI NI NI ND 08 / 1 4 / 9 7 - - - - - - 1 0 . 0 10 . 0 NI ND ND ND ND -- - NI NI NI NI ND 09 / 3 0 / 9 7 - - - - - - 4 0 . 0 D r y NI ND ND ND ND -- - NI NI NI NI ND 04 / 3 0 / 9 8 - - - - - - 4 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND 09 / 1 5 / 9 8 - - - - - - 4 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND 04 / 0 8 / 9 9 - - - - - - 4 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND 09 / 0 9 / 9 9 - - - - - - 1 0 . 0 D r y NI ND ND ND ND -- - NI NI NI NI ND 04 / 1 3 / 0 0 - - - - - - 1 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND 10 / 1 7 / 0 0 - - - - - - 1 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND 04 / 2 3 / 0 1 - - - - - - 1 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND 10 / 1 8 / 0 1 - - - - - - 1 0 . 0 D r y NI ND ND ND ND -- - NI NI NI NI ND 04 / 2 9 / 0 2 - - - - - - 1 0 . 0 D r y NI ND 20 . 0 2 0 . 0 2 0 . 0 -- - NI NI NI NI ND 10 / 2 3 / 0 2 - - - - - - 1 0 . 0 D r y NI ND ND ND ND -- - NI NI NI NI ND 04 / 1 4 / 0 3 - - - - - - 1 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND 10 / 3 0 / 0 3 - - - - - - 1 0 . 0 N D NI ND ND ND ND -- - NI NI NI NI ND 03 / 1 9 / 0 4 - - - - - - 1 0 . 0 - - - NI -- - -- - -- - -- - ND NI NI NI NI ND 04 / 2 8 / 0 4 - - - - - - 1 0 . 0 N D NI ND ND ND ND ND NI NI NI NI ND 10 / 2 7 / 0 4 - - - - - - 1 0 . 0 N D NI ND ND ND ND ND NI NI NI NI ND 03 / 1 6 / 0 5 - - - - - - 1 0 . 0 N D NI 15 . 0 ND ND ND ND NI NI NI NI ND 07 / 2 1 / 0 5 - - - - - - 1 0 . 0 N D NI ND ND ND ND ND NI NI NI NI ND 01 / 2 6 / 0 6 - - - - - - 1 0 . 0 D r y NI ND ND ND ND ND NI NI NI NI ND 07 / 2 1 / 0 6 - - - - - - 1 0 . 0 N D NI ND ND ND ND ND NI NI NI NI ND 01 / 2 2 / 0 7 - - - - - - 1 0 . 0 N D NI 16 . 4 ND ND 2. 7 J N D NI NI NI NI ND 04 / 1 0 / 0 7 - - - - - - 1 0 . 0 - - - NI 8.1 J - - - -- - -- - -- - NI NI NI NI ND 07 / 2 3 / 0 7 - - - - - - 1 0 . 0 N D NI ND ND ND ND ND NI NI NI NI ND 01 / 1 0 / 0 8 - - - - - - 1 0 . 0 D r y NI ND ND ND ND ND NI NI NI NI ND 07 / 2 1 / 0 8 - - - - - - 1 0 . 0 D r y NI ND 3.2 J N D 3. 1 J N D NI NI NI NI ND 01 / 2 9 / 0 9 - - - - - - 1 0 . 0 D r y NI 4.6 3 J 1 . 5 3 J N D 1 . 8 7 J N D NI NI NI NI ND 07 / 3 0 / 0 9 - - - - - - 1 0 . 0 2 . 5 5 J N I 1.8 5 J 2 . 3 7 J N D 2 . 9 1 J N D NI NI NI NI ND 01 / 1 4 / 1 0 - - - - - - 1 0 . 0 - - - 0 . 7 5 7 J 3 J 2 . 4 5 J N D 1 . 8 2 J N D NI NI NI NI ND 07 / 1 5 / 1 0 - - - - - - 1 0 . 0 - - - ND 2 . 2 5 J 1 . 8 4 J N D 2 . 2 1 J N D NI NI NI NI ND 01 / 2 0 / 1 1 - - - - - - 1 0 . 0 - - - ND 2 . 4 6 J 2 . 4 3 J N D ND ND NI NI NI NI ND 07 / 1 4 / 1 1 - - - - - - 1 0 . 0 - - - ND 2 . 3 3 J 1 . 3 1 J N D 1 . 6 1 J N D NI NI NI NI ND 01 / 3 0 / 1 2 - - - - - - 1 0 . 0 - - - 0.1 8 J 4 . 0 J 3 . 6 6 J 0 . 3 J 0 . 5 J 0 . 2 4 J N I NI NI NI ND Ba c k g r o u n d * > 0 5 / 2 4 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 26 . 2 1 9 . 0 0.93 J 2 . 9 4 J N D Ba c k g r o u n d * > 0 6 / 2 8 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 25 . 1 1 4 . 5 0.17 J 2 . 2 7 J N D Ba c k g r o u n d * > 0 7 / 2 5 / 1 2 - - - - - - 1 0 . 0 - - - 0.4 4 J 1 . 6 J 3 . 5 4 J 1 . 1 4 J 1 . 8 J 0 . 2 2 J 31 . 5 1 9 . 4 1.12 J 2 . 1 3 J N D Ba c k g r o u n d * > 0 8 / 2 4 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 29 . 6 1 6 . 9 1.12 J 3 . 8 5 J N D 02 / 0 4 / 1 3 - - - - - - 1 0 . 0 - - - 0.2 4 J 4 . 1 J 2 . 1 8 J 1 . 0 2 J 0 . 6 J 0 . 2 9 J 19 . 7 1 1 . 2 0.61 J 3 . 0 0 J N D 07 / 0 8 / 1 3 - - - - - - 1 0 . 0 - - - 2.7 3 J 3 . 6 2 J 1 . 8 8 J 0 . 5 7 J 1 . 2 3 J 0 . 3 9 J 12 . 5 1 0 . 7 1 0 . 6 8.14 J N D 01 / 2 1 / 1 4 E P A 6 0 2 0 A 0 . 1 2 1 0 . 0 - - - 0.5 3 J 6 . 2 4 J 4 . 2 9 J 0 . 3 2 J 0 . 6 8 J 0 . 6 5 J 13 . 7 1 1 . 2 3.11 J 3 . 4 9 J N D 07 / 2 1 / 1 4 E P A 6 0 2 0 A 0 . 2 6 1 0 . 0 - - - ND 2 . 2 1 J 1 . 8 7 J 0 . 3 6 J 0 . 8 6 J N D 16 . 8 2 0 . 7 4.51 J 11.5 ND 01 / 2 9 / 1 5 E P A 6 0 2 0 A 0 . 2 6 1 0 . 0 - - - ND 25 . 8 3. 7 2 J 0 . 2 7 J 0 . 6 3 J 0 . 2 8 J 8 . 3 4 J 16 . 5 2 0 . 3 4.50 J N D 07 / 2 7 / 1 5 E P A 6 0 2 0 A 0 . 2 9 1 0 . 0 - - - ND 0 . 9 3 J 0 . 8 J N D ND ND 7 . 5 5 J 16 . 1 5.50 J 3 . 3 7 J N D 01 / 2 6 / 1 6 E P A 6 0 2 0 B 0 . 2 9 1 0 . 0 - - - ND 5 . 0 6 J 5 . 5 8 J N D 1 . 0 3 J N D 6 . 8 9 J 14 . 2 8.81 J 4 . 7 6 J N D 07 / 2 6 / 1 6 E P A 6 0 2 0 B 0 . 2 9 1 0 . 0 - - - ND 1 . 7 3 J 1 . 0 4 J N D 1 . 3 8 J N D 6 . 3 3 J 12 . 6 3.70 J 3 . 8 4 J N D BA C K G R O U N D DO W N G R A D I E N T Up p e r P i e d m o n t R e g i o n a l L a n d f i l l , P e r m i t # 7 3 - 0 4 Re p u b l i c S e r v i c e s Pa g e 1 o f 2 Joyce Engineering December 2016 TA B L E 1 : H i s t o r i c a l D e t e c t i o n s o f C o b a l t , I r o n , a n d M a n g a n e s e An a l y t e Sa m p l e Co l l e c t i o n D a t e Me t h o d D L R L GW - 1 G W - 1 R G W - 2 G W - 3 G W - 4 G W - 5 G W - 6 G W - 7 G W - 8 G W - 9 G W - 1 0 Blanks BA C K G R O U N D D O W N G R A D I E N T Ir o n 07 / 2 3 / 0 7 - - - - - - 3 0 0 2 , 2 0 0 N I 20 . 0 44 20 . 0 7, 3 4 0 6 7 6 NI NI NI NI ND NC 2 L = 3 0 0 µ g / L 01 / 1 0 / 0 8 - - - - - - 3 0 0 D r y NI 38 . 0 J 7 1 J N D 4, 6 0 0 5 7 5 NI NI NI NI ND 07 / 2 1 / 0 8 - - - - - - 3 0 0 D r y NI 18 4 J 4 7 J N D 10 , 4 0 0 1 , 9 5 0 NI NI NI NI ND 01 / 2 9 / 0 9 - - - - - - 3 0 0 D r y NI 62 2 14 2 J 5 6 . 1 B 3, 5 2 0 5 8 5 NI NI NI NI 33.8 J 07 / 3 0 / 0 9 - - - - - - 3 0 0 2 , 5 4 0 N I 11 4 J 9 2 J 9 5 . 0 J 10 , 9 0 0 8 5 1 NI NI NI NI ND 01 / 1 4 / 1 0 - - - - - - 3 0 0 - - - 1, 6 3 0 24 9 J 2 2 2 J 8 7 . 0 J 5, 2 0 0 5 9 7 NI NI NI NI ND 07 / 1 5 / 1 0 - - - - - - 3 0 0 - - - 51 7 18 5 J 8 4 J 4 7 . 7 J 7, 8 8 0 1 , 3 5 0 NI NI NI NI ND 01 / 2 0 / 1 1 - - - - - - 3 0 0 - - - 35 9 3 2 5 10 6 J 6 0 . 4 J 2, 0 0 0 4 8 9 NI NI NI NI ND 07 / 1 4 / 1 1 - - - - - - 3 0 0 - - - 49 0 23 9 J 9 7 J 6 4 . 6 J 3, 2 2 0 7 7 3 NI NI NI NI ND 01 / 3 0 / 1 2 - - - - - - 4 0 . 0 - - - 14 6 1 8 9 77 5 44 6 1 , 7 6 0 7 2 2 NI NI NI NI 8.11 J Ba c k g r o u n d * > 0 5 / 2 4 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 1 9 , 1 0 0 1 6 3 3 , 4 8 0 3 1 1 ND Ba c k g r o u n d * > 0 6 / 2 8 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 1 8 , 4 0 0 1 9 4 540 220 ND Ba c k g r o u n d * > 0 7 / 2 5 / 1 2 - - - - - - 4 0 . 0 - - - 22 1 15 7 1 , 4 0 0 4,5 9 0 1 0 , 2 0 0 7 0 8 33 , 4 0 0 8 0 . 0 2 , 4 0 0 3 3 0 ND Ba c k g r o u n d * > 0 8 / 2 4 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 5 3 , 6 0 0 1 3 0 1 , 6 2 0 3 1 1 ND 02 / 0 4 / 1 3 - - - - - - 3 0 . 0 - - - 15 6 31 8 1 , 7 9 0 5 , 4 3 0 1 , 8 4 0 9 5 0 8 3 , 7 0 0 50 . 9 B 2 0 3 186 5 . 5 3 J 07 / 0 8 / 1 3 - - - - - - 3 0 . 0 - - - 5, 2 8 0 20 4 7,1 8 0 2 , 1 6 0 1 , 5 0 0 1 , 0 5 0 4 5 , 6 0 0 44 . 5 14,300 1 , 4 4 0 ND 01 / 2 1 / 1 4 E P A 6 0 2 0 A 3 . 0 2 3 0 . 0 - - - 78 3 45 7 7 , 9 9 0 1 , 0 6 0 1 , 5 9 0 2 , 5 4 0 8 7 , 0 0 0 13 2 3,730 271 4 . 9 6 J 07 / 2 1 / 1 4 E P A 6 0 2 0 A 3 . 1 4 0 . 0 - - - 93 . 8 13 8 2,1 2 0 1 , 7 0 0 3 , 0 0 0 8 6 0 8 1 , 9 0 0 17 8 1,810 1 , 9 3 0 ND 01 / 2 9 / 1 5 E P A 6 0 2 0 A 3 . 1 0 4 0 . 0 - - - 63 . 0 2, 9 5 0 6 5 6 57 9 1 , 7 2 0 7 2 6 6 5 , 9 0 0 82 . 1 14,400 225 4 . 3 4 J 07 / 2 7 / 1 5 E P A 6 0 2 0 A 5 . 7 2 4 0 . 0 - - - 14 0 15 3 16 8 10 4 56 1 20 1 89 , 9 0 0 14 . 9 J 3,810 103 ND 01 / 2 6 / 1 6 E P A 6 0 2 0 B 5 . 7 2 3 0 0 - - - 25 3 J 1 9 7 J 2 4 9 J 1,0 5 0 3 , 4 3 0 4 0 8 9 8 , 3 0 0 20 9 J 9,020 231 J 9 . 5 J 07 / 2 6 / 1 6 E P A 6 0 2 0 B 5 . 7 2 3 0 0 - - - 10 2 J 1 0 4 J 1 9 4 J 1,1 0 0 2 , 3 4 0 20 8 J 10 6 , 0 0 0 16 9 J 10,400 180 J N D Ma n g a n e s e 07 / 2 3 / 0 7 - - - - - - 5 0 . 0 7 7 . 7 NI 31 . 6 J 31 4 5 9 . 2 4 , 1 3 0 21 . 4 J N I NI NI NI ND NC 2 L = 5 0 µ g / L 01 / 1 0 / 0 8 - - - - - - 5 0 . 0 D r y NI 21 . 6 J 24 9 30 . 0 J 2, 1 3 0 23 . 0 J N I NI NI NI ND 07 / 2 1 / 0 8 - - - - - - 5 0 . 0 D r y NI 35 . 8 J 34 1 41 . 1 J 4, 8 4 0 23 . 6 J N I NI NI NI 2.8 J 01 / 2 9 / 0 9 - - - - - - 5 0 . 0 D r y NI 48 1 22 5 25 . 0 B 3, 2 5 0 15 . 6 B N I NI NI NI 13.3 J 07 / 3 0 / 0 9 - - - - - - 5 0 . 0 4 8 . 8 J N I 19 1 28 1 5 5 . 7 4 , 5 2 0 17 . 1 J N I NI NI NI ND 01 / 1 4 / 1 0 - - - - - - 5 0 . 0 - - - 12 3 35 5 29 4 23 . 8 J 3, 6 8 0 19 . 5 J N I NI NI NI ND 07 / 1 5 / 1 0 - - - - - - 5 0 . 0 - - - 45 . 6 J 20 3 20 3 45 . 5 J 3, 5 0 0 25 . 0 J N I NI NI NI ND 01 / 2 0 / 1 1 - - - - - - 5 0 . 0 - - - 94 . 3 2 2 4 29 1 26 . 3 J 1, 1 5 0 10 . 7 J N I NI NI NI ND 07 / 1 4 / 1 1 - - - - - - 5 0 . 0 - - - 83 . 7 1 9 8 16 7 49 . 2 3, 0 5 0 13 . 7 NI NI NI NI 1.16 J 01 / 3 0 / 1 2 - - - - - - 1 0 . 0 - - - 27 . 1 35 3 27 3 38 . 0 1, 1 4 0 11 . 0 NI NI NI NI ND Ba c k g r o u n d * > 0 5 / 2 4 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 5,3 6 0 7 8 4 6 2 . 5 1 0 4 ND Ba c k g r o u n d * > 0 6 / 2 8 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 4,0 3 0 7 3 0 10 80 ND Ba c k g r o u n d * > 0 7 / 2 5 / 1 2 - - - - - - 1 0 . 0 - - - 67 . 2 1 6 4 27 2 21 8 3 , 6 9 0 9. 1 3 J 5,4 2 0 7 1 0 50 70 ND Ba c k g r o u n d * > 0 8 / 2 4 / 1 2 - - - - - - 1 0 . 0 - - - NS NS NS NS NS NS 6,5 8 0 7 6 2 6 0 . 2 1 2 1 ND 02 / 0 4 / 1 3 - - - - - - 5 0 . 0 - - - 30 . 4 J 40 6 14 1 39 3 1 , 5 6 0 13 . 9 J 5,1 9 0 5 8 5 30.3 J 90.2 ND 07 / 0 8 / 1 3 - - - - - - 5 0 . 0 - - - 22 1 36 3 18 2 20 2 3 , 8 6 0 24 . 2 J 4,4 9 0 4 4 2 636 206 0.64 J 01 / 2 1 / 1 4 E P A 6 0 2 0 A 0 . 5 5 0 5 0 . 0 - - - 10 1 57 7 31 0 5 2 . 0 1 , 4 4 0 33 . 2 J 9,0 3 0 4 3 0 184 108 ND 07 / 2 1 / 1 4 E P A 6 0 2 0 A 0 . 3 9 5 5 0 . 0 - - - 10 . 7 B 15 3 7 2 . 0 13 6 2 , 9 5 0 10 . 4 B 13 , 6 0 0 9 2 0 181 249 2.27 J 01 / 2 9 / 1 5 E P A 6 0 2 0 A 0 . 3 9 5 5 0 . 0 - - - 5. 6 B 1, 9 5 0 2 2 2 25 . 1 J 1, 2 1 0 48 . 9 J 6,0 5 0 5 6 1 1 , 6 1 0 1 1 0 1.33 J 07 / 2 7 / 1 5 E P A 6 0 2 0 A 1 . 0 4 5 0 . 0 - - - 12 . 9 J 14 1 5 1 . 9 41 . 0 J 1, 2 0 0 13 . 6 J 12 , 4 0 0 5 3 6 214 119 ND 01 / 2 6 / 1 6 E P A 6 0 2 0 B 1 . 0 4 5 0 . 0 - - - 24 . 0 J 57 2 30 6 26 . 1 J 2, 6 9 0 28 . 0 J 12 , 3 0 0 51 4 680 142 ND 07 / 2 6 / 1 6 E P A 6 0 2 0 B 1 . 0 4 5 0 . 0 - - - 1 4 . 5 J 22 8 6 1 . 4 40 . 1 J 3, 4 8 0 19 . 4 J 14 , 6 0 0 4 6 0 1 9 7 1 2 0 ND No t e s : DL = M e t h o d D e t e c t i o n L i m i t . Al l r e s u l t s a r e i n m i c r o g r a m s p e r l i t e r ( µ g / l ) . RL = R e p o r t i n g L i m i t = P Q L p r i o r t o 2 0 0 7 a n d S W S L s t a r t i n g J a n u a r y 2 0 0 7 . Bo l d = C o n c e n t r a t i o n s a b o v e t h e N C 2 L o r G r o u n d w a t e r P r o t e c t i o n s t a n d a r d s ( G W P S ) h a v e b e e n b o l d e d . PQ L = P r a c t i c a l Q u a n t i t a t i o n L i m i t . ND = N o t d e t e c t e d a b o v e t h e D L . SW S L = N C - D E Q S o l i d W a s t e S e c t i o n L i m i t . J = E s t i m a t e d c o n c e n t r a t i o n b e l o w t h e R L . NC 2 L = G r o u n d w a t e r S t a n d a r d e s t a b l i s h e d i n 1 5 A N C A C 2 L . 0 2 0 2 . B = B l a n k - q u a l i f i e d d a t a ( a n a l y t e d e t e c t e d i n o n e o r m o r e b l a n k s a t s i m i l a r c o n c e n t r a t i o n ) . GW P S = N C D E Q S o l i d W a s t e S e c t i o n G r o u n d w a t e r P r o t e c t i o n S t a n d a r d f o r c o n s t i t u e n t s w i t h n o l i s t e d N C 2 L . d r y = i n s u f f i c i e n t w a t e r t o s a m p l e . Bla n k s = H i g h e s t o f r e s u l t s f r o m f i e l d , t r i p a n d / o r m e t h o d b l a n k s . - - - = N o d a t a . Al l d a t a p r i o r t o 2 0 1 2 t a k e n f r o m p r e v i o u s r e p o r t s b y G o l d e r A s s o c i a t e s N C , I n c . * S h a d e d r e s u l t s a r e f r o m p r e - w a s t e b a c k g r o u n d s a m p l i n g f o r G W - 7 , G W - 8 , G W - 9 , & G W - 1 0 . Up p e r P i e d m o n t R e g i o n a l L a n d f i l l , P e r m i t # 7 3 - 0 4 Re p u b l i c S e r v i c e s Pa g e 2 o f 2 Joyce Engineering December 2016 TA B L E 2 : R e s u l t s o f S t a t i s t i c a l A n a l y s e s Co n s t i t u e n t N C 2 L G W P S Da t a Di s t r i b u t i o n St a t i s t i c a l M e t h o d u s e d t o E s t a b l i s h Ba c k g r o u n d Ca l c u l a t e d Ba c k g r o u n d Co n c e n t r a t i o n Hi g h e s t R e p o r t e d Co n c e n t r a t i o n July 2016Noted SSI Co b a l t N / E 1 µ g / L 5 3 % T r u n c a t e d No n p a r m e t r i c P r e d i c t i o n I n t e r v a l (I n t e r w e l l ) 31 . 5 µ g / l 1 2 . 6 µ g / l i n G W - 8 N o n e Ir o n 3 0 0 µ g / L N / E 0% T r u n c a t e d , no n - n o r m a l , no n - l o g n o r m a l No n p a r m e t r i c P r e d i c t i o n I n t e r v a l (I n t e r w e l l ) 53 . 6 m g / l 1 0 6 m g / l i n G W - 7 G W - 7 Ir o n 3 0 0 µ g / L N / E 0% T r u n c a t e d , no r m a l a n d lo g n o r m a l Pa r m e t r i c U p p e r T o l e r a n c e L i m i t (I n t r a w e l l - G W - 7 ) 38 5 m g / l 10 6 m g / l i n G W - 7 N o n e Ma n g a n e s e 5 0 µ g / L N / E 0% T r u n c a t e d , no n - n o r m a l , no n - l o g n o r m a l No n p a r m e t r i c P r e d i c t i o n I n t e r v a l (I n t e r w e l l ) 6. 5 8 m g / l 14 . 6 m g / l i n G W - 7 G W - 7 Ma n g a n e s e 5 0 µ g / L N / E 0% T r u n c a t e d , no r m a l a n d lo g n o r m a l Pa r m e t r i c U p p e r T o l e r a n c e L i m i t (I n t r a w e l l - G W - 7 ) 14 . 9 m g / l 1 4 . 6 m g / l i n G W - 7 N o n e No t e s : NC 2 L = N o r t h C a r o l i n a G r o u n d w a t e r S t a n d a r d f r o m 1 5 A N C A C 2 L . 0 2 0 2 . N/ E = N o t e s t a b l i s h e d . GW P S = S o l i d W a s t e S e c t i o n G r o u n d w a t e r P r o t e c t S t a n d a r d . SS I = S t a t i s t i c a l l y S i g n i f i c a n t I n c r e a s e a b o v e B a c k g r o u n d . In t e r w e l l s t a t i s t i c s b a s e d o n a l l a v a i l a b l e d a t a f r o m b a c k g r o u n d w e l l s ( G W - 1 & G W - 1 R ) a n d p r e - w a s t e b a c k g r o u n d d a t a f r o m G W - 7 , G W - 8 , G W - 9 , & G W - 1 0 . In t r a w e l l s t a t i s t i c s b a s e d o n l y o n p r e - w a s t e b a c k g r o u n d d a t a f r o m G W - 7 . Up p e r P i e d m o n t R e g i o n a l L a n d f i l l , P e r m i t N o . 7 3 - 0 4 Re p u b l i c S e r v i c e s Joyce Engineering November 2016 CHARTS Up p e r P i e d m o n t R e g i o n a l L a n d f i l l , P e r m i t # 7 3 - 0 4 Re p u b l i c S e r v i c e s Joyce Engingeering December 2016 05101520253035 M a y ‐ 9 7 N o v ‐ 9 7 M a y ‐ 9 8 N o v ‐ 9 8 M a y ‐ 9 9 N o v ‐ 9 9 M a y ‐ 0 0 N o v ‐ 0 0 M a y ‐ 0 1 N o v ‐ 0 1 M a y ‐ 0 2 N o v ‐ 0 2 M a y ‐ 0 3 N o v ‐ 0 3 M a y ‐ 0 4 N o v ‐ 0 4 M a y ‐ 0 5 N o v ‐ 0 5 M a y ‐ 0 6 N o v ‐ 0 6 M a y ‐ 0 7 N o v ‐ 0 7 M a y ‐ 0 8 N o v ‐ 0 8 M a y ‐ 0 9 N o v ‐ 0 9 M a y ‐ 1 0 N o v ‐ 1 0 M a y ‐ 1 1 N o v ‐ 1 1 M a y ‐ 1 2 N o v ‐ 1 2 M a y ‐ 1 3 N o v ‐ 1 3 M a y ‐ 1 4 N o v ‐ 1 4 M a y ‐ 1 5 Nov‐15 May‐16 C o n c e n t r a t i o n     ( µ g / l ) CH A R T  1:    Co b a l t  Co n c e n t r a t i o n s  vs .  Ti m e GW ‐1 GW ‐1R GW ‐2 GW ‐3 GW ‐4 GW ‐5 GW ‐6 GW ‐7 GW ‐8 GW ‐9 GW ‐10 GPS  (SWSL)Background  (Interwell) Up p e r P i e d m o n t R e g i o n a l L a n d f i l l , P e r m i t # 7 3 - 0 4 Re p u b l i c S e r v i c e s Joyce Engineering November 2016 0 20 , 0 0 0 40 , 0 0 0 60 , 0 0 0 80 , 0 0 0 10 0 , 0 0 0 12 0 , 0 0 0 14 0 , 0 0 0 16 0 , 0 0 0 18 0 , 0 0 0 20 0 , 0 0 0 22 0 , 0 0 0 24 0 , 0 0 0 26 0 , 0 0 0 28 0 , 0 0 0 30 0 , 0 0 0 32 0 , 0 0 0 34 0 , 0 0 0 36 0 , 0 0 0 38 0 , 0 0 0 40 0 , 0 0 0 J u l ‐ 0 7 O c t ‐ 0 7 J a n ‐ 0 8 A p r ‐ 0 8 J u l ‐ 0 8 O c t ‐ 0 8 J a n ‐ 0 9 A p r ‐ 0 9 J u l ‐ 0 9 O c t ‐ 0 9 J a n ‐ 1 0 A p r ‐ 1 0 J u l ‐ 1 0 O c t ‐ 1 0 J a n ‐ 1 1 A p r ‐ 1 1 J u l ‐ 1 1 O c t ‐ 1 1 J a n ‐ 1 2 A p r ‐ 1 2 J u l ‐ 1 2 O c t ‐ 1 2 J a n ‐ 1 3 A p r ‐ 1 3 J u l ‐ 1 3 O c t ‐ 1 3 J a n ‐ 1 4 A p r ‐ 1 4 J u l ‐ 1 4 O c t ‐ 1 4 J a n ‐ 1 5 A p r ‐ 1 5 J u l ‐ 1 5 O c t ‐ 1 5 Jan‐16 Apr‐16 Jul‐16 C o n c e n t r a t i o n     ( µ g / l ) CH A R T  2:    Ir o n  Co n c e n t r a t i o n s  vs .  Ti m e GW ‐1 GW ‐1R GW ‐2 GW ‐3 GW ‐4 GW ‐5 GW ‐6 GW ‐7 GW ‐8 GW ‐9 GW ‐10 GPS  (NC2L)Background  (Interwell)Background  (GW ‐7) Up p e r P i e d m o n t R e g i o n a l L a n d f i l l , P e r m i t # 7 3 - 0 4 Re p u b l i c S e r v i c e s Joyce Engineering November 2016 0 2, 0 0 0 4, 0 0 0 6, 0 0 0 8, 0 0 0 10 , 0 0 0 12 , 0 0 0 14 , 0 0 0 16 , 0 0 0 18 , 0 0 0 20 , 0 0 0 J u l ‐ 0 7 O c t ‐ 0 7 J a n ‐ 0 8 A p r ‐ 0 8 J u l ‐ 0 8 O c t ‐ 0 8 J a n ‐ 0 9 A p r ‐ 0 9 J u l ‐ 0 9 O c t ‐ 0 9 J a n ‐ 1 0 A p r ‐ 1 0 J u l ‐ 1 0 O c t ‐ 1 0 J a n ‐ 1 1 A p r ‐ 1 1 J u l ‐ 1 1 O c t ‐ 1 1 J a n ‐ 1 2 A p r ‐ 1 2 J u l ‐ 1 2 O c t ‐ 1 2 J a n ‐ 1 3 A p r ‐ 1 3 J u l ‐ 1 3 O c t ‐ 1 3 J a n ‐ 1 4 A p r ‐ 1 4 J u l ‐ 1 4 O c t ‐ 1 4 J a n ‐ 1 5 A p r ‐ 1 5 J u l ‐ 1 5 O c t ‐ 1 5 Jan‐16 Apr‐16 Jul‐16 C o n c e n t r a t i o n     ( µ g / l ) CH A R T  3:    Ma n g a n e s e  Co n c e n t r a t i o n s  vs .  Ti m e GW ‐1 GW ‐1R GW ‐2 GW ‐3 GW ‐4 GW ‐5 GW ‐6 GW ‐7 GW ‐8 GW ‐9 GW ‐10 GPS  (NC2L)Background  (Interwell)Background  (GW ‐7) DRAWING Appendix A Laboratory Report July 2016 Sampling Event Appendix B Statistical Analysis Work Sheets JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Analyte:Cobalt Quantitation Concentration Limit Sample No. Sample Date Location (µg/L) (µg/L) 1 23-May-97 GW-1 ND 10 0.170 31.5 2 16-Jun-97 GW-1 ND 10 0.180 29.6 3 14-Aug-97 GW-1 10.0 10 0.240 26.2 4 30-Apr-98 GW-1 ND 40 0.440 25.1 5 15-Sep-98 GW-1 ND 40 0.530 19.4 6 08-Apr-99 GW-1 ND 40 0.757 19.0 7 13-Apr-00 GW-1 ND 10 1.12 16.9 8 17-Oct-00 GW-1 ND 10 1.12 14.5 9 23-Apr-01 GW-1 ND 10 2.13 10.0 10 14-Apr-03 GW-1 ND 10 2.27 2.94 11 30-Oct-03 GW-1 ND 10 2.55 2.73 12 28-Apr-04 GW-1 ND 10 2.73 2.55 13 27-Oct-04 GW-1 ND 10 2.94 2.27 14 16-Mar-05 GW-1 ND 10 10.0 2.13 15 21-Jul-05 GW-1 ND 10 14.5 1.12 16 21-Jul-06 GW-1 ND 10 16.9 1.12 17 22-Jan-07 GW-1 ND 10 19.0 0.757 18 23-Jul-07 GW-1 ND 10 19.4 0.530 19 30-Jul-09 GW-1 2.55 J 10 25.1 0.440 20 14-Jan-10 GW-1R 0.757 J 10 26.2 0.240 21 15-Jul-10 GW-1R ND 10 29.6 0.180 22 20-Jan-11 GW-1R ND 10 31.5 0.170 23 14-Jul-11 GW-1R ND 10 24 30-Jan-12 GW-1R 0.180 J 10 25 25-Jul-12 GW-1R 0.440 J 10 26 04-Feb-13 GW-1R 0.240 J 10 27 08-Jul-13 GW-1R 2.73 J 10 28 21-Jan-14 GW-1R 0.530 J 10 29 21-Jul-14 GW-1R ND 10 30 29-Jan-15 GW-1R ND 10 31 27-Jul-15 GW-1R ND 10 32 26-Jan-16 GW-1R ND 10 33 26-Jul-16 GW-1R ND 10 34 24-May-12 GW-7 26.2 10 35 28-Jun-12 GW-7 25.1 10 36 25-Jul-12 GW-7 31.5 10 37 24-Aug-12 GW-7 29.6 10 38 24-May-12 GW-8 19.0 10 39 28-Jun-12 GW-8 14.5 10 40 25-Jul-12 GW-8 19.4 10 41 24-Aug-12 GW-8 16.9 10 42 28-Jun-12 GW-9 0.170 J 10 43 25-Jul-12 GW-9 1.12 J 10 44 24-Aug-12 GW-9 1.12 J 10 45 24-May-12 GW-10 2.94 J 10 46 28-Jun-12 GW-10 2.27 J 10 47 25-Jul-12 GW-10 2.13 J 10 Number of Data 47 Number of Truncated Data 25 Percentage of Truncated Data 53% Non-Parmetric Prediction Interval: 31.5 µg/L Notes: All concentrations in micrograms per liter (µg/L). ND = Not detected (truncated). J = Estimated concentration below the reporting limit. B = Blank-qualified data not used in statistical analysis. Sorted Concentration (µg/L) JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date: Nov. 2016 Analyte:Iron Quantitation Concentration Limit Sample No. Sample Date Location (µg/L)(µg/L) 1 23-Jul-07 GW-1 2,200 300 63.0 53,600 2 30-Jul-09 GW-1 2,540 300 80.0 33,400 3 14-Jan-10 GW-1R 1,630 300 93.8 19,100 4 15-Jul-10 GW-1R 517 300 102 18,400 5 20-Jan-11 GW-1R 359 300 130 5,280 6 14-Jul-11 GW-1R 490 300 140 3,480 7 30-Jan-12 GW-1R 146 40 146 2,540 8 25-Jul-12 GW-1R 221 10 156 2,400 9 04-Feb-13 GW-1R 156 30 163 2,200 10 08-Jul-13 GW-1R 5,280 30 194 1,630 11 21-Jan-14 GW-1R 783 30 220 1,620 12 21-Jul-14 GW-1R 93.8 40 221 783 13 29-Jan-15 GW-1R 63.0 40 253 540 14 27-Jul-15 GW-1R 140 40 311 517 15 26-Jan-16 GW-1R 253 J 300 311 490 16 26-Jul-16 GW-1R 102 J 300 330 359 17 24-May-12 GW-7 19,100 10 359 330 18 28-Jun-12 GW-7 18,400 10 490 311 19 25-Jul-12 GW-7 33,400 10 517 311 20 24-Aug-12 GW-7 53,600 10 540 253 21 24-May-12 GW-8 163 10 783 221 22 28-Jun-12 GW-8 194 10 1,620 220 23 25-Jul-12 GW-8 80.0 10 1,630 194 24 24-Aug-12 GW-8 130 10 2,200 163 25 24-May-12 GW-9 3,480 10 2,400 156 26 28-Jun-12 GW-9 540 10 2,540 146 27 25-Jul-12 GW-9 2,400 10 3,480 140 28 24-Aug-12 GW-9 1,620 10 5,280 130 29 24-May-12 GW-10 311 10 18,400 102 30 28-Jun-12 GW-10 220 10 19,100 93.8 31 25-Jul-12 GW-10 330 10 33,400 80.0 32 24-Aug-12 GW-10 311 10 53,600 63.0 Number of Data 32 Number of Truncated Data 0 Percentage of Truncated Data 0% Non-Parmetric Prediction Interval: 53,600 µg/L Notes: All concentrations in micrograms per liter (µg/L). ND = Not detected (truncated). J = Estimated concentration below the reporting limit. B = Blank-qualified data not used in statistical analysis. Sorted Concentration (µg/L) JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date: Nov. 2016 Shapiro Wilk Test Statistic (W) for normality of total Iron Complete the following table where i = ordered value of sample, arranged from smallest to largest X(i) = sample values arranged from smallest to largest X(n-i+1) = sample values arranged from largest to smallest A(n-i+1) = coefficient from table A-1, Statistical Analysis of Ground-Water Data at RCRA Facilities B(i) = summation of (X(n-i+1)-X(i))A(n-i+1) i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i) 1 63.0 53600.00 53,537 0.4188 22,421 2 80.0 33400.00 33,320 0.2898 9,656 3 93.8 19100.00 19,006 0.2463 4,681 4 102 18400.00 18,298 0.2141 3,918 5 130 5280.00 5,150 0.1878 967.2 6 140 3480.00 3,340 0.1651 551.4 7 146 2540.00 2,394 0.1449 346.9 8 156 2400.00 2,244 0.1265 283.9 9 163 2200.00 2,037 0.1093 222.6 10 194 1630.00 1,436 0.0931 133.7 11 220 1620.00 1,400 0.0777 108.8 12 221 783.00 562 0.0629 35.35 13 253 540.00 287 0.0485 13.92 14 311 517.00 206 0.0344 7.086 15 311 490.00 179 0.0206 3.687 16 330 359.00 29.0 0.0068 0.1972 17 359 330.00 -29.0 18 490 311.00 -179 19 517 311.00 -206 20 540 253.00 -287 21 783 221.00 -562 22 1,620 220.00 -1,400 23 1,630 194.00 -1,436 24 2,200 163.00 -2,037 25 2,400 156.00 -2,244 26 2,540 146.00 -2,394 27 3,480 140.00 -3,340 28 5,280 130.00 -5,150 29 18,400 102.00 -18,298 30 19,100 93.80 -19,006 31 33,400 80.00 -33,320 32 53,600 63.00 -53,537 The test statistic W can be found using: W = SQR[B/(SD x SQRT(n-1))] where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 43,351 SD = standard deviation of the data group = 11,444 n = number of samples = 32 W = 0.463 Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft) July, 1992, to determine if the data is normally distributed. From Table A-2 with (n) samples and a 95% confidence level, the critical value is W(crit) = 0.930 and the calculated W = 0.463 Therefore the data is Non-Normal JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date: Nov. 2016 Shapiro Wilk Test Statistic (W) for normality of total Iron Complete the following table where i = ordered value of sample, arranged from smallest to largest X(i) = sample values arranged from smallest to largest X(n-i+1) = sample values arranged from largest to smallest A(n-i+1) = coefficient from table A-1, Statistical Analysis of Ground-Water Data at RCRA Facilities B(i) = summation of (X(n-i+1)-X(i))A(n-i+1) i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i) 1 4.14 10.89 6.75 0.4188 2.83 2 4.38 10.42 6.03 0.2898 1.75 3 4.54 9.86 5.32 0.2463 1.31 4 4.62 9.82 5.20 0.2141 1.11 5 4.87 8.57 3.70 0.1878 0.70 6 4.94 8.15 3.21 0.1651 0.53 7 4.98 7.84 2.86 0.1449 0.41 8 5.05 7.78 2.73 0.1265 0.35 9 5.09 7.70 2.60 0.1093 0.28 10 5.27 7.40 2.13 0.0931 0.20 11 5.39 7.39 2.00 0.0777 0.16 12 5.40 6.66 1.26 0.0629 0.08 13 5.53 6.29 0.76 0.0485 0.04 14 5.74 6.25 0.51 0.0344 0.02 15 5.74 6.19 0.45 0.0206 0.01 16 5.80 5.88 0.08 0.0068 0.00 17 5.88 5.80 -0.08 18 6.19 5.74 -0.45 19 6.25 5.74 -0.51 20 6.29 5.53 -0.76 21 6.66 5.40 -1.26 22 7.39 5.39 -2.00 23 7.40 5.27 -2.13 24 7.70 5.09 -2.60 25 7.78 5.05 -2.73 26 7.84 4.98 -2.86 27 8.15 4.94 -3.21 28 8.57 4.87 -3.70 29 9.82 4.62 -5.20 30 9.86 4.54 -5.32 31 10.42 4.38 -6.03 32 10.89 4.14 -6.75 The test statistic W can be found using: W = SQR[B/(SD x SQRT(n-1))] where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 9.76 SD = standard deviation of the data group = 1.85 n = number of samples = 32 W = 0.896 Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft) July, 1992, to determine if the data is normally distributed. From Table A-2 with (n) samples and a 95% confidence level, the critical value is W(crit) = 0.930 and the calculated W = 0.896 Therefore the data is Non-Log-Normal. JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Analyte:Iron (GW-7)Quantitation Concentration Limit Sample No. Sample Date Location (µg/L)(µg/L) 1 24-May-12 GW-7 19,100 10 18,400 53,600 2 28-Jun-12 GW-7 18,400 10 19,100 33,400 3 25-Jul-12 GW-7 33,400 10 33,400 19,100 4 24-Aug-12 GW-7 53,600 10 53,600 18,400 Number of Data 4 Number of Truncated Data 0 Percentage of Truncated Data 0% Upper Tolerance Limit (UTL) = 384,869 µg/L Notes: All concentrations in micrograms per liter (µg/L). ND = Not detected (truncated). J = Estimated concentration below the reporting limit. B = Blank-qualified data not used in statistical analysis. Sorted Concentration (µg/L) JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Shapiro Wilk Test Statistic (W) for normality of total Iron (GW-7) Complete the following table where i = ordered value of sample, arranged from smallest to largest X(i) = sample values arranged from smallest to largest X(n-i+1) = sample values arranged from largest to smallest A(n-i+1) = coefficient from table A-1, Statistical Analysis of Groundwater Data at RCRA Facilities B(i) = summation of (X(n-i+1)-X(i))A(n-i+1) i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i) 1 9.82 10.89 1.07 0.6872 0.735 2 9.86 10.42 0.56 0.1677 0.094 3 10.42 9.86 -0.56 4 10.89 9.82 -1.07 The test statistic W can be found using: W = SQR[B/(SD x SQRT(n-1))] where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 0.828 SD = standard deviation of the data group = 0.508 n = number of samples = 4 W = 0.885 Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft) July, 1992, to determine if the data is normally distributed. From Table A-2 with (n) samples and a 95% confidence level, the critical value is W(crit) = 0.748 and the calculated W = 0.885 Therefore the data set is Lognormal. JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date: Nov. 2016 Probability Plots to determine the distribution of Iron (GW-7) Complete the following table where i = ordered value of sample, arranged from smallest to largest X(i) = sample values arranged from smallest to largest LN[X(i)] = Natural Log Value of sample concentrations arranged from smallest to largest [i/(n+1)] = Cumulative probability n = number of samples = 4 X(i)LN[X(i)] i Rank [Rank/(n+1)]Quantiles 18,400 9.82 1 1 0.200 -0.84 19,100 9.86 2 2 0.400 -0.25 33,400 10.42 3 3 0.600 0.25 53,600 10.89 4 4 0.800 0.84 Plot analysis indicates that the data more closely follow a normal distribution in the normal format. JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Probability Plots to determine the distribution of Iron (GW-7) R² = 0.8759 -2.00-1.50-1.00-0.500.000.501.001.502.002.50 0 10,000 20,000 30,000 40,000 50,000 60,000 Qu a n t i l e Concentration (micrograms per liter) Normal Probability Plot R² = 0.9056 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 Qu a n t i l e Ln [Concentration (micrograms per liter)] Log Normal Probability Plot JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Determination of reported background value as an outlier Analyte:Iron (GW-7) Background Data ln(Concentration) QL/RL Sample No. Sample Date Location (µg/l) (µg/l) 1 24-May-12 GW-7 9.857 10 2 28-Jun-12 GW-7 9.820 10 3 25-Jul-12 GW-7 10.416 10 4 24-Aug-12 GW-7 10.889 10 mean = 10.246 STD = 0.508 Note: All concentrations are micrograms per liter Using the data listed above, form the statisitc Tn: Tn = (Xn - mean) / STD where: Xn = largest observed sample value mean = mean of the background values STD = standard deviation of the background values For Xn = 10.889 mean = 10.246 STD = 0.508 Tn = 1.266 From Table 8 included in the Staistical Analysis of Groundwater Monitoring Data at RCRA Facilities - Interim Final Guidance, the critical value for the given sample group is Number of samples = 4 Tc = 1.463 Since Tc>Tn, the sample result is not considered to be an outlier JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date: Nov. 2016 Parametric Tolerance Interval for log normally distributed data Analyte:Iron (GW-7) Background Data: Note use of log(concentration) Background Data Quantitation Concentration Limit Natural Log Sample No. Sample Date Location (µg/l) (µg/l) Concentration 1 05/24/12 GW-7 19,100 10 9.8574 2 06/28/12 GW-7 18,400 10 9.8201 3 07/25/12 GW-7 33,400 10 10.4163 4 08/24/12 GW-7 53,600 10 10.8893 Note: All sample concentrations are micrograms per liter Using the background data, the upper Tolerance Limit can be determined using: Upper Tolerance Limit = antilog((Mean Concentration)+K x (Standard Deviation Samples)) where: Mean Conc = mean concentration background samples K = factor for constructing one sided normal tolerance limit taken from table 4-2, page 87, Statistical Methods for Groundwater Monitoring, Gibbons, 1994 STDS = Standard Deviation Samples n = number of background samples For: n = 4 K = 5.144 Mean Conc = 10.246 STDS = 0.508 UTL = 384,869 µg/l JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date: Nov. 2016 Analyte:Manganese Quantitation Concentration Limit Sample No. Sample Date Location (µg/L) (µg/L) 1 23-Jul-07 GW-1 77.7 50 10.0 6,580 2 30-Jul-09 GW-1 48.8 J 50 12.9 5,420 3 14-Jan-10 GW-1R 123 300 14.5 5,360 4 15-Jul-10 GW-1R 45.6 J 300 24.0 4,030 5 20-Jan-11 GW-1R 94.3 300 27.1 784 6 14-Jul-11 GW-1R 83.7 300 30.4 762 7 30-Jan-12 GW-1R 27.1 40 45.6 730 8 25-Jul-12 GW-1R 67.2 10 48.8 710 9 04-Feb-13 GW-1R 30.4 J 50 50.0 221 10 08-Jul-13 GW-1R 221 50 60.2 123 11 21-Jan-14 GW-1R 101 50 62.5 121 12 27-Jul-15 GW-1R 12.9 J 50 67.2 104 13 26-Jan-16 GW-1R 24.0 J 50 70.0 101 14 26-Jul-16 GW-1R 14.5 J 50 77.7 94.3 15 24-May-12 GW-7 5,360 10 80.0 83.7 16 28-Jun-12 GW-7 4,030 10 83.7 80.0 17 25-Jul-12 GW-7 5,420 10 94.3 77.7 18 24-Aug-12 GW-7 6,580 10 101 70.0 19 24-May-12 GW-8 784 10 104 67.2 20 28-Jun-12 GW-8 730 10 121 62.5 21 25-Jul-12 GW-8 710 10 123 60.2 22 24-Aug-12 GW-8 762 10 221 50.0 23 24-May-12 GW-9 62.5 10 710 48.8 24 28-Jun-12 GW-9 10.0 10 730 45.6 25 25-Jul-12 GW-9 50.0 10 762 30.4 26 24-Aug-12 GW-9 60.2 10 784 27.1 27 24-May-12 GW-10 104 10 4,030 24.0 28 28-Jun-12 GW-10 80.0 10 5,360 14.5 29 25-Jul-12 GW-10 70.0 10 5,420 12.9 30 24-Aug-12 GW-10 121 10 6,580 10.0 Number of Data 30 Number of Truncated Data 0 Percentage of Truncated Data 0% Non-Parmetric Prediction Interval: 6,580 µg/L Notes: All concentrations in micrograms per liter (µg/L). ND = Not detected (truncated). J = Estimated concentration below the reporting limit. B = Blank-qualified data not used in statistical analysis. Sorted Concentration (µg/L) JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Shapiro Wilk Test Statistic (W) for normality of total Manganese Complete the following table where i = ordered value of sample, arranged from smallest to largest X(i) = sample values arranged from smallest to largest X(n-i+1) = sample values arranged from largest to smallest A(n-i+1) = coefficient from table A-1, Statistical Analysis of Ground-Water Data at RCRA Facilities B(i) = summation of (X(n-i+1)-X(i))A(n-i+1) i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i) 1 10.0 6580.00 6,570 0.4254 2,795 2 12.9 5420.00 5,407 0.2944 1,592 3 14.5 5360.00 5,346 0.2487 1,329 4 24 4030.00 4,006 0.2148 860 5 27 784.00 757 0.187 141.5 6 30 762.00 732 0.1630 119.3 7 46 730.00 684 0.1415 96.8 8 49 710.00 661 0.1219 80.6 9 50 221.00 171 0.1036 17.7 10 60 123.00 63 0.0862 5.4 11 63 121.00 59 0.0697 4.1 12 67 104.00 37 0.0537 1.98 13 70 101.00 31 0.0381 1.18 14 78 94.30 17 0.0227 0.377 15 80 83.70 4 0.0076 0.028 16 84 80.00 -3.7 17 94 77.70 -16.6 18 101 70.00 -31 19 104 67.20 -37 20 121 62.50 -59 21 123 60.20 -63 22 221 50.00 -171 23 710 48.80 -661 24 730 45.60 -684 25 762 30.40 -732 26 784 27.10 -757 27 4,030 24.00 -4,006 28 5,360 14.50 -5,346 29 5,420 12.90 -5,407 30 6,580 10.00 -6,570 The test statistic W can be found using: W = SQR[B/(SD x SQRT(n-1))] where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 7,046 SD = standard deviation of the data group = 1,835 n = number of samples = 30 W = 0.508 Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft) July, 1992, to determine if the data is normally distributed. From Table A-2 with (n) samples and a 95% confidence level, the critical value is W(crit) = 0.930 and the calculated W = 0.508 Therefore the data is Non-Normal JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Shapiro Wilk Test Statistic (W) for normality of total Manganese Complete the following table where i = ordered value of sample, arranged from smallest to largest X(i) = sample values arranged from smallest to largest X(n-i+1) = sample values arranged from largest to smallest A(n-i+1) = coefficient from table A-1, Statistical Analysis of Ground-Water Data at RCRA Facilities B(i) = summation of (X(n-i+1)-X(i))A(n-i+1) i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i) 1 2.30 8.79 6.49 0.4254 2.76 2 2.56 8.60 6.04 0.2944 1.78 3 2.67 8.59 5.91 0.2487 1.47 4 3.18 8.30 5.12 0.2148 1.10 5 3.30 6.66 3.36 0.187 0.63 6 3.41 6.64 3.22 0.163 0.53 7 3.82 6.59 2.77 0.1415 0.39 8 3.89 6.57 2.68 0.1219 0.33 9 3.91 5.40 1.49 0.1036 0.15 10 4.10 4.81 0.71 0.0862 0.06 11 4.14 4.80 0.66 0.0697 0.05 12 4.21 4.64 0.44 0.0537 0.02 13 4.25 4.62 0.37 0.0381 0.01 14 4.35 4.55 0.19 0.0227 0.00 15 4.38 4.43 0.05 0.0076 0.00 16 4.43 4.38 -0.05 17 4.55 4.35 -0.19 18 4.62 4.25 -0.37 19 4.64 4.21 -0.44 20 4.80 4.14 -0.66 21 4.81 4.10 -0.71 22 5.40 3.91 -1.49 23 6.57 3.89 -2.68 24 6.59 3.82 -2.77 25 6.64 3.41 -3.22 26 6.66 3.30 -3.36 27 8.30 3.18 -5.12 28 8.59 2.67 -5.91 29 8.60 2.56 -6.04 30 8.79 2.30 -6.49 The test statistic W can be found using: W = SQR[B/(SD x SQRT(n-1))] where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 9.29 SD = standard deviation of the data group = 1.83 n = number of samples = 30 W = 0.887 Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft) July, 1992, to determine if the data is normally distributed. From Table A-2 with (n) samples and a 95% confidence level, the critical value is W(crit) = 0.930 and the calculated W = 0.887 Therefore the data is Non-Log-Normal. JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Analyte:Manganese (GW-7)Quantitation Concentration Limit Sample No. Sample Date Location (µg/L)(µg/L) 1 24-May-12 GW-7 5,360 10 4,030 6,580 2 28-Jun-12 GW-7 4,030 10 5,360 5,420 3 25-Jul-12 GW-7 5,420 10 5,420 5,360 4 24-Aug-12 GW-7 6,580 10 6,580 4,030 Number of Data 4 Number of Truncated Data 0 Percentage of Truncated Data 0% Upper Tolerance Limit (UTL) = 14,886 µg/L Notes: All concentrations in micrograms per liter (µg/L). ND = Not detected (truncated). J = Estimated concentration below the reporting limit. B = Blank-qualified data not used in statistical analysis. Sorted Concentration (µg/L) JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Shapiro Wilk Test Statistic (W) for normality of total Manganese (GW-7) Complete the following table where i = ordered value of sample, arranged from smallest to largest X(i) = sample values arranged from smallest to largest X(n-i+1) = sample values arranged from largest to smallest A(n-i+1) = coefficient from table A-1, Statistical Analysis of Groundwater Data at RCRA Facilities B(i) = summation of (X(n-i+1)-X(i))A(n-i+1) i X(i) X(n-i+1) X(n-i+1) - X(i) A(n-i+1) B(i) 1 8.30 8.79 0.49 0.6872 0.337 2 8.59 8.60 0.01 0.1677 0.002 3 8.60 8.59 -0.01 4 8.79 8.30 -0.49 The test statistic W can be found using: W = SQR[B/(SD x SQRT(n-1))] where: B = summation of (X(n-i+1)-X(i))A(n-i+1) = 0.339 SD = standard deviation of the data group = 0.202 n = number of samples = 4 W = 0.938 Compare this value to the critical value in Table A-2 of Statistical Analysisof Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance (Draft) July, 1992, to determine if the data is normally distributed. From Table A-2 with (n) samples and a 95% confidence level, the critical value is W(crit) = 0.748 and the calculated W = 0.938 Therefore the data set is Lognormal. JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Probability Plots to determine the distribution of Manganese (GW-7) R² = 0.9274 -2.00-1.50-1.00-0.500.000.501.001.502.002.50 0 2,000 4,000 6,000 8,000 Qu a n t i l e Concentration (micrograms per liter) Normal Probability Plot R² = 0.9132 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90 Qu a n t i l e Ln [Concentration (micrograms per liter)] Lognormal Probability Plot JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Probability Plots to determine the distribution of Manganese (GW-7) Complete the following table where i = ordered value of sample, arranged from smallest to largest X(i) = sample values arranged from smallest to largest LN[X(i)] = Natural Log Value of sample concentrations arranged from smallest to largest [i/(n+1)] = Cumulative probability n = number of samples = 4 X(i) LN[X(i)] i Rank [Rank/(n+1)]Quantiles 4,030 8.30 1 1 0.200 -0.84 5,360 8.59 2 2 0.400 -0.25 5,420 8.60 3 3 0.600 0.25 6,580 8.79 4 4 0.800 0.84 Plot analysis indicates that the data more closely follow a normal distribution in the normal format. JOYCE Project:Upper Piedmont Landfill Project No: 893.1603.12 Date:Nov. 2016 Determination of reported background value as an outlier Analyte:Manganese (GW-7) Background Data ln(Concentration) QL/RL Sample No. Sample Date Location (µg/l) (µg/l) 1 24-May-12 GW-7 8.587 10 2 28-Jun-12 GW-7 8.302 10 3 25-Jul-12 GW-7 8.598 10 4 24-Aug-12 GW-7 8.792 10 mean = 8.569 STD = 0.202 Note: All concentrations are micrograms per liter Using the data listed above, form the statisitc Tn: Tn = (Xn - mean) / STD where: Xn = largest observed sample value mean = mean of the background values STD = standard deviation of the background values For Xn = 8.792 mean = 8.569 STD = 0.202 Tn = 1.101 From Table 8 included in the Staistical Analysis of Groundwater Monitoring Data at RCRA Facilities - Interim Final Guidance, the critical value for the given sample group is Number of samples = 4 Tc = 1.463 Since Tc>Tn, the sample result is not considered to be an outlier Parametric Tolerance Interval for log normally distributed data Analyte:Manganese (GW-7) Background Data: Note use of log(concentration) Background Data Quantitation Concentration Limit Natural Log Sample No. Sample Date Location (ug/l) (ug/l) Concentration 1 05/24/12 GW-7 5,360 10.0 8.5867 2 06/28/12 GW-7 4,030 10.0 8.3015 3 07/25/12 GW-7 5,420 10.0 8.5979 4 08/24/12 GW-7 6,580 10.0 8.7918 Note: All sample concentrations are micrograms per liter Using the background data, the upper Tolerance Limit can be determined using: Upper Tolerance Limit = antilog((Mean Concentration)+K x (Standard Deviation Samples)) where:Mean Conc = mean concentration background samples K = factor for constructing one sided normal tolerance limit taken from table 4-2, page 87, Statistical Methods for Groundwater Monitoring, Gibbons, 1994 STDS = Standard Deviation Samples n = number of background samples For: n = 4 K = 5.144 Mean Conc = 8.569 STDS = 0.202 UTL = 14,886 µg/l Appendix C Cobalt, Iron, & Manganese in NC Stream Sediments