HomeMy WebLinkAbout1302_CabarrusCDLF_Phase3_4_DesignHydro_DIN27243_January2017
i
Table of Contents
1. Purpose and Scope
1.1 Report Contents ............................................................................................................................................................. 1-1
1.2 Previous Investigations ............................................................................................................................................... 1-1
1.2.1 C&D Landfill Investigation – Phase 1 .................................................................................................... 1-2
1.2.2 C&D Landfill Investigation – Phase 2 .................................................................................................... 1-2
1.2.3 Monitoring Well Installation .................................................................................................................... 1-4
1.2.4 C&D Landfill – Phase 2 Expansion ......................................................................................................... 1-4
1.2.5 Monitoring Well Installation – Phase 2 Expansion ......................................................................... 1-5
1.2.6 Alternate Source Demonstration ............................................................................................................ 1-5
1.3 Current Investigation ................................................................................................................................................... 1-5
2. Methodology
2.1 Drilling Methods ............................................................................................................................................................. 2-1
2.1.1 Borehole Drilling ........................................................................................................................................... 2-1
2.1.1.1 Hollow-Stem Auger Drilling ................................................................................................. 2-1
2.1.1.2 Rock Coring ................................................................................................................................. 2-1
2.2 Piezometer Installations ............................................................................................................................................. 2-2
2.3 Water Level Measurements ...................................................................................................................................... 2-2
2.4 Piezometer Surveying .................................................................................................................................................. 2-2
2.5 Slug Tests .......................................................................................................................................................................... 2-4
2.6 Geotechnical Testing .................................................................................................................................................... 2-4
3. Current Investigation Results
3.1 Site Geology ...................................................................................................................................................................... 3-1
3.1.1 Drilling Observations .................................................................................................................................. 3-1
3.1.1.1 Residuum ..................................................................................................................................... 3-3
3.1.1.2 Saprolite ....................................................................................................................................... 3-3
3.1.1.3 Partially Weathered Rock ..................................................................................................... 3-3
3.1.1.4 Bedrock......................................................................................................................................... 3-4
3.2 Testing Program ............................................................................................................................................................. 3-7
3.2.1 Standard Penetration Testing .................................................................................................................. 3-7
3.2.2 Particle Size Analysis and Unified Soil Classification .................................................................... 3-7
3.2.3 Formation Descriptions ............................................................................................................................. 3-7
3.2.4 Geotechnical Laboratory Testing ........................................................................................................... 3-7
3.2.5 Dispersive Characteristics ......................................................................................................................... 3-9
3.3 Site Hydrogeology ...................................................................................................................................................... 3-10
3.3.1 Water Level Measurements ................................................................................................................... 3-10
3.3.1.1 Horizontal and Vertical Gradients ................................................................................. 3-10
3.3.1.2 Temporal Trends ................................................................................................................... 3-18
3.3.2 Slug Test Results......................................................................................................................................... 3-21
3.4 Hydrogeological Conceptual Model .................................................................................................................... 3-25
3.4.1 Precipitation and Groundwater Recharge....................................................................................... 3-25
3.4.2 Groundwater Flow ..................................................................................................................................... 3-28
3.4.2.1 Groundwater Velocity ......................................................................................................... 3-28
Phase 3 and Phase 4 Expansions – Design Hydrogeologic Report • Table of Contents
ii
3.4.3 Surface Water Interactions and Groundwater Discharge ......................................................... 3-29
3.5 Groundwater Conditions ......................................................................................................................................... 3-29
3.5.1 Groundwater Quality ................................................................................................................................ 3-29
3.5.2 Groundwater Assessment and Remediation ...................................................................................... 3-31
4. Conclusions
4.1 Landfill Construction Considerations .................................................................................................................... 4-1
4.2 Water Quality Monitoring Plan Considerations ................................................................................................ 4-1
4.3 Piezometer and Monitoring Well Abandonment .............................................................................................. 4-1
5. References
Phase 3 and Phase 4 Expansions – Design Hydrogeologic Report • Table of Contents
iii
List of Figures
Figure 1-1 Site Map ............................................................................................................................................................. 1-3
Figure 3-1 Bedrock Contour Map ................................................................................................................................. 3-5
Figure 3-2 Groundwater Contour Map .................................................................................................................... 3-12
Figure 3-3 Average Monthly Precipitation ............................................................................................................ 3-20
Figure 3-4 Seasonal High GW ...................................................................................................................................... 3-22
Figure 3-5 Long-Term Seasonal High GW .............................................................................................................. 3-23
Figure 3-6 Cross-Section A-A’ ...................................................................................................................................... 3-26
Figure 3-7 Cross-Section B-B’ ...................................................................................................................................... 3-27
List of Tables
Table 2-1 Piezometer and Monitoring Well Completion Summary ............................................................. 2-3
Table 3-1 Summary of Lithologic Data ..................................................................................................................... 3-2
Table 3-2 Summary of Rock Core Observations ................................................................................................... 3-6
Table 3-3 Summary of Geotechnical Testing Results ......................................................................................... 3-8
Table 3-4 Water Level Measurements ................................................................................................................... 3-11
Table 3-5 Historic MW Water Levels ..................................................................................................................... 3-13
Table 3-6 Monthly Precipitation Data Summary............................................................................................... 3-19
Table 3-7 Hydraulic Conductivity Summary ....................................................................................................... 3-24
Table 3-8 Summary of Calculated Groundwater Flow Velocities .............................................................. 3-30
Table 3-9 Groundwater Quality Data Summary ................................................................................................ 3-33
Phase 3 and Phase 4 Expansions – Design Hydrogeologic Report • Table of Contents
iv
Appendices
Appendix A Bore Logs and Well Construction Diagrams
Appendix B Geotechnical Laboratory Data
Appendix C Field Notes
Appendix D Slug Test Raw Data and Calculations
Appendix E Analytical Laboratory Data – August 4, 2016 event
Phase 3 and Phase 4 Expansions – Design Hydrogeologic Report • Table of Contents
v
This page intentionally left blank.
1-1
(revised January 2017)
Section 1
Purpose and Scope
Rule .0539(d)(3) of the North Carolina Solid Waste Management Rules requires that a Design
Hydrogeologic Report be prepared in accordance with the requirements set forth in Rule
.0538(b). This document is intended to fulfill all of the specified criteria delineated in this rule.
The Design Hydrogeologic Report presented herein is designed to address the applicable Solid
Waste Management Rules for the Permit to Construct for the Phase 3 and 4 Expansions of the
Cabarrus County Construction & Demolition Debris (C&D) Landfill Facility. Both the Phase 3 and
Phase 4 expansions encompass approximately 2 acres and are each designed to provide 5 years of
disposal life based on recent disposal rates.
The report compiles information from all field activities that have been conducted to date,
summarizing data from previously submitted documents, as well as subsequent investigation
activities, to provide a comprehensive characterization of the geology and hydrogeology at the
landfill site. The goal of this investigation is to provide sufficient technical information to design a
Water Quality Monitoring Plan for the Phase 3 and 4 Expansions as specified in Rule .0538(b)(2).
1.1 Report Contents
Section 1 of the Design Hydrogeologic Report discusses the purpose and scope of the report,
summarizes previous and current investigation activities, and provides a cross-reference
between each applicable regulatory requirement set forth in Rule .0538(b) and corresponding
sections of this report. Section 2 presents a summary of the methodologies used in this field
investigation, as well as data collection and evaluation activities. Section 3 presents the results of
this field investigation and data analysis activities. Conclusions derived from this and previous
investigations are presented in Section 4, along with a discussion of hydrogeologic factors
affecting the landfill design and development of the Water Quality Monitoring Plan.
1.2 Previous Investigations
Investigations have been conducted on and adjacent to the proposed site on several occasions
since 1993 for a Landfill Expansion Feasibility Study. The Study was done in order to determine
the feasibility of expanding the existing landfill property for use in construction of a new Subtitle
D lined landfill unit. It was determined that the crystalline rock at the site was shallow in areas
and has little inherent porosity The study also determined that the occurrence and movement of
groundwater in the bedrock is essentially controlled by openings within the rock mass created by
weathering, mass wasting or tectonic processes (fractures). Groundwater level data indicated
that the groundwater occurs at the site generally under unconfined conditions in the saprolite
and partially weathered rock (PWR), as well as fractures within the less weathered bedrock.
Localized semi-confined conditions may also be present within individual fractures or fracture
zones depending upon the orientation and extent at which they are interconnected with the
saprolite, PWR, or other fractures. Conditions were found to be suitable for Subtitle D landfill
development, however, the County chose not to pursue the option.
Section 1 • Purpose and Scope
1-2
(revised January 2017)
A Groundwater Assessment for the Closed Unit 2 & 3 Landfill was completed in October 2000.
Groundwater contamination was found to have extended beyond the 125-foot review boundary.
As part of the Assessment, additional groundwater monitoring wells were installed further down-
gradient of the compliance wells. Groundwater contamination was found to be localized in the
areas around MW-E and MW-A. The site is currently undergoing remediation of contaminated
groundwater from the Closed Unit 2/3 MSW landfill. Remediation is being completed by
monitored natural attenuation and institutional controls paired with enhanced anaerobic
bioremediation.
1.2.1 C&D Landfill Investigation – Phase 1
In November 2002, the feasibility of expansion of a C&D landfill to the west of the closed Unit 2/3
MSW landfill was investigated. Fourteen boreholes were drilled at twelve locations during the
investigation. Boreholes were drilled using hollow-stem auger (HSA), air rotary drilling
techniques, and conventional rock coring. Rock core samples were taken from B-10 at depths of
21-26 ft and 26-31 ft using conventional rock core techniques. Eight locations, B-1s, B-3, B-5, B-8,
B-9, B-10, B-11, and B-12 were characterized using HSA and standard penetration testing (blow
counts) with the exception of B-10 where additional conventional rock coring was done after
auger refusal. Four locations, B-2, B-4, B-6, and B-7 were characterized using HSA and standard
penetration testing, until auger refusal occurred, at which time air rotary drilling was utilized to
complete the boring. Air rotary drilling was the only method used at locations B-1d and B-8d.
Piezometers were installed in fourteen boreholes at twelve locations, providing two nested
piezometer pairs. B-1s and B-1d, and B-8 and B-8d were the shallow and deep piezometers of the
two nested pairs. Water level measurements were taken at each of the piezometers at time of
boring, 24 hours after boring, during the semi-annual groundwater sampling event, and
periodically thereafter. Piezometer measuring points were surveyed to state plane coordinates
and mean sea level elevation. Piezometer locations are shown on Figure 1.1.
Because of the proximity to the existing landfill and known groundwater contamination
associated with the closed landfill, groundwater samples were collected from four piezometers
(B-3, B-4, B-5, and B-6) and analyzed for Volatile Organic Compounds (VOCs) and Metals on June
11 and 25, 2003. Based on the groundwater sampling results, it was determined that the
groundwater contamination from the old Unit 2/3 landfill was present in the initial proposed
expansion area and the feasibility of C&D landfill development in this area was discontinued for
the time being.
1.2.2 C&D Landfill Investigation – Phase 2
Since impacted groundwater was detected in the area to the west of the existing landfill, the
proposed C&D landfill expansion area was moved to the area to the north of the existing MSW
landfill. Several older monitoring wells and piezometers already existed in this area; however, no
lithologic, well construction, or survey data was available for most of the existing points. In order
to obtain lithology data and supplement groundwater elevation data in the new proposed
expansion area, additional borings were required.
Section 1 • Purpose and Scope
1-4
(revised January 2017)
Prior to drilling any new piezometers in the area, one groundwater sample was collected from
piezometer B-12 and analyzed for Volatile Organic Compounds (VOCs) in order to verify that pre-
existing groundwater contamination was not present. Piezometer B-12 was installed as part of
the original proposed location investigation, but was within the anticipated footprint of the
existing C&D landfill. Based on the groundwater sampling results, it was determined that there
was no groundwater contamination from the old Unit 2/3 landfill present and the feasibility of
C&D landfill development could continue in this area.
As part of the investigation, four boreholes were drilled at four locations. Boreholes were
advanced using a truck-mounted drill rig utilizing HSA techniques. Piezometers were installed in
each borehole. Water level measurements were taken at each of the piezometers at time of
boring, 24 hours after boring, and during subsequent events. Both new piezometer measuring
points and old existing wells were surveyed to state plane coordinates and mean sea level
elevation (MSL).
Evaluation of piezometers and monitoring wells in and around the proposed C&D Landfill
expansion area suggested that groundwater movement was in a semi-radial pattern from the
north, with discharge to the central drainage feature east of the existing C&D landfill.
1.2.3 Monitoring Well Installation
In August and September 2006, installation of two background monitoring wells (CD-1s, -1d) and
five downgradient compliance wells (CD-2, -3, -4, -5, and -6) for the active C&D Landfill was
completed. The deep background well, CD-1d, was converted from piezometer B-13, which was
installed during the Phase 2 investigation. Monitoring wells CD-1d, -3, and -5 were installed using
HSA and standard penetration testing, until auger refusal occurred, at which time air rotary
drilling was utilized to complete the boring. Monitoring wells CD-1s, -2, -4, and -6 were installed
utilizing HSA methods and standard penetration testing.
The wells were slug tested for estimation of hydraulic conductivity after development, with the
exception of CD-1d and CD-6. In addition, each of the wells were surveyed to state plane
coordinates and MSL elevation, and sampled. Borelogs, slug test and initial sampling results were
forwarded to the SWS in a letter report dated October 11, 2006. However, the installation and
sampling of CD-4, -5, and -6 were not discussed in the October 2006 submittal. Based on the
groundwater sampling results, it was determined that the groundwater contamination from the
closed Unit 2 MSW Landfill was present in the wells. Therefore, through subsequent discussions
with the SWS, wells CD-4, -5, and -6 were added to the approved groundwater monitoring
network for the closed Unit 2 MSW Landfill to monitor and assess groundwater quality.
1.2.4 C&D Landfill Investigation – Phase 2 Expansion
The Phase 2 C&D Landfill expansion area consisted of approximately 2 acres south of the active
C&D landfill. As part of the Phase 2 expansion investigation, three boreholes were drilled at 2
locations (B-18s/B-18d, B-19). All borings were converted to piezometers for groundwater
elevation measurements and lithologic and geotechnical data was collected at each location. HSA
drilling was used for lithologic and geotechnical data collection at each boring. Rock coring was
performed at B-18d. Standard penetration tests were taken at all locations. In addition, at the
request of the Solid Waste Section, one monitoring well (CD-4 rep) was installed to the northeast
Section 1 • Purpose and Scope
1-5
(revised January 2017)
of the Phase 1 expansion. CD-4 rep replaces monitoring well CD-4, which along with monitoring
well CD-5, was abandoned prior to construction of the Phase 1 expansion.
Other piezometers were also installed in the Phase 1 expansion area (B-17s/B-17d). These
piezometers have been abandoned, but are referenced for supporting groundwater and lithologic
information throughout this report.
Water level measurements were taken at each of the piezometers at least seven days after boring
and periodically thereafter. Water levels were not taken immediately after installation as the
water table had not stabilized after development. Piezometer measuring points were surveyed to
state plane coordinates and MSL elevation.
1.2.5 Monitoring Well Installation – Phase 2 Expansion
As discussed in the Water Quality Monitoring Plan for the Phase 2 Expansion, monitoring well CD-
3 was abandoned and re-installed approximately 125-feet from the Phase 2 Expansion and
piezometers B-7 and B-19 were converted to monitoring wells CD-7 and CD-8, respectively. No
new monitoring wells were installed.
1.2.6 Alternate Source Demonstration
In September 2013, an Alternate Source Demonstration (ASD) was submitted to the SWS for the
area of future C&D expansion south of the active C&D landfill. The ASD concluded that it is
apparent that all contamination located in the area adjacent to the existing C&D landfill is due to
impact of leachate from the closed unlined Unit 2 & 3 MSW landfill. To date, groundwater
monitoring wells immediately downgradient of the existing C&D landfill (CD-2, CD-3, CD-7, and
CD-8) have not had detections of any contaminant of concern VOCs above their respective NC2L.
1.3 Current Investigation
The current investigation focused on the proposed Phase 3 and 4 C&D Landfill expansion areas
south of the existing Phase 2 area of the active C&D landfill. Due to the small size of the Phase 3
and 4 expansion areas and previous hydrogeologic investigations in the area, no additional
borings were needed. Within and adjacent to the proposed Phase 3 and 4 expansion areas, there
are six existing piezometers (B-1s/1d, B-3, B-6, and B-18s/18d), and four monitoring wells (CD-3,
CD-6, CD-7, and CD-8). HSA drilling was used for lithologic and geotechnical data collection at
each boring. Rock coring was performed at B-18d. Other piezometers installed in the existing
C&D area have been abandoned, but are referenced for supporting groundwater and lithologic
information throughout this report. There are also several existing piezometers in potential
future expansion areas further south of the Phase 3 and 4 expansion areas.
Water level measurements were taken at each of the existing piezometers and monitoring wells
and the data was appended to existing measurements from the previous investigations. In
addition, groundwater samples were collected from existing piezometers B-1s, B-1d, B-4, B-5, B-
6, B-18s, and B-18d, in order to track groundwater conditions described in the ASD.
2-1
(revised January 2017)
Section 2
Methodology
This section presents the methodology and data reduction used during the Phase 3 and 4 C&D
Landfill expansions hydrogeologic field investigation. As described in Section 1.3, the current
investigation water level measurements and groundwater sampling. Due to the small size of the
expansion and previous work done in the area, no drilling or piezometer installation was
required in the expansion areas. A discussion of methods used for the previous subsurface work
in the expansion area are provided below.
2.1 Drilling Methods
The following section details the drilling methods used to install borings and piezometers and
collect geologic and hydrogeologic data for the Phase 3 and 4 C&D landfill expansions.
2.1.1 Borehole Drilling
Borehole drilling methods for this investigation included hollow stem auger (HSA) and
conventional rock coring. An onsite hydrogeologist observed the drilling operations and logged
the borings. For the purposes of this investigation, the base of the saprolite unit has been defined
as the depth at which soil penetration using a split-spoon sampler is greater than 50 blows per 6-
inches. This definition is used to permit consistent identification of the saprolite/PWR contact.
Boring logs from this and previous investigations within and adjacent to the Phase 3 and 4
expansion areas are provided in Appendix A.
2.1.1.1 Hollow-Stem Auger Drilling
Lithologic information was obtained at all locations by HSA drilling methods. All HSA borings in
the proposed Phase 3 and 4 expansion areas were advanced to the top of bedrock (auger refusal).
An ATV-mounted Diedrich D-50 Turbo drill rig using 8-inch outer diameter augers was used to
complete the HSA drilling. Lithologic information was obtained through split-spoon sampling at 5
foot intervals as outlined in ASTM D-1586. Blow counts were noted during the driving of the split-
spoon sampler, and the sample was examined by the field hydrogeologist and described for color,
grain size, texture, and moisture content. The field descriptions were entered into the field
logbook. Borehole logs from HSA drilling are provided in Appendix A. The depth of the first
encountered blow count of 50 within a 6-inch interval was used to define the top of PWR, and the
depth of auger refusal was used to define the top of bedrock.
2.1.1.2 Rock Coring
The Diedrich D-50 Turbo drill rig used for HSA drilling was also used for rock coring. During the
investigation, bedrock was cored at B-18d. Standard rock coring techniques were utilized as
described below.
An HQ size double tube core barrel was attached to the bottom of the drill string and lowered to
the bottom of the borehole. The desired coring interval was drilled using a carbide-toothed bit
Section 2 • Methodology
2-2
(revised January 2017)
and clear, potable water. When the desired interval had been penetrated, the entire core barrel
and attached drill string were retrieved from the hole. The inner sample tube was extracted from
the outer barrel and the core sample was then extruded and placed into a box labeled with the
core ID and depth intervals.
The rock core was described in the field and the percent recovery, rock quality designation
(RQD), and frequency of fractures were noted. Observed fracture infilling or coatings, gross
mineralogy, and other notable characteristics were also recorded. The RQD was determined by
dividing the total length of rock fragment longer than four inches over the total core length. Logs
of the core borings are contained in Appendix A and discussed further in Section 3.1.1.4.
2.2 Piezometer Installations
As discussed in Section 1.3, 6 piezometers were installed at 4 locations and 4 monitoring wells
were installed during previous investigations in the Phase 3 and 4 expansion areas. The
piezometer and well locations are shown on Figure 1-1 along with those installed in and around
the Phase 3 and 4 expansion areas during previous investigations. Table 2-1 provides a summary
of piezometer completion data for the piezometers and monitoring wells installed during this and
previous investigations.
All piezometers and monitoring wells were constructed of 2-inch diameter PVC casing, with 5 or
10-foot, 0.010-inch slot PVC screen and bottom cap. A filter pack consisting of #2 silica sand was
placed around the well screen to a minimum of 2 feet above the top of screen. The piezometer
annulus above the filter pack was then sealed with a minimum of 2 feet of 3/8-inch hydrated
bentonite pellets. The bentonite was allowed to set-up for at least several hours prior to grouting.
The remainder of the annulus was then filled with a Portland cement/bentonite grout poured
from the surface. Locking steel protective covers with a well ID placard and a 2-foot by 2-foot
concrete pad were installed over all piezometers or monitoring wells.
2.3 Water Level Measurements
Water level measurements were taken using an electronic water level meter with an accuracy of
0.01 feet. Water level measurements were taken relative to the north side of the top of each PVC
well casing (TOC = top of casing). Water levels were monitored both during and after the
piezometer completion. Water levels were collected after piezometer completion, when possible,
24 hours after completion, and at least seven days after completion. Measurement of water levels
at precise time periods after completion was not always possible due to conflicts with other
drilling operations and the expedited nature of the field investigation. However, adequate
measurements were taken for the purposes of the installation. Water level measurements are
discussed in detail in Section 3.3.1.
2.4 Piezometer Surveying
CESI Land Development Services conducted the surveying. All of the piezometers and borings
were surveyed to the TOC measuring point and to ground surface. Northing and easting
coordinates were reported in the state plane coordinate system, and elevations were surveyed to
MSL elevation.
Ta
b
l
e
2
-
1
Pi
e
z
o
m
e
t
e
r
a
n
d
M
o
n
i
t
o
r
i
n
g
W
e
l
l
C
o
m
p
l
e
t
i
o
n
S
u
m
m
a
r
y
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
o
n
s
t
r
u
c
t
i
o
n
a
n
d
D
e
m
o
l
i
t
i
o
n
L
a
n
d
f
i
l
l
-
P
h
a
s
e
3
a
n
d
4
E
x
p
a
n
s
i
o
n
De
s
i
g
n
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
We
l
l
Co
m
p
l
e
t
i
o
n
Da
t
e
Dr
i
l
l
i
n
g
Me
t
h
o
d
Sc
r
e
e
n
e
d
I
n
t
e
r
v
a
l
L
i
t
h
o
l
o
g
y
To
p
o
f
P
V
C
El
e
v
a
t
i
o
n
(f
e
e
t
m
s
l
)
Gr
o
u
n
d
Su
r
f
a
c
e
El
e
v
a
t
i
o
n
(f
e
e
t
m
s
l
)
Bo
r
e
h
o
l
e
De
p
t
h
(f
e
e
t
b
l
s
)
Sc
r
e
e
n
e
d
In
t
e
r
v
a
l
(f
e
e
t
b
l
s
)
To
p
o
f
Sc
r
e
e
n
(
m
s
l
)
Bo
t
t
o
m
o
f
Sc
r
e
e
n
(
m
s
l
)
To
p
o
f
Sa
n
d
(
f
e
e
t
bl
s
)
To
p
o
f
Se
a
l
(
f
e
e
t
bl
s
)
Bo
r
e
h
o
l
e
Dia
m
e
t
e
r
(in
c
h
e
s
)
Ca
s
i
n
g
Di
a
m
e
t
e
r
(in
c
h
e
s
)
B-
1
s
11
/
1
8
/
2
0
0
2
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
74
0
.
2
7
73
8
.
2
5
35
25
.
0
-
3
5
.
0
71
3
.
2
5
70
3
.
2
5
23
21
8
2
B-
1
d
11
/
1
9
/
2
0
0
2
Ai
r
Be
d
r
o
c
k
74
0
.
8
7
73
8
.
2
5
52
42
.
0
-
5
2
.
0
69
6
.
2
5
68
6
.
2
5
40
38
6
2
B-
2
11
/
2
5
/
2
0
0
2
HS
A
/
A
i
r
Be
d
r
o
c
k
75
0
.
9
1
74
8
.
4
0
45
35
.
0
-
4
5
.
0
71
3
.
4
0
70
3
.
4
0
33
31
8/
6
2
B-
3
11
/
1
8
/
2
0
0
2
HS
A
PW
R
76
1
.
7
6
75
9
.
2
4
57
47
.
0
-
5
7
.
0
71
2
.
2
4
70
2
.
2
4
45
43
8
2
B-
4
11
/
2
5
/
2
0
0
2
HS
A
/
A
i
r
Be
d
r
o
c
k
75
5
.
7
7
75
4
.
0
3
72
42
.
0
-
6
2
.
0
71
2
.
0
3
69
2
.
0
3
40
38
8/
6
2
B-
5
11
/
2
1
/
2
0
0
2
HS
A
PW
R
72
2
.
2
3
72
0
.
9
3
26
16
.
0
-
2
6
.
0
69
4
.
9
3
68
4
.
9
3
14
12
8
2
B-
6
11
/
2
5
/
2
0
0
2
HS
A
/
A
i
r
Be
d
r
o
c
k
76
2
.
6
7
76
1
.
1
7
72
52
.
0
-
7
2
.
0
70
9
.
1
7
68
9
.
1
7
50
48
8/
6
2
B-
7
(
C
D
-
7
)
11
/
2
5
/
2
0
0
2
HS
A
/
A
i
r
Be
d
r
o
c
k
74
4
.
8
1
74
2
.
1
8
44
34
.
0
-
4
4
.
0
70
8
.
1
8
69
8
.
1
8
32
30
8/
6
2
B-
8
s
11
/
2
0
/
2
0
0
2
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
72
5
.
5
7
72
3
.
7
1
21
11
.
0
-
2
1
.
0
71
2
.
7
1
70
2
.
7
1
9
7
8
2
B-
8
d
11
/
1
9
/
2
0
0
2
Ai
r
Be
d
r
o
c
k
72
5
.
6
0
72
3
.
3
6
29
19
.
0
-
2
9
.
0
70
4
.
3
6
69
4
.
3
6
17
15
6
2
B-
9
11
/
2
0
/
2
0
0
2
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
74
2
.
8
2
73
9
.
9
4
30
20
.
0
-
3
0
.
0
71
9
.
9
4
70
9
.
9
4
18
16
8
2
B-
1
0
11
/
2
0
/
2
0
0
2
HS
A
/
C
o
r
e
PW
R
/
B
e
d
r
o
c
k
73
8
.
0
1
73
6
.
8
9
31
16
.
0
-
3
1
.
0
72
0
.
8
9
70
5
.
8
9
14
12
8/
4
2
B-
1
1
11
/
2
0
/
2
0
0
2
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
/
B
e
d
r
o
c
k
73
3
.
9
8
73
1
.
8
3
25
15
.
0
-
2
5
.
0
71
6
.
8
3
70
6
.
8
3
13
11
8
2
B-
1
2
11
/
2
2
/
2
0
0
2
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
74
5
.
1
5
74
3
.
0
8
26
16
.
0
-
2
6
.
0
72
7
.
0
8
71
7
.
0
8
14
12
8
2
B-
1
3
(
C
D
-
1
d
)
7/
2
1
/
2
0
0
4
HS
A
PW
R
75
7
.
2
6
75
4
.
0
50
40
.
0
-
5
0
.
0
71
4
.
0
70
4
.
0
38
36
4
2
B-
1
4
7/
2
1
/
2
0
0
4
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
75
5
.
0
8
75
2
.
3
37
27
.
0
-
3
7
.
0
72
5
.
3
71
5
.
3
25
23
4
2
B-
1
5
7/
2
2
/
2
0
0
4
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
75
6
.
8
0
75
4
.
0
35
25
.
0
-
3
5
.
0
72
9
.
0
71
9
.
0
23
21
4
2
B-
1
6
7/
2
2
/
2
0
0
4
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
74
1
.
7
4
73
8
.
7
25
20
.
0
-
2
5
.
0
71
8
.
7
71
3
.
7
18
16
4
2
B-
1
7
s
1/
1
5
/
2
0
0
9
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
75
4
.
6
2
75
3
.
5
38
28
.
0
-
3
8
.
0
72
5
.
5
71
5
.
5
26
24
8
2
B-
1
7
d
1/
1
5
/
2
0
0
9
HS
A
/
C
o
r
e
Be
d
r
o
c
k
75
4
.
6
9
75
3
.
3
47
42
.
0
-
4
7
.
0
71
1
.
3
70
6
.
3
40
38
8/
4
2
B-
1
8
s
1/
1
5
/
2
0
0
9
HS
A
PW
R
74
3
.
3
4
74
2
.
1
38
28
.
0
-
3
8
.
0
71
4
.
1
70
4
.
1
26
24
8
2
B-
1
8
d
1/
1
4
/
2
0
0
9
HS
A
/
C
o
r
e
Be
d
r
o
c
k
74
4
.
0
2
74
1
.
9
49
44
.
0
-
4
9
.
0
69
7
.
9
69
2
.
9
42
40
8/
4
2
B-
1
9
1/
1
3
/
2
0
0
9
HS
A
PW
R
74
1
.
2
4
73
9
.
7
43
33
.
0
-
4
3
.
0
70
6
.
7
69
6
.
7
31
29
8
2
CD
-
8
7/
1
/
2
0
1
4
HS
A
PW
R
73
8
.
3
9
73
9
.
0
43
33
.
0
-
4
3
.
0
70
6
.
0
69
6
.
0
31
29
6
2
CD
-
1
s
8/
7
/
2
0
0
6
HS
A
Sa
p
r
o
l
i
t
e
75
5
.
0
75
2
28
18
.
0
-
2
8
.
0
73
4
.
0
72
4
.
0
16
14
8
2
CD
-
2
9/
1
2
/
2
0
0
6
HS
A
Sa
p
r
o
l
i
t
e
73
3
73
0
24
9.
0
-
2
4
.
0
72
1
.
0
70
6
.
0
7
5
8
2
CD
-
3
9/
2
5
/
2
0
0
6
HS
A
/
A
i
r
Sa
p
r
o
l
i
t
e
/
P
W
R
75
3
.
3
75
0
60
45
.
0
-
6
0
.
0
70
5
.
0
69
0
.
0
43
41
8
2
CD
-
3
7/
1
/
2
0
1
4
HA
S
/
A
i
r
Sa
p
r
o
l
i
t
e
/
P
W
R
74
4
.
4
8
74
1
50
35
.
0
-
5
0
.
0
70
6
.
0
69
1
.
0
32
30
6
2
CD
-
4
8/
7
/
2
0
0
6
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
75
5
.
5
75
2
27
17
.
0
-
2
7
.
0
73
5
.
0
72
5
.
0
15
13
8
2
CD
-
4
R
e
p
1/
1
5
/
2
0
0
9
HS
A
Sa
p
r
o
l
i
t
e
73
9
.
1
5
73
6
.
2
16
6.
0
-
1
6
.
0
73
0
.
2
72
0
.
2
4
2
8
2
CD
-
5
9/
2
5
/
2
0
0
6
HS
A
/
A
i
r
Sa
p
r
o
l
i
t
e
/
P
W
R
75
8
.
7
75
5
60
45
.
0
-
6
0
.
0
71
0
.
0
69
5
.
0
43
41
8
2
CD
-
6
9/
1
1
/
2
0
0
6
HS
A
Sa
p
r
o
l
i
t
e
/
P
W
R
74
1
.
4
73
8
40
25
.
0
-
4
0
.
0
71
3
.
0
69
8
.
0
23
21
8
2
MW
-
2
10
/
6
/
1
9
8
7
HS
A
PW
R
73
3
.
7
8
73
2
.
6
4
40
30
.
0
-
4
0
.
0
70
2
.
6
4
69
2
.
6
4
29
27
6
2
MW
-
A
9/
1
6
/
1
9
9
4
HS
A
/
A
i
r
PW
R
/
B
e
d
r
o
c
k
74
6
.
8
0
74
4
.
5
1
50
33
.
0
-
4
8
.
0
71
1
.
5
1
69
6
.
5
1
31
29
6
2
MW
-
J
9/
3
/
1
9
9
9
Ai
r
Be
d
r
o
c
k
72
8
.
4
7
72
5
.
5
5
32
29
.
0
-
3
2
.
0
69
6
.
5
5
69
3
.
5
5
28
25
6
2
MW
-
X
12
/
2
0
/
1
9
9
3
HS
A
/
A
i
r
Be
d
r
o
c
k
71
0
.
2
8
70
8
.
1
5
30
20
.
0
-
3
0
.
0
68
8
.
1
5
67
8
.
1
5
18
16
6
2
P-
4
NA
HS
A
Sa
p
r
o
l
i
t
e
73
6
.
1
1
73
4
.
9
10
5.
0
-
1
0
.
0
*
72
9
.
9
72
4
.
9
NA
NA
NA
2
P-
8
NA
HS
A
Sa
p
r
o
l
i
t
e
74
2
.
0
1
73
8
.
9
12
7.
0
-
1
2
.
0
*
73
1
.
9
72
6
.
9
NA
NA
NA
2
M-
4
NA
HS
A
Sa
p
r
o
l
i
t
e
75
4
.
0
7
75
1
.
9
34
24
.
0
-
3
4
.
0
*
72
7
.
9
71
7
.
9
NA
NA
NA
2
No
t
e
s
:
Pi
e
z
o
m
e
t
e
r
s
i
n
it
a
l
i
c
h
a
v
e
b
e
e
n
a
b
a
n
d
o
n
e
d
.
Pi
e
z
o
m
e
t
e
r
s
i
n
bo
l
d
a
r
e
w
i
t
h
i
n
P
h
a
s
e
3
a
n
d
4
e
x
p
a
n
s
i
o
n
a
r
e
a
s
a
n
d
w
i
l
l
b
e
a
b
a
n
d
o
n
e
d
p
r
i
o
r
t
o
c
o
n
s
t
r
u
c
t
i
o
n
.
*-
A
s
s
u
m
e
d
s
c
r
e
e
n
i
n
t
e
r
v
a
l
.
NA
-
D
a
t
a
u
n
k
n
o
w
n
.
N
o
b
o
r
e
l
o
g
o
r
w
e
l
l
c
o
n
s
t
r
u
c
t
i
o
n
d
a
t
a
a
v
a
i
l
a
b
l
e
.
U
s
e
d
f
o
r
g
r
o
u
n
d
w
a
t
e
r
e
l
e
v
a
t
i
o
n
d
a
t
a
o
n
l
y
.
B-
1
9
a
n
d
C
D
-
3
a
b
a
n
d
o
n
e
d
d
u
r
i
n
g
P
h
a
s
e
2
e
x
p
a
n
s
i
o
n
a
c
t
i
v
i
t
e
s
a
n
d
r
e
-
l
o
c
a
t
e
d
a
t
C
D
-
8
a
n
d
C
D
-
3
.
Ta
b
l
e
2
-
1
Section 2 • Methodology
2-4
(revised January 2017)
2.5 Slug Tests
Slug tests were not performed on the borings in the Phase 3 and 4 expansion areas. However, slug
testing was performed on two piezometers installed within the Phase 1 expansion area (B-17s
and B-17d) and CD-4 rep. Both slug-in (displacement) and slug-out (recovery) tests were
conducted at each piezometer using a stainless steel solid slug and a transducer/data logger. The
transducer/data logger was lowered to approximately 10 to 15 feet below the water level in the
piezometer, taped into place, and a reference water level was collected. Immediately after
starting the data logger, the slug was lowered to approximately 1.5 feet below the water surface
and taped into place. The data logger was then monitored until water levels stabilized. The data
logger was then re-started for the slug-out test and the slug was immediately withdrawn from the
piezometer. The data logger was monitored until the water level stabilized.
The data was then analyzed using the Bouwer and Rice method (Bouwer, 1989) to estimate
horizontal hydraulic conductivity. Slug test results are discussed in Section 3.3.2.
2.6 Geotechnical Testing
Undisturbed Shelby tube, jar samples and bulk samples collected during this investigation were
analyzed for various geotechnical properties by Geotechnics geotechnical laboratory in Raleigh,
North Carolina. The testing program consisted of analyses for grain size distribution, soil
classification, Atterberg limits, porosity and in-situ and remolded hydraulic conductivity.
Laboratory geotechnical data from the samples collected during this and previous investigations
in and adjacent to the Phase 3 and 4 expansion areas are presented in Appendix B. Geotechnical
testing results for samples collected during this investigation are discussed in Section 3.2.
3-1
(revised January 2017)
Section 3
Current Investigation Results
This section presents the results of the proposed Phase 3 and 4 expansion investigation areas
which included borehole drilling, rock coring, geotechnical testing, piezometer installations,
water level measurements, and aquifer characterization (slug testing). The regional geology and
hydrogeology have been previously discussed in the existing C&D landfill Design Hydrogeologic
Report (CDM, 2005), and, therefore, will not be re-iterated in this report. The site geology and
drilling observations are discussed in Section 3.1. Laboratory testing results are discussed in
Section 3.2. The site hydrogeology is evaluated in detail in Section 3.3 and includes water level
results, potentiometric surface mapping, slug test analysis, and groundwater sampling analysis.
Section 3.4 presents a hydrogeologic conceptual model for the site with hydrogeologic cross
sections and discussions on groundwater recharge and discharge.
3.1 Site Geology
Based on regional mapping of the Charlotte 1°x 2° quadrangle and geological mapping and data
collection during this and previous subsurface explorations at the site, metamorphosed quartz
diorite is the dominant bedrock lithology at the site. The metamorphosed quartz diorite is
interlayered with schistose material and exhibits variable micaceous foliation. Natural processes
have weathered the bedrock by chemical alteration of the rock minerals to form saprolite that
extends to varying depths below the ground surface. The texture and depth of saprolite
development varies with the degree of weathering, which in turn, is related to the mineralogic
composition and structure of the native material (Gair, 1989) (CDM, 2005).
Intrusive veins and irregularly shaped bodies of quartz and coarse-grained pegmatite ranging
from less than 1-inch to a few feet in thickness are frequently observed in the metamorphosed
quartz diorite. The quartz is rarely weathered but disaggregates to angular fragments of sand to
boulder size. Feldspars in the pegmatic materials are typically altered by weathering to white,
plastic clay. During past investigations of the site, a magnetic geophysical survey detected a
previously unknown diabase dike approximately 3,500-feet south of the existing C&D Landfill.
The dike is trending in a north-west/south-east direction, but does not appear to affect the
landfill site.
3.1.1 Drilling Observations
Four major lithologic distinctions have been made at the C&D Landfill expansion area based on
observations from the previous subsurface investigations. These are: Residuum; saprolite; PWR;
and bedrock. Descriptions of each material encountered at specific boring locations are provided
in the boring logs contained in Appendix A. Each of these units is discussed in the following
sections of the report. Table 3-1 lists all of the borings drilled at the C&D Landfill area and the
depths at which the partially weathered rock and bedrock units were encountered.
Table 3-1
Summary of Lithologic Data
Cabarrus County Construction and Demolition Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Borehole Ground Surface
Elev. (feet msl)
Depth to PWR
(feet bgs)
PWR
Elevation
(feet msl)
Depth to
Bedrock
(feet bgs)
Bedrock
Elevation
(feet msl)
B-1 738.25 34 704 35 703
B-2 748.40 25 723 34 714
B-3 759.24 40 719 57 702
B-4 754.03 35 719 40 714
B-5 720.93 10 711 26 695
B-6 761.17 35 726 54 707
B-7 (CD-7)742.18 25 717 35 707
B-8s 723.71 20 704 21 703
B-9 739.94 25 715 30 710
B-10 736.89 20 717 21 716
B-11 731.83 25 707 25 707
B-12 743.08 20 723 26 717
B-13/CD-1 754.0 25 729 >50 >704
B-14 752.3 15 737 >37 >715
B-15 754.0 29 725 >35 >719
B-16 738.7 24 715 >25 >713
B-17 753.5 24 730 39 715
B-18 742.1 28 714 38 704
B-19 (CD-8)739.7 34 706 44 696
CD-2 730 25 705 >25 >705
CD-3 750 25 725 60 690
CD-4 752 20 732 >28 >732
CD-4 rep 736.2 15 721 >16 >721
CD-5 755 33 722 58 697
CD-6 738 23 715 40 698
MW-A 744.5 22 723 48 697
MW-J 725.6 14 712 26 700
MW-X 708.2 4 704 12 696
MW-2 732.6 22 711 >40 >692
Table 3-1
Section 3 • Current Investigation Results
3-3
(revised January 2017)
3.1.1.1 Residuum
Generally, the top two to six feet of soil at the site are described as residuum and consist of finer
grained materials than the material below. The shallower, finer grained soils are typically
described as red or orange clay or silts with little to no sand. The residuum was not present at all
locations due to previous site activities in these areas.
3.1.1.2 Saprolite
Below the residuum, saprolite is present at all boring locations. These soils are derived from the
in-place chemical weathering of bedrock materials, and are characterized by the presence of relict
mineral fabric from the original rock mass. These soils typically become more dense and coarser
in texture as weathering decreases with depth. Most on-site saprolite soils grade to a silty sand
with depth. Saprolite within the proposed expansion areas was observed to be dry to moist at
most locations, but was wet near the PWR contact in some borings.
Hard rock fragments, particularly quartz, are commonly present in the lower portion of the
saprolite and become larger and more frequent with depth. The contact between the saprolite
and underlying PWR or bedrock is gradational. The saprolite soils vary from reddish brown to
white in color. As noted previously, for the purposes of this investigation, the base of the saprolite
unit has been defined as the depth at which soil penetration using a split-spoon sampler is
greater than 50 blows per 6-inches. This definition is used to permit consistent identification of
the saprolite/PWR contact.
Comparing lithologic data from piezometers within and adjacent to the proposed C&D Landfill
expansion phases, saprolite was observed to range in thickness from 4 feet at MW-X to 40 feet at
B-3, and averaged about 24 feet. Within the proposed Phase 3 and 4 C&D Landfill expansion
areas, saprolite ranges from approximately 20 feet in thickness at CD-6 to approximately 34 feet
in thickness at B-1, and averaged about 25 feet in thickness.
3.1.1.3 Partially Weathered Rock
The PWR elevation and depth below ground surface for each boring in the C&D Landfill
expansion area is presented in Table 3.1. At most locations, the saprolite transitionally grades
into the parent bedrock from which it is derived. This transition zone has been designated the
PWR unit. It is characterized by deeply weathered bedrock material that can be penetrated by
augers but requires more than 50 blows to advance a split-spoon sampler 6-inches. The PWR at
the proposed C&D Landfill expansion consists primarily of gray to brown/white/tan silty sands to
sand in some areas. The PWR was observed to be moist to wet at all locations within the Phase 3
and 4 expansion areas.
The PWR thickness within the proposed C&D Landfill expansion area ranges from approximately
1 foot at B-1 to 35 feet at CD-3. The average thickness within the Phase 3 and 4 expansion areas is
approximately 15 feet. In most cases, the transition from silty/clayey saprolite to bedrock is
relatively thick with the exception of borings located within borrow areas or drainage features.
3.1.1.4 Bedrock
The 284.5 acre parcel of land owned by Cabarrus County is underlain by metamorphosed quartz
diorite. Bedrock lithology in the C&D Landfill area was consistent with the drilling observations
Section 3 • Current Investigation Results
3-4
(revised January 2017)
and geologic mapping in the previous site investigations. Within the proposed Phase 3 and 4
expansion areas, depth from ground surface to the top of bedrock ranged from 35 feet at B-1 to
60 feet at CD-3. The average depth to bedrock is approximately 45 feet over the entire proposed
C&D Landfill expansion area (existing C&D landfill and proposed future expansion areas).
The depth to bedrock is generally shallow in drainage features and significantly deeper in the
upland areas. Figure 3-1 is a contour map of the bedrock surface developed from depth to
bedrock measurements observed in the exploratory borings drilled in and adjacent to the
proposed C&D Landfill expansion areas. It shows that the bedrock surface over most of the site is
a subdued reflection of surficial topography.
During the previous C&D Landfill design hydrogeologic investigations, one rock core was
collected at B-10. Bedrock was encountered at approximately 21 feet below land surface and was
described as metamorphosed quartz diorite. Two five-foot core runs were collected and indicated
that the top 10 feet of rock were moderately fractured. Recovery values for the two runs were 48
and 50 percent, respectively. RQD values were 25 and 40 percent, respectively.
Rock cores were collected during subsequent investigations from B-17d and B-18d. Bedrock was
encountered at approximately 38 and 39 feet, respectively, below land surface and was described
as metamorphosed quartz diorite. Two five-foot coring runs were collected from each location.
Recovery values for the two runs at B-17d were 100 and 98 percent, respectively and RQD values
were 26 and 74 percent, respectively. Recovery values for the two runs at B-18d were 92 and 64
percent, respectively and RQD values were 58 and 35 percent, respectively.
Observations from the rock cores collected during previous investigations from borings B-10, B-
17d, and B-18d generally showed a moderately fractured top 5 feet of bedrock with red and
orange oxidation, likely iron or manganese oxides, observed between fractures. The oxidized
fractures are indicative of water movement between the fractures. A summary of the rock core
observations from the entire site is presented in Table 3-2.
C
A
B
A
R
R
U
S
C
O
U
N
T
Y
N
O
R
T
H
C
A
R
O
L
I
N
A
P
H
A
S
E
I
I
I
&
I
V
U
N
L
I
N
E
D
C
&
D
L
A
N
D
F
I
L
L
E
X
P
A
N
S
I
O
N
C
A
B
A
R
R
U
S
C
O
U
N
T
Y
C
&
D
L
A
N
D
F
I
L
L
N
XREFs: [CE_SURVEY, RC01STPL, RC09STPL] Images: []Last saved by: KOSKIAR Time: 1/4/2017 7:54:40 AMpw:\\DACPWAPP2:PW_PL1\1278\114357\04 Design Services NM_30%\02 Civil\10 CADD\FIG-3-1.dwg
F
I
G
U
R
E
B
E
D
R
O
C
K
C
O
N
T
O
U
R
M
A
P
D
E
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
I
N
V
E
S
T
I
G
A
T
I
O
N
3
-
1
Ta
b
l
e
3
-
2
Su
m
m
a
r
y
o
f
R
o
c
k
C
o
r
e
O
b
s
e
r
v
a
t
i
o
n
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
o
n
s
t
r
u
c
t
i
o
n
a
n
d
D
e
m
o
l
i
t
i
o
n
L
a
n
d
f
i
l
l
-
P
h
a
s
e
3
a
n
d
4
E
x
p
a
n
s
i
o
n
De
s
i
g
n
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Bo
r
i
n
g
Co
r
e
R
u
n
De
p
t
h
Re
c
o
v
e
r
y
RQ
D
Ma
t
e
r
i
a
l
D
e
s
c
r
i
p
t
i
o
n
(f
e
e
t
)
(%
)
(%
)
In
i
t
i
a
l
C
&
D
L
a
n
d
f
i
l
l
A
r
e
a
B-
1
0
21
.
0
-
2
6
.
0
48
25
Me
t
a
m
o
r
p
h
o
s
e
d
Q
u
a
r
t
z
D
i
o
r
i
t
e
26
.
0
-
3
1
.
0
50
40
Me
t
a
m
o
r
p
h
o
s
e
d
Q
u
a
r
t
z
D
i
o
r
i
t
e
C&
D
L
a
n
d
f
i
l
l
P
h
a
s
e
1
E
x
p
a
n
s
i
o
n
A
r
e
a
B-
1
7
d
38
.
0
-
4
3
.
0
10
0
26
Me
t
a
m
o
r
p
h
o
s
e
d
Q
u
a
r
t
z
D
i
o
r
i
t
e
43
.
0
-
4
8
.
0
98
74
Me
t
a
m
o
r
p
h
o
s
e
d
Q
u
a
r
t
z
D
i
o
r
i
t
e
C&
D
L
a
n
d
f
i
l
l
P
h
a
s
e
3
E
x
p
a
n
s
i
o
n
A
r
e
a
B-
1
8
d
39
.
0
-
4
4
.
0
92
58
Me
t
a
m
o
r
p
h
o
s
e
d
Q
u
a
r
t
z
D
i
o
r
i
t
e
44
.
0
-
4
9
.
0
64
35
Me
t
a
m
o
r
p
h
o
s
e
d
Q
u
a
r
t
z
D
i
o
r
i
t
e
Ta
b
l
e
3
-
2
Section 3 • Current Investigation Results
3-7
(revised January 2017)
3.2 Testing Program
Table 3-3 summarizes the results of the geotechnical testing performed on samples in and
around the proposed Phase 3 and 4 expansion areas during previous investigations. The
following sections discuss Standard Penetration (SPT), particle size, soil classification (USCS),
formation descriptions, and saturated hydraulic conductivity, porosity, effective porosity, and
dispersive characteristics for each unit of the uppermost aquifer at the expansion site.
3.2.1 Standard Penetration Testing
Standard Penetration Testing (SPT), in accordance with ASTM Standard D1586, was conducted at
all boring locations during this investigation. SPT’s were conducted over 2-foot intervals, typically
every 5-feet from ground surface to the termination of the boring. Blow counts were recorded for
every 6-inches and recorded. The split spoon sample was placed in a sealed glass jar and labeled
by boring number, sample number, depth interval, and blow count. Blow counts are presented on
the boring logs in Appendix A.
3.2.2 Particle Size Analysis and Unified Soil Classification
Within the proposed Phase 3 and 4 expansion areas, 2 split-spoon, 2 Shelby Tube, and 1 bulk
sample were submitted for laboratory analysis for grain size, USCS classification, natural
moisture content, and Atterberg limits. USCS classifications ranged from ML in B-18 (13-15) to
SM in B-18 (21-23). Natural moisture content values ranged from 14% in B-18 (21-23) to 28% in
B-19 (4-6).
A summary of the geotechnical laboratory results is provided on Table 3-3. Copies of the
laboratory data for the samples collected from the Phase 3 and 4 areas during the previous
investigation are provided in Appendix B.
3.2.3 Formation Descriptions
Formation descriptions were made in the field during drilling by an on-site geologist or
geotechnical engineer. Formation descriptions were made according to moisture content,
consistency, color, and grain size. Alterations to the field descriptions, where necessary, were
made according to the geotechnical laboratory results. Boring logs are provided in Appendix A.
Copies of the field notes for the previous investigation are provided in Appendix C.
3.2.4 Geotechnical Laboratory Testing
The following section provides laboratory analysis data for hydraulic conductivity, porosity, and
effective porosity.
Porosity and hydraulic conductivity values were obtained from 2 Shelby Tube and 1 remolded
samples collected from the Phase 3 expansion area during previous investigations. Porosity
values in the Shelby Tube samples ranged from 37% in B-18 (21-23) to 48% in B-19 (4-6). The
undisturbed hydraulic conductivity value ranged from 3.6x10-5 cm/sec in B-19 (4-6) to 8.9x10-6
cm/sec in B-18 (21-23). The average undisturbed hydraulic conductivity across the entire site is
9.6x10-6 cm/sec.
Permeability value in the remolded sample from B-18 (0-10) was 1.6x10-7 cm/sec. The average
remolded permeability value in samples across the entire site is 5.57x10-7 cm/sec.
Ta
b
l
e
3
-
3
Su
m
m
a
r
y
o
f
G
e
o
t
e
c
h
n
i
c
a
l
T
e
s
t
i
n
g
R
e
s
u
l
t
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
o
n
s
t
r
u
c
t
i
o
n
a
n
d
D
e
m
o
l
i
t
i
o
n
L
a
n
d
f
i
l
l
-
P
h
a
s
e
3
a
n
d
4
E
x
p
a
n
s
i
o
n
De
s
i
g
n
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Es
t
i
m
a
t
e
d
U
n
d
i
s
t
u
r
b
e
d
R
e
m
o
l
d
e
d
At
t
e
r
b
e
r
g
L
i
m
i
t
s
Bo
r
i
n
g
N
o
.
D
e
p
t
h
L
i
t
h
o
l
o
g
y
Sa
m
p
l
e
U
S
C
S
N
a
t
u
r
a
l
P
o
r
o
s
i
t
y
E
f
f
e
c
t
i
v
e
H
y
d
r
a
u
l
i
c
H
y
d
r
a
u
l
i
c
(f
e
e
t
)
Ty
p
e
C
l
a
s
s
i
f
i
c
a
t
i
o
n
M
o
i
s
t
u
r
e
(
%
)
P
o
r
o
s
i
t
y
C
o
n
d
u
c
t
i
v
i
t
y
C
o
n
d
u
c
t
i
v
i
t
y
L
i
q
u
i
d
P
l
a
s
t
i
c
P
l
a
s
t
i
c
i
t
y
Co
n
t
e
n
t
(%
)
(c
m
/
s
e
c
)
(c
m
/
s
e
c
)
Lim
i
t
Li
m
i
t
In
d
e
x
B-
1
3
8
.
0
-
1
0
.
0
S
a
p
r
o
l
i
t
e
S
p
l
i
t
S
p
o
o
n
S
C
7.
2
25
32
2
3
9
B-
1
4
3.
0
-
5
.
0
R
e
s
i
d
u
u
m
S
p
l
i
t
S
p
o
o
n
C
H
2
0
.
2
4
64
3
0
3
4
B-
1
4
1
5
.
0
-
1
7
.
0
PW
R
UD
CL
1
1
.
3
7
34
1
9
1
5
B-
1
5
8
.
0
-
1
0
.
0
PW
R
UD
SM
8.
6
8
NP
N
P
N
P
B-
1
6
1
0
.
0
-
1
2
.
0
S
a
p
r
o
l
i
t
e
UD
MH
2
3
.
7
5
65
3
4
3
1
B-
1
7
4.
0
-
6
.
0
F
i
l
l
/
R
e
s
i
d
u
u
m
S
p
l
i
t
S
p
o
o
n
C
H
2
5
.
3
<1
59
2
9
3
0
B-
1
7
8
.
0
-
1
0
.
0
S
a
p
r
o
l
i
t
e
UD
ML
2
5
.
9
4
0
.
0
5
1
.
5
0
E
-
0
6
36
3
4
2
B-
1
7
1
4
.
0
-
1
6
.
0
S
a
p
r
o
l
i
t
e
S
p
l
i
t
S
p
o
o
n
S
M
11
24
31
2
6
5
B-
1
7
2
9
.
0
-
3
1
.
0
PW
R
Sp
l
i
t
S
p
o
o
n
S
M
1
4
.
1
6
35
2
8
7
B-
1
7
0
.
0
-
1
0
.
0
F
i
l
l
/
R
e
s
i
d
u
u
m
/
S
a
p
r
o
l
i
t
e
B
u
l
k
MH
<1
5.
1
0
E
-
0
7
5
5
3
0
2
5
B-
1
8
13
.
0
-
1
5
.
0
S
a
p
r
o
l
i
t
e
S
p
l
i
t
S
p
o
o
n
M
L
1
8
.
4
13
38
3
2
6
B-
1
8
21
.
0
-
2
3
.
0
S
a
p
r
o
l
i
t
e
UD
SM
14
3
7
.
0
2
5
8
.
9
0
E
-
0
6
36
3
1
5
B-
1
8
33
.
0
-
3
5
.
0
PW
R
Sp
l
i
t
S
p
o
o
n
M
L
1
0
.
8
21
27
2
4
3
B-
1
8
0.
0
-
1
0
.
0
F
i
l
l
/
S
a
p
r
o
l
i
t
e
Bu
l
k
ML
<1
1.
6
0
E
-
0
7
4
7
2
8
1
9
B-
1
9
4.
0
-
6
.
0
R
e
s
i
d
u
u
m
/
S
a
p
r
o
l
i
t
e
U
D
ML
28
4
8
.
0
1
8
3
.
6
0
E
-
0
5
43
3
6
7
CD
-
4
r
e
p
2
.
0
-
4
.
0
S
a
p
r
o
l
i
t
e
UD
CL
2
0
.
9
3
8
.
0
1
0
7
.
3
0
E
-
0
6
48
2
7
2
1
CD
-
4
r
e
p
4
.
0
-
6
.
0
S
a
p
r
o
l
i
t
e
S
p
l
i
t
S
p
o
o
n
S
M
1
4
.
7
14
35
2
5
1
0
MW
-
A
3
.
0
-
5
.
0
R
e
s
i
d
u
u
m
UD
15
.
3
3
9
.
6
MW
-
B
3
.
0
-
5
.
0
R
e
s
i
d
u
u
m
UD
20
.
3
4
2
.
7
MW
-
X
0
-
5
.
0
R
e
s
i
d
u
u
m
/
S
a
p
r
o
l
i
t
e
B
u
l
k
S
M
-
C
L
1
4
.
9
2
7
.
4
1.
0
E
-
0
6
P-
2
4
19
.
0
-
2
1
.
0
Sa
p
r
o
l
i
t
e
UD
30
.
2
28
.
0
3.
7
0
E
-
0
6
Av
e
r
a
g
e
17
.
2
3
9
.
2
9
.
6
4
E
-
0
6
5
.
5
7
E
-
0
7
Ge
o
m
e
t
r
i
c
M
e
a
n
15
.
9
3
8
.
6
4
.
2
1
E
-
0
6
4
.
3
4
E
-
0
7
Ta
b
l
e
i
n
c
l
u
d
e
s
b
o
r
i
n
g
s
i
n
a
n
d
a
r
o
u
n
d
C
&
D
e
x
p
a
n
s
i
o
n
s
i
t
e
.
US
C
S
-
U
n
i
f
i
e
d
S
o
i
l
C
l
a
s
s
i
f
i
c
a
t
i
o
n
S
y
s
t
e
m
UD
-
U
n
d
i
s
t
u
r
b
e
d
S
a
m
p
l
e
(
S
h
e
l
b
y
T
u
b
e
)
PW
R
-
P
a
r
t
i
a
l
l
y
w
e
a
t
h
e
r
e
d
r
o
c
k
*B
e
d
r
o
c
k
p
o
r
o
s
i
t
y
v
a
l
u
e
s
e
s
t
i
m
a
t
e
d
f
o
r
F
r
a
c
t
u
r
e
d
c
r
y
s
t
a
l
l
i
n
e
r
o
c
k
a
s
r
e
p
o
r
t
e
d
b
y
D
r
i
s
c
o
l
l
1
9
8
6
(
p
.
6
7
)
P-
2
4
i
n
s
t
a
l
l
e
d
i
n
1
9
9
4
F
e
a
s
i
b
i
l
i
t
y
S
t
u
d
y
.
-
B
l
a
n
k
s
i
n
d
i
c
a
t
e
n
o
t
c
a
l
c
u
l
a
t
e
d
Ta
b
l
e
3
-
3
Section 3 • Current Investigation Results
3-9
(revised January 2017)
Porosity values were calculated from the initial void ratio by using the equation:
n= e/(1+e)
where:
n = porosity
e = void ratio
Values for effective porosity (ne) for these samples were estimated based on the grain size
analyses applied to the soil classification triangle which illustrates the relationship between grain
size and specific yield values (Johnson, 1967). Within the proposed expansion area, estimated
effective porosity values ranged from 13% in the sandy silt saprolite (B-18 13-15) to 25% in the
silty sand saprolite (B-18 21-23). Table 3-3 presents a summary of the results of the geotechnical
laboratory testing for the previous investigations.
3.2.5 Dispersive Characteristics
Estimates were made for longitudinal and transverse dispersivity for the uppermost aquifer at
the site, which in this case is the saturated saprolite and PWR. Using an equation provided by the
Solid Waste Section, longitudinal dispersivity (Dl) was estimated by the following calculation:
Dl= C x L x Kdh
nedl
where:
C = Constant (0.1)
L = Length to compliance boundary
K = hydraulic conductivity
dh/dl = hydraulic gradient
ne = effective porosity
For this estimation, an average hydraulic conductivity value of 5.18x10-5 cm/sec (0.37 ft/day)
was used. This value represents the average K of the piezometers installed during the current and
previous investigations, based on slug test analyses. An average hydraulic gradient of 0.02 ft/ft
was used. This value represents measurements collected from piezometers installed in and
adjacent to the expansion areas during the current investigation. An average effective porosity of
14% was used. This value represents the average estimated effective porosity from samples
collected from the saprolite and PWR. A length of 250 feet was used. This value represents the
distance from the edge of waste to the compliance boundary.
Using the estimations and calculation described above, an average longitudinal dispersivity of 1.3
ft was determined. Assuming that transverse dispersivity is 10% of longitudinal dispersivity,
transverse dispersivity was estimated at 0.13 ft.
Section 3 • Current Investigation Results
3-10
(revised January 2017)
Longitudinal dispersivity was also estimated using an EPA calculator. Assuming a plume length of
250 feet, longitudinal dispersivity ranged from 0.41 ft to 1500 ft. And by using the formula from
Xu and Eckstein (1995) on the EPA site, assuming a plume length of 250 feet, a longitudinal
dispersivity of 12.5 ft was determined. Therefore, transverse dispersivity ranges from 0.041 ft to
150 ft.
3.3 Site Hydrogeology
Results of investigation activities designed to characterize the hydrogeology beneath the Site are
presented in this section. These activities included water level measurements and aquifer slug
testing.
3.3.1 Water Level Measurements
Water level measurements collected from the piezometers installed during previous
investigations are provided in Table 3-4. These include measurements taken at least seven days
after installation and ranges from November 2002 to August 4, 2016. Water levels were not taken
after installation as stabilization after development had not occurred. The water level
measurements taken during the August 4, 2016 event were used to construct the potentiometric
contour map presented on Figure 3-2. Since installation, water table elevations have remained
fairly constant.
Table 3-4 also includes the highest recorded elevations for the piezometers and the monitoring
wells installed during previous investigations. This includes water level measurements dating
back to November 2002. Table 3-5 provides water level measurements for all monitoring wells
at the adjacent Closed facility.
3.3.1.1 Horizontal and Vertical Gradients
Horizontal Gradients
Figure 3-2 presents a potentiometric surface contour map for the C&D Landfill Phase 3 and 4
expansion areas and adjacent areas. This map was constructed from water level data collected
during the August 4, 2016 event. The contour map shows that the potentiometric surface, similar
to the bedrock surface, is a subdued reflection of surface topography. Topographic divides are
generally also groundwater divides and groundwater flow converges into the primary and
secondary drainage features within the proposed C&D expansion areas. Groundwater flows
radially away from topographically high areas. On the steep slopes, the hydraulic gradient
steepens.
The horizontal gradient within the Phase 3 and 4 areas from CD-1s toward B-18s was
approximately 0.023 feet/foot (ft/ft). The horizontal gradient from B-18 toward the western
drainage feature near MW-X was approximately 0.006 ft/ft. Previous gradient values across the
proposed expansion areas averaged approximately 0.02 ft/ft. The 0.02 ft/ft values were used in
velocity calculations for conservancy.
Ta
b
l
e
3
-
4
Wa
t
e
r
L
e
v
e
l
M
e
a
s
u
r
e
m
e
n
t
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
o
n
s
t
r
u
c
t
i
o
n
a
n
d
D
e
m
o
l
i
t
i
o
n
L
a
n
d
f
i
l
l
-
P
h
a
s
e
3
a
n
d
4
E
x
p
a
n
s
i
o
n
De
s
i
g
n
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
We
l
l
To
p
o
f
C
a
s
i
n
g
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Wa
t
e
r
L
e
v
e
l
Es
t
i
m
a
t
e
d
Es
t
i
m
a
t
e
d
Ele
v
a
t
i
o
n
(M
S
L
)
11
/
2
5
/
2
0
0
2
(M
S
L
)
6/
1
1
/
2
0
0
3
(M
S
L
)
6/
2
5
/
2
0
0
3
(M
S
L
)
7/
7
/
2
0
0
4
(M
S
L
)
7/
1
6
/
2
0
0
4
(M
S
L
)
7/
2
8
/
2
0
0
4
(M
S
L
)
8/
1
0
/
2
0
0
4
(M
S
L
)
8/
2
4
/
2
0
0
4
(M
S
L
)
11
/
1
9
/
2
0
0
4
(M
S
L
)
1/
1
3
/
0
5
(M
S
L
)
1/
2
2
/
0
9
(M
S
L
)
2/
1
2
/
0
9
(M
S
L
)
6/
3
0
/
0
9
(M
S
L
)
3/
2
2
/
1
2
(M
S
L
)
5/
3
/
1
2
(M
S
L
)
8
/
4
/
1
6
(
M
S
L
)
Se
a
s
o
n
a
l
Hig
h
Ele
v
a
t
i
o
n
LT
S
e
a
s
o
n
a
l
Hi
g
h
Ele
v
a
t
i
o
n
B-
1
D
74
0
.
8
7
70
4
.
5
7
71
0
.
9
8
71
1
.
4
9
70
7
.
9
4
70
7
.
8
7
70
7
.
7
7
70
7
.
6
6
70
7
.
5
3
70
7
.
5
7
70
7
.
4
5
70
5
.
0
2
70
5
.
1
2
70
6
.
6
0
70
4
.
3
3
70
4
.
6
4
70
6
.
6
9
71
4
.
9
9
71
6
B-
1
S
74
0
.
2
7
70
5
.
3
7
71
1
.
1
0
71
1
.
5
4
70
7
.
9
9
70
7
.
8
8
70
7
.
7
7
70
7
.
7
4
70
7
.
5
8
70
7
.
2
7
70
7
.
5
0
70
5
.
0
4
70
5
.
1
3
70
6
.
6
3
70
4
.
3
3
70
4
.
7
3
70
6
.
7
2
71
5
.
0
4
71
6
B-
2
75
0
.
9
1
71
3
.
4
1
71
4
.
2
4
71
7
.
7
3
71
6
.
5
1
71
6
.
4
1
71
6
.
3
1
71
6
.
2
6
71
6
.
0
5
71
6
.
0
9
71
5
.
4
9
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
72
1
.
2
3
72
2
B-3
76
1
.
7
6
70
4
.
2
6
70
8
.
4
3
70
8
.
5
6
70
6
.
9
9
71
0
.
0
2
70
6
.
9
2
70
6
.
9
4
70
6
.
7
9
70
7
.
1
1
70
6
.
5
0
70
3
.
9
1
70
4
.
0
0
70
4
.
9
2
70
3
.
4
3
70
3
.
6
4
70
5
.
3
7
71
3
.
5
2
71
5
B-
4
75
5
.
7
7
70
1
.
6
7
70
5
.
7
3
70
5
.
3
2
70
4
.
9
7
70
4
.
8
7
70
4
.
8
2
70
4
.
7
7
70
4
.
6
0
70
4
.
5
9
70
4
.
3
9
70
3
.
2
3
70
3
.
3
8
70
5
.
2
1
70
4
.
9
6
70
5
.
1
0
70
5
.
8
5
70
9
.
3
5
71
0
B-
5
72
2
.
2
3
70
1
.
5
3
70
3
.
7
1
70
3
.
5
6
70
3
.
2
0
70
3
.
0
3
70
3
.
0
3
70
2
.
8
8
70
2
.
7
9
70
2
.
5
0
70
3
.
3
3
70
2
.
5
3
70
2
.
3
5
70
3
.
2
1
70
3
.
0
7
70
2
.
3
3
70
3
.
0
4
70
7
.
2
1
70
8
B-6
76
2
.
6
7
70
6
.
8
7
71
0
.
4
8
71
1
.
8
5
70
9
.
5
3
--
70
9
.
3
9
70
9
.
2
7
70
9
.
2
0
70
8
.
9
9
70
8
.
8
4
70
6
.
6
0
70
6
.
6
4
70
7
.
4
5
70
6
.
6
6
70
6
.
9
4
70
8
.
2
0
71
5
.
3
5
71
6
B-
7
(
C
D
-
7
)
74
4
.
8
1
70
4
.
5
1
70
8
.
7
9
70
8
.
8
9
70
6
.
1
5
70
5
.
0
8
70
6
.
0
1
70
5
.
9
8
70
5
.
9
0
70
6
.
6
6
70
5
.
8
7
70
4
.
3
2
70
4
.
3
3
70
4
.
7
0
70
3
.
7
4
70
3
.
8
6
70
5
.
0
4
71
2
.
3
9
71
3
B-8
D
72
5
.
6
0
72
3
.
3
0
72
4
.
8
5
72
4
.
4
7
72
2
.
2
8
72
2
.
2
0
72
2
.
2
5
72
1
.
3
0
71
6
.
1
4
72
2
.
3
7
72
2
.
3
0
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
72
4
.
8
5
72
5
B-
8
S
72
5
.
5
7
72
3
.
0
7
72
4
.
0
1
72
3
.
8
9
72
1
.
8
5
72
1
.
6
3
72
1
.
8
9
72
0
.
8
2
72
0
.
9
4
72
2
.
0
0
72
2
.
7
7
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
72
4
.
0
1
72
4
B-
9
74
2
.
8
2
72
0
.
5
2
72
6
.
7
3
72
7
.
0
8
72
4
.
9
0
--
72
4
.
4
6
NM
72
4
.
0
2
72
3
.
7
0
72
3
.
9
6
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
73
0
.
5
8
73
2
B-
1
0
73
8
.
0
1
73
1
.
5
1
73
3
.
2
2
73
2
.
5
2
72
8
.
8
8
72
7
.
3
3
72
7
.
4
8
72
6
.
5
0
72
6
.
3
3
72
8
.
4
6
72
8
.
8
6
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
73
6
.
7
2
73
7
B-
1
1
73
3
.
9
8
71
4
.
9
8
71
5
.
8
7
72
0
.
8
7
72
0
.
0
4
71
9
.
7
1
71
9
.
7
0
71
9
.
3
1
71
9
.
1
5
71
9
.
7
1
72
0
.
2
2
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
72
4
.
3
7
72
5
B-
1
2
74
5
.
1
5
72
7
.
9
5
73
1
.
3
9
73
4
.
3
1
72
8
.
4
1
72
8
.
0
8
72
7
.
9
3
72
7
.
6
2
72
7
.
3
3
72
7
.
9
5
72
9
.
0
2
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
73
7
.
8
1
73
9
B-
1
3
75
7
.
2
6
--
--
--
--
--
73
4
.
5
1
73
4
.
6
8
73
4
.
5
2
73
4
.
2
6
73
2
.
5
9
*
*
*
*
*
*
73
8
.
1
8
73
9
B-
1
4
75
5
.
0
8
--
--
--
--
--
72
8
.
3
8
73
4
.
1
2
73
3
.
9
6
73
3
.
8
3
73
4
.
0
8
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
73
7
.
6
2
73
9
B-
1
5
75
6
.
8
0
--
--
--
--
--
73
1
.
7
0
73
2
.
4
5
73
2
.
3
5
73
2
.
6
8
73
3
.
0
0
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
73
6
.
5
0
73
8
B-
1
6
74
1
.
7
4
--
--
--
--
--
73
1
.
0
9
73
1
.
9
4
NM
73
2
.
3
9
73
2
.
5
3
73
0
.
6
1
73
0
.
6
2
73
0
.
3
3
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
73
6
.
0
3
73
7
B-
1
7
s
75
4
.
6
2
--
--
--
--
--
--
--
--
--
--
72
2
.
7
1
72
2
.
6
5
72
3
.
1
0
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
72
6
.
6
0
72
8
B-
1
7
d
75
4
.
6
9
--
--
--
--
--
--
--
--
--
--
72
2
.
8
2
72
2
.
7
3
72
3
.
2
1
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
72
6
.
7
1
72
8
B-
1
8
s
74
3
.
3
4
--
--
--
--
--
--
--
--
--
--
70
5
.
1
6
70
5
.
1
7
70
6
.
3
2
70
4
.
6
0
70
4
.
8
0
70
6
.
3
8
70
9
.
8
8
71
1
B-1
8
d
74
4
.
0
2
--
--
--
--
--
--
--
--
--
--
70
5
.
1
7
70
5
.
1
9
70
6
.
3
4
70
4
.
5
9
70
4
.
8
4
70
6
.
4
3
70
9
.
9
3
71
1
B-
1
9
74
1
.
2
4
--
--
--
--
--
--
--
--
--
--
70
4
.
9
4
70
4
.
9
1
70
6
.
0
4
70
4
.
2
9
70
4
.
4
7
Ab
a
n
d
o
n
e
d
70
9
.
5
4
71
1
CD
-
8
73
8
.
3
9
--
--
--
--
--
--
--
--
--
--
70
6
.
4
7
70
9
.
9
7
71
1
CD
-
1
s
75
5
.
0
--
--
--
--
--
--
--
--
--
--
73
0
.
9
3
73
0
.
9
0
73
2
.
1
5
73
0
.
6
8
73
0
.
5
1
73
0
.
9
2
73
5
.
6
5
73
7
CD
-
1
d
75
7
.
4
--
--
--
--
--
73
4
.
5
1
73
4
.
6
8
73
4
.
5
2
73
4
.
2
6
73
2
.
7
3
73
0
.
6
6
73
0
.
6
8
73
1
.
9
1
73
0
.
4
6
73
0
.
2
8
73
0
.
6
4
73
8
.
1
8
73
9
CD
-
2
73
3
.
0
--
--
--
--
--
--
--
--
--
--
71
8
.
9
9
71
8
.
9
6
71
8
.
8
4
71
8
.
7
7
71
7
.
7
2
71
8
.
1
1
72
3
.
0
0
72
4
CD
-
3
75
3
.
3
--
--
--
--
--
--
--
--
--
--
70
5
.
0
3
70
5
.
0
5
70
6
.
1
3
70
4
.
4
5
70
4
.
6
2
Ab
a
n
d
o
n
e
d
70
9
.
6
3
71
1
CD
-
3
(
r
e
l
o
c
a
t
e
d
)
74
4
.
4
8
--
--
--
--
--
--
--
--
--
--
70
6
.
1
70
9
.
6
0
71
1
CD
-
4
75
5
.
5
0
--
--
--
--
--
--
--
--
--
--
73
0
.
5
5
73
0
.
6
0
73
1
.
3
6
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
73
4
.
8
6
73
6
CD
-
4
r
e
p
73
9
.
1
5
--
--
--
--
--
--
--
--
--
--
72
9
.
3
4
72
9
.
4
8
72
9
.
2
0
72
9
.
4
5
72
8
.
8
4
72
8
.
7
0
73
2
.
9
8
73
4
CD
-
5
75
8
.
7
0
--
--
--
--
--
--
--
--
--
--
71
7
.
2
8
71
7
.
2
9
71
7
.
3
7
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
72
0
.
8
7
72
2
CD
-
6
74
1
.
4
0
--
--
--
--
--
--
--
--
--
--
70
7
.
8
4
70
7
.
8
6
70
9
.
0
9
70
7
.
2
2
70
7
.
5
1
NM
71
2
.
5
9
71
4
MW
-
2
73
3
.
7
8
72
9
.
4
8
--
72
8
.
3
6
70
6
.
9
4
70
6
.
7
8
70
6
.
5
1
70
6
.
3
3
70
6
.
2
3
70
7
.
1
3
72
7
.
7
5
72
5
.
1
7
72
6
.
0
7
72
2
.
4
3
NM
NM
Ab
a
n
d
o
n
e
d
73
2
.
9
8
73
4
MW
-
A
74
6
.
8
0
70
6
.
0
0
--
70
3
.
5
0
70
3
.
6
9
70
3
.
6
3
70
3
.
6
2
70
3
.
5
1
70
3
.
4
0
70
3
.
4
4
70
3
.
2
5
70
1
.
9
4
70
2
.
4
3
70
3
.
8
8
70
4
.
2
6
70
4
.
0
9
69
6
.
2
0
70
9
.
5
0
71
1
MW
-
J
72
8
.
4
7
69
8
.
9
7
70
3
.
9
2
70
1
.
4
5
70
0
.
4
4
70
0
.
2
3
70
0
.
1
7
70
0
.
1
0
69
9
.
9
6
70
0
.
1
3
70
0
.
3
2
69
8
.
6
7
69
9
.
1
0
69
9
.
6
9
69
9
.
2
6
69
8
.
5
2
NM
70
7
.
4
2
70
8
MW
-
X
71
0
.
2
8
69
4
.
3
9
69
6
.
7
3
69
8
.
3
8
69
7
.
9
5
69
8
.
3
0
69
7
.
8
8
69
7
.
8
3
69
7
.
8
4
NM
69
8
.
3
8
69
8
.
0
3
69
8
.
3
3
69
8
.
7
1
69
7
.
4
5
NM
70
2
.
2
1
70
3
P-
4
73
6
.
1
1
--
--
--
--
--
73
0
.
7
9
73
0
.
6
6
73
0
.
5
6
73
0
.
4
3
73
0
.
6
1
72
7
.
7
4
72
7
.
7
9
72
8
.
1
3
NM
NM
NM
73
4
.
2
9
73
5
P-
6
76
9
.
7
2
--
--
--
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
NM
NM
NM
NM
NM
NM
--
--
P-
7
76
8
.
7
9
--
--
--
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
NM
NM
NM
NM
NM
NM
--
--
P-
8
74
2
.
0
1
--
--
--
72
9
.
4
0
72
9
.
2
0
72
9
.
5
6
72
9
.
2
6
72
9
.
1
1
72
8
.
7
5
72
9
.
7
6
DR
Y
DR
Y
73
0
.
6
3
NM
NM
NM
73
4
.
1
3
73
5
P-
9
75
6
.
9
3
--
--
--
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
DR
Y
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
--
--
M-
2
75
5
.
1
8
--
--
--
--
--
73
6
.
4
3
73
6
.
2
8
73
6
.
3
1
73
5
.
9
8
73
6
.
3
4
NM
NM
NM
NM
NM
NM
73
9
.
9
3
74
1
M-
4
75
4
.
0
7
--
--
--
73
9
.
7
9
73
9
.
5
5
73
9
.
5
3
73
9
.
4
0
73
9
.
1
0
73
4
.
5
3
73
1
.
4
2
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
Ab
a
n
d
o
n
e
d
74
3
.
2
9
74
4
M-
5
76
9
.
9
2
--
--
--
72
2
.
2
2
72
2
.
1
4
72
1
.
9
9
72
1
.
8
7
72
1
.
7
2
73
7
.
4
2
73
7
.
7
2
NM
NM
NM
NM
NM
NM
74
1
.
2
2
74
2
No
t
e
s
:
MS
L
-
M
e
a
n
S
e
a
L
e
v
e
l
NM
-
N
o
t
M
e
a
s
u
r
e
d
* -
B
-
1
3
w
a
s
c
o
n
v
e
r
t
e
d
t
o
C
D
-
1
d
.
--
N
o
D
a
t
a
Ta
b
l
e
3
-
4
C
A
B
A
R
R
U
S
C
O
U
N
T
Y
N
O
R
T
H
C
A
R
O
L
I
N
A
N
XREFs: [CE_SURVEY, RC09STPL] Images: []Last saved by: KOSKIAR Time: 1/4/2017 7:54:34 AMpw:\\DACPWAPP2:PW_PL1\1278\114357\04 Design Services NM_30%\02 Civil\10 CADD\FIG-3-2.dwg
F
I
G
U
R
E
G
R
O
U
N
D
W
A
T
E
R
C
O
N
T
O
U
R
M
A
P
D
E
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
I
N
V
E
S
T
I
G
A
T
I
O
N
3
-
2
P
H
A
S
E
I
I
I
&
I
V
U
N
L
I
N
E
D
C
&
D
L
A
N
D
F
I
L
L
E
X
P
A
N
S
I
O
N
C
A
B
A
R
R
U
S
C
O
U
N
T
Y
C
&
D
L
A
N
D
F
I
L
L
Table 3-5
Historic Water Level Measurements - Site Monitoring Wells
Cabarrus County Construction and Demolition Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Facility Permit Monitoring Well Top of Casing
Number Code Elevation (AMSL)
13-02 MW-1 701.37 691.74 689.72 689.70 690.19 690.52 690.41 690.67 690.71 690.67 690.67 690.26
13-02 MW-3 670.37
13-02 MW-3 deep 668.33
13-02 MW-9 780.25 743.15 739.48 739.74 738.96 739.39 740.36 739.60 739.94 739.34 741.58 739.21
13-02 MW-A 746.80 709.35 705.83 705.74 705.36 705.52 705.29 704.98 705.20 704.86 705.82 704.94
13-02 MW-B 681.66 674.65 676.32 676.28 676.78 677.16 672.22 677.70 677.86 678.23 678.57 678.03
13-02 MW-C 694.98 686.83 685.02 684.81 685.35 686.02 685.98 685.65 686.77 685.31 687.13 684.05
13-02 MW-D 720.28 704.78 699.41 698.74 697.66 697.78 697.26 696.25 696.08 695.43 696.85 695.23
13-02 MW-E Rep 712.58 684.16 680.91 681.69 682.28 682.93 682.99 689.33 689.42 688.01 689.69 687.15
13-02 MW-E deep 705.70
13-02 MW-F 681.06 672.58 670.94 670.94 671.29 671.78 671.60 671.68 671.77 671.78 672.01 671.23
13-02 MW-G 695.19 687.89 686.34 686.22 686.99 687.68 687.52 687.02 687.04 686.76 687.31 686.11
13-02 MW-H 699.23
13-02 MW-H deep 699.17
13-02 MW-I 709.30
13-02 MW-J 728.47
13-02 MW-K 702.91
13-02 MW-L 669.54
13-02 MW-L deep 672.51
13-02 MW-M 668.49
13-02 MW-X 710.28
13-02 CD-1s (background well)755.00
13-02 CD-1d (background well)757.40
13-02 CD-4 755.50
13-02 CD-5 758.70
13-02 CD-6 741.40
13-02 AMW-1s 725.30
13-02 AMW-1d 725.80
13-02 AMW-2s 694.50
13-02 AMW-2d 694.50
Notes:
1. AMSL = Above Mean Sea Level NS = Not Sampled
2. Blank Cells - Water level not measured or well not installed
3. MW-E deep, -H, -H deep, -I, -J, -K, -L, were installed in June 1999.
4. Asessment wells CD-4, -5, and -6 were installed in September 2006.
5. Assessment wells AMW-1s, -1d, -2s, and -2d were installed in October 2009.
6. CD-4 and CD-5 were abandoned in July 2010.
7. The November 2012 sampling event was the first event that
CD-1s/CD-1d replaced MW-9 as the background monitoring wells.
8. MW-9 was removed from the monitoring program in November 2012.
9. MW-E Rep was not sampled during the Novemver 2012
sampling event due to laboratory oversight.
11/13/1995Sampling Event 10/18/1994 2/14/1995 6/9/1995 10/24/1995 11/9/1998
Groundwater Elevation (AMSL)
1/26/1996 12/5/1996 5/2/1997 11/4/1997 4/18/1999
Page 1 of 5 Table 3-5
Table 3-5
Historic Water Level Measurements - Site Monitoring Wells
Cabarrus County Construction and Demolition Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Facility Permit Monitoring Well Top of Casing
Number Code Elevation (AMSL)
13-02 MW-1 701.37
13-02 MW-3 670.37
13-02 MW-3 deep 668.33
13-02 MW-9 780.25
13-02 MW-A 746.80
13-02 MW-B 681.66
13-02 MW-C 694.98
13-02 MW-D 720.28
13-02 MW-E Rep 712.58
13-02 MW-E deep 705.70
13-02 MW-F 681.06
13-02 MW-G 695.19
13-02 MW-H 699.23
13-02 MW-H deep 699.17
13-02 MW-I 709.30
13-02 MW-J 728.47
13-02 MW-K 702.91
13-02 MW-L 669.54
13-02 MW-L deep 672.51
13-02 MW-M 668.49
13-02 MW-X 710.28
13-02 CD-1s (background well)755.00
13-02 CD-1d (background well)757.40
13-02 CD-4 755.50
13-02 CD-5 758.70
13-02 CD-6 741.40
13-02 AMW-1s 725.30
13-02 AMW-1d 725.80
13-02 AMW-2s 694.50
13-02 AMW-2d 694.50
Notes:
1. AMSL = Above Mean Sea Level NS = Not Sampled
2. Blank Cells - Water level not measured or well not installed
3. MW-E deep, -H, -H deep, -I, -J, -K, -L, were installed in June 1999.
4. Asessment wells CD-4, -5, and -6 were installed in September 2006.
5. Assessment wells AMW-1s, -1d, -2s, and -2d were installed in October 2009.
6. CD-4 and CD-5 were abandoned in July 2010.
7. The November 2012 sampling event was the first event that
CD-1s/CD-1d replaced MW-9 as the background monitoring wells.
8. MW-9 was removed from the monitoring program in November 2012.
9. MW-E Rep was not sampled during the Novemver 2012
sampling event due to laboratory oversight.
Sampling Event
690.37 690.15 690.05 689.91 689.70 689.75 689.49 689.96 690.06 690.54 689.58
651.74 651.71
654.24
739.15 737.90 738.76 737.53 737.39 737.06 737.09 735.92 739.12 742.56 741.50
704.90 703.02 703.10 702.66 702.07 701.66 701.31 700.87 702.58 704.46 704.00
678.01 678.26 678.32 678.25 678.29 678.41 678.97 678.76 678.76 678.83 678.79
684.03 683.93 685.68 683.24 684.12 683.27 684.29 683.90 686.65 684.11 686.36
695.20 693.39 693.58 692.55 691.85 691.21 DRY DRY 692.98 693.96 694.07
687.13 684.12 684.08 682.97 681.65 NS 680.77 650.58 658.09 659.82 658.32
673.76 673.75 672.69 671.35 672.60 670.44 672.54 673.17 674.99 673.46
671.16 671.74 672.14 671.12 672.13 673.15 672.54 671.86 672.76 672.15 671.96
686.09 686.26 686.27 686.11 686.03 685.96 685.93 686.74 686.47 685.99 686.17
674.03 673.70 672.64 671.11 670.43 669.81 668.81 671.48 675.22 673.85
673.57 673.22 672.39 670.83 670.04 669.38 668.49 671.02 674.56 673.06
663.72 661.87 662.79 659.92 659.75 660.16 658.80 663.75 662.92 662.27
699.29 700.72 699.13 699.03 698.23 699.02 697.63 700.51 701.06 701.21
678.75 680.57 678.19 678.63 677.56 678.74 677.93 681.63 681.52 681.49
654.18 655.46 653.26 651.77 652.72 651.69 650.01 654.43 NS 653.16
654.62
649.33
697.85 700.05 698.98 NS NS NS NS NS 698.66 700.30
5/8/20013/31/1999 11/16/1999 4/24/2000 9/26/2000
Groundwater Elevation (AMSL)
4/23/2002 10/14/2002 4/25/2003 10/23/2003 4/21/200410/30/2001
Page 2 of 5 Table 3-5
Table 3-5
Historic Water Level Measurements - Site Monitoring Wells
Cabarrus County Construction and Demolition Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Facility Permit Monitoring Well Top of Casing
Number Code Elevation (AMSL)
13-02 MW-1 701.37
13-02 MW-3 670.37
13-02 MW-3 deep 668.33
13-02 MW-9 780.25
13-02 MW-A 746.80
13-02 MW-B 681.66
13-02 MW-C 694.98
13-02 MW-D 720.28
13-02 MW-E Rep 712.58
13-02 MW-E deep 705.70
13-02 MW-F 681.06
13-02 MW-G 695.19
13-02 MW-H 699.23
13-02 MW-H deep 699.17
13-02 MW-I 709.30
13-02 MW-J 728.47
13-02 MW-K 702.91
13-02 MW-L 669.54
13-02 MW-L deep 672.51
13-02 MW-M 668.49
13-02 MW-X 710.28
13-02 CD-1s (background well)755.00
13-02 CD-1d (background well)757.40
13-02 CD-4 755.50
13-02 CD-5 758.70
13-02 CD-6 741.40
13-02 AMW-1s 725.30
13-02 AMW-1d 725.80
13-02 AMW-2s 694.50
13-02 AMW-2d 694.50
Notes:
1. AMSL = Above Mean Sea Level NS = Not Sampled
2. Blank Cells - Water level not measured or well not installed
3. MW-E deep, -H, -H deep, -I, -J, -K, -L, were installed in June 1999.
4. Asessment wells CD-4, -5, and -6 were installed in September 2006.
5. Assessment wells AMW-1s, -1d, -2s, and -2d were installed in October 2009.
6. CD-4 and CD-5 were abandoned in July 2010.
7. The November 2012 sampling event was the first event that
CD-1s/CD-1d replaced MW-9 as the background monitoring wells.
8. MW-9 was removed from the monitoring program in November 2012.
9. MW-E Rep was not sampled during the Novemver 2012
sampling event due to laboratory oversight.
Sampling Event
689.42 689.61 689.14 688.35 689.18 689.43 688.76 689.38 688.61 689.63
651.24 652.13 650.90 650.28 650.65 652.92 650.19 651.34 650.54 652.17
NS 654.99 NS 654.26 NS 656.27 NS 654.84 NS 655.48
740.20 740.65 739.40 738.81 737.56 739.23 736.51 736.21 735.60 736.89
703.21 704.19 704.19 703.58 702.63 704.32 703.53 702.80 702.51 703.00
679.06 678.87 678.54 678.72 679.41 678.88 678.01 679.11 679.16 678.93
684.81 687.48 684.09 685.29 686.94 688.77 683.34 688.23 684.17 689.26
693.16 695.38 693.51 691.56 693.22 695.68 692.84 693.82 692.19 695.48
656.72 682.73 681.48 680.38 679.52 682.58 680.23 679.99 679.34 680.87
671.87 672.49 671.19 670.01 669.78 672.27 669.96 669.70 669.06 670.66
671.94 672.26 670.01 671.15 672.06 673.43 668.43 672.49 672.75 672.78
685.94 686.17 685.78 685.37 686.03 686.08 685.08 686.07 685.99 686.22
672.15 672.63 671.35 671.19 670.14 672.00 669.89 669.79 668.75 670.25
671.57 671.77 670.89 669.67 669.69 671.44 669.54 668.97 668.36 669.50
661.51 662.62 660.96 660.60 661.60 663.58 660.07 661.73 660.82 662.40
699.97 701.21 699.63 699.63 699.52 701.72 698.05 699.78 698.29 700.48
680.36 682.26 679.58 680.20 678.01 681.85 677.52 680.11 678.53 681.12
NS 653.80 NS 652.69 NS 652.70 NS 652.84 NS 653.43
NS 655.20 NS 654.11 NS 655.72 NS 654.09 NS 654.93
NS 649.79 NS 646.31 NS 650.30 NS 649.08 NS 650.34
698.18 699.92 697.73 697.67 698.25 700.31 697.74 698.58 696.84 699.75
732.30 733.22 731.09 731.30 729.54 731.60
732.05 732.98 730.87 731.02 730.34 731.37
731.53 732.09 730.56 730.80 730.37 731.10
719.21 719.02 718.32 717.58 713.47 717.00
710.88 711.68 707.72 708.30 708.10 708.16
4/23/2007 10/29/200710/20/2004
Groundwater Elevation (AMSL)
4/21/2008 11/19/2008 4/7/20094/25/2005 10/24/2005 4/18/2006 10/31/2006
Page 3 of 5 Table 3-5
Table 3-5
Historic Water Level Measurements - Site Monitoring Wells
Cabarrus County Construction and Demolition Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Facility Permit Monitoring Well Top of Casing
Number Code Elevation (AMSL)
13-02 MW-1 701.37
13-02 MW-3 670.37
13-02 MW-3 deep 668.33
13-02 MW-9 780.25
13-02 MW-A 746.80
13-02 MW-B 681.66
13-02 MW-C 694.98
13-02 MW-D 720.28
13-02 MW-E Rep 712.58
13-02 MW-E deep 705.70
13-02 MW-F 681.06
13-02 MW-G 695.19
13-02 MW-H 699.23
13-02 MW-H deep 699.17
13-02 MW-I 709.30
13-02 MW-J 728.47
13-02 MW-K 702.91
13-02 MW-L 669.54
13-02 MW-L deep 672.51
13-02 MW-M 668.49
13-02 MW-X 710.28
13-02 CD-1s (background well)755.00
13-02 CD-1d (background well)757.40
13-02 CD-4 755.50
13-02 CD-5 758.70
13-02 CD-6 741.40
13-02 AMW-1s 725.30
13-02 AMW-1d 725.80
13-02 AMW-2s 694.50
13-02 AMW-2d 694.50
Notes:
1. AMSL = Above Mean Sea Level NS = Not Sampled
2. Blank Cells - Water level not measured or well not installed
3. MW-E deep, -H, -H deep, -I, -J, -K, -L, were installed in June 1999.
4. Asessment wells CD-4, -5, and -6 were installed in September 2006.
5. Assessment wells AMW-1s, -1d, -2s, and -2d were installed in October 2009.
6. CD-4 and CD-5 were abandoned in July 2010.
7. The November 2012 sampling event was the first event that
CD-1s/CD-1d replaced MW-9 as the background monitoring wells.
8. MW-9 was removed from the monitoring program in November 2012.
9. MW-E Rep was not sampled during the Novemver 2012
sampling event due to laboratory oversight.
Sampling Event
688.79 689.23 688.92 689.08 689.35 689.82 688.87 690.81 689.03 689.32
651.06 652.87 651.45 652.20 651.67 654.06 652.48 654.70 654.34 656.75
NS 654.13 NS 655.15 NS 656.74 NS 657.43 NS 659.63
735.72 738.26 736.58 736.07 734.92 735.84 NS NS NS NS
704.08 704.95 704.08 703.02 702.39 703.59 703.09 702.45 703.45 705.01
679.38 678.61 677.64 679.04 679.56 678.34 677.44 679.71 678.96 678.96
690.07 686.35 684.02 686.66 683.43 684.58 682.88 690.12 683.78 688.55
696.37 695.21 693.40 692.88 691.48 693.12 691.60 692.15 692.58 696.21
679.75 682.54 680.82 679.94 679.07 682.38 NS 680.25 682.53 685.83
670.29 671.99 673.60 669.66 668.80 671.10 669.31 670.05 672.21 675.55
668.88 671.96 669.43 672.27 672.60 671.61 667.86 673.91 671.41 672.51
685.21 685.91 685.69 685.79 686.40 685.46 685.72 686.74 685.69 685.78
670.61 671.86 670.67 670.19 669.25 671.30 669.74 670.32 672.62 675.66
670.25 671.40 670.07 669.30 668.54 670.81 669.32 669.72 672.17 675.17
660.39 663.19 661.05 661.43 660.65 662.40 660.82 662.70 662.90 665.83
701.65 699.97 698.20 698.68 697.11 698.49 696.45 698.77 698.02 700.14
678.81 681.50 678.62 679.22 676.91 679.73 676.51 679.51 679.51 682.24
NS 653.86 652.74 653.13 651.96 654.24 652.71 655.24 655.24 657.83
NS 655.61 NS 654.62 NS 655.81 NS 656.74 656.74 659.35
NS 649.00 NS 647.85 NS 648.19 NS 649.98 649.98 650.69
700.27 698.54 696.93 697.62 700.80 697.38 695.25 699.28 699.28 698.95
730.59 731.50 730.72 730.81 729.60 730.65 728.94 729.28 729.28 731.82
730.39 732.22 730.53 730.49 729.46 730.96 728.75 729.09 729.09 731.54
730.28 731.52 ----------------
717.43 715.22 ----------------
708.65 710.60 709.15 707.71 706.81 707.55 706.10 706.02 706.02 710.20
671.18 673.32 671.80 670.87 670.00 672.32 670.00 671.30 671.30 676.79
668.09 673.10 671.60 670.58 669.77 672.03 670.34 671.05 671.05 676.62
668.20 670.09 668.74 668.16 667.10 669.38 667.78 671.47 671.47 673.40
668.87 670.67 669.24 668.49 667.68 669.90 668.32 669.12 669.12 673.95
10/14/2009 5/6/2010 11/1/2010 5/6/2013 11/4/2013 5/5/20145/3/2011 11/7/2011 5/7/2012 11/26/2012
Groundwater Elevation (AMSL)
Page 4 of 5 Table 3-5
Table 3-5
Historic Water Level Measurements - Site Monitoring Wells
Cabarrus County Construction and Demolition Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Facility Permit Monitoring Well Top of Casing
Number Code Elevation (AMSL)
13-02 MW-1 701.37
13-02 MW-3 670.37
13-02 MW-3 deep 668.33
13-02 MW-9 780.25
13-02 MW-A 746.80
13-02 MW-B 681.66
13-02 MW-C 694.98
13-02 MW-D 720.28
13-02 MW-E Rep 712.58
13-02 MW-E deep 705.70
13-02 MW-F 681.06
13-02 MW-G 695.19
13-02 MW-H 699.23
13-02 MW-H deep 699.17
13-02 MW-I 709.30
13-02 MW-J 728.47
13-02 MW-K 702.91
13-02 MW-L 669.54
13-02 MW-L deep 672.51
13-02 MW-M 668.49
13-02 MW-X 710.28
13-02 CD-1s (background well)755.00
13-02 CD-1d (background well)757.40
13-02 CD-4 755.50
13-02 CD-5 758.70
13-02 CD-6 741.40
13-02 AMW-1s 725.30
13-02 AMW-1d 725.80
13-02 AMW-2s 694.50
13-02 AMW-2d 694.50
Notes:
1. AMSL = Above Mean Sea Level NS = Not Sampled
2. Blank Cells - Water level not measured or well not installed
3. MW-E deep, -H, -H deep, -I, -J, -K, -L, were installed in June 1999.
4. Asessment wells CD-4, -5, and -6 were installed in September 2006.
5. Assessment wells AMW-1s, -1d, -2s, and -2d were installed in October 2009.
6. CD-4 and CD-5 were abandoned in July 2010.
7. The November 2012 sampling event was the first event that
CD-1s/CD-1d replaced MW-9 as the background monitoring wells.
8. MW-9 was removed from the monitoring program in November 2012.
9. MW-E Rep was not sampled during the Novemver 2012
sampling event due to laboratory oversight.
Sampling Event
690.73 689.22 688.97 688.94 688.76
652.60 655.97 654.26 657.31 655.78
NS 658.99 657.48 660.27 659.10
NS NS NS NS NS
702.49 703.28 702.60 704.73 704.39
675.25 679.06 678.86 678.89 678.77
682.14 688.33 682.70 688.74 683.29
692.98 692.78 691.53 694.50 693.39
682.49 683.00 680.93 684.97 683.18
672.75 672.71 670.65 674.67 672.88
668.38 672.66 671.66 672.46 670.61
685.11 685.68 685.68 685.62 685.65
672.74 672.67 671.03 674.90 673.29
672.33 672.32 670.62 674.52 672.96
662.00 664.00 662.17 665.50 663.72
696.55 699.10 696.77 699.52 698.05
677.86 680.25 676.84 681.21 678.35
654.03 656.54 654.39 657.90 655.72
NS 658.15 656.14 659.50 657.51
NS 649.52 648.01 649.94 648.79
695.53 698.02 696.14 698.64 696.83
730.20 730.42 728.55 731.10 727.17
729.95 730.20 728.33 730.89 732.17
----------
----------
709.30 707.64 706.65 708.75 708.44
674.05 674.06 672.00 676.07 674.31
673.02 673.85 671.73 675.85 674.09
670.29 671.07 669.09 672.97 671.18
670.70 671.60 669.65 673.53 671.82
10/31/2016
Groundwater Elevation (AMSL)
10/26/201511/3/2014 5/4/2015 5/16/2016
Page 5 of 5 Table 3-5
Section 3 • Current Investigation Results
3-18
(revised January 2017)
Vertical gradient data is evaluated by comparing water levels from nested piezometer pairs.
Nested piezometer pairs are present at the existing C&D landfill (CD-1s/1d), in the proposed
Phase 3 and 4 expansion areas (B-18s/18d and B-1s/1d). Vertical gradients are calculated as the
difference in water level elevation between two nested piezometers, divided by the vertical
distance from the saturated midpoint of the sand filter pack of the shallower well to the saturated
midpoint of the sand filter pack in the deeper well.
The August 4, 2016 water level elevations indicated the presence of a very slight gradient
(indicated by a negative gradient value) at well nests B-1s/B-1d and CD-1s/CD-1d and a very
slight upward gradient at nests B-18s/B-18d. The downward gradients indicate areas that serve
as recharge areas and groundwater is moving from the PWR to the bedrock. The upward
gradients indicate that groundwater is discharging from the bedrock to the PWR, however, there
were no seeps or springs visible near the well nests.
Well Nest Shallow
GW
Elevation
(MSL)
Deep GW
Elevation
(MSL)
GW
Elevation
Difference
(ft)
Shallow
Screen
Saturated
Midpoint
(MSL)
Deep
Screen
Saturated
Midpoint
(MSL)
Screen
Midpoint
Separation
(ft)
Calculated
Vertical
Gradient
(ft/ft)
CD-1s/1d 730.92 730.64 -0.28 727.46 710.00 17.46 -0.016
B-
18s/18d
706.38 706.43 +0.05 705.24 695.40 9.84 +0.005
B-1s/1d 706.72 706.69 -0.03 704.98 691.25 13.73 -0.002
GW – Groundwater
MSL – Mean Sea Level
3.3.1.2 Temporal Trends
Since 1994, the average annual precipitation in Concord, North Carolina is approximately 45
inches. From January 1994 to November 2016, the average monthly precipitation ranged from a
low of 3.05 inches in November to a high of 5.38 inches in July. Long-term monthly precipitation
summary statistics are provided in Table 3-6 and Figure 3-3.
The precipitation data indicated that peak rainfall for this area would be expected to occur in the
summer between June and September. Precipitation during the summer months generally falls in
large amounts over short periods of time, which results in increased runoff; thus decreasing the
amount of precipitation available for infiltration. Therefore, lower groundwater levels would also
be expected to occur during this time due to less precipitation infiltration and the increased loss
of water by evapotranspiration.
Above average amounts of rainfall also occur during March and April. Since precipitation in the
late winter/early spring months generally occurs as a slow, steady rainfall, and
evapotranspiration is minimal, more precipitation is available for infiltration. Therefore,
groundwater levels would change more rapidly in response to a precipitation event. It would be
expected that the seasonal high water table would occur in late winter to early spring (January to
March) in response to precipitation during this period. Historical groundwater data from the
monitoring wells at the closed Units 1, 2, and 3 landfills indicate that the highest groundwater
levels typically occur in April or May.
Ta
b
l
e
3
-
6
An
n
u
a
l
P
r
e
c
i
p
i
t
a
t
i
o
n
D
a
t
a
-
C
o
n
c
o
r
d
S
t
a
t
i
o
n
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
o
n
s
t
r
u
c
t
i
o
n
a
n
d
D
e
m
o
l
i
t
i
o
n
L
a
n
d
f
i
l
l
-
P
h
a
s
e
3
a
n
d
4
E
x
p
a
n
s
i
o
n
De
s
i
g
n
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Ye
a
r
JA
N
FE
B
MA
R
AP
R
MA
Y
JU
N
JU
L
AU
G
SE
P
OC
T
NO
V
DE
C
AN
N
U
A
L
19
9
4
4.
9
4
2.
7
7
6.
2
3
3.
9
6
1.
7
9
9.
7
2
6.
6
5
4.
9
7
2.
4
4
3.
6
7
2.
9
2
1.
5
3
51
.
5
9
19
9
5
4.
4
2
5.
9
4
2.
7
5
0.
8
3
3.
9
9
7.
0
8
3.
7
6
10
.
5
3.
8
5.
9
6
6.
1
2
1.
2
7
56
.
4
2
19
9
6
4.
8
3
2.
4
3
3.
4
5
3.
9
4
2.
4
3
3.
7
7
5.
7
1
4.
4
2
5.
2
9
3.
1
9
2.
8
8
2.
7
7
45
.
1
1
19
9
7
3.
5
4
3.
5
7
4.
3
4
7.
2
4
1.
4
5
3.
3
1
11
.
8
3
1.
0
2
6.
2
6
4.
9
1
4.
1
9
4.
1
55
.
7
6
19
9
8
7.
1
1
4.
0
8
3.
3
5.
4
4
2.
2
5
2.
6
2
2.
5
8
1.
3
4
5.
3
1
1.
2
5
2.
3
7
3.
9
8
41
.
6
3
19
9
9
4.
9
6
2.
1
7
1.
4
2
5.
2
1
1.
0
7
3.
5
2
2.
7
1.
8
7
6.
0
3
5.
8
1
1.
7
5
1.
7
7
38
.
2
8
20
0
0
4.
1
2
2.
5
4.
2
9
5.
4
8
3.
3
5
0.
9
5
3.
8
2
3.
2
7
9.
5
4
0
2.
8
8
0.
9
6
41
.
1
6
20
0
1
1.
7
9
2.
2
3
5.
5
3
1.
0
9
3.
2
4
7.
0
5
4.
5
3
5.
8
8
3.
2
4
0.
3
8
0.
6
3
2.
1
6
37
.
7
5
20
0
2
4.
7
7
1.
3
3
4.
2
9
1.
1
9
1.
9
4
0.
7
9
3.
8
2.
4
2
4.
9
2
8.
2
2
4.
2
7
5.
0
0
42
.
9
4
20
0
3
1.
5
9
3.
6
9
8.
2
8
9.
8
9
9.
9
7
7.
8
3
8.
0
8
4.
0
1
1.
6
7
2.
0
1
1.
2
2.
6
6
60
.
8
8
20
0
4
1.
2
9
3.
9
9
0.
8
1
1.
7
5
3.
1
8
6.
1
6
7.
3
4
4.
3
9
11
.
2
3
1.
8
1
3.
7
8
0.
7
1
46
.
4
4
20
0
5
1.
5
4
2.
8
7
4.
6
2.
8
8
1.
6
6
4.
7
8
6.
4
6
3.
7
7
0.
1
8
4.
7
3.
1
2
4.
9
9
41
.
5
5
20
0
6
2.
2
1
1.
1
2
1.
9
1
3.
4
4
1.
1
6
7.
0
3
3.
0
3
6.
8
4
3.
7
9
4.
2
1
6.
4
2.
4
6
43
.
6
20
0
7
3.
2
9
3.
0
5
3.
4
4
3.
9
1
2.
1
9
2.
6
3
3.
8
8
0.
3
9
0.
3
8
4.
6
5
0.
8
1
3.
6
9
32
.
3
1
20
0
8
1.
4
1
2.
8
6
3.
9
4.
6
3
3.
6
3.
4
9
6.
4
3
11
.
3
5
5.
2
4
1.
7
6
1.
5
5
4.
7
0
50
.
9
2
20
0
9
2.
6
7
2.
0
9
6.
2
8
3.
0
7
4.
2
4
3.
8
8
12
.
9
1
2.
1
3
1.
7
2.
2
6
6.
0
8
5.
8
5
53
.
1
6
20
1
0
6.
3
1
3.
6
8
3.
7
2
1.
4
4
3.
8
7
4.
0
2
5.
5
4
5.
3
4
2.
4
7
1.
0
8
0.
8
6
2.
0
5
40
.
3
8
20
1
1
1.
5
4
2.
2
8
4.
5
3
2.
3
6
4.
2
2
2.
9
8
2.
3
7
1.
8
5
6.
2
4.
3
3
4.
4
3
3.
4
1
40
.
5
20
1
2
2.
5
8
1.
9
6
2.
6
1.
8
3
6.
4
3
3.
2
7
2.
3
9
5.
6
3.
7
3
1.
1
8
0.
5
3
2.
8
1
34
.
9
1
20
1
3
4.
5
4
3.
5
9
3.
3
3.
7
6
3.
3
7
14
.
2
5.
8
1
4.
9
6
2.
5
5
0.
7
3
3.
0
9
1.
1
1
51
.
0
1
20
1
4
2.
7
9
1.
5
4.
0
3
5.
4
6
3.
8
9
1.
7
3
4.
5
1
3.
4
3
4.
2
8
0.
9
3
2.
8
7
2.
9
3
38
.
3
5
20
1
5
2.
7
8
2.
7
2.
3
9
4.
1
7
1.
2
1
3.
0
7
4.
1
5
3.
9
8
3.
0
0
8.
0
2
6.
9
6.
3
8
48
.
7
5
20
1
6
2.
2
1
3
.
3
6
1
.
3
5
1
.
8
1
7
.
1
6
4
.
0
0
5
.
5
4
3
.
0
6
4
.
3
6
3
.
1
0
0
.
4
2
36
.
3
7
Av
e
r
a
g
e
3.
3
6
2.
8
6
3.
7
7
3.
6
9
3.
3
8
4.
6
9
5.
3
8
4.
2
1
4.
2
4
3.
2
2
3.
0
5
3.
0
6
44
.
9
1
No
t
e
s
:
So
u
r
c
e
-
C
l
i
m
a
t
o
l
o
g
i
c
a
l
D
a
t
a
-
A
n
n
u
a
l
S
u
m
m
a
r
y
N
o
r
t
h
C
a
r
o
l
i
n
a
MO
N
T
H
L
Y
P
R
E
C
I
P
I
T
A
T
I
O
N
(
i
n
c
h
e
s
)
Ta
b
l
e
3
-
6
.
x
l
s
x
Fi
g
u
r
e
3
-
3
Av
e
r
a
g
e
M
o
n
t
h
l
y
P
r
e
c
i
p
i
t
a
t
i
o
n
Co
n
c
o
r
d
S
t
a
t
i
o
n
Co
n
s
t
r
u
c
t
i
o
n
a
n
d
D
e
m
o
l
i
t
i
o
n
L
a
n
d
f
i
l
l
-
P
h
a
s
e
3
a
n
d
4
E
x
p
a
n
s
i
o
n
De
s
i
g
n
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Fi
g
u
r
e
3
-
3
0.
0
0
1.
0
0
2.
0
0
3.
0
0
4.
0
0
5.
0
0
6.
0
0
JA
N
F
E
B
M
A
R
A
P
R
M
A
Y
J
U
N
J
U
L
A
U
G
S
E
P
O
C
T
N
O
V
D
E
C
P
r
e
c
i
p
i
t
a
t
i
o
n
(
i
n
c
h
e
s
)
Mo
n
t
h
Section 3 • Current Investigation Results
3-21
(revised January 2017)
An evaluation of the historic water level measurements from the monitoring wells across the
entire Cabarrus County landfill property indicate that in most cases, groundwater levels have
been decreasing since 1994. However, water levels in monitoring wells near the drainage
features tend to stay relatively stable.
In order to maintain the required 4 foot separation between the landfill bottom and the seasonal
high groundwater surface, a conservative value of 3.5 feet was added to the highest recorded
elevation for each piezometer within and adjacent to the proposed Phase 3 and 4 expansion
areas. The 3.5 foot value was attained by comparing the highest and lowest recorded elevation in
the long-term monitoring well data (Table 3-5), dividing the average difference for all the
monitoring wells by two, adding that value to the highest recorded value in the new C&D
expansion areas and adding an additional foot. The conservative value of 3.5 ft added to the
highest recorded elevation was used to develop the estimated seasonal high groundwater
contour map. The seasonal high and long-term seasonal high values used for the previous landfill
expansions have remained stable.
In some instances, readings collected from some of the older existing wells and probes were
erratic and most likely attributed to incorrect well call-out or operator error. Generally, these
erroneous values were disregarded in the seasonal high estimations.
The estimated seasonal high values for the existing monitoring wells and piezometers are
included on Table 3-4. A seasonal high groundwater contour map is provided on Figure 3-2 and a
long-term seasonal high groundwater contour map is provided on Figure 3-3. Long-term
seasonal high values were estimated by adding 1 foot to the seasonal high values. In some cases,
long-term estimated seasonal high elevations were higher than land surface and land surface was
utilized as the maximum elevation.
3.3.2 Slug Test Results
Slug tests were performed on select piezometers within and adjacent to the existing C&D Landfill
expansion area. In addition, data from slug tests conducted during previous investigations
adjacent to the current C&D Landfill were also reviewed. Given the lithologically similar
conditions found at the proposed expansion areas and the active C&D Landfill, this data would
likely be representative of the hydraulic conductivity expected at the proposed C&D Landfill
expansion area.
Slug tests were performed on piezometers B-17s, -17d, and CD-4 Rep, as well as the monitoring
wells around the existing C&D Landfill. Using slug-out (recovery) data, hydraulic conductivity (K)
values ranged from 0.10 feet per day (ft/day) at CD-4 Rep to 0.37 ft/day at B-17d. In addition,
slug tests were also performed on abandoned monitoring wells CD-4 and CD-5, which were
within the existing C&D landfill area. Using recovery data, K values were 0.27 ft/day at CD-4, and
0.16 ft/day at CD-5.
The average K for all piezometers in areas adjacent to the proposed expansion areas was 0.23
ft/day. These values are similar to those seen adjacent to the active C&D Landfill. A summary of
calculated K values is provided on Table 3-7. Calculations and graphs for the K values from B-
17s, B-17d, and CD-4 rep are provided in Appendix D.
C
A
B
A
R
R
U
S
C
O
U
N
T
Y
N
O
R
T
H
C
A
R
O
L
I
N
A
N
XREFs: [CE_SURVEY, RC09STPL] Images: []Last saved by: KOSKIAR Time: 1/4/2017 7:54:27 AMpw:\\DACPWAPP2:PW_PL1\1278\114357\04 Design Services NM_30%\02 Civil\10 CADD\FIG-3-4.dwg
F
I
G
U
R
E
E
S
T
I
M
A
T
E
D
S
E
A
S
O
N
A
L
H
I
G
H
G
R
O
U
N
D
W
A
T
E
R
C
O
N
T
O
U
R
M
A
P
D
E
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
I
N
V
E
S
T
I
G
A
T
I
O
N
3
-
4
P
H
A
S
E
I
I
I
&
I
V
U
N
L
I
N
E
D
C
&
D
L
A
N
D
F
I
L
L
E
X
P
A
N
S
I
O
N
C
A
B
A
R
R
U
S
C
O
U
N
T
Y
C
&
D
L
A
N
D
F
I
L
L
C
A
B
A
R
R
U
S
C
O
U
N
T
Y
N
O
R
T
H
C
A
R
O
L
I
N
A
N
XREFs: [CE_SURVEY, RC01STPL] Images: []Last saved by: KOSKIAR Time: 9/6/2016 11:06:53 AMpw:\\DACPWAPP2:PW_PL1\1278\114357\04 Design Services NM_30%\02 Civil\10 CADD\FIG-6N.dwg
F
I
G
U
R
E
L
O
N
G
-
T
E
R
M
S
E
A
S
O
N
A
L
H
I
G
H
G
R
O
U
N
D
W
A
T
E
R
C
O
N
T
O
U
R
M
A
P
D
E
S
I
G
N
H
Y
D
R
O
G
E
O
L
O
G
I
C
I
N
V
E
S
T
I
G
A
T
I
O
N
3
-
5
P
H
A
S
E
I
I
I
&
I
V
U
N
L
I
N
E
D
C
&
D
L
A
N
D
F
I
L
L
E
X
P
A
N
S
I
O
N
C
A
B
A
R
R
U
S
C
O
U
N
T
Y
C
&
D
L
A
N
D
F
I
L
L
Ta
b
l
e
3
-
7
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
S
u
m
m
a
r
y
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
o
n
s
t
r
u
c
t
i
o
n
a
n
d
D
e
m
o
l
i
t
i
o
n
L
a
n
d
f
i
l
l
-
P
h
a
s
e
3
a
n
d
4
E
x
p
a
n
s
i
o
n
De
s
i
g
n
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Bo
r
i
n
g
D
e
p
t
h
A
q
u
i
f
e
r
M
o
n
i
t
o
r
e
d
K
K
K
K
We
l
l
I
D
(f
t
)
In
t
e
r
v
a
l
(i
n
/
s
e
c
)
(
f
t
/
m
i
n
)
(
f
t
/
d
a
y
)
(
c
m
/
s
e
c
)
B-
1
7
s
S
l
u
g
I
n
38
Sa
p
r
o
l
i
t
e
/
P
W
R
3
.
7
8
E
-
0
5
1
.
8
9
E
-
0
4
0
.
2
7
9
.
6
0
E
-
0
5
B-
1
7
s
S
l
u
g
O
u
t
38
Sa
p
r
o
l
i
t
e
/
P
W
R
4
.
3
6
E
-
0
5
2
.
1
8
E
-
0
4
0
.
3
1
1
.
1
1
E
-
0
4
B-
1
7
d
S
l
u
g
I
n
47
Be
d
r
o
c
k
4
.
4
4
E
-
0
5
2
.
2
2
E
-
0
4
0
.
3
2
1
.
1
3
E
-
0
4
B-
1
7
d
S
l
u
g
O
u
t
47
Be
d
r
o
c
k
5
.
0
8
E
-
0
5
2
.
5
4
E
-
0
4
0
.
3
7
1
.
2
9
E
-
0
4
CD
-
4
R
e
p
S
l
u
g
I
n
16
Sa
r
o
l
i
t
e
1
.
5
6
E
-
0
5
7
.
8
2
E
-
0
5
0
.
1
1
3
.
9
7
E
-
0
5
CD
-
4
R
e
p
S
l
u
g
O
u
t
16
Sa
p
r
o
l
i
t
e
1
.
3
4
E
-
0
5
6
.
7
1
E
-
0
5
0
.
1
0
3
.
4
1
E
-
0
5
CD
-
1
s
S
l
u
g
I
n
28
Sa
r
o
l
i
t
e
4
.
7
0
E
-
0
6
2
.
3
5
E
-
0
5
0
.
0
3
1
.
1
9
E
-
0
5
CD
-
1
s
S
l
u
g
O
u
t
28
Sa
p
r
o
l
i
t
e
3
.
4
0
E
-
0
6
1
.
7
0
E
-
0
5
0
.
0
2
8
.
6
4
E
-
0
6
CD
-
2
S
l
u
g
I
n
24
Sa
p
r
o
l
i
t
e
3
.
5
0
E
-
0
6
1
.
7
5
E
-
0
5
0
.
0
3
8
.
8
9
E
-
0
6
CD
-
2
S
l
u
g
O
u
t
24
Sa
p
r
o
l
i
t
e
6
.
1
0
E
-
0
6
3
.
0
5
E
-
0
5
0
.
0
4
1
.
5
5
E
-
0
5
CD
-
3
S
l
u
g
I
n
60
Sa
p
r
o
l
i
t
e
/
P
W
R
3
.
7
0
E
-
0
4
1
.
8
5
E
-
0
3
2
.
6
6
9
.
4
0
E
-
0
4
CD
-
3
S
l
u
g
O
u
t
60
Sa
p
r
o
l
i
t
e
/
P
W
R
1
.
2
0
E
-
0
4
6
.
0
0
E
-
0
4
0
.
8
6
3
.
0
5
E
-
0
4
CD
-
4
S
l
u
g
I
n
27
Sa
p
r
o
l
i
t
e
/
P
W
R
3
.
3
0
E
-
0
5
1
.
6
5
E
-
0
4
0
.
2
4
8
.
3
8
E
-
0
5
CD
-
4
S
l
u
g
O
u
t
27
Sa
p
r
o
l
i
t
e
/
P
W
R
3
.
8
0
E
-
0
5
1
.
9
0
E
-
0
4
0
.
2
7
9
.
6
5
E
-
0
5
CD
-
5
S
l
u
g
I
n
60
Sa
p
r
o
l
i
t
e
/
P
W
R
2
.
3
0
E
-
0
5
1
.
1
5
E
-
0
4
0
.
1
7
5
.
8
4
E
-
0
5
CD
-
5
S
l
u
g
O
u
t
60
Sa
p
r
o
l
i
t
e
/
P
W
R
2
.
2
0
E
-
0
5
1
.
1
0
E
-
0
4
0
.
1
6
5
.
5
9
E
-
0
5
Av
e
r
a
g
e
E
x
i
s
t
i
n
g
C
&
D
A
r
e
a
W
e
l
l
s
6
.
2
4
E
-
0
5
3
.
1
2
E
-
0
4
0
.
6
1
1
.
5
8
E
-
0
4
Av
e
r
a
g
e
A
l
l
W
e
l
l
s
/
P
i
e
z
o
m
e
t
e
r
s
5
.
1
8
E
-
0
5
2
.
5
9
E
-
0
4
0
.
3
7
1
.
3
2
E
-
0
4
Ta
b
l
e
3
-
7
Section 3 • Current Investigation Results
3-25
(revised January 2017)
Slug tests were also performed on the permanent monitoring wells adjacent to the existing C&D
Landfill during previous investigations. Hydraulic conductivity values were 0.02ft/d at CD-1s,
0.04 ft/day at CD-2, and 0.86 ft/day at CD-3. Wells CD-1s and CD-2 are screened within saprolite
and CD-3 is screened across the saprolite/PWR interface. The average K for all monitoring wells
at the active C&D Landfill was 0.61 ft/day. The average K for all piezometers and wells adjacent to
the active C&D Landfill and within the proposed expansion areas was 0.37 ft/day.
3.4 Hydrogeologic Conceptual Model
Cross-sections identifying hydrogeologic and stratigraphic units, stabilized water table
elevations, and groundwater flow-nets are provided in Figure 3-5 and Figure 3-6.
3.4.1 Precipitation and Groundwater Recharge
Factors affecting infiltration of precipitation include the rate of precipitation, slope, soil texture,
and vegetative cover. Much of the site is covered with fine grained soils with some clay that
inhibits infiltration. Areas of lower relief such as flat hilltops and drainage bottoms are expected
to be the locations of greatest recharge. Areas covered by forest litter are also expected to
enhance infiltration. These factors will affect the amount of infiltration to the greatest extent
during periods of extended precipitation.
The average monthly precipitation at the site varies over the year. However, precipitation during
the summer months typically occurs as sporadic high intensity events of short duration, which
leads to runoff. In addition, plant evapotranspiration in the summer leads to higher removal of
soil moisture and decreases the potential for deep infiltration. Winter precipitation occurs as
events of longer duration and lesser intensity; therefore infiltration and groundwater recharge
should be greater in the winter months than in the summer months. This results in a higher
groundwater table in the spring.
Precipitation that infiltrates into the ground will seep downward as wetting fronts following
precipitation. These wetting fronts will follow the path of least resistance through zones of
relatively higher conductivity in the saprolite and PWR. Upon reaching a less permeable surface
such as the top of hard, unfractured bedrock, the water will spread laterally until it finds another
relatively higher conductivity pathway downward such as a weathered zone or a fracture, or until
it is discharged to the surface water system. These discharges are generally intermittent, and
occur in the secondary drainage features following precipitation events. As saturation is observed
within zones of the saprolite materials, PWR, and bedrock, the fractured bedrock material at
depth is apparently capable of transmitting water a rate equal to infiltration.
The Phase 3 and 4 expansion areas are bounded by the existing C&D landfill to the north and the
closed Unit 2 MSW to the east. Groundwater recharge in this area is expected to be less than that
compared to other areas of the site.
Section 3 • Current Investigation Results
3-28
(revised January 2017)
3.4.2 Groundwater Flow
Across the site and within the expansion area, the saturated zone lies primarily within the PWR.
At several topographic low areas the saturated zone occurs within the saprolite and PWR. The
saturation found in these areas near the bottom of secondary drainage features likely represents
water that has infiltrated in surrounding areas and moved laterally, possibly on the bedrock
surface, until it accumulated in the lower elevation area. Within the regolith materials, the zone of
highest conductance appears to lie immediately above the bedrock surface, due to the presence of
lesser amounts of clay minerals in this interval than at the ground surface. Fractures within
bedrock also create increased hydraulic conductivity zones. Throughout the expansion area, the
PWR and portions of the saprolite are saturated, and represent the primary water-bearing unit of
concern for the site.
At other areas on the Cabarrus County property, the PWR and shallow fractured bedrock system
are the primary water-bearing units. On a larger scale, shallow lateral flow within the fractured
bedrock unit will be consistent with the potentiometric surface. However, local hydrogeologic
conditions may cause groundwater to flow in different directions than large scale flow.
Bedrock fracture flow is very complex and is dependent upon fracture size, orientation, degree of
infilling, and connection with other fractures. Localized weathered zones will also affect bedrock
fracture flow. Because bedrock fracture flow systems cannot be characterized by direct
observation, indirect methods must be used. Data concerning the fracture flow system at the site
was obtained through drilling observations, rock core samples, and water level measurements.
3.4.2.1 Groundwater Velocity
The groundwater contour map shows that the potentiometric surface, similar to the bedrock
surface, is a subdued reflection of surface topography. Topographic divides are generally also
groundwater divides and groundwater flow converges into the primary and secondary drainage
feature west of the proposed C&D expansion areas. Groundwater flows radially away from
topographically high areas. On steeper slopes, the hydraulic gradient steepens.
The horizontal gradient from the background wells (CD-1s and 1d) towards the wells in and
adjacent to the proposed Phase 3 and 4 expansion areas was approximately 0.023 ft/ft.
Using average hydraulic conductivity values from slug testing of wells and piezometers in the
C&D area and horizontal hydraulic gradient information, groundwater velocity values were
estimated. The average linear velocity of groundwater flow was calculated using the following
formula:
Vx = Kdh
nedl
Section 3 • Current Investigation Results
3-29
(revised January 2017)
Where,
Vx = average linear velocity
K = hydraulic conductivity
dh/dl = hydraulic gradient
ne = effective porosity
The average linear flow velocity is provided in Table 3-8. Average groundwater flow velocity in
the surficial aquifer at the proposed Phase 3 and 4 C&D Landfill expansion area was
approximately 0.3 ft/day. Average groundwater flow velocity in the bedrock aquifer at the
existing Phase 2 C&D Landfill expansion was approximately 0.08 ft/day, based on results from B-
18d.
The average hydraulic conductivity values were estimated from the slug test data presented in
Table 3.7. The hydraulic gradient values were estimated using the potentiometric contour map
(Figure 3-2) from August 2016 data. The effective porosity values were estimated based on
average values for PWR and the discussion of fractured bedrock in Section 3.2.
Using the velocity calculation as described above, the estimated time to travel 250 feet from the
edge of waste to the compliance boundary would be about 850 days. This value suggests that a
release of a conservative (nonretarded) contaminant from the landfill would likely take 2.5 years
to reach the compliance boundary, after the release had reached groundwater. It should be noted
that the estimated velocity rates are for average aquifer conditions and that actual velocity rates
within bedrock fractures may vary significantly.
3.4.3 Surface Water Interactions and Groundwater Discharge
No groundwater discharge features (seeps or springs) were identified in or near the proposed
Phase 3 or 4 expansion areas. There is a drainage feature that flows to the south and discharges
surface water runoff and discharged groundwater to a pond at the south side of the landfill
property. There is a spring-fed pond to the north and west of the existing C&D landfill. Based on
topography and groundwater flow, the pond is upgradient of the existing C&D landfill and the
proposed expansion areas.
3.5 Groundwater Conditions
The following sections discuss the current groundwater quality conditions at the Phase 3
expansion area and planned groundwater assessment monitoring and remedial actions.
3.5.1 Groundwater Quality
Based on groundwater sampling results from monitoring wells and piezometers in and around
the Phase 3 Expansion area, groundwater contamination from the closed Unit 2 portion of the
MSW Landfill is present. An Alternate Source Demonstration (ASD) was submitted to the SWS in
September 2013. The ASD summarized that based on the water quality information collected
during previous investigations in the C&D landfill area, it is apparent that all contamination
located in the area adjacent to the existing C&D landfill is due to impact of leachate from the
closed unlined Unit 2 & 3 MSW landfill. Groundwater monitoring wells immediately
Ta
b
l
e
3
-
8
Su
m
m
a
r
y
o
f
C
a
l
c
u
l
a
t
e
d
G
r
o
u
n
d
w
a
t
e
r
F
l
o
w
V
e
l
o
c
i
t
i
e
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
o
n
s
t
r
u
c
t
i
o
n
a
n
d
D
e
m
o
l
i
t
i
o
n
L
a
n
d
f
i
l
l
-
P
h
a
s
e
3
a
n
d
4
E
x
p
a
n
s
i
o
n
De
s
i
g
n
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Ho
r
i
z
o
n
t
a
l
Es
t
i
m
a
t
e
d
Pi
e
z
o
m
e
t
e
r
D
e
s
i
g
n
a
t
i
o
n
Gr
a
d
i
e
n
t
(1
)
Ef
f
e
c
t
i
v
e
(f
t
/
f
t
)
Po
r
o
s
i
t
y
(2
)
Ma
x
i
m
u
m
M
i
n
i
m
u
m
A
v
e
r
a
g
e
M
a
x
i
m
u
m
M
i
n
i
m
u
m
A
v
e
r
a
g
e
CD
-
7
0.
0
2
6
0.
1
1
2.
6
6
0.
2
7
1.
4
7
0.
6
3
0.
0
6
0.
3
5
B-
1
8
s
0.
0
2
3
0.
1
1
2.
6
6
0.
2
7
1.
4
7
0.
5
6
0.
0
6
0.
3
1
B-
1
8
d
(
3
)
0.
0
2
3
0
.
1
0
0
.
3
7
0
.
3
2
0
.
3
5
0
.
0
9
0
.
0
7
0
.
0
8
CD
-
8
0.
0
2
3
0.
1
1
2.
6
6
0.
2
7
1.
4
7
0.
5
6
0.
0
6
0.
3
1
CD
-
3
0.
0
2
8
0.
1
1
2.
6
6
0.
2
7
1.
4
7
0.
6
8
0.
0
7
0.
3
7
No
t
e
s
:
(1
)
H
o
r
i
z
o
n
t
a
l
G
r
a
d
i
e
n
t
c
a
l
c
u
l
a
t
e
d
f
r
o
m
A
u
g
u
s
t
2
0
1
6
p
o
t
e
n
t
i
o
m
e
t
r
i
c
c
o
n
t
o
u
r
s
a
n
d
d
i
s
t
a
n
c
e
s
o
n
F
i
g
u
r
e
3
-
2
.
(2
)
-
f
r
o
m
J
o
h
n
s
o
n
S
o
i
l
T
r
i
a
n
g
l
e
(
T
a
b
l
e
3
-
3
)
.
W
e
l
l
s
a
r
e
a
l
l
s
c
r
e
e
n
e
d
i
n
t
h
e
P
W
R
.
A
n
a
v
e
r
a
g
e
v
a
l
u
e
o
f
1
1
%
w
a
s
u
s
e
d
b
a
s
e
d
o
n
T
a
b
l
e
3
-
3
.
(3
)
-
A
c
o
n
s
e
r
v
a
t
i
v
e
e
f
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
v
a
l
u
e
o
f
1
0
%
w
a
s
u
s
e
d
b
a
s
e
d
o
n
f
r
a
c
t
u
r
e
d
c
r
y
s
t
a
l
l
i
n
e
r
o
c
k
e
s
t
i
m
a
t
e
s
b
y
D
r
i
s
c
o
l
l
(4
)
-E
s
t
i
m
a
t
e
d
f
r
o
m
c
a
l
c
u
l
a
t
e
d
K
v
a
l
u
e
s
p
r
o
v
i
d
e
d
o
n
T
a
b
l
e
3
-
7
.
K
v
a
l
u
e
s
r
e
p
r
e
s
e
n
t
a
v
e
r
a
g
e
s
f
o
r
w
e
l
l
s
a
c
r
o
s
s
t
h
e
C
&
D
s
i
t
e
s
c
r
e
e
n
e
d
i
n
s
i
m
i
l
a
r
l
i
t
h
o
l
o
g
y
.
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
(4
)
(
f
t
/
d
a
y
)
Av
e
r
a
g
e
L
i
n
e
a
r
V
e
l
o
c
i
t
y
(
f
t
/
d
a
y
)
Ta
b
l
e
3
-
8
Section 3 • Current Investigation Results
3-31
(revised January 2017)
downgradient of the existing C&D landfill (CD-2 and CD-8) have not had detections of any
contaminant of concern VOCs. However, CD-3 and CD-7 have had low-level detections of VOC.
As discussed in the ASD, the following VOCs are the contaminants of concern for the facility:
benzene, 1,4-dichlorobenzene, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, cis-
1,2-dichloroethene, methylene chloride, tetrachloroethene (PCE), trichloroethene (TCE), and
vinyl chloride. The ASD was approved by the SWS in the letter October 14, 2013. A summary of
water quality data for wells and piezometers in the C&D area is provided on Table 3-9. Analytical
data from the August 2016 sampling event is provided in Appendix E.
3.5.2 Groundwater Assessment and Remediation
In December 2008, the Cabarrus County Sanitary Landfill Units 2 and 3 Assessment of Corrective
Measures report was submitted to the SWS in accordance with Rule .1635. This report identified
potential corrective measures to meet the requirements of Rule .1636. As part of the Assessment
of Corrective Measures, several remedies to groundwater contamination and migration were
discussed. These remedies included: no action, monitored natural attenuation (MNA),
groundwater pump and treat, and in situ groundwater treatment. It was recommended that
Cabarrus County pursue MNA and Institutional Controls paired with in situ remediation by
enhanced anaerobic bioremediation (EAB) as the preferred remedy.
A public meeting was held on March 23, 2009 as directed by Rule .1635(d) to review the results
of the corrective measures assessment and receive public comment prior to the selection of
remedy. No public comments were received during this process. Following the public meeting, a
Selection of Remedy letter was sent to the SWS on March 31, 2009 recommending MNA coupled
with Institutional Controls paired with in situ remediation by EAB as the preferred remedial
selection due to the ease of implementation, reliability, safety, exposure control, and ability to
protect human health and the environment and attain applicable groundwater protection
standards. As a contingency plan, the recommended alternatives were in situ chemical
remediation or groundwater extraction (CDM, 2009).
In the area of the proposed C&D landfill expansion where the ASD was provided, MNA is currently
utilized as the corrective action. The in situ remediation by EAB is utilized at the southern portion
of the Cabarrus County Landfill facility, south of the closed Unit 3 MSW landfill.
A North Carolina Solid Waste Groundwater Corrective Action Permit Modification Application
with accompanying documentation was forwarded to the SWS in June 2009. A Corrective Action
Plan (CAP) was also submitted to the SWS in June 2009. Review comments for the CAP were
received in July 2009 and a revised CAP was submitted to the SWS in August 2009 and approved
on September 3, 2009. An Injection Permit was received on October 2, 2009. Injection wells and
associated monitoring wells were installed in late October 2009. Injection of EOS ® was
completed between November 2 and November 5, 2009.
An evaluation of the injection results indicated that as expected, the degradation of PCE, TCE, and
dichloroethene happened fairly quickly and the concentrations of vinyl chloride have decreased.
Although the injection reduced the concentration of PCE and TCE in bedrock below NC 2L
Standards, other compounds continue to be detected above the standards. In accordance with
the contingency plan presented in the CAP, an additional assessment will be performed to
Section 3 • Current Investigation Results
3-32
(revised January 2017)
evaluate the abundance and diversity of the dechlorinating microbial population in the injection
area. Based on the biological assessment in the injection area, an additional injection will be
performed that may include bioaugmentation. Routine groundwater and MNA sampling is
ongoing.
Table 3-9
Groundwater Quality Data Summary
Cabarrus County C&D Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Fa
c
i
l
i
t
y
P
e
r
m
i
t
N
u
m
b
e
r
Mo
n
i
t
o
r
i
n
g
W
e
l
l
C
o
d
e
Sa
m
p
l
e
D
a
t
e
Ac
e
t
o
n
e
Be
n
z
e
n
e
2-
B
u
t
a
n
o
n
e
Ch
l
o
r
o
b
e
n
z
e
n
e
Ch
l
o
r
o
e
t
h
a
n
e
Ch
l
o
r
o
f
o
r
m
1,2
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
1,4
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
1,
2
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
1,2
-
D
i
c
h
l
o
r
o
p
r
o
p
a
n
e
cis
-
1
,
2
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
Et
h
y
l
b
e
n
z
e
n
e
Me
t
h
y
l
e
n
e
C
h
l
o
r
i
d
e
tr
a
n
s
-
1
,
2
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
Te
t
r
a
c
h
l
o
r
o
e
t
h
e
n
e
To
l
u
e
n
e
To
t
a
l
X
y
l
e
n
e
s
1,1
,
1
-
T
r
i
c
h
l
o
r
o
e
t
h
a
n
e
Tr
i
c
h
l
o
r
o
e
t
h
e
n
e
Tr
i
c
h
l
o
r
o
f
l
u
o
r
o
m
e
t
h
a
n
e
Vi
n
y
l
C
h
l
o
r
i
d
e
Te
t
r
a
h
y
d
r
o
f
u
r
a
n
6,000 1 4,000 50 3,000 70 20 6 6 0.4 7 0.6 70 600 5 100 0.7 600 500 200 3 2,000 0.03 NE
100 1 100 3 10 5 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 1 1 NE
CD-1s 25-Sep-06
CD-1s 31-Oct-06
CD-1s 23-Apr-07
CD-1s 29-Oct-07
CD-1s 23-Apr-08 0.40J
CD-1s 18-Nov-08 1.1
CD-1s 8-Apr-09
CD-1s 13-Oct-09
CD-1s 11-May-10
CD-1s 2-Nov-10
CD-1s 3-May-11
CD-1s 8-Nov-11
CD-1s 7-May-12
CD-1s 27-Nov-12 0.4J 0.2J
CD-1s 7-May-13
CD-1s 17-May-16
CD-1s 1-Nov-16
CD-1d 4-Oct-06
CD-1d 31-Oct-06
CD-1d 23-Apr-07
CD-1d 29-Oct-07
CD-1d 23-Apr-08 0.43J
CD-1d 18-Nov-08 1.2
CD-1d 8-Apr-09
CD-1d 13-Oct-09
CD-1d 11-May-10
CD-1d 2-Nov-10
CD-1d 3-May-11
CD-1d 8-Nov-11
CD-1d 7-May-12
CD-1d 27-Nov-12
CD-1d 7-May-13
CD-1d 17-May-16
CD-1d 1-Nov-16
CD-2 25-Sep-06
CD-2 31-Oct-06
CD-2 23-Apr-07
CD-2 29-Oct-07
CD-2 22-Apr-08 0.57J 0.29J 0.34J
CD-2 18-Nov-08 1.2B
CD-2 8-Apr-09
CD-2 13-Oct-09
CD-2 11-May-10
CD-2 2-Nov-10
CD-2 3-May-11
CD-2 8-Nov-11
CD-2 7-May-12
CD-2 27-Nov-12 0.4J
CD-2 7-May-13
CD-2 17-May-16
CD-2 1-Nov-16
CD-3 26-Sep-06
CD-3 31-Oct-06
CD-3 23-Apr-07
CD-3 29-Oct-07
CD-3 22-Apr-08 0.32J 0.35J
CD-3 18-Nov-08 1.2B
CD-3 8-Apr-09
CD-3 13-Oct-09 0.5J
CD-3 11-May-10
CD-3 2-Nov-10
CD-3 3-May-11
CD-3 8-Nov-11 16J
CD-3 22-Mar-12
CD-3 7-May-12
CD-3 27-Nov-12 0.4J
CD-3 7-May-13
CD-3 17-May-16 0.6J 2.1J
CD-3 1-Nov-16 0.6J 5.9
CD-4 Rep 23-Jan-09 .16J .78J
CD-4 Rep 4-Nov-10
CD-4 Rep 3-May-11
CD-4 Rep (dup)3-May-11
CD-4 Rep 8-Nov-11
CD-4 Rep 8-May-12
CD-4 Rep 28-Nov-12 0.3J
CD-4 Rep 9-May-13
CD-4 Rep 17-May-16
CD-4 Rep 2-Nov-16
CD-4 8-Aug-06 8 51 41 1 3
CD-4 26-Sep-06 3 41 24 1 2 1
CD-4 31-Oct-06 32 14
CD-4 23-Apr-07 0.42J 2.01J 0.37J 41 0.49J 0.48J 4 1 3
CD-4 29-Oct-07 1 4.93J 0.65J 69 0.59J 0.43J 9 2 0.31J 1.1J 4
CD-4 22-Apr-08 0.50J 2.87J 0.38J 45 0.37J 5 1 2
CD-4 20-Nov-08 0.6J 4.8J 0.4J 48 0.7J 0.5J 4.2 1.4 0.1J 2.6 0.3J
CD-4 9-Apr-09 29 0.5J 3.4B 1.0 1.6
CD-4 14-Oct-09 2J 38 0.5J 0.5J 2.3 1.8 2.4
CD-4 6-May-10 0.3J 2.4J 0.2J 0.6J 40 0.6J 0.6J 4.7 2.4 2.8 0.3J
North Carolina 2L Standard
Solid Waste Section Limit
13-02
13-02
13-02
13-02
13-02
13-02
Page 1 of 4 Table 3-9
Table 3-9
Groundwater Quality Data Summary
Cabarrus County C&D Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Fa
c
i
l
i
t
y
P
e
r
m
i
t
N
u
m
b
e
r
Mo
n
i
t
o
r
i
n
g
W
e
l
l
C
o
d
e
Sa
m
p
l
e
D
a
t
e
Ac
e
t
o
n
e
Be
n
z
e
n
e
2-
B
u
t
a
n
o
n
e
Ch
l
o
r
o
b
e
n
z
e
n
e
Ch
l
o
r
o
e
t
h
a
n
e
Ch
l
o
r
o
f
o
r
m
1,2
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
1,4
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
1,
2
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
1,2
-
D
i
c
h
l
o
r
o
p
r
o
p
a
n
e
cis
-
1
,
2
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
Et
h
y
l
b
e
n
z
e
n
e
Me
t
h
y
l
e
n
e
C
h
l
o
r
i
d
e
tr
a
n
s
-
1
,
2
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
Te
t
r
a
c
h
l
o
r
o
e
t
h
e
n
e
To
l
u
e
n
e
To
t
a
l
X
y
l
e
n
e
s
1,1
,
1
-
T
r
i
c
h
l
o
r
o
e
t
h
a
n
e
Tr
i
c
h
l
o
r
o
e
t
h
e
n
e
Tr
i
c
h
l
o
r
o
f
l
u
o
r
o
m
e
t
h
a
n
e
Vi
n
y
l
C
h
l
o
r
i
d
e
Te
t
r
a
h
y
d
r
o
f
u
r
a
n
6,000 1 4,000 50 3,000 70 20 6 6 0.4 7 0.6 70 600 5 100 0.7 600 500 200 3 2,000 0.03 NE
100 1 100 3 10 5 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 1 1 NE
North Carolina 2L Standard
Solid Waste Section Limit
CD-5 26-Sep-06 2 9 95 6 2 11 2
CD-5 31-Oct-06 12 59 6
CD-5 23-Apr-07 4.87J 59 0.73J 2.6J 2 2 6 0.36J
CD-5 29-Oct-07 0.41J 1.65J 47 1.8J 0.44J 0.36J 3
CD-5 22-Apr-08 0.77J 0.14J 3.79J 81 0.35J 3.86J 0.38J 0.54J 0.42J 7 0.28J 0.58J
CD-5 20-Nov-08 0.8J 6.4J 55 0.3J 3.3J 0.5J 0.4J 0.5J 5.9 0.4J 0.8J
CD-5 9-Apr-09 31J 0.6J 25 30 3.4J 1.2B 0.4J 3.4 1.3
CD-5 14-Oct-09 39J 1.2 73 61 13 0.4J 0.8J 2.9 2.2
CD-5 6-May-10 12J 0.9J 33 0.4J 180 0.7J 18 2.0J 0.9J 17 0.6J 5.9
CD-6 26-Sep-06 1
CD-6 31-Oct-06
CD-6 23-Apr-07 0.37J 0.87J
CD-6 29-Oct-07
CD-6 22-Apr-08 0.34J 0.80J 0.53J 0.19J
CD-6 19-Nov-08
CD-6 7-Apr-09 0.6J
CD-6 14-Oct-09 11J 0.3J
CD-6 11-May-10 0.5J
CD-6 2-Nov-10 0.3J 0.7J
CD-6 3-May-11 0.7J 0.9J
CD-6 8-Nov-11 1.7J 1.4 0.6J
CD-6 22-Mar-12 1.86 1.5
CD-6 8-May-12 2.2J 1.7 0.9J
CD-6 28-Nov-12 2.8J 0.4J 1.2 0.8J
CD-6 9-May-13 3.6J 1.6 1
CD-6 17-May-16 1.5J 0.5J 0.7J
CD-6 1-Nov-16 2.2J 0.6J 0.9J
13-02 MW-2 3-May-12 4.47J 0.14J 0.22J 0.17J
13-02 B-1s 22-Mar-12
B-1s 3-May-12 0.59J
B-1s 4-Aug-16 0.62J
13-02 B-1d 22-Mar-12 1.96 2.46 16.4 3.54 2.20 1.29
B-1d 3-May-12 0.67J 0.53J 1.96 2.47 16.2 0.24J 0.30J 3.64 0.62J 2.38 1.37
B-1d 4-Aug-16 1.50 1.1J 7.2 0.69J 1.60
13-02 B-3 25-Jun-03 24 16 48 19 16 26 12
B-3 3-May-12 4.98 5 0.74J 1.14 24.3 4.83 1.73 1.35 57.3 20 0.67J 1.31 33.4 35 1.35 1.83
B-3 4-Aug-16 4.5 3.8 1.1J 23 2.3J 1.20 0.71J 30 41 0.67J 71 120 2.0 2.3
13-02 B-4 11-Jun-03 7 10 10 6
B-4 3-May-12 0.76J 0.72J 5.1 0.68J 11.2 0.13J 0.44J 2.87 0.36J 1.06J 5.17 0.79J
B-4 4-Aug-16 2.1 0.98J 1.5 5.8 29 2 0.46J 1.5 6.1 6.4 5.1 0.67J
13-02 B-5 25-Jun-03
B-5 3-May-12 0.220J 1.33 0.590J
B-5 4-Aug-16 3.5J 0.71J 5.2 1.1
13-02 B-6 25-Jun-03 8 20 8 120 160 72 18
B-6 3-May-12 1.09 2.06 0.48J 7.20 14.1 67.6 3.14 0.61J 3.01 182 0.19J 0.62J 3.04 1.28 0.75J 14.1 8.96
B-6 4-Aug-16 1.4 0.41J 2.6J 10 54 2.8 2.6 130 2.5J 0.71J 0.96J 3.3 3.1
13-02 B-7 22-Mar-12
B-7 3-May-12 0.65J 0.67J
B-7 (CD-7)17-May-16 0.7J 1.0J
B-7 (CD-7)1-Nov-16 1.2J 1.7J
13-02 B-17s 22-Jan-09 1.25J 5.2J 108 4.3J 4.9J 1.95J 5.75
13-02 B-17d 23-Jan-09 0.96J 3.54J 0.68J 66.7 3.32J 4.72 1.24J 4.54
B-18s 23-Jan-09 2.14 0.72J 1.18J 4.28J 28 1.38J 52.8 0.68J 0.74J 7.64 0.22J 0.46 27.4 1.78
B-18s 22-Mar-12 1.61 4.93 6.10 13.3 1.21 77.9 1.99
B-18s 3-May-12 15.3J 1.64 0.71J 3.93 6.83 12.5 0.79J 1.24 81.4 0.39J 0.72J 0.29J 0.53J 0.56J 1.59
B-18s 4-Aug-16 37J 0.64J 0.70J 2.2J 6.7 4.8J 0.94J 50 0.48J 1.2 1.3
B-18d 23-Jan-09 3.13J 1.46 0.17J 1.26J 4.23J 1.74J 33.1 42.5 0.73J 0.78J 8.3 0.15J 25.4 2.33
B-18d 22-Mar-12 1.84 2.22 4.20 28.9 1.30 94.4 1.17 1.04 18.3 2.68
B-18d 3-May-12 2.08 0.43J 2.31 4.17 31.4 1.06 0.27J 1.33 97.7 0.38J 1.35 1.88 0.24J 21.9 2.83
B-18d 4-Aug-16 1.1 0.52J 1.6J 4.9 20 1.3 0.96J 87 1.0J 7.1 1.0
B-19 22-Jan-09 0.22J 3.34J 2.84J 0.89J 2.2 1.21
B-19 22-Mar-12 1.13 2.24 1.03
B-19 3-May-12 0.18J 0.80J 1.51 0.90J
B-19 (CD-8)4-Aug-16
B-19 (CD-8)1-Nov-16
13-02
13-02
13-02
13-02
13-02
Page 2 of 4 Table 3-9
Table 3-9
Groundwater Quality Data Summary
Cabarrus County C&D Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Fa
c
i
l
i
t
y
P
e
r
m
i
t
N
u
m
b
e
r
Mo
n
i
t
o
r
i
n
g
W
e
l
l
C
o
d
e
Sa
m
p
l
e
D
a
t
e
Ac
e
t
o
n
e
Be
n
z
e
n
e
2-
B
u
t
a
n
o
n
e
Ch
l
o
r
o
b
e
n
z
e
n
e
Ch
l
o
r
o
e
t
h
a
n
e
Ch
l
o
r
o
f
o
r
m
1,2
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
1,4
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
1,
2
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
1,2
-
D
i
c
h
l
o
r
o
p
r
o
p
a
n
e
cis
-
1
,
2
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
Et
h
y
l
b
e
n
z
e
n
e
Me
t
h
y
l
e
n
e
C
h
l
o
r
i
d
e
tr
a
n
s
-
1
,
2
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
Te
t
r
a
c
h
l
o
r
o
e
t
h
e
n
e
To
l
u
e
n
e
To
t
a
l
X
y
l
e
n
e
s
1,1
,
1
-
T
r
i
c
h
l
o
r
o
e
t
h
a
n
e
Tr
i
c
h
l
o
r
o
e
t
h
e
n
e
Tr
i
c
h
l
o
r
o
f
l
u
o
r
o
m
e
t
h
a
n
e
Vi
n
y
l
C
h
l
o
r
i
d
e
Te
t
r
a
h
y
d
r
o
f
u
r
a
n
6,000 1 4,000 50 3,000 70 20 6 6 0.4 7 0.6 70 600 5 100 0.7 600 500 200 3 2,000 0.03 NE
100 1 100 3 10 5 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 1 1 NE
North Carolina 2L Standard
Solid Waste Section Limit
MW-A 16-Sep-94
MW-A 18-Oct-94
MW-A 19-Dec-94
MW-A 14-Feb-95
MW-A 10-Jun-95 33
MW-A 24-Oct-95
MW-A 13-Nov-95 143
MW-A 25-Jan-96 182
MW-A 6-Dec-96 100
MW-A 4-May-97 17 9 7 78
MW-A 6-Nov-97 5.6 19 8 11 33
MW-A 20-Apr-98 13 13 16 9 14 26
MW-A 10-Nov-98 10 19 7.5 16 7 6 17 8.0
MW-A (dup)10-Nov-98 12 19 7.1 21 7 6 19 11
MW-A 1-Apr-99 22 30 12 10 7 16 6
MW-A 16-Nov-99 15 27 13 12 18 7
MW-A 26-Apr-00 6 22 42 28 5 11 21 7
MW-A 27-Sep-00 8 23 53 44 14 13 19 5
MW-A 8-May-01 9 20 58 53 13 12 20 5
MW-A (dup)8-May-01 8 19 59 53 13 12 21 6
MW-A 30-Oct-01 9 23 60 56 10 15 12 18
MW-A 23-Apr-02 9 22 72 59 14 14 12 18 13
MW-A 15-Oct-02 10 23 77 62 20 15 12 16
MW-A 23-Apr-03 14 31 150 96 45 24 19 23
MW-A 23-Oct-03 13 26 100 80 64 18 13 17
MW-A 21-Apr-04 12 24 94 92 46 18 8 18
MW-A 20-Oct-04 11 22 89 90 47 16 8 17
MW-A (dup)20-Oct-04 10 22 91 91 49 17 6.8 16
MW-A 25-Apr-05 13 26 100 110 62 21 9 18
MW-A 25-Oct-05 11 67 61 100 52 16 8 14
MW-A 18-Apr-06 11 16 69 110 67 14 13
MW-A 30-Oct-06 12 39 6 64 130 74 13 5 12
MW-A 23-Apr-07 12 12 10 71 0.45J 0.35J 3 120 14 0.84J 12 0.59J 7 11 0.34J 0.35J
MW-A 30-Oct-07 11 1.23J 12 49 2 140 15 1.15J 10 8 9 1
MW-A 22-Apr-08 10 0.63J 9.84J 11 42 0.61J 0.18J 3 150 17 0.54J 7 0.20J 4.06J 6 0.24J 1
MW-A (dup)22-Apr-08 11 1.02J 18 11 37 0.20J 3 150 14 0.88J 9 0.48J 8 8 0.32J 3
MW-A 20-Nov-08 7.4 11 12 31 0.8J 2.8 100 1 0.6J 5.2 5.7 4.7 0.2J 0.8J
MW-A 9-Apr-09 7.8 1.1JB 11 15 29 0.8J 2.9 120 1.9B 0.8J 6.2 6.8 5.4 1J
MW-A 16-Oct-09 13J 8.9 14 16 27 140 0.4J 0.4J 5.4 7.8 4.3 1
MW-A 7-May-10 8.7 0.8J 17 14 19 2.1 0.2J 2.9 130 0.4J 4.6 0.3J 9.3 3.5 1.2
MW-A 2-Nov-10 8.3 5.3J 17 15 2.1 2.5 120 0.5J 5.4 3.1J 3.8 1.2
MW-A (dup)2-Nov-10 6.9 4.8J 15 14 1.9 2.2 110 0.4J 4.8 2.9J 3.4 0.2J 1
MW-A 3-May-11 7.4 1J 4.7J 12 14 2.2 2.2 110 0.8J 0.4J 3.9 3.1J 3.2 0.7J
MW-A 9-Nov-11 9.2 1.4J 6.5J 16 18 2.8 2.4 120 2 0.6J 6.5 5.2 3.8 1J
MW-A 9-May-12 8.8 1.1J 6.5J 17 26 3.8 0.5J 2.0 110 0.9J 0.4J 6.5 2.6J 0.5J 4.5 0.2J 1.1
MW-A 27-Nov-12 9.3 1.6J 6.9J 15 25 3.9 0.6J 2.2 130 0.4J 0.5J 0.5J 4.7 1.7J 0.4J 4.4 0.8J
MW-A 7-May-13 9.1 1.3J 5.1J 22 23 3 0.4J 2.4 120 0.6J 0.8J 0.5J 6.2 0.3J 8 4.3
MW-A 17-May-16 9.7 1.5J 31 15 1.3 2.2 120 1.1 1 4.8 0.6J 5.2 3.7 0.8J
MW-A 1-Nov-16 11 1.6J 5.7J 36 17 1.6 2.6 140 0.7J 1 0.5J 5.7 4.7J 3.8 0.9J
MW-J 19-Nov-99
MW-J 26-Apr-00
MW-J 27-Sep-00
MW-J 9-May-01
MW-J 30-Oct-01
MW-J 23-Apr-02
MW-J 14-Oct-02
MW-J 24-Apr-03
MW-J 23-Oct-03
MW-J 21-Apr-04
MW-J 20-Oct-04
MW-J 26-Apr-05
MW-J 25-Oct-05
MW-J 18-Apr-06
MW-J 30-Oct-06
MW-J 23-Apr-07
MW-J 30-Oct-07
MW-J 21-Apr-08 0.48J 0.29J
MW-J 19-Nov-08
MW-J 7-Apr-09
MW-J 16-Oct-09
MW-J 11-May-10
MW-J 2-Nov-10
MW-J 3-May-11
MW-J 8-Nov-11
MW-J 8-May-12
MW-J 28-Nov-12 0.8J
MW-J 7-May-13
MW-J 17-May-16
MW-J 1-Nov-16
13-02
13-02
Page 3 of 4 Table 3-9
Table 3-9
Groundwater Quality Data Summary
Cabarrus County C&D Landfill - Phase 3 and 4 Expansion
Design Hydrogeologic Investigation
Fa
c
i
l
i
t
y
P
e
r
m
i
t
N
u
m
b
e
r
Mo
n
i
t
o
r
i
n
g
W
e
l
l
C
o
d
e
Sa
m
p
l
e
D
a
t
e
Ac
e
t
o
n
e
Be
n
z
e
n
e
2-
B
u
t
a
n
o
n
e
Ch
l
o
r
o
b
e
n
z
e
n
e
Ch
l
o
r
o
e
t
h
a
n
e
Ch
l
o
r
o
f
o
r
m
1,2
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
1,4
-
D
i
c
h
l
o
r
o
b
e
n
z
e
n
e
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
1,
2
-
D
i
c
h
l
o
r
o
e
t
h
a
n
e
1,
1
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
1,2
-
D
i
c
h
l
o
r
o
p
r
o
p
a
n
e
cis
-
1
,
2
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
Et
h
y
l
b
e
n
z
e
n
e
Me
t
h
y
l
e
n
e
C
h
l
o
r
i
d
e
tr
a
n
s
-
1
,
2
-
D
i
c
h
l
o
r
o
e
t
h
e
n
e
Te
t
r
a
c
h
l
o
r
o
e
t
h
e
n
e
To
l
u
e
n
e
To
t
a
l
X
y
l
e
n
e
s
1,1
,
1
-
T
r
i
c
h
l
o
r
o
e
t
h
a
n
e
Tr
i
c
h
l
o
r
o
e
t
h
e
n
e
Tr
i
c
h
l
o
r
o
f
l
u
o
r
o
m
e
t
h
a
n
e
Vi
n
y
l
C
h
l
o
r
i
d
e
Te
t
r
a
h
y
d
r
o
f
u
r
a
n
6,000 1 4,000 50 3,000 70 20 6 6 0.4 7 0.6 70 600 5 100 0.7 600 500 200 3 2,000 0.03 NE
100 1 100 3 10 5 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 1 1 NE
North Carolina 2L Standard
Solid Waste Section Limit
MW-X 10-Nov-98
MW-X 19-Nov-99
MW-X 23-Oct-03
MW-X 21-Apr-04
MW-X 20-Oct-04
MW-X 26-Apr-05
MW-X 25-Oct-05
MW-X 18-Apr-06
MW-X 30-Oct-06
MW-X 23-Apr-07
MW-X 30-Oct-07
MW-X 21-Apr-08 0.39J
MW-X 19-Nov-08
MW-X 7-Apr-09
MW-X 15-Oct-09
MW-X 11-May-10
MW-X 3-Nov-10
MW-X 3-May-11
MW-X 8-Nov-11
MW-X 8-May-12
MW-X 28-Nov-12 0.6J
MW-X (dup)28-Nov-12 0.6J
MW-X 7-May-13
MW-X 17-May-16
MW-X 1-Nov-16
Notes:
1. All units are in micrograms per liter (parts per billion).
2. Assessment Wells CD-4, CD-5, and CD-6 were installed in September 2006.
3. Assessment Wells CD-4 and CD-5 were abandoned in July 2010.
4. J - Indicates the analytical result is an estimated concentration between the method detection limit and the Solid Waste Section Reporting Limit.
5. B - Indicates constituent was detected in the batch blank above the method detection limit.
6. The November 2012 sampling event was the first event that CD-1s/CD-1d replaced MW-9 as the background monitoring wells.
7. MW-9 was removed from the monitoring program in November 2012.
- Concentration exceeds North Carolina 2L Groundwater Standard
- Indicates result below detection limit
13-02
Page 4 of 4 Table 3-9
4-1
(revised January 2017)
Section 4
Conclusions
This section presents conclusions based upon site investigation activities to date. These
conclusions include considerations regarding the landfill design and considerations for the water
quality monitoring plan.
4.1 Landfill Construction Considerations
Based on the findings of presented in this report and previous reports, the C&D Landfill Phase 3
and 4 expansion areas are considered to be suitable for expansion of the Cabarrus County C&D
Landfill facility. Similar to previous investigations for existing C&D, the following issues should be
considered in the landfill design.
Provisions must be made such that the expansions can be monitored separately from the
closed MSW landfill. This will accomplished by utilizing existing monitoring wells and
piezometers installed during previous investigations.
The separation between the base of the landfill and the seasonal high water table surface or
top of bedrock is not a concern for the Phase 3 or Phase 4 expansions due to the spatial
limitations. Excavation beyond the existing ground surface will be minimal in the Phase 3
and 4 areas.
After construction and final closure of the landfill, groundwater recharge will be expected
to decrease due to the placement of a landfill cap in addition to improved run-off control,
thus, reducing precipitation available for infiltration. This reduction in groundwater
recharge may cause a lowering in the water table surface downgradient of the C&D landfill;
however, no change of direction of groundwater flow is anticipated. With the decrease in
the water table surface, a decrease in the hydraulic gradient beneath the landfill will occur.
This will decrease the groundwater flow velocity and therefore increase the attenuation
time for the existing groundwater contamination coming from the Unit 2 and 3 MSW
landfill.
4.2 Water Quality Monitoring Plan Considerations
The Phase 3 and 4 Expansion areas will be small and can be monitored with existing C&D
monitoring wells in addition to installation of one additional down-gradient monitoring point, as
described in the accompanying Water Quality Monitoring Plan.
4.3 Piezometer and Monitoring Well Abandonment
All borings and monitoring wells intersecting groundwater at the site during this investigation
have been constructed and maintained as permanent monitoring wells in accordance with NCAC
02C .0108.
Section 4 • Conclusions
4-2
(revised January 2017)
Rule .0538(b)(2)(J) requires that all borings at the site not converted to permanent monitoring
wells shall be properly abandoned in accordance with the NCAC 02C .0113. Existing monitoring
wells CD-3, CD-6, and CD-8 as well as existing piezometers B-1s/-1d and B-18s/-18d will be
abandoned prior to construction of each expansion. Monitoring well CD-8 will be temporarily re-
located down-gradient of the Phase 3 expansion. The remaining existing piezometers (B-3, B-4, B-
5, and B-6) that were installed during previous investigations will remain in order to assess
groundwater conditions associated with the Unit 2 and 3 MSW landfill, as needed.
5-1
Section 5
References
ASTM (American Society of Testing and Materials). Annual Book of Standards.
Bouwer, H. 1989. The Bouwer and Rice Method - An Update. Groundwater. pp. 304-309. May -
June.
CDM (Camp Dresser & McKee). 1994. Cabarrus County, North Carolina, Draft Report, Landfill
Expansion Study, Appendix E, CDM Draft Report “Onsite Investigations of Potential Landfill
Expansion Sites,” Cabarrus County, North Carolina. September.
CDM, 1994. Cabarrus County, North Carolina, Cabarrus County Sanitary Landfill, Initial Baseline
Sampling Report. October.
CDM, 2000. Cabarrus County, North Carolina, Cabarrus County Sanitary Landfill, Groundwater
Assessment Report (Units 2&3). October.
CDM, 2005. Cabarrus County, North Carolina, Proposed Construction and Demolition Landfill
Expansion, Design Hydrogeologic Report. January.
CDM, 2008. Cabarrus County, North Carolina, Cabarrus County Sanitary Landfill Units 2 and 3,
Facility Permit #1302, Assessment of Corrective Measures Report. December.
CDM, 2009. Cabarrus County, North Carolina, Cabarrus County Sanitary Landfill Units 2 and 3,
Facility Permit #1302, Corrective Action Plan. Revised August.
CDM Smith, 2013. Proposed Cabarrus County C&D Landfill Expansion, Alternate Source
Demonstration, Facility Permit # 1302. September.
CDM Smith, 2013. Cabarrus County C&D Landfill. Substantial Amendment and Phase 2 Permit to
Construct Application. December.
Daniel, III, C.C. 1987. Statistical Analysis Relating Well Yield to Construction Practices and Siting
of Wells in the Piedmont and Blue Ridge Provinces of North Carolina. USGS Water Resources
Report 86-4132.
Driscoll, F.G. 1986. Groundwater and Wells. 2nd Edition. pp. 252-260.
Gair, J.E., 1989. Mineral Resources of the Charlotte 1x2 Quadrangle, North Carolina and South
Carolina, USGS Prof. Paper 1462, Geology of the Charlotte Quadrangle, p. 7-15.
Goldsmith, R. et.al., 1988. Geologic Map of the Charlotte 1x2 Quadrangle, North Carolina and
South Carolina, USGS Miscellaneous Map Series Map I-251E, 1:250,000.
Section 5 • References
5-2
Heath, Ralph C. 1980. Basic Elements of Ground-Water Hydrology With References to Conditions
in North Carolina. U.S. Geological Survey Water Resources Investigations. Open-File Report 80-
44.
Hicks, H.T., 1985. Diabase Dikes – Subterranean Water Reservoirs in the Deep River Triassic
Basin of North Carolina. U.S. Geological Survey Water Resources Investigations. Open File Report
80-44.
Johnson, A.I. 1967. Specific Yields for Geologic Materials. USGS Water Supply Paper 1662-D.
NCGS (North Carolina Geological Survey). 1985. Geologic Map of North Carolina.
Appendix B
Geotechnical Laboratory Data
Appendix D
Slug Test Raw Data and Calculations
Te
r
m
U
n
i
t
s
2r
c
In
c
h
e
s
2.
0
6
7
2r
W
In
c
h
e
s
8
L w
Fe
e
t
7.
6
L e
Fe
e
t
10
H*
Fe
e
t
7.
6
y 0
Fe
e
t
0.
2
4
t 0
Se
c
o
n
d
s
0
y t
Fe
e
t
0.
0
0
1
t
Se
c
o
n
d
s
1,
5
4
0
Te
r
m
U
n
i
t
s
Wa
t
e
r
T
a
b
l
e
Wa
t
e
r
T
a
b
l
e
2r
c y
In
p
u
t
D
a
t
a
3.15E-06
Ca
l
c
u
l
a
t
i
o
n
s
Solutions 2.390
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
S
e
c
o
n
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
D
a
y
2.72E-01
*
-
A
s
s
u
m
e
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
M
i
n
u
t
e
1.89E-04
L e /r
W
Fe
e
t
/
F
o
o
t
3
0
.
0
0
A
No
n
e
2
.
4
7
5
B
N
o
n
e
0
.
3
7
4
C
N
o
n
e
2
.
0
0
1
1
y 0
t
y t
Wh
e
r
e
2r
w
B-
1
7
s
F
a
l
l
-
S
l
u
g
T
e
s
t
C
a
l
c
u
l
a
t
i
o
n
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Im
p
e
r
m
e
a
b
l
e
ln
(
R
e
/
r
W )
=
{
1.
1
+
C L e /r W} -1
ln
(
L
W /r
W )
A
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Fo
r
p
a
r
t
i
a
l
p
e
n
e
t
r
a
t
i
o
n
o
r
t
h
e
e
q
u
a
t
i
o
n
b
e
l
o
w
f
o
r
f
u
l
l
p
e
n
e
t
r
a
t
i
o
n
} -1 L e /r W
1.
1
ln
(
L
W /r
W )
+
ln
(
R
e
/
r
W )
=
{
S
c
r
e
e
n
L w
L e
H
B
o
r
e
h
o
l
e
B
o
r
e
h
o
l
e
ln
Ge
n
e
r
a
l
E
q
u
a
t
i
o
n
s
ln
(
R
e /r W )partial penetration =
ln
(
R
e /r W )full penetration =2.390#NUM!
K
=
A
+
B
l
n
[
(
H
-
L
W )/r W ]
r c2 l
n
(
R
e /r
W )
2L
e
110
Y
0
(
f
e
e
t
)A
Ti
m
e
(
s
e
c
)
B-17s Fall
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
0.
0
0
1
0.
0
1
0.
1
0
5
0
0
1
0
0
0
1
5
0
0
2
0
0
0
2
5
0
0
3
0
0
0
3
5
0
0
B ‐17s Fall
In-Situ Inc.MiniTroll Pro
Report generated:1/26/2009 16:53:07
Report from file:...\SN07563 2009-01-23 180121 B-17s In.bin
Win-Situ® Version 4.58.9.0
Serial number:7563
Firmware Version 3.09
Unit name:
Test name:B-17s In
Test defined on:1/23/2009 18:00:32
Test started on:1/23/2009 18:01:21
Test stopped on:N/A N/A
Data gathered using Logarithmic testing
Maximum time between data points: 4200.0Seconds.
Number of data samples:129
TOTAL DATA SAMPLES 129
Channel number [1]
Measurement type:Temperature
Channel name:
Channel number [2]
Measurement type:Pressure
Channel name:depth
Sensor Range: 30 PSIG.
Sensor Offset:0.000 psi
Specific gravity:1
Mode:TOC
User-defined reference:0 Feet H2O
Referenced on:test start
Pressure head at reference:6.487 Feet H2O
ET (sec)Feet H2O yt (feet)
---------------------------
000
0.3 -0.006 0.006
0.6 -0.012 0.012
0.9 -1.107 1.107
1.2 -3.948 3.948
1.5 -1.411 1.411
1.8 -0.714 0.714
2.1 -0.132 0.132
2.4 -1.25 1.25
2.7 -1.286 1.286
3 -0.176 0.176
3.3 -0.17 0.17
3.6 -0.664 0.664
3.9 -0.364 0.364
4.2 -0.109 0.109
4.5 -0.332 0.332
4.8 -0.33 0.33
5.1 -0.197 0.197
5.4 -0.256 0.256
5.7 -0.288 0.288
B-17s Fall Data
6 -0.233 0.233
6.4 -0.248 0.248
6.7 -0.256 0.256
7.1 -0.239 0.239
7.5 -0.25 0.25
8 -0.245 0.245
8.4 -0.241 0.241
8.9 -0.245 0.245
9.5 -0.243 0.243
10 -0.237 0.237
10.6 -0.235 0.235
11.3 -0.233 0.233
11.9 -0.233 0.233
12.6 -0.233 0.233
13.4 -0.229 0.229
14.2 -0.229 0.229
15 -0.226 0.226
15.9 -0.226 0.226
16.8 -0.224 0.224
17.8 -0.226 0.226
18.9 -0.224 0.224
20 -0.224 0.224
21.2 -0.224 0.224
22.4 -0.222 0.222
23.8 -0.222 0.222
25.2 -0.22 0.22
26.7 -0.222 0.222
28.2 -0.222 0.222
29.8 -0.22 0.22
31.5 -0.218 0.218
33.3 -0.218 0.218
35.2 -0.218 0.218
37.3 -0.215 0.215
39.5 -0.215 0.215
41.8 -0.215 0.215
44.3 -0.215 0.215
46.9 -0.215 0.215
49.7 -0.215 0.215
52.6 -0.215 0.215
55.7 -0.213 0.213
59 -0.213 0.213
62.5 -0.211 0.211
66.2 -0.213 0.213
70.1 -0.211 0.211
74.3 -0.213 0.213
78.7 -0.21 0.21
83.4 -0.21 0.21
88.4 -0.21 0.21
93.7 -0.21 0.21
99.3 -0.208 0.208
105.2 -0.208 0.208
111.5 -0.208 0.208
118.1 -0.21 0.21
125.1 -0.208 0.208
132.6 -0.208 0.208
140.5 -0.208 0.208
148.9 -0.205 0.205
157.8 -0.207 0.207
167.2 -0.205 0.205
177.2 -0.203 0.203
187.8 -0.203 0.203
B-17s Fall Data
199 -0.2 0.2
210.9 -0.2 0.2
223.5 -0.203 0.203
236.8 -0.2 0.2
250.9 -0.2 0.2
265.8 -0.2 0.2
281.6 -0.2 0.2
298.4 -0.196 0.196
316.2 -0.196 0.196
335 -0.196 0.196
354.9 -0.194 0.194
376 -0.192 0.192
398.4 -0.191 0.191
422.1 -0.189 0.189
447.2 -0.187 0.187
473.8 -0.187 0.187
502 -0.185 0.185
531.9 -0.181 0.181
563.5 -0.181 0.181
597 -0.179 0.179
632.5 -0.177 0.177
670.1 -0.175 0.175
709.9 -0.172 0.172
752.1 -0.17 0.17
796.8 -0.168 0.168
844.2 -0.166 0.166
894.4 -0.162 0.162
947.5 -0.16 0.16
1003.8 -0.157 0.157
1063.4 -0.155 0.155
1126.6 -0.153 0.153
1193.5 -0.151 0.151
1264.4 -0.147 0.147
1339.5 -0.145 0.145
1419 -0.14 0.14
1503.3 -0.138 0.138
1592.6 -0.138 0.138
1687.1 -0.136 0.136
1787.2 -0.132 0.132
1893.3 -0.13 0.13
2005.7 -0.127 0.127
2124.7 -0.123 0.123
2250.8 -0.121 0.121
2384.4 -0.119 0.119
2525.9 -0.119 0.119
2675.8 -0.115 0.115
2834.6 -0.113 0.113
3002.8 -0.113 0.113
B-17s Fall Data
Te
r
m
U
n
i
t
s
2r
c
In
c
h
e
s
2.
0
6
7
2r
W
In
c
h
e
s
8
L w
Fe
e
t
7.
6
L e
Fe
e
t
10
H*
Fe
e
t
7.
6
y 0
Fe
e
t
0.
0
8
8
t 0
Se
c
o
n
d
s
0
y t
Fe
e
t
0.
0
0
1
t
Se
c
o
n
d
s
1,
0
9
0
Te
r
m
U
n
i
t
s
Wa
t
e
r
T
a
b
l
e
Wa
t
e
r
T
a
b
l
e
2r
c y
In
p
u
t
D
a
t
a
3.64E-06
Ca
l
c
u
l
a
t
i
o
n
s
Solutions 2.390
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
S
e
c
o
n
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
D
a
y
3.15E-01
*
-
A
s
s
u
m
e
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
M
i
n
u
t
e
2.18E-04
L e /r
W
Fe
e
t
/
F
o
o
t
3
0
.
0
0
A
No
n
e
2
.
4
7
5
B
N
o
n
e
0
.
3
7
4
C
N
o
n
e
2
.
0
0
1
1
y 0
t
y t
Wh
e
r
e
2r
w
B-
1
7
s
R
e
c
o
v
e
r
y
-
S
l
u
g
T
e
s
t
C
a
l
c
u
l
a
t
i
o
n
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Im
p
e
r
m
e
a
b
l
e
ln
(
R
e
/
r
W )
=
{
1.
1
+
C L e /r W} -1
ln
(
L
W /r
W )
A
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Fo
r
p
a
r
t
i
a
l
p
e
n
e
t
r
a
t
i
o
n
o
r
t
h
e
e
q
u
a
t
i
o
n
b
e
l
o
w
f
o
r
f
u
l
l
p
e
n
e
t
r
a
t
i
o
n
} -1 L e /r W
1.
1
ln
(
L
W /r
W )
+
ln
(
R
e
/
r
W )
=
{
S
c
r
e
e
n
L w
L e
H
B
o
r
e
h
o
l
e
B
o
r
e
h
o
l
e
ln
Ge
n
e
r
a
l
E
q
u
a
t
i
o
n
s
ln
(
R
e /r W )partial penetration =
ln
(
R
e /r W )full penetration =2.390#NUM!
K
=
A
+
B
l
n
[
(
H
-
L
W )/r W ]
r c2 l
n
(
R
e /r
W )
2L
e
110
Y
0
(
f
e
e
t
)A
Ti
m
e
(
s
e
c
)
B-17s Recovery
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
0.
0
0
1
0.
0
1
0.
1
0
5
0
0
1
0
0
0
1
5
0
0
2
0
0
0
2
5
0
0
3
0
0
0
3
5
0
0
B ‐17s Recovery
In-Situ Inc.MiniTroll Pro
Report generated:1/26/2009 16:53:56
Report from file:...\SN07563 2009-01-23 185441 B-17s Out.bin
Win-Situ® Version 4.58.9.0
Serial number:7563
Firmware Version 3.09
Unit name:
Test name:B-17s Out
Test defined on:1/23/2009 18:54:18
Test started on:1/23/2009 18:54:41
Test stopped on:N/A N/A
Data gathered using Logarithmic testing
Maximum time between data points: 4200.0Seconds.
Number of data samples:130
TOTAL DATA SAMPLES 130
Channel number [1]
Measurement type:Temperature
Channel name:
Channel number [2]
Measurement type:Pressure
Channel name:depth
Sensor Range: 30 PSIG.
Sensor Offset:0.000 psi
Specific gravity:1
Mode:TOC
User-defined reference:0 Feet H2O
Referenced on:test start
Pressure head at reference:3.453 Feet H2O
ET (sec)Feet H2O yt (feet)
---------------------------
000
0.6 -0.455 2.507
0.9 -2.526 0.436
1.2 -1.259 1.703
1.5 -2.266 0.696
1.8 -1.894 1.068
2.1 -2.175 0.787
2.4 -2.3 0.662
2.7 -2.215 0.747
3 -2.523 0.439
3.3 -2.352 0.61
3.6 -2.61 0.352
3.9 -2.531 0.431
4.2 -2.645 0.317
4.5 -2.667 0.295
4.8 -2.671 0.291
5.1 -2.742 0.22
5.4 -2.717 0.245
5.7 -2.768 0.194
B-17s Recovery Data
6 -2.764 0.198
6.4 -2.787 0.175
6.7 -2.791 0.171
7.1 -2.81 0.152
7.5 -2.81 0.152
8 -2.825 0.137
8.4 -2.827 0.135
8.9 -2.833 0.129
9.5 -2.846 0.116
10 -2.844 0.118
10.6 -2.846 0.116
11.3 -2.848 0.114
11.9 -2.852 0.11
12.6 -2.855 0.107
13.4 -2.857 0.105
14.2 -2.863 0.099
15 -2.865 0.097
15.9 -2.867 0.095
16.8 -2.865 0.097
17.8 -2.871 0.091
18.9 -2.871 0.091
20 -2.876 0.086
21.2 -2.878 0.084
22.4 -2.88 0.082
23.8 -2.878 0.084
25.2 -2.88 0.082
26.7 -2.878 0.084
28.2 -2.882 0.08
29.8 -2.884 0.078
31.5 -2.882 0.08
33.3 -2.884 0.078
35.2 -2.886 0.076
37.3 -2.889 0.073
39.5 -2.89 0.072
41.8 -2.891 0.071
44.3 -2.893 0.069
46.9 -2.893 0.069
49.7 -2.895 0.067
52.6 -2.895 0.067
55.7 -2.897 0.065
59 -2.897 0.065
62.5 -2.897 0.065
66.2 -2.899 0.063
70.1 -2.899 0.063
74.3 -2.901 0.061
78.7 -2.901 0.061
83.4 -2.903 0.059
88.4 -2.904 0.058
93.7 -2.903 0.059
99.3 -2.906 0.056
105.2 -2.904 0.058
111.5 -2.906 0.056
118.1 -2.906 0.056
125.1 -2.908 0.054
132.6 -2.91 0.052
140.5 -2.908 0.054
148.9 -2.91 0.052
157.8 -2.91 0.052
167.2 -2.91 0.052
177.2 -2.912 0.05
187.8 -2.912 0.05
B-17s Recovery Data
199 -2.912 0.05
210.9 -2.914 0.048
223.5 -2.912 0.05
236.8 -2.914 0.048
250.9 -2.914 0.048
265.8 -2.914 0.048
281.6 -2.917 0.045
298.4 -2.917 0.045
316.2 -2.917 0.045
335 -2.919 0.043
354.9 -2.919 0.043
376 -2.921 0.041
398.4 -2.921 0.041
422.1 -2.921 0.041
447.2 -2.921 0.041
473.8 -2.921 0.041
502 -2.921 0.041
531.9 -2.923 0.039
563.5 -2.925 0.037
597 -2.925 0.037
632.5 -2.927 0.035
670.1 -2.929 0.033
709.9 -2.929 0.033
752.1 -2.929 0.033
796.8 -2.931 0.031
844.2 -2.931 0.031
894.4 -2.933 0.029
947.5 -2.933 0.029
1003.8 -2.933 0.029
1063.4 -2.935 0.027
1126.6 -2.935 0.027
1193.5 -2.937 0.025
1264.4 -2.942 0.02
1339.5 -2.941 0.021
1419 -2.943 0.019
1503.3 -2.943 0.019
1592.6 -2.946 0.016
1687.1 -2.945 0.017
1787.2 -2.945 0.017
1893.3 -2.947 0.015
2005.7 -2.949 0.013
2124.7 -2.952 0.01
2250.8 -2.952 0.01
2384.4 -2.954 0.008
2525.9 -2.956 0.006
2675.8 -2.958 0.004
2834.6 -2.96 0.002
3002.8 -2.96 0.002
3180.9 -2.962 0
B-17s Recovery Data
Te
r
m
U
n
i
t
s
2r
c
In
c
h
e
s
2.
0
6
7
2r
W
In
c
h
e
s
8
L w
Fe
e
t
16
.
9
1
L e
Fe
e
t
5
H*
Fe
e
t
16
.
9
1
y 0
Fe
e
t
2.
6
t 0
Se
c
o
n
d
s
0
y t
Fe
e
t
0.
0
1
t
Se
c
o
n
d
s
3,
0
0
0
Te
r
m
U
n
i
t
s
2.22E-04
In
p
u
t
D
a
t
a
3.70E-06
Ca
l
c
u
l
a
t
i
o
n
s
Solutions 2.690
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
S
e
c
o
n
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
D
a
y
3.20E-01
*
-
A
s
s
u
m
e
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
M
i
n
u
t
e
Wa
t
e
r
T
a
b
l
e
Wa
t
e
r
T
a
b
l
e
2r
c y
L e /r
W
Fe
e
t
/
F
o
o
t
1
5
.
0
0
A
No
n
e
1
.
9
8
9
B
N
o
n
e
0
.
2
8
3
C
N
o
n
e
1
.
3
7
4
1
y 0
t
y t
Wh
e
r
e
2r
w
K
=
A
+
B
l
n
[
(
H
-
L
W )/r W ]
r c2 l
n
(
R
e /r
W )
2L
e
ln
Ge
n
e
r
a
l
E
q
u
a
t
i
o
n
s
ln
(
R
e /r W )partial penetration =
ln
(
R
e /r W )full penetration =2.690#NUM!
S
c
r
e
e
n
L w
L e
H
B
o
r
e
h
o
l
e
B
o
r
e
h
o
l
e
Fo
r
p
a
r
t
i
a
l
p
e
n
e
t
r
a
t
i
o
n
o
r
t
h
e
e
q
u
a
t
i
o
n
b
e
l
o
w
f
o
r
f
u
l
l
p
e
n
e
t
r
a
t
i
o
n
} -1 L e /r W
1.
1
ln
(
L
W /r
W )
+
ln
(
R
e
/
r
W )
=
{
B-
1
7
d
F
a
l
l
-
S
l
u
g
T
e
s
t
C
a
l
c
u
l
a
t
i
o
n
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Im
p
e
r
m
e
a
b
l
e
ln
(
R
e
/
r
W )
=
{
1.
1
+
C L e /r W} -1
ln
(
L
W /r
W )
A
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
110
Y
0
(
f
e
e
t
)A
Ti
m
e
(
s
e
c
)
B-17d Fall
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
0.
0
1
0.
1
0
1
0
0
0
2
0
0
0
3
0
0
0
4
0
0
0
5
0
0
0
6
0
0
0
7
0
0
0
B ‐17d Fall
In-Situ Inc.MiniTroll Pro
Report generated:1/26/2009 16:50:00
Report from file:...\SN04881 2009-01-23 151515 B-17d Slug In.bin
Win-Situ® Version 4.58.9.0
Serial number:4881
Firmware Version 3.09
Unit name:
Test name:B-17d Slug In
Test defined on:1/23/2009 15:14:54
Test started on:1/23/2009 15:15:15
Test stopped on:N/A N/A
Data gathered using Logarithmic testing
Maximum time between data points: 4200.0Seconds.
Number of data samples:142
TOTAL DATA SAMPLES 142
Channel number [1]
Measurement type:Temperature
Channel name:KS-6 weir
Channel number [2]
Measurement type:Pressure
Channel name:KS-6 weir
Sensor Range: 30 PSIG.
Sensor Offset:0.000 psi
Specific gravity:1
ET (sec)Feet H2O yt (feet)
---------------------------
0 13.987 0
0.3 17.124 3.103
0.6 18.103 4.082
1.2 16.457 2.436
1.5 17.068 3.047
1.8 16.233 2.212
2.1 16.861 2.84
2.4 16.481 2.46
2.7 16.679 2.658
3 16.631 2.61
3.3 16.603 2.582
3.6 16.631 2.61
3.9 16.611 2.59
4.2 16.611 2.59
4.5 16.611 2.59
4.8 16.603 2.582
5.1 16.603 2.582
5.4 16.599 2.578
5.7 16.598 2.577
B-17d Fall Data
6 16.598 2.577
6.4 16.592 2.571
6.7 16.592 2.571
7.1 16.59 2.569
7.5 16.588 2.567
8 16.587 2.566
8.4 16.585 2.564
8.9 16.583 2.562
9.5 16.581 2.56
10 16.576 2.555
10.6 16.574 2.553
11.3 16.572 2.551
11.9 16.568 2.547
12.6 16.567 2.546
13.4 16.565 2.544
14.2 16.563 2.542
15 16.546 2.525
15.9 16.554 2.533
16.8 16.555 2.534
17.8 16.555 2.534
18.9 16.552 2.531
20 16.548 2.527
21.2 16.544 2.523
22.4 16.543 2.522
23.8 16.541 2.52
25.2 16.537 2.516
26.7 16.535 2.514
28.2 16.532 2.511
29.8 16.528 2.507
31.5 16.524 2.503
33.3 16.521 2.5
35.2 16.519 2.498
37.3 16.513 2.492
39.5 16.511 2.49
41.8 16.506 2.485
44.3 16.502 2.481
46.9 16.496 2.475
49.7 16.493 2.472
52.6 16.487 2.466
55.7 16.482 2.461
59 16.476 2.455
62.5 16.471 2.45
66.2 16.463 2.442
70.1 16.456 2.435
74.3 16.452 2.431
78.7 16.445 2.424
83.4 16.435 2.414
88.4 16.428 2.407
93.7 16.421 2.4
99.3 16.413 2.392
105.2 16.402 2.381
111.5 16.393 2.372
118.1 16.382 2.361
125.1 16.371 2.35
132.6 16.361 2.34
140.5 16.348 2.327
148.9 16.337 2.316
157.8 16.324 2.303
167.2 16.311 2.29
177.2 16.3 2.279
187.8 16.28 2.259
B-17d Fall Data
199 16.263 2.242
210.9 16.245 2.224
223.5 16.223 2.202
236.8 16.206 2.185
250.9 16.186 2.165
265.8 16.165 2.144
281.6 16.143 2.122
298.4 16.125 2.104
316.2 16.11 2.089
335 16.097 2.076
354.9 16.082 2.061
376 16.065 2.044
398.4 16.045 2.024
422.1 16.021 2
447.2 15.989 1.968
473.8 15.96 1.939
502 15.926 1.905
531.9 15.893 1.872
563.5 15.858 1.837
597 15.821 1.8
632.5 15.784 1.763
670.1 15.743 1.722
709.9 15.704 1.683
752.1 15.66 1.639
796.8 15.619 1.598
844.2 15.571 1.55
894.4 15.53 1.509
947.5 15.48 1.459
1003.8 15.432 1.411
1063.4 15.382 1.361
1126.6 15.336 1.315
1193.5 15.284 1.263
1264.4 15.232 1.211
1339.5 15.18 1.159
1419 15.125 1.104
1503.3 15.071 1.05
1592.6 15.019 0.998
1687.1 14.96 0.939
1787.2 14.906 0.885
1893.3 14.851 0.83
2005.7 14.795 0.774
2124.7 14.741 0.72
2250.8 14.688 0.667
2384.4 14.634 0.613
2525.9 14.58 0.559
2675.8 14.529 0.508
2834.6 14.48 0.459
3002.8 14.432 0.411
3180.9 14.386 0.365
3369.6 14.343 0.322
3569.5 14.299 0.278
3781.2 14.26 0.239
4005.5 14.225 0.204
4243.1 14.188 0.167
4494.7 14.156 0.135
4761.3 14.127 0.106
5043.7 14.099 0.078
5342.8 14.077 0.056
5659.6 14.054 0.033
5995.2 14.036 0.015
6350.7 14.021 0
B-17d Fall Data
Te
r
m
U
n
i
t
s
2r
c
In
c
h
e
s
2.
0
6
7
2r
W
In
c
h
e
s
4
L w
Fe
e
t
16
.
9
1
L e
Fe
e
t
5
H*
Fe
e
t
16
.
9
1
y 0
Fe
e
t
1.
3
t 0
Se
c
o
n
d
s
0
y t
Fe
e
t
0.
0
1
t
Se
c
o
n
d
s
2,
8
0
0
Te
r
m
U
n
i
t
s
2.54E-04
In
p
u
t
D
a
t
a
4.23E-06
Ca
l
c
u
l
a
t
i
o
n
s
Solutions 3.281
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
S
e
c
o
n
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
D
a
y
3.66E-01
*
-
A
s
s
u
m
e
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
M
i
n
u
t
e
Wa
t
e
r
T
a
b
l
e
Wa
t
e
r
T
a
b
l
e
2r
c y
L e /r
W
Fe
e
t
/
F
o
o
t
3
0
.
0
0
A
No
n
e
2
.
4
7
5
B
N
o
n
e
0
.
3
7
4
C
N
o
n
e
2
.
0
0
1
1
y 0
t
y t
Wh
e
r
e
2r
w
K
=
A
+
B
l
n
[
(
H
-
L
W )/r W ]
r c2 l
n
(
R
e /r
W )
2L
e
ln
Ge
n
e
r
a
l
E
q
u
a
t
i
o
n
s
ln
(
R
e /r W )partial penetration =
ln
(
R
e /r W )full penetration =3.281#NUM!
S
c
r
e
e
n
L w
L e
H
B
o
r
e
h
o
l
e
B
o
r
e
h
o
l
e
Fo
r
p
a
r
t
i
a
l
p
e
n
e
t
r
a
t
i
o
n
o
r
t
h
e
e
q
u
a
t
i
o
n
b
e
l
o
w
f
o
r
f
u
l
l
p
e
n
e
t
r
a
t
i
o
n
} -1 L e /r W
1.
1
ln
(
L
W /r
W )
+
ln
(
R
e
/
r
W )
=
{
B-
1
7
d
R
e
c
o
v
e
r
y
-
S
l
u
g
T
e
s
t
C
a
l
c
u
l
a
t
i
o
n
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Im
p
e
r
m
e
a
b
l
e
ln
(
R
e
/
r
W )
=
{
1.
1
+
C L e /r W} -1
ln
(
L
W /r
W )
A
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
110
Y
0
(
f
e
e
t
)A
Ti
m
e
(
s
e
c
)
B-17d Recovery
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
0.
0
1
0.
1
0
5
0
0
1
0
0
0
1
5
0
0
2
0
0
0
2
5
0
0
3
0
0
0
3
5
0
0
4
0
0
0
4
5
0
0
5
0
0
0
B ‐17d Recovery
In-Situ Inc.MiniTroll Pro
Report generated:1/26/2009 16:51:16
Report from file:...\SN04881 2009-01-23 170733 B-17d Slug Out.bin
Win-Situ® Version 4.58.9.0
Serial number:4881
Firmware Version 3.09
Unit name:
Test name:B-17d Slug Out
Test defined on:1/23/2009 17:07:00
Test started on:1/23/2009 17:07:33
Test stopped on:N/A N/A
Data gathered using Logarithmic testing
Maximum time between data points: 4200.0Seconds.
Number of data samples:137
TOTAL DATA SAMPLES 137
Channel number [1]
Measurement type:Temperature
Channel name:KS-6 weir
Channel number [2]
Measurement type:Pressure
Channel name:KS-6 weir
Sensor Range: 30 PSIG.
Sensor Offset:0.000 psi
Specific gravity:1
ET (sec)Feet H2O yt (feet)
---------------------------
0 10.495 0
0.3 11.97 1.644
0.6 12.829 0.785
0.9 12.708 0.906
1.2 12.44 1.174
1.5 12.364 1.25
1.8 12.416 1.198
2.1 12.465 1.149
2.4 12.469 1.145
2.7 12.46 1.154
3 12.462 1.152
3.3 12.465 1.149
3.6 12.464 1.15
3.9 12.465 1.149
4.2 12.473 1.141
4.5 12.475 1.139
4.8 12.476 1.138
5.1 12.48 1.134
5.4 12.478 1.136
B-17d Recovery Data
5.7 12.48 1.134
6 12.48 1.134
6.4 12.48 1.134
6.7 12.48 1.134
7.1 12.482 1.132
7.5 12.486 1.128
8 12.487 1.127
8.4 12.486 1.128
8.9 12.487 1.127
9.5 12.491 1.123
10 12.488 1.126
10.6 12.486 1.128
11.3 12.488 1.126
11.9 12.488 1.126
12.6 12.49 1.124
13.4 12.49 1.124
14.2 12.475 1.139
15 12.479 1.135
15.9 12.471 1.143
16.8 12.49 1.124
17.8 12.488 1.126
18.9 12.488 1.126
20 12.49 1.124
21.2 12.492 1.122
22.4 12.492 1.122
23.8 12.492 1.122
25.2 12.494 1.12
26.7 12.495 1.119
28.2 12.495 1.119
29.8 12.495 1.119
31.5 12.497 1.117
33.3 12.497 1.117
35.2 12.499 1.115
37.3 12.501 1.113
39.5 12.503 1.111
41.8 12.505 1.109
44.3 12.505 1.109
46.9 12.507 1.107
49.7 12.508 1.106
52.6 12.512 1.102
55.7 12.512 1.102
59 12.514 1.1
62.5 12.514 1.1
66.2 12.518 1.096
70.1 12.52 1.094
74.3 12.523 1.091
78.7 12.523 1.091
83.4 12.525 1.089
88.4 12.529 1.085
93.7 12.531 1.083
99.3 12.535 1.079
105.2 12.536 1.078
111.5 12.54 1.074
118.1 12.542 1.072
125.1 12.546 1.068
132.6 12.549 1.065
140.5 12.553 1.061
148.9 12.559 1.055
157.8 12.563 1.051
167.2 12.566 1.048
177.2 12.572 1.042
B-17d Recovery Data
187.8 12.575 1.039
199 12.581 1.033
210.9 12.587 1.027
223.5 12.592 1.022
236.8 12.598 1.016
250.9 12.603 1.011
265.8 12.609 1.005
281.6 12.616 0.998
298.4 12.624 0.99
316.2 12.631 0.983
335 12.638 0.976
354.9 12.648 0.966
376 12.655 0.959
398.4 12.664 0.95
422.1 12.674 0.94
447.2 12.685 0.929
473.8 12.694 0.92
502 12.705 0.909
531.9 12.718 0.896
563.5 12.729 0.885
597 12.74 0.874
632.5 12.755 0.859
670.1 12.77 0.844
709.9 12.783 0.831
752.1 12.798 0.816
796.8 12.814 0.8
844.2 12.831 0.783
894.4 12.848 0.766
947.5 12.866 0.748
1003.8 12.885 0.729
1063.4 12.903 0.711
1126.6 12.923 0.691
1193.5 12.946 0.668
1264.4 12.968 0.646
1339.5 12.988 0.626
1419 13.012 0.602
1503.3 13.036 0.578
1592.6 13.06 0.554
1687.1 13.086 0.528
1787.2 13.114 0.5
1893.3 13.14 0.474
2005.7 13.17 0.444
2124.7 13.197 0.417
2250.8 13.227 0.387
2384.4 13.259 0.355
2525.9 13.286 0.328
2675.8 13.32 0.294
2834.6 13.349 0.265
3002.8 13.381 0.233
3180.9 13.414 0.2
3369.6 13.445 0.169
3569.5 13.479 0.135
3781.2 13.507 0.107
4005.5 13.534 0.08
4243.1 13.562 0.052
4494.7 13.588 0.026
4761.3 13.614 0
B-17d Recovery Data
Te
r
m
U
n
i
t
s
2r
c
In
c
h
e
s
2.
0
6
7
2r
W
In
c
h
e
s
8
L w
Fe
e
t
9
L e
Fe
e
t
10
H*
Fe
e
t
20
y 0
Fe
e
t
0.
3
1
t 0
Se
c
o
n
d
s
0
y t
Fe
e
t
0.
1
t
Se
c
o
n
d
s
70
0
Te
r
m
U
n
i
t
s
Wa
t
e
r
T
a
b
l
e
Wa
t
e
r
T
a
b
l
e
2r
c y
In
p
u
t
D
a
t
a
1.30E-06
Ca
l
c
u
l
a
t
i
o
n
s
Solutions 2.175
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
S
e
c
o
n
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
D
a
y
1.13E-01
*
-
A
s
s
u
m
e
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
M
i
n
u
t
e
7.82E-05
L e /r
W
Fe
e
t
/
F
o
o
t
3
0
.
0
0
A
No
n
e
2
.
4
7
5
B
N
o
n
e
0
.
3
7
4
C
N
o
n
e
2
.
0
0
1
1
y 0
t
y t
Wh
e
r
e
2r
w
CD
-
4
R
e
p
F
a
l
l
-
S
l
u
g
T
e
s
t
C
a
l
c
u
l
a
t
i
o
n
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Im
p
e
r
m
e
a
b
l
e
ln
(
R
e
/
r
W )
=
{
1.
1
+
C L e /r W} -1
ln
(
L
W /r
W )
A
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Fo
r
p
a
r
t
i
a
l
p
e
n
e
t
r
a
t
i
o
n
o
r
t
h
e
e
q
u
a
t
i
o
n
b
e
l
o
w
f
o
r
f
u
l
l
p
e
n
e
t
r
a
t
i
o
n
} -1 L e /r W
1.
1
ln
(
L
W /r
W )
+
ln
(
R
e
/
r
W )
=
{
S
c
r
e
e
n
L w
L e
H
B
o
r
e
h
o
l
e
B
o
r
e
h
o
l
e
ln
Ge
n
e
r
a
l
E
q
u
a
t
i
o
n
s
ln
(
R
e /r W )partial penetration =
ln
(
R
e /r W )full penetration =2.4972.175
K
=
A
+
B
l
n
[
(
H
-
L
W )/r W ]
r c2 l
n
(
R
e /r
W )
2L
e
10
Y
0
(
f
e
e
t
)A
Ti
m
e
(
s
e
c
)
CD-4 Rep Fall
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
0.
1
1
0
5
0
0
1
0
0
0
1
5
0
0
2
0
0
0
2
5
0
0
3
0
0
0
3
5
0
0
4
0
0
0
CD ‐4 Rep Fall
In-Situ Inc.MiniTroll Pro
Report generated:1/27/2009 11:04:17
Report from file:...\SN07563 2009-01-23 144556 CD-4 Rep.bin
Win-Situ® Version 4.57.0.0
Serial number:7563
Firmware Version 3.09
Unit name:
Test name:CD-4 Rep
Test defined on:1/23/2009 14:44:57
Test started on:1/23/2009 14:45:56
Test stopped on:1/23/2009 15:49:16
Data gathered using Logarithmic testing
Maximum time between data points: 4200.0Seconds.
Number of data samples:133
TOTAL DATA SAMPLES 133
Channel number [1]
Measurement type:Temperature
Channel name:
Channel number [2]
Measurement type:Pressure
Channel name:depth
Sensor Range: 30 PSIG.
Sensor Offset:0.000 psi
Specific gravity:1
Mode:TOC
User-defined reference:0 Feet H2O
Referenced on:test start
Pressure head at reference:8.47 Feet H2O
ET (sec)Feet H2O yt (feet)
---------------------------
000
0.3 -0.898 0.898
0.6 -2.43 2.43
0.9 -1.596 1.596
1.2 -0.52 0.52
1.5 -0.763 0.763
1.8 -1.756 1.756
2.1 -1.212 1.212
2.4 -0.242 0.242
2.7 -0.455 0.455
3 -0.944 0.944
3.3 -0.59 0.59
3.6 -0.231 0.231
3.9 -0.431 0.431
4.2 -0.566 0.566
4.5 -0.362 0.362
4.8 -0.286 0.286
5.1 -0.391 0.391
5.4 -0.396 0.396
5.7 -0.317 0.317
CD-4 Rep Fall Data
6 -0.32 0.32
6.4 -0.355 0.355
6.7 -0.324 0.324
7.1 -0.32 0.32
7.5 -0.33 0.33
8 -0.317 0.317
8.4 -0.322 0.322
8.9 -0.317 0.317
9.5 -0.317 0.317
10 -0.307 0.307
10.6 -0.307 0.307
11.3 -0.305 0.305
11.9 -0.303 0.303
12.6 -0.303 0.303
13.4 -0.301 0.301
14.2 -0.299 0.299
15 -0.299 0.299
15.9 -0.297 0.297
16.8 -0.297 0.297
17.8 -0.297 0.297
18.9 -0.295 0.295
20 -0.295 0.295
21.2 -0.293 0.293
22.4 -0.293 0.293
23.8 -0.293 0.293
25.2 -0.293 0.293
26.7 -0.291 0.291
28.2 -0.291 0.291
29.8 -0.291 0.291
31.5 -0.291 0.291
33.3 -0.288 0.288
35.2 -0.288 0.288
37.3 -0.288 0.288
39.5 -0.288 0.288
41.8 -0.288 0.288
44.3 -0.286 0.286
46.9 -0.286 0.286
49.7 -0.287 0.287
52.6 -0.287 0.287
55.7 -0.287 0.287
59 -0.287 0.287
62.5 -0.287 0.287
66.2 -0.283 0.283
70.1 -0.285 0.285
74.3 -0.283 0.283
78.7 -0.283 0.283
83.4 -0.283 0.283
88.4 -0.281 0.281
93.7 -0.281 0.281
99.3 -0.281 0.281
105.2 -0.281 0.281
111.5 -0.281 0.281
118.1 -0.281 0.281
125.1 -0.281 0.281
132.6 -0.279 0.279
140.5 -0.279 0.279
148.9 -0.28 0.28
157.8 -0.277 0.277
167.2 -0.28 0.28
177.2 -0.277 0.277
187.8 -0.278 0.278
CD-4 Rep Fall Data
199 -0.278 0.278
210.9 -0.278 0.278
223.5 -0.276 0.276
236.8 -0.276 0.276
250.9 -0.276 0.276
265.8 -0.274 0.274
281.6 -0.276 0.276
298.4 -0.274 0.274
316.2 -0.276 0.276
335 -0.274 0.274
354.9 -0.274 0.274
376 -0.274 0.274
398.4 -0.274 0.274
422.1 -0.274 0.274
447.2 -0.274 0.274
473.8 -0.274 0.274
502 -0.277 0.277
531.9 -0.277 0.277
563.5 -0.274 0.274
597 -0.274 0.274
632.5 -0.277 0.277
670.1 -0.277 0.277
709.9 -0.281 0.281
752.1 -0.28 0.28
796.8 -0.28 0.28
844.2 -0.282 0.282
894.4 -0.28 0.28
947.5 -0.282 0.282
1003.8 -0.282 0.282
1063.4 -0.284 0.284
1126.6 -0.284 0.284
1193.5 -0.286 0.286
1264.4 -0.286 0.286
1339.5 -0.288 0.288
1419 -0.288 0.288
1503.3 -0.29 0.29
1592.6 -0.292 0.292
1687.1 -0.292 0.292
1787.2 -0.294 0.294
1893.3 -0.294 0.294
2005.7 -0.296 0.296
2124.7 -0.296 0.296
2250.8 -0.298 0.298
2384.4 -0.298 0.298
2525.9 -0.3 0.3
2675.8 -0.302 0.302
2834.6 -0.302 0.302
3002.8 -0.302 0.302
3180.9 -0.302 0.302
3369.6 -0.304 0.304
3569.5 -0.306 0.306
3781.2 -0.308 0.308
CD-4 Rep Fall Data
Te
r
m
U
n
i
t
s
2r
c
In
c
h
e
s
2.
0
6
7
2r
W
In
c
h
e
s
8
L w
Fe
e
t
9
L e
Fe
e
t
10
H*
Fe
e
t
20
y 0
Fe
e
t
0.
2
t 0
Se
c
o
n
d
s
0
y t
Fe
e
t
0.
0
0
1
t
Se
c
o
n
d
s
3,
8
2
0
Te
r
m
U
n
i
t
s
Wa
t
e
r
T
a
b
l
e
Wa
t
e
r
T
a
b
l
e
2r
c y
In
p
u
t
D
a
t
a
1.12E-06
Ca
l
c
u
l
a
t
i
o
n
s
Solutions 2.175
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
S
e
c
o
n
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
D
a
y
9.66E-02
*
-
A
s
s
u
m
e
d
Hy
d
r
a
u
l
i
c
C
o
n
d
u
c
t
i
v
i
t
y
i
n
F
e
e
t
/
M
i
n
u
t
e
6.71E-05
L e /r
W
Fe
e
t
/
F
o
o
t
3
0
.
0
0
A
No
n
e
2
.
4
7
5
B
N
o
n
e
0
.
3
7
4
C
N
o
n
e
2
.
0
0
1
1
y 0
t
y t
Wh
e
r
e
2r
w
CD
-
4
R
e
p
R
e
c
o
v
e
r
y
-
S
l
u
g
T
e
s
t
C
a
l
c
u
l
a
t
i
o
n
s
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Im
p
e
r
m
e
a
b
l
e
ln
(
R
e
/
r
W )
=
{
1.
1
+
C L e /r W} -1
ln
(
L
W /r
W )
A
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
Fo
r
p
a
r
t
i
a
l
p
e
n
e
t
r
a
t
i
o
n
o
r
t
h
e
e
q
u
a
t
i
o
n
b
e
l
o
w
f
o
r
f
u
l
l
p
e
n
e
t
r
a
t
i
o
n
} -1 L e /r W
1.
1
ln
(
L
W /r
W )
+
ln
(
R
e
/
r
W )
=
{
S
c
r
e
e
n
L w
L e
H
B
o
r
e
h
o
l
e
B
o
r
e
h
o
l
e
ln
Ge
n
e
r
a
l
E
q
u
a
t
i
o
n
s
ln
(
R
e /r W )partial penetration =
ln
(
R
e /r W )full penetration =2.4972.175
K
=
A
+
B
l
n
[
(
H
-
L
W )/r W ]
r c2 l
n
(
R
e /r
W )
2L
e
110
Y
0
(
f
e
e
t
)A
Ti
m
e
(
s
e
c
)
CD-4 REP Recovery
Ca
b
a
r
r
u
s
C
o
u
n
t
y
C
&
D
L
a
n
d
f
i
l
l
E
x
p
a
n
s
i
o
n
Si
t
e
H
y
d
r
o
g
e
o
l
o
g
i
c
I
n
v
e
s
t
i
g
a
t
i
o
n
0.
0
0
1
0.
0
1
0.
1
0
1
0
0
0
2
0
0
0
3
0
0
0
4
0
0
0
5
0
0
0
6
0
0
0
7
0
0
0
8
0
0
0
CD ‐4 Rep Recovery
In-Situ Inc.MiniTroll Pro
Report generated:1/26/2009 16:52:00
Report from file:...\SN07563 2009-01-23 155106 CD-4 Rep Out.bin
Win-Situ® Version 4.58.9.0
Serial number:7563
Firmware Version 3.09
Unit name:
Test name:CD-4 Rep Out
Test defined on:1/23/2009 15:50:01
Test started on:1/23/2009 15:51:06
Test stopped on:N/A N/A
Data gathered using Logarithmic testing
Maximum time between data points: 4200.0Seconds.
Number of data samples:143
TOTAL DATA SAMPLES 143
Channel number [1]
Measurement type:Temperature
Channel name:
Channel number [2]
Measurement type:Pressure
Channel name:depth
Sensor Range: 30 PSIG.
Sensor Offset:0.000 psi
Specific gravity:1
Mode:TOC
User-defined reference:0 Feet H2O
Referenced on:test start
Pressure head at reference:8.913 Feet H2O
ET (sec)Feet H2O yt (feet)
---------------------------
000
0.3 2.469 2.142
0.6 1.509 1.182
0.9 0.809 0.482
1.2 2.106 1.779
1.5 0.823 0.496
1.8 1.412 1.085
2.1 1.423 1.096
2.4 0.857 0.53
2.7 1.383 1.056
3 1.014 0.687
3.3 0.978 0.651
3.6 1.149 0.822
3.9 0.857 0.53
4.2 0.971 0.644
4.5 0.935 0.608
4.8 0.796 0.469
5.1 0.858 0.531
5.4 0.778 0.451
5.7 0.756 0.429
CD-4 Rep Recovery Data
6 0.78 0.453
6.4 0.706 0.379
6.7 0.721 0.394
7.1 0.67 0.343
7.5 0.64 0.313
8 0.647 0.32
8.4 0.642 0.315
8.9 0.626 0.299
9.5 0.615 0.288
10 0.611 0.284
10.6 0.602 0.275
11.3 0.594 0.267
11.9 0.587 0.26
12.6 0.581 0.254
13.4 0.579 0.252
14.2 0.573 0.246
15 0.566 0.239
15.9 0.564 0.237
16.8 0.558 0.231
17.8 0.555 0.228
18.9 0.551 0.224
20 0.549 0.222
21.2 0.545 0.218
22.4 0.543 0.216
23.8 0.536 0.209
25.2 0.536 0.209
26.7 0.532 0.205
28.2 0.532 0.205
29.8 0.53 0.203
31.5 0.528 0.201
33.3 0.526 0.199
35.2 0.526 0.199
37.3 0.522 0.195
39.5 0.52 0.193
41.8 0.52 0.193
44.3 0.517 0.19
46.9 0.513 0.186
49.7 0.515 0.188
52.6 0.513 0.186
55.7 0.511 0.184
59 0.511 0.184
62.5 0.511 0.184
66.2 0.509 0.182
70.1 0.509 0.182
74.3 0.507 0.18
78.7 0.505 0.178
83.4 0.507 0.18
88.4 0.505 0.178
93.7 0.504 0.177
99.3 0.502 0.175
105.2 0.5 0.173
111.5 0.5 0.173
118.1 0.502 0.175
125.1 0.5 0.173
132.6 0.5 0.173
140.5 0.498 0.171
148.9 0.497 0.17
157.8 0.497 0.17
167.2 0.497 0.17
177.2 0.495 0.168
187.8 0.493 0.166
CD-4 Rep Recovery Data
199 0.495 0.168
210.9 0.493 0.166
223.5 0.493 0.166
236.8 0.491 0.164
250.9 0.491 0.164
265.8 0.49 0.163
281.6 0.488 0.161
298.4 0.488 0.161
316.2 0.486 0.159
335 0.486 0.159
354.9 0.484 0.157
376 0.484 0.157
398.4 0.482 0.155
422.1 0.482 0.155
447.2 0.48 0.153
473.8 0.48 0.153
502 0.48 0.153
531.9 0.475 0.148
563.5 0.476 0.149
597 0.474 0.147
632.5 0.474 0.147
670.1 0.471 0.144
709.9 0.47 0.143
752.1 0.468 0.141
796.8 0.466 0.139
844.2 0.464 0.137
894.4 0.459 0.132
947.5 0.458 0.131
1003.8 0.457 0.13
1063.4 0.455 0.128
1126.6 0.453 0.126
1193.5 0.451 0.124
1264.4 0.449 0.122
1339.5 0.446 0.119
1419 0.444 0.117
1503.3 0.442 0.115
1592.6 0.44 0.113
1687.1 0.438 0.111
1787.2 0.434 0.107
1893.3 0.432 0.105
2005.7 0.427 0.1
2124.7 0.425 0.098
2250.8 0.421 0.094
2384.4 0.419 0.092
2525.9 0.415 0.088
2675.8 0.41 0.083
2834.6 0.408 0.081
3002.8 0.404 0.077
3180.9 0.398 0.071
3369.6 0.396 0.069
3569.5 0.389 0.062
3781.2 0.386 0.059
4005.5 0.381 0.054
4243.1 0.377 0.05
4494.7 0.373 0.046
4761.3 0.364 0.037
5043.7 0.36 0.033
5342.8 0.352 0.025
5659.6 0.346 0.019
5995.2 0.335 0.008
6350.7 0.333 0.006
CD-4 Rep Recovery Data
6727.2 0.327 0
CD-4 Rep Recovery Data