HomeMy WebLinkAboutSW_F_5306-STRUCT-2015_03-11-2015_SP_AC.pdf
hdrinc.com
440 S Church Street, Suite 1000, Charlotte, NC 28202-2075
704.338.6700
March 11, 2015
Mr. Ed Mussler, III, PE, Supervisor
Permitting Branch, Solid Waste Section
Division of Waste Management, NCDENR
1646 Mail Service Center
Raleigh NC 27699
Dear Mr. Mussler,
On behalf of Green Meadow, LLC and Charah, Inc., HDR provides the enclosed Addendum 2
regarding the permit application entitled:
Permit Application, Colon Mine Site, Structural Fill, Charah, Inc., Sanford, North Carolina.
Prepared for Charah, Inc. Prepared by HDR Inc. November 2014. DIN 22354.
The purpose of this addendum is to relate proposed enhancement to certain design and
engineering aspects of the proposed project, specifically regarding the liner system groundwater
separation, stormwater and leachate management systems, and the water quality monitoring plan.
In addition this addendum clarifies that a minimum five foot groundwater separation buffer is
maintained in the design. The following provides a brief summary of the sections and revisions in
this addendum.
Facility Plan, Engineering Plan, Operations Plan
The narrative of each of these plans has been edited based on the proposed design enhancements
and associated calculations. Changes generally include reference to an increase in the minimum
groundwater separation, accommodation of the 25-year 24-hour design storm for leachate
management, reduction of the subcell sizes to reduce leachate generation potential of the larger
design storm, and an increase in the leachate tank capacity.
Calculations
Revised calculations include HELP model runs using a more stringent lift thickness and design
storm in order to model the head on the liner system and determine the required leachate pipe
spacing. Additional revised calculations include; leachate generation calculations, pipe capacity
and sizing calculations and stormwater calculations to ensure the basins adequately manage the
design storm.
Design Hydrogeological Plan
The Plan is revised to reflect the inclusion of 8 background monitoring events, statistical evaluation,
and reference to analysis for Appendix III constituents.
2
Technical Specifications
Revisions to the geocomposite, GCL, and geotextiles technical specifications are included that align
more specifically to management of coal combustion residuals.
Drawings
Drawing revisions include the reduction of subcell sized, inclusion of additional leachate collection
piping, adjustment to associated drawing details, and modification to erosion control drawings and
details to accommodate the larger design storm.
Revisions in narrative documents are shown with deletions struckthrough (struckthrough) and
additions underlined (underlined) along with a change line indicator in the left margin. In most
cases, only revised pages of narrative documents have been provided. As requested, upon
completion of the permit application process the revisions will be combined into a final permit
application document for the record.
Please contact me should you have any questions. We hope you find these design enhancements
acceptable and we look forward to discussing them with you.
Sincerely,
HDR Engineering, Inc. of the Carolinas
Michael D. Plummer, PE
Project Manager
Enclosures: Appendix to Lee County Application
Facility Plan
Engineering Plan
Operations Plan
Calculation D Leachate
HELP Model Summary Memo
Design of Leachate Collection System Narrative
Attachment 1 Summary of Model Input Data and Results
Attachment 2 HELP Model Output Files (Scenarios 1-7)
Pipe Sizing
Pipe Orifice Sizing
Pipe Perforations
Pipe Capacity Determination
Leachate Tank Sizing
Calculation E Stormwater
Subcell Divider Berms
Sediment Basins #3, 4, 6, 8, 9
3
Design Hydrogeological Report
Figure 6 (revised)
Technical Specifications
01060 – Special Conditions
02777 – Drainage Composite
02778 – Geotextiles
02800 – Geosynthetic Clay Liner (GCL)
Drawings
Site Work
00C-02
00C-03
00C-05
00C-06
00C-08
Erosion and Sedimentation Control
01C-11
01C-12
This page intentionally left blank.
1
APPENDIX TO
LEE COUNTY APPLICATION
This document is attached as an appendix to the application (Application) being
submitted by Charah, Inc. for the permitting, construction and operation of a facility in Lee
County (Facility) to receive coal combustion products (CCP) from one or more electric
generating facilities operated by Duke Energy Progress, Inc. and Duke Energy Carolinas, LLC.
For clarity, the applicant will only receive ash from Duke’s North Carolina facilities. The
purpose of this Appendix is to describe the goals and philosophy reflected in the Application,
which is intended to comply with all applicable environmental standards, including both (1)
Session Law 2014-122, which enacted the Coal Ash Management Act of 2014 as a part of its
terms (collectively, CAMA); and (2) the rules regarding Hazardous and Solid Waste
Management system: Disposal of Coal Combustion Residuals from Electric Utilities,
promulgated by the United States Environmental Protection Agency (EPA) submitted for
publication on December 19, 2014 (CCR Rules).
The Application is being submitted to the Division of Waste Management (DWM) of the
North Carolina Department of Environment and Natural Resources to secure an individual
permit (Permit) under G.S. § 130A-309.215 that would authorize the use of CCP as structural fill
at the Facility to reclaim an open pit mine in accordance with G.S. § 130A-309.201(14). As
such, the Application contains the information required under G.S. § 130A-309.215(b), which
reflects the following:
the design, construction and operational requirements in G.S. § 130A-309.216(a);
the liner, leachate collection system, cap and groundwater monitoring system
requirements in G.S. § 130A-309.216(b);
the siting requirements under G.S. § 130A-309.216(c); and
2
the financial assurance requirements of G.S. § 130A-309.217.
The Application also reflects, to the extent necessary or appropriate, efforts that will be required
to comply with the remaining terms of Subpart 3 of CAMA and other applicable provisions of
Chapter 130 of the North Carolina General Statutes and Title 15A of the North Carolina
Administrative Code (NC Requirements).
While the Facility as proposed in the Application would meet the four (4) criteria
applicable to unencapsulated beneficial use of the CCP, and the proposed use of the CCP as mine
filling as a practical matter constitutes a beneficial use of the material, the Applicant will take the
conservative approach of seeking compliance with the requirements of the applicable CCR
Rules. While the Application requests a state permit from DWM under the NC Requirements, the
Applicant is also voluntarily designing, siting, constructing, and operating the Facility in
accordance with the CCR Rules including:
location restrictions, including placement above the uppermost aquifer (40 CFR §
257.60), wetlands (40 CFR § 257.61), fault areas (40 CFR § 257.62), seismic
impact zones (40 CFR § 257.63), and unstable areas (40 CFR § 257.64);
design criteria (40 CFR § 257.70);
operating criteria, including air criteria (40 CFR § 257.80), run-on and run-off
controls (40 CFR § 257.81), inspection requirements (40 CFR § 257.84),
groundwater monitoring and potential groundwater corrective actions (40 CFR §§
257.90-257.98 and Appendices III and IV), and closure and post-closure care (40
CFR §§ 257.101-275.104); and
recordkeeping (40 CFR § 257.105), notification (40 CFR § 257.106), and internet
posting requirements (40 CFR § 257.107).
It is presumed that any Permit that DWM issues for the Facility based on the Application will be
consistent with this approach and design philosophy.
Facility Plan
Colon Mine Site
Structural Fill
Charah, Inc.
Sanford, NC
November 2014
Revised January 2015
Revised March 2015
Charah, Inc. | Colon Mine Site – Facility Plan
Facility Plan
8
Table 1 Structural Fill Horizontal Separation Requirements Summary
Feature Restriction: A structural fill cannot be within
Property boundary 50 feet
Private dwelling or well 300 feet
Perennial stream or other surface water bodya 50 feet
Floodplain A 100-year floodplainb
Wetland 50 feetc
a The structural fill cannot be within 50 feet of the top of the bank of a perennial stream or other surface water body.
b In accordance with NCGS §130A-309.216 (c) (5), the structural fill cannot be placed “within a 100-year floodplain except as
authorized under [NC]G.S. 143-215.54A(b). A site located in a floodplain shall not restrict the flow of the 100-year flood, reduce
the temporary water storage capacity of the floodplain or result in washout of solid waste so as to pose a hazard to human life,
wildlife, or land or water resources.”
c In accordance with NCGS §130A-309.216 (c) (6), the structural fill cannot be placed “within 50 horizontal feet of a wetland,
unless, after consideration of the chemical and physical impact on the wetland, the United States Army Corps of Engineers issues
a permit or waiver for the fill.”
The property boundary, private dwellings, groundwater wells, and floodplain buffers have been
maintained as shown on Sheet G-02, Facility Plan and Buffers . Streams and wetlands were
delineated and located onsite by Clearwater Environmental on August 8, 2014. The structural fill
design impacts approximately 2,040 linear feet of streams and 0.62 acres of wetlands. Impacts
to these will be permitted by the US Army Corp of Engineers and the NCDENR Division of
Water Quality before construction occurs in these areas.
2.1.3.2 VERTICAL SEPARATION REQUIREMENT
NCGS §130A-309.216 (c) also mandates a vertical separation requirement for CCPs used as
structural fill. The structural fill can not be placed within four feet of the seasonal high
groundwater table per NCGS §130A-309.216 (c) (4). For this application tThe bottom of ash the
GCL liner has been designed to be a minimum four five feet above the estimated seasonal high
groundwater table. The proposed design satisfies the vertical separation requirements as shown
on drawings provided with the Design Hydrogeological Report included in this Permit
Application.
2.1.4 Types of CCP
The types of CCP specified for placement in the structural fill area are anticipated to be
consistent with the CCP definition found in NCGS §130A-309.201 (4). This includes fly ash,
bottom ash, boiler slag, or flue gas desulfurization materials.
2.1.5 Estimated Placement Rates
The anticipated filling rates of 6,000 to 8,000 tons per day which equates to 130,000 to 140,000
tons per month or 1,560,000 to 1,680,000 tons per year. This material will be brought to the site
by truck, rail, or a combination thereof. Placement methods are detailed in the Operations Plan
included in this Permit Application. Based on these filling rates, an assumed CCP density of
1.25 tons per cy, and an overall CCP capacity of approximately 7.25 million cy, this structural fill
should take approximately 5.4 TO 5.8 years to complete.
2.1.6 Service Area
CCPs may come from power generation facilities located in North Carolina and South Carolina.
Initial operations will receive ash from Duke Energy's Riverbend and Sutton facilities.
Charah, Inc. | Colon Mine Site – Facility Plan
Facility Plan
9
2.1.7 Procedures for CCP Acceptance
The structural fill will only accept CCPs that it is permitted to receive. The appropriate toxicity
characteristic leaching procedure (TCLP) analyses are included in the Related Documents
section of this application. The process will be repeated if the source changes. Any load that
contains materials or CCPs that the structural fill is not allowed to accept will not be placed in
the structural fill.
2.1.8 Equipment Requirements
Equipment requirements may vary in accordance with the method or scope of structural fill
operations at any given time. Additional or different types of equipment may be provided as
necessary to enhance operational efficiency; however, in order to ensure adequate operation of
the proposed facility, arrangements shall be made to ensure that equipment is available for the
following activities.
Excavation of onsite soil
Preparing the cells for CCP reception
Spreading and compacting the CCP
Moisture conditioning the CCP or structural fill
Excavating and transporting cover soil
Spreading and compacting cover soil
Site maintenance, dust control, and clean-up work
The equipment onsite is currently used to manage mining operations. When the proposed
structural fill is ready to accept CCPs, the equipment will use the procedures and techniques for
spreading, compacting, and covering CCPs outlined in the Operations Plan included in this
Permit Application. In the event the amount of CCP placement increases significantly, the need
for additional equipment will be evaluated. Additional equipment may be rented to accommodate
short term needs or purchased to accommodate increased CCP placement rates.
2.2 Containment and Environmental Control Systems
The base liner and final cap system will be constructed in accordance with NCGS §130A-
309.216.
2.2.1 Base Liner System
The purpose of the base liner system is to contain CCPs within the structural fill and prevent
groundwater contamination by the CCPs. The base liner area for the structural fill is
approximately 118 acres and is shown on Sheet No. 00C-03, Top of Liner. The post-settlement
bottom elevation of the ash GCL liner will meet the minimum requirement of fourfive feet above
the seasonal high groundwater table. North Carolina law allows two different types of baseliner
systems. The following describes the components of the regulatory base liner system options
from top down and as shown on the drawings.
2.2.1.1 COMPOSITE BASE LINER SYSTEM OPTION 1
60 mil HDPE geosynthetic liner
24 inches of compacted soil liner with a permeability of 1 x 10-7 cm/sec
Charah, Inc. | Colon Mine Site – Facility Plan
Facility Plan
10
2.2.1.2 COMPOSITE BASE LINER SYSTEM OPTION 2
60 mil HDPE geosynthetic liner
geosynthetic clay liner
18 inches of compacted soil liner with a permeability of 1 x 10-5 cm/sec
Option 2 was used as the basis of design for this permit application.
2.2.2 Final Cap System
The purpose of the final cap system is to contain CCP within the structural fill, prevent exposure
of CCP, prevent infiltration into the structural fill, minimize erosion, and prevent stormwater from
contacting CCP. The total area for the final cap system for the structural fill is approximately 118
acres (see Sheet 00C-04, Reclamation Plan). There are two proposed final cap system designs:
a soil and geomembrane cap system option and a soil, geocomposite drainage layer and
geomembrane cap system option. Each cap system has a top design and a side slope design.
The components of the two proposed final cap systems are shown in Tables 2 and 3 below. The
soil permeabilities are shown on the drawings.
Table 2 Final Cap System Design: Soil and Geomembrane Option
2% Top Design 4:1 Sideslope Design
6 inches topsoil 6 inches topsoil
12 inches low permeable soil layer 12 inches low permeable soil layer
24 inches unclassified soil layer 12 inches unclassified soil layer
30 inches drainage soil layer 18 inches drainage soil layer
40 mil polyethylene geomembrane 40 mil polyethylene geomembrane
Table 3 Final Cap System: Soil, Geocomposite Drainage Layer and Geomembrane Option
2% Top Design 4:1 Sideslope Design
6 inches topsoil 6 inches topsoil
66 inches soil layer 42 inches soil layer
250 mil geocomposite drainage layer 250 mil geocomposite drainage layer
40 mil polyethylene geomembrane 40 mil polyethylene geomembrane
2.2.3 Drainage, Erosion and Sediment Control
The erosion and sediment control structures are designed and maintained to manage the run-off
generated by the 25-year storm event, convey it to the sediment basins, and conform to the
requirements of the Sedimentation Pollution Control Law. Sediment basins were designed to
pass contain the 1025-year 24-hour design storm without employing use of the emergency
spillways. Additional routing was performed to confirm that the emergency spillways can
successfully pass the 25-year and 100-year storm events.
As part of the final cap system, diversion berms, side slope swales, and slope drains will be
constructed to intercept run-off and prevent erosion. The side slope swales and diversion berms
will be longitudinally sloped will carry run-off to slope drains that discharge into a perimeter
channel. Channels will direct stormwater flow to sediment basins within the property.
Charah, Inc. | Colon Mine Site – Facility Plan
Facility Plan
12
Based on the topography shown on Sheet 00C-01, Existing Conditions, approximately 1.83
million cy of cut and 250,000 cy of fill are anticipated to construct the structural fill basegrades,
perimeter berms, and perimeter roads. This represents an excess of approximately 1.58 million
cy of soil that can be used for liner system or final cover construction if the soil meets the
applicable specifications. Soils unsuitable for these uses can be stockpiled for operations or
sold under the existing mining permit. Since Table 4 indicates that approximately 1.4 million cy
will be required for the base system and closure, a net soil surplus of approximately 180,000 cy
is anticipated, assuming all the soils onsite are suitable for use in the construction. Should there
be a deficit in soils, the soil necessary to compensate for this deficit will be obtained from onsite
borrow areas unidentified at this time or offsite sources. Two areas on Sheet 00C-02, Base
Grade Plan, identified locations for potential future stockpiling of onsite soils. Erosion and
sedimentation controls will be designed and permitted and any other necessary permits will be
obtained prior to construction.
2.4 Leachate Management
The leachate management system includes features for collection, storage and disposal of
leachate.
2.4.1 Leachate Collection System
NCGS §130A-309.216 (b) (2) mandates that, “[a] leachate collection system, which is
constructed directly above the base liner and shall be designed to effectively collect and remove
leachate from the project.” The base liner system will be constructed to maintain positive
drainage post settlement to encourage leachate to drain to the sump.
The general leachate management system includes the collection, storage, treatment, and
disposal of the leachate generated. The collection of leachate will be facilitated within the
structural fill by the geocomposite drainage layer located directly on top of the base liner system
and the use of perforated HDPE pipe laterals and header designed to hydraulically convey
leachate to sump areas, which will contain submersible pumps. From there, leachate will be
pumped through a solid wall HDPE forcemain to a leachate storage tank that will be located at
the site. Clean-out riser pipes will be provided as shown on the drawings to allow for cleaning as
necessary.
Leachate storage is provided in a 250,0001,000,000 gallon storage tank with a secondary
containment. Leachate storage may be managed in the structural fill as needed for periods not
exceeding 72 hours.
The Operator will dispose of the leachate properly at a wastewater treatment plant and will
obtain a discharge permit and/or a pump and haul permit for the leachate.
2.4.2 Leachate Generation Rates
Leachate is generated from a couple of sources: the liquids present in the ash at the time of
placement and stormwater that infiltrates the CCP. Disposal of large quantities of liquid is
currently prohibited in structural fills and unless it has rained during collection, most CCP is
relatively dry; therefore, the majority of all leachate is derived from precipitation. Operations can
Charah, Inc. | Colon Mine Site – Facility Plan
Facility Plan
13
greatly influence the diversion of precipitation from the placed CCP and hence impact the
amount entering the system to be collected as leachate at some future date.
Construction of structural fill will result in a total lined area of approximately 118 acres. For the
largest a subcell 15.331.9 acres in size and using an estimated leachate generation rate of
43,76178,144 cubic feet per acre per year as determined through HELP Model runs (see
Calculations section of this Permit Application), a typical daily generation rate of 13,72151,085
gallons per day is anticipated. A 2501,000,000 gallon leachate storage tank represents
approximately 18 23.5 days of storage capacity for the entire structural fill in operation. Storage
capacity is also available within the subcell.
Based on information provided by Charah, the leachate/contact water discharged from the
Asheville airport site to the Buncombe County Metropolitan Sewer District (MSD) has averaged
1,418,000 gallons per month for Area 3 (30.8 acres) or 46,039 gallons per acre per month. This
average includes varying surface conditions across the Area 3 containment area from open
areas where all rainwater becomes contact water to areas that are above grade and covered
with soil thereby diverting clean rain water to the sediment basins.
The HELP Model results included in the Calculations section of the Permit Application estimates
an average annual flow rate of 43,76059,786 cubic feet (327,325447,200 gallons) per acre
assuming a 20 foot thick layer of ash across the acre. However, the worst case condition for
leachate handling would be contact water from a storm event immediately upon activating an
area. A 225-year 24-hour storm event was selected as the design storm since the largest
subcell (15.3 acres) will take approximately five months to floor in the area with 20 feet of ash at
the lower placement rate of 1,560,000 tons per year. The 2-year storm eventwhich for the area
is 3.66.28 inches. This equates to approximately 1,495,5551,023,000 gallons within the
largestover a 6 acre subcell area or 97,749 gallons per. The leachate pipes as shown in the
Pipe Sizing calculation of the Leachate Calculation section have been designed to reduce the
head on the liner system to below 30 cm convey for this storm event within 5.5 days 72 hours.
The subcell divider berms have been designed to store the entire storm event as shown in the
Stormwater Calculation section. The leachate/contact water from each subcell will be piped to
the sump in solid pipes, out to the leachate tank, and then pumped to the treatment plant.
2.4.3 Leachate Management Systems
2.4.3.1 LEACHATE PIPELINE OPERATING CAPACITY
The 8-inch diameter design for the leachate collection laterals and headers is sufficient to drain
leachate and allow for pipe cleaning and video recording. The maximum drainage length is 950
feet, as modeled on a two percent slope. The required maximum drainage length will vary as
the slope of the base liner varies. Leachate pipe spacing should be verified prior to leachate
pipe placement. HDPE pipe will be used due to its chemical resistance to corrosion from
leachate. The thickness and other physical properties of the pipe were selected to provide
adequate structural strength to support the maximum static and dynamic loads and stresses
imposed by the overlying materials and any equipment used in construction and operation of the
structural fill.
Charah, Inc. | Colon Mine Site – Facility Plan
Facility Plan
14
The material surrounding the leachate collection pipes will consist of a coarse aggregate
installed to provide a direct conduit between the pipe and CCP. The aggregate will be
chemically compatible with the leachate generated and will be placed to provide adequate
support to the pipes.
Calculations for various materials and conditions are included in the Calculations portion this
Permit Application.
2.4.3.2 CAPACITY OF STORAGE AND TREATMENT FACILITIES
The primary leachate disposal will via private sewer line to a wastewater treatment plant. A
discharge permit is currently being sought and will be provided prior to operation of the system
2.4.3.3 FINAL DISPOSAL PLANS AND DISCHARGE LIMITS
Leachate will be hauled by tanker trucks for disposal at a wastewater treatment plant. A
discharge permit has not yet been obtained from a wastewater treatment plant. A copy of the
discharge permit for the leachate will be included in the Operations Plan. The industrial discharge
permit will be provided prior to the placement of ash within the structural fill. A pump and haul
permit may also be obtained.
2.5 Landowner Statement
NCGS §130A-309.215 (b) (1) e. requires that this permit application include a signed and dated
statement by the owner of the land on which the structural fill is to be placed, acknowledging
and consenting to the use of CCP as structural fill on the property and agreeing to record the fill
in accordance with the requirements of G.S. 130A-[309].219. The Landowner Statement can be
found in Appendix A of this Facility Plan.
2.6 Generator Contact Information
In accordance with NCGS §130A-309.215 (b) (1) f., the name, address, and contact information
for the generator of the CCP is provided in Appendix B. Initial generators listed are Duke
Energy's Riverbend and Sutton facilities. This information will be updated if new generators or
new sources of CCP will be used as structural fill at the site.
2.7 Coal Combustion Product Generation Location
In accordance with NCGS §130A-309.215 (b) (1) g. the physical location of the project at which
the CCP were generated is provided in Appendix B. This information will be updated if new
generators or new sources of CCP will be used as structural fill at the site.
This page intentionally left blank.
Engineering Plan
Colon Mine Site
Structural Fill
Charah, Inc.
Sanford, NC
November 2014
Revised December 2014
Revised March 2015
Charah, Inc. | Colon Mine Site – Engineering Plan
Base Liner System Design
2
Boring logs from the Design Hydrogeological Report were used to determine the soil types,
depths and SPT values for each well and piezometer location within the structural fill footprint.
Proposed base grades, final grades, and water table elevations were determined at each well
and piezometer location. The existing vertical stress was calculated in each soil layer based on
laboratory test data obtained for the foundation soils and published information for similar
materials. The structural fill loading due to CCP and final cover was also determined using
laboratory test data provided for compacted CCP obtained from the Riverbend Steam Station in
Mount Holly, North Carolina. The total settlement was calculated using standard equations for
elastic settlement and primary and secondary consolidation settlement as appropriate for the
types of soils encountered at each location. The controlling surface (bedrock or water) was
determined and the post settlement separation of the base grade from the controlling surface
was verified. Also determined was the post settlement slope of the base grade. The pre- and
post-settlement average slopes at several locations were analyzed for local settlement based on
the anticipated loading and the boring log information. The calculations indicated positive
drainage toward the leachate sumps would be maintained after settlement.
3 Base Liner System Design
In accordance with NCGS §130A-309.216 a base liner consisting of one of two liner systems
are allowed for CCP structural fills.
3.1 Base Liner System 1
A composite liner that consists of two components: a geomembrane liner installed above
and in direct and uniform contact with a compacted clay liner with a minimum thickness
of 24 inches (0.61 m) and a permeability of no more than 1.0 x 10-7 centimeters per
second.
3.2 Base Liner System 2
A composite liner that consists of three components: a geomembrane liner installed
above and in uniform contact with a geosynthetic clay liner overlying a compacted clay
liner with a minimum thickness of 18 inches (0.46 m) and a permeability of no more than
1.0 x 10-5 centimeters per second.
For the purposes of this Permit Application, Base Liner System 2 has been shown in the
calculations; however, either liner system is allowed.
4 Leachate Management System Details
The general leachate management system includes the collection, storage, treatment, and
disposal of the leachate generated. The collection of leachate will be facilitated within the
structural fill by use of a series of interconnected perforated and solid HDPE pipe laterals and
headers designed to hydraulically convey leachate to a sump area along with a geocomposite
that covers the geomembrane barrier layer. The leachate collection pipes are surrounded by
stone and geotextile. The solid and perforated pipes contain valves to allow the pipes to convey
either segregate stormwater or and leachate depending on whether the subcell has received
Charah, Inc. | Colon Mine Site – Engineering Plan
Stormwater Segregation Features
3
CCP. In addition to the valves each subcell divider berm will have a rain flap welded to the
bottom geomembrane. When the Operator is ready to activate a subcell for CCP placement the
valves will be opened and the rain flap removed to allow leachate to flow downstream to a sump
area that will contain two submersible pumps. There are three sump locations with pumps
installed in HDPE riser pipes that will pump the leachate into a forcemain which discharges to a
leachate storage tank to be located south of Cell 1. The leachate will then be pumped from the
tank to the receiving treatment plant or into trucks for hauling to and disposal at the local
treatment plant. Depending on availability, the leachate may be discharged directly to the
sanitary sewer system.
Clean-out riser pipes will be provided for each lateral and header as shown on the drawings to
allow for periodic cleaning and maintenance. The leachate collection system has been designed
to manage a 225-year, 24 hour storm event during an open subcell condition and has been
modeled through the HELP model for prediction of long term leachate generated at varying
stages of fill.
5 Stormwater Segregation Features
In order to minimize leachate generation during initial filling, stormwater will be segregated by
using subcell divider berms, pipes, and a rain flap over the divider berms. The subcell divider
berms have been sized to manage a 225-year 24-hour storm. The stormwater that is collected
in the subcells will be pumped out to the perimeter channel. Stormwater that is in contact with
the CCP structural fill will be collected and handled as leachate. As filling progresses, the areas
where CCP has reached final grade will be covered with intermediate cover soil to minimize
leachate generation.
Site development is intended to comply with the North Carolina Sedimentation Pollution Control
Act of 1973, as amended.
The plans provide for a pre- and post-development erosion control plan that splits the onsite
drainage areas into nine separate basins during the initial grading operations. As the fill project
comes out of the ground and begins to take shape with permanent drainage, four of these initial
basins will be removed and drainage redirected to one of the five remaining basins to serve as
the final erosion control primary measures. The drainage areas for these basins range in size
from 3 to 86 acres. The ponds are designed to discharge the 1025-year storm (Type II, 24 hour)
through the principal spillways (Risers and Barrels) and are capable of passing the 100-year
storm in a controlled manner through an emergency spillway with one foot of freeboard.
Initial development will include the installation of all perimeter erosion control measures
(construction entrance, silt fence, tree protection), and temporary diversion swales as necessary
to direct sediment laden run-off to the primary treatment basins. Along all sensitive boundaries
(streams and wetlands not to be disturbed), double silt fence will be installed. The ponds that
are to exist in both pre and post conditions are to be installed for the most conservative
condition and outlet protection is designed for the maximum flow that a particular basin and its
drainage area may produce.
Charah, Inc. | Colon Mine Site – Engineering Plan
Leachate/Stormwater Storage and Treatment Facilities
6
materials. A detailed description of the parameter selection process is provided in the slope
stability Calculations section of this permit application.
A search routine within PCSTABL5M was used to determine the critical sliding block surface
based on the modified Janbu method and critical circular arc surface using the modified Bishop
method. Analyses were performed under both total stress and effective stress conditions. The
estimated high groundwater potentiometric surface was also used in the analyses. Two types of
circular arc analyses were performed by adjusting the limits of the search routine. These
included global circular arc failure surfaces extending through the foundation soils and into or
beyond the perimeter berm as well as failure surfaces originating and terminating within the
CCP fill. A summary of the minimum factors of safety associated with each analysis under both
static and seismic conditions is provided in the slope stability calculations included in this permit
application. The critical analysis was determined to be the sliding block analysis along the
bottom liner system under effective stress conditions with static and seismic factors of safety of
4.33 and 3.03, respectively. All factors of safety are satisfactory and meet EPA guidelines.
Final cover veneer stability analyses were performed for both final cover options to determine
the minimum interface friction angle required for the final cover system. The analysis for Option
1, which included an 18-inch thick soil drainage layer placed directly over the final cover
geomembrane, assumed that this layer would be fully saturated due to lateral seepage. The
analysis for Option 2, which included a geocomposite placed directly over the final cover
geomembrane in lieu of the soil drainage layer used for Option 1, assumed the geocomposite
would be designed to contain the lateral seepage and therefore the overlying soil would not
become saturated. The analyses that were performed for the proposed final slope of 25%
(4H:1V) under both static and seismic conditions resulted in a minimum required interface
friction angle of 25.0 degrees for Option 1 and 20.5 degrees for Option 2. These minimum
required interface friction angles should be readily achieved using geosynthetic products readily
available in the market. Project specific interface testing, however, should be performed to
confirm that the minimum required interface friction angle can be achieved using the actual
materials that will be used during construction.
8 Leachate/Stormwater Storage and Treatment
Facilities
Determination of leachate storage capacity was based on average annual leachate collection
rate from the HELP model. The maximum average annual leachate collection calculated was
43,76178,144 cf/acre. Based on the largest subcell at 15.331.9 acres the leachate generation
volume is 669,5432,492,794 cf/year (13,72151,085 gal/day). Considering the 250,0001,000,000
gal capacity available onsite, the storage capability is approximately 18 23.5 days. Note that the
above estimate is based on average leachate generation rate and the storage capacity needed
could be significantly more if peak day leachate generation rates are used. Therefore, the owner
may need increased leachate pumping and/or trucking capabilities during peak demands.
Charah, Inc. | Colon Mine Site – Engineering Plan
Site Access
7
Determination of storage capacity is based on the 225-year, 24-hr rain event which is 3.66.28
inches. Each subcell has been analyzed for its storage capacity based on grading and the
height of the subcell divider berms. Most All subcells are capable of holding the design storm
event. The largest subcell 2 (15.3 acres) will generate 1,495,554 gals of stormwater during the
design event. Its holding capacity is 2,533,311 gals based on the containment berm height.
Subcells 1B, 4B, and 5B can manage the stormwater generated in upper subcells meaning the
owner can manage stormwater for both subcells within the lower subcell. Subcells 3B and 4D
cannot manage the stormwater from the upstream subcell and therefore should be maintained
independently.
Storage capacity onsite is governed by average leachate generation rates based on HELP
model. Since the peak storage capacity is greater than leachate subcell capacities, the methods
of filling and leachate pumping from a subcell may need to be altered to facilitate filling.
9 Site Access
Security for the site consists of fencing, gates, berms, and wooded buffers. Unauthorized
vehicle access to the site is prevented around the property by woodlands, fencing, gates, and
stormwater conveyance features.
The access road to the site is of all-weather construction and will be maintained in good
condition. Potholes, ruts, and debris on the road(s) will receive immediate attention in order to
avoid damage to vehicles.
10 Construction Practices
A test pad will be constructed of the soils proposed for use as the soil liner to determine the
construction methods necessary to achieve the design criteria.
Placement will begin by “ramping in” with material from a corner of the cell. Low ground
pressure dozers will be used to spread the material. A minimum thickness of 24 inches will be
maintained between the liner and the tracks of the spreading equipment and 24 inches above
the HDPE pipes. The CCP material will be end-dumped onto previously placed material and
then spread out by the dozer. A spotter assisting the operator will observe placement of
protective cover material to ensure that spreading is not causing excessive wrinkling or other
damage to the synthetic liner, pipes, or geocomposite drainage media. The spotter will measure
the forward edge of material placement to ensure that the proper thickness is being applied. The
contractor will confirm adequate thickness by surveying before and after placement. The
operator shall observe the top of the completed protective cover layer for a smooth, uniform
surface free of depressions or high-spots. Refer to the Technical Specifications and
Construction Quality Assurance (CQA) Plan included in this Permit Application
11 Design Hydrogeologic Report
The subsurface geology and hydrogeology beneath the proposed structural fill is detailed in the
Design Hydrogeologic Report included in this Permit Application.
This page intentionally left blank.
Operations Plan
Colon Mine Site
Structural Fill
Charah, Inc.
Sanford, NC
November 2014
Revised January 2015
Revised March 2015
Charah, Inc. | Colon Mine Site – Operations Plan
Operations Management
3
Daily Operation Record
Employee Training Records and Materials
or anything else as indicated in the Operations Plan
The above records are to be kept in the operating record for the active life of the Colon Mine
Site and the 30-year post-closure period. Information contained in the operating record must be
furnished upon request to the North Carolina Department of Environment and Natural
Resources (NCDENR). Additional records kept onsite should include the following.
Facility permit application
Facility permits
Record of the amount of structural fill placed on a monthly basis
Regulatory agency inspection reports
Construction documents
Employee training records
As-built drawings and specifications
Health & Safety Plan
Emergency Action Plan
1.11 Permit Drawings
Permit drawings are included in the structural fill permit application.
2 Operations Management
The primary objective of operations management at the Colon Mine Site is to place structural fill
in the form of CCPs in compliance with permit conditions while operating in a safe manner. Prior
to placement of CCP in a new cell, new subcell, or portion of a new subcell, the Owner will
submit to NCDENR the Construction Quality Assurance documentation for the constructed base
liner for review. Should any discrepancies be indicated, NCDENR will contact the Owner for
follow up. Placement of CCP in new cell, new subcell, or portion of a new subcell prior to
approval by NCDENR will be at the owner’s risk.
The structural fill site has been designed to provide separation of contact water from non-
contact water. Contact water is defined as water that contacts CCP material within the
geomembrane lined limits of structural fill. Contact water will be managed as leachate while
non-contact water will be managed as stormwater. Contact water and non-contact water
separation are further described in subsequent sections of this plan.
Filling operations will generally proceed from high to low to high. The working face will be limited
to as small an area as practical, at the owner’s discretion. Contact water from the active face will
be directed to the leachate collection system.
Intermediate cover will be placed as CCP fill reaches final grades to prevent contact water from
entering the stormwater control features.
Charah, Inc. | Colon Mine Site – Operations Plan
Operations Management
4
2.1 Structural Fill Placement and Sequencing
2.1.1 Structural Fill Capacity
The total anticipated airspace capacity for the Colon Mine Site is approximately 7.25million
cubic yards and is based on a proposed 118-acre fill area.
2.1.2 Structural Fill Acceptance Requirements
In accordance with NCGS §130A-309.216 (a) (2) CCPs shall be collected and transported in a
manner that will prevent nuisances and hazards to public health and safety. CCPs shall be
moisture conditioned, as necessary, and transported in covered trucks or rail cars to prevent
dusting. As such, the Colon Mine Site can accept CCPs defined as fly ash, bottom ash, boiler
slag, or flue gas desulfurization materials in NCGS §130A-309.216 (4).
In accordance with NCGS §130A-309.215 (b) (1) d, a Toxicity Characteristic Leaching
Procedure (TCLP) analysis has been performed on a representative sample from Duke
Energy’s Sutton Plant and Riverbend Steam Station CCP sources to be used in the structural fill
project. Each was analyzed for, at a minimum, the following constituents: arsenic, barium,
cadmium, lead, chromium, mercury, selenium, and silver. The TCLP results are included in the
Related Documents section of this application. TCLP tests will be performed on each new ash
source and at least annually for each source.
Asbestos containing material will not be placed in the structural fill site. In addition, the removal
of CCP structural fill material from the site is prohibited without owner approval. Structural fill will
be hauled and placed by dedicated and consistent operators.
2.1.3 Fill Sequencing
The Colon Mine Site will be developed in sequence from Cell 1 through Cell 5. CCP product will
be placed in three to five foot operational lifts, high to low to high. A conceptual schematic of fill
sequencing from high to low to high is included in the permit drawings; however, actual fill
sequencing and lift heights may be modified at the Owner’s discretion. More than one cell may
be operational at a time. The cells may are also be subdivided into subcells.
The following procedure shall be followed to activate an area for leachate collection prior to
placing CCP.
Remove all stormwater (i.e., water that has not contacted ash) ponded within the area.
Stormwater may be pumped directly into the perimeter channel.
Close the Stormwater valve. Ensure the valve is completely closed.
Open the leachate valve. Ensure the valve is opened fully.
Remove the rain flap by cutting above the weld to the sacrificial liner above the primary
geomembrane (refer detail 8 on Drawing 00C-08). Visually inspect the area to confirm
the integrity of the base liner. If the base liner appears damaged, repair it in accordance
with the technical specifications.
Charah, Inc. | Colon Mine Site – Operations Plan
Operations Management
8
Modifying operations during dry and windy conditions
The operator may use, and is not limited to, combinations of these dust control methods or any
method that is technically sound to control dust for specific site conditions. If the operator
intends to use a dust control method not presented above, the proposed dust control method
will be evaluated on a case by case basis to assess the effectiveness with specific site
conditions. For the purposes of this Operations Plan, interim cover soil will be defined as soil
material applied at a suitable thickness to provide dust control.
The effectiveness of the dust control methods implemented should be evaluated through visual
observations of dust prone areas. Equipment operators shall continuously observe the active
face and other areas within the facility for dust emissions.
If fugitive dust emissions are observed and observations indicate dust control measures are not
achieving their intended purpose, then appropriate corrective actions will be taken. Dust control
measures should be reapplied, repaired, or added, as necessary, to control dust emissions. The
operator will construct, install, apply, and/or repair dust control measures prior to the end of the
work day to control dust emissions during non-operating hours. The operator shall also
implement dust control measures as preventative controls rather than in response to fugitive
dust emissions.
A wheel wash system may be necessary to minimize dust and tracking of CCPs outside the
facility.
2.2 Leachate and Contact Water Management
In accordance with NCGS §130A-309.216 (a) (5) the CCP structural fill project will be effectively
maintained and operated as a nondischarge system to prevent discharge to surface water
resulting from the project.
As previously described, the structural fill site has been designed to provide separation of
contact water from non-contact water (stormwater). Contact water will be treated as leachate
and conveyed to the LCS. Contact water which contacts exposed CCP material within the lined
footprint will be conveyed through the LCS. Stormwater will be routed to onsite sediment basins
prior to discharge from the site.
2.2.1 Leachate Collection System
The LCS includes a synthetic composite drainage layer and leachate collection pipes with
clean-outs. Leachate generated in each cell drains by gravity via perforated header pipes to a
series of sumps and then pumped to a central lift station where it is then pumped into a
250,0001,000,000 gallon storage tank with a secondary containment. Leachate will either be
transported to a wastewater treatment plant or discharged directly into a sanitary sewer system.
All loading of leachate tankers will take place on the loading pad next to the storage tank. Prior
to loading the operator will insure that the leachate diverter valve is open on the drain pad so
any leachate that may be spilled during loading operations will drain back into the lift station.
1
Memo
Date: Sunday, March 08, 2015
Project: Charah Colon Mine
To: Michael Plummer
From: Eric Wright
Subject: HELP Model - Slope and Pipe Spacing vs Peak Head on Liner
The HELP model was run for some initial lift conditions where no runoff was allowed. Most of
the runs include a 25-year 24-hour storm event of 6.28 inches. The initial runs were done with
the default data which had a 5.22 inch storm event. The runs adjusted drainage length for a
group of slopes to maintain less than 30 cm (11.8 inches) of peak head on the liner system.
The table below summarizes the results. The HELP model runs are provided in Attachment 2 to
the Design of the Leachate Collection System narrative. These seven scenarios replace all
HELP model runs previously provided in Attachments 2 and 6 (Attachment 6 has been deleted).
Scenario HELP Model
Max
Storm
(in)
Ash
Thickness
(ft)
Lift
Thickness
(ft)
Floor
Slope
Drainage
Length
(ft)
Peak
Head
(in)
1 5-2ft lifts no runoff 0.5% 6.28 10 2 0.5% 300 9.7
2 5-2ft lifts no runoff 1% 6.28 10 2 1% 425 11.6
3 5-2ft lifts no runoff 2% 6.28 10 2 2% 600 11.6
4 5-2ft lifts no runoff 3% 6.28 10 2 3% 840 9.5
5 10-2ft lifts no runoff 2% 6.28 20 2 2% 950 0.36
6 2-20ft lifts no runoff 2% 6.28 20 20 2% 950 0.32
7 3-20ft lifts no runoff 2% 6.28 20 20 2% 950 0.26
This page intentionally left blank.
Computed: MDP Date: 3/8/15
Checked : PAW Date: 3/8/15
Page 1 of 2
Revised March 2015
Design of Leachate Collection System
The HELP model Version 3.95D is used to design the leachate collection system for the Colon
Mine Site in Sanford, NC. This section presents the design assumptions, decisions, background
data, and calculations for the water balance model. The section outlines efforts to establish
leachate generation rates and maximum hydraulic heads on the liner. The leachate generation
rates established per acre should be used to design the leachate collection and removal
system.
The structural fill liner will consist of the following components, from bottom to top.
18-inch compacted soil liner
GCL
60-mil HDPE primary liner
300-mil biplanar drainage geocomposite
HELP Model Scenarios and Input Data
Scenario 1 modeled a 10-foot depth of ash placed in five 2-foot lifts on the floor of the
0.5% liner based on a 5-year simulation period.
Scenario 2 modeled a 10-foot depth of ash placed in five 2-foot lifts on the floor of the
1.0% liner based on a 5-year simulation period.
Scenario 3 modeled a 10-foot depth of ash placed in five 2-foot lifts on the floor of the
2.0% liner based on a 5-year simulation period.
Scenario 4 modeled a 10-foot depth of ash placed in five 2-foot lifts on the floor of the
3.0% liner based on a 5-year simulation period.
Scenario 5 modeled ten 2-foot lifts based on the 2% floor of the liner on a
5-year simulation period.
Scenario 6 modeled two 20-foot lifts based on the 2% floor of the liner on a
5-year simulation period.
Scenario 7 modeled three 20-foot lifts based on 5-year simulation period.
Each scenario was modeled as a 1-acre area. A major goal for the modeling was to
demonstrate that the drainage layer capacity is not exceeded. The second aim of the modeling
was to estimate leachate production. The table in Attachment 1 provided summarizes the model
input data, and summarizes the results of the scenarios. HELP model output files for scenarios
1-7 are provided in Attachment 2.
Temperature and solar radiation data were synthetically generated using coefficients from
Raleigh, NC. Evapotranspiration data from Raleigh, NC was used in all scenarios. Sanford is
located approximately 35 miles southeast of Raleigh, NC and should be accurately represented
by weather data generated from Raleigh. Precipitation data was revised to capture the 25-year,
24-hour storm event with a rainfall of 6.28 inches in one day.
Computed: MDP Date: 3/8/15
Checked : PAW Date: 3/8/15
Page 2 of 2
Revised March 2015
Material Properties and Structural Fill Geometry
The maximum flow path for leachate in the leachate drainage layer geocomposite will vary
between 300 and 950 feet depending on the slope of the floor, at which point the leachate will
enter an interceptor perforated pipe surrounded by gravel trench for conveyance to the sumps.
Material Properties
Initial moisture content for ash after placement at the cell is set at optimum moisture content
based on proctor test data for open-fill runs. The initial moisture content for ash is set to the field
capacity of coal burning electric plant fly ash for the closed-fill runs. Refer to Attachment 4 for
physical properties of material.
Default model parameters were used for the final cover layers and subgrade. Note the
permeability for final cover layers was manually adjusted.
Structural fill base liner was modeled as material texture 35, HDPE.
Structural fill final cover liner was modeled as material texture 36, LLDPE
Pinhole density for the membrane liners was set at 1 per acre.
Installation defects were set at 1 per acre for the membrane liners, reflective of generally
good installation procedures.
Membrane liner placement quality was assumed to be “good”.
Structural fill base leachate drainage layer was modeled as material texture 34, except
the transmissivity was modified to reflect select material properties (Refer to Attachment
3). Transmissivity of the geocomposite should be determined based on site-specific ash
and loading before selecting the material for installation.
A detailed calculation of the bottom liner geocomposite’s required hydraulic conductivity is
contained in Attachment 3. The maximum overburden pressure, based on 100 pcf density and
approximately 50 foot ash/soil mixture is 5000 psf.
Model Outputs and Conclusions
The table in Attachment 1 summarizes the model outputs for each of the scenarios considered.
The model demonstrates that the proposed design will comply with applicable design standards.
More specifically:
The peak head on HDPE bottom liner in any HELP Model scenario is 11.6 inches.
Maximum leachate generated during filling is 1,822 cf/acre/day at a 3% floor slope.
Drainage length in the bottom ranges from 300 - 950 feet depending on the floor slopes.
As ash is placed the required drainage length to maintain head on the liner system
increases.
Attachment 1 (revised)
Summary of Model Input Data and Results
This page intentionally left blank.
Input Data
Scenario Scenario Scenario Scenario Scenario Scenario Scenario
12 34567
SCS runoff curve number 91.21 91.21 91.21 91.21 91.21 91.21 91.21
fraction of area allowing runoff (%) 0 0 0 0 0 0 0
area simulated (acres) 1 1 1 1 1 1 1
Ash k (cm/sec) 1.6x10^-4 1.6x10^-4 1.6x10^-4 1.6x10^-4 1.6x10^-4 1.6x10^-4 1.6x10^-4
Ash Thickness (ft)10 10 10 10 20 40 60
subgrade thickness (inches) 18 18 18 18 18 18 18
geocomposite thickness (inches) 0.26 0.26 0.26 0.26 0.26 0.26 0.26
geocomposite hydr. conductivity (cm/sec) 9.7 9.7 9.7 9.7 9.7 9.7 9.7
bottom liner drainage layer slope (%)0.5 1 2 3 2 2 2
bottom liner drainage length (feet)300 425 600 840 950 950 950
HDPE liner thickness (mils) 60 60 60 60 60 60 60
liner pinhole density (holes/acre) 1 1 1 1 1 1 1
liner installation defects (holes/acre) 1 1 1 1 1 1 1
liner placement quality good good good good good good good
recirculation? (amount recirculated) N N N N N N N
cap drainage layer thickness (inches) N/A N/A N/A N/A N/A N/A N/A
cap drainage layer k (cm/sec) N/A N/A N/A N/A N/A N/A N/A
cap liner thickness (mils) N/A N/A N/A N/A N/A N/A N/A
cap liner pinhole density (holes/acre) N/A N/A N/A N/A N/A N/A N/A
cap liner installation defects (holes/acre) N/A N/A N/A N/A N/A N/A N/A
cap liner placement quality N/A N/A N/A N/A N/A N/A N/A
number of years simulated 5 5 5 5 5 5 5
Output Data
average annual leachate collected in base liner system
collection layer (ft3)55,042 55,044 55,046 55,046 59,786 69,300 78,144
average annual head on primary base liner (inches) 0.18 0.10 0.04 0.02 0.04 0.05 0.05
peak day leachate collected in base liner system
collection layer (ft3)984 1203 1703 1822 756 674 548
peak day max head on primary base liner (inches)11.53 11.58 11.64 9.50 0.36 0.32 0.26
Parameter
Attachment 1
HELP Model Results
Charah Colon Mine
This page intentionally left blank.
Attachment 2 (replaced)
HELP Model Output Files (Scenarios 1-57)
This page intentionally left blank.
******************************************************************************
******************************************************************************
** **
** **
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** **
** HELP Version 3.95 D (10 August 2012) **
** developed at **
** Institute of Soil Science, University of Hamburg, Germany **
** based on **
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **
** **
******************************************************************************
******************************************************************************
TIME: 10.27 DATE: 8.03.2015
PRECIPITATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\SF
Charah Sanford 25 yr storm y3m8d16.d4
TEMPERATURE DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d7
SOLAR RADIATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d13
EVAPOTRANSPIRATION DATA F. 1: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d11
SOIL AND DESIGN DATA FILE 1: C:\Users\mplummer\Desktop\HELP runs\Mike's
runs\MPColon 5-2ft lifts no runoff 05% 300.d10
OUTPUT DATA FILE: C:\Users\mplummer\Desktop\HELP runs\0.5% MPRevised.out
******************************************************************************
TITLE: Coal Ash-First Lift (Five Lifts, No Runoff, 0.5% slope)
******************************************************************************
WEATHER DATA SOURCES
------------------------------------------------------------------------------
NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA
WAS ENTERED BY THE USER.
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope
Page 1 of 8
------- ------- ------- ------- ------- -------
39.60 41.60 49.30 59.50 67.20 73.90
77.70 77.00 71.00 59.70 50.00 42.00
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
AND STATION LATITUDE = 35.87 DEGREES
******************************************************************************
LAYER DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER
WERE SPECIFIED BY THE USER.
LAYER 1
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 2
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 3
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope
Page 2 of 8
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 4
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 5
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 6
--------
TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 0.26 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC
SLOPE = 0.50 PERCENT
DRAINAGE LENGTH = 300.0 FEET
LAYER 7
--------
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35
THICKNESS = 0.06 INCHES
EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE
Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope
Page 3 of 8
FML PLACEMENT QUALITY = 3 - GOOD
LAYER 8
--------
TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 17
THICKNESS = 0.25 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC
LAYER 9
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 16
THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC
******************************************************************************
GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE
GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND
A SLOPE LENGTH OF 1000. FEET.
SCS RUNOFF CURVE NUMBER = 91.21
FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES
SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL INTERCEPTION WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 44.914 INCHES
TOTAL INITIAL WATER = 44.914 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR
Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope
Page 4 of 8
******************************************************************************
EVAPOTRANSPIRATION DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
RALEIGH NORTH CAROLINA
STATION LATITUDE = 35.87 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 86
END OF GROWING SEASON (JULIAN DATE) = 310
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
AVERAGE ANNUAL WIND SPEED = 7.70 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 %
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 5
------------------------------------------------------------------------------
LAYER (INCHES) (VOL/VOL)
----- -------- ---------
1 7.0193 0.2925
2 6.3803 0.2658
3 4.8629 0.2026
4 5.4737 0.2281
5 5.6427 0.2351
6 0.0134 0.0522
7 0.0000 0.0000
8 0.1875 0.7500
9 7.5240 0.4180
TOTAL WATER IN LAYERS 37.104
SNOW WATER 0.000
INTERCEPTION WATER 0.000
TOTAL FINAL WATER 37.104
Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope
Page 5 of 8
******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1 THROUGH 5
------------------------------------------------------------------------------
(INCHES) (CU. FT.)
---------- -------------
PRECIPITATION 6.28 22796.400
RUNOFF 0.000 0.0000
DRAINAGE COLLECTED FROM LAYER 6 0.27121 984.47894
PERCOLATION/LEAKAGE THROUGH LAYER 8 0.000003 0.01162
AVERAGE HEAD ON TOP OF LAYER 7 9.696
MAXIMUM HEAD ON TOP OF LAYER 7 11.534
LOCATION OF MAXIMUM HEAD IN LAYER 6
(DISTANCE FROM DRAIN) 145.5 FEET
PERCOLATION/LEAKAGE THROUGH LAYER 9 0.000003 0.01162
SNOW WATER 1.67 6061.1177
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470
*** Maximum heads are computed using McEnroe's equations. ***
Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
******************************************************************************
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
PRECIPITATION
-------------
TOTALS 3.26 2.82 4.37 2.63 3.53 5.42
4.57 6.47 2.81 3.77 2.52 2.90
Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope
Page 6 of 8
STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99
2.29 6.38 1.69 2.69 1.66 1.28
RUNOFF
------
TOTALS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
POTENTIAL EVAPOTRANSPIRATION
----------------------------
TOTALS 1.892 2.205 3.293 4.787 6.327 6.770
7.049 5.890 4.466 3.365 2.345 1.543
STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263
0.410 0.413 0.352 0.062 0.182 0.125
ACTUAL EVAPOTRANSPIRATION
-------------------------
TOTALS 1.193 1.541 2.190 3.180 4.706 4.073
4.978 3.914 2.729 1.267 0.914 0.791
STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405
1.282 1.455 1.165 0.187 0.268 0.186
LATERAL DRAINAGE COLLECTED FROM LAYER 6
----------------------------------------
TOTALS 1.0811 1.5403 1.7096 1.2263 1.4707 1.2420
1.1218 1.0789 1.7655 1.4896 0.8001 0.6373
STD. DEVIATIONS 1.1101 1.3009 1.5602 1.1621 0.6397 0.3121
0.1513 0.3646 2.0392 1.8273 0.6202 0.4161
LATERAL DRAINAGE RECIRCULATED FROM LAYER 6 INTO L. 1
------------------------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 8
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 9
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope
Page 7 of 8
-------------------------------------------------------------------------------
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
-------------------------------------------------------------------------------
DAILY AVERAGE HEAD ON TOP OF LAYER 7
-------------------------------------
AVERAGES 0.0381 0.1849 0.0602 0.0446 0.0518 0.0452
0.0395 0.0380 1.1528 0.4241 0.0291 0.0224
STD. DEVIATIONS 0.0391 0.3145 0.0549 0.0423 0.0225 0.0113
0.0053 0.0128 2.5079 0.8954 0.0226 0.0146
*******************************************************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
INCHES CU. FEET PERCENT
------------------- ------------- ---------
PRECIPITATION 45.08 ( 10.212) 163625.9 100.00
RUNOFF 0.000 ( 0.0000) 0.00 0.000
POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19
ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827
LATERAL DRAINAGE COLLECTED 15.16304 ( 8.99294) 55041.844 33.63884
FROM LAYER 6
DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000
FROM LAYER 6 INTO L. 1
PERCOLATION/LEAKAGE THROUGH 0.00002 ( 0.00004) 0.071 0.00004
LAYER 8
AVERAGE HEAD ON TOP 0.178 ( 0.321)
OF LAYER 7
PERCOLATION/LEAKAGE THROUGH 0.00002 ( 0.00004) 0.071 0.00004
LAYER 9
CHANGE IN WATER STORAGE -1.562 ( 4.5481) -5670.26 -3.465
*******************************************************************************
*******************************************************************************
Scenario 1 - Five 2-foot Lifts; No Runoff; 0.5% Slope
Page 8 of 8
******************************************************************************
******************************************************************************
** **
** **
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** **
** HELP Version 3.95 D (10 August 2012) **
** developed at **
** Institute of Soil Science, University of Hamburg, Germany **
** based on **
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **
** **
******************************************************************************
******************************************************************************
TIME: 9.48 DATE: 8.03.2015
PRECIPITATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\SF
Charah Sanford 25 yr storm y3m8d16.d4
TEMPERATURE DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d7
SOLAR RADIATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d13
EVAPOTRANSPIRATION DATA F. 1: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d11
SOIL AND DESIGN DATA FILE 1: C:\Users\mplummer\Desktop\HELP runs\Eric's
Runs\MPColon 5-2ft lifts no runoff 1%425.d10
OUTPUT DATA FILE: C:\Users\mplummer\Desktop\HELP runs\1.0% MPRevised.out
******************************************************************************
TITLE: Coal Ash-First Lift (Ten 2-foot Lifts, No Runoff, 1% slope)
******************************************************************************
WEATHER DATA SOURCES
------------------------------------------------------------------------------
NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA
WAS ENTERED BY THE USER.
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope
Page 1 of 8
------- ------- ------- ------- ------- -------
39.60 41.60 49.30 59.50 67.20 73.90
77.70 77.00 71.00 59.70 50.00 42.00
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
AND STATION LATITUDE = 35.87 DEGREES
******************************************************************************
LAYER DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER
WERE SPECIFIED BY THE USER.
LAYER 1
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 2
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 3
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope
Page 2 of 8
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 4
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 5
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 6
--------
TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 0.26 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC
SLOPE = 1.00 PERCENT
DRAINAGE LENGTH = 425.0 FEET
LAYER 7
--------
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35
THICKNESS = 0.06 INCHES
EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE
Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope
Page 3 of 8
FML PLACEMENT QUALITY = 3 - GOOD
LAYER 8
--------
TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 17
THICKNESS = 0.25 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC
LAYER 9
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 16
THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC
******************************************************************************
GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE
GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND
A SLOPE LENGTH OF 1000. FEET.
SCS RUNOFF CURVE NUMBER = 91.21
FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES
SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL INTERCEPTION WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 44.914 INCHES
TOTAL INITIAL WATER = 44.914 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR
Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope
Page 4 of 8
******************************************************************************
EVAPOTRANSPIRATION DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
RALEIGH NORTH CAROLINA
STATION LATITUDE = 35.87 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 86
END OF GROWING SEASON (JULIAN DATE) = 310
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
AVERAGE ANNUAL WIND SPEED = 7.70 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 %
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 5
------------------------------------------------------------------------------
LAYER (INCHES) (VOL/VOL)
----- -------- ---------
1 7.0193 0.2925
2 6.3803 0.2658
3 4.8629 0.2026
4 5.4737 0.2281
5 5.6427 0.2351
6 0.0102 0.0400
7 0.0000 0.0000
8 0.1875 0.7500
9 7.5240 0.4180
TOTAL WATER IN LAYERS 37.101
SNOW WATER 0.000
INTERCEPTION WATER 0.000
TOTAL FINAL WATER 37.101
Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope
Page 5 of 8
******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1 THROUGH 5
------------------------------------------------------------------------------
(INCHES) (CU. FT.)
---------- -------------
PRECIPITATION 6.28 22796.400
RUNOFF 0.000 0.0000
DRAINAGE COLLECTED FROM LAYER 6 0.33137 1202.88806
PERCOLATION/LEAKAGE THROUGH LAYER 8 0.000003 0.00928
AVERAGE HEAD ON TOP OF LAYER 7 8.229
MAXIMUM HEAD ON TOP OF LAYER 7 11.579
LOCATION OF MAXIMUM HEAD IN LAYER 6
(DISTANCE FROM DRAIN) 125.9 FEET
PERCOLATION/LEAKAGE THROUGH LAYER 9 0.000003 0.00928
SNOW WATER 1.67 6061.1177
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470
*** Maximum heads are computed using McEnroe's equations. ***
Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
******************************************************************************
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
PRECIPITATION
-------------
TOTALS 3.26 2.82 4.37 2.63 3.53 5.42
4.57 6.47 2.81 3.77 2.52 2.90
Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope
Page 6 of 8
STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99
2.29 6.38 1.69 2.69 1.66 1.28
RUNOFF
------
TOTALS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
POTENTIAL EVAPOTRANSPIRATION
----------------------------
TOTALS 1.892 2.205 3.293 4.787 6.327 6.770
7.049 5.890 4.466 3.365 2.345 1.543
STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263
0.410 0.413 0.352 0.062 0.182 0.125
ACTUAL EVAPOTRANSPIRATION
-------------------------
TOTALS 1.193 1.541 2.190 3.180 4.706 4.073
4.978 3.914 2.729 1.267 0.914 0.791
STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405
1.282 1.455 1.165 0.187 0.268 0.186
LATERAL DRAINAGE COLLECTED FROM LAYER 6
----------------------------------------
TOTALS 1.0875 1.5479 1.6994 1.2303 1.4695 1.2391
1.1239 1.0751 1.9755 1.2807 0.7978 0.6370
STD. DEVIATIONS 1.1199 1.3097 1.5510 1.1613 0.6345 0.3115
0.1497 0.3632 2.5108 1.3641 0.6164 0.4172
LATERAL DRAINAGE RECIRCULATED FROM LAYER 6 INTO L. 1
------------------------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 8
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 9
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope
Page 7 of 8
-------------------------------------------------------------------------------
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
-------------------------------------------------------------------------------
DAILY AVERAGE HEAD ON TOP OF LAYER 7
-------------------------------------
AVERAGES 0.0271 0.0425 0.0424 0.0317 0.0366 0.0319
0.0280 0.0268 0.8151 0.0319 0.0206 0.0159
STD. DEVIATIONS 0.0279 0.0362 0.0387 0.0299 0.0158 0.0080
0.0037 0.0091 1.7732 0.0340 0.0159 0.0104
*******************************************************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
INCHES CU. FEET PERCENT
------------------- ------------- ---------
PRECIPITATION 45.08 ( 10.212) 163625.9 100.00
RUNOFF 0.000 ( 0.0000) 0.00 0.000
POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19
ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827
LATERAL DRAINAGE COLLECTED 15.16367 ( 8.99710) 55044.137 33.64024
FROM LAYER 6
DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000
FROM LAYER 6 INTO L. 1
PERCOLATION/LEAKAGE THROUGH 0.00001 ( 0.00002) 0.039 0.00002
LAYER 8
AVERAGE HEAD ON TOP 0.096 ( 0.161)
OF LAYER 7
PERCOLATION/LEAKAGE THROUGH 0.00001 ( 0.00002) 0.039 0.00002
LAYER 9
CHANGE IN WATER STORAGE -1.563 ( 4.5465) -5672.52 -3.467
*******************************************************************************
*******************************************************************************
Scenario 2 - Five 2-foot Lifts; No Runoff; 1% Slope
Page 8 of 8
******************************************************************************
******************************************************************************
** **
** **
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** **
** HELP Version 3.95 D (10 August 2012) **
** developed at **
** Institute of Soil Science, University of Hamburg, Germany **
** based on **
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **
** **
******************************************************************************
******************************************************************************
TIME: 9.58 DATE: 8.03.2015
PRECIPITATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\SF
Charah Sanford 25 yr storm y3m8d16.d4
TEMPERATURE DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d7
SOLAR RADIATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d13
EVAPOTRANSPIRATION DATA F. 1: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d11
SOIL AND DESIGN DATA FILE 1: C:\Users\mplummer\Desktop\HELP runs\MP Colon 5-2ft
lifts no runoff 2%.d10
OUTPUT DATA FILE: C:\Users\mplummer\Desktop\HELP runs\2.0% MPRevised.out
******************************************************************************
TITLE: Coal Ash-First Lift (Five 2-foot Lifts, No Runoff)
******************************************************************************
WEATHER DATA SOURCES
------------------------------------------------------------------------------
NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA
WAS ENTERED BY THE USER.
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope
Page 1 of 8
------- ------- ------- ------- ------- -------
39.60 41.60 49.30 59.50 67.20 73.90
77.70 77.00 71.00 59.70 50.00 42.00
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
AND STATION LATITUDE = 35.87 DEGREES
******************************************************************************
LAYER DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER
WERE SPECIFIED BY THE USER.
LAYER 1
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 2
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 3
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope
Page 2 of 8
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 4
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 5
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 6
--------
TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 0.26 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 600.0 FEET
LAYER 7
--------
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35
THICKNESS = 0.06 INCHES
EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE
Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope
Page 3 of 8
FML PLACEMENT QUALITY = 3 - GOOD
LAYER 8
--------
TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 17
THICKNESS = 0.25 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC
LAYER 9
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 16
THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC
******************************************************************************
GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE
GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND
A SLOPE LENGTH OF 1000. FEET.
SCS RUNOFF CURVE NUMBER = 91.21
FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES
SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL INTERCEPTION WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 44.914 INCHES
TOTAL INITIAL WATER = 44.914 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR
Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope
Page 4 of 8
******************************************************************************
EVAPOTRANSPIRATION DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
RALEIGH NORTH CAROLINA
STATION LATITUDE = 35.87 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 86
END OF GROWING SEASON (JULIAN DATE) = 310
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
AVERAGE ANNUAL WIND SPEED = 7.70 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 %
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 5
------------------------------------------------------------------------------
LAYER (INCHES) (VOL/VOL)
----- -------- ---------
1 7.0193 0.2925
2 6.3803 0.2658
3 4.8629 0.2026
4 5.4737 0.2281
5 5.6427 0.2351
6 0.0080 0.0313
7 0.0000 0.0000
8 0.1875 0.7500
9 7.5240 0.4180
TOTAL WATER IN LAYERS 37.098
SNOW WATER 0.000
INTERCEPTION WATER 0.000
TOTAL FINAL WATER 37.098
Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope
Page 5 of 8
******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1 THROUGH 5
------------------------------------------------------------------------------
(INCHES) (CU. FT.)
---------- -------------
PRECIPITATION 6.28 22796.400
RUNOFF 0.000 0.0000
DRAINAGE COLLECTED FROM LAYER 6 0.46927 1703.43982
PERCOLATION/LEAKAGE THROUGH LAYER 8 0.000002 0.00739
AVERAGE HEAD ON TOP OF LAYER 7 6.946
MAXIMUM HEAD ON TOP OF LAYER 7 11.642
LOCATION OF MAXIMUM HEAD IN LAYER 6
(DISTANCE FROM DRAIN) 97.0 FEET
PERCOLATION/LEAKAGE THROUGH LAYER 9 0.000002 0.00739
SNOW WATER 1.67 6061.1177
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470
*** Maximum heads are computed using McEnroe's equations. ***
Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
******************************************************************************
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
PRECIPITATION
-------------
TOTALS 3.26 2.82 4.37 2.63 3.53 5.42
4.57 6.47 2.81 3.77 2.52 2.90
Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope
Page 6 of 8
STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99
2.29 6.38 1.69 2.69 1.66 1.28
RUNOFF
------
TOTALS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
POTENTIAL EVAPOTRANSPIRATION
----------------------------
TOTALS 1.892 2.205 3.293 4.787 6.327 6.770
7.049 5.890 4.466 3.365 2.345 1.543
STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263
0.410 0.413 0.352 0.062 0.182 0.125
ACTUAL EVAPOTRANSPIRATION
-------------------------
TOTALS 1.193 1.541 2.190 3.180 4.706 4.073
4.978 3.914 2.729 1.267 0.914 0.791
STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405
1.282 1.455 1.165 0.187 0.268 0.186
LATERAL DRAINAGE COLLECTED FROM LAYER 6
----------------------------------------
TOTALS 1.0921 1.5520 1.6936 1.2330 1.4686 1.2369
1.1256 1.0726 1.9861 1.2707 0.7960 0.6370
STD. DEVIATIONS 1.1270 1.3140 1.5478 1.1602 0.6308 0.3112
0.1489 0.3622 2.5376 1.3439 0.6135 0.4182
LATERAL DRAINAGE RECIRCULATED FROM LAYER 6 INTO L. 1
------------------------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 8
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 9
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope
Page 7 of 8
-------------------------------------------------------------------------------
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
-------------------------------------------------------------------------------
DAILY AVERAGE HEAD ON TOP OF LAYER 7
-------------------------------------
AVERAGES 0.0192 0.0301 0.0298 0.0224 0.0259 0.0225
0.0198 0.0189 0.1901 0.0224 0.0145 0.0112
STD. DEVIATIONS 0.0198 0.0256 0.0272 0.0211 0.0111 0.0057
0.0026 0.0064 0.3904 0.0237 0.0112 0.0074
*******************************************************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
INCHES CU. FEET PERCENT
------------------- ------------- ---------
PRECIPITATION 45.08 ( 10.212) 163625.9 100.00
RUNOFF 0.000 ( 0.0000) 0.00 0.000
POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19
ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827
LATERAL DRAINAGE COLLECTED 15.16413 ( 9.00048) 55045.793 33.64125
FROM LAYER 6
DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000
FROM LAYER 6 INTO L. 1
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.017 0.00001
LAYER 8
AVERAGE HEAD ON TOP 0.036 ( 0.042)
OF LAYER 7
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.017 0.00001
LAYER 9
CHANGE IN WATER STORAGE -1.563 ( 4.5454) -5674.15 -3.468
*******************************************************************************
*******************************************************************************
Scenario 3 - Five 2-foot Lifts; No Runoff; 2% Slope
Page 8 of 8
******************************************************************************
******************************************************************************
** **
** **
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** **
** HELP Version 3.95 D (10 August 2012) **
** developed at **
** Institute of Soil Science, University of Hamburg, Germany **
** based on **
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **
** **
******************************************************************************
******************************************************************************
TIME: 10.11 DATE: 8.03.2015
PRECIPITATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather Data\SF
Charah Sanford 25 yr storm y3m8d16.d4
TEMPERATURE DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d7
SOLAR RADIATION DATA FILE: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d13
EVAPOTRANSPIRATION DATA F. 1: C:\Users\mplummer\Desktop\HELP runs\Weather
Data\Charah Sanford.d11
SOIL AND DESIGN DATA FILE 1: C:\Users\mplummer\Desktop\HELP runs\Mike's
runs\MPColon 5-2ft lifts no runoff 3%.d10
OUTPUT DATA FILE: C:\Users\mplummer\Desktop\HELP runs\3.0% MPRevised.out
******************************************************************************
TITLE: Coal Ash-First Lift (Five 2-foot Lifts, No Runoff)
******************************************************************************
WEATHER DATA SOURCES
------------------------------------------------------------------------------
NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA
WAS ENTERED BY THE USER.
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope
Page 1 of 8
------- ------- ------- ------- ------- -------
39.60 41.60 49.30 59.50 67.20 73.90
77.70 77.00 71.00 59.70 50.00 42.00
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
AND STATION LATITUDE = 35.87 DEGREES
******************************************************************************
LAYER DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER
WERE SPECIFIED BY THE USER.
LAYER 1
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 2
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 3
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope
Page 2 of 8
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 4
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 5
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 6
--------
TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 0.26 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC
SLOPE = 3.00 PERCENT
DRAINAGE LENGTH = 840.0 FEET
LAYER 7
--------
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35
THICKNESS = 0.06 INCHES
EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE
Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope
Page 3 of 8
FML PLACEMENT QUALITY = 3 - GOOD
LAYER 8
--------
TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 17
THICKNESS = 0.25 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC
LAYER 9
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 16
THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC
******************************************************************************
GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE
GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND
A SLOPE LENGTH OF 1000. FEET.
SCS RUNOFF CURVE NUMBER = 91.21
FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES
SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL INTERCEPTION WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 44.914 INCHES
TOTAL INITIAL WATER = 44.914 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR
Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope
Page 4 of 8
******************************************************************************
EVAPOTRANSPIRATION DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
RALEIGH NORTH CAROLINA
STATION LATITUDE = 35.87 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 86
END OF GROWING SEASON (JULIAN DATE) = 310
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
AVERAGE ANNUAL WIND SPEED = 7.70 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 %
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 5
------------------------------------------------------------------------------
LAYER (INCHES) (VOL/VOL)
----- -------- ---------
1 7.0193 0.2925
2 6.3803 0.2658
3 4.8629 0.2026
4 5.4737 0.2281
5 5.6427 0.2351
6 0.0076 0.0299
7 0.0000 0.0000
8 0.1875 0.7500
9 7.5240 0.4180
TOTAL WATER IN LAYERS 37.098
SNOW WATER 0.000
INTERCEPTION WATER 0.000
TOTAL FINAL WATER 37.098
Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope
Page 5 of 8
******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1 THROUGH 5
------------------------------------------------------------------------------
(INCHES) (CU. FT.)
---------- -------------
PRECIPITATION 6.28 22796.400
RUNOFF 0.000 0.0000
DRAINAGE COLLECTED FROM LAYER 6 0.50193 1822.00183
PERCOLATION/LEAKAGE THROUGH LAYER 8 0.000002 0.00549
AVERAGE HEAD ON TOP OF LAYER 7 5.207
MAXIMUM HEAD ON TOP OF LAYER 7 9.504
LOCATION OF MAXIMUM HEAD IN LAYER 6
(DISTANCE FROM DRAIN) 71.8 FEET
PERCOLATION/LEAKAGE THROUGH LAYER 9 0.000002 0.00549
SNOW WATER 1.67 6061.1177
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470
*** Maximum heads are computed using McEnroe's equations. ***
Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
******************************************************************************
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
PRECIPITATION
-------------
TOTALS 3.26 2.82 4.37 2.63 3.53 5.42
4.57 6.47 2.81 3.77 2.52 2.90
Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope
Page 6 of 8
STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99
2.29 6.38 1.69 2.69 1.66 1.28
RUNOFF
------
TOTALS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
POTENTIAL EVAPOTRANSPIRATION
----------------------------
TOTALS 1.892 2.205 3.293 4.787 6.327 6.770
7.049 5.890 4.466 3.365 2.345 1.543
STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263
0.410 0.413 0.352 0.062 0.182 0.125
ACTUAL EVAPOTRANSPIRATION
-------------------------
TOTALS 1.193 1.541 2.190 3.180 4.706 4.073
4.978 3.914 2.729 1.267 0.914 0.791
STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405
1.282 1.455 1.165 0.187 0.268 0.186
LATERAL DRAINAGE COLLECTED FROM LAYER 6
----------------------------------------
TOTALS 1.0928 1.5526 1.6927 1.2334 1.4685 1.2365
1.1259 1.0721 1.9870 1.2699 0.7958 0.6370
STD. DEVIATIONS 1.1282 1.3147 1.5474 1.1600 0.6302 0.3111
0.1489 0.3620 2.5399 1.3425 0.6131 0.4184
LATERAL DRAINAGE RECIRCULATED FROM LAYER 6 INTO L. 1
------------------------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 8
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 9
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope
Page 7 of 8
-------------------------------------------------------------------------------
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
-------------------------------------------------------------------------------
DAILY AVERAGE HEAD ON TOP OF LAYER 7
-------------------------------------
AVERAGES 0.0180 0.0281 0.0278 0.0210 0.0241 0.0210
0.0185 0.0176 0.0668 0.0209 0.0135 0.0105
STD. DEVIATIONS 0.0185 0.0240 0.0254 0.0197 0.0104 0.0053
0.0024 0.0060 0.1169 0.0221 0.0104 0.0069
*******************************************************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
INCHES CU. FEET PERCENT
------------------- ------------- ---------
PRECIPITATION 45.08 ( 10.212) 163625.9 100.00
RUNOFF 0.000 ( 0.0000) 0.00 0.000
POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19
ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827
LATERAL DRAINAGE COLLECTED 15.16420 ( 9.00105) 55046.047 33.64141
FROM LAYER 6
DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000
FROM LAYER 6 INTO L. 1
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.013 0.00001
LAYER 8
AVERAGE HEAD ON TOP 0.024 ( 0.019)
OF LAYER 7
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.013 0.00001
LAYER 9
CHANGE IN WATER STORAGE -1.563 ( 4.5452) -5674.41 -3.468
*******************************************************************************
*******************************************************************************
Scenario 4 - Five 2-foot Lifts; No Runoff; 3% Slope
Page 8 of 8
******************************************************************************
******************************************************************************
** **
** **
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** **
** HELP Version 3.95 D (10 August 2012) **
** developed at **
** Institute of Soil Science, University of Hamburg, Germany **
** based on **
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **
** **
******************************************************************************
******************************************************************************
TIME: 5.14 DATE: 7.03.2015
PRECIPITATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\SF Charah Sanford 25 yr storm y3m8d16.d4
TEMPERATURE DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d7
SOLAR RADIATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d13
EVAPOTRANSPIRATION DATA F. 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d11
SOIL AND DESIGN DATA FILE 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Actual Runs\SF Colon 10-2ft lifts no runoff.d10
OUTPUT DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Actual Runs\Scenario 2 Actual.out
******************************************************************************
TITLE: Coal Ash-Second Set of Lifts (Ten 2-foot Lifts, No Runoff)
******************************************************************************
WEATHER DATA SOURCES
------------------------------------------------------------------------------
NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA
WAS ENTERED BY THE USER.
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 1 of 10
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
39.60 41.60 49.30 59.50 67.20 73.90
77.70 77.00 71.00 59.70 50.00 42.00
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
AND STATION LATITUDE = 35.87 DEGREES
******************************************************************************
LAYER DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER
WERE SPECIFIED BY THE USER.
LAYER 1
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 2
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 3
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 2 of 10
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 4
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 5
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 6
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 7
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 3 of 10
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 8
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 9
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 10
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 24.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 11
--------
TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 0.26 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 950.0 FEET
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 4 of 10
LAYER 12
--------
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35
THICKNESS = 0.06 INCHES
EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD
LAYER 13
--------
TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 17
THICKNESS = 0.25 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC
LAYER 14
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 16
THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC
******************************************************************************
GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE
GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND
A SLOPE LENGTH OF 1000. FEET.
SCS RUNOFF CURVE NUMBER = 91.21
FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 5 of 10
INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES
SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL INTERCEPTION WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 82.114 INCHES
TOTAL INITIAL WATER = 82.114 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR
******************************************************************************
EVAPOTRANSPIRATION DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
RALEIGH NORTH CAROLINA
STATION LATITUDE = 35.87 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 86
END OF GROWING SEASON (JULIAN DATE) = 310
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
AVERAGE ANNUAL WIND SPEED = 7.70 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 %
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 5
------------------------------------------------------------------------------
LAYER (INCHES) (VOL/VOL)
----- -------- ---------
1 7.0193 0.2925
2 6.3803 0.2658
3 4.8629 0.2026
4 5.4737 0.2281
5 5.6427 0.2351
6 5.7991 0.2416
7 5.9906 0.2496
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 6 of 10
8 6.1845 0.2577
9 6.2898 0.2621
10 6.3880 0.2662
11 0.0274 0.1070
12 0.0000 0.0000
13 0.1875 0.7500
14 7.5240 0.4180
TOTAL WATER IN LAYERS 67.770
SNOW WATER 0.000
INTERCEPTION WATER 0.000
TOTAL FINAL WATER 67.770
******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1 THROUGH 5
------------------------------------------------------------------------------
(INCHES) (CU. FT.)
---------- -------------
PRECIPITATION 6.28 22796.400
RUNOFF 0.000 0.0000
DRAINAGE COLLECTED FROM LAYER 11 0.20818 755.70551
PERCOLATION/LEAKAGE THROUGH LAYER 13 0.000000 0.00013
AVERAGE HEAD ON TOP OF LAYER 12 0.180
MAXIMUM HEAD ON TOP OF LAYER 12 0.357
LOCATION OF MAXIMUM HEAD IN LAYER 11
(DISTANCE FROM DRAIN) 6.8 FEET
PERCOLATION/LEAKAGE THROUGH LAYER 14 0.000000 0.00013
SNOW WATER 1.67 6061.1177
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470
*** Maximum heads are computed using McEnroe's equations. ***
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 7 of 10
Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
******************************************************************************
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
PRECIPITATION
-------------
TOTALS 3.26 2.82 4.37 2.63 3.53 5.42
4.57 6.47 2.81 3.77 2.52 2.90
STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99
2.29 6.38 1.69 2.69 1.66 1.28
RUNOFF
------
TOTALS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
POTENTIAL EVAPOTRANSPIRATION
----------------------------
TOTALS 1.892 2.205 3.293 4.787 6.327 6.770
7.049 5.890 4.466 3.365 2.345 1.543
STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263
0.410 0.413 0.352 0.062 0.182 0.125
ACTUAL EVAPOTRANSPIRATION
-------------------------
TOTALS 1.193 1.541 2.190 3.180 4.706 4.073
4.978 3.914 2.729 1.267 0.914 0.791
STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405
1.282 1.455 1.165 0.187 0.268 0.186
LATERAL DRAINAGE COLLECTED FROM LAYER 11
----------------------------------------
TOTALS 1.5868 1.3126 1.4316 1.3161 1.6209 1.4440
1.2174 1.0987 1.0178 1.4159 1.6002 1.4077
STD. DEVIATIONS 0.9632 0.9105 1.0646 0.9410 1.1035 1.1316
0.7112 0.6882 0.4925 1.0880 1.5254 0.8678
LATERAL DRAINAGE RECIRCULATED FROM LAYER 11 INTO L. 1
------------------------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 8 of 10
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 13
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 14
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-------------------------------------------------------------------------------
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
-------------------------------------------------------------------------------
DAILY AVERAGE HEAD ON TOP OF LAYER 12
-------------------------------------
AVERAGES 0.0442 0.0402 0.0399 0.0379 0.0452 0.0416
0.0339 0.0306 0.0293 0.0395 0.0461 0.0392
STD. DEVIATIONS 0.0268 0.0280 0.0297 0.0271 0.0308 0.0326
0.0198 0.0192 0.0142 0.0303 0.0439 0.0242
*******************************************************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
INCHES CU. FEET PERCENT
------------------- ------------- ---------
PRECIPITATION 45.08 ( 10.212) 163625.9 100.00
RUNOFF 0.000 ( 0.0000) 0.00 0.000
POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19
ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827
LATERAL DRAINAGE COLLECTED 16.46985 ( 8.58991) 59785.562 36.53797
FROM LAYER 11
DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000
FROM LAYER 11 INTO L. 1
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 9 of 10
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.015 0.00001
LAYER 13
AVERAGE HEAD ON TOP 0.039 ( 0.020)
OF LAYER 12
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.015 0.00001
LAYER 14
CHANGE IN WATER STORAGE -2.869 ( 8.7784) -10413.91 -6.364
*******************************************************************************
*******************************************************************************
Scenario 5 - Ten 2-foot Lifts; No Runoff; 2% Slope
Page 10 of 10
******************************************************************************
******************************************************************************
** **
** **
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** **
** HELP Version 3.95 D (10 August 2012) **
** developed at **
** Institute of Soil Science, University of Hamburg, Germany **
** based on **
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **
** **
******************************************************************************
******************************************************************************
TIME: 6.00 DATE: 7.03.2015
PRECIPITATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\SF Charah Sanford 25 yr storm y3m8d16.d4
TEMPERATURE DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d7
SOLAR RADIATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d13
EVAPOTRANSPIRATION DATA F. 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d11
SOIL AND DESIGN DATA FILE 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Actual Runs\SF Charh Colon-second lift.d10
OUTPUT DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Actual Runs\Scenario 3 (old 2) Actual.out
******************************************************************************
TITLE: Charah Colon - Two 20-foot Lifts
******************************************************************************
WEATHER DATA SOURCES
------------------------------------------------------------------------------
NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA
WAS ENTERED BY THE USER.
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope
Page 1 of 8
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
39.60 41.60 49.30 59.50 67.20 73.90
77.70 77.00 71.00 59.70 50.00 42.00
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
AND STATION LATITUDE = 35.87 DEGREES
******************************************************************************
LAYER DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER
WERE SPECIFIED BY THE USER.
LAYER 1
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 240.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 2
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 240.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 3
--------
TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 0.26 INCHES
Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope
Page 2 of 8
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 950.0 FEET
LAYER 4
--------
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35
THICKNESS = 0.06 INCHES
EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD
LAYER 5
--------
TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 17
THICKNESS = 0.25 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC
LAYER 6
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 16
THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC
******************************************************************************
GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope
Page 3 of 8
SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE
GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND
A SLOPE LENGTH OF 1000. FEET.
SCS RUNOFF CURVE NUMBER = 91.21
FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES
SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL INTERCEPTION WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 156.514 INCHES
TOTAL INITIAL WATER = 156.514 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR
******************************************************************************
EVAPOTRANSPIRATION DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
RALEIGH NORTH CAROLINA
STATION LATITUDE = 35.87 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 86
END OF GROWING SEASON (JULIAN DATE) = 310
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
AVERAGE ANNUAL WIND SPEED = 7.70 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 %
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 5
------------------------------------------------------------------------------
LAYER (INCHES) (VOL/VOL)
----- -------- ---------
1 58.8688 0.2453
2 62.4563 0.2602
3 0.0277 0.1081
Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope
Page 4 of 8
4 0.0000 0.0000
5 0.1875 0.7500
6 7.5240 0.4180
TOTAL WATER IN LAYERS 129.064
SNOW WATER 0.000
INTERCEPTION WATER 0.000
TOTAL FINAL WATER 129.064
******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1 THROUGH 5
------------------------------------------------------------------------------
(INCHES) (CU. FT.)
---------- -------------
PRECIPITATION 6.28 22796.400
RUNOFF 0.000 0.0000
DRAINAGE COLLECTED FROM LAYER 3 0.18561 673.77380
PERCOLATION/LEAKAGE THROUGH LAYER 5 0.000000 0.00012
AVERAGE HEAD ON TOP OF LAYER 4 0.160
MAXIMUM HEAD ON TOP OF LAYER 4 0.317
LOCATION OF MAXIMUM HEAD IN LAYER 3
(DISTANCE FROM DRAIN) 11.4 FEET
PERCOLATION/LEAKAGE THROUGH LAYER 6 0.000000 0.00012
SNOW WATER 1.67 6061.1177
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470
*** Maximum heads are computed using McEnroe's equations. ***
Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
******************************************************************************
Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope
Page 5 of 8
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
PRECIPITATION
-------------
TOTALS 3.26 2.82 4.37 2.63 3.53 5.42
4.57 6.47 2.81 3.77 2.52 2.90
STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99
2.29 6.38 1.69 2.69 1.66 1.28
RUNOFF
------
TOTALS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
POTENTIAL EVAPOTRANSPIRATION
----------------------------
TOTALS 1.892 2.205 3.293 4.787 6.327 6.770
7.049 5.890 4.466 3.365 2.345 1.543
STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263
0.410 0.413 0.352 0.062 0.182 0.125
ACTUAL EVAPOTRANSPIRATION
-------------------------
TOTALS 1.193 1.541 2.190 3.180 4.706 4.073
4.978 3.914 2.729 1.267 0.914 0.791
STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405
1.282 1.455 1.165 0.187 0.268 0.186
LATERAL DRAINAGE COLLECTED FROM LAYER 3
----------------------------------------
TOTALS 1.9890 1.6404 2.2497 1.5015 1.3223 1.2119
1.6952 1.4709 1.5327 1.1494 1.5154 1.8126
STD. DEVIATIONS 0.6801 0.6694 1.2875 1.0303 1.0225 1.0078
0.7345 1.0940 1.1075 0.8121 0.7054 0.9298
LATERAL DRAINAGE RECIRCULATED FROM LAYER 3 INTO L. 1
------------------------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 5
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope
Page 6 of 8
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 6
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-------------------------------------------------------------------------------
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
-------------------------------------------------------------------------------
DAILY AVERAGE HEAD ON TOP OF LAYER 4
-------------------------------------
AVERAGES 0.0554 0.0502 0.0627 0.0432 0.0369 0.0349
0.0473 0.0410 0.0441 0.0320 0.0437 0.0505
STD. DEVIATIONS 0.0190 0.0203 0.0359 0.0297 0.0285 0.0290
0.0205 0.0305 0.0319 0.0226 0.0203 0.0259
*******************************************************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
INCHES CU. FEET PERCENT
------------------- ------------- ---------
PRECIPITATION 45.08 ( 10.212) 163625.9 100.00
RUNOFF 0.000 ( 0.0000) 0.00 0.000
POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19
ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827
LATERAL DRAINAGE COLLECTED 19.09096 ( 8.58853) 69300.180 42.35283
FROM LAYER 3
DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000
FROM LAYER 3 INTO L. 1
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.015 0.00001
LAYER 5
AVERAGE HEAD ON TOP 0.045 ( 0.020)
OF LAYER 4
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.015 0.00001
LAYER 6
Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope
Page 7 of 8
CHANGE IN WATER STORAGE -5.490 ( 15.0323) -19928.54 -12.179
*******************************************************************************
*******************************************************************************
Scenario 6 - Two 20-foot Lifts; No Runoff; 2% Slope
Page 8 of 8
******************************************************************************
******************************************************************************
** **
** **
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** **
** HELP Version 3.95 D (10 August 2012) **
** developed at **
** Institute of Soil Science, University of Hamburg, Germany **
** based on **
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **
** **
******************************************************************************
******************************************************************************
TIME: 6.12 DATE: 7.03.2015
PRECIPITATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\SF Charah Sanford 25 yr storm y3m8d16.d4
TEMPERATURE DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d7
SOLAR RADIATION DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d13
EVAPOTRANSPIRATION DATA F. 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Charah Sanford.d11
SOIL AND DESIGN DATA FILE 1: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Actual Runs\SF Charah Colon-third lift.d10
OUTPUT DATA FILE: C:\Users\sfutrell\Desktop\Sanford Reruns\After 4
Reruns\Actual Runs\Scenario 4 (old 3) Actual.out
******************************************************************************
TITLE: Charah Colon- Three 20-ft Lifts
******************************************************************************
WEATHER DATA SOURCES
------------------------------------------------------------------------------
NOTE: PRECIPITATION DATA FOR RALEIGH NORTH CAROLINA
WAS ENTERED BY THE USER.
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope
Page 1 of 8
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
39.60 41.60 49.30 59.50 67.20 73.90
77.70 77.00 71.00 59.70 50.00 42.00
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR RALEIGH NORTH CAROLINA
AND STATION LATITUDE = 35.87 DEGREES
******************************************************************************
LAYER DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER
WERE SPECIFIED BY THE USER.
LAYER 1
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 240.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 2
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 240.00 INCHES
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 3
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 240.00 INCHES
Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope
Page 2 of 8
POROSITY = 0.5410 VOL/VOL
FIELD CAPACITY = 0.1870 VOL/VOL
WILTING POINT = 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1600E-03 CM/SEC
LAYER 4
--------
TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS = 0.26 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 9.700 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 950.0 FEET
LAYER 5
--------
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35
THICKNESS = 0.06 INCHES
EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 1.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD
LAYER 6
--------
TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 17
THICKNESS = 0.25 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.3000E-08 CM/SEC
LAYER 7
--------
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 16
THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope
Page 3 of 8
INITIAL SOIL WATER CONTENT = 0.4180 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC
******************************************************************************
GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE
GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND
A SLOPE LENGTH OF 1000. FEET.
SCS RUNOFF CURVE NUMBER = 91.21
FRACTION OF AREA ALLOWING RUNOFF = 0.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.580 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 9.738 INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE = 3.366 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 0.846 INCHES
SOIL EVAPORATION ZONE DEPTH = 18.000 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL INTERCEPTION WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 230.914 INCHES
TOTAL INITIAL WATER = 230.914 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR
******************************************************************************
EVAPOTRANSPIRATION DATA 1
------------------------------------------------------------------------------
VALID FOR 5 YEARS
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
RALEIGH NORTH CAROLINA
STATION LATITUDE = 35.87 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 86
END OF GROWING SEASON (JULIAN DATE) = 310
EVAPORATIVE ZONE DEPTH = 18.0 INCHES
AVERAGE ANNUAL WIND SPEED = 7.70 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.0 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 70.0 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 78.0 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.0 %
******************************************************************************
Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope
Page 4 of 8
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 5
------------------------------------------------------------------------------
LAYER (INCHES) (VOL/VOL)
----- -------- ---------
1 58.8688 0.2453
2 62.4563 0.2602
3 62.2274 0.2593
4 0.0191 0.0744
5 0.0000 0.0000
6 0.1875 0.7500
7 7.5240 0.4180
TOTAL WATER IN LAYERS 191.283
SNOW WATER 0.000
INTERCEPTION WATER 0.000
TOTAL FINAL WATER 191.283
******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1 THROUGH 5
------------------------------------------------------------------------------
(INCHES) (CU. FT.)
---------- -------------
PRECIPITATION 6.28 22796.400
RUNOFF 0.000 0.0000
DRAINAGE COLLECTED FROM LAYER 4 0.15094 547.92310
PERCOLATION/LEAKAGE THROUGH LAYER 6 0.000000 0.00010
AVERAGE HEAD ON TOP OF LAYER 5 0.130
MAXIMUM HEAD ON TOP OF LAYER 5 0.259
LOCATION OF MAXIMUM HEAD IN LAYER 4
(DISTANCE FROM DRAIN) 0.0 FEET
PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000000 0.00010
SNOW WATER 1.67 6061.1177
Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope
Page 5 of 8
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5112
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470
*** Maximum heads are computed using McEnroe's equations. ***
Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
******************************************************************************
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------- ------- ------- ------- ------- -------
PRECIPITATION
-------------
TOTALS 3.26 2.82 4.37 2.63 3.53 5.42
4.57 6.47 2.81 3.77 2.52 2.90
STD. DEVIATIONS 2.96 0.95 1.30 1.89 2.64 1.99
2.29 6.38 1.69 2.69 1.66 1.28
RUNOFF
------
TOTALS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
POTENTIAL EVAPOTRANSPIRATION
----------------------------
TOTALS 1.892 2.205 3.293 4.787 6.327 6.770
7.049 5.890 4.466 3.365 2.345 1.543
STD. DEVIATIONS 0.140 0.177 0.179 0.403 0.445 0.263
0.410 0.413 0.352 0.062 0.182 0.125
ACTUAL EVAPOTRANSPIRATION
-------------------------
TOTALS 1.193 1.541 2.190 3.180 4.706 4.073
4.978 3.914 2.729 1.267 0.914 0.791
STD. DEVIATIONS 0.095 0.154 0.276 0.684 1.211 1.405
1.282 1.455 1.165 0.187 0.268 0.186
LATERAL DRAINAGE COLLECTED FROM LAYER 4
----------------------------------------
TOTALS 1.7299 1.8268 1.7892 2.0809 2.3858 2.0359
Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope
Page 6 of 8
1.8881 1.6389 1.5860 1.5715 1.7124 1.2820
STD. DEVIATIONS 1.0674 0.9114 0.4574 0.8264 0.9691 0.7580
0.8076 0.9788 0.9477 0.9047 0.7171 0.9394
LATERAL DRAINAGE RECIRCULATED FROM LAYER 4 INTO L. 1
------------------------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 6
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 7
------------------------------------
TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-------------------------------------------------------------------------------
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
-------------------------------------------------------------------------------
DAILY AVERAGE HEAD ON TOP OF LAYER 5
-------------------------------------
AVERAGES 0.0482 0.0560 0.0499 0.0599 0.0665 0.0586
0.0526 0.0457 0.0457 0.0438 0.0493 0.0357
STD. DEVIATIONS 0.0298 0.0281 0.0128 0.0238 0.0270 0.0218
0.0225 0.0273 0.0273 0.0252 0.0207 0.0262
*******************************************************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5
-------------------------------------------------------------------------------
INCHES CU. FEET PERCENT
------------------- ------------- ---------
PRECIPITATION 45.08 ( 10.212) 163625.9 100.00
RUNOFF 0.000 ( 0.0000) 0.00 0.000
POTENTIAL EVAPOTRANSPIRATION 49.932 ( 0.3704) 181254.19
Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope
Page 7 of 8
ACTUAL EVAPOTRANSPIRATION 31.475 ( 1.0157) 114254.23 69.827
LATERAL DRAINAGE COLLECTED 21.52720 ( 9.29538) 78143.742 47.75758
FROM LAYER 4
DRAINAGE RECIRCULATED 0.00000 ( 0.00000) 0.000 0.00000
FROM LAYER 4 INTO L. 1
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.016 0.00001
LAYER 6
AVERAGE HEAD ON TOP 0.051 ( 0.022)
OF LAYER 5
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.016 0.00001
LAYER 7
CHANGE IN WATER STORAGE -7.926 ( 18.5106) -28772.12 -17.584
*******************************************************************************
*******************************************************************************
Scenario 7 - Three 20-foot Lifts; No Runoff; 2% Slope
Page 8 of 8
Computed: M. Plummer Date: 3/6/2015
Checked : P. Westmoreland Date: 3/8/2015
Page 1 of 2
Revised March 2015
Determination of Leachate Collection Pipe Capacity
Subject: Leachate Collection Pipe Flow Capacity for Colon Mine Site
Scope
Evaluate the maximum flow capacity of the leachate collection lines.
References
1. Merritt, F.S., Standard Handbook for Civil Engineers, 3rd Ed., McGraw-Hill, New York,
1983.
2. CP Chem Performance Pipe “Municipal & Industrial Series/IPS Pipe Data,” May 2001.
Basis
The leachate collection pipes are proposed to consist of 8-inch diameter SDR-11 HDPE
pipes. The 8-inch pipes have a nominal outer diameter (OD) equal to 8.625-inches and
an average inner diameter (ID) equal to 6.963-inches. The pipes must have adequate
flow capacity to transport the leachate to the sumps. The flow capacity should be
compared to the maximum amount of leachate expected to be generated.
Expected leachate flow rates were determined by using the Hydrologic Evaluation of
Landfill Performance (HELP) program and a 25-year, 24-hour design storm.
Results
Leachate collection and conveyance system should be designed based on 8-inch
diameter SDR 11 HDPE pipe.
Analysis
LEACHATE COLLECTION PIPE DESIGN BASED ON PEAK LEACHATE GENERATION RATE
The leachate collection pipe system capacity analysis is based upon the cell layout and
leachate collection pipe layout shown on the top of liner sheets. The leachate generation rate
used to size the leachate collection pipes was based on a HELP run consisting of 5 - 2 ft coal
combustion product (CCP) layers. The following parameters were also entered into the HELP
model.
No recirculation.
Open cell conditions.
The initial moisture content at 31%.
Drainage length was determined at varying floor slopes from 0.5 to 3%. The leachate
collection system has been designed to meet this requirement.
The results of the HELP run predict that the peak daily drainage discharging from CCP is 1,822
cf/acre (9.46 gpm per acre). The largest area draining to a leachate collection pipe is 29.4
acres. Using a maximum generation rate of 9.46 gpm per acre and an area of 29.4 acres, the
total flow rate to a collection pipe is 278.1 gpm.
Qpeak day avg = 278.1 gpm
Computed: M. Plummer Date: 3/6/2015
Checked : P. Westmoreland Date: 3/8/2015
Page 2 of 2
Revised March 2015
The following analysis illustrates the capacity of the 8-inch leachate collection lines in
relationship to slope.
Manning’s coefficient for HDPE pipe (n) is 0.009
The spreadsheet below calculates flow capacity in gpm based on Manning’s Equation for HDPE
pipes.
Qp = (1.49/n) A(RH⅔)S0.5
where: Qp = pipe capacity (gpm)
n = Manning’s roughness coefficient
RH = hydraulic radius
A = pipe cross-sectional area
S = slope of the pipe
As shown in the above table, an HDPE SDR-11, 8-inch pipe with an average inner diameter
equal to 6.963-inch at a minimum slope of 0.5% has a capacity of 383 gpm. Therefore, an 8-
inch pipe can accommodate the maximum leachate generation rate from the 29.4 acre
maximum drainage area at the Colon Mine Site.
ANALYSIS BASED ON LEACHATE/STORMWATER COLLECTION:
For initial stormwater/leachate drainage, assuming 6.28 inch depth in 24-hr 25-year storm event
for Raleigh, NC, approximately 22,796 cf/ac/day of stormwater is collected. Total volume of
stormwater/leachate collected within the largest (5.9 acre) subcell is 134,495 cf.
An 8-inch diameter pipe with 0.5% slope can convey 383 gpm. Considering a FS of 1.5
(meaning that the pipe is partially occluded), the pipe capacity is 255.3 gpm. Accordingly, a
136,778 cf (1,023,099 gallons) of storage volume will be emptied in approximately 67 hours
assuming no other rain events during that period.
ANALYSIS FOR SOLID WALL LEACHATE CONVEYANCE PIPE:
The header is designed based on the leachate generated from largest drainage area. The
largest area draining to a header pipe is approximately 29.4 acres. At 1,822 cf/day generation
rate, the header is sufficient to handle the required flow.
Project Charah Colon Mine Computed MDP Date 3/6/2015
Subject Leachate Collection Pipes Checked PAW Date 3/8/2015
Task Leachate Pipe Sizing Sheet 1 Of 2
Objective:Determine the time to drain under several design conditions.
Equations:
Pipe capacity (Q)= (D/16)8/3/n*√s Mannings Equation Q = Cd * A * (2 * g * h)0.5 Orifice Equation
Inside pipe diameter (D)= 16(Qn/√s)3/8 Q = cfs, discharge
Inside pipe diameter (D)= Doutside - 2*Doutside/SDR Cd =0.6 coefficient of discharge
Std Dimension Ratio (SDR)= Doutside/wall thickness A = sf, cross sectional area
Amount Drained = Allowable Flow/FS g = 32.2 ft/sec2, gravity
Allowable Flow = Minimum of gravity flow and orifice flow under head. h =ft, driving head (above center of the pipe)
Assumptions:
Use HDPE pipe w/ SDR =11 Pipe Size Min Factor of Safety =1.5
Manning roughness coefficient, n =0.009 HDPE Allowable design head on pipe =6 feet
7.48052 gallons/cf
86,400 sec/day
Design Event 1: Peak HELP Model flowrate
Peak Leachate flow (cf/acre/day)=1822 HELP Model analysis of Cell with 10' of fill at 3%
Largest cell, for leachate collection 29.4 acres
Peak Leachate flow 53,567 cf
Design Event 2: 25 yr storm in an open subcell
Design Storm (inches/day) =6.28 25 yr 24 hr
Largest subcell for SW drainage 5.9 acres
Design Storm event 134,499 cf Governing event
6.625 8.625 10.75 12.75 13.375 14 16
0.10% 11,288 22,811 41,041 64,687 73,492 83,011 118,517
0.20% 15,964 32,260 58,040 91,482 103,934 117,395 167,608
0.30% 19,552 39,510 71,085 112,042 127,293 143,779 205,277
0.40% 22,576 45,623 82,082 129,375 146,985 166,021 237,033
0.50% 25,241 51,008 91,770 144,646 164,334 185,618 265,011
0.60% 27,650 55,876 100,529 158,451 180,019 203,334 290,305
0.70% 29,866 60,353 108,584 171,147 194,443 219,626 313,566
0.80% 31,928 64,520 116,081 182,964 207,868 234,790 335,216
0.90% 33,864 68,434 123,122 194,062 220,477 249,032 355,550
1.00% 35,696 72,136 129,782 204,560 232,404 262,503 374,783
1.20% 39,103 79,021 142,169 224,084 254,585 287,558 410,554
1.40% 42,236 85,352 153,560 242,038 274,984 310,598 443,449
1.80% 47,891 96,780 174,121 274,446 311,802 352,185 502,824
2.00% 50,482 102,015 183,540 289,291 328,668 371,235 530,023
2.25% 53,544 108,204 194,673 306,840 348,606 393,755 562,174
2.50% 56,441 114,057 205,204 323,437 367,462 415,054 592,583
2.75% 59,195 119,624 215,220 339,224 385,398 435,312 598,664
3.00% 61,828 124,943 224,790 354,308 402,535 454,669 598,664
3.50% 66,781 134,954 242,800 382,696 422,609 461,919 598,664
4.00% 71,392 144,271 259,565 384,953 422,609 461,919 598,664
5.00% 79,819 161,300 275,733 384,953 422,609 461,919 598,664
6.00% 87,437 176,696 275,733 384,953 422,609 461,919 598,664
8.00% 100,964 178,906 275,733 384,953 422,609 461,919 598,664
Amount Drained
(cf/day)
Pi
p
e
S
l
o
p
e
Pipe Outside Diameter (inches)
Leachate Collection Pipe Calcs.xlsx Pipe Capacity 3/9/2015
Project Charah Colon Mine Computed MDP Date 3/6/2015
Subject Leachate Collection Pipes Checked PAW Date 3/8/2015
Task Leachate Pipe Sizing Sheet 2 Of 2
Pipe X-Section (sf) 0.2 0.3 0.4 0.6 0.7 0.7 0.9
6.625 8.625 10.75 12.75 13.375 14 16
0.10% 0.2 0.4 0.7 1.1 1.3 1.4 2.1
0.20% 0.3 0.6 1.0 1.6 1.8 2.0 2.9
0.30% 0.3 0.7 1.2 1.9 2.2 2.5 3.6
0.40% 0.4 0.8 1.4 2.2 2.6 2.9 4.1
0.50% 0.4 0.9 1.6 2.5 2.9 3.2 4.6
0.60% 0.5 1.0 1.7 2.8 3.1 3.5 5.0
0.70% 0.5 1.0 1.9 3.0 3.4 3.8 5.4
0.80% 0.6 1.1 2.0 3.2 3.6 4.1 5.8
0.90% 0.6 1.2 2.1 3.4 3.8 4.3 6.2
1.00% 0.6 1.3 2.3 3.6 4.0 4.6 6.5
1.20% 0.7 1.4 2.5 3.9 4.4 5.0 7.1
1.40% 0.7 1.5 2.7 4.2 4.8 5.4 7.7
1.80% 0.8 1.7 3.0 4.8 5.4 6.1 8.7
2.00% 0.9 1.8 3.2 5.0 5.7 6.4 9.2
2.25% 0.9 1.9 3.4 5.3 6.1 6.8 9.8
2.50% 1.0 2.0 3.6 5.6 6.4 7.2 10.3
2.75% 1.0 2.1 3.7 5.9 6.7 7.6 10.4
3.00% 1.1 2.2 3.9 6.2 7.0 7.9 10.4
3.50% 1.2 2.3 4.2 6.6 7.3 8.0 10.4
4.00% 1.2 2.5 4.5 6.7 7.3 8.0 10.4
5.00% 1.4 2.8 4.8 6.7 7.3 8.0 10.4
6.00% 1.5 3.1 4.8 6.7 7.3 8.0 10.4
8.00% 1.8 3.1 4.8 6.7 7.3 8.0 10.4
Conclusions:
Design storm generates greater amount of liquid to handle than is expected from the peak leachate production.
As the prefered minimum pipe size is 8" and the minimum pipe slope for the site is 0.5%
An 8 inch pipe with 0.5% slope can drain:
Design 1: The peak leachate flow volume will drain in 25.2 hours
Design 2: storm event volume will drain in 63.3 hours
Pi
p
e
S
l
o
p
e
Allowable Flow in
pipe Q (cfs)
Pipe Outside Diameter (inches)
Leachate Collection Pipe Calcs.xlsx Pipe Capacity 3/9/2015
HDR Computation Job Number 453925-235691-018 No.
Project Charah Colon Mine Computed MDP Date 3/6/2015
Subject Permit Application Checked PAW Date 3/6/2015
Task Leachate Pipe Sizing Sheet 1 Of 1
Objective:
Determine the required leachate collection pipe size based on drainage areas for each cell.
References:
2. "Elements of Urban Stormwater Design"; H. Rooney Malcom; p. I-10
Calculations:
(Ref. 2) Where:
DREQD =theoretical pipe diamter (in.) for just-full flow
Volume (ft3) = Peak Daily Volume (ft
3/acre) x Area (acre)n =Manning roughness coefficient (dimensionless)
Peak Daily Volume is from the HELP Model runs s =longitudinal slope (ft/ft)
Q =Volume/time (convert to ft3/sec)Q =Required flow volume to drain in 24 hrs. (cfs)
Inputs:
Peak Daily
Volume* =1822 12 in/foot
n =0.009 Ref. 1, Table 9.3, p. 472 (HDPE) 43,560 square feet/acre
*24 hours/day
60 min/hour
60 sec/min
Outputs:
Pipe Use Area
(AC)**
Volume
(ft3)
Q
(ft3/sec)***
Minimum
Slope DREQD (in)DACT (in)Check
Cell 1 Header 22.4 40,813 0.472 0.5%5.6 8 ok
Cell 2 Header 15.3 27,877 0.323 0.5%4.8 8 ok
Cell 3 Header 19.3 35,165 0.407 1.0%4.6 8 ok
Cell 4 Header 31.9 58,122 0.673 0.5%6.4 8 ok
Cell 5 Header 29.4 53,567 0.620 0.5%6.2 8 ok
** Denotes maximum drainage area for all laterals.
*** Assumes the entire area will be drained in a 24 hour period
Conclusion:8-inch pipe has adequate capacity at the design pipe slopes for the peak flow predicted by the HELP Model.
Peak Daily Volume from HELP model run for 10'
ash with geocomposite as lateral drainage feature.
1. "Waste Containment Systems, Waste Stabilization, and Landfills; Design and Evaluation"; Hari Sharma and Sangeeta
ft3/Ac leachate collected in 24 hours
8
3
16
s
QnDREQD
3/9/2015 HDR Engineering, Inc. of the Carolinas Leachate Pipe Sizing.xlsx
This page intentionally left blank.
HDR Computation Job Number 453925-235691-018
Project:Charah Colon Mine Computed: MDP Date: 3/6/2015
Subject:Permit Application Checked PAW Date: 3/8/2015
Task:Leachate Pipe Perforations Sheet 1Of 1
Objective Determine the perforations in the collection pipes
Ensure that pipe perforations are sufficent for pipe flows
Equations
Q = Cd * A (2 * g * h)0.5 Orifice Equation
Cd =0.6 Typical Default value 7.84052 gals/cf
g =32.2 ft/sec2, gravity 60 sec/min
A = sf, cross sectional area of pipe 86400 sec/day
h = ft, driving head
HELP Model Avg Annual Lateral Drainage Collected 78,144.0 cf/yr/ac 0.002 cfs/acre
HELP Model Peak Daily Lateral Drainage Collected 1,822.0 cf/day/ac 0.021 cfs/acre
Calculations Check Inlet Control of perforations for pipe under peak condition
Basis
Area to
Drain
(Acres) Q (cfs)
Pipe
Diameter
(in)
# of
holes
per ft of
pipe
Hole
Diameter
(in) Length (ft)
Inlet Cross
Sectional
Area (sf)
Required
Head to
fill pipe, h
(in)
Depth of
liquid @
pipe (in)
Entire Site 118.7 2.50 8303/828 0.6 7.8 11.8
Largest Cell 29.4 0.62 8303/8 7 0.2 7.7 11.7
Largest Subcell 6.0 0.13 8303/8 2 0.0 3.9 7.9
Only 12 inch depth of liquid is required to fill the pipe at the design flow rate, assumming liquid is available
Conclusion There is adequate redundancy in pipe perforations to handle expected flows.
Charah CM Site Leachate calcs.xlsx HDR Engineering Inc. of the Carolinas Perforations
This page intentionally left blank.
HDR Computation Job Number 453925-235691-018 No.
Project:Charah Colon Mine Computed MDP Date:3/6/2015
Subject:Permit Application Checked PAW Date:3/8/2015
Task:Leachate Pipe Orifice Sizing Sheet:1 Of 2
Objective: Determine if the leachate pipes and perforations are large enough to handle the peak daily leachate flow.
References:
1.Malcom, H. Rooney (1989). Elements of Urban Stormwater Design. Raleigh: NC State Univ.
2.
Calculations:
Conversion factors
Eq. 1 Reference 17.48gal/cf
60 s/min
60 min/hr
24 hr/day
Eq. 2 12 in/ft
43,560 sf/acre
Where: Q =Flow Rate (cfs)
Cd = Coefficient of Discharge (dimensionless)
A =Cross‐sectional Area of Orifice (sf)
g =gravity (ft/s2)
h =head (ft)
d =diameter of opening (ft)
Given:
Select the Flow Rate per Acre based on HELP model runs
Qpeak daily = 1822.00 cf/acre/day From HELP model run: 10' of ash
Qpeak daily = 9.46 gal/acre/min
SDR Pipe Size (inches)
11 8
Maximum Drainage distance = 950 feet
Area of Drainage per foot of pipe = 950 sf
Area of Drainage per foot of pipe = 0.022 ac
Required Drainage per foot of pipe = 0.206 gpm (actual flow rate per acre for the drainage area of the pipe)
Determine the maximum allowable flow in the pipe based on the perforations in the pipe and a maximum head
Diameter of perforation, dperforation = 0.375 in
dperforation = 0.03125 ft
Aperforation = 0.00077 ft2
Using Equation 1, determine the flow in the pipe
Cd =0.6typical default value (Ref. 1)
Aperforation = 0.00077 ft2
g =32.2ft/s2
h =8in The maximum head on the liner is 12 inches. The pipe is 8 inches in diameter.
h =0.67ft The head was therefore assumed to be from the center of the pipe
to 12 inches above the liner.
Qperforation = 0.003 cfs
Qperforation =1.35gpm per perforation
Number of Perforations per foot of pipe =30perforations per foot of pipe
Qper foot of pipe = 40.60 gpm
Sharma, H. D., & Lewis, S. P. (1994). Waste Containment Systems, Waste Stabilization, and Landfills: Design and
Evaluation. New York: John Wiley & Sons, Inc.
ghACQd2
2
2
dA
Charah CM Site Leachate calcs.xlsx HDR Engineering, Inc. of the Carolinas Leachate flow
HDR Computation Job Number 453925-235691-018 No.
Project:Charah Colon Mine Computed MDP Date:3/6/2015
Subject:Permit Application Checked PAW Date:3/8/2015
Task:Leachate Pipe Orifice Sizing Sheet:2 Of 2
Required Flow Rate Allowable Flow Rate
gpm gpm
0.206 40.60
Conclusion:
Determine the maximum allowable flow in the pipe based on the pipe size and flowing full
Eq. 3 Reference 1
Where: Q =Flow Rate (cfs)
D =Theoretical Pipe Diameter (in) for just‐full flow
n = Manning roughness coefficient (dimensionless)
s = Longitudinal slope (ft/ft)
D = 8in
n = 0.009 Reference 2, page 472
Slope
Allowable
Q (cfs)
Allowable
Q (gpm) Check
0.10% 0.55 248 Allowable Q is greater than Required Q
0.25% 0.87 393 Allowable Q is greater than Required Q
0.50% 1.24 555 Allowable Q is greater than Required Q
0.75% 1.52 680 Allowable Q is greater than Required Q
1.00% 1.75 785 Allowable Q is greater than Required Q
1.25% 1.96 878 Allowable Q is greater than Required Q
1.50% 2.14 962 Allowable Q is greater than Required Q
1.75% 2.31 1,039 Allowable Q is greater than Required Q
2.00% 2.47 1,111 Allowable Q is greater than Required Q
2.25% 2.62 1,178 Allowable Q is greater than Required Q
2.50% 2.77 1,242 Allowable Q is greater than Required Q
2.75% 2.90 1,302 Allowable Q is greater than Required Q
3.00% 3.03 1,360 Allowable Q is greater than Required Q
3.25% 3.15 1,416 Allowable Q is greater than Required Q
3.50% 3.27 1,469 Allowable Q is greater than Required Q
3.75% 3.39 1,521 Allowable Q is greater than Required Q
Conclusion:
<
The allowable flow rate is greater than the required flow rate. Therefore the allowable flow rate based on pipe
perforations will be sufficient to meet the actual expected flow rate.
The allowable flow rate is greater than the required flow rate for slopes 0.1% and above. Smaller pipe slopes were not
run, but it is assumed that the bottom slope will not be smaller than 0.25% accounting for settlement. Therefore the
allowable flow based on pipe size will be sufficient to meet the actual expected flow rate.
n
sDQ3
8
16
Charah CM Site Leachate calcs.xlsx HDR Engineering, Inc. of the Carolinas Leachate flow
HD
R
C
o
m
p
u
t
a
t
i
o
n
Pr
o
j
e
c
t
C
h
a
r
a
h
C
o
l
o
n
M
i
n
e
Co
m
p
u
t
e
d
M
D
P
D
a
t
e
3
/
6
/
2
0
1
5
Su
b
j
e
c
t
P
e
r
m
i
t
A
p
p
l
i
c
a
t
i
o
n
Ch
e
c
k
e
d
P
A
W
D
a
t
e
3
/
8
/
2
0
1
5
Ta
s
k
L
e
a
c
h
a
t
e
T
a
n
k
S
i
z
i
n
g
Sh
e
e
t
1
o
f
1
Gi
v
e
n
:
De
t
e
r
m
i
n
e
T
a
n
k
s
i
z
i
n
g
o
p
t
i
o
n
s
b
a
s
e
d
o
n
t
h
e
r
e
q
u
i
r
e
d
s
t
o
r
a
g
e
c
a
p
a
c
i
t
y
Ta
n
k
s
i
z
e
s
s
e
l
e
c
t
e
d
f
r
o
m
a
t
t
a
c
h
e
d
c
h
a
r
t
f
o
r
A
q
u
a
s
t
o
r
e
T
a
n
k
s
.
Re
q
u
i
r
e
:
0.
5
f
e
e
t
o
f
f
r
e
e
b
o
a
r
d
i
n
t
a
n
k
s
11
0
%
C
a
p
a
c
i
t
y
o
f
p
r
i
m
a
r
y
f
o
r
s
e
c
o
n
d
a
r
y
c
o
n
t
a
i
n
m
e
n
t
t
a
n
k
Se
c
o
n
d
a
r
y
t
a
n
k
m
u
s
t
p
r
o
v
i
d
e
s
u
f
f
i
c
i
e
n
t
s
p
a
c
e
t
o
e
v
a
l
u
a
t
e
p
r
i
m
a
r
y
t
a
n
k
c
o
n
d
i
t
i
o
n
.
Ev
a
l
u
a
t
e
t
h
e
d
e
t
a
i
l
s
o
f
p
r
o
v
i
d
i
n
g
t
h
e
o
r
i
g
i
n
a
l
s
c
e
n
a
r
i
o
a
n
d
r
e
v
i
e
w
v
i
a
b
l
e
a
l
t
e
r
n
a
t
i
v
e
s
.
S
c
e
n
a
r
i
o
Pr
i
m
a
r
y
Di
a
m
e
t
e
r
(f
t
)
Pr
i
m
a
r
y
He
i
g
h
t
(
f
t
)
Nu
m
b
e
r
Pr
i
m
a
r
y
Ta
n
k
s
Pr
i
m
a
r
y
Fo
o
t
p
r
i
n
t
(s
f
/
t
a
n
k
)
P r i ma
r
y
Si
d
e
w
a
l
l
Ar
e
a
(s
f
/
t
a
n
k
)
Pr
i
m
a
r
y
Ca
p
a
c
i
t
y
(g
a
l
s
/
t
a
n
k
)
S ec
o
n
d ar
y
Ca
p
a
c
i
t
y
Re
q
u
i
r
e
d
(G
a
l
s
)
Se
c
o
n
d
a
r
y
Di
a
m
e
t
e
r
(
f
t
)
Se
c
o
n
d
a
r
y
He
i
g
h
t
(
f
t
)
S ec
o
n
d ar
y
Ta
n
k
Fo
o
t
p
r
i
n
t
(s
f
)
Se
c
o
n
d
a
r
y
Si
d
e
w
a
l
l
Ar
e
a
(
s
f
)
S ec
o
n
d ar
y
Ca
p
a
c
i
t
y
Pr
o
v
i
d
e
d
(g
a
l
s
)
110% o f Primary Tank
Ca
p
a
c
i
t
y
?
T o t a l Tank Sidewall Area (sf)T o t a l Operating Capacity (gals)E s t . Space around tanks
1
7
2
.
7
3
3
3
.
0
1
1
4,
1
5
4
7
5
4
2
1
,
0
1
0
,
3
3
6
1
,
1
1
1
,
3
7
0
10
3
.
5
2
3
.
8
4
8,
4
1
3
7
,
7
5
2
1
,
4
6
8
,
9
3
7
Y
e
s
1
5
2
9
4
1
,
0
1
0
,
3
3
6
1
5
.
4
2
7
5
.
5
3
3
3
.
0
1
1
4,
4
8
1
7
8
3
3
1
,
0
8
9
,
6
2
6
1
,
1
9
8
,
5
8
9
10
3
.
5
2
3
.
8
4
8,
4
1
3
7
,
7
5
2
1
,
4
6
8
,
9
3
7
Y
e
s
1
5
5
8
4
1
,
0
8
9
,
6
2
6
1
4
.
0
3
7
8
.
3
2
2
8
.
4
3
1
4,
8
1
8
6
9
9
5
1
,
0
0
6
,
5
5
6
1
,
1
0
7
,
2
1
2
10
3
.
5
2
3
.
8
4
8,
4
1
3
7
,
7
5
2
1
,
4
6
8
,
9
3
7
Y
e
s
1
4
7
4
7
1
,
0
0
6
,
5
5
6
1
2
.
6
4
8
1
.
1
2
2
8
.
4
3
1
5,
1
6
8
7
2
4
5
1
,
0
7
9
,
8
1
3
1
,
1
8
7
,
7
9
4
10
3
.
5
2
3
.
8
4
8,
4
1
3
7
,
7
5
2
1
,
4
6
8
,
9
3
7
Y
e
s
1
4
9
9
7
1
,
0
7
9
,
8
1
3
1
1
.
2
5
8
3
.
9
2
2
8
.
4
3
1
5,
5
3
1
7
4
9
5
1
,
1
5
5
,
6
4
3
1
,
2
7
1
,
2
0
7
10
3
.
5
2
3
.
8
4
8,
4
1
3
7
,
7
5
2
1
,
4
6
8
,
9
3
7
Y
e
s
1
5
2
4
7
1
,
1
5
5
,
6
4
3
9
.
8
6
8
6
.
7
2
2
3
.
8
4
1
5,
9
0
6
6
4
9
5
1
,
0
3
1
,
2
4
3
1
,
1
3
4
,
3
6
7
10
3
.
5
2
3
.
8
4
8,
4
1
3
7
,
7
5
2
1
,
4
6
8
,
9
3
7
Y
e
s
1
4
2
4
7
1
,
0
3
1
,
2
4
3
8
.
4
7
8
9
.
5
1
2
3
.
8
4
1
6,
2
9
3
6
7
0
4
1
,
0
9
8
,
6
6
6
1
,
2
0
8
,
5
3
2
10
3
.
5
2
3
.
8
4
8,
4
1
3
7
,
7
5
2
1
,
4
6
8
,
9
3
7
Y
e
s
1
4
4
5
6
1
,
0
9
8
,
6
6
6
7
.
0
8
9
2
.
3
1
2
3
.
8
4
1
6,
6
9
2
6
9
1
4
1
,
1
6
8
,
4
7
7
1
,
2
8
5
,
3
2
4
16
0
1
0
20
,
1
0
6
5
,
0
2
7
1
,
4
2
8
,
8
4
5
Y
e
s
1
1
9
4
0
1
,
1
6
8
,
4
7
7
3
3
.
8
9
6
7
.
1
3
1
9
.
2
8
2
3,
5
3
9
4
0
6
6
4
9
7
,
2
2
2
5
4
6
,
9
4
4
15
0
1
0
17
,
6
7
1
4
,
7
1
2
1
,
0
0
4
,
2
9
8
Y
e
s
1
2
8
4
5
9
9
4
,
4
4
4
5.2
10
6
9
.
9
3
1
9
.
2
8
2
3,
8
4
1
4
2
3
6
5
3
9
,
5
6
6
5
9
3
,
5
2
2
15
0
1
0
17
,
6
7
1
4
,
7
1
2
9
8
2
,
8
7
8
Y
e
s
1
3
1
8
4
1
,
0
7
9
,
1
3
1
3
.
4
11
7
2
.
7
3
1
9
.
2
8
2
4,
1
5
4
4
4
0
5
5
8
3
,
6
3
9
6
4
2
,
0
0
3
15
0
1
0
17
,
6
7
1
4
,
7
1
2
9
6
0
,
5
8
3
Y
e
s
1
3
5
2
3
1
,
1
6
7
,
2
7
8
1
.
5
12
7
8
.
3
2
1
4
.
6
8
2
4,
8
1
8
3
6
1
2
5
1
1
,
0
2
6
5
6
2
,
1
2
9
17
5
1
0
24
,
0
5
3
5
,
4
9
8
1
,
3
6
6
,
9
4
6
Y
e
s
1
2
7
2
2
1
,
0
2
2
,
0
5
3
6
.
1
Ca
l
c
u
l
a
t
e
T
a
n
k
S
t
o
r
a
g
e
C
a
p
a
c
i
t
y
(
a
m
o
u
n
t
o
f
e
v
e
n
t
t
h
a
t
f
i
t
s
i
n
t
a
n
k
a
s
s
u
m
i
n
g
n
o
o
t
h
e
r
f
l
o
w
s
a
n
d
e
m
p
t
y
t
a
n
k
a
t
s
t
a
r
t
)
Si
t
e
E
v
e
n
t
La
r
g
e
s
t
Su
b
c
e
l
l
A
r
e
a
(a
c
r
e
s
)
Ga
l
l
o
n
s
P
r
o
d
u
c
e
d
Co
l
o
n
R
a
i
n
f
a
l
l
2
5
-
y
e
a
r
2
4
-
h
r
s
t
o
r
m
6
.
2
8
i
n
c
h
e
s
5
.
9
1
,
0
0
6
,
0
5
1
Co
l
o
n
L
e
a
c
h
a
t
e
M
a
x
A
v
g
A
n
n
u
a
l
g
e
n
e
r
a
t
i
o
n
7
8
1
4
4
c
f
/
a
c
r
e
5
.
9
5
8
4
,
5
1
7
Co
n
c
l
u
s
i
o
n
:
Se
l
e
c
t
p
r
i
m
a
r
y
a
n
d
s
e
c
o
n
d
a
r
y
t
a
n
k
s
s
c
e
n
a
r
i
o
t
o
p
r
o
v
i
d
e
f
o
r
a
p
p
r
o
x
i
m
a
t
e
o
p
e
r
a
t
i
n
g
c
a
p
a
c
i
t
y
o
f
1
,
0
0
0
,
0
0
0
g
a
l
l
o
n
s
.
S
c
e
n
a
r
i
o
3
a
n
d
12
w
o
u
l
d
m
e
e
t
t
h
e
r
e
q
u
i
r
e
d
o
p
e
r
a
t
i
n
g
c
a
p
a
c
i
t
y
f
o
r
th
e
2
5
y
e
a
r
s
t
o
r
m
e
v
e
n
t
.
C
o
s
t
a
n
a
y
l
s
i
s
h
a
s
n
o
t
b
e
e
n
i
n
c
l
u
d
e
d
i
n
t
h
e
s
e
c
a
l
c
u
l
a
t
i
o
n
s
.
Ch
a
r
a
h
C
o
l
o
n
T
a
n
k
.
x
l
s
x
Tank Sizing
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
HDR Computation Job Number 453925-235691-018 No.
Project Charah Colon Mine Computed MDP Date 3/5/2015
Subject Permit Application Checked PAW Date 3/8/2015
Task Subcell Divider Berms Sheet 1 Of 1
Objective: Determine if the subcell berms are large enough to handle a 25-year, 24-hour storm event.
References:
1. NC Erosion and Sediment Control Planning and Design Manual.
Given:
6.28 in, 25-year, 24-hour precipitation event (Raleigh, NC) Ref 1
Where: VR =Precipitation event volume (ft3)V = Volume of Pond (pyramid) (ft3)
A =Area (acres)h = Height of the berm (pyramid) (ft)
p = precipitation event (in)A=Area of ponding (pyramid base) (ft2)
Case 1: Will Subcell Divider Berm handle precipitation into one subcell?
Subcell
Subcell Area
(acres)
Required
Volume
(ft3)
Berm Height
(ft)
Area of ponding
behind berm
(sf)
Area of
Ponding
(acres)
Available
Volume
(ft3)
Factor of
Safety Check
1A 5.8 132,219 4 196,710 4.52 262,280 2.0 OK
1B 5.7 129,939 4 149,607 3.43 199,476 1.5 OK
1C 5.5 125,380 4 164,101 3.77 218,802 1.7 OK
1D 5.6 127,660 8 77,152 1.77 205,739 1.6 OK
2A 5.0 113,982 5 80,998 1.86 134,997 1.2 OK
2B 5.1 116,262 5 77,584 1.78 129,306 1.1 OK
2C 5.2 118,541 5 137,167 3.15 228,612 1.9 OK
3A 4.9 111,702 8 73,538 1.69 196,101 1.8 OK
3B 4.9 111,702 8 54,946 1.26 146,521 1.3 OK
3C 4.8 109,423 7 73,368 1.68 171,191 1.6 OK
3D 4.7 107,143 5 75,723 1.74 126,204 1.2 OK
4A 5.5 125,380 4 119,310 2.74 159,080 1.3 OK
4B 5.7 129,939 6 69,575 1.60 139,150 1.1 OK
4C 5.0 113,982 6 63,507 1.46 127,013 1.1 OK
4D 5.5 125,380 8 70,683 1.62 188,488 1.5 OK
4E 5.4 123,101 8 68,510 1.57 182,692 1.5 OK
4F 4.7 107,143 8 48,898 1.12 130,395 1.2 OK
5A 5.9 134,499 8 76,860 1.76 204,961 1.5 OK
5B 5.9 134,499 8 70,705 1.62 188,548 1.4 OK
5C 5.9 134,499 7 57,921 1.33 135,148 1.0 OK
5D 5.9 134,499 5 130,176 2.99 216,961 1.6 OK
5E 5.8 132,219 6 75,553 1.73 151,106 1.1 OK
Conclusion:
All individual subcells can contain the design storm event.
1 ft should be added to the Berm Height to maintain freeboard.
ft
inpacre
ftAVR
12560,43 2 hAV3
1
Subcell Divider Berms.xlsx
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #3 Sheet: 1 Of: 4
Objective Design the temporary sediment basin to contain the 25-year storm.
References
1. NC Erosion and Sediment Control Planning and Design Manual.
2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E.
3. NOAA Atlas 14, Volume 2, Version 3
4. VA Erosion and Sediment Control Handbook
Given
Phase 1 1
Storm Event (yrs) =10 25
Total Drainage Area A (ac) =3.1 3.1
Disturbed Area (ac) =3.1 3.1
Curve Number CN =91 91 Hydrographs
Rainfall Depth P (in) =5.28 6.28 (24-hr rainfall)Ref 3
Peak Flow Qp (cfs) =20.57 24.96 Hydrographs
Design Criteria
Required sediment storage 1,800 cf / acre of drainage
Required sediment storage 5,580 cf
Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs)
Required Surface Area (SF)8,948 of the 10-yr storm peak flow (based on the largest Phase)
Determine Shape of Basin:
Measure the area of the Basin using AutoCADD.
Calculate Volume of the Basin using Truncated Pyramid Method.
Shape factor used in hydrographs basin depth may be gretaer than indicated below
Cumulative Cumulative
Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy)
244 0 0 ---
244 0 4,877 0 0 0
245 1 6,254 5,551 5,551 206
246 2 7,709 6,969 12,520 464
247 3 9,244 8,465 20,985 777
248 4 10,857 10,040 31,025 1,149
249 5 12,549 11,693 42,717 1,582
250 6 14,321 13,425 56,143 2,079
Design Sediment Depth (ft) =3
Sediment Storage (cf) =20,985 Required Sediment Storage Achieved
Design Surface Area Depth (ft) =3
Surface Area (sf) =9,244 Required Surface Area Achieved
SB 03
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #3 Sheet: 2 Of: 4
Select Skimmer
A. R. Jarrett Method
D = [Q / (2,310 * (H0.5)]0.5
D =Diameter of Orifice (inches)
Q = Dewater Rate (cf/day)
H = Head on orifice, varies based on skimmer size (ft)
Skimmer Sizes Head
(Inches)(ft)
1.5 0.125
2 0.167
2.5 0.167
3 0.250
4 0.333
5 0.333
6 0.417
8 0.500
Volume to Dewater (cf) =20,985
Number of Skimmers 1
Days to Drain =5 assumed
Q each (cf/day) =4,197 0.05 cfs
Selected Skimmer Size (inches) =2.5
Head on Skimmer (feet) =0.208
Diameter of Orifice (inches) =2.0
Route the flow through the Basin
Riser is not perforated, but skimmer is attached.
S =(1000/CN) - 10
Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4
TP (min) = 60.5(Q*)A/QP/1.39
Phase 1 1
Storm Event (yrs) =10 25
S =0.99 0.99
Runoff Depth Q* (inches) =4.25 5.23
Time to Peak Tp (min) =27.91 28.28
Determine Pond Storage Elevation (ZWater):
Pick one point near max expected water surface and the other at the mid depth.
Z1 (ft) = 3 S1 (cf)= 20,985
Z2 (ft) = 6 S2 (cf) = 56,143
b = ln(S2/S1)/ln(Z2/Z1) =1.4 Ref 2, III-8
KS = S2/Z2
b =4,411
SB 03
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #3 Sheet: 3 Of: 4
Determine Settling Velocity
Conversion Factor = 3.281 ft/sec per m/sec
Gravitational Acceleration, g (m/s2) =9.81
Specific Gravity of soil (ss)=2.6
Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11
Diameter of the Design Particle d15 =40.00E-06 m
Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec
Route the Storm through the Basin using the Hydrograph Model
Set Height of Emergency Spillway at (ft) =5.00
Set Top of Dam at (ft) =6.00
Anti-Seep Collar:
Anti-Seep Collar Size =2 * Barrel Dia
Anti-Seep Collar Size (ft) =2
Use Anti-Seep Collar Size (ft) =2 x 2
Minimum Concrete Base for Riser:
Diameter of Riser (in) = 24 From Hydrograph
Avg Density of Concrete (lbs/cf) =87.6
Density of Water (lbs/cf) =62.4
Riser Displacement (cf) = 13.82 Pi * (DR/24)2 * Total Ht of Riser
Convert cf to cy =27-1
Min Concrete Needed (cy) =0.36
Width & Length (ft) =3
Thickness (ft) =1.1
Anti-Vortex Device:
Diameter of Riser (in) = 24 From Hydrograph
Cylinder Diameter (in) = 36 Ref 4, III-104, Table 3.14-D
Cylinder Thickness (gage) = 16
Cylinder Height (in) = 13
See Hydrograph
SB 03
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #3 Sheet: 4 Of: 4
Determine Tailwater conditions to size outlet apron
Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7
A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3
Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5)
n =0.069 6-inch diameter Rip Rap, Lined Channel
Vp (ft/sec) =9 Permissible Velocity for lining
Side Slope (z) =5 enter X for X:1
s (ft/ft) =0.02 Outlet Slope (estimated)
Bottom Width (ft) = 3 3 * Barrel Diameter
QB (cfs) =4.1 Peak Flow out of the barrel 10-yr Hydrograph
Q (cfs)Zreq
Flow Depth
d (ft)A (sf) R (ft)Zav V (ft/sec)
4.1 1.34 0.50 2.8 0.34 1.34 1.5
Flow Depth = Tailwater, d (ft) =0.50 0.5* Barrel Diameter (ft) =0.50 Ref 1, 8.06.3
Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe
Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe
Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions.
Barrel
Diameter (ft) Entrance (ft) Length (ft)
Outlet Width
(ft)
Median Rip
Rap Size d50
Selected Rip
Rap Size (in)
1 3 8 9 0.4 Class A
Conclusion
The temporary basin can contain the 25-yr storm.
SB 03
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet 1 Of 2
Diameter of Riser (in) = 24
Circumference of Riser (in) =75.4
Height of Riser from bottom of barrel (in) =53 From Hydrograph
Vertical spacing between holes (in) =0 center to center
Water Stage increment (ft)0.05
Orifice Equation
Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11
Q =cfs, discharge
Cd =0.6 coefficient of discharge
A = sf, cross sectional area
g =32.2 ft/sec2, gravity
h =ft, driving head measured from the center of the pipe
Skimmer
Row 1 2 3 4 5 1 # of skimmers
Holes per row 0 0 0 0 0
Hole Diameter (in)0.75 0.75 0.75 0.75 0.75
Spacing edge to edge (in)
Inlet Area (sf)0.000 0.000 0.000 0.000 0.000
Hole Stage (in)0.50 0.50 0.50 0.50 0.50
Hole Stage (ft)0.04 0.04 0.04 0.04 0.04
Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs)
0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.00 0.00 0.00 0.00 0.00
0.09 0.00 0.00 0.00 0.00 0.00
0.14 0.00 0.00 0.00 0.00 0.00
0.19 0.00 0.00 0.00 0.00 0.00
0.24 0.00 0.00 0.00 0.05 0.05
0.29 0.00 0.00 0.00 0.05 0.05
0.34 0.00 0.00 0.00 0.05 0.05
0.39 0.00 0.00 0.00 0.05 0.05
0.44 0.00 0.00 0.00 0.05 0.05
0.49 0.00 0.00 0.00 0.05 0.05
0.54 0.00 0.00 0.00 0.05 0.05
0.59 0.00 0.00 0.00 0.05 0.05
0.64 0.00 0.00 0.00 0.05 0.05
0.69 0.00 0.00 0.00 0.05 0.05
0.74 0.00 0.00 0.00 0.05 0.05
0.79 0.00 0.00 0.00 0.05 0.05
0.84 0.00 0.00 0.00 0.05 0.05
0.89 0.00 0.00 0.00 0.05 0.05
0.94 0.00 0.00 0.00 0.05 0.05
0.99 0.00 0.00 0.00 0.05 0.05
1.04 0.00 0.00 0.00 0.05 0.05
1.09 0.00 0.00 0.00 0.05 0.05
1.14 0.00 0.00 0.00 0.05 0.05
1.19 0.00 0.00 0.00 0.05 0.05
1.24 0.00 0.00 0.00 0.05 0.05
1.29 0.00 0.00 0.00 0.05 0.05
1.34 0.00 0.00 0.00 0.05 0.05
1.39 0.00 0.00 0.00 0.05 0.05
1.44 0.00 0.00 0.00 0.05 0.05
1.49 0.00 0.00 0.00 0.05 0.05
1.54 0.00 0.00 0.00 0.05 0.05
1.59 0.00 0.00 0.00 0.05 0.05
Perforations
SB 03 Pipe Perf-Skimmer
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet 2 Of 2
1.64 0.00 0.00 0.00 0.05 0.05
1.69 0.00 0.00 0.00 0.05 0.05
1.74 0.00 0.00 0.00 0.05 0.05
1.79 0.00 0.00 0.00 0.05 0.05
1.84 0.00 0.00 0.00 0.05 0.05
1.89 0.00 0.00 0.00 0.05 0.05
1.94 0.00 0.00 0.00 0.05 0.05
1.99 0.00 0.00 0.00 0.05 0.05
2.04 0.00 0.00 0.00 0.05 0.05
2.09 0.00 0.00 0.00 0.05 0.05
2.14 0.00 0.00 0.00 0.05 0.05
2.19 0.00 0.00 0.00 0.05 0.05
2.24 0.00 0.00 0.00 0.05 0.05
2.29 0.00 0.00 0.00 0.05 0.05
2.34 0.00 0.00 0.00 0.05 0.05
2.39 0.00 0.00 0.00 0.05 0.05
2.44 0.00 0.00 0.00 0.05 0.05
2.49 0.00 0.00 0.00 0.05 0.05
2.54 0.00 0.00 0.00 0.05 0.05
2.59 0.00 0.00 0.00 0.05 0.05
2.64 0.00 0.00 0.00 0.05 0.05
2.69 0.00 0.00 0.00 0.05 0.05
2.74 0.00 0.00 0.00 0.05 0.05
2.79 0.00 0.00 0.00 0.05 0.05
2.84 0.00 0.00 0.00 0.05 0.05
2.89 0.00 0.00 0.00 0.05 0.05
2.94 0.00 0.00 0.00 0.05 0.05
2.99 0.00 0.00 0.00 0.05 0.05
3.04 0.00 0.00 0.00 0.05 0.05
3.09 0.00 0.00 0.00 0.05 0.05
3.14 0.00 0.00 0.00 0.05 0.05
3.19 0.00 0.00 0.00 0.05 0.05
3.24 0.00 0.00 0.00 0.05 0.05
3.29 0.00 0.00 0.00 0.05 0.05
3.34 0.00 0.00 0.00 0.05 0.05
3.39 0.00 0.00 0.00 0.05 0.05
3.44 0.00 0.00 0.00 0.05 0.05
3.49 0.00 0.00 0.00 0.05 0.05
3.54 0.00 0.00 0.00 0.05 0.05
3.59 0.00 0.00 0.00 0.05 0.05
3.64 0.00 0.00 0.00 0.05 0.05
3.69 0.00 0.00 0.00 0.05 0.05
3.74 0.00 0.00 0.00 0.05 0.05
3.79 0.00 0.00 0.00 0.05 0.05
3.84 0.00 0.00 0.00 0.05 0.05
3.89 0.00 0.00 0.00 0.05 0.05
3.94 0.00 0.00 0.00 0.05 0.05
3.99 0.00 0.00 0.00 0.05 0.05
SB 03 Pipe Perf-Skimmer
Computed By: PAW Date: 3/05/15
Checked By: MDP Date: 3/06/15
Sheet: __1__of _2___
Qp = 20.57 cfs Sediment Basin #3 Colon
Tp = 27.91 minutes Phase 1
dT = Max of 2 minutes 10 - year Storm Event
or 1.0%of increment to peak
b =1.4
Number of Riser/Barrel Assemblies 1 Ks =4,411
Diameter of Barrel =12 (in)
Height of Riser above barrel =3.4 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=4.4 (ft) elevation 248.40 2 Effective number of cells (2 is construction site #)
Emergency Spillway =5.0 (ft) elevation 249.00 98%Minimum Settling Efficiency
Total Height of Dam =6.0 (ft) elevation 250.00 4.7 ft Maximum Stage 248.74 msl elevation
Length of Emergency Spillway =10 (ft)4.1 cfs Peak outflow
Diameter of Riser =24 (in)4.1 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 244.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 0.3 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 1.0 31 0.0 0.00 0.00 0.00 0.00 0.00 3.19 1,448 N/A
6 2.3 154 0.1 0.00 0.00 0.00 0.00 0.00 5.11 2,323 N/A
8 3.9 425 0.2 0.00 0.00 0.00 0.00 0.00 6.90 3,136 N/A
10 5.9 893 0.3 0.05 0.05 0.00 0.05 0.05 8.59 3,905 100%
12 8.0 1,590 0.5 0.05 0.05 0.00 0.05 0.05 10.19 4,631 100%
14 10.3 2,549 0.7 0.05 0.05 0.00 0.05 0.05 11.72 5,325 100%
16 12.6 3,784 0.9 0.05 0.05 0.00 0.05 0.05 13.17 5,985 100%
18 14.8 5,294 1.1 0.05 0.05 0.00 0.05 0.05 14.54 6,610 100%
20 16.8 7,066 1.4 0.05 0.05 0.00 0.05 0.05 15.84 7,198 100%
22 18.4 9,071 1.7 0.05 0.05 0.00 0.05 0.05 17.05 7,750 100%
24 19.6 11,271 1.9 0.05 0.05 0.00 0.05 0.05 18.18 8,264 100%
26 20.3 13,616 2.2 0.05 0.05 0.00 0.05 0.05 19.23 8,739 100%
28 20.6 16,050 2.5 0.05 0.05 0.00 0.05 0.05 20.18 9,174 100%
30 20.3 18,513 2.7 0.05 0.05 0.00 0.05 0.05 21.05 9,570 100%
32 19.5 20,941 3.0 0.05 0.05 0.00 0.05 0.05 21.83 9,925 100%
34 18.2 23,275 3.2 0.05 0.05 0.00 0.05 0.05 22.53 10,240 100%
36 16.7 25,458 3.4 0.05 0.05 0.00 0.05 0.05 23.13 10,515 100%
38 15.2 27,455 3.6 0.05 0.05 0.00 0.05 0.05 23.66 10,752 100%
40 13.9 29,273 3.8 0.05 0.05 0.00 0.05 0.05 24.11 10,958 100%
42 12.6 30,929 3.9 0.05 0.05 0.00 0.05 0.05 24.50 11,138 100%
44 11.5 32,438 4.1 0.05 0.05 0.00 0.05 0.05 24.85 11,296 100%
46 10.5 33,811 4.2 0.05 0.05 0.00 0.05 0.05 25.16 11,435 100%
48 9.5 35,062 4.3 0.05 0.05 0.00 0.05 0.05 25.43 11,559 100%
50 8.7 36,201 4.4 0.05 0.06 0.00 7.46 0.06 25.67 11,668 100%
52 7.9 37,238 4.5 0.05 0.64 0.00 7.54 0.64 25.89 11,766 100%
54 7.2 38,111 4.6 0.05 1.47 0.00 7.61 1.47 26.06 11,847 100%
56 6.6 38,801 4.6 0.05 2.27 0.00 7.67 2.27 26.20 11,910 99%
58 6.0 39,318 4.7 0.05 2.94 0.00 7.71 2.94 26.30 11,957 99%
60 5.5 39,684 4.7 0.05 3.44 0.00 7.74 3.44 26.38 11,990 98%
62 5.0 39,926 4.7 0.05 3.79 0.00 7.76 3.79 26.42 12,011 98%
64 4.5 40,068 4.7 0.05 4.00 0.00 7.77 4.00 26.45 12,024 98%
66 4.1 40,131 4.7 0.05 4.09 0.00 7.77 4.09 26.46 12,029 98%
68 3.8 40,135 4.7 0.05 4.10 0.00 7.77 4.10 26.47 12,030 98%
70 3.4 40,094 4.7 0.05 4.04 0.00 7.77 4.04 26.46 12,026 98%
72 3.1 40,020 4.7 0.05 3.93 0.00 7.76 3.93 26.44 12,020 98%
74 2.8 39,923 4.7 0.05 3.79 0.00 7.76 3.79 26.42 12,011 98%
76 2.6 39,810 4.7 0.05 3.62 0.00 7.75 3.62 26.40 12,001 98%
78 2.4 39,686 4.7 0.05 3.44 0.00 7.74 3.44 26.38 11,990 98%
80 2.1 39,556 4.7 0.05 3.26 0.00 7.73 3.26 26.35 11,978 99%
82 2.0 39,422 4.7 0.05 3.08 0.00 7.72 3.08 26.33 11,966 99%
SB 03 SB 10-yr (P1) HG
Computed By: PAW Date: 3/05/15
Checked By: MDP Date: 3/06/15
Sheet: __2__of _2___
84 1.8 39,288 4.7 0.05 2.89 0.00 7.71 2.89 26.30 11,954 99%
86 1.6 39,155 4.7 0.05 2.72 0.00 7.70 2.72 26.27 11,942 99%
88 1.5 39,023 4.6 0.05 2.55 0.00 7.69 2.55 26.25 11,930 99%
90 1.3 38,896 4.6 0.05 2.38 0.00 7.68 2.38 26.22 11,919 99%
92 1.2 38,771 4.6 0.05 2.23 0.00 7.67 2.23 26.20 11,907 99%
94 1.1 38,651 4.6 0.05 2.08 0.00 7.66 2.08 26.17 11,896 99%
96 1.0 38,536 4.6 0.05 1.94 0.00 7.65 1.94 26.15 11,886 99%
98 0.9 38,425 4.6 0.05 1.82 0.00 7.64 1.82 26.13 11,876 99%
100 0.8 38,318 4.6 0.05 1.69 0.00 7.63 1.69 26.11 11,866 100%
102 0.8 38,217 4.6 0.05 1.58 0.00 7.62 1.58 26.08 11,857 100%
104 0.7 38,119 4.6 0.05 1.48 0.00 7.62 1.48 26.07 11,848 100%
106 0.6 38,027 4.6 0.05 1.38 0.00 7.61 1.38 26.05 11,839 100%
108 0.6 37,938 4.6 0.05 1.28 0.00 7.60 1.28 26.03 11,831 100%
110 0.5 37,854 4.5 0.05 1.20 0.00 7.59 1.20 26.01 11,823 100%
112 0.5 37,774 4.5 0.05 1.12 0.00 7.59 1.12 26.00 11,816 100%
114 0.4 37,698 4.5 0.05 1.05 0.00 7.58 1.05 25.98 11,809 100%
116 0.4 37,625 4.5 0.05 0.98 0.00 7.58 0.98 25.96 11,802 100%
118 0.4 37,556 4.5 0.05 0.91 0.00 7.57 0.91 25.95 11,796 100%
120 0.3 37,490 4.5 0.05 0.85 0.00 7.57 0.85 25.94 11,790 100%
122 0.3 37,428 4.5 0.05 0.80 0.00 7.56 0.80 25.92 11,784 100%
124 0.3 37,369 4.5 0.05 0.75 0.00 7.56 0.75 25.91 11,778 100%
126 0.3 37,312 4.5 0.05 0.70 0.00 7.55 0.70 25.90 11,773 100%
128 0.2 37,258 4.5 0.05 0.66 0.00 7.55 0.66 25.89 11,768 100%
130 0.2 37,207 4.5 0.05 0.61 0.00 7.54 0.61 25.88 11,763 100%
132 0.2 37,159 4.5 0.05 0.58 0.00 7.54 0.58 25.87 11,759 100%
134 0.2 37,112 4.5 0.05 0.54 0.00 7.53 0.54 25.86 11,754 100%
136 0.2 37,068 4.5 0.05 0.51 0.00 7.53 0.51 25.85 11,750 100%
138 0.1 37,026 4.5 0.05 0.48 0.00 7.53 0.48 25.84 11,746 100%
140 0.1 36,987 4.5 0.05 0.45 0.00 7.52 0.45 25.83 11,743 100%
142 0.1 36,949 4.5 0.05 0.42 0.00 7.52 0.42 25.83 11,739 100%
144 0.1 36,912 4.5 0.05 0.40 0.00 7.52 0.40 25.82 11,736 100%
146 0.1 36,878 4.5 0.05 0.37 0.00 7.52 0.37 25.81 11,732 100%
148 0.1 36,845 4.5 0.05 0.35 0.00 7.51 0.35 25.80 11,729 100%
150 0.1 36,814 4.5 0.05 0.33 0.00 7.51 0.33 25.80 11,726 100%
152 0.1 36,784 4.5 0.05 0.31 0.00 7.51 0.31 25.79 11,724 100%
154 0.1 36,755 4.5 0.05 0.30 0.00 7.51 0.30 25.79 11,721 100%
156 0.1 36,728 4.4 0.05 0.28 0.00 7.50 0.28 25.78 11,718 100%
158 0.1 36,702 4.4 0.05 0.26 0.00 7.50 0.26 25.77 11,716 100%
160 0.1 36,677 4.4 0.05 0.25 0.00 7.50 0.25 25.77 11,714 100%
162 0.0 36,653 4.4 0.05 0.24 0.00 7.50 0.24 25.76 11,711 100%
164 0.0 36,631 4.4 0.05 0.22 0.00 7.50 0.22 25.76 11,709 100%
166 0.0 36,609 4.4 0.05 0.21 0.00 7.49 0.21 25.76 11,707 100%
168 0.0 36,588 4.4 0.05 0.20 0.00 7.49 0.20 25.75 11,705 100%
170 0.0 36,568 4.4 0.05 0.19 0.00 7.49 0.19 25.75 11,703 100%
172 0.0 36,549 4.4 0.05 0.18 0.00 7.49 0.18 25.74 11,701 100%
174 0.0 36,531 4.4 0.05 0.17 0.00 7.49 0.17 25.74 11,700 100%
176 0.0 36,513 4.4 0.05 0.16 0.00 7.49 0.16 25.74 11,698 100%
178 0.0 36,497 4.4 0.05 0.16 0.00 7.49 0.16 25.73 11,696 100%
180 0.0 36,481 4.4 0.05 0.15 0.00 7.48 0.15 25.73 11,695 100%
182 0.0 36,465 4.4 0.05 0.14 0.00 7.48 0.14 25.73 11,693 100%
184 0.0 36,450 4.4 0.05 0.14 0.00 7.48 0.14 25.72 11,692 100%
186 0.0 36,436 4.4 0.05 0.13 0.00 7.48 0.13 25.72 11,691 100%
188 0.0 36,422 4.4 0.05 0.12 0.00 7.48 0.12 25.72 11,689 100%
190 0.0 36,409 4.4 0.05 0.12 0.00 7.48 0.12 25.71 11,688 100%
192 0.0 36,396 4.4 0.05 0.11 0.00 7.48 0.11 25.71 11,687 100%
194 0.0 36,384 4.4 0.05 0.11 0.00 7.48 0.11 25.71 11,686 100%
196 0.0 36,372 4.4 0.05 0.10 0.00 7.47 0.10 25.71 11,685 100%
198 0.0 36,361 4.4 0.05 0.10 0.00 7.47 0.10 25.70 11,684 100%
200 0.0 36,350 4.4 0.05 0.10 0.00 7.47 0.10 25.70 11,683 100%
202 0.0 36,339 4.4 0.05 0.09 0.00 7.47 0.09 25.70 11,682 100%
204 0.0 36,329 4.4 0.05 0.09 0.00 7.47 0.09 25.70 11,681 100%
206 0.0 36,319 4.4 0.05 0.09 0.00 7.47 0.09 25.70 11,680 100%
SB 03 SB 10-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
3
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
10
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: __1__of _2___
Qp = 24.96 cfs Sediment Basin #3 Colon
Tp = 28.28 minutes Phase 1
dT = Max of 2 minutes 25 - year Storm Event
or 1.0%of increment to peak
b =1.4
Number of Riser/Barrel Assemblies 1 Ks =4,411
Diameter of Barrel =12 (in)
Height of Riser above barrel =3.4 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=4.4 (ft) elevation 248.40 2 Effective number of cells (2 is construction site #)
Emergency Spillway =5.0 (ft) elevation 249.00 94%Minimum Settling Efficiency
Total Height of Dam =6.0 (ft) elevation 250.00 5.0 ft Maximum Stage 248.98 msl elevation
Length of Emergency Spillway =10 (ft)8.0 cfs Peak outflow
Diameter of Riser =24 (in)8.0 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 244.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 0.3 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 1.2 37 0.0 0.00 0.00 0.00 0.00 0.00 3.35 1,521 N/A
6 2.7 182 0.1 0.00 0.00 0.00 0.00 0.00 5.37 2,441 N/A
8 4.6 503 0.2 0.00 0.00 0.00 0.00 0.00 7.25 3,295 N/A
10 6.9 1,056 0.4 0.05 0.05 0.00 0.05 0.05 9.03 4,104 100%
12 9.5 1,883 0.5 0.05 0.05 0.00 0.05 0.05 10.71 4,869 100%
14 12.3 3,022 0.8 0.05 0.05 0.00 0.05 0.05 12.32 5,600 100%
16 15.0 4,491 1.0 0.05 0.05 0.00 0.05 0.05 13.85 6,296 100%
18 17.7 6,290 1.3 0.05 0.05 0.00 0.05 0.05 15.30 6,955 100%
20 20.0 8,404 1.6 0.05 0.05 0.00 0.05 0.05 16.67 7,577 100%
22 22.0 10,803 1.9 0.05 0.05 0.00 0.05 0.05 17.95 8,161 100%
24 23.6 13,443 2.2 0.05 0.05 0.00 0.05 0.05 19.15 8,706 100%
26 24.6 16,266 2.5 0.05 0.05 0.00 0.05 0.05 20.26 9,211 100%
28 25.0 19,208 2.8 0.05 0.05 0.00 0.05 0.05 21.28 9,675 100%
30 24.7 22,196 3.1 0.05 0.05 0.00 0.05 0.05 22.21 10,097 100%
32 23.9 25,158 3.4 0.05 0.05 0.00 0.05 0.05 23.05 10,478 100%
34 22.5 28,022 3.7 0.05 0.05 0.00 0.05 0.05 23.80 10,817 100%
36 20.7 30,719 3.9 0.05 0.05 0.00 0.05 0.05 24.45 11,115 100%
38 18.9 33,197 4.1 0.05 0.05 0.00 0.05 0.05 25.02 11,373 100%
40 17.2 35,458 4.3 0.05 0.05 0.00 0.05 0.05 25.51 11,597 100%
42 15.7 37,519 4.5 0.05 0.88 0.00 7.57 0.88 25.94 11,792 100%
44 14.3 39,299 4.7 0.05 2.91 0.00 7.71 2.91 26.30 11,955 99%
46 13.1 40,670 4.8 0.05 4.93 0.00 7.81 4.93 26.57 12,077 97%
48 11.9 41,648 4.9 0.05 6.55 0.00 7.89 6.55 26.76 12,162 96%
50 10.9 42,292 4.9 0.05 7.70 0.00 7.93 7.70 26.88 12,217 94%
52 9.9 42,673 4.9 0.05 8.41 0.00 7.96 7.96 26.95 12,250 94%
54 9.1 42,908 5.0 0.05 8.85 0.00 7.98 7.98 26.99 12,270 94%
56 8.3 43,037 5.0 0.05 9.10 0.00 7.99 7.99 27.02 12,281 94%
58 7.5 43,069 5.0 0.05 9.16 0.00 7.99 7.99 27.02 12,283 94%
60 6.9 43,014 5.0 0.05 9.06 0.00 7.99 7.99 27.01 12,279 94%
62 6.3 42,880 5.0 0.05 8.80 0.00 7.98 7.98 26.99 12,267 94%
64 5.7 42,675 4.9 0.05 8.41 0.00 7.96 7.96 26.95 12,250 94%
66 5.2 42,405 4.9 0.05 7.91 0.00 7.94 7.91 26.90 12,227 94%
68 4.8 42,082 4.9 0.05 7.32 0.00 7.92 7.32 26.84 12,199 95%
70 4.3 41,774 4.9 0.05 6.77 0.00 7.89 6.77 26.78 12,173 95%
72 4.0 41,481 4.8 0.05 6.27 0.00 7.87 6.27 26.72 12,148 96%
74 3.6 41,204 4.8 0.05 5.80 0.00 7.85 5.80 26.67 12,124 96%
76 3.3 40,941 4.8 0.05 5.36 0.00 7.83 5.36 26.62 12,101 97%
78 3.0 40,693 4.8 0.05 4.96 0.00 7.81 4.96 26.57 12,079 97%
80 2.7 40,457 4.8 0.05 4.59 0.00 7.80 4.59 26.53 12,058 97%
82 2.5 40,235 4.7 0.05 4.25 0.00 7.78 4.25 26.48 12,039 98%
SB 03 SB 25-yr (P1) HG
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: __2__of _2___
84 2.3 40,025 4.7 0.05 3.94 0.00 7.76 3.94 26.44 12,020 98%
86 2.1 39,826 4.7 0.05 3.64 0.00 7.75 3.64 26.40 12,002 98%
88 1.9 39,638 4.7 0.05 3.38 0.00 7.73 3.38 26.37 11,985 98%
90 1.7 39,461 4.7 0.05 3.13 0.00 7.72 3.13 26.33 11,970 99%
92 1.6 39,293 4.7 0.05 2.90 0.00 7.71 2.90 26.30 11,955 99%
94 1.4 39,134 4.7 0.05 2.69 0.00 7.69 2.69 26.27 11,940 99%
96 1.3 38,984 4.6 0.05 2.50 0.00 7.68 2.50 26.24 11,927 99%
98 1.2 38,842 4.6 0.05 2.32 0.00 7.67 2.32 26.21 11,914 99%
100 1.1 38,708 4.6 0.05 2.15 0.00 7.66 2.15 26.18 11,902 99%
102 1.0 38,581 4.6 0.05 2.00 0.00 7.65 2.00 26.16 11,890 99%
104 0.9 38,460 4.6 0.05 1.86 0.00 7.64 1.86 26.13 11,879 99%
106 0.8 38,347 4.6 0.05 1.73 0.00 7.63 1.73 26.11 11,869 100%
108 0.8 38,239 4.6 0.05 1.61 0.00 7.62 1.61 26.09 11,859 100%
110 0.7 38,137 4.6 0.05 1.49 0.00 7.62 1.49 26.07 11,849 100%
112 0.6 38,041 4.6 0.05 1.39 0.00 7.61 1.39 26.05 11,841 100%
114 0.6 37,949 4.6 0.05 1.30 0.00 7.60 1.30 26.03 11,832 100%
116 0.5 37,863 4.5 0.05 1.21 0.00 7.59 1.21 26.01 11,824 100%
118 0.5 37,780 4.5 0.05 1.13 0.00 7.59 1.13 26.00 11,817 100%
120 0.4 37,703 4.5 0.05 1.05 0.00 7.58 1.05 25.98 11,809 100%
122 0.4 37,629 4.5 0.05 0.98 0.00 7.58 0.98 25.97 11,803 100%
124 0.4 37,559 4.5 0.05 0.92 0.00 7.57 0.92 25.95 11,796 100%
126 0.3 37,492 4.5 0.05 0.86 0.00 7.57 0.86 25.94 11,790 100%
128 0.3 37,429 4.5 0.05 0.80 0.00 7.56 0.80 25.92 11,784 100%
130 0.3 37,370 4.5 0.05 0.75 0.00 7.56 0.75 25.91 11,778 100%
132 0.3 37,313 4.5 0.05 0.70 0.00 7.55 0.70 25.90 11,773 100%
134 0.2 37,259 4.5 0.05 0.66 0.00 7.55 0.66 25.89 11,768 100%
136 0.2 37,208 4.5 0.05 0.61 0.00 7.54 0.61 25.88 11,763 100%
138 0.2 37,159 4.5 0.05 0.58 0.00 7.54 0.58 25.87 11,759 100%
140 0.2 37,113 4.5 0.05 0.54 0.00 7.53 0.54 25.86 11,754 100%
142 0.2 37,069 4.5 0.05 0.51 0.00 7.53 0.51 25.85 11,750 100%
144 0.1 37,027 4.5 0.05 0.48 0.00 7.53 0.48 25.84 11,746 100%
146 0.1 36,987 4.5 0.05 0.45 0.00 7.52 0.45 25.83 11,743 100%
148 0.1 36,949 4.5 0.05 0.42 0.00 7.52 0.42 25.83 11,739 100%
150 0.1 36,913 4.5 0.05 0.40 0.00 7.52 0.40 25.82 11,736 100%
152 0.1 36,878 4.5 0.05 0.37 0.00 7.52 0.37 25.81 11,732 100%
154 0.1 36,846 4.5 0.05 0.35 0.00 7.51 0.35 25.80 11,729 100%
156 0.1 36,814 4.5 0.05 0.33 0.00 7.51 0.33 25.80 11,726 100%
158 0.1 36,784 4.5 0.05 0.31 0.00 7.51 0.31 25.79 11,724 100%
160 0.1 36,756 4.5 0.05 0.30 0.00 7.51 0.30 25.79 11,721 100%
162 0.1 36,729 4.4 0.05 0.28 0.00 7.50 0.28 25.78 11,718 100%
164 0.1 36,703 4.4 0.05 0.26 0.00 7.50 0.26 25.78 11,716 100%
166 0.1 36,678 4.4 0.05 0.25 0.00 7.50 0.25 25.77 11,714 100%
168 0.0 36,654 4.4 0.05 0.24 0.00 7.50 0.24 25.76 11,711 100%
170 0.0 36,632 4.4 0.05 0.22 0.00 7.50 0.22 25.76 11,709 100%
172 0.0 36,610 4.4 0.05 0.21 0.00 7.49 0.21 25.76 11,707 100%
174 0.0 36,589 4.4 0.05 0.20 0.00 7.49 0.20 25.75 11,705 100%
176 0.0 36,569 4.4 0.05 0.19 0.00 7.49 0.19 25.75 11,703 100%
178 0.0 36,550 4.4 0.05 0.18 0.00 7.49 0.18 25.74 11,702 100%
180 0.0 36,532 4.4 0.05 0.17 0.00 7.49 0.17 25.74 11,700 100%
182 0.0 36,515 4.4 0.05 0.16 0.00 7.49 0.16 25.74 11,698 100%
184 0.0 36,498 4.4 0.05 0.16 0.00 7.49 0.16 25.73 11,697 100%
186 0.0 36,482 4.4 0.05 0.15 0.00 7.48 0.15 25.73 11,695 100%
188 0.0 36,466 4.4 0.05 0.14 0.00 7.48 0.14 25.73 11,694 100%
190 0.0 36,451 4.4 0.05 0.14 0.00 7.48 0.14 25.72 11,692 100%
192 0.0 36,437 4.4 0.05 0.13 0.00 7.48 0.13 25.72 11,691 100%
194 0.0 36,423 4.4 0.05 0.12 0.00 7.48 0.12 25.72 11,689 100%
196 0.0 36,410 4.4 0.05 0.12 0.00 7.48 0.12 25.71 11,688 100%
198 0.0 36,397 4.4 0.05 0.11 0.00 7.48 0.11 25.71 11,687 100%
200 0.0 36,385 4.4 0.05 0.11 0.00 7.48 0.11 25.71 11,686 100%
202 0.0 36,373 4.4 0.05 0.11 0.00 7.47 0.11 25.71 11,685 100%
204 0.0 36,362 4.4 0.05 0.10 0.00 7.47 0.10 25.70 11,684 100%
206 0.0 36,351 4.4 0.05 0.10 0.00 7.47 0.10 25.70 11,683 100%
SB 03 SB 25-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
3
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
25
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #4 Sheet: 1 Of: 4
Objective Design the temporary sediment basin to contain the 25-year storm.
References
1. NC Erosion and Sediment Control Planning and Design Manual.
2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E.
3. NOAA Atlas 14, Volume 2, Version 3
4. VA Erosion and Sediment Control Handbook
Given
Phase 1 1
Storm Event (yrs) =10 25
Total Drainage Area A (ac) =12.7 12.7
Disturbed Area (ac) =12.7 12.7
Curve Number CN =89 89 Hydrographs
Rainfall Depth P (in) =5.28 6.28 (24-hr rainfall)Ref 3
Peak Flow Qp (cfs) =77.74 95.13 Hydrographs
Design Criteria
Required sediment storage 1,800 cf / acre of drainage
Required sediment storage 22,860 cf
Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs)
Required Surface Area (SF)41,382 of the 10-yr storm peak flow (based on the largest Phase)
Determine Shape of Basin:
Measure the area of the Basin using AutoCADD.
Calculate Volume of the Basin using Truncated Pyramid Method.
Shape factor used in hydrographs basin depth may be gretaer than indicated below
Cumulative Cumulative
Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy)
261 0 26,486 0 0 0
262 1 29,254 27,859 27,859 1,032
263 2 32,108 30,670 58,528 2,168
264 3 35,046 33,566 92,095 3,411
265 4 38,057 36,541 128,636 4,764
266 5 41,127 39,582 168,218 6,230
267 6 44,258 42,683 210,901 7,811
Design Sediment Depth (ft) =3
Sediment Storage (cf) =92,095 Required Sediment Storage Achieved
Design Surface Area Depth (ft) =3
Surface Area (sf) =35,046 Increase Surface Area
SB 04
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #4 Sheet: 2 Of: 4
Select Skimmer
A. R. Jarrett Method
D = [Q / (2,310 * (H0.5)]0.5
D =Diameter of Orifice (inches)
Q = Dewater Rate (cf/day)
H = Head on orifice, varies based on skimmer size (ft)
Skimmer Sizes Head
(Inches)(ft)
1.5 0.125
2 0.167
2.5 0.167
3 0.250
4 0.333
5 0.333
6 0.417
8 0.500
Volume to Dewater (cf) =92,095
Number of Skimmers 1
Days to Drain =5 assumed
Q each (cf/day) =18,419 0.21 cfs
Selected Skimmer Size (inches) =4
Head on Skimmer (feet) =0.333
Diameter of Orifice (inches) =3.7
Route the flow through the Basin
Riser is not perforated, but skimmer is attached.
S =(1000/CN) - 10
Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4
TP (min) = 60.5(Q*)A/QP/1.39
Phase 1 1
Storm Event (yrs) =10 25
S =1.24 1.24
Runoff Depth Q* (inches) =4.04 5.01
Time to Peak Tp (min) =28.73 29.09
SB 04
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #4 Sheet: 3 Of: 4
Determine Pond Storage Elevation (ZWater):
Pick one point near max expected water surface and the other at the mid depth.
Z1 (ft) = 3 S1 (cf)= 92,095
Z2 (ft) = 5 S2 (cf) = 168,218
b = ln(S2/S1)/ln(Z2/Z1) =1.2 Ref 2, III-8
KS = S2/Z2
b =25,208
Determine Settling Velocity
Conversion Factor = 3.281 ft/sec per m/sec
Gravitational Acceleration, g (m/s2) =9.81
Specific Gravity of soil (ss)=2.6
Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11
Diameter of the Design Particle d15 =40.00E-06 m
Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec
Route the Storm through the Basin using the Hydrograph Model
Set Height of Emergency Spillway at (ft) =6.00
Set Top of Dam at (ft) =6.60
Anti-Seep Collar:
Anti-Seep Collar Size =2 * Barrel Dia
Anti-Seep Collar Size (ft) =2
Use Anti-Seep Collar Size (ft) =2 x 2
Minimum Concrete Base for Riser:
Diameter of Riser (in) = 24 From Hydrograph
Avg Density of Concrete (lbs/cf) =87.6
Density of Water (lbs/cf) =62.4
Riser Displacement (cf) = 16.65 Pi * (DR/24)2 * Total Ht of Riser
Convert cf to cy =27-1
Min Concrete Needed (cy) =0.44
Width & Length (ft) =3
Thickness (ft) =1.3
See Hydrograph
SB 04
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #4 Sheet: 4 Of: 4
Anti-Vortex Device:
Diameter of Riser (in) = 24 From Hydrograph
Cylinder Diameter (in) = 36 Ref 4, III-104, Table 3.14-D
Cylinder Thickness (gage) = 16
Cylinder Height (in) = 13
Determine Tailwater conditions to size outlet apron
Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7
A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3
Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5)
n =0.069 6-inch diameter Rip Rap, Lined Channel
Vp (ft/sec) =9 Permissible Velocity for lining
Side Slope (z) =5 enter X for X:1
s (ft/ft) =0.02 Outlet Slope (estimated)
Bottom Width (ft) = 3 3 * Barrel Diameter
QB (cfs) =0.7 Peak Flow out of the barrel 10-yr Hydrograph
Q (cfs)Zreq
Flow Depth
d (ft)A (sf) R (ft)Zav V (ft/sec)
0.7 0.24 0.20 0.8 0.16 0.24 0.9
Flow Depth = Tailwater, d (ft) =0.20 0.5* Barrel Diameter (ft) =0.50 Ref 1, 8.06.3
Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe
Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe
Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions.
Barrel
Diameter (ft) Entrance (ft) Length (ft)
Outlet Width
(ft)
Median Rip
Rap Size d50
Selected Rip
Rap Size (in)
1 3 8 9 0.4 Class A
Conclusion
The temporary basin can contain the 25-yr storm.
SB 04
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet: 1 Of: 2
Diameter of Riser (in) = 24
Circumference of Riser (in) =75.4
Height of Riser from bottom of barrel (in) =64 From Hydrograph
Vertical spacing between holes (in) =0 center to center
Water Stage increment (ft)0.05
Orifice Equation
Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11
Q =cfs, discharge
Cd =0.6 coefficient of discharge
A = sf, cross sectional area
g =32.2 ft/sec2, gravity
h =ft, driving head measured from the center of the pipe
Skimmer
Row 1 2 3 4 5 1 # of skimmers
Holes per row 0 0 0 0 0
Hole Diameter (in)0.75 0.75 0.75 0.75 0.75
Spacing edge to edge (in)
Inlet Area (sf)0.000 0.000 0.000 0.000 0.000
Hole Stage (in)0.50 0.50 0.50 0.50 0.50
Hole Stage (ft)0.04 0.04 0.04 0.04 0.04
Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs)
0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.00 0.00 0.00 0.00 0.00
0.09 0.00 0.00 0.00 0.00 0.00
0.14 0.00 0.00 0.00 0.00 0.00
0.19 0.00 0.00 0.00 0.00 0.00
0.24 0.00 0.00 0.00 0.00 0.00
0.29 0.00 0.00 0.00 0.00 0.00
0.34 0.00 0.00 0.00 0.21 0.21
0.39 0.00 0.00 0.00 0.21 0.21
0.44 0.00 0.00 0.00 0.21 0.21
0.49 0.00 0.00 0.00 0.21 0.21
0.54 0.00 0.00 0.00 0.21 0.21
0.59 0.00 0.00 0.00 0.21 0.21
0.64 0.00 0.00 0.00 0.21 0.21
0.69 0.00 0.00 0.00 0.21 0.21
0.74 0.00 0.00 0.00 0.21 0.21
0.79 0.00 0.00 0.00 0.21 0.21
0.84 0.00 0.00 0.00 0.21 0.21
0.89 0.00 0.00 0.00 0.21 0.21
0.94 0.00 0.00 0.00 0.21 0.21
0.99 0.00 0.00 0.00 0.21 0.21
1.04 0.00 0.00 0.00 0.21 0.21
1.09 0.00 0.00 0.00 0.21 0.21
1.14 0.00 0.00 0.00 0.21 0.21
1.19 0.00 0.00 0.00 0.21 0.21
1.24 0.00 0.00 0.00 0.21 0.21
1.29 0.00 0.00 0.00 0.21 0.21
1.34 0.00 0.00 0.00 0.21 0.21
1.39 0.00 0.00 0.00 0.21 0.21
1.44 0.00 0.00 0.00 0.21 0.21
1.49 0.00 0.00 0.00 0.21 0.21
1.54 0.00 0.00 0.00 0.21 0.21
1.59 0.00 0.00 0.00 0.21 0.21
Perforations
SB 04 Pipe Perf-Skimmer
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet: 2 Of: 2
1.64 0.00 0.00 0.00 0.21 0.21
1.69 0.00 0.00 0.00 0.21 0.21
1.74 0.00 0.00 0.00 0.21 0.21
1.79 0.00 0.00 0.00 0.21 0.21
1.84 0.00 0.00 0.00 0.21 0.21
1.89 0.00 0.00 0.00 0.21 0.21
1.94 0.00 0.00 0.00 0.21 0.21
1.99 0.00 0.00 0.00 0.21 0.21
2.04 0.00 0.00 0.00 0.21 0.21
2.09 0.00 0.00 0.00 0.21 0.21
2.14 0.00 0.00 0.00 0.21 0.21
2.19 0.00 0.00 0.00 0.21 0.21
2.24 0.00 0.00 0.00 0.21 0.21
2.29 0.00 0.00 0.00 0.21 0.21
2.34 0.00 0.00 0.00 0.21 0.21
2.39 0.00 0.00 0.00 0.21 0.21
2.44 0.00 0.00 0.00 0.21 0.21
2.49 0.00 0.00 0.00 0.21 0.21
2.54 0.00 0.00 0.00 0.21 0.21
2.59 0.00 0.00 0.00 0.21 0.21
2.64 0.00 0.00 0.00 0.21 0.21
2.69 0.00 0.00 0.00 0.21 0.21
2.74 0.00 0.00 0.00 0.21 0.21
2.79 0.00 0.00 0.00 0.21 0.21
2.84 0.00 0.00 0.00 0.21 0.21
2.89 0.00 0.00 0.00 0.21 0.21
2.94 0.00 0.00 0.00 0.21 0.21
2.99 0.00 0.00 0.00 0.21 0.21
3.04 0.00 0.00 0.00 0.21 0.21
3.09 0.00 0.00 0.00 0.21 0.21
3.14 0.00 0.00 0.00 0.21 0.21
3.19 0.00 0.00 0.00 0.21 0.21
3.24 0.00 0.00 0.00 0.21 0.21
3.29 0.00 0.00 0.00 0.21 0.21
3.34 0.00 0.00 0.00 0.21 0.21
3.39 0.00 0.00 0.00 0.21 0.21
3.44 0.00 0.00 0.00 0.21 0.21
3.49 0.00 0.00 0.00 0.21 0.21
3.54 0.00 0.00 0.00 0.21 0.21
3.59 0.00 0.00 0.00 0.21 0.21
3.64 0.00 0.00 0.00 0.21 0.21
3.69 0.00 0.00 0.00 0.21 0.21
3.74 0.00 0.00 0.00 0.21 0.21
3.79 0.00 0.00 0.00 0.21 0.21
3.84 0.00 0.00 0.00 0.21 0.21
3.89 0.00 0.00 0.00 0.21 0.21
3.94 0.00 0.00 0.00 0.21 0.21
3.99 0.00 0.00 0.00 0.21 0.21
SB 04 Pipe Perf-Skimmer
Computed By: PAW Date: 3/05/15
Checked By: MDP Date: 3/0615
Sheet: __1_of __2_
Qp = 77.74 cfs Sediment Basin #4 Colon
Tp = 28.73 minutes Phase 1
dT = Max of 2 minutes 10 - year Storm Event
or 1.0%of increment to peak
b =1.2
Number of Riser/Barrel Assemblies 1 Ks =25,208
Diameter of Barrel =12 (in)
Height of Riser above barrel =4.3 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=5.3 (ft) elevation 266.30 2 Effective number of cells (2 is construction site #)
Emergency Spillway =6.0 (ft) elevation 267.00 100%Minimum Settling Efficiency
Total Height of Dam =6.6 (ft) elevation 267.60 5.4 ft Maximum Stage 266.39 msl elevation
Length of Emergency Spillway =20 (ft)0.7 cfs Peak outflow
Diameter of Riser =24 (in)0.7 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 261.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 0.9 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 3.7 111 0.0 0.00 0.00 0.00 0.00 0.00 28.66 13,029 N/A
6 8.1 550 0.0 0.00 0.00 0.00 0.00 0.00 36.56 16,618 N/A
8 13.9 1,519 0.1 0.00 0.00 0.00 0.00 0.00 42.66 19,393 N/A
10 21.0 3,192 0.2 0.00 0.00 0.00 0.00 0.00 47.77 21,712 N/A
12 28.9 5,714 0.3 0.00 0.00 0.00 0.00 0.00 52.19 23,722 N/A
14 37.3 9,185 0.4 0.21 0.21 0.00 0.21 0.21 56.10 25,498 100%
16 45.8 13,638 0.6 0.21 0.21 0.00 0.21 0.21 59.57 27,078 100%
18 53.9 19,106 0.8 0.21 0.21 0.00 0.21 0.21 62.71 28,502 100%
20 61.3 25,551 1.0 0.21 0.21 0.00 0.21 0.21 65.54 29,790 100%
22 67.7 32,885 1.3 0.21 0.21 0.00 0.21 0.21 68.10 30,956 100%
24 72.7 40,981 1.5 0.21 0.21 0.00 0.21 0.21 70.42 32,010 100%
26 76.0 49,674 1.8 0.21 0.21 0.00 0.21 0.21 72.51 32,960 100%
28 77.6 58,771 2.0 0.21 0.21 0.00 0.21 0.21 74.39 33,814 100%
30 77.4 68,060 2.3 0.21 0.21 0.00 0.21 0.21 76.07 34,577 100%
32 75.3 77,318 2.6 0.21 0.21 0.00 0.21 0.21 77.56 35,254 100%
34 71.5 86,326 2.8 0.21 0.21 0.00 0.21 0.21 78.87 35,850 100%
36 66.2 94,876 3.1 0.21 0.21 0.00 0.21 0.21 80.01 36,368 100%
38 60.4 102,791 3.3 0.21 0.21 0.00 0.21 0.21 80.99 36,814 100%
40 55.2 110,020 3.5 0.21 0.21 0.00 0.21 0.21 81.83 37,197 100%
42 50.4 116,620 3.7 0.21 0.21 0.00 0.21 0.21 82.56 37,528 100%
44 46.1 122,648 3.8 0.21 0.21 0.00 0.21 0.21 83.20 37,816 100%
46 42.1 128,151 4.0 0.21 0.21 0.00 0.21 0.21 83.75 38,070 100%
48 38.4 133,177 4.1 0.21 0.21 0.00 0.21 0.21 84.24 38,293 100%
50 35.1 137,765 4.2 0.21 0.21 0.00 0.21 0.21 84.68 38,491 100%
52 32.1 141,954 4.3 0.21 0.21 0.00 0.21 0.21 85.07 38,666 100%
54 29.3 145,778 4.4 0.21 0.21 0.00 0.21 0.21 85.41 38,823 100%
56 26.8 149,269 4.5 0.21 0.21 0.00 0.21 0.21 85.72 38,963 100%
58 24.5 152,456 4.6 0.21 0.21 0.00 0.21 0.21 85.99 39,088 100%
60 22.3 155,365 4.7 0.21 0.21 0.00 0.21 0.21 86.24 39,201 100%
62 20.4 158,020 4.7 0.21 0.21 0.00 0.21 0.21 86.46 39,302 100%
64 18.6 160,444 4.8 0.21 0.21 0.00 0.21 0.21 86.66 39,393 100%
66 17.0 162,655 4.9 0.21 0.21 0.00 0.21 0.21 86.85 39,475 100%
68 15.6 164,673 4.9 0.21 0.21 0.00 0.21 0.21 87.01 39,549 100%
70 14.2 166,514 5.0 0.21 0.21 0.00 0.21 0.21 87.16 39,616 100%
72 13.0 168,193 5.0 0.21 0.21 0.00 0.21 0.21 87.29 39,677 100%
74 11.9 169,725 5.0 0.21 0.21 0.00 0.21 0.21 87.41 39,731 100%
76 10.8 171,122 5.1 0.21 0.21 0.00 0.21 0.21 87.52 39,781 100%
78 9.9 172,396 5.1 0.21 0.21 0.00 0.21 0.21 87.62 39,826 100%
80 9.0 173,558 5.1 0.21 0.21 0.00 0.21 0.21 87.71 39,867 100%
82 8.3 174,617 5.2 0.21 0.21 0.00 0.21 0.21 87.79 39,904 100%
SB 04 SB 10-yr (P1) HG
Computed By: PAW Date: 3/05/15
Checked By: MDP Date: 3/0615
Sheet: __2_of __2_
84 7.5 175,582 5.2 0.21 0.21 0.00 0.21 0.21 87.86 39,937 100%
86 6.9 176,461 5.2 0.21 0.21 0.00 0.21 0.21 87.93 39,967 100%
88 6.3 177,262 5.2 0.21 0.21 0.00 0.21 0.21 87.99 39,995 100%
90 5.7 177,992 5.2 0.21 0.21 0.00 0.21 0.21 88.04 40,020 100%
92 5.3 178,656 5.3 0.21 0.21 0.00 0.21 0.21 88.09 40,043 100%
94 4.8 179,260 5.3 0.21 0.21 0.00 0.21 0.21 88.14 40,063 100%
96 4.4 179,810 5.3 0.21 0.21 0.00 0.21 0.21 88.18 40,082 100%
98 4.0 180,311 5.3 0.21 0.22 0.00 8.27 0.22 88.22 40,099 100%
100 3.7 180,765 5.3 0.21 0.25 0.00 8.28 0.25 88.25 40,114 100%
102 3.3 181,174 5.3 0.21 0.29 0.00 8.29 0.29 88.28 40,128 100%
104 3.1 181,539 5.3 0.21 0.34 0.00 8.30 0.34 88.31 40,140 100%
106 2.8 181,864 5.3 0.21 0.39 0.00 8.31 0.39 88.33 40,151 100%
108 2.5 182,152 5.3 0.21 0.44 0.00 8.31 0.44 88.35 40,161 100%
110 2.3 182,405 5.4 0.21 0.48 0.00 8.32 0.48 88.37 40,169 100%
112 2.1 182,626 5.4 0.21 0.52 0.00 8.32 0.52 88.39 40,177 100%
114 1.9 182,818 5.4 0.21 0.56 0.00 8.33 0.56 88.40 40,183 100%
116 1.8 182,983 5.4 0.21 0.59 0.00 8.33 0.59 88.41 40,189 100%
118 1.6 183,125 5.4 0.21 0.62 0.00 8.33 0.62 88.43 40,193 100%
120 1.5 183,244 5.4 0.21 0.65 0.00 8.34 0.65 88.43 40,197 100%
122 1.4 183,343 5.4 0.21 0.67 0.00 8.34 0.67 88.44 40,201 100%
124 1.2 183,425 5.4 0.21 0.69 0.00 8.34 0.69 88.45 40,203 100%
126 1.1 183,491 5.4 0.21 0.70 0.00 8.34 0.70 88.45 40,205 100%
128 1.0 183,541 5.4 0.21 0.71 0.00 8.34 0.71 88.46 40,207 100%
130 0.9 183,579 5.4 0.21 0.72 0.00 8.34 0.72 88.46 40,208 100%
132 0.9 183,605 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,209 100%
134 0.8 183,621 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,210 100%
136 0.7 183,627 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,210 100%
138 0.7 183,625 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,210 100%
140 0.6 183,616 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,210 100%
142 0.5 183,600 5.4 0.21 0.73 0.00 8.35 0.73 88.46 40,209 100%
144 0.5 183,578 5.4 0.21 0.72 0.00 8.34 0.72 88.46 40,208 100%
146 0.5 183,552 5.4 0.21 0.72 0.00 8.34 0.72 88.46 40,207 100%
148 0.4 183,520 5.4 0.21 0.71 0.00 8.34 0.71 88.45 40,206 100%
150 0.4 183,485 5.4 0.21 0.70 0.00 8.34 0.70 88.45 40,205 100%
152 0.3 183,447 5.4 0.21 0.69 0.00 8.34 0.69 88.45 40,204 100%
154 0.3 183,405 5.4 0.21 0.68 0.00 8.34 0.68 88.45 40,203 100%
156 0.3 183,361 5.4 0.21 0.67 0.00 8.34 0.67 88.44 40,201 100%
158 0.3 183,315 5.4 0.21 0.66 0.00 8.34 0.66 88.44 40,200 100%
160 0.2 183,267 5.4 0.21 0.65 0.00 8.34 0.65 88.44 40,198 100%
162 0.2 183,217 5.4 0.21 0.64 0.00 8.34 0.64 88.43 40,196 100%
164 0.2 183,167 5.4 0.21 0.63 0.00 8.34 0.63 88.43 40,195 100%
166 0.2 183,115 5.4 0.21 0.62 0.00 8.33 0.62 88.42 40,193 100%
168 0.2 183,062 5.4 0.21 0.61 0.00 8.33 0.61 88.42 40,191 100%
170 0.2 183,009 5.4 0.21 0.60 0.00 8.33 0.60 88.42 40,189 100%
172 0.1 182,956 5.4 0.21 0.59 0.00 8.33 0.59 88.41 40,188 100%
174 0.1 182,902 5.4 0.21 0.58 0.00 8.33 0.58 88.41 40,186 100%
176 0.1 182,848 5.4 0.21 0.57 0.00 8.33 0.57 88.40 40,184 100%
178 0.1 182,794 5.4 0.21 0.56 0.00 8.33 0.56 88.40 40,182 100%
180 0.1 182,740 5.4 0.21 0.55 0.00 8.33 0.55 88.40 40,180 100%
182 0.1 182,686 5.4 0.21 0.54 0.00 8.33 0.54 88.39 40,179 100%
184 0.1 182,633 5.4 0.21 0.53 0.00 8.32 0.53 88.39 40,177 100%
186 0.1 182,579 5.4 0.21 0.52 0.00 8.32 0.52 88.39 40,175 100%
188 0.1 182,526 5.4 0.21 0.51 0.00 8.32 0.51 88.38 40,173 100%
190 0.1 182,474 5.4 0.21 0.50 0.00 8.32 0.50 88.38 40,172 100%
192 0.1 182,422 5.4 0.21 0.49 0.00 8.32 0.49 88.37 40,170 100%
194 0.1 182,370 5.4 0.21 0.48 0.00 8.32 0.48 88.37 40,168 100%
196 0.0 182,319 5.4 0.21 0.47 0.00 8.32 0.47 88.37 40,166 100%
198 0.0 182,269 5.4 0.21 0.46 0.00 8.32 0.46 88.36 40,165 100%
200 0.0 182,219 5.4 0.21 0.45 0.00 8.32 0.45 88.36 40,163 100%
202 0.0 182,170 5.3 0.21 0.44 0.00 8.31 0.44 88.35 40,161 100%
204 0.0 182,121 5.3 0.21 0.43 0.00 8.31 0.43 88.35 40,160 100%
206 0.0 182,073 5.3 0.21 0.42 0.00 8.31 0.42 88.35 40,158 100%
SB 04 SB 10-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
4
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
10
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
Computed By: PAW Date: 3/05/15
Checked By: MDP Date: 3/0615
Sheet: __1_of __2_
Qp = 95.13 cfs Sediment Basin #4 Colon
Tp = 29.09 minutes Phase 1
dT = Max of 2 minutes 25 - year Storm Event
or 1.0%of increment to peak
b =1.2
Number of Riser/Barrel Assemblies 1 Ks =25,208
Diameter of Barrel =12 (in)
Height of Riser above barrel =4.3 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=5.3 (ft) elevation 266.30 2 Effective number of cells (2 is construction site #)
Emergency Spillway =6 (ft) elevation 267.00 99%Minimum Settling Efficiency
Total Height of Dam =6.6 (ft) elevation 267.60 6.0 ft Maximum Stage 266.95 msl elevation
Length of Emergency Spillway =20 (ft)8.8 cfs Peak outflow
Diameter of Riser =24 (in)8.8 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 261.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 1.1 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 4.4 133 0.0 0.00 0.00 0.00 0.00 0.00 29.45 13,384 N/A
6 9.6 657 0.0 0.00 0.00 0.00 0.00 0.00 37.56 17,072 N/A
8 16.7 1,813 0.1 0.00 0.00 0.00 0.00 0.00 43.83 19,923 N/A
10 25.1 3,814 0.2 0.00 0.00 0.00 0.00 0.00 49.08 22,308 N/A
12 34.6 6,830 0.3 0.00 0.00 0.00 0.00 0.00 53.62 24,375 N/A
14 44.8 10,988 0.5 0.21 0.21 0.00 0.21 0.21 57.65 26,203 100%
16 55.0 16,333 0.7 0.21 0.21 0.00 0.21 0.21 61.23 27,831 100%
18 64.9 22,907 0.9 0.21 0.21 0.00 0.21 0.21 64.46 29,300 100%
20 74.0 30,669 1.2 0.21 0.21 0.00 0.21 0.21 67.38 30,629 100%
22 81.8 39,521 1.5 0.21 0.21 0.00 0.21 0.21 70.03 31,833 100%
24 88.1 49,317 1.8 0.21 0.21 0.00 0.21 0.21 72.43 32,924 100%
26 92.5 59,865 2.1 0.21 0.21 0.00 0.21 0.21 74.60 33,909 100%
28 94.8 70,939 2.4 0.21 0.21 0.00 0.21 0.21 76.55 34,795 100%
30 94.9 82,289 2.7 0.21 0.21 0.00 0.21 0.21 78.30 35,589 100%
32 92.8 93,652 3.0 0.21 0.21 0.00 0.21 0.21 79.85 36,296 100%
34 88.6 104,763 3.3 0.21 0.21 0.00 0.21 0.21 81.23 36,921 100%
36 82.5 115,371 3.6 0.21 0.21 0.00 0.21 0.21 82.43 37,466 100%
38 75.6 125,246 3.9 0.21 0.21 0.00 0.21 0.21 83.46 37,937 100%
40 69.1 134,290 4.1 0.21 0.21 0.00 0.21 0.21 84.35 38,341 100%
42 63.2 142,559 4.3 0.21 0.21 0.00 0.21 0.21 85.12 38,691 100%
44 57.8 150,118 4.5 0.21 0.21 0.00 0.21 0.21 85.79 38,997 100%
46 52.9 157,029 4.7 0.21 0.21 0.00 0.21 0.21 86.38 39,264 100%
48 48.3 163,348 4.9 0.21 0.21 0.00 0.21 0.21 86.90 39,501 100%
50 44.2 169,123 5.0 0.21 0.21 0.00 0.21 0.21 87.36 39,710 100%
52 40.4 174,403 5.2 0.21 0.21 0.00 0.21 0.21 87.77 39,896 100%
54 37.0 179,229 5.3 0.21 0.21 0.00 0.21 0.21 88.14 40,062 100%
56 33.8 183,641 5.4 0.21 0.74 0.00 8.35 0.74 88.46 40,210 100%
58 30.9 187,610 5.5 0.21 1.86 0.00 8.43 1.86 88.75 40,341 100%
60 28.3 191,098 5.6 0.21 3.14 0.00 8.50 3.14 89.00 40,455 100%
62 25.9 194,115 5.6 0.21 4.42 0.00 8.56 4.42 89.21 40,551 100%
64 23.7 196,688 5.7 0.21 5.63 0.00 8.62 5.63 89.39 40,632 100%
66 21.6 198,850 5.8 0.21 6.72 0.00 8.66 6.72 89.54 40,700 99%
68 19.8 200,639 5.8 0.21 7.67 0.00 8.70 7.67 89.66 40,755 99%
70 18.1 202,091 5.8 0.21 8.48 0.00 8.73 8.48 89.76 40,800 99%
72 16.5 203,245 5.9 0.21 9.13 0.00 8.75 8.75 89.84 40,836 99%
74 15.1 204,180 5.9 0.21 9.67 0.00 8.77 8.77 89.90 40,864 99%
76 13.8 204,944 5.9 0.21 10.13 0.00 8.78 8.78 89.95 40,887 99%
78 12.7 205,550 5.9 0.21 10.49 0.00 8.80 8.80 89.99 40,906 99%
80 11.6 206,013 5.9 0.21 10.77 0.00 8.80 8.80 90.02 40,920 99%
82 10.6 206,345 5.9 0.21 10.97 0.00 8.81 8.81 90.05 40,930 99%
SB 04 SB 25-yr (P1) HG
Computed By: PAW Date: 3/05/15
Checked By: MDP Date: 3/0615
Sheet: __2_of __2_
84 9.7 206,557 6.0 0.21 11.10 0.00 8.82 8.82 90.06 40,936 99%
86 8.9 206,661 6.0 0.21 11.16 0.00 8.82 8.82 90.07 40,939 99%
88 8.1 206,665 6.0 0.21 11.17 0.00 8.82 8.82 90.07 40,939 99%
90 7.4 206,578 6.0 0.21 11.11 0.00 8.82 8.82 90.06 40,937 99%
92 6.8 206,408 5.9 0.21 11.01 0.00 8.81 8.81 90.05 40,932 99%
94 6.2 206,163 5.9 0.21 10.86 0.00 8.81 8.81 90.03 40,924 99%
96 5.7 205,849 5.9 0.21 10.67 0.00 8.80 8.80 90.01 40,915 99%
98 5.2 205,472 5.9 0.21 10.44 0.00 8.79 8.79 89.99 40,903 99%
100 4.7 205,038 5.9 0.21 10.18 0.00 8.79 8.79 89.96 40,890 99%
102 4.3 204,552 5.9 0.21 9.89 0.00 8.78 8.78 89.93 40,875 99%
104 4.0 204,019 5.9 0.21 9.58 0.00 8.76 8.76 89.89 40,859 99%
106 3.6 203,442 5.9 0.21 9.25 0.00 8.75 8.75 89.85 40,842 99%
108 3.3 202,826 5.9 0.21 8.89 0.00 8.74 8.74 89.81 40,823 99%
110 3.0 202,175 5.8 0.21 8.52 0.00 8.73 8.52 89.77 40,803 99%
112 2.8 201,515 5.8 0.21 8.16 0.00 8.71 8.16 89.72 40,782 99%
114 2.5 200,869 5.8 0.21 7.80 0.00 8.70 7.80 89.68 40,763 99%
116 2.3 200,237 5.8 0.21 7.46 0.00 8.69 7.46 89.63 40,743 99%
118 2.1 199,620 5.8 0.21 7.13 0.00 8.68 7.13 89.59 40,724 99%
120 1.9 199,019 5.8 0.21 6.81 0.00 8.66 6.81 89.55 40,705 99%
122 1.8 198,434 5.8 0.21 6.51 0.00 8.65 6.51 89.51 40,687 99%
124 1.6 197,865 5.7 0.21 6.22 0.00 8.64 6.22 89.47 40,669 99%
126 1.5 197,313 5.7 0.21 5.94 0.00 8.63 5.94 89.43 40,652 100%
128 1.4 196,778 5.7 0.21 5.68 0.00 8.62 5.68 89.40 40,635 100%
130 1.2 196,259 5.7 0.21 5.43 0.00 8.61 5.43 89.36 40,619 100%
132 1.1 195,757 5.7 0.21 5.18 0.00 8.60 5.18 89.33 40,603 100%
134 1.0 195,271 5.7 0.21 4.95 0.00 8.59 4.95 89.29 40,588 100%
136 0.9 194,800 5.7 0.21 4.74 0.00 8.58 4.74 89.26 40,573 100%
138 0.9 194,346 5.7 0.21 4.53 0.00 8.57 4.53 89.23 40,558 100%
140 0.8 193,906 5.6 0.21 4.33 0.00 8.56 4.33 89.20 40,544 100%
142 0.7 193,482 5.6 0.21 4.14 0.00 8.55 4.14 89.17 40,531 100%
144 0.7 193,072 5.6 0.21 3.96 0.00 8.54 3.96 89.14 40,518 100%
146 0.6 192,676 5.6 0.21 3.79 0.00 8.54 3.79 89.11 40,505 100%
148 0.6 192,294 5.6 0.21 3.63 0.00 8.53 3.63 89.08 40,493 100%
150 0.5 191,925 5.6 0.21 3.47 0.00 8.52 3.47 89.06 40,481 100%
152 0.5 191,569 5.6 0.21 3.33 0.00 8.51 3.33 89.03 40,470 100%
154 0.4 191,225 5.6 0.21 3.19 0.00 8.51 3.19 89.01 40,459 100%
156 0.4 190,893 5.6 0.21 3.06 0.00 8.50 3.06 88.99 40,448 100%
158 0.4 190,573 5.6 0.21 2.93 0.00 8.49 2.93 88.96 40,438 100%
160 0.3 190,264 5.6 0.21 2.81 0.00 8.49 2.81 88.94 40,428 100%
162 0.3 189,966 5.5 0.21 2.70 0.00 8.48 2.70 88.92 40,418 100%
164 0.3 189,678 5.5 0.21 2.59 0.00 8.47 2.59 88.90 40,409 100%
166 0.2 189,400 5.5 0.21 2.48 0.00 8.47 2.48 88.88 40,400 100%
168 0.2 189,131 5.5 0.21 2.39 0.00 8.46 2.39 88.86 40,391 100%
170 0.2 188,872 5.5 0.21 2.29 0.00 8.46 2.29 88.84 40,383 100%
172 0.2 188,622 5.5 0.21 2.20 0.00 8.45 2.20 88.82 40,374 100%
174 0.2 188,380 5.5 0.21 2.12 0.00 8.45 2.12 88.81 40,367 100%
176 0.2 188,146 5.5 0.21 2.04 0.00 8.44 2.04 88.79 40,359 100%
178 0.1 187,921 5.5 0.21 1.96 0.00 8.44 1.96 88.77 40,352 100%
180 0.1 187,703 5.5 0.21 1.89 0.00 8.43 1.89 88.76 40,344 100%
182 0.1 187,492 5.5 0.21 1.82 0.00 8.43 1.82 88.74 40,338 100%
184 0.1 187,288 5.5 0.21 1.75 0.00 8.42 1.75 88.73 40,331 100%
186 0.1 187,091 5.5 0.21 1.69 0.00 8.42 1.69 88.71 40,324 100%
188 0.1 186,901 5.5 0.21 1.63 0.00 8.41 1.63 88.70 40,318 100%
190 0.1 186,716 5.5 0.21 1.57 0.00 8.41 1.57 88.69 40,312 100%
192 0.1 186,538 5.5 0.21 1.52 0.00 8.41 1.52 88.67 40,306 100%
194 0.1 186,365 5.5 0.21 1.46 0.00 8.40 1.46 88.66 40,301 100%
196 0.1 186,198 5.4 0.21 1.41 0.00 8.40 1.41 88.65 40,295 100%
198 0.1 186,037 5.4 0.21 1.37 0.00 8.40 1.37 88.64 40,290 100%
200 0.1 185,880 5.4 0.21 1.32 0.00 8.39 1.32 88.63 40,285 100%
202 0.0 185,728 5.4 0.21 1.28 0.00 8.39 1.28 88.62 40,280 100%
204 0.0 185,581 5.4 0.21 1.23 0.00 8.39 1.23 88.60 40,275 100%
206 0.0 185,438 5.4 0.21 1.19 0.00 8.38 1.19 88.59 40,270 100%
SB 04 SB 25-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
4
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
25
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #6 Sheet: 1 Of: 4
Objective Design the temporary sediment basin to contain the 25-year storm.
References
1. NC Erosion and Sediment Control Planning and Design Manual.
2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E.
3. NOAA Atlas 14, Volume 2, Version 3
4. VA Erosion and Sediment Control Handbook
Given
Phase 1 1
Storm Event (yrs) =10 25
Total Drainage Area A (ac) =15.3 15.3
Disturbed Area (ac) =15.3 15.3
Curve Number CN =89 89 Hydrographs
Rainfall Depth P (in) =5.28 6.28 (24-hr rainfall)Ref 3
Peak Flow Qp (cfs) =93.60 114.53 Hydrographs
Design Criteria
Required sediment storage 1,800 cf / acre of drainage
Required sediment storage 27,540 cf
Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs)
Required Surface Area (SF)49,821 of the 10-yr storm peak flow (based on the largest Phase)
Determine Shape of Basin:
Measure the area of the Basin using AutoCADD.
Calculate Volume of the Basin using Truncated Pyramid Method.
Shape factor used in hydrographs basin depth may be gretaer than indicated below
Cumulative Cumulative
Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy)
249 0 30,723 ---
250 1 34,084 32,389 32,389 1,200
251 2 37,519 35,788 68,177 2,525
252 3 41,027 39,260 107,437 3,979
253 4 44,808 42,904 150,340 5,568
254 5 48,997 46,887 197,227 7,305
255 6 52,981 50,976 248,203 9,193
Design Sediment Depth (ft) =3
Sediment Storage (cf) =107,437 Required Sediment Storage Achieved
Design Surface Area Depth (ft) =3
Surface Area (sf) =41,027 Increase Surface Area
SB 06
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #6 Sheet: 2 Of: 4
Select Skimmer
A. R. Jarrett Method
D = [Q / (2,310 * (H0.5)]0.5
D =Diameter of Orifice (inches)
Q = Dewater Rate (cf/day)
H = Head on orifice, varies based on skimmer size (ft)
Skimmer Sizes Head
(Inches)(ft)
1.5 0.125
2 0.167
2.5 0.167
3 0.250
4 0.333
5 0.333
6 0.417
8 0.500
Volume to Dewater (cf) =107,437
Number of Skimmers 1
Days to Drain =5 assumed
Q each (cf/day) =21,487 0.25 cfs
Selected Skimmer Size (inches) =5
Head on Skimmer (feet) =0.333
Diameter of Orifice (inches) =4.0
Route the flow through the Basin
Riser is not perforated, but skimmer is attached.
S =(1000/CN) - 10
Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4
TP (min) = 60.5(Q*)A/QP/1.39
Phase 1 1
Storm Event (yrs) =10 25
S =1.24 1.24
Runoff Depth Q* (inches) =4.04 5.01
Time to Peak Tp (min) =28.75 29.11
Determine Pond Storage Elevation (ZWater):
Pick one point near max expected water surface and the other at the mid depth.
Z1 (ft) = 3 S1 (cf)= 107,437
Z2 (ft) = 5 S2 (cf) = 197,227
b = ln(S2/S1)/ln(Z2/Z1) =1.2 Ref 2, III-8
KS = S2/Z2
b =29,092
SB 06
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #6 Sheet: 3 Of: 4
Determine Settling Velocity
Conversion Factor = 3.281 ft/sec per m/sec
Gravitational Acceleration, g (m/s2) =9.81
Specific Gravity of soil (ss)=2.6
Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11
Diameter of the Design Particle d15 =40.00E-06 m
Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec
Route the Storm through the Basin using the Hydrograph Model
Set Height of Emergency Spillway at (ft) =6.10
Set Top of Dam at (ft) =7.00
Anti-Seep Collar:
Anti-Seep Collar Size =2 * Barrel Dia
Anti-Seep Collar Size (ft) =2
Use Anti-Seep Collar Size (ft) =2 x 2
Minimum Concrete Base for Riser:
Diameter of Riser (in) = 18 From Hydrograph
Avg Density of Concrete (lbs/cf) =87.6
Density of Water (lbs/cf) =62.4
Riser Displacement (cf) = 8.84 Pi * (DR/24)2 * Total Ht of Riser
Convert cf to cy =27-1
Min Concrete Needed (cy) =0.23
Width & Length (ft) =2.5
Thickness (ft) =1.0
Anti-Vortex Device:
Diameter of Riser (in) = 18 From Hydrograph
Cylinder Diameter (in) = 27 Ref 4, III-104, Table 3.14-D
Cylinder Thickness (gage) = 16
Cylinder Height (in) = 8
See Hydrograph
SB 06
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #6 Sheet: 4 Of: 4
Determine Tailwater conditions to size outlet apron
Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7
A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3
Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5)
n =0.069 6-inch diameter Rip Rap, Lined Channel
Vp (ft/sec) =9 Permissible Velocity for lining
Side Slope (z) =5 enter X for X:1
s (ft/ft) =0.02 Outlet Slope (estimated)
Bottom Width (ft) = 3 3 * Barrel Diameter
QB (cfs) =3.6 Peak Flow out of the barrel 10-yr Hydrograph
Q (cfs)Zreq
Flow Depth
d (ft)A (sf) R (ft)Zav V (ft/sec)
3.6 1.18 0.47 2.5 0.32 1.18 1.4
Flow Depth = Tailwater, d (ft) =0.47 0.5* Barrel Diameter (ft) =0.50 Ref 1, 8.06.3
Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe
Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe
Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions.
Barrel
Diameter (ft) Entrance (ft) Length (ft)
Outlet Width
(ft)
Median Rip
Rap Size d50
Selected Rip
Rap Size (in)
1 3 8 9 0.3 Class A
Conclusion
The temporary basin can contain the 25-yr storm.
SB 06
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet: 1 Of: 2
Diameter of Riser (in) = 18
Circumference of Riser (in) =56.5
Height of Riser from bottom of barrel (in) =60 From Hydrograph
Vertical spacing between holes (in) =0 center to center
Water Stage increment (ft)0.05
Orifice Equation
Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11
Q =cfs, discharge
Cd =0.6 coefficient of discharge
A = sf, cross sectional area
g =32.2 ft/sec2, gravity
h =ft, driving head measured from the center of the pipe
Skimmer
Row 1 2 3 4 5 1 # of skimmers
Holes per row 0 0 0 0 0
Hole Diameter (in)0.75 0.75 0.75 0.75 0.75
Spacing edge to edge (in)
Inlet Area (sf)0.000 0.000 0.000 0.000 0.000
Hole Stage (in)0.50 0.50 0.50 0.50 0.50
Hole Stage (ft)0.04 0.04 0.04 0.04 0.04
Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs)
0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.00 0.00 0.00 0.00 0.00
0.09 0.00 0.00 0.00 0.00 0.00
0.14 0.00 0.00 0.00 0.00 0.00
0.19 0.00 0.00 0.00 0.00 0.00
0.24 0.00 0.00 0.00 0.00 0.00
0.29 0.00 0.00 0.00 0.00 0.00
0.34 0.00 0.00 0.00 0.25 0.25
0.39 0.00 0.00 0.00 0.25 0.25
0.44 0.00 0.00 0.00 0.25 0.25
0.49 0.00 0.00 0.00 0.25 0.25
0.54 0.00 0.00 0.00 0.25 0.25
0.59 0.00 0.00 0.00 0.25 0.25
0.64 0.00 0.00 0.00 0.25 0.25
0.69 0.00 0.00 0.00 0.25 0.25
0.74 0.00 0.00 0.00 0.25 0.25
0.79 0.00 0.00 0.00 0.25 0.25
0.84 0.00 0.00 0.00 0.25 0.25
0.89 0.00 0.00 0.00 0.25 0.25
0.94 0.00 0.00 0.00 0.25 0.25
0.99 0.00 0.00 0.00 0.25 0.25
1.04 0.00 0.00 0.00 0.25 0.25
1.09 0.00 0.00 0.00 0.25 0.25
1.14 0.00 0.00 0.00 0.25 0.25
1.19 0.00 0.00 0.00 0.25 0.25
1.24 0.00 0.00 0.00 0.25 0.25
1.29 0.00 0.00 0.00 0.25 0.25
1.34 0.00 0.00 0.00 0.25 0.25
1.39 0.00 0.00 0.00 0.25 0.25
1.44 0.00 0.00 0.00 0.25 0.25
1.49 0.00 0.00 0.00 0.25 0.25
1.54 0.00 0.00 0.00 0.25 0.25
1.59 0.00 0.00 0.00 0.25 0.25
Perforations
SB 06 Pipe Perf-Skimmer
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet: 2 Of: 2
1.64 0.00 0.00 0.00 0.25 0.25
1.69 0.00 0.00 0.00 0.25 0.25
1.74 0.00 0.00 0.00 0.25 0.25
1.79 0.00 0.00 0.00 0.25 0.25
1.84 0.00 0.00 0.00 0.25 0.25
1.89 0.00 0.00 0.00 0.25 0.25
1.94 0.00 0.00 0.00 0.25 0.25
1.99 0.00 0.00 0.00 0.25 0.25
2.04 0.00 0.00 0.00 0.25 0.25
2.09 0.00 0.00 0.00 0.25 0.25
2.14 0.00 0.00 0.00 0.25 0.25
2.19 0.00 0.00 0.00 0.25 0.25
2.24 0.00 0.00 0.00 0.25 0.25
2.29 0.00 0.00 0.00 0.25 0.25
2.34 0.00 0.00 0.00 0.25 0.25
2.39 0.00 0.00 0.00 0.25 0.25
2.44 0.00 0.00 0.00 0.25 0.25
2.49 0.00 0.00 0.00 0.25 0.25
2.54 0.00 0.00 0.00 0.25 0.25
2.59 0.00 0.00 0.00 0.25 0.25
2.64 0.00 0.00 0.00 0.25 0.25
2.69 0.00 0.00 0.00 0.25 0.25
2.74 0.00 0.00 0.00 0.25 0.25
2.79 0.00 0.00 0.00 0.25 0.25
2.84 0.00 0.00 0.00 0.25 0.25
2.89 0.00 0.00 0.00 0.25 0.25
2.94 0.00 0.00 0.00 0.25 0.25
2.99 0.00 0.00 0.00 0.25 0.25
3.04 0.00 0.00 0.00 0.25 0.25
3.09 0.00 0.00 0.00 0.25 0.25
3.14 0.00 0.00 0.00 0.25 0.25
3.19 0.00 0.00 0.00 0.25 0.25
3.24 0.00 0.00 0.00 0.25 0.25
3.29 0.00 0.00 0.00 0.25 0.25
3.34 0.00 0.00 0.00 0.25 0.25
3.39 0.00 0.00 0.00 0.25 0.25
3.44 0.00 0.00 0.00 0.25 0.25
3.49 0.00 0.00 0.00 0.25 0.25
3.54 0.00 0.00 0.00 0.25 0.25
3.59 0.00 0.00 0.00 0.25 0.25
3.64 0.00 0.00 0.00 0.25 0.25
3.69 0.00 0.00 0.00 0.25 0.25
3.74 0.00 0.00 0.00 0.25 0.25
3.79 0.00 0.00 0.00 0.25 0.25
3.84 0.00 0.00 0.00 0.25 0.25
3.89 0.00 0.00 0.00 0.25 0.25
3.94 0.00 0.00 0.00 0.25 0.25
3.99 0.00 0.00 0.00 0.25 0.25
SB 06 Pipe Perf-Skimmer
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _1__of _2__
Qp = 93.60 cfs Sediment Basin #6 Colon
Tp = 28.75 minutes Phase 1
dT = Max of 2 minutes 10 - year Storm Event
or 1.0%of increment to peak
b =1.2
Number of Riser/Barrel Assemblies 1 Ks =29,092
Diameter of Barrel =12 (in)
Height of Riser above barrel =4.0 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=5.0 (ft) elevation 254.00 2 Effective number of cells (2 is construction site #)
Emergency Spillway =6.1 (ft) elevation 255.10 100%Minimum Settling Efficiency
Total Height of Dam =7.0 (ft) elevation 256.00 5.4 ft Maximum Stage 254.36 msl elevation
Length of Emergency Spillway =10 (ft)3.6 cfs Peak outflow
Diameter of Riser =18 (in)3.6 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 249.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 1.1 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 4.4 134 0.0 0.00 0.00 0.00 0.00 0.00 32.33 14,693 N/A
6 9.7 662 0.0 0.00 0.00 0.00 0.00 0.00 41.69 18,952 N/A
8 16.8 1,826 0.1 0.00 0.00 0.00 0.00 0.00 49.00 22,273 N/A
10 25.3 3,839 0.2 0.00 0.00 0.00 0.00 0.00 55.15 25,068 N/A
12 34.8 6,872 0.3 0.00 0.00 0.00 0.00 0.00 60.50 27,500 N/A
14 44.9 11,048 0.4 0.25 0.25 0.00 0.25 0.25 65.25 29,657 100%
16 55.1 16,405 0.6 0.25 0.25 0.00 0.25 0.25 69.48 31,582 100%
18 64.9 22,984 0.8 0.25 0.25 0.00 0.25 0.25 73.31 33,322 100%
20 73.8 30,738 1.0 0.25 0.25 0.00 0.25 0.25 76.78 34,900 100%
22 81.4 39,564 1.3 0.25 0.25 0.00 0.25 0.25 79.92 36,329 100%
24 87.4 49,307 1.6 0.25 0.25 0.00 0.25 0.25 82.77 37,624 100%
26 91.5 59,770 1.8 0.25 0.25 0.00 0.25 0.25 85.35 38,794 100%
28 93.4 70,721 2.1 0.25 0.25 0.00 0.25 0.25 87.66 39,846 100%
30 93.2 81,905 2.4 0.25 0.25 0.00 0.25 0.25 89.73 40,787 100%
32 90.7 93,054 2.7 0.25 0.25 0.00 0.25 0.25 91.57 41,624 100%
34 86.1 103,905 2.9 0.25 0.25 0.00 0.25 0.25 93.19 42,361 100%
36 79.8 114,207 3.2 0.25 0.25 0.00 0.25 0.25 94.61 43,003 100%
38 72.9 123,747 3.4 0.25 0.25 0.00 0.25 0.25 95.82 43,555 100%
40 66.6 132,460 3.6 0.25 0.25 0.00 0.25 0.25 96.86 44,029 100%
42 60.8 140,417 3.8 0.25 0.25 0.00 0.25 0.25 97.77 44,439 100%
44 55.5 147,683 3.9 0.25 0.25 0.00 0.25 0.25 98.55 44,797 100%
46 50.7 154,318 4.1 0.25 0.25 0.00 0.25 0.25 99.25 45,112 100%
48 46.4 160,377 4.2 0.25 0.25 0.00 0.25 0.25 99.86 45,389 100%
50 42.3 165,910 4.3 0.25 0.25 0.00 0.25 0.25 100.40 45,634 100%
52 38.7 170,961 4.4 0.25 0.25 0.00 0.25 0.25 100.88 45,853 100%
54 35.3 175,573 4.5 0.25 0.25 0.00 0.25 0.25 101.30 46,047 100%
56 32.3 179,784 4.6 0.25 0.25 0.00 0.25 0.25 101.69 46,221 100%
58 29.5 183,627 4.7 0.25 0.25 0.00 0.25 0.25 102.03 46,377 100%
60 26.9 187,136 4.8 0.25 0.25 0.00 0.25 0.25 102.34 46,517 100%
62 24.6 190,339 4.9 0.25 0.25 0.00 0.25 0.25 102.61 46,643 100%
64 22.5 193,263 4.9 0.25 0.25 0.00 0.25 0.25 102.86 46,756 100%
66 20.5 195,931 5.0 0.25 0.25 0.00 0.25 0.25 103.09 46,858 100%
68 18.8 198,365 5.0 0.25 0.31 0.00 8.03 0.31 103.29 46,950 100%
70 17.1 200,580 5.1 0.25 0.55 0.00 8.07 0.55 103.47 47,033 100%
72 15.7 202,571 5.1 0.25 0.84 0.00 8.11 0.84 103.64 47,107 100%
74 14.3 204,349 5.2 0.25 1.16 0.00 8.14 1.16 103.78 47,172 100%
76 13.1 205,925 5.2 0.25 1.48 0.00 8.17 1.48 103.91 47,230 100%
78 11.9 207,315 5.2 0.25 1.79 0.00 8.20 1.79 104.02 47,281 100%
80 10.9 208,533 5.2 0.25 2.08 0.00 8.22 2.08 104.11 47,325 100%
82 10.0 209,592 5.3 0.25 2.34 0.00 8.24 2.34 104.20 47,363 100%
SB 06 SB 10-yr (P1) HG
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _2__of _2__
84 9.1 210,507 5.3 0.25 2.57 0.00 8.26 2.57 104.27 47,396 100%
86 8.3 211,290 5.3 0.25 2.78 0.00 8.27 2.78 104.33 47,424 100%
88 7.6 211,954 5.3 0.25 2.96 0.00 8.28 2.96 104.38 47,447 100%
90 6.9 212,510 5.3 0.25 3.11 0.00 8.29 3.11 104.43 47,467 100%
92 6.3 212,969 5.3 0.25 3.24 0.00 8.30 3.24 104.46 47,484 100%
94 5.8 213,340 5.3 0.25 3.35 0.00 8.31 3.35 104.49 47,497 100%
96 5.3 213,633 5.3 0.25 3.43 0.00 8.31 3.43 104.52 47,507 100%
98 4.8 213,855 5.4 0.25 3.50 0.00 8.32 3.50 104.53 47,515 100%
100 4.4 214,015 5.4 0.25 3.55 0.00 8.32 3.55 104.55 47,521 100%
102 4.0 214,119 5.4 0.25 3.58 0.00 8.32 3.58 104.55 47,524 100%
104 3.7 214,174 5.4 0.25 3.59 0.00 8.32 3.59 104.56 47,526 100%
106 3.4 214,185 5.4 0.25 3.60 0.00 8.32 3.60 104.56 47,527 100%
108 3.1 214,157 5.4 0.25 3.59 0.00 8.32 3.59 104.56 47,526 100%
110 2.8 214,096 5.4 0.25 3.57 0.00 8.32 3.57 104.55 47,523 100%
112 2.6 214,004 5.4 0.25 3.54 0.00 8.32 3.54 104.54 47,520 100%
114 2.3 213,887 5.4 0.25 3.51 0.00 8.32 3.51 104.54 47,516 100%
116 2.1 213,747 5.3 0.25 3.47 0.00 8.31 3.47 104.52 47,511 100%
118 2.0 213,588 5.3 0.25 3.42 0.00 8.31 3.42 104.51 47,505 100%
120 1.8 213,412 5.3 0.25 3.37 0.00 8.31 3.37 104.50 47,499 100%
122 1.6 213,222 5.3 0.25 3.32 0.00 8.31 3.32 104.48 47,493 100%
124 1.5 213,020 5.3 0.25 3.26 0.00 8.30 3.26 104.47 47,485 100%
126 1.4 212,808 5.3 0.25 3.20 0.00 8.30 3.20 104.45 47,478 100%
128 1.2 212,588 5.3 0.25 3.14 0.00 8.29 3.14 104.43 47,470 100%
130 1.1 212,360 5.3 0.25 3.07 0.00 8.29 3.07 104.42 47,462 100%
132 1.0 212,128 5.3 0.25 3.01 0.00 8.29 3.01 104.40 47,454 100%
134 0.9 211,892 5.3 0.25 2.94 0.00 8.28 2.94 104.38 47,445 100%
136 0.9 211,652 5.3 0.25 2.88 0.00 8.28 2.88 104.36 47,437 100%
138 0.8 211,411 5.3 0.25 2.81 0.00 8.27 2.81 104.34 47,428 100%
140 0.7 211,168 5.3 0.25 2.75 0.00 8.27 2.75 104.32 47,419 100%
142 0.7 210,925 5.3 0.25 2.68 0.00 8.26 2.68 104.30 47,411 100%
144 0.6 210,683 5.3 0.25 2.62 0.00 8.26 2.62 104.28 47,402 100%
146 0.6 210,441 5.3 0.25 2.56 0.00 8.26 2.56 104.27 47,393 100%
148 0.5 210,200 5.3 0.25 2.49 0.00 8.25 2.49 104.25 47,385 100%
150 0.5 209,962 5.3 0.25 2.43 0.00 8.25 2.43 104.23 47,376 100%
152 0.4 209,725 5.3 0.25 2.37 0.00 8.24 2.37 104.21 47,368 100%
154 0.4 209,491 5.3 0.25 2.31 0.00 8.24 2.31 104.19 47,359 100%
156 0.4 209,259 5.3 0.25 2.25 0.00 8.23 2.25 104.17 47,351 100%
158 0.3 209,031 5.3 0.25 2.20 0.00 8.23 2.20 104.15 47,343 100%
160 0.3 208,806 5.2 0.25 2.14 0.00 8.23 2.14 104.14 47,335 100%
162 0.3 208,584 5.2 0.25 2.09 0.00 8.22 2.09 104.12 47,327 100%
164 0.2 208,365 5.2 0.25 2.04 0.00 8.22 2.04 104.10 47,319 100%
166 0.2 208,150 5.2 0.25 1.98 0.00 8.21 1.98 104.08 47,311 100%
168 0.2 207,939 5.2 0.25 1.93 0.00 8.21 1.93 104.07 47,303 100%
170 0.2 207,731 5.2 0.25 1.89 0.00 8.21 1.89 104.05 47,296 100%
172 0.2 207,527 5.2 0.25 1.84 0.00 8.20 1.84 104.03 47,288 100%
174 0.2 207,327 5.2 0.25 1.79 0.00 8.20 1.79 104.02 47,281 100%
176 0.1 207,130 5.2 0.25 1.75 0.00 8.19 1.75 104.00 47,274 100%
178 0.1 206,937 5.2 0.25 1.70 0.00 8.19 1.70 103.99 47,267 100%
180 0.1 206,748 5.2 0.25 1.66 0.00 8.19 1.66 103.97 47,260 100%
182 0.1 206,563 5.2 0.25 1.62 0.00 8.18 1.62 103.96 47,253 100%
184 0.1 206,381 5.2 0.25 1.58 0.00 8.18 1.58 103.94 47,247 100%
186 0.1 206,203 5.2 0.25 1.54 0.00 8.18 1.54 103.93 47,240 100%
188 0.1 206,029 5.2 0.25 1.51 0.00 8.17 1.51 103.91 47,234 100%
190 0.1 205,858 5.2 0.25 1.47 0.00 8.17 1.47 103.90 47,228 100%
192 0.1 205,691 5.2 0.25 1.43 0.00 8.17 1.43 103.89 47,222 100%
194 0.1 205,527 5.2 0.25 1.40 0.00 8.16 1.40 103.87 47,216 100%
196 0.1 205,366 5.2 0.25 1.37 0.00 8.16 1.37 103.86 47,210 100%
198 0.1 205,209 5.2 0.25 1.34 0.00 8.16 1.34 103.85 47,204 100%
200 0.0 205,055 5.2 0.25 1.30 0.00 8.16 1.30 103.84 47,198 100%
202 0.0 204,905 5.2 0.25 1.27 0.00 8.15 1.27 103.82 47,193 100%
204 0.0 204,757 5.2 0.25 1.24 0.00 8.15 1.24 103.81 47,187 100%
206 0.0 204,612 5.2 0.25 1.22 0.00 8.15 1.22 103.80 47,182 100%
SB 06 SB 10-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
6
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
10
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _1__of _2__
Qp = 114.53 cfs Sediment Basin #6 Colon
Tp = 29.11 minutes Phase 1
dT = Max of 2 minutes 25 - year Storm Event
or 1.0%of increment to peak
b =1.2
Number of Riser/Barrel Assemblies 1 Ks =29,092
Diameter of Barrel =12 (in)
Height of Riser above barrel =4 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=5 (ft) elevation 254.00 2 Effective number of cells (2 is construction site #)
Emergency Spillway =6.1 (ft) elevation 255.10 99%Minimum Settling Efficiency
Total Height of Dam =7 (ft) elevation 256.00 6.1 ft Maximum Stage 255.06 msl elevation
Length of Emergency Spillway =10 (ft)8.9 cfs Peak outflow
Diameter of Riser =18 (in)8.9 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 249.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 1.3 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 5.3 159 0.0 0.00 0.00 0.00 0.00 0.00 33.25 15,112 N/A
6 11.6 790 0.0 0.00 0.00 0.00 0.00 0.00 42.88 19,492 N/A
8 20.0 2,180 0.1 0.00 0.00 0.00 0.00 0.00 50.40 22,910 N/A
10 30.2 4,586 0.2 0.00 0.00 0.00 0.00 0.00 56.73 25,786 N/A
12 41.7 8,213 0.3 0.25 0.25 0.00 0.25 0.25 62.24 28,291 100%
14 53.8 13,183 0.5 0.25 0.25 0.00 0.25 0.25 67.11 30,503 100%
16 66.1 19,613 0.7 0.25 0.25 0.00 0.25 0.25 71.48 32,492 100%
18 78.1 27,521 1.0 0.25 0.25 0.00 0.25 0.25 75.44 34,291 100%
20 89.0 36,858 1.2 0.25 0.25 0.00 0.25 0.25 79.03 35,922 100%
22 98.5 47,508 1.5 0.25 0.25 0.00 0.25 0.25 82.29 37,402 100%
24 106.0 59,295 1.8 0.25 0.25 0.00 0.25 0.25 85.24 38,745 100%
26 111.3 71,989 2.1 0.25 0.25 0.00 0.25 0.25 87.91 39,959 100%
28 114.1 85,318 2.5 0.25 0.25 0.00 0.25 0.25 90.32 41,053 100%
30 114.3 98,983 2.8 0.25 0.25 0.00 0.25 0.25 92.48 42,035 100%
32 111.8 112,665 3.1 0.25 0.25 0.00 0.25 0.25 94.40 42,910 100%
34 106.8 126,048 3.4 0.25 0.25 0.00 0.25 0.25 96.10 43,683 100%
36 99.4 138,828 3.7 0.25 0.25 0.00 0.25 0.25 97.59 44,359 100%
38 91.1 150,730 4.0 0.25 0.25 0.00 0.25 0.25 98.87 44,943 100%
40 83.3 161,632 4.2 0.25 0.25 0.00 0.25 0.25 99.98 45,445 100%
42 76.2 171,599 4.4 0.25 0.25 0.00 0.25 0.25 100.94 45,880 100%
44 69.7 180,713 4.6 0.25 0.25 0.00 0.25 0.25 101.77 46,259 100%
46 63.7 189,045 4.8 0.25 0.25 0.00 0.25 0.25 102.50 46,592 100%
48 58.3 196,663 5.0 0.25 0.25 0.00 0.25 0.25 103.15 46,886 100%
50 53.3 203,627 5.1 0.25 1.03 0.00 8.13 1.03 103.72 47,146 100%
52 48.8 209,900 5.3 0.25 2.42 0.00 8.25 2.42 104.22 47,374 100%
54 44.6 215,461 5.4 0.25 3.98 0.00 8.35 3.98 104.66 47,571 100%
56 40.8 220,334 5.5 0.25 5.55 0.00 8.43 5.55 105.03 47,741 100%
58 37.3 224,561 5.6 0.25 7.06 0.00 8.51 7.06 105.35 47,886 100%
60 34.1 228,189 5.7 0.25 8.44 0.00 8.57 8.44 105.62 48,008 99%
62 31.2 231,269 5.7 0.25 9.68 0.00 8.62 8.62 105.84 48,110 99%
64 28.5 233,977 5.8 0.25 10.81 0.00 8.67 8.67 106.04 48,199 99%
66 26.1 236,360 5.8 0.25 11.84 0.00 8.71 8.71 106.21 48,277 99%
68 23.9 238,446 5.9 0.25 12.76 0.00 8.75 8.75 106.36 48,345 99%
70 21.8 240,260 5.9 0.25 13.59 0.00 8.78 8.78 106.49 48,403 99%
72 20.0 241,826 5.9 0.25 14.31 0.00 8.80 8.80 106.60 48,453 99%
74 18.3 243,165 6.0 0.25 14.94 0.00 8.82 8.82 106.69 48,496 99%
76 16.7 244,296 6.0 0.25 15.47 0.00 8.84 8.84 106.77 48,532 99%
78 15.3 245,238 6.0 0.25 15.93 0.00 8.86 8.86 106.83 48,561 99%
80 14.0 246,007 6.0 0.25 16.30 0.00 8.87 8.87 106.89 48,585 99%
82 12.8 246,618 6.0 0.25 16.59 0.00 8.88 8.88 106.93 48,605 99%
SB 06 SB 25-yr (P1) HG
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _2__of _2__
84 11.7 247,085 6.0 0.25 16.82 0.00 8.89 8.89 106.96 48,619 99%
86 10.7 247,420 6.1 0.25 16.99 0.00 8.90 8.90 106.99 48,630 99%
88 9.8 247,634 6.1 0.25 17.09 0.00 8.90 8.90 107.00 48,636 99%
90 8.9 247,739 6.1 0.25 17.14 0.00 8.90 8.90 107.01 48,640 99%
92 8.2 247,743 6.1 0.25 17.15 0.00 8.90 8.90 107.01 48,640 99%
94 7.5 247,655 6.1 0.25 17.10 0.00 8.90 8.90 107.00 48,637 99%
96 6.8 247,484 6.1 0.25 17.02 0.00 8.90 8.90 106.99 48,632 99%
98 6.3 247,237 6.0 0.25 16.90 0.00 8.89 8.89 106.97 48,624 99%
100 5.7 246,920 6.0 0.25 16.74 0.00 8.89 8.89 106.95 48,614 99%
102 5.2 246,540 6.0 0.25 16.56 0.00 8.88 8.88 106.92 48,602 99%
104 4.8 246,101 6.0 0.25 16.34 0.00 8.87 8.87 106.89 48,588 99%
106 4.4 245,610 6.0 0.25 16.10 0.00 8.87 8.87 106.86 48,573 99%
108 4.0 245,071 6.0 0.25 15.84 0.00 8.86 8.86 106.82 48,556 99%
110 3.7 244,488 6.0 0.25 15.57 0.00 8.85 8.85 106.78 48,538 99%
112 3.3 243,866 6.0 0.25 15.27 0.00 8.84 8.84 106.74 48,518 99%
114 3.1 243,207 6.0 0.25 14.96 0.00 8.83 8.83 106.69 48,497 99%
116 2.8 242,515 5.9 0.25 14.63 0.00 8.81 8.81 106.65 48,475 99%
118 2.6 241,793 5.9 0.25 14.29 0.00 8.80 8.80 106.59 48,452 99%
120 2.3 241,044 5.9 0.25 13.95 0.00 8.79 8.79 106.54 48,428 99%
122 2.1 240,270 5.9 0.25 13.59 0.00 8.78 8.78 106.49 48,403 99%
124 2.0 239,474 5.9 0.25 13.23 0.00 8.76 8.76 106.43 48,378 99%
126 1.8 238,657 5.9 0.25 12.86 0.00 8.75 8.75 106.37 48,352 99%
128 1.6 237,822 5.9 0.25 12.48 0.00 8.74 8.74 106.31 48,325 99%
130 1.5 236,970 5.8 0.25 12.11 0.00 8.72 8.72 106.25 48,297 99%
132 1.4 236,104 5.8 0.25 11.73 0.00 8.71 8.71 106.19 48,269 99%
134 1.3 235,223 5.8 0.25 11.34 0.00 8.69 8.69 106.13 48,240 99%
136 1.1 234,331 5.8 0.25 10.96 0.00 8.68 8.68 106.06 48,211 99%
138 1.0 233,427 5.8 0.25 10.58 0.00 8.66 8.66 106.00 48,181 99%
140 1.0 232,513 5.7 0.25 10.19 0.00 8.64 8.64 105.93 48,151 99%
142 0.9 231,591 5.7 0.25 9.81 0.00 8.63 8.63 105.87 48,121 99%
144 0.8 230,661 5.7 0.25 9.43 0.00 8.61 8.61 105.80 48,090 99%
146 0.7 229,723 5.7 0.25 9.05 0.00 8.60 8.60 105.73 48,059 99%
148 0.7 228,780 5.7 0.25 8.67 0.00 8.58 8.58 105.66 48,028 99%
150 0.6 227,830 5.6 0.25 8.30 0.00 8.56 8.30 105.59 47,996 99%
152 0.6 226,908 5.6 0.25 7.94 0.00 8.55 7.94 105.52 47,965 99%
154 0.5 226,022 5.6 0.25 7.61 0.00 8.53 7.61 105.46 47,935 99%
156 0.5 225,171 5.6 0.25 7.28 0.00 8.52 7.28 105.39 47,906 100%
158 0.4 224,353 5.6 0.25 6.98 0.00 8.50 6.98 105.33 47,879 100%
160 0.4 223,567 5.6 0.25 6.69 0.00 8.49 6.69 105.27 47,852 100%
162 0.4 222,811 5.5 0.25 6.42 0.00 8.48 6.42 105.22 47,826 100%
164 0.3 222,083 5.5 0.25 6.16 0.00 8.46 6.16 105.16 47,801 100%
166 0.3 221,383 5.5 0.25 5.92 0.00 8.45 5.92 105.11 47,777 100%
168 0.3 220,709 5.5 0.25 5.68 0.00 8.44 5.68 105.06 47,754 100%
170 0.3 220,061 5.5 0.25 5.46 0.00 8.43 5.46 105.01 47,732 100%
172 0.2 219,435 5.5 0.25 5.25 0.00 8.42 5.25 104.96 47,710 100%
174 0.2 218,833 5.5 0.25 5.05 0.00 8.41 5.05 104.92 47,689 100%
176 0.2 218,252 5.4 0.25 4.86 0.00 8.40 4.86 104.87 47,669 100%
178 0.2 217,692 5.4 0.25 4.68 0.00 8.39 4.68 104.83 47,650 100%
180 0.2 217,152 5.4 0.25 4.50 0.00 8.38 4.50 104.79 47,631 100%
182 0.1 216,631 5.4 0.25 4.34 0.00 8.37 4.34 104.75 47,612 100%
184 0.1 216,128 5.4 0.25 4.18 0.00 8.36 4.18 104.71 47,595 100%
186 0.1 215,642 5.4 0.25 4.03 0.00 8.35 4.03 104.67 47,578 100%
188 0.1 215,173 5.4 0.25 3.89 0.00 8.34 3.89 104.63 47,561 100%
190 0.1 214,720 5.4 0.25 3.75 0.00 8.33 3.75 104.60 47,545 100%
192 0.1 214,281 5.4 0.25 3.62 0.00 8.32 3.62 104.57 47,530 100%
194 0.1 213,858 5.4 0.25 3.50 0.00 8.32 3.50 104.53 47,515 100%
196 0.1 213,448 5.3 0.25 3.38 0.00 8.31 3.38 104.50 47,501 100%
198 0.1 213,052 5.3 0.25 3.27 0.00 8.30 3.27 104.47 47,486 100%
200 0.1 212,668 5.3 0.25 3.16 0.00 8.30 3.16 104.44 47,473 100%
202 0.1 212,297 5.3 0.25 3.06 0.00 8.29 3.06 104.41 47,460 100%
204 0.1 211,938 5.3 0.25 2.96 0.00 8.28 2.96 104.38 47,447 100%
206 0.1 211,590 5.3 0.25 2.86 0.00 8.28 2.86 104.36 47,434 100%
SB 06 SB 25-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
6
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
25
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #8 Sheet: 1 Of: 4
Objective Design the temporary sediment basin to contain the 25-year storm.
References
1. NC Erosion and Sediment Control Planning and Design Manual.
2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E.
3. NOAA Atlas 14, Volume 2, Version 3
4. VA Erosion and Sediment Control Handbook
Given
Phase 1 1
Storm Event (yrs) =10 25
Total Drainage Area A (ac) =11.8 11.8
Disturbed Area (ac) =11.8 11.8
Curve Number CN =86 86 Hydrographs
Rainfall Depth P (in) =5.28 6.28 (24-hr rainfall)Ref 3
Peak Flow Qp (cfs) =71.25 88.20 Hydrographs
Design Criteria
Required sediment storage 1,800 cf / acre of drainage
Required sediment storage 21,240 cf
Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs)
Required Surface Area (SF)38,367 of the 10-yr storm peak flow (based on the largest Phase)
Determine Shape of Basin:
Measure the area of the Basin using AutoCADD.
Calculate Volume of the Basin using Truncated Pyramid Method.
Shape factor used in hydrographs basin depth may be gretaer than indicated below
Cumulative Cumulative
Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy)
273 0 5,639 ---
274 1 18,291 11,362 11,362 421
275 2 28,277 23,103 34,465 1,276
276 3 38,333 33,178 67,643 2,505
277 4 47,710 42,936 110,579 4,096
278 5 59,010 53,260 163,839 6,068
279 6 69,292 64,082 227,922 8,442
Design Sediment Depth (ft) =3
Sediment Storage (cf) =67,643 Required Sediment Storage Achieved
Design Surface Area Depth (ft) =3
Surface Area (sf) =38,333 Increase Surface Area
SB 08
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #8 Sheet: 2 Of: 4
Select Skimmer
A. R. Jarrett Method
D = [Q / (2,310 * (H0.5)]0.5
D =Diameter of Orifice (inches)
Q = Dewater Rate (cf/day)
H = Head on orifice, varies based on skimmer size (ft)
Skimmer Sizes Head
(Inches)(ft)
1.5 0.125
2 0.167
2.5 0.167
3 0.250
4 0.333
5 0.333
6 0.417
8 0.500
Volume to Dewater (cf) =67,643
Number of Skimmers 1
Days to Drain =5 assumed
Q each (cf/day) =13,529 0.16 cfs
Selected Skimmer Size (inches) =4
Head on Skimmer (feet) =0.333
Diameter of Orifice (inches) =3.2
Route the flow through the Basin
Riser is not perforated, but skimmer is attached.
S =(1000/CN) - 10
Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4
TP (min) = 60.5(Q*)A/QP/1.39
Phase 1 1
Storm Event (yrs) =10 25
S =1.63 1.63
Runoff Depth Q* (inches) =3.73 4.68
Time to Peak Tp (min) =26.88 27.23
Determine Pond Storage Elevation (ZWater):
Pick one point near max expected water surface and the other at the mid depth.
Z1 (ft) = 3 S1 (cf)= 67,643
Z2 (ft) = 5 S2 (cf) = 163,839
b = ln(S2/S1)/ln(Z2/Z1) =1.7 Ref 2, III-8
KS = S2/Z2
b =10,091
SB 08
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #8 Sheet: 3 Of: 4
Determine Settling Velocity
Conversion Factor = 3.281 ft/sec per m/sec
Gravitational Acceleration, g (m/s2) =9.81
Specific Gravity of soil (ss)=2.6
Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11
Diameter of the Design Particle d15 =40.00E-06 m
Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec
Route the Storm through the Basin using the Hydrograph Model
Set Height of Emergency Spillway at (ft) =5.30
Set Top of Dam at (ft) =6.00
Anti-Seep Collar:
Anti-Seep Collar Size =2 * Barrel Dia
Anti-Seep Collar Size (ft) =2
Use Anti-Seep Collar Size (ft) =2 x 2
Minimum Concrete Base for Riser:
Diameter of Riser (in) = 18 From Hydrograph
Avg Density of Concrete (lbs/cf) =87.6
Density of Water (lbs/cf) =62.4
Riser Displacement (cf) = 7.95 Pi * (DR/24)2 * Total Ht of Riser
Convert cf to cy =27-1
Min Concrete Needed (cy) =0.21
Width & Length (ft) =2.5
Thickness (ft) =0.9
Anti-Vortex Device:
Diameter of Riser (in) = 18 From Hydrograph
Cylinder Diameter (in) = 27 Ref 4, III-104, Table 3.14-D
Cylinder Thickness (gage) = 16
Cylinder Height (in) = 8
See Hydrograph
SB 08
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #8 Sheet: 4 Of: 4
Determine Tailwater conditions to size outlet apron
Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7
A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3
Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5)
n =0.069 6-inch diameter Rip Rap, Lined Channel
Vp (ft/sec) =9 Permissible Velocity for lining
Side Slope (z) =5 enter X for X:1
s (ft/ft) =0.02 Outlet Slope (estimated)
Bottom Width (ft) = 6 6 * Barrel Diameter
QB (cfs) =2.6 Peak Flow out of the barrel 10-yr Hydrograph
Q (cfs)Zreq
Flow Depth
d (ft)A (sf) R (ft)Zav V (ft/sec)
2.6 0.86 0.29 2.2 0.24 0.86 1.2
Flow Depth = Tailwater, d (ft) =0.29 0.5* Barrel Diameter (ft) =0.50 Ref 1, 8.06.3
Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe
Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe
Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions.
Barrel
Diameter (ft) Entrance (ft) Length (ft)
Outlet Width
(ft)
Median Rip
Rap Size d50
Selected Rip
Rap Size (in)
1 3 8 9 0.3 Class A
Conclusion
The temporary basin can contain the 25-yr storm.
SB 08
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet: 1 Of: 2
Diameter of Riser (in) = 18
Circumference of Riser (in) =56.5
Height of Riser from bottom of barrel (in) =54 From Hydrograph
Vertical spacing between holes (in) =0 center to center
Water Stage increment (ft)0.05
Orifice Equation
Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11
Q =cfs, discharge
Cd =0.6 coefficient of discharge
A = sf, cross sectional area
g =32.2 ft/sec2, gravity
h =ft, driving head measured from the center of the pipe
Skimmer
Row 1 2 3 4 5 1 # of skimmers
Holes per row 0 0 0 0 0
Hole Diameter (in)0.75 0.75 0.75 0.75 0.75
Spacing edge to edge (in)#DIV/0!#DIV/0!#DIV/0!#DIV/0!#DIV/0!
Inlet Area (sf)0.000 0.000 0.000 0.000 0.000
Hole Stage (in)0.50 0.50 0.50 0.50 0.50
Hole Stage (ft)0.04 0.04 0.04 0.04 0.04
Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs)
0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.00 0.00 0.00 0.00 0.00
0.09 0.00 0.00 0.00 0.00 0.00
0.14 0.00 0.00 0.00 0.00 0.00
0.19 0.00 0.00 0.00 0.00 0.00
0.24 0.00 0.00 0.00 0.00 0.00
0.29 0.00 0.00 0.00 0.00 0.00
0.34 0.00 0.00 0.00 0.16 0.16
0.39 0.00 0.00 0.00 0.16 0.16
0.44 0.00 0.00 0.00 0.16 0.16
0.49 0.00 0.00 0.00 0.16 0.16
0.54 0.00 0.00 0.00 0.16 0.16
0.59 0.00 0.00 0.00 0.16 0.16
0.64 0.00 0.00 0.00 0.16 0.16
0.69 0.00 0.00 0.00 0.16 0.16
0.74 0.00 0.00 0.00 0.16 0.16
0.79 0.00 0.00 0.00 0.16 0.16
0.84 0.00 0.00 0.00 0.16 0.16
0.89 0.00 0.00 0.00 0.16 0.16
0.94 0.00 0.00 0.00 0.16 0.16
0.99 0.00 0.00 0.00 0.16 0.16
1.04 0.00 0.00 0.00 0.16 0.16
1.09 0.00 0.00 0.00 0.16 0.16
1.14 0.00 0.00 0.00 0.16 0.16
1.19 0.00 0.00 0.00 0.16 0.16
1.24 0.00 0.00 0.00 0.16 0.16
1.29 0.00 0.00 0.00 0.16 0.16
1.34 0.00 0.00 0.00 0.16 0.16
1.39 0.00 0.00 0.00 0.16 0.16
1.44 0.00 0.00 0.00 0.16 0.16
1.49 0.00 0.00 0.00 0.16 0.16
1.54 0.00 0.00 0.00 0.16 0.16
1.59 0.00 0.00 0.00 0.16 0.16
Perforations
SB 08 Pipe Perf-Skimmer
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/4/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet: 2 Of: 2
1.64 0.00 0.00 0.00 0.16 0.16
1.69 0.00 0.00 0.00 0.16 0.16
1.74 0.00 0.00 0.00 0.16 0.16
1.79 0.00 0.00 0.00 0.16 0.16
1.84 0.00 0.00 0.00 0.16 0.16
1.89 0.00 0.00 0.00 0.16 0.16
1.94 0.00 0.00 0.00 0.16 0.16
1.99 0.00 0.00 0.00 0.16 0.16
2.04 0.00 0.00 0.00 0.16 0.16
2.09 0.00 0.00 0.00 0.16 0.16
2.14 0.00 0.00 0.00 0.16 0.16
2.19 0.00 0.00 0.00 0.16 0.16
2.24 0.00 0.00 0.00 0.16 0.16
2.29 0.00 0.00 0.00 0.16 0.16
2.34 0.00 0.00 0.00 0.16 0.16
2.39 0.00 0.00 0.00 0.16 0.16
2.44 0.00 0.00 0.00 0.16 0.16
2.49 0.00 0.00 0.00 0.16 0.16
2.54 0.00 0.00 0.00 0.16 0.16
2.59 0.00 0.00 0.00 0.16 0.16
2.64 0.00 0.00 0.00 0.16 0.16
2.69 0.00 0.00 0.00 0.16 0.16
2.74 0.00 0.00 0.00 0.16 0.16
2.79 0.00 0.00 0.00 0.16 0.16
2.84 0.00 0.00 0.00 0.16 0.16
2.89 0.00 0.00 0.00 0.16 0.16
2.94 0.00 0.00 0.00 0.16 0.16
2.99 0.00 0.00 0.00 0.16 0.16
3.04 0.00 0.00 0.00 0.16 0.16
3.09 0.00 0.00 0.00 0.16 0.16
3.14 0.00 0.00 0.00 0.16 0.16
3.19 0.00 0.00 0.00 0.16 0.16
3.24 0.00 0.00 0.00 0.16 0.16
3.29 0.00 0.00 0.00 0.16 0.16
3.34 0.00 0.00 0.00 0.16 0.16
3.39 0.00 0.00 0.00 0.16 0.16
3.44 0.00 0.00 0.00 0.16 0.16
3.49 0.00 0.00 0.00 0.16 0.16
3.54 0.00 0.00 0.00 0.16 0.16
3.59 0.00 0.00 0.00 0.16 0.16
3.64 0.00 0.00 0.00 0.16 0.16
3.69 0.00 0.00 0.00 0.16 0.16
3.74 0.00 0.00 0.00 0.16 0.16
3.79 0.00 0.00 0.00 0.16 0.16
3.84 0.00 0.00 0.00 0.16 0.16
3.89 0.00 0.00 0.00 0.16 0.16
3.94 0.00 0.00 0.00 0.16 0.16
3.99 0.00 0.00 0.00 0.16 0.16
SB 08 Pipe Perf-Skimmer
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _1__of _2__
Qp = 71.25 cfs Sediment Basin #8 Colon
Tp = 26.88 minutes Phase 1
dT = Max of 2 minutes 10 - year Storm Event
or 1.0%of increment to peak
b =1.7
Number of Riser/Barrel Assemblies 1 Ks =10,091
Diameter of Barrel =12 (in)
Height of Riser above barrel =3.5 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=4.5 (ft) elevation 277.50 2 Effective number of cells (2 is construction site #)
Emergency Spillway =5.3 (ft) elevation 278.30 100%Minimum Settling Efficiency
Total Height of Dam =6.0 (ft) elevation 279.00 4.8 ft Maximum Stage 277.79 msl elevation
Length of Emergency Spillway =10 (ft)2.6 cfs Peak outflow
Diameter of Riser =18 (in)2.6 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 273.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 1.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 3.8 116 0.1 0.00 0.00 0.00 0.00 0.00 5.83 2,650 N/A
6 8.4 575 0.2 0.00 0.00 0.00 0.00 0.00 11.46 5,208 N/A
8 14.5 1,584 0.3 0.16 0.16 0.00 0.16 0.16 17.58 7,991 100%
10 21.7 3,301 0.5 0.16 0.16 0.00 0.16 0.16 23.98 10,899 100%
12 29.7 5,884 0.7 0.16 0.16 0.00 0.16 0.16 30.61 13,914 100%
14 38.0 9,424 1.0 0.16 0.16 0.00 0.16 0.16 37.35 16,978 100%
16 46.1 13,960 1.2 0.16 0.16 0.00 0.16 0.16 44.10 20,045 100%
18 53.7 19,476 1.5 0.16 0.16 0.00 0.16 0.16 50.76 23,073 100%
20 60.3 25,904 1.7 0.16 0.16 0.00 0.16 0.16 57.26 26,028 100%
22 65.6 33,126 2.0 0.16 0.16 0.00 0.16 0.16 63.53 28,879 100%
24 69.2 40,980 2.2 0.16 0.16 0.00 0.16 0.16 69.51 31,595 100%
26 71.1 49,271 2.5 0.16 0.16 0.00 0.16 0.16 75.14 34,154 100%
28 70.9 57,780 2.7 0.16 0.16 0.00 0.16 0.16 80.37 36,532 100%
30 68.9 66,274 3.0 0.16 0.16 0.00 0.16 0.16 85.17 38,712 100%
32 65.1 74,525 3.2 0.16 0.16 0.00 0.16 0.16 89.50 40,680 100%
34 59.7 82,313 3.4 0.16 0.16 0.00 0.16 0.16 93.33 42,425 100%
36 54.2 89,462 3.5 0.16 0.16 0.00 0.16 0.16 96.68 43,944 100%
38 49.2 95,950 3.7 0.16 0.16 0.00 0.16 0.16 99.58 45,264 100%
40 44.7 101,837 3.8 0.16 0.16 0.00 0.16 0.16 102.12 46,417 100%
42 40.6 107,181 3.9 0.16 0.16 0.00 0.16 0.16 104.35 47,431 100%
44 36.8 112,029 4.0 0.16 0.16 0.00 0.16 0.16 106.32 48,326 100%
46 33.4 116,430 4.1 0.16 0.16 0.00 0.16 0.16 108.06 49,119 100%
48 30.3 120,422 4.2 0.16 0.16 0.00 0.16 0.16 109.61 49,824 100%
50 27.5 124,045 4.3 0.16 0.16 0.00 0.16 0.16 110.99 50,452 100%
52 25.0 127,333 4.3 0.16 0.16 0.00 0.16 0.16 112.23 51,013 100%
54 22.7 130,315 4.4 0.16 0.16 0.00 0.16 0.16 113.33 51,514 100%
56 20.6 133,021 4.4 0.16 0.16 0.00 0.16 0.16 114.32 51,964 100%
58 18.7 135,475 4.5 0.16 0.16 0.00 0.16 0.16 115.21 52,367 100%
60 17.0 137,702 4.5 0.16 0.21 0.00 7.57 0.21 116.00 52,729 100%
62 15.4 139,715 4.6 0.16 0.39 0.00 7.61 0.39 116.72 53,053 100%
64 14.0 141,519 4.6 0.16 0.61 0.00 7.64 0.61 117.35 53,341 100%
66 12.7 143,125 4.6 0.16 0.84 0.00 7.67 0.84 117.91 53,597 100%
68 11.5 144,549 4.7 0.16 1.07 0.00 7.69 1.07 118.41 53,821 100%
70 10.5 145,805 4.7 0.16 1.29 0.00 7.71 1.29 118.84 54,018 100%
72 9.5 146,907 4.7 0.16 1.49 0.00 7.73 1.49 119.22 54,190 100%
74 8.6 147,869 4.7 0.16 1.68 0.00 7.75 1.68 119.55 54,340 100%
76 7.8 148,703 4.7 0.16 1.85 0.00 7.76 1.85 119.83 54,469 100%
78 7.1 149,422 4.7 0.16 2.00 0.00 7.78 2.00 120.08 54,580 100%
80 6.5 150,036 4.8 0.16 2.13 0.00 7.79 2.13 120.29 54,675 100%
82 5.9 150,555 4.8 0.16 2.24 0.00 7.79 2.24 120.46 54,755 100%
SB 08 SB 10-yr (P1) HG
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _2__of _2__
84 5.3 150,990 4.8 0.16 2.33 0.00 7.80 2.33 120.61 54,822 100%
86 4.8 151,348 4.8 0.16 2.41 0.00 7.81 2.41 120.73 54,877 100%
88 4.4 151,638 4.8 0.16 2.48 0.00 7.81 2.48 120.83 54,921 100%
90 4.0 151,867 4.8 0.16 2.53 0.00 7.82 2.53 120.90 54,956 100%
92 3.6 152,041 4.8 0.16 2.57 0.00 7.82 2.57 120.96 54,983 100%
94 3.3 152,166 4.8 0.16 2.60 0.00 7.82 2.60 121.00 55,002 100%
96 3.0 152,248 4.8 0.16 2.62 0.00 7.82 2.62 121.03 55,014 100%
98 2.7 152,292 4.8 0.16 2.63 0.00 7.82 2.63 121.05 55,021 100%
100 2.5 152,301 4.8 0.16 2.63 0.00 7.82 2.63 121.05 55,022 100%
102 2.2 152,280 4.8 0.16 2.62 0.00 7.82 2.62 121.04 55,019 100%
104 2.0 152,232 4.8 0.16 2.61 0.00 7.82 2.61 121.03 55,012 100%
106 1.8 152,161 4.8 0.16 2.60 0.00 7.82 2.60 121.00 55,001 100%
108 1.7 152,070 4.8 0.16 2.58 0.00 7.82 2.58 120.97 54,987 100%
110 1.5 151,961 4.8 0.16 2.55 0.00 7.82 2.55 120.93 54,970 100%
112 1.4 151,836 4.8 0.16 2.52 0.00 7.82 2.52 120.89 54,951 100%
114 1.2 151,698 4.8 0.16 2.49 0.00 7.81 2.49 120.85 54,930 100%
116 1.1 151,549 4.8 0.16 2.46 0.00 7.81 2.46 120.80 54,907 100%
118 1.0 151,389 4.8 0.16 2.42 0.00 7.81 2.42 120.74 54,883 100%
120 0.9 151,222 4.8 0.16 2.39 0.00 7.81 2.39 120.69 54,857 100%
122 0.8 151,048 4.8 0.16 2.35 0.00 7.80 2.35 120.63 54,831 100%
124 0.8 150,868 4.8 0.16 2.31 0.00 7.80 2.31 120.57 54,803 100%
126 0.7 150,683 4.8 0.16 2.27 0.00 7.80 2.27 120.50 54,775 100%
128 0.6 150,495 4.8 0.16 2.23 0.00 7.79 2.23 120.44 54,746 100%
130 0.6 150,304 4.8 0.16 2.18 0.00 7.79 2.18 120.38 54,716 100%
132 0.5 150,111 4.8 0.16 2.14 0.00 7.79 2.14 120.31 54,687 100%
134 0.5 149,916 4.8 0.16 2.10 0.00 7.78 2.10 120.24 54,657 100%
136 0.4 149,721 4.7 0.16 2.06 0.00 7.78 2.06 120.18 54,627 100%
138 0.4 149,525 4.7 0.16 2.02 0.00 7.78 2.02 120.11 54,596 100%
140 0.4 149,330 4.7 0.16 1.98 0.00 7.77 1.98 120.05 54,566 100%
142 0.3 149,135 4.7 0.16 1.94 0.00 7.77 1.94 119.98 54,536 100%
144 0.3 148,942 4.7 0.16 1.90 0.00 7.77 1.90 119.91 54,506 100%
146 0.3 148,749 4.7 0.16 1.86 0.00 7.76 1.86 119.85 54,477 100%
148 0.2 148,558 4.7 0.16 1.82 0.00 7.76 1.82 119.78 54,447 100%
150 0.2 148,369 4.7 0.16 1.78 0.00 7.76 1.78 119.72 54,418 100%
152 0.2 148,182 4.7 0.16 1.74 0.00 7.75 1.74 119.65 54,389 100%
154 0.2 147,996 4.7 0.16 1.71 0.00 7.75 1.71 119.59 54,360 100%
156 0.2 147,813 4.7 0.16 1.67 0.00 7.75 1.67 119.53 54,331 100%
158 0.1 147,633 4.7 0.16 1.63 0.00 7.75 1.63 119.47 54,303 100%
160 0.1 147,455 4.7 0.16 1.60 0.00 7.74 1.60 119.41 54,276 100%
162 0.1 147,279 4.7 0.16 1.56 0.00 7.74 1.56 119.35 54,248 100%
164 0.1 147,106 4.7 0.16 1.53 0.00 7.74 1.53 119.29 54,221 100%
166 0.1 146,935 4.7 0.16 1.50 0.00 7.73 1.50 119.23 54,195 100%
168 0.1 146,768 4.7 0.16 1.47 0.00 7.73 1.47 119.17 54,169 100%
170 0.1 146,603 4.7 0.16 1.44 0.00 7.73 1.44 119.11 54,143 100%
172 0.1 146,440 4.7 0.16 1.41 0.00 7.73 1.41 119.06 54,118 100%
174 0.1 146,281 4.7 0.16 1.38 0.00 7.72 1.38 119.00 54,093 100%
176 0.1 146,124 4.7 0.16 1.35 0.00 7.72 1.35 118.95 54,068 100%
178 0.1 145,970 4.7 0.16 1.32 0.00 7.72 1.32 118.90 54,044 100%
180 0.1 145,818 4.7 0.16 1.29 0.00 7.71 1.29 118.84 54,020 100%
182 0.0 145,669 4.7 0.16 1.26 0.00 7.71 1.26 118.79 53,997 100%
184 0.0 145,523 4.7 0.16 1.24 0.00 7.71 1.24 118.74 53,974 100%
186 0.0 145,380 4.7 0.16 1.21 0.00 7.71 1.21 118.69 53,952 100%
188 0.0 145,239 4.7 0.16 1.19 0.00 7.70 1.19 118.64 53,930 100%
190 0.0 145,100 4.7 0.16 1.16 0.00 7.70 1.16 118.60 53,908 100%
192 0.0 144,964 4.7 0.16 1.14 0.00 7.70 1.14 118.55 53,886 100%
194 0.0 144,831 4.7 0.16 1.12 0.00 7.70 1.12 118.50 53,865 100%
196 0.0 144,700 4.7 0.16 1.10 0.00 7.70 1.10 118.46 53,845 100%
198 0.0 144,571 4.7 0.16 1.07 0.00 7.69 1.07 118.41 53,825 100%
200 0.0 144,445 4.6 0.16 1.05 0.00 7.69 1.05 118.37 53,805 100%
202 0.0 144,321 4.6 0.16 1.03 0.00 7.69 1.03 118.33 53,785 100%
204 0.0 144,199 4.6 0.16 1.01 0.00 7.69 1.01 118.29 53,766 100%
206 0.0 144,080 4.6 0.16 0.99 0.00 7.68 0.99 118.24 53,747 100%
SB 08 SB 10-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
8
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
10
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _1__of _2__
Qp = 88.20 cfs Sediment Basin #8 Colon
Tp = 27.23 minutes Phase 1
dT = Max of 2 minutes 25 - year Storm Event
or 1.0%of increment to peak
b =1.7
Number of Riser/Barrel Assemblies 1 Ks =10,091
Diameter of Barrel =12 (in)
Height of Riser above barrel =3.5 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=4.5 (ft) elevation 277.50 2 Effective number of cells (2 is construction site #)
Emergency Spillway =5.3 (ft) elevation 278.30 100%Minimum Settling Efficiency
Total Height of Dam =6.0 (ft) elevation 279.00 5.2 ft Maximum Stage 278.22 msl elevation
Length of Emergency Spillway =10 (ft)8.2 cfs Peak outflow
Diameter of Riser =18 (in)8.2 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 273.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 1.2 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 4.6 140 0.1 0.00 0.00 0.00 0.00 0.00 6.31 2,869 N/A
6 10.2 694 0.2 0.00 0.00 0.00 0.00 0.00 12.40 5,638 N/A
8 17.5 1,912 0.4 0.16 0.16 0.00 0.16 0.16 19.04 8,653 100%
10 26.2 3,992 0.6 0.16 0.16 0.00 0.16 0.16 25.98 11,810 100%
12 35.9 7,122 0.8 0.16 0.16 0.00 0.16 0.16 33.18 15,083 100%
14 46.1 11,415 1.1 0.16 0.16 0.00 0.16 0.16 40.50 18,410 100%
16 56.1 16,923 1.3 0.16 0.16 0.00 0.16 0.16 47.84 21,743 100%
18 65.5 23,635 1.6 0.16 0.16 0.00 0.16 0.16 55.09 25,039 100%
20 73.7 31,473 1.9 0.16 0.16 0.00 0.16 0.16 62.17 28,261 100%
22 80.4 40,302 2.2 0.16 0.16 0.00 0.16 0.16 69.02 31,373 100%
24 85.2 49,933 2.5 0.16 0.16 0.00 0.16 0.16 75.56 34,347 100%
26 87.8 60,135 2.8 0.16 0.16 0.00 0.16 0.16 81.74 37,154 100%
28 88.0 70,647 3.1 0.16 0.16 0.00 0.16 0.16 87.50 39,771 100%
30 86.0 81,191 3.3 0.16 0.16 0.00 0.16 0.16 92.79 42,179 100%
32 81.7 91,488 3.6 0.16 0.16 0.00 0.16 0.16 97.60 44,362 100%
34 75.4 101,272 3.8 0.16 0.16 0.00 0.16 0.16 101.88 46,308 100%
36 68.6 110,303 4.0 0.16 0.16 0.00 0.16 0.16 105.62 48,010 100%
38 62.4 118,519 4.1 0.16 0.16 0.00 0.16 0.16 108.88 49,490 100%
40 56.7 125,986 4.3 0.16 0.16 0.00 0.16 0.16 111.73 50,784 100%
42 51.5 132,771 4.4 0.16 0.16 0.00 0.16 0.16 114.23 51,923 100%
44 46.8 138,937 4.5 0.16 0.31 0.00 7.59 0.31 116.44 52,928 100%
46 42.6 144,520 4.7 0.16 1.07 0.00 7.69 1.07 118.40 53,817 100%
48 38.7 149,502 4.7 0.16 2.01 0.00 7.78 2.01 120.10 54,593 100%
50 35.2 153,904 4.8 0.16 3.01 0.00 7.85 3.01 121.59 55,266 100%
52 32.0 157,764 4.9 0.16 3.97 0.00 7.91 3.97 122.87 55,848 100%
54 29.1 161,124 5.0 0.16 4.88 0.00 7.97 4.88 123.96 56,347 100%
56 26.4 164,025 5.0 0.16 5.71 0.00 8.01 5.71 124.90 56,774 100%
58 24.0 166,509 5.0 0.16 6.45 0.00 8.05 6.45 125.70 57,136 100%
60 21.8 168,617 5.1 0.16 7.09 0.00 8.08 7.09 126.37 57,440 100%
62 19.8 170,384 5.1 0.16 7.65 0.00 8.11 7.65 126.93 57,694 100%
64 18.0 171,847 5.1 0.16 8.11 0.00 8.13 8.11 127.39 57,903 100%
66 16.4 173,037 5.2 0.16 8.50 0.00 8.15 8.15 127.76 58,072 100%
68 14.9 174,025 5.2 0.16 8.82 0.00 8.17 8.17 128.07 58,212 100%
70 13.5 174,832 5.2 0.16 9.09 0.00 8.18 8.18 128.32 58,326 100%
72 12.3 175,476 5.2 0.16 9.30 0.00 8.19 8.19 128.52 58,416 100%
74 11.2 175,970 5.2 0.16 9.47 0.00 8.19 8.19 128.67 58,486 100%
76 10.2 176,328 5.2 0.16 9.59 0.00 8.20 8.20 128.78 58,536 100%
78 9.2 176,564 5.2 0.16 9.67 0.00 8.20 8.20 128.85 58,569 100%
80 8.4 176,688 5.2 0.16 9.71 0.00 8.21 8.21 128.89 58,586 100%
82 7.6 176,712 5.2 0.16 9.72 0.00 8.21 8.21 128.90 58,590 100%
SB 08 SB 25-yr (P1) HG
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _2__of _2__
84 6.9 176,643 5.2 0.16 9.70 0.00 8.20 8.20 128.88 58,580 100%
86 6.3 176,491 5.2 0.16 9.65 0.00 8.20 8.20 128.83 58,559 100%
88 5.7 176,263 5.2 0.16 9.57 0.00 8.20 8.20 128.76 58,527 100%
90 5.2 175,967 5.2 0.16 9.47 0.00 8.19 8.19 128.67 58,485 100%
92 4.7 175,609 5.2 0.16 9.35 0.00 8.19 8.19 128.56 58,435 100%
94 4.3 175,195 5.2 0.16 9.21 0.00 8.18 8.18 128.43 58,377 100%
96 3.9 174,729 5.2 0.16 9.06 0.00 8.18 8.18 128.28 58,311 100%
98 3.6 174,218 5.2 0.16 8.89 0.00 8.17 8.17 128.13 58,239 100%
100 3.2 173,664 5.2 0.16 8.70 0.00 8.16 8.16 127.95 58,161 100%
102 2.9 173,073 5.2 0.16 8.51 0.00 8.15 8.15 127.77 58,077 100%
104 2.7 172,447 5.2 0.16 8.31 0.00 8.14 8.14 127.57 57,988 100%
106 2.4 171,791 5.1 0.16 8.09 0.00 8.13 8.09 127.37 57,895 100%
108 2.2 171,110 5.1 0.16 7.88 0.00 8.12 7.88 127.15 57,798 100%
110 2.0 170,430 5.1 0.16 7.66 0.00 8.11 7.66 126.94 57,700 100%
112 1.8 169,751 5.1 0.16 7.45 0.00 8.10 7.45 126.73 57,603 100%
114 1.7 169,077 5.1 0.16 7.23 0.00 8.09 7.23 126.51 57,506 100%
116 1.5 168,407 5.1 0.16 7.03 0.00 8.08 7.03 126.30 57,410 100%
118 1.4 167,745 5.1 0.16 6.82 0.00 8.07 6.82 126.09 57,315 100%
120 1.2 167,090 5.1 0.16 6.62 0.00 8.06 6.62 125.88 57,220 100%
122 1.1 166,445 5.0 0.16 6.43 0.00 8.05 6.43 125.68 57,126 100%
124 1.0 165,810 5.0 0.16 6.24 0.00 8.04 6.24 125.48 57,034 100%
126 0.9 165,185 5.0 0.16 6.05 0.00 8.03 6.05 125.28 56,943 100%
128 0.8 164,571 5.0 0.16 5.87 0.00 8.02 5.87 125.08 56,854 100%
130 0.8 163,968 5.0 0.16 5.69 0.00 8.01 5.69 124.88 56,766 100%
132 0.7 163,378 5.0 0.16 5.52 0.00 8.00 5.52 124.69 56,679 100%
134 0.6 162,800 5.0 0.16 5.35 0.00 7.99 5.35 124.51 56,594 100%
136 0.6 162,234 5.0 0.16 5.19 0.00 7.98 5.19 124.32 56,511 100%
138 0.5 161,680 5.0 0.16 5.04 0.00 7.98 5.04 124.15 56,430 100%
140 0.5 161,139 5.0 0.16 4.89 0.00 7.97 4.89 123.97 56,350 100%
142 0.4 160,610 4.9 0.16 4.74 0.00 7.96 4.74 123.80 56,271 100%
144 0.4 160,093 4.9 0.16 4.60 0.00 7.95 4.60 123.63 56,195 100%
146 0.4 159,589 4.9 0.16 4.46 0.00 7.94 4.46 123.46 56,120 100%
148 0.3 159,097 4.9 0.16 4.33 0.00 7.93 4.33 123.30 56,047 100%
150 0.3 158,617 4.9 0.16 4.20 0.00 7.93 4.20 123.15 55,975 100%
152 0.3 158,148 4.9 0.16 4.08 0.00 7.92 4.08 122.99 55,905 100%
154 0.2 157,692 4.9 0.16 3.96 0.00 7.91 3.96 122.84 55,837 100%
156 0.2 157,247 4.9 0.16 3.84 0.00 7.90 3.84 122.70 55,770 100%
158 0.2 156,813 4.9 0.16 3.73 0.00 7.90 3.73 122.55 55,705 100%
160 0.2 156,389 4.9 0.16 3.62 0.00 7.89 3.62 122.41 55,642 100%
162 0.2 155,977 4.9 0.16 3.52 0.00 7.88 3.52 122.28 55,580 100%
164 0.2 155,575 4.9 0.16 3.42 0.00 7.88 3.42 122.14 55,519 100%
166 0.1 155,184 4.8 0.16 3.32 0.00 7.87 3.32 122.01 55,460 100%
168 0.1 154,802 4.8 0.16 3.22 0.00 7.86 3.22 121.89 55,403 100%
170 0.1 154,431 4.8 0.16 3.13 0.00 7.86 3.13 121.76 55,346 100%
172 0.1 154,068 4.8 0.16 3.05 0.00 7.85 3.05 121.64 55,291 100%
174 0.1 153,715 4.8 0.16 2.96 0.00 7.85 2.96 121.52 55,238 100%
176 0.1 153,371 4.8 0.16 2.88 0.00 7.84 2.88 121.41 55,186 100%
178 0.1 153,036 4.8 0.16 2.80 0.00 7.84 2.80 121.30 55,135 100%
180 0.1 152,709 4.8 0.16 2.72 0.00 7.83 2.72 121.19 55,085 100%
182 0.1 152,391 4.8 0.16 2.65 0.00 7.83 2.65 121.08 55,036 100%
184 0.1 152,081 4.8 0.16 2.58 0.00 7.82 2.58 120.98 54,989 100%
186 0.1 151,778 4.8 0.16 2.51 0.00 7.81 2.51 120.87 54,943 100%
188 0.0 151,483 4.8 0.16 2.44 0.00 7.81 2.44 120.77 54,897 100%
190 0.0 151,196 4.8 0.16 2.38 0.00 7.81 2.38 120.68 54,853 100%
192 0.0 150,916 4.8 0.16 2.32 0.00 7.80 2.32 120.58 54,810 100%
194 0.0 150,642 4.8 0.16 2.26 0.00 7.80 2.26 120.49 54,768 100%
196 0.0 150,376 4.8 0.16 2.20 0.00 7.79 2.20 120.40 54,727 100%
198 0.0 150,116 4.8 0.16 2.14 0.00 7.79 2.14 120.31 54,687 100%
200 0.0 149,862 4.7 0.16 2.09 0.00 7.78 2.09 120.23 54,648 100%
202 0.0 149,614 4.7 0.16 2.04 0.00 7.78 2.04 120.14 54,610 100%
204 0.0 149,373 4.7 0.16 1.99 0.00 7.77 1.99 120.06 54,573 100%
206 0.0 149,137 4.7 0.16 1.94 0.00 7.77 1.94 119.98 54,537 100%
SB 08 SB 25-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
8
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
25
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/5/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #9 Sheet: 1 Of: 4
Objective Design the sediment basin to contain the 25-year storm and pass the 100-year storm without over topping the berm.
References
1. NC Erosion and Sediment Control Planning and Design Manual.
2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E.
3. NOAA Atlas 14, Volume 2, Version 3
4. VA Erosion and Sediment Control Handbook
Given
Phase 1 2 2 2
Storm Event (yrs) =10 10 25 100
Total Drainage Area A (ac) =62.8 85.9 85.9 85.9
Disturbed Area (ac) =46.7 65.9 65.9 65.9
Curve Number CN =72 72 72 72 Hydrographs
Rainfall Depth P (in) =5.28 5.28 6.28 7.88 (24-hr rainfall)Ref 3
Peak Flow Qp (cfs) =145.70 199.50 268.73 384.06 Hydrographs
Design Criteria
Required sediment storage 1,800 cf / acre of drainage
Required sediment storage 154,620 cf (based on largest Phase)
Required Surface Area 435 sf/cfs of the 10-yr storm peak flow (based on the largest Phase in cfs)
Required Surface Area (SF)86,783 of the 10-yr storm peak flow (based on the largest Phase)
Determine Shape of Basin:
Measure the area of the Basin using AutoCADD.
Calculate Volume of the Basin using Truncated Pyramid Method.
Shape factor used in hydrographs basin depth may be gretaer than indicated below
Cumulative Cumulative
Elevation (ft)Depth (ft)Area (sf)Volume (cf) Vol (cf) Vol (cy)
262 0 88,670 0 0 0
263 1 92,409 90,533 90,533 3,353
264 2 96,226 94,311 184,844 6,846
265 3 100,091 98,152 282,996 10,481
266 4 103,992 102,035 385,032 14,260
267 5 107,938 105,959 490,990 18,185
268 6 111,933 109,929 600,920 22,256
Design Sediment Depth (ft) =3
Sediment Storage (cf) =282,996 Required Sediment Storage Achieved
Design Surface Area Depth (ft) =3
Surface Area (sf) =100,091 Required Surface Area Achieved
SB 09
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/5/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #9 Sheet: 2 Of: 4
Select Skimmer
A. R. Jarrett Method
D = [Q / (2,310 * (H0.5)]0.5
D =Diameter of Orifice (inches)
Q = Dewater Rate (cf/day)
H = Head on orifice, varies based on skimmer size (ft)
Skimmer Sizes Head
(Inches)(ft)
1.5 0.125
2 0.167
2.5 0.167
3 0.250
4 0.333
5 0.333
6 0.417
8 0.500
Volume to Dewater (cf) =282,996
Number of Skimmers 2
Days to Drain =5 assumed
Q each (cf/day) =28,300 0.33 cfs
Selected Skimmer Size (inches) =5
Head on Skimmer (feet) =0.333
Diameter of Orifice (inches) =4.6
Route the flow through the Basin
Riser is not perforated, but skimmer is attached.
S =(1000/CN) - 10
Runoff Depth Q* (inches) =(P-0.2S)2/(P+0.8S) Ref 2, III-4
TP (min) = 60.5(Q*)A/QP/1.39
Phase 1 2 2 2
Storm Event (yrs) =10 10 25 100
S =3.89 3.89 3.89 3.89
Runoff Depth Q* (inches) =2.42 2.42 3.22 4.59
Time to Peak Tp (min) =45.32 45.27 44.85 44.68
Determine Pond Storage Elevation (ZWater):
Pick one point near max expected water surface and the other at the mid depth.
Z1 (ft) = 3 S1 (cf)= 282,996
Z2 (ft) = 6 S2 (cf) = 600,920
b = ln(S2/S1)/ln(Z2/Z1) =1.1 Ref 2, III-8
KS = S2/Z2
b =85,791
SB 09
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/5/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #9 Sheet: 3 Of: 4
Determine Settling Velocity
Conversion Factor = 3.281 ft/sec per m/sec
Gravitational Acceleration, g (m/s2) =9.81
Specific Gravity of soil (ss)=2.6
Kinematic Viscosity of water (v) =1.14E-06m2 / sec @ 20o C Ref 2, IV-11
Diameter of the Design Particle d15 =40.00E-06 m
Design Particle Settling Velocity =( g / 18 ) * [ ( ss - 1 ) / v ] d2 =4.02E-03 ft/sec
Route the Storm through the Basin using the Hydrograph Model
Set Height of Emergency Spillway at (ft) =7.50
Set Top of Dam at (ft) =8.50
Emergency Spillway
QE (cfs) = 100-Yr Storm
QE (cfs) = 55.2
Cross Section =Trapezoid
Channel Side Slope (z) =5 (enter X for X:1)
n =0.03 Grass Lined
Vp (ft/sec) =5.0 Permissible Velocity for lining Ref 2, II-7
Allowable Shear Stress (psf) =2.0 Allowable Shear Stress for lining
Bottom Width, b (ft) =50
Calculate Required Depth of Spillway:
Normal-Depth Procedure
AR2/3=Qn/1.49s0.5 Q=VA
Zreq=Qn/1.49s0.5 Area (A)= bd+z(d^2)
Zav=AR2/3 R=Area/(b+2d((z^2)+1)^.5)
Avg Shear Stress(T) = Kb*d*s*unit weight of water
Channel Slope Depth, d A V T
ft/ft (ft) (sf)Zreq R Z avail (ft/sec) (psf)
0.01 0.40 20.94 11.12 0.39 11.12 2.6 0.3
0.02 0.33 16.91 7.86 0.32 7.86 3.3 0.4
Construct the channel to be :50 ft, Bottom Width (measured at top of lining)
1.0 ft, depth (measured at top of lining)
1%slope
Anti-Seep Collar:
Anti-Seep Collar Size =2 * Barrel Dia
Anti-Seep Collar Size (ft) =7
Use Anti-Seep Collar Size (ft) =7 x 7
See Hydrograph
SB 09
SB Dims
HDR Computation I Job No. 0453925-237673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/5/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Sediment Basin #9 Sheet: 4 Of: 4
Minimum Concrete Base for Riser:
Diameter of Riser (in) = 72 From Hydrograph
Avg Density of Concrete (lbs/cf) =87.6
Density of Water (lbs/cf) =62.4
Riser Displacement (cf) = 189.44 Pi * (DR/24)2 * Total Ht of Riser
Convert cf to cy =27-1
Min Concrete Needed (cy) =5.00
Width & Length (ft) =7
Thickness (ft) =2.8
Anti-Vortex Device:
Diameter of Riser (in) = 72 From Hydrograph
Cylinder Diameter (in) = 102 Ref 4, III-104, Table 3.14-D
Cylinder Thickness (gage) = 14
Cylinder Height (in) = 36
Determine Tailwater conditions to size outlet apron
Use Normal Depth Procedure (Manning's Eqn.)Ref 2, II-7
A*R2/3 = Q*n/1.49 s0.5 Area (A)= bd+z(d^2) Zav = A*R2/3
Z req = Q*n/1.49s0.5 R=Area/(b+2d((z^2)+1)^.5)
n =0.069 6-inch diameter Rip Rap, Lined Channel
Vp (ft/sec) =9 Permissible Velocity for lining
Side Slope (z) =5 enter X for X:1
s (ft/ft) =0.02 Outlet Slope (estimated)
Bottom Width (ft) = 10.5 6 * Barrel Diameter
QB (cfs) =85.1 Peak Flow out of the barrel 25-yr Hydrograph
Q (cfs)Zreq
Flow Depth
d (ft)A (sf) R (ft)Zav V (ft/sec)
85.1 27.88 1.50 27.0 1.05 27.88 3.1
Flow Depth = Tailwater, d (ft) =1.50 0.5* Barrel Diameter (ft) =1.75 Ref 1, 8.06.3
Minimum Tailwater Conditions:d<0.5*Diameter of Outlet Pipe
Maximum Tailwater Conditions:d>0.5*Diameter of Outlet Pipe
Since the Tailwater is less than half of the diameter of the outlet, use Minimum Tailwater conditions.
Barrel
Diameter (ft) Entrance (ft) Length (ft)
Outlet Width
(ft)
Median Rip
Rap Size d50
Selected Rip
Rap Size (in)
3.5 10.5 22 26 0.7 Class B
Conclusion
The basin can contain the 25-yr storm and pass the 100-yr storm without overtopping the berm.
SB 09
SB Dims
HDR Computation I Job No. 0453925-23673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/5/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet 1 Of 2
Diameter of Riser (in) = 72
Circumference of Riser (in) =226.2
Height of Riser from bottom of barrel (in) =80 From Hydrograph
Vertical spacing between holes (in) =0 center to center
Water Stage increment (ft)0.05
Orifice Equation
Q = Cd * A * (2 * g * h)0.5 Ref 1, p III-11
Q =cfs, discharge
Cd =0.6 coefficient of discharge
A = sf, cross sectional area
g =32.2 ft/sec2, gravity
h =ft, driving head measured from the center of the pipe
Skimmer
Row 1 2 3 4 5 2 # of skimmers
Holes per row 0 0 0 0 0
Hole Diameter (in)0.75 0.75 0.75 0.75 0.75
Spacing edge to edge (in)
Inlet Area (sf)0.000 0.000 0.000 0.000 0.000
Hole Stage (in)0.50 0.50 0.50 0.50 0.50
Hole Stage (ft)0.04 0.04 0.04 0.04 0.04
Water Stage (ft)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Flow (cfs)Total Flow (cfs)
0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.00 0.00 0.00 0.00 0.00
0.09 0.00 0.00 0.00 0.00 0.00
0.14 0.00 0.00 0.00 0.00 0.00
0.19 0.00 0.00 0.00 0.00 0.00
0.24 0.00 0.00 0.00 0.00 0.00
0.29 0.00 0.00 0.00 0.00 0.00
0.34 0.00 0.00 0.00 0.66 0.66
0.39 0.00 0.00 0.00 0.66 0.66
0.44 0.00 0.00 0.00 0.66 0.66
0.49 0.00 0.00 0.00 0.66 0.66
0.54 0.00 0.00 0.00 0.66 0.66
0.59 0.00 0.00 0.00 0.66 0.66
0.64 0.00 0.00 0.00 0.66 0.66
0.69 0.00 0.00 0.00 0.66 0.66
0.74 0.00 0.00 0.00 0.66 0.66
0.79 0.00 0.00 0.00 0.66 0.66
0.84 0.00 0.00 0.00 0.66 0.66
0.89 0.00 0.00 0.00 0.66 0.66
0.94 0.00 0.00 0.00 0.66 0.66
0.99 0.00 0.00 0.00 0.66 0.66
1.04 0.00 0.00 0.00 0.66 0.66
1.09 0.00 0.00 0.00 0.66 0.66
1.14 0.00 0.00 0.00 0.66 0.66
1.19 0.00 0.00 0.00 0.66 0.66
1.24 0.00 0.00 0.00 0.66 0.66
1.29 0.00 0.00 0.00 0.66 0.66
1.34 0.00 0.00 0.00 0.66 0.66
1.39 0.00 0.00 0.00 0.66 0.66
1.44 0.00 0.00 0.00 0.66 0.66
1.49 0.00 0.00 0.00 0.66 0.66
1.54 0.00 0.00 0.00 0.66 0.66
1.59 0.00 0.00 0.00 0.66 0.66
Perforations
SB 09 Pipe Perf-Skimmer
HDR Computation I Job No. 0453925-23673-018 l
Project: Charah Colon Mine Computed: PAW Date: 3/5/15
Subject: Permit Application Checked: MDP Date: 3/6/15
Task: Riser Pipe Perforations/Skimmer Flow Sheet 2 Of 2
1.64 0.00 0.00 0.00 0.66 0.66
1.69 0.00 0.00 0.00 0.66 0.66
1.74 0.00 0.00 0.00 0.66 0.66
1.79 0.00 0.00 0.00 0.66 0.66
1.84 0.00 0.00 0.00 0.66 0.66
1.89 0.00 0.00 0.00 0.66 0.66
1.94 0.00 0.00 0.00 0.66 0.66
1.99 0.00 0.00 0.00 0.66 0.66
2.04 0.00 0.00 0.00 0.66 0.66
2.09 0.00 0.00 0.00 0.66 0.66
2.14 0.00 0.00 0.00 0.66 0.66
2.19 0.00 0.00 0.00 0.66 0.66
2.24 0.00 0.00 0.00 0.66 0.66
2.29 0.00 0.00 0.00 0.66 0.66
2.34 0.00 0.00 0.00 0.66 0.66
2.39 0.00 0.00 0.00 0.66 0.66
2.44 0.00 0.00 0.00 0.66 0.66
2.49 0.00 0.00 0.00 0.66 0.66
2.54 0.00 0.00 0.00 0.66 0.66
2.59 0.00 0.00 0.00 0.66 0.66
2.64 0.00 0.00 0.00 0.66 0.66
2.69 0.00 0.00 0.00 0.66 0.66
2.74 0.00 0.00 0.00 0.66 0.66
2.79 0.00 0.00 0.00 0.66 0.66
2.84 0.00 0.00 0.00 0.66 0.66
2.89 0.00 0.00 0.00 0.66 0.66
2.94 0.00 0.00 0.00 0.66 0.66
2.99 0.00 0.00 0.00 0.66 0.66
3.04 0.00 0.00 0.00 0.66 0.66
3.09 0.00 0.00 0.00 0.66 0.66
3.14 0.00 0.00 0.00 0.66 0.66
3.19 0.00 0.00 0.00 0.66 0.66
3.24 0.00 0.00 0.00 0.66 0.66
3.29 0.00 0.00 0.00 0.66 0.66
3.34 0.00 0.00 0.00 0.66 0.66
3.39 0.00 0.00 0.00 0.66 0.66
3.44 0.00 0.00 0.00 0.66 0.66
3.49 0.00 0.00 0.00 0.66 0.66
3.54 0.00 0.00 0.00 0.66 0.66
3.59 0.00 0.00 0.00 0.66 0.66
3.64 0.00 0.00 0.00 0.66 0.66
3.69 0.00 0.00 0.00 0.66 0.66
3.74 0.00 0.00 0.00 0.66 0.66
3.79 0.00 0.00 0.00 0.66 0.66
3.84 0.00 0.00 0.00 0.66 0.66
3.89 0.00 0.00 0.00 0.66 0.66
3.94 0.00 0.00 0.00 0.66 0.66
3.99 0.00 0.00 0.00 0.66 0.66
SB 09 Pipe Perf-Skimmer
Computed By: PAW Date:3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _1___of __2__
Qp = 145.70 cfs Sediment Basin #9 Colon
Tp = 45.32 minutes Phase 1
dT = Max of 2 minutes 10 - year Storm Event
or 1.0%of increment to peak
b =1.1
Number of Riser/Barrel Assemblies 2 Ks =85,791
Diameter of Barrel =42 (in)
Height of Riser above barrel =3.2 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=6.7 (ft) elevation 268.70 2 Effective number of cells (2 is construction site #)
Emergency Spillway =7.5 (ft) elevation 269.50 100%Minimum Settling Efficiency
Total Height of Dam =8.5 (ft) elevation 270.50 5.4 ft Maximum Stage 267.39 msl elevation
Length of Emergency Spillway =50 (ft)1.3 cfs Peak outflow
Diameter of Riser =72 (in)1.3 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 262.0 0.0 cfs Peak Weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 0.7 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 2.8 84 0.0 0.00 0.00 0.00 0.00 0.00 118.17 53,715 N/A
6 6.2 418 0.0 0.00 0.00 0.00 0.00 0.00 134.27 61,030 N/A
8 10.9 1,163 0.0 0.00 0.00 0.00 0.00 0.00 145.65 66,206 N/A
10 16.8 2,473 0.0 0.00 0.00 0.00 0.00 0.00 154.66 70,300 N/A
12 23.8 4,491 0.1 0.00 0.00 0.00 0.00 0.00 162.17 73,715 N/A
14 31.7 7,345 0.1 0.00 0.00 0.00 0.00 0.00 168.64 76,656 N/A
16 40.4 11,149 0.2 0.00 0.00 0.00 0.00 0.00 174.33 79,242 N/A
18 49.7 15,998 0.2 0.00 0.00 0.00 0.00 0.00 179.41 81,550 N/A
20 59.5 21,965 0.3 0.00 0.00 0.00 0.00 0.00 183.99 83,632 N/A
22 69.5 29,104 0.4 0.66 0.66 0.00 0.66 1.31 188.16 85,525 100%
24 79.6 37,290 0.5 0.66 0.66 0.00 0.66 1.31 191.90 87,227 100%
26 89.6 46,686 0.6 0.66 0.66 0.00 0.66 1.31 195.36 88,800 100%
28 99.2 57,277 0.7 0.66 0.66 0.00 0.66 1.31 198.56 90,256 100%
30 108.3 69,025 0.8 0.66 0.66 0.00 0.66 1.31 201.53 91,605 100%
32 116.8 81,869 1.0 0.66 0.66 0.00 0.66 1.31 204.28 92,856 100%
34 124.4 95,727 1.1 0.66 0.66 0.00 0.66 1.31 206.84 94,018 100%
36 131.0 110,498 1.3 0.66 0.66 0.00 0.66 1.31 209.21 95,097 100%
38 136.5 126,064 1.4 0.66 0.66 0.00 0.66 1.31 211.42 96,099 100%
40 140.8 142,289 1.6 0.66 0.66 0.00 0.66 1.31 213.46 97,029 100%
42 143.8 159,029 1.8 0.66 0.66 0.00 0.66 1.31 215.36 97,891 100%
44 145.4 176,125 1.9 0.66 0.66 0.00 0.66 1.31 217.12 98,689 100%
46 145.6 193,415 2.1 0.66 0.66 0.00 0.66 1.31 218.74 99,426 100%
48 144.4 210,732 2.3 0.66 0.66 0.00 0.66 1.31 220.23 100,107 100%
50 141.9 227,909 2.5 0.66 0.66 0.00 0.66 1.31 221.61 100,732 100%
52 138.0 244,779 2.6 0.66 0.66 0.00 0.66 1.31 222.87 101,306 100%
54 132.9 261,185 2.8 0.66 0.66 0.00 0.66 1.31 224.03 101,830 100%
56 126.6 276,976 2.9 0.66 0.66 0.00 0.66 1.31 225.07 102,306 100%
58 119.8 292,013 3.1 0.66 0.66 0.00 0.66 1.31 226.02 102,737 100%
60 113.1 306,229 3.2 0.66 0.66 0.00 0.66 1.31 226.88 103,126 100%
62 106.8 319,644 3.4 0.66 0.66 0.00 0.66 1.31 227.65 103,479 100%
64 100.8 332,302 3.5 0.66 0.66 0.00 0.66 1.31 228.36 103,799 100%
66 95.2 344,246 3.6 0.66 0.66 0.00 0.66 1.31 229.00 104,091 100%
68 89.9 355,514 3.7 0.66 0.66 0.00 0.66 1.31 229.59 104,357 100%
70 84.9 366,146 3.8 0.66 0.66 0.00 0.66 1.31 230.13 104,602 100%
72 80.2 376,176 3.9 0.66 0.66 0.00 0.66 1.31 230.62 104,827 100%
74 75.7 385,638 4.0 0.66 0.66 0.00 0.66 1.31 231.08 105,035 100%
76 71.5 394,564 4.1 0.66 0.66 0.00 0.66 1.31 231.50 105,226 100%
78 67.5 402,984 4.2 0.66 0.66 0.00 0.66 1.31 231.89 105,403 100%
80 63.7 410,925 4.2 0.66 0.66 0.00 0.66 1.31 232.25 105,566 100%
82 60.2 418,414 4.3 0.66 0.66 0.00 0.66 1.31 232.58 105,718 100%
SB 09 SB 10-yr (P1) HG
Computed By: PAW Date: 12/31/14
Checked By: EAW Date: 1/2/15
Sheet: _2___of __2__
84 56.8 425,478 4.4 0.66 0.66 0.00 0.66 1.31 232.89 105,859 100%
86 53.6 432,138 4.4 0.66 0.66 0.00 0.66 1.31 233.18 105,990 100%
88 50.7 438,419 4.5 0.66 0.66 0.00 0.66 1.31 233.45 106,112 100%
90 47.8 444,340 4.5 0.66 0.66 0.00 0.66 1.31 233.69 106,225 100%
92 45.2 449,923 4.6 0.66 0.66 0.00 0.66 1.31 233.93 106,330 100%
94 42.6 455,185 4.6 0.66 0.66 0.00 0.66 1.31 234.14 106,429 100%
96 40.3 460,146 4.7 0.66 0.66 0.00 0.66 1.31 234.34 106,520 100%
98 38.0 464,821 4.7 0.66 0.66 0.00 0.66 1.31 234.53 106,606 100%
100 35.9 469,226 4.8 0.66 0.66 0.00 0.66 1.31 234.71 106,686 100%
102 33.9 473,378 4.8 0.66 0.66 0.00 0.66 1.31 234.87 106,761 100%
104 32.0 477,289 4.9 0.66 0.66 0.00 0.66 1.31 235.03 106,831 100%
106 30.2 480,973 4.9 0.66 0.66 0.00 0.66 1.31 235.17 106,896 100%
108 28.5 484,443 4.9 0.66 0.66 0.00 0.66 1.31 235.31 106,957 100%
110 26.9 487,710 5.0 0.66 0.66 0.00 0.66 1.31 235.43 107,014 100%
112 25.4 490,787 5.0 0.66 0.66 0.00 0.66 1.31 235.55 107,068 100%
114 24.0 493,684 5.0 0.66 0.66 0.00 0.66 1.31 235.66 107,118 100%
116 22.7 496,410 5.0 0.66 0.66 0.00 0.66 1.31 235.76 107,165 100%
118 21.4 498,975 5.1 0.66 0.66 0.00 0.66 1.31 235.86 107,209 100%
120 20.2 501,389 5.1 0.66 0.66 0.00 0.66 1.31 235.95 107,250 100%
122 19.1 503,659 5.1 0.66 0.66 0.00 0.66 1.31 236.03 107,289 100%
124 18.0 505,794 5.1 0.66 0.66 0.00 0.66 1.31 236.11 107,325 100%
126 17.0 507,801 5.1 0.66 0.66 0.00 0.66 1.31 236.19 107,358 100%
128 16.1 509,688 5.2 0.66 0.66 0.00 0.66 1.31 236.26 107,390 100%
130 15.2 511,460 5.2 0.66 0.66 0.00 0.66 1.31 236.32 107,420 100%
132 14.3 513,125 5.2 0.66 0.66 0.00 0.66 1.31 236.38 107,448 100%
134 13.5 514,688 5.2 0.66 0.66 0.00 0.66 1.31 236.44 107,474 100%
136 12.8 516,156 5.2 0.66 0.66 0.00 0.66 1.31 236.50 107,498 100%
138 12.1 517,532 5.2 0.66 0.66 0.00 0.66 1.31 236.55 107,521 100%
140 11.4 518,824 5.2 0.66 0.66 0.00 0.66 1.31 236.59 107,542 100%
142 10.8 520,034 5.3 0.66 0.66 0.00 0.66 1.31 236.64 107,562 100%
144 10.2 521,168 5.3 0.66 0.66 0.00 0.66 1.31 236.68 107,580 100%
146 9.6 522,231 5.3 0.66 0.66 0.00 0.66 1.31 236.72 107,598 100%
148 9.1 523,225 5.3 0.66 0.66 0.00 0.66 1.31 236.75 107,614 100%
150 8.6 524,155 5.3 0.66 0.66 0.00 0.66 1.31 236.78 107,629 100%
152 8.1 525,024 5.3 0.66 0.66 0.00 0.66 1.31 236.82 107,644 100%
154 7.6 525,836 5.3 0.66 0.66 0.00 0.66 1.31 236.84 107,657 100%
156 7.2 526,595 5.3 0.66 0.66 0.00 0.66 1.31 236.87 107,669 100%
158 6.8 527,302 5.3 0.66 0.66 0.00 0.66 1.31 236.90 107,681 100%
160 6.4 527,960 5.3 0.66 0.66 0.00 0.66 1.31 236.92 107,691 100%
162 6.1 528,574 5.3 0.66 0.66 0.00 0.66 1.31 236.94 107,701 100%
164 5.7 529,144 5.3 0.66 0.66 0.00 0.66 1.31 236.96 107,711 100%
166 5.4 529,674 5.3 0.66 0.66 0.00 0.66 1.31 236.98 107,719 100%
168 5.1 530,166 5.3 0.66 0.66 0.00 0.66 1.31 237.00 107,727 100%
170 4.8 530,621 5.4 0.66 0.66 0.00 0.66 1.31 237.02 107,734 100%
172 4.6 531,042 5.4 0.66 0.66 0.00 0.66 1.31 237.03 107,741 100%
174 4.3 531,431 5.4 0.66 0.66 0.00 0.66 1.31 237.04 107,747 100%
176 4.1 531,790 5.4 0.66 0.66 0.00 0.66 1.31 237.06 107,753 100%
178 3.8 532,119 5.4 0.66 0.66 0.00 0.66 1.31 237.07 107,759 100%
180 3.6 532,422 5.4 0.66 0.66 0.00 0.66 1.31 237.08 107,763 100%
182 3.4 532,699 5.4 0.66 0.66 0.00 0.66 1.31 237.09 107,768 100%
184 3.2 532,952 5.4 0.66 0.66 0.00 0.66 1.31 237.10 107,772 100%
186 3.0 533,182 5.4 0.66 0.66 0.00 0.66 1.31 237.11 107,776 100%
188 2.9 533,390 5.4 0.66 0.66 0.00 0.66 1.31 237.11 107,779 100%
190 2.7 533,578 5.4 0.66 0.66 0.00 0.66 1.31 237.12 107,782 100%
192 2.6 533,747 5.4 0.66 0.66 0.00 0.66 1.31 237.13 107,785 100%
194 2.4 533,897 5.4 0.66 0.66 0.00 0.66 1.31 237.13 107,787 100%
196 2.3 534,030 5.4 0.66 0.66 0.00 0.66 1.31 237.14 107,789 100%
198 2.2 534,148 5.4 0.66 0.66 0.00 0.66 1.31 237.14 107,791 100%
200 2.0 534,249 5.4 0.66 0.66 0.00 0.66 1.31 237.14 107,793 100%
202 1.9 534,337 5.4 0.66 0.66 0.00 0.66 1.31 237.15 107,794 100%
204 1.8 534,411 5.4 0.66 0.66 0.00 0.66 1.31 237.15 107,795 100%
206 1.7 534,471 5.4 0.66 0.66 0.00 0.66 1.31 237.15 107,796 100%
SB 09 SB 10-yr (P1) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
9
C
o
l
o
n
M
i
n
e
P
h
a
s
e
1
H
y
d
r
o
g
r
a
p
h
10
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
Computed By: PAW Date: 12/31/14
Checked By: EAW Date: 1/2/15
Sheet: _1___of _2_
Qp = 199.50 cfs Sediment Basin # 9 Colon
Tp =45.27 minutes Phase 2
dT = Max of 2 minutes 10 - year Storm Event
or 1.0%of increment to peak
b =1.1
Number of Riser/Barrel Assemblies 2 Ks =85,791
Diameter of Barrel =42 (in)
Height of Riser above barrel =3.2 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=6.7 (ft) elevation 268.70 2 Effective number of cells (2 is construction site #)
Emergency Spillway =7.5 (ft) elevation 269.50 100%Minimum Settling Efficiency
Total Height of Dam =8.5 (ft) elevation 270.50 6.9 ft Maximum Stage 268.92 msl elevation
Length of Emergency Spillway =50 (ft)14.3 cfs Peak outflow
Diameter of Riser =72 (in)14.3 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 262.0 0.0 cfs peak weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACIT
Y [cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 1.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 3.8 115 0.0 0.00 0.00 0.00 0.00 0.00 121.18 55,083 N/A
6 8.5 573 0.0 0.00 0.00 0.00 0.00 0.00 137.69 62,584 N/A
8 15.0 1,596 0.0 0.00 0.00 0.00 0.00 0.00 149.36 67,893 N/A
10 23.1 3,394 0.1 0.00 0.00 0.00 0.00 0.00 158.60 72,091 N/A
12 32.6 6,162 0.1 0.00 0.00 0.00 0.00 0.00 166.30 75,592 N/A
14 43.5 10,078 0.1 0.00 0.00 0.00 0.00 0.00 172.94 78,608 N/A
16 55.4 15,296 0.2 0.00 0.00 0.00 0.00 0.00 178.77 81,260 N/A
18 68.2 21,947 0.3 0.00 0.00 0.00 0.00 0.00 183.98 83,627 N/A
20 81.6 30,132 0.4 0.66 0.66 0.00 0.66 1.31 188.68 85,761 100%
22 95.4 39,768 0.5 0.66 0.66 0.00 0.66 1.31 192.88 87,675 100%
24 109.2 51,053 0.6 0.66 0.66 0.00 0.66 1.31 196.75 89,434 100%
26 122.8 63,997 0.8 0.66 0.66 0.00 0.66 1.31 200.32 91,055 100%
28 136.0 78,579 0.9 0.66 0.66 0.00 0.66 1.31 203.62 92,554 100%
30 148.5 94,745 1.1 0.66 0.66 0.00 0.66 1.31 206.67 93,941 100%
32 160.1 112,413 1.3 0.66 0.66 0.00 0.66 1.31 209.50 95,227 100%
34 170.5 131,468 1.5 0.66 0.66 0.00 0.66 1.31 212.12 96,420 100%
36 179.6 151,772 1.7 0.66 0.66 0.00 0.66 1.31 214.56 97,528 100%
38 187.1 173,161 1.9 0.66 0.66 0.00 0.66 1.31 216.82 98,556 100%
40 192.9 195,452 2.1 0.66 0.66 0.00 0.66 1.31 218.92 99,509 100%
42 196.9 218,443 2.4 0.66 0.66 0.00 0.66 1.31 220.86 100,393 100%
44 199.1 241,919 2.6 0.66 0.66 0.00 0.66 1.31 222.66 101,211 100%
46 199.4 265,655 2.8 0.66 0.66 0.00 0.66 1.31 224.33 101,967 100%
48 197.7 289,422 3.1 0.66 0.66 0.00 0.66 1.31 225.86 102,665 100%
50 194.2 312,991 3.3 0.66 0.66 0.00 0.66 1.31 227.27 103,306 100%
52 188.8 336,135 3.5 0.66 0.66 0.00 0.66 1.31 228.57 103,893 100%
54 181.8 358,637 3.7 0.66 0.66 0.00 0.66 1.31 229.75 104,430 100%
56 173.1 380,290 3.9 0.66 0.66 0.00 0.66 1.31 230.82 104,918 100%
58 163.7 400,906 4.1 0.66 0.66 0.00 0.66 1.31 231.79 105,359 100%
60 154.6 420,396 4.3 0.66 0.66 0.00 0.66 1.31 232.67 105,758 100%
62 146.0 438,789 4.5 0.66 0.66 0.00 0.66 1.31 233.46 106,119 100%
64 137.8 456,147 4.7 0.66 0.66 0.00 0.66 1.31 234.18 106,447 100%
66 130.1 472,527 4.8 0.66 0.66 0.00 0.66 1.31 234.84 106,746 100%
68 122.9 487,984 5.0 0.66 0.66 0.00 0.66 1.31 235.44 107,019 100%
70 116.0 502,570 5.1 0.66 0.66 0.00 0.66 1.31 235.99 107,270 100%
72 109.5 516,332 5.2 0.66 0.66 0.00 0.66 1.31 236.50 107,501 100%
74 103.4 529,318 5.3 0.66 0.66 0.00 0.66 1.31 236.97 107,713 100%
76 97.6 541,571 5.5 0.66 0.66 0.00 0.66 1.31 237.40 107,910 100%
78 92.2 553,131 5.6 0.66 0.66 0.00 0.66 1.31 237.80 108,091 100%
80 87.0 564,036 5.7 0.66 0.66 0.00 0.66 1.31 238.17 108,259 100%
82 82.2 574,325 5.8 0.66 0.66 0.00 0.66 1.31 238.51 108,415 100%
84 77.6 584,030 5.8 0.66 0.66 0.00 0.66 1.31 238.83 108,559 100%
SB 09 SB 10-yr (P2) HG
Computed By: PAW Date: 12/31/14
Checked By: EAW Date: 1/2/15
Sheet: _2___of _2_
86 73.3 593,185 5.9 0.66 0.66 0.00 0.66 1.31 239.13 108,693 100%
88 69.2 601,820 6.0 0.66 0.66 0.00 0.66 1.31 239.40 108,818 100%
90 65.3 609,964 6.1 0.66 0.66 0.00 0.66 1.31 239.66 108,935 100%
92 61.7 617,645 6.2 0.66 0.66 0.00 0.66 1.31 239.90 109,043 100%
94 58.2 624,889 6.2 0.66 0.66 0.00 0.66 1.31 240.12 109,144 100%
96 55.0 631,720 6.3 0.66 0.66 0.00 0.66 1.31 240.33 109,239 100%
98 51.9 638,160 6.3 0.66 0.66 0.00 0.66 1.31 240.52 109,327 100%
100 49.0 644,232 6.4 0.66 0.66 0.00 0.66 1.31 240.70 109,409 100%
102 46.3 649,957 6.4 0.66 0.66 0.00 0.66 1.31 240.87 109,486 100%
104 43.7 655,353 6.5 0.66 0.66 0.00 0.66 1.31 241.03 109,558 100%
106 41.3 660,440 6.5 0.66 0.66 0.00 0.66 1.31 241.18 109,626 100%
108 39.0 665,233 6.6 0.66 0.66 0.00 0.66 1.31 241.32 109,689 100%
110 36.8 669,751 6.6 0.66 0.66 0.00 0.66 1.31 241.45 109,748 100%
112 34.7 674,007 6.7 0.66 0.66 0.00 0.66 1.31 241.57 109,803 100%
114 32.8 678,017 6.7 0.66 0.68 0.00 102.96 1.36 241.68 109,855 100%
116 31.0 681,789 6.7 0.66 1.14 0.00 103.31 2.28 241.79 109,903 100%
118 29.2 685,230 6.8 0.66 1.83 0.00 103.64 3.65 241.88 109,947 100%
120 27.6 688,300 6.8 0.66 2.58 0.00 103.92 5.17 241.97 109,987 100%
122 26.1 690,992 6.8 0.66 3.34 0.00 104.18 6.69 242.05 110,021 100%
124 24.6 693,317 6.8 0.66 4.06 0.00 104.39 8.13 242.11 110,050 100%
126 23.2 695,294 6.9 0.66 4.72 0.00 104.58 9.44 242.16 110,075 100%
128 21.9 696,949 6.9 0.66 5.30 0.00 104.73 10.60 242.21 110,096 100%
130 20.7 698,310 6.9 0.66 5.79 0.00 104.86 11.58 242.25 110,113 100%
132 19.6 699,405 6.9 0.66 6.20 0.00 104.96 12.40 242.28 110,127 100%
134 18.5 700,264 6.9 0.66 6.53 0.00 105.04 13.06 242.30 110,137 100%
136 17.4 700,912 6.9 0.66 6.78 0.00 105.10 13.56 242.32 110,145 100%
138 16.5 701,377 6.9 0.66 6.96 0.00 105.14 13.93 242.33 110,151 100%
140 15.5 701,681 6.9 0.66 7.08 0.00 105.17 14.17 242.34 110,155 100%
142 14.7 701,846 6.9 0.66 7.15 0.00 105.18 14.30 242.35 110,157 100%
144 13.9 701,891 6.9 0.66 7.17 0.00 105.19 14.34 242.35 110,158 100%
146 13.1 701,833 6.9 0.66 7.14 0.00 105.18 14.29 242.35 110,157 100%
148 12.4 701,688 6.9 0.66 7.09 0.00 105.17 14.17 242.34 110,155 100%
150 11.7 701,469 6.9 0.66 7.00 0.00 105.15 14.00 242.34 110,152 100%
152 11.0 701,189 6.9 0.66 6.89 0.00 105.12 13.78 242.33 110,149 100%
154 10.4 700,857 6.9 0.66 6.76 0.00 105.09 13.52 242.32 110,145 100%
156 9.8 700,482 6.9 0.66 6.61 0.00 105.06 13.23 242.31 110,140 100%
158 9.3 700,073 6.9 0.66 6.46 0.00 105.02 12.91 242.30 110,135 100%
160 8.8 699,636 6.9 0.66 6.29 0.00 104.98 12.58 242.28 110,129 100%
162 8.3 699,177 6.9 0.66 6.11 0.00 104.94 12.23 242.27 110,124 100%
164 7.8 698,701 6.9 0.66 5.94 0.00 104.89 11.87 242.26 110,118 100%
166 7.4 698,212 6.9 0.66 5.76 0.00 104.85 11.51 242.25 110,112 100%
168 7.0 697,715 6.9 0.66 5.57 0.00 104.80 11.15 242.23 110,105 100%
170 6.6 697,212 6.9 0.66 5.39 0.00 104.76 10.78 242.22 110,099 100%
172 6.2 696,706 6.9 0.66 5.21 0.00 104.71 10.42 242.20 110,093 100%
174 5.9 696,199 6.9 0.66 5.03 0.00 104.66 10.07 242.19 110,086 100%
176 5.5 695,694 6.9 0.66 4.86 0.00 104.61 9.71 242.18 110,080 100%
178 5.2 695,191 6.9 0.66 4.68 0.00 104.57 9.37 242.16 110,074 100%
180 4.9 694,693 6.9 0.66 4.52 0.00 104.52 9.03 242.15 110,067 100%
182 4.7 694,201 6.9 0.66 4.35 0.00 104.48 8.70 242.13 110,061 100%
184 4.4 693,715 6.8 0.66 4.19 0.00 104.43 8.39 242.12 110,055 100%
186 4.1 693,236 6.8 0.66 4.04 0.00 104.39 8.07 242.11 110,049 100%
188 3.9 692,764 6.8 0.66 3.89 0.00 104.34 7.77 242.09 110,043 100%
190 3.7 692,301 6.8 0.66 3.74 0.00 104.30 7.48 242.08 110,037 100%
192 3.5 691,847 6.8 0.66 3.60 0.00 104.26 7.20 242.07 110,031 100%
194 3.3 691,402 6.8 0.66 3.47 0.00 104.21 6.93 242.06 110,026 100%
196 3.1 690,965 6.8 0.66 3.34 0.00 104.17 6.67 242.04 110,020 100%
198 2.9 690,538 6.8 0.66 3.21 0.00 104.13 6.42 242.03 110,015 100%
200 2.8 690,121 6.8 0.66 3.09 0.00 104.10 6.18 242.02 110,010 100%
202 2.6 689,713 6.8 0.66 2.97 0.00 104.06 5.94 242.01 110,004 100%
204 2.5 689,314 6.8 0.66 2.86 0.00 104.02 5.72 242.00 109,999 100%
SB 09 SB 10-yr (P2) HG
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
STAGE (ft)
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
9
C
o
l
o
n
M
i
n
e
P
h
a
s
e
2
H
y
d
r
o
g
r
a
p
h
10
-
Y
r
S
t
o
r
m
TO
T
A
L
O
U
T
F
L
O
W
[
c
f
s
]
IN
F
L
O
W
[
c
f
s
]
ST
A
G
E
[
f
t
]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
Computed By: PAW Date: 12/31/14
Checked By: EAW Date: 1/2/15
Sheet: __1__of __2__
Qp = 268.73 cfs Sediment Basin # 9 Colon
Tp =44.85 minutes Phase 2
dT = Max of 2 minutes 25 - year Storm Event
or 1.0%of increment to peak
b =1.1
Number of Riser/Barrel Assemblies 2 Ks =85,791
Diameter of Barrel =42 (in)
Height of Riser above barrel =3.2 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=6.7 (ft) elevation 268.70 2 Effective number of cells (2 is construction site #)
Emergency Spillway =7.5 (ft) elevation 269.50 92%Minimum Settling Efficiency
Total Height of Dam =8.5 (ft) elevation 270.50 7.5 ft Maximum Stage 269.5 msl elevation
Length of Emergency Spillway =50 (ft)85.1 cfs Peak outflow
Diameter of Riser =72 (in)85.1 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 262.0 0.0 cfs peak weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFL
OW [cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 1.3 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 5.2 158 0.0 0.00 0.00 0.00 0.00 0.00 124.27 56,487 N/A
6 11.7 787 0.0 0.00 0.00 0.00 0.00 0.00 141.19 64,179 N/A
8 20.5 2,190 0.0 0.00 0.00 0.00 0.00 0.00 153.17 69,622 N/A
10 31.6 4,656 0.1 0.00 0.00 0.00 0.00 0.00 162.64 73,926 N/A
12 44.7 8,452 0.1 0.00 0.00 0.00 0.00 0.00 170.54 77,516 N/A
14 59.6 13,820 0.2 0.00 0.00 0.00 0.00 0.00 177.34 80,607 N/A
16 75.9 20,971 0.3 0.00 0.00 0.00 0.00 0.00 183.31 83,325 N/A
18 93.4 30,080 0.4 0.66 0.66 0.00 0.66 1.31 188.65 85,750 100%
20 111.6 41,128 0.5 0.66 0.66 0.00 0.66 1.31 193.40 87,909 100%
22 130.4 54,368 0.7 0.66 0.66 0.00 0.66 1.31 197.74 89,882 100%
24 149.2 69,854 0.8 0.66 0.66 0.00 0.66 1.31 201.72 91,692 100%
26 167.7 87,595 1.0 0.66 0.66 0.00 0.66 1.31 205.38 93,357 100%
28 185.5 107,556 1.2 0.66 0.66 0.00 0.66 1.31 208.77 94,893 100%
30 202.4 129,659 1.5 0.66 0.66 0.00 0.66 1.31 211.89 96,314 100%
32 217.9 153,785 1.7 0.66 0.66 0.00 0.66 1.31 214.79 97,630 100%
34 231.7 179,772 2.0 0.66 0.66 0.00 0.66 1.31 217.47 98,850 100%
36 243.7 207,424 2.3 0.66 0.66 0.00 0.66 1.31 219.96 99,981 100%
38 253.6 236,514 2.5 0.66 0.66 0.00 0.66 1.31 222.27 101,030 100%
40 261.0 266,783 2.8 0.66 0.66 0.00 0.66 1.31 224.40 102,002 100%
42 266.1 297,951 3.1 0.66 0.66 0.00 0.66 1.31 226.38 102,902 100%
44 268.5 329,721 3.5 0.66 0.66 0.00 0.66 1.31 228.22 103,734 100%
46 268.3 361,783 3.8 0.66 0.66 0.00 0.66 1.31 229.91 104,503 100%
48 265.5 393,821 4.1 0.66 0.66 0.00 0.66 1.31 231.46 105,210 100%
50 260.1 425,521 4.4 0.66 0.66 0.00 0.66 1.31 232.89 105,860 100%
52 252.2 456,574 4.7 0.66 0.66 0.00 0.66 1.31 234.20 106,454 100%
54 242.1 486,685 4.9 0.66 0.66 0.00 0.66 1.31 235.39 106,996 100%
56 229.8 515,577 5.2 0.66 0.66 0.00 0.66 1.31 236.47 107,488 100%
58 217.1 542,996 5.5 0.66 0.66 0.00 0.66 1.31 237.45 107,932 100%
60 204.9 568,894 5.7 0.66 0.66 0.00 0.66 1.31 238.33 108,333 100%
62 193.4 593,324 5.9 0.66 0.66 0.00 0.66 1.31 239.13 108,696 100%
64 182.5 616,370 6.1 0.66 0.66 0.00 0.66 1.31 239.86 109,025 100%
66 172.2 638,109 6.3 0.66 0.66 0.00 0.66 1.31 240.52 109,326 100%
68 162.5 658,614 6.5 0.66 0.66 0.00 0.66 1.31 241.12 109,602 100%
70 153.3 677,956 6.7 0.66 0.67 0.00 102.95 1.35 241.68 109,854 100%
72 144.7 696,195 6.9 0.66 5.03 0.00 104.66 10.06 242.19 110,086 100%
74 136.6 712,352 7.0 0.66 11.76 0.00 106.15 23.52 242.63 110,287 99%
76 128.9 725,917 7.1 0.66 18.81 0.00 107.38 37.61 243.00 110,453 98%
78 121.6 736,867 7.2 0.66 25.27 0.00 108.36 50.54 243.29 110,584 97%
80 114.8 745,394 7.3 0.66 30.74 0.00 109.12 61.47 243.51 110,686 95%
82 108.3 751,788 7.4 0.66 35.06 0.00 109.69 70.13 243.67 110,761 94%
84 102.2 756,368 7.4 0.66 38.28 0.00 110.09 76.56 243.79 110,814 93%
SB 09 SB 25-yr HG (P2)
Computed By: PAW Date: 3/5/15
Checked By: EAW Date: 3/615
Sheet: __2__of __2__
86 96.4 759,445 7.4 0.66 40.49 0.00 110.36 80.98 243.87 110,850 93%
88 91.0 761,300 7.5 0.66 41.84 0.00 110.52 83.69 243.92 110,872 93%
90 85.9 762,179 7.5 0.66 42.49 0.00 110.60 84.98 243.94 110,882 92%
92 81.0 762,287 7.5 0.66 42.57 0.00 110.61 85.14 243.94 110,883 92%
94 76.5 761,796 7.5 0.66 42.21 0.00 110.56 84.41 243.93 110,877 92%
96 72.2 760,844 7.5 0.66 41.51 0.00 110.48 83.02 243.91 110,866 93%
98 68.1 759,543 7.4 0.66 40.56 0.00 110.37 81.12 243.87 110,851 93%
100 64.3 757,981 7.4 0.66 39.43 0.00 110.23 78.86 243.83 110,833 93%
102 60.7 756,230 7.4 0.66 38.18 0.00 110.08 76.36 243.79 110,813 93%
104 57.2 754,345 7.4 0.66 36.85 0.00 109.91 73.69 243.74 110,791 94%
106 54.0 752,370 7.4 0.66 35.47 0.00 109.74 70.93 243.69 110,768 94%
108 51.0 750,340 7.4 0.66 34.07 0.00 109.56 68.13 243.64 110,744 94%
110 48.1 748,280 7.3 0.66 32.67 0.00 109.38 65.33 243.58 110,720 95%
112 45.4 746,212 7.3 0.66 31.28 0.00 109.19 62.56 243.53 110,695 95%
114 42.8 744,152 7.3 0.66 29.92 0.00 109.01 59.84 243.48 110,671 95%
116 40.4 742,112 7.3 0.66 28.59 0.00 108.83 57.18 243.42 110,647 96%
118 38.1 740,101 7.3 0.66 27.30 0.00 108.65 54.60 243.37 110,623 96%
120 36.0 738,126 7.3 0.66 26.06 0.00 108.47 52.11 243.32 110,599 96%
122 34.0 736,192 7.2 0.66 24.86 0.00 108.30 49.71 243.27 110,576 97%
124 32.1 734,303 7.2 0.66 23.70 0.00 108.13 47.40 243.22 110,554 97%
126 30.3 732,462 7.2 0.66 22.59 0.00 107.97 45.19 243.17 110,532 97%
128 28.5 730,669 7.2 0.66 21.53 0.00 107.81 43.07 243.12 110,510 97%
130 26.9 728,927 7.2 0.66 20.52 0.00 107.65 41.04 243.08 110,489 98%
132 25.4 727,235 7.2 0.66 19.55 0.00 107.50 39.10 243.03 110,469 98%
134 24.0 725,594 7.1 0.66 18.63 0.00 107.35 37.25 242.99 110,449 98%
136 22.6 724,002 7.1 0.66 17.74 0.00 107.21 35.49 242.95 110,430 98%
138 21.4 722,460 7.1 0.66 16.90 0.00 107.07 33.81 242.90 110,411 98%
140 20.2 720,967 7.1 0.66 16.10 0.00 106.93 32.21 242.86 110,393 98%
142 19.0 719,521 7.1 0.66 15.34 0.00 106.80 30.69 242.83 110,375 99%
144 18.0 718,122 7.1 0.66 14.62 0.00 106.67 29.24 242.79 110,358 99%
146 16.9 716,768 7.1 0.66 13.93 0.00 106.55 27.86 242.75 110,342 99%
148 16.0 715,458 7.0 0.66 13.27 0.00 106.43 26.54 242.72 110,326 99%
150 15.1 714,192 7.0 0.66 12.65 0.00 106.32 25.29 242.68 110,310 99%
152 14.2 712,967 7.0 0.66 12.05 0.00 106.20 24.11 242.65 110,295 99%
154 13.4 711,783 7.0 0.66 11.49 0.00 106.10 22.98 242.62 110,280 99%
156 12.7 710,637 7.0 0.66 10.95 0.00 105.99 21.91 242.59 110,266 99%
158 12.0 709,530 7.0 0.66 10.44 0.00 105.89 20.89 242.56 110,253 99%
160 11.3 708,460 7.0 0.66 9.96 0.00 105.79 19.92 242.53 110,239 99%
162 10.7 707,425 7.0 0.66 9.50 0.00 105.70 18.99 242.50 110,226 99%
164 10.1 706,424 7.0 0.66 9.06 0.00 105.61 18.12 242.47 110,214 99%
166 9.5 705,457 7.0 0.66 8.64 0.00 105.52 17.28 242.44 110,202 99%
168 9.0 704,522 6.9 0.66 8.25 0.00 105.43 16.49 242.42 110,190 100%
170 8.5 703,617 6.9 0.66 7.87 0.00 105.35 15.74 242.39 110,179 100%
172 8.0 702,743 6.9 0.66 7.51 0.00 105.27 15.02 242.37 110,168 100%
174 7.5 701,897 6.9 0.66 7.17 0.00 105.19 14.34 242.35 110,158 100%
176 7.1 701,079 6.9 0.66 6.85 0.00 105.11 13.69 242.32 110,148 100%
178 6.7 700,288 6.9 0.66 6.54 0.00 105.04 13.08 242.30 110,138 100%
180 6.3 699,523 6.9 0.66 6.25 0.00 104.97 12.49 242.28 110,128 100%
182 6.0 698,783 6.9 0.66 5.97 0.00 104.90 11.93 242.26 110,119 100%
184 5.6 698,067 6.9 0.66 5.70 0.00 104.83 11.40 242.24 110,110 100%
186 5.3 697,375 6.9 0.66 5.45 0.00 104.77 10.90 242.22 110,101 100%
188 5.0 696,704 6.9 0.66 5.21 0.00 104.71 10.42 242.20 110,093 100%
190 4.7 696,056 6.9 0.66 4.98 0.00 104.65 9.96 242.19 110,085 100%
192 4.5 695,428 6.9 0.66 4.77 0.00 104.59 9.53 242.17 110,077 100%
194 4.2 694,820 6.9 0.66 4.56 0.00 104.53 9.12 242.15 110,069 100%
196 4.0 694,232 6.9 0.66 4.36 0.00 104.48 8.72 242.14 110,062 100%
198 3.8 693,662 6.8 0.66 4.18 0.00 104.43 8.35 242.12 110,054 100%
200 3.5 693,110 6.8 0.66 4.00 0.00 104.37 7.99 242.10 110,047 100%
202 3.3 692,576 6.8 0.66 3.83 0.00 104.32 7.66 242.09 110,041 100%
204 3.2 692,058 6.8 0.66 3.67 0.00 104.28 7.33 242.08 110,034 100%
206 3.0 691,557 6.8 0.66 3.51 0.00 104.23 7.03 242.06 110,028 100%
SB 09 SB 25-yr HG (P2)
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
Stage (feet)
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
9
C
o
l
o
n
M
i
n
e
P
h
a
s
e
2
H
y
d
r
o
g
r
a
p
h
25
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _1__of __2_
Qp = 384.1 cfs Sediment Basin # 9 Colon
Tp =44.7 minutes Phase 2
dT = Max of 2 minutes 100 - year Storm Event
or 1.0%of increment to peak
b =1.1
Number of Riser/Barrel Assemblies 2 Ks =85,791
Diameter of Barrel =42 (in)
Height of Riser above barrel =3.2 (ft)4.0E-03 Settling Velocity of design particle (fps)
Height of Riser from bottom of barrel=6.7 (ft) elevation 268.70 2 Effective number of cells (2 is construction site #)
Emergency Spillway =7.5 (ft) elevation 269.50 73%Minimum Settling Efficiency
Total Height of Dam =8.5 (ft) elevation 270.50 8.0 ft Maximum Stage 270.0 msl elevation
Length of Emergency Spillway =50 (ft)243.8 cfs Peak outflow
Diameter of Riser =72 (in)188.6 cfs Peak Riser/Barrel outflow
Permanent Pond Stage =0 (ft) elevation 262.0 55.2 cfs peak weir flow
Notes:
1. Length of emergency spillway is the bottom width of the emergency spillway.
2. Settling efficiency neglects permanent pond volume
TIME
(min)
INFLOW
[cfs]
STORAGE
[cu ft]
STAGE
[ft]
Skimmer
Flow [cfs]
RISER
CAPACIT
Y [cfs]
WEIR
FLOW
[cfs]
BARREL
CAPACITY
[cfs]
TOTAL
OUTFLOW
[cfs]
Bound
Discharge
[cfs]
Estimated
Surface
Area (sf)
Settling
Efficiency
[%]
0 0.0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
2 1.9 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 - N/A
4 7.5 228 0.0 0.00 0.00 0.00 0.00 0.00 127.93 58,150 N/A
6 16.8 1,133 0.0 0.00 0.00 0.00 0.00 0.00 145.35 66,068 N/A
8 29.6 3,154 0.0 0.00 0.00 0.00 0.00 0.00 157.68 71,672 N/A
10 45.6 6,705 0.1 0.00 0.00 0.00 0.00 0.00 167.42 76,102 N/A
12 64.4 12,171 0.2 0.00 0.00 0.00 0.00 0.00 175.55 79,797 N/A
14 85.8 19,900 0.3 0.00 0.00 0.00 0.00 0.00 182.55 82,978 N/A
16 109.2 30,193 0.4 0.66 0.66 0.00 0.66 1.31 188.71 85,775 100%
18 134.4 43,145 0.5 0.66 0.66 0.00 0.66 1.31 194.14 88,245 100%
20 160.6 59,110 0.7 0.66 0.66 0.00 0.66 1.31 199.06 90,482 100%
22 187.5 78,225 0.9 0.66 0.66 0.00 0.66 1.31 203.55 92,521 100%
24 214.4 100,563 1.2 0.66 0.66 0.00 0.66 1.31 207.65 94,387 100%
26 240.9 126,135 1.4 0.66 0.66 0.00 0.66 1.31 211.43 96,103 100%
28 266.5 154,890 1.7 0.66 0.66 0.00 0.66 1.31 214.91 97,686 100%
30 290.6 186,710 2.0 0.66 0.66 0.00 0.66 1.31 218.12 99,148 100%
32 312.7 221,419 2.4 0.66 0.66 0.00 0.66 1.31 221.10 100,501 100%
34 332.4 258,784 2.8 0.66 0.66 0.00 0.66 1.31 223.86 101,755 100%
36 349.4 298,519 3.2 0.66 0.66 0.00 0.66 1.31 226.42 102,918 100%
38 363.3 340,291 3.6 0.66 0.66 0.00 0.66 1.31 228.79 103,995 100%
40 373.8 383,728 4.0 0.66 0.66 0.00 0.66 1.31 230.98 104,993 100%
42 380.7 428,423 4.4 0.66 0.66 0.00 0.66 1.31 233.02 105,917 100%
44 383.8 473,946 4.8 0.66 0.66 0.00 0.66 1.31 234.90 106,771 100%
46 383.2 519,850 5.3 0.66 0.66 0.00 0.66 1.31 236.63 107,559 100%
48 378.8 565,680 5.7 0.66 0.66 0.00 0.66 1.31 238.22 108,284 100%
50 370.8 610,984 6.1 0.66 0.66 0.00 0.66 1.31 239.69 108,949 100%
52 359.2 655,318 6.5 0.66 0.66 0.00 0.66 1.31 241.03 109,558 100%
54 344.2 698,260 6.9 0.66 5.77 0.00 104.85 11.55 242.25 110,112 100%
56 326.7 738,184 7.3 0.66 26.09 0.00 108.48 52.19 243.32 110,600 96%
58 308.3 771,132 7.5 0.66 49.26 1.59 111.37 100.11 244.17 110,985 90%
60 290.8 796,112 7.8 0.66 69.80 21.41 113.51 161.02 244.79 111,267 82%
62 274.4 811,692 7.9 0.66 83.76 39.82 114.82 207.33 245.16 111,438 77%
64 258.9 819,740 8.0 0.66 91.29 50.70 115.49 233.27 245.36 111,526 74%
66 244.3 822,814 8.0 0.66 94.22 55.08 115.75 243.52 245.43 111,559 73%
68 230.4 822,903 8.0 0.66 94.30 55.21 115.76 243.81 245.43 111,560 73%
70 217.4 821,299 8.0 0.66 92.77 52.91 115.62 238.44 245.39 111,543 73%
72 205.1 818,776 8.0 0.66 90.37 49.35 115.41 230.10 245.33 111,515 74%
74 193.5 815,779 7.9 0.66 87.56 45.23 115.16 220.35 245.26 111,483 75%
76 182.6 812,561 7.9 0.66 84.56 40.95 114.90 210.07 245.18 111,448 77%
78 172.3 809,263 7.9 0.66 81.53 36.71 114.62 199.76 245.11 111,412 78%
80 162.5 805,963 7.9 0.66 78.53 32.62 114.34 189.68 245.03 111,375 79%
82 153.3 802,705 7.8 0.66 75.61 28.74 114.07 179.95 244.95 111,340 80%
84 144.7 799,511 7.8 0.66 72.78 25.10 113.80 170.65 244.87 111,304 81%
SB 09 SB 100-yr HG (P2)
Computed By: PAW Date: 3/5/15
Checked By: MDP Date: 3/6/15
Sheet: _2__of __2_
86 136.5 796,393 7.8 0.66 70.05 21.71 113.54 161.80 244.79 111,270 82%
88 128.8 793,356 7.7 0.66 67.42 18.56 113.28 153.41 244.72 111,236 83%
90 121.5 790,399 7.7 0.66 64.90 15.66 113.03 145.46 244.65 111,203 84%
92 114.6 787,523 7.7 0.66 62.48 13.00 112.78 137.95 244.58 111,171 85%
94 108.1 784,724 7.7 0.66 60.14 10.58 112.54 130.87 244.51 111,139 86%
96 102.0 781,997 7.6 0.66 57.90 8.38 112.31 124.19 244.44 111,108 87%
98 96.3 779,338 7.6 0.66 55.74 6.41 112.08 117.90 244.37 111,078 88%
100 90.8 776,741 7.6 0.66 53.66 4.66 111.86 111.99 244.31 111,049 89%
102 85.7 774,201 7.6 0.66 51.65 3.14 111.64 106.45 244.24 111,020 90%
104 80.8 771,710 7.6 0.66 49.71 1.86 111.42 101.27 244.18 110,992 90%
106 76.3 769,259 7.5 0.66 47.81 0.84 111.21 96.46 244.12 110,963 91%
108 72.0 766,835 7.5 0.66 45.97 0.14 111.00 92.08 244.06 110,936 91%
110 67.9 764,421 7.5 0.66 44.15 0.00 110.79 88.31 244.00 110,908 92%
112 64.1 761,972 7.5 0.66 42.34 0.00 110.58 84.67 243.93 110,879 92%
114 60.4 759,497 7.4 0.66 40.53 0.00 110.36 81.05 243.87 110,851 93%
116 57.0 757,022 7.4 0.66 38.74 0.00 110.15 77.49 243.81 110,822 93%
118 53.8 754,565 7.4 0.66 37.00 0.00 109.93 74.00 243.75 110,793 94%
120 50.8 752,140 7.4 0.66 35.31 0.00 109.72 70.61 243.68 110,765 94%
122 47.9 749,756 7.4 0.66 33.67 0.00 109.51 67.34 243.62 110,737 95%
124 45.2 747,422 7.3 0.66 32.09 0.00 109.30 64.18 243.56 110,710 95%
126 42.6 745,142 7.3 0.66 30.57 0.00 109.10 61.14 243.50 110,683 95%
128 40.2 742,919 7.3 0.66 29.11 0.00 108.90 58.23 243.44 110,656 96%
130 37.9 740,757 7.3 0.66 27.72 0.00 108.71 55.44 243.39 110,631 96%
132 35.8 738,657 7.3 0.66 26.39 0.00 108.52 52.78 243.33 110,606 96%
134 33.8 736,619 7.2 0.66 25.12 0.00 108.34 50.24 243.28 110,582 97%
136 31.9 734,643 7.2 0.66 23.91 0.00 108.16 47.81 243.23 110,558 97%
138 30.1 732,728 7.2 0.66 22.75 0.00 107.99 45.51 243.18 110,535 97%
140 28.4 730,875 7.2 0.66 21.65 0.00 107.83 43.31 243.13 110,513 97%
142 26.8 729,081 7.2 0.66 20.61 0.00 107.66 41.22 243.08 110,491 98%
144 25.2 727,346 7.2 0.66 19.61 0.00 107.51 39.23 243.03 110,470 98%
146 23.8 725,668 7.1 0.66 18.67 0.00 107.36 37.34 242.99 110,450 98%
148 22.5 724,045 7.1 0.66 17.77 0.00 107.21 35.54 242.95 110,430 98%
150 21.2 722,477 7.1 0.66 16.91 0.00 107.07 33.83 242.90 110,411 98%
152 20.0 720,962 7.1 0.66 16.10 0.00 106.93 32.20 242.86 110,393 98%
154 18.9 719,498 7.1 0.66 15.33 0.00 106.80 30.66 242.82 110,375 99%
156 17.8 718,083 7.1 0.66 14.60 0.00 106.67 29.20 242.79 110,358 99%
158 16.8 716,716 7.1 0.66 13.90 0.00 106.55 27.80 242.75 110,341 99%
160 15.8 715,395 7.0 0.66 13.24 0.00 106.43 26.48 242.71 110,325 99%
162 15.0 714,119 7.0 0.66 12.61 0.00 106.31 25.22 242.68 110,309 99%
164 14.1 712,886 7.0 0.66 12.02 0.00 106.20 24.03 242.65 110,294 99%
166 13.3 711,695 7.0 0.66 11.45 0.00 106.09 22.90 242.61 110,279 99%
168 12.6 710,545 7.0 0.66 10.91 0.00 105.98 21.82 242.58 110,265 99%
170 11.8 709,433 7.0 0.66 10.40 0.00 105.88 20.80 242.55 110,251 99%
172 11.2 708,359 7.0 0.66 9.91 0.00 105.78 19.83 242.52 110,238 99%
174 10.5 707,321 7.0 0.66 9.45 0.00 105.69 18.90 242.50 110,225 99%
176 9.9 706,318 7.0 0.66 9.01 0.00 105.60 18.02 242.47 110,213 99%
178 9.4 705,349 7.0 0.66 8.60 0.00 105.51 17.19 242.44 110,201 99%
180 8.9 704,413 6.9 0.66 8.20 0.00 105.42 16.40 242.42 110,189 100%
182 8.4 703,507 6.9 0.66 7.82 0.00 105.34 15.65 242.39 110,178 100%
184 7.9 702,632 6.9 0.66 7.47 0.00 105.26 14.93 242.37 110,167 100%
186 7.4 701,786 6.9 0.66 7.13 0.00 105.18 14.25 242.34 110,156 100%
188 7.0 700,969 6.9 0.66 6.80 0.00 105.10 13.61 242.32 110,146 100%
190 6.6 700,178 6.9 0.66 6.50 0.00 105.03 12.99 242.30 110,136 100%
192 6.2 699,413 6.9 0.66 6.20 0.00 104.96 12.41 242.28 110,127 100%
194 5.9 698,674 6.9 0.66 5.93 0.00 104.89 11.85 242.26 110,117 100%
196 5.6 697,959 6.9 0.66 5.66 0.00 104.82 11.32 242.24 110,108 100%
198 5.2 697,267 6.9 0.66 5.41 0.00 104.76 10.82 242.22 110,100 100%
200 4.9 696,597 6.9 0.66 5.17 0.00 104.70 10.35 242.20 110,091 100%
202 4.7 695,950 6.9 0.66 4.95 0.00 104.64 9.89 242.18 110,083 100%
204 4.4 695,323 6.9 0.66 4.73 0.00 104.58 9.46 242.17 110,075 100%
SB 09 SB 100-yr HG (P2)
0.01.02.03.04.05.06.07.08.09.010.0
050
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
Stage (feet)
F
L
O
W
(
c
f
s
)
TI
M
E
(
m
i
n
)
Se
d
i
m
e
n
t
B
a
s
i
n
#
9
C
o
l
o
n
M
i
n
e
P
h
a
s
e
2
H
y
d
r
o
g
r
a
p
h
10
0
-
Y
r
S
t
o
r
m
OUTFLOW INFLOW [cfs]STAGE [ft]
Th
i
s
p
a
g
e
i
n
t
e
n
t
i
o
n
a
l
l
y
l
e
f
t
b
l
a
n
k
.
DESIGN HYDROGEOLOGIC REPORT - ADDENDUM, REVISION 12
COLON MINE RECLAMATION STRUCTURAL FILL SITE
1303 BRICKYARD ROAD
SANFORD, NORTH CAROLINA
TABLE OF CONTENTS (continued)
10.0 NATURAL AND MAN-MADE ACTIVITIES AFFECTING THE WATER TABLE 23
11.0 OTHER GEOLOGIC AND HYDROGEOLOGIC CONSIDERATIONS 24
12.0 VERTICAL SEPARATION AND FOUNDATION STANDARDS 25
13.0 PROPOSED WATER QUALITY MONITORING PLAN 26
13.1 Groundwater Points of Compliance 26
13.2 Compliance Monitor Well Construction 26
13.3 Surface Water Sampling Locations 27
13.4 Leachate Sampling Location 27
13.5 Initial Background Groundwater and Surface Water Monitoring, with 27
Statistical Groundwater Evaluation
13.6 Semi-Annual Groundwater, Surface Water and Leachate Monitoring, with 28
Statistical Groundwater Evaluation
14.0 REFERENCES 29
LIST OF FIGURES
1. Site Location Map
2. Site Layout Map (Revised)
3. Proposed Colon Mine Reclamation Structural Fill Site Plan with Piezometer and
Soil Boring Locations (Revised)
4. Geologic Map
5. Seasonal High - Shallow & Intermediate Groundwater Potentiometric Map
6. Seasonal High - Shallow & Intermediate Groundwater Potentiometric Map with Proposed
Top of Liner Grades (Revised)
67. Water Quality Monitoring Plan (Revised)
Page 1
DESIGN HYDROGEOLOGIC REPORT – ADDENDUM, REVISION 12
COLON MINE RECLAMATION STRUCTURAL FILL SITE
1303 BRICKYARD ROAD
SANFORD, NORTH CAROLINA
1.0 INTRODUCTION
Buxton Environmental, Inc., respectfully submits the Design Hydrogeologic Report – Addendum,
Revision 12 prepared for the proposed Colon Mine Reclamation Structural Fill Site (RSFS) located at
1303 Brickyard Road (address for the former adjacent off-site manufacturing facility for Cherokee
Sanford Group, LLC and General Shale Brick, Inc.) in Sanford, North Carolina. The subject property
presently consists of Parcel No.: 9655-70-1612 (408.22 acres), which was consolidated from 5 parcels
during the recent purchased by Green Meadow LLC, according to the Lee County GIS website. The
proposed Colon Mine RSFS consist of 118.7 acres, which is located on the northern ¼ of the entire
parcel. The primary purpose of this investigation is to provide detailed and localized hydrogeologic
information for the engineering design of the proposed Colon Mine RSFS for coal combustion
residuals and for the effective design of a water quality monitoring system. The investigation was
conducted in general accordance with North Carolina Department of Environment and Natural
Resources, Division of Waste Management-Solid Waste Section (NCSWS) rules and guidelines; the
General Assembly of North Carolina Session 2013-Senate Bill 729 (ratified) regarding coal
combustion residuals; and the HDR Engineering, Inc. of the Carolinas (HDR) Hydrogeologic
Investigation and Reporting Scope-of-Work, Task 3 dated July 2014 which was prepared for Charah,
Inc. The Design Hydrogeologic Report investigation was conducted by Buxton Environmental, Inc. on
behalf of HDR. Site location, site layout and proposed Colon Mine RSFS plan maps are provided in
Figures 1, 2 and 3, respectively. Photographic documentation is provided in Appendix A.
The addendum, Revision 1, was prepared in response to comments presented in a December 19, 2014
Permit Application – Completeness Review letter from the NCSWS (Appendix A1); to update general
ownership and site configuration information; to update hydrogeologic information at the site; and to
document the findings of additional soil boring/piezometer installation activities conducted along the
northeastern and eastern edge of the site. The addendum, Revision 2 changes were made in response to
requested changes to the Water Quality Monitoring Plan by Ms. Elizabeth Werner with the NCSWS
during a February 20, 2015 conversation with Buxton Environmental, Inc.
A summary of background information, and the methods and results of the Design Hydrogeologic
Report – Addendum, Revision 12 investigation is provided below.
Page 25
12.0 VERTICAL SEPARATION AND FOUNDATION STANDARDS
The vertical separation and foundation standard as required by the General Assembly of North
Carolina Session 2013 – Senate Bill 729 (ratified) regarding coal combustion residuals will be
discussed in detail in the engineering design report being prepared by HDR. Vertical settlement
calculations will be submitted by HDR.
The General Assembly of North Carolina Session 2013-Senate Bill 729 (ratified) regarding coal
combustion residuals, requires that the bottom of ash (top of liner) be a minimum of 4 feet above the
seasonal high groundwater table. The proposed bottom of ash (top of liner), which will be established
by HDR, will meet or exceed these requirements. Buxton Environmental, Inc. recommends a
minimum separation of 4.5 feet at the Colon Mine RSFS, based on seasonal high and long-term high
groundwater evaluations.
The Seasonal High - Shallow & Intermediate Groundwater Potentiometric Map with Proposed Top of
Liner Grades is provided in Figure 6. (Revised)
Page 26
13.0 PROPOSED WATER QUALITY MONITORING PLAN
Water quality monitoring will be conducted at the proposed Colon Mine RSFS, in accordance with
NCSWS rules and guidance documents, and General Assembly of North Carolina Session 2013-Senate
Bill 729 (ratified) regarding coal combustion residuals, and requested changes to the Water Quality
Monitoring Plan by Ms. Elizabeth Werner with the NCSWS during a February 20, 2015 conversation
with Buxton Environmental, Inc. The water quality monitoring plan has been prepared to effectively
provide early detection of any release of hazardous constituents, as to be protective of human health
and the environment. Applicable NCSWS regulatory rules will be followed if a release of hazardous
constituents is confirmed, however, required assessment and/or corrective measures have not been
specifically outlined in this plan.
The monitoring activities will also be conducted in general accordance with NCSWS memorandums
dated October 27, 2006, February 23, 2007 and October 16, 2007 concerning changes to laboratory
detection limits and reporting requirements, and the Solid Waste Section Guidelines for Groundwater,
Soil and Surface Water Sampling dated April 2008.
In developing the proposed water quality monitoring plan, we have considered structural fill
configuration, waste stream, surrounding land use, site geologic and hydrogeologic characteristics
(including but not limited to aquifer thickness, groundwater flow rate and direction, lithology,
hydraulic conductivity, porosity and effective porosity). Supporting documentation concerning these
considerations has been previously addressed in the report.
13.1 Groundwater Points of Compliance
Buxton Environmental, Inc. proposes to conduct shallow groundwater quality monitoring at nine (9)
permanent shallow compliance monitor wells (MW-1 through MW-9) (Figure 7). The wells will
include the eight (8) downgradient/sidegradient compliance wells and one (1) upgradient background
well (MW-3) (topographic high saddle along power line on near southwest corner of the site).
Piezometers PZ-1 (MW-1) and PZ-7 (MW-2), which were installed during the Design Hydrogeologic
investigation, will be utilized as compliance wells. The monitor wells will be generally installed at the
review boundary (125 feet off the fill boundary) (where room allows); or ½ the distance from the fill
boundary to the property boundary where the fill boundary is less than 250 feet off the property
boundary. The permanent compliance wells should be completed prior to issuance of the Permit to
Operate.
13.2 Compliance Monitor Well Construction
The compliance monitor wells should be constructed in a manner in which shallow groundwater
quality and hydrogeologic characteristics can be adequately monitored.
The monitor wells will be installed by advancing a soil boring into the upper portion of the shallow
aquifer. The wells will be constructed with 10 foot sections of 2-inch diameter mill slotted PVC screen
attached to an appropriate length of 2-inch diameter PVC casing. A sand pack will be placed in the
annual space of the boring to approximately 2-feet above the well screen, an approximately 2-foot
thick bentonite seal will be placed above the sand, and the remaining annual space will be filled to
Page 27
grade with bentonite grout. The wells will be completed at grade with a 3 x 3 foot x 6-inch thick
concrete pad and lockable stand-up cover. Three well guard posts will be placed around each well to
protect the well from vehicle damage. The proposed compliance monitor wells will be completed in
accordance with North Carolina Well Construction Standards (15A NCAC 02C .0108). A typical
compliance well construction diagram is provided in Appendix O.
Following the completion activities, each well will be developed to the fullest extent possible.
Following installation of new compliance wells, borings logs and Well Construction Records (Form
GW-1b) should be submitted to the NCSWS in hard copy and electronic format (pdf). Boring logs and
Well Construction Records for currently installed compliance wells PZ-1/MW-1 and PZ-7/MW-2 are
provided in Appendix G.
13.3 Surface Water Sampling Locations
Surface water sampling is proposed to be conducted at two locations, including the intermittent
tributary of Roberts Creek located to the immediate northeast of the site (SW-1) and the head waters of
Roberts Creek to the southeast of the site (SW-2) (Figure 7). Off-site access agreements may be
required.
13.4 Leachate Sampling Location
Buxton Environmental, Inc. understands that leachate from the Colon Mine RSFS will collect into
three (3) sumps, which will then be pumped into an aboveground holding tank. One (1) composite
leachate sample is proposed to be conducted from the aboveground holding tank, in order to determine
site specific characteristics of the leachate.
13.5 Initial Background Groundwater and Surface Water Monitoring Activities, with Statistical
Groundwater Evaluation
A minimum of foureight (8) independent initial background groundwater monitoring events should be
conducted at the nine (9) proposed compliance wells. Ms. Elizabeth Werner with the NCSWS
indicated during the February 20, 2015 telephone conversation with Buxton Environmental, Inc. that
only 1 initial independent background groundwater sampling event would be necessary, prior to
placement of coal combustion residuals. A minimum of one initial background sampling event should
be conducted at the two surface water sample locations. The initial background groundwater and
surface water monitoring events should be conducted prior to issuance of the Permit to Operate.
At each compliance monitor well, groundwater level measurements will be made to within 0.01 of a
foot with a depth to water electrode.
The purging and sampling of the wells will be conducted with low flow sampling techniques specified
in the Solid Waste Section Guidelines for Groundwater, Soil and Surface Water Sampling dated April
2008. Field parameters including temperature, pH, specific conductance, temperature, dissolved
oxygen and turbidity will be collected until field parameters have stabilized within specific tolerances
for three consecutive readings.
Page 28
The groundwater and surface water samples will be analyzed for Appendix III constituents (including
additional Appendix I metals outlined in 40 CFR Part 258 and in general accordance with applicable
NCSWS guidance and Senate Bill 729)Appendix I constituents (volatile organic compounds (VOC’s)
and metals (including mercury) outlined in 40 CFR Part 258 and in general accordance with applicable
NCSWS guidance and Senate Bill 729. For quality control purposes, one trip blank and one equipment
blank will be analyzed for Appendix III constituents (including additional Appendix I metals outlined
in 40 CFR Part 258 and in general accordance with applicable NCSWS guidance and Senate Bill
729)Appendix I VOC’s and metals (including mercury) during each event. The laboratory analyses
will be conducted by a North Carolina certified laboratory in accordance with Level I (standard)
QA/QC procedures. Sample collection, handling and storage will be conducted in general accordance
with accepted protocol, including chain-of-custody documentation.
The eight (8) background monitoring events will be conducted over a 1 year period of time with an
approximately 1.5 month spacing commencing immediately following issuance of the Permit to
Construct. The initial independent background groundwater sampling event will be conducted prior to
issuance of the Permit to Operate and placement of coal combustion residuals.
Statistical Groundwater Evaluation
A statistical evaluation of the background groundwater data will be conducted in accordance with
NCSWS rules utilizing the basic method outlined below.
In order to determine the most appropriate statistical method to evaluate the groundwater data, a
Shipiro-Wilk Test was first conducted to determine the normality (distribution) of the data. Based on
the distribution (parametric or non-parametric) and percentage of detected target constituents at the
site, the Kruskal-Wallis Test and/or the Wilcoxon Rank-Sum Test for Two Groups would likely be
utilized to evaluate the background groundwater data. However, other approved statistical methods
could be employed to more adequately analyze the data if needed, based on the groundwater analytical
results.
The background groundwater and surface water sampling with statistical evaluation report will be
submitted within 90 days of completion of the eighth (8th) and final background sampling event.
13.6 Semi-Annual Groundwater, Surface Water and Leachate Monitoring Activities, with
Statistical Groundwater Evaluation
Semi-annual groundwater, surface water and leachate monitoring activities will be conducted at the
site. These activities are anticipated to be conducted in April and October of each year during the
active life and post-closure period of the proposed Colon Mine RSFS.
At each compliance monitor well, groundwater level measurements will be made to within 0.01 of a
foot with a depth to water electrode.
The low flow purging and sampling of the wells should be conducted as specified in the Solid Waste
Section Guidelines for Groundwater, Soil and Surface Water Sampling dated April 2008. Field
Page 29
parameters including temperature, pH, specific conductance, temperature, dissolved oxygen and
turbidity will be collected until field parameters have stabilized within specific tolerances for three
consecutive readings.
The groundwater, surface water and leachate samples will be analyzed for Appendix III constituents
(including additional Appendix I metals outlined in 40 CFR Part 258 and in general accordance with
applicable NCSWS guidance and Senate Bill 729)Appendix I constituents including VOC’s and metals
(including mercury) outlined in 40 CFR Part 258 and in general accordance with applicable NCSWS
memos and the Solid Waste Section Guidelines for Groundwater, Soil and Surface Water Sampling
dated April 2008, and Senate Bill 729. The leachate sample will also be analyzed for biologic oxygen
demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), sulfate, nitrate and
phosphate. For quality control purposes, one trip blank and one equipment blank will be analyzed for
Appendix III constituents (including additional Appendix I metals outlined in 40 CFR Part 258 and in
general accordance with applicable NCSWS guidance and Senate Bill 729) Appendix I VOC’s and
metals (including mercury) during each event. The laboratory analyses are proposed to be conducted
by a North Carolina certified laboratory in accordance with Level I (standard) QA/QC procedures.
Sample collection, handling and storage will be conducted in general accordance with accepted
protocol, including chain-of-custody documentation.
Statistical Evaluation of Historical Groundwater Quality Data
A statistical evaluation of historical groundwater quality data will be conducted in accordance with
NCSWS rules utilizing the basic method outlined below.
Based on the distribution (parametric or non-parametric) and percentage of detected target constituents
at the site, the Kruskal-Wallis Test and/or the Wilcoxon Rank-Sum Test for Two Groups would likely
be utilized to evaluate the historical groundwater data. However, other approved statistical methods
could be employed to more adequately analyze the data if needed, based on the groundwater analytical
results.
Following receipt of the analytical data, a groundwater, surface water and leachate monitoring report
with statistical evaluation of groundwater will be prepared in general accordance NCSWS guidelines.
The report will include an executive summary, methods, results, conclusions and recommendations,
tables of gauging and sample results, groundwater flow rates and groundwater flow direction map.
The report will be prepared by a North Carolina Professional Geologist or Engineer.
A copy of the report should be submitted to the NCSWS within 120 days of the sampling date. The
owner or operator shall notify the NCSWS of any exceedance of NCSWS, Groundwater Protection
Standards (NCGPS’s) within 14 days of this finding. An Assessment Monitoring Program will be
required to be implemented within 90 days following an exceedance of the NCGPS, unless a
successful alternate source demonstration can be made justifying an alternate cause of the exceedance.
This page intentionally left blank.
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - added January 2015
SPECIAL CONDITIONS revised February 2015
01060 - 1
SECTION 01060 1
SPECIAL CONDITIONS 2
PART 1 - GENERAL 3
1.1 CONDITIONS SPECIFIC TO THIS PROJECT 4
A. CQC/CQA Duties: In general, the CQC Consultant will perform all testing related to earthwork 5
and soil liner work and provide documentation to the CQA Consultant. The CQA Consultant 6
will conduct the destructive geosynthetic testing and provide geosynthetic documentation as per 7
these documents. CQC and CQA documentation will be used by the CQA Consultant to prepare 8
and submit final certification to NCDENRThe CQA Consultant may conduct all required testing 9
and certify the project. If utilized, the CQC Consultant will provide all documentation to the 10
CQA Consultant for review and inclusion in the certification to NCDENR. Refer to the CQA 11
Plan. 12
B. The CONTRACTOR is responsible for construction/maintenance of any additional access/haul 13
roads as approved by the OWNER. 14
C. The CONTRACTOR is responsible for maintaining the Erosion and Sediment Control measures. 15
D. CONTRACTOR is to obtain all soil material from on-site. Stockpiling of soil material shall be 16
within the limits of disturbance as shown on the Drawings. 17
E. Limits of Disturbance: 18
1. As defined on the Drawings. 19
F. Site Access: 20
1. The only access to the site available to the CONTRACTOR is entering through the existing 21
entrance on Colon Road. 22
G. Hours of Construction shall be as agreed by the OWNER. Construction may occur on Legal 23
Holidays with permission from the OWNER. The OWNER may allow the CONTRACTOR to 24
extend the Hours of Construction provided there are not complaints from the community and the 25
OWNER approves of the extension. If the OWNER receives any complaints, then the OWNER 26
may revoke the extended hours of construction. 27
1.2 PROJECT MEETINGS 28
A. A preconstruction conference shall be held at the site with the ENGINEER, CONTRACTOR's 29
Project Manager and Project Superintendent and CONTRACTOR's Subcontractor 30
Representatives. The purpose is to review sequence of work and communication procedures. 31
B. Pre-Installation Conferences: 32
1. Coordinate and schedule with Resident Project Representative and ENGINEER for each 33
material, product or system specified. Conferences to be held prior to initiating installation, 34
but not more than two (2) weeks before scheduled initiation of installation. 35
a. Conferences may be combined if installation schedule of multiple components occurs 36
within the same two (2) week interval. 37
b. Review manufacturers recommendations and Contract Documents Specifications. 38
2. CONTRACTOR's Superintendent and individual who will actually act as foreman of the 39
installation crew (installer), if other than the Superintendent, shall attend. 40
C. Construction Meetings: 41
1. The ENGINEER will conduct construction meetings involving: 42
a. CONTRACTOR's project manager. 43
b. CONTRACTOR's project superintendent. 44
c. OWNER's designated representative(s). 45
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - added January 2015
SPECIAL CONDITIONS revised February 2015
01060 - 2
d. ENGINEER's designated representative(s). 1
e. CONTRACTOR's subcontractors as appropriate to the work in progress. 2
f. OWNER's Construction Quality Control Consultant. 3
2. Frequency of meetings to be as agreed upon at the Pre-Construction Meeting. 4
3. The ENGINEER will take meeting minutes and submit copies of meeting minutes to 5
participants and designated recipients identified at the Preconstruction Conference. 6
Corrections, additions or deletions to the minutes shall be noted and addressed at the 7
following meeting. 8
4. The CONTRACTOR shall have available at each meeting up-to-date record drawings 9
1.3 DATA AND MEASUREMENTS 10
A. The data given in the Specifications and shown on the Drawings is believed to be accurate but 11
the accuracy is not guaranteed. The Contractor must take all levels, locations, measurements, 12
and verify all dimensions of the job site prior to construction and must adapt his work into the 13
exact construction. Larger scale Drawings take precedence over smaller scale Drawings, and 14
approved shop drawings take precedence over all others. 15
B. All survey’s shall be sealed by a North Carolina registered land surveyor and submitted to the 16
Engineer. The Contractor shall provide the Engineer with an electronic version of the sealed 17
survey in AutoCAD readable format. Provide unique layers for 1 FT contours, index contours, 18
text, water, vegetation, buildings, roads, etc. Utilize North Carolina grid coordinate system and 19
locate all features in x, y, and z dimensions. 20
C. Initial survey shall include the following: 21
1. Topography of the cell area 22
2. Topography of the stockpile areas. 23
3. Topography within limits of construction including: 24
a. Topography of all sediment basins. 25
b. Location of existing channels. 26
c. Location of structures. 27
d. Inverts of pipe, size, and pipe location. 28
D. Final as-built survey shall include the following, for example: 29
1. Topography of the entire area within limits of construction. 30
2. Limits of liner placement. 31
3. Topography of the stockpile areas and all other disturbed areas. 32
4. Location of roads. 33
5. Location of channels. 34
6. Topography of all sediment basins and associated outlet structures. 35
7. Culverts (invert, size, locations). 36
8. Location of utility poles on the property. 37
9. Other areas or items that were a part of the Work as directed by the Engineer. 38
10. Locations of leachate pipes, valves, sumps, and subcell divider berms. 39
E. During construction, the contractor shall submit to the Engineer for review preliminary surveys 40
that depict thickness verification of the soil layers. 41
F. Thickness verification may be done with a table or by electronic comparison of drawing files. 42
The method shall be agreed to by the CQA and ENGINEER prior to construction. If the table 43
method is selected, the same point on each soil layer must be used. The thickness is to be 44
measured perpendicular to the slope. Refer to the soil specifications for frequency of points. 45
G. Contractor shall preserve and protect all reference points and pay for replacement of any 46
destroyed referenced points. 47
H. Additional requirements are set forth in Section 9.0 of the CQA Plan. 48
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - added January 2015
SPECIAL CONDITIONS revised February 2015
01060 - 3
1.4 SPECIAL CONSIDERATIONS 1
A. CONTRACTOR shall be responsible for negotiations of any waivers or alternate arrangements 2
required to enable transportation of materials to the site. 3
B. Maintain conditions of access road to site such that access is not hindered as the result of 4
construction related deterioration. 5
C. Safety: 6
1. The CONTRACTOR alone shall be solely and completely responsible for conditions of the 7
job site in connection with his work, including safety of all personas and property, 8
preparatory to and during performance of the work. This requirement shall apply 9
continuously and not be limited to normal working hours. 10
2. The Construction Documents and the construction hereby contemplated, are to be governed, 11
at all times, by applicable provisions of local and state laws and regulations, and federal 12
laws, including, but not limited to, the latest amendments of the following: Department of 13
Labor, Bureau of Labor Standards Safety and Health Regulations for Construction, and 14
Williams and Steiger Occupational Safety and Health Act of 1970, including rules and 15
regulations pursuant thereto, applicable to the Work and performance of the Contract. 16
(OSHA). 17
3. The duty of the ENGINEER to conduct construction review of the CONTRACTOR’s 18
performance is not intended to include review of the adequacy of the CONTRACTOR’s 19
safety measures in, on, or near the construction site. 20
4. All explosives shall be stored in a secure manner and all storage places shall be marked 21
clearly “DANGEROUS EXPLOSIVES,” and shall be in the care of competent watchmen at 22
all times. 23
D. Inspections by Federal and State Agencies: Authorized representative and agents of the state 24
and federal government shall be permitted to inspect all work, materials, records of personnel, 25
invoices of materials, and other relevant data and records. 26
E. Water: 27
1. CONTRACTOR is responsible for all water necessary for the completion of the Work. 28
Water used on the project shall be fresh and of drinkable quality. The CONTRACTOR 29
shall make arrangements to obtain fresh water for his drinking. 30
2. Water for other uses such as dust control and moisture control of fill may be obtained from 31
storm water basins as approved by the CQC and CQA Consultants. The CONTRACTOR 32
shall obtain any required permits. 33
3. CONTRACTOR is responsible for coordinating use of, and all costs associated with use of, 34
water from local sources. 35
F. The CONTRACTOR shall provide sanitary facilities during construction. 36
G. Order of Construction: The CONTRACTOR will schedule construction operations to allow the 37
other contractors access to the site. 38
1.5 HISTORICAL AND ARCHAEOLOGICAL 39
A. If during the course of construction, evidence of deposits of historical or archeological interest is 40
found, the CONTRACTOR shall cease operations affecting the find and shall notify OWNER. 41
No further disturbance of the deposits shall ensue until the CONTRACTOR has been notified by 42
OWNER that CONTRACTOR may proceed. OWNER will issue a notice to proceed after 43
appropriate authorities have surveyed the find and made a determination to OWNER. 44
Compensation to the CONTRACTOR, if any, for lost time or changes in construction resulting 45
from the find, shall be determined in accordance with changed or extra work provisions of the 46
Contract Documents. The site has been previously investigated and has no known history of 47
historical or archaeological finds. 48
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - added January 2015
SPECIAL CONDITIONS revised February 2015
01060 - 4
PART 2 - PRODUCTS 1
2.1 INTERFACE FRICTION TESTS 2
A. Laboratory friction tests shall be conducted, on behalf of the OWNER by the CQA Consultant, 3
with representative samples of the materials selected by the CONTRACTOR for use in the 4
Work. The CQA Consultant must approve the testing laboratory used for these tests. The 5
CONTRACTOR is responsible for shipping materials to the testing laboratory. The initial set of 6
testing and subsequent conformance tests (if any) shall be paid for by the CQA Consultant. If 7
any interface doesn’t meet the requirements, or if the CONTRACTOR changes geosynthetic 8
materials, then the additional cost to qualify those materials shall be borne by the 9
CONTRACTOR. 10
B. Base Liner 11
1. Testing will include the interfaces between the following adjacent materials with a 12
minimum peak friction angle of 26 degrees is required for each interface. 13
14
MATERIAL SPECIFICATION SECTION
Ash ----
Drainage Composite 02777
60 Mil HDPE (textured) 02775
Geosynthetic Clay Liner (GCL) 0277602800
Soil liner 02276
C. Cap System 15
1. The CONTRACTOR may select one of the following cap systems. Testing will include the 16
interfaces between the following adjacent materials with a minimum peak friction angle of 17
26 degrees is required for each interface. 18
a. Option 1 19
20
MATERIAL SPECIFICATION SECTION
Drainage Soil N/A
40 Mil (textured HDPE or textured LLDPE) 02775 or 02774
Ash ---
21
b. Option 2 22
23
MATERIAL SPECIFICATION SECTION
Unclassified Soil N/A
Drainage Composite 02777
40 Mil (textured HDPE or textured LLDPE) 02775 or 02774
Ash ----
24
D. Testing shall be performed in accordance with ASTM D6243. The liner system materials shall 25
be tested at normal stressed of 2,000, 4,000, and 6,250 psf. The cap system materials shall be 26
tested at normal stressed of 500, 1,000, and 1,500 psf. Displacement rates shall be in accordance 27
with ASTM D6243 Procedure A for geosynthetic to geosynthetic interfaces and Procedure B for 28
soil to geosynthetic interfaces. Soil components shall be compacted to the same moisture-29
density requirements specified for full-scale field placement and saturated prior to shear for 24 30
hours. All geosynthetic interfaces shall be tested in a wet condition. Geosynthetics shall be 31
oriented such that the shear force is parallel to the downslope orientation of these components in 32
the field. The testing laboratory shall confirm these criteria with the CQA firm prior to 33
performing the tests. 34
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - added January 2015
SPECIAL CONDITIONS revised February 2015
01060 - 5
D.E. Test results must be satisfactory for material shop drawings to be approved. Report 1
results in accordance with ASTM D6243 provide complete test data, including plots of shear 2
force versus horizontal displacement and a plot of peak shear stress versus normal stress for the 3
tests conducted. Test results must be satisfactory for material shop drawings to be approved. 4
PART 3 - EXECUTION (NOT USED) 5
END OF SECTION 6
This page intentionally left blank.
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
DRAINAGE COMPOSITE revised February 2015
02777 - 1
SECTION 02777 1
DRAINAGE COMPOSITE 2
PART 1 - GENERAL 3
1.1 SUMMARY 4
A. Section Includes: 5
1. Bonded geotextile-geonet drainage composite. 6
B. Related sections include but are not necessarily limited to: 7
1. Section 02774 – LLDPE Geomembrane. 8
2. Section 02775 – HDPE Geomembrane. 9
3. Section 02778 - Geotextiles. 10
4. Construction Quality Assurance Plan. 11
1.2 QUALITY ASSURANCE 12
A. Referenced Standards: 13
1. ASTM International (ASTM): 14
a. D413, Rubber Property - Adhesion to Flexible Substrate. 15
b. D792, Standard Test Methods for Density and Specific Gravity of Plastic by 16
Displacement. 17
c. D1238, Flow Rates of Thermoplastics by Extrusion Plastometer. 18
d. D1505, Density of Plastics by the Density-Gradient Technique. 19
e. D1603, Carbon Black in Olefin Plastics. 20
f. D4716, Constant Head Hydraulic Transmissivity (In-Plane Flow) of Geotextiles and 21
Geotextile Related Products. 22
g. D4873, Identification, Storage and Handling of Geosynthetic Rolls. 23
h. D5199, Standard Method for Measuring Nominal Thickness of Geotextiles and 24
Geomembranes. 25
i. D5321, Standard Test Method for Determining the Coefficient of Soil and Geosynthetic 26
or Geosynthetic and Geosynthetic Friction by the Direct Shear Method. 27
j. D6364, Standard Test Method for Determining Short-Term Compression Behavior of 28
Geosynthetics. 29
k. D7005, Standard Test Method for Determining the Bond Strength (Ply Adhesion) of 30
Geocomposites. 31
k.l. D7179, Standard Test Method for Determining Geonet Breaking Force. 32
B. Qualifications: 33
1. Each manufacturing and fabricating firm shall demonstrate 5 years continuous experience, 34
including a minimum of 5,000,000 SF of drainage composite production in the past 3 years. 35
2. Installer shall attend pre-installation conference. 36
1.3 DEFINITIONS: 37
A. Manufacturer: Manufacturer producing drainage composites from geonet cores and geotextiles. 38
B. Installer: The Installers are the individuals actually performing the hands-on work in the field. 39
C. MARV: Minimum average roll value. 40
1.4 SUBMITTALS 41
A. Shop Drawings: 42
1. Manufacturer's documentation that raw materials and roll materials comply with required 43
drainage composite physical properties. 44
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
DRAINAGE COMPOSITE revised February 2015
02777 - 2
2. Manufacturer and Installer quality control manuals. 1
3. Original test results for resins and roll material at frequency specified in respective quality 2
control manuals. Include or bracket the rolls delivered for use in the Work. 3
4. Layout plan with proposed size, number, position and sequencing of drainage composite 4
rolls and direction of all field seams. 5
5. Proposed details of anchor trench if different than included in Contract Documents. 6
B. Miscellaneous Submittals: 7
1. Qualification documentation specified in Article 1.2. 8
1.5 DELIVERY, STORAGE AND HANDLING 9
A. Label, handle, and store drainage composites in accordance with ASTM D4873 and as specified 10
herein. 11
B. Wrap each roll in an opaque and waterproof layer of plastic during shipment and storage. Do not 12
remove the plastic wrapping until deployment. 13
C. Label each roll with the manufacturer's name, drainage composite type, lot number, roll number, 14
and roll dimensions (length, width, gross weight). 15
D. Repair or replace, as directed by the Engineer, drainage composite or plastic wrapping damaged 16
as a result of storage or handling. 17
E. Do not expose drainage composite to temperatures in excess of 71 DegC (160 DegF) or below 0 18
DegC (32 DegF) unless recommended by the Manufacturer. 19
F. Do not use hooks, tongs or other sharp instruments for handling the drainage composite. 20
G. Do not lift rolls by use of cables or chains in contact with the drainage composite. 21
H. Do not drag drainage composite along the ground or across textured geomembranes. 22
PART 2 - PRODUCTS 23
2.1 ACCEPTABLE MANUFACTURERS 24
A. Subject to compliance with the Contract Documents, the following Manufacturers are 25
acceptable: 26
1. GSE Environmental. 27
2. Agru-American, Inc. 28
3. Engineer approved equal. 29
2.2 MATERIALS AND MANUFACTURE 30
A. Geonet Core: 31
1. Use nonthermally degraded polyethylene polymer which is clean and free of any foreign 32
contaminants. 33
2. Manufactured geonet to conform to the property requirements listed in Table 1 and be free 34
of defects including tears, nodules or other manufacturing defects which may affect its 35
serviceability. 36
TABLE 1 - GEONET PROPERTIES 37
PROPERTY TEST METHOD TEST VALUE
Polymer Density ASTM D1505 >0.93 g/cc
Polymer Melt Index ASTM D1238 <1.1 g/10 min.
Carbon Black Content ASTM D1603 2-3 percent
Thickness ASTM D5199 ≥0.300 in.
Tensile Strength (MD) ASTM D7179 75 lb/in
Compressive Strength ASTM D6364 25,000 psf
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
DRAINAGE COMPOSITE revised February 2015
02777 - 3
B. Geotextile: 1
1. Cover geonet core on both sides with a geotextile complying with requirements specified in 2
Section 02778: Geotextiles, Separator. 3
C. Drainage Composite: 4
1. Create a composite by heat bonding geotextiles to the geonet. The bond between the 5
geotextile and the geonet shall exhibit a MARV ply adhesion of 1 LBS/IN when tested in 6
accordance with ASTM D7005 7
2. Effective Transmissivity MARV of 3.3x10-3 square meters per second @ 100 hrs. 8
2.3 SOURCE QUALITY CONTROL 9
A. Transmissivity Testing: 10
1. Measure in place flow rate using water at 68 DegF with a normal compressive load of 6,250 11
psf, a hydraulic gradient of 0.02, and 100-hour loading. 12
2. Attach geotextiles to the geonet in the same configuration as will be used in the field. 13
3. Boundary conditions shall match the upper and lower interfaces to be used in the field. 14
4. Testing frequency: 1 test for every 50200,000 SF of installed product. 15
5. Report shall include: 16
a. Graph of flow rate vs. hydraulic gradient. 17
b. Calculate transmissivity under laminer flow conditions. 18
c. Calculated effective transmissivity at hydraulic gradient of 0.3. 19
B. Interface Friction Tests. 20
1. Test materials using ASTM D 6243. Section 01060-Special Conditions, outlines the 21
conditions under which this material shall be tested. 22
2. This material is part of a system. The system shall meet the requirements before the 23
component material can be deemed acceptable. 24
PART 3 - EXECUTION 25
3.1 EXAMINATION 26
A. Prior to placement of the drainage composite, clean the substrate of all soil, rock, and other 27
materials which could damage the composite. 28
B. The geocomponent drainage media shall be placed only on geomembrane that has been 29
approved by the Geomembrane Installer and accepted by the Geotech Engineer. 30
3.2 INSTALLATION 31
A. Install geocomposite drain in accordance with manufacturer’s written recommendations. 32
B. Deploy the drainage composite ensuring that the drainage composite and underlying materials 33
are not damaged. Replace or repair faulty or damaged drainage composite as directed by 34
Engineer. 35
C. Unroll drainage composite downslope keeping in slight tension to minimize wrinkles and folds. 36
D. Maintain free of dirt, mud, or any other foreign materials at all times during construction. Clean 37
or replace rolls which are contaminated. 38
E. Place adequate ballast to prevent uplift by wind. 39
F. Overlap adjacent rolls a minimum of 6 IN. Overlap new drainage composite over existing as 40
shown on the drawings. 41
G. Use manufacturer's fasteners to join adjacent rolls. Metallic fasteners will not be allowed. Space 42
fasteners a maximum of 5 FT along downslope roll overlaps and a maximum of 1 FT along cross 43
slope roll overlaps. Use fasteners of contrasting color from the drainage composite to facilitate 44
visual inspection. Do not weld drainage composite to geomembranes. 45
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
DRAINAGE COMPOSITE revised February 2015
02777 - 4
H. Heat tack overlap of the upper geotextile to the upper geotextile of the adjacent rolls. 1
I. Repairs holes or tears in the drainage composite by placing a patch of drainage composite 2
extending a minimum of 2 FT beyond the edges of the hole or tear. Use approved fasteners, 3
spaced every 6 IN around the patch, to fasten the patch to the original roll. 4
J. Penetration details shall be as recommended by the Manufacturer and as approved by the 5
Engineer. 6
3.3 FIELD QUALITY CONTROL 7
A. Provide as-constructed drawing showing roll number; layout; joint locations; and repair and 8
patch locations. 9
B. Prior to installation of the drainage composite, provide the Engineer quality control certificates 10
signed by the manufacturer's quality assurance manager for every 50,000 SF of geocomposite 11
drainage media to be installed. 12
C. Refer to Section 02778 for exposure limits of the geotextile. If the exposure limits are exceeded, 13
the drainage composite shall be replaced. 14
END OF SECTION 15
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
GEOTEXTILES revised February 2015
02778 - 1
SECTION 02778 1
GEOTEXTILES 2
PART 1 - GENERAL 3
1.1 SUMMARY 4
A. Section Includes: 5
1. Non-woven geotextile material. 6
2. Woven geotextile material. 7
B. Related Sections: 8
1. Section 02220 - Earthwork. 9
2. Section 02777 - Drainage Geocomposite. 10
3. Construction Quality Assurance Plan. 11
1.2 QUALITY ASSURANCE 12
A. Referenced Standards: 13
1. American Association of State Highway Transportation Officials (AASHTO): 14
a. M288, Standard Specification for Geotextile Specification for Highway Application. 15
2. ASTM International (ASTM): 16
a. D1987, Biological Clogging of Geotextile or Soil/Geotextile Filters. 17
b. D3766, Standard Terminology Relating to Catalysts and Catalysis. 18
c. D3776, Test Method for Mass Per Unit Area of Woven Fabric. 19
d. D3786, Test Method for Hydraulic Bursting Strength of Knitted Goods and Nonwoven 20
Fabrics - Diaphragm Bursting Strength Tester Method. 21
e. D4354, Sampling of Geosynthetics for Testing. 22
f. D4355, Deterioration of Geotextiles from Exposure to Ultraviolet Light and Water 23
(Xenon-Arc Type Apparatus). 24
g. D4491, Water Permeability of Geotextiles by Permittivity. 25
h. D4533, Trapezoid Tearing Strength of Geotextiles. 26
i. D4595, Tensile Properties of Geotextiles by the Wide-Width Strip Method. 27
j. D4632, Grab Breaking Load and Elongation of Geotextiles. 28
k. D4751, Determining Apparent Opening Size of A Geotextile. 29
l. D4759, Determining the Specification Conformance of Geosynthetics. 30
m. D4833, Index Puncture Resistance of Geotextiles, Geomembranes, and Related 31
Products. 32
n. D4873, Identification, Storage, and Handling of Geosynthetic Rolls. 33
o. D5261, Test Method for Measuring Mass Per Unit Area of Geotextiles. 34
p. D6193, Standard Practice for Stitches and Seams. 35
q. D6241, Standard Test Method for Static Puncture Strength of Geotextiles and 36
Geotextile-Related Products Using a 50-mm Probe. 37
q.r. D7238, Standard Test Method for Effect of Exposure of Unreinforced Polyolefin 38
Geomembrane Using Fluorescent UV Condensation Apparatus. 39
B. Qualifications: 40
1. Each manufacturing, fabricating firm shall demonstrate 5 years continuous experience, 41
including a minimum of 10,000,000 SF of geotextile installation in the past 3 years. 42
2. Installing firm shall demonstrate that the site Superintendent or Foreman has had 43
responsible charge for installation of a minimum of 1,000,000 SF of geotextile. 44
3. Installer shall attend pre-installation conference. 45
1.3 DEFINITIONS: 46
A. Manufacturer: Manufacturer producing geotextile sheets from resin and additives. 47
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
GEOTEXTILES revised February 2015
02778 - 2
B. Installer: The Installers are the individuals actually performing the hands-on work in the field. 1
C. MARV: Minimum Average Roll Value 2
1.4 SUBMITTALS 3
A. Shop Drawings: 4
1. Manufacturer's documentation that raw materials and roll materials comply with required 5
geotextile physical properties. 6
2. Manufacturer and Installer quality control manuals. 7
3. Original test results for resins, roll material and factory seam tests at frequency specified in 8
respective quality control manuals. Results shall include or bracket the rolls delivered for 9
use in the Work. 10
4. Proposed details of anchoring and overlapping if different than included in Contract 11
Documents. 12
B. Miscellaneous Submittals: 13
1. For needle punched geotextiles, the Manufacturer shall certify that the geotextile has been 14
continuously inspected using permanent on-line full-width metal detectors and does not 15
contain any needles which could damage other geosynthetic layers. 16
2. Qualification documentation specified in Article 1.2. 17
1.5 DELIVERY, STORAGE AND HANDLING 18
A. Label, handle, and store geotextiles in accordance with ASTM D4873 and as specified herein. 19
B. Wrap each roll in an opaque and waterproof layer of plastic during shipment and storage. Do not 20
remove the plastic wrapping until deployment. 21
C. Label each roll with the manufacturer's name, geotextile type, lot number, roll number, and roll 22
dimensions (length, width, gross weight). 23
D. Repair or replace geotextile or plastic wrapping damaged as a result of storage or handling, as 24
directed. 25
E. Do not expose geotextile to temperatures in excess of 71 DegC (160 DegF) or less than 0 DegC 26
(32 DegF) unless recommended by the manufacturer. 27
F. Do not use hooks, tongs or other sharp instruments for handling geotextile. Do not lift rolls lifted 28
by use of cables or chains in contact with the geotextile. Do not drag geotextile along the 29
ground. 30
PART 2 - PRODUCTS 31
2.1 ACCEPTABLE MANUFACTURERS 32
A. Subject to compliance with the Contract Documents, the following Manufacturers are 33
acceptable: 34
1. Agru America, Inc. 35
2. Carthage Mills. 36
3. GSE Environmental 37
3.4. TenCate Geosynthetics. 38
4. GSE Environmental 39
2.2 MATERIALS AND MANUFACTURE 40
A. Geotextile: 41
1. Geotextile fibers: 42
a. Long-chain synthetic polymer composed of at least 85 percent by weight polyolefins, 43
polyesters, or polyamides. 44
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
GEOTEXTILES revised February 2015
02778 - 3
b. Filaments resistant to deterioration by ultraviolet light, oxidation, and heat exposure. 1
c. Do not add reclaimed or recycled fibers or polymer to the formulation. 2
2. Form geotextile into a network such that the filaments or yarns retain dimensional stability 3
relative to each other, including the selvages. 4
3. The geotextile physical properties shall equal or exceed the minimum average roll values 5
listed below. Values shown are for the weaker principal direction. Acceptance of geotextile 6
shall be in accordance with ASTM D4759. 7
B. Cushion Separator Geotextile for Gecomposite: Non-woven, needle punched; polyester or 8
polypropylene; continuous filament or staple fibers; conforming to the following properties: 9
For base liner top of geocomposite only: 10
1. Top Geotextile: The geotextile intended as the filter shall be a hybrid geotextile consisting 11
of a woven and non-woven needle punched composite geotextile with the two geotextiles 12
bonded together mechanically. The two geotextiles shall form a monolithic filter product 13
with the woven side bonded to the top of the geonet. The top geotextile shall conform to the 14
following properties: 15
16
Property Test Method
Minimum Average
Roll Value
====== ====== ======
Composite mass per Unit Area, oz/yd2 ASTM D5261 14
Grab Tensile Strength, lb ASTM D4632 200
Puncture Strength, lb ASTM D48336241 100775
Trapezoidal Tear Strength, lb ASTM D4533 85
Apparent Opening Size, US Sieve (mm) ASTM D4751 170 (0.88)
Permittivity, (sec -1) ASTM D4491 0.3
Flow Rate, gpm/ft2 ASTM D4491 20
UV Resistance, % Retained ASTM D4355 (after 500 hours) 90
17
The geotextile intended as the filter shall be a hybrid geotextile consisting of a woven and non-18
woven needle punched composite geotextile with the two geotextiles bonded together 19
mechanically. The two geotextiles shall form a monolithic filter product with the woven side 20
bonded to the geonet. 21
2. For all other locations: 22
23
2. Bottom Geotextile: A nonwoven geotextile conforming to the following properties: 24
25
Property Test Method
Minimum Average
Roll Value
====== ====== ======
Mass per Unit Area, oz/yd2 ASTM D5261 6
Grab Tensile Strength, lb ASTM D4632 160
Grab Elongation ASTM D4632 50%
Puncture Strength, lb ASTM D6241 435
Trapezoidal Tear Strength, lb ASTM D4533 65
Apparent Opening Size, US Sieve (mm) ASTM D4751 70 (0.212)
Permittivity, (sec -1) ASTM D4491 1.5
Flow Rate, gpm/ft2 ASTM D4491 110
UV Resistance, % Retained ASTM D4355 (after 500 hours) 70
26
C. Separator Geotextile 27
28
Property Test Method
Minimum Average
Roll Value
====== ====== ======
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
GEOTEXTILES revised February 2015
02778 - 4
Unit Weight ASTM D5261 8 oz/sy
Grab Tensile Strength ASTM D4632 210 lb
Elongation ASTM D4632 50%
Puncture Strength ASTM D4833 95 lb
Maximum Apparent Opening Size ASTM D4751 #70 US Sieve
Permittivity ASTM D4491 0.5 sec-1
1
D. Roadbed Geotextile Fabric: The geotextile shall be composed of synthetic fibers formed into a 2
woven fabric. Fibers used in the manufacture of the geotextile shall be polyolefins, polyesters 3
or polyamides and conform to the following properties. 4
5
Property Test Method
Minimum Average
Roll Value
====== ====== ======
Grab Tensile ASTM D4632 200 lbs
Grab Elongation ASTM D4632 15 %
Puncture Strength ASTM D4833 100 lbs
Trapezoidal Tear ASTM D4533 75
UV Resistance ASTM D4355 or D7238 90 %
C.E. Thread: 6
1. High-strength polyester, nylon, or other approved thread type. 7
2. Equivalent chemical compatibility and ultraviolet light stability as the geotextile. 8
3. Contrasting color with the geotextile. 9
D.F. The geotextile shall be able to withstand direct exposure to ultraviolet radiation from the sun for 10
up to 90 days without noticeable effect on index or performance properties If the geotextile is 11
exposed for greater than 75 days, additional index testing will be required to confirm that the 12
material still meets the specification properties. 13
PART 3 - EXECUTION 14
3.1 PREPARATION 15
A. Construct the surface underlying the geotextiles smooth and free of ruts or protrusions which 16
could damage the geotextiles. 17
3.2 INSTALLATION 18
A. Install geotextiles in accordance with manufacturer's written recommendations. 19
B. Hand place geotextile. No equipment will be permitted to traffic in direct contact with the 20
geotextile. 21
C. Lay geotextile smooth so as to be free of tensile stresses, folds, and wrinkles. 22
D. Seam Construction: 23
1. Geotextile seams may be sewn or overlapped. Construct overlapped seams in accordance 24
with manufacturer's recommendations or as shown on Drawings. 25
2. Sew seams continuously using an SSA flat seam with one row of a two-thread 401 chain 26
stitch unless otherwise recommended by the manufacturer. 27
3. Minimum distance from the geotextile edge to the stitch line nearest to that edge: 2 IN 28
unless otherwise recommended by the manufacturer. 29
4. Test seams at the frequency specified in Article 3.3. 30
5. Tie off thread at the end of each seam to prevent unraveling. 31
6. Construct seams on the top side of the geotextile to allow inspection. 32
7. Sew skipped stitches or discontinuities with an extra line of stitching with 18 IN of overlap. 33
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - revised January 2015
GEOTEXTILES revised February 2015
02778 - 5
8. Heat tack the geotextile overlaps as shown on the Drawings. 1
9. Overlap adjacent panels a minimum of 4 IN. Heat bond seam must develop a minimum of 2
60% of the tensile strength of the parent geotextile as measured in ASTM D4632. 3
E. Protect geotextiles from clogging, tears, and other damage during installation. 4
F. Geotextile Repair: 5
1. Place a patch of the same type of geotextile which extends a minimum of 12 inches beyond 6
the edge of the damage or defect. 7
2. Fasten patches continuously using a sewn seam or other approved method. 8
3. Align machine direction of the patch with the machine direction of the geotextile being 9
repaired. 10
4. Replace geotextile which cannot be repaired. 11
G. Use adequate ballast (e.g. sand bags) to prevent uplift by wind. 12
H. Do not use staples or pins to hold the geotextile in place. 13
I. Geotextile left uncovered for more than 90 days shall be replaced unless otherwise allowed by 14
Engineer. 15
END OF SECTION 16
This page intentionally left blank.
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - replaced January 2015
GEOSYNTHETIC CLAY LINER (GCL) revised February 2015
02800 - 1
SECTION 02800 1
GEOSYNTHETIC CLAY LINER (GCL) 2
PART 1 - GENERAL 3
1.1 SUMMARY 4
A. Section Includes: 5
1. Furnish all labor, material, and equipment to complete installation of the GCL in accordance 6
with the Contract Drawings and these Specifications. 7
2. Completely coordinate work with that of other trades. 8
3. Although such work is not specifically shown or specified, all supplementary or 9
miscellaneous items, appurtenances, and devices incidental to or necessary for a sound, 10
secure, complete, and compatible installation shall be furnished and installed as part of this 11
work. 12
4. Furnish CQC Consultant to monitor the work of GCL Installer and to perform CQA/CQC 13
testing in accordance with provisions of the Contract Documents. 14
B. Related Sections include but are not necessarily limited to: 15
1. Section 01060 – Special Conditions 16
2. Section 02220 - Earthwork. 17
3. Section 02775 - HDPE Geomembrane Liner System. 18
1.2 QUALITY STANDARDS 19
A. Referenced Standards: 20
1. ASTM International (ASTM): 21
a. D4632, Test Method for Grab Breaking Load and Elongation of Geotextiles. 22
b. D4643, Determination of Water Content of Soil by Microwave Oven Method. 23
c. D4833, Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and 24
Related Products. 25
d. D4873, Identification, Storage and Handling of Geosynthetic Rolls. 26
e. D5261, Measuring Mass Per Unit Area of Geotextiles. 27
f. D5321, Test Method for Determining the Coefficient of Soil and Geosynthetic or 28
Geosynthetic and Geosynthetic Friction by the Direct Shear Method. 29
g. D5887, Test Method for Measurement of Index Flux through Saturated GCL 30
Specimens Using a Flexible Wall Permeameter. 31
h. D5888, Guide for Storage and Handling of Geosynthetic Clay Liners. 32
i. D5889, Quality Control of GCL. 33
j. D5890, Swell Index of Clay Mineral Component of Geosynthetic Clay Liners. 34
k. D5891, Fluid Loss of Clay Component of Geosynthetic Clay Liners. 35
l. D5993, Test Method for Measuring Mass Per Unit Area of Geosynthetic Clay Liners. 36
m. D6072, Practice for Obtaining Samples of GCL 37
n. D6102, Guide for Installation of Geosynthetic Clay Liners. 38
o. D6243, Test Method for Determining the Internal and Interface Shear Resistance of 39
Geosynthetic Clay Liner by the Direct Shear Method. 40
p. D6496, Determining Average Bonding Peel Strength Between Top and Bottom Layers 41
of Needle Punched GCLs. 42
q. D6766, Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay 43
Liners Permeated with Potentially Incompatible Aqueous Solutions. 44
r. D6768, Test Method for Tensile Strength of Geosynthetic Clay Liner. 45
46
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - replaced January 2015
GEOSYNTHETIC CLAY LINER (GCL) revised February 2015
02800 - 2
2. Geosynthetic Research Institute (GRI): 1
a. GCL-3, Test Methods, Required Properties, and Testing Frequencies of Geosynthetic 2
Clay Liners (GCLs). 3
B. Quality Assurance: 4
1. The OWNER's representative will conduct independent testing to support construction 5
quality assurance program and to provide documentation of such to appropriate regulatory 6
agencies. Facilitate and provide opportunities as OWNER's representative require. 7
2. Manufacture, store, place, seam, test and protect GCL as described in ASTM D4873, D5888 8
and D6102. 9
C. Qualifications: 10
1. Each manufacturing firm shall demonstrate 5 years continuous experience, including a 11
minimum of 5,000,000 SF of the material for use in similar projects.. 12
D. CQA Plan Implementation: Construction Quality Assurance documentation for the GCL 13
installation will be performed for the Owner in accordance with the CQA Plan prepared for this 14
project. The Owner, CQC Consultant, and GCL Installer, however, should familiarize themselves 15
with the CQA Plan. 16
1.3 DEFINITIONS: 17
A. Manufacturer: Manufacturer produces geosynthetic clay liner panels from first quality 18
geotextiles and sodium bentonite. The manufacturer is responsible for producing panels which 19
comply with this Specification. These responsibilities include but are not limited to: 20
1. Acceptance of the geotextiles, bentonite, and additives from suppliers/manufacturers and 21
testing of these materials to ensure compliance with the manufacturer's specifications and 22
with this Specification. 23
2. Fabrication of the geotextiles and bentonite into GCL panels using mixing and extrusion 24
equipment. 25
3. Testing of the GCL to ensure compliance with manufacturer's specification and this 26
Specification. 27
4. Shipping of the GCL to fabricator/installer designated facilities. 28
5. Certification of the raw materials and finished GCL to comply with this Specification. 29
6. Certification of fabricator's and installer's training, experience, and methods for seaming and 30
inspecting GCL installations in compliance with manufacturer's standards and with Quality 31
Assurance requirements of this Specification (Article 1.2). 32
B. Installer: Installers of GCLs are responsible for storing, handling, fitting, seaming, and testing of 33
GCL panels in the field. These responsibilities include but are not limited to: 34
1. Acceptance (in writing) of the GCL rolls from the transporter. 35
2. Acceptance (in writing) of the soil material which will serve as a base for the GCL. This 36
acceptance shall precede installation of the GCL, and shall state that the installer has 37
inspected the surface, and reviewed the Specifications for material and placement, and finds 38
all conditions acceptable for placement of GCL liners. The written acceptance shall 39
explicitly state any and all exceptions to acceptance. 40
3. Handling, seaming, testing, and repair of GCL liners in compliance with this Specification 41
and with written procedure manuals prepared by the installer or the manufacturer. 42
4. Repair or replacement of defects in the GCL as required by the Inspector or the Owner. 43
5. Installer and manufacturer may be the same firm. 44
C. Inspector: Inspectors of GCL liner are responsible for observing field installation of the GCL 45
and providing the manufacturer, installer, and Owner with verbal and written documentation of the 46
compliance of the installation with this Specification and with written procedures manuals 47
prepared by the manufacturer. Inspector’s responsibilities include, but are not limited to: 48
1. Inspection of material, handling, and field installation of the GCL liner. Inspection of all 49
seams, repair, and test results. 50
2. All exceptions to material or installation shall be documented to the Engineer in writing 51
within 48 hours of discovery. 52
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - replaced January 2015
GEOSYNTHETIC CLAY LINER (GCL) revised February 2015
02800 - 3
D. Engineer: The Engineer is responsible for design of the geosynthetic liner system. 1
E. Hydrated GCL is defined as material which has become soft as determined by squeezing the 2
material with finger pressure, material which has exhibited swelling, or material which as a 3
moisture content greater than 100 percent as determined by ASTM D2216. 4
1.4 SUBMITTALS 5
A. Shop Drawings: 6
1. Product Data and Factory Test Results: Published product properties and specifications for 7
the proposed GCL, as well as factory test results of materials certified by the GCL 8
manufacturer, shall be submitted showing conformance with the requirements of these 9
Specifications. In addition, the Contractor shall submit the manufacturer's certification 10
stating that the material is similar to and of the same formulation as that for which test 11
results are submitted, and by which actual usage has been demonstrated to be satisfactory 12
for the intended application. 13
2. Samples: Samples of the GCL sheeting shall be provided to the CQA Consultant. Samples 14
shall have a width of 4.5 IN, and a length of 5 IN. 15
3. Delivery, Storage, and Handling Instructions: The manufacturer's recommendations for 16
delivery, storage, and handling shall be submitted to the CQA Consultant for review. 17
4. Delivery Date: The CQA Consultant shall be notified of the scheduled delivery date for the 18
materials. 19
5. Installation Drawings, Procedures, and Schedules: Installation drawings, procedures, and a 20
schedule for carrying out the work shall be provided by the Contractor to the CQA 21
Consultant for review. Procedures addressed by the Contractor shall include but not be 22
limited to material unloading, storage, installation, repair, and protection to be provided in 23
the event of rain. A schedule showing the order of placement, location of panels, seams, and 24
penetrations shall be submitted for the CQA Consultant’s review. Proposed methods of 25
seaming (overlapping) GCL panels. Submit drawings showing the panel layout, seams, and 26
associated details including pipe penetrations. Following review, these drawings will be 27
used for installation of the GCL. Any deviations from these drawings must be approved by 28
the CQA Consultant. 29
B. Miscellaneous Submittals: 30
1. Test results: 31
a. Bentonite, geotextile and GCL tests at frequency specified in respective quality control 32
manuals. Results shall include or bracket the rolls delivered for use in the Work. 33
2. Qualification documentation specified in Article 1.2. 34
3. Submit written certifications that: 35
a. The GCL delivered to site meets the requirements of this Specification. 36
b. The GCL was received and accepted in undamaged condition from shipper. 37
c. The subgrade has been properly prepared and acceptable for the placement of the GCL. 38
d. The GCL was installed in accordance with this Specification and with approved shop 39
drawings. 40
e. The materials placed on top of the GCL were placed properly and carefully. 41
4. Warranties. 42
5. Record Drawing Information: Record drawings including but not limited to drawings 43
showing the location of all seams, panels, repairs, patches, anchor trenches, pipe 44
penetrations, and other appurtenances, including measurements and dimensions, shall be 45
prepared by the Contractor and submitted to the Owner following completion of the project. 46
1.5 DELIVERY, STORAGE, AND HANDLING 47
A. Do not place GCL rolls directly on the ground. 48
B. Store and protect GCL from dirt, water, ultraviolet light and other sources of damage. 49
C. Label, handle, and store GCL in accordance with ASTM D4873 and as specified herein. 50
1. Wrap each roll in an opaque and waterproof layer of plastic during shipment and storage. 51
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - replaced January 2015
GEOSYNTHETIC CLAY LINER (GCL) revised February 2015
02800 - 4
2. Do not remove the plastic wrapping until deployment. 1
D. Label each roll with the manufacturers name, lot number, roll number, and roll dimensions 2
(length, width, gross weight). 3
1. Repair or replace GCL or plastic wrapping damaged as a result of storage or handling, as 4
directed. 5
2. Do not expose GCL to temperatures in excess of 71 Deg C (160 Deg F) or less than 0 Deg 6
C (32 Deg F) unless recommended by the Manufacturer. 7
E. Do not use hooks, tongs or other sharp instruments for handling the GCL. Do not lift rolls by use 8
of cables or chains in contact with the GCL. Do not drag GCL along the ground. 9
1.6 WARRANTY 10
1. The Manufacturer shall provide a warranty to the OWNER against manufacturing defects or 11
failures related to manufacture on a non-prorata basis for five (5) years after date of 12
shipment. 13
2. GCL Installer's Warranty: The GCL Installer's warranty shall warrant their workmanship to 14
be free of defects on a non-prorata basis for five (5) years after the final acceptance of the 15
Work. This warranty shall include but not be limited to overlapped seams, anchor trenches, 16
attachments to appurtenances, and penetration seals. 17
PART 2 - PRODUCTS 18
2.1 ACCEPTABLE MANUFACTURERS 19
A. Subject to compliance with the Contract Documents, the following Manufacturers are 20
acceptable: 21
1. Geosynthetic Clay Liners: 22
a. Agru America, Inc. 23
b. CETCO. 24
c. GSE Environmental. 25
2.2 MATERIALS 26
A. The GCL shall be GSE BentoLiner CAR NSL or Engineer approved equal. 27
A.B. General: 28
1. The GCL shall be reinforced. 29
2. The GCL shall consist of bentonite encased, front and back, with geotextile. The materials 30
supplied under these Specifications shall be first quality products designed and 31
manufactured specifically for the purposes of this work. 32
3. The GCL shall be supplied in rolls. The roll length shall be maximized to provide the largest 33
manageable sheet for the fewest overlaps. Labels on the roll shall identify the sheet number, 34
date of fabrication, proper direction of unrolling, and minimum recommended overlap. A 35
quality control certificate shall be supplied with each roll. 36
4. The active ingredient of the GCL shall be natural sodium bentonite. Polymer enhancement 37
shall be added to the sodium bentonite formulation as necessary to be chemical compatible 38
with typical CCR waste leachate. 39
4.5. Encapsulate bentonite between two geotextiles. A nominal 5 mil polypropylene resin shall 40
be impregnated in the carrier geotextile portion of the GCL (to be installed as the bottom 41
side) to lower the hydraulic conductivity. 42
5.6. Lock-stitch or heat-seal needle punched geotextile backed GCL with high strength 43
polypropylene thread, if required, to provide internal shear strength reinforcing. The internal 44
shear reinforcing mechanism shall resist failure due to thread pull-out over long-term creep 45
situations. 46
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - replaced January 2015
GEOSYNTHETIC CLAY LINER (GCL) revised February 2015
02800 - 5
6.7. Continuously adhere the bentonite to both geotextiles to ensure that the bentonite will not be 1
displaced during handling, transportation, storage and installation, including cutting, 2
patching and fitting around penetrations. The bentonite sealing compound or bentonite 3
granules used to seal penetrations and make repairs shall be made of the same natural 4
sodium bentonite as the GCL and shall be as recommended by the GCL manufacturer. The 5
permeability of the GCL overlap seams shall be equal to or less than the permeability of the 6
body of the GCL sheet. 7
B.C. Physical Properties: Physical properties of GCL shall be as shown in Table 1 of this 8
Section. The manufacturer shall certify that materials provided meet these criteria according to 9
ASTM 10
D5889 and GRI GCL3 as modified by this Specification. 11
12
TABLE 1: REQUIRED GCL PROPERTIES
GCL PROPERTY TEST METHOD REQUIRED VALUE
Cap Non Woven Geotextile, Mass/ Unit Area ASTM D5261 6.0 oz/sy MARV
Carrier Woven Geotextile, Mass/ Unit Area ASTM D5261 3.1 oz/sy MARV
Hydraulic Conductivity ASTM D5887 ≤ 5x10-9 10 cm/s
Index Flux ASTM D5887 ≤ 1x10-9 cm/s
Bentonite Content (@ 0% moisture) ASTM D5993 ≥ 0.75 lb/sf
Hydrated Internal Shear Strength ASTM D6243 ≥ 500 psf
Free Swell ASTM D5890 ≥ 24 mL
Fluid Loss ASTM D5891 ≤ 18 mL
Peel Strength, MD ASTM D6496 ≥ 3.5 ppi
MARV Tensile Strength, MD ASTM D6768 ≥ 30 40 ppi MARV
13
C. The GCL shall be GSE BentoLiner CAR NSL, GSE BentoLiner CAR NWL, or Engineer 14
approved equal. 15
D. Interface Friction Tests. 16
1. Test this and adjacent materials using ASTM D 6243. Section 01060-Special Conditions, 17
outlines the conditions under which this material shall be tested. 18
2. This material is part of a system. The system shall meet the requirements before the 19
component material can be deemed acceptable. 20
PART 3 - EXECUTION 21
3.1 CONSTRUCTION 22
A. Shipping, Handling, and Storage: 23
1. During periods of shipment and storage, all GCL shall be protected from direct sunlight, 24
water, mud, dirt, dust, and debris. To the extent possible, the GCL shall be maintained 25
wrapped in heavy-duty protective covering until use. GCL delivered to the project site 26
without protective wrapping shall be rejected. 27
2. The Engineer shall approve the shipping and delivery schedule prior to shipment. The 28
Engineer shall approve the on-site storage area for the GCL. Unloading and storage of GCL 29
shall be the responsibility of the Contractor. 30
3. GCL that is damaged during shipping, handling, or storage shall be rejected and replaced at 31
Contractor’s expense. 32
B. Installation of GCL: 33
453925-235691-018 Colon Mine Site Structural Fill November 2014
Permit Application Technical Specifications - replaced January 2015
GEOSYNTHETIC CLAY LINER (GCL) revised February 2015
02800 - 6
1. Prior to placement, the surface must be prepared as follows: 1
a. Lines and grade must be verified by a Licensed Land Surveyor. 2
b. The surface must be proofrolled to verify the supporting soil condition. 3
c. The surface must be inspected for rocks larger than 0.75 IN. 4
d. Steel drum rolled in preparation for the GCL. 5
e. Thickness shall be verified by an approved method. Refer to Specification 01060 and 6
the CQA Plan. 7
2. GCL shall be placed to the lines and grades shown on the Contract Drawings. At the time of 8
installation, GCL shall be rejected by the CQA/CQC Consultant if it has defects, rips, holes, 9
flaws, evidence of deterioration, or other damage. 10
3. The surface receiving the GCL shall be prepared to a relatively smooth condition, free of 11
obstructions, excessive depressions, debris, and very soft or loose pockets of soil. This 12
surface shall be approved by the CQA Consultant prior to GCL placement. 13
4. The GCL shall be placed smooth and free of excessive wrinkles. 14
5. The GCL shall be installed on sideslopes with vertical seams only. 15
6. When GCL is placed with upslope and downslope portions, the upslope portion shall be 16
lapped such that it is the upper or exposed surface. 17
7. The GCL shall not be placed in standing water or while raining. Any material that becomes 18
partially/totally hydrated shall be removed and replaced. 19
8. The GCL seams shall be laid with a minimum overlap equal to 6 IN or the manufacturer's 20
recommendation, whichever is greater. Bentonite powder shall be placed at all GCL seams. 21
9. GCL shall be temporarily secured in a manner approved by the CQA Consultant prior to 22
placement of overlying materials. 23
10. Any GCL that is torn or punctured shall be repaired or replaced as directed by the Geotech 24
Engineer, by the Contractor at no additional cost to the Owner. The repair shall consist of a 25
patch of GCL placed over the failed areas and shall overlap the existing GCL a minimum of 26
12 IN from any point of the rupture. 27
11. If in-place GCL is not otherwise protected from hydration due to rainfall, the GCL shall be 28
covered with a minimum of 12 IN of the overlying design material within 12 hours of GCL 29
placement. 30
12. Take necessary precautions to protect underlying soil and geomembrane liners from damage 31
due to any construction activity. Damage to liners shall be repaired at Contractor’s expense. 32
13. The Contractor shall ensure that adequate dust control methods are in effect to prevent the 33
unnecessary accumulation of dust and dirt on geosynthetic surfaces, which hampers the 34
efficient field seaming of geosynthetic panels. 35
14. The Contractor shall maintain natural surface water drainage diversions around the work 36
area. The Contractor shall provide for the disposal of water that may collect in the work 37
area, from precipitation falling on the work or from inadequate diversion structures. 38
3.2 FIELD QUALITY CONTROL 39
A. The Geotech Engineer shall monitor and document the installation of GCL to ensure that the 40
installation and necessary repairs are made in accordance with these Specifications. 41
3.3 GCL ACCEPTANCE 42
A. The GCL Installer shall retain all ownership and responsibility for the GCL until final 43
acceptance by the Owner. The Owner will accept the GCL installation when the installation is 44
finished, all required submittals have been received and approved, and CQC/CQA verification of 45
the adequacy of all field seams and repairs, including associated testing, is complete. 46
END OF SECTION 47
2.5 2.5
6'