Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
7607_GreatOakMSWLF_RespondLeachateTankFacility_DIN26889_20161017
SCS Engineers, P.C. Environmental Consultants 2520 Whitehall Park Drive 704 504-3107 and Contractors Suite 450 FAX 704 504-3174 Charlotte, NC 28273-3557 www.scsengineers.com Offices Nationwide File No. 02215305.03 October 17, 2016 Mr. Ming-Tai Chao, P.E. Environmental Engineer Division of Waste Management / Solid Waste Section North Carolina Department of Environmental Quality 217 West Jones Street Raleigh, NC 27603 ming.chao@ncdenr.gov Subject: Response to NCDEQ Submittal Comments Leachate Storage Facility for the Great Oak Landfill Randolph County Solid Waste Permit Number: 7607-MSWLF-2015 Dear Mr. Chao: On behalf of Waste Management of Carolinas, Inc., SCS Engineers, PC is respectfully submitting this response to your review comment letter dated August 19, 2016. The review comment letter was in response to drawings submitted to NCDEQ for the new Leachate Storage Facility at the Great Oak Landfill. The NCDEQ SWS review comments with responses are as follows: NCDEQ SWS Review Comment 1. (Drawing No. 2 of 10 - “1.2 of the Summary of Work” & Drawing No. 3 of 10 – Field Note 3) Please provide the specification for testing methods and frequency to verify and confirm the specified compaction effort 98% of the standard proctor maximum dry density in the laboratory and field testing. It could be incorporated in the specified requirements of earthen material and compaction effort at the tank facility area in the revised Specification - Section 31 2323.13, Backfill. Response The note 2 on Drawing No. 2 and note 3 on Drawing No. 3 has been revised to read: “SOIL BACKFILL (STRUCTURAL FILL) FOR THE TANK AND SECONDARY CONTAINMENT FOUNDATIONS SHALL BE PLACED AND COMPACTED TO 98% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY AS VERIFIED BY FIELD AND LABORATORY TESTING. FOR SOIL TESTING AND PLACEMENT PROCEDURES REFER TO THE LANDFILL’S PERMIT TO CONSTRUCT APPLICATION PREPARED BY S&ME; SECTION 5 TECHNICAL SPECIFICATION 31 2323.13 AND SECTION 6 CONSTRUCTION QUALITY ASSURANCE PLAN, CQA FOR EARTHWORK.” Mr. Ming-Tai Chao, P.E. October 17, 2016 Page 2 The Landfill’s Permit to Construction Application; Section 5; Specification Section 31 2323.13 will be revised to include the 98% compaction requirement for the Leachate Storage Facility foundation soil backfill (structural fill) by S&ME under a separate transmittal. It should be noted that soil backfill (structural fill) for the tank(s) and secondary containment foundations is not expected rather excavated and placed on in-situ soils. This is based on a comparison of existing and proposed topography for the proposed facility location, as well as, borings conducted as part of a subsurface exploration performed for this project. The excavated foundation subgrade will be proof-rolled. NCDEQ SWS Review Comment 2. (Drawing No. 2 of 10 - “1.3 of the Summary of Work” & Drawing No. 3 of 10 – Field Note 4) The specified soil bearing capacity of 2,000 psf is much less than the approved one of 3,000 psf as specified in Section 43 4111.13, Part 2.01E - Design Loads. Please explain why the reduction of the bearing capacity of the foundation material is acceptable. Response Since submission of the Leachate Storage Facility drawings to NCDEQ SWS a subsurface exploration of the proposed facility location and report has been completed and included as an attachment to this letter. In the report a tank foundation soils allowable bearing capacity of up to 3,000 psf is provided. NCDEQ SWS Review Comment 3. According to the Operations Plan, the leachate generated from the Great Oak Landfill will be either pumped into the City of Asheboro wastewater sewer system or trucked to an alternate wastewater treatment plan (WWTP). Please address the following concerns: a. Please provide a copy of approval document/permit that an WWTP will accept the landfill leachate for final treatment and disposal. This approval document/permit can be submitted with as a portion of the certified CQA Report. b. For trucking of leachate the Solid Waste Section needs for approval the drawings that detail the leachate load-out facility including the wash down area, truck route, leachate flow controls, secondary containment/spill prevention measures, control panels, etc. Response A flow acceptance letter from the City of Asheboro will be provided as part of the landfill construction CQA Report. Leachate from the Great Oak Landfill will be pumped to the City of Asheboro wastewater sewer system via the proposed storage tank(s) and pump station. A truck hauling of leachate for disposal will not be used by the Great Oak Landfill. This is not allowed per the franchise agreement with Randolph County. The option for truck hauling of leachate for disposal will be Mr. Ming-Tai Chao, P.E. October 17, 2016 Page 3 removed from the Landfill’s Operations Plan and the applicable revised sections of the Operations Plan will be submitted to NCDEQ SWS by S&ME under a separate transmittal. NCDEQ SWS Review Comment 4. To pursuant to Rule 15A NCAC 13B .1680(c)(1), a foundation design that is supported by data collected from a subsurface investigation and soil testing on the foundation material underneath the tank facility is required. The foundation design that includes both bearing capacity and settlement analysis (both total and differential settlements) must demonstrate that constructed tank facility is supported on a well-drained stable foundation which prevents movement, rolling, or settling of the tanks under various loading conditions, soil conditions, and weather conditions. The foundation design report including related calculations that is prepared by a professional engineer registered in the State of North Carolina shall be a supplemental to the Engineering Plan. Response A subsurface exploration of the proposed facility location and report was completed in support of the tank(s) and secondary containment foundation design. The report “Report of Subsurface Exploration” prepared by SCS Engineers, PC is included as an attachment to this letter. Design calculations and construction drawings for the leachate storage facility are included as attachments to this letter, they include: Attachment 1 1. Tank foundation construction drawings F.01 and F.02 dated October 4, 2016, prepared by Hodge Structural Engineers. 2. Tank foundation design calculations dated September 28, 2016, prepared by Hodge Structural Engineers. Attachment 2 1. Leachate storage tank drawings and calculations dated September 28, 2016, prepared by Permastore Tanks & Silos. Attachment 3 1. Leachate storage tank dome drawings dated September 2, 2016, prepared by CST Covers. 2. Leachate storage tank dome structural analysis and design summary dated September 2, 2016, prepared by CST Covers. Mr. Ming-Tai Chao, P.E. October 17, 2016 ATTACHMENT 1 39'-0" O.S. MAT 36.4' I.S. TANK DIA. G E N E R A L P L A N V I E W S C A L E : 3 / 3 2 " = 1 ' - 0 " R 1 9 ' - 6 " O . S . M A T R 1 8 . 2 ' I . S . T A N K A A B B F . 0 2 3 6 . 4 2 ' I . S . T A N K D I A . S E C T I O N S c a l e : 1 / 4 " = 1 ' - 0 " A A F . 0 1 1 ' - 6 " 6 " C O N T A I N M E N T S L A B ( B Y O T H E R S ) S U B G R A D E ( S E E N O T E S " S O I L E X C A V A T I O N , R E M E D I A T I O N A N D T E S T I N G " T H I S S H E E T ) 6 " M I N . C R U S H E D G R A V E L ( S E E N O T E S " S T R U C T U R A L F I L L " T H I S S H E E T ) 2 2 C H E S T N U T S T R E E T E V A N S V I L L E , I N 4 7 7 1 3 8 1 2 . 4 2 2 . 2 5 5 8 8 1 2 . 4 2 2 . 3 3 3 7 ( F A X ) w w w . h o d g e s t r u c t u r a l . c o m © H O D G E S T R U C T U R A L E N G I N E E R S E X P R E S S L Y R E S E R V E S I T S C O M M O N L A W C O P Y R I G H T I N T H E S E P L A N S . T H E S E P L A N S A R E N O T T O B E R E P R O D U C E D , C H A N G E D O R C O P I E D I N A N Y F O R M O R M A N N E R W H A T S O E V E R , N O R A R E T H E Y T O B E A S S I G N E D T O A N Y T H I R D P A R T Y W I T H O U T F I R S T O B T A I N I N G T H E E X P R E S S W R I T T E N P E R M I S S I O N A N D C O N S E N T O F H O D G E S T R U C T U R A L E N G I N E E R S . C U S T O M E R : P R O J E C T T I T L E : 1 6 T - 0 1 1 6 H S E P R O J E C T # : D W M D R A W N B Y : W G H C H E C K E D B Y : R E V I S I O N S : D A T E : S H E E T T I T L E : P L A N & N O T E S S H E E T N U M B E R : F . 0 1 9 / 2 6 / 2 0 1 6 2 5 0 , 0 0 0 G A L . G . S . T . M O D E L 3 6 3 5 S R 2 0 3 6 . 4 2 ' Ø X 3 2 . 6 8 ' H L L C U S T O M E R N U M B E R : S O 1 6 1 9 6 CODES AND STANDARDS:1.American Water Works Association for Factory Coated Bolted Steel Tanks for Water Storage (AWWA D103-09) . 2.Requirements for Reinforced Concrete (ACI 318-11) and all other Committee Reports and Specifications as pub l i s h e d b y the American Concrete Institute including all amendments and addenda in force at the date of these documents . 3.Manual of Standard Practice, latest edition, as published by the Concrete Reinforcing Steel Institute (CRSI) incl u d i n g a l l supplements in force at the date of these documents.4.Structural Welding Code, Reinforcing Steel, AWS D1.4 latest edition, American Welding Society5.Where conflict exists between the various publications as specified herein, the strictest requirements of the vari o u s publications shall govern. Where conflict exists between the various parts of the Contract Documents (Architect u r a l Drawings, Structural Drawings, General Notes, Specifications) the strictest requirements shall govern.GENERAL NOTES:1.The soils report and recommendations have been prepared by SCS Engineers; project number: 02215305.03; d a t e d September 22, 2016.2.It is recommended that SCS review foundation details before construction to verify it complies with the intent of t h e geotechnical investigation.3.Design Soil Criteria:a.Allowable bearing pressure = 3,000 psfb.Transient allowable bearing pressure = 4,000 psfc.Anticipated total settlement = 3 inchd.Seismic Site Soil Class = D4.Base-setting rings shall be level ±1/16" and the top of concrete shall be level ±1/4" within any 30 foot circumfere n c e . 5.Area around tank is to be graded for positive drainage away from tank foundation.6.Pipes through the floor, if any, shall be reinforced with a minimum of (4) #5 bars a minimum of 6 feet long, be eq u i p p e d with a water seal, maintain adequate clearance from the footing and have adequate compaction surrounding th e p i p e . 7.All pipe connections shall accommodate a potential total settlement of up to the anticipated total settlement.8.Construction joints, other than those shown, are prohibited.SOIL EXCAVATION, REMEDIATION AND TESTING:1.All existing fill materials, organic materials, frozen or wet, excessively soft or loose soils, and other deleterious m a t e r i a l s shall be removed.2.The entire footprint of the foundation shall be excavated to a depth of 2 feet below current grade.3.The exposed subgrade shall be proof-rolled per the direction of SCS.4.Any loose or unsuitable soils shall be undercut and replaced with compacted fill per the soils report.5.The foundation shall bear on a minimum of 6" of crushed gravel approved by SCS.6.The soil criteria, excavation, and site suitability shall be completed and approved in writing by SCS prior to the p l a c e m e n t of any structural fill, rebar or concrete.STRUCTURAL FILL:1.Structural fill shall meet the requirements and be approved by SCS.2.The approved structural fill shall be placed in maximum loose lifts of 8 inches.3.The approved structural fill shall be compacted to at least 98% as determined by the Standard Proctor (ASTM D 6 9 8 ) a t i t s optimum moisture content of ±3%.4.Compaction shall be tested per the soils report.CONCRETE:1.All concrete shall develop a minimum compressive strength of 4000 psi at 28 days in accordance with ACI 318.2.Concrete mix shall be per contract specifications and shall meet the required compressive strength.3.Maximum aggregate size of 1 inch.4.Cylinders shall be cast and be marked as to date and location as directed by the resident engineer.5.A minimum of one set of 4 cylinders per each day of pour less than 10 cubic yards of concrete.6.A minimum of one set of 4 cylinders per 50 cubic yards of concrete.REINFORCEMENT STEEL:1.All reinforcement steel shall conform to ASTM specifications for A-615 Grade 60 deformed bar, uncoated.2.Detailing of bar supports for reinforcing steel shall be in accordance with the ACI standard details and detailing o f concrete reinforcement as reported by ACI Committee 315.POST INSTALLED ANCHORS:1.Concrete anchors shall only be used on the job in controlled design conditions, authorized by the structural engi n e e r , Hodge Structural Engineers.2.Unauthorized use of concrete anchors to replace or repair a detail shown on the drawings shall not be allowed.3.Substitution of detailed anchors shall be prohibited.4.Installation of adhesive anchors shall be per the manufacturer's instructions.5.the structural engineer must receive documented confirmation that all of the contractor's personnel who install a n c h o r s are trained prior to the commencement of installing anchors.6.The anchors are to be installed in strict accordance with the spacing and edge clearances indicated on the draw i n g s o r manufacture's literature.7.Care shall be given to the placement of the reinforcement in relation to the installation of the post installed anch o r s t o avoid conflict. L O C A T I O N : G R E A T O A K S L A N D F I L L R A N D L E M A N , N C F O U N D A T I O N L O A D I N G S : P r o d u c t L o a d = 2 , 2 3 9 . 9 ( k ) D e a d L o a d = 3 1 . 0 ( k ) R o o f L i v e L o a d = 2 6 . 1 ( k ) R o o f S n o w L o a d = 2 6 . 1 ( k ) B a s e S h e a r - W i n d = 2 6 . 1 ( k ) U p l i f t - W i n d = 3 3 . 4 ( k ) O T M - W i n d = 4 8 8 . 7 ( f t - k ) B a s e S h e a r - S e i s m i c = 1 2 5 . 5 ( k ) O T M - S e i s m i c = 2 , 3 6 4 . 7 ( f t - k ) P e r m a s t o r e T a n k s & S i l o s E y e , S u f f o l k I P 2 3 7 H S , E n g l a n d T e l 0 1 1 4 4 1 3 7 9 8 7 0 7 2 3 F a x 0 1 1 4 4 1 3 7 9 8 7 0 5 3 0 P e r m a s t o r e ® i s a r e g i s t e r e d t r a d e m a r k o f P e r m a s t o r e L t d . T H E A N T I C I P A T E D T A N K S E T T L E M E N T I S E S T I M A T E D T O B E 3 I N C H E S P E R S C S E N G I N E E R ' S G E O T E C H N I C A L R E P O R T . C A R E S H O U L D B E T A K E N O N P I P E A T T A C H M E N T S A N D C O N T A I N M E N T S L A B A T T A C H M E N T . A N C H O R L O A D I N G S ( L R F D ) : W i n d T e n s i o n = 2 . 8 4 ( k ) W i n d S h e a r = 3 . 8 7 ( k ) S e i s m i c T e n s i o n = 2 . 8 4 ( k ) S e i s m i c S h e a r = 5 . 9 8 ( k ) 2'-0"5"EMB. 2 " M I N . 2"2" 2 " B A S E A N G L E & S H I M S ( P E R M A N U F A C T U R E R ) SHELL HOOP BARS(2) #7 CIRCUMFERENTIAL BAR@ 3" C/CCLASS B SPLICE53" MIN. LAP SPLICESTAGGER ADJACENT SPLICES 6'-0" M A T R E B A R # 5 B A R S @ 1 2 " C - C E A . W A Y T O P & B O T T O M C L A S S A S P L I C E 2 4 " M I N . L A P S P L I C E R 1 8 . 2 1 ' I . S . T A N K I . S . T A N K S H E L L SLAB HOOP BARS(3) #5 CIRCUMFERENTIAL BARCLASS B SPLICE30" MIN. LAP SPLICE S E C T I O N S c a l e : 1 " = 1 ' - 0 " B B F . 0 1 1 6"10" 4 " S T E E L T A N K F L O O R 2 3 / 3 2 " B I T U M I N O U S S A N D ( P E R M A N U F A C T U R E R ) ( 3 9 ) 3 / 4 " Ø , F 1 5 5 3 - 3 6 A L L T H R E A D R O D U S E : P O W E R S P U R E 1 1 0 + E P O X Y A D H E S I V E E F F E C T I V E E M B E D M E N T = 1 2 " 1'-0"EMB.INFILL CONCRETE REBATEC35 MIN.CEMENT CONTENT = 20.6 LB/FT3AGGREGATE SIZE = 13/32" MAX.80 SLUMP 3 " S H E L L H O O P B A R ( 1 ) # 5 C I R C . B A R C L A S S B S P L I C E 3 0 " M I N . L A P S P L I C E I N T E R N A L F A C E S O F R E B A T E T O B E P R E P A R E D A N D T R E A T E D W I T H C O N C R E T E B O N D I N G A G E N T . DETAILScale: 3/4" = 1'-0"3 REBAR SIZE#5AMOUNT REQ'D.121TYP. SPACING12" C-C 18"36" 2 2 C H E S T N U T S T R E E T E V A N S V I L L E , I N 4 7 7 1 3 8 1 2 . 4 2 2 . 2 5 5 8 8 1 2 . 4 2 2 . 3 3 3 7 ( F A X ) w w w . h o d g e s t r u c t u r a l . c o m © H O D G E S T R U C T U R A L E N G I N E E R S E X P R E S S L Y R E S E R V E S I T S C O M M O N L A W C O P Y R I G H T I N T H E S E P L A N S . T H E S E P L A N S A R E N O T T O B E R E P R O D U C E D , C H A N G E D O R C O P I E D I N A N Y F O R M O R M A N N E R W H A T S O E V E R , N O R A R E T H E Y T O B E A S S I G N E D T O A N Y T H I R D P A R T Y W I T H O U T F I R S T O B T A I N I N G T H E E X P R E S S W R I T T E N P E R M I S S I O N A N D C O N S E N T O F H O D G E S T R U C T U R A L E N G I N E E R S . C U S T O M E R : P R O J E C T T I T L E : 1 6 T - 0 1 1 6 H S E P R O J E C T # : D W M D R A W N B Y : W G H C H E C K E D B Y : R E V I S I O N S : D A T E : S H E E T T I T L E : S E C T I O N D E T A I L S S H E E T N U M B E R : F . 0 2 9 / 2 6 / 2 0 1 6 2 5 0 , 0 0 0 G A L . G . S . T . M O D E L 3 6 3 5 S R 2 0 3 6 . 4 2 ' Ø X 3 2 . 6 8 ' H L L C U S T O M E R N U M B E R : S O 1 6 1 9 6 1 1 0 / 4 / 2 0 1 6 L O C A T I O N : G R E A T O A K S L A N D F I L L R A N D L E M A N , N C P e r m a s t o r e T a n k s & S i l o s E y e , S u f f o l k I P 2 3 7 H S , E n g l a n d T e l 0 1 1 4 4 1 3 7 9 8 7 0 7 2 3 F a x 0 1 1 4 4 1 3 7 9 8 7 0 5 3 0 P e r m a s t o r e ® i s a r e g i s t e r e d t r a d e m a r k o f P e r m a s t o r e L t d . 1 No. By Description of work included with this cover: This document contains calculations for a Fusion Model 3635 SR20 glass coated steel storage tank's foundation design. It contains pages 1/52 through 52/52. Permastore Project No.: SO16196 Eye Sulfolk, England ISSUED Hodge Structural Engineers PROJECT FEC Great Oaks Landfill Randleman, NC Model 3635 SR(20") 36.42' Dia. x 32.68' HWL PREPARED FOR Permastore Tanks & Silos September 28, 2016 PREPARED BY REVISIONS Date Description 22 Chestnut Street Evansville, IN 47713 (812) 422-2558 – phone HSE Project No.: 16T-0116 HODGE STRUCTURAL ENGINEERS 22 Chestnut Street · Evansville, Indiana 47713 · tel: 812.422.2558 · www.hodgedesign.com HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Bolted Tank, Embedded Starter Ring Loadings Per AWWA D103‐09, ASCE 7‐10 Tank Geometry: Tank Model Diameter of tank Dtank =36.42 ft Radius of tank Rtank =18.21 ft Total height of tank shell Htank =33.93 ft Freeboard Provided FB =1.15 ft OK Design Height of liquid level HLL =32.53 ft Height of overflow level above concrete OFL =32.12 ft Net capacity of tank Capacity =250,232 gallons Roof type (dome, cone, open)dome Starter ring embedment SRemb =0.42 ft Starter ring plate thickness SRtk =0.157 in Density of steel λsteel =490.0 pcf Specific gravity of liquid stored SG =1.05 Density of liquid stored λliq =65.5 pcf Tank Parameters Roof live loading RLL =25 psf Roof snow loading RSL =25 psf Wind design per AWWA D103‐09 Wind speed (3 sec gust) (figure 20)Vwind =100 mph Wind exposure category (15.1.3)exwind =C Wind importance factor Iwind =1.15 3635 SR20 ߣ ൌ ܵܩ ∗ 62.4݂ܿ v. 1.4 1 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Tank Parameters Continued Seismic design per AWWA D103‐09 Seismic site class (table 3)SSC =D Seismic use group (14.2.1)SUG =III Seismic design category (ASCE 7‐10)SDC =C Seismic importance factor (table 2)Iseismic =1.5 0.2 second MCESRA (ASCE 7‐10)SS =0.187 g 1 second MCESRA (ASCE 7‐10)S1 =0.088 g Short period site coefficient (ASCE 7‐10)Fa =1.600 Long period site coefficient (ASCE 7‐10)Fv =2.400 0.2 sec design earthquake spectral response (14.2.7.3) SDS =0.199 g 1 sec design earthquake spectral response (14.2.7.3) SD1 =0.141 g Vertical seismic design acceleration (14.3.4.3) Av =0.03 g Long period ground regional motion (ASCE 7‐10) TL =8 sec Impulsive response modification factor (table 6) Ri =3 Convective response modification factor (table 6) Rc =1.5 Damping scaling factor (14.2.7.3.2)Kseismic =1.5 sec v. 1.4 2 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Tank Loadings Provided by Manufacturer Total product load HLproduct =2,239.9 kip Shell dead load DLshell =26.4 kip Floor dead load DLfloor =n/a kip Total roof dead load including roof structure DLroof =3.6 kip Total tank dead load DLtank =30.0 kip Total roof live loading RLL =26.1 kip Total roof snow loading RSL =26.1 kip Total wind shear Vw =26.1 kip Total wind uplift on roof Uw =33.4 kip Wind overturning moment at base of tank Mw =488.7 kip Total seismic shear Vs =125.5 kip Seismic overturning moment at base of tank Ms =1,711.2 kip Seismic overturning moment for slab Mmf =2,364.7 kip Hydrostatic shear at tank‐to‐concrete Vhydro =1.79 kip/ft Hydrostatic moment at tank‐to‐concrete Mhydro =0.05 kip*ft/ft Hydrodynamic shear at tank‐to‐concrete Vhydro_s =0.09 kip/ft Hydrodynamic moment at tank‐to‐concrete Mhydro_s =0.01 kip*ft/ft v. 1.4 3 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Estimated Tank Loadings Total product load HLproduct =2,220.3 kip agree Shell dead load DLshell =23.8 kip agree Floor dead load DLfloor =3.8 kip Total roof dead load including roof structure DLroof =3.4 kip agree Total tank dead load DLtank =31.0 kip agree Total roof live loading RLL =26.0 kip agree Total roof snow loading RSL =26.0 kip agree Wind shear on tank Vshell =23.8 kip Wind shear on roof (assume dome style)Vroof =2.1 kip Wind uplift on roof (assume dome style)Uroof =33.4 kip agree Total wind shear Vw =25.9 kip agree Wind overturning moment at base of tank Mw =480.6 kip agree Total seismic shear Vs =125.3 kip agree Seismic overturning moment at base of tank Ms =1,692.5 kip agree Seismic overturning moment for slab Mmf =2,344.0 kip agree v. 1.4 4 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Wind Design AWWA D103‐09 Wind pressure (15.1.1)Pw =Cf*32.1 psf (eq 15‐1) Shape factor (table 9)CfFlat =1.0 CfCyl =0.6 CfSphere =0.5 Gust effect factor (15.1.1)G =1.0 Velocity pressure exposure coefficient (table 10)kz =1.09 Velocity pressure qz =32.1 psf (eq 15‐2) ܲ௪ ൌݍ௭ܩܥ 30ܥ ݍ௭ ൌ 0.00256݇௭ܫ௪ௗܸ௪ௗଶ v. 1.4 5 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Seismic Design AWWA D103‐09 Iseismic =1.5 SS =0.187 g S1 =0.088 g (eq 14‐5)SMS =0.299 g (eq 14‐6)SM1 =0.211 g (eq 14‐7)SDS =0.199 g (eq 14‐8)SD1 =0.141 g Ri =3 Rc =1.5 Kseismic =1.5 sec TL =8 sec (eq 14‐18)Tc =3.49 sec (eq 14‐9)Sai =0.199 g (eq 14‐12 & 14‐13)Sac =0.06 g when Tc <= TL (eq 14‐16)Ai =0.07 g (eq 14‐17)Ac =0.04 g (eq 14‐20 & 14‐21), Impulsive weight Wi =1,693.3 kip when D/H<1.333 (eq 14‐22), Convective weight Wc =575.0 kip (eq 14‐24 & 14‐25), Impulsive moment arm Xi =12.8 ft when D/H<1.333 (eq 14‐26), Convective moment arm Xc =23.3 ft (eq 14‐29 & 14‐30), Impulsive moment arm for slab Ximf =18.5 ft when D/H=>1.333 (eq 14‐31), Convective moment arm for slab Xcmf =24.0 ft Snow load to be included in seismic shear Slseismic =0.0 kip ASCE 7‐10, 12.7.2(4) v. 1.4 6 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Seismic Design Continued (eq 14‐27), Seismic shear at base of tank Vseismic =125.3 kip (eq 14‐19), Seismic overturning moment at base of tank Ms =1692.5 kip*ft (eq 14‐28), Seismic overturning moment at base of tank Mmf =2344.0 kip*ft Check Sloshing Wave Height AWWA D103‐09 (eq 14‐49), convective design acceleration for sloshing wave Af =0.061 g when SUG=III & Tc<=TL (eq 14‐48), sloshing wave height above MOL d =1.1 ft (table 7) Minimum freeboard requirements δwave =1.1 ft Per A.14.3.4.4, freeboard may be limited to 4 feet δwave =1.10 ft δwave =13.2 in v. 1.4 7 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Anchor Rod Loads Number of anchor rods ARqty =39 Anchor rod circle diameter ARcd =36.71 ft Anchor rod Strength Level design loads: for anchorage in concrete design Tension: ΩP_ARw =2.84 kip Ω =1.6 ɸ =0.9 ΩP_ARs =12.67 kip Ω =2.8 ɸ =0.9 Shear: (using 1/3 of the anchor rods as being engaged) ΩP_ARw =3.87 kip Ω =1.6 ɸ =0.9 ΩP_ARs =0.00 kip Ω =2.8 ɸ =0.9 Ωܲ_ܣܴ௪ ൌ 4Ωܯ௪ ܣܴ௧௬ ∗ܣܴௗ െ ɸܦܮ௧ െΩܷ௪ௗ ܣܴ௧௬ Ωܲ_ܣܴ௦ ൌ 4Ωܯ௦ ܣܴ௧௬ ∗ܣܴௗ െ ɸܦܮ௧ ܣܴ௧௬ Ωܸ_ܣܴ௪ ൌ Ωܸ௪ 1 3 ܣܴ௧௬ െ ɸܦܮ௧ െΩܷ௪ௗ ܣܴ௧௬ Ωܸ_ܣܴ௦ ൌ Ωܸ௦ 13 ܣܴ௧௬ െ ɸሺܦܮ௧ ܪܮௗ௨௧ሻ ܣܴ௧௬ v. 1.4 8 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Bolted Tank, Embedded Starter Ring Foundation Design Per AWWA D103‐09, ASCE 7‐10, ACI 318‐11 Tank Geometry: Tank Model Diameter of tank Dtank =36.42 ft Radius of tank Rtank =18.21 ft Design Height of liquid level HLL =32.53 ft Starter ring embedment SRemb =0.42 ft Starter ring plate thickness SRtk =0.16 in Density of steel λsteel =490.00 pcf Density of liquid stored λliq =65.52 pcf Foundation Geometry: Thickness of slab Slabtk =2.00 ft Mat outside radius RWosr =19.50 ft > 9in Foundation projection above grade FDNproj =0.50 ft Mat depth below grade RWdepth =1.50 ft Concrete compressive strength f'c =4,000 psi Reinforcement bar yield strength Fybar =60,000 psi Density of concrete λconc =145 pcf Reinforcement Placement & Size, Curb Reinforcement Number of active curb hoop bars outside of shell curbqty =2 Rebar curb hoop size curbsize =7 # bar Rebar curb hoop area curbarea =0.60 in2 per bar Total rebar curb hoop area provided curbarea_prov =1.20 in2 OK Total rebar curb hoop area required curbarea_req =0.97 in2 Minimum lap splice, Class B curbsplice =53 in 3635 SR20 v. 1.4 9 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Tank Loadings Total product load HLproduct =2,239.9 kip Shell dead load DLshell =26.4 kip Floor dead load DLfloor =3.8 kip Total roof dead load including roof structure DLroof =3.6 kip Total tank dead load DLtank =31.0 kip Total roof live loading RLL =26.1 kip Total roof snow loading RSL =26.1 kip Total wind shear Vw =26.1 kip Total wind uplift Uw =33.4 kip Wind overturning moment at base of tank Mw =488.7 kip Total seismic shear Vs =125.5 kip Seismic overturning moment at base of tank Ms =1,711.2 kip Seismic overturning moment for slab Mmf =2,364.7 kip Vertical seismic design acceleration Av =0.03 g Hydrostatic shear at tank‐to‐concrete connection Vhydro =1.79 kip/ft Hydrostatic moment at tank‐to‐concrete connection Mhydro =0.05 kip*ft/ft Hydrodynamic shear at tank‐to‐concrete connection Vhydro_s =0.09 kip/ft Hydrodynamic moment at tank‐to‐concrete connection Mhydro_s =0.01 kip*ft/ft v. 1.4 10 of 11 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Foundation Reinforcement Design: Curb hoop reinforcement design, Horizontal Pressure on Ringwall Tcurb =32.6 kip Vhydro =1.8 kip/ft Vhydro_s =0.1 kip/ft Estimated hydrostatic curb hoop shear VhydroEstimated =1.6 kip/ft ω =2.634 ft‐1 Area required due to horizontal pressure Ascurb =0.97 in2 Ω =1.6 ɸ =0.9ܣ௦ܿݑݎܾ ൌ Ωܶ௨ ߶ܨ௬ܾܽݎ ܶ௨ ൌ 1 2 ܸ∗ܦ݅ܽ v. 1.4 11 of 11 1/5Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: Subject/Topic: Great Oaks LandfillProject name: DWMProject engineer: PermastoreCompany name: PROJECT DATA: Description: Seismic DesignNotes/Remarks: Embedment Design - Seismic Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 2/5Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: LOAD ACTIONS: [lb], [ft-lb] GEOMETRY: -Muz -Muy -Mux lb0Vuy lb0Vux lb12670Nu Design loads / actions Y-direction %100Load reversal X-direction %100Load reversal Embedment Design - Seismic Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 3/5Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: Issued: 7/1/2014 ESR-3298 (Rev. 1/15)Approval: hef =12.000 inchEffective embedment depth: 3/4" rod ASTM A 36/F 1554, A 36 Pure110+ with Threaded RodSelected anchor: SUMMARY: NoShort term loading: No (factor for closely spaced adhesive anchors)ψg,Na Factor: No (0%)Sustained Load (Tension): Yes (D.3.3.5.3(c))Shear load Yes (D.3.3.4.3(d))Tension load YesSeismic Loads: DryDrill hole condition:Hammer drillingDrilling method: Long term temperature: 110°F, Short term temperature: 140°FTemperature range: not existentStand-off: Condition BShear:Condition BTension: none edge reinforcement or < #4 barReinforcement: YesAnchor Ductility:inch36.00scr=inch28.87cac= inch13.75hmin=inch3.75smin=inch1.75cmin=Anchor Parameters: User enters loadΩ0= Factored loads taken from Section 9.2Load combination: psi= 4000f'ccracked concreteNormal weight concreteConcrete: ACI 318-11 (Appendix D)Design method: Basic principles of Design: Resulting anchor forces / load distribution:: lb0lb12670Maximum lb0lb12670#1 Shear loadTension loadAnchor No. lb0Resulting compression force: lb12670Resulting tension force: psi0Max. concrete compression stress: ‰0.00Max. concrete compression strain: -----Interaction OK-----Shear load 0.87 ≤ 1.0lb14550lb12670Tension load StatusCapacityDemandDesign proof:Calculations: Embedment Design - Seismic Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 4/5Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: ReferenceDESIGN PROOF TENSION LOADING: Nua /(Φ *Nsa)=12670 lb /14550 lb =0.87 ≤1.00Design proof: = 12670 lbNua = 0.75 * 19400 lb = 14550 lb D.5.1.2=Φ *NsaΦ*Nsa D.5.1= 19400 lbNsa Steel strength: Nua /(Φ *Ncb)=12670 lb /17660 lb =0.72 ≤1.00Design proof: lb= 12670Nua lb= 17660 = 0.75 * 0.65 * (1119.24 / 1261.67) * 0.932 * 1.00 * 1.000 * 43803 lb D.5.2.1=Φseis *Φ *(ANc /ANc0)*ψed,N *ψc,N *ψcp,N *NbΦ*Ncb D.5.2.7= 1.000ψcp,N inch= 13.75ca,min inch= 28.87cac D.5.2.6= 1.00ψc,N D.5.2.5= 0.932ψed,N inch²= 1119.24ANc inch²= 1261.67ANc0 inch= 11.840h'ef D.5.2.3=h 'efhef =17.0 *63.25 *1.00 *41.569 =43803 lb D.5.2.2=kc *f 'c0.5 *λa *hef1.5Nb = 17.0kc inch= 12.000hef Concrete Breakout Strength: Embedment Design - Seismic Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 5/5Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: Nua /(Φ *Npn)=12670 lb /14728 lb =0.86 ≤1.00Design proof: lb= 12670Nua lb = 14728 = 0.75 * 0.65 * (353.92 / 353.92) * 1.000 * 1.000 * 30211 lb =Φseis *Φ *(ANa /ANa0)*ψed,Na *ψcp,Na *NbaΦ*Na D.5.5.5= 1.000ψcp,Na inch= 13.75ca,min D.6.5.4= 1.000ψed,Na inch²= 353.92ANa0 inch²= 353.92ANa = 1.00 * 1068 * π * 0.750 * 12.000 = 30211 lb D.5.5.2=λa *τK,cr *π *da *hef lbNba inch= 12.000h'ef Pullout / Bond strength: Fastening ok! Overhead installation direction (vertical up) with adhesive anchors is considered a special case due to difficulty with placement and installation. These applications can require the use of additional hardware to facilitate proper installation and are influenced a great deal by the skill of the worker. Adhesive anchors must be qualified for use for this condition. Note: Per D.9.2.2 and D.9.2.4 installation of adhesive anchors horizontal or upwardly inclined to support sustained tension loads shall be performed by personnel certified by an applicable certification program and shall be continuously inspected during installation by an inspector specially approved for that purpose by the building official. Characteristic bond strengths depend on short-term and long-term service temperatures. Calculations including seismic design requirements in accordance with ACI 318 D.3.3/CSA A23.3 D4.3 are required for anchors in structures assigned to seismic design categories C, D, E and F. Under these seismic conditions, the direction of shear may not be predictable. As default and in accordance with ACI 318 D.3.3/CSA A23.3 D4.3 the full shear force is assumed also in reverse direction for a safe design. This may influence the direction of the controlling concrete breakout strength. D.3.3.4.3 (c) Selected: Anchor or anchor group shall be designed for the max design load combinations that include E, with E increased by Ωo. The anchor design tensile strength shall satisfy the tensile strength requirements of D.3.3.4.4. Per ACI 318-11, Part D.3.3.4.3(b) the anchor or group of anchors shall be designed fo the maximum tension that can be transmitted to the anchor or group of anchors based on the development of a ductile yield mechanism in the attachment in flexure, shear, or bearing, or a combination of those conditions, and considering both material overstrength and strain hardening effects for the attachement. The anchor desgn tensile strength shall be calculated from D.3.3.4.4. Per ACI 318-11, Part D.3.3.4.3(c) the anchor or group of anchors shall be designed for the maximum tension that can be transmitted to the anchors by a non-yielding attachment. The anchor desgn tensile strength shall be calculated from D.3.3.4.4. Per ACI 318-11, Part D.3.3.4.3(d) The anchor or group of anchors shall be designed for the maximum tension obtained from design load combinations that include E, with E increased by Ωo. The anchor design tensile strength shall satisfy the tensile strength requirements of D.4.1.1. WARNINGS / REMARKS: Embedment Design - Seismic Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 1/7Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: Subject/Topic: Great Oaks LandfillProject name: DWMProject engineer: PermastoreCompany name: PROJECT DATA: Description: Wind DesignNotes/Remarks: Embedment Design - Wind Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 2/7Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: LOAD ACTIONS: [lb], [ft-lb] GEOMETRY: -Muz -Muy -Mux lb3870Vuy lb0Vux lb2840Nu Design loads / actions Y-direction %100Load reversal X-direction %100Load reversal Embedment Design - Wind Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 3/7Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: Issued: 7/1/2014 ESR-3298 (Rev. 1/15)Approval: hef =12.000 inchEffective embedment depth: 3/4" rod ASTM A 36/F 1554, A 36 Pure110+ with Threaded RodSelected anchor: SUMMARY: NoShort term loading: No (factor for closely spaced adhesive anchors)ψg,Na Factor: No (0%)Sustained Load (Tension): NoSeismic Loads: DryDrill hole condition:Hammer drillingDrilling method: Long term temperature: 110°F, Short term temperature: 140°FTemperature range: not existentStand-off: Condition BShear:Condition BTension: none edge reinforcement or < #4 barReinforcement: YesAnchor Ductility:inch36.00scr=inch28.87cac= inch13.75hmin=inch3.75smin=inch1.75cmin=Anchor Parameters: Factored loads taken from Section 9.2Load combination: psi= 4000f'ccracked concreteNormal weight concreteConcrete: ACI 318-11 (Appendix D)Design method: Basic principles of Design: Resulting anchor forces / load distribution:: lb3870lb2840Maximum lb3870lb2840#1 Shear loadTension loadAnchor No. lb0Resulting compression force: lb2840Resulting tension force: psi0Max. concrete compression stress: ‰0.00Max. concrete compression strain: 0.59 ≤ 1.0----Interaction OK0.51 ≤ 1.0lb7566lb3870Shear load 0.20 ≤ 1.0lb14550lb2840Tension load StatusCapacityDemandDesign proof:Calculations: Embedment Design - Wind Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 4/7Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: ReferenceDESIGN PROOF TENSION LOADING: Nua /(Φ *Nsa)=2840 lb /14550 lb =0.20 ≤1.00Design proof: = 2840 lbNua = 0.75 * 19400 lb = 14550 lb D.5.1.2=Φ *NsaΦ*Nsa D.5.1= 19400 lbNsa Steel strength: Nua /(Φ *Ncb)=2840 lb /23547 lb =0.12 ≤1.00Design proof: lb= 2840Nua lb= 23547 = 0.65 * (1119.24 / 1261.67) * 0.932 * 1.00 * 1.000 * 43803 lb D.5.2.1=Φ *(ANc /ANc0)*ψed,N *ψc,N *ψcp,N *NbΦ*Ncb D.5.2.7= 1.000ψcp,N inch= 13.75ca,min inch= 28.87cac D.5.2.6= 1.00ψc,N D.5.2.5= 0.932ψed,N inch²= 1119.24ANc inch²= 1261.67ANc0 inch= 11.840h'ef D.5.2.3=h 'efhef =17.0 *63.25 *1.00 *41.569 =43803 lb D.5.2.2=kc *f 'c0.5 *λa *hef1.5Nb = 17.0kc inch= 12.000hef Concrete Breakout Strength: Embedment Design - Wind Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 5/7Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: Nua /(Φ *Npn)=2840 lb /19637 lb =0.14 ≤1.00Design proof: lb= 2840Nua lb = 19637 = 0.65 * (353.92 / 353.92) * 1.000 * 1.000 * 30211 lb =Φ *(ANa /ANa0)*ψed,Na *ψcp,Na *NbaΦ*Na D.5.5.5= 1.000ψcp,Na inch= 13.75ca,min D.6.5.4= 1.000ψed,Na inch²= 353.92ANa0 inch²= 353.92ANa = 1.00 * 1068 * π * 0.750 * 12.000 = 30211 lb D.5.5.2=λa *τK,cr *π *da *hef lbNba inch= 12.000h'ef Pullout / Bond strength: Vua /(Φ *Vsa)=3870 lb /7566 lb =0.51 ≤1.00Design proof: lb= 3870Vua = 0.65 * 11640 lb = 7566 lb D.6.1.2=Φ *VsaΦ*Vsa D.6.1lb= 11640Vsa Steel strength (without lever arm): ReferenceDESIGN PROOF SHEAR LOADING: Embedment Design - Wind Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 6/7Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: Concrete breakout strength, direction y+: Vua /(Φ *Vcbg)=3870 lb /16277 lb =0.24 ≤1.00Design proof: lb= 3870Vua lb= 16277 = 0.70 * (639.36 / 648.00) * 1.000 * 0.996 * 1.000 * 1.000 * 1.000 * 23662 lb D.6.2.1=Φ *(AVc /AVc0)*ψec,V *ψed,V *ψα,V *ψc,V *ψh,V *VbΦ*Vcb D.6.2.8= 1.000ψh,V D.6.2.7= 1.000ψc,V D.6.2.1c= 1.000ψα,V D.6.2.6= 0.996ψed,V D.6.2.5= 1.000ψec,V inch²= 639.36AVc inch²= 648.00AVc0 =1.00 *9 *63.246 *41.57 =23662 lb D.6.2.2=λa *9 *f 'c0.5 *ca11.5Vb inch= 12.00ca1 inch= 0.750da inch= 6.00le Pryout strength: Vua /(Φ *Vcp)=3870 lb /42295 lb =0.09 ≤1.00Design proof: lb= 3870Vua lb= 42295 = 0.70 * (353.92 / 353.92) * 1.000 * 1.000 * 1.000 * 30211 lb * 2.0 =Φ *(ANa /ANa0)*ψed,Na *ψp,Na *ψg,Na *Na0 *kcpΦ*Vcp D.6.3.1= 2.0kcp D.5.5.5= 1.000ψp,Na D.5.5.4= 1.000ψed,Na inch= 13.75ca,min inch²= 353.92ANa0 inch²= 353.92ANa =1.00 *1068 *π *0.750 *12.000 =30211 lb D.5.5.2=λa *τK,cr *π *da *hefNa0 inch= 12.000hef Interaction: ReferenceCOMBINATION TENSION / SHEAR LOAD: Embedment Design - Wind Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. 7/7Page:16T-0116Project number:2.3.5822.18147Version: 9/28/2016Date:Great Oaks LandfillProject: PermastoreCompany name: = ( 0.20 + 0.51 ) / 1.2 = 0.59 ≤ 1.0 D.7.3=Nu /(Φ *Nn)+Vu /(Φ *Vn)/1.2Design proof: Fastening ok! Overhead installation direction (vertical up) with adhesive anchors is considered a special case due to difficulty with placement and installation. These applications can require the use of additional hardware to facilitate proper installation and are influenced a great deal by the skill of the worker. Adhesive anchors must be qualified for use for this condition. Note: Per D.9.2.2 and D.9.2.4 installation of adhesive anchors horizontal or upwardly inclined to support sustained tension loads shall be performed by personnel certified by an applicable certification program and shall be continuously inspected during installation by an inspector specially approved for that purpose by the building official. Characteristic bond strengths depend on short-term and long-term service temperatures. WARNINGS / REMARKS: Embedment Design - Wind Design.pcp2www.powers.com - Powers Fasteners (see website for regional contact information). Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines and must be checked for plausibility. HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Subgrade Spring Adjustment Determine Approximate Interrelationship "k" value: Net Bearing Pressure Bp =3,000 psf Bp =20.8 psi Approximate Modulus of Subgrade Reaction K =100 pci Diameter of Slab Dslab =39 ft Circle Footing to Approximate Square Footing B =34.6 ft Approximate "k" Value for Slab KBxB =26.5 pci KBxB =45.7 kcf Use:KBxB =45 kcf ܤൌܦ௦ 2 ߨ ܭ௫ ൌܭ ܤ1݂ݐ 2ܤ ଶ 1 of 1 Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:01 AM mat design.fnd S1 X Z Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:04 AM mat design.fnd X Z Material Sets Conc4000NW Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:05 AM mat design.fnd .27k/ft.27k/ft.27k/ft.27k/ft .27k/ft .2 7 k/f t .2 7 k /f t .2 7 k /f t .2 7 k /f t .2 7 k /f t .2 7 k /f t .2 7 k /f t . 2 7 k / f t . 2 7 k /ft .2 7 k/ft .27k/ft .27k/ft .27k/ft .27k/ft.27k/ft.27k/ft.2 7 k/f t .2 7 k /f t .2 7 k /f t .2 7 k /f t .2 7 k /f t .2 7 k /f t .2 7 k /f t . 2 7 k / f t . 2 7 k /ft .2 7 k/ft.27k/ft XZ Loads: DL - Dead Load Company : Hodge Structural Engineers Sept 28, 2016 11:11 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Line Loads and Moments (Cat 1 : DL) Start Point End Point Direction Start Magnitude[k/ft,k-ft/ft] End Magnitude[k/ft,k-ft/ft] 1 N1 N2 Y .27 .27 2 N2 N3 Y .27 .273N3N4Y.27 .27 4 N4 N5 Y .27 .27 5 N5 N6 Y .27 .27 6 N6 N7 Y .27 .27 7 N7 N8 Y .27 .278N8N9Y.27 .27 9 N9 N10 Y .27 .27 10 N10 N11 Y .27 .27 11 N11 N12 Y .27 .27 12 N12 N13 Y .27 .2713N13N14Y.27 .27 14 N14 N15 Y .27 .27 15 N15 N16 Y .27 .27 16 N16 N17 Y .27 .27 17 N17 N18 Y .27 .2718N18N19Y.27 .27 19 N19 N20 Y .27 .27 20 N20 N21 Y .27 .27 21 N21 N22 Y .27 .27 22 N22 N23 Y .27 .2723N23N24Y.27 .27 24 N24 N25 Y .27 .27 25 N25 N26 Y .27 .27 26 N26 N27 Y .27 .27 27 N27 N28 Y .27 .2728N28N29Y.27 .27 29 N29 N30 Y .27 .27 30 N30 N31 Y .27 .27 31 N31 N32 Y .27 .27 32 N32 N1 Y .27 .27 RISAFoundation Version 8.0.1 Page 5 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:07 AM mat design.fnd 2.14ksf XZ Loads: HL - Hydrostatic Load Company : Hodge Structural Engineers Sept 28, 2016 11:13 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Area Loads (Cat 10 : HL) Label Base Mag[ksf] Peak Mag[ksf] 1 AL1 2.14 2.14 RISAFoundation Version 8.0.1 Page 11 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:07 AM mat design.fnd .23k/ft.23k/ft.23k/ft.23k/ft .23k/ft .2 3 k/f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t . 2 3 k / f t . 2 3 k /ft .2 3 k/ft .23k/ft .23k/ft .23k/ft .23k/ft.23k/ft.23k/ft.2 3 k/f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t . 2 3 k / f t . 2 3 k /ft .2 3 k/ft.23k/ft XZ Loads: RLL - Roof Live Load Company : Hodge Structural Engineers Sept 28, 2016 11:13 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Line Loads and Moments (Cat 6 : RLL) Start Point End Point Direction Start Magnitude[k/ft,k-ft/ft] End Magnitude[k/ft,k-ft/ft] 1 N1 N2 Y .23 .23 2 N2 N3 Y .23 .233N3N4Y.23 .23 4 N4 N5 Y .23 .23 5 N5 N6 Y .23 .23 6 N6 N7 Y .23 .23 7 N7 N8 Y .23 .238N8N9Y.23 .23 9 N9 N10 Y .23 .23 10 N10 N11 Y .23 .23 11 N11 N12 Y .23 .23 12 N12 N13 Y .23 .2313N13N14Y.23 .23 14 N14 N15 Y .23 .23 15 N15 N16 Y .23 .23 16 N16 N17 Y .23 .23 17 N17 N18 Y .23 .2318N18N19Y.23 .23 19 N19 N20 Y .23 .23 20 N20 N21 Y .23 .23 21 N21 N22 Y .23 .23 22 N22 N23 Y .23 .2323N23N24Y.23 .23 24 N24 N25 Y .23 .23 25 N25 N26 Y .23 .23 26 N26 N27 Y .23 .23 27 N27 N28 Y .23 .2328N28N29Y.23 .23 29 N29 N30 Y .23 .23 30 N30 N31 Y .23 .23 31 N31 N32 Y .23 .23 32 N32 N1 Y .23 .23 RISAFoundation Version 8.0.1 Page 9 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:06 AM mat design.fnd .23k/ft.23k/ft.23k/ft.23k/ft .23k/ft .2 3 k/f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t . 2 3 k / f t . 2 3 k /ft .2 3 k/ft .23k/ft .23k/ft .23k/ft .23k/ft.23k/ft.23k/ft.2 3 k/f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t .2 3 k /f t . 2 3 k / f t . 2 3 k /ft .2 3 k/ft.23k/ft XZ Loads: SL - Snow Load Company : Hodge Structural Engineers Sept 28, 2016 11:12 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Line Loads and Moments (Cat 5 : SL) Start Point End Point Direction Start Magnitude[k/ft,k-ft/ft] End Magnitude[k/ft,k-ft/ft] 1 N1 N2 Y .23 .23 2 N2 N3 Y .23 .233N3N4Y.23 .23 4 N4 N5 Y .23 .23 5 N5 N6 Y .23 .23 6 N6 N7 Y .23 .23 7 N7 N8 Y .23 .238N8N9Y.23 .23 9 N9 N10 Y .23 .23 10 N10 N11 Y .23 .23 11 N11 N12 Y .23 .23 12 N12 N13 Y .23 .2313N13N14Y.23 .23 14 N14 N15 Y .23 .23 15 N15 N16 Y .23 .23 16 N16 N17 Y .23 .23 17 N17 N18 Y .23 .2318N18N19Y.23 .23 19 N19 N20 Y .23 .23 20 N20 N21 Y .23 .23 21 N21 N22 Y .23 .23 22 N22 N23 Y .23 .2323N23N24Y.23 .23 24 N24 N25 Y .23 .23 25 N25 N26 Y .23 .23 26 N26 N27 Y .23 .23 27 N27 N28 Y .23 .2328N28N29Y.23 .23 29 N29 N30 Y .23 .23 30 N30 N31 Y .23 .23 31 N31 N32 Y .23 .23 32 N32 N1 Y .23 .23 RISAFoundation Version 8.0.1 Page 8 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:06 AM mat design.fnd .47k/ft .46k/ft.46k/ft.43k/ft.43k/ft.39k/ft.39k/ft.33k/ft.33k/ft.26k/ft.26k/ft.18k/ft.18 k/ft.0 9 k/f t.0 9 k /f t0k/f t .47k/ft .46k/ft .4 6 k/ft .4 3 k/ft . 4 3 k /ft . 3 9 k /ft . 3 9 k / f t . 3 3 k / f t .3 3 k/f t .2 6 k/f t .2 6 k /f t .1 8 k /f t .1 8k /f t .0 9k /f t .0 9 k /f t0k/f t -.47k/ft -.46k/ft-.4 6k/ft -.43k/ft-. 4 3 k /ft -. 3 9 k /ft - . 3 9 k / f t - . 3 3 k / f t -.3 3 k /f t -.2 6 k /f t -.2 6 k /f t -.1 8 k /f t -.1 8 k /f t-.0 9 k /f t -.0 9 k /f t0k/f t -.47k/ft -.46k/ft -.46k/ft -.43k/ft -.43k/ft-.39k/ft -.39k/ft-.33k/ft-.33k/ft-.26k/ft-.26k/ft-.18k/ft-.18k/ft-.09k/ft-.0 9 k /f t0k/f t XZ Loads: WL - Wind Load Company : Hodge Structural Engineers Sept 28, 2016 11:12 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Line Loads and Moments (Cat 4 : WL) Start Point End Point Direction Start Magnitude[k/ft,k-ft/ft] End Magnitude[k/ft,k-ft/ft] 1 N1 N2 Y .47 .46 2 N2 N3 Y .46 .433N3N4Y.43 .39 4 N4 N5 Y .39 .33 5 N5 N6 Y .33 .26 6 N6 N7 Y .26 .18 7 N7 N8 Y .18 .098N8N9Y.09 0 9 N1 N32 Y .47 .46 10 N32 N31 Y .46 .43 11 N31 N30 Y .43 .39 12 N30 N29 Y .39 .3313N29N28Y.33 .26 14 N28 N27 Y .26 .18 15 N27 N26 Y .18 .09 16 N26 N25 Y .09 0 17 N17 N16 Y -.47 -.4618N16N15Y-.46 -.43 19 N15 N14 Y -.43 -.39 20 N14 N13 Y -.39 -.33 21 N13 N12 Y -.33 -.26 22 N12 N11 Y -.26 -.1823N11N10Y-.18 -.09 24 N10 N9 Y -.09 0 25 N17 N18 Y -.47 -.46 26 N18 N19 Y -.46 -.43 27 N19 N20 Y -.43 -.3928N20N21Y-.39 -.33 29 N21 N22 Y -.33 -.26 30 N22 N23 Y -.26 -.18 31 N23 N24 Y -.18 -.09 32 N24 N25 Y -.09 0 RISAFoundation Version 8.0.1 Page 7 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:09 AM mat design.fnd -.3k/ft-.3k/ft-.3k/ft -.3k/ft -.3k/ft -.3 k /f t -.3 k /f t -.3 k /f t -.3 k /f t -.3 k /f t -.3 k /f t -.3 k /f t - . 3 k / f t -. 3 k /ft -.3 k/ft -.3k/ft -.3k/ft -.3k/ft -.3k/ft-.3k/ft-.3k/ft-.3 k /f t -.3 k /f t -.3 k /f t -.3 k /f t -.3 k /f t -.3 k /f t -.3 k /f t - . 3 k / f t - . 3 k /ft -.3 k/ft-.3k/ft XZ Loads: WLY - Wind Load Y Company : Hodge Structural Engineers Sept 28, 2016 11:10 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Line Loads and Moments (Cat 30 : WLY) Start Point End Point Direction Start Magnitude[k/ft,k-ft/ft] End Magnitude[k/ft,k-ft/ft] 1 N1 N2 Y -.3 -.3 2 N2 N3 Y -.3 -.33N3N4Y-.3 -.3 4 N4 N5 Y -.3 -.3 5 N5 N6 Y -.3 -.3 6 N6 N7 Y -.3 -.3 7 N7 N8 Y -.3 -.38N8N9Y-.3 -.3 9 N9 N10 Y -.3 -.3 10 N10 N11 Y -.3 -.3 11 N11 N12 Y -.3 -.3 12 N12 N13 Y -.3 -.313N13N14Y-.3 -.3 14 N14 N15 Y -.3 -.3 15 N15 N16 Y -.3 -.3 16 N16 N17 Y -.3 -.3 17 N17 N18 Y -.3 -.318N18N19Y-.3 -.3 19 N19 N20 Y -.3 -.3 20 N20 N21 Y -.3 -.3 21 N21 N22 Y -.3 -.3 22 N22 N23 Y -.3 -.323N23N24Y-.3 -.3 24 N24 N25 Y -.3 -.3 25 N25 N26 Y -.3 -.3 26 N26 N27 Y -.3 -.3 27 N27 N28 Y -.3 -.328N28N29Y-.3 -.3 29 N29 N30 Y -.3 -.3 30 N30 N31 Y -.3 -.3 31 N31 N32 Y -.3 -.3 32 N32 N1 Y -.3 -.3 RISAFoundation Version 8.0.1 Page 3 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:09 AM mat design.fnd .4 6 k /f t .4 6 k /f t .4 6 k /f t .4 6 k /f t . 4 6 k / f t . 4 6 k /ft .4 6 k/ft.46k/ft.46k/ft.46k/ft.46k/ft.46k/ft .46k/ft .46 k/f t .4 6 k /f t .4 6 k /f t XZ Loads: WLZ - Wind Load Z Company : Hodge Structural Engineers Sept 28, 2016 11:10 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Line Loads and Moments (Cat 31 : WLZ) Start Point End Point Direction Start Magnitude[k/ft,k-ft/ft] End Magnitude[k/ft,k-ft/ft] 1 N25 N26 Z .46 .46 2 N26 N27 Z .46 .463N27N28Z.46 .46 4 N28 N29 Z .46 .46 5 N29 N30 Z .46 .46 6 N30 N31 Z .46 .46 7 N31 N32 Z .46 .468N32N1Z.46 .46 9 N1 N2 Z .46 .46 10 N2 N3 Z .46 .46 11 N3 N4 Z .46 .46 12 N4 N5 Z .46 .4613N5N6Z.46 .46 14 N6 N7 Z .46 .46 15 N7 N8 Z .46 .46 16 N8 N9 Z .46 .46 RISAFoundation Version 8.0.1 Page 2 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:06 AM mat design.fnd 2.27k/ft 2.23k/ft2.23k/ft 2.1k/ft2.1k/ft1.89k/ft1.89k/ft1.61k/ft1.61k/ft1.26k/ft1.26k/ft.87k/ft.87 k/ft.4 4 k/f t.4 4 k /f t0k/f t 2.27k/ft 2.23k/ft 2.2 3k/ft 2.1k/ft 2 . 1 k /ft 1 . 8 9 k /ft 1 . 8 9 k / f t 1 . 6 1 k / f t 1 .6 1 k /f t 1 .2 6 k /f t 1 .2 6 k /f t .8 7 k /f t .8 7 k /f t .4 4 k /f t .4 4 k /f t0k/f t -2.27k/ft -2.23k/ft-2.2 3k/ft -2.1k/ft- 2 . 1 k /ft - 1 . 8 9 k /ft - 1 . 8 9 k / f t - 1 . 6 1 k / f t -1 .6 1 k /f t -1 .2 6 k /f t -1 .2 6 k /f t -.8 7 k /f t -.8 7 k /f t-.4 4 k /f t -.4 4k /f t0k/f t -2.27k/ft -2.23k/ft -2.23k/ft -2.1k/ft -2.1k/ft-1.89k/ft -1.89k/ft-1.61k/ft-1.61k/ft-1.26k/ft-1.26k/ft-.87k/ft-.87k/ft-.44k/ft-.4 4 k /f t0k/f t XZ Loads: EL - Earthquake Load Company : Hodge Structural Engineers Sept 28, 2016 11:11 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Line Loads and Moments (Cat 3 : EL) Start Point End Point Direction Start Magnitude[k/ft,k-ft/ft] End Magnitude[k/ft,k-ft/ft] 1 N1 N2 Y 2.27 2.23 2 N2 N3 Y 2.23 2.13N3N4Y2.1 1.89 4 N4 N5 Y 1.89 1.61 5 N5 N6 Y 1.61 1.26 6 N6 N7 Y 1.26 .87 7 N7 N8 Y .87 .448N8N9Y.44 0 9 N1 N32 Y 2.27 2.23 10 N32 N31 Y 2.23 2.1 11 N31 N30 Y 2.1 1.89 12 N30 N29 Y 1.89 1.6113N29N28Y1.61 1.26 14 N28 N27 Y 1.26 .87 15 N27 N26 Y .87 .44 16 N26 N25 Y .44 0 17 N17 N16 Y -2.27 -2.2318N16N15Y-2.23 -2.1 19 N15 N14 Y -2.1 -1.89 20 N14 N13 Y -1.89 -1.61 21 N13 N12 Y -1.61 -1.26 22 N12 N11 Y -1.26 -.8723N11N10Y-.87 -.44 24 N10 N9 Y -.44 0 25 N17 N18 Y -2.27 -2.23 26 N18 N19 Y -2.23 -2.1 27 N19 N20 Y -2.1 -1.8928N20N21Y-1.89 -1.61 29 N21 N22 Y -1.61 -1.26 30 N22 N23 Y -1.26 -.87 31 N23 N24 Y -.87 -.44 32 N24 N25 Y -.44 0 RISAFoundation Version 8.0.1 Page 6 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:08 AM mat design.fnd .03ksf XZ Loads: ELY - Earthquake Load Y Company : Hodge Structural Engineers Sept 28, 2016 11:13 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Area Loads (Cat 27 : ELY) Label Base Mag[ksf] Peak Mag[ksf] 1 AL2 .03 .03 RISAFoundation Version 8.0.1 Page 10 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 11:08 AM mat design.fnd 2 .2 k /f t 2 .2 k /f t 2 .2 k /f t 2 .2 k /f t 2 . 2 k / f t 2 . 2 k /ft 2.2 k/ft2.2k/ft2.2k/ft2.2k/ft2.2k/ft2.2k/ft 2.2k/ft 2 .2 k/f t 2 .2 k /f t 2 .2 k /f t XZ Loads: ELZ - Earthquake Load Z Company : Hodge Structural Engineers Sept 28, 2016 11:11 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Line Loads and Moments (Cat 28 : ELZ) Start Point End Point Direction Start Magnitude[k/ft,k-ft/ft] End Magnitude[k/ft,k-ft/ft] 1 N25 N26 Z 2.2 2.2 2 N26 N27 Z 2.2 2.23N27N28Z2.2 2.2 4 N28 N29 Z 2.2 2.2 5 N29 N30 Z 2.2 2.2 6 N30 N31 Z 2.2 2.2 7 N31 N32 Z 2.2 2.28N32N1Z2.2 2.2 9 N1 N2 Z 2.2 2.2 10 N2 N3 Z 2.2 2.2 11 N3 N4 Z 2.2 2.2 12 N4 N5 Z 2.2 2.213N5N6Z2.2 2.2 14 N6 N7 Z 2.2 2.2 15 N7 N8 Z 2.2 2.2 16 N8 N9 Z 2.2 2.2 RISAFoundation Version 8.0.1 Page 4 [\...\...\...\...\...\...\Calcs\mat design.fnd] Company : Hodge Structural Engineers Sept 28, 2016 10:59 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Slab Soil Pressures LC Label UC Soil Pressure[ksf] Allowable Bearing[ksf] Point 1 1 S1 .109 .326 3 N56 2 2 S1 .769 2.306 3 N108133S1.773 2.318 3 N1081 4 4 S1 .773 2.318 3 N1081 5 5 S1 .578 2.311 3.999 N1079 6 6 S1 .631 2.522 3.999 N33 7 7 S1 .58 2.318 3.999 N125988S1.608 2.433 3.999 N33 9 9 S1 .58 2.318 3.999 N1259 10 10 S1 .608 2.433 3.999 N33 11 11 S1 .061 .243 3.999 N33 12 12 S1 .586 2.342 3.999 N33 RISAFoundation Version 8.0.1 Page 1 [\...\...\...\...\...\...\Calcs\mat design.fnd] Company : Hodge Structural Engineers Sept 28, 2016 11:00 AMDesigner : DWM Job Number : 16T-0116 Checked By: WGHModel Name : Great Oaks Landfill Slab Overturning Safety Factors LC Slab Angle[deg] Mo-xx[k-ft] Ms-xx[k-ft] Mo-zz[k-ft] Ms-zz[k-ft] Ms-xx/Mo-xx Ms-zz/Mo-zz 1 1 S1 0 0 7313.521 0 7313.521 9.999+9.999+ 2 2 S1 0 0 50507.576 0 50507.576 9.999+9.999+3 3 S1 0 0 51019.912 0 51019.912 9.999+9.999+ 4 4 S1 0 0 51019.912 0 51019.912 9.999+9.999+ 5 5 S1 0 534.618 50507.576 0 50507.576 9.999+9.999+ 6 6 S1 0 2592.475 51113.101 0 51113.101 9.999+9.999+ 7 7 S1 0 400.963 50891.828 0 50891.828 9.999+9.999+8 8 S1 0 1944.356 51345.971 0 51345.971 9.999+9.999+ 9 9 S1 0 400.963 50891.828 0 50891.828 9.999+9.999+ 10 10 S1 0 1944.356 51345.971 0 51345.971 9.999+9.999+ 11 11 S1 0 1202.881 4388.112 668.264 4388.112 3.648 6.566 12 12 S1 0 3197.999 47582.168 605.524 47582.168 9.999+9.999+ Slab Sliding Safety Factors LC Slab Angle[deg] Va-xx[k] Vr-xx[k] Va-zz[k] Vr-zz[k] SR-xx SR-zz 1 1 S1 0 0 112.516 0 112.516 9.999+9.999+ 2 2 S1 0 0 777.04 0 777.04 9.999+9.999+3 3 S1 0 0 784.922 0 784.922 9.999+9.999+ 4 4 S1 0 0 784.922 0 784.922 9.999+9.999+ 5 5 S1 0 0 777.04 26.274 777.04 9.999+9.999+ 6 6 S1 0 0 786.355 125.656 786.355 9.999+6.258 7 7 S1 0 0 782.951 19.705 782.951 9.999+9.999+8 8 S1 0 0 789.938 94.242 789.938 9.999+8.382 9 9 S1 0 0 782.951 19.705 782.951 9.999+9.999+ 10 10 S1 0 0 789.938 94.242 789.938 9.999+8.382 11 11 S1 0 0 57.228 26.274 57.228 9.999+2.178 12 12 S1 0 0 722.718 125.656 722.718 9.999+5.752 RISAFoundation Version 8.0.1 Page 2 [\...\...\...\...\...\...\Calcs\mat design.fnd] Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 10:58 AM mat design.fnd X Z Moment Z k-ft per ft .09 -2.41 -4.91 -7.41 -9.91 -12.41 -14.91 -17.41 -19.91 -22.41 -24.91 Results for LC 20, 1.2DL+1.6HL+0.2SL+1.4EL Hodge Structural Engineers DWM 16T-0116 Great Oaks Landfill Sept 28, 2016 at 10:57 AM mat design.fnd X Z Shear Z k per ft 2.33 1.57 .81 .05 -.71 -1.47 -2.23 -2.99 -3.75 -4.51 -5.27 Results for LC 20, 1.2DL+1.6HL+0.2SL+1.4EL HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Mat Reinforcement Per ACI 318‐11 Concrete Properties: f'c =4,000 psi Concrete Design Compressive Strength fy =60,000 psi Rebar Yield Strength ɸ =0.90 ACI Tension Controlled Section ɸ =0.75 ACI Shear Controlled Section h =24 in Depth of Mat b =12 in Section of Mat Under Consideration db_t =5 size bar Top Rebar Size s_t =12 in Spacing of Top Rebar, Each Way db_b =5 size bar Bottom Rebar Size s_b =12 in Spacing of Bottom Rebar, Each Way Moments in Mat: provided from FEA analysis Mu_t =1 kip*ft/ft Maximum Positive Moment Mu_b =25 kip*ft/ft Maximum Negative Moment Shear in Mat provided from FEA analysis Vu =6 kip/ft Maximum Shear Rebar Geometry: ct =2.94 in Top Rebar Placement from Top of Mat d_t =21.06 in Distance of Top Rebar from Bottom of Mat cb =3.94 in Bottom Rebar Placement from Bottom of Mat d_b =20.06 in Distance of Bottom Rebar from Top of Mat v.1.0 1 of 2 HSE #: 16T‐0116 Great Oaks Landfill Randleman, NC 250,000 Gal. G.S.T. Model 3635 SR20 36.42' Diameter x 32.68' HLL For: Permastore Tanks and Silos Job #: SO16196 Florida Environmental Area required due to Moment in Mat, AS_t =0.011 in2/ft Top Rebar Area Required due to Bending Moment AS_b =0.274 in2/ft Bottom Rebar Area Required due to Bending Moment Area required due to shrinkage, AS_t =0.259 in2/ft Top Rebar Area Required due to Shrinkage AS_b =0.259 in2/ft Bottom Rebar Area Required due to Shrinkage Provided steel in slab, A_t =0.307 in2/ft OK A_b =0.307 in2/ft OK Check Shear Strength of Concrete, Vc =54.6 kip Vu =6 kip OK ܣ௦ ൌ െ1 1 2ܯ௨ 0.85߶݂ᇱܾ݀ଶ 0.85݂′ܾ݀ ݂௬ ܸ ܸ௨ ܸ ൌ߶2 ݂′ܾ݄ v.1.0 2 of 2 Mr. Ming-Tai Chao, P.E. October 17, 2016 ATTACHMENT 2 Registered Office: Permastore Limited, Eye, Suffolk, IP23 7HS, England. Registered No: 257009 England Project Name Great Oaks Landfill Location North Carolina Project No. SO/16196 Release Date 26/08/16 Permastore Tanks and Silos Eye, Suffolk, IP23 7HS, England Tel : +44 1379 870723 Fax : +44 1379 870530 E-mail : indsales@permastore.com This is an UNCONTROLLED document. When revised you will not be issued with an updated copy. It is your responsibility to check the details at the time of use. C O N T E N T S SECTION DESCRIPTION ONE Drawings TWO Tank Calculations Project Name Great Oaks Landfill Location North Carolina Project No. SO/16196 Release Date 26/08/16 Section One Drawings _ D O N O T S C A L E N o I S S R E V I S I O N & D A T E C N N o E N S U R E M I N I M U M D I S T O R T I O N W E L D M E T H O D M U S T A S K I F I N D O U B T E D G E S R E M O V E S H A R P PART No D R A W I N G S C A L E ( m m ) 100908070605040302010 N O U N A U T H O R I S E D C O P Y I N G O R E X H I B I T I N G C O N F I D E N T I A L C O P Y R I G H T R E S E R V E D F a x + 4 4 1 3 7 9 8 7 0 5 3 0 T e l + 4 4 1 3 7 9 8 7 0 7 2 3 I P 2 3 7 H S , E n g l a n d E y e , S u f f o l k P e r m a s t o r e L t d _ P E R M A S T O R E i s a r e g i s t e r e d t r a d e m a r k o f P e r m a s t o r e L t d C A D D R A W I N G - N O M A N U A L A L T E R A T I O N S P E R M I T T E D P A R T N o R E F U S A G E D E S C R I P T I O N M A T E R I A L M A T E R I A L S P E C F I N I S H T H I R D A N G L E P R O J E C T I O N E X P N o C H E C K E D D A T E I S S U E D S C A L E D R A W N D E G 2 1 $ 1 * 8 / $ 5 ' ( & , 0 $ / P P ' ( & , 0 $ / P P ' ( & , 0 $ / P P 1 2 ' ( & , 0 $ / 6 P P S I Z E D & D R I L L E D H O L E S ) L I N E A R ( E X C E P T S S T O C K O T H E R W I S E S T A T E D - T O L E R A N C E S U N L E S S 1 7 - 0 8 - 1 6 T N W F I R S T I S S U E 0 C O N N E C T I O N S C H E D U L E I T E M D E S C R I P T I O N O R I E N T A T I O N H E I G H T S E R V I C E A T ϯ ϭ Η D E t z Ϭ Σ 3 ' - 1 0 3 8 " T A N K A C C E S S B 4 " N B D O U B L E F L A N G E C O N N E C T O R ϰ ϱ Σ 3 1 ' - 6 1 1 6 " T . B . C . C 2 " N B D O U B L E F L A N G E C O N N E C T O R ϵ Ϭ Σ 3 1 ' - 6 1 1 6 " T . B . C . F 4 " N B D O U B L E F L A N G E C O N N E C T O R Ϯ ϳ Ϭ Σ 1 ' - 1 0 3 4 " T . B . C . G 8 " N B D O U B L E F L A N G E C O N N E C T O R Ϯ ϵ ϱ Σ 3 0 ' - 0 1 1 1 6 " O V E R F L O W H 2 " N B D O U B L E F L A N G E C O N N E C T O R ϯ Ϯ Ϭ Σ 1 1 1 4 " T . B . C . F I N I S H N O T E S : 1 . T A N K S H E E T S T O B E T R I F U S I O N G R A D E E X T E R N A L C O L O U R : B L U E 2 0 - C - 4 0 I N T E R N A L C O L O U R : B L U E / G R E E N 1 4 - C - 4 0 2 . T O P S T I F F E N E R F I N I S H : G A L V A N I S E D M I L D S T E E L 3 . F O U N D A T I O N A N G L E F I N I S H : P R I M E R P A I N T E D 4 . A C C E S S H A T C H F I N I S H : E P O X Y C O A T E D 5 . G A L V A N I S I N G S P E C I F I C A T I O N : B S E N I S O 1 4 6 1 C O N N E C T O R N O T E S : 1 . A L L F L A N G E S I N T A N K W A L L R A I S E D F A C E T O A N S I A S A 1 5 0 B 1 6 . 5 A L L H O L E S O F F C E N T R E 2 . A L L F L A N G E S I N T A N K W A L L F I N I S H : E P O X Y C O A T E D T . B . C . = T O B E C O N F I R M E D 1 6 1 9 6 - 1 - 1 - A P P 1619615-1-1-APP 3 6 3 5 S R 2 0 P E R M A S T O R E I N D T A N K F L O R I D A E N V I R O N M E N T A L C O N S T R U C T I O N I N C . G R E A T O A K L A N D F I L L T N W 1 7 - 0 8 - 1 6 1 : 5 0 R F = = T Y P I C A L D O U B L E F L A N G E C O N N E C T O R A R R A N G E M E N T N O M I N A L T A N K D I A N O M I N A L T A N K D I A P E R M A S T O R E S T O R E B O L T C / W E N C A P S U L A T E D H E A D T A N K S E A L A N T S I K A T S + C O L O U R - B L A C K N U T C O V E R C O L O U R - B L A C K T Y P I C A L D E T A I L S H O W I N G T A N K S H E E T J O I N T / N U T C O V E R A R R A N G E M E N T R E B A T E B A S E D E T A I L R E - B A R E X C L U S I O N F O U N D A T I O N B O L T BITUMINOUS SAND F L O O R S H E E T 2 3 4 " x 2 3 4 x 7 3 2 " [ 7 0 x 7 0 x 6 m m ] F O U N D A T I O N A N G L E C I V I L C O N T R A C T O R T O E N S U R E T H A T T H E I N T E R N A L F A C E O F T H E R E B A T E I S E I T H E R P R E P A R E D O R T R E A T E D T O P R O M O T E A N E F F E C T I V E B O N D W I T H T H E I N F I L L C O N C R E T E T A N K D I A M E T E R I N F I L L C O N C R E T E P L A C E D A F T E R T A N K E R E C T I O N C 3 5 M I N . D E d K E d E d Ϯ Ϭ ͘ ϲ ů ď ͬ Ĩ ƚ Ϲ ϯ ϯ Ϭ Ŭ Ő ͬ ŵ Ϲ A G G R E G A T E . 1 3 3 2 " [ 1 0 m m ] M A X . 8 0 S L U M P 1 3 1 6 " [ 3 0 m m ] D R A I N A G E P I P E 4 O F F E Q U A L L Y S P A C E D 1 5 1 6 " [ 2 5 m m ] M I N . P A C K I N G TANK PLAN ϬΣϮϳϬΣϭϴϬΣA 0 . 0 0 0 T O P O F C O N C R E T E 46 516"[1178mm]TANK ELEVATION - FOR TRUE ORIENTATIO N S S E E P L A N A L U M I N I U M L A D D E R W I T H G A L V A N I S E D S T E E L S A F E T Y C A G E A N D 3 ' - 3 3 8 " x 3 ' - 3 3 8 " [ 1 M x 1 M ] G A L V A N I S E D S T E E L P L A T F O R M S P O S I T I O N E D N O M I N A L T O E A V E S T O O S H A 1 9 1 0 . 2 7 . GEODESIC DOME ROOFBY OTHERS 13 OFF VERTICAL TANK SEAMS3 532" x 3 532"x 1332"[80x80x10mm]TOP STIFFENER ANGLE 2 3 4 " x 2 3 4 x 7 3 2 " [ 7 0 x 7 0 x 6 m m ] F O U N D A T I O N A N G L E W I N D S T I F F E N E R A S S E M B L I E S ϵ Ϭ Σ F FREEBOARDB C F A H A T C H B Y O T H E R S V E N T B Y O T H E R S 2 3 - 0 8 - 1 6 T N W C H K D : D M S C O N N E C T O R P O S I T I O N S A D D E D . V A R I A T I O N S N O T E S A D D E D ; A L L D I M E N S I O N S I M P E R I A L A N D M E T R I C . 1 CHG B G H V A R I A T I O N S T O C L I E N T R E Q U E S T S : I T E M A - M A N W A Y A T R E Q U E S T E D H E I G H T 2 ' - 6 1 4 " C H A N G E D T O 3 ' - 1 0 3 8 " T O S T A N D A R D S H E E T D E S I G N . I T E M F - R E Q U E S T E D A T 1 ' - 6 " C H A N G E D T O 1 ' - 1 0 3 4 " T O A V O I D H O R I Z O N T A L T A N K S E A M . I T E M H - R E Q U E S T E D A T 1 ' - 0 " C H A N G E D T O 1 1 1 4 " T O A V O I D H O R I Z O N T A L T A N K S E A M . 5 2 9 3 2 " [ 1 5 0 m m ] 5 2 9 3 2 " [ 1 5 0 m m ] 52932" [150mm]778" [200mm] 9 2 7 3 2 " [ 2 5 0 m m ] 3 1 5 1 6 " [ 1 0 0 m m ] 2332" [18mm] 7 7 8 " [ 2 0 0 m m ] LADDER ANDPLATFORMS33'-11732" [10343mm] HEIGHT OVER ANGLES33'-6932" [10218mm] HEIGHT ABOVE CONCRETE32'-6932" [9913mm] TOP OF LIQUID LEVEL 1'-0" [305mm]36'-5132" [11100mm] NOMINAL TANK DIAMETER1'-1034" [578mm] UNCONTROLLED Project Name Great Oaks Landfill Location North Carolina Project No. SO/16196 Release Date 26/08/16 Section Two Tank Calculations Industrial Tank Model 3635SR20 Dia 36 ft 5” Nominal Volume 254,384 US Gallons CONFIDENTIAL This report is the property of Permastore Limited, Eye, Suffolk, IP23 7HS, England, and must not be communicated to a third party without the prior written permission of the Company Design Data Tank Details Liquid Relative Density : 1.05 Minimum Freeboard : 12” (0.305m) Roof Type : Geodesic Dome Superimposed Loading Code : AWWA D103-09 Live Load : 25psf (1.20 kN/m²) Wind Loading Code : AWWA D103-09 Basic Wind Speed (V) : 100 mph (44.7 m/s) Exposure : C Gust Effect Factor (G) : 1.0 Seismic Loading Code : AWWA D103-09 Spectral Response Accelerations from D103-09:- Ss : 18.7 % S1 : 8.8 % Transition Period (TL) : 8 seconds Response Modification Factors from AWWA D103-09:- Ri : 3 Rc : 1.5 Site Class : D Seismic Use Group : III Seismic Importance Factor (IE) : 1.5 Design Methodology Structural Design Code : AWWA D103-09 Bolted Joint Design : AWWA D103-09 Wind Stiffener Analysis : AWWA D103-09 Seismic Design : AWWA D103-09 Axial Buckling Analysis : AWWA D103-09 Steel Types S235 : ASTM A1011 SS Grade 33 Yield Stress : 33ksi (230 N/mm2) Tensile Strength : 52ksi (360 N/mm2) HSLA4 : ASTM A1011 HSLAS Grade 60 Class 1 Yield Stress : 60 ksi (410 N/mm2) Tensile Strength : 75 ksi (520 N/mm2) Store Bolt Types ½¨ UNC (ASTM A325) High Tensile Grade 8.8 Tensile Strength : 120 ksi (827 N/mm2) Proof Strength : 85 ksi (586 N/mm2) Bolt Diameter : 0.500” (12.7 mm) Bolt Hole Diameter : 0.543” (13.8 mm) Bolt Center-to-Edge Distance : 1.024” (26.0 mm) Universal Constants Young's Modulus : 30x106 psi (205000 N/mm2) Poisson's Ratio : 0.3 Standard Sheet Dimensions (Series 1400) Full Sheet Length : 8.801 ft (2.682 m) Full Sheet Height : 4.593 ft (1.400 m) Starter Ring (SR) Height : 20 in (0.508 m) Design Authorisation Project QN46015 Document No. C6534 Revision 0 Prepared By B.Jarmin Sales Support Engineer Date 16-Aug-16 Signed Checked By J.Pietrzak Development Engineer Date 16-Aug-16 Signed Ta n k St r u c t u r a l De s i g n S u m m a r y C6534 Page 2 of 3 Nominal Volume 254,384 US Gallons - Tank Model 3635SR20 – Tank Diameter 36 ft 5” LOAD ANALYSIS Dead Loads Live Loads Tank Shell Weight: 26392 lb Tank Roof Weight: 3626 lb Contents Weight: 2239899 lb Superimposed: 26109 lb Seismic: Shear at Top of 125467 lb Foundation (Vf) : Moment at Bottom of 1711192 ft-lb Shell (Ms): Height of Sloshing Wave (d): 1.10 ft Moment at top of 2364692 ft-lb Foundation (Mmf) Wind: Shear at Footings: 26130 lb Moment at Bottom of Shell due to tank and roof : 488653 ft-lb Stress Analysis HOOP STRESS Ring Head Total Pressure Net Tensile Stress Allowable Tensile Stress Hole Bearing Stress Allowable Bearing Stress Bolt Shear Stress Allowable Shear Stress (ft) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) 1 3.59 1.6 4446 11679 22224 44550 5570 30000 2 8.19 3.7 13071 19800 25319 44550 6346 30000 3 12.78 5.8 20406 25527 39526 78320 9907 30000 4 17.37 7.9 19997 25527 40304 78320 10102 30000 5 21.97 10.0 21070 25527 42467 78320 12773 30000 6 26.56 12.1 21837 25527 44012 78320 15443 30000 7 31.15 14.2 22412 25527 45170 78320 18114 30000 8 32.82 14.9 23611 25527 47587 78320 19083 30000 AXIAL STRESS Ring Axial Load Axial Stress Allowable Axial Stress Hole Bearing Stress Allowable Bearing Stress Bolt Shear Stress Allowable Shear Stress (lbf/in) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) 1 24.8 252 887 2533 44550 635 30000 2 27.1 275 887 2766 44550 693 30000 3 29.4 298 887 2999 78320 752 30000 4 31.7 322 887 3241 78320 812 30000 5 34.0 288 1062 2897 78320 871 30000 6 36.7 266 1235 2678 78320 940 30000 7 39.7 252 1407 2535 78320 1017 30000 8 40.9 260 1407 2610 78320 1047 30000 AXIAL STRESS INCLUDING WIND Ring Axial Load Axial Stress Allowable Axial Stress Hole Bearing Stress Allowable Bearing Stress Bolt Shear Stress Allowable Shear Stress (lbf/in) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) 1 7.7 79 1183 790 59385 198 39990 2 12.7 129 1183 1295 59385 325 39990 3 18.8 191 1183 1921 104401 482 39990 4 26.2 266 1183 2677 104401 671 39990 5 34.7 294 1415 2956 104401 889 39990 6 44.8 325 1646 3268 104401 1147 39990 7 56.4 358 1875 3599 104401 1443 39990 8 61.0 387 1875 3892 104401 1561 39990 PERMASTORE® TANK DESIGN SUMMARY Ring Sheet Thickness (in) Sheet Thickness (mm) ¬ Indicates the position of a Wind Stiffener at bottom edge of ring if required Bolt Grade Sheet Configuration Steel Type 1 0.098 2.5 ¬ 8.8 S S235 2 0.098 2.5 ¬ 8.8 D S235 3 0.098 2.5 ¬ 8.8 D HSLA4 4 0.098 2.5 ¬ 8.8 TR HSLA4 5 0.118 3.0 8.8 TR HSLA4 6 0.138 3.5 8.8 TR HSLA4 7 0.157 4.0 8.8 TR HSLA4 8 0.157 4.0 8.8 TR HSLA4 C6534 Page 3 of 3 Nominal Volume 254,384 US Gallons - Tank Model 3635SR20 – Tank Diameter 36 ft 5” DYNAMIC HOOP STRESSES (SEISMIC) Ring Total Hoop Load Net Tensile Stress Allowable Tensile Stress Hole Bearing Stress Allowable Bearing Stress Bolt Shear Stress Allowable Shear Stress (lbf/in) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) (lbf/in²) 1 411.3 5119 15568 25592 59385 6414 39990 2 891.9 14325 26393 27747 59385 6954 39990 3 1376.5 22108 34027 42823 104401 10733 39990 4 1856.2 21491 34027 43315 104401 10856 39990 5 2329.6 22476 34027 45300 104401 13625 39990 6 2796.5 23127 34027 46611 104401 16355 39990 7 3260.0 23590 34027 47546 104401 19067 39990 8 3428.3 24808 34027 49999 104401 20051 39990 AXIAL STRESS INCLUDING SEISMIC Compressive load at base of shell: 159.0 lbf/in Compressive stress at base of shell: 1010 lbf/in ² Allowable compressive stress at base of shell: 1875 lbf/in² Pr o j e c t N o . = Q N 4 6 0 1 5 Ca l c u l a t i o n N o . = C 6 5 3 4 Mo d e l R e f e r e n c e = 3 6 3 5 ( S R 2 0 ) Ta n k D i a m e t e r = 1 1 . 1 0 m - - - - 3 6 . 4 2 f t Ta n k C i r c u m f e r e n c e = 3 4 . 8 7 m - - - - 1 1 4 . 4 1 f t Ta n k P l a n A r e a = 9 6 . 8 m ² - - - - 1 0 4 2 f t ² Ta n k S h e l l D e a d L o a d = 1 1 7 . 4 k N - - - - 2 6 3 9 2 l b f Ro o f D e a d L o a d (1 ) = 16 . 1 k N - - - - 3 6 2 6 l b f We i g h t o f C o n t e n t s = 9 9 6 3 k N - - - - 2 2 3 9 8 9 9 l b f Do w n w a r d R o o f S n o w L o a d (1 ) = 11 6 . 1 k N - - - - 2 6 1 0 9 l b f Do w n w a r d R o o f A c c e s s L o a d (1 ) = 72 . 6 k N - - - - 1 6 3 1 8 l b f Wi n d S h e a r = 1 1 6 . 2 k N - - - - 2 6 1 3 0 l b f = 6 . 7 k N / m - - - - 4 5 6 . 8 l b f / f t Wi n d O v e r t u r n i n g M o m e n t ( O T M ) = 6 6 2 . 5 k N m - - - - 4 8 8 6 5 3 f t - l b f Ma x i m u m A x i a l L o a d d u e t o W i n d O T M = 6 . 8 k N / m - - - - 4 6 9 . 1 l b f / f t Ro o f W i n d U p l i f t (1 ) = 14 8 . 7 k N - - - - 3 3 4 2 7 l b f Se i s m i c S h e a r = 5 5 8 . 1 k N - - - - 1 2 5 4 6 7 l b f = 3 2 . 0 k N / m - - - - 2 1 9 3 . 2 l b f / f t Se i s m i c O T M a t B a s e o f S h e l l = 2 3 1 9 . 9 k N m - - - - 1 7 1 1 1 9 2 f t - l b f Ma x i m u m A x i a l L o a d d u e t o S e i s m i c O T M a t B a s e o f S h e l l = 2 4 . 0 k N / m - - - - 1 6 4 2 . 7 l b f / f t Se i s m i c O T M a t T o p o f F o u n d a t i o n ( i n c l u d i n g B o t t o m P r e s s u r e ) = 3 2 0 6 k N m - - - - 2 3 6 4 6 9 2 f t - l b f Ve r t i c a l S e i s m i c A c c e l e r a t i o n (2 ) = 0. 0 2 8 g Ma x i m u m H y d r o s t a t i c S h e a r ( L i q u i d ) = 2 6 . 1 k N / m - - - - 1 7 9 0 . 1 l b f / f t Ma x i m u m H y d r o d y n a m i c S h e a r = 1 . 3 k N / m - - - - 9 0 . 6 l b f / f t Co m b i n e d H y d r o s t a t i c + H y d r o d y n a m i c S h e a r = 2 7 . 4 k N / m - - - - 1 8 8 0 . 8 lbf/ft Ma x i m u m H y d r o s t a t i c M o m e n t ( L i q u i d ) = 0 . 7 k N / m - - - - 4 6 . 9 l b f / f t Ma x i m u m H y d r o d y n a m i c M o m e n t (2 ) = 0. 0 k N m / m - - - - 7 . 8 f t - l b f / f t Co m b i n e d H y d r o s t a t i c + H y d r o d y n a m i c M o m e n t = 0 . 7 k N m / m - - - - 1 6 1 . 6 f t - lbf/ft Pe r c e n t a g e o f R o o f L o a d o n T a n k S h e l l (1 ) = 10 0 % No t e s : - 1) L o a d s i n t h e t a b l e a b o v e a r e t h e t o t a l l o a d s f o r t h e s t r u c t u r e . F o r t a n k s w i t h c o l u m n su p p o r t e d r o o f s o n l y a p o r t i o n o f t h e v e r t i c a l r o o f l o a d s w i l l b e t a k e n b y t h e t a n k s h e l l . Th e p e r c e n t a g e o f r o o f l o a d o n t h e t a n k s h e l l v a l u e c a n b e u s e d t o w o r k o u t t h e l o a d di s t r i b u t i o n b e t w e e n t h e s h e l l a n d c o l u m n s . 2) T h e h y d r o d y n a m i c s h e a r a n d m o m e n t v a l u e s i n c l u d e t h e e f f e c t s o f v er t i c a l s e i s m i c ac c e l e r a t i o n w h e r e v e r t i c a l a c c e l e r a t i o n i s s p e c i f i e d . 3) U n l e s s o t h e r w i s e s t a t e d a b o v e d i s t r i b u t e d l o a d s f o r t h e a b o v e l o a ds i n k N ( l b f ) c a n b e ca l c u l a t e d b y d i v i d i n g b y t h e t a n k s h e l l c i r c u m f e r e n c e i . e . t h e l o a d s a r e a s s u m e d e v e n l y di s t r i b u t e d a r o u n d t h e t a n k c i r c u m f e r e n c e . Fo u n d a t i o n L o a d s Mr. Ming-Tai Chao, P.E. October 17, 2016 ATTACHMENT 3 x x SEP 02 2016 W : \ P r o j e c t s \ 2 0 1 6 \ 2 1 6 2 2 8 A s h e b o r o N C \ 0 2 A p p r o v a l \ 2 1 6 2 2 8 D 1 0 5 . d w g , 0 9 / 0 2 / 1 6 1 1 : 5 6 : 1 0 A M , g k o r r i s o n SEP 02 2016 W : \ P r o j e c t s \ 2 0 1 6 \ 2 1 6 2 2 8 A s h e b o r o N C \ 0 2 A p p r o v a l \ 2 1 6 2 2 8 D 1 0 6 . d w g , 0 9 / 0 2 / 1 6 1 1 : 5 6 : 2 6 A M , g k o r r i s o n CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 2 NOTATION f = Maximum member stress. F = Member allowable stress. F-X,F-Y,F-Z = Reaction forces acting in the indicated direction, in the global or local coordinate system. C-s = Roof slope factor. P-s = Sloped roof snow load. P-f = Flat roof snow load. K-z = Velocity pressure exposure coefficient. Q-z = Velocity pressure. G-h = Gust response factor. Y-BAR = Distance from the bottom flange to the neutral axis Rv = Maximum vertical (downward) reaction at the shoe. Rd = Maximum lateral reaction at the shoe. Rl = Maximum vertical (upward) reaction at the shoe. CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 3 ANALYSIS PROCEDURE This structure was analyzed on CST's proprietary dome analysis program using the stiffness method of analysis. The dome struts are modeled using three dimensional beam elements which consider torsion, bending about two axes, axial and shear deformation. Panel loads are transformed into triangular beam loads equal to the load times one third the adjacent panel area normal to the load. These beam loads are then transformed into components parallel and perpendicular to the plane of the beam web. Member dead load is applied as a uniform beam load along the length of the member using the strut area times the density of the specified material times a factor which accounts for the batten. Panel dead load is treated as another panel load. In addition to the beam loads, loads may be applied to the nodes if required. The program will handle multiple load combinations with each combination composed of multiple load types. The maximum member stresses have been calculated from individual member equilibrium equations using the member end forces obtained from the stiffness analysis procedure and the applied beam loads. Each beam is divided into 20 increments and forces and corresponding stress are calculated for each increment. Member allowable stresses are also calculated at each increment and compared to the computed stresses. Allowable stresses are computed in accordance with the formulas specified by the "Specifications for Aluminum Structures - Allowable Stress Design" (Sixth Edition, October 1994) as published by the Aluminum Association, Inc., Arlington, VA. All the dome frame struts and tension ring are aluminum alloy 6061-T6 or 6005A-T61 unless otherwise noted. Gussets are alloy 6061-T6. All fasteners are either aluminum or stainless steel as specified. CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 4 DESIGN PARAMETER REF. POINT DIAMETER : 35.45 feet (Dr) ANCHOR BOLT DIAMETER : 36.70 feet (Da) DOME RISE : 3.61 feet (H) CUTOFF ANGLE : 23.00 degrees (qb) SPHERICAL RADIUS : 45.36 feet (R) NUMBER OF DOME SHOES : 10 DESIGN LOADS DESIGN CODE : AWWA D103-09 & ASCE7-05 DEAD LOAD : 1.99 PSF LIVE LOAD : 25.0 PSF SNOW LOAD : 25.0 PSF WIND VELOCITY : 100.0 MPH In addition to the applied loads listed above, seismic effects have also been considered in the structural analysis. The degree to which seismic effects have an impact upon a structure's design depends most significantly on the structure's density. Due to the low mass to volume ratio of the aluminum dome, seismic effects do not control the dome design, nor the base shear reactions. Rather, applied wind loading on the large surface area on the dome results in the largest horizontal shear reactions. Therefore, wind load cases are presented in these Design Calculations. Other applied load cases and load combinations have been considered in the design; however, only the controlling load combinations are included in the following Design Calculations. CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 5 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 6 EXTRUSION SECTION PROPERTIES E-561 : DOME STRUT #1 DOME STRUT #2 PERIM DIAG #3 PERIM DIAG #4 TENS STRUT #5 1. GEOMETRIC PROPERTIES CROSS SECTIONAL AREA = 2.561 in2 Y-BAR = 3.356 in DEPTH = 6.000 in TOP FLANGE DIMENSIONS = 0.140 X 4.000 (in) BOT FLANGE DIMENSIONS = 0.140 X 4.000 (in) WEB DIMENSIONS = 5.720 X 0.090 (in) 2. ELASTIC PROPERTIES TORSIONAL MOMENT OF INERTIA = 0.794 in4 Y AXIS MOMENT OF INERTIA = 1.849 in4 X AXIS MOMENT OF INERTIA = 15.170 in4 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 7 EXTRUSION SECTION PROPERTIES 2E-595 : SHOE STRUT #6 1. GEOMETRIC PROPERTIES CROSS SECTIONAL AREA = 3.774 in2 Y-BAR = 3.000 in DEPTH = 6.000 in TOP FLANGE DIMENSIONS = 0.280 X 3.375 (in) BOT FLANGE DIMENSIONS = 0.280 X 3.375 (in) WEB DIMENSIONS = 5.440 X 0.188 (in) 2. ELASTIC PROPERTIES TORSIONAL MOMENT OF INERTIA = 0.068 in4 Y AXIS MOMENT OF INERTIA = 0.717 in4 X AXIS MOMENT OF INERTIA = 19.140 in4 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 8 FASTENER INFORMATION NOMINAL BODY TENSION SHEAR FASTENER TYPE SIZE DIAMETER (kips) (kips) STANDARD 300 series CW stainless steel (100 ksi minimum Ftu) 3/8 - 16 0.375 3.31 2.83 BOLTS (Ft = 42.7 ksi) 1/2 - 13 0.50 6.06 5.03 (Fv = 25.6 ksi) 5/8 - 11 0.625 9.65 7.85 AND (85 ksi minimum Ftu) 3/4 - 10 0.75 12.12 9.63 (Ft = 36.3 ksi) 7/8 - 9 0.875 16.77 13.11 NUTS (Fv = 21.8 ksi) 1 - 8 1.000 22.00 17.12 304 stainless steel 3/8 0.382 3.00 4.00 (C6LBHS-U12/3LC-F12) LOCK 316 stainless steel 3/8 0.382 2.10 3.00 (C6LB316-U12/3LC-F12) BOLTS 7075-T73 aluminum 3/8 0.382 1.80 2.00 (C6LB-E12/3LC-F12) DRIVE RIVETS Aluminum body - 5056 3/8 0.370 0.60 1.00 SPECIAL Pin - 2117 FASTENER MAGNA-TITE Aluminum body - 5056 3/16 0.199 0.45 0.63 Pin - 2024 DIA x L EMBEDMENT PULL OUT SHEAR 300 series stainless steel 1/4 x 2.25 1.5 0.47 0.47 WEDGE Note: 3/8 x 3.75 3 1.33 0.92 Allowable loads assume no 1/2 x 5.5 4 2.04 1.67 ANCHORS reductions required due to 5/8 x 8.5 6 3.22 2.69 edge distance or anchor 3/4 x 10 8 4.92 3.97 spacing 1 x 12 9 7.55 7.42 NOTES: 1. Shear strengths are based on the threads outside of the shear plane 2. Lockbolt values are based on the manufacturers guaranteed minimum values. 3. Wedge anchors are based on the manufacturers test data for 3000 psi concrete. 4. Safety factors are: = 2.34 for bolt tension = 2.34 for bolt shear = 4.00 for wedge anchor pullout = 4.00 for wedge anchor shear CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 9 BASIC LOAD CASE NO. 1 DEAD LOAD X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT = 0.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 10 BASIC LOAD CASE NO. 2 DEAD + LIVE 25 PSF PER AWWA D103-09 X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 -25.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT = 0.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 11 BASIC LOAD CASE NO. 3 DEAD + UNBALANCED LIVE 25 PSF PER AWWA D103-09 X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 -12.500 (psf) HALF DOME LIVE LOAD @ 90.0 DEG 0.000 0.000 -12.500 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT = 0.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 12 BASIC LOAD CASE NO. 4 DEAD + 25 PSF SNOW PER AWWA D103-09 X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 25.000 (psf) GROUND SNOW LOAD - DRIFT = 0.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 (AWWA D103-09 SNOW LOAD) CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 13 BASIC LOAD CASE NO. 5 DEAD + SNOW 25 PSF GROUND LOAD PER ASCE7-05 X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 25.000 (psf) GROUND SNOW LOAD - DRIFT = 0.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 SNOW LOAD FACTORS: (ASCE7-05) IMPORTANCE FACTOR: 1.100 EXPOSURE FACTOR: 1.000 THERMAL FACTOR: 1.200 P-f : 23.100 (psf) Ps @ eave : 23.100 (psf) Cs_eave: 1.000 (COLD ROOF, OBSTRUCTED OR NON-SLIPPERY SURFACE) CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 14 BASIC LOAD CASE NO. 6 DEAD + SNOW DRIFT @ 90 DEG. 25 PSF GROUND LOAD PER ASCE7-05 X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT CENTERED @ 90.0 DEG = 25.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 DRIFT LOAD FACTORS: (ASCE7-05) IMPORTANCE FACTOR: 1.100 EXPOSURE FACTOR: 1.000 THERMAL FACTOR: 1.200 P-f : 23.100 (psf) Ps @ 0.0 degrees: 11.550 (psf) Cs_0.0 : 1.000 Ps @ eave : 46.200 (psf) Cs_eave: 1.000 MAX. DRIFT LOAD: 46.200 psf at 23.000 degrees (COLD ROOF, OBSTRUCTED OR NON-SLIPPERY SURFACE) CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 15 BASIC LOAD CASE NO. 7 DEAD + SNOW DRIFT @ 108 DEG. 25 PSF GROUND LOAD PER ASCE7-05 X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT CENTERED @ 108.0 DEG = 25.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 DRIFT LOAD FACTORS: (ASCE7-05) IMPORTANCE FACTOR: 1.100 EXPOSURE FACTOR: 1.000 THERMAL FACTOR: 1.200 P-f : 23.100 (psf) Ps @ 0.0 degrees: 11.550 (psf) Cs_0.0 : 1.000 Ps @ eave : 46.200 (psf) Cs_eave: 1.000 MAX. DRIFT LOAD: 46.200 psf at 23.000 degrees (COLD ROOF, OBSTRUCTED OR NON-SLIPPERY SURFACE) CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 16 BASIC LOAD CASE NO. 8 DEAD + SNOW DRIFT @ 126 DEG. 25 PSF GROUND LOAD PER ASCE7-05 X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT CENTERED @ 126.0 DEG = 25.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 DRIFT LOAD FACTORS: (ASCE7-05) IMPORTANCE FACTOR: 1.100 EXPOSURE FACTOR: 1.000 THERMAL FACTOR: 1.200 P-f : 23.100 (psf) Ps @ 0.0 degrees: 11.550 (psf) Cs_0.0 : 1.000 Ps @ eave : 46.200 (psf) Cs_eave: 1.000 MAX. DRIFT LOAD: 46.200 psf at 23.000 degrees (COLD ROOF, OBSTRUCTED OR NON-SLIPPERY SURFACE) CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 17 BASIC LOAD CASE NO. 9 DEAD + 16.045 PSF WIND PRESSURE PER AWWA D103-09 X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD @ 90.0 DEG 0.000 -16.045 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT = 0.000 (psf) WIND LOAD - DYNAMIC PRESSURE = 0.000 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 18 BASIC LOAD CASE NO. 10 DEAD + 100 MPH WIND VELOCITY PER ASCE 7-05, CASE A X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT = 0.000 (psf) WIND LOAD - DYNAMIC PRESSURE FROM 270.0 DEG = 24.620 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 WIND LOAD FACTORS: (ASCE7-05, CASE A) (INPUT) VELOCITY : 100.000 (mph) IMPORTANCE FACTOR : 1.150 EXPOSURE CATEGORY C CURB HEIGHT : 34.966 (feet) TANK HEIGHT : 34.081 (feet) TOPOGRAPHIC FACTOR Kzt : 1.000 DIRECTIONALITY FACTOR Kd : 0.950 (CALCULATED) DOME RISE-TO-SPAN RATIO : 0.102 APEX ROOF HEIGHT : 38.572 (feet) TANK HEIGHT / DIAMETER RATIO : 0.961 POWER LAW CONSTANT ALPHA : 9.500 GRADIENT HEIGHT Z-g : 900.000 (feet) K-z : 1.036 Q-z : 28.964 (psf) GUST RESPONSE FACTOR G-h : 0.850 (Maximum) GUST RESPONSE FACTOR G-h : 0.881 (Eq. 6-4) TURBULENCE INTENSITY I-z : 0.212 (Eq. 6-5) BACKGROUND RESPONSE Q : 0.914 (Eq. 6-6) BUILDING LENGTH B : 35.446 (feet) LENGTH SCALE OF TURBULENCE L-z : 465.748 (feet) (Eq. 6-7) INTEGRAL LENGTH SCALE FACTOR l : 500.000 (feet) INTEGRAL LENGTH SCALE POWER EXP.: 1/5.0 EQUIVALENT STRUCTURE HT. Z_bar : 23.143 (feet) MINIMUM HEIGHT Z_min : 15.000 (feet) CONSTANT A (Figure 6-7) : -1.66943 CONSTANT B (Figure 6-7) : -0.80460 CONSTANT C (Figure 6-7) : -0.50000 THETA-25 : 8.461 Degrees CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 19 BASIC LOAD CASE NO. 11 DEAD + 100 MPH WIND VELOCITY PER ASCE 7-05, CASE B X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000 -1.180 PANEL DEAD LOAD 0.000 0.000 -0.730 (psf) FULL DOME LIVE LOAD 0.000 0.000 0.000 (psf) HALF DOME LIVE LOAD 0.000 0.000 0.000 (psf) GROUND SNOW LOAD - TOTAL DOME = 0.000 (psf) GROUND SNOW LOAD - DRIFT = 0.000 (psf) WIND LOAD - DYNAMIC PRESSURE FROM 270.0 DEG = 24.620 (psf) INTERNAL PRESSURE LOAD = 0.000 (psf) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. F.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. F.) ALLOWABLE STRESS FACTOR 1.000 WIND LOAD FACTORS: (ASCE7-05, CASE B) (INPUT) VELOCITY : 100.000 (mph) IMPORTANCE FACTOR : 1.150 EXPOSURE CATEGORY C CURB HEIGHT : 34.966 (feet) TANK HEIGHT : 34.081 (feet) TOPOGRAPHIC FACTOR Kzt : 1.000 DIRECTIONALITY FACTOR Kd : 0.950 (CALCULATED) DOME RISE-TO-SPAN RATIO : 0.102 APEX ROOF HEIGHT : 38.572 (feet) TANK HEIGHT / DIAMETER RATIO : 0.961 POWER LAW CONSTANT ALPHA : 9.500 GRADIENT HEIGHT Z-g : 900.000 (feet) K-z : 1.036 Q-z : 28.964 (psf) GUST RESPONSE FACTOR G-h : 0.850 (Maximum) GUST RESPONSE FACTOR G-h : 0.881 (Eq. 6-4) TURBULENCE INTENSITY I-z : 0.212 (Eq. 6-5) BACKGROUND RESPONSE Q : 0.914 (Eq. 6-6) BUILDING LENGTH B : 35.446 (feet) LENGTH SCALE OF TURBULENCE L-z : 465.748 (feet) (Eq. 6-7) INTEGRAL LENGTH SCALE FACTOR l : 500.000 (feet) INTEGRAL LENGTH SCALE POWER EXP.: 1/5.0 EQUIVALENT STRUCTURE HT. Z_bar : 23.143 (feet) MINIMUM HEIGHT Z_min : 15.000 (feet) CONSTANT A (Figure 6-7) : -1.66943 CONSTANT B (Figure 6-7) : -0.80460 CONSTANT C (Figure 6-7) : -0.50000 THETA-25 : 8.461 Degrees CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 20 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 1 DEAD LOAD MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 0.2 x-max 0.0 0.0 0.2 x-min 0.0 0.0 0.2 y-max 0.0 0.0 0.2 y-min 0.0 0.0 0.2 z-max 0.0 0.0 0.2 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 0.0 2.1 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 21 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 2 DEAD + LIVE 25 PSF PER AWWA D103-09 MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 2.5 x-max 0.0 0.0 2.6 x-min 0.0 0.0 2.5 y-max 0.0 0.0 2.5 y-min 0.0 0.0 2.6 z-max 0.0 0.0 2.5 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 0.0 25.2 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 22 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 3 DEAD + UNBALANCED LIVE 25 PSF PER AWWA D103-09 MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 1.5 x-max 0.0 0.0 2.4 x-min 0.0 0.1 2.2 y-max 0.0 -0.1 2.2 y-min 0.0 0.0 2.4 z-max 0.0 0.0 1.5 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 0.0 19.4 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 23 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 4 DEAD + 25 PSF SNOW PER AWWA D103-09 MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 2.5 x-max 0.0 0.0 2.6 x-min 0.0 0.0 2.5 y-max 0.0 0.0 2.5 y-min 0.0 0.0 2.6 z-max 0.0 0.0 2.5 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 0.0 25.2 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 24 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 5 DEAD + SNOW 25 PSF GROUND LOAD PER ASCE7-05 MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 2.3 x-max 0.0 0.0 2.4 x-min 0.0 0.0 2.3 y-max 0.0 0.0 2.3 y-min 0.0 0.0 2.4 z-max 0.0 0.0 2.3 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 0.0 23.4 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 25 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 6 DEAD + SNOW DRIFT @ 90 DEG. 25 PSF GROUND LOAD PER ASCE7-05 MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 0.4 x-max 0.0 0.0 2.5 x-min 0.0 0.2 1.2 y-max 0.0 -0.2 1.2 y-min 0.0 0.0 2.5 z-max 0.0 0.0 0.4 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 0.0 11.3 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 26 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 7 DEAD + SNOW DRIFT @ 108 DEG. 25 PSF GROUND LOAD PER ASCE7-05 MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.1 0.4 x-max 0.0 0.1 2.6 x-min 0.0 0.1 0.7 y-max 0.0 -0.3 1.7 y-min 0.0 0.1 2.6 z-max 0.0 0.1 0.4 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 0.0 11.7 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 27 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 8 DEAD + SNOW DRIFT @ 126 DEG. 25 PSF GROUND LOAD PER ASCE7-05 MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 0.5 x-max 0.0 0.0 2.6 x-min 0.0 0.2 2.3 y-max 0.0 -0.2 2.3 y-min 0.0 0.0 2.6 z-max 0.0 0.0 0.5 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 0.0 12.4 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 28 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 9 DEAD + 16.045 PSF WIND PRESSURE PER AWWA D103-09 MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 0.2 x-max 0.0 0.0 0.2 x-min 0.0 0.2 0.2 y-max 0.0 -0.2 0.2 y-min 0.0 0.1 0.2 z-max 0.0 0.1 0.2 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 1.2 2.1 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 29 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 10 DEAD + 100 MPH WIND VELOCITY PER ASCE 7-05, CASE A MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 -2.7 x-max 0.0 0.0 -1.4 x-min 0.0 0.4 -2.2 y-max 0.0 -0.4 -2.2 y-min 0.0 0.2 -1.4 z-max 0.0 0.2 -2.8 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 1.8 -20.3 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 30 R E A C T I O N S U M M A R Y BASIC LOAD CASE No 11 DEAD + 100 MPH WIND VELOCITY PER ASCE 7-05, CASE B MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kips) (kips) (kips) _ 0.0 0.0 -2.9 x-max 0.0 0.0 -1.5 x-min 0.0 0.4 -2.4 y-max 0.0 -0.4 -2.4 y-min 0.0 -0.2 -1.4 z-max 0.0 0.2 -3.1 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kips) (kips) (kips) 0.0 2.0 -21.8 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 31 S T R E S S S U M M A R Y BASIC LOAD CASE No: 1 DEAD LOAD _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 0.46 1.15 1.15 0.00 0.00 0.02 | STRSS 0.18 0.25 -0.20 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.01 0.01 0.01 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 0.77 1.48 1.48 -0.21 -0.21 0.04 | STRSS 0.30 0.33 -0.26 0.04 -0.05 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.02 0.02 0.01 0.00 0.00 | E-561 | (Struts 3 through 3) | FORCE 0.91 0.87 0.87 -3.22 -3.22 0.05 | STRSS 0.36 0.19 -0.15 0.56 -0.71 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.03 0.01 0.01 0.03 0.04 | E-561 | (Struts 4 through 4) | FORCE 0.50 1.64 1.64 -2.58 -2.58 0.04 | STRSS 0.19 0.36 -0.29 0.45 -0.57 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.02 0.02 0.01 0.02 0.03 | E-561 | (Struts 5 through 5) | FORCE -0.60 0.18 0.18 -1.51 -1.51 0.03 | STRSS -0.23 0.04 -0.03 0.26 -0.33 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.01 0.00 0.00 0.01 0.02 | 2E-595 | (Struts 6 through 6) | FORCE 0.14 0.00 0.00 -1.18 -1.18 0.01 | STRSS 0.04 0.00 0.00 0.18 -0.18 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.00 0.00 0.00 0.01 0.01 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 32 S T R E S S S U M M A R Y BASIC LOAD CASE No: 2 DEAD + LIVE 25 PSF PER AWWA D103-09 _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 5.40 13.79 13.79 0.00 0.00 0.30 | STRSS 2.11 3.05 -2.40 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.13 0.17 0.12 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 9.20 18.61 18.61 -3.26 -3.26 0.47 | STRSS 3.59 4.12 -3.24 0.57 -0.72 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.22 0.23 0.17 0.03 0.04 | E-561 | (Struts 3 through 3) | FORCE 10.82 10.63 10.63 -40.04 -40.04 0.66 | STRSS 4.23 2.35 -1.85 6.98 -8.86 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.31 0.13 0.10 0.33 0.45 | E-561 | (Struts 4 through 4) | FORCE 5.89 20.52 20.52 -32.46 -32.46 0.46 | STRSS 2.30 4.54 -3.58 5.66 -7.18 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.19 0.25 0.18 0.27 0.37 | E-561 | (Struts 5 through 5) | FORCE -8.17 0.52 0.52 -17.85 -17.85 0.42 | STRSS -3.19 0.11 -0.09 3.11 -3.95 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.16 0.01 0.00 0.15 0.20 | 2E-595 | (Struts 6 through 6) | FORCE 1.62 0.00 0.00 -14.08 -14.08 0.14 | STRSS 0.43 0.00 0.00 2.21 -2.21 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.03 0.00 0.00 0.11 0.11 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 33 S T R E S S S U M M A R Y BASIC LOAD CASE No: 3 DEAD + UNBALANCED LIVE 25 PSF PER AWWA D103-09 _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 4.63 12.91 12.91 -0.83 -0.83 0.27 | STRSS 1.81 2.86 -2.25 0.15 -0.18 | ALLOW 16.50 18.07 19.49 21.21 19.49 | f/F 0.11 0.16 0.12 0.01 0.01 | E-561 | (Struts 2 through 2) | FORCE 10.11 17.97 17.97 -3.90 -3.90 0.48 | STRSS 3.95 3.98 -3.13 0.68 -0.86 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.24 0.22 0.16 0.03 0.04 | E-561 | (Struts 3 through 3) | FORCE 9.97 10.17 10.17 -39.49 -39.49 0.62 | STRSS 3.89 2.25 -1.77 6.88 -8.74 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.28 0.12 0.09 0.32 0.45 | E-561 | (Struts 4 through 4) | FORCE 6.87 19.58 19.58 -30.00 -30.00 0.48 | STRSS 2.68 4.33 -3.41 5.23 -6.64 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.22 0.24 0.18 0.25 0.34 | E-561 | (Struts 5 through 5) | FORCE -6.81 0.00 0.00 -17.97 -17.97 0.39 | STRSS -2.66 0.00 0.00 3.13 -3.98 | ALLOW 19.49 0.00 0.00 21.21 19.49 | f/F 0.14 0.00 0.00 0.15 0.20 | 2E-595 | (Struts 6 through 6) | FORCE 1.35 0.00 0.00 -11.79 -11.79 0.15 | STRSS 0.36 0.00 0.00 1.85 -1.85 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.03 0.00 0.00 0.09 0.09 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 34 S T R E S S S U M M A R Y BASIC LOAD CASE No: 4 DEAD + 25 PSF SNOW PER AWWA D103-09 _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 5.40 13.79 13.79 0.00 0.00 0.30 | STRSS 2.11 3.05 -2.40 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.13 0.17 0.12 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 9.20 18.61 18.61 -3.26 -3.26 0.47 | STRSS 3.59 4.12 -3.24 0.57 -0.72 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.22 0.23 0.17 0.03 0.04 | E-561 | (Struts 3 through 3) | FORCE 10.82 10.63 10.63 -40.04 -40.04 0.66 | STRSS 4.23 2.35 -1.85 6.98 -8.86 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.31 0.13 0.10 0.33 0.45 | E-561 | (Struts 4 through 4) | FORCE 5.89 20.52 20.52 -32.46 -32.46 0.46 | STRSS 2.30 4.54 -3.58 5.66 -7.18 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.19 0.25 0.18 0.27 0.37 | E-561 | (Struts 5 through 5) | FORCE -8.17 0.52 0.52 -17.85 -17.85 0.42 | STRSS -3.19 0.11 -0.09 3.11 -3.95 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.16 0.01 0.00 0.15 0.20 | 2E-595 | (Struts 6 through 6) | FORCE 1.62 0.00 0.00 -14.08 -14.08 0.14 | STRSS 0.43 0.00 0.00 2.21 -2.21 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.03 0.00 0.00 0.11 0.11 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 35 S T R E S S S U M M A R Y BASIC LOAD CASE No: 5 DEAD + SNOW 25 PSF GROUND LOAD PER ASCE7-05 _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 5.06 12.96 12.96 0.00 0.00 0.28 | STRSS 1.98 2.87 -2.26 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.12 0.16 0.12 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 8.64 17.48 17.48 -3.05 -3.05 0.44 | STRSS 3.37 3.87 -3.05 0.53 -0.68 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.21 0.21 0.16 0.03 0.03 | E-561 | (Struts 3 through 3) | FORCE 10.16 10.02 10.02 -37.51 -37.51 0.61 | STRSS 3.97 2.22 -1.75 6.54 -8.30 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.29 0.12 0.09 0.31 0.43 | E-561 | (Struts 4 through 4) | FORCE 5.53 19.25 19.25 -30.39 -30.39 0.43 | STRSS 2.16 4.26 -3.36 5.30 -6.72 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.17 0.24 0.17 0.25 0.35 | E-561 | (Struts 5 through 5) | FORCE -7.57 0.55 0.55 -16.73 -16.73 0.39 | STRSS -2.95 0.12 -0.10 2.92 -3.70 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.15 0.01 0.00 0.14 0.19 | 2E-595 | (Struts 6 through 6) | FORCE 1.50 0.00 0.00 -13.10 -13.10 0.13 | STRSS 0.40 0.00 0.00 2.05 -2.05 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.03 0.00 0.00 0.10 0.11 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 36 S T R E S S S U M M A R Y BASIC LOAD CASE No: 6 DEAD + SNOW DRIFT @ 90 DEG. 25 PSF GROUND LOAD PER ASCE7-05 _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 2.19 13.28 13.28 0.00 0.00 0.28 | STRSS 0.85 2.94 -2.32 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.05 0.16 0.12 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 11.84 11.33 11.33 -12.62 -12.62 0.48 | STRSS 4.62 2.51 -1.98 2.20 -2.79 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.29 0.14 0.10 0.10 0.14 | E-561 | (Struts 3 through 3) | FORCE 9.30 13.57 13.57 -46.86 -46.86 0.67 | STRSS 3.63 3.00 -2.37 8.17 -10.37 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.26 0.17 0.12 0.39 0.53 | E-561 | (Struts 4 through 4) | FORCE 7.34 13.39 13.39 -14.78 -14.78 0.56 | STRSS 2.87 2.96 -2.33 2.58 -3.27 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.23 0.16 0.12 0.12 0.17 | E-561 | (Struts 5 through 5) | FORCE -3.65 1.85 1.85 -23.22 -23.22 0.40 | STRSS -1.42 0.41 -0.32 4.05 -5.14 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.07 0.02 0.02 0.19 0.26 | 2E-595 | (Struts 6 through 6) | FORCE 0.75 0.00 0.00 -6.50 -6.50 0.21 | STRSS 0.20 0.00 0.00 1.02 -1.02 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.01 0.00 0.00 0.05 0.05 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 37 S T R E S S S U M M A R Y BASIC LOAD CASE No: 7 DEAD + SNOW DRIFT @ 108 DEG. 25 PSF GROUND LOAD PER ASCE7-05 _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 4.15 14.47 14.47 0.00 0.00 0.30 | STRSS 1.62 3.20 -2.52 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.10 0.18 0.13 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 11.60 18.41 18.41 -13.18 -13.18 0.55 | STRSS 4.53 4.07 -3.21 2.30 -2.92 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.28 0.23 0.16 0.11 0.15 | E-561 | (Struts 3 through 3) | FORCE 10.56 13.64 13.64 -53.53 -53.53 0.77 | STRSS 4.12 3.02 -2.38 9.33 -11.84 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.30 0.17 0.12 0.44 0.61 | E-561 | (Struts 4 through 4) | FORCE 7.77 19.58 19.58 -43.24 -43.24 0.65 | STRSS 3.04 4.33 -3.41 7.54 -9.57 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.25 0.24 0.18 0.36 0.49 | E-561 | (Struts 5 through 5) | FORCE -4.80 1.00 1.00 -25.00 -25.00 0.45 | STRSS -1.87 0.22 -0.17 4.36 -5.53 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.10 0.01 0.01 0.21 0.28 | 2E-595 | (Struts 6 through 6) | FORCE 1.07 0.00 0.00 -9.35 -9.35 0.30 | STRSS 0.28 0.00 0.00 1.47 -1.47 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.02 0.00 0.00 0.07 0.08 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 38 S T R E S S S U M M A R Y BASIC LOAD CASE No: 8 DEAD + SNOW DRIFT @ 126 DEG. 25 PSF GROUND LOAD PER ASCE7-05 _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 4.80 14.31 14.31 0.00 0.00 0.29 | STRSS 1.88 3.17 -2.49 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.11 0.18 0.13 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 11.13 21.04 21.04 -10.43 -10.43 0.56 | STRSS 4.34 4.65 -3.67 1.82 -2.31 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.27 0.26 0.19 0.09 0.12 | E-561 | (Struts 3 through 3) | FORCE 11.01 12.49 12.49 -54.60 -54.60 0.79 | STRSS 4.30 2.76 -2.18 9.52 -12.08 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.31 0.15 0.11 0.45 0.62 | E-561 | (Struts 4 through 4) | FORCE 9.19 21.62 21.62 -39.35 -39.35 0.68 | STRSS 3.59 4.78 -3.77 6.86 -8.70 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.29 0.26 0.19 0.32 0.45 | E-561 | (Struts 5 through 5) | FORCE -5.51 0.79 0.79 -24.74 -24.74 0.46 | STRSS -2.15 0.17 -0.14 4.31 -5.47 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.11 0.01 0.01 0.20 0.28 | 2E-595 | (Struts 6 through 6) | FORCE 1.42 0.00 0.00 -12.40 -12.40 0.25 | STRSS 0.38 0.00 0.00 1.94 -1.94 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.03 0.00 0.00 0.09 0.10 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 39 S T R E S S S U M M A R Y BASIC LOAD CASE No: 9 DEAD + 16.045 PSF WIND PRESSURE PER AWWA D103-09 _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 0.52 1.77 1.77 0.00 0.00 0.04 | STRSS 0.20 0.39 -0.31 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.01 0.02 0.02 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 1.03 2.70 2.70 0.00 0.00 0.06 | STRSS 0.40 0.60 -0.47 0.00 0.00 | ALLOW 16.21 18.07 19.49 0.00 0.00 | f/F 0.02 0.03 0.02 0.00 0.00 | E-561 | (Struts 3 through 3) | FORCE 1.20 1.33 1.33 -4.63 -4.63 0.07 | STRSS 0.47 0.29 -0.23 0.81 -1.02 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.03 0.02 0.01 0.04 0.05 | E-561 | (Struts 4 through 4) | FORCE 0.80 2.44 2.44 -4.29 -4.29 0.06 | STRSS 0.31 0.54 -0.43 0.75 -0.95 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.03 0.03 0.02 0.04 0.05 | E-561 | (Struts 5 through 5) | FORCE -0.14 0.60 0.60 -2.47 -2.47 0.04 | STRSS -0.05 0.13 -0.10 0.43 -0.55 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.00 0.01 0.01 0.02 0.03 | 2E-595 | (Struts 6 through 6) | FORCE 0.12 0.00 0.00 -1.05 -1.05 0.15 | STRSS 0.03 0.00 0.00 0.16 -0.16 | ALLOW 13.72 0.00 0.00 20.67 19.49 | f/F 0.00 0.00 0.00 0.01 0.01 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 40 S T R E S S S U M M A R Y BASIC LOAD CASE No: 10 DEAD + 100 MPH WIND VELOCITY PER ASCE 7-05, CASE A _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE -0.03 1.51 1.51 -2.92 -2.92 0.03 | STRSS -0.01 0.33 -0.26 0.51 -0.65 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.00 0.02 0.01 0.02 0.03 | E-561 | (Struts 2 through 2) | FORCE -2.29 1.39 1.39 -0.82 -0.82 0.08 | STRSS -0.89 0.31 -0.24 0.14 -0.18 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.05 0.02 0.01 0.01 0.01 | E-561 | (Struts 3 through 3) | FORCE 0.55 18.80 18.80 0.00 0.00 0.25 | STRSS 0.21 4.16 -3.28 0.00 0.00 | ALLOW 13.80 18.07 19.49 0.00 0.00 | f/F 0.02 0.23 0.17 0.00 0.00 | E-561 | (Struts 4 through 4) | FORCE 2.00 15.30 15.30 -3.97 -3.97 0.24 | STRSS 0.78 3.38 -2.67 0.69 -0.88 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.06 0.19 0.14 0.03 0.05 | E-561 | (Struts 5 through 5) | FORCE 10.42 7.03 7.03 0.00 0.00 0.50 | STRSS 4.07 1.56 -1.23 0.00 0.00 | ALLOW 15.45 18.07 19.49 0.00 0.00 | f/F 0.26 0.09 0.06 0.00 0.00 | 2E-595 | (Struts 6 through 6) | FORCE -1.37 11.87 11.87 0.00 0.00 0.33 | STRSS -0.36 1.86 -1.86 0.00 0.00 | ALLOW 19.49 20.67 19.49 0.00 0.00 | f/F 0.02 0.09 0.10 0.00 0.00 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 41 S T R E S S S U M M A R Y BASIC LOAD CASE No: 11 DEAD + 100 MPH WIND VELOCITY PER ASCE 7-05, CASE B _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE -0.25 0.46 0.46 -1.81 -1.81 0.04 | STRSS -0.10 0.10 -0.08 0.32 -0.40 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.01 0.01 0.00 0.01 0.02 | E-561 | (Struts 2 through 2) | FORCE -2.66 1.95 1.95 -1.34 -1.34 0.10 | STRSS -1.04 0.43 -0.34 0.23 -0.30 | ALLOW 19.49 18.07 19.49 21.21 19.49 | f/F 0.05 0.02 0.02 0.01 0.02 | E-561 | (Struts 3 through 3) | FORCE 0.06 16.38 16.38 0.00 0.00 0.26 | STRSS 0.02 3.62 -2.85 0.00 0.00 | ALLOW 13.80 18.07 19.49 0.00 0.00 | f/F 0.00 0.20 0.15 0.00 0.00 | E-561 | (Struts 4 through 4) | FORCE 2.21 17.76 17.76 -4.79 -4.79 0.28 | STRSS 0.86 3.93 -3.09 0.83 -1.06 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.07 0.22 0.16 0.04 0.05 | E-561 | (Struts 5 through 5) | FORCE 11.22 7.63 7.63 0.00 0.00 0.52 | STRSS 4.38 1.69 -1.33 0.00 0.00 | ALLOW 15.45 18.07 19.49 0.00 0.00 | f/F 0.28 0.09 0.07 0.00 0.00 | 2E-595 | (Struts 6 through 6) | FORCE -1.50 13.05 13.05 0.00 0.00 0.37 | STRSS -0.40 2.05 -2.05 0.00 0.00 | ALLOW 19.49 20.67 19.49 0.00 0.00 | f/F 0.02 0.10 0.11 0.00 0.00 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 42 C O N S O L I D A T E D S T R E S S S U M M A R Y _________________________________________________________________________ | CONTROLLING MEMBER STRESSES(ksi) AND FORCES(kips, in-kips) | | EXTRUSION | TYPE | AXIAL | BENDING | COMBINED| | | | | (+)MOMENT | (-)MOMENT | STRESS | | | | | COMP TENS | COMP TENS | RATIO | | E-561 | (Struts 1 through 1) | FORCE 4.15 14.47 14.47 0.00 0.00 0.30 | STRSS 1.62 3.20 -2.52 0.00 0.00 | ALLOW 16.50 18.07 19.49 0.00 0.00 | f/F 0.10 0.18 0.13 0.00 0.00 | E-561 | (Struts 2 through 2) | FORCE 11.13 21.04 21.04 -10.43 -10.43 0.56 | STRSS 4.34 4.65 -3.67 1.82 -2.31 | ALLOW 16.21 18.07 19.49 21.21 19.49 | f/F 0.27 0.26 0.19 0.09 0.12 | E-561 | (Struts 3 through 3) | FORCE 11.01 12.49 12.49 -54.60 -54.60 0.79 | STRSS 4.30 2.76 -2.18 9.52 -12.08 | ALLOW 13.80 18.07 19.49 21.21 19.49 | f/F 0.31 0.15 0.11 0.45 0.62 | E-561 | (Struts 4 through 4) | FORCE 9.19 21.62 21.62 -39.35 -39.35 0.68 | STRSS 3.59 4.78 -3.77 6.86 -8.70 | ALLOW 12.38 18.07 19.49 21.21 19.49 | f/F 0.29 0.26 0.19 0.32 0.45 | E-561 | (Struts 5 through 5) | FORCE 11.22 7.63 7.63 0.00 0.00 0.52 | STRSS 4.38 1.69 -1.33 0.00 0.00 | ALLOW 15.45 18.07 19.49 0.00 0.00 | f/F 0.28 0.09 0.07 0.00 0.00 | 2E-595 | (Struts 6 through 6) | FORCE -1.50 13.05 13.05 0.00 0.00 0.37 | STRSS -0.40 2.05 -2.05 0.00 0.00 | ALLOW 19.49 20.67 19.49 0.00 0.00 | f/F 0.02 0.10 0.11 0.00 0.00 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 43 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 1 DEAD LOAD _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 0.46 -- 0.46 -- | END MOMENT 0.97 -- 1.15 -- | CNCTN FORCE 0.09 -- 0.39 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 0.77 -- 0.77 -- | END MOMENT 1.48 -- 1.48 -- | CNCTN FORCE 0.18 -- 0.58 -- | E-561 | (Struts 3 through 3) | AXIAL FORCE 0.91 -- 0.90 -- | END MOMENT -1.85 -- 0.87 -- | CNCTN FORCE 0.82 -- 0.54 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 0.50 0.48 0.48 -- | END MOMENT -1.13 1.64 1.64 -- | CNCTN FORCE 0.47 0.00 0.49 -- | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -0.60 -- -0.60 | END MOMENT -- 0.18 -- -0.01 | CNCTN FORCE -- -0.36 -- -0.26 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 0.13 -- -- 0.13 | END MOMENT -1.18 -- -- -1.18 | CNCTN FORCE 0.26 -- -- -0.13 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 44 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 2 DEAD + LIVE 25 PSF PER AWWA D103-09 _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 5.35 -- 5.40 -- | END MOMENT 12.32 -- 13.79 -- | CNCTN FORCE 0.94 -- 4.68 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 9.20 -- 9.20 -- | END MOMENT 18.61 -- 18.61 -- | CNCTN FORCE 2.04 -- 7.16 -- | E-561 | (Struts 3 through 3) | AXIAL FORCE 10.82 -- 10.56 -- | END MOMENT -21.33 -- 10.63 -- | CNCTN FORCE 9.61 -- 6.43 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 5.89 5.67 5.67 -- | END MOMENT -12.90 20.52 20.52 -- | CNCTN FORCE 5.44 -0.25 5.92 -- | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -8.17 -- -8.17 | END MOMENT -- 0.52 -- -1.71 | CNCTN FORCE -- -4.65 -- -3.88 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 1.62 -- -- 1.62 | END MOMENT -14.08 -- -- -14.08 | CNCTN FORCE 3.16 -- -- -1.54 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 45 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 3 DEAD + UNBALANCED LIVE 25 PSF PER AWWA D103-09 _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 4.59 -- 4.63 -- | END MOMENT 9.11 -- 12.91 -- | CNCTN FORCE 1.05 -- 4.19 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 10.11 -- 10.11 -- | END MOMENT 17.97 -- 17.97 -- | CNCTN FORCE 2.66 -- 7.45 -- | E-561 | (Struts 3 through 3) | AXIAL FORCE 9.97 -- 9.71 -- | END MOMENT -20.11 -- 10.17 -- | CNCTN FORCE 8.93 -- 5.98 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 6.87 3.06 6.66 3.24 | END MOMENT -9.16 15.96 19.58 -12.10 | CNCTN FORCE 5.37 -0.95 6.20 -0.59 | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -6.86 -- -6.86 | END MOMENT -- 0.55 -- -1.04 | CNCTN FORCE -- -3.93 -- -3.20 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 1.50 -- -- 1.50 | END MOMENT -13.05 -- -- -13.05 | CNCTN FORCE 2.92 -- -- -1.43 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 46 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 4 DEAD + 25 PSF SNOW PER AWWA D103-09 _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 5.35 -- 5.40 -- | END MOMENT 12.32 -- 13.79 -- | CNCTN FORCE 0.94 -- 4.68 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 9.20 -- 9.20 -- | END MOMENT 18.61 -- 18.61 -- | CNCTN FORCE 2.04 -- 7.16 -- | E-561 | (Struts 3 through 3) | AXIAL FORCE 10.82 -- 10.56 -- | END MOMENT -21.33 -- 10.63 -- | CNCTN FORCE 9.61 -- 6.43 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 5.89 5.67 5.67 -- | END MOMENT -12.90 20.52 20.52 -- | CNCTN FORCE 5.44 -0.25 5.92 -- | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -8.17 -- -8.17 | END MOMENT -- 0.52 -- -1.71 | CNCTN FORCE -- -4.65 -- -3.88 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 1.62 -- -- 1.62 | END MOMENT -14.08 -- -- -14.08 | CNCTN FORCE 3.16 -- -- -1.54 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 47 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 5 DEAD + SNOW 25 PSF GROUND LOAD PER ASCE7-05 _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 5.02 -- 5.06 -- | END MOMENT 11.55 -- 12.96 -- | CNCTN FORCE 0.88 -- 4.39 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 8.64 -- 8.64 -- | END MOMENT 17.48 -- 17.48 -- | CNCTN FORCE 1.92 -- 6.72 -- | E-561 | (Struts 3 through 3) | AXIAL FORCE 10.16 -- 9.92 -- | END MOMENT -19.89 -- 10.02 -- | CNCTN FORCE 9.00 -- 6.04 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 5.53 5.32 5.32 -- | END MOMENT -12.03 19.25 19.25 -- | CNCTN FORCE 5.10 -0.23 5.55 -- | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -7.57 -- -7.57 | END MOMENT -- 0.55 -- -1.55 | CNCTN FORCE -- -4.32 -- -3.59 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 1.50 -- -- 1.50 | END MOMENT -13.10 -- -- -13.10 | CNCTN FORCE 2.93 -- -- -1.43 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 48 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 6 DEAD + SNOW DRIFT @ 90 DEG. 25 PSF GROUND LOAD PER ASCE7-05 _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 2.40 2.19 2.19 -- | END MOMENT 0.77 13.28 13.28 -- | CNCTN FORCE 1.21 -0.99 3.18 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 11.84 -0.64 11.84 -0.64 | END MOMENT 11.33 3.21 11.33 1.63 | CNCTN FORCE 4.73 -0.89 7.11 -0.01 | E-561 | (Struts 3 through 3) | AXIAL FORCE 9.30 -- 8.95 -- | END MOMENT -20.38 -- 13.57 -- | CNCTN FORCE 8.60 -- 6.21 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 5.23 -2.72 7.21 -2.71 | END MOMENT -13.83 4.66 13.39 -13.36 | CNCTN FORCE 5.23 -2.30 5.41 -3.42 | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -4.14 -- -4.14 | END MOMENT -- 1.42 -- 1.08 | CNCTN FORCE -- -2.55 -- -1.64 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 1.60 -- -- 1.60 | END MOMENT -13.95 -- -- -13.95 | CNCTN FORCE 3.13 -- -- -1.52 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 49 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 7 DEAD + SNOW DRIFT @ 108 DEG. 25 PSF GROUND LOAD PER ASCE7-05 _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 2.47 1.53 4.15 -- | END MOMENT 1.53 8.41 14.47 -- | CNCTN FORCE 1.13 -0.55 4.24 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 11.60 2.34 11.60 -1.42 | END MOMENT 3.97 21.70 18.41 1.30 | CNCTN FORCE 5.83 -2.31 8.18 -0.41 | E-561 | (Struts 3 through 3) | AXIAL FORCE 10.56 -- 10.17 -- | END MOMENT -23.82 -- 13.64 -- | CNCTN FORCE 9.88 -- 6.76 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 7.77 -1.49 8.88 -1.39 | END MOMENT -12.45 9.46 19.01 -15.60 | CNCTN FORCE 6.42 -2.41 7.08 -3.21 | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -5.54 -- -5.54 | END MOMENT -- 0.60 -- -0.83 | CNCTN FORCE -- -3.20 -- -2.58 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 1.62 -- -- 1.62 | END MOMENT -14.11 -- -- -14.11 | CNCTN FORCE 3.16 -- -- -1.54 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 50 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 8 DEAD + SNOW DRIFT @ 126 DEG. 25 PSF GROUND LOAD PER ASCE7-05 _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 4.77 1.93 4.80 -- | END MOMENT 7.71 8.73 14.31 -- | CNCTN FORCE 1.38 -0.38 4.50 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 11.13 1.17 11.13 -1.74 | END MOMENT 6.81 16.47 21.04 1.23 | CNCTN FORCE 5.09 -2.09 8.41 -0.56 | E-561 | (Struts 3 through 3) | AXIAL FORCE 11.01 -- 10.62 -- | END MOMENT -24.84 -- 12.49 -- | CNCTN FORCE 10.30 -- 6.76 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 9.19 0.72 8.90 0.93 | END MOMENT -7.04 15.33 21.62 -15.84 | CNCTN FORCE 6.32 -2.15 7.52 -2.23 | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -5.51 -- -5.51 | END MOMENT -- 0.79 -- -1.49 | CNCTN FORCE -- -3.22 -- -2.68 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 1.64 -- -- 1.64 | END MOMENT -14.24 -- -- -14.24 | CNCTN FORCE 3.19 -- -- -1.56 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 51 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No. 9 DEAD + 16.045 PSF WIND PRESSURE PER AWWA D103-09 _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 0.64 0.32 0.51 -- | END MOMENT 1.11 1.19 1.77 -- | CNCTN FORCE 0.17 -0.02 0.52 -- | E-561 | (Struts 2 through 2) | AXIAL FORCE 1.03 -- 1.01 -- | END MOMENT 1.44 -- 2.70 -- | CNCTN FORCE 0.34 -- 0.90 -- | E-561 | (Struts 3 through 3) | AXIAL FORCE 1.03 -- 1.20 -- | END MOMENT -2.18 -- 1.33 -- | CNCTN FORCE 0.94 -- 0.75 -- | E-561 | (Struts 4 through 4) | AXIAL FORCE 0.64 0.28 0.80 0.28 | END MOMENT -1.26 1.80 2.44 -1.27 | CNCTN FORCE 0.57 -0.14 0.76 -0.09 | E-561 | (Struts 5 through 5) | AXIAL FORCE -- -0.71 -0.14 -0.71 | END MOMENT -- 0.48 0.60 -0.41 | CNCTN FORCE -- -0.48 0.04 -0.38 | 2E-595 | (Struts 6 through 6) | AXIAL FORCE 0.15 -- -- 0.15 | END MOMENT -1.33 -- -- -1.33 | CNCTN FORCE 0.30 -- -- -0.15 CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 52 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No.10 DEAD + 100 MPH WIND VELOCITY PER ASCE 7-05, CASE A _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE -0.03 -0.75 -0.03 -0.76 | END MOMENT -2.92 0.39 1.51 -1.20 | CNCTN FORCE 0.47 -0.49 0.24 -0.53 | E-561 | (Struts 2 through 2) | AXIAL FORCE 1.39 -2.29 1.39 -2.29 | END MOMENT 0.84 0.13 0.84 -0.82 | CNCTN FORCE 0.64 -1.30 0.75 -1.15 | E-561 | (Struts 3 through 3) | AXIAL FORCE -- 0.55 0.55 -0.86 | END MOMENT -- 18.80 18.80 2.01 | CNCTN FORCE -- -2.83 3.37 -0.04 | E-561 | (Struts 4 through 4) | AXIAL FORCE 1.98 -1.25 2.00 -2.67 | END MOMENT -3.97 10.40 12.12 -2.07 | CNCTN FORCE 1.77 -2.43 2.90 -1.52 | E-561 | (Struts 5 through 5) | AXIAL FORCE 10.42 -- 10.42 -- | END MOMENT 5.24 -- 6.43 -- | CNCTN FORCE 4.96 -- 5.67 -- | 2E-595 | (Struts 6 through 6) | AXIAL FORCE -- -1.79 -1.79 -- | END MOMENT -- 15.57 15.57 -- | CNCTN FORCE -- -3.49 1.70 -- CST COVERS BY: MAA DATE: 01-SEP-16 PROJECT: ASHEBORO, NC ISO 9001 Certified JOB NO.: 216228 <5763> Sheet No. 53 C O N N E C T I O N F O R C E S U M M A R Y BASIC LOAD CASE No.11 DEAD + 100 MPH WIND VELOCITY PER ASCE 7-05, CASE B _________________________________________________________________ | MAXIMUM CONNECTION FORCES (kips) AND MOMENTS (in-k) | | EXTRUSION | TYPE | TOP | BOTTOM | | | | FLANGE | FLANGE | | | | COMP TENS | COMP TENS | | E-561 | (Struts 1 through 1) | AXIAL FORCE 0.11 -0.92 0.11 -0.92 | END MOMENT -3.39 0.13 1.95 -1.35 | CNCTN FORCE 0.63 -0.54 0.38 -0.63 | E-561 | (Struts 2 through 2) | AXIAL FORCE 1.61 -2.66 1.61 -2.66 | END MOMENT 0.78 0.03 0.78 -1.34 | CNCTN FORCE 0.77 -1.50 0.84 -1.40 | E-561 | (Struts 3 through 3) | AXIAL FORCE -- 0.25 0.25 -1.08 | END MOMENT -- 20.14 20.14 1.80 | CNCTN FORCE -- -3.22 3.47 -0.17 | E-561 | (Struts 4 through 4) | AXIAL FORCE 2.19 -1.52 2.21 -3.24 | END MOMENT -4.79 11.80 13.05 -2.24 | CNCTN FORCE 2.02 -2.82 3.15 -1.80 | E-561 | (Struts 5 through 5) | AXIAL FORCE 11.22 -- 11.22 -- | END MOMENT 5.64 -- 6.77 -- | CNCTN FORCE 5.33 -- 6.07 -- | 2E-595 | (Struts 6 through 6) | AXIAL FORCE -- -1.96 -1.96 -- | END MOMENT -- 17.09 17.09 -- | CNCTN FORCE -- -3.83 1.87 -- Mr. Ming-Tai Chao, P.E. October 17, 2016 ATTACHMENT 4 Mr. Ming-Tai Chao, P.E. October 17, 2016 ATTACHMENT 5 CONSTRUCTION DRAWINGS SCS ENGINEERS, PC GREAT OAK LANDFILL 2520 WHITEHALL PARK DRIVE, SUITE 450 CHARLOTTE, NORTH CAROLINA 28273 (704) 504-3107 NC ENGINEERING CORP. LICENSE # C-1837 JOB NO. 02215305.03 JULY 2016 LEACHATE STORAGE FACILITY WASTE MANAGEMENT OF CAROLINAS, INC. ATTACHMENT 5 ISSUED FOR CONSTRUCTION DATE: 10/13/16 SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 10 TI T L E S H E E T 1 LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L SUMMARY OF WORKSPECIFICATIONS ISSUED FOR CONSTRUCTION DATE: 10/13/16 SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 10 NO T E S A N D S P E C I F I C A T I O N S 2 LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 10 SI T E P L A N 3 LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L ISSUED FOR CONSTRUCTION DATE: 10/13/16 60'-0" INSIDE 121'-0" INSIDE MATERIAL LIST DESCRIPTION EST. QUANTITY SPECIFICATION NOTES 30'-0" INSIDE 34'-5 1/2"34'-5 1/2"52'-1" 30'-0" INSIDE B B' A'A ISSUED FOR CONSTRUCTION DATE: 10/13/16 SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 10 TA N K C O N F I G U R A T I O N P L A N 4 LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L 60'-0" INSIDE 121'-0" INSIDE B B' A TANK DISCHARGE INLET DETAIL TANK OVERFLOW WEIR CONE DETAIL 2 1 A' ISSUED FOR CONSTRUCTION DATE: 10/13/16 SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 10 PI P I N G P L A N 5 LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L 33 ' - 6 9 32 " 121' 6' ROOF VENT ASSEMBLY DETAIL CENTER DOME - ASSEMBLED 39'-0" 32 ' - 6 9 32 " ELEVATION VIEW SECTION A-A' TANK DISCHARGE DETAIL 1 3' M I N . 2 PIPE SUPPORT DETAIL 39'-0" SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 106 EL E V A T I O N V I E W SE C T I O N A - A ' LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L ISSUED FOR CONSTRUCTION DATE: 10/13/16 33 ' - 6 9 32 " 60' 39'-0" 6'6' ELEVATION VIEW SECTION B-B' 1 3' M I N . SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 107 EL E V A T I O N V I E W SE C T I O N B - B ' LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L ISSUED FOR CONSTRUCTION DATE: 10/13/16 x x x ISSUED FOR CONSTRUCTION DATE: 10/13/16 SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 108 PR O C E S S A N D I N S T R U M E N T A T I O N DI A G R A M ( P & I D ) LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L ISSUED FOR CONSTRUCTION DATE: 10/13/16 SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 10 EL E C T R I C A L S I T E P L A N 9 LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L TANK FOUNDATION DETAIL SECONDARY CONTAINMENT DETAIL PIPE HEAT TRACING DETAIL G A D F CI E 2" NOZZLE 4" NOZZLE 6" NOZZLE APPURTENANCES ITEM SIZE DESCRIPTION ORIENTATION CENTER ELEVATION A 24"MANWAY 2'-6 1 4" B 4"NOZZLE 31'-6 1/16" C 2"NOZZLE 31'-6 1/16" D EXTERIOR LADDER E 24"ROOF SQUARE ACCESS HATCH F 4"NOZZLE 1'-10 3/4" G 8"NOZZLE 30'-0 11/16" H 2"NOZZLE 11 1/4" I 20"MUSHROOM VENT CENTER TANK PLAN H B 8" NOZZLE DUAL-CONTAINMENT PIPE TRENCH DETAIL SC S E N G I N E E R S , P C 25 2 0 W H I T E H A L L P A R K D R I V E , S U I T E 4 5 0 CH A R L O T T E , N O R T H C A R O L I N A 2 8 2 7 3 PH O N E : ( 7 0 4 ) 5 0 4 - 3 1 0 7 F A X : ( 7 0 4 ) 5 0 4 - 3 1 7 4 10 DE T A I L S 10 LE A C H A T E S T O R A G E F A C I L I T Y WA S T E M A N A G E M E N T O F C A R O L I N A S , I N C . GR E A T O A K L A N D F I L L ISSUED FOR CONSTRUCTION DATE: 10/13/16 Waste Management of Carolinas i Table of Contents Section Page 1.0 PROJECT INFORMATION ..................................................................................................................... 1 2.0 FIELD ACTIVITIES .................................................................................................................................... 1 2.1 Soil Borings .................................................................................................................................... 1 2.2 Soil Classification ......................................................................................................................... 2 2.3 Laboratory Testing ...................................................................................................................... 2 3.0 SITE AND INVESTIGATION FINDINGS .............................................................................................. 2 3.1 Area Geology .............................................................................................................................. 2 3.2 Investigation Findings .................................................................................................................. 3 3.2.1 Laboratory Testing ................................................................................................ 3 4.0 CONCLUSIONS AND RECOMMENDATIONS ................................................................................... 4 4.1.1 Seismic Site Classification ..................................................................................... 4 4.1.2 Structure Foundation .............................................................................................. 5 Attachments Attachment 1 – Soil Boring Locations Attachment 2 – Boring Logs Attachment 3 – Laboratory Test Results Waste Management of Carolinas 1 1.0 PROJECT INFORMATION SCS Engineers, PC (SCS) completed an investigation of the subsurface below the proposed leachate storage facility at the Great Oak Landfill in Randleman, North Carolina located in Randolph County. The storage facility is to be located within the landfill property, south of the proposed landfill cell 2 in Phase 1, approximately 100 feet from the proposed landfill limits. The leachate storage facility consists of two (2) circular nominal 250,000 gallon aboveground storage tanks, one proposed and one future, with reinforced concrete foundations for both tanks and a 121 foot by 60 foot secondary containment reinforced concrete wall and floor. The location and general configuration of the proposed leachate storage facility is shown on the drawing provided in Attachment 1. The investigation included conducting three (3) subsurface borings within the storage facility footprint, field characterizing material from the borings, and periodic laboratory testing of the boring evacuated material. This investigation also included estimating the allowable bearing capacity in support of the tanks and secondary containment foundation design, as well as, estimating the probable settlement and determination of the North Carolina Building Code seismic site classification based on field and laboratory activities and testing. A description of the activities performed and findings as part of this investigation are provided in the subsequent sections. 2.0 FIELD ACTIVITIES 2.1 SOIL BORINGS SCS contracted Saedacco to drill three (3) hollow stem auger borings on August 26, 2016 to evaluate the stratification and engineering properties of the subsurface soils beneath the proposed leachate storage facility two (2) storage tanks and secondary containment. The borings were performed under the supervision of SCS and activities documented. Two (2) of the borings were at the center of each of the proposed tanks and one (1) test was located at the western side of the proposed secondary containment wall. Boring locations are shown on the drawing provided in Attachment 1. The borings were extended to auger refusal, which was about 31 feet below the ground surface. Groundwater measurements were attempted at the termination of drilling at each boring location. Standard penetration tests (SPTs) were performed at 2.5 foot intervals in the upper 10 feet and at 5 foot intervals thereafter. SPTs were completed in general accordance with ASTM D 1586 to provide an index for estimating soil strength and density. In conjunction with the SPTs, split- spoon soil samples were collected for field description and for laboratory tests. Boring logs are included in Attachment 2. Waste Management of Carolinas 2 2.2 SOIL CLASSIFICATION SCS classified each soil sample on the basis of color, texture, and plasticity characteristics in general accordance with the Unified Soil Classification System (USCS). The soil types were grouped into major zones as noted on the boring logs. The stratification lines designating the interfaces between in situ earth materials on the boring logs and profiles are approximate; the transition between strata may be gradual in both the vertical and horizontal directions. The results of the visual classifications are presented on the Boring Logs included in Attachment 2. 2.3 LABORATORY TESTING In addition to the manual-visual classification in the field, SCS selected representative split- spoon samples from each boring for laboratory testing to check manual-visual classifications and to determine pertinent engineering properties. The laboratory testing performed included USCS Soil Classification (ASTM D 6913) to corroborate the manual-visual classification, natural moisture content (ASTM D 2216), and Atterberg Limits (ASTM D 4318). In addition to the borings split-spoon samples a bulk soil sample was collected for completion of a re-molded consolidated undrained triaxial test (ASTM D 4767). Laboratory testing was performed in general accordance with ASTM standards by Geotechnics. The results from the laboratory testing are included in Attachment 3. 3.0 SITE AND INVESTIGATION FINDINGS A summary of the site and investigation findings are as follows. 3.1 AREA GEOLOGY The site is located in the Piedmont Physiographic Province of North Carolina. The native soils in the Piedmont Province consist mainly of residuum with underlying saprolites weathered from the parent bedrock, which can be found in both weathered and unweathered states. Although the surficial materials normally retain the structure of the original parent bedrock, they typically have a much lower density and exhibit strengths and other engineering properties typical of soil. In a mature weathering profile of the Piedmont Province, the soils are generally found to be finer grained at the surface where more extensive weathering has occurred. The particle size of the soils generally becomes more granular with increasing depth and gradually changes first to weathered and finally to unweathered parent bedrock. The mineral composition of the parent rock and the environment in which weathering occurs largely control the resulting soil's engineering characteristics. The residual soils are the product of the weathering of the parent bedrock. The quality of man-made fills can vary significantly, and it is often difficult to assess the engineering properties of existing fills. Furthermore, there is no specific correlation between N values from standard penetration tests performed in soil test borings and the degree of compaction of existing fill soils; however, a qualitative assessment of existing fills can sometimes be made based on the N-values obtained and observations of the materials sampled in the test borings. Waste Management of Carolinas 3 3.2 INVESTIGATION FINDINGS All three (3) soil borings were extended to auger refusal; 31.2 feet bgs for Point 1 located at the proposed secondary containment western wall, 31.0 feet for the boring at Center of Tank 1, and 31.5 feet for boring at the Center of Tank 2. Boring logs displaying the subsurface soil stratification and soil properties are included in Attachment 2. The subsurface conditions, as indicated by the borings and laboratory tests, generally consisted of silts and clays; either inorganic silts and very fine sands or silty or clayey fine sands or silts (ML) or inorganic silts, micaceous fine sandy or silty soils, elastic silts (MH). For soil stratification at a particular boring location, the respective boring log should be reviewed. No buried organic material or organic laden soils were encountered within the borings. In addition, groundwater was not encountered within any of the borings. Soils encountered in the Center of Tank 1 and Point 1 borings exhibited stiff to very stiff conditions while the soils from Center of Tank 2 boring exhibited stiff to medium stiff conditions. These in situ soil conditions are substantiated by the SPT N-values documented on the boring logs. 3.2.1 Laboratory Testing A summary of the laboratory test results included in Attachment 3 are presented in the following Table 1. Table 1. Laboratory Test Summary Boring ID Sample Depth Natural Moisture Content (ASTM D 2216) USCS Soil Classification (ASTM D 6913 & ASTM D 4318) Atterberg Limits (ASTM D 4318) (feet) (%) LL PL PI Point 1 3.5 - 5.0 29.1 MH 50 38 12 Center of Tank 1 6.0 – 7.5 19 ML 43 28 15 Center of Tank 2 6.0 – 7.5 25.5 ML 44 33 11 ID Maximum Dry Density (ASTM D698) Optimum Water Content (ASTM D698) USCS Soil Classification (ASTM D 6913 & ASTM D 4318) Consolidated Undrained Triaxial Test (ASTM D 4767) Cohesion Angle of Internal Friction (pcf) (%) (psf) (ø) Bulk Sample 95.1 23 ML 300.96 21.35 Waste Management of Carolinas 4 4.0 CONCLUSIONS AND RECOMMENDATIONS The borings performed at this site represent the subsurface conditions at the location of the borings. Due to inconsistencies in the prevailing geology, there can be changes in the subsurface conditions over relatively short distances that have not been disclosed by the results of the test location performed. Consequently, there may be undisclosed subsurface conditions that require special treatment or additional preparation once these conditions are revealed during construction. Our evaluation of foundation support conditions has been based on our understanding of the site, project information, and the data obtained in our exploration. The general subsurface conditions utilized in our analysis have been based on interpolation of subsurface data between and away from the borings. In evaluating the boring and laboratory data, we have examined previous correlations between penetration resistance values and test data with foundation bearing pressures and settlement observed in similar soil conditions. 4.1.1 Seismic Site Classification The seismic site classification for the leachate storage facility is identified based on procedures outlined in Section 1613.5.5 and Table 1613.5.2 in Chapter 16 of the North Carolina Building Code 2012 using borings SPT N-values and subsurface stratification, depths, and properties. Based on the SPT N-values from Center of Tank 2 boring, the seismic classification recommended for design is “D”, being the worst case condition. Table 2. Site Classification Definitions (reference: Table 1613.5.2; Chapter 16 of the North Carolina Building Code) Site Classification Soil Profile Name Soil Shear Wave Velocity (ft./sec.) Standard Penetration Resistance Soil Undrained Shear Strength (psf) Vs ∑N Su A Hard Rock Vs > 5,000 N/A N/A B Rock 2,500 < Vs ≤ 5,000 N/A N/A C Very dense soil and soft rock 1,200 < Vs ≤ 2,500 ∑N > 50 Su ≥ 2,000 D Stiff soil profile 600 ≤ Vs ≤ 1,200 15 ≤ ∑N ≤ 50 1,000 ≤ Su ≤ 2,000 E Stiff soil profile Vs ≤ 600 ∑N < 15 Su < 1,000 Waste Management of Carolinas 5 4.1.2 Structure Foundation Information provided by the leachate storage tank supplier, Permastore Tanks and Silos, includes the tank diameter of 36.42 feet with a full tank vertical loading of 2,492,374 pounds. Based on the tank location and using an at-grade mat foundation, the proposed Tank 1 can be adequately supported using an allowable bearing capacity up to 5,500 pounds per square foot (psf). For future storage Tank 2 and using an at-grade mat foundation, the tank can be adequately supported using an allowable bearing capacity up to 3,000 pounds per square foot. The subsurface soils are fined grained soils USCS classification MH or ML so settlement should be considered in the foundation design. Based on a 38.42 foot diameter tank foundation and vertical loading of 2,151 psf, the probable total subgrade settlement beneath storage Tank 1 is 3 inches at the center of the tank foundation and 2 inches at the foundation outer edge. For Tank 2 the probable total subgrade settlement is 4 inches at the center of the tank foundation and 3 inches at the foundation outer edge. The total settlement includes the entire soil stratum from the surface to a confining layer, ±31 feet below ground surface (bgs). Probable settlement was estimated using the one-dimension compression theory, which considers in-situ soils void ratio, compression index, and subsurface vertical stress distribution. The establishment of a compression index was assessed using two methods. Method one used correlations with field SPT N-values, which take into account the in-situ soils relative density and consistency and method two used empirical relationships published by Hough, 1957, which are based largely on soil type and minimum void ratios. Waste Management of Carolinas Attachment 1 ATTACHMENT 1 Drawing No. 1 – Soil Boring Locations APP BY CHK BY DES BY CAD FILE SCALEFIGURE PROJECT NO.DATE Environmental Consultants and Contractors 2520 WHITEHALL PARK DRIVE, SUITE 450 CHARLOTTE, NORTH CAROLINA 28273 PHONE: (704) 504-3107 FAX: (704) 504-317402215305.03 AS NOTEDWASTE MANAGEMENT OF CAROLINAS, INC.SOIL BORING LOCATIONS GREAT OAK LANDFILL09/2016 1 Waste Management of Carolinas Attachment 2 ATTACHMENT 2 Boring Logs S C S E N G I N E E R S, PC Environmental Consultants 2520 Whitehall Park Drive, Suite 450 Charlotte, NC 28273 704 504-3107 FAX 704 504-3174 Page 1 of 1 0 1 2 3 4 5 6 7 X 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Drilling Company:SAEDACCO Boring Diameter: Date Started: Drilling Method:Auger Well Diameter: Date Ended: Logged by:M. Cobb Casing Material: Time Started: Time Ended: Great Oak Landfill BORING LOG Randleman, North Carolina Center of Tank 1Project No. 02215305.03 Depth in Feet SOIL DESCRIPTION FIELD TEST RESULTS (Blows/6-in; N value) SA M P L E CO L L E C T E D Northing:726,668.90 Easting:1,777,193.63 Surface Elevation:593.0 feet Boring Depth:31.0 feet Standard Penetration (Blows/Ft.) 10 20 30 40 50+ Gray to light brown/tan; sandstone to silty sand; very stiff (ML)16‐8‐17 (N=25) Light brown to gray sand to silty sand to clayey silt; very stiff (ML)21‐15‐12 (N=27) Light brown to gray silty sand; very hard(ML)20‐33‐20 (N=53) Brownish gray sand; very stiff (ML)9‐7‐16 (N=23) Grayish brown silty sand; mica inclusions at bottom; very stiff (ML)20‐11‐15 (N=26) Brown to gray silty sand to clayey silt; hard (ML) 6‐12‐20 (N=32) Brown to grayish brown; clayey sand to sand; very stiff (ML)15‐8‐10 (N=18) Light brown clayey sand to sand; very hard (ML) 42‐50/3" 1330 END OF BORING @ 31.0' Auger Refusal 4" 8/26/2016 N/A 8/26/2016 N/A 1200 S C S E N G I N E E R S, PC Environmental Consultants 2520 Whitehall Park Drive, Suite 450 Charlotte, NC 28273 704 504-3107 FAX 704 504-3174 Page 1 of 1 0 1 2 3 4 5 6 7 X 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Drilling Company:SAEDACCO Boring Diameter: Date Started: Drilling Method:Auger Well Diameter: Date Ended: Logged by:M. Cobb Casing Material: Time Started: Time Ended: Brown silty sand to sand; very stiff (ML)6‐20‐4 (N=24) 1535 END OF BORING @ 31.5' Auger Refusal 4" 8/26/2016 N/A 8/26/2016 N/A 1430 Brown to grayish brown sand to clayey sand; medium stiff (ML) 4‐4‐4 (N=8) Red to tan clayey sand to silty sand; stiff (ML) 3‐8‐7 (N=15) Brown to gray sand; sandstone in bottom; stiff (ML)4‐3‐6 (N=9) No recovery 6‐8‐10 (N=18) Red to light brown sand to clayey sand; stiff (ML)7‐7‐6 (N=13) Brown to red silty sand; medium stiff (ML)4‐4‐3 (N=7) Boring Depth:31.5 feet Standard Penetration (Blows/Ft.) 10 20 30 40 50+ Light gray to red sand; very hard(ML)50/5" Depth in Feet SOIL DESCRIPTION FIELD TEST RESULTS (Blows/6-in; N value) SA M P L E CO L L E C T E D Northing:726,676.92 Easting:1,777,245.09 Surface Elevation:592.2 feet Great Oak Landfill BORING LOG Randleman, North Carolina Center of Tank 2Project No. 02215305.03 S C S E N G I N E E R S, PC Environmental Consultants 2520 Whitehall Park Drive, Suite 450 Charlotte, NC 28273 704 504-3107 FAX 704 504-3174 Page 1 of 1 0 1 2 3 4 X5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Drilling Company:SAEDACCO Boring Diameter: Date Started: Drilling Method:Auger Well Diameter: Date Ended: Logged by:M. Cobb Casing Material: Time Started: Time Ended: 593.5 feet 31.2 feet Surface Elevation: Easting: Northing: 1030 1145 BORING LOG Point 1 - Secondary Containment Wall Depth in Feet Standard Penetration (Blows/Ft.) 10 20 30 40 50+ Great Oak Landfill Randleman, North Carolina Project No. 02215305.03 8/26/2016 8/26/2016 Boring Depth: 16‐44‐50/2" SOIL DESCRIPTION 4" N/A FIELD TEST RESULTS (Blows/6-in; N value) N/A 6‐9‐16 (N=25) 12‐17‐37 (N=54) Dark red to light brown silty, clayey sand; stiff (MH) Dark red to brown silty, clayey sand; brown inclusions in red material; very stiff (MH) 3‐8‐10 (N=18) Intermixed red and brown silty sand; micaceous; very stiff (MH) 9‐5‐7 (N=12) Brown sand; bits of rock in top; very hard (MH) 10‐18‐24 (N=42) END OF BORING @ 31.2' Auger Refusal Light red to brown silty sand to sand; micaceous; hard (MH)6‐11‐29 (N=40) Light brown sand; micaceous at bottom; hard (MH) SA M P L E CO L L E C T E D 10‐6‐8 (N=14)Orange silty sand; stiff (MH) Brown to grayish brown micaceous sand to sand with sand stone inclusions; very hard (MH) Major Divisions Group Symbols Typical Names Laboratory Classification Criteria GW Well graded gravels, gravel- sand mixtures, little or no fines Cu=D60/D10 greater than 4 Cc= (D30)2/(D10 x D60) between 1 and 3 Cl e a n G r a v e l s (Li t t l e o r n o f i n e s ) GP Poorly graded gravels, gravel- sand mixtures, little or no fines Not meeting all gradation requirements for GW d GMa u Silty Gravels, gravel-sand-silt mixtures Atterberg limits below “A” line or P.I. less than 4 Gr a v e l s (M o r e t h a n h a l f o f c o a r s e f r a c t i o n i s la r g e r t h a n N o . 4 s i e v e s s i z e ) Gr a v e l s w i t h fi n e s GC Clayey Gravels, gravel-sand- clay mixtures Atterberg limits above “A” line with P.I. greater than 7 Above “A” line with P.I. between 4 and 7 are borderline cases requiring use of dual symbols SW Well-graded sands, gravelly sands, little or no fines Cu=D60/D10 greater than 6 Cc= (D30)2/(D10 x D60) between 1 and 3 Cl e a n S a n d s (Li t t l e o r n o f i n e s ) SP Poorly graded sands, gravelly sands, little or no fines Not meeting all gradation requirements for SW d SMa u Silty sands, sand-silt mixtures Atterberg limits below “A” line or P.I. less than 4 Co a r s e - G r a i n e d S o i l s (M o r e t h a n h a l f o f t h e m a t e r i a l i s l a r g e r t h a n N o . 2 0 0 s i e v e s i z e ) Sa n d s (M o r e t h a n h a l f o f c o a r s e f r a c t i o n i s sm a l l e r t h a n N o . 4 s i e v e s i z e ) Sa n d s w i t h fi n e s SC Clayey sands, sand-clay mixtures De t e r m i n e p e r c e n t a g e s o f s a n d a n d g r a v e l f r o m g r a i n s i z e c u r v e De p e n d i n g o n t h e p e r c e n t a g e o f t h e f i n e s (f r a c t i o n s m a l l e r t h a n N o . 2 0 0 s i e v e s i z e ) , Co a r s e g r a i n e d s o i l s a r e c l a s s i f i e d a s f o l l o w s : Le s s t h a n 5 % G W , G P , S W , S P Mo r e t h a n 1 2 % G M , G C , S M , S C 5 t o 1 2 % B o r d e r l i n e c a s e s r e q u i r i n g d u a l s y m b o l s b Atterberg limits above “A” line with P.I. greater than 7 Limits plotting in hatched zone with P.I. between 4 and 7 are borderline cases requiring use of dual symbols ML Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays Si l t s a n d C l a y s (L i q u i d L i m i t l e s s t h a n 50 ) OL Organic silts and organic silty clays of low plasticity MH Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts CH Inorganic clays of high plasticity, fat clays Si l t s a n d C l a y s (L i q u i d L i m i t g r e a t e r t h a n 5 0 ) OH Organic clays of medium to high plasticity, organic silts Fi n e - G r a i n e d S o i l s (M o r e t h a n h a l f o f m a t e r i a l i s s m a l l e r t h a n N o . 2 0 0 s i e v e ) Hi g h l y Or g a n i c So i l s Pt Peat and other highly organic soils Reference: Winterkorn & Fang, 1975 (ASTM D-2487) aDivision of GM and SM groups into subdivision of d and u are for road and airfields only. Subdivision is based on Atterberg limits; suffix d used when L.L. is 28 or less and the P.I. is 6 or less; the suffix u is used when L.L. is greater that 28. bBorderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder. UNIFIED SOIL CLASSIFICATION SYSTEM REFERENCE NOTES FOR BORING LOGS I. Drilling Sampling Symbols SS Split Spoon Sampler ST Shelby Tube Sampler RC Rock Core, NX, BX, AX PM Pressuremeter DC Dutch Cone Penetrometer RD Rock Bit Drilling BS Bulk Sample of Cuttings PA Power Auger (no sample) HSA Hollow Stem Auger WS Wash sample REC Rock Sample Recovery % RQD Rock Quality Designation % II. Correlation of Penetration Resistances to Soil Properties Standard Penetration (blows/ft) refers to the blows per foot of a 140 lb. hammer falling 30 inches on a 2-inch OD split-spoon sampler, as specified in ASTM D 1586. The blow count is commonly referred to as the N-value. A. Non-Cohesive Soils (Silt, Sand, Gravel and Combinations) Density Relative Properties Under 4 blows/ft Very Loose Adjective Form 12% to 49% 5 to 10 blows/ft Loose With 5% to 12% 11 to 30 blows/ft Medium Dense 31 to 50 blows/ft Dense Over 51 blows/ft Very Dense Particle Size Identification Boulders 8 inches or larger Cobbles 3 to 8 inches Gravel Coarse 1 to 3 inches Medium ½ to 1 inch Fine ¼ to ½ inch Sand Coarse 2.00 mm to ¼ inch (dia. of lead pencil) Medium 0.42 to 2.00 mm (dia. of broom straw) Fine 0.074 to 0.42 mm (dia. of human hair) Silt and Clay 0.0 to 0.074 mm (particles cannot be seen) B. Cohesive Soils (Clay, Silt, and Combinations) Blows/ft Consistency Unconfined Comp. Strength Qp (tsf) Degree of Plasticity Plasticity Index Under 2 Very Soft Under 0.25 None to slight 0 – 4 3 to 4 Soft 0.25-0.49 Slight 5 – 7 5 to 8 Medium Stiff 0.50-0.99 Medium 8 – 22 9 to 15 Stiff 1.00-1.99 High to Very High Over 22 16 to 30 Very Stiff 2.00-3.00 31 to 50 Hard 4.00–8.00 Over 51 Very Hard Over 8.00 III. Water Level Measurement Symbols WL Water Level BCR Before Casing Removal DCI Dry Cave-In WS While Sampling ACR After Casing Removal WCI Wet Cave-In WD While Drilling Est. Groundwater Level Est. Seasonal High GWT The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in a granular soil. In clay and plastic silts, the accurate determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally applied. Waste Management of Carolinas Attachment 3 ATTACHMENT 3 Laboratory Test Results 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net MOISTURE CONTENT ASTM D 2216-10 Client:SCS ENGINEERS Client Reference: GREAT OAK LANDFILL Project No.: 2016-705-012 Lab ID:001 002 003 Boring No.:TANK 1 TANK 2 P1 Depth (ft):6-7.5 6-7.5 3.5-5 Sample No.:CENTER SS SAMPLE CENTER SS SAMPLE SS SAMPLE Tare Number SS-0 SS-4 SS-5 Wt. of Tare & Wet Sample (g) 446.60 353.77 464.34 Wt. of Tare & Dry Sample (g) 391.40 301.98 382.06 Weight of Tare (g)100.58 98.98 99.32 Weight of Water (g)55.20 51.79 82.28 Weight of Dry Sample (g)290.82 203.00 282.74 Water Content (%)19.0 25.5 29.1 Notes : Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 1 of 1 DCN: CT-S1 DATE: 3/18/13 REVISION: 4 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net ATTERBERG LIMITS ASTM D 4318-10 / AASHTO T89-10 Client:SCS ENGINEERS Boring No.:TANK 1 Client Reference: GREAT OAK LANDFILL Depth (ft):6-7.5 Project No.: 2016-705-012 Sample No.: CENTER SS SAMPLE Lab ID:2016-705-012-001 Soil Description:YELLOW SILT Note: The USCS symbol used with this test refers only to the minus No. 40 ( Minus No. 40 sieve material, Airdried) sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description . Liquid Limit Test 1 2 3 M Tare Number A-D Q3 U Wt. of Tare & Wet Sample (g) 27.07 26.38 27.17 L Wt. of Tare & Dry Sample (g) 23.76 23.00 23.45 T Wt. of Tare (g) 15.34 15.12 15.41 I Wt. of Water (g) 3.3 3.4 3.7 P Wt. of Dry Sample (g) 8.4 7.9 8.0 O I Moisture Content (%) 39.3 42.9 46.3 N Number of Blows 35 25 16 T Plastic Limit Test 1 2 Range Test Results Tare Number 5M E Liquid Limit (%) 43 Wt. of Tare & Wet Sample (g) 22.05 22.75 Wt. of Tare & Dry Sample (g) 20.64 21.13 Plastic Limit (%) 28 Wt. of Tare (g) 15.57 15.21 Wt. of Water (g) 1.4 1.6 Plasticity Index (%) 15 Wt. of Dry Sample (g) 5.1 5.9 USCS Symbol ML Moisture Content (%) 27.8 27.4 0.4 Note: The acceptable range of the two Moisture contents is ± 2.6 Flow Curve Plasticity Chart Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 1 of 1 DCN:CT-S4B DATE:3/18/13 REVISION:4 3ptlimit.xls 20 25 30 35 40 45 50 110100 Wa t e r C o n t e n t ( % ) Number of Blows 0 10 20 30 40 50 60 0 20406080100 Pl a s t i c i t y I n d e x ( % ) Liquid Limit (%) CL CH MH CL-ML ML 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net WASH SIEVE ANALYSIS ASTM D 6913-04 (2009) e1 Client:SCS ENGINEERS Boring No.:TANK 1 Client Reference: GREAT OAK LANDFILL Depth (ft):6-7.5 Project No.: 2016-705-012 Sample No.:CENTER SS SAMPLE Lab ID: 2016-705-012-001 Soil Color:YELLOW SIEVE ANALYSIS HYDROMETER USCS gravel sand silt and clay USCS Symbol: ML, TESTED USCS Classification:SILT Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 1 of 2 DCN: CT-S3C DATE 3/20/13 REVISION: 3 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.11101001000 Pe r c e n t F i n e r B y W e i g h t ( % ) Particle Diameter (mm) 12"6" 3" 3/4" 3/8" #4 #10 #20 #40 #140 #200 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net WASH SIEVE ANALYSIS ASTM D 6913-04 (2009) e1 Client:SCS ENGINEERS Boring No.:TANK 1 Client Reference: GREAT OAK LANDFILL Depth (ft):6-7.5 Project No.: 2016-705-012 Sample No.: CENTER SS SAMPLE Lab ID: 2016-705-012-001 Soil Color:YELLOW Moisture Content of Passing 3/4" Sample Water Content of Retained 3/4" Sample Tare No.SS-0 Tare No.NA Wt. of Tare & Wet Sample (g) 446.60 Weight of Tare & Wet Sample (g)NA Wt. of Tare & Dry Sample (g) 391.40 Weight of Tare & Dry Sample (g)NA Weight of Tare (g)100.58 Weight of Tare (g)NA Weight of Water (g)55.20 Weight of Water (g)NA Weight of Dry Sample (g) 290.82 Weight of Dry Sample (g)NA Moisture Content (%)19.0 Moisture Content (%)NA Wet Weight of -3/4" Sample (g) NA Weight of the Dry Sample (g)290.82 Dry Weight of - 3/4" Sample (g) 23.4 Weight of - #200 Sample (g)267.46 Wet Weight of +3/4" Sample (g) NA Weight of + #200 Sample (g)23.36 Dry Weight of + 3/4" Sample (g) 0.00 Total Dry Weight of Sample (g) NA Sieve Sieve Weight of Soil Percent Accumulated Percent Accumulated Size Opening Retained Retained Percent Finer Percent Retained Finer (mm)(g)(%) (%)(%) (%) 12" 300 0.00 0.00 0.00 100.00 100.00 6" 150 0.00 0.00 0.00 100.00 100.00 3" 75 0.00 0.00 0.00 100.00 100.00 2" 50 0.00 0.00 0.00 100.00 100.00 1 1/2" 37.5 0.00 0.00 0.00 100.00 100.00 1" 25.0 0.00 0.00 0.00 100.00 100.00 3/4" 19.0 0.00 0.00 0.00 100.00 100.00 1/2" 12.50 0.00 0.00 0.00 100.00 100.00 3/8" 9.50 0.00 0.00 0.00 100.00 100.00 #4 4.75 0.44 0.15 0.15 99.85 99.85 #10 2.00 0.64 0.22 0.37 99.63 99.63 #20 0.850 2.86 0.98 1.35 98.65 98.65 #40 0.425 4.36 1.50 2.85 97.15 97.15 #60 0.250 4.45 1.53 4.38 95.62 95.62 #140 0.106 8.14 2.80 7.18 92.82 92.82 #200 0.075 2.47 0.85 8.03 91.97 91.97 Pan -267.46 91.97 100.00 -- Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 2 of 2 DCN: CT-S3C DATE 3/20/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net ATTERBERG LIMITS ASTM D 4318-10 / AASHTO T89-10 Client:SCS ENGINEERS Boring No.:TANK 2 Client Reference: GREAT OAK LANDFILL Depth (ft):6-7.5 Project No.: 2016-705-012 Sample No.: CENTER SS SAMPLE Lab ID:2016-705-012-002 Soil Description:LIGHT BROWN SILT Note: The USCS symbol used with this test refers only to the minus No. 40 ( Minus No. 40 sieve material, Airdried) sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description . Liquid Limit Test 1 2 3 M Tare Number G AM AF U Wt. of Tare & Wet Sample (g) 25.93 25.84 27.36 L Wt. of Tare & Dry Sample (g) 22.73 22.58 23.49 T Wt. of Tare (g) 14.98 15.37 15.40 I Wt. of Water (g) 3.2 3.3 3.9 P Wt. of Dry Sample (g) 7.8 7.2 8.1 O I Moisture Content (%) 41.3 45.2 47.8 N Number of Blows 35 25 16 T Plastic Limit Test 1 2 Range Test Results Tare Number B3 2M Liquid Limit (%) 44 Wt. of Tare & Wet Sample (g) 21.69 21.66 Wt. of Tare & Dry Sample (g) 20.25 20.14 Plastic Limit (%) 33 Wt. of Tare (g) 15.76 15.54 Wt. of Water (g) 1.4 1.5 Plasticity Index (%) 11 Wt. of Dry Sample (g) 4.5 4.6 USCS Symbol ML Moisture Content (%) 32.1 33.0 -1.0 Note: The acceptable range of the two Moisture contents is ± 2.6 Flow Curve Plasticity Chart Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 1 of 1 DCN:CT-S4B DATE:3/18/13 REVISION:4 3ptlimit.xls 20 25 30 35 40 45 50 110100 Wa t e r C o n t e n t ( % ) Number of Blows 0 10 20 30 40 50 60 0 20406080100 Pl a s t i c i t y I n d e x ( % ) Liquid Limit (%) CL CH MH CL-ML ML 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net WASH SIEVE ANALYSIS ASTM D 6913-04 (2009) e1 Client:SCS ENGINEERS Boring No.:TANK 2 Client Reference: GREAT OAK LANDFILL Depth (ft):6-7.5 Project No.: 2016-705-012 Sample No.:CENTER SS SAMPLE Lab ID: 2016-705-012-002 Soil Color:LIGHT BROWN SIEVE ANALYSIS HYDROMETER USCS gravel sand silt and clay USCS Symbol: ML, TESTED USCS Classification:SILT WITH SAND Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 1 of 2 DCN: CT-S3C DATE 3/20/13 REVISION: 3 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.11101001000 Pe r c e n t F i n e r B y W e i g h t ( % ) Particle Diameter (mm) 12"6" 3" 3/4" 3/8" #4 #10 #20 #40 #140 #200 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net WASH SIEVE ANALYSIS ASTM D 6913-04 (2009) e1 Client:SCS ENGINEERS Boring No.:TANK 2 Client Reference: GREAT OAK LANDFILL Depth (ft):6-7.5 Project No.: 2016-705-012 Sample No.: CENTER SS SAMPLE Lab ID: 2016-705-012-002 Soil Color:LIGHT BROWN Moisture Content of Passing 3/4" Sample Water Content of Retained 3/4" Sample Tare No.SS-4 Tare No.NA Wt. of Tare & Wet Sample (g) 353.77 Weight of Tare & Wet Sample (g)NA Wt. of Tare & Dry Sample (g) 301.98 Weight of Tare & Dry Sample (g)NA Weight of Tare (g)98.98 Weight of Tare (g)NA Weight of Water (g)51.79 Weight of Water (g)NA Weight of Dry Sample (g) 203.00 Weight of Dry Sample (g)NA Moisture Content (%)25.5 Moisture Content (%)NA Wet Weight of -3/4" Sample (g) NA Weight of the Dry Sample (g)203.00 Dry Weight of - 3/4" Sample (g) 32.6 Weight of - #200 Sample (g)170.37 Wet Weight of +3/4" Sample (g) NA Weight of + #200 Sample (g)32.63 Dry Weight of + 3/4" Sample (g) 0.00 Total Dry Weight of Sample (g) NA Sieve Sieve Weight of Soil Percent Accumulated Percent Accumulated Size Opening Retained Retained Percent Finer Percent Retained Finer (mm)(g)(%) (%)(%) (%) 12" 300 0.00 0.00 0.00 100.00 100.00 6" 150 0.00 0.00 0.00 100.00 100.00 3" 75 0.00 0.00 0.00 100.00 100.00 2" 50 0.00 0.00 0.00 100.00 100.00 1 1/2" 37.5 0.00 0.00 0.00 100.00 100.00 1" 25.0 0.00 0.00 0.00 100.00 100.00 3/4" 19.0 0.00 0.00 0.00 100.00 100.00 1/2" 12.50 0.00 0.00 0.00 100.00 100.00 3/8" 9.50 0.00 0.00 0.00 100.00 100.00 #4 4.75 0.38 0.19 0.19 99.81 99.81 #10 2.00 0.21 0.10 0.29 99.71 99.71 #20 0.850 1.87 0.92 1.21 98.79 98.79 #40 0.425 6.10 3.00 4.22 95.78 95.78 #60 0.250 7.76 3.82 8.04 91.96 91.96 #140 0.106 13.02 6.41 14.45 85.55 85.55 #200 0.075 3.29 1.62 16.07 83.93 83.93 Pan -170.37 83.93 100.00 -- Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 2 of 2 DCN: CT-S3C DATE 3/20/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net ATTERBERG LIMITS ASTM D 4318-10 / AASHTO T89-10 Client:SCS ENGINEERS Boring No.:P1 Client Reference: GREAT OAK LANDFILL Depth (ft):3.5-5 Project No.: 2016-705-012 Sample No.: SS SAMPLE Lab ID:2016-705-012-003 Soil Description:RED BROWN ELASTIC SILT Note: The USCS symbol used with this test refers only to the minus No. 40 ( Minus No. 40 sieve material, Airdried) sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description . Liquid Limit Test 1 2 3 M Tare Number Y K-P A U Wt. of Tare & Wet Sample (g) 27.95 26.71 26.05 L Wt. of Tare & Dry Sample (g) 24.03 22.97 22.23 T Wt. of Tare (g) 15.57 15.45 15.17 I Wt. of Water (g) 3.9 3.7 3.8 P Wt. of Dry Sample (g) 8.5 7.5 7.1 O I Moisture Content (%) 46.3 49.7 54.1 N Number of Blows 35 25 16 T Plastic Limit Test 1 2 Range Test Results Tare Number B4 H Liquid Limit (%) 50 Wt. of Tare & Wet Sample (g) 22.70 21.77 Wt. of Tare & Dry Sample (g) 20.70 19.96 Plastic Limit (%) 38 Wt. of Tare (g) 15.44 15.07 Wt. of Water (g) 2.0 1.8 Plasticity Index (%) 12 Wt. of Dry Sample (g) 5.3 4.9 USCS Symbol MH Moisture Content (%) 38.0 37.0 1.0 Note: The acceptable range of the two Moisture contents is ± 2.6 Flow Curve Plasticity Chart Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 1 of 1 DCN:CT-S4B DATE:3/18/13 REVISION:4 3ptlimit.xls 20 25 30 35 40 45 50 55 60 110100 Wa t e r C o n t e n t ( % ) Number of Blows 0 10 20 30 40 50 60 0 20406080100 Pl a s t i c i t y I n d e x ( % ) Liquid Limit (%) CL CH MH CL-ML ML 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net WASH SIEVE ANALYSIS ASTM D 6913-04 (2009) e1 Client:SCS ENGINEERS Boring No.:P1 Client Reference: GREAT OAK LANDFILL Depth (ft):3.5-5 Project No.: 2016-705-012 Sample No.:SS SAMPLE Lab ID: 2016-705-012-003 Soil Color:RED BROWN SIEVE ANALYSIS HYDROMETER USCS gravel sand silt and clay USCS Symbol: MH, TESTED USCS Classification:ELASTIC SILT WITH SAND Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 1 of 2 DCN: CT-S3C DATE 3/20/13 REVISION: 3 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.11101001000 Pe r c e n t F i n e r B y W e i g h t ( % ) Particle Diameter (mm) 12"6" 3" 3/4" 3/8" #4 #10 #20 #40 #140 #200 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net WASH SIEVE ANALYSIS ASTM D 6913-04 (2009) e1 Client:SCS ENGINEERS Boring No.:P1 Client Reference: GREAT OAK LANDFILL Depth (ft):3.5-5 Project No.: 2016-705-012 Sample No.: SS SAMPLE Lab ID: 2016-705-012-003 Soil Color:RED BROWN Moisture Content of Passing 3/4" Sample Water Content of Retained 3/4" Sample Tare No.SS-5 Tare No.NA Wt. of Tare & Wet Sample (g) 464.34 Weight of Tare & Wet Sample (g)NA Wt. of Tare & Dry Sample (g) 382.06 Weight of Tare & Dry Sample (g)NA Weight of Tare (g)99.32 Weight of Tare (g)NA Weight of Water (g)82.28 Weight of Water (g)NA Weight of Dry Sample (g) 282.74 Weight of Dry Sample (g)NA Moisture Content (%)29.1 Moisture Content (%)NA Wet Weight of -3/4" Sample (g) NA Weight of the Dry Sample (g)282.74 Dry Weight of - 3/4" Sample (g) 84.4 Weight of - #200 Sample (g)198.32 Wet Weight of +3/4" Sample (g) NA Weight of + #200 Sample (g)84.42 Dry Weight of + 3/4" Sample (g) 0.00 Total Dry Weight of Sample (g) NA Sieve Sieve Weight of Soil Percent Accumulated Percent Accumulated Size Opening Retained Retained Percent Finer Percent Retained Finer (mm)(g)(%) (%)(%) (%) 12" 300 0.00 0.00 0.00 100.00 100.00 6" 150 0.00 0.00 0.00 100.00 100.00 3" 75 0.00 0.00 0.00 100.00 100.00 2" 50 0.00 0.00 0.00 100.00 100.00 1 1/2" 37.5 0.00 0.00 0.00 100.00 100.00 1" 25.0 0.00 0.00 0.00 100.00 100.00 3/4" 19.0 0.00 0.00 0.00 100.00 100.00 1/2" 12.50 0.00 0.00 0.00 100.00 100.00 3/8" 9.50 3.15 1.11 1.11 98.89 98.89 #4 4.75 4.08 1.44 2.56 97.44 97.44 #10 2.00 2.23 0.79 3.35 96.65 96.65 #20 0.850 5.00 1.77 5.11 94.89 94.89 #40 0.425 10.45 3.70 8.81 91.19 91.19 #60 0.250 15.60 5.52 14.33 85.67 85.67 #140 0.106 33.95 12.01 26.34 73.66 73.66 #200 0.075 9.96 3.52 29.86 70.14 70.14 Pan -198.32 70.14 100.00 -- Tested By BW Date 9/8/16 Checked By GEM Date 9/12/16 page 2 of 2 DCN: CT-S3C DATE 3/20/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net PERCENT PASSING # 200 SIEVE ASTM D 1140-00 Client SCS ENGINEERS Client Reference GREAT OAK LANDFILL Project No.2016-705-008 Lab Id..001 Boring No.LST+pump station Depth (ft)NA Sample No.Structural Fill Tare Number TB-06 Wt. of Tare & WS (gm) 312.77 Wt. of Tare & DS (gm) 278.59 Wt. of Tare (gm) 134.62 Wt. of Water (gm) 34.18 Wt. of DS (gm) 143.97 Water Content (%) 23.7 Wt. of Washed Soil & Tare 163.38 Percent Passing #200 80.0 Tested By SFS Date 8/3/16 Checked By GEM Date 8/4/16 page 1 of 1 DCN: CT-S54 DATE: 7-8-98 REVISION:2Z:\2016 PROJECTS\2016-705 SCS ENGINEERS - GREAT OAK LANDFILL\[2016-705-007 PASS #200.xls]Sheet1 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net ATTERBERG LIMITS ASTM D 4318-10 / AASHTO T89-10 Client:SCS Engineers Boring No.:LST+PUMP STATION Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.: 2016-705-008 Sample No.: STRUCTURAL FILL Lab ID:2016-705-008-001 Soil Description:BROWN SILT Note: The USCS symbol used with this test refers only to the minus No. 40 ( Minus No. 40 sieve material, Airdried) sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description . Liquid Limit Test 1 2 3 M Tare Number F 1B-B U Wt. of Tare & Wet Sample (g) 25.89 26.73 28.54 L Wt. of Tare & Dry Sample (g) 22.61 23.16 24.10 T Wt. of Tare (g)15.03 15.58 15.46 I Wt. of Water (g)3.3 3.6 4.4 P Wt. of Dry Sample (g)7.6 7.6 8.6 O I Moisture Content (%)43.3 47.1 51.4 N Number of Blows 34 24 16 T Plastic Limit Test 1 2 Range Test Results Tare Number J K Liquid Limit (%) 47 Wt. of Tare & Wet Sample (g) 22.96 23.39 Wt. of Tare & Dry Sample (g) 21.09 21.49 Plastic Limit (%) 31 Wt. of Tare (g) 15.06 15.16 Wt. of Water (g) 1.9 1.9 Plasticity Index (%) 16 Wt. of Dry Sample (g) 6.0 6.3 USCS Symbol ML Moisture Content (%) 31.0 30.0 1.0 Note: The acceptable range of the two Moisture contents is ± 2.6 Flow Curve Plasticity Chart Tested By NE Date 8/4/16 Checked By GEM Date 8/5/16 page 1 of 1 DCN:CT-S4B DATE:3/18/13 REVISION:4 3ptlimit.xls 20 25 30 35 40 45 50 55 110100 Wa t e r C o n t e n t ( % ) Number of Blows 0 10 20 30 40 50 60 0 20406080100 Pl a s t i c i t y I n d e x ( % ) Liquid Limit (%) CL CH MH CL-ML ML 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net MOISTURE DENSITY RELATIONSHIP ASTM D698-12 Client:SCS ENGINEERS Boring No.: LST+PUMP STATION Client Reference: GREAT OAK LANDFILL Depth (ft): NA Project No.:2016-705-008 Sample No.: STRUCTURAL FILL Lab ID:2016-705-008-001 Test Method STANDARD Visual Description: BROWN SILTY CLAY Optimum Water Content 23.0 Maximum Dry Density 95.1 Tested By TB Date 8/4/16 Checked By GEM Date 8/5/16 page 1 of 2 DCN:CT-S12 DATE:5/1/13 REVISION: 14 PROCTOR.xls 80 85 90 95 100 10 15 20 25 30 35 40 De n s i t y ( p c f ) Water Content (%) Specific Gravity 2.70 Assumed 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net MOISTURE - DENSITY RELATIONSHIP ASTM D698-12 Client:SCS ENGINEERS Boring No.: LST+PUMP STATION Client Reference: GREAT OAK LANDFILL Depth (ft): NA Project No.:2016-705-008 Sample No.: STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY Total Weight of the Sample (g) 22550 Test Type STANDARD As Received Water Content (%)NA Rammer Weight (lb)5.5 Assumed Specific Gravity 2.70 Rammer Drop (in)12 Rammer Type MECHANICAL Percent Retained on 3/4" NA Machine ID R 174 Percent Retained on 3/8" 0 Mold ID R 461 Percent Retained on #4 0 Mold diameter 4" Oversize Material Not included Weight of the Mold (g)4152 Procedure Used A Volume of the Mold (cm3)942 Mold / Specimen Point No.123 4 5 Wt. of Mold & Wet Sample (g)5828 5909 5943 5922 5880 Wt.of Mold (g)4152 4152 4152 4152 4152 Wt. of Wet Sample (g)1676 1757 1791 1770 1728 Mold Volume (cm3)942 942 942 942 942 Moisture Content / Density Tare Number 866 304 314 368 310 Wt. of Tare & Wet Sample (g)374.60 407.30 357.00 401.80 401.40 Wt. of Tare & Dry Sample (g)327.60 352.80 300.50 335.40 328.20 Wt. of Tare (g)86.80 110.70 84.50 111.00 110.40 Wt. of Water (g)47.00 54.50 56.50 66.40 73.20 Wt. of Dry Sample (g)240.80 242.10 216.00 224.40 217.80 Wet Density (g/cm3)1.78 1.87 1.90 1.88 1.83 Wet Density (pcf) 111.1 116.4 118.6 117.2 114.5 Moisture Content (%) 19.5 22.5 26.2 29.6 33.6 Dry Density (pcf) 92.9 95.0 94.0 90.5 85.7 Zero Air Voids Moisture Content (%)28.0 32.0 36.5 Dry Unit Weight (pcf)95.9 90.4 84.9 Tested By TB Date 8/4/16 Checked By GEM Date 8/5/16 page 2 of 2 DCN:CT-S12 DATE:5/1/13 REVISION: 14 PROCTOR.xls 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client: SCS ENGINEERS Boring No.: LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft): NA Project No.: 2016-705-008 Sample No.: STRUCTURAL FILL Lab ID: 2016-705-008-001 a =0.61 C =0.72 28.3 32.54 Tested By: AF Date: 8/5/16 Approved By: MPS Date: 8/11/16 page 1 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 Sigmatriax.xls 0 5 10 15 20 25 30 35 0 102030405060 Q, ( p s i ) P, (psi) Consolidated Undrained Triaxial Test with Pore Pressure Max. Effec. Stress Ratio Points Failure Envelope Test No. 1 Test No. 2 Test No. 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net MOHR TOTAL STRENGTH ENVELOPE ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.: 2016-705-008 Sample No.: STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY (REMOLDED) 36.4 Failure Based on Maximum Effective Principal Stress Ratio NOTE: GRAPH NOT TO SCALE Tested By:AF Date:8/5/16 Approved By:MPS Date:8/11/16 page 2 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 t (p s i ) s (psi) c = F = 2.09 21.35 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.:2016-705-008 Sample No.:STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY (REMOLDED) Stage No.1 INITIAL SAMPLE DIMENSIONS (in) Test No.1 Length 1: 5.995 Diameter 1: 2.864 PRESSURES (psi)Length 2: 5.995 Diameter 2: 2.864Length 3: 5.995 Diameter 3: 2.864 Cell Pressure (psi)60.2 Avg. Length:5.995 Avg. Diam.:2.864 Back Pressure (psi)49.9 Eff. Conf. Pressure (psi) 10.3 VOLUME CHANGE Pore Pressure Initial Burette Reading (ml)24.0 Response (%)96 Final Burette Reading (ml)7.3 Final Change (ml)16.7 MAXIMUM OBLIQUITY POINTS Initial Dial Reading (mil)106P =22.03 Dial Reading After Saturation (mil)85 Q =13.02 Dial Reading After Consolidation (mil)111 LOAD DEFORMATION PORE PRESSURE (LB)(IN)(PSI) 8.5 0.000 49.923.5 0.013 49.955.8 0.028 52.0115.3 0.085 53.4143.3 0.144 52.5182.6 0.306 51.2192.6 0.381 50.5209.2 0.483 49.4236.8 0.704 47.1259.7 0.942 46.2245.9 1.148 44.0234.9 1.148 42.2228.6 1.148 40.7 Tested By: AF Date: 8/5/16 Input Checked By: MPS Date: 8/11/16 page 3 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 Sigmatriax.xls 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.:2016-705-008 Sample No.: STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY (REMOLDED) Effective Confining Pressure (psi)10.3 Stage No.1 Test No 1 INITIAL DIMENSIONS VOLUME CHANGE Initial Sample Length (in)6.00 Volume After Consolidation (in3)38.01 Initial Sample Diameter (in)2.86 Length After Consolidation (in)5.99 Initial Sample Area (in2)6.44 Area After Consolidation (in2)6.345 Initial Sample Volume (in3)38.62 Strain Deviation DU s1 s3 Effective Principle A P Q (%) Stress Stress Ratio 0.22 2.36 -0.02 12.68 10.3 1.228 -0.01 11.50 1.180.46 7.42 2.05 15.67 8.2 1.899 0.29 11.96 3.711.42 16.59 3.47 23.42 6.8 3.431 0.22 15.12 8.302.40 20.73 2.59 28.44 7.7 3.689 0.13 18.07 10.365.11 26.03 1.29 35.05 9.0 3.888 0.05 22.03 13.026.36 27.17 0.63 36.84 9.7 3.808 0.02 23.26 13.588.06 29.07 -0.46 39.83 10.8 3.701 -0.02 25.30 14.5411.76 31.75 -2.85 44.90 13.1 3.415 -0.09 29.02 15.8715.73 33.36 -3.67 47.33 14.0 3.387 -0.11 30.65 16.6819.17 30.24 -5.94 46.48 16.2 2.862 -0.20 31.36 15.1219.17 28.83 -7.68 46.81 18.0 2.604 -0.28 32.39 14.4219.17 28.04 -9.22 47.56 19.5 2.436 -0.34 33.54 14.02 page 4 of 11 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.:2016-705-008 Sample No.:STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY (REMOLDED) Stage No.1 INITIAL SAMPLE DIMENSIONS (in) Test No.2 Length 1: 5.995 Diameter 1: 2.864 PRESSURES (psi)Length 2: 5.995 Diameter 2: 2.864Length 3: 5.995 Diameter 3: 2.864 Cell Pressure (psi)63.9 Avg. Length 5.995 Avg. Diam.:2.864 Back Pressure (psi)50.1 Eff. Conf. Pressure (psi) 13.8 VOLUME CHANGE Pore Pressure Initial Burette Reading (ml)48.0 Response (%)98 Final Burette Reading (ml)21.9 Final Change (ml)26.1 MAXIMUM OBLIQUITY POINTS Initial Dial Reading (mil)122P =19.26 Dial Reading After Saturation (mil) 105 Q =10.96 Dial Reading After Consolidation (mil)140 LOAD DEFORMATION PORE PRESSURE (LB)(IN)(PSI) 9.8 0.000 50.113.1 0.001 50.214.3 0.002 50.340.7 0.008 51.754.0 0.014 52.681.9 0.030 54.289.5 0.037 54.8100.7 0.047 54.9119.5 0.070 55.6133.2 0.094 55.6144.3 0.130 55.6150.7 0.161 55.6156.9 0.191 55.1158.1 0.209 55.2164.8 0.250 55.2172.1 0.299 54.6179.3 0.344 54.8182.0 0.390 54.5185.5 0.450 54.4189.3 0.495 53.7197.1 0.554 53.9203.0 0.600 53.3207.3 0.646 53.5210.0 0.706 53.1215.4 0.781 52.5224.1 0.841 52.7230.0 0.932 52.4 Tested By: AF Date: 8/5/16 Input Checked By: MPS Date: 8/11/16 page 5 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.:2016-705-008 Sample No.: STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY (REMOLDED) Effective Confining Pressure (psi)13.8 Stage No.1 Test No 2 INITIAL DIMENSIONS VOLUME CHANGE Initial Sample Length (in)6.00 Volume After Consolidation (in3)37.36 Initial Sample Diameter (in)2.86 Length After Consolidation (in)5.98 Initial Sample Area (in2)6.44 Area After Consolidation (in2)6.250 Initial Sample Volume (in3)38.62 Strain Deviation DU s1 s3 Effective Principle A P Q (%) Stress Stress Ratio 0.02 0.52 0.13 14.19 13.7 1.038 0.25 13.93 0.260.04 0.72 0.16 14.36 13.6 1.053 0.23 14.00 0.360.13 4.94 1.60 17.13 12.2 1.405 0.33 14.67 2.470.23 7.06 2.54 18.31 11.3 1.627 0.37 14.79 3.530.50 11.47 4.11 21.15 9.7 2.184 0.37 15.42 5.730.62 12.67 4.71 21.76 9.1 2.394 0.38 15.43 6.340.79 14.42 4.85 23.37 9.0 2.611 0.34 16.16 7.211.17 17.35 5.49 25.66 8.3 3.087 0.32 16.99 8.671.58 19.43 5.54 27.68 8.3 3.353 0.29 17.97 9.712.18 21.04 5.52 29.32 8.3 3.541 0.27 18.80 10.522.69 21.93 5.50 30.22 8.3 3.643 0.26 19.26 10.963.19 22.77 4.95 31.62 8.8 3.574 0.22 20.24 11.393.49 22.90 5.06 31.64 8.7 3.621 0.23 20.19 11.454.19 23.76 5.11 32.45 8.7 3.736 0.22 20.57 11.885.00 24.67 4.52 33.95 9.3 3.658 0.19 21.62 12.335.76 25.55 4.66 34.69 9.1 3.794 0.19 21.92 12.776.52 25.76 4.43 35.13 9.4 3.748 0.18 22.25 12.887.52 25.99 4.30 35.49 9.5 3.737 0.17 22.49 12.998.28 26.34 3.64 36.50 10.2 3.592 0.14 23.33 13.179.28 27.19 3.82 37.17 10.0 3.724 0.14 23.58 13.5910.05 27.81 3.17 38.43 10.6 3.617 0.12 24.53 13.9010.81 28.18 3.39 38.59 10.4 3.706 0.12 24.50 14.0911.82 28.25 2.95 39.09 10.8 3.604 0.11 24.97 14.1213.06 28.60 2.38 40.02 11.4 3.504 0.08 25.72 14.3014.08 29.45 2.57 40.68 11.2 3.623 0.09 25.95 14.7315.59 29.74 2.27 41.27 11.5 3.580 0.08 26.40 14.87 page 6 of 11 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.:2016-705-008 Sample No.:STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY (REMOLDED) Stage No.1 INITIAL SAMPLE DIMENSIONS (in) Test No.3 Length 1: 5.995 Diameter 1: 2.864 PRESSURES (psi)Length 2: 5.995 Diameter 2: 2.864Length 3: 5.995 Diameter 3: 2.864 Cell Pressure (psi)60.9 Avg. Length:5.995 Avg. Diam.:2.864 Back Pressure (psi)40.0 Eff. Conf. Pressure (psi) 20.9 VOLUME CHANGE Pore Pressure Initial Burette Reading (ml)48.0 Response (%)98 Final Burette Reading (ml)14.2 Final Change (ml)33.8 MAXIMUM OBLIQUITY POINTS Initial Dial Reading (mil)115P =26.82 Dial Reading After Saturation (mil)94 Q =15.03 Dial Reading After Consolidation (mil)145 LOAD DEFORMATION PORE PRESSURE (LB)(IN)(PSI) 10.0 0.000 40.015.6 0.001 40.323.3 0.003 40.742.3 0.009 42.065.7 0.017 43.890.9 0.031 45.7102.1 0.038 46.2115.1 0.048 47.2135.8 0.071 48.1151.8 0.095 48.6168.3 0.131 49.1178.4 0.161 49.4186.1 0.191 49.5190.1 0.209 49.4198.0 0.250 49.1206.1 0.299 49.1212.6 0.344 48.6218.5 0.388 48.8225.6 0.449 48.2231.1 0.495 48.2238.3 0.555 47.7243.2 0.599 47.5247.5 0.644 47.2253.1 0.705 46.9261.5 0.779 46.7266.5 0.840 46.3273.4 0.930 45.8 Tested By: AF Date: 8/5/2016 Input Checked By: MPS Date: 8/11/2016 page 7 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.:2016-705-008 Sample No.: STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY (REMOLDED) Effective Confining Pressure (psi)20.9 Stage No.1 Test No 3 INITIAL DIMENSIONS VOLUME CHANGE Initial Sample Length (in)6.00 Volume After Consolidation (in3)36.96 Initial Sample Diameter (in)2.86 Length After Consolidation (in)5.97 Initial Sample Area (in2)6.44 Area After Consolidation (in2)6.197 Initial Sample Volume (in3)38.62 Strain Deviation DU s1 s3 Effective Principle A P Q (%) Stress Stress Ratio 0.02 0.91 0.33 21.47 20.6 1.044 0.38 21.02 0.450.05 2.14 0.66 22.39 20.2 1.106 0.31 21.32 1.070.15 5.21 2.01 24.10 18.9 1.276 0.39 21.49 2.600.29 8.96 3.78 26.08 17.1 1.523 0.43 21.60 4.480.52 13.00 5.68 28.22 15.2 1.854 0.45 21.72 6.500.63 14.77 6.19 29.48 14.7 2.004 0.43 22.09 7.380.81 16.82 7.19 30.53 13.7 2.227 0.44 22.12 8.411.19 20.07 8.12 32.85 12.8 2.570 0.41 22.81 10.031.59 22.53 8.64 34.78 12.3 2.838 0.39 23.52 11.262.20 24.99 9.08 36.81 11.8 3.115 0.37 24.31 12.502.70 26.44 9.38 37.96 11.5 3.294 0.36 24.74 13.223.20 27.51 9.45 38.95 11.4 3.403 0.35 25.20 13.753.51 28.05 9.44 39.51 11.5 3.447 0.34 25.48 14.024.20 29.07 9.10 40.86 11.8 3.464 0.32 26.33 14.535.02 30.06 9.11 41.84 11.8 3.550 0.31 26.82 15.035.76 30.81 8.64 43.07 12.3 3.513 0.29 27.66 15.416.51 31.46 8.75 43.61 12.1 3.590 0.28 27.88 15.737.53 32.18 8.20 44.88 12.7 3.533 0.26 28.79 16.098.29 32.72 8.15 45.47 12.7 3.567 0.25 29.11 16.369.30 33.42 7.73 46.59 13.2 3.536 0.24 29.88 16.7110.05 33.85 7.54 47.22 13.4 3.533 0.23 30.29 16.9310.79 34.19 7.19 47.90 13.7 3.493 0.21 30.81 17.0911.82 34.59 6.90 48.59 14.0 3.471 0.20 31.30 17.3013.06 35.29 6.72 49.47 14.2 3.488 0.19 31.83 17.6514.08 35.57 6.31 50.16 14.6 3.438 0.18 32.38 17.7815.59 35.88 5.80 50.98 15.1 3.377 0.17 33.04 17.94 page 8 of 11 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference:GREAT OAK LANDFILL Depth (ft):NA Project No.:2016-705-008 Sample No.:STRUCTURAL FILL Lab ID:2016-705-008-001 Visual Description: BROWN SILTY CLAY (REMOLDED) Test No. 1 Test No. 2 Test No. 3 Tested By: AF Date: 8/5/2016 Approved By: MPS Date: 8/11/16 page 9 of 11 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 De v i a t o r S t r e s s ( p s i ) Strain (%) Test No. 1 Test No. 2 Test No. 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Client Reference: GREAT OAK LANDFILL Project No.: 2016-705-008 Lab ID:2016-705-008-001 Specific Gravity (assumed)2.7 Visual Description: BROWN SILTY CLAY (REMOLDED) SAMPLE CONDITION SUMMARY Boring No.:LST + PUMP STA LST + PUMP STA LST + PUMP STA Depth (ft):NA NA NA Sample No.:STRUCTURAL FILL STRUCTURAL FILL STRUCTURAL FILL Test No.T1 T2 T3 Deformation Rate (in/min)0.002 0.002 0.002 Back Pressure (psi)49.9 50.1 40.0 Consolidation Time (days)1 1 1 Moisture Content (%) (INITIAL)24.2 24.2 24.2 Total Unit Weight (pcf)112.2 112.8 113.0 Dry Unit Weight (pcf)90.4 90.8 91.0 Moisture Content (%) (FINAL)33.0 32.5 32.3 Initial State Void Ratio,e 0.865 0.856 0.852 Void Ratio at Shear, e 0.836 0.795 0.773 Tested By:AF Date: 8/5/16 Input Checked By: MPS Date: 8/11/16 page 10 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS ASTM D4767-11 Client:SCS ENGINEERS Boring No.:LST + PUMP STA Client Reference: GREAT OAK LANDFILL Depth (ft):NA Project No.: 2016-705-008 Sample No.: STRUCTURAL FILL Lab ID:2016-705-008-001 TEST 1 INITIAL TEST 1 FINAL NA TEST 2 INITIAL TEST 2 FINAL NA TEST 3 INITIAL TEST 3 FINAL NA Tested By AF Date 8/5/2016 Approved By MPS Date 8/11/2016 page 11 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 Z:\2016 PROJECTS\2016-705 SCS ENGINEERS - GREAT OAK LANDFILL\[2016-705-008-001 SIGMATRIAX.xlsm]THIRDDATA