HomeMy WebLinkAbout2509_CRSWMAWQMP_DIN25377_20151209
PREPARED FOR:
COASTAL REGIONAL SOLID WASTE MANAGEMENT AUTHORITY
P.O. BOX 128
COVE CITY, NORTH CAROLINA 28523
COASTAL REGIONAL SOLID WASTE MANAGEMENT AUTHORITY
TUSCARORA LANDFILL
PERMIT NUMBERS 25-04 & 25-09
WATER QUALITY
MONITORING PLAN
REVISED DECEMBER 2015
PREPARED BY:
2211 WEST MEADOWVIEW ROAD, SUITE 101
GREENSBORO, NORTH CAROLINA 27407
NC LICENSE NUMBER C-0782
PHONE: (336) 323-0092
FAX: (336) 323-0093
JOYCE PROJECT NO. 00618.1601.12
WATER QUALITY MONITORING PLAN
COASTAL REGIONAL SOLID WASTE MANAGEMENT AUTHORITY
TUSCARORA LANDFILL
PERMIT # 25-05 & 25-09
DECEMBER 2015
Prepared by:
2211 West Meadowview Road, Suite 101
Greensboro, North Carolina 27407
Prepared by: _____________________________
G. Van Ness Burbach, Ph.D., P.G.
NC License # 1349
Water Quality Monitoring Certification Statement:
We certify that the Water Quality Monitoring Plan presented in this report, when implemented, will be
effective in providing early detection of any release of hazardous constituents to the uppermost aquifer, so
as to be protective of public health and the environment.
JOYCE Project # 618.1601.12, Task 01
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
i
Water Quality Monitoring Plan
Coastal Regional Solid Waste Management Authority
Tuscarora Landfill, Permits 25-04 & 25-09
TABLE OF CONTENTS
1.0 INTRODUCTION ............................................................................................................1
1.1 Site Description ..............................................................................................................1
1.2 Geology and Hydrogeology ...........................................................................................2
1.3 Groundwater Flow Regime ............................................................................................3
2.0 GROUNDWATER MONITORING .................................................................................4
2.1 Groundwater Monitoring Network – Upper Aquifer .....................................................4
2.2 Groundwater Monitoring Network – Lower Aquifer ....................................................5
2.3 Groundwater Sampling Methodology ...........................................................................5
2.4 Sample Analysis Requirements .....................................................................................9
2.5 Reporting and Record Keeping ......................................................................................9
3.0 COMPARISONS TO STANDARDS .............................................................................10
3.1 Comparison to Groundwater Protection Standards (GPS) ..........................................10
3.2 Statistical Analyses ......................................................................................................10
3.2.1 Treatment of Censored Data ....................................................................................11
3.2.2 Assumption of Normality ..........................................................................................11
3.2.3 Parametric Upper Tolerance Limit ..........................................................................11
3.2.4 Aitchison’s Adjusted Parametric Upper Prediction Limit .......................................11
3.2.5 Non-parametric Upper Tolerance Limit ..................................................................11
3.2.6 Poisson Upper Prediction Limit ...............................................................................12
4.0 SURFACE WATER MONITORING .............................................................................12
5.0 ABILITY TO EFFECTIVELY MONITOR RELEASES ..............................................12
6.0 REFERENCES ...............................................................................................................13
7.0 ACRONYMS ..................................................................................................................14
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
ii
Water Quality Monitoring Plan
Coastal Regional Solid Waste Management Authority
Tuscarora Landfill, Permits 25-04 & 25-09
TABLE OF CONTENTS (CONTINUED)
Tables
Table 1 Monitoring Well Network and Construction Details
Table 2 Groundwater Elevations - Leachate Storage Lagoon Area
Table 3 Groundwater Elevations - Closed Interim Regional Landfill
Table 4 Groundwater Elevations - Long Term Regional Landfill (Phases 1 -3)
Table 5 Hydraulic Gradients and Linear Flow Velocities for the Upper Aquifer
Table 6 Hydraulic Gradients and Linear Flow Velocities for the Lower Aquifer
Figure & Drawings
Figure 1 Site Location Map
Drawing 1 Shallow Aquifer Potentiometric Surface Contour Map
Drawing 2 Deep Aquifer Potentiometric Surface Contour Map
Drawing 3 Water Quality Monitoring Plan Well Locations
Appendices
Appendix A Monitoring Well Boring Logs
Appendix B Survey of Monitoring Well Locations
Appendix C Sample Field Logs, Chains of Custody, and Reusable Bailer
Decontamination Procedure Appendix D Analytical Requirements
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
1
1.0 INTRODUCTION
This Water Quality Monitoring Plan (WQMP) will serve as a guidance document for collecting and
analyzing groundwater and surface water samples, managing the associated analytical results, and
monitoring for any potential releases to the upper and lower aquifers from the Coastal Regional
Solid Waste Management Authority’s (CRSWMA’s) Tuscarora Landfill. The Tuscarora Landfill
consists of the Closed Interim Regional Landfill, the Tuscarora Long-Term Regional Landfill
(Phases 1, 2, & 3), and the Leachate Storage Lagoon Area. This WQMP complies with 15A NCAC
13B.1630-.1632 of the North Carolina Solid Waste Management Rules (NCSWMR). The WQMP
also addresses the requirements for surface water monitoring specified in Rule .0602.
CRSWMA submitted the Site Hydrogeological Report for the Long-Term Regional Landfill as part
of a Site Plan Application prepared by HDR Engineering, Inc. (HDR) in 1995 (HDR, 1995). The
report was prepared to meet the requirements specified in the NCSWMR, Rule .0504(1). In 1997,
CRSWMA submitted a Design Hydrogeologic Report and a Water Quality Monitoring Plan as part
of an Application for a Permit to Construct Phase 1 of the Long-Term Regional Landfill (HDR,
1997). In 2003, CRSWMA submitted a Design Hydrogeologic Report and a Water Quality
Monitoring Plan as part of an Application for a Permit to Construct Phase 2 of the Long-Term
Regional Landfill (JOYCE, 2003). In November 2010, CRSWMA submitted a Design
Hydrogeologic Report and a Water Quality Monitoring Plan as part of an Application for a Permit to
Construct Phase 3 of the Long-Term Regional Landfill (JOYCE, 2010) in accordance with
NCSWMR .1623(a) and (b). Much of the site information in this WQMR was originally presented
in the documents described above.
1.1 Site Description
The Tuscarora Landfill is owned and operated by the Coastal Regional Solid Waste Management
Authority (CRSWMA) and is currently operating under North Carolina Solid Waste Permit Numbers
25-04 and 25-09. The landfill is located off Old Highway 70, near the town of New Bern in
northwestern Craven County, North Carolina. The property boundary is indicated on an excerpt
from the 7.5-minute USGS Topographic Map for Jasper, North Carolina (Figure 1).
The Tuscarora Landfill includes four contiguous waste cells; the closed Tuscarora Interim Regional
Landfill (IRL) (Permit 25-04-MSWLF-1993) and Phases 1, 2, and 3 of the Tuscarora Long-Term
Regional Landfill (Permit 25-09-MSWLF-1999). The IRL was constructed in accordance with the
Federal Subtitle D regulations with a composite liner and leachate collection and removal system.
The IRL began receiving waste in 1993, and stopped receiving waste by November 1999. The
Tuscarora Long-Term Regional (LTR) Landfill is constructed in accordance with Subtitle D
requirements, beginning with Phase 1, which was constructed and began receiving waste in
November 1999 and stopped receiving waste in 2005. Phase 2 was constructed in 2005 and was
active from 2005 until June 2013. Phase 3 is the current, active cell. The Permit to Operate Phase 3
was approved by the North Carolina Department of Environment and Natural Resources (NCDENR)
[which is now the Department of Environmental Quality (NCDEQ)] Solid Waste Section (SWS) on
June 6, 2012, and began receiving waste on June 20, 2013. The current waste footprint comprises
approximately 79 acres of the 101 acres approved in the permit.
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
2
1.2 Geology and Hydrogeology
The Tuscarora Landfill is located in the Coastal Plain physiographic province. The Coastal Plain
consists of a wedge of continental and marine sediments that are Cretaceous, Tertiary, and
Quaternary in age. These sediments are approximately 1,500 feet thick in the area of the Tuscarora
Landfill according to the North Carolina State Geologic Map (Brown, 1985). Surface water is
directed through a network of constructed drainage ditches to the north-northeast towards Jumping
Run, a tributary of Bachelor Creek. Shallow groundwater flow is to the east-southeast towards
Beaverdam Branch, which is another tributary of Bachelor Creek located approximately 2.25 miles
away. Bachelor Creek flows to the east to its confluence with the Neuse River.
The upper aquifer (shallow aquifer) at the site consists of Miocene to Pleistocene age silty sands,
clayey sands, and sandy clays. These sediments vary in thickness across the expansion area from
approximately 7 to 18 feet. The sediments appear to be thicker in the western portion of the Phase 3
expansion area and thinner in the eastern portion of the Phase 3 area near MW-19S and MW-19D.
The upper aquifer is separated from a lower aquifer by a lean to fat clay associated with the Pungo
River Formation. The clay is thinnest from near the center of Phase 3 to the northeast and then north
to MW-16S, MW-16SR and MW-16D. In general, the clay unit is represented by blue/gray fat clay,
and grades to gray lean clay with sand lenses and partings in the central to eastern portion of the
Phase 3 cell.
The Pungo River Formation is Miocene in age and consists mainly of marine fat clay to silty clay,
which represents a regressive marine sequence that grades from sandy clay to silty sand at the
bottom of the formation (Harris, 1991). The Pungo River Formation is found at a depth of 7 to 18
feet below ground surface beneath the Phase 3 expansion area. In the vicinity of the Phase 3
expansion area, the elevation for the top of the Pungo River Formation exhibits undulating
characteristics ranging in elevation from 28.1 to 39.6 feet above mean sea level. The variation in the
elevation for the top of the Pungo River Formation in the Phase 3 expansion area appears to be due
to a buried westerly sloping paleo channel that is incised into the Pungo River Formation. The
channel appears to run northeast from the area near PZ-28 towards MW-17S and MW-17D.
The lower aquifer (deep aquifer) is middle to upper Eocene in age and is part of the Castle Hayne
Formation. It consists of a combination of coquina, weakly cemented calcarenite, and quartz sands.
The formation is consistent throughout the Phase 3 area with little lateral variation. In general, the
material becomes denser with depth.
The landfill and surrounding area is relatively flat with less than 10 feet of natural relief. No natural
drainages are present on site. Constructed ditches provide surface drainage. These ditches are
approximately 3 to 6 feet deep and 4 to 10 feet wide and were constructed as part of tree farming
activities that once took place at the site. Very little to no flow has been observed in these ditches,
which appear to serve as water retention features based on field observations. Larger drainage
ditches present at the Closed Craven County Landfill, Tuscarora Landfill, and surrounding the Phase
3 expansion area are for erosion and sediment control. These ditches appear to intercept the water
table and contain water throughout the year. All of these drainage features discharge to a small
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
3
perennial stream located northeast of the site. This stream flows southeast to Jumping Run, a
tributary of Bachelor Creek.
1.3 Groundwater Flow Regime
Monitoring well construction data are presented in Table 1, and the boring logs for site monitoring
wells are included in Appendix A. Historical groundwater elevation data from the facility are
presented in Tables 2, 3, and 4. The upper aquifer extends to a maximum depth of approximately
17.5 feet below ground surface. The top of the water table in this area has ranged from 0 to 3.4 feet
below ground surface.
The groundwater potentiometric surface for the upper aquifer based on water level data acquired on
April 8-9, 2015 is shown on Drawing 1. The general groundwater flow direction is to the southeast
and northeast. This is consistent with a surface water drainage that makes its way to the southeast
toward Jumping Run, located outside the facility boundary.
The groundwater potentiometric surface for the lower aquifer based on water level data acquired on
April 8-9, 2015 is shown on Drawing 2. The lower aquifer has a general groundwater flow direction
to the southeast; however, the flow direction around the northeastern portion of the Closed IRL,
Phases 1 and 2 of the LTR Landfill, and the majority of the Phase 3 area is radial towards the west
during times of active pumping of the groundwater out of excavations in the borrow area.
Groundwater also flows towards the southeast from the central to southeastern portion of the Closed
IRL and the eastern portion of the Phase 3 area.
Horizontal hydraulic gradients for the Tuscarora Landfill were calculated using groundwater flow
line segments, which are positioned perpendicular to the groundwater surface contours for the upper
aquifer (Drawing 1) and the lower aquifer (Drawing 2). Three groundwater flow line segments (i1,
i2, and i3) were used to calculate the horizontal hydraulic gradients for the upper aquifer. Two
groundwater flow line segments (i4, i5,) were used to calculate the horizontal hydraulic gradients for
the lower aquifer. Average horizontal gradients for each of the groundwater flow line segments,
along with available site-specific values for hydraulic conductivity and porosity were used to
estimate linear groundwater flow velocities. Average linear groundwater flow velocities for wells
were computed using the following modified Darcy equation:
V = Ki/n
where V = average linear velocity (feet/day), K = hydraulic conductivity (feet/day), i = horizontal
hydraulic gradient, and n = effective porosity. Average hydraulic conductivities of 0.567 and 5.39
feet/day were assumed for the upper and lower aquifers, respectively, based on slug tests performed
at the site. Effective porosities of 0.17 and 0.25 were used for the upper and lower aquifers,
respectively, based on laboratory soil analyses from the site. The modified Darcy equation is
based on assumptions of homogeneity and of isotropic, porous media. Because of the assortment of
soil types in the upper aquifer and different degrees of consolidation in the lower aquifer, the
calculated velocities are considered approximate.
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
4
Data for, and calculations of, the horizontal gradients and linear flow velocities for April 8-9, 2015
water level readings in the upper and lower aquifers are presented in Tables 5 and 6, respectively.
The calculated horizontal gradients from the groundwater flow line segments for the upper aquifer at
the Tuscarora Landfill range from approximately 0.0026 to 0.0036 foot/foot and the calculated linear
groundwater velocities range from approximately 0.009 feet/day to 0.012 feet/day. The calculated
horizontal gradients from the groundwater flow line segments for the lower aquifer at the Tuscarora
Landfill range from approximately 0.0082 to 0.0185 foot/foot and calculated linear groundwater
velocities range from approximately 0.177 feet/day to 0.399 feet/day.
2.0 GROUNDWATER MONITORING
The groundwater monitoring network is designed to monitor for potential releases to the upper
aquifer at the Tuscarora Landfill. The network is also designed to monitor the lower aquifer at the
facility due to the relatively thin hydrogeologic unit that serves as the upper aquifer and the potential
for groundwater recharge of the lower aquifer through the aquitard that separates the aquifers.
Groundwater monitoring for Tuscarora Landfill will be performed in accordance with 15A NCAC
13B .1633 (Detection Monitoring Program). The monitoring well network is shown on Drawing 3.
A summary of well construction data for the compliance wells is provided on Table 1, and the
available boring logs for the compliance wells are included in Appendix A. Survey data for the
monitoring wells is included in Appendix B. The monitoring well network is designed to monitor
sufficiently for any potential releases from each of the disposal units and the leachate storage lagoon.
The existing monitoring wells will be used and maintained in accordance with design specifications
throughout the life of the monitoring program. The specifications are outlined in 15A NCAC
Subchapter 2C, Section .0100. Further guidance is provided in the Draft North Carolina Water
Quality Monitoring Guidance Document for Solid Waste Facilities; Solid Waste Section, Division of
Solid Waste Management; Department of Environment, Health and Natural Resources (March
1995), and the Solid Waste Section Guidelines for Groundwater, Soil, and Surface Water Sampling
(April 2008). Routine well maintenance will include inspection and correction/repair of, as
necessary, identification labels, concrete apron condition, locking caps and locks, and access to the
wells. Should it be determined that the background or a compliance monitoring well no longer
provides samples representative of the quality of groundwater passing the relevant point of
compliance, the DWM will be notified. CRSWMA will re-evaluate the monitoring network, and
provide recommendations to the DWM for modifying, rehabilitating, abandoning, or installing
replacement or additional monitoring wells, as appropriate.
2.1 Groundwater Monitoring Network – Upper Aquifer
A summary of the proposed monitoring network associated with the landfill and the leachate holding
ponds for the upper aquifer is provided below. Well Construction details are provided in Table 1
and the well locations are shown on Drawing 2 and 3.
Existing monitoring wells LST-5S, IRL-1S, and MW-12S are the background monitoring wells for
the upper aquifer at the facility. Downgradient monitoring wells MW-A, IRL-3S, IRL-4S, and
IR-5S monitor groundwater from the IRL. Downgradient monitoring wells MW-7, MW-10, MW-
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
5
11S, MW-13S, and MW-14R monitor groundwater from Phases 1 and 2 of the LTR Landfill (MW-7
is also downgradient of the Leachate Storage Lagoon Area). Monitoring wells MW-15S, MW-16S,
MW-17S, MW-18S, and MW-19S monitor groundwater from the Phase 3 of the LTR Landfill.
Monitoring wells LST-1S, LST-2S, LST-3S, LST-4S, and LST-6S monitor groundwater from the
Leachate Storage Lagoon Area. Monitoring wells IRL-2SA, MW-B, MW-8, and piezometer PZ-Z
will be used to obtain groundwater elevation data for the upper aquifer.
2.2 Groundwater Monitoring Network – Lower Aquifer
A summary of the proposed monitoring network associated with the landfill and the leachate holding
ponds for the lower aquifer is provided below. Well Construction details are provided in Table 1
and the well locations are shown on Drawing 2 and 3.
Existing monitoring well MW-13D is the background monitoring well for the lower aquifer at the
facility. Downgradient monitoring wells IRL-1D, IRL-3D, IRL-4D, and IRL-5D will monitor
groundwater from the IRL. Downgradient monitoring wells MW-11D, MW-7D, MW-8D, MW-
20D, and MW-21D monitor groundwater from Phases 1 and 2 of the LTR Landfill. Monitoring
wells MW-12D, MW-15D, MW-16D, MW-17D, MW-18D, and MW-19D monitor groundwater
from the Phase 3 area. Monitoring wells LST-1D, LST-2D, LST-5D, and LST-6D monitor
groundwater from the Leachate Storage Lagoon Area. Wells IRL-2DA, LST-3D, and LST-4D will
be used to obtain groundwater elevation data for the lower aquifer.
2.3 Groundwater Sampling Methodology
Groundwater samples will be collected in accordance with Solid Waste Management Rules 15A
NCAC 13B .1630 through .1633 and guidance provided in the Draft North Carolina Water Quality
Monitoring Guidance Document for Solid Waste Facilities; Solid Waste Section, Division of Solid
Waste Management; Department of Environment, Health and Natural Resources (March 1995), and
the Solid Waste Section Guidelines for Groundwater, Soil, and Surface Water Sampling (April
2008). Details of well purging, sample withdrawal, and decontamination methods, as well as chain-
of-custody procedures are outlined below.
Static water elevations and the total well depth will be measured to the nearest 0.01 of a foot in each
well prior to the sampling of each well. An electronic water level meter will be used for the
measurements. The distance from the top of the well casing to the water surface will be measured
using the tape attached to the probe. Reference elevations of the proposed wells have been obtained
from a North Carolina registered land surveyor (see Appendix B).
A low-yield well (one that is incapable of yielding three well volumes within a reasonable time) will
be purged so that water is removed from the bottom of the screened interval. Low-yield wells will
be evacuated to dryness once, and then allowed to recover prior to sampling.
A high-yield well (one that is capable of yielding more than three well volumes during purging) will
be purged so that water is drawn down from the uppermost part of the water column to ensure that
fresh water from the formation will move upward in the screen. At no time will a well be evacuated
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
6
to dryness if the recharge rate causes the formation water to vigorously cascade down the sides of
the screen, which could cause an accelerated loss of volatiles.
A minimum of three well volumes will be evacuated from high-yield wells prior to sampling. A
well volume is defined as the water contained within the well casing and pore spaces of the
surrounding filter pack. The well volume will be calculated using the following formulas:
Vc = (dc2/4) x3.14 x hw x (7.48 gallons/cubic foot)
Vc (gallons) = 0.163 x hw (for a 2-inch well)
where:
Vc = volume in the well casing in gallons
dc = casing diameter in feet (dc = 0.167 for a 2-inch well)
hw = height of the water column in feet (i.e., well depth minus depth to water).
Each well will be evacuated (purged) and sampled with a disposable bailer, a sampling pump, or a
certified pre-cleaned reusable Teflon bailer. The SWS Guidelines Teflon Bailer Cleaning Procedure
is included in Appendix C. The bailer or pump will be lowered gently into the well to minimize the
possibility of causing degassing of the water. If sampled with a pump, flow rates will be regulated
to minimize turbidity and degassing of the water.
All equipment used for sampling will be handled in such a manner to ensure that the equipment
remains decontaminated prior to use. In between wells and following completion of the field
sampling, water level meters, sampling pumps, reusable bailers, or any other reusable sampling
equipment will be properly decontaminated. Clean disposable gloves will be worn by sampling
personnel and changed between wells.
Before sampling the first well, between wells, and following completion of the field sampling, the
electronic depth meter, sampling pump, and/or any other sampling equipment will be
decontaminated using the following procedure.
1) Phosphate-free soap and distilled water wash;
2) Distilled water rinse;
3) Air dry.
The use of any additional SWS-approved cleaning reagents for decontamination rinses in the field,
such as lab grade methanol, shall be containerized for proper disposal in accordance with SWS
Guidelines.
The upgradient/background wells will be sampled first, followed by the downgradient wells. The
order of sampling of the downgradient wells will be evaluated prior to each sampling event to
provide a sequence going from less contaminated to more contaminated, if applicable, based on the
previous sampling event.
Field measurements of temperature, pH, and specific conductance will be made before sample
collection. The direct reading equipment used at each well will be calibrated according to the
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
7
manufacturer's specifications prior to each sampling event. Groundwater samples will be collected
and containerized in the order of the volatilization sensitivity (e.g., VOCs first, followed by the
metals).
Pre-preserved sample containers will be supplied by the laboratory. The VOC vials will be filled in
such a manner that no headspace remains after filling. Immediately upon collection, all samples will
be placed in coolers on ice where they will be stored prior to and during transit to the laboratory.
Samples collected will be properly containerized, packed into pre-cooled coolers and either
hand-delivered or shipped via overnight courier to the laboratory for analysis. The chain-of-custody
program will allow for tracing of possession and handling of samples from the time of field
collection through laboratory analysis. The chain-of-custody program will include sample labels and
seals, field logs, chain-of-custody records, and laboratory logs.
Labels sufficiently durable to remain legible when wet will contain the following information:
Job and sample identification;
Monitoring well number or other location;
Date and time of collection;
Name of collector;
Parameter or method to be analyzed; and
Preservative, if applicable.
The shipping container will be sealed to ensure that the samples have not been disturbed during
transport to the laboratory. If the sample cannot be analyzed because of damage or disturbance,
whenever possible, the damaged sample will be replaced during the same compliance period.
The field logs will be completed for each well sampled. Example field logs are included in
Appendix C. Field logs will document the following information:
Identification of the well;
Well depth;
Static water level depth;
Presence of immiscible layers, odors or other indications of potential contamination;
Purge volume (given in gallons);
Time well was purged;
Date and time of collection;
Well sampling sequence;
Field analysis data and methods;
Field observations on sampling event;
Name of collector(s);
Climatic conditions (temperature, precipitation).
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
8
The chain-of-custody record is required to establish the documentation necessary to trace sample
possession from time of collection to time of receipt at destination. A chain-of-custody record will
accompany each individual shipment. The record will contain the following information:
Sample destination and transporter;
Sample identification numbers;
Signature of collector;
Date and time of collection;
Sample type;
Identification of well;
Number of sample containers in shipping container;
Parameters requested for analysis;
Signature of person(s) involved in the chain of possession;
Inclusive dates of possession; and
Internal temperature of shipping container upon opening (noted by the laboratory).
A copy of the completed chain-of-custody sheet will accompany the shipment and will be returned
to the shipper with the analytical results. The chain of custody record will also be used as the
analysis request sheet. Example Chain-of-custody forms are included in Appendix C.
A field/equipment blank will be collected and analyzed during each sampling event to verify that the
sample collection and handling processes have not affected the integrity of the field samples. The
field/equipment blank will be prepared in the field from lab pure water (Type II reagent grade
distilled water) supplied by the laboratory. The lab will provide appropriate sample containers and
water for generation of the field/equipment blank(s). One field/equipment blank will be prepared for
each sampling event.
The field/equipment blank will be generated by exposing the lab pure water to the sampling
environment and sampling equipment/media in the same manner as actual field samples being
collected. The field/equipment blank water will accompany the samplers to each well or sampling
point and will be exposed to the atmosphere at each well or sampling point as each is being sampled.
If disposable bailers are used, the bailers will be decontaminated as between wells, and then the
field/equipment blank will be poured into the same bailer used to samples wells and dispensed into
the sample containers from the bailer. The field/equipment blank will be the last sample collected
during a sampling event.
The field/equipment blank will be subjected to the same analyses as the groundwater samples. As
with all other samples, the time(s) of the field/equipment blank collection will be recorded so that
the sampling sequence is documented. The field/equipment blank monitors for contamination from
the sampling equipment/media, or from cross-contamination that might occur between samples and
sample containers as they are opened and exposed to the sampling environment.
Whenever groundwater or surface water samples are being collected for volatiles analyses, a trip
blank will be generated by the laboratory prior to shipment of sampling containers and coolers to the
field using lab pure water as described above. The trip blank shall be transported with the empty
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
9
sampling containers to the field, but will not be opened at any time prior to analysis at the
laboratory. The trip blank will accompany the groundwater samples in the cooler(s) back to the
laboratory and will be analyzed by the same volatile methods as the associated field samples. The
trip blank monitors for potential cross-contamination that might occur between samples or that may
be a result of the shipping environment.
Detectable levels of contaminants found in the field/equipment blanks or trip blanks will not be used
to correct the groundwater data, but will be noted accordingly. Contaminants detected in
groundwater or surface water that are also detected in the field/equipment blanks or trip blanks at
similar concentrations may be flagged as blank-qualified. Contaminants present in trip blanks or
field/equipment blanks at concentrations within an order of magnitude of those observed in the
corresponding groundwater samples may be cause for resampling.
2.4 Sample Analysis Requirements
Analysis of groundwater and surface water samples from the facility will be conducted by a
laboratory certified by the DEQ. Analyses will be performed in accordance with U.S. EPA SW-846
methods. Both groundwater and surface water samples will be analyzed for the constituents listed in
NCSWMR Appendix I in accordance with 15A NCAC 13B .1633 (Detection Monitoring Program).
In addition, field analyses for temperature, pH, and specific conductance will be performed for each
sample. Appendix D includes a table of all Appendix I and Appendix II constituents with their
respective analytical methods, CAS numbers, NCDEQ Solid Waste Section Limits (SWSL), 15A
NCAC 2L.0202 (NC 2L) groundwater standards, and/or SWS groundwater protection standards
(GWPS). Appendix D also includes a table of 15A NCAC 2B (NC 2B) Surface Water Standards.
Untreated leachate generated by the Tuscarora Landfill will be analyzed on a semiannual basis,
concurrent with water quality sampling. The leachate will be analyzed for the constituents listed in
NCSWMR Appendix I (Detection Monitoring constituents) as well as pH, specific conductance,
BOD, COD, phosphate, nitrate and sulfate.
2.5 Reporting and Record Keeping
The laboratory analytical results will be submitted to the Solid Waste Section at least semiannually.
The following measurements, analytical data, calculations, and other relevant groundwater
monitoring records will be kept throughout the active life of the facility and the post-closure care
period:
Records of all groundwater and surface water quality data;
Associated sample collection field logs and measurements at the time of sample collection;
Notices and reports of exceedances of NC 2L Standards, GWPS, and/or NC 2B Standards;
and/or
Reporting or data errors, missing data, etc.
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
10
3.0 COMPARISONS TO STANDARDS
3.1 Comparison to Groundwater Protection Standards (GPS)
Constituents detected in the groundwater samples collected from the compliance well network shall
be compared to the appropriate GPS for that constituent in accordance with NCSWMR §.1634.g.
The comparison will be performed using a value-to-value procedure. If a suspect GPS exceedance
is noted during the value-to-value comparison, a confirmation sample may be collected. The results
from a confirmation sample will be compared to the GPS in a value-to-value comparison, or the
value may be statistically compared to background.
In most cases, the GPS will be equal to the Groundwater Standard established for a given constituent
in 15A NCAC 2L.0202 (NC-2L Standards). For constituents without listed NC-2L Standards, the
groundwater protection standards (GWPS) established by the NCDEQ SWS may be used. In the
event that a site-specific statistical background value can be established for a given constituent
which is higher that the NC-2L standard, GWPS, or other appropriate listed standard, the
background may be used as the GPS with DENR approval.
3.2 Statistical Analyses
With the April 2011 revision to the NCSWMR, routine statistical comparison to background for all
detected constituents is no longer required for landfills regulated under §.1600 of the NCSWMR;
however, statistical analyses may be used to establish an alternate GPS for constituents with the
approval of the DENR if desired by the facility.
If the facility elects to use statistical analyses to determine background values for a give constituent,
the facility may use either interwell or intrawell statistics. If an interwell approach is taken,
concentrations of detected of constituents in downgradient wells will be compared to statistically
determined background values for those constituents. Background values will be based primarily on
historical data from upgradient wells LST-5S, IRL-1S, MW-12S, and MW-13D; however,
background data from downgradient wells that were collected prior to waste emplacement may also
be included. Background data shall be evaluated using Parametric Prediction Limits, Parametric
Tolerance Intervals, Non-Parametric Prediction Limits, or Poisson Prediction Limits as appropriate.
Tests for normality, outliers, Aitchison’s adjustment, tolerance intervals, or prediction limits are to
be included as appropriate based on the background data.
Intrawell statistics compare new measurements to the historical data at each ground water
monitoring well independently. Intrawell statistical evaluation may be conducted by using historical
data from the well in question, excluding the most recent 3-4 years (6-8 sampling events) as the
background data. These background data can be evaluated using Parametric Prediction Limits,
Parametric Tolerance Intervals, Non-Parametric Prediction Limits, or Poisson Prediction Limits as
appropriate. Tests for normality, outliers, Aitchison’s adjustment, tolerance intervals, or prediction
limits are to be included as appropriate based on the background data.
Statistical analyses shall be conducted in compliance with the United States Environmental
Protection Agency (EPA) guidance document, Statistical Analysis of Groundwater Monitoring Data
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
11
at RCRA Facilities, Unified Guidance (USEPA, 2009). The background data are to be evaluated
using Parametric Prediction Limits, Parametric Tolerance Intervals, Non-Parametric Prediction
Limits, or Poisson Prediction Limits as appropriate. Tests for normality, outliers, Aitchison’s
adjustment, tolerance intervals, or prediction limits are to be included as appropriate based on the
background data. The statistical test by which downgradient data are compared to facility
background data is based upon the nature of the data and the number of data values that are less than
the laboratory limit of detection. All statistical tests are evaluated at the 0.05 level of significance,
95% confidence level, and are conducted as one-tailed tests. These methods and the criteria for their
use are discussed below.
3.2.1 Treatment of Censored Data
Generally, background data are censored as follows. When less than or equal to 15% of the
background data values are less than the applicable reporting limit or quantitation limit (generally,
the SWSL), any data reported at less than the applicable limit will be treated as one-half the limit.
3.2.2 Assumption of Normality
Prior to conducting statistical tests that are based on the assumption of normally distributed data,
normality of the background data shall be evaluated using the Shapiro-Wilk statistic (W). Normality
shall be assessed at the 95% confidence level. In the event that the raw data fail to follow a normal
distribution, the data shall be transformed using a base-10 logarithm. The transformed data shall
then be tested for normality using the Shapiro-Wilk statistic. In the event that the log-transformed
data also fail to follow a normal distribution, a non-parametric approach shall be applied.
3.2.3 Parametric Upper Tolerance Limit
When the background data consist of a minimum of eight independent data values and less than or
equal to 15% of the background data values are less than the DL for a given analyte, the
downgradient values are then compared to the parametric upper tolerance limit in accordance with
the procedure summarized in the EPA guidance document (USEPA, 2009).
3.2.4 Aitchison’s Adjusted Parametric Upper Prediction Limit
In those cases where the background data consist of a minimum of eight independent data values and
more than 15%, but less than or equal to 50%, of the background data values are truncated (below
than the DL) for a given analyte, the mean and standard deviation are adjusted. This is done in
accordance with the procedure described by Aitchison and summarized in the EPA guidance
document (USEPA, 2009). After the adjustments are made, the downgradient values are compared
to the Aitchison’s adjusted parametric upper prediction limit in accordance with the procedures
summarized in the EPA guidance document (USEPA, 2009).
3.2.5 Non-parametric Upper Tolerance Limit
In those cases where more than 50%, but less than or equal to 90%, of the background data values
are truncated (below than the DL) for a given analyte or the background data fail to follow a normal
or log-normal distribution, downgradient values are compared to the non-parametric upper tolerance
limit. This procedure is done in accordance with the procedures summarized in the EPA guidance
document (USEPA, 2009).
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
12
3.2.6 Poisson Upper Prediction Limit
In those cases where more than 90% of the background data values are truncated (below than the
DL) for a given analyte, the downgradient values are compared to the Poisson upper prediction limit.
These comparisons are made in accordance with the procedure summarized in the EPA guidance
document (USEPA, 2009).
4.0 SURFACE WATER MONITORING
CRSWMA monitors surface water in conformance with NCSWMR Rule .0602 at existing surface
water monitoring points SWPT-1 and SWPT-2 and at existing underdrain monitoring points UD-2
and UD-3. SWPT-1 is located approximately 200 feet from the southeastern corner of the Interim
Regional Landfill and is considered upgradient of SWPT-2, which is located approximately 100 ft
east of the northeast corner of the IRL. Underdrain monitoring point UD-1, located approximately
1050 feet east of the northeast corner of the IRL, is not monitored due to its location downgradient
of the Closed Craven County Landfill because samples collected would not be representative of the
Tuscarora Landfill. Underdrain monitoring point UD-2 is located approximately 150 feet from the
southeast corner of the LTR Landfill and is to provide linear release detection data for Phases 1 & 2
of the LTR Landfill. Underdrain monitoring point UD-3 is located approximately 300 feet from the
northeast corner of the Phase 3 Expansion Area and is to provide linear release detection data for the
Phase 3 of the LTR Landfill. The location of these sampling points is provided on Drawing 3.
Surface water samples will be collected and analyzed for the NCSWMR Appendix I list of
constituents during the semiannual monitoring events. The results will be compared to 15A NCAC
2B (NC-2B) Surface Water Standards in a value-to-value comparison. For this facility, NC-2B
Standard used for comparison shall be either the Human Health Standard or the Freshwater Aquatic
Life Standard, whichever is more protective. Appendix D includes NC-2B Surface Water Standards
for NC Appendix I and II Constituents.
5.0 ABILITY TO EFFECTIVELY MONITOR RELEASES
The closed Craven County Landfill is located adjacent to and east of the Tuscarora Landfill. The
IRL waste cell and the southeastern corner of Phase1 of the LTR landfill are immediately adjacent to
the Craven County Landfill. Monitoring wells IRL-4S, IRL-4D, IRL-5S, IRL-5D, and MW-11D
monitor the groundwater between the Tuscarora landfill and the Craven County landfill.
The groundwater flow for the upper aquifer is generally to the southeast, toward the Craven County
Landfill. The lower aquifer has a general groundwater flow direction to the southeast; however, the
flow direction around the northeastern portion of the IRL, Phases 1 and 2, and the majority of Phase
3 is radial towards the west due to pumping of groundwater in the borrow area. Groundwater also
flows towards the southeast from the central to southeastern portion of the IRL and the eastern
portion of the Phase 3 expansion area.
Due to its downgradient location in both the upper and lower aquifers, the closed Craven County
Landfill will not detract from the effectiveness of the proposed monitoring network for the
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
13
Tuscarora Landfill. There are no other known conditions, physical or hydrogeological, which could
interfere with the effective monitoring of the Tuscarora Landfill.
The groundwater monitoring system, which is designed to detect a release of solid waste constituents
to the upper and lower aquifers at the facility, meets the monitoring requirements specified under
Rules .1630 through .1637 of the North Carolina Solid Waste Management Rules, Title 15A, and
Subchapter 13B. This Water Quality Monitoring Plan, when implemented, will be effective in
providing early detection of any release of hazardous constituents to the upper and lower aquifers
beneath the Tuscarora Landfill, so as to be protective of public health and the environment.
6.0 REFERENCES
Barnett, V. and Lewis, T., 1978, Outliers in Statistical Data, John Wiley & Sons.
Bouwer, H. and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined
aquifers with completely or partially penetrating wells; Water Resources Research,
American Geophysical Union, pp. 423-428, June 1976.
Bouwer, H., 1989, The Bouwer and Rice slug test-an update; Ground Water, vol. 27, No. 3, May-
June, pp. 304 - 309.
Brown, Philip M., Chief Geologist, 1985, Geologic Map of North Carolina, The North Carolina
Geologic Survey, scale 1:500,000.
Fetter, C.W., 2001, Applied Hydrogeology, Fourth Edition: Prentice-Hall, Inc.
Harris, W. Burleigh and Zullo, Victor A., 1991, Eocene and Oligocene stratigraphy of the Outer
Coastal Plain, in Horton, J. W., Jr., and Zullo, V. A., eds., The Geology of the Carolinas:
Carolina Geological Society Fiftieth Anniversary Volume: The University of Tennessee
Press, p. 251-262.
HDR Engineering, Inc., 1995, Site Study: The Tuscarora Long-Term Regional Landfill; The Coastal
Regional Solid Waste Management Authority, Craven County, North Carolina, November
1995.
HDR Engineering, Inc., 1997, Construction Permit Application: Phase I The Tuscarora Long-Term
Regional Landfill: The Coastal Regional Solid Waste Management Authority, Tuscarora,
North Carolina, March 1997.
Johnson, A.I., 1967, Specific Yield - Compilation of Specific Yields For Various Materials: U.S.
Geological Survey Water Supply Paper 1662-D.
Joyce Engineering, Inc. (JOYCE), 2003, Design Hydrogeological Report and Groundwater
Monitoring Plan, Tuscarora Long-Term Regional Landfill Phase 2 Expansion, July 2003.
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
14
McKim & Creed, P.A., 1997, The Tuscarora Long-Term Regional Landfill: Subtitle D Landfill
Construction Plan Application Modification For The Coastal Regional Solid Waste
Management Authority, Tuscarora, North Carolina, March 1997.
McKim & Creed, P.A., 1999, The Tuscarora Long-Term Regional Landfill: Subtitle D Landfill Site
Application Modification For The Coastal Regional Solid Waste Management Authority,
Tuscarora, North Carolina, September 1999.
North Carolina Dept. Environment, Health, and Natural Resources (NCDEHNR), 1995, N.C. Water
Quality Monitoring Guidance Document for Solid Waste Facilities, March.
North Carolina Dept. Environment, Health, and Natural Resources (NCDEHNR) Division of Waste
Management, Solid Waste Section, 2008, Solid Waste Section Guidelines for Groundwater,
Soil, and Surface Water Sampling, Rev.4-08, April.
North Carolina Department of Environment and Natural Resources (NCDENR), 2011. North
Carolina Solid Waste Management Rules. 15 NCAC 13B. Amended April 2011.
United Stated Environmental Protection Agency (USEPA), 2009. Statistical Analysis of
Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. EPA 530/R-09-007.
March 2009.
USEPA, 1986, RCRA Ground Water Monitoring Technical Enforcement Guidance Document
(TEGD).
USEPA, 1992, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Addendum
to Interim Final Guidance, Chapter 2, July 1992.
7.0 ACRONYMS
ACM Assessment of Corrective Measures (Report)
AMSL Above Mean Sea Level
BGS Below Ground Surface
C&D Construction and Demolition Waste
CAP Corrective Action Plan (Report)
CAER Corrective Action Evaluation Report (Report)
CAMP Corrective Action Monitoring Plan (Report)
CAS Chemical Abstracts Service
CFR Code of Federal Regulations
COC Constituent of Concern (for corrective action)
COC Chain of Custody (for sampling and lab reports)
DL Detection Limit (for laboratory data)
DO Dissolved Oxygen
EPA United States Environmental Protection Agency
Water Quality Monitoring Plan Joyce Engineering
CRSWMA Tuscarora Landfill Revised December 2015
15
GWPS Groundwater Protection Standards (Established by NC-SWS)
JEI Joyce Engineering, Inc.
LFG Landfill Gas
MNA Monitored Natural Attenuation
MSW Municipal Solid Waste
NC-2B North Carolina Surface Water Standards found in 15A NCAC 2B
NC-2L North Carolina Groundwater Standards found in 15A NCAC 2L
NCAC North Carolina Administrative Code
NCDENR North Carolina Department of Environment and Natural Resources (now NCDEQ)
NCDEQ North Carolina Department of Environment Quality (formerly NCDENR)
NCGS North Carolina Geological Survey
NCSWMR North Carolina Solid Waste Management Regulations (15A NCAC 13B.1600)
ND Not detected (for laboratory data)
NES Nature and Extent Study (Report)
O&M Operations and Maintenance
PVC Poly Vinyl Chloride
QL Quantitation Limit (for laboratory data)
QRA Quantitative Risk Assessment (Report)
RL Reporting Limit (for laboratory data)
RQD Rock Quality Designation
SPT Standard Penetration Test
SWQS Surface Water Quality Standards
SWS Solid Waste Section (of NCDEQ-Division of Waste Management)
SWSL North Carolina Solid Waste Section Reporting Limits
TOC Top of Casing (of a well)
USCS Unified Soil Classification System
USGS United States Geological Survey
VOC Volatile Organic Compound
WQMP Water Quality Monitoring Plan (Report)
WQMR Water Quality Monitoring Report (Report)
Tables
Table 1 Monitoring Well Network and Construction Details
Table 2 Summary of Groundwater Elevations Leachate Storage Lagoon Area
Table 3 Summary of Groundwater Elevations Closed Interim Regional Landfill
Table 4 Summary of Groundwater Elevations Tuscarora LTR Landfill Phases 1 - 3
Table 5 Hydraulic Gradients and Linear Flow Velocities for the Upper (Shallow) Aquifer
Table 6 Hydraulic Gradients and Linear Flow Velocities for the Lower (Deep) Aquifer
TABLE 1
Monitoring Well Network and Construction Details
Depth Elevation
(feet B.G.S.) (feet M.S.L.) from to from to
LST-1S 24-Jun-93 2 48.59 50.92 13.5 35.09 3.5 13.5 45.09 35.09 Upper Compliance Well
LST-1D 24-Jun-93 2 48.61 50.92 33.7 14.91 23.7 33.7 24.91 14.91 Lower Compliance Well
LST-2S 24-Jun-93 2 48.56 51.00 12.3 36.26 7.3 12.3 41.26 36.26 Upper Compliance Well
LST-2D 24-Jun-93 2 48.78 50.94 31.8 16.98 21.8 31.8 26.98 16.98 Lower Compliance Well
LST-3S 25-Jun-93 2 49.53 52.17 15.7 33.83 5.7 15.7 43.83 33.83 Upper Compliance Well
LST-3D 24-Jun-93 2 49.30 51.87 33.0 16.30 23.0 33.0 26.30 16.30 Lower Water Levels Only
LST-4S 25-Jun-93 2 49.00 51.38 15.8 33.20 5.8 15.8 43.20 33.20 Upper Compliance Well
LST-4D 24-Jun-93 2 48.87 51.56 33.7 15.17 23.7 33.7 25.17 15.17 Lower Water Levels Only
LST-5S 28-Jun-93 2 50.22 52.37 14.6 35.62 4.6 14.6 45.62 35.62 Upper Background
LST-5D 28-Jun-93 2 50.13 52.27 36.9 13.23 26.9 36.9 23.23 13.23 Lower Compliance Well
LST-6S 28-Jun-93 2 49.08 51.23 15.1 33.98 5.1 15.1 43.98 33.98 Upper Compliance Well
LST-6D 28-Jun-93 2 49.10 51.17 33.1 16.00 23.1 33.1 26.00 16.00 Lower Compliance Well
IRL-1S 29-Jun-93 2 48.12 50.56 15.9 32.22 5.9 15.9 42.22 32.22 Upper Background
IRL-1D 29-Jun-03 2 48.08 50.19 43.8 4.28 28.8 43.8 19.28 4.28 Lower Compliance Well
IRL-2SA 13-Jan-01 2 48.74 51.37 15.0 33.74 10.0 15.0 38.74 33.74 Upper Water Levels Only
IRL-2DA 13-Jan-01 2 48.82 51.58 39.0 9.82 23.0 28.0 25.82 20.82 Lower Water Levels Only
IRL-3S 02-Jul-93 2 45.73 49.02 13.3 32.43 8.3 13.3 37.43 32.43 Upper Compliance Well
IRL-3D 02-Jul-93 2 45.82 48.93 37.8 8.02 27.8 37.8 18.02 8.02 Lower Compliance Well
IRL-4S 02-Jul-93 2 46.11 48.34 13.0 33.11 8.0 13.0 38.11 33.11 Upper Compliance Well
IRL-4D 02-Jul-93 2 46.28 48.35 33.8 12.48 23.8 33.8 22.48 12.48 Lower Compliance Well
IRL-5S 01-Jul-93 2 46.69 48.78 12.6 34.09 7.6 12.6 39.09 34.09 Upper Compliance Well
IRL-5D 01-Jul-93 2 46.46 48.66 33.9 12.56 23.9 33.9 22.56 12.56 Lower Compliance Well
MW-A 13-Dec-00 2 44.04 46.04 20.0 24.04 15.0 20.0 29.04 24.04 Upper Compliance Well
MW-B 12-Jan-01 2 46.84 48.90 20.0 26.84 7.0 12.0 39.84 34.84 Upper Water Levels Only
PZ-Z 15-Dec-00 2 47.17 49.52 30.0 17.17 15.0 20.0 32.17 27.17 Upper Water Levels Only
MW-7 15-Jul-99 2 48.80 50.69 16.0 32.80 3.0 16.0 45.80 32.80 Upper Compliance Well
MW-7D 18-Jun-09 2 47.82 50.82 42.0 5.82 31.0 41.0 16.82 6.82 Lower Compliance Well (PZ-37)
MW-8 15-Jul-99 2 48.80 50.94 13.0 35.80 3.0 13.0 45.80 35.80 Upper Water Levels Only
MW-8D 18-Jun-09 2 47.27 50.27 36.0 11.27 25.0 35.0 22.27 12.27 Lower Compliance Well (PZ-36)
MW-10 15-Jul-99 2 45.40 47.32 15.0 30.40 3.0 13.0 42.40 32.40 Upper Compliance Well
MW-11S 15-Jul-99 2 47.70 47.67 12.1 35.60 5.0 12.0 42.70 35.70 Upper Compliance Well
MW-11D 15-Jul-99 2 45.80 47.55 35.1 10.70 25.0 35.0 20.80 10.80 Lower Compliance Well
MW-13S 21-Apr-03 2 43.73 46.21 15.0 28.73 5.0 15.0 38.73 28.73 Upper Compliance Well
MW-13D 23-Apr-03 2 43.64 45.93 40.0 3.64 23.0 33.0 20.64 10.64 Lower Background
MW-14R 04-Oct-07 2 44.13 46.98 14.0 30.13 4.0 14.0 40.13 30.13 Upper Compliance Well
MW-20D 16-Jun-09 2 46.58 49.58 35.0 11.58 23.0 33.0 23.58 13.58 Lower Compliance Well (PZ-34)
MW-21D 17-Jun-09 2 46.71 49.71 43.0 3.71 32.0 42.0 14.71 4.71 Lower Compliance Well (PZ-35)
MW-12S 09-Apr-02 2 49.10 52.12 15.0 34.10 5.0 15.0 44.10 34.10 Upper Background
MW-12D 09-Apr-02 2 48.90 51.90 35.0 13.90 25.0 35.0 23.90 13.90 Lower Compliance Well
MW-15S 22-Jun-09 2 44.20 47.20 15.0 29.20 6.0 16.0 38.20 28.20 Upper Compliance Well (PZ-15S)
MW-15D 23-Jun-09 2 44.22 47.22 38.0 6.22 27.0 37.0 17.22 7.22 Lower Compliance Well (PZ-15D)
MW-16S 10-Aug-09 2 44.25 47.25 12.0 32.25 2.0 12.0 42.25 32.25 Upper Compliance Well (PZ-16SR)
MW-16D 24-Jun-09 2 44.17 47.17 35.0 9.17 23.0 33.0 21.17 11.17 Lower Compliance Well (PZ-16D)
MW-17S 30-Jun-09 2 42.66 45.66 13.0 29.66 2.0 12.0 40.66 30.66 Upper Compliance Well (PZ-17S)
MW-17D 30-Jun-09 2 42.93 45.93 38.0 4.93 26.0 36.0 16.93 6.93 Lower Compliance Well (PZ-17D)
MW-18S 01-Jul-09 2 43.34 46.34 11.0 32.34 6.0 11.0 37.34 32.34 Upper Compliance Well (PZ-18S)
MW-18D 01-Jul-09 2 43.14 46.14 35.0 8.14 25.0 35.0 18.14 8.14 Lower Compliance Well (PZ-18D)
MW-19S 01-Jul-09 2 43.80 46.80 10.0 33.80 5.0 10.0 38.80 33.80 Upper Compliance Well (PZ-19S)
MW-19D 01-Jul-09 2 43.75 46.75 25.0 18.75 15.0 25.0 28.75 18.75 Lower Compliance Well (PZ-19D)
Notes:
1. All elevations are referenced to mean sea level (M.S.L.); depths are referenced to ground surface.
2. B.G.S. = Below ground surface.
3. M.S.L = Mean sea level.
4. T.O.C. = Top of casing.
5. Monitoring wells LST-1S, -1D, -2S, -2D, -3S, -3D, -4S, -4D, -5S, -5D, -6S, and -6D were installed by HDR Engineering, Inc.
6. Monitoring wells IRL-1S, -1D, -2S, -2D, -3S, -3D, -4S, -4D, -5S, -5D, -6S, and -6D were installed by HDR Engineering, Inc.
7. Monitoring wells MW-7, -8, -9, -10, -11S, and -11D were installed by HDR Engineering, Inc.
8. Monitoring wells MW-2SA, -2DA, -A, and -B and piezometer PZ-Z were installed by Draper Aden Associates.
9. Monitoring wells MW-12S and -12D were installed by Titan Atlantic Group.
10. Monitoring wells MW-7D, MW-8D, and MW-13S through MW-21D were installed by Joyce Engineering, Inc.
11. Monitoring wells converted from hydrologeologic piezometers are noted in the status column for correlation with well bore logs in appendix A.
Tu
s
c
a
r
o
r
a
L
a
n
d
f
i
l
l
P
h
a
s
e
3
Total Boring Depth
Elev. (feet M.S.L.)
Casing
Diameter
(inches)
Area
Le
a
c
h
a
t
e
S
t
o
r
a
g
e
L
a
g
o
o
n
A
r
e
a
Clo
s
e
d
I
n
t
e
r
i
m
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
Ground
Surface
Screened Interval of Well
Tu
s
c
a
r
o
r
a
L
a
n
d
f
i
l
l
P
h
a
s
e
s
1
&
2
Current Status
Well or
Piezometer
ID
Date Installed
Screened
Interval
Aquifer
TOC
Well Elevations
(feet above M.S.L.)
Depth (feet B.G.S.)
Water Quality Monitoring Plan
CRSWMA Tuscarora Landfill
Permit Nos. 25-04 25-09
Joyce Engineering
December 2015
TABLE 2
SUMMARY OF GROUNDWATER ELEVATIONS
C.R.S.W.M.A. TUSCARORA LF - LEACHATE STORAGE AREA
Background
LST-5S LST-1S LST-1D LST-2S LST-2D LST-3S LST-3D LST-4S LST-4D LST-5D LST-6S LST-6D
Well TOC Elev.52.37 50.92 50.92 51.00 50.94 52.17 51.87 51.38 51.56 52.27 51.23 51.17
Well Depth 16.12 15.32 34.99 14.59 33.25 17.93 34.69 17.85 36.16 39.11 16.61 34.31
Jul-93 47.21 47.48 36.53 46.95 36.79 47.01 36.85 47.12 37.02 36.68 47.11 37.42
Aug-93 46.38 45.92 35.80 45.71 35.98 45.79 35.98 45.89 36.19 35.86 45.82 36.74
Sep-93 45.91 45.54 35.03 45.63 35.48 45.04 35.27 44.25 34.96 34.37 44.94 35.87
Sep-93 45.93 45.74 34.47 45.35 34.66 45.23 35.08 45.49 34.94 33.67 45.29 35.28
Apr-94 46.71 46.78 37.59 46.29 34.59 45.72 38.01 46.18 39.81 37.16 46.41 40.16
Oct-94 46.14 45.99 36.41 46.00 36.64 45.65 36.63 45.41 36.76 36.47 44.52 37.17
Apr-95 46.92 46.43 39.16 46.39 39.40 46.06 39.42 45.91 39.57 39.26 45.94 39.95
Oct-95 45.86 46.89 35.72 46.06 35.95 45.90 35.95 45.77 36.11 35.83 43.70 36.32
Apr-96 47.56 47.25 40.74 47.23 41.00 46.88 40.91 46.87 41.05 40.84 47.41 41.51
Oct-96 46.88 46.42 40.93 46.81 NS 46.38 NS 46.48 NS 41.05 48.06 NS
Dec-96 46.87 47.62 40.62 47.10 40.94 47.07 40.87 46.08 41.06 40.77 47.73 41.37
Apr-97 46.97 46.40 39.40 46.37 NS 46.05 NS 45.97 NS 39.51 45.89 NS
Mar-97 47.99 47.92 40.88 47.49 41.11 47.12 41.13 47.01 41.28 40.98 47.56 41.63
Oct-97 45.21 45.43 34.80 44.19 NS 45.03 NS 45.06 NS 34.83 44.09 NS
Apr-98 47.20 46.67 40.47 46.47 NS 46.54 NS 46.56 NS 40.54 46.30 41.63
Oct-98 44.65 43.89 37.00 44.10 37.19 44.44 37.22 44.42 37.35 37.06 42.24 37.57
Mar-99 46.50 45.92 39.73 46.00 39.95 46.54 40.00 46.73 40.11 39.81 45.88 40.45
Jul-99 45.86 45.34 37.48 45.37 36.64 45.53 36.75 45.33 36.80 36.55 41.58 36.96
Aug-99 44.90 45.07 34.78 45.30 34.95 45.29 35.05 45.12 35.11 34.84 40.70 35.26
Oct-99 46.97 46.37 40.52 46.86 40.76 47.97 40.85 47.96 40.94 40.62 46.35 41.24
Nov-99 45.85 45.44 39.94 45.51 40.18 46.35 40.20 45.22 40.38 40.06 44.58 40.62
Apr-00 46.87 45.97 40.09 46.04 40.35 46.50 40.42 46.39 40.56 40.27 45.59 40.82
Oct-00 45.34 44.92 39.27 45.10 39.50 45.38 39.54 45.28 39.71 40.37 43.57 39.98
Apr-01 46.85 46.11 40.30 46.14 40.49 46.37 40.56 46.27 40.65 40.39 44.93 40.95
Oct-01 45.22 44.58 36.62 44.79 36.76 44.92 36.87 44.82 36.90 36.72 42.23 37.22
Apr-02 46.47 45.97 39.22 45.98 39.43 46.07 39.51 45.93 39.64 39.29 44.25 39.93
Oct-02 45.97 45.61 35.22 45.57 35.39 45.72 35.44 45.39 35.56 35.27 42.22 35.85
Apr-03 47.04 46.33 40.39 46.37 40.61 46.61 40.68 46.66 40.80 40.51 45.38 41.11
Oct-03 47.21 46.52 40.71 46.76 40.95 46.99 41.02 47.18 41.15 40.83 45.78 41.42
15-Apr-04 47.38 46.62 40.08 46.82 40.30 47.38 40.35 47.75 40.52 40.17 45.91 40.78
14-Oct-04 46.37 45.72 39.58 44.82 39.76 45.76 39.87 45.68 39.95 39.67 44.48 40.22
05-Apr-05 46.35 46.02 40.37 46.03 40.56 46.17 40.60 46.00 40.73 40.45 44.99 40.99
27-Oct-05 46.86 42.38 41.01 46.39 41.23 46.99 41.18 47.50 41.05 41.10 45.55 41.75
21-Apr-06 46.41 46.05 40.07 45.98 40.27 46.05 40.33 45.93 40.41 40.24 44.56 40.75
12-Oct-06 46.92 46.51 40.11 46.38 40.36 46.49 40.43 46.40 40.58 40.24 44.95 40.88
26-Apr-07 46.52 46.05 39.67 45.99 39.78 46.17 40.07 46.03 40.29 39.76 44.93 40.59
10-Oct-07 43.46 43.34 34.12 42.53 34.24 41.99 34.31 41.81 34.44 34.15 41.90 34.70
03-Apr-08 46.54 46.17 38.12 46.00 38.20 46.42 38.31 46.28 38.42 38.23 44.77 38.48
28-Oct-08 45.96 45.99 34.75 45.66 34.71 45.28 34.85 45.13 34.87 34.83 43.99 34.58
08-Apr-09 45.47 46.27 34.56 46.07 34.43 46.40 34.87 46.26 34.66 34.84 44.75 33.79
27-Oct-09 45.15 45.05 30.72 44.55 30.42 44.66 30.85 44.54 30.51 30.94 43.37 29.33
08-Apr-10 46.69 46.00 33.15 45.95 32.79 46.16 33.35 46.09 32.99 33.47 44.77 31.42
13-Oct-10 46.63 45.99 31.83 45.99 31.43 46.41 32.01 46.41 31.58 32.26 44.42 29.69
27-Apr-11 46.27 45.75 30.80 45.72 30.48 45.63 30.99 45.53 30.62 31.17 44.28 28.87
20-Oct-11 46.25 46.25 30.89 46.07 30.59 46.07 31.14 46.18 30.76 31.70 44.89 29.23
26-Apr-12 46.03 45.76 30.36 45.65 30.10 45.72 30.55 45.69 30.31 30.76 44.51 28.72
16-Oct-12 46.05 45.65 30.73 45.53 30.40 45.71 31.02 45.66 30.56 31.15 44.90 28.87
11-Apr-13 46.36 46.20 29.65 45.89 29.37 45.79 30.11 45.62 29.45 30.13 44.79 27.96
30-Oct-13 45.53 45.68 28.53 45.48 28.23 44.96 28.77 44.75 28.42 28.85 44.13 26.94
09-Apr-14 48.32 46.52 30.30 46.41 29.94 46.86 30.65 46.97 30.14 30.73 45.32 28.26
22-Oct-14 47.17 46.11 39.43 45.99 39.57 46.04 39.86 45.98 39.77 39.55 44.51 39.94
08-Apr-15 46.37 46.08 40.51 46.03 40.66 46.31 40.73 46.36 40.86 40.63 44.62 41.23
NOTES:
1. All elevations are in feet above mean sea level.
2. NS = Not sampled and/or groundwater depths not measured.
DowngradientWell No.
Water Quality Monitoring Plan
CRSWMA Tuscarora Landfill
Permit Nos. 25-04 and 25-09 1 of 1 Joyce Engineering
TABLE 3
SUMMARY OF GROUNDWATER ELEVATIONS
C.R.S.W.M.A. TUSCARORA INTERIM REGIONAL LANDFILL
IRL-1S IRL-1D IRL-2SA IRL-2DA IRL-3S IRL-3D IRL-4S IRL-4D IRL-5S IRL-5D MW-A MW-B PZ-Z
Well TOC Elev.50.56 50.19 51.37 51.58 49.02 48.93 48.34 48.35 48.78 48.66 46.04 48.90 49.52
Well Depth 17.73 45.20 17.68 30.95 16.40 39.22 14.99 34.64 14.62 35.42 20.40 14.90 32.35
Jul-93 46.57 36.02 NI NI 38.68 34.26 43.13 34.24 40.19 34.73 NI NI NI
Aug-93 44.94 35.46 NI NI 38.57 33.68 42.02 33.54 39.58 34.13 NI NI NI
Sep-93 44.29 34.70 NI NI 38.42 32.97 41.77 33.01 39.50 33.39 NI NI NI
Sep-93 45.07 34.42 NI NI 38.85 32.58 41.33 32.69 39.51 33.07 NI NI NI
Apr-94 45.55 38.93 NI NI 37.74 37.27 39.48 37.33 37.95 37.79 NI NI NI
Oct-94 44.90 35.97 NI NI 37.84 34.38 38.54 34.39 37.52 34.86 NI NI NI
Apr-95 45.50 38.73 NI NI 38.02 37.15 38.82 37.16 37.56 37.60 NI NI NI
Oct-95 45.12 35.41 NI NI 37.11 34.06 38.79 34.05 37.41 34.44 NI NI NI
Apr-96 46.60 40.25 NI NI 38.98 38.82 38.58 38.83 37.51 39.28 NI NI NI
Oct-96 46.12 NS NI NI 37.88 39.01 38.52 39.06 37.29 NS NI NI NI
Dec-96 47.26 40.19 NI NI 38.12 38.73 37.94 38.85 37.28 39.26 NI NI NI
Apr-97 45.35 NS NI NI 37.71 37.50 38.82 37.54 37.30 NS NI NI NI
Mar-97 46.65 40.46 NI NI 37.67 39.00 38.70 39.03 37.40 39.48 NI NI NI
Oct-97 43.40 NS NI NI 37.68 NS 38.18 32.92 37.04 NS NI NI NI
Apr-98 46.18 NS NI NI 38.05 38.57 38.51 38.62 37.52 NS NI NI NI
Oct-98 44.11 36.69 NI NI 37.52 35.32 37.78 35.38 37.23 35.79 NI NI NI
Mar-99 46.10 NS NI NI 38.35 37.95 38.35 37.99 38.18 38.39 NI NI NI
Jul-99 43.89 36.25 NI NI 38.31 35.06 39.37 35.10 38.92 35.47 NI NI NI
Aug-99 43.27 34.79 NI NI 38.18 33.34 39.37 33.41 38.96 33.75 NI NI NI
Oct-99 47.38 40.16 NI NI 41.56 38.75 40.85 38.80 40.21 39.20 NI NI NI
Nov-99 45.52 39.56 NI NI 38.70 38.16 39.21 38.23 39.29 38.65 NI NI NI
Apr-00 45.71 39.77 NI NI 39.54 38.35 39.61 38.45 39.34 38.84 NI NI NI
Oct-00 44.52 38.90 NI NI 39.76 37.43 39.46 37.52 39.45 37.94 NI NI NI
Apr-01 46.00 39.96 43.70 40.19 40.15 38.62 40.11 38.69 39.59 39.06 40.98 39.55 40.93
Oct-01 43.36 36.31 39.92 37.28 38.61 35.03 38.97 35.08 39.89 35.46 38.76 38.65 38.56
Apr-02 44.88 38.85 41.38 39.20 39.02 37.53 39.66 37.60 39.42 37.99 39.69 40.16 41.43
Oct-02 44.93 34.93 40.97 35.38 39.22 33.76 40.23 33.87 39.79 34.21 39.78 39.35 37.70
Apr-03 46.28 40.03 44.11 40.35 39.75 38.65 42.03 38.73 40.62 39.16 40.41 40.94 40.63
Oct-03 46.72 40.36 44.43 40.67 40.21 38.97 41.68 39.03 40.83 39.46 40.93 40.80 41.70
15-Apr-04 47.23 39.69 44.93 40.05 40.72 38.33 41.40 38.44 40.54 38.83 40.94 40.80 41.25
14-Oct-04 44.14 39.23 42.05 38.60 40.21 37.88 40.27 37.96 40.10 38.41 39.98 39.50 40.74
05-Apr-05 44.81 NS NS 40.33 40.21 38.56 40.13 38.66 39.92 39.12 37.79 NS 41.27
27-Oct-05 46.74 NS NS 41.01 40.88 39.18 41.16 39.31 40.44 39.70 40.67 NS 42.03
21-Apr-06 44.90 39.71 NS 39.89 40.41 38.23 40.31 38.35 40.07 38.77 40.15 NS 41.10
12-Oct-06 45.45 39.71 NS 40.00 39.80 38.28 40.86 38.37 40.18 38.79 40.58 NS 41.01
26-Apr-07 45.01 39.44 NS 39.85 39.85 38.13 40.32 38.22 40.08 38.66 40.29 NS 40.80
10-Oct-07 40.44 33.90 NS 34.20 39.19 32.54 39.06 32.65 39.05 33.02 38.21 NS 36.30
02-Apr-08 45.39 38.21 NS 38.64 40.08 37.08 39.79 37.17 39.54 37.49 40.03 NS 38.67
28-Oct-08 42.22 35.12 NS 36.03 40.24 34.70 39.69 34.76 39.27 34.93 39.88 NS 38.53
08-Apr-09 45.28 35.45 43.56 36.66 40.40 35.60 42.62 35.63 40.29 35.65 40.46 40.70 39.67
27-Oct-09 42.34 31.89 39.37 33.38 40.19 32.41 39.09 32.40 38.96 32.30 39.24 39.12 37.48
08-Apr-10 45.27 34.66 44.07 36.19 40.32 35.28 40.83 35.31 40.48 35.16 40.65 39.46 39.64
13-Oct-10 45.69 33.64 43.89 35.23 40.03 34.56 39.80 34.53 39.73 34.30 40.39 40.72 38.42
27-Apr-11 44.45 32.47 42.66 34.28 39.34 33.53 40.22 33.51 39.98 33.24 40.07 40.48 38.40
20-Oct-11 44.95 32.49 42.13 34.23 39.37 33.44 39.64 34.16 39.55 33.21 40.15 39.71 38.19
16-Oct-12 44.55 32.59 42.63 34.44 39.69 33.93 39.72 33.91 39.70 33.52 39.94 40.10 39.30
11-Apr-13 45.06 31.67 44.17 33.58 39.72 33.15 40.14 33.08 39.76 32.68 40.38 39.18 37.78
30-Oct-13 42.95 30.20 42.37 32.16 39.86 31.42 39.44 31.38 39.41 31.07 40.18 39.32 36.88
09-Apr-14 46.28 32.45 45.24 34.58 40.78 34.08 41.30 34.01 41.08 33.56 41.10 40.55 39.08
22-Oct-14 44.92 39.22 44.07 39.53 40.25 37.77 40.33 37.84 40.11 38.33 40.74 38.97 40.76
8-Apr-15 45.55 40.19 43.23 40.38 39.76 38.70 40.04 38.85 39.20 40.40 39.89 39.51 41.12
NOTES:
1. All elevations are in feet above mean sea level.
2. NS = Not sampled and/or groundwater depths not measured.
3. NI = Well/Piezometer not installed.
Background DowngradientWell No.
Water Quality Monitoring Plan
CRSWMA Tuscarora Landfills
Permit Nos. 25-04 and 25-09 1 of 1 Joyce Engineering
TA
B
L
E
4
SU
M
M
A
R
Y
O
F
G
R
O
U
N
D
W
A
T
E
R
E
L
E
V
A
T
I
O
N
S
C
.
R
.
S
.
W
.
M
.
A
.
T
U
S
C
A
R
O
R
A
L
O
N
G
-
T
E
R
M
R
E
G
I
O
N
A
L
L
A
N
D
F
I
L
L
MW
-
1
2
S
M
W
-
1
2
D
M
W
-
7
M
W
-
7
D
M
W
-
8
M
W
-
8
D
M
W
-
9
M
W
-
1
0
M
W
-
1
1
S
M
W
-
1
1
D
M
W
-
1
3
S
M
W
-
1
3
D
M
W
-
1
4
R
M
W
-
1
5
S
M
W
-
1
5
D
M
W
-
1
6
S
R
MW-16D
M
W
-
1
7
S
M
W
-
1
7
D
M
W
-
1
8
S
M
W
-
1
8
D
M
W
-
1
9
S
M
W
-
1
9
D
M
W
-
2
0
D
M
W
-
2
1
D
We
l
l
T
O
C
E
l
e
v
.
52
.
1
2
5
1
.
9
0
5
0
.
6
9
5
0
.
8
2
5
0
.
9
4
5
0
.
2
7
5
3
.
1
1
4
7
.
3
2
4
7
.
6
7
4
7
.
5
5
4
6
.
2
1
4
5
.
9
3
4
6
.
9
8
4
7
.
2
0
4
7
.
2
2
4
7
.
2
5
4
7
.
1
7
4
5
.
6
6
4
5
.
9
3
4
6
.
3
4
4
6
.
1
4
4
6
.
8
0
4
6
.
7
5
4
6
.
3
3
4
7
.
2
1
We
l
l
D
e
p
t
h
35
.
9
5
1
7
.
9
6
1
6
.
2
2
4
2
.
0
0
1
5
.
6
1
3
6
.
0
0
2
2
.
0
0
1
5
.
9
5
1
4
.
0
3
3
4
.
7
3
1
5
.
0
0
3
3
.
0
0
1
4
.
0
0
1
5
.
0
0
3
8
.
0
0
1
2
.
0
0
3
5
.
0
0
1
3
.
0
0
3
8
.
0
0
1
1
.
0
0
3
5
.
0
0
1
0
.
0
0
2
5
.
0
0
1
1
.
0
0
3
5
.
0
0
Ju
l
-
9
9
NI
N
I
4
6
.
7
6
-
4
6
.
1
6
-
4
4
.
8
7
4
4
.
6
0
3
8
.
9
4
3
6
.
6
0
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Au
g
-
9
9
NI
N
I
4
5
.
1
0
-
4
4
.
4
1
-
4
4
.
7
6
4
3
.
1
3
3
9
.
1
9
3
4
.
8
7
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Oc
t
-
9
9
NI
N
I
4
6
.
9
4
-
4
6
.
0
8
-
4
6
.
4
9
4
3
.
3
4
4
0
.
7
9
4
0
.
3
4
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
No
v
-
9
9
NI
N
I
4
6
.
1
9
-
4
4
.
1
3
-
4
4
.
7
5
4
2
.
3
4
3
8
.
8
5
3
9
.
7
1
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Ap
r
-
0
0
NI
N
I
4
6
.
9
6
-
4
5
.
6
6
-
4
5
.
1
1
4
2
.
9
6
3
9
.
0
4
3
9
.
9
3
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Oc
t
-
0
0
NI
N
I
4
5
.
7
9
-
4
3
.
9
4
-
4
5
.
5
9
4
2
.
3
0
3
8
.
7
4
3
9
.
0
5
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Ap
r
-
0
1
NI
N
I
4
7
.
3
3
-
4
5
.
6
2
-
4
4
.
6
0
4
3
.
6
0
3
9
.
3
7
4
0
.
1
6
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Oc
t
-
0
1
NI
N
I
4
4
.
8
1
-
4
2
.
9
9
-
4
3
.
2
6
4
1
.
5
7
3
8
.
9
2
3
5
.
4
1
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Ap
r
-
0
2
43
.
6
9
4
0
.
7
8
4
3
.
8
6
-
4
4
.
7
4
-
4
4
.
2
6
4
3
.
1
0
3
9
.
3
9
3
9
.
0
9
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Oc
t
-
0
2
45
.
1
5
3
6
.
7
7
4
5
.
1
8
-
4
4
.
1
9
-
4
3
.
9
1
4
1
.
2
8
3
9
.
4
9
3
5
.
2
6
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Ap
r
-
0
3
45
.
7
7
4
2
.
0
0
4
7
.
2
6
-
4
5
.
7
4
-
4
5
.
8
6
4
3
.
2
7
4
0
.
4
0
4
0
.
2
4
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
Oc
t
-
0
3
46
.
3
2
4
2
.
3
2
4
7
.
9
8
-
4
6
.
3
4
-
4
6
.
3
3
4
2
.
6
4
4
1
.
6
7
4
0
.
4
4
N
I
N
I
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
15
-
A
p
r
-
0
4
46
.
7
9
4
1
.
7
0
4
7
.
7
8
-
4
6
.
4
7
-
4
6
.
4
0
4
3
.
4
0
4
1
.
5
7
3
8
.
7
8
4
3
.
2
7
3
8
.
9
3
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
14
-
O
c
t
-
0
4
45
.
1
6
4
1
.
0
9
4
6
.
6
9
-
4
5
.
0
4
-
-
4
3
.
0
9
4
0
.
2
9
3
9
.
5
3
4
1
.
2
8
3
8
.
4
1
N
I
NI
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
05
-
A
p
r
-
0
5
44
.
5
4
4
1
.
8
9
4
7
.
0
5
-
4
4
.
8
8
-
-
4
3
.
2
9
4
0
.
2
8
4
0
.
1
8
4
3
.
2
9
3
9
.
1
9
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
27
-
O
c
t
-
0
5
45
.
5
1
4
2
.
6
2
4
7
.
1
6
-
4
6
.
1
2
-
-
4
2
.
6
3
4
1
.
9
3
4
0
.
8
1
4
4
.
5
1
3
9
.
8
2
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
21
-
A
p
r
-
0
6
45
.
4
3
4
1
.
5
9
4
7
.
1
2
-
4
6
.
0
2
-
-
4
3
.
5
3
4
0
.
3
7
3
9
.
8
9
4
3
.
1
7
3
8
.
8
2
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
12
-
O
c
t
-
0
6
45
.
7
0
4
1
.
7
2
4
7
.
2
0
-
4
6
.
2
7
-
-
4
3
.
0
5
4
0
.
8
5
3
9
.
8
7
4
4
.
0
3
3
8
.
7
9
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
26
-
A
p
r
-
0
7
45
.
5
2
4
1
.
4
9
4
7
.
0
6
-
4
5
.
6
6
-
-
4
3
.
3
4
4
1
.
0
6
3
9
.
7
4
4
3
.
0
1
3
8
.
5
9
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
11
-
O
c
t
-
0
7
42
.
1
8
3
5
.
6
0
4
3
.
6
7
-
4
3
.
9
4
-
-
4
1
.
3
5
3
9
.
9
8
3
4
.
0
8
4
1
.
1
9
3
3
.
0
2
3
9
.
2
5
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
03
-
A
p
r
-
0
8
44
.
7
4
3
9
.
1
4
4
5
.
9
9
-
4
5
.
6
8
-
-
4
2
.
4
2
3
8
.
8
5
3
8
.
4
7
4
4
.
0
0
3
7
.
3
2
4
2
.
1
0
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
28
-
O
c
t
-
0
8
44
.
6
7
3
5
.
2
3
4
4
.
5
6
-
4
5
.
6
7
-
-
4
1
.
5
8
3
8
.
9
5
3
5
.
9
0
4
4
.
0
7
3
4
.
5
9
4
2
.
1
3
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
08
-
A
p
r
-
0
9
45
.
3
1
3
3
.
9
0
4
6
.
7
7
-
4
5
.
9
8
-
-
4
2
.
6
7
3
9
.
6
9
3
6
.
4
0
4
3
.
1
7
3
4
.
9
2
4
1
.
9
4
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
N
I
27
-
O
c
t
-
0
9
43
.
9
6
2
9
.
3
7
4
3
.
4
5
-
4
4
.
8
9
-
-
4
0
.
7
2
3
8
.
5
9
3
3
.
1
6
4
2
.
6
6
3
1
.
4
8
4
1
.
3
2
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
08
-
A
p
r
-
1
0
45
.
1
7
3
1
.
4
8
4
6
.
5
7
-
4
5
.
9
4
-
-
4
2
.
7
4
4
0
.
2
8
3
6
.
0
0
4
3
.
0
1
3
4
.
2
7
4
1
.
6
7
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
13
-
O
c
t
-
1
0
45
.
1
6
2
9
.
7
2
4
5
.
6
9
-
4
5
.
7
6
-
-
4
1
.
1
1
3
9
.
7
4
3
5
.
0
2
4
3
.
3
3
3
3
.
2
9
4
1
.
5
4
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
27
-
A
p
r
-
1
1
44
.
7
3
2
9
.
0
9
4
5
.
7
7
-
4
5
.
6
3
-
-
4
2
.
1
7
3
9
.
7
6
3
4
.
0
1
4
2
.
9
9
3
2
.
1
8
4
1
.
3
0
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
N
M
20
-
O
c
t
-
1
1
44
.
8
6
2
9
.
4
2
4
4
.
9
8
-
4
5
.
9
9
-
-
4
1
.
1
2
3
9
.
9
4
3
3
.
9
6
4
3
.
3
1
3
2
.
1
3
4
3
.
6
5
4
1
.
2
0
3
0
.
3
1
4
0
.
0
4
3
1
.
7
6
3
9
.
3
3
3
2
.
7
0
4
0
.
9
9
3
2
.
8
0
3
9
.
6
1
3
2
.
7
8
2
6
.
0
7
2
7
.
2
1
26
-
A
p
r
-
1
2
44
.
1
8
2
9
.
1
1
4
5
.
4
6
-
4
5
.
4
9
-
-
4
1
.
8
0
4
0
.
1
7
3
4
.
0
5
4
3
.
3
2
3
1
.
6
8
4
2
.
3
3
4
0
.
8
6
3
0
.
5
3
3
9
.
6
4
3
2
.
0
0
3
9
.
2
7
3
3
.
0
4
3
9
.
6
2
3
3
.
0
8
3
7
.
0
8
3
3
.
0
8
2
6
.
1
5
1
9
.
8
9
16
-
O
c
t
-
1
2
43
.
8
1
2
9
.
5
9
4
5
.
1
8
3
1
.
4
7
4
5
.
3
9
3
1
.
0
0
-
4
1
.
5
1
3
9
.
8
7
3
4
.
2
1
4
2
.
7
7
3
2
.
2
6
4
2
.
1
7
4
1
.
0
2
3
1
.
2
2
3
9
.
5
8
3
2
.
8
8
3
9
.
3
4
3
4
.
0
2
3
9
.
9
1
3
3
.
9
3
3
8
.
2
2
3
3
.
8
2
2
6
.
4
6
2
7
.
6
1
11
-
A
p
r
-
1
3
44
.
1
6
2
8
.
1
4
4
5
.
9
4
3
0
.
0
8
4
5
.
7
0
2
9
.
8
4
-
4
1
.
9
0
4
0
.
1
3
3
3
.
4
3
4
3
.
4
1
3
1
.
2
8
4
2
.
3
7
4
0
.
9
7
2
9
.
8
8
3
9
.
8
2
3
1
.
8
4
3
9
.
3
3
3
3
.
0
8
3
9
.
5
4
3
3
.
0
2
3
9
.
0
6
3
3
.
0
1
2
5
.
1
1
2
7
.
0
5
30
-
O
c
t
-
1
3
43
.
8
6
2
7
.
4
8
4
5
.
1
6
2
9
.
2
0
4
5
.
2
3
2
8
.
7
1
-
4
0
.
7
8
3
9
.
8
2
3
1
.
8
3
4
2
.
9
5
2
9
.
9
3
4
2
.
1
8
4
0
.
9
0
2
9
.
1
1
3
9
.
3
5
3
0
.
7
5
3
9
.
2
4
3
1
.
8
3
3
9
.
6
4
3
1
.
5
9
3
8
.
3
4
3
1
.
4
5
2
4
.
3
9
2
5
.
5
1
09
-
A
p
r
-
1
4
44
.
9
2
2
5
.
2
7
4
7
.
0
1
3
1
.
1
2
4
6
.
1
4
3
1
.
2
7
-
4
2
.
9
3
4
0
.
8
4
3
4
.
2
2
4
3
.
9
8
3
2
.
0
3
4
4
.
0
8
4
1
.
8
2
3
0
.
4
2
4
0
.
8
0
3
2
.
5
3
4
0
.
6
2
3
4
.
0
8
4
1
.
6
0
3
4
.
2
4
4
1
.
3
6
3
4
.
6
9
2
5
.
7
0
2
6
.
9
6
22
-
O
c
t
-
1
4
44
.
4
7
4
0
.
9
0
4
5
.
7
4
3
9
.
0
5
4
5
.
0
5
3
9
.
3
3
-
4
2
.
0
6
4
0
.
3
3
3
9
.
4
1
4
3
.
1
1
3
8
.
3
5
4
3
.
5
4
4
1
.
0
3
3
9
.
7
1
3
9
.
6
0
3
9
.
5
6
3
9
.
8
4
3
9
.
1
5
4
1
.
4
1
3
8
.
8
4
4
0
.
8
9
3
8
.
5
4
3
6
.
3
3
3
7
.
0
7
8-
A
p
r
-
1
5
44
.
8
9
4
2
.
2
0
4
6
.
6
8
4
0
.
1
1
4
5
.
2
4
4
0
.
4
4
-
4
2
.
7
8
4
0
.
4
6
4
0
.
3
2
4
2
.
9
5
3
9
.
2
9
4
3
.
7
4
4
1
.
4
7
4
0
.
8
2
4
0
.
1
1
4
0
.
5
5
3
8
.
5
4
4
0
.
0
4
4
1
.
9
3
3
9
.
6
7
4
1
.
5
8
3
9
.
4
2
3
7
.
4
3
3
8
.
0
8
NO
T
E
S
:
1.
A
l
l
e
l
e
v
a
t
i
o
n
s
a
r
e
i
n
f
e
e
t
a
b
o
v
e
m
e
a
n
s
e
a
l
e
v
e
l
.
2.
N
I
=
W
e
l
l
/
P
i
e
z
o
m
e
t
e
r
n
o
t
i
n
s
t
a
l
l
e
d
.
3.
N
M
=
N
o
t
M
e
a
s
u
r
e
d
.
We
l
l
N
o
.
Ba
c
k
g
r
o
u
n
d
D
o
w
n
-
g
r
a
d
i
e
n
t
Phase 3
Wa
t
e
r
Q
u
a
l
i
t
y
M
o
n
i
t
o
r
i
n
g
P
l
a
n
CR
S
W
M
A
T
u
s
c
a
r
o
r
a
L
a
n
d
f
i
l
l
Pe
r
m
i
t
N
o
s
.
2
5
-
0
4
a
n
d
2
5
-
0
9
1
o
f
1
Joyce Engineering
TA
B
L
E
5
ES
T
I
M
A
T
E
D
H
Y
D
R
A
U
L
I
C
G
R
A
D
I
E
N
T
S
A
N
D
A
V
E
R
A
G
E
L
I
N
E
A
R
V
E
L
O
C
I
T
I
E
S
F
O
R
T
H
E
S
H
A
L
L
O
W
A
Q
U
I
F
E
R
GR
O
U
N
D
-
H
O
R
I
Z
.
H
Y
D
R
A
U
L
I
C
E
F
F
E
C
T
I
V
E
L
I
N
E
A
R
FL
O
W
W
A
T
E
R
G
R
A
D
I
E
N
T
,
C
O
N
D
U
C
T
I
V
I
T
Y
,
P
O
R
O
S
I
T
Y
V
E
L
O
C
I
T
Y
,
DI
R
E
C
T
I
O
N
E
L
E
V
.
i
K
n V
(f
e
e
t
)
(f
t
/
f
t
)
(f
t
/
d
a
y
)
(ft/day)
46 40 45 41 45 40
Av
e
r
a
g
e
0
.
0
0
3
2
Average
0
.
0
1
1
No
t
e
s
:
2.
V
e
l
o
c
i
t
y
=
K
i
/
n
;
a
s
s
u
m
e
h
o
m
o
g
e
n
e
o
u
s
i
s
o
t
r
o
p
i
c
p
o
r
o
u
s
a
q
u
i
f
e
r
.
3.
A
n
e
f
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
(
n
)
o
f
0
.
1
7
w
a
s
a
s
s
u
m
e
d
i
n
t
h
e
v
e
l
o
c
i
t
y
c
a
l
c
u
l
a
t
i
o
n
s
b
a
s
e
d
o
n
s
i
t
e
-
s
p
e
c
i
f
i
c
s
o
i
l
l
a
b
o
r
a
t
o
r
y
d
a
t
a
.
NE
0.
0
0
3
3
0.
0
0
2
6
5.
6
7
E
-
0
1
SE
i
3
1.
T
h
e
h
y
d
r
a
u
l
i
c
c
o
n
d
u
c
t
i
v
i
t
y
v
a
l
u
e
u
s
e
d
t
o
c
a
l
c
u
l
a
t
e
f
l
o
w
v
e
l
o
c
i
t
y
w
a
s
d
e
t
e
r
m
i
n
e
d
b
y
u
s
i
n
g
t
h
e
g
e
o
m
e
t
r
i
c
m
e
a
n
o
f
h
y
d
r
a
u
l
i
c
c
o
n
d
u
c
t
i
v
i
t
i
e
s
o
f
a
l
l
sh
a
l
l
o
w
a
q
u
i
f
e
r
m
o
n
i
t
o
r
i
n
g
w
e
l
l
s
l
i
s
t
e
d
i
n
T
a
b
l
e
6
o
f
t
h
e
CR
S
W
M
A
T
u
s
c
a
r
o
r
a
L
o
n
g
-
T
e
r
m
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
P
h
a
s
e
2
E
x
p
a
n
s
i
o
n
,
A
p
p
l
i
c
a
t
i
o
n
f
o
r
a
Pe
r
m
i
t
t
o
C
o
n
s
t
r
u
c
t
b
y
J
o
y
c
e
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
(
R
e
v
i
s
e
d
J
a
n
u
a
r
y
2
0
0
4
)
.
19
4
7
0.17
16
8
4
12
0
4
GR
A
D
I
E
N
T
CA
L
C
U
L
A
T
I
O
N
SE
G
M
E
N
T
FL
O
W
L
I
N
E
LE
N
G
T
H
(
f
e
e
t
)
i
1
i
2
AP
R
I
L
8
-
9
,
2
0
1
5
0.011
0.
0
0
3
6
5.
6
7
E
-
0
1
SE
5.
6
7
E
-
0
1
0.17
0
.
0
1
2
0.17
0
.
0
0
9
Wa
t
e
r
Q
u
a
l
i
t
y
M
a
n
a
g
e
m
e
n
t
P
l
a
n
CR
S
W
M
A
T
u
s
c
a
r
o
r
a
L
a
n
d
f
i
l
l
Pe
r
m
i
t
N
o
s
.
2
5
-
0
4
a
n
d
2
5
-
0
9
1
o
f
1
Joyce Engineering
TA
B
L
E
6
ES
T
I
M
A
T
E
D
H
Y
D
R
A
U
L
I
C
G
R
A
D
I
E
N
T
S
A
N
D
A
V
E
R
A
G
E
L
I
N
E
A
R
V
E
L
O
C
I
T
I
E
S
F
O
R
T
H
E
D
E
E
P
A
Q
U
I
F
E
R
GR
O
U
N
D
-
H
O
R
I
Z
.
H
Y
D
R
A
U
L
I
C
E
F
F
E
C
T
I
V
E
L
I
N
E
A
R
FL
O
W
W
A
T
E
R
G
R
A
D
I
E
N
T
,
C
O
N
D
U
C
T
I
V
I
T
Y
,
P
O
R
O
S
I
T
Y
V
E
L
O
C
I
T
Y
,
DI
R
E
C
T
I
O
N
E
L
E
V
.
i
K
n V
(f
e
e
t
)
(f
t
/
f
t
)
(f
t
/
d
a
y
)
(ft/day)
42
.
0
37
.
0
40
.
0
39
.
0
Av
e
r
a
g
e
0
.
0
1
0
5
Average
0
.
2
2
5
No
t
e
s
:
2.
V
e
l
o
c
i
t
y
=
K
i
/
n
;
a
s
s
u
m
e
h
o
m
o
g
e
n
e
o
u
s
i
s
o
t
r
o
p
i
c
p
o
r
o
u
s
a
q
u
i
f
e
r
.
3.
A
n
e
f
f
e
c
t
i
v
e
p
o
r
o
s
i
t
y
(
n
)
o
f
0
.
2
5
w
a
s
a
s
s
u
m
e
d
i
n
t
h
e
v
e
l
o
c
i
t
y
c
a
l
c
u
l
a
t
i
o
n
s
b
a
s
e
d
o
n
s
i
t
e
-
s
p
e
c
i
f
i
c
s
o
i
l
l
a
b
o
r
a
t
o
r
y
d
a
t
a
.
AP
R
I
L
8
-
9
,
2
0
1
5
0.
0
0
8
2
0.177
1.
T
h
e
h
y
d
r
a
u
l
i
c
c
o
n
d
u
c
t
i
v
i
t
y
v
a
l
u
e
u
s
e
d
t
o
c
a
l
c
u
l
a
t
e
f
l
o
w
v
e
l
o
c
i
t
y
w
a
s
d
e
t
e
r
m
i
n
e
d
b
y
u
s
i
n
g
t
h
e
g
e
o
m
e
t
r
i
c
m
e
a
n
o
f
h
y
d
r
a
u
l
i
c
c
o
n
d
u
c
t
i
v
i
t
i
e
s
o
f
a
l
l
d
e
e
p
aq
u
i
f
e
r
m
o
n
i
t
o
r
i
n
g
w
e
l
l
s
l
i
s
t
e
d
i
n
T
a
b
l
e
7
o
f
t
h
e
CR
S
W
M
A
T
u
s
c
a
r
o
r
a
L
o
n
g
-
T
e
r
m
R
e
g
i
o
n
a
l
L
a
n
d
f
i
l
l
P
h
a
s
e
2
E
x
p
a
n
s
i
o
n
,
A
p
p
l
i
c
a
t
i
o
n
f
o
r
a
P
e
r
m
i
t
t
o
Co
n
s
t
r
u
c
t
b
y
J
o
y
c
e
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
(
R
e
v
i
s
e
d
J
a
n
u
a
r
y
2
0
0
4
)
.
12
2
GR
A
D
I
E
N
T
CA
L
C
U
L
A
T
I
O
N
SE
G
M
E
N
T
FL
O
W
L
I
N
E
LE
N
G
T
H
(
f
e
e
t
)
i
5
i
4
27
0
SW
0.
0
1
8
5
5
.
3
9
E
+
0
0
SE
5.
3
9
E
+
0
0
0.399 0.25 0.25
Wa
t
e
r
Q
u
a
l
i
t
y
M
o
n
i
t
o
r
i
n
g
P
l
a
n
CR
S
W
M
A
T
u
s
c
a
r
o
r
a
L
a
n
d
f
i
l
l
Pe
r
m
i
t
N
o
s
.
2
5
-
0
4
a
n
d
2
5
-
0
9
1
o
f
1
Joyce Engineering
Figure & Drawings
Figure 1 Site Location Map
Drawing 1 Shallow Aquifer Potentiometric Surface Contour Map
Drawing 2 Deep Aquifer Potentiometric Surface Contour Map
Drawing 3 Water Quality Monitoring Plan Well Locations
Appendices
Appendix A Monitoring Well Boring Logs
Appendix B Survey of Monitoring Well Locations
Appendix C Sample Field Logs, Chains of Custody, and Reusable
Bailer Cleaning Procedure
Appendix D Analytical Requirements
Appendices
Appendix A Monitoring Well Boring Logs
Appendix B Survey of Monitoring Well Locations
Appendix C Sample Field Logs, Chains of Custody, and Reusable
Bailer Cleaning Procedure
Appendix D Analytical Requirements
Appendices
Appendix A Monitoring Well Boring Logs
Appendix B Survey of Monitoring Well Locations
Appendix C Sample Field Logs, Chains of Custody, and Reusable
Bailer Cleaning Procedure
Appendix D Analytical Requirements
Appendices
Appendix A Monitoring Well Boring Logs
Appendix B Survey of Monitoring Well Locations
Appendix C Sample Field Logs, Chains of Custody, and Reusable
Bailer Cleaning Procedure
Appendix D Analytical Requirements
North Carolina Appendix I, II, and C and D Constituents
NC SWSL NC 2L SWS-GWPS
1 App. I Antimony metal 7440-36-0 6010 6-1
2 App. I Arsenic metal 7440-38-2 6010 10 10 -(RCRA METAL)
3 App. I Barium metal 7440-39-3 6010 100 700 -(RCRA METAL)
4 App. I Beryllium metal 7440-41-7 6010 1-4
5 App. I Cadmium metal 7440-43-9 6010 12-(RCRA METAL)
6 App. I Chromium metal 7440-47-3 6010 10 10 -(RCRA METAL)
7 App. I Cobalt metal 7440-48-4 6010 10 - 1
8 App. I Copper metal 7440-50-8 6010 10 1,000 -EPA MCL is a secondary standard.
9 App. I Lead metal 7439-92-1 6010 10 15 -EPA MCL is an action level. (RCRA METAL)
10 App. I Nickel metal 7440-02-0 6010 50 100 -
11 App. I Selenium metal 7782-49-2 6010 10 20 -(RCRA METAL)
12 App. I Silver metal 7440-22-4 6010 10 20 -EPA MCL is a secondary standard. (RCRA METAL).
13 App. I Thallium metal 7440-28-0 6010 5.5 - 0.28
14 App. I Vanadium metal 7440-62-2 6010 25 - 0.3
15 App. I Zinc metal 7440-66-6 6010 10 1,000 -EPA MCL is a secondary standard. (AL)= NC2B Action Level
16 App. II Mercury metal 7439-97-6 7470 0.2 1 -(RCRA METAL)
17 App. II Tin metal 7440-31-5 6010 100 - 2,000
NC SWSL NC 2L SWS-GWPS
1 App. II Cyanide inorganic 57-12-5 9012A 10 70 -
2 App. II Sulfide inorganic 18496-25-8 9030B 1,000 - -
NC SWSL NC 2L SWS-GWPS
1 C&D Alkalinity inorganic SW337 SM 2320B ---
2 C&D Chloride inorganic SW301 SM 4500-Cl-E -250,000 -
3 C&D Iron metal 7439-89-6 6010 300 300 -
4 C&D Manganese metal 7439-96-5 6010 50 50 -
5 C&D Mercury metal 7439-97-6 7470 0.2 1 -(RCRA Metal)
6 C&D Sulfate inorganic 14808-79-8 300.0 250,000 250,000 -
7 C&D Total Dissolved Solids (TDS)inorganic SW311 SM 2540C -500,000 -
8 C&D Tetrahydrofuran volatile 109-99-9 8260B ---
NC SWSL NC 2L SWS-GWPS
1 App. I Acetone volatile 67-64-1 8260B 100 6,000 -
2 App. I Acrylonitrile volatile 107-13-1 8260B 200 --
3 App. I Benzene volatile 71-43-2 8260B 11-
4 App. I Bromochloromethane volatile 74-97-5 8260B 3 -0.6
5 App. I Bromodichloromethane volatile 75-27-4 8260B 1 0.6 -*MCL for total trihalomethanes
6 App. I Bromoform volatile 75-25-2 8260B 34-*MCL for total trihalomethanes
7 App. I Carbon disulfide volatile 75-15-0 8260B 100 700 -
8 App. I Carbon tetrachloride volatile 56-23-5 8260B 1 0.3 -
9 App. I Chlorobenzene volatile 108-90-7 8260B 350-
10 App. I Chloroethane volatile 75-00-3 8260B 10 3,000 -
11 App. I Chloroform volatile 67-66-3 8260B 570-*MCL for total trihalomethanes
12 App. I Dibromochloromethane volatile 124-48-1 8260B 3 0.4 0.41 *MCL for total trihalomethanes
13 App. I 1,2-Dibromo-3-chloropropane (DBCP)volatile 96-12-8 8260B 13 0.04 -
14 App. I 1,2-Dibromoethane (EDB)volatile 106-93-4 8260B 1 0.02 -
15 App. I o-Dichlorobenzene / 1,2-Dichlorobenzene volatile 95-50-1 8260B 520-
16 App. I p-Dichlorobenzene / 1,4-Dichlorobenzene volatile 106-46-7 8260B 16-
17 App. I trans-1,4-Dichloro-2-butene volatile 110-57-6 8260B 100 --
18 App. I 1,1-Dichloroethane volatile 75-34-3 8260B 56-
19 App. I 1,2-Dichloroethane volatile 107-06-2 8260B 1 0.4 -
20 App. I 1,1-Dichloroethylene volatile 75-35-4 8260B 5 350 -Changed from 7 (MCL) to 350 µg/L in April 2013 (for public water supplies
or drinking wells, the MCL = 7 µg/L still applies.)
21 App. I cis-1,2-Dichloroethylene volatile 156-59-2 8260B 570-
22 App. I trans-1,2-Dichloroethylene volatile 156-60-5 8260B 5 100 -
23 App. I 1,2-Dichloropropane volatile 78-87-5 8260B 1 0.6 -
24 App. I cis-1,3-Dichloropropene volatile 10061-01-5 8260B 1 0.4 -
25 App. I trans-1,3-Dichloropropene volatile 10061-02-6 8260B 1 0.4 -
26 App. I Ethylbenzene volatile 100-41-4 8260B 1 600 -
27 App. I 2-Hexanone / Methyl butyl ketone (MBK)volatile 591-78-6 8260B 50 -280
28 App. I Methyl bromide / Bromomethane volatile 74-83-9 8260B 10 -10
29 App. I Methyl chloride / Chloromethane volatile 74-87-3 8260B 13-
30 App. I Methylene bromide / Dibromomethane volatile 74-95-3 8260B 10 -70
31 App. I Methylene chloride / Dichloromethane volatile 75-09-2 8260B 15-
32 App. I Methyl ethyl ketone / 2-Butanone (MEK)volatile 78-93-3 8260B 100 4,000 -
33 App. I Methyl iodide / Iodomethane volatile 74-88-4 8260B 10 --
34 App. I 4-Methyl-2-pentanone / Methyl isobutyl ketone volatile 108-10-1 8260B 100 -560
35 App. I Styrene volatile 100-42-5 8260B 170-
36 App. I 1,1,1,2-Tetrachloroethane volatile 630-20-6 8260B 5-1
37 App. I 1,1,2,2-Tetrachloroethane volatile 79-34-5 8260B 3 0.2 0.18
38 App. I Tetrachloroethylene (PCE)volatile 127-18-4 8260B 1 0.7 -
39 App. I Toluene volatile 108-88-3 8260B 1 600 -
40 App. I 1,1,1-Trichloroethane volatile 71-55-6 8260B 1 200 -
41 App. I 1,1,2-Trichloroethane volatile 79-00-5 8260B 1 -0.6
42 App. I Trichloroethylene volatile 79-01-6 8260B 13-
43 App. I Trichlorofluoromethane (CFC-11) volatile 75-69-4 8260B 1 2,000 -
44 App. I 1,2,3-Trichloropropane volatile 96-18-4 8260B 1 0.005 -
45 App. I Vinyl acetate volatile 108-05-4 8260B 50 -88
46 App. I Vinyl chloride volatile 75-01-4 8260B 1 0.03 -
47 App. I Xylenes (total) volatile see note 8260B 5 500 -Includes o-xylene, p-xylene, and unspecified xylenes [dimethyl benzenes
(CAS RN 1330-20-7].
NC SWSL NC 2L SWS-GWPS
48 App. II Acetonitrile (methyl cyanide)volatile 75-05-8 8260B 55 -42
49 App. II Acrolein volatile 107-02-8 8260B 53 -4
50 App. II Allyl chloride (3-chloroprene)volatile 107-05-1 8260B 10 --
51 App. II Chloroprene volatile 126-99-8 8260B 20 --
52 App. II m-Dichlorobenzene / 1,3-Dichlorobenzene volatile 541-73-1 8260B 5 200 -
53 App. II Dichlorodifluoromethane volatile 75-71-8 8260B 5 1,000 -
54 App. II 1,3-Dichloropropane volatile 142-28-9 8260B 1--
55 App. II 2,2-Dichloropropane volatile 594-20-7 8260B 15 --
56 App. II 1,1-Dichloropropene volatile 563-58-6 8260B 5--
57 App. II Isobutyl alcohol volatile 78-83-1 8260B 100 --
58 App. II Methacrylonitrile volatile 126-98-7 8260B 100 --
59 App. II Methyl methacrylate volatile 80-62-6 8260B 30 -25
60 App. II Propionitrile volatile 107-12-0 8260B 150 --
61 App. II 1,2,4-Trichlorobenzene volatile 120-82-1 8260B 10 70 70
62 App. II Naphthalene volatile 91-20-3 8260B or 8270C 10 6 -
63 App. II Hexachlorobutadiene semivolatile 87-68-3 8270C or 8260B 10 0.4 0.44
64 App. II Ethyl methacrylate semivolatile 97-63-2 8270C or 8260B 10 --
NC - Additional Constituents for C&D Landfills
NOTESNumber
ANALYTE CLASS CAS RN ANALYTICAL
METHOD
GROUNDWATER STANDARDS (µg/L)NC App. #ANALYTE
GROUNDWATER STANDARDS (µg/L)ANALYTE CLASS CAS RNNC App. #
ANALYTICAL
METHOD
NOTES
Number NC App. #ANALYTE CLASS CAS RN
ANALYTICAL
METHOD NOTES
Number NC App. #ANALYTE CLASS CAS RN
ANALYTICAL
METHOD
ANALYTICAL
METHOD
CLASS CAS RN
Number
NC App. I & II - Total Metals
NC App. II - Cyanide/ Sulfide
NC App. I & II - Method 8260
GROUNDWATER STANDARDS (µg/L)
GROUNDWATER STANDARDS (µg/L)
NC App. II - Method 8260
GROUNDWATER STANDARDS (µg/L)NC App. #
NOTES
NOTESNumber
Joyce Engineering
Revised: February 2015
North Carolina Appendix I, II, and C and D Constituents
NC SWSL NC 2L SWS-GWPS
1 App. II Acenaphthene semivolatile 83-32-9 8270C 10 80 -
2 App. II Acenaphthylene semivolatile 208-96-8 8270C 10 200 -
3 App. II Acetophenone semivolatile 98-86-2 8270C 10 - 700
4 App. II 2-Acetylaminofluorene semivolatile 53-96-3 8270C 20 - -
5 App. II 4-Aminobiphenyl semivolatile 92-67-1 8270C 20 - -
6 App. II Anthracene PAH 120-12-7 8270C 10 2,000 -
7 App. II Benz[a]anthracene; Benzanthracene PAH 56-55-3 8270C 10 0.05 -
8 App. II Benzo[b]fluoranthene PAH 205-99-2 8270C 10 0.05 -
9 App. II Benzo[k]fluoranthene PAH 207-08-9 8270C 10 0.5 -
10 App. II Benzo[g,h,i]perylene PAH 191-24-2 8270C 10 200 -
11 App. II Benzo[a]pyrene PAH 50-32-8 8270C 10 0.005 -
12 App. II Benzyl alcohol semivolatile 100-51-6 8270C 20 - 700
13 App. II Bis(2-chloroethoxy)methane semivolatile 111-91-1 8270C 10 - -
14 App. II Bis(2-chloroethyl)ether semivolatile 111-44-4 8270C 10 - 0.031
15 App. II Bis(2-chloro-1-methylethyl)ether semivolatile 108-60-1 8270C 10 - -Bis (2-chloroisopropyl) ether
16 App. II Bis(2-ethylhexyl)phthalate semivolatile 117-81-7 8270C 15 3 -
17 App. II 4-Bromophenyl phenyl ether semivolatile 101-55-3 8270C 10 - -
18 App. II Butyl benzyl phthalate semivolatile 85-68-7 8270C 10 1,000 -
19 App. II p-Chloroaniline (4-Chloroaniline)semivolatile 106-47-8 8270C 20 - -
20 App. II Chlorobenzilate semivolatile 510-15-6 8270C 10 - -
21 App. II p-Chloro-m-cresol (4-chloro-3-methylphenol)semivolatile 59-50-7 8270C 20 - -
22 App. II 2-Chloronaphthalene semivolatile 91-58-7 8270C 10 - -
23 App. II 2-Chlorophenol semivolatile 95-57-8 8270C 10 0.4 -
24 App. II 4-Chlorophenyl phenyl ether semivolatile 7005-72-3 8270C 10 - -
25 App. II Chrysene PAH 218-01-9 8270C 10 5 -
26 App. II m-Cresol (3-Methylphenol)semivolatile 108-39-4 8270C 10 400 -
27 App. II o-Cresol semivolatile 95-48-7 8270C 10 -400
28 App. II p-Cresol (4-Methylphenol)semivolatile 106-44-5 8270C 10 40 -
29 App. II Diallate semivolatile 2303-16-4 8270C 10 --
30 App. II Dibenz[a,h]anthracene PAH 53-70-3 8270C 10 0.005 -
31 App. II Dibenzofuran semivolatile 132-64-9 8270C 10 -28
32 App. II Di-n-butyl phthalate semivolatile 84-74-2 8270C 10 700 -
33 App. II 3,3'-Dichlorobenzidine semivolatile 91-94-1 8270C 20 --
34 App. II 2,4-Dichlorophenol semivolatile 120-83-2 8270C 10 -0.98
35 App. II 2,6-Dichlorophenol semivolatile 87-65-0 8270C 10 --
36 App. II Diethyl phthalate semivolatile 84-66-2 8270C 6,000 6,000 -
37 App. II O,O-Diethyl O-2-pyrazinyl phosphorothioate OP pesticide 297-97-2 8270C 20 --Thionazine
38 App. II Dimethoate OP pesticide 60-51-5 8270C 20 --
39 App. II p-(Dimethylamino)azobenzene semivolatile 60-11-7 8270C 10 --
40 App. II 7,12-Dimethylbenz[a]anthracene semivolatile 57-97-6 8270C 10 --
41 App. II 3,3'-Dimethylbenzidine semivolatile 119-93-7 8270C 10 --
42 App. II 2,4-Dimethylphenol (M-xylenol)semivolatile 105-67-9 8270C 10 100 -
43 App. II Dimethyl phthalate semivolatile 131-11-3 8270C 10 --
44 App. II m-Dinitrobenzene semivolatile 99-65-0 8270C 20 --
45 App. II 4,6-Dinitro-o-cresol (2-methyl 4,6-dinitrolphenol)semivolatile 534-52-1 8270C 50 --
46 App. II 2,4-Dinitrophenol semivolatile 51-28-5 8270C 50 --
47 App. II 2,4-Dinitrotoluene semivolatile 121-14-2 8270C 10 -0.1
48 App. II 2,6-Dinitrotoluene semivolatile 606-20-2 8270C 10 --
49 App. II Di-n-octyl phthalate semivolatile 117-84-0 8270C 10 100 -
50 App. II Diphenylamine semivolatile 122-39-4 8270C 10 --
51 App. II Disulfoton OP pesticide 298-04-4 8270C 10 0.3 -
52 App. II Ethyl methanesulfonate semivolatile 62-50-0 8270C 20 --
53 App. II Famphur semivolatile 52-85-7 8270C 20 --
54 App. II Fluoranthene PAH 206-44-0 8270C 10 300 -
55 App. II Fluorene PAH 86-73-7 8270C 10 300 -
NC SWSL NC 2L SWS-GWPS
56 App. II Hexachlorobenzene semivolatile 118-74-1 8270C 10 0.02 -
57 App. II Hexachlorocylopentadiene semivolatile 77-47-4 8270C 10 -50
58 App. II Hexachloroethane semivolatile 67-72-1 8270C 10 -2.5
59 App. II Hexachloropropene semivolatile 1888-71-7 8270C 10 --
60 App. II Indeno[1,2,3-cd]pyrene PAH 193-39-5 8270C 10 0.05 -
61 App. II Isodrin semivolatile 465-73-6 8270C 20 --
62 App. II Isophorone semivolatile 78-59-1 8270C 10 40 -
63 App. II Isosafrole semivolatile 120-58-1 8270C 10 --
64 App. II Kepone pesticide 143-50-0 8270C 20 --
65 App. II Methapyrilene semivolatile 91-80-5 8270C 100 --
66 App. II 3-Methylcholanthrene semivolatile 56-49-5 8270C 10 --
67 App. II Methyl methanesulfonate semivolatile 66-27-3 8270C 10 --
68 App. II 2-Methylnaphthalene semivolatile 91-57-6 8270C 10 30 -
69 App. II Methyl parathion semivolatile 298-00-0 8270C 10 --
70 App. II 1,4-Naphthoquinone semivolatile 130-15-4 8270C 10 --
71 App. II 1-Naphthylamine semivolatile 134-32-7 8270C 10 --
72 App. II 2-Naphthylamine semivolatile 91-59-8 8270C 10 --
73 App. II o-Nitroaniline (2-Nitroaniline)semivolatile 88-74-4 8270C 50 --
74 App. II m-Nitroaniline (3-Nitroaniline)semivolatile 99-09-2 8270C 50 --
75 App. II p-Nitroaniline (4-Nitroaniline)semivolatile 100-01-6 8270C 20 --
76 App. II Nitrobenzene semivolatile 98-95-3 8270C 10 --
77 App. II 5-Nitro-o-toluidine semivolatile 99-55-8 8270C 10 - -
78 App. II o-Nitrophenol (2-Nitrophenol)semivolatile 88-75-5 8270C 10 - -
79 App. II p-Nitrophenol (4-Nitrophenol)semivolatile 100-02-7 8270C 50 - -
80 App. II N-Nitrosodiethylamine semivolatile 55-18-5 8270C 20 - -
81 App. II N-Nitrosodimethylamine semivolatile 62-75-9 8270C 10 0.0007 -
82 App. II N-Nitrosodi-n-butylamine semivolatile 924-16-3 8270C 10 - -
83 App. II N-Nitrosodiphenylamine semivolatile 86-30-6 8270C 10 - -
84 App. II N-Nitrosodipropylamine semivolatile 621-64-7 8270C 10 - -
85 App. II N-Nitrosomethylethylamine semivolatile 10595-95-6 8270C 10 - -
86 App. II N-Nitrosopiperidine semivolatile 100-75-4 8270C 20 - -
87 App. II N-Nitrosopyrrolidine semivolatile 930-55-2 8270C 10 - -
88 App. II Parathion OP pesticide 56-38-2 8270C 10 - -
89 App. II Pentachlorobenzene semivolatile 608-93-5 8270C 10 - -
90 App. II Pentachloronitrobenzene semivolatile 82-68-8 8270C 20 - -
91 App. II Phenacetin semivolatile 62-44-2 8270C 20 - -
92 App. II Phenanthrene PAH 85-01-8 8270C 10 200 -
93 App. II Phenol semivolatile 108-95-2 8270C 10 30 -
94 App. II p-Phenylenediamine semivolatile 106-50-3 8270C 10 - -
95 App. II Phorate OP pesticide 298-02-2 8270C 10 1 -
96 App. II Pronamide semivolatile 23950-58-5 8270C 10 - -
97 App. II Pyrene PAH 129-00-0 8270C 10 200 -
98 App. II Safrole semivolatile 94-59-7 8270C 10 - -
99 App. II 1,2,4,5-Tetrachlorobenzene semivolatile 95-94-3 8270C 10 - 2
100 App. II 2,3,4,6-Tetrachlorophenol semivolatile 58-90-2 8270C 10 200 -
101 App. II o-Toluidine semivolatile 95-53-4 8270C 10 --
102 App. II 2,4,5-Trichlorophenol semivolatile 95-95-4 8270C 10 -63
103 App. II 2,4,6-Trichlorophenol semivolatile 88-06-2 8270C 10 -4
104 App. II O,O,O-Triethyl phosphorothioate semivolatile 126-68-1 8270C 10 --
105 App. II 1,3,5-Trinitrobenzene semivolatile 99-35-4 8270C 10 --
106 App. II Hexachlorobutadiene semivolatile 87-68-3 8270C or 8260 10 0.4 0.44
107 App. II Ethyl methacrylate semivolatile 97-63-2 8270C or 8270 10 --
108 App. II Naphthalene volatile 91-20-3 8260B or 8270 10 6 -
109 App. II Pentachlorophenol herbicide 87-86-5 8151 or 8270 25 0.3 -
ANALYTICAL
METHOD
NC App. II - Method 8270
Number NC App. #ANALYTE CLASS CAS RN
ANALYTE CLASS CAS RN NOTES
NC App. II - Method 8270
ANALYTICAL
METHOD NOTES
Number NC App. #
GROUNDWATER STANDARDS (µg/L)
GROUNDWATER STANDARDS (µg/L)
Joyce Engineering
Revised: February 2015
North Carolina Appendix I, II, and C and D Constituents
NC SWSL NC 2L SWS-GWPS
1 App. II Aldrin pesticide 309-00-2 8081A 0.05 - 0.002
2 App. II alpha-BHC pesticide 319-84-6 8081A 0.05 - 0.006
3 App. II beta-BHC pesticide 319-85-7 8081A 0.05 - 0.019
4 App. II delta-BHC pesticide 319-86-8 8081A 0.05 - 0.019
5 App. II gamma-BHC (Lindane)pesticide 58-89-9 8081A 0.05 0.03 -
6 App. II Chlordane pesticide see note 8081A 0.5 0.1 -
This entry includes alpha-chlordane (CAS RN 5103-71-9), beta chlordane
(CAS RN 5103-74-2), gamma-chlordane (CAS RN 566-34-7), and
constituents of chlordane (CAS RN 57-74-9 and 12672-29-6).
7 App. II 4,4'-DDD pesticide 72-54-8 8081A 0.1 0.1 -
8 App. II 4,4'-DDE pesticide 72-55-9 8081A 0.1 - -
9 App. II 4-4'-DDT pesticide 50-29-3 8081A 0.1 0.1 -
10 App. II Dieldrin pesticide 60-57-1 8081A 0.075 0.002 -
11 App. II Endosulfan I pesticide 959-96-8 8081A 0.1 40 -
12 App. II Endosulfan II pesticide 33213-65-9 8081A 0.1 42 -
13 App. II Endosulfan sulfate pesticide 1031-07-8 8081A 0.1 - 40
14 App. II Endrin pesticide 72-20-8 8081A 0.1 2 -
15 App. II Endrin aldehyde pesticide 7421-93-4 8081A 0.1 2 -
16 App. II Heptachlor pesticide 76-44-8 8081A 0.05 0.008 -
17 App. II Heptachlor epoxide pesticide 1024-57-3 8081A 0.075 0.004 -
18 App. II Methoxychlor pesticide 72-43-5 8081A 140-
19 App. II Toxaphene pesticide see note 8081A 1.5 0.03 -
Includes congener chemicals contained in technical toxaphene (CAS RN
8001-35-2) such as chlorinated camphene.
NC SWSL NC 2L SWS-GWPS
1-6 App. II Polychlorinated Biphenyls (PCBs) PCB see note 8082 2 - 0.09
This category contains congener chemicals, including constituents of Aroclor
1016 (CAS RN 12674-11-2), Aroclor 1221 (CAS RN 11104-28-2), Aroclor
1232 (CAS RN 11141-16-5), Aroclor 1242 (CAS RN 53469-21-9), Aroclor
1248 (CAS RN 12672-29-6), Aroclor 1254 (CAS RN 11097-69-1)). Value
given for the NC 2L Standard is the GWP for the Solid Waste Section.
NC SWSL NC 2L SWS-GWPS
1 App. II 2,4-Dichlorophenoxyacetic acid (2,4-D)herbicide 94-75-7 8151A 270-
2 App. II Dinoseb (DNBP); 2-sec-Butyl-4,6-dinitrophenol herbicide 86-85-7 8151A 1-7
3 App. II Silvex (2,4,5-TP)herbicide 93-72-1 8151A 250-
4 App. II 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)herbicide 93-76-5 8151A 2--
5 App. II Pentachlorophenol herbicide 87-86-5 8151 or 8270 25 0.3 -
Notes:
Color denotes NC App. I Constituents.All concentrations in micrograms per liter (µg/L) = parts per bilion (ppb).
Color denotes remaining NC App. II Constituents.NC-SWSL = NC-DENR Solid Wastre Section Reporting Limits
NC 2L = NC Groundwater Protection Standards from 15A NCAC 2l.0202.
Color denotes C&D Constituents.SWS-GWPS = Groundwater Protection Standards established by the NC-DENR Solid Waste Section for constituents with no NC 2L Standard.
App. I & App. II = Solid Waste Constituent Lists incorporated into NC Solid Waste Management Rules from CFR-40 Appendix I and Appendix II.
Color denotes constituents that can be analyzed by more than one method.C&D = Construction & Demolition Debris (referencing Landfills).
CAS RN: Chemical Abstracts Service Registry Number. Where 'Total' is entered, all species that contain the element are included.
Class: General type of compound.
OP = orthophosphate.
PAH = polynuclear aromatic hydrocarbon.
Volatile EQL of 1 µg/L is based on a 25-mL purge per SW-846, Final Update III, Revision 2, December 1996, page 8260B-35 (most recent revision to method 8260 in SW-846).
" - " = not available/not applicable
Referenced from North Carolina Division of Waste Management website (http://www.wastenotnc.org/sw/swenvmonitoringlist.asp) as of 4/16/2015.
ANALYTE CLASS CAS RN
ANALYTICAL
METHOD NOTES
NOTES
Number NC App. #
NOTESNumber NC App. # ANALYTE CLASS CAS RN
ANALYTICAL
METHOD
Number NC App. # ANALYTE CLASS
ANALYTICAL
METHODCAS RN GROUNDWATER STANDARDS (µg/L)
GROUNDWATER STANDARDS (µg/L)
NC App. II - Herbicides 8151
NC App. II - PCB's Method 8082
GROUNDWATER STANDARDS (µg/L)
NC App. II - Pesticides Method 8081
Joyce Engineering
Revised: February 2015
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
Ac
e
n
a
p
h
t
h
e
n
e
83
-
3
2
-
9
60
20
20
29
1,
2
-
D
i
h
y
d
r
o
-
a
c
e
n
a
p
h
t
h
y
l
e
n
e
(
n
o
n
-
ca
r
c
i
n
o
g
e
n
P
A
H
)
n
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Ac
e
t
a
l
d
e
h
y
d
e
75
-
0
7
-
0
97
0
1.
4
m
g
/
L
Ac
e
t
i
c
A
l
d
e
h
y
d
e
,
E
t
h
a
n
a
l
y
E
C
O
T
O
X
6
/
0
5
/
R
A
I
S
&
I
R
I
S
2
/
0
7
Ac
e
p
h
a
t
e
30
5
6
0
-
1
9
-
1
70
(L
D
)
3.9
14
0
y
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Ac
e
t
o
c
h
l
o
r
34
2
5
6
-
8
2
-
1
(L
D
)
51
0
1.9
m
g
/
L
n IRIS/RAIS 1/07 HHWSSA
Ac
e
t
o
n
e
67
-
6
4
-
1
2.0
m
g
/
L
30
0
m
g
/
L
2-
p
r
o
p
a
n
o
n
e
n
E
C
O
T
O
X
/
R
A
I
S
/
I
R
I
S
1
/
0
7
Ac
e
t
o
p
h
e
n
o
n
e
98
-
8
6
-
2
(
L
D
)
35
0
0
85
0
0
0
0
n
E
C
O
T
O
X
/
R
A
I
S
/
I
R
I
S
8
/
0
7
Ac
r
o
l
e
i
n
10
7
-
0
2
-
8
3
(L
D
)
2-
P
r
o
p
e
n
a
l
n NRWQC 06
Ac
r
y
l
a
m
i
d
e
79
-
0
6
-
1
0.0
0
8
0.3
y
E
C
O
T
O
X
/
R
A
I
S
/
I
R
I
S
1
0
/
0
7
Ac
r
y
l
o
n
i
t
r
i
l
e
10
7
-
1
3
-
1
0.0
5
1
0.
2
5
2-
P
r
o
p
e
n
e
n
i
t
r
i
l
e
;
A
C
N
;
A
N
;
Ac
r
y
l
o
n
i
t
r
i
l
e
;
C
y
a
n
o
e
t
h
y
l
e
n
e
;
Fu
m
i
g
r
a
i
n
;
V
i
n
y
l
C
y
a
n
i
d
e
y
N
R
W
Q
C
0
6
/
R
A
I
S
2
/
0
7
Al
d
r
i
n
30
9
-
0
0
-
2
0.0
0
2
0.
0
0
3
0.
0
5
n
g
/
L
0.0
5
n
g
/
L
y
N
C
/
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Ali
p
h
a
t
i
c
s
NA
C5
-
C
8
n
-
h
e
x
a
n
e
a
s
s
u
r
r
o
g
a
t
e
(L
D
)
83
0
14
0
0
NA
E
C
O
T
O
X
&
R
A
I
S
1
/
1
0
/
M
A
D
E
P
t
o
x
s
t
u
d
i
e
s
C9
-
C
1
2
S
S
S
NA
N
C
C9
-
C
1
8
n
-
n
o
n
a
n
e
a
s
s
u
r
r
o
g
a
t
e
S
S
S
NA
N
C
C1
8
-
C
3
2
E
i
c
o
s
a
n
e
a
s
s
u
r
r
o
g
a
t
e
S
S
S
NA
N
C
Al
u
m
i
n
u
m
(
a
t
p
H
6
.
5
-
9
.
0
)
74
2
9
-
9
0
-
5
87
65
0
0
80
0
0
n
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
9
Al
u
m
i
n
u
m
S
u
l
f
a
t
e
10
0
4
3
-
0
1
-
3
12
(L
D
)
n
E
C
O
T
O
X
2
/
0
7
2-
A
m
i
n
o
-
4
,
6
-
D
i
n
i
t
r
o
t
o
l
u
e
n
e
35
5
7
2
-
7
8
-
2
(L
D
)
6.7
15
0
2A
-
D
N
T
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
4-
A
m
i
n
o
-
4
,
6
-
D
i
n
i
t
r
o
t
o
l
u
e
n
e
19
4
0
6
-
5
1
-
0
6.7
15
0
4A
-
D
N
T
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Am
m
o
n
i
u
m
S
u
l
f
a
t
e
77
8
3
-
2
0
-
2
1.9
m
g
/
L
(L
D
)
nECOTOX 2/07 EPIWIN
An
t
h
r
a
c
e
n
e
12
0
-
1
2
-
7
0.
0
5
40
0
0
0
(n
o
n
-
c
a
r
c
i
n
o
g
e
n
P
A
H
)
n
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
3
/
0
5
/
R
A
I
S
1
/
0
7
An
t
i
m
o
n
y
74
4
0
-
3
6
-
0
5.6
64
0
n
E
C
O
T
O
X
&
R
A
I
S
6
/
1
2
/
N
R
W
Q
C
0
6
Ar
o
m
a
t
i
c
s
NA
C9
-
C
3
2
P
y
r
e
n
e
a
s
s
u
r
r
o
g
a
t
e
83
0
4
.
0
m
g
/
L
n
R
A
I
S
1
/
0
7
/
s
u
r
r
o
g
a
t
e
f
r
o
m
M
A
D
E
P
s
t
u
d
i
e
s
Ar
s
e
n
i
c
7
4
4
0
-
3
8
-
2
50
5
0
1
0
1
0
yNC
As
b
e
s
t
o
s
13
3
2
-
2
1
-
4
7,0
0
0
,
0
0
0
f
i
b
e
r
s
/
L
y
N
R
W
Q
C
0
6
At
r
a
z
i
n
e
19
1
2
-
2
4
-
9
64
0
82
0
0
n
O
P
P
T
2
0
0
3
I
R
E
D
;
R
A
I
S
3
/
0
9
Pa
g
e
1
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
Ba
c
t
e
r
i
a
l
I
n
d
i
c
a
t
o
r
s
se
e
f
e
c
a
l
c
o
l
i
f
o
r
m
an
d
e
n
t
e
r
o
c
o
c
c
u
s
NA
Ba
r
i
u
m
74
4
0
-
3
9
-
3
(L
D
)
(
L
D
)
1.0
m
g
/
L
20
0
m
g
/
L
n NC/ECOTOX, IRIS, AND RAIS 11/08
a-
B
H
C
31
9
-
8
4
-
6
0.
0
0
2
6
0.
0
0
4
9
alp
h
a
-
B
H
C
;
a
-
H
C
H
(H
C
H
=
H
e
x
a
c
hlo
r
o
c
y
c
l
o
h
e
x
a
n
e
)
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
b-
B
H
C
31
9
-
8
5
-
7
0.
0
0
9
1
0.0
1
7
be
t
a
-
B
H
C
,
b
-
H
C
H
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
d-
B
H
C
31
9
-
8
6
-
8
(L
D
)
(
L
D
)
de
l
t
a
-
B
H
C
,
d
-
H
C
H
n
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
g-
B
H
C
(
a
l
s
o
L
i
n
d
a
n
e
)
58
-
8
9
-
9
0.
0
1
0.
0
0
4
ga
m
m
a
-
B
H
C
,
g
-
H
C
H
c
N
C
/
P
A
N
3
/
0
7
Be
n
e
f
i
n
18
6
1
-
4
0
-
1
(L
D
)
3
4
0
35
0
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
/
0
7
Be
n
t
a
z
o
n
25
0
5
7
-
8
9
-
0
(L
D
)
(L
D
)
92
0
74
0
0
n
I
R
I
S
/
R
A
I
S
/
E
C
O
T
O
X
1
0
/
1
0
Be
n
z
(
a
)
A
n
t
h
r
a
c
e
n
e
PA
H
56
-
5
5
-
3
0.0
0
2
8
T
o
t
a
l
P
A
H
'
s
0
.
0
3
1
1
T
o
t
a
l
P
A
H
'
s
(P
A
H
)
Y
N
C
Be
n
z
e
n
e
71
-
4
3
-
2
1.
1
9
51
yNC
Be
n
z
i
d
i
n
e
92
-
8
7
-
5
0.0
8
6
n
g
/
L
0.
2
n
g
/
L
4,
4
'
-
B
i
p
h
e
n
y
l
d
i
a
m
i
n
e
y
N
R
W
Q
C
0
6
Be
n
z
o
(
a
)
P
y
r
e
n
e
PA
H
50
-
3
2
-
8
0.0
0
2
8
T
o
t
a
l
P
A
H
'
s
0
.
0
3
1
1
T
o
t
a
l
P
A
H
'
s
Ba
P
/
(
P
A
H
)
y
N
C
Be
n
z
o
(
b
)
f
l
u
o
r
a
n
t
h
e
n
e
,
3
,
4
-
PA
H
20
5
-
9
9
-
2
0.0
0
2
8
T
o
t
a
l
P
A
H
'
s
0
.
0
3
1
1
T
o
t
a
l
P
A
H
'
s
(P
A
H
)
y
N
C
Be
n
z
o
(
k
)
F
l
u
o
r
a
n
t
h
e
n
e
P
A
H
20
7
-
0
8
-
9
0.0
0
2
8
T
o
t
a
l
P
A
H
'
s
0
.
0
3
1
1
T
o
t
a
l
P
A
H
'
s
(P
A
H
)
y
N
C
Be
n
z
o
i
c
A
c
i
d
65
-
8
5
-
0
(L
D
)
14
0
m
g
/
L
50
0
0
m
g
/
L
Ca
r
b
o
x
y
b
e
n
z
e
n
e
n
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Be
n
z
y
l
A
l
c
o
h
o
l
10
0
-
5
1
-
6
(L
D
)
(L
D
)
3.
5
m
g
/
L
29
0
m
g
/
L
be
n
z
e
n
e
m
e
t
h
a
n
o
l
n
E
C
O
T
O
X
&
R
A
I
S
6
/
1
2
Be
n
z
y
l
C
h
l
o
r
i
d
e
10
0
-
4
4
-
7
0.
1
9
2
alp
h
a
-
C
h
l
o
r
o
t
o
l
u
e
n
e
,
C
h
l
o
r
o
m
e
t
h
y
l
Be
n
z
e
n
e
c
I
R
I
S
&
R
A
I
S
1
/
0
7
Be
r
y
l
l
i
u
m
74
4
0
-
4
1
-
7
6.5
nNC
1,1
-
B
i
p
h
e
n
y
l
92
-
5
2
-
4
18
(L
D
)
58
0
86
0
Dip
h
e
n
y
l
;
P
h
e
n
y
l
b
e
n
z
e
n
e
;
B
i
b
e
n
z
e
n
e
n
E
C
O
T
O
X
/
R
A
I
S
/
I
R
I
S
7
/
0
9
Bi
s
(
2
-
C
h
l
o
r
o
e
t
h
y
l
)
E
t
h
e
r
11
1
-
4
4
-
4
0.
0
3
0.
5
3
BC
E
E
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Bi
s
(
2
-
C
h
l
o
r
o
e
t
h
o
x
y
)
m
e
t
h
a
n
e
11
1
-
9
1
-
1
10
0
6.0
m
g
/
L
dic
h
l
o
r
o
m
e
t
h
o
x
y
e
t
h
a
n
e
n
R
A
I
S
1
/
0
7
Bi
s
(
2
-
C
h
l
o
r
o
i
s
o
p
r
o
p
y
l
)
E
t
h
e
r
10
8
-
6
0
-
1
1.
4
m
g
/
L
65
m
g
/
L
n
N
R
W
Q
C
0
6
Bi
s
(
2
-
E
t
h
y
l
h
e
x
y
l
)
P
h
t
h
a
l
a
t
e
11
7
-
8
1
-
7
(L
D
)
(L
D
)
1.2
2.2
DE
H
P
y
N
R
W
Q
C
0
6
Bi
s
(
c
h
l
o
r
o
m
e
t
h
y
l
)
E
t
h
e
r
54
2
-
8
8
-
1
0.1
n
g
/
L
0.
2
9
n
g
/
L
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Bo
r
o
n
74
4
0
-
4
2
-
8
no
d
a
t
a
n
E
C
O
T
O
X
1
1
/
0
8
Br
o
m
o
f
o
r
m
75
-
2
5
-
2
4.3
14
0
Tr
i
b
r
o
m
o
m
e
t
h
a
n
e
c
N
R
W
Q
C
0
6
&
R
A
I
S
1
/
0
7
Pa
g
e
2
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
Br
o
m
o
-
d
i
p
h
e
n
y
l
E
t
h
e
r
,
p
-
10
1
-
5
5
-
3
(L
D
)
(L
D
)
Br
o
m
o
-
d
i
p
h
e
n
y
l
E
t
h
e
r
,
4
-
n
E
C
O
T
O
X
&
R
A
I
S
6
/
1
2
Bu
t
a
n
o
n
e
,
2
-
78
-
9
3
-
3
(L
D
)
(L
D
)
20
m
g
/
L
75
0
m
g
/
L
me
t
h
y
l
e
t
h
y
l
k
e
t
o
n
e
;
M
E
K
n
E
C
O
T
O
X
/
R
A
I
S
/
I
R
I
S
7
/
2
0
1
1
Bu
t
y
l
b
e
n
z
e
n
e
,
n
-
10
4
-
5
1
-
8
(L
D
)
42
0
55
0
1-
P
h
e
n
y
l
b
u
t
a
n
e
n
E
C
O
T
O
X
&
R
A
I
S
2
/
1
1
Bu
t
y
l
a
t
e
20
0
8
-
4
1
-
5
61
0
47
0
65
0
Su
t
a
n
n
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Bu
t
y
l
b
e
n
z
y
l
P
h
t
h
a
l
a
t
e
85
-
6
8
-
7
19
5.
1
8.2
n
N
R
W
Q
C
0
6
&
R
A
I
S
1
/
0
7
Ca
d
m
i
u
m
74
4
0
-
4
3
-
9
2
(
N
)
5 (
N
)
0.
4
(
N
)
nNC
Ca
r
b
a
r
y
l
(
f
o
r
m
e
r
l
y
S
e
v
i
n
)
63
-
2
5
-
2
0.
6
7
(L
D
)
1-
n
a
p
h
t
a
l
e
n
o
l
;
m
e
t
h
y
l
c
a
r
b
a
m
a
t
e
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
/
0
7
Ca
r
b
a
z
o
l
e
86
-
7
4
-
8
0.7
1.2
y
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
8
/
1
2
Ca
r
b
o
f
u
r
a
n
15
6
3
-
6
6
-
2
9.7
0.4
6
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
/
0
7
Ca
r
b
o
n
d
i
s
u
l
f
i
d
e
75
-
1
5
-
0
(L
D
)
(L
D
)
30
0
0
20
0
0
0
Dit
h
i
o
c
a
r
b
o
n
i
c
A
n
h
y
d
r
i
d
e
n
E
C
O
T
O
X
&
R
A
I
S
6
/
1
2
Ca
r
b
o
n
T
e
t
r
a
c
h
l
o
r
i
d
e
56
-
2
3
-
5
0.2
5
4
1.6
Be
n
z
i
n
o
f
o
r
m
;
C
a
r
b
o
n
C
h
l
o
r
i
d
e
y
N
C
Ch
l
o
r
d
a
n
e
57
-
7
4
-
9
0.0
0
4
0.
0
0
4
0.
8
n
g
/
L
0.
8
n
g
/
L
yNC
Ch
l
o
r
i
d
e
16
8
8
7
-
0
0
-
6
23
0
m
g
/
L
(
A
L
)
25
0
m
g
/
L
nNC
Ch
l
o
r
i
n
e
(
T
R
C
)
77
8
2
-
5
0
-
5
17
7.
5
n
N
C
/
N
R
W
Q
C
0
6
Ch
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
s
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
yNC
Ch
l
o
r
i
n
a
t
e
d
P
h
e
n
o
l
i
c
C
o
m
p
o
u
n
d
s
1.
0
(
N
)
NA
N
C
Ch
l
o
r
o
b
e
n
z
e
n
e
10
8
-
9
0
-
7
14
0
(L
D
)
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
16
0
0
Ph
e
n
y
l
C
h
l
o
r
i
d
e
;
(
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
)
n
N
C
/
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
2
/
1
1
Ch
l
o
r
o
d
i
b
r
o
m
o
m
e
t
h
a
n
e
12
4
-
4
8
-
1
0.4
13
Dib
r
o
m
o
c
h
l
o
r
o
m
e
t
h
a
n
e
c
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Ch
l
o
r
o
f
o
r
m
67
-
6
6
-
3
5.6
17
0
Tr
i
c
h
l
o
r
o
m
e
t
h
a
n
e
c
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Ch
l
o
r
o
n
a
p
h
t
h
a
l
e
n
e
,
2
-
91
-
5
8
-
7
(L
D
)
1.
0
m
g
/
L
1.6
m
g
/
L
n
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Ch
l
o
r
o
p
h
y
l
l
-
a
,
c
o
r
r
e
c
t
e
d
40
(
N
)
4
0
(
N
)
1
5
(
N
)
NA
N
C
Ch
l
o
r
o
t
h
a
l
o
n
i
l
18
9
7
-
4
5
-
6
1.3
1.
6
7
20
0.8
c
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
0
/
1
0
Ch
r
o
m
i
u
m
50
2
0
NA
N
C
Ch
r
y
s
e
n
e
PA
H
21
8
-
0
1
-
9
0.0
0
2
8
T
o
t
a
l
P
A
H
'
s
0
.
0
3
1
1
T
o
t
a
l
P
A
H
'
s
(P
A
H
)
y
N
C
/
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Co
b
a
l
t
74
4
0
-
4
8
-
4
3
4
n
E
C
O
T
O
X
/
R
A
I
S
6
/
0
9
Co
l
i
f
o
r
m
se
e
f
e
c
a
l
c
o
l
i
f
o
r
m
NA
Co
p
p
e
r
74
4
0
-
5
0
-
8
7 (
A
L
)
3
(
A
L
)
n
N
C
Cy
a
n
i
d
e
57
-
1
2
-
5
5
(
N
)
1
nNC
Cy
c
l
o
h
e
x
a
n
e
11
0
-
8
2
-
7
23
0
12
0
n
E
C
O
T
O
X
/
E
P
I
W
I
N
/
R
A
I
S
1
/
0
7
Pa
g
e
3
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
D,
2
,
4
-
94
-
7
5
-
7
60
(L
D
)
10
0
2.5
m
g
/
L
2,
4
-
D
i
c
h
l
o
r
o
p
h
e
n
o
x
y
a
c
e
t
i
c
a
c
i
d
n
N
C
/
E
C
O
T
O
X
&
R
A
I
S
3
/
0
9
Da
c
t
h
a
l
18
6
1
-
3
2
-
1
(L
D
)
79
10
0
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
7
/
0
7
DB
,
2
,
4
-
94
-
8
2
-
6
(L
D
)
27
0
10
0
0
0
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
8
/
0
7
DD
D
,
4
,
4
'
-
72
-
5
4
-
8
0.
3
1
n
g
/
L
0.
3
1
n
g
/
L
4,
4
'
-
D
i
c
h
l
o
r
od
i
p
h
e
n
y
l
d
i
c
h
l
o
r
o
e
t
h
a
n
e
y
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
DD
E
,
4
,
4
'
-
72
-
5
5
-
9
0.
2
2
n
g
/
L
0.
2
2
n
g
/
L
p,
p
'
-
D
i
c
h
l
o
r
o
d
i
p
h
e
n
y
l
d
i
c
h
l
o
r
o
e
t
h
y
l
e
n
e
y
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
DD
T
,
4
,
4
'
-
50
-
2
9
-
3
0.0
0
1
0.
0
0
1
0.
2
n
g
/
L
0.
2
n
g
/
L
4,
4
'
-
D
i
c
h
l
o
r
o
d
i
p
h
e
n
y
l
t
r
i
c
h
l
o
r
o
e
t
h
a
n
e
y
N
C
De
m
e
t
o
n
80
6
5
-
4
8
-
3
0.1
0.
1
nNC
Dia
z
i
n
o
n
33
3
-
4
1
-
5
0.
1
7
0.8
2
n
E
P
A
f
i
n
a
l
A
W
Q
C
f
o
r
D
i
a
z
i
n
o
n
(
1
2
/
2
0
0
5
)
Dib
e
n
z
(
a
,
h
)
A
n
t
h
r
a
c
e
n
e
PA
H
53
-
7
0
-
3
0.0
0
2
8
T
o
t
a
l
P
A
H
'
s
0
.
0
3
1
1
T
o
t
a
l
P
A
H
'
s
1,
2
:
5
,
6
-
b
e
n
z
a
n
t
h
r
a
c
e
n
e
/
(
P
A
H
)
y
N
C
Dib
r
o
m
o
-
3
-
c
h
l
o
r
o
p
r
o
p
a
n
e
,
1
,
2
-
96
-
1
2
-
8
0.0
3
3
0.
1
3
Ne
m
a
g
o
n
c
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
/
0
7
Dib
r
o
m
o
e
t
h
a
n
e
,
1
,
2
-
10
6
-
9
3
-
4
0.
0
2
0.1
ED
B
,
e
t
h
y
l
e
n
e
d
i
b
r
o
m
i
d
e
y
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
8
/
1
0
Dic
a
m
b
a
19
1
8
-
0
0
-
9
20
0
(L
D
)
1.
0
m
g
/
L
38
m
g
/
L
2,
5
-
D
i
c
h
l
o
r
o
-
6
-
m
e
t
h
o
x
y
b
e
n
z
o
i
c
a
c
i
d
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
3
/
0
9
Dic
h
l
o
r
o
a
c
e
t
i
c
a
c
i
d
(
D
C
A
A
)
79
-
4
3
-
6
0.
6
8
25
DC
A
A
,
D
C
A
y
I
R
I
S
&
R
A
I
S
1
/
0
7
Dic
h
l
o
r
o
b
e
n
z
e
n
e
,
1
,
2
-
(
o
)
95
-
5
0
-
1
47
0
37
0
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
13
0
0
79
(C
h
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
)
n
N
C
/
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Dic
h
l
o
r
o
b
e
n
z
e
n
e
,
1
,
3
-
(
m
)
54
1
-
7
3
-
1
39
0
39
0
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
96
0
(C
h
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
)
n
N
C
/
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Dic
h
l
o
r
o
b
e
n
z
e
n
e
,
1
,
4
-
(
p
)
10
6
-
4
6
-
7
10
0
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
19
0
56
(C
h
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
)
n
N
C
/
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Dic
h
l
o
r
o
b
e
n
z
i
d
i
n
e
,
3
,
3
'
-
91
-
9
4
-
1
0.0
2
1
0.0
2
8
y
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Dic
h
l
o
r
o
b
r
o
m
o
m
e
t
h
a
n
e
75
-
2
7
-
4
0.
5
5
17
Br
o
m
o
d
i
c
h
l
o
r
o
m
e
t
h
a
n
e
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Dic
h
l
o
r
o
e
t
h
a
n
e
,
1
,
1
-
75
-
3
4
-
3
(L
D
)
6
10
0
yHandbook of Environmental Data-Vershueren/RAIS 6/10
Dic
h
l
o
r
o
e
t
h
a
n
e
,
1
,
2
-
10
7
-
0
6
-
2
0.
3
8
37
Eth
y
l
e
n
e
d
i
c
h
l
o
r
i
d
e
y
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
4
/
0
9
Dic
h
l
o
r
o
e
t
h
y
l
e
n
e
,
1
,
1
-
75
-
3
5
-
4
15
0
0
(L
D
)
33
0
7.1
m
g
/
L
1,
1
D
C
E
;
v
i
n
y
l
i
d
e
n
e
c
h
l
o
r
i
d
e
;
1
,
1
-
Dic
h
l
o
r
o
e
t
h
e
n
e
n
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
5
/
1
0
Dic
h
l
o
r
o
e
t
h
y
l
e
n
e
,
1
,
2
-
t
r
a
n
s
-
15
6
-
6
0
-
5
14
0
10
m
g
/
L
tr
a
n
s
-
1
,
2
-
D
C
E
;
t
r
a
n
s
-
a
c
e
t
y
l
e
n
e
dic
h
l
o
r
i
d
e
n
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Dic
h
l
o
r
o
e
t
h
y
l
e
n
e
,
1
,
2
-
c
i
s
-
15
6
-
5
9
-
2
60
72
0
cis
-
1
,
2
-
d
i
c
h
l
o
r
o
e
t
h
e
n
e
n
I
R
I
S
&
E
C
O
T
O
X
&
R
A
I
S
7
/
1
1
Dic
h
l
o
r
o
e
t
h
y
l
e
n
e
,
1
,
2
-
(M
i
x
e
d
I
s
o
m
e
r
s
)
54
0
-
5
9
-
0
29
0
32
0
0
n
E
C
O
T
O
X
&
R
A
I
S
8
/
1
2
Dic
h
l
o
r
o
p
r
o
p
a
n
e
,
1
,
2
-
78
-
8
7
-
5
0.5
15
y
N
R
W
Q
C
0
6
Pa
g
e
4
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
Dic
h
l
o
r
o
p
r
o
p
e
n
e
,
1
,
3
-
54
2
-
7
5
-
6
12
0.
3
1
21
cis
a
n
d
t
r
a
n
s
1
,
3
-
D
i
c
h
l
o
r
o
p
r
o
p
y
l
e
n
e
y
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Dic
h
l
o
r
v
o
s
62
-
7
3
-
7
(L
D
)
0
.
1
2
Br
e
a
k
d
o
w
n
p
r
o
d
u
c
t
o
f
N
a
l
e
d
y
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
/
0
7
Die
l
d
r
i
n
60
-
5
7
-
1
0.0
0
2
0.
0
0
2
0.
0
5
n
g
/
L
0.0
5
n
g
/
L
yNC
Die
t
h
y
l
E
t
h
e
r
60
-
2
9
-
7
13
0
m
g
/
L
6.
8
m
g
/
L
25
0
m
g
/
L
Eth
y
l
E
t
h
e
r
NA
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
/
0
7
Die
t
h
y
l
P
h
t
h
a
l
a
t
e
84
-
6
6
-
2
1.2
m
g
/
L
1
5
m
g
/
L
60
0
DE
P
n
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Dim
e
t
h
o
a
t
e
60
-
5
1
-
5
0.3
1.
6
Cy
g
o
n
:
o
,
o
-
D
i
m
e
t
h
y
l
s
-
(
N
-
m
e
t
h
y
l
)
-
ca
r
b
a
m
o
y
l
m
e
t
h
y
l
d
i
t
h
i
o
p
h
o
s
p
h
a
t
e
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
0
/
1
0
Dim
e
t
h
y
l
b
e
n
z
e
n
e
,
1
,
2
-
95
-
4
7
-
6
se
e
X
y
l
e
n
e
,
o
-
Xy
l
e
n
e
,
o
-
n
Dim
e
t
h
y
l
b
e
n
z
e
n
e
,
1
,
3
-
10
8
-
3
8
-
3
se
e
X
y
l
e
n
e
,
m
-
Xy
l
e
n
e
,
m
-
n
Dim
e
t
h
y
l
b
e
n
z
e
n
e
,
1
,
4
-
10
6
-
4
2
-
3
se
e
X
y
l
e
n
e
,
p
-
Xy
l
e
n
e
,
p
-
n
Dim
e
t
h
y
l
P
h
t
h
a
l
a
t
e
13
1
-
1
1
-
3
3.4
m
g
/
L
2.
9
m
g
/
L
2.8
m
g
/
L
DM
P
;
B
e
n
z
e
n
e
d
i
c
a
r
b
o
x
y
l
i
c
a
c
i
d
;
dim
e
t
h
y
l
e
s
t
e
r
n
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Dim
e
t
h
y
l
f
o
r
m
a
m
i
d
e
68
-
1
2
-
2
(L
D
)
3.
4
m
g
/
L
13
0
m
g
/
L
DM
F
;
D
M
F
A
n
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Di-
n
-
b
u
t
y
l
p
h
t
h
a
l
a
t
e
84
-
7
4
-
2
9.5
4.
5
DB
P
n
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
1,3
-
D
i
n
i
t
r
o
b
e
n
z
e
n
e
99
-
6
5
-
0
(L
D
)
3
.
4
14
0
n
E
C
O
T
O
X
&
R
A
I
S
1
/
0
7
Din
i
t
r
o
t
o
l
u
e
n
e
,
2
,
4
-
12
1
-
1
4
-
2
0.
1
1
3.4
2,
4
-
D
N
T
y
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Din
i
t
r
o
t
o
l
u
e
n
e
,
2
,
6
-
60
6
-
2
0
-
2
0.0
4
8
0.
7
1
2,
6
-
D
N
T
y
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Di-
n
-
o
c
t
y
l
p
h
t
h
a
l
a
t
e
11
7
-
8
4
-
0
90
0
2.5
m
g
/
L
n
R
A
I
S
1
/
0
7
Din
o
s
e
b
88
-
8
5
-
7
3
12
20
65
n
I
R
I
S
/
R
A
I
S
/
E
C
O
T
O
X
6
/
1
2
Dio
x
a
n
e
,
1
,
4
-
12
3
-
9
1
-
1
0.
3
5
80
1,
4
-
d
i
e
t
h
y
l
e
n
e
d
i
o
x
i
d
e
y
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
8
/
1
0
Dio
x
i
n
(
2
,
3
,
7
,
8
-
T
C
D
D
)
17
4
6
-
0
1
-
6
0.
0
0
0
0
0
5
n
g
/
L
0
.
0
0
0
0
0
5
n
g
/
L
2,
3
,
7
,
8
-
T
e
t
r
a
c
h
l
o
r
o
d
i
b
e
n
z
o
-
p
-
d
i
o
x
i
n
y
N
C
Dip
h
e
n
y
l
h
y
d
r
a
z
i
n
e
,
1
,
2
-
12
2
-
6
6
-
7
0.0
3
6
0.2
1,
2
-
D
P
H
y
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Dis
s
o
l
v
e
d
G
a
s
e
s
11
0
%
s
a
t
(
N
)
1
1
0
%
s
a
t
(
N
)
NA
N
C
Dis
s
o
l
v
e
d
O
x
y
g
e
n
no
t
l
e
s
s
t
h
a
n
5
.
0
mg
/
L
(
N
)
no
t
l
e
s
s
t
h
a
n
5
.
0
mg
/
L
(
N
)
no
t
l
e
s
s
t
h
a
n
6
.
0
mg
/
L
(
N
)
no
t
l
e
s
s
t
h
a
n
6
.
0
mg
/
L
(
E
)
(N
)
NA
N
C
En
d
o
s
u
l
f
a
n
11
5
-
2
9
-
7
0.
0
5
0.
0
0
9
Sa
m
e
v
a
l
u
e
s
a
p
p
l
y
t
o
E
n
d
o
s
u
l
f
a
n
Su
l
f
a
t
e
,
a
l
p
h
a
-
E
n
d
o
s
u
l
f
a
n
,
a
n
d
b
e
t
a
-
En
d
o
s
u
l
f
a
n
nNC
En
d
o
t
h
a
l
l
14
5
-
7
3
-
3
3.
9
m
g
/
L
12
m
g
/
L
68
0
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
2
/
0
7
En
d
r
i
n
72
-
2
0
-
8
0.0
0
2
0.
0
0
2
nNC
En
d
r
i
n
A
l
d
e
h
y
d
e
74
2
1
-
9
3
-
4
0.
2
9
0.3
n
N
R
W
Q
C
0
6
/
R
A
I
S
2
/
0
7
Pa
g
e
5
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
En
t
e
r
o
c
o
c
c
u
s
ge
o
m
e
a
n
o
f
3
5
or
g
a
n
i
s
m
s
/
1
0
0
m
L
(a
p
p
l
i
c
a
b
l
e
t
o
c
l
a
s
s
SA
,
S
B
,
a
n
d
S
C
Sa
l
t
w
a
t
e
r
s
)
(
N
)
NA
N
C
EP
T
C
75
9
-
9
4
-
4
58
0
1.7
m
g
/
L
s-
e
t
h
y
l
p
r
o
p
y
l
t
h
i
o
c
a
r
b
a
m
a
t
e
NA
I
R
I
S
&
R
A
I
S
4
/
0
7
Et
h
a
n
o
l
64
-
1
7
-
5
(L
D
)
(L
D
)
Eth
y
l
A
l
c
o
h
o
l
n
E
C
O
T
O
X
/
R
A
I
S
1
2
/
1
0
Et
h
y
l
b
e
n
z
e
n
e
10
0
-
4
1
-
4
97
25
Ph
e
n
y
l
E
t
h
a
n
e
n
E
C
O
T
O
X
&
R
A
I
S
8
/
1
0
Et
h
y
l
E
t
h
e
r
60
-
2
9
-
7
se
e
D
i
e
t
h
y
l
E
t
h
e
r
Se
e
D
i
e
t
h
y
l
E
t
h
e
r
n
Fe
c
a
l
C
o
l
i
f
o
r
m
ge
o
m
e
a
n
o
f
2
0
0
or
g
a
n
i
s
m
s
/
1
0
0
m
L
in
C
l
a
s
s
C
Fr
e
s
h
w
a
t
e
r
s
(
N
)
;
an
d
a
g
e
o
m
e
a
n
o
f
14
o
r
g
a
n
i
s
m
s
/
1
0
0
mL
i
n
c
l
a
s
s
S
A
Sa
l
t
w
a
t
e
r
s
(
N
)
NA
N
C
Flu
o
r
a
n
t
h
e
n
e
20
6
-
4
4
-
0
0.
1
1
0.2
2
1,
2
-
B
e
n
z
a
c
e
n
a
p
h
t
h
e
n
e
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Flu
o
r
e
n
e
86
-
7
3
-
7
30
L
D
LD
11
0
0
53
0
0
n
N
R
W
Q
C
0
6
;
E
C
O
T
O
X
&
R
A
I
S
9
/
1
0
Flu
o
r
i
d
e
1.8
m
g
/
L
(L
D
)
NA
N
C
;
E
C
O
T
O
X
&
K
O
W
W
I
N
3
/
0
8
Flu
r
i
d
o
n
e
59
7
5
6
-
6
0
-
4
90
17
0
Av
a
s
t
,
S
o
n
a
r
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
4
/
0
7
Fo
n
o
f
o
s
94
4
-
2
2
-
9
0.
2
7
17
NA
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
4
/
0
7
Fo
r
m
a
l
d
e
h
y
d
e
50
-
0
0
-
0
1.2
m
g
/
L
62
0
Fo
r
m
a
l
i
n
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
2
/
0
7
Gu
t
h
i
o
n
86
-
5
0
-
0
0.
0
1
0.0
1
NA
N
C
Ha
r
d
n
e
s
s
,
T
o
t
a
l
10
0
m
g
/
L
C
a
l
c
i
u
m
Ca
r
b
o
n
a
t
e
NA
N
C
He
p
t
a
c
h
l
o
r
76
-
4
4
-
8
0.0
0
4
0.
0
0
4
0.
0
8
n
g
/
L
0.0
8
n
g
/
L
yNC
He
p
t
a
c
h
l
o
r
E
p
o
x
i
d
e
10
2
4
-
5
7
-
3
0.0
3
9
n
g
/
L
0.
0
3
9
n
g
/
L
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
He
x
a
c
h
l
o
r
o
b
e
n
z
e
n
e
11
8
-
7
4
-
1
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
0.
2
9
n
g
/
L
(C
h
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
)
y
N
C
/
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
He
x
a
c
h
l
o
r
o
b
u
t
a
d
i
e
n
e
87
-
6
8
-
3
0.
4
4
18
HC
B
D
y
N
C
He
x
a
c
h
l
o
r
o
c
y
c
l
o
h
e
x
a
n
e
T
e
c
h
n
i
c
a
l
60
8
-
7
3
-
1
0.0
0
5
0.0
0
6
HC
H
y
I
R
I
S
/
R
A
I
S
/
E
C
O
T
O
X
6
/
1
2
He
x
a
c
h
l
o
r
o
c
y
c
l
o
-
p
e
n
t
a
d
i
e
n
e
77
-
4
7
-
4
0.
0
7
1
O
r
g
a
n
o
l
e
p
t
i
c
1.1
m
g
/
L
HC
C
P
D
;
P
e
r
c
hl
o
r
o
c
y
c
l
o
p
e
n
t
a
d
i
e
n
e
n
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
He
x
a
c
h
l
o
r
o
e
t
h
a
n
e
67
-
7
2
-
1
1.4
3.3
HC
E
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
He
x
a
h
y
d
r
o
-
1
,
3
,
5
-
T
r
i
n
i
t
r
o
-
1
,
3
,
5
-
T
r
i
a
z
i
n
e
1
2
1
-
8
2
-
4
0.
3
1
11
RD
X
y
R
A
I
S
2
/
0
7
He
x
a
m
i
n
e
10
0
-
9
7
-
0
25
0
0
m
g
/
L
2
5
0
0
m
g
/
L
n
E
C
O
T
O
X
&
E
P
I
W
I
N
2
/
0
7
Pa
g
e
6
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
Hy
d
r
o
g
e
n
s
u
l
f
i
d
e
77
8
3
-
0
6
-
4
0.
2
1
(L
D
)
n ECOTOX & RAIS 2/07
In
d
e
n
o
(
1
,
2
,
3
-
c
d
)
P
y
r
e
n
e
PA
H
19
3
-
3
9
-
5
0.0
0
2
8
T
o
t
a
l
P
A
H
'
s
0
.
0
3
1
1
T
o
t
a
l
P
A
H
'
s
PA
H
y
N
C
Ir
o
n
74
3
9
-
8
9
-
6
1.
0
m
g
/
L
(
A
L
)
n
N
C
/
E
C
O
T
O
X
1
/
0
9
Is
o
p
h
o
r
o
n
e
78
-
5
9
-
1
35
96
0
1,
1
,
3
-
T
r
i
m
e
t
h
y
l
-
3
-
c
y
c
l
o
h
e
x
e
n
e
-
5
-
o
n
e
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Is
o
p
r
o
p
y
l
b
e
n
z
e
n
e
98
-
8
2
-
8
25
0
(L
D
)
2.
7
m
g
/
L
11
m
g
/
L
13
5
Cu
m
e
n
e
;
C
u
m
o
l
;
(
1
-
Me
t
h
y
l
e
t
h
y
l
)
b
e
n
z
e
n
e
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
8
/
1
0
Is
o
p
r
o
p
y
l
E
t
h
e
r
10
8
-
2
0
-
3
(L
D
)
(L
D
)
2,
2
'
-
O
x
y
b
i
s
p
r
o
p
a
n
e
n
E
C
O
T
O
X
&
R
A
I
S
8
/
1
0
Is
o
p
r
o
p
y
l
t
o
l
u
e
n
e
,
p
99
-
8
7
-
6
(L
D
)
(L
D
)
4-
C
y
m
e
n
e
n
E
C
O
T
O
X
&
R
A
I
S
1
/
1
0
Le
a
d
74
3
9
-
9
2
-
1
25
(
N
)
25
(
N
)
nNC
Lin
d
a
n
e
,
g
-
B
H
C
58
-
8
9
-
9
se
e
g
-
B
H
C
(s
e
e
g
-
B
H
C
)
c
Ma
l
a
t
h
i
o
n
12
1
-
7
5
-
5
0.1
0.
1
n
N
R
W
Q
C
0
6
Ma
n
c
o
z
e
b
80
1
8
-
0
1
-
7
(L
D
)
1.
0
m
g
/
L
38
m
g
/
L
Ca
r
b
a
m
i
c
A
c
i
d
;
e
t
h
y
l
e
n
e
-
b
i
s
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Ma
n
g
a
n
e
s
e
74
3
9
-
9
6
-
5
(L
D
)
20
0
n
N
C
/
E
C
O
T
O
X
&
R
A
I
S
1
/
0
9
MB
A
S
5
0
0
(
N
)
Me
t
h
y
l
e
n
e
-
b
l
u
e
-
a
c
t
i
v
e
s
u
b
s
t
a
n
c
e
s
(s
e
e
n
o
t
e
)
NA
N
C
Me
r
c
u
r
y
74
3
9
-
9
7
-
6
0.0
1
2
0.
0
2
5
nNC
Me
t
h
a
n
o
l
67
-
5
6
-
1
17
m
g
/
L
63
0
m
g
/
L
Me
t
h
y
l
A
l
c
o
h
o
l
n
R
A
I
S
1
2
/
0
8
Me
t
h
o
x
y
c
h
l
o
r
72
-
4
3
-
5
0.
0
3
0.0
3
nNC
Me
t
h
y
l
a
c
e
t
a
t
e
79
-
2
0
-
9
19
m
g
/
L
n
E
C
O
T
O
X
&
R
A
I
S
3
/
0
8
Me
t
h
y
l
B
r
o
m
i
d
e
74
-
8
3
-
9
(L
D
)
(L
D
)
47
1.5
m
g
/
L
Br
o
m
o
m
e
t
h
a
n
e
n
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Me
t
h
y
l
C
h
l
o
r
i
d
e
74
-
8
7
-
3
2.6
96
Ch
l
o
r
o
m
e
t
h
a
n
e
n
I
R
I
S
&
R
A
I
S
2
/
0
7
Me
t
h
y
l
m
e
t
h
a
c
r
y
l
a
t
e
80
-
6
2
-
6
96
0
0
n
I
R
I
S
/
R
A
I
S
/
E
C
O
T
O
X
2
/
0
9
Me
t
h
y
l
e
n
e
C
h
l
o
r
i
d
e
75
-
0
9
-
2
4.6
59
0
Dic
h
l
o
r
o
m
e
t
h
a
n
e
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Me
t
h
y
l
n
a
p
h
t
h
a
l
e
n
e
,
1
-
90
-
1
2
-
0
0.8
2.6
y
R
A
I
S
/
E
C
O
T
O
X
4
/
1
0
Me
t
h
y
l
n
a
p
h
t
h
a
l
e
n
e
,
2
-
91
-
5
7
-
6
(L
D
)
50
80
NA
I
R
I
S
/
R
A
I
S
/
E
C
O
T
O
X
1
/
0
8
Me
t
h
y
l
-
2
-
p
e
n
t
a
n
o
n
e
,
4
-
10
8
-
1
0
-
1
26
m
g
/
L
2.
8
m
g
/
L
16
0
m
g
/
L
me
t
h
y
l
i
s
o
b
u
t
y
l
k
e
t
o
n
e
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Me
t
o
l
a
c
h
l
o
r
51
2
1
8
-
4
5
-
2
24
0
(L
D
)
20
0
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
1
0
/
1
0
Me
t
r
i
b
u
z
i
n
21
0
8
7
-
6
4
-
9
(L
D
)
8
4
0
24
mg
/
L
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
2
/
0
7
Mir
e
x
23
8
5
-
8
5
-
5
0.0
0
1
0.
0
0
1
nNC
Mo
l
y
b
d
e
n
u
m
74
3
9
-
9
8
-
7
(L
D
)
1
6
0
2.0
mg
/
L
nECOTOX 6/09 RAIS & IRIS 6/09
MT
B
E
16
3
4
-
0
4
-
4
(L
D
)
(L
D
)
19
15
0
0
Me
t
h
y
l
T
e
r
t
i
a
r
y
-
B
u
t
y
l
E
t
h
e
r
NA
I
R
I
S
&
R
A
I
S
&
E
C
O
T
O
X
1
/
1
0
Na
p
h
t
h
a
l
e
n
e
91
-
2
0
-
3
12
52
Mo
t
h
b
a
l
l
s
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
8
/
1
0
Nic
k
e
l
74
4
0
-
0
2
-
0
88
(
N
)
8.3
(
N
)
25
nNC
Nit
r
a
t
e
(
a
s
N
)
14
7
9
7
-
5
5
-
8
10
.
0
m
g
/
L
To
t
a
l
n
i
t
r
o
g
e
n
m
a
y
b
e
r
e
g
u
l
a
t
e
d
i
n
NS
W
w
a
t
e
r
s
.
S
e
e
2
B
.
0
2
0
0
s
f
o
r
fu
r
t
h
e
r
i
n
f
o
nNC
Nit
r
i
t
e
14
7
9
7
-
6
5
-
0
2.7
2.7
n
I
R
I
S
&
R
A
I
S
1
/
0
7
Pa
g
e
7
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
Nit
r
o
b
e
n
z
e
n
e
98
-
9
5
-
3
17
30
O
r
g
a
n
o
l
e
p
t
i
c
Mir
b
a
n
e
O
i
l
n
N
R
W
Q
C
0
6
&
R
A
I
S
2
/
0
7
Nit
r
o
g
l
y
c
e
r
i
n
55
-
6
3
-
0
2
67
1,
2
,
3
-
P
r
o
p
a
n
e
t
r
i
o
l
t
r
i
n
i
t
r
a
t
e
y
R
A
I
S
2
/
0
7
Nit
r
o
s
a
m
i
n
e
s
~
~
(N
-
n
i
t
r
o
s
o
d
i
e
t
h
y
l
-
a
m
i
n
e
d
a
t
a
u
s
e
d
)
ID
#
N
O
4
2
5
0
0
0
0
(
5
5
-
18
-
5
)
0.8
n
g
/
L
0.
4
6
(s
e
e
n
o
t
e
)
yNRWQC 06/IRIS & RAIS 2/07/EPA 440/5-80-064
Nit
r
o
s
o
d
i
b
u
t
y
l
a
m
i
n
e
,
N
-
92
4
-
1
6
-
3
0.
0
0
6
3
0.
2
2
y
N
R
W
Q
C
0
6
Nit
r
o
s
o
d
i
e
t
h
y
l
-
a
m
i
n
e
,
N
-
55
-
1
8
-
5
0.8
n
g
/
L
0.
4
6
y
N
R
W
Q
C
0
6
/
I
R
I
S
&
R
A
I
S
2
/
0
7
Nit
r
o
s
o
-
d
i
-
n
-
P
r
o
p
y
l
a
m
i
n
e
,
N
-
62
1
-
6
4
-
7
0.0
0
5
0.
5
1
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Nit
r
o
s
o
d
i
m
e
t
h
y
l
-
a
m
i
n
e
,
N
-
62
-
7
5
-
9
0.
6
9
n
g
/
L
3
y
N
R
W
Q
C
0
6
/
I
R
I
S
&
R
A
I
S
2
/
0
7
Nit
r
o
s
o
d
i
p
h
e
n
y
l
a
m
i
n
e
,
N
-
86
-
3
0
-
6
3.3
6
y
N
R
W
Q
C
0
6
/
I
R
I
S
&
R
A
I
S
2
/
0
7
Nit
r
o
s
o
p
y
r
r
o
l
i
d
i
n
e
,
N
-
93
0
-
5
5
-
2
0.0
1
6
34
y
N
R
W
Q
C
0
6
/
R
A
I
S
1
/
0
7
Nit
r
o
t
o
l
u
e
n
e
,
2
-
88
-
7
2
-
2
0.
1
4
1.5
o-
N
i
t
r
o
t
o
l
u
e
n
e
NA
R
A
I
S
2
/
0
7
Nit
r
o
t
o
l
u
e
n
e
,
3
-
99
-
0
8
-
1
(L
D
)
62
0
5.3
m
g
/
L
m-
N
i
t
r
o
t
o
l
u
e
n
e
NA
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Nit
r
o
t
o
l
u
e
n
e
,
4
-
99
-
9
9
-
0
1.8
18
p-
N
i
t
r
o
t
o
l
u
e
n
e
NA
R
A
I
S
2
/
0
7
n-
P
r
o
p
y
l
B
e
n
z
e
n
e
10
3
-
6
5
-
1
(L
D
)
(L
D
)
17
0
0
32
0
0
NA
E
C
O
T
O
X
&
R
A
I
S
1
/
1
0
Oc
t
a
h
y
d
r
o
-
1
,
3
,
5
,
7
-
T
e
t
r
a
n
i
t
r
o
-
1
,
3
,
5
,
7
-
Te
t
r
a
z
o
c
i
n
e
26
9
1
-
4
1
-
0
1.4
m
g
/
L
1.
7
m
g
/
L
63
m
g
/
L
HM
X
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Oil
a
n
d
G
r
e
a
s
e
(
s
e
e
O
G
f
o
o
t
n
o
t
e
)
(N
)
(N
)
NA
N
C
Pa
r
a
t
h
i
o
n
56
-
3
8
-
2
0.0
1
3
0.
1
7
8
nNC
PC
B
,
t
o
t
a
l
0.
0
0
1
(
N
)
0
.
0
0
1
(
N
)
0.0
6
4
n
g
/
L
0.0
6
4
n
g
/
L
(
N
)
po
l
y
c
h
l
o
r
i
n
a
t
e
d
b
i
p
h
e
n
y
l
s
/
(
t
o
t
a
l
o
f
a
l
l
id
e
n
t
i
f
i
e
d
P
C
B
s
)
y
N
C
/
N
R
W
Q
C
0
6
Pe
n
t
a
c
h
l
o
r
o
b
e
n
z
e
n
e
60
8
-
9
3
-
5
0.
5
1
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
1.5
(C
h
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
)
n
N
C
/
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Pe
r
c
h
l
o
r
a
t
e
a
n
d
S
a
l
t
s
14
7
9
7
-
7
3
-
0
2.5
2.8
n
I
R
I
S
&
R
A
I
S
4
/
0
7
pH
6.
0
-
9
.
0
(
N
)
6
.
8
-
8
.
5
(
N
)
(N
)
NA
N
C
Ph
e
n
a
n
t
h
r
e
n
e
85
-
0
1
-
8
0.7
0.
3
n
E
C
O
T
O
X
&
R
A
I
S
4
/
1
0
Ph
e
n
o
l
i
c
C
o
m
p
o
u
n
d
s
30
0
(N
)
30
0
(N
)
(p
h
e
n
o
l
i
c
c
o
m
p
o
u
n
d
s
:
n
o
f
i
s
h
f
l
e
s
h
ta
i
n
t
i
n
g
)
3
0
0
u
g
/
L
u
s
e
d
a
s
a
n
u
m
e
r
i
c
tr
a
n
s
l
a
t
o
r
f
o
r
t
h
i
s
n
a
r
r
a
t
i
v
e
s
t
a
n
d
a
r
d
NA
N
C
Po
l
y
n
u
c
l
e
a
r
a
r
o
m
a
t
i
c
h
y
d
r
o
c
a
r
b
o
n
s
(PA
H
's
)
0.0
0
2
8
T
o
t
a
l
P
A
H
'
s
0
.
0
3
1
1
T
o
t
a
l
P
A
H
'
s
yNC
Pr
o
p
e
n
o
i
c
A
c
i
d
79
-
1
0
-
7
(L
D
)
17
m
g
/
L
63
0
m
g
/
L
Ac
r
y
l
i
c
A
c
i
d
n
E
C
O
T
O
X
&
I
R
I
S
&
R
A
I
S
1
1
/
0
9
Py
r
e
n
e
12
9
-
0
0
-
0
83
0
40
0
0
Be
n
z
o
[
d
e
f
]
p
h
e
n
a
n
t
h
r
e
n
e
/
(
n
o
n
-
ca
r
c
i
n
o
g
e
n
P
A
H
)
n
N
R
W
Q
C
0
6
/
R
A
I
S
2
/
0
7
Py
r
i
d
i
n
e
11
0
-
8
6
-
1
50
0
0
(L
D
)
34
13
0
0
NA
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
8
/
0
7
Ra
d
i
o
a
c
t
i
v
e
S
u
b
s
t
a
n
c
e
s
(N
)
(N
)
(N
)
NA
N
C
Sa
l
i
n
i
t
y
(N
)
NA
N
C
Se
l
e
n
i
u
m
77
8
2
-
4
9
-
2
57
1
nNC
Pa
g
e
8
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
Se
w
a
g
e
(N
)
(N
)
(N
)
NA
N
C
Si
l
v
e
r
74
4
0
-
2
2
-
4
0.
0
6
(
A
L
)
0.
1
(
A
L
)
nNC
Si
l
v
e
x
93
-
7
2
-
1
(L
D
)
1.
5
m
g
/
L
10
2,
4
,
5
-
T
P
;
2
,
4
,
5
-
Tr
i
c
h
l
o
r
o
p
h
e
n
o
x
y
p
r
o
p
i
o
n
o
i
c
A
c
i
d
n
N
C
/
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
So
l
i
d
s
,
s
e
t
t
l
e
a
b
l
e
(N
)
(N
)
als
o
i
n
c
l
u
d
e
s
f
l
o
a
t
i
n
g
s
o
l
i
d
s
a
n
d
slu
d
g
e
d
e
p
o
s
i
t
s
NA
N
C
So
l
i
d
s
,
t
o
t
a
l
d
i
s
s
o
l
v
e
d
50
0
m
g
/
L
NA
N
C
So
l
i
d
s
,
t
o
t
a
l
s
u
s
p
e
n
d
e
d
HQ
W
=
1
0
m
g
/
L
(E
)
20
m
g
/
L
(
E
)
NA
N
C
St
r
o
n
t
i
u
m
74
4
0
-
2
4
-
6
14
m
g
/
L
40
m
g
/
L
n
I
R
I
S
&
R
A
I
S
2
/
0
7
Su
l
f
a
t
e
s
25
0
m
g
/
L
n
N
C
Su
l
f
i
d
e
-
H
y
d
r
o
g
e
n
s
u
l
f
i
d
e
77
8
3
-
0
6
-
4
0.
2
1
2
n NRWQC 06/ECOTOX & RAIS 2/07
Te
m
p
e
r
a
t
u
r
e
(N
)
(N
)
(N
)
NA NC
Te
r
b
a
c
i
l
59
0
2
-
5
1
-
2
43
0
9.1
m
g
/
L
NA IRIS & RAIS 4/07
Te
t
r
a
c
h
l
o
r
o
b
e
n
z
e
n
e
,
1
,
2
,
4
,
5
-
95
-
9
4
-
3
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
1.1
(C
h
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
)
n
N
C
/
N
R
W
Q
C
0
6
/
R
A
I
S
2
/
0
7
Te
t
r
a
c
h
l
o
r
o
e
t
h
a
n
e
,
1
,
1
,
2
,
2
-
79
-
3
4
-
5
0.
1
7
4
ac
e
t
o
s
o
l
;
a
c
e
t
y
l
e
n
e
t
e
t
r
a
c
h
l
o
r
i
d
e
y
N
C
Te
t
r
a
c
h
l
o
r
o
e
t
h
y
l
e
n
e
(
P
E
R
C
)
12
7
-
1
8
-
4
0.7
3.3
PE
R
C
;
P
C
E
;
p
e
r
c
h
l
o
r
o
e
t
h
y
l
e
n
e
y
N
C
Th
a
l
l
i
u
m
74
4
0
-
2
8
-
0
0.
2
4
0.
4
7
n
N
R
W
Q
C
0
6
/
I
R
I
S
&
R
A
I
S
2
/
0
7
Tin
74
4
0
-
3
1
-
5
77
0
80
0
NA
E
C
O
T
O
X
/
R
A
I
S
8
/
0
7
To
l
u
e
n
e
10
8
-
8
8
-
3
11
37
0
0.
3
6
me
t
h
y
l
b
e
n
z
e
n
e
;
p
h
e
n
y
l
m
e
t
h
a
n
e
n
N
C
/
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
To
x
a
p
h
e
n
e
80
0
1
-
3
5
-
2
0.
2
n
g
/
L
0.2
n
g
/
L
yNC
2,4
,
5
-
T
93
-
7
6
-
5
1.
4
m
g
/
L
68
2.5
m
g
/
L
2,
4
,
5
-
T
r
i
c
h
l
o
r
o
p
h
e
n
o
x
y
a
c
e
t
i
c
A
c
i
d
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Tr
i
a
l
k
y
l
t
i
n
0.
0
7
0
.
0
0
7
nNC
Tr
i
b
u
t
y
l
t
i
n
(
T
B
T
)
56
5
7
3
-
8
5
-
4
0.
0
7
0.
0
0
7
nNC
Tr
i
c
h
l
o
r
o
b
e
n
z
e
n
e
,
1
,
2
,
4
-
12
0
-
8
2
-
1
61
27
48
8
T
o
t
a
l
C
h
l
o
r
i
n
a
t
e
d
Be
n
z
e
n
e
s
70
(C
h
l
o
r
i
n
a
t
e
d
B
e
n
z
e
n
e
)
n
N
C
/
N
R
W
Q
C
0
6
/
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Tr
i
c
h
l
o
r
o
e
t
h
a
n
e
,
1
,
1
,
1
-
71
-
5
5
-
6
25
0
0
LD
Eth
a
n
e
t
r
i
c
h
l
o
r
i
d
e
;
v
i
n
y
l
t
r
i
c
h
l
o
r
i
d
e
n
I
R
I
S
&
R
A
I
S
4
/
0
9
Tr
i
c
h
l
o
r
o
e
t
h
a
n
e
,
1
,
1
,
2
79
-
0
0
-
5
0.
5
9
16
y
N
R
W
Q
C
0
6
/
R
A
I
S
2
/
0
7
Tr
i
c
h
l
o
r
o
e
t
h
y
l
e
n
e
79
-
0
1
-
6
2.5
30
TC
E
y
N
C
Tr
i
c
h
l
o
r
o
f
l
u
o
r
o
m
e
t
h
a
n
e
75
-
6
9
-
4
9.
1
m
g
/
L
67
m
g
/
L
Fr
e
o
n
1
1
;
F
r
i
g
e
n
1
1
;
A
r
c
t
o
n
1
1
n
I
R
I
S
&
R
A
I
S
2
/
0
7
1,1
,
2
-
t
r
i
c
h
l
o
r
o
1
,
2
,
2
-
t
r
i
f
l
u
o
r
o
e
t
h
a
n
e
76
-
1
3
-
1
71
0
m
g
/
L
22
0
0
m
g
/
L
Fr
e
o
n
1
1
3
n
I
R
I
S
&
R
A
I
S
1
/
0
7
Pa
g
e
9
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
Tr
i
c
h
l
o
r
o
p
r
o
p
a
n
e
,
1
,
2
,
3
-
96
-
1
8
-
4
0.0
0
1
0.
0
1
1,
2
,
3
-
T
C
P
c
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
6
/
1
2
Tr
i
m
e
t
h
y
l
b
e
n
z
e
n
e
,
1
,
2
,
4
-
95
-
6
3
-
6
(L
D
)
(L
D
)
n
E
C
O
T
O
X
&
R
A
I
S
8
/
1
0
Tr
i
m
e
t
h
y
l
b
e
n
z
e
n
e
,
1
,
3
,
5
-
-
10
8
-
6
7
-
8
(L
D
)
(L
D
)
13
0
21
5
Me
s
i
t
y
l
e
n
e
n
E
C
O
T
O
X
&
R
A
I
S
8
/
1
0
Tr
i
n
i
t
r
o
b
e
n
z
e
n
e
,
1
,
3
,
5
-
99
-
3
5
-
4
(L
D
)
1.
0
m
g
/
L
75
m
g
/
L
TN
B
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Tr
i
n
i
t
r
o
p
h
e
n
y
l
m
e
t
h
y
l
n
i
t
r
a
m
i
n
e
47
9
-
4
5
-
8
14
0
4.3
m
g
/
L
Me
t
h
y
l
-
2
,
4
,
6
-
t
r
i
n
i
t
r
o
p
h
e
n
y
l
n
i
t
r
a
m
i
n
e
(T
e
t
r
y
l
)
n
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Tr
i
n
i
t
r
o
t
o
l
u
e
n
e
,
2
,
4
,
6
-
11
8
-
9
6
-
7
1.1
39
TN
T
y
E
C
O
T
O
X
&
R
A
I
S
2
/
0
7
Tu
r
b
i
d
i
t
y
50
/
2
5
N
T
U
(
N
)
2
5
N
T
U
(
N
)
1
0
N
T
U
(
N
)
NA
N
C
Vi
n
y
l
C
h
l
o
r
i
d
e
75
-
0
1
-
4
0.0
2
5
2.4
ch
l
o
r
o
e
t
h
y
l
e
n
e
y
N
C
Xy
l
e
n
e
s
,
m
i
x
t
u
r
e
13
3
0
-
2
0
-
7
67
0
(L
D
)
45
0
NA
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
6
/
1
2
Xy
l
e
n
e
,
m
-
10
8
-
3
8
-
3
(L
D
)
(L
D
)
42
0
Dim
e
t
h
y
l
b
e
n
z
e
n
e
,
1
,
3
-
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
6
/
1
2
Xy
l
e
n
e
,
p
-
10
6
-
4
2
-
3
(L
D
)
(L
D
)
13
0
Dim
e
t
h
y
l
b
e
n
z
e
n
e
,
1
,
4
-
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
6
/
1
2
Xy
l
e
n
e
,
o
-
95
-
4
7
-
6
60
0
(L
D
)
40
0
Dim
e
t
h
y
l
b
e
n
z
e
n
e
,
1
,
2
-
n
E
C
O
T
O
X
/
I
R
I
S
/
R
A
I
S
6
/
1
2
Zin
c
74
4
0
-
6
6
-
6
50
(
A
L
)
86
(
A
L
)
nNC
Re
f
e
r
e
n
c
e
s
,
C
o
d
e
s
,
A
n
d
A
d
d
i
t
i
o
n
a
l
I
n
f
o
r
m
a
t
i
o
n
*T
o
d
e
t
e
r
m
i
n
e
t
h
e
a
p
p
r
o
p
r
i
a
t
e
s
t
a
n
d
a
r
d
,
u
s
e
t
h
e
m
o
s
t
s
t
r
i
n
g
e
n
t
o
f
a
l
l
a
p
p
l
i
c
a
b
l
e
c
o
l
u
m
n
s
.
F
o
r
C
l
a
s
s
C
o
r
S
C
,
u
s
e
t
h
e
m
o
s
t
s
t
r
i
n
g
e
n
t
o
f
f
r
e
s
h
w
a
t
e
r
(
o
r
,
i
f
a
p
p
l
i
c
a
b
l
e
,
s
a
l
t
w
a
t
e
r
)
c
o
l
u
m
n
a
n
d
t
h
e
H
u
m
a
n
H
e
a
l
t
h
c
o
l
u
m
n
.
Fo
r
a
W
S
w
a
t
e
r
,
u
s
e
t
h
e
m
o
s
t
s
t
r
i
n
g
e
n
t
o
f
F
r
e
s
h
w
a
t
e
r
,
W
S
&
H
u
m
a
n
H
e
a
l
t
h
.
T
r
o
u
t
W
a
t
e
r
s
&
H
i
g
h
Q
u
a
l
i
t
y
W
a
t
e
r
s
l
i
k
e
w
i
s
e
m
u
s
t
a
d
h
e
r
e t
o
t
h
e
m
o
s
t
s
t
r
i
n
g
e
n
t
o
f
a
l
l
a
p
p
l
i
c
a
b
l
e
s
t
a
n
d
a
r
d
s
*
A
l
l
m
e
t
a
l
c
r
i
t
e
r
i
a
a
r
e
a
s
t
o
t
a
l
r
e
c
o
v
e
r
a
b
l
e
m
e
t
a
l
s
.
*
V
a
l
u
e
s
i
n
r
e
d
f
o
n
t
a
r
e
1
5
A
N
C
A
C
2
B
s
t
a
n
d
a
r
d
s
Un
i
t
C
o
n
v
e
r
s
i
o
n
s
:
1
.
0
m
g
/
L
=
1
0
0
0
.
0
u
g
/
L
=
1
0
0
0
0
0
0
.
0
n
g
/
L
1
.
0
n
g
/
L
=
0
.
0
0
1
u
g
/
L
=
0
.
0
0
0
0
0
1
m
g
/
L
(A
L
)
A
c
t
i
o
n
L
e
v
e
l
S
t
a
n
d
a
r
d
-
S
e
e
2
B
.
0
2
1
1
f
o
r
a
d
d
i
t
i
o
n
a
l
i
n
f
o
r
m
a
t
i
o
n
(
N
)
=
N
a
r
r
a
t
i
v
e
s
t
a
n
d
a
r
d
S
e
e
2
B
.
0
2
1
1
a
n
d
f
o
r
W
S
:
.
0
2
1
2
,
0
2
1
4
,
.
0
2
1
5
,
.
0
2
1
6
a
n
d
.
0
2
1
8
(W
S
)
W
a
t
e
r
s
u
p
p
l
y
s
t
a
n
d
a
r
d
s
b
a
s
e
d
o
n
c
o
n
s
u
m
p
t
i
o
n
o
f
w
a
t
e
r
a
n
d
f
i
s
h
-
s
e
e
2
B
.
0
2
0
8
(E
)
F
o
r
e
f
f
l
u
e
n
t
l
i
m
i
t
s
o
n
l
y
.
S
e
e
2
B
.
0
2
2
4
(N
T
U
)
N
e
p
h
e
l
o
m
e
t
r
i
c
T
u
r
b
i
d
i
t
y
U
n
i
t
s
-
W
S
s
t
a
n
d
a
r
d
s
a
r
e
a
p
p
l
i
c
a
b
l
e
t
o
all
Wa
t
e
r
S
u
p
p
l
y
C
l
a
s
s
i
f
i
c
a
t
i
o
n
s
.
(H
H
)
S
t
a
n
d
a
r
d
s
b
a
s
e
d
o
n
c
o
n
s
u
m
p
t
i
o
n
o
f
f
i
s
h
o
n
l
y
-
s
e
e
2
B
.
0
2
0
8
S =
T
o
x
i
c
i
t
y
e
x
c
e
e
d
s
s
o
l
u
b
i
l
i
t
y
,
n
o
v
i
s
i
b
l
e
s
h
e
e
n
o
r
f
r
e
e
p
r
o
d
u
ct
i
n
w
a
t
e
r
o
r
o
n
s
e
d
i
m
e
n
t
o
r
s
h
o
r
e
l
i
n
e
p
e
r
2
B
.
0
2
1
1
&
.
0
2
2
0
(H
Q
W
)
H
i
g
h
Q
u
a
l
i
t
y
W
a
t
e
r
s
-
s
e
e
0
2
B
.
0
1
0
1
a
n
d
.
0
2
0
1
(S
w
)
S
w
a
m
p
W
a
t
e
r
s
-
a
s
d
e
f
i
n
e
d
b
y
0
2
B
.
0
1
0
1
(L
D
)
L
i
m
i
t
e
d
d
a
t
a
a
v
a
i
l
a
b
l
e
,
c
a
l
l
f
o
r
i
n
f
o
(T
r
)
T
r
o
u
t
W
a
t
e
r
s
-
a
s
d
e
f
i
n
e
d
b
y
0
2
B
.
0
1
0
1
a
n
d
0
3
0
1
DH
H
S
:
T
P-
S
M
:
D
e
p
t
.
o
f
H
e
a
l
t
h
a
n
d
H
u
m
a
n
S
e
r
v
i
c
e
s
.
2
0
0
3
T
o
x
i
c
o
l
o
g
i
c
a
l
P
r
o
f
i
l
e
f
o
r
S
u
l
f
u
r
M
u
s
t
a
r
d
(
U
p
d
a
t
e
)
EC
O
T
O
X
=
U
S
E
P
A
E
C
O
T
O
X
i
c
o
l
o
g
y
D
a
t
a
b
a
s
e
S
y
s
t
e
m
EP
A
2
0
0
3
D
r
a
f
t
A
t
r
a
z
i
n
e
:
2
0
0
3
A
m
b
i
e
n
t
A
q
u
a
t
i
c
L
i
f
e
W
Q
C
r
i
t
e
r
i
a
f
o
r
A
t
r
a
z
i
n
e
-
R
e
v
i
s
e
d
D
r
a
ft;
EP
A
-
8
2
2
-
R
-
0
3
-
0
2
3
EP
A
4
4
0
/
5
-
8
0
-
0
6
4
:
A
m
b
i
e
n
t
W
a
t
e
r
Q
u
a
l
i
t
y
C
r
i
t
e
r
i
a
f
o
r
N
i
t
r
o
a
m
i
n
e
s
;
p
g
.
C
-
6
6
EP
I
W
I
N
=
E
P
A
'
s
E
s
t
i
m
a
t
i
o
n
P
r
o
g
r
a
m
I
n
t
e
r
f
a
c
e
f
o
r
W
i
n
d
o
w
s
d
a
t
a
b
a
s
e
HH
W
S
S
A
:
H
e
r
b
i
c
i
d
e
H
a
n
d
b
o
o
k
o
f
t
h
e
W
e
e
d
S
c
i
e
n
c
e
S
o
c
i
e
t
y
o
f
A
m
e
r
i
c
a
.
1
9
8
9
.
S
i
x
t
h
e
d
i
t
i
o
n
.
IR
I
S
=
E
P
A
'
s
I
n
t
e
g
r
a
t
e
d
R
i
s
k
I
n
f
o
r
m
a
t
i
o
n
S
y
s
t
e
m
MA
D
E
P
t
o
x
s
t
u
d
i
e
s
:
T
o
t
a
l
P
e
t
r
o
l
e
u
m
H
y
d
r
o
c
a
r
b
o
n
C
r
i
t
e
r
i
a
W
o
r
k
i
n
g
G
r
o
u
p
o
f
t
h
e
M
a
s
s
a
c
h
u
s
e
t
t
s
D
e
p
a
r
t
m
e
n
t
o
f
E
n
v
i
r
o
n
m
e
n
t
a
l
P
r
o
t
e
c
t
io
n
5
/
2
0
0
2
.
MB
A
S
:
a
d
d
i
t
i
o
n
a
l
n
a
r
r
a
t
i
v
e
l
a
n
g
u
a
g
e
i
s
l
o
c
a
t
e
d
i
n
0
2
B
.
0
2
1
2
,
.
0
2
1
4
,
.
0
2
1
5
,
.
0
2
1
6
,
.
0
2
1
8
~~
N
-
n
i
t
r
o
s
o
d
i
e
t
h
y
l
a
m
i
n
e
(
C
A
S
#
5
5
-
1
8
-
5
)
t
o
x
i
c
o
l
o
g
i
c
a
l
d
a
t
a
u
s
e
d
t
o
c
a
l
c
u
l
a
t
e
s
t
a
n
d
a
r
d
s
(
s
e
e
E
P
A
N
R
W
Q
C
:
2
0
0
2
HH
C
M
)
.
C
r
i
t
e
r
i
a
a
p
p
l
i
e
s
t
o
N
-
n
i
t
r
o
s
o
d
i
e
t
h
y
l
a
m
i
n
e
a
n
d
o
t
h
e
r
n
i
t
r
o
s
a
m
i
n
e
s
(
e
x
c
e
p
t
i
o
n
:
N
-
n
i
t
r
o
s
o
d
i
m
e
t
h
y
l
a
m
i
n
e
,
N
-
n
i
t
r
o
s
o
d
i
b
u
t
y
l
a
m
i
n
e
,
N
-
n
i
t
r
o
s
o
p
y
r
r
o
l
i
d
i
n
e
,
N
-
n
i
t
r
o
s
o
d
i
p
h
e
n
y
l
a
m
i
n
e
,
a
n
d
N
-
n
i
t
r
o
s
o
d
i
-
n
-
p
r
o
p
y
l
a
m
i
n
e
)
NC
=
N
o
r
t
h
C
a
r
o
l
i
n
a
1
5
A
N
C
A
C
2
B
s
t
a
n
d
a
r
d
(
R
e
d
B
o
o
k
s
t
a
n
d
a
r
d
s
a
r
e
b
o
l
d
e
d
i
n
re
d
f
o
n
t
)
NR
W
Q
C
=
E
P
A
'
s
N
a
t
i
o
n
a
l
R
e
c
o
m
m
e
n
d
e
d
W
a
t
e
r
Q
u
a
l
i
t
y
C
r
i
t
e
r
i
a
(
h
t
t
p
:
/
/
w
a
t
e
r
.
e
p
a
.
g
o
v
/
s
c
i
t
e
c
h
/
s
w
g
u
i
d
a
n
c
e
/
s
t
a
n
d
a
r
d
s
/
c
r
i
t
e
r
i
a
/
c
u
r
r
e
n
t
/
i
nd
e
x
.
c
f
m
)
;
1
1
/
0
2
H
u
m
a
n
H
e
a
l
t
h
C
a
l
c
u
l
a
t
i
o
n
M
a
t
r
i
x
Pa
g
e
1
0
o
f
1
1
Th
e
f
o
l
l
o
w
i
n
g
s
t
a
n
d
a
r
d
s
,
c
r
i
t
e
r
i
a
,
o
r
t
o
x
i
c
c
o
n
c
e
n
t
r
a
t
i
o
n
s
a
r
e
e
i
t
h
e
r
a
d
o
p
t
e
d
p
e
r
1
5
A
N
C
A
C
2
B
o
r
a
r
e
N
a
t
i
o
n
a
l
C
r
i
t
e
r
i
a
p
e
r
E
P
A
.
S
e
e
l
a
s
t
p
a
g
e
f
o
r
a
p
p
r
o
p
r
i
a
t
e
u
s
e
i
n
f
o
r
m
a
t
i
o
n
.
Current as of 5/15/2013
Po
l
l
u
t
a
n
t
C
A
S
#
Fr
e
s
h
w
a
t
e
r
Aq
u
a
t
i
c
L
i
f
e
Sa
l
t
w
a
t
e
r
A
q
u
a
t
i
c
Li
f
e
Wa
t
e
r
S
u
p
p
l
y
(
W
S
)
Hu
m
a
n
H
e
a
l
t
h
(H
H
)
Tr
o
u
t
W
a
t
e
r
s
(T
r
)
Hi
g
h
Q
u
a
l
i
t
y
Wa
t
e
r
s
(
H
Q
W
)
Sw
a
m
p
Wa
t
e
r
s
(S
w
)
Sy
n
o
n
y
m
s
&
O
t
h
e
r
I
n
f
o
CarcinogenData Reference Source(s)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
u
g
/
l
(
u
n
l
e
s
s
n
o
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
ug
/
l
(
u
n
l
e
s
s
no
t
e
d
)
(O
G
)
=
t
a
k
e
t
h
e
l
o
w
e
s
t
L
C
5
0
a
v
a
i
l
a
b
l
e
f
o
r
t
h
e
p
a
r
t
i
c
u
l
a
r
t
y
p
e
o
f
O
G
y
o
u
h
a
v
e
(
o
r
s
i
m
i
l
a
r
O
G
)
a
n
d
m
u
l
t
i
p
l
y
i
t
b
y
a
s
a
f
e
t
y
f
a
c
t
o
r
of
0
.
0
1
t
o
o
b
t
a
i
n
t
h
e
c
r
i
t
e
r
i
a
PA
H
=
A
p
p
l
i
e
s
t
o
t
o
t
a
l
P
A
H
s
p
r
e
s
e
n
t
a
n
d
i
n
c
l
u
d
e
s
t
h
e
f
o
l
l
o
w
i
n
g
:
b
e
n
z
o
(
a
)
a
n
t
h
r
a
c
e
n
e
,
b
e
n
z
o
(
a
)
p
y
r
e
n
e
,
b
e
n
z
o
(
b
)
f
l
u
o
r
a
n
t
h
e
n
e
,
b
e
n
z
o
(
k
)f
l
u
o
r
a
n
t
h
e
n
e
,
c
h
r
y
s
e
n
e
,
d
i
b
e
n
z
(
a
,
h
)
a
n
t
h
r
a
c
e
n
e
a
n
d
i
n
d
e
n
o
(
1
,
2
,
3
-
c
d
)
p
y
r
e
n
e
PA
N
:
P
e
s
t
i
c
i
d
e
D
a
t
a
b
a
s
e
.
h
t
t
p
:
/
/
w
w
w
.
pe
s
t
i
c
i
d
e
i
n
f
o.
o
r
g
/
I
n
d
e
x
.
h
t
m
l
RA
I
S
=
R
i
s
k
A
s
s
e
s
s
m
e
n
t
I
n
f
o
r
m
a
t
i
o
n
S
y
s
t
e
m
;
T
o
x
i
c
i
t
y
&
C
h
e
m
i
c
a
l
S
p
e
c
i
f
i
c
F
a
c
t
o
r
s
d
a
t
a
b
a
s
e
Se
P
R
O
C
o
r
p
.
M
S
D
S
f
o
r
9
,
1
0
-
A
n
t
h
r
a
q
u
i
n
o
n
e
Ve
r
s
c
h
u
e
r
e
n
=
H
a
n
d
b
o
o
k
o
f
E
n
v
i
r
o
n
m
e
n
t
a
l
D
a
t
a
o
n
C
h
e
m
i
c
a
l
s
,
2
n
d
E
d
i
t
i
o
n
;
K
a
r
e
l
V
e
r
s
c
h
u
e
r
e
n
Ca
r
c
i
n
o
g
e
n
i
c
i
t
y
C
o
l
o
r
K
e
y
:
Kn
o
w
n
t
o
c
a
u
s
e
c
a
n
c
e
r
i
n
h
u
m
a
n
s
(
y
)
Blu
e
No
t
k
n
o
w
n
t
o
c
a
u
s
e
c
a
n
c
e
r
i
n
h
u
m
a
n
s
(n
)
Gr
e
e
n
Ca
r
c
i
n
o
g
e
n
i
c
i
t
y
n
o
t
a
s
s
e
s
s
e
d
o
r
d
o
e
s
no
t
a
p
p
l
y
(
N
A
)
No
C
o
l
o
r
Pa
g
e
1
1
o
f
1
1