Loading...
HomeMy WebLinkAboutMO-88960_97199_CA_IAR_20231207_James River Petroleum P.O. Box 16265 • Greensboro, NC 27416 503 Industrial Ave • Greensboro, NC 27406 Phone (336)335-3174 • Fax (336)691-0648 • Toll Free (866)545-9507 Email: Info@pyramidenvironmental.com www.pyramidenvironmental.com November 29, 2023      Mr. Ryan Mills   NCDEQ – Mooresville Regional Office   810 East Center Avenue, Suite 101  Mooresville, NC  28115  Sent E‐mail to : Ryan.Mills@deq.nc.gov     Copy E‐mail to : rusty.waddell@usecology.com   Copy E‐mail to : rherrygers@windstream.net    RE:  Diesel Spill Cleanup Report   James River Petroleum : 550 Patterson Farm Road, Mooresville, Iredell County, NC    Spill Location:  N. Lat.  35.523750° / W. Long.  ‐ 80.74478°   Responsible Party: James River Petroleum         10487  Lakeridge Parkway #8115         Ashland, VA 23005         (704)960 ‐9462   Pyramid Project #2023‐291  NCDEQ Incident # Pending      Mr. Mills,   As requested by US Ecology, Pyramid Environmental and Engineering, P.C., (Pyramid)  completed the environmental services for the James River Petroleum (JRP) diesel fuel spill at  the reference location. The diesel fuel spill occurred at a rural fuel tank operated by Prime Fuels  located at 550 Patterson Farm Road in Mooresville, Iredell County, North Carolina.  The diesel  fuel spill occurred when the JRP driver was filling the 2,000‐gallon aboveground storage tank.    The services Pyramid provided for this spill cleanup were; preparation for spill response,  supervision of the soil excavation process, field screening of contaminated soil as they were  removed, soil sampling and documentation of the diesel spill, preparation of the UST‐62 release  report, as the excavation proceeded over multiple days we collected and analyzed disposal  samples within the contaminated area, collected post‐excavation soil samples which were  analyzed using an on‐site laboratory, analytical data evaluation, total tonnage calculations for  diesel contaminated soil removed, and prepared this NCDEQ spill cleanup report.     US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 2  Pyramid Environmental Project # 2023‐291   November 28, 2023  1.0 Diesel Fuel Spill  On September 21, 2023, a James River Petroleum delivery truck was filling a 2,000‐gallon  aboveground storage tank (AST) at the Prime Fuels location at 550 Patterson Farm Road near  the intersection of Rustic Road, in Mooresville, North Carolina.    While JRP was filling the AST, a fuel spill occurred that resulted in more than 400 gallons of  diesel fuel being spilled on the area surrounding the AST.   The  diesel fuel soaked into the  ground on site, crossed the property line and migrated onto the property to the south of the  AST Location, and also migrated down a ditch approximately 180 feet east of the AST location.   The spill followed the slope of the land which sloped downward to the east.    The diesel spill was reported to the NCDEQ on September 21, 2023, by the neighboring  property owner south of the spill location who reportedly witnessed the fuel spill.   US Ecology  was contacted on September 21, 2023 and responded immediately to provide emergency  cleanup response for the diesel spill. US Ecology arrived on site on September 21, 2023,   assessed the site conditions, covered the impacted area with granular adsorbent materials, and  covered the area of the fuel spill with plastic.  The location of the spill is shown on the enclosed  figures included in Attachment A.    On September 26, 2023, US Ecology contacted Pyramid Environmental & Engineering, P.C.  (Pyramid) to provide environmental services including soil screening, soil sampling, laboratory  analyses of soil, post‐excavation soil samples, and spill cleanup reporting. Plans were made to  start the diesel spill cleanup on Monday October 2, 2023.   As coordinated with US Ecology, Danny Oldham of Pyramid arrived on site at approximately  9:00 am on Monday October 2, 2023 to begin the work.  US Ecology provided the excavation  equipment to remove the diesel contaminated soil and roll‐off containers and dump trucks to  transport the diesel contaminated soil to an approved soil treatment and disposal facility.     Pyramid arranged with RedLab to provide on‐site and off‐site Ultraviolet Fluorescence (UVF)  analytical laboratory services for the soil analyses needed for the spill cleanup. The UVF method  is approved by the North Carolina Department of Environmental Quality (NCDEQ) and the on‐ site services allowed real‐time soil analyses within 20 minutes of sample collection to assist in  defining the spill cleanup boundaries and depth.      2.0 Spill Cleanup, Excavation, & Sampling  The spill cleanup activities were completed from October 2, 2023 through October 16, 2023.    Planning and coordinated of the excavation, transport, and disposal of the petroleum  contaminated soils (Diesel Fuel) was completed by US Ecology.  The diesel contaminated soil in  US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 3  Pyramid Environmental Project # 2023‐291   November 28, 2023  the spill area was excavated, loaded, and transported to the Waste Management Solutions  Great Oak Landfill facility in Randleman, NC.   Selected photos were taken during the spill  cleanup activities and are included in Attachment B.   The  following general tasks were  completed during the spill cleanup response :    Prior to start of work, a utility locate ticket was called in by US Ecology for the site.               No subsurface utilities were found in the spill / excavation area.    Pyramid collected soil samples for field screening using a calibrated Photoionization  Detector (PID) as the excavation proceeded. The field screening was used to guide the  excavation width, length, and depth.  Pyramid’s  standard procedures are presented in  Attachment C.     Soil Screening was supported with On‐Site Laboratory Services from RedLabs, to provide    final soil analytical data for disposal samples and for post‐excavation soil samples.  Analyses were performed by RedLab analytical services, both at the site and at the main  laboratory located in Wilmington, North Carolina. The analytical method is Ultraviolet  Fluorescence (UVF) to analyze soil samples for gasoline and diesel compounds to  quantify the Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) for the  site.  The analyses were mostly performed at the site to help with excavation boundary  assessment and the on‐site results were reported within 20 to 30 minutes of collection.      Matters related to the fence removal and replacement, and other property owner issues  were handled by James River Petroleum and US Ecology.     The amount of diesel fuel spilled was reported as greater than 400 gallons of diesel fuel.  The quantity involved must have been more than 400 gallons due to the widespread  nature of the diesel fuel spill and the depth to which the contamination migrated.      The diesel contaminated soil was profiled by US Ecology before soil was transported,  weighed, and disposed at the Waste Management Solutions Great Oak Landfill in  Randleman, NC.  Each load was weighed at the landfill prior to disposal and the weight  tickets and loads are summarized in this report.      Once the work was completed, the areas were backfilled with soil from a local quarry,  and compacted by US Ecology.     US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 4  Pyramid Environmental Project # 2023‐291   November 28, 2023  The following paragraphs outline the daily work tasks completed for each day of work at the  spill cleanup site. The work included weekdays from October 2, 2023 through October 16, 2023.    Day 1 :    Monday  10/02/2023             On Monday, October 2, 2023, Pyramid and US Ecology mobilized to the site to begin  excavating the diesel contaminated soils. The AST was carefully moved to the side and  surface excavation of the visibly diesel‐stained gravel and soil was completed and  loaded into roll‐off containers. A large area surrounding the AST was wet with diesel fuel  and the spill had migrated off‐site on the property to the south. The visibly diesel  stained area extended past the fence on the dirt road, and also travelled 180 feet down  the ditch along the northern side of the dirt road. Pyramid personnel guided the  excavation process using a calibrated PID and started by establishing the extent of the  diesel‐contaminated spill area on the surface.    Soil screening on the first day indicated that the diesel fuel had soaked into the soil and  PID readings were between 400 and 1,000 parts per million (ppm) which showed diesel  had soaked to > 6 feet near the AST. Pyramid reviewed the results of the PID soil  screening and called to see if the mobile lab (RedLab) was available to come to the site  on Tuesday to analyze soil samples quickly and help determine the limits of the spill.   The Mobile Lab was available and Pyramid contacted US Ecology for approval before  coordinating the mobile lab to be at the site on October 3, 2023.  The soil samples  Pyramid had collected on Monday October 2, were preserved in methanol and placed in  a cooler on ice. The soil samples were analyzed for GRO and DRO by the mobile  laboratory when the mobile lab arrived the next day.       Day 2 :   Tuesday   10/03/2023      On‐Site Lab  On Tuesday, October 3, 2023, Pyramid and US Ecology mobilized to the site to continue  excavating the diesel contaminated soils. Pyramid personnel guided the excavation  process using a calibrated PID and began by further defining the extent of the diesel‐ contaminated area. Pyramid coordinated with RedLab to provide on‐site mobile  laboratory services for immediate soil sample analyses. Samples collected were  analyzed in the mobile lab at the spill cleanup site to streamline the process and ensure  effective removal of contaminated soils. Soil PID readings in the AST area were > 500  ppm which indicated they were contaminated. A total of 24 samples were analyzed on  10/3/2023.   Soil samples PFS‐1, 2, 3, and 4 were collected from the limits of the initial excavation  surrounding the storage tank at a depth of seven (7) feet each. In addition, soil samples  PSFS‐5, 6, 7, 8, 9, 10, 11, 12, and 13 were collected at a depth of 1 to 1.5 feet, and  located just outside the limits of the diesel spill along the ditch east of the AST location.  US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 5  Pyramid Environmental Project # 2023‐291   November 28, 2023  These soil samples were analyzed by the Mobile Lab to establish the perimeter of the  spill. The names and locations of soil samples are shown in Figure 3 in Attachment A.   The post excavation soil samples detected DRO concentrations below the NCDEQ Action  Level for DRO of 100 mg/kg. DRO concentrations ranged from < 0.16 mg/kg to 8.3  mg/kg, which is below the NCDEQ Action Level of 100 mg/kg.    Post Excavation soil samples showed GRO concentrations for the soil samples ranged  from < 0.16 mg/kg to 2.1 mg/kg, which is below the NCDEQ Action Level for GRO of 50  mg/kg.  A copy of the 10‐03‐2023 laboratory report is included in Attachment D and the  analytical results are summarized in Table 1. Following the final soil sample collection,  US Ecology covered the excavation area with a tarp prior to leaving the site for the day.      Day 3 :   Wednesday   10/04/2023  Pyramid called US Ecology early and the decision was that Pyramid was not needed on  Wednesday for the work that US Ecology was completing on 10‐04‐2023.    Day 4 :    Thursday   10/05/2023   Pyramid called US Ecology and was not needed for Thursday 10‐05‐2023.   Plans were made for additional soil excavation and on‐site lab analyses for Friday.    Day 5 :    Friday    10/06/2023       On‐Site Lab  On Friday, October 6, 2023, Pyramid and US Ecology returned to the site to continue the  excavation in the main AST spill cleanup area.  Soil samples were screened with the PID  and analyzed using the on‐site mobile laboratory (RedLab) who provided results for  disposal and final post‐excavation samples at the limits of the excavation.  The mobile  lab results provided multiple confirmation soil results that demonstrated diesel fuel  contamination in the soil volume removed. RedLab provided the on‐site mobile  laboratory and analyzed a total of 21 soil samples at the site.     As the main excavation continued, Pyramid also collected soil samples PFS‐16, PFS‐17,  PFS‐18, PFS‐19, and PFS‐20 from the northern edge of the diesel spill area along the  ditch. The names and locations of soil samples are shown in Figure 3 in Attachment A.    The on‐site laboratory results of the selected soil samples detected DRO concentrations  for the main AST area greater than the NCDEQ Action Level for DRO of 100 mg/kg.  The  GRO Results ranged from DRO concentrations ranged from 120 mg/kg to 955 mg/kg  were identified and removed for off‐site disposal. The GRO concentrations for the soil  samples ranged from 185 mg/kg to 855 mg/kg, which is greater than the NCDEQ Action  Level for GRO of 50 mg/kg.  A copy of the laboratory report is included in Attachment E  US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 6  Pyramid Environmental Project # 2023‐291   November 28, 2023  and the analytical results are summarized in Table 1. As indicated on the lab report, the  soils above the action levels were removed for off‐site disposal.   By the end of the day, the northwest portion of the main excavation had been cleaned.  The AST area in the center and south toward the fence and roadway, as well as the ditch  and eastern sidewall remained to be excavated. The fence had been disassembled and  placed out of the way to allow for the excavation to cross the property line into the road  when the excavation reached that area. The diesel fuel had soaked into the ditch along  the roadway and moved east.  The digging sequence was discussed and it was agreed  that the excavation would proceed south into the roadway, and that the final dig would  be the ditch area.    Diesel contaminated soil was stockpiled on plastic sheeting located within the remaining   diesel contaminated area for later loading and removal. US Ecology covered the soils  and excavation area with plastic for the weekend and made plans to return on Monday  to continue the cleanup.    Day 6 :    Monday   10/09/2023  On Monday, October 9, 2023, Pyramid and US Ecology returned to the site to continue  the excavation and sampling. Although some excavation and soil screening was  completed during the day, most of the afternoon was dedicated to loading and hauling  contaminated soil from the main excavation area and diesel contaminated soil stockpile  to free up room for more digging.  At the end of the day, US Ecology covered the main  excavation area with plastic and the remaining stockpiled soil with plastic. Work  planned for Tuesday was to return and remove more contaminated soil.      Day 7 :    Tuesday   10/10/2023  On Tuesday, October 10, 2023, Pyramid and US Ecology returned to the site to continue  diesel contaminated soil excavation, loading, and hauling for disposal. Excavation of  diesel contaminated soil from the main excavation area where the AST was located  continued, with excavation proceeding to the east and south.  Samples PF‐21 and PF‐22  were collected and were placed in laboratory prepared methanol preserved jars in a  cooler with ice pending the return of the on‐site laboratory which would provide the  analyses.  US Ecology stockpiled as much additional soil as possible before covering the  main excavation with plastic sheeting and preparing for hauling contaminated soil.    Day 8 :    Wednesday    10/11/2023  On Wednesday, October 11, 2023, Pyramid and US Ecology returned to the site to  continue the excavation. Diesel contaminated soil was removed from the main  excavation area and excavation continued to the south and east.  Samples PF‐23 and PF‐ US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 7  Pyramid Environmental Project # 2023‐291   November 28, 2023  24 were collected and were placed in laboratory prepared methanol preserved jars in a  cooler with ice pending the return of the on‐site laboratory which would provide the  analyses on 10/12/2023.    Day 9 :    Thursday    10/12/2023        On‐Site Lab   On Thursday, October 12, 2023, Pyramid and US Ecology returned to the site to  continue the excavation and sampling. RedLab provided the mobile laboratory and  analyzed a total of 22 soil samples collected on October 10, 11, and 12.  The excavation  of diesel contaminated soil to the North, West, and East within 10 feet of the beginning  of the ditch was completed. On this day, the excavation entered the ditch and part of  the roadway on the south of the AST area. Contaminated soil excavation continued to  the south with excavation of the fence areas and roadway on Thursday.   Final   Excavation of this area was completed on Friday.      Soil samples PF‐21, 22, 23, 24, and 25 were collected from the main excavation area on  10/10/2023, 10‐11‐2023, and 10/12/2023, at varying depths. The names and locations  of soil samples are shown in Figure 3 in Attachment A. The samples were analyzed at  the site by RedLab mobile laboratory services.    The on‐site laboratory DRO results of the soil samples collected for soil removed from  the excavation ranged from 25.7 mg/kg to 4,329 mg/kg.   The  post‐excavation soil  sample results are shown on Table 1, and these samples reflect the depth excavated,  and the results for DRO in each location and depth that demonstrate cleanup of the  diesel spill to below the NCDEQ Action level of 100 mg/kg.     Concentrations in the soil removed from the main excavation showed concentrations  ranging from 51.2 to 3,278 mg/kg of GRO.   These soils were removed from the  excavation and transported off‐site for disposal.  The post‐excavation samples for GRO  showed concentrations ranging from 0.31 mg/kg to 10.4 mg/kg for the post excavation  soil samples.  These results are below the NCDEQ Action Level of 50 mg/kg for GRO.             A copy of the laboratory report is included in Attachment F and the analytical results are  summarized in Table 1.    After removing as much soil as possible for the day, US Ecology covered the main  excavation area with plastic and made plans to return and complete the southern  sidewall and import backfill for the main excavation on Friday and backfill and compact  the soil in the main excavation which was largely complete.  Also there were plans to  haul out contaminated soils to disposal on Friday.         Day 10 :    Friday    10/13/2023  US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 8  Pyramid Environmental Project # 2023‐291   November 28, 2023  On Friday, October 13, 2023, Pyramid and US Ecology returned to the site to complete  the excavation of the southern sidewall up to the ditch to the east.  The excavation of  the southern sidewall was completed and contaminated soil was hauled off‐site.    Also on Friday, the main excavation was backfilled with at least 45 truckloads of backfill  soil brought from a local quarry and compacted in the excavation. The compaction was  completed by US Ecology in lifts using a vibratory ride‐on compactor. Soil was spread  across the excavation using the trackhoe for each lift, and the soil was compacted. The  backfill was held back from the final sidewall to the east and was completed in the main  excavation to the north, west, and south.  US Ecology covered the area with plastic over  the weekend and made plans to return and finish the contaminated excavation by  removing the southeast wall of the main excavation and completing the excavation  along the ditch.     Day 11 :    Monday    10/16/2023  On Monday, October 16, 2023, Pyramid and US Ecology returned to the site to complete  the excavation of the ditch to the east and backfill the entire excavation after  completing the diesel spill cleanup.    For the final diesel contaminated soil excavation, the diesel contaminated soils were  removed from the ditch and soil screening results ranged from 1.1 ppm to > 400 ppm.  Several disposal samples were collected from the removed soil.  Contaminated soil was  excavated to low PID readings, and post‐excavation soil samples  SPF‐26, 27, 28, 29, 30,  31, 32, and 33 were collected from the limits of the excavation.   The  names and  locations of soil samples are shown in Figure 3 in Attachment A.  Pyramid collected 13  soil samples for both disposal of diesel contaminated soil and for the post‐excavation  soil samples. The soil samples were preserved in laboratory provided methanol  preserved vials and placed on ice in a cooler for shipment by FedEx to RedLab for  analyses at RedLab in Wilmington, NC.   The laboratory results of the post‐excavation soil samples detected DRO concentrations  below the NCDEQ Action Level for DRO of 100 mg/kg.  GRO concentrations for the soil  samples ranged from <0.42 mg/kg to <0.52 mg/kg, which is below the NCDEQ Action  Level for GRO of 50 mg/kg.  A copy of the laboratory report is included in Attachment G  and the analytical results are summarized in Table 1.   After completing the excavation, US Ecology backfilled the ditch area with clean  material and compacted it using a roller compactor. US Ecology completed the site  cleanup and removed the last truckloads of contaminated soil, cleaned up the site, and  spread seed and straw over the area. Replacement of the fence and road restoration  occurred after Pyramid left the site.  After receiving more details of the spill response,  Pyramid sent the UST‐62 Form to DEQ and the form is included in Attachment H.  US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 9  Pyramid Environmental Project # 2023‐291   November 28, 2023  Table 1 – Soil Sampling Analytical Results  Date Sample ID Depth PID Reading GRO [mg/kg] DRO [mg/kg]  10/03/2023 PFS‐1 7 ft. < 5 ppm <0.24 <0.24  10/03/2023 PFS‐2 7 ft. < 5 ppm <0.6 <0.6  10/03/2023 PFS‐3 7 ft. < 5 ppm <0.52 <0.52  10/03/2023 PFS‐4 7 ft. < 5 ppm <0.52 <0.52  10/03/2023 PSFS‐5 1 ft. < 5 ppm <0.16 <0.16  10/03/2023 PSFS‐6 1.5 ft. < 5 ppm <0.26 0.26  10/03/2023 PSFS‐7 1 ft. < 5 ppm <0.3 0.3  10/03/2023 PSFS‐8 1 ft. < 5 ppm <0.28 <0.28  10/03/2023 PSFS‐9 1.5 ft. < 5 ppm 0.76 <0.32  10/03/2023 PSFS‐10 1 ft. < 5 ppm <0.27 <0.27  10/03/2023 PSFS‐11 1 ft. < 5 ppm <0.3 <0.3  10/03/2023 PSFS‐12 1.5  ft. < 5 ppm 0.92 <0.34  10/03/2023 PSFS‐13 1 ft. < 5 ppm 2.1 8.3  10/06/2023 EPF‐8’  (North) 8 feet < 5 ppm 13 27.2  10/06/2023 PF‐16 1 ft. < 5 ppm <0.34 0.34  10/06/2023 PF‐17 1 ft. < 5 ppm <0.34 0.64  10/06/2023 PF‐18 1 ft. < 5 ppm <0.25 0.25  10/06/2023 PF‐19 1 ft. < 5 ppm <0.29 <0.29  10/06/2023 PF‐20 1 ft. < 5 ppm <0.24 <0.24  10/12/2023 NE‐3’ 3 feet < 5 ppm 2.4 1.5  10/10/2023 PF‐21 4 ft. < 5 ppm 2 1.1  10/10/2023 PF‐22 8 ft. < 5 ppm 10.4 18.5  10/11/2023 PF‐23 5 ft. < 5 ppm <0.42 <0.42  10/11/2023 PF‐24 2 ft. < 5 ppm <0.31 <0.31  10/12/2023 PF‐25 9 ft. < 5 ppm 6.4 12.7  10/16/2023 SPF‐26 1 ft. 1.2 <0.47 <0.47  10/16/2023 SPF‐27 2.5 ft. 2.7 <0.42 <0.42  10/16/2023 SPF‐28 2 ft. 1.9 <0.43 0.43  10/16/2023 SPF‐29 3.5 ft 3.3 <0.52 <0.52  10/16/2023 SPF‐30 6 ft. 3.6 <0.42 <0.42  10/16/2023 SPF‐31 6 ft. 1.5 <0.45 <0.45  10/16/2023 SPF‐32 3 ft. 2.8 <0.5 <0.5  10/16/2023 SPF‐33 4.5 ft. 4.1 <0.46 <0.46  NCDEQ Cleanup Levels [mg/kg] 50 100   * ppm  =  parts per million    * mg/kg = milligrams per kilogram      US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 10  Pyramid Environmental Project # 2023‐291   November 28, 2023  3.0  Spill Cleanup Summary   The summary of the diesel spill cleanup is presented in this section. The diesel contaminated  soil excavations showed that the diesel spill was spread over a large area near the AST.  No  surface water or other receptors were impacted by this diesel fuel spill.               The main excavation measured approximately 35 feet wide, 55 feet long, and an average depth of 6 feet which is approximately 641 tons.  The actual excavation depths ranged from 6 to 9 feet in the main excavation.    The ditch excavation was also measured and was approximately 180 feet long, 4 to 9 feet wide (average 5 feet), with an average depth of 3 feet (the actual excavation depth was 6 feet in some areas). This volume was calculated to be approximately 150 tons. These quantities are averaged for the size and depth, and the exact quantity of soil weighed at the landfill was less than these calculated estimates.     The excavation process was guided by PID readings provided by Pyramid. The most contaminated areas showed PID readings between 500 and > 1,000 ppm consistently where the diesel fuel had soaked into the soil.  The PID Readings improved with depth and post‐excavation soil samples were collected at the limits of the excavation.   Pyramid collected disposal soil samples within the mass of the diesel fuel contaminated soil to verify that the soil was contaminated prior to removal. These results demonstrate that the soil was contaminated with diesel fuel above the NCDEQ standards of GRO (50 mg/kg) and DRO (100 mg/kg) within the contaminated area.   After completing contaminated soil removal, Pyramid collected post‐excavation soil samples at various locations within the diesel fuel spill area for laboratory analyses. The post excavation soil samples were collected for RedLab analyses mostly with the Mobile lab at the site. The results of the final post‐excavation soil samples are summarized on Table 1, and the lab results are presented in the Attachments.    After completing the soil cleanup activities, Pyramid collected the final post‐excavation soil samples on October 16, 2023.  US Ecology backfilled the main excavation area with clean soil, compacted it using a vibratory roller, and covered the area with seed & straw.      Pyramid prepared the UST‐62 form and emailed it to Mr. Ron Taraban of the NCDEQ Mooresville Regional office (MRO).    From October 2, 2023, to October 16, 2023, US Ecology & Pyramid excavated diesel fuel contaminated soil from the JRP spill area at 550 Patterson Farm Road. The reported  combined weight tickets for the soil disposal totaled 651.99 tons of diesel contaminated soil. The soil was transported to Waste Management Solutions Great Oak Landfill facility in Randleman, NC for proper disposal. The certified weight tickets and non‐hazardous waste manifests are included in Attachment I with a table summarizing the tons of diesel fuel contaminated soil removed.   The NCDEQ spill cleanup requirements have been met for this site.  Attachment  A      Diesel Spill Cleanup Site 550 Patterson Farm Road, Mooresville, NC Legend 550 Patterson Farm Rd 1000 ft N ➤➤ N Diesel Spill Cleanup - US Ecology 550 Patterson Farm Road, Mooresville, NC Legend 100 ft N ➤➤ N Image © 2023 Airbus Image © 2023 Airbus Image © 2023 Airbus Diesel Spill Cleanup - US Ecology 550 Patterson Farm Road, Mooresville, NC Legend 70 ft N ➤➤ N Image © 2023 Airbus Image © 2023 Airbus Image © 2023 Airbus US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 9  Pyramid Environmental Project # 2023‐291   November 28, 2023  Table 1 – Soil Sampling Analytical Results  Date Sample ID Depth PID Reading GRO [mg/kg] DRO [mg/kg]  10/03/2023 PFS‐1 7 ft. < 5 ppm <0.24 <0.24  10/03/2023 PFS‐2 7 ft. < 5 ppm <0.6 <0.6  10/03/2023 PFS‐3 7 ft. < 5 ppm <0.52 <0.52  10/03/2023 PFS‐4 7 ft. < 5 ppm <0.52 <0.52  10/03/2023 PSFS‐5 1 ft. < 5 ppm <0.16 <0.16  10/03/2023 PSFS‐6 1.5 ft. < 5 ppm <0.26 0.26  10/03/2023 PSFS‐7 1 ft. < 5 ppm <0.3 0.3  10/03/2023 PSFS‐8 1 ft. < 5 ppm <0.28 <0.28  10/03/2023 PSFS‐9 1.5 ft. < 5 ppm 0.76 <0.32  10/03/2023 PSFS‐10 1 ft. < 5 ppm <0.27 <0.27  10/03/2023 PSFS‐11 1 ft. < 5 ppm <0.3 <0.3  10/03/2023 PSFS‐12 1.5  ft. < 5 ppm 0.92 <0.34  10/03/2023 PSFS‐13 1 ft. < 5 ppm 2.1 8.3  10/06/2023 EPF‐8’  (North) 8 feet < 5 ppm 13 27.2  10/06/2023 PF‐16 1 ft. < 5 ppm <0.34 0.34  10/06/2023 PF‐17 1 ft. < 5 ppm <0.34 0.64  10/06/2023 PF‐18 1 ft. < 5 ppm <0.25 0.25  10/06/2023 PF‐19 1 ft. < 5 ppm <0.29 <0.29  10/06/2023 PF‐20 1 ft. < 5 ppm <0.24 <0.24  10/12/2023 NE‐3’ 3 feet < 5 ppm 2.4 1.5  10/10/2023 PF‐21 4 ft. < 5 ppm 2 1.1  10/10/2023 PF‐22 8 ft. < 5 ppm 10.4 18.5  10/11/2023 PF‐23 5 ft. < 5 ppm <0.42 <0.42  10/11/2023 PF‐24 2 ft. < 5 ppm <0.31 <0.31  10/12/2023 PF‐25 9 ft. < 5 ppm 6.4 12.7  10/16/2023 SPF‐26 1 ft. 1.2 <0.47 <0.47  10/16/2023 SPF‐27 2.5 ft. 2.7 <0.42 <0.42  10/16/2023 SPF‐28 2 ft. 1.9 <0.43 0.43  10/16/2023 SPF‐29 3.5 ft 3.3 <0.52 <0.52  10/16/2023 SPF‐30 6 ft. 3.6 <0.42 <0.42  10/16/2023 SPF‐31 6 ft. 1.5 <0.45 <0.45  10/16/2023 SPF‐32 3 ft. 2.8 <0.5 <0.5  10/16/2023 SPF‐33 4.5 ft. 4.1 <0.46 <0.46  NCDEQ Cleanup Levels [mg/kg] 50 100   * ppm  =  parts per million    * mg/kg = milligrams per kilogram                                    Attachment  B                                    Attachment  C      Standard Field Procedures:  Revision 10.6                                 Page 1  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  Standard Field Procedures Pyramid Environmental & Engineering, P.C. ________________________________________________________________________ 1.0 Equipment Decontamination Equipment decontamination is essential to assure representative environmental samples  are collected and to eliminate the potential for cross‐contamination between sample points.  Pyramid strives to clean all field equipment prior to leaving the office; however, field  decontamination is still required on most projects. The procedures for decontamination of  water level probes, hand augers, sampling probes, trowels, and other field equipment are  listed below.    1.1 EPA Region 4 LSASD Operations Manual Decon Procedures  Drilling and soil sampling equipment is decontaminated prior to each use using a pressure  washer or steam cleaner. Reusable sampling equipment (hand augers, sampling probes,  trowels, split spoon samplers, water sampling equipment, etc.…) are decontaminated using  the general procedure described below.    Wash with non‐phosphate detergent, water, & brush to remove particulate matter   Rinse with tap water   Rinse with 10 percent nitric acid solution (only if sampling for metals)   Rinse with de‐ionized water   Rinse with pesticide‐grade isopropyl alcohol   Rinse with de‐ionized water   Air‐dry as long as possible  The level of decontamination used is appropriate to the analytical parameters selected and  the material of the sampling device being used for sampling. For example, if metals analyses  are required, then the 10 % nitric acid solution is used for decontamination of stainless‐steel  equipment. Pyramid uses de‐ionized or distilled water for decontamination. Equipment that  is not used immediately after decontamination is wrapped in aluminum foil prior to storage.    2.0 Soil Borings & Sampling 2.1 Soil Borings  Soil borings are used by Pyramid to investigate and characterize the subsurface at sites.       Soil borings provide information concerning soil types and density, depth to refusal, depth  to bedrock, organic vapors that may be present, and can be used to obtain samples for  laboratory analysis.   Standard Field Procedures:  Revision 10.6                                 Page 2  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  Pyramid conducts borings in several different ways, using hand augers, direct‐push  equipment (Geoprobe), sample probes, split‐spoon samplers (ASTM D 1586‐84), auger  drilling, air drilling, and Vibro‐Core. The following procedures are used by Pyramid  Environmental when performing soil borings:  1. Soil boring locations are chosen, and the ULOCO utility locating service is called to  mark all public utilities. Pyramid locates private utilities at many project sites using  Pyramid locating equipment, or uses a private utility locating service.    2. Down hole drilling equipment is cleaned prior to use and between borings using  pressure washing or steam cleaning. Additional decontamination procedures in  Section 1.1 are used for sampling tools such as split spoons or direct‐push points.     3. Soil borings are advanced using direct‐push, drilling rigs, hand augers, or other  appropriate means. Near‐surface soil samples may also be collected using stainless  steel push probes, shovels, scoops, or other sampling devices.     4. Soil samples are normally collected at a minimum of 5‐foot intervals. Each sample is  divided into two parts. Soil samples for laboratory analyses are jarred from the initial  sample volume. The remaining soil is stored in a sealed container for headspace  analysis and geological description.     5. After screening the soil with the field instruments, each soil sample is described by  the field geologist and a geologic description is recorded in project documentation.    6. Soils are typically described in the field by the project geologist or soil scientist and  are classified according to the Unified Soil Classification System (ASTM D 2488‐84).    7. Soil samples selected for laboratory analysis are placed in properly prepared,  laboratory supplied containers and immediately packed in a cooler on ice. Sample  custody is maintained using standard chain‐of‐custody (COC) procedures through  delivery to the analytical laboratory.    8. Soil borings, which are not completed as monitoring wells, are grouted using a  Portland cement, bentonite, or backfilled with soil cuttings.     9. Soil cuttings are generally spread near the soil boring or monitoring well location as  directed by State regulatory managers.  Drill cuttings are drummed (containerized)  where site conditions or regulatory requirements prohibit spreading cuttings, and  are disposed off‐site (after waste determination is made).         Standard Field Procedures:  Revision 10.6                                 Page 3  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  2.2 Soil Headspace Screening  Soil samples are routinely screened for volatile organic compounds (VOCs) which may be an  indication of organic or petroleum hydrocarbon contamination. The typical screening  procedure includes immediately transferring the soil from the sampling devices to a sealed  container (sealed 1‐gallon Ziplock plastic bag). The soil container is filled approximately  halfway with soil and sealed. This creates headspace above the soil in which VOCs may  accumulate. The container is allowed to stand for 5 to 15 minutes for the VOCs to equilibrate  in the headspace of the container. The headspace of the container is then screened using a  calibrated organic vapor analyzer (PID or FID). The screening is conducted by cracking the  seal only enough to allow insertion of the probe into the headspace so as not to dilute the  sample. In most cases where the contaminant of concern includes volatile organics, the  highest or “Peak“ field‐screening result is documented for each sample. The soil samples  showing the highest reading from each boring are typically selected for laboratory analysis.    2.3 Soil Sample Collection for Laboratory Analysis   After the targeted depth has been reached, soil samples are collected using a variety of  sampling devices. Soil sample devices used include split‐spoons, stainless‐steel hand augers,  stainless‐steel push‐probes and sampling scoops, and directly from the center of the  excavator bucket. The sample technician uses disposable nitrile gloves, which are changed  between samples to avoid cross‐contamination of samples, and each sampling device is  decontaminated prior to use.     Only laboratory provided containers are used for sample collection. Samples are collected  in accordance with the preservation methods required by the requested analytical method.  Samples are handled as little as possible and preserved in the field as specified for the  analytical method. The samples are stored and transported to the laboratory in an insulated  cooler chilled to approximately 4 degrees centigrade. The samples are labeled with a  minimum of the following information: Pyramid, project name or number, sample  identification, date collected, sampler name, and analysis requested. Sample custody is  maintained using standard chain‐of‐custody procedures through delivery to the analytical  laboratory. Notes of the sampling events are recorded in project documentation.  Incremental sampling methodology (ISM) is a structured composite sampling and  processing protocol that reduces data variability and provides a reasonably unbiased  estimate of mean contaminant concentrations in a volume of soil targeted for sampling.  ISM provides representative samples of specific soil volumes defined as decision units  (DUs) by collecting numerous increments of soil (typically 30–100 increments) that are  combined, processed, and subsampled according to specific protocols. ISM Sampling will  be further explained in a site‐specific Work Plan documents.  Pyramid will contract an on‐site laboratory for immediate analyses as needed.   Standard Field Procedures:  Revision 10.6                                 Page 4  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  2.4 Sediment Sample Collection for Laboratory Analysis   Near surface sediment may be present in a surface water ditch, stream, or dry intermittent  stream bed. Sediment samples are typically soil related samples and may be collected with  a variety of sampling tools. Pyramid will use stainless‐steel samplers which have been  decontaminated according to the procedure detailed in section 1.1 of this document. After  the sediment samples are collected, the location, depth, conditions, and sample  composition are documented in the project records. The samples will be screened in the  field to detect volatile organic vapors and visually examined for contamination. Sediment  samples will be preserved in laboratory prepared containers in accordance with sample  preservation recommendation of the analytical laboratory. Samples are handled as little as  possible and preserved in the field as specified for the analytical method. The samples are  stored and transported in an insulated cooler chilled to approximately 4 degrees centigrade.  The samples are labeled with a minimum of the following information: Pyramid, project  name or number, sample identification, date collected, sampler name, and analysis  requested. Sample custody is maintained using standard chain‐of‐custody procedures  through delivery to the analytical laboratory. Documentation of the sampling events are  recorded in the project documentation.    3.0 Direct-Push Sampling Procedures  Direct‐push sampling techniques have been used at many sites to collect soil and  groundwater samples rapidly and inexpensively.  Track‐mounted, direct‐push rigs can access  hard to reach areas and allow borings and monitoring wells to be installed.  For soil sampling,  typically, the direct‐push steel drive tube is decontaminated using a pressure washer, and a  new plastic sample liner is inserted in the steel drive tube to collect soil samples. The soil  samples are collected in new polyethylene sample tubes within the steel drive tube. The soil  samples are then extracted from the polyethylene liner and preserved as required for  laboratory analysis.    For groundwater sampling, a steel probe with a retractable screen section and tubing are  driven to depth and the screened section is opened to allow groundwater to enter the  tubing. The water samples are withdrawn using new polyethylene and Teflon® tubing with  either a decontaminated stainless‐steel check ball, or peristaltic pump. The groundwater  sample is placed directly into the appropriate laboratory containers and sealed immediately.  To prevent cross‐contamination of samples, new disposable tubing is used for each  groundwater sample point. Disposable nitrile gloves are worn by field personnel during  development and groundwater sampling, and gloves are changed between samples.  Groundwater sampling procedures are detailed more in Section 5.0, as appropriate for each  analytical method.      Standard Field Procedures:  Revision 10.6                                 Page 5  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  4.0 Monitoring Well Installation  Groundwater monitoring wells are installed in many subsurface environments; Coastal  Plain, sedimentary, Piedmont saprolite, weathered rock formations, and mountain terrains  to list a few. Formations encountered include unconsolidated and consolidated sediments,  fill material, organic soils, saprolitic soils, weathered rock formations, and bedrock.  Groundwater monitoring wells provide a stable sampling point at discrete intervals within  the confined or unconfined aquifers. Monitoring wells are installed for a number of reasons,  and are typically installed as 1‐inch, 2‐inch, 4‐inch, or 6‐inch diameter wells. Construction  may be of PVC, stainless‐steel, HDPE, or other appropriate materials. The following  procedures are used by Pyramid when performing borings and monitoring well installations.   If required, monitoring well permits are obtained from the State, County, or City.   Boring and monitoring well locations are chosen, and utilities are marked by the  public utility locating company. As needed, the locations may be scanned for utilities  by Pyramid using our locating equipment, or a private utility locating company.   In selecting a drill site, care is taken to avoid overhead power lines, and subsurface  utilities whenever possible.   Down‐hole drilling equipment is decontaminated prior to use and between borings.   Borings are advanced using direct‐push, drilling rigs, hand augers, solid‐stem augers,  hollow‐stem augers, air rotary drilling, or air hammer drilling.   Soil samples are normally collected at a minimum of 5‐foot intervals. Each sample is  divided into two parts.  Soil samples for laboratory analyses are jarred from the initial  sample volume. The remaining soil is stored in a sealed container for headspace  analysis with an organic vapor analyzer (PID or FID).    After screening the soil with the field instruments, each soil sample is described by  the field geologist and a geologic description is recorded in the project  documentation.    Type II monitoring wells are usually installed using 2‐inch diameter schedule 40 PVC riser  and 2‐inch, 0.010‐inch machine slotted well screen. The screened interval length varies with  the geologic site conditions, expected variations in water level, and the investigation goals  for the well. The well construction details are presented on the boring log.    Type III wells are usually installed as double‐cased wells to monitor the deeper portions of  the aquifer. The first casing is usually a 5 to 6‐inch diameter solid PVC well casing drilled to  bedrock or an appropriate depth within the surficial zone. The 5 to 6‐inch diameter casing  is then set and grouted in the borehole. After the cement grout has set for 12 to 24‐hours,  the borehole is completed to the desired depth using air rotary drilling or air hammer  drilling. The inside casing of the Type III monitoring well is usually constructed of 2‐inch  diameter SCH 40 PVC casing and 2‐inch diameter SCH 40 PVC 0.010‐inch slotted well screen.    Standard Field Procedures:  Revision 10.6                                 Page 6  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  In most applications, a sand filter pack of #2 well sand (or appropriately sized well sand).   Sand is typically installed to a level of 2 feet above the top of the screen in each well.                    A minimum 2‐foot thick bentonite seal is usually placed on top of the filter pack and  hydrated with de‐ionized or distilled water. The remaining annular space of a typical well is  backfilled to grade with a Portland cement/bentonite grout. In monitoring wells where the  water table is close to surface, the amount of sand above the screen and bentonite will be  reduced to allow for a minimum of 2–3 feet of cement grout in the well bore.    At the surface, each well is secured with a locking cap and a steel well protector. Depending  on the surface conditions, the well may be protected by a flush‐mounted manhole set in the  surrounding surface in a concrete pad.  In some cases, stick‐up well protectors are used to  secure the well and allow the well to be more easily located in wooded or open areas.    Each groundwater monitoring well is developed by surging, pumping, or bailing to remove  sediment before sampling. Water removed during development is managed according to  individual State regulatory guidance.      5.0 Water Sampling Procedures  Pyramid relies on water sampling as a primary method for assessment of subsurface  groundwater conditions. Water sampling typically includes sampling groundwater from  monitoring wells, water supply wells, surface water bodies, stormwater,  waste sumps, etc.    The following provides typical sampling procedures for the water samples.    5.1 Monitoring Wells  Prior to sampling each monitoring well, depth to liquid and/or liquids and total well depth  are measured using a properly decontaminated electric interface probe. If phase‐separated  petroleum product is detected in a well, the product measurements are recorded along with  the water level in each well.  This information is recorded in the field record and the volume  of the water in the well casing is calculated. To purge stagnant water from each monitoring  well, three to five well casing volumes of water are removed from each well prior to  sampling. Alternately, for low‐flow sampling, development continues until the field  parameters (pH, conductivity, dissolved oxygen, ORP, and temperature) have stabilized.    If the water in the monitoring well is removed until the well is dry, then the well is sampled  thereafter. Water removed from wells during purging is managed in accordance with  individual State regulatory guidance.     Groundwater samples are typically collected using a new disposable polyethylene bailer and  a new length of nylon cord. To prevent cross‐contamination of samples between wells, a  new disposable bailer is used for each well.  The bailer is lowered into the groundwater  Standard Field Procedures:  Revision 10.6                                 Page 7  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  slowly and removed slowly.  A  new pair of disposable gloves is worn by field personnel  during purging and sampling, and is changed between wells.  In the case of small diameter  monitoring wells or direct‐push water samples, water samples may be collected using a  peristaltic pump and new polyethylene tubing.  Another method is to use a segment of new  sampling tubing and a stainless‐steel check ball to create a “Tube Bailer”.  Groundwater samples selected for laboratory analysis are immediately placed in properly  prepared, laboratory supplied containers and preserved in a cooler on ice. Samples are  maintained under standard chain‐of‐custody procedures from sample collection through  laboratory analysis.    5.2 Water Supply Well Sampling  Prior to sampling each water supply well, the well owner is contacted to provide access to  the well. The well owner is interviewed to locate the faucet closest to the well for sampling.     If there are no faucets located on the well, then water from an outside faucet at the building   is usually sampled. If there are no outside faucets available, then the water samples are  collected from an inside faucet. The location of the sample is recorded in the field record.  The owner is interviewed to see if there is a chlorination system on the well, or if the well  has been recently chlorinated. Recent chlorination could affect the laboratory detection  limits. In most cases, the samples are preserved using sodium thiosulfate or ascorbic acid to  remove the interactions of chlorine, which may be present in the samples.   If the well is treated with a Point‐of‐Entry (POE) treatment system, then the “raw” water  sample must be collected before the treatment system. An associated treated water sample  is usually collected as well to demonstrate effective treatment.    To purge stagnant water from the water supply well system, the faucet is allowed to run on  full stream for a minimum of 15 minutes. The aerator is removed from the tap if one is  present. Water removed from wells during purging is managed according to regulatory  standards.  Water supply well samples are collected using appropriate laboratory prepared containers  for each analysis.   The analytical methods selected will vary with the contaminant of  interest. To prevent cross‐contamination of samples between wells, disposable nitrile gloves  are worn by field personnel during purging and sampling and are changed between wells. It  is possible that samples may be required at several places within the water supply system.  The samples are collected accordingly and labeled to show the source and location sampled.  Supply well samples selected for laboratory analysis are immediately placed in properly  prepared, laboratory supplied containers and packed in a cooler on ice, and chilled to  approximately 4 degrees Celsius.  Samples are maintained under standard chain‐of‐custody  procedures from sample collection through laboratory analysis.    Standard Field Procedures:  Revision 10.6                                 Page 8  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  5.3 Surface Water Sampling  Surface water samples are obtained using several techniques including use of sample  bailers, discrete depth interval samples, sample scoops, from boats, bridges, or wading into  a stream. Caution should always be used when sampling surface water to ensure that the  water collected is representative of the site conditions. Since stream or open water sampling  is transient, careful documentation of the site conditions, weather, surface conditions,  sediment, algal or biological material, etc. is required.     In many studies, additional samples from upstream and downstream of the desired sample  point are required. Surface water sampling must be planned to reflect the site‐specific  conditions during sampling. The general procedures are similar to the supply well sampling  procedures detailed above. Appropriate laboratory prepared containers are used for each  analysis. The analytical methods selected will vary with the contaminant of interest.    To prevent cross‐contamination of samples between samples, disposable nitrile gloves are  worn by field personnel during purging and sampling and are changed between samples. It  is possible that samples may be required at several places along the stream to check for  influences of up‐stream facilities.  Samples will be collected accordingly and labeled to show  the source and location sampled. Sample will always be collected upstream of the area  disturbed by the person sampling the stream. Surface water samples selected for laboratory  analysis are placed in properly prepared, laboratory supplied containers and immediately  packed in a cooler on ice. Samples are maintained under strict control using standard chain‐ of‐custody procedures through laboratory analysis.     6.0 Quality Assurance / Quality Control  The field and laboratory procedures listed above have been implemented on many sites  with excellent results. The procedures are often verified by an appropriate use of the  following environmental samples.    Trip Blanks ( or Travel blanks)  The Trip Blank (or travel blanks) are often used to verify that the environmental samples are  not impacted during shipping, and verify that the source of the glassware is not the source  of contamination. The trip blanks are preserved de‐ionized water, collected in the  laboratory, and shipped with the sample containers to Pyramid or the site. The trip blank  remains in the sample cooler and is shipped back to the laboratory with the environmental  samples. The trip blank is most commonly analyzed for volatile organic compounds (VOCs),  and correspond to the target analyses.        Standard Field Procedures:  Revision 10.6                                 Page 9  Pyramid Environmental & Engineering, P.C.               Revision date 01‐06‐2020  Field Blanks   Field Blanks are quality assurance samples which are collected in the field to represent the  conditions present at the time the samples are collected. For water samples, the laboratory  containers are opened and filled in the field using de‐ionized (or distilled) water from a  known source.  The samples reflect any site conditions such as vapor sources which may  affect the water samples.  The samples then travel to the laboratory with the other samples  for analysis. Comparison of the field blank results with the sample results may indicate a  pervasive site constituent detected in the samples.     Equipment Blanks   Equipment Blanks are used to verify whether the decontamination procedures used for the  sample equipment (or the new equipment) may have added any contaminants to the  sample during collection. If a non‐disposable sampling device is used (such as a sampling  treir, scoop, hand auger, Teflon bailer, etc.…), then the decontamination of the sampling  device is usually verified using an equipment blank. The equipment blank is collected using  de‐ionized (or distilled) water from a known source. The equipment is decontaminated,   allowed to air dry, the water is poured over (or through) the equipment, and a sample is  collected in the appropriate sample containers. The equipment blank samples are preserved  with the other environmental samples, and shipped for analyses for the target parameters.    Duplicate Samples  Duplicate Samples are used to verify the sampling procedures and evaluate laboratory  analysis variability. The duplicate samples may be collected from soil, sediment, air, surface  water, wastes, or groundwater. These samples are collected and sent to the laboratory as   blind samples to have maximum effectiveness. Duplicate samples are generally analyzed for  the same analytical methods as the actual environmental sample for direct comparison.  Duplicate samples may also be split between two different laboratories to provide  verification of laboratory detection limits or quality process verification.    Background Samples  Background Samples are a tool for comparison of general site conditions with source area  site conditions. Background samples may be soil, sediment, air, surface water, waste, or  groundwater. The goal is to reflect conditions outside the expected area of contamination.  These samples are collected outside the expected area of contamination and sent to the  laboratory for analyses. Background samples are generally analyzed for the same analytical  methods as the source area environmental samples for direct comparison. Background  samples for metals comparison are common types of background samples used in  environmental investigations.                                         Attachment  D      Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Tuesday, October 3, 2023 Address:Samples extracted Tuesday, October 3, 2023 Samples analysed Tuesday, October 3, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 12 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s PFS-1 9.7 <0.24 <0.24 <0.24 <0.24 <0.05 <0.08 <0.01 0 100 0 ,(FCM),(BO) s PFS-2 24.1 <0.6 <0.6 <0.6 <0.6 <0.12 <0.19 <0.024 0 43.7 56.3 Residual HC,(BO) s PFS-3 20.6 <0.52 <0.52 <0.52 <0.52 <0.1 <0.17 <0.021 0 100 0 PHC not detected,(BO) s PFS-4 20.6 <0.52 <0.52 <0.52 <0.52 <0.1 <0.17 <0.021 0 100 0 PHC not detected,(BO) s NORTH 3.5' - DSFS-2 22.4 <0.56 59.9 149.7 209.6 27.1 1 <0.022 95.2 4.7 0 Undeg.Diesel 76.7%,(FCM) s MID 3' - DSFS-3 260.0 <6.5 252.5 467.7 720.2 87.4 3.2 <0.26 97.8 2.2 0 Undeg.Diesel 81.4%,(FCM) s s DSFS-4 18.6 <0.46 39.8 105.9 145.7 18.8 0.7 <0.019 95.4 4.6 0 Undeg.Diesel 73.1%,(FCM) s COMPOSITE 1 17.6 <0.44 27.1 83.7 110.8 14.7 0.54 <0.018 95 4.9 0.1 Undeg.Diesel 72.3%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 98.2 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Tuesday, October 3, 2023 Address:Samples extracted Tuesday, October 3, 2023 Samples analysed Tuesday, October 3, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE, NC ; EMERGENCY RESPONSE 10 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s DSFS-1A 692.0 <17.3 886.3 1365 2251 270.1 9.8 <0.69 98.2 1.8 0 Undeg.Diesel 77.5%,(FCM) s DSFS-5 471.0 534.9 1067 778.6 1845.6 140.9 5.1 <0.47 99.2 0.8 0 Undeg.Diesel 80.4%,(FCM) s PSFS-5 6.3 <0.16 <0.16 <0.16 <0.16 <0.03 <0.05 <0.006 0 19.7 80.3 Residual HC,(BO) s PSFS-6 10.3 <0.26 <0.26 0.26 0.26 0.14 <0.08 <0.01 0 26.1 73.9 V.Deg.PHC 57%,(FCM),(BO) s PSFS-7 11.9 <0.3 <0.3 0.3 0.3 0.18 <0.09 <0.012 0 51.5 48.5 V.Deg.PHC 74.2%,(FCM),(BO) s PSFS-8 11.1 <0.28 <0.28 <0.28 <0.28 <0.06 <0.09 <0.011 0 36.8 63.2 Residual HC,(BO) s PSFS-9 12.7 <0.32 0.76 <0.32 0.76 <0.06 <0.1 <0.013 91 3.5 5.5 V.Deg.PHC 55.9%,(FCM),(BO) s PSFS-10 10.9 <0.27 <0.27 <0.27 <0.27 <0.05 <0.09 <0.011 0 48.5 51.5 ,(FCM),(BO) s PSFS-11 11.9 <0.3 <0.3 <0.3 <0.3 <0.06 <0.09 <0.012 0 44.1 55.9 Residual HC,(BO) s PSFS-12 13.5 <0.34 0.92 <0.34 0.92 <0.07 <0.11 <0.013 93.8 2.9 3.4 V.Deg.PHC 73.2%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 97.7 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Tuesday, October 3, 2023 Address:Samples extracted Tuesday, October 3, 2023 Samples analysed Tuesday, October 3, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE, NC ; EMERGENCY RESPONSE 16 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s PSFS-13 11.1 <0.28 2.1 8.3 10.4 2 <0.09 <0.011 91.1 6.8 2.1 Deg.Diesel 76.3%,(FCM),(BO) s PSFS-HO 277.0 83.2 323.1 367.7 690.8 57.8 <2.2 <0.28 98.8 1.2 0 Undeg.Diesel 81.3%,(FCM) s PSFS-5 2'369.0 <9.2 340.4 779.2 1119.6 163.5 5.9 <0.37 97.4 2.6 0 Undeg.Diesel 66%,(FCM) s PFSF-5 3.5'219.0 <5.5 357.8 407.5 765.3 78.5 2.8 <0.22 98.7 1.3 0 Undeg.Diesel 83.8%,(FCM) s PFSF-5 4'232.0 <5.8 276.3 356 632.3 57.1 <1.9 <0.23 98.6 1.4 0 Undeg.Diesel 81.7%,(FCM) s PFSF-5 5'232.0 <5.8 306.2 431.5 737.7 83.6 3 <0.23 98.4 1.6 0 Undeg.Diesel 80%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 98.3 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE, NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE, NC ; EMERGENCY RESPONSE ##################                               Attachment  E      Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Friday, October 6, 2023 Address:Samples extracted Friday, October 6, 2023 Samples analysed Friday, October 6, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 10 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s PF-16 1"13.7 <0.34 <0.34 0.34 0.34 0.35 <0.11 <0.014 0 41.2 58.8 V.Deg.PHC 55.7%,(FCM),(BO) s PF-17 1"13.5 <0.34 <0.34 0.64 0.64 0.39 <0.11 <0.013 0 22.4 77.6 Deg.PHC 51.1%,(FCM),(BO) s PF-18 1"10.1 <0.25 <0.25 0.25 0.25 0.24 <0.08 <0.01 0 50.1 49.9 V.Deg.PHC 60.3%,(FCM),(BO) s PF-19 1"11.7 <0.29 <0.29 <0.29 <0.29 <0.06 <0.09 <0.012 0 22.1 77.9 Residual HC,(BO) s PF-20 1"9.7 <0.24 <0.24 <0.24 0.14 0.14 <0.08 <0.01 0 35.4 64.6 Residual HC,(BO) s STOCKPILE 219.0 <5.5 305.1 544.3 849.4 114.7 4.2 <0.22 97.7 2.3 0 Undeg.Diesel 78.2%,(FCM) s STOCKPILE 291.0 <7.3 402 505.8 907.8 92.2 3.4 <0.29 98.5 1.5 0.1 Undeg.Diesel 86.5%,(FCM) s EPF - 1'24.5 5.7 17.5 7.9 25.4 2.1 <0.2 <0.025 97.8 1.4 0.8 Deg.Diesel 70.1%,(FCM),(BO) s EPF - 2'9.0 <0.22 <0.22 <0.22 <0.22 <0.04 <0.07 <0.009 0 74 26 ,(FCM) s EPF - 3'10.1 <0.25 31.1 120.1 151.2 21.2 0.79 <0.01 90 9.3 0.7 Undeg.Diesel 80.6%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 99.5 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Friday, October 6, 2023 Address:Samples extracted Friday, October 6, 2023 Samples analysed Friday, October 6, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 20 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s EPF - 4'249.0 <6.2 483 681.6 1164.6 154.7 5.6 <0.25 98.2 1.8 0 Undeg.Diesel 78.2%,(FCM) s EPF - 5'273.0 <6.8 341.9 532.9 874.8 108.6 3.9 <0.27 98.3 1.7 0 Undeg.Diesel 75.7%,(FCM) s EFS - 7'228.0 <5.7 407.5 436.8 844.3 87.9 3.2 <0.23 98.8 1.2 0 Undeg.Diesel 82.6%,(FCM) s EPF - 8'21.7 <0.54 13 27.2 40.2 4.3 <0.17 <0.022 98 2 0 Undeg.Diesel 72%,(FCM) s SPF - 1'268.0 250.6 788.5 876.9 1665.4 216.4 7.8 <0.27 98.5 1.5 0 Undeg.Diesel 79.4%,(FCM) s SPF - 2'273.0 <6.8 855 955 1810 243.1 8.7 <0.27 98.4 1.6 0 Undeg.Diesel 82.3%,(FCM) s SPF - 3'286.0 190 748.3 804.5 1552.8 185.3 6.7 <0.29 98.6 1.4 0 Undeg.Diesel 80.8%,(FCM) s SPF - 4'325.0 <8.1 247.2 289.9 537.1 43.6 <2.6 <0.33 99.1 0.9 0 Undeg.Diesel 81.7%,(FCM) s SPF - 5'360.0 <9 478.2 618.4 1096.6 119.7 4.3 <0.36 98.6 1.4 0 Undeg.Diesel 81.4%,(FCM) s SPF - 7'238.0 <6 185.4 290.5 475.9 45.8 <1.9 <0.24 98.5 1.5 0 Undeg.Diesel 78.2%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 100.4 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Friday, October 6, 2023 Address:Samples extracted Friday, October 6, 2023 Samples analysed Friday, October 6, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 21 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s SPF - 8'291.0 <7.3 250.6 288.9 539.5 43.8 <2.3 <0.29 99.1 0.9 0 Undeg.Diesel 83.3%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 100.6 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ##################                               Attachment  F      Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken 10/9 & 10/10 Address:Samples extracted 10/9 & 10/10 Samples analysed Thursday, October 12, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 11 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s PF-21 4'34.2 <0.86 2 1.1 3.1 <0.17 <0.27 <0.034 90.2 4.6 5.3 Deg.Fuel 56.2%,(FCM),(BO) s PF-22 8'26.5 4.4 10.4 18.5 28.9 2.1 <0.21 <0.027 97.7 1.8 0.5 Deg.Diesel 81.8%,(FCM) s PF-23 5'16.7 <0.42 <0.42 <0.42 <0.42 <0.08 <0.13 <0.017 0 50.6 49.4 PHC not detected,(BO) s PF-24 2'12.5 <0.31 <0.31 <0.31 0.21 0.21 <0.1 <0.013 0 43.2 56.8 Residual HC,(BO) s POST 1 DW 325.0 758 2331 3089 5420 563.7 20.7 <0.33 96.9 3 0.1 Undeg.Diesel 80.7%,(FCM) s POST 2 3'1045.0 1299 4121 4329 8450 786.7 29.1 <1 98.3 1.7 0 Undeg.Diesel 81%,(FCM) s POST 2 6'31.7 <0.79 5.1 15.7 20.8 1.7 <0.25 <0.032 97.9 2.1 0 Undeg.Diesel 86.1%,(FCM) s DT-4 2'1088.0 1304 3012 3421 6433 829.3 29.9 <1.1 98.4 1.6 0 Undeg.Diesel 80.7%,(FCM) s DT-5 683.0 590.2 1552 2166 3718 462.9 16.8 <0.68 98 1.9 0.2 Undeg.Diesel 85.2%,(FCM) s PW-2 1"338.0 <8.5 59.9 266 325.9 38.4 <2.7 <0.34 96.2 3.8 0 Undeg.Diesel 66%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 102.1 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Thursday, October 12, 2023 Address:Samples extracted Thursday, October 12, 2023 Samples analysed Thursday, October 12, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 21 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s T-6 718.0 1234 3278 3804 7082 669.6 24.8 <0.72 98 2 0.1 Undeg.Diesel 83.8%,(FCM) s PF-21 SURFACE 13.0 <0.32 <0.32 0.32 0.32 <0.06 <0.1 <0.013 0 47.6 52.4 V.Deg.Diesel 47.9%,(FCM) s PF-22 4'11.3 <0.28 <0.28 0.4 0.4 <0.06 <0.09 <0.011 0 100 0 Deg.Diesel 89.8%,(FCM) s PF-23 1'11.7 <0.29 21.7 76.3 98 20.2 0.75 <0.012 88 11.3 0.7 Undeg.Diesel 77.9%,(FCM) s PF-23 2'10.0 <0.25 16.1 53.7 69.8 13.5 0.5 <0.01 90.3 9.4 0.3 Undeg.Diesel 76.7%,(FCM) s PF-23 3'9.7 <0.24 0.56 <0.24 0.56 <0.05 <0.08 <0.01 98.8 1.2 0 ,(FCM) s PF-23 4'10.9 <0.27 <0.27 <0.27 <0.27 <0.05 <0.09 <0.011 0 100 0 ,(FCM) s PF-24 2'11.3 <0.28 0.98 <0.28 0.98 <0.06 <0.09 <0.011 96.8 0.9 2.3 Deg.PHC 51.2%,(FCM) s NE 1'10.3 <0.26 0.58 0.71 1.29 <0.05 <0.08 <0.01 96.8 3.2 0 Deg.Diesel 75.5%,(FCM) s NE 3'11.1 <0.28 2.4 1.5 3.9 0.19 <0.09 <0.011 97.2 1.8 1 Deg.Diesel 63.5%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 101.6 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Thursday, October 12, 2023 Address:Samples extracted Thursday, October 12, 2023 Samples analysed Thursday, October 12, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 24 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s NE 5'8.8 <0.22 <0.22 <0.22 <0.22 <0.04 <0.07 <0.009 0 100 0 ,(FCM),(BO) s NE 6'9.5 <0.24 3.2 2.7 5.9 0.9 <0.08 <0.009 96.4 2.6 1 Deg.Diesel 85.2%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 101.2 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMEHTAL Samples taken Thursday, October 12, 2023 Address:Samples extracted Thursday, October 12, 2023 Samples analysed Thursday, October 12, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 10 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s PF-22 3'44.3 13.3 47.8 74.5 122.3 14.2 0.52 <0.044 98.3 1.7 0 Undeg.Diesel 78.8%,(FCM) s PF-22 6'1502.0 <37.5 321.6 735.2 1056.8 95.9 <12 <1.5 98.5 1.5 0 Undeg.Diesel 76.9%,(FCM) s PF-22 8'43.1 <1.1 42.6 137.9 180.5 31.9 1.2 <0.043 95.3 4.7 0 Undeg.Diesel 88.1%,(FCM) s PF-24 3'628.0 <15.7 235.9 685.6 921.5 105.6 <5 <0.63 97.2 2.8 0 Undeg.Diesel 72.5%,(FCM) s POST 2 5'48.4 <1.2 20.5 61.6 82.1 9.4 <0.39 <0.048 96.7 3.3 0 Undeg.Diesel 90.3%,(FCM) s DT-3 60.8 <1.5 128.2 341.2 469.4 61.3 2.3 <0.061 95.3 4.7 0 Undeg.Diesel 76.3%,(FCM) s T-3 48.4 <1.2 175.6 435.9 611.5 82.3 3 <0.048 94.5 5.5 0 Undeg.Diesel 76.1%,(FCM) s T-4 43.7 <1.1 51.2 141.2 192.4 34.2 1.2 <0.044 96.1 3.9 0 Undeg.Diesel 75.2%,(FCM) s DW 2'56.4 <1.4 45.7 168.5 214.2 38.2 1.4 <0.056 94.8 5.2 0 Undeg.Diesel 88%,(FCM) s DW 3'533.0 <13.3 212.8 646.8 859.6 102.3 <4.3 <0.53 96.9 3.1 0 Undeg.Diesel 76.9%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 97.9 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMEHTAL Samples taken Thursday, October 12, 2023 Address:Samples extracted Thursday, October 12, 2023 Samples analysed Thursday, October 12, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 22 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s X - SCREENING 631.0 <15.8 254.5 592.6 847.1 87.7 <5.1 <0.63 98.1 1.9 0 Undeg.Diesel 77.3%,(FCM) s XX - SCREENING 50.0 96.5 296.5 415 711.5 76 2.8 <0.05 97 3 0 Undeg.Diesel 79.8%,(FCM) s PF-25 1'1105.0 531.2 1289 1251 2540 185.8 <8.8 <1.1 99.1 0.9 0.1 Undeg.Diesel 85.1%,(FCM) s PF-25 2'1629.0 1031 2167 1836 4003 286.7 <13 <1.6 99.3 0.7 0 Undeg.Diesel 83.9%,(FCM) s PF-25 3'47.0 122.1 307.3 273 580.3 49.1 1.8 <0.047 98.4 1.6 0 Undeg.Diesel 80.5%,(FCM) s PF-25 4'578.0 <14.4 451.1 699.6 1150.7 109.7 <4.6 <0.58 98.6 1.4 0 Undeg.Diesel 79.3%,(FCM) s PF-25 5'47.0 <1.2 10.7 25.7 36.4 3.3 <0.38 <0.047 98.2 1.3 0.5 Undeg.Diesel 69.7%,(FCM) s PF-25 6'1434.0 <35.9 767.5 1364 2132 207.7 <11.5 <1.4 98.6 1.4 0 Undeg.Diesel 74.4%,(FCM) s PF-25 7'467.0 <11.7 622 1014 1636 208.9 7.6 <0.47 98.1 1.9 0 Undeg.Diesel 76.2%,(FCM) s PF-25 8'501.0 <12.5 439.9 806.8 1246.7 129.1 <4 <0.5 98.1 1.9 0 Undeg.Diesel 75.3%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 99.5 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMEHTAL Samples taken Thursday, October 12, 2023 Address:Samples extracted Thursday, October 12, 2023 Samples analysed Thursday, October 12, 2023 Contact:MIKE JONES Operator MAX MOYER Project:MOORESVILLE NC ; EMERGENCY RESPONSE 24 H09382 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s PF-25 9'22.5 <0.56 6.4 12.7 19.1 1.6 <0.18 <0.023 98.5 1.2 0.4 Undeg.Diesel 77.5%,(FCM) s SCREEN 21.6 24.3 94.9 120.5 215.4 21.3 0.79 <0.022 97.8 2.2 0 Undeg.Diesel 83.1%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 101.9 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ################## QED Hydrocarbon FingerprintsProject: MOORESVILLE NC ; EMERGENCY RESPONSE ##################                               Attachment  G        Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Monday, October 16, 2023 Address 503 INDUSTRIAL AVENUE Samples extracted Monday, October 16, 2023 GREENSBORO NC Samples analysed Thursday, October 19, 2023 Contact:WYATTE COPELAND Operator MAX MOYER Project:2023-291 10 F03640 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s SPF-26 18.8 <0.47 <0.47 <0.47 <0.47 <0.09 <0.15 <0.019 0 0 0 PHC not detected,(BO) s SPF-27 16.9 <0.42 <0.42 <0.42 <0.42 <0.08 <0.14 <0.017 0 100 0 PHC not detected s SPF-28 17.1 <0.43 <0.43 0.43 0.43 0.23 <0.14 <0.017 0 36.3 63.7 Residual HC s SPF-29 21.0 <0.52 <0.52 <0.52 <0.52 <0.1 <0.17 <0.021 0 100 0 PHC not detected s SPF-30 16.7 <0.42 <0.42 <0.42 <0.42 <0.08 <0.13 <0.017 0 100 0 PHC not detected s SPF-31 18.1 <0.45 <0.45 <0.45 <0.45 <0.09 <0.14 <0.018 0 100 0 PHC not detected s SPF-32 20.0 <0.5 <0.5 <0.5 <0.5 <0.1 <0.16 <0.02 0 100 0 PHC not detected s SPF-33 18.6 <0.46 <0.46 <0.46 <0.46 <0.09 <0.15 <0.019 0 100 0 PHC not detected s DISP-1 601.0 <15 1701 3930 5631 568.7 21.1 <0.6 98.5 1.5 0 Undeg.Diesel 91.8%,(FCM) s DISP-2 219.0 <5.5 1372 3383 4755 380.8 14.4 <0.22 97.9 2.1 0 Undeg.Diesel 91.6%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 101.6 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios Hydrocarbon Analysis Results Client:PYRAMID ENVIRONMENTAL Samples taken Monday, October 16, 2023 Address 503 INDUSTRIAL AVENUE Samples extracted Monday, October 16, 2023 GREENSBORO NC Samples analysed Thursday, October 19, 2023 Contact:WYATTE COPELAND Operator MAX MOYER Project:2023-291 13 F03640 Matrix Sample ID Dilution used BTEX (C6 - C9) GRO (C5 - C10) DRO (C10 - C35) TPH (C5 - C35) Total Aromatics C10-C35 16 EPA PAHs BaP HC Fingerprint Match % light % mid % heavy s DISP-3 538.0 <13.4 1381 3201 4582 431.3 16 <0.54 98.5 1.4 0.1 Undeg.Diesel 92.5%,(FCM) s DISP-4 513.0 340.3 2039 5206 7245 589.7 22.3 <0.51 98.1 1.9 0 Undeg.Diesel 89.6%,(FCM) s DISP-5 580.0 <14.5 2204 5382 7586 607.6 23 <0.58 98.3 1.7 0 Undeg.Diesel 90.5%,(FCM) Initial Calibrator QC check OK Final FCM QC Check OK 101.8 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present Ratios QED Hydrocarbon FingerprintsProject:2023-291 ################## QED Hydrocarbon FingerprintsProject:2023-291 ##################                               Attachment  H          UST-62 24-Hour Notification of Discharge Form For Non-UST Releases of Petroleum in NC This form should be completed and submitted to the UST Section’s regional office following a known or suspected release of petroleum from a source other than an underground storage tank. This form is required to be submitted within 24 hours of discovery of a known or suspected petroleum release (DWM USE ONLY) Incident # ___________ Priority Rank (H,I,L,U) _____ Received (time/date) ___________________________ Received by ________________ Region __________ Reported by (circle one): Phone, Fax or Report Suspected Contamination? (Y/N) ___ Confirmed GW Contamination? (Y/N) ___ Confirmed Soil Contamination ?(Y/N) ___ Samples taken?(Y/N) ___ Free product? (Y/N) ___ If Yes(free product), state greatest thickness: _____feet Release discovered (time/date):______________ _______________________ INCIDENT DESCRIPTION Incident Name: Address (street number/name): County: City/Town: Zip Code: Regional Office (circle one): Asheville, Mooresville, Fayetteville, Raleigh, Washington, Wilmington, Winston-Salem Latitude (decimal degrees): Longitude (decimal degrees) : Obtained by: Describe suspected or confirmed release (nature of release, time/date of release, quantity of release, amount of free product): T GPS T Electronic topographic map T GIS Address matching Describe initial response/abatement (time/date release stopped, cleanup begun/completed, quantity of product soil removed, confirmation sampling): T Other T Unknown Describe impacted receptors: Describe location: HOW RELEASE WAS DISCOVERED (Release Code) (Check one) T Observation of Release at Occurrence T Visual or Olfactory Evidence T Soil Contamination T Groundwater Contamination T Water Supply Well Contamination T Surface Water Contamination T Other (specify) _______________ SOURCE OF CONTAMINATION Source of Release (Check one to indicate primary source) Cause of Release (Check one to indicate primary cause) Type of Release (Check one) Product Type Released (Check one to indicate primary petroleum product type released) T AST (tank) T AST Piping/ Dispenser T AST Delivery Problem T OTR Vehicle Tank T OTR Bulk Transport Tank T RR Bulk Transport Tank T Transformer T Unknown T Other ______________ Definitions presented on reverse T Spill (Accidental) T Spill (Intentional) T Corrosion T Physical or Mechanical Damage T Equipment Failure T AST Overfill T AST Installation Problem T Unknown T Other ______________ Definitions presented on reverse T Petroleum T Both Petroleum & Non-Petroleum Location (Check one) T Facility T Residence T Highway/Road T Railway T Other T Gasoline/ Diesel/ Kerosene T E11 – E20 T E21 – E84 T E85 – E99 T Ethanol 100% T Diesel/Veg. Oil Blend T Vegetable Oil 100% T Heating Oil T Waste Oil T Mineral Oil-no PCBs T Mineral Oil-PCBs T Other Petroleum Products ________ Ownership 1. Municipal 2. Military 3. Unknown 4. Private 5. Federal 6. County 7. State Operation Type 1. Public Service 2. Agricultural 3. Residential 4. Education/Relig. 5. Industrial 6. Commercial 7. Mining Guidance presented on reverse UST Form 62 (04/10) Page 1 of 2 IMPACT ON DRINKING WATER SUPPLIES Water Supply Wells Affected? 1. Yes 2. No 3. Unknown Number of Water Supply Wells Affected ______ List of Water Supply Wells Contaminated: (Include Users Names, Addresses and Phone Numbers. Attach additional sheet if necessary) 1. 2. 3. PARTY RESPONSIBLE FOR RELEASE (if the source of the release is not an AST system or if it is an AST system and there is a responsible party other than the AST system owner/ operator) Name of Person/Company Address City State Zip Code Telephone Number AST SYSTEM OWNER (if the source of the release is an AST system) AST Owner/Company Address City State Zip Code Telephone Number AST SYSTEM OPERATOR (if the source of the release is an AST system) UST Operator/Company Address City State Zip Code Telephone Number LANDOWNER AT LOCATION OF INCIDENT Landowner Address City State Zip Code Telephone Number Draw Sketch of Area or Provide Map (showing incident site, location of release, two major road intersections, potential receptors) Attach sketch or map to form. Give Directions to Incident Site Attach directions to form if necessary. Person Reporting Incident Company Telephone Number Title Address Date UST Form 62 (04/10) Page 2 of 2 Definitions of Sources AST (Tank): means the tank is used to store product AST Piping: means the piping and connectors running from the tank to the dispenser or other end-use equipment AST Dispenser: includes the dispenser and the equipment used to connect the dispenser to the piping AST Delivery Problem: identifies releases that occurred during product delivery to the tank. OTR Vehicle Tank: means the tank is used to store product to fuel an over the road vehicle OTR Bulk Transport Tank: means a tank that is used to transport product in bulk over the road (by truck) RR :bulk Transport Tank: means a tank that is used to transport product in bulk by train Transformer: means electrical transformer Other: serves as the option to use when the release source is known but does not fit into one of the preceding categories Unknown: identifies releases for which the source has not been determined Definitions of Causes Spill (Accidental): use this cause when a spill occurs accidentally(e.g., when the delivery hose is disconnected from a fill pipe) Spill (Intentional): use this cause when a spill occurs intentionally (e.g., intentional dumping or breakage) Corrosion: use when a metal tank, piping, or other component has a release due to corrosion Physical or Mechanical Damage: use for all types of physical or mechanical damage, except corrosion Equipment failure: use when a release occurs due to equipment failure other than corrosion or physical or mechanical damage AST Overfill: use when an overfill occurs (e.g., overfills may occur from the fill pipe at the tank or when the nozzle fails to shut off at the dispenser) AST Installation Problem: use when the problem is determined to have occurred specifically because the AST system was not installed properly Other: use this option when the cause is known but does not fit into one of the preceding categories Unknown: use when the cause has not been determined Guidance: Ownership and Operator Type Ownership select the category which describes owner of the AST system, bulk transport tank, or other release source Operator Type select the category which describes the operation in which owner uses the AST system, bulk transport tank, or other release source US Ecology – 550 Patterson Farm Road ‐ Diesel Fuel Spill Cleanup Report Page 9  Pyramid Environmental Project # 2023‐291   November 28, 2023  Table 1 – Soil Sampling Analytical Results  Date Sample ID Depth PID Reading GRO [mg/kg] DRO [mg/kg]  10/03/2023 PFS‐1 7 ft. < 5 ppm <0.24 <0.24  10/03/2023 PFS‐2 7 ft. < 5 ppm <0.6 <0.6  10/03/2023 PFS‐3 7 ft. < 5 ppm <0.52 <0.52  10/03/2023 PFS‐4 7 ft. < 5 ppm <0.52 <0.52  10/03/2023 PSFS‐5 1 ft. < 5 ppm <0.16 <0.16  10/03/2023 PSFS‐6 1.5 ft. < 5 ppm <0.26 0.26  10/03/2023 PSFS‐7 1 ft. < 5 ppm <0.3 0.3  10/03/2023 PSFS‐8 1 ft. < 5 ppm <0.28 <0.28  10/03/2023 PSFS‐9 1.5 ft. < 5 ppm 0.76 <0.32  10/03/2023 PSFS‐10 1 ft. < 5 ppm <0.27 <0.27  10/03/2023 PSFS‐11 1 ft. < 5 ppm <0.3 <0.3  10/03/2023 PSFS‐12 1.5  ft. < 5 ppm 0.92 <0.34  10/03/2023 PSFS‐13 1 ft. < 5 ppm 2.1 8.3  10/06/2023 EPF‐8’  (North) 8 feet < 5 ppm 13 27.2  10/06/2023 PF‐16 1 ft. < 5 ppm <0.34 0.34  10/06/2023 PF‐17 1 ft. < 5 ppm <0.34 0.64  10/06/2023 PF‐18 1 ft. < 5 ppm <0.25 0.25  10/06/2023 PF‐19 1 ft. < 5 ppm <0.29 <0.29  10/06/2023 PF‐20 1 ft. < 5 ppm <0.24 <0.24  10/12/2023 NE‐3’ 3 feet < 5 ppm 2.4 1.5  10/10/2023 PF‐21 4 ft. < 5 ppm 2 1.1  10/10/2023 PF‐22 8 ft. < 5 ppm 10.4 18.5  10/11/2023 PF‐23 5 ft. < 5 ppm <0.42 <0.42  10/11/2023 PF‐24 2 ft. < 5 ppm <0.31 <0.31  10/12/2023 PF‐25 9 ft. < 5 ppm 6.4 12.7  10/16/2023 SPF‐26 1 ft. 1.2 <0.47 <0.47  10/16/2023 SPF‐27 2.5 ft. 2.7 <0.42 <0.42  10/16/2023 SPF‐28 2 ft. 1.9 <0.43 0.43  10/16/2023 SPF‐29 3.5 ft 3.3 <0.52 <0.52  10/16/2023 SPF‐30 6 ft. 3.6 <0.42 <0.42  10/16/2023 SPF‐31 6 ft. 1.5 <0.45 <0.45  10/16/2023 SPF‐32 3 ft. 2.8 <0.5 <0.5  10/16/2023 SPF‐33 4.5 ft. 4.1 <0.46 <0.46  NCDEQ Cleanup Levels [mg/kg] 50 100   * ppm  =  parts per million    * mg/kg = milligrams per kilogram      Diesel Spill Cleanup Site 550 Patterson Farm Road, Mooresville, NC Legend 550 Patterson Farm Rd 1000 ft N ➤➤ N Diesel Spill Cleanup - US Ecology 550 Patterson Farm Road, Mooresville, NC Legend 100 ft N ➤➤ N Image © 2023 Airbus Image © 2023 Airbus Image © 2023 Airbus Diesel Spill Cleanup - US Ecology 550 Patterson Farm Road, Mooresville, NC Legend 70 ft N ➤➤ N Image © 2023 Airbus Image © 2023 Airbus Image © 2023 Airbus 10/12/23, 1:32 PM 810 E Center Ave, Mooresville, NC 28115 to Mooresville City Schools, North Carolina - Google Maps https://www.google.com/maps/dir/810+E+Center+Ave,+Mooresville,+NC+28115/35.5241397,-80.7452042/@35.5562511,-80.8332109,12z/data=!4m9!…1/1 Map data ©2023 Google 2 mi Explore Mooresville City Schools 10 min 6.2 miles via NC-3 N and Linwood Rd Fastest route now due to trac conditions  12 min 7.5 miles via Linwood Ave Restaurants Hotels Gas stations Parking Lots More Drive 6.2 miles, 10 min810 E Center Ave, Mooresville, NC 28115 to Mooresville City Schools, North Carolina Directions from NCDEQ Mooresville Regional Oce to 550 Patterson Farm Road                               Attachment  I            LOAD Date Area Tons NUMBER hauled JRP-001 10/6/2023 Excavation 10.94 JRP-002 10/6/2023 Excavation 7.27 JRP-003 10/7/2023 Excavation 6.86 JRP-004 10/7/2023 Excavation 6.62 JRP-005 10/9/2023 Excavation 8.07 JRP-006 10/9/2023 Excavation 9.15 JRP-007 10/9/2023 Excavation 10.11 JRP-008 10/9/2023 Excavation 9.45 JRP-009 10/9/2023 Excavation 8.95 JRP-010 10/9/2023 Excavation 7.73 JRP-011 10/9/2023 Excavation 12.41 JRP-012 10/9/2023 Excavation 11.26 JRP-006 10/10/2023 Excavation 10.84 JRP-013 10/10/2023 Excavation 11.24 JRP-014 10/10/2023 Excavation 10.92 JRP-015 10/10/2023 Excavation 12.44 JRP-015 (2)10/10/2023 Excavation 10.78 JRP-016 10/10/2023 Excavation 12.66 JRP-016 (2)10/10/2023 Excavation 11.97 JRP-017 10/10/2023 Excavation 7.05 JRP-019 10/10/2023 Excavation 9.87 JRP-015 10/11/2023 Excavation 11.78 JRP-015 (2)10/11/2023 Excavation 10.43 JRP-016 10/11/2023 Excavation 13.17 JRP-016 (2)10/11/2023 Excavation 15.66 JRP-017 10/11/2023 Excavation 10.36 JRP-0-17 10/11/2023 Excavation 10.44 JRP-023 10/11/2023 Excavation 6.99 JRP-024 10/11/2023 Excavation 7.31 JRP-024 (2)10/11/2023 Excavation 7.53 JRP-025 10/11/2023 Excavation 8.76 JRP-025 (2)10/11/2023 Excavation 10.56 JRP-036 10/11/2023 Excavation 9.40 JRP-TC-107 10/11/2023 Excavation 10.93 JRP-036 (2)10/12/2023 Excavation 11.15 JRP-037 10/12/2023 Excavation 12.33 JRP-038 10/12/2023 Excavation 12.04 JRP-041 10/12/2023 Excavation 13.81 JRP-043 10/12/2023 Excavation 14.98 JRP-044 10/12/2023 Excavation 10.34 JRP-047 10/12/2023 Excavation 11.44 JRP-048 10/12/2023 Excavation 10.36 JRP-0 10/13/2023 Excavation 9.84 JRP-018 10/13/2023 Excavation 7.40 JRP-049 10/13/2023 Excavation 11.84 JRP-050 10/13/2023 Excavation 13.64 JRP-051 10/13/2023 Excavation 12.66 JRP-056 10/16/2023 Excavation 10.73 JRP-058 10/16/2023 Excavation 15.26 JRP-046 10/17/2023 Excavation 12.36 JRP-060 10/17/2023 Excavation 13.23 JRP-061 10/17/2023 Excavation 15.63 JRP-062 10/17/2023 Excavation 13.47 JRP-063 10/17/2023 Excavation 8.72 JRP-064 10/17/2023 Excavation 8.01 JRP-065 10/17/2023 Excavation 20.58 JRP-067 10/18/2023 Excavation 10.00 JRP-068 10/18/2023 Excavation 16.49 JRP-069 10/18/2023 Excavation 15.77 Total Tons Removed From the Excavation Area = 651.99 NCDEQ UST Incident # NCDEQ UST Permit # US Ecology 550 Patterson Farm Road, Mooresville, NC - Diesel Tank Spill Clenaup