Loading...
HomeMy WebLinkAboutMO-8724_40243_CA_MRP_20230724_Grapevine ProduceI TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY .................................................................................... 1 2.0 SITE INFORMATION ......................................................................................... 2 2.1 SITE IDENTIFICATION INFORMATION .......................................................................... 2 2.2 CONTACTS ASSOCIATED WITH THE LEAKING UST SITE .................................................. 2 2.3 RELEASE INFORMATION .......................................................................................... 2 3.0 SITE HISTORY AND CHARACTERIZATION ........................................................ 3 3.1 STORAGE TANK SYSTEM INFORMATION ..................................................................... 3 3.2 SITE ENVIRONMENTAL HISTORY ............................................................................... 6 3.3 RISK CHARACTERIZATION ........................................................................................ 6 3.3.1 Water Supply Wells ................................................................................... 6 3.3.2 Public Water Supplies ............................................................................... 6 3.3.3 Surface Water ........................................................................................... 7 3.3.4 Wellhead Protection Areas ....................................................................... 7 3.3.5 Deep Aquifers in the Coastal Plain Physiographic Region ........................ 7 3.3.6 Subsurface Structures ............................................................................... 7 3.3.7 Land Use .................................................................................................... 7 3.4 SITE GEOLOGY AND HYDROGEOLOGY ........................................................................ 7 3.5 CAP IMPLEMENTATION AND REMEDIATION SYSTEM PERFORMANCE ............................... 8 4.0 SITE ASSESSMENT INFORMATION .................................................................. 8 4.1 EXTENT OF SOIL CONTAMINATION ............................................................................ 8 4.2 EXTENT OF GROUNDWATER CONTAMINATION ............................................................ 9 4.2.1 Monitoring Well Sampling ........................................................................ 9 4.2.2 Water Supply Well Sampling .................................................................... 9 4.2.3 Description of Current Plume .................................................................. 10 4.2.4 Groundwater Remediation ..................................................................... 11 5.0 FREE PRODUCT .............................................................................................. 12 6.0 CONTINUED MONITORED NATURAL ATTENUATION (MNA) ...................... 12 7.0 CONCLUSIONS AND RECOMMENDATIONS .................................................. 12 8.0 STATEMENT & CERTIFICATION ..................................................................... 14 II TABLE OF CONTENTS (Continued) FIGURES 1. Topographic Map 2. Site Map` 3. UST Closure Map 4. Receptor Survey Map 5. Soil Cross Section Location Map 6. Soil Cross Sections (A to A’ & B to B’) 7. Potentiometric Surface Map (6/27/2023) 8. Benzene Isoconcentration Map (6/27/2023) 9. Naphthalene Isoconcentration Map (6/27/2023) 10. MTBE Isoconcentration Map (6/27/2023) 11. n-Propylbenzene Isoconcentration Map (6/27/2023) 12. 1,2,4-Trimethylbenzene Isoconcentration Map (6/27/2023) 13. Groundwater Cross Sections Location Map 14. Groundwater Cross Sections TABLES 1. UST Information (See page 5) 2. Properties Within 1,000 Feet of Source Area 3. Monitoring Well Construction Details 4. Groundwater Elevation Data 5. Laboratory Results of Groundwater Samples (MW, SW, & SFW) Graphs 1. Historical Concentrations of Benzene, Naphthalene, and MTBE in MW-8 APPENDICES A. Notice of Regulatory Requirements (NORR) Letter (5/22/2023) B. Standard Field Procedures C. Laboratory Report and Chain-of-Custody Form D. Groundwater and Soil Contaminant Mass Tables III ACRONYMS BLS ................. Below Land Surface BTEX .............. Benzene, Toluene, Ethylbenzene, & Xylenes CFR ................. Code of Federal Regulations COC ................ Chain-of-Custody CSA ................. Comprehensive Site Assessment CAP ................. Corrective Action Plan DEQ ................ Department of Environmental Quality EDB ................. 1,2-Dibromoethane GCLs ............... Gross Contaminant Levels HASP .............. Health & Safety Plan MSCC .............. Maximum Soil Contaminant Concentration MTBE .............. Methyl Tertiary Butyl Ether μg/L ................ Micrograms per Liter mg/kg ............. Milligrams per kilogram MW ................ Monitoring Well NPDES ............ National Pollutions Discharge Elimination System NCAC .............. North Carolina Administrative Code O&M .............. Operations and Maintenance OSHA .............. Occupational Safety and Health Administration OWS .............. Oil Water Separator OVA ................ Organic Vapor Analyzer PPM ................ Parts Per Million PID .................. Photo-ionization Detector P&ID ............... Process & Instrumentation Diagram PVC ................. Poly-vinyl Chloride QA/QC ............ Quality Assurance / Quality Control SCFM .............. Standard Cubic Feet per Minute SVE ................. Soil Vapor Extraction SW .................. Water Supply Well UST ................. Underground Storage Tank US EPA ............ United States Environmental Protection Agency Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 1 Pyramid Project # 2022-251 07/24/2023 GROUNDWATER MONITORING REPORT FORMER GRAPEVINE PRODUCE NCDEQ Incident #40243 1.0 EXECUTIVE SUMMARY As requested by the NCDEQ and Kelvin Hubbard, Pyramid has completed the pre-approval for the directed activities and monitoring at the former Grapevine Produce site, located at 4500 Hwy 64-90 W., in Taylorsville, NC. The work was completed as pre-approved based on the Notice of Regulatory Requirements (NORR) letter dated May 22, 2023, which is included as Appendix A. [*Note that the letter was mislabeled as 2022 on the cover page of the letter*] The original release was detected during the Underground Storage Tanks (USTs) removal process completed in June 2013. The USTs were placed into temporary closure in 2009 and the UST owner/operator decided to remove the tanks in 2013. Pyramid supervised the removal and permanent closure of (1) 10,000-gallon (1) 4,000-gallon and (1) 3,000-gallon gasoline USTs and the product piping and dispensers. The petroleum release was discovered during the UST removal project, and a total of 191.83 tons of contaminated soil was removed from the UST area and transported off-site for proper disposal. The receptor survey showed that there are private water supply wells in use in the area surrounding the site, as well as municipal water being available to the entire area. The groundwater analytical results showed petroleum compounds detected at concentrations that exceeded the NCAC 2L Groundwater Standards. The LSA II Report was received by the NCDEQ on June 6, 2014. In 2014, the DEQ required a Comprehensive Site Assessment (CSA) for the site, and the field work was completed in the Fall of 2014, the CSA was approved in early 2015, and the NCDEQ requested a Corrective Action Plan in a June 1, 2015 regulatory letter. After Pyramid submitted preapprovals for the CAP, the NCDEQ changed the regulatory requirements for the site to groundwater monitoring. None of the detected concentrations exceeded their respective Gross Contaminant Levels (GCLs) at this high risk site (H-195-D). Concentrations of benzene and other compounds are migrating downgradient from the UST area toward the surface water features at the eastern edge of the property. On June 29, 2017 an 8-hour AFVR event was performed on monitoring well MW-8. Although little liquid was recovered (< 50 gallons), the vapor recovery was about 102.9 pounds of gasoline hydrocarbon vapors (approximately 15.6 gallons equivalent) in 8 hours of operation. In May 2023, the NCDEQ requested the current sampling and the pre-approval was submitted for the sampling and Monitoring Report work. Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 2 Pyramid Project # 2022-251 07/24/2023 2.0 Site Information 2.1 Site Identification Information x Date of Report: July 24, 2023 x Site Risk Ranking: H 195 D x Facility I.D. No. 0-024127 (All USTs were removed in 2013) x NCDEQ Incident No.: 40243 x Site Name: Former Grapevine Produce x Street Address: 4500 NC Highway 64-90 West, Taylorsville, NC 28681 x County: Alexander County x Geographical Data Point: UST Area x Location Method: Google Earth x Latitude/Longitude: N 35.920689° / W 81.257117° The location of the site is shown on Figure 1, which shows a portion of the Ellendale, NC USGS topographic map. The site map is presented as Figure 2, and the Site Map/UST Location Map is presented as Figure 3. 2.2 Contacts Associated with the Leaking UST Site x UST Owner/Operator: Kelvin Hubbard 515 Crestview Drive, Taylorsville, NC 27265 Phone # (828) 632-4533 x Property Owner: Hilda Hubbard 580 Crestview Drive, Taylorsville, NC 27265 Phone # (828) 632-4533 x Property Occupant: Unoccupied x Consultant/Contractor: Pyramid Environmental & Engineering, P.C. 503 Industrial Ave., Greensboro, NC 27406 Phone # (336) 335-3174; email: info@pyramidenvironmental.com Analytical Laboratories: Waypoint Analytical Laboratories 449 Springbrook Rd., Charlotte, NC 28224 (704) 529-6364 Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 3 Pyramid Project # 2022-251 07/24/2023 2.3 Release Information x Date Discovered: June 2013 x Est. Qty. of Release: Unknown x Cause of Release Unknown x Source of Release: Gasoline UST systems consisting of three (3) USTs one 10,000-gal., one 4,000-gal., & one 3,000-gal. x UST Size/Contents: See Table 1 below 3.0 SITE HISTORY AND CHARACTERIZATION 3.1 Storage Tank System Information Table 1 Underground Storage Tank (UST) Information Tank No. Install Dates Size in Gallons Tank Dimensions Last Contents Previous Contents UST Leak / Release Removal Date 1 05/07/81 10,000 8’ x 26.5’ Gasoline Gasoline Yes 06/26/2013 2 05/07/81 4,000 64” x 24’ Gasoline Gasoline Yes 06/26/2013 3 05/07/81 3,000 64” x 18’ Gasoline Gasoline Yes 06/26/2013 The previous table lists information that pertains to the underground storage tank (UST) systems at the site. In June 2013, three (3) USTs, product piping and dispenser were removed, and the UST Closure Report was accepted by the DEQ. 3.2 Site Environmental History On June 24 through June 26, 2013, Pyramid supervised the removal and permanent closure of (1) 10,000-gallon (1) 4,000-gallon and (1) 3,000-gallon gasoline Underground Storage Tanks (USTs), and the product piping and dispensers. The USTs were put into temporary closure in 2009 and were removed in 2013. The petroleum release was discovered during the UST removal project, and a total of 191.83 tons of contaminated soil was removed from the UST area and transported off-site for proper disposal. The laboratory results of risk-based soil analyses showed some soil contamination remained at the bottom of the former UST basin that exceeded the Soil-to-Groundwater (STGW) and Residential Maximum Soil Contaminant Concentrations (MSCCs). The receptor survey showed that there are private water supply wells in use in the area surrounding the site as well as Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 4 Pyramid Project # 2022-251 07/24/2023 municipal water available. The groundwater analytical results showed petroleum compounds detected at concentrations that exceeded the NCAC 2L Groundwater Standards. The LSA II Report was received by the NCDEQ on June 6, 2014. In 2014, the DEQ required a Comprehensive Site Assessment (CSA) for the site. The pre-approval for the site was submitted and approved, and field work was completed in the Fall of 2014. During the CSA assessment, an additional 7 monitoring wells were installed at the site. In 2015 the NCDEQ approved the Comprehensive Site Assessment (CSA), and requested a Corrective Action Plan in a regulatory letter dated June 1, 2015. After Pyramid submitted preapprovals for the CAP, the NCDEQ changed the regulatory requirements to groundwater monitoring. In August 2015, Pyramid conducted a Pre-CAP Monitoring event at the site. The on-site groundwater monitoring wells and five nearby supply wells (SW-4522, 4586, 4646, 4651, and 4631) were sampled for laboratory analysis. The analytical results for the monitoring wells showed detections of petroleum compounds above the 2L Standard in MW-4, MW-6, MW-7, and MW-8; however, none of the detected concentrations exceeded their respective Gross Contaminant Levels (GCLs) at this high risk site (H195-D). The groundwater analytical results from the May 5, 2016 sampling event showed detections of petroleum compounds above the 2L Standard in MW-4, MW-6, MW-7, MW-8 and MW-9; however, none of the detected concentrations exceeded their respective GCLs. Concentrations of benzene and other petroleum compounds are migrating downgradient (to the east) from the source area toward the surface water features at the eastern edge of the property. On June 29, 2017 an 8-hour AFVR event was performed on monitoring well MW-8. The AFVR event was performed to remove petroleum contaminated water and evaporate gasoline vapers. Vacuum was maintained at 11-12 inches of mercury (Hg) with an average airflow rate of approximately 185 cubic feet per minute (CFM) throughout the 8-hour event. Although little liquid was recovered (about 25 gallons), the vapor recovery was about 102.9 pounds of hydrocarbon vapors (approximately 15.6 gallons equivalent) in 8 hours of operation. The vapor recovery of 15.6 gallons of hydrocarbons from the soil is mass removal the NCDEQ has been requesting, and it worked well at this site. On July 14, 2017, the post-AFVR groundwater sampling of well MW-8 showed high concentrations of petroleum hydrocarbons at concentrations that exceed their respective NCAC 2L Standards. The April 2018 BTEX concentrations in MW-8 showed a reduction of approximately 37% compared to the September 2017 BTEX concentrations. The highest benzene and concentrations of other petroleum contaminants of concern (COCs) are in the area of the former UST basin. These COCs are present in the shallow saturated zone and were not detected in the deeper bedrock zone, as indicated by the historical groundwater data for MW-2. Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 5 Pyramid Project # 2022-251 07/24/2023 On May 8, 2019, Pyramid conducted sampling of MW-4, MW-7, MW-8, MW-9, MW-11, and MW- 12. MW-4, MW-8, and MW-9 showed concentrations of petroleum hydrocarbons that exceed their respective NCAC 2L Standards. The highest benzene and concentrations of other petroleum contaminants of concern (COCs) are in the area of the former UST basin. These COCs are present in the shallow saturated zone and were not detected in the deeper bedrock zone, as indicated by the historical groundwater data for MW-2. On October 24, 2019, Pyramid conducted sampling of MW-4, MW-8, MW-11 and MW-12. MW- 8 and MW-4 showed concentrations of petroleum hydrocarbons that exceed their respective NCAC 2L Standards. The highest benzene and concentrations of other petroleum contaminants of concern (COCs) are in the area of the former UST basin. These COCs are present in the shallow saturated zone and were not detected in the deeper bedrock zone, as indicated by the historical groundwater data for MW-2. The reducing trend of concentrations in groundwater at the Former Grapevine Produce is balanced with the migration of concentrations into the downgradient wells. The migration has impacted the surface water in the past and may be increasing in the future. The site risk remains high risk, (H195-D) and there are concentrations of MTBE detected in the downgradient surface water stream. Having approved the CSA, the NCDEQ required completion of a Corrective Action Plan (CAP) in a letter dated June 1, 2015. In the subsequent months, Pyramid submitted two pre-approval requests to complete a CAP and each pre-approval request was rejected. Pyramid/Hubbard request that the NCDEQ direct the future assessment and remediation at the site. The site is ranked high risk (H195) due to the presence of supply wells within 500 feet, surface water at the downgradient site perimeter, and dissolved petroleum in groundwater above the 2L Standards. Groundwater migration near the top of weathered bedrock has spread contaminants downgradient at the site. Based on the concentrations in the shallow aquifer, groundwater quality could be improved by extraction of contaminated groundwater from a series of 6 to 8 shallow MMPE extraction points in the former UST area. This recovery method was suggested to the NCDEQ and would be an active method to lower concentrations for this high-risk site. On May 25, 2022, Pyramid submitted a preapproval to sample 10 wells and two locations on the downgradient surface water feature. Pyramid submitted a preapproval for the site since it had not been sampled since 2019. Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 6 Pyramid Project # 2022-251 07/24/2023 On June 9, 2022, Pyramid conducted sampling of MW-1, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, SFW-2 and SFW-3. MW-4, MW-7, MW-8, MW-9 showed concentrations of petroleum hydrocarbons that exceed their respective NCAC 2L Standards. The highest benzene and concentrations of other petroleum contaminants of concern (COCs) are in the area of the former UST basin. These COCs are present in the shallow saturated zone and were not detected in the deeper bedrock zone, as indicated by the historical groundwater data for MW-2. On May 31, 2023, Pyramid submitted a preapproval to sample nine (9) monitoring wells, one (1) supply well, and two (2) downgradient surface water features. Pyramid submitted the preapproval for the site based on the requirements outlined in the NORR letter received on May 22, 2023. On June 27, 2023, Pyramid conducted sampling of MW-1, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-11, MW-12, SW-4522, SFW-2, and SFW-3. MW-4, MW-8, and MW-9 showed concentrations of petroleum hydrocarbons that exceed their respective NCAC 2L Standards. The highest benzene and concentrations of other petroleum contaminants of concern (COCs) are in the area of the former UST basin. These COCs are present in the shallow saturated zone and were not detected in the deeper bedrock zone, as indicated by the historical groundwater data from MW-2. 3.3 Risk Characterization The site is located west of the Town of Taylorsville, NC in an area where approximately 30 percent of the developed properties within 1,500 feet of the subject property rely on water supply wells as a sole source of potable water. The former Grapevine Produce groundwater incident is classified as “high-risk” since twelve (12) active water supply wells are located within 1,000 feet of the source area. The current risk classification for the site is High Risk H195D. A list of all the properties within 1,000 feet of the source area is presented in Table 2. 3.3.1 Water Supply Wells Twelve (12) active supply wells were identified within 1,000 feet of the site and sixteen (16) active supply wells were identified within 1,500 feet of the site (see Figure 4). As shown on Figure 4, the nearest active supply well is SW-1 on the subject property. This well is connected to the rental house at 4522 Highway 64-90 West. This supply well is located topographically upgradient and approximately 220 feet from the former UST basin. 3.3.2 Public Water Supplies The City of Hickory maintains a municipal water line located along Highway 64-90 West and many of the developed properties on 64-90 West are connected. The former Big D’s Diner & Country Store and the newer rental house located on the subject property have active municipal water Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 7 Pyramid Project # 2022-251 07/24/2023 accounts. Mr. Hubbard indicated that he is willing to connect the other rental house at 4522 Hwy. 64-90 to the existing municipal water line if it will help to reduce the risk classification of the incident. 3.3.3 Surface Water In general, both surface water and groundwater flow directions are controlled by topographic contours of landforms with flow occurring perpendicular to the contours from high to low elevations. Surface water run-off from the subject property generally flows to the east-southeast to an unnamed tributary of Spring Creek. The on-site pond feeds the tributary to Spring Creek as well as groundwater from the site making it a wet creek The unnamed tributary flows southeast approximately 1,400 feet before joining Spring Creek. The location of the site relative to the nearby surface water is shown on Figure 1. 3.3.4 Wellhead Protection Areas There are no designated wellhead protection areas within a 1,500-foot radius of the site. 3.3.5 Deep Aquifers in the Coastal Plain Physiographic Region This site is not in the Coastal Plain Physiographic Region, and this section does not apply. 3.3.6 Subsurface Structures There are no utilities that are acting to enhance the migration of the contaminant plume. There is shallow bedrock at the site which may allow accelerated groundwater migration in the upper fractured bedrock zone between 11 and 30 feet BLS. 3.3.7 Land Use The surrounding area includes a mixture of predominantly residential and agricultural use. 3.4 Site Geology and Hydrogeology Pyramid’s review of the 1985 Geologic Map of North Carolina yielded information concerning local geology and hydrogeology. Based on this review, the site is located in the Inner Piedmont Belt of North Carolina. The surface geology consists of regional soils created by the weathering of underlying bedrock. The Inner Piedmont Belt is the most intensely deformed and metamorphosed segment of the Piedmont. The metamorphic rocks range from 500 to 750 million years in age. They include gneiss and schist that have been intruded by younger granitic rocks. The northeast-trending Brevard fault zone forms much of the boundary between the Blue Ridge and Inner Piedmont Belts. The bedrock in the area is described as biotite gneiss and schist, map symbol CZbg. In general, both surface water and groundwater flow directions are controlled by topographic contours of landforms with flow occurring perpendicular to the contours from high to low Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 8 Pyramid Project # 2022-251 07/24/2023 elevations. Surface water run-off from the subject property generally flows to the east-southeast to an unnamed tributary to Spring Creek. The on-site pond and groundwater enter the tributary at the site and flow to the east. The unnamed tributary flows southeast approximately 1,400 feet before joining Spring Creek. The location of the site relative to the nearby surface water is shown on Figure 1. The bedrock at the site was encountered at a depth of about 11 to 14 feet BGS in the source area. This is about the elevation of the water table in the shallow aquifer which is close to the top-of- bedrock. The saprolitic soil above the bedrock represents a relatively thin layer of soil above bedrock. The groundwater flow and hydraulic conductivity data are summarized below: x Depth to the groundwater ranged between 2.98 and 13.96 feet BLS in October 2019. x The depth to the upper bedrock surface is approximately 11 to 14 feet BLS. x The average groundwater gradient was 0.049 feet/feet to the southeast in October 2019. The groundwater flow velocity for the soil/saprolite zone was estimated to be 36.5 ft/yr. The actual groundwater flow velocity may be more or less than the calculated value depending on natural fractures, influences of localized pumping or water recharge, and manmade features. The groundwater seepage velocity will not coincide with the rate of dissolved petroleum hydrocarbon migration because of adsorption, dilution, dispersion, diffusion, retardation, and biodegradation. 3.5 CAP Implementation and Remediation System Performance A CAP was requested by the NCDEQ in a letter dated June 1, 2015. Pyramid/Hubbard submitted two pre-approval requests for the CAP which were both rejected. Kelvin Hubbard/Pyramid request that the NCDEQ direct cleanup at this high-risk site to actively address groundwater & soil cleanup. 4.0 SITE ASSESSMENT INFORMATION 4.1 Extent of Soil Contamination Pyramid completed soil concentration cross-sections to describe the horizontal and vertical extent of the soil concentrations. The horizontal locations of the soil cross-sections are shown on Figure 5. The soil concentration cross-sections A-A’ and B-B’ are shown on Figure 6. The cross- sections show a limited area of contamination exceeding residential MSCCs. Contamination that exceeds the STGW standards surrounds the UST area, but at very low levels. These risk-based soil analyses show that the only soils above the residential MSCCs are in the area of soil sample RBS which was collected on the southern edge of the former UST excavation. The area of soil contamination above residential standards is roughly shown on Figure 5 and Figure 6. Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 9 Pyramid Project # 2022-251 07/24/2023 4.2 Extent of Groundwater Contamination The most recent groundwater monitoring event was completed on June 27, 2023. As approved by the NCDEQ, Pyramid sampled nine (9) monitoring wells, one (1) supply well, and two (2) surface water locations. All samples collected during the June 2022 groundwater monitoring event were analyzed for VOCs using Standard Method 6200B. 4.2.1 Monitoring Well Sampling SAMPLING DATE: June 27, 2023 WELLS SAMPLED: MW-1, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-11, MW- 12, & SW-4522 SURFACE WATER SAMPLED: SFW-2 & SFW-3 LAB ANALYSES: Standard Method 6200B FREE PRODUCT: No free product has been observed in the MWs at the site. TABLES & GRAPHS: Table 3 : Monitoring Well Construction Details Table 4 : Groundwater Elevation Data Table 5 : Laboratory Results of Groundwater Samples (MW & SW) Table 5 : Laboratory Results of Surface Water Samples (SFW) FIGURES: Figure 7 : Potentiometric Surface Map (06/27/2023) Figure 8 : Benzene Isoconcentration Map (06/27/2023) Figure 9 : Naphthalene Isoconcentration Map (06/27/2023) Figure 10: MTBE Isoconcentration Map (06/27/2023) Figure 11: n-Propylbenzene Isoconcentration Map (06/27/2023) Figure 12: 1,2,4-Trimethylbenzene Isoconcentration Map(06/27/2023) Figure 13: Groundwater Cross Sections Location Map Figure 14: Groundwater Cross Sections STANDARD FIELD PROCEDURES: Field procedures were performed as outlined in the DEQ July 15, 2008 and December 1, 2013 updates publication “Guidelines for Sampling” under the UST Section, presented in Appendix B. LABORATORY REPORTS & CHAINS-OF-CUSTODY: Appendix C 4.2.2 Water Supply Well Sampling Water supply well SW-4522 was sampled during the most recent sampling event completed on June 27, 2023. The location of the supply well is shown on Figure 4. The 2023 laboratory results indicated that none of the targeted petroleum compounds were detected above laboratory Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 10 Pyramid Project # 2022-251 07/24/2023 detection limits in SW-4522. Table 5 shows the historical groundwater analytical results for the supply wells and monitoring wells. During the supply well sampling event in August 2015, Pyramid interviewed two of the property owners (Sharon Howell at 4586 Hwy 64-90 and Shelby Hubbard at 4646 Hwy 64-90) about the possibility of connecting to the municipal water line that is present on Highway 64-90. Both property owners indicated that they were satisfied with their wells and were not interested in connecting to the municipal water system. The property owners for SW-4631, SW-4641 and SW- 4651 off Highway 64-90 were not home at the time of the 2015 sampling event and were not interviewed. Pyramid recommends sampling all surrounding water supply wells located within 500 feet of the former UST location, and the surface water downgradient of the site. 4.2.3 Description of Current Plume (micrograms per liter = μg/l) CURRENT Maximum Benzene: 811 μg/L (MW-8: 06/27/23) Previous Maximum Benzene: 672 μg/L (MW-8: 06/09/22) Historical Maximum Benzene: 2,680 μg/L (MW-8: 09/24/14) CURRENT Maximum BTEX: 4,520 μg/L (MW-8: 06/27/23) Previous Maximum BTEX: 3,066 μg/L (MW-8: 06/09/22) Historical Maximum BTEX: 14,090 μg/L (MW-8: 09/11/17) CURRENT Horizontal Extent of NCAC 2L Exceedances:………………………………. ~14,400 ft2 (06-2023) Previous Horizontal Extent of NCAC 2L Exceedances:…………………………………. ~13,104 ft2 (06-2022) Maximum Horizontal Extent of NCAC 2L Exceedance:………………………………… ~18,696 ft2 (04-2015) CURRENT vertical extent of NCAC 2L plume:………………….……………………………… <50 feet (06/27/23) Previous vertical extent of NCAC 2L plume:…………………...…………………………….. <50 feet (06/09/22) Maximum vertical extent of NCAC 2L plume:………………...…………………………….. <50 feet (04/2015) ESTIMATED CURRENT BENZENE MASS:…………………………........................... 1.30E+08 μg (06/27/23) ESTIMATED PREVIOUS BENZENE MASS: .................................................... 8.29E+07 μg (06/09/22) GROUNDWATER BENZENE MASS BASELINE:…………………..…………………….. 6.51 E+08 μg (09/11/17) ESTIMATED CURRENT MTBE MASS: .......................................................... 5.40E+07 μg (06/27/23) ESTIMATED PREVIOUS MTBE MASS: ......................................................... 3.74E+07 μg (06/09/22) GROUNDWATER MTBE MASS BASELINE:……………..….……………………………. 1.13 E+09 μg (09/11/17) ESTIMATED SOIL CONTAMINANT MASS ( > STGW): .................................... 222.19 lbs (06/09/22) Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 11 Pyramid Project # 2022-251 07/24/2023 The June 2023 analytical results indicate that there are still concentrations of petroleum hydrocarbons above the 2L Groundwater Standard at the site. The estimated groundwater mass contamination was calculated using the equation provided in the “Quantitative Environmental Indicators of Contamination” paper published by the EPA in November 2011. The estimated groundwater mass calculation spreadsheet is included in Appendix D and the mass is estimated based on average benzene and MTBE concentrations in the groundwater monitoring wells. The groundwater benzene mass has decreased by 79.95% and the groundwater MTBE mass has decreased by 95.23% since the initial sampling in September 2014 (over the past 9 years). 4.2.4 GROUNDWATER REMEDIATION No CAP was pre-approved by the NC Trust Fund Branch, and no CAP has been prepared for the site. On June 29, 2017 one 8-hour AFVR event was pre-approved by the NCDEQ on monitoring well MW-8. No petroleum free-product was detected in the well before or after the event. Vacuum was maintained at 11-12 inches of mercury (Hg) with an average airflow rate of approximately 185 cubic feet per minute (CFM) throughout the 8-hour event. Although the groundwater recovery was a small amount (about 25 gallons), about 102.9 pounds of petroleum hydrocarbon vapors were removed (approximately 15.6 gallons). This recovery of 15.6 gallons of hydrocarbons petroleum from the soil, provided total hydrocarbon mass removal from the subsurface which helped prevent soil contamination from continuing to act as a source of future groundwater contamination. Pyramid recommends preparing a CAP for source area treatment with AFVR and MMPE events and after source reduction for 2 years, continued Monitored Natural Attenuation (MNA). Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 12 Pyramid Project # 2022-251 07/24/2023 5.0 FREE PRODUCT To date, Pyramid has not detected free-phase petroleum product at the Grapevine Produce site. 6.0 CONTINUED MONITORED NATURAL ATTENUATION (MNA) To date, a Corrective Action Plan has not been pre-approved or completed for the Grapevine Produce site. The evaluation of remedial technologies and Monitored Natural Attenuation (MNA) has not been completed for the site. The idea of performing multiple extraction events to reduce concentrations in the source area has been discussed; however, no formal evaluation of remediation options has been performed. At this point, the NCDEQ has selected to perform Monitored Natural Attenuation (MNA) only. Pyramid / Hubbard recommend active remediation at the site, including source area reductions to assist the MNA in the site remediation. The past vapor and fluid recovery showed excellent hydrocarbon mass removal in the vapor phase without pumping and hauling a lot of water. This method would be more effectively completed with several shallow monitoring/recovery wells in the source area. The periodic extraction of petroleum (gasoline) vapors from the subsurface will remove hydrocarbon mass as vapor from the soil and capillary fringe, and will minimize groundwater recovery. No permanent remediation system purchase and installation would be necessary. The costs for petroleum remediation would be minimal while recovery of hydrocarbon mass would be maximized. Pyramid will prepare a pre-approval for drilling extraction wells and performing MMPE events as directed by the NCDEQ. 7.0 CONCLUSIONS AND RECOMMENDATIONS Pyramid Environmental & Engineering, P.C. (Pyramid) has completed a groundwater monitoring event for the referenced site. A summary of the assessment results and findings are presented below. x Municipal water is available on NC Highway 64-90 West. In August 2015, Pyramid interviewed two nearby well owners (within 500 feet) to determine if they would connect to the municipal water to reduce the risk classification of the site, and both declined. x The laboratory results of surface water samples collected in February 2017 showed that Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 13 Pyramid Project # 2022-251 07/24/2023 the MTBE plume had impacted the downgradient stream (sample SFW-3) and man-made pond. This is the same pattern observed for the benzene plume, which appears to be dispersing and migrating toward the stream and pond. x The laboratory results of surface water samples collected in June 2023 showed that concentrations of MTBE were present at concentrations slightly above laboratory detection limits in SFW-3 (0.648 μg/L). While this remains well below the NCAC 2L standards, it does confirm that the MTBE plume is extending toward the downgradient stream. x The Historical Concentrations of Benzene, Naphthalene, and MTBE in MW-8 are shown in graph 1. The concentrations of benzene and MTBE have been trending downward overall for the past several years. A slight increase was observed for both COCs during the most recent assessment, but the overall downward trend remains consistent. x The June 2023 groundwater analyses from the Former Grapevine Produce show a slight increase in concentrations of petroleum contaminant compounds compared to the previous groundwater sampling results from June 2022. Despite this slight increase, the overall trend of the COCs remains downward. x At the request of the NCDEQ, Pyramid could perform a Mann-Kendall Analysis of the historical monitoring data to further quantify the observed contaminant trends at the site. x The site risk classification remains high risk (H195D). x The highest benzene and concentrations of other petroleum contaminants of concern (COCs) are in the area of the former UST basin. These COCs are present in the shallow saturated zone and were not detected in the deeper bedrock zone, as indicated by the historical groundwater data for MW-2. x Based on the assessment results the site is ranked high risk (H195) due to the presence of twelve (12) water supply wells within 1,000 feet, surface water at the downgradient site perimeter, and dissolved petroleum in groundwater above the 2L Standards. x The groundwater movement appears to be near the top of weathered bedrock. Concentrations of benzene, naphthalene, and MTBE are continuing to migrate in the downgradient direction toward the surface water stream. Hubbard – Grapevine Produce - DEQ Incident #40243 - Groundwater Monitoring Report 14 Pyramid Project # 2022-251 07/24/2023 Based on the concentrations in the shallow aquifer, Pyramid/Hubbard recommend active remediation at the site to halt migration toward the surface water receptor downgradient of the site. The groundwater contaminant concentrations could be reduced in the source area by extraction of contaminated groundwater from a series of 6 to 8 shallow MMPE extraction points. This recovery method has been suggested to the NCDEQ in the past and would be an active method to lower concentrations for this high-risk site, and attenuate downgradient migration of the observed gasoline contaminants. The periodic extraction of petroleum (gasoline) vapors from the subsurface will remove hydrocarbon mass as vapor from the soil and capillary fringe, and will minimize groundwater recovery. No permanent remediation system purchase and installation are necessary. The costs for petroleum remediation are minimal while recovery of hydrocarbon mass is maximized. Pyramid will prepare a pre-approval for drilling extraction wells and performing MMPE events as directed by the NCDEQ. If Active Remediation is not approved, Pyramid recommends collecting surface water samples up stream, at groundwater entry, and downstream of the contaminant plume shown in Figure 8 to assess the migration of petroleum compounds into the stream. In addition, Pyramid recommends sampling of MW-1, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-11, MW-12 to continue monitoring the petroleum plume. 8.0 STATEMENT & CERTIFICATION 1 Enter the date the monitoring report was due. Report Due June 30, 2022. Will this report be submitted after the established due date? YES NO 2 Was any required information from the above template missing from this report? YES NO 3 If applicable, will any of the proposed attenuation milestones under the schedule approved in the Corrective Action Plan not be met? (within a reasonable margin of error) YES NO No CAP has been completed for this site. 4 Does any known or suspected source zone soil contamination or free product remain outside of the assessed area that could be inhibiting natural attenuation? YES NO 5 Has there been an unexpected increase in contaminant mass sufficient to suggest a potential new release from a separate onsite or offsite source? YES NO FIGURES PY R A M I D EN V I R O N M E N T A L & E N G I N E E R I N G , P . C . 4 SW-4522 PY R A M I D EN V I R O N M E N T A L & E N G I N E E R I N G , P . C . PY R A M I D EN V I R O N M E N T A L & E N G I N E E R I N G , P . C . PY R A M I D EN V I R O N M E N T A L & E N G I N E E R I N G , P . C . PY R A M I D EN V I R O N M E N T A L & E N G I N E E R I N G , P . C . PY R A M I D EN V I R O N M E N T A L & E N G I N E E R I N G , P . C . PY R A M I D EN V I R O N M E N T A L & E N G I N E E R I N G , P . C . 13 6/ 2 7 / 2 3 20 2 2 - 2 5 1 14 20 2 2 - 2 5 1 6/ 2 7 / 2 0 2 3 MW-9 Benzene =11.6 MTBE = 17.5 Naphthalene = 5.99 MW-7 Benzene = 0.655 MTBE = ND Naphthalene = 13.4 MW-8 Benzene =811 MTBE = 401 Naphthalene = ND MW-8 Benzene =811 MTBE = 401 Naphthalene = ND MW-6 Benzene = ND MTBE = 9.01 Naphthalene = ND TABLES WZ>/ KtEZED D/>/E'Z^^ /dz ^dd /WK W,z^/>Z^^KE&/'hZϯ d/s/dztdZ d d/s^hWW>z t>> /^dEΘ /Zd/KEK&t>> &ZKD^KhZ;&dͿ ϮϬϭϱ ,hZdKDDz>Θ,/>< ϱϴϬZ^ds/tZ/s dz>KZ^s/>> E Ϯϴϲϴϭ ϰϱϬϬh^ϲϰϵϬ,tzt z^ EK E ϮϬϭϱ ,hZdKDDz>Θ,/>< ϱϴϬZ^ds/tZ/s dz>KZ^s/>> E Ϯϴϲϴϭ ϰϱϮϮh^ϲϰϵϬ,tzt EK z^;^tͲϭͿ ϮϮϬEt ϭϭϭϳ ,Kt>>,Z>/ZhEΘ^,ZKE ϳϭϯt/>>/D>KZ dz>KZ^s/>> E Ϯϴϲϴϭ ϲϰͬϵϬt EKͲhEs>KW EK E ϭϮϰϵ ^d/E:&&Zz> ϰϯϯϮh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϭϵϬh^ϲϰϵϬ,tzt z^ EK E ϲϬϴϵϭ ,Kt>>,Z>/ZhEΘ^,ZKE ϳϭϯt/>>/D>KZ dz>KZ^s/>> E Ϯϴϲϴϭ ϲϰͬϵϬt EKͲhEs>KW EK E ϲϮϳ dtKKKEED ϯϵϭϬdK/EdZ/> ZKt>dd dy ϳϱϬϴϴͲϲϰϭϮ >>E>&/ZWdZ EKͲhEs>KW EK E ϲϮϴ dtKKKEED ϯϵϭϬdK/EdZ/> ZKt>dd dy ϳϱϬϴϴͲϲϰϭϮ >>E>&/ZWdZ EKͲhEs>KW EK E ϲϮϵ dtKKKEED ϯϵϭϬdK/EdZ/> ZKt>dd dy ϳϱϬϴϴͲϲϰϭϮ ϲϰͬϵϬtKdϭϲ EKͲhEs>KW EK E ϵϱϲ WZ/d,ZD/,>ΘdZ^ WKKyϴϱϰ dz>KZ^s/>> E ϮϴϲϴϭͲϬϴϱϰ ϰϰϴϱh^ϲϰϵϬ,tzt z^ EK E ϵϱϵ z^KEt/',d: ϰϲϯϭh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϲϰϭh^ϲϰϵϬ,tzt EK z^ϳϯϬt ϵϲϬ z^KEt/',d: ϰϲϯϭh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϲϯϭh^ϲϰϵϬ,tzt EK z^ϱϴϬt ϵϵϰ sE^E>^KEtzE ϭϳϱ>>E>&/ZWdZ dz>KZ^s/>> E Ϯϴϲϴϭ ϮϬϯ>>E>&/ZWd͘Z EK z^ϵϯϬ^t ϭϭϬϰ ,/E^,KtZ<:ZΘ,/E^<ZEdZh^d WKKyϰϯϬ dz>KZ^s/>> E Ϯϴϲϴϭ ϮϬϲ>>E>&/ZWd͘Z EK z^ϭϱϱϬ^t ϭϭϬϵ <sZ:ZZzй't>dEz^h^E ϰϴϭ<sZ>E ,/E/d E Ϯϴϲϯϲ ,hZ,Z EKͲhEs>KW EK E ϭϭϭϲ ,Kt>>,Z>/ZhEΘ^,ZKE ϳϭϯt/>>/D>KZ dz>KZ^s/>> E Ϯϴϲϴϭ ϰϱϴϲh^ϲϰϵϬ,tzt EK z^ϱϲϬEt ϭϭϭϴ 'K>t/>>/DK:ZΘZKZdd ϰϳϭϱh^,tzϲϰͲϵϬt^d dz>KZ^s/>> E Ϯϴϲϴϭ ϲϰͬϵϬt z^ EK E ϭϭϯϭ >DZzZK'Z::Z ϱϯϭ>>E>&/ZWd dz>KZ^s/>> E Ϯϴϲϴϭ ϱϯϭ>>E>&/ZWd͘Z z^ EK E ϭϭϯϮ ,DDZ,Kt>> ϱϯϭ>>E>&/ZWd dz>KZ^s/>> E Ϯϴϲϴϭ ϲϰͬϵϬt EKͲhEs>KW EK E ϭϭϰϭ ,ZZ/>>&D/>z>DdWdE^W ϰϭϬϬ'>E>hZ>Z/s Z>/', E ϮϳϲϭϮ >>E>&/ZWdZ EKͲhEs>KW EK E ϭϭϰϮ ,ZZ/>>&D/>z>DdWdE^W ϰϭϬϬ'>E>hZ>Z/s Z>/', E ϮϳϲϭϮ >>E>&/ZWdZ EKͲhEs>KW EK E ϭϭϰϯ ,ZZ/>>&D/>z>DdWdE^W ϰϭϬϬ'>E>hZ>Z/s Z>/', E ϮϳϲϭϮ ϲϰͬϵϬt EKͲhEs>KW EK E ϭϮϯϱ ,hZ^,>z<Z>z ϰϲϰϲh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϲϰϲh^ϲϰϵϬ,tzt EK z^;ƐŚĂƌĞĚǁĞůů ǁͬϰϲϰϴͿ ϴϬϬEt ϭϯϱϯ ZK'Z^t/>>/Ds/ ϭϲϯ>>E>&/ZWZdDEd dz>KZ^s/>> E Ϯϴϲϴϭ ϭϲϯ>>E>&/ZWd͘Z EK z^ϵϲϬ^t ϭϯϲϯ hD'ZEZ,Z/^dz>Θ<>>z ϭϮϬ>>E>&/ZWdZ dz>KZ^s/>> E Ϯϴϲϴϭ >>E>&/ZWdZ EKͲhEs>KW EK E ϭϰϵϭ DEE,>>d,>D ϯϯϬϯ>E,/DW> t/E^dKE^>D E ϮϳϭϬϲ ϲϰͬϵϬt EKͲhEs>KW EK E ϭϰϵϴ D/>>^W^KE>W//,h< ϭϳϭϰtE^>zZ ,Z>Kdd E ϮϴϮϭϬ >>E>&/ZWdZ EKͲhEs>KW EK E ϭϰϵϵ D/>>^W^KE>W//,h< ϭϳϭϰtE^>zZ ,Z>Kdd E ϮϴϮϭϬ ϲϰͬϵϬt EKͲhEs>KW EK E dĂďůĞϮ WƌŽƉĞƌƚŝĞƐtŝƚŚŝŶϭϬϬϬĨĞĞƚŽĨ^ŽƵƌĐĞƌĞĂ &ŽƌŵĞƌ'ƌĂƉĞǀŝŶĞWƌŽĚƵĐĞ ϰϱϬϬ,ǁLJ͘ϲϰͲϵϬtĞƐƚ͕dĂLJůŽƌƐǀŝůůĞ͕E WĂŐĞϭŽĨϮ WZ>/ KtEZED D/>/E'Z^^ /dz ^dd /WK W,z^/>Z^^KE&/'hZϯ d/s/dztdZ d d/s^hWW>z t>> /^dEΘ /Zd/KEK&t>> &ZKD^KhZ;&dͿ dĂďůĞϮ WƌŽƉĞƌƚŝĞƐtŝƚŚŝŶϭϬϬϬĨĞĞƚŽĨ^ŽƵƌĐĞƌĞĂ &ŽƌŵĞƌ'ƌĂƉĞǀŝŶĞWƌŽĚƵĐĞ ϰϱϬϬ,ǁLJ͘ϲϰͲϵϬtĞƐƚ͕dĂLJůŽƌƐǀŝůůĞ͕E ϭϱϬϬ D/>>^W^KE>W//,h< ϭϳϭϰtE^>zZ ,Z>Kdd E ϮϴϮϭϬ >>E>&/ZWdZ EKͲhEs>KW EK E ϭϳϵϲ ^/WKE>z>t/^ ϰϬϮϬh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϬϮϬh^ϲϰϵϬ,tzt z^ EK E ϭϴϳϰ ^DzZ,>E ϭϮϱZ^ds/tZ/s hZ,D E ϮϳϳϭϮ ϲϰͬϵϬt EKͲhEs>KW EK E ϭϴϳϲ ^DzZ,>E ϭϮϱZ^ds/tZ/s hZ,D E ϮϳϳϭϮ >>E>&/ZWdZ EKͲhEs>KW EK E ϭϵϮϴ ^d/E:&&Zz> ϰϯϯϮh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϮϰϰh^ϲϰϵϬ,tzt z^ EK E ϮϬϬϲ 'K>t/>>/DK:ZΘZKZdd ϰϳϭϱh^,tzϲϰͲϵϬt^d dz>KZ^s/>> E Ϯϴϲϴϭ ϰϳϭϭΘϰϳϭϱh^ϲϰϵϬ,tzt͘ z^ EK E ϮϬϭϭ ddZ^,ZK>Z ϰϭϰϮh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϭϰϮh^ϲϰϵϬ,tzt z^ EK E ϭϰϰϰϱ ^d/E' ϰϯϳϬ,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϯϯϮh^ϲϰϵϬ,tzt z^ EK E ϭϰϲϲϱ />'Z>DΘ^,>/͘ ϰϲϱϭh^,tzϲϰͲϵϬt dz>KZ^s/>> EϮϴϲϴϭ ϰϲϱϭh^ϲϰϵϬ,tzt EK z^ϴϳϬt ϭϰϴϰϮ hD'ZEZ,Z/^dz>Θ<>>z ϭϮϬ>>E>&/ZWdZ dz>KZ^s/>> E Ϯϴϲϴϭ ϭϮϬ>>E>&/ZWd͘Z EK z^ϭϮϬϬ^t ϭϲϬϮϱ ,hZdKDDz>Θ,/>< ϱϴϬZ^ds/tZ/s dz>KZ^s/>> EϮϴϲϴϭ ϰϱϮϬh^ϲϰϵϬ,tzt EK EK E ϲϯϰϯϬ ^D/d,:/>>>^d/E ϰϯϮϲh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϲϰͬϵϬt EK EK E ϲϰϵϰϵ d'hZ/E<Θ:/>>^ ϰϯϮϲh^,tzϲϰͲϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϯϮϲh^ϲϰϵϬ,tzt EK z^ϴϬϬ^ ϲϱϰϳϴ ^d/E:D/d ϰϯϯϬh^,tzϲϰͬϵϬt dz>KZ^s/>> E Ϯϴϲϴϭ ϰϯϯϬh^ϲϰϵϬ,tzt EK z^ϴϭϬ^ ϲϲϮϬϳ ,hZDdd,tZdZΘDZ/KD^ WKKyϮϱ dz>KZ^s/>>E ϮϴϲϴϭͲϬϬϮϱ ϰϲϰϴh^ϲϰϵϬ,tzt EK z^;ƐŚĂƌĞĚǁĞůů ǁͬϰϲϰϲͿ ϴϬϬEt ϮϬϮϮ tΘ,DKdKZ^/E ϱϯϲ>>E>&/ZWd dz>KZ^s/>> E Ϯϴϲϴϭ ϱϯϲ>>E>&/ZWd͘Z EK z^ϴϴϬ^ WĂŐĞϮŽĨϮ 0:      ± ± ±  0:   '5<   ± ± ±  0:     ± ±  ±  0:     ± ±  ±  0:     ± ±  ±  0:     ± ±  ±  0:     ± ±  ±  0:     ± ±  ±  0:     ± ±  ±  0:     ± ±  ±  0:     ± ±  ±  0:     ± ±  ±   7$%/( 0RQLWRULQJ:HOO&RQVWUXFWLRQ'HWDLOV 7RPP\+XEEDUG±)RUPHU*UDSHYLQH3URGXFH +Z\:HVW7D\ORUVYLOOH1& '(15,QFLGHQW ,QVWDOO 'DWH 7RWDO:HOO 'HSWK )HHW :HOO 'LDPHWHU ,QFKHV 'HSWKWR :DWHU )HHW 'HSWKWR %HGURFN )HHW :HOO 1XPEHU &DVLQJ ,QWHUYDO )HHW 6FUHHQHG ,QWHUYDO )HHW *URXW ,QWHUYDO )HHW %HQWRQLWH ,QWHUYDO )HHW 6DQG ,QWHUYDO )HHW TOP OF DEPTH TO FREE- FREE- ADJUSTED WELL CASING DATE DEPTH TO FREE PRODUC PRODUC DEPTH TO GROUNDWATE NUMBE ELEVATION MEASURED WATE PRODUC THICKNESS ADJUSTMEN GROUNDWATE ELEVATION (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) 12/11/2013 65.40 0.00 0.00 0.00 65.40 34.60 1/11/2014 64.78 0.00 0.00 0.00 64.78 35.22 1/13/2014 67.03 0.00 0.00 0.00 67.03 32.97 4/24/2014 58.49 0.00 0.00 0.00 58.49 41.51 9/24/2014 53.17 0.00 0.00 0.00 53.17 46.83 8/5/2015 39.70 0.00 0.00 0.00 39.70 60.30 5/5/2016 NG NG NG NG NG NG 2/23/2017 NG NG NG NG NG NG 9/11/2017 NG NG NG NG NG NG 4/12/2018 NG NG NG NG NG NG 10/18/2018 NG NG NG NG NG NG 5/8/2019 NG NG NG NG NG NG 10/24/2019 NG NG NG NG NG NG 6/9/2022 13.57 0.00 0.00 0.00 13.57 86.43 6/27/2023 17.44 0.00 0.00 0.00 17.44 82.56 12/11/2013 Dry Dry Dry Dry Dry Dry 1/11/2014 Dry Dry Dry Dry Dry Dry 4/24/2014 61.32 0.00 0.00 0.00 61.32 35.36 9/24/2014 53.20 0.00 0.00 0.00 53.20 43.48 8/5/2015 37.82 0.00 0.00 0.00 37.82 58.86 5/5/2016 NG NG NG NG NG NG 2/23/2017 NG NG NG NG NG NG 9/11/2017 NG NG NG NG NG NG 4/12/2018 NG NG NG NG NG NG 10/18/2018 NG NG NG NG NG NG 5/8/2019 NG NG NG NG NG NG 10/24/2019 NG NG NG NG NG NG 6/9/2022 NG NG NG NG NG NG 6/27/2023 NG NG NG NG NG NG 4/24/2014 6.00 0.00 0.00 0.00 6.00 97.18 9/24/2014 7.98 0.00 0.00 0.00 7.98 95.20 8/5/2015 9.32 0.00 0.00 0.00 9.32 93.86 5/5/2016 NG NG NG NG NG NG 2/23/2017 NG NG NG NG NG NG 9/11/2017 NG NG NG NG NG NG 4/12/2018 NG NG NG NG NG NG 10/18/2018 NG NG NG NG NG NG 5/8/2019 NG NG NG NG NG NG 10/24/2019 NG NG NG NG NG NG 6/9/2022 NG NG NG NG NG NG 6/27/2023 NG NG NG NG NG NG MW-1 100.00 MW-2 96.68 MW-3 103.18 TABLE 4 GROUNDWATER ELEVATION DATA Tommy Hubbard - Former Grapevine Produce 4500 US Hwy. 64-90 West, Taylorsville, NC NCDEQ Incident #40243 Page 1 of 5 TOP OF DEPTH TO FREE- FREE- ADJUSTED WELL CASING DATE DEPTH TO FREE PRODUC PRODUC DEPTH TO GROUNDWATE NUMBE ELEVATION MEASURED WATE PRODUC THICKNESS ADJUSTMEN GROUNDWATE ELEVATION (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) TABLE 4 GROUNDWATER ELEVATION DATA Tommy Hubbard - Former Grapevine Produce 4500 US Hwy. 64-90 West, Taylorsville, NC NCDEQ Incident #40243 4/24/2014 3.20 0.00 0.00 0.00 3.20 79.46 9/24/2014 4.22 0.00 0.00 0.00 4.22 78.44 8/5/2015 3.28 0.00 0.00 0.00 3.28 79.38 5/5/2016 2.93 sheen 0.00 0.00 2.93 79.73 2/23/2017 3.56 0.00 0.00 0.00 3.56 79.10 9/11/2017 3.65 0.00 0.00 0.00 3.65 79.01 4/12/2018 3.40 0.00 0.00 0.00 3.40 79.26 10/18/2018 3.07 0.00 0.00 0.00 3.07 79.59 5/8/2019 2.59 0.00 0.00 0.00 2.59 80.07 10/24/2019 2.98 0.00 0.00 0.00 2.98 80.07 6/9/2022 4.55 0.00 0.00 0.00 4.55 78.11 6/27/2023 3.09 0.00 0.00 0.00 3.09 79.57 4/24/2014 13.62 0.00 0.00 0.00 13.62 78.09 9/24/2014 15.20 0.00 0.00 0.00 15.20 76.51 8/5/2015 16.70 0.00 0.00 0.00 16.70 75.01 5/5/2016 NG NG NG NG NG NG 2/23/2017 NG NG NG NG NG NG 9/11/2017 NG NG NG NG NG NG 4/12/2018 NG NG NG NG NG NG 10/18/2018 NG NG NG NG NG NG 5/8/2019 NG NG NG NG NG NG 10/24/2019 NG NG NG NG NG NG 6/9/2022 11.82 0.00 0.00 0.00 11.82 79.89 6/27/2023 11.36 0.00 0.00 0.00 11.36 80.35 9/24/2014 10.61 0.00 0.00 0.00 10.61 84.69 8/5/2015 10.38 0.00 0.00 0.00 10.38 84.92 5/5/2016 10.03 0.00 0.00 0.00 10.03 85.27 2/23/2017 10.73 0.00 0.00 0.00 10.73 84.57 9/11/2017 10.84 0.00 0.00 0.00 10.84 84.46 4/12/2018 10.60 0.00 0.00 0.00 10.60 84.70 10/18/2018 10.76 0.00 0.00 0.00 10.76 84.54 5/8/2019 NG NG NG NG NG NG 10/24/2019 NG NG NG NG NG NG 6/9/2022 10.24 0.00 0.00 0.00 10.24 85.06 6/27/2023 10.11 0.00 0.00 0.00 10.11 85.19 9/24/2014 7.48 0.00 0.00 0.00 7.48 92.22 8/5/2015 8.35 0.00 0.00 0.00 8.35 91.35 5/5/2016 7.24 0.00 0.00 0.00 7.24 92.46 2/23/2017 9.24 0.00 0.00 0.00 9.24 90.46 9/11/2017 9.48 0.00 0.00 0.00 9.48 90.22 4/12/2018 8.33 0.00 0.00 0.00 8.33 91.37 10/18/2018 7.85 0.00 0.00 0.00 7.85 91.85 5/8/2019 7.54 0.00 0.00 0.00 7.54 92.16 10/24/2019 NG NG NG NG NG NG 6/9/2022 8.26 0.00 0.00 0.00 8.26 91.44 6/27/2023 7.53 0.00 0.00 0.00 7.53 92.17 MW-4 82.66 MW-6 95.30 MW-7 99.70 MW-5 91.71 Page 2 of 5 TOP OF DEPTH TO FREE- FREE- ADJUSTED WELL CASING DATE DEPTH TO FREE PRODUC PRODUC DEPTH TO GROUNDWATE NUMBE ELEVATION MEASURED WATE PRODUC THICKNESS ADJUSTMEN GROUNDWATE ELEVATION (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) TABLE 4 GROUNDWATER ELEVATION DATA Tommy Hubbard - Former Grapevine Produce 4500 US Hwy. 64-90 West, Taylorsville, NC NCDEQ Incident #40243 9/24/2014 DRY 0.00 0.00 0.00 DRY DRY 2/5/2015 13.44 0.00 0.00 0.00 13.44 83.50 8/5/2015 13.92 0.00 0.00 0.00 13.92 83.02 5/5/2016 13.23 0.00 0.00 0.00 13.23 83.71 2/23/2017 14.11 0.00 0.00 0.00 14.11 82.83 9/11/2017 13.85 0.00 0.00 0.00 13.85 83.09 4/12/2018 13.38 0.00 0.00 0.00 13.38 83.56 10/18/2018 13.63 0.00 0.00 0.00 13.63 83.31 5/8/2019 13.24 0.00 0.00 0.00 13.24 83.70 10/24/2019 13.96 0.00 0.00 0.00 13.96 82.98 6/9/2022 14.35 0.00 0.00 0.00 14.35 82.59 6/27/2023 13.33 0.00 0.00 0.00 13.33 83.61 9/24/2014 9.55 0.00 0.00 0.00 9.55 75.77 8/5/2015 9.63 0.00 0.00 0.00 9.63 75.69 5/5/2016 8.41 0.00 0.00 0.00 8.41 76.91 2/23/2017 10.06 0.00 0.00 0.00 10.06 75.26 9/11/2017 10.02 0.00 0.00 0.00 10.02 75.30 4/12/208 9.51 0.00 0.00 0.00 9.51 75.81 10/18/2018 13.34 0.00 0.00 0.00 13.34 71.98 5/8/2019 7.80 0.00 0.00 0.00 7.80 77.52 10/24/2019 NG NG NG NG NG NG 6/9/2022 9.93 0.00 0.00 0.00 9.93 75.39 6/27/2023 9.38 0.00 0.00 0.00 9.38 75.94 9/24/2014 3.44 0.00 0.00 0.00 3.44 82.28 8/5/2015 3.46 0.00 0.00 0.00 3.46 82.26 5/5/2016 NG NG NG NG NG NG 2/23/2017 NG NG NG NG NG NG 9/11/2017 NG NG NG NG NG NG 4/12/208 NG NG NG NG NG NG 10/18/2018 NG NG NG NG NG NG 5/8/2019 NG NG NG NG NG NG 10/24/2019 NG NG NG NG NG NG 6/9/2022 4.48 0.00 0.00 0.00 4.48 81.24 6/27/2023 NG NG NG NG NG NG MW-8 96.94 MW-9 85.32 MW-10 85.72 Page 4 of 5 TOP OF DEPTH TO FREE- FREE- ADJUSTED WELL CASING DATE DEPTH TO FREE PRODUC PRODUC DEPTH TO GROUNDWATE NUMBE ELEVATION MEASURED WATE PRODUC THICKNESS ADJUSTMEN GROUNDWATE ELEVATION (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) TABLE 4 GROUNDWATER ELEVATION DATA Tommy Hubbard - Former Grapevine Produce 4500 US Hwy. 64-90 West, Taylorsville, NC NCDEQ Incident #40243 9/24/2014 5.43 0.00 0.00 0.00 5.43 76.33 8/5/2015 3.98 0.00 0.00 0.00 3.98 77.78 5/5/2016 3.88 0.00 0.00 0.00 3.88 77.88 2/23/2017 4.72 0.00 0.00 0.00 4.72 77.04 9/11/2017 NG NG NG NG NG NG 4/12/208 NG NG NG NG NG NG 10/18/2018 9.13 0.00 0.00 0.00 9.13 72.63 10/18/2018 3.33 0.00 0.00 0.00 3.33 78.43 5/8/2019 NG NG NG NG NG NG 10/24/2019 4.45 0.00 0.00 0.00 4.45 77.31 6/9/2022 4.10 0.00 0.00 0.00 4.10 77.66 6/27/2023 4.08 0.00 0.00 0.00 4.08 77.68 9/24/2014 2.22 0.00 0.00 0.00 2.22 79.64 8/5/2015 1.98 0.00 0.00 0.00 1.98 79.88 5/5/2016 1.78 0.00 0.00 0.00 1.78 80.08 2/23/2017 NG NG NG NG NG NG 9/11/2017 NG NG NG NG NG NG 4/12/208 NG NG NG NG NG NG 10/18/2018 1.67 0.00 0.00 0.00 1.67 80.19 5/8/2019 NG NG NG NG NG NG 10/24/2019 1.91 0.00 0.00 0.00 1.91 79.95 6/9/2022 3.36 0.00 0.00 0.00 3.36 78.50 6/27/2023 2.24 0.00 0.00 0.00 2.24 79.62 NG = Not Gauged aquifer; therefore, the groundwater elevations from these two wells were not used to produce the shallow water table flow map. 81.76MW-11 MW-1 and MW-2 were installed into bedrock and the screened intervals are below the top of rock and represent a deeper portion of the Datum is arbitrarily set at instrument level = 100'. MW-12 81.86 Page 5 of 5 SW- SW- SW- SW- SW- NCAC 2L GCLs 4522 4586 4646 4651 4631 Groundwater Groundwater Standard 12-16-13 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 1.3 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND 1.1 ND 14.1 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND ND ND 9.6 1.1 2680 3.2 ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL BDL BDL 16 2.4 2000 BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS ND NS 1.9 5.7 1930 11.4 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS ND NS 2.8 3.2 1890 ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS ND NS 2.0 1.5 1500 4.9 NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS ND 4.2 1240 2.6 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS ND NS ND 0.77 1700 ND NS 14 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND 1050 28.3 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS ND NS NS NS 835 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS ND ND ND ND 672 8.8 ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND ND 0.655 811 11.6 NS ND ND ND NS NS NS NS ND ND 12-16-13 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND 0.74 ND 34.3 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND ND ND ND ND 2670 ND ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL BDL BDL BDL BDL 2300 BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS ND NS ND 0.86 1730 8.8 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS ND NS ND ND 2780 ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS ND NS ND ND 2960 ND NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS ND ND 1810 0.63 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS ND NS ND ND 940 ND NS 0.5 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND 1530 25.8 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS ND NS NS NS 1460 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 1.6 ND ND ND 75.7 0.53 ND ND ND NS NS NS NS NS ND ND 06-27-23 0.842 NS NS ND 0.495 ND ND 373 0.786 NS ND ND ND NS NS NS NS ND ND 12-16-13 7.8 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 13.8 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND 0.83 ND 63.3 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND 70 ND ND 2.2 1660 3.8 ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL 130 BDL BDL 3.37 1240 BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 39 NS ND 25.6 1230 16.5 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 85.9 NS ND 7.9 1040 3.3 NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 24.9 NS ND 5.5 1540 0.51 NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS 24 NS ND 18.8 1210 5.6 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 24 NS ND 7.6 1400 ND NS 0.65 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 14.2 NS NS 2.5 822 77 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 9.6 NS NS NS 684 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 17.9 ND ND 4.3 1080 2.6 ND ND ND NS NS NS NS NS ND ND 06-27-23 0.363 NS NS 13.4 0.245 ND 7.66 1190 0.901 NS ND ND ND NS NS NS NS ND ND 12-16-13 29.8 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 62.21 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND 2.56 ND 114 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND 84 ND ND 11 5230 ND ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL 160 BDL BDL 8.14 4700 2.1 BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 30.1 NS ND 67.24 4560 23.6 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 89.7 NS ND 27.6 4540 1.4 NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 17.5 NS ND 7.1 8090 1.7 NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS 20.3 NS ND 25.6 4740 8.43 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 15.26 NS ND 1.9 3880 ND NS 2.09 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 13.9 NS NS 2.2 2869 84.3 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 7.4 NS NS NS 3060 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 12.2 ND ND 2.2 1238.3 13.71 ND ND ND NS NS NS NS NS ND ND 06-27-23 1.74 NS NS 8.01 1.09 ND 7.98 4520 5.19 NS ND ND ND NS NS NS NS ND ND 12-16-13 37.6 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 77.31 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND 5.23 ND 225.7 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND 154 ND 9.6 14.3 12240 7 ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL 290 BDL 16 13.91 10240 2.1 BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 69.1 NS 1.9 99.4 9450 60.3 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 175.6 NS 2.8 38.7 10250 4.7 NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 42.1 NS 2 14.1 14090 7.11 NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS 44.3 NS ND 48.6 9000 17.26 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 39.26 NS ND 10.27 7920 ND NS 17.24 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 28.1 NS NS 4.7 6271 215.4 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS ND NS NS NS 6039 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 31.7 ND ND 6.5 3066 25.64 ND ND ND NS NS NS NS NS ND ND 06-27-23 2.945 NS NS 21.41 1.83 ND 16.295 6894 18.477 NS ND ND ND NS NS NS NS ND ND 12-16-13 5.1 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 3.6 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND 133 ND ND ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND 50 ND ND ND 7.6 ND 4620 6.2 ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL 15 BDL BDL BDL 9.6 1.14 4390 BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS ND NS 2.6 1.4 5640 20 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS ND NS 3.7 1.2 4260 ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 6.7 NS 6 1.3 2700 6.2 NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS 3.5 1.2 1830 3.3 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS ND NS 3 0.6 1800 ND NS 23 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND 1240 26.1 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS ND NS NS NS 1010 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS ND ND 7.5 ND 306 11.9 ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND 9.01 ND 401 17.5 NS ND ND ND NS NS NS NS ND 0.648 12-16-13 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND ND ND ND ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND ND ND ND ND ND ND ND ND ND NS NS NS NS NS NS NS 08-05-15 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND NS NS 05-05-16 NS NS NS ND NS ND ND ND ND NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS ND NS ND ND ND ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS ND NS ND ND ND ND NS ND NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND ND ND NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS ND NS NS NS 12.7 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS ND ND ND ND ND ND ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND ND ND ND ND NS ND ND ND NS NS NS NS ND ND TABLE 5 Laboratory Results of Groundwater Samples Former Grapevine Produce NC DEQ Incident #40243 MONITORING WELL NUMBER SUPPLY WELLS Parameters Clorobenzene Benzene MTBE Volatiles by EPA 6200B 5,0001 500 85,500 84,500600 260,000600 50 50,000 20 20,000 No Standard No Standard Surface Water SFW-3SFW-2MW-12MW-11MW-10MW-9MW-8MW-2MW-1DATE ug/l ug/l ug/l ug/l UNITS ug/l ug/l MW-7MW-6MW-5MW-4MW-3 BTEX Total Xylenes Ethylbenzene Toluene ug/l Page 1 of 6 SW- SW- SW- SW- SW- NCAC 2L GCLs 4522 4586 4646 4651 4631 Groundwater Groundwater Standard TABLE 5 Laboratory Results of Groundwater Samples Former Grapevine Produce NC DEQ Incident #40243 MONITORING WELL NUMBER SUPPLY WELLS Parameters Surface Water SFW-3SFW-2MW-12MW-11MW-10MW-9MW-8MW-2MW-1DATEUNITS MW-7MW-6MW-5MW-4MW-3 12-16-13 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND 2.7 ND ND ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND ND ND 2.0 ND 66 ND ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL BDL BDL 3.8 BDL 71.5 BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS ND NS 0.8 ND 86.3 ND NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS ND NS 0.83 ND 64.9 ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS ND NS 1.6 ND 48.3 ND NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS 0.77 ND 38.1 ND NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS ND NS 0.55 ND 37 ND NS 0.43 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND 28.9 ND NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS ND NS NS NS 23.9 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS ND ND 1.2 ND 14 ND ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND 0.997 ND ND 0.629 NS ND ND ND NS NS NS NS ND ND 12-16-13 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND ND ND ND ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND ND ND ND ND ND ND ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS ND NS ND ND ND ND NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS ND NS ND ND ND ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS ND NS ND ND ND ND NS ND NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND ND ND NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS ND NS NS NS ND NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS ND ND ND ND ND ND ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND ND ND ND ND NS ND ND ND NS NS NS NS ND ND 12-16-13 1.7 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 3 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND ND ND 155 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND 92 ND ND 1.2 121 5.5 ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL 180 BDL BDL 1.3 70.4 2.06 BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 52.5 NS ND 3.9 64.6 7 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 122 NS ND 4.2 49.0 5.3 NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 51.1 NS ND 2.2 76.8 5.4 NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS 31.5 NS ND 4.9 66.9 6 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 38 NS ND 1.8 62 ND NS 8.4 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 32.7 NS NS 0.87 46.4 19.9 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 30.1 NS NS NS 36 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 28.6 ND ND 1.4 63.6 14.9 ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS 19.8 ND ND 1.43 55.4 16.9 NS ND ND ND NS NS NS NS ND ND 12-16-13 63.5 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 64 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND ND ND 48.8 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND 66 ND ND ND 305 8.2 ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL BDL BDL BDL BDL 192 BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 36.1 NS ND 32.8 179 9.5 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 59.9 NS ND 7.9 194 ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 21.2 NS ND 7.4 302 5.6 NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS 14.5 NS ND 20.9 206 3.1 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 13 NS ND 10 190 ND NS 5 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 10.6 NS NS 4 190 12.7 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 8.3 NS NS NS 253 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 12.4 ND ND 7.1 252 7.1 ND ND ND NS NS NS NS NS ND ND 06-27-23 5.23 NS NS 38.6 2.36 ND 13.4 ND 5.99 NS ND ND ND NS NS NS NS ND ND 12-16-13 5.7 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 9.7 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND ND ND 533 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND 310 ND ND 1.1 269 11 ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL 780 BDL BDL 1.48 201 4.92 BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 202 NS ND 9.6 161 17.5 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 550 NS ND 5.3 126 11.7 NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 211 NS ND 3.0 ND 13 NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS 147 NS ND 10.6 141 13 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 160 NS ND 3.9 140 ND NS 20 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 139 NS NS 1.3 ND 36.6 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 134 NS NS NS 74 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 122 ND ND 1.6 146 33.8 ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS 87.7 ND ND 2.42 122 35.2 NS ND ND ND NS NS NS NS ND ND 12-16-13 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 ND Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 ND ND ND ND ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND ND ND ND ND ND ND ND ND ND NS NS NS NS NS NS NS 08-05-15 ND BDL BDL ND ND ND ND ND ND ND ND ND ND ND ND ND ND NS NS 05-05-16 NS NS NS ND NS ND ND ND ND NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS ND NS ND ND ND ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS ND NS ND ND ND ND NS ND NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND ND ND NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 3.6 NS NS NS ND NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS ND ND ND ND ND ND ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND ND ND ND ND NS ND ND ND NS NS NS NS ND ND 12-16-13 44.8 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 77.6 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 2.7 ND ND 1530 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND 1100 ND ND 5.9 1870 ND ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL 2100 BDL 1.2 4.28 1340 1.61 BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 506 NS ND 68 1200 14.5 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 1480 NS ND 13.4 1030 0.75 NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 462 NS 0.57 3.1 2600 ND NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS 308 NS ND 29 1640 5.4 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 260 NS ND 0.69 1700 ND NS ND NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 277 NS NS 2.1 1060 68.9 NS 0.79 ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 207 NS NS NS 984 NS NS ND 0.58 NS NS NS NS NS NS NS 06-09-22 ND NS NS 228 ND ND 2.7 564 3 ND ND ND NS NS NS NS NS ND ND 06-27-23 0.642 NS NS 121 0.387 ND 4.87 1400 1.29 NS ND ND ND NS NS NS NS ND ND EDB IPE 1,2,4-Trimethylbenzene 1,2,3-Tricloropropane n-Propylbenzene Naphthalene Isopropylbenzene 0.02 50 70 70,000 28,500400 No Standard No Standard 26,10070 6,0006 70 30,500 ug/l ug/l ug/l ug/l ug/l ug/l ug/l Page 2 of 6 SW- SW- SW- SW- SW- NCAC 2L GCLs 4522 4586 4646 4651 4631 Groundwater Groundwater Standard TABLE 5 Laboratory Results of Groundwater Samples Former Grapevine Produce NC DEQ Incident #40243 MONITORING WELL NUMBER SUPPLY WELLS Parameters Surface Water SFW-3SFW-2MW-12MW-11MW-10MW-9MW-8MW-2MW-1DATEUNITS MW-7MW-6MW-5MW-4MW-3 12-16-13 15 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 01-13-14 26 Dry N I N I N I N I N I N I N I N I N I N I NS NS NS NS NS NS NS 04-24-14 0.82 ND ND 592 ND N I N I N I N I N I N I N I NS NS NS NS NS NS NS 09-24-14 ND ND ND 370 ND ND ND 513 2.1 ND ND ND NS NS NS NS NS NS NS 08-05-15 BDL BDL BDL 870 BDL 1.3 BDL 365 BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 205 NS ND 6 328 3.4 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 630 NS ND 2.6 324 ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 227 N ND 1.3 ND ND NS NS N NS NS NS NS NS NS NS 04-12-18 NS NS NS 146 NS ND 3.7 495 1.2 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 130 NS ND 0.6 440 ND NS ND NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 135 NS NS ND ND ND NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 115 NS NS NS 357 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 112 ND ND ND 101 ND ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS 67.7 ND ND 0.628 415 ND NS ND ND ND NS NS NS NS ND ND 08-05-15 BDL BDL BDL 220 BDL BDL BDL 12.9 1.4 BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS ND NS ND ND ND 3.5 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 165 NS ND ND ND ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS 55.1 NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS 57 NS ND 1.5 ND 2.8 NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 91 NS ND 0.57 12 ND NS 3.1 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS 40.6 NS NS ND ND 3.2 NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 38.3 NS NS NS 20 NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS 69.1 ND ND ND ND 3.1 ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS 125 ND ND 0.359 ND 2.69 NS ND ND ND NS NS NS NS ND ND 08-05-15 BDL BDL BDL 100 BDL BDL BDL 10.2 1.5 BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS 20.4 NS ND 0.94 ND 2.5 NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS 77.4 NS ND 0.66 ND ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS ND NS ND ND ND 1.9 NS NS N NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 33 NS ND 0.6 12 ND NS 2.6 NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND ND ND NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS 24.5 NS NS NS ND NS NS ND ND NS NS NS NS NS NS NS 06-09-22 ND NS NS ND ND ND ND ND 2.8 ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS 44.6 ND ND 0.458 ND 2.85 NS ND ND ND NS NS NS NS ND ND 06-09-22 ND ND ND ND ND ND ND ND ND 1.2 ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND ND ND ND ND NS ND ND ND NS NS NS NS ND ND 06-09-22 ND ND ND ND ND ND ND 5.6 ND ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND ND ND ND ND NS ND ND ND NS NS NS NS ND ND 06-09-22 ND NS NS ND 3.2 ND ND ND ND ND ND ND NS NS NS NS NS ND ND 06-27-23 ND NS NS ND ND ND ND ND ND NS ND ND ND NS NS NS NS ND ND 08-05-15 BDL BDL BDL 58 BDL BDL BDL 17.5 BDL BDL BDL BDL BDL BDL BDL BDL BDL NS NS 05-05-16 NS NS NS ND NS ND ND ND ND NS ND ND NS NS NS NS NS NS NS 02-23-17 NS NS NS ND NS ND ND ND ND NS ND NS NS NS NS NS NS NS NS 09-11-17 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 04-12-18 NS NS NS ND NS ND ND ND ND NS NS NS NS NS NS NS NS NS NS 10-18-18 NS NS NS 16 NS ND ND 26 ND NS ND NS NS NS NS NS NS NS NS 05-08-19 NS NS NS ND NS NS ND ND ND NS ND ND NS NS NS NS NS NS NS 10-24-19 NS NS NS ND NS NS NS ND NS NS ND ND NS NS NS NS NS NS NS 06-09-22 NA NS NS NA NA NA NA NA NA NA NA NA NS NS NS NS NS NA NA 06-27-23 ND NS NS ND ND ND ND ND ND NS ND ND ND NS NS NS NS ND ND ND = Not Detected Above Laboratory Reporting Limit NA = Not Applicable or Not Analyzed for this Parameter NS = Not Sampled during this event BDL = Below Detection Limit of Laboratory N I = Not Installed at this sampling date ug/L = Micrograms Per Liter 4620 Bold values exceed NCAC 2L Standards 4620 Bold and shaded values exceed NCAC 2L Standards & GCL 1,3,5-Trimethylbenzene 24,100400 25 11,700 5,90070 8,80070 3,0003 70,00070 70,00070 p-Isopropyltoluene sec-Butylbenzene n-Butylbenzene ug/l ug/l ug/l Chloroethane ug/l ug/l ug/lStyrene Chloroform ug/l Page 3 of 6 Graphs Historical Concentrations of Benzene, Napthalene and MTBE in MW-8 Date Benzene Conc. 24-Sep 2680 5-Aug 2000 5-May 1930 23-Feb 1890 11-Sep 1500 12-Apr 1240 18-Oct 1700 8-May 1050 24-Oct 835 9-Jun 672 27-Jun 811 Date Napthalene Conc 09-24-14 305 08-05-15 192 05-05-16 179 02-23-17 194 09-11-17 302 04-12-18 206 10-18-18 190 05-08-19 190 10-24-19 253 06-09-22 252 06-27-23 0 Date MTBE Concentrations 09-24-14 4620 08-05-15 4390 05-05-16 5640 02-23-17 4260 09-11-17 2700 04-12-18 1830 10-18-18 1800 05-08-19 1240 10-24-19 1010 0 500 1000 1500 2000 2500 3000 24-Sep-14 5-Aug-15 5-May-16 23-Feb-17 11-Sep-17 12-Apr-18 18-Oct-18 8-May-19 24-Oct-19 9-Jun-22 27-Jun-23 Be n z e n e C o n c e n t r a t i o n ( u g / l ) Sampling Date Benzene Concentration in MW-8 0 50 100 150 200 250 300 350 09-24-14 08-05-15 05-05-16 02-23-17 09-11-17 04-12-18 10-18-18 05-08-19 10-24-19 06-09-22 06-27-23 Na p t h a l e n e C o n c e n t r a t i o n ( u g / l ) Sampling Date Napthalene Concentrations in MW-8 0 1000 2000 3000 4000 5000 6000 09-24-14 08-05-15 05-05-16 02-23-17 09-11-17 04-12-18 10-18-18 05-08-19 10-24-19 06-09-22 06-27-23 MT B E C o n c e n t r a t i o n ( u g / l ) MTBE Concentrations in MW-8 APPENDIX A North Carolina Department of Environmental Quality | Division of Waste Management Mooresville Regional Office | 610 East Center Avenue | Suite 301 | Mooresville, NC 28115 | (704) 663-1699 May 22, 2022 Tommy Hubbard 515 Crestview Drive Taylorsville, North Carolina 27265 Re: Notice of Regulatory Requirements 15A NCAC 02L .0110(c) [High Risk] Risk-based Assessment and Corrective Action For Petroleum Underground Storage Tanks Former Grapevine Produce 4500 NC Highway 64-90 West Alexander County Incident Number: 40243 Risk Classification: High Ranking: H-195-D Dear Mr. Hubbard: The report received on June 29, 2022 has been reviewed by the UST Section, Division of Waste Management, Mooresville Regional Office. The risk posed by the discharge or release at the subject site is classified by the Department of Environmental Quality as high, as stipulated under Title 15A NCAC 02L .0406. The land use at the site is classified as industrial/commercial. Title 15A NCAC 02L .0407(a) requires you to notify the Department of any changes that might affect the risk or land use classifications that have been assigned. The review indicates that corrective action is necessary to remediate environmental contamination. Title 15A NCAC 02L .0407(c) [High Risk] requires you to comply with the assessment and cleanup requirements of Title 15A NCAC 02N .0706, Title15A NCAC 02L .0106(c), Title 15A NCAC 02L .0110, and Title 15A NCAC 02L .0111. A Groundwater Monitoring Report prepared in accordance with these requirements and the most recent version of the UST Section Assessment Guidelines must be received by this office VHPLDQQXDOO\3lease sample all surrounding water supply wells located within 500 feet of the former UST location and also the surface water downgradient of the site. Please also sample MW-1, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-11 and MW-12. Active remediation is not approved at this time.7KHQH[WUHSRUWLVGXH$XJXVW For additional reference, please refer to the most recent version of the Guidelines for Site Checks, Tank Closures, and Initial Response and Abatement. Report requirements can be found in the most recent version of the Comprehensive Appendices for Correction Guidelines. Reports must contain the information specified in the report template presented in Appendix A of the Guidelines. Failure to comply in the manner and time specified may result in the assessment of civil penalties and/or the use of other enforcement mechanisms. Page 2 of 2 Incident Number 40243 May 22, 2023 North Carolina Department of Environmental Quality | Division of Waste Management Mooresville Regional Office | 610 East Center Avenue | Suite 301 | Mooresville, NC 28115 | (704) 663-1699 The Department of Environmental Quality requires that all work not determined to be an emergency response or associated with risk assessment (i.e., the Limited Site Assessment Report, per Title 15A NCAC 02L .0405) must be preapproved if State Trust Fund reimbursement is anticipated. To comply with this requirement, a completed Preapproval/Claim Authorization Form, encompassing the required remedial activities, must be received in this office within 14 days of the date of this letter. Upon completion of the preapproved activities, you should submit your claim promptly. Reimbursement funds are budgeted based on completed preapprovals, but delays in reimbursement or even denial due to exceeding the statute of limitations on claiming eligible costs can result where claims are not submitted immediately following work completion. Because a release or discharge has been confirmed, a Licensed Geologist or a Professional Engineer, certified by the State of North Carolina, is required to prepare and certify all reports submitted to the Department in accordance with 15A NCAC 02L .0103(e) and 02L .0111(e) if required. If you have any questions regarding trust fund eligibility or reimbursement from the Commercial Leaking Petroleum Underground Storage Tank Cleanup Fund, please contact the UST Section Trust Fund Branch at (919) 707-8171. If you have any questions regarding the actions that must be taken or the rules mentioned in this letter, please Ryan.Mills@deq.nc.gov or 704-235-2175. Sincerely, Ryan C Mills Environmental Program Consultant Mooresville Regional Office UST Section, Division of Waste Management, NCDEQ cc:Alexander County Health Department (Via Email) 0LNH-RQHV/*Pyramid Environmental & Engineering, P.C. (Via Email) APPENDIX B Standard Field Procedures: Revision 10.3 Page 1 Pyramid Environmental & Engineering, P.C. Revision date 11-11-2016 Standard Field Procedures Pyramid Environmental & Engineering, P.C. ________________________________________________________________________ 1.0 Equipment Decontamination Equipment decontamination is essential to assure representative environmental samples are collected and to eliminate the potential for cross-contamination between sample points. Pyramid strives to clean all field equipment prior to leaving the office; however, field decontamination is still required on most projects. The procedures for decontamination of water level probes, hand augers, sampling probes, trowels, and other field equipment are listed below. 1.1 EPA Region IV Decontamination Procedures Drilling and soil sampling equipment is decontaminated prior to each use using a pressure washer or steam cleaner. Reusable sampling equipment (hand augers, sampling probes, trowels, split spoon samplers, water sampling equipment, etc.…) are decontaminated using the general procedure described below. x Wash with non-phosphate detergent and water, brush to remove particulate matter x Rinse with tap water x Rinse with 10 percent nitric acid solution (only if sampling for metals) x Rinse with de-ionized water x Rinse with pesticide-grade isopropyl alcohol x Rinse with de-ionized water x Air-dry as long as possible The level of decontamination used is appropriate to the analytical parameters selected and the material of the sampling device being used for sampling. For example, if metals analyses are required, then the 10 % nitric acid solution is used for decontamination of stainless-steel equipment. Pyramid uses de-ionized or distilled water for decontamination. Equipment that is not used immediately after decontamination is wrapped in aluminum foil prior to storage. 2.0 Soil Borings & Sampling 2.1 Soil Borings Soil borings are used by Pyramid to characterize the subsurface at many sites. The borings provide information concerning soil types and density, depth to refusal, depth to bedrock, organic vapors that may be present, and can be used to obtain samples for laboratory analysis. Pyramid conducts borings in several different ways, using hand augers, direct-push equipment (Geoprobe), sample probes, split-spoon samplers (ASTM D 1586-84), auger drilling, air drilling, and Vibro-Core. The following procedures are used by Pyramid Environmental when performing soil borings: 1. Soil boring locations are chosen, and the utility locating service is called to mark all public utilities. Pyramid also locates private utilities at many project sites using Pyramid locating equipment or a private utility locating service. Standard Field Procedures: Revision 10.3 Page 2 Pyramid Environmental & Engineering, P.C. Revision date 11-11-2016 2. Down hole drilling equipment is cleaned prior to use and between borings using pressure washing or steam cleaning. Additional decontamination procedures in Section 1.1 are used for quality assurance for sampling tools such as split spoons or direct-push points. 3. Soil borings are advanced using direct-push, drilling rigs, hand augers, or other appropriate means. 4. Soil samples are normally collected at a minimum of 5-foot intervals. Each sample is divided into two parts. Soil samples for laboratory analyses are jarred from the initial sample volume. The remaining soil is stored in a sealed container for headspace analysis with an organic vapor analyzer (OVA). 5. After screening the soil with the field instruments, each soil sample is described by the field geologist and a geologic description is recorded in project documentation. 6. Soils are typically described in the field by the project geologist or soil scientist and are classified according to the Unified Soil Classification System (ASTM D 2488-84). 7. Soil samples selected for laboratory analysis are placed in properly prepared, laboratory supplied containers and immediately packed in a cooler on ice. Sample custody is maintained using standard chain-of-custody procedures through delivery to the analytical laboratory. 8. Soil borings, which are not completed as monitoring wells, are grouted using a Portland cement, bentonite, or backfilled with soil cuttings. 9. Where appropriate, soil cuttings are spread near the soil boring or well site in most instances. In rare instances, drill cuttings will be containerized and disposed off-site after waste determination has been made. 2.2 Headspace Screening Soil samples are routinely screened for volatile organic compounds (VOCs) which may be an indication of organic or petroleum hydrocarbon contamination. The typical screening procedure includes immediately transferring the soil from the sampling devices to a sealed container (sealed plastic bag). The soil container is filled approximately halfway with soil and sealed. This creates headspace above the soil in which VOCs may accumulate. The container is allowed to stand for 5 to 15 minutes for the VOCs to equilibrate in the headspace of the container. The headspace of the container is then screened using a calibrated organic vapor analyzer (PID or FID). The screening is conducted by cracking the seal only enough to allow insertion of the probe into the headspace so as not to dilute the sample. In most cases where the contaminant of concern includes volatile organics, the highest or “Peak“ field-screening result is documented for each sample. The soil samples showing the highest reading from each boring are typically selected for laboratory analysis. Standard Field Procedures: Revision 10.3 Page 3 Pyramid Environmental & Engineering, P.C. Revision date 11-11-2016 2.3 Soil Sample Collection for Laboratory Analysis After the targeted depth has been reached, soil samples are collected using a variety of sampling devices. Soil sample devices used include split-spoons, stainless-steel hand augers, stainless-steel sampling scoops, and directly from the center of the excavator bucket. The sample technician uses appropriate disposable sampling gloves, which are changed between samples to avoid cross-contamination of samples. Each sampling device is decontaminated prior to use. Only laboratory provided containers are used for sample collection. Samples are collected in accordance with the preservation methods required by the requested analytical method. Samples are handled as little as possible and preserved in the field as specified for the analytical method. The samples are stored and transported to the laboratory in an insulated cooler chilled to approximately 4 degrees centigrade. The samples are labeled with a minimum of the following information: project name or number, sampler name, date collected, sample number, and analysis requested. Sample custody is maintained using standard chain-of-custody procedures through delivery to the analytical laboratory. Notes of the sampling events are recorded in bound field notebooks. 2.4 Sediment Sample Collection for Laboratory Analysis Near surface sediment may be present in a surface water stream or dry intermittent stream bed. Sediment samples are typically soil related samples and may be collected with a variety of sampling tools. Pyramid will use stainless-steel samplers which have been decontaminated according to the procedure detailed in section 1.1 of this document. After the sediment samples are collected, the location, depth, conditions, and sample composition are documented in the project records. The samples will be screened in the field to detect volatile organic vapors and visually examined for contamination. Sediment samples will be preserved in laboratory prepared containers in accordance with sample preservation recommendation of the analytical laboratory. Samples are handled as little as possible and preserved in the field as specified for the analytical method. The samples are stored and transported in an insulated cooler chilled to approximately 4 degrees centigrade. The samples are labeled with a minimum of the following information: project name or number, sampler name, date collected, sample number, and analysis requested. Sample custody is maintained using standard chain-of-custody procedures through delivery to the analytical laboratory. Documentation of the sampling events are recorded in bound field notebooks. 3.0 Direct-Push Sampling Procedures Direct-push sampling techniques have been used at many sites to collect soil and groundwater samples rapidly and inexpensively. Track-mounted, direct-push rigs can access hard to reach areas and allow borings and monitoring wells to be installed. Pyramid has used this technology to the benefit of our clients at many project sites. For soil sampling, typically, the direct-push steel drive tube is decontaminated using a pressure washer, and a new plastic sample liner is inserted in the steel drive tube to collect soil samples. If necessary, the stainless-steel sampling tube is decontaminated using Region IV decontamination procedures presented in Section 1.1. The soil samples are collected in new polyethylene sample tubes within the steel drive tube. The soil samples are then extracted from the polyethylene liner and preserved as required for the appropriate laboratory analysis. Standard Field Procedures: Revision 10.3 Page 4 Pyramid Environmental & Engineering, P.C. Revision date 11-11-2016 For Groundwater sampling, a steel probe with a retractable screen section and tubing are driven to depth and the screened section is opened to allow groundwater to enter the tubing. The water samples are withdrawn using new polyethylene tubing with either a decontaminated stainless-steel check ball, or peristaltic pump. The groundwater sample is placed directly into the appropriate laboratory containers and sealed immediately. To prevent cross-contamination of samples, new disposable tubing is used for each groundwater sample point. Disposable nitrile gloves are worn by field personnel during development and groundwater sampling, and gloves are changed between samples. Groundwater sampling procedures are detailed more in Section 5.0, as appropriate for each analytical method. 4.0 Monitoring Well Installation Groundwater monitoring wells are installed in many subsurface environments; sedimentary, Piedmont saprolite, and mountain terrains to list a few. Formations encountered include unconsolidated and consolidated sediments, saprolitic and weathered rock formations, and bedrock. Groundwater monitoring wells provide a stable sampling point at discrete intervals within the confined or unconfined aquifers. Monitoring wells are installed for a number of reasons, and are typically installed as 1-inch, 2-inch, 4-inch, or 6-inch diameter wells. Construction may be of PVC or other appropriate materials. The following procedures are used by Pyramid when performing borings and monitoring well installations. x If required, monitoring well permits are obtained from the State, County, or City. x Boring and monitoring well locations are chosen, and utilities are marked by the public utility locating company. As needed, the drill locations may also be scanned for utilities using a private utility locating company. x In selecting a drill site, care is taken to avoid overhead power lines, and subsurface utilities whenever possible. x Down hole drilling equipment is decontaminated prior to use and between borings. x Borings are advanced using direct-push, drilling rigs, hand augers, solid-stem augers, hollow-stem augers, air rotary drilling, or air hammer drilling. x Soil samples are normally collected at a minimum of 5-foot intervals. Each sample is divided into two parts. Soil samples for laboratory analyses are jarred from the initial sample volume. The remaining soil is stored in a sealed container for headspace analysis with an organic vapor analyzer (OVA). x After screening the soil with the field instruments, each soil sample is described by the field geologist and a geologic description is recorded in the field notes. Type II monitoring wells are usually installed using 2-inch diameter schedule 40 PVC riser and 2-inch, 0.010-inch machine slotted well screen. The screened interval varies with the purpose of the well, and well details are presented with the boring logs. Type III wells are usually installed as double-cased wells to monitor the deeper portions of the aquifer. The first casing is usually a 6-inch diameter casing drilled to bedrock or an appropriate depth within the saprolite. The 6-inch diameter casing is then set and grouted in the borehole. After the cement grout has set for 12 to 24-hours, the borehole is completed to the desired depth using air rotary or an air hammer drilling. The Type III monitoring well is usually constructed of 2-inch diameter SCH 40 PVC casing and 2-inch diameter SCH 40 PVC 0.010-inch slotted well screen. Standard Field Procedures: Revision 10.3 Page 5 Pyramid Environmental & Engineering, P.C. Revision date 11-11-2016 In most applications, a sand filter pack of #2 well sand (or appropriately sized well sand) is typically installed to a level of 2 feet above the top of the screen in each well. A minimum 2- foot thick bentonite seal is usually placed on top of the filter pack and hydrated with de- ionized or distilled water. The remaining annular space of a typical well is backfilled to grade with a Portland cement/bentonite grout. In monitoring wells where the water table is close to surface, the amount of sand above the screen and bentonite will be reduced to allow for a minimum of 2–3 feet of cement grout in the well bore. At the surface, each well is usually secured with a locking cap and a steel well protector set in a 2 by 2 foot concrete pad. In some cases, stick-up well protectors are used to secure the well and allow the well to be more easily located in wooded or open areas. Each groundwater monitoring well is developed by surging, pumping, or bailing to remove sediment before sampling. Water removed during development is managed according to regulatory standards. 5.0 Water Sampling Procedures Pyramid relies on water sampling as a primary method for assessment of subsurface conditions. Water sampling typically includes sampling groundwater from monitoring wells, supply wells, surface water bodies, waste pits, sumps, etc. The following provides typical sampling procedures for the major sample types. 5.1 Monitoring Wells Prior to sampling each monitoring well, depth to product/groundwater and total well depth are measured using a properly decontaminated electric interface probe. This information is recorded in the field record and the volume of the water in the well casing is calculated. To purge stagnant water from each monitoring well, five well casing volumes of water are removed from each well, or until the field parameters pH, conductivity, dissolved oxygen, and temperature have stabilized. If the water in the monitoring well is removed until the well is dry, then the well is sampled thereafter. Water removed from wells during purging is managed in accordance with regulatory guidance. Depending on project requirements, temperature, pH, specific conductance, dissolved oxygen, and other parameters may be measured prior to sampling. Groundwater samples are typically collected using a new disposable polyethylene bailer and a new length of nylon cord. To prevent cross-contamination of samples between wells, a new disposable bailer is used for each well. A new pair of disposable gloves is worn by field personnel during purging and sampling, and is changed between wells. In the case of small diameter monitoring wells or direct-push water samples, water samples may be collected using a peristaltic pump and new polyethylene tubing. Another method is to use a segment of new polyethylene tubing and a stainless-steel check ball to create a “Tube Bailer”. Groundwater samples selected for laboratory analysis are placed in properly prepared, laboratory supplied containers and immediately preserved in a cooler on ice. Samples are maintained under standard chain-of-custody procedures from sample collection through laboratory analysis. Standard Field Procedures: Revision 10.3 Page 6 Pyramid Environmental & Engineering, P.C. Revision date 11-11-2016 5.2 Water Supply Well Sampling Procedures Prior to sampling each water supply well, the well owner is contacted to provide access to the well. The well owner is interviewed to find the faucet closest to the well for sampling. If there are no faucets located on the well, then water from an outside faucet is usually sampled. If there are no outside faucets available, then the water samples are collected from an inside faucet. The location of the sample is recorded in the field book. The owner is interviewed to see if there is a chlorination system on the well, or if the well has been recently chlorinated. Recent chlorination could affect the laboratory detection limits. In most cases, the samples are preserved using sodium thiosulfate or ascorbic acid to remove the interactions of chlorine, which may be present in the samples. To purge stagnant water from the water supply well system, the faucet is allowed to run on full stream for a minimum of 15 minutes. The aerator is removed from the tap if one is present. Water removed from wells during purging is managed according to regulatory standards. Supply well samples are collected using appropriate laboratory prepared containers for each analysis. The analytical methods selected will vary with the contaminant of interest. To prevent cross-contamination of samples between wells, disposable latex gloves are worn by field personnel during purging and sampling and are changed between wells. It is possible that samples may be required at several places within the water supply system. The samples will be collected accordingly and labeled to show the source and location sampled. Supply well samples selected for laboratory analysis are placed in properly prepared, laboratory supplied containers and immediately packed in a cooler on wet ice, and chilled to approximately 4 degrees Celsius. Samples are maintained under strict control using standard chain-of-custody procedures through laboratory analysis. 5.3 Surface Water Sampling Surface water samples are obtained using several techniques including use of sample bailers, sample scoops, from boats, bridges, or wading into a stream. Caution should always be used when sampling surface water to ensure that the water collected is representative of the conditions. Since stream or open water sampling is transient, careful documentation of the site conditions is required. In many studies, additional samples from upstream and downstream of the desired sample point are required. Surface water sampling must be planned to reflect the desired conditions during sampling. The general procedures are similar to the supply well sampling procedures detailed above. Appropriate laboratory prepared containers are used for each analysis. The analytical methods selected will vary with the contaminant of interest. To prevent cross-contamination of samples between samples, disposable latex gloves are worn by field personnel during purging and sampling and are changed between samples. It is possible that samples may be required at several places along the stream to check for influences of up-stream facilities. Standard Field Procedures: Revision 10.3 Page 7 Pyramid Environmental & Engineering, P.C. Revision date 11-11-2016 The samples will be collected accordingly and labeled to show the source and location sampled. Sample will always be collected upstream of the area disturbed by the person sampling the stream. Surface water samples selected for laboratory analysis are placed in properly prepared, laboratory supplied containers and immediately packed in a cooler on ice. Samples are maintained under strict control using standard chain-of-custody procedures through laboratory analysis. 6.0 Quality Assurance / Quality Control The decontamination procedures listed above have been implemented on many sites with excellent results. The procedures are often verified by an appropriate use of the following environmental sample “Blanks.” Trip Blanks The Trip Blank (or travel blanks) are often used to verify that the sample containers are not impacted during shipping, and verify that the source of the glassware is not the source of contamination. The trip blanks are preserved de-ionized water, collected in the laboratory, and shipped with the sample containers to the site. The trip blank remains in the cooler and is shipped back to the laboratory with the environmental samples. The trip blank is usually analyzed for volatile organics, which correspond to the target analyses. Field Blanks Field Blanks are quality assurance samples which are collected in the field to represent the conditions present at the time the samples are collected. For water samples, the laboratory containers are opened and filled in the field using de-ionized (or distilled) water from a known source. The samples then travel to the laboratory with the other samples for analysis. Equipment Blanks Equipment Blanks are used to verify whether the decontamination procedures used for the sample equipment or the new equipment added any contaminants to the sample during collection. If a non-disposable sampling device is used (such as a sampling treir, scoop, hand auger, Teflon bailer, etc…), then the decontamination of the sampling device is usually verified using an equipment blank. The equipment blank is collected using de-ionized (or distilled) water from a known source. The equipment is cleaned, and allowed to dry, the water is poured over or through the equipment, and collected in the appropriate sample containers. The equipment blank samples are preserved with the other environmental samples, and shipped for analyses for the target parameters. Duplicate Samples Duplicate Samples are used to verify the sampling procedures and laboratory analysis variability. The duplicate samples may be collected from waste streams, soil, or groundwater. These samples are collected and sent to the laboratory as a blind sample to have maximum effectiveness. Samples are generally analyzed for the same analytical methods as the actual environmental sample for direct comparison. Duplicate samples may also be split between two different laboratories to provide verification of laboratory detection limits or quality process verification. APPENDIX C  Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.      3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& :\DWWH&RSHODQG 32%R[ *UHHQVERUR1&  5HI $QDO\WLFDO7HVWLQJ /DE5HSRUW1XPEHU &OLHQW3URMHFW'HVFULSWLRQ)RUPHU*UDSHYLQH3URGXFH  'HDU:\DWWH&RSHODQG  :D\SRLQW$QDO\WLFDO//& &KDUORWWH UHFHLYHGVDPSOH V RQIRUWKHDQDO\VHVSUHVHQWHGLQWKH IROORZLQJUHSRUW  7KHDERYHUHIHUHQFHGSURMHFWKDVEHHQDQDO\]HGSHU\RXULQVWUXFWLRQV7KHDQDO\VHVZHUHSHUIRUPHGLQ DFFRUGDQFHZLWKWKHDSSOLFDEOHDQDO\WLFDOPHWKRG  7KHDQDO\WLFDOGDWDKDVEHHQYDOLGDWHGXVLQJVWDQGDUGTXDOLW\FRQWUROPHDVXUHVSHUIRUPHGDVUHTXLUHGE\WKH DQDO\WLFDOPHWKRG4XDOLW\$VVXUDQFHPHWKRGYDOLGDWLRQVLQVWUXPHQWDWLRQPDLQWHQDQFHDQGFDOLEUDWLRQIRUDOO SDUDPHWHUVZHUHSHUIRUPHGLQDFFRUGDQFHZLWKJXLGHOLQHVHVWDEOLVKHGE\WKH86(3$ LQFOXGLQJ&)5 0HWKRG8SGDWH5XOH0D\ XQOHVVRWKHUZLVHLQGLFDWHG  &HUWDLQSDUDPHWHUV FKORULQHS+GLVVROYHGR[\JHQVXOILWH DUHUHTXLUHGWREHDQDO\]HGZLWKLQPLQXWHVRI VDPSOLQJ8VXDOO\EXWQRWDOZD\VDQ\ILHOGSDUDPHWHUDQDO\]HGDWWKHODERUDWRU\LVRXWVLGHRIWKLVKROGLQJWLPH 5HIHUWRVDPSOHDQDO\VLVWLPHIRUFRQILUPDWLRQRIKROGLQJWLPHFRPSOLDQFH  7KHUHVXOWVDUHVKRZQRQWKHDWWDFKHG5HSRUWRI$QDO\VLV V 5HVXOWVIRUVROLGPDWULFHVDUHUHSRUWHGRQDQDV UHFHLYHGEDVLVXQOHVVRWKHUZLVHLQGLFDWHG7KLVUHSRUWVKDOOQRWEHUHSURGXFHGH[FHSWLQIXOODQGUHODWHVRQO\WR WKHVDPSOHVLQFOXGHGLQWKLVUHSRUW  3OHDVHGRQRWKHVLWDWHWRFRQWDFWPHRUFOLHQWVHUYLFHVLI\RXKDYHDQ\TXHVWLRQVRUQHHGDGGLWLRQDOLQIRUPDWLRQ   6LQFHUHO\ $QJHOD'2YHUFDVK 6HQLRU3URMHFW0DQDJHU Page 1 of 82 Certification Summary Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC State Program Lab ID Expiration Date 07/31/202337735State ProgramNorth Carolina 12/31/2023402State ProgramNorth Carolina 07/31/202399012State ProgramSouth Carolina 12/31/202299012State ProgramSouth Carolina Page 1 of 1 00016/23-181-0022 Page 2 of 82 5HSRUW1XPEHU 6DPSOH6XPPDU\7DEOH &OLHQW3URMHFW'HVFULSWLRQ  )RUPHU*UDSHYLQH3URGXFH /DE1R &OLHQW6DPSOH,' 0DWUL[ 'DWH&ROOHFWHG 'DWH5HFHLYHG $TXHRXV0: $TXHRXV0: $TXHRXV0: $TXHRXV0: $TXHRXV0: $TXHRXV0: $TXHRXV0: $TXHRXV0: $TXHRXV0: $TXHRXV6): $TXHRXV6): $TXHRXV6: Page 3 of 82 6XPPDU\RI'HWHFWHG$QDO\WHV 4XDOLILHUV$QDO\]HG8QLWV5HVXOW 5HSRUW1XPEHU &OLHQW6DPSOH,' 0HWKRG 3DUDPHWHUV /DE6DPSOH,'  5HSRUW/LPLW 3URMHFW)RUPHU*UDSHYLQH3URGXFH 90: - % (WK OEHQ]HQH ˜/   % 1D KWKDOHQH ˜/   % 7ROXHQH ˜/   % 7ULPHWK OEHQ]HQH ˜/  - % R;OHQH ˜/   % P;OHQH ˜/  - % ;OHQH 7RWDO ˜/  90:  % Q%XW OEHQ]HQH ˜/   % VHF%XW OEHQ]HQH ˜/   % (WK OEHQ]HQH ˜/   % +H[DQRQH ˜/   % ,VR UR OEHQ]HQH ˜/   % ,VR UR OWROXHQH ˜/   % 0HWK O3HQWDQRQH ˜/   % 1D KWKDOHQH ˜/   % Q3UR OEHQ]HQH ˜/   % 7ULPHWK OEHQ]HQH ˜/   % 7ULPHWK OEHQ]HQH ˜/  - % P;OHQH ˜/  - % ;OHQH 7RWDO ˜/  90: - % (WK OEHQ]HQH ˜/   % 1D KWKDOHQH ˜/  - % 7ROXHQH ˜/  - % 7ULPHWK OEHQ]HQH ˜/  - % R;OHQH ˜/  - % P;OHQH ˜/  - % ;OHQH 7RWDO ˜/  90:  % 'L,VR UR O(WKHU ',3( ˜/   % 0HWK OWHUWEXW OHWKHU 07%( ˜/  90:  % %HQ]HQH ˜/  Page 4 of 82 6XPPDU\RI'HWHFWHG$QDO\WHV 4XDOLILHUV$QDO\]HG8QLWV5HVXOW 5HSRUW1XPEHU &OLHQW6DPSOH,' 0HWKRG 3DUDPHWHUV /DE6DPSOH,'  5HSRUW/LPLW 3URMHFW)RUPHU*UDSHYLQH3URGXFH 90:  % (WK OEHQ]HQH ˜/   % ,VR UR OEHQ]HQH ˜/   % 0HWK OWHUWEXW OHWKHU 07%( ˜/   % Q3UR OEHQ]HQH ˜/   % 7ROXHQH ˜/   % 7ULPHWK OEHQ]HQH ˜/   % 7ULPHWK OEHQ]HQH ˜/   % R;OHQH ˜/   % P;OHQH ˜/   % ;OHQH 7RWDO ˜/  90:  % %HQ]HQH ˜/   % Q%XW OEHQ]HQH ˜/   % VHF%XW OEHQ]HQH ˜/   % 'L,VR UR O(WKHU ',3( ˜/   % (WK OEHQ]HQH ˜/   % ,VR UR OEHQ]HQH ˜/   % 0HWK OWHUWEXW OHWKHU 07%( ˜/  - % 0HWK O3HQWDQRQH ˜/   % 1D KWKDOHQH ˜/   % Q3UR OEHQ]HQH ˜/   % 7ROXHQH ˜/   % 7ULFKORURHWKDQH ˜/   % 7ULPHWK OEHQ]HQH ˜/   % R;OHQH ˜/   % P;OHQH ˜/   % ;OHQH 7RWDO ˜/  90:  % $FHWRQH ˜/   % %HQ]HQH ˜/  - % Q%XW OEHQ]HQH ˜/  - % VHF%XW OEHQ]HQH ˜/   % (WK OEHQ]HQH ˜/   % ,VR UR OEHQ]HQH ˜/   % 1D KWKDOHQH ˜/   % Q3UR OEHQ]HQH ˜/  Page 5 of 82 6XPPDU\RI'HWHFWHG$QDO\WHV 4XDOLILHUV$QDO\]HG8QLWV5HVXOW 5HSRUW1XPEHU &OLHQW6DPSOH,' 0HWKRG 3DUDPHWHUV /DE6DPSOH,'  5HSRUW/LPLW 3URMHFW)RUPHU*UDSHYLQH3URGXFH 90:  % 7ULPHWK OEHQ]HQH ˜/   % 7ULPHWK OEHQ]HQH ˜/   % P;OHQH ˜/   % ;OHQH 7RWDO ˜/  96): - % 0HWK OWHUWEXW OHWKHU 07%( ˜/  Page 6 of 82               &OLHQW3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3&   &$6(1$55$7,9( 3URMHFW)RUPHU*UDSHYLQH3URGXFH /DE5HSRUW1XPEHU 'DWH              9RODWLOH2UJDQLF&RPSRXQGV*&060HWKRG% $QDO\WH(WKDQRO 4&%DWFK1R99 5HODWLYH3HUFHQW'LIIHUHQFH 53' IRUWKHGXSOLFDWHDQDO\VLVZDVRXWVLGHRIWKHDOORZDEOH4&OLPLWV   Page 7 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   906$ —J/ %HQ]HQH   906$ —J/ %URPREHQ]HQH   906$ —J/ %URPRFKORURPHWKDQH   906$ —J/ %URPRGLFKORURPHWKDQH   906$ —J/ %URPRIRUP   906$ —J/ %URPRPHWKDQH   906$ —J/ Q%XW\OEHQ]HQH   906$ —J/ VHF%XW\OEHQ]HQH   906$ —J/ WHUW%XW\OEHQ]HQH   906$ —J/ &DUERQ7HWUDFKORULGH   906$ —J/ &KORUREHQ]HQH   906$ —J/ &KORURGLEURPRPHWKDQH   906$ —J/ &KORURHWKDQH   906$ —J/ &KORURIRUP   906$ —J/ &KORURPHWKDQH   906$ —J/ &KORURWROXHQH   906$ —J/ &KORURWROXHQH   906$ —J/ 'L,VRSURS\O(WKHU ',3(   906$ —J/ 'LEURPR&KORURSURSDQH   906$ —J/ 'LEURPRHWKDQH   906$ —J/ 'LEURPRPHWKDQH   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 8 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORURGLIOXRURPHWKDQH   906$ —J/ 'LFKORURHWKDQH   906$ —J/ 'LFKORURHWKDQH   906$ —J/ 'LFKORURHWKHQH   906$ —J/ FLV'LFKORURHWKHQH   906$ —J/ WUDQV'LFKORURHWKHQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSHQH   906$ —J/ FLV'LFKORURSURSHQH   906$ —J/ WUDQV'LFKORURSURSHQH   906$ —J/ (WKDQRO   906$  -—J/ (WK\OEHQ]HQH   906$ —J/ +H[DFKORUREXWDGLHQH   906$ —J/ +H[DQRQH   906$ —J/ ,VRSURS\OEHQ]HQH   906$ —J/ ,VRSURS\OWROXHQH   906$ —J/ 0HWK\O(WK\O.HWRQH 0(.   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 9 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   906$ —J/ 0HWK\O3HQWDQRQH   906$ —J/ 0HWK\OHQH&KORULGH   906$ —J/ 1DSKWKDOHQH   906$ —J/ Q3URS\OEHQ]HQH   906$ —J/ 6W\UHQH   906$ —J/ 7HWUDFKORURHWKDQH   906$ —J/ 7HWUDFKORURHWKDQH   906$ —J/ HWUDFKORURHWKHQ   906$ —J/ ROXHQH   906$ —J/ 7ULFKORUREHQ]HQH   906$ —J/ 7ULFKORUREHQ]HQH   906$ —J/ 7ULFKORURHWKDQH   906$ —J/ 7ULFKORURHWKDQH   906$ —J/ ULFKORURHWKHQ   906$ —J/ ULFKORURIOXRURPHWKDQ   906$ —J/ 7ULFKORURSURSDQH   906$ —J/ 7ULPHWK\OEHQ]HQH   906$ —J/ 7ULPHWK\OEHQ]HQH   906$ —J/ 9LQ\O$FHWDWH   906$ —J/ 9LQ\O&KORULGH   906$  -—J/ R;\OHQH   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 10 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   906$  -—J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  06  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  06  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  06  6XUURJDWH7ROXHQHG  /LPLWV  06  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 11 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10 —J/ Q%XW\OEHQ]HQH   9(10 —J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 12 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 13 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 14 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV   -—J/ PS;\OHQH   9(10  -—J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 15 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   906$ —J/ %HQ]HQH   906$ —J/ %URPREHQ]HQH   906$ —J/ %URPRFKORURPHWKDQH   906$ —J/ %URPRGLFKORURPHWKDQH   906$ —J/ %URPRIRUP   906$ —J/ %URPRPHWKDQH   906$ —J/ Q%XW\OEHQ]HQH   906$ —J/ VHF%XW\OEHQ]HQH   906$ —J/ WHUW%XW\OEHQ]HQH   906$ —J/ &DUERQ7HWUDFKORULGH   906$ —J/ &KORUREHQ]HQH   906$ —J/ &KORURGLEURPRPHWKDQH   906$ —J/ &KORURHWKDQH   906$ —J/ &KORURIRUP   906$ —J/ &KORURPHWKDQH   906$ —J/ &KORURWROXHQH   906$ —J/ &KORURWROXHQH   906$ —J/ 'L,VRSURS\O(WKHU ',3(   906$ —J/ 'LEURPR&KORURSURSDQH   906$ —J/ 'LEURPRHWKDQH   906$ —J/ 'LEURPRPHWKDQH   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 16 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORURGLIOXRURPHWKDQH   906$ —J/ 'LFKORURHWKDQH   906$ —J/ 'LFKORURHWKDQH   906$ —J/ 'LFKORURHWKHQH   906$ —J/ FLV'LFKORURHWKHQH   906$ —J/ WUDQV'LFKORURHWKHQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSHQH   906$ —J/ FLV'LFKORURSURSHQH   906$ —J/ WUDQV'LFKORURSURSHQH   906$ —J/ (WKDQRO   906$  -—J/ (WK\OEHQ]HQH   906$ —J/ +H[DFKORUREXWDGLHQH   906$ —J/ +H[DQRQH   906$ —J/ ,VRSURS\OEHQ]HQH   906$ —J/ ,VRSURS\OWROXHQH   906$ —J/ 0HWK\O(WK\O.HWRQH 0(.   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 17 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   906$ —J/ 0HWK\O3HQWDQRQH   906$ —J/ 0HWK\OHQH&KORULGH   906$ —J/ 1DSKWKDOHQH   906$ —J/ Q3URS\OEHQ]HQH   906$ —J/ 6W\UHQH   906$ —J/ 7HWUDFKORURHWKDQH   906$ —J/ 7HWUDFKORURHWKDQH   906$ —J/ HWUDFKORURHWKHQ   906$  -—J/ ROXHQH   906$ —J/ 7ULFKORUREHQ]HQH   906$ —J/ 7ULFKORUREHQ]HQH   906$ —J/ 7ULFKORURHWKDQH   906$ —J/ 7ULFKORURHWKDQH   906$ —J/ ULFKORURHWKHQ   906$ —J/ ULFKORURIOXRURPHWKDQ   906$ —J/ 7ULFKORURSURSDQH   906$  -—J/ 7ULPHWK\OEHQ]HQH   906$ —J/ 7ULPHWK\OEHQ]HQH   906$ —J/ 9LQ\O$FHWDWH   906$ —J/ 9LQ\O&KORULGH   906$  -—J/ R;\OHQH   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 18 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV   -—J/ PS;\OHQH   906$  -—J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  06  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  06  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  06  6XUURJDWH7ROXHQHG  /LPLWV  06  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 19 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10 —J/ Q%XW\OEHQ]HQH   9(10 —J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 20 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 21 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 22 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   9(10 —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 23 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10 —J/ Q%XW\OEHQ]HQH   9(10 —J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 24 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 25 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 26 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   9(10 —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 27 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   906$ —J/ %HQ]HQH   906$ —J/ %URPREHQ]HQH   906$ —J/ %URPRFKORURPHWKDQH   906$ —J/ %URPRGLFKORURPHWKDQH   906$ —J/ %URPRIRUP   906$ —J/ %URPRPHWKDQH   906$ —J/ Q%XW\OEHQ]HQH   906$ —J/ VHF%XW\OEHQ]HQH   906$ —J/ WHUW%XW\OEHQ]HQH   906$ —J/ &DUERQ7HWUDFKORULGH   906$ —J/ &KORUREHQ]HQH   906$ —J/ &KORURGLEURPRPHWKDQH   906$ —J/ &KORURHWKDQH   906$ —J/ &KORURIRUP   906$ —J/ &KORURPHWKDQH   906$ —J/ &KORURWROXHQH   906$ —J/ &KORURWROXHQH   906$ —J/ 'L,VRSURS\O(WKHU ',3(   906$ —J/ 'LEURPR&KORURSURSDQH   906$ —J/ 'LEURPRHWKDQH   906$ —J/ 'LEURPRPHWKDQH   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 28 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORUREHQ]HQH   906$ —J/ 'LFKORURGLIOXRURPHWKDQH   906$ —J/ 'LFKORURHWKDQH   906$ —J/ 'LFKORURHWKDQH   906$ —J/ 'LFKORURHWKHQH   906$ —J/ FLV'LFKORURHWKHQH   906$ —J/ WUDQV'LFKORURHWKHQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSDQH   906$ —J/ 'LFKORURSURSHQH   906$ —J/ FLV'LFKORURSURSHQH   906$ —J/ WUDQV'LFKORURSURSHQH   906$ —J/ (WKDQRO   906$ —J/ (WK\OEHQ]HQH   906$ —J/ +H[DFKORUREXWDGLHQH   906$ —J/ +H[DQRQH   906$ —J/ ,VRSURS\OEHQ]HQH   906$ —J/ ,VRSURS\OWROXHQH   906$ —J/ 0HWK\O(WK\O.HWRQH 0(.   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 29 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   906$  -—J/ 0HWK\O3HQWDQRQH   906$ —J/ 0HWK\OHQH&KORULGH   906$ —J/ 1DSKWKDOHQH   906$ —J/ Q3URS\OEHQ]HQH   906$ —J/ 6W\UHQH   906$ —J/ 7HWUDFKORURHWKDQH   906$ —J/ 7HWUDFKORURHWKDQH   906$ —J/ HWUDFKORURHWKHQ   906$ —J/ ROXHQH   906$ —J/ 7ULFKORUREHQ]HQH   906$ —J/ 7ULFKORUREHQ]HQH   906$ —J/ 7ULFKORURHWKDQH   906$ —J/ 7ULFKORURHWKDQH   906$ —J/ ULFKORURHWKHQ   906$ —J/ ULFKORURIOXRURPHWKDQ   906$ —J/ 7ULFKORURSURSDQH   906$ —J/ 7ULPHWK\OEHQ]HQH   906$ —J/ 7ULPHWK\OEHQ]HQH   906$ —J/ 9LQ\O$FHWDWH   906$ —J/ 9LQ\O&KORULGH   906$ —J/ R;\OHQH   906$ 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 30 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   906$ —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  06  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  06  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  06  6XUURJDWH7ROXHQHG  /LPLWV  06  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 31 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10  -—J/ Q%XW\OEHQ]HQH   9(10  -—J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 32 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 33 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 34 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   9(10 —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 35 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10 —J/ Q%XW\OEHQ]HQH   9(10 —J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 36 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 37 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 38 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   9(10 —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 39 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10 —J/ Q%XW\OEHQ]HQH   9(10 —J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 40 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 41 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 42 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG0: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   9(10 —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 43 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6): 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10 —J/ Q%XW\OEHQ]HQH   9(10 —J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 44 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6): 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 45 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6): 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 46 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6): 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   9(10 —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 47 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6): 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10 —J/ Q%XW\OEHQ]HQH   9(10 —J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 48 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6): 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 49 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6): 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV   -—J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 50 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6): 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   9(10 —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 51 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ $FHWRQH   9(10 —J/ %HQ]HQH   9(10 —J/ %URPREHQ]HQH   9(10 —J/ %URPRFKORURPHWKDQH   9(10 —J/ %URPRGLFKORURPHWKDQH   9(10 —J/ %URPRIRUP   9(10 —J/ %URPRPHWKDQH   9(10 —J/ Q%XW\OEHQ]HQH   9(10 —J/ VHF%XW\OEHQ]HQH   9(10 —J/ WHUW%XW\OEHQ]HQH   9(10 —J/ &DUERQ7HWUDFKORULGH   9(10 —J/ &KORUREHQ]HQH   9(10 —J/ &KORURGLEURPRPHWKDQH   9(10 —J/ &KORURHWKDQH   9(10 —J/ &KORURIRUP   9(10 —J/ &KORURPHWKDQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ &KORURWROXHQH   9(10 —J/ 'L,VRSURS\O(WKHU ',3(   9(10 —J/ 'LEURPR&KORURSURSDQH   9(10 —J/ 'LEURPRHWKDQH   9(10 —J/ 'LEURPRPHWKDQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 52 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORUREHQ]HQH   9(10 —J/ 'LFKORURGLIOXRURPHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKDQH   9(10 —J/ 'LFKORURHWKHQH   9(10 —J/ FLV'LFKORURHWKHQH   9(10 —J/ WUDQV'LFKORURHWKHQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSDQH   9(10 —J/ 'LFKORURSURSHQH   9(10 —J/ FLV'LFKORURSURSHQH   9(10 —J/ WUDQV'LFKORURSURSHQH   9(10 —J/ (WKDQRO   9(10 —J/ (WK\OEHQ]HQH   9(10 —J/ +H[DFKORUREXWDGLHQH   9(10 —J/ +H[DQRQH   9(10 —J/ ,VRSURS\OEHQ]HQH   9(10 —J/ ,VRSURS\OWROXHQH   9(10 —J/ 0HWK\O(WK\O.HWRQH 0(.   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 53 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ 0HWK\OWHUWEXW\OHWKHU 07%(   9(10 —J/ 0HWK\O3HQWDQRQH   9(10 —J/ 0HWK\OHQH&KORULGH   9(10 —J/ 1DSKWKDOHQH   9(10 —J/ Q3URS\OEHQ]HQH   9(10 —J/ 6W\UHQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ 7HWUDFKORURHWKDQH   9(10 —J/ HWUDFKORURHWKHQ   9(10 —J/ ROXHQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORUREHQ]HQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ 7ULFKORURHWKDQH   9(10 —J/ ULFKORURHWKHQ   9(10 —J/ ULFKORURIOXRURPHWKDQ   9(10 —J/ 7ULFKORURSURSDQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 7ULPHWK\OEHQ]HQH   9(10 —J/ 9LQ\O$FHWDWH   9(10 —J/ 9LQ\O&KORULGH   9(10 —J/ R;\OHQH   9(10 4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 54 of 82  5(32572)$1$/<6,65HSRUW1XPEHU 3URMHFW ,QIRUPDWLRQ 1&    3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& 32%R[ :\DWWH&RSHODQG *UHHQVERUR 5HFHLYHG  )RUPHU*UDSHYLQH3URGXFH 5HSRUW'DWH  6DPSOH,' /DE1R 6DPSOHG6: 0DWUL[  $TXHRXV $QDO\WLFDO0HWKRG 3UHS0HWKRG Test Results Units MDL MQL By Analytical Batch Date / Time Analyzed DF 37 %3UHS%DWFK HV  —J/ PS;\OHQH   9(10 —J/ ;\OHQH 7RWDO   9 6XUURJDWH%URPRIOXRUREHQ]HQH   /LPLWV  (10  6XUURJDWH'LEURPRIOXRURPHWKDQH   /LPLWV  (10  6XUURJDWH'LFKORURHWKDQHG  /LPLWV  (10  6XUURJDWH7ROXHQHG  /LPLWV  (10  4XDOLILHUV'HILQLWLRQV (VWLPDWHGYDOXH-'LOXWLRQ)DFWRU') 0HWKRG4XDQWLWDWLRQ/LPLW04/ Page 55 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/$FHWRQH —J/%HQ]HQH —J/%URPREHQ]HQH —J/%URPRFKORURPHWKDQH —J/%URPRGLFKORURPHWKDQH —J/%URPRIRUP —J/%URPRPHWKDQH —J/Q%XW\OEHQ]HQH —J/VHF%XW\OEHQ]HQH —J/WHUW%XW\OEHQ]HQH —J/&DUERQ7HWUDFKORULGH —J/&KORUREHQ]HQH —J/&KORURGLEURPRPHWKDQH —J/&KORURHWKDQH —J/&KORURIRUP —J/&KORURPHWKDQH —J/&KORURWROXHQH —J/&KORURWROXHQH —J/'L,VRSURS\O(WKHU ',3( —J/'LEURPR&KORURSURSDQH —J/'LEURPRHWKDQH —J/'LEURPRPHWKDQH —J/'LFKORUREHQ]HQH —J/'LFKORUREHQ]HQH —J/'LFKORUREHQ]HQH —J/'LFKORURGLIOXRURPHWKDQH —J/'LFKORURHWKDQH 3DJHRI'DWH30 Page 56 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/'LFKORURHWKDQH —J/'LFKORURHWKHQH —J/FLV'LFKORURHWKHQH —J/WUDQV'LFKORURHWKHQH —J/'LFKORURSURSDQH —J/'LFKORURSURSDQH —J/'LFKORURSURSDQH —J/'LFKORURSURSHQH —J/FLV'LFKORURSURSHQH —J/WUDQV'LFKORURSURSHQH —J/(WKDQRO —J/(WK\OEHQ]HQH —J/+H[DFKORUREXWDGLHQH —J/+H[DQRQH —J/,VRSURS\OEHQ]HQH —J/,VRSURS\OWROXHQH —J/0HWK\O(WK\O.HWRQH 0(. —J/0HWK\OWHUWEXW\OHWKHU 07%( —J/0HWK\O3HQWDQRQH —J/0HWK\OHQH&KORULGH —J/1DSKWKDOHQH —J/Q3URS\OEHQ]HQH —J/6W\UHQH —J/7HWUDFKORURHWKDQH —J/7HWUDFKORURHWKDQH —J/HWUDFKORURHWKHQH —J/ROXHQH 3DJHRI'DWH30 Page 57 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/7ULFKORUREHQ]HQH —J/7ULFKORUREHQ]HQH —J/7ULFKORURHWKDQH —J/7ULFKORURHWKDQH —J/ULFKORURHWKHQH —J/ULFKORURIOXRURPHWKDQH —J/7ULFKORURSURSDQH —J/7ULPHWK\OEHQ]HQH —J/7ULPHWK\OEHQ]HQH —J/9LQ\O$FHWDWH —J/9LQ\O&KORULGH —J/R;\OHQH —J/PS;\OHQH %URPRIOXRUREHQ]HQH 6  'LEURPRIOXRURPHWKDQH 6  'LFKORURHWKDQHG 6  ROXHQHG 6  /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/$FHWRQH  —J/%HQ]HQH  —J/%URPREHQ]HQH  —J/%URPRFKORURPHWKDQH  —J/%URPRGLFKORURPHWKDQH  3DJHRI'DWH30 Page 58 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/%URPRIRUP  —J/%URPRPHWKDQH  —J/Q%XW\OEHQ]HQH  —J/VHF%XW\OEHQ]HQH  —J/WHUW%XW\OEHQ]HQH  —J/&DUERQ7HWUDFKORULGH  —J/&KORUREHQ]HQH  —J/&KORURGLEURPRPHWKDQH  —J/&KORURHWKDQH  —J/&KORURIRUP  —J/&KORURPHWKDQH  —J/&KORURWROXHQH  —J/&KORURWROXHQH  —J/'L,VRSURS\O(WKHU ',3(  —J/'LEURPR&KORURSURSDQH  —J/'LEURPRHWKDQH  —J/'LEURPRPHWKDQH  —J/'LFKORUREHQ]HQH  —J/'LFKORUREHQ]HQH  —J/'LFKORUREHQ]HQH  —J/'LFKORURGLIOXRURPHWKDQH  —J/'LFKORURHWKDQH  —J/'LFKORURHWKDQH  —J/'LFKORURHWKHQH  —J/FLV'LFKORURHWKHQH  —J/WUDQV'LFKORURHWKHQH  3DJHRI'DWH30 Page 59 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/'LFKORURSURSDQH  —J/'LFKORURSURSDQH  —J/'LFKORURSURSDQH  —J/'LFKORURSURSHQH  —J/FLV'LFKORURSURSHQH  —J/WUDQV'LFKORURSURSHQH  —J/(WKDQRO   —J/(WK\OEHQ]HQH  —J/+H[DFKORUREXWDGLHQH  —J/+H[DQRQH  —J/,VRSURS\OEHQ]HQH  —J/,VRSURS\OWROXHQH  —J/0HWK\O(WK\O.HWRQH 0(.  —J/0HWK\OWHUWEXW\OHWKHU 07%(  —J/0HWK\O3HQWDQRQH  —J/0HWK\OHQH&KORULGH  —J/1DSKWKDOHQH  —J/Q3URS\OEHQ]HQH  —J/6W\UHQH  —J/7HWUDFKORURHWKDQH  —J/7HWUDFKORURHWKDQH  —J/HWUDFKORURHWKHQH  —J/ROXHQH  —J/7ULFKORUREHQ]HQH  —J/7ULFKORUREHQ]HQH  —J/7ULFKORURHWKDQH  3DJHRI 4&)DLO 'DWH30 Page 60 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/7ULFKORURHWKDQH  —J/ULFKORURHWKHQH  —J/ULFKORURIOXRURPHWKDQH  —J/7ULFKORURSURSDQH  —J/7ULPHWK\OEHQ]HQH  —J/7ULPHWK\OEHQ]HQH  —J/9LQ\O$FHWDWH  —J/9LQ\O&KORULGH  —J/R;\OHQH  —J/PS;\OHQH  %URPRIOXRUREHQ]HQH 6  'LEURPRIOXRURPHWKDQH 6  'LFKORURHWKDQHG 6  ROXHQHG 6  3DJHRI'DWH30 Page 61 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/$FHWRQH —J/%HQ]HQH —J/%URPREHQ]HQH —J/%URPRFKORURPHWKDQH —J/%URPRGLFKORURPHWKDQH —J/%URPRIRUP —J/%URPRPHWKDQH —J/Q%XW\OEHQ]HQH —J/VHF%XW\OEHQ]HQH —J/WHUW%XW\OEHQ]HQH —J/&DUERQ7HWUDFKORULGH —J/&KORUREHQ]HQH —J/&KORURGLEURPRPHWKDQH —J/&KORURHWKDQH —J/&KORURIRUP —J/&KORURPHWKDQH —J/&KORURWROXHQH —J/&KORURWROXHQH —J/'L,VRSURS\O(WKHU ',3( —J/'LEURPR&KORURSURSDQH —J/'LEURPRHWKDQH —J/'LEURPRPHWKDQH —J/'LFKORUREHQ]HQH —J/'LFKORUREHQ]HQH —J/'LFKORUREHQ]HQH —J/'LFKORURGLIOXRURPHWKDQH —J/'LFKORURHWKDQH 3DJHRI'DWH30 Page 62 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/'LFKORURHWKDQH —J/'LFKORURHWKHQH —J/FLV'LFKORURHWKHQH —J/WUDQV'LFKORURHWKHQH —J/'LFKORURSURSDQH —J/'LFKORURSURSDQH —J/'LFKORURSURSDQH —J/'LFKORURSURSHQH —J/FLV'LFKORURSURSHQH —J/WUDQV'LFKORURSURSHQH —J/(WKDQRO —J/(WK\OEHQ]HQH —J/+H[DFKORUREXWDGLHQH —J/+H[DQRQH —J/,VRSURS\OEHQ]HQH —J/,VRSURS\OWROXHQH —J/0HWK\O(WK\O.HWRQH 0(. —J/0HWK\OWHUWEXW\OHWKHU 07%( —J/0HWK\O3HQWDQRQH —J/0HWK\OHQH&KORULGH —J/1DSKWKDOHQH —J/Q3URS\OEHQ]HQH —J/6W\UHQH —J/7HWUDFKORURHWKDQH —J/7HWUDFKORURHWKDQH —J/HWUDFKORURHWKHQH —J/ROXHQH 3DJHRI'DWH30 Page 63 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/7ULFKORUREHQ]HQH —J/7ULFKORUREHQ]HQH —J/7ULFKORURHWKDQH —J/7ULFKORURHWKDQH —J/ULFKORURHWKHQH —J/ULFKORURIOXRURPHWKDQH —J/7ULFKORURSURSDQH —J/7ULPHWK\OEHQ]HQH —J/7ULPHWK\OEHQ]HQH —J/9LQ\O$FHWDWH —J/9LQ\O&KORULGH —J/R;\OHQH —J/PS;\OHQH %URPRIOXRUREHQ]HQH 6  'LEURPRIOXRURPHWKDQH 6  'LFKORURHWKDQHG 6  ROXHQHG 6  /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/$FHWRQH  —J/%HQ]HQH  —J/%URPREHQ]HQH  —J/%URPRFKORURPHWKDQH  —J/%URPRGLFKORURPHWKDQH  3DJHRI'DWH30 Page 64 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/%URPRIRUP  —J/%URPRPHWKDQH  —J/Q%XW\OEHQ]HQH  —J/VHF%XW\OEHQ]HQH  —J/WHUW%XW\OEHQ]HQH  —J/&DUERQ7HWUDFKORULGH  —J/&KORUREHQ]HQH  —J/&KORURGLEURPRPHWKDQH  —J/&KORURHWKDQH  —J/&KORURIRUP  —J/&KORURPHWKDQH  —J/&KORURWROXHQH  —J/&KORURWROXHQH  —J/'L,VRSURS\O(WKHU ',3(  —J/'LEURPR&KORURSURSDQH  —J/'LEURPRHWKDQH  —J/'LEURPRPHWKDQH  —J/'LFKORUREHQ]HQH  —J/'LFKORUREHQ]HQH  —J/'LFKORUREHQ]HQH  —J/'LFKORURGLIOXRURPHWKDQH  —J/'LFKORURHWKDQH  —J/'LFKORURHWKDQH  —J/'LFKORURHWKHQH  —J/FLV'LFKORURHWKHQH  —J/WUDQV'LFKORURHWKHQH  3DJHRI'DWH30 Page 65 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/'LFKORURSURSDQH  —J/'LFKORURSURSDQH  —J/'LFKORURSURSDQH  —J/'LFKORURSURSHQH  —J/FLV'LFKORURSURSHQH  —J/WUDQV'LFKORURSURSHQH  —J/(WKDQRO  —J/(WK\OEHQ]HQH  —J/+H[DFKORUREXWDGLHQH  —J/+H[DQRQH  —J/,VRSURS\OEHQ]HQH  —J/,VRSURS\OWROXHQH  —J/0HWK\O(WK\O.HWRQH 0(.  —J/0HWK\OWHUWEXW\OHWKHU 07%(  —J/0HWK\O3HQWDQRQH  —J/0HWK\OHQH&KORULGH  —J/1DSKWKDOHQH  —J/Q3URS\OEHQ]HQH  —J/6W\UHQH  —J/7HWUDFKORURHWKDQH  —J/7HWUDFKORURHWKDQH  —J/HWUDFKORURHWKHQH  —J/ROXHQH  —J/7ULFKORUREHQ]HQH  —J/7ULFKORUREHQ]HQH  —J/7ULFKORURHWKDQH  3DJHRI'DWH30 Page 66 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/7ULFKORURHWKDQH  —J/ULFKORURHWKHQH  —J/ULFKORURIOXRURPHWKDQH  —J/7ULFKORURSURSDQH  —J/7ULPHWK\OEHQ]HQH  —J/7ULPHWK\OEHQ]HQH  —J/9LQ\O$FHWDWH  —J/9LQ\O&KORULGH  —J/R;\OHQH  —J/PS;\OHQH  %URPRIOXRUREHQ]HQH 6  'LEURPRIOXRURPHWKDQH 6  'LFKORURHWKDQHG 6  ROXHQHG 6  3DJHRI'DWH30 Page 67 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/$FHWRQH —J/%HQ]HQH —J/%URPREHQ]HQH —J/%URPRFKORURPHWKDQH —J/%URPRGLFKORURPHWKDQH —J/%URPRIRUP —J/%URPRPHWKDQH —J/Q%XW\OEHQ]HQH —J/VHF%XW\OEHQ]HQH —J/WHUW%XW\OEHQ]HQH —J/&DUERQ7HWUDFKORULGH —J/&KORUREHQ]HQH —J/&KORURGLEURPRPHWKDQH —J/&KORURHWKDQH —J/&KORURIRUP —J/&KORURPHWKDQH —J/&KORURWROXHQH —J/&KORURWROXHQH —J/'L,VRSURS\O(WKHU ',3( —J/'LEURPR&KORURSURSDQH —J/'LEURPRHWKDQH —J/'LEURPRPHWKDQH —J/'LFKORUREHQ]HQH —J/'LFKORUREHQ]HQH —J/'LFKORUREHQ]HQH —J/'LFKORURGLIOXRURPHWKDQH —J/'LFKORURHWKDQH 3DJHRI'DWH30 Page 68 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/'LFKORURHWKDQH —J/'LFKORURHWKHQH —J/FLV'LFKORURHWKHQH —J/WUDQV'LFKORURHWKHQH —J/'LFKORURSURSDQH —J/'LFKORURSURSDQH —J/'LFKORURSURSDQH —J/'LFKORURSURSHQH —J/FLV'LFKORURSURSHQH —J/WUDQV'LFKORURSURSHQH —J/(WKDQRO —J/(WK\OEHQ]HQH —J/+H[DFKORUREXWDGLHQH —J/+H[DQRQH —J/,VRSURS\OEHQ]HQH —J/,VRSURS\OWROXHQH —J/0HWK\O(WK\O.HWRQH 0(. —J/0HWK\OWHUWEXW\OHWKHU 07%( —J/0HWK\O3HQWDQRQH —J/0HWK\OHQH&KORULGH —J/1DSKWKDOHQH —J/Q3URS\OEHQ]HQH —J/6W\UHQH —J/7HWUDFKORURHWKDQH —J/7HWUDFKORURHWKDQH —J/HWUDFKORURHWKHQH —J/ROXHQH 3DJHRI'DWH30 Page 69 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/7ULFKORUREHQ]HQH —J/7ULFKORUREHQ]HQH —J/7ULFKORURHWKDQH —J/7ULFKORURHWKDQH —J/ULFKORURHWKHQH —J/ULFKORURIOXRURPHWKDQH —J/7ULFKORURSURSDQH —J/7ULPHWK\OEHQ]HQH —J/7ULPHWK\OEHQ]HQH —J/9LQ\O$FHWDWH —J/9LQ\O&KORULGH —J/R;\OHQH —J/PS;\OHQH %URPRIOXRUREHQ]HQH 6  'LEURPRIOXRURPHWKDQH 6  'LFKORURHWKDQHG 6  ROXHQHG 6  /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/$FHWRQH  —J/%HQ]HQH  —J/%URPREHQ]HQH  —J/%URPRFKORURPHWKDQH  —J/%URPRGLFKORURPHWKDQH  3DJHRI'DWH30 Page 70 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/%URPRIRUP  —J/%URPRPHWKDQH  —J/Q%XW\OEHQ]HQH  —J/VHF%XW\OEHQ]HQH  —J/WHUW%XW\OEHQ]HQH  —J/&DUERQ7HWUDFKORULGH  —J/&KORUREHQ]HQH  —J/&KORURGLEURPRPHWKDQH  —J/&KORURHWKDQH  —J/&KORURIRUP  —J/&KORURPHWKDQH  —J/&KORURWROXHQH  —J/&KORURWROXHQH  —J/'L,VRSURS\O(WKHU ',3(  —J/'LEURPR&KORURSURSDQH  —J/'LEURPRHWKDQH  —J/'LEURPRPHWKDQH  —J/'LFKORUREHQ]HQH  —J/'LFKORUREHQ]HQH  —J/'LFKORUREHQ]HQH  —J/'LFKORURGLIOXRURPHWKDQH  —J/'LFKORURHWKDQH  —J/'LFKORURHWKDQH  —J/'LFKORURHWKHQH  —J/FLV'LFKORURHWKHQH  —J/WUDQV'LFKORURHWKHQH  3DJHRI'DWH30 Page 71 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/'LFKORURSURSDQH  —J/'LFKORURSURSDQH  —J/'LFKORURSURSDQH  —J/'LFKORURSURSHQH  —J/FLV'LFKORURSURSHQH  —J/WUDQV'LFKORURSURSHQH  —J/(WKDQRO  —J/(WK\OEHQ]HQH  —J/+H[DFKORUREXWDGLHQH  —J/+H[DQRQH  —J/,VRSURS\OEHQ]HQH  —J/,VRSURS\OWROXHQH  —J/0HWK\O(WK\O.HWRQH 0(.  —J/0HWK\OWHUWEXW\OHWKHU 07%(  —J/0HWK\O3HQWDQRQH  —J/0HWK\OHQH&KORULGH  —J/1DSKWKDOHQH  —J/Q3URS\OEHQ]HQH  —J/6W\UHQH  —J/7HWUDFKORURHWKDQH  —J/7HWUDFKORURHWKDQH  —J/HWUDFKORURHWKHQH  —J/ROXHQH  —J/7ULFKORUREHQ]HQH  —J/7ULFKORUREHQ]HQH  —J/7ULFKORURHWKDQH  3DJHRI'DWH30 Page 72 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/7ULFKORURHWKDQH  —J/ULFKORURHWKHQH  —J/ULFKORURIOXRURPHWKDQH  —J/7ULFKORURSURSDQH  —J/7ULPHWK\OEHQ]HQH  —J/7ULPHWK\OEHQ]HQH  —J/9LQ\O$FHWDWH  —J/9LQ\O&KORULGH  —J/R;\OHQH  —J/PS;\OHQH  %URPRIOXRUREHQ]HQH 6  'LEURPRIOXRURPHWKDQH 6  'LFKORURHWKDQHG 6  ROXHQHG 6  3DJHRI'DWH30 Page 73 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/$FHWRQH —J/%HQ]HQH —J/%URPREHQ]HQH —J/%URPRFKORURPHWKDQH —J/%URPRGLFKORURPHWKDQH —J/%URPRIRUP —J/%URPRPHWKDQH —J/Q%XW\OEHQ]HQH —J/VHF%XW\OEHQ]HQH —J/WHUW%XW\OEHQ]HQH —J/&DUERQ7HWUDFKORULGH —J/&KORUREHQ]HQH —J/&KORURGLEURPRPHWKDQH —J/&KORURHWKDQH —J/&KORURIRUP —J/&KORURPHWKDQH —J/&KORURWROXHQH —J/&KORURWROXHQH —J/'L,VRSURS\O(WKHU ',3( —J/'LEURPR&KORURSURSDQH —J/'LEURPRHWKDQH —J/'LEURPRPHWKDQH —J/'LFKORUREHQ]HQH —J/'LFKORUREHQ]HQH —J/'LFKORUREHQ]HQH —J/'LFKORURGLIOXRURPHWKDQH —J/'LFKORURHWKDQH 3DJHRI'DWH30 Page 74 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/'LFKORURHWKDQH —J/'LFKORURHWKHQH —J/FLV'LFKORURHWKHQH —J/WUDQV'LFKORURHWKHQH —J/'LFKORURSURSDQH —J/'LFKORURSURSDQH —J/'LFKORURSURSDQH —J/'LFKORURSURSHQH —J/FLV'LFKORURSURSHQH —J/WUDQV'LFKORURSURSHQH —J/(WKDQRO —J/(WK\OEHQ]HQH —J/+H[DFKORUREXWDGLHQH —J/+H[DQRQH —J/,VRSURS\OEHQ]HQH —J/,VRSURS\OWROXHQH —J/0HWK\O(WK\O.HWRQH 0(. —J/0HWK\OWHUWEXW\OHWKHU 07%( —J/0HWK\O3HQWDQRQH —J/0HWK\OHQH&KORULGH —J/1DSKWKDOHQH —J/Q3URS\OEHQ]HQH —J/6W\UHQH —J/7HWUDFKORURHWKDQH —J/7HWUDFKORURHWKDQH —J/HWUDFKORURHWKHQH —J/ROXHQH 3DJHRI'DWH30 Page 75 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 $VVRFLDWHG/DE6DPSOHV /5%90DWUL[$48/DE5HDJHQW%ODQN 3DUDPHWHU $QDO\]HG04/0'/%ODQN5HVXOW8QLWV 5HFRYHU\5HF/LPLWV —J/7ULFKORUREHQ]HQH —J/7ULFKORUREHQ]HQH —J/7ULFKORURHWKDQH —J/7ULFKORURHWKDQH —J/ULFKORURHWKHQH —J/ULFKORURIOXRURPHWKDQH —J/7ULFKORURSURSDQH —J/7ULPHWK\OEHQ]HQH —J/7ULPHWK\OEHQ]HQH —J/9LQ\O$FHWDWH —J/9LQ\O&KORULGH —J/R;\OHQH —J/PS;\OHQH %URPRIOXRUREHQ]HQH 6  'LEURPRIOXRURPHWKDQH 6  'LFKORURHWKDQHG 6  ROXHQHG 6  /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/$FHWRQH  —J/%HQ]HQH  —J/%URPREHQ]HQH  —J/%URPRFKORURPHWKDQH  —J/%URPRGLFKORURPHWKDQH  3DJHRI'DWH30 Page 76 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/%URPRIRUP  —J/%URPRPHWKDQH  —J/Q%XW\OEHQ]HQH  —J/VHF%XW\OEHQ]HQH  —J/WHUW%XW\OEHQ]HQH  —J/&DUERQ7HWUDFKORULGH  —J/&KORUREHQ]HQH  —J/&KORURGLEURPRPHWKDQH  —J/&KORURHWKDQH  —J/&KORURIRUP  —J/&KORURPHWKDQH  —J/&KORURWROXHQH  —J/&KORURWROXHQH  —J/'L,VRSURS\O(WKHU ',3(  —J/'LEURPR&KORURSURSDQH  —J/'LEURPRHWKDQH  —J/'LEURPRPHWKDQH  —J/'LFKORUREHQ]HQH  —J/'LFKORUREHQ]HQH  —J/'LFKORUREHQ]HQH  —J/'LFKORURGLIOXRURPHWKDQH  —J/'LFKORURHWKDQH  —J/'LFKORURHWKDQH  —J/'LFKORURHWKHQH  —J/FLV'LFKORURHWKHQH  —J/WUDQV'LFKORURHWKHQH  3DJHRI'DWH30 Page 77 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/'LFKORURSURSDQH  —J/'LFKORURSURSDQH  —J/'LFKORURSURSDQH  —J/'LFKORURSURSHQH  —J/FLV'LFKORURSURSHQH  —J/WUDQV'LFKORURSURSHQH  —J/(WKDQRO  —J/(WK\OEHQ]HQH  —J/+H[DFKORUREXWDGLHQH  —J/+H[DQRQH  —J/,VRSURS\OEHQ]HQH  —J/,VRSURS\OWROXHQH  —J/0HWK\O(WK\O.HWRQH 0(.  —J/0HWK\OWHUWEXW\OHWKHU 07%(  —J/0HWK\O3HQWDQRQH  —J/0HWK\OHQH&KORULGH  —J/1DSKWKDOHQH  —J/Q3URS\OEHQ]HQH  —J/6W\UHQH  —J/7HWUDFKORURHWKDQH  —J/7HWUDFKORURHWKDQH  —J/HWUDFKORURHWKHQH  —J/ROXHQH  —J/7ULFKORUREHQ]HQH  —J/7ULFKORUREHQ]HQH  —J/7ULFKORURHWKDQH  3DJHRI'DWH30 Page 78 of 82 4XDOLW\&RQWURO'DWD 5HSRUW1R 3URMHFW'HVFULSWLRQ &OLHQW,'3\UDPLG(QYLURQPHQWDO (QJLQHHULQJ3& )RUPHU*UDSHYLQH3URGXFH 4&3UHS%DWFK0HWKRG 9RODWLOH2UJDQLF&RPSRXQGV*&06 % 94&$QDO\WLFDO%DWFK HV  $QDO\VLV0HWKRG $QDO\VLV'HVFULSWLRQ 37 4&3UHS9 /&69/&6'9/DERUDWRU\&RQWURO6DPSOH /&6' /&6'5HVXOW3DUDPHWHU 0D[ 53' /&6'5HF/&65HF/&65HVXOW6SLNH&RQF8QLWV 5HF/LPLWV 53' —J/7ULFKORURHWKDQH  —J/ULFKORURHWKHQH  —J/ULFKORURIOXRURPHWKDQH  —J/7ULFKORURSURSDQH  —J/7ULPHWK\OEHQ]HQH  —J/7ULPHWK\OEHQ]HQH  —J/9LQ\O$FHWDWH  —J/9LQ\O&KORULGH  —J/R;\OHQH  —J/PS;\OHQH  %URPRIOXRUREHQ]HQH 6  'LEURPRIOXRURPHWKDQH 6  'LFKORURHWKDQHG 6  ROXHQHG 6  3DJHRI'DWH30 Page 79 of 82 Fed Ex UPS US Postal Client Lab Courier Other : Shipment Receipt Form Customer Number: Customer Name: Report Number:23-181-0022 Pyramid Environmental & Engineering, P.C. 01168 Shipping Method Shipping container/cooler uncompromised? Thermometer ID:IRT15 2.9C Chain of Custody (COC) present?Yes No Yes No Not Present Yes No Not Present Yes No COC agrees with sample label(s)? Yes No COC properly completed Samples in proper containers? Sample containers intact? Sufficient sample volume for indicated test(s)? All samples received within holding time? Cooler temperature in compliance? Yes No Yes No Yes No Yes No Yes No Yes NoCooler/Samples arrived at the laboratory on ice. Samples were considered acceptable as cooling process had begun. Yes No Yes No N/A Yes No N/A Yes No N/ASoil VOA method 5035 – compliance criteria met Water - Sample containers properly preserved Water - VOA vials free of headspace Yes No N/A Trip Blanks received with VOAs Low concentration EnCore samplers (48 hr) High concentration pre-weighed (methanol -14 d)Low conc pre-weighed vials (Sod Bis -14 d) High concentration container (48 hr) Custody seals intact on shipping container/cooler? Custody seals intact on sample bottles? Number of coolers/boxes received Yes No 1 Signature:Angelo Norvell Date & Time:06/30/2023 15:01:36 Special precautions or instructions included? Comments: Page 80 of 82 Page 81 of 82 Page 82 of 82 APPENDIX D Date Average VOC Concentrations in Monitoring Wells [µg/L] Plume Area [m2] Estimated Plume Height [m] Estimated Porosity [%] Estimated Groundwater Contaminant Mass Based on Average VOC Concentrations in Monitoring Wells [µg] Estimated Total Groundwater Mass Reduction Rate Based on Average VOC Concentrations in Monitoring Wells [%] 24-Sep-14 673.48 966 4 25% 6.51E+08 0 5-Aug-15 504.60 562 4 25% 2.84E+08 56.41% 5-May-16 487.25 1589 4 25% 7.74E+08 -19.01% 23-Feb-17 474.00 1737 4 25% 8.23E+08 -26.55% 11-Sep-17 377.10 1588 4 25% 5.99E+08 7.95% 12-Apr-18 311.70 1737 4 25% 5.41E+08 16.78% 18-Oct-18 285.80 964 4 25% 2.76E+08 57.65% 8-May-19 179.70 1055 4 25% 1.90E+08 70.86% 24-Oct-19 208.75 1070 4 25% 2.23E+08 65.67% 9-Jun-22 68.08 1217 4 25% 8.29E+07 87.26% 27-Jun-23 91.47 1426 4 25% 1.30E+08 79.95% Estimated Groundwater Benzene Mass Calculation & Reduction Rate Former Grapevine Produce - NCDEQ Incident # 40243 4500 NC Highway 64-90 West, Taylorsville, Alexander County, NC 27217 Date Average VOC Concentrations in Monitoring Wells [µg/L] Plume Area [m2] Estimated Plume Height [m] Estimated Porosity [%] Estimated Groundwater Contaminant Mass Based on Average VOC Concentrations in Monitoring Wells [µg] Estimated Total Groundwater Mass Reduction Rate Based on Average VOC Concentrations in Monitoring Wells [%] 24-Sep-14 1172.40 966 4 25% 1.13E+09 0.00% 5-Aug-15 1121.94 355 4 25% 3.98E+08 64.83% 5-May-16 1416.00 808 4 25% 1.14E+09 -1.02% 23-Feb-17 1066.23 836 4 25% 8.91E+08 21.30% 11-Sep-17 678.38 562 4 25% 3.81E+08 66.34% 12-Apr-18 459.50 604 4 25% 2.78E+08 75.49% 18-Oct-18 304.33 851 4 25% 2.59E+08 77.13% 8-May-19 211.02 808 4 25% 1.71E+08 84.94% 24-Oct-19 252.50 747 4 25% 1.89E+08 83.35% 9-Jun-22 32.54 1149 4 25% 3.74E+07 96.70% 27-Jun-23 47.5 1137 4 25% 5.40E+07 95.23% Estimated Groundwater MTBE Mass Calculation & Reduction Rate Former Grapevine Produce - NCDEQ Incident # 4024 4500 NC Highway 64-90 West, Taylorsville, Alexander County, NC 2721 Estimated Volume of contaminated soil based on area of 2,000 ft² and depth of 5 ft. [yd3] Estimated Mass of contaminated soil [tons - US] Estimated Mass of contaminated soil [kg] Average Contaminant concentration [mg/kg] Estimated Total soil contaminant mass [mg] Estimated Total contaminan t mass [kg] Estimated Total contaminan t mass [lb.] 370.37 555.56 503,991 200 100,798,233 100.80 222.19 Baseline Soil Contaminant Mass Calculation for Former Grapevine Produce - NCDEQ Incident # 40243 The baseline soil contaminant mass is estimated based on the results of the soil assessment activities 4500 NC Highway 64-90 West, Taylorsville, Alexander County, NC 27217 completed during the UST removal and Soil Excavation and during the CSA soil assessment.