Loading...
HomeMy WebLinkAboutFA-13884_13884_CA_CAP_20230412_NTCP NEW TECHNOLOGY CLEANUP  PLAN    DUKE ENERGY PROGRESS, LLC      WEATHERSPOON PLANT  491 POWER PLANT ROAD  LUMBERTON, ROBESON COUNTY, NORTH CAROLINA        PREPARED FOR:  DUKE ENERGY PROGRESS, LLC   555A BREVARD ROAD  ASHEVILLE, NORTH CAROLINA 28806    SUBMITTED TO:  DUKE ENERGY PROGRESS, LLC   555A BREVARD ROAD  ASHEVILLE, NORTH CAROLINA 28806    WSP PROJECT 7812‐22‐0872  APRIL 2023    WSP USA ENVIRONMENT AND INFRASTRUCTURE INC.  4021 STIRRUP CREEK DRIVE, SUITE 100  DURHAM, NORTH CAROLINA 27703  (919) 381‐9900    WSP.COM wsp.com April 12, 2023  Mr. Kenneth Currie   Hydrogeologist II  Division of Waste Management  NCDEQ – Fayetteville Regional Office  225 Green Street, Suite 714  Fayetteville, North Carolina 28301  Submitted by email: ken.currie@ncdenr.gov     Subject: New Technology Cleanup Plan  Weatherspoon Plant  Lumberton, Robeson County, North Carolina   WSP Project: 7812‐22‐0872     Dear Mr. Currie:    On behalf of Duke Energy Progress, LLC, WSP USA Environment & Infrastructure Inc. (WSP)  formerly Wood Environment & Infrastructure Solutions, Inc. is pleased to submit the  enclosed New Technology Cleanup Plan for the subject site. Please let us know if you have  questions or would like to discuss the project further.    Sincerely,    WSP USA Environment & Infrastructure Inc.        Sheri Knox, PE, RSM                                                   Jay Bennett, PG, RSM   V.P Senior Engineer        Senior PM/ V.P. Hydrogeologist               New Technology Cleanup Plan Project No. 7812-22-0872 Weatherspoon Plant WSP April 2023 Page iii TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................. 1  1 INTRODUCTION ................................................. 3  1.1 Release Information .......................................................... 3  1.2 Site Information ................................................................ 4  1.3 Other Releases .................................................................. 4  2 SITE BACKGROUND ............................................ 5  2.1 Summary of Assessment and Remediation ......................... 5  2.1.1 2022 Annual Groundwater Monitoring and Remediation System Report  Summary ............................................................................................. 8  2.2 Geology and Hydrogeology ................................................ 9  2.2.1 Regional Geology/Hydrogeology ............................................................. 9  2.2.2 Site Geology/Hydrogeology .................................................................... 9  2.3 NAPL and Dissolved Phase Impacts ................................... 10  3 RISK CLASSIFICATION ........................................ 11  3.1 Extent of Petroleum Constituents..................................... 11  3.1.1 Soil .....................................................................................................11  3.1.2 Groundwater .......................................................................................11  3.2 Receptor Information ...................................................... 12  3.2.1 Water Supply Wells ..............................................................................12  3.2.2 Public Water Supply Wells ....................................................................13  3.2.3 Surface Water .....................................................................................13  3.2.4 Wellhead Protection Areas ...................................................................13  3.3 Comparison to Risk Criteria .............................................. 13  3.4 Future Site Use Considerations ......................................... 14  3.4.1 Exposure to Impacted Soil .....................................................................14  3.4.2 Exposure to Impacted Groundwater ......................................................14  3.4.3 Exposure to Petroleum Vapor ...............................................................15  3.5 Cleanup and Closure with Land Use Restrictions ............... 15  Page iv 4 CURRENT REMEDIATION SYSTEM EFFECTIVENESS ...................................................................... 17  5 SYSTEM SHUTDOWN TESTING ........................... 18  6 PROPOSED REMEDIATION TECHNOLOGY ........... 19  6.1 Phase 1 – Phase Separated Product Recovery ................... 19  6.1.1 Operation ...........................................................................................19  6.1.2 Maintenance .......................................................................................20  6.2 Phase 2 – In‐Situ SEAR Evaluation ..................................... 20  6.2.1 Step 1 – SEAR Bench Study ....................................................................20  6.2.2 Step 2 – SEAR Field Pilot Study ..............................................................21  6.2.3 Step 3 – SEAR Full‐Scale Design .............................................................21  7 REPORTING AND SCHEDULE .............................. 22  8 REFERENCES .................................................... 23        FIGURES  FIGURE 1: SITE LOCATION MAP  FIGURE 2: SITE MAP  FIGURE 3: GEOTECH SIPPER SCHEMATIC            APPENDICES    APPENDIX A WSP STANDARD OPERATING PROCEDURES    New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 1 EXECUTIVE SUMMARY  This New Technology Cleanup Plan (NTCP) has been prepared for the Duke Energy Progress, LLC (Duke Energy)  Weatherspoon Plant. If successful, this NTCP will be used to supplement the current Corrective Action Plan  (CAP). The Duke Energy Weatherspoon Plant Site (Site) consists of a 500,000‐gallon Aboveground Storage Tank  (AST) and an area downgradient and to the southeast, between the AST and a railroad spur that Duke Energy  has owned the Site since 1949. The AST was installed in 1969. The AST is currently in operation at the Site. The  AST contains #2 fuel oil. In addition to the 500,000‐gallon AST, a second, 250,000‐gallon #2 fuel oil, operational  AST is located upgradient and to the northwest of the Site. This NTCP provides a summary of current Site  conditions, cleanup objectives and risk‐ranking criteria, Corrective Action (CA) activities performed to date, and  a recommendation of the most appropriate remedial approach for progressing the Site towards closure.  Petroleum impacts in shallow groundwater exist at the Weatherspoon Plant as a result of a leak, discovered on  March 16, 1995, due to corrosion of the steel bottom of the 500,000‐gallon AST. Approximately 153,600  gallons of No. 2 fuel oil was released. The subject incident (#13884) is currently classified as intermediate risk  due to the presence of light non‐aqueous phase liquid (LNAPL). Based on information reported in the CAP an  estimated 40,000 gallons of No. 2 fuel oil were recovered as part of initial recovery efforts. These recovery  activities involved the use of temporary recovery sumps that were later replaced by permanent recovery and  drawdown wells. An underground drip line is installed around the perimeter of the site. Additional  recovery/drawdown wells were installed in 2008, bringing the Site total to six recovery/drawdown wells.   Assessment and remedial activities conducted at the Site between November 2015 and May 2018 were  submitted in a report prepared by Catlin Engineers and Scientists (Catlin) to the North Carolina Department of  Environmental Quality (NCDEQ) on June 15, 2018. These activities included recovery well cleaning and long  term LNAPL recovery evaluation. In their report, Catlin indicated that with aggressive well maintenance  practices, LNAPL recovery could be enhanced. However, the long‐term success of these efforts would be  limited because of excessive biofouling and mineralization in the vicinity of the recovery wells and aquifer  matrix.  WSP USA Environment & Infrastructure Inc. (WSP) has determined based on an evaluation of the LNAPL recovery  system that a significant reduction in recovery has been observed since installation with recovery becoming  asymptotic over the past several years. As such, other remedial technologies/approaches will be necessary to  achieve long term LNAPL removal objectives. Based on previous assessments performed at the Site, LNAPL  remains within the subsurface beneath the concrete secondary containment, and pump and treat technology may  be ineffective, in the long term. Hence, efforts to remove low to de‐minimis levels of LNAPL from the shallow  groundwater table appear to be unattainable without major system modification or a more effective in‐situ  remediation technology to expedite transition into a monitored natural attenuation (MNA) phase and Site closure.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 2 As part of this evaluation process, WSP will shutdown the current remediation system to evaluate the presence  and apparent thickness of LNAPL and dissolved phase petroleum constituents at monitoring locations under non‐ pumping conditions. During shutdown, WSP will perform six groundwater gauging events over the course of three  (3) months. Groundwater elevations and LNAPL thickness will be obtained at all available monitoring well and  piezometer locations. Additionally, at the completion of the shutdown evaluation, one groundwater sampling  event will be performed to determine the extent and dispersion of concentrations of dissolved phase petroleum  constituents and to evaluate biogeochemical parameters.   Following the shutdown period, one new recovery well (installed in a recovery trench) will be installed in an area  of the plume that most represents the greatest LNAPL thickness. Then, WSP will install a Geotech AC Sipper  system or other low energy well‐specific method to remove LNAPL from the test location and evaluate the  effectiveness over a three‐month period. The objective of the Sipper installation is to passively remove LNAPL that  accumulates within the recovery well.   WSP will also perform a bench study to determine the best Site‐specific Surfactant Enhanced Aquifer Remediation  (SEAR) solutions (e.g., TASK by Tersus) needed to further reduce LNAPL levels and understand biological  restrictions, if any. The Site‐specific formulation of the SEAR solution will be developed based on groundwater  chemistry.  Using results of the bench study, WSP will then evaluate the use of In‐situ SEAR in a pilot study for the purpose of  increasing fluid mobilization and reducing recalcitrant LNAPL and dissolved phase concentrations of volatile  organic compounds (VOCs)/ semi‐volatile organic compounds (SVOCs). The SEAR remedial approach involves the  injection of a surfactant tailored to Site conditions to create ultra‐low interfacial tensions between LNAPL and the  aquifer media. The surfactant solution is formulated to reduce the capillary forces trapping the LNAPL through  contact so that it can be extracted using pumping methods or broken down geochemically to reduce LNAPL to  more dissolved fractions so that MNA can be promoted later.  The pilot study will focus on mobilizing for recovery the LNAPL from areas where LNAPL accumulates. WSP will  base the placement of pilot study SEAR injection wells and LNAPL extraction wells on the results of the evaluation  following system shutdown. Following completion of the SEAR injection pilot study, WSP will perform one year of  groundwater monitoring to evaluate the effect of the pilot study on LNAPL thicknesses and dissolved phase  petroleum constituents.  Long‐term removal of residual LNAPL will be performed via the Sipper system. Full scale implementation of SEAR  will be based upon the results of the pilot study.     New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 3 1 INTRODUCTION  This New Technology Cleanup Plan (NTCP) has been prepared for the Duke Energy Progress, LLC (Duke Energy)  Weatherspoon Plant . If successful, this NTCP will be used to supplement the current Corrective Action Plan  (CAP). The Duke Energy Weatherspoon Plant Site (Site) consists of a 500,000‐gallon Aboveground Storage Tank  (AST) and an area downgradient and to the southeast, between the AST and a railroad spur. Duke Energy has  owned the Site since 1949. The AST was installed in 1969. The AST is currently in operation at the Site. The AST  contains #2 fuel oil. In addition to the 500,000‐gallon AST, a second, 250,000‐gallon #2 fuel oil, operational AST  is located upgradient and to the northwest of the Site. This NTCP provides a summary of current Site  conditions, cleanup objectives and risk‐ranking criteria, Corrective Action (CA) activities performed to date, and  a recommendation of the most appropriate remedial approach for progressing the Site towards closure.  The Site location relative to the surrounding area is depicted on the topographic map provided in Figure 1. A  Site map with well locations is included as Figure 2.  1.1 RELEASE INFORMATION  Duke Energy has owned the Site since 1949 and operated the ASTs since their installation in 1969. Two ASTs  (one 250,000‐gallon and one 500,000‐gallon) currently are in operation at the Site. These ASTs contain #2 fuel  oil originally used as a backup fuel source for power generation at this facility. The contents of these ASTs are  now used as a primary fuel source for power generation.  Petroleum impacts exist at the Weatherspoon Plant because of a leak, discovered on March 16, 1995, due to  corrosion of the steel bottom of the 500,000‐gallon AST. According to a pore space volume estimate by Edwin  Andrews and Associates, P.C. (Andrews & Associates), approximately 153,600 gallons of No. 2 fuel oil was  released. The incident number assigned by the North Carolina Department of Environmental Quality (NCDEQ),  Division of Waste Management (DWM), Underground Storage Tank (UST) Section to the leak from the 500,000‐ gallon AST is 13884.   In accordance with Title 15A North Carolina Administrative Code (NCAC) 02L .0506, each known incident shall  be classified as high, intermediate, or low risk. The subject incident is currently classified as intermediate risk.  Receptor Information and a comparison of the conditions and characteristics associated with this incident to  the risk criteria is included in Section 3.0.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 4 1.2 SITE INFORMATION  The subject Site is an active Duke Energy Power Plant and consists of several structures, equipment, cooling  ponds and former coal ash ponds. The surface is a combination of paved, gravel‐covered, and grassy areas.   1.3 OTHER RELEASES   In addition to the subject release, another incident is associated with the Weatherspoon Plant. Incident  number 92156 is an impacted soil area, which was discovered during plant decommissioning activities. In 2019,  incident 92156 was surveyed and sub‐divided and a Notice of Residual Petroleum (NRP) was recorded with the  Robeson County Register of Deeds for the sub‐divided parcel of land.    New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 5 2 SITE BACKGROUND  As noted in Section 1.1, approximately 153,600 gallons of No. 2 fuel oil was released at the Site, which  impacted groundwater. A summary of assessment and remediation performed to date is described in Section  2.1.  2.1 SUMMARY OF ASSESSMENT AND REMEDIATION   The following is provided to briefly summarize historical assessment and remedial action performed on Site,  from release discovery to the present.    July 31, 1995, Site Assessment Report‐ This report was prepared for Carolina Power and Light Company  (CP&L) by Andrews & Associates detailing repairs to the bottom of the tank and noting that leakage  from the tank had ceased. The Site Assessment Report also provided information on the installation of  twenty‐seven shallow piezometers and five monitoring wells. The twenty‐seven piezometers, installed  in March 1995, were utilized to determine Site groundwater flow direction, horizontal and vertical  extent of light non‐aqueous phase liquid (LNAPL), and the future location of Site monitoring wells. The  resultant five monitoring wells, installed from May 15 to June 2, 1995, were installed for the purpose  of monitoring groundwater impact, as well as the migration of released LNAPL. The author of the  report noted that one of the five monitoring wells, MW‐3, was originally installed outside of the LNAPL  plume, and became impacted by LNAPL.    January 31, 1996, CAP‐ As reported in the CAP, prepared for CP&L by Edwin Andrews & Associates, an  estimated 40,000 gallons of No. 2 fuel oil were recovered as part of initial recovery efforts. These recovery  activities used temporary recovery sumps that were later replaced by permanent recovery and drawdown  wells. In their CAP, Andrews & Associates also detailed the proposed installation of an underground drip  line to provide lateral and downgradient hydraulic control and enhance recovery efforts. The CAP also  included a groundwater receptor evaluation. The updated receptor evaluation was included on Figure 2 of  the November 2022 Catlin report. The information related to the Public and Private Water well  information was included on Table 2 of the November 2022 Catlin report.   2004 and 2006 Additional Groundwater Control Actions‐ Catlin Engineers and Scientists (Catlin)  performed subsequent Site remedial activities, following the approval of the initial CAP, including the  construction of the underground drip line in 1996. As such, the drip line system was expanded to the  revised known extent of LNAPL and dissolved‐phase impact. Three additional recovery/drawdown  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 6 wells were installed in 2008 within the known LNAPL plume, bringing the Site total to six  recovery/drawdown wells.   February and March 2013 Phase Separated Product (PSP) Evaluation‐ Catlin conducted an evaluation of  LNAPL occurrence utilizing existing groundwater monitoring points. Prior to performing the LNAPL  evaluation, Caitlin surveyed and developed each of the existing monitoring points. The results of the  evaluation were reported to the North Carolina Department of Environment and Natural Resources  (NCDENR), which is now NCDEQ on June 29, 2013.    July 7, 2014 Direct Sensing Characterization and Reporting‐ Catlin submitted investigation results of the  direct sensing investigation conducted by Columbia Technologies. Columbia Technologies utilized Laser  Induced Fluorescence/Ultraviolet Optical Screening Tool (LIF/UVOST) for direct sensing in conjunction  with direct push technology (DPT) to further define the LNAPL plume. The subsurface soil structure was  characterized by Catlin as a silty sand to silty gravel at shallow depths to 6.5 feet below grade (fbg),  that is underlain by a fine to very fine sand which dominates the survey area to depths ranging from  one foot in some areas to 13 feet to 16 fbg. Beneath the sand zone the subsurface transitions to a  clayey sand to sandy clay. LIF/UVOST data indicated that the bulk of the LNAPL was located at and near  the water table, and within the zone of transport or groundwater smear zone. The historical high‐ water table has generally been encountered at the ground surface in the silty sand geologic unit.  Data  also indicated subsurface conditions are conducive for mobile LNAPL. Furthermore, results of the 2014  investigation indicated the greatest thickness of LNAPL remained beneath the concrete containment  providing secondary containment for the 500,000‐gallon AST. Based on the results of the LIF/UVOST  evaluation, Catlin installed and gauged four piezometers (P67‐P70) and four temporary boring points  (T71‐T74) to correlate the direct sensing LIF/UVOST data with direct measurement of LNAPL.  Piezometers were installed in areas of probable LNAPL accumulation and/or in areas of varying LIF  results to correlate potentially recoverable (i.e., recoverable through pumping) versus interstitially  trapped LNAPL. Piezometers were gauged in October 2014 and again in January 2015. Results from  these gauging events as well as overall Site evaluations are detailed in the Treatment System  Evaluation Report dated July 21, 2015 (Catlin 2015). The Treatment System Evaluation Report  recommended installing five temporary 2‐inch diameter, polyvinyl chloride (PVC) piezometers within  the 500,000‐gallon AST containment area to evaluate the volume of residual LNAPL below the  containment area. These temporary piezometers were installed, gauged, and abandoned prior to re‐ lining the AST containment area. Subsequently, seven piezometers were installed around recovery  wells RW‐00, RW‐01, RW‐03 and RW‐05 to be utilized during drawdown evaluations and future  monitoring events. Piezometer measurements were used to measure drawdown and radius of  influence as well as to observe the occurrence of mobile LNAPL and the efficiency of the recovery wells  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 7 (Figure 2). Individual flow meters were also installed in each of the four recovery wells listed above to  determine individual flow and LNAPL recovery totals from each recovery well, respectively.   November 30, 2015 and January 19, 2016 Pumping Tests‐ Catlin conducted a series of 72‐ hour  pumping tests on each recovery well (RW‐00, RW‐01, RW‐03 and RW‐05). During pumping activities,  transducers were installed in the recovery well and three nearby wells to record groundwater  drawdown throughout the duration of the pumping test and evaluate the radius of influence (ROI) at  each recovery well (Catlin 2016). Groundwater was allowed to equilibrate between 72‐hour pumping  tests. The comprehensive drawdown results from each of the pumping tests were included in a  Drawdown Analysis and System Evaluation Report dated July 12, 2016. The overall results indicated  that the LNAPL recovery and radial influence was likely obstructed by a combination of precipitated  metals and biofouling within the recovery wells. The report recommended chemically cleaning each  recovery well.   December 2016 Well Chemical Cleaning‐ Based on the results of the pumping tests, work was  performed on each of the four recovery wells to remove suspected biofouling. As a result of the  cleaning, groundwater pH at the treated wells decreased substantially. As such, three of the pumping  wells remained off until pH values in the well exhibited a pH of at least 5.5. RW‐03 was reactivated in  February of 2017 and RW‐01 was reactivated in June 2017. To evaluate the success of the cleaning,  post cleaning pumping tests were performed in July 2017 on recovery wells RW‐01 and RW‐03,  followed by long‐term LNAPL recovery monitoring. Results of the cleaning indicated an increase in ROI  and improvement in LNAPL recovery. Specifically, RW‐01 and RW‐03 operated consistently from June  2017 through May 2018 and recovered approximately 334 gallons of LNAPL.   June 15, 2018 Comprehensive Site Assessment (CSA) Report‐ Site assessment and remedial activities  conducted at the Site between November 2015 and May 2018 were submitted to the NCDEQ on June  15, 2018. These activities included the preliminary recovery well testing, the recovery well cleaning  event, the post cleaning recovery well testing, and the long term LNAPL recovery evaluation. Catlin  indicated that with aggressive well maintenance practices, LNAPL recovery could be enhanced.  However, the long‐term success of these efforts would be limited because of excessive biofouling and  mineralization in the vicinity of the recovery wells and aquifer matrix. In addition, a dynamic pulse  biosparge pilot test was recommended to address LNAPL surrounding the recovery system and tank  containment area. However, upon initial planning and evaluation, the pilot test was not scheduled due  to AST foundation and structural integrity concerns.  Data from the most recent sampling event, performed by Catlin and summarized in their Annual Groundwater  Monitoring and Remediation System Report dated November 16, 2022, are summarized in Section 2.1.1.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 8 2.1.1 2022 ANNUAL GROUNDWATER MONITORING AND REMEDIATION SYSTEM REPORT SUMMARY  Between June 28 and 29, 2022, Catlin personnel performed groundwater gauging and sampling activities on‐Site.  Catlin collected representative groundwater samples from shallow, Type II monitoring wells MW‐1 through MW‐5,  deep well TMW‐1, WSW #1 (WS‐1) and select piezometers. Results from the June 2022 monitoring event are  summarized below:  Groundwater Gauging Data Summary  Based on the June 2022 gauging data, the shallow surficial groundwater flow is generally towards the southeast,  which is consistent with previous monitoring events. LNAPL was detected in recovery well RW‐03 (apparent  thickness is 0.76 feet), piezometer P‐47 (0.03 feet apparent thickness), and P‐81 (0.31 feet apparent thickness).  Groundwater contours and LNAPL thicknesses recorded during the June 2022 sampling event are presented in  figures in the November 2022 Catlin report, respectively.  Groundwater Sampling Data Summary  Catlin collected a total of 19 groundwater samples for laboratory analysis from six monitoring wells (five  shallow and one deep), 12 piezometers, and one WSW (WS‐1) during the June 2022 sampling event. Results of  the sampling indicated the following:   Benzene concentrations were above the 2L Groundwater Quality Standard (GWQS) (1 microgram per  liter [μg/L]) in the groundwater samples collected from P‐68 (15.5 μg/L), P‐70 (2.7 μg/L), T‐71 (16.0  μg/L), P‐75 (2.7 μg/L), P‐77 (2.2 μg/L), and P‐79 (8.6 μg/L); and,   Naphthalene concentrations were above the 2L GWQS (6 μg/L) in the groundwater samples collected  from MW‐3 (11.5 μg/L), P‐53 (13.5 μg/L), P‐68 (84.6 μg/L), P‐70 (17.1 μg/L), T‐71 (42.0 μg/L), P‐75 (26.6  μg/L), P‐77 (51.4 μg/L), and P‐79 (28.0 μg/L).   No other analyzed petroleum constituent concentrations were detected above their corresponding 2L GWQS.  The concentrations of constituents in sample WS‐1, which was analyzed according to EPA Method 602, were  below laboratory reporting limits. Groundwater analytical data from the June 2022 sampling event are  presented in tables and figures in the November 2022 Catlin report.   Catlin used the Mann‐Kendall (MK) statistical method to evaluate the dissolved benzene and/or naphthalene  concentration trends at MW‐3 and piezometers P‐53, P‐70, T‐71, P‐75, P‐77, and P‐79 over time. Based on the  results from the MK evaluation, dissolved benzene concentrations in MW‐3, P‐75, P‐77, and P‐79 are  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 9 “decreasing”, “stable” in P‐70 and there is “no trend” in T‐71. Dissolved naphthalene concentrations are  “decreasing” at MW‐3 and P‐75 and are “stable” in P‐53, P‐70, T‐71, P‐77, and P‐79 (Catlin 2022).   LNAPL Recovery  As of the June 2022 sampling event, the recovery system collected approximately 125,059 gallons of LNAPL.  Between February 2017, when pumps were replaced in the recovery wells following the chemical well cleaning,  and June 2022, approximately 1,277 gallons of LNAPL was recovered from RW‐01 and RW‐03. Only 47 gallons  of that was recovered in 2022. Ninety‐six percent (%) of the total LNAPL recovered at the Site occurred  between 1995 and 2005. Overall, the LNAPL recovery system has captured a limited amount of product since  2005.  2.2 GEOLOGY AND HYDROGEOLOGY  2.2.1 REGIONAL GEOLOGY/HYDROGEOLOGY  The Site is in the Atlantic Coastal Plain Physiographic Province of North Carolina. The surficial sediments  comprise the Columbia group, which are believed to unconformably overlie the Pee Dee and Black Creek  formations. The Pee Dee aquifer in the vicinity of the Site is approximately 5 feet thick and is composed of fine  to medium sand. In the vicinity of the Site the upper confining unit of the Pee Dee aquifer is thin and  potentially absent. Below the Pee Dee aquifer lies the Black Creek confining unit which is reported to be  approximately 5 feet thick in the area. The Black Creek formation is approximately 250 ft thick in the vicinity of  the Site and is composed of interlayered sand and clay layers. The Black Creek Formation is the source aquifer  for WS‐1, which is screened from 195 to 215 fbg.  2.2.2 SITE GEOLOGY/HYDROGEOLOGY  During the initial Site investigations, soil borings were completed to a depth of approximately 60 fbg. The  shallow soils encountered at the Site consist of reddish‐brown to yellowish‐brown fine‐grained sand with layers  of sand and coal fill near the surface to a depth of approximately 7 feet. Overall, the Site is underlain by  approximately 12 to 30 feet of fine, silty sand. Various discontinuous clay lenses with varying amounts of sand  are also present between approximately 15 to 40 fbg. Dense, fine, silty‐sand underlays the Site from  approximately 40 to 60 fbg. Boring logs and cross sections, labeled A‐A' and B‐B', were generated during the  initial Site Assessment work by Andrews & Associates in 1995.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 10 Based on historical information at the Site, shallow groundwater is generally encountered ranging from  approximately two to six fbg. Groundwater flow at the Site is generally to the southeast toward the cooling  ponds, which are about 1,000 ft downgradient under a hydraulic gradient of approximately 0.0175 ft/ft. Depth  to water at the Site fluctuates seasonally due to rainfall and changes in evapotranspiration during the spring  and summer. It is likely that the capillary fringe in the shallow sand/silty sands at the Site is approximately 0.5  to 1.5 feet thick, which would result in interstitial water being close to or at ground surface in some locations at  certain times of the year. A consistent unsaturated zone (vadose zone) does not exist at the Site.  2.3 NAPL AND DISSOLVED PHASE IMPACTS   Impacts associated with the fuel oil release are concentrated in the shallow groundwater unit. Due to the  lower relative density of #2 fuel oil, the dissolved phase impacts have not been detected at concentrations  above the 2L Standards at depths below approximately 15 fbg. In areas where recovery wells have operated  historically, the impacts may extend to approximately 25 fbg, However LNAPL and dissolved phase impacts  have not been detected in the Type III Monitoring Well (TMW‐1) that is screened from 34‐39 fbg. There is over  170 feet of vertical separation between impacted shallow groundwater and the Site water supply well, which  remains unimpacted by the fuel oil release as of June 2022.      New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 11 3 RISK CLASSIFICATION  3.1 EXTENT OF PETROLEUM CONSTITUENTS  3.1.1 SOIL   Based on Site assessment data collected to date, the shallow water table (e.g., the seasonal high‐water table)  and the associated capillary fringe is located approximately at or just below the land surface. As such, no  unsaturated soil is present in the release area that has not been in contact with impacted groundwater  because of seasonal groundwater cycles or storm events. The risks associated with shallow groundwater are  discussed in Section 3.1.2.  3.1.2 GROUNDWATER  Based on Site assessment data collected to date, both LNAPL and dissolved phase groundwater impacts exist at  the Site. The extent of groundwater impacts is described below:  LNAPL Distribution  The historic LNAPL extent at the Site is detailed in the 2014 Site Characterization Report (Catlin 2014). The current  aerial extent of LNAPL is defined using the results of the LIF investigation and the ongoing fluid gauging results.  The data indicate that LNAPL is limited to the area immediately downgradient of the AST and is generally  contained within the berm.   The vertical distribution of LNAPL was defined utilizing the results of the LIF investigation (Catlin 2014). Most LIF  profiles returned responses near depths corresponding to the 3.0 to 8.0 fbg. However, in some locations, LIF  results indicated that LNAPL was present in some areas within the recovery system radius of influence at depths  between 3.0 and 16 fbg. The data indicate the vertical extent has been defined.  LNAPL Mobility and Effect on Groundwater  Mobile LNAPL is presumed to be present if it is observed to accumulate in a well. Therefore, the extent of mobile  LNAPL at the Site can be illustrated using gauging data. Measurable LNAPL has been decreasing at the Site since  recovery began in 1995. During the most recent gauging event in June 2022, LNAPL was detected in recovery well  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 12 RW‐03, and piezometers P‐47 and P‐81. The LNAPL thicknesses observed ranged from 0.03 feet to 0.76 feet  (Catlin 2022).  While mobile LNAPL is present, it is likely not migrating (moving into surrounding, unimpacted porous media).  The potential for LNAPL migration can be evaluated by the analysis of historical fluid gauging over time. Also note  that mobile LNAPL has not historically been observed in downgradient monitoring wells MW‐3, MW‐4, or TMW‐1  since their installation in 1995 and LIF data demonstrated no presence of LNAPL in these areas. These data  therefore indicate that the LNAPL body contains mobile LNAPL but is not migrating.  Dissolved Phase  Groundwater data from the June 2022 sampling event indicate that Benzene and Naphthalene exceed the 2L  GWQS at the Site. Benzene concentrations were above the 2L GWQS (1 μg/L) in the groundwater samples  collected from P‐68, P‐70, T‐71, P‐75, P‐77, and P‐79 and naphthalene concentrations were above the 2L GWQS  (6 μg/L) in the groundwater samples collected from MW‐3, P‐53, P‐68, P‐70, T‐71, P‐75, P‐77, and P‐79. Based on  the results of the June 2022 sampling, the shallow groundwater plume downgradient of the source area has  generally been defined; however, the most recent plume boundaries upgradient and cross‐gradient to the east  are undefined. Benzene and naphthalene groundwater concentration plume maps are included November 2022  Catlin report.   In general, concentrations of dissolved phase petroleum constituents in downgradient wells have decreased over  time, which is further evidence that the LNAPL plume is not migrating.  3.2 RECEPTOR INFORMATION   A summary of the potential receptors located within 1,500 feet of the source area are summarized in this  section. Potential receptors are depicted in November 2022 Catlin report.   3.2.1 WATER SUPPLY WELLS  The Weatherspoon plant encompasses greater than a 1,500‐foot radius around the source area. Currently, one  active WSW (WS‐1) is located on the property approximately 350 feet West of the source area (in an  upgradient direction). Reportedly this is a potable well, based on conversations with Duke Energy employees. It  is the only source of potable water for the Site. Additionally, the drip system is fed by a non‐potable six‐inch  diameter well screened from 200 to 210 fbg located approximately 195 feet to the north northwest of the  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 13 source area. Information regarding WSWs within 1,500 feet of the Site are detailed in the November 2022  Catlin report.   3.2.2 PUBLIC WATER SUPPLY WELLS   No public WSWs were identified within 1,500 feet of the source area. Public water is not currently provided to  the Site.   3.2.3 SURFACE WATER   The only surface water body considered to be “waters of the United States” nearest to the Site is the Lumber  River, which is located approximately 1,300 feet west (hydraulically side‐gradient) of the release.  3.2.4 WELLHEAD PROTECTION AREAS  According to the NCDEQ, Division of Water Resources (DWR), Public Water Supply Well (PWS) Section web  page, there are no known wellhead protection areas within 1,500 feet of the subject Site.  3.3 COMPARISON TO RISK CRITERIA   Risk Classification criteria are defined in Title 15A Subchapter 02L .0506 of the North Carolina Administrative  Code (15A NCAC 02L .0506). This Site has been assigned a risk classification of intermediate. An intermediate‐ risk classification is assigned to this Site based upon the following:   LNAPL thicknesses greater than 0.01 feet are present at the Site.  Although a potable water supply well is located within 1,000 feet of the source area and a non‐potable water  supply well is located within 250 feet of the source area, neither well has been or is likely to be impacted by  the release given the location of the wells, the depth and construction of the wells, and the formation from  which the wells extract groundwater. Furthermore, although the groundwater within 500 feet of the source  area of the release has the potential for future use, the use is controlled by Duke Energy and the future use can  be restricted with a Notice of Residual Petroleum once LNAPL is removed from the Site.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 14 3.4 FUTURE SITE USE CONSIDERATIONS   Consideration must be given to managing or eliminating future Site worker exposure to petroleum affected  soil, liquid, and vapor. Future Site workers may include construction workers and occupants of potential future  buildings. The exposure pathways applicable to the Site are dermal contact, ingestion, and/or inhalation of  vapors associated with impacted soil or groundwater.   3.4.1 EXPOSURE TO IMPACTED SOIL   Currently, the primary risk of exposure to petroleum constituents at the Site is associated with earthwork. Risk  of inhalation, ingestion, and/or dermal contact may occur during earthwork activities within the area affected  by LNAPL and dissolved phase petroleum constituents.   Therefore, earthwork within impacted areas should be avoided by Site workers, if possible. If earthwork must  occur in these areas, then proper precautions (e.g., personal protective equipment and proper health and  safety procedures) and engineering controls (e.g., barricaded work zones, fans, etc.) should be implemented to  reduce dermal and inhalation exposure to petroleum constituents. Furthermore, any impacted soil and  groundwater generated because of such earthwork, should be properly managed and disposed of at an  approved, off‐Site facility.  3.4.2 EXPOSURE TO IMPACTED GROUNDWATER   Due to the shallow water table, exposure to impacted groundwater, like exposure to impacted soil, may occur  during earthwork activities within the area affected by LNAPL and dissolved phase petroleum constituents. The  risk associated with, and approaches to mitigate exposure to, impacted groundwater during earthwork  activities are the same as those associated with exposure to impacted soil. Additionally, although a source,  pathway, and exposure point exist for groundwater extracted through a potable well within a 1,500‐foot radius  of the area, the potable well is reportedly located hydraulically upgradient, extracts groundwater from a deep  aquifer, and ongoing routine groundwater monitoring demonstrates that petroleum constituents are not  detectable at concentrations above laboratory reporting limits in the extracted potable water.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 15 3.4.3 EXPOSURE TO PETROLEUM VAPOR   Vapor intrusion occurs when vapors from volatile constituents, like those found in petroleum, migrate upward  into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits which  could result in impacts to indoor air.   The NCDEQ refers to the Interstate Technology and Regulatory Council (ITRC) for guidance on screening and  testing of petroleum vapor intrusion (PVI). According to the ITRC guidance, the vapor intrusion pathway should  initially be considered for all current or future buildings located within 30 feet horizontally and 5 feet vertically  (dissolved phase sources) or 18 feet vertically (LNAPL sources – industrial Sites) of the vapor source.   Currently, no buildings exist within 100 feet of impacted groundwater. At this time, no buildings are proposed  for construction near impacted groundwater. If new buildings are proposed in the future, Duke Energy will  implement engineering controls to address PVI, if appropriate.  3.5 CLEANUP AND CLOSURE WITH LAND USE RESTRICTIONS   Cleanup goals applicable to the Site and as presented in UST Section Corrective Action Guidelines (NCDEQ  2021) are as follows:  Soil—The current remediation goals for petroleum constituents in soil are levels equal to or less than the  lowest maximum soil contaminant concentrations (MSCCs). However, because of the shallow groundwater  table (e.g., the historical high groundwater table is located approximately at the ground surface), no  unsaturated zone petroleum‐affected soils exist at the Site outside the capillary fringe.  Groundwater—The remediation goals for groundwater are to restore shallow groundwater quality to levels  that will prevent a violation of the 2L groundwater quality standards (2L GWQS) in the deep aquifer into which  the nearby potable water supply well is installed.  Surface Water—Surface water has not been affected by this release. Groundwater must be cleaned up to  levels that are sufficient to prevent this Site from causing a violation of the surface water rules contained in  15A NCAC 02B.   LNAPL—The remediation goal for LNAPL is that no measurable amount of LNAPL greater than or equal to 0.01  feet will exist in a groundwater monitoring well or piezometer.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 16 Potential steps to reclassify the Site as low risk are as follows:   Remove LNAPL and confirm that dissolved petroleum constituent concentrations in groundwater are  below gross contamination levels as defined in 15A NCAC 02L .0406,   Abandon the nearby drip line supply well, which is not used for drinking water,   Restrict the use of groundwater as a water supply in and around the source area.  Once the risk classification associated with the Site is changed to low, a request for no further action can be  initiated.    New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 17 4 CURRENT REMEDIATION SYSTEM EFFECTIVENESS  The current LNAPL recovery system has recovered a significant amount of LNAPL at the Site since installation;  however, recent recovery has been limited and LNAPL recovery trends have become asymptotic due to thin  aquifer conditions and poor recovery well performance. Thin layers of residual LNAPL remain within the  subsurface and pump and treat technology may be ineffective, in the long term. Since installation, newer  technologies have emerged that make the current system outdated.   The current system is costly (labor and materials) to maintain relative to other remedial approaches. The  system components, including recovery wells, system piping and pumps have reached the end of their useful  life. Furthermore, the construction of the existing recovery wells is not suitable for the contaminant type (i.e.,  constructed of HDPE outer screen with PVC inner screen – HDPE has poor compatibility with petroleum) and  may be restrictive to LNAPL recovery. With the retirement of the coal‐fired power units on Site, it is also  currently unclear how the permit through which system effluent is discharged may change.  The remaining volume of LNAPL as well as the concentration of dissolved phase constituents in groundwater  has decreased significantly since remediation began and hydraulic control may no longer be necessary. WSP  recommends evaluating a better approach to achieve remedial objectives and reduce the risk classification  (i.e., cleaning up groundwater to attain risk‐based closure objectives). Future site assessment and remediation  efforts for data collection and management will follow WSP USA Environment & Infrastructure Inc. (WSP)  standard operating procedures outlined in Appendix A.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 18 5  SYSTEM SHUTDOWN TESTING  WSP will shutdown the current remediation recovery system (Operating wells RW‐01 and RW‐03) to evaluate  the presence and apparent thickness of LNAPL and dissolved phase petroleum constituents at monitoring  locations under non‐pumping conditions. During shutdown, WSP will perform six groundwater gauging events  over the course of three months. Groundwater elevations and LNAPL thickness will be obtained at all available  monitoring well and piezometer locations. Additionally, at the completion of the three‐month shutdown  evaluation, one groundwater sampling event will be performed to determine the extent and concentrations of  dissolved phase petroleum constituents and to evaluate biogeochemical parameters within and surrounding  the petroleum plume limits.  Sampling will include the same suite of wells/piezometers as performed during the 2022 annual groundwater  monitoring event (MW‐1 through MW‐5, TMW‐1, WS‐1, P‐46, P‐48, P‐53, P‐64, P‐67, P‐68, P‐69, P‐70, T‐71, P‐ 75, P‐77, and P‐79) plus ten additional piezometers (P‐04, P‐10, P‐38, P‐39, P‐40, P‐41, P‐42, P‐45, P‐55, and P‐ 59) to evaluate data gaps associated with the plume limits. During the event, one sample of the following will  be collected for quality assurance/quality control (QA/QC) purposes: field blank, trip blank, and duplicate.  Groundwater samples will be submitted to a state‐certified laboratory for analyses for the presence of VOCs  according to EPA Method 602 with naphthalene; additionally, total and dissolved iron and manganese, ferrous  iron, alkalinity, nitrate, nitrate, sulfate, sulfide, and total organic carbon (TOC) will be measured to evaluate  degradation conditions associated with monitored natural attenuation (MNA). Groundwater will also be  analyzed in the field using a water quality meter for geochemical parameters including dissolved oxygen (DO),  oxidation reduction potential (ORP), pH, temperature, and conductivity. The target method/analyte list may be  reduced or modified based on future sampling results; any recommended changes would be communicated to  NCDEQ. Wells or piezometers containing LNAPL will not be sampled.  Following the recovery well shutdown test, WSP may recommend the abandonment of select piezometers to  optimize the groundwater monitoring network.    New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 19 6 PROPOSED REMEDIATION TECHNOLOGY   WSP proposes a new phased approach for recovery and treatment of residual LNAPL at the Site. The phased  approach will allow WSP to confirm the efficacy of LNAPL remediation techniques before further implementing  additional remediation techniques.   6.1 PHASE 1 – PHASE SEPARATED PRODUCT RECOVERY   The manner in which LNAPL is currently being remediated is no longer effective. As such, following the  recovery well shutdown test the recovery wells will be abandoned, and new wells (vertical or horizontal) may  be installed in locations based on the shutdown test information (i.e., areas with greatest thickness of LNAPL).  New recovery wells will be constructed of PVC and their screened intervals will be determined after evaluation  of shutdown test data.  In the new recovery wells, WSP will install a Geotech AC Sipper system or other low energy well specific  method to remove LNAPL. The objective of the Sipper installation is to passively remove LNAPL that  accumulates within the recovery wells. Since the Sipper system does not actively maintain drawdown at each  of the recovery wells, LNAPL recovered will be a result of natural downgradient flow and accumulation to  accommodate the thin aquifer zone where the LNAPL is located. Additionally, the passive nature of the system  and the recovery of only LNAPL and not groundwater eliminates the discharge of water to the plant’s  wastewater treatment system and NPDES permitted outfall.  Up to eight recovery wells can be included in each Sipper control box. Any well/piezometer 2” or greater in  diameter can be utilized as a recovery well. Therefore, the number and placement of Sipper control boxes and  vertical or horizontal wells will be dependent upon the distribution of LNAPL observed during the shutdown  test. A diagram of the Sipper system is included as Figure 3.  6.1.1 OPERATION  The Sipper system operates on three separately timed intervals that control the vacuum, purging and delay  between cycles. The vacuum cycle controls how long the system is pumping LNAPL from the well and into the  discharge line. The system then switches to the purging cycle which pumps air through the lines to flush the  LNAPL into an on‐Site poly tank. The vacuum and purging cycles run consecutively to clear the line of LNAPL as  soon as the vacuum interval is complete. Lastly the delay cycle controls the time between the purging cycle and  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 20 the next vacuum cycle. Cycle times for each operation are Site specific and will be field determined based on  LNAPL recovery/recharge within each well.   6.1.2 MAINTENANCE  System inspections will be conducted by WSP monthly to ensure the pump is running and components of the  system are operating as designed in the recovery wells. An inspection form will be completed during each visit  to track the system’s current operating settings as well as the product recovered into the poly tank, staged  next to the Sipper system. The inspection will also include checking that all air return lines are clear of liquid  and properly attached, check values are operating correctly, and the poly tank is properly sealed and all LNAPL  lines secured to the inlet port. Furthermore, the system will be fitted with telemetry such that the system can  be monitored remotely.  The poly tank fluid level will be measured during each inspection to determine how much LNAPL has been  extracted since the prior inspection. The poly tank will contain graduated markings to ensure consistent  measuring locations and to accurately track the LNAPL levels. Additionally, the poly tank will be fitted with a  high‐level shutoff to prevent the tank from overflowing. Waste disposal will be performed utilizing a portable  pump and hoses to pump the LNAPL from the poly tank into 55‐gallon drums. The drums will be labeled and  staged in a designated area as instructed by Duke Energy. LNAPL will be transported off‐Site for recycling  and/or disposal at an approved facility.  6.2 PHASE 2 – IN‐SITU SEAR EVALUATION  WSP will evaluate the use of In‐situ Surfactant Enhanced Aquifer Remediation (SEAR) to improve geochemical  properties by increasing fluid mobilization and reduction of recalcitrant LNAPL and dissolved phase VOCs/  SVOCs using less invasive techniques. This remedial approach involves the injection of a surfactant tailored to  Site conditions to create ultra‐low interfacial tensions between LNAPL and the aquifer media. The surfactant  solution is formulated to reduce the capillary forces trapping the LNAPL through contact so that it can be  extracted using pumping methods or broken down geochemically to reduce LNAPL to more dissolved fractions  so that MNA is feasible.  6.2.1 STEP 1 – SEAR BENCH STUDY   WSP will perform a bench study to determine the best Site‐specific SEAR solution (i.e., TASK™ by Tersus)  needed to further reduce LNAPL levels and understand biological restrictions, if any. The Site‐specific  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 21 formulation of the SEAR solution will be developed based on groundwater chemistry collected historically and  during the shutdown evaluation. To evaluate potential injectants for full scale SEAR activities, one groundwater  and one LNAPL sample, representative of Site conditions will be collected from Site wells for a bench scale  Phase Behavior study by Tersus. One additional LNAPL sample will be collected for analysis of viscosity to  evaluate any limitations or restrictions associated with the Sipper system.  The bench study will provide a clear understanding of the microemulsions and capillary phenomena required  to break down the LNAPL for better mobilization and in‐situ reduction of VOCs/SVOCs. The SEAR solution will  be formulated to increase the solubilization and lower the energy of the area of contact between the water  and oil to increase mobility.  6.2.2 STEP 2 – SEAR FIELD PILOT STUDY   WSP will perform a pilot study to determine if in‐situ SEAR methods are feasible to mobilize and ultimately  capture LNAPL. The pilot study will target a specific source area (based on the shutdown test LNAPL thickness  data) to mobilize LNAPL for recovery in downgradient wells. WSP will also consider the placement of injection  and extraction wells based on the shutdown test results. However, it is currently anticipated that injection  wells will be installed upgradient of the concrete secondary containment and extraction wells will be installed  downgradient of the secondary containment, in proximity to the current recovery well network.   Following completion of the SEAR pilot injection, WSP will perform one year of groundwater monitoring to  evaluate reductions in LNAPL thicknesses and dissolved phase petroleum constituents. WSP will perform  gauging monthly. Additionally, WSP will perform five groundwater post‐injection monitoring events (1‐month,  3‐month, 6‐month, 9‐month, and 12‐month) to evaluate the success of the SEAR injection. WSP will select  performance monitoring wells based on the results of the groundwater evaluation following system shutdown.  6.2.3 STEP 3 – SEAR FULL‐SCALE DESIGN   If the pilot study is successful and with regulatory approval, WSP will proceed to a full‐scale SEAR injection  design to mobilize residual LNAPL for removal via the downgradient recovery well system. Long‐term removal  of residual LNAPL will be performed via the Sipper system. A work plan will be prepared prior to full scale  implementation.  New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 22 7 REPORTING AND SCHEDULE   Implementation of the NTCP will be dependent upon NCDEQ approval and receipt of necessary Duke Energy  approvals. WSP estimates that the UST Section will require up to 60 days for review and approval. Remediation  activities are estimated to begin within 4 weeks following approval of the NTCP by NCDEQ. Following  completion of the pilot study, WSP will prepare a Pilot SEAR Report documenting the results of the pilot test  and viability of the remedial alternative for progressing the Site towards closure in lieu of the current  approach. If successful, SEAR will be implemented in a full‐scale approach.   Following full scale implementation of SEAR, WSP will perform post‐implementation monitoring for the first  year and as needed thereafter. The monitoring and compliance sampling network will consist of the same  monitoring points described in Section 5. During the first year, routine reports will be prepared following each  monitoring event. Annual monitoring and reporting is anticipated for subsequent years as needed. Each report  will include an evaluation of the methods, frequency of monitoring and content of the technical data reported  to NCDEQ.  Once LNAPL is no longer present on‐Site and dissolved petroleum constituents in groundwater meet risk‐based  cleanup criteria, WSP will work with Duke Energy to address any remaining criteria required to change the risk  classification of the Site to low (e.g., abandon the drip system supply well), and WSP will request, on behalf of  Duke Energy, that the NCDEQ require no further action for this incident.    New Technology Cleanup Plan April 12, 2023 Duke Energy Progress – Weatherspoon Plant Lumberton, Robeson County, North Carolina WSP Project: 7812-22-0872 23 8 REFERENCES   Caitlin Engineers and Scientists, Semi‐Annual Groundwater Monitoring and Initial Free Product Evaluation, June  29, 2013.  Caitlin Engineers and Scientists, Remedial Action – Treatment System Evaluation Report, July 21, 2015.  Caitlin Engineers and Scientists, Site Characterization Using Laser Induced Fluorescence/Ultra Violet Optical  Tool (LIF/UVOST) and Hydraulic Profiling Tool (HPT) Technologies Report, July 7, 2014.  Caitlin Engineers and Scientists, Remedial Action‐Drawdown Analysis and System Evaluation Report, July 12,  2016.  Caitlin Engineers and Scientists, Annual Groundwater Monitoring and Remediation System Report, November  16, 2022.  Edwin Andrews & Associates, Site Assessment Report: Aboveground Storage Tank Fuel Oil Release, July 31,  1996.  Edwin Andrews & Associates, Phase I Corrective Action Plan: Aboveground Storage Tank Fuel Oil Release,  January 31, 1995.  Interstate Technology and Regulatory Council, Petroleum Vapor Intrusion: Fundamentals of Screening,  Investigation, and Management, October 2014.  NCDEQ, UST Section Corrective Action Guidelines: Petroleum and Hazardous Substance UST Releases, January  19, 2021. FIGURES   ^_ ^_ Copyright:© 2013 National Geographic Society, i-cubed Duke Weatherspoon Plant491 Power Plant RoadLumberton, Robeson County, NC FIGURE DR:CHK: DATE: SITE LOCATION MAP 1E. Bayeh xx CLIENT: PROJ.:7812220872 TITLE: SCALE:SITE: WSP USA Environment & Infrastructure, Inc.4021 Stirrup Creek Drive, Suite 100Durham, NC 27703(919) 381-9900 LOCATION:P:\Energy\Projects\Duke\Legacy Env Projects\Weatherspoon-Lumberton\CAP Evaluation_7812220872.01\13_GIS Duke Energy Progress, LLC. 1 " = 2,000 ' Legend ^_Site Location ³ 0 2,000 4,000Feet 2/22/2023 Site Location !( !( !( !( !( "D "D "D "D"D "D "D "D !A !A !A !A !A !A !A !A !A !A !A !A !A !A !A !A !A !A !A !A!A !A !A !A !A !A !A !A !A !A !A !A !A !A!A!A !A!A !A!A !A!A !A !(W !(P Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community Duke Weatherspoon Plant491 Power Plant RoadLumberton, Robeson County, NC FIGURE DR:CHK: DATE: SITE MAP 2E. Bayeh M. Allen CLIENT: PROJ.:7812220872 TITLE: SCALE:SITE: WSP USA Environment & Infrastructure Inc.4021 Stirrup Creek Drive, Suite 100Durham, NC 27703(919) 381-9900 LOCATION:P:\Energy\Projects\Duke\Legacy Env Projects\Weatherspoon-Lumberton\CAP Evaluation_7812220872.01\13_GIS Duke Energy Progress, LLC. 1 " = 80 ' Legend "D Type III Monitoring Well !(Type II Monitoring Well !A Piezometer "D Recovery Well !(P Active Potable WSW (WS-1) !(W Inactive Non-Potable WSW ³ 0 80 160Feet Notes:WSW = Water supply well 4/11/2023 MW-1 P-26 P-38 P-68 P-53 P-59 P-55 P-60 P-61 P-65 P-67 P-62 P-66 P-50 MW-4 MW-5 MW-2 MW-3 P-63 TMW-1 P-64 P-49 P-48 P-10 P-45 P-44P-46 P-40P-43P-39 P-41 T-71 T-73 T-74 T-72 P-47 RW-04 RW-00 RW-01 RW-03 RW-05 RW-06 P-75P-76 P-70 P-78 P-77 P-16 P-81 P-69 P-56 P-04 RW-02 P-79P-80 P-35 Duke Weatherspoon Plant491 Power Plant RoadLumberton, Robeson County, NC FIGURE DR:CHK: DATE: GEOTECH SIPPER SCHEMATIC 3A. Kellogg M. Allen CLIENT: PROJ.:7812220872 TITLE: SCALE:SITE: WSP USA Environment & Infrastructure, Inc.4021 Stirrup Creek Drive, Suite 100Durham, NC 27703(919) 381-9900 LOCATION:\\DP:\Energy\Projects\Duke\Legacy Env Projects\Weatherspoon-Lumberton\CAP Evaluation_7812220872.01\13_GIS Duke Energy Progress, LLC. ³Notes:Schematic provided by Geotech Environmental 2/22/2023 NTS APPENDIX A    WSP STANDARD OPERATING PROCEDURES     APPENDIX A STANDARD OPERATING PROCEDURES Assessment and Field Data Collection The Standard Operating Procedures have utilized, where applicable, the field methods, sampling procedures, sample custody, and field quality assurance as outlined in the Environmental Compliance Branch Environmental Investigations Standard Operating Procedures and Quality Assurance Manual, November 2001, (EISOPQAM), U.S. EPA Region IV Science and Environmental Services Division, Athens, Georgia. The Standard Operating Procedures has incorporated changes presented in The Field Branches Quality System and Technical Procedures that now supersede the "Environmental Investigations Standard Operating Procedures and Quality Assurance Manual" (EISOPQAM), November 2001, and the "Ecological Assessment Standard Operating Procedures and Quality Assurance Manual" (EASOPQAM), January 2002. These procedures contain routine field sampling and measurement procedures, and quality control documents used by field investigators of the two Science and Ecosystem Support Division (SESD) Field Branches: the Ecological Assessment Branch and the Enforcement and Investigations Branch. The specific sampling and field measurement procedures presented in SESD Quality System and Technical Procedures are based on the experience of the field investigators within the field branches and accepted professional practices which are referenced in each procedure. These documents are intended to be dynamic and will be periodically reviewed and updated, as needed. It is the responsibility of the user to ensure they are using the most recent version of the procedures. Decontamination and Cross-contamination Prevention Standard Operating Procedures #001 The following procedures shall be implemented to ensure sample collection and other related equipment is properly decontaminated to prevent possible cross-contamination of samples. It is imperative that equipment be properly decontaminated and measures be implemented to prevent cross- contamination of field and sample collection equipment and actual samples that are collected. 1. All work should proceed from areas of suspected or know low contamination to areas of suspected or known high contamination. 2. All heavy equipment (e.g., drill rigs, backhoes, etc.) shall be decontaminated prior to coming on-site for work and all down-hole drilling equipment (e.g., auger flights, drilling rods, split spoons, etc.) shall be decontaminated between each drilling/sampling location. a. A decontamination station/pad shall be established for cleaning down-hole equipment. Decontamination wastes shall be contained and collected for disposal. b. Large equipment (e.g., augers, drilling rods) shall be decontaminated using a steam cleaner while use of a soap solution may be appropriate for smaller pieces of equipment (e.g., split spoons). 3. All equipment utilized in water level measurement, sample collection, or that otherwise contacts material to be sampled will be decontaminated between each location and prior to returning to its case and being stowed with other equipment. a. Personnel involved with equipment decontamination shall wear clean gloves during the decontamination process. b. Cleaning shall be performed using a soap solution (e.g., Alconox, Liqui-Nox) with a distilled water rinse. If equipment has contacted free product, the decontamination process shall include an isopropyl alcohol rinse. All wash and rinse activities shall be performed in buckets or other suitable containers. Used water should be contained in 55-gallon drums for disposal. c. Reusable sampling equipment that has been cleaned for later use (e.g., steel trowels, hand auger buckets, etc.) shall be wrapped in clean aluminum foil or sealed in plastic bags until used. 4. Field personnel shall use clean gloves when handling any sampling equipment and shall avoid contacting sampling equipment with other potentially contaminated surfaces and materials. New gloves shall be used whenever a new sample is collected or when a break in sampling occurs (e.g. between well purging and sampling). 5. Investigation derived waste (lDW) and other trash and debris shall be staged away from sampling equipment and other materials to avoid potential cross-contamination. 6. Any samples that contain elevated concentrations of contaminants compared to other samples shall be stored and shipped in a separate cooler/container. Trip blanks should be sent in any cooler where volatile organic compound (VOC) samples are collected for analysis. Disposal of Investigation Derived Waste Standard Operating Procedures #002 The following activities shall be completed upon completion of fieldwork: 1. All field equipment, instruments, buckets, etc. shall be thoroughly cleaned/decontaminated per Standard Operating Procedure #001 prior to leaving the site. 2. All Investigation Derived Waste (IDW) including used bailers, gloves, used sample containers, purge water, excess soil cuttings, etc. that may be contaminated must be properly contained, labeled and disposed. IDW is and will remain the property of the facility and will be the responsibility of the Owner to dispose of this material in accordance with DEP regulations. a. Use on-site disposal (roll-off container, etc.) for IDW if approved by property owner and appropriate for the type of waste generated. b. Provide drums to stage IDW for disposal. Drum staging must be coordinated with the property owner. 3. General solid waste (drink bottles, non-contaminated trash) may be disposed of on-site if site has current solid waste collection containers if approved by property owner. 4. Unused equipment may be shipped back to the supplier, as appropriate, or stored for future use. 5. The client and consultant shall define responsibility for IDW disposal as part of site-specific scopes of work. 6. All IDW will be handled by and disposed in accordance with applicable federal, state and local regulations at an appropriately permitted treatment or disposal facility. IDW will be disposed of in accordance with DEP protocols, if required. If composite samples show levels to be non-hazardous and expectable for land application, the cuttings will be spread on site. Sample Handling Field Procedures Standard Operating Procedures #003 1 Initial Planning This Field Sampling Plan (FSP) contains a description of the rationale for the field activities and then details the exact procedures to be followed to complete the work tasks needed to define soil conditions and identify the nature and extent of soil impacts include:  the identification of compounds of concern,  finding the boundaries of any impacted media  determining the direction of contaminant movement from source areas,  locating source areas,  defining the thickness and orientation of source areas, and  geochemical and/or geotechnical test results, if necessary. 2 Sample Designation and Handling Plan 2.1 Sample Designation System A sample designation system will be used to label each sample with unique sample identification. The sample identification (ID) will be a code that identifies the sample matrix, the number of the sample station and the depth of the sample station if applicable. The types of sample stations are: ID Code Sample Matrix Soil Boring SB Soil Hand Auger HA Soil Monitoring Wells W Ground Water Surface Water SW Surface Water Sediment Sample SED Pond/Stream Bed Sediment The station number will be numeric starting with one and increasing by one as the next similar station is installed; i.e., SB-1, SB-2, SB-3. Individual monitoring wells in a nest will be designated by lower case letters as shallow (s), intermediate (i) and deep (d) and would read W-1s, W-1i. A soil boring (SB) designates a boring installed and sampled with a drill rig, while (HA) designates a hand auger installed boring. Depth below the ground surface will be added indicating the depth the sample was obtained from (e.g. HA-1-8 (8-foot depth). 2.2 Sample Handling Plan 2.2.1 Sample Container Labeling The following information will be placed on the sample container label or tag:  Sample Designation,  Site Name and Job number,  Sample Date and Time,  Sampler's Name or Initials,  Type of Sample - Grab or Composite,  Type of Analysis with Method Number,  Type of Preservative, and  Any Special Requirements. The sampling team and team leader will review the work plan. A schedule of the number of locations to be sampled each day will be prepared by the team leader and project manager. The site HASP has been prepared by the corporate health and safety officer and reviewed with the team leader. The team leader will review the site HASP with the sampling team. The team leader will finalize sampling locations. The sampling order will proceed from lowest concentration of constituents of concern to highest concentration of constituent of concern areas. 2.2.2 Sample Custody Once the samples are removed from the sampling device, they will be transferred to properly labeled containers, logged into the field notebook, and placed into a cooler with sufficient ice to maintain sample temperature at 4°C ± 2°C. When full, or when the sampling is complete, the cooler will be closed and taped shut. Proper custody of the samples will be maintained at all times. Sample coolers will be locked in the field truck during times when they will be out of direct view. Custody of the samples will remain with the sampling team until relinquishment to a courier or the analytical laboratory. A chain-of-custody (C-of-C) form will accompany each sample cooler from the time the cooler is closed and sealed until receipt by the analytical laboratory. A C-of-C record will accompany the sample from initial sample collection in the field to its receipt at the laboratory. The completed original will be returned to Duncklee & Dunham as part of the final analytical report, and a copy will be retained by the laboratory for its files. C-of-C records will be maintained in a secured location in the field until they can be transferred to the Cary office. 2.2.3 Sample Analyses and Other Sample Handling Requirements The work plan or proposal submitted to the client contains a review of analytical tests to be performed on the soil, sediment, ground water, and surface waters at the Site. The chosen analytical laboratory will provide the type and sizes of sample containers required, sample preservative methods, shipping requirements, holding and extraction times, and methods to maintain the laboratory QA/QC. 2.2.4 Documentation Documentation of field activities will be consist of daily field logs, drilling logs for all soil borings, rock corings, and monitoring well installations, and sample logs for collected samples. Documentation records will be kept in a secure location in the field until transferred to Duncklee & Dunham's Cary office. Surface and Shallow Soil Collection Standard Operating Procedures #004 Surface and shallow soil samples are typically collected using stainless steel trowels, spoons, or scoops using the following procedure: 1. A decontaminated trowel, spoon, or scoop is used to remove grass, gravel, or other surface cover in the area to be sampled. 2. The underlying soil material is then collected and placed into a decontaminated bowl or directly into the sample container using a second decontaminated trowel, spoon, or scoop. a. For volatile analysis, soil is collected using specially design equipment (e.g.EnCorelTM, sampler or other approved method) to directly collect and contain the soil to minimize the loss of volatile constituents. b. For non-volatile analysis, soil may be placed into a bowl and mixed to assure that a homogenous sample is delivered to the laboratory for analysis. Once the soil is mixed, it is then placed into the appropriate sample container(s). 3. The steel trowels, spoons, or scoops are decontaminated between each sampling location. Hand augers can be used to collect shallow soil samples to characterize shallow soil strata. The hand auger is typically used as a screening method and can provide preliminary indication of stratigraphy and the presence of contaminants in shallow soils. A borehole is advanced by pushing and turning the auger rods and bucket and retrieving collected soil from the auger bucket. Samples collected from hand auger borings are considered "disturbed" samples. The following procedure is used in collecting soil samples using a hand auger: 1. A decontaminated hand auger assembly (handle, extensions and auger head or bucket) is manually advanced to the desired sampling depth by turning clockwise and pushing downward on the assembly handle. 2. After the auger head is filled with soil, the assembly is pulled from the subsurface, and the contents are removed by either turning the assembly upside-down or by inserting a hand tool such as a decontaminated stainless steel spoon, trowel, etc. This process continues until the boring is terminated or the collection of a sample for laboratory analysis is desired. 3. Samples for laboratory analysis are collected using a decontaminated auger head. The soil sample is collected directly from the auger head or by the use of decontaminated hand tools depending on soil consistency. a. For volatile analysis, soil is collected from the auger head directly into a sample container to minimize the toss of volatile constituents. b. For non-volatile analysis, soil may be placed into a bowl and mixed to assure that a homogenous sample is delivered to the laboratory for analysis. Once the soil is mixed it is then placed into the appropriate sample container(s). 4. Abandonment of the boring entails backfilling with bentonite or grout if the boring is terminated below the water table. Otherwise, the boring is abandoned by backfilling with auger cuttings. 5. The steel auger head, extension rods and handle, are decontaminated prior to the start of each hand-auger boring. Additionally, the auger head is decontaminated during the advancement of the boring prior to collecting each soil sample intended for laboratory analysis. Hollow-Stem Auger Drilling and Soil Profiling/Sampling Standard Operating Procedures #005 Hollow-stem auger borings can be used to characterize soil profiles, determine the presence of organic vapors, and to obtain soil samples for subsequent laboratory analysis. Hollow-stem auger borings can also be the first step in the process of installing a ground water monitoring well. (Refer to appropriate standard procedures for well installation.) 1. Decontaminate all down-hole drilling/sampling equipment prior to the start of work and between drilling/sampling locations (i.e. between each boring for augers and between each sample location for splits spoons and other sampling equipment). 2. Advance augers to desired depth using continuous flight, hollow-stem augers attached to a truck, trailer, or ATV-mounted drilling rig. 3. Soil samples are collected at regular intervals, as required by the Sampling and Analysis Plan, by advancing the augers to a depth just above the desired sampling zone. Typically a five-foot sample interval is used. A decontaminated split-spoon sampler is attached to the drill rod and lowered through the center of the augers and driven into the soil with a 140-pound hammer according to ASTM D-1586. The split-spoon is retrieved and opened to reveal the semi- undisturbed soil sample. The following information is recorded on the Boring Log maintained for each boring (see attached example of an appropriate boring log form in Appendix B): a. Standard Penetration Test (SPT) results (i.e. the number of hammer blows per each six-inch increment of the l8ꞏinch to 24-inch split-spoon penetration or fraction thereof). b. The soil type classified according to the Unified Soil Classification System USCS) Visual-Manual Procedure (ASTM D-2488) or other recognized method (e.g., USDA soil triangle). c. Other pertinent comments, including color, odor, and moisture content. 4. Collect samples from each split spoon for organic vapor (total volatile organic compounds (VOCs) using the following procedure: a. Place an aliquot of the soil sample in a clean, airtight container (sealed Zip-Lock® bag, sealed glass jar, or sealed plastic container) as quickly as possible after sample collection. b. Label the container with boring number and sample depth. c. Allow the samples to sit for approximately 15 minutes to allow the VOC concentration to equilibrate between the soil and air in the container headspace. d. A flame ionization detector (FID) or photo-ionization detector (PID) instrument probe is then inserted into the container to measure the headspace VOC concentration (read directly from the read-out display in parts-perꞏ million (ppm) of total VOCs). The container is opened enough to insert the probe but no further to prevent loss of VOC constituents to the atmosphere. e. VOC concentration is recorded on the boring log/field notes. 5. Collect samples for laboratory analysis, as needed based upon the project requirements, using the following procedure: a. Potential laboratory samples are placed into the appropriate sample container(s) required for the specific analyses to be performed immediately after the samples are retrieved. b. Select samples to be submitted to the laboratory based upon organic vapor screening visual observations, project Sampling and Analysis Plan, etc. c. Handle samples in accordance with standard sample handling, shipping, and chain-of- custody practices as presented in the project Quality Assurance Project Plan and Sampling and Analysis Plan. 6. Upon boring termination at the desired depth or auger refusal (bedrock), the boring is ready for monitor well installation or will be advanced deeper by using other drilling techniques. If the boring is to be abandoned, it is sealed with cement grout if terminated below the water table. Otherwise, the boring is backfilled with auger cuttings, natural material, or cement grout. 7. Upon completion of work, any excess soil that cannot be used as backfill in the core holes must be properly managed. Management of this material shall be as directed by the consultants Technical Lead/Project Manager and client in accordance with Standard Operating Procedure #002. Direct Push Borings and Soil Profiling/Sampling Standard Operating Procedures #006 Direct push (e.g., Geoprobe™ or similar drill rigs) equipment may be utilized as an alternative to hollow-stem auger borings to characterize soil profiles, determine the presence of organic vapors, and obtain soil samples for subsequent laboratory analysis. Direct push equipment can also be used to collect ground water samples and/or to install small diameter piezometers/monitoring wells. 1. Decontaminate all down-hole coring/sampling equipment prior to start of work and between locations (i.e., between each boring for push rods and between each use for samplers). 2. Advance direct push soil coring equipment using truck or ATV-mounted direct push equipment. Coring equipment is advanced using a hydraulic hammer and the weight of the direct push rig. 3. Depending on equipment used, either collect continuous soil cores or advance sampler to specific interval to collect soil core(s) based on the Sampling and Analysis Plan. A precleaned, disposable acetate sleeve is placed into the core sampler, which is advanced continuously or advanced and opened at the desired interval depending on the equipment used. The sample is retrieved and the acetate sleeve containing the soil core is removed. The sleeve is opened to reveal the semi-undisturbed soil sample. The following information is recorded on the Test Boring Log maintained for each boring (see attached example of an appropriate boring log form in Appendix B): a. The soil type classified according to the Unified Soil Classification System (USCS) Visual-Manual Procedure (ASTM D-2488) or other recognized method (e.g., USDA soil triangle). b. Other pertinent comments including color, odor, moisture content, type and size of rock fragments (if present), and presence of fill materials. 4. Collect sample from each soil core for organic vapor ([total volatile organic compounds (VOCs) screening using the following procedure: a. Place an aliquot of the soil sample in a clean, airtight container (either sealed Zip- Lock® bag, sealed glass jar, or plastic container) as quickly as possible after sample collection. b. Label container with boring number and sample depth. c. Allow samples to sit for approximately 15 minutes to allow for VOC concentration to equilibrate between the soil and the air in the container heads pace. d. A flame ionization detector (FID) or photoꞏ ionization detector (PID) instrument probe is then inserted into the container to measure the headspace VOC concentration. (Read the concentration directly from the read-out display in parts-per-million (ppm) of total VOCs.) The container is opened only enough to insert the probe to prevent loss of VOCs to the atmosphere. e. VOC concentration is recorded on the boring log/field notes. 5. Collect samples for laboratory analysis, as needed based upon the project requirements, using the following procedure: a. Potential laboratory samples are placed into the appropriate sample container(s) required for the specific analyses to be performed immediately after the sample is retrieved. b. Select samples to be submitted to the laboratory based upon organic vapor screening, visual observations, etc. c. Handle samples in accordance with standard sample handling, shipping, and chain-of- custody practices (Standard Operating Procedure 003). 6. The core hole is abandoned upon coring termination at the desired depth or at direct push refusal. The core hole is filled with bentonite pellets if terminated below the water table. Otherwise, the core hole is filled with recovered core material, natural on-site material, or bentonite pellets. 7. Ground water samples may be collected from the core hole using a specialized, sealed, discrete interval ground water sampler such as the Geoprobe™ Screen Point 15 Groundwater Sampler. A sampler with a stainless steel screen is preferred for decontamination purposes. Samples are collected as follows: a. Advance decontaminated sampler on push rods to desired depth. b. Retract outer sleeve of sampler to expose screen and allow ground water to enter sampler. c. Use peristaltic pump with precleaned, disposable tubing or small diameter bailer to extract ground water from the sampler in accordance With Standard Operating Procedure #010. (Noteꞏ when a sample is collected immediately from such a sampler, there is no stagnant water to be purged. However, standard purging methods should be used when ground water recharge rates allow to ensure a representative sample is collected. Recharge into the sampler may be slow particularly in formations with low-permeability, and care should be taken to property purge the well while allowing for adequate recharge for representative sample collection. If the sampler is left in the formation for greater than 24 hours, the well must be properly purged to remove the stagnant water. d. Discharge ground water into the appropriate sample container(s) required for the specific analyses to be performed immediately after the sample is retrieved. e. Handle samples in accordance with standard sample handling, shipping, and chain-of- custody practices as outlined in the Quality Assurance Project Plan. 8. Small diameter piezometers/monitoring welts may be installed in the core hole upon removal of the coring equipment. Screen and casing pipe are lowered into the hole, and the piezometer/monitoring well is constructed following standard practices as described in Standard Operating Procedure #007. 9. Upon completion of work, any excess soil that cannot be used as backfill in the core holes must be properly managed. Management of this material shall be as directed by the consultant's Technical Lead/Project Manager and client In accordance with Standard Operating Procedure #002. Shallow Monitoring Well and Piezometer Installation Standard Operating Procedures #007 Shallow monitoring wells and piezometers are installed in unconsolidated material to provide secure sampling points for the uppermost zones of water table (unconfined) aquifers. Following boring termination (typically borings advanced using hollow-stem augers), the well is constructed. The well is built within the hollow stem of the augers as this allows for protection of the welt screen against collapse of the borehole before the well filter pack is properly emplaced. The auger flights may be removed from the ground prior to well construction if there is reason to believe that the borehole will not collapse. If a well is constructed within a borehole advanced using air rotary drilling or direct push technology, the drilling equipment must be removed prior to well construction. The following procedure is used for well construction: 1. Clean, flush-threaded well casing with slotted well screen (typically Schedule 40 polyvinyl chloride (PVC)) is lowered into the borehole. Compatibility of screen material and slot size with site conditions must be considered. Stainless steel well screen may be needed at extremely contaminated sites. 2. Filter sand is then gravity-fed into the annulus between the well screen and the inside of the augers as the augers are slowly pulled from the borehole (or between the well screen and the boring walls if the drilling equipment has been removed). Filter sand is added to a height of approximately one to two feet above the top of the screen. 3. A bentonite seal is emplaced above the sand filter pack (about one to two feet thick) to prevent vertical movement of ground water within the borehole (i.e., to prevent cross contamination from upper to lower zones). Bentonite pellets are placed into the annular space above the sand filter pack and then hydrated with distilled water to create a low permeability barrier. 4. A neat cement grout is then tremmie (gravity-fed, if the bentonite seal is within a few feet of the surface) into the remaining annulus to ground surface. 5. The uppermost portion of each well is constructed to protect the well casing from damage. a. The protective cover may be finished above grade with a steel protective outer casing with locking cover. A slip cap is typically placed over the well casing to prevent dirt and debris from entering the well. b. The protective cover may be finished at grade with a steel man way with a bolt-down cover. A locking, watertight expanding cap is placed on the well to prevent dirt, debris, and water from entering the well. 6. The following information is recorded to complete the Boring Log/Well Completion Record (see attached example of an appropriate well completion record form in Appendix B): a. Depth of borehole b. Length of screen pipe and actual screened interval c. Length of casing pipe d. Screen slot size 7. The top of casing (TOC of the wells is surveyed for horizontal and vertical control for use in evaluating hydraulic gradients. 8. Wells should be labeled when constructed (metal tags in or on well protective casing). A description of the well location should be included in the field notes. 9. If the well is to be used as a temporary (one-time) sampling point, cement grout is not placed above the bentonite seal. After sampling, the temporary well can be abandoned by either pulling the casing/screen and filling the borehole with cement grout, or by leaving the casing in place and filling the casing and annular space above the bentonite seal with cement grout. 10. Piezometers are installed when there is only a need to measure liquid levels (rather than collecting actual ground water samples). Piezometers are typically constructed with small diameter (l-inch) casing. 11. Prior to sampling, monitoring wells are developed to reduce the amount of sediment in well annular space. This enhances the flow of ground water from the formation into the well and helps to ensure that the samples collected are representative of the quality of water in the aquifer. The well may be developed using a bailer or small pump as follows: a. A disposable bailer or decontaminated pump is lowered into the well and allowed to sink to the bottom of the well casing. b. If the well is developed by manual bailing, the bailer is raised using periodic, sharp upward tugs (surges). The surging motion of the bailer causes water to be extracted from the formation, through the screen filter pack into the screen. This also causes fine material that may have been mixed into the filter pack during installation to become suspended in the well water so that it can be removed via bailing. c. If the well is developed using a pump, the pump must be periodically raised with sharp tugs to facilitate the removal of sediment from the filter pack and well casing. d. Well development continues with water removal and periodic surging until the bailed water becomes as clear as practical. e. In some cases, the well will go dry before the "clear water" endpoint is reached. If this happens, the well should be given time to recharge and the process repeated. If, after several such attempts, the well water remains turbid, the development process can cease. It is possible that, in certain low-yielding geologic units, a well cannot be developed to the clear water condition in a practical length of time. The endpoint for well development should be coordinated with the Technical lead/Project Manager. 12. Well Abandonment - when a decision is made to abandon a monitoring well, the borehole should be sealed in such a manner that the well can not act as a conduit for migration of contaminants from the ground surface to the water table or between aquifers. To properly abandon a well, the preferred method is to completely remove the well casing and screen from the borehole, clean out the borehole and backfill with a cement or bentonite grout, neat cement, or concrete. a. As stated the preferred method should be to completely remove the well casing and screen from the borehole. For shallow wells this can be accomplished by attaching a drilling rig cable tool to the casing and slowly pulling the casing from the well. i. The clean borehole can then be backfilled with the appropriate grout material. The backfill material should be placed into the borehole from the bottom to the top by pressure grouting with the positive displacement method (tremmie method). ii. The top 2 feet of the borehole should be poured with concrete to insure a secure surface seal (plug). b. If the casing cannot be readily removed the well can be grouted with the casing left in the borehole. The preferred method in this case is as follows: i. Pressure grout the borehole by placing the tremmie tube to the bottom of the well casing, which will be the well screen or the bottom sump area below the well screen. ii. The pressurized grout is forced out through the well screen into the filter material and up the inside of the well casing sealing holes and breaks that are present. iii. The tremmie tube is retracted slowly as the grout fills the casing. iv. The casing is cut off even with the ground and filled with concrete to a depth of 2 feet below the surface. If the casing has been broken off below the surface, the grout should be tremmied to within 2 feet of the surface and then finished to the ground surface with concrete. c. If geologic conditions warrant the complete removal of the well casing, sand pack and other well construction materials, the well must then be over drilled and grouted. After the casing materials have been removed from the borehole, the borehole should be cleaned out and pressure grouted with the approved grouting materials. As previously stated, the borehole should be finished with a concrete surface plug. 13. Temporary Monitoring Well Typesꞏ five types of monitoring wells which have been shown to be acceptable are presented in the order of increasing difficulty to install and increasing cost: a. No Filter Pack - this is the most common temporary well and is very effective in many situations. After the borehole is completed, the casing and screen are simply inserted. This is the most inexpensive and fastest well to install. This type well is extremely sensitive to turbidity fluctuations, because there is no filter pack. Care should be taken to not disturb the casing during purging and sampling. b. Inner Filter Pack - this differs from the "No Pack" in that a filter pack is placed inside the screen to a level approximately 6 inches above the well screen. This ensures that all water within the casing has passed through the filter pack. For this type well to function properly, the static water level must be 6ꞏto 12 inches above the filter pack. c. Traditional Filter Pack - for this type, the screen and casing are inserted into the borehole, and the sand is poured into the annular space surrounding the screen and casing. Occasionally, it may be difficult to effectively place a filter pack around shallow open boreholes, due to collapse. This method requires more sand than the "inner filter pack" well, increasing material costs. As the filter pack is placed, it mixes with the muddy water in the borehole, which may increase the amount of time needed to purge the well to an acceptable level of turbidity. d. Double Filter Packꞏ- the borehole is advanced to the desired depth. As with the "inner filter pack" the well screen is filled with filter pack material and the well screen and casing inserted until the top of the filter pack is at least 6 inches below the water table. Filter pack material is poured into the annular space around the well screen. This type temporary well construction can be very effective in aquifers where fine silts or clays predominate. This construction technique takes longer to implement and uses more filter pack material than others previously discussed. e. Well-in-a-Well - the borehole is advanced to the desired depth. At this point, a l-inch well screen and sufficient riser is inserted into a 2-inch well screen with sufficient riser, and centered. Filter pack material is then placed into the annular space surrounding the 1-Inch well screen, to approximately 6 inches above the screen. The well is then inserted into the borehole. This system requires twice as much well screen and casing, with subsequent increase in material cost. The increased amount of well construction materials results in a corresponding increase in decontamination time and costs. If pre-packed wells are used, a higher degree of QA/QC will result in higher overall cost. Liquid Level Measurement Standard Operating Procedures #008 Liquid levels (depth to ground water and free product, as applicable) in monitoring wells and piezometers are measured (gauged) using an electronic water level indicator or oil/water interface probe as appropriate based on site conditions. Specific steps in the measurement process are as listed below. Note: liquid levels shall be measured in all wells prior to sampling so that the measurements are collected over the shortest time period possible. If all wells can be sampled within one day, the ground water level measurements may be obtained for each well as it is sampled. 1. Remove protective covers, locks, and well caps from all wells to be gauged, and allow the ground water to equilibrate to atmospheric pressure. Note if any wells are under pressure, under vacuum, or have an odor. Screen well casing for organic vapors using a photoionization detector (PID) or flame ionization detector (FID) if required by the project. Record pertinent observations and measurements in field notes. 2. If the well cap, lock, etc. is damaged or missing, document the condition in the field notes, and replace the material as needed. 3. If a dedicated bailer is contained/stored in the well, remove it, and place it on clean plastic sheeting or aluminum fait to prevent field contamination. 4. Measure liquid levels starting at the background or least impacted well(s) and moving to the most impacted wells. a. Measure depth to ground water and depth to free product, as appropriate, from the surveyed control point on well top of casing. b. Record measurements in the field notes along with any pertinent comments. 5. Decontaminate the water level indicator and/or oil/water interface probe before use, between each well, and upon completion of measurements. a. Rinse probe and tape with soap solution followed by a distilled water rinse. b. Wash portions exposed to free product with isopropyl alcohol followed by a distilled water rinse. 6. Replace well caps, locks, and bailers, if necessary, and replace protective cover. Note: High viscosity (thick) oil tends to stick to the oil/water interface probe and can result in exaggerated measurements of free product thickness. To minimize this effect, lower the oil/water interface probe until the probe signals water. Then, slowly raise the probe until the presence of oil is indicated. Record the second measurement as the depth to water in the well. If measurement with the oil/water interface probe is not effective, a bailer may be lowered into the well and the free product thickness in the bailer can then be measured. Well Sampling Using a Bailer Standard Operating Procedures #009 Bailers can be used to manually collect representative ground water samples from relatively shallow, small-diameter wells (i.e., 6-inch diameter or smaller). A dedicated Teflon bailer, decontaminated Teflon bailer, or disposable polyethylene bailer is used with new nylon cord/rope to purge and then sample the well. Specific steps in the sampling process are as follows: 1. Remove the well cover, lock, and well cap. 2. Record the Photoionization Detector (PID) reading in the well casing as necessary based on project requirements. 3. Make sure all equipment has been thoroughly decontaminated before use. 4. Gauge the depth to water from the top of casing (TOC) mark on the well casing using an electronic water level indicator or oil water interface probe. 5 Using the depth to water measurement, total depth of the well, and well diameter, calculate the required purge volume. (Conversion factors for water column height to volume are as follows: 0.16 gallons per foot for a 2-inch well and 0.61 gallons per foot for a 4-inch well). Record the absence or presence of free phase petroleum hydrocarbons (or free product). The calculation of the required purge volume is as follows: Volume of water in well (gallons) = (Total Depth of Well - Depth to Water) * Conversion Factor Total Purge Volume (gallons) = 3 * Volume of water in well 6. Water is removed (purged) from the well before sampling in order to remove stagnant water in the well column and to allow freshꞏ or representative formation water to enter the well screen. a. Gently lower the bailer to the bottom of well with cord/rope and remove accumulated ground water. b. Continue the purge process until at least three well volumes have been removed or the well is bailed dry. To determine the volume purged, estimate approximately 0.25 gallons (or 1 liter) as the volume of a 36-inch bailer, or use a graduated bucket. c. A representative water sample shall be collected at a minimum frequency of once after each well volume is purged. These samples shall be checked in the field to assure that the water quality parameters (pH, temperature, and specific conductance) have stabilized (i.e., readings are within 10% of the previous measurement). If water quality parameters have not stabilized, the purge process is continued. The ground water purge measurements shall be recorded in the field notes or on a separate Ground Water Purge Data form (see attached example of an appropriate boring log form in Appendix B). d. Upon completion of purging and prior to sampling, the bailer and cord/rope shall be tied off inside the well casing or removed from the well and placed on clean plastic sheeting or aluminum foil to prevent field contamination of the sampling equipment. e. Purge water shall be collected and managed as directed by the Technical lead/Project Manager. In certain circumstances, it may be permissible to discharge purge water to the ground surface if approved by the regulatory agency coordinating the work. 7. Upon satisfactory completion of well purging, ground water samples are collected for analysis. a. Ground water sampling is performed within 24 hours of purging to minimize the loss of any volatile compounds present (unless insufficient water has re-entered the well). b. The bailer is lowered gently below the water surface (until completely submerged, if possible). It is then retrieved, and the water is gently poured into the appropriate sample containers. c. The sample containers are labeled with well number, date, time, and analysis to be conducted. Samples are collected and contained in order of volatilization sensitivity. The preferred collection order for some common ground water parameters is as follows: i. Volatile organics ii. Total organic carbon iii. Total petroleum hydrocarbons iv. Semivolatile organics v. Pesticides, PCBs, herbicides vi. Total metals vii. Phenols viii. Sulfate and chloride ix. Nitrate and ammonia d. All samples are logged on a chain-of-custody form and immediately stored in an ice- filled cooler (maintaining a temperature of approximately 4°C ± 2°C). Samples are transported to the laboratory under EPA approved chain-of-custody procedures. Monitoring Well Sampling Using a Pump Standard Operating Procedures #010 Various types of pumps can be used to collect representative ground water samples from monitoring wells. For the purposes of most assessment work dedicated ground water pumps will not typically be installed. However, there are times when collecting samples using decontaminated pumps may be applicable, such as collection of samples from deep wells or when low-flow sampling is desired to reduce sample turbidity. Other times, a non-dedicated pump will be used to collect ground water samples. Such pumps shall be primarily of stainless steel and Teflon construction (components that will be in contact with the water) for ease of decontamination between locations. Disposable polyethylene or similar inert tubing is used to convey the ground water to the surface. Specific purging and sampling methods using pumps will be outlined in the sampling and analysis plan (SAP). The primary goal for the sampling using pumps is to collect ground water samples that are representative of the organic and inorganic dissolved and particulate components of the ground water by low flow methods that minimize stressing the aquifer. A secondary goal is minimizing the volume of purged water that is removed from the well requiring disposal as investigation derived waste (IDW). The reference for the low flow pumping is EPA Region 1, 1996, Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells: Revision Number 2, July 30. The wells are sampled when the field parameters become stabilized for the last three consecutive measurements. The field parameters and the stabilization goals are presented below: Turbidity 10% for values greater than 10 NTU Dissolved Oxygen (DO) 10% Specific Conductance 10% Temperature 10% pH ± 0.1 unit Oxidation-Reduction Potential (ORP) ± 10 millivolts Low Flow Purging and Sampling with Pumps 1. Remove the well cover, lock, and well cap. 2. Record the organic vapor levels on the top of the well casing using flame ionization detector (FID) or photo-ionization detector (PID) as necessary based on project requirements. 3. Make sure all equipment has been thoroughly decontaminated before use. 4. Gauge the depth to water from the top of casing (TOC) mark on the well casing using and electronic water level indicator or oil water interface probe. 5. Review the construction details for the well and determine the depth from the TOC to the midpoint of the well screen. 6. Lower the submersible pumps (bladder, turbine, displacement, etc.) or the intake line of the peristaltic pumps or centrifugal pumps to the center of the well screen. (Note: For wells that have known intervals within the well screen that have higher hydraulic conductivities or higher chemical concentrations, the SAP may specify the pump intake or intake line be placed in these intervals.) 7. Connect the pump discharge line to the flow-through cell and the discharge line from the flow through-cell to a five gallon bucket. Unless otherwise specified in the SAP, food-grade polyethylene line will be used. 8. Begin low flow pumping with at the lowest pump control setting and continue to adjust the pump control setting until the water just moves from the intake of the pump to the flow cell. The criteria for judging that low stress is being applied to the aquifer is monitoring the static water level in the well after the pump has been set and maintaining 0.3 feet or less of drawdown. A typical range of extraction rates for low flow is 100 mL/minute to 400 mL/minute. (Note: In some cases the minimal drawdown that can be achieved and the pump move water through the flow-through cell may exceed 0.3 feet but remain stable. Continue pumping and begin the monitoring the field parameters until stabilization.) The flow rate of the pump should be measured using a graduated cylinder or graduated bucket and recorded each time field parameters are recorded. 9. Once the field parameters have stabilized, the pump discharge tubing is disconnected from the flow-through cell and is now ready to fill the sample containers. 10. The sample containers are labeled with well number, date, time, and analysis to be conducted. Samples are collected and contained in order of volatilization sensitivity. The preferred collection order for some common ground water parameters is as follows: i. Volatile organics ii. Total organic carbon iii. Total petroleum hydrocarbons iv. Semivolatile organics v. Pesticides, PCBs, herbicides vi. Total metals vii. Phenols viii. Sulfate and chloride ix. Nitrate and ammonia 11. All samples are logged on a chain-of-custody form and immediately stored in an ice-filled cooler (maintaining a temperature of approximately 4°C ± 2°C). Samples are transported to the laboratory under EPA approved chain-of-custody procedures. Top of Water Column Purging 1. Remove the well cover, lock, and well cap. 2. Record the organic vapor levels on the top of the well casing using flame ionization detector (FID) or photo-ionization detector (PID) as necessary based on project requirements. 3. Make sure all equipment has been thoroughly decontaminated before use. 4. Gauge the depth to water from the top of casing (TOC) mark on the well casing using and electronic water level indicator or oil water interface probe. 5. Using the depth to water measurement, total depth of the well, and well diameter, calculate the required purge volume. (Conversion factors for water column height to volume are as follows: 0.16 gallons per foot for a 2-inch well and 0.61 gallons per foot for a 4-inch well). Record the absence or presence of free phase petroleum hydrocarbons (or free product). The calculation of the required purge volume is as follows: Volume of water in well (gallons) = (Total Depth of Well - Depth to Water)* Conversion Factor Total Purge Volume (gallons) = 3 * Volume of water in well 6. Purging with Pumps: a. When peristaltic pumps or centrifugal pumps are used, only the intake line is placed into the water column. b. When submersible pumps (bladder, turbine, displacement, etc.) are used, the pump itself is lowered into the water column. The pump must be decontaminated prior to use. c. Purging Entire Water Column - the pump/hose assembly used in purging should be lowered into the top of the standing water column and not deep into the column. This is done so that the purging will “pull” water from the formation into the screened area of the well and up through the casing so that the entire static volume can be removed. If the pump is placed deep into the water column, the water above the pump ma y not be removed, and the subsequent samples, particularly if collected with a bailer, may not be representative of the ground water. (For wells with a low recharge rate it may be necessary to gradually lower the pump/intake line into the well as the water level drops.) (Careful consideration shall be given to using pumps to purge wells which are excessively contaminated with oily compounds, because it may be difficult to adequately decontaminate severely contaminated pumps under field conditions.) d. Continue the purge process until at least three well volumes have been removed or the well is pumped dry. e. A representative water sample shall be collected at a minimum frequency of once after each well volume is purged. These samples shall be checked in the field to assure that the field parameters have stabilized (see values listed above). If water quality parameters have not stabilized, the purge process is continued. The ground water purge measurements shall be recorded in the field notes or on a separate Cround Water Purge Data form (see attached example of an appropriate ground water purge data form in Appendix B). 7. Sampling Equipment Available a. Peristaltic pump b. Stainless steel and Teflon' bladder pump, c. Stainless steel and Teflon', variable speed centrifugal pump (e.g., Grundfos Redi- Flo2) 8. Sampling Techniques a. Peristaltic pump i. Precleaned disposable tubing is placed into the pump and from pump to well. ii. Intake is lowered to the appropriate depth. iii. Pump is activated with speed adjusted for appropriate flow rate based on well recharge and types of samples to be collected. iv. Ground water is discharged into appropriate sample containers. b. Submersible bladder Pumps and variable speed centrifugal pumps. i. After purging has been accomplished with a bladder pump, the sample is obtained directly from the pump discharge. ii. The pump rate should be reduced during sample collection to minimize sample disturbance, particularly with respect to samples collected for volatile organic compounds analysis. 9. The sample containers are labeled with well number, date, time, and analysis to be conducted. Samples are collected and contained in order of volatilization sensitivity. The preferred collection order for some common ground water parameters is as follows: i. Volatile organics ii. Total organic carbon iii. Total petroleum hydrocarbons iv. Semivolatile organics v. Pesticides, PCBs, herbicides vi. Total metals vii. Phenols viii. Sulfate and chloride ix. Nitrate and ammonia 10. All samples are logged on a chain-of-custody form and immediately stored in an ice-filled cooler (maintaining a temperature of approximately 4°C ± 2°C). Samples are transported to the laboratory under EPA approved chain-of-custody procedures.