Loading...
HomeMy WebLinkAboutNCD001810365_20050216_Martin-Marietta Sodyeco Inc. (Clariant)_FRBCERLA SPD_Mt. Holly East Facility Capture Zone Analysis-OCRClariant Corporation Mount Holly East Facility -Capture Zone Analysis EPA ID No. NCD001810365 February 2005 · ~Clariant Technical Mem·orandum I I I I I I I I I I I I I I I I I CDIVI 5400 Glenwood Avenue, Suite 300 Raleigh, North Carolina 27612 tel: 919 787-5620 fa)(: 919 781-5730 February 16, 2005 Mr. Michael Townsend US EPA CERCLA 61 Forsyth Street Atlanta, GA 30303 {i5)rn@~OW~fR) lfl] FEB 2 2 2005 ~ SUPERFUND SECTION Subject: Capture Zone Analysis Technical Memorandum Clariant Mount Holly East Facility EPA ID# 001810 365 Dear Mr. Townsend: On behalf of Clariant, Camp Dresser & McKee (COM) is pleased to provide this Capture Zone Analysis Technical Memorandum for the Clariant Mount Holly East Plant. This technical memorandum presents the results of both a capture zone analysis and a fate and transport analysis, and includes site maps depicting estimated capture zones. The capture zone analysis and the fate and transport analysis were performed in accordance with the Work Plan dated October 20, 2004. Project Background The U.S. Environmental Protection Agency (EPA) prepared a Five-Year Review Report for the Mount Holly East facility in September 2002. In this report, the EPA requested that the groundwater system's capture zone efficiency be evaluated to assure that the extraction system will meet the long-term protectiveness goals: In the September 2002 Five-Year Review Report, the EPA noted the following: · ■ Elevated levels of volatile organic compounds (VOCs) are present in monitoring wells downgradient of the extraction wells. ■ Although VOC contamination is present downgradient of the extraction system, the contamination has not impacted the surface waters of the Catawba River or cree_ks above acceptable levels. ■ A capture zone analysis should be conducted on the extraction system in each of the CERCLA Areas (A through E) to determine if the current extraction system will meet the long-term protectiveness goals. P:\Clarianl -5256143895 • Capture Zone Analysis\Reports\Capture zone Report.doc consulting• engineering• construction• operations I I I I I I I I I I I I I I I I I I I CDIVI Mr. Michael Townsend Febrnary 16, 2005 Page2 ■ Long-term protectiveness is defined within the five-year report as protecting adjacent surface water bodies and achieving NPDES discharge requirements. ■ According to the five-year report, the capture zone analysis should determine if additional extraction wells are required, or if increasing the current pumping rates of the existing wells will address downgradient contamination. ■ A fate and transport analysis of the contamination downgradient of the extraction system should be conducted as welL The fate and transport analysis will aid in answering questions associated with the long-term effectiveness of the remedy. ■ The EPA believes that improved capture efficiency will aid in decreasing groundwater contaminant concentrations. ■ The EPA did not set a milestone date for the completion of the capture zone analysis and fate and transport analysis. Capture Zone Analysis A capture zone analysis was conducted for all recovery wells in all five CERCLA areas in both the shallow /intermediate and deep zones. The shallow /intermediate zone consists primarily of saprolite and partially weathered rock, while the deep zone consists of fractured rock. The Capture Zone Module (MWCAP) of the EPA's Well Head Protection Area model (WHPA), which delineates steady-state capture zones for recovery wells, was used to estimate capture zones within each of the five CERCLA areas. MWCAPMode/ MWCAP provides delineation of steady-state, time related, and hybrid capture zones for one or more pumping wells in aquifers that are essentially homogenous with two-dimensional steady-state flow. For this analysis, a number of simplifying assumptions were made, as noted below. These various assumptions should be considered when interpreting the caph1re zones delineated by MWCAP. ■ For all recovery wells, MW CAP was used to delineate steady-state capture zones. Time- related or hybrid capture zones were not delineated. A steady-state groundwater flow field was assumed. ■ The shallow /intermediate zone was considered as one homogeneous aquifer. The deep (bedrock) zone was considered as a separate homogeneous aquifer. Available site data I I I I I I I I I I I I I I I I I I CDM Mr. Michael Townsend February 16, 2005 Page3 characterizing the shallow /intermediate zone indicates that inhomogeneities are present. The shallow /intermediate zone is primarily composed of residuum (saprolite) transitioning into partially-weathered rock. In some areas, alluvium and a thin gravel layer are also present in the shallow /intermediate zone. Inhomogeneities that may exist are expected to have three primary effects on actual conditions versus the estimated conditions. Preferential flow paths may exist that could cause the actual capture zone to extend beyond the estimated zone along the path, assuming the preferential flow path is hydraulically connected to the pumping well. If not connected, groundwater in the preferential flow path may escape the pumping well. Inhomogeneities would also be expected to result in capture zones that are more elliptical than estimated by the model. Because of these limitations and assumptions, the estimated capture zones should be considered approximate and the results applied conservatively. ■ The capture zone analysis does not consider the vertical flow of water within or between the two zones. ■ Each well was specified to be operating without a lateral boundary (an aerally infinite aquifer). MWCAP assumes that each recovery well operates independently of one another. Therefore, physical processes such as well interference effects due to increased drawdown are ignored. In addition, the effects of well interference due to overlapping cones of depression are neglected. The effects of well interference are usually a larger overall capture zone. Despite the limitations and assumptions described above, the use of MWCAP is considered an acceptable tool for the project objectives and delineating approximate capture zones for the site recovery wells. A more sophisticated numerical solution, requiring an extensive database, would be necessary to fully evaluate the impact of well interference, aquifer inhomogeneity, and vertical flow between aquifers. For a full description of the MWCAP mo 0 del, refer to" Addendum to the WI-IPA Code Version 2.0 User's Guide: Implementation of Hydraulic Head Computation and Display into the WI-IPA Code", T. N. Blandford and Y.-S. Wu, USEPA Office of Drinking Water and Ground Water, September 1993 (www.epa.gov/ ada/ download/models/whpa.pdf). !A. MWCAP requires inputs to define the properties of the recovery wells and the aquifer properties. Information on the recovery wells was obtained from the well installation logs and from well pumping data. Data from previous site investigations and the literature characterizing regional conditions were used to estimate aquifer properties. The MWCAP input parameters are described below: I I I I I I I I I I I I I I I ' I I I I Mr. Michael Townsend Febrnary 16, 2005 Page4 ■ Discharge (Pumping Rates): Average recovery well flow rates from October 2003 to August 2004 were used to determine the pumping rates for each of the 19 CERCLA wells. A system-wide well redevelopment effort was completed in September of 2003, which improved recovery rates in some wells. Average pumping rates measured after September 2003 were assumed to be representative of the recovery system. The volume of water pumped from each well is recorded during the bi-weekly pump maintenance program. Table 1 presents the pumping data from 2001 through August 2004. Figure 1 presents the total flow from all 19 CERCLA wells from 2001 through August 2004. Table 2 presents the pumping data for each of the CERCLA wells from October 2003 through August 2004. All tables and figures are included as Attachment A and B, respectively. ■ Hydraulic Gradient: The hydraulic gradient was calculated based on the groundwater elevations measured in each CERCLA area during August 2004. The hydraulic gradient is defined as the change in hydraulic head over a specified horizontal distance. The hydraulic head calculations are provided as J\ttachment C. ■ Aquifer porosity: In each CERCLA area, aquifer porosity was estimated from literature values including "Basic Elements of Ground-Water Hydrology with Reference to Conditions in North Carolina", 1980, United States Geological Survey, by Ralph C. Heath. Table 3 presents the recovery well and aquifer details including aquifer porosity. It should be noted that steady-state capture zones are not dependent upon aquifer porosity. Estimates of aquifer porosity were used in the fate and transport analysis, however. ■ Aquifer Thickness: For each recovery well, aquifer thickness is defined as the saturated thickness of the aquifer and is estimated from existing boring logs. Aquifer thickness is detennined as the thickness from the water table to the top of bedrock for wells screened in the shallow and intermediate zones, and from the water table to the maximum screen depth for wells screened in the deep zone. It should be noted that steady-state capture zones are not dependent upon aquifer thickness; however, aquifer thickness was used to calculate transmissivity. ■ Hydraulic Conductivity: Hydraulic conductivity was used to calculate transmissivity. Hydraulic conductivity was estimated based on previous studies conducted in the CERCLA areas including: "CERCLA Area C Spray Infiltration System and Remedial Effectiveness Report", December 1999, COM; Appendix I, Ground-Water Model, Flow Rate Estimations, and Solute Transport Model and Calculations, Remedial Investigation Volume II, Soydeco Site, Mt. Holly North Carolina, August 1987, Engineering-Science And Law Engineering Testing Company; "Supplemental Information for RCRA Ground- I I I I I I I :I I I I I I I I I I I ,I CDNI Mr. Michael Townsend February 16, 2005 Pages Water Recovery System", Sandoz Mount Holly Plant, March 2, 1989, Law Environmental, Inc.; and "Supplemental Information for RCRA Ground-Water Recovery System". ■ Transmissivity: Transmissivity was calculated from the aquifer thickness and hydraulic conductivity. A composite transmissivity of the aquifer in each CERCLA area was calculated based on the presence of residuum, gravel, alluvium, partially-weathered rock, and gravel layers within the aquifer. ■ Angle of Ambient Flow: This parameter aligns the capture zone to be parallel with the groundwater flow direction. The angle of ambient flow was determined based on the groundwater contour maps presented in the August 2004 Remedial Action Effectiveness Report prepared by COM. The angle of ambient flow does not affect the dimensions of the capture zone, only the capture zone alignment. Based on a limited sensitivity analysis, pumping rate and transmissivity were found to have the greatest impact on the capture zone size. Results and Discussion The results of the capture zone delineation for all five CERCLA areas are presented in Figures 2 through 5. MWCAP input and output are provided as Attachment D. The recovery system in CERCLA Area A/B was designed to remove VOC contaminated groundwater from the intermediate zone. Five wells (R-14, R-13, R-12, R-1 and R-2) are located along an east-west axis between Area A/Band Long Creek, spanning approximately 750 feet. The recovery wells in CERCLA Areas A/Bare screened in the shallow and intermediate zones. The MWCAP capture zones estimated in Figure 2 provide almost complete coverage across approximately 1,500 feet. A gap of approximately 175 feet is noted be_tween Arca A/B recovery well R-2 and Area C recovery well R-3. Contaminant concentrations measured from monitoring wells CMW-2 and CMW-3, located approximately halfway between the two recovery wells, have ranged from non-detect to approximately 5 parts per billion during recent sampling events. The data indicates that this gap between the Areas A/Band C recovery wells is not a significant pathway for contaminant migration. The effects of well interference may actually cause this area to be captured. The gap can be eliminated by increasing the pumping rate of wells R-2 and R-3 by approximately 35 percent. The pump, piping, and flow meter of R-12 will continue to be inspected to determine the cause of the low pumping rate (0.0001 gpm). Wells R-1 and R-2 were briefly non-operational I I I I I I I I I I I I I I I I I I I CDIVI Mr. Michael Townsend February 16, 2005 Page6 for pump replacement in March and April of 2004, which likely lowered their average pumping rate. The recovery system in Area C consists of wells R-3 and R-4 screened in the shallow zone and R-16, which recovers groundwater directly downgradient of the Area C spray infiltration system in the former pit locations. As depicted in Figure 3, the recovery wells in CERCLA Area Care estimated to provide groundwater capture across approximately 450 feet from well OW-4 to well OW-6. Recovery Well R-16 provides a relatively small capture zone of less than 50 feet. The current pumping rate of R-16 (0.68 gpm) is less than the design flow rate of 1.5gpm. · In December 2002, three additional recovery wells (R-17, R-18, and R-19) were installed in CERCLA Area D to control groundwater flow in the gap between the RCRA well point system and CERCLA Area D recovery wells. The CERCLA Area D recovery system now consists of eight recovery wells screened in the shallow /intermediate (R-5, R-6, R-17, and R- 18) and deep zones (R-7, R-8, R-9, and R-19). As depicted in Figure 4, the recovery wells in CERCLA Area Dare estimated to provide sufficient groundwater capture across Area D for the deep zone. Two of the shallow/ intermediate wells (R-5 and R-6) provide minimal capture zones due to the low pumping rates. Recovery well R-5 has an average pumping rate of 0.08 gpm and R-6 did not operate during the flow monitoring period of October 2003 through August 2004. The cause of the low pumping rate of R-5 and inoperability of R-6 will be explored during upcoming well operation and maintenance visits. The other two shallow/ intermediate wells (R-17 and R-18) are modeled as having 150-foot and 40-foot capture zones. The four deep wells (R-7, -8, -9, and -19) all provide capture zones at least 125 feet wide, and provide complete coverage across Area D. The recovery wells in CERCLA Area E, which are screened in the intermediate zone, are shown to provide groundwater caphtre across approximately 500 feet. Wells R-10 and R-11 both have average flow rates of 0.18 gpm, which contributes to a capture zone of approximately 50 feet. Well R-15, with an average flow rate of 1.89 gpm, has a capture zone that provides complete coverage across Area E. It should be noted that the overlapping capture zones observed in each of the CERCLA areas are a result of the MW CAP assumption that wells operate independently of one another. In the two-dimensional flow field, capture zones would not overlap. More accurately, capture zones would widen laterally in the opposite direction of the nearby recovery well, or preferentially draw water from a different depth of the aquifer than the nearby well. I I I I I I I I I ' I I I I I I I I I I Mr. Michael Townsend February 16, 2005 Page7 A water balance check was also conducted comparing the water recharge contribution from the surface an,a of each of the capture zones to the total average pumping rate from each of the recovery wells. The results of this water balance check support the results of the capture zone modeling. Capture Zone Modeling Conclusions Capture zone analyses were conducted for recovery wells in CERCLA Areas (A through E) to determine if the current extraction system will meet the long-term protectiveness goals. Long-term protectiveness is defined within the five-year report as protecting adjacent surface water bodies and achieving NPDES discharge requirements. The capture zone analysis indicates that additional extraction wells are not required; however, increasing the current pumping rates of recovery wells R-2 and R-3 may aid in further preventing downgradient contaminate migration between Areas A/Band C. Fate and Transport Analysis A fate and transport analysis was conducted in each of the five CERCLA areas. The fate and transport analysis focused on key contaminants that have been detected downgradient of the recovery wells (e.g., 1,2-dichlorobenzene and chlorobenzene). Estimated travel times for the major contaminant groups downgradient of the extraction system were calculated using conservative dispersion and retardation factors from the literature. A general discussion of the expected degree of natural attenuation occurring downgradient of the extraction system is also included, based on limited water chemistry and hydrogeologic data collected during previous investigations. The EPA has noted that contaminants have migrated downgradient of the groundwater recovery systems, but the contamination has not impacted the surface waters of the Catawba River or creeks above acceptable levels. The Surface Water and Sediment Sampling Report, submitted to the HWS on September 17, 2002, also noted that contamination has not impacted the surface waters and sediment of the Catawba River or creeks above acceptable levels. The fate and transport analysis contained on the following pages provides estimates of travel times from the 19 recovery wells to Long Creek and Catawba River. Also included in the analysis are estimated concentrations of the contaminants of concern at the creek and the river. Table 4 presents the contaminants which were examined in this analysis. The fate and transport analysis is based on the assumption that one or more recovery wells become inoperable and thereby allow a slug of contamination to bypass the recovery system. I I I I I I I I I I I I I I I I I I I CDNI Mr. Michael Townsend February 16, 2005 Page8 Transport Processes Solutes move through an aquifer by three primary mechanisms: advection, dispersion, and diffusion. The rate at which a solute moves through an aquifer is a function of the aquifer media, the chemical and physical characteristics of the solute, and groundwater flow conditions. As a contaminant moves through an aquifer, it undergoes natural attenuation that reduce its mass, toxicity, mobility, and volume. This occurs via "non-destructive" methods such as adsorption and dispersion, as well as "destructive methods"_via biodegradation. If a contaminant is conservative, it moves through the aquifer at a rate equal to the groundwater velocity: Kah n, a, where: K = hydraulic conductivity (ft/ d) . nc = effective porosity ah . . -= hydraulic gradient a, In CERCLA Areas A, B, and C, without the influence of the recovery wells, groundwater flows south west and eventually discharges to Long Creek. In CERCLA Areas D and E, groundwater flows northwest and discharges to the Catawba River. Using values of hydraulic conductivity and porosity previously derived from field studies, the average linear groundwater velocity from each recovery well to it's respective discharge area was calculated (Table 5). The hydraulic gradients were calculated assuming the recovery wells were shut down and groundwater levels were recovered (i.e., no cones of depression). To estimate travel time from the recovery wells to surface water bodies, the length of travel along the groundwater flow path must be determined. For conservative contaminants, travel time is equal to the length of the flow path divided by the average groundwater velocity. However, many contaminants are not conservative and will adsorb onto particle surfaces as they move through the aquifer, thereby altering, or retarding flow with groundwater. Retardation is a function of both the aquifer and the contaminant species. Each contaminant species has an affinity to sorb onto particle surfaces, described mathematically by a distribution coefficient, Kd, which is a measure of the mass of solute adsorbed onto particles I I I I I I I I I I I I I I I I I I CDIVI Mr. Michael Townsend February 16, 2005 Page9 to the concentration of dissolved solute. High Ka values indicate a high degree of retardation, or a higher affinity of the contaminant to sorb onto particle surfaces. The retardation factor is calculated as: Where: p1, = bulk density of soil (g/cm3) n = porosity Ka = distribution coefficient (mL/ g) The velocity of the contaminant is reduced by the retardation factor, or Ve= Vx/R, where v, is the velocity at which the contaminant moves through the aquifer. Organic compounds tend to sorb onto organic carbon within the aquifer and arc either hydrophilic, that is, tend to remain in the dissolved phase, or are hydrophobic and have an affinity for the solid phase. Sorption of organic solutes is therefore related to the amount of organic carbon within an aquifer and the hydrophobicity of the chemical. The degree of hydrophobicity is determined by the octanol-water partition coefficient. The octanol-water partition coefficient is a measure of how the constituent partitions between octanol and water when the two are mixed. A high octanol-water coefficient indicates that the chemical prefers octanol, and is hydrophobic (will have a strong affinity for the solid phase). The distribution coefficient for organic compounds is calculated as: where: Koc = octanol-water partition coefficient (mL/ g) foe = fraction of total organic carbon Distribution coefficients for the organic contaminants of concern are listed in Table 6. In addition to retardation, diffusion and mechanical dispersion influence contaminant fate and transport through an aquifer. Diffusion, however, typically plays a much smaller role than dispersion and in many cases can be negligible. Dispersion is caused as groundwater moves through the porous media of an aquifer. Since the aquifer is filled with porous sediment, there are several paths that groundwater (and contaminants) can take as it travels I I I I I I I I I I I I I I I I I I I Mr. Michael Townsend February 16, 2005 Page 10 through an aquifer. Therefore, a contaminant is spread out and become dispersed throughout an aquifer segment. This process is illustrated in Figure 6. Mechanical dispersion is calculated as follows (Fetter, 2001): Mechanical dispersion = 0.L V x where: a1. = longitudinal dynamic dispersivity (ft); v, = average linear groundwater velocity (ft/ d) and a1. = 0.83(logL)2414 where: L = length of groundwater flow path (m; Fetter, 2001); or a,_= 3.28x0.83[log(3~8)J414 where: L = length of groundwater flow path (ft) Mechanical dispersion combined with diffusion is termed hydrodynamic dispersion: where: = longitudinal coefficient of hydrodynamic dispersion (ft2 / d); 0.LVx = mechanical dispersion (ft2/d); D* = molecular diffusion (ft2 / d) The longitudinal direction is the direction of groundwater flow. Transverse dispersion (perpendicular to groundwater flow), Dr, is assumed to be 0.1D1. (Fetter, 2001). Dispersion causes concentration to decrease downgradient of a source and become more spatially distributed (Figure 7). As mentioned above, in many instances, diffusion is insignificant compared to dispersion and hydrodynamic dispersion is controlled by mechanical dispersion. Molecular diffusion is on the order of 104 ft2/ d for the contaminants of concern (Table 4). I ·1 I I I I I I I I I I I I I I I I I CDIVI Mr. Michael Townsend February 16, 2005 Page 11 Travel Time to Surface Water and Concentration As previously mentioned, the purpose of the fate and transport analysis was to determine the time of travel for contamination to reach either Long Creek or the Catawba River should contamination bypass the recovery wells. Travel time for each contaminant of concern is determined from the retarded velocity calculated from the retardation factors. An additional analysis was conducted toestimate the approximate concentration of contaminants reaching either Long Creek or the Catawba River. Assuming the recovery wells capture all or most of the contaminant plume, there is not a continuous source of contaminant downgradient to the surface waters. Instead, it is assumed that only portions or slugs of contamination are bypassing the recovery system, during extended periods when the recovery wells are inoperable. To evaluate the concentration of contaminant at the downgradient surface waters, the analytical solution of a slug of contamination being injected into a two-dimensional flow field is used (Fetter, 1999): C(x,y,t) Where: CA [ ((x-x )-v t)2 o ex o x 4m(D D j1i 2 p -4D I · I, T , l Co = Initial concentration (ppb) A = Ar~a over which spill or slug occurs (ft2) DL = longitudinal hydrodynamic dispersion (ft2/ d) Dr= transverse hydrodynamic dispersion (ft2/ d) T = time (d) Xo = starting position in the x-direction (ft) yo = starting position in the y-direction (ft) x = down gradient distance in x direction (ft) y = down'gradient distance in x direction (ft) For this an·alysis, the hypothetical contaminant slug area is based on the surface area of a slug that would bypass a recovery well if the recovery well was non-operational for a one-month period. The width of the hypothetical contaminant slug is based on the distance between capture zones of the recovery wells surrounding the non-operational recovery well. I I I I I I I I I I I I I I I I I I I CDIVI Mr. Michael Townsend February 16, 2005 Page 12 It should be noted that travel in the vertical direction is not considered and x is the direction of groundwater flow. Therefore, the concentration at the solute frorit is approximated. For this analysis, Xo and yo are set to zero (the position of each recovery welt) and since Long Creek and the Catawba River are directly downgradient of the recovery welts, y is set to zero as well. It should also be noted that concentrations calculated arc an approximation. Although a slug is not being injected into the aquifer system, this is an attempt to represent a slug of contamination that has bypassed the recovery system. It also assumes that the contaminant occurs over the full thickness of the aquifer. These assumptions may not reflect actual field conditions. The approach used here is intended to provide a conservative approximation of contaminant concentrations. Results and Discussion Travel times and estimated concentrations at the stream from each of the 19 recovery welts are listed in Tables 7 though 13. Due to the nature of the clay-rich saprolite, as well as the moderate to low mobility of the contaminants, the travel time to reach either Long Creek or the Catawba River is on the order of decades at most wells, except for Area D. Travel times in Area Dare the quickest due in large part to the increased hydraulic conductivity in this area. CERCLA Areas C and E have the longest travel time, due to the low permeability of the formation and relatively long flow paths. The travel time in Arca E was based on data from existing monitoring wells located several hundred feet from the Catawba River. It is likely the hydraulic conductivity and/or hydraulic gradient differ near the river, which would impact the calculated travel times in Area E potentially reducing the calculated travel times. The estimated concentrations at the stream or river calculated from the fate and transport modeling were compared against monitoring welts downgradient of the CERCLA areas. In Area A/B, wells downgradient wells WQ-26 and WQ-261 were used for comparison. In Area D, wells downgradient wells CMW-8 (shallow /intermediate zone) and WQ-33D (deep zone) were used for comparison. The results estimated from the fate and transport modeling compare favorably with the contaminant concentrations detected in the downgradient monitoring .welts (taking into account the downgradient monitoring wells are not located on the river bank or stream bank and thus additional dispersion and retardation is expected to occur). In Area A/B, the 1,2-dichlorobenzene concentration detected in WQ-26, which is · downgradient of R-1, is less than 1 ppb. The fate and transport modeling predicts a concentration of 0.84 ppb for a plume not captured by R-1. In Area D, the 1,2- dichlorobenzene concentration detecte.d in CMW-9, which is downgradient of R-7, is 657 ppb. The fate and transport modeling predicts a concentration of 776 ppb at the Catawba River for a plume not captured by R-7. I I I I I I I I I I I I I I I I I I I CDNI Mr. Michael Townsend February 16, 2005 Page 13 As noted in the EPA's Five-Year Review Report, although VOC contamination is present downgradient of the extraction system, the contamination has not impacted the surface waters of the Catawba River or creeks above acceptable levels. Impacted groundwater that avoids the groundwater recovery system is anticipated to discharge to the stream or river for an extended period of time due to dispersion (Figure 7). It also should be noted that the estimated concentrations assume that the hydraulic gradient and groundwater velocity remain constant. Biodegradation is also not accounted for in these analyses. Biodegradation would further decrease the concentrations of the contaminants as they reach the stream. Reductive dechlorination of PCE may also be occurring in which PCE is broken down to vinyl chloride and ethene (which is then further broken down to carbon dioxide, methane, and hydrogen chloride). Although it is quite possible that biodegradation is occurring at the site, to date, limited chemical data is available from the site to either support or refute the existence of biodegradation as a natural attenuation mechanism. Therefore, it has not been included in these analyses. Fate and Transport Analysis References Fetter, C.W. 1993. Contaminant Hydrogeology. New York: Macmillan. Fetter, C.W. 2001. Applied Hydrogeologtj, 4th Ed., Upper Saddle River: Prentice Hall. Recommendations Specific recommendations as a result of this capture zone analysis and fate and transport analysis include: ■ The only gap noted in the capture zone analysis is between R-2 and R-3, which is between Areas A/Band C, at a distance of approximately 175 feet. This gap can be eliminated by increasing the pumping rate of R-2 and R-3 by approximately 35 percent. R-2 and R-3 will be inspected, and methods to increase their pumping rates will be considered. ■ The cause of the low flow rates in R-5 and R-6 will be explored during upcoming well operation and maintenance visits. ■ The pump, piping, and flow meter of R-12 will continue to be inspected to determine the cause of the low pumping rate. I I I I I I I I I I I I I I I I I I I CDIVI Mr. Michael Townsend Febmary 16, 2005 Page 14 ■ Continue the bi-weekly pump operation and maintenance visits, which will assist in keeping the groundwater recovery system operating as designed. ■ Continue to monitor the concentrations of contaminants downgradient of the recovery wells to assist in locating future gaps in the groundwater recovery system. ■ Clariant is planning to conduct additional groundwater characterization within the next few months to the northeast of Area E. The results of this capture zone analysis and fate and transport analysis will be considered when reviewing these future groundwater characterizations. Please do not hesitate to call if you have any questions or need additional information. Very tmly yours, J 0v,,,.. &,CtM-i Timothy D.' Grant, P.G. Project Manager Camp Dresser & McKee cc: Kyle.Hagen, NCDENR Superfund Karim Pathan, NCDENR HWS Jim Thompson, Clariant Ron Walton, Clariant John Boyer, COM Ross Tabachow, COM I I I I II I I I I Attachment A •• Tables I I I I I I I I I I I I I I I I I I I I I I I I I I I I Volume Pumped Oatci R-1 taan R-2 .ttl.-U. ' H'-~~ '.i.1 U'l!'ff.;'V,.'fjl /d.iJtl.,l~ "1' • .>o~L-';. 1/15/2001 57200 57200 236800 1/1612001 92600 354/Jll 393300 :J/27no<Jf 123000 304/Jll '99000 51112001 131800 8800 529500 li/12/2(1()1 163000 31200 731600 7/1712001 179200 16200 902100 8/3112001 218000 38800 1122700 3""'1002 356500 138500 208/JllOO :v.?Q/2002 363800 7300 2119900 3729'2002 3683/Jll 4500 2159800 4111/2002 440/Jll0 71700 2228200 412912002 742200 302200 2320000 5/1512002 976200 234000 2401000 "'2"'2002 1163000 186800 2471600 6"'1/2002 1351100 188100 2542800 6n8/2002 1532700 161600 2624500 711(112002 1666300 133600 2685300 7/2412002 1822700 156400 2755800 8/1412002 2062400 239700 2860600 "'372002 2150000 87600 2962000 9.'1612002 2299200 149200 3026400 973<l'20/72 2424400 125200 3096600 10/Hi/2002 2552/JllO 127600 3177000 10/31/2002 2673500 121500 3252400 11/13/2002 2779000 105500 3317800 12112/2002 3048400 269400 3460600 12/JQ/2002 3219300 170900 3551700 1/13/2003 3348400 129100 3621100 1128/2003 34840/Jll 135600 3696200 2111rl003 3607800 123800 3765500 2/24720-03 3719200 111400 3829700 l,'13/2003 3860800 141600 3915000 3/2612003 3966400 105600 3980000 4/1412003 4145100 178700 4074400 4121l1217/J3 4220900 75800 4144100 6'23'2003 4601700 380800 4421700 7ll/2003 4682400 80700 4491500 712112003 4754100 71700 4561300 8/412003 4820900 66800 4630000 8/18/2003 4885700 64800 4637200 9'212003 4958300 72600 4677900 911612003 5003400 45100 4717500 10/612003 5007300 3900 4658200 10/2(112003 5035300 28000 4663700 11/312003 5060800 25500 4866400 11117/2003 5085800 25000 4930100 /27W2003 5160100 74300 5153500 1'ln3/2003 5208/Jll0 47900 5298800 1nn004 5260200 52200 5454300 1/16n004 5291l9/J/l 307/Jll 5546300 27272004 5350300 59400 5719100 1/16n004 5404200 53900 5864000 37172004 5460400 562/Jll 6005700 3716'2004 5534000 73600 6071700 3131/2004 5624400 904/Jll 6071700 471472004 5624600 2/Jll 6180300 4127/2004 5626300 17/Jll 6470000 S/1112004 5893400 267100 6471900 57W2004 6088800 195400 6673300 67772004 6090700 1900 6729300 6121/2004 6092400 17/Jll 6750400 77272004 6326100 233700 6750800 7/2(112004 6658000 331900 6755400 8'572004 6955900 297900 6757900 871"2004 7196700 240800 6758500 873072004 7426400 229700 6760400 TABLE 1 CERCLAAREA RECOVERY WELL PUMPING DATA November 2000 through August 2004 Clariant Corponilion, Mount Holly North Carohna Volume Volume Volume Pumped Pumped Pumped '"an R-3 loal R4 /oal\ R-5 ·:,tJ 'l~t.:.-;1 ,-~}··,,:V;;i,iA >/lf."."'°!'..l Yr;~ ,_"•r,·. ---~ .·)_!): ,, :: • .;,. i:' •;-+ 236800 330100 8900 253000 164/Jll 92300 156500 330100 0 25860/J 5600 96900 105700 330100 0 265300 6700 104800 30500 334500 44/Jll 267300 20/Jll 115800 202100 365000 30500 278700 11400 133500 170500 391200 26200 290400 11700 147100 220600 407100 15900 3011100 17700 161600 927300 452400 45300 320300 12200 1621100 69000 452400 0 320300 0 162800 399/Jll 456100 3700 320300 0 162900 684/Jll 456100 0 323100 2800 166900 911100 456100 0 326000 2900 175100 111000 465500 9400 328200 22/Jll 179700 70600 476100 10600 330100 1900 184100 71200 484400 8300 331900 1800 191800 81700 494400 10/Jll0 333700 1800 195000 60800 501700 7300 334900 12/Jll 195000 70500 509900 8200 336300 1400 195000 104800 521900 12000 337900 1600 197500 101400 533600 11900 339700 18/Jll 197500 644/Jll 541500 77/Jll 3409/JIJ 12/Jll 197500 70200 550400 8900 342500 1600 197500 80400 560800 104/Jll 344500 2000 197500 75400 571500 10700 347100 26/Jll 199500 65400 581000 9500 349600 . 2500 201000 142800 581200 200 355900 6300 206600 91100 581400 2/Jll 360600 47/Jll 210200 694/Jll 581500 1/Jll 354100 3500 213600 75100 592300 10800 367900 3800 215700 69300 603100 10800 372100 42 217800 64200 613300 10200 375600 3500 219700 85300 626900 13600 380700 5100 220000 65000 637700 10800 3841100 41/Jll 222500 94400 653600 15900 391400 6600 226200 69700 665500 11900 396700 5300 229200 277600 714900 494/Jll 421900 25200 240500 69800 725300 10400 422900 10/Jll 243100 60600 734900 9600 428900 6000 245800 68700 742300 7400 435400 6500 248200 7200 7480/Jll 5700 442300 6000 251000 40700 751700 37/Jll 448400 61/Jll 2531)/)/) 30000 753100 14/Jll 451800 3400 255000 140700 756400 53/Jll 455000 3200 255600 5500 7660/Jll 7600 459300 4300 259200 2700 774200 82/Jll 470100 10800 262800 63700 782100 7900 470100 0 262800 223400 791000 8900 476800 67/Jll 265600 145300 798200 72/Jll 481300 4500 265600 155500 805700 7500 485900 4600 267300 92000 810300 '6/Jll 488700 28/Jll 2611700 172800 818400 8100 493900 5200 269700 144900 826700 8300 493900 0 274200 141700 834700 80/Jll 498600 4700 279300 660/Jll 843700 9000 503600 5000 284800 0 852400 87/Jll 5087/Jll 51/Jll 2904/Jll 108600 859900 7500 513500 48/Jll 295200 289700 866000 6'/Jll 518100 4600 299200 1900 872300 6300 522800 4700 303500 201400 877200 4900 526800 4000 307300 56000 882100 4900 5309/JIJ 41/Jll 311100 21100 8880/Jll 5900 535000 41/Jll 313600 4/Jll 894300 6300 539000 40/Jll 319200 46/Jll 901900 7000 544700 5700 326500 2500 909300 7400 549700 5000 332700 6/Jll 915400 6100 553800 4100 335500 19/Jll 920700 53/Jll 557600 3800 335900 Total Number of days from October 2003 through August 2004., 330 Cu. Ft per Cu. Ft per Cu. Ft per Cu. Fl per R-1 Oa, R-2 Oa-R-3 Oa-R-4 Da, R-5 1vc,ouer through August 2004 980 830 70 40 Volume Volume Volume Pumped Pumped Pumped lnal\ ·~ /oal R-7 !oa1l ·-:,, Mp,t.: ,, .. ;'·~" "• ~.,. -::.: ~I'.,-,!:l'..f,..-1 ;~:,::..t:,·.;i: 300 416500 52800 2826900 ~3~ a600 451800 35300 2837400 7000 604700 152900 2841600 42 110/Jll 772700 /68/JllO 2905600 640/Jll 17700 987400 214700 331B600 413000 13600 1157300 169900 3661900 34330 14500 1157300 0 41661100 504900 12/Jll 1230600 73300 5992200 1825400 0 1240900 10300 6192500 200 1/Jll 1245600 4700 6260300 67800 40/Jll 12711000 32400 6310700 50400 8200 1278300 300 6394200 83500 4600 1278500 200 6455400 61200 44/Jll 1278600 100 6526200 7 77/Jll 1305200 266/Jll 6599300 731 32/Jll 1334900 29700 6703400 104100 0 1358000 23100 6786700 83300 0 1385500 27500 6891700 105000 2500 1425600 40100 7335800 ::llr 0 1457100 31500 7758400 0 1477400 20300 8030700 272 0 1478800 1400 8329400 2987 0 1481300 2500 8704800 375400 2000 1481600 300 9043900 339100 1500 1482400 800 9154000 110100 5600 1484800 24/Jll 9366300 212300 3600 1484900 1/Jll 9788/JllO 421700 3400 1484900 0 109700 321700 2100 1484900 0 345100 2354~ 21/Jll 1484900 0 6-06000 321 1900 1484900 0 969500 302600 300 1485000 100 1346600 377100 2500 1485100 100 1625500 278900 37/Jll 1485100 0 2030900 a,54 30/Jll 1485400 3/Jll 2296400 26 11300 1486200 8/Jll 3196200 899 2600 1486500 300 3196700 5/Jll 27(}() 1487500 10/Jll 3424500 227800 2400 1487800 300 3650100 225600 '800 1487800 0 3882100 232~ 21)/)/) 1488500 7/Jll 4154800 2727 14/Jll 1488500 0 4154800 ' 1)/)/) 1488500 0 4154800 3GOO 14811SOO 0 4154800 0 3600 1488500 0 4154800 0 0 1488500 0 4154800 ' 28/Jll 1488500 0 4154800 0 0 1488500 0 4154800 0 17/Jll 1488500 0 4154800 0 14/Jll 1488500 0 4154800 0 1000 1488~00 0 4154800 0 4500 1488500 0 4154800 5100 1488500 0 4170100 153 5500 1488500 0 4389100 21 5600 1488500 0 4624400 2353 4600 1488500 0 4841800 217400 ,ooo 1488500 0 5041800 2000/Jll 4300 1488500 0 5255500 213700 3600 1488500 0 5452400 196900 3800 1488500 0 5667500 2151 2500 1488500 0 58848/Jll 2173 5600 1488500 0 6058600 173800 73/Jll 1488500 0 6357800 299200 6200 1488500 0 6638800 281000 2800 1488500 0 6837100 198300 400 1488500 0 7026300 1119200 Cu. Ft per Cu. Ft per Cu. Ft per Da• ·~ Da• R-7 Da, " 0 1160 P:\Clariant -5256\43895-Capture Zono Analysis\MWCAP Analys,s\CERCLA Flow Data.xis I I I Volume Pumped Oafo -~ laal) •-• I .-·:,.,,,:·; 1.-~ /l .. "'~'-'•...,,·, --~-.:':--,~1; Jl,t':~.l';..t..".i 1/1511001 3405600 178100 3262580 2116l1001 3522000 116400 3311410 J/27n001 3746700 224700 3370430 511ll001 3895000 148300 10600 &'1212001 410:",200 210200 62500 I 7111noo1 4277900 172700 142400 sr.11noo1 4498200 220300 219000 ,.,.,, .. 2 54500110 951800 445000 Jnonoo2 5478800 28800 467800 J/'19/2002 5507900 29100 476700 I 4/11not)2 5581600 73700 498900 "2"'2002 5677400 958110 528200 stl5l2002 5737000 59600 5459110 512911002 5799700 62.700 565400 "'12/2002 5863100 63400 5844110 f,'2JJm>02 593500JJ 719110 605700 I 111onoo2 5988800 53800 621900 7n412002 6051000 62200 641300 811412002 8144400 93400 669200 !1M002 6175600 31200 696200 "15l2002 6175600 0 713500 "'3M002 6183900 8300 732700 I 10/16/2002 6Hl1200 73110 754400 10/31n002 6248800 576110 773700 11113l2002 6298600 49800 7903110 1111moo2 6403100 104500 826900 12/30/2002 6469100 6GOOO 849400 1nJ12003 6519400 50300 8666110 I 1nsnoo3 6570000 50600 8842110 1111nao3 6616700 46700 899100 2.n4/2003 6660400 43700 9019110 311312003 6713300 52900 0088110 J/2612003 67566110 433110 959900 411412003 68-031100 46400 1033200 I 412812003 6847300 44300 1102500 612312003 7017500 170200 1395300 7nnoo3 7057800 403110 1468200 1mnoo3 7098700 409110 1547400 8/412003 7142000 43300 1623000 I 8/1812003 7183200 41200 1701200 9'"2/2003 7220300 37100 1785500 9/1612003 7248400 28\00 1863400 101612003 7281800 33400 2008300 1ononoo3 '1296100 143110 2117700 1113/2003 7296200 JOO 2211200 I 11n1noo3 7301100 49110 2312400 12/912003 7371800 70700 2483500 12.nJ/2003 7418000 46200 2592300 1nnoo4 7467000 '9000 2710600 '"""""' 7485900 189110 2782700 2J2/200< 7532600 46700 2918800 I 1111','2004 7576600 44000 3045300 311/2004 20100 20100 3163500 3111','2004 684110 48300 3293200 3131/2004 105100 36700 3432100 4""2004 139000 33900 3561600 4127/2004 183900 44900 3680700 I 5111n004 231600 47700 3808300 "'24/2004 275400 43800 3927400 Wn004 322700 47300 4055600 6121n004 370100 47400 4188200 mnoo, 407500 37400 4293500 I monoo. 468200 60700 4370200 81"2004 522600 i>4400 4370200 8/1812004 5fi6100 43500 4511600 enonoo, 609500 43400 4646600 I Cu. Ft per -~ Da, .. , l'-n.,ODer .,.,.,,~ through ugust 2004 380 I I I CDM TABLE 1 CERCLA AREA RECOVERY WELL PUMPING DATA November 2000 througr1 August 2004 Clarkmt Corpocabon, Mount Holly North Carolina Volume Volume Volume Pumped Pumped Pumped ·--,· R-10 --, R-11 (gal) ,tt~;'.1';$"'.~,,, ,;: ,'11,'.-!',;,'1 ~.•fl:::::.,,~:-"' .1f-S:t::,:;,~1ct., ~ •• l'j?'-1", 76020 575930 0 3167.10 ' 48830 654560 78630 402250 8,0.,0 59020 841650 187090 6081110 205850 10600 8800 8800 791330 183230 71900 206730 19/gJ0 9470 218140 599110 369470 162740 192130 182660 76 581300 211830 430850 238720 226000 1237 1237 43672 612822 22800 80110 78873 51140 7468 8900 118800 38690 55847 4707 22200 189480 70680 62746 6899 29300 231250 41770 73803 11057 17700 302817 71567 60845 7042 19500 376230 75413 88367 7522 190110 45493 45493 95977 7610 21300 54267 8774 4656 4651) 16200 60830 651)3 11117 6461 19400 68393 7563 18614 7497 279110 79910 11517 30024 11410 27 911872 10962 40860 10836 17300 97910 7038 47813 6953 19200 5497 7587 55358 7545 21700 14206 8709 63997 8639 19300 22339 8133 67956 3959 16600 29369 7030 75014 7058 36600 42956 13587 88714 13'(00 22500 52772 9816 98594 9880 17200 60351 7579 8249 7655 176110 68422 8071 14400 8151 14900 75962 7540 21960 751)0 2800 82995 7033 28784 6824 69110 92208 9213 37808 9024 51100 99247 7039 44737 6929 733110 9567 10320 54860 10123 69300 17178 7611 62376 7516 292800 47341 30163 92644 30268 72900 54982 7641 298 7654 79200 62179 7197 7499 7201 75600 6%58 7479 15001 7:;()2 78200 77218 7560 22699 7698 843110 85227 8009 30913 8214 779110 90608 5381 36370 5457 144900 95786 5178 41792 5422 109400 1939 6153 49481 7689 93500 9573 7634 57185 7704 101200 17201 7628 64971 7786 171100 29087 11886 77125 12154 108800 36677 7590 84852 7727 118300 44826 8149 93152 8300 721 49701 4875 98134 4982 136100 58901 9200 7497 9363 126500 66685 7784 15442 7945 118200 74182 7497 23078 7636 129700 82303 8121 31368 8290 138900 904BI 8178 39719 8351 129500 99804 9323 47436 7717 119100 5154 5350 54686 7250 127600 12753 7599 62436 7750 119100 19762 71109 69586 7150 128200 27326 7564 77314 7728 132600 34922 7596 85071 7757 105300 40914 5992 91191 6120 76700 5JJ602 9688 1123 9932 0 59375 8773 4755 3632 141400 66448 7073 4758 3 1380110 72846 6398 11675 6917 Cu. Ft per Cu. Ft per Cu. Ft per Da• R-10 Da, R-11 Da, 1130 70 70 Volume Volume Pumped Pumped R-12 tnall R-13 ,.,, :::•,.,' ~.wJE )+\,1'...l1!"•1·'<,l ,-., '.~·.\;;?, ·~,.._:.:·,l!< 87836 1436 5827900 340700 88780 9'4 ,0.,4500 216600 89981 1201 6559700 515200 90186 205 7024700 465000 91527 1341 7575600 5SJJ900 92598 1071 8-038000 462400 93931 1333 8464400 426400 90077 5146 0082300 617900 99456 379 !)197000 114100 99664 208 9197000 0 99986 322 9376800 179800 100391 40 9525700 148900 100720 329 9526200 500 100996 276 9684400 158200 101266 270 9799000 114600 101568 302 151400 352400 101789 221 244300 929110 102042 253 413800 169500 102419 J77 413800 0 102779 360 414100 300 103018 239 414300 200 103266 248 700600 286300 103636 370 1028000 327400 103977 341 J0,.,9110 369110 104387 410 1064900 0 104917 530 1068700 3800 105252 JJ 1069300 6110 105512 260 1069300 0 105787 275 1095100 258110 106042 255 1247000 151900 106278 236 1543200 296200 106591 JJ3 1933400 390200 106832 241 2232100 298700 107245 413 2666100 434000 107510 26 2986600 320500 108594 1084 4250300 1263700 108869 27 4565300 315000 109146 277 4884200 318900 109419 273 5010400 126200 109698 279 5031800 21400 109719 21 52JJ6800 175000 109944 22 5432000 225200 110348 404 5736800 304800 110875 527 5922800 186000 111388 513 5922800 0 111860 472 6256600 333800 112537 677 1)776900 520300 112951 414 7109800 332900 113379 428 7466900 357100 113628 249 7680000 213100 114097 469 8080100 400100 114479 382 8414500 334400 114853 374 8742100 327600 115246 393 8893400 151300 115649 403 9247900 354500 116016 367 9574000 326100 116351 33 9880400 311&TOO 116706 3 2138110 333200 117027 321 519900 306300 117365 338 852100 332200 117693 328 1184300 332200 117953 260 1360400 176100 118368 415 1746000 3856110 118735 367 ?:132500 386500 119029 294 2446400 313900 119309 280 2747700 301300 Cu. Ft per Cu. Ft per R-12 o-R-13 Oa, 4 2960 P.\Clariant -5256\43895 • Capture Zone Analysls\1i.4WCAP Anatysis\CERCLA Flem D:ita.:ds I I I Volume Pumped Date R-14 , .. , R-15 I .. ~'.-."-.£>',1•,1,J 1M.:...H1J-!';J,ri '-a ;¢.'(~J:).J,.,• C~\ ·.;J.,<11):t'J·"Jr 1/1512001 0 0 878880 V1612001 0 0 .. ,oo J/2712001 0 0 143800 51112001 0 0 253900 6/12/2001 0 0 370300 I 7n712001 0 0 466300 8/3112001 0 0 584700 J/6/2002 0 0 1110200 J/2""2002 0 0 1152000 J/2"'2002 0 0 1177400 I 4/1112002 0 u 1181600 "''"'"" 0 0 1259200 .,, ,,21102 255300 255300 1304600 ,,w121102 475700 220400 1351300 liM/2002 702600 226900 1371700 "28121>02 967200 "'600 1429000 I 7110/2002 1168200 201000 1470100 7/24/2002 1296400 126200 1516400 IV1"2002 1703600 407200 1585000 !l'J/2002 1993900 290300 1647000 9116/2002 2169100 195200 1685400 9130,2002 2384000 194900 1726900 I 1/ll1612002 2603400 219400 1774200 10/31/1002 2796800 193400 1818600 11113/2002 2967400 170600 1857600 12112/2002 3385300 417900 1936100 12/3llf2002 3651900 266600 199~,800 1113/2003 3849700 197800 2040900 I 1128/2003 4065000 215300 2088300 2/1112003 4200400 195400 2132500 2/24/2003 4436200 175800 2173!>00 3/13/2003 4667.900 226700 2:727000 J/2"1003 4838400 175500 2268200 411'11003 5093500 255100 2328600 I 4/28/2003 5280200 186700 2373700 6/23/2003 5988700 708500 2534900 7fl/2003 6162300 173600 2586500 7121/2003 6329900 167600 2636700 8/4/2003 fi491800 161900 2685800 I 11118/2003 6656700 16'900 2734800 "'11003 6820000 169300 2754100 9'16/2003 6939800 113800 2781400 10/6/2003 6964700 24900 2836300 1 Q/2il/2003 7130800 166100 2903200 11/J/2003 7387500 256700 2970600 I 11/1712003 7646900 259400 3038000 12/912003 8053700 406800 3140200 12123/2003 8315500 261800 3205600 1fl/2004 8591500 276000 3276700 1116/2004 8755100 164200 3317800 1m1004 9062000 306300 3395600 I 2/1"1004 9310200 248200 339!.>GOO 311/2004 955ti600 245400 3470700 3/16/2004 9811300 255700 3564300 :V.W1004 83600 272300 3672900 411412004 333400 249800 3777100 4/2712004 498500 165100 3871800 I 5111/2004 638600 140100 3969700 5,'24/2004 749000 110400 4060000 tilln004 865400 116400 4157500 6/21/2004 1028000 162600 4253800 7/2'2004 1215300 167300 4329200 I 712Dn.004 1479900 264600 4454900 ll,'5,'2004 1624400 144500 4546500 IV1Bn004 1739900 115500 4609700 S.,:,l),'2004 1757800 17900 4672700 I Cu. Ft per R-14 Das R-15 October 2001 through August 2004 1950 I I I CDM TABLE 1 CERCLA AREA RECOVERY WELL PUMPING DAT A November 2000 through Augus! 2004 Clarlant Corpo(a!fOn, Mount Holly North Carolina Volume Volume Volume Pumped Pumped Pumped '"al' R-16 '"" R-17 fa.ill :~i'tl~--~ ~~£t!l;,f!J'J'.Jl,-' &ina~lii•~ :,:,·.,t,',,\fd'.j ~";r:f;'lth~ 0 186200 0 NA NA 4000 190000 3800 NA NA 139800 267300 77300 NA NA 110100 288600 21300 NA NA 116400 431900 143300 NA NA 96000 603000 171100 NA NA 118400 812900 209900 NA NA 525500 1283100 470200 NA NA 42700 1316900 33800 NA NA 24500 1316900 0 NA NA 4200 1325100 8200 NA NA 77600 1334500 9400 NA NA 45400 1338400 3900 NA NA 46700 1353400 15000 NA NA 20400 1353500 100 NA NA 57300 1358300 4800 NA NA 41100 1359100 800 NA NA 46300 1359600 700 NA NA 68600 1367600 7800 NA NA 62 1373200 5600 NA NA 38400 1374100 900 NA NA 41500 1407900 33800 NA NA 47300 1429200 21300 NA NA 44400 1455700 26500 NA NA 39000 1486600 30900 NA NA 78500 15ll0600 94000 NA NA 59700 1647400 66800 NA NA 45100 1665900 18500 685400 865400 47400 1693800 27900 1255000 369600 44200 1717500 23700 1516700 2617 41000 1739000 21500 1730300 213600 53500 1766800 27800 1836800 106500 412 1782000 15200 1923100 60400 1800300 18300 2491500 5684 45100 1812000 11700 2941000 4495001 161200 1845800 33800 4620100 1679100• 51600 1845900 100 4985900 36 50200 1845900 0 5383400 397500 49100 1894400 48500 5737600 354400 49000 1945700 51300 6117100 379300 19300 1999100 53400 6535100 418000 33300 2033700 34600 6948800 413700 48900 2055000 21300 7626300 677500 66900 2067800 12800 7958600 332300 67400 2084400 16600 8210300 251700 67400 2102000 17600 8292100 81800 102200 2130500 28500 8372200 80100 65400 2147600 17100 6547300 175100 70600 2165000 17400 8732300 18500 41600 2176900 11900 8825500 93200 77800 2197300 20400 8927300 101800 0 2215200 17900 9179900 252G 75100 2231800 16600 9386700 206800 93600 2248300 16500 9551100 164400 106600 2248300 0 9675700 124600 104200 2265100 16800 9684100 8400 94700 2280900 15800 9684100 0 97900 2294200 13300 9684200 100 90300 2309400 15200 9684200 0 97500 2324700 15300 9684200 96300 2338700 14000 9684200 0 75400 2347300 8600 9684200 0 12570 2347300 0 9684200 ' 91600 2347300 0 9684200 0 63200 2347300 9718100 33,00 63000 2347300 0 9787800 69700 Cu. Ft per Cu. Ft per Cu. Fl per R-18 ;t"" .. ,l,'h6;:·~.,.,:: NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 818700 1870000 1870000 1870000 1870000 1llll0000 19000 19100 19100 19100 19100 191()() 19HIO 19100 19100 19100 19100 19;100 19200 19200 19200 19200 19200 19200 19200 79900 178700 254600 310700 362300 417900 467300 505300 548900 623600 740200 854900 944000 1034700 Oas R-16 Das R-17 Da, R-18 760 130 1150 Volume Volume Pumped Pumped ,.,, R-19 !aan >.i"'l'M·f":C.! • ~;;t,ti.\,,14" ::t~i.,"'.'1'1-'.l';,; NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 818700 48800 48800 1051300 53300 4 0 54900 1600 0 70400 15500 0 89100 187 10000 89200 100 20000 89300 1 100 89300 0 0 89400 1 0 89400 I 0 89500 100 0 89500 0 0 89600 100 0 89600 0 0 101600 12000 0 102900 1 0 116900 14000 100 131000 14100 0 132500 1500 0 134800 2 0 135400 600 0 136200 BOU 0 136500 300 0 137500 1000 0 137500 0 60700 2'6000 157500 98800 673000 378000 75800 911500 236500 50200 1353200 4417 51600 1362900 9700 55800 1381400 18500 49400 1613900 432500 38000 1832900 1 43800 2496900 664000 74900 3304700 807600 116400 4400000 1095300 114600 5605500 1205500 89200 6212400 606 90700 6813900 601500 Cu. Fl per Cu. Ft per Da-R-19 Da, 410 2720 P:\Clariant. 5256143895. Capturo Zone Analysis\MWCAP Analysis\CERCLA Flow Data.xis I I I I I I I I I I I I I I I I I ' I I CDM TABLE 2 CERCLA AREA RECOVERY WELL PUMPING DATA October 2003 through August 2004 Clariant Corporation, Mount Holly North Carolina Average TOTAL Flow for the WELL# Pumping Rate Monitoring Period (gpm) (million gallons) Area AIB R-1 5.09 2.42 R-2 4.31 2.043 R-12 0.020 0.009 R-13 15.36 7.32 R-14 10.12 4.82 -~f:;T.Ota1w-.:J ,;r.:1z:;li;!M1~~p-34:g_o~t~JJMiif~i! ,;fJ}fj:";"i,[l:l!::,1.6!6.1!\~Jfh~~ Area C R-3 0.363 0.168 R-4 0.208 0.106 R-16 0.675 Area D R-5 0.156 0.081 R-6 0.000 0.000 R-7 6.02 2.87 R-8 1.97 0.938 R-9 5.86 2.78 R-17 5.97 2.839 R-18 2.13 1.02 R-19 14.12 6.71 Area E R-10 0.363 0.182 R-11 0.363 0.175- R-15 3.94 1.89 t'.l,\'f~Total!<'i&e.% ~i'i1,'"~4i~•~;ii;'4167i&+;ff!;'IW1;S,;; cjWwJf~,1:'iil/l.~2,241})1~.Jitf'.'ll CERCLA AREAS 77.04 36.68 TOTAL P:\Clariant -5256\43895 -Capture Zone Analysis\A.1WCAP Analysis\CERCLA Flow Data.xis I I I I I I I I I I I I I I I I I I I CDM Tablc3 Recovery Well and Aquifer Details Clariant Corporation, Mount Holly, North Carolina Saturated Thickness Hydraulic Conductivity (K) Approximate Avg. Depth All Residuum Well ID Aquiffr Screene_d Interval toGW Aquifers (Saprolite) Zone Deptl, (feet) (ft) (ft) (ft) Alluvium · "Gravel - (ft) (ft) PWR (ft) Bedrock (ft) Saprolite (ft/day) , Alluv-iuffi Gravel (ft/ day) (ft/ day) PWR (It/day) Bedrock (ft/day) Average K (ft/day) .· · ;¢'•? i,t~r~ t\~ff ,~r~t ;(ft I dav) _, -... c, .iO 7 , ·;.(gp_rr1).,0.;;- CERCLA Area AIB R-1 Intermediate 50-75 10 R-2 Intermediate 55-80 10 R-12 Intermediate 83-108· 10 R-13 Intermediate 80-105 10 R-14 Intermediate 80-105 10 CERCLA Area C R-3 Shallow 5-15 5 R-4 Shallow 5-15 5 R-16 Shallow 13-48 21 CERCLA Area D R-7 Deep 35-85 16 R-8 Deep 38-89 16 R-9 Deep 38-88 16 R-19 Deep 31-81 14 R-5 Shallow & Intermediate 5-30 14 R-6 Shallow & Intermediate 5-30 14 R-17 Shallow & Intermediate 3.5-23.5 14 R-18 Shallow & Intermediate 3.5-23.5 14 CERCLA Area E R-10 Intermediate 57-87 23 R-11 Intermediate 60-90 23 R-15 Intermediate 70-83 23 Sources and Notes: 124 30 94 124 30 94 124 30 94 124 30 94 124 30 94 95 10 85 95 10 85 112 27 85 69 25 2 18 73 25 2 18 72 25 . 2 18 67 6 2 18 36 16 2 18 36 16 2 18 30 10 2 18 30 10 2 18 94 II 83 94 11 83 94 11 83 24 28 27 41 I.I I.I I.I I.I I.I 0.013 0.013 0.013 1. 1 1.1 1.1 1.1 1.1 I.I 1.1 1.1 I.I 1.1 I.I 1.38 1.38 1.38 1.38 1.38 0.13 0.13 1.38 85 0.13 85 0.13 85 0.13 85 0.13 85 0.13 85 0.13 85 0.13 85 0.13 1.38 1.38 1.38 1. The saturated thickness of aquifer zones in the vicinity of R-17, R-18, and R-19 was taken from U1e "Comtruction Completion Report-Additional Recovery Wells in CERCLA Area D", February 7, 2003, COM. 11.4 11.4 I 1.4 48.2 1.31 1.31 1.31 1.31 1.31 0.12 0.12 1.05 12.04 12.84 12.65 71.66 5.28 5.28 6.11 6.11 1.35 1.35 1.35 ·."824:6', .. 931.3 " : 904.6' 4800.9_ .189,9/.: 183:3· 183.3 1·.· ·126.6---. 12ii:f; 2. Aquifer thickness and hydraulic conductivity values listed above are based on the values noted in Appendix I, Ground-Water Model, Flow Rate Estimations, and Solute Transport Model and Calculations, Remedial Investigation Volume II, Soydeco Site, Mt. Holly North Carolina, August 1987, Engineering-Science And Law Engineering Testing Company. 3. The above noted hydraulic conductivity value for the saprolite in Area C was based on slug tests performed by COM as noted in the "CERCLA Area C Spray Infiltration System and Remedial Effectiveness Report", December 1999, COM. The hydraulic conductivity of bedrock for R-7, R-8, and R-9 is based on the hydraulic conductivity for SP-SC as presented in the report titled "Supplemental Information for RCRA Ground-Water Recovery System". Hydraulic conductivity for bedrock aquifer at R-19 was taken from Report titled "Supplemental Information for RCRA Ground-Water Recovery S);Slem", Sandoz Mount Holly Plant, March 2, 1989, Law Environmental, Inc., and was based on the results of slug tests performed at RCRA well SP-4C. CDM field geologists noted during installation of R-19 that th?' bedrock was highly fractured and very productive. Historically high pumping rates from this well reflect the fact that the well is highly productive, relative to other site bedrock wells. The hydraulic conductivity of R-16 is based on slug tests performed in the PWR as reported in "CERCLA Area C Spray Infiltration System and Remedial Effectiveness Report", December 1999, COM. The R-16 hydraulic conductivity results for PWR arc assumed to be indicative for Areas A/Band Arca E. 4. Aquifer thickness reported as thickness to the top of bedrock for wells screened in the shallow and intermediate zones, and to the maximum screen depth in the.deep zone. Steady-state_ capture zones are not dependent upon porosity or aquifer thickness. 5. The porosity values listed above are based on the literature including "Basic Elements of Grmmd-Water Hydrology With Reference to Conditions in North Carolina", 1980, USGS, by Ralph C. Heath. Steady-state capture zones are not dependent upon porosity or aquifer thickness . .. The approximate screened interval is assumed to be 25 feel based on similar wells in CERCLA Area ~/B. Well installation records note that R-12 was installed to 108 feet below grade in an open rock interval. PWR = Partially Weathered Rock T = Transmissivity transmissivity & porosity.xis I I I I I I I I I I I I I I I I I I I COM Table 4 Contaminants of Concern within CERCLA Areas A, B, C, D, and E ( (.;hf~Volatil e ·o·rganicfli,,:ii ,1;-,':~ %fs·em·iivo1atney0~r-•·anic< $'Jg;\'...,t l"J-i!• 'ltc. -+~ __ ..,tr..~~-iv •~{•1 --· ~;:1, irG~foUR.~_<SitiG~~ '"€ "'"" ,·, . 'd (V0 )lf' !iii i~I,. __ ~,ompoun __ s"'· \~ • .€s ~ ~1:;;_. Chlorobenzcne 1,2-dichlorobenzene Toluene Xylene ( total) Tetrachloroethylene (PCE) Trichlorocthylene (TCE) Ethylbenzene F+ T tables and figures.doc I I I I I I I I I I I I I I I I I I I Table 5 Hydrogeologic Parameters and Average Groundwater Velocity Distance to Surface Water Hydraulic Average Average Wei/ II) Surface Water Body Gradient K Porosity Linear (ft; along flowpath) dh/dl (ft/ day) CW Vel (ft/d) CERCLA Area AIB R-1 204 Long Creek 0.02485 1.31 0.10 0.326 R-2 255 , Long Creek 0.01251 1.31 0.10 0.164 R-12 187 Long Creek 0.02674 1.31 0.10 0.350 R-13 425 Long Creek 0.01193 1.31 0.10 0.156 R-14 680 Long Creek · 0.00875 1.31 0.10 0.115 CERCLA Area C R-3 332 Long Creek 0.02643 0.12 0.15 0.021 R-4 366 Long Creek 0.02189 0.12 0.15 0.Ql8 R-16 706 Long Creek 0.02268 1.05 0.15 0.159 CERC/,A Area D 1 R-7 162 Catawba River 0.03082 12.04 0.15 2.474 R-8 212 Catawba River 0.02489 12.84 0.15 2.130 R-9 264 Catawba River 0.03208 12.65 0.15 2.706 R-19 352 Catawba River 0.02557 71.66 0.15 12.215 R-5 187 Catawba River 0.03209 5.28 0.20 0.847 R-6 237 Catawba River 0.01569 5.28 0.20 0.414 R-17 289 Catawba River 0.03117 6.11 0.20 0.952 R-18 248 Catawba River 0.03232 6.11 0.20 0.987 CERCLA Area E 2 R-IO 750 Catawba River 0.00265 1.35 0.10 0.036 R-11 900 Catawba River 0.00208 1.35 0.10 0.Q28 R-15 735 Catawba River 0.00680 1.35 0.10 0.092 Notes: 1 -The hydraulic conductivity va_lucs for Area D arc based on permeability testing conducted at SP-SC as presented in the report titled "Supplemental lnformalion for RCRA Gr~und-Watcr Recovery System"; the report titled "Supplemental Information for RCRA Ground-Water Recovery System", Sandoz Mount Holly Plant, March 2, 1989, Law Environmental, Inc.; and the results of slug tests performed at RCRA well SP-4C. CDM field geologists noted during installation of R-19 that the bedrock was highly fractured and very productive. Historically high pumping rates from this well reflect the fact that the well is highly productive, relative to other site bedrock wells. 2 -The hydrogeologic parameters in Arca E are based on data from existing monitoring wells that are located several hundred feet inland from the Catawba River. At this site, more productive alluvial sediments are often found near the Catawba River. It is likely the hydraulic conductivity and/or hydraulic gradient differ near the river as compared to near the existing monitoring wells, which would impact the calculated travel times in Area E potentially reducing the calculated travel times. COM - - - -.. - - - --- -----Table 6 Sorption Partition Coefficients for Organic Contaminants Solubility (ppm)1 Diffustion 2 General Mobility' Contaminant Coefficient (cm2/s)1 K0, (mL/g) 1,2-dichlorobenzene 148 0.00000768 343 Moderate Chlorobenzene 448 0.00000846 318 Moderate Ethylbenzene 150 0.0000076 622 Low Tetrachloroethylene 200 0.00000802 303 Moderate Toluene 500 0.00000841 242 Moderate Trichloroethylene 1100 0.00000891 152 Moderate m-Xylene 146 0.00000760 588 Low o-Xylene 170 0.00000760 363 Moderate o-Xylene 156 0.00000760 522 Low Xylene (avg) 157 0.00000760 501 Moderate to Low Notes: 1. From EPA {http://www.epa.gov/athens/learn2model/part-two/onsite/estdiffusion.htm) 2. From C.W. Fetter, Applied Hydrogeology, 4th ed. (Upper Saddle River: Prentice Hall, Inc., 2001), p. 588. 3. Based on representative values for saprolite and the National Conservation Service Soil Survey Geographic (SSURGO) database for Mecklenburg County, North Carolina. 4. Based on average TOC value from five Area C soil samples. Bulk Density (g/cm3)3 £0/ Kd (mL/g) 1.30 0.30% 1.029 1.30 0.30% 0.954 1.30 0.30% 1.866 1.30 0.30% 0.909 1.30 0.30% 0.726 1.30 0.30% 0.456 1.30 0.30% 1.764 1.30 0.30% 1.089 · 1.30 0.30% 1.566 1.30 0.30% 1.503 -- I I I I I I I I I I I I I I I I I I I Table 7 Fate and Transport of 1,2 Dichlorobenzene ;-§.-~.~; '· -.:~-% .. ff~?'P.-·. ·. -~ . .., i. ~ :1W,~.~.,,..· .. ".·. ,· ,;.::-~ ;t•3?3!::·~ .. "' ... :. ~i.· ".--.~:-'-".·:,·.·g"f:.;,.{'._.]f-:-;~ ~ ..• ---~. i", .. ;tf···:.ef.~-3~, !·!f:'·;~.~:_;;...-, .. %~.-1.f~.·.-::.:f\:':\!•.·..:t,.·8.;-t; -• .. ·:;:••··'d. W.·•.··;_;,r··•.•fi:.'-7•.~-'-.•".~~. J_if. 'J-';•'f•"r. ,;',f-.;icU;-_;J.,: r:?h~J"" .. ~~~. ""'".•;·" .. ~.'""'-t:~.-~-.;-,.· ~ .. ;,".s'.-~~.-.'~.~--K..JJ.(b<:-'~ ~~.~:,<; ~·m.~.-~.:;._ .. :~.~::.::.-•-~.~ .. ·.W.. £,""1t3t,iff,,,·r..~~.-.,~': .. ···f.,~ '; .. •'J'•.=."' .. ".·· .. ~;u.. ~t:J~~.7!.f.i i'i1 "' ~$,)~:·.,,F x:; b~~.?A~erage:_~{l Retar'datio_n1 t~C9IltaDHiiailt~ ~~0,Y."'antlc~:;.J ll..:'.oil~t'u.diiia.liDispe¥ISi0ri~ rT:i'arisVerse'J:>ispefSioll Tirite":Of;,GW>~ iliirie',0f:COiitaffi.iiiarit7 jt.~Thife:0£~-;,~ ~ . itiaHif}-j;;w~:~ (HyP.Oth'etical? rfiEStiffiatea~; i:~ · .. ,i~11IWJ.:h"'1 1]r!fBI~W} ·tfrftt ~?!iftff~ 1f1ftt~~tti . ;t;tftf!ti}irtir ~~;~~t~!;a~fi\hit-1 .-o, if, !if~1~l' -;~ rd~r¥1K~tt~ lwoncen 'ifi~l'. ~t!/17"£~~ !~~1 ~~f{l1£:.£iiiJ¼ ~li~f~1f£t}fil ~-~1g~@1 {~Y,il jWt<iWf>f~~11J ~~~~~,ffi~a}1tl~f~ -~~fiiY,s)h~t~ ~f~~Y.~~ -~ fiff~~~~i1 ff~iffif?-4~ :\.fu1~Kr,~\1i{~ ~jlf~;1't.ffi , _ •. ,:;-'-,-~ .-• ,_;.,,: -----~~J;,. _,_ __ , ......,.,_ I:-~.~_ - _ !:__,._.c.-, -,~ -== .'d>F:U:. ___ • -"-·~-•• -• ..i...,. ~i..._, __ ,.,..,,,,,,~ o, ,'J: • --~;,., ·--~-• . .,_._, ,,.., .,.-}7,.,.-. l•.~~ -~ •. $.•.',·.~ -;{\._,,:,.,._~.!!'fl'."' ----~ -~· .•-,.~~t~·,._--,.,...,1,.:...,,;ae:-~ ,.,_...:,--~ -•~.~-~:..,.~ .• .,,._ F,c,;._, _.,,....?J• . .::;,.'i •• .,...,.,.;;;.-",,-. ~i;::.~i,,•-"'••:0:~~ CERCLA Area AIB R-1 R-2 R-12 R-13 R-14 CERCLAArea C R-3 R-4 R-16 CERCLA Area D R-7 R-8 R-9 R-19 R-5 R-6 R-17 R-18 CERCLA Area E R-10 R-ll R-15 Noles: a. Assume Dr= O.lDL 0.326 0.164 0.350 0.156 0.115 0.021 O.Q18 0.159 2.474 2.130 2.706 12.215 0.847 0.414 0.952 0.987 0.036 0.028 0.092 14.377 14.377 14.377 14.377 14.377 9.918 9.918 9.918 9.918 9.918 9.918 9.918 7.689 7.689 7.689 7.689 14.377 14.377 14.377 0.023 0.011 0.024 0.011 0.008 0.002 0.002 0.016 0.249 0.215 0.273 1.232 0.110 0.054 0.124 0.128 0.002 0.002 0.006 11.16 12.67 10.60 16.56 20.69 14.59 15.35 21.04 9.72 11.40 12.91 15.05 10.60 12.15 13.56 12.46 21.62 23.41 21.43 3.634 2.077 3.713 2.589 2.372 0.309 0.269 3.341 24.051 24.293 34.944 183.884 8.979 5.031 12.913 12.305 0.775 0.657 1.969 0.363 0.208 0.371 0.259 0.237 0.031 0.027 0.334 2.405 2.429 3.494 18.388 0.898 0.503 1.291 1.231 0.078 0.066 0.197 627 1,556 534 2,720 5,932 15,681 20,873 4,444 66 99 98 29 221 571 303 251 20,938 32,086 8,003 b. Wells R-17, R-18, and R-19 were not sampled in August 2004. The initial concentration values for R-17, R-18, and R-19 are from the October 2002 sampling event. 9,008 22,371 7,676 39,099 85,290 155,524 207,023 44,076 651 986 968 286 1,697 4,391 2,331 1,927 301,026 461,294 115,064 Recovery well R-16 was dry during the August 2004 sampling event. Therefore, the initial concentration data for R-16 was taken from the August 2002 sampling event. c. The hypothetical contaminant slug area is based on the surface area of a slug that would bypass a recovery well if the recovery well was non-operational for a one-month period. 25 61 21 107 234 426 567 121 2 3 3 1 5 12 6 5 825 1,264 315 The length of the hypothetical contaminant slug area is based the contaminant velocity (in feet per day) multiplied by 30 days. The width of the hypothetical contaminant slug is based on the distance between capture zones of the recovery wells surrounding the non-Operational recovery well. 565 1 91 210 1 1 2,220 18,100 39,100 3,410 7,020 51,000 6,020 3,480 1,100 150 2,770 4,140 2,140 194 147 110 88 90 22 13 96 1,235 709 1,719 6,281 413 331 743 636 16 15 73 d. The hydrogeologic parameters for Area E are based on data from existing monitoring wells that are located several hundred feet inland from the Catawba River. It is likely that the hydraulic conductivity and/or hydraulic gradient differ near the river as compared to near the existing monitoring wells, which would impact the calculated travel times potentially reducing the travel times in Area E. e. The surface water standard for 1,2-Dichlorobenzene is 488 ug/1; which is the standard for chlorinated benzenes that applies to surface water that is classified WS-IV as described in 15A NCAC 02B.0216. The estimated concentration of the constituent at the stream interface (in this case the Catawba River or Long Creek) does not take into account dilution that would occur the moment the groundwater discharges to the surface water body. Any surface water samples collected from the Catawba River or Long Creek would consist of groundwater mixed with surface water, and any contaminants in the groundwater would likely be greatly diluted. The estimated concentratiOn should be considered conservative based on the assumptions described in the text. 0.84 0.0008 0.088 0.05 0.00011 0.00012 0.13 2.97 776.35 25.40 89.79 1,533.79 41.07 13.13 6.83 1.01 0.05 0.05 0.17 CDM P:\Clariant -5256\43895 -Capture Zone Analysis\Fate & Transport\Tab/es-rev.xls I I I I I I I I I I I I I I I I I I Table 8 Fate and Transport of Chlorobenzene ., .s,•.,111·~··•~<'" "~""" .~,· it~~lf?iilf~PI ~~ff~~~ff; \lt6ii~itli]f~ir6if P1f~i~N~ ~;~:--.r-:1:'?$_·~·.:a!fill:" •Ef~NJ ~g;,-~--;,·;rsirf K>:'L_}i'6.'#Y1Jf;.":-~--; .. -;. ~ ~--:·;:r--<C"-0':<.;$'-.r[H! ~ 5 ,· ,r~f!llj~ •·•"-_f; •"-.. ._ '"~Jt•'· • -,;r,.• ~~~.,t.~0"3-'?itt-t ~~Avera~·+}_, ~Reta:rd3tfo:it Ji:~~~?il~i!J:ii; 'fime-of. cw; · :Time-o£;€ofitamiriah.t~ 31,~Ti'ID.'e.of ~ ~ F~•M··-«r ·r~l' -· .,. fli!.--:~fheti&i~ -if~~'¥W~ -~;: lli ·-~,--~--:' n1 1a • _., ,·1.t"d.,,,4 . . '"'-.• ·'.t~l=~ ---i ., .. ,~·-""~~. 'l;,\J.t-.;, ~' !~~Jt~[?}fi il "'..,~~,.,, c~f~~l,~, ?~.:~(.;~-~~~ ~~;~_· ,..A_s ~~:~~!r~~; \',,:--'if .. "£..{,;,f< . ?,:~~~,-~,1-.,~·11-::r ~\_~i .... ;~~ :;:;-.J • ·----·-<--.~-· ,u ~.•.: ; .. t6istJHWit9 .r;i~-~ t*?_l.:'V,}-lf.;:f; J-~'&<; ~:.W.el.I;ID"_ ~wnear_GW~ ~_c:Z.fadOr~ ,Velocify;(retarded) ~~~~f_fitj~_f!tfQT,~1 ,~to,Stteam~ ~~t9J~.~~-·_T :€ont~IDillatlt-tO· 1€oncen a on. p,pti): u.€ontam1nant1 1t~tit!ti a_:,f~~:itf~~~~t;~ 3-~.;,~f~~~S..\-~ ~-=:.----:~~--~-~ -~~ ~'W:.-::~~-!i\½. ~;lftt'..~~,,~~ rv?i;.:!a~t~t~-'11 ~,~''.':.:~~-~rr~~, @;=-··• ----~.1~~ ~ z_ ~~..:¥.r,v,:J;;· ~ .-...-':il ~,.~-~I .-.~-.t·.;:;.¢,:.•.bni-:;. ~,&M(fi/d)~"''' . IF,;,•~[:@'f<'f ,1d)>"~ ,·Jl ;;.,;;~M'1;\~"-'.if~ r~,,iiru"!,,-;-..:) :"{=~ ~-0.1,d#: ...,,:_-·h:1~--";'---··f" zstreaili~< · earsr ~A:ugust-2004rt.ii?j ;sr~"" K'',.-\ft2)' i_ .... ~-~:,;;;,,~...,.._"'_ --~ ..... t,,,....,,_,..Yu_-~.-.-,.__~ ~-r·--:;..~_ ~-~..ti.~~ ~&:I:,!ilb;.,J~'J.·~-i& ·_ .,,,,i:rttf: §-'h:~·-Yl:,-JF1~·,-,,-~}~e~#]. ~~ii ~-;!~,'fl, -~y~ l/.i~'1fl ~~&l~L-~Y§_ ~7! ~~--~~~-J.:r$},'.'ifi'-,~ _ -,..~,,:;ci'=lf.: . .c"n~,,J'.!t£iA'-.-'ff--, •• 1H~'2~·:!fi!tc.:..._'_.,1 CERCLA Area AJB R-1 0.326 13.402 0.024 11.16 3.634 0.363 627 8,398 23 786 208 R-2 0.164 13.402 0.012 12.67 2.077 0.208 1,556 20,854 57 37 158 R-12 0.350 13.402 0.026 10.60 3.713 0.371 534 7,155 20 3,180 118 R-13 0.156 13.402 0.012 16.56 2.589 0.259 2,720 36,448 100 1,900 94 R-14 0.115 13.402 0.009 20.69 2.373 0.237 5,932 79,506 218 99 96 CERCLAArea C R-3 0.021 9.268 0.002 14.59 0.309 0.031 15,681 145,331 398 8 24 R-4 0.D18 9.268 0.002 15.35 0.270 0.027 20,873 193,455 530 622 14 R-16 0.159 9.268 0.017 21.04 3.341 0.334 4,444 41,187 113 763 103 CERCLA Area D R-7 2.474 9.268 0.267 9.72 24.051 2.405 66 608 2 18,000 1,321 R-8 2.130 9.268 0.230 11.40 24.293 2.429 99 921 3 907 759 R-9 2.706 9.268 0.292 12.91 34.944 3.494 98 904 2 4,000 1,839 R-19 12.215 9.268 1.318 15.05 183.884 18.388 29 267 1 32,000 6,722 R-5 0.847 7.201 0.118 10.60 8.979 0.898 221 1,590 4 3,350 441 R-6 0.414 7.201 0.058 12.15 5.031 0.503 571 4,112 11 1,810 354 R-17 0.952 7.201 0.132 13.56 12.913 1.291 303 2,184 6 510 793 R-18 0.987 7.201 0.137 12.46 12.305 1.231 251 1,805 5 45 679 CERCLA Area E R-10 0.036 13.402 0.003 21.62 0.775 0.078 20,938 280,611 769 4,450 17 R-11 0.028 13.402 0.002 23.41 0.658 0.066 32,086 430,011 1,178 5,230 16 R-15 0.092 13.402 0.007 21.43 1.969 0.197 8,003 107,261 294 2,050 78 Notes: a. Assume Dr= 0.lDL b. Wells R-17, R-18, and R-19 were not sampled in August 2004. The initial concentration values for R-17, R-18, and R-19 are from the October 2002 sampling event. Recovery well R-16 was dry during the August 2004 sampling event. Therefore, the initial concentration data for R-16 was taken from the August 2002 sampling event. c. The hypothetical contaminant slug area is based on the surface area of a slug that would bypass a recovery well if the recovery well was non-operational for a one-month period. The length of the hypothetical contaminant slug area is based the contaminant velocity (in feet per day) multiplied by 30 days. The width of the hypothetical contaminant slug is based on the distance between capture zones of the recovery wells surrounding the non-operational ·recovery well. · d. The hydrogeologic parameters for Area E are based on data from existing monitoring wells that are located several hundred feet inland from the Catawba River. It is likely that the hydraulic conductivity and/ or hydraulic gradient differ near the river as compared to near the existing monitoring wells, which would impact the calculated travel times potentially reducing the travel times in Area E. e. The surface water standard for Chlorobenzene is 488 ug/1; which is the standard for chlorinated benzenes that applies to surface water that is classified WS-IV as described in 15A NCAC 02B.0216. The estimated concentration of the constituent at the stream interface (in this case the Catawba River or Long Creek) does not take into account dilution that would occur the moment the groundwater discharges to the surface waler body. Any surface water samples collected from the Catawba River or Long Creek would consist of groundwater mixed with surface waler, and any contaminants in the groundwater would likely be greatly diluted. The estimated concentration should be considered conservative based on the assumptions described in the text. !-¾'Ji: ';'.~~!f~F~ f..'k~\!ffe"t~ g, -,_.-f;_,?5~:;:!;¾,-. ; £r'"'$f' ...... .,,.--,.;_;.;,,-.;ii;,' ,,,Goncentiation"' :_"',-,,,~~'F!'!'.'-"f"""'~t. ~~sJifl:1raim ~""!q._:;.;:e;-... ;:-;~,Jf .. rP.w•• 1.35 0.03 3.54 0.48 O.Dl 0.0011 0.04 0.14 409.28 7.74 58.59 1,102.10 26.05 7.79 3.61 0.35 0.09 0.07 0.19 CDM P:\Clarianl -5256\43895 -Capture Zone Analysis\Fate & Transport\Tables-rev.xls er I I I I I I I I I I I I I I I I I I I Table 9 Fate and Transport of Ethylbenzene ~-• "i••?z.,;,..;p':·•-~7~---~.,, .,,-_-3.:•W..fiJ'~~=-;-~ -~~~ :,~..&~~4;~--::r.~ •:~~"-·gsK--~~, _':t",:,;-;-,--'1! 'l~--.~ :1$."ffei: ... -~<:'k,, . ~ ... -~-~ .. ~;,: ~~w{~~~~~1F-=>:..-Mjf~ ~~~~-J:J;}_;;;·~g -~;~~if " f;-;.-.. ~~ .,fP, ':""<r.:•-'i!': . • ..-~-" ~Aver~-~~ iR.i'tiidlitimi' ~faffiiTI.ailt~f? ~~tR~¥1ic"q_ti ~it&n --;luditlihDiS~~ersiOI{ Transve-rse··-0iSpirsi0i1 r?Tu;nt~fiG_~3~ !Ifill lll\l ~ili:t.i "°"-·--'"""= ~~~r.¥-;f:.Z~ ~lriw.8 ~·-,,J1-~~-:P;."~~ .. R~~"'::R.•r ii-~~~h..t#"£-~~ ,,~~t··'.: .. ~ . ";,,,-;;th"""' -li, l N~nf~ttir;firci'~d) ·.-;t ':'\:~ -:....;.~ -~f?'~~::t---";,f:i?t" "';<·~CC>1{ffi'cie.ff0'1!~ ;G~t~~tfi ~Factor/.,'(: ~"~t~~oeffi.~ef!fr(?L~w :~1.'l':to'Stre~am~Z ~Jlt~itf:?f {lt~ ;;~::f/~ft: ;iiit~ r~fi,Ji}f,0'~ ttil~l~ r-yJ,.;~':.R'!f{V~:'::~9.:<_;;p::.-.~ ~;: ~~~',l~~7:(p.1ij.1.7z:_~ "•l.'-1;"?-" ""(ft'/c!l"'·~~f:r: lf-4.l:,:(ft /d)t~~3~ ·~<~~h~~: :s~-rlliii~,~~>\ ~e1i:i,!!Y,!ftL<l.> \:~-r.;(f\),:,-;g~ £~fl;-:;;·~..:~ .... ..":.f".c,,...~,-&~. -..,.::. ,,i(+ :,;.-,..-.,-:,:'..;:, ~,:_"-1,, ~ .;;-_.:"\,;_, h. .:.7'"-,·..,-;,t~ii:X~ CERCLA Area AJB R-1 0.326 25.258 0.013 11.16 3.634 0.363 627 15,826 43 R-2 0.164 25.258 0.006 12.67 2.077 0.208 1,556 39,302 108 R-12 0.350 25.258 0.014 10.60 3.713 0.371 534 13,485 37 R-13 0.156 25.258 0.006 16.56 2.589 0.259 2,720 68,691 188 R-14 0.115 25.258 0.005 20.69 2.372 0.237 5,932 149,840 411 CERCLA Area C R-3 0.021 17.172 0.001 14.59 0.309 0.031 15,681 269,274 738 R-4 O.D18 17.172 0.001 15.35 0.269 0.027 20,873 358,439 982 R-16 0.159 17.172 0.009 21.04 3.341 0.334 4,444 76,313 209 CERCLA Area D R-7 2.474 17.172 0.144 9.72 24.051 2.405 66 1,126 3 R-8 2.130 17.172 0.124 11.40 24.293 2.429 99 1,707 5 R-9 2.706 17.172 0.158 12.91 34.944 3.494 98 1,676 5 R-19 12.215 17.172 0.711 15.05 183.884 18.388 29 495 1 R-5 0.847 13.129 0.065 10.60 8.979 0.898 221 2,898 8 R-6 0.414 13.129 0.032 12.15 5.031 0.503 571 7,497 21 R-17 0.952 13.129 0.073 13.56 12.913 1.291 303 3,981 11 R-18 0.987 13.129 0.075 12.46 12.305 1.231 251 3,291 9 CERCLA Area E R-10 0.036 25.258 0.001 21.62 0.775 0.078 20,938 528,853 1,449 R-11 0.028 25.258 0.001 23.41 0.657 0.066 32,086 810,417 2,220 R-15 0.092 25.258 0.004 21.43 1.969 0.197 8,003 202,148 554 Notes: a. Assume DT = 0.1D1. b. Wells R-17, R-18, and R-19 were not sampled in August 2004. The initial concentration values for R-17, R-18, and R-19 are from the October 2002 sampling event. Recovery well R-16 was dry during the August 2004 sampling event. Therefore, the initial concentration data for R-16 was taken from the August 2002 sampling event. c. The hypothehcal contaminant slug area is based on the surface area of a slug that would bypass a recovery weH if the recovery well was non-operational for a one-month period. The length of the hypothetical contaminant slug area is based the contaminant velocity (in feet per day) multiplied by 30 days. The width of the hypothetical contaminant slug is based on the distance between capture zones of the recovery wells surrounding the non-operahonal recovery welL f.~l~i~Ytilf~V,.~ ~~.t.7?.~~"'-~-'-C 't", H= ·-Jth~ti&Jr., !fl,,if~Jflif?JIJf t~~~~fi~~f:; ~-€0ritainiiial1t~ ~ "'"""' .,,bi .. , PP., fat~~~f,•• ·--.~1;)0.-,., •~:-!. ~"Ci1'.ti ~ ..... cl~ ~-!:•:~u ·ust2004i-..:'-L·:<€; Shi Ail!.f;(ft2)'. s."M:.._~..;.• f ~...'L-o".~ ;;.:;s;,.;:. !*-;, ;;:.,-,;:-~,?.;'~i;,e.,;,.·.z: 20 110 1 84 17 62 7 50 1 51 1 13 50 8 4,620 55 657 713 42 409 174 993 3,500 3,628 37 242 28 194 55 435 4 372 50 9 JOO 8 50 41 d. The hydrogeologic parameters for Area E are based on data from existing monitoring wells that are located several hundred feet inland from the Catawba River. It is likely that the hydraulic conductivity and/ or hydraulic gradient differ near the river as compared to near the existing monitoring wells, which would impact the calculated travel hmes potentially reducing the travel times in Area E. e. The surface water standard for Ethylbenzene is 1,090 ug/1; which is the North Carolina Division of Water Quality Provisional Standard that applies to surface water that is classified Class C. For this constituent, standards are not available in ISA NCAC 02B.0216. The estimated concentration of the constituent at the stream interface (in this case the Catawba River or Long Creek) does not take into account dilution that would occur the moment the groundwater discharges to the surface water body. Any surface water samples collected from the Catawba_River or Long Creek would consist of groundwater mixed with surface water, and any ~ontaminants in the groundwater would likely be greatly diluted. The estimated concentration should be considered conservative based on the assumphons described in the text. ~~;~J.fl. ;,;,~h.au:£ ~~~i:; !Gont~tratioll'l ~~~:~.~t1::1~ ft!~Jt'_e~JB.PJi 0.01 0.0003 0.0053 0.0005 0.0000 0.00004 0.0010 0.25 4.35 0.10 0.74 35.11 0.087 0.04 0.12 0.0093 0.00028 0.00039 0.001 CDM P:\Clariant -5256\43895 -Capture Zone Analysis\Fate & Transport\Tabtes-rev.xls I I I I I I I I I I I I I I I I I Table 10 Fate and Transport of Tetrachloroethylene CERCLA Area AIR R-1 0.326 12.817 0.025 11.16 3.634 0.363 627 8,031 22 R-2 0.164 12.817 0.013 12.67 2.077 0.208 1,556 19,944 55 R-12 0.350 12.817 0.027 10.60 3.713 0.371 534 6,843 19 R-13 0.156 12.817 0.012 16.56 2.589 0.259 2,720 34,857 95 R-14 0.115 12.817 0.009 20.69 2.373 0.237 5,932 76,035 208 CERCLA Area C R-3 0.021 8.878 0.002 14.59 0.309 0.031 15,681 139,216 381 R-4 0.018 8.878 0.002 15.35 0.269 0.027 20,873 185,315 508 R-16 0.159 8.878 0.D18 21.04 3.341 0.334 4,444 39,454 108 CERCLA Area D R-7 2.474 8.878 0.279 9.72 24.051 2.405 66 582 2 R-8 2.130 8.878 0.240 11.40 24.293 2.429 99 882 2 R-9 2.706 8.878 0.305 12.91 34.944 3.494 98 866 2 R-19 12.215 8.878 1.376 15.05 183.884 18.388 29 256 1 R-5 0.847 6.909 0.123 10.60 8.979 0.898 221 1,525 4 R-6 0.414 6.909 0.060 12.15 5.031 0.503 571 3,945 11 R-17 0.952 6.909 0.138 13.56 12.913 1.291 303 2,095 6 R-18 0.987 6.909 0.143 12.46 12.305 1.231 251 1,732 5 CERCLA Area E R-10 0.036 12.817 0.003 21.62 0.775 0.078 20,938 268,363 735 R-11 0.028 12.817 0.002 23.41 0.658 0.066 32,086 411,241 1,127 R-15 0.092 12.817 0.007 21.43 1.969 0.197 8,003 102,579 281 Notes: a. Assume DT = 0.1D1. b. Wells R-17, R-18, and R-19 were not sampled in August 2004. The initial concentration values for R-17, R-18, and R-19 are from the October 2002 sampling event. Recovery well R-16 was dry during the August 2004 sampling event. Therefore, the initial concentration data for R-16 was taken from the August 2002 sampling event. c. The hypothetical contaminant slug area is based on the surface area of a slug that would bypass a recovery well if the recovery well was non-operational for a one-month period. The length of the hypothetical contaminant slug area is based the contaminant velocity (in feet per day) multiplied by 30 days. The width of the hypothetical contaminant slug is based on the distance between capture zones of the recovery wells surrounding the non-operational recovery well. 9 217 1 165 50 123 51 99 1 101 3 25 19 15 250 107 500 1,379 50 792 100 1,920 200 7,017 100 460 50 369 2 827 1 708 38 18 100 16 79 82 d. The hydrogeologic parameters for Area E are based on data from existing monitoring wells that are located several hundred feet inland from the Catawba River. It is likely that the hydraulic conductivity and/ or hydraulic gradient differ near the river as compared to near the existing monitoring wells, which would impact the calculated travel times potentially reducing the travel times in Area E. e. The surface water standard for Tetrachloroethylene is 0.8 ug/l; which is the standard that applies to surface water that is classified WS-lV as described in 15A NCAC 02B.0216. The estimated concentration of the constituent at the stream interface (in this case the Catawba River or Long Creek) does not take into account dilution that would occur the moment the groundwater discharges to the surface water body. Any surface water samples collected from the Catawba River or Long Creek would consist of groundwater mixed with surface water, and any contaminants in the groundwater would likely be greatly diluted. The estimated concentration should be considered conservative based on the assumptions described in the text. CDM 0.02 0.0010 0.061 0.01 0.0001 0.0004 0.001 0.05 12.39 0.46 1.60 7.51 0.84 0.23 O.D15 0.008 0.0008 0.0015 0.01 P:\Clariant -5256\43895 -Capture Zone Analysis\Fate & Transport\Tabfes-rev.xls I I I I I I I I I I I I I I I I I I I Table 11 Fate and Transport of Toluene CERCIA Area AIB R-1 0.326 10.438 0.031 11.16 3.634 0.363 627 6,540 18 R-2 0.164 10.438 0.016 12.67 2.077 0.208 1,556 16,242 44 R-12 0.350 10.438 0.034 10.60 3.713 0.371 534 5,573 15 R-13 0.156 10.438 O.D15 16.56 2.589 0.259 2,720 28,387 78 R-14 0.115 10.438 0.011 20.69 2.373 0.237 5,932 61,922 170 CERCIA Area C R-3 0.021 7.292 0.003 14.59 0.309 0.031 15,681 114,346 313 R-4 0.D18 7.292 0.002 15.35 0.270 0.027 20,873 152,209 417 R-16 0.159 7.292 0.022 21.04 3.341 0.334 4,444 32,406 89 CERCIA Area D R-7 2.474 7.292 0.339 9.72 24.051 2.405 66 478 1 R-8 2.130 7.292 0.292 11.40 24.293 2.429 99 725 2 R-9 2.706 7.292 0.371 12.91 34.944 3.494 98 711 2 R-19 12.215 7.292 1.675 15.05 183.884 18.388 29 210 1 R-5 0.847 5.719 0.148 10.60 8.979 0.898 221 1,263 3 R-6 0.414 5.719 0.072 12.15 5.031 0.503 571 3,266 9 R-17 0.952 5.719 0.166 13.56 12.913 1.291 303 1,734 5 R-18 0.987 5.719 0.173 12.46 12.305 1.231 251 1,433 4 CERCIA Area E R-10 0.036 10.438 0.003 21.62 0.775 0.078 20,938 218,551 599 R-11 0.028 10.438 0.003 23.41 0.658 0.066 32,086 334,909 918 R-15 0.092 10.438 0.009 21.43 1.969 0.197 8,003 83,539 229 Noles: a. Assume Dr= 0.1D1. b. Wells R-17, R-18, and R-19 were not sampled in August 2004. The initial concentration values for R-17, R-18, and R-19 are from the October 2002 sampling event. 0 Recovery well R-16 was dry during the August 2004 sampling event. Therefore, the initial concentration data for R-16 was taken from the August 2002 sampling event. c. The hypothetical contaminant slug area is based on the surface area of a slug that would bypass a recovery well if the recovery well was non-operational for a one-month period. The length of the hypothetical contaminant slug area is based the contaminant velocity (in feet per day) multiplied by 30 days. The width of the hypothetical contaminant slug is based on the distance between capture zones of the recovery wells surrounding the non-operational recovery wel1. 20 267 1 203 50 151 25 121 I 124 I 30 50 18 1,650 131 2,570 1,679 145 964 291 2,338 15,000 8,543 96 555 53 445 75 999 14 855 50 22 100 20 50 100 d. The hydrogeologic parameters for Area E are based on data from existing monitoring wells that are located several hundred feet inland from the Catawba River. It is likely that the hydraulic conductivity and/or hydraulic gradient differ near the river as compared to near the existing monitoring wells, which would impact the calculated travel times potentially reducing the travel times in Area E. e. The surface water standard for Toluene is 11 ug/1; which is the standard that applies to surface water that is classified WS-lV as described in 15A NCAC 028.0216. The estimated concentration of the constituent at the stream interface (in this case the Catawba River or Long Creek) does not take into account dilution that would occur the moment the groundwater discharges to the surface water body. Any surface water samples collected from the Catawba _River or Long Creek would consist of groundwater mixed with surface water, and any contaminants in the groundwater would likely be greatly diluted. The estimated concentration should be considered conservative based on the assumptions described in the text. 0.06 0.0015 0.092 0.010 0.00025 0.00 0.01 0.50 94.40 2.00 6.89 834.53 1.18 0.36 0.84 0.171 0.00164 0.00230 0.008 CDM P:\Clariant -5256\43895 -Capture Zone Analysis\Fate & Transport\Tables-rev.xls I I I I I I I I I I I I I I I I I I CERCIA Area AIB R-1 R-2 R-12 R-13 R-14 CERCIA Area C R-3 R-4 R-16 CERCIA Area D R-7 R-8 R-9 R-19 R-5 R-6 R-17 R-18 CERCIA Area E R-10 R-11 R-15 Notes: a. Assume Dr= 0.1 D1. 0.326 6.928 0.047 0.164 6.928 0.024 0.350 6.928 0.051 0.156 6.928 0.023 0.115 6.928 0.017 0.021 4.952 0.004 0.018 4.952 0.004 0.159 4.952 0.032 2.474 4.952 0.500 2.130 4.952 0.430 2.706 4.952 0.546 12.215 4.952 2.467 0.847 3.964 0.214 0.414 3.964 0.104 0.952 3.964 0.240 0.987 3.964 0.249 0.036 6.928 0.005 0.028 6.928 0.004 0.092 6.928 0.013 Table 12 Fate and Transport of Trichloroethylene 11.16 3.634 0.363 627 12.67 2.077 0.208 1,556 10.60 3.713 0.371 534 16.56 2.589 0.259 2,720 20.69 2.373 0.237 5,932 14.59 0.309 0.031 15,681 15.35 0.270 0.027 20,873 21.04 3.341 0.334 4,444 9.72 24.051 2.405 66 11.40 24.294 2.429 99 12.91 34.944 3.494 98 15.05 183.884 18.388 29 10.60 8.979 0.898 221 12.15 5.031 0.503 571 13.56 12.913 1.291 303 12.46' 12.306 1.231 251 21.62 0.775 0.078 20,938 23.41 0.658 0.066 32,086 21.43 1.969 0.197 8,003 b. Wells R-17, R-18, and R-19 were not sampled in August 2004. The initial concentration values for R-17, R-18, and R-19 are from the October 2002 sampling event. 4,341 10,780 3,699 18,841 41,100 77,652 103,365 22,007 325 492 483 143 875 2,264 1,202 994 145,059 222,289 55,447 Recovery well R-16 was dry during the August 2004 sampling event. Therefore, the initial concentration data for R-16 was taken from the August 2002 sampling event. c. The hypothetical contaminant slug area is based on the surface area of a slug that would bypass a recovery well if the recovery well was non-operational for a one-month period. 12 30 10 52 113 213 283 60 1 1 1 0 2 6 3 3 397 609 152 The length of the hypothetical contaminant slug area is based the contaminant velocity (in feet per day) multiplied by 30 days. The width of the hypothetical contaminant slug is based on the distance between capture zones of the recovery wells surrounding the non-operational recovery well. 20 402 1 305 50 228 25 183 1 186 1 45 50 27 250 192 500 2,473 50 1,420 · 100 3,442 200 12,580 100 801 50 643 2 1,441 1 1,233 50 33 100 30 50 151 d. The hydrogeologic parameters for Area E are based on data from existing monitoring wells that are located several hundred feet inland from the Catawba River. It is likely that the hydraulic conductivity and/or hydraulic gradient differ near the river as compared to near the existing monitoring wells, which would impact the calculated travel times potentially reducing the travel. times in Area E. · e. The surface water standard for Trichloroethylene is 3.08 ug/1; which is the standard that applies to surface water that is classified WS-IV as described in ISA NCAC 02B.0216. The estimated concentration of the constituent at the stream interface (in this case the Catawba River or Long Creek) does not take into account dilution that would occur the moment the groundwater discharges to the surface water body. Any surface water samples collected from the Catawba River or Long Creek would consist of groundwater mixed with surface water, and any contaminants in the gr0tmdwater would likely be greatly diluted. The estimated concentration should be considered conservative based on the assumptions described in the text. 0.13 0.003 0.21 0.02 0.0004 0.0005 0.012 0.16 39.82 1.49 5.13 24.13 2.57 0.71 0.05 0.025 0.0037 0.005 0.02 COM P:\Clariant -5256\43895-Capture Zone Analysis\Fate & Transport\Tables-rev.xts I I I i I I I I I I I I I I I I I I I Table 13 Fate and Transport of Xylene CERCLA Area AJB R-1 0.326 20.539 0.016 11.16 3.634 0.363 627 12,869 35 R-2 0.164 20.539 0.008 12.67 2.077 0.208 1,556 31,959 88 R-12 0.350 20.539 0.017 10.60 3.713 0.371 534 10,965 30 R-13 0.156 20.539 0.008 16.56 2.589 0.259 2,720 55,857 153 R-14 0.115 20.539 0.006 20.69 2.372 0.237 5,932 121,845 334 CERCLA Area C R-3 0.021 14.026 0.002 14.59 0.309 0.031 15,681 219,941 603 R-4 0.QJ8 14.026 0.001 15.35 0.269 0.027 20,873 292,771 802 R-16 0.159 14.026 0.011 21.04 3.341 0.334 4,444 62,332 171 CERCLA Area D R-7 2.474 14.026 0.176 9.72 24.051 2.405 66 920 3 R-8 2.130 14.026 0.152 11.40 24.293 2.429 99 1,394 4 R-9 2.706 14.026 0.193 12.91 34.944 3.494 98 1,369 4 R-19 12.215 14.026 0.871 15.05 183.884 18.388 29 404 1 R-5 0.847 10.770 0.079 10.60 8.979 0.898 221 2,378 7 R-6 0.414 10.770 0.038 12.15 5.031 0.503 571 6,150 17 R-17 0.952 10.770 0.088 13.56 12.913 1.291 303 3,266 9 R-18 0.987 10.770 0.092 12.46 12.305 1.231 251 2,699 7 CERCLA Area E R-10 0.036 20.539 0.002 21.62 0.775 0.078 20,938 430,046 1,178 R-11 0.028 20.539 0.001 23.41 0.657 0.066 32,086 659,005 1,805 R-15 0.092 20.539 0.004 21.43 1.969 0.197 8,003 164,380 450 Notes: a. Assume OT= 0.101, b. Wells R-17, R-18, and R-19 were not sampled in August 2004. The initial concentration values for R-17, R-18, and R-19 are from the October 2002 sampling event. Recovery well R-16 was dry during the August 2004 sampling event. Therefore, the initial concentration data for R-16 was taken from the August 2002 sampling event. c. The hypothetical contaminant slug area is based on the surface area of a slug that would bypass a recovery well if the recovery well was non-operational for a one-month period. The length of the hypothetical contaminant slug area is based the contaminant velocity (in feet per day) multiplied by 30 days. The width of the hypothetical contaminant slug is based on the distance between capture zones of the recovery wells surrounding the non-operational recovery well. 20 136 1 103 22 77 25 62 2 63 1 16 50 9 55,700 68 4,410 873 95 501 431 1,215 10,700 4,441 68 295 73 236 165 531 10 454 80 11 80 IO 27 51 d The hydrogeologic parameters for Area E are based on data from existing monitoring wells that are located several hundred feet inland from the Catawba River. It is likely that the hydraulic conductivity and/or hydraulic gradient differ near the river as compared to near the existing monitoring wells, which would impact the calculated travel times potentially reducing the travel times in Area E. e. The surface water standard for Xylene is 88.5 ug/1; which is the North Carolina Division of Water Quality Provisional Standard that applies to surface water that is classified Class C. For this constituent, standards are not available in ISA NCAC 02B.0216. The estimated concentration of the constituent at the stream interface (in this case the Catawba River or Long Creek) does not take into account dilution that would occur the moment the groundwater discharges to the surface water body. Any surface water samples collected from the Catawba River or Long Creek would consist of groundwater mixed with surface water, and any contaminants in the groundwater would likely be greatly diluted. The estimated concentration should be considered conservatiVe based on the assumptions described in the text. 0.01 0.0004 0.0104 0.003 0.0001 0.00006 0.001 4.57 43.78 0.35 2.76 160.90 0.24 0.14 0.52 0.034 0.0007 0.00048 0.001 CDM P:\Clariant -5256\43895 • Capture Zone Analysis\Fate & Transport\Tables-rev.:xls I I I I I I I I I Attachment B I Figures I I ' I I I I I I I 140 E 120 C. Cl -..!!1 100 Cl) ;: ~ Cl) 80 > 0 0 Cl) a: en 60 .... E 0 ... ... 40 ;: .2 u. RS 20 -0 I- 0 ' Nov-00 CDM FIGURE 1. CERCLA Areas A/B, C, D, and E Combined Recovery Well Pumping Data November 2000 through August 2004 Clariant Corporation, Mount Holly, NC • R-17, R-18, and R-19 installed and on-line Start of Bi-weekly O&M May-01 Dec-01 Jul-02 Jan-03 Aug-03 Feb-04 Sep-04 P:\Clariant • 5256\43~95 • Capture Zone Analysis\MWCAP Analysis\CERCLA Flow Oata.)(IS ,:.I I I CERCLA AREAS A/B CAPTURE ZONES INTERMEDIATE/SHALLOW AQUIFERS FIGURE 2. FILE: T .\Clanan1•5256\Capture Zone\capture_cercla _ ab. apr I I I I i LEGEND ♦ R-3 (Shallow) ••••• Recovery Well ID Aquifer Zone Capture Zone Well ID Water Level Elevation (feet MSL) 50 0 50 CDNI consulting 5400 Glenwood Avenue. Suite 300 engineering Raleigh, North Carolina 27612 construction Tel: (919) 787-5620 operations Fa;,c_: (919) 781-5730 100 Feet DESIGNED """' DRAWN KFW CHECKED RT APPROVED RT DATE 12!0~ \ I ' , • -t • • • \ I ' . , ; .(,/!\/\/,-'.~; -<t/: \, \. \ \ • • • <!- -f+i El:: f.(:. • • Groundwater • ~ R-4 ~ (Shallow) C1\i\/-b • • • -~ \ ' ' ' -, ! -'--, ) ' ' ' ' ' , Clariant Corporation Mount Holly East Facility Mount Holly, North Carolina r--1 I d ~ / LJ I I t----J L___________/ • •• I I I Groundwater Flow CERCLA AREA C CAPTURE ZONES SHALLOW AQUIFER • • FIGURE 3 I, ! i \ \ \ I I \ \I • \ I \ I I I , L ,- i j (, FILE: T :\Clanam-5256\Capture Zonelcapture_ cercla _c.apr LAYOUT: Layout 4 ' LEGEND /_['' -_:--• )< ~ [J ,:) I ~ R-19 Reco,e,yWe/1I0 ~,/ --'i--l (/ (Deep) Aquifer Zone _ ,,---, /.,---,./.,.--,~ L,).-" 11 \\/\ I~\ • • • • • Capture Zone . 'j ,, ., I ·---...... ·1' \I I WelllD ; \ 1 "-/ Water Level Elevation (feet MSL) _/ · \ • "' \_, \ --. ', ,.~,-·',-., R-s· Asterisk indicates that the recove,y wen had a flow rate of zero _..,-J ' ' \ \ ' . \ \ '\ \\ \ \ \ \ \ ' \ ' \ \ \ \ \ \ \\ \ \ ,\ \\ ' I \ \ \\ \ \ \ \ \ \ \\ \ \ \\ I\ \' ,, , .. , '' '' • '' '' \' '' '' '' '' '' • ....... ! during the flow monitoring period of October 2003 through August 2004 , • + c.. ,. • ' ,. \ \ II <( • '"'\"" ·,\ 50 o 50 1 oo Feet ' \ \ 1 \r• · · ! , . \ I ti, I __ / . \ ,;, {:'•(' :' ~)(: I • \ \. I f:1 'i' '\ \\ • ""..b I \\ I -$-R-7) \, I ~ j,_ .••--• ,.,<' (~~p~ '\. k ~---I ,.______, '·~-R-S,,'/ //~-/\ \ \\ I 1_ .. ·, .·\ .'·---• + ~.{Shall~-\-~i,\ '\ I ._, •//lnte(inediate) ,.✓'\ \. + . ' . ' ,·. /' // \ //, \ \ I ,---· -.,,. » ~ -Q Q / / • ..-, .\ \,, ).. I ___ ,.., cf( . C • • // L \ \, I .. __ __./ __ .,,\ _ ___,,.·\ 1 ' •,,(.:., o _m_ R-8/ //0 ' \.- ·-· -;(.'· •· .,~ "V (Q4'ep_}/ o \, \ I ·-~;~· • :,.... . // ,/' \ '\ '' \' '\ '' \\e \ \ '\ \ \ I \ '\ ' ' '' '\ \' '' ' ' '' • I\ \ ' '' '' ' \ '' '' '' '' '' '' '' ' \ \ ' ' \ \ \ '' \ \ '' '' '' '' '' ', I '' \ \ '' '' '' \ \ • l~·-... __ ,,1 ... -•/ _____ --1' :. ~ · • · :1~-(~ ~ -,· o .\ ,\',. , '+7" \ '\:, • '' '\ '' '' \ \ '' '' '' \' '' '\ '\ ! ' \ \ \ \ \ ' • \ \ \ \ ', \ \ \ ' ' ' \ \ \ I \ \ I ' \ \ \ ' ' \ \ I ' ' \ ' \ ' \ \ '\ \ \ \ I \ \ ' ' \ ' ' ' \ ' \ \ \ I '' '\ \\ \ I ', \ ' ' ' ' '' \' \ \ \ \ \ \ \ \ \ \ I___.-(' --------~? • • (J!;p)• \;7~~1e~~le) .·· / • °",, \ \ \:f \ Jl (-~;~~~0 ~at:)•~ • 0 -$ ,,il_;. ,1./ ' /( \ \\ '\, ' I ' \ \ ' '' '' '' ', ....___ _______________ -........._ I;·::~-= • , \ __ ..,.. I • 1_~1 of , , I\ '' \ ' \ \ '' '' '' I \ \ \ \ \ '' '\ • II\!, • ,•" ~ ~:,:J[i: ,' \ \ Flow O \ :\ -•1 • .-,.' ,,-/ • 1 Groundwater ') \. \ \ \ ' ,•.,. •: • • Intermediate) • \ \· . . . \ \-,, • \ \'·. \ \ ' ' \ ' I I \ \ '-. 1--------=-----------------~-----------------------~ *~,/ / \',\ t- i _ .. //,----• • ~ ~ \ / ,------0 -. ..---------------\ \ \·\ I ~ ~ ~ ---------------\, \I\,_ • / .... .,, --/ -----"·,, --------------\ ... ' ----------__....---\ ,,· I ..---' -', \ ,-------.-~------\ I \, ·:.,' • ----~---X ' ,,_________...--\ \ .. II\ \ \, • e ---------_; ..,.,.,----~ \ \· '1, -~' \,,, \ ti -\• ----{f ·~+' / I I I CDIVI consulting engineering construction 5400 Glenwood Avenue, Suite 300 Raleigh, North Carolina 27612 DESIGNED .JSlcll'.,_ _______ _ DRAWN F CHECKED RT CERCLA AREA D CAPTURE ZONES SHALLOW/INTERMEDIATE/DEEP AQUIFERS ' I I ' \' '\ \' '\ ' I I ' '' '' \' '' '' \ ', I\ , I '' I , ,1 \\ 1\ '' ' \ \ \ \ I ' \ I \ '' \ \ '' \ \ ' FIGURE 4 • I operations Tel: {919) 787-5620 Fax: (919) 781-5730 APPROVED ~R!JT ________ _ Clariant Corporation Mount Holly East Facility Mount Holly, North Carolina FILE: T:IClanant-5256\Capture Zonelce1clad_deep apr DATE LAYOUT: Layou1 4 -...... ·-, LEGEND ,b_ R-10 V (lntennediate) •••••• 50 CERCLA AREA E CAPTURE ZONE INTERMEDIATE AQUIFER • • • Recovery Well ID Aquifer Zone Capture Zone Well ID Water Level Elevation (feet MSL) 0 • • 50 100 Feet • • • FIGURE 5 FILE: T:1Clariant-5256\Cap1ure Zone\capture_cercla_e_mtermed,ate apr LAYOUT: La)'Out 4 I I I I I I I I I I I I I I I I I 1~001)0 0 CC) o, lo 0 'v 0 " Figure 6. Groundwater flow through porous media illustrating dispersion along various flow paths (from Fetter, 2001). Continuous Source R!i/1#1 ► direction of groundwater flow SlugSow:ce ~ Figure 7. Effect of dispersion on contaminant transport for a continuous source and a slug source (e.g., spill; modified from Fetter, 2001). CDM F+ T tables and figures.doc I I I I I I I I I I I I I I •· I I I I Attachment C Hydraulic Head Calculations CN»M , • CLIENT I. C'. _\-JOB NO. L-\ -~ 1, '\ 'j PROJECT C c(2+vre__ ~"'-A"< :.J" '> DETAIL \.\ ~'"' \, c {, ,,,\ ,',_"', DATE CHECKED \ J," i CHECKED BY -~~~fl~-- (f'._'T' COMPUTED BY ____ _ DATE \7.·2·"''-j PAGE NO. ---'-\--'o-'-F_3.;____ 5 [.,_\ tv.l,\t. 'h,Jrrw'• C j (,cl;,:, ,tor e.;d,.., or ~ Cl/2-LL/\ ~re'~5 _for vs"-,,..._ -p--__-\.,_,Jf\VA (..c., p-tv ,-"- J ..-"cl,.,_ -t- ) 9...,.....<- ,;z;;.on<c «)Dc1. ... 1;,.cJ· v~,PA J<K·ne, hQJ.r~-1 . ._ "'~ · '\'k c,\,,4Y ; ,/ ~J J,,-,,__.,\ . .c. \-,e<..c\ o.Jer Sf Le.;{:,>-. \,,, Ori~oA-\-._ ~ O-,,;'Tc,-,c.e... I I I I (,\,e_ -n--z_ 'I--<-f • r -'r A '-'J ,nT 2-.o~ 1..1, ~o o ~ i N P-t: ,,..,....,r.!_,J ,c.' Ac.. h:, ___, Jr~~~J.. w~~r C {/:-c. C ~-'-"' .,, c.s > I "-\ e v' .::h """ r t.,.,l ;"J s. ~rc.i,t~-'n {:.. 'rt ~,.,..., f' +--l.o C < \L,J c_-k_ h "".--,-'C..,..,~ \ .{...,,,.. \;,"\,.., "-c\ dM.f "''l-"'i+ers, ~(-"··c.-)(-.\-•r\llc.-Jr,,.-.\. ....,-.,¼r (_j'{,Z.C..l-/\ ,,s.,c-5L\«.-\-<'.,\ i ,.+\ _,, ---<..\. b,_ fZ"-<.P "~ (oA,,;d,v ct iz-.c\...A A \(.3 A (2.e A I\ ' (3, ?'--IA:C ( '5'7'1,'i'-1') wQ -'Z.-<-r ( 5'71,z_y•) i7C-\AP C 51,0. oz_) ,+o '51,1)' "'--5 7-::,_ 'I,:, 710 pc -I D ( 570_ '83). o, 0 ~◊ r+ IF+ 1,~-1-er-,~,.~~ I f"'hl__.,...,,.-("..{_ ~ (:.,.,_,.--Jvv<...\c,..--- E. 1~., • .i;~.,., "re_,.__ . I I I I I I I I I I I I I PNVI I I •· I CLIENT \c.n"'-~ JOB NO. PROJECT C C(?-1,J C '- DETAIL \-\y\rcc" \,<- :p,....._ ,A.,,.b,·~ (;, ,.-,c,l ,,-S DATE CHECKED --.Jiwc) ,,...c.....':;__ __ JU (. YJ Q -, '-\ '.';, + .. l ~" 1.1'-l) D " Ll'15' I ?J.?.-.,_t '."\ -s <?> 2.., ~,.,) "' .,:., ., ., .. wa -°7,'-l 'C + .. ( 5"1 I, 'I, I). CHECKED BY ____ _ C. l"Y) w -'-l ( $~'2, 3"') O, o 'l,. I \.,J Q . 2-'I '.C. ( "57,,1,) ( 5"1 I .'ill -5 7"1."'17) 500 o.oz..'-i I I I I •~) ___., U'.:>c. o.oz_'Z... -f·\ \ F+ I I I I I I ( ) 1- 1 W Q -, ~1 .l) c .5"11, is) pC -._ ,+-c, (_5l~1. '3>z.) o~ \15' ( ,2_k1, . .3 2.-.. =---c~-~ ~-'· ?.?) I !:5' -- COMPUTEDBY_~_,_____,,,,-.~-- DATE \7--"b-o':J PAGE NO. '2--Op 3 CLIENT C \i,....--,,-_~T PROJECT Cce+v/L =2.;o..-.. A--..l,,-:s DETAIL H),t,_\;, C. ~-c\ ;,_ ~ ( '7 b '2-. -;,~--:. . .5 r.°2 .. : I lo) 0 \L-jO ~.,o.~ r, ( 57.1..1 =--=---~'1) ~· ,,1.S'." JOB NO. ---'\.j'-''3'-1,"-'i'--':,-=----- DATE CHECKED _ ..... {,.L•_\,__ __ CHECKED BY __ ) -.,.V __ _ COMPUTED BY __ (2.._-,.-__ _ DATE_;_12.:...·...c'1,:_·_u_'1,___ PAGE NO. _:}L__o_· F__;5~- ' M v,J • I '-1 ( S 71),'I i/ Cf 1-'..c. 1.-A Ar,-.. C e.\e,,.~·?-,. ~r~ ~ .:? 'l -<-I > n-,q t-- I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Attachment D Modeling Output Files Rl UNITS USED FOR SIMULATION 0 METERS AND DAYS 1 = FEET AND DAYS 1 COORDINATE LIMITS OF STUDY AREA XMIN 0.00 XMAX = YMIN YMAX 5000.00 0.00 5000.00 MAXIMUM STEP LENGTH= NUMBER OF WELLS= l 100.00 WELL NUMBER 1 X COORDINATE = 1000.0 Y COORDINATE 1000.0 WELL DISCHARGE 980.0 TRANSMISSIVITY = 162.7 HYDRAULIC GRADIENT 0.020000 ANGLE OF AMBIENT FLOW 205.00 AQUIFER POROSITY 0.10 AQUIFER THICKNESS = 124.00 BOUNDARY TYPE NO BOUNDARY SELECTED CAPTURE ZONE OPTION STEADY-STATE NUMBER OF PATHLINES 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS . . . . . . . . . . = 64 956.4 980.2 954.7 983.9 953.3 987.9 949.4 1012.6 950.8 1026.8 954.1 1039.9 980.6 1085.7 997.7 1104. 3 1035.7 1136. 5 1160 .1 1214.4 1246.7 1260.8 1334.7 13 05. 7 1512.9 1393.3 1602.6 1436.5 1692. 4 1479.6 1872. 6 1565.2 1962.8 1607.9 2053.1 1650.5 2233.8 1735.6 2324.2 1778 .1 2414.6 1820.6 2595.6 1905.4 2686.1 1947.8 2776. 6 1990.2 2957.6 2075.0 3048.1 2117. 3 3138. 7 2159.7 3319.8 2244.4 3410.3 2286.7 3500.9 2329.1 3682.0 2413. 7 3 772. 6 2456.0 3863.2 2498.3 4044.4 2583.0 4135. 0 2625.3 4225.5 2667.6 4406.7 2752.2 4497.3 2794.5 4587.9 2836.8 4769.1 2921. 3 4859.7 2963.6 4950.3 3005.9 5131. 5 3090.5 5222.2 3132. 8 5312.8 3175.1 5494.0 3259.6 5584.6 3301.9 5675.2 3344.2 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 64 956.8 979.3 958.6 975.6 960.7 972. 0 977.1 953.1 988.9 945.1 1001.1 939.2 1053. 2 930.0 1078.4 931. 2 1127. 5 939.6 1267.1 984.8 1358. 4 1021. 3 1449.3 1059.9 1631.0 1140 .1 1721. 7 1181. 0 1812.5 1222.2 1993.9 1305 .1 2084.6 1346. 8 2175.2 1388. 6 951.1 965.6 1076.2 1423.6 1782.5 2143.4 2505.1 2867.1 3229.2 3591. 5 3953.8 4316.1 4678.5 5040.9 5403.4 5754.8 965.5 1027.4 1175.1 1540.2 1903.2 2265.9 996.0 1064.7 1164. 7 1349. 7 1522.4 1693.1 1863.0 2032.6 2202.0 2371 .. 4 2540.6 2709.9 2879.1 3048.2 3217.4 3381. 3 965.1 932.1 952.5 1099. 7 1263.6 1430.4 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 2356.6 2719. 2 3081.8 3444.4 3806.9 4169.5 4532.0 4894.6 5257.1 5619.7 1472.3 1640.3 1808.6 1977.2 2145.9 2314.6 2483.4 2652.3 2821. 2 2990.1 2447.2 1514.3 2809.9 1682.3 3172.5 1850.7 3535.0 2019.3 3897.6 2188.0 4260.1 2356.8 4622.7 2525.7 4985.2 2694.5 5347.8 2863.4 5710. 3 3032.4 2537.9 1556.2 2628.6 1598.2 2900.5 1724. 4 2991. 2 1766.5 3263.1 1892.9 3353.7 1935.0 3625.7 2061.5 3716. 3 2103.7 3988.2 2230.2 4078.9 2272. 4 4350.8 2399.0 4441.4 2441. 2 4713.3 2567.9 4803.9 2610.1 5075.9 2736.8 5166.5 2779.0 5438.4 2905.7 5529.0 2947.9 5800.9 3074.6 5880.5 3111. 7 R2 UNITS USED FOR SIMULATION 0 METERS AND DAYS 1 = FEET AND DAYS 1 COORDINATE LIMITS OF STUDY AREA XMIN O. 00 XMAX YMIN YMAX 5000.00 0.00 5000.00 MAXIMUM STEP LENGTH NUMBER OF WELLS= 100.00 1 WELL NUMBER 1 X COORDINATE Y COORDINATE WELL DISCHARGE TRANSMISSIVITY HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW AQUIFER POROSITY AQUIFER THICKNESS BOUNDARY TYPE SELECTED CAPTURE ZONE OPTION NUMBER OF PATHLINES WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 63 963.0 983.2 961. 2 987.4 957.3 1015.9 959.8 1029.8 1004.2 1094.3 1043.0 1125 .1 1256.2 1245.2 1344. 7 1289.4 1613. 4 1419.1 1703.4 1461. 9 1974.1 1589.7 2064.4 1632.2 2335.7 1759.6 2426.2 1802.0 2697.7 1929 .1 2788.3 1971. 5 3059.9 2098.5 3150.5 2140.8 3422.2 2267.8 3512.8 2310.1 3784.5 2437.0 3875.1 2479.3 4146.9 2606.2 4237.5 2648.5 4509.3 2775.3 4599.9 2817.6 4871. 7 2944.5 4962.3 2986.7 5234.2 3113. 6 5324.8 3155.9 5596.6 3282.7 5687.2 3325.0 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 63 963.4 982.5 965.4 978.4 984.7 957.1 997.0 950.1 1075.0 942.6 1123. 5 952.6 1352. 5 1038.6 1443.3 1078.1 1715.3 1200.5 1805.9 1242.0 2077. 9 1367 .1 2168.5 1409.0 1000.0 1000.0 830.0 162.7 0.020000 205.00 0.10 124.00 NO BOUNDARY STEADY_-STATE o 959.9 991.3 971.1 1055.5 1084.2 1152. o 1433.9 1332. 9 1793.5 1504.6 2154.8 1674.7 2516.7 1844.4 2878.8 2013. 8 3241.0 2183.1 3603.3 2352.4 3965.7 2521. 6 4328.1 2690.7 4690.5 2859.9 5052.9 3029.0 5415.4 3198.1 5764.3 3360.9 967. 6 974.9 1024.0 942.2 1170. 6 966.8 1533.9 1118. 4 1896. 6 1283.6 2259.2 1451.0 958.0 986.5 1168. 9 1523.5 1883.8 2245.3 2607.2 2969.3 3331.6 3693.9 4056.3 4418.7 4781.1 5143.6 5506.0 972. 6 1049.8 12 61. 7 1624.6 1987.2 2349.8 999.4 1076.3 1199.9 1376.1 1547.2 1717.2 1886.8 2056.2 2225.5 2394.7 2563.9 2733.0 2902.2 3071. 3 3240.4 968.2 940.6 1000.9 l.159. 3 1325. 3 1493.0 I I I I I I I I I I I I I I I I I I I I I I 1· I I I I I I I I I I I I I I 2440.5 2803.0 3165.6 3528.1 3890.6 4253.2 4615.7 4978.2 5340.8 5703.3 1535.0 2531.1 1577. 0 1703.3 2893.7 1745.4 1871. 9 3256.2 1914. 1 2040.6 3618.7 2082.8 2209.4 3 981.3 2251.6 2378.2 4343.8 2420.5 2547.1 4706.3 2589.4 2716.1 5068.9 2758.3 ·2885. 0 5431.4 2927.2 3054.0 5793.9 3096.2 2621. 7 1619.1 2712. 4 1661. 2 2984.3 1787.6 3074.9 1829.7 3346.8 1956.2 3437.5 1998.4 3709.4 2125.0 3800.0 2167.2· 4071. 9 2293.8 4162.5 2336.0 4434.4 2462.7 4525.1 2504.9 4797.0 2631.6 4887.6 2673.8 · 5159.5 2800.5 5250.1 2842.8 5522.0 2969.5 5612.7 3 011. 7 5871. 0 3132 .1 R3 UNITS USED FOR SIMULATION 1 0 = METERS AND DAYS 1 = FEET AND DAYS COORDINATE LIMITS OF STUDY AREA XMIN; 0.00 XMAX YMIN YMAX 1000.00 0.00 1000.00 MAXIMUM STEP LENGTH NUMBER OF WELLS= 1 100.00 WELL NUMBER 1 X COORDINATE 100.0 y COORDINATE = 200.0 WELL DISCHARGE 70.0 TRANSMISSIVITY 11. 2 HYDRAULIC GRADIENT 0.022000 ANGLE OF AMBIENT FLOW 195.00 AQUIFER POROSITY 0.15 AQUIFER THICKNESS 95.00 BOUNDARY TYPE NO BOUNDARY SELECTED CAPTURE ZONE OPTION = STEADY-STATE NUMBER OF PATHLINES 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 22 56.2 188.7 55.2 192.9 54.5 197.0 55.4 221. 9 59.6 235.5 65.6 247.6 100.7 286.7 121.1 301. 4 164.6 325.5 301.1 378.9 394.7 409.0 489.4 437.6 680.3 492. 5 776.1 519.4 872 .2 546.0 1064.5 598.9 1104.5 609.9 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 22 56.4 187.9 57.6 183.8 59.1 179.9 72 .3 158.7 82.8 149.1 94.0 141. 6 144.0 125.2 169.0 122.7 218.6 123.6 363.7 145.6 459.8 166.3 556.0 188.9 748.8 236.8 845.3 261. 5 941.7 286.4 1134. 8 336.8 1174. 9 347.3 53.9 81. 8 209.6 584.6 968.3 62.7 118. 9 267.6 652.4 1038. 3 205.3 269.3 345.4 465.3 572.6 172.3 130 .9 128.9 212.6 311. 5 I I I I I I I I I I I I I I I I I I I I, I I I I I I I I I I I I I I I I I I R4 UNITS USED FOR SIMULATION 0 METERS AND DAYS l = FEET AND DAYS 1 COORDINATE LIMITS OF STUDY AREA XMIN 0.00 XMAX = 1000.00 YMIN 0.00 YMAX 1000.00 MAXIMUM STEP LENGTH 100.00 NUMBER OF WELLS= 1 WELL NUMBER 1 X COORDINATE Y COORDINATE WELL DISCHARGE TRANSMISSIVITY HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW AQUIFER POROSITY AQUIFER THICKNESS BOUNDARY TYPE SELECTED CAPTURE.ZONE OPTION NUMBER OF PATHLINES WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS . . . . . . . . . . = 20 75.6 191. 4 73.7 197.4 77.3 224.3 84.1 236.0 165.1 293.2 209.6 313. 7 484.4 421. 2 577.6 455.9 858.3 559.4 952.0 593.8 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS · .......... = 20 75.8 190.9 78.2 185.1 98.2 166.8 110.9 162.2 209.8 170.4 257.0 183.3 536.6 277.7 630.4 311. 0 911.9 412.1 1005.8 446.0 100.0 200.0 40.0 11.2 0.022000 200.00 0.15 95.00 NO BOUNDARY STEADY-STATE 0 73.3 201. 2 102.1 255.1 299.6 350.6 671. 0 490.5 1045.8 628.1 80.3 181.9 137. 0 159.2 349.7 213.0 724. 2 344.5 1099.7 480.0 73.3 209.2 122.3 . 269.8 391.6 386.2 764.6 525.0 1124. 8 657.1 85.5 175.8 161 .. 9 160.9 443.0 244.8 818.0 378.2 1178. 9 508.6 RS UNITS USED FOR SIMULATION l 0 METERS AND DAYS 1 = FEET AND DAYS COORDINATE LIMITS OF STUDY AREA XMIN 0.00 XMAX = 100.00 YMIN YMAX 0.00 100.00 MAXIMUM STEP LENGTH NUMBER OF WELLS= l 100.00 WELL NUMBER 1 X COORDINATE Y COORDINATE WELL DISCHARGE TRANSMISSIVITY HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW AQUIFER POROSITY AQUIFER THICKNESS BOUNDARY TYPE= 50.0 50.0 30.0 189.9 0.037000 130. 00 0.20 36.00 NO BOUNDARY SELECTED CAPTURE ZONE OPTION= STEADY-STATE NUMBER OF PATHLINES 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS . . . . . . . . . . = 8 49.6 50.5 52.1 52.1 52.4 51. 9 54.2 50.3 · 56. 4 48.1 60.5 43.5 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 8 49.6 50.5 47.6 48.3 47.8 47.9 49.0 45.9 50.8 43.4 54.6 38.6 53.0 50.0 48.1 50.0 51. 4 50.0 47.2 50.0 I I I I I I I I I I I I I I I I I I I I I I I I I I I 1· ' I I I I I I I I R7 UNITS USED FOR SIMULATION l 0 METERS AND DAYS l = FEET AND DAYS COORDINATE LIMITS OF STUDY AREA XMIN = 0. 00 XMAX YMIN = YMAX 5000.00 0.00 5000.00 MAXIMUM STEP LENGTH 100.00 NUMBER OF WELLS 1 WELL NUMBER 1 X COORDINATE 1000.0 Y COORDINATE 4000.0 WELL DISCHARGE 1160.0 TRANSMISSIVITY 824.6 HYDRAULIC GRADIENT 0.002900 ANGLE OF AMBIENT FLOW 110.00 AQUIFER POROSITY 0.15 AQUIFER THICKNESS 69.00 BOUNDARY TYPE NO BOUNDARY SELECTED CAPTURE ZONE OPTION STEADY-STATE NUMBER OF PATHLINES = 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 64 974.3 4072. 8 977.3 4073.8 981. 5 4075.1 1006.6 4079.6 1021.2 4079.7 1035.0 4078.2 1087.0 4059.7 ll08.9 4045.6 ll28. 8 4029.6 ll94. 5 3953.1 1221.4 3911.4 1268.7 3825.1 1351.1 3645.9 1389. 5 3554.6 1426.9 3462.6 1499.7 3277.5 1535.5 3184.5 1571. 0 3091. 4 1641.5 2904.8 1676.5 28ll.3 l 7ll. 4 2717.8 1781.0 2530.6 1815.8 2437.0 1850.4 2343.3 1919. 6 2155.9 1954.1 2062.1 1988.7 1968.3 2057.6 1780.7 2092. 0 1686.9 2126.5 1593.1 2195.3 1405.4 2229.7 13ll. 5 2264.0 1217.7 2332.8 1029.9 2367.1 936.1 2401. 4 842.2 2470.1 654.4 2504.4 560.5 2538.7 466.6 2607.3 278.8 2641. 6 184.9 2675.9 91. 0 2744.5 -96.9 2778.8 -190.8 2813 .1 -284.7 2881.6 -4 72. 6 2915.9 -566.5 2950.1 -660.4 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 64 972.9 4072. 3 969.9 4071. 2 965.9 4069.5 943.8 4056.7 932.6 4047.4 923.0 4037.4 895.0 3989.8 887.2 3964.9 882.3 3939.8 881. 2 3839.1 887.4 3789.8 906.6 3693.3 958.6 3503.0 988.0 3408.4 1018.5 3314.0 1081.7 3125.3 lll4. 0 3031.1 ll46. 7 2936.9 989.8 4077.2 1062.6 4070.9 ll64. 2 3992.9 1311. 2 3736.3 1463. 5 3370.2 1606.3 2998.1 1746.3 2624.2 1885.0 2249.6 2023.1 187~.5 2160.9 1499.2 2298.4 ll23. 8 2435.8 748.3 2573.0 372. 7 2710. 2 -3. 0 2847.3 -378.6 2977.7 -736.1 958.2 4065.7 906.4 4014.1 878.8 3889.0 931.1 3597.9 1049.8 3219.6 ll 79. 6 2842.8 1212.6 2748.7 1245'_9 2654.6 1346. 2 2372. 4 1379.8 2278.3 1481.0 1996.2 1514.8 1902.2 1616.4 1620.1 1650.3 1526.1 1752.2 1244.1 1786. 2 1150. 1 1888.3 868.1 1922.3 774.2 2024.5 492 .2 2058.5 398.2 2160.8 116 .2 2194.9 22.3 2297.2 -259.7 2331.3 -353.7 2433.7 -635.6 2467.8 -729.6 , 1279.2 2560.5 1413. 5 2184. 3 1548.7 1808.2 1684.3 1432.1 1820.2 1056.1 1956.3 680.2 2092. 6 304.2 2229.0 -71. 7 2365.4 -447.7 2501.9 -823.6 1312. 7 1447.2 1582.5 1718. 2 1854.2 1990.4 2126.7 2263.1 2399.5 2529.4 2466.4 2090.2 1714. 2 1338 .1 962.1 586.2 210.2 -165.7 -541. 6 -899.2 I I I I I I I I I I I I I I I I I I I I I. I I. I I I I I I I I. I I I I RB UNITS USED FOR SIMULATION 0 a METERS AND DAYS 1 a FEET AND DAYS 1 COORDINATE LIMITS OF STUDY AREA XMIN 0.00 XMAX YMIN YMAX = 1000.00 0.00 1000.00 MAXIMUM STEP LENGTH NUMBER OF WELLS= 100.00 1 WELL NUMBER 1 X COORDINATE Y COORDINATE WELL DISCHARGE TRANSMISSIVITY HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW AQUIFER POROSITY AQUIFER THICKNESS= BOUNDARY TYPE= SELECTED CAPTURE ZONE OPTION NUMBER OF PATHLINES WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 22 85.8 817.3 87.4 818.6 100.6 824.6 116. 3 825.4 172 .1 795.6 207.6 762.4 371. 0 579.5 435.5 504.0 628.6 275.8 693.0 199.5 886.0 -29. 8 918. 5 -68.4 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS ..... 22 85. 4 · 817.0 83.8 815.6 75.6 803.7 72 .1 788.4 91. 8 728.2 118.3 687.5 270.1 494.8 333.3 418.2 524.5 188.4 588.5 111. 8 780.7 -118.1 813 .1 -156.8 100.0 800.0 380.0 931. 3 0.002900 130. 00 0.15 73.00 NO BOUNDARY STEADY-STATE 0 89.2 819.8 129.3 822.2 241. 4 727.0 499.9 428.1 757.3 123.1 82.4 814.1 73.0 775.0 147.4 648. 0 396.8 341. 6 652.5 35.1 92.8 821.9 152.3 810.4 306.4 654.2 564.3 352.0 821. 6 46.7 79.7 810.9 80.7 750.3 207.8 571.5 460.6 265.0 716. 6 -41.5 R9 UNITS USED FOR SIMULATION 1 0; METERS AND DAYS 1; FEET AND DAYS COORDINATE LIMITS OF STUDY AREA XMIN O. 00 XMAX 5000.00 YMIN O. 00 YMAX 5000.00 MAXIMUM STEP LENGTH NUMBER OF WELLS; . l 100.00 WELL NUMBER X COORDINATE; 1 1000.0 Y COORDINATE .4000. 0 WELL DISCHARGE 1130.0 TRANSMISSIVITY 904.6 HYDRAULIC GRADIENT 0.002900 ANGLE OF AMBIENT FLOW; 130.00 AQUIFER POROSITY 0.15 AQUIFER THICKNESS 72.00 BOUNDARY TYPE NO BOUNDARY SELECTED CAPTURE ZONE OPTION STEADY-STATE NUMBER OF PATHLINES 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... ; 68 956.5 4053.0 959.1 4055.1 962.5 4057.6 984.8 4069.9 998.6 4074.4 1012.2 4077. 0 1066.8 4073.9 1091. 6 4066.5 1138. 0 4044.6 1219.2 3987.1 1292 .1 3921.5 1361. 7 3851.9 1496.2 3706.9 1562.4 3632.8 1628.1 3558.2 1758.7 3407.8 1823.8 3332.2 1888.7 3256.5 2018.3 3104. 7 2082.9 30~8.7 2147.6 2952.6 2276.8 2800.2 2341.3 2723.9 2405.8 2647.6 2534.8 2495.0 2599.2 2418.6 2663.7 2342.2 . 2792.5 2189.4 2856.9 2113. 0 2921. 3 2036.5 3050.1 1883.6 3114. 5 1807.1 3178.8 1730.7 3307.5 1577.7 3371.9 1501.2 3436.3 1424.7 3564.9 1271. 6 3629.3 1195 .1 3693.6 1118. 6 .3822.3 965.5 3886.6 889.0 3950.9 812.4 4079.6 659.4 4143.9 582.8 4208.2 506.3 4336.9 353.2 4401. 2 276.6 4465.5 200.0 4594.1 46.9 4658.4 -29.6 4 722. 7 -106.2 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS . . . . . . . . . . ; 68 955.4 4052.1 952.9 4049.9 949.7 4046.9 933.8 4027.1 927.0 4014.2 922 .1 4001.4 915.7 3947.0 918.6 3921.4 932.1 3871. 9 974.6 3781.9 1026.6 . 3698. 7 1083.1 3618.1 1202.5 3460.4 1264.0 3382.4 1326.1 3304.7 969.7 1040.5 1179. 9 1429.5 1693.5 1953.5 2212.2 2470.3 2728.1 2985.7 3243.2 3500.6 3758.0 4015.3 4272. 6 4529.8 4785.0 943.9 916.3 951. 5 1142. 0 1388. 6 4062.3 4077.9 4017.5 3780.1 3483.1 3180.7 2876.4 2571. 3 2265.8 1960.1 1654.2 1348. 2 1042.1 735.9 429.7 123.5 -180.4 4040.7 3973.6 3825.8 3538.9 3227.3 I I I I I I I I I I I I I I I I I I I I. I I I I I· 1· I I I I I· I I I 1451.5 1704.9 1959.9 2215.7 2471.9 2728. 3 2984.9 3241.6 3498.4 3755.2 4012.1 4269.0 3150.0 1514.6 2841. 8 1768.6 2534.3 2023.8 2227.2 2279.7 1920.4 2536.0 1613.6 2792. 5 1306.9 3049.1 1000.3 3305.8 693.7 3562.6 387.2 3819.5 80.7 4076.3 -225. 9 4333.3 3072. 8 1577. 9 2995.7 1641.3 2918.7 2764.9 1832.3 2688.0 1896.1 2611.1 2457.5 2087.7 2380.8 2151.7 2304.0 2150.5 2343.8 2073.8 2407.8 1997.1 1843.7 2600.1 1767.0 2664.2 1690.3 1536.9 2856.6 1460.3 2920.7. 1383. 6 1230.3 3113. 2 1153. 6 3177. 4 1077.0 923. 7 3370.0 847.0 3434.2 770.4 617.1 3626.8 540.5 3691. 0 463.8 310.5 3883.7 233.9 3947.9 157.3 4.0 4140.6 -72.6 4204.8 -149.2 -3 02. 5 4397.5 -379.1 4459.7 -453.3 RlO UNITS USED FOR SIMULATION 0 METERS AND DAYS 1 l = FEET AND DAYS COORDINATE LIMITS OF STUDY AREA XMIN 0.00 XMAX YMIN YMAX 100.00 0.00 100.00 MAXIMUM STEP LENGTH= NUMBER OF WELLS= 1 100.00 WELL NUMBER X COORDINATE Y COORDINATE WELL DISCHARGE TRANSMISSIVITY 1 so.a so.a 70.0 126.6 HYDRAULIC GRADIENT 0.006300 ANGLE OF AMBIENT FLOW 60.00 AQUIFER POROSITY 0.10 AQUIFER THICKNESS 94.00 BOUNDARY TYPE NO BOUNDARY SELECTED CAPTURE ZONE OPTION STEADY-STATE NUMBER OF PATHLINES = 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 7 57.1 62.0 59.6 60.5 61.1 59.2 67.4 49.2 69.3 34.9 so.a so.a CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 7 56.9 62.2 54.2 63.6 52.4 64.2 40.6 64.7 27.2 59.1 so.a so.a 63.7 56.1 48.5 65.0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Rll UNITS USED FOR SIMULATION= 0 METERS AND DAYS 1 1 = FEET AND DAYS COORDINATE LIMITS OF STUDY AREA XMIN ::: 0. 00 XMAX YMIN YMAX 100.00 0.00 100.00 MAXIMUM STEP LENGTH 100.00 NUMBER OF WELLS= 1 WELL NUMBER X COORDINATE Y COORDINATE WELL DISCHARGE TRANSMISSIVITY HYDRAULIC GRADIE.NT ANGLE OF AMBIENT FLOW AQUIFER POROSITY AQUIFER THICKNESS BOUNDARY TYPE SELECTED CAPTURE ZONE OPTION NUMBER OF PATHLINES WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS . . . . . . . . . . = 7 57.1 62.0 59.6 60.5 67.4 49.2 69.3 34.9 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS . . . . . . . . . . = 7 56.9 62.2 54.2 63.6 40.6 64.7 27.2 59.1 1 50.0 50.0 70.0 126.6 0.006300 60.00 0.10 94.00 NO BOUNDARY STEADY-STATE. 0 61.1 59.2 50.0 50.0 52.4 64.2 50.0 50.0 63.7 56.1 48.5 65.0 R12 UNITS USED FOR SIMULATION= 0 METERS AND DAYS 1 = FEET AND DAYS 1. COORDINATE LIMITS OF STUDY AREA XMIN ~ 0.00 XMAX YMIN = YMAX = 100.00 0.00 100.00 MAXIMUM STEP LENGTH NUMBER OF WELLS= 1 100.00 WELL NUMBER 1 X COORDINATE= Y COORDINATE WELL DISCHARGE TRANSMISSIVITY HYDRAULIC GRADIENT= ANGLE OF AMBIENT FLOW AQUIFER POROSITY AQUIFER THICKNESS= BOUNDARY TYPE SELECTED CAPTURE ZONE OPTION NUMBER OF PATHLINES WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS . -. . . . . . . . = 12 49.8 49.9 49.2 52.3 50.3 53.0 51. 6 53.9 70.4 64.8 92.0 77.3 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS . . . . . . . . . . = 12 49.8 49.9 51. 5 48.1 52.8 48.7 54.2 49.5 73.0 60. 3. 94.6 72. 7 so.a so.a 4.0 162.7 0.020000 210.00 0.10 124.00 NO BOUNDARY STEADY-STATE a 49.3 52.4 54.3 55.5 107.8 86.4 51. 7 48.2 56.9 s1. a 110. 5 81. 9 49.6 59.6 so.a 52.1 62.3 so.a 52.6 58.6 so.a 48.4 54 .1 so.a I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I •• I, .,. ' I I I I R13 UNITS USED FOR SIMULATION= 0 .METERS AND DAYS 1 = FEET AND DAYS COORDINATE LIMITS OF STUDY XMIN 0.00 XMAX 5000.00 YMIN O. 00 YMAX 5000.00 1 AREA MAXIMUM STEP LENGTH 100.00 NUMBER OF WELLS= 1 WELL NUMBER 1 X COORDINATE Y COORDINATE= WELL DISCHARGE= TRANSMISSIVITY = HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW AQUIFER POROSITY= AQUIFER THICKNESS= BOUNDARY TYPE= NO 1000.0 1000.0 2960.0 162.7 0.020000 220.00 0.10 124.00 BOUNDARY SELECTED CAPTURE ZONE OPTION= STEADY-STATE NUMBER OF PATHLINES 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS . . . . . . . . . . = 71 888.2 908.1 884.1 913 .1 878.9 920.1 862.1 947.2 856.1 959.9 845.8 987.5 836.0 1041.3 835.2 1067.7 836.7 1093.7 860.6 1195. 0 880.2 1241.8 903.3 1286.5 986.2 1411. 0 1048.5 1488.2 1114. 3 1562.4 1252.1 1705.0 1323.2 1774.4 1395. 2 1843.0 1541.3 1978.2 1615.1 2045.1 1689.2 2111. 7 1838.4 2244.0 1913. 3 2309.9 1988.4 2375.6 2139. 0 2506.5 2214.5 2571. 9 2290.1 2637.1 2441.5 ·2767.3 2517.3 2832.4 2593.2 2897.3 2745.1 3027.1 2821.1 3091. 9 2897.2 3156.7 3049.4 3286.2 3125.6 3350.9 3201. 7 3415.6 3354.2 3544.9 3430.4 3609.5 3506.7 3674.1 3659.3 3803.3 3735.6 3867.8 3811. 9 3932.4 3964.6 4061.4 4041.0 4125.9 4117. 3 4190.4 4270.1 4319.4 4346.5 4383.9 4422.9 4448.3 4575.7 4577.2 4652.2 4641.7 4728.6 4706.1 4881. 5 4835.0 4958.0 4899.4 5032.0 4961.8 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 71 890.0 905.8 894.3 900.9 900.2 894.6 924.1 873.4 935.5 865.3 961. 0 850.3 1012.2 831.3 1038.1 826.0 1063.9 822.9 1167. 8 828.9 1217.3 840.1 1265.4 855.0 869.3 934.3 839.4 1014.6 845.5 1145. 7 929. 0 1329. 5 1182. 3 1634.5 1468.0 1910. 8 1763. 7 2177.9 2063.6 2441.1 2365.8 2702.2 2669.1 2962.2 2973.3 3221.5 3277.9 3480.3 3583.0 3738.7 3888.2 3996.9 4193.7 4254.9 4499.3 4512.8 4805.1 4770.6 912.6 882.7 986.5 83 9. 3 1116. 7 822.6 1312.2 872 .9 1402.4 915 .1 1489.2 963.0 1738.1 1125.9 1818.8 1183. 8 2057.3 13 63. 2 2136·. 0 1424.2 2370.7 1609.6 2448.6 · 1672. 0 2681.4 1860.1 2758.9 1923 .1 2990.8 2112. 7 3068.0 2176.1 3299.3 2366.6 3376.4 2430.2 3607.4 2621.3 3684.3 2685.0 3915. 0 2876.5 3991. 9 2940.4 4222.5 3132 .1 4299.3 3196.0 4529.7 3388.0 4606.5 3452.0 4836.8 3644.0 4913. 6 3708.1 5143.8 3900.3 5220.6 3964.3 5450.7 4156.6 5527.5 4220.7 1573.7 1014.9 1898.8 1242.8 2214.5 1485.7 2526.3 1734.5 2836.2 1986.2 3145.1 2239.5 3453.4 2493.9 3761. 2 2748.8 4068.8 3004.3 4376.1 3260.0 4683.3 3516.0 4990.3 3772 .1 5297.3 4028.4 5601. 8 4282.8 1656.5 1978.3 2292.7 2603.9 2913. 5 3222.3 3530.4 3838.1 4145.6 4452.9 4760.0 5067.1 5374.0 1069.4 1302.7 1547.5 1797.2 2049.4 2303.1 2557.6 2812.7 3068.2 3324.0 3580.0 3836.2 4092. 5 I I I I I I I I I I I I I I I I I I I I I I I I I I I. I I, I I I I Rl4 UNITS USED FOR SIMULATION= l 0 = METERS AND DAYS l = FEET AND DAYS COORDINATE LIMITS OF STUDY AREA XMIN O. 00 XMAX = YMIN YMAX = 5000.00 0.00 5000.00 MAXIMUM STEP LENGTH NUMBER OF WELLS= 1 100.00 WELL NUMBER X COORDINATE= 1 1000.0 Y COORDINATE 1000.0 WELL DISCHARGE 1950.0 TRANSMISSIVITY 162.7 HYDRAULIC GRADIENT 0.020000 ANGLE OF AMBIENT FLOW 230.00 AQUIFER POROSITY= 0.10 AQUIFER THICKNESS 124.00 BOUNDARY TYPE= NO BOUNDARY SELECTED CAPTURE ZONE OPTION STEADY-STATE NUMBER OF PATHLINES 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 938.0 927.6 935.8 915 .4 951. 4 907.2 884.5 1029.6 882.5 906.7 1181. 3 925. 7 1051.1 1440.3 1108.0 1287. 6 1758.6 1349 .1 1536.1 2069.9 1599.0 1788.6 2379.0 1852.1 2042.9 2687.0 2106.6 2298.0 2994.6 2361. 9 2553.7 3301.8 2617.7 2809.8 3608.8 2873.8 3066.1 3915. 8 3130. 2 3322.5 4222.6 3386.7 3579.1 4529.3 3643.2 3835.7 4836.0 3899.9 4092. 5 5142.6 4156.7 4349.2 5449.2 4396. 9 CAPTURE ZONE BOUNDARY SEGMENT NUMBER OF POINTS ..... ·.· ... = 939. 4 926 .3 941.6 966.9 908.2 980.3 1049.2 891. 4 1075.4 1194. 7 939.6 1237.0 70 929.4 963.6 1055.9 1227.5 1521.2 1836.7 2147.3 2456.0 2764.0 3071. 4 3378.6 3685.6 3992. 5 4299.3 4606.0 4912.7 5219.3 5506.1 2 70 924. 5 902.3 894.0 966.4 932.6 900.6 883.4 947.6 1166.7 1411.1 1662.1 1915. 6 2170.4 2425.8 2681. 7 2937.9 3194.3 3450.8 3707.4 3964.1 4220.8 945.1 993.5 1100. 7 1277.2 .. 932.4 975.9 1081.7 1272. 2 1600.9 1914. 7 2224.6 2533.1 2840.9 3148,2 3455.3 3762.3 4069.2 4375.9 4682.6 4989.3 5295.9 921.8 897.9 899.3 995.7 926.4 890.1 891. 9 997.0 1226.7 1473.5 1725. 3 1979.2 2234.2 2489.8 2745.8 3002.0 3258.4 3514.9 3771. 6 4028. 3 4285.0 952.2 1021.9 1149. 7 1352.8 938.4 1002.9 1132.9 1357. 7 1680.0 1992.4 2301. 8 2610.1 2917. 7 3225.0 3532.1 3839.0 4145.9 4452.6 4759.3 5066.0 5372.6 916.9 892 .3 916. 6 1059.2 1424.7 1126.7 1494.5 1196. 8 1697.1 1414.9 1763.4 1489.1 1960. 5 1713. 8 2025.8 1789.1 2221.1 2016.1 2286.0 2092.0 2480.3 2320.0 2545.0 2396.l 2738.9 2624.7 2803.4 2700.9 2997.0 2929. 9 3061.5 3006.2 3254.9 3235.3 3319.4 3311. 7 3512.7 3541.0 3577.1 3617.5 3770.3 3846.8 3834.7 3923.3 4027.8 4152.8 4092. 2 4229.3 4285.3 4458.8 4349.6 4535.3 4542.7 4764.9 4607.0 4841.4 4800.0 5071.0 4847.8 5127.7 1562.9 1268.5 1829.4 1563.7 2091.0 1864.7 2350.8 2167.9 2609.6 2472. 3 2868.0 2777. 2 3126.0 3082.6 3383.8 3388.1 3641. 5 3693.9 3899.1 3999.8 4156.6 4305.8 4414.0 4611. 8 4671. 4 4917. 9 1630.3 1895.1 2156.1 2415.6 2674.3 2932.5 3190.5 3448.3 3705.9 3963.4 4220.9 4478.3 4735.7 1341.3 1638.6 1940.3 2243.9 2548.5 2853.5 3158.9 3464.6 3770.4 4076.3 4382.3 4688.3 4994.4 I I I I I I I I I I I I I I I I I I I I I I ' I, I I I I. I I Rl5 UNITS USED FOR SIMULATION= 0 = METERS AND DAYS 1 1 = FEET AND DAYS COORDINATE LIMITS OF STUDY AREA XMIN 0.00 XMAX = 5000.00 YMIN 0.00 YMAX 5000.00 MAXIMUM STEP LENGTH= 100.00 NUMBER OF WELLS= 1 WELL NUMBER 1 X COORDINATE 4000.0 Y COORDINATE 4000.0 WELL DISCHARGE= 760.0 TRANSMISSIVITY 126.6 HYDRAULIC GRADIENT 0.006300 ANGLE OF AMBIENT FLOW= 59.00 AQUIFER POROSITY 0.10 AQUIFER THICKNESS 94.00 BOUNDARY TYPE NO BOUNDARY SELECTED CAPTURE ZONE OPTION= STEADY-STATE NUMBER OF PATHLINES 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 70 4079.4 4129.2 4084.8 4125.9 4092.0 4121.0 4116. 8 4100.9 4126.8 4091.0 4145.9 4068.4 4173.7 4021.3 4183.7 3996.8 4191.4 397L9 4204.6 3868.3 4202.6 3817.5 4196.6 3767.4 4161.5 3621.7 4129.1 3527.8 4092.3 3435.8 4010. 0 3255.3 3966 .1 3166.2 3920. 8 3077.7 3827.6 2901.9 3779.9 2&14. 4 3731. 8 2727. 2 3634.3 2553.2 3585.1 2466.5 3535.7 2379.8 3436.2 2206.8 3386.3 2120.4 3336.1 2034.0 3235.6 1861.5 3185.2 1775.2 3134. 7 1689.1 3033.4 1516.8 2982.8 1430.7 2932.0 1344.7 2830.4 1172.6 2779.5 1086.6 2728. 6 1000.6 2626.6 828.7 2575.6 742.7 2524.6 656.8 2422.4 485.0 2371. 3 399.1 2320.2 313.2 2217.9 141. 4 2166.8 55.5 2115. 6 -30.3 2013.2 -202.0 1961.9 -287.9 1910.7 -373.7 1808.2 -545.4 1757.0 -631.2 1705.7 -717 .0 1603.1 -888.7 1570.3 -943.5 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 70 4076.8 4130. 8 4071. 3 4134.0 4063.6 4138 .1 4034.2 4150.5 4020.8 4154.7 3991. 9 4160.9 3937.2 4163.3 3910.9 4160.6 3885.3 4155.8 3787.6 4118. 9 3743.7 4093.2 3702.4 4064.4 4105.7· 4110. 6 4161.2 4045.2 4201.4 3919. 9 4187.3 3718 .1 4052.3 3345.0 3874.6 2989.6 3683.2 2640.1 3486.1 2293.3 .3285.9 1947.7 3084.1 1602.9 2881.2 1258.6 2677.6 914. 6 2473.5 570.9 2269.1 227.3 206.4. 4 -116. 2 1859.5 -459.6 1654.4 -802.9 4048.0 4145.3 3964. 2 4163.6 3834.7 4140.2 3663.2 4033.0 ' --\ \ \ ' ' 3590.2 3337.7 3111. 4 2894.3 2681,4 2470. 7 2261. 3 2052.7 1844.7 1637.l 1429.8 1222. 7 1015.8 809.0 3965.0 3659.2 3332.2 2997.9 2660,3 2321-0 1980.7 1639.8 1298.5 956.8 615.0 272, 9 -69,3 -411-5 3522.5 3279.7 3056.5 2840.8 2628.6 2418.3 2209.1 2000.7 1792,8 1585.3 13,78.0 1111.0 964.1 775.9 3892.4 }578.6 3249.1 2913. 7 2575.6 2236.0 1895.6 1554.5 1213.:l. 871.4 529.5 187.4 -154.8 -466.2 3458.5 3222,8 3002,l 2787 .5 2575.8 2365.9 2156.9 1948.7 1740.9 1533.4 1326.2 1119. 2 912. 3 3816.6 3497.l 3165.6 2829.4 2490.8 2151.0 1810 .4 1469.2 1121. 7 785 .9 444.0 101.8 -240.4 3397.2 3166.8 2948.1 2734.4 2523.2 2313.6 2104 .8 1896.7 1689.0 1481.6 1274.S 1067. S 860.7 3'138, 7 3414. 9 3081.9 2744. 9 2406.0 2065.9 1725 .1 1383. 8 1042,3 700.4 358.4 16.3 -325.9 rl \ 11 \ I \ ( I I r r ' f ,, ' I I I I I ' I I I I I I' I I I I I I I I I R16 UNITS USED FOR SIMULATION= 0 = METERS AND DAYS 1 = FEET AND DAYS 1 COORDINATE LIMITS OF STUDY AREA XMIN ~ 0.00 XMAX = YMIN = YMAX = 100.00 0.00 100.00 MAXIMUM STEP LENGTH= NUMBER OF WELLS= 1 100.00 WELL NUMBER X COORDINATE = y COORDINATE = WELL DISCHARGE TRANSMISSIVITY = HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW = AQUIFER POROSITY = AQUIFER THICKNESS = BOUNDARY TYPE = SELECTED CAPTURE ZONE OPTION NUMBER OF PATHLINES = WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 7 42.5 52.8 44.3 57.0 55.5 62.4 68.5 62.4 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 7 42.5 52.7 41.1 48.3 46.3 36.9 56.2 28.7 1 50.0 50.0 130. 0 117 .7 0.022000 160.00 0.15 112. 00 NO BOUNDARY STEADY-STATE 0 45.7 58.2 50.0 50.0 41. 4 46.5 50.0 50.0 48.8 60.2 42.5 43.0 Rl7 UNITS USED FOR SIMULATION= 0 METERS AND DAYS 1 = FEET AND DAYS 1 COORDINATE LIMITS OF STUDY AREA XMIN O. 00 XMAX 1000.00 YMIN 0.00 YMAX 1000.00 MAXIMUM STEP LENGTH 100.00 NUMBER OF WELLS= 1 WELL NUMBER 1 X COORDINATE Y COORDINATE= WELL DISCHARGE TRANSMISSIVITY HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW AQUIFER POROSITY AQUIFER THICKNESS= BOUNDARY TYPE SELECTED CAPTURE ZONE OPTION NUMBER OF PATHLINES WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 20 185.9 823.0 191. 2 826.1 218.4 828.8 231. 4 824.9 305.6 758.6 335.1 719 .5 497.8 473.5 551. 2 389.6 710.9 136.7 764.0 52.2 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS . . . . . . . . . . = 20 185.5 822.7 180.4 819.4 166.1 796.1 163.9 782.7 190.9 687.0 213 .1 643.3 362.9 389.2 414.9 304. 4 572 .2 50.0 624.9 -34.8 200.0 800.0 1150. 0 183.3 0.037000 122.00 0.20 30.00 NO BOUNDARY STEADY-STATE 0 194.8 827.4 254.3 811. 6 390.1 63 9. 3 604.5 305.5 817.1 -32. 4 177.7 816.6 165.8 756.3 261.1 558.7 467.2 219.6 677.6 -119. 6 202.7 829.1 273.2 795. 2 444.2 556.9 657.7 221. l 854.1 -91. 2 172. 7 810.4 172 .2 732.1 311. 5 474.0 519.6 134 .8 714. 3 -178.5 I I I I I I I I I I I I I I , I I I I I I I. I I I I I I I I I I I I I I I I I Rl8 UNITS USED FOR SIMULATION 0 METERS AND DAYS 1 = FEET AND DAYS COORDINATE LIMITS OF STUDY XMIN O. 00 XMAX 100.00 YMIN = 0.00 YMAX 100.00 MAXIMUM STEP LENGTH NUMBER OF WELLS= 1 1 AREA 100.00 WELL NUMBER X COORDINATE = y COORDINATE WELL DISCHARGE TRANSMISSIVITY HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW AQUIFER POROSITY AQUIFER THICKNESS BOUNDARY TYPE SELECTED CAPTURE ZONE OPTION NUMBER OF PATHLINES = WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS .......... = 7 45.0 58.2 48.4 60.2 61.3 59.0 72. 5 51. 8 CAPTURE ZONE BOUNDARY SEGMENT 2 NUMBER OF POINTS .......... = 7 44.8 58.1 41. 6 55,9 37.0 43.8 38.6 30.6 1 50.0 50.0 410.0 183.3 0.037000 122.00 0.20 30.00 NO BOUNDARY STEADY-STATE 0 50.2 60.5 54.0 60.6 50.0 50.0 40.5 54.4 38.7 51. 0 50.0 50.0 \ I I ' Rl9 UNITS USED FOR SIMULATION 0; METERS AND DAYS 1; FEET AND DAYS 1 COORDINATE LIMITS OF STUDY AREA XMIN 0.00 XMAX YMIN YMAX 1000.00 0.00 1000.00 MAXIMUM STEP LENGTH; 100.00 NUMBER OF WELLS; 1 WELL NUMBER X COORDINATE; Y COORDINATE WELL DISCHARGE; TRANSMISSIVITY; HYDRAULIC GRADIENT ANGLE OF AMBIENT FLOW AQUIFER POROSITY; AQUIFER THICKNESS; 1 200.0 800.0 2720. 0 4800.9 0.002900 122.00 0.15 67.00 BOUNDARY TYPE; NO BOUNDARY SELECTED CAPTURE ZONE OPTION; STEADY-STATE NUMBER OF PATHLINES; 0 WELL NUMBER 1 CAPTURE ZONE BOUNDARY SEGMENT 1 NUMBER OF POINTS . . . . . . . . . . ; 20 183.8 826.5 188.5 829.3 192 .2 830.8 216.0 833.8 229.6 831. 0 253.9 819.3 308.2 768.5 338.7 730.2 394.8 650.9 503.3 485.9 556.9 402.3 610.3 318.3 716.9 149.7 770.1 65.3 823.2 -19.2 CAPTURE ZONE BOUNDARY SEGMENT 2 . NUMBER OF POINTS . . . . . . . . . . ; 20 183.3 826.2 178.7 823.2 175.8 820.5 162.6 800.4 159.2 787.0 159.0 760.0 180.9 688.9 201. 9 644.7 248.6 559.6 349.4 389.8 401.1 304.9 453.1 220.1 557.9 50.4 610.5 -34.4 663.2 -119. 3 200.0 274.1 449.3 663.6 864.4 170 .4 164.0 298.3 505.4 704.0 833.0 804.0 569.0 234.1 -84.7 814.4 735.2 474.6 135 .2 -185.0 I I I I I I I I I I I I I I I I I I I