Loading...
HomeMy WebLinkAbout6204_UwharrieMSWLF_PTCApp_Phasses 5-6_FID1676382_20220509_Vol 2 3920 Arkwright Road, Suite 101 | Macon, Georgia | Phone: (478) 743-7175 | Fax: (478) 743-1703 VOLUME 2 OF 2 © Republic Services, Inc. (2022) NC Corp License No. C-0813 PERMIT TO CONSTRUCT APPLICATION UWHARRIE REGIONAL LANDFILL - PHASE 5 & 6 FACILITY PERMIT NO. 62-04 REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA OCTOBER 2021 REVISED MAY 2022 Phase 5 & 6 Permit to Construct Uwharrie Regional Landfill Montgomery County, North Carolina Revised May 2022 HHNT Project No. 6703-912-01 TABLE OF CONTENTS VOLUME 1 OF 2 PERMIT REQUIREMENT CHECK LIST NARRATIVE CQA PLAN TECHNICAL SPECIFICATIONS OPERATION PLAN VOLUME 2 OF 2 DESIGN CALCULATIONS 6.1 STORMWATER & DRAINAGE CALCULATIONS 6.2 LEACHATE SYSTEM DESIGN CALCULATIONS GEOTECHNICAL ANALYSES ENGINEERING PLANS CORRESPONDENCE Design Calculations Phase 5 & 6 Permit to Construct Uwharrie Regional Landfill Montgomery County, North Carolina October 2021 HHNT Project No. 6703-912-01 6.0 DESIGN CALCULATIONS Design Calculations Phase 5 & 6 Permit to Construct Uwharrie Regional Landfill Montgomery County, North Carolina October 2021 HHNT Project No. 6703-912-01 6.1 STORMWATER & DRAINAGE CALCULATIONS 3920 Arkwright Road, Suite 101 | Macon, Georgia | Phone: (478) 743-7175 | Fax: (478) 743-1703 STORMWATER DESIGN CALCULATIONS UWHARRIE REGIONAL LANDFILL – PHASES 5 & 6 FACILITY PERMIT NO. 6204-MSWLF-1995 REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA OCTOBER 2021 © Republic Services, Inc. (2021) NC Corp License No. C-0813 Stormwater Design Calculations Permit To Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 TOC-1 TABLE OF CONTENTS INTRODUCTION 1. DESIGN CALCULATIONS a. General b. Design Assumptions and Information c. Landfill Side Slope Drainage Berm and Downdrain Inlet Design d. Side Slope Downdrains e. Stormwater Conveyance Channels f. Drainage Structures g. Outlet Protection 2. EXISTING SEDIMENT BASIN NO. 1 (Previously Permitted Design) 3. EXISTING SEDIMENT BASIN NO. 2 3.1. Basin Design Criteria 3.2. Sediment Calculations 3.3. Sediment Basin Dewatering 3.4. Reservoir Routing 3.5. Worst Case Flow Conditions 3.6. Sediment Trapping Efficiency 3.7. Riser Pipe and Carrier Pipe Design 3.8. Anti-Seep Collar Design 3.9. Riser Base Foundation Design 4. EXISTING WET DETENTION BASIN NO. 5 4.1. Wet Detention Basin Design Criteria 4.2. Design Calculations 4.3. Wet Detention Basin Dewatering of First 1” of Runoff 4.4. Permanent Pool Surface Area 4.5. Reservoir Routing 4.6. Worst Case Flow Conditions 4.7. Sediment Trapping Efficiency (E&S Manual) 4.8. Riser Pipe and Carrier Pipe Design 4.9. Anti-Seep Collar Design 4.10. Riser Base Foundation Design 5. EXISTING WET DETENTION BASIN NO. 6 5.1. Wet Detention Basin Design Criteria 5.2. Design Calculations 5.3. Wet Detention Basin Dewatering of First 1” of Runoff 5.4. Permanent Pool Surface Area 5.5. Reservoir Routing 5.6. Worst Case Flow Conditions 5.7. Sediment Trapping Efficiency (E&S Manual) 5.8. Riser Pipe and Carrier Pipe Design Stormwater Design Calculations Permit To Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 TOC-2 5.9. Anti-Seep Collar Design 5.10. Riser Base Foundation Design 6. WET DETENTION BASIN NO. 7 6.1. Wet Detention Basin Design Criteria 6.2. Design Calculations 6.3. Wet Detention Basin Dewatering of First 1” of Runoff 6.4. Permanent Pool Surface Area 6.5. Reservoir Routing 6.6. Worst Case Flow Conditions 6.7. Sediment Trapping Efficiency (E&S Manual) 6.8. Riser Pipe and Carrier Pipe Design 6.9. Anti-Seep Collar Design 6.10. Riser Base Foundation Design LIST OF TABLES Table 1 Stormwater Conveyance Channel Calculations Table 2 Drainage Structures Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 INTRODUCTION The Uwharrie Regional Landfill is an existing municipal solid waste landfill located near Rocky Creek in Montgomery County, North Carolina. Approximately 145.80 acres of the landfill footprint is currently constructed. Development of Phases 5 & 6 will add an additional ~37.79 acres for a total footprint of ~183 acres. Total land disturbance for construction of the remaining cells will total approximately 58 acres for Cells 15 & 16 and Proposed Wet Detention Basin #7. Efforts have been made in the design of this facility to minimize the total disturbed area. Disturbed areas will be managed with erosion and sediment control measures, or Best Management Practices (BMP’s). Stormwater which comes from off-site and undisturbed areas on-site will be diverted around the landfill area to the greatest extent practical. Stormwater which falls onto the project area will be conveyed to one of five sediment basins. These basins are designed to protect water quality by reducing the stormwater runoff rate and removing total suspended solids (TSS) from stormwater runoff. These basins, as well as a timely application of various erosion and sedimentation practices, will minimize the time that soils are exposed, control stormwater runoff, protect soils from erosive forces, protect surrounding property and preserve water quality. This document contains descriptions and calculations to explain and support the design of all elements of the stormwater management system, including collection, conveyance, and treatment. The site manager of the MSWLF will be responsible for the facility stormwater, erosion and sedimentation control program. The address and telephone number of the manager is listed below: Site Manager Uwharrie Regional MSW Landfill 500 Landfill Road Mt. Gilead, NC 27306 Phone: (910) 576-3697 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 1. DESIGN CALCULATIONS Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 a. General The primary purpose of the overall stormwater management system is to safely collect and transport stormwater runoff to on-site sediment basins where it can be attenuated and treated for water quality prior to discharging off-site. This goal is achieved by thorough analysis and detailed design of all system components from the top of the landfill to the final discharge points. Stormwater run-on from off-site or undisturbed areas is typically handled by small diversion swales and stormwater conveyance channels. These swales and stormwater conveyance channels are protected by grass, temporary lining materials, and/or permanent materials such as concrete, stone rip-rap, fabric liner, or a combination of these materials. Stormwater pumps may also be utilized to control stormwater run-on during construction. Stormwater run-off is more complex to collect and transport. A number of different types of structures must be utilized and interconnected to successfully collect the stormwater and transport it off the landfill side slope to the sediment basins without causing erosion and sedimentation of the landfill facility. For this, the stormwater conveyance system is designed from the top of the landfill to the final discharge point from the property. Regulatory Compliance The stormwater management system and the erosion and sediment control devices have been developed to meet or exceed the requirements of the DEQ Erosion and Sediment Control Design Manual and the DEQ Stormwater Best Management Practices Manual. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 b. Design Assumptions and Information -Hydraflow Hydrographs This computer program is an extension of AutoCAD Civil 3D and is used to generate runoff hydrographs utilizing the SCS Curve Number method. The runoff hydrographs are ultimately routed through sediment basin models to obtain outflow hydrographs for different design storms. Critical design values obtained from the outflow hydrographs include maximum sediment basin water elevations and peak outflow rates.  Precipitation values are taken from the NOAA Precipitation Frequency Data Server (Atlas 14) o 10-year (24-hr) 5.25 inches o 25-year (24-hr) 6.24 inches o 100-year (24-hr) 7.82 inches  A Curve Number of 74 is used for closed landfill areas  Hydrologic Soil Group (HSG) B is typical for the site; HSG C is used for closed landfill areas  Hydrologic Data: Time Interval = 1 minute Storm Distribution = Type II Tc Calculation = Lag Method -Hydraflow Express This computer program, like Hydraflow Hydrographs, is also an extension of AutoCAD Civil 3D. All channel and culvert reports included in this design were produced with this program including drainage berms, downdrain inlets, downdrain pipes, and stormwater conveyance channels.  For downdrain inlets and side slope drainage berms, the critical design parameter is the headwater condition which must be controlled in order to maintain the design freeboard below the top of the side slope drainage berms berm. Hydraflow Express analyzes inlet and outlet control conditions for the corrugated plastic downdrain pipe and determines the controlling headwater. -Tack-On Drainage Berms  Runoff from landfill side slopes will be collected by tack-on drainage berms as shown on the final drainage plan.  Tack-on berms are designed with a minimum channel depth of 2 ft, a minimum slope of 2% along the flow line, and a built-up inner slope of 2:1. Roughness coefficient, (n = 0.15) -Downdrain Inlets & Downdrains  Downdrain inlets consist of a 24” dia. corrugated plastic flared end sections.  Downdrain pipes consist of 24” dia. corrugated plastic pipe w/ smooth interior  Downdrain pipes are designed to flow at a maximum depth equal to 65% of the diameter as a factor of safety. Design includes a conservative roughness coefficient, (n = 0.02) -Stormwater Conveyance Channels  Stormwater conveyance channels which create a flow velocity greater than 2.0 fps for a bare soil condition are designed with temporary and/or permanent ditch linings. Shear stress is calculated in an iterative process to determine the type of ditch lining to be used. The following equation is used to calculate shear stresses shown in Table 1. 𝜏𝜏= 𝛾𝛾𝛾𝛾𝛾𝛾 γ = unit weight of water = 62.4 (psf) d = depth of flow, (ft) s = channel slope, (ft/ft) -Stormwater Basins  Basin details are included in the following sections. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 c.Landfill Side Slope Drainage Berm and Downdrain Inlet Design The first structures to intercept runoff from the final cover of the landfill are tack-on drainage berms. Proposed tack-on drainage berms are spaced every 20 vertical feet and are designed with a minimum 2% slope along the flow line, a minimum channel depth of 2 feet, a built up 2:1 inside slope and 0.75 ft of freeboard for flows from the 25-yr storm. Based on the design channel geometry, a maximum allowable peak flow of 10.5 cfs was calculated to provide the minimum desired freeboard. (see attached channel report) Drainage berms are represented in the Hydrograph Reports as individual hydrograph lines that are labeled for the specific downdrain section receiving that berms flow. For example, the SCS Runoff hydrograph labeled “Area-L3” represents the drainage berm located directly uphill from Downdrain L3. In this example, the area actually represents the two drainage berms to either side of that downdrain section – this is conservative when comparing the actual flow from the Hydrograph report to the max allowable flow. Alternatively, area hydrographs with a directional label such as (N), (S), (E), or (W) represent the single drainage berm located in the noted direction relative to the downdrain. A review of all Hydrograph Reports shows that the actual discharge in all side slope drainage berms is calculated to be less than the maximum allowable for the berm design. -------------------------------------------------------------------------------------------------------------------------------- At the end of each side slope drainage berm, runoff is collected by downdrain pipe inlets. The inlets consist of a 24” diameter corrugated plastic pipe (same dia. as the downdrain) with a flared end section. Regarding inlet design, the primary concern is providing sufficient headwater depth to maintain the design freeboard of 0.75 feet beneath the top of the berm. In this scenario, the pipe capacity will be governed by inlet control and will be less than the drainage berm capacity. To compensate for this, the top of the drainage berm should be raised an additional 6” at each downdrain inlet to provide 30” of channel depth in this area. Doing this will provide 1.75’ of allowable headwater while maintaining 0.75 feet of freeboard. As shown in the following culvert report, the corresponding flow rate for a headwater depth of 1.75 ft is ~10.9 cfs. Consequently, the downdrain inlet has a greater capacity than the drainage berm and is sufficient for the proposed system. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 d. Side Slope Downdrains Side slope downdrains collect runoff from inlets located at each of the side slope drainage berms. The downdrains consist of 24” dia. dual-walled corrugated plastic pipes with a smooth interior. To ensure a conservative design, the maximum allowable flow for any downdrain is based on a flow depth equal to 65% of the pipe diameter (2’x0.65=1.3 ft). Additionally, a conservative roughness coefficient is used (n=0.02). As shown on the Final Drainage Plan, the typical downdrain is designed to run perpendicular to the 3.5H:1V cover slope; consequently, the typical downdrain is designed for a 28.57% slope. However, several downdrains (i.e. Downdrains E, F, J, & K) are located on corner slopes with radius adjustments, creating slightly flatter slopes – approximately 25%. The maximum allowable flow for each downdrain scenario is listed below and shown in the following channel reports. Qmax @ 28.57% (3.5H:1V) = 59.72 cfs Qmax @ ~25% (~4H:1V) = 55.87 cfs For several downdrain locations, the runoff flow rate for the total drainage area from all drainage berms is greater than the maximum allowable flow for a single downdrain pipe. In these instances, multiple barrels have been strategically designed to convey the required flow rates while minimizing the total length of downdrain piping. A review of all Hydrograph Reports shows that the actual discharge for the 25-year (24hr) design storm for all downdrains is calculated to be less than the maximum allowable for the pipe. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 e. Stormwater Conveyance Channels Once the stormwater is conveyed by downdrains to the base of the slope, it is collected in either a drop inlet or a perimeter stormwater conveyance channel. When open conveyance channels are utilized, several best management practices (BMPs) are designed to safely handle concentrated flows and minimize erosion within the channel. The first is designing a channel section with a reasonable slope to handle the flow and limiting steep sections as much as possible. The second involves utilizing energy dissipation or outlet protection within the ditch section at the discharge point of the downdrain pipe. The design for all outlet protection BMPs is located in a later section. The third consideration is to design temporary or permanent channel lining where necessary in order to maintain short & long-term stabilization of the channel by preventing erosion of the underlying soil or movement of the lining material. The objectives of this section are to demonstrate that the geometric design of each proposed channel is hydraulically sufficient to handle the design flow, and to determine the best type of channel lining for preventing erosion. Some channels will maintain long term stability with simple grass stabilization – these channels would only need temporary lining for protection during the time required for vegetation to grow. A more permanent material may be required if flow velocities and shear stresses are too great for vegetation alone. The following pages also detail the tractive force procedure which is used to design the channel lining material for the perimeter stormwater conveyance channels. These pages contain charts listing the various roughness coefficients (Manning’s “n”) for different channel lining materials at different depths of flow as well as the allowable shear stress for each type of channel lining material. The geometry of each channel is modeled in Hydraflow Express and an iterative process is used to determine which channel lining material is sufficient to handle the shear stress. Table 1 summarizes the design parameters, discharge flow rate, and shear stress values for each proposed stormwater conveyance channel as shown on the Erosion Control Plan. Design discharge is based on the 25-year (24 hr) storm event. 8 8.05.10 Rev. 12/93 (continued) Sample Problem 8.05a Design of a Grass-lined Channel. Channel summary: Trapezoidal shape, Z = 3, b = 3 ft, d = 1.5 ft, grade = 2% 1RWH,Q6DPSOH3UREOHPDWKH³QYDOXH´LV¿UVWFKRVHQEDVHGRQD permissible velocity and not a design velocity criteria. Therefore, the use of 7DEOHFPD\QRWEHDVDFFXUDWHDVLQGLYLGXDOUHWDUGDQFHFODVVFKDUWVZKHQ a design velocity is the determining factor. Tractive Force Procedure The design of riprap-lined channels and temporary channel linings is based on analysis of tractive force. 127(7KLVSURFHGXUHLVIRUXQLIRUPÀRZLQFKDQQHOVDQGLVnot to be used for design of deenergizing devices and may not be valid for larger channels. To calculate the required size of an open channel, assume the design flow is uniform and does not vary with time. Since actual flow conditions change through the length of a channel, subdivide the channel into design reaches as appropriate. PERMISSIBLE SHEAR STRESS The permissible shear stress, Td, is the force required to initiate movement of the lining material. Permissible shear stress for the liner is not related to the erodibility of the underlying soil. However, if the lining is eroded or broken, the bed material will be exposed to the erosive force of the flow. COMPUTING NORMAL DEPTH 7KH¿UVWVWHSLQVHOHFWLQJDQDSSURSULDWHOLQLQJLVWRFRPSXWHWKHGHVLJQ ÀRZGHSWK WKHQRUPDOGHSWK DQGGHWHUPLQHWKHVKHDUVWUHVV Normal depths can be calculated by Manning’s equation as shown for trapezoidal channels in Figure 8.05d. Values of the Manning’s roughness coefficient for different ranges of depth are provided in Table 8.05e for temporary linings and Table 8.05f for riprap. The coefficient of roughness generally decreases with increasing flow depth. n value for Depth Ranges* Table 8.05e Manning’s Roughness Coefficients for Temporary Lining Materials 0-0.5 ft 0.5-2.0 ft >2.0 ft Lining Type Woven Paper Net Jute Net )LEHUJODVV5RYLQJ 6WUDZZLWK1HW Curled Wood Mat Synthetic Mat 0.016 0.028 0.028 0.065 0.066 0.036 0.015 0.022 0.021 0.033 0.035 0.025 0.015   0.025 0.028 0.021 * Adapted from: FHWA-HEC 15, Pg. 37 - April 1988 Appendices Rev. 12/93 8.05.11 8 8.05.12 Rev. 12/93 Table 8.05f Manning’s Roughness Coefficient n - value n value for Depth Ranges Lining Category Lining Type 0-0.5 ft (0-15 cm) 0.5-2.0 ft (15-60 cm) 2.0 ft (>60 cm) Rigid Concrete Grouted Riprap Stone Masonry Soil Cement Asphalt 0.015 0.040 0.042 0.025 0.018 0.013 0.030 0.032 0.022 0.016 0.013 0.028 0.030 0.020 0.016 Unlined Bare Soil Rock Cut 0.023 0.045 0.020 0.035 0.020 0.025 Gravel Riprap 1-inch (2.5-cm) D502-inch (5-cm) D50 0.044 0.066 0.033 0.041 0.030 0.034 Rock Riprap 6-inch (15-cm) D5012-inch (30-cm) D50 0.104 --  0.078 0.035 0.040 Note: Values listed are representative values for the respective depth ranges. Manning’s roughness coefficients, n, vary with the flow depth. DETERMINING SHEAR STRESS Shear stress, T, at normal depth is computed for the lining by the following equation: T = yds Td = Permissible shear stress where: T = shear stress in lb/ft2 y = unit weight of water, 62.4 lb/ft3 d = flow depth in ft s = channel gradient in ft/ft If the permissible shear stress, Td, given in Table 8.05g is greater than the computed shear stress, the riprap or temporary lining is considered acceptable. If a lining is unacceptable, select a lining with a higher permissible shear stress and repeat the calculations for normal depth and shear stress. In some cases it may be necessary to alter channel dimensions to reduce the shear stress. Computing tractive force around a channel bend requires special considerations because the change in flow direction imposes higher shear stress on the channel bottom and banks. The maximum shear stress in a bend, Tb, is given by the following equation: Tb = KbT where: Tb = bend shear stress in lb/ft2 kb = bend factor T = computed stress for straight channel in lb/ft2 The value of kb is related to the radius of curvature of the channel at its center line, Rc, and the bottom width of the channel, B, Figure 8.05e. The length of channel requiring protection downstream from a bend, Lp, is a function of the roughness of the lining material and the hydraulic radius as shown in Figure 8.05f. Appendices Rev. 12/93 8.05.13 Table 8.05g Permissible Shear Stresses for Riprap and Temporary Liners Permissible Unit Shear Stress, Td Lining Category Lining Type (lb/ft 2) Temporary Woven Paper Net Jute Net )LEHUJODVV5RYLQJ Single Double 6WUDZZLWK1HW Curled Wood mat Synthetic Mat 0.15 0.45 0.60 0.85 1.45 1.55 2.00 d50 Stone Size (inches) Gravel Riprap 1 2 0.33 0.67 Rock Riprap 6  12 15 18 21 24 2.00 3.00 4.00 5.00 6.00 7.80 8.00 Adapted From: FHWA, HEC-15, April 1983, pgs. 17 & 37. Design Procedure- Temporary Liners The following is a step-by-step procedure for designing a temporary liner for a channel. Because temporary liners have a short period of service, the design Q may be reduced. For liners that are needed for six months or less, the 2-year frequency storm is recommended. Step 1. Select a liner material suitable for site conditions and application. Determine roughness coefficient from manufacturer’s specifications or Table 8.05e, page 8.05.10. Step 2. Calculate the normal flow depth using Manning’s equation (Figure 8.05d). Check to see that depth is consistent with that assumed for selection of Manning’s n in Figure 8.05d, page 8.05.11. For smaller runoffs Figure 8.05d is not as clearly defined. Recommended solutions can be determined by using the Manning equation. Step 3. Calculate shear stress at normal depth. Step 4. Compare computed shear stress with the permissible shear stress for the liner. Step 5. If computed shear is greater than permissible shear, adjust channel dimensions to reduce shear, or select a more resistant lining and repeat steps 1 through 4. Design of a channel with temporary lining is illustrated in Sample Problem 8.05b, page 8.05.14. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 f. Drainage Structures Stormwater transported by downdrains and stormwater conveyance channels is ultimately directed to sediment basins through a system of drainage structures including drop inlets, culverts, junctions, and headwalls. This section details the analysis and design for each of the proposed structures as shown on the Engineering Plans. The design calculations for structures directly associated with Basin #7 (i.e. overflow structure, anti-seep collars, outlet pipes) are provided separately in Basin #7 Section. Similar to all previous system components, the design flow for drainage structures is based on the 25-year (24 hr) storm event. For pipes discharging into sediment basins, a conservative tailwater condition is assumed equal to the maximum routed water surface elevation in the basin for the 25-year storm. Table 2 summarizes the final design values for all proposed drainage pipes, drop inlets, and headwalls. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 TABLE 2 DRAINAGE STRUCTURES PIPE NO. SIZE (in.) LENGTH (ft.) SLOPE (%) MATERIAL 600 30 414 2.89 RCP 610 48 339 2.80 RCP 611 48 79 3.16 RCP 703 42 100 5.00 RCP 710 48 85 1.76 RCP 711 42 200 8.00 RCP 712 42 400 2.50 RCP STRUCTURE TOP ELEV. THROAT ELEV. INVERT ELEV. DI 600 652.00 650.00 642.00 JB 610 644.00 - 637.50 DI 611 649.00 647.00 640.00 DI 710 702.00 700.00 691.50 DI 711 718.00 716.00 708.00 DI 712 728.00 726.00 718.00 HEADWALL NO. INVERT ELEV. 610 628.00 703 688.00 710 690.0.0 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 g. Outlet Protection One of the most significant locations for erosion potential is at a channel or culvert outlet. At this location, concentrated discharge of stormwater into a receiving area or channel creates a high risk for scouring and extensive erosion. At a landfill this most commonly occurs where downdrain pipes discharge into stormwater conveyance channels, where drainage pipes discharge into sediment basins, and where basin outlets discharge to an open area or receiving channel. For this reason, outlet protection is individually designed for each pipe discharge location. This section includes design calculations for all proposed outlet protection locations shown on the Engineering Plans. Design flows rates are typically based on the 25-year (24 hr) storm event and a minimum tailwater condition is assumed in order to provide a conservative design. Extra protection is provided for basin outlet pipes, which are designed based on the 100-year storm. For pipes discharging to an open area, the outlet protection is designed in a trapezoidal shape with the upstream width (W1) being equal to three times the diameter of the pipe (3D0) and the downstream width (W2) equal to 3D0 plus the apron length (La). Using the values for D0 and La, a total quantity of rip-rap is calculated and converted to square yards using the expression, [�𝑫𝑫𝟎𝟎𝟐𝟐+𝑳𝑳𝒂𝒂�∗𝑳𝑳𝒂𝒂 ]÷ 𝟏𝟏𝟏𝟏. For downdrains discharging into stormwater conveyance channels, a slightly altered design is necessary. The initial steps for this design are the same as in the previous design. Apron length and median rip-rap size are determined, as well as the total quantity of rip-rap required; however, the upstream and downstream widths are controlled by the width of the ditch and a trapezoidal shape is not practical. Therefore the W1 and W2 are both set to the top width of the drainage ditch. Finally, the required quantity of rip-rap is divided by the width of the ditch to determine the required length of the reinforced section. 8 8.06.2 Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. Appendices Rev. 12/93 8.06.3 8 8.06.4 Rev. 12/93 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 BASIN CARRIER PIPE NO. 703 Q100 = 3 cfs La = 22 ft. Do = 42 in. d50 = 9 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 53 S.Y. 9” Rip Rap L = 22 ft W1 = 10.5 ft W2 = 32.5 ft BASIN CARRIER PIPE NO. 201 E Q100 = 36 cfs La = 18 ft. Do = 30 in. d50 = 6 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 33 S.Y. 6” Rip Rap L = 18 ft W1 = 7.5 ft W2 = 25.5 ft Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 BASIN CARRIER PIPE NO. 503E Q100 = 11 cfs La = 24 ft. Do = 48 in. d50 = 9 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 64 S.Y. 9” Rip Rap L = 24 ft W1 = 12 ft W2 = 36 ft BASIN CARRIER PIPE NO. 602E Q100 = 19 cfs La = 24 ft. Do = 48 in. d50 = 9 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 64 S.Y. 9” Rip Rap L = 24 ft W1 = 12 ft W2 = 36 ft Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 PIPE NO. 202 Q25 = 14 cfs La = 20 ft. Do = 36 in. d50 = 9 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 43 S.Y. 9” Rip Rap L = 20 ft W1 = 9 ft W2 = 29 ft PIPE NO. 200 Q25 = 109 cfs La = 30 ft. Do = 42 in. d50 = 12 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 85 S.Y. 12” Rip Rap L = 30 ft W1 = 10.5 ft W2 = 40.5 ft Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 PIPE NO. 701 Q25 = 65 cfs La = 22 ft. Do = 42 in. d50 = 9 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 53 S.Y. 9” Rip Rap L = 22 ft W1 = 10.5 ft W2 = 32.5 ft PIPE NO. 502 Q25 = 304 cfs La = 46 ft. Do = 60 in. d50 = 18 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 195 S.Y. 18” Rip Rap L = 46 ft W1 = 15 ft W2 = 61 ft Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 PIPE NO. 600 Q25 = 60 cfs La = 25 ft. Do = 30 in. d50 = 12 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 56 S.Y. 12” Rip Rap L = 25 ft W1 = 7.5 ft W2 = 32.5 ft PIPE NO. 601 Q25 = 70 cfs La = 30 ft. Do = 54 in. d50 = 12 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 95 S.Y. 12” Rip Rap L = 30 ft W1 = 13.5 ft W2 = 43.5 ft Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 PIPE NO. 610 Q25 = 115 cfs La = 26 ft. Do = 48 in. d50 = 12 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 73 S.Y. 12” Rip Rap L = 26 ft W1 = 12 ft W2 = 38 ft PIPE NO. 710 Q25 = 148 cfs La = 34 ft. Do = 48 in. d50 = 15 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 110 S.Y. 15” Rip Rap L = 34 ft W1 = 12 ft W2 = 36 ft Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 DOWNDRAIN NO. C Q25 = 54 cfs La = 28 ft. Do = 24 in. d50 = 15 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 63 S.Y. 15” Rip Rap L = 31.5 ft W1 = 18 ft W2 = 18 ft *Outlet protection dimensions modified to fit within the stormwater conveyance channel. DOWNDRAIN NO. D (2 Pipes) Q25 = 107 cfs La = 26 ft. Do = (2)-24 = 48 in. d50 = 12 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 73 S.Y. 12” Rip Rap L = 36.5 ft W1 = 18 ft W2 = 18 ft *Outlet protection dimensions modified to fit within the stormwater conveyance channel. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 DOWNDRAIN NO. G (2 Pipes) Q25 = 73 cfs La = 24 ft. Do = (2)-24 = 48 in. d50 = 9 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 64 S.Y. 9” Rip Rap L = 32 ft W1 = 18 ft W2 = 18 ft *Outlet protection dimensions modified to fit within the stormwater conveyance channel. DOWNDRAIN NO. H Q25 = 27 cfs La = 18 ft. Do = 24 in. d50 = 6 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 30 S.Y. 6” Rip Rap L = 15 ft W1 = 18 ft W2 = 18 ft *Outlet protection dimensions modified to fit within the stormwater conveyance channel. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 DOWNDRAIN NO. O (2 Pipes) Q25 = 95 cfs La = 24 ft. Do = (2)-24 = 48 in. d50 = 9 in. Tailwater Condition < 0.5 Do Quantity of Rip Rap = 18 2 LaLaDO  + = 64 S.Y. 9” Rip Rap L = 32 ft W1 = 18 ft W2 = 18 ft *Outlet protection dimensions modified to fit within the stormwater conveyance channel. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 2. EXISTING SEDIMENT BASIN NO. 1 Basin No. 1 has been previously designed and permitted. The following section is included for reference and no changes have been proposed to the previous design. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3. EXISTING SEDIMENT BASIN NO. 2 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.1 Sediment Basin Design Criteria Existing Sediment Basin No. 2 at the Uwharrie Regional MSW Landfill is designed utilizing the following design criteria. A. Minimum Length to Width Ratio = 2:1 B. Surface Area @ 10 year storm = 0.01 acres min. per cfs of flow. C. 1800 cubic feet of volume per acre of disturbed land measured at 3' depth elevation. D. Retain the 25 year storm plus the sediment from item C above below the crest of the riser. For each basin, the actual design criteria is compared to the DEQ recommended criteria. Existing Sediment Basin No. 2 Criteria Recommended Min. Actual Length 2:1 2:1 Surface Area .010 Acre/cfs 0.0098 Acre/cfs Volume at 3' Depth Elevation 1800 C.F./Acre 4505 C.Y./Acre Storm Retention None 25 year Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.2 Sediment Calculation Assume maximum sediment (1,800 c.f. / acre) from 33.4 disturbed acres. 33.4 Acres x 1,800 c.f./acre = 60,120 c.f. This sediment volume corresponds to Elev = 601.25 Initial Basin Contours w/o Sediment Basin Contours w/ Sediment 600.00 45,404 s.f. 600.00 38 s.f. 602.00 51,054 s.f. 601.25 38 s.f. 604.00 56,949 s.f. 601.26 48,935 s.f. 606.00 63,966 s.f. 602.00 51,054 s.f. 608.00 70,639 s.f. 604.00 56,949 s.f. 610.00 77,452 s.f. 606.00 63,966 s.f. 608.00 70,639 s.f. 610.00 77,452 s.f. Elev. = 600 + 60,120 / 96,458*(2) = 600 + 1.25 = 601.25 Assume only 38 s.f. available around riser up to Elev. 601.25 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.3 Sediment Basin Dewatering Assumptions: Size of dewatering holes = A0 = As x (2h)½ T x Cd x 20,428 A0 = Surface Area of Dewatering Holes, ft2 As = Surface Area at Pond, ft2 h = Head of Water Above Holes, ft Cd = Coefficient of Contraction for an Orifice (use 0.6). T = Detention Time or Time to Dewater Pond = 36 hours Existing Basin No. 2 Ao = 115 - 1" Dia. Holes = .627 T = 73,399 (2x5.5)½ As = 73,399 ft2 (.627)(.6)(20,428) h = 5.5 ft T = 31.7 hours Cd = 0.6 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.4 Reservoir Routing Reservoir routing is determined by using the HydroFlow Computer Program. Peak inflow rates (Q) are determined using the SCS Method and HydraFlow computer program. Peak inflow rates are calculated for the 10 year, 25 year and 100 year storm events and are summarized below. Q10 = 154.00 cfs Q25 = 201.59 cfs Q100 = 279.60 cfs The bottom of the pond has been set at 600.00. Dewatering of the pond is accomplished by 115 - 1" diameter holes beginning at an invert elevation of 600.50. For routing calculations, the existing 48" diameter riser with 115 each - 1" diameter holes beginning at an invert elevation of 600.50 is used. The top of the riser is at an elevation of 606.50. The bottom of the pond is elev. 600.00. The invert of the carrier pipe 600.00. The top of the levee around the sediment pond is at an elevation of 610.00. The maximum height of sediment is elevation 601.25. Based on the above information the reservoir routing calculations are performed and summarized below. STORM YEAR PEAK INFLOW CFS PEAK OUTFLOW CFS PEAK ELEV. FEET 10 154.00 6.69 605.13 25 201.59 9.11 606.26 100 279.60 36.19 607.31 Based on these routing calculations, the riser is large enough and the pond has sufficient storage volume to retain the sediment from 34 disturbed acres plus the 25 year storm event from the entire drainage area below the crest of the riser (elev. 606.50). Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.5 Worst Case Flow Conditions Assume the dewatering orifices in the overflow structure are not operating and the starting water surface elevation is at the top of the riser (606.50) at the start of a 100 year storm event. Top of Pond = 610.00 Less Required Freeboard = 0.5 Maximum Allowable Water Surface Elevation in Emergency Spillway = 609.50 Re-route the 100 year storm event through the existing 48" diameter overflow structure, 30" dia. carrier pipe. To ensure adequate capacity is available in the worst case flow condition, a 36" x 22" elliptical pipe has been installed through the basin levee at elevation 606.50. (The elliptical pipe has been modeled in Hydrographs as an equivalent 28” round pipe). The maximum flow out of the pond will be 95.04 cfs. The maximum water surface elevation is 609.48 which is less than the maximum allowable water surface elevation of 609.50. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.6 Sediment Trapping Efficiency RECOMMENDED SURFACE AREA REQUIREMENTS = 0.01 ACRE PER CFS Q10 = 154.00 cfs Minimum Surface Area = 0.01 acres x Q10 = 1.54 acres = 67,082 s.f. Actual Surface Area at Top of Riser = 65,634 s.f. Actual area is within ~2% of the recommended surface area. This pond was previously designed and approved under different rules. The majority of the drainage area is well vegetated so the surface area is sufficient and will be monitored to NNPDES standards. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.7 Riser Pipe and Carrier Pipe Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.8 Anti-Seep Collar Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 3.9 Riser Base Foundation Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4. EXISTING WET DETENTION BASIN NO. 5 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.1 Wet Detention Basin Design Criteria Wet Detention Basin No. 5 at Uwharrie Regional MSW Landfill has been designed to meet the requirements of the North Carolina Sedimentation Pollution Control Act of 1973 and the Rule 15A NCAC 2H.1000 for wet detention basins. The North Carolina Erosion and Sediment Control Plan and Design Manual and the Stormwater Best Management Practices design manual are also being used to design the necessary controls for this project. Requirements: 1. Minimum Length to Width Ratio = 1.5:1. 2. Sediment Storage per Disturbed Acre = 1,800 c.f. per acre with sediment storage kept within depth of permanent pool. 3. A forebay equal to approximately 20% of the total basin volume shall be constructed at the head of the basin. 4. Minimum Permanent Pool Depth = 3 feet = Permanent Water Quality Pool 5. Temporary Water Quality Pool = volume of stormwater run-off from drainage area and is constructed above the permanent pool. 6. Temporary Water Quality Pool dewatered between 48 - 120 hours. 7. At 50% impervious cover and 3 foot permanent pool depth, there must be a permanent pool surface area equal to 3.0% of the drainage area. 8. Retain run-off from 25 year, 24-hour storm event Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.2 Design Calculations Criteria DEQ Minimum Requirements Actual Design 1. Length:Width 1.5:1 3.3:1 2. Sediment Storage in Permanent Pool 1,800 c.f. / acre 3,960 c.f. / acre 3. Forebay Volume as % of Total Basin Volume ± 20% 22.8% 4. Permanent Pool Depth 3 - 6 feet 3 feet 5. Temporary Water Quality Pool Volume from Drainage Area 1" 2.6" 6. Temporary Water Quality Pool Dewatering Time 48 - 120 hours 57 hours 7. Permanent Pool Surface Area for 50% Impervious, 3' permanent pool and 90% TSS Removal as a Percentage of the Total Drainage Area 3.0% 3.2% 8. Storm Event Retention below Top of Riser None 25 Year Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 Sediment Storage in Permanent Pool • Recommended Sediment Storage per Acre = 1,800 c.f./Acre • Drainage Area = 75 Ac. • Volume in Permanent Pool = 297,440 c.f. • Available Sediment Storage : 297,440 c.f. ÷ 75 Ac. = 3,960 c.f/Ac. Forebay Volume as % of Total Basin Volume • Volume in forebay at elevation 629 = 296,706 c.f. • Volume in Wet Detention Basin 5 at elevation 629 = 1,005,158 c.f. • Volume of Forebay to Total Volume : 296,706 c.f. x 100% = 22.8% 296,706 c.f. + 1,005,158 c.f. Average Permanent Pool Depth • Volume in permanent pool at elevation 623 = 297,440 c.f. • Surface Area of permanent pool at elevation 623 = 104,904 s.f. • Average permanent pool depth = 297,440 c.f. = 2.8 ft. 104,904 s.f. Temporary Water Quality Pool Volume from Drainage Area • Recommended Volume of Runoff held in Temporary Water Quality Pool = 1” • Actual Volume between Top of Perm. Pool (Elev. = 623) and Top of Riser (Elev. = 629) = 709,955 c.f. • Equivalent to 2.6”per acre for 75 acres Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.3 Wet Detention Basin Dewatering of First 1" of Runoff Volume of 1" Runoff = 1" x 75 Acres = 272,250 c.f. In Basin No. 5, this volume equates to Elevation 625.45 At Elev. 625.45, surface area = 115,556 s.f. Assume 4" x 13" orifice at elevation 623.00 Dewatering Time = T = As x (2h)1/2 Ao x Cd x 20,428 Ao = Surface Area of weir, ft2 = 4" x 13" = 0.361 s.f. As = Surface Area = 115,556 s.f. h = Head of Water Above Holes, ft = 625.45 – 623.00 = 2.45 ft. Cd = Coefficient of Contraction for an Orifice (use 0.6) T = Detention Time (must be 48 - 120 hours) T = 169,891 (2 x .77)2 0.361 x 0.6 x 20,428 T = 57.8 hours Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.4 Permanent Pool Surface Area Table 10.3 of the Stormwater Best Management Practices Manual lists the required surface area of the permanent pool for 90% pollutant removal efficiency in the Piedmont area. Based on a permanent pool depth of 3 feet and a 50% impervious cover area, the surface area of the permanent pool needs to be 3.00% of the drainage area. Drainage area = 75 acres = 3,267,000 s.f. Required Surface Area = .03 x 3,267,000 = 98,010 s.f. Actual Permanent Pool Surface Area @ Elev. 623.00 = 104,904 s.f. Actual Percent of Drainage Area = 104,904 s.f. / 3,267,000 s.f. x 100% = 3.2% Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.5 Reservoir Routing Reservoir routing is determined by using the HydraFlow Computer Program. Peak inflow rates (Q) are determined using the SCS Method and HydraFlow computer program. Peak inflow rates are calculated for the 10 year, 25 year and 100 year storm events and are summarized below. Total basin inflow is calculated by adding the Forebay 5A inflow and the Basin 5B Direct Area inflow (Hydrographs #29 and 30). Q10 = 230.10 + 45.76 = 275.86 cfs Q25 = 303.35 + 61.92 = 365.27 cfs Q100 = 422.35 + 88.84 = 511.19 cfs The bottom of the pond has been set at 620.00. The permanent pool has been set at elevation 623.00. Dewatering of the pond is accomplished by 1 - 4" x 13" rectangular orifice with an invert elevation of 623.00. For routing calculations, a 6'x 6' concrete box with 1 - 4" x 13" orifice at an invert elevation of 623.00 is used. The top of the riser is at an elevation of 629.00. The bottom of the pond is elev. 620.00. The invert of the carrier pipe 623.00. The top of the embankment around the sediment pond is at an elevation of 632.00. Based on the above information the reservoir routing calculations are performed and summarized below. STORM YEAR PEAK INFLOW CFS PEAK OUTFLOW CFS PEAK ELEV. FEET 10 275.86 2.88 625.94 25 365.27 3.60 627.47 100 511.19 10.71 629.18 Based on these routing calculations, the riser is large enough and the pond has sufficient storage volume to retain the sediment from 75 disturbed acres within the forebay and permanent pool plus the 25 year storm event from the entire drainage area below the crest of the riser (elev. 629.00). Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.6 Worst Case Flow Conditions Assume the dewatering opening in the overflow structure is not operating and the starting water surface elevation is at the top of the riser (629.00) at the start of a 100 year storm event. Top of Pond = 632.00 Less Required Freeboard = 0.5 Maximum Allowable Water Surface Elevation in Emergency Spillway = 631.50 Re-route the 100 year storm event through the existing 6' x 6' box overflow structure, 48" dia. carrier pipe. The maximum flow out of the pond will be 149.67 cfs. The maximum water surface elevation is 631.40 which is less than the maximum allowable water surface elevation of 631.50. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.7 Sediment Trapping Efficiency (E&S Manual) RECOMMENDED SURFACE AREA REQUIREMENTS = 0.01 ACRE PER CFS Q10 = 275.86 cfs Minimum Surface Area = 0.01 acres x Q10 = 2.76 acres = 120,164 s.f. Actual Surface Area at Top of Riser (El. 629.00) = 131,078 s.f. Actual Surface is greater than minimum surface area. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.8 Riser Pipe and Carrier Pipe Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.9 Anti-Seep Collar Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 4.10 Riser Base Foundation Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5. EXISTING WET DETENTION BASIN NO. 6 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.1 Wet Detention Basin Design Criteria Wet Detention Basin No. 6 at Uwharrie Regional MSW Landfill has been designed to meet the requirements of the North Carolina Sedimentation Pollution Control Act of 1973 and the Rule 15A NCAC 2H.1000 for wet detention basins. The North Carolina Erosion and Sediment Control Plan and Design Manual and the Stormwater Best Management Practices design manual are also being used to design the necessary controls for this project. Requirements: 1. Minimum Length to Width Ratio = 1.5:1. 2. Sediment Storage per Disturbed Acre = 1,800 c.f. per acre with sediment storage kept within depth of permanent pool. 3. A forebay equal to approximately 20% of the total basin volume shall be constructed at the head of the basin. 4. Minimum Permanent Pool Depth = 3 feet = Permanent Water Quality Pool 5. Temporary Water Quality Pool = volume of stormwater run-off from drainage area and is constructed above the permanent pool. 6. Temporary Water Quality Pool dewatered between 48 - 120 hours. 7. At 50% impervious cover and 3 foot permanent pool depth, there must be a permanent pool surface area equal to 3.00% of the drainage area. 8. Retain run-off from 25 year, 24-hour storm event Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.2 Design Calculations Criteria DEQ Minimum Requirements Actual Design 1. Length:Width 1.5:1 3.3:1 2. Sediment Storage in Permanent Pool 1,800 c.f. / acre 3,742 c.f. / acre 3. Forebay Volume as % of Total Basin Volume ± 20% 18.6% 4. Permanent Pool Depth 3 - 6 feet 3 feet 5. Temporary Water Quality Pool Volume from Drainage Area 1" 1.78" 6. Temporary Water Quality Pool Dewatering Time 48 - 120 hours 106.7 hours 7. Permanent Pool Surface Area for 50% Impervious, 3' permanent pool and 90% TSS Removal as a Percentage of the Total Drainage Area 3.0% 3.07% 8. Storm Event Retention below Top of Riser None 25 Year Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 Sediment Storage in Permanent Pool • Recommended Sediment Storage per Acre = 1,800 c.f./Acre • Drainage Area = 37.5 Ac. • Volume in Permanent Pool = 140,328 c.f. • Available Sediment Storage : 140,328 c.f. ÷ 37.5 Ac. = 3,742 c.f/Ac. Forebay Volume as % of Total Basin Volume • Volume in forebay at elevation 626 = 20,542 c.f. • Volume in Wet Detention Basin 6 at elevation 618 = 90,037 c.f. • Volume of Forebay to Total Volume: 20,542 c.f. x 100% = 18.6% 20,542 c.f. + 90,037 c.f. Average Permanent Pool Depth • Volume in permanent pool at elevation 619 = 140,328 c.f. • Surface Area of permanent pool at elevation 619 = 50,290 s.f. • Average permanent pool depth = 140,328 c.f. = 2.8 ft. 50,290 s.f. Temporary Water Quality Pool Volume from Drainage Area • Recommended Volume of Runoff held in Temporary Water Quality Pool = 1” • Actual Volume between Top of Perm. Pool (Elev = 619) and Top of Riser (Elev = 623) = 243,188 c.f. • Equivalent to 1.78” per acre for 37.5 acres Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.3 Wet Detention Basin Dewatering of First 1" of Runoff Volume of 1" Runoff = 1" x 37.5 Acres = 136,125 c.f. In Basin No. 6, this volume equates to Elevation 621.51 At Elev. 621.51, surface area = 57,238 s.f. Assume 2 - 3" dia. holes at elevation 619 Dewatering Time = T = As x (2h)2 Ao x Cd x 20,428 Ao = Surface Area of Dewatering Holes, ft2 = 2 - 3"ι holes = 0.0981 s.f. As = Surface Area = 57,238 s.f. H = Head of Water Above Holes, ft = 621.51 - 619 = 2.51 ft. Cd = Coefficient of Contraction for an Orifice (use 0.6) T = Detention Time or Time to Dewater Pond (must be 48 - 120 hours) T = As x (2h)1/2 = 57,238 (2 x 2.51)½ = 106.7 hours Ao x Cd x 20,428 .0981(.6)(20,428) Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.4 Permanent Pool Surface Area Table 10.3 of the Stormwater Best Management Practices Manual lists the required surface area of the permanent pool for 90% pollutant removal efficiency in the Piedmont area. Based on a permanent pool depth of 3 feet and a 50% impervious cover area, the surface area of the permanent pool needs to be 3.0% of the drainage area. Drainage area = 37.5 acres = 1,633,500 s.f. Required Surface Area = .03 x 1,633,500 = 49,005 s.f. Actual Permanent Pool Surface Area @ Elev. 619.00 = 50,290 s.f. Actual Percent of Drainage Area = 50,290 s.f. / 1,633,500 s.f. x 100% = 3.07% Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.5 Reservoir Routing Reservoir routing is determined by using the HydroFlow Computer Program. Peak inflow rates (Q) are determined using the SCS Method and HydraFlow computer program. Peak inflow rates are calculated for the 10 year, 25 year and 100 year storm events and are summarized below. Q10 = 140.13 + 18.82 = 158.95 cfs Q25 = 184.72 + 24.57 = 209.29 cfs Q100 = 257.83 + 34.08 = 291.91 cfs The bottom of the pond has been set at 616.00. The permanent pool has been set at elevation 619.00. Dewatering of the pond is accomplished by 2 - 3" diameter holes with an invert elevation of 619.00. For routing calculations, a 48" diameter riser with 2 - 3" diameter holes with an invert elevation of 619.00 are used. The top of the riser is at an elevation of 623.30. The bottom of the pond is elev. 616.00. The invert of the carrier pipe 616.00. The top of the embankment around the sediment pond is at an elevation of 627.00. Based on the above information the reservoir routing calculations are performed and summarized below. STORM YEAR PEAK INFLOW CFS PEAK OUTFLOW CFS PEAK ELEV. FEET 10 158.95 0.91 622.68 25 209.29 3.90 623.46 100 291.91 19.09 623.87 Based on these routing calculations, the riser is large enough and the pond has sufficient storage volume to retain the sediment from 37.5 disturbed acres within the forebay and permanent pool plus the 25 year storm event from the entire drainage area below the embankment with 3.54 ft of freeboard. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.6 Worst Case Flow Conditions Assume the dewatering opening in the overflow structure is not operating and the starting water surface elevation is at the top of the riser (623.30) at the start of a 100 year storm event. Top of Pond = 627.00 Less Required Freeboard = 0.5 Maximum Allowable Water Surface Elevation in Emergency Spillway = 626.50 Re-route the 100 year storm event through the existing 48" diameter overflow structure, 36" dia. carrier pipe. The maximum flow out of the pond will be 90.69 cfs. The maximum water surface elevation is 626.22 which is less than the maximum allowable water surface elevation of 626.50. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.7 Sediment Trapping Efficiency (E&S Manual) RECOMMENDED SURFACE AREA = 0.01 ACRE PER CFS Q10 = 158.95 cfs Minimum Surface Area = 0.01 acres x Q10 = 1.58 acres = 69,238 s.f. Actual Surface Area at Top of Riser (El. 623.30) = 62,379 s.f. Actual surface area is within 10% of the recommended area. This pond was previously designed and approved under different rules. The majority of the drainage area is well vegetated so the surface area is sufficient and will be monitored to NNDPES standards. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.8 Riser Pipe and Carrier Pipe Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.9 Anti-Seep Collar Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 5.10 Riser Base Foundation Design Existing structures have been previously designed. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6. WET DETENTION BASIN NO. 7 Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.1 Wet Detention Basin Design Criteria Wet Detention Basin No. 7 at Uwharrie Regional MSW Landfill has been designed to meet the requirements of the North Carolina Sedimentation Pollution Control Act of 1973 and the Rule 15A NCAC 2H.1000 for wet detention basins. The North Carolina Erosion and Sediment Control Plan and Design Manual and the Stormwater Best Management Practices design manual are also being used to design the necessary controls for this project. Requirements: 1. Minimum Length to Width Ratio = 1.5:1. 2. Sediment Storage per Disturbed Acre = 1,800 c.f. per acre with sediment storage kept within depth of permanent pool. 3. A forebay equal to approximately 20% of the total basin volume shall be constructed at the head of the basin. 4. Minimum Permanent Pool Depth = 3 feet = Permanent Water Quality Pool 5. Temporary Water Quality Pool = volume of stormwater run-off from drainage area and is constructed above the permanent pool. 6. Temporary Water Quality Pool dewatered between 48 - 120 hours. 7. At 50% impervious cover and 3 foot permanent pool depth, there must be a permanent pool surface area equal to 3.0% of the drainage area. 8. Retain run-off from 25 year, 24-hour storm event. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.2 Design Calculations Criteria DEQ Minimum Requirements Actual Design 1. Length:Width 1.5:1 2.7:1 2. Sediment Storage in Permanent Pool 1,800 c.f. / acre 15,830 c.f. / acre 3. Forebay Volume as % of Total Basin Volume ± 20% 17% 4. Permanent Pool Depth 3 – 7.5 feet 4 feet 5. Temporary Water Quality Pool Volume from Drainage Area 1" 7.10" 6. Temporary Water Quality Pool Dewatering Time 48 - 120 hours 61 hours 7. Permanent Pool Surface Area for 50% Impervious, 3' permanent pool and 90% TSS Removal as a Percentage of the Total Drainage Area 3.0% 10.3% 8. Storm Event Retention below Top of Riser None 25 Year 9. Vegetated Shelf 10' wide 10' wide Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 Sediment Storage in Permanent Pool • Recommended Sediment Storage per Acre = 1,800 c.f./Acre • Drainage Area = 35.0 Ac. • Volume in Permanent Pool = 554,061 c.f. • Available Sediment Storage : 554,061 c.f. ÷ 35.0 Ac. = 15,830 c.f/Ac. Forebay Volume as % of Total Basin Volume • Volume in forebay at elevation 693 = 84,752 c.f. • Volume in Wet Detention Basin 7 at elevation 693 = 413,310 c.f. • % Volume of Forebay to Total Volume : 84,752 c.f. x 100% = 17% 413,310 c.f. + 84,752 c.f. Average Permanent Pool Depth • Volume in permanent pool at elevation 693 = 554,061 c.f. • Surface Area of permanent pool at elevation 693 = 157,119 s.f. • Average permanent pool depth = 554,061 c.f. = 3.53 ft. 157,119 s.f. Temporary Water Quality Pool Volume from Drainage Area • Recommended Volume of Runoff held in Temporary Water Quality Pool = 1” • Actual Volume between Top of Perm. Pool (Elev. = 693) and Top of Riser (Elev = 698) = 901,957 c.f. • Equivalent to 7.10” per acre for 35 acres Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.3 Wet Detention Basin Dewatering of First 1" of Runoff Volume of 1" Runoff = 1" x 35 Acres = 127,050 c.f. In Basin No. 7, this volume equates to Elevation 693.76. At Elev. 693.76, the surface area = 169,887 s.f. Assume 4” x 10” orifice with invert elevation of 693. Dewatering Time = T = As x (2h)2 Ao x Cd x 20,428 Ao = Surface Area of Orifice, ft2 = 4”x10” = 0.28 s.f. As = Surface Area = 169,887 s.f. H = Head of Water Above Holes, ft = 693.76 – 693.00 = 0.76 ft. Cd = Coefficient of Contraction for an Orifice (use 0.6) T = Detention Time or Time to Dewater Pond (must be 48 - 120 hours) T = As x (2h)1/2 = 169,887 (2 x 0.76)½ = 61 hours Ao x Cd x 20,428 .28(.6)(20,428) Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.4 Permanent Pool Surface Area Table 10.3 of the Stormwater Best Management Practices Manual lists the required surface area of the permanent pool for 90% pollutant removal efficiency in the Piedmont area. Based on a permanent pool depth of 3 feet and a 50% impervious cover area, the surface area of the permanent pool needs to be 3.0% of the drainage area. Drainage area = 35 acres = 1,524,600 s.f. Required Surface Area = .03 x 1,524,600 = 45,738 s.f. Actual Permanent Pool Surface Area @ Elev. 693.00 = 157,119 s.f. Actual Percent of Drainage Area = 157,119 s.f. / 1,524,600 s.f. x 100% = 10.3% Since the basin has been designed to meet 90% TSS pollutant removal requirements, a 30' long vegetative filter strip shall not be required. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.5 Reservoir Routing Reservoir routing is determined by using the HydroFlow Computer Program. Peak inflow rates (Q) are determined using the SCS Method and HydraFlow computer program. Peak inflow rates are calculated for the 10 year, 25 year and 100 year storm events and are summarized below. Q10 = 149.83 cfs Q25 = 194.67 cfs Q100 = 268.57 cfs The bottom of the pond has been set at 689.00. The permanent pool has been set at elevation 693.00. Dewatering of the pond is accomplished by 1 - 4" x 10" rectangular orifice with an invert elevation of 693.00. For routing calculations, a 6' x 6' concrete box with 1- 4" x 10" rectangular orifice with an invert of 693.00 is used. The top of the riser is at an elevation of 698.00. The bottom of the pond is elev. 689.00. The invert of the carrier pipe 693.00. The top of the embankment around the sediment pond is at an elevation of 702.00. Based on the above information the reservoir routing calculations are performed and summarized below. STORM YEAR PEAK INFLOW CFS PEAK OUTFLOW CFS PEAK ELEV. FEET 10 149.83 1.49 694.66 25 194.67 1.76 695.19 100 268.57 2.15 696.09 Based on these routing calculations, the riser is large enough and the pond has sufficient storage volume to retain the sediment from 35 disturbed acres within the forebay and permanent pool plus the 100 year storm event from the entire drainage area below the crest of the riser (elev. 698.00). Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.6 Worst Case Flow Conditions Assume the dewatering opening in the overflow structure is not operating and the starting water surface elevation is at the top of the riser (698.00) at the start of a 100 year storm event. Top of Pond = 702.00 Less Required Freeboard = 1.00 Maximum Allowable Water Surface Elevation in Emergency Spillway = 701.00 Re-route the 100 year storm event through the existing 6' x 6' box overflow structure, 42" dia. carrier pipe. The maximum flow out of the pond will be 87.14 cfs. The maximum water surface elevation is 699.14 which is less than the maximum allowable water surface elevation of 701.00. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.7 Sediment Trapping Efficiency (E&S Manual) RECOMMENDED SURFACE AREA = 0.01 ACRE PER CFS Q10 = 149.83 cfs Minimum Surface Area = 0.01 acres x Q10 = 1.50 acres = 65,266 s.f. Actual Surface Area at Top of Riser (El. 698.00) = 196,693 s.f. Actual Surface is greater than minimum surface area. Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.8 Riser Pipe and Carrier Pipe Design OVERFLOW STRUCTURE NO. DESIGN OF OVERFLOW STRUCTURE FLOW (Q) WORST CASE = 100 YEAR STORM EVENT OCCURS WHEN WATER SURFACE ELEVATION AT TOP OF OVERFLOW STRUCTURE AND ALL FLOW (Q) MAXIMUM = CFS PIPE NO. HEADWALL NO. ELEV. ELEV. MAX. W.S. ELEV. SQ. OVERFLOW STRUCTURE ' @ % DEWATERING HOLES ARE PLUGGED HEAD (H) MAXIMUM = MAXIMUM WATER SURFACE ELEVATION WITH 1' OF FREEBOARD MINUS THE ELEVATION AT THE CREST OF THE OVERFLOW STRUCTURE = - = FEET BASED ON ABOVE HEAD, USE ' SQ. OVERFLOW STRUCTURE (SEE CHART ON NEXT PAGE) AS EMERGENCY SPILLWAY ELEV. ELEV. ELEV. G.34 Figure G.2: Riser Inflow Curves CARRIER PIPE NO. Q = _________ CFS WORST CASE MAXIMUM HEADWATER = TOP OF LEEVE ELEVATION MINUS 1' FREEBOARD = _________ - _________ = _________ HEAD (H) = MAXIMUM WATER ELEVATION ALLOWED MINUS THE CENTERLINE ELEVATION AT THE DOWNSTREAM END OF THE CARRIER PIPE = _________ - _________ = _________ LENGTH (L) = _________ LENGTH FACTOR = _________ FOR LENGTHS OTHER THAN 70' Q (AVAILABLE) = Q FROM TABLE TIMES LENGTH FACTOR = _________ X _________ = _________ Q (AVAILABLE) MUST BE GREATER THAN Q WORST CASE USE _______" DIAMETER _________ CARRIER PIPE _______' @ _______ % ELEV. ELEV. MAX. W.S. ELEV. INV. INV. __________ OVERFLOW STRUCTURE NO. _______ HEADWALL NO. ______ I ,,;"-~ ~ Tabla 6-25 PIPE fLOW CHART n • 0.025 - FOR CORRUGATED UETAL PIPE INLET K." K, • K, a 1.0 AND 70 FEET OF CORRUGATED UETACl'IPE CONDUIT (lullllow uaumtd) Note correction hlciOf& lor pipe lengths other I han 70 lui al~m•l•r 9t PIP9 In Inch·~ H.lnf••t 12" 15" 18" 21" 24" 30" 35" 42" 46" 54" 60" 66" 72" 78" 84" oo· 96" 1 3.22 5.4-4 8.29 11.8 15.9 26.0 38.6 53.8 7U 9l.!i 1U 139 167 197 229 26<1 302 2 4.55 7.89 11.7 16.7 22.5 36.8 54.6 76.0 101 129 161 Hl7 236 278 32<4 374 427 3 5.57 9.42 H.-4 20.<4 27.5 <45.0 66.9 93.1 124 159 198 241 289 341 397 <458 523 .. 6.43 10.9 16.6 23.5 31.8 52.0 77.3 108 143 183 228 278 334 394 459 529 60-t 5 7.19 12.2 18.5 26.3 35.5 58.1 86.4 120 160 205 255 311 373 HO 513 591 675 6 7.86 13.3 20.3 28.8 36.9 67.7 G-1.6 132 175 224 280 341 409 482 562 647 /39 7 8.51 H.4 21.9 31.1 <42.0 68.8 102 H2 189 242 302 308 <441 521 607 699 798 a 9.10 15.<4 23.5 33.3 44.9 73.5 109 152 202 259 323 394 <472 557 685 748 854 9 9.65 16.3 2<4.9 35.3 <47.7' 78.0 116 161 214 275 342 418 500 590 688 793 905 tO 10.2 17.2 26.2 37.2 50.2 82.2 122 170 226 289 361 440 527 622 725 636 954 11 10.7 18.0 27.5 39.0 52.7 88.2 128 178 237 304 379 462 553 653 761 877 1001 12 t 1.l 18.9 28.7 <40.8 55.0 90.1 134 188 247 317 395 482 578 682 79<4 916 10<45 ' 13 11.8 19.6 29.9 42.<4 57.3 93.7 139 194 257 330 411 502 601 710 827 953 1086 H 12.0 20.1 31.0 41.1 59.<4 97.3 145 201 267 342 427 521 624 736 858 989 1129 15 12.5 21.1 32.1 45.6 61.5 101 150 206 277 354 -442 539 646 782 886 1024 1169 10 12.9 21.8 33.2 47.1 63.5 104 ISS 215 266 366 457 557 667 767 917 1057 1207 t7 13.3 22.<4 34.2 -48.5 65.5 107 159 222 294 377 171 574 688 812 946 1090 12H 1a 13.7 23.1 35.~ 49.9 67.4 liD 164 226 303 386 484 591 708 835 973 1121 1260 19 14.0 23.8 36.1 51.3 69.2 113 168 231 311 399 497 607 ' 727 858 1000 1152 1315 20 H.4 24.3 37.1 52.6 71.0 116 173 240 319 409 510 623 745 880 1026 1182 1350 21 H.7 21.9 38.0 53.9 72.8 ·' 119 177 246 327 ~19 523 638 764 902 1051 1211 1383 22 15.1 25.5 38.9 55.2 74.5 122 181 252 335 429 £35 653 782 923 1076 1240 HIS 23 15.4 26.1 39.6 56.5 76.2 125 186 256 342 439 547 666 800 944 1100 1266 1447 2-4 15.8 26.7 40.6 57.7 17.6 127 189 263 350 448 659 662 817 964 1123 1295 1478 25 1(1.1 27.2 <41.5 58.9 79.4 130 193 269 357 458 571 696 834 '984 1147 1322 1509 28 16.<4 27.7 <42.3 60.0 81.0 133 197 274 364 467 582 710 850 1004 1169 1348 1539 27 16.7 28.3 43.1 61.2 82.5 135 20t 279 371 476 593 723 887 1023 1192 1373 1586 211 17.0 28.6 43.9 62.3 6i-1 136 204 285 378 484 604 737 863 1041 1214 1399 1597 29 17.3 29.3 44.7 63.4 85.5 HO 208 290 384 493 615 750 898 1060 1235 \423 1625 30 ]7.§ ~H 45.4 64~7.9 J42 212 29j 391 SOl 625 763 913 10j8 l25~!L.__jfi53 Lin llutt -CorrectiOn !'actors ~Ol Other Piee LenljlhS 20 1.30 1.2<4 1.21 1.18 1.15 1.12 1.10 1.08 1.07 1.06 1.05 1.05 1.04 1.04 1.03 1.03 1.03 30 1.22 1.18 1.15 1.13 1.12 1.09 1.08 1.06 1.05 1.05 1.04 1.04 1.03 1.03 1.03 1.02 1.02 40 1.15 1.13 1.11 1.10 1.08 1.07 1.05 1.05 1.04 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.02 50 1.09 1.08 1.07 1.06 1.05 1.0~ 1.0~ 1.03 1.03 1.02 1.02 1.02 1.02 1.01 1.01 1.01 1.01 60 1.04 1.0-4 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01: 1.01 1.01 70 t.OO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 60 .96 .97 .97 .97 .96 .96 .98 .99 .99 ,.99 .99 .99 .99 .99 .99 .99 .99 00 .93 .94 .94 .95 .95 .96 .97 .97 .96 .. 98 .98 .98 .98 .99 .99 .99 .99 100 .00 .91 .92 .93 .93 .95 .95 .96 .97 .97 .97 .98 .98 .98 .98 .98 .98 120 .8<4 .88 .87 .89 .90 .91. .93 .94 .94 .95 .96 .96 .96 .97 .97 .97 .97 140 .80 .82 .83 .85 .86 .88 .90 .91 .92 .93 .94 .94. .95 .95 .96 .96 .96 160 .76 .78 .80 .82 .63 .86 . 68 .69 .9() .91 .92 .93 .94 .94 .95 .95 .95 ----------···-~------~------------------ 102" 342 483 592 683 764 837 904 968 1025 1080 1133 1184 1232 1278 1323 1367 1409 H50 1489 1528 1566 1603 1639 1674 1708 1742 1775 1806 t840 J81J 1.03 1.02 1.02 1.01 1.01 1.00 .99 .99 .99 .98 .97 .96 .lf!l! t ·- - (}) 0 c.: (i CD c (}) 0 > . (}) 0 (/) Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.9 Anti-Seep Collar Design Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 6.10 Riser Base Foundation Design A certain volume of concrete will be used to overcome the buoyancy of an empty overflow structure and carrier pipe that are below the assumed phreatic water surface. Net Force Calculation - Overflow Structure = (Buoyant Force) – (Structure Weight) = (L2)(w2)(h)(62.4) - (w22 – w12)(h)(150-62.4) L1 = w1 = 6' inside L2 = w2 = 6.5' outside = (6.5)(6.5)(5)(62.4) - (6.52 – 6.02)(5)(150-62.4) h = height = 5.00' = +10,445 lbs (Buoyant) Net Force Calculation - Carrier Pipe = (Buoyant Force) – (Pipe Weight) = 3.1416(R22)(Ls)(62.4)-(3.1416)(R22-r22)(150-62.4)(Ls) Ls = length in saturation zone = 44' = 3.1416(2.125)(2.125)(44)(62.4)-3.1416 (2.1252-1.752)(87.6)(44) = +21,324 lbs (Buoyant) Required Ballast Weight = (Net Force of Overflow) + (Net Force of Pipe) x Safety Factor = 31,769 lbs x 1.5 R2 = outside radius = 25.5" = 2.125' r2 = inside radius = 21" = 1.75' = 47,654 lbs Required Ballast Volume (Concrete) = Required Weight / Unit Weight of Submerged Concrete = 47,654 / 87.6 pcf = 544 cf This volume of concrete will be made up from four areas. 1. Anti-Seep Collars 2. Overflow Structure Base 3. Carrier Pipe Encasement 4. Weight of Saturated Soil Directly Above Carrier Pipe Stormwater Design Calculations Permit to Construct – Phases 5 & 6 Uwharrie Regional Landfill Montgomery County, NC October 2021 HHNT Project No. 6703-912-01 1. Anti-seep collars = area of square collar around carrier pipe x 12" thick x # of collars = [( 7.5' x 7.5' ) - (3.1416)(R22) R2 = outside radius of carrier pipe = 25.5" = 2.125' x 1' x 2 r2 = inside radius of carrier pipe = 21" = 1.75' = 84 C.F. 2. Overflow Structure Base = Volume to handle riser buoyancy x 1.5 = (10,445)(1.5)/87.6 = 179 C.F. Use 10' x 10' x 2' = 200 C.F. 3. Carrier Pipe Encasement Must extend 5' into dam. Distance from overflow structure to dam is equal to 15'. Therefore, encasement length will be 20'. Use 7' x 5.5' x 20' long Carrier pipe encasement volume = 486 C.F. 4. Weight of Saturated Soil in Length of Saturation = a. Weight of Soil = 100 lbs/C.F. b. Weight of Saturated Soil = 100 lbs/C.F. – 62.4 lbs/C.F. = 37 lbs/C.F. c. Volume of Soil in Length of Saturation over Carrier Pipe = 160 s.f. x 4 = 640 C.F. d. 640 C.F. x 37 lbs/C.F. = 23,680 lbs e. 23,680 lbs ÷ 87.6 lbs/C.F. = 270 C.F. (equivalent of submerged concrete) TOTAL REQUIRED VOLUME = 544 C.F. Actual Total Volume Anti-Seep Collars = 84 C.F. Overflow Structure Base = 200 C.F. Carrier Pipe Encasement = 486 C.F. Weight of Saturated Soil = 270 C.F. TOTAL = 1,040 C.F. => Okay Design Calculations Phase 5 & 6 Permit to Construct Uwharrie Regional Landfill Montgomery County, North Carolina Revised May 2022 HHNT Project No. 6703-912-01 6.2 LEACHATE SYSTEM DESIGN CALCULATIONS     3920 Arkwright Road, Suite 101 | Macon, Ga 31210 |Phone:  (478) 743‐7175 | Fax:  (478) 743‐1703    LEACHATE COLLECTION SYSTEM DESIGN REPORT      UWHARRIE REGIONAL LANDFILL – PHASES 5 & 6  FACILITY PERMIT NO. 6204‐MSWLF‐1995    REPUBLIC SERVICES OF NORTH CAROLINA, LLC  MONTGOMERY COUNTY, NORTH CAROLINA    OCTOBER 2021  REVISED MAY 2022                              © Republic Services, Inc. (2022)                              NC Corp License No. C‐0813  Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01        TABLE OF CONTENTS       1.0 LEACHATE COLLECTION SYSTEM DESIGN   1.1 General ................................................................................................................................... 1  1.2 HELP Model Evaluation .......................................................................................................... 1  1.3 HELP Model Results ................................................................................................................ 3  1.4 Leachate Collection Pipe Design ............................................................................................ 3  1.5 Leachate Volume Estimate Comparison ................................................................................ 4  1.6 Leachate Sump Pump Design ................................................................................................. 4  1.7 Leachate Storage .................................................................................................................... 4    2.0 ATTACHMENTS  2.1  Pipe Spacing Based on Head On Liner and Leachate Estimate Modeling (HELP)  2.2 Size of the Header Pipe in Leachate Collection System  2.3 Review of Leachate Production In Existing Landfill  2.4     Leachate Sump Pump and Forcemain Design    Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01    1    1.0 LEACHATE COLLECTION SYSTEM DESIGN  1.1 General  Hodges, Harbin, Newberry, & Tribble, Inc. (HHNT) performed the analyses necessary to design the  pipe spacing in the drainage layer proposed for the leachate collection system to maintain the  hydraulic head on the liner at a depth below the regulatory requirement of twelve (12) inches.  The  analyses were conducted by modeling the proposed liner and leachate collection system with the  Hydrologic Evaluation of Landfill Performance (HELP) program developed by the U.S. Army Corps of  Engineers1.   In addition to designing the pipe spacing for the leachate collection system, the results of the HELP  analyses were used to estimate leachate production (see Section 1.5 below).   The permitted leachate collection and composite liner system configuration were used in the HELP  modeling.  The cross‐section modeled in the HELP analysis is as follows (top to bottom):   24‐inch thick protective cover layer with a minimum permeability of 2x10‐2 cm/sec.     A 60‐mil textured HDPE geomembrane   24 inches of compacted soil with maximum permeability of 1 x 10‐7 cm/sec.  The HELP Model analyses are described and summarized in the following sections.  1.2 HELP Model Evaluation  Cases Analyzed  The leachate collection system was evaluated under active and intermediate cases as follows:   The active case includes the initial development of the landfill cell and it was modeled with  15‐feet of waste, 12‐inches of cover, over an operational period of 5 years.  For the active  case, the analysis included modeling of the base of the landfill (2.0% slope).   The intermediate case is modeled to evaluate the most common operational stage of the  landfill before it has undergone final closure.  This case was modeled with 125‐feet of waste  covered by 12‐inches of intermediate cover, modeled over a 20‐year period.  For the  intermediate case, the analysis included modeling of the base of the landfill (2.0% slope).     1 Schroeder, P.R., Dozier, T.S., Zappi, P.A., McEnroe, B.M., Sjostrom, J.W., and Peyton, R.L. (1994). “Hydrologic Evaluation of Landfill  Performance (HELP) Model:  Engineering Documentation for Version 3,” EPA/600/9‐94/xxx, U.S. Environmental Protection  Agency Risk Reduction Engineering Laboratory, Cincinnati, OH.           Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01    2    Layer Properties  The layer components used in the HELP Models are summarized in the following table:  Help Model Layers  Model Component Thickness Slope HELP Layer Permeability (k),cm/s  Active Conditions  Cover 12 inches ‐ 9 1.9 x 10‐4  Waste 15 feet ‐ 18 1.0 x 10‐3  Protective Cover Layer 24 inches 2.0% 21 2.0 x 10‐2  Geomembrane 60 mil  ‐ 35 2.0 x 10‐13  Soil Liner 24 inches ‐ 16 1.0 x 10‐7  Intermediate Conditions  Cover 12 inches ‐ 9 1.9 x 10‐4  Waste 125 feet ‐ 18 1.0 x 10‐3  Protective Cover Layer 24 inches 2.0% 21 2.0 x 10‐2  Geomembrane 60 mil  ‐ 35 2.0 x 10‐13  Soil Liner 24 inches ‐ 16 1.0 x 10‐7      Other HELP Model Input Data  Precipitation and temperature data were synthetically generated through the HELP Model for 5 and  20 years using the default values for Uwharrie Regional Landfill.  However, as required by North  Carolina regulations, the precipitation data was edited to ensure that the 25‐year, 24‐hour storm  event for the site (6.24 inches) was incorporated into the HELP Model input values.  The Leaf Area Index (LAI), a dimensionless coefficient representing the leaf area of actively transpiring  vegetation, was set to 0 (bare ground) for the active case and 1 (minimal cover) for the intermediate  cover case.    Solar radiation data was synthetically generated through the HELP model for 5 and 20 years using the  default values for Uwharrie Regional Landfill and station latitude of 36.08 degrees.  Evapotranspiration data was synthetically generated through the HELP Model for 20 years based on  data for Uwharrie Regional Landfill. Default values for latitude, start and end of growing season,  relative humidity, and average annual wind speed were used. This data is shown in the HELP Model  outputs.  The Natural Resource Conservation Service (NRCS) runoff curve numbers were selected by the HELP  model based on the soil type selected for cover. A runoff value of 25% was assumed for the active  case and 50% runoff was assumed for the intermediate cover case.    The geomembrane layer was modeled conservatively to generate the maximum head on the  geomembrane. The pinhole density was 2 per acre, the installation quality was set to “good”, and the  geomembrane defect density is 2 per acre.  Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01    3    The HELP Model runs with the results of the analyses are included in Attachment 2.1.    1.3 HELP Model Results  Head on Liner and Pipe Spacing  The estimated maximum drainage distances and peak daily values for the hydraulic head on the liner  are as follows:    Case  Average  Waste  Thickness  (ft.)  Years  Max.  Drainage  Length  (ft.)  Slope Max Head   (in)  Active 24‐inch thick Drainage Layer ‐  Daily Cover‐ Base of Landfill (2%) 15 5 175 2.0% 11.91  Intermediate 24‐inch thick Drainage Layer –  Daily Cover ‐  Base of Landfill (2%) 125 20 175 2.0% 10.40    The spacing of the proposed leachate collection pipes shown in the Engineering Plans was designed  based on the drainage lengths listed in the table above to limit the hydraulic head on the base liner  to less than 12‐inches, throughout the life of the future cells.     Leachate Flow Estimates  The results of the HELP Model analyses leachate production estimates are summarized in the following  table:   Case   Avg. Annual  Flow   (ft3/ac)  Max. Avg.  Monthly Flow  (in/month)    Max. Avg  Monthly Flow  (gal/ac)  Peak Daily  Flow  (ft3/acre)    Max Peak  Daily Flow  (gal/ac)  Peak Daily  Flow   (in/day)  Active  24‐inch thick  Drainage Layer ‐ Daily Cover‐  Base of Landfill  (2%)  46,907 1.593      43,254 419.6      3,139 0.116  Intermediate  24‐inch thick  Drainage Layer  – Daily Cover ‐   Base of Landfill  (2%)  42,692 1.429      38,801 367.4      2,748 0.101  1.4 Leachate Collection Pipe Design  The leachate collection pipes are conservatively designed to carry the peak daily flow rate from the  HELP model from the largest section area (about 12 acres) including the flow resulting from the peak  daily precipitation occurring on two (2) acres and draining towards the collection pipe.  The proposed  8‐inch SDR‐9 HPDE perforated pipe has sufficient capacity to carry this flow (refer to the "Size of the  Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01    4    Header Pipe in the LCS System" calculation package in Attachment 2.2).  Access to the pipes will be  provided through cleanouts installed at the crest of the side slopes of the landfill to facilitate pipe  inspections and cleaning if necessary.  1.5 Leachate Volume Estimate Comparison  In order to evaluate the leachate storage capacity of the facility, HHNT reviewed the historical  leachate production rates from January 2019 through September 2021 at Uwharrie Landfill (See  “Review of Leachate Production in Existing Landfill” Calculations included in Attachment 2.3). This  data shows that the average daily leachate production is approximately 185 gpad (0.007 in/day).  The  maximum daily leachate volume in this time frame occurred in January 2019 and was 292 gpad (0.011  in/day).     Since the existing landfill is still active but most of it is under intermediate cover conditions, the HELP  model scenarios that are the most relevant for comparison purposes are the intermediate cover  condition runs.  The maximum peak daily volume predicted by HELP under intermediate conditions  was 0.101 in/day, and the volume predicted by HELP for maximum monthly flow under the same  conditions is 1.429 in/month. The maximum flows predicted by the HELP model are higher than the  flows observed in the existing landfill.  The design of the leachate collection system was  conservatively based on the highest peak flow predicted by HELP, which is about 112 times higher  than the average daily flow of leachate generated in the existing landfill.  Given that the future  Sections of the landfill have a similar leachate collection system to the existing collection system, it is  likely that leachate generation will continue to closely follow the quantities recorded for the existing  landfill. The proposed collection system, as designed, should function to maintain less than 12 inches  of hydraulic head on the bottom liner.  1.6 Leachate Sump Pump Design  A side slope riser pump will be used to withdraw leachate from future sumps.  The HELP Model  calculations (Active Case) indicate a peak daily flow of 3,139 gal/ac/day (419.6 ft³/ac/day).  The  estimated peak daily flow for all future Sections was used to calculate the sump pump and forcemain  sizes.    The leachate sump pump and forcemain calculations are located in Attachment 2.4.  1.7 Leachate Storage  Leachate collected by the leachate collection system will be routed through the system and pumped into  the on‐site leachate tanks (2).  The current on‐site tanks have a capacity of 260,000 gallons each for a total  capacity of 520,000 gallons.    Once the leachate is pumped into the on‐site leachate tanks, it is pumped, and hauled off‐site for disposal.  The tanks are pumped out on a regular basis in order to maintain sufficient capacity in the tanks.    Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01    5    In the rare case that the current transportation vender or the disposal location become unavailable; the  site has identified alternate transportation vendors and alternate disposal locations as a contingency.  This  ensures that the site can continue to store, pump, haul and dispose of the leachate that is generated by  the landfill.   Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01    6    2.0 ATTACHMENTS  2.1 Pipe Spacing Based On Head on Liner and Leachate Estimate Modeling (HELP)  2.2 Size of the Header Pipe in Leachate Collection System  2.3 Review of Leachate Production in Existing Landfill  2.4 Leachate Sump Pump and Forcemain Design Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01      2.1 PIPE SPACING BASED ON HEAD ON LINER AND LEACHATE  ESTIMATE MODELING (HELP)     Project: Date:   Job#: Pipe Spacing based on Head on Liner and Leachate Estimate Modeling Objective : Development Stages and Model Layers 1. 2. Active Intermediate Layer 1 VPL 12 inches 12 inches Layer 2VPL 15 ft 125 ft Layer 3LDL Layer 5FML Layer 6BSL Notes: VPL = Vertical Percolation Layer LDL = Lateral Drainage Layer FML = Flexible Membrane Liner BSL = Barrier Soil Layer General Modeling Characteristics for each stage: Active 25 9 0 Bare Evaporative Zone Depth (in)9 Maximum Leaf Area Index 1 Quality of Vegetation Poor Intermediate % Area Allowing Runoff 50 Soil Liner Two different development stages for the landfill were considered in the analysis. The stages are: 2.0 ft 60 mil 2.0 ft 21 35 16 Active ‐ Represents the initial filling stage of a cell.   This stage was modeled with 15 feet of waste and for a period of 5 years, and  assumes a runoff rate of 25%. 9Daily/Int Cover Waste Drainage Layer 18 HDPE Liner Intermediate ‐ This generally represents the cell about 1/2 full.  This stage was modeled with 125 feet of waste for a period of 20  years, and assumes a runoff rate of 50%. HELP Layers used in Model are as follows: Uwharrie Phase 5 & 6 10/25/2021 6703‐912‐01 To design the pipe spacing in the drainage layer proposed as part of the leachate collection system in the future sections to maintain the  hydraulic head on the liner at a depth below the regulatory requirement of 12 inches.  In addition to the pipe spacing, this analysis will  estimate quantity of leachate to be generated annually using the USEPA Hydrologic Evaluation of Landfill Performance (HELP) model  version 3.07 for comparison with recorded leachate generation rates at the facility.  The estimate was conducted using the default material values provided by HELP, except for the permeability of the Drainage Layer,  which was modified as recommended by Richardson, Giroud and Zhao to account for long‐term reduction factors.  The results  include the average flow rate for each month of the year, annual leachate production, peak leachate production and the  hydraulic head on the liner on a per acre basis.  Worst case conditions (along the base of the landfill ) were estimated at 5 years  (ACTIVE), and 20 years (INTERMEDIATE).   Layer #Development Stage ThicknessModel Layer Layer  Type HELP Model Layer Number 2.1A-Pipe Spacing & HOL of Design of Leachate Collection System.xlsx@ C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Design Calcs\Leachate Calcs\1 of 2 Project: Date:   Job#: Pipe Spacing based on Head on Liner and Leachate Estimate Modeling Uwharrie Phase 5 & 6 10/25/2021 6703‐912‐01 Assumptions: Results: EPJMade by:     Checked by:     Reviewed by:    The SCS run‐off curve number was calculated by the HELP model using slope and soil texture information. Climatological coefficients for Uwharrie Regional LF were used to generate synthetic weather data.  Precipitation data was edited to  include the 25‐year, 24‐hour storm event (6.24 inches). The initial soil water content for the active condition was estimated by the model as nearly steady‐state values.  The FMLs were modeled as having 2 manufacturing and 2 installation defects per acre with 'good' quality installation.  See "Summary of HELP Models Results" for a  summary of the data obtained from the HELP model runs.  All the individual runs are  attached. 2.1A-Pipe Spacing & HOL of Design of Leachate Collection System.xlsx@ C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Design Calcs\Leachate Calcs\2 of 2 Project: Date:   Job#: Active 24‐inch thick Drainage Layer ‐ Daily Cover‐  Base of Landfill (2%)175 2.0% 15 5 Intermediate 24‐inch thick Drainage Layer – Daily Cover  ‐  Base of Landfill (2%)175 2.0% 125 20 Active 24‐inch thick Drainage Layer ‐ Daily Cover‐  Base of Landfill (2%)1.593 43,254 419.6 3,139 0.116 Intermediate 24‐inch thick Drainage Layer – Daily Cover ‐  Base of Landfill (2%)1.429 38,801 367.4 2,748 0.101 EPJMade by:     Checked by:     Reviewed by:    42,692 Case Peak Daily Flow  (in/day) Avg.Annual Flow  (ft3/ac) 46,907 Max. Avg.  Monthly  Flow  Max. Avg.  Monthly Flow  (gal/ac/mo) Peak Daily Flow  (gal/ac) Summary of HELP Models Results for Head on Liner and Pipe Spacing Peak Daily Flow  (ft3/ac) Uwharrie Phase 5 & 6 10/25/2021 6703‐912‐01 Max.  Drainage  Length  (ft.) SlopeCase Average  Waste  Thickness  (ft.) Years Max Head  (in) from HELP Runs 11.91 10.40 2.1B-HELP Summary of Design of Leachate Collection System.xlsx@C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Design Calcs\Leachate Calcs\1 of 1     _ ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.07 (1 November 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** PRECIPITATION DATA FILE: C:\WHI\VHELP22\data\P196.VHP\_weather1.dat TEMPERATURE DATA FILE: C:\WHI\VHELP22\data\P196.VHP\_weather2.dat SOLAR RADIATION DATA FILE: C:\WHI\VHELP22\data\P196.VHP\_weather3.dat EVAPOTRANSPIRATION DATA: C:\WHI\VHELP22\data\P196.VHP\_weather4.dat SOIL AND DESIGN DATA FILE: C:\WHI\VHELP22\data\P196.VHP\I_385191.inp OUTPUT DATA FILE: C:\WHI\VHELP22\data\P196.VHP\O_385191.prt TIME: 8:21 DATE: 10/25/2021 ****************************************************************************** TITLE: UWHARRIE PHASE 5&6 – ACTIVE CONDITIONS ****************************************************************************** NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9 THICKNESS = 30.48 CM POROSITY = 0.5010 VOL/VOL FIELD CAPACITY = 0.2840 VOL/VOL WILTING POINT = 0.1350 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2800 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.190000000000E-03 CM/SEC LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18 THICKNESS = 457.20 CM POROSITY = 0.6710 VOL/VOL FIELD CAPACITY = 0.2920 VOL/VOL WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2900 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC     LAYER 3 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 21 THICKNESS = 60.96 CM POROSITY = 0.3970 VOL/VOL FIELD CAPACITY = 0.0320 VOL/VOL WILTING POINT = 0.0130 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0300 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.200000000000E-01 CM/SEC SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 53.3 METERS (175 FEET) LAYER 4 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.10 CM POROSITY = 0.0000 VOL/VOL FIELD CAPACITY = 0.0000 VOL/VOL WILTING POINT = 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.200000000000E-12 CM/SEC FML PINHOLE DENSITY = 4.94 HOLES/HECTARE (2 PER ACRE) FML INSTALLATION DEFECTS = 4.94 HOLES/HECTARE (2 PER ACRE) FML PLACEMENT QUALITY = 3 - GOOD LAYER 5 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 16 THICKNESS = 60.96 CM POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000000000E-06 CM/SEC GENERAL DESIGN AND EVAPORATIVE ZONE DATA ---------------------------------------- NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 29.% AND A SLOPE LENGTH OF 9. METERS. SCS RUNOFF CURVE NUMBER = 93.13 FRACTION OF AREA ALLOWING RUNOFF = 25.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 0.4047 HECTARES EVAPORATIVE ZONE DEPTH = 22.9 CM INITIAL WATER IN EVAPORATIVE ZONE = 6.401 CM UPPER LIMIT OF EVAPORATIVE STORAGE = 11.453 CM LOWER LIMIT OF EVAPORATIVE STORAGE = 3.086 CM INITIAL SNOW WATER = 0.000 CM INITIAL WATER IN LAYER MATERIALS = 168.981 CM TOTAL INITIAL WATER = 168.981 CM TOTAL SUBSURFACE INFLOW = 0.00 MM/YR     EVAPOTRANSPIRATION AND WEATHER DATA ----------------------------------- NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM Uwharrie NC STATION LATITUDE = 36.08 DEGREES MAXIMUM LEAF AREA INDEX = 0.00 START OF GROWING SEASON (JULIAN DATE) = 90 END OF GROWING SEASON (JULIAN DATE) = 305 EVAPORATIVE ZONE DEPTH = 9.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.60 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.00 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 68.00 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 74.00 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 % NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Uwharrie NC NORMAL MEAN MONTHLY PRECIPITATION (INCHES) JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- 3.51 3.37 3.88 3.16 3.37 3.93 4.27 4.19 3.64 3.18 2.59 3.38 NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Uwharrie NC NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- 37.50 39.90 48.00 58.30 66.50 73.50 77.20 76.30 69.90 58.40 48.50 40.20 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Uwharrie NC AND STATION LATITUDE = 35.35 DEGREES HEAD #1: AVERAGE HEAD ON TOP OF LAYER 4 DRAIN #1: LATERAL DRAINAGE FROM LAYER 3 (RECIRCULATION AND COLLECTION) LEAK #1: PERCOLATION OR LEAKAGE THROUGH LAYER 5 ********************************************************************** DAILY OUTPUT FOR YEAR 1 -------------------------------------------------------------------- S DAY A O RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK I I WATER #1 #1 #1 R L IN. IN. IN. IN./IN. IN. IN. IN. --- - - ----- ------ ------ ------- --------- --------- --------- 1 0.00 0.000 0.054 0.2740 0.0000 0.000 0.000     ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 3.61 3.67 3.86 2.27 3.88 4.78 5.70 4.94 5.00 4.13 1.60 3.41 STD. DEVIATIONS 2.53 0.47 2.43 0.72 1.75 2.98 2.26 2.77 1.92 3.87 0.99 2.03 RUNOFF ------ TOTALS 0.177 0.132 0.152 0.022 0.206 0.187 0.307 0.336 0.406 0.404 0.014 0.084 STD. DEVIATIONS 0.211 0.042 0.156 0.021 0.187 0.202 0.338 0.396 0.288 0.573 0.014 0.103 EVAPOTRANSPIRATION ------------------ TOTALS 1.475 1.875 2.905 2.518 2.796 3.740 4.400 3.226 3.061 2.610 1.423 1.179 STD. DEVIATIONS 0.238 0.417 0.469 0.889 1.492 2.018 1.195 1.498 1.055 0.474 0.426 0.330 LATERAL DRAINAGE COLLECTED FROM LAYER 3 ---------------------------------------- TOTALS 0.6642 1.2125 1.5928 1.4837 1.0231 0.7921 0.8719 0.9127 0.8639 1.1373 1.3219 1.0464 STD. DEVIATIONS 0.7857 1.1312 1.4028 1.0765 0.7641 0.7371 0.8503 0.6937 0.9150 0.9118 0.8736 1.0615 PERCOLATION/LEAKAGE THROUGH LAYER 5 ------------------------------------ TOTALS 0.0001 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0001 STD. DEVIATIONS 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 4 ------------------------------------- AVERAGES 1.6541 3.3190 3.9667 3.8181 2.5481 2.0385 2.1714 2.2731 2.2234 2.8326 3.4020 2.6060 STD. DEVIATIONS 1.9568 3.1178 3.4937 2.7703 1.9030 1.8971 2.1177 1.7277 2.3547 2.2708 2.2483 2.6436 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 46.83 ( 7.812) 169981.9 100.00 RUNOFF 2.426 ( 1.0255) 8806.86 5.181     EVAPOTRANSPIRATION 31.209 ( 1.9256) 113285.35 66.646 LATERAL DRAINAGE COLLECTED 12.92244 ( 6.76683) 46907.419 27.59553 FROM LAYER 3 PERCOLATION/LEAKAGE THROUGH 0.00180 ( 0.00090) 6.540 0.00385 LAYER 5 AVERAGE HEAD ON TOP 2.738 ( 1.441) OF LAYER 4 CHANGE IN WATER STORAGE 0.269 ( 3.6209) 975.77 0.574 ******************************************************************************* ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 5 and their dates (DDDYYYY) ------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.24 22650.70630 2900001 RUNOFF 1.210 4393.72053 2900001 DRAINAGE COLLECTED FROM LAYER 3 0.11559 419.56519 980003 PERCOLATION/LEAKAGE THROUGH LAYER 5 0.000015 0.05502 980003 AVERAGE HEAD ON TOP OF LAYER 4 8.920 MAXIMUM HEAD ON TOP OF LAYER 4 11.907 LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN) 58.2 FEET SNOW WATER 1.73 6282.0498 3610002 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5010 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1350 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 5 ---------------------------------------------------------------------- LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 3.3488 0.2791 2 52.5600 0.2920 3 1.7152 0.0715 4 0.0000 0.0000 5 10.2480 0.4270 SNOW WATER 0.000     _ ****************************************************************************** ****************************************************************************** ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.07 (1 November 1997) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ****************************************************************************** ****************************************************************************** PRECIPITATION DATA FILE: C:\WHI\VHELP22\data\P212.VHP\_weather1.dat TEMPERATURE DATA FILE: C:\WHI\VHELP22\data\P212.VHP\_weather2.dat SOLAR RADIATION DATA FILE: C:\WHI\VHELP22\data\P212.VHP\_weather3.dat EVAPOTRANSPIRATION DATA: C:\WHI\VHELP22\data\P212.VHP\_weather4.dat SOIL AND DESIGN DATA FILE: C:\WHI\VHELP22\data\P212.VHP\I_385210.inp OUTPUT DATA FILE: C:\WHI\VHELP22\data\P212.VHP\O_385210.prt TIME: 8:30 DATE: 10/25/2021 ****************************************************************************** TITLE: UWHARRIE PHASE 5&6 – INTERMEDIATE CONDITIONS ****************************************************************************** NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9 THICKNESS = 30.48 CM POROSITY = 0.5010 VOL/VOL FIELD CAPACITY = 0.2840 VOL/VOL WILTING POINT = 0.1350 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2800 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.190000000000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 1.80 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE. LAYER 2 -------- TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18 THICKNESS = 3810.00 CM POROSITY = 0.6710 VOL/VOL FIELD CAPACITY = 0.2920 VOL/VOL WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2900 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC     LAYER 3 -------- TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 21 THICKNESS = 60.96 CM POROSITY = 0.3970 VOL/VOL FIELD CAPACITY = 0.0320 VOL/VOL WILTING POINT = 0.0130 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0300 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.200000000000E-01 CM/SEC SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 51.8 METERS (175 FEET) LAYER 4 -------- TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.10 CM POROSITY = 0.0000 VOL/VOL FIELD CAPACITY = 0.0000 VOL/VOL WILTING POINT = 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.200000000000E-12 CM/SEC FML PINHOLE DENSITY = 4.94 HOLES/HECTARE (2 PER ACRE) FML INSTALLATION DEFECTS = 4.94 HOLES/HECTARE (2 PER ACRE) FML PLACEMENT QUALITY = 3 - GOOD LAYER 5 -------- TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 16 THICKNESS = 60.96 CM POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000000000E-06 CM/SEC GENERAL DESIGN AND EVAPORATIVE ZONE DATA ---------------------------------------- NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 29.% AND A SLOPE LENGTH OF 76. METERS. SCS RUNOFF CURVE NUMBER = 88.31 FRACTION OF AREA ALLOWING RUNOFF = 50.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 0.4047 HECTARES EVAPORATIVE ZONE DEPTH = 22.9 CM INITIAL WATER IN EVAPORATIVE ZONE = 6.401 CM UPPER LIMIT OF EVAPORATIVE STORAGE = 11.453 CM LOWER LIMIT OF EVAPORATIVE STORAGE = 3.086 CM INITIAL SNOW WATER = 0.000 CM INITIAL WATER IN LAYER MATERIALS = 1141.293 CM     TOTAL INITIAL WATER = 1141.293 CM TOTAL SUBSURFACE INFLOW = 0.00 MM/YR EVAPOTRANSPIRATION AND WEATHER DATA ----------------------------------- NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM Uwharrie NC STATION LATITUDE = 36.08 DEGREES MAXIMUM LEAF AREA INDEX = 1.00 START OF GROWING SEASON (JULIAN DATE) = 90 END OF GROWING SEASON (JULIAN DATE) = 305 EVAPORATIVE ZONE DEPTH = 9.0 INCHES AVERAGE ANNUAL WIND SPEED = 7.60 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 66.00 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 68.00 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 74.00 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 % NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Uwharrie NC NORMAL MEAN MONTHLY PRECIPITATION (INCHES) JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- 3.51 3.37 3.88 3.16 3.37 3.93 4.27 4.19 3.64 3.18 2.59 3.38 NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Uwharrie NC NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- 37.50 39.90 48.00 58.30 66.50 73.50 77.20 76.30 69.90 58.40 48.50 40.20 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Uwharrie NC AND STATION LATITUDE = 35.35 DEGREES HEAD #1: AVERAGE HEAD ON TOP OF LAYER 4 DRAIN #1: LATERAL DRAINAGE FROM LAYER 3 (RECIRCULATION AND COLLECTION) LEAK #1: PERCOLATION OR LEAKAGE THROUGH LAYER 5 ********************************************************************** DAILY OUTPUT FOR YEAR 1 -------------------------------------------------------------------- S DAY A O RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK I I WATER #1 #1 #1 R L IN. IN. IN. IN./IN. IN. IN. IN. --- - - ----- ------ ------ ------- --------- --------- ---------     ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 20 ------------------------------------------------------------------------------- JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------- ------- ------- ------- ------- ------- PRECIPITATION ------------- TOTALS 2.70 3.26 4.08 2.80 3.11 3.92 4.84 5.00 3.92 2.81 2.55 3.82 STD. DEVIATIONS 1.65 1.37 1.93 1.35 1.27 2.54 2.07 2.45 2.46 2.41 1.92 1.83 RUNOFF ------ TOTALS 0.063 0.107 0.181 0.063 0.065 0.146 0.185 0.247 0.307 0.223 0.109 0.154 STD. DEVIATIONS 0.109 0.145 0.303 0.153 0.103 0.271 0.268 0.334 0.350 0.434 0.374 0.189 EVAPOTRANSPIRATION ------------------ TOTALS 1.363 1.630 2.842 2.663 2.689 3.383 3.998 3.577 2.542 1.676 1.346 1.119 STD. DEVIATIONS 0.185 0.341 0.396 0.779 0.852 1.635 1.276 1.179 1.121 0.773 0.390 0.228 LATERAL DRAINAGE COLLECTED FROM LAYER 3 ---------------------------------------- TOTALS 0.8421 1.0983 1.2373 1.4290 1.4044 0.9492 0.7108 0.7369 0.6722 0.9583 0.9740 0.7484 STD. DEVIATIONS 0.5041 0.5503 0.5820 0.6354 0.9167 0.8431 0.6609 0.7150 0.5924 0.6905 0.5893 0.4741 PERCOLATION/LEAKAGE THROUGH LAYER 5 ------------------------------------ TOTALS 0.0001 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 STD. DEVIATIONS 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 ------------------------------------------------------------------------------- AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) ------------------------------------------------------------------------------- DAILY AVERAGE HEAD ON TOP OF LAYER 4 ------------------------------------- AVERAGES 2.0374 2.9098 2.9935 3.5725 3.3977 2.3730 1.7196 1.7828 1.6805 2.3185 2.4351 1.8107 STD. DEVIATIONS 1.2197 1.4503 1.4081 1.5885 2.2179 2.1078 1.5990 1.7298 1.4811 1.6706 1.4732 1.1469 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 20 ------------------------------------------------------------------------------- INCHES CU. FEET PERCENT ------------------- ------------- --------- PRECIPITATION 42.82 ( 7.089) 155440.5 100.00 RUNOFF 1.850 ( 0.7932) 6716.77 4.321     EVAPOTRANSPIRATION 28.828 ( 3.2875) 104644.54 67.321 LATERAL DRAINAGE COLLECTED 11.76101 ( 4.79481) 42691.546 27.46488 FROM LAYER 3 PERCOLATION/LEAKAGE THROUGH 0.00162 ( 0.00063) 5.880 0.00378 LAYER 5 AVERAGE HEAD ON TOP 2.419 ( 0.983) OF LAYER 4 CHANGE IN WATER STORAGE 0.381 ( 3.9967) 1381.74 0.889 ******************************************************************************* ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1 THROUGH 20 and their dates (DDDYYYY) ------------------------------------------------------------------------ (INCHES) (CU. FT.) ---------- ------------- PRECIPITATION 6.24 22650.70630 2900001 RUNOFF 1.822 6612.80736 2900001 DRAINAGE COLLECTED FROM LAYER 3 0.10122 367.43759 1750020 PERCOLATION/LEAKAGE THROUGH LAYER 5 0.000013 0.04734 1750020 AVERAGE HEAD ON TOP OF LAYER 4 7.592 MAXIMUM HEAD ON TOP OF LAYER 4 10.400 LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN) 53.5 FEET SNOW WATER 2.87 10419.0164 3220014 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.5010 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1350 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 20 ---------------------------------------------------------------------- LAYER (INCHES) (VOL/VOL) ----- -------- --------- 1 3.9839 0.3320 2 440.6549 0.2938 3 2.0542 0.0856 4 0.0000 0.0000 5 10.2480 0.4270 SNOW WATER 0.000 Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01      2.2 SIZE OF THE HEADER PIPE IN LEACHATE COLLECTION SYSTEM     Project: Date:   Job#: Size of the Header Pipe in the LCS System Objective : Geometry : Approach: 0.116 in/day x 1/12 ft/in x 1/24 day/hr x 1/60 hr/min x 1/60 min/sec =1.11E‐07 ft /sec For 10 acres   ( = 12 acres ‐ 2 acres)  0.05 cfs Maximum Flow from Uncovered Waste Area: ‐        Peak storm event Rainfall = 6.24 inches ‐        Estimated percentage of run‐off = 75% ‐        Maximum area discharging to leachate collection system = 2acres Flow =6.24  in x 2acres  x 75% = 33,977 cf/day =0.39cfs cfs +0.39cfs = 0.44 cfs = Q LCS MAX Qpipe =  A = V = 8 inches, but for SDR 9 , inside diameter of pipe is 6.59 inches r =3.30 inches = 0.27 ft. n =Manning Roughness Coefficient = 0.012   for smooth wall HDPE pipe R = P = S =pipe slope in feet per feet = 2.00% = 0.020 Qpipe =A *V  V = A =Area of flow depends on flow depth in the pipe as follows: radius of pipe in feet = Therefore, maximum peak flow expected through Perforated Collection in Floor of Cell = 0.05 Maximum Flow through the waste occurs during Active Conditions with 15’ waste thickness, as follows (See Summary of  Results of the "Pipe Spacing based on Head on Liner and Leachate Estimate Modeling" Calculations) The LCS Pipe will be a perforated HDPE Pipe placed within the gravel/stone protective cover layer. QpeakHELP  = QpeakHELP  = Uwharrie Phase 5 & 6 10/25/2021 6703‐912‐01 hydraulic radius = A/P wetted perimeter of the cross sectional flow in the pipe in feet (see table below) The perforated LCS pipe must be able to discharge leachate flow to ensure that leachate is maintained no more than 12 inches  above the liner.  The 8‐inch header pipe collects leachate from 12 acres (Cell No. 16A).  Check the capacity of the 8 inch pipe to  carry leachate flow from the largest drainage area and assume +2 acres of cell have uncovered waste. Use Manning’s Equation to determine flow capacity and velocities within the pipe as the flow within the pipe varies from  maximum flow expected: flow capacity of pipe in cubic feet per second (cfs) cross‐sectional flow area of pipe in square feet (ft2) velocity of flow in pipe in feet per second (fps) (flattest slope within pipe, Occurs in Cell  16) Nominal Pipe Diameter = 2.2-Pipe Design of Design of Leachate Collection System.xlsx@ C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Design Calcs\Leachate Calcs\1 of 2 Project: Date:   Job#: Size of the Header Pipe in the LCS System Uwharrie Phase 5 & 6 10/25/2021 6703‐912‐01 Using Manning’s Equation determine depth of flow for pipe with actual flow conditions: 0.44 cfs r =0.27ft. h (ft) (rad)A (sf) P (ft) R (ft)Qpipe (cfs)vs. QLCS  MAX?V (fps) 0.13 2.05 0.19 1.16 0.17 1.02 Qp >QLCS  MAX, OK 5.3 0.22 2.71 0.15 0.98 0.15 0.76 Qp >QLCS  MAX, OK 5.0 0.30 3.32 0.10 0.81 0.13 0.47 Qp >QLCS  MAX, OK 4.5 0.31 3.38 0.10 0.80 0.13 0.44 Qp =  QLCS MAX, OK 4.4 Conclusion: EPJMade by:     Checked by:     Reviewed by:    Flow Depth   (in) 5.0 The maximum pipe flow depth will be approximately 2.9 inches, therefore the 8 inch header pipe has  excess capacity to carry the design peak daily peak flow predicted by the HELP Model and will have  enough internal velocity to self‐clean. 2.9 4.0 3.0 Check Flow Capacity  (Qpipe) of pipe flowing more than half full Q LCS MAX 2.2-Pipe Design of Design of Leachate Collection System.xlsx@ C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Design Calcs\Leachate Calcs\2 of 2 Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01      2.3 REVIEW OF LEACHATE PRODUCTION IN EXISTING LANDFILL     Project: Date:   Job#: Review of Leachate Production in Existing Landfill Objective : 2019‐2021 Leachate Production Data at Existing Landfill: Leachate Gallons  Generated Contributing  LF Acres Days per  month Average Daily  Volume (gpad) Monthly  Volume  (in/mo) Jan 19 1,321,915 145.8 31 292 0.33 Feb 19 1,137,389 145.8 28 279 0.29 Mar 19 1,307,307 145.8 31 289 0.33 Apr 19 1,116,264 145.8 30 255 0.28 May 19 590,632 145.8 31 131 0.15 Jun 19 342,807 145.8 30 78 0.09 Jul 19 674,940 145.8 31 149 0.17 Aug 19 496,551 145.8 31 110 0.13 Sep 19 497,982 145.8 30 114 0.13 Oct 19 454,483 145.8 31 101 0.11 Nov 19 444,500 145.8 30 102 0.11 Dec 19 762,281 145.8 31 169 0.19 Jan 20 1,082,187 145.8 31 239 0.27 Feb 20 1,173,362 145.8 29 278 0.30 Mar 20 1,235,545 145.8 31 273 0.31 Apr 20 896,398 145.8 30 205 0.23 May 20 1,008,400 145.8 31 223 0.25 Jun 20 964,888 145.8 30 221 0.24 Jul 20 817,833 145.8 31 181 0.21 Aug 20 736,950 145.8 31 163 0.19 Sep 20 656,525 145.8 30 150 0.17 Oct 20 724,372 145.8 31 160 0.18 Nov 20 704,781 145.8 30 161 0.18 Dec 20 786,150 145.8 31 174 0.20 Jan 21 993,615 145.8 31 220 0.25 Feb 21 1,170,997 145.8 28 287 0.30 Mar 21 1,012,849 145.8 31 224 0.26 Apr 21 925,977 145.8 30 212 0.23 May 21 589,034 145.8 31 130 0.15 Jun 21 489,695 145.8 30 112 0.12 Jul 21 695,075 145.8 31 154 0.18 Aug 21 662,670 145.8 31 147 0.17 Sep 21 560,568 145.8 30 128 0.14 1,321,915 292 0.33 819,240 185 0.21 Average Daily Volume =185 gpad =0.007 in/day Maximum  Daily Volume =292.47 gpad =0.011 in/day Maximum Monthly Volume =0.33 in/month Compare these flows to HELP Model results: Vol.  predicted by HELP for peak daily flow under inter.  conditions: 0.101 in/day         > 0.011 in/day, OK. Vol. predicted by HELP for avg.monthly flow under inter. conditions: 38,800.780 in/month     > 0.334 in/month, OK. Uwharrie Phase 5 & 6 5/5/2022 6703‐912‐01 Review existing leachate generation rates at the existing landfill to compare flows with results from HELP.  Note that existing conditions  at the landfill are most accurately represented by the HELP model simulation for INTERMEDIATE conditions. Month Max Recorded Average 2.3-Leachate Production Comp of Design of Leachate Collection System.xlsx@ C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Permit App Response May 2022\Leachate Calcs\1 of 2 Project: Date:   Job#: Review of Leachate Production in Existing Landfill Uwharrie Phase 5 & 6 5/5/2022 6703‐912‐01 Compare the flow used to design leachate management system to the 2019 to 2021 leachate flows  : Max. Peak Daily Volume predicted by HELP and used for Design of the leachate collection pipes: 0.44 32,820 Conclusion: EPJMade by:     Checked by:     Reviewed by:    gpad, which is about 112 times higher than the maximum flow  rate recorded at the site in the last 3 years. cfs (based on 8.7 acres)  = The maximum flows predicted by the HELP model are higher than the flows observed in the existing landfill from 2019 to 2021.  The  design of the leachate collection system is conservatively based on the highest peak flow predicted by HELP.  This peak daily flow is about  112 times the average daily flow of leachate generated in the last 3 years in the existing landfill.  Given that the future Sections of the  landfill have a similar leacahte collection system to the existing collection system, it is predicted that leachate generation will closely  follow the quantities recorded for the existing landfill.  The proposed collection system, as designed, will function to maintain less than 12  inches of hydraulic head on the bottom liner. 2.3-Leachate Production Comp of Design of Leachate Collection System.xlsx@ C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Permit App Response May 2022\Leachate Calcs\2 of 2 Leachate Collection System Design Report  Permit to Construct – Phase 5 & 6  Uwharrie Regional Landfill  Montgomery County, NC  Revised May 2022  HHNT Project No. 6703‐912‐01      2.4 LEACHATE SUMP PUMP AND FORCEMAIN DESIGN    Project: Date:   Job#: Leachate Sump Pump Design OBJECTIVE: The peak leachate flow in each cell is comprised of the leachate collected across the cell floor which equals 419.6 ft³/acre/day or 3,139 gallons/acre/day. Actual pump size, required horsepower, and force main lengths and diameters will be re‐evaluated and designed prior to construction of each phase to match actual field run  topographic survey data. DESIGN FLOWS: Section No.Contributing  Area (acres) Max. Peak Flow  From HELP  Model (gpd) 15A 11.3 35,471 15B 6.6 20,717 16A 12 37,668 16B 7.9 24,798 INPUTS: Total Dynamic Head (TDH) consists of static head, friction head and velocity head: HP =  Assume Pump Efficiency = 50% PUMP DESIGN CALCULATIONS: Leachate Sump No. 15 – Pump Calculation Flow = 56,188 gpd = 39 gpm.  Use one 100  gpm pump =673ft.    ‐638 ft.   =35 ft. Friction Head  = Assume 4” diameter HDPE force main from Leachate Sump No. 10 to discharge point. Length  =     ± 9100 ft. = 9100 ft.60.0 ft. TDH  =  35 ft. + 60.0 ft. + 0 ft. = 95.0 ft. 100 gpm x95.0 ft. 3960 x 50% x (.54 x 12.2 / 1,000) = =HP = 4.8 HP Friction losses in 4” diameter HDPE force main at 100 gpm = 12.2 ft/1,000 ft based on 18 year old cast iron pipe or a 0.54 x 12.2  ft/1000 ft for HDPE pipe. Static Head = Highest elevation from leachate sump to  the discharge point less the Shut‐off Elevation of the Pump. ∙         Static Head is the actual vertical distance measured from the minimum pump shut off elevation in the leachate sump to  the highest elevation in the discharge piping. ∙         Friction Head is the additional head generated in the discharge system due to resistance to flow within the piping, valves  and fittings. ∙         Velocity Head is the amount of head required to maintain a stated velocity in the suction and discharge piping and is  typically considered to be zero. Estimated horsepower equipment = Uwharrie Phase 5 & 6 10/25/2021 6703‐912‐01 C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Design Calcs\Leachate Calcs\ 2.4A Pump Design ofPump Design.xlsx Page 1 of 2 Project: Date:   Job#: Leachate Sump Pump Design Uwharrie Phase 5 & 6 10/25/2021 6703‐912‐01 Leachate Sump No. 16 – Pump Calculation Flow = 62,466 gpd = 43 gpm.  Use one 100  gpm pump =673ft.    ‐646 ft.   =27 ft. Friction Head  = Assume 4” diameter HDPE force main from Leachate Sump No. 11 to discharge point. Length  =     ± 9550 ft. = 9550 ft.62.9 ft. TDH  =  27 ft. + 62.9 ft. + 0 ft. = 89.9 ft. 100 gpm x89.9 ft. 3960 x 50% PUMP SUMMARY: 15 16 CONCLUSION: EPJMade by:     Checked by:     Reviewed by:    Actual pump size, required horsepower, and force main lengths and diameters will be re‐evaluated and designed prior to  construction of each phase to match actual field run topographic survey data. Pumps in all leachate sumps are designed to run simultaneously to accommodate the leachate flow generated in each phase.   Each pump is designed to provide the appropriate pumping rates and pumping head for simultaneous operations.  Since the  static head, pipe sizes, pipe length and friction are similar for each pump, the operation of each pump will be nearly the same.   To prevent the ‘dead heading” of any single pump during a multiple pump operation, only pumps of similar capacities will be  operated simultaneously. Recommended PumpSection No. Flow (gpm)HP 100 5 100 5 Static Head = Highest elevation from leachate sump to  the discharge point less the Shut‐off Elevation of the Pump. x (.54 x 12.2 / 1,000) = HP = =4.5HP Friction losses in 4” diameter HDPE force main at 100 gpm = 12.2 ft/1,000 ft based on 18 year old cast iron pipe or a 0.54 x 12.2  ft/1000 ft for HDPE pipe. C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Design Calcs\Leachate Calcs\ 2.4A Pump Design ofPump Design.xlsx Page 2 of 2 Project: Date:   Job#: Leachate Forcemain Design OBJECTIVE: Design the leachate forcemain to carry the leachate flows generated during the expansion. DESIGN FLOWS: Section  No. Pump Flow  (gpm) Pump Flow  (cfs) 15 100 0.22 16 100 0.22 Approach: Manni Q= flow in cubic feet per second (cfs) = max of pump flows =0.22 A=cross‐sectional flow area of pipe in square feet (ft2) V = velocity of flow in pipe in feet per second (fps) ‐ check min of 2 fps and max 6 fps Q=A *V  Calculation: Check nominal 4 inch dia. pipe: r = 0.17 ft A = 0.09 ft2 0.22 cfs V =ok. CONCLUSION: EPJ Reviewed by:    2.55 fps Forcemain piping will consist of a dual contained HDPE pipe with an inside diameter of 4 inches. For Qmax = Uwharrie Phase 5 & 6 10/25/2021 6703‐912‐01 Made by:     Checked by:     C:\Users\ejackson\Documents\HHNT\PROJECTS\Republic Services\Uwharrie - Phase 5 Permit to Construct\Reports - HHNT\Design Calcs\Leachate Calcs\ 2.4B Leachate Forcemain ofPump Design.xlsx Page 1 of 1 Geotechnical Analyses Phase 5 & 6 Permit to Construct Uwharrie Regional Landfill Montgomery County, North Carolina October 2021 HHNT Project No. 6703-912-01 7.0 GEOTECHNICAL ANALYSES REPORT OF GEOTECHNICAL EVALUATION PHASES 5 - 6 (CELL NOS. 15 - 16) UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA FACILITY PERMIT NUMBER 6204-MSWLF-1995 Prepared For: Republic Services of North Carolina, LLC 5101 Morehead Road Concord, North Carolina 28027 Prepared by: Bunnell-Lammons Engineering, Inc. 6004 Ponders Court Greenville, South Carolina 29615 BLE North Carolina Business License C-1538 BLE Project Number J18-1002-80B October 15, 2021 October 15, 2021 Republic Services of North Carolina, LLC 5101 Morehead Road Concord, North Carolina 28027 Attention: Mr. Mike Gurley Environmental Manager Subject: Report of Geotechnical Evaluation Phases 5 - 6 (Cell Nos. 15 - 16) Uwharrie Regional MSW Landfill Montgomery County, North Carolina BLE Project No. J18-1002-80B Dear Mr. Gurley, Bunnell-Lammons Engineering, Inc. (BLE) has performed the following geotechnical engineering analyses in support of the design of the proposed Phases 5 - 6, Cell Nos. 15 and 16 at the Uwharrie Regional MSW Landfill; 1. Subgrade settlement 2. Long-term global stability of the completed waste mound, 3. Veneer sliding stability of the base liner and protective cover system as well as the final cover system, 4. Leachate collection pipe crushing, buckling, and ring deflection stresses, 5. Closure cap drainage layer analysis Our services were performed in general accordance with our Proposal dated January 11, 2018. This report presents our understanding of the project, our evaluation and analysis results, and our geotechnical recommendations for project design and construction. EXECUTIVE SUMMARY In summary, the results of the geotechnical analyses presented in this report indicate that the proposed landfill configuration will result in acceptable subgrade settlements and the slopes and veneer layers will provide appropriate factors of safety for stability when considering design conditions and waste placement conditions included herein. A suitable leachate collection pipe dimension ratio was provided for adequate factors of safety against pipe crushing and buckling. For the closure cap system, the geocomposite drainage media transmissivity and filter geotextile were evaluated and recommendations are provided herein. Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B ii of ii The details and results of each of the geotechnical analysis are present in this report. We appreciate the opportunity to provide geotechnical engineering services at the Uwharrie Regional MSW Landfill for Republic Services of North Carolina, LLC. Please contact us should you have any questions concerning this report. Sincerely, BUNNELL-LAMMONS ENGINEERING, INC. NC Business License C-1538 Tyler W. Moody, P.E. Daniel B. Bunnell, P. E Senior Engineer Principal Engineer Licensed, NC #42375 Licensed, NC #13814 cc: Mr. Matt Cheek, P.E. (Hodges, Harbin, Newberry, and Tribble, Inc.) Mr. Kevin Berry, P.E. (Hodges, Harbin, Newberry, and Tribble, Inc.) 10/15/21 10/15/21 Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B TABLE OF CONTENTS 1.0 PROJECT INFORMATION ......................................................................................................... 1 1.1 BACKGROUND INFORMATION ............................................................................................... 1 1.2 HISTORICAL SITE INFORMATION (REFERENCES) .......................................................... 2 1.3 SUMMARY OF SITE GEOLOGY AND SUBSURFACE CONDITIONS ............................... 2 2.0 SUMMARY OF ANALYSES ........................................................................................................ 3 2.1 SUBGRADE SETTLEMENT AND POST SETTLEMENT BASE LINER SLOPE ............... 3 2.1.1 Results of Settlement Analysis ................................................................................................. 4 2.2 GLOBAL SLOPE STABILITY .................................................................................................... 4 2.2.1 Results of Global Stability Analysis ......................................................................................... 5 2.2.1.1 Landfill Slopes – Cross Sections A-A’ and B-B’ ..................................................................... 5 2.2.1.2 Perimeter Landfill Slopes – Cross Sections B-B’ ..................................................................... 5 2.2.2 Slope Stability Conclusion ........................................................................................................ 6 2.3 VENEER SLIDING STABILITY ................................................................................................ 6 2.3.1 Base Liner Protective Cover Veneer Sliding ............................................................................ 6 2.3.2 Closure Cap Veneer Sliding ...................................................................................................... 6 2.4 LEACHATE COLLECTION PIPING – STRESS ANALYSIS ................................................ 7 2.5 CLOSURE CAP GEOCOMPOSITE DRAINAGE ANALYSIS ................................................ 7 2.5.1 Closure Cap Geocomposite Drainage Media ............................................................................ 7 3.0 RECOMMENDATIONS ................................................................................................................ 8 3.1 INTERFACE AND INTERNAL SHEAR STRENGTH ............................................................. 8 3.2 GLOBAL STABILITY ................................................................................................................ 10 3.3 VENEER STABILITY ................................................................................................................ 10 3.4 LEACHATE COLLECTION PIPE INTEGRITY ................................................................... 10 3.5 CLOSURE CAP DRAINAGE LAYER ..................................................................................... 11 4.0 CONCLUSION ............................................................................................................................. 11 5.0 QUALIFICATION OF REPORT .............................................................................................. 11 Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B APPENDICES Appendix A: Figures Figure G-1 Site Location Map Figure G-2 Boring Location Plan and Existing Topography Figure G-3 Seasonal High Groundwater Elevation Contours with Borings Figure G-4 Bedrock Elevation Contours with Borings Figure G-5 Top of Clay Liner Grades with Leachate Lines Figure G-6 Final Landfill Grades with Leachate Lines and Settlement Points Figure G-7 Cross Section Profiles Appendix B: Subgrade Settlement Calculations Appendix C: Slope Stability Analysis Appendix D: Veneer Stability Analysis -Base Liner System -Closure Cap Appendix E: Leachate Pipe Stress Analysis Appendix F: Closure Cap Drainage Layer Analysis Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 1 of 11 1.0 PROJECT INFORMATION The existing 567.36-acre Uwharrie Regional Municipal Solid Waste (MSW) Landfill is located in Montgomery County, North Carolina, approximately four miles southwest of Troy, North Carolina along State Route SR 1137 (Figure 1). The landfill is owned by the Montgomery County Board of Commissioners and operated by Republic Services of North Carolina, LLC (Republic). The landfill development is being implemented in phases, as new solid waste cells are needed. Currently, Phases 1, 2, 3, and 4 at the landfill consist of existing Cell Nos. 1 through Cell No. 14. The landfill now plans to develop Phases 5 - 6, which will consist of Cells No. 15 and 16 at the facility. The landfill site characterization related to geology, hydrogeology, subsurface soil conditions, and geotechnical considerations was reported in our Design Hydrogeologic Report – Phases 5 - 6 (Cells No. 15 - 16) - BLE Project No. J18-1002-80A. The Phases 5 - 6 Design Hydrogeologic Report (DHR) also contained and documented relevant subsurface soil stratification data along with field in-situ and laboratory tests of the site soils used in this analysis. The geotechnical analyses reported herein considers: 1. Subgrade settlement and post-settlement separation between the base liner system and the bedrock and seasonal high groundwater. 2. Long-term global stability of the completed waste mound, and seismic stability of the completed waste mound. 3. Veneer sliding stability of the base liner and protective cover system as well as the final cover system. 4. Leachate collection pipe stress analysis. 5. Closure cap drainage layer analysis. The November 2018 Site Plans for Phases 5 - 6, consisting of the planned initial and final grading plans, have been prepared by Hodges, Harbin, Newberry - Tribble, Inc. (HHNT) and were provided to us for use in our evaluation. The figures, presented in Appendix A of this report, depict the existing and planned base liner grades, planned final grades, boring locations, seasonal high groundwater elevation contours, cross-sectional profiles, and bedrock elevation contours. 1.1 BACKGROUND INFORMATION The base liner components of the future landfill cells will consist of the following components, from the top-down: • 24-inches of protective cover consisting of NCDOT No. 78M or ASTM 89 Stone. • 12-osy nonwoven geotextile cushion • 8-inch diameter, perforated HDPE leachate collection pipes. • Crushed ASTM No. 57 stone for leachate collection stone. • 24-ounce per square yard (osy) nonwoven cushion geotextile beneath the leachate collection stone • 60-mil textured HDPE geomembrane • 24-inches of compacted clay liner soil, k ≤ 1.0 x 10-7 cm/s or 18-inches of compacted soil liner, k ≤ 1.0 x 10-5 cm/s with a reinforced geosynthetic clay liner (GCL) • Native subbase or structural fill Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 2 of 11 The currently permitted final closure cross section consists of the following components in order of decreasing elevation: • 6 inches of vegetative support layer • 18-inches of protective soil cover • Double-sided geocomposite drainage media • 40-mil textured LLDPE geomembrane • 18-inches of compacted low permeability soil liner, k ≤ 1.0 x 10-5 cm/s (compacted soil liner is not required on slopes steeper than 10%) • 12-inches of intermediate cover above the waste The initial grades will primarily be formed by placement of structural fill obtained from on-site soil borrow areas along with minor earthwork cuts. The interior side slopes will be 4H:1V or flatter. The maximum inclination of the final closure cap slopes will be 3.5H:1V or flatter. 1.2 HISTORICAL SITE INFORMATION (REFERENCES) Data from previously performed hydrogeologic investigations and engineering analyses relevant to the Phases 5 - 6 area referenced in our geotechnical analyses include the following: • Site Hydrogeologic Report, Uwharrie Environmental Recycling Complex, Jordan and Chriscoe Tracts, Law Engineering Job Number 2490472802 & 2490472804, dated September 9, 1993. • Design Hydrogeologic Report, Phase 1 (Cells No. 1 and 2), Uwharrie Regional MSW Landfill, Jordan and Chriscoe Tracts, Law Engineering Job Number 2490472802, dated November 10, 1993. • Site Hydrogeologic Report, Expansion Site, Uwharrie Regional MSW Landfill, BLE Job Number J96-1002-02, dated November 5, 1996. • Addendum to Phase 1 Design Hydrogeologic Report, Cells 1a, 2a, and 3a, Uwharrie Regional MSW Landfill, BLE Job Number J96-1002-01, dated March 28, 1997. • Design Hydrogeologic Report, Phase 2 (Cells No. 4 through 9), Uwharrie Regional MSW Landfill, BLE Job Number J98-1002-10, dated February 26, 1999 (revised May 29, 2001). • Design Hydrogeologic Report, Phase 3 (Cells No. 10 through 12), Uwharrie Regional MSW Landfill, BLE Job Number J01-1002-41, dated December 7, 2001 (revised July 14, 2003). • Site Hydrogeologic Report, Expanded Uwharrie Regional MSW Landfill, BLE Job Number J01-1002- 42, dated July 7, 2005 (revised January 28, 2008). • Design Hydrogeologic Report, Phase 4 (Cells No. 13 and 14), Uwharrie Regional MSW Landfill, BLE Job Number J07-1002-74, dated May 15, 2008. • BLE has performed construction quality assurance (CQA) services for the construction of Cell Nos. 2A, 3A, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14A, numerous soil borrow studies, and CQA for the 2003, 2004 and 2012 closure construction projects. 1.3 SUMMARY OF SITE GEOLOGY AND SUBSURFACE CONDITIONS The typical residual soil profile consists of clayey soils near the surface, where soil weathering is more advanced, underlain by sandy silts and silty sands. Residual soil zones develop by the in situ chemical weathering of bedrock and are commonly referred to as “saprolite”. Saprolite usually consists of silt with lessor amounts of sand, clay, and large rock fragments. The thickness of the saprolite in the Piedmont ranges from a few feet to more than 100 feet. The boundary between soil and rock is not sharply defined. Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 3 of 11 A transitional zone of partially weathered rock (PWR) is normally found overlying the parent bedrock. Partially weathered rock is defined, for engineering purposes, as residual material with standard penetration resistance (ASTM D 1586) in excess of 100 blows per foot (bpf). Fractures, joints, and the presence of less resistant rock types facilitate weathering. Consequently, the profile of the partially weathered rock and hard rock is quite irregular and erratic, even over short horizontal distances. Also, it is not unusual to find lenses and boulders of hard rock and zones of partially weathered rock within the soil mantle, well above the general bedrock level. At numerous locations within the Phases 5 - 6 footprint, site excavation activities removed the residual soil profile down to bedrock or partially weathered rock. The field exploration and laboratory testing performed for the Phases 5 - 6 Hydrogeologic Investigation and this Geotechnical Evaluation, along with the findings, are detailed in the BLE report titled Design Hydrogeologic Report – Phases 5 - 6 (Cells No. 15 - 16) - BLE Project No. J18-1002-80A. Please refer to the Design Hydrogeologic Report for a detailed description of the site soil, rock, and groundwater conditions as well as the results of the field and laboratory testing. 2.0 SUMMARY OF ANALYSES The analyses of landfill - subgrade soil interaction and stability of the planned waste mound, as well as the base liner system, closure cap system layers, and embankment slopes have been based on the electronic drawings provided by Hodges, Harbin, Newberry, - Tribble, Inc. (HHNT) in November 2018, the geotechnical boring and laboratory test data presented in our Phases 5 - 6 Hydrogeological Report and our extensive site experience. The analyses were performed and reviewed by registered professional engineers specializing in geotechnical engineering of municipal solid waste landfills. The geotechnical analyses are presented in the Appendices of this report. 2.1 SUBGRADE SETTLEMENT AND POST SETTLEMENT BASE LINER SLOPE The soil test boring and laboratory test data contained in the Phases 5 - 6 Design Hydrogeologic Report were evaluated to estimate subsurface settlements which will result in corresponding settlement of the base liner due to the planned waste loads. Foundation support conditions for the landfill base liner system will consist of stiff to dense residual soils or engineered fill overlying residual soils underlain at varying depths by partially weathered rock and rock. At the time of the hydrogeologic exploration and drilling program, the residual soil thickness in the Phases 5 - 6 area ranged from two (2) feet to greater than 64 feet with an average soil thickness of approximately 28 feet. Soil borrow operations in the Phases 5 - 6 area, which have been performed in the time period since the soil test borings and piezometers were performed and installed, have removed some to all of the soil overburden overlying partially weathered rock and rock. Soil elastic modulus values for settlement analyses were selected based on published correlations with standard penetration resistance values in Piedmont area soils similar to the site soils, lab data and our experience. The analyses conservatively assumed the stress increase within the subgrade materials was equal to the full surcharge pressure of the overlying vertical projection of the waste mound at a given point. The surcharge pressures were conservatively estimated based on an assumed total unit weight of 85 pounds per cubic foot (pcf) for waste which is the high-end value in the published literature (reference Appendix B). The rock and partially weathered rock underlying the site are relatively incompressible and will not realize appreciable settlements under the anticipated landfill loading. The residual soils are typically firm to very firm sandy clayey silts grading coarser with depth into dense silty sands. Settlement analysis of the post-constructed landfill subgrade considered the initial unloading during the mass excavation of overburden Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 4 of 11 soils planned to achieve the design subgrade levels. Modest settlements will be realized from re-compression of the remaining residual soils and compression of the structural fill under the landfill waste loading. The total settlement at a given location will be a function of the waste height at a given point and the corresponding foundation conditions. Settlements were estimated for the proposed cell subgrade conditions at specific point locations along the proposed leachate pipelines within the cells. The analysis points are shown on the attached Figure G-6 (Appendix A). 2.1.1 Results of Settlement Analysis The proposed new structural fill embankments on the north, south, and west perimeter of the cells will undergo settlement due to their own weight during and shortly after fill placement. A total of approximately 1-inch of settlement per 10 feet of fill thickness can be expected to occur due to self-weight consolidation of the engineered fill. Approximately half of that settlement will occur during fill placement and the remaining settlement will occur over approximately 3 months following fill placement. It is therefore concluded that the self-weight consolidation of the structural fill will be substantially completed prior to completion of the base liner system and waste placement. The results of the settlement analyses indicate a maximum waste cell subgrade settlement of approximately 3.6 feet will occur near the central area of Cell 15 within Phase 5 under the completed waste mound height. The estimated settlement considers the final grading plan of the expanded landfill over a profile that includes the planned structural fill. Settlement near the edges of the landfill resulting from the waste loading should be 0.2 feet or less. Residual soil settlement should occur rapidly as Phases 5 - 6 are filled. Total and differential settlements of the waste cell subgrade are expected to be well within acceptable limits of the structural components including the base liner and leachate collection system of the planned municipal solid waste landfill. Settlement estimates were used to calculate the post-settlement slope along the proposed leachate lines. The results, provided in a spreadsheet in Appendix B of this report, estimate that both modest increases and reductions in leachate collection pipe slope will occur under the design landfill configuration. Estimated post-settlement leachate collection pipe slopes are all above the desired minimum slope of 1.0%. The results of the analyses are summarized in spreadsheets in Appendix B along with the calculated post-settlement separation between the bottom of the 2-foot thick compacted clay liner and both the groundwater as depicted on the Seasonal High Water Table Elevation Contour Map (Figure 9 of the Phases 5 - 6 DHR Report) and the top of rock as depicted on the Top of Bedrock (Auger Refusal) Elevation Contour Map (Figure 6 of the Phases 5 - 6 DHR Report). Each of these two figures are provided in the Phases 5 - 6 Design Hydrogeologic Report (BLE Project No. J18-1002-80B) and groundwater and bedrock contours are depicted in Figure Nos. G-3 and G-4, respectively of Appendix A of this report. The analysis demonstrates that the post-settlement separation between the bottom of the 2-foot thick clay liner and the rock and seasonal high groundwater are greater than the minimum 4.0 feet of post-settlement vertical separation required by the North Carolina Rules for Solid Waste Management, Section 15ANCAC13B.1624.a.4. 2.2 GLOBAL SLOPE STABILITY Analyses were performed considering both static and seismic (pseudo-static) conditions for global slope stability of the final 3.5H:1V waste mound as well as a 3H:1V perimeter structural fill embankment on the northern side of Phases 5 - 6. We understand that the interim landfill slopes will also be graded at an inclination of 3.5H:1V. A summary of the analysis and the analysis results are provided in the sections below. Detailed descriptions and conditions for the global slope stability analyses is provided in Appendix C of this report. The site and waste placement conditions described in Appendix C form a significant part of the basis of our analysis and the resulting evaluation of the performance of the landfill slopes and should Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 5 of 11 therefore be considered in design construction and operation of the landfill. This evaluation considered a moist, unsaturated waste condition without elevated or perched liquid levels. Seismic Site Conditions The most recent published United States Geological Survey data available at the time of this report indicates that the maximum horizontal acceleration at the landfill, expressed as a percentage of the earth's gravity (g), in rock is approximately 0.082g with a 2% probability of exceedance exceeded in 50 years (Petersen et al. 2014); approximately equal to 10% probability in 250 years. Therefore, the site is located in an area not currently defined as a seismic impact zone. However, past geotechnical analyses at the site, which are based on historical seismic hazard maps, considered a PGA of 0.13g. For consistency with past analyses, we have utilized a PGA of 0.13g resulting in a seismic coefficient (ks) equal to 0.07 for the pseudo-static analysis. The determination of the seismic coefficient is presented with the attached global stability results. Analysis Methodology Both static and seismic slope stability analyses were performed. The analyses included both circular and sliding block potential failure modes of the completed landfill configuration and perimeter embankments using the computer program Slope/W by GeoSlope International. The shear strength parameters for the soil layers and the shear strength of the waste were determined from the soil types encountered by the borings, the soil standard penetration test results, laboratory triaxial shear testing of remolded site samples, our experience with materials similar to those encountered on this site and published shear strength models for MSW. The soil shear strength test results along with particle size distribution, Atterberg limits and moisture-density relationship (standard Proctor) are included with the Phases 5 - 6 DHR by BLE. The proposed cell design including the initial and final grading plans prepared by HHNT were reviewed and two representative critical cross-sections were selected for detailed analysis of global stability. The cross-section locations are shown on the attached Figure Nos. G-2 through G-6 and the cross-section profiles are shown on Figure No. G-7. 2.2.1 Results of Global Stability Analysis 2.2.1.1- Landfill Slopes – Cross Sections A-A’ and B-B’ The recommended minimum factor of safety for static, long-term conditions is 1.5. The minimum long-term, static condition factors of safety for landfill slopes were calculated to be 1.90 and 2.06 for cross sections A-A’ and B-B’, respectively. Those results include potential base liner interface sliding and global slope stability failure surfaces. The results of our analysis therefore indicate acceptable stability for long- term, static conditions. The recommended minimum factor of safety for seismic, short-term conditions is 1.0. The minimum short- term, seismic condition factors of safety for landfill slopes were calculated to be 1.04 and 1.24 for cross sections A-A’ and B-B’, respectively. Those results include potential base liner interface sliding and global slope stability failure surfaces. The results of our analysis therefore indicate acceptable factors of safety for seismic conditions. 2.2.1.2 Perimeter Landfill Slopes – Cross Sections A-A’ and B-B’ The steepest planned perimeter slope is the western slope forming the outside containment berm of Phases 5 - 6 which will be graded for the perimeter landfill access roadway and sediment basin. Our cross-section B-B’ displays the planned 2H:1V perimeter slope grade. We understand that the area has been utilized for soil borrow and that rock has been encountered above the future grade of the sediment basin floor. Further rock removal is planned; therefore, observations by a geotechnical engineer should be performed following Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 6 of 11 excavation of the overburden soil and/or rock removal to determine if further stability analysis is needed. The engineering observations should detail potential foliation, fractures, soil seams, seepage pressures and other inclusions which could lead to instability of the 2H:1V cut slope in the rock. We have performed a stability analysis of the structural fill and residual soil slope which forms the northern perimeter slope of Phase 6 (reference cross-section A-A’). This slope was partially constructed with Phase 4; however, additional grading is needed to complete the embankment slope during the Phase 6 construction. The analysis was performed with the most critical pore water pressure condition, which involves an empty pond with seepage at the toe of the slope resulting from the seasonal high groundwater level. For long-term, drained static conditions, a factor of safety of 1.56 was calculated which is greater than the minimum recommended value of 1.5. The short-term, seismic factor of safety was calculated to be 1.52, which is an acceptable value for seismic conditions. 2.2.2 Slope Stability Conclusion In summary, the resulting factors of safety of final 3.5H:1V waste mound were determined to be greater than or equal to the minimum recommended static and seismic factors of safety. The slope stability factors of safety are therefore acceptable as noted. Resulting factors of safety for slope stability are contingent upon considerations of waste type, placement, and pore pressure limitations as noted in our calculations in Appendix C. The slope stability analysis of the perimeter, northern Phase 6 slope resulted in acceptable factors of safety. The need for a subsequent slope stability analysis for the steepest Phases 5 - 6 perimeter slope along the western landfill boundary should be evaluated by a geotechnical engineer following excavation and rock removal in the future Sediment Basin No. 7. Our specific analyses and a summary are included in Appendix C of this report. 2.3 VENEER SLIDING STABILITY The sliding resistance for the planned slopes of the closure cap, base liner and leachate collection systems were each analyzed as finite slopes using the methodology by Koerner and Soong, 2005 (static) and Matasovic, 1991 (seismic). The veneer-type sliding stability of the protective soil cover of the cap on the 3.5H:1V waste slope was analyzed for both static and seismic (pseudo-static conditions). Due to the short-term unbuttressed condition of the base liner veneer slopes prior to waste placement, veneer stability analysis of the protective cover layer of the base liner was analyzed for static conditions only. Analyses also included a case for uphill spreading of soil with a low ground pressure dozer equivalent to a Caterpillar D6 for both slope angles. Veneer stability calculations for base liner and closure cap conditions are provided in Appendix D of this report. 2.3.1 Base Liner Protective Cover Veneer Sliding A lower bound of shear strength was used to calculate the factor of safety for a veneer-type failure of the base liner protective cover soils. For the protective cover layer on the 4H:1V base liner, a peak interface shear strength equivalent to a secant friction angle of 20.5 degrees was analyzed. The shear strength represented by this interface angle may be a combination of the friction angle at the representative normal load coupled with the interface adhesion. A factor of safety greater than or equal to the recommended minimum of 1.5 was calculated for the conditions analyzed. 2.3.2 Closure Cap Veneer Sliding A lower bound of shear strength was used to calculate the factor of safety for a veneer-type failure of the cap protective soil cover soils and a tack-on storm water berm with an exterior slope of 1.5H:1V. An Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 7 of 11 equipment loading from a low ground pressure bulldozer, equivalent to a Caterpillar D6, was included as a separate case in the analysis. Only uphill pushing of the cover soil was analyzed as downhill pushing of soil over the liner system is not recommended. The analysis indicates that the 3.5H:1V slope with materials having a peak interface shear strength represented by a friction angle of 23.3 degrees or more will achieve an acceptable factor of safety of 1.5 for static conditions and 1.0 for seismic conditions. The shear strength represented by this interface angle may be a combination of the friction angle coupled with the interface adhesion at the representative normal load. 2.4 LEACHATE COLLECTION PIPING – STRESS ANALYSIS We understand that the use of HDPE SDR 9 leachate collection pipe is planned for construction of Phases 5 - 6. Using the furnished project information and published pipe stress analysis formulas, 8-inch diameter HDPE pipe with standard dimension ratio (SDR) of 9 was analyzed for crushing, buckling, and ring deflection under the proposed loading. The pipe analysis utilized a standard designation code of PE4710 (Plastic Pipe Institute). The waste load on the pipe was conservatively selected as the vertical projection of the maximum height of waste at any location over the future Cells (prism load). The loading at the crown of the pipe also considered a vertical arching factor applied to the projected waste height and weight above the pipe that varies depending on the SDR of the pipe and the constrained modulus of the drainage stone surrounding the pipe. The vertical arching factor reduction of the prism load considers the strain compatibility of the pipe and the surrounding leachate collection stone. As the pipe deflects slightly under the load, arching occurs over the pipe which then reduces the load on the pipe. The analysis considers the planned piping encasement in ASTM No. 57 drainage stone with a minimum of 2 feet above and 3 feet from the sides of the pipe. The pipe is to lay directly on the geosynthetic liner system. The constrained modulus (E´) value for the drainage stone surrounding the pipe was assumed to be 3,000 psi. The recommended factors of safety against crushing and buckling failure modes for leachate pipe are 1.5 and 1.8, respectively. The recommended factor of safety against excessive ring deflection is 3.0 which corresponds to 7.5% diameter deflection. The analysis results indicate that the planned 8-inch SDR 9 HDPE pipe with Plastic Pipe Institute Standard Designation Code of PE4710 would achieve the recommended minimum factors of safety considering the currently planned maximum waste height of approximately 284 feet. The results of the analysis and an example of the methodology used are provided in Appendix E of this report. 2.5 CLOSURE CAP GEOCOMPOSITE DRAINAGE ANALYSIS 2.5.1 Closure Cap Geocomposite Drainage Media The purpose of this analysis was to determine the required transmissivity of the geosynthetic drainage media (GDM) to be installed above the textured geomembrane liner (FML) of the cap closure. The GDM in the cap closure cover system will have drainage outlets spaced 20 feet vertically along the proposed storm water diversion berms. Based on the procedure developed by Narejo and Zornberg, the required transmissivity is dependent on the fluid supply rate, the drainage length, and the slope inclination. The fluid supply rate is limited by the permeability of the protective cover. The required long-term transmissivity includes reduction factors for intrusion of the bonded geotextiles into the geonet, creep of the geonet under load, chemical and biological clogging along with an overall factor of safety of 2.0. To Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 8 of 11 account for the flatter gradient from waste settlement, the analysis was performed for the 3.5H:1V closure cap slope flattened to a long-term inclination of 4H:1V. In accordance with CQA Manual from prior Phase 4, the acceptable soil classifications for the protective soil cover above the GDM consist of SC, ML, MH, CL, and CH. The drainage layer analysis conservatively assumed a high-end soil permeability for the allowable soil types. Based on the analysis, the minimum required transmissivity for the closure cap GDM is 4.6 x 10-4 m2/s. This recommended transmissivity is based on a long-term protective soil cover permeability of 7.5 x 10-5 cm/s or slower which based on our site experience. The permeability is estimated to be one order of magnitude (10x) faster than the short-term permeability for the on-site silty soils typically used as described above. The use of higher permeability protective soil cover soil will require a higher geocomposite transmissivity. Correspondingly, use of a lower permeability protective soil cover soil would allow use of a geocomposite having a lower transmissivity, i.e. a thinner geonet. The results of the analysis are included in Appendix F of this report. Historically, the recommended minimum transmissivity at the Uwharrie Regional Landfill was 1.0 x 10-3 m2/s which is greater than the value calculated from our analysis. Therefore, we recommend using the prior value of 1.0 x 10-3 m2/s for design and specification purposes. Transmissivity testing using ASTM D4716 – 100-hour modified procedure should be used prior to constructing portions of the landfill cap to confirm conformance of the specific GDM product used. Each proposed GDM product should be tested to determine its transmissivity using soils proposed for use as protective soil cover. The transmissivity test parameters for the landfill cap drainage material should include a minimum overburden pressure of 500 psf and a gradient of 0.25 (equal to tan β, where β is the long-term (flattened) slope inclination angle in degrees for a 4H:1V slope ). Site soil cover proposed for use should be included in the transmissivity testing. The analysis of the proposed top-layer geotextile for the GDM was performed using the procedure presented by Richardson, et al. (Richardson, G.N., Giroud, J.P., and A. Zhao, Lateral Drainage Design Update Parts I - II, “GFR’S Designer’s Forum 1997-2003”, 2004). The procedure was used to determine the maximum apparent opening size (AOS) and the corresponding minimum mass per unit area of the top-layer geotextile for the proposed geocomposite drainage media, (GDM). For moderately plastic, fine-grained cover soil generally available at the site, (greater than 50% passing the No. 200 sieve), the maximum apparent opening size (AOS) of the top layer geotextile of the GDM should be 0.18 mm to retain and separate the proposed protective soil cover layer soils from the drainage media net. An AOS of 0.18 mm is typically available in a nonwoven geotextile with an 8-osy (ounce per square yard) mass per unit area. The required geotextile AOS is a function of the soil plasticity index (PI) and the particles for which 85% of the soil is finer (D85). The use of a protective soil cover soil which has plasticity index less than 15 and a (D85) particle size less than 0.1 mm will require a smaller AOS to retain the soil particles. The result of our analysis is presented in Appendix F. 3.0 RECOMMENDATIONS Based on the geotechnical analyses performed for construction of Phases 5 - 6 along with the prior geotechnical engineering analysis for the Uwharrie Landfill, the following recommendations are provided. 3.1 INTERFACE AND INTERNAL SHEAR STRENGTH Prior to the construction of each landfill waste cell, the interface shear strength between each of the proposed layers of the base liner system should be confirmed by direct shear testing in accordance with the Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 9 of 11 procedure outlined in ASTM D5321 (ASTM D6243 for geosynthetic clay liner interfaces) using samples of the materials proposed to be used. The interface shear strength between each of the proposed layers of the cap liner system should be similarly confirmed prior to the construction of each section of the landfill closure cap. Interface shear testing programs typically require 4 weeks or more to complete due to laboratory availability and slow shear rates. Therefore, to confirm acceptable interface shear strengths prior to geosynthetic material acceptance and shipping, it would be prudent to perform interface shear strength testing on representative materials prior to commencing construction on future waste sections. For each landfill waste cell or closure cap construction project, a minimum of 2 tests should be performed for each interface and should cover for a range of at least three (3) normal loads. Test results should be reviewed by a geotechnical engineer specializing in solid waste landfills and experienced in interface friction testing. For base liner components, we recommend performing testing at normal loads of 250 psf, 1,500 psf and, 3,000 psf for each construction project to represent the load from construction and initial waste lift loads. Prior to construction of each cell, two tests should also be performed on each interface at the maximum anticipated waste loading to confirm the materials achieve the assumed interface friction value utilized in our analysis for high loads, i.e., global sliding stability. Table 1 indicates the minimum required values at each normal load range. Table 1: Base Liner System- Geosynthetics Interfaces Normal Loads (psf)(1) Peak Secant Friction Angle Test Frequency 1,500 / 3,000 20.5° 2 per Cell Construction 10,000 psf(2) 17° 2 per Cell Construction Note (1): For each landfill cell construction project, a minimum of 2 tests should be performed for each interface at the normal loads equal to 1,500 and 3,000 psf. The average of the 2 tests should be used to determine acceptance with no individual test being less than 80% of the required value. Test results should be reviewed by a geotechnical engineer specializing in solid waste landfills and experienced in interface friction testing. Note (2): Prior to construction of each cell, two tests should also be performed for each interface at a normal load equal to 10,000 psf. The tests should be assigned and reviewed by a geotechnical engineer experienced in solid waste landfills to confirm the results achieve the required shear strengths. Note (3): During interface friction testing with GCL, the ends of the geotextile components of the GCL shall be de-bonded (peeled) and clamped at the end of each specimen to allow for internal shearing within the GCL. GCL-Specific Recommendations for Base Liner • For improved internal and interface strength, we recommend use of a double-nonwoven geotextile such that the bentonite is encapsulated by a nonwoven GCL on each face. • All GCL seams should be augmented with granular bentonite and leistered or wedge-welded to bond the overlapping geotextiles. Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 10 of 11 Table 2: Closure Cap System- Geosynthetics and Closure Cap Soil Normal Loads (psf)(1) Peak Secant Friction Angle Test Frequency 250 / 500 / 1,000 23.3° 2 per Closure Construction Note (1): Interface friction testing should be performed at normal loads 250 psf, 500 psf, and 1,000 psf for the closure system components. Note (2): Shear strength requirements are only applicable for closure side slopes with inclination of 3.5H:1V, i.e. not applicable for the compacted soil cap component on slopes flatter than 10%. 3.2 GLOBAL STABILITY Global stability of the waste mound is contingent upon the waste placement conditions presented in Appendix C of this report. Failure to properly place, compact, and maintain an unsaturated waste mound could result in factors of safety lower than those calculated in this analysis and therefore lead to instability. The waste stream has been assumed to consist primarily of MSW or industrial waste that meet the EPA and state criteria for the paint filter test. All sludges present within the waste, if any, are assumed to have been thoroughly mixed with the MSW at the time of placement. The MSW stream should be such that it retains the shear strength used in this analysis. Otherwise, additional geotechnical analyses should be performed. Pore pressure conditions within the waste should be monitored to confirm the landfill is draining as designed. Placement of wet waste and sludges should be minimized and should result in well-mixed MSW/sludge so that the material retains the properties of typical MSW detailed in our Appendix C. Presence of trapped or perched liquid (pore pressure) or deviation from the planned waste filling sequence should be evaluated by a geotechnical engineer specializing in solid waste landfills. A representative, 3H:1V perimeter infrastructure slope was analyzed and determined to be acceptable. A supplemental site investigation and slope stability analysis should be performed following complete excavation/rock removal to form the western perimeter slope in Sediment Basin No. 7. 3.3 VENEER STABILITY Adequate veneer stability is contingent upon achieving the interface and internal shear strengths provided in Section 2.3 and Tables 1 and 2 of this report and adequate drainage of the closure and base liner systems. We recommend that all cover material for base liner and closure cap systems be spread in the uphill direction by low ground pressure, tracked equipment with ground pressure less than or equal to 6 psi. Downhill spreading or pushing of the cover soil over the geosynthetic layers should not be permitted. Tack-on berms for the closure cap should be compacted to a minimum 95% of the standard Proctor maximum dry density at moisture contents within 3 % of the optimum moisture (ASTM D698). The berms should be constructed by spreading in relatively horizontal loose lifts less than or equal to 10 inches thick and compacted using properly ballasted compaction equipment. Care should be taken to prevent damage to the underlying geosynthetics during compaction. 3.4 LEACHATE COLLECTION PIPE INTEGRITY The 8-inch diameter, SDR 9 HDPE leachate collection pipe provides a sufficient factor of safety against crushing, buckling and ring deflection when considering the currently planned landfill loads. Use of SDR 9 pipe is recommended. Report of Geotechnical Evaluation, Phases 5 - 6 October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B 11 of 11 3.5 CLOSURE CAP DRAINAGE LAYER Refer to Section 2.5 for Closure Cap Drainage Layer requirements. We recommend conformance testing be performed on the planned protective soil cover material prior to ordering the geocomposite for a closure cap construction project. The following conformance testing is recommended: • Remolded Permeability (Flex Wall Permeability) ASTM D5084 1 per 10,000 cy • Particle Size Distribution – ASTM D422 1 per 5,000 cy • Atterberg Limits – ASTM D4318 1 per 5,000 cy The current Uwharrie Regional MSW Landfill CQA Plan indicates that a 100-hour transmissivity test shall be performed on a minimum of 2 samples of geocomposite per closure project using the project-specific soil and geosynthetic materials. It is our opinion that this requirement is suitable for the conformance testing and should therefore remain as a CQA conformance testing requirement. If the remolded permeability of the protective soil cover is greater than the values assumed in this report, a review of the drainage layer analysis should be performed by a geotechnical engineer experienced in solid waste landfills. As recommended in Section 2.5.1, if the particle size distribution indicates a D85 less than 0.1 mm, the recommended 8-osy filter geotextile may not be adequate for filtration of the soil fines, depending on the plasticity of the soil. Therefore, use of a smaller AOS (heavier mass per area) geotextile would need to be evaluated. 4.0 CONCLUSION The results of the geotechnical analyses presented in this report indicate that the proposed landfill configuration will result in acceptable subgrade settlements and the slopes and veneer layers will provide appropriate factors of safety for stability when considering design conditions and waste placement conditions included herein. A suitable leachate collection pipe dimension ratio was provided for adequate factors of safety against pipe crushing and buckling. The closure cap system was reviewed and analyzed to provide a recommended geocomposite drainage media transmissivity and filter geotextile. Construction recommendations for the items evaluated were also included. Bunnell-Lammons Engineering, Inc. appreciates the opportunity to provide professional geotechnical services on this project. If you have any questions concerning this report or the attached calculations, please contact us. 5.0 QUALIFICATION OF REPORT The findings contained herein are based upon the data that was reviewed and documented in this report along with our experience on similar projects. The discovery of any additional information concerning the environmental conditions at the site should be reported to us for our review so that we can reassess potential environmental impacts and modify our recommendations, if necessary. APPENDIX A Figures WET DETENTIONBASIN NO. 6BFORE B A Y NO. 6 A B B' AA' G-2 MAINTENANCE SHOPWET DETENTIONBASIN NO. 6BFORE B A Y NO. 6 A B B' AA' G-3 MAINTENANCE SHOPWET DETENTIONBASIN NO. 6BFORE B A Y NO. 6 A B B' AA' G-4 WET DETENTIONBASIN NO. 6BFORE B A Y NO. 6 A B B' AA' G-5 WET DETENTIONBASIN NO. 6BFORE B A Y NO. 6 A B B' AA' G-6 G-7 APPENDIX B Subgrade Settlement Calculations 10/15/21 1 of 3 SUBGRADE SETTLEMENT ANALYSIS PHASES 5-6, CELLS NO. 15 & 16 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B October 2021 PURPOSE Estimate settlement of the clay liner subgrade caused by the weight of overlying solid waste and closure cap. The settlement calculations were performed along the leachate lines of Cells No. 15 and 16. The post- settlement slope of the leachate lines were checked to confirm that leachate would flow to the designated locations. The post-settlement separations between the clay liner subgrade and both bedrock and groundwater were also checked to confirm that the required minimum separation of 4 feet was maintained. An example of the settlement analysis methodology is included in this documentation. DESCRIPTION OF ANALYSIS General Conditions 1.Subgrade settlement was estimated along the leachate drainage alignments at the deepest section of proposed waste fill in Cells No. 15 and 16. Subsurface conditions at each analysis location were based on nearby soil test borings. Representative boring logs are attached. 2.Earth and waste loads on the clay liner subgrade were determined from the proposed final cap and clay liner grades presented in drawings prepared by Hodges, Harbin, Newberry, and Tribble, Inc. (HHNT), dated November 16, 2018. 3.Unit weights for municipal solid waste (MSW), soil cover and clay liner were used to calculate the net pressure at each location analyzed. The unit weight of MSW was approximated to be 85 pcf (Reference 2). 4.Settlements were estimated using elastic analysis for residual soils (Reference 1). 5.Subsurface profile and top of bedrock for the site is based on the BLE Figure 6 titled "Top of Bedrock (Auger Refusal) Elevation Contour Map" from the Phases 5-6 Design Hydrogeologic Report. 6.Groundwater for the settlement calculations is based on BLE Figure 9 titled "Composite Seasonal High Water Table Elevation Contour Map" from the Phases 5-6 Design Hydrogeologic Report. Documentation of Settlement Analysis BLE Project No. J18-1002-80B Uwharrie Regional MSW Landfill 2 of 3 EXAMPLE OF SUBGRADE SETTLEMENT ANALYSIS Determine surcharge pressure at an analysis point The closure cap will consist of the following layers: Protective Soil & Topsoil 2.0 feet Infiltration Layer 1.5 feet Intermediate Cover 1.0 foot Total 4.5 feet The protective cover overlying the geomembrane liner will be 2.0 feet thick. For Cell No. 15: Layer Elevations Point Ground Cap FML Clay Subgrade Feet Feet Feet Feet SP-12 659.9 943.2 668.2 666.2 Because clay subgrade at SP-12 is at a higher elevation than the existing ground surface, structural fill will be required to obtain the clay liner subgrade elevation and therefore no reduction in net landfill surcharge. Net surcharge pressure at clay subgrade elevation: ∆𝜎=(𝛾𝑐𝑎𝑝× �𝑐𝑎𝑝)+(𝛾𝑤𝑎𝑠𝑠𝑒× �𝑤𝑎𝑠𝑠𝑒)+(𝛾𝑝𝑐× �𝑝𝑐)+(𝛾𝑐𝑙𝑎𝑦× �𝑐𝑙𝑎𝑦) where: γcap = 120 pcf hcap = 4.5 feet γwaste = 85 pcf γclay = 120 pcf γpc = 120 pcf hpc = 2 foot Net surcharge pressure at analysis point SP-12: ∆𝜎=(120 × 4.5)+85 × [(943.2 −4.5)−(668.2 +2)]+(120 × 2)+(120 × 2) ∆𝜎=540 +22,823 +240 +240 =23,843 𝑝𝑠𝑒 Documentation of Settlement Analysis BLE Project No. J18-1002-80B Uwharrie Regional MSW Landfill 3 of 3 Calculate subgrade settlement at an analysis point Settlement calculated using elastic methods. Elastic modulus values were estimated from a published relationship (Reference 1) with standard penetration test (SPT) N-values for weathered in-place residual soil of the Piedmont Physiographic Province as follows: Es = 41 x N^0.66 For analysis point SP-12 use subsurface conditions at boring PZ-144A. Thickness N-Value Modulus, Es Layer Feet bpf ksf Structural Fill 6.3 15 240 Stiff clayey Silt 12 12 210 Firm sandy Silt 20 8 160 Dense silty Sand 15 31 400 Partially Weathered Rock 11 270 1650 𝛾=(0.6 × 𝛥𝜎× 𝑠𝑖ℎ𝑐𝑘𝑛𝑒𝑠𝑠)÷ 𝐸𝑠 Because the lateral extent of the landfill is very large relative to the thickness of compressible soils, the surcharge load is considered constant with depth (influence factor = 1). Sum the settlements calculated for each layer. Structural Fill: 𝛾=0.6 × (∆𝜎×ℎ 𝐸𝑠 )=0.6 × (23,843×6.3 240×1000 )=0.37 𝑒𝑒𝑒𝑠=4.5 �ℎ𝑛𝑐�𝑒𝑠 Stiff clayey Silt: 𝛾=0.6 × (∆𝜎×ℎ 𝐸𝑠 )=0.6 × (23,843×12 210×1000)=0.82 𝑒𝑒𝑒𝑠=9.8 �ℎ𝑛𝑐�𝑒𝑠 Firm sandy Silt 𝛾=0.6 × (∆𝜎×ℎ 𝐸𝑠 )=0.6 × (23,843×20 160×1000)=1.79 𝑒𝑒𝑒𝑠=21.5 �ℎ𝑛𝑐�𝑒𝑠 Dense silty Sand 𝛾=0.6 × (∆𝜎×ℎ 𝐸𝑠 )=0.6 × (23,843×15 400×1000)=0.54 𝑒𝑒𝑒𝑠=6.4 �ℎ𝑛𝑐�𝑒𝑠 PWR 𝛾=0.6 × (∆𝜎×ℎ 𝐸𝑠 )=0.6 × (23,843×11 1650×1000)=0.09 𝑒𝑒𝑒𝑠=1.1 �ℎ𝑛𝑐�𝑒𝑠 Total: 3.61 feet Reference 1: Settlement of Residual Soil, R. E. Martin, ASCE Geotechnical Special Publication No. 9, April 1987. Reference 2: Unit Weight of Municipal Solid Waste, Zekkos, D. et al., Journal of Geotechnical and Geoenvironmental Engineering, ASCE, October 2006. ElevatElevationPre-ConstructionReferencePointStationSectionCell ion Number Reference(1)CapMSWProtectiveClay FinishedTop ofGroundBoring CoverLiner CapClayElevationNumber Linerat Point FeetFeetFeetFeetFeetFeetFeet 834.04.599.72.02.0727.8720.0PZ-130bSP-116+34L-2B16 804.94.596.22.02.0702.2699.0PZ-176cSP-28+65L-2B16 699.24.530.82.02.0661.9665.5PZ-182cSP-30+45L-2B16 831.74.598.92.02.0726.3720.0PZ-129bSP-419+47L-2A16 849.34.5122.82.02.0720.0703.8PZ-175cSP-513+45L-2A16 846.24.5153.72.02.0686.0693.2PZ-176cSP-610+62L-2A16 694.54.538.12.02.0649.9641.6PZ-171abSP-71+47L-2A16 824.74.5104.32.02.0713.9711.8PZ-126abSP-818+12L-1B15 894.84.5228.52.02.0659.8651.1PZ-165bSP-97+92L-1B15 742.34.587.02.02.0648.8640.9PZ-170bSP-100+85L-1B15 827.84.5117.52.02.0703.8704.5PZ-136abSP-1119+13L-1A15 943.24.5268.52.02.0668.2659.9PZ-144aSP-1211+10L-1A15 691.64.543.12.02.0642.0650.8PZ-172bSP-130+38L-1A15 (1) References to Cell Floor Elevation, Locations shown on Figure G-7. (2) Net Surcharge = cap weight + weight of waste down to protective cover +protective cover weight - net stress relief between original ground and clay liner subgrade elevations. (3) Closure Cap thickness is 4.5-ft for slopes flatter than 10%. Thickness on slopes is to be 3.0-ft. However, 4.5-ft was conservatively used for all areas of the landfill for settlement calculations prepared by:Gary L. Weekley, P.E.pcf85MSW checked by:Tyler W. Moody, P.E.pcf120Structural Fill & Clay Liner pcf120Cap Soil and Protective Cover Subgrade NetLayer Thickness Pressure(2) at Clay Elevation psf 9,495 9,197 2,966 9,427 11,458 12,981 4,259 9,886 20,443 8,415 Material Unit Weight 10,684 23,843 3,388 Geomembrane (top of clay) and finished grade (cap) elevations and existing ground surface elevations were obtained from electronic drawing prepared by Hodges, Harbin, Newberry, and Tribble, Inc., dated November 16, 2018. SURCHARGE DETERMINATION SETTLEMENT CALCULATIONS PHASES 5-6, CELLS NO. 15 & 16 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B October 2021 October 2021 Standard Layer Total Effective Surcharge Soil Layer Penetration Thickness Soil Unit Soil Unit Pressure1 Modulus Settlement Top Bottom Resistance (N-Value)Weight Weight (bpf)(feet) (pcf) (pcf) (psf) (ksf) (inches) Settlement Point No.: SP-1 Reference Boring: PZ-130b 725.8 - 720.0 Structural Fill NA 6 120 120 9,495 240 1.7 720.0 - 708.0 Stiff clayey SILT 12 12 120 120 9,495 210 3.9 708.0 - 698.0 Stiff sandy SILT 10 10 120 58 9,495 190 3.6 698.0 - 683.0 Very Firm silty SAND 21 15 120 58 9,495 310 3.3 683.0 - 674.0 Dense silty SAND 43 9 125 63 9,495 490 1.3 674.0 - 671.3 Partially Weathered Rock 600 3 130 68 9,495 2,790 0.1 Total Thickness of Compressible Material 55 Feet TOTAL ESTIMATED SETTLEMENT (inches) 13.9 TOTAL ESTIMATED SETTLEMENT (feet) 1.16 Settlement Point No.: SP-2 Reference Boring: PZ-176c 700.2 - 699.0 Structural Fill NA 1 120 120 9,197 240 0.3 699.0 - 684.0 Stiff clayey SILT 12 15 120 120 9,197 210 4.7 684.0 - 679.0 Partially Weathered Rock 100 5 130 130 9,197 860 0.4 Total Thickness of Compressible Material 21 Feet TOTAL ESTIMATED SETTLEMENT (inches) 5.4 TOTAL ESTIMATED SETTLEMENT (feet) 0.45 Settlement Point No.: SP-3 Reference Boring: PZ-182c 660.0 - 648.5 Very Stiff clayey SILT 26 11.5 120 120 2,966 350 0.7 648.5 - 643.5 Stiff sandy SILT 10 5 120 120 2,966 190 0.6 643.5 - 638.5 Partially weathered rock 120 5 130 68 2,966 970 0.1 Total Thickness of Compressible Material 21.5 Feet TOTAL ESTIMATED SETTLEMENT (inches) 1.4 TOTAL ESTIMATED SETTLEMENT (feet) 0.12 1 Surcharge pressure assumes weight of solid waste of 85 pcf Reference Figure G-6 for settlement point locations UWHARRIE REGIONAL MSW LANDFILL - CELLS NO. 15 & 16 MONTGOMERY COUNTY, NORTH CAROLINA Bunnell-Lammons Engineering, Inc. Project No. J18-1002-80B Soil Layer Subsurface Layer Elevation (feet) SETTLEMENT CALCULATIONS - PHASES 5-6 October 2021 Standard Layer Total Effective Surcharge Soil Layer Penetration Thickness Soil Unit Soil Unit Pressure1 Modulus Settlement Resistance (N-Value)Weight Weight (bpf)(feet) (pcf) (pcf) (psf) (ksf) (inches) Settlement Point No.: SP-4 Reference Boring: PZ-129b 724.3 - 720.0 Structural Fill 15 4 120 120 9,427 240 1.2 720.0 - 708.0 Stiff sandy SILT 10 12 120 120 9,427 190 4.3 708.0 - 703.0 Soft clayey SILT 4 5 110 48 9,427 100 3.4 703.0 - 693.0 Firm silty SAND 12 10 120 58 9,427 210 3.2 693.0 - 668.0 Very Firm silty SAND 27 25 120 58 9,427 360 4.7 668.0 - 660.0 Dense silty SAND 45 8 120 58 9,427 510 1.1 Total Thickness of Compressible Material 64 Feet TOTAL ESTIMATED SETTLEMENT (inches) 17.9 TOTAL ESTIMATED SETTLEMENT (feet) 1.49 Settlement Point No.: SP-5 Reference Boring: PZ-175c 718.0 - 703.8 Structural Fill NA 14 120 120 11,458 240 4.9 703.8 - 691.8 Stiff sandy SILT 15 12 120 120 11,458 240 4.1 691.8 - 687.8 Very Dense silty SAND 78 4 120 120 11,458 730 0.5 687.8 - 658.8 Partially Weathered Rock 200 29 130 68 11,458 1,350 1.8 Total Thickness of Compressible Material 59 Feet TOTAL ESTIMATED SETTLEMENT (inches) 11.3 TOTAL ESTIMATED SETTLEMENT (feet) 0.94 Settlement Point No.: SP-6 Reference Boring: PZ-176c 684.0 - 678.2 Firm silty SAND 12 6 120 120 12,981 210 2.6 678.2 - 673.2 Partially Weathered Rock 100 5 130 130 12,981 860 0.5 Total Thickness of Compressible Material 11 Feet TOTAL ESTIMATED SETTLEMENT (inches) 3.1 TOTAL ESTIMATED SETTLEMENT (feet) 0.26 1 Surcharge pressure assumes weight of solid waste of 85 pcf Reference Figure G-6 for settlement point locations UWHARRIE REGIONAL MSW LANDFILL - CELLS NO. 15 & 16 MONTGOMERY COUNTY, NORTH CAROLINA Bunnell-Lammons Engineering, Inc. Project No. J18-1002-80B Subsurface Layer Elevation (ft)Soil Type SETTLEMENT CALCULATIONS - PHASES 5-6 October 2021 Standard Layer Total Effective Surcharge Soil Layer Penetration Thickness Soil Unit Soil Unit Pressure1 Modulus Settlement Resistance (N-Value)Weight Weight (bpf)(feet) (pcf) (pcf) (psf) (ksf) (inches) Settlement Point No.: SP-7 Reference Boring: PZ-171ab 647.9 - 641.6 Structural Fill 15 6 120 120 4,259 240 0.8 641.6 - 619.6 Firm sandy SILT 6 22 120 120 4,259 130 5.2 619.6 - 616.1 Partially weathered rock 100 4 130 68 4,259 860 0.1 Total Thickness of Compressible Material 32 Feet TOTAL ESTIMATED SETTLEMENT (inches) 6.1 TOTAL ESTIMATED SETTLEMENT (feet) 0.51 Settlement Point No.: SP-8 Reference Boring: PZ-126ab 711.9 - 699.8 Stiff sandy SILT / silty CLAY 15 12 120 120 9,886 240 3.6 699.8 - 689.8 Firm silty SAND 12 10 120 58 9,886 210 3.4 Total Thickness of Compressible Material 22 Feet TOTAL ESTIMATED SETTLEMENT (inches) 7.0 TOTAL ESTIMATED SETTLEMENT (feet) 0.58 Settlement Point No.: SP-9 Reference Boring: PZ-165b 657.8 - 651.1 Structural Fill 15 7 120 120 20,443 240 4.1 651.1 - 634.1 Stiff sandy SILT 13 17 120 58 20,443 220 11.4 634.1 - 624.1 Firm silty SAND 16 10 120 58 20,443 260 5.7 624.1 - 620.5 Very Dense silty SAND 66 4 120 58 20,443 650 0.8 Total Thickness of Compressible Material 37 Feet TOTAL ESTIMATED SETTLEMENT (inches) 22.0 TOTAL ESTIMATED SETTLEMENT (feet) 1.831 Surcharge pressure assumes weight of solid waste of 85 pcf UWHARRIE REGIONAL MSW LANDFILL - CELLS NO. 15 & 16 MONTGOMERY COUNTY, NORTH CAROLINA Bunnell-Lammons Engineering, Inc. Project No. J18-1002-80B Subsurface Layer Elevation (ft)Soil Type SETTLEMENT CALCULATIONS - PHASES 5-6 October 2021 Standard Layer Total Effective Surcharge Soil Layer Penetration Thickness Soil Unit Soil Unit Pressure1 Modulus Settlement Resistance (N-Value)Weight Weight (bpf)(feet) (pcf) (pcf) (psf) (ksf) (inches) Settlement Point No.: SP-10 Reference Boring:PZ-170b 646.8 - 640.9 Structural Fill 15 6 120 120 8,415 240 1.5 640.9 - 628.9 Stiff sandy SILT 12 12 120 120 8,415 210 3.5 628.9 - 623.9 Partially Weathered Rock 120 5 130 130 8,415 970 0.3 623.9 - 613.9 Very Dense silty SAND 70 10 120 58 8,415 680 0.9 613.9 - 607.3 Partially Weathered Rock 150 7 130 68 8,415 1,120 0.4 Total Thickness of Compressible Material 40 Feet TOTAL ESTIMATED SETTLEMENT (inches) 6.6 TOTAL ESTIMATED SETTLEMENT (feet) 0.55 Settlement Point No.: SP-11 Reference Boring:PZ-136ab 701.8 - 692.5 Very Stiff sandy SILT 16 9 120 120 10,684 260 2.8 692.5 - 687.5 Very Dense silty SAND 64 5 120 120 10,684 640 0.6 687.5 - 685.5 Partially Weathered Rock 150 2 130 68 10,684 1,120 0.1 Total Thickness of Compressible Material 16 Feet TOTAL ESTIMATED SETTLEMENT (inches) 3.5 TOTAL ESTIMATED SETTLEMENT (feet) 0.29 Settlement Point No.: SP-12 Reference Boring:PZ-144a 666.2 - 659.9 Structural Fill 15 6.3 120 120 23,843 240 4.5 659.9 - 647.9 Stiff clayey SILT 12 12 120 120 23,843 210 9.8 647.9 - 627.9 Firm sandy SILT 8 20 120 58 23,843 160 21.5 627.9 - 612.9 Dense silty SAND 31 15 120 58 23,843 400 6.4 612.9 - 601.9 Partially Weathered Rock 270 11 130 68 23,843 1,650 1.1 Total Thickness of Compressible Material 64.3 Feet TOTAL ESTIMATED SETTLEMENT (inches) 43.3 TOTAL ESTIMATED SETTLEMENT (feet) 3.61 1 Surcharge pressure assumes weight of solid waste of 85 pcf Reference Figure G-6 for settlement Point Locations UWHARRIE REGIONAL MSW LANDFILL - CELLS NO. 15 & 16 MONTGOMERY COUNTY, NORTH CAROLINA Bunnell-Lammons Engineering, Inc. Project No. J18-1002-80B Subsurface Layer Elevation (ft)Soil Type SETTLEMENT CALCULATIONS - PHASES 5-6 October 2021 Standard Layer Total Effective Surcharge Soil Layer Penetration Thickness Soil Unit Soil Unit Pressure1 Modulus Settlement Resistance (N-Value)Weight Weight (bpf)(feet) (pcf) (pcf) (psf) (ksf) (inches) Settlement Point No.: SP-13 Reference Boring:PZ-172b 640.0 - 618.8 Very Firm to Dense silty SAND 31 21 120 58 3,388 400 1.3 618.8 - 612.3 Partially Weathered Rock 120 7 130 68 3,388 970 0.2 Total Thickness of Compressible Material 28 Feet TOTAL ESTIMATED SETTLEMENT (inches) 1.5 TOTAL ESTIMATED SETTLEMENT (feet) 0.13 Total Thickness of Compressible Material TOTAL ESTIMATED SETTLEMENT (inches) TOTAL ESTIMATED SETTLEMENT (feet) Total Thickness of Compressible Material TOTAL ESTIMATED SETTLEMENT (inches) TOTAL ESTIMATED SETTLEMENT (feet) 1 Surcharge pressure assumes weight of solid waste of 85 pcf Reference Figure G-6 for settlement Point Locations UWHARRIE REGIONAL MSW LANDFILL - CELLS NO. 15 & 16 MONTGOMERY COUNTY, NORTH CAROLINA Bunnell-Lammons Engineering, Inc. Project No. J18-1002-80B Subsurface Layer Elevation (ft)Soil Type SETTLEMENT CALCULATIONS - PHASES 5-6 Top ofEstimatedSettlementCell GroundwaterGroundwaterClay Liner SubgradeClay LinerSettlementPointNumber Elevation(2)Elevation Reference(1)SeparationElevation(FML) (FML-2 Feet) Feet FeetFeetFeetFeet 14.64710.0725.8727.81.16SP-116 18.05681.7700.2702.20.45SP-216 14.48645.3659.9661.90.12SP-316 15.91706.9724.3726.31.49SP-416 19.36697.7718.0720.00.94SP-516 10.24673.5684.0686.00.26SP-616 12.79634.6647.9649.90.51SP-716 10.82700.5711.9713.90.58SP-815 6.37649.6657.8659.81.83SP-915 9.85636.4646.8648.80.55SP-1015 14.21687.3701.8703.80.29SP-1115 4.09658.5666.2668.23.61SP-1215 10.58629.3640.0642.00.13SP-1315 Note (1): Reference Figure G-6 for settlement Point Locations Note (2): Reference BLE Figure 9 titled "Composite Seasonal High Water Table Elevation Contour Map", from the Phase 5 Design Hydrogeologic Report (BLE Project No. J18-1002-80A). GROUNDWATER SEPARATION WITH CLAY LINER SUBGRADE POST-SETTLEMENT PHASES 5-6 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B October 2021 BedrockBedrockClay LinerTop ofEstimatedSettlementCell SubgradeClay LinerSettlementPointNumber Elevation(2)Elevation Reference(1)SeparationElevation(FML) (FML-2 Feet) Feet FeetFeetFeetFeet 54.04670.6725.8727.81.16SP-116 10.65689.1700.2702.20.45SP-216 16.08643.7659.9661.90.12SP-316 57.31665.5724.3726.31.49SP-416 48.46668.6718.0720.00.94SP-516 5.24678.5684.0686.00.26SP-616 31.69615.7647.9649.90.51SP-716 26.52684.8711.9713.90.58SP-815 16.97639.0657.8659.81.83SP-915 34.15612.1646.8648.80.55SP-1015 25.01676.5701.8703.80.29SP-1115 34.09628.5666.2668.23.61SP-1215 19.88620.0640.0642.00.13SP-1315 Note (1): Reference Figure G-6 for settlement Point Locations Note (2): Reference BLE Figure 6 titled "Top of Bedrock (Auger Refusal) Elevation Contour Map" from the Phase 5 Design Hydrogeologic Report, BLE Project No. J18-1002-80A BEDROCK SEPARATION WITH CLAY LINER SUBGRADE POST-SETTLEMENT PHASES 5-6 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B October 2021 Prepared by:G. Weekley, P.E. Checked by:T. Moody, P.E. Cell Number Low Middle High Line Initial Post Line Initial Post Point Point Point Sta. Elev. Sta. Elev. Length Line Settlement Sta. Elev. Sta. Elev. Length Line Settlement (Pt. Reference Number*)Slope Slope Slope Slope Low-Middle Middle-High Feet Feet Feet Feet % %Feet % % 0.13 3.61 0.29 (SP-13) (SP-12) (SP-11) 0.51 0.26 1.49 (SP-7) (SP-6) (SP-4) Note(*): Point Reference Numbers refer to the settlement analysis point numbers shown on BLE Figure G-6. 686.0 19+47.4 726.3161+46.6 649.9 10+61.8 686.0 915.2 1,072.3 885.6 4.6 4.43.9 4.0 821.0 4.3 4.72.4 2.1 11+10.1 668.2 19+13.1 703.8 10+61.8 15 0+37.8 642.0 11+10.1 668.2 Subgrade Settlement Low to Middle Leachate Line Segment Middle to High Leachate Line Segment Low Middle Middle High October 2021 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project J18-1002-80B POST-SETTLEMENT SLOPE OF SELECTED LEACHATE LINES PHASES 5-6: CELLS NO. 15 & 16 APPENDIX C Slope Stability Analysis 10/15/21 Calculation Documentation – Slope Stability Analysis October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B Montgomery County, North Carolina 2 PURPOSE 1) Analyze the slope stability for the final waste grades proposed for Phases 5 - 6 (Cell 15) and Phase 6 (Cell 16) at the Uwharrie Regional MSW Landfill. Global, local, and sliding failure modes are to be analyzed under static conditions. a. Slope stability for the long-term, static drained condition is to be considered. b. Slope stability for the short-term, seismic condition is to be considered. c. Slope stability of the apparent critical, exterior infrastructure slopes is to be considered. 2) The analysis calculates the factors of safety for slope stability for the profile A-A’, which extends north to south through Future Cell No. 15 and for profile B-B’, which extends east to west through Future Cell Nos. 15 and 16 and the sediment basin/exterior infrastructure embankment. DESCRIPTION OF ANALYSIS General Conditions 1. The generalized subsurface layers used in the stability analysis were generalized from the Design Hydrogeologic Report Phases 5 - 6 (Cells No. 15 and 16) - BLE Project No. J18- 1002-80A) prepared by Bunnell-Lammons Engineering, Inc. (BLE). The naturally occurring subsurface conditions were divided into residual soil and bedrock layers. 2. Triaxial shear strength and general soil parameters of the in situ soils and structural fill (remolded) soils were available from our Phases 5 & 6 Site Hydrogeologic Report and published literature (Naval Facilities Engineering Command (NAVFAC), 1986). 3. Shear strength of the MSW was estimated using a depth related function from published literature (Bray et al, 2009). 4. Bottom liner systems of the Future Cells are to utilize textured 60-mil HDPE liner throughout the cell areas to enhance interface friction strengths against sliding failures. Other components of the bottom liner (from lowest to highest) consist of a compacted soil liner (or compacted clay liner), a reinforced geosynthetic clay liner (GCL), the textured geomembrane, and a nonwoven cushion geotextile. For analysis of bottom liner sliding stability, we have selected conservative values for interface friction which are below those typically measured at the site during past CQA projects. During construction of Phases 5 & 6, the peak interface friction test results should be confirmed as greater than or equal to the values used for this analysis. 5. The existing topography was obtained from the aerial topographic survey performed January 31, 2018 by Cooper Aerial Surveys Co. 6. Planned Phases 5 & 6 top of clay liner, outside cell structural fill grades, and final landfill grades were obtained from a digital CAD drawing prepared and provided by Hodges, Harbin, Newberry and Tribble, Inc. (HHNT) dated November 2018. The final cap grades represent the finished top of landfill cover. The final slope is to be constructed at a maximum inclination of 3.5H:1V. Calculation Documentation – Slope Stability Analysis October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B Montgomery County, North Carolina 3 7. Top of rock elevations were obtained from the BLE Figure No. 6 titled “Top of Bedrock (Auger Refusal) Elevation Contour Map” as reported in BLE’s Phases 5 - 6 Design Hydrogeologic Report (BLE Project No. J18-1002-80A). 8. Groundwater elevations were obtained from BLE Figure No. 9 titled “Composite Seasonal High Water Table Elevation Contour Map” as reported in BLE’s Phases 5 & 6 Design Hydrogeologic Report (BLE Project No. J18-1002-80A). 9. A peak bedrock acceleration of 0.082g was obtained from USGS Seismic Hazard Map (10% in 250 years), updated 2014. Therefore, the site is not located in a seismic impact zone. However, since past geotechnical analyses for Phases 3 and 4 have utilized the peak bedrock acceleration from the 2002 USGS Maps, equal to 0.13g, we have performed a seismic slope stability analysis with a PGA of 0.13g. In accordance with the RCRA Subtitle D Seismic Design Guidance (1995), the seismic coefficient used for pseudo-static slope stability analysis is equal to ½ (PGA) following the methodology by Hynes-Griffin and Franklin presented in the RCRA guidance document. Therefore, a coefficient (ks) of 0.07 was conservatively used. (Richardson, Kavazanjian, & Matasovic, 1995) 10. Long-term, static conditions were analyzed using effective stress (drained) shear strength parameters from triaxial tests and literature. 11. Long-term, seismic conditions were analyzed using total stress (undrained) shear strength parameters for soil materials based on triaxial test results and our experience with similar materials. 12. If present, soft soils are to be removed prior to structural fill placement in accordance with the construction specifications. 13. Interim waste filling prior to Cell 16 construction will be at an inclination of 3.5H:1V, which is the same inclination as the final waste slope. 14. Profile A-A’ serves as the critical cross section for the analysis due to the alignment along the sloping bottom liner grade and the maximum planned landfill height for Phases 5 - 6. Profile B-B’, which was also considered in the analysis, follows the western final landfill slope. 15. The analysis is based on the condition that long term, drained shear strength will control for shear stress within the waste slopes. Due to short-term loading effects on MSW, which temporarily increases the shear strength of the MSW, the long-term MSW strengths were conservatively utilized in the seismic analysis (Bray, Zekkos, Kavazanjian, Athanasopoulos, & Riemer, 2009). 16. A minimum F.S. > 1.5 for static loading conditions is required for the static long-term stability and a minimum F.S > 1.0 is required for the short-term slope stability. 17. Soil excavation and rock removal remain to be performed to complete the western perimeter slope shown on BLE Cross-Section B-B’. The planned Sediment Basin No. 7 slope is 2H:1V which is the steepest planned inclination for the infrastructure grading. Cuts slopes of 2H:1V in competent rock will achieve an acceptable factor of safety for stability. However, the area is to be observed and evaluated by a geotechnical engineer following complete excavation to confirm that additional analysis is not warranted. Calculation Documentation – Slope Stability Analysis October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B Montgomery County, North Carolina 4 Assumptions 1. Storm water will be controlled to prevent the long-term saturation of the structural fill embankments. 2. The leachate collection system will reduce the liquid head on the geomembrane liner to less than 30 cm. 3. Proper grassing and erosion control will be provided for the long-term performance of the exterior landfill slopes. 4. Pore pressure due to excess landfill gas and leachate conditions within the MSW was not considered in the analysis. 5. Assumed no sludge waste is present within 50 feet of the outside landfill slopes. 6. The unit weight of MSW was conservatively estimated to be 85 pcf based on the high-end of published literature. (Zekkos, et al., 2006) The waste stream has been assumed to consist primarily of MSW or industrial waste that meet the EPA and state criteria for paint filter test. All sludges present within the waste, if any, are assumed to have been thoroughly mixed with the MSW at the time of placement. The MSW stream should be such that it retains the shear strength used in this analysis. Otherwise, additional analysis should be performed. The waste stability analysis is contingent upon proper waste placement practices including the following: 1. When beginning new waste lifts over previous waste lifts, cover soils are removed to provide waste to waste contact. 2. Placement of non-solidified or wet sludges in lifts or in excavations within the waste are to be prohibited. 3. Storm water is not allowed to pond over portions of the landfill. 4. Leachate and landfill gas are to be properly controlled as the waste placement progresses in order to prevent excess pore pressures from gas and liquids. 5. Waste is placed and compacted in horizontal lifts and not pushed downhill. 6. Waste is placed starting from the lowest elevation of each cell then working upward in horizontal lifts. 7. Each lift is to be keyed into the existing slope, i.e. sliver fills are properly benched to provide waste to waste contact. 8. Intermediate landfill slopes should not terminate (toe out) in the cell floor, but rather the toe of the waste slope should be at the edge of the landfill cell/section. Failure to properly place, compact, and maintain the waste mound could result in lower factors of safety than those calculated in this analysis and therefore lead to instability. Likewise, inclusion of elevated liquid levels and gas pressure, if uncontrolled, will result in lower factors of safety. The analysis was performed using SLOPE/W and SIGMA/W of the GeoStudio 2018 R2 software package (2018 Release, Version 9.1.0.16306, developed by GEO-SLOPE International). The analysis used the Morgenstern-Price method of slices for limit equilibrium, using an Entry/Exit (circular failure) or a block specified (block failure) slip surface search criteria. An iterative optimization search procedure was then performed, which provided an optimized composite failure Calculation Documentation – Slope Stability Analysis October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B Montgomery County, North Carolina 5 surface. In general, the program calculates the factor of safety for potential slip surfaces from the ratio of available shear resistance and the shear resistance required to provide equilibrium. Table 1 outlines the estimated Mohr-Coulomb shear strength envelopes and unit weights utilized for the various materials and conditions. Table 1: Geotechnical Material Parameters Material Total Unit Weight (pcf) Eff. Stress, Drained Total Stress(2) Source Friction Angle, ϕ′ degrees Cohesion, c′ (psf) Friction Angle, ϕ degrees Cohesion, c (psf) Residual Soil 120 32 0 20 200 BLE Subsurface Data, 2018 NAVFAC, 1986 Structural Fill 120 35 / 30(3) 0 12.4 250 BLE Triaxial Results, 2018 Geosynthetic Interface 110 17 0 10 0 Site Data, Conservatively Reduced MSW 85 (Note 1) Bray et al, 2009 Notes: 1) MSW shear strength is based on the shear-normal function as published by Bray et al. (2009). The envelope is defined as follows: 𝜏=𝑐+𝜎𝑛∗tan(𝜙𝜎) 𝜙𝜎=𝜙0 −Δ𝜙∗log10 (𝜎𝑛 𝑝𝑎 ) where τ = shear strength c = cohesion intercept, 313 psf σn = total normal stress ϕσ = normal stress dependent friction angle ϕ0 = friction angle measured at a normal stress of 1 atm = 36º Δϕ = change of friction angle over 1 log-cycle change of normal stress = 5º pa = atmospheric pressure = 1 atm 2) For total stress, seismic conditions, the interface friction value is conservatively assumed to be the large-displacement friction angle with zero cohesion. Calculation Documentation – Slope Stability Analysis October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B Montgomery County, North Carolina 6 3) A bilinear envelope was utilized based on the measured triaxial shear strengths. The shear strength envelope consists of a friction angle of 35 degrees for normal stress between 0 and 2,000 psf with a friction angle equal to 30 degrees thereafter. It should be noted that use of residual (large displacement) interface shear strength for the seismic condition is the most conservative method for a block sliding analysis. ANALYSIS RESULTS Table 2 presents the results of each slope stability condition analyzed for the tallest section of the slope represented by Profile A-A’. The results presented represent the lowest calculated factor of safety for each condition via circular or block failure surfaces. Table 2: Results of Slope Stability Analysis- Section A-A′ Loading Conditions & Failure Location Run No. Minimum FS Criteria FS ≥ Target Static Long-Term Loading Conditions Drained, Global Stability A3.1 2.64 ≥ 1.5 Yes Drained, Interface Sliding A4.1 1.90 ≥ 1.5 Yes Drained, Exterior Roadway Embankment A7 1.56 ≥ 1.5 Yes Seismic Short-Term Loading Conditions Total Stress, Global Stability A6.2 1.42 ≥ 1.0 Yes Total Stress, Interface Sliding A5.2 1.04 ≥ 1.0 Yes Total Stress, Exterior Roadway Embankment A7.1 1.52 ≥ 1.0 Yes As shown in Table 2, the factor of safety for the 3.5H:1V waste slope and final slope configuration is greater than or equal to the recommended values of 1.5 for long-term static conditions and 1.0 for short-term, seismic conditions. The results of the analysis have been expressed for the failure surface with the lowest factor of safety. Table 3 presents the results of each slope stability condition analyzed for Profile B-B’. The results presented represent the lowest calculated factor of safety for each condition via circular or block failure surfaces. Calculation Documentation – Slope Stability Analysis October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B Montgomery County, North Carolina 7 Table 3: Results of Slope Stability Analysis- Section B-B′ Loading Conditions & Failure Location Run No. Minimum FS Criteria FS ≥ Target Static, Long-Term Loading Conditions Waste Slope: Drained, Global Stability B1.1.1 2.64 ≥ 1.5 Yes Waste Slope: Drained, Interface Sliding B2.1 2.06 ≥ 1.5 Yes Seismic, Short-Term Loading Conditions Waste Slope: Total Stress, Global Stability B3.3 1.47 ≥ 1.0 Yes Waste Slope: Total Stress, Interface Stability B3.2 1.24 ≥ 1.0 Yes As shown in Table 3, the factor of safety for the 3.5H:1V waste slope and final slope configuration is greater than or equal to the recommended values of 1.5 for long-term static conditions and 1.0 for short-term, seismic conditions. The results of the analysis have been expressed for the failure surface with the lowest factor of safety. The results of this analysis are contingent upon the assumptions and conditions included herein. Calculation Documentation – Slope Stability Analysis October 15, 2021 Uwharrie Regional MSW Landfill BLE Project No. J18-1002-80B Montgomery County, North Carolina 8 REFERENCES Bray, J. D., Zekkos, D., Kavazanjian, E., Athanasopoulos, G., & Riemer, M. F. (June de 2009). Shear Strength of Municipal Solid Waste. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 135(6), 709-722. Dixon, N., Jones, D., & Fowmes, G. (2006). Interface shear strength variability and its use in reliability-based landfill stability analysis. Geosynthetics International, 13(1), 1-14. Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil Strength and Slope Stability, 2nd Edition. New Jersey: John Wiley & Sons, Inc. GEO-SLOPE International, Ltd. (2018). Geostudio 2018, version 9.1.0.16306. Calgary, Alberta, Canada: GEO-SLOPE International, Ltd. Naval Facilities Engineering Command (NAVFAC), U. S. (1986). Design Manual 7.01 & 7.02 (DM 7.01 & DM 7.02). NAVFAC. Petersen, M. D. (2014). Documentation for the 2014 update of the United States national seismic hazard maps: U.S. Geological Survey Open-File Report 2014–1091. Reston, Virginia: USGS. Richardson, G., Kavazanjian, E., & Matasovic, N. (1995). RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Cincinatti: US EPA. Zekkos, D., Bray, J. D., Kavazanjian Jr., E., Matasovic, N., Rathje, E. M., Riemer, M. F., & Stokoe II, K. H. (October de 2006). Unit Weight of Municipal Solid Waste. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(10), 1250-1261. Attachments: Slope Stability Model Printouts Shear Strength Documentation - NAVFAC DM.7 Triaxial Shear Test Reports – Remolded Soil for Phases 5 & 6 Area Shear Strength Envelope for MSW Historical Interface Friction Results – Uwharrie Regional Landfill Slope Stability Model Printouts 1.90 Distance -20 80 180 280 380 480 580 680 780 880 980 1,080 1,180 1,280 1,380 1,480 1,580 1,680 1,780 1,880 1,980 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Project:Uwharrie Regional MSW LF (Cells 15 &16)BLE Project No. J18-1002-80BFile Name: 1002-80B Cross A-A.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-PriceAnalysis Run: A4.1 - Interface (entry/exit) Color Name Model Unit Weight (pcf) Strength Function Cohesion' (psf) Phi' (°) Phi-B (°) Piezometric Line Bedrock Bedrock (Impenetrable)1 Liner Interface (Peak) Mohr-Coulomb 110 0 17 0 MSW Shear/Normal Fn. 85 MSW Depth Function (Bray et al. 2009) 0 2.64 Distance -20 80 180 280 380 480 580 680 780 880 980 1,080 1,180 1,280 1,380 1,480 1,580 1,680 1,780600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 ,000 Project:Uwharrie Regional MSW LF (Cells 15 &16)BLE Project No. J18-1002-80BFile Name: 1002-80B Cross A-A.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-PriceAnalysis Run: A3.1 - Global (grid/radius) (2) Color Name Model Unit Weight (pcf) Cohesion' (psf) Phi 1 (°) Phi 2 (°) Bilinear Normal (psf) Phi' (°) Strength Function Phi-B (°) Piezometric Line Bedrock Bedrock (Impenetrable)1 MSW Shear/Normal Fn.85 MSW Depth Function (Bray et al. 2009) 0 Residual Soil Mohr-Coulomb 120 0 32 0 1 Structural Fill Bilinear 120 0 35 30 2,000 0 1 Elevation 1.04 Distance -20 80 180 280 380 480 580 680 780 880 980 1,080 1,180 1,280 1,380 1,480 1,580 1,680 1,780 1,880 1,980 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Project:Uwharrie Regional MSW LF (Cells 15 &16)BLE Project No. J18-1002-80BFile Name: 1002-80B Cross A-A.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-PriceAnalysis Run: A5.2 - Seismic Interface (entry/exit) Ks =0.07 Color Name Model Unit Weight (pcf) Strength Function Cohesion' (psf) Phi' (°) Phi-B (°) Bedrock Bedrock (Impenetrable) Liner Interface (Residual) Mohr-Coulomb 110 0 10 0 MSW Shear/Normal Fn. 85 MSW Depth Function (Bray et al. 2009) 0 1.42 Distance -20 80 180 280 380 480 580 680 780 880 980 1,080 1,180 1,280 1,380 1,480 1,580 1,680 1,780 1,880 1,980 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Project:Uwharrie Regional MSW LF (Cells 15 &16)BLE Project No. J18-1002-80BFile Name: 1002-80B Cross A-A.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-PriceAnalysis Run: A6.2 - Seismic Global (entry/exit) Ks=0.07 Color Name Model Unit Weight (pcf) Strength Function Cohesion' (psf) Phi' (°) Phi-B (°) Bedrock Bedrock (Impenetrable) Liner Interface (Residual)Mohr-Coulomb 110 0 10 0 MSW Shear/Normal Fn. 85 MSW Depth Function (Bray et al. 2009) 0 Residual Soil (Total Stress)Mohr-Coulomb 120 200 20 0 Structural Fill (Total Stress)Mohr-Coulomb 120 250 12.4 0 1.56 -20 80 180 280 380 48600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 ,000 Project:Uwharrie Regional MSW LF (Cells 15 &16) BLE Project No. J18-1002-80B File Name: 1002-80B Cross A-A.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-Price Analysis Run: A7 - Exterior Slope (entry/exit) Color Name Model Unit Weight(pcf) Strength Function Cohesion'(psf)Phi1 (°) Phi2 (°) BilinearNormal(psf) Phi'(°)Phi-B(°)PiezometricLine Bedrock Bedrock (Impenetrable)1 Liner Interface (Peak) Mohr-Coulomb 110 0 17 0 MSW Shear/Normal Fn.85 MSW Depth Function (Bray et al. 2009) 0 Residual Soil Mohr-Coulomb 120 0 32 0 1 Structural Fill Bilinear 120 0 35 30 2,000 0 1 1.52 -20 80 180 280 380 48600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 ,000 Project:Uwharrie Regional MSW LF (Cells 15 &16) BLE Project No. J18-1002-80B File Name: 1002-80B Cross A-A.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-Price Analysis Run: A7.1 - Exterior Slope (entry/exit) seism ks =0.07 Color Name Model Unit Weight (pcf) Cohesion'(psf)Phi'(°)Strength Function Phi-B(°) Bedrock Bedrock (Impenetrable) MSW Shear/Normal Fn. 85 MSW Depth Function (Bray et al. 2009) 0 Residual Soil (Total Stress)Mohr-Coulomb 120 200 20 0 Structural Fill (Total Stress)Mohr-Coulomb 120 250 12.4 0 2.64 Distance 0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Project:Uwharrie Regional MSW LF (Cells 15 &16) - Cross Section B-B'BLE Project No. J18-1002-80BFile Name: 1002-80B Cross B-B.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-PriceAnalysis Run: B1.1.1 - Global (entry/exit) (2) Color Name Model Unit Weight (pcf) Cohesion'(psf)Phi 1 (°)Phi 2 (°)BilinearNormal (psf) Phi'(°)Strength Function Phi-B(°)PiezometricLine Bedrock Bedrock (Impenetrable)1 MSW Shear/Normal Fn.85 MSW Depth Function (Bray et al. 2009) 0 Residual Soil Mohr-Coulomb 120 0 32 0 1 Structural Fill Bilinear 120 25 35 30 2,000 0 1 2.06 Distance 0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Project:Uwharrie Regional MSW LF (Cells 15 &16) - Cross Section B-B'BLE Project No. J18-1002-80BFile Name: 1002-80B Cross B-B.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-PriceAnalysis Run: B2.1 - Interface (entry/exit) Color Name Model Unit Weight (pcf) Strength Function Cohesion'(psf)Phi'(°)Phi-B(°)PiezometricLine Bedrock Bedrock (Impenetrable)1 Liner Interface (Peak) Mohr-Coulomb 110 0 17 0 MSW Shear/Normal Fn. 85 MSW Depth Function (Bray et al. 2009) 0 1.24 Distance 0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Project:Uwharrie Regional MSW LF (Cells 15 &16) - Cross Section B-B'BLE Project No. J18-1002-80BFile Name: 1002-80B Cross B-B.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-PriceAnalysis Run: B3.2 - Seismic Interface (entry/exit)Ks= 0.07 Color Name Model Unit Weight (pcf) Strength Function Cohesion'(psf)Phi'(°)Phi-B(°) Bedrock Bedrock (Impenetrable) Liner Interface (Residual) Mohr-Coulomb 110 0 10 0 MSW Shear/Normal Fn. 85 MSW Depth Function (Bray et al. 2009) 0 1.47 Distance 0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Elevation600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1,000 Project:Uwharrie Regional MSW LF (Cells 15 &16) - Cross Section B-B'BLE Project No. J18-1002-80BFile Name: 1002-80B Cross B-B.gszPrepared by: Tyler Moody, P.E. Analysis Method:Morgenstern-PriceAnalysis Run: B3.3- Seismic Global (grid/radius) (2) Ks= 0.07 Color Name Model Unit Weight(pcf) Strength Function Cohesion'(psf)Phi' (°)Phi-B(°) Bedrock Bedrock (Impenetrable) Liner Interface (Residual)Mohr-Coulomb 110 0 10 0 MSW Shear/Normal Fn. 85 MSW Depth Function (Bray et al. 2009) 0 Residual Soil (Total Stress)Mohr-Coulomb 120 200 20 0 Structural Fill (TotalStress)Mohr-Coulomb 120 250 12.4 0 Shear Strength Documentation - NAVFAC DM.7 7.1-149 Note: For Uwharrie Regional MSW LF, Deeper Residual Soils (USCS of ML and SM) Source: NAVFAC DM-7.01 (1986) 32 Triaxial Shear Test Reports Remolded Soil for Phases 5-6 Shear Stress, psi0 9 18 27 Total Normal Stress, psi Effective Normal Stress, psi 0 9 18 27 36 45 54 TRIAXIAL SHEAR TEST REPORT TRIAXIAL SHEAR TEST REPORT Bunnell Lammons Engineering, Inc. Greenville, SC Proj. No.: J09-1002-91 Figure Client:Republic Project:Uwharrie Landfill Source of Sample: Boring Depth: 1.0-6.0 Sample Number: PZ-168 Date Sampled: File: URLF 1002.91 SITE HYDRO Remarks: Remolded to 95.6% of MDD @ -0.6 of optimum moisture Material Description Light reddish brown CLAY LL= 66 PL= 31 PI= 35 Strength intercept, c= Friction angle, f = Tangent, f = Total 1.989 psi 12.38 deg 0.22 Effective 0 psi 36.68 deg 0.74 Mohr-Coulomb Strength Parameters Consolidated Sample Parameters No. % Water Content Dry Dens. pcf Satur- ation Void Ratio Diameter in. Height in. Strain Rate in/min. Fluid Press. psi Fail. Stress, psi Ult. Stress, psi Principal Stressesat Failure psi Total PoreTotal Pore PressurePressure No.Cell Back Deviator Deviator s1 s3 Type of Test: CU with Pore Pressures Sample Type: Remolded 1 34.2 88.0 103.1%0.8799 2.853 5.985 0.015 1 80.000 70.000 10.718 76.200 3.80014.51811.848 74.400 2 33.1 89.0 102.2%0.8594 2.851 5.940 0.015 2 90.000 70.000 15.263 84.600 5.40020.66317.946 84.300 3 31.9 91.3 104.2%0.8122 2.822 5.899 N/A 3 100.000 70.000 21.615 93.000 7.00028.61524.800 91.800 Client: Republic Project: Uwharrie Landfill Source of Sample: Boring Depth: 1.0-6.0 Sample Number: PZ-168 Project No.: J09-1002-91 Figure Bunnell Lammons Engineering, Inc.q, psi0 20 40 60 p, psi Stress Paths: Total Effective 0 20 40 60 80 100 120 Peak Strength Total Effective a= a= tan a= 1.943 psi 12.10 deg 0.21 0.000 psi 30.85 deg 0.60Total Pore Pressure Deviator Stress psi0 25 50 75 100 125 0%8%16% 1 Total Pore Pressure Deviator Stress psi0 25 50 75 100 125 0%8%16% 3 Total Pore Pressure Deviator Stress psi0 25 50 75 100 125 0%8%16% 2 Total Pore Pressure Deviator Stress psi0 25 50 75 100 125 0%8%16% 4 Shear Strength Envelope for MSW Normal Stress (psf) Shear Strength Angle, ϕσ(º) Shear Strength, τ (psf) 0 313 100 42.63 405 200 41.12 488 300 40.24 567 400 39.62 644 500 39.13 720 600 38.74 794 700 38.40 868 800 38.11 941 900 37.86 1013 1000 37.63 1084 2000 36.12 1773 3000 35.24 2433 4000 34.62 3074 5000 34.13 3702 6000 33.74 4320 7000 33.40 4929 8000 33.11 5531 9000 32.86 6126 10000 32.63 6715 11000 32.42 7299 12000 32.23 7879 13000 32.06 8455 14000 31.90 9026 15000 31.75 9594 16000 31.61 10159 17000 31.48 10721 18000 31.35 11279 19000 31.23 11835 20000 31.12 12388 21000 31.02 12939 22000 30.92 13488 23000 30.82 14034 24000 30.73 14578 25000 30.64 15120 26000 30.55 15660 27000 30.47 16199 28000 30.39 16735 29000 30.32 17270 30000 30.24 17803 31000 30.17 18334 32000 30.10 18864 33000 30.04 19392 34000 29.97 19919 35000 29.91 20445 36000 29.85 20969 37000 29.79 21492 38000 29.73 22013 Page 1 of 3 MSW DEPTH FUNCTIONS FOR SLOPE STABILITY ANALYSIS GEOTECHNICAL EVALUATION FOR PHASES 5-6 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B Normal Stress (psf) Shear Strength Angle, ϕσ(º) Shear Strength, τ (psf) 39000 29.67 22533 40000 29.62 23052 41000 29.56 23570 42000 29.51 24086 43000 29.46 24602 44000 29.41 25116 45000 29.36 25629 46000 29.31 26142 47000 29.27 26653 48000 29.22 27163 49000 29.18 27672 50000 29.13 28180 51000 29.09 28687 52000 29.05 29194 53000 29.01 29699 54000 28.97 30203 55000 28.93 30707 56000 28.89 31210 57000 28.85 31711 58000 28.81 32213 59000 28.77 32713 60000 28.74 33212 61000 28.70 33711 62000 28.67 34209 63000 28.63 34706 64000 28.60 35202 65000 28.56 35698 66000 28.53 36193 67000 28.50 36687 68000 28.47 37180 69000 28.43 37673 70000 28.40 38165 71000 28.37 38657 72000 28.34 39147 73000 28.31 39637 74000 28.28 40127 75000 28.25 40616 76000 28.22 41104 77000 28.20 41592 78000 28.17 42079 79000 28.14 42565 80000 28.11 43051 81000 28.09 43536 82000 28.06 44021 83000 28.03 44505 84000 28.01 44988 85000 27.98 45471 86000 27.96 45954 Page 2 of 3 MSW DEPTH FUNCTIONS FOR SLOPE STABILITY ANALYSIS GEOTECHNICAL EVALUATION FOR PHASES 5-6 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B Normal Stress (psf) Shear Strength Angle, ϕσ(º) Shear Strength, τ (psf) 87000 27.93 46435 88000 27.91 46917 89000 27.88 47398 90000 27.86 47878 91000 27.83 48358 92000 27.81 48837 93000 27.79 49316 94000 27.76 49794 Created By:Tyler Moody, P.E., 12/18/18 Checked By:Larry Simonson, P.E. 12/18/18 Shear Strength Envelope: τ = c + σn * tan(ϕσ) where c = cohesion = 313 psf, σn = normal stress ϕσ = ϕ0 - Δϕ * log(σn/pa) and ϕ0 = friction angle measured at normal stress of 1 atm = 36º Δϕ = change in friction angle over 1 log-cycle change of normal stress = 5º pa = atmospheric pressure = 2116 psf Notes: (1) Depth functions for use with Slope/W slope stability analysis. (2) Shear strength angle/shear strength developed using Bray et al (2009). Page 3 of 3 MSW DEPTH FUNCTIONS FOR SLOPE STABILITY ANALYSIS GEOTECHNICAL EVALUATION FOR PHASES 5-6 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B Historical Interface Friction Results Uwharrie Regional MSW Landfill Client:Republic Services TRI Log#: Project:Uwharrie Regional, Cell No. 13 Test Method:ASTM D5321 Date: Large Peak Displacement (@ 3.0 in.) 41.4 39.8 103 90 Upper Box & Lower Box Test Condition:Wet Shearing Rate:0.04 inches/minute 33730002738258542.440.8- - Test Conditions Interface Conditioning: Adhesion (psf): Protective Cover Soil remolded to 103.3 pcf at a moisture content of 15.9% Interface Friction Test Report Friction Angle (degrees): Y-intercept or Test Results Corrected Large Displacement Shear Stress (psf) John M. Allen, P.E., 02/02/2015 Quality Review/Date 18Normal Stress (psf) 1 275 Tested Interface: Protective Cover Soil (1002-10A, PC-1) vs. Skaps GE112 Non-woven Geotextile (37274.01), Test 1 of 2 01-28-2015 to 01-28-2015 E2388-51-05 Shearing occurred at the interface. 49.7 Corrected Peak Shear Stress (psf)957 Asperity (mils)- -- -43.747.7Large Displacement Secant Angle (degrees)45.7 Test Data Peak Secant Angle (degrees) Skaps GE112 non-woven geotextile Box Dimensions: 12"x12"x4" 250 1000 Specimen No.Bearing Slide Resistance (lbs) 1026294 10 2 Interface loaded and soaked for 1 hour then shear box was drained and loading was maintained for a minimum of 1 hour prior to shear. 0 1000 2000 3000 0 1000 2000 3000 Shear Stress (psf) Normal Stress (psf) Peak Shear Stress (Linear Fit) Linear (L.D. - Dotted) 0 500 1000 1500 2000 2500 3000 0.0 1.0 2.0 3.0 4.0 Shear Stress (psf) Displacement (inches) 250 psf 1000 psf 3000 psf Client:Republic Services TRI Log#: Project:Uwharrie Regional, Cell No. 13 Test Method:ASTM D5321 Date: Large Peak Displacement (@ 3.0 in.) 36.5 34.2 221 192 Upper Box & Lower Box Test Condition:Wet Shearing Rate:0.04 inches/minute 33730002412220638.836.3- - 46.5 Test Data Peak Secant Angle (degrees) Skaps GE112 non-woven geotextile Box Dimensions: 12"x12"x4" 250 1000 Specimen No.Bearing Slide Resistance (lbs) 1055337 10 2 Interface loaded and soaked for 1 hour then shear box was drained and loading was maintained for a minimum of 1 hour prior to shear. - -- -43.850.0Large Displacement Secant Angle (degrees) Corrected Large Displacement Shear Stress (psf) John M. Allen, P.E., 02/02/2015 Quality Review/Date 18Normal Stress (psf) 1 298 Tested Interface: Protective Cover Soil (1002-10A, PC-1) vs. Skaps GE112 Non-woven Geotextile (37274.01), Test 2 of 2 01-28-2015 to 01-28-2015 E2388-51-05 Shearing occurred at the interface. 53.4 Corrected Peak Shear Stress (psf)959 Asperity (mils) Interface Friction Test Report Friction Angle (degrees): Y-intercept or Test Results Protective Cover Soil remolded to 103.3 pcf at a moisture content of 15.9% Test Conditions Interface Conditioning: Adhesion (psf): 0 1000 2000 3000 0 1000 2000 3000 Shear Stress (psf) Normal Stress (psf) Peak Shear Stress (Linear Fit) Linear (L.D. - Dotted) 0 500 1000 1500 2000 2500 3000 0.0 1.0 2.0 3.0 4.0 Shear Stress (psf) Displacement (inches) 250 psf 1000 psf 3000 psf Client:Republic Services TRI Log#: Project:Uwharrie Regional, Cell No. 13 Test Method:ASTM D5321 Date: Large Peak Displacement (@ 3.0 in.) 27.1 14.8 24 39 Upper Box & Lower Box Test Condition:Wet Shearing Rate:0.04 inches/minute 3373000155882827.415.424.2 28.1 Test Data Peak Secant Angle (degrees) Agru 60 mil HDPE Microspike geomembrane (dull side) Box Dimensions: 12"x12"x4" 250 1000 Specimen No.Bearing Slide Resistance (lbs) 534153 10 2 Interface loaded and soaked for 1 hour then shear box was drained and loading was maintained for a minimum of 1 hour prior to shear. 23.6 25.817.620.9Large Displacement Secant Angle (degrees) Corrected Large Displacement Shear Stress (psf) John M. Allen, P.E., 02/02/2015 Quality Review/Date 18Normal Stress (psf) 1 96 Tested Interface: Skaps GE112 Non-woven Geotextile (37274.01) vs. Agru 60 mil HDPE Microspike Geomembrane (G15F021002) 01-27-2015 to 01-27-2015 E2388-51-05 Shearing occurred at the interface. 31.4 Corrected Peak Shear Stress (psf)317 Asperity (mils) Interface Friction Test Report Friction Angle (degrees): Y-intercept or Test Results Skaps GE112 non-woven geotextile Test Conditions Interface Conditioning: Adhesion (psf): 0 1000 2000 3000 0 1000 2000 3000 Shear Stress (psf) Normal Stress (psf) Peak Shear Stress (Linear Fit) Linear (L.D. - Dotted) 0 200 400 600 800 1000 1200 1400 1600 1800 0.0 1.0 2.0 3.0 4.0 Shear Stress (psf) Displacement (inches) 250 psf 1000 psf 3000 psf Client:Republic Services TRI Log#: Project:Uwharrie Regional, Cell No. 13 Test Method:ASTM D5321 Date: Large Peak Displacement (@ 3.0 in.) 25.9 11.9 127 155 Upper Box & Lower Box Test Condition:Wet Shearing Rate:0.04 inches/minute 3373000156374927.514.036.6 Test Conditions Interface Conditioning: Adhesion (psf): Skaps GE112 non-woven geotextile Interface Friction Test Report Friction Angle (degrees): Y-intercept or Test Results Corrected Large Displacement Shear Stress (psf) John M. Allen, P.E., 02/02/2015 Quality Review/Date 18Normal Stress (psf) 1 107 Tested Interface: Skaps GE112 Non-woven Geotextile (37274.01) vs. Agru 60 mil HDPE Microspike Geomembrane (G15F021002) 01-27-2015 to 01-27-2015 E2388-51-05 Shearing occurred at the interface. 36.6 Corrected Peak Shear Stress (psf)505 Asperity (mils)34.8 38.826.823.2Large Displacement Secant Angle (degrees)35.0 Test Data Peak Secant Angle (degrees) Agru 60 mil HDPE Microspike geomembrane (shiny side) Box Dimensions: 12"x12"x4" 250 1000 Specimen No.Bearing Slide Resistance (lbs) 699186 10 2 Interface loaded and soaked for 1 hour then shear box was drained and loading was maintained for a minimum of 1 hour prior to shear. 0 1000 2000 3000 0 1000 2000 3000 Shear Stress (psf) Normal Stress (psf) Peak Shear Stress (Linear Fit) Linear (L.D. - Dotted) 0 200 400 600 800 1000 1200 1400 1600 1800 0.0 1.0 2.0 3.0 4.0 Shear Stress (psf) Displacement (inches) 250 psf 1000 psf 3000 psf Client:Republic Services TRI Log#: Project:Uwharrie Regional, Cell No. 13 Test Method:ASTM D5321 Date: Large Peak Displacement (@ 3.0 in.) 23.5 19.0 296 255 Upper Box & Lower Box Test Condition:Wet Shearing Rate:0.004 inches/minute 33730001549123927.322.424.4 43.0 Test Data Peak Secant Angle (degrees) Agru 60 mil HDPE Microspike geomembrane (dull side up) Box Dimensions: 12"x12"x4" 250 1000 Specimen No.Bearing Slide Resistance (lbs) 934259 10 2 Interface loaded and soaked for 24 hours then shear box was drained and loading was maintained for a minimum of 48 hours prior to shear. 24.6 24.838.040.0Large Displacement Secant Angle (degrees) Corrected Large Displacement Shear Stress (psf) John M. Allen, P.E., 01/27/2015 Quality Review/Date 18Normal Stress (psf) 1 210 Tested Interface: Compacted Clay Liner Soil (TP-Comp2) vs. Agru 60 mil HDPE Microspike Geomembrane (G15F021002) 01-22-2015 to 01-27-2015 E2388-51-05 Shearing occurred at the interface. 46.0 Corrected Peak Shear Stress (psf)780 Asperity (mils) Interface Friction Test Report Friction Angle (degrees): Y-intercept or Test Results Compacted Clay Liner Soil remolded to 86.6 pcf at a moisture content of 29.0% Test Conditions Interface Conditioning: Adhesion (psf): 0 1000 2000 3000 0 1000 2000 3000 Shear Stress (psf) Normal Stress (psf) Peak Shear Stress (Linear Fit) Linear (L.D. - Dotted) 0 200 400 600 800 1000 1200 1400 1600 1800 0.0 1.0 2.0 3.0 4.0 Shear Stress (psf) Displacement (inches) 250 psf 1000 psf 3000 psf Client:Republic Services TRI Log#: Project:Uwharrie Regional, Cell No. 13 Test Method:ASTM D5321 Date: Large Peak Displacement (@ 3.0 in.) 28.1 20.6 60 67 Upper Box & Lower Box Test Condition:Wet Shearing Rate:0.004 inches/minute 33730001664119629.021.736.4 30.2 Test Data Peak Secant Angle (degrees) Agru 60 mil HDPE Microspike geomembrane (shiny side up) Box Dimensions: 12"x12"x4" 250 1000 Specimen No.Bearing Slide Resistance (lbs) 583201 10 2 Interface loaded and soaked for 24 hours then shear box was drained and loading was maintained for a minimum of 48 hours prior to shear. 37.6 36.823.932.6Large Displacement Secant Angle (degrees) Corrected Large Displacement Shear Stress (psf) John M. Allen, P.E., 01/27/2015 Quality Review/Date 18Normal Stress (psf) 1 160 Tested Interface: Compacted Clay Liner Soil (TP-Comp2) vs. Agru 60 mil HDPE Microspike Geomembrane (G15F021002) 01-22-2015 to 01-27-2015 E2388-51-05 Shearing occurred at the interface. 38.8 Corrected Peak Shear Stress (psf)444 Asperity (mils) Interface Friction Test Report Friction Angle (degrees): Y-intercept or Test Results Compacted Clay Liner Soil remolded to 86.6 pcf at a moisture content of 29.0% Test Conditions Interface Conditioning: Adhesion (psf): 0 1000 2000 3000 0 1000 2000 3000 Shear Stress (psf) Normal Stress (psf) Peak Shear Stress (Linear Fit) Linear (L.D. - Dotted) 0 200 400 600 800 1000 1200 1400 1600 1800 0.0 1.0 2.0 3.0 4.0 Shear Stress (psf) Displacement (inches) 250 psf 1000 psf 3000 psf TRI/ENVIRONMENTAL,INC. A Texas Research International Company Client:Republic Services TRI Log#: E2365-36-08 Project:Uwharrie Regional Landfill, Cell 14A Test Method: ASTM D 5321 Test Date: 06/05/12-06/05/12 Large Peak Displacement (@ 3.0 in.) 25.8 14.1 60 58 Upper Box & Lower Box Test Condition:Wet Shearing Rate:0.04 inches/minute 3 37 3000 1490 794 26.4 14.8 29.8 31.7 Test Data Peak Secant Angle (degrees) Agru 60 mil HDPE Microspike geomembrane (dull side) Box Dimensions: 12"x12"x4" 250 1000 Specimen No. Bearing Slide Resistance (lbs) Asperity (mils)28.2 29.0 20.117.5 TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI. Large Displacement Secant Angle (degrees) to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. 9063 Bee Caves Road  Austin, TX 78733-6201  (512) 263-2101  (512) 263-2558  1-800-880-TEST The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply Corrected Large Displacement Shear Stress (psf) Interface soaked and loading applied for a minimum of 1 hour prior to shear. John M. Allen, P.E., 06/05/2012 Quality Review/Date 18 Normal Stress (psf) 1 79 Interface Friction Test Report Friction Angle (degrees): Y-intercept or Test Results Tested Interface: Skaps GE112 Non-woven Geotextile (24095.01) vs. Agru 60 mil HDPE Microspike Geomembrane (221798.12), Test 1 of 2 618 2 Adhesion (psf): Shearing occurred at the interface. 126 Skaps GE112 non-woven geotextile 26.8 Corrected Peak Shear Stress (psf) 365 10 Test Conditions Interface Conditioning: 0 1000 2000 3000 0 1000 2000 3000Shear Stress (psf) Normal Stress (psf) Shear Stress vs. Normal Stress Peak Shear Stress (Linear Fit)Linear(L.D. - Dotted) 0 200 400 600 800 1000 1200 1400 1600 0.0 1.0 2.0 3.0 4.0Shear Stress (psf) Displacement (inches) Shear Stress vs. Displacement 250 psf 1000 psf 3000 psf TRI/ENVIRONMENTAL,INC. A Texas Research International Company Client:Republic Services TRI Log#: E2365-36-08 Project:Uwharrie Regional Landfill, Cell 14A Test Method: ASTM D 5321 Test Date: 06/05/12-06/05/12 Large Peak Displacement (@ 3.0 in.) 31.1 18.2 83 86 Upper Box & Lower Box Test Condition:Wet Shearing Rate:0.04 inches/minute 3 37 3000 1861 1053 31.8 19.3 29.8 31.4 Corrected Peak Shear Stress (psf) 483 10 Test Conditions Interface Conditioning: 798 2 Adhesion (psf): Shearing occurred at the interface. 153 Skaps GE112 non-woven geotextile Interface Friction Test Report Friction Angle (degrees): Y-intercept or Test Results Tested Interface: Skaps GE112 Non-woven Geotextile (24095.44) vs. Agru 60 mil HDPE Microspike Geomembrane (222335.12), Test 2 of 2 Corrected Large Displacement Shear Stress (psf) Interface soaked and loading applied for a minimum of 1 hour prior to shear. John M. Allen, P.E., 06/05/2012 Quality Review/Date 18 Normal Stress (psf) 1 118 9063 Bee Caves Road  Austin, TX 78733-6201  (512) 263-2101  (512) 263-2558  1-800-880-TEST The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply 25.825.3 TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI. Large Displacement Secant Angle (degrees) to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. 38.6 Test Data Peak Secant Angle (degrees) Agru 60 mil HDPE Microspike geomembrane (dull side) Box Dimensions: 12"x12"x4" 250 1000 Specimen No. Bearing Slide Resistance (lbs) Asperity (mils)28.2 29.0 0 1000 2000 3000 0 1000 2000 3000Shear Stress (psf) Normal Stress (psf) Shear Stress vs. Normal Stress Peak Shear Stress (Linear Fit)Linear(L.D. - Dotted) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0.0 1.0 2.0 3.0 4.0Shear Stress (psf) Displacement (inches) Shear Stress vs. Displacement 250 psf 1000 psf 3000 psf APPENDIX D Veneer Stability Analysis • Base Liner System • Closure Cap BASE LINER VENEER SLIDING STABILITY - WITH EQUIPMENT LOADING 4:1 H:V SLOPES GEOTECHNICAL EVALUATION - CELL NOS. 15, 16 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B Reference:Analysis and Design of Veneer Cover Soils by R.M. Koerner and T-Y Soong, 2005 Geosynthetics International, Special Issue on Giroud Lectures, 12, No. 1, 28-49. This analysis method addresses finite slope stability of veneer covers considering gravitational forces from the protective cover soil over the geosynthetic layer and equipment loading due to a specific low ground pressure type dozer spreading protective cover soils over a geosynthetic layer on a slope. Input items shaded in yellow. ≔δ ⋅20.5 °Minimum interface friction angle along slip surface for normal stress less than 1,500 psf ≔β ⋅14.04 °Maximum veneer slope inclination for 4:1 H:V base liner slopes ≔γ 120 Total unit weight (lb/ft3) of protective cover material (NCDOT 78M stone to ASTM 87 stone within leachate columns, native sand protective cover outside of leachate columns) ≔h 2 Thickness of protective cover soil (ft) above the slip surface (geosynthetic) ≔L 216 Length (ft) of tallest base liner slope in Cells 15, 16 ≔ϕ ⋅34 °Assumed Internal friction angle of the protective cover soil above the slip surface ≔cc 0 Assumed Cohesion (lb/ft2) of cover soil ≔ca 0 Assumed Adhesion (lb/ft2) between geosynthetics ≔Wb 48024 Weight (pounds) of Caterpillar D6T-LGP dozer or equivalent ≔wt 3 Dozer track width (ft) ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 1 of 4 Compute Factor of Safety of Cover Soil Due to Gravitational Forces ≔Wa ⋅⋅γ ((h))2 ⎛ ⎜⎝−−―L h ―――1 sin((β))―――tan((β)) 2 ⎞ ⎟⎠Wa = total weight of active wedge =Wa 49801.411 ≔Na ⋅Wa cos ((β))Na = effective force normal to the failure plane of the active wedge =Na ⋅4.831 10 4 ≔Ca ⋅ca ⎛ ⎜⎝−L ―――h sin ((β)) ⎞ ⎟⎠Ca = adhesive force between cover soil of the active wedge and the geomembrane ≔C ―――⋅cc h sin((β))C = cohesive force along the failure plane of the passive wedge =C 0 ≔Wp ―――⋅γ ((h))2 sin ((⋅2 β))Wp = total weight of the passive wedge =Wp ⋅1.02 10 3 "X" represents "a" "Y" represents "b" "Z" represents "c" in the traditional quadratic equation ≔X ⋅((−Wa ((⋅Na cos((β))))))cos((β)) =X 2843.472 ≔Y −((++⋅⋅((−Wa ⋅Na cos((β))))sin((β))tan ((ϕ))⋅⋅((+⋅Na tan((δ))Ca))sin((β))cos ((β))⋅sin((β))((+C ⋅Wp tan((ϕ)))))) =Y −4897.8243 ≔Z ⋅⋅((+⋅Na tan ((δ))Ca))((sin ((β))))2 tan((ϕ)) =Z 717.091 ≔FS ――――――+−Y ‾‾‾‾‾‾‾‾‾−Y2 ⋅⋅4 XZ ⋅2 X >>>>>>>>=FS 1.561 with respect to gravitational forces only <<<<<<<< Compute Factor of Safety of Cover Soil Due to Construction Equipment Forces This analysis assumes dozer is pushing cover soil up from the toe of the slope to the crest. Therefore, acceleration (or deceleration) forces from the equipment are negligble. ≔wh ―wt h wh is used in plot of influence value ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 2 of 4 ≔Iwth 0.2 0.3 0.275 0.4 0.35 0.5 0.45 0.6 0.57 0.7 0.71 0.8 0.85 0.9 1.0 0.93 1.5 0.95 2.0 0.96 3.0 0.98 4.0 0.99 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ≔xIwth⟨⟨0⟩⟩ ≔yIwth⟨⟨1⟩⟩ ≔I linterp((,,xywh)) Influence Factor for Construction Equipment 0.44 0.51 0.58 0.65 0.72 0.79 0.86 0.93 0.3 0.37 1 1 1.4 1.8 2.2 2.6 3 3.4 3.80.2 0.6 4.2x wh y I Influence value = I =I 0.95 Width of Track (wt)Thickness of Cover Soil (h) Influence Factor at Geomembrane Interface (I) ≔We ⋅――Wb ⋅2 wt I We = equivalent equipment force per unit width at geomembrane interface =We ⋅7.604 10 3 ≔Nae ⋅((+Wa We ))cos ((β))Na = effective force normal to the failure plane of the active wedge =Nae 55690.322=+Wa We 57405.211 ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 3 of 4 Nae 55690.322 FS = Factor of Safety "Xd" represents "a" "Yd" represents "b" "Zd" represents "c" in the traditional quadratic equation ≔Xd ⋅((−+We Wa ((⋅Nae cos ((β))))))cos ((β)) =Xd 3277.62 ≔Yd −((++⋅⋅((−+We Wa ⋅Nae cos ((β))))sin ((β))tan((ϕ))⋅⋅((+⋅Nae tan((δ))Ca))sin((β))cos ((β))⋅sin((β))((+C ⋅Wp tan ((ϕ)))))) =Yd −5620.158 ≔Zd ⋅⋅((+⋅Nae tan((δ))Ca))((sin((β)))) 2 tan ((ϕ)) =Zd 826.578 ≔FSd ――――――――+−Yd ‾‾‾‾‾‾‾‾‾‾‾‾−Yd2 ⋅⋅4 Xd Zd ⋅2 Xd >>>>>>>>=FSd 1.552 with respect to gravitational plus equipment forces <<<<<<<< ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 4 of 4 CLOSURE CAP VENEER SLIDING STABILITY - WITH EQUIPMENT LOADING 3.5:1 H:V SLOPES GEOTECHNICAL EVALUATION - CELL NOS. 15, 16 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B Reference:Analysis and Design of Veneer Cover Soils by R.M. Koerner and T-Y Soong, 2005 Geosynthetics International, Special Issue on Giroud Lectures, 12, No. 1, 28-49. This analysis method addresses finite slope stability of veneer covers considering gravitational forces from the protective cover soil over the geosynthetic layer and equipment loading due to a specific low ground pressure type dozer spreading protective cover soils over a geosynthetic layer on a slope. Input items shaded in yellow. ≔δ ⋅23.3 °Assumed minimum peak interface friction angle along slip surface (for all interfaces) ≔β ⋅15.9 °Veneer slope inclination for 3.5:1, H:V closure slopes in Phase 5 ≔γ 120 Total unit weight (lb/ft3) of protective soil cover material ≔h 2 Thickness of protective soil cover (ft) above the slip surface (geosynthetic) ≔L 1060 Length (ft) of tallest closure cap slope (alignment A-A') ≔ϕ ⋅28 °Assumed Internal friction angle of the protective soil cover above the slip surface ≔cc 50 Assumed Cohesion (lb/ft2) of cover soil ≔ca 0 Assumed Adhesion (lb/ft2) between geosynthetics for static condition ≔Wb 48024 Weight (pounds) of Caterpillar D6T-LGP dozer or equivalent ≔wt 3 Dozer track width (ft) ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 1 of 4 Compute Factor of Safety of Cover Soil Due to Gravitational Forces ≔Wa ⋅⋅γ ((h))2 ⎛ ⎜⎝−−―L h ―――1 sin((β))―――tan((β)) 2 ⎞ ⎟⎠Wa = total weight of active wedge =Wa 252579.549 ≔Na ⋅Wa cos ((β))Na = effective force normal to the failure plane of the active wedge =Na 242916.186 ≔Ca ⋅ca ⎛ ⎜⎝−L ―――h sin ((β)) ⎞ ⎟⎠Ca = adhesive force between cover soil of the active wedge and the geomembrane Ca = adhesive force between cover soil of the active wedge and the geomembrane ≔C ―――⋅cc h sin((β))C = cohesive force along the failure plane of the passive wedge =C 365.018 ≔Wp ―――⋅γ ((h))2 sin ((⋅2 β))Wp = total weight of the passive wedge =Wp 910.892 ≔X ⋅((−Wa ((⋅Na cos((β))))))cos((β)) =X 18231.747 ≔Y −((++⋅⋅((−Wa ⋅Na cos((β))))sin((β))tan ((ϕ))⋅⋅((+⋅Na tan((δ))Ca))sin((β))cos ((β))⋅sin((β))((+C ⋅Wp tan((ϕ)))))) =Y −30558.1593 ≔Z ⋅⋅((+⋅Na tan ((δ))Ca))((sin ((β)))) 2 tan((ϕ)) =Z ⋅4.175 10 3 Where: "X" represents "a" "Y" represents "b" "Z" represents "c" in the traditional quadratic equation ≔FS ――――――+−Y ‾‾‾‾‾‾‾‾‾−Y2 ⋅⋅4 XZ ⋅2 X >>>>>>>>=FS 1.53 with respect to gravitational forces only <<<<<<<< Compute Factor of Safety of Cover Soil Due to Construction Equipment Forces This analysis assumes dozer is pushing cover soil up from the toe of the slope to the crest. Therefore, acceleration (or deceleration) forces from the equipment are negligble. ≔wh ―wt h wh is used in plot of influence value ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 2 of 4 ≔Iwth 0.2 0.3 0.275 0.4 0.35 0.5 0.45 0.6 0.57 0.7 0.71 0.8 0.85 0.9 1.0 0.93 1.5 0.95 2.0 0.96 3.0 0.98 4.0 0.99 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ≔xIwth⟨⟨0⟩⟩ ≔yIwth⟨⟨1⟩⟩ ≔I linterp((,,xywh)) Influence Factor for Construction Equipment 0.44 0.51 0.58 0.65 0.72 0.79 0.86 0.93 0.3 0.37 1 1 1.4 1.8 2.2 2.6 3 3.4 3.80.2 0.6 4.2x wh y I Influence value = I =I 0.95 Width of Track (wt)Thickness of Cover Soil (h) Influence Factor at Geomembrane Interface (I) ≔We ⋅――Wb ⋅2 wt I We = equivalent equipment force per unit width at geomembrane interface =We 7603.8 ≔Nae ⋅((+Wa We ))cos ((β))Na = effective force normal to the failure plane of the active wedge =+Wa We 260183.349 =Nae 250229.074 ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 3 of 4 FS = Factor of Safety ≔Xd ⋅((−+We Wa ((⋅Nae cos ((β))))))cos ((β)) =Xd 18780.606 ≔Yd −((++⋅⋅((−+We Wa ⋅Nae cos ((β))))sin ((β))tan((ϕ))⋅⋅((+⋅Nae tan((δ))Ca))sin((β))cos ((β))⋅sin((β))((+C ⋅Wp tan ((ϕ)))))) =Yd −31471.095 ≔Zd ⋅⋅((+⋅Nae tan((δ))Ca))((sin((β)))) 2 tan ((ϕ)) =Zd 4300.576 Where: "Xd" represents "a" "Yd" represents "b" "Zd" represents "c" in the traditional quadratic equation ≔FSd ――――――――+−Yd ‾‾‾‾‾‾‾‾‾‾‾‾−Yd2 ⋅⋅4 Xd Zd ⋅2 Xd >>>>>>>>=FSd 1.53 with respect to gravitational plus equipment forces <<<<<<<< ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 4 of 4 CLOSURE CAP VENEER SLIDING STABILITY - SEISMIC CONDITION = Factor of safetyFSWhere Seismic coefficient (deter=ks mined from seismic acceleration) Unit weight of slope m=aterial (erosion layer)γ = Unit weight of waterγw c = cohesion value of cap cover soil = Friction angle of assumed interfaceϕ β = Slope inclination z = Depth to assumed failure interface dw = Depth to water surface (assumed parallel to slope) FS >1.0 for seismic conditions RCRA Subtitle D (258)References: Seismic Design Guidance for MSWLF Facilities Matasovic, N. (1991) Selection of Method for Seismic Slope Stability Analysis Proceedings, Second International Conference on Recent Advances in Geotechnical Earthquake Engineering & Soil Dynamics, Volume 2. Seismic Conditions: Determine the minimum required interface shear strength for the closure cap geosynthetics. For seismic conditions, a large displacement (residual) interface shear strength should be used to account for the potential for displacement during ground motion. The residual shear strength of the closure interface will be represented by and ϕr c_r. Performed by: Jonathan D. Vastag Checked by: Tyler W. Moody, P.E.Uwharrie Regional Landfill - Cell Nos. 15 & 16 1 of 2 INFINITE SLOPE LENGTH UWHARRIE REGIONAL MSW LANDFILL, PHASES 5-6 MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B Due to the very long closure cap slopes at the Uwharrie Regional Landfill, the veneer stability can be reasonably treated as an infinite slope. For landfills, the static and pseudo-static (seismic) factor of safety for sliding stability of the cap slope (erosion layer) may be assessed using the following general equation for the stability of an infinite slope (Matasovic, 1991): For Uwharrie Regional Landfill Phase 5 DHR Input Items Shaded in Yellow ≔γ 120 pcf ≔γw 62.4 pcf ≔ks 0.07 k_s = horizontal seismic coefficient = 0.5*PGA= 0.5*0.13 (Using the 2002 Uwharrie Regional MSWLF Permit Calculation Value of PGA). 2014 USGS value of PGA =0.085 (non-seismic) ≔cr 30 c_r = adhesion component of large displacement shear strength ≔ϕr °13 friction component of large displacement shear strength ≔β °15.9 degrees, (3.5H:1V cap closure slope) ≔z 2.0 feet, (Thickness of protective soil cover) ≔dw 2.0 feet, (Depth to phreatic surface = thickness of protective soil cover; negligible water pressure head due to Geocomposite Drainage Media) ≔FSseismic ――――――――――――――――――――― −+―――――cr ⋅⋅γz((cos((β)))) 2 tan ⎛⎝ϕr⎞⎠ ⎛ ⎜⎝−1 ―――――62.4 ⎛⎝−zdw⎞⎠ ⋅γz ⎞ ⎟⎠⋅⋅ks tan ((β))tan ⎛⎝ϕr⎞⎠ +ks tan ((β)) >>>>>>>>>>>=FSseismic 1.02 FS of approximately 1.0 is acheived by the selected large displacement interface shear strength provided above. Performed by: Jonathan D. Vastag Checked by: Tyler W. Moody, P.E.Uwharrie Regional Landfill - Cell Nos. 15 & 16 2 of 2 1 2 3 4 5 6 7 89 10 1 2 1.34 Distance (feet) 0 102030405060708090100110Distance (feet)0 10 20 30 40 50 Title: Berm Stability - Uwharrie LF - Phase 5File Name: 3.5 to 1 Tack-on Berm.gszLast Saved Date: 01/04/2019Last Saved Time: 02:28:46 PMSeismic Coefficient: horz: 0.07, vert: 0 Protective Soil Cover Color Name Model Unit Weight (pcf) Cohesion' (psf) Phi' (°) Berm Mohr-Coulomb 120 50 28 Protective Soil Cover Mohr-Coulomb 120 50 28 3.5H:1V 1.5H:1V 4-ft Wide Berm 2-ft Deep 1 2 3 4 5 6 7 89 10 1 2 1.52 Distance (feet) 0 102030405060708090100110Distance (feet)0 10 20 30 40 50 Title: Berm Stability - Uwharrie LF - Phase 5File Name: 3.5 to 1 Tack-on Berm.gszLast Saved Date: 01/04/2019Last Saved Time: 02:24:59 PMSeismic Coefficient: horz: 0, vert: 0 Protective Soil Cover Color Name Model Unit Weight (pcf) Cohesion' (psf) Phi' (°) Piezometric Line Berm Mohr-Coulomb 120 50 28 1 Protective Soil Cover Mohr-Coulomb 120 50 28 1 Water 3.5H:1V 1.5H:1V 4-ft Wide Berm 2-ft Deep APPENDIX E Leachate Pipe Stress Analysis Project Number: J18-1002-80B Project Name: Uwharrie MSWLF - Cell Nos. 15 & 16 Calc Task: HDPE Pipe Stress Analysis Calc Name: Cell Nos. 15 & 16, SDR-9, 8-in pipe Objective:Analysis of the pipe stress due to load from solid waste, cap layers, and leachate stone. Determine the suitability of HDPE pipe against crushing, buckling, and ring deflection. References: Performance Pipe, Iron Pipe Size (IPS) and Dimension Data, DriscoPlex Pipe for Municipal and Industrial Application, Chevron Phillips Chemical Company LP, 2015. Assessment and Recommendations for Improving the Performance of Waste Containment Systems, US EPA, by Bonaparte, Daniel & Koerner, 2002, pages 2-13 to 2-25. Design of Polyethylene Piping Systems, Chapters 3 & 6 Handbook of Polyethylene Pipe, Second Edition, 2012. Finite Element Analysis of Plastic Pipe Behavior in Leachate Collection and Removal Systems, Wilson-Fahmy & Koerner, 1994. Plastic Pipe Design Manual, Vylon Pipe. Design Basis: Pipe wall crushing occurs when external vertical pressure causes the compressive stress in the pipe wall to exceed the long-term compressive strength of the pipe material. Pipe wall buckling is a longitudinal wrinkling of the pipe wall. Buckling can occur in the non-pressurized pipe if the total external soil pressure exceeds the critical buckling pressure (Pcb) of the pipe-soil system Given: Analyze pipe stress at location with greatest waste thickness with Cell Nos. 15 & 16. This is intended to estimate the maximum pipe stress induced within the Phase 5 footprint for the potential addition or relocation of leachate collection pipe alignments. Minimum Factor of Safety = 1.5 for Crushing, 1.8 for Buckling, and 3.0 for Ring Deflection (maximum deflection of 7.5%) Leachate Pipe is a 8-inch diameter HDPE SDR-9 with Material Desgination PE4710. The closure cap will consist of the following layers: Protective Soil Cover & Vegetative Cover, Infiltration Layer Thickness, and Intermediate Cover Thickness Assumed Variables of Materials and Geometry of Cap ≔γsw ⋅85 pcf (Assumed Unit Weight of Solid Waste) ≔γcspc ⋅120 pcf (Assumed Unit Weight of Cap Soil and Protective Cover) ≔γds ⋅115 pcf (Assumed Unit Weight of Drainage Stone) ≔Telt 2.0 ft (Protective Cover Layer & Vegetative Cover) ≔Til 0 ft (Infiltration Layer Thickness on Final Landfill Slopes > 10 %) ≔Tic 1.0 ft (Intermediate Cover Thickness on Final Landfill Slopes > 10 %) Prepared By: Jonathan D. Vastag, E.I.T. Date: 11/13/18 Checked By: Gary L. Weekley, P.E. Date: 12/12/18Page 1 of 5 Project Number: J18-1002-80B Project Name: Uwharrie MSWLF - Cell Nos. 15 & 16 Calc Task: HDPE Pipe Stress Analysis Calc Name: Cell Nos. 15 & 16, SDR-9, 8-in pipe ≔Hlc ++Telt Til Tic (Landfill Cover Height) ≔Hds 2 ft (Thickness of Drainage Stone) ≔Ec 945.8 ft (Highest Cap Elevation in Phase 5) ≔Etcl 661.6 ft (Associated top of Clay Liner Elevation at highest cap elevation) PIPE & STONE PROPERTIES ≔SDR 9 (Standard Dimension Ratio: Pipe Diameter / Wall Thickness) ≔IDP 6.594 in (Inner Diameter of the Pipe, Nominal) Dimensions for HDPE Piping -Reference PPI Table A.2, Ch. 6 App A of Handbook of Polyethylene Pipe≔ODP 8.625 in (Outer Diameter of the Pipe) ≔EPM 28000 psi (Pipe Material Apparent Elastic Modulus for PE4710 - Reference Table B.1.1 in Ch. 3, App B of Handbook of Polyethylene Pipe) ≔MS 3000 psi (Stone Modulus Around Pipe) ≔YS 1150 psi (Allowable Compressive Stress for PE4710 Material Designation (With FS 1.5) PPI Table C.1, Ch. 3 App C of Handbook of Polyethylene Pipe ) ≔AP 0.958 in (Minimum Wall Thickness) ≔rCENT =−――ODP 2 ――AP 2 3.834 in (Radius to Centroidal Axis of Pipe) Calculation: Total Pressure at the Top of the Leachate Pipe ≔Hwaste −Ec Etcl (Difference between cap elevation and top of clay liner elevation at a given location) ≔Tdc +Hlc Hds (Thickness of Drainage Stone and Landfill Cover) Prepared By: Jonathan D. Vastag, E.I.T. Date: 11/13/18 Checked By: Gary L. Weekley, P.E. Date: 12/12/18Page 2 of 5 Project Number: J18-1002-80B Project Name: Uwharrie MSWLF - Cell Nos. 15 & 16 Calc Task: HDPE Pipe Stress Analysis Calc Name: Cell Nos. 15 & 16, SDR-9, 8-in pipe Pde (Static Load Pressure of Waste and Cap Soils and Drainage Stone - Varies with waste height. The waste height is defined as the difference between the cap elevation and the top of the clay liner elevation. A vertical arching factor is applied to the prism load above the pipe) ≔Pde =++⎛⎝−Hwaste Tdc⎞⎠γsw ⋅Hds γds ⋅Hlc γcspc 168.903 psi ≔Pwe 0 (Static Load Pressure of Wet, Saturated soil below water table - Assume top of the pipe is above the leachate) ≔Pb 0 (Static Load Pressure due to Stationary Structures - Assume no structures) Ps (Total Static Pressure) ≔Ps =++Pde Pwe Pb 168.903 psi ≔Pl 0 psi (Total Live Pressure - No Equipment Load for final condition) ≔Pi 0 psi (Total Internal Pressure - Gravity Flow Pipe, No Internal Pressure) ≔SA =―――――― ⎛⎝⋅⋅1.43 MS rCENT⎞⎠ ⋅EPM AP 0.613 (Hoop Thrust Stiffness Ratio) ≔VAF =−0.88 ⋅0.71 ⎛ ⎜ ⎝ ―――−SA 1 +SA 2.5 ⎞ ⎟ ⎠ 0.968 (Vertical Arching Factor) ≔Pt =⋅VAF ⎛⎝++Ps Pl Pi⎞⎠163.539 psi (Total Pressure Long Term Condition) Factor of Safety against Wall Crushing Wall Crushing occurs when the total pressure (Pt) exceeds actual compressive pressure (Sa). ≔Sa =⋅⎛ ⎜⎝ ――――((−SDR 1)) 2 ⎞ ⎟⎠ Pt 654.15 psi Prepared By: Jonathan D. Vastag, E.I.T. Date: 11/13/18 Checked By: Gary L. Weekley, P.E. Date: 12/12/18Page 3 of 5 Project Number: J18-1002-80B Project Name: Uwharrie MSWLF - Cell Nos. 15 & 16 Calc Task: HDPE Pipe Stress Analysis Calc Name: Cell Nos. 15 & 16, SDR-9, 8-in pipe Factor of Safety (FS) against wall crushing equals the allowable compressive stress of HDPE pipe (Ys) divided by the actual compressive pressure (Sa). ≔FSWC =―――⋅YS 1.5 Sa 2.637 ≥FSWC 1.5 The FSwc is greater than 1.5 (minimum FS for Wall Crushing); therefore, the pipe is acceptable against crushing failure mode. Factor of Safety Against Wall Buckling Contrained buckling in deep fill without groundwater present can be determine from the Moore-Selig equation for the critical bucking pressure ≔φ 0.55 (Calibration Factor - for granular materials) ≔RH 1.0 (Geometry Factor for deep fill) ≔I =―――AP 3 12 in3 0.073 (Moment of Inertia of Pipe Wall) ≔μ 0.4 (Poisson's Ratio of drainage stone) ≔MP =―――MS ((−1 μ))5000 psi (Modified Modulus of Drainage Stone) ≔Dm =−ODP AP 0.639 ft (Mean Diameter of Pipe (OD-wall thickness), inches) PCR (Critical Buckling Soil Pressure) ≔PCR =⋅⋅ ⎛ ⎜ ⎝ ――――― ⎛⎝⋅⋅2.4 in φRH⎞⎠ IDP ⎞ ⎟ ⎠ ⎛⎝⋅EPM I⎞⎠ ⎛ ⎜⎝ ―1 3 ⎞ ⎟⎠ MP ⎛ ⎜⎝ ―2 3 ⎞ ⎟⎠743.754 psi FS against wall buckling equals the Critical Buckling Soil Pressure (Pcr) divided by the total earth pressure (Pt) reduced by the vertical arching factor for the long term condtions. ≔FSWB =――PCR Pt 4.548 FSwb is greater than the 1.8 for (minimum FS for Wall Buckling); therefore the pipe is acceptable against buckling failure. Prepared By: Jonathan D. Vastag, E.I.T. Date: 11/13/18 Checked By: Gary L. Weekley, P.E. Date: 12/12/18Page 4 of 5 Project Number: J18-1002-80B Project Name: Uwharrie MSWLF - Cell Nos. 15 & 16 Calc Task: HDPE Pipe Stress Analysis Calc Name: Cell Nos. 15 & 16, SDR-9, 8-in pipe Factor of Safety Against Ring Deflection Ring deflection of flexible pipe under prism loading is derived by the modified Iowa Formula. ≔kBED 0.1 (Bedding Factor - for 90 central angle)° ≔LDL 1 (Deflection Lag Factor, assumed) ≔Fs 1 (Soil Support Value) Δx (Horizontal Deflection, inches) ≔Pt'⋅Pt 144 (Total Pressure including VAF, psf) ≔Pl'⋅Pl 144 (Live Load, psf) Dm (Mean Diameter of Pipe (OD-wall thickness), inches) :=――Δx Dm DR (Ring Deflection) ≔DR =⋅――1 144 ⎛ ⎜ ⎜ ⎜⎝ ―――――――――――――+⎛⎝⋅⋅kBED LDL Pt'⎞⎠⎛⎝⋅kBED Pl⎞⎠ +⋅――― ⎛⎝⋅2 EPM⎞⎠ 3 ⎛ ⎜⎝―――1 −SDR 1 ⎞ ⎟⎠ 3 ⎛⎝⋅0.061 Fs MS⎞⎠ ⎞ ⎟ ⎟ ⎟⎠ 100 7.452 Determine the factor of safety against a ring deflection failure. For non-pressurized pipe, a ring deflection of 7.5 % yields a factor of safety of 3 (Handbook of Polyethylene Pipe, Ch. 6) ≔FSRD =⋅――7.5 DR 3 3.019 FSrd is greater than 3 (minimum FS for Ring Deflection); therefore the pipe is acceptable against excessive ring deflection. Conclusions: Based upon the calculations above, the HDPE pipe is suitable against crushing, buckling, and ring deflection. Prepared By: Jonathan D. Vastag, E.I.T. Date: 11/13/18 Checked By: Gary L. Weekley, P.E. Date: 12/12/18Page 5 of 5 APPENDIX F Closure Cap Drainage Layer Analysis DRAINAGE LAYER ANALYSIS FOR PROPOSED CLOSURE CAP GEOTECHNICAL EVALUATION - CELL NOS. 15 & 16 UWHARRIE REGIONAL MSW LANDFILL MONTGOMERY COUNTY, NORTH CAROLINA BLE Project No. J18-1002-80B Reference: Narejo & Zornberg, Structure Testing / Performance and Drainage, Geocomposites in Landfills, (2008) Richardson, G. N., Giroud, JP, and Zhao, A. (2000), Design of Lateral Drainage Systems for Landfills. Also checked using Holtz, et al. (1997) as described in Richardson et al. (2000) C.H. Benson, W.H. Albright, D.O. Fratta, J.M. Tinjum, E. Kucukkirca, S.H. Lee, J. Scalia, P.D. Schlicht, and X. Wang, Engineered Covers for Waste Containment: Changes in Engineering Properties and Implications for Long-Term Performance Assessment (2011) Geosynthetics Institute (GSI), GRI Standard GC8-Determination of the Allowable Flow RAte of a Drainage Geocomposite, Rev 1 (2013) The Phase 5 closure cap will have finished slopes of 3.5 horizontal to 1 vertical (3.5H:1V). Tack-on drainage berms will be constructed every 20-feet vertically on the closure slopes. Subsurface perforated or slotted drainage pipe will be installed parallel to the drainage berms to convey water from the geocomposite drainage media (GDM) into the flow lines of the drainage berms. Down drain pipes will convey the storm water collected by the drainage berms to conveyance channels and sediment basins. This analysis is based on the slope geometry depicted in the design drawings prepared by Hodges, Harbin, Newberry, and Tribble as presented in the following schematic. Figure No. 1: Schematic of Closure Cap Cross Section with 3.5H:1V Slope Inclination MINIMUM TRANSMISSIVITY -ANALYSIS OF DRAINAGE REQUIREMENT BY GDM The purpose of this analysis is to determine the required minimum transmissivity (θ) of the geosynthetic drainage media (GDM) to provide drainage for the regulatory closure cap system. The required minimum transmissivity which is the in-plane hydraulic conductivity of the geonet portion of the geocomposite can be calculated as follows: ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 1 of 4 Where: qh = Fluid supply rate to the GDM L = Maximum horizontal drainage length β = Drainage slope inclination of maximum horizontal drainage length The fluid supply rate to the drainage media is assumed to be the permeability of the erosion layer soil during saturated conditions, i.e. qh = kpc. The borrow soil anticipated for use as the protective soil cover layer could vary between clayey sand (SC), sandy silt (ML), clayey silt (MH), and sandy clay (CL and CH). The most conservative soil selection for use in this analysis would consist of ML, which would result in the highest fluid supply rate (qh). Based on historical testing of site soils, the long term permeability of the cover soils was assumed to be approximately 7.5 x 10-7 m/s (7.5 x 10-5 cm/s). For Soil Type = Sandy Silt (ML): Long Term Permeability ≔kpc_long =⋅7.5 10 −5 ――cm s ⎛⎝⋅7.5 10 −7⎞⎠―m s The transmissivity of the in-place GDM degrades with time because of factors such as biological clogging. To offset the reduction in transmissivity, long term reduction factors and a factor of safety are used to calculate a recommended transmissivity to evaluate the suitability of proposed GDM products. The long term reduction factors and the factor of safety used in this analysis are as follows: ≔RFIN 1.0 Elastic deformation & intrusion of the geotextile into the drainage media ≔RFCR 1.0 Creep deformation of drainage media core ≔RFCC 1.0 Chemical clogging ≔RFBC 3.5 Biological clogging ≔FSTransmissivity 2 Factor of safety for drainage ≔ΣRF =⋅⋅⋅⋅RFIN RFCR RFCC RFBC FSTransmissivity 7 Cumulative reduction factor Analysis of Long Term Conditions: Assume that long term inclination waste slope is flattened to 4H : 1V between the side-slope drainage berms. The flow from the section of 4H : 1V slope will be collected near the toe of the slope section in a corrugated plastic pipe (CPP) wrapped by the GDM and discharged to the surface where it will be directed to down drains. The flow from the GDM in place beneath the bench will be added to the flow to be carried by the GDM beneath the downhill section of 4H : 1V slope. The recommended transmissivity for the GDM is calculated as follows: ≔qh =kpc_long ⎛⎝⋅7.5 10 −7⎞⎠―m s for sandy silt (ML) soils, with increased permeability over long term conditions ≔L =70 ft 21.336 m ≔H =20 ft 6.1 m ≔β 14.04 °for a flattened (settled) slope of 4H:1V ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 2 of 4 ≔θrequired =―――⋅qh L sin ((β)) ⎛⎝⋅6.596 10 −5⎞⎠――m2 s ≥θrecommended ⋅θrequired ΣRF ≔θrecommended =⋅θrequired ΣRF ⎛⎝⋅4.62 10 −4⎞⎠――m2 s Therefore, the transmissivity requirement for the geocomposite drainage media (GDM) of the closure cap system on 4H:1V slopes with sandy silt (ML), clayey silt (MH), low and high plasticity clay (CL & CH), and clayey sand (SC) soils used in the protective soil cover layer should be greater than or equal to . ⋅4.62 10 −4 ――m2 s RETENTION OF EROSION LAYER SOIL -ANALYSIS OF INTERNAL SOIL STABILITY (RESISTANCE TO SUFFUSION) Confirm that the up-gradient soils are retained by the upper geotextile of the drainage geocomposite using Holtz et al. (1997) as discussed in Richardson, et al. y y For fine grained soils with greater than 50% passing the No. 200 sieve, B=1.8 For sands and clayey sands with less than 50% passing the No. 200 sieve, B is a function of the coefficient of uniformity, Cu =D60 / D10. y y y y B = 1 for 2 > Cu > 8 B = 0.5 x Cu for 2 < Cu < 4 B = 8 / Cu for 4 < Cu < 8 To provide soil retention, O95 / D85 < B Sandy clay (CL) or plastic clay (CH) soils would typically meet the permeability value used in the drainage layer analysis and may be used to construct the protective soil cover layer of the closure. These soil types have more than 50% of the particles finer than the No. 200 sieve, therefore B = 1.8. The D85 particle size for the site soils varies between 0.09 and 0.8 mm. For this analysis, a D85 particle size of 0.11 mm is utilized. ≔O95_SKAPS8osy 0.180 mm SKAPS Industries 8-osy nonwoven geotextile AOS (#80 sieve) ≔D85min 0.11 mm ≔B 1.8 ≔SKAPS8osy =―――――O95_SKAPS8osy D85min 1.636 ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 3 of 4 Using Holtz et al. (1997), O95 / D85 for a 8-osy non-woven fabric is euqal to 1.64 which is less than 'B' of 1.8 for fine grained soils; therefore, the AOS (O95) of 0.180 mm provided by the SKAPS GE 180, 8- osy geotextile is sufficient to prevent clogging of the geonet by retaining the soil using the geotextile filter. Furthermore, according to AASHTO M 288-96 (Table 2-2 in Richardson et al.), a geotextile to be used as a filter for a soil with greater than 50% fines should have a maximum AOS (O95) of 0.22 mm. A non-woven, 8-osy geotextile, similar to the SKAPS GE 180, will meet the required properties listed by AASHTO M 288-96 provided above for the cover soil to be used for the closure project. We recommend a minimum permitivity of 0.5 .sec−1 If the selected protective soil cover material has a D85 particle size finer than 0.11 mm and the plasticity index (PI) is less than 15 (i.e the soil is non-plastic and therefore susceptible to suffusion), then a soil- specific filtration analysis should be performed using the actual D85 for the project soil. If the PI > 15, the soil is not susceptible to suffusion and therefore there is limited clogging potential (Richardson et al. 2000). ____________Name Date Performed by: Jonathan D. Vastag, E.I.T. Dec 20, 2018 Checked by: Gary L. Weekley. P.E. Dec 20, 2018 Reviewed by: Tyler W. Moody, P.E. Dec 20, 2018 URLF - Cell Nos. 15 & 16 4 of 4 Engineering Plan Phase 5 & 6 Permit to Construct Uwharrie Regional Landfill Montgomery County, North Carolina Revised March 2022 HHNT Project No. 6703-912-01 8.0 ENGINEERING PLAN 640650650660660660660670 650650660660630640650660630640650660610620630640600610620630640650580590600610620560570580590600610620630 570580590600610670680690730740740740750760770780790800810810810 580590600610620630640650660700720710580590600610620670680690730740750760770780790800810820650660700720710610610620620630640650 670680680680640640650660630640620630640620630640650650650660660630640650620620630630640640610610620620620630670630640650660670680660620630640650620630630670680660640650640650 670680690700710720730740750580590600610620630640650660610620630640580590600610620630 670680690700710720650660630640650660650650 680690730740750760770780790800700720710 630640670680690700710 730740750760770770770780790800720710710690730700720710700720710670680690700720710670650660 670680690700650660670680690700710620630 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 300' BUFFER 300' BUFFER EXISTING POWER LINE EASEMENTLANDFILL ACCESS ROAD BENCHMAR.WELL - GW2EL = 669.138 EXISTING SEDIMENTBASIN NO. 2 EXISTING SEDIMENTBASIN NO. 1 EXISTING SEDIMENTBASIN NO. 5BEXISTING FOREBAY NO. 5A JUNCTIONBOX NO. 602 2" ALUMINUMPIPE W/ 3" CAP2" ALUMINUMPIPE W/ 3" CAPELEV=648.30 EXISTING FOREBAY NO. 6AEXISTING SEDIMENTBASIN NO. 6BT2T1 PROPERTY BOUNDARY (TYP) PROPERTY BOUNDARY (TYP)50' UNDISTURBED WETLANDAND STREAM BUFFER50' UNDISTURBED WETLANDAND STREAM BUFFER 50' UNDISTURBED WETLANDAND STREAM BUFFERJURISDICTIONALSTREAM (TYP) JURISDICTIONALSTREAM (TYP)JURISDICTIONALWETLAND/STREAM (TYP)JURISDICTIONALWETLANDS (TYP)JURISDICTIONALSTREAM (TYP)JURISDICTIONALWETLANDS (TYP) HEADWALLNO. 502DROP INLETNO. 502 OVERFLOWSTRUCTURE NO. 6HEADWALLNO. 601 OVERFLOWSTRUCTURE NO. 5HEADWALLNO. 503 HEADWALLNO. 100DROP INLETNO. 100DROP INLETNO. 101DROP INLETNO. 700HEADWALLNO. 201HEADWALLNO. 200DROP INLETNO. 200HEADWALLNO. 202 HEADWALLNO. 102OVERFLOWSTRUCTURE NO. 1HEADWALLNO. 101HEADWALLNO. 600 DROP INLETNO. 501 601DROP INLETNO.601602 202200201701700101102100 503502501 HEADWALLNO. 203HEADWALLNO. 700OVERFLOWSTRUCTURE NO. 2 24" RCPINV=616.5624" RCPINV=633.45DROP INLETTOP=642.04INV=634.09BM NO. 10BM NO. 9 BM NO. 7BM NO. 6 BM NO. 102BM NO. 48BM NO. 24BM NO. 47BM NO. 1 PROJECT SITE LOCATION 1" = 10 MILES REVISION HISTORY DATE DESCRIPTION (478) 743-7175 3920 ARKWRIGHT ROAD, SUITE 101 - MACON, GEORGIA 31210 ‹ RepXEOic SerYices, Inc. (2022) OCTOBER 2021 FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA OPERATOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC 500 LANDFILL ROAD MT. GILEAD, NORTH CAROLINA 27306 (910) 576-3697 FAX: (478) 743-1703 9/08/2021 ISSUED FOR REVIEW SHEETS ALL OWNER MONTGOMERY COUNTY BOARD OF COMMISSIONERS P.O. BOX 425 TROY, NORTH CAROLINA 27371 (910) 576-4221 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 6 N UWHARRIE REGIONAL LANDFILL N.C. Corp. License # C-0813 UWHARRIE REGIONAL LANDFILL REVISED: MARCH 2022 3/9/2022 NCDEQ COMMENT RESPONSE TS-2, 4-10, 13-21 INLETEL. 500INLETEL. 480LEGEND EXISTING PROPERTY LINE UNDISTURBED PROPERTY BUFFER STREAM AND WETLAND BUFFER FLOODPLAIN GROUNDWATER CONTOUR JURISDICTIONAL WETLAND JURISDICTIONAL STREAM TREELINE BENCHMARK EDGE OF CELL EDGE OF CELL LINER EDGE OF CAP EDGE OF CAP LINER 2' CONTOUR 10' CONTOUR UNPAVED ROAD PAVED ROAD GRAVEL ROAD SOLID UNDERDRAIN PIPE PERFORATED UNDERDRAIN PIPE SOLID LEACHATE PIPE PERFORATED LEACHATE PIPE LEACHATE FORCE MAIN DITCH CENTERLINE STORM DRAINAGE PIPE STORM WATER DIVERSION BERM SINGLE ROW SILT FENCE DOUBLE ROW SILT FENCE FENCE PROPOSED UD UD UD UD UD UD UD UD L L L L L L L L L UD UD UD UD UD UD UD UD L L L L L L L L L X XX GWC-2 GWC-21 MM-10 MM-2 SWC-2SWC-7TL 100 102 100 102 LCO LCO ARV ARV MH MH SUMP NO. X SUMP NO. X FM FM FM FM FM FM PZ-1 PZ-1 >>> X XX >>> GROUNDWATER MONITORING WELL METHANE MONITORING PROBE SURFACE WATER MONITORING POINT OUTLET PROTECTION STONE CHECK DAM INLET PROTECTION CONSTRUCTION EXIT LEACHATE CLEANOUT LEACHATE SUMP LEACHATE MANHOLE / PUMP STATION AIR RELEASE VALVE HEADWALL DROP INLET OVERFLOW STRUCTURE PIEZOMETER DOWNDRAIN PIPE AND SLOPED PAVED HEADWALL 420 120 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA © Republic Services, Inc. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6BSHEETS-01-R.DWG NOT TO SCALE 2 10-11-2021 INDEX TO DRAWINGS AND LEGEND INDEX TO DRAWINGS SHEET NO.SHEET TITLE 1 TITLE SHEET 2 INDEX TO DRAWINGS AND LEGEND 3 BOUNDARY SURVEY 4 EXISTING TOPOGRAPHIC SURVEY 5 TOP OF SOIL LINER GRADING PLAN 6 LEACHATE COLLECTION PLAN 7 FINAL GRADING PLAN 8 FINAL DRAINAGE PLAN 9 EROSION CONTROL PLAN 10 UNDERDRAIN PLAN & PROFILE 11 LANDFILL CROSS SECTION A 12 LANDFILL CROSS SECTION B 13 SEQUENCE OF FILL - CELL NO. 15A 14 SEQUENCE OF FILL - CELL NO. 15B 15 SEQUENCE OF FILL - CELL NO. 16A 16 SEQUENCE OF FILL - CELL NO. 16B 17 SEQUENCE OF FILL - FINAL GRADING PLAN 18 GENERAL CONSTRUCTION DETAILS 19 GENERAL CONSTRUCTION DETAILS 20 BASE LINER & FINAL COVER SYSTEM DETAILS 21 LEACHATE COLLECTION SYSTEM DETAILS 5A TOP OF SUBGRADE GRADING PLAN REVISED: 3/9/2022 PER NCDEQ COMMENT RESPONSE SHEET 3 OF 21 580 590 60 0 610 620 560 570 580 590 600 610 620 630 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580 590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670 680680 680640640650660630640620630640620 630 640 650 650 650 660 660630640650 620 620 630 630 640 640 61061 0 620620620630670 630 640650 660 67 0 680 66 0 620 630 640 65062063063067068 0 660 640 650 640 650 670 680 690 700 710720 730 740 750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 670 680 690700 710 720 650 660 630 640 650 660650650680690730740750760770780790800700720710630640 670 680 690 700 710 730 740 750 760 770 770 770 78 0 790 800 720 710710 690 73070072071070 0 72 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTING P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMARK WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A Y N O. 5 A JUNCTION BOX NO. 602 2" ALUMINUM PIPE W 3" CAP 2" ALUMINUM PIPE W 3" CAP ELEV=648.30 EXISTING FOREBAY NO. 6A EXISTING SEDIMENT BASIN NO. 6B T2 T1 BORROW AREA NO. 2 PROPERTY BOUNDARY (TYP) PROPERTY BOUNDARY (TYP) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (TYP) JURISDICTIONAL STREAM (TYP) JURISDICTIONAL WETLANDSTREAM (TYP) JURISDICTIONAL WETLANDS (TYP) JURISDICTIONAL STREAM (TYP) JURISDICTIONAL WETLANDS (TYP) BORROW AREA NO. 3 UDUDUDUDUDUDUDBORROW AREA NO. 4 UD-1 SW-5 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 BM NO. 10 BM NO. 9 BM NO. 7 BM NO. 6 BM NO. 102 BM NO. 48 BM NO. 24 BM NO. 47 BM NO. 1 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV, IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 EXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14BPROPOSED CELL NO. 15APROPOSED CELL NO. 16ALANDFILL OFFICE MATERIAL RECOVERY FACILITY SCALES & SCALEHOUSE N GRAPHIC SCALE IN FEET 0 600300150300 SITE ENTRANCE LA N D F I L L R O A D BASIN OUTFALL BASIN OUTFALL WELL & PUMPHOUSE EXISTING CLOSED AREA (39.1 AC) EXISTING LEACHATE STORAGE TANKS FLARE STATION TEMPORARY BASIN (TO BE REMOVED) TEMPORARY BORROW AREA BASIN NO. 1 OFF-SITE LANDFILL GAS TO ENERGY FACILTY EXIST. CONTRACTOR ENTRANCE GATE BORROW AREA NO. 3A MAINTENANCE SHOP BORROW AREA BASIN NO. 2 BORROW AREA BASIN NO. 3 PROPOSED CELL NO. 15BPROPOSED CELL NO. 16BUWH-PTC-5&6_SHEETS-01-R.DWG 1" = 300'4 11-22-2019 EXISTING TOPOGRAPHIC SURVEY EXISTING UNDERDRAIN TEMPORARY PIPES TO BE REMOVED SURFACE WATER MONITORING POINT TO BE ABANDONED (SEE EMP) EXISTING METHANE MONITORING PROBE (TYP.) EXISTING GROUNDWATER MONITORING WELL (TYP.) EXISTING LFG COLLECTION SYSTEM (TYP.) (APPROX. LOCATION) GENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVEY PROVIDED BY COOPER AERIAL SURVEYS COMPANY, DATED DECEMBER 9, 2020. 2.BOUNDARY SURVEY COMPILED BY THOMAS J. FIELDS, PLS-2906, LAST REVISED & UPDATED SEPTEMBER 30, 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION BY THOMAS J. FIELDS, PLS-2906, LAST REVISED ON SEPTEMBER 16, 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TAKEN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING SYSTEM" PREPARED BY BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30, 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SOIL LINER. PROPOSED WET DETENTION BASIN NO. 7B BENCHMARK NORTHING EASTING ELEVATON NOTE SURVEY CONTROL HAS BEEN CONFIRMED BY THE OWNER. ANY POTENTIAL DISCREPANCIES SHOULD BE BROUGHT TO THE ENGINEER'S ATTENTION IMMEDIATELY. BENCHMARK DATA DESCRIPTION BM NO. 6 579,197.81540 1,713,285.63040 638.811 IRON REBAR BM NO. 1 580,673.32200 1,714,362.74200 614.830 CONTROL3 BORROW AREA FOOTPRINT “44.50 AC FILL AVAILABLE AS OF (1292020) “246,027 CY BORROW AREA FOOTPRINT “55.18 AC FILL AVAILABLE AS OF (1292020) “644,863 CY BORROW AREA FOOTPRINT “63.95 AC FILL AVAILABLE AS OF (1292020) “2,063,453 CY BORROW AREA FOOTPRINT “7.25 AC FILL AVAILABLE AS OF (1292020) “164,333 CY BM NO. 7 579,280.17810 1,712,779.08310 669.153 ALUM. DISC. CONC. BM NO. 9 577,994.35850 1,712,823.59030 647.425 PANEL BM NO. 10 577,790.91140 1,712,485.19940 648.604 IRON REBAR BM NO. 24 581,100.78930 1,713,138.13330 628.940 IRON REBAR BM NO. 47 581,125.01880 1,714,173.31620 616.730 PANEL BM NO. 48 581,264.73420 1,712,530.06830 609.880 PANEL BM NO. 102 580,913.03360 1,712,800.72610 626.387 IRON BOLT WHITE GOODS STORAGE AREA TIRE STORAGE AREA YARD WASTE COLLECTION AND STORAGE AREA REVISED 392022 PER NCDE4 COMMENT RESPONSE 560 570 58 0 59 0 600 610 620 630 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640620630640620 630 640 650 65065 0 660 660640650 620 620630 630 640 640 610610620620620630630670 680 690 700 710720730 740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A 2" ALUMINUM PIPE W 3" CAP 2" ALUMINUM PIPE W 3" CAP ELEV=648.30 EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCPINV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 SW-6 SW-7 UD-1R GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 740 750 760 73 0 7 4 0 75 0 76 0 7 7 0690690 690 690700700 700710730700690650 740750640 630 WET DETENTION BASIN NO. 7B FOREBA< NO. 7A OVERFLOW STRUCTURE NO. 7 HEADWALL NO. 703 703 DROP INLET NO. 712 712 711 710 DROP INLET NO. 711 DROP INLET NO. 710 HEADWALL NO. 710 8" DEWATERING PIPE W VALVE 600 DROP INLET NO. 600 HEADWALL NO. 610 610 611 JUNCTION BOX NO. 610 DROP INLET NO. 611650650 6 5 0 6 6 0 6 7 0 6 8 0 6 9 0 700710710 720 730 740 750 760 65 0 6506 6 0 6706806907007107207 3 0 7 4 0 7 5 0 7 6 0 7 7 0 650 6506 5 0 6 6 0 6 7 0 6 8 0 6 9 0 700710710 720 730 740 750 760 65 0 6506 6 0 6706806907007107207 3 0 7 4 0 7 5 0 7 6 0 7 7 0 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 EXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B N GRAPHIC SCALE IN FEET 0 400200100200 UWH-PTC-5&6_SHEETS-02-R.DWG 1" = 200'5A 2-13-2022 TOP OF SUBGRADE GRADING PLANPROPOSED CELL NO. 15APROPOSED CELL NO. 16APROPOSED CELL NO. 15BPROPOSED CELL NO. 16BGENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SUBGRADE. 6.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ" 710 703 RCP414'30"2.89%600 610 611 PIPE NO.SLOPELENGTHSIZE MATERIAL DRAINAGE STRUCTURES 711 712 RCP339'48"2.80% RCP79'48"3.16% RCP100'42"5.0% RCP85'48"1.76% RCP200'42"8.0% RCP400'42"2.5% 628.00 690.00 610 710 HEADWALL NO.INVERT 703 688.00 652.00D.I. 600 STRUCTURE THROATTOP INVERT 650.00 642.00 644.00J.B. 610 -637.50 649.00D.I. 611 647.00 640.00 702.00D.I. 710 700.00 691.50 718.00D.I. 711 716.00 708.00 728.00D.I. 712 726.00 718.00 REVISED 392022 PER NCDE4 COMMENT RESPONSE PROPOSED GRADES WITHIN CELL LIMITS REPRESENT TOP OF SUBGRADE 560 570 58 0 59 0 600 610 620 630 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640620630640620 630 640 650 65065 0 660 660640650 620 620630 630 640 640 610610620620620630630670 680 690 700 710720730 740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A 2" ALUMINUM PIPE W 3" CAP 2" ALUMINUM PIPE W 3" CAP ELEV=648.30 EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCPINV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD6506506 5 0 6 6 0 6 7 0 6 8 0 6 9 0 700710710 720 730 740 750 760 65 0650 66 0 6706806907007107207 3 0 7 4 0 7 5 0 7 6 0 77 0 7 7 0 7 7 0 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 SW-6 SW-7 UD-1R GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 740 750 760 73 0 7 4 0 75 0 76 0 7 7 0690690 690 690700700 700710730700690650 740750640 630 WET DETENTION BASIN NO. 7B FOREBA< NO. 7A OVERFLOW STRUCTURE NO. 7 HEADWALL NO. 703 703 DROP INLET NO. 712 712 711 710 DROP INLET NO. 711 DROP INLET NO. 710 HEADWALL NO. 710 8" DEWATERING PIPE W VALVE 600 DROP INLET NO. 600 HEADWALL NO. 610 610 611 JUNCTION BOX NO. 610 DROP INLET NO. 611 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 EXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B N GRAPHIC SCALE IN FEET 0 400200100200 UWH-PTC-5&6_SHEETS-02-R.DWG 1" = 200'5 10-11-2021 TOP OF SOIL LINER GRADING PLANPROPOSED CELL NO. 15APROPOSED CELL NO. 16APROPOSED CELL NO. 15BPROPOSED CELL NO. 16BGENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SOIL LINER. 6.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ" 710 703 RCP414'30"2.89%600 610 611 PIPE NO.SLOPELENGTHSIZE MATERIAL DRAINAGE STRUCTURES 711 712 RCP339'48"2.80% RCP79'48"3.16% RCP100'42"5.0% RCP85'48"1.76% RCP200'42"8.0% RCP400'42"2.5% 628.00 690.00 610 710 HEADWALL NO.INVERT 703 688.00 652.00D.I. 600 STRUCTURE THROATTOP INVERT 650.00 642.00 644.00J.B. 610 -637.50 649.00D.I. 611 647.00 640.00 702.00D.I. 710 700.00 691.50 718.00D.I. 711 716.00 708.00 728.00D.I. 712 726.00 718.00 REVISED 392022 PER NCDE4 COMMENT RESPONSE PROPOSED GRADES WITHIN CELL LIMITS REPRESENT TOP OF SOIL LINER 56 0 570 58 0 59 0 600 610 620 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580 590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640 620630640620 630 640 650 65065 0 660 660640650 620 620630 630 640 640 610610620620620630630670 680 690 700 710720730 740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A 2" ALUMINUM PIPE W 3" CAP 2" ALUMINUM PIPE W 3" CAP ELEV=648.30 EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P)UDUDUDUDUDUDUDUDUDUDLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFM FM FM FM FM FM FM FM FM FM FM FM FMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFM FM FM FM FM FMF M FMLLL LL LLLLFM FM FM FM FM FM FM FM FM FM FM FM FM FM FM FM FM FM L L L L L L L L L L L L L L L L L L L L L L LL L L L L L L L L L L L LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL L LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL L LLLLLLLLLLLLLLLLLLL L LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL FMFMFMFMFM FM FM FM LLLLLLLLLLL L L L L L L L L L LLLLLLL L L LLLLLLLLLLLLLLLL L L L L 650 6506 5 0 6 6 0 6 7 0 6 8 0 6 9 0 700710710 720 730 740 750 760 65 0650 6 6 0 6706806907007107207 3 0 7 4 0 7 5 0 7 6 0 7 7 0 7 7 0 7 7 0 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 SW-6 SW-7 UD-1R GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 740 750 760 73 0 7 4 0 75 0 7 6 0 7 7 0690690 690 690700700 700710730700690650 740750640 630 WET DETENTION BASIN NO. 7B FOREBA< NO. 7A LL726.00 724.00 720.00 718.00 716.00 704.00 696.00 694.00 684.00 676.00 666.00 648.00 654.00 656.00 660.00 678.00 684.00 686.00 720.00 728.00 728.00 662.00 713.56 708.00 686.00 684.00 682.00 660.00 648.00 638.00 644.00 658.00 684.00 686.00 698.00 700.00 704.00 L41 L40 L39 L38 L37 L36 L35 L34 L33 L32 L31 L30 L29 L28 L26 L25 L24 L23 L22 L21 L20 L19 L3 L4 L18 L5 L17 L16 L15 L14 L13 L10 L9 L8 L7 L6 L43 L42 L2 L1 L44 L45 L11 L12 L27 L46 L47 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 EXISTING 4" LEACHATE FORCE MAIN EXISTING AIR RELEASE VALVE EXISTING 4" LEACHATE FORCE MAIN EXISTING LEACHATE RECIRCULATION VALVE BOX EXISTING LEACHATE COLLECTION LINE (T<P) EXISTING LEACHATE COLLECTION LINE (T<P) EXISTING AIR RELEASE VALVE EXISTING 72" HDPE LEACHATE MANHOLE CONNECT TO EXISTING FORCE MAIN STUBOUT PROPOSED 4"X8" DUAL CONTAINED LEACHATE FORCE MAIN PROPOSED LEACHATE SUMP NO. 15 WITH (2) - 24" DIA. RISERS PROPOSED LEACHATE SUMP NO. 16 WITH (2) - 24" DIA. RISERS PROPOSED LEACHATE CLEANOUT PROPOSED LEACHATE CLEANOUT PROPOSED 72" DIA. HDPE LEACHATE MANHOLE PROPOSED 72" DIA. HDPE LEACHATE MANHOLE PROPOSED LEACHATE CLEANOUT (T<P) PROPOSED LEACHATE CLEANOUT (T<P) PROPOSED LEACHATE COLLECTION PIPE (T<P) (NOT SHOWN FOR CLARIT<) CONTINUES TO EXISTING LEACHATE STORAGE TAN.S (SEE SHEET 4) FORCE MAIN FLOW DIRECTION (T<P) EXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B EXISTING 72" HDPE LEACHATE MANHOLE N GRAPHIC SCALE IN FEET 0 400200100200 --- L31 L1 L2 L3 ---L4 ---L5 283.1' @ 9.18%--L6 L10 --- L9 --- L8 --- ---L7 L14 L13 --- L12 --215' 243'--L11 L24 L23 L22 L21 L25 L26 L30 L29 L28 L27 --- --34.8 @ 5.75% --209' -636.3' @ 1.00% --280.7' @ 12.1% --49.5' @ 4.04% --- 206'-- --- --- -194.8' @ 11.29% L32 --- L33 --- L34 --- L35 --- L36 --- PIPE NO. HDPE LEACHATE PIPING SOLID 2"x4" D.C.4"x8" D.C.8" 67' PERFORATED 8" - -- -- L15 --- L16 --- L17 --- L18 --- L19 --- L20 --- - - 90' - -- - - - - - 96.3' @ 4.15% 902.9' @ 1.55% 36.4' @ 5.49% 120.0' @ 10.00% 123.0' @ 1.63% 355.4' @ 0.67% - - 542.9' @ 1.02% 50.4' @ 3.96% 43.5' @ 4.60% 194.6' @ 11.30% 777.2 @ 1.54% 266.9 @ 3.00% 48.5 @ 8.25% 502.3 @ 3.19% 57.1' @ 10.5% - - 198.3' @ 1.00% 153.6' @ 1.30% 231.1' @ 1.73% 47.2' @ 4.24% 16.5' @ 12.1% 111.6' @ 10.8% 186.6' @ 4.29% 60.8' @ 3.29% ---L37 85.6' @ 11.7% ---L38 325.6' @ 2.46% ---L39 134.7' @ 13.4% - - - - - - - - - - - - - - - - - - - - - - - - 24" - - - - - - - - - - - - - 2 - 90' ---L40 91.4' @ 13.1%- ---L41 144.1 @ 4.16%- --71'L42 -2 - 71' -58'L43 -- -595'-L44 -- ---L45 78.5' @ 2.55%- - UWH-PTC-5&6_SHEETS-02-R.DWG 1" = 200'6 10-11-2021 LEACHATE COLLECTION PLANPROPOSED CELL NO. 15APROPOSED CELL NO. 16APROPOSED CELL NO. 15BPROPOSED CELL NO. 16BGENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SOIL LINER. 6.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ" THE PROPOSED LEACHATE COLLECTION S<STEM AS SHOWN IS BASED ON PROTECTIVE COVER OPTIONS FOR SANDGRAVEL OR WASHED SCREENINGS. IF ALTERNATIVE PROTECTIVE COVER MATERIALS ARE UTILI=ED THE LEACHATE COLLECTION LA<OUT MUST BE RE-ANAL<=ED AND REVISIONS MA< BE NECESSAR<. --L46 - ---L47 156.5' @ 1.46%- -156.5' @ 1.46% PROPOSED GRADES WITHIN CELL LIMITS REPRESENT TOP OF SOIL LINER ALL PIPE BENDS INSIDE CELL SHALL BE MOLDED SWEEPS (T<P) REVISED 392022 PER NCDE4 COMMENT RESPONSE 133.3' @ 4.30%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 71 - - - - 90 - 2" 56 0 570 58 0 59 0 600 610 620 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640 620630640620 630 640 650 65065 0 660 660640650 620 620630 630 640 640 610610620620620630630670 680 690 700 710 720730 740 750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A JUNCTION BOX NO. 602 2" ALUMINUM PIPE W 3" CAP 2" ALUMINUM PIPE W 3" CAP ELEV=648.30 EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B T2 T1 BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCPINV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD L LL LL LLLLL L L L L L L L L L L L L L L L L L L L L L LL L L L L L L L L L L L LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL L LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL L LLLLLLLLLLLLLLLLLLL L LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LLLLLLLLLLLL L L L L L L L L L LLLLLLL L L LLLLLLLLLLLLLLLL L L L L 650 6506 5 0 6 6 0 6 7 0 68 0 6 9 0 700710710 720 730 740 750 760 65 0650 6 6 0 6706806907007107207 3 0 7 4 0 7 5 0 7 6 0 7 7 0 7 7 0 7 7 0 UD-1 SW-5 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 SW-6 SW-7 UD-1R GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 790 780 770 760 750 740 730 720 710 700 690 680 670 660 980820 810 830 800 790 780 770 760 750 740 730 720 710 700 980680980 760 770 780 790 800 840 830 820 810 900 890 880 870 860 850 950 960 970 940 930 920 910 690700710720730920930940970960950980 970 960 950 940 930 920 910 900 890 880 870 860 820 810 850 840 830 800 690 680 670 660 650 640 740750760770780790800810820830840850860870880890900910920930940950960970740750760770780790800810820830840850860870880890900910740 750 760 73 0 7 4 0 75 0 7 6 0 7 7 0690690 690 690700700 700710730700690650 740750640 630 WET DETENTION BASIN NO. 7B FOREBA< NO. 7A OVERFLOW STRUCTURE NO. 7 HEADWALL NO. 703 703 DROP INLET NO. 712 712 711 710 DROP INLET NO. 711 DROP INLET NO. 710 HEADWALL NO. 710 8" DEWATERING PIPE W VALVE 600 DROP INLET NO. 600 HEADWALL NO. 610 610 611 JUNCTION BOX NO. 610 DROP INLET NO. 611 PROPOSED GAS EXPANSION (T<P.) EXISTING GAS S<STEM (T<P.) SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 N GRAPHIC SCALE IN FEET 0 400200100200 UWH-PTC-5&6_SHEETS-03-R.DWG 1" = 200'7 10-11-2021 FINAL GRADING PLAN GENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ"3.5H1V3.5H1V3.5H1V3.5H1V3.5H1V EXISTING CELL NO. 16AEXISTING CELL NO. 15BEXISTING CELL NO. 15AEXISTING CELL NO. 16BEXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B17.5H1V17.5H1VREVISED 392022 PER NCDE4 COMMENT RESPONSE 56 0 570 58 0 59 0 600 610 620 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580 590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640 620630640620 630 640 650 65065 0 660 660640650 620 620630 630 640 640 610610620620620630630670 680 690 700 710720730 740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A JUNCTION BOX NO. 602 2" ALUMINUM PIPE W 3" CAP 2" ALUMINUM PIPE W 3" CAP ELEV=648.30 EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B T2 T1 BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCPINV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD6506506 5 0 6 6 0 6 7 0 6 8 0 6 9 0 700710710 720 730 740 750 760 65 0650 6 6 0 6706806907007107207 3 0 7 4 0 7 5 0 7 6 0 7 7 0 7 7 0 7 7 0 UD-1 SW-5 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 SW-6 SW-7 UD-1R GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 790 780 770 760 750 740 730 720 710 700 690 680 670 660 980820 810 830 800 790 780 770 760 750 740 730 720 710 700 980680980 760 770 780 790 800 840 830 820 810 900 890 880 870 860 850 950 960 970 940 930 920 910 690700710720730920930940970960950980 970 960 950 940 930 920 910 900 890 880 870 860 820 810 850 840 830 800 690 680 670 660 650 640 740750760770780790800810820830840850860870880890900910920930940950960970740750760770780790800810820830840850860870880890900910!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!! ! ! ! ! !!!! ! !!!!! ! !!!! !!!! !!!!! ! !!!!!!!! ! !!!!! ! ! ! ! ! ! ! ! ! ! ! !!!!! ! ! ! ! ! ! !!! ! ! ! ! ! ! !!740 750 760 73 0 7 4 0 75 0 7 6 0 7 7 0690690 690 690700700 700710730700690650 740750640 630 WET DETENTION BASIN NO. 7B FOREBA< NO. 7A OVERFLOW STRUCTURE NO. 7 HEADWALL NO. 703 703 DROP INLET NO. 712 712 711 710 DROP INLET NO. 711 DROP INLET NO. 710 HEADWALL NO. 710 8" DEWATERING PIPE W VALVE 600 DROP INLET NO. 600 !!!!!!!!!!!!!!!!!!!!!!!!!!L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 .1J1 I1 H1 G1 F1 E1 D1 C1O1 B A N M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! !!! !! !! !! !! !! !! !! !! !! !! !! !! !!! !!! !!! !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! ! HEADWALL NO. 610 610 611 JUNCTION BOX NO. 610 DROP INLET NO. 611 .2 .3 .4 .5 .6 .7 .8 .9 .10 .11 .12 J2 J3 J4 J5 J6 J7 J8 I2I3I4I5I6I7I8I9I10I11I12 I13 H2 H3 H4 H5 H6 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 F2 F3 F4 F5 F6 F7 F8 E2 E3 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 C2 C3 C4 C5 C6 C7 C8 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 PROPOSED GAS EXPANSION (T<P.) EXISTING GAS S<STEM (T<P.) SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 N GRAPHIC SCALE IN FEET 0 400200100200 UWH-PTC-5&6_SHEETS-03-R.DWG 1" = 200'8 10-11-2021 FINAL DRAINAGE PLAN GENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ"EXISTING CELL NO. 16AEXISTING CELL NO. 15BEXISTING CELL NO. 15AEXISTING CELL NO. 16BEXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B REVISED 2182022 PER NCDE4 COMMENT RESPONSE3.5H1V3.5H1V3.5H1V3.5H1V3.5H1V 17.5H1V17.5H1VREVISED 392022 PER NCDE4 COMMENT RESPONSE 56 0 570 58 0 59 0 600 610 620 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580 590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640 620630640620 630 640 650 65065 0 660 660640650 620 620630 630 640 640 610610620620620630630670 680 690 700 710720730 740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A Y N O. 5 A JUNCTION BOX NO. 602 2" ALUMINUM PIPE W 3" CAP 2" ALUMINUM PIPE W 3" CAP ELEV=648.30 EXISTING FOREBAY NO. 6A EXISTING SEDIMENT BASIN NO. 6B T2 T1 BORROW AREA NO. 2 PROPERTY BOUNDARY (TYP) PROPERTY BOUNDARY (TYP) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (TYP) JURISDICTIONAL STREAM (TYP) JURISDICTIONAL WETLANDSTREAM (TYP) JURISDICTIONAL WETLANDS (TYP) JURISDICTIONAL STREAM (TYP) JURISDICTIONAL WETLANDS (TYP) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCPINV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD6506506 5 0 6 6 0 6 7 0 6 8 0 6 9 0 700710710 720 730 740 750 760 65 0650 6 6 0 6706806907007107207 3 0 7 4 0 7 5 0 7 6 0 7 7 0 7 7 0 7 7 0 UD-1 SW-5 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 SW-6 SW-7 UD-1R GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 790 780 770 760 750 740 730 720 710 700 690 680 670 660 980820 810 830 800 790 780 770 760 750 740 730 720 710 700 980680980 760 770 780 790 800 840 830 820 810 900 890 880 870 860 850 950 960 970 940 930 920 910 690700710720730920930940970960950980 970 960 950 940 930 920 910 900 890 880 870 860 820 810 850 840 830 800 690 680 670 660 650 640 740750760770780790800810820830840850860870880890900910920930940950960970740750760770780790800810820830840850860870880890900910!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!! ! ! ! ! !!!! ! !!!!! ! !!!! !!!! !!!!! ! !!!!!!!! ! !!!!! ! ! ! ! ! ! ! ! ! ! ! !!!!! ! ! ! ! ! ! !!! ! ! ! ! ! ! !!740 750 760 73 0 7 4 0 75 0 7 6 0 7 7 0690690 690 690700700 700710730700690650 740750640 630 WET DETENTION BASIN NO. 7B FOREBAY NO. 7A OVERFLOW STRUCTURE NO. 7 HEADWALL NO. 703 703 DROP INLET NO. 712 712 711 710 DROP INLET NO. 711 DROP INLET NO. 710 HEADWALL NO. 710 8" DEWATERING PIPE W VALVE 600 DROP INLET NO. 600 !!!!!!!!!!!!!!!!!!!!!!!!!!L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 .1J1 I1 H1 G1 F1 E1 D1 C1O1 B A N M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! !!! !! !! !! !! !! !! !! !! !! !! !! !! !!! !!! !!! !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! ! HEADWALL NO. 610 610 611 JUNCTION BOX NO. 610 DROP INLET NO. 611 .2 .3 .4 .5 .6 .7 .8 .9 .10 .11 .12 J2 J3 J4 J5 J6 J7 J8 I2I3I4I5I6I7I8I9I10I11I12 I13 H2 H3 H4 H5 H6 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 F2 F3 F4 F5 F6 F7 F8 E2 E3 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 C2 C3 C4 C5 C6 C7 C8 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13XX XXXXXPROPOSED GAS EXPANSION (TYP.) EXISTING GAS SYSTEM (TYP.) N GRAPHIC SCALE IN FEET 0 400200100200 UWH-PTC-5&6_SHEETS-03-R.DWG 1" = 200'9 10-11-2021 EROSION CONTROL PLAN GENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVEY PROVIDED BY COOPER AERIAL SURVEYS COMPANY DATED DECEMBER 9 2020. 2.BOUNDARY SURVEY COMPILED BY THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION BY THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING SYSTEM" PREPARED BY BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.ALL GAS SYSTEM COMPONENTS PROVIDED BY SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ" 18'7.5'6"25.5'201(E) 13 960'2.08% 40.5' W2 L W1 W2 RIP-RAP OUTLET PROTECTION RIP-RAP SIZE 12" SLOPELENGTHSCC NO. W1LENGTH(L)PIPE NO. 10.5'30'200 OUTLET PROTECTION 20'9'9"29'202 14 422'1.42% 15 363'3.03% 16 177'3.95% 22A 282'1.42% 22B 232'1.72% 26 199'5.03% 46'15'61'502 24'12'9"36'503(E) 25'7.5'32.5'600 30'13.5'12"43.5'601 24'12'9"36'602(E) 26'12'12"38'610 22'10.5'9"32.5'701 22'10.5'9"32.5'703 31.5'18'15"18'DD C 36.5'18'12"18'DD D 32'18'9"18'DD G 15'18'6"18'DD H 32'18'9"18'DD O RIP-RAP SIZE SLOPELENGTHSCC NO. RIP-RAP LINING 668'2.40%22 6" 23 378'7.94% SLOPELENGTHSCC NO. OTHER LINING 60 417'0.48% 60A 240'1.67% 61 252'1.59% 63 223'1.79% 70 200'8.00% 71 397'2.52% GRASSED LINED WITH EXCELSIOR MATTING 18" 12" 25 647'7.88% 301'3.99%23A 18" 140'3.57%24 15" 557'3.95%27 18" 583'8.23%62 9" 515'7.38%73 9" 34'12'15"36'710SCC N O. 1 4 SCC NO . 1 SCC NO. 2 SCC NO. 60 SCC NO. 63 SCC NO. 13 SCC N O. 1 5 SCC NO. 16 SCC NO. 22 SC C N O . 2 3 SC C N O . 2 4 SCC N O. 2 5 SCC NO. 27SCC NO. 26SCC N O . 2 3 A S C C N O . 2 2 A S C C N O . 2 2 B SCC NO. 61SCC N O. 62SCC NO. 70SCC NO. 60 A SCC NO. 71SCC NO. 72SCC NO. 73EROSION CONTROL LEGEND DROP INLET OR PIPE INLET PROTECTION STONE CHEC. DAM (AS RE4UIRED BY ENGINEER)SILT FENCEX OUTLET PROTECTION STORMWATER CONVEYANCE CHANNEL SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMERY COUNTY NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 72 318'2.52% CONCRETE LINING TURF REINFORCEMENT MAT LINING MATERIAL NOTE OPERATOR MAY USE A MORE RESISTANT LINING MATERIAL TURF REINFORCEMENT MATTING (TRM) OR CONCRETE IN LIEU OF RIP-RAP LINING AT HIS DISCRETION. STORMWATER CONVEYANCE CHANNEL (SCC) LINING EXISTING CELL NO. 16AEXISTING CELL NO. 15BEXISTING CELL NO. 15AEXISTING CELL NO. 16BEXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B REVISED 392022 PER NCDE4 COMMENT RESPONSE ELEVATIONSTATION 690 720 720 0+00 5+00 10+00 660 630 15+00 20+00 25+00 690 660 630 640 650 670 680 700 710 620 640 650 670 680 700 710 620 670 680 690 730650 660 700720710620640 620630640650750760770770770780JUNCTIONBOX NO. 602EXISTING SEDIMENTBASIN NO. 6BT2T1OVERFLOWSTRUCTURE NO. 6HEADWALLNO. 601HEADWALLNO. 600601DROP INLETNO.601602UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UDUD UDUD UD UD F M F M F M FM FMFMFMFMFMFMFMFMFMFMFMFM6506 5 0 65066067068069070071071072073074075076065065 0660670680730 GW-24GW-23GW-19650640630XXXXXUD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD UD-1R UD-1 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA © Republic Services, Inc. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6BSHEETS-04-R.DWG 1" 100 (H)  1" 10 (V)10 10-11-2021 UNDERDRAIN PLAN & PROFILE EXISTING CELL NO. 14AEXISTING CELL NO. 14B PROPOSED CELL NO. 15A PROPOSED CELL NO. 16A PROPOSED CELL NO. 15B PROPOSED CELL NO. 16B BEGINNING OF UNDERDRAIN EXISTING 4" DIA. PERFORATED UNDERDRAIN PIPE & STONE COLUMN EXISTING END OF UNDERDRAIN DISCHARGES TO OPEN DRAINAGE CHANNEL BEGINNING OF UNDERDRAIN END OF UNDERDRAIN DISCHARGES TO OPEN DRAINAGE CHANNEL EXISTING GRADE AS-BUILT TOP OF CLAY LINER EXISTING WASTE PLAN VIEW PROPOSED CELL NO. 15APROPOSEDCELL NO. 15BEXISTING CELL NO. 14B EXISTING 4" DIA. PERFORATED UNDERDRAIN PIPE & STONE COLUMN PROPOSED LINER SYSTEM EXISTING CONTOURS (TYP.) PROPOSED GRADES INSIDE CELL BOUNDARIES REPRESENT TOP OF CLAY LINER (TYP.) PROPOSED UNDERDRAIN EXTENSION SECTION VIEW PROPOSED UNDERDRAIN EXTENSION PROPOSED UNDERDRAIN OUTLET INVERT : 634.51 0 20010050100 HORIZONTAL GRAPHIC SCALE IN FEET 0 2010510 VERTICAL GRAPHIC SCALE IN FEET 45ƒ 45ƒ 4" DIA. HDPE UNDERDRAIN PIPING 4 ROWS OF 3/8" DIA. PERFORATIONS EQUALLY SPACED ON 3" CENTERS (CENTER OF HOLE TO (CENTER OF HOLE) 4" DIA. SDR-9 PERFORATED HDPE UNDERDRAIN PIPE ASTM #57 STONE 6 OZ. NON-WOVEN GEOTEXTILE NOT TO SCALE 18" MIN.12" MIN.4"REVISED: 3/9/2022 PER NCDEQ COMMENT RESPONSE SAMPLING LOCATION UD-1 TO BE ABANDON AND REPLACED BY UD-1R AS-SHOWN ON THIS SHEET EX. SEDIMENT BASIN NO. 6B ELEVATIONSTATION CROSS SECTION A 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 0+00 5+00 10+00 15+00 20+00 25+00 30+00 35+00 40+00 45+00 50+00 55+00 60+00 65+00 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PRO-. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA © Republic Services, Inc. (2021) N.C. CRUS. /LFHQVH  C-0813 PROPOSED FINAL COVER SYSTEM STRUCTURAL FILL (TYP.) ROCK AREA PREVIOUSLY REMOVED FOR BASE LINER CONSTRUCTION TOP OF BEDROCK (APPROXIMATE LOCATION BASED ON AUGER REFUSAL DEPTHS) APPROXIMATE SEASONAL HIGH GROUNDWATER TABLE EXISTING CLAY LINER OR LOW PERMEABILITY SOIL LINER EXISTING 60 MIL FLEXIBLE MEMBRANE LINER EXISTING 24" THICK PROTECTIVE COVER ROCK AREA PREVIOUSLY REMOVED FOR BASE LINER CONSTRUCTION EXISTING WASTE EXISTING FINAL COVER EXISTING CELL NO. 1A EXISTING CELL NO. 8 EXISTING CELL NO. 9 EXISTING CELL NO. 10 EXISTING CELL NO. 11 EXISTING CELL NO. 14A PROPOSED CELL NO. 15A PROPOSED CELL NO. 16A PROPOSED CLAY LINER OR LOW PERMEABILITY SOIL LINER PROPOSED 60 MIL FLEXIBLE MEMBRANE LINER PROPOSED 24" THICK PROTECTIVE COVER EDGE OF CELL (TYP.)EDGE OF CELL NO. 1AC ACCESS ROADLC ACCESS ROADLEDGE OF CELL NO. 16APROPERTY BOUNDARYPROPERTY BOUNDARYEXISTING SEDIMENT BASIN NO. 1 WET DETENTION BASIN NO. 7B ±957' HORI=ONTAL GRAPHIC SCALE >FT@ 300 150 300 6000 VERTICAL GRAPHIC SCALE >FT@ 30 15 30 600EDGE OF CERTIFIEDFINAL COVER3.5 1 ±353' UWH-PTC-5&6BSHEETS-04.DWG 1" 300'(H)  1" 30'(V)11 10-11-2021 LANDFILL CROSS SECTION A EXISTING GRADE (TYP.) ELEVATIONSTATION CROSS SECTION B 520 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 1020 520 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 1020 0+00 5+00 10+00 15+00 20+00 25+00 30+00 35+00 38+00 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PRO-. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA © Republic Services, Inc. (2021) N.C. CRUS. /LFHQVH  C-0813 PROPOSED FINAL COVER SYSTEM STRUCTURAL FILL (TYP.) TOP OF BEDROCK (APPROXIMATE LOCATION BASED ON AUGER REFUSAL DEPTHS)APPROXIMATE SEASONAL HIGH GROUNDWATER TABLE PROPOSED CELL NO. 15A PROPOSED CELL NO. 15B PROPOSED CLAY LINER OR LOW PERMEABILITY SOIL LINER PROPOSED 60 MIL FLEXIBLE MEMBRANE LINER PROPOSED 24" THICK PROTECTIVE COVER EDGE OF CELLEDGE OF CELL NO. 15AC ACCESS ROADLC ACCESS ROADLEDGE OF CELL NO. 15BPROPERTY BOUNDARYEXISTING SEDIMENT BASIN NO. 6B ±303' HORI=ONTAL GRAPHIC SCALE >FT@ 300 150 300 6000 VERTICAL GRAPHIC SCALE >FT@ 30 15 30 600 3.5 1 UWH-PTC-5&6BSHEETS-04.DWG 1" 300'(H)  1" 30'(V)12 10-11-2021 LANDFILL CROSS SECTION B EXISTING GRADE (TYP.) 580 590 60 0 610 620 56 0 570 58 0 59 0 600 610 620 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640620630640620 630 640 650 65065 0 660 660640650 620 620 630 630 640640 610610620620620630630670 680 690 700 710720730740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCPINV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD BORROW AREA NO. 4 630 640 640650 65065 0 650 6506 6 0 6 7 0 6 8 0 6 9 0 690 690 700700 70 0 710710700720 670680680690690700700710710720720730730740740750750760760770770780780790790800800810810820820830830840840850850860860870870630 640 650 660 670 680 690 690 700 700 710 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 640 650 660 670 680 690 700 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 600 DROP INLET NO. 600 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 HEADWALL NO. T1 HEADWALL NO. T2 T4 T1 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6_SHEETS-05-R.DWG 1" = 200'13 10-11-2021 SEQUENCE OF FILL - CELL NO. 15APROPOSED CELL NO. 15AEXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B GENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SOIL LINER. 6.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ" 3.5H1V 3.5H1V3. 5 H  1 V 3.5H1 V 3.5H1VPROPOSED GRADES WITHIN CELL LIMITS REPRESENT TOP OF SOIL LINER REVISED 382022 PER NCDEQ COMMENT RESPONSE RCP414'30"2.89%600 T1 PIPE NO.SLOPELENGTHSIZE MATERIAL DRAINAGE STRUCTURES RCP290'2-36"0.86% HEADWALL NO.INVERT 652.00D.I. 600 STRUCTURE THROATTOP INVERT 650.00 642.00 652.00T1 654.00T2 T4 CPP47'18"1.59% 580 590 60 0 610 620 56 0 570 58 0 59 0 600 610 620 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580 590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640 620630640620 630 640 650 65065 0 660 660640650 620 620 630 630 640640 610610620620620630630670 680 690 700 710720730740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCPINV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD BORROW AREA NO. 4 630 640 640650 65065 0 650 6506 6 0 6 7 0 6 8 0 6 9 0 690 690 700700 70 0 710710700720 670680680690690700700710710720720730730740740750750760760770770780780790790800800810810820820830830840840850850860860870870630 640 650 660 670 680 690 690 700 700 710 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 640 650 660 670 680 690 700 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 730 740 750 760 720 710 730 740 740 750 750 760 670 680 690 700 7 0 0 700 710 710710 720720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 600 DROP INLET NO. 600 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 HEADWALL NO. T1 HEADWALL NO. T2 T4 T1 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6_SHEETS-05-R.DWG 1" = 200'14 10-11-2021 SEQUENCE OF FILL - CELL NO. 15BEXISTING CELL NO. 15APROPOSED CELL NO. 15BEXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B GENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SOIL LINER. 6.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ"3.5H1V3.5H1V3. 5 H  1 V 3.5H1V3.5H1V PROPOSED GRADES WITHIN CELL LIMITS REPRESENT TOP OF SOIL LINER PROPOSED WASTE FILLING GRADES REVISED 392022 PER NCDEQ COMMENT RESPONSE 580 590 60 0 610 620 560 570 58 0 590 600 610 620 630 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580 590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640620630640620 630 640 650 650650 66 0 66 0640650 620 620 630 630 640640 610610620620620630630 670 680 690 700 710720 730740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 78 0 79 0 800 720 71071069073070072071070 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXISTI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCP INV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD BORROW AREA NO. 4 630 640 640650650 6 5 0 650 65066 0 67 0 68 0 6 9 0 690 690 700700 70 0 710710700720 670680680690690700700710710720720730730740740750750760760770770780780790790800800810810820820830830840840850850860860870870630 640 650 660 670 680 690 690 700 700 710 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 640 650 660 670 680 690 700 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 FILL TO DRAIN 870 730 740 750 760 720 710 730 740 740 750 750 760 670 680 690 700 7 0 0 700 710 710710 720720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 OVERFLOW STRUCTURE NO. 7 HEADWALL NO. 703 703 8" DEWATERING PIPE W VALVE 600 DROP INLET NO. 600 DROP INLET NO. 712 712 711 710 DROP INLET NO. 711 DROP INLET NO. 710 HEADWALL NO. 710 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 690690700700 710 720 690 HEADWALL NO. T1 HEADWALL NO. T2 T4 T1 65 0650650 6 6 0 67 0 680690700700710710720720690690 690 690700700710720870 870 880 880 890 890 900 900 910 910 920 920 930 930 940 940 950 950 960 960 970 970 730740750760770780790800810820830840850860870880880890890900900910910920920930930940940950950960960970970SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6_SHEETS-05-R.DWG 1" = 200'15 10-11-2021 SEQUENCE OF FILL - CELL NO. 16APROPOSED CELL NO. 16AEXISTING CELL NO. 15BEXISTING CELL NO. 15AEXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B GENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SOIL LINER. 6.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ"3.5H1V3.5H1V3. 5 H  1 V 3.5H1VPROPOSED GRADES WITHIN CELL LIMITS REPRESENT TOP OF SOIL LINER PROPOSED WASTE FILLING GRADES REVISED 392022 PER NCDEQ COMMENT RESPONSE 710 703 PIPE NO.SLOPELENGTHSIZE MATERIAL DRAINAGE STRUCTURES 711 712 RCP100'42"5.0% RCP85'48"1.76% RCP200'42"8.0% RCP400'42"2.5% 690.00710 HEADWALL NO.INVERT 703 688.00 STRUCTURE THROATTOP INVERT 702.00D.I. 710 700.00 691.50 718.00D.I. 711 716.00 708.00 728.00D.I. 712 726.00 718.00 WET DETENTION BASIN NO. 7B 580 590 60 0 610 620 560 570 58 0 59 0 600 610 620 630 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640620630640620 630 640 650 65065 0 660 660640650 620 620630 630 640 640 610610620620620630630670 680 690 700 710 720730 740 750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 7 8 0 79 0 800 720 7107106907307007207107 0 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCP INV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD BORROW AREA NO. 4 630 640 640650 6506 5 0 650 6506 6 0 6 7 0 6 8 0 6 9 0 690 690 700700 70 0 710710700720 670680680690690700700710710720720730730740740750750760760770770780780790790800800810810820820830830840840850850860860870870630 640 650 660 670 680 690 690 700 700 710 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 640 650 660 670 680 690 700 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 730 740 750 760 720 710 730 740 740 750 750 760 670 680 690 700 70 0 700 710 710710 720720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 680 690 700 710 7 2 0 720 730 73 0 730 7 3 0 740 740 7 4 0 7 4 0 750 750 7 5 0 75 0 760 760 7 6 0 76 0 7 7 0 7 7 0 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 880 880 OVERFLOW STRUCTURE NO. 7 HEADWALL NO. 703 703 8" DEWATERING PIPE W VALVE 600 DROP INLET NO. 600 HEADWALL NO. 610 610 611 JUNCTION BOX NO. 610 DROP INLET NO. 611 DROP INLET NO. 712 712 711 710 DROP INLET NO. 711 DROP INLET NO. 710 HEADWALL NO. 710 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 690690700700 710 720 690 HEADWALL NO. T1 HEADWALL NO. T2 T4 T1 65 0650650 660 6 7 0 680690700700710710720720690690 690 690700700710720870 870 880 880 890 890 900 900 910 910 920 920 930 930 940 940 950 950 960 960 970 970 730740750760770780790800810820830840850860870880880890890900900910910920920930930940940950950960960970970SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6_SHEETS-05-R.DWG 1" = 200'16 10-11-2021 SEQUENCE OF FILL - CELL NO. 16B EXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14BEXISTING CELL NO. 16APROPOSED CELL NO. 16BEXISTING CELL NO. 15BEXISTING CELL NO. 15AGENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SOIL LINER. 6.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ"3.5H1V3.5H1V3. 5 H  1 V 3.5H1V3.5H1V PROPOSED GRADES WITHIN CELL LIMITS REPRESENT TOP OF SOIL LINER PROPOSED WASTE FILLING GRADES REVISED 392022 PER NCDEQ COMMENT RESPONSE 610 611 PIPE NO.SLOPELENGTHSIZE MATERIAL DRAINAGE STRUCTURES RCP339'48"2.80% RCP79'48"3.16% 628.00610 HEADWALL NO.INVERT STRUCTURE THROATTOP INVERT 644.00J.B. 610 -637.50 649.00D.I. 611 647.00 640.00 WET DETENTION BASIN NO. 7B NOTE THESE STRUCTURES SHALL BE INSTALLED WITH CELL 16B CONSTRUCTION OR PRIOR TO CLOSURE 580 590 60 0 610 620 56 0 57 0 580 59 0 600 610 62 0 570 580 590 600 610 670 680 690 730 740740740 750 760 770 780 790 800 810810810 580 590 600 610 620 630 640 650 660 700 720 710 580 590 600 610620 67068069073074075076077078079080081082065066070072071061 0 610 62 0 620 630640 650 670680680680640640650660630640620630640620 630 640 650 650650 660 660640650 620 620 630 630 640640 610610 620620620630630670 680 690 700 710720730 740750 580 590 600 610 620 630 640 650 660 610 620 630 640 580590600610620630 630 640 650 660650650680690730740750760770780790800700720710630640730 740 750 760 770 770 770 78 0 79 0 800 720 71071069073070072071070 0 7 2 0 710 670 680 690 700 72 0 710 670650 660 ACCESS ROADACCESS ROAD (PAVED)ACCESS ROAD NO. 2ACCESS ROAD 30 0 ' B U F F E R 300' BUFFER EXISTIN G P O W E R L I N E E A S E M E N T LA N D F I L L A C C E S S R O A D BENCHMAR. WELL - GW2 EL = 669.138 EXISTING SEDIMENT BASIN NO. 2 EXISTING SEDIMENT BASIN NO. 1 EXIS TI N G S E DI M E N T BASI N N O. 5 B EXIS TI N G F O R E B A < N O. 5 A EXISTING FOREBA< NO. 6A EXISTING SEDIMENT BASIN NO. 6B BORROW AREA NO. 2 PROPERT< BOUNDAR< (T<P) PROPERT< BOUNDAR< (T<P) 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER 50' UNDISTURBED WETLAND AND STREAM BUFFER JURISDICTIONAL STREAM (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDSTREAM (T<P) JURISDICTIONAL WETLANDS (T<P) JURISDICTIONAL STREAM (T<P) JURISDICTIONAL WETLANDS (T<P) HEADWALL NO. 502 DROP INLET NO. 502 OVERFLOW STRUCTURE NO. 6 HEADWALL NO. 601 OVERFLOW STRUCTURE NO. 5 HEADWALL NO. 503 HEADWALL NO. 100 DROP INLET NO. 100 DROP INLET NO. 101 DROP INLET NO. 700 HEADWALL NO. 201 HEADWALL NO. 200 DROP INLET NO. 200 HEADWALL NO. 202 HEADWALL NO. 102 OVERFLOW STRUCTURE NO. 1 HEADWALL NO. 101 HEADWALL NO. 600 DROP INLET NO. 501 601 DROP INLET NO.601 602 202 200 201 701 700 101 102 100 503 502 501 HEADWALL NO. 203 HEADWALL NO. 700 OVERFLOW STRUCTURE NO. 2 24" RCP INV=616.56 24" RCP INV=633.45 DROP INLET TOP=642.04 INV=634.09UDUDUDUDUDUDUDUDUDUD BORROW AREA NO. 4 630 640 640650 6506 5 0 650 6506 6 0 6 7 0 6 8 0 69 0 690 690 700700 70 0 710710700720 670680680690690700700710710720720730730740740750750760760770770780780790790800800810810820820830830840840850850860860870870630 640 650 660 670 680 690 690 700 700 710 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 640 650 660 670 680 690 700 710 720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 730 740 750 760 720 710 730 740 740 750 750 760 670 680 690 700 7 0 0 700 710 710710 720720 720 730 730 740 740 750 750 760 760 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 680 690 700 710 72 0 720 730 7 3 0 730 7 3 0 740 740 7 4 0 7 4 0 750 750 7 5 0 75 0 760 760 7 6 0 7 6 0 7 7 0 77 0 770 770 780 780 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 880 880 770780790800810820830840850860870880890900910920930940950960970980OVERFLOW STRUCTURE NO. 7 HEADWALL NO. 703 703 8" DEWATERING PIPE W VALVE 600 DROP INLET NO. 600 HEADWALL NO. 610 610 611 JUNCTION BOX NO. 610 DROP INLET NO. 611 DROP INLET NO. 712 712 711 710 DROP INLET NO. 711 DROP INLET NO. 710 HEADWALL NO. 710 SW-4 SW-2 MM-22 MM-20R MM-18R MM-16R MM-15 MM-14R MM-13 MM-6 MM-7 MM-8 MM-9 MM-10 MM-11 MM-12 MM-21 MM-19R MM-17R MM-23MM-24 GW-22 GW-26 GW-27 GW-25 GW-24 GW-23 GW-20 GW-21 GW-2 GW-3 GW-4D GW-4 GW-5 GW-6 GW-7 GW-8 GW-12 GW-13R GW-14 GW-14R GW-15 GW-16GW-17 GW-18GW-19 GW-1R GW-13R2 690690700700 710 720 690 HEADWALL NO. T1 HEADWALL NO. T2 T4 T1 65 0650650 6 6 0 6 7 0 680690700700710710720720690690 690 690700700710720870 870 880 880 890 890 900 900 910 910 920 920 930 930 940 940 950 950 960 960 970 970 730740750760770780790800810820830840850860870880880890890900900910910920920930930940940950950960960970970SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA LLC MONTGOMER< COUNT< NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6_SHEETS-05-R.DWG 1" = 200'17 10-11-2021 SEQUENCE OF FILL - FINAL GRADING PLANEXISTING CELL NO. 16AEXISTING CELL NO. 15BEXISTING CELL NO. 15AEXISTING CELL NO. 16BEXISTING CELL NO. 13 EXISTING CELL NO. 12 EXISTING CELL NO. 11 EXISTING CELL NO. 10 EXISTING CELL NO. 9 EXISTING CELL NO. 7 EXISTING CELL NO. 6 EXISTING CELL NO. 8 EXISTING CELL NO. 1A EXISTING CELL NO. 2A EXISTING CELL NO. 3A EXISTING CELL NO. 4 EXISTING CELL NO. 5 EXISTING CELL NO. 14A EXISTING CELL NO. 14B GENERAL NOTES 1.AERIAL TOPOGRAPHIC SURVE< PROVIDED B< COOPER AERIAL SURVE<S COMPAN< DATED DECEMBER 9 2020. 2.BOUNDAR< SURVE< COMPILED B< THOMAS J. FIELDS PLS-2906 LAST REVISED & UPDATED SEPTEMBER 30 2004. 3.JURISDICTIONAL WETLAND AND STREAM INFORMATION B< THOMAS J. FIELDS PLS-2906 LAST REVISED ON SEPTEMBER 16 2005. 4.EXISTING AND PROPOSED MONITORING LOCATIONS TA.EN FROM DRAWING TITLED "ENVIRONMENTAL MONITORING S<STEM" PREPARED B< BUNNELL-LAMMONS ENGINEERING DATED NOVEMBER 30 2018. 5.PROPOSED GRADES INSIDE CELL LIMITS REPRESENT TOP OF SOIL LINER. 6.ALL GAS S<STEM COMPONENTS PROVIDED B< SCS ENGINEERS IN A DRAWING NAMED "2021 EX COND ZLWK FXWXUH BXLOGRXW.GZJ"3.5H1V3.5H1V3. 5 H  1 V 3.5H1V3.5H1V PROPOSED WASTE FILLING GRADES REVISED 392022 PER NCDEQ COMMENT RESPONSE WET DETENTION BASIN NO. 7B OF FLOW AND OVER PROTECTIVE MULCH IN SCC. ROLL OUT EXCELSIOR MATTING PARALLEL TO DIRECTION MAX 2H:1V MAX 2H:1V (UNLESS OTHERWISE NOTED) 2' OVERLAPPING 18" UNTREATED WOODEN STAKES AND JOIN STRIPS BY ANCHORING WITH IN A 6" TRENCH. ANCHOR LINING IN A 6" TRENCH.OVERLAPPING 18" APPROVED WIRE STAPLES AND UNTREATED WOODEN STAKES OR JOIN STRIPS BY ANCHORING WITH PROTECTIVE MULCH ON SLOPE. ROLL OUT EXCELSIOR MATTING PARALLEL TO SLOPE AND OVER 1' 2H:1V 4. BONDED FIBER MATRIX MAY BE USED ON SLOPES IN PLACE OF EXCELSIOR MATTING. 3. INSTALL ALL MATS IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS. 2. STAKE ALL MATS AS NEEDED TO PREVENT SHIFTING 1. INSTALL SEED PRIOR TO PLACEMENT OF MATTING ANCHOR LINING NOTES: MAX A A PLAN 18" MIN. BRICK OR PRECAST SECTION 8" 2" MIN. SECTION A-A (MIN. 8" THICK) 6" CONCRETETOP THROAT ELEV. INVERT ELEV. TOP ELEV. DRAINAGE OPENING ON 4 SIDES NOTE: (1) OPERATOR MAY USE 72" DIA. CONCRETE MANHOLE IN LIEU OF THIS DETAIL. (2) MANHOLE DIMENSIONS SHALL BE AS REQUIRED TO HANDLE PIPE SIZES SHOWN. REINFORCING STEEL SHALL BE A MEET THE REQUIREMENTS OF THE PRECAST CONSTRUCTION SHALL 1'-6" A B CH 10"DGEF4"48"5'-2" 60" 54" 6'-4" 5'-9" 42" 36" 30" 24" 18" 3'-6" 4'-6" 4'-0" 2'-10" 2'-4" DIMENSIONS "B" AND "C." FOR TWIN PIPES, DOUBLE MINIMUM OF #4 @ 6" O.C.E.W. NC. D.O.T. AND ASTM C-478. 3. 2. 1. NOTES: 6'-4" 5'-9" 5'-2" 4'-6" 4'-0" 3'-6" 2'-10" 2'-4" 6'-0"7'-6" 7'-2" 6'-7" 8'-8" 10" 8'-1" 5'-4" 4'-10" 4'-4" 3'-8" 3'-2" 5'-10" 6'-10" 6'-4" 5'-2" 4'-8" 2'-0"2'-6" 3'-0" 2'-9" 2'-2" 2'-0" 1'-9" 2'-3" 2'-0" 1'-5" 1'-4" 1'-6" 2'-0" 1'-8" 1'-4" 1'-3"4"15" 12" "A""B" 2'-0" 1'-8" 2'-0" 1'-8" "E" 2'-10" 2'-6" "D""C" 4'-4" 4'-0" "F" 1'-3" 1'-2" "G" 1'-3" 1'-3" 4'-0" 5'-0" 4'-6" 2'-5" 3'-6" 2'-11" 2'-1" 1'-7" "H" 1'-7" 1'-7" 2 NATURAL SUBGRADE 4' RUNOUT 12" TURN DOWN 18' MIN. 14' MIN. UNLESS OTHERWISE NOTED 2' TYPICAL 2 1 DIRECTION OF FLOW AND OVER PROTECTIVE MULCH IN DITCHES. ROLL OUT EROSION CONTROL PERMANENT FABRIC PARALLEL TO GEOTEXTILE FABRIC LINED DITCH 2 1 18' MIN. 2 18' MIN. 1 NATURAL SUBGRADE 4' MIN. UNLINED SCC 2' TYPICAL UNLESS OTHERWISE NOTED 4' MIN. RIP-RAP SCC RIP-RAP WIDTH TO HEADWALL WIDTH AND TAPER INTO EXISTING GROUND AT END OF RIP-RAP LIMITS. 12" THICK FOR 6" RIP-RAP 18" THICK FOR 9" RIP-RAP 24" THICK FOR 12" RIP-RAP WHERE RIP-RAP STARTS AT A HEADWALL, MATCH 30" THICK FOR 15" RIP-RAP4' MIN. GEOTEXTILE DRAINAGE FABRIC NATURAL SUBGRADE 2' TYPICAL PERMANENT CONCRETE SCC UNLESS OTHERWISE NOTED6x6 6/6 WWM 6" ELEVATION 4" 6'-0" 1.25 LB/LINEAR FT STEEL POSTS (5' MIN LENGTH) NOTES: 1. FLOWS MAY NECESSITATE THE PLACEMENT OF HAY BALES IN FRONT OF FILTER FABRIC. 2. FABRIC SHALL BE ATTACHED IN ACCORDANCE WITH THE NORTH CAROLINA "EROSION AND SEDIMENT CONTROL PLANNING AND DESIGN MANUAL". 3. USE STEEL POSTS ONLY MATERIALS AND INSTALLATION SHALL BE IN ACCORDANCE WITH THE LATEST VERSION OF THE NORTH CAROLINA "EROSION AND SEDIMENT CONTROL PLANNING AND DESIGN MANUAL." CROSS SECTION (NOT TO SCALE) FLOW 8" MIN 18"-24" 24" FILTER FABRIC W/ HOG WIRE REINFORCEMENT FILTER FABRIC NAILED, STAPLED, OR OTHERWISE SECURED PLAN - HEADWALL SECTION A-A La SECTION A-A La PLAN - FLARED END SECTION 3do do A A BLANKET FILTER A SCC BOTTOM BLANKET FILTER d A NOTES: 1. La IS THE LENGTH OF THE RIPRAP APRON. 2. d=1.5 TIMES THE MAXIMUM STONE DIAMETER BUT NOT LESS THAN 6". 3. IN A WELL-DEFINED CHANNEL, EXTEND THE APRON UP IN THE CHANNEL BANKS TO AN ELEVATION OF 6" ABOVE THE MAXIMUM TAILWATER DEPTH OR TO THE TOP OF THE BANK, WHICHEVER MOVE IS LESS. 4. A FILTER BLANKET OR FILTER FABRIC SHOULD BE INSTALLED BETWEEN THE RIPRAP AND SOIL FOUNDATION.“2'-0"NARRATIVEEDGE OF LINER“4'-0"-EDGE OF CELL -EDGE OF LINER -LEACHATE PIPE CLEANOUT MARKER POST NOTE: MARKER POSTS SHALL BE INSTALLED ALONG EDGE OF CELLS EVERY 300' AND AT ALL CELL AND LINER CORNERS, AND AT EACH LEACHATE CLEANOUT LOCATION. 4" X 4" TREATED POST BLACK LETTERS SCALE: 1" = 2' HDPE P I P E ( S I Z E V A R I E S ) NOTE: IF PENETRATION IS PVC PIPE, CLAMP AN LLDPE BOOT TO THE PVC PIPE. 40 MIL TEXTURED LLDPE GEOCOMPOSITE DRAINAGE MEDIA (GDM) 6" THICK VEGETAIVE GROWTH SOIL 10' X 10' TEXTURED FML COLLAR (WELD TO RISER AND CAP) PROTE C T I V E S O I L COVER L A Y E R 12" INT E R M E D I A T E COVER SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV, IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6_SHEETS-06-R.DWG VARIES 18 10-11-2021 GENERAL CONSTRUCTION DETAILS CONCRETE HEADWALL DROP INLET STORM WATER CONVEYANCE CHANNEL SECTIONS OUTLET PROTECTION SCALE: 1"=3' TEMPORARY SILT FENCE 1 5 NOT TO SCALE 7 6 8 9 NOT TO SCALE NOT TO SCALE NOT TO SCALE NOT TO SCALE NOT TO SCALE STORMWATER CONVEYANCE CHANNEL (SCC) EXCELSIOR MATTING OR FABRIC LINING EXCELSIOR (WOOD FIBER) MATTING (SLOPES) NOT TO SCALENOT TO SCALE 10 REVISED: 3/9/2022 PER NCDEQ COMMENT RESPONSE TYPICAL CAP PENETRATION NOT TO SCALE 2 3 4 4A QED WELLHEAD 6" PIPE, HDPE, SDR-17 FLEXIBLE COUPLING 12" HDPE SDR-21 SLEEVE 18" MIN.GEOMEMBRANE BOOT WELDED TO FML AND 12" HDPE SLEEVE 12" INTERMEDIATE COVER LAYER GEOMEMBRANE BOOT WELDED TO ALL HDPE PENETRATIONS GEOCOMPOSITE DRAINAGE MEDIA (GDM) 40 MIL TEXTURED FLEXIBLE MEMBRANE LINER GAS EXTRACTION WELL PENETRATION NOT TO SCALE 5A 18" PROTECTIVE COVER SOIL 6" THICK VEGETATIVE GROWTH SOIL -518" THICK K1x10 CM/SEC SOIL 18" THI C K K 1x10 CM/SE C S O I L -5 CONCRETE ENCASEMENT CARRIER PIPE ANTI-SEEPAGE COLLAR VARIES VARIES CARRIER PIPE 3000 PSI CONC., 12" THICK CARRIER PIPE VARIES VARIES 3000 PSI CONC., 12" THICK VARIES CARRIER PIPE NOT TO SCALE NOT TO SCALE DOWNDRAIN & CROSS DRAIN PIPE JUNCTION 3.0 (TYP.) 1 SIDE SLOPE DRAINAGE BERM 24" DIA. HDPE CROSS DRAIN PIPE 24" DIA. HDPE DOWNDRAIN PIPE PIPE SHALL HAVE A MINIMUM COVER OF 24" OF SOIL SIDE SLOPE DRAINAGE BERM INVERT OF SIDE SLOPE DRAINAGE BERM TOP OF SIDE SLOPE DRAINAGE BERM FLARED END SECTION (TYP.) 24" DIA. DOWNDRAIN PIPE 24" DIA. CROSS DRAIN PIPE FLARED END SECTION CROSS CONNECTION 11.25ƒ BEND 10' SECTION 40 MIL TEXTURED LLDPE GEOCOMPOSITE DRAINAGE MEDIA (GDM) 12" THICK FOUNDATION SOILS 24" THICK PROTECTIVE SOIL COVER AND VEGETATIVE GROWTH SOIL PERMANENT DOWNDRAIN PIPE AND INLET DOWNDRAIN & TEE DRAIN PIPE JUNCTION WHEN TWO PIPES AREA REQUIRED FLARED END SECTION TEE CONNECTION 11.25ƒ BEND 10' SECTION OR /- 20' MAX. 2' MIN. NOT TO SCALE 30" MIN. DEPTH AT INLET PIPE 30" MIN. DEPTH AT INLET PIPE SIDE SLOPE TACK-ON DRAINAGE BERM TACK-ON BERM INVERT ELEV. AS SHOWN ON FINAL DRAINAGE PLAN 1 1 MAX 1.5 3.5 MAX 1 2 5' MI N .SIDE SLOPE DRAINAGE PIPE4" DIA. PERF. CPP PARALLEL TO TACK-ON BERM CONTRACTOR SHALL INSTALL MARKER POSTS BESIDE EACH DRAINAGE PIPE GENERAL CONTRACTOR SHALL INSTALL 4" DIA. SOLID CPP EVERY 100' ALONG BERM # 2.00% GRADE (MIN). OUTLET OF PIPE SHOULD BE A MIN. OF 10' ABOVE INVERT OF DRAINAGE BERM. TACK-ON BERM (COMPACTED TO 95% OF STANDARD PROCTOR DRY DENSITY) SOIL BERM SHALL BE LINED WITH EXCELSIOR MATTING (DOUBLE SIDED) UNLESS OTHERWISE NOTED GEOCOMPOSITE DRAINAGE MEDIA (GDM) GEOTEXTILE GEONET 10' M I N . 2' MIN. 4' MIN. NOTE(S): 1.SIDE SLOPE BERMS TO BE CONSTRUCTED WITH END LOADERS OR SIMILAR EQUIPMENT. 2.SIDE SLOPE BERMS SHALL HAVE MINIMUM 2% AND MAXIMUM 4% SLOPE TO DOWNDRAIN LOCATIONS. 3.SEE "INLET AND DOWNDRAIN FOR SIDE SLOPE BERM" DETAIL FOR THE LOCATION OF THE PROPOSED 4" CPP AT EACH DOWNDRAIN INLET. 4.BERM HEIGHT SHALL BE INCREASED TO A MINIMUM OF 3' HIGH WITHIN 50' OF PIPE INLETS. 5.ALL 4" DIA. CPP SHALL BE OFFSET AT LEAST 20' FROM DOWNDRAIN PIPES. EXIS T I N G W A S T E 40 MIL TEXTURED FML SCALE: NTS GDM WRAP AROUND 4" CPPGDM WRAP AROUND 4" CPP PRO T E C T I V E C O V E R L A Y E R INTE R M E D I A T E C O V E R L A Y E R 6" VEGETATIVE GROWTH LAYER 42" RCP CARRIER PIPE 11' X 11' X 2' CONCRETE BASE 24" THICK GRAVEL BEDDING5'6' X 6' CONCRETE BOX OVERFLOW STRUCTURE #4 BAR - 12" O.C. E. W. TRASH RACK 7' X 5.5' X 23.62' CONCRETE ENCASEMENT OVERFLOW STRUCTURE NO. 7 NOT TO SCALE CHECK DAM (AS NEEDED) SECTION A-A RIP-RAP CLASS B FILTER FABRIC A 9" MIN FLOW 1 2 WASHED STONE 12" NCDOT #5 OR #57 1.5' L THE DISTANCE SUCH THAT POINTS A AND B ARE OF EQUAL ELEVATION A 18" MIN A L B 24" MAX AT CENTER FILTER FABRIC NOT TO SCALE DROP INLET PROTECTION PLAN DROP INLET SECTION A-A 4' MAXA STEEL POST A 4' MAX 16" 2' 2: 1 DROP INLET NOTES: 1. CONTRACTOR SHALL UNIFORMLY GRADE A SHALLOW DEPRESSION APPROACHING THE INLET. 2. WIRE MESH SHALL BE SECURED AT TOP, MIDDLE AND BOTTOM OF STEEL POSTS. 3' 2' NCDOT #5 OR #57 WASHED STONE 19-GUAGE HARDWARE CLOTH (1/4" MESH OPENINGS) 19-GUAGE HARDWARE CLOTH (1/4" MESH OPENINGS) NCDOT #5 OR #57 WASHED STONE NOT TO SCALE 8" THICK GRADED AGGREGATE 6 OSY ROAD STABILIZATION FABRIC UNDER AGGREGATE BASE 28' ROADWAY (UNLESS OTHERWISE NOTED) SLOPE 1/4" PER FOOT 6'6' ALL-WEATHER ACCESS ROAD SECTION 1 3 1 3 NOT TO SCALE WET DETENTION BASIN NO. 7 FOR RIP-RAP SIZING) (SEE EROSION CONTROL PLAN OUTLET INVERT ELEV: 688.00 OUTLET PROTECTION CONCRETE HEADWALL CUT-OFF INLET INV. ELEV: 693.00 OVERFLOW STRUCTURE 10' X 10' X 2' CONCRETE BASE 6' X 6' CONCRETE BOX TRENCH 2 - 7.5' X 7.5' X 1' ANTI-SEEPAGE COLLAR (TYP.) 7' X 5.5' X 20' CONCRETE CARRIER PIPE ENCASEMENT PERMANENT POOL1 3 STRUCTURE ELEV: 698.00 TOP OF OVERFLOW RCP CARRIER PIPE 1 1 2' TOP OF LEVEE ELEV: 702.00 3 1 1 3 SILT GAUGE FROM INLET 2/3 DISTANCE 4" X 10" ORIFICE 3 1 NOTE: 1. ALL FILL MATERIAL SHALL BE COMPACTED TO 95% STD. PROCTOR DENSITY 2. CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE NORTH CAROLINA "EROSION AND SEDIMENT CONTROL PLANNING AND DESIGN MANUAL." 3. SEE WET DETENTION BASIN DATA CHARTS BELOW FOR ADDITIONAL INFORMATION. EARTHEN PLATFORM FOREBAY PERMANENT POOL ROCK FILTER BERM BOTTOM OF POND ELEV: 689.00 WET DETENTION BASIN NOT TO SCALE EXISTINGCONCRETE ENCASEMENT OF CARRIER PIPE (FT.) 1.262.78DEPTH AT SEDIMENT CLEANOUT (FT.) NO. & SIZE OF ANTI-SEEP COLLARS (FT.) OUTLET INVERT ELEVATION (FT.) INLET INVERT ELEVATION (FT.) SLOPE (%) LENGTH (FT.) DIAMETER (IN.) TRASH GUARD DIAMETER (IN.) CONCRETE BASE DIMENSIONS LxWxH (FT.) HEIGHT (FT.) INVERT ELEVATION BOTTOM OF RISER (FT.) SIZE (IN.) WATER LEVEL DURING 25 YEAR STORM (FT.) TOP OF LEVEE (FT.) BOTTOM OF BASIN AT ELEVATION (FT.) STORAGE VOLUME AT PERMANENT POOL LEVEL (CU. YD.) SEDIMENT STORAGE VOLUME REQUIRED AT DRAINAGE AREA TO BASIN (ACRES) 67 CU. YD. PER DISTURBED ACRE (CU. YD.) WATER LEVEL DURING 100 YEAR STORM (FT.) 30 (E) 598.00 (E) 600.00 (E) 1.41 (E) 142 (E) EXISTING EXISTING 6.50 (E) 600 (E) 48" DIA. (E) RCP CARRIER PIPE RCP RISER STRUCTURE 606.26583.17 600 610 576 587.37 2,546 5,573 3,149 26,845 3847 EX. SED. BASIN NO. 1 WET DETENTION BASIN DATA 584.12 607.31 EXISTING 60" DIA. (E) 577.14 (E) 6.46 (E) EXISTING EXISTING 30 (E) 72 (E) 4.51 (E) 577.14 (E) 573.89 (E) EXISTING EXISTING PERMANENT POOL (FT.)3 3 EX. SED. BASIN NO. 2 EXISTING 36 (E) 615.00 (E) 616.00 (E) 1.00 (E) 98 (E) EXISTING EXISTING 7.30 (E) 616 (E) 48" DIA. (E) 623.46 616 626 2,546 5,197 38 623.87 EXISTING 3 EX. WET DETENTION BASIN NO. 6 EXISTING 48 (E) 618.00 (E) 623.00 (E) 4.17 (E) 120 (E) EXISTING EXISTING 6.00 (E) 623 (E) 6' X 6' SQ. (E) 627.47 620 632 5,025 11,016 75 629.18 EXISTING 3 EX. WET DETENTION BASIN NO. 5 7 X 5.5 X 20 42 688.00 693.00 5.00 100 #4 BAR 12" O.C.E.W. 10 X 10 X 2 5.00 693 6' X 6' SQ. 695.19 689 702 2,345 20,521 35 696.09 2 - 7.5 X 7.5 X 1 4 WET DETENTION BASIN NO. 7 SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV, IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6_SHEETS-06-R.DWG VARIES 19 10-11-2021 GENERAL CONSTRUCTION DETAILS 11 13 15 17 18 19 16 14 12 REVISED: 3/9/2022 PER NCDEQ COMMENT RESPONSE 10' 24" 12 OSY CUSHION GEOTEXTILE 60 MIL HDPE FML (TEXTURED) WHERE 18" THICK ALTERNATE LINER SYSTEM IS USED, GCL SHALL EXTEND TO BASE OF ANCHOR TRENCH ANCHOR TRENCH 24" THICK PROTECTIVE COVER COMPACTED CLAY BACKFILL SHALL BE INSTALLED PRIOR TO PLACEMENT OF 24" THICK PROTECTIVE COVER EDGE OF LINERSCALE: 1"=3' 1 4 ANCHOR TRENCH COMPACTED SUBGRADE SCC CENTERLINE24" 24" MIN. 4' 2' 2 15' SLOPE 1/4" PER FOOT 24" CLAY LINER OR 18" LOW PERMEABILITY SOIL LINER W/ GCL 1EDGE OF CELLEDGE OF CELL MARKER POST EVERY 300' (SEE MARKER POST DETAIL) 24" THICK P R O T E C T I V E C O V E R S Y S T E M SCALE: 1"=1' SIDE SLOPE LINER SYSTEM 12 OSY CUSHION GEOTEXTILE OR GEOCOMPOSITE 60 MIL HDPE LINER (TEXTURED) REINFORCED GEOSYNTHETIC CLAY LINER (GCL) IF ALT. BID LINER SYSTEM IS UTILIZED 24" THICK PROTECTIVE COVER (NCDOT #78M, ASTM #89, SAND, OR OTHER PERMEABLE MEDIA) 18" THICK K≤1 X 10-5 CM/SEC LOW PERMEABILITY SOIL LINER PLUS A REINFORCED GCL (ALT. BID) LOW PER M E A B I L I T Y S O I L L I N E R O R COMPACT E D C L A Y L I N E R 4 1 24" THICK K≤1 X 10-7 CM/SEC COMPACTED CLAY LINER (BASE BID) OR 10' 24" 12 OSY CUSHION GEOTEXTILE 60 MIL HDPE FML (TEXTURED) WHERE 18" THICK ALTERNATE LINER SYSTEM IS USED, GCL SHALL EXTEND TO BASE OF ANCHOR TRENCH ANCHOR TRENCH 24" THICK PROTECTIVE COVER COMPACTED CLAY BACKFILL SHALL BE INSTALLED PRIOR TO PLACEMENT OF PROTECTIVE COVER SCALE: 1"=3' 1 4 LEACHATE PIPE CLEANOUT COMPACTED SUBGRADE 24" 24" CLAY LINER OR 18" LOW PERMEABILITY SOIL LINER W/ GCL 8" DIA. HDPE LEACHATE PIPE EDGE OF LINERBLIND FLANGE (EXTEND 12" MIN. ABOVE GROUND) LIMIT OF 12OSY CUSHION GEOTEXTILE LEACHATE CLEANOUT / EDGE OF CELL3.5 1 NEXT LIFT. IMMEDIATELY PRECEEDING INSTALLATION OF COVER SYSTEM OF FILL DIRECTION TYPICAL CELL FILLING & CROSS SECTION ALL BOTTOM ELEVATIONS SHOWN ON THE PLANS GIVEN AT TOP OF 60 MIL FLEXIBLE MEMBRANE 24" MIN. SOIL COMPACTED BASE ANCHOR TRENCH SOLID WASTE FINAL LEACHATE CLEANOUT 6" THICK DAILY COVER 12" INTERMEDIATE COVER - MAY BE REMOVED 1 3 COMPACTED LIFT THICKNESS (15' MAX.) 60 MIL HDPE FML 24" THICK PROTECTIVE LAYER CLAY LINER OR LOW PERMEABILITY SOIL LINER 8" DIAMETER LEACHATE COLLECTION PIPE NOT TO SCALE TEMPORARY EDGE. TRENCH IS TO BE USED ALONG THE AD-ACENT TO ANOTHER CELL NO ANCHOR NOTE: WHERE CELL IS TO BE CONSTRUCTED TEMPORARY EDGE OF LINER CONSTRUCTIONNEXT CELLEDGE OF CELLTO CONSTRUCTION OFFUTURE GRADE FOR NEXT CELLLIMIT OF WASTE PRIOR10' 60 MIL HDPE POINT OF FUTURE CONNECTION OF FML BY EXTRUSION OR WEDGE WELD FUTURE SOIL LINER FOR NEXT FOR NEXT CELL FUTURE HDPE LINER CELLLINER MARKER EVERY 300' AND TEMPORARY EDGE OF LINER AT ALL CORNERS CLAY LINER OR LOW PERMEABILITY SOIL LINER 24" THICK PROTECTIVE COVER 8" DIAMETER PERFORATED LEACHATE PIPE CELLS RUB SHEET 2' MIN. BETWEEN NOT TO SCALE NOTES: 1.BERM IS TO BE CONSTRUCTED AS PROTECTIVE COVER IS PLACED. COMPACTION IS NOT REQUIRED. 4' MIN. 5' MIN.1 SCALE: 1"=3' TEMPORARY STORM WATER RAIN FLAP (INSIDE CELL) CUT 8" DIA. LEACHATE COLLECTION PIPE. RECONNECT WITH SOLID HDPE SLEEVE (SEE CONNECTION SLEEVE DETAIL ) WELD TO FML 60 MIL HDPE LINER (TEXTURED) ADDITIONAL MATERIAL FOR BERM ABOVE PROTECTIVE COVER 1 REINFORCED GCL (WITH ALTERNATE LINER SYSTEM) DIRECTION OF FLOW (TYP.) 12" x 48" SLEEVE AND 8" PIPES MUST BE IN ALIGNMENT 6" MAX. 8" DIA. PERFORATED HDPE PIPE 1 0.5 MIN. ADDITIONAL PROTECTIVE COVER MATERIAL TO HOLD DIVERSION FLAP 12 OSY CUSHION GEOTEXTILE 60 MIL TEXTURED HDPE LINER 24" THICK PROTECTIVE COVER 18" THICK LOW PERMEABILITY SOIL LINER (K<1X10-5^CM/SEC) LINER / CAP INTERFACE 9' 15' 25' 1 SUBBASE COMPACTED 60 MIL. FML 40 MIL TEXTURED 4' MIN.1 22 1 10'EDGE OF CELLC SCCLFML CAP ANCHOR TRENCHEDGE OF LINERSOLID WASTE CLAY LINER OR LOW PERMEABILITY SOIL LINER 3.5 24" THICK P R O T E C T I V E C O V E R SLOPE 1/4" PER. 1' NOT TO SCALE 40 MIL LLDPE WELDED TO THE 60 MIL FML 4" DIA. PERF. CPP DRAINAGE PIPING GEOTEXTILE GEONET 4'' DIA SOLID CPP OUTLET PIPING DAYLIGHTINING IN PERIMETER DITCH. SPACED EVERY 100' 6' 24" 24" THICK PROTECTIVE COVER ASTM #89 OR NCDOT #78M THICK COMPACTED CLAY LINER (K<1X10 -7CM/SEC) SCALE: 1"=3' BASE LINER SYSTEM AND BASE PROTECTIVE COVER SYSTEM ASTM #57 STONE FILTER 12' WIDE ADDITIONAL 12 OSY CUSHION GEOTEXTILE 60 MIL HDPE LINER (TEXTURED) 12 OSY CUSHION GEOTEXTILE 8" DIAMETER PERFORATED HDPE LEACHATE PIPE MAX SLOPE = ANGLE OF REPOSE 2.0% MIN. SLOPE SOLID WASTE 2.0% MIN. SLOPE 24" MIN. NATIVE SOIL OR STRUCTURAL FILL SUBBASE 10' MIN. NOTE: THE ALTERNATE BASE LINER SYSTEM CAN BE USED IN COMBINATION WITH ANY PROTECTIVE COVER SYSTEMS, AS DIRECTED BY THE OWNER. 3'6'3' THICK LOW PERMEABILITY SOIL LINER (K<1X10-5CM/SEC) 24" 18" ALTERNATE LINER SYSTEM AND ALTERNATE PROTECTIVE COVER SYSTEM 12' WIDE ADDITIONAL 12 OSY CUSHION GEOTEXTILE 60 MIL HDPE LINER (TEXTURED) 8" DIAMETER PERFORATED HDPE LEACHATE PIPE SCALE: 1"=3' NATIVE SOIL OR STRUCTURAL FILL SUBBASE ASTM #57 STONE FILTER THICK PROTECTIVE COVER - WASHED SCREENING (k > 2.0 X 10-2 CM/SEC) 24" MIN. REINFORCED GEOSYNTHETIC CLAY LINER (GCL) SOLID WASTE 2.0% MIN. SLOPE2.0% MIN. SLOPE 10' MIN. NOTE: THE ALTERNATE BASE LINER SYSTEM CAN BE USED IN COMBINATION WITH ANY PROTECTIVE COVER SYSTEMS, AS DIRECTED BY THE OWNER. 12 OSY CUSHION GEOTEXTILE MAX 6" 8" DIAMETER PERFORATED HDPE PIPE TACK WELD ONE END ONLY OR STAINLESS STEEL LAG BOLTS FASTEN WITH MINIMUM OF 2 CONNECTION SLEEVE DETAIL 10" DIAMETER x48" SOLID HDPE PIPE AS SLEEVE (SDR 17) NOT TO SCALE 8" DIA. PERFORATED HDPE PIPE (SDR 9) MAX 6" 8" DIAMETER PERFORATED HDPE PIPE TACK WELD ONE END ONLY OR STAINLESS STEEL LAG BOLTS FASTEN WITH MINIMUM OF 2 CONNECTION SLEEVE DETAIL 10" DIAMETER x48" SOLID HDPE PIPE AS SLEEVE (SDR 17) NOT TO SCALE 8" DIA. PERFORATED HDPE PIPE (SDR 9) SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PRO-. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA © Republic Services, Inc. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6BSHEETS-06-R.DWG VARIES 20 10-11-2021 BASE LINER & FINAL COVER SYSTEM DETAILS 20 23 26 22 25 27 24 28 29 21 REVISED: 3/9/2022 PER NCDEQ COMMENT RESPONSE 45ƒ MAX 6" WILL BE ACCEPTABLE. NOTE: FUSION WELDED PIPE -OINTS 8" DIAMETER PERFORATED HDPE PIPE TACK WELD ONE END ONLY OR STAINLESS STEEL LAG BOLTS FASTEN WITH MINIMUM OF 2 CONNECTION SLEEVE DETAIL 10" DIAMETER x48" SOLID HDPE PIPE AS SLEEVE (SDR 17) 4 ROWS OF 3/8" DIA. PERFORATIONS EQUALLY SPACED & STAGGERED ON 3" CENTERS 29 45ƒ 45ƒTOP OF 8" PIPEUNDISTURBED EARTH 42" MIN. TO 8" DIA. DUAL-CONTAINMENT PIPE 4" DIA. HDPE FORCE MAIN IN MAX.MIN. 9"6" NOTE: 1.FORCE MAIN PIPING SHALL BE DUAL CONTAINMENT AND BE INSTALLED ACCORDING TO MANUFACTURERS RECOMMENDATIONS AND SPECIFICATIONS. 4"X8" DUAL CONTIANED FORCE MAIN SCALE: NTS UNDISTURBED SOIL OR COMPACTED TRENCH MATERIAL (CLASS C EMBEDMENT) EARTH BACKFILL; COMPACTED TO 95% STANDARD PROCTOR OUTSIDE OF EXISTING ROADWAYS AND PROPOSED PAVING, COMPACTED TO 100% STANDARD PROCTOR UNDER EXISTING ROADWAYS AND PROPOSED PAVING. 27A VEGETATIVE COVER 6" THICK VEGETATIVE GROWTH SOIL REFUSE 18" THICK K<1x10 CM/SEC SOIL-5 GEOCOMPOSITE 40 MIL TEXTURED FML DRAINAGE MEDIA (GDM) 18" THICK PROTECTIVE SOIL COVER 12" THICK INTERMEDIATE COVER FINAL CAP SYSTEM ON <10 TOPS NOT TO SCALE DRAINAGE MEDIA (GDM) 40 MIL TEXTURED FML GEOCOMPOSITE 6" T H I C K V E G E T A T I V E G R O W T H Z O N E FINAL CAP SYSTEM ON !10 SIDE SLOPES 18" T H I C K P R O T E C T I V E S O I L C O V E R NOT TO SCALE 12" T H I C K O F I N T E R M E D I A T E VEGETATIVE COVER FORCE MAIN FITTINGS W/ FREEZE PROTECTION FINISHED GRADE ON OPEN END OF TEE REDUCER AND BALL VALVE HOOK AND SS 316 BAND CLAMP ATTACH PULL-OUT CABLE TO EYE STAINLESS STEEL CABLE 2" x 2" TEE W/ 2" x 1/2" DISCHARGE EXIT FITTING (SS) 2" x 2" TEE THREADS TO HDPE FLANGE SEAL COVER W/ SS BOLTS 24" DIAMETER SDR-11 SOLID HDPE RISER PIPE 2" DIAMETER HDPE DISCHARGE HOSE FASTEN DISCHARGE PIPE TO 24" DIAMETER RISER WITH SS 316 CLAMP OR EQUIVALENT 2" DIAMETER HDPE DISCHARGE PIPE SDR 11.0 2" SS OR HDPE CHECK VALVE (OF UNION DESIGN) 2" SS OR HDPE BALL VALVE (OF UNION DESIGN) 2" DIAMETER HDPE FORCE MAIN WITH DUAL CONTAINMENT NOT TO SCALE AT LEACHATE SUMP 15 PROPOSED LEACHATE TIE-IN 4" x 4" x 2" 8" DIA. FLANGE ADAPTERS FROM LEACHATE SUMP PUMP 72" DIA. HDPE MANHOLE NOTES: 1. PROVIDE 3/4" DIA. HOLE IN ALL SECONDARY CONTAINMENT PIPE TERMINATIONS TO PROVIDE LEAK DETECTION. 2. ALL VALVES SHALL BE FLANGED. FUTURE FLOW DIRECTION 2" ASAHI (OR EQUAL) PVC GATE VALVE 4" ASAHI (OR EQUAL) PVC GATE VALVE REDUCING TEENO. 15 4" ASAHI (OR EQUAL) PVC CHECK VALVE 4" ASAHI (OR EQUAL) PVC GATE VALVE 2" x 4" HDPE DUAL CONTAINED LEACHATE FORCE MAIN TO EXISTING LEACHATE COLLECTION SYSTEM AT NORTH END OF CELL NO. 14A NOT TO SCALE 4" DIA. END CAP (UNTIL CELL 16 FORCE MAIN TIES IN) 8" DIA. END CAP (UNTIL CELL 16 FORCE MAIN TIES IN) 4' 4 1 3.5 1 A SECTION A COMPACTED SOLID WASTE A LEACHATE SUMP ASSEMBLY C STORMWATER CONVEYANCE CHANNELLFINAL COVER SYSTEM 60 MIL FLEXIBLE MEMBRANE LINER 8'x8'x2" HDPE FLAT STOCK #57 STONE GEOSYNTHETIC CLAY LINER (GCL) 8'x8'x2" HDPE FLAT STOCK (EXTEND 5' BEYOND LIMITS OF LC ACCESS ROADPLAN VIEW 4" x 4" x 2" TEE SUMP, 2 LAYERS OF GCL WITH STORMWATER CONVEYANCE CHANNELC ACCESS ROADLCLAY LINER 2 LAYERS WITH LIMITS OF GEOSYNTHETIC 5' 5' 5' NOTE: ENTIRE SUMP SHALL BE FILLED WITH ASTM #57 GRAVEL. MARKER POST 10'x10' BOTTOM 42'x42' TOP ALTERNATE LINER SYSTEM LEACHATE PIPE CLEANOUTALTERNATE LINER SYSTEM) 4" DIAMETER FORCE MAIN 2" DIAMETER FORCE MAIN DUAL CONTAINED 20 L.F. 24" DIAMETER CMP IN FRONT OF RISER PIPES 8" DIAMETER LEACHATE CLEANOUT CAP BOTH 24" DIAMETER HDPE RISER PIPE W/ FLANGE (SS BOLTS) 8" DIAMETER SOLID HDPE LEACHATE PIPE 8" DIAMETER PERFORATED HDPE LEACHATE PIPE 8" DIAMETER PERFORATED HDPE LEACHATE PIPE 24" THICK PROTECTIVE LAYER 24" DIAMETER HDPE RISER PIPE CLAY LINER OR LOW PERMEABILITY SOIL LINER 2" DIAMETER FORCE MAIN DUAL CONTAINED NOTE: 1. 2" DIAMETER DISCHARGE PIPE AND 4" DIAMETER FORCE MAIN SHALL HAVE A MINIMUM 42" COVER AND SHALL BE DUAL-CONTAINED 2. LEACHATE CLEANOUT NOT SHOWN FOR CLARITY 4" DIAMETER FORCE MAIN W/ SECONDARY CONTAINMENT 20 L.F. 24" DIAMETER CMP IN FRONT OF RISER PIPES 10' SQ NOTE: ELECTRIC CONDUIT SHALL BE PLACED IN SAME TRENCH WITH FORCE MAIN. PUMP PANEL 72" DIA. HDPE MANHOLE (SEE DETAIL) DUPLICATE 24" DIA. HDPE RISER PIPES NOT TO SCALE ASSEMBLY INCLUDES FROM PUMP TO EXIT FITTING THE FOLLOWING: 1. 2" DIAMETER EPDM DISCHARGE HOSE 2. 2" SS LONG SHANK 3. 90ƒ SS ELBOW 4. TYPE D SS FEMALE CAM LOCK FITTING 5. TYPE A SS CAM LOCK FITTING NOTES: 1. DRILL HOLE TO CORRECT SIZE AT DESIRED LOCATION. 2. THREAD SS EXIT NIPPLE INTO DRILLED HOLE. HOLD AT NON-THREADED BOSS AREA OR ATTACH SS END CAP TO TURN. EXTEND INTO RISER APPROXIMATELY 2.5". 3. ATTACH MALE CAM AND GROOVE FITTING-USE THREAD PASTE. 4. BACK UP NIPPLE UNTIL SHOULDER OF CAM AND GROOVE FITTING IS AGAINST INSIDE OF RISER PIPE WALL. 5. POSITION CABLE EXIT FITTINGS AS REQUIRED-TYPICALLY ABOVE THE DISCHARGE EXIT FITTING. 6. ALL FITTINGS TO BE EITHER HDPE OR STAINLESS STEEL (SS). 7. ALL BOLD ITEMS IN THIS DETAIL TO BE STAINLESS STEEL. 8. THE 24" DIA. RISER PIPE SHALL BE CLEANED OF ALL HDPE PIPE SHAVINGS ONCE DRILLING IS COMPLETE. ALL SHAVINGS SHALL BE REMOVED FROM INSIDE THE PIPE PRIOR TO PLACING THE SYSTEM INTO OPERATION. 1/4" HOLE FOR PULL CABLE 24" RISER SIDE EXIT SIDE VIEW NOTE: 1. EXIT FITTINGS SHOULD BE PLACED APPROXIMATELY 6" BELOW THE TOP OF THE RISER AND 10" MAX. TO ALLOW REACH TO FITTINGS. 6" 2" x 2" SS TEE TO EXISTING VALVE ASSEMBLY 2" DIAMETER DISCHARGE EXIT FITTING. DRILL 2.25" HOLE TYPICALLY AT 3:00 OR 9:00 O'CLOCK (TO BE DETERMINED BY ENGINEER). HOLE SHOULD BE LEVEL AND NOT EXCEED 2.25". USE SS EXIT FITTING TO TAP HOLE FOR INSTALLATION.INTO 24" RISER VIEW 1/2" LEVEL SENSOR CABLE EXIT FITTING. DRILL 3/4" HOLE AND TAP USING 1/2" BLACK IRON PIPE NIPPLE TO TAP. OR 3/4" POWER CABLE EXIT FITTING. DRILL 15/16" HOLE AND USE SS PIPE NIPPLE TO TAP. NOT TO SCALE AT LEACHATE SUMP 16 PROPOSED LEACHATE TIE-IN 4" x 4" x 2" FROM LEACHATE SUMP PUMP 72" DIA. HDPE MANHOLE NOTES: 1.PROVIDE 3/4" DIA. HOLE IN ALL SECONDARY CONTAINMENT PIPE TERMINATIONS TO PROVIDE LEAK DETECTION. 2.ALL VALVES SHALL BE FLANGED. FUTURE FLOW DIRECTION 2" ASAHI (OR EQUAL) PVC GATE VALVE 4" ASAHI (OR EQUAL) PVC GATE VALVE REDUCING TEE NO. 16 2" x 4" HDPE DUAL CONTAINED LEACHATE FORCE MAIN 4" DIA. BLIND FLANGE TO EXISTING LEACHATE STUB-OUT FROM CELL NO. 15 NOT TO SCALE FLEXIBLE MEMBRANE 60 MIL TEXTURED (CONTINUOUS WELD OF 8'x8'x2" HDPE FLAT STOCK PIPE TO PLATE) GEOSYNTHETIC #57 STONE "LOW LEVEL OFF" MOUNT ON TOP OF PUMP WITH 316 SS BAND CLAMPS 1/4" 316 SS PULL-OUT CABLE WITH SS 316 CLAMPS BETWEEN LINER GEOTEXTILE LAYER AND PLATE CLAY LINER LEACHATE SUMP PUMP COMPRESSION FITTING UNDER SUMP LINER CLAY LINER OR LOW PERMEABILITY SOIL LINER 24" DIAMETER HDPE RISER PIPE (PERFORATE 16' SECTION WITHIN SUMP WITH 3/8" HOLES 6" O.C.)2" DIAMETER HDPE WIRE REINFORCED DISCHARGE PIPE SUBMERSIBLE PUMP ON STAINLESS STEEL SKID FASTEN CABLES TO LOWER 10' OF DISCHARGE PIPE WITH 316 SS BAND CLAMPS AT 5' INTERVALS FASTEN "HIGH LEVEL ON" TO DISCHARGE PIPE WITH 316 SS CLAMPS NOT TO SCALE VEGETATIVE COVER 12" THICK OF INTERMEDIATE 18" THICK K<1x10 CM/SEC SOIL-5 DRAINAGE MEDIA (GDM) 40 MIL TEXTURED FML GEOCOMPOSITE CAP TRANSITION TOP DECK TO SIDE SLOPES NOT TO SCALE 3.5H : 1 V 17.5H:1V 6" THICK VEGETATIVE GROWTH ZONE 18" THICK PROTECTIVE SOIL COVER SHEET OF 3920 ARKWRIGHT RD. (478) 743-7175 PROJ. NO. SCALE DATE OCTOBER 2021 EDIT 21 MACON, GEORGIA 31210 6703-912-01 (478) 743-7175 (FAX) SUITE 101 ENGINEERING PLANS PERMIT TO CONSTRUCT - PHASES 5 & 6 UWHARRIE REGIONAL LANDFILL FOR REPUBLIC SERVICES OF NORTH CAROLINA, LLC MONTGOMERY COUNTY, NORTH CAROLINA ‹ RHSXEOLF SHUYLFHV, IQF. (2022) N.C. CRUS. /LFHQVH  C-0813 UWH-PTC-5&6_SHEETS-06-R.DWG VARIES 21 10-11-2021 LEACHATE COLLECTION SYSTEM DETAILS 30 31 33 34 35 36 37 38 REVISED: 3/9/2022 PER NCDEQ COMMENT RESPONSE 32 Correspondence Phase 5 & 6 Permit to Construct Uwharrie Regional Landfill Montgomery County, North Carolina October 2021 HHNT Project No. 6703-912-01 9.0 CORRESPONDENCE CURRENT LIFE OF SITE FRANCHISE ORDINANCE INDUSTRIAL USER PRE-TREATMENT PERMIT UNDERDRAIN PIPING PLAN APPROVAL ROY COOPER Governor MICHAEL S. REGAN Secretary MICHAEL SCOTT Director Solid Waste Section Sent via Email March 24, 2017 Mr. Mike Gurley, Republic Services of North Carolina, LLC (Republic Services) Mr. Joe Reynolds, Uwharrie Regional Landfill Mr. Matthew M. Woodard, County Manager, Montgomery County Re: Approval of Underdrain Piping Plan Modification to the Permit Approval to Construct [PTC] (DIN 23532) Uwharrie Regional Landfill, Phase 4, Cell 14B Montgomery County, North Carolina Permit No. 6204-MSWLF-1995, Document ID No. (DIN) 27544 Gentlemen: The Division Waste Management (DWM), Solid Waste Section (SWS) has reviewed the March 21, 2017 responses (DIN 27540) to the SWS comments on the Underdrain Piping Plan [Plan] (DIN 27508) dated March 09, 2017. Hodges, Harbin, Newberry & Tribble, Inc. (HHNT), on behalf of Republic Services, prepared and submitted the original plan and the responses. The Plan proposes to install underdrain piping beneath the Uwharrie Regional Landfill (Landfill) - Phase 4, Cell 14B. The purpose is to intercept seeps that are being encountered during grading activities at Cell 14B and to gravity drain the flow to an existing drainage feature outside the footprint of Cell 14B. The SWS has no further comment on the Plan at this time and hereby approves the construction of the underdrain piping underneath Landfill Cell 14B according to the approved Plans, DIN 27508 & 27540 including the Technical Specification Section 02220 – Trenching, Backfilling, and Compaction. The construction quality testing results and as-built drawing(s) – piping layout/alignment and profile prepared by a surveyor registered in the State of North Carolina must be submitted as a portion of the Certified Construction Quality Assurance Report of the Cell 14B according to the Permit Condition No. 19, Part II of Attachment 2 of the PTC dated May 14, 2015 (DIN 23532). According to the Plan (DIN 27540) Republic Services shall conduct and document monthly monitoring of the seep flow to determine the long-term plan of the underdrain after pipe installation is completed. The finding of the seep and the long-term plan of the underdrain piping must be incorporated into the Landfill Phase 5 (Cells 15 & 16) Permit Approval to Construct Application. Additionally, from July 2017 the current Water Quality Monitoring Program at the Landfill shall include the seep sampling at the pipe outlet as part of the semi-annual groundwater & surface water monitoring activities. Mr. Mike Gurley, Republic Services of North Carolina, LLC (Republic Services) Mr. Joe Reynolds, Uwharrie Regional Landfill Mr. Matthew M. Woodard, County Manager, Montgomery County March 24, 2017 DIN 27544 Page 2 of 2 Please place the approved plan and this letter in the landfill operating record. If you have any questions of the permit, please contact my staff Ming Chao at 919-707-8251 ming.chao@ncdenr.gov or Cristine Ritter, at (919) 707-8254 or christine.ritter@ncdenr.gov. Sincerely, Edward F. Mussler, III, P.E, Permitting Branch Supervisor Division of Waste Management, NCDEQ cc: K. Matthew Cheek, P.E., HHNT Ming-Tai Chao, P.E, DWM Christine Ritter, DWM Teresa Bradford, DWM Ervin Lane, DWM Deb Aja, DWM Central Files COMPLIANCE HISTORY REVIEW – (FROM LIFE OF SITE PTO)