Loading...
HomeMy WebLinkAbout2019.01.30_CCO.p11_PFASWaterModifiedVersion8WorkInstrucutionCertain sections are replaced by the words PROPRIETARY CONTENT to allow distribution of this document. Perfluoro-n-butanoic acid PFBA 375-22-4 Perfluoro-n-pentanoic acid PFPeA 2706-90-3 8:2 - Fluorotelomersulfonate 8:2FTS 39108-34-4 N-methylperfluoro-1-octanesulfonamidoacetic acid NMeFOSAA 2355-31-9 N-ethylperfluoro-1-octanesulfonamidoacetic acid Perfluoroundecanoic acid NEtFOSAA 2991-50-6 4:2-Fluorotelomersulfonate 4:2-FTS 757124-72-4 Perfluoropentanesulfonate PFPeS 2706-94-4 6:2-Fluorotelomersulfonate 6:2-FTS 27619-97-2 Perfluoroheptanesulfonate PFHpS 375-92-8 Perfluorononanesulfonate PFNS 68259-12-1 Perfluorodecanesulfonate PFDS 335-77-3 10:2-Fluorotelomersulfonate 10:2-FTS 120226-60-0 Perfluorododecanesulfonate PFDoDS 79780-39-5 Perfluorohexadecanoic acid PFHxDA 67905-19-5 Perfluorooctadecanoic acid PFODA 16517-17-6 Perfluorooctanesulfonamide PFOSA 754-91-6 2-(N-methylperfluoro-1-octanesulfonamido)-ethanol NMePFOSAE 24448-09-7 N-methylperfluoro-1-octanesulfonamide NMePFOSA 31506-32-8 2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol NEtPFOSAE 1691-99-2 N-ethylperfluoro-1-octanesulfonamide NEtPFOSA 4151-50-2 Basic Principles A 250-mL aqueous sample is fortified with isotopically-labeled extraction standards and is passed through a solid phase extraction (SPE) cartridge to extract the analytes. The compounds are eluted from the solid phase with a combination of solvents. The extract is concentrated to ~400-500ul with nitrogen in a heated water bath, and then reconstituted to 1ml with methanol. Isotopically-labeled injection internal standards are added to the sample extract and it is analyzed by LC/MS/MS operated in negative electrospray ionization (ESI) mode for detection and quantification of the analytes. Quantitative analysis is performed using isotope dilution. Reference Modifications EPA Method 537 is written specifically for the analysis of drinking water samples. The following modifications to the method have been made to accommodate all aqueous samples. 1. A labeled isotopic analog is spiked into samples for all compounds where an isotopic analog is commercially available. These isotopic compounds are referred to as extraction standards. For US Eurofins US Lancaster Laboratories Environmental ­ Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Printed by: Jeremy Beckley, d. 2019/01/14 15:34 CET Page 4 of 17 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Level: Work Instruction Document number: T­PFAS­WI14355 Old Reference: 1­P­QM­WI­9039651 (1­P­QM­WI­9012802)  Version: 8 Organisation level: 5­Sub­BU   Approved by: UDM6 Effective Date 11­SEP­2018 Document users: 6_EUUSLA_PFAS_Analyst, 6_EUUSLA_PFAS_Data_Reviewers, 6_EUUSLA_PFAS_Sample_Prep Responsible: 5_EUUSLA_PFAS_Manager Always check on­line for validity. Exposure to these chemicals must be reduced to the lowest possible level by whatever means available, such as fume hoods, lab coats, safety glasses, and gloves. Gloves, lab coats, and safety glasses should be worn when preparing standards and handling samples. Avoid inhaling solvents and chemicals and getting them on the skin. Wear gloves when handling neat materials. When working with acids and bases, take care not to come in contact and to wipe any spills. Always add acid to water when preparing reagents containing concentrated acids. All laboratory waste is accumulated, managed, and disposed of in accordance with all Federal, State, and local laws and regulations. All solvent waste and extracts are collected in approved solvent waste containers in the laboratory and subsequently emptied by personnel trained in hazardous waste disposal into the lab-wide disposal facility. HPLC vials are disposed of in the lab container for waste vials, and subsequently lab packed. Any solid waste material (disposable pipettes and broken glassware, etc.) may be disposed of in the normal solid waste collection containers. Personnel Training and Qualifications All personnel performing this procedure must have documentation of reading, understanding, and agreeing to follow the current version of this SOP and an annual documented Demonstration of Capability (DOC). Each chemist performing the extraction must work with an experienced employee for a period of time until they can independently perform the extraction. Also, several batches of sample extractions must be performed under the direct observation of another experienced chemist to assure the trainee is capable of independent preparation. Proficiency is measured through a documented Initial Demonstration of Capability (IDOC). Each LC/MS/MS analyst must work with an experienced employee for a period of time until they can independently calibrate the LC/MS/MS, review and process data, and perform maintenance procedures. Proficiency is measured through a documented Initial Demonstration of Capability (IDOC). The IDOC and DOC consist of four laboratory control samples (or alternatively, one blind sample for the DOC) that is carried through all steps of the extraction and meets the defined acceptance criteria. The criteria include the calculation of mean accuracy and standard deviation. Sample Collection, Preservation, and Handling A. Sample Collection The samples are collected in 250 mL polyethylene bottles containing 1.25 grams of Trizma, resulting in a Trizma concentration in the sample of 5 g/L. Trizma functions as a free chlorine scavenger; therefore, any chlorinated water supplies require the preservative. Water samples from non- US Eurofins US Lancaster Laboratories Environmental ­ Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Printed by: Jeremy Beckley, d. 2019/01/14 15:34 CET Page 6 of 17 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Level: Work Instruction Document number: T­PFAS­WI14355 Old Reference: 1­P­QM­WI­9039651 (1­P­QM­WI­9012802)  Version: 8 Organisation level: 5­Sub­BU   Approved by: UDM6 Effective Date 11­SEP­2018 Document users: 6_EUUSLA_PFAS_Analyst, 6_EUUSLA_PFAS_Data_Reviewers, 6_EUUSLA_PFAS_Sample_Prep Responsible: 5_EUUSLA_PFAS_Manager Always check on­line for validity. chlorinated water sources would not necessarily require the Trizma preservative. Keep the sample sealed from time of collection until extraction. NOTE: PFAS contamination during sampling can occur from a number of common sources, such as food packaging and certain foods and beverages. Proper hand washing and wearing nitrile gloves will aid in minimizing this type of accidental contamination of the samples. B. Sample Storage and Shipment 1. Samples must be chilled during shipment and must not exceed 10°C during the first 48 hours after collection. Sample temperature must be confirmed to be at or below 10°C when the samples are received at the laboratory. 2. Samples stored in the lab must be held at a temperature of 0° to 6°C, not frozen, until extraction. 3. Water samples must be extracted within 14 days. Extracts must be analyzed within 28 days after extraction. Extracts are stored at room temperature. Apparatus and Equipment US Eurofins US Lancaster Laboratories Environmental ­ Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Printed by: Jeremy Beckley, d. 2019/01/14 15:34 CET Page 7 of 17 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Level: Work Instruction Document number: T­PFAS­WI14355 Old Reference: 1­P­QM­WI­9039651 (1­P­QM­WI­9012802)  Version: 8 Organisation level: 5­Sub­BU   Approved by: UDM6 Effective Date 11­SEP­2018 Document users: 6_EUUSLA_PFAS_Analyst, 6_EUUSLA_PFAS_Data_Reviewers, 6_EUUSLA_PFAS_Sample_Prep Responsible: 5_EUUSLA_PFAS_Manager Always check on­line for validity. PROPRIETARY CONTENT US Eurofins US Lancaster Laboratories Environmental ­ Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Printed by: Jeremy Beckley, d. 2019/01/14 15:34 CET Page 8 of 17 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Level: Work Instruction Document number: T­PFAS­WI14355 Old Reference: 1­P­QM­WI­9039651 (1­P­QM­WI­9012802)  Version: 8 Organisation level: 5­Sub­BU   Approved by: UDM6 Effective Date 11­SEP­2018 Document users: 6_EUUSLA_PFAS_Analyst, 6_EUUSLA_PFAS_Data_Reviewers, 6_EUUSLA_PFAS_Sample_Prep Responsible: 5_EUUSLA_PFAS_Manager Always check on­line for validity. Reagents and Standards All solvents, acids, and bases are stored in glass bottles in flammable proof cabinets or pressure resistant steel drums. Solvents, acids, and bases are stored at ambient temperature for up to 1 year. All non-solvents are stored according to manufacturer’s storage conditions. US Eurofins US Lancaster Laboratories Environmental ­ Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Printed by: Jeremy Beckley, d. 2019/01/14 15:34 CET Page 9 of 17 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Level: Work Instruction Document number: T­PFAS­WI14355 Old Reference: 1­P­QM­WI­9039651 (1­P­QM­WI­9012802)  Version: 8 Organisation level: 5­Sub­BU   Approved by: UDM6 Effective Date 11­SEP­2018 Document users: 6_EUUSLA_PFAS_Analyst, 6_EUUSLA_PFAS_Data_Reviewers, 6_EUUSLA_PFAS_Sample_Prep Responsible: 5_EUUSLA_PFAS_Manager Always check on­line for validity. B. Standards: See SOP T-PFAS-WI13881 A. Reagents: PROPRIETARY CONTENT If the criteria are not met, the source of the problem must be determined and corrected. Situations may exist where the initial calibration can be used. In those cases, the data will be reported with a qualifying comment. 7. Initial Calibration Verification (ICV) A check standard prepared from a second source (ICV) is injected to confirm the validity of the calibration curve/standard. The calculated amount for each analyte should be ± 30% of the true value. B. Continuing calibration 1. Once the calibration curve has been established, the continuing accuracy must be verified by analysis of a continuing calibration verification (CCV) standard every ten samples and at the end of the analysis sequence. a. The CCV run after the initial calibration must be at the CAL3 level. b. Subsequent CCV standards should alternate between the low, mid and high levels of the calibration curve. 2. Acceptance criteria a. The calculated amount for each compound (native and extraction standard) in the CCV standard must be within ±30% of the true value. Samples that are not bracketed by acceptable CCV analyses must be reanalyzed. The exception to this would be if the CCV recoveries are high, indicating increased sensitivity, and there are no positive detections in the associated samples, the data may be reported with a qualifying comment. If two consecutive CCVs fail criteria for target analytes, two passing CCVs must be analyzed or the source of the problem determined and the system recalibrated before continuing sample analysis. b. The absolute areas of the injection internal standards should be within 50-150% of the average areas measured during the initial calibration. Procedure A. Sample Preparation 1. Weigh full sample container on a calibrated top loading balance and record the first reading in the automated prep entry system. 2. If required, add 1.25 grams of Trizma to a 250 ml HDPE bottle for the method blank and the laboratory control sample (LCS) and LCSD if needed. Fill each bottle with 250 ml of Milli-Q water. Record 250 ml as the volume for the batch QC samples on the batchlog. 3. If sample has dissolved and/or settleable solid content; i.e., is cloudy or has a layer of sediment/solids at the bottom of the bottle, an aliquot should be taken from the original bottle and diluted with reagent water in order to minimize difficulty passing through the SPE sorbent bed. If US Eurofins US Lancaster Laboratories Environmental ­ Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Printed by: Jeremy Beckley, d. 2019/01/14 15:34 CET Page 11 of 17 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Level: Work Instruction Document number: T­PFAS­WI14355 Old Reference: 1­P­QM­WI­9039651 (1­P­QM­WI­9012802)  Version: 8 Organisation level: 5­Sub­BU   Approved by: UDM6 Effective Date 11­SEP­2018 Document users: 6_EUUSLA_PFAS_Analyst, 6_EUUSLA_PFAS_Data_Reviewers, 6_EUUSLA_PFAS_Sample_Prep Responsible: 5_EUUSLA_PFAS_Manager Always check on­line for validity. 3. Acquisition method: See attachment 3 4. Load sample vials containing standards, quality control samples, and sample extracts into autosampler tray. Allow the instrument adequate time to equilibrate to ensure the mass spec and LC have reached operating conditions (approximately 5 minutes) before the first injection. Analyze several solvent blanks clean the instrument prior to sample acquisition. 5. After the initial calibration, inject a solvent blank, followed by the ICV, L/B standard, closing Cal 3 level CCV , CCV, extraction batch QC, and samples. Bracket each set of ten samples with a CCV standard, alternating between the Cal3, Cal4, and Cal5 levels. 6. After injections are completed, check all CCV recoveries and absolute areas to make sure they are within method control limits. See Calibration section B.2 for acceptance criteria. Process each chromatogram and closely evaluate all integrations, baseline anomalies, and retention time differences. If manual integrations are performed, they must be documented and a reason given for the change in integrations. The manual integrations are documented during data processing and all original integrations are reported at the end of the sample PDF file with the reason for manual integration clearly listed. 7. Quantitate results for the extraction blank. a. No target analytes at or above the reporting limit may be found in the extraction blank for acceptable batch results. If a target analyte is detected in the extraction blank but not detected in the sample, the data is reported. If a target analyte is detected in the method blank at a concentration greater than the reporting limit and also in the sample, the sample must be reextracted. If the target analyte in the sample is detected at a concentration greater than 10 times the amount detected in the method blank, the data is reported. 8. Calculate the recoveries of spiked analytes for the LCS, matrix spike and matrix spike duplicate (MS/MSD) by comparing concentrations observed to the true values. The advisory QC acceptance limits for LCS and MS/MSD recovery are 70 to 130% for each analyte. The advisory QC acceptance limit for the relative percent difference (%RPD) between LCS/LCSD and MS/MSD is ≤30%. The limits are advisory until sufficient data points are available to determine statistical QC acceptance limits. If LCS and/or LCSD recoveries are acceptable, proceed to sample quantitation. If the LCS recoveries are unacceptable, the samples associated with the LCS may need to be reanalyzed. If LCS recoveries are above the advisory QC acceptance limits, and there are no positive detections in the sample, the data may be reported. If MS/MSD recoveries are outside QC acceptance criteria, the associated data will be flagged or noted in the comments section of the report. 9. Isotopically labeled extraction standards are added to all samples, extraction blank, LCS/LCSD, and MS/MSD prior to extraction. US Eurofins US Lancaster Laboratories Environmental ­ Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Printed by: Jeremy Beckley, d. 2019/01/14 15:34 CET Page 15 of 17 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Level: Work Instruction Document number: T­PFAS­WI14355 Old Reference: 1­P­QM­WI­9039651 (1­P­QM­WI­9012802)  Version: 8 Organisation level: 5­Sub­BU   Approved by: UDM6 Effective Date 11­SEP­2018 Document users: 6_EUUSLA_PFAS_Analyst, 6_EUUSLA_PFAS_Data_Reviewers, 6_EUUSLA_PFAS_Sample_Prep Responsible: 5_EUUSLA_PFAS_Manager Always check on­line for validity. a. The recovery of the extraction standards should be within QC acceptance criteria. If the extraction standard recovery(ies) is(are) outside the QC limit(s), consult a supervisor to determine the appropriate course of action based on batch and sample results. 10. Isotopically labeled injection standards are added to each QC and field sample extract prior to analysis. a. The absolute areas of the injection standards should be within 50-150% of the average areas measured during the initial calibration. If the internal standards are recovered outside 50- 150%, consult a supervisor to determine the appropriate course of action based on batch and sample results. 11. Compare the retention times of all of the analytes, surrogates and internals standards. The relative retention times should not vary by more than 0.2 retention time units. 12. The MDL standard and the linear/branch chain standard are used when assessing the correctness of the computer generated peak integrations. 13. If the calculated concentration exceeds the calibration range of the system, dilute the extract with MeOH and add the appropriate amount of extraction standard to match the original concentration. Add 10 ul of injection internal standard and analyze the dilution. Dilution Example 1/10: Mix 0.877 mL of MEOH with 0.100 mL of sample extract and 0.0225 mL of labeled extraction standard. Vortex to mix. Using an auto-pipette, transfer 200 uL of the mixed solution into a labeled auto-sampler vial containing a plastic insert. Using a syringe, add 10 uL of labeled injection std to the 200 uL aliquot. Cap and vortex thoroughly to mix. Calculations A. Peak Area Ratio B. Analyte Concentration using linear through zero curves (MQ Data processing system) Concentration = (area ratio ÷ slope) x Dilution Factor x Internal Standard concentration C. Sample Concentration (used only for aqueous samples using the MultiQuant data processing system on the AB Sciex LC/MS/MS) Sample concentration (ng/l) = Calc conc x (Sample volume ÷ Sample weight) x DF US Eurofins US Lancaster Laboratories Environmental ­ Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Printed by: Jeremy Beckley, d. 2019/01/14 15:34 CET Page 16 of 17 Polyfluorinated Alkyl Substances (PFAS) in Aqueous Samples by Method 537 Version 1.1 Modified Using LC/MS/MS Level: Work Instruction Document number: T­PFAS­WI14355 Old Reference: 1­P­QM­WI­9039651 (1­P­QM­WI­9012802)  Version: 8 Organisation level: 5­Sub­BU   Approved by: UDM6 Effective Date 11­SEP­2018 Document users: 6_EUUSLA_PFAS_Analyst, 6_EUUSLA_PFAS_Data_Reviewers, 6_EUUSLA_PFAS_Sample_Prep Responsible: 5_EUUSLA_PFAS_Manager Always check on­line for validity. PFOA 413 369 PFOA (2)413 169 13C4-PFOS 503 80 13C8-PFOS 507 80 PFOS 499 80 PFOS (2)413 169 13C9-PFNA 472 427 PFNA 463 419 PFNA (2)463 169 13C8-PFOSA 506 78 PFOSA 498 78 PFNS 549 80 PFNS (2)549 99 13C2-PFDA 515 470 13C6-PFDA 519 474 PFDA 513 469 PFDA (2)513 169 13C2-8:2-FTS 529 81 8:2-FTS 527 507 8:2-FTS (2)527 81 d7-NMePFOSAE 623 59 NMePFOSAE 616 59 d3-NMePFOSA 515 169 NMEPFOSA 512 169 d3-NMeFOSAA 573 419 NMeFOSAA 570 419 NMeFOSAA (2)570 483 d9-NEtPFOSAE 639 59 NEtPFOSAE 630 59 d5-NETPFOSA 531 169 NEtPFOSA 526 169 PFDS 599 80 PFDS (2)599 99 13C7-PFUnDA 570 525 PFUnDA 563 519 PFUnDA (2)563 169 d5-NEtFOSAA 589 419 NEtFOSAA 584 419 NEtFOSAA (2)584 526 13C-PFDoDA 615 570 PFDoDA 613 569 PFDoDA (2)613 169 10:2-FTS 627 607 10:2-FTS (2)627 81 PFDoS 699 80 PFTrDA 663 619 PFTrDA (2)663 169 13C2-PFTeDA 715 670 PFTeDA 713 669 PFTeDA (2)713 169 PFHxDA 813 769 PFHxDA (2)813 169 PFODA 913 869 PFODA (2)913 169 Page 1 of 2 Attachment 2 PFAS Injection Standards/Extraction Standards/Native Compounds Injection Standards Inj Std Internal Standard/Injection Standard I13C3-PFBA 13C3-PFBA I13C2-PFOA 13C2-PFOA I13C4-PFOS 13C4-PFOS I13C2-PFDA 13C2-PFDA Extraction Standards Extraction Standard Internal Standard E13C4-PFBA 13C3-PFBA E13C5-PFPeA E13C3-PFBS E13C2-4:2-FTS 13C2-PFOA E13C5-PFHxA E13C3-PFHxS E13C4-PFHpA E13C2-6:2-FTS E13C8-PFOA E13C8-PFOS 13C4-PFOS E13C9-PFNA E13C8-PFOSA 13C2-PFDA E13C6-PFDA E13C2-8:2-FTS Ed7-NMePFOSAE Ed3-NMePFOSA Ed3-NMeFOSAA Ed9-NEtPFOSAE Ed5-NEtPFOSA E13C7-PFUnDA Ed5-NEtFOSAA E13C2-PFDoDA E13C2-PFTeDA Page 2 of 2 Native PFAS Compounds Native Extraction Standard PFBA 13C4-PFBA PFPeA 13C5-PFPeA PFBS 13C3-PFBS PFPeS 4:2-FTS 13C2-4:2-FTS PFHxA 13C5-PFHxA PFHxS 13C3-PFHxS PFHpS PFHpA 13C4-PFHpA 6:2-FTS 13C2-6:2-FTS PFOA 13C8-PFOA PFOS 13C8-PFOS PFNS PFDS PFDoS PFNA 13C9-PFNA PFOSA 13C8-PFOSA PFDA 13C6-PFDA 8:2-FTS 13C2-8:2-FTS 10:2-FTS NMePFOSAE d7-NMePFOSAE NMePFOSA d3-NMePFOSA NMeFOSAA d3-NMeFOSAA NEtPFOSAE d9-NEtPFOSAE NEtPFOSA d5-NEtPFOSA PFUnDA 13C7-PFUnDA NEtFOSAA d5-NEtFOSAA PFDoDA 13C2-PFDoDA PFTrDA PFTeDA 13C2-PFTeDA PFHxDA PFODA