HomeMy WebLinkAbout2019.02.14_CCO.p7_Fluoromonomers Manufacturing Process Vinyl Ethers North Carbon Bed Removal Efficiency Test ReportIASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019
FLUOROMONOMERS
MANUFACTURING PROCESS
VINYL ETHERS NORTH CARBON BED
REMOVAL EFFICIENCY TEST REPORT
TEST DATES: 16 AND 17 JANUARY 2019
THE CHEMOURS COMPANY
FAYETTEVILLE, NORTH CAROLINA
Prepared for:
THE CHEMOURS COMPANY
22828 NC Hwy 87 W
Fayetteville, North Carolina 28306
Prepared by:
WESTON SOLUTIONS, INC.
1400 Weston Way
P.O. Box 2653
West Chester, Pennsylvania 19380
14 February 2019
W.O. No. 15418.002.009
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 i
TABLE OF CONTENTS
Section Page
1. INTRODUCTION..............................................................................................................1
1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1
1.2 TEST OBJECTIVES ...............................................................................................1
1.3 TEST PROGRAM OVERVIEW .............................................................................1
2. SUMMARY OF TEST RESULTS ...................................................................................4
3.PROCESS DESCRIPTIONS ............................................................................................5
3.1 FLUOROMONOMERS ..........................................................................................5
3.2 PROCESS OPERATIONS AND PARAMETERS .................................................5
4.DESCRIPTION OF TEST LOCATIONS .......................................................................6
4.1 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET .....................6
5. SAMPLING AND ANALYTICAL METHODS .............................................................8
5.1 STACK GAS SAMPLING PROCEDURES ...........................................................8
5.1.1 Pre-Test Determinations ...........................................................................8
5.2 STACK PARAMETERS .........................................................................................8
5.2.1 EPA Method 0010.....................................................................................8
5.2.2 EPA Method 0010 Sample Recovery .....................................................10
5.2.3 EPA Method 0010 – Sample Analysis ....................................................12
5.3 GAS COMPOSITION ...........................................................................................14
6.DETAILED TEST RESULTS AND DISCUSSION .....................................................17
APPENDIX A PROCESS OPERATIONS DATA
APPENDIX B RAW AND REDUCED TEST DATA
APPENDIX C LABORATORY ANALYTICAL REPORT
APPENDIX D SAMPLE CALCULATIONS
APPENDIX E EQUIPMENT CALIBRATION RECORDS
APPENDIX F LIST OF PROJECT PARTICIPANTS
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 ii
LIST OF FIGURES
Title Page
Figure 4-1 VE North Process Carbon Bed Inlet and Outlet Schematic......................................... 7
Figure 5-1 EPA Method 0010 Sampling Train ............................................................................... 9
Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 13
Figure 5-3 WESTON Sampling System ...................................................................................... 16
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 iii
LIST OF TABLES
Title Page
Table 1-1 Sampling Plan for VEN Carbon Bed Testing ................................................................. 3
Table 2-1 Summary of HFPO Dimer Acid VEN Carbon Bed Test Results ................................... 4
Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Inlet – Runs
1, 2, and 3 .............................................................................................................................. 18
Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Outlet – Runs
1, 2, and 3 .............................................................................................................................. 20
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 1
1.INTRODUCTION
1.1 FACILITY AND BACKGROUND INFORMATION
The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina,
approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site
include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas,
Wastewater Treatment, and Powerhouse.
Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride,
captured as HFPO Dimer Acid, emission testing on the Vinyl Ethers North (VEN) Carbon Bed at
the facility. Testing was performed on 16 and 17 January 2019 and generally followed the
“Emission Test Protocol” reviewed and approved by the North Carolina Department of
Environmental Quality (NCDEQ). This report provides the results from the emission test
program.
1.2 TEST OBJECTIVES
The specific objectives for this test program were as follows:
Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid
Fluoride from the Carbon Bed inlet and outlet which are located in the Fluoromonomers
process area.
Calculate the Carbon Bed removal efficiency for HFPO Dimer Acid.
Monitor and record process and emissions control data in conjunction with the test
program.
Provide representative emissions data.
1.3 TEST PROGRAM OVERVIEW
During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer
Acid were measured at two locations.
Table 1-1 provides a summary of the test locations and the parameters that were measured along
with the sampling/analytical procedures that were followed.
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 2
Section 2 provides a summary of test results. A description of the processes is provided in
Section 3. Section 4 provides a description of the test locations. The sampling and analytical
procedures are provided in Section 5. Detailed test results and discussion are provided in
Section 6.
Appendix C includes the summary reports for the laboratory analytical results. The full
laboratory data packages are provided in electronic format and on CD with each hard copy.
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 3
Table 1-1
Sampling Plan for VEN Carbon Bed Testing
Sampling Point & Location VE North Carbon Bed
Number of Tests: 6 (3 Carbon Bed inlet, 3 Carbon Bed outlet)
Parameters To Be Tested: HFPO Dimer
Acid
(HFPO-DA)
Volumetric
Flow Rate and
Gas Velocity
Carbon
Dioxide
Oxygen Water Content
Sampling or Monitoring Method EPA M-0010 EPA M1, M2,
M3A, and M4
in conjunction
with M-0010
tests
EPA M3/3A EPA M4 in
conjunction
with M-0010
tests
Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA
Sample Size ≥ 1.5m3 NANANA NA
Total Number of Samples Collected1 6 6 6 6 6
Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0
Field Blank Trains1 1 per source 0 0 0 0
Proof Blanks1 1 per train 0 0 0 0
Trip Blanks1,2 1 set 0 0 0
Lab Blanks 1 per fraction3 0 0 0 0
Laboratory or Batch Control Spike Samples
(LCS) 1 per fraction3 0 0 0 0
Laboratory or Batch Control Spike Sample
Duplicate (LCSD) 1 per fraction3 0 0 0 0
Media Blanks 1 set4 0 0 0 0
Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0
Total No. of Samples 105 6 6 6 6
Key:
1 Sample collected in field.
2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.
3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).
4 One set of media blank archived at laboratory at media preparation.
5 Actual number of samples collected in field.
6 Not applicable.
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 4
2.SUMMARY OF TEST RESULTS
A total of three test runs each were performed on the VEN Carbon Bed inlet and outlet. Table 2-
1 provides a summary of the HFPO Dimer Acid emissions test results and Carbon Bed removal
efficiencies. Detailed test results summaries are provided in Section 6.
It is important to note that emphasis is being placed on the characterization of the emissions
based on the stack test results. Research conducted in developing the protocol for stack testing
HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid
realized that the resulting testing, including collection of the air samples and extraction of the
various fraction of the sampling train, would result in all three compounds being expressed as
simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer
Acid results provided on Table 2-1 and in this report include a percentage of each of the three
compounds.
Table 2-1
Summary of HFPO Dimer Acid VEN Carbon Bed Test Results
Inlet Outlet Removal
Efficiency
g/sec lb/hr g/sec lb/hr %
R1 1.69E-03 1.34E-02 1.27E-04 1.01E-03 92.5
R2 3.03E-03 2.40E-02 1.40E-04 1.11E-03 95.4
R3 2.92E-03 2.32E-02 1.75E-04 1.39E-03 94.0
Average 2.54E-03 2.02E-02 1.47E-04 1.17E-03 93.9
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 5
3. PROCESS DESCRIPTIONS
The Fluoromonomers area is included in the scope of this test program.
3.1 FLUOROMONOMERS
These facilities produce a family of fluorocarbon compounds used to produce Chemours
products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers.
Process emissions are vented to the Division waste gas scrubber system (which includes the
secondary scrubber) and vents to the Carbon Bed and then to the Division Stack.
The VE North building air systems are vented to the carbon bed and connected to the Tower
Exhaust Blower.
3.2 PROCESS OPERATIONS AND PARAMETERS
The following table is a summary of the operation and products from the specific areas tested.
Source Operation/Product Batch or Continuous
VE
North
PSEPVE Condensation is continuous. Agitated Bed Reactor
and Refining are batch.
HFPO Tower HFPO
During the test program, the following parameters were monitored by Chemours and are
included in Appendix A.
Fluoromonomers Process
o VEN Precurser Rate
o VEN Condensation Rate
o VEN ABR Rate
o HFPO
Continuous.
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 6
4.DESCRIPTION OF TEST LOCATIONS
4.1 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET
Each fiberglass reinforced plastic (FRP) duct at the inlet and outlet of the carbon bed is 34” ID.
The test ports are located as shown below. Based on EPA Method 1, a total of 24 traverse points
(12 per port) were required for HFPO Dimer Acid sampling at both locations. Figure 4-1
provides a schematic of the test port and traverse port locations.
Location Distance from Flow Disturbance Downstream (B)Upstream (A) Carbon Bed Inlet 67 inches > 1.9 duct diameters
61 inches > 1.8 duct diametersCarbon Bed Outlet 58 inches > 1.7 duct diameters
57 inches > 1.5 duct diameters
I� 34" ·I TRAVERSE
POINT
NUMBER • • • 1 • 2 • • 3
4 •••• •• •••••• 5 • 6 • • 7 • • • 8
9
10
11
12
CEMENT BLOCK WALL
CARBON BED
INLET
DISTANCE FROM
INSIDE NEAR
WALL (INCHES)
3/4
2 1/4
4
6
8 1/2
12 1/8
21 5/8
25 1/2
28
30
31 3/4
33 1/4
ID
FAN OUTLET
DRAWING NOT TO SCALE
FIGURE 4-1
VE NORTH PROCESS CARBON BED INLET AND OUTLET SCHEMATIC
7 IASDATA\CHEMOURS\15418.002.007\FIGURE 4-2 VE NORTH PROCESS SCHEMATIC
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 8
5.SAMPLING AND ANALYTICAL METHODS
5.1 STACK GAS SAMPLING PROCEDURES
The purpose of this section is to describe the stack gas emissions sampling trains and to provide
details of the stack sampling and analytical procedures utilized during the emissions test
program.
5.1.1 Pre-Test Determinations
Preliminary test data were obtained at each test location. Stack geometry measurements were
measured and recorded, and traverse point distances verified. A preliminary velocity traverse
was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine
velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel
meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was
estimated by wet bulb/dry bulb temperature measurements.
A check for the presence or absence of cyclonic flow was previously conducted at each test
location. The cyclonic flow checks were negative (< 20°) verifying that the test locations were
acceptable for testing.
Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic
sampling procedures.
Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement
devices was performed as specified in Section 5 of EPA Method 5 test procedures.
5.2 STACK PARAMETERS
5.2.1 EPA Method 0010
The sampling train utilized to perform the HFPO Dimer Acid sampling at the outlet locations
was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate
nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal
degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack
temperature to minimize water vapor condensation before the filter. The probe was connected
directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.
VENTWALLICE WATER RECIRCULATION PUMPCONDENSATE TRAPIMPINGERSICE BATHVACUUM LINEMAINVALVETEMPERATURESENSORSBY-PASS VALVEAIR-TIGHT PUMPDRY GAS METERORIFICEMANOMETERCHECKVALVETEMPERATURESENSORHEATED AREAFILTER HOLDERORIFICESILICA GELCONDENSERXAD-2 SORBENTMODULES ONE AND TWOTEMPERATURESENSORTEMPERATURESENSORVACUUMGAUGEIASDATA\CHEMOURS\15418.002.009\FIGURE 5-1 METHOD 0010FIGURE 5-1EPA METHOD 0010 SAMPLING TRAINHEATED PROBE/BUTTON HOOKNOZZLEREVERSE TYPEPITOT TUBE9 NOTE: THE CONDENSER MAY BE POSITIONED HORIZONTALLY. THE XAD-2 SORBENT MODULE WILL ALWAYS BE IN A VERTICAL POSITION..RIGID BOROSILICATE TUBINGOR FLEXIBLE SAMPLE LINEICE WATERRECIRCULATIONCONDENSATE TRAPIMPINGER
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 10
A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a
Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing
approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet
temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and
a series of two impingers that contained 100 milliliters of high purity distilled water. The train
also included a second XAD-2 resin trap behind the impinger section to evaluate possible
sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate
knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All
impingers and the condensate traps were maintained in an ice bath. Ice water was continuously
circulated in the condenser and both XAD-2 modules to maintain method-required temperature.
A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined
manometers was connected to the final impinger via an umbilical cord to complete the sample
train.
HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to
be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO
Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and
during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount
of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride
and HFPO Dimer Acid.
During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube
into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was
observed immediately after positioning the nozzle at each traverse point, and the sampling rate
adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each
point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each
traverse point during all test periods, as appropriate. Leak checks were performed on the
sampling apparatus according to reference method instructions, prior to and following each run,
component change (if required) or during midpoint port changes.
5.2.2 EPA Method 0010 Sample Recovery
At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the
components transported to the field laboratory trailer for recovery.
A consistent procedure was employed for sample recovery:
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 11
1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were
sealed and labeled.
2.The glass fiber filter(s) were removed from the holder with tweezers and placed in a
polyethylene container along with any loose particulate and filter fragments.
3.The particulate adhering to the internal surfaces of the nozzle, probe and front half of the
filter holder were rinsed with a solution of methanol and ammonium hydroxide into a
polyethylene container while brushing a minimum of three times until no visible
particulate remains. Particulate adhering to the brush was rinsed with methanol/
ammonium hydroxide into the same container. The container was sealed.
4.The volume of liquid collected in the first condensate trap was measured, the value
recorded, and the contents poured into a polyethylene container.
5.All train components between the filter exit and the first condensate trap were rinsed with
methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene
container and sealed.
6. The volume of liquid in impingers one and two, and the second condensate trap, were
measured, the values recorded, and the sample was placed in the same container as Step 4
above, then sealed.
7.The two impingers, condensate trap, and connectors were rinsed with methanol/
ammonium hydroxide. The solvent sample was placed in a separate polyethylene
container and sealed.
8.The silica gel in the final impinger was weighed and the weight gain value recorded.
9.Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter
and distilled water were retained for analysis.
Each container was labeled to clearly identify its contents. The height of the fluid level was
marked on the container of each liquid sample to provide a reference point for a leakage check
during transport. All samples were maintained cool.
During each test campaign, a Method 0010 blank train was set up near the test location, leak-
checked and recovered along with the respective sample train. Following sample recovery, all
samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction
and analysis.
See Figure 5-2 for a schematic of the Method 0010 sample recovery process.
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 12
5.2.3 EPA Method 0010 – Sample Analysis
Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid
analysis according to SW-846 Method 3542:
Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and
front-half of the filter holder solvent rinses;
Back-half Composite—comprised of the first XAD-2 resin material and the back-half of
the filter holder with connecting glassware solvent rinses;
Condensate Composite—comprised of the aqueous condensates and the contents of
impingers one and two with solvent rinses;
Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of
impingers.
The second XAD-2 resin material was analyzed separately to evaluate any possible sampling
train HFPO-DA breakthrough.
The front-half and back-half composites and the second XAD-2 resin material were placed in
polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18
hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid
chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was
concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the
cartridge using methanol. Portions of those extracts were also processed analytically by
HPLC/MS/MS.
IASDATA\CHEMOURS\15418.002.009\FIGURE 5-2 EPA 0010FIGURE 5-2HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010NOZZLE, PROBE ANDFRONT-HALF FILTER HOLDERSAMPLE FRACTION 2FILTERSAMPLE FRACTION 1BACK-HALF FILTER HOLDER CONNECTORS, FLEXIBLE LINE CONDENSER SAMPLE FRACTION 5XAD-2 MODULE ONESAMPLE FRACTION 3REMOVE FROM IMPINGER TRAINWASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDESEAL IN LABELED POLYETHYLENE BOTTLE. COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLWASH WHILE BRUSHING WITH NANOGRADE METHANOL/ AMMONIUM HYDROXIDESEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOLTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLSEAL WASHINGS IN LABELED POLYETHYLENE BOTTLE. MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 4IMPINGER NO. 4 (SILICA GEL)WEIGH AND RECORDMEASURE VOLUME OF LIQUID AND RECORDTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOL13 WEIGH AND RECORDRETAIN FOR REGENERATIONFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 6WASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDETRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLXAD-2 MODULE TWOSAMPLE FRACTION 7REMOVE FROM IMPINGER TRAINSEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOL
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 14
Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their
preparation to provide accurate assessments of the analytical recoveries. Final data was corrected
for IDA standard recoveries.
TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO
Dimer Acid. These procedures were incorporated into the test protocol.
5.3 GAS COMPOSITION
The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon
dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is
presented in Figure 5-3.
Each analyzer was set up and calibrated internally by introduction of calibration gas standards
directly to the analyzer from a calibration manifold. The calibration manifold is designed with an
atmospheric vent to release excess calibration gas and maintained the calibration at ambient
pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range
gases with appropriate adjustments until the desired responses were obtained. The high-range
standards were then introduced in sequence without further adjustment.
The sample line integrity was verified by performing a bias test before and after each test period.
The sampling system bias test consisted of introducing the zero gas and one up-range calibration
standard in excess to the valve at the probe end when the system was sampling normally. The
excess calibration gas flowed out through the probe to maintain ambient sampling system
pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure.
Instrument bias check response was compared to internal calibration responses to insure sample
line integrity and to calculate a bias correction factor after each run using the ratio of the
measured concentration of the bias gas certified by the calibration gas supplier.
The oxygen and carbon dioxide content of each stack gas was measured according to EPA
Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex
Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model
4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 15
analyzers were calibrated with EPA Protocol gases prior to the start of the test program and
performance was verified by sample bias checks before and after each test run.
HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDERHEATED SAMPLE LINESAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISTIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-3WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.009\FIGURE 5-3 WESTON SAMPLING SYSTEM16
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 17
6.DETAILED TEST RESULTS AND DISCUSSION
Each test was a minimum of 96 minutes in duration. A total of three test runs were performed at
each location.
Tables 6-1 and 6-2 provide detailed test data and test results for the Carbon Bed inlet and the
Carbon Bed outlet, respectively.
The Method 3A sampling on all sources indicated that the O2 and CO2 concentrations were at
ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all
calculations.
The carbon bed removal efficiency was calculated based upon the HFPO Dimer Acid inlet and
outlet mass emission rates in lb/hr.
TABLE 6-1
CHEMOURS -FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
CARBON BED INLET
Test Data
Run number
Location
Date
Time period
SAMPLING DATA:
Sampling duration, min.
Nozzle diameter, in.
Cross sectional nozzle area, sq.ft.
Barometric pressure, in. Hg
Avg. orifice press. diff., in H20
Avg. dry gas meter temp., deg F
Avg. abs. dry gas meter temp., deg. R
Total liquid collected by train, ml
Std. vol. ofH20 vapor coll., cu.ft.
Dry gas meter calibration factor
Sample vol. at meter cond., def
Sample vol. at std. cond., dscf(ll
Percent of isokinetic sampling
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis
02, % by volume, dry basis
N2, % by volume, dry basis
Molecular wt. of dry gas, lb/lb mole
H20 vapor in gas stream, prop. by vol.
Mole fraction of dry gas
Molecular wt. of wet gas, lb/lb mole
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DAT A:
Static pressure, in. H20
Absolute pressure, in. Hg
Avg. temperature, deg. F
Avg. absolute temperature, deg.R
Pitot tube coefficient
Total number of traverse points
Avg. gas stream velocity, ft./sec.
Stack/duct cross sectional area, sq.ft.
Avg. gas stream volumetric flow, wacf/min.
Avg. gas stream volumetric flow, dscf/min.
1
CBed Inlet
1/16/2019
0941-1140
96.0
0.218
0.000259
30.20
1.78
46.3
506
16.8
0.8
0.9852
56.817
59.149
92.5
0.0
20.9
79.1
28.84
0.013
0.987
28.69
-6.30
29.74
69
529
0.84
24
43.8
6.31
16571
16202
<1>Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
2/12/2019 2:00 PM 18
2
CBed Inlet
1/16/2019
1312-1513
96.0
0.216
0.000254
30.16
1.76
55.6
516
23.0
1.1
0.9852
59.460
60.708
98.2
0.0
20.9
79.1
28.84
0.018
0.982
28.65
-6.20
29.70
77
537
0.84
24
44.0
6.31
16651
15961
3
CBed Inlet
1/17/2019
0842-1035
96.0
0.216
0.000254
30.18
1.79
42.7
503
16.6
0.8
0.9852
56.171
58.861
93.1
0.0
20.9
79.1
28.84
0.013
0.987
28.69
-6.20
29.72
66
526
0.84
24
43.8
6.31
16575
16320
011619 CBed IN
TABLE 6-1 (cont.)
CHEMOURS -FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
CARBON BED INLET
TEST DATA
Run number 1 2 3
Location CBed Inlet CBedinlet CBed Inlet
Date 1/16/2019 1/16/2019 1/17/2019
Time period 0941-1140 1312-1513 0842-1035
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 369.6120 691.4000 631.4090
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 220.63 402.11 378.74
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid l.38E-08 2.51E-08 2.36E-08
EMISSION RESULTS, lb/hr.
HFPO Dimer Acid l.34E-02 2.40E-02 2.32E-02
EMISSION RESULTS, g/sec.
HFPO Dimer Acid 1.69E-03 3.03E-03 2.92E-03
19
2112/:?0192:00PM 011619 CBed IN
TABLE 6-2
CHEMOURS -FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
CARBON BED OUTLET
Test Data
Run number
Location Date
Time period
SAMPLING DATA:
Sampling duration, min.
Nozzle diameter, in.
Cross sectional nozzle area, sq.ft.
Barometric pressure, in. Hg
Avg. orifice press. diff., in H20
Avg. dry gas meter temp., deg F
Avg. abs. dry gas meter temp., deg. R
Total liquid collected by train, ml
Std. vol. of H20 vapor coll., cu.ft.
Dry gas meter calibration factor
Sample vol. at meter cond., def
Sample vol. at std. cond., dscf(l)
Percent of isokinetic sampling
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis
02, % by volume, dry basis
N2, % by volume, dry basis
Molecular wt. of dry gas, lb/lb mole
H20 vapor in gas stream, prop. by vol.
Mole fraction of dry gas
Molecular wt. of wet gas, lb/lb mole
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:
Static pressure, in. H20
Absolute pressure, in. Hg
Avg. temperature, deg. F
Avg. absolute temperature, deg.R
Pitot tube coefficient Total number of traverse points
Avg. gas stream velocity, ft./sec.
Stack/duct cross sectional area, sq.ft. Avg. gas stream volumetric flow, wacf/min.
Avg. gas stream volumetric flow, dscf/min.
CBed Outlet
1/16/2019
0941-1140
96.0
0.215
0.000252
30.20
1.54
49.8
510
16.1
0.8
0.9916
60.326
62.739
98.4
0.0
20.9
79.1
28.84
0.012
0.988
28.71
3.50
30.46
77 537
0.84
24 44.4
6.31
16801 16607
(ll Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
2/12/2019 2:01 PM 20
2
CBed Outlet
1/16/2019 1312-1513
96.0
0.215 0.000252
30.16
1.55
61.2
521
22.4
1.1
0.9916
61.169
62.147
98.5
0.0
20.9
79.1
28.84
0.017
0.983 28.65
3.50
30.42
82
542
0.84
24
44.6 6.31
16890
16437
3
CBed Outlet
1/17/2019 0842-1035
96.0
0.215 0.000252
30.18
1.53
45.8 506
15.2
0.7
0.9916
59.984
62.834
96.9
0.0
20.9
79.1
28.84
0.011
0.989 28.71
3.50
30.44
76
536 0.84
24
45.1
6.31
17063
16891
011619 CBed OUT
2/12120192:02PM
TABLE 6-2 (cont.)
CHEMOURS -FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
CARBON BED OUTLET
TEST DATA
Run number
Location
Date
Time period
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid
EMISSION RES UL TS, lb/dscf.
HFPO Dimer Acid
EMISSION RESULTS, lb/hr.
HFPO Dimer Acid
HFPO Dimer Acid (From Inlet Data)
EMISSION RESULTS, g/sec.
HFPO Dimer Acid
Carbon Bed Removal Efficiency, %
1
CBed Outlet
1/16/2019
0941-1140
28.9300
16.28
l.02E-09
l.OlE-03
1.34E-02
l.27E-04
92.5
21
2
CBed Outlet
1/16/2019
1312-1513
31.6970
18.01
1.12E-09
1.1 lE-03
2.40E-02
1.40E-04
95.4
3
CBed Outlet
1/17/2019
0842-1035
39.0000
21.91
1.37E-09
l.39E-03
2.32E-02
l.75E-04
94.0
011619 CBedOUT
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019
APPENDIX A
PROCESS OPERATIONS DATA
22
Date 1/16/2019
Date 1/17/2019
800 900 1000 1100 1200 1400 1500 1600
RUN 1 941-1140 RUN 2 - 1312-1513
1300
PSEPVE
800 900 1000 1100
14000 kg/h
80 kg/h 107 kg/h
Batch
14000 kg/h
100 kg/h
0842-1035 (Run 3)
PSEPVE
Division WGS Inlet Flow
Time
Stack Testing
HFPO
VEN Product
VEN Precursor
Time
Stack Testing
HFPO
VEN Product
VEN Precursor
VEN Condensation (HFPO)
Division WGS Inlet Flow
VEN ABR
VEN Refining
Stripper Column Vent
Division WGS Recirculation Flow
VEN Condensation (HFPO)
VEN ABR
VEN Refining
Stripper Column Vent
Division WGS Recirculation Flow
23
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019
APPENDIX B
RAW AND REDUCED TEST DATA
24
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
CARBON BED INLET
Test Data
Run number 1 2 3LocationCBed Inlet CBed Inlet CBed InletDate1/16/2019 1/16/2019 1/17/2019Time period 0941-1140 1312-1513 0842-1035OperatorJMJMJM
Inputs For Calcs.
Sq. rt. delta P 0.77436 0.77150 0.77725Delta H 1.7758 1.7633 1.7888Stack temp. (deg.F)69.4 77.0 65.5Meter temp. (deg.F)46.3 55.6 42.7Sample volume (act.)56.817 59.460 56.171Barometric press. (in.Hg)30.20 30.16 30.18Volume HZO imp. (ml)2.0 4.0 2.0Weight change sil. gel (g)14.8 19.0 14.6COZ0.0 0.0 0.0Oz20.9 20.9 20.9NZ79.1 79.1 79.1Area of stack (sq.ft.)6.305 6.305 6.305Sample time (min.)96.0 96.0 96.0Static pressure (in.HzO)-6.30 -6.20 -6.20Nozzle dia. (in.)0.218 0.216 0.216Meter box cal.0.9852 0.9852 0.9852Cp of pitot tube 0.84 0.84 0.84Traverse points 24 24 24
2/8/2019 9:49 AM
O L 1619 CHed IN
25
~L ~~~
Sample and Velocity Traverse Point Data Sheet -Method 1
Client tr d y (' Operator f 1
LoactionlPlant ~ ,~ ~ v Date ^ ~ 3'
Source .. W.O. Number
Duct Type ~ Circular q Rectangular Duct ~^d~~°te appmpdate type
Traverse Type Particulate Traverse p Velocity Traverse q CEM Traverse
Distance from far wall to outside of rt in. = C ~y r 't
Port De th in. = D " Q sl ~`
De th of Duc diameter m. = C-D ~'
Area of Duct ft~
Total Traverse Points
Total Traverse Points er Port
Part Diameter in. —Flan e-Threaded-Hole
Monorail Len th
Rectan ular Ducts Onl
Width of Duct, rattan ular duct onl in.
Total Ports rectan ular duct onl
E uivalent Diameter = 2'L / L+
Traverse Po t Locations
Traverse
Point °~ of Ouct
Dista from
Inside Duct
Wall in
Distance from Outside of
Po
1
2
3 7
4 ~~
5 Q
6 t q
7 ~Ci ~
8 ''~j
9
10 ~ ~jj 'ij ;,
~,3 ~ ~
~2 1 pa
CEM 7 pol~Lonp Manurmam Une) 9tradflcaWn Polnt Lacaticm
1 0.167
2 O.bO
3 0.833
ryo~e: ~r s~ac~c aia ~ ~z mcn use tr,v nne[noa iA
(Sample port upstream of pilot port)
Note: if stack dfa X24" then adjust traverse point l01 loch from wall
IT stack dia <2q" Ihen adjust UaveBe polo( l0 0.5 inch from wall
nOQOOOOOOOm'm~~,,
..own ~~~~~~_~.o~~~~~~~~~~~~m ~~~-nnm~~~~~~~■~~~~~
Flow Disturbances
U stream -Aft ~ '~'
Downstream - B ft ~ `
U stream - A duct diameters
Downstream - R ldiirJ ritamafwrel 1 F1
Diagram of Steck
i~F
so
r
IQ
~0
~~,,
10
_~
/{~ ~ ~p
~j. Get r~~
Duct Olameters Upsheam from Flow Dlsturbance~Distance A)
o _2 ~ + s e ~ e o ~o
Duct Olemeters Downstream (mm Fbw ~ISWrbance (Distance ~
Stack Diameter > 24 inches o.~1A
ai ~.~~~.._ MiNmum Number of e } ad
Parlkulete Traverse Points ~.24 (crcWep 25 (reclenpulertlucte ~
rravarse Palms rw velodry 1e
~z
a i~uei v o.~wymn(OBtutbenia =Bend, Ecpansion. Cwdredian. etc.)~q~
SIacM OYa E9uNWN Oh. t7.7~ FeM
W~Tw~~N_
26
ISOHINETIC FIELD DATA SHEET Method 0010 HFPO Dimer Acid
Client Chemours SteCk Condi~lons Meter Box ID ~ C
W.O.#15418.002.09,0001 Assumed ACtUaI Meter Box Y ~ ~. 3
Project ID Chemours %Moisture (~Meter Box Del H ~ 3 5 ~+Leak Checks
Mode/Source ID Carbon Bed Impinger Vol (ml)Probe ID /Length Sample Train (ft')
Samp. Loc. ID IN SiUca gel (g)~Probe Material Boro Leak Check ~ (in Hg)
Run N4.iD 1 CO2, 9'o by Vol 3 'Pitot /Thermocouple ID Pitot good
Test Method ID M 0010 HFPO DimerAcid 02, % by Vol 'J.V,Pitot Coe~cient 0.84 Orsat ood w'9 A-
Date ID 9JAN2019 Temperature (°F)Noale ID 3 ~Temp Checks
Source/Location ' Ca~boi Bed Iplet 'Meter Temp (°F)Avg Noale Dia (in)Q• ~I~ O- 3~/7 ljt.?!~Meter Box Temp
Sample Date ~ r / G /Static Press (in Hz0) ^~' . J Area of Stack (ft)• ~G Reference Temp
Baro. Press (in Hg)
Operator
~j_ ~ -
/j~j ~ ((~
/
Ambient Temp (°F) ~l'J
Sample Time
Total Treverse Pts
~
~
Pass/Fail (+/- 20~
Temp Change Response'
Page ~ of
K Factor ~
Initial Mid-Point Final
~,~~~
!ms's ~r~
~~~
Nre- I est Set Nost- I est Set
L~
/ Fail P / Fai(
ye / no Y / no
a
~~~r~~~~~.~~v~r;~nl~c~~~~~~
'-~~~~Ct~'iR~~~~~~00~~Q
v~Es~~~~r'~~~~7~~~~~~~i~lll~~'t,Ji~~i~~
~~~~~~.~r~~~v~r~~~r~~a~~~a~~~~,~~~~sz~~~~~~~s~~~~.~ s ~r~f~~■~r~~~~~~~~~~~~~~i~~~..~~/ ~~~~i►~~~~c'fi~~fi~~ii~~.3~~~~~v .~~~~~7~~~~~~lJ'~~~~~~~~~~'~~~~~~~Al~i~m~O~~~'~G'~~'l'rii"~~~l~~~~4~1~~~cIl~r'~6;~~l~~~irl(~'~~I~~~~~~~~~r~i~~~•~~A~~~~~~~~~~i~1L~i~~~iil~~~~~;~~~~~ij3~~~
.~~_--
nvy ~yi i ~ni~aV r~vy uei n~~~'l~t~•1.. ,1 ~ i 3
n ~: ~ ~~ ~~ Avg Sgrt Oe~H '~~r~ 1 e~l Hl ~~I ~~~~~~--~mments:
k%~~_~'~ yb~J q ~B"' y
Max I etup I Max Yac 1' Max
27
ISOKINETIC FIELD DATA SHEET
Client cnem«,~s Stack Conditions
w.o.#i ~1 a.00z.00s.aooi Assumed
Project ID Chemours %Moisture
Mode/Source ID Carbon Bed Impinger Vol (ml)
Samp. i oc. ID IN Silica gel (g)
Run No:ID 2 CO2, % by Vol Q 1
Test Method ID M 0010 HFPO Dimer Acid 02, 9'o by Vol ~.
Date ID 9JAN2019 Temperature (°F)'gyp
Source/LocaUon Ca[b Be Inlet Meter Temp (°F)
Sample Date p / ~/StaUcPress (in HZO)
Baro. Press pn Hg)
Operator
U",
dYf ~~~(Ambient Temp (°F)~3
Method 0010 PO Di er Acid
Meter Box ID ~
ACtU81 Meter Box Y
Meter Box Del H Leak Checks
Probe ID /Length Sample Train (ft3)
Probe Material Borg Leak Check ~ (in Hg)
Pitot /Thermocouple ID 'i `~ Pitot good
Pitot Coefficient
Nozzle ID
0.84 Orsat good ~d_
Q~ Temp Check ~~
Noale Dia (in)~ ~ o . - Meter Box Temp
~~~-
vg
Area of Stack (ft2)Reference Temp
Sample Time —~ ~ -- Pass/Fafl (+/- 20~
Total Traverse Pts y ~7 V Temo Chance Response'
Page ~ of
K Factor ~,,~-'~
Initial Mid-Point Final
fy,r~,~
~~~~'
rre- i est aet cost- i est set
~ s3
ail ~ /Fail
ves no vas t ru~,__~
~~
- —
•
~~~~~r~a~~-rr~~~■~~~~~~~
s-~~~~r~r~~~.~~z~~~~■rr~~rr~r_~~~~~~~~~~-~~~L~~~~~~~~i~~~~i~~~~~~~~~E~ls~Cf~~~~'~i7~~Jl~~irt~~-~i'_~~~1~~I.~~~~~~f1~7~1~~C~~~
~~~t~ti!'~~i~lf~~~0~~~f~i~~~~
~~~~r.~~~~~srr~~►~~~r~~~~~~~r~iE~~~~r~~~~~~~~~~~~~~r~E~
t~~~~~~~~~~i=~~~~3;~~~~7rIS'~'~~~~~i~~l~,r ~i~~~~,~~I~i~i►~r1S"~~i~~Z7~~~~~L►~~tt~~;►~~i~~i ~~\I~~~'~~~~~7T•~~~~~'~l~~~irl~~'
~ ~Rt l~/~1!_~~f M'JIrl~~il~~A t~ ~ nay i~~ 1~ ~-, „~y~~;~ ~ oca~ vmume Hvg ~ s J Hvg ~ m nniNM Mf M Max Temp M Vac Marx Temp
_ ~-~~~~~~~J 1"~ay$~HV Comments:rjC'~;~(p 1 J
~;oy _ V 5._.~
28
ISOHINETIC FIELD DATA SHEET
Client Chernours Stack Conditions
w.o.# 15418,002:009.0009 Assumed
Project ID Chemours 9'o Moisture
Mode/Source ID Carbon Bed Impinger Vol (ml)
Samp. Coc. ID IN Silica gel (g)
Run No:ID 3 CO2, % by Vol
Test Method ID M 0010 HFPO DimerAGd 02, % by Vol
Date ID 9JAN2019 Temperature (°F)
Saurce/Location Ca' on ed 1~1let Meter Temp(°F)
Sample Date p~ ~Static Press (in Hz0)
Baro. Ptess (in Hg)
Operator ~~ r ~ Ambient Temp (°F)
Method 0010 HFPO Dimer Acid Page ~ or!
Meter Box ID _ ~('p~
Actual nneter aox r _ ~, cis Z K Factor ~ ^ ~j~
Meter Box Del H Leak Checks Initjal Mid-Point Final
a Probe ID /Length / Sample Train (ft3)
Probe Material Boro Leak Check ~ (in Hg)
O s/ Pftot /Thermocouple ID ~ Pitot good
O, , g Pitot Coefficient 0.84 Orsat good ~~'
~~~~~~~s~~~~s~r
a~..r~~
Noale ID y [ o Temp Check Pre-Test Set Pos -T~st Set
Avg NouJe D(a (in)(~~,~~ j ~•~ a~ ~ 7 p7 / Meter Box Temp 3
~-- ~v Area of Stack (it2)Reference Temp ''
Sample Time ~` Pass/Fail (+/- 2°)s /Fail Pass /Fail
Total Traverse Pts ~/ Temp Change Response 'ye / no y s l~ no
~r
`'~~R+~'~E~AI~1:~i~i~`i~'i .»'~~~~'~~l~l~1~ll~~~fl~~f~6~ic~~~~-~i
E~~~r~~~~~~~r~~~~~~~~~~r~~
~~~~~~~~~r~~~s~~~~r~~~~~~~~r~~~r~~~~a■r~~~~r~~~~
~~~~~~~~~~~~~~~r~~~~~~~~~
~~~~~~~~r~~~fx~~~~, ~r~~~~-~~~
~~~~fir' 1~~iI~~.~i.it:~T~~r~~~`r'~~_~~~~:~~Sr'~m~~~~~~s~u~~~rr~~a:~s~,~~~~~rn~~~~~~as~~;,■nr~~f ■r~~~~~~~~ ~~~~~~~
~~~~~~r~~~~~~~~~~~~r~~~~r~~r~~~■~~~~r~a~~~~~~~~~~~~~~s~■~~~~~~~~~~~~r~~~~~~f,~c~~~~r~n~~~~~~~s~Q~~~r~~~~~~rh-a~~~~r~■frz~~~«~~~~
~~~.~
,~r-n1~ 3 ~ i ~gB i~~~ cf~ ~ i~ 1 1,~9~~~~r ~ I ►o~M~~ p I MaXVac I M ^ emp
—1 Lz:~TC~~;~ ~ ~ . ~,
ti11111i1(Iti1 .
29
SAMPLE RECOVERY FIELD DATA
Method 0010 HFPO Dimer Acid
Client
Location/Plant
Chemours W.O. # 15418.002.009.0001
Source &Location Carbon Bed InletFayetteville, NC
Run No. 7 Sample Date ~!/~ /~J Recovery Date f /~
Sample I.D. Chemours -Carbon Bed - IN - 1 - M 0010 HFPO Dimer ~ Analyst W r Filter Number --
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents €,y~..~ ~v ~-,~
~Final ~~ ~C~~~/~f.~
Initial O o d ~ a ~3v v
Gain ~'— Z ~~~.-.~~`~. ~'
Impinger Color (~,r Labeled? ~ ~
Silica Gel Condition li ~ Sealed? `~
Run No. 2 Sample Date ~~~( Recovery Date
Sample I.D. Chemours -Carbon Bed - IN - 2 - M 0010 HFPO Dimer /Analyst Filter Number
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents
Final ~D ~v O zp ~/~( 0
Initial v ~~/6d ~Zc~~~
Gain (~~ 7~~`(f~D
I mpinger Color ~~~~ Labeled? ~ ~
Silica Gel Condition ~ ~ BIU~ Sealed?
IRun No. 3 Sample Date _ ~~~~"_ Recovery Date ~ /9
Sample I.D. Chemours -Carbon Bed - IN - 3 - M 0010 HFPO Dimer /Analyst ~~ Filter Number ._~
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents
Final ~~0p ~ ~ Z D ~d'1,-3~y~
Initial D OC~!~~~'~t7 3~~.~
Gain 0 ~7i d y ~~,~o
Impinger Color ~ a,~ Labeled? ~ ~
Silica Gel Condition _/.~(~ !S ct,~ Sealed?
Check COC for Sample IDs of Media Blanks
~~ ~~-
30
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
CARBON BED OUTLET
Test Data
Run number 1 2 3LocationCBed Outlet CBed Outlet CBed OutletDate1/16/2019 1/16/2019 1/17/2019Time period 0941-1140 1312-1513 0842-1035OperatorKA/AS KA/AS KA/AS
Inputs For Calcs.
Sq. rt. delta P 0.78910 0.78832 0.80182Delta H 1.5358 1.5463 1.5263Stack temp. (deg.F)?7.0 82.1 76.3Meter temp. (deg.F)49.8 61.2 45.8Sample volume (act.)60.326 61.169 59.984Barometric press. (in.Hg)30.20 30.16 30.18Volume Hz0 imp. (ml)2.0 2.0 1.0Weight change sil. gel (g)14.1 20.4 142COZ0.0 0.0 0.0Oz20.9 20.9 20.9Nz79.1 79.1 79.1Area of stack (sq.ft.)6.305 6.305 6.305Sample time (min.)96.0 96.0 96.0Static pressure (in.HzO)3.50 3.50 3.50Nozzle dia. (in.)0.215 0.215 0.215Meter box cal.0.9916 0.9916 0.9916Cp of pitot tube 0.84 0.84 0.84Traverse points 24 24 24
2~8f2019 9:49 AM
011619 CBed OUT
31
~i
Type `~. Circular q
arse Type ~~4, ParllcWate Traverse q
~l~ t.~' /Sample and Velocify Traverse Point Data Sheet -Method 1
COent ~ Operator
LoactlonlPlant ~~ Date
Source .O. Number
Distance from far waR to outside of rt In = C
Port De th = D D
Oe th of Du diameter in. = GD
Area of Duct tP
Total Traverse Points
Total Traverse Pakits er Port
Port Diameter in. —Flan e-Threaded-Flnle
Monorail Len th
Rectan lar Ducb Onl
Width of Du rectan ular duct a In.
Total Parts re ular duct on
uivalent Olametar = 2•L`W L+W
raversa Pol ocaUons
Traverse
Point % of Duct
Distance from
Inelde Duct
Wall in
Distance from Outside of
Port n
,0 ~ y
2 ' 7
3 ~~f46
5 0 v ?, 'v
6
7 ~~8 a ~
9 ~
10 v f
11 ~~~ T)
,2 8
CEN 7 PoIM(t.unp N~uunn~nt Una) Elntlflraton Po4d LoeWonr
1 0.167
z o.so
3 0.833
NO[B: R 518CK 018 ~ 1Z I~CII USB tYA MBQ10~ lA
(Sample port upsVeam of pltot port)
Note: If static dia >24" then adjust traverse point to t Inch from wall
If stack dla <24' tlten adJuat traverse point to OS inch from wall
Rectangular Dud ~"d"~° ' ~'P°
VelodlyTraverse O CEMTrevarse
Flow Oisturbancas
U tream - A ft
Downstream - B ft r o ~
U Cream -A duct diameters
Downstream - B duct diameters
~lagfam tack
~ ~r
/~ ~~
~~---+
1
Oua Dlametars Upsheam from Flow Disturbance (Distance A)
sa os ,.a ,s xo
Stack Dlameter> 24 inches w~
t~o ~~b~~ ~ ---
ran..
z~ taew.l u (~vW. ~ 1
~ ~_
Trevene POYN~ Tor Vdodty 78
~z
(DlvMhenc~ ~Beod. E:Pawbn, Cantrfctlon~ atc.)
e~or a ~+.+~+or. u.z~ ~
~i
OO~~~O~O~m'~~
~n~m~~~r~~m~o~~.~o~~~~~~~~~~o~■~~m~~~[~~~~~
o~~~~■~~~~~m~o
o~~~~~!~m■~~
m~~~~~~~~~~~~m~~
0 2 3 ~ 5 8 7 8 9 10
Dud OlomoMs UaMtietrmm 6om Flaw DMtwbaroa (Dtrl~nco B)
.00000r:~oriommm~~~m~manm~r~mmmmo~~~~~~~~~~o~~=~~~~~~~~~~a~~~~~~m~m~t~~oase■sa~~~~~o~~~~~~~e~om~m.n~e~■~~~~~~~~o~~~~~~~~■~[~mm~~~~~~~~~~e~~m~~~~~~■~■~~■rmm
32
ISOHINETIC FIELD DATA SHEET
Client chemou~s Stack Conditions
w.o.#15418.002.009.0001 Assumed
Project ID Chemours ~o Moisture
Mode/Source ID Carbon Bed Impinger VG (ml) —~^T
Samp. Loc. ID OUT Silica gel (g)
Run No.ID 1 CO2, 9'o by Vol d, f~
Test Method ID M 0010 HFPO Diener Acid 02, % by Vol ({~',
Date ID 9JAN2019
1r~
Temperature (°F) ~vi~ ~
Source/Location Cafbon Bed Oaget Meter Temp (°F) ~
Sample Date 16 ( ~/Static Press (in H2O) , s'
Baro. Press (in Hg) 3~ .
Operator ~(f}- / ]~.S ~/ Ambient Temp (°F) ~_
~i.~~t~
C
~4
0
n
~~
Z~
u
Method 0010 HFPO Diener Acid Page ~ or
Meter sox io 3 K Factor '~ ~~Actual Meter Box Y
nneter sox oei H 2, Leak Checks Initial Mid-Point Final
Probe ID /Length Q Sample Train (ft')
/~/. / Probe Material Boro Leak Check ~ (fn Hg)
'f Pitot /Thermocouple ID '7 Pitot good
Pitot Coefficient 0.84 ~/ Orsat good
~lno /no e /no
f /no /no yes/no
~1~, ~'1-- Nozzle ID
-~. o 7 ~ Avg Noale Dia (in)
h•~ Area of Stack (ft~)
Sample Time
Total Traverse Pts
~/ .1- Temp Check
.'L S . S Meter Box Temp
S ~/ Reference Temp
Pass/Fail (+/- 2~
2 Temp Change Response'
Pre-Test Set
Pass /Fail
yes / no
Post-Test Set
Pass /Fail
yes / no
Y ~~~
~A. to
ti lJ R1
i`
'. O
s~
A ~~
6 ,i +
H V t/1~ B ~l 1 J C L`
Z...
A Sgrt elta P,/ Avg De to Total Volume
.18~ ~, ` ~ U. ti 6`
~~_ Avg Sgrt `~Dlel H Comments:
t, ~.tys~J
~~fY~~' OY7S~(0~
Avg 9,83'► qa~o~ ~ ~~allo3 Temp I I~axVac I MaxTemp I ~ ~ ~~,~7 i `~ ~ ~,,s ~ 2
Us ~2.~y333
ISOHINETIC FIELD DATA SHEET
client cnemours Stack Conditions
W.O.# 15418.002.009.0001 Assumed
Project ID Chemours 9'o Moisture
Mode/Source ID Carbon Bed Impinger Vol (ml)
Samp. Loc. ID OUT Silica gel (g)
Run No.ID 2 CO2, 9'o by Vol
Test Method ID M 0010 HFPO DimerAcid 02, % by Vol
Date ID 9JAN2019 Temperature (°F)
Source/LocaGon Carbon Bed OuNet Meter Temp (°F)
Sample Date ~ ~ ~ Static Press (in H2O)
Baro. Press (in Hg)
Operator ✓Ambient Temp (°F)
Method 0010 HFPO Diener Acid Page~or
Meter Box ID 3 ~ K FaCtofACtU81 Meter Box Y
Meter Box Del H 'LSO Leak Checks Initial Mid-Point Final
,"~ Probe ID /Length ~ Sample Traln (ft3)
~.b, Probe Material Boro Leak Check @ (in Hg)
~J Pitot /Thermocouple ID r ~ ~ Pitot good
";~.d ~ Pitot Coefficient o.84 Orsat good
U1 J. l
~•q ,
e /no ' /no ~/no
e / no s ! no / no
1 7 _ 1 Noale ID J 1, Temp Check Pre-Test Set Post-Test Set
5 ~d ~ `L Avg Noale Dia (in) y Meter Box Temp
Area of Stack (ft~) Reference Temp
Sample Time 3 Pass/Fail (+/- 2°~ Pass /Fail Pass /Fail
KI~' S 7 Total Traverse Pts 'jam Temp Change Response ' yes / rro yes / no
~~o~~~~~~~~~a~~~~- ~«~~~~~oi`i~~~'~~~L~b'~!; ~~~~'~1iZ~~ ~r L~~~7~5'~~~~~■~~~~~~~r~~~u~~~~~
~~a~~~~~~~~~~~• ~~-~~~~E~~~~
ir~~~~-~~~~~~~~r~~n~~■~~E~~~a~.~ra ~ ~~~~~~~ ~ . ~ c~~~~~r~~~a■~~~Q•~~~~~~~~~r■~~~~~~~~~~a~~~~~~~~~;~~~~.~ ~~~~s~~~s~~~~~~~-~s~~~r~~~ ,~~~~c~~
~~0~~~~.~rf~~~~~r~~r~:~• ~~~~~r~~'.l~~~3i~~~~L~ii~i~E~~~~~~■R~~I[7~iiE~~~~
~~-~A-~~1. ~~~~--_~~~111~~~~~
H~agR~eita r i ~9 ~
r0' ~ 0 ~~' ~ ~~~ ~9~TuJ~7
Avg Sgrt Del H, Comm2nts J
~, a~~s✓
Avg Tm Mi ax Mi ax Max Temp Vac Max TempGl,~ ~q tal °1~~io~ S7 "°~" r~l
34
ISOKINETIC FIELD DATA SHEET Method 0010 HFPO Dimer Acid Page~or 1
client chemou~s Stack Conditions Meter Box ID ~ ~ K Factor 2.. 3w.o.# 15a~a.00z.ons.000i Assumed Actual MQterBox Y
Project ID Chemours 9'o Moisture N{eter Box Del H Leak Checks Ifllfi8l Mid-Point Final
Mode/Source ID Carbon Bed Impinger Vol (ml) Probe ID /Length )~ Sample Train (ft') b ~ m
Samp. Loc. ID OUT Silica gel (g) ~ Probe Material Boro Leak Check (8 (in Hg) ~ O
Run No.ID 3 CO2, % by Vol (~ ~ Pitot /Thermocouple ID ~ ~ Q Pitot good / no / no / no
Test Method ID M 0010 HFPO Dimer Acid 02, °,U by Vol ~( 0 c' Pitot Coefficient 0.84 Orsat good / no / no / no
Date ID
Source/Location
Sample Date
Baro. Press (in Hg)
Operator
9JAN2019 Temperature (°F) ~ , ,
Catbon Bed Outlet `Meter Temp (°F) S 3 ~-~ ~j, ~'
\ ~ q ~ Static Press (in H2O) '~. ~ • S
~
Ambient Temp (°F) _ '~ s
Nozzle ID .'~.~ Temp Check
Avg Noule Dia (in) , Z ~, rj , 2 S Meter Box Temp
Area of Stack (ft) . ? ~ Reference Temp
Sample Time ~( Pass/Fail (+/- 2~
Total Traverse Pts Zi{ ~/ Temp Change Response '
Pfe-Test Set
Pass /Fail
yes / no
POS - eSt S8t
Pass /Fall
es / no
.,
^f~
L ~i~
~ Z-~~` ~--E ~~ ~7 ~
h' ! I `~ I I ~~ 5 I L "7 I `l "~ '~. 5~' 1 7 `l I I I ~1 ~ I i b 0_ 1 1~ i I ~Gt I b i ~~' I ~
.1v
l~ ! i
--- -~~~i~ir.~■~ii Vii..= ~•~■~vt.~-~l~~`~ ~ ' ~ ~l~ 7 i~s~~iir'~~C~ ~ i i`~Ji~t.~~
~~
1'L "l 03 1 ~b CI ~I ~Av Sgrt Delta/P Avg el H Total Volume Avg Ts Avg Tm MiN ax Mf ax Max Temp M Vac M' Temp0 2~ 2~ ~'~ ~ J Y33 q~ ~Cn y~~l~ y5 ~ ~`s-
~^ ~ O ' ~ ~~O p~~~i rt del H Comments:
~ J ~
Qtr j~~ D,St~i~~-35
SAMPLE RECOVERY FIELD DATA
Method 0010 HF'PO Dimer Acid
Client
Location/Plant
Chemours W.O. # 15418.002.009.0001
Source &Location Carbon Bed OutletFayetteville, NC
~(, ~~~Run No. 1 Sample Date ~ Recovery Date /`J'
Sample I.D. Chemours -Carbon Bed -OUT - 1 - M 0010 HFPO Dime Analyst ~ Filter Number ~—"
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents ,N L~E,l2,~~e,
Final U d 3 ~Q 3<</-
Initial ~c~ ~p ~d 3a~.d
Gain d ~—I O ~/y,/
Impinger Color ~~-~PLt►~ Labeled? ~
Silica Gel Condition 9d ~o [~/~r ~ Sealed? `~
Run No. 2 ~~~~ ~ ~~~Sample Date I Recovery Date 7
Sample I.D. Chemours -Carbon Bed -OUT - 2 - M 0010 HFPO Dime Analyst ~r Fllter Number '~—
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents ~f L a Zf)~r
Final d ~ (~ `L l n 6 ~3Zv . ~
Initial ~~ U ~!? ~G ~ c~~.v
Gain C~C~Z ~.~
Impinger Color .Q~l.~ Labeled? ~
Silica Gel Condition ~ ~ ~.~ Sealed? `~
„/J"7Run No. 3 Sample Date C ~~ Recovery Date !/~ f9
Sample I.D. Chemours -Carbon Bed -OUT - 3 - M 0010 HFPO Dime Analyst 1~(f ~ Filter Number `--
Impin er
1 2 3 4 5 6 7 Imp.Totai 8 Total
Contents ,n y D
Final C~~~j ~/ _Z
Initial ~~0 cep ~3v~
Gain I ~f 2
Impinger Color ~-~A.~ Labeled?
Silica Gel Condition ~ f G(~ Sealed?
Check COC for Sample IDs of Media Blanks
e
~9~_
36
SAMPLE RECOVERY FIELD DATA
Method 0010 HFPO Dimer Acid
Client
Location/Plant
Chemours
Fayetteville, NC
W.O. #
Source & Loaction Carbon Bed Outlet
15418.002.009.0001
Run No. E7~~ii~/~ Sample Date ~~k Recovery Date ~ 7 /~j
Sample I.D. Chemours -Carbon Bed -OUT - BT - M 0010 HFPO Dii Analyst ~~ Filter Number ~
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents
Final ~~~~~~D '3m~
Initial ~~~~/Dd ~Za'o 3~, ~
Gain d (~d (7 f,E~
Impinger Color G(Gxl Labeled? ~
Silica Gel Condition ~I ~ ~/(ice Sealed? r/
Run No. Sample Date Recovery Date
Sample I.D. Analyst Filter Number
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents
Final
Initial
Gain
Impinger Color Labeled?
Silica Gel Condition Sealed?
Run No. Sample Date Recovery Date
Sample I.D. Analyst Filter Number
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents
Final
Initial
Gain
Impinger Color Labeled?
Silica Gel Condition Sealed?
Check COC for Sample IDs of Media Blanks
37
METHODS AND ANALYZERS
Client: Chemours
Location: CHEMOURS
Source: Division Stack
Project Number:
Operator:
Date:
15418.002.009
CW
16 Jan 2019
t Folders.A-F\Chemours Fayetteville\15418.002.009 Fayetteville Jan 2019 Carbon Bed Test\Data\Division\0116
Program Version: 2.1, built 19 May 2017 File Version: 2.03
Computer: WSWCAIRSERVICES Trailer: 27
Analog Input Device: Keithley KUSB-3108
Channel 1
Analyte
Method
Analyzer Make, Model &Serial No
Full-Scale Output, my
Analyzer Range,
Span Concentration,
Channel 2
Analyte
Method
Analyzer Make, Model &Serial No
Full-Scale Output, my
Analyzer Range,
Span Concentration,
OZ
EPA 3A, Using Bias
Servomex 4900
10000
25.0
21.0
COz
EPA 3A, Using Bias
Servomex 4900
10000
20.0
16.6
-..~ T :;
SOLUTIONS
38
CALIBRATION DATA
Number 1
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Date: 16 Jan 2019
Start Time: 07:51
OZ
Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
Cylinder ID
12.0 CC18055
21.0 SG9169108
Calibration Results
Zero 5 my
Span, 21.0 % 7991 my
Curve Coefficients
Slope Intercept
380.3 5
COz
Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
Cylinder ID
8.9 CC18055
16.6 SG9169108
Calibration Results
Zero 5 my
Span, 16.6 % 8383 my
Curve Coefficients
Slope Intercept
505.3 5
V1l'F~T'~:;
SOLUTIONS
39
CALIBRATION ERROR DATA
Number 1
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
Start Time: 07:51
Os
Method: EPA 3A
Span Conc. 21.0
Slope 380.3 Intercept 5.0
Standard Result Difference Error
Status
Zero 0.0 0.0 0.0 Pass12.0 12.0 0.0 0.0 Pass21.0 21.0 0.0 0.0 Pass
COs
Method: EPA 3A
Span Conc. 16.6
Slope 505.3 Intercept 5.0
Standard Result Difference Error
°/a % %StatusZero0.0 0.0 0.0 Pass
8.9 8.6 -0.3 -1.8 Pass
16.6 16.6 0.0 0.0 Pass
V1I~T :;
SOLUTIONS
40
BIAS
Number 1
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
Start Time: 07:58
Os
Method: EPA 3A
Span Conc. 21.0
Bias Results
Standard Cal.Bias Difference Error
Gas %%%% Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
CO2
Method: EPA 3A
Span Conc. 16.6
Bias Results
Standard Cal.Bias Difference Error
Gas % % %% StatusZero0.0 0.0 0.0 0.0 Pass
Span 8.6 8.5 -0.1 -0.6 Pass
V1l'~1' :::~
SOLUTIONS
41
RUN QATA
Number 1
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
Time Oz COZ
/o /o
Port a
09:41 20.9 0.0
09:42 20.8 0.0
09:43 20.8 0.1
09:44 20.9 0.1
09:45 20.9 0.1
09:46 20.9 0.1
09:47 20.9 0.1
09:48 20.9 0.1
09:49 20.9 0.1
09:50 20.9 0.1
09:51 20.9 0.1
09:52 20.9 0.1
09:53 20.9 0.1
09:54 20.9 0.1
09:55 20.9 0.1
09:56 20.9 0.1
09:57 20.9 0.1
09:58 20.9 0.1
09:59 20.9 0.1
10:00 20.9 0.1
10:01 20.9 0.1
10:02 20.9 0.1
10:03 20.9 0.1
10:04 20.9 0.1
10:05 20.9 0.1
10:06 20.9 0.1
10:07 21.0 0.1
10:08 20.9 0.1
10:09 21.0 0.1
10:10 21.0 0.1
10:11 21.0 0.1
10:12 21.0 0.1
10:13 21.0 0.1
10:14 21.0 0.1
10:15 21.0 0.1
10:16 21.0 0.1
10:17 21.0 0.1
10:18 21.0 0.1
10:19 21.0 0.1
10:20 21.0 0.1
42
RUN DATA
Number 1
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
Time OZ COZ
/o /o
10:21 21.0 0.1
10:22 21.0 0.1
10:23 21.0 0.1
10:24 21.0 0.1
10:25 20.9 0.1
10:26 21.0 0.1
10:27 21.0 0.1
10:28 21.0 0.1
10:29 21.0 0.1
Port B
10:52 20.9 0.0
10:53 20.9 0.0
10:54 20.9 0.1
10:55 20.9 0.1
10:56 20.9 0.1
10:57 20.9 0.1
10:58 20.9 0.1
10:59 20.9 0.1
11:00 20.9 0.1
11:01 20.9 0.1
11:02 20.9 0.1
11:03 20.9 0.1
11:04 20.9 0.1
11:05 20.9 0.1
11:06 20.9 0.1
11:07 20.9 0.1
11:08 20.9 0.1
11:09 21.0 0.1
11:10 21.0 0.1
11:11 21.0 0.1
11:12 21.0 0.1
11:13 21.0 0.1
11:14 21.0 0.1
11:15 21.0 0.1
11:16 21.0 0.1
11:17 21.0 0.1
11:18 21.0 0.1
11:19 21.0 0.1
11:20 21.0 0.1
11:21 21.0 0.1
11:22 21.0 0.1
.._, ~-~ ;;
50LUTIONS
43
RUN DATA
Number 1
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CW
Source: Division Stack Calibration 1 Date: 16 Jan 2019
Time Os COs
/o /o
11:23 21.0 0.1
11:24 21.0 0.1
11:25 21.0 0.1
11:26 21.0 0.1
11:27 21.0 0.1
11:28 21.0 0.1
11:29 21.0 0.1
11:30 21.0 0.1
11:31 21.0 0.1
11:32 21.0 0.1
11:33 21.0 0.1
11:34 21.0 0.1
11:35 21.0 0.1
11:36 21.0 0.1
11:37 21.0 0.1
11:38 21.0 0.1
11:39 21.0 0.1
11:40 21.0 0.1
End Run 1
Avgs 21.0 0.1
V1l'F~T :;
SOLUTIONS
44
RUN SUMMARY
Number 1
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
02 COZ
Method EPA 3A EPA 3A
Conc. Units
Time: 09:40 to 11:40
Run Averages
21.0 0.1
Pre-run Bias at 07:58
Zero Bias 0.0 0.0
Span Bias 12.0 8.5
Span Gas 12.0 8.9
Post-run Bias at 12:04
Zero Bias 0.0 0.1
Span Bias 12.0 8.5
Span Gas 12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
21.0 0.0
V11~~"
SOLUTIONS
45
BIAS AND CALIBRATION DRIFT
Number 2
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
Start Time: 12:04
OZ
Method: EPA 3A
Span Conc. 21.0
Bias Results
Standard Cal.Bias Difference Error
Gas %% %% Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
Standard Initial*
Gas °/a
Zero 0.0
Span 12.0
*Bias No. 1
Calibration Drift
Final Difference Drift
0.0 0.0 0.0
12.0 0.0 0.0
St1tUS
Pass
Pass
COs
Method: EPA 3A
Span Conc. 16.6
Bias Results
Standard Cal.Bias Difference Error
Gas %% %% Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.6 8.5 -0.1 -0.6 Pass
Standard Initial*
Gas
Zero 0.0
Span 8.5
*Bias No. 1
Calibration Drift
Final Difference Drift
0.1 0.1 0.6
8.5 0.0 0.0
Status
Pass
Pass
V'1/~1'`
SOLUTIONS -.
46
RUN DATA
Number 2
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
Time Oz CO2
/o /o
Port a
13:12 20.8 0.0
13:13 20.8 0.0
13:14 20.9 0.0
13:15 20.9 0.0
13:16 20.9 0.1
13:17 20.9 0.1
13:18 20.9 0.1
13:19 20.9 0.1
13:20 20.9 0.1
13:21 20.9 0.1
13:22 20.9 0.1
13:23 20.9 0.1
13:24 20.9 0.1
13:25 20.9 0.1
13:26 20.9 0.1
13:27 20.9 0.1
13:28 20.9 0.1
13:29 20.9 0.1
13:30 20.9 0.1
13:31 20.9 0.1
13:32 20.9 0.1
13:33 20.9 0.1
13:34 20.9 0.1
13:35 20.9 0.1
13:36 20.9 0.1
13:37 20.9 0.1
13:38 20.9 0.1
13:39 20.9 0.1
13:40 20.9 0.1
13:41 20.9 0.1
13:42 20.9 0.1
13:43 20.9 0.1
13:44 20.9 0.1
13:45 20.9 0.1
13:46 20.9 0.1
13:47 20.9 0.1
13:48 20.9 0.1
13:49 20.9 0.1
13:50 20.9 0.1
13:51 20.9 0.1
47
RUN DATA
Number 2
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
Time OZ COZ
/o /o
13:52 20.9 0.1
13:53 20.9 0.1
13:54 20.9 0.1
13:55 20.9 0.1
13:56 20.9 0.1
13:57 20.9 0.1
13:58 20.9 0.1
13:59 20.9 0.1
14:00 20.9 0.1
Port B
14:25 20.8 0.0
14:26 20.8 0.0
14:27 20.9 0.1
14:28 20.9 0.1
14:29 20.9 0.1
14:30 20.9 0.1
14:31 20.9 0.1
14:32 20.9 0.1
14:33 20.9 0.1
14:34 20.9 0.1
14:35 20.9 0.1
14:36 20.9 0.1
14:37 20.9 0.1
14:38 20.9 0.1
14:39 20.9 0.1
14:40 20.9 0.1
14:41 20.9 0.1
14:42 20.9 0.1
14:43 20.9 0.1
14:44 20.9 0.1
14:45 20.9 0.1
14:46 20.9 0.1
14:47 20.9 0.1
14:48 20.9 0.1
14:49 20.9 0.1
14:50 20.9 0.1
14:51 20.9 0.1
14:52 20.9 0.1
14:53 20.9 0.1
14:54 20.9 0.1
14:55 20.9 0.1
V1l'E~"i'
SOLUTIONS:•
48
RUN DATA
Number 2
Client:Chemours Project Number:15418.002.009Location:CHEMOURS Operator:CWSource:Division Stack Calibration 1 Date:16 Jan 2019
Time Os COZ
/o /o
14:56 20.9 0.1
14:57 20.9 0.1
14:58 20.9 0.1
14:59 20.9 0.1
15:00 20.9 0.1
15:01 20.9 0.1
15:02 20.9 0.1
15:03 20.9 0.1
15:04 20.9 0.1
15:05 20.9 0.1
15:06 20.9 0.1
15:07 20.9 0.1
15:08 20.9 0.1
15:09 20.9 0.1
15:10 20.9 0.1
15:11 20.9 0.1
15:12 20.9 0.1
15:13 20.9 0.1
End Run 2
Avgs 20.9 0.1
V1I~T :;
SOWTIONS
49
RUN SUMMARY
Number 2
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
02 COs
Method EPA 3A EPA 3A
Conc. Units
Time: 13:11 to 15:13
Run Averages
20.9 0.1
Pre-run Bias at 12:04
Zero Bias 0.0 0.1
Span Bias 12.0 8.5
Span Gas 12.0 8.9
Post-run Bias at 15:16
Zero Bias 0.0 0.0
Span Bias 12.0 8.5
Span Gas 12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.9 0.0
V~~- ,:;
SOLUTIONS
50
BIAS AND CALIBRATION DRIFT
Number 3
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019
Start Time: 15:16
OZ
Method: EPA 3A
Span Conc. 21.0
Bias Results
Standard Cal.Bias Difference Error
Gas %% %%StatusZero0.0 0.0 0.0 0.0 PassSpan12.0 12.0 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas % % %%StatusZero0.0 0.0 0.0 0.0 PassSpan12.0 12.0 0.0 0.0 Pass
*Bias No. 2
COz
Method: EPA 3A
Span Conc. 16.6
Bias Results
Standard Cal.Bias Difference Error
Gas %% %%StatusZero0.0 0.0 0.0 0.0 PassSpan8.6 8.5 -0.1 -0.6 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas % % % %StatusZero0.1 0.0 -0.1 -0.6 PassSpan8.5 8.5 0.0 0.0 Pass*Bias No. 2
V1l'F~T'` ';
SOLUTIONS .
51
METHODS AND ANALYZERS
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Date: 17 Jan 2019
t Folders.A-F\Chemours Fayetteville\15418.002.009 Fayetteville Jan 2019 Carbon Bed Test\Data\Division\0117
Program Version: 2.1, built 19 May 2017 File Version: 2.03
Computer: WSWCAIRSERVICES Trailer: 27
Analog Input Device: Keithley KUSB-3108
Channel 1
Analyte
Method
Analyzer Make, Model &Serial No.
Full-Scale Output, my
Analyzer Range,
Span Concentration,
Channel 2
Analyte
Method
Analyzer Make, Model &Serial No.
Full-Scale Output, my
Analyzer Range,
Span Concentration,
Oz
EPA 3A, Using Bias
Servomex 4900
10000
25.0
21.0
CO2
EPA 3A, Using Bias
Servomex 4900
10000
20.0
16.6
V'V'F~T`:;
SOLUTIONS
52
CALIBRATION DATA
Number 1
Client:Chemours Project Number:15418.002.009Location:CHEMOURS Operator:CWSource:Division Stack Date:17 Jan 2019
Start Time: 07:32
OZ
Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
Cylinder ID
12.0 CC18055
21.0 SG9169108
Calibration Results
Zero 8 my
Span, 21.0 % 8020 my
Curve Coefficients
Slope Intercept
381.5 8
CO2
Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
Cylinder ID
8.9 CC18055
16.6 SG9169108
Calibration Results
Zero 1 my
Span, 16.6 % 8293 my
Curve Coefficients
Slope Intercept
500.1 1
.~vv~ST
SOLUTIONS
53
CALIBRATION ERROR DATA
Number 1
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019
Start Time: 07:32
OZ
Method: EPA 3A
Span Conc. 21.0
Slope 381.5 Intercept 8.0
Standard
Zero
12.0
21.0
Result
0.0
12.0
21.0
Difference
0.0
0.0
0.0
Error
0.0
0.0
0.0
Status
Pass
Pass
Pass
COz
Method: EPA 3A
Span Conc. 16.6
Slope 500.1 Intercept 1.0
Standard Result Difference Error
StatusZero0.0 0.0 0.0 Pass8.9 8.6 -0.3 -1.8 Pass16.6 16.6 0.0 0.0 Pass
.~_.~ T :;
SOLUTIONS
54
BIAS
Number 1
Client:Chemours Project Number:15418.002.009Location:CHEMOURS Operator:CWSource:Division Stack Calibration 1 Date:17 Jan 2019
Start Time: 07:36
Os
Method: EPA 3A
Span Conc. 21.0
Bias Results
Standard Cal.Bias Difference Error
Gas %% % % Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
CO2
Method: EPA 3A
Span Conc. 16.6
Bias Results
Standard Cal.Bias Difference Error
Gas %% % % Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.6 8.5 -0.1 -0.6 Pass
V11~~":;
SOLUTIONS ~~
55
RUN DATA
Number 3
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019
Time OZ COz
/o /o
Port A
08:42 20.9 0.0
08:43 20.9 0.0
08:44 20.9 0.0
08:45 20.9 0.0
08:46 20.9 0.1
08:47 20.9 0.1
08:48 20.9 0.1
08:49 20.9 0.1
08:50 20.9 0.1
08:51 20.9 0.1
08:52 20.9 0.1
08:53 20.9 0.1
08:54 20.9 0.1
08:55 21.0 0.1
08:56 20.9 0.1
08:57 21.0 0.1
08:58 21.0 0.1
08:59 21.0 0.1
09:00 21.0 0.1
09:01 21.0 0.1
09:02 20.9 0.1
09:03 20.9 0.1
09:04 21.0 0.1
09:05 20.9 0.1
09:06 20.9 0.1
09:07 21.0 0.1
09:08 20.9 0.1
09:09 21.0 0.1
09:10 21.0 0.1
09:11 21.0 0.1
09:12 21.0 0.1
09:13 21.0 0.1
09:14 21.0 0.1
09:15 21.0 0.1
09:16 21.0 0.1
09:17 21.0 0.1
09:18 21.0 0.1
09:19 21.0 0.1
09:20 21.0 0.1
09:21 21.0 0.1
56
RUN DATA
Number 3
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019
Time Oz COZ
/o /o
09:22 21.0 0.1
09:23 21.0 0.1
09:24 21.0 0.1
09:25 21.0 0.1
09:26 21.0 0.1
09:27 21.0 0.1
09:28 21.0 0.1
09:29 21.0 0.1
09:30 21.0 0.1
Port B
09:47 20.8 0.0
09:48 20.8 0.0
09:49 20.8 0.1
09:50 20.9 0.1
09:51 20.9 0.1
09:52 20.9 0.1
09:53 20.9 0.1
09:54 20.9 0.1
09:55 20.9 0.1
09:56 20.9 0.1
09:57 20.9 0.1
09:58 21.0 0.1
09:59 21.0 0.1
10:00 20.9 0.1
10:01 21.0 0.1
10:02 21.0 0.1
10:03 21.0 0.1
10:04 21.0 0.1
10:05 21.0 0.1
10:06 21.0 0.1
10:07 21.0 0.1
10:08 21.0 0.1
10:09 21.0 0.1
10:10 21.0 0.1
10:11 21.0 0.1
10:12 21.0 0.1
10:13 21.0 0.1
10:14 21.0 0.1
10:15 21.0 0.1
10:16 21.0 0.1
10:17 21.0 0.1
57
RUN DATA
Number 3
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019
Time 02 COZ
/o /o
10:18 21.0 0.1
10:19 21.0 0.1
10:20 21.0 0.1
10:21 21.0 0.1
10:22 21.0 0.1
10:23 21.0 0.1
10:24 21.0 0.1
10:25 21.0 0.1
10:26 21.0 0.1
10:27 21.0 0.1
10:28 21.0 0.1
10:29 21.0 0.1
10:30 21.0 0.1
10:31 21.0 0.1
10:32 21.0 0.1
10:33 21.0 0.1
10:34 21.0 0.1
10:35 21.0 0.1
End Run 3
Avgs 21.0 0.1
.._~ T :;
SOLUTIONS -.
58
RUN SUMMARY
Number 3
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019
02 COz
Method EPA 3A EPA 3A
Conc. Units
Time: 08:41 to 10:35
Run Averages
21.0 0.1
Pre-run Bias at 07:36
Zero Bias 0.0 0.0
Span Bias 12.0 8.5
Span Gas 12.0 8.9
Post-run Bias at 10:43
Zero Bias 0.0 0.1
Span Bias 12.0 8.4
Span Gas 12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
21.0 0.0
V'V'F~T~
SOLUTIONS
59
BIAS AND CALIBRATION DRIFT
Number 2
Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019
Start Time: 10:43
Os
Method: EPA 3A
Span Conc. 21.0
Bias Results
Standard Cal.Bias Difference Error
Gas % % %%StatusZero0.0 0.0 0.0 0.0 PassSpan12.0 12.0 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference DriftGas%% % %StatusZero0.0 0.0 0.0 0.0 PassSpan12.0 12.0 0.0 0.0 Pass*Bias No. 1
COs
Method: EPA 3A
Span Conc. 16.6
Bias Results
Standard Cal.Bias Difference Error
Gas % % %%StatusZero0.0 0.1 0.1 0.6 PassSpan8.6 8.4 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %% %%StatusZero0.0 0.1 0.1 0.6 PassSpan8.5 8.4 -0.1 -0.6 Pass*Bias No. 1
V1l'F~T':;
SOLUTIONS -.
60
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019
APPENDIX C
LABORATORY ANALYTICAL REPORT
Note: The analytical report is included on the attached CD.
61
Client Sample Results
Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14019-1Project/Site: Division Stack Carbon Bed Inlet - M0010
Client Sample ID: 0-2347,2348 DIV VEN CARBON BED INLET Lab Sample ID: 140-14019-1
;~i1~iTi ~ ~
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01!20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac', HFPO-DA 4.51 0.126 0.0136 ug/Sample 01/23/1914:18 02/01!1911:03 1
Surrogate %Recovery Qual~er Limits Prepared Analyzed Dil Facii, 13C3 HFPO-DA 96 50 _ 200 01/73/19 14:98 02/01/19 11:03 1
Client Sample ID: 0-2349,2350,2352 DIV VEN CARBON BED Lab Sample ID: 140-14019-2INLET R1 M0010 BH
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Samale Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDl Unit D Prepared Analyzed Dil Facj HFPO-DA 365
~I
17.5 3.50 ug/Sample 01/22/1912:55 02/01/1910:04 50
Surrogate %Recovery Qualifier Limits Prepared Analyzed Di/ Facj 13C3 HFPO-DA 96 D 50 _ 200 01/22/19 12:55 02/01/19 10:04 50
Client Sample ID: 0-2351 DIV VEN CARBON BED INLET R1 Lab Sample ID: 140-14019-3M0010 IMP 1,283 CtJNDENSATE
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA ND H 0.200 0.0102 ug/Sample 01/30/19 04:42 02/04/19 11:28 1
Surrogate %Recovery Qualifier
~~
Limits Prepared Analyzed Di! Fac13C3 HFPO-DA 71 50 - 200 01/30/19 04:42 02/04/19 11:28 1
Client Sample ID: 0-2353 DIV VEN CARBON BED INLET R1 Lab Sample ID: 1 40-1 401 9-4
M4010 BREAKTHROUGH XAD-2 RESlN TUBE
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 0.102 J 0.200 0.0400 ug/Sample 01!22/1912:55 02/01/1910:07 1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Di/ Fac~ 13C3 HFPO-DA 74 50 - 200 01/22/19 12:55 02/01/19 10:07 1
TestAmerica Knoxville
62
Client Sample Results
Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14019-1Project/Site: Division Stack Carbon Bed Inlet - M0010
Client Sample ID: 0-2354,2355 DIV VEN CARBON BED INLET Lab Sample ID: 140-14019-5R2 M0010 FH
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train_.
Method: 8321A - PFOA and PFOS
i Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac~ HFPO-DA 4.40 0.126 0.0136 ug/Sample 01/23/1914:18 02/01/1911:09 1
Surrogate %Recovery Qua/i~er Limits Prepared Ana/yzed Di/ Fac13C3 HFPO-DA 93 50 _ 200 01/23/19 14:78 02/01/19 11:09 1
Client Sample ID: 0-2356,2357,2359 DIV VEN CARBON BED
_______
Lab Sample ID: 140-14019-6INLET R2 M0010 BH
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
j Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 686 10.0 2.00 ug/Sample 01!2211912:55 02/01/1910:11 50
Surrogate %Recovery Qualifier Limits Prepared Analyzed Di/ Fac~, 13C3 HFPO-DA 80 D 50-200~_...01/22/19 12:55 02/01/19 10:11 50
Client Sample ID: 0-2358 DIV VEPI CARBON BED INLET R2 Lab Sample ID: 140-14019-7M0010 IMP 1,2&3 CONDENSATE
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
'' Method: 8321A - HFPO-DA
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 1.00 H 0.200 0.0102 ug/Sample 01/30/19 04:42 02/04/19 11:31 1
Surrogate %Recovery Qual~er Limits Prepared Analyzed Dil Faci 13C3 HFPO-DA 83 50 - 200 01/30/19 04:42 02/04/19 11:31 1
Client Sample ID: 0-2364 DIV VEN CARBON BED INLET R2 Lab Sample ID: 140-14019-8M0010 BREAKTHROUGH XAD-2 RESIN TUBE
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS1 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac~ HFPO-DA NDi 0.200 0.0400 ug/Sample 01/22/1912:55 02/01/1910:14 1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 67 50-200 0122/19 12:55 02/01/19 70:14 7
TestAmerica Knoxville
63
Client Sample Results
Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14019-1Project/Site: Division Stack Carbon Bed Inlet - M0010
Client Sample ID. 0-2361,2362 DIV VEN CARBON BED INLET Lab Sample ID: 140-14019-9
R3 M0010 FH
Date Collected: 01/17119 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
'~ Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac
HFPO-DA 5.76 0.126 0.0136 ug/Sample 01/23/1914:18 02/01/1911:12 1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac
13C3 HFPO-DA 93 50-200 01/23/19 14:18 02/01/19 11:12 1
Client Sample ID: 0-2363,2364,2366 DIV VEN CAR64N BED Lab Sample ID: 140-14019-10
INLET R3 M0010 BH
Date Collected: 01/17/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac
HFPO-DA 625 10.0 2.00 ug/Sample 01/22/1912:55 02/01/1910:17 50
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac
'; 13C3 HFPO-DA 77 D 50-200 01/22/19 12:55 02/01/19 70:17 50
__lient Sample ID: 0-2365 DIV VEN CARBON BED INLET R3 Lab Sample ID: 140-14019-11
M0010 IMP 1,283 CONDENSATE
Date Collected: 01/17!19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train,.
~ Method: 8321A - HFPO-DA
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac
HFPO-DA 0.269 0.200 0.0102 ug/Sample 01/30/19 04:42 02/04/19 11:38 1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac
13C3 HFPO-DA 81 50-200 01/30/19 04:42 02/04/19 11:38 1
_. -Client Sample ID: 0-2367 DIV VEN CARBON BED INLET R3 Lab Sample ID: 140-14019-12
M0010 BREAKTHROUGH XAD-2 RESIN TUBE
Date Collected: 01!17/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
~ Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac
HFPO-DA 0.380 0.200 0.0400 ug/Sample 01/22/1912:55 02!01/1910:20 1
Surrogate %Recovery Qual~er Limits Prepared Analyzed Dil Fac
13C3 HFPO-DA 64 50 - 200 01/22/19 12:55 02/01/19 10:20 1
TestAmerica Knoxville
64
Client Sample Results
Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14020-1Project/Site: Division Stack Carbon Bed Outlet - M0010
Client Sample ID: D-2677,2678 DIV VEN CARBON BED Lab Sample ID: 140-14020-1OUTLET R1 M0010 FH
Date Collected: 01116/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 9.53 0.126 0.0136 ug/Sample 01/23/1914:18 02/01/1911:16 1
Surrogate %Recovery Qual~er Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 88 50 _ 200 01/23/19 14:18 02/01/19 11:16 1
Client Sample ID: D-2679,2684,2682 DIV VEN CARBON BED Lab Sample ID: 140-14020-2OUTLET R1 M0010 BH
Date Collected: 01/16/19 Q0:00 Matrix: AirDate Received: 01/20/19 10:OQ
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 19.4 0.325 0.0650 ug/Sample 01/22/1912:55 02/01!1910:24 1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac4 13C3 HFPO-DA 66 50 - 200 01/22/19 12:55 02/01/19 10:24 1
Client Sample ID: D-2681 DIV VEN CARBON BED OUTLET R1 Lab Sample ID: 140-14020-3M0010 IMP 1,23 CONDENSATE
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
~i Method: 8321A - HFPO-DA
Analyte Result Qualifier R~MDL Unit D Prepared Analyzed Dil Faci HFPO-DA ND H 0.204 0.0104 ug/Sample 01/30/19 04:42 02/04/19 11:41 1
i
Surrogate %Recovery Qual~er Limits Prepared Analyzed DilFac13C3 HFPO-DA 87 50 _ 200 01/30/19 04:42 02/04/19 11:41 1
Client Sample ID: D-2683 DIV VEN CARBON BED OUTLET R1 Lab Sample ID: 140-14020-4M0010 BREAKTHROUGH XAD-2 RESIN TUBE
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
I Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA ND 0.325 0.0650 ug/Sample 01122/1912:55 02/01/1910:27 1
"! Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 84 50-200 Oi/22/19 12:55 02/01/19 70:27 7
TestAmerica Knoxville
65
Client Sample Results
Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14020-1Project/Site: Division Stack Carbon Bed Outlet - M0010
Client Sample ID: D-2684,2685 DIV VEN CARBON BED Lab Sample ID: 140-14020-5OUTLET R2 M0010 FH
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 7.36 0.101 0.0109 ug/Sample 01/23/1914:18 02/01/1911:19 1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 81 50 _ 200 01/23/19 14:18 02/01/19 11:19 1
Client Sample ID: D-2686,2687,2689 DIV VEN CARBON BED Lab Sample ID: 140-14020-6OUTLET R2 M0010 BH
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train~ _ _
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII FacHFPO-DA 24.1 0.400 0.0800 ug/Sample 01/22/1912:55 02/01/1910:33 1
Surrogate %Recovery Quali~ei Limits Prepared Analyzed Dil Fac
~_.13C3 HFPO-DA 72 50 - 200 01/22/19 12:55 02/01/19 10:33 1
Client Sample ID: D-2688 DIV VEN CARBON BED OUTLET R2 Lab Sample ID: 140-14020-7M0010 IMP 1,2&3 CONDENSATE
Date Collected: 01/16/19 40:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
,' Method: 8321A - HFPO-DA
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA ND H 0.210 0.0107 ug/Sample 01!30/19 04:42 02/04/19 11:44 1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac~ 13C3 HFPO-DA 86 50-200 01/30/19 04:42 02!04/19 17:44 1
Client Sample ID: D-2690 DIV VEN CARBON BED OUTLET R2 Lab Sample ID: 140-'14020-8M0010 BREAKTHROUGH XAD-2 RESIN TUBE
Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01!20119 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 0.237 0.200 0.0400 ug/Sample 01/22/1912:55 02/01/1910:37 1
i Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 59 50 - 200 01/22/19 12:55 02/01/19 10:37 1
TestAmerica Knoxville
66
Client Sample Results
Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14020-1Project/Site: Division Stack Carbon Bed Outlet - M0010
Client Sample ID: D-2691,2692 DIV VEN CARBON BED Lab Sample ID: 140-14020-9OUTLET R3 M0010 FH
Date Collected: 01/17/19 00:00 Matrix: AirDate Received: 01120/19 10:00
Sample Container: Air Train
~-
jMethod: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 11.8 0.101 0.0109 ug/Sample 01/28/1910:24 02/04/1910:32 1i
j Surrogate %Recovery Qualifier Limits Prepared Analyzed Di! Fac13C3 HFPO-DA 76 50 _ 200 01/28/19 10:24 02/04/19 70:32 1
Client Sample ID: D-2693,2694,2696 DIV VEN CARBON BED Lab Sample ID: 140-14020-10OUTLET R3 M0010 BH
Date Collected: 01/17/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DAi,27.2 0.300 0.0600 ug/Sample 01/24/19 07:31 01/30/19 13:40 1
Surrogate %Recovery Qualifier Limits Prepared Ana/yzed Dil Fac13C3 HFPO-DA 68 50 - 200 01/24/19 07:31 01/30/19 13:40 1
Client Sample ID: D-2695 DIV VEN CARBON. BED OUTLET R3 Lab Sample ID: 140-14020-11M0010 IMP 1,2&3 CONDENSATE
Date Collected: 01/17/18 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac': HFPO-DA ND 0.204 0.0104 ug/Sample 01/30/19 04:42 02/04/19 11:47 1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Facj 13C3 HFPO-DA 88 50-200 01/30/19 04:42 02104/19 71:47 1
Client Sample ID: D-2697 DIV VEN CARBON BED OUTLET R3 Lab Sample ID: 140-14024-12M0010 BREAKTHROUGH XAD-2 RESIRI TUBE
Date Collected: 01/17/19 00:00 Matrix: AirDate Received: 01/20/19 10:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
Analyte Result Qualifier RL MDL Unit D Prepared Anatyzed DiI FacHFPO-DA ND 0.200 0.0400 ug/Sample 01/24/19 0731 01/30/19 13:43 1
Surrogate %Recovery Qua/der Limits Prepared Ana/yzed Dil Fac13C3 HFPO-DA 77 50 - 200 01/24/19 07.•31 01/30/19 73:43 1
TestAmerica Knoxville
67
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019
APPENDIX D
SAMPLE CALCULATIONS
68
SAMPLE CALCULATIONS FOR
~IFPO DIMER ACID (METHOD 0010)
Client: Chemoars
Test Number: Run 1
Test Location: CBed Inlet
L HFPO Dimer Acid concentration, Ibs/dscf.
W x 2.2046 x 10-9
Concl = -----------------------
Vm(std)
369.6 x 2.2046 x 10-9
Conc1 = ------------------------------
59.149
Concl = 1.38E-08
Where:
W = Weight of HFPO Dimer Acid collected in sample in ug.
Concl = HFPO Dimer Acid concentration, Ibs/dscf.
2.2046x10-9 = Conversion factor from ug to Ibs.
2. HFPO Dimer Acid concentration, ug/dscm.
Conc2 = W / (Vm(std) x 0.02832)
Conc2 = 369.6 / (59.149 x 0.02832 )
Conc2 = 220.6
Where:
Conc2 = HFPO Dimer Acid concentration, ug/dscm.
0.02832 = Conversion factor from cubic feet to cubic meters.
Plant: Fayetteville, NC
Test Date: 1/16/2019
Test Period: 0941-1140
2!8!201912:55 PM 011619 CBed IN
69
3. HFPO Dimer Acid mass emission rate, lbs/hr.
MRI~~„~~~ =Concl x Qs(std) x 60 min/hr
MRI~~„~~~ =138E-OS x 16202 x 60
MRI~t„~~~ =1.34E-02
Where:
MFtI~~,~~~ =HFPO Dimer Acid mass emission rate, Ibs/hr.
4. HFPO Dimer Acid mass emission rate, g/sec.
MR2(tn~et) =IV1R1~o~~~ x 453.59 / 3600
MR2~~,~~~ =1.34E-02 x 453.59 /3600
MR2~~,~~~ =1.69E-03
Where:
MR2~i~i~~ =HFPO Dimer Acid mass emission rate, g/sec.
453.59 =Conversion factor from pounds to grams.
3600 =Conversion factor from hours to seconds.
5. HFPO Dimer Acid Removal Efficiency,
~ =N~1(InIM) - ~~1(OuNet)
MRI (Inlet)
RE _(4.18E-2) - (8.53E-4)
----------------------
4.18E-02
RE =98.0
Where:
RE =Carbon Bed Removal Efficiency.
MR1~I„~~~ =Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr.
MRl~o„~~~~ =Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr.
2!8/201912:55 PM 011619 CBed IN
70
EXAMPLE CALCULATIONS FOR
VOLUMETRIC FLOW AND MOISTURE AND ISOHINETICS
Client: Chemours Facility: Fayetteville. NC
Test Number. Run 1 Test Date: 1/16119
Test Location: VEN-Carbon Bed Inlet Test Period: 0941-1140
1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.
delta H
17.64 x Y x Vm x (Pb + ------------ )
13.6
Vm(std) _ ---------------------------------------
(Tm + 460)
1.776
17.64 x 0.9852 x 56.817 x (3020 + __.______________ ~
13.6
Vm(std) _ --------------------------------------------------------=59.149
4633 + 460
Where:
Vm(std) = Volume of gas sample measured by the dry gas meter,
corrected [o standard conditions, dscf.
Vm =Volume of gas sample measured by the dry gas meter
et meter wnditions, dcf.
Pb =Barometric Pressure, in Hg.
delt H =Average pressure drop across [he orifice meter, in H2O
Tm =Average dry gas meter temperature ,deg F.
Y =Dry gas meter calibration factor.
17.64 =Factor that includes ratio of standard temperature (528 deg R)
to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =Specific gravity of mercury.
2. Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vw(std) _ (0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) = (0.04707 x 2.0) + (0.04715 x 14.8) = 0.79
Where:
Vw(std) = Volume of water vapor in the gas sample corrected to
standard conditions, scf.
Vwc = Volume of liquid wndensed in impiugers, ml.
Wwsg = Weig6t of water vapor collected in silica gei, ~.
0.04707 = Factor which includes the density of water
(0.002201 Ib/ml), the molecular weight of water
(18.01bAb-mole), the ideal gas constant
21.85 (in. Hg) {ft3)/Ib-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), ft3/ml.
0.04715 = Factor which includes the molecular weight of water
(18.016/Ib-mole), the ideal gas consqut
21.85 (in. Hg) (fr3)/16-mole)(deg R); absolute
temperature at standazd conditions (528 deg R), absolute
pressure at sbndard conditions (29.92 in. Hg), and
453.6 gllh, ft3/g.
2/81201912:56 PM 011619 CBed IN71
3. Moisture content
Vw(std)
bws = ----------------------
Vw(std) + Vm(std)
0.79
bws = -------------------- = 0.013
0.79 + 59.149
Where:
bws = Proportion of water vapor, by volume, in the gas
stream, dimensionless.
4. Mole fraction of dry gas.
Md = 1 - bws
Md = 1 - 0.013 = 0.987
Where:
Md = Mole fraction of dry gas, dimensionless.
5. Dry molecular weight of gas stream, lb/Ib-mole.
MWd=(0.4410x%COy)+(0320x%O~)+(0280x(%N~+%CO))
MWd=(0.440x0.0)+(0320x20.9)+(0.280x(79.1+0.00))
MWd =28.84
Where:
MWd =Dry molecular weight ,16!16-mole.
CO2 =Percent carbon dioxide by volume, dry basis.
O, =Percent oxygen by volume, dry basis.
%N~ =Percent nitrogen by volume, dry basis.
CO =Percent carbon monoxide by volume, dry basis.
0.440 =Molecular weight of carbon dioxide, divided by 100.
0320 =Molecular weight of oxygen, divided by 100.
0280 =Molecular weight of nitrogen or carbon monoxide,
divided by 100.
6. Actual molecular weight of gas stream (wet basis), Ib/Ib-male.
MWs=(MWdxMd)+(18x(1-Md))
MWs=(28.84x0.987)+(18(1-0.987))=28.69
Where:
MWs =Molecular weight ofwet gas, Ibflb-mole.
18 =Molecular weight of water, lb/Ib-mole.
2!8/201912:56 PM 011619 CBed IN72
7. Average velocity of gas stream at actual conditions, ft/sec.
Ts (avg}
Vs = 85.49 x Cp x ((delt p)"")avg x (------------ )~~'
Ps x MWs
529
Vs =85.49 x 0.84 x 0.77436 x (-------------------)^I!2 = 43.8
29.74 x 28.69
Where:
Vs =Average gas stream velocity, fr/sec.
85.49 =Pitot tube constant, fUsec x --------------------------------
(deg R)(in HBO)
Cp =Pitot tube coefficient, dimensionless.
Ts =Absolute gas stream temperature, deg R = Ts, deg F + 460.
P(staric)
Ps =Absolute gas stack pressure, in. Hg. = Pb + --------------
13.6
delt p =Velocity head of stack, in. H2O.
8. Average gas stream volumetric flow rate at actual conditions, wacflmin.
Qs(act) =60 x Vs x As
Qs(act) =60 x 43.8 x 631 = 16571
Where:
Qs(act) =Volumetric flow rate o£wet stack gas at actual
conditions, wacf/min.
As =Cross-sectional area of stack, ft'.
60 =Conversion factor from seconds to minutes.
9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.
Ps
Qs(std) =17.64 x Md x ---- x Qs(acC)
Ts
29.74
Qs(std) =17.64 x 0.987 x ------------------- x 16571
529.4
Qs(std) = 16202
Where:
Qs(std) = Volumetric flow rate of dry stack gas at standard
conditions, dscfJmin.
2!8/201912:56 PM 011619 CBed IN73
10. Isokinetic variation calculated from intermediate values, percent.
17327 x Ts x Vm(std)
I = ---------------------------------
VsxOxPsxMdx(Dn)'
17.327 x 529 x 59.149
I= --------------------------------------------- = 92.5
43.8 x 96 x 29.74 x 0.987 x (0.218)^2
Where:
I = Percent of isokinetic sampling.
O = Total sampling time, minutes.
Dn = Diameter of nozzle, inches.
17327 = Factor which includes standard temperature (528 deg R),
standard pressure (29.92 in. Hg), the formula for
calculating area of circle DJ4, conversion of square
feet to square inches (144),conversion ofseconds
to minutes (60), and wnversion to percent (100),
(in. Hgl(in'1(minl
(deg R)(ft~)(sec)
2/8/201912:56 PM 011619 CBed IN74
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019
APPENDIX E
EQUIPMENT CALIBRATION RECORDS
75
INTERFERENCE CHECK
Date: 12/4/14-12/5/14
Analyzer Twe: Servomex - O,
Model No: 4900
Serial No:49000-652921
Calibration Saan: 21.09
Pollutant 21.09 % O, - CC418692
INTERFERENT GAS
ANALYZER RESPONSE
OF CALIBRATIONSP~~.~INTERFERENT GAS RESPONSE (/)INTERFERENT GAS RESPONSE, WITH
BACKGROUND POLLUTANT (% )
GOB (30.17% CG 199689)0.00 -0.01 0.00
NO (445 ppm CC346681)0.00 0.02 0.11
NQ (23.78 ppm CC500749)NA NA NA
N,O (90.4 ppm CC352661)0.00 0.05 024
CO (461.5 ppm XC006064B)0.00 0.02 0.00
SO: (451.2 ppm GC409079)0.00 0.05 023
CHq (453. t ppm SG901795)NA NA NA
H, (552 ppm AI.M048043)0.00 0.09 0.44
HCl (45.1 ppm CC 17830)0.00 0.03 0.14
NH3 (9.69 ppm CC58181)0.00 OA(0.03
TOTAL INTERFERENCE RESPONSE 1.Z0
METHOD SPECIFICATION <2.5
~'~ The larger of the absolute values obtained for the interferent tested with and without khe pollutant present was used in summing the interferences.
c:~~l.~~.~.,
Chad Walker
e flw1; 201402-Sem~men 4900
76
INTERFERENCE CHECK
Date: 12/4/14-12/5/14
Analvur Twe: Servomex - CO,
Model No: 4900
Serial No: 49000-652921
Calibration Soan: 16.65%
Pollutant: 16.65%u CO, - CC418692
INTERFERENT GAS
ANALYZER RESPONSE
~ OF CALIBRATION
Sp`~~•~
INTERFERENT GAS RESPONSE (%)INTERFERENT GAS RESPONSE, WITH
BACKGROUND POLLUTANT (%)
CO, (30.17% CC 199689)NA NA NA
NO (445 ppm CC346681)0.00 0.02 0.10
NOS (23.78 ppm CC500749)0.00 0.00 0.02
N,O (90.4 ppm CC352661)0.00 0.01 0.04
CO (461.5 ppm XC006064B)0.00 0.01 0.00
SO: (451.2 ppm CC409079)0.00 0.11 0.64
CHQ (453.1 ppm SG901795)0.00 0.07 0.44
H: (552 ppm ALM048043)0.00 0.04 p,Zz
HCl (45.1 ppm CC 17830)0.10 0.06 0.60
NH3 (9.69 ppm CC58181)0.00 0.02 0.14
TOTAL INTERFERENCE RESPONSE 2.19
METHOD SPECIFICATION ~ Z.g
~'~ The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.
Chad Walker
c Clxsk 2U 14CO2.Servomcz 4900
77
it
an Air Liquide company
CERTIFICATE OF ANALYSIS
Grade of Product: EPA Protocol
Part Number: E03N179E15AOOE4 Reference Number:
Cylinder Number: CC18055 Cylinder Volume:
Laboratory: 124 -Riverton (SAP) - NJ Cylinder Pressure:
PGVP Number: 852018 Valve Outlet:
Gas Code: CO2,02,BALN Certification Date:
Airgas Specialty Gases
Airgas USA, LLC
60o Union Landing Road
Cinnaminson, NJ o80~/-0000
Airgas.com
82-401288926-1
150.5 CF
2015 PSIG
590
Sep 04, 2018
Expiration Date: Sep 04, 2026
Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA600/R-121531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analyticaluncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on avolume/volume basis unless otherwise noted.
Do Not Use This Cylinder below 100 psig i.e. 0.7 megapascals.
ANALYTICAL RESULTS
Component Requested Actual Protocol Total Relative AssayConcentrationConcentration Method Uncertainty Dates
CARBON DIOXIDE 9.000 %8.864 % G1 +/- 0.7% NIST Traceable 09/04/2018OXYGEN 12.00 %12.00 % G1 +/- 0.4% NIST Traceable 09/04/2018NITROGEN Balance -
CALIBRATION STANDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 13060629 CC413730 13.359 %CARBON DIOXIDE/NITROGEN +/- 0.6%May 09, 2019
ANALYTICAL EQUIPMENT
InstrumenUMake/Model Analytical Principle Last Multipoint Calibration
Horiba VIA 510-0O2-19GYCXEG NDIR Aug 09, 2018Horiba MPA 510-02-7TWMJ041 Paramagnetic Aug 09, 2018
Triad Data Available Upon Request
Signature on file
Approved for Release Page 1 of 82-401288926-1
78
an Air Liquide company
CERTIFICATE OF ANALYSIS
Grade of Product: EPA Protocol
Part Number: E03N162E15A0224 Reference Number:
Cylinder Number: SG9169108 Cylinder Volume:Laboratory: 124 -Riverton (SAP) - NJ Cylinder Pressure:PGVP Number: 852017 Valve Outlet:
Gas Code: CO2,02,BALN Certification Date:
Airgas Specialty Gases
Airgas USA, LLC
60o Union Landing Road
Cinnaminson, NJ o80~~-0000
Airgas.com
82-401044874-1
157.2 CF
2015 PSIG
590
Nov 18, 2017
Expiration Date: Nov 18, 2025
Certification performed in accordance with °EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)° document EPA600/R-12!531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interterence. This cylinder has a total analyticaluncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on avolume/volume basis unless otherwise noted.
Do Not Use This_Cylinder below 100 psig, i.e. 0.7 megapascals.
ANALYTICAL RESULTS
Component Requested Actual Protocol Total Relative AssayConcentrationConcentration Method Uncertainty Dates
CARBON DIOXIDE 17.00 %16.58 % G1 +/- 0.7% NIST Traceable 1 111 8/201 7OXYGEN 21.00 %21.00 % G1 +/- 0.5% NIST Traceable 11/18/2017NITROGEN Balance -
CALIBRATION STANDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 12061336 CC360792 11.002 %CARBON DIOXIDE/NITROGEN +/- 0.6%Jan 11, 2018NTRM 09061415 CC273526 22.53 %OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019
ANALYTICAL EQUIPMENT
InstrumenUMake/Model Analytical Principle Last Multipoint Calibration
Horiba VIA 510-0O2-19GYCXEG NDIR Oct 30, 2017
Horiba MPA 510-02-7TWMJ041 Paramagnetic Oct 27, 2017
Triad Data Available Upon Request
Signature on file
Approved for Release Page 1 of 82-401044874-1
79
Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console
Calibrator MDW Meter Box Number 23 Ambient Temp 72
Thermocouple SimulatorDate 25-Sep-18 Wet Test Meter Number P-2952 Temp Reference Source (Accuracy+/- 1°F)
Dry Gas Meter Number 170$7349
Setting Gas Volume Temperatures
Orifice Wet Test Dry gas Meter Wet Test Dry Gas MeterManometer Meter Meter
Baro Press, in
H Pb 30.29
Calibration Resultsin HZO
(OH)
ft3
Vw
ft3
(Vd)
°F
(Tw)
Outlet, °F
(Tdo)
Inlet, °F
(Td;)
Average, °F
Td)
Time, min
(0)Y 0H
0.5 5.0
15.866
72.0
72.00 72.00
72.5 14.0 0.9995 2.180520.867 73.00 73.00
5.001 72.50 72.50
1.0 5.0
21.860
72.0
73.00 73.00
73.5 10.6 0.9925 2.495326.90Q 74.00 74.00
5.040 73,50 73.50
1.5 10.0
27.975
72.0
75.00 75.00
75.5 16.9 0.9808 2.369738.201 76.00 76.00
10.226 75.50 75.50
2.0 10.0
39.355
72.0
76.OQ 76.00
76A 14.6 0.9830 2.355949.555 76.00 76.00
10.200 76.00 76:Q0
3.0 10.0
50.614
72.0
76.00 76.00
76.5 12.0 0.9701 2,375560.955 77.00 77.00
10.341 76.50 76.50
Average 0.9852 2.3554Vw -Gas Volume passing through the wet test meter
Vd -Gas Volume passing through the dry gas meter
Tw - Temp of gas in the wet test meter
Tdi -Temp of the inlet gas of the dry gas meter
Tdo -Temp of the outlet gas of the dry gas meter
Td -Average temp of the gas in the dry gas meter
0 -Time of calibration run
Pb -Barometric Pressure
0H -Pressure differential across
orifice
Y -Ratio of accuracy of wet test
meter to dry gas meter
~, _ Vw *Pb *(td+460)
Vd * LPb + ~H ~ * (tw + 46013.6
~~-~0.0317 * O H ~tw + 460 * O Z
Pb*(td+460~~*~ Vw
Reference
Temperature Temperature Reading from individual Thermocouple Input ~Average
Temperature
Reading
Temp
Difference z
(%)
Select Temperature
~ °C ~ °F Channel Number
1 2 3 4 5 6323232323233 32.2 0.0%212 212 213 213 212 213 212.6 -0.1%932 931 932 931 932 933 931.8 0.0%1832 1831 1833 1833 1832 1833 1832.4 O.Q%1 -Channel Temps must agree with +/- 5°F or 3°C
2 -Acceptable Temperature Difference less than 1.5 Temp Diff=l lReference Temp°F~+460 -Test Temp°F~+460~~
L Reference Tem °F +460
Long Cal Box #23 9-25-18 80
Post Test Calibration
Calibrator MDW Meter Box Number 23 Client Chemours Fayetteville
Date 30-Jan-19 Wet Test Meter Number P-2952 Location/Plant Fayetteville, NC
Dry Gas Meter Number 17087349 PreTest Y 0.9945
Baro Press, in 29 75Setting Gas Volume Temperatures H PbOrifice Wet Test Dry gas Meter Wet Test Dry Gas MeterManometer Meter Meter
in H2O ft3 ft3 °F Outlet, °F Inlet, °F Average, °F Time, min(DH) (Vw) (Vd)(Tw) (Tdo) (Tdi)(Td)(0)
Y
421.760
1.60 9.2 431.375 68.0 68.00 70.00 69.0 15.0 0.95499.615
432.160
1.60 9.2 441.810 68.0 70.00 72.00 71.0 15.0 0..95509:650
442.606
1.60 9.2 452.240 70.0 73.00 74.00 73..5 15.0 Q.95759:.634
1 -Tolerance for Y is less than 0.0500 Average 0.9558
Difference 0.0387
Vw -Gas Volume passing through the wet test meter 0 -Time of calibration run
Vd -Gas Volume passing through the dry gas meter Pb -Barometric Pressure ~, _~ * Pb * (td + 460 )
Tw -Temp of gas in the wet test meter DH -Pressure differential across Vd * (Pb + ~H ~* (tw + 460Tdi -Temp of the inlet gas of the dry gas meter orifice ~ 13.6Tdo -Temp of the outlet gas of the dry gas meter Y -Ratio of accuracy of wet test 0.0317 * D H ~tw + 460 * O 2Td -Average temp of the gas in the dry gas meter meter to dry gas meter ~ H — [ Pb * ~td + 460 ~]* [ Vw
No Long Calibration Required
81
Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console
Calibrator PM Meter Box Number 31 Ambient Temp 71
Thermocouple SimulatorDate 4-Feb-18 Wet Test Meter Number P-2952 Temp Reference Source (Accuracy+!- 1°F)
Dry Gas Meter Number 17485128
Temperatures
Wet Test Dry Gas MeterMeter
Baro-~P~~, in
H Pb
29 ~9SettingGas Volume
Orifice
Manometer
Wet Test Dry gas MeterMeter Calibration Resultsin HZO
(DH)
ft3
(Vw)
{{3
Vd)
op
(Tw)
Outlet, °F
(Tdo)
Inlet, °F
(Td;)
Average, °F
(Td
Time, min
(0)Y OH
0.5 5.0
449.372
70.0
69.00 69.Q0
70.0 13.0 0.9976 1.9063454.378 71.00 ~~~ 71.00
5.006 70.00 70:00
1.0 5.0
454.378
70.0
71.00 71.00
71.5 9.5 0:9972 2.0302459.394 72.00 72.00
5.016'71.50 71.50
1.5 10.07
459.394
70.0
74.OQ 74.00
74.0 16.0 0.9948 21.197469.586 74.00 74.00
10.192 74;00 74.00
2.0 10.0
469.586
70.0
74.00 74.00
74.5 13.7 0.9894 2.p992479.729 75,00 75.00
10.143 74.50 74.50
3.0 10.0
479.729
70.0
75.00 75.00
75.5 11.3 0.9819 2.1383489.943 76.00 76.00
'1.0.214 75.50 75.50
Average 0.9916 2.0587Vw -Vas volume passing through the wet test meter
Vd -Gas Volume passing through the dry gas meter
Tw - Temp of gas in the wet test meter
Tdi -Temp of the inlet gas of the dry gas meter
Tdo -Temp of the outlet gas of the dry gas meter
Td -Average temp of the gas in the dry gas meter
0 -Time of calibration run
Pb -Barometric Pressure
OH -Pressure differential across
orifice
Y -Ratio of accuracy of wet test
meter to dry gas meter
Y= rVw *Pb *(td+460)
Vd*iPb+ ~H 1*(tw+46013.6
~H-[0.0317 * OH (tw + 460 * O 2
Pb*(td+460]*[ Vw
Reference
Temperature Temperature Reading from Individual Thermocouple Input ~Average
Temperature
Reading
Temp
Difference 2
(%)
Select Temperature
~ °C ~ °F Channel Number
1 2 3 4 5 6323232323232 32A 0.0%212 212 213 213 212 212 212,4 -0.1932932933933932932932.4 0.0%1832 1832 1833 1$33 1832 1832
1832.4 0.0%1 -Channel Temps must agree with +/- 5"F or 3"C
2 -Acceptable Temperature Difference less than 1.5 °/a Temp Diff=r~Reference Temp°F~+460 -Test Temp°F~+4601
L Reference Tem °F + 460 ~
Long Cal Box 31 2-4-18 82
Y Factor Calibration Check Calculation
MODIFIED METHOD 0010 TEST TRAIN
CARBON BED OUTLET
METER BOX NO. WC31
1/16/2019 + 1/17/2019
Dim I ➢.•.. 7 4.... 2MWd = molecular wei t source , Ibflb-mole.
032 = Moleculaz wei t of ox e divided b 100.
0.44 = Molecular wei t of carbon dioxide divided b 100.
0.28 = Molecular wei ht of nitro en or carbon monoxide divided b 100.
COZ =Percent cazbon dio~cide by volume, dry basis.U.0 0.0 0.0OZ =Percent oxygen by volume, dry basis.20.9 20.9 20.9
MWd=(032'Oi)+(0.44'COz)+(0.28'(100-(COz+Oz)))
MWd=(032'20.9)+(0.44'0)+(0.28'(100-(0+20.9)))
MWd=(6.69)+(0.00)+(22,15)
MWd = 28.84 28.84 28.84
Tma = Souree Tem erature, absolute(°R)
Tm = Aveca e as meter tem erature , de F. 49.8 611 45.A
Tma = Ts + 460
Tma = 49.83 + 460
Tma = 509.83 521.21 505.83
Ps =Absolute meter ressure, inches H .
13.60 = S ecific vi ofinerc
delta H = Av mssure dro across the orifice meter durin sam lin , in H2O 1.~4 1.55 1.53Pb =Barometric Pressure, in H 30.20 30.] 6 30.18
Pm = Pb + (delta H / 13.6)
Pm = 30.2 + (1.53583333333333 / 13.6)
Pm =3031 30.27 30.29
Y a = as meter calibration check value, dimensionless.
0.03 = 29.92/528 0.75 2 in. H °/R c&n2.
29.00 = molecular wei t of air, Ib/Ib-mole.
Vm =Volume of as sam le measured b the d as meter at meter conditions dcf.60.326 61. l69 59A84Y = D as meter calibration factor based on full calibra8on 0.9916 0.9916 0.9916Delta H = Gas meter orifice calibration wefficirn in. H2O.2.0587 2.0587 2.0587avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H10 1.2196 1.2239 1.2154O =Total sam lin time, minutes.96 96 96
Yqa = (O / Vm )' SQRT (0.0319' Tma' 29) / (Delta H@ "Pm' MWd) ' avg SQRT Delta H
Yqa = (96.00 / 6033 )' SQRT (0.0319 * 509.83 ' 29) / ( 2.06 * 3031 " 28.84) • 1.22
Yqa= 1.591 ' SQRT 471.647 / 1,799343 ' 1.22
Yqo = 0.9936 0.9950 0.9923
Diff =Absolute difference between Y a and Y 0.20 034 0.07
IJiff=((Y-Yqa)/Y)•100
Diff = (( 0.9916 - 0.994) / 0.9916) • 100
Average Diff = 0.2
Allowable = 5.0
2/820 1 010 3 8 AM
011818 CBed OUT83
~~LAh1C~ CAL,i'~~t~~`~CJ~~t I.00
t
tlbratlon Nf~a~ur~d 1~{a~nx~nanc~e a~~
C~~~'~1~'~~`~~V11~t~ht '~le~g~t~~~Ad~usi~me~ts
,Y ~~~rS r f ~
~` 6
r ~
1
.Jf t t
.v , tiff
~:
i r'. ,...
$ ~ R:..x
-
J... c; ~FV'
v`wYIMI!w~~
_~. ~Sy}
y
~~!
~,F t
-
Fri ~ 4 t ~ r
_ ..
- x
y:> ^-s _._. . ;
~ ,Fk3 tly. *~, ~ ,.~~ It. e,..
.fK
-ry ,~,-~
84
Pitot Tube Identification Number:
Inspection Date 5/30/18 Individual Conducting Inspection
Distance to A Plane (PA) - inches 0.453 PASS
Distance to B Plane (PB) - inches 0.453 PASS
Pitot OD (Dt) - inches 0.375
1.05 Dt < P < 1.5 Dt PA must Equal PB
Q1 and Q2 must be < 10o
B1 or B2 must be < 5o
Z must be < 0.125 inches
W must be < 0.03125 inches
X must be > 0.75 inches
P-710
SR
Angle of Q1 from vertical A Tube-
degrees (absolute)
Angle of Q2 from vertical B Tube-
degrees (absolute)
Type S Pitot Tube Inspection Data Form
Are Open Faces Aligned
Perpendicular to the Tube Axis YES NO PASS
If all Criteria PASS
Cp is equal to 0.84
PASS/FAIL
Angle of B1 from
vertical B Tube-
degrees (absolute)
PASS
PASS
PASS0
0
Angle of B1 from
vertical A Tube-
degrees (absolute) 0
0
0.87
Horizontal offset between A and
B Tubes (Z) - inches
Vertical offset between A and B
Tubes (W) - inches
0.012
0.022
Distance between Sample
Nozzle and Pitot (X) - inches
Thermocouple meets
the Distance Criteria
in the adjacent figure
YES
YES
PASS
NO YES
NA
PASS
PASS
PASS
Thermocouple meets
the Distance Criteria
in the adjacent figure
Impact Pressure
Opening Plane is
above the Nozzle
Entry Plane
NO
NA
NO
NASample Probe
Type S Pitot Tube
Temperature Sensor
Dt
2 inch
Sample Probe
Temperature Sensor
Dt Type S Pitot Tube
3 inch
3/4 inch
AB
Face Opening Planes
A
B
A
BQ1Q1 Q2
B B
B
AA
A
FlowFlow
B1(+)B1(-)
B2(+ or -)
B1(+ or -)
B-Side Plane
A
B
PA
PB
A-Side Plane
Dt
X
Sampling D
Impact Pressure
Opening Plane
Nozzle Entry Plane
W
B
A
B
A
Z
P-710 all in one.MOD 85
Pitot Tube Identification Number:
Inspection Date 5/30/18 Individual Conducting Inspection
Distance to A Plane (PA) - inches 0.458 PASS
Distance to B Plane (PB) - inches 0.458 PASS
Pitot OD (Dt) - inches 0.375
1.05 Dt < P < 1.5 Dt PA must Equal PB
Q1 and Q2 must be < 10o
B1 or B2 must be < 5o
Z must be < 0.125 inches
W must be < 0.03125 inches
X must be > 0.75 inches
P-711
SR
Angle of Q1 from vertical A Tube-
degrees (absolute)
Angle of Q2 from vertical B Tube-
degrees (absolute)
Type S Pitot Tube Inspection Data Form
Are Open Faces Aligned
Perpendicular to the Tube Axis YES NO PASS
If all Criteria PASS
Cp is equal to 0.84
PASS/FAIL
Angle of B1 from
vertical B Tube-
degrees (absolute)
PASS
PASS
PASS0
0
Angle of B1 from
vertical A Tube-
degrees (absolute) 0
0
0.87
Horizontal offset between A and
B Tubes (Z) - inches
Vertical offset between A and B
Tubes (W) - inches
0.009
0.026
Distance between Sample
Nozzle and Pitot (X) - inches
Thermocouple meets
the Distance Criteria
in the adjacent figure
YES
YES
PASS
NO YES
NA
PASS
PASS
PASS
Thermocouple meets
the Distance Criteria
in the adjacent figure
Impact Pressure
Opening Plane is
above the Nozzle
Entry Plane
NO
NA
NO
NASample Probe
Type S Pitot Tube
Temperature Sensor
Dt
2 inch
Sample Probe
Temperature Sensor
Dt Type S Pitot Tube
3 inch
3/4 inch
AB
Face Opening Planes
A
B
A
BQ1Q1 Q2
B B
B
AA
A
FlowFlow
B1(+)B1(-)
B2(+ or -)
B1(+ or -)
B-Side Plane
A
B
PA
PB
A-Side Plane
Dt
X
Sampling D
Impact Pressure
Opening Plane
Nozzle Entry Plane
W
B
A
B
A
Z
P-711 all in one.MOD 86
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019
APPENDIX F
LIST OF PROJECT PARTICIPANTS
87
IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019
The following WESTON employees participated in this project.
Paul Meeter Senior Project Manager
Wes Fritz Team Member
Jack Mills Team Member
Austin Squires Team Member
Steve Rathfon Team Member
Matt Winkeler Team Member
Kris Ansley Team Member
Chad Walker Team Member
88