Loading...
HomeMy WebLinkAbout2019.02.14_CCO.p7_Fluoromonomers Manufacturing Process Vinyl Ethers North Carbon Bed Removal Efficiency Test ReportIASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 FLUOROMONOMERS MANUFACTURING PROCESS VINYL ETHERS NORTH CARBON BED REMOVAL EFFICIENCY TEST REPORT TEST DATES: 16 AND 17 JANUARY 2019 THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA Prepared for: THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306 Prepared by: WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380 14 February 2019 W.O. No. 15418.002.009 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 i TABLE OF CONTENTS Section Page 1. INTRODUCTION..............................................................................................................1 1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1  1.2 TEST OBJECTIVES ...............................................................................................1  1.3 TEST PROGRAM OVERVIEW .............................................................................1  2. SUMMARY OF TEST RESULTS ...................................................................................4  3.PROCESS DESCRIPTIONS ............................................................................................5  3.1 FLUOROMONOMERS ..........................................................................................5  3.2 PROCESS OPERATIONS AND PARAMETERS .................................................5  4.DESCRIPTION OF TEST LOCATIONS .......................................................................6  4.1 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET .....................6  5. SAMPLING AND ANALYTICAL METHODS .............................................................8  5.1 STACK GAS SAMPLING PROCEDURES ...........................................................8  5.1.1 Pre-Test Determinations ...........................................................................8  5.2 STACK PARAMETERS .........................................................................................8  5.2.1 EPA Method 0010.....................................................................................8  5.2.2 EPA Method 0010 Sample Recovery .....................................................10  5.2.3 EPA Method 0010 – Sample Analysis ....................................................12  5.3 GAS COMPOSITION ...........................................................................................14  6.DETAILED TEST RESULTS AND DISCUSSION .....................................................17  APPENDIX A PROCESS OPERATIONS DATA APPENDIX B RAW AND REDUCED TEST DATA APPENDIX C LABORATORY ANALYTICAL REPORT APPENDIX D SAMPLE CALCULATIONS APPENDIX E EQUIPMENT CALIBRATION RECORDS APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 ii LIST OF FIGURES Title Page Figure 4-1 VE North Process Carbon Bed Inlet and Outlet Schematic......................................... 7  Figure 5-1 EPA Method 0010 Sampling Train ............................................................................... 9  Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 13  Figure 5-3 WESTON Sampling System ...................................................................................... 16  IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 iii LIST OF TABLES Title Page Table 1-1 Sampling Plan for VEN Carbon Bed Testing ................................................................. 3  Table 2-1 Summary of HFPO Dimer Acid VEN Carbon Bed Test Results ................................... 4  Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Inlet – Runs 1, 2, and 3 .............................................................................................................................. 18  Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Outlet – Runs 1, 2, and 3 .............................................................................................................................. 20  IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 1 1.INTRODUCTION 1.1 FACILITY AND BACKGROUND INFORMATION The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse. Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid, emission testing on the Vinyl Ethers North (VEN) Carbon Bed at the facility. Testing was performed on 16 and 17 January 2019 and generally followed the “Emission Test Protocol” reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program. 1.2 TEST OBJECTIVES The specific objectives for this test program were as follows: Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the Carbon Bed inlet and outlet which are located in the Fluoromonomers process area. Calculate the Carbon Bed removal efficiency for HFPO Dimer Acid. Monitor and record process and emissions control data in conjunction with the test program. Provide representative emissions data. 1.3 TEST PROGRAM OVERVIEW During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured at two locations. Table 1-1 provides a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 2 Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test locations. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6. Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided in electronic format and on CD with each hard copy. IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 3 Table 1-1 Sampling Plan for VEN Carbon Bed Testing Sampling Point & Location VE North Carbon Bed Number of Tests: 6 (3 Carbon Bed inlet, 3 Carbon Bed outlet) Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests EPA M3/3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size ≥ 1.5m3 NANANA NA Total Number of Samples Collected1 6 6 6 6 6 Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0 Field Blank Trains1 1 per source 0 0 0 0 Proof Blanks1 1 per train 0 0 0 0 Trip Blanks1,2 1 set 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 105 6 6 6 6 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 4 2.SUMMARY OF TEST RESULTS A total of three test runs each were performed on the VEN Carbon Bed inlet and outlet. Table 2- 1 provides a summary of the HFPO Dimer Acid emissions test results and Carbon Bed removal efficiencies. Detailed test results summaries are provided in Section 6. It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds. Table 2-1 Summary of HFPO Dimer Acid VEN Carbon Bed Test Results Inlet Outlet Removal Efficiency g/sec lb/hr g/sec lb/hr % R1 1.69E-03 1.34E-02 1.27E-04 1.01E-03 92.5 R2 3.03E-03 2.40E-02 1.40E-04 1.11E-03 95.4 R3 2.92E-03 2.32E-02 1.75E-04 1.39E-03 94.0 Average 2.54E-03 2.02E-02 1.47E-04 1.17E-03 93.9 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 5 3. PROCESS DESCRIPTIONS The Fluoromonomers area is included in the scope of this test program. 3.1 FLUOROMONOMERS These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers. Process emissions are vented to the Division waste gas scrubber system (which includes the secondary scrubber) and vents to the Carbon Bed and then to the Division Stack. The VE North building air systems are vented to the carbon bed and connected to the Tower Exhaust Blower. 3.2 PROCESS OPERATIONS AND PARAMETERS The following table is a summary of the operation and products from the specific areas tested. Source Operation/Product Batch or Continuous VE North PSEPVE Condensation is continuous. Agitated Bed Reactor and Refining are batch. HFPO Tower HFPO During the test program, the following parameters were monitored by Chemours and are included in Appendix A. Fluoromonomers Process o VEN Precurser Rate o VEN Condensation Rate o VEN ABR Rate o HFPO Continuous. IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 6 4.DESCRIPTION OF TEST LOCATIONS 4.1 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET Each fiberglass reinforced plastic (FRP) duct at the inlet and outlet of the carbon bed is 34” ID. The test ports are located as shown below. Based on EPA Method 1, a total of 24 traverse points (12 per port) were required for HFPO Dimer Acid sampling at both locations. Figure 4-1 provides a schematic of the test port and traverse port locations. Location Distance from Flow Disturbance Downstream (B)Upstream (A) Carbon Bed Inlet 67 inches > 1.9 duct diameters 61 inches > 1.8 duct diametersCarbon Bed Outlet 58 inches > 1.7 duct diameters 57 inches > 1.5 duct diameters I� 34" ·I TRAVERSE POINT NUMBER • • • 1 • 2 • • 3 4 •••• •• •••••• 5 • 6 • • 7 • • • 8 9 10 11 12 CEMENT BLOCK WALL CARBON BED INLET DISTANCE FROM INSIDE NEAR WALL (INCHES) 3/4 2 1/4 4 6 8 1/2 12 1/8 21 5/8 25 1/2 28 30 31 3/4 33 1/4 ID FAN OUTLET DRAWING NOT TO SCALE FIGURE 4-1 VE NORTH PROCESS CARBON BED INLET AND OUTLET SCHEMATIC 7 IASDATA\CHEMOURS\15418.002.007\FIGURE 4-2 VE NORTH PROCESS SCHEMATIC IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 8 5.SAMPLING AND ANALYTICAL METHODS 5.1 STACK GAS SAMPLING PROCEDURES The purpose of this section is to describe the stack gas emissions sampling trains and to provide details of the stack sampling and analytical procedures utilized during the emissions test program. 5.1.1 Pre-Test Determinations Preliminary test data were obtained at each test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements. A check for the presence or absence of cyclonic flow was previously conducted at each test location. The cyclonic flow checks were negative (< 20°) verifying that the test locations were acceptable for testing. Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures. Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures. 5.2 STACK PARAMETERS 5.2.1 EPA Method 0010 The sampling train utilized to perform the HFPO Dimer Acid sampling at the outlet locations was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter. VENTWALLICE WATER RECIRCULATION PUMPCONDENSATE TRAPIMPINGERSICE BATHVACUUM LINEMAINVALVETEMPERATURESENSORSBY-PASS VALVEAIR-TIGHT PUMPDRY GAS METERORIFICEMANOMETERCHECKVALVETEMPERATURESENSORHEATED AREAFILTER HOLDERORIFICESILICA GELCONDENSERXAD-2 SORBENTMODULES ONE AND TWOTEMPERATURESENSORTEMPERATURESENSORVACUUMGAUGEIASDATA\CHEMOURS\15418.002.009\FIGURE 5-1 METHOD 0010FIGURE 5-1EPA METHOD 0010 SAMPLING TRAINHEATED PROBE/BUTTON HOOKNOZZLEREVERSE TYPEPITOT TUBE9 NOTE: THE CONDENSER MAY BE POSITIONED HORIZONTALLY. THE XAD-2 SORBENT MODULE WILL ALWAYS BE IN A VERTICAL POSITION..RIGID BOROSILICATE TUBINGOR FLEXIBLE SAMPLE LINEICE WATERRECIRCULATIONCONDENSATE TRAPIMPINGER IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 10 A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 milliliters of high purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and both XAD-2 modules to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train. HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid. During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes. 5.2.2 EPA Method 0010 Sample Recovery At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery. A consistent procedure was employed for sample recovery: IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 11 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled. 2.The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments. 3.The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remains. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed. 4.The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container. 5.All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed. 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed. 7.The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed. 8.The silica gel in the final impinger was weighed and the weight gain value recorded. 9.Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis. Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool. During each test campaign, a Method 0010 blank train was set up near the test location, leak- checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis. See Figure 5-2 for a schematic of the Method 0010 sample recovery process. IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 12 5.2.3 EPA Method 0010 – Sample Analysis Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542: Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses; Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses; Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses; Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers. The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough. The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS. IASDATA\CHEMOURS\15418.002.009\FIGURE 5-2 EPA 0010FIGURE 5-2HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010NOZZLE, PROBE ANDFRONT-HALF FILTER HOLDERSAMPLE FRACTION 2FILTERSAMPLE FRACTION 1BACK-HALF FILTER HOLDER CONNECTORS, FLEXIBLE LINE CONDENSER SAMPLE FRACTION 5XAD-2 MODULE ONESAMPLE FRACTION 3REMOVE FROM IMPINGER TRAINWASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDESEAL IN LABELED POLYETHYLENE BOTTLE. COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLWASH WHILE BRUSHING WITH NANOGRADE METHANOL/ AMMONIUM HYDROXIDESEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOLTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLSEAL WASHINGS IN LABELED POLYETHYLENE BOTTLE. MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 4IMPINGER NO. 4 (SILICA GEL)WEIGH AND RECORDMEASURE VOLUME OF LIQUID AND RECORDTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOL13 WEIGH AND RECORDRETAIN FOR REGENERATIONFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 6WASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDETRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLXAD-2 MODULE TWOSAMPLE FRACTION 7REMOVE FROM IMPINGER TRAINSEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOL IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 14 Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries. TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol. 5.3 GAS COMPOSITION The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3. Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintained the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment. The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to insure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier. The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 15 analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run. HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDERHEATED SAMPLE LINESAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISTIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-3WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.009\FIGURE 5-3 WESTON SAMPLING SYSTEM16 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 17 6.DETAILED TEST RESULTS AND DISCUSSION Each test was a minimum of 96 minutes in duration. A total of three test runs were performed at each location. Tables 6-1 and 6-2 provide detailed test data and test results for the Carbon Bed inlet and the Carbon Bed outlet, respectively. The Method 3A sampling on all sources indicated that the O2 and CO2 concentrations were at ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all calculations. The carbon bed removal efficiency was calculated based upon the HFPO Dimer Acid inlet and outlet mass emission rates in lb/hr. TABLE 6-1 CHEMOURS -FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED INLET Test Data Run number Location Date Time period SAMPLING DATA: Sampling duration, min. Nozzle diameter, in. Cross sectional nozzle area, sq.ft. Barometric pressure, in. Hg Avg. orifice press. diff., in H20 Avg. dry gas meter temp., deg F Avg. abs. dry gas meter temp., deg. R Total liquid collected by train, ml Std. vol. ofH20 vapor coll., cu.ft. Dry gas meter calibration factor Sample vol. at meter cond., def Sample vol. at std. cond., dscf(ll Percent of isokinetic sampling GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 02, % by volume, dry basis N2, % by volume, dry basis Molecular wt. of dry gas, lb/lb mole H20 vapor in gas stream, prop. by vol. Mole fraction of dry gas Molecular wt. of wet gas, lb/lb mole GAS STREAM VELOCITY AND VOLUMETRIC FLOW DAT A: Static pressure, in. H20 Absolute pressure, in. Hg Avg. temperature, deg. F Avg. absolute temperature, deg.R Pitot tube coefficient Total number of traverse points Avg. gas stream velocity, ft./sec. Stack/duct cross sectional area, sq.ft. Avg. gas stream volumetric flow, wacf/min. Avg. gas stream volumetric flow, dscf/min. 1 CBed Inlet 1/16/2019 0941-1140 96.0 0.218 0.000259 30.20 1.78 46.3 506 16.8 0.8 0.9852 56.817 59.149 92.5 0.0 20.9 79.1 28.84 0.013 0.987 28.69 -6.30 29.74 69 529 0.84 24 43.8 6.31 16571 16202 <1>Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 2/12/2019 2:00 PM 18 2 CBed Inlet 1/16/2019 1312-1513 96.0 0.216 0.000254 30.16 1.76 55.6 516 23.0 1.1 0.9852 59.460 60.708 98.2 0.0 20.9 79.1 28.84 0.018 0.982 28.65 -6.20 29.70 77 537 0.84 24 44.0 6.31 16651 15961 3 CBed Inlet 1/17/2019 0842-1035 96.0 0.216 0.000254 30.18 1.79 42.7 503 16.6 0.8 0.9852 56.171 58.861 93.1 0.0 20.9 79.1 28.84 0.013 0.987 28.69 -6.20 29.72 66 526 0.84 24 43.8 6.31 16575 16320 011619 CBed IN TABLE 6-1 (cont.) CHEMOURS -FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED INLET TEST DATA Run number 1 2 3 Location CBed Inlet CBedinlet CBed Inlet Date 1/16/2019 1/16/2019 1/17/2019 Time period 0941-1140 1312-1513 0842-1035 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 369.6120 691.4000 631.4090 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 220.63 402.11 378.74 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid l.38E-08 2.51E-08 2.36E-08 EMISSION RESULTS, lb/hr. HFPO Dimer Acid l.34E-02 2.40E-02 2.32E-02 EMISSION RESULTS, g/sec. HFPO Dimer Acid 1.69E-03 3.03E-03 2.92E-03 19 2112/:?0192:00PM 011619 CBed IN TABLE 6-2 CHEMOURS -FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED OUTLET Test Data Run number Location Date Time period SAMPLING DATA: Sampling duration, min. Nozzle diameter, in. Cross sectional nozzle area, sq.ft. Barometric pressure, in. Hg Avg. orifice press. diff., in H20 Avg. dry gas meter temp., deg F Avg. abs. dry gas meter temp., deg. R Total liquid collected by train, ml Std. vol. of H20 vapor coll., cu.ft. Dry gas meter calibration factor Sample vol. at meter cond., def Sample vol. at std. cond., dscf(l) Percent of isokinetic sampling GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 02, % by volume, dry basis N2, % by volume, dry basis Molecular wt. of dry gas, lb/lb mole H20 vapor in gas stream, prop. by vol. Mole fraction of dry gas Molecular wt. of wet gas, lb/lb mole GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H20 Absolute pressure, in. Hg Avg. temperature, deg. F Avg. absolute temperature, deg.R Pitot tube coefficient Total number of traverse points Avg. gas stream velocity, ft./sec. Stack/duct cross sectional area, sq.ft. Avg. gas stream volumetric flow, wacf/min. Avg. gas stream volumetric flow, dscf/min. CBed Outlet 1/16/2019 0941-1140 96.0 0.215 0.000252 30.20 1.54 49.8 510 16.1 0.8 0.9916 60.326 62.739 98.4 0.0 20.9 79.1 28.84 0.012 0.988 28.71 3.50 30.46 77 537 0.84 24 44.4 6.31 16801 16607 (ll Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) 2/12/2019 2:01 PM 20 2 CBed Outlet 1/16/2019 1312-1513 96.0 0.215 0.000252 30.16 1.55 61.2 521 22.4 1.1 0.9916 61.169 62.147 98.5 0.0 20.9 79.1 28.84 0.017 0.983 28.65 3.50 30.42 82 542 0.84 24 44.6 6.31 16890 16437 3 CBed Outlet 1/17/2019 0842-1035 96.0 0.215 0.000252 30.18 1.53 45.8 506 15.2 0.7 0.9916 59.984 62.834 96.9 0.0 20.9 79.1 28.84 0.011 0.989 28.71 3.50 30.44 76 536 0.84 24 45.1 6.31 17063 16891 011619 CBed OUT 2/12120192:02PM TABLE 6-2 (cont.) CHEMOURS -FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED OUTLET TEST DATA Run number Location Date Time period LABORATORY REPORT DATA, ug. HFPO Dimer Acid EMISSION RESULTS, ug/dscm. HFPO Dimer Acid EMISSION RES UL TS, lb/dscf. HFPO Dimer Acid EMISSION RESULTS, lb/hr. HFPO Dimer Acid HFPO Dimer Acid (From Inlet Data) EMISSION RESULTS, g/sec. HFPO Dimer Acid Carbon Bed Removal Efficiency, % 1 CBed Outlet 1/16/2019 0941-1140 28.9300 16.28 l.02E-09 l.OlE-03 1.34E-02 l.27E-04 92.5 21 2 CBed Outlet 1/16/2019 1312-1513 31.6970 18.01 1.12E-09 1.1 lE-03 2.40E-02 1.40E-04 95.4 3 CBed Outlet 1/17/2019 0842-1035 39.0000 21.91 1.37E-09 l.39E-03 2.32E-02 l.75E-04 94.0 011619 CBedOUT IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 APPENDIX A PROCESS OPERATIONS DATA 22 Date 1/16/2019 Date 1/17/2019 800 900 1000 1100 1200 1400 1500 1600 RUN 1 941-1140 RUN 2 - 1312-1513 1300 PSEPVE 800 900 1000 1100 14000 kg/h 80 kg/h 107 kg/h Batch 14000 kg/h 100 kg/h 0842-1035 (Run 3) PSEPVE Division WGS Inlet Flow Time Stack Testing HFPO VEN Product VEN Precursor Time Stack Testing HFPO VEN Product VEN Precursor VEN Condensation (HFPO) Division WGS Inlet Flow VEN ABR VEN Refining Stripper Column Vent Division WGS Recirculation Flow VEN Condensation (HFPO) VEN ABR VEN Refining Stripper Column Vent Division WGS Recirculation Flow 23 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 APPENDIX B RAW AND REDUCED TEST DATA 24 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED INLET Test Data Run number 1 2 3LocationCBed Inlet CBed Inlet CBed InletDate1/16/2019 1/16/2019 1/17/2019Time period 0941-1140 1312-1513 0842-1035OperatorJMJMJM Inputs For Calcs. Sq. rt. delta P 0.77436 0.77150 0.77725Delta H 1.7758 1.7633 1.7888Stack temp. (deg.F)69.4 77.0 65.5Meter temp. (deg.F)46.3 55.6 42.7Sample volume (act.)56.817 59.460 56.171Barometric press. (in.Hg)30.20 30.16 30.18Volume HZO imp. (ml)2.0 4.0 2.0Weight change sil. gel (g)14.8 19.0 14.6COZ0.0 0.0 0.0Oz20.9 20.9 20.9NZ79.1 79.1 79.1Area of stack (sq.ft.)6.305 6.305 6.305Sample time (min.)96.0 96.0 96.0Static pressure (in.HzO)-6.30 -6.20 -6.20Nozzle dia. (in.)0.218 0.216 0.216Meter box cal.0.9852 0.9852 0.9852Cp of pitot tube 0.84 0.84 0.84Traverse points 24 24 24 2/8/2019 9:49 AM O L 1619 CHed IN 25 ~L ~~~ Sample and Velocity Traverse Point Data Sheet -Method 1 Client tr d y (' Operator f 1 LoactionlPlant ~ ,~ ~ v Date ^ ~ 3' Source .. W.O. Number Duct Type ~ Circular q Rectangular Duct ~^d~~°te appmpdate type Traverse Type Particulate Traverse p Velocity Traverse q CEM Traverse Distance from far wall to outside of rt in. = C ~y r 't Port De th in. = D " Q sl ~` De th of Duc diameter m. = C-D ~' Area of Duct ft~ Total Traverse Points Total Traverse Points er Port Part Diameter in. —Flan e-Threaded-Hole Monorail Len th Rectan ular Ducts Onl Width of Duct, rattan ular duct onl in. Total Ports rectan ular duct onl E uivalent Diameter = 2'L / L+ Traverse Po t Locations Traverse Point °~ of Ouct Dista from Inside Duct Wall in Distance from Outside of Po 1 2 3 7 4 ~~ 5 Q 6 t q 7 ~Ci ~ 8 ''~j 9 10 ~ ~jj 'ij ;, ~,3 ~ ~ ~2 1 pa CEM 7 pol~Lonp Manurmam Une) 9tradflcaWn Polnt Lacaticm 1 0.167 2 O.bO 3 0.833 ryo~e: ~r s~ac~c aia ~ ~z mcn use tr,v nne[noa iA (Sample port upstream of pilot port) Note: if stack dfa X24" then adjust traverse point l01 loch from wall IT stack dia <2q" Ihen adjust UaveBe polo( l0 0.5 inch from wall nOQOOOOOOOm'm~~,, ..own ~~~~~~_~.o~~~~~~~~~~~~m ~~~-nnm~~~~~~~■~~~~~ Flow Disturbances U stream -Aft ~ '~' Downstream - B ft ~ ` U stream - A duct diameters Downstream - R ldiirJ ritamafwrel 1 F1 Diagram of Steck i~F so r IQ ~0 ~~,, 10 _~ /{~ ~ ~p ~j. Get r~~ Duct Olameters Upsheam from Flow Dlsturbance~Distance A) o _2 ~ + s e ~ e o ~o Duct Olemeters Downstream (mm Fbw ~ISWrbance (Distance ~ Stack Diameter > 24 inches o.~1A ai ~.~~~.._ MiNmum Number of e } ad Parlkulete Traverse Points ~.24 (crcWep 25 (reclenpulertlucte ~ rravarse Palms rw velodry 1e ~z a i~uei v o.~wymn(OBtutbenia =Bend, Ecpansion. Cwdredian. etc.)~q~ SIacM OYa E9uNWN Oh. t7.7~ FeM W~Tw~~N_ 26 ISOHINETIC FIELD DATA SHEET Method 0010 HFPO Dimer Acid Client Chemours SteCk Condi~lons Meter Box ID ~ C W.O.#15418.002.09,0001 Assumed ACtUaI Meter Box Y ~ ~. 3 Project ID Chemours %Moisture (~Meter Box Del H ~ 3 5 ~+Leak Checks Mode/Source ID Carbon Bed Impinger Vol (ml)Probe ID /Length Sample Train (ft') Samp. Loc. ID IN SiUca gel (g)~Probe Material Boro Leak Check ~ (in Hg) Run N4.iD 1 CO2, 9'o by Vol 3 'Pitot /Thermocouple ID Pitot good Test Method ID M 0010 HFPO DimerAcid 02, % by Vol 'J.V,Pitot Coe~cient 0.84 Orsat ood w'9 A- Date ID 9JAN2019 Temperature (°F)Noale ID 3 ~Temp Checks Source/Location ' Ca~boi Bed Iplet 'Meter Temp (°F)Avg Noale Dia (in)Q• ~I~ O- 3~/7 ljt.?!~Meter Box Temp Sample Date ~ r / G /Static Press (in Hz0) ^~' . J Area of Stack (ft)• ~G Reference Temp Baro. Press (in Hg) Operator ~j_ ~ - /j~j ~ ((~ / Ambient Temp (°F) ~l'J Sample Time Total Treverse Pts ~ ~ Pass/Fail (+/- 20~ Temp Change Response' Page ~ of K Factor ~ Initial Mid-Point Final ~,~~~ !ms's ~r~ ~~~ Nre- I est Set Nost- I est Set L~ / Fail P / Fai( ye / no Y / no a ~~~r~~~~~.~~v~r;~nl~c~~~~~~ '-~~~~Ct~'iR~~~~~~00~~Q v~Es~~~~r'~~~~7~~~~~~~i~lll~~'t,Ji~~i~~ ~~~~~~.~r~~~v~r~~~r~~a~~~a~~~~,~~~~sz~~~~~~~s~~~~.~ s ~r~f~~■~r~~~~~~~~~~~~~~i~~~..~~/ ~~~~i►~~~~c'fi~~fi~~ii~~.3~~~~~v .~~~~~7~~~~~~lJ'~~~~~~~~~~'~~~~~~~Al~i~m~O~~~'~G'~~'l'rii"~~~l~~~~4~1~~~cIl~r'~6;~~l~~~irl(~'~~I~~~~~~~~~r~i~~~•~~A~~~~~~~~~~i~1L~i~~~iil~~~~~;~~~~~ij3~~~ .~~_-- nvy ~yi i ~ni~aV r~vy uei n~~~'l~t~•1.. ,1 ~ i 3 n ~: ~ ~~ ~~ Avg Sgrt Oe~H '~~r~ 1 e~l Hl ~~I ~~~~~~--~mments: k%~~_~'~ yb~J q ~B"' y Max I etup I Max Yac 1' Max 27 ISOKINETIC FIELD DATA SHEET Client cnem«,~s Stack Conditions w.o.#i ~1 a.00z.00s.aooi Assumed Project ID Chemours %Moisture Mode/Source ID Carbon Bed Impinger Vol (ml) Samp. i oc. ID IN Silica gel (g) Run No:ID 2 CO2, % by Vol Q 1 Test Method ID M 0010 HFPO Dimer Acid 02, 9'o by Vol ~. Date ID 9JAN2019 Temperature (°F)'gyp Source/LocaUon Ca[b Be Inlet Meter Temp (°F) Sample Date p / ~/StaUcPress (in HZO) Baro. Press pn Hg) Operator U", dYf ~~~(Ambient Temp (°F)~3 Method 0010 PO Di er Acid Meter Box ID ~ ACtU81 Meter Box Y Meter Box Del H Leak Checks Probe ID /Length Sample Train (ft3) Probe Material Borg Leak Check ~ (in Hg) Pitot /Thermocouple ID 'i `~ Pitot good Pitot Coefficient Nozzle ID 0.84 Orsat good ~d_ Q~ Temp Check ~~ Noale Dia (in)~ ~ o . - Meter Box Temp ~~~- vg Area of Stack (ft2)Reference Temp Sample Time —~ ~ -- Pass/Fafl (+/- 20~ Total Traverse Pts y ~7 V Temo Chance Response' Page ~ of K Factor ~,,~-'~ Initial Mid-Point Final fy,r~,~ ~~~~' rre- i est aet cost- i est set ~ s3 ail ~ /Fail ves no vas t ru~,__~ ~~ - — • ~~~~~r~a~~-rr~~~■~~~~~~~ s-~~~~r~r~~~.~~z~~~~■rr~~rr~r_~~~~~~~~~~-~~~L~~~~~~~~i~~~~i~~~~~~~~~E~ls~Cf~~~~'~i7~~Jl~~irt~~-~i'_~~~1~~I.~~~~~~f1~7~1~~C~~~ ~~~t~ti!'~~i~lf~~~0~~~f~i~~~~ ~~~~r.~~~~~srr~~►~~~r~~~~~~~r~iE~~~~r~~~~~~~~~~~~~~r~E~ t~~~~~~~~~~i=~~~~3;~~~~7rIS'~'~~~~~i~~l~,r ~i~~~~,~~I~i~i►~r1S"~~i~~Z7~~~~~L►~~tt~~;►~~i~~i ~~\I~~~'~~~~~7T•~~~~~'~l~~~irl~~' ~ ~Rt l~/~1!_~~f M'JIrl~~il~~A t~ ~ nay i~~ 1~ ~-, „~y~~;~ ~ oca~ vmume Hvg ~ s J Hvg ~ m nniNM Mf M Max Temp M Vac Marx Temp _ ~-~~~~~~~J 1"~ay$~HV Comments:rjC'~;~(p 1 J ~;oy _ V 5._.~ 28 ISOHINETIC FIELD DATA SHEET Client Chernours Stack Conditions w.o.# 15418,002:009.0009 Assumed Project ID Chemours 9'o Moisture Mode/Source ID Carbon Bed Impinger Vol (ml) Samp. Coc. ID IN Silica gel (g) Run No:ID 3 CO2, % by Vol Test Method ID M 0010 HFPO DimerAGd 02, % by Vol Date ID 9JAN2019 Temperature (°F) Saurce/Location Ca' on ed 1~1let Meter Temp(°F) Sample Date p~ ~Static Press (in Hz0) Baro. Ptess (in Hg) Operator ~~ r ~ Ambient Temp (°F) Method 0010 HFPO Dimer Acid Page ~ or! Meter Box ID _ ~('p~ Actual nneter aox r _ ~, cis Z K Factor ~ ^ ~j~ Meter Box Del H Leak Checks Initjal Mid-Point Final a Probe ID /Length / Sample Train (ft3) Probe Material Boro Leak Check ~ (in Hg) O s/ Pftot /Thermocouple ID ~ Pitot good O, , g Pitot Coefficient 0.84 Orsat good ~~' ~~~~~~~s~~~~s~r a~..r~~ Noale ID y [ o Temp Check Pre-Test Set Pos -T~st Set Avg NouJe D(a (in)(~~,~~ j ~•~ a~ ~ 7 p7 / Meter Box Temp 3 ~-- ~v Area of Stack (it2)Reference Temp '' Sample Time ~` Pass/Fail (+/- 2°)s /Fail Pass /Fail Total Traverse Pts ~/ Temp Change Response 'ye / no y s l~ no ~r `'~~R+~'~E~AI~1:~i~i~`i~'i .»'~~~~'~~l~l~1~ll~~~fl~~f~6~ic~~~~-~i E~~~r~~~~~~~r~~~~~~~~~~r~~ ~~~~~~~~~r~~~s~~~~r~~~~~~~~r~~~r~~~~a■r~~~~r~~~~ ~~~~~~~~~~~~~~~r~~~~~~~~~ ~~~~~~~~r~~~fx~~~~, ~r~~~~-~~~ ~~~~fir' 1~~iI~~.~i.it:~T~~r~~~`r'~~_~~~~:~~Sr'~m~~~~~~s~u~~~rr~~a:~s~,~~~~~rn~~~~~~as~~;,■nr~~f ■r~~~~~~~~ ~~~~~~~ ~~~~~~r~~~~~~~~~~~~r~~~~r~~r~~~■~~~~r~a~~~~~~~~~~~~~~s~■~~~~~~~~~~~~r~~~~~~f,~c~~~~r~n~~~~~~~s~Q~~~r~~~~~~rh-a~~~~r~■frz~~~«~~~~ ~~~.~ ,~r-n1~ 3 ~ i ~gB i~~~ cf~ ~ i~ 1 1,~9~~~~r ~ I ►o~M~~ p I MaXVac I M ^ emp —1 Lz:~TC~~;~ ~ ~ . ~, ti11111i1(Iti1 . 29 SAMPLE RECOVERY FIELD DATA Method 0010 HFPO Dimer Acid Client Location/Plant Chemours W.O. # 15418.002.009.0001 Source &Location Carbon Bed InletFayetteville, NC Run No. 7 Sample Date ~!/~ /~J Recovery Date f /~ Sample I.D. Chemours -Carbon Bed - IN - 1 - M 0010 HFPO Dimer ~ Analyst W r Filter Number -- Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents €,y~..~ ~v ~-,~ ~Final ~~ ~C~~~/~f.~ Initial O o d ~ a ~3v v Gain ~'— Z ~~~.-.~~`~. ~' Impinger Color (~,r Labeled? ~ ~ Silica Gel Condition li ~ Sealed? `~ Run No. 2 Sample Date ~~~( Recovery Date Sample I.D. Chemours -Carbon Bed - IN - 2 - M 0010 HFPO Dimer /Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Final ~D ~v O zp ~/~( 0 Initial v ~~/6d ~Zc~~~ Gain (~~ 7~~`(f~D I mpinger Color ~~~~ Labeled? ~ ~ Silica Gel Condition ~ ~ BIU~ Sealed? IRun No. 3 Sample Date _ ~~~~"_ Recovery Date ~ /9 Sample I.D. Chemours -Carbon Bed - IN - 3 - M 0010 HFPO Dimer /Analyst ~~ Filter Number ._~ Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Final ~~0p ~ ~ Z D ~d'1,-3~y~ Initial D OC~!~~~'~t7 3~~.~ Gain 0 ~7i d y ~~,~o Impinger Color ~ a,~ Labeled? ~ ~ Silica Gel Condition _/.~(~ !S ct,~ Sealed? Check COC for Sample IDs of Media Blanks ~~ ~~- 30 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED OUTLET Test Data Run number 1 2 3LocationCBed Outlet CBed Outlet CBed OutletDate1/16/2019 1/16/2019 1/17/2019Time period 0941-1140 1312-1513 0842-1035OperatorKA/AS KA/AS KA/AS Inputs For Calcs. Sq. rt. delta P 0.78910 0.78832 0.80182Delta H 1.5358 1.5463 1.5263Stack temp. (deg.F)?7.0 82.1 76.3Meter temp. (deg.F)49.8 61.2 45.8Sample volume (act.)60.326 61.169 59.984Barometric press. (in.Hg)30.20 30.16 30.18Volume Hz0 imp. (ml)2.0 2.0 1.0Weight change sil. gel (g)14.1 20.4 142COZ0.0 0.0 0.0Oz20.9 20.9 20.9Nz79.1 79.1 79.1Area of stack (sq.ft.)6.305 6.305 6.305Sample time (min.)96.0 96.0 96.0Static pressure (in.HzO)3.50 3.50 3.50Nozzle dia. (in.)0.215 0.215 0.215Meter box cal.0.9916 0.9916 0.9916Cp of pitot tube 0.84 0.84 0.84Traverse points 24 24 24 2~8f2019 9:49 AM 011619 CBed OUT 31 ~i Type `~. Circular q arse Type ~~4, ParllcWate Traverse q ~l~ t.~' /Sample and Velocify Traverse Point Data Sheet -Method 1 COent ~ Operator LoactlonlPlant ~~ Date Source .O. Number Distance from far waR to outside of rt In = C Port De th = D D Oe th of Du diameter in. = GD Area of Duct tP Total Traverse Points Total Traverse Pakits er Port Port Diameter in. —Flan e-Threaded-Flnle Monorail Len th Rectan lar Ducb Onl Width of Du rectan ular duct a In. Total Parts re ular duct on uivalent Olametar = 2•L`W L+W raversa Pol ocaUons Traverse Point % of Duct Distance from Inelde Duct Wall in Distance from Outside of Port n ,0 ~ y 2 ' 7 3 ~~f46 5 0 v ?, 'v 6 7 ~~8 a ~ 9 ~ 10 v f 11 ~~~ T) ,2 8 CEN 7 PoIM(t.unp N~uunn~nt Una) Elntlflraton Po4d LoeWonr 1 0.167 z o.so 3 0.833 NO[B: R 518CK 018 ~ 1Z I~CII USB tYA MBQ10~ lA (Sample port upsVeam of pltot port) Note: If static dia >24" then adjust traverse point to t Inch from wall If stack dla <24' tlten adJuat traverse point to OS inch from wall Rectangular Dud ~"d"~° ' ~'P° VelodlyTraverse O CEMTrevarse Flow Oisturbancas U tream - A ft Downstream - B ft r o ~ U Cream -A duct diameters Downstream - B duct diameters ~lagfam tack ~ ~r /~ ~~ ~~---+ 1 Oua Dlametars Upsheam from Flow Disturbance (Distance A) sa os ,.a ,s xo Stack Dlameter> 24 inches w~ t~o ~~b~~ ~ --- ran.. z~ taew.l u (~vW. ~ 1 ~ ~_ Trevene POYN~ Tor Vdodty 78 ~z (DlvMhenc~ ~Beod. E:Pawbn, Cantrfctlon~ atc.) e~or a ~+.+~+or. u.z~ ~ ~i OO~~~O~O~m'~~ ~n~m~~~r~~m~o~~.~o~~~~~~~~~~o~■~~m~~~[~~~~~ o~~~~■~~~~~m~o o~~~~~!~m■~~ m~~~~~~~~~~~~m~~ 0 2 3 ~ 5 8 7 8 9 10 Dud OlomoMs UaMtietrmm 6om Flaw DMtwbaroa (Dtrl~nco B) .00000r:~oriommm~~~m~manm~r~mmmmo~~~~~~~~~~o~~=~~~~~~~~~~a~~~~~~m~m~t~~oase■sa~~~~~o~~~~~~~e~om~m.n~e~■~~~~~~~~o~~~~~~~~■~[~mm~~~~~~~~~~e~~m~~~~~~■~■~~■rmm 32 ISOHINETIC FIELD DATA SHEET Client chemou~s Stack Conditions w.o.#15418.002.009.0001 Assumed Project ID Chemours ~o Moisture Mode/Source ID Carbon Bed Impinger VG (ml) —~^T Samp. Loc. ID OUT Silica gel (g) Run No.ID 1 CO2, 9'o by Vol d, f~ Test Method ID M 0010 HFPO Diener Acid 02, % by Vol ({~', Date ID 9JAN2019 1r~ Temperature (°F) ~vi~ ~ Source/Location Cafbon Bed Oaget Meter Temp (°F) ~ Sample Date 16 ( ~/Static Press (in H2O) , s' Baro. Press (in Hg) 3~ . Operator ~(f}- / ]~.S ~/ Ambient Temp (°F) ~_ ~i.~~t~ C ~4 0 n ~~ Z~ u Method 0010 HFPO Diener Acid Page ~ or Meter sox io 3 K Factor '~ ~~Actual Meter Box Y nneter sox oei H 2, Leak Checks Initial Mid-Point Final Probe ID /Length Q Sample Train (ft') /~/. / Probe Material Boro Leak Check ~ (fn Hg) 'f Pitot /Thermocouple ID '7 Pitot good Pitot Coefficient 0.84 ~/ Orsat good ~lno /no e /no f /no /no yes/no ~1~, ~'1-- Nozzle ID -~. o 7 ~ Avg Noale Dia (in) h•~ Area of Stack (ft~) Sample Time Total Traverse Pts ~/ .1- Temp Check .'L S . S Meter Box Temp S ~/ Reference Temp Pass/Fail (+/- 2~ 2 Temp Change Response' Pre-Test Set Pass /Fail yes / no Post-Test Set Pass /Fail yes / no Y ~~~ ~A. to ti lJ R1 i` '. O s~ A ~~ 6 ,i + H V t/1~ B ~l 1 J C L` Z... A Sgrt elta P,/ Avg De to Total Volume .18~ ~, ` ~ U. ti 6` ~~_ Avg Sgrt `~Dlel H Comments: t, ~.tys~J ~~fY~~' OY7S~(0~ Avg 9,83'► qa~o~ ~ ~~allo3 Temp I I~axVac I MaxTemp I ~ ~ ~~,~7 i `~ ~ ~,,s ~ 2 Us ~2.~y333 ISOHINETIC FIELD DATA SHEET client cnemours Stack Conditions W.O.# 15418.002.009.0001 Assumed Project ID Chemours 9'o Moisture Mode/Source ID Carbon Bed Impinger Vol (ml) Samp. Loc. ID OUT Silica gel (g) Run No.ID 2 CO2, 9'o by Vol Test Method ID M 0010 HFPO DimerAcid 02, % by Vol Date ID 9JAN2019 Temperature (°F) Source/LocaGon Carbon Bed OuNet Meter Temp (°F) Sample Date ~ ~ ~ Static Press (in H2O) Baro. Press (in Hg) Operator ✓Ambient Temp (°F) Method 0010 HFPO Diener Acid Page~or Meter Box ID 3 ~ K FaCtofACtU81 Meter Box Y Meter Box Del H 'LSO Leak Checks Initial Mid-Point Final ,"~ Probe ID /Length ~ Sample Traln (ft3) ~.b, Probe Material Boro Leak Check @ (in Hg) ~J Pitot /Thermocouple ID r ~ ~ Pitot good ";~.d ~ Pitot Coefficient o.84 Orsat good U1 J. l ~•q , e /no ' /no ~/no e / no s ! no / no 1 7 _ 1 Noale ID J 1, Temp Check Pre-Test Set Post-Test Set 5 ~d ~ `L Avg Noale Dia (in) y Meter Box Temp Area of Stack (ft~) Reference Temp Sample Time 3 Pass/Fail (+/- 2°~ Pass /Fail Pass /Fail KI~' S 7 Total Traverse Pts 'jam Temp Change Response ' yes / rro yes / no ~~o~~~~~~~~~a~~~~- ~«~~~~~oi`i~~~'~~~L~b'~!; ~~~~'~1iZ~~ ~r L~~~7~5'~~~~~■~~~~~~~r~~~u~~~~~ ~~a~~~~~~~~~~~• ~~-~~~~E~~~~ ir~~~~-~~~~~~~~r~~n~~■~~E~~~a~.~ra ~ ~~~~~~~ ~ . ~ c~~~~~r~~~a■~~~Q•~~~~~~~~~r■~~~~~~~~~~a~~~~~~~~~;~~~~.~ ~~~~s~~~s~~~~~~~-~s~~~r~~~ ,~~~~c~~ ~~0~~~~.~rf~~~~~r~~r~:~• ~~~~~r~~'.l~~~3i~~~~L~ii~i~E~~~~~~■R~~I[7~iiE~~~~ ~~-~A-~~1. ~~~~--_~~~111~~~~~ H~agR~eita r i ~9 ~ r0' ~ 0 ~~' ~ ~~~ ~9~TuJ~7 Avg Sgrt Del H, Comm2nts J ~, a~~s✓ Avg Tm Mi ax Mi ax Max Temp Vac Max TempGl,~ ~q tal °1~~io~ S7 "°~" r~l 34 ISOKINETIC FIELD DATA SHEET Method 0010 HFPO Dimer Acid Page~or 1 client chemou~s Stack Conditions Meter Box ID ~ ~ K Factor 2.. 3w.o.# 15a~a.00z.ons.000i Assumed Actual MQterBox Y Project ID Chemours 9'o Moisture N{eter Box Del H Leak Checks Ifllfi8l Mid-Point Final Mode/Source ID Carbon Bed Impinger Vol (ml) Probe ID /Length )~ Sample Train (ft') b ~ m Samp. Loc. ID OUT Silica gel (g) ~ Probe Material Boro Leak Check (8 (in Hg) ~ O Run No.ID 3 CO2, % by Vol (~ ~ Pitot /Thermocouple ID ~ ~ Q Pitot good / no / no / no Test Method ID M 0010 HFPO Dimer Acid 02, °,U by Vol ~( 0 c' Pitot Coefficient 0.84 Orsat good / no / no / no Date ID Source/Location Sample Date Baro. Press (in Hg) Operator 9JAN2019 Temperature (°F) ~ , , Catbon Bed Outlet `Meter Temp (°F) S 3 ~-~ ~j, ~' \ ~ q ~ Static Press (in H2O) '~. ~ • S ~ Ambient Temp (°F) _ '~ s Nozzle ID .'~.~ Temp Check Avg Noule Dia (in) , Z ~, rj , 2 S Meter Box Temp Area of Stack (ft) . ? ~ Reference Temp Sample Time ~( Pass/Fail (+/- 2~ Total Traverse Pts Zi{ ~/ Temp Change Response ' Pfe-Test Set Pass /Fail yes / no POS - eSt S8t Pass /Fall es / no ., ^f~ L ~i~ ~ Z-~~` ~--E ~~ ~7 ~ h' ! I `~ I I ~~ 5 I L "7 I `l "~ '~. 5~' 1 7 `l I I I ~1 ~ I i b 0_ 1 1~ i I ~Gt I b i ~~' I ~ .1v l~ ! i --- -~~~i~ir.~■~ii Vii..= ~•~■~vt.~-~l~~`~ ~ ' ~ ~l~ 7 i~s~~iir'~~C~ ~ i i`~Ji~t.~~ ~~ 1'L "l 03 1 ~b CI ~I ~Av Sgrt Delta/P Avg el H Total Volume Avg Ts Avg Tm MiN ax Mf ax Max Temp M Vac M' Temp0 2~ 2~ ~'~ ~ J Y33 q~ ~Cn y~~l~ y5 ~ ~`s- ~^ ~ O ' ~ ~~O p~~~i rt del H Comments: ~ J ~ Qtr j~~ D,St~i~~-35 SAMPLE RECOVERY FIELD DATA Method 0010 HF'PO Dimer Acid Client Location/Plant Chemours W.O. # 15418.002.009.0001 Source &Location Carbon Bed OutletFayetteville, NC ~(, ~~~Run No. 1 Sample Date ~ Recovery Date /`J' Sample I.D. Chemours -Carbon Bed -OUT - 1 - M 0010 HFPO Dime Analyst ~ Filter Number ~—" Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents ,N L~E,l2,~~e, Final U d 3 ~Q 3<</- Initial ~c~ ~p ~d 3a~.d Gain d ~—I O ~/y,/ Impinger Color ~~-~PLt►~ Labeled? ~ Silica Gel Condition 9d ~o [~/~r ~ Sealed? `~ Run No. 2 ~~~~ ~ ~~~Sample Date I Recovery Date 7 Sample I.D. Chemours -Carbon Bed -OUT - 2 - M 0010 HFPO Dime Analyst ~r Fllter Number '~— Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents ~f L a Zf)~r Final d ~ (~ `L l n 6 ~3Zv . ~ Initial ~~ U ~!? ~G ~ c~~.v Gain C~C~Z ~.~ Impinger Color .Q~l.~ Labeled? ~ Silica Gel Condition ~ ~ ~.~ Sealed? `~ „/J"7Run No. 3 Sample Date C ~~ Recovery Date !/~ f9 Sample I.D. Chemours -Carbon Bed -OUT - 3 - M 0010 HFPO Dime Analyst 1~(f ~ Filter Number `-- Impin er 1 2 3 4 5 6 7 Imp.Totai 8 Total Contents ,n y D Final C~~~j ~/ _Z Initial ~~0 cep ~3v~ Gain I ~f 2 Impinger Color ~-~A.~ Labeled? Silica Gel Condition ~ f G(~ Sealed? Check COC for Sample IDs of Media Blanks e ~9~_ 36 SAMPLE RECOVERY FIELD DATA Method 0010 HFPO Dimer Acid Client Location/Plant Chemours Fayetteville, NC W.O. # Source & Loaction Carbon Bed Outlet 15418.002.009.0001 Run No. E7~~ii~/~ Sample Date ~~k Recovery Date ~ 7 /~j Sample I.D. Chemours -Carbon Bed -OUT - BT - M 0010 HFPO Dii Analyst ~~ Filter Number ~ Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Final ~~~~~~D '3m~ Initial ~~~~/Dd ~Za'o 3~, ~ Gain d (~d (7 f,E~ Impinger Color G(Gxl Labeled? ~ Silica Gel Condition ~I ~ ~/(ice Sealed? r/ Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Final Initial Gain Impinger Color Labeled? Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Final Initial Gain Impinger Color Labeled? Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks 37 METHODS AND ANALYZERS Client: Chemours Location: CHEMOURS Source: Division Stack Project Number: Operator: Date: 15418.002.009 CW 16 Jan 2019 t Folders.A-F\Chemours Fayetteville\15418.002.009 Fayetteville Jan 2019 Carbon Bed Test\Data\Division\0116 Program Version: 2.1, built 19 May 2017 File Version: 2.03 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte Method Analyzer Make, Model &Serial No Full-Scale Output, my Analyzer Range, Span Concentration, Channel 2 Analyte Method Analyzer Make, Model &Serial No Full-Scale Output, my Analyzer Range, Span Concentration, OZ EPA 3A, Using Bias Servomex 4900 10000 25.0 21.0 COz EPA 3A, Using Bias Servomex 4900 10000 20.0 16.6 -..~ T :; SOLUTIONS 38 CALIBRATION DATA Number 1 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Date: 16 Jan 2019 Start Time: 07:51 OZ Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards Cylinder ID 12.0 CC18055 21.0 SG9169108 Calibration Results Zero 5 my Span, 21.0 % 7991 my Curve Coefficients Slope Intercept 380.3 5 COz Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards Cylinder ID 8.9 CC18055 16.6 SG9169108 Calibration Results Zero 5 my Span, 16.6 % 8383 my Curve Coefficients Slope Intercept 505.3 5 V1l'F~T'~:; SOLUTIONS 39 CALIBRATION ERROR DATA Number 1 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 Start Time: 07:51 Os Method: EPA 3A Span Conc. 21.0 Slope 380.3 Intercept 5.0 Standard Result Difference Error Status Zero 0.0 0.0 0.0 Pass12.0 12.0 0.0 0.0 Pass21.0 21.0 0.0 0.0 Pass COs Method: EPA 3A Span Conc. 16.6 Slope 505.3 Intercept 5.0 Standard Result Difference Error °/a % %StatusZero0.0 0.0 0.0 Pass 8.9 8.6 -0.3 -1.8 Pass 16.6 16.6 0.0 0.0 Pass V1I~T :; SOLUTIONS 40 BIAS Number 1 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 Start Time: 07:58 Os Method: EPA 3A Span Conc. 21.0 Bias Results Standard Cal.Bias Difference Error Gas %%%% Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 Bias Results Standard Cal.Bias Difference Error Gas % % %% StatusZero0.0 0.0 0.0 0.0 Pass Span 8.6 8.5 -0.1 -0.6 Pass V1l'~1' :::~ SOLUTIONS 41 RUN QATA Number 1 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 Time Oz COZ /o /o Port a 09:41 20.9 0.0 09:42 20.8 0.0 09:43 20.8 0.1 09:44 20.9 0.1 09:45 20.9 0.1 09:46 20.9 0.1 09:47 20.9 0.1 09:48 20.9 0.1 09:49 20.9 0.1 09:50 20.9 0.1 09:51 20.9 0.1 09:52 20.9 0.1 09:53 20.9 0.1 09:54 20.9 0.1 09:55 20.9 0.1 09:56 20.9 0.1 09:57 20.9 0.1 09:58 20.9 0.1 09:59 20.9 0.1 10:00 20.9 0.1 10:01 20.9 0.1 10:02 20.9 0.1 10:03 20.9 0.1 10:04 20.9 0.1 10:05 20.9 0.1 10:06 20.9 0.1 10:07 21.0 0.1 10:08 20.9 0.1 10:09 21.0 0.1 10:10 21.0 0.1 10:11 21.0 0.1 10:12 21.0 0.1 10:13 21.0 0.1 10:14 21.0 0.1 10:15 21.0 0.1 10:16 21.0 0.1 10:17 21.0 0.1 10:18 21.0 0.1 10:19 21.0 0.1 10:20 21.0 0.1 42 RUN DATA Number 1 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 Time OZ COZ /o /o 10:21 21.0 0.1 10:22 21.0 0.1 10:23 21.0 0.1 10:24 21.0 0.1 10:25 20.9 0.1 10:26 21.0 0.1 10:27 21.0 0.1 10:28 21.0 0.1 10:29 21.0 0.1 Port B 10:52 20.9 0.0 10:53 20.9 0.0 10:54 20.9 0.1 10:55 20.9 0.1 10:56 20.9 0.1 10:57 20.9 0.1 10:58 20.9 0.1 10:59 20.9 0.1 11:00 20.9 0.1 11:01 20.9 0.1 11:02 20.9 0.1 11:03 20.9 0.1 11:04 20.9 0.1 11:05 20.9 0.1 11:06 20.9 0.1 11:07 20.9 0.1 11:08 20.9 0.1 11:09 21.0 0.1 11:10 21.0 0.1 11:11 21.0 0.1 11:12 21.0 0.1 11:13 21.0 0.1 11:14 21.0 0.1 11:15 21.0 0.1 11:16 21.0 0.1 11:17 21.0 0.1 11:18 21.0 0.1 11:19 21.0 0.1 11:20 21.0 0.1 11:21 21.0 0.1 11:22 21.0 0.1 .._, ~-~ ;; 50LUTIONS 43 RUN DATA Number 1 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CW Source: Division Stack Calibration 1 Date: 16 Jan 2019 Time Os COs /o /o 11:23 21.0 0.1 11:24 21.0 0.1 11:25 21.0 0.1 11:26 21.0 0.1 11:27 21.0 0.1 11:28 21.0 0.1 11:29 21.0 0.1 11:30 21.0 0.1 11:31 21.0 0.1 11:32 21.0 0.1 11:33 21.0 0.1 11:34 21.0 0.1 11:35 21.0 0.1 11:36 21.0 0.1 11:37 21.0 0.1 11:38 21.0 0.1 11:39 21.0 0.1 11:40 21.0 0.1 End Run 1 Avgs 21.0 0.1 V1l'F~T :; SOLUTIONS 44 RUN SUMMARY Number 1 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 02 COZ Method EPA 3A EPA 3A Conc. Units Time: 09:40 to 11:40 Run Averages 21.0 0.1 Pre-run Bias at 07:58 Zero Bias 0.0 0.0 Span Bias 12.0 8.5 Span Gas 12.0 8.9 Post-run Bias at 12:04 Zero Bias 0.0 0.1 Span Bias 12.0 8.5 Span Gas 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 21.0 0.0 V11~~" SOLUTIONS 45 BIAS AND CALIBRATION DRIFT Number 2 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 Start Time: 12:04 OZ Method: EPA 3A Span Conc. 21.0 Bias Results Standard Cal.Bias Difference Error Gas %% %% Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass Standard Initial* Gas °/a Zero 0.0 Span 12.0 *Bias No. 1 Calibration Drift Final Difference Drift 0.0 0.0 0.0 12.0 0.0 0.0 St1tUS Pass Pass COs Method: EPA 3A Span Conc. 16.6 Bias Results Standard Cal.Bias Difference Error Gas %% %% Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.6 8.5 -0.1 -0.6 Pass Standard Initial* Gas Zero 0.0 Span 8.5 *Bias No. 1 Calibration Drift Final Difference Drift 0.1 0.1 0.6 8.5 0.0 0.0 Status Pass Pass V'1/~1'` SOLUTIONS -. 46 RUN DATA Number 2 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 Time Oz CO2 /o /o Port a 13:12 20.8 0.0 13:13 20.8 0.0 13:14 20.9 0.0 13:15 20.9 0.0 13:16 20.9 0.1 13:17 20.9 0.1 13:18 20.9 0.1 13:19 20.9 0.1 13:20 20.9 0.1 13:21 20.9 0.1 13:22 20.9 0.1 13:23 20.9 0.1 13:24 20.9 0.1 13:25 20.9 0.1 13:26 20.9 0.1 13:27 20.9 0.1 13:28 20.9 0.1 13:29 20.9 0.1 13:30 20.9 0.1 13:31 20.9 0.1 13:32 20.9 0.1 13:33 20.9 0.1 13:34 20.9 0.1 13:35 20.9 0.1 13:36 20.9 0.1 13:37 20.9 0.1 13:38 20.9 0.1 13:39 20.9 0.1 13:40 20.9 0.1 13:41 20.9 0.1 13:42 20.9 0.1 13:43 20.9 0.1 13:44 20.9 0.1 13:45 20.9 0.1 13:46 20.9 0.1 13:47 20.9 0.1 13:48 20.9 0.1 13:49 20.9 0.1 13:50 20.9 0.1 13:51 20.9 0.1 47 RUN DATA Number 2 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 Time OZ COZ /o /o 13:52 20.9 0.1 13:53 20.9 0.1 13:54 20.9 0.1 13:55 20.9 0.1 13:56 20.9 0.1 13:57 20.9 0.1 13:58 20.9 0.1 13:59 20.9 0.1 14:00 20.9 0.1 Port B 14:25 20.8 0.0 14:26 20.8 0.0 14:27 20.9 0.1 14:28 20.9 0.1 14:29 20.9 0.1 14:30 20.9 0.1 14:31 20.9 0.1 14:32 20.9 0.1 14:33 20.9 0.1 14:34 20.9 0.1 14:35 20.9 0.1 14:36 20.9 0.1 14:37 20.9 0.1 14:38 20.9 0.1 14:39 20.9 0.1 14:40 20.9 0.1 14:41 20.9 0.1 14:42 20.9 0.1 14:43 20.9 0.1 14:44 20.9 0.1 14:45 20.9 0.1 14:46 20.9 0.1 14:47 20.9 0.1 14:48 20.9 0.1 14:49 20.9 0.1 14:50 20.9 0.1 14:51 20.9 0.1 14:52 20.9 0.1 14:53 20.9 0.1 14:54 20.9 0.1 14:55 20.9 0.1 V1l'E~"i' SOLUTIONS:• 48 RUN DATA Number 2 Client:Chemours Project Number:15418.002.009Location:CHEMOURS Operator:CWSource:Division Stack Calibration 1 Date:16 Jan 2019 Time Os COZ /o /o 14:56 20.9 0.1 14:57 20.9 0.1 14:58 20.9 0.1 14:59 20.9 0.1 15:00 20.9 0.1 15:01 20.9 0.1 15:02 20.9 0.1 15:03 20.9 0.1 15:04 20.9 0.1 15:05 20.9 0.1 15:06 20.9 0.1 15:07 20.9 0.1 15:08 20.9 0.1 15:09 20.9 0.1 15:10 20.9 0.1 15:11 20.9 0.1 15:12 20.9 0.1 15:13 20.9 0.1 End Run 2 Avgs 20.9 0.1 V1I~T :; SOWTIONS 49 RUN SUMMARY Number 2 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 02 COs Method EPA 3A EPA 3A Conc. Units Time: 13:11 to 15:13 Run Averages 20.9 0.1 Pre-run Bias at 12:04 Zero Bias 0.0 0.1 Span Bias 12.0 8.5 Span Gas 12.0 8.9 Post-run Bias at 15:16 Zero Bias 0.0 0.0 Span Bias 12.0 8.5 Span Gas 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.0 V~~- ,:; SOLUTIONS 50 BIAS AND CALIBRATION DRIFT Number 3 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 16 Jan 2019 Start Time: 15:16 OZ Method: EPA 3A Span Conc. 21.0 Bias Results Standard Cal.Bias Difference Error Gas %% %%StatusZero0.0 0.0 0.0 0.0 PassSpan12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas % % %%StatusZero0.0 0.0 0.0 0.0 PassSpan12.0 12.0 0.0 0.0 Pass *Bias No. 2 COz Method: EPA 3A Span Conc. 16.6 Bias Results Standard Cal.Bias Difference Error Gas %% %%StatusZero0.0 0.0 0.0 0.0 PassSpan8.6 8.5 -0.1 -0.6 Pass Calibration Drift Standard Initial*Final Difference Drift Gas % % % %StatusZero0.1 0.0 -0.1 -0.6 PassSpan8.5 8.5 0.0 0.0 Pass*Bias No. 2 V1l'F~T'` '; SOLUTIONS . 51 METHODS AND ANALYZERS Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Date: 17 Jan 2019 t Folders.A-F\Chemours Fayetteville\15418.002.009 Fayetteville Jan 2019 Carbon Bed Test\Data\Division\0117 Program Version: 2.1, built 19 May 2017 File Version: 2.03 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte Method Analyzer Make, Model &Serial No. Full-Scale Output, my Analyzer Range, Span Concentration, Channel 2 Analyte Method Analyzer Make, Model &Serial No. Full-Scale Output, my Analyzer Range, Span Concentration, Oz EPA 3A, Using Bias Servomex 4900 10000 25.0 21.0 CO2 EPA 3A, Using Bias Servomex 4900 10000 20.0 16.6 V'V'F~T`:; SOLUTIONS 52 CALIBRATION DATA Number 1 Client:Chemours Project Number:15418.002.009Location:CHEMOURS Operator:CWSource:Division Stack Date:17 Jan 2019 Start Time: 07:32 OZ Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards Cylinder ID 12.0 CC18055 21.0 SG9169108 Calibration Results Zero 8 my Span, 21.0 % 8020 my Curve Coefficients Slope Intercept 381.5 8 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards Cylinder ID 8.9 CC18055 16.6 SG9169108 Calibration Results Zero 1 my Span, 16.6 % 8293 my Curve Coefficients Slope Intercept 500.1 1 .~vv~ST SOLUTIONS 53 CALIBRATION ERROR DATA Number 1 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019 Start Time: 07:32 OZ Method: EPA 3A Span Conc. 21.0 Slope 381.5 Intercept 8.0 Standard Zero 12.0 21.0 Result 0.0 12.0 21.0 Difference 0.0 0.0 0.0 Error 0.0 0.0 0.0 Status Pass Pass Pass COz Method: EPA 3A Span Conc. 16.6 Slope 500.1 Intercept 1.0 Standard Result Difference Error StatusZero0.0 0.0 0.0 Pass8.9 8.6 -0.3 -1.8 Pass16.6 16.6 0.0 0.0 Pass .~_.~ T :; SOLUTIONS 54 BIAS Number 1 Client:Chemours Project Number:15418.002.009Location:CHEMOURS Operator:CWSource:Division Stack Calibration 1 Date:17 Jan 2019 Start Time: 07:36 Os Method: EPA 3A Span Conc. 21.0 Bias Results Standard Cal.Bias Difference Error Gas %% % % Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 16.6 Bias Results Standard Cal.Bias Difference Error Gas %% % % Status Zero 0.0 0.0 0.0 0.0 Pass Span 8.6 8.5 -0.1 -0.6 Pass V11~~":; SOLUTIONS ~~ 55 RUN DATA Number 3 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019 Time OZ COz /o /o Port A 08:42 20.9 0.0 08:43 20.9 0.0 08:44 20.9 0.0 08:45 20.9 0.0 08:46 20.9 0.1 08:47 20.9 0.1 08:48 20.9 0.1 08:49 20.9 0.1 08:50 20.9 0.1 08:51 20.9 0.1 08:52 20.9 0.1 08:53 20.9 0.1 08:54 20.9 0.1 08:55 21.0 0.1 08:56 20.9 0.1 08:57 21.0 0.1 08:58 21.0 0.1 08:59 21.0 0.1 09:00 21.0 0.1 09:01 21.0 0.1 09:02 20.9 0.1 09:03 20.9 0.1 09:04 21.0 0.1 09:05 20.9 0.1 09:06 20.9 0.1 09:07 21.0 0.1 09:08 20.9 0.1 09:09 21.0 0.1 09:10 21.0 0.1 09:11 21.0 0.1 09:12 21.0 0.1 09:13 21.0 0.1 09:14 21.0 0.1 09:15 21.0 0.1 09:16 21.0 0.1 09:17 21.0 0.1 09:18 21.0 0.1 09:19 21.0 0.1 09:20 21.0 0.1 09:21 21.0 0.1 56 RUN DATA Number 3 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019 Time Oz COZ /o /o 09:22 21.0 0.1 09:23 21.0 0.1 09:24 21.0 0.1 09:25 21.0 0.1 09:26 21.0 0.1 09:27 21.0 0.1 09:28 21.0 0.1 09:29 21.0 0.1 09:30 21.0 0.1 Port B 09:47 20.8 0.0 09:48 20.8 0.0 09:49 20.8 0.1 09:50 20.9 0.1 09:51 20.9 0.1 09:52 20.9 0.1 09:53 20.9 0.1 09:54 20.9 0.1 09:55 20.9 0.1 09:56 20.9 0.1 09:57 20.9 0.1 09:58 21.0 0.1 09:59 21.0 0.1 10:00 20.9 0.1 10:01 21.0 0.1 10:02 21.0 0.1 10:03 21.0 0.1 10:04 21.0 0.1 10:05 21.0 0.1 10:06 21.0 0.1 10:07 21.0 0.1 10:08 21.0 0.1 10:09 21.0 0.1 10:10 21.0 0.1 10:11 21.0 0.1 10:12 21.0 0.1 10:13 21.0 0.1 10:14 21.0 0.1 10:15 21.0 0.1 10:16 21.0 0.1 10:17 21.0 0.1 57 RUN DATA Number 3 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019 Time 02 COZ /o /o 10:18 21.0 0.1 10:19 21.0 0.1 10:20 21.0 0.1 10:21 21.0 0.1 10:22 21.0 0.1 10:23 21.0 0.1 10:24 21.0 0.1 10:25 21.0 0.1 10:26 21.0 0.1 10:27 21.0 0.1 10:28 21.0 0.1 10:29 21.0 0.1 10:30 21.0 0.1 10:31 21.0 0.1 10:32 21.0 0.1 10:33 21.0 0.1 10:34 21.0 0.1 10:35 21.0 0.1 End Run 3 Avgs 21.0 0.1 .._~ T :; SOLUTIONS -. 58 RUN SUMMARY Number 3 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019 02 COz Method EPA 3A EPA 3A Conc. Units Time: 08:41 to 10:35 Run Averages 21.0 0.1 Pre-run Bias at 07:36 Zero Bias 0.0 0.0 Span Bias 12.0 8.5 Span Gas 12.0 8.9 Post-run Bias at 10:43 Zero Bias 0.0 0.1 Span Bias 12.0 8.4 Span Gas 12.0 8.9 Run averages corrected for the average of the pre-run and post-run bias 21.0 0.0 V'V'F~T~ SOLUTIONS 59 BIAS AND CALIBRATION DRIFT Number 2 Client: Chemours Project Number: 15418.002.009Location: CHEMOURS Operator: CWSource: Division Stack Calibration 1 Date: 17 Jan 2019 Start Time: 10:43 Os Method: EPA 3A Span Conc. 21.0 Bias Results Standard Cal.Bias Difference Error Gas % % %%StatusZero0.0 0.0 0.0 0.0 PassSpan12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference DriftGas%% % %StatusZero0.0 0.0 0.0 0.0 PassSpan12.0 12.0 0.0 0.0 Pass*Bias No. 1 COs Method: EPA 3A Span Conc. 16.6 Bias Results Standard Cal.Bias Difference Error Gas % % %%StatusZero0.0 0.1 0.1 0.6 PassSpan8.6 8.4 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %% %%StatusZero0.0 0.1 0.1 0.6 PassSpan8.5 8.4 -0.1 -0.6 Pass*Bias No. 1 V1l'F~T':; SOLUTIONS -. 60 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 APPENDIX C LABORATORY ANALYTICAL REPORT Note: The analytical report is included on the attached CD. 61 Client Sample Results Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14019-1Project/Site: Division Stack Carbon Bed Inlet - M0010 Client Sample ID: 0-2347,2348 DIV VEN CARBON BED INLET Lab Sample ID: 140-14019-1 ;~i1~iTi ~ ~ Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01!20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac', HFPO-DA 4.51 0.126 0.0136 ug/Sample 01/23/1914:18 02/01!1911:03 1 Surrogate %Recovery Qual~er Limits Prepared Analyzed Dil Facii, 13C3 HFPO-DA 96 50 _ 200 01/73/19 14:98 02/01/19 11:03 1 Client Sample ID: 0-2349,2350,2352 DIV VEN CARBON BED Lab Sample ID: 140-14019-2INLET R1 M0010 BH Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Samale Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDl Unit D Prepared Analyzed Dil Facj HFPO-DA 365 ~I 17.5 3.50 ug/Sample 01/22/1912:55 02/01/1910:04 50 Surrogate %Recovery Qualifier Limits Prepared Analyzed Di/ Facj 13C3 HFPO-DA 96 D 50 _ 200 01/22/19 12:55 02/01/19 10:04 50 Client Sample ID: 0-2351 DIV VEN CARBON BED INLET R1 Lab Sample ID: 140-14019-3M0010 IMP 1,283 CtJNDENSATE Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA ND H 0.200 0.0102 ug/Sample 01/30/19 04:42 02/04/19 11:28 1 Surrogate %Recovery Qualifier ~~ Limits Prepared Analyzed Di! Fac13C3 HFPO-DA 71 50 - 200 01/30/19 04:42 02/04/19 11:28 1 Client Sample ID: 0-2353 DIV VEN CARBON BED INLET R1 Lab Sample ID: 1 40-1 401 9-4 M4010 BREAKTHROUGH XAD-2 RESlN TUBE Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 0.102 J 0.200 0.0400 ug/Sample 01!22/1912:55 02/01/1910:07 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Di/ Fac~ 13C3 HFPO-DA 74 50 - 200 01/22/19 12:55 02/01/19 10:07 1 TestAmerica Knoxville 62 Client Sample Results Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14019-1Project/Site: Division Stack Carbon Bed Inlet - M0010 Client Sample ID: 0-2354,2355 DIV VEN CARBON BED INLET Lab Sample ID: 140-14019-5R2 M0010 FH Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train_. Method: 8321A - PFOA and PFOS i Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac~ HFPO-DA 4.40 0.126 0.0136 ug/Sample 01/23/1914:18 02/01/1911:09 1 Surrogate %Recovery Qua/i~er Limits Prepared Ana/yzed Di/ Fac13C3 HFPO-DA 93 50 _ 200 01/23/19 14:78 02/01/19 11:09 1 Client Sample ID: 0-2356,2357,2359 DIV VEN CARBON BED _______ Lab Sample ID: 140-14019-6INLET R2 M0010 BH Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS j Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 686 10.0 2.00 ug/Sample 01!2211912:55 02/01/1910:11 50 Surrogate %Recovery Qualifier Limits Prepared Analyzed Di/ Fac~, 13C3 HFPO-DA 80 D 50-200~_...01/22/19 12:55 02/01/19 10:11 50 Client Sample ID: 0-2358 DIV VEPI CARBON BED INLET R2 Lab Sample ID: 140-14019-7M0010 IMP 1,2&3 CONDENSATE Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train '' Method: 8321A - HFPO-DA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 1.00 H 0.200 0.0102 ug/Sample 01/30/19 04:42 02/04/19 11:31 1 Surrogate %Recovery Qual~er Limits Prepared Analyzed Dil Faci 13C3 HFPO-DA 83 50 - 200 01/30/19 04:42 02/04/19 11:31 1 Client Sample ID: 0-2364 DIV VEN CARBON BED INLET R2 Lab Sample ID: 140-14019-8M0010 BREAKTHROUGH XAD-2 RESIN TUBE Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS1 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac~ HFPO-DA NDi 0.200 0.0400 ug/Sample 01/22/1912:55 02/01/1910:14 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 67 50-200 0122/19 12:55 02/01/19 70:14 7 TestAmerica Knoxville 63 Client Sample Results Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14019-1Project/Site: Division Stack Carbon Bed Inlet - M0010 Client Sample ID. 0-2361,2362 DIV VEN CARBON BED INLET Lab Sample ID: 140-14019-9 R3 M0010 FH Date Collected: 01/17119 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS '~ Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac HFPO-DA 5.76 0.126 0.0136 ug/Sample 01/23/1914:18 02/01/1911:12 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 93 50-200 01/23/19 14:18 02/01/19 11:12 1 Client Sample ID: 0-2363,2364,2366 DIV VEN CAR64N BED Lab Sample ID: 140-14019-10 INLET R3 M0010 BH Date Collected: 01/17/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac HFPO-DA 625 10.0 2.00 ug/Sample 01/22/1912:55 02/01/1910:17 50 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac '; 13C3 HFPO-DA 77 D 50-200 01/22/19 12:55 02/01/19 70:17 50 __lient Sample ID: 0-2365 DIV VEN CARBON BED INLET R3 Lab Sample ID: 140-14019-11 M0010 IMP 1,283 CONDENSATE Date Collected: 01/17!19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train,. ~ Method: 8321A - HFPO-DA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac HFPO-DA 0.269 0.200 0.0102 ug/Sample 01/30/19 04:42 02/04/19 11:38 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 81 50-200 01/30/19 04:42 02/04/19 11:38 1 _. -Client Sample ID: 0-2367 DIV VEN CARBON BED INLET R3 Lab Sample ID: 140-14019-12 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Date Collected: 01!17/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS ~ Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac HFPO-DA 0.380 0.200 0.0400 ug/Sample 01/22/1912:55 02!01/1910:20 1 Surrogate %Recovery Qual~er Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 64 50 - 200 01/22/19 12:55 02/01/19 10:20 1 TestAmerica Knoxville 64 Client Sample Results Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14020-1Project/Site: Division Stack Carbon Bed Outlet - M0010 Client Sample ID: D-2677,2678 DIV VEN CARBON BED Lab Sample ID: 140-14020-1OUTLET R1 M0010 FH Date Collected: 01116/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 9.53 0.126 0.0136 ug/Sample 01/23/1914:18 02/01/1911:16 1 Surrogate %Recovery Qual~er Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 88 50 _ 200 01/23/19 14:18 02/01/19 11:16 1 Client Sample ID: D-2679,2684,2682 DIV VEN CARBON BED Lab Sample ID: 140-14020-2OUTLET R1 M0010 BH Date Collected: 01/16/19 Q0:00 Matrix: AirDate Received: 01/20/19 10:OQ Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 19.4 0.325 0.0650 ug/Sample 01/22/1912:55 02/01!1910:24 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac4 13C3 HFPO-DA 66 50 - 200 01/22/19 12:55 02/01/19 10:24 1 Client Sample ID: D-2681 DIV VEN CARBON BED OUTLET R1 Lab Sample ID: 140-14020-3M0010 IMP 1,23 CONDENSATE Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train ~i Method: 8321A - HFPO-DA Analyte Result Qualifier R~MDL Unit D Prepared Analyzed Dil Faci HFPO-DA ND H 0.204 0.0104 ug/Sample 01/30/19 04:42 02/04/19 11:41 1 i Surrogate %Recovery Qual~er Limits Prepared Analyzed DilFac13C3 HFPO-DA 87 50 _ 200 01/30/19 04:42 02/04/19 11:41 1 Client Sample ID: D-2683 DIV VEN CARBON BED OUTLET R1 Lab Sample ID: 140-14020-4M0010 BREAKTHROUGH XAD-2 RESIN TUBE Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS I Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA ND 0.325 0.0650 ug/Sample 01122/1912:55 02/01/1910:27 1 "! Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 84 50-200 Oi/22/19 12:55 02/01/19 70:27 7 TestAmerica Knoxville 65 Client Sample Results Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14020-1Project/Site: Division Stack Carbon Bed Outlet - M0010 Client Sample ID: D-2684,2685 DIV VEN CARBON BED Lab Sample ID: 140-14020-5OUTLET R2 M0010 FH Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 7.36 0.101 0.0109 ug/Sample 01/23/1914:18 02/01/1911:19 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 81 50 _ 200 01/23/19 14:18 02/01/19 11:19 1 Client Sample ID: D-2686,2687,2689 DIV VEN CARBON BED Lab Sample ID: 140-14020-6OUTLET R2 M0010 BH Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train~ _ _ Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII FacHFPO-DA 24.1 0.400 0.0800 ug/Sample 01/22/1912:55 02/01/1910:33 1 Surrogate %Recovery Quali~ei Limits Prepared Analyzed Dil Fac ~_.13C3 HFPO-DA 72 50 - 200 01/22/19 12:55 02/01/19 10:33 1 Client Sample ID: D-2688 DIV VEN CARBON BED OUTLET R2 Lab Sample ID: 140-14020-7M0010 IMP 1,2&3 CONDENSATE Date Collected: 01/16/19 40:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train ,' Method: 8321A - HFPO-DA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA ND H 0.210 0.0107 ug/Sample 01!30/19 04:42 02/04/19 11:44 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac~ 13C3 HFPO-DA 86 50-200 01/30/19 04:42 02!04/19 17:44 1 Client Sample ID: D-2690 DIV VEN CARBON BED OUTLET R2 Lab Sample ID: 140-'14020-8M0010 BREAKTHROUGH XAD-2 RESIN TUBE Date Collected: 01/16/19 00:00 Matrix: AirDate Received: 01!20119 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 0.237 0.200 0.0400 ug/Sample 01/22/1912:55 02/01/1910:37 1 i Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac13C3 HFPO-DA 59 50 - 200 01/22/19 12:55 02/01/19 10:37 1 TestAmerica Knoxville 66 Client Sample Results Client: Chemours Company FC, LLC The TestAmerica Job ID: 140-14020-1Project/Site: Division Stack Carbon Bed Outlet - M0010 Client Sample ID: D-2691,2692 DIV VEN CARBON BED Lab Sample ID: 140-14020-9OUTLET R3 M0010 FH Date Collected: 01/17/19 00:00 Matrix: AirDate Received: 01120/19 10:00 Sample Container: Air Train ~- jMethod: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DA 11.8 0.101 0.0109 ug/Sample 01/28/1910:24 02/04/1910:32 1i j Surrogate %Recovery Qualifier Limits Prepared Analyzed Di! Fac13C3 HFPO-DA 76 50 _ 200 01/28/19 10:24 02/04/19 70:32 1 Client Sample ID: D-2693,2694,2696 DIV VEN CARBON BED Lab Sample ID: 140-14020-10OUTLET R3 M0010 BH Date Collected: 01/17/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil FacHFPO-DAi,27.2 0.300 0.0600 ug/Sample 01/24/19 07:31 01/30/19 13:40 1 Surrogate %Recovery Qualifier Limits Prepared Ana/yzed Dil Fac13C3 HFPO-DA 68 50 - 200 01/24/19 07:31 01/30/19 13:40 1 Client Sample ID: D-2695 DIV VEN CARBON. BED OUTLET R3 Lab Sample ID: 140-14020-11M0010 IMP 1,2&3 CONDENSATE Date Collected: 01/17/18 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac': HFPO-DA ND 0.204 0.0104 ug/Sample 01/30/19 04:42 02/04/19 11:47 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Facj 13C3 HFPO-DA 88 50-200 01/30/19 04:42 02104/19 71:47 1 Client Sample ID: D-2697 DIV VEN CARBON BED OUTLET R3 Lab Sample ID: 140-14024-12M0010 BREAKTHROUGH XAD-2 RESIRI TUBE Date Collected: 01/17/19 00:00 Matrix: AirDate Received: 01/20/19 10:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte Result Qualifier RL MDL Unit D Prepared Anatyzed DiI FacHFPO-DA ND 0.200 0.0400 ug/Sample 01/24/19 0731 01/30/19 13:43 1 Surrogate %Recovery Qua/der Limits Prepared Ana/yzed Dil Fac13C3 HFPO-DA 77 50 - 200 01/24/19 07.•31 01/30/19 73:43 1 TestAmerica Knoxville 67 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 APPENDIX D SAMPLE CALCULATIONS 68 SAMPLE CALCULATIONS FOR ~IFPO DIMER ACID (METHOD 0010) Client: Chemoars Test Number: Run 1 Test Location: CBed Inlet L HFPO Dimer Acid concentration, Ibs/dscf. W x 2.2046 x 10-9 Concl = ----------------------- Vm(std) 369.6 x 2.2046 x 10-9 Conc1 = ------------------------------ 59.149 Concl = 1.38E-08 Where: W = Weight of HFPO Dimer Acid collected in sample in ug. Concl = HFPO Dimer Acid concentration, Ibs/dscf. 2.2046x10-9 = Conversion factor from ug to Ibs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 = W / (Vm(std) x 0.02832) Conc2 = 369.6 / (59.149 x 0.02832 ) Conc2 = 220.6 Where: Conc2 = HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. Plant: Fayetteville, NC Test Date: 1/16/2019 Test Period: 0941-1140 2!8!201912:55 PM 011619 CBed IN 69 3. HFPO Dimer Acid mass emission rate, lbs/hr. MRI~~„~~~ =Concl x Qs(std) x 60 min/hr MRI~~„~~~ =138E-OS x 16202 x 60 MRI~t„~~~ =1.34E-02 Where: MFtI~~,~~~ =HFPO Dimer Acid mass emission rate, Ibs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(tn~et) =IV1R1~o~~~ x 453.59 / 3600 MR2~~,~~~ =1.34E-02 x 453.59 /3600 MR2~~,~~~ =1.69E-03 Where: MR2~i~i~~ =HFPO Dimer Acid mass emission rate, g/sec. 453.59 =Conversion factor from pounds to grams. 3600 =Conversion factor from hours to seconds. 5. HFPO Dimer Acid Removal Efficiency, ~ =N~1(InIM) - ~~1(OuNet) MRI (Inlet) RE _(4.18E-2) - (8.53E-4) ---------------------- 4.18E-02 RE =98.0 Where: RE =Carbon Bed Removal Efficiency. MR1~I„~~~ =Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr. MRl~o„~~~~ =Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr. 2!8/201912:55 PM 011619 CBed IN 70 EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOHINETICS Client: Chemours Facility: Fayetteville. NC Test Number. Run 1 Test Date: 1/16119 Test Location: VEN-Carbon Bed Inlet Test Period: 0941-1140 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x (Pb + ------------ ) 13.6 Vm(std) _ --------------------------------------- (Tm + 460) 1.776 17.64 x 0.9852 x 56.817 x (3020 + __.______________ ~ 13.6 Vm(std) _ --------------------------------------------------------=59.149 4633 + 460 Where: Vm(std) = Volume of gas sample measured by the dry gas meter, corrected [o standard conditions, dscf. Vm =Volume of gas sample measured by the dry gas meter et meter wnditions, dcf. Pb =Barometric Pressure, in Hg. delt H =Average pressure drop across [he orifice meter, in H2O Tm =Average dry gas meter temperature ,deg F. Y =Dry gas meter calibration factor. 17.64 =Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 =Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std) _ (0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std) = (0.04707 x 2.0) + (0.04715 x 14.8) = 0.79 Where: Vw(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc = Volume of liquid wndensed in impiugers, ml. Wwsg = Weig6t of water vapor collected in silica gei, ~. 0.04707 = Factor which includes the density of water (0.002201 Ib/ml), the molecular weight of water (18.01bAb-mole), the ideal gas constant 21.85 (in. Hg) {ft3)/Ib-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 = Factor which includes the molecular weight of water (18.016/Ib-mole), the ideal gas consqut 21.85 (in. Hg) (fr3)/16-mole)(deg R); absolute temperature at standazd conditions (528 deg R), absolute pressure at sbndard conditions (29.92 in. Hg), and 453.6 gllh, ft3/g. 2/81201912:56 PM 011619 CBed IN71 3. Moisture content Vw(std) bws = ---------------------- Vw(std) + Vm(std) 0.79 bws = -------------------- = 0.013 0.79 + 59.149 Where: bws = Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md = 1 - bws Md = 1 - 0.013 = 0.987 Where: Md = Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/Ib-mole. MWd=(0.4410x%COy)+(0320x%O~)+(0280x(%N~+%CO)) MWd=(0.440x0.0)+(0320x20.9)+(0.280x(79.1+0.00)) MWd =28.84 Where: MWd =Dry molecular weight ,16!16-mole. CO2 =Percent carbon dioxide by volume, dry basis. O, =Percent oxygen by volume, dry basis. %N~ =Percent nitrogen by volume, dry basis. CO =Percent carbon monoxide by volume, dry basis. 0.440 =Molecular weight of carbon dioxide, divided by 100. 0320 =Molecular weight of oxygen, divided by 100. 0280 =Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), Ib/Ib-male. MWs=(MWdxMd)+(18x(1-Md)) MWs=(28.84x0.987)+(18(1-0.987))=28.69 Where: MWs =Molecular weight ofwet gas, Ibflb-mole. 18 =Molecular weight of water, lb/Ib-mole. 2!8/201912:56 PM 011619 CBed IN72 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg} Vs = 85.49 x Cp x ((delt p)"")avg x (------------ )~~' Ps x MWs 529 Vs =85.49 x 0.84 x 0.77436 x (-------------------)^I!2 = 43.8 29.74 x 28.69 Where: Vs =Average gas stream velocity, fr/sec. 85.49 =Pitot tube constant, fUsec x -------------------------------- (deg R)(in HBO) Cp =Pitot tube coefficient, dimensionless. Ts =Absolute gas stream temperature, deg R = Ts, deg F + 460. P(staric) Ps =Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p =Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacflmin. Qs(act) =60 x Vs x As Qs(act) =60 x 43.8 x 631 = 16571 Where: Qs(act) =Volumetric flow rate o£wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft'. 60 =Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std) =17.64 x Md x ---- x Qs(acC) Ts 29.74 Qs(std) =17.64 x 0.987 x ------------------- x 16571 529.4 Qs(std) = 16202 Where: Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscfJmin. 2!8/201912:56 PM 011619 CBed IN73 10. Isokinetic variation calculated from intermediate values, percent. 17327 x Ts x Vm(std) I = --------------------------------- VsxOxPsxMdx(Dn)' 17.327 x 529 x 59.149 I= --------------------------------------------- = 92.5 43.8 x 96 x 29.74 x 0.987 x (0.218)^2 Where: I = Percent of isokinetic sampling. O = Total sampling time, minutes. Dn = Diameter of nozzle, inches. 17327 = Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle DJ4, conversion of square feet to square inches (144),conversion ofseconds to minutes (60), and wnversion to percent (100), (in. Hgl(in'1(minl (deg R)(ft~)(sec) 2/8/201912:56 PM 011619 CBed IN74 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 APPENDIX E EQUIPMENT CALIBRATION RECORDS 75 INTERFERENCE CHECK Date: 12/4/14-12/5/14 Analyzer Twe: Servomex - O, Model No: 4900 Serial No:49000-652921 Calibration Saan: 21.09 Pollutant 21.09 % O, - CC418692 INTERFERENT GAS ANALYZER RESPONSE OF CALIBRATIONSP~~.~INTERFERENT GAS RESPONSE (/)INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (% ) GOB (30.17% CG 199689)0.00 -0.01 0.00 NO (445 ppm CC346681)0.00 0.02 0.11 NQ (23.78 ppm CC500749)NA NA NA N,O (90.4 ppm CC352661)0.00 0.05 024 CO (461.5 ppm XC006064B)0.00 0.02 0.00 SO: (451.2 ppm GC409079)0.00 0.05 023 CHq (453. t ppm SG901795)NA NA NA H, (552 ppm AI.M048043)0.00 0.09 0.44 HCl (45.1 ppm CC 17830)0.00 0.03 0.14 NH3 (9.69 ppm CC58181)0.00 OA(0.03 TOTAL INTERFERENCE RESPONSE 1.Z0 METHOD SPECIFICATION <2.5 ~'~ The larger of the absolute values obtained for the interferent tested with and without khe pollutant present was used in summing the interferences. c:~~l.~~.~., Chad Walker e flw1; 201402-Sem~men 4900 76 INTERFERENCE CHECK Date: 12/4/14-12/5/14 Analvur Twe: Servomex - CO, Model No: 4900 Serial No: 49000-652921 Calibration Soan: 16.65% Pollutant: 16.65%u CO, - CC418692 INTERFERENT GAS ANALYZER RESPONSE ~ OF CALIBRATION Sp`~~•~ INTERFERENT GAS RESPONSE (%)INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%) CO, (30.17% CC 199689)NA NA NA NO (445 ppm CC346681)0.00 0.02 0.10 NOS (23.78 ppm CC500749)0.00 0.00 0.02 N,O (90.4 ppm CC352661)0.00 0.01 0.04 CO (461.5 ppm XC006064B)0.00 0.01 0.00 SO: (451.2 ppm CC409079)0.00 0.11 0.64 CHQ (453.1 ppm SG901795)0.00 0.07 0.44 H: (552 ppm ALM048043)0.00 0.04 p,Zz HCl (45.1 ppm CC 17830)0.10 0.06 0.60 NH3 (9.69 ppm CC58181)0.00 0.02 0.14 TOTAL INTERFERENCE RESPONSE 2.19 METHOD SPECIFICATION ~ Z.g ~'~ The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker c Clxsk 2U 14CO2.Servomcz 4900 77 it an Air Liquide company CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number: E03N179E15AOOE4 Reference Number: Cylinder Number: CC18055 Cylinder Volume: Laboratory: 124 -Riverton (SAP) - NJ Cylinder Pressure: PGVP Number: 852018 Valve Outlet: Gas Code: CO2,02,BALN Certification Date: Airgas Specialty Gases Airgas USA, LLC 60o Union Landing Road Cinnaminson, NJ o80~/-0000 Airgas.com 82-401288926-1 150.5 CF 2015 PSIG 590 Sep 04, 2018 Expiration Date: Sep 04, 2026 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA600/R-121531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analyticaluncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on avolume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative AssayConcentrationConcentration Method Uncertainty Dates CARBON DIOXIDE 9.000 %8.864 % G1 +/- 0.7% NIST Traceable 09/04/2018OXYGEN 12.00 %12.00 % G1 +/- 0.4% NIST Traceable 09/04/2018NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 13060629 CC413730 13.359 %CARBON DIOXIDE/NITROGEN +/- 0.6%May 09, 2019 ANALYTICAL EQUIPMENT InstrumenUMake/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-0O2-19GYCXEG NDIR Aug 09, 2018Horiba MPA 510-02-7TWMJ041 Paramagnetic Aug 09, 2018 Triad Data Available Upon Request Signature on file Approved for Release Page 1 of 82-401288926-1 78 an Air Liquide company CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number: E03N162E15A0224 Reference Number: Cylinder Number: SG9169108 Cylinder Volume:Laboratory: 124 -Riverton (SAP) - NJ Cylinder Pressure:PGVP Number: 852017 Valve Outlet: Gas Code: CO2,02,BALN Certification Date: Airgas Specialty Gases Airgas USA, LLC 60o Union Landing Road Cinnaminson, NJ o80~~-0000 Airgas.com 82-401044874-1 157.2 CF 2015 PSIG 590 Nov 18, 2017 Expiration Date: Nov 18, 2025 Certification performed in accordance with °EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)° document EPA600/R-12!531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interterence. This cylinder has a total analyticaluncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on avolume/volume basis unless otherwise noted. Do Not Use This_Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative AssayConcentrationConcentration Method Uncertainty Dates CARBON DIOXIDE 17.00 %16.58 % G1 +/- 0.7% NIST Traceable 1 111 8/201 7OXYGEN 21.00 %21.00 % G1 +/- 0.5% NIST Traceable 11/18/2017NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 12061336 CC360792 11.002 %CARBON DIOXIDE/NITROGEN +/- 0.6%Jan 11, 2018NTRM 09061415 CC273526 22.53 %OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019 ANALYTICAL EQUIPMENT InstrumenUMake/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-0O2-19GYCXEG NDIR Oct 30, 2017 Horiba MPA 510-02-7TWMJ041 Paramagnetic Oct 27, 2017 Triad Data Available Upon Request Signature on file Approved for Release Page 1 of 82-401044874-1 79 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Calibrator MDW Meter Box Number 23 Ambient Temp 72 Thermocouple SimulatorDate 25-Sep-18 Wet Test Meter Number P-2952 Temp Reference Source (Accuracy+/- 1°F) Dry Gas Meter Number 170$7349 Setting Gas Volume Temperatures Orifice Wet Test Dry gas Meter Wet Test Dry Gas MeterManometer Meter Meter Baro Press, in H Pb 30.29 Calibration Resultsin HZO (OH) ft3 Vw ft3 (Vd) °F (Tw) Outlet, °F (Tdo) Inlet, °F (Td;) Average, °F Td) Time, min (0)Y 0H 0.5 5.0 15.866 72.0 72.00 72.00 72.5 14.0 0.9995 2.180520.867 73.00 73.00 5.001 72.50 72.50 1.0 5.0 21.860 72.0 73.00 73.00 73.5 10.6 0.9925 2.495326.90Q 74.00 74.00 5.040 73,50 73.50 1.5 10.0 27.975 72.0 75.00 75.00 75.5 16.9 0.9808 2.369738.201 76.00 76.00 10.226 75.50 75.50 2.0 10.0 39.355 72.0 76.OQ 76.00 76A 14.6 0.9830 2.355949.555 76.00 76.00 10.200 76.00 76:Q0 3.0 10.0 50.614 72.0 76.00 76.00 76.5 12.0 0.9701 2,375560.955 77.00 77.00 10.341 76.50 76.50 Average 0.9852 2.3554Vw -Gas Volume passing through the wet test meter Vd -Gas Volume passing through the dry gas meter Tw - Temp of gas in the wet test meter Tdi -Temp of the inlet gas of the dry gas meter Tdo -Temp of the outlet gas of the dry gas meter Td -Average temp of the gas in the dry gas meter 0 -Time of calibration run Pb -Barometric Pressure 0H -Pressure differential across orifice Y -Ratio of accuracy of wet test meter to dry gas meter ~, _ Vw *Pb *(td+460) Vd * LPb + ~H ~ * (tw + 46013.6 ~~-~0.0317 * O H ~tw + 460 * O Z Pb*(td+460~~*~ Vw Reference Temperature Temperature Reading from individual Thermocouple Input ~Average Temperature Reading Temp Difference z (%) Select Temperature ~ °C ~ °F Channel Number 1 2 3 4 5 6323232323233 32.2 0.0%212 212 213 213 212 213 212.6 -0.1%932 931 932 931 932 933 931.8 0.0%1832 1831 1833 1833 1832 1833 1832.4 O.Q%1 -Channel Temps must agree with +/- 5°F or 3°C 2 -Acceptable Temperature Difference less than 1.5 Temp Diff=l lReference Temp°F~+460 -Test Temp°F~+460~~ L Reference Tem °F +460 Long Cal Box #23 9-25-18 80 Post Test Calibration Calibrator MDW Meter Box Number 23 Client Chemours Fayetteville Date 30-Jan-19 Wet Test Meter Number P-2952 Location/Plant Fayetteville, NC Dry Gas Meter Number 17087349 PreTest Y 0.9945 Baro Press, in 29 75Setting Gas Volume Temperatures H PbOrifice Wet Test Dry gas Meter Wet Test Dry Gas MeterManometer Meter Meter in H2O ft3 ft3 °F Outlet, °F Inlet, °F Average, °F Time, min(DH) (Vw) (Vd)(Tw) (Tdo) (Tdi)(Td)(0) Y 421.760 1.60 9.2 431.375 68.0 68.00 70.00 69.0 15.0 0.95499.615 432.160 1.60 9.2 441.810 68.0 70.00 72.00 71.0 15.0 0..95509:650 442.606 1.60 9.2 452.240 70.0 73.00 74.00 73..5 15.0 Q.95759:.634 1 -Tolerance for Y is less than 0.0500 Average 0.9558 Difference 0.0387 Vw -Gas Volume passing through the wet test meter 0 -Time of calibration run Vd -Gas Volume passing through the dry gas meter Pb -Barometric Pressure ~, _~ * Pb * (td + 460 ) Tw -Temp of gas in the wet test meter DH -Pressure differential across Vd * (Pb + ~H ~* (tw + 460Tdi -Temp of the inlet gas of the dry gas meter orifice ~ 13.6Tdo -Temp of the outlet gas of the dry gas meter Y -Ratio of accuracy of wet test 0.0317 * D H ~tw + 460 * O 2Td -Average temp of the gas in the dry gas meter meter to dry gas meter ~ H — [ Pb * ~td + 460 ~]* [ Vw No Long Calibration Required 81 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Calibrator PM Meter Box Number 31 Ambient Temp 71 Thermocouple SimulatorDate 4-Feb-18 Wet Test Meter Number P-2952 Temp Reference Source (Accuracy+!- 1°F) Dry Gas Meter Number 17485128 Temperatures Wet Test Dry Gas MeterMeter Baro-~P~~, in H Pb 29 ~9SettingGas Volume Orifice Manometer Wet Test Dry gas MeterMeter Calibration Resultsin HZO (DH) ft3 (Vw) {{3 Vd) op (Tw) Outlet, °F (Tdo) Inlet, °F (Td;) Average, °F (Td Time, min (0)Y OH 0.5 5.0 449.372 70.0 69.00 69.Q0 70.0 13.0 0.9976 1.9063454.378 71.00 ~~~ 71.00 5.006 70.00 70:00 1.0 5.0 454.378 70.0 71.00 71.00 71.5 9.5 0:9972 2.0302459.394 72.00 72.00 5.016'71.50 71.50 1.5 10.07 459.394 70.0 74.OQ 74.00 74.0 16.0 0.9948 21.197469.586 74.00 74.00 10.192 74;00 74.00 2.0 10.0 469.586 70.0 74.00 74.00 74.5 13.7 0.9894 2.p992479.729 75,00 75.00 10.143 74.50 74.50 3.0 10.0 479.729 70.0 75.00 75.00 75.5 11.3 0.9819 2.1383489.943 76.00 76.00 '1.0.214 75.50 75.50 Average 0.9916 2.0587Vw -Vas volume passing through the wet test meter Vd -Gas Volume passing through the dry gas meter Tw - Temp of gas in the wet test meter Tdi -Temp of the inlet gas of the dry gas meter Tdo -Temp of the outlet gas of the dry gas meter Td -Average temp of the gas in the dry gas meter 0 -Time of calibration run Pb -Barometric Pressure OH -Pressure differential across orifice Y -Ratio of accuracy of wet test meter to dry gas meter Y= rVw *Pb *(td+460) Vd*iPb+ ~H 1*(tw+46013.6 ~H-[0.0317 * OH (tw + 460 * O 2 Pb*(td+460]*[ Vw Reference Temperature Temperature Reading from Individual Thermocouple Input ~Average Temperature Reading Temp Difference 2 (%) Select Temperature ~ °C ~ °F Channel Number 1 2 3 4 5 6323232323232 32A 0.0%212 212 213 213 212 212 212,4 -0.1932932933933932932932.4 0.0%1832 1832 1833 1$33 1832 1832 1832.4 0.0%1 -Channel Temps must agree with +/- 5"F or 3"C 2 -Acceptable Temperature Difference less than 1.5 °/a Temp Diff=r~Reference Temp°F~+460 -Test Temp°F~+4601 L Reference Tem °F + 460 ~ Long Cal Box 31 2-4-18 82 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN CARBON BED OUTLET METER BOX NO. WC31 1/16/2019 + 1/17/2019 Dim I ➢.•.. 7 4.... 2MWd = molecular wei t source , Ibflb-mole. 032 = Moleculaz wei t of ox e divided b 100. 0.44 = Molecular wei t of carbon dioxide divided b 100. 0.28 = Molecular wei ht of nitro en or carbon monoxide divided b 100. COZ =Percent cazbon dio~cide by volume, dry basis.U.0 0.0 0.0OZ =Percent oxygen by volume, dry basis.20.9 20.9 20.9 MWd=(032'Oi)+(0.44'COz)+(0.28'(100-(COz+Oz))) MWd=(032'20.9)+(0.44'0)+(0.28'(100-(0+20.9))) MWd=(6.69)+(0.00)+(22,15) MWd = 28.84 28.84 28.84 Tma = Souree Tem erature, absolute(°R) Tm = Aveca e as meter tem erature , de F. 49.8 611 45.A Tma = Ts + 460 Tma = 49.83 + 460 Tma = 509.83 521.21 505.83 Ps =Absolute meter ressure, inches H . 13.60 = S ecific vi ofinerc delta H = Av mssure dro across the orifice meter durin sam lin , in H2O 1.~4 1.55 1.53Pb =Barometric Pressure, in H 30.20 30.] 6 30.18 Pm = Pb + (delta H / 13.6) Pm = 30.2 + (1.53583333333333 / 13.6) Pm =3031 30.27 30.29 Y a = as meter calibration check value, dimensionless. 0.03 = 29.92/528 0.75 2 in. H °/R c&n2. 29.00 = molecular wei t of air, Ib/Ib-mole. Vm =Volume of as sam le measured b the d as meter at meter conditions dcf.60.326 61. l69 59A84Y = D as meter calibration factor based on full calibra8on 0.9916 0.9916 0.9916Delta H = Gas meter orifice calibration wefficirn in. H2O.2.0587 2.0587 2.0587avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H10 1.2196 1.2239 1.2154O =Total sam lin time, minutes.96 96 96 Yqa = (O / Vm )' SQRT (0.0319' Tma' 29) / (Delta H@ "Pm' MWd) ' avg SQRT Delta H Yqa = (96.00 / 6033 )' SQRT (0.0319 * 509.83 ' 29) / ( 2.06 * 3031 " 28.84) • 1.22 Yqa= 1.591 ' SQRT 471.647 / 1,799343 ' 1.22 Yqo = 0.9936 0.9950 0.9923 Diff =Absolute difference between Y a and Y 0.20 034 0.07 IJiff=((Y-Yqa)/Y)•100 Diff = (( 0.9916 - 0.994) / 0.9916) • 100 Average Diff = 0.2 Allowable = 5.0 2/820 1 010 3 8 AM 011818 CBed OUT83 ~~LAh1C~ CAL,i'~~t~~`~CJ~~t I.00 t tlbratlon Nf~a~ur~d 1~{a~nx~nanc~e a~~ C~~~'~1~'~~`~~V11~t~ht '~le~g~t~~~Ad~usi~me~ts ,Y ~~~rS r f ~ ~` 6 r ~ 1 .Jf t t .v , tiff ~: i r'. ,... $ ~ R:..x - J... c; ~FV' v`wYIMI!w~~ _~. ~Sy} y ~~! ~,F t - Fri ~ 4 t ~ r _ .. - x y:> ^-s _._. . ; ~ ,Fk3 tly. *~, ~ ,.~~ It. e,.. .fK -ry ,~,-~ 84 Pitot Tube Identification Number: Inspection Date 5/30/18 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.453 PASS Distance to B Plane (PB) - inches 0.453 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches P-710 SR Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS0 0 Angle of B1 from vertical A Tube- degrees (absolute) 0 0 0.87 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.012 0.022 Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA PASS PASS PASS Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NASample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch AB Face Opening Planes A B A BQ1Q1 Q2 B B B AA A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane A B PA PB A-Side Plane Dt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z P-710 all in one.MOD 85 Pitot Tube Identification Number: Inspection Date 5/30/18 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.458 PASS Distance to B Plane (PB) - inches 0.458 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches P-711 SR Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS0 0 Angle of B1 from vertical A Tube- degrees (absolute) 0 0 0.87 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.009 0.026 Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA PASS PASS PASS Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NASample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch AB Face Opening Planes A B A BQ1Q1 Q2 B B B AA A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane A B PA PB A-Side Plane Dt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z P-711 all in one.MOD 86 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 APPENDIX F LIST OF PROJECT PARTICIPANTS 87 IASDATA\CHEMOURS\15418.002.009\CBED IN OUT REPORT 01162019-AMD 2/14/2019 The following WESTON employees participated in this project. Paul Meeter Senior Project Manager Wes Fritz Team Member Jack Mills Team Member Austin Squires Team Member Steve Rathfon Team Member Matt Winkeler Team Member Kris Ansley Team Member Chad Walker Team Member 88