HomeMy WebLinkAbout2019.08.20_CCO.p8_Fluoromonomers Manufacturing Process VE South Carbon Bed Removal Efficiency And VE South Stack Emissions Test ReportIASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019
FLUOROMONOMERS
MANUFACTURING PROCESS
VE SOUTH CARBON BED
REMOVAL EFFICIENCY AND
VE SOUTH STACK EMISSIONS TEST REPORT
TEST DATES: 16 AND 17 JULY 2019
THE CHEMOURS COMPANY
FAYETTEVILLE, NORTH CAROLINA
Prepared for:
THE CHEMOURS COMPANY
22828 NC Hwy 87 W
Fayetteville, North Carolina 28306
Prepared by:
WESTON SOLUTIONS, INC.
1400 Weston Way
P.O. Box 2653
West Chester, Pennsylvania 19380
August 2019
W.O. No. 15418.002.016
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 i
TABLE OF CONTENTS
Section Page
1. INTRODUCTION..............................................................................................................1
1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1
1.2 TEST OBJECTIVES ...............................................................................................1
1.3 TEST PROGRAM OVERVIEW .............................................................................1
2. SUMMARY OF TEST RESULTS ...................................................................................5
3. PROCESS DESCRIPTIONS ............................................................................................6
3.1 FLUOROMONOMERS ..........................................................................................6
3.2 PROCESS OPERATIONS AND PARAMETERS .................................................6
4. DESCRIPTION OF TEST LOCATIONS .......................................................................7
4.1 VE SOUTH STACK ................................................................................................7
4.2 VE SOUTH CARBON BED INLET AND OUTLET ............................................7
5. SAMPLING AND ANALYTICAL METHODS ...........................................................11
5.1 STACK GAS SAMPLING PROCEDURES .........................................................11
5.1.1 Pre-Test Determinations .........................................................................11
5.2 STACK PARAMETERS .......................................................................................11
5.2.1 EPA Method 0010...................................................................................11
5.2.2 EPA Method 0010 Sample Recovery .....................................................14
5.2.3 EPA Method 0010 Sample Analysis.......................................................15
5.3 GAS COMPOSITION ...........................................................................................17
6. DETAILED TEST RESULTS AND DISCUSSION .....................................................20
APPENDIX A PROCESS OPERATIONS DATA
APPENDIX B RAW AND REDUCED TEST DATA
APPENDIX C LABORATORY ANALYTICAL REPORT
APPENDIX D SAMPLE CALCULATIONS
APPENDIX E EQUIPMENT CALIBRATION RECORDS
APPENDIX F LIST OF PROJECT PARTICIPANTS
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 ii
LIST OF FIGURES
Title Page
Figure 4-1 VE South Stack Test Port and Traverse Point Location .............................................. 8
Figure 4-2 VE South Carbon Bed Inlet and Schematic ................................................................. 9
Figure 4-3 VE South Carbon Bed Outlet and Schematic ............................................................ 10
Figure 5-1 EPA Method 0010 Sampling Train ............................................................................. 12
Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 16
Figure 5-3 WESTON Sampling System ...................................................................................... 19
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 iii
LIST OF TABLES
Title Page
Table 1-1 Sampling Plan for VE South Carbon Bed Testing ......................................................... 3
Table 1-2 Sampling Plan for VE South Stack ................................................................................ 4
Table 2-1 Summary of HFPO Dimer Acid VE South Carbon Bed and Stack Test Results ........... 5
Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Inlet – Runs
1, 2, and 3 .............................................................................................................................. 21
Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Outlet – Runs
1, 2, and 3 .............................................................................................................................. 23
Table 6-3 Summary of HFPO Dimer Acid Test Data and Test Results VE South Stack – Runs 1,
2 and 3 ................................................................................................................................... 25
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 1
1. INTRODUCTION
1.1 FACILITY AND BACKGROUND INFORMATION
The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina,
approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site
include the Fluoromonomers, IXM and Polymer Processing Aid (PPA) manufacturing areas,
Wastewater Treatment, and Powerhouse.
Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride,
captured as HFPO Dimer Acid, emission testing on the Vinyl Ethers (VE) South Carbon Bed and
VE South stack at the facility. Testing was performed on 16 and 17 July 2019 and generally
followed the “Emission Test Protocol” reviewed and approved by the North Carolina
Department of Environmental Quality (NCDEQ). This report provides the results from the
emission test program.
1.2 TEST OBJECTIVES
The specific objectives for this test program were as follows:
Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid
Fluoride from the VE South Carbon Bed inlet and outlet and VE South stack which are
located in the Fluoromonomers process area.
Calculate the Carbon Bed removal efficiency for HFPO Dimer Acid.
Monitor and record process and emissions control data in conjunction with the test
program.
Provide representative emissions data.
1.3 TEST PROGRAM OVERVIEW
During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer
Acid were measured at three locations.
Tables 1-1 and 1-2 provide a summary of the test locations and the parameters that were
measured along with the sampling/analytical procedures that were followed.
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 2
Section 2 provides a summary of test results. A description of the processes is provided in
Section 3. Section 4 provides a description of the test locations. The sampling and analytical
procedures are provided in Section 5. Detailed test results and discussion are provided in
Section 6.
Appendix C includes the summary reports for the laboratory analytical results. The full
laboratory data packages are provided separately in electronic format.
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 3
Table 1-1
Sampling Plan for VE South Carbon Bed Testing
Sampling Point & Location VE South Carbon Bed
Number of Tests: 6 (3 Carbon Bed inlet, 3 Carbon Bed outlet)
Parameters To Be Tested: HFPO Dimer
Acid
(HFPO-DA)
Volumetric
Flow Rate and
Gas Velocity
Carbon
Dioxide
Oxygen Water Content
Sampling or Monitoring Method EPA M-0010 EPA M1 and
M2 in
conjunction
with M-0010
tests
EPA M3/3A EPA M4 in
conjunction
with M-0010
tests
Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA
Sample Size ≥ 1.5m3 NA NA NA NA
Total Number of Samples Collected1 6 6 3 3 6
Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0
Field Blank Trains1 1 per source 0 0 0 0
Proof Blanks1 1 per train 0 0 0 0
Trip Blanks1,2 1 set 0 0 0
Lab Blanks 1 per fraction3 0 0 0 0
Laboratory or Batch Control Spike Samples
(LCS) 1 per fraction3 0 0 0 0
Laboratory or Batch Control Spike Sample
Duplicate (LCSD) 1 per fraction3 0 0 0 0
Media Blanks 1 set4 0 0 0 0
Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0
Total No. of Samples 105 6 3 3 6
Key:
1 Sample collected in field.
2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.
3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).
4 One set of media blank archived at laboratory at media preparation.
5 Actual number of samples collected in field.
6 Not applicable.
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 4
Table 1-2
Sampling Plan for VE South Stack
Sampling Point & Location VE South Stack
Number of Tests: 3
Parameters To Be Tested: HFPO Dimer
Acid
(HFPO-DA)
Volumetric
Flow Rate and
Gas Velocity
Carbon
Dioxide
Oxygen Water Content
Sampling or Monitoring Method EPA M-0010 EPA M1 and
M2 in
conjunction
with M-0010
tests
EPA M3/3A EPA M4 in
conjunction
with M-0010
tests
Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA
Sample Size ≥ 1.5m3 NA NA NA NA
Total Number of Samples Collected1 3 3 3 3 3
Reagent Blanks (Solvents, Resins)1 0 0 0 0 0
Field Blank Trains1 0 0 0 0 0
Proof Blanks1 0 0 0 0 0
Trip Blanks1,2 0 0 0 0 0
Lab Blanks 1 per fraction3 0 0 0 0
Laboratory or Batch Control Spike Samples
(LCS) 1 per fraction3 0 0 0 0
Laboratory or Batch Control Spike Sample
Duplicate (LCSD) 1 per fraction3 0 0 0 0
Media Blanks 1 set4 0 0 0 0
Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0
Total No. of Samples 35 3 3 3 3
Key:
1 Sample collected in field.
2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.
3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).
4 One set of media blank archived at laboratory at media preparation.
5 Actual number of samples collected in field.
6 Not applicable.
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 5
2. SUMMARY OF TEST RESULTS
A total of three test runs each were performed on the VE South Carbon Bed inlet and outlet and
VE South stack. Table 2-1 provides a summary of the HFPO Dimer Acid emissions test results
and Carbon Bed removal efficiencies. Detailed test results summaries are provided in Section 6.
It is important to note that emphasis is being placed on the characterization of the emissions
based on the stack test results. Research conducted in developing the protocol for stack testing
HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid
realized that the resulting testing, including collection of the air samples and extraction of the
various fraction of the sampling train, would result in all three compounds being expressed as
simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer
Acid results provided in Table 2-1 and in this report include a percentage of each of the three
compounds.
Table 2-1
Summary of HFPO Dimer Acid VE South Carbon Bed and Stack Test Results
Inlet Outlet Removal
Efficiency VE South Stack
g/sec lb/hr g/sec lb/hr % g/sec lb/hr
R1 4.17E-04 3.31E-03 6.01E-05 4.78E-04 85.6 3.04E-05 2.41E-04
R2 8.50E-05 6.75E-04 1.71E-05 1.36E-04 79.8 2.17E-05 1.72E-04
R3 3.69E-05 2.93E-04 1.95E-05 1.55E-04 47.1 1.58E-05 1.25E-04
Average 1.80E-04 1.43E-03 3.23E-05 2.56E-04 65.9 2.26E-05 1.80E-04
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 6
3. PROCESS DESCRIPTIONS
The Fluoromonomers area is included in the scope of this test program.
3.1 FLUOROMONOMERS
These facilities produce a family of fluorocarbon compounds used to produce Chemours
products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers.
The VE South Waste Gas Scrubber and the Tower HVAC are vented to the carbon bed which
then vents to the process stack (NEP-Hdr2). In addition, the following building air systems are
vented to this stack:
RV Catch Pots
Nitrogen Supply to Catch Tanks
Catalyst Feed Tank Pot Charge Vent
3.2 PROCESS OPERATIONS AND PARAMETERS
The following table is a summary of the operation and products from the specific areas tested.
Source Operation/Product Batch or Continuous
VE
South
PMVE/PEVE Semi-continuous – Condensation is continuous, Two
Agitated Bed Reactors are batch for 30-40 mins at
end of each run*, Refining (ether column) is batch
*Only one Agitated Bed Reactor was running due to cooling limiting capacity during testing.
During the test program, the following parameters were monitored by Chemours and are
included in Appendix A.
Fluoromonomers Processes
o VE South Waste Gas Scrubber
Caustic recirculation flow rate
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 7
4. DESCRIPTION OF TEST LOCATIONS
4.1 VE SOUTH STACK
Two 6-inch ID test ports are installed on the 42-inch ID steel stack. The ports are placed 150
inches (3.6 diameters) from the location where the carbon bed vent enters the stack and 20 feet
(5.7 diameters) from the stack exit.
Per EPA Method 1, a total of 24 traverse points (12 per axis) were used for M0010 isokinetic
sampling. It should be noted that near the port locations are a number of small ducts leading to
the stack. These are catch pots which, under normal operation, do not discharge to the stack.
They are used to vent process gas to the stack in the event of a process upset. For the purpose of
test port location, and given the fact that there is no flow from these catch pots, they are not
considered a flow contributor or a disturbance.
See Figure 4-1 for a schematic of the test port and traverse point locations.
Note: All measurements at the test location were confirmed prior to sampling.
4.2 VE SOUTH CARBON BED INLET AND OUTLET
The fiberglass reinforced plastic (FRP) duct at the inlet of the carbon bed is 36-inch ID. The
stainless steel duct at the outlet of the carbon bed is 41.5-inch ID. The test ports are located as
shown below. Based on EPA Method 1, a total of 24 traverse points (12 per port) were required
for HFPO Dimer Acid sampling at both locations. Figures 4-2 and 4-3 provide schematics of the
Carbon Bed inlet and Carbon Bed outlet test port and traverse port locations, respectively.
Location Distance from Flow Disturbance Downstream (B) Upstream (A) Carbon Bed Inlet 35 inches > 0.97 duct diameters 41 inches > 1.1 duct diameters Carbon Bed Outlet 12.5 feet > 4.2 duct diameters 31 feet > 10.3 duct diameters VE South Stack 150 inches 3.6 duct diameters 20 feet 5.7 diameters
42 "
TRAVERSE
POINT
NUMBER
DISTANCE FROM
INSIDE NEAR
WALL (INCHES)
1
2
3
4
5
6
7
8
9
10
11
12
FIGURE 4-1
VE SOUTH STACK TEST PORT AND
TRAVERSE POINT LOCATION
IASDATA\CHEMOURS\15418.002.016\FIGURE 4-1 VE SOUTH SCRUBBER STACK8
20 '
150 "
ID
FAN
ROOF
LINE
CATCH
POT
CATCH
POTS
FROM
CARBON
BED
DRAWING NOT TO SCALE
1
2 7/8
5
7 3/8
10 1/2
15
27
31 1/2
34 5/8
37
39 1/8
41
TRAVERSE
POINT
NUMBER
DISTANCE FROM
INSIDE NEAR
WALL (INCHES)
1
2
3
4
5
6
7
8
9
10
11
12
FIGURE 4-2
VE SOUTH CARBON BED INLET SCHEMATIC
IASDATA\CHEMOURS\15418.002.016\FIGURE 4-1 VE SOUTH CB INLET SCHEMATIC9
1
2 3/4
4 7/8
7 3/8
10 3/8
14 3/4
26 3/4
31 1/8
34 1/8
36 5/8
38 3/4
40 1/2
DRAWING NOT TO SCALE
35"
41"
TO CARBON BED
36"
Top View
TRAVERSE
POINT
NUMBER
DISTANCE FROM
INSIDE NEAR
WALL (INCHES)
1
2
3
4
5
6
7
8
9
10
11
12
FIGURE 4-3
VE SOUTH CARBON BED OUTLET SCHEMATIC
IASDATA\CHEMOURS\15418.002.016\FIGURE 4-1 VE SOUTH CB OUTLET SCHEMATIC10
CARBON BED
1
2 3/8
4 1/4
6 3/8
9
12 7/8
23 1/8
27
29 5/8
31 3/4
33 5/8
35
DRAWING NOT TO SCALE
41.5"
FAN
31'
12.5'
Side View
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 11
5. SAMPLING AND ANALYTICAL METHODS
5.1 STACK GAS SAMPLING PROCEDURES
The purpose of this section is to describe the stack gas emissions sampling trains and to provide
details of the stack sampling and analytical procedures utilized during the emissions test
program.
5.1.1 Pre-Test Determinations
Preliminary test data were obtained at each test location. Stack geometry measurements were
measured and recorded, and traverse point distances verified. A preliminary velocity traverse
was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine
velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel
meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was
estimated by wet bulb/dry bulb temperature measurements.
A check for the presence or absence of cyclonic flow was conducted at each test location. The
cyclonic flow checks were negative (< 20°) verifying that the test locations were acceptable for
testing.
Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic
sampling procedures.
Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement
devices was performed as specified in Section 5 of EPA Method 5 test procedures.
5.2 STACK PARAMETERS
5.2.1 EPA Method 0010
The sampling train utilized to perform the HFPO Dimer Acid sampling at all three locations was
an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle
that attached directly to a heated borosilicate probe. In order to minimize possible thermal
degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack
temperature to minimize water vapor condensation before the filter. The probe was connected
directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.
9(17:$//,&(:$7(55(&,5&8/$7,213803&21'(16$7(75$3,03,1*(56,&(%$7+9$&880/,1(0$,19$/9(7(03(5$785(6(16256%<3$669$/9($,57,*+73803'5<*$60(7(525,),&(0$120(7(5&+(&.9$/9(7(03(5$785(6(1625+($7('$5($),/7(5+2/'(525,),&(6,/,&$*(/&21'(16(5;$'625%(1702'8/(621($1'7:27(03(5$785(6(16257(03(5$785(6(16259$&880*$8*(,$6'$7$?&+(02856?6?),*85(0(7+2'),*85((3$0(7+2'6$03/,1*75$,1+($7('352%(%87721+22.12==/(5(9(56(7<3(3,72778%(2 127(7+(&21'(16(50$<%(326,7,21('+25,=217$//<7+(;$'625%(1702'8/(:,//$/:$<6%(,1$9(57,&$/326,7,215,*,'%2526,/,&$7(78%,1*25)/(;,%/(6$03/(/,1(,&(:$7(55(&,5&8/$7,21&21'(16$7(75$3,03,1*(5
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 13
A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a
Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing
approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet
temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and
a series of two impingers that contained 100 mL of high-purity distilled water. The train also
included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling
train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap.
The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the
condensate traps were maintained in an ice bath. Ice water was continuously circulated in the
condenser and the XAD-2 module to maintain method-required temperature. A control console
with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected
to the final impinger via an umbilical cord to complete the sample train.
HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to
be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO
Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and
during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount
of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride
and HFPO Dimer Acid.
During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube
into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was
observed immediately after positioning the nozzle at each traverse point, and the sampling rate
adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each
point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each
traverse point during all test periods, as appropriate. Leak checks were performed on the
sampling apparatus according to reference method instructions, prior to and following each run,
component change (if required) or during midpoint port changes.
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 14
5.2.2 EPA Method 0010 Sample Recovery
At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the
components transported to the field laboratory trailer for recovery.
A consistent procedure was employed for sample recovery:
1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were
sealed and labeled.
2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a
polyethylene container along with any loose particulate and filter fragments.
3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the
filter holder were rinsed with a solution of methanol and ammonium hydroxide into a
polyethylene container while brushing a minimum of three times until no visible
particulate remained. Particulate adhering to the brush was rinsed with methanol/
ammonium hydroxide into the same container. The container was sealed.
4. The volume of liquid collected in the first condensate trap was measured, the value
recorded, and the contents poured into a polyethylene container.
5. All train components between the filter exit and the first condensate trap were rinsed with
methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene
container and sealed.
6. The volume of liquid in impingers one and two, and the second condensate trap, were
measured, the values recorded, and the sample was placed in the same container as Step 4
above, then sealed.
7. The two impingers, condensate trap, and connectors were rinsed with methanol/
ammonium hydroxide. The solvent sample was placed in a separate polyethylene
container and sealed.
8. The silica gel in the final impinger was weighed and the weight gain value recorded.
9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter
and distilled water were retained for analysis.
Each container was labeled to clearly identify its contents. The height of the fluid level was
marked on the container of each liquid sample to provide a reference point for a leakage check
during transport. All samples were maintained cool.
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 15
During the Carbon Bed inlet and outlet test campaign, a Method 0010 blank train was set up near
the test location, leak-checked and recovered along with the respective sample train. Following
sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica)
for sample extraction and analysis.
See Figure 5-2 for a schematic of the Method 0010 sample recovery process.
5.2.3 EPA Method 0010 Sample Analysis
Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid
analysis according to SW-846 Method 3542:
Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and
front-half of the filter holder solvent rinses;
Back-half Composite—comprised of the first XAD-2 resin material and the back-half of
the filter holder with connecting glassware solvent rinses;
Condensate Composite—comprised of the aqueous condensates and the contents of
impingers one and two with solvent rinses;
Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of
impingers.
The second XAD-2 resin material was analyzed separately to evaluate any possible sampling
train HFPO-DA breakthrough.
The front-half and back-half composites and the second XAD-2 resin material were placed in
polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18
hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid
chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was
concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the
cartridge using methanol. Portions of those extracts were also processed analytically by
HPLC/MS/MS.
,$6'$7$?&+(02856?6?),*85((3$),*85(+)32',0(5$&,'6$03/(5(&29(5<352&('85(6)250(7+2'12==/(352%($1')5217+$/)),/7(5+2/'(56$03/()5$&7,21),/7(56$03/()5$&7,21%$&.+$/)),/7(5+2/'(5&211(&7256)/(;,%/(/,1(&21'(16(56$03/()5$&7,21;$'02'8/(21(6$03/()5$&7,215(029()520,03,1*(575$,1:$6+:,7+ 0(7+$12/$0021,80+<'52;,'(6($/,1/$%(/('32/<(7+</(1(%277/(&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/:$6+:+,/(%586+,1*:,7+ 0(7+$12/$0021,80+<'52;,'(6($/(1'6:,7+*/$66&$36&29(5/$%(/&203/(7(&8672'<)2506(&85(6$03/($7$1'.((3&22/75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/6($/:$6+,1*6,1/$%(/('32/<(7+</(1(%277/(0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/),567$1'6(&21'&21'(16$7(75$36$1',03,1*(5126$1'6$03/()5$&7,21,03,1*(51236,/,&$*(/:(,*+$1'5(&25'0($685(92/80(2)/,48,'$1'5(&25'75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/16:(,*+$1'5(&25'5(7$,1)255(*(1(5$7,21),567$1'6(&21'&21'(16$7(75$36$1',03,1*(5126$1'6$03/()5$&7,21:$6+:,7+ 0(7+$12/$0021,80+<'52;,'(75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/;$'02'8/(7:26$03/()5$&7,215(029()520,03,1*(575$,16($/(1'6:,7+*/$66&$36&29(5/$%(/&203/(7(&8672'<)2506(&85(6$03/($7$1'.((3&22/
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 17
Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their
preparation to provide accurate assessments of the analytical recoveries. Final data was corrected
for IDA standard recoveries.
TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO
Dimer Acid. These procedures were incorporated into the test protocol.
5.3 GAS COMPOSITION
The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon
dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is
presented in Figure 5-3.
For the VE South stack test campaign, the sample was collected at the exhaust of the Method
0010 sampling system. At the end of the line, a tee permitted the introduction of calibration gas.
The sample was drawn through a heated Teflon® sample line to the sample conditioner. The
output from the sampling system was recorded electronically, and one minute averages were
recorded and displayed on a data logger.
Each analyzer was set up and calibrated internally by introduction of calibration gas standards
directly to the analyzer from a calibration manifold. The calibration manifold is designed with an
atmospheric vent to release excess calibration gas and maintained the calibration at ambient
pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range
gases with appropriate adjustments until the desired responses were obtained. The high-range
standards were then introduced in sequence without further adjustment.
The sample line integrity was verified by performing a bias test before and after each test period.
The sampling system bias test consisted of introducing the zero gas and one up-range calibration
standard in excess to the valve at the probe end when the system was sampling normally. The
excess calibration gas flowed out through the probe to maintain ambient sampling system
pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure.
Instrument bias check response was compared to internal calibration responses to insure sample
line integrity and to calculate a bias correction factor after each run using the ratio of the
measured concentration of the bias gas certified by the calibration gas supplier.
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 18
The oxygen and carbon dioxide content of each stack gas was measured according to EPA
Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex
Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model
4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both
analyzers were calibrated with EPA Protocol gases prior to the start of the test program and
performance was verified by sample bias checks before and after each test run.
HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDER OR METHOD0010 SAMPLE TRAINSAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISITIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-5WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.016\FIGURE 5-5 WESTON SAMPLING SYSTEM19
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 20
6. DETAILED TEST RESULTS AND DISCUSSION
Each test was a minimum of 96 minutes in duration. A total of three test runs were performed
simultaneously at each location.
Chemours is continuing to investigate the differences in gas stream velocity and volumetric flow
exiting the carbon bed and exiting the stack.
Tables 6-1 through 6-3 provide detailed test data and test results for the VE South Carbon Bed
inlet, the Carbon Bed outlet and the VE South stack, respectively.
The carbon bed removal efficiency was calculated based upon the HFPO Dimer Acid inlet and
outlet mass emission rates in lb/hr.
The Method 3A sampling on the VE South stack indicated that the O2 and CO2 concentrations
were at ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were
used in all calculations.
7/31/2019 10:35 AM 21 071619 VES CB Inlet
TABLE 6-1
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
VES CARBON BED INLET
Test Data
Run number 1 2 3
Location VES CBed Inlet VES CBed Inlet VES CBed InletDate07/16/19 07/17/19 07/17/19
Time period 1605-1841 0905-1058 1250-1502
SAMPLING DATA:
Sampling duration, min.96.0 96.0 96.0
Nozzle diameter, in.0.160 0.160 0.160
Cross sectional nozzle area, sq.ft.0.000140 0.000140 0.000140
Barometric pressure, in. Hg 30.06 30.09 30.06
Avg. orifice press. diff., in H2O 0.97 1.00 1.02
Avg. dry gas meter temp., deg F 102.0 93.6 102.8
Avg. abs. dry gas meter temp., deg. R 562 554 563Total liquid collected by train, ml 29.5 28.2 48.7
Std. vol. of H2O vapor coll., cu.ft.1.39 1.33 2.29
Dry gas meter calibration factor 1.0066 1.0066 1.0066
Sample vol. at meter cond., dcf 50.909 51.412 51.767
Sample vol. at std. cond., dscf (1)48.469 49.741 49.222
Percent of isokinetic sampling 99.7 101.2 101.1
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.0 0.0 0.0
O2, % by volume, dry basis 20.9 20.9 20.9
N2, % by volume, dry basis 79.1 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84
H20 vapor in gas stream, prop. by vol.0.028 0.026 0.045
Mole fraction of dry gas 0.972 0.974 0.955
Molecular wt. of wet gas, lb/lb mole 28.53 28.55 28.35
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:
Static pressure, in. H2O -5.50 -5.50 -5.50
Absolute pressure, in. Hg 29.66 29.69 29.66
Avg. temperature, deg. F 100 92 97
Avg. absolute temperature, deg.R 560 552 557Pitot tube coefficient 0.84 0.84 0.84
Total number of traverse points 24 24 24
Avg. gas stream velocity, ft./sec.66.5 66.1 67.5
Stack/duct cross sectional area, sq.ft.7.07 7.07 7.07
Avg. gas stream volumetric flow, wacf/min.28214 28035 28617
Avg. gas stream volumetric flow, dscf/min.25641 25919 25674
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
*Run 3 conducted prior to Run 2
7/31/2019 10:35 AM
22
071619 VES CB Inlet
VES CARBON BED INLET
TEST DATA
Run number 1 2 3
Location
VES CBed
Inlet
VES CBed
Inlet
VES CBed
Inlet
Date 07/16/19 07/17/19 07/17/19
Time period 1605-1841 0905-1058 1250-1502
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 47.37 9.79 4.25
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 34.51 6.95 3.05
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 2.15E-09 4.34E-10 1.90E-10
EMISSION RESULTS, lb/hr.
HFPO Dimer Acid 3.31E-03 6.75E-04 2.93E-04
EMISSION RESULTS, g/sec.
HFPO Dimer Acid 4.17E-04 8.50E-05 3.69E-05
TABLE 6-1 (cont.)
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
CHEMOURS - FAYETTEVILLE, NC
7/31/2019 10:39 AM 23 071619 VES CB Out
TABLE 6-2
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
VES CARBON BED OUTLET
Test Data
Run number 1 2 3
Location VES CBed Outlet VES CBed Outlet VES CBed OutletDate07/16/19 07/17/19 07/17/19
Time period 1605-1841 0905-1058 1250-1502
SAMPLING DATA:
Sampling duration, min.96.0 96.0 96.0
Nozzle diameter, in.0.202 0.202 0.202
Cross sectional nozzle area, sq.ft.0.000223 0.000223 0.000223
Barometric pressure, in. Hg 30.06 30.09 30.06
Avg. orifice press. diff., in H2O 1.26 1.31 1.32
Avg. dry gas meter temp., deg F 104.7 96.0 107.1
Avg. abs. dry gas meter temp., deg. R 565 556 567Total liquid collected by train, ml 34.0 24.2 46.4
Std. vol. of H2O vapor coll., cu.ft.1.60 1.14 2.19
Dry gas meter calibration factor 1.0069 1.0069 1.0069
Sample vol. at meter cond., dcf 58.439 58.943 59.828
Sample vol. at std. cond., dscf (1)55.427 56.835 56.507
Percent of isokinetic sampling 97.3 98.5 99.2
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.0 0.0 0.0
O2, % by volume, dry basis 20.9 20.9 20.9
N2, % by volume, dry basis 79.1 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84
H20 vapor in gas stream, prop. by vol.0.028 0.020 0.037
Mole fraction of dry gas 0.972 0.980 0.963
Molecular wt. of wet gas, lb/lb mole 28.53 28.62 28.43
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:
Static pressure, in. H2O 2.40 2.40 2.40
Absolute pressure, in. Hg 30.24 30.27 30.24
Avg. temperature, deg. F 100 98 100
Avg. absolute temperature, deg.R 560 558 560Pitot tube coefficient 0.84 0.84 0.84
Total number of traverse points 24 24 24
Avg. gas stream velocity, ft./sec.48.0 47.9 48.5
Stack/duct cross sectional area, sq.ft.9.39 9.39 9.39
Avg. gas stream volumetric flow, wacf/min.27061 27013 27311
Avg. gas stream volumetric flow, dscf/min.25043 25357 25032
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
*Run 3 conducted prior to Run 2
7/31/2019 10:39 AM
24
071619 VES CB Out
TEST DATA
Run number 1 2 3
Location VES CBed Outlet VES CBed Outlet VES CBed Outlet
Date 07/16/19 07/17/19 07/17/19
Time period 1605-1841 0905-1058 1250-1502
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 7.99 2.30 2.65
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 5.09 1.43 1.65
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 3.18E-10 8.94E-11 1.03E-10
EMISSION RESULTS, lb/hr.
HFPO Dimer Acid 4.78E-04 1.36E-04 1.55E-04
HFPO Dimer Acid (From Inlet Data)3.31E-03 6.75E-04 2.93E-04
EMISSION RESULTS, g/sec.
HFPO Dimer Acid 6.01E-05 1.71E-05 1.95E-05
Carbon Bed Removal Efficiency, %85.6 79.8 47.1
TABLE 6-2 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
VES CARBON BED OUTLET
7/31/2019 10:47 AM
25
071619 VES stack
Test Data
Run number 1 2 3
Location VE South Stack VE South Stack VE South Stack
Date 07/16/19 07/17/19 07/17/19Time period 1605-1841 0905-1058 1250-1502
SAMPLING DATA:
Sampling duration, min.96.0 96.0 96.0Nozzle diameter, in.0.190 0.190 0.190Cross sectional nozzle area, sq.ft.0.000197 0.000197 0.000197
Barometric pressure, in. Hg 30.00 30.07 30.07
Avg. orifice press. diff., in H2O 0.79 0.79 0.76
Avg. dry gas meter temp., deg F 98.5 87.9 99.0Avg. abs. dry gas meter temp., deg. R 558 548 559
Total liquid collected by train, ml 45.5 45.1 41.9
Std. vol. of H2O vapor coll., cu.ft.2.1 2.1 2.0
Dry gas meter calibration factor 1.0008 1.0008 1.0008Sample vol. at meter cond., dcf 50.910 49.525 50.263
Sample vol. at std. cond., dscf (1)48.374 48.079 47.822Percent of isokinetic sampling 106.3 105.3 105.2
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.0 0.0 0.0
O2, % by volume, dry basis 20.9 20.9 20.9
N2, % by volume, dry basis 79.1 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84
H20 vapor in gas stream, prop. by vol.0.042 0.042 0.040
Mole fraction of dry gas 0.958 0.958 0.960
Molecular wt. of wet gas, lb/lb mole 28.38 28.38 28.41
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:
Static pressure, in. H2O 2.50 2.50 2.50
Absolute pressure, in. Hg 30.18 30.25 30.25
Avg. temperature, deg. F 100 97 100Avg. absolute temperature, deg.R 560 557 560Pitot tube coefficient 0.84 0.84 0.84
Total number of traverse points 24 24 24
Avg. gas stream velocity, ft./sec.44.1 43.9 43.8
Stack/duct cross sectional area, sq.ft.9.62 9.62 9.62Avg. gas stream volumetric flow, wacf/min.25447 25348 25293Avg. gas stream volumetric flow, dscf/min.23157 23242 23134
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
TABLE 6-3
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
VE SOUTH STACK
8/16/2019 11:32 AM
26
071619 VES stack
TEST DATA
Run number 1 2 3
Location VE South Stack VE South Stack VE South Stack
Date 07/16/19 07/17/19 07/17/19
Time period 1605-1841 0905-1058 1250-1502
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 3.8080 2.6950 1.9560
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 2.78 1.98 1.44
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 1.74E-10 1.24E-10 9.02E-11
EMISSION RESULTS, lb/hr.
HFPO Dimer Acid 2.41E-04 1.72E-04 1.25E-04
EMISSION RESULTS, g/sec.
HFPO Dimer Acid 3.04E-05 2.17E-05 1.58E-05
TABLE 6-3 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
VE SOUTH STACK
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019
APPENDIX A
PROCESS OPERATIONS DATA
27
Date: 7/16/19
Time
Stack Testing
VES Product
VES Precursor
VES
Condensation
(HFPO)
VES ABR (East)
VES ABR (West)
VES Refining
VES WGS
Recirculation
Flow
Dimer ISO
venting
RUN 1: 1605 - 1841
1500 1600 1700 1800 1900
PM/PE
Burnout
18500 kg/h
28
Date: 7/17/19
Time
Stack Testing
VES Product
VES Precursor
VES
Condensation
(HFPO)
VES ABR (East)
VES ABR (West)
VES Refining
VES WGS
Recirculation
Flow
Dimer ISO
venting
PM/PE
800 900 1000 1100 1200 1300 1400 1500 1600
RUN 2: 0905 - 1058 RUN 3: 1250 - 1502
18500 kg/h
Burnout
29
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019
APPENDIX B
RAW AND REDUCED TEST DATA
30
Sample and Velocity Traverse Point Data Sheet -Method 1
Client L/~lXi/"~ ~~~j Operator j'~!l :,.~~~ ..
Loaction/Plant ~Ci C~ ~ Date .i b '~
Source ~~ W.O. Number
Duct Type. q Circular q Rectangular Duct ~nmcate epproprlete type
Traverse Type ~ Particulate Traverse ~ Velocity Traverse q CEM Traverse
Distance from far wall to outside of port in. = C,
Port De th in. = D
De th of Duct, diameter in. = C-D
Area of Duct ft
Total Traverse Points
Total Traverse Points r Port
Port Diameter in. —Flan e-Threaded-Hole
Monorail Len th
Rectan ular Ducts Onl
Width of Duct, rectan ular duct onl in.
Total Ports rectan ular duct onl
E uivalent Diameter = 2'L'W L+W
Traverse Point Locations
Traverse
Point °~ of Duct
Distance from
Inside Duct
Wall in
Distance from Outside of
Port in
z O 6 ~W
3 ~ L D
4 ~ .~ ~ Z
5 •~~ rr . 3L•~ 3
s f b ~' 77 2
~ rL 7~ 0 G
a i~ 9 /„J`2 ' Is
s .' oa 3 ~ ,Js3 ~
11 r 1/ Z ~ 5 ~3
~2 CJ 3 .~ 3
CEA1 3 Pdnl(Lonp Msasurmart Llne) SUaUfieaton Polk Locations
1 0.167
2 0.50
3 0.833
IVOi6: R SSBCK OI8 ~ 1Z If7C~ U58 tF'A MBi~Otl 1A
(Sample port upsVeam of pitot port)
Note: If stack die >24" Uien adjust traverse point to 1 inch hom wall
If stack die <24" then adJust Vaverse point to 0.5 Inch from wall
r
r~
■OOOOOOOOOmmm
~_~_~_~_m~ra_~_m
~---~~~Cii-~-~-~
~---~---li67_~~~
m----__---_-~~Ti
m~-__~~-~~~-~J~i
Flow Disturbances
U stream -Aft
Downstream - B ft
U stream - A duct diameters p
Downstream - B duct diameters
Diagram of Stack
~~~
~~ 3~~ }
0 ~~
l
~~//
Duct Diameters Upstream from Flow Disturbance (Distance A)
nF t.0 ~s ,,,
Shack Dfameter> 24 inches a.e.~
t 40 ~
MlnlmumNienberof e } ~
~ ParUalate Treverse Po~nis
d.~.w~ 24 (cFnder) 25 (reclenpuler duct )
20
Traverse Poirrts for Vebdty ~s
12
1O e l~ra~.)o Gmwwr)
(Dlstwbance =Bend, Expansion, Contracfbn, e[c.)
si.a~ a. «~ywr.uor . ~z - z~ xd..
2 3 4 5 6 7 B 9 10
Dud Dl~nefers Dowretream fiom Flow DlsWrbence (Distance B)
■OOO~OO~O~mm~
0~-~~~~~~~~~~
m~~~~~~~~~~~~
31
.Sample and Velocity Traverse Point Data Sheet -Method 1
Client f~ Vr1'' Operator i
Loaction/Plant Ltw - ~ ~ Date ~' j ~ ~ T
Source V ly~ W.O. Number
DuCtType q Circular q Rectangular Duct ~"d~ca~ea~P`°P"e~ery~e
Traverse Type Particulate Traverse q Velocity Traverse q CEM Traverse
Distance from far wall to outside of port in. = C ~ `~
Port De th in. = D ~
De th of Duct, diameter in. = C-D
Area of Duct ft
Total Traverse Points
Total Traverse Points er Port
Port Diameter in. —Flan e-Threaded-Hole
Monorail Len th
Rectan ular Ducts Onl
Width of Duct, rectan ular duct onl in.
Total Ports rectan ular duct onl
E uivalent Diameter = 2`L'W L+W
Traverse Point Locations
Traverse
Point % of Duct
Distance from
Inside Duct
Wall in
Distance from Outside of
Port
1 ~~ 1
z bb 7
3 ~[. ~
q ~Z7 1P~
5 /~
s r ~ ~ ~~ ~ 0
~ ~ ~~f ~ $ ~
8 ~ 2~ ~ `z
9 r~~
11 ~ l
12 /
CEM 3 Poinl(Long MaasurmoM Lins) Strati8caton Point Locations
1 0.167
2 0.50
3 0.833
rvote: IT stack aka < lz mch use tNA Methotl 1A
,`+ g (Sample port upsVeam of pilot port)
Note: If stack dia >24" then adjust traverse point to 1 inch from wall
If stack dfa <24' then adjust traverse point to 0.5 inch from wall
■OOOOOOOOOmmm
0 f:73i~~—~_~—~_m
0_--~_~~-~—~~a-~
~~~_~-~'ii_~—i~SJ_~I
m~~_---~—_~—~
m_—_----_---~!~'
m~~-~----~ifQ~
Flow Disturbances
U stream - A ft
Downstream - B ft
U stream - A duct diameters
Downstream - B duct diameters
Diagram of Stack
~`3 /1
d /
i
~~
rl
~~ TU
_-+
~
C
Duct Diameters Upstream from Flow Disturbance (Distance A)
0.5 1.0 1.5 2.0 ~ 7F
zo
10
Stack Diameter> 24 inches d.+~
f
— A
i ~.m.,,, — MlNmum Number of e } s~~
PaNculale Traverse Poirhs a~~ 24 (cFcWer) 25 (ractergWer duck )
20 t_
Traverse Polrris for VebcFly 16
iz
— e Idremu)u I~.~anwir) (Disturtence =Bend, E~ension, CoM~actbn, Mc.)
six d. ~, eaW.r«na. -,a - z, y,a».
o 2 3 4 5 6 7 8 9 10
Duct Di~netera Dowrretream from Fbw Dlshabance (Distance B)
■OO~OOOOO~m~~
D~fC9:~ ° ~ ~~:i•ir+w•a~~~~~~
~--------m~~m
m~_-------~~~~
m----------~~'.
m--__~--__--m
~~~ 32
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
VES CARBON BED INLET
Test Data
Run number 1 2 3
Location VES CBed Inlet VES CBed Inlet VES CBed InletDate07/16/19 07/17/19 07/17/19
Time period 1605-1841 0905-1058 1250-1502
Operator JDO/NG KA/NG KA/NG
Inputs For Calcs.Sq. rt. delta P 1.13927 1.14111 1.15441
Delta H 0.9663 0.9988 1.0171
Stack temp. (deg.F)99.6 91.7 97.1
Meter temp. (deg.F)102.0 93.6 102.8
Sample volume (act.)50.909 51.412 51.767
Barometric press. (in.Hg)30.06 30.09 30.06
Volume H2O imp. (ml)12.0 10.0 25.0
Weight change sil. gel (g)17.5 18.2 23.7
% CO2 0.0 0.0 0.0
% O2 20.9 20.9 20.9
% N2 79.1 79.1 79.1
Area of stack (sq.ft.)7.068 7.068 7.068
Sample time (min.)96.0 96.0 96.0
Static pressure (in.H2O)-5.50 -5.50 -5.50
Nozzle dia. (in.)0.160 0.160 0.160Meter box cal.1.0066 1.0066 1.0066
Cp of pitot tube 0.84 0.84 0.84
Traverse points 24 24 24
33
Determination of Stack Gas Velocity -Method 2
Client ~ Operator ~ Pftot Coeff (Cp)~ tlr ` LocadoNP~l~~t .Pi Date l ` Stack Area, ft' (As) ~ ~
Source ! ~ - `~,. ~ _ W.O. Number PltotTube/Thermo ID~~ p r ~rqr- Jvi v v
Run Number
o , 71me
Barometric Press, in Hp (Pb~
Static Press, In HZO (Pstatic)
Source Moisture, %(BWS)
x Ox.
COZ, Y
Cyclonic Flow
Determinatfon Traverse Location
Angle Delta P ffi yeilding zero
O° DeltaP Port Point
Avg Angle ~ ~ ~~,~ Avg. Delta P 8 Temp
Average gas stream velocity, fUaec,
Vol. flow rate ~ actual conditions, wacf/min
Vol. flow rate at standard conditions, dscflmin
-~~n~
~~~~i~
• ~ ~
~~~~
~~
:: ~ .... I .: .... I ,- :. ,...
~ - • ~~7~I ~~° ' ~I~~
~~~~~,~~~I--I--
-Qi~,~l -_I --
` • I--I--
~ ~ I--I-_
~~~~~I--I--
~~I--I-_
~~~~~~I--I-_
~''~~ I~~~1~I--I--
I~i~~w~i~l~-I-~
~I~~~~~I--I--
~~I--I--
~ii-I~'~I--I-_
~~~--I
~ ~I I~~
;* i a
~~I ~~
MUVd = (0.32 • oz1+(o ~a • ~oZ?+(o.za • (~ao - (coz+oz)1) MWd =Dry molecular weight source gas, Ih/I~mole.
MWs = ~MINd' ~1-~BVRIS/100~}~+ ~1 B' ~8W51100~~ ~ MWs =Wet molecular weight source gas, Ibllb-mole.
Tsa = TS+480 Tsa =Source Temperature, absolute(oR)
~~/,,,,,,///~~~ Ps =Absolute stack stffiic pressure, inches Hg. Pa = Pb+ (Pstatid13.6~ Vs =Average gas stream vebaty, fl/sec.
Vs = 85.49' Cp"avg DelteP ` 7as! Ps" MWs ~ Qs(act) = Volumetric fbw rate of wel stack gas at actual, wad/min
Qs(act}= 80' Vs' As Qs(std) = VolumeUic fbw rate of dry stack gas at standard
conditions, dsd/min
Qs(std} = 17.64 • (1- (6V1I5/ 100))" (Ps/Tse )' Qa(act)
Note: Micromanometer fs required if: (A) The average Delta P readings are less than 0.05 Inches of water.
(B) For traverses of 12 or more poirrts, more than 10% of the Delta P readings are bebw 0.05 inches of water.
(C) For traverses of less then 12 points, more than one Delta P readings is bebw 0.05 inches of water.
i~~ ~~~ ~ 4
~~ti
method2.xis y / , (/l/
_ _
34
1
`
ISOKINETIC FIELD DATA SHEET
a~
~' EPA Method 00
Ci(ent cuemo~Ks Stack Conditions Meter Box ID
w.o.# isa~a.002.016 Assumed Actual Metersox v
Project ID Chemours %Moisture Meter Box Del H
Mode/Source ID Carbon Bed Impinger Vol (ml) Probe ID /Length
Samp. Loc. ID
Run No.ID
IN Silica gel (g)
CO2, % by Vol '
Probe Material
Pftot /Thermocouple ID 1
Test Method ID M0010 02, % by Vol ? ~ , Pftot Coefficient
Date ID ,y8JUL2019 Temperature (°F) ~ ~ Noale ID
Source/Location ' VE Soutlt '" CH Inlet Meter Temp ("F) 4 oule Measurements
Avg Sam le Date P Static Press (in HZO) ' ~ y NonJe Dfa (in) —~
Baro. Press (in Hg) Area of Stack (ft~)
Operator A„ 1 ~ t f_Ambient Y-b~•i--/'r-t' j' Temp (°F)_~~_Sample Time
Total Traverse Pts
O L~ ~3
ti
.~
'~3 ~'nl~- R 1
- HF O imer Acid Page ~ of '~
K Factor y "Z V
~ Initial Mid-Point Final
;Sample Train (ft3)
I Leak Check @ (in Hg)
Pitot leak check good
O.B4 Pitot Inspection good
`i Method 3 System good
~Q Temp Check
(Q Meter Box Temp
Reference Tamp
~ f Pass/Fail (+/- zo~
~j ~j J Temp Change Response
~~~~lj~~~~i~L~~
»~~
~~~~~~~ ►, ' .
6
ric-i cai .~ci rVJI-I CJI JGI
~yqb /Fall Pess /Fall
no yes / no
Av tta P A tt H Total Vowme Av Ts J Av Tm MINMau Min/Mau Max Mau Vac MIn1Maz
~rt a P ~v~Sgrt~ ~H Comments: ~~ EPA Method 0010 from EPA SW-846
r ~,n~(
~ ~~-~~ t ~ 'N~.1 ,~e4~ o~~ ~~ o ~ ~,~ ~+1 °j, ~ ,'7 Lys N~~~
~" ~~ ,~l4- ~S , ~t l ~''`,~ :~ ~d~ ~{~,) .S T ~~.~6 !4 - ~ ~,~v7 col,
35
ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid
Client Chemours SteCk Conditions Meter Box ID 3
w.o.# ~saia.00z.pls Assumed Actual Meteraox Y , pa
Protect ID Chemours %Moisture Meter Box Del H
Mode/Source ID Carbon Bed Impinger Vol (ml) Probe ID /Length Sample Train (ft')
Samp. Loc. (D IN Silica gel (g) Probe Material ' Leak Check @ (in Hg) Run No.ID 2 CO2, % by Vol {~ Pitot / Thertnocrouple ID '' ~ Pitot leak check good Test Method ID M0010 02, °/a by Vol Pitot Ccefflcient e Pftot Inspectlon good Date ID 15JUL2019 Temperature (°F) ~ NoaJe ID ' Method 3 System good Source/L U ' M t T
Page ~ of ~„
K Factor ~ 1 3
Initial Mid-Point
~' .~ ~ ~ / ■c~r;~~~r>~
~~~~~~ '
oca on VE Spulh C e er emp (F) ~j~ ~ '~, Noale Measurements d Temp Check yre-Tes e os - I es e
Sample Date ~ StaHc Press (fn HZO) l~ Avg Noale Dia (In) Meter Box Temp
Baro. Press ((n Hg) Zj C,+ > Area of Stack (RZ) Reference Temp
Operator AmWent Temp (°F) g`7 Sample Time Pass/Fail (+/- 2°J ~ Pess /Fell Pass / FaH
Total Traverse Pts Temo Chance Response 5 yes / no ves ! no
v
~.bfol~j.o 10 1..7 ,~iJ.~
_~_~"g~~o ~s 36
ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid
client chemau~s Stack Conditions Meter Box ID
w.o.# lsata.002;n9s Assumed Actual Metersox v ~„~p~a
Project ID Chemours %Moisture Meter Box Del H C
Mode/Source ID
Samp. Loc. ID
Run No.ID
Test Method ID
Date ID
Carbon Bed
IN
3
M0010
15JUL2019
Impinger Vol (ml)
Silica gel (9)
CO2, % by Vol
02, % by Vol
Temperature (°FJ
Probe ID /Length ' Sample Train (ft3)
Probe Material Leak Check ~ (in Hg)
~. f~ Pitot /Thermocouple ID Pitot leak check good
''),,~, Pftot Coefftcient 0.84 Pitot Inspection good
j pff ~"~„ Noale ID , 9 Method 3 System good
Page ~ of L
K Factor ~ `7}Jc
Initial Mid-Point Final
~ .~ ~~~~d//l5ll~j~
~~~~
~~~~~~
~~~~ Source/Location v ; aouth C8 i[Net Meter Temp ("F) ''~ 7~ Noale Measurements ~ rZ_Temp Check re- es e os - I es 2
Sample Date Static Press (in HZO) ~ — ~5~'f Avg Noale Dia (in) Mater Box Temp
Baro. Press (In Hg)~, Q~ Area of Stack (ftZ) Reference Temp
Operator Ambient Temp (°F) ; a ~ Sample Time Pass/Fail (+/- 2°~ Pass /Fail Pecs /Fall
Total Traverse Pts Temp Change Response S yes / no yea / no
~~
~'
O I fl ,-,
~wl~s7~i~~~~Rt~El,►:~~A[~i.A 1~f 'L'~airf~~f~~i~~i~~~Ms~~GI`;~fG~~iyi;~~
~~7r~~~'~~L'~i~~(ilr~~T~~~~~~~~~[~~i►~i:~~~~~
~~~~i~[~~i~iit~~ ~~ICj~~~l~~~~~i4 7i~t~i~
~~
_
J ,
..
_..._. _ ___ _ __ _ ~ ~.v. __ _
~. ~..._~ ._..m.
~.~r►.....~.. _ _. __. .,
37
SAMPLE RECOVERY FIELD DATA
EPA Method 0010 - HFPO Diener Acid
Client
Location/Plant
Chemours
Fayetteville, NC
W .O. # 15418.002.016
Source &Location VE South c:a i~~or
Run No. 1 Sample Date ~ ~'~ ~ ~ {~ ~ Recovery Date 7 "` ~~~
Sample I.D. Chemours -Carbon Bed - IN -1 - M0o10 - Analyst Filter Number ~_
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~ ~ ~~~'J -Q~ ~ ~ , t
Initial ~ 100 100 ~ 300
Gain ~ ~ 0 / ~ ~i,~
Impinger Color ~ ` Labeled? O
Silica Gel Condition Sealed?
Run No. 2 Sample Date ~ 17 1 GJ Recovery Date ~J~
Sample I.D. Chemours -Carbon Bed - IN - 2 - M0o10 - Analyst ~j Filter Number •`~
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final 0 e~~ +7 71 Q ~~~
Initial ~ 100 100 D 300
Gain b ~ .~ i
Impinger Color Cyl ~1,~ ~ Labeled? ~ / ~
Silica Gel Condition Sealed?
Run No. 3 Sample Date-~~y Recovery Date
Sample I.D. Chemours -Carbon Bed - IN - 3 - Moo10 - Analyst ~ Filter Number
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~ ~ ~ ~ ~f~~►i -
Initial Q 100 100 ~ 300
Gain ~ ~ y'pi~
Impinger Color C(, ` ~/ Labeled? l/
Silica Gel Condition ~ / Sealed?
Check COC for Sample IDs of Media Blanks ~.
38
~~
SAMPLE RECOVERY FIELD DATA
Client ~~ S W.O. #
Location/Plant Source &Location ~.~— y~
Run No. ~ ~ Sample Date ~ ~ ~~,~ Recovery Date ~~' ~~"' vim-
Sample I.D. k.L~,~ ) r+7 Analyst a S ~ Filter Number
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Sil(ca Gel
Final ~ ~ 9~ ~ 3~''~
Initial ~ ~ ~ ~ ~~~
Gain ~ ~ (~ ~ 7C
Impinger Color ~ Labeled?
Silica Gel Condition Sealed?
Run No. Sample Date Recovery Date
Sample I.D. Analyst Filter Number
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Silica Gel
Final
Initial
Gain
Impinger Color Labeled?
Silica Gel Condition Sealed?
Run No. Sample Date Recovery Date
Sample I.D. Analyst Filter Number
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Silica Gel
Final
Initial
Gain
Impinger Color Labeled?
Silica Gel Condition Sealed?
Check COC for Sample IDs of Media Blanks
39
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
VES CARBON BED OUTLET
Test Data
Run number 1 2 3
Location VES CBed Outlet VES CBed Outlet VES CBed OutletDate07/16/19 07/17/19 07/17/19
Time period 1605-1841 0905-1058 1250-1502
Operator JM JM JM
Inputs For Calcs.Sq. rt. delta P 0.83005 0.83224 0.83619
Delta H 1.2600 1.3092 1.3200
Stack temp. (deg.F)100.2 97.6 100.3
Meter temp. (deg.F)104.7 96.0 107.1
Sample volume (act.)58.439 58.943 59.828
Barometric press. (in.Hg)30.06 30.09 30.06
Volume H2O imp. (ml)20.0 10.0 30.0
Weight change sil. gel (g)14.0 14.2 16.4
% CO2 0.0 0.0 0.0
% O2 20.9 20.9 20.9
% N2 79.1 79.1 79.1
Area of stack (sq.ft.)9.390 9.390 9.390
Sample time (min.)96.0 96.0 96.0
Static pressure (in.H2O)2.40 2.40 2.40
Nozzle dia. (in.)0.202 0.202 0.202Meter box cal.1.0069 1.0069 1.0069
Cp of pitot tube 0.84 0.84 0.84
Traverse points 24 24 24
40
.~.,,.. Determination of Stack Gas Velocity -Method 2
Client ~%r ``r"" ' 7 Operator ~ / ~ Pltot Coeff (Cp)
LocaUoNPlant ~ I/ Date Stack Area, ft2 (As)
Source p~ W.O. Number Pitot Tube/Thermo ID n.
Run Number
Time
Barometric Press, In Hg (Pb)
Static Press, in H=0 (PataUc)
Source Moisture, •ti (BWS)
~z~ '/o
~'.OZ~ °~
Cyclonic Flow
Detertnlnatlon Traverse Location
Dana P at
O°
Angle
yeilding zero
Deka P Port
~~
Pant
~~
r . •~
~~~~~-S7
~~I-~
O~I-~~
~~~~~~'~
~Q~-~~
~Qr~~~~~
~~~~~_~~
~~~'~~~~~jl~
Avg Angle ~ '[', Avg Delta P &Temp
Average gas stream velocity, fUsec.
Vol. flow rate ~ actual. condlUons, wacf/min
Vol. flow rate at standard conditions, dscflmin
~~'~ry> ~~ ~
~~~~
~~1~~
i~
I~~I
~~I~~ ~~
</~~~~J~~,~~I--I--~'
~~~~Lt~~l-_I--,
Il~At~ ~~~--I--
ir~~rlr.~i~~i~~ ir~s~arrr~i~~i~~
ir~~~~i~~i~~ i ~ - rr~i~~i~~
j ~ ~~-I-_I--
.~~~j:~~~~~r
1 i j~
~
.~'~E.~ai.~:~~1 ~.~,,~1~I
MWd = (x.32' 02~+ (4 A4' COq~+ 0.28 `(100 - (CO2+~ Z~~~ MWd =Dry molecular weight souroe gas, Ibllb-mole.
MWs = {MWd' ~1-{BVVS/1Qp~~~+ ~18' ~BWS1100~} MWs =Wet molecular weight source gas, IbAb-mole.
Tsa = Ts+48t1 Tsa =Source Temperature, absolute(oR)
Ps = Pb+ ~Pstatid13.6~
Ps =Absolute stack static pressure, inches Hg.
Vs =Average gas stream vabcity, ft/sec.
Vs = 85.48 "Cp"avg DelteP ' Tse! Ps"AAVIIa Qs(act) = VolumeVic fbw rate of wet stack gas at actual, wacf/min
As
Qs(std) = Volumetric ibw rate of dry stack gas at standard
Qs(aet~= 80' Vs' conditions, dscflmin
Qs(std) S 17.64 ` (1— (BWS/100)) "(Pslfae }" Cas(ect)
Note: Micromanometer is required ff: (A) The average Deka P readings are less than 0.05 inches of water.
(B) Fa traverses of 12 or more points, more than 10% of the Deka P readings are bebw 0.05 inches of water.
(C) For Vaverses of less than 12 points, more than one Detta P readings is bebw D.OS inches of ovate.
~~ ~ ~~~ ~ ~~ ,
method2.xls
41
~~
ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam t of
Client ct,ena,rs Stack Conditions Meter Box ID ~/' ~ K Factor ~ •? w.o:# ~5a~a.ofla.o~s Assumed Actual Metereox r Pr e~Ct ID Chemours °/a Moisture ~ Meter Box Del H t Initial Mid-Poin Final M~e/Source ID Carhon Bed Impinger Vol (ml) Probe ID /Length ' Sample Train (k') ; , I
Sa~ip. Loc. ID OUT Silica gel (g) Probe Material Boro Leak Check @ (in Hg)
Rurj No.ID 1 CO2, % by Vol Pitot /Thermocouple ID Pitot leak check good ~ no yea / no / rp Test Method ID M0010 02, °/a by Vol Pitot Coefficient ~ 0.84 Pitot InspecBon good / ra yes / no / no Date ID 15JUL2019 Temperature (°F) ~ Noale ID Method 3 System good / no yes / no / no Source/Location VE quth . C6 pugeG Meter Temp ("F) ~ Noale Measurements .1,(~'L ~~ ~ Temp Check re- est Set Post-Test et Sample Date '7 Static Press (in H2O)# I~~ ~. -,+ ,qvg NonJe Dia (in) Meter Box Temp
Baro. Press (in Hg ,~(5`~ ` °~ Area of Stack (ft2) Reference Temp '
Operator ~ ~ Ambient Temp (°F) ;~ Sample Time Pass/Fail (+/- 2°) ~ / FaA s /Fall
Total Traverse Pts Temp Change Response i ye / no e / no
~~~~i.~`—~~~~~~~~~7~~l~z~~~~1~7 I~~~«I~~ ~1 ~F3~LJ I~E7~~C~~C~.~~o o~i~~r~~~~
0
'~~ 1 1i7 I ~~sS[ I 3.
~—
~ / f Avg Delta P Avg pe of I u Avg Ts Av Tm MiNMax Min/Max Mau Mau Vac MiNMau
Avg Sgrt Delfa P Avg Sgrt Del H Comments: EPA Method 0010 fro ~PA SW-846 ~l M ~~r y 11 lJ w.. ~ ~ ~~~
J ;~ ' 42
ISOKINETIC FIELD DATA SHEET
Client chernoura Stack Conditions
w.o.# i sal a.00z.oas Assumed
ProJ~ct ID Chemours %Moisture '"L
Mot /Source ID Carbon Bed Impinger Vol (ml)
Sam. Loc. ID OUT Silica gel (g)
Run No.ID 2 CO2, % by Vol
Test Method ID M0010 02, % by Vol ('
Date ID 15JUL2019 Temperature (°F) 0~
Source/LocaUon VE $ t#h C8 Outlet Meter Temp ("F)
Sample Date ') $tatic Press (in HZOy,~ . i
Baro. Press (in Hg) ~ ~
Operator Ambient Temp (°F)
~ ~~T~~ ~~ EPA Metho 1~ FIFPO Dimer Acid Page of
Meter Box ID
Actual nneter sox r K Factor ,~
Meter Box Del H ~ ~. Initial Mid-Point Fina
Probe ID /Length Sample Train (ft3)
Probe Material Born Leak Check @ (fn Hg)
Pitot /Thermocouple ID ~ Pitot leak check good
Pitot Coefficient 0.84 Pitot Inspection good
Noale ID Method 3 System good
~~U ~ :C~
e no yes / no e ! ro
e / no yes / no / no
e no yes / no e / no NoaJe Measurements ~ ~ / Lp ~ ,"~j Temp Check Pre-Test et Post- est Set
Avg Noale Dia (in) Meter Box Temp
Area of Stack (flz) ~. Reference Temp
Sample Time ~ Pass/Fail (+/- 2°) /Fail /Feu
Total Traverse Pts Temp Change Response i ye / no y / no
Z
oz`s i.~r~ ~rrfir~~y~~r~~~~i~ifl~1[~l>i~~fL~~"L~~~«.i~E~i*~~j~i~'~~V ~
n
~ai[a ~ .~
~
rev ~ n~ ~ o[a~ volume t~
/
Hvg ~ ~, ~vvg 7 m ~ nn~NMa
P 4~~ Com ents: _ 1 ~ 1 ~ ~~~~ n
v "I I . ~0
i
MinlMa~c
EPA Method X010 from EPA SW-846
,~; 3~~ ~g
7L~ '~ J
43
ISOHINETIC FIELD DATA SHEET
Cifent ctemour~ Stack Conditions
w.o,# ~5g18.092.D16 Assumed
ProJ~ct ID Chemours °/ Moisture
Mock/Source ID Carbon Bed Impinger Vol (ml) _
Samp. Loc. ID OUT Silica gel (g)
Run No.ID 3 CO2, % by Vol ,~)
Test Method ID M~010 02, % by Vol ;
Date ID 15JUL2019 Temperature (°F) ~
Source/Location VE CB QuNgt. Meter Temp ("F) r
Sample Date Static Press (fn H2O) ~~~--- Baro. Press (in Hg)
Operator Ambient Temp (°F)
~~~✓~
EPA Method 0010 - HFPO Diener Acid
Meter Box ID ~/~/~ (~— ,
Actual Metereox v ~~p~64
Meter Box Del H ~
Probe ID / Lertgth Sample Train (ft3)
_ Probe Material ~ Born Leak Check @ (in Hg)
Pitot /Thermocouple ID ; Pitot leak check good
Pitot Coefflc(ent 0.84 Pitot Inspection good
Noale ID
NoaJe Measurements p Method 3 System good
~~Fi ~ Temp Check
qvg Noale Dia (in) .~ Q., Meter Box Temp
Area of Stack (ft2) —~~_ Reference Temp
Sample Tima Pass/Fall (+/- 2°~
r
Page I of
K Factor
Initial Mid-Point Final
,~ , ~~+ ~ ~ ~r(~
~' d
e / no yes / no / no
/ no yes / no / rb
e / no yea / no ~ ~
Pre-Test Set Post-Test et
~ •~
~ ~ ~
! /Fail /Fail Total Traverse Pts Temp Change Response 5 ye / no ye (no
-
J _ _ _
o
-LZ9
~~~~~I!~~~~~1'f~i~~~t~~~It~~~". ~'~~~ mac. ~~~i~~~ R~~
'+ ~51 i~O[~'~ i~V~ir~ r r ~I3~~~I~~~~r .~~G~t~lJ~
Ir'i~lli~~~~l~ir'~'i!~ ~ : ~~i~ f ~, iG^i~7 • ■«f~I~A~i~i~fi~~
_ 1", V~v Avg
89
f ob _o
x ) ~ '~ ~IiG~-J
fl 'y' IiS : cJ ~ ~e ~~ ~~ Avg~Tm M(NMax iNMax M~ Mau Vac MI ax .i
J EPA Method 0010 from EPA SW-846
Q~ ,_ 44
t~ ~ S _ ~,~ ~ ~~~~
SAMPLE RECOVERY FIELD DATA
EPA Method 0010 - HFPO Diener Acid
Cllefit Chemours W.O. # 15418.002.016
Location/Plant Fayetteville, Nc Source &Location vE south Cs outlet
Run No. 1 Sample Date 7 ~/ ~ ~~ ~ Recovery Date ?~ ~ ~~
Sample I.D. Chemours -Carbon Bed -OUT - 1 - Moo10 - Analyst O ~/~ Filter Number ~~
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~ '0 Q 0 ~ 1
Initial ~ goo goo ~ soo
Gain ~ ~ ~''~ `~
~ ~ Impinger Color i~ (/ Q Labeled?
Silica Gel Condition s v Sealed?
~'~i ~'' ~~ ~'~ ~~"~ Run No. 2 Sample Date Recovery Date
Sample I.D. Chemours -Carbon Bed -OUT - 2 - Moo10 - Analyst ~y Fifter Number ~--
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~ ~0 O~
Initial v 100 100 'v 300
Gain ~ ~ a a / . ~ ~~
Impinger Color Ot ~ Labeled? ~/
)~ ~~
Silica Gel Condition l..~G ~ D Sealed? J
Run No. 3 Sample Date ~ ~` ~~ ~ ~ Recovery Date ~" { ~~~
~ /~"' ~ Sample I.D. Chemours -Carbon Bed -OUT - 3 - M0010 - Analyst Filter Number
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~ 0 l'~ ~ ~b !~ !~
Initial ~ 100 100 ~ 300
Gain ~ ~ ~ ~ l L .
Impinger Color (ill ~ Labeled?
Silica Gel Condition ~ Sealed? ~`~
Check COC for Sample IDs of Media Blanks
45
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
VE SOUTH STACK
Test Data
Run number 1 2 3
Location VE South Stack VE South Stack VE South StackDate07/16/19 07/17/19 07/17/19
Time period 1605-1841 0905-1058 1250-1502
Operator MW MW MW
Inputs For Calcs.Sq. rt. delta P 0.75906 0.75894 0.75569
Delta H 0.7854 0.7854 0.7642
Stack temp. (deg.F)100.3 97.4 100.4
Meter temp. (deg.F)98.5 87.9 99.0
Sample volume (act.)50.910 49.525 50.263
Barometric press. (in.Hg)30.00 30.07 30.07
Volume H2O imp. (ml)33.0 31.0 29.0
Weight change sil. gel (g)12.5 14.1 12.9
% CO2 0.0 0.0 0.0
% O2 20.9 20.9 20.9
% N2 79.1 79.1 79.1
Area of stack (sq.ft.)9.620 9.620 9.620
Sample time (min.)96.0 96.0 96.0
Static pressure (in.H2O)2.50 2.50 2.50
Nozzle dia. (in.)0.190 0.190 0.190Meter box cal.1.0008 1.0008 1.0008
Cp of pitot tube 0.84 0.84 0.84
Traverse points 24 24 24
46
_. '
~... A
~~ 1~~~'
ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam _ or_
client Ghemou~s Stack Conditions Meter Box ID ~' K Factor /~ 3 w.o.# 15a~s:oo2.o~s Assumed Actual Meter Box Y
Project ID Chemours %Moisture ? ~ Meter Box Del H O Initial Mid-Point Final A~afe/Source ID VE South - 3eRrbber` Impinger Vol (ml) Probe ID /Length '7{~'r..T ~ ~'~' ;Sample Train (k') ~
Sainp. Loc. ID STK Silica gel (g)
..
Probe Material ~ - BcWo ~Leak Check @ (in Hg) ~J .~,,
Run No.ID 1 CO2, °/a by Vol ~' Pitot /Thermocouple ID pC3 ; Pitot leak check good ~ ~o / rno es no Test Method ID M0010 02, % by Vol i, ~'j Pitot Coefficient 0.84 Pitot Inspection good no (np 6 (hp
Date ID
c..~.....,n ..
15JUL2019
aic c~_...u.. oa_~.
Temperature (°F)
i ~Anfcr Tmm~ NCl
~^i ~ Noale ID ^~'~~rc ' ~ ~' _ ~ Method 3 System good I no 1 no / tp
~~~~~~.~~w~~~~ .~..~w~, _~~.~. •.•-•-• . -••~r ~ ~ ~ sr -~ rvozzie measurements ~-~cU (J i emp ~necK rre- i est Set Nost-test Set Sample Date ~/ Static Press (in HZO) Avg NoaJe Dia (in) ~/ Meter Box Temp `Z ~ ! r— Baro. Press (in Hg) ~ ~ Area of Stack (ft2) —~~ Reference Temp _
Operator ~- `' ~' mhlent Temp (°F) ~ ~~Z )'L Sample Time Pass/Fail (+/- p°) /Fail / FaU i
Total Traverse Pts Temp Change Response i ` / no / no
v
m
~~~T~*7~~~7~3:I~+~iL'~F3r'~J~~t ~ • ~i''j.7~~II~~~. t ~~~- t ~
J Avg Delta P ~Av elta H T I Volume ~J vg Ts~ Tm M N ax i ax Mau ~~ .s~'7 d ~~~`~ ~~. 0 ~~D ~ .S r~~ ire ~~ l~/
Avg Sgrt Delta P vg Sgrt Del H Comments: b,~s ob s, l p~~ ~ ~ S~
.~ 3 l~~o
EPA Method 0010 from EPA SW-846
(M~~
47
ISOKINETIC FIELD DATA SHEET
c~iient chemaxs Stack Conditions
~.o.# 15418':002.016 Assumed
project ID Chemours °/, Moisture
Mode/Source ID VE South - S~rabber Impinger Vol (ml)
Samp. Loc. ID STK SIGca gel (g)
Run No.ID 2 CO2, °/a by Vol ~"p
Test Method ID M0010 02, % by Vol
Date ID 15JUL2019 Temperature (°F) j-
Source/Location VESa~th Stack Meter Temp("F) .~—
Sample Date "j Static Press (fn H2O ~
Baro. Press (in Hg) ~ ~` L(;'~~
Operator ~ Ambient Temp (°F)
EPA Method 0010 - HFPO Diener Acid Pa orb
Meter Box ID
ACtU81 Meter Box Y
Meter Box Del H
Probe ID /Length
Probe Material
Pitot /Thermocouple ID
Pitot Coefficient
Noale ID
NoaJe Measurements
Avg Noale Dia (in)
Area of Stack (ft
Sample Tfine
Total Traverse Pts
~"~ ~ ,~~~
d ~ K Factor I, 3 ~'
J Initial Mid-Point Final
Sample Train (ft')
Born Leak Check @ (in Hg)
Pitot leak check good
0.84 Pitot Inspection good
'Method 3 System good
~~~~~`.R.11~
~~ ~r
~,~,~~}~r~~~~~
~llti'7/~li:~~~~ ~ ~ ~ Temp Check re- es e os -Tes e
7t ~/ Meter Box Temp
Reference Temp Z
Pass/Fail (+/- 2°~ !Feb !Fell
Temp Change Response i e / no / no
48
ISOKINETIC FIELD DATA SHEET
Client Cherrw~Ks StaC
W .O.# 154 b.002,0'1 fi
Project ID Chemours %Moisture
.Mode/Bourne ID VE South - 8l~b~r Impinger Vol (ml)
Samp. Loc. ID STK Silica gel (g)
Run No.ID 3 CO2, % by Vol
Test Method ID M0010 02, % by Vol
Date ID 15JUL2019 Temperature (°F)
Source/Locatlon VE SouUr S}acic !Meter Temp ("F)
EPA Method 0010 - HF~ O Diener Acid Pam ~ or.~
k Conditions Meter eox io K Factor1~351 Assumed Actual nneter eox r
Meter Box Del H ,~ Initial Mid-Point Final
Probe ID /Length $' Sample Train (ft3)
Probe Material 8oro Leak Check @ Qn Hg) ,t, ~ S
i U Pitot /Thermocouple ID q Pitot leak check good 1 no / no no
~' Pitot Coefficient 0.84 Pitot Inspection good / no / na / no ~
r- (D t Noale ID Metfwd 3 System good I no / no / rp
Noale Measurements ) ~'~ Q V Temp Check re-Test Post- est Set Sample Date Static Press (in HZO) ~ — Avg NoaJe Dia (in) Meter Box Temp
Baro. Press (in g ~ Area of Stack (ft2) Reference Temp
Operator ~ „~ ~ Ambient Temp (°F) ~ ~ Sample Time Pass/Fall (+/- 2°~ /Fall (FaH
Total Traverse Pts Temp Change Response 5 i no / no
o - - ~tL
L
52'
f~~
Avg Delta P Avg e H Total Vol me J v Ts
Avg Sgrt Dena P Avg S ~ DQI ~ mments
0 .~ try I ~
l~~l ~bol ray(/ l►~ I b
EPA Method 0010 from EPA SW-846
49
SAMPLE RECOVERY FIELD DATA
EPA Method 0010 - HFPO Dimer Acid
Client
Location/Plant
Chemours
Fayetteville, NC
W.O. #
Source &Location
15418.002.016
VE South Stack
Run No. 1 Sample Date f_~~ Recovery Date ~ lNl~'~
Sample I.D. Chemours - VE South -~artbber - STK - 1 - M0010 - Analyst ~ Ll~fll Filter Number ~1~
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica GeI
Final 3~ ~J ~ °~ ~ ~ Cpt ~/`
Initial ~ 100 100 ~ 300
Gain ~~ ~ ~~' /L '~3 y t~.~" ~~
Impinger Color Qr~~ Labeled? ~
Silica Gel Condition ~ Sealed?
Run No. 2 Sample Date Z ~%y Recovery Date ~~~`~
Sample I.D. Chemours - VE South - Zen7bben - STK - 2 - Moo10 - Analyst _~~(I~ Filter Number Q~/4r
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ' ~.- (, ~~ ~ ~~r~,
Initial 6~ goo goo ~ soo
Gain ~ `7i .. ~ ~ ~ ~ ~~La.) 4`~' f
Impinger Color Labeled?
Silica Gel Condition Sealed?
Run No. 3 Sample Date __~~~'''~ Recovery Date ~~~-
Sample I.D. Chemours - VE South - ~aa~q~ - STK - 3 - Mo010 - Analyst /~~' Filter Number
Im finger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final Z2 C.~Z ~ ~p ~`
Initial .Q goo goo d soo
Gain ~2 ~ "~ (p `Z~ l ''~
Impinger Color Labeled?
Silica Gel Condition ~~~ Sealed?
Check COC for Sample IDs of Media Blanks
50
METHODS AND ANALYZERS
Client:
Location:
Source:
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
File: C:\DATA\Chemours\July 2019\071619 VE South Run 1redo.cem
Program Version: 2.1, built 19 May 2017 File Version: 2.02
Computer: WSWCAIRSERVICES Trailer: 27
Analog Input Device: Keithley KUSB-3108
Channel 1
Analyte O2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No. Servomex 4900
Full-Scale Output, mv 10000
Analyzer Range, %25.0
Span Concentration, %21.0
Channel 2
Analyte CO2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No. Servomex 4900
Full-Scale Output, mv 10000
Analyzer Range, %20.0
Span Concentration, %17.1
51
CALIBRATION DATA
Number 1
Client:
Location:
Source:
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
Start Time: 11:37
O2 Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
%Cylinder ID
12.1 ALM053372
21.0 CC112489
Calibration Results
Zero 14 mv
Span, 21.0 %8025 mv
Curve Coefficients
Slope Intercept
381.8 14
CO2
Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
%Cylinder ID
9.0 ALM053372
17.1 CC112489
Calibration Results
Zero -1 mv
Span, 17.1 %8545 mv
Curve Coefficients
Slope Intercept
501.2 -1
52
CALIBRATION ERROR DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
Start Time: 11:37
O2 Method: EPA 3A
Span Conc. 21.0 %
Slope 381.8 Intercept 14.0
Standard
%
Result
%
Difference
%
Error
%Status
Zero 0.0 0.0 0.0 Pass
12.1 12.0 -0.1 -0.5 Pass
21.0 21.0 0.0 0.0 Pass
CO2
Method: EPA 3A
Span Conc. 17.1 %
Slope 501.2 Intercept -1.0
Standard
%
Result
%
Difference
%
Error
%Status
Zero 0.0 0.0 0.0 Pass
9.0 9.0 0.0 0.0 Pass
17.0 17.0 0.0 0.0 Pass
53
BIAS
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
Start Time: 11:45
O2 Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.4 0.4 1.9 Pass
Span 12.0 12.1 0.1 0.5 Pass
CO2Method: EPA 3A
Span Conc. 17.1 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 9.0 8.7 -0.3 -1.8 Pass
54
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
15:51 20.7 0.1
15:52 20.7 0.1
15:53 20.7 0.1
15:54 20.7 0.1
15:55 20.7 0.1
15:56 20.7 0.1
15:57 20.7 0.1
15:58 20.7 0.1
15:59 20.7 0.1
16:00 20.7 0.1
16:01 20.7 0.1
16:02 20.7 0.1
16:03 20.7 0.1
16:04 20.7 0.1
16:05 20.7 0.1
16:06 20.6 0.1
16:07 20.6 0.1
16:08 20.6 0.2
16:09 20.6 0.2
16:10 20.6 0.2
16:11 20.6 0.2
16:12 20.6 0.2
16:13 20.6 0.2
16:14 20.6 0.2
16:15 20.6 0.2
16:16 20.6 0.2
16:17 20.6 0.2
16:18 20.6 0.2
16:19 20.6 0.2
16:20 20.6 0.2
16:21 20.6 0.2
16:22 20.6 0.2
16:23 20.6 0.2
16:24 20.6 0.2
16:25 20.6 0.2
16:26 20.6 0.2
16:27 20.6 0.2
16:28 20.6 0.2
16:29 20.6 0.2
16:30 20.6 0.2
55
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
16:31 20.6 0.2
16:32 20.6 0.2
16:33 20.6 0.2
16:34 20.6 0.2
16:35 20.6 0.2
16:36 20.6 0.2
16:37 20.6 0.2
16:38 20.6 0.2
16:39 20.6 0.2
16:40 20.6 0.2
16:41 20.6 0.2
16:42 20.6 0.2
16:43 20.6 0.2
16:44 20.6 0.2
16:45 20.6 0.2
16:46 20.6 0.2
16:47 20.6 0.2
16:48 20.6 0.2
16:49 20.6 0.2
16:50 20.6 0.2
16:51 20.6 0.2
16:52 20.6 0.2
16:53 20.6 0.2
16:54 20.6 0.2
16:55 20.6 0.1
16:56 20.6 0.1
16:57 20.6 0.1
16:58 20.6 0.1
16:59 20.6 0.1
17:00 20.6 0.1
17:01 20.6 0.1
17:02 20.6 0.1
17:03 20.6 0.1
17:04 20.6 0.1
17:05 20.6 0.1
17:06 20.6 0.1
17:07 20.6 0.1
17:08 20.6 0.1
17:09 20.6 0.1
17:10 20.6 0.1
56
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
17:11 20.6 0.1
17:12 20.6 0.1
17:13 20.6 0.1
17:14 20.6 0.1
17:15 20.6 0.1
17:16 20.6 0.1
17:17 20.6 0.1
17:18 20.6 0.1
17:19 20.6 0.1
17:20 20.6 0.1
17:21 20.6 0.1
17:22 20.6 0.1
17:23 20.6 0.1
17:24 20.6 0.1
17:25 20.6 0.1
17:26 20.6 0.1
17:27 20.6 0.1
17:28 20.6 0.1
17:29 20.6 0.1
17:30 20.6 0.1
17:31 20.6 0.1
17:32 20.6 0.1
17:33 20.6 0.1
17:34 20.6 0.1
17:35 20.6 0.1
17:36 20.6 0.1
17:37 20.6 0.1
17:38 20.6 0.1
17:39 20.6 0.1
17:40 20.7 0.1
17:41 20.7 0.1
17:42 20.6 0.1
17:43 20.6 0.1
17:44 20.7 0.1
17:45 20.7 0.1
17:46 20.7 0.1
17:47 20.7 0.1
17:48 20.7 0.1
17:49 20.7 0.1
17:50 20.6 0.1
57
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
17:51 20.6 0.1
17:52 20.6 0.1
17:53 20.6 0.1
17:54 20.6 0.1
17:55 20.6 0.2
17:56 20.6 0.2
17:57 20.6 0.2
17:58 20.6 0.1
17:59 20.6 0.1
18:00 20.6 0.2
18:01 20.6 0.1
18:02 20.6 0.1
18:03 20.6 0.1
18:04 20.6 0.1
18:05 20.6 0.1
18:06 20.6 0.1
18:07 20.6 0.1
18:08 20.6 0.1
18:09 20.6 0.1
18:10 20.6 0.1
18:11 20.6 0.1
18:12 20.6 0.1
18:13 20.6 0.1
18:14 20.6 0.1
18:15 20.6 0.1
18:16 20.6 0.1
18:17 20.6 0.1
18:18 20.6 0.1
18:19 20.6 0.1
18:20 20.6 0.1
18:21 20.6 0.1
18:22 20.6 0.1
18:23 20.6 0.1
18:24 20.6 0.1
18:25 20.6 0.1
18:26 20.6 0.1
18:27 20.6 0.1
18:28 20.6 0.1
18:29 20.6 0.1
18:30 20.6 0.1
58
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
18:31 20.6 0.1
18:32 20.6 0.1
18:33 20.6 0.1
18:34 20.6 0.1
18:35 20.6 0.1
18:36 20.6 0.1
18:37 20.6 0.1
18:38 20.6 0.1
18:39 20.6 0.1
18:40 20.6 0.1
18:41 20.6 0.1
18:42 20.6 0.1
18:43 20.6 0.1
18:44 20.6 0.1
18:45 20.6 0.1
18:46 20.6 0.1
18:47 20.6 0.1
18:48 20.6 0.1
18:49 20.6 0.1
18:50 20.6 0.1
18:51 20.6 0.1
18:52 20.6 0.1
18:53 20.6 0.1
18:54 20.6 0.1
18:55 20.6 0.1
18:56 20.6 0.1
18:57 20.6 0.1
18:58 20.6 0.1
18:59 20.6 0.1
19:00 20.6 0.1
19:01 20.6 0.1
19:02 20.6 0.1
19:03 20.6 0.1
19:04 20.6 0.1
19:05 20.6 0.1
19:06 20.6 0.1
19:07 20.6 0.1
19:08 20.6 0.1
19:09 20.6 0.1
19:10 20.6 0.1
59
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
19:11 20.6 0.1
Avgs 20.6 0.1
60
RUN SUMMARY
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 15:50 to 19:11
Run Averages
20.6 0.1
Pre-run Bias at 11:45
Zero Bias
Span Bias
Span Gas
0.4 0.1
12.1 8.7
12.1 9.0
Post-run Bias at 19:14
Zero Bias
Span Bias
Span Gas
0.3 0.1
12.0 8.8
12.1 9.0
Run averages corrected for the average of the pre-run and post-run bias
20.9 0.0
61
BIAS AND CALIBRATION DRIFT
Number 2
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
16 Jul 2019
Project Number:
Operator:
Date:
Start Time: 19:14
O2 Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.3 0.3 1.4 Pass
Span 12.0 12.0 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.4 0.3 -0.1 -0.5 Pass
Span 12.1 12.0 -0.1 -0.5 Pass
*Bias No. 1
CO2
Method: EPA 3A
Span Conc. 17.1 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 9.0 8.8 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.1 0.0 0.0 Pass
Span 8.7 8.8 0.1 0.6 Pass
*Bias No. 1
62
METHODS AND ANALYZERS
Client:
Location:
Source:
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
File: C:\DATA\Chemours\July 2019\071719 VE South Runs 2 and 3.cem
Program Version: 2.1, built 19 May 2017 File Version: 2.02
Computer: WSWCAIRSERVICES Trailer: 27
Analog Input Device: Keithley KUSB-3108
Channel 1
Analyte O2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No. Servomex 4900
Full-Scale Output, mv 10000
Analyzer Range, %25.0
Span Concentration, %21.0
Channel 2
Analyte CO2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No. Servomex 4900
Full-Scale Output, mv 10000
Analyzer Range, %20.0
Span Concentration, %17.1
63
CALIBRATION DATA
Number 1
Client:
Location:
Source:
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
Start Time: 06:28
O2 Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
%Cylinder ID
12.1 ALM053372
21.0 CC112489
Calibration Results
Zero 10 mv
Span, 21.0 %7984 mv
Curve Coefficients
Slope Intercept
380.1 10
CO2
Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
%Cylinder ID
9.0 ALM053372
17.1 CC112489
Calibration Results
Zero -4 mv
Span, 17.1 %8535 mv
Curve Coefficients
Slope Intercept
500.8 -4
64
CALIBRATION ERROR DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
Start Time: 06:28
O2 Method: EPA 3A
Span Conc. 21.0 %
Slope 380.1 Intercept 10.0
Standard
%
Result
%
Difference
%
Error
%Status
Zero 0.0 0.0 0.0 Pass
12.1 12.0 -0.1 -0.5 Pass
21.0 21.0 0.0 0.0 Pass
CO2
Method: EPA 3A
Span Conc. 17.1 %
Slope 500.8 Intercept -4.0
Standard
%
Result
%
Difference
%
Error
%Status
Zero 0.0 0.0 0.0 Pass
9.0 9.0 0.0 0.0 Pass
17.0 17.0 0.0 0.0 Pass
65
BIAS
Number 1
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
Start Time: 06:37
O2 Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
CO2Method: EPA 3A
Span Conc. 17.1 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 9.0 8.9 -0.1 -0.6 Pass
66
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
09:05 20.8 0.0
09:06 20.8 0.0
09:07 20.8 0.1
09:08 20.8 0.1
09:09 20.8 0.1
09:10 20.8 0.1
09:11 20.8 0.1
09:12 20.8 0.1
09:13 20.8 0.1
09:14 20.8 0.1
09:15 20.8 0.1
09:16 20.8 0.1
09:17 20.8 0.1
09:18 20.8 0.1
09:19 20.8 0.1
09:20 20.8 0.1
09:21 20.8 0.1
09:22 20.8 0.1
09:23 20.8 0.1
09:24 20.8 0.1
09:25 20.8 0.1
09:26 20.8 0.1
09:27 20.8 0.1
09:28 20.8 0.1
09:29 20.8 0.1
09:30 20.8 0.1
09:31 20.8 0.1
09:32 20.8 0.1
09:33 20.8 0.1
09:34 20.8 0.1
09:35 20.8 0.1
09:36 20.8 0.1
09:37 20.8 0.1
09:38 20.8 0.1
09:39 20.8 0.1
09:40 20.8 0.1
09:41 20.8 0.1
09:42 20.8 0.1
09:43 20.8 0.1
09:44 20.8 0.1
67
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
09:45 20.8 0.1
09:46 20.8 0.1
09:47 20.8 0.1
09:48 20.8 0.1
09:49 20.8 0.1
09:50 20.8 0.1
09:51 20.8 0.1
09:52 20.8 0.1
09:53 20.8 0.1
09:54 20.8 0.1
09:55 20.8 0.1
09:56 20.8 0.0
09:57 20.8 0.0
09:58 20.8 0.0
09:59 20.8 0.0
10:00 20.8 0.0
10:01 20.8 0.0
10:02 20.8 0.0
10:03 20.8 0.0
10:04 20.8 0.0
10:05 20.8 0.0
10:06 20.8 0.0
10:07 20.8 0.0
10:08 20.8 0.0
10:09 20.8 0.0
10:10 20.8 0.0
10:11 20.8 0.0
10:12 20.8 0.1
10:13 20.8 0.1
10:14 20.8 0.1
10:15 20.8 0.1
10:16 20.8 0.1
10:17 20.8 0.1
10:18 20.8 0.1
10:19 20.8 0.1
10:20 20.8 0.1
10:21 20.8 0.1
10:22 20.8 0.1
10:23 20.8 0.1
10:24 20.8 0.1
68
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
10:25 20.8 0.1
10:26 20.8 0.1
10:27 20.8 0.1
10:28 20.8 0.1
10:29 20.8 0.1
10:30 20.8 0.1
10:31 20.8 0.1
10:32 20.8 0.1
10:33 20.8 0.1
10:34 20.8 0.1
10:35 20.8 0.1
10:36 20.8 0.1
10:37 20.8 0.1
10:38 20.8 0.1
10:39 20.8 0.1
10:40 20.8 0.1
10:41 20.8 0.1
10:42 20.8 0.1
10:43 20.8 0.1
10:44 20.8 0.1
10:45 20.8 0.1
10:46 20.8 0.1
10:47 20.8 0.1
10:48 20.8 0.1
10:49 20.8 0.1
10:50 20.8 0.1
10:51 20.8 0.1
10:52 20.8 0.1
10:53 20.8 0.1
10:54 20.8 0.1
10:55 20.8 0.1
10:56 20.8 0.1
10:57 20.8 0.1
10:58 20.8 0.1
10:59 20.8 0.1
11:00 20.8 0.0
11:01 20.8 0.0
11:02 20.8 0.0
11:03 20.8 0.0
11:04 20.8 0.0
69
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
11:05 20.8 0.0
11:06 20.8 0.0
11:07 20.8 0.0
11:08 20.8 0.0
11:09 20.8 0.0
11:10 20.8 0.0
11:11 20.8 0.0
11:12 20.8 0.0
11:13 20.8 0.0
11:14 20.8 0.0
11:15 20.8 0.0
11:16 20.8 0.0
11:17 20.8 0.0
11:18 20.8 0.0
11:19 20.8 0.0
11:20 20.8 0.0
11:21 20.8 0.0
Avgs 20.8 0.1
70
RUN SUMMARY
Number 2
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 09:04 to 11:21
Run Averages
20.8 0.1
Pre-run Bias at 06:37
Zero Bias
Span Bias
Span Gas
0.0 0.0
12.0 8.9
12.1 9.0
Post-run Bias at 11:22
Zero Bias
Span Bias
Span Gas
0.1 0.1
11.9 8.8
12.1 9.0
Run averages corrected for the average of the pre-run and post-run bias
21.0 0.0
71
BIAS AND CALIBRATION DRIFT
Number 2
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
Start Time: 11:22
O2 Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.5 Pass
Span 12.0 11.9 -0.1 -0.5 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.1 0.1 0.5 Pass
Span 12.0 11.9 -0.1 -0.5 Pass
*Bias No. 1
CO2
Method: EPA 3A
Span Conc. 17.1 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 9.0 8.8 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.9 8.8 -0.1 -0.6 Pass
*Bias No. 1
72
RUN DATA
Number 3
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
12:50 20.9 0.1
12:51 20.9 0.1
12:52 20.8 0.1
12:53 20.8 0.1
12:54 20.8 0.1
12:55 20.8 0.1
12:56 20.8 0.1
12:57 20.8 0.1
12:58 20.8 0.1
12:59 20.8 0.1
13:00 20.8 0.1
13:01 20.8 0.1
13:02 20.8 0.1
13:03 20.8 0.1
13:04 20.8 0.1
13:05 20.8 0.1
13:06 20.8 0.1
13:07 20.8 0.1
13:08 20.8 0.1
13:09 20.8 0.1
13:10 20.8 0.1
13:11 20.8 0.1
13:12 20.8 0.1
13:13 20.8 0.1
13:14 20.8 0.1
13:15 20.8 0.1
13:16 20.8 0.1
13:17 20.8 0.1
13:18 20.8 0.1
13:19 20.8 0.1
13:20 20.8 0.1
13:21 20.8 0.1
13:22 20.8 0.1
13:23 20.8 0.1
13:24 20.8 0.1
13:25 20.8 0.1
13:26 20.8 0.1
13:27 20.8 0.1
13:28 20.8 0.1
13:29 20.8 0.1
73
RUN DATA
Number 3
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
13:30 20.8 0.1
13:31 20.8 0.1
13:32 20.8 0.1
13:33 20.8 0.1
13:34 20.8 0.1
13:35 20.8 0.1
13:36 20.8 0.1
13:37 20.8 0.1
13:38 20.8 0.1
13:39 20.8 0.1
13:40 20.9 0.1
13:41 20.9 0.1
13:42 20.9 0.1
13:43 20.8 0.1
13:44 20.9 0.1
13:45 20.8 0.0
13:46 20.9 0.1
13:47 20.8 0.1
13:48 20.8 0.1
13:49 20.9 0.1
13:50 20.9 0.1
13:51 20.9 0.1
13:52 20.9 0.1
13:53 20.9 0.1
13:54 20.9 0.1
13:55 20.9 0.1
13:56 20.9 0.1
13:57 20.9 0.1
13:58 20.9 0.1
13:59 20.9 0.1
14:00 20.9 0.1
14:01 20.9 0.1
14:02 20.8 0.1
14:03 20.9 0.1
14:04 20.9 0.1
14:05 20.9 0.1
14:06 20.9 0.1
14:07 20.9 0.1
14:08 20.8 0.1
14:09 20.8 0.1
74
RUN DATA
Number 3
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
14:10 20.8 0.1
14:11 20.8 0.1
14:12 20.8 0.1
14:13 20.8 0.1
14:14 20.8 0.1
14:15 20.8 0.1
14:16 20.8 0.1
14:17 20.8 0.1
14:18 20.8 0.1
14:19 20.8 0.1
14:20 20.8 0.1
14:21 20.8 0.1
14:22 20.8 0.1
14:23 20.8 0.1
14:24 20.8 0.1
14:25 20.8 0.1
14:26 20.8 0.1
14:27 20.8 0.1
14:28 20.8 0.1
14:29 20.8 0.1
14:30 20.8 0.1
14:31 20.8 0.1
14:32 20.8 0.1
14:33 20.8 0.1
14:34 20.8 0.1
14:35 20.8 0.1
14:36 20.8 0.1
14:37 20.8 0.1
14:38 20.8 0.1
14:39 20.8 0.1
14:40 20.8 0.1
14:41 20.8 0.1
14:42 20.8 0.1
14:43 20.8 0.1
14:44 20.8 0.1
14:45 20.8 0.1
14:46 20.8 0.1
14:47 20.8 0.1
14:48 20.8 0.1
14:49 20.8 0.1
75
RUN DATA
Number 3
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
14:50 20.8 0.1
14:51 20.8 0.1
14:52 20.8 0.1
14:53 20.8 0.1
14:54 20.8 0.1
14:55 20.8 0.1
14:56 20.8 0.1
14:57 20.8 0.1
14:58 20.8 0.1
14:59 20.8 0.1
15:00 20.8 0.1
15:01 20.8 0.1
15:02 20.8 0.1
15:03 20.8 0.1
15:04 20.8 0.1
15:05 20.8 0.1
15:06 20.8 0.1
15:07 20.8 0.1
15:08 20.8 0.1
15:09 20.8 0.1
15:10 20.8 0.1
15:11 20.8 0.1
15:12 20.8 0.1
15:13 20.8 0.1
15:14 20.8 0.1
15:15 20.8 0.1
15:16 20.8 0.1
15:17 20.8 0.1
15:18 20.8 0.1
15:19 20.8 0.1
15:20 20.8 0.1
15:21 20.8 0.1
15:22 20.8 0.1
15:23 20.8 0.1
15:24 20.8 0.1
15:25 20.8 0.1
15:26 20.8 0.1
15:27 20.8 0.1
15:28 20.8 0.1
15:29 20.8 0.1
76
RUN DATA
Number 3
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
15:30 20.8 0.1
15:31 20.8 0.1
15:32 20.8 0.1
15:33 20.8 0.1
15:34 20.8 0.1
15:35 20.8 0.1
15:36 20.8 0.1
Avgs 20.8 0.1
77
RUN SUMMARY
Number 3
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 12:49 to 15:36
Run Averages
20.8 0.1
Pre-run Bias at 11:22
Zero Bias
Span Bias
Span Gas
0.1 0.1
11.9 8.8
12.1 9.0
Post-run Bias at 15:38
Zero Bias
Span Bias
Span Gas
0.1 0.0
12.0 8.8
12.1 9.0
Run averages corrected for the average of the pre-run and post-run bias
21.1 0.1
78
BIAS AND CALIBRATION DRIFT
Number 3
Client:
Location:
Source: Calibration 1
Chemours
Fayetteville
VE South
15418
SDR
17 Jul 2019
Project Number:
Operator:
Date:
Start Time: 15:38
O2 Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.5 Pass
Span 12.0 12.0 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.1 0.0 0.0 Pass
Span 11.9 12.0 0.1 0.5 Pass
*Bias No. 2
CO2
Method: EPA 3A
Span Conc. 17.1 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 9.0 8.8 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.0 -0.1 -0.6 Pass
Span 8.8 8.8 0.0 0.0 Pass
*Bias No. 2
79
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019
APPENDIX C
LABORATORY ANALYTICAL REPORT
80
ANALYTICAL REPORT
Job Number: 140-16060-1
Job Description: VE South Carbon Bed Inlet - M0010
Contract Number: LBIO-67048
For:
Chemours Company FC, LLC The
c/o AECOM
Sabre Building, Suite 300
4051 Ogletown Road
Newark, DE 19713
Attention: Michael Aucoin
_____________________________________________
Approved for release.
Courtney M Adkins
Project Manager I
7/29/2019 4:09 PM
Courtney M Adkins, Project Manager I
5815 Middlebrook Pike, Knoxville, TN, 37921
(865)291-3000
courtney.adkins@testamericainc.com
07/29/2019
This report may not be reproduced except in full, and with written approval from the laboratory. For questions please
contact the Project Manager at the e-mail address or telephone number listed on this page.
Eurofins TestAmerica, Knoxville
5815 Middlebrook Pike, Knoxville, TN 37921
Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com
07/29/2019Page 1 of 20881
Table of Contents
Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Manual Integration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
8321A_HFPO_Du Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
07/29/2019Page 2 of 20882
Table of Contents
8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188
Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
07/29/2019Page 3 of 20883
Definitions/Glossary
Job ID: 140-16060-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Inlet - M0010
Glossary
These commonly used abbreviations may or may not be present in this report.
¤Listed under the "D" column to designate that the result is reported on a dry weight basis
Abbreviation
%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid
DER Duplicate Error Ratio (normalized absolute difference)
Dil Fac Dilution Factor
DL Detection Limit (DoD/DOE)
DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC Decision Level Concentration (Radiochemistry)
EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)
MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)
MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated
ND Not Detected at the reporting limit (or MDL or EDL if shown)
PQL Practical Quantitation Limit
QC Quality Control
RER Relative Error Ratio (Radiochemistry)
RL Reporting Limit or Requested Limit (Radiochemistry)
RPD Relative Percent Difference, a measure of the relative difference between two points
TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)
Eurofins TestAmerica, Knoxville
07/29/2019Page 4 of 20884
Method Summary
Job ID: 140-16060-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Inlet - M0010
Method Method Description LaboratoryProtocol
SW8468321AHFPO-DA TAL DEN
SW8468321APFOA and PFOS TAL DEN
TAL SOPNoneLeaching Procedure TAL DEN
TAL SOPNoneLeaching Procedure for Condensate TAL DEN
TAL SOPNoneLeaching Procedure for XAD TAL DEN
Protocol References:
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.
TAL SOP = TestAmerica Laboratories, Standard Operating Procedure
Laboratory References:
TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100
Eurofins TestAmerica, Knoxville
07/29/2019Page 5 of 20885
Sample Summary
Job ID: 140-16060-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Inlet - M0010
Lab Sample ID Client Sample ID ReceivedCollectedMatrix Asset ID
140-16060-1 G-2347,2348 VES CARBON BED INLET R1
M0010 FH
Air 07/16/19 00:00 07/17/19 20:00
140-16060-2 G-2349,2350,2352 VES CARBON BED INLET R1
M0010 BH
Air 07/16/19 00:00 07/17/19 20:00
140-16060-3 G-2351 VES CARBON BED INLET R1 M0010 IMP
1,2&3 CONDENSATE
Air 07/16/19 00:00 07/17/19 20:00
140-16060-4 G-2353 VES CARBON BED INLET R1 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Air 07/16/19 00:00 07/17/19 20:00
140-16060-5 G-2354,2355 VES CARBON BED INLET R2
M0010 FH
Air 07/17/19 00:00 07/17/19 20:00
140-16060-6 G-2356,2357,2359 VES CARBON BED INLET R2
M0010 BH
Air 07/17/19 00:00 07/17/19 20:00
140-16060-7 G-2358 VES CARBON BED INLET R2 M0010 IMP
1,2&3 CONDENSATE
Air 07/17/19 00:00 07/17/19 20:00
140-16060-8 G-2360 VES CARBON BED INLET R2 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Air 07/17/19 00:00 07/17/19 20:00
140-16060-9 G-2361,2362 VES CARBON BED INLET R3
M0010 FH
Air 07/17/19 00:00 07/17/19 20:00
140-16060-10 G-2363,2364,2366 VES CARBON BED INLET R3
M0010 BH
Air 07/17/19 00:00 07/17/19 20:00
140-16060-11 G-2365 VES CARBON BED INLET R3 M0010 IMP
1,2&3 CONDENSATE
Air 07/17/19 00:00 07/17/19 20:00
140-16060-12 G-2367 VES CARBON BED INLET R3 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Air 07/17/19 00:00 07/17/19 20:00
Eurofins TestAmerica, Knoxville
07/29/2019Page 6 of 20886
Job Narrative
140-16060-1
Sample Receipt
The samples were received on July 17, 2019 at 8:00 PM in good condition and properly preserved. The temperature of the cooler at
receipt was 0.4º C.
Quality Control and Data Interpretation
Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC
requirements.
Method 0010/Method 3542 Sampling Train Preparation
Train fractions were extracted and prepared for analysis in TestAmerica’s Knoxville laboratory. Extracts and condensate samples were
forwarded to the Denver laboratory for HFPO-DA analysis. All results are reported in “Total ug” per sample.
LCMS
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Organic Prep
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Comments
Reporting Limits (RLs) and Method Detection Limits (MDLs) for the HFPO-DA used in this report were derived in Denver for reporting
soils and water samples. Method 0010 sampling train matrix specific RLs and MDLs have not been established for HFPO-DA. The soil
and water limits are expected to be reasonable approximations of the actual matrix specific limits, under these conditions.
Breakthrough from the Modified Method 0010 Sampling Train for PFAS compounds will be measured by the percentage (%)
concentration of a specific PFAS target analyte determined to be present in the Breakthrough XAD-2 resin module of a test run. If the
concentration of a specific PFAS compound is ≤30% of the sum of the concentrations determined for the other three (3) fractions of the
sampling train, then sampling breakthrough is determined not to have occurred. Also, no breakthrough will be determined to have
occurred if < 250 µg of a target analyte is collected on all fractions of a sampling train. Breakthrough the sampling train implies that
sample loss through the train has occurred and results in a negative bias to the sample results.
07/29/2019Page 7 of 20887
QC Association Summary
Job ID: 140-16060-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Inlet - M0010
LCMS
Analysis Batch: 464589
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321ADLCK 280-464589/13 Lab Control Sample Total/NA
Prep Batch: 465107
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16060-3 G-2351 VES CARBON BED INLET R1 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air None140-16060-7 G-2358 VES CARBON BED INLET R2 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air None140-16060-11 G-2365 VES CARBON BED INLET R3 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air NoneMB 280-465107/1-A Method Blank Total/NA
Air NoneLCS 280-465107/2-A Lab Control Sample Total/NA
Prep Batch: 465193
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16060-2 G-2349,2350,2352 VES CARBON BED INLET R1 M0010 BHTotal/NA
Air None140-16060-4 G-2353 VES CARBON BED INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air None140-16060-6 G-2356,2357,2359 VES CARBON BED INLET R2 M0010 BHTotal/NA
Air None140-16060-8 G-2360 VES CARBON BED INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air None140-16060-10 G-2363,2364,2366 VES CARBON BED INLET R3 M0010 BHTotal/NA
Air None140-16060-12 G-2367 VES CARBON BED INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air NoneMB 280-465193/1-A Method Blank Total/NA
Air NoneLCS 280-465193/2-A Lab Control Sample Total/NA
Prep Batch: 465251
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16060-1 G-2347,2348 VES CARBON BED INLET R1 M0010 FHTotal/NA
Air None140-16060-5 G-2354,2355 VES CARBON BED INLET R2 M0010 FHTotal/NA
Air None140-16060-9 G-2361,2362 VES CARBON BED INLET R3 M0010 FHTotal/NA
Air NoneMB 280-465251/1-A Method Blank Total/NA
Air NoneLCS 280-465251/2-A Lab Control Sample Total/NA
Analysis Batch: 465647
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465107140-16060-3 G-2351 VES CARBON BED INLET R1 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107140-16060-7 G-2358 VES CARBON BED INLET R2 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107140-16060-11 G-2365 VES CARBON BED INLET R3 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107MB 280-465107/1-A Method Blank Total/NA
Air 8321A 465107LCS 280-465107/2-A Lab Control Sample Total/NA
Analysis Batch: 465648
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465251140-16060-1 G-2347,2348 VES CARBON BED INLET R1 M0010 FHTotal/NA
Air 8321A 465251140-16060-5 G-2354,2355 VES CARBON BED INLET R2 M0010 FHTotal/NA
Air 8321A 465251140-16060-9 G-2361,2362 VES CARBON BED INLET R3 M0010 FHTotal/NA
Air 8321A 465251MB 280-465251/1-A Method Blank Total/NA
Air 8321A 465251LCS 280-465251/2-A Lab Control Sample Total/NA
Analysis Batch: 465777
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465193140-16060-2 G-2349,2350,2352 VES CARBON BED INLET R1 M0010 BHTotal/NA
Air 8321A 465193140-16060-4 G-2353 VES CARBON BED INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air 8321A 465193140-16060-6 G-2356,2357,2359 VES CARBON BED INLET R2 M0010 BHTotal/NA
Air 8321A 465193140-16060-8 G-2360 VES CARBON BED INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Eurofins TestAmerica, Knoxville
07/29/2019Page 8 of 20888
QC Association Summary
Job ID: 140-16060-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Inlet - M0010
LCMS (Continued)
Analysis Batch: 465777 (Continued)
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465193140-16060-10 G-2363,2364,2366 VES CARBON BED INLET R3 M0010 BHTotal/NA
Air 8321A 465193140-16060-12 G-2367 VES CARBON BED INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air 8321A 465193MB 280-465193/1-A Method Blank Total/NA
Air 8321A 465193LCS 280-465193/2-A Lab Control Sample Total/NA
Eurofins TestAmerica, Knoxville
07/29/2019Page 9 of 20889
Client Sample Results
Job ID: 140-16060-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Inlet - M0010
Lab Sample ID: 140-16060-1Client Sample ID: G-2347,2348 VES CARBON BED INLET R1
M0010 FH
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.39 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 14:09 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 92 50 -200 07/22/19 16:15 07/25/19 14:09 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-2Client Sample ID: G-2349,2350,2352 VES CARBON BED INLET
R1 M0010 BH
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 36.3 0.275 0.0550 ug/Sample 07/22/19 12:45 07/26/19 13:48 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 76 50 -200 07/22/19 12:45 07/26/19 13:48 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-3Client Sample ID: G-2351 VES CARBON BED INLET R1 M0010
IMP 1,2&3 CONDENSATE
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA 9.68 0.230 0.0117 ug/Sample 07/23/19 09:00 07/25/19 13:20 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 80 50 -200 07/23/19 09:00 07/25/19 13:20 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-4Client Sample ID: G-2353 VES CARBON BED INLET R1 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/22/19 12:45 07/26/19 13:51 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 84 50 -200 07/22/19 12:45 07/26/19 13:51 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Eurofins TestAmerica, Knoxville
07/29/2019Page 10 of 20890
Client Sample Results
Job ID: 140-16060-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Inlet - M0010
Lab Sample ID: 140-16060-5Client Sample ID: G-2354,2355 VES CARBON BED INLET R2
M0010 FH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 2.14 0.151 0.0163 ug/Sample 07/22/19 16:15 07/25/19 14:13 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 90 50 -200 07/22/19 16:15 07/25/19 14:13 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-6Client Sample ID: G-2356,2357,2359 VES CARBON BED INLET
R2 M0010 BH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 7.65 0.275 0.0550 ug/Sample 07/22/19 12:45 07/26/19 13:54 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 82 50 -200 07/22/19 12:45 07/26/19 13:54 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-7Client Sample ID: G-2358 VES CARBON BED INLET R2 M0010
IMP 1,2&3 CONDENSATE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA ND 0.205 0.0105 ug/Sample 07/23/19 09:00 07/25/19 13:24 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 83 50 -200 07/23/19 09:00 07/25/19 13:24 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-8Client Sample ID: G-2360 VES CARBON BED INLET R2 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/22/19 12:45 07/26/19 13:58 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 60 50 -200 07/22/19 12:45 07/26/19 13:58 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Eurofins TestAmerica, Knoxville
07/29/2019Page 11 of 20891
Client Sample Results
Job ID: 140-16060-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Inlet - M0010
Lab Sample ID: 140-16060-9Client Sample ID: G-2361,2362 VES CARBON BED INLET R3
M0010 FH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.95 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 14:16 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 90 50 -200 07/22/19 16:15 07/25/19 14:16 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-10Client Sample ID: G-2363,2364,2366 VES CARBON BED INLET
R3 M0010 BH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.82 0.300 0.0600 ug/Sample 07/22/19 12:45 07/26/19 14:01 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 100 50 -200 07/22/19 12:45 07/26/19 14:01 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-11Client Sample ID: G-2365 VES CARBON BED INLET R3 M0010
IMP 1,2&3 CONDENSATE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA 0.480 0.250 0.0128 ug/Sample 07/23/19 09:00 07/25/19 13:27 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 82 50 -200 07/23/19 09:00 07/25/19 13:27 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16060-12Client Sample ID: G-2367 VES CARBON BED INLET R3 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/22/19 12:45 07/26/19 14:04 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 63 50 -200 07/22/19 12:45 07/26/19 14:04 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Eurofins TestAmerica, Knoxville
07/29/2019Page 12 of 20892
ANALYTICAL REPORT
Job Number: 140-16059-1
Job Description: VE South Carbon Bed Outlet - M0010
Contract Number: LBIO-67048
For:
Chemours Company FC, LLC The
c/o AECOM
Sabre Building, Suite 300
4051 Ogletown Road
Newark, DE 19713
Attention: Michael Aucoin
_____________________________________________
Approved for release.
Courtney M Adkins
Project Manager I
7/29/2019 4:06 PM
Courtney M Adkins, Project Manager I
5815 Middlebrook Pike, Knoxville, TN, 37921
(865)291-3000
courtney.adkins@testamericainc.com
07/29/2019
This report may not be reproduced except in full, and with written approval from the laboratory. For questions please
contact the Project Manager at the e-mail address or telephone number listed on this page.
Eurofins TestAmerica, Knoxville
5815 Middlebrook Pike, Knoxville, TN 37921
Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com
07/29/2019Page 1 of 20193
Table of Contents
Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Manual Integration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
07/29/2019Page 2 of 20194
Table of Contents
8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
07/29/2019Page 3 of 20195
Definitions/Glossary
Job ID: 140-16059-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Outlet - M0010
Qualifiers
LCMS
Qualifier Description
J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Qualifier
Glossary
These commonly used abbreviations may or may not be present in this report.
¤Listed under the "D" column to designate that the result is reported on a dry weight basis
Abbreviation
%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid
DER Duplicate Error Ratio (normalized absolute difference)
Dil Fac Dilution Factor
DL Detection Limit (DoD/DOE)
DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC Decision Level Concentration (Radiochemistry)
EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)
MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)
MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated
ND Not Detected at the reporting limit (or MDL or EDL if shown)
PQL Practical Quantitation Limit
QC Quality Control
RER Relative Error Ratio (Radiochemistry)
RL Reporting Limit or Requested Limit (Radiochemistry)
RPD Relative Percent Difference, a measure of the relative difference between two points
TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)
Eurofins TestAmerica, Knoxville
07/29/2019Page 4 of 20196
Method Summary
Job ID: 140-16059-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Outlet - M0010
Method Method Description LaboratoryProtocol
SW8468321AHFPO-DA TAL DEN
SW8468321APFOA and PFOS TAL DEN
TAL SOPNoneLeaching Procedure TAL DEN
TAL SOPNoneLeaching Procedure for Condensate TAL DEN
TAL SOPNoneLeaching Procedure for XAD TAL DEN
Protocol References:
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.
TAL SOP = TestAmerica Laboratories, Standard Operating Procedure
Laboratory References:
TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100
Eurofins TestAmerica, Knoxville
07/29/2019Page 5 of 20197
Sample Summary
Job ID: 140-16059-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Outlet - M0010
Lab Sample ID Client Sample ID ReceivedCollectedMatrix Asset ID
140-16059-1 A-5947,5948 VES CARBON BED OUTLET R1
M0010 FH
Air 07/16/19 00:00 07/17/19 20:00
140-16059-2 A-5949,5950,5952 VES CARBON BED OUTLET
R1 M0010 BH
Air 07/16/19 00:00 07/17/19 20:00
140-16059-3 A-5951 VES CARBON BED OUTLET R1 M0010
IMP 1,2&3 CONDENSATE
Air 07/16/19 00:00 07/17/19 20:00
140-16059-4 A-5953 VES CARBON BED OUTLET R1 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Air 07/16/19 00:00 07/17/19 20:00
140-16059-5 A-5954,5955 VES CARBON BED OUTLET R2
M0010 FH
Air 07/17/19 00:00 07/17/19 20:00
140-16059-6 A-5956,5957,5959 VES CARBON BED OUTLET
R2 M0010 BH
Air 07/17/19 00:00 07/17/19 20:00
140-16059-7 A-5958 VES CARBON BED OUTLET R2 M0010
IMP 1,2&3 CONDENSATE
Air 07/17/19 00:00 07/17/19 20:00
140-16059-8 A-5960 VES CARBON BED OUTLET R2 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Air 07/17/19 00:00 07/17/19 20:00
140-16059-9 A-5961,5962 VES CARBON BED OUTLET R3
M0010 FH
Air 07/17/19 00:00 07/17/19 20:00
140-16059-10 A-5963,5964,5966 VES CARBON BED OUTLET
R3 M0010 BH
Air 07/17/19 00:00 07/17/19 20:00
140-16059-11 A-5965 VES CARBON BED OUTLET R3 M0010
IMP 1,2&3 CONDENSATE
Air 07/17/19 00:00 07/17/19 20:00
140-16059-12 A-5967 VES CARBON BED OUTLET R3 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Air 07/17/19 00:00 07/17/19 20:00
Eurofins TestAmerica, Knoxville
07/29/2019Page 6 of 20198
Job Narrative
140-16059-1
Sample Receipt
The samples were received on July 17, 2019 at 8:00 PM in good condition and properly preserved. The temperature of the cooler at
receipt was 0.2º C.
Quality Control and Data Interpretation
Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC
requirements.
Method 0010/Method 3542 Sampling Train Preparation
Train fractions were extracted and prepared for analysis in TestAmerica’s Knoxville laboratory. Extracts and condensate samples were
forwarded to the Denver laboratory for HFPO-DA analysis. All results are reported in “Total ug” per sample.
LCMS
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Organic Prep
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Comments
Reporting Limits (RLs) and Method Detection Limits (MDLs) for the HFPO-DA used in this report were derived in Denver for reporting
soils and water samples. Method 0010 sampling train matrix specific RLs and MDLs have not been established for HFPO-DA. The soil
and water limits are expected to be reasonable approximations of the actual matrix specific limits, under these conditions.
Breakthrough from the Modified Method 0010 Sampling Train for PFAS compounds will be measured by the percentage (%)
concentration of a specific PFAS target analyte determined to be present in the Breakthrough XAD-2 resin module of a test run. If the
concentration of a specific PFAS compound is ≤30% of the sum of the concentrations determined for the other three (3) fractions of the
sampling train, then sampling breakthrough is determined not to have occurred. Also, no breakthrough will be determined to have
occurred if < 250 µg of a target analyte is collected on all fractions of a sampling train. Breakthrough the sampling train implies that
sample loss through the train has occurred and results in a negative bias to the sample results.
07/29/2019Page 7 of 20199
QC Association Summary
Job ID: 140-16059-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Outlet - M0010
LCMS
Analysis Batch: 464589
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321ADLCK 280-464589/13 Lab Control Sample Total/NA
Prep Batch: 465059
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16059-2 A-5949,5950,5952 VES CARBON BED OUTLET R1 M0010 BHTotal/NA
Air None140-16059-4 A-5953 VES CARBON BED OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air None140-16059-6 A-5956,5957,5959 VES CARBON BED OUTLET R2 M0010 BHTotal/NA
Air None140-16059-8 A-5960 VES CARBON BED OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air None140-16059-10 A-5963,5964,5966 VES CARBON BED OUTLET R3 M0010 BHTotal/NA
Air None140-16059-12 A-5967 VES CARBON BED OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air NoneMB 280-465059/13-A Method Blank Total/NA
Air NoneMB 280-465059/1-A Method Blank Total/NA
Air NoneLCS 280-465059/2-A Lab Control Sample Total/NA
Prep Batch: 465107
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16059-3 A-5951 VES CARBON BED OUTLET R1 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air None140-16059-7 A-5958 VES CARBON BED OUTLET R2 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air None140-16059-11 A-5965 VES CARBON BED OUTLET R3 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air NoneMB 280-465107/1-A Method Blank Total/NA
Air NoneLCS 280-465107/2-A Lab Control Sample Total/NA
Prep Batch: 465251
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16059-1 A-5947,5948 VES CARBON BED OUTLET R1 M0010 FHTotal/NA
Air None140-16059-5 A-5954,5955 VES CARBON BED OUTLET R2 M0010 FHTotal/NA
Air None140-16059-9 A-5961,5962 VES CARBON BED OUTLET R3 M0010 FHTotal/NA
Air NoneMB 280-465251/1-A Method Blank Total/NA
Air NoneLCS 280-465251/2-A Lab Control Sample Total/NA
Analysis Batch: 465646
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465059140-16059-2 A-5949,5950,5952 VES CARBON BED OUTLET R1 M0010 BHTotal/NA
Air 8321A 465059140-16059-4 A-5953 VES CARBON BED OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air 8321A 465059140-16059-6 A-5956,5957,5959 VES CARBON BED OUTLET R2 M0010 BHTotal/NA
Air 8321A 465059140-16059-8 A-5960 VES CARBON BED OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air 8321A 465059140-16059-10 A-5963,5964,5966 VES CARBON BED OUTLET R3 M0010 BHTotal/NA
Air 8321A 465059140-16059-12 A-5967 VES CARBON BED OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air 8321A 465059MB 280-465059/13-A Method Blank Total/NA
Air 8321A 465059MB 280-465059/1-A Method Blank Total/NA
Air 8321A 465059LCS 280-465059/2-A Lab Control Sample Total/NA
Analysis Batch: 465647
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465107140-16059-3 A-5951 VES CARBON BED OUTLET R1 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107140-16059-7 A-5958 VES CARBON BED OUTLET R2 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107140-16059-11 A-5965 VES CARBON BED OUTLET R3 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107MB 280-465107/1-A Method Blank Total/NA
Air 8321A 465107LCS 280-465107/2-A Lab Control Sample Total/NA
Eurofins TestAmerica, Knoxville
07/29/2019Page 8 of 201100
QC Association Summary
Job ID: 140-16059-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Outlet - M0010
LCMS
Analysis Batch: 465648
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465251140-16059-1 A-5947,5948 VES CARBON BED OUTLET R1 M0010 FHTotal/NA
Air 8321A 465251140-16059-5 A-5954,5955 VES CARBON BED OUTLET R2 M0010 FHTotal/NA
Air 8321A 465251140-16059-9 A-5961,5962 VES CARBON BED OUTLET R3 M0010 FHTotal/NA
Air 8321A 465251MB 280-465251/1-A Method Blank Total/NA
Air 8321A 465251LCS 280-465251/2-A Lab Control Sample Total/NA
Eurofins TestAmerica, Knoxville
07/29/2019Page 9 of 201101
Client Sample Results
Job ID: 140-16059-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Outlet - M0010
Lab Sample ID: 140-16059-1Client Sample ID: A-5947,5948 VES CARBON BED OUTLET R1
M0010 FH
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.07 0.102 0.0110 ug/Sample 07/22/19 16:15 07/25/19 14:00 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 92 50 -200 07/22/19 16:15 07/25/19 14:00 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-2Client Sample ID: A-5949,5950,5952 VES CARBON BED
OUTLET R1 M0010 BH
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 4.91 0.300 0.0600 ug/Sample 07/19/19 14:50 07/25/19 12:18 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 76 50 -200 07/19/19 14:50 07/25/19 12:18 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-3Client Sample ID: A-5951 VES CARBON BED OUTLET R1
M0010 IMP 1,2&3 CONDENSATE
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA 2.01 0.222 0.0113 ug/Sample 07/23/19 09:00 07/25/19 13:11 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 79 50 -200 07/23/19 09:00 07/25/19 13:11 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-4Client Sample ID: A-5953 VES CARBON BED OUTLET R1
M0010 BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 12:25 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 75 50 -200 07/19/19 14:50 07/25/19 12:25 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Eurofins TestAmerica, Knoxville
07/29/2019Page 10 of 201102
Client Sample Results
Job ID: 140-16059-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Outlet - M0010
Lab Sample ID: 140-16059-5Client Sample ID: A-5954,5955 VES CARBON BED OUTLET R2
M0010 FH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.04 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 14:03 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 85 50 -200 07/22/19 16:15 07/25/19 14:03 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-6Client Sample ID: A-5956,5957,5959 VES CARBON BED
OUTLET R2 M0010 BH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 0.983 0.275 0.0550 ug/Sample 07/19/19 14:50 07/25/19 12:28 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 79 50 -200 07/19/19 14:50 07/25/19 12:28 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-7Client Sample ID: A-5958 VES CARBON BED OUTLET R2
M0010 IMP 1,2&3 CONDENSATE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA 0.281 0.210 0.0107 ug/Sample 07/23/19 09:00 07/25/19 13:14 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 81 50 -200 07/23/19 09:00 07/25/19 13:14 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-8Client Sample ID: A-5960 VES CARBON BED OUTLET R2
M0010 BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 12:31 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 82 50 -200 07/19/19 14:50 07/25/19 12:31 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Eurofins TestAmerica, Knoxville
07/29/2019Page 11 of 201103
Client Sample Results
Job ID: 140-16059-1Client: Chemours Company FC, LLC The
Project/Site: VE South Carbon Bed Outlet - M0010
Lab Sample ID: 140-16059-9Client Sample ID: A-5961,5962 VES CARBON BED OUTLET R3
M0010 FH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.10 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 14:06 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 86 50 -200 07/22/19 16:15 07/25/19 14:06 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-10Client Sample ID: A-5963,5964,5966 VES CARBON BED
OUTLET R3 M0010 BH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.34 0.275 0.0550 ug/Sample 07/19/19 14:50 07/25/19 12:35 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 82 50 -200 07/19/19 14:50 07/25/19 12:35 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-11Client Sample ID: A-5965 VES CARBON BED OUTLET R3
M0010 IMP 1,2&3 CONDENSATE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA 0.206 J 0.230 0.0117 ug/Sample 07/23/19 09:00 07/25/19 13:17 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 80 50 -200 07/23/19 09:00 07/25/19 13:17 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16059-12Client Sample ID: A-5967 VES CARBON BED OUTLET R3
M0010 BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 12:38 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 78 50 -200 07/19/19 14:50 07/25/19 12:38 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Eurofins TestAmerica, Knoxville
07/29/2019Page 12 of 201104
ANALYTICAL REPORT
Job Number: 140-16057-1
Job Description: VE South Stack - M0010
Contract Number: LBIO-67048
For:
Chemours Company FC, LLC The
c/o AECOM
Sabre Building, Suite 300
4051 Ogletown Road
Newark, DE 19713
Attention: Michael Aucoin
_____________________________________________
Approved for release.
Courtney M Adkins
Project Manager I
7/29/2019 4:01 PM
Courtney M Adkins, Project Manager I
5815 Middlebrook Pike, Knoxville, TN, 37921
(865)291-3000
courtney.adkins@testamericainc.com
07/29/2019
This report may not be reproduced except in full, and with written approval from the laboratory. For questions please
contact the Project Manager at the e-mail address or telephone number listed on this page.
Eurofins TestAmerica, Knoxville
5815 Middlebrook Pike, Knoxville, TN 37921
Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com
07/29/2019Page 1 of 225105
Table of Contents
Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Manual Integration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
8321A_HFPO_Du Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
07/29/2019Page 2 of 225106
Table of Contents
8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
07/29/2019Page 3 of 225107
Definitions/Glossary
Job ID: 140-16057-1Client: Chemours Company FC, LLC The
Project/Site: VE South Stack - M0010
Qualifiers
LCMS
Qualifier Description
J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Qualifier
Glossary
These commonly used abbreviations may or may not be present in this report.
¤Listed under the "D" column to designate that the result is reported on a dry weight basis
Abbreviation
%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid
DER Duplicate Error Ratio (normalized absolute difference)
Dil Fac Dilution Factor
DL Detection Limit (DoD/DOE)
DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC Decision Level Concentration (Radiochemistry)
EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)
MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)
MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated
ND Not Detected at the reporting limit (or MDL or EDL if shown)
PQL Practical Quantitation Limit
QC Quality Control
RER Relative Error Ratio (Radiochemistry)
RL Reporting Limit or Requested Limit (Radiochemistry)
RPD Relative Percent Difference, a measure of the relative difference between two points
TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)
Eurofins TestAmerica, Knoxville
07/29/2019Page 4 of 225108
Method Summary
Job ID: 140-16057-1Client: Chemours Company FC, LLC The
Project/Site: VE South Stack - M0010
Method Method Description LaboratoryProtocol
SW8468321AHFPO-DA TAL DEN
SW8468321APFOA and PFOS TAL DEN
TAL SOPNoneLeaching Procedure TAL DEN
TAL SOPNoneLeaching Procedure for Condensate TAL DEN
TAL SOPNoneLeaching Procedure for XAD TAL DEN
Protocol References:
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.
TAL SOP = TestAmerica Laboratories, Standard Operating Procedure
Laboratory References:
TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100
Eurofins TestAmerica, Knoxville
07/29/2019Page 5 of 225109
Sample Summary
Job ID: 140-16057-1Client: Chemours Company FC, LLC The
Project/Site: VE South Stack - M0010
Lab Sample ID Client Sample ID ReceivedCollectedMatrix Asset ID
140-16057-1 R-2305,2306 VES STK R1 M0010 FH Air 07/16/19 00:00 07/17/19 20:00
140-16057-2 R-2307,2308,2310 VES STK R1 M0010 BH Air 07/16/19 00:00 07/17/19 20:00
140-16057-3 R-2309 VES STK R1 M0010 IMP 1,2&3
CONDENSATE
Air 07/16/19 00:00 07/17/19 20:00
140-16057-4 R-2311 VES STK R1 M0010 BREAKTHROUGH
XAD-2 RESIN TUBE
Air 07/16/19 00:00 07/17/19 20:00
140-16057-5 R-2312,2313 VES STK R2 M0010 FH Air 07/17/19 00:00 07/17/19 20:00
140-16057-6 R-2314,2315,2317 VES STK R2 M0010 BH Air 07/17/19 00:00 07/17/19 20:00
140-16057-7 R-2316 VES STK R2 M0010 IMP 1,2&3
CONDENSATE
Air 07/17/19 00:00 07/17/19 20:00
140-16057-8 R-2318 VES STK R2 M0010 BREAKTHROUGH
XAD-2 RESIN TUBE
Air 07/17/19 00:00 07/17/19 20:00
140-16057-9 R-2319,2320 VES STK R3 M0010 FH Air 07/17/19 00:00 07/17/19 20:00
140-16057-10 R-2321,2322,2324 VES STK R3 M0010 BH Air 07/17/19 00:00 07/17/19 20:00
140-16057-11 R-2323 VES STK R3 M0010 IMP 1,2&3
CONDENSATE
Air 07/17/19 00:00 07/17/19 20:00
140-16057-12 R-2325 VES STK R3 M0010 BREAKTHROUGH
XAD-2 RESIN TUBE
Air 07/17/19 00:00 07/17/19 20:00
Eurofins TestAmerica, Knoxville
07/29/2019Page 6 of 225110
Job Narrative
140-16057-1
Sample Receipt
The samples were received on July 17, 2019 at 8:00 PM in good condition and properly preserved. The temperatures of the 2 coolers at
receipt time were 0.3º C and 0.7º C.
Quality Control and Data Interpretation
Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC
requirements.
Method 0010/Method 3542 Sampling Train Preparation
Train fractions were extracted and prepared for analysis in TestAmerica’s Knoxville laboratory. Extracts and condensate samples were
forwarded to the Denver laboratory for HFPO-DA analysis. All results are reported in “Total ug” per sample.
LCMS
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Organic Prep
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Comments
Reporting Limits (RLs) and Method Detection Limits (MDLs) for the HFPO-DA used in this report were derived in Denver for reporting
soils and water samples. Method 0010 sampling train matrix specific RLs and MDLs have not been established for HFPO-DA. The soil
and water limits are expected to be reasonable approximations of the actual matrix specific limits, under these conditions.
Breakthrough from the Modified Method 0010 Sampling Train for PFAS compounds will be measured by the percentage (%)
concentration of a specific PFAS target analyte determined to be present in the Breakthrough XAD-2 resin module of a test run. If the
concentration of a specific PFAS compound is ≤30% of the sum of the concentrations determined for the other three (3) fractions of the
sampling train, then sampling breakthrough is determined not to have occurred. Also, no breakthrough will be determined to have
occurred if < 250 µg of a target analyte is collected on all fractions of a sampling train. Breakthrough the sampling train implies that
sample loss through the train has occurred and results in a negative bias to the sample results.
07/29/2019Page 7 of 225111
QC Association Summary
Job ID: 140-16057-1Client: Chemours Company FC, LLC The
Project/Site: VE South Stack - M0010
LCMS
Analysis Batch: 464589
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321ADLCK 280-464589/13 Lab Control Sample Total/NA
Prep Batch: 465059
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16057-2 R-2307,2308,2310 VES STK R1 M0010 BH Total/NA
Air None140-16057-4 R-2311 VES STK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air None140-16057-6 R-2314,2315,2317 VES STK R2 M0010 BH Total/NA
Air None140-16057-8 R-2318 VES STK R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air NoneMB 280-465059/1-A Method Blank Total/NA
Air NoneLCS 280-465059/2-A Lab Control Sample Total/NA
Prep Batch: 465107
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16057-3 R-2309 VES STK R1 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air None140-16057-7 R-2316 VES STK R2 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air None140-16057-11 R-2323 VES STK R3 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air NoneMB 280-465107/1-A Method Blank Total/NA
Air NoneLCS 280-465107/2-A Lab Control Sample Total/NA
Prep Batch: 465193
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16057-10 R-2321,2322,2324 VES STK R3 M0010 BH Total/NA
Air None140-16057-12 R-2325 VES STK R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air NoneMB 280-465193/1-A Method Blank Total/NA
Air NoneLCS 280-465193/2-A Lab Control Sample Total/NA
Prep Batch: 465251
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air None140-16057-1 R-2305,2306 VES STK R1 M0010 FH Total/NA
Air None140-16057-5 R-2312,2313 VES STK R2 M0010 FH Total/NA
Air None140-16057-9 R-2319,2320 VES STK R3 M0010 FH Total/NA
Air NoneMB 280-465251/1-A Method Blank Total/NA
Air NoneLCS 280-465251/2-A Lab Control Sample Total/NA
Analysis Batch: 465646
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465059140-16057-2 R-2307,2308,2310 VES STK R1 M0010 BH Total/NA
Air 8321A 465059140-16057-4 R-2311 VES STK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air 8321A 465059140-16057-6 R-2314,2315,2317 VES STK R2 M0010 BH Total/NA
Air 8321A 465059140-16057-8 R-2318 VES STK R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air 8321A 465059MB 280-465059/1-A Method Blank Total/NA
Air 8321A 465059LCS 280-465059/2-A Lab Control Sample Total/NA
Analysis Batch: 465647
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465107140-16057-3 R-2309 VES STK R1 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107140-16057-7 R-2316 VES STK R2 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107140-16057-11 R-2323 VES STK R3 M0010 IMP 1,2&3 CONDENSATETotal/NA
Air 8321A 465107MB 280-465107/1-A Method Blank Total/NA
Air 8321A 465107LCS 280-465107/2-A Lab Control Sample Total/NA
Eurofins TestAmerica, Knoxville
07/29/2019Page 8 of 225112
QC Association Summary
Job ID: 140-16057-1Client: Chemours Company FC, LLC The
Project/Site: VE South Stack - M0010
LCMS
Analysis Batch: 465648
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465251140-16057-1 R-2305,2306 VES STK R1 M0010 FH Total/NA
Air 8321A 465251140-16057-5 R-2312,2313 VES STK R2 M0010 FH Total/NA
Air 8321A 465251140-16057-9 R-2319,2320 VES STK R3 M0010 FH Total/NA
Air 8321A 465251MB 280-465251/1-A Method Blank Total/NA
Air 8321A 465251LCS 280-465251/2-A Lab Control Sample Total/NA
Analysis Batch: 465777
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch
Air 8321A 465193140-16057-10 R-2321,2322,2324 VES STK R3 M0010 BH Total/NA
Air 8321A 465193140-16057-12 R-2325 VES STK R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA
Air 8321A 465193MB 280-465193/1-A Method Blank Total/NA
Air 8321A 465193LCS 280-465193/2-A Lab Control Sample Total/NA
Eurofins TestAmerica, Knoxville
07/29/2019Page 9 of 225113
Client Sample Results
Job ID: 140-16057-1Client: Chemours Company FC, LLC The
Project/Site: VE South Stack - M0010
Lab Sample ID: 140-16057-1Client Sample ID: R-2305,2306 VES STK R1 M0010 FH
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.62 0.102 0.0110 ug/Sample 07/22/19 16:15 07/25/19 13:43 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 94 50 -200 07/22/19 16:15 07/25/19 13:43 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-2Client Sample ID: R-2307,2308,2310 VES STK R1 M0010 BH
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.91 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 11:49 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 67 50 -200 07/19/19 14:50 07/25/19 11:49 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-3Client Sample ID: R-2309 VES STK R1 M0010 IMP 1,2&3
CONDENSATE
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA 0.278 0.230 0.0117 ug/Sample 07/23/19 09:00 07/25/19 12:51 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 82 50 -200 07/23/19 09:00 07/25/19 12:51 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-4Client Sample ID: R-2311 VES STK R1 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/16/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 11:52 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 77 50 -200 07/19/19 14:50 07/25/19 11:52 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-5Client Sample ID: R-2312,2313 VES STK R2 M0010 FH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 0.980 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 13:46 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
Eurofins TestAmerica, Knoxville
07/29/2019Page 10 of 225114
Client Sample Results
Job ID: 140-16057-1Client: Chemours Company FC, LLC The
Project/Site: VE South Stack - M0010
Lab Sample ID: 140-16057-5Client Sample ID: R-2312,2313 VES STK R2 M0010 FH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
13C3 HFPO-DA 88 50 -200 07/22/19 16:15 07/25/19 13:46 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-6Client Sample ID: R-2314,2315,2317 VES STK R2 M0010 BH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.54 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 11:56 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 70 50 -200 07/19/19 14:50 07/25/19 11:56 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-7Client Sample ID: R-2316 VES STK R2 M0010 IMP 1,2&3
CONDENSATE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA 0.175 J 0.216 0.0110 ug/Sample 07/23/19 09:00 07/25/19 12:54 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 90 50 -200 07/23/19 09:00 07/25/19 12:54 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-8Client Sample ID: R-2318 VES STK R2 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 11:59 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 76 50 -200 07/19/19 14:50 07/25/19 11:59 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-9Client Sample ID: R-2319,2320 VES STK R3 M0010 FH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 1.28 0.101 0.0109 ug/Sample 07/22/19 16:15 07/25/19 13:50 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 92 50 -200 07/22/19 16:15 07/25/19 13:50 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Eurofins TestAmerica, Knoxville
07/29/2019Page 11 of 225115
Client Sample Results
Job ID: 140-16057-1Client: Chemours Company FC, LLC The
Project/Site: VE South Stack - M0010
Lab Sample ID: 140-16057-10Client Sample ID: R-2321,2322,2324 VES STK R3 M0010 BH
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA 0.464 0.225 0.0450 ug/Sample 07/22/19 12:45 07/26/19 13:38 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 88 50 -200 07/22/19 12:45 07/26/19 13:38 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-11Client Sample ID: R-2323 VES STK R3 M0010 IMP 1,2&3
CONDENSATE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - HFPO-DA
RL MDL
HFPO-DA 0.212 J 0.224 0.0114 ug/Sample 07/23/19 09:00 07/25/19 12:57 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 85 50 -200 07/23/19 09:00 07/25/19 12:57 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Lab Sample ID: 140-16057-12Client Sample ID: R-2325 VES STK R3 M0010
BREAKTHROUGH XAD-2 RESIN TUBE
Matrix: AirDate Collected: 07/17/19 00:00
Date Received: 07/17/19 20:00
Sample Container: Air Train
Method: 8321A - PFOA and PFOS
RL MDL
HFPO-DA ND 0.200 0.0400 ug/Sample 07/22/19 12:45 07/26/19 13:41 1
Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier
13C3 HFPO-DA 63 50 -200 07/22/19 12:45 07/26/19 13:41 1
Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery
Eurofins TestAmerica, Knoxville
07/29/2019Page 12 of 225116
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019
APPENDIX D
SAMPLE CALCULATIONS
117
SAMPLE CALCULATIONS FOR
HFPO DIMER ACID (METHOD 0010)
Client: Chemours Plant: Fayetteville, NC
Test Number: Run 1 Test Date: 07/16/19
Test Location: VES CBed Inlet Test Period: 1605-1841
1. HFPO Dimer Acid concentration, lbs/dscf.
W x 2.2046 x 10-9
Conc1 =------------------------------
Vm(std)
47.4 x 2.2046 x 10-9
Conc1 =------------------------------
48.469
Conc1 =2.15E-09
Where:
W =Weight of HFPO Dimer Acid collected in sample in ug.
Conc1 =HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10-9 =Conversion factor from ug to lbs.
2. HFPO Dimer Acid concentration, ug/dscm.
Conc2 =W / ( Vm(std) x 0.02832)
Conc2 =47.4 / ( 48.469 x 0.02832 )
Conc2 =34.5
Where:
Conc2 =HFPO Dimer Acid concentration, ug/dscm.
0.02832 =Conversion factor from cubic feet to cubic meters.
118
3. HFPO Dimer Acid mass emission rate, lbs/hr.
MR1(Inlet)=Conc1 x Qs(std) x 60 min/hr
MR1(Inlet)=2.15E-09 x 25641 x 60
MR1(Inlet)=3.31E-03
Where:
MR1(Inlet)=HFPO Dimer Acid mass emission rate, lbs/hr.
4. HFPO Dimer Acid mass emission rate, g/sec.
MR2(Inlet)=MR1(Inlet) x 453.59 / 3600
MR2(Inlet)=3.31E-03 x 453.59 /3600
MR2(Inlet)=4.17E-04
Where:
MR2(Inlet)=HFPO Dimer Acid mass emission rate, g/sec.
453.59 =Conversion factor from pounds to grams.
3600 =Conversion factor from hours to seconds.
5. HFPO Dimer Acid Removal Efficiency, %
RE =MR1(Inlet) - MR1(Outlet)--------------------------
MR1(Inlet)
RE =(1.00E-01) - (3.60E-04)----------------------1.00E-01
RE =99.6
Where:
RE =Carbon Bed Removal Efficiency.
MR1(Inlet)=Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr.
MR1(Outlet)=Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr.
119
EXAMPLE CALCULATIONS FOR
VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS
Client: Chemours Facility: Fayetteville, NC
Test Number: Run 1 Test Date: 07/16/19
Test Location: VES-Carbon Bed Inlet Test Period: 1605-1841
1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.
delta H
17.64 x Y x Vm x ( Pb + ------------ )
13.6
Vm(std)=--------------------------------------------
(Tm + 460)
0.966
17.64 x 1.0066 x 50.909 x ( 30.06 + --------------------- )
13.6
Vm(std)=------------------------------------------------------------ = 48.469
101.96 + 460
Where:
Vm(std)=Volume of gas sample measured by the dry gas meter,
corrected to standard conditions, dscf.
Vm =Volume of gas sample measured by the dry gas meter
at meter conditions, dcf.
Pb =Barometric Pressure, in Hg.
delt H =Average pressure drop across the orifice meter, in H2O
Tm =Average dry gas meter temperature , deg F.
Y =Dry gas meter calibration factor.
17.64 =Factor that includes ratio of standard temperature (528 deg R)
to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =Specific gravity of mercury.
2. Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vw(std)=(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std)=( 0.04707 x 12.0 ) + ( 0.04715 x 17.5 ) = 1.39
Where:
Vw(std)=Volume of water vapor in the gas sample corrected to
standard conditions, scf.
Vwc =Volume of liquid condensed in impingers, ml.
Wwsg =Weight of water vapor collected in silica gel, g.
0.04707 =Factor which includes the density of water
(0.002201 lb/ml), the molecular weight of water
(18.0 lb/lb-mole), the ideal gas constant
21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), ft3/ml.
0.04715 =Factor which includes the molecular weight of water
(18.0 lb/lb-mole), the ideal gas constant
21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), and
453.6 g/lb, ft3/g.
120
3. Moisture content
Vw(std)
bws =-------------------------
Vw(std) + Vm(std)
1.39
bws =------------------------- = 0.028
1.39 + 48.469
Where:
bws =Proportion of water vapor, by volume, in the gas
stream, dimensionless.
4. Mole fraction of dry gas.
Md =1 - bws
Md =1 - 0.028 = 0.972
Where:
Md =Mole fraction of dry gas, dimensionless.
5. Dry molecular weight of gas stream, lb/lb-mole.
MWd =( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) )
MWd =( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 ))
MWd =28.84
Where:
MWd =Dry molecular weight , lb/lb-mole.
% CO2 =Percent carbon dioxide by volume, dry basis.
% O2 =Percent oxygen by volume, dry basis.
% N2 =Percent nitrogen by volume, dry basis.
% CO =Percent carbon monoxide by volume, dry basis.
0.440 =Molecular weight of carbon dioxide, divided by 100.
0.320 =Molecular weight of oxygen, divided by 100.
0.280 =Molecular weight of nitrogen or carbon monoxide,
divided by 100.
6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.
MWs =( MWd x Md ) + ( 18 x ( 1 - Md ))
MWs =( 28.84 x 0.972 ) +( 18 ( 1 - 0.972 )) = 28.53
Where:
MWs =Molecular weight of wet gas, lb/lb-mole.
18 =Molecular weight of water, lb/lb-mole.
121
7. Average velocity of gas stream at actual conditions, ft/sec.
Ts (avg)
Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2
Ps x MWs
560
Vs =85.49 x 0.84 x 1.13927 x ( -------------------- )^1/2 = 66.5
29.66 x 28.53
Where:
Vs =Average gas stream velocity, ft/sec.
(lb/lb-mole)(in. Hg)1/2
85.49 =Pitot tube constant, ft/sec x ------------------------------------
(deg R)(in H2O)
Cp =Pitot tube coefficient, dimensionless.
Ts =Absolute gas stream temperature, deg R = Ts, deg F + 460.
P(static)
Ps =Absolute gas stack pressure, in. Hg. = Pb + --------------
13.6
delt p =Velocity head of stack, in. H2O.
8. Average gas stream volumetric flow rate at actual conditions, wacf/min.
Qs(act)=60 x Vs x As
Qs(act)=60 x 66.5 x 7.07 = 28214
Where:
Qs(act)=Volumetric flow rate of wet stack gas at actual
conditions, wacf/min.
As =Cross-sectional area of stack, ft2.
60 =Conversion factor from seconds to minutes.
9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.
Ps
Qs(std)= 17.64 x Md x ----- x Qs(act)
Ts
29.66
Qs(std)=17.64 x 0.972 x -------------------- x 28214
559.6
Qs(std)=25641
Where:
Qs(std)=Volumetric flow rate of dry stack gas at standard
conditions, dscf/min.
122
10. Isokinetic variation calculated from intermediate values, percent.
17.327 x Ts x Vm(std)
I =-----------------------------------
Vs x O x Ps x Md x (Dn)2
17.327 x 560 x 48.469
I =-------------------------------------------------- = 99.7
66.5 x 96 x 29.66 x 0.972 x (0.160)^2
Where:
I =Percent of isokinetic sampling.
O =Total sampling time, minutes.
Dn =Diameter of nozzle, inches.
17.327 =Factor which includes standard temperature (528 deg R),
standard pressure (29.92 in. Hg), the formula for
calculating area of circle D2/4, conversion of square
feet to square inches (144), conversion of seconds
to minutes (60), and conversion to percent (100),
(in. Hg)(in2)(min)
(deg R)(ft2)(sec)
123
SAMPLE CALCULATIONS FOR
HFPO DIMER ACID (METHOD 0010)
Client: Chemours Plant: Fayetteville, NC
Test Number: Run 1 Test Date: 07/16/19
Test Location: VES CBed Outlet Test Period: 1605-1841
1. HFPO Dimer Acid concentration, lbs/dscf.
W x 2.2046 x 10-9
Conc1 =------------------------------
Vm(std)
8.0 x 2.2046 x 10-9
Conc1 =------------------------------
55.427
Conc1 =3.18E-10
Where:
W =Weight of HFPO Dimer Acid collected in sample in ug.
Conc1 =HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10-9 =Conversion factor from ug to lbs.
2. HFPO Dimer Acid concentration, ug/dscm.
Conc2 =W / ( Vm(std) x 0.02832)
Conc2 =8.0 / ( 55.427 x 0.02832 )
Conc2 =5.1
Where:
Conc2 =HFPO Dimer Acid concentration, ug/dscm.
0.02832 =Conversion factor from cubic feet to cubic meters.
124
3. HFPO Dimer Acid mass emission rate, lbs/hr.
MR1(Inlet)=Conc1 x Qs(std) x 60 min/hr
MR1(Inlet)=3.18E-10 x 25043 x 60
MR1(Inlet)=4.78E-04
Where:
MR1(Inlet)=HFPO Dimer Acid mass emission rate, lbs/hr.
4. HFPO Dimer Acid mass emission rate, g/sec.
MR2(Inlet)=MR1(Inlet) x 453.59 / 3600
MR2(Inlet)=4.78E-04 x 453.59 /3600
MR2(Inlet)=6.01E-05
Where:
MR2(Inlet)=HFPO Dimer Acid mass emission rate, g/sec.
453.59 =Conversion factor from pounds to grams.
3600 =Conversion factor from hours to seconds.
5. HFPO Dimer Acid Removal Efficiency, %
RE =MR1(Inlet) - MR1(Outlet)--------------------------
MR1(Inlet)
RE =(3.31E-03) - (4.78E-04)----------------------3.31E-03
RE =85.6
Where:
RE =Carbon Bed Removal Efficiency.
MR1(Inlet)=Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr.
MR1(Outlet)=Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr.
125
EXAMPLE CALCULATIONS FOR
VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS
Client: Chemours Facility: Fayetteville, NC
Test Number: Run 1 Test Date: 07/16/19
Test Location: VES-Carbon Bed Outlet Test Period: 1605-1841
1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.
delta H
17.64 x Y x Vm x ( Pb + ------------ )
13.6
Vm(std)=--------------------------------------------
(Tm + 460)
1.260
17.64 x 1.0069 x 58.439 x ( 30.06 + --------------------- )
13.6
Vm(std)=------------------------------------------------------------ = 55.427
104.67 + 460
Where:
Vm(std)=Volume of gas sample measured by the dry gas meter,
corrected to standard conditions, dscf.
Vm =Volume of gas sample measured by the dry gas meter
at meter conditions, dcf.
Pb =Barometric Pressure, in Hg.
delt H =Average pressure drop across the orifice meter, in H2O
Tm =Average dry gas meter temperature , deg F.
Y =Dry gas meter calibration factor.
17.64 =Factor that includes ratio of standard temperature (528 deg R)
to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =Specific gravity of mercury.
2. Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vw(std)=(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std)=( 0.04707 x 20.0 ) + ( 0.04715 x 14.0 ) = 1.60
Where:
Vw(std)=Volume of water vapor in the gas sample corrected to
standard conditions, scf.
Vwc =Volume of liquid condensed in impingers, ml.
Wwsg =Weight of water vapor collected in silica gel, g.
0.04707 =Factor which includes the density of water
(0.002201 lb/ml), the molecular weight of water
(18.0 lb/lb-mole), the ideal gas constant
21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), ft3/ml.
0.04715 =Factor which includes the molecular weight of water
(18.0 lb/lb-mole), the ideal gas constant
21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), and
453.6 g/lb, ft3/g.
126
3. Moisture content
Vw(std)
bws =-------------------------
Vw(std) + Vm(std)
1.60
bws =------------------------- = 0.028
1.60 + 55.427
Where:
bws =Proportion of water vapor, by volume, in the gas
stream, dimensionless.
4. Mole fraction of dry gas.
Md =1 - bws
Md =1 - 0.028 = 0.972
Where:
Md =Mole fraction of dry gas, dimensionless.
5. Dry molecular weight of gas stream, lb/lb-mole.
MWd =( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) )
MWd =( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 ))
MWd =28.84
Where:
MWd =Dry molecular weight , lb/lb-mole.
% CO2 =Percent carbon dioxide by volume, dry basis.
% O2 =Percent oxygen by volume, dry basis.
% N2 =Percent nitrogen by volume, dry basis.
% CO =Percent carbon monoxide by volume, dry basis.
0.440 =Molecular weight of carbon dioxide, divided by 100.
0.320 =Molecular weight of oxygen, divided by 100.
0.280 =Molecular weight of nitrogen or carbon monoxide,
divided by 100.
6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.
MWs =( MWd x Md ) + ( 18 x ( 1 - Md ))
MWs =( 28.84 x 0.972 ) +( 18 ( 1 - 0.972 )) = 28.53
Where:
MWs =Molecular weight of wet gas, lb/lb-mole.
18 =Molecular weight of water, lb/lb-mole.
127
7. Average velocity of gas stream at actual conditions, ft/sec.
Ts (avg)
Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2
Ps x MWs
560
Vs =85.49 x 0.84 x 0.83005 x ( -------------------- )^1/2 = 48.0
30.24 x 28.53
Where:
Vs =Average gas stream velocity, ft/sec.
(lb/lb-mole)(in. Hg)1/2
85.49 =Pitot tube constant, ft/sec x ------------------------------------
(deg R)(in H2O)
Cp =Pitot tube coefficient, dimensionless.
Ts =Absolute gas stream temperature, deg R = Ts, deg F + 460.
P(static)
Ps =Absolute gas stack pressure, in. Hg. = Pb + --------------
13.6
delt p =Velocity head of stack, in. H2O.
8. Average gas stream volumetric flow rate at actual conditions, wacf/min.
Qs(act)=60 x Vs x As
Qs(act)=60 x 48.0 x 9.39 = 27061
Where:
Qs(act)=Volumetric flow rate of wet stack gas at actual
conditions, wacf/min.
As =Cross-sectional area of stack, ft2.
60 =Conversion factor from seconds to minutes.
9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.
Ps
Qs(std)= 17.64 x Md x ----- x Qs(act)
Ts
30.24
Qs(std)=17.64 x 0.972 x -------------------- x 27061
560.2
Qs(std)=25043
Where:
Qs(std)=Volumetric flow rate of dry stack gas at standard
conditions, dscf/min.
128
10. Isokinetic variation calculated from intermediate values, percent.
17.327 x Ts x Vm(std)
I =-----------------------------------
Vs x O x Ps x Md x (Dn)2
17.327 x 560 x 55.427
I =-------------------------------------------------- = 97.3
48.0 x 96 x 30.24 x 0.972 x (0.202)^2
Where:
I =Percent of isokinetic sampling.
O =Total sampling time, minutes.
Dn =Diameter of nozzle, inches.
17.327 =Factor which includes standard temperature (528 deg R),
standard pressure (29.92 in. Hg), the formula for
calculating area of circle D2/4, conversion of square
feet to square inches (144), conversion of seconds
to minutes (60), and conversion to percent (100),
(in. Hg)(in2)(min)
(deg R)(ft2)(sec)
129
SAMPLE CALCULATIONS FOR
HFPO DIMER ACID (METHOD 0010)
Client: Chemours Plant: Fayetteville, NCTest Number: Run 3 Test Date: 07/17/19Test Location: VE South Stack Test Period: 1250-1502
1. HFPO Dimer Acid concentration, lbs/dscf.
W x 2.2046 x 10-9
Conc1 =------------------------------ Vm(std)
2.0 x 2.2046 x 10-9Conc1=------------------------------ 47.822
Conc1 =9.02E-11
Where:
W =Weight of HFPO Dimer Acid collected in sample in ug.
Conc1 =Division Stack HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10-9 =Conversion factor from ug to lbs.
2. HFPO Dimer Acid concentration, ug/dscm.
Conc2 =W / ( Vm(std) x 0.02832)
Conc2 =2.0 / ( 47.822 x 0.02832 )
Conc2 =1.44
Where:
Conc2 =Division Stack HFPO Dimer Acid concentration, ug/dscm.
0.02832 =Conversion factor from cubic feet to cubic meters.
3. HFPO Dimer Acid mass emission rate, lbs/hr.
MR1(Outlet)=Conc1 x Qs(std) x 60 min/hr
MR1(Outlet)=9.02E-11 x 23134 x 60
MR1(Outlet)=1.25E-04
Where:
MR1(Outlet)=Division Stack HFPO Dimer Acid mass emission rate, lbs/hr.
4. HFPO Dimer Acid mass emission rate, g/sec.
MR2(Outlet)=PMR1 x 453.59 / 3600
MR2(Outlet)=1.25E-04 x 453.59 /3600
MR2(Outlet)=1.58E-05
Where:
MR2(Outlet)=Division Stack HFPO Dimer Acid mass emission rate, g/sec.
453.6 =Conversion factor from pounds to grams.
3600 =Conversion factor from hours to seconds.
130
EXAMPLE CALCULATIONS FOR
VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS
Client: Chemours Facility: Fayetteville, NC
Test Number: Run 3 Test Date: 07/17/19
Test Location: VE South Stack Test Period: 1250-1502
1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.
delta H
17.64 x Y x Vm x ( Pb + ------------ )
13.6
Vm(std)=--------------------------------------------
(Tm + 460)
0.764
17.64 x 1.0008 x 50.263 x ( 30.07 + --------------------- )
13.6
Vm(std)=------------------------------------------------------------ = 47.822
99.00 + 460
Where:
Vm(std)=Volume of gas sample measured by the dry gas meter,
corrected to standard conditions, dscf.
Vm =Volume of gas sample measured by the dry gas meter
at meter conditions, dcf.
Pb =Barometric Pressure, in Hg.
delt H =Average pressure drop across the orifice meter, in H2O
Tm =Average dry gas meter temperature , deg F.
Y =Dry gas meter calibration factor.
17.64 =Factor that includes ratio of standard temperature (528 deg R)
to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =Specific gravity of mercury.
2. Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vw(std)=(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std)=( 0.04707 x 29.0 ) + ( 0.04715 x 12.9 ) = 1.97
Where:
Vw(std)=Volume of water vapor in the gas sample corrected to
standard conditions, scf.
Vwc =Volume of liquid condensed in impingers, ml.
Wwsg =Weight of water vapor collected in silica gel, g.
0.04707 =Factor which includes the density of water
(0.002201 lb/ml), the molecular weight of water
(18.0 lb/lb-mole), the ideal gas constant
21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), ft3/ml.
0.04715 =Factor which includes the molecular weight of water
(18.0 lb/lb-mole), the ideal gas constant
21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), and
453.6 g/lb, ft3/g.
131
3. Moisture content
Vw(std)
bws =-------------------------
Vw(std) + Vm(std)
1.97
bws =------------------------- = 0.040
1.97 + 47.822
Where:
bws =Proportion of water vapor, by volume, in the gas
stream, dimensionless.
4. Mole fraction of dry gas.
Md =1 - bws
Md =1 - 0.040 = 0.960
Where:
Md =Mole fraction of dry gas, dimensionless.
5. Dry molecular weight of gas stream, lb/lb-mole.
MWd =( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) )
MWd =( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 ))
MWd =28.84
Where:
MWd =Dry molecular weight , lb/lb-mole.
% CO2 =Percent carbon dioxide by volume, dry basis.
% O2 =Percent oxygen by volume, dry basis.
% N2 =Percent nitrogen by volume, dry basis.
% CO =Percent carbon monoxide by volume, dry basis.
0.440 =Molecular weight of carbon dioxide, divided by 100.
0.320 =Molecular weight of oxygen, divided by 100.
0.280 =Molecular weight of nitrogen or carbon monoxide,
divided by 100.
6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.
MWs =( MWd x Md ) + ( 18 x ( 1 - Md ))
MWs =( 28.84 x 0.960 ) +( 18 ( 1 - 0.960 )) = 28.41
Where:
MWs =Molecular weight of wet gas, lb/lb-mole.
18 =Molecular weight of water, lb/lb-mole.
132
7. Average velocity of gas stream at actual conditions, ft/sec.
Ts (avg)
Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2
Ps x MWs
560
Vs =85.49 x 0.84 x 0.75569 x ( -------------------- )^1/2 = 43.8
30.25 x 28.41
Where:
Vs =Average gas stream velocity, ft/sec.
(lb/lb-mole)(in. Hg)1/2
85.49 =Pitot tube constant, ft/sec x ------------------------------------
(deg R)(in H2O)
Cp =Pitot tube coefficient, dimensionless.
Ts =Absolute gas stream temperature, deg R = Ts, deg F + 460.
P(static)
Ps =Absolute gas stack pressure, in. Hg. = Pb + --------------
13.6
delt p =Velocity head of stack, in. H2O.
8. Average gas stream volumetric flow rate at actual conditions, wacf/min.
Qs(act)=60 x Vs x As
Qs(act)=60 x 43.8 x 9.62 = 25293
Where:
Qs(act)=Volumetric flow rate of wet stack gas at actual
conditions, wacf/min.
As =Cross-sectional area of stack, ft2.
60 =Conversion factor from seconds to minutes.
9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.
Ps
Qs(std)= 17.64 x Md x ----- x Qs(act)
Ts
30.25
Qs(std)=17.64 x 0.960 x -------------------- x 25293
560.4
Qs(std)=23134
Where:
Qs(std)=Volumetric flow rate of dry stack gas at standard
conditions, dscf/min.
133
10. Isokinetic variation calculated from intermediate values, percent.
17.327 x Ts x Vm(std)
I =-----------------------------------
Vs x O x Ps x Md x (Dn)2
17.327 x 560 x 47.822
I =-------------------------------------------------- = 105.2
43.8 x 96 x 30.25 x 0.960 x (0.190)^2
Where:
I =Percent of isokinetic sampling.
O =Total sampling time, minutes.
Dn =Diameter of nozzle, inches.
17.327 =Factor which includes standard temperature (528 deg R),
standard pressure (29.92 in. Hg), the formula for
calculating area of circle D2/4, conversion of square
feet to square inches (144), conversion of seconds
to minutes (60), and conversion to percent (100),
(in. Hg)(in2)(min)
(deg R)(ft2)(sec)
134
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019
APPENDIX E
EQUIPMENT CALIBRATION RECORDS
135
Date: 12/4/14-12/5/14Analyzer Type: Servomex - O2Model No: 4900Serial No: 49000-652921Calibration Span: 21.09 %Pollutant: 21.09% O2 - CC418692
CO2 (30.17% CC199689)0.00 -0.01 0.00
.
NO (445 ppm CC346681)0.00 0.02 0.11
NO2 (23.78 ppm CC500749)NA NA NA
N2O (90.4 ppm CC352661)0.00 0.05 0.24
CO (461.5 ppm XC006064B)0.00 0.02 0.00
SO2 (451.2 ppm CC409079)0.00 0.05 0.23
CH4 (453.1 ppm SG901795)NA NA NA
H2 (552 ppm ALM048043)0.00 0.09 0.44
HCl (45.1 ppm CC17830)0.00 0.03 0.14
NH3 (9.69 ppm CC58181)0.00 0.01 0.03
1.20
< 2.5%
(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.
Chad Walker
INTERFERENCE CHECK
INTERFERENT GAS
ANALYZER RESPONSE % OF CALIBRATION
SPAN(a)
TOTAL INTERFERENCE RESPONSE
METHOD SPECIFICATION
INTERFERENT GAS RESPONSE, WITH
BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%)
136
Date: 12/4/14-12/5/14Analyzer Type: Servomex - CO2Model No: 4900Serial No: 49000-652921Calibration Span: 16.65%Pollutant: 16.65% CO2 - CC418692
CO2 (30.17% CC199689)NA NA NA
.
NO (445 ppm CC346681)0.00 0.02 0.10
NO2 (23.78 ppm CC500749)0.00 0.00 0.02
N2O (90.4 ppm CC352661)0.00 0.01 0.04
CO (461.5 ppm XC006064B)0.00 0.01 0.00
SO2 (451.2 ppm CC409079)0.00 0.11 0.64
CH4 (453.1 ppm SG901795)0.00 0.07 0.44
H2 (552 ppm ALM048043)0.00 0.04 0.22
HCl (45.1 ppm CC17830)0.10 0.06 0.60
NH3 (9.69 ppm CC58181)0.00 0.02 0.14
2.19
< 2.5%
(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.
Chad Walker
INTERFERENCE CHECK
INTERFERENT GAS
ANALYZER RESPONSE % OF CALIBRATION
SPAN(a)
TOTAL INTERFERENCE RESPONSE
METHOD SPECIFICATION
INTERFERENT GAS RESPONSE, WITH
BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%)
137
CERTIFICATE OF ANALYSIS
Grade of Product: EPA Protocol
Part Number:E03NI79E15A00E4 Reference Number:160-401424145-1
Cylinder Number:ALM053372 Cylinder Volume:150.5 CF
Laboratory:124 - Plumsteadville - PA Cylinder Pressure:2015 PSIG
PGVP Number:A12019 Valve Outlet:590
Gas Code:CO2,O2,BALN Certification Date:Feb 26, 2019
Expiration Date:Feb 26, 2027
Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA
600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
volume/volume basis unless otherwise noted.
Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.
ANALYTICAL RESULTS
Component Requested Actual Protocol Total Relative Assay
Concentration Concentration Method Uncertainty Dates
CARBON DIOXIDE 9.000 %9.020 %G1 +/- 0.6% NIST Traceable 02/26/2019
OXYGEN 12.00 %12.07 %G1 +/- 0.3% NIST Traceable 02/26/2019
NITROGEN Balance -
CALIBRATION STANDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 061507 K014984 13.94 % CARBON DIOXIDE/NITROGEN 0.57%Jan 30, 2024
NTRM 16060507 CC401541 23.204 % OXYGEN/NITROGEN 0.2%Dec 24, 2021
ANALYTICAL EQUIPMENT
Instrument/Make/Model Analytical Principle Last Multipoint Calibration
HORIBA VA5011 T5V6VU9P NDIR CO2 NDIR Feb 12, 2019
SIEMENS OXYMAT 61 S01062 O2 PARAMAGNETIC Feb 18, 2019
Triad Data Available Upon Request
Airgas Specialty GasesAirgas USA, LLC
6141 Easton Road
Bldg 1
Plumsteadville, PA 18949
Airgas.com
Signature on file
Approved for Release Page 1 of 160-401424145-1138
CERTIFICATE OF ANALYSIS
Grade of Product: EPA Protocol
Part Number:E03NI62E15A0224 Reference Number:82-401196512-1
Cylinder Number:CC112489 Cylinder Volume:157.2 CF
Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG
PGVP Number:B52018 Valve Outlet:590
Gas Code:CO2,O2,BALN Certification Date:May 12, 2018
Expiration Date:May 12, 2026
Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA
600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
volume/volume basis unless otherwise noted.
Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.
ANALYTICAL RESULTS
Component Requested Actual Protocol Total Relative Assay
Concentration Concentration Method Uncertainty Dates
CARBON DIOXIDE 17.00 %17.05 %G1 +/- 0.7% NIST Traceable 05/12/2018
OXYGEN 21.00 %20.98 %G1 +/- 0.5% NIST Traceable 05/12/2018
NITROGEN Balance -
CALIBRATION STANDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 13060731 CC413777 16.939 % CARBON DIOXIDE/NITROGEN +/- 0.6%May 08, 2019
NTRM 09061420 CC273671 22.53 % OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019
ANALYTICAL EQUIPMENT
Instrument/Make/Model Analytical Principle Last Multipoint Calibration
Horiba VIA 510-CO2-19GYCXEG NDIR Apr 19, 2018
Horiba MPA 510-O2-7TWMJ041 Paramagnetic Apr 19, 2018
Triad Data Available Upon Request
Airgas Specialty GasesAirgas USA, LLC
600 Union Landing Road
Cinnaminson, NJ 08077-0000
Airgas.com
Signature on file
Approved for Release Page 1 of 82-401196512-1139
Calibrator MDW Meter Box Number 31 Ambient Temp 72
Date 12-Feb-19 Wet Test Meter Number P-2952 Temp Reference Source
Dry Gas Meter Number 17485128
Setting
in H20
(∆H)
ft3
(Vw)
ft3
(Vd)
oF
(Tw)
Outlet, oF
(Tdo)
Inlet, oF
(Tdi)
Average, oF
(Td)
Time, min
(O)Y ∆H
616.970 76.00 76.00
621.960 77.00 77.00
4.990 76.50 76.50
623.935 77.00 77.00
628.930 77.00 77.00
4.995 77.00 77.00
629.910 77.00 77.00
639.900 77.00 77.00
9.990 77.00 77.00
640.885 77.00 77.00650.875 77.00 77.00
9.990 77.00 77.00
651.915 78.00 78.00
661.955 78.00 78.00
10.040 78.00 78.00
Average 1.0066 1.9526
Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run
Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure
Tw - Temp of gas in the wet test meter
Tdi - Temp of the inlet gas of the dry gas meter
Tdo - Temp of the outlet gas of the dry gas meter
Td - Average temp of the gas in the dry gas meter
1 2 3 4 5 6
32 32 32 32 32 32.0 0.0%
212 213 213 212 212 212.4 -0.1%
932 933 933 932 932 932.4 0.0%
1832 1833 1833 1832 1832 1832.4 0.0%
1 - Channel Temps must agree with +/- 5oF or 3oC
2 - Acceptable Temperature Difference less than 1.5 %
2.0 10.0
1.841912.8 1.0092
Dry Gas Meter
72.0
0.5 72.0
1.0
Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console
Orifice
Manometer
Wet Test
Meter Dry gas Meter
Gas Volume
1.94295.0 72.0 77.0 9.3
Y - Ratio of accuracy of wet test
meter to dry gas meter
∆H - Pressure differential across
orifice
3.0 10.0 70.0
Temperatures
Wet Test
Meter
76.5
1.5 10.0
1.0079
5.0
72.0
11.0 1.0036
77.0
77.0
1.9719
1.986813.3 1.0054
15.3 1.0067
932
1832
Reference
Temperature
Select Temperature
oC oF
212
32
Average
Temperature
Reading
Thermocouple Simulator
(Accuracy +/- 1oF)
Temp
Difference 2
(%)
Temperature Reading from Individual Thermocouple Input 1
Channel Number
2.0195
Calibration Results
Baro Press, in
Hg ( Pb)29.75
78.0
( )( )
( )
( )
2
Vw
O460tw
460tdPb
H0317.0H
460tw6.13
HPbVd
)460td(PbVwY
∗+∗
+∗
∆∗=∆
+∗
∆+∗
+∗∗=
( )()( )()( )
+
+−+=460FTempferenceRe
460FTempTest460FTempferenceReDiffTempo
oo
140
Y Factor Calibration Check Calculation
MODIFIED METHOD 0010 TEST TRAIN
VES CARBON BED INLET
METER BOX NO. 31
07/16/19 and 07/17/19
Run 1 Run 2 Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.
0.32 = Molecular weight of oxygen, divided by 100.
0.44 = Molecular weight of carbon dioxide, divided by 100.
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.
% CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0
% O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9
MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 )))
MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 )))
MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 )
MWd = 28.84 28.84 28.84
Tma =Source Temperature, absolute(oR)
Tm = Average dry gas meter temperature , deg F.102.0 93.6 102.8
Tma = Ts + 460
Tma = 101.96 + 460
Tma = 561.96 553.58 562.75
Ps = Absolute meter pressure, inches Hg.
13.60 = Specific gravity of mercury.
delta H = Avg pressure drop across the orifice meter during sampling, in H2O 0.97 1.00 1.02
Pb = Barometric Pressure, in Hg.30.06 30.09 30.06
Pm = Pb + (delta H / 13.6)
Pm = 30.06 + ( 0.96625 / 13.6)
Pm = 30.13 30.16 30.13
Yqa = dry gas meter calibration check value, dimensionless.
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.
29.00 = dry molecular weight of air, lb/lb-mole.
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.50.909 51.412 51.767
Y = Dry gas meter calibration factor (based on full calibration)1.0066 1.0066 1.0066
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.9530 1.9530 1.9530
avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 0.9656 0.9758 0.9859
O = Total sampling time, minutes.96 96 96
Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H
Yqa = ( 96.00 / 50.91 ) * SQRT ( 0.0319 * 561.96 * 29 ) / ( 1.95 * 30.13 * 28.84 ) * 0.97
Yqa = 1.886 * SQRT 519.868 / 1,696.822 * 0.97
Yqa = 1.008 1.000 1.013
Diff = Absolute difference between Yqa and Y 0.14 0.66 0.64
Diff = (( Y - Yqa ) / Y ) * 100
Diff = (( 1.0066 - 1.008 ) / 1.0066 ) * 100
Average Diff = 0.48
Allowable = 5.0
7/31/201911:07 AM 071619 VES CB Inlet141
Calibrator MDW Meter Box Number 12 Ambient Temp 72
Date 10-Sep-18 Wet Test Meter Number P-2952 Temp Reference Source
Dry Gas Meter Number 14244707
Setting
in H20
(∆H)
ft3
(Vw)
ft3
(Vd)
oF
(Tw)
Outlet, oF
(Tdo)
Time, min
(O)Y ∆H
885.853 75.00
890.822 76.00
4.969 75.50
892.810 76.00
897.795 77.00
4.985 76.50
898.799 77.00
908.810 78.00
10.011 77.50
915.870 78.00925.830 79.00
9.960 78.50
926.870 79.00
936.870 80.00
10.000 79.50
1.0069 1.8812
Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run
Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure
Tw - Temp of gas in the wet test meter
Tdi - Temp of the inlet gas of the dry gas meter
Tdo - Temp of the outlet gas of the dry gas meter
Td - Average temp of the gas in the dry gas meter
1 2 3 4 5 6
32 32 32 32 32 32 32.0 0.0%
212 212 212 212 212 212 212.0 0.0%
932 932 932 932 932 932 932.0 0.0%
1834 1834 1834 1834 1834 1834 1834.0 -0.1%
1 - Channel Temps must agree with +/- 5oF or 3oC
2 - Acceptable Temperature Difference less than 1.5 %
1.0048
212
32
Average
Temperature
Reading
Thermocouple Simulator
(Accuracy +/- 1oF)
Temp
Difference 2
(%)
Temperature Reading from Individual Thermocouple Input 1
Channel Number
1.9137
Baro Press, in
Hg ( Pb)
1.9381
1.91581.0094
1.0036
29.96
932
1832
Reference
Temperature
Select Temperature
oC oF
3.0 10.0 73.0
2.0 10.0 73.0
1.5 10.0 73.0
1.7823
1.0 5.0 73.0 1.0071 1.8559
1.0097
Y - Ratio of accuracy of wet test
meter to dry gas meter
Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console
Orifice
Manometer
Wet Test
Meter Dry gas Meter
Gas Volume
Calibration Results
5.00.5 73.0
Dry Gas
Meter
Temperatures
Wet Test
Meter
∆H - Pressure differential across
orifice
12.60
9.1
15.20
13.1
10.70
( )( )
( )
( )
2
Vw
O460tw
460tdPb
H0317.0H
460tw6.13
HPbVd
)460td(PbVwY
∗+∗
+∗
∆∗=∆
+∗
∆+∗
+∗∗=
( )()( )()( )
+
+−+=460FTempferenceRe
460FTempTest460FTempferenceReDiffTempo
oo
142
Y Factor Calibration Check Calculation
MODIFIED METHOD 0010 TEST TRAIN
VES CARBON BED OUTLET
METER BOX NO. 12
07/16/19 and 07/17/19
Run 1 Run 2 Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.
0.32 = Molecular weight of oxygen, divided by 100.
0.44 = Molecular weight of carbon dioxide, divided by 100.
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.
% CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0
% O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9
MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 )))
MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 )))
MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 )
MWd = 28.84 28.84 28.84
Tma =Source Temperature, absolute(oR)
Tm = Average dry gas meter temperature , deg F.104.7 96.0 107.1
Tma = Ts + 460
Tma = 104.67 + 460
Tma = 564.67 556.04 567.13
Ps = Absolute meter pressure, inches Hg.
13.60 = Specific gravity of mercury.
delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.26 1.31 1.32
Pb = Barometric Pressure, in Hg.30.06 30.09 30.06
Pm = Pb + (delta H / 13.6)
Pm = 30.06 + ( 1.26 / 13.6)
Pm = 30.15 30.19 30.16
Yqa = dry gas meter calibration check value, dimensionless.
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.
29.00 = dry molecular weight of air, lb/lb-mole.
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.58.439 58.943 59.828
Y = Dry gas meter calibration factor (based on full calibration)1.0069 1.0069 1.0069
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.8812 1.8812 1.8812
avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.1102 1.1322 1.1367
O = Total sampling time, minutes.96 96 96
Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H
Yqa = ( 96.00 / 58.44 ) * SQRT ( 0.0319 * 564.67 * 29 ) / ( 1.88 * 30.15 * 28.84 ) * 1.11
Yqa = 1.643 * SQRT 522.373 / 1,635.525 * 1.11
Yqa = 1.031 1.033 1.033
Diff = Absolute difference between Yqa and Y 2.39 2.59 2.59
Diff = (( Y - Yqa ) / Y ) * 100
Diff = (( 1.0069 - 1.031 ) / 1.0069 ) * 100
Average Diff = 2.52
Allowable = 5.0
7/31/201911:10 AM 071619 VES CB Out143
Calibrator MDW Meter Box Number 27 Ambient Temp 72
Date 12-Jul-19 Wet Test Meter Number P-2952 Temp Reference Source
Dry Gas Meter Number 16787479
Setting
in H20
(∆H)
ft3
(Vw)
ft3
(Vd)
oF
(Tw)
Outlet, oF
(Tdo)
Inlet, oF
(Tdi)
Average, oF
(Td)
Time, min
(O)Y ∆H
449.945 76.00 76.00
454.959 76.00 76.00
5.014 76.00 76.00
456.064 76.00 76.00
461.090 76.00 76.00
5.026 76.00 76.00
462.195 76.00 76.00
472.200 76.00 76.00
10.005 76.00 76.00
474.425 77.00 77.00
484.425 77.00 77.00
10.000 77.00 77.00
486.010 77.00 77.00
496.100 77.00 77.00
10.090 77.00 77.00
Average 1.0008 1.8830
Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run
Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure
Tw - Temp of gas in the wet test meter
Tdi - Temp of the inlet gas of the dry gas meter
Tdo - Temp of the outlet gas of the dry gas meter
Td - Average temp of the gas in the dry gas meter
1 2 3 4 5 6
32 32 32 31 31 31.6 0.1%
212 212 212 211 211 211.6 0.1%
932 932 932 931 931 931.6 0.0%
1831 1831 1831 1830 1830 1830.6 0.1%
1 - Channel Temps must agree with +/- 5oF or 3oC
2 - Acceptable Temperature Difference less than 1.5 %
Average
Temperature
Reading
Thermocouple Simulator
(Accuracy +/- 1oF)
Temp
Difference 2
(%)
Temperature Reading from Individual Thermocouple Input 1
Channel Number
1.9283
Calibration Results
Baro Press, in
Hg ( Pb)29.76
77.0
932
1832
Reference
Temperature
Select Temperature
oC oF
212
32
1.9237
1.897513.0 1.0044
15.1 1.0033
0.9998
5.0
72.0
10.7 0.9930
76.0
77.0
Y - Ratio of accuracy of wet test
meter to dry gas meter
∆H - Pressure differential across
orifice
3.0 10.0 72.0
Temperatures
Wet Test
Meter
76.0
1.5 10.0
Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console
Orifice
Manometer
Wet Test
Meter Dry gas Meter
Gas Volume
1.82235.0 72.0 76.0 9.0
2.0 10.0
1.843012.8 1.0035
Dry Gas Meter
72.0
0.5 72.0
1.0
( )( )
( )
( )
2
Vw
O460tw
460tdPb
H0317.0H
460tw6.13
HPbVd
)460td(PbVwY
∗+∗
+∗
∆∗=∆
+∗
∆+∗
+∗∗=
( )()( )()( )
+
+−+=460FTempferenceRe
460FTempTest460FTempferenceReDiffTempo
oo
144
Y Factor Calibration Check Calculation
MODIFIED METHOD 0010 TEST TRAIN
VE SOUTH STACK
METER BOX NO. 27
07/16/2019 & 07/17/2019
Run 1 Run 2 Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.
0.32 = Molecular weight of oxygen, divided by 100.
0.44 = Molecular weight of carbon dioxide, divided by 100.
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.
% CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0
% O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9
MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 )))
MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 )))
MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 )
MWd = 28.84 28.84 28.84
Tma =Source Temperature, absolute(oR)
Tm = Average dry gas meter temperature , deg F.98.5 87.9 99.0
Tma = Ts + 460
Tma = 98.46 + 460
Tma = 558.46 547.88 559.00
Ps = Absolute meter pressure, inches Hg.
13.60 = Specific gravity of mercury.
delta H = Avg pressure drop across the orifice meter during sampling, in H2O 0.79 0.79 0.76
Pb = Barometric Pressure, in Hg.30.00 30.07 30.07
Pm = Pb + (delta H / 13.6)
Pm = 30 + ( 0.785416666666667 / 13.6)
Pm = 30.06 30.13 30.13
Yqa = dry gas meter calibration check value, dimensionless.
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.
29.00 = dry molecular weight of air, lb/lb-mole.
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.50.910 49.525 50.263
Y = Dry gas meter calibration factor (based on full calibration)1.0008 1.0008 1.0008
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.8330 1.8330 1.8330
avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 0.8852 0.8859 0.8737
O = Total sampling time, minutes.96 96 96
Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H
Yqa = ( 96.00 / 50.91 ) * SQRT ( 0.0319 * 558.46 * 29 ) / ( 1.83 * 30.06 * 28.84 ) * 0.89
Yqa = 1.886 * SQRT 516.630 / 1,588.863 * 0.89
Yqa = 0.9518 0.9688 0.9509
Diff = Absolute difference between Yqa and Y 4.90 3.20 4.99
Diff = (( Y - Yqa ) / Y ) * 100
Diff = (( 1.0008 - 0.952 ) / 1.0008 ) * 100
Average Diff = 4.36
Allowable = 5.0
7/31/201911:11 AM 071619 VES stack145
Pitot Tube Identification Number:
Inspection Date 2/19/19 Individual Conducting Inspection
Distance to A Plane (PA) - inches 0.45 PASS
Distance to B Plane (PB) - inches 0.45 PASS
Pitot OD (Dt) - inches 0.375
1.05 Dt < P < 1.5 Dt PA must Equal PB
Q1 and Q2 must be < 10o
B1 or B2 must be < 5o
Z must be < 0.125 inches
W must be < 0.03125 inches
X must be > 0.75 inches
Thermocouple meets
the Distance Criteria
in the adjacent figure
Impact Pressure
Opening Plane is
above the Nozzle
Entry Plane
NO
NA
NO
NA
PASS
PASS
PASS
Distance between Sample
Nozzle and Pitot (X) - inches
Thermocouple meets
the Distance Criteria
in the adjacent figure
YES
YES
PASS
NO YES
NA
0
0
Angle of B1 from
vertical A Tube-
degrees (absolute)0
0
0.79
Horizontal offset between A and
B Tubes (Z) - inches
Vertical offset between A and B
Tubes (W) - inches
0.006
0.012
PASS/FAIL
Angle of B1 from
vertical B Tube-
degrees (absolute)
PASS
PASS
PASS
P-706
KS
Angle of Q1 from vertical A Tube-
degrees (absolute)
Angle of Q2 from vertical B Tube-
degrees (absolute)
Type S Pitot Tube Inspection Data Form
Are Open Faces Aligned
Perpendicular to the Tube Axis YES NO PASS
If all Criteria PASS
Cp is equal to 0.84
Sample Probe
Type S Pitot Tube
Temperature Sensor
Dt
2 inch
Sample Probe
Temperature Sensor
Dt Type S Pitot Tube
3 inch
3/4 inch
A B
Face Opening Planes
A
B
A
BQ1Q1 Q2
B B
B
A A
A
FlowFlow
B1(+)B1(-)
B2(+ or -)
B1(+ or -)
B-Side Plane
AB
PA
PB
A-Side PlaneDt
X
Sampling D
Impact Pressure Opening Plane
Nozzle Entry Plane
W
B
A
B
A
Z
146
Pitot Tube Identification Number:
Inspection Date 2/19/18 Individual Conducting Inspection
Distance to A Plane (PA) - inches 0.417 PASS
Distance to B Plane (PB) - inches 0.417 PASS
Pitot OD (Dt) - inches 0.375
1.05 Dt < P < 1.5 Dt PA must Equal PB
Q1 and Q2 must be < 10o
B1 or B2 must be < 5o
Z must be < 0.125 inches
W must be < 0.03125 inches
X must be > 0.75 inches
NA
NO
NA
Thermocouple meets
the Distance Criteria
in the adjacent figure
Thermocouple meets
the Distance Criteria
in the adjacent figure
YES
YES
NO YES
NA
NO
Distance between Sample
Nozzle and Pitot (X) - inches 0.984 PASS
Impact Pressure
Opening Plane is
above the Nozzle
Entry Plane
Horizontal offset between A and
B Tubes (Z) - inches
Vertical offset between A and B
Tubes (W) - inches
0.028
0.012
PASS
PASS
PASS
PASS
Angle of B1 from
vertical B Tube-
degrees (absolute)
Angle of B1 from
vertical A Tube-
degrees (absolute)2
2 PASS
2
1
Angle of Q1 from vertical A Tube-
degrees (absolute)
Angle of Q2 from vertical B Tube-
degrees (absolute)PASS
P-376
KS
Type S Pitot Tube Inspection Data Form
Are Open Faces Aligned
Perpendicular to the Tube Axis YES NO PASS
If all Criteria PASS
Cp is equal to 0.84
PASS/FAIL
Sample Probe
Type S Pitot Tube
Temperature Sensor
Dt
2 inch
Sample Probe
Temperature Sensor
Dt Type S Pitot Tube
3 inch
3/4 inch
A B
Face Opening Planes
A B A B
Q1 Q1 Q2
B B
B
A A
A
FlowFlow
B1(+)B1(-)
B2(+ or -)
B1(+ or -)
B-Side Plane
AB
PA
PB
A-Side PlaneDt
X
Sampling D
Impact Pressure Opening Plane
Nozzle Entry Plane
W
B
A
B
A
Z
147
Pitot Tube Identification Number:
Inspection Date 2/19/19 Individual Conducting Inspection
Distance to A Plane (PA) - inches 0.459 PASS
Distance to B Plane (PB) - inches 0.459 PASS
Pitot OD (Dt) - inches 0.375
1.05 Dt < P < 1.5 Dt PA must Equal PB
Q1 and Q2 must be < 10o
B1 or B2 must be < 5o
Z must be < 0.125 inches
W must be < 0.03125 inches
X must be > 0.75 inches
P-700
ks
Angle of Q1 from vertical A Tube-
degrees (absolute)
Angle of Q2 from vertical B Tube-
degrees (absolute)
Type S Pitot Tube Inspection Data Form
Are Open Faces Aligned
Perpendicular to the Tube Axis YES NO PASS
If all Criteria PASS
Cp is equal to 0.84
PASS/FAIL
Angle of B1 from
vertical B Tube-
degrees (absolute)
PASS
PASS
PASS0
0
Angle of B1 from
vertical A Tube-
degrees (absolute)0
0
0.93
Horizontal offset between A and
B Tubes (Z) - inches
Vertical offset between A and B
Tubes (W) - inches
0.003
0.012
Distance between Sample
Nozzle and Pitot (X) - inches
Thermocouple meets
the Distance Criteria
in the adjacent figure
YES
YES
PASS
NO YES
NA
PASS
PASS
PASS
Thermocouple meets
the Distance Criteria
in the adjacent figure
Impact Pressure
Opening Plane is
above the Nozzle
Entry Plane
NO
NA
NO
NASample Probe
Type S Pitot Tube
Temperature Sensor
Dt
2 inch
Sample Probe
Temperature Sensor
Dt Type S Pitot Tube
3 inch
3/4 inch
A B
Face Opening Planes
A
B A
BQ1Q1 Q2
B B
B
A A
A
FlowFlow
B1(+)B1(-)
B2(+ or -)
B1(+ or -)
B-Side Plane
AB
PA
PB
A-Side PlaneDt
X
Sampling D
Impact Pressure Opening Plane
Nozzle Entry Plane
W
B
A
B
A
Z
148
Pitot Tube Identification Number:
Inspection Date 2/19/19 Individual Conducting Inspection
Distance to A Plane (PA) - inches 0.46 PASS
Distance to B Plane (PB) - inches 0.46 PASS
Pitot OD (Dt) - inches 0.375
1.05 Dt < P < 1.5 Dt PA must Equal PB
Q1 and Q2 must be < 10o
B1 or B2 must be < 5o
Z must be < 0.125 inches
W must be < 0.03125 inches
X must be > 0.75 inches
P-695
ks
Angle of Q1 from vertical A Tube-
degrees (absolute)
Angle of Q2 from vertical B Tube-
degrees (absolute)
Type S Pitot Tube Inspection Data Form
Are Open Faces Aligned
Perpendicular to the Tube Axis YES NO PASS
If all Criteria PASS
Cp is equal to 0.84
PASS/FAIL
Angle of B1 from
vertical B Tube-
degrees (absolute)
PASS
PASS
PASS0
1
Angle of B1 from
vertical A Tube-
degrees (absolute)0
0
0.78
Horizontal offset between A and
B Tubes (Z) - inches
Vertical offset between A and B
Tubes (W) - inches
0.006
0.018
Distance between Sample
Nozzle and Pitot (X) - inches
Thermocouple meets
the Distance Criteria
in the adjacent figure
YES
YES
PASS
NO YES
NA
PASS
PASS
PASS
Thermocouple meets
the Distance Criteria
in the adjacent figure
Impact Pressure
Opening Plane is
above the Nozzle
Entry Plane
NO
NA
NO
NASample Probe
Type S Pitot Tube
Temperature Sensor
Dt
2 inch
Sample Probe
Temperature Sensor
Dt Type S Pitot Tube
3 inch
3/4 inch
A B
Face Opening Planes
A
B A B
Q1 Q1 Q2
B B
B
A A
A
FlowFlow
B1(+)B1(-)
B2(+ or -)
B1(+ or -)
B-Side Plane
AB
PA
PB
A-Side PlaneDt
X
Sampling D
Impact Pressure Opening Plane
Nozzle Entry Plane
W
B
A
B
A
Z
149
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019
APPENDIX F
LIST OF PROJECT PARTICIPANTS
150
IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019
The following WESTON employees participated in this project.
Paul Meeter Senior Project Manager
Jeff O’Neill Team Member
Matt Winkeler Team Member
Nick Guarino Team Member
Kris Ansley Team Member
Paul Greene Team Member
Steve Rathfon Team Member
Jack Mills Team Member
Colin Mihalak Team Member
151