Loading...
HomeMy WebLinkAbout2019.08.20_CCO.p8_Fluoromonomers Manufacturing Process VE South Carbon Bed Removal Efficiency And VE South Stack Emissions Test ReportIASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 FLUOROMONOMERS MANUFACTURING PROCESS VE SOUTH CARBON BED REMOVAL EFFICIENCY AND VE SOUTH STACK EMISSIONS TEST REPORT TEST DATES: 16 AND 17 JULY 2019 THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA Prepared for: THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306 Prepared by: WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380 August 2019 W.O. No. 15418.002.016 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 i TABLE OF CONTENTS Section Page 1. INTRODUCTION..............................................................................................................1  1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1  1.2 TEST OBJECTIVES ...............................................................................................1  1.3 TEST PROGRAM OVERVIEW .............................................................................1  2. SUMMARY OF TEST RESULTS ...................................................................................5  3. PROCESS DESCRIPTIONS ............................................................................................6  3.1 FLUOROMONOMERS ..........................................................................................6  3.2 PROCESS OPERATIONS AND PARAMETERS .................................................6  4. DESCRIPTION OF TEST LOCATIONS .......................................................................7  4.1 VE SOUTH STACK ................................................................................................7  4.2 VE SOUTH CARBON BED INLET AND OUTLET ............................................7  5. SAMPLING AND ANALYTICAL METHODS ...........................................................11  5.1 STACK GAS SAMPLING PROCEDURES .........................................................11  5.1.1 Pre-Test Determinations .........................................................................11  5.2 STACK PARAMETERS .......................................................................................11  5.2.1 EPA Method 0010...................................................................................11  5.2.2 EPA Method 0010 Sample Recovery .....................................................14  5.2.3 EPA Method 0010 Sample Analysis.......................................................15  5.3 GAS COMPOSITION ...........................................................................................17  6. DETAILED TEST RESULTS AND DISCUSSION .....................................................20  APPENDIX A PROCESS OPERATIONS DATA APPENDIX B RAW AND REDUCED TEST DATA APPENDIX C LABORATORY ANALYTICAL REPORT APPENDIX D SAMPLE CALCULATIONS APPENDIX E EQUIPMENT CALIBRATION RECORDS APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 ii LIST OF FIGURES Title Page Figure 4-1 VE South Stack Test Port and Traverse Point Location .............................................. 8  Figure 4-2 VE South Carbon Bed Inlet and Schematic ................................................................. 9  Figure 4-3 VE South Carbon Bed Outlet and Schematic ............................................................ 10  Figure 5-1 EPA Method 0010 Sampling Train ............................................................................. 12  Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 16  Figure 5-3 WESTON Sampling System ...................................................................................... 19  IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 iii LIST OF TABLES Title Page Table 1-1 Sampling Plan for VE South Carbon Bed Testing ......................................................... 3  Table 1-2 Sampling Plan for VE South Stack ................................................................................ 4  Table 2-1 Summary of HFPO Dimer Acid VE South Carbon Bed and Stack Test Results ........... 5  Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Inlet – Runs 1, 2, and 3 .............................................................................................................................. 21  Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Outlet – Runs 1, 2, and 3 .............................................................................................................................. 23  Table 6-3 Summary of HFPO Dimer Acid Test Data and Test Results VE South Stack – Runs 1, 2 and 3 ................................................................................................................................... 25  IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 1 1. INTRODUCTION 1.1 FACILITY AND BACKGROUND INFORMATION The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site include the Fluoromonomers, IXM and Polymer Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse. Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid, emission testing on the Vinyl Ethers (VE) South Carbon Bed and VE South stack at the facility. Testing was performed on 16 and 17 July 2019 and generally followed the “Emission Test Protocol” reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program. 1.2 TEST OBJECTIVES The specific objectives for this test program were as follows:  Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the VE South Carbon Bed inlet and outlet and VE South stack which are located in the Fluoromonomers process area.  Calculate the Carbon Bed removal efficiency for HFPO Dimer Acid.  Monitor and record process and emissions control data in conjunction with the test program.  Provide representative emissions data. 1.3 TEST PROGRAM OVERVIEW During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured at three locations. Tables 1-1 and 1-2 provide a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 2 Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test locations. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6. Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided separately in electronic format. IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 3 Table 1-1 Sampling Plan for VE South Carbon Bed Testing Sampling Point & Location VE South Carbon Bed Number of Tests: 6 (3 Carbon Bed inlet, 3 Carbon Bed outlet) Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1 and M2 in conjunction with M-0010 tests EPA M3/3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size ≥ 1.5m3 NA NA NA NA Total Number of Samples Collected1 6 6 3 3 6 Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0 Field Blank Trains1 1 per source 0 0 0 0 Proof Blanks1 1 per train 0 0 0 0 Trip Blanks1,2 1 set 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 105 6 3 3 6 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 4 Table 1-2 Sampling Plan for VE South Stack Sampling Point & Location VE South Stack Number of Tests: 3 Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1 and M2 in conjunction with M-0010 tests EPA M3/3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size ≥ 1.5m3 NA NA NA NA Total Number of Samples Collected1 3 3 3 3 3 Reagent Blanks (Solvents, Resins)1 0 0 0 0 0 Field Blank Trains1 0 0 0 0 0 Proof Blanks1 0 0 0 0 0 Trip Blanks1,2 0 0 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 35 3 3 3 3 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 5 2. SUMMARY OF TEST RESULTS A total of three test runs each were performed on the VE South Carbon Bed inlet and outlet and VE South stack. Table 2-1 provides a summary of the HFPO Dimer Acid emissions test results and Carbon Bed removal efficiencies. Detailed test results summaries are provided in Section 6. It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided in Table 2-1 and in this report include a percentage of each of the three compounds. Table 2-1 Summary of HFPO Dimer Acid VE South Carbon Bed and Stack Test Results Inlet Outlet Removal Efficiency VE South Stack g/sec lb/hr g/sec lb/hr % g/sec lb/hr R1 4.17E-04 3.31E-03 6.01E-05 4.78E-04 85.6 3.04E-05 2.41E-04 R2 8.50E-05 6.75E-04 1.71E-05 1.36E-04 79.8 2.17E-05 1.72E-04 R3 3.69E-05 2.93E-04 1.95E-05 1.55E-04 47.1 1.58E-05 1.25E-04 Average 1.80E-04 1.43E-03 3.23E-05 2.56E-04 65.9 2.26E-05 1.80E-04 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 6 3. PROCESS DESCRIPTIONS The Fluoromonomers area is included in the scope of this test program. 3.1 FLUOROMONOMERS These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers. The VE South Waste Gas Scrubber and the Tower HVAC are vented to the carbon bed which then vents to the process stack (NEP-Hdr2). In addition, the following building air systems are vented to this stack: RV Catch Pots Nitrogen Supply to Catch Tanks Catalyst Feed Tank Pot Charge Vent 3.2 PROCESS OPERATIONS AND PARAMETERS The following table is a summary of the operation and products from the specific areas tested. Source Operation/Product Batch or Continuous VE South PMVE/PEVE Semi-continuous – Condensation is continuous, Two Agitated Bed Reactors are batch for 30-40 mins at end of each run*, Refining (ether column) is batch *Only one Agitated Bed Reactor was running due to cooling limiting capacity during testing. During the test program, the following parameters were monitored by Chemours and are included in Appendix A. Fluoromonomers Processes o VE South Waste Gas Scrubber Caustic recirculation flow rate IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 7 4. DESCRIPTION OF TEST LOCATIONS 4.1 VE SOUTH STACK Two 6-inch ID test ports are installed on the 42-inch ID steel stack. The ports are placed 150 inches (3.6 diameters) from the location where the carbon bed vent enters the stack and 20 feet (5.7 diameters) from the stack exit. Per EPA Method 1, a total of 24 traverse points (12 per axis) were used for M0010 isokinetic sampling. It should be noted that near the port locations are a number of small ducts leading to the stack. These are catch pots which, under normal operation, do not discharge to the stack. They are used to vent process gas to the stack in the event of a process upset. For the purpose of test port location, and given the fact that there is no flow from these catch pots, they are not considered a flow contributor or a disturbance. See Figure 4-1 for a schematic of the test port and traverse point locations. Note: All measurements at the test location were confirmed prior to sampling. 4.2 VE SOUTH CARBON BED INLET AND OUTLET The fiberglass reinforced plastic (FRP) duct at the inlet of the carbon bed is 36-inch ID. The stainless steel duct at the outlet of the carbon bed is 41.5-inch ID. The test ports are located as shown below. Based on EPA Method 1, a total of 24 traverse points (12 per port) were required for HFPO Dimer Acid sampling at both locations. Figures 4-2 and 4-3 provide schematics of the Carbon Bed inlet and Carbon Bed outlet test port and traverse port locations, respectively. Location Distance from Flow Disturbance Downstream (B) Upstream (A) Carbon Bed Inlet 35 inches > 0.97 duct diameters 41 inches > 1.1 duct diameters Carbon Bed Outlet 12.5 feet > 4.2 duct diameters 31 feet > 10.3 duct diameters VE South Stack 150 inches 3.6 duct diameters 20 feet 5.7 diameters 42 " TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 7 8 9 10 11 12 FIGURE 4-1 VE SOUTH STACK TEST PORT AND TRAVERSE POINT LOCATION IASDATA\CHEMOURS\15418.002.016\FIGURE 4-1 VE SOUTH SCRUBBER STACK8 20 ' 150 " ID FAN ROOF LINE CATCH POT CATCH POTS FROM CARBON BED DRAWING NOT TO SCALE 1 2 7/8 5 7 3/8 10 1/2 15 27 31 1/2 34 5/8 37 39 1/8 41 TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 7 8 9 10 11 12 FIGURE 4-2 VE SOUTH CARBON BED INLET SCHEMATIC IASDATA\CHEMOURS\15418.002.016\FIGURE 4-1 VE SOUTH CB INLET SCHEMATIC9 1 2 3/4 4 7/8 7 3/8 10 3/8 14 3/4 26 3/4 31 1/8 34 1/8 36 5/8 38 3/4 40 1/2 DRAWING NOT TO SCALE 35" 41" TO CARBON BED 36" Top View TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 7 8 9 10 11 12 FIGURE 4-3 VE SOUTH CARBON BED OUTLET SCHEMATIC IASDATA\CHEMOURS\15418.002.016\FIGURE 4-1 VE SOUTH CB OUTLET SCHEMATIC10 CARBON BED 1 2 3/8 4 1/4 6 3/8 9 12 7/8 23 1/8 27 29 5/8 31 3/4 33 5/8 35 DRAWING NOT TO SCALE 41.5" FAN 31' 12.5' Side View IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 11 5. SAMPLING AND ANALYTICAL METHODS 5.1 STACK GAS SAMPLING PROCEDURES The purpose of this section is to describe the stack gas emissions sampling trains and to provide details of the stack sampling and analytical procedures utilized during the emissions test program. 5.1.1 Pre-Test Determinations Preliminary test data were obtained at each test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements. A check for the presence or absence of cyclonic flow was conducted at each test location. The cyclonic flow checks were negative (< 20°) verifying that the test locations were acceptable for testing. Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures. Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures. 5.2 STACK PARAMETERS 5.2.1 EPA Method 0010 The sampling train utilized to perform the HFPO Dimer Acid sampling at all three locations was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter. 9(17:$//,&(:$7(55(&,5&8/$7,213803&21'(16$7(75$3,03,1*(56,&(%$7+9$&880/,1(0$,19$/9(7(03(5$785(6(16256%<3$669$/9($,57,*+73803'5<*$60(7(525,),&(0$120(7(5&+(&.9$/9(7(03(5$785(6(1625+($7('$5($),/7(5+2/'(525,),&(6,/,&$*(/&21'(16(5;$'625%(1702'8/(621($1'7:27(03(5$785(6(16257(03(5$785(6(16259$&880*$8*(,$6'$7$?&+(02856?6?),*85(0(7+2'),*85((3$0(7+2'6$03/,1*75$,1+($7('352%(%87721+22.12==/(5(9(56(7<3(3,72778%(2 127(7+(&21'(16(50$<%(326,7,21('+25,=217$//<7+(;$'625%(1702'8/(:,//$/:$<6%(,1$9(57,&$/326,7,215,*,'%2526,/,&$7(78%,1*25)/(;,%/(6$03/(/,1(,&(:$7(55(&,5&8/$7,21&21'(16$7(75$3,03,1*(5 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 13 A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high-purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and the XAD-2 module to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train. HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid. During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes. IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 14 5.2.2 EPA Method 0010 Sample Recovery At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery. A consistent procedure was employed for sample recovery: 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled. 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments. 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed. 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.   5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed. 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.   7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed. 8. The silica gel in the final impinger was weighed and the weight gain value recorded. 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis. Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool. IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 15 During the Carbon Bed inlet and outlet test campaign, a Method 0010 blank train was set up near the test location, leak-checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis. See Figure 5-2 for a schematic of the Method 0010 sample recovery process. 5.2.3 EPA Method 0010 Sample Analysis Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:  Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;  Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;  Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;  Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers. The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough. The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS. ,$6'$7$?&+(02856?6?),*85((3$),*85(+)32',0(5$&,'6$03/(5(&29(5<352&('85(6)250(7+2'12==/(352%($1')5217+$/)),/7(5+2/'(56$03/()5$&7,21),/7(56$03/()5$&7,21%$&.+$/)),/7(5+2/'(5&211(&7256)/(;,%/(/,1(&21'(16(56$03/()5$&7,21;$'02'8/(21(6$03/()5$&7,215(029()520,03,1*(575$,1:$6+:,7+ 0(7+$12/$0021,80+<'52;,'(6($/,1/$%(/('32/<(7+</(1(%277/(&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/:$6+:+,/(%586+,1*:,7+ 0(7+$12/$0021,80+<'52;,'(6($/(1'6:,7+*/$66&$36&29(5/$%(/&203/(7(&8672'<)2506(&85(6$03/($7$1'.((3&22/75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/6($/:$6+,1*6,1/$%(/('32/<(7+</(1(%277/(0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/),567$1'6(&21'&21'(16$7(75$36$1',03,1*(5126$1'6$03/()5$&7,21,03,1*(5123 6,/,&$*(/ :(,*+$1'5(&25'0($685(92/80(2)/,48,'$1'5(&25'75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/16:(,*+$1'5(&25'5(7$,1)255(*(1(5$7,21),567$1'6(&21'&21'(16$7(75$36$1',03,1*(5126$1'6$03/()5$&7,21:$6+:,7+ 0(7+$12/$0021,80+<'52;,'(75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/;$'02'8/(7:26$03/()5$&7,215(029()520,03,1*(575$,16($/(1'6:,7+*/$66&$36&29(5/$%(/&203/(7(&8672'<)2506(&85(6$03/($7$1'.((3&22/ IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 17 Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries. TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol. 5.3 GAS COMPOSITION The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3. For the VE South stack test campaign, the sample was collected at the exhaust of the Method 0010 sampling system. At the end of the line, a tee permitted the introduction of calibration gas. The sample was drawn through a heated Teflon® sample line to the sample conditioner. The output from the sampling system was recorded electronically, and one minute averages were recorded and displayed on a data logger. Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintained the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment. The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to insure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier. IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 18 The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run. HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDER OR METHOD0010 SAMPLE TRAINSAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISITIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-5WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.016\FIGURE 5-5 WESTON SAMPLING SYSTEM19 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 20 6. DETAILED TEST RESULTS AND DISCUSSION Each test was a minimum of 96 minutes in duration. A total of three test runs were performed simultaneously at each location. Chemours is continuing to investigate the differences in gas stream velocity and volumetric flow exiting the carbon bed and exiting the stack. Tables 6-1 through 6-3 provide detailed test data and test results for the VE South Carbon Bed inlet, the Carbon Bed outlet and the VE South stack, respectively. The carbon bed removal efficiency was calculated based upon the HFPO Dimer Acid inlet and outlet mass emission rates in lb/hr. The Method 3A sampling on the VE South stack indicated that the O2 and CO2 concentrations were at ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all calculations. 7/31/2019 10:35 AM 21 071619 VES CB Inlet TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VES CARBON BED INLET Test Data Run number 1 2 3 Location VES CBed Inlet VES CBed Inlet VES CBed InletDate07/16/19 07/17/19 07/17/19 Time period 1605-1841 0905-1058 1250-1502 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.160 0.160 0.160 Cross sectional nozzle area, sq.ft.0.000140 0.000140 0.000140 Barometric pressure, in. Hg 30.06 30.09 30.06 Avg. orifice press. diff., in H2O 0.97 1.00 1.02 Avg. dry gas meter temp., deg F 102.0 93.6 102.8 Avg. abs. dry gas meter temp., deg. R 562 554 563Total liquid collected by train, ml 29.5 28.2 48.7 Std. vol. of H2O vapor coll., cu.ft.1.39 1.33 2.29 Dry gas meter calibration factor 1.0066 1.0066 1.0066 Sample vol. at meter cond., dcf 50.909 51.412 51.767 Sample vol. at std. cond., dscf (1)48.469 49.741 49.222 Percent of isokinetic sampling 99.7 101.2 101.1 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.028 0.026 0.045 Mole fraction of dry gas 0.972 0.974 0.955 Molecular wt. of wet gas, lb/lb mole 28.53 28.55 28.35 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O -5.50 -5.50 -5.50 Absolute pressure, in. Hg 29.66 29.69 29.66 Avg. temperature, deg. F 100 92 97 Avg. absolute temperature, deg.R 560 552 557Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.66.5 66.1 67.5 Stack/duct cross sectional area, sq.ft.7.07 7.07 7.07 Avg. gas stream volumetric flow, wacf/min.28214 28035 28617 Avg. gas stream volumetric flow, dscf/min.25641 25919 25674 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) *Run 3 conducted prior to Run 2 7/31/2019 10:35 AM 22 071619 VES CB Inlet VES CARBON BED INLET TEST DATA Run number 1 2 3 Location VES CBed Inlet VES CBed Inlet VES CBed Inlet Date 07/16/19 07/17/19 07/17/19 Time period 1605-1841 0905-1058 1250-1502 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 47.37 9.79 4.25 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 34.51 6.95 3.05 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 2.15E-09 4.34E-10 1.90E-10 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 3.31E-03 6.75E-04 2.93E-04 EMISSION RESULTS, g/sec. HFPO Dimer Acid 4.17E-04 8.50E-05 3.69E-05 TABLE 6-1 (cont.) SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CHEMOURS - FAYETTEVILLE, NC 7/31/2019 10:39 AM 23 071619 VES CB Out TABLE 6-2 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VES CARBON BED OUTLET Test Data Run number 1 2 3 Location VES CBed Outlet VES CBed Outlet VES CBed OutletDate07/16/19 07/17/19 07/17/19 Time period 1605-1841 0905-1058 1250-1502 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0 Nozzle diameter, in.0.202 0.202 0.202 Cross sectional nozzle area, sq.ft.0.000223 0.000223 0.000223 Barometric pressure, in. Hg 30.06 30.09 30.06 Avg. orifice press. diff., in H2O 1.26 1.31 1.32 Avg. dry gas meter temp., deg F 104.7 96.0 107.1 Avg. abs. dry gas meter temp., deg. R 565 556 567Total liquid collected by train, ml 34.0 24.2 46.4 Std. vol. of H2O vapor coll., cu.ft.1.60 1.14 2.19 Dry gas meter calibration factor 1.0069 1.0069 1.0069 Sample vol. at meter cond., dcf 58.439 58.943 59.828 Sample vol. at std. cond., dscf (1)55.427 56.835 56.507 Percent of isokinetic sampling 97.3 98.5 99.2 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.028 0.020 0.037 Mole fraction of dry gas 0.972 0.980 0.963 Molecular wt. of wet gas, lb/lb mole 28.53 28.62 28.43 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O 2.40 2.40 2.40 Absolute pressure, in. Hg 30.24 30.27 30.24 Avg. temperature, deg. F 100 98 100 Avg. absolute temperature, deg.R 560 558 560Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.48.0 47.9 48.5 Stack/duct cross sectional area, sq.ft.9.39 9.39 9.39 Avg. gas stream volumetric flow, wacf/min.27061 27013 27311 Avg. gas stream volumetric flow, dscf/min.25043 25357 25032 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) *Run 3 conducted prior to Run 2 7/31/2019 10:39 AM 24 071619 VES CB Out TEST DATA Run number 1 2 3 Location VES CBed Outlet VES CBed Outlet VES CBed Outlet Date 07/16/19 07/17/19 07/17/19 Time period 1605-1841 0905-1058 1250-1502 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 7.99 2.30 2.65 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 5.09 1.43 1.65 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 3.18E-10 8.94E-11 1.03E-10 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 4.78E-04 1.36E-04 1.55E-04 HFPO Dimer Acid (From Inlet Data)3.31E-03 6.75E-04 2.93E-04 EMISSION RESULTS, g/sec. HFPO Dimer Acid 6.01E-05 1.71E-05 1.95E-05 Carbon Bed Removal Efficiency, %85.6 79.8 47.1 TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VES CARBON BED OUTLET 7/31/2019 10:47 AM 25 071619 VES stack Test Data Run number 1 2 3 Location VE South Stack VE South Stack VE South Stack Date 07/16/19 07/17/19 07/17/19Time period 1605-1841 0905-1058 1250-1502 SAMPLING DATA: Sampling duration, min.96.0 96.0 96.0Nozzle diameter, in.0.190 0.190 0.190Cross sectional nozzle area, sq.ft.0.000197 0.000197 0.000197 Barometric pressure, in. Hg 30.00 30.07 30.07 Avg. orifice press. diff., in H2O 0.79 0.79 0.76 Avg. dry gas meter temp., deg F 98.5 87.9 99.0Avg. abs. dry gas meter temp., deg. R 558 548 559 Total liquid collected by train, ml 45.5 45.1 41.9 Std. vol. of H2O vapor coll., cu.ft.2.1 2.1 2.0 Dry gas meter calibration factor 1.0008 1.0008 1.0008Sample vol. at meter cond., dcf 50.910 49.525 50.263 Sample vol. at std. cond., dscf (1)48.374 48.079 47.822Percent of isokinetic sampling 106.3 105.3 105.2 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.042 0.042 0.040 Mole fraction of dry gas 0.958 0.958 0.960 Molecular wt. of wet gas, lb/lb mole 28.38 28.38 28.41 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O 2.50 2.50 2.50 Absolute pressure, in. Hg 30.18 30.25 30.25 Avg. temperature, deg. F 100 97 100Avg. absolute temperature, deg.R 560 557 560Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.44.1 43.9 43.8 Stack/duct cross sectional area, sq.ft.9.62 9.62 9.62Avg. gas stream volumetric flow, wacf/min.25447 25348 25293Avg. gas stream volumetric flow, dscf/min.23157 23242 23134 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) TABLE 6-3 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VE SOUTH STACK 8/16/2019 11:32 AM 26 071619 VES stack TEST DATA Run number 1 2 3 Location VE South Stack VE South Stack VE South Stack Date 07/16/19 07/17/19 07/17/19 Time period 1605-1841 0905-1058 1250-1502 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 3.8080 2.6950 1.9560 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 2.78 1.98 1.44 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 1.74E-10 1.24E-10 9.02E-11 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 2.41E-04 1.72E-04 1.25E-04 EMISSION RESULTS, g/sec. HFPO Dimer Acid 3.04E-05 2.17E-05 1.58E-05 TABLE 6-3 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VE SOUTH STACK IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 APPENDIX A PROCESS OPERATIONS DATA 27 Date: 7/16/19 Time Stack Testing VES Product VES Precursor VES Condensation (HFPO) VES ABR (East) VES ABR (West) VES Refining VES WGS Recirculation Flow Dimer ISO venting RUN 1: 1605 - 1841 1500 1600 1700 1800 1900 PM/PE Burnout 18500 kg/h 28 Date: 7/17/19 Time Stack Testing VES Product VES Precursor VES Condensation (HFPO) VES ABR (East) VES ABR (West) VES Refining VES WGS Recirculation Flow Dimer ISO venting PM/PE 800 900 1000 1100 1200 1300 1400 1500 1600 RUN 2: 0905 - 1058 RUN 3: 1250 - 1502 18500 kg/h Burnout 29 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 APPENDIX B RAW AND REDUCED TEST DATA 30 Sample and Velocity Traverse Point Data Sheet -Method 1 Client L/~lXi/"~ ~~~j Operator j'~!l :,.~~~ .. Loaction/Plant ~Ci C~ ~ Date .i b '~ Source ~~ W.O. Number Duct Type. q Circular q Rectangular Duct ~nmcate epproprlete type Traverse Type ~ Particulate Traverse ~ Velocity Traverse q CEM Traverse Distance from far wall to outside of port in. = C, Port De th in. = D De th of Duct, diameter in. = C-D Area of Duct ft Total Traverse Points Total Traverse Points r Port Port Diameter in. —Flan e-Threaded-Hole Monorail Len th Rectan ular Ducts Onl Width of Duct, rectan ular duct onl in. Total Ports rectan ular duct onl E uivalent Diameter = 2'L'W L+W Traverse Point Locations Traverse Point °~ of Duct Distance from Inside Duct Wall in Distance from Outside of Port in z O 6 ~W 3 ~ L D 4 ~ .~ ~ Z 5 •~~ rr . 3L•~ 3 s f b ~' 77 2 ~ rL 7~ 0 G a i~ 9 /„J`2 ' Is s .' oa 3 ~ ,Js3 ~ 11 r 1/ Z ~ 5 ~3 ~2 CJ 3 .~ 3 CEA1 3 Pdnl(Lonp Msasurmart Llne) SUaUfieaton Polk Locations 1 0.167 2 0.50 3 0.833 IVOi6: R SSBCK OI8 ~ 1Z If7C~ U58 tF'A MBi~Otl 1A (Sample port upsVeam of pitot port) Note: If stack die >24" Uien adjust traverse point to 1 inch hom wall If stack die <24" then adJust Vaverse point to 0.5 Inch from wall r r~ ■OOOOOOOOOmmm ~_~_~_~_m~ra_~_m ~---~~~Cii-~-~-~ ~---~---li67_~~~ m----__---_-~~Ti m~-__~~-~~~-~J~i Flow Disturbances U stream -Aft Downstream - B ft U stream - A duct diameters p Downstream - B duct diameters Diagram of Stack ~~~ ~~ 3~~ } 0 ~~ l ~~// Duct Diameters Upstream from Flow Disturbance (Distance A) nF t.0 ~s ,,, Shack Dfameter> 24 inches a.e.~ t 40 ~ MlnlmumNienberof e } ~ ~ ParUalate Treverse Po~nis d.~.w~ 24 (cFnder) 25 (reclenpuler duct ) 20 Traverse Poirrts for Vebdty ~s 12 1O e l~ra~.)o Gmwwr) (Dlstwbance =Bend, Expansion, Contracfbn, e[c.) si.a~ a. «~ywr.uor . ~z - z~ xd.. 2 3 4 5 6 7 B 9 10 Dud Dl~nefers Dowretream fiom Flow DlsWrbence (Distance B) ■OOO~OO~O~mm~ 0~-~~~~~~~~~~ m~~~~~~~~~~~~ 31 .Sample and Velocity Traverse Point Data Sheet -Method 1 Client f~ Vr1'' Operator i Loaction/Plant Ltw - ~ ~ Date ~' j ~ ~ T Source V ly~ W.O. Number DuCtType q Circular q Rectangular Duct ~"d~ca~ea~P`°P"e~ery~e Traverse Type Particulate Traverse q Velocity Traverse q CEM Traverse Distance from far wall to outside of port in. = C ~ `~ Port De th in. = D ~ De th of Duct, diameter in. = C-D Area of Duct ft Total Traverse Points Total Traverse Points er Port Port Diameter in. —Flan e-Threaded-Hole Monorail Len th Rectan ular Ducts Onl Width of Duct, rectan ular duct onl in. Total Ports rectan ular duct onl E uivalent Diameter = 2`L'W L+W Traverse Point Locations Traverse Point % of Duct Distance from Inside Duct Wall in Distance from Outside of Port 1 ~~ 1 z bb 7 3 ~[. ~ q ~Z7 1P~ 5 /~ s r ~ ~ ~~ ~ 0 ~ ~ ~~f ~ $ ~ 8 ~ 2~ ~ `z 9 r~~ 11 ~ l 12 / CEM 3 Poinl(Long MaasurmoM Lins) Strati8caton Point Locations 1 0.167 2 0.50 3 0.833 rvote: IT stack aka < lz mch use tNA Methotl 1A ,`+ g (Sample port upsVeam of pilot port) Note: If stack dia >24" then adjust traverse point to 1 inch from wall If stack dfa <24' then adjust traverse point to 0.5 inch from wall ■OOOOOOOOOmmm 0 f:73i~~—~_~—~_m 0_--~_~~-~—~~a-~ ~~~_~-~'ii_~—i~SJ_~I m~~_---~—_~—~ m_—_----_---~!~' m~~-~----~ifQ~ Flow Disturbances U stream - A ft Downstream - B ft U stream - A duct diameters Downstream - B duct diameters Diagram of Stack ~`3 /1 d / i ~~ rl ~~ TU _-+ ~ C Duct Diameters Upstream from Flow Disturbance (Distance A) 0.5 1.0 1.5 2.0 ~ 7F zo 10 Stack Diameter> 24 inches d.+~ f — A i ~.m.,,, — MlNmum Number of e } s~~ PaNculale Traverse Poirhs a~~ 24 (cFcWer) 25 (ractergWer duck ) 20 t_ Traverse Polrris for VebcFly 16 iz — e Idremu)u I~.~anwir) (Disturtence =Bend, E~ension, CoM~actbn, Mc.) six d. ~, eaW.r«na. -,a - z, y,a». o 2 3 4 5 6 7 8 9 10 Duct Di~netera Dowrretream from Fbw Dlshabance (Distance B) ■OO~OOOOO~m~~ D~fC9:~ ° ~ ~~:i•ir+w•a~~~~~~ ~--------m~~m m~_-------~~~~ m----------~~'. m--__~--__--m ~~~ 32 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS VES CARBON BED INLET Test Data Run number 1 2 3 Location VES CBed Inlet VES CBed Inlet VES CBed InletDate07/16/19 07/17/19 07/17/19 Time period 1605-1841 0905-1058 1250-1502 Operator JDO/NG KA/NG KA/NG Inputs For Calcs.Sq. rt. delta P 1.13927 1.14111 1.15441 Delta H 0.9663 0.9988 1.0171 Stack temp. (deg.F)99.6 91.7 97.1 Meter temp. (deg.F)102.0 93.6 102.8 Sample volume (act.)50.909 51.412 51.767 Barometric press. (in.Hg)30.06 30.09 30.06 Volume H2O imp. (ml)12.0 10.0 25.0 Weight change sil. gel (g)17.5 18.2 23.7 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.)7.068 7.068 7.068 Sample time (min.)96.0 96.0 96.0 Static pressure (in.H2O)-5.50 -5.50 -5.50 Nozzle dia. (in.)0.160 0.160 0.160Meter box cal.1.0066 1.0066 1.0066 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 33 Determination of Stack Gas Velocity -Method 2 Client ~ Operator ~ Pftot Coeff (Cp)~ tlr ` LocadoNP~l~~t .Pi Date l ` Stack Area, ft' (As) ~ ~ Source ! ~ - `~,. ~ _ W.O. Number PltotTube/Thermo ID~~ p r ~rqr- Jvi v v Run Number o , 71me Barometric Press, in Hp (Pb~ Static Press, In HZO (Pstatic) Source Moisture, %(BWS) x Ox. COZ, Y Cyclonic Flow Determinatfon Traverse Location Angle Delta P ffi yeilding zero O° DeltaP Port Point Avg Angle ~ ~ ~~,~ Avg. Delta P 8 Temp Average gas stream velocity, fUaec, Vol. flow rate ~ actual conditions, wacf/min Vol. flow rate at standard conditions, dscflmin -~~n~ ~~~~i~ • ~ ~ ~~~~ ~~ :: ~ .... I .: .... I ,- :. ,... ~ - • ~~7~I ~~° ' ~I~~ ~~~~~,~~~I--I-- -Qi~,~l -_I -- ` • I--I-- ~ ~ I--I-_ ~~~~~I--I-- ~~I--I-_ ~~~~~~I--I-_ ~''~~ I~~~1~I--I-- I~i~~w~i~l~-I-~ ~I~~~~~I--I-- ~~I--I-- ~ii-I~'~I--I-_ ~~~--I ~ ~I I~~ ;* i a ~~I ~~ MUVd = (0.32 • oz1+(o ~a • ~oZ?+(o.za • (~ao - (coz+oz)1) MWd =Dry molecular weight source gas, Ih/I~mole. MWs = ~MINd' ~1-~BVRIS/100~}~+ ~1 B' ~8W51100~~ ~ MWs =Wet molecular weight source gas, Ibllb-mole. Tsa = TS+480 Tsa =Source Temperature, absolute(oR) ~~/,,,,,,///~~~ Ps =Absolute stack stffiic pressure, inches Hg. Pa = Pb+ (Pstatid13.6~ Vs =Average gas stream vebaty, fl/sec. Vs = 85.49' Cp"avg DelteP ` 7as! Ps" MWs ~ Qs(act) = Volumetric fbw rate of wel stack gas at actual, wad/min Qs(act}= 80' Vs' As Qs(std) = VolumeUic fbw rate of dry stack gas at standard conditions, dsd/min Qs(std} = 17.64 • (1- (6V1I5/ 100))" (Ps/Tse )' Qa(act) Note: Micromanometer fs required if: (A) The average Delta P readings are less than 0.05 Inches of water. (B) For traverses of 12 or more poirrts, more than 10% of the Delta P readings are bebw 0.05 inches of water. (C) For traverses of less then 12 points, more than one Delta P readings is bebw 0.05 inches of water. i~~ ~~~ ~ 4 ~~ti method2.xis y / , (/l/ _ _ 34 1 ` ISOKINETIC FIELD DATA SHEET a~ ~' EPA Method 00 Ci(ent cuemo~Ks Stack Conditions Meter Box ID w.o.# isa~a.002.016 Assumed Actual Metersox v Project ID Chemours %Moisture Meter Box Del H Mode/Source ID Carbon Bed Impinger Vol (ml) Probe ID /Length Samp. Loc. ID Run No.ID IN Silica gel (g) CO2, % by Vol ' Probe Material Pftot /Thermocouple ID 1 Test Method ID M0010 02, % by Vol ? ~ , Pftot Coefficient Date ID ,y8JUL2019 Temperature (°F) ~ ~ Noale ID Source/Location ' VE Soutlt '" CH Inlet Meter Temp ("F) 4 oule Measurements Avg Sam le Date P Static Press (in HZO) ' ~ y NonJe Dfa (in) —~ Baro. Press (in Hg) Area of Stack (ft~) Operator A„ 1 ~ t f_Ambient Y-b~•i--/'r-t' j' Temp (°F)_~~_Sample Time Total Traverse Pts O L~ ~3 ti .~ '~3 ~'nl~- R 1 - HF O imer Acid Page ~ of '~ K Factor y "Z V ~ Initial Mid-Point Final ;Sample Train (ft3) I Leak Check @ (in Hg) Pitot leak check good O.B4 Pitot Inspection good `i Method 3 System good ~Q Temp Check (Q Meter Box Temp Reference Tamp ~ f Pass/Fail (+/- zo~ ~j ~j J Temp Change Response ~~~~lj~~~~i~L~~ »~~ ~~~~~~~ ►, ' . 6 ric-i cai .~ci rVJI-I CJI JGI ~yqb /Fall Pess /Fall no yes / no Av tta P A tt H Total Vowme Av Ts J Av Tm MINMau Min/Mau Max Mau Vac MIn1Maz ~rt a P ~v~Sgrt~ ~H Comments: ~~ EPA Method 0010 from EPA SW-846 r ~,n~( ~ ~~-~~ t ~ 'N~.1 ,~e4~ o~~ ~~ o ~ ~,~ ~+1 °j, ~ ,'7 Lys N~~~ ~" ~~ ,~l4- ~S , ~t l ~''`,~ :~ ~d~ ~{~,) .S T ~~.~6 !4 - ~ ~,~v7 col, 35 ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Client Chemours SteCk Conditions Meter Box ID 3 w.o.# ~saia.00z.pls Assumed Actual Meteraox Y , pa Protect ID Chemours %Moisture Meter Box Del H Mode/Source ID Carbon Bed Impinger Vol (ml) Probe ID /Length Sample Train (ft') Samp. Loc. (D IN Silica gel (g) Probe Material ' Leak Check @ (in Hg) Run No.ID 2 CO2, % by Vol {~ Pitot / Thertnocrouple ID '' ~ Pitot leak check good Test Method ID M0010 02, °/a by Vol Pitot Ccefflcient e Pftot Inspectlon good Date ID 15JUL2019 Temperature (°F) ~ NoaJe ID ' Method 3 System good Source/L U ' M t T Page ~ of ~„ K Factor ~ 1 3 Initial Mid-Point ~' .~ ~ ~ / ■c~r;~~~r>~ ~~~~~~ ' oca on VE Spulh C e er emp (F) ~j~ ~ '~, Noale Measurements d Temp Check yre-Tes e os - I es e Sample Date ~ StaHc Press (fn HZO) l~ Avg Noale Dia (In) Meter Box Temp Baro. Press ((n Hg) Zj C,+ > Area of Stack (RZ) Reference Temp Operator AmWent Temp (°F) g`7 Sample Time Pass/Fail (+/- 2°J ~ Pess /Fell Pass / FaH Total Traverse Pts Temo Chance Response 5 yes / no ves ! no v ~.bfol~j.o 10 1..7 ,~iJ.~ _~_~"g~~o ~s 36 ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid client chemau~s Stack Conditions Meter Box ID w.o.# lsata.002;n9s Assumed Actual Metersox v ~„~p~a Project ID Chemours %Moisture Meter Box Del H C Mode/Source ID Samp. Loc. ID Run No.ID Test Method ID Date ID Carbon Bed IN 3 M0010 15JUL2019 Impinger Vol (ml) Silica gel (9) CO2, % by Vol 02, % by Vol Temperature (°FJ Probe ID /Length ' Sample Train (ft3) Probe Material Leak Check ~ (in Hg) ~. f~ Pitot /Thermocouple ID Pitot leak check good ''),,~, Pftot Coefftcient 0.84 Pitot Inspection good j pff ~"~„ Noale ID , 9 Method 3 System good Page ~ of L K Factor ~ `7}Jc Initial Mid-Point Final ~ .~ ~~~~d//l5ll~j~ ~~~~ ~~~~~~ ~~~~ Source/Location v ; aouth C8 i[Net Meter Temp ("F) ''~ 7~ Noale Measurements ~ rZ_Temp Check re- es e os - I es 2 Sample Date Static Press (in HZO) ~ — ~5~'f Avg Noale Dia (in) Mater Box Temp Baro. Press (In Hg)~, Q~ Area of Stack (ftZ) Reference Temp Operator Ambient Temp (°F) ; a ~ Sample Time Pass/Fail (+/- 2°~ Pass /Fail Pecs /Fall Total Traverse Pts Temp Change Response S yes / no yea / no ~~ ~' O I fl ,-, ~wl~s7~i~~~~Rt~El,►:~~A[~i.A 1~f 'L'~airf~~f~~i~~i~~~Ms~~GI`;~fG~~iyi;~~ ~~7r~~~'~~L'~i~~(ilr~~T~~~~~~~~~[~~i►~i:~~~~~ ~~~~i~[~~i~iit~~ ~~ICj~~~l~~~~~i4 7i~t~i~ ~~ _ J , .. _..._. _ ___ _ __ _ ~ ~.v. __ _ ~. ~..._~ ._..m. ~.~r►.....~.. _ _. __. ., 37 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Client Location/Plant Chemours Fayetteville, NC W .O. # 15418.002.016 Source &Location VE South c:a i~~or Run No. 1 Sample Date ~ ~'~ ~ ~ {~ ~ Recovery Date 7 "` ~~~ Sample I.D. Chemours -Carbon Bed - IN -1 - M0o10 - Analyst Filter Number ~_ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~ ~ ~~~'J -Q~ ~ ~ , t Initial ~ 100 100 ~ 300 Gain ~ ~ 0 / ~ ~i,~ Impinger Color ~ ` Labeled? O Silica Gel Condition Sealed? Run No. 2 Sample Date ~ 17 1 GJ Recovery Date ~J~ Sample I.D. Chemours -Carbon Bed - IN - 2 - M0o10 - Analyst ~j Filter Number •`~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final 0 e~~ +7 71 Q ~~~ Initial ~ 100 100 D 300 Gain b ~ .~ i Impinger Color Cyl ~1,~ ~ Labeled? ~ / ~ Silica Gel Condition Sealed? Run No. 3 Sample Date-~~y Recovery Date Sample I.D. Chemours -Carbon Bed - IN - 3 - Moo10 - Analyst ~ Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~ ~ ~ ~ ~f~~►i - Initial Q 100 100 ~ 300 Gain ~ ~ y'pi~ Impinger Color C(, ` ~/ Labeled? l/ Silica Gel Condition ~ / Sealed? Check COC for Sample IDs of Media Blanks ~. 38 ~~ SAMPLE RECOVERY FIELD DATA Client ~~ S W.O. # Location/Plant Source &Location ~.~— y~ Run No. ~ ~ Sample Date ~ ~ ~~,~ Recovery Date ~~' ~~"' vim- Sample I.D. k.L~,~ ) r+7 Analyst a S ~ Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Sil(ca Gel Final ~ ~ 9~ ~ 3~''~ Initial ~ ~ ~ ~ ~~~ Gain ~ ~ (~ ~ 7C Impinger Color ~ Labeled? Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Silica Gel Final Initial Gain Impinger Color Labeled? Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Silica Gel Final Initial Gain Impinger Color Labeled? Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks 39 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS VES CARBON BED OUTLET Test Data Run number 1 2 3 Location VES CBed Outlet VES CBed Outlet VES CBed OutletDate07/16/19 07/17/19 07/17/19 Time period 1605-1841 0905-1058 1250-1502 Operator JM JM JM Inputs For Calcs.Sq. rt. delta P 0.83005 0.83224 0.83619 Delta H 1.2600 1.3092 1.3200 Stack temp. (deg.F)100.2 97.6 100.3 Meter temp. (deg.F)104.7 96.0 107.1 Sample volume (act.)58.439 58.943 59.828 Barometric press. (in.Hg)30.06 30.09 30.06 Volume H2O imp. (ml)20.0 10.0 30.0 Weight change sil. gel (g)14.0 14.2 16.4 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.)9.390 9.390 9.390 Sample time (min.)96.0 96.0 96.0 Static pressure (in.H2O)2.40 2.40 2.40 Nozzle dia. (in.)0.202 0.202 0.202Meter box cal.1.0069 1.0069 1.0069 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 40 .~.,,.. Determination of Stack Gas Velocity -Method 2 Client ~%r ``r"" ' 7 Operator ~ / ~ Pltot Coeff (Cp) LocaUoNPlant ~ I/ Date Stack Area, ft2 (As) Source p~ W.O. Number Pitot Tube/Thermo ID n. Run Number Time Barometric Press, In Hg (Pb) Static Press, in H=0 (PataUc) Source Moisture, •ti (BWS) ~z~ '/o ~'.OZ~ °~ Cyclonic Flow Detertnlnatlon Traverse Location Dana P at O° Angle yeilding zero Deka P Port ~~ Pant ~~ r . •~ ~~~~~-S7 ~~I-~ O~I-~~ ~~~~~~'~ ~Q~-~~ ~Qr~~~~~ ~~~~~_~~ ~~~'~~~~~jl~ Avg Angle ~ '[', Avg Delta P &Temp Average gas stream velocity, fUsec. Vol. flow rate ~ actual. condlUons, wacf/min Vol. flow rate at standard conditions, dscflmin ~~'~ry> ~~ ~ ~~~~ ~~1~~ i~ I~~I ~~I~~ ~~ </~~~~J~~,~~I--I--~' ~~~~Lt~~l-_I--, Il~At~ ~~~--I-- ir~~rlr.~i~~i~~ ir~s~arrr~i~~i~~ ir~~~~i~~i~~ i ~ - rr~i~~i~~ j ~ ~~-I-_I-- .~~~j:~~~~~r 1 i j~ ~ .~'~E.~ai.~:~~1 ~.~,,~1~I MWd = (x.32' 02~+ (4 A4' COq~+ 0.28 `(100 - (CO2+~ Z~~~ MWd =Dry molecular weight souroe gas, Ibllb-mole. MWs = {MWd' ~1-{BVVS/1Qp~~~+ ~18' ~BWS1100~} MWs =Wet molecular weight source gas, IbAb-mole. Tsa = Ts+48t1 Tsa =Source Temperature, absolute(oR) Ps = Pb+ ~Pstatid13.6~ Ps =Absolute stack static pressure, inches Hg. Vs =Average gas stream vabcity, ft/sec. Vs = 85.48 "Cp"avg DelteP ' Tse! Ps"AAVIIa Qs(act) = VolumeVic fbw rate of wet stack gas at actual, wacf/min As Qs(std) = Volumetric ibw rate of dry stack gas at standard Qs(aet~= 80' Vs' conditions, dscflmin Qs(std) S 17.64 ` (1— (BWS/100)) "(Pslfae }" Cas(ect) Note: Micromanometer is required ff: (A) The average Deka P readings are less than 0.05 inches of water. (B) Fa traverses of 12 or more points, more than 10% of the Deka P readings are bebw 0.05 inches of water. (C) For Vaverses of less than 12 points, more than one Detta P readings is bebw D.OS inches of ovate. ~~ ~ ~~~ ~ ~~ , method2.xls 41 ~~ ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam t of Client ct,ena,rs Stack Conditions Meter Box ID ~/' ~ K Factor ~ •? w.o:# ~5a~a.ofla.o~s Assumed Actual Metereox r Pr e~Ct ID Chemours °/a Moisture ~ Meter Box Del H t Initial Mid-Poin Final M~e/Source ID Carhon Bed Impinger Vol (ml) Probe ID /Length ' Sample Train (k') ; , I Sa~ip. Loc. ID OUT Silica gel (g) Probe Material Boro Leak Check @ (in Hg) Rurj No.ID 1 CO2, % by Vol Pitot /Thermocouple ID Pitot leak check good ~ no yea / no / rp Test Method ID M0010 02, °/a by Vol Pitot Coefficient ~ 0.84 Pitot InspecBon good / ra yes / no / no Date ID 15JUL2019 Temperature (°F) ~ Noale ID Method 3 System good / no yes / no / no Source/Location VE quth . C6 pugeG Meter Temp ("F) ~ Noale Measurements .1,(~'L ~~ ~ Temp Check re- est Set Post-Test et Sample Date '7 Static Press (in H2O)# I~~ ~. -,+ ,qvg NonJe Dia (in) Meter Box Temp Baro. Press (in Hg ,~(5`~ ` °~ Area of Stack (ft2) Reference Temp ' Operator ~ ~ Ambient Temp (°F) ;~ Sample Time Pass/Fail (+/- 2°) ~ / FaA s /Fall Total Traverse Pts Temp Change Response i ye / no e / no ~~~~i.~`—~~~~~~~~~7~~l~z~~~~1~7 I~~~«I~~ ~1 ~F3~LJ I~E7~~C~~C~.~~o o~i~~r~~~~ 0 '~~ 1 1i7 I ~~sS[ I 3. ~— ~ / f Avg Delta P Avg pe of I u Avg Ts Av Tm MiNMax Min/Max Mau Mau Vac MiNMau Avg Sgrt Delfa P Avg Sgrt Del H Comments: EPA Method 0010 fro ~PA SW-846 ~l M ~~r y 11 lJ w.. ~ ~ ~~~ J ;~ ' 42 ISOKINETIC FIELD DATA SHEET Client chernoura Stack Conditions w.o.# i sal a.00z.oas Assumed ProJ~ct ID Chemours %Moisture '"L Mot /Source ID Carbon Bed Impinger Vol (ml) Sam. Loc. ID OUT Silica gel (g) Run No.ID 2 CO2, % by Vol Test Method ID M0010 02, % by Vol (' Date ID 15JUL2019 Temperature (°F) 0~ Source/LocaUon VE $ t#h C8 Outlet Meter Temp ("F) Sample Date ') $tatic Press (in HZOy,~ . i Baro. Press (in Hg) ~ ~ Operator Ambient Temp (°F) ~ ~~T~~ ~~ EPA Metho 1~ FIFPO Dimer Acid Page of Meter Box ID Actual nneter sox r K Factor ,~ Meter Box Del H ~ ~. Initial Mid-Point Fina Probe ID /Length Sample Train (ft3) Probe Material Born Leak Check @ (fn Hg) Pitot /Thermocouple ID ~ Pitot leak check good Pitot Coefficient 0.84 Pitot Inspection good Noale ID Method 3 System good ~~U ~ :C~ e no yes / no e ! ro e / no yes / no / no e no yes / no e / no NoaJe Measurements ~ ~ / Lp ~ ,"~j Temp Check Pre-Test et Post- est Set Avg Noale Dia (in) Meter Box Temp Area of Stack (flz) ~. Reference Temp Sample Time ~ Pass/Fail (+/- 2°) /Fail /Feu Total Traverse Pts Temp Change Response i ye / no y / no Z oz`s i.~r~ ~rrfir~~y~~r~~~~i~ifl~1[~l>i~~fL~~"L~~~«.i~E~i*~~j~i~'~~V ~ n ~ai[a ~ .~ ~ rev ~ n~ ~ o[a~ volume t~ / Hvg ~ ~, ~vvg 7 m ~ nn~NMa P 4~~ Com ents: _ 1 ~ 1 ~ ~~~~ n v "I I . ~0 i MinlMa~c EPA Method X010 from EPA SW-846 ,~; 3~~ ~g 7L~ '~ J 43 ISOHINETIC FIELD DATA SHEET Cifent ctemour~ Stack Conditions w.o,# ~5g18.092.D16 Assumed ProJ~ct ID Chemours °/ Moisture Mock/Source ID Carbon Bed Impinger Vol (ml) _ Samp. Loc. ID OUT Silica gel (g) Run No.ID 3 CO2, % by Vol ,~) Test Method ID M~010 02, % by Vol ; Date ID 15JUL2019 Temperature (°F) ~ Source/Location VE CB QuNgt. Meter Temp ("F) r Sample Date Static Press (fn H2O) ~~~--- Baro. Press (in Hg) Operator Ambient Temp (°F) ~~~✓~ EPA Method 0010 - HFPO Diener Acid Meter Box ID ~/~/~ (~— , Actual Metereox v ~~p~64 Meter Box Del H ~ Probe ID / Lertgth Sample Train (ft3) _ Probe Material ~ Born Leak Check @ (in Hg) Pitot /Thermocouple ID ; Pitot leak check good Pitot Coefflc(ent 0.84 Pitot Inspection good Noale ID NoaJe Measurements p Method 3 System good ~~Fi ~ Temp Check qvg Noale Dia (in) .~ Q., Meter Box Temp Area of Stack (ft2) —~~_ Reference Temp Sample Tima Pass/Fall (+/- 2°~ r Page I of K Factor Initial Mid-Point Final ,~ , ~~+ ~ ~ ~r(~ ~' d e / no yes / no / no / no yes / no / rb e / no yea / no ~ ~ Pre-Test Set Post-Test et ~ •~ ~ ~ ~ ! /Fail /Fail Total Traverse Pts Temp Change Response 5 ye / no ye (no - J _ _ _ o -LZ9 ~~~~~I!~~~~~1'f~i~~~t~~~It~~~". ~'~~~ mac. ~~~i~~~ R~~ '+ ~51 i~O[~'~ i~V~ir~ r r ~I3~~~I~~~~r .~~G~t~lJ~ Ir'i~lli~~~~l~ir'~'i!~ ~ : ~~i~ f ~, iG^i~7 • ■«f~I~A~i~i~fi~~ _ 1", V~v Avg 89 f ob _o x ) ~ '~ ~IiG~-J fl 'y' IiS : cJ ~ ~e ~~ ~~ Avg~Tm M(NMax iNMax M~ Mau Vac MI ax .i J EPA Method 0010 from EPA SW-846 Q~ ,_ 44 t~ ~ S _ ~,~ ~ ~~~~ SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Cllefit Chemours W.O. # 15418.002.016 Location/Plant Fayetteville, Nc Source &Location vE south Cs outlet Run No. 1 Sample Date 7 ~/ ~ ~~ ~ Recovery Date ?~ ~ ~~ Sample I.D. Chemours -Carbon Bed -OUT - 1 - Moo10 - Analyst O ~/~ Filter Number ~~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~ '0 Q 0 ~ 1 Initial ~ goo goo ~ soo Gain ~ ~ ~''~ `~ ~ ~ Impinger Color i~ (/ Q Labeled? Silica Gel Condition s v Sealed? ~'~i ~'' ~~ ~'~ ~~"~ Run No. 2 Sample Date Recovery Date Sample I.D. Chemours -Carbon Bed -OUT - 2 - Moo10 - Analyst ~y Fifter Number ~-- Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~ ~0 O~ Initial v 100 100 'v 300 Gain ~ ~ a a / . ~ ~~ Impinger Color Ot ~ Labeled? ~/ )~ ~~ Silica Gel Condition l..~G ~ D Sealed? J Run No. 3 Sample Date ~ ~` ~~ ~ ~ Recovery Date ~" { ~~~ ~ /~"' ~ Sample I.D. Chemours -Carbon Bed -OUT - 3 - M0010 - Analyst Filter Number Impin er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ~ 0 l'~ ~ ~b !~ !~ Initial ~ 100 100 ~ 300 Gain ~ ~ ~ ~ l L . Impinger Color (ill ~ Labeled? Silica Gel Condition ~ Sealed? ~`~ Check COC for Sample IDs of Media Blanks 45 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS VE SOUTH STACK Test Data Run number 1 2 3 Location VE South Stack VE South Stack VE South StackDate07/16/19 07/17/19 07/17/19 Time period 1605-1841 0905-1058 1250-1502 Operator MW MW MW Inputs For Calcs.Sq. rt. delta P 0.75906 0.75894 0.75569 Delta H 0.7854 0.7854 0.7642 Stack temp. (deg.F)100.3 97.4 100.4 Meter temp. (deg.F)98.5 87.9 99.0 Sample volume (act.)50.910 49.525 50.263 Barometric press. (in.Hg)30.00 30.07 30.07 Volume H2O imp. (ml)33.0 31.0 29.0 Weight change sil. gel (g)12.5 14.1 12.9 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.)9.620 9.620 9.620 Sample time (min.)96.0 96.0 96.0 Static pressure (in.H2O)2.50 2.50 2.50 Nozzle dia. (in.)0.190 0.190 0.190Meter box cal.1.0008 1.0008 1.0008 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 46 _. ' ~... A ~~ 1~~~' ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam _ or_ client Ghemou~s Stack Conditions Meter Box ID ~' K Factor /~ 3 w.o.# 15a~s:oo2.o~s Assumed Actual Meter Box Y Project ID Chemours %Moisture ? ~ Meter Box Del H O Initial Mid-Point Final A~afe/Source ID VE South - 3eRrbber` Impinger Vol (ml) Probe ID /Length '7{~'r..T ~ ~'~' ;Sample Train (k') ~ Sainp. Loc. ID STK Silica gel (g) .. Probe Material ~ - BcWo ~Leak Check @ (in Hg) ~J .~,, Run No.ID 1 CO2, °/a by Vol ~' Pitot /Thermocouple ID pC3 ; Pitot leak check good ~ ~o / rno es no Test Method ID M0010 02, % by Vol i, ~'j Pitot Coefficient 0.84 Pitot Inspection good no (np 6 (hp Date ID c..~.....,n .. 15JUL2019 aic c~_...u.. oa_~. Temperature (°F) i ~Anfcr Tmm~ NCl ~^i ~ Noale ID ^~'~~rc ' ~ ~' _ ~ Method 3 System good I no 1 no / tp ~~~~~~.~~w~~~~ .~..~w~, _~~.~. •.•-•-• . -••~r ~ ~ ~ sr -~ rvozzie measurements ~-~cU (J i emp ~necK rre- i est Set Nost-test Set Sample Date ~/ Static Press (in HZO) Avg NoaJe Dia (in) ~/ Meter Box Temp `Z ~ ! r— Baro. Press (in Hg) ~ ~ Area of Stack (ft2) —~~ Reference Temp _ Operator ~- `' ~' mhlent Temp (°F) ~ ~~Z )'L Sample Time Pass/Fail (+/- p°) /Fail / FaU i Total Traverse Pts Temp Change Response i ` / no / no v m ~~~T~*7~~~7~3:I~+~iL'~F3r'~J~~t ~ • ~i''j.7~~II~~~. t ~~~- t ~ J Avg Delta P ~Av elta H T I Volume ~J vg Ts~ Tm M N ax i ax Mau ~~ .s~'7 d ~~~`~ ~~. 0 ~~D ~ .S r~~ ire ~~ l~/ Avg Sgrt Delta P vg Sgrt Del H Comments: b,~s ob s, l p~~ ~ ~ S~ .~ 3 l~~o EPA Method 0010 from EPA SW-846 (M~~ 47 ISOKINETIC FIELD DATA SHEET c~iient chemaxs Stack Conditions ~.o.# 15418':002.016 Assumed project ID Chemours °/, Moisture Mode/Source ID VE South - S~rabber Impinger Vol (ml) Samp. Loc. ID STK SIGca gel (g) Run No.ID 2 CO2, °/a by Vol ~"p Test Method ID M0010 02, % by Vol Date ID 15JUL2019 Temperature (°F) j- Source/Location VESa~th Stack Meter Temp("F) .~— Sample Date "j Static Press (fn H2O ~ Baro. Press (in Hg) ~ ~` L(;'~~ Operator ~ Ambient Temp (°F) EPA Method 0010 - HFPO Diener Acid Pa orb Meter Box ID ACtU81 Meter Box Y Meter Box Del H Probe ID /Length Probe Material Pitot /Thermocouple ID Pitot Coefficient Noale ID NoaJe Measurements Avg Noale Dia (in) Area of Stack (ft Sample Tfine Total Traverse Pts ~"~ ~ ,~~~ d ~ K Factor I, 3 ~' J Initial Mid-Point Final Sample Train (ft') Born Leak Check @ (in Hg) Pitot leak check good 0.84 Pitot Inspection good 'Method 3 System good ~~~~~`.R.11~ ~~ ~r ~,~,~~}~r~~~~~ ~llti'7/~li:~~~~ ~ ~ ~ Temp Check re- es e os -Tes e 7t ~/ Meter Box Temp Reference Temp Z Pass/Fail (+/- 2°~ !Feb !Fell Temp Change Response i e / no / no 48 ISOKINETIC FIELD DATA SHEET Client Cherrw~Ks StaC W .O.# 154 b.002,0'1 fi Project ID Chemours %Moisture .Mode/Bourne ID VE South - 8l~b~r Impinger Vol (ml) Samp. Loc. ID STK Silica gel (g) Run No.ID 3 CO2, % by Vol Test Method ID M0010 02, % by Vol Date ID 15JUL2019 Temperature (°F) Source/Locatlon VE SouUr S}acic !Meter Temp ("F) EPA Method 0010 - HF~ O Diener Acid Pam ~ or.~ k Conditions Meter eox io K Factor1~351 Assumed Actual nneter eox r Meter Box Del H ,~ Initial Mid-Point Final Probe ID /Length $' Sample Train (ft3) Probe Material 8oro Leak Check @ Qn Hg) ,t, ~ S i U Pitot /Thermocouple ID q Pitot leak check good 1 no / no no ~' Pitot Coefficient 0.84 Pitot Inspection good / no / na / no ~ r- (D t Noale ID Metfwd 3 System good I no / no / rp Noale Measurements ) ~'~ Q V Temp Check re-Test Post- est Set Sample Date Static Press (in HZO) ~ — Avg NoaJe Dia (in) Meter Box Temp Baro. Press (in g ~ Area of Stack (ft2) Reference Temp Operator ~ „~ ~ Ambient Temp (°F) ~ ~ Sample Time Pass/Fall (+/- 2°~ /Fall (FaH Total Traverse Pts Temp Change Response 5 i no / no o - - ~tL L 52' f~~ Avg Delta P Avg e H Total Vol me J v Ts Avg Sgrt Dena P Avg S ~ DQI ~ mments 0 .~ try I ~ l~~l ~bol ray(/ l►~ I b EPA Method 0010 from EPA SW-846 49 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Dimer Acid Client Location/Plant Chemours Fayetteville, NC W.O. # Source &Location 15418.002.016 VE South Stack Run No. 1 Sample Date f_~~ Recovery Date ~ lNl~'~ Sample I.D. Chemours - VE South -~artbber - STK - 1 - M0010 - Analyst ~ Ll~fll Filter Number ~1~ Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica GeI Final 3~ ~J ~ °~ ~ ~ Cpt ~/` Initial ~ 100 100 ~ 300 Gain ~~ ~ ~~' /L '~3 y t~.~" ~~ Impinger Color Qr~~ Labeled? ~ Silica Gel Condition ~ Sealed? Run No. 2 Sample Date Z ~%y Recovery Date ~~~`~ Sample I.D. Chemours - VE South - Zen7bben - STK - 2 - Moo10 - Analyst _~~(I~ Filter Number Q~/4r Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final ' ~.- (, ~~ ~ ~~r~, Initial 6~ goo goo ~ soo Gain ~ `7i .. ~ ~ ~ ~ ~~La.) 4`~' f Impinger Color Labeled? Silica Gel Condition Sealed? Run No. 3 Sample Date __~~~'''~ Recovery Date ~~~- Sample I.D. Chemours - VE South - ~aa~q~ - STK - 3 - Mo010 - Analyst /~~' Filter Number Im finger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empty HPLC H2O HPLC H2O Silica Gel Final Z2 C.~Z ~ ~p ~` Initial .Q goo goo d soo Gain ~2 ~ "~ (p `Z~ l ''~ Impinger Color Labeled? Silica Gel Condition ~~~ Sealed? Check COC for Sample IDs of Media Blanks 50 METHODS AND ANALYZERS Client: Location: Source: Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: File: C:\DATA\Chemours\July 2019\071619 VE South Run 1redo.cem Program Version: 2.1, built 19 May 2017 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %17.1 51 CALIBRATION DATA Number 1 Client: Location: Source: Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: Start Time: 11:37 O2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.1 ALM053372 21.0 CC112489 Calibration Results Zero 14 mv Span, 21.0 %8025 mv Curve Coefficients Slope Intercept 381.8 14 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 9.0 ALM053372 17.1 CC112489 Calibration Results Zero -1 mv Span, 17.1 %8545 mv Curve Coefficients Slope Intercept 501.2 -1 52 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: Start Time: 11:37 O2 Method: EPA 3A Span Conc. 21.0 % Slope 381.8 Intercept 14.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.1 12.0 -0.1 -0.5 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 17.1 % Slope 501.2 Intercept -1.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 9.0 9.0 0.0 0.0 Pass 17.0 17.0 0.0 0.0 Pass 53 BIAS Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: Start Time: 11:45 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.4 0.4 1.9 Pass Span 12.0 12.1 0.1 0.5 Pass CO2Method: EPA 3A Span Conc. 17.1 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 9.0 8.7 -0.3 -1.8 Pass 54 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 15:51 20.7 0.1 15:52 20.7 0.1 15:53 20.7 0.1 15:54 20.7 0.1 15:55 20.7 0.1 15:56 20.7 0.1 15:57 20.7 0.1 15:58 20.7 0.1 15:59 20.7 0.1 16:00 20.7 0.1 16:01 20.7 0.1 16:02 20.7 0.1 16:03 20.7 0.1 16:04 20.7 0.1 16:05 20.7 0.1 16:06 20.6 0.1 16:07 20.6 0.1 16:08 20.6 0.2 16:09 20.6 0.2 16:10 20.6 0.2 16:11 20.6 0.2 16:12 20.6 0.2 16:13 20.6 0.2 16:14 20.6 0.2 16:15 20.6 0.2 16:16 20.6 0.2 16:17 20.6 0.2 16:18 20.6 0.2 16:19 20.6 0.2 16:20 20.6 0.2 16:21 20.6 0.2 16:22 20.6 0.2 16:23 20.6 0.2 16:24 20.6 0.2 16:25 20.6 0.2 16:26 20.6 0.2 16:27 20.6 0.2 16:28 20.6 0.2 16:29 20.6 0.2 16:30 20.6 0.2 55 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 16:31 20.6 0.2 16:32 20.6 0.2 16:33 20.6 0.2 16:34 20.6 0.2 16:35 20.6 0.2 16:36 20.6 0.2 16:37 20.6 0.2 16:38 20.6 0.2 16:39 20.6 0.2 16:40 20.6 0.2 16:41 20.6 0.2 16:42 20.6 0.2 16:43 20.6 0.2 16:44 20.6 0.2 16:45 20.6 0.2 16:46 20.6 0.2 16:47 20.6 0.2 16:48 20.6 0.2 16:49 20.6 0.2 16:50 20.6 0.2 16:51 20.6 0.2 16:52 20.6 0.2 16:53 20.6 0.2 16:54 20.6 0.2 16:55 20.6 0.1 16:56 20.6 0.1 16:57 20.6 0.1 16:58 20.6 0.1 16:59 20.6 0.1 17:00 20.6 0.1 17:01 20.6 0.1 17:02 20.6 0.1 17:03 20.6 0.1 17:04 20.6 0.1 17:05 20.6 0.1 17:06 20.6 0.1 17:07 20.6 0.1 17:08 20.6 0.1 17:09 20.6 0.1 17:10 20.6 0.1 56 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 17:11 20.6 0.1 17:12 20.6 0.1 17:13 20.6 0.1 17:14 20.6 0.1 17:15 20.6 0.1 17:16 20.6 0.1 17:17 20.6 0.1 17:18 20.6 0.1 17:19 20.6 0.1 17:20 20.6 0.1 17:21 20.6 0.1 17:22 20.6 0.1 17:23 20.6 0.1 17:24 20.6 0.1 17:25 20.6 0.1 17:26 20.6 0.1 17:27 20.6 0.1 17:28 20.6 0.1 17:29 20.6 0.1 17:30 20.6 0.1 17:31 20.6 0.1 17:32 20.6 0.1 17:33 20.6 0.1 17:34 20.6 0.1 17:35 20.6 0.1 17:36 20.6 0.1 17:37 20.6 0.1 17:38 20.6 0.1 17:39 20.6 0.1 17:40 20.7 0.1 17:41 20.7 0.1 17:42 20.6 0.1 17:43 20.6 0.1 17:44 20.7 0.1 17:45 20.7 0.1 17:46 20.7 0.1 17:47 20.7 0.1 17:48 20.7 0.1 17:49 20.7 0.1 17:50 20.6 0.1 57 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 17:51 20.6 0.1 17:52 20.6 0.1 17:53 20.6 0.1 17:54 20.6 0.1 17:55 20.6 0.2 17:56 20.6 0.2 17:57 20.6 0.2 17:58 20.6 0.1 17:59 20.6 0.1 18:00 20.6 0.2 18:01 20.6 0.1 18:02 20.6 0.1 18:03 20.6 0.1 18:04 20.6 0.1 18:05 20.6 0.1 18:06 20.6 0.1 18:07 20.6 0.1 18:08 20.6 0.1 18:09 20.6 0.1 18:10 20.6 0.1 18:11 20.6 0.1 18:12 20.6 0.1 18:13 20.6 0.1 18:14 20.6 0.1 18:15 20.6 0.1 18:16 20.6 0.1 18:17 20.6 0.1 18:18 20.6 0.1 18:19 20.6 0.1 18:20 20.6 0.1 18:21 20.6 0.1 18:22 20.6 0.1 18:23 20.6 0.1 18:24 20.6 0.1 18:25 20.6 0.1 18:26 20.6 0.1 18:27 20.6 0.1 18:28 20.6 0.1 18:29 20.6 0.1 18:30 20.6 0.1 58 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 18:31 20.6 0.1 18:32 20.6 0.1 18:33 20.6 0.1 18:34 20.6 0.1 18:35 20.6 0.1 18:36 20.6 0.1 18:37 20.6 0.1 18:38 20.6 0.1 18:39 20.6 0.1 18:40 20.6 0.1 18:41 20.6 0.1 18:42 20.6 0.1 18:43 20.6 0.1 18:44 20.6 0.1 18:45 20.6 0.1 18:46 20.6 0.1 18:47 20.6 0.1 18:48 20.6 0.1 18:49 20.6 0.1 18:50 20.6 0.1 18:51 20.6 0.1 18:52 20.6 0.1 18:53 20.6 0.1 18:54 20.6 0.1 18:55 20.6 0.1 18:56 20.6 0.1 18:57 20.6 0.1 18:58 20.6 0.1 18:59 20.6 0.1 19:00 20.6 0.1 19:01 20.6 0.1 19:02 20.6 0.1 19:03 20.6 0.1 19:04 20.6 0.1 19:05 20.6 0.1 19:06 20.6 0.1 19:07 20.6 0.1 19:08 20.6 0.1 19:09 20.6 0.1 19:10 20.6 0.1 59 RUN DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 19:11 20.6 0.1 Avgs 20.6 0.1 60 RUN SUMMARY Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 15:50 to 19:11 Run Averages 20.6 0.1 Pre-run Bias at 11:45 Zero Bias Span Bias Span Gas 0.4 0.1 12.1 8.7 12.1 9.0 Post-run Bias at 19:14 Zero Bias Span Bias Span Gas 0.3 0.1 12.0 8.8 12.1 9.0 Run averages corrected for the average of the pre-run and post-run bias 20.9 0.0 61 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 16 Jul 2019 Project Number: Operator: Date: Start Time: 19:14 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.3 0.3 1.4 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.4 0.3 -0.1 -0.5 Pass Span 12.1 12.0 -0.1 -0.5 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 17.1 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 9.0 8.8 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 8.7 8.8 0.1 0.6 Pass *Bias No. 1 62 METHODS AND ANALYZERS Client: Location: Source: Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: File: C:\DATA\Chemours\July 2019\071719 VE South Runs 2 and 3.cem Program Version: 2.1, built 19 May 2017 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108 Channel 1 Analyte O2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %25.0 Span Concentration, %21.0 Channel 2 Analyte CO2 Method EPA 3A, Using Bias Analyzer Make, Model & Serial No. Servomex 4900 Full-Scale Output, mv 10000 Analyzer Range, %20.0 Span Concentration, %17.1 63 CALIBRATION DATA Number 1 Client: Location: Source: Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: Start Time: 06:28 O2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 12.1 ALM053372 21.0 CC112489 Calibration Results Zero 10 mv Span, 21.0 %7984 mv Curve Coefficients Slope Intercept 380.1 10 CO2 Method: EPA 3A Calibration Type: Linear Zero and High Span Calibration Standards %Cylinder ID 9.0 ALM053372 17.1 CC112489 Calibration Results Zero -4 mv Span, 17.1 %8535 mv Curve Coefficients Slope Intercept 500.8 -4 64 CALIBRATION ERROR DATA Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: Start Time: 06:28 O2 Method: EPA 3A Span Conc. 21.0 % Slope 380.1 Intercept 10.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 12.1 12.0 -0.1 -0.5 Pass 21.0 21.0 0.0 0.0 Pass CO2 Method: EPA 3A Span Conc. 17.1 % Slope 500.8 Intercept -4.0 Standard % Result % Difference % Error %Status Zero 0.0 0.0 0.0 Pass 9.0 9.0 0.0 0.0 Pass 17.0 17.0 0.0 0.0 Pass 65 BIAS Number 1 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: Start Time: 06:37 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 12.0 12.0 0.0 0.0 Pass CO2Method: EPA 3A Span Conc. 17.1 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 9.0 8.9 -0.1 -0.6 Pass 66 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:05 20.8 0.0 09:06 20.8 0.0 09:07 20.8 0.1 09:08 20.8 0.1 09:09 20.8 0.1 09:10 20.8 0.1 09:11 20.8 0.1 09:12 20.8 0.1 09:13 20.8 0.1 09:14 20.8 0.1 09:15 20.8 0.1 09:16 20.8 0.1 09:17 20.8 0.1 09:18 20.8 0.1 09:19 20.8 0.1 09:20 20.8 0.1 09:21 20.8 0.1 09:22 20.8 0.1 09:23 20.8 0.1 09:24 20.8 0.1 09:25 20.8 0.1 09:26 20.8 0.1 09:27 20.8 0.1 09:28 20.8 0.1 09:29 20.8 0.1 09:30 20.8 0.1 09:31 20.8 0.1 09:32 20.8 0.1 09:33 20.8 0.1 09:34 20.8 0.1 09:35 20.8 0.1 09:36 20.8 0.1 09:37 20.8 0.1 09:38 20.8 0.1 09:39 20.8 0.1 09:40 20.8 0.1 09:41 20.8 0.1 09:42 20.8 0.1 09:43 20.8 0.1 09:44 20.8 0.1 67 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 09:45 20.8 0.1 09:46 20.8 0.1 09:47 20.8 0.1 09:48 20.8 0.1 09:49 20.8 0.1 09:50 20.8 0.1 09:51 20.8 0.1 09:52 20.8 0.1 09:53 20.8 0.1 09:54 20.8 0.1 09:55 20.8 0.1 09:56 20.8 0.0 09:57 20.8 0.0 09:58 20.8 0.0 09:59 20.8 0.0 10:00 20.8 0.0 10:01 20.8 0.0 10:02 20.8 0.0 10:03 20.8 0.0 10:04 20.8 0.0 10:05 20.8 0.0 10:06 20.8 0.0 10:07 20.8 0.0 10:08 20.8 0.0 10:09 20.8 0.0 10:10 20.8 0.0 10:11 20.8 0.0 10:12 20.8 0.1 10:13 20.8 0.1 10:14 20.8 0.1 10:15 20.8 0.1 10:16 20.8 0.1 10:17 20.8 0.1 10:18 20.8 0.1 10:19 20.8 0.1 10:20 20.8 0.1 10:21 20.8 0.1 10:22 20.8 0.1 10:23 20.8 0.1 10:24 20.8 0.1 68 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 10:25 20.8 0.1 10:26 20.8 0.1 10:27 20.8 0.1 10:28 20.8 0.1 10:29 20.8 0.1 10:30 20.8 0.1 10:31 20.8 0.1 10:32 20.8 0.1 10:33 20.8 0.1 10:34 20.8 0.1 10:35 20.8 0.1 10:36 20.8 0.1 10:37 20.8 0.1 10:38 20.8 0.1 10:39 20.8 0.1 10:40 20.8 0.1 10:41 20.8 0.1 10:42 20.8 0.1 10:43 20.8 0.1 10:44 20.8 0.1 10:45 20.8 0.1 10:46 20.8 0.1 10:47 20.8 0.1 10:48 20.8 0.1 10:49 20.8 0.1 10:50 20.8 0.1 10:51 20.8 0.1 10:52 20.8 0.1 10:53 20.8 0.1 10:54 20.8 0.1 10:55 20.8 0.1 10:56 20.8 0.1 10:57 20.8 0.1 10:58 20.8 0.1 10:59 20.8 0.1 11:00 20.8 0.0 11:01 20.8 0.0 11:02 20.8 0.0 11:03 20.8 0.0 11:04 20.8 0.0 69 RUN DATA Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 11:05 20.8 0.0 11:06 20.8 0.0 11:07 20.8 0.0 11:08 20.8 0.0 11:09 20.8 0.0 11:10 20.8 0.0 11:11 20.8 0.0 11:12 20.8 0.0 11:13 20.8 0.0 11:14 20.8 0.0 11:15 20.8 0.0 11:16 20.8 0.0 11:17 20.8 0.0 11:18 20.8 0.0 11:19 20.8 0.0 11:20 20.8 0.0 11:21 20.8 0.0 Avgs 20.8 0.1 70 RUN SUMMARY Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 09:04 to 11:21 Run Averages 20.8 0.1 Pre-run Bias at 06:37 Zero Bias Span Bias Span Gas 0.0 0.0 12.0 8.9 12.1 9.0 Post-run Bias at 11:22 Zero Bias Span Bias Span Gas 0.1 0.1 11.9 8.8 12.1 9.0 Run averages corrected for the average of the pre-run and post-run bias 21.0 0.0 71 BIAS AND CALIBRATION DRIFT Number 2 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: Start Time: 11:22 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.0 11.9 -0.1 -0.5 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.0 11.9 -0.1 -0.5 Pass *Bias No. 1 CO2 Method: EPA 3A Span Conc. 17.1 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 9.0 8.8 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.0 0.1 0.1 0.6 Pass Span 8.9 8.8 -0.1 -0.6 Pass *Bias No. 1 72 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 12:50 20.9 0.1 12:51 20.9 0.1 12:52 20.8 0.1 12:53 20.8 0.1 12:54 20.8 0.1 12:55 20.8 0.1 12:56 20.8 0.1 12:57 20.8 0.1 12:58 20.8 0.1 12:59 20.8 0.1 13:00 20.8 0.1 13:01 20.8 0.1 13:02 20.8 0.1 13:03 20.8 0.1 13:04 20.8 0.1 13:05 20.8 0.1 13:06 20.8 0.1 13:07 20.8 0.1 13:08 20.8 0.1 13:09 20.8 0.1 13:10 20.8 0.1 13:11 20.8 0.1 13:12 20.8 0.1 13:13 20.8 0.1 13:14 20.8 0.1 13:15 20.8 0.1 13:16 20.8 0.1 13:17 20.8 0.1 13:18 20.8 0.1 13:19 20.8 0.1 13:20 20.8 0.1 13:21 20.8 0.1 13:22 20.8 0.1 13:23 20.8 0.1 13:24 20.8 0.1 13:25 20.8 0.1 13:26 20.8 0.1 13:27 20.8 0.1 13:28 20.8 0.1 13:29 20.8 0.1 73 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 13:30 20.8 0.1 13:31 20.8 0.1 13:32 20.8 0.1 13:33 20.8 0.1 13:34 20.8 0.1 13:35 20.8 0.1 13:36 20.8 0.1 13:37 20.8 0.1 13:38 20.8 0.1 13:39 20.8 0.1 13:40 20.9 0.1 13:41 20.9 0.1 13:42 20.9 0.1 13:43 20.8 0.1 13:44 20.9 0.1 13:45 20.8 0.0 13:46 20.9 0.1 13:47 20.8 0.1 13:48 20.8 0.1 13:49 20.9 0.1 13:50 20.9 0.1 13:51 20.9 0.1 13:52 20.9 0.1 13:53 20.9 0.1 13:54 20.9 0.1 13:55 20.9 0.1 13:56 20.9 0.1 13:57 20.9 0.1 13:58 20.9 0.1 13:59 20.9 0.1 14:00 20.9 0.1 14:01 20.9 0.1 14:02 20.8 0.1 14:03 20.9 0.1 14:04 20.9 0.1 14:05 20.9 0.1 14:06 20.9 0.1 14:07 20.9 0.1 14:08 20.8 0.1 14:09 20.8 0.1 74 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:10 20.8 0.1 14:11 20.8 0.1 14:12 20.8 0.1 14:13 20.8 0.1 14:14 20.8 0.1 14:15 20.8 0.1 14:16 20.8 0.1 14:17 20.8 0.1 14:18 20.8 0.1 14:19 20.8 0.1 14:20 20.8 0.1 14:21 20.8 0.1 14:22 20.8 0.1 14:23 20.8 0.1 14:24 20.8 0.1 14:25 20.8 0.1 14:26 20.8 0.1 14:27 20.8 0.1 14:28 20.8 0.1 14:29 20.8 0.1 14:30 20.8 0.1 14:31 20.8 0.1 14:32 20.8 0.1 14:33 20.8 0.1 14:34 20.8 0.1 14:35 20.8 0.1 14:36 20.8 0.1 14:37 20.8 0.1 14:38 20.8 0.1 14:39 20.8 0.1 14:40 20.8 0.1 14:41 20.8 0.1 14:42 20.8 0.1 14:43 20.8 0.1 14:44 20.8 0.1 14:45 20.8 0.1 14:46 20.8 0.1 14:47 20.8 0.1 14:48 20.8 0.1 14:49 20.8 0.1 75 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 14:50 20.8 0.1 14:51 20.8 0.1 14:52 20.8 0.1 14:53 20.8 0.1 14:54 20.8 0.1 14:55 20.8 0.1 14:56 20.8 0.1 14:57 20.8 0.1 14:58 20.8 0.1 14:59 20.8 0.1 15:00 20.8 0.1 15:01 20.8 0.1 15:02 20.8 0.1 15:03 20.8 0.1 15:04 20.8 0.1 15:05 20.8 0.1 15:06 20.8 0.1 15:07 20.8 0.1 15:08 20.8 0.1 15:09 20.8 0.1 15:10 20.8 0.1 15:11 20.8 0.1 15:12 20.8 0.1 15:13 20.8 0.1 15:14 20.8 0.1 15:15 20.8 0.1 15:16 20.8 0.1 15:17 20.8 0.1 15:18 20.8 0.1 15:19 20.8 0.1 15:20 20.8 0.1 15:21 20.8 0.1 15:22 20.8 0.1 15:23 20.8 0.1 15:24 20.8 0.1 15:25 20.8 0.1 15:26 20.8 0.1 15:27 20.8 0.1 15:28 20.8 0.1 15:29 20.8 0.1 76 RUN DATA Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 %%Time 15:30 20.8 0.1 15:31 20.8 0.1 15:32 20.8 0.1 15:33 20.8 0.1 15:34 20.8 0.1 15:35 20.8 0.1 15:36 20.8 0.1 Avgs 20.8 0.1 77 RUN SUMMARY Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: O2 CO2 Method EPA 3A EPA 3A Conc. Units %% Time: 12:49 to 15:36 Run Averages 20.8 0.1 Pre-run Bias at 11:22 Zero Bias Span Bias Span Gas 0.1 0.1 11.9 8.8 12.1 9.0 Post-run Bias at 15:38 Zero Bias Span Bias Span Gas 0.1 0.0 12.0 8.8 12.1 9.0 Run averages corrected for the average of the pre-run and post-run bias 21.1 0.1 78 BIAS AND CALIBRATION DRIFT Number 3 Client: Location: Source: Calibration 1 Chemours Fayetteville VE South 15418 SDR 17 Jul 2019 Project Number: Operator: Date: Start Time: 15:38 O2 Method: EPA 3A Span Conc. 21.0 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.1 0.1 0.5 Pass Span 12.0 12.0 0.0 0.0 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.1 0.0 0.0 Pass Span 11.9 12.0 0.1 0.5 Pass *Bias No. 2 CO2 Method: EPA 3A Span Conc. 17.1 % Bias Results Standard Cal.Bias Difference Error Gas %%%%Status Zero 0.0 0.0 0.0 0.0 Pass Span 9.0 8.8 -0.2 -1.2 Pass Calibration Drift Standard Initial*Final Difference Drift Gas %%%%Status Zero 0.1 0.0 -0.1 -0.6 Pass Span 8.8 8.8 0.0 0.0 Pass *Bias No. 2 79 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 APPENDIX C LABORATORY ANALYTICAL REPORT 80 ANALYTICAL REPORT Job Number: 140-16060-1 Job Description: VE South Carbon Bed Inlet - M0010 Contract Number: LBIO-67048 For: Chemours Company FC, LLC The c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, DE 19713 Attention: Michael Aucoin _____________________________________________ Approved for release. Courtney M Adkins Project Manager I 7/29/2019 4:09 PM Courtney M Adkins, Project Manager I 5815 Middlebrook Pike, Knoxville, TN, 37921 (865)291-3000 courtney.adkins@testamericainc.com 07/29/2019 This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike, Knoxville, TN 37921 Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com 07/29/2019Page 1 of 20881 Table of Contents Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Manual Integration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 8321A_HFPO_Du Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 07/29/2019Page 2 of 20882 Table of Contents 8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180 Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 07/29/2019Page 3 of 20883 Definitions/Glossary Job ID: 140-16060-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Inlet - M0010 Glossary These commonly used abbreviations may or may not be present in this report. ¤Listed under the "D" column to designate that the result is reported on a dry weight basis Abbreviation %R Percent Recovery CFL Contains Free Liquid CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) PQL Practical Quantitation Limit QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin) Eurofins TestAmerica, Knoxville 07/29/2019Page 4 of 20884 Method Summary Job ID: 140-16060-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Inlet - M0010 Method Method Description LaboratoryProtocol SW8468321AHFPO-DA TAL DEN SW8468321APFOA and PFOS TAL DEN TAL SOPNoneLeaching Procedure TAL DEN TAL SOPNoneLeaching Procedure for Condensate TAL DEN TAL SOPNoneLeaching Procedure for XAD TAL DEN Protocol References: SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100 Eurofins TestAmerica, Knoxville 07/29/2019Page 5 of 20885 Sample Summary Job ID: 140-16060-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Inlet - M0010 Lab Sample ID Client Sample ID ReceivedCollectedMatrix Asset ID 140-16060-1 G-2347,2348 VES CARBON BED INLET R1 M0010 FH Air 07/16/19 00:00 07/17/19 20:00 140-16060-2 G-2349,2350,2352 VES CARBON BED INLET R1 M0010 BH Air 07/16/19 00:00 07/17/19 20:00 140-16060-3 G-2351 VES CARBON BED INLET R1 M0010 IMP 1,2&3 CONDENSATE Air 07/16/19 00:00 07/17/19 20:00 140-16060-4 G-2353 VES CARBON BED INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/16/19 00:00 07/17/19 20:00 140-16060-5 G-2354,2355 VES CARBON BED INLET R2 M0010 FH Air 07/17/19 00:00 07/17/19 20:00 140-16060-6 G-2356,2357,2359 VES CARBON BED INLET R2 M0010 BH Air 07/17/19 00:00 07/17/19 20:00 140-16060-7 G-2358 VES CARBON BED INLET R2 M0010 IMP 1,2&3 CONDENSATE Air 07/17/19 00:00 07/17/19 20:00 140-16060-8 G-2360 VES CARBON BED INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/17/19 00:00 07/17/19 20:00 140-16060-9 G-2361,2362 VES CARBON BED INLET R3 M0010 FH Air 07/17/19 00:00 07/17/19 20:00 140-16060-10 G-2363,2364,2366 VES CARBON BED INLET R3 M0010 BH Air 07/17/19 00:00 07/17/19 20:00 140-16060-11 G-2365 VES CARBON BED INLET R3 M0010 IMP 1,2&3 CONDENSATE Air 07/17/19 00:00 07/17/19 20:00 140-16060-12 G-2367 VES CARBON BED INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/17/19 00:00 07/17/19 20:00 Eurofins TestAmerica, Knoxville 07/29/2019Page 6 of 20886 Job Narrative 140-16060-1 Sample Receipt The samples were received on July 17, 2019 at 8:00 PM in good condition and properly preserved. The temperature of the cooler at receipt was 0.4º C. Quality Control and Data Interpretation Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements. Method 0010/Method 3542 Sampling Train Preparation Train fractions were extracted and prepared for analysis in TestAmerica’s Knoxville laboratory. Extracts and condensate samples were forwarded to the Denver laboratory for HFPO-DA analysis. All results are reported in “Total ug” per sample. LCMS No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. Organic Prep No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. Comments Reporting Limits (RLs) and Method Detection Limits (MDLs) for the HFPO-DA used in this report were derived in Denver for reporting soils and water samples. Method 0010 sampling train matrix specific RLs and MDLs have not been established for HFPO-DA. The soil and water limits are expected to be reasonable approximations of the actual matrix specific limits, under these conditions. Breakthrough from the Modified Method 0010 Sampling Train for PFAS compounds will be measured by the percentage (%) concentration of a specific PFAS target analyte determined to be present in the Breakthrough XAD-2 resin module of a test run. If the concentration of a specific PFAS compound is ≤30% of the sum of the concentrations determined for the other three (3) fractions of the sampling train, then sampling breakthrough is determined not to have occurred. Also, no breakthrough will be determined to have occurred if < 250 µg of a target analyte is collected on all fractions of a sampling train. Breakthrough the sampling train implies that sample loss through the train has occurred and results in a negative bias to the sample results. 07/29/2019Page 7 of 20887 QC Association Summary Job ID: 140-16060-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Inlet - M0010 LCMS Analysis Batch: 464589 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321ADLCK 280-464589/13 Lab Control Sample Total/NA Prep Batch: 465107 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16060-3 G-2351 VES CARBON BED INLET R1 M0010 IMP 1,2&3 CONDENSATETotal/NA Air None140-16060-7 G-2358 VES CARBON BED INLET R2 M0010 IMP 1,2&3 CONDENSATETotal/NA Air None140-16060-11 G-2365 VES CARBON BED INLET R3 M0010 IMP 1,2&3 CONDENSATETotal/NA Air NoneMB 280-465107/1-A Method Blank Total/NA Air NoneLCS 280-465107/2-A Lab Control Sample Total/NA Prep Batch: 465193 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16060-2 G-2349,2350,2352 VES CARBON BED INLET R1 M0010 BHTotal/NA Air None140-16060-4 G-2353 VES CARBON BED INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air None140-16060-6 G-2356,2357,2359 VES CARBON BED INLET R2 M0010 BHTotal/NA Air None140-16060-8 G-2360 VES CARBON BED INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air None140-16060-10 G-2363,2364,2366 VES CARBON BED INLET R3 M0010 BHTotal/NA Air None140-16060-12 G-2367 VES CARBON BED INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air NoneMB 280-465193/1-A Method Blank Total/NA Air NoneLCS 280-465193/2-A Lab Control Sample Total/NA Prep Batch: 465251 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16060-1 G-2347,2348 VES CARBON BED INLET R1 M0010 FHTotal/NA Air None140-16060-5 G-2354,2355 VES CARBON BED INLET R2 M0010 FHTotal/NA Air None140-16060-9 G-2361,2362 VES CARBON BED INLET R3 M0010 FHTotal/NA Air NoneMB 280-465251/1-A Method Blank Total/NA Air NoneLCS 280-465251/2-A Lab Control Sample Total/NA Analysis Batch: 465647 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465107140-16060-3 G-2351 VES CARBON BED INLET R1 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107140-16060-7 G-2358 VES CARBON BED INLET R2 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107140-16060-11 G-2365 VES CARBON BED INLET R3 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107MB 280-465107/1-A Method Blank Total/NA Air 8321A 465107LCS 280-465107/2-A Lab Control Sample Total/NA Analysis Batch: 465648 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465251140-16060-1 G-2347,2348 VES CARBON BED INLET R1 M0010 FHTotal/NA Air 8321A 465251140-16060-5 G-2354,2355 VES CARBON BED INLET R2 M0010 FHTotal/NA Air 8321A 465251140-16060-9 G-2361,2362 VES CARBON BED INLET R3 M0010 FHTotal/NA Air 8321A 465251MB 280-465251/1-A Method Blank Total/NA Air 8321A 465251LCS 280-465251/2-A Lab Control Sample Total/NA Analysis Batch: 465777 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465193140-16060-2 G-2349,2350,2352 VES CARBON BED INLET R1 M0010 BHTotal/NA Air 8321A 465193140-16060-4 G-2353 VES CARBON BED INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air 8321A 465193140-16060-6 G-2356,2357,2359 VES CARBON BED INLET R2 M0010 BHTotal/NA Air 8321A 465193140-16060-8 G-2360 VES CARBON BED INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Eurofins TestAmerica, Knoxville 07/29/2019Page 8 of 20888 QC Association Summary Job ID: 140-16060-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Inlet - M0010 LCMS (Continued) Analysis Batch: 465777 (Continued) Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465193140-16060-10 G-2363,2364,2366 VES CARBON BED INLET R3 M0010 BHTotal/NA Air 8321A 465193140-16060-12 G-2367 VES CARBON BED INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air 8321A 465193MB 280-465193/1-A Method Blank Total/NA Air 8321A 465193LCS 280-465193/2-A Lab Control Sample Total/NA Eurofins TestAmerica, Knoxville 07/29/2019Page 9 of 20889 Client Sample Results Job ID: 140-16060-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Inlet - M0010 Lab Sample ID: 140-16060-1Client Sample ID: G-2347,2348 VES CARBON BED INLET R1 M0010 FH Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.39 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 14:09 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 92 50 -200 07/22/19 16:15 07/25/19 14:09 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-2Client Sample ID: G-2349,2350,2352 VES CARBON BED INLET R1 M0010 BH Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 36.3 0.275 0.0550 ug/Sample 07/22/19 12:45 07/26/19 13:48 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 76 50 -200 07/22/19 12:45 07/26/19 13:48 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-3Client Sample ID: G-2351 VES CARBON BED INLET R1 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 9.68 0.230 0.0117 ug/Sample 07/23/19 09:00 07/25/19 13:20 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 80 50 -200 07/23/19 09:00 07/25/19 13:20 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-4Client Sample ID: G-2353 VES CARBON BED INLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/22/19 12:45 07/26/19 13:51 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 84 50 -200 07/22/19 12:45 07/26/19 13:51 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Eurofins TestAmerica, Knoxville 07/29/2019Page 10 of 20890 Client Sample Results Job ID: 140-16060-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Inlet - M0010 Lab Sample ID: 140-16060-5Client Sample ID: G-2354,2355 VES CARBON BED INLET R2 M0010 FH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 2.14 0.151 0.0163 ug/Sample 07/22/19 16:15 07/25/19 14:13 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 90 50 -200 07/22/19 16:15 07/25/19 14:13 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-6Client Sample ID: G-2356,2357,2359 VES CARBON BED INLET R2 M0010 BH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 7.65 0.275 0.0550 ug/Sample 07/22/19 12:45 07/26/19 13:54 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 82 50 -200 07/22/19 12:45 07/26/19 13:54 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-7Client Sample ID: G-2358 VES CARBON BED INLET R2 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA ND 0.205 0.0105 ug/Sample 07/23/19 09:00 07/25/19 13:24 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 83 50 -200 07/23/19 09:00 07/25/19 13:24 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-8Client Sample ID: G-2360 VES CARBON BED INLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/22/19 12:45 07/26/19 13:58 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 60 50 -200 07/22/19 12:45 07/26/19 13:58 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Eurofins TestAmerica, Knoxville 07/29/2019Page 11 of 20891 Client Sample Results Job ID: 140-16060-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Inlet - M0010 Lab Sample ID: 140-16060-9Client Sample ID: G-2361,2362 VES CARBON BED INLET R3 M0010 FH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.95 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 14:16 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 90 50 -200 07/22/19 16:15 07/25/19 14:16 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-10Client Sample ID: G-2363,2364,2366 VES CARBON BED INLET R3 M0010 BH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.82 0.300 0.0600 ug/Sample 07/22/19 12:45 07/26/19 14:01 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 100 50 -200 07/22/19 12:45 07/26/19 14:01 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-11Client Sample ID: G-2365 VES CARBON BED INLET R3 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 0.480 0.250 0.0128 ug/Sample 07/23/19 09:00 07/25/19 13:27 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 82 50 -200 07/23/19 09:00 07/25/19 13:27 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16060-12Client Sample ID: G-2367 VES CARBON BED INLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/22/19 12:45 07/26/19 14:04 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 63 50 -200 07/22/19 12:45 07/26/19 14:04 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Eurofins TestAmerica, Knoxville 07/29/2019Page 12 of 20892 ANALYTICAL REPORT Job Number: 140-16059-1 Job Description: VE South Carbon Bed Outlet - M0010 Contract Number: LBIO-67048 For: Chemours Company FC, LLC The c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, DE 19713 Attention: Michael Aucoin _____________________________________________ Approved for release. Courtney M Adkins Project Manager I 7/29/2019 4:06 PM Courtney M Adkins, Project Manager I 5815 Middlebrook Pike, Knoxville, TN, 37921 (865)291-3000 courtney.adkins@testamericainc.com 07/29/2019 This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike, Knoxville, TN 37921 Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com 07/29/2019Page 1 of 20193 Table of Contents Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Manual Integration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 07/29/2019Page 2 of 20194 Table of Contents 8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 07/29/2019Page 3 of 20195 Definitions/Glossary Job ID: 140-16059-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Outlet - M0010 Qualifiers LCMS Qualifier Description J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Qualifier Glossary These commonly used abbreviations may or may not be present in this report. ¤Listed under the "D" column to designate that the result is reported on a dry weight basis Abbreviation %R Percent Recovery CFL Contains Free Liquid CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) PQL Practical Quantitation Limit QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin) Eurofins TestAmerica, Knoxville 07/29/2019Page 4 of 20196 Method Summary Job ID: 140-16059-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Outlet - M0010 Method Method Description LaboratoryProtocol SW8468321AHFPO-DA TAL DEN SW8468321APFOA and PFOS TAL DEN TAL SOPNoneLeaching Procedure TAL DEN TAL SOPNoneLeaching Procedure for Condensate TAL DEN TAL SOPNoneLeaching Procedure for XAD TAL DEN Protocol References: SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100 Eurofins TestAmerica, Knoxville 07/29/2019Page 5 of 20197 Sample Summary Job ID: 140-16059-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Outlet - M0010 Lab Sample ID Client Sample ID ReceivedCollectedMatrix Asset ID 140-16059-1 A-5947,5948 VES CARBON BED OUTLET R1 M0010 FH Air 07/16/19 00:00 07/17/19 20:00 140-16059-2 A-5949,5950,5952 VES CARBON BED OUTLET R1 M0010 BH Air 07/16/19 00:00 07/17/19 20:00 140-16059-3 A-5951 VES CARBON BED OUTLET R1 M0010 IMP 1,2&3 CONDENSATE Air 07/16/19 00:00 07/17/19 20:00 140-16059-4 A-5953 VES CARBON BED OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/16/19 00:00 07/17/19 20:00 140-16059-5 A-5954,5955 VES CARBON BED OUTLET R2 M0010 FH Air 07/17/19 00:00 07/17/19 20:00 140-16059-6 A-5956,5957,5959 VES CARBON BED OUTLET R2 M0010 BH Air 07/17/19 00:00 07/17/19 20:00 140-16059-7 A-5958 VES CARBON BED OUTLET R2 M0010 IMP 1,2&3 CONDENSATE Air 07/17/19 00:00 07/17/19 20:00 140-16059-8 A-5960 VES CARBON BED OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/17/19 00:00 07/17/19 20:00 140-16059-9 A-5961,5962 VES CARBON BED OUTLET R3 M0010 FH Air 07/17/19 00:00 07/17/19 20:00 140-16059-10 A-5963,5964,5966 VES CARBON BED OUTLET R3 M0010 BH Air 07/17/19 00:00 07/17/19 20:00 140-16059-11 A-5965 VES CARBON BED OUTLET R3 M0010 IMP 1,2&3 CONDENSATE Air 07/17/19 00:00 07/17/19 20:00 140-16059-12 A-5967 VES CARBON BED OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/17/19 00:00 07/17/19 20:00 Eurofins TestAmerica, Knoxville 07/29/2019Page 6 of 20198 Job Narrative 140-16059-1 Sample Receipt The samples were received on July 17, 2019 at 8:00 PM in good condition and properly preserved. The temperature of the cooler at receipt was 0.2º C. Quality Control and Data Interpretation Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements. Method 0010/Method 3542 Sampling Train Preparation Train fractions were extracted and prepared for analysis in TestAmerica’s Knoxville laboratory. Extracts and condensate samples were forwarded to the Denver laboratory for HFPO-DA analysis. All results are reported in “Total ug” per sample. LCMS No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. Organic Prep No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. Comments Reporting Limits (RLs) and Method Detection Limits (MDLs) for the HFPO-DA used in this report were derived in Denver for reporting soils and water samples. Method 0010 sampling train matrix specific RLs and MDLs have not been established for HFPO-DA. The soil and water limits are expected to be reasonable approximations of the actual matrix specific limits, under these conditions. Breakthrough from the Modified Method 0010 Sampling Train for PFAS compounds will be measured by the percentage (%) concentration of a specific PFAS target analyte determined to be present in the Breakthrough XAD-2 resin module of a test run. If the concentration of a specific PFAS compound is ≤30% of the sum of the concentrations determined for the other three (3) fractions of the sampling train, then sampling breakthrough is determined not to have occurred. Also, no breakthrough will be determined to have occurred if < 250 µg of a target analyte is collected on all fractions of a sampling train. Breakthrough the sampling train implies that sample loss through the train has occurred and results in a negative bias to the sample results. 07/29/2019Page 7 of 20199 QC Association Summary Job ID: 140-16059-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Outlet - M0010 LCMS Analysis Batch: 464589 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321ADLCK 280-464589/13 Lab Control Sample Total/NA Prep Batch: 465059 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16059-2 A-5949,5950,5952 VES CARBON BED OUTLET R1 M0010 BHTotal/NA Air None140-16059-4 A-5953 VES CARBON BED OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air None140-16059-6 A-5956,5957,5959 VES CARBON BED OUTLET R2 M0010 BHTotal/NA Air None140-16059-8 A-5960 VES CARBON BED OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air None140-16059-10 A-5963,5964,5966 VES CARBON BED OUTLET R3 M0010 BHTotal/NA Air None140-16059-12 A-5967 VES CARBON BED OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air NoneMB 280-465059/13-A Method Blank Total/NA Air NoneMB 280-465059/1-A Method Blank Total/NA Air NoneLCS 280-465059/2-A Lab Control Sample Total/NA Prep Batch: 465107 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16059-3 A-5951 VES CARBON BED OUTLET R1 M0010 IMP 1,2&3 CONDENSATETotal/NA Air None140-16059-7 A-5958 VES CARBON BED OUTLET R2 M0010 IMP 1,2&3 CONDENSATETotal/NA Air None140-16059-11 A-5965 VES CARBON BED OUTLET R3 M0010 IMP 1,2&3 CONDENSATETotal/NA Air NoneMB 280-465107/1-A Method Blank Total/NA Air NoneLCS 280-465107/2-A Lab Control Sample Total/NA Prep Batch: 465251 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16059-1 A-5947,5948 VES CARBON BED OUTLET R1 M0010 FHTotal/NA Air None140-16059-5 A-5954,5955 VES CARBON BED OUTLET R2 M0010 FHTotal/NA Air None140-16059-9 A-5961,5962 VES CARBON BED OUTLET R3 M0010 FHTotal/NA Air NoneMB 280-465251/1-A Method Blank Total/NA Air NoneLCS 280-465251/2-A Lab Control Sample Total/NA Analysis Batch: 465646 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465059140-16059-2 A-5949,5950,5952 VES CARBON BED OUTLET R1 M0010 BHTotal/NA Air 8321A 465059140-16059-4 A-5953 VES CARBON BED OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air 8321A 465059140-16059-6 A-5956,5957,5959 VES CARBON BED OUTLET R2 M0010 BHTotal/NA Air 8321A 465059140-16059-8 A-5960 VES CARBON BED OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air 8321A 465059140-16059-10 A-5963,5964,5966 VES CARBON BED OUTLET R3 M0010 BHTotal/NA Air 8321A 465059140-16059-12 A-5967 VES CARBON BED OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air 8321A 465059MB 280-465059/13-A Method Blank Total/NA Air 8321A 465059MB 280-465059/1-A Method Blank Total/NA Air 8321A 465059LCS 280-465059/2-A Lab Control Sample Total/NA Analysis Batch: 465647 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465107140-16059-3 A-5951 VES CARBON BED OUTLET R1 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107140-16059-7 A-5958 VES CARBON BED OUTLET R2 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107140-16059-11 A-5965 VES CARBON BED OUTLET R3 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107MB 280-465107/1-A Method Blank Total/NA Air 8321A 465107LCS 280-465107/2-A Lab Control Sample Total/NA Eurofins TestAmerica, Knoxville 07/29/2019Page 8 of 201100 QC Association Summary Job ID: 140-16059-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Outlet - M0010 LCMS Analysis Batch: 465648 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465251140-16059-1 A-5947,5948 VES CARBON BED OUTLET R1 M0010 FHTotal/NA Air 8321A 465251140-16059-5 A-5954,5955 VES CARBON BED OUTLET R2 M0010 FHTotal/NA Air 8321A 465251140-16059-9 A-5961,5962 VES CARBON BED OUTLET R3 M0010 FHTotal/NA Air 8321A 465251MB 280-465251/1-A Method Blank Total/NA Air 8321A 465251LCS 280-465251/2-A Lab Control Sample Total/NA Eurofins TestAmerica, Knoxville 07/29/2019Page 9 of 201101 Client Sample Results Job ID: 140-16059-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Outlet - M0010 Lab Sample ID: 140-16059-1Client Sample ID: A-5947,5948 VES CARBON BED OUTLET R1 M0010 FH Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.07 0.102 0.0110 ug/Sample 07/22/19 16:15 07/25/19 14:00 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 92 50 -200 07/22/19 16:15 07/25/19 14:00 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-2Client Sample ID: A-5949,5950,5952 VES CARBON BED OUTLET R1 M0010 BH Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 4.91 0.300 0.0600 ug/Sample 07/19/19 14:50 07/25/19 12:18 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 76 50 -200 07/19/19 14:50 07/25/19 12:18 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-3Client Sample ID: A-5951 VES CARBON BED OUTLET R1 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 2.01 0.222 0.0113 ug/Sample 07/23/19 09:00 07/25/19 13:11 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 79 50 -200 07/23/19 09:00 07/25/19 13:11 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-4Client Sample ID: A-5953 VES CARBON BED OUTLET R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 12:25 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 75 50 -200 07/19/19 14:50 07/25/19 12:25 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Eurofins TestAmerica, Knoxville 07/29/2019Page 10 of 201102 Client Sample Results Job ID: 140-16059-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Outlet - M0010 Lab Sample ID: 140-16059-5Client Sample ID: A-5954,5955 VES CARBON BED OUTLET R2 M0010 FH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.04 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 14:03 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 85 50 -200 07/22/19 16:15 07/25/19 14:03 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-6Client Sample ID: A-5956,5957,5959 VES CARBON BED OUTLET R2 M0010 BH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 0.983 0.275 0.0550 ug/Sample 07/19/19 14:50 07/25/19 12:28 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 79 50 -200 07/19/19 14:50 07/25/19 12:28 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-7Client Sample ID: A-5958 VES CARBON BED OUTLET R2 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 0.281 0.210 0.0107 ug/Sample 07/23/19 09:00 07/25/19 13:14 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 81 50 -200 07/23/19 09:00 07/25/19 13:14 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-8Client Sample ID: A-5960 VES CARBON BED OUTLET R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 12:31 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 82 50 -200 07/19/19 14:50 07/25/19 12:31 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Eurofins TestAmerica, Knoxville 07/29/2019Page 11 of 201103 Client Sample Results Job ID: 140-16059-1Client: Chemours Company FC, LLC The Project/Site: VE South Carbon Bed Outlet - M0010 Lab Sample ID: 140-16059-9Client Sample ID: A-5961,5962 VES CARBON BED OUTLET R3 M0010 FH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.10 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 14:06 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 86 50 -200 07/22/19 16:15 07/25/19 14:06 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-10Client Sample ID: A-5963,5964,5966 VES CARBON BED OUTLET R3 M0010 BH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.34 0.275 0.0550 ug/Sample 07/19/19 14:50 07/25/19 12:35 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 82 50 -200 07/19/19 14:50 07/25/19 12:35 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-11Client Sample ID: A-5965 VES CARBON BED OUTLET R3 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 0.206 J 0.230 0.0117 ug/Sample 07/23/19 09:00 07/25/19 13:17 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 80 50 -200 07/23/19 09:00 07/25/19 13:17 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16059-12Client Sample ID: A-5967 VES CARBON BED OUTLET R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 12:38 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 78 50 -200 07/19/19 14:50 07/25/19 12:38 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Eurofins TestAmerica, Knoxville 07/29/2019Page 12 of 201104 ANALYTICAL REPORT Job Number: 140-16057-1 Job Description: VE South Stack - M0010 Contract Number: LBIO-67048 For: Chemours Company FC, LLC The c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, DE 19713 Attention: Michael Aucoin _____________________________________________ Approved for release. Courtney M Adkins Project Manager I 7/29/2019 4:01 PM Courtney M Adkins, Project Manager I 5815 Middlebrook Pike, Knoxville, TN, 37921 (865)291-3000 courtney.adkins@testamericainc.com 07/29/2019 This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike, Knoxville, TN 37921 Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com 07/29/2019Page 1 of 225105 Table of Contents Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Manual Integration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 8321A_HFPO_Du Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 07/29/2019Page 2 of 225106 Table of Contents 8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 07/29/2019Page 3 of 225107 Definitions/Glossary Job ID: 140-16057-1Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010 Qualifiers LCMS Qualifier Description J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Qualifier Glossary These commonly used abbreviations may or may not be present in this report. ¤Listed under the "D" column to designate that the result is reported on a dry weight basis Abbreviation %R Percent Recovery CFL Contains Free Liquid CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) PQL Practical Quantitation Limit QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin) Eurofins TestAmerica, Knoxville 07/29/2019Page 4 of 225108 Method Summary Job ID: 140-16057-1Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010 Method Method Description LaboratoryProtocol SW8468321AHFPO-DA TAL DEN SW8468321APFOA and PFOS TAL DEN TAL SOPNoneLeaching Procedure TAL DEN TAL SOPNoneLeaching Procedure for Condensate TAL DEN TAL SOPNoneLeaching Procedure for XAD TAL DEN Protocol References: SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100 Eurofins TestAmerica, Knoxville 07/29/2019Page 5 of 225109 Sample Summary Job ID: 140-16057-1Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010 Lab Sample ID Client Sample ID ReceivedCollectedMatrix Asset ID 140-16057-1 R-2305,2306 VES STK R1 M0010 FH Air 07/16/19 00:00 07/17/19 20:00 140-16057-2 R-2307,2308,2310 VES STK R1 M0010 BH Air 07/16/19 00:00 07/17/19 20:00 140-16057-3 R-2309 VES STK R1 M0010 IMP 1,2&3 CONDENSATE Air 07/16/19 00:00 07/17/19 20:00 140-16057-4 R-2311 VES STK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/16/19 00:00 07/17/19 20:00 140-16057-5 R-2312,2313 VES STK R2 M0010 FH Air 07/17/19 00:00 07/17/19 20:00 140-16057-6 R-2314,2315,2317 VES STK R2 M0010 BH Air 07/17/19 00:00 07/17/19 20:00 140-16057-7 R-2316 VES STK R2 M0010 IMP 1,2&3 CONDENSATE Air 07/17/19 00:00 07/17/19 20:00 140-16057-8 R-2318 VES STK R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/17/19 00:00 07/17/19 20:00 140-16057-9 R-2319,2320 VES STK R3 M0010 FH Air 07/17/19 00:00 07/17/19 20:00 140-16057-10 R-2321,2322,2324 VES STK R3 M0010 BH Air 07/17/19 00:00 07/17/19 20:00 140-16057-11 R-2323 VES STK R3 M0010 IMP 1,2&3 CONDENSATE Air 07/17/19 00:00 07/17/19 20:00 140-16057-12 R-2325 VES STK R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Air 07/17/19 00:00 07/17/19 20:00 Eurofins TestAmerica, Knoxville 07/29/2019Page 6 of 225110 Job Narrative 140-16057-1 Sample Receipt The samples were received on July 17, 2019 at 8:00 PM in good condition and properly preserved. The temperatures of the 2 coolers at receipt time were 0.3º C and 0.7º C. Quality Control and Data Interpretation Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements. Method 0010/Method 3542 Sampling Train Preparation Train fractions were extracted and prepared for analysis in TestAmerica’s Knoxville laboratory. Extracts and condensate samples were forwarded to the Denver laboratory for HFPO-DA analysis. All results are reported in “Total ug” per sample. LCMS No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. Organic Prep No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. Comments Reporting Limits (RLs) and Method Detection Limits (MDLs) for the HFPO-DA used in this report were derived in Denver for reporting soils and water samples. Method 0010 sampling train matrix specific RLs and MDLs have not been established for HFPO-DA. The soil and water limits are expected to be reasonable approximations of the actual matrix specific limits, under these conditions. Breakthrough from the Modified Method 0010 Sampling Train for PFAS compounds will be measured by the percentage (%) concentration of a specific PFAS target analyte determined to be present in the Breakthrough XAD-2 resin module of a test run. If the concentration of a specific PFAS compound is ≤30% of the sum of the concentrations determined for the other three (3) fractions of the sampling train, then sampling breakthrough is determined not to have occurred. Also, no breakthrough will be determined to have occurred if < 250 µg of a target analyte is collected on all fractions of a sampling train. Breakthrough the sampling train implies that sample loss through the train has occurred and results in a negative bias to the sample results. 07/29/2019Page 7 of 225111 QC Association Summary Job ID: 140-16057-1Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010 LCMS Analysis Batch: 464589 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321ADLCK 280-464589/13 Lab Control Sample Total/NA Prep Batch: 465059 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16057-2 R-2307,2308,2310 VES STK R1 M0010 BH Total/NA Air None140-16057-4 R-2311 VES STK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air None140-16057-6 R-2314,2315,2317 VES STK R2 M0010 BH Total/NA Air None140-16057-8 R-2318 VES STK R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air NoneMB 280-465059/1-A Method Blank Total/NA Air NoneLCS 280-465059/2-A Lab Control Sample Total/NA Prep Batch: 465107 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16057-3 R-2309 VES STK R1 M0010 IMP 1,2&3 CONDENSATETotal/NA Air None140-16057-7 R-2316 VES STK R2 M0010 IMP 1,2&3 CONDENSATETotal/NA Air None140-16057-11 R-2323 VES STK R3 M0010 IMP 1,2&3 CONDENSATETotal/NA Air NoneMB 280-465107/1-A Method Blank Total/NA Air NoneLCS 280-465107/2-A Lab Control Sample Total/NA Prep Batch: 465193 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16057-10 R-2321,2322,2324 VES STK R3 M0010 BH Total/NA Air None140-16057-12 R-2325 VES STK R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air NoneMB 280-465193/1-A Method Blank Total/NA Air NoneLCS 280-465193/2-A Lab Control Sample Total/NA Prep Batch: 465251 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air None140-16057-1 R-2305,2306 VES STK R1 M0010 FH Total/NA Air None140-16057-5 R-2312,2313 VES STK R2 M0010 FH Total/NA Air None140-16057-9 R-2319,2320 VES STK R3 M0010 FH Total/NA Air NoneMB 280-465251/1-A Method Blank Total/NA Air NoneLCS 280-465251/2-A Lab Control Sample Total/NA Analysis Batch: 465646 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465059140-16057-2 R-2307,2308,2310 VES STK R1 M0010 BH Total/NA Air 8321A 465059140-16057-4 R-2311 VES STK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air 8321A 465059140-16057-6 R-2314,2315,2317 VES STK R2 M0010 BH Total/NA Air 8321A 465059140-16057-8 R-2318 VES STK R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air 8321A 465059MB 280-465059/1-A Method Blank Total/NA Air 8321A 465059LCS 280-465059/2-A Lab Control Sample Total/NA Analysis Batch: 465647 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465107140-16057-3 R-2309 VES STK R1 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107140-16057-7 R-2316 VES STK R2 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107140-16057-11 R-2323 VES STK R3 M0010 IMP 1,2&3 CONDENSATETotal/NA Air 8321A 465107MB 280-465107/1-A Method Blank Total/NA Air 8321A 465107LCS 280-465107/2-A Lab Control Sample Total/NA Eurofins TestAmerica, Knoxville 07/29/2019Page 8 of 225112 QC Association Summary Job ID: 140-16057-1Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010 LCMS Analysis Batch: 465648 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465251140-16057-1 R-2305,2306 VES STK R1 M0010 FH Total/NA Air 8321A 465251140-16057-5 R-2312,2313 VES STK R2 M0010 FH Total/NA Air 8321A 465251140-16057-9 R-2319,2320 VES STK R3 M0010 FH Total/NA Air 8321A 465251MB 280-465251/1-A Method Blank Total/NA Air 8321A 465251LCS 280-465251/2-A Lab Control Sample Total/NA Analysis Batch: 465777 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch Air 8321A 465193140-16057-10 R-2321,2322,2324 VES STK R3 M0010 BH Total/NA Air 8321A 465193140-16057-12 R-2325 VES STK R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBETotal/NA Air 8321A 465193MB 280-465193/1-A Method Blank Total/NA Air 8321A 465193LCS 280-465193/2-A Lab Control Sample Total/NA Eurofins TestAmerica, Knoxville 07/29/2019Page 9 of 225113 Client Sample Results Job ID: 140-16057-1Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010 Lab Sample ID: 140-16057-1Client Sample ID: R-2305,2306 VES STK R1 M0010 FH Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.62 0.102 0.0110 ug/Sample 07/22/19 16:15 07/25/19 13:43 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 94 50 -200 07/22/19 16:15 07/25/19 13:43 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-2Client Sample ID: R-2307,2308,2310 VES STK R1 M0010 BH Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.91 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 11:49 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 67 50 -200 07/19/19 14:50 07/25/19 11:49 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-3Client Sample ID: R-2309 VES STK R1 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 0.278 0.230 0.0117 ug/Sample 07/23/19 09:00 07/25/19 12:51 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 82 50 -200 07/23/19 09:00 07/25/19 12:51 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-4Client Sample ID: R-2311 VES STK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/16/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 11:52 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 77 50 -200 07/19/19 14:50 07/25/19 11:52 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-5Client Sample ID: R-2312,2313 VES STK R2 M0010 FH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 0.980 0.126 0.0136 ug/Sample 07/22/19 16:15 07/25/19 13:46 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier Eurofins TestAmerica, Knoxville 07/29/2019Page 10 of 225114 Client Sample Results Job ID: 140-16057-1Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010 Lab Sample ID: 140-16057-5Client Sample ID: R-2312,2313 VES STK R2 M0010 FH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train 13C3 HFPO-DA 88 50 -200 07/22/19 16:15 07/25/19 13:46 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-6Client Sample ID: R-2314,2315,2317 VES STK R2 M0010 BH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.54 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 11:56 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 70 50 -200 07/19/19 14:50 07/25/19 11:56 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-7Client Sample ID: R-2316 VES STK R2 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 0.175 J 0.216 0.0110 ug/Sample 07/23/19 09:00 07/25/19 12:54 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 90 50 -200 07/23/19 09:00 07/25/19 12:54 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-8Client Sample ID: R-2318 VES STK R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/19/19 14:50 07/25/19 11:59 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 76 50 -200 07/19/19 14:50 07/25/19 11:59 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-9Client Sample ID: R-2319,2320 VES STK R3 M0010 FH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 1.28 0.101 0.0109 ug/Sample 07/22/19 16:15 07/25/19 13:50 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 92 50 -200 07/22/19 16:15 07/25/19 13:50 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Eurofins TestAmerica, Knoxville 07/29/2019Page 11 of 225115 Client Sample Results Job ID: 140-16057-1Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010 Lab Sample ID: 140-16057-10Client Sample ID: R-2321,2322,2324 VES STK R3 M0010 BH Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA 0.464 0.225 0.0450 ug/Sample 07/22/19 12:45 07/26/19 13:38 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 88 50 -200 07/22/19 12:45 07/26/19 13:38 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-11Client Sample ID: R-2323 VES STK R3 M0010 IMP 1,2&3 CONDENSATE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - HFPO-DA RL MDL HFPO-DA 0.212 J 0.224 0.0114 ug/Sample 07/23/19 09:00 07/25/19 12:57 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 85 50 -200 07/23/19 09:00 07/25/19 12:57 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Lab Sample ID: 140-16057-12Client Sample ID: R-2325 VES STK R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE Matrix: AirDate Collected: 07/17/19 00:00 Date Received: 07/17/19 20:00 Sample Container: Air Train Method: 8321A - PFOA and PFOS RL MDL HFPO-DA ND 0.200 0.0400 ug/Sample 07/22/19 12:45 07/26/19 13:41 1 Analyte Dil FacAnalyzedPreparedUnit DResult Qualifier 13C3 HFPO-DA 63 50 -200 07/22/19 12:45 07/26/19 13:41 1 Surrogate Dil FacAnalyzedPreparedQualifier Limits%Recovery Eurofins TestAmerica, Knoxville 07/29/2019Page 12 of 225116 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 APPENDIX D SAMPLE CALCULATIONS 117 SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 1 Test Date: 07/16/19 Test Location: VES CBed Inlet Test Period: 1605-1841 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 =------------------------------ Vm(std) 47.4 x 2.2046 x 10-9 Conc1 =------------------------------ 48.469 Conc1 =2.15E-09 Where: W =Weight of HFPO Dimer Acid collected in sample in ug. Conc1 =HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 =Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 =W / ( Vm(std) x 0.02832) Conc2 =47.4 / ( 48.469 x 0.02832 ) Conc2 =34.5 Where: Conc2 =HFPO Dimer Acid concentration, ug/dscm. 0.02832 =Conversion factor from cubic feet to cubic meters. 118 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Inlet)=Conc1 x Qs(std) x 60 min/hr MR1(Inlet)=2.15E-09 x 25641 x 60 MR1(Inlet)=3.31E-03 Where: MR1(Inlet)=HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Inlet)=MR1(Inlet) x 453.59 / 3600 MR2(Inlet)=3.31E-03 x 453.59 /3600 MR2(Inlet)=4.17E-04 Where: MR2(Inlet)=HFPO Dimer Acid mass emission rate, g/sec. 453.59 =Conversion factor from pounds to grams. 3600 =Conversion factor from hours to seconds. 5. HFPO Dimer Acid Removal Efficiency, % RE =MR1(Inlet) - MR1(Outlet)-------------------------- MR1(Inlet) RE =(1.00E-01) - (3.60E-04)----------------------1.00E-01 RE =99.6 Where: RE =Carbon Bed Removal Efficiency. MR1(Inlet)=Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr. MR1(Outlet)=Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr. 119 EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Facility: Fayetteville, NC Test Number: Run 1 Test Date: 07/16/19 Test Location: VES-Carbon Bed Inlet Test Period: 1605-1841 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std)=-------------------------------------------- (Tm + 460) 0.966 17.64 x 1.0066 x 50.909 x ( 30.06 + --------------------- ) 13.6 Vm(std)=------------------------------------------------------------ = 48.469 101.96 + 460 Where: Vm(std)=Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm =Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb =Barometric Pressure, in Hg. delt H =Average pressure drop across the orifice meter, in H2O Tm =Average dry gas meter temperature , deg F. Y =Dry gas meter calibration factor. 17.64 =Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 =Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std)=(0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std)=( 0.04707 x 12.0 ) + ( 0.04715 x 17.5 ) = 1.39 Where: Vw(std)=Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc =Volume of liquid condensed in impingers, ml. Wwsg =Weight of water vapor collected in silica gel, g. 0.04707 =Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 =Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 120 3. Moisture content Vw(std) bws =------------------------- Vw(std) + Vm(std) 1.39 bws =------------------------- = 0.028 1.39 + 48.469 Where: bws =Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md =1 - bws Md =1 - 0.028 = 0.972 Where: Md =Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd =( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd =( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd =28.84 Where: MWd =Dry molecular weight , lb/lb-mole. % CO2 =Percent carbon dioxide by volume, dry basis. % O2 =Percent oxygen by volume, dry basis. % N2 =Percent nitrogen by volume, dry basis. % CO =Percent carbon monoxide by volume, dry basis. 0.440 =Molecular weight of carbon dioxide, divided by 100. 0.320 =Molecular weight of oxygen, divided by 100. 0.280 =Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs =( MWd x Md ) + ( 18 x ( 1 - Md )) MWs =( 28.84 x 0.972 ) +( 18 ( 1 - 0.972 )) = 28.53 Where: MWs =Molecular weight of wet gas, lb/lb-mole. 18 =Molecular weight of water, lb/lb-mole. 121 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 560 Vs =85.49 x 0.84 x 1.13927 x ( -------------------- )^1/2 = 66.5 29.66 x 28.53 Where: Vs =Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 =Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp =Pitot tube coefficient, dimensionless. Ts =Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps =Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p =Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act)=60 x Vs x As Qs(act)=60 x 66.5 x 7.07 = 28214 Where: Qs(act)=Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 =Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std)= 17.64 x Md x ----- x Qs(act) Ts 29.66 Qs(std)=17.64 x 0.972 x -------------------- x 28214 559.6 Qs(std)=25641 Where: Qs(std)=Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 122 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I =----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 560 x 48.469 I =-------------------------------------------------- = 99.7 66.5 x 96 x 29.66 x 0.972 x (0.160)^2 Where: I =Percent of isokinetic sampling. O =Total sampling time, minutes. Dn =Diameter of nozzle, inches. 17.327 =Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 123 SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 1 Test Date: 07/16/19 Test Location: VES CBed Outlet Test Period: 1605-1841 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 =------------------------------ Vm(std) 8.0 x 2.2046 x 10-9 Conc1 =------------------------------ 55.427 Conc1 =3.18E-10 Where: W =Weight of HFPO Dimer Acid collected in sample in ug. Conc1 =HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 =Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 =W / ( Vm(std) x 0.02832) Conc2 =8.0 / ( 55.427 x 0.02832 ) Conc2 =5.1 Where: Conc2 =HFPO Dimer Acid concentration, ug/dscm. 0.02832 =Conversion factor from cubic feet to cubic meters. 124 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Inlet)=Conc1 x Qs(std) x 60 min/hr MR1(Inlet)=3.18E-10 x 25043 x 60 MR1(Inlet)=4.78E-04 Where: MR1(Inlet)=HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Inlet)=MR1(Inlet) x 453.59 / 3600 MR2(Inlet)=4.78E-04 x 453.59 /3600 MR2(Inlet)=6.01E-05 Where: MR2(Inlet)=HFPO Dimer Acid mass emission rate, g/sec. 453.59 =Conversion factor from pounds to grams. 3600 =Conversion factor from hours to seconds. 5. HFPO Dimer Acid Removal Efficiency, % RE =MR1(Inlet) - MR1(Outlet)-------------------------- MR1(Inlet) RE =(3.31E-03) - (4.78E-04)----------------------3.31E-03 RE =85.6 Where: RE =Carbon Bed Removal Efficiency. MR1(Inlet)=Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr. MR1(Outlet)=Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr. 125 EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Facility: Fayetteville, NC Test Number: Run 1 Test Date: 07/16/19 Test Location: VES-Carbon Bed Outlet Test Period: 1605-1841 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std)=-------------------------------------------- (Tm + 460) 1.260 17.64 x 1.0069 x 58.439 x ( 30.06 + --------------------- ) 13.6 Vm(std)=------------------------------------------------------------ = 55.427 104.67 + 460 Where: Vm(std)=Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm =Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb =Barometric Pressure, in Hg. delt H =Average pressure drop across the orifice meter, in H2O Tm =Average dry gas meter temperature , deg F. Y =Dry gas meter calibration factor. 17.64 =Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 =Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std)=(0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std)=( 0.04707 x 20.0 ) + ( 0.04715 x 14.0 ) = 1.60 Where: Vw(std)=Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc =Volume of liquid condensed in impingers, ml. Wwsg =Weight of water vapor collected in silica gel, g. 0.04707 =Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 =Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 126 3. Moisture content Vw(std) bws =------------------------- Vw(std) + Vm(std) 1.60 bws =------------------------- = 0.028 1.60 + 55.427 Where: bws =Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md =1 - bws Md =1 - 0.028 = 0.972 Where: Md =Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd =( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd =( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd =28.84 Where: MWd =Dry molecular weight , lb/lb-mole. % CO2 =Percent carbon dioxide by volume, dry basis. % O2 =Percent oxygen by volume, dry basis. % N2 =Percent nitrogen by volume, dry basis. % CO =Percent carbon monoxide by volume, dry basis. 0.440 =Molecular weight of carbon dioxide, divided by 100. 0.320 =Molecular weight of oxygen, divided by 100. 0.280 =Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs =( MWd x Md ) + ( 18 x ( 1 - Md )) MWs =( 28.84 x 0.972 ) +( 18 ( 1 - 0.972 )) = 28.53 Where: MWs =Molecular weight of wet gas, lb/lb-mole. 18 =Molecular weight of water, lb/lb-mole. 127 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 560 Vs =85.49 x 0.84 x 0.83005 x ( -------------------- )^1/2 = 48.0 30.24 x 28.53 Where: Vs =Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 =Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp =Pitot tube coefficient, dimensionless. Ts =Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps =Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p =Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act)=60 x Vs x As Qs(act)=60 x 48.0 x 9.39 = 27061 Where: Qs(act)=Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 =Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std)= 17.64 x Md x ----- x Qs(act) Ts 30.24 Qs(std)=17.64 x 0.972 x -------------------- x 27061 560.2 Qs(std)=25043 Where: Qs(std)=Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 128 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I =----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 560 x 55.427 I =-------------------------------------------------- = 97.3 48.0 x 96 x 30.24 x 0.972 x (0.202)^2 Where: I =Percent of isokinetic sampling. O =Total sampling time, minutes. Dn =Diameter of nozzle, inches. 17.327 =Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 129 SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NCTest Number: Run 3 Test Date: 07/17/19Test Location: VE South Stack Test Period: 1250-1502 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 =------------------------------ Vm(std) 2.0 x 2.2046 x 10-9Conc1=------------------------------ 47.822 Conc1 =9.02E-11 Where: W =Weight of HFPO Dimer Acid collected in sample in ug. Conc1 =Division Stack HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 =Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 =W / ( Vm(std) x 0.02832) Conc2 =2.0 / ( 47.822 x 0.02832 ) Conc2 =1.44 Where: Conc2 =Division Stack HFPO Dimer Acid concentration, ug/dscm. 0.02832 =Conversion factor from cubic feet to cubic meters. 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Outlet)=Conc1 x Qs(std) x 60 min/hr MR1(Outlet)=9.02E-11 x 23134 x 60 MR1(Outlet)=1.25E-04 Where: MR1(Outlet)=Division Stack HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Outlet)=PMR1 x 453.59 / 3600 MR2(Outlet)=1.25E-04 x 453.59 /3600 MR2(Outlet)=1.58E-05 Where: MR2(Outlet)=Division Stack HFPO Dimer Acid mass emission rate, g/sec. 453.6 =Conversion factor from pounds to grams. 3600 =Conversion factor from hours to seconds. 130 EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Facility: Fayetteville, NC Test Number: Run 3 Test Date: 07/17/19 Test Location: VE South Stack Test Period: 1250-1502 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std)=-------------------------------------------- (Tm + 460) 0.764 17.64 x 1.0008 x 50.263 x ( 30.07 + --------------------- ) 13.6 Vm(std)=------------------------------------------------------------ = 47.822 99.00 + 460 Where: Vm(std)=Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm =Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb =Barometric Pressure, in Hg. delt H =Average pressure drop across the orifice meter, in H2O Tm =Average dry gas meter temperature , deg F. Y =Dry gas meter calibration factor. 17.64 =Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 =Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std)=(0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std)=( 0.04707 x 29.0 ) + ( 0.04715 x 12.9 ) = 1.97 Where: Vw(std)=Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc =Volume of liquid condensed in impingers, ml. Wwsg =Weight of water vapor collected in silica gel, g. 0.04707 =Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 =Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 131 3. Moisture content Vw(std) bws =------------------------- Vw(std) + Vm(std) 1.97 bws =------------------------- = 0.040 1.97 + 47.822 Where: bws =Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md =1 - bws Md =1 - 0.040 = 0.960 Where: Md =Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd =( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd =( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd =28.84 Where: MWd =Dry molecular weight , lb/lb-mole. % CO2 =Percent carbon dioxide by volume, dry basis. % O2 =Percent oxygen by volume, dry basis. % N2 =Percent nitrogen by volume, dry basis. % CO =Percent carbon monoxide by volume, dry basis. 0.440 =Molecular weight of carbon dioxide, divided by 100. 0.320 =Molecular weight of oxygen, divided by 100. 0.280 =Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs =( MWd x Md ) + ( 18 x ( 1 - Md )) MWs =( 28.84 x 0.960 ) +( 18 ( 1 - 0.960 )) = 28.41 Where: MWs =Molecular weight of wet gas, lb/lb-mole. 18 =Molecular weight of water, lb/lb-mole. 132 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 560 Vs =85.49 x 0.84 x 0.75569 x ( -------------------- )^1/2 = 43.8 30.25 x 28.41 Where: Vs =Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 =Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp =Pitot tube coefficient, dimensionless. Ts =Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps =Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p =Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act)=60 x Vs x As Qs(act)=60 x 43.8 x 9.62 = 25293 Where: Qs(act)=Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 =Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std)= 17.64 x Md x ----- x Qs(act) Ts 30.25 Qs(std)=17.64 x 0.960 x -------------------- x 25293 560.4 Qs(std)=23134 Where: Qs(std)=Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 133 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I =----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 560 x 47.822 I =-------------------------------------------------- = 105.2 43.8 x 96 x 30.25 x 0.960 x (0.190)^2 Where: I =Percent of isokinetic sampling. O =Total sampling time, minutes. Dn =Diameter of nozzle, inches. 17.327 =Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 134 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 APPENDIX E EQUIPMENT CALIBRATION RECORDS 135 Date: 12/4/14-12/5/14Analyzer Type: Servomex - O2Model No: 4900Serial No: 49000-652921Calibration Span: 21.09 %Pollutant: 21.09% O2 - CC418692 CO2 (30.17% CC199689)0.00 -0.01 0.00 . NO (445 ppm CC346681)0.00 0.02 0.11 NO2 (23.78 ppm CC500749)NA NA NA N2O (90.4 ppm CC352661)0.00 0.05 0.24 CO (461.5 ppm XC006064B)0.00 0.02 0.00 SO2 (451.2 ppm CC409079)0.00 0.05 0.23 CH4 (453.1 ppm SG901795)NA NA NA H2 (552 ppm ALM048043)0.00 0.09 0.44 HCl (45.1 ppm CC17830)0.00 0.03 0.14 NH3 (9.69 ppm CC58181)0.00 0.01 0.03 1.20 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) 136 Date: 12/4/14-12/5/14Analyzer Type: Servomex - CO2Model No: 4900Serial No: 49000-652921Calibration Span: 16.65%Pollutant: 16.65% CO2 - CC418692 CO2 (30.17% CC199689)NA NA NA . NO (445 ppm CC346681)0.00 0.02 0.10 NO2 (23.78 ppm CC500749)0.00 0.00 0.02 N2O (90.4 ppm CC352661)0.00 0.01 0.04 CO (461.5 ppm XC006064B)0.00 0.01 0.00 SO2 (451.2 ppm CC409079)0.00 0.11 0.64 CH4 (453.1 ppm SG901795)0.00 0.07 0.44 H2 (552 ppm ALM048043)0.00 0.04 0.22 HCl (45.1 ppm CC17830)0.10 0.06 0.60 NH3 (9.69 ppm CC58181)0.00 0.02 0.14 2.19 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) 137 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI79E15A00E4 Reference Number:160-401424145-1 Cylinder Number:ALM053372 Cylinder Volume:150.5 CF Laboratory:124 - Plumsteadville - PA Cylinder Pressure:2015 PSIG PGVP Number:A12019 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Feb 26, 2019 Expiration Date:Feb 26, 2027 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 9.000 %9.020 %G1 +/- 0.6% NIST Traceable 02/26/2019 OXYGEN 12.00 %12.07 %G1 +/- 0.3% NIST Traceable 02/26/2019 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 061507 K014984 13.94 % CARBON DIOXIDE/NITROGEN 0.57%Jan 30, 2024 NTRM 16060507 CC401541 23.204 % OXYGEN/NITROGEN 0.2%Dec 24, 2021 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration HORIBA VA5011 T5V6VU9P NDIR CO2 NDIR Feb 12, 2019 SIEMENS OXYMAT 61 S01062 O2 PARAMAGNETIC Feb 18, 2019 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 6141 Easton Road Bldg 1 Plumsteadville, PA 18949 Airgas.com Signature on file Approved for Release Page 1 of 160-401424145-1138 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI62E15A0224 Reference Number:82-401196512-1 Cylinder Number:CC112489 Cylinder Volume:157.2 CF Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG PGVP Number:B52018 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:May 12, 2018 Expiration Date:May 12, 2026 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 17.00 %17.05 %G1 +/- 0.7% NIST Traceable 05/12/2018 OXYGEN 21.00 %20.98 %G1 +/- 0.5% NIST Traceable 05/12/2018 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 13060731 CC413777 16.939 % CARBON DIOXIDE/NITROGEN +/- 0.6%May 08, 2019 NTRM 09061420 CC273671 22.53 % OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Apr 19, 2018 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Apr 19, 2018 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401196512-1139 Calibrator MDW Meter Box Number 31 Ambient Temp 72 Date 12-Feb-19 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 17485128 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Inlet, oF (Tdi) Average, oF (Td) Time, min (O)Y ∆H 616.970 76.00 76.00 621.960 77.00 77.00 4.990 76.50 76.50 623.935 77.00 77.00 628.930 77.00 77.00 4.995 77.00 77.00 629.910 77.00 77.00 639.900 77.00 77.00 9.990 77.00 77.00 640.885 77.00 77.00650.875 77.00 77.00 9.990 77.00 77.00 651.915 78.00 78.00 661.955 78.00 78.00 10.040 78.00 78.00 Average 1.0066 1.9526 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 32 32 32 32 32 32.0 0.0% 212 213 213 212 212 212.4 -0.1% 932 933 933 932 932 932.4 0.0% 1832 1833 1833 1832 1832 1832.4 0.0% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % 2.0 10.0 1.841912.8 1.0092 Dry Gas Meter 72.0 0.5 72.0 1.0 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume 1.94295.0 72.0 77.0 9.3 Y - Ratio of accuracy of wet test meter to dry gas meter ∆H - Pressure differential across orifice 3.0 10.0 70.0 Temperatures Wet Test Meter 76.5 1.5 10.0 1.0079 5.0 72.0 11.0 1.0036 77.0 77.0 1.9719 1.986813.3 1.0054 15.3 1.0067 932 1832 Reference Temperature Select Temperature oC oF 212 32 Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 2.0195 Calibration Results Baro Press, in Hg ( Pb)29.75 78.0 ( )( ) ( ) ( ) 2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ( )()( )()( )    + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo 140 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN VES CARBON BED INLET METER BOX NO. 31 07/16/19 and 07/17/19 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.102.0 93.6 102.8 Tma = Ts + 460 Tma = 101.96 + 460 Tma = 561.96 553.58 562.75 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 0.97 1.00 1.02 Pb = Barometric Pressure, in Hg.30.06 30.09 30.06 Pm = Pb + (delta H / 13.6) Pm = 30.06 + ( 0.96625 / 13.6) Pm = 30.13 30.16 30.13 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.50.909 51.412 51.767 Y = Dry gas meter calibration factor (based on full calibration)1.0066 1.0066 1.0066 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.9530 1.9530 1.9530 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 0.9656 0.9758 0.9859 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 50.91 ) * SQRT ( 0.0319 * 561.96 * 29 ) / ( 1.95 * 30.13 * 28.84 ) * 0.97 Yqa = 1.886 * SQRT 519.868 / 1,696.822 * 0.97 Yqa = 1.008 1.000 1.013 Diff = Absolute difference between Yqa and Y 0.14 0.66 0.64 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0066 - 1.008 ) / 1.0066 ) * 100 Average Diff = 0.48 Allowable = 5.0 7/31/201911:07 AM 071619 VES CB Inlet141 Calibrator MDW Meter Box Number 12 Ambient Temp 72 Date 10-Sep-18 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 14244707 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Time, min (O)Y ∆H 885.853 75.00 890.822 76.00 4.969 75.50 892.810 76.00 897.795 77.00 4.985 76.50 898.799 77.00 908.810 78.00 10.011 77.50 915.870 78.00925.830 79.00 9.960 78.50 926.870 79.00 936.870 80.00 10.000 79.50 1.0069 1.8812 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 32 32 32 32 32 32 32.0 0.0% 212 212 212 212 212 212 212.0 0.0% 932 932 932 932 932 932 932.0 0.0% 1834 1834 1834 1834 1834 1834 1834.0 -0.1% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % 1.0048 212 32 Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 1.9137 Baro Press, in Hg ( Pb) 1.9381 1.91581.0094 1.0036 29.96 932 1832 Reference Temperature Select Temperature oC oF 3.0 10.0 73.0 2.0 10.0 73.0 1.5 10.0 73.0 1.7823 1.0 5.0 73.0 1.0071 1.8559 1.0097 Y - Ratio of accuracy of wet test meter to dry gas meter Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume Calibration Results 5.00.5 73.0 Dry Gas Meter Temperatures Wet Test Meter ∆H - Pressure differential across orifice 12.60 9.1 15.20 13.1 10.70 ( )( ) ( ) ( ) 2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ( )()( )()( )    + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo 142 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN VES CARBON BED OUTLET METER BOX NO. 12 07/16/19 and 07/17/19 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.104.7 96.0 107.1 Tma = Ts + 460 Tma = 104.67 + 460 Tma = 564.67 556.04 567.13 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.26 1.31 1.32 Pb = Barometric Pressure, in Hg.30.06 30.09 30.06 Pm = Pb + (delta H / 13.6) Pm = 30.06 + ( 1.26 / 13.6) Pm = 30.15 30.19 30.16 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.58.439 58.943 59.828 Y = Dry gas meter calibration factor (based on full calibration)1.0069 1.0069 1.0069 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.8812 1.8812 1.8812 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.1102 1.1322 1.1367 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 58.44 ) * SQRT ( 0.0319 * 564.67 * 29 ) / ( 1.88 * 30.15 * 28.84 ) * 1.11 Yqa = 1.643 * SQRT 522.373 / 1,635.525 * 1.11 Yqa = 1.031 1.033 1.033 Diff = Absolute difference between Yqa and Y 2.39 2.59 2.59 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0069 - 1.031 ) / 1.0069 ) * 100 Average Diff = 2.52 Allowable = 5.0 7/31/201911:10 AM 071619 VES CB Out143 Calibrator MDW Meter Box Number 27 Ambient Temp 72 Date 12-Jul-19 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 16787479 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Inlet, oF (Tdi) Average, oF (Td) Time, min (O)Y ∆H 449.945 76.00 76.00 454.959 76.00 76.00 5.014 76.00 76.00 456.064 76.00 76.00 461.090 76.00 76.00 5.026 76.00 76.00 462.195 76.00 76.00 472.200 76.00 76.00 10.005 76.00 76.00 474.425 77.00 77.00 484.425 77.00 77.00 10.000 77.00 77.00 486.010 77.00 77.00 496.100 77.00 77.00 10.090 77.00 77.00 Average 1.0008 1.8830 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 32 32 32 31 31 31.6 0.1% 212 212 212 211 211 211.6 0.1% 932 932 932 931 931 931.6 0.0% 1831 1831 1831 1830 1830 1830.6 0.1% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 1.9283 Calibration Results Baro Press, in Hg ( Pb)29.76 77.0 932 1832 Reference Temperature Select Temperature oC oF 212 32 1.9237 1.897513.0 1.0044 15.1 1.0033 0.9998 5.0 72.0 10.7 0.9930 76.0 77.0 Y - Ratio of accuracy of wet test meter to dry gas meter ∆H - Pressure differential across orifice 3.0 10.0 72.0 Temperatures Wet Test Meter 76.0 1.5 10.0 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume 1.82235.0 72.0 76.0 9.0 2.0 10.0 1.843012.8 1.0035 Dry Gas Meter 72.0 0.5 72.0 1.0 ( )( ) ( ) ( ) 2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ( )()( )()( )    + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo 144 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN VE SOUTH STACK METER BOX NO. 27 07/16/2019 & 07/17/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.98.5 87.9 99.0 Tma = Ts + 460 Tma = 98.46 + 460 Tma = 558.46 547.88 559.00 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 0.79 0.79 0.76 Pb = Barometric Pressure, in Hg.30.00 30.07 30.07 Pm = Pb + (delta H / 13.6) Pm = 30 + ( 0.785416666666667 / 13.6) Pm = 30.06 30.13 30.13 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.50.910 49.525 50.263 Y = Dry gas meter calibration factor (based on full calibration)1.0008 1.0008 1.0008 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.8330 1.8330 1.8330 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 0.8852 0.8859 0.8737 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 50.91 ) * SQRT ( 0.0319 * 558.46 * 29 ) / ( 1.83 * 30.06 * 28.84 ) * 0.89 Yqa = 1.886 * SQRT 516.630 / 1,588.863 * 0.89 Yqa = 0.9518 0.9688 0.9509 Diff = Absolute difference between Yqa and Y 4.90 3.20 4.99 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0008 - 0.952 ) / 1.0008 ) * 100 Average Diff = 4.36 Allowable = 5.0 7/31/201911:11 AM 071619 VES stack145 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.45 PASS Distance to B Plane (PB) - inches 0.45 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.79 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.006 0.012 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-706 KS Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 146 Pitot Tube Identification Number: Inspection Date 2/19/18 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.417 PASS Distance to B Plane (PB) - inches 0.417 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches NA NO NA Thermocouple meets the Distance Criteria in the adjacent figure Thermocouple meets the Distance Criteria in the adjacent figure YES YES NO YES NA NO Distance between Sample Nozzle and Pitot (X) - inches 0.984 PASS Impact Pressure Opening Plane is above the Nozzle Entry Plane Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.028 0.012 PASS PASS PASS PASS Angle of B1 from vertical B Tube- degrees (absolute) Angle of B1 from vertical A Tube- degrees (absolute)2 2 PASS 2 1 Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute)PASS P-376 KS Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A B Q1 Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 147 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.459 PASS Distance to B Plane (PB) - inches 0.459 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches P-700 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.93 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.003 0.012 Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA PASS PASS PASS Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NASample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A BQ1Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 148 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.46 PASS Distance to B Plane (PB) - inches 0.46 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches P-695 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS0 1 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.78 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.006 0.018 Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA PASS PASS PASS Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NASample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A B Q1 Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 149 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 APPENDIX F LIST OF PROJECT PARTICIPANTS 150 IASDATA\CHEMOURS\15418.002.016\VES CB AND STACK REPORT JULY 2019-AMD 8/20/2019 The following WESTON employees participated in this project. Paul Meeter Senior Project Manager Jeff O’Neill Team Member Matt Winkeler Team Member Nick Guarino Team Member Kris Ansley Team Member Paul Greene Team Member Steve Rathfon Team Member Jack Mills Team Member Colin Mihalak Team Member 151