Loading...
HomeMy WebLinkAbout2019.06.18_CCO.p8_Fluoromonomers Manufacturing Process VE South Stack Emissions Test ReportIASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 FLUOROMONOMERS MANUFACTURING PROCESS VE SOUTH STACK EMISSIONS TEST REPORT TEST DATES: 22-23 MAY 2019 THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA Prepared for: THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306 Prepared by: WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380 June 2019 W.O. No. 15418.002.014 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 i TABLE OF CONTENTS Section Page 1. INTRODUCTION..............................................................................................................1 1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1  1.2 TEST OBJECTIVES ...............................................................................................1  1.3 TEST PROGRAM OVERVIEW .............................................................................1  2. SUMMARY OF TEST RESULTS ...................................................................................4  3.PROCESS DESCRIPTIONS ............................................................................................5  3.1 FLUOROMONOMERS ..........................................................................................5  3.2 PROCESS OPERATIONS AND PARAMETERS .................................................5  4.DESCRIPTION OF TEST LOCATIONS .......................................................................6  4.1 VE SOUTH STACK ................................................................................................6  5. SAMPLING AND ANALYTICAL METHODS .............................................................8  5.1 STACK GAS SAMPLING PROCEDURES ...........................................................8  5.1.1 Pre-Test Determinations ...........................................................................8  5.2 STACK PARAMETERS .........................................................................................8  5.2.1 EPA Method 0010.....................................................................................8  5.2.2 EPA Method 0010 Sample Recovery .....................................................10  5.2.3 EPA Method 0010 Sample Analysis.......................................................13  5.3 GAS COMPOSITION ...........................................................................................14  6.DETAILED TEST RESULTS AND DISCUSSION .....................................................15  APPENDIX A PROCESS OPERATIONS DATA APPENDIX B RAW AND REDUCED TEST DATA APPENDIX C LABORATORY ANALYTICAL REPORT APPENDIX D SAMPLE CALCULATIONS APPENDIX E EQUIPMENT CALIBRATION RECORDS APPENDIX F LIST OF PROJECT PARTICIPANTS IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 ii LIST OF FIGURES Title Page Figure 4-1 VE South Stack Test Port and Traverse Point Location .............................................. 7  Figure 5-1 EPA Method 0010 Sampling Train ............................................................................... 9  Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 12  IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 iii LIST OF TABLES Title Page Table 1-1 Sampling Plan for VE South Stack ................................................................................ 3  Table 2-1 Summary of HFPO Dimer Acid Test Results ............................................................... 4  Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results VE South Stack ............ 16  IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 1 1. INTRODUCTION 1.1 FACILITY AND BACKGROUND INFORMATION The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. The Chemours operating areas on the site include the Fluoromonomers, IXM and Polymer Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse. Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid emission testing on the Vinyl Ethers (VE) South Stack. Testing was performed on 22 and 23 May 2019 and generally followed the “Emissions Test Protocol” reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program. 1.2 TEST OBJECTIVES The specific objectives for this test program were as follows:  Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid from the VE South stack which is located in the Fluoromonomers process area.  Monitor and record process data in conjunction with the test program.  Provide representative emissions data. 1.3 TEST PROGRAM OVERVIEW During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured on the VE South Stack. Table 1-1 provides a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. Section 2 provides a summary of test results. A description of the process is provided in Section 3. Section 4 provides a description of the test location. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6. IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 2 Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data package is provided in electronic format and on CD with each hard copy. IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 3 Table 1-1 Sampling Plan for VE South Stack Sampling Point & Location VE South Stack Number of Tests: 3 (VE South Stack) Parameters To Be Tested: HFPO Dimer Acid (HFPO-DA) Volumetric Flow Rate and Gas Velocity Carbon Dioxide Oxygen Water Content Sampling or Monitoring Method EPA M-0010 EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests EPA M3/3A EPA M4 in conjunction with M-0010 tests Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA Sample Size > 1m3 NA NA NA NA Total Number of Samples Collected1 3 3 3 3 3 Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0 Field Blank Trains1 1 per source 0 0 0 0 Proof Blanks1 1 per train 0 0 0 0 Trip Blanks1,2 1 set 0 0 0 Lab Blanks 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Samples (LCS) 1 per fraction3 0 0 0 0 Laboratory or Batch Control Spike Sample Duplicate (LCSD) 1 per fraction3 0 0 0 0 Media Blanks 1 set4 0 0 0 0 Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0 Total No. of Samples 75 3 3 3 3 Key: 1 Sample collected in field. 2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment. 3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate). 4 One set of media blank archived at laboratory at media preparation. 5 Actual number of samples collected in field. 6 Not applicable. IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 4 2.SUMMARY OF TEST RESULTS Three tests were performed on the VE South stack. Table 2-1 provides a summary of the HFPO Dimer Acid emission test results. Detailed test results summaries are provided in Section 6. It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds. Table 2-1 Summary of HFPO Dimer Acid Test Results Source Run No. Emission Rates lb/hr g/sec VE South Stack 1 3.79E-03 4.78E-04 2 1.19E-03 1.50E-04 3 1.56E-03 1.96E-04 Average 2.18E-03 2.75E-04 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 5 3. PROCESS DESCRIPTIONS The Fluoromonomers area is included in the scope of this test program. 3.1 FLUOROMONOMERS These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Teflon® Polymers and Viton®, as well as sales to outside customers. The VE South Waste Gas Scrubber is vented to the process stack (NEP-Hdr2). In addition, the following building air systems are vented to this stack:  RV Catch Pots  Tower HVAC  Nitrogen Supply to Catch Tanks  Catalyst Feed Tank Pot Charge Vent 3.2 PROCESS OPERATIONS AND PARAMETERS Source Operation/Product Batch or Continuous VE South PMVE/PEVE Semi-continuous – Condensation is continuous, Two Agitated Bed Reactors are batch for 30-40 mins at end of each run, Refining (ether column) is batch During the test program, the following parameters were monitored by Chemours and are included in Appendix A.  Fluoromonomers Processes o VE South Waste Gas Scrubber  Caustic recirculation flow rate      IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 6 4.DESCRIPTION OF TEST LOCATIONS 4.1 VE SOUTH STACK Two 6-inch ID test ports are installed on the 42-inch ID steel stack. The ports are placed 150 inches (3.6 diameters) from the location where the waste gas scrubber vent enters the stack and 20 feet (5.7 diameters) from the stack exit. Per EPA Method 1, a total of 24 traverse points (12 per axis) were used for M0010 isokinetic sampling. It should be noted that near the port locations are a number of small ducts leading to the stack. These are catch pots which, under normal operation, do not discharge to the stack. They are used to vent process gas to the stack in the event of a process upset. For the purpose of test port location, and given the fact that there is no flow from these catch pots, they are not considered a flow contributor or a disturbance. See Figure 4-1 for a schematic of the test port and traverse point locations. Note: All measurements at the test location were confirmed prior to sampling. 42 " TRAVERSE POINT NUMBER DISTANCE FROM INSIDE NEAR WALL (INCHES) 1 2 3 4 5 6 7 8 9 10 11 12 FIGURE 4-1 VE SOUTH STACK TEST PORT AND TRAVERSE POINT LOCATION IASDATA\CHEMOURS\15418.002.014\FIGURE 4-1 VE SOUTH SCRUBBER STACK7 20 ' 150 " ID FAN ROOF LINE CATCH POT CATCH POTS WASTE GAS SCRUBBER VENT DRAWING NOT TO SCALE 1 2 7/8 5 7 3/8 10 1/2 15 27 31 1/2 34 5/8 37 39 1/8 41 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 8 5. SAMPLING AND ANALYTICAL METHODS 5.1 STACK GAS SAMPLING PROCEDURES The purpose of this section is to describe the stack gas emissions sampling train and to provide details of the stack sampling and analytical procedures utilized during the emissions test program. 5.1.1 Pre-Test Determinations Preliminary test data were obtained at the test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements. A check for the presence or absence of cyclonic flow was previously conducted at the test location. The cyclonic flow check was negative (< 20°) verifying that the source was acceptable for testing. Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures. Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures. 5.2 STACK PARAMETERS 5.2.1 EPA Method 0010 The sampling train utilized to perform the HFPO Dimer Acid sampling was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter. 6/18/2019 9(17:$//,&(:$7(55(&,5&8/$7,213803&21'(16$7(75$3,03,1*(56,&(%$7+9$&880/,1(0$,19$/9(7(03(5$785(6(16256%<3$669$/9($,57,*+73803'5<*$60(7(525,),&(0$120(7(5&+(&.9$/9(7(03(5$785(6(1625+($7('$5($),/7(5+2/'(525,),&(6,/,&$*(/&21'(16(5;$'625%(1702'8/(621($1'7:27(03(5$785(6(16257(03(5$785(6(16259$&880*$8*(,$6'$7$?&+(02856?4?),*85(0(7+2'),*85((3$0(7+2'6$03/,1*75$,1+($7('352%(%87721+22.12==/(5(9(56(7<3(3,72778%(9 127(7+(&21'(16(50$<%(326,7,21('+25,=217$//<7+(;$'625%(1702'8/(:,//$/:$<6%(,1$9(57,&$/326,7,215,*,'%2526,/,&$7(78%,1*25)/(;,%/(6$03/(/,1(,&(:$7(55(&,5&8/$7,21&21'(16$7(75$3,03,1*(5 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 10 A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high-purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and the XAD-2 module to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train. HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid. During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes. 5.2.2 EPA Method 0010 Sample Recovery At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery. A consistent procedure was employed for sample recovery: IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 11 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled. 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments. 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed. 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.   5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed. 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.   7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed. 8. The silica gel in the final impinger was weighed and the weight gain value recorded. 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis. Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool. During the VE South test campaign, a Method 0010 blank train was set up near the test location, leak-checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis. See Figure 5-2 for a schematic of the Method 0010 sample recovery process. ,$6'$7$?&+(02856?4?),*85((3$),*85(+)32',0(5$&,'6$03/(5(&29(5<352&('85(6)250(7+2'12==/(352%($1')5217+$/)),/7(5+2/'(56$03/()5$&7,21),/7(56$03/()5$&7,21%$&.+$/)),/7(5+2/'(5&211(&7256)/(;,%/(/,1(&21'(16(56$03/()5$&7,21;$'02'8/(21(6$03/()5$&7,215(029()520,03,1*(575$,1:$6+:,7+ 0(7+$12/$0021,80+<'52;,'(6($/,1/$%(/('32/<(7+</(1(%277/(&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/:$6+:+,/(%586+,1*:,7+ 0(7+$12/$0021,80+<'52;,'(6($/(1'6:,7+*/$66&$36&29(5/$%(/&203/(7(&8672'<)2506(&85(6$03/($7$1'.((3&22/75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/6($/:$6+,1*6,1/$%(/('32/<(7+</(1(%277/(0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/),567$1'6(&21'&21'(16$7(75$36$1',03,1*(5126$1'6$03/()5$&7,21,03,1*(512 6,/,&$*(/ :(,*+$1'5(&25'0($685(92/80(2)/,48,'$1'5(&25'75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/12:(,*+$1'5(&25'5(7$,1)255(*(1(5$7,21),567$1'6(&21'&21'(16$7(75$36$1',03,1*(5126$1'6$03/()5$&7,21:$6+:,7+ 0(7+$12/$0021,80+<'52;,'(75$16)(5:$6+,1*67232/<(7+</(1(%277/(/$%(/6($/$1'0$5./,48,'/(9(/&203/(7(&8672'<)2506(&85(6$03/($1'.((3&22/;$'02'8/(7:26$03/()5$&7,215(029()520,03,1*(575$,16($/(1'6:,7+*/$66&$36&29(5/$%(/&203/(7(&8672'<)2506(&85(6$03/($7$1'.((3&22/ IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 13 5.2.3 EPA Method 0010 – Sample Analysis Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:  Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;  Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;  Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;  Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers. The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough. The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS. Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries. TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol. IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 14 5.3 GAS COMPOSITION The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO2) and oxygen (O2) concentrations. An integrated gas sample was collected from the exhaust of the Method 0010 sample console. The oxygen and carbon dioxide content of the stack gas was measured according to EPA Method 3/3A procedures. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by calibration checks before and after each test run. IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 15 6. DETAILED TEST RESULTS AND DISCUSSION Preliminary testing and the associated analytical results required significant sample dilution to bring the HFPO Dimer Acid concentration within instrument calibration; therefore, sample times and sample volumes were reduced for the formal test program. This was approved by the North Carolina Department of Environmental Quality (NCDEQ). Each test was a minimum of 96 minutes in duration. A total of three test runs were performed on the VE South stack. During Run 3, a power outage occurred for approximately one minute and then the test run was resumed without further incident. Table 6-1 provides detailed test data and test results for the VE South stack. The Method 3A sampling during all tests indicated that the O2 and CO2 concentrations were at ambient air levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all calculations. TABLE 6-1 Test Data Run number 1 2 3 Location VE South Stack VE South Stack VE South Stack Date 05/22/19 05/23/19 05/23/19 Time period 1341-1529 1042-1230 1341-1536 SAMPLING DATA: Sampling duration, min. 96.0 96.0 96.0 Nozzle diameter, in. 0.300 0.300 0.300 Cross sectional nozzle area, sq.ft. 0.000491 0.000491 0.000491 Barometric pressure, in. Hg 30.20 30.28 30.28 Avg. orifice press. diff., in H2O 1.47 1.27 1.53 Avg. dry gas meter temp., deg F 84.0 93.1 101.0 Avg. abs. dry gas meter temp., deg. R 544 553 561 Total liquid collected by train, ml 41.1 27.6 47.1 Std. vol. of H2O vapor coll., cu.ft.1.9 1.3 2.2 Dry gas meter calibration factor 1.0107 1.0107 1.0107 Sample vol. at meter cond., dcf 60.826 57.096 63.015 Sample vol. at std. cond., dscf (1)60.423 55.898 60.861 Percent of isokinetic sampling 103.5 97.6 103.1 GAS STREAM COMPOSITION DATA: CO2, % by volume, dry basis 0.0 0.0 0.0 O2, % by volume, dry basis 20.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H20 vapor in gas stream, prop. by vol.0.031 0.023 0.035 Mole fraction of dry gas 0.969 0.977 0.965 Molecular wt. of wet gas, lb/lb mole 28.50 28.59 28.45 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H2O 0.55 0.51 0.50 Absolute pressure, in. Hg 30.24 30.32 30.32 Avg. temperature, deg. F 87 90 94 Avg. absolute temperature, deg.R 547 550 554 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec.21.9 21.3 22.4 Stack/duct cross sectional area, sq.ft.9.62 9.62 9.62 Avg. gas stream volumetric flow, wacf/min.12620 12307 12951 Avg. gas stream volumetric flow, dscf/min.11918 11697 12055 (1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VE SOUTH STACK 6/5/2019 2:18 PM 16 052219 VE South stack TEST DATA Run number 1 2 3 Location VE South Stack VE South Stack VE South Stack Date 05/22/19 05/23/19 05/23/19 Time period 1341-1529 1042-1230 1341-1536 LABORATORY REPORT DATA, ug. HFPO Dimer Acid 145.4000 42.9100 59.5300 EMISSION RESULTS, ug/dscm. HFPO Dimer Acid 84.96 27.10 34.53 EMISSION RESULTS, lb/dscf. HFPO Dimer Acid 5.31E-09 1.69E-09 2.16E-09 EMISSION RESULTS, lb/hr. HFPO Dimer Acid 3.79E-03 1.19E-03 1.56E-03 EMISSION RESULTS, g/sec. HFPO Dimer Acid 4.78E-04 1.50E-04 1.96E-04 TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VE SOUTH STACK 6/5/2019 2:18 PM 17 052219 VE South stack IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 APPENDIX A PROCESS OPERATIONS DATA 18 Date: 5/22/2019TimeStack TestingVES ProductVES PrecursorVES Condensation (HFPO)VES ABR (East)VES ABR (West)VES RefiningVES WGS Recirculation FlowDimer ISO ventingDate: 5/23/2019TimeStack TestingVES ProductVES PrecursorVES Condensation (HFPO)VES ABR (East)VES ABR (West)VES RefiningVES WGS Recirculation FlowDimer ISO venting18,500 kg/hPM/PEBurnout1400 1500 1600 1700RUN 2 ‐ 1042‐1230 RUN 3 ‐ 1341‐15368009001000110012001300Burnout18,500 kg/h16001700RUN 1 ‐ 1341‐1529PM/PE10001100120013001400150019 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 APPENDIX B RAW AND REDUCED TEST DATA 20 21 CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS VE SOUTH STACK Test Data Run number 1 2 3 Location VE South Stack VE South Stack VE South Stack Date 05/22/19 05/23/19 05/23/19 Time period 1341-1529 1042-1230 1341-1536 Operator JDO/KA JDO/KA JDO/KA Inputs For Calcs. Sq. rt. delta P 0.38206 0.37276 0.38979 Delta H 1.4679 1.2708 1.5333 Stack temp. (deg.F)87.3 89.9 94.3 Meter temp. (deg.F)84.0 93.1 101.0 Sample volume (act.)60.826 57.096 63.015 Barometric press. (in.Hg)30.20 30.28 30.28 Volume H2O imp. (ml)26.0 12.3 27.0 Weight change sil. gel (g)15.1 15.3 20.1 % CO2 0.0 0.0 0.0 % O2 20.9 20.9 20.9 % N2 79.1 79.1 79.1 Area of stack (sq.ft.)9.620 9.620 9.620 Sample time (min.)96.0 96.0 96.0 Static pressure (in.H2O)0.55 0.51 0.50 Nozzle dia. (in.)0.300 0.300 0.300 Meter box cal.1.0107 1.0107 1.0107 Cp of pitot tube 0.84 0.84 0.84 Traverse points 24 24 24 6/5/2019 2:20 PM 052219 VE South stack22 ISOHINETIC FIELD DATA SHEET EPA Method 0010 - client chemours Stack Conditions Meter Box ID W.O.#15418.0~2.Q14.6001 Assumed Actual Meter Box Y Project ID Chemours %Moisture a ~ ~Meter Box Del H Mode/Source ID VE South -Scrubber Impinger Vol (ml)Probe ID /Length Samp. Loc. ID STK Silica gel (g)Probe Material Run No.ID 1 CO2, % by Vol ~~Pitot / Thermocrouple ID Test Method ID M0010 02, °/ by Vol ~ ` ~Pitot Ccefflcfent Date ID 21MAY2019 Temperature (°F)Noale ID —~~ Source/Location VE SouHi S~C1c Meter Temp ("F)(NonJe Measurements _~~0 Sample Date ry 2 tatic Press (in HZO) ' , 5 ~Avg NoaJe Dfa (in) Baro. Press (in Hg)Area of Stack (ftZ)x1~ Operator Ambient Temp (°F) Q Sample Tfine _~!~ {, Total Traverse Pts --'f~l i y ~~~ ~~ J~ ~ ~ A ;' D~fta"P Av DejtakJ / ToTa~~90 m'e " qv~ ~ V TJ~ ~i` ¨ ~ Q~ V 0 ~ Avg Sgr~~@Ita P Avg Sgrt Del H Comme s:J~~ ~'~~ ~~~1 .Lsn'.~D~,°L~So Dimer Acid ~ Page ~ or ~, ~~ KFactor /4~,p -~ Initial Mira-Point Final Sample Train (k3) Leak Check Qa (in Hg) Pitot leak check good Pltot Inspectlon good Method 3 System good ,~~~~~~r~,,,~s~~r ~`='~`' ~[~.~■r~~r~mr~yc~v ~ w Temp Check re- es Ted ~/ Meter Box Temp Reference Temp Pass/Fail (+/- 2°~ /Fail Pass /Fall Temp Change Response ~ r~o y~ / ~ S ~ «~~. ~ i v- i ~~ ~ i v i i 1r EPA Method 0010 from EPA SW-846~ a 3 a ~~ l ~~ ~ ~ ~ ~8 ~~s~~-~~~ ~a ~ ~,~o.~~ 3 ~~ ~v~~,23 ISOHINETIC FIELD DATA SHEET EPA Method 0010 -cuent cnsmours Stack Conditions Meter Box ID W.O.# 15g18,Q02,01d.DQ01 Assumed Actual Meter Box Y Protect ID Chemours %Moisture ^Meter Box Del H -~Mode/Source ID VE South -Scrubber Impinger Vol (ml)Probe ID /Length 'Sample Train (ft')Samp. Loc. ID STK Silica gel (g)Probe Material Leak Check @ (in Hg)Run No.ID 2 CO2, % by Vol Pitot /Thermocouple I~,,,,Pitot leak check goodTest Method ID M0010 02, % by Vol ~ Vy PkoYCoefficient Pitot Inspectlon goodDate ID ~2'fMAY2019 Temperature (°F); Noale ID Metlwd 3 System good Initial Mid-Point Final~~`}/'D 7 yes no yes / na ~e `11 no na yes / no / no / no yes / no e / noSource/Location V Soufti Sick Meter Temp (F)Noale Measurements ~ J Temp Check Pre-Test Set Post-Test SetSample Date Static Press (In H2O)~ Avg NoaJe Dla (in)r Q Meter Box Temp ~3 "''Baro. Press (In Hg) Operator y 'Ambient Temp (°F) Area of Stack (ft2) ~j '~ Sample Time Reference Temp Pass/Fail (+/- p°~ /Fey Pass / FaU Total Traverse Pts Temp Change Response ~ ye / no yea / no _ _ .o f a . ~,.. ~~ b i .+~ y - v ~~ b y A~g~etta~ Avg Delta H T V rype ~ Avg Ts Avg Tm MInIMax Mln/Max Mau Max Vac MiNMau 1 -~ Avg Sgrt Delta P Avg Sgrt Del H Comments: ~ EPA Method 0010 from EPA SW-846~ v ~ ~, c~ ~i ~ v ~ ~ Diener Acid Page ~ or -.~— ~ K Factor q y ~ Q f 24 ISOHINETIC FIELD DATA SHEET ~1~ EPA Method 0010 - HFPO Diener Acidclient chemou~s Stack Conditions Meter Box ID ~~' w.o.# ~sa~e.ogzoia.000i Assumed Actual nnetereox v ,p '7 Project ID Chemours %Moisture Meter Box Del H p Page G of K Factor Initial Mid-Point Final i~~,1 ~~'S~~ ~~~~~~~~~~~1~ 2i~'1 'li::~i~l~~li~'~;:~m~r~.y.. ~n Mode/Source ID VE South -Scrubber Impinger Vol (ml)Probe ID /Length C Sample Train (ft3) Samp. Loc. ID STK Silica gel (g)Probe Material Leak Check @ (in Hg) Run No.ID 3 CO2, % by Vol ~ Pitot /Thermocouple ID Pitot leak check good Test Methal ID M0010 02, % by Vol Pitot Coefficient .84 Pitot Inspectlon good Date ID 21MAY2019 Temperature (°F)Noale ID Method 3 System goodSource/LocaUon ' V Sot~ih St i 'Meter Temp ("F)a ~ ~ NoaJe Measurements ~?~pQ ~ ~ Temp Check i re- es e os -T~STS@~—Sample Date Static Press (in H2O)(~(~..,~f' ~ Avg Noale Dia (in) ~ Meter Box Temp Baro. Press (in Hg) ~~~ Area of Stack (ftZ) Reference Temp i Operetor J' Ambient Temp (°F) ! '~} r ~j~ Sample Tfine Pass/Fa(I (+/- 2°) /Fail Pass / FaH `' Total Traverse Pts Temp Change Response 5 no / ro in _ ~ ~ __ r U ~Q Avg Delta P Avg Delta H rfo~fal'Vdl~me Avg Ts Avg Tm M(n/Max Min/Max Max Max Vac Min/MaxE~ J Avg Sgrt Defta P Avg Sgrt Del H ~pmments: EPA Method 0010 from EPA SW-846 25 SAMPLE RECOVERY FIELD DATA EPA Method 0010 - HFPO Diener Acid Client Location/Plant Chemours Fayetteville, NC W.O. # Source &Location 15418.002.014.0001 VE South Stack ~.~~`~~ ~ Run No. 1 Sample Date ] /~►"/ ~~ Recovery Date `~- -~~— ~~ Sample I.D. Chemours - VE South -Scrubber- STK- 1 - M0010 - Analyst ~ `~ Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Empry HPLC H2O HPLC H2O I ~f (~j~ ~Silica GeI Final ~4 ~1.7 `~~~J ,~ /.~<~'.~~'.~ Initial ~goo goo (,~f~~.lS 300 Gain ~~l~1~•~7 Q ~2G ~ ;, I'~~ ~ Impinger Color ~ (',~ ~-'zc.~ Labeled? r~ Silica Gel Condition ~ Sealed? J Run No. 2 Sample Date ; /~ ~ ~~ Recovery Date ,~~/~~ ~' Sample I.D. Chemours - VE South -Scrubber - STK - 2 - M0010 - Analyst ~ Filter Number ~~ Impin er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Silica Gel Final ~ Q ~~ ~~~ ~~~~s (~ Initial ~goo goo ~~/~~ ~~~300 Gain ~(.~"" 5 .'~(~i ~~~~ ~~~ ~ ~~ ~ ka Impinger Color ~! ~~ Labeled? Silica Gel Condition ~ Sealed? Run No. 3 Sample Date ~ ~~ ~~ Recovery Date ~~ Sample I.D. Chemours - VE South -Scrubber - STK - 3 - M0010 - Analyst ~ Filter Number Impinger 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsEmptyHPLC H2O HPLC H2O Silica Gel Final ~~`~lQ ~~ ;Z„,"~,L Initial ~100 100 E.0r 300 Gain ~~ ~fl ~~a`~~ Impinger Color Labeled? Silica Gel Condition Sealed? Check COC for Sample IDs of Media Blanks~~~h ~~ ~~ l ~/~~~1 ~s~~~~~~~~~ ~~~~~ 26 Source Gas Analysis Data Sheet -Modified Method 3/3A Client t J Analyst Location/Plant K~'~ ~~ Date Source ~i ^ ~ Analyzer Make &Model ~~~~ S$'~$ ~~/U~J W.O. Number `Y ~~• D0~' Calibration 5 Calibration Gas Calibration Gas Analyzer AnalyzerAnalysis Value Value Response Response Number Soan p, f°/ 1 COQ (%1 O, (%1 COQ (%1 1 Zero ~ ~~<v t.C.~ 2 Mid ~2~a(~9.~~g ~ ~, ~'~~Q 3 Hi h ~~ . ~~~ /, (~~j f~_ t~~~~ ~. Average Analyzer Analyser Run Response Response Number Analysis Time p, (%) CO, (%) 1 Qg~&~~~l~l__~—~~ ~~ z nW~-, 55 ~ ~~,~z ~, b~ 3 ~ ~ ~ ~~ ~~~~ ~---~ ' lJ~-- Average ___,_________ Analyzer Analyzer Run Response Response Number Analysis Time Oz (%) CO? (%) 1 2 Average Cnan CvlintiPr ID Mid S.. ~~ ~ ~.y Hi h ~~ ~~'i~ `*Report all values to the nearest 0.1 percent 27 SAMPLE RECOVERY FIELD DATA Client C,~''+ W.O. # Location/Plant ~y~~ „` ~ ~urce 8~ Location ~. 17 Run No. ~ Sam le Date a'` '~P ~ ~ ~~ Recovery Date Sample I.D. Analyst ~, Filter Number Im in er 1 2 3 4 5 6 7 Im .Total 8 Total Contents Silica Gel Final ~~~i,~~ ~ _ ~ .~ Initial ~~ ~t~(~Q ~~ Gain d C~C7 -~'Ll ~Q ~ Impinger Color ~ Labeled? Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Im in er 1 2 3 4 5 6 7 Imp.Total 8 TotalContentsSilica Gel Final Initial Gain Impinger Color Labeled? Silip Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Mumber Im in er 1 2 3 4 5 6 7 Im .Total 8 Total Corrtents Silica Gel Final Initial Gain Impinger Color Labeled? Silica Gel Condition Sealed? ~~ Check COC for Sample IDs of Media Blanks 28 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 APPENDIX C LABORATORY ANALYTICAL REPORT Note: The complete analytical report is included on the attached CD. 29 ANALYTICAL REPORT Job Number: 140-15381-1 Job Description: VE South Stack Contract Number: LBIO-67048 For: Chemours Company FC, LLC The c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, DE 19713 Attention: Michael Aucoin _____________________________________________ Approved for release. Courtney M Adkins Project Manager I 6/4/2019 7:59 AM Courtney M Adkins, Project Manager I 5815 Middlebrook Pike, Knoxville, TN, 37921 (865)291-3000 courtney.adkins@testamericainc.com 06/04/2019 This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike, Knoxville, TN 37921 Tel (865) 291-3000 Fax (865) 584-4315 www.testamericainc.com 06/04/2019Page 1 of 18430 Table of Contents Cover Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Case Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 QC Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Client Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Default Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Surrogate Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 QC Sample Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Certification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Organic Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 LCMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 8321A_HFPO_Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 8321A_HFPO_Du QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 8321A_HFPO_Du Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 8321A_HFPO_Du ICAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 8321A_HFPO_Du CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 8321A_HFPO_Du Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 8321A_HFPO_Du LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 8321A_HFPO_Du Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 8321A_HFPO_Du Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 06/04/2019Page 2 of 18431 Table of Contents Method DV-LC-0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Method DV-LC-0012 QC Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Method DV-LC-0012 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Standards Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Method DV-LC-0012 CCAL Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Raw QC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 Method DV-LC-0012 Tune Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 Method DV-LC-0012 Blank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 Method DV-LC-0012 LCS/LCSD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 Method DV-LC-0012 Run Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 Method DV-LC-0012 Prep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 Shipping and Receiving Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Client Chain of Custody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 06/04/2019Page 3 of 18432         !"#$%&'%%#(          %)*)+,-(#.)##)*))/   0 %,)#              1 ))22#),))3,    45 !#5#.  6) 7 76) '5 #'589))**#: # #  #8$;': 5<5'7 )#5 5 -#))$*  #.#85)#: ' ')#8-: ; *#8$;': ;= *=8$;': >< >#<#.85)#: > >##85)#: > >)# > >.8-: 7 7#) 7 7#),8>'*3: != !##= = = 5'5 5.'585)#: 5 5,56)85)#: 5! 5.!#**#*.)**#33 ' -#'6.#8-: '= -#'6.=8-: '* <#?-. 06/04/2019Page 4 of 18433       !"#$%&'%%#(       %) * +,-!. , ,'/ %) * +,!.,0!.% ,'/ ,%.!/#1!#0 ,'/ ,%.!/#1!#020 ,'/ ,%.!/#1!#023, ,'/    %) *45 60'71%0)!#$#605 0'0/78*,090: ,%.!4 ,#%00.1!#0      ,'/4'2 ,#7 8 ;<%,70. + '= >? *  '2 ,#@A7 06/04/2019Page 5 of 18434       !"#$%&'%%#(             )   *&'%% +,-.  ) + $//$0  $/ $0 0    / )  1   &'%% +,-.  2) + $//$0  $/ $0 0    )  0&'%% +,-.  .!/3  45'5%+ ' + $//$0  $/ $0 0    )  &'%% +,-.   2-'+, )-467)8+ /-'%5 62' + $//$0  $/ $0 0    )  /  &'%% +,-/.  ) + $/ $0  $/ $0 0    * )      1&'%% +,-/.  2) + $/ $0  $/ $0 0    1 )  *&'%% +,-/.  .!/3  45'5%+ ' + $/ $0  $/ $0 0    )  &'%% +,-/.   2-'+, )-467)8+ /-'%5 62' + $/ $0  $/ $0 0    0 )  0 / &'%% +,- .  ) + $/ $0  $/ $0 0     )  / // / &'%% +,- .  2) + $/ $0  $/ $0 0    )  / &'%% +,- .  .!/3  45'5%+ ' + $/ $0  $/ $0 0    /)  / &'%% +,- .   2-'+, )-467)8+ /-'%5 62' + $/ $0  $/ $0 0 '9 +#,:; 06/04/2019Page 6 of 18435                                   !"!"       #      $"             % &'(" )  ! " #! " $ %& '          *          +,*  %  '*         -  %    ./012-         3 4   (! 567 89-   :9-;          %      .2<='77",>?>',.>1#@.A-2>'79&#?':2<652;:("752<<B82; :?52<<<C82;@  )        9-  22               9-  :;      %       %      % 52<<<C52<<B   % 52C5./01 &       )      %%  -   8@   )% '  &    )      % -   8@    * >  (  :>(;-  (  :-(;  ./012-        -               * >(-(%%   ./012-       * % %  *      *        06/04/2019Page 7 of 18436           !"#$%&'%%#(        !   !"#  $ %"  ) *)+* ,- .$ % $/) "     !   !"#  $ %"  )/   *0  .   &'%% )+12  30 $/) )/   0  &'%% )+12  31')+ 01456 $/) ) /   , 0      .&'%% )+1*2  30 $/) ) /    0  &'%% )+1*2  31')+ 01456 $/) ) /    0  * ** * &'%% )+1 2  30 $/) ) /   * 0  * &'%% )+1 2  31')+ 01456 $/) ) /23* - ,$ ) 283( $/) ) /%* - ,$* ) % $/) " &    !   !"#  $ %"  )/   0   ,&'%% )+12  0 $/) )/   0  *  &'%% )+1*2  0 $/) )/   -0  - * &'%% )+1 2  0 $/) )/23* - . $ ) 283( $/) )/%* - . $* ) % $/) " '    !   !"#  $ %"  )/   0  -&'%% )+12  2!*9 4/ $/) ) /   . 0  ,&'%% )+1*2  2!*9 4/ $/) ) /    0  * &'%% )+1 2  2!*9 4/ $/) ) /23* - .$ ) 283( $/) ) /%* - .$* ) % $/)   &('    !   !"#  $ %"  ) *) - .    0   ,&'%% )+12  0 $/) ) *) - ,   *0  .   &'%% )+12  30 $/) ) *) - .   0  -&'%% )+12  2!*9 4/ $/) )  *) - ,   0  &'%% )+12  31')+ 01456 $/) )  *) - .    0  *  &'%% )+1*2  0 $/) )  *) - ,   , 0      .&'%% )+1*2  30 $/) )  *) - .   . 0  ,&'%% )+1*2  2!*9 4/ $/) )  *) - ,    0  &'%% )+1*2  31')+ 01456 $/) )  *) - .    - 0  - * &'%% )+1 2  0 $/) )  *) - ,    0  * ** * &'%% )+1 2  30 $/) )  *) - .    0  * &'%% )+1 2  2!*9 4/ $/) )  *) - ,   * 0  * &'%% )+1 2  31')+ 01456 $/) )  *) - ,23* - ,$ ) 283( $/) )  *) - . 23* - . $ ) 283( $/) )  *) - .23* - .$ ) 283( $/) )  *) - ,%* - ,$* ) % $/) )  *) - . %* - . $* ) % $/) )  *) - .%* - .$* ) % $/) ': )#+;< 06/04/2019Page 8 of 18437          !"#$%&'%%#(     !" #$ # %&!% '()*++*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # $/0!12) * ) +$% $*$, -$ $,**  ! 3$ (! 34)/% %)5    6 7%                   + 1 !" #8 # %&!% '()*++*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # $/0!,12*). ) +$% $*$, -$ $,*  ! 3$ (! 34)/% %)5    6 7%                     , !" ##/+9 0::!  # %&!% '()*++*,   (-)*+*,,  ' %!% %  #.')+!$/0!  # $/0!2 )** ) * +$% $*$,** -$ $,*  ! 3$ (! 34)/% %)5    6 7%                      !" # 8 !"  05;<!+ : 58 # %&!% '()*++*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # /!0 1 2 )* ) +$% $*$, -$ $,*  ! 3$ (! 34)/% %)5    6 7%                      + !" +#$ # %&!% '()*+*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # $/0!++2)  ) , +$% $*$, -$ $,**.  ! 3$ (! 34)/% %)5    6 7% '3 1#456 06/04/2019Page 9 of 18438          !"#$%&'%%#(    + !" +#$ # %&!% '()*+*,   (-)*+*,,  ' %!% %                     1 !" +#8 # %&!% '()*+*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # $/0!12 )*. ) +$% $*$, -$ $,   ! 3$ (! 34)/% %)5    6 7%                    1  !" +##/+9 0::!  # %&!% '()*+*,   (-)*+*,,  ' %!% %  #.')+!$/0!  # $/0!2 ),* ) ,., +$% $*$,** -$ $,*  ! 3$ (! 34)/% %)5    6 7%                      !" +# 8 !"  05;<!+ : 58 # %&!% '()*+*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # /!0 1 2 )* ) +$% $*$, -$ $,  ! 3$ (! 34)/% %)5    6 7%                    , ,+ !" #$ # %&!% '()*+*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # $/0!21 )*- )  - +$% $*$, -$ $,*   ! 3$ (! 34)/% %)5    6 7%                  '3 1#456 06/04/2019Page 10 of 18439          !"#$%&'%%#(    ++++ !" #8 # %&!% '()*+*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # $/0!21 )*. ) +$% $*$, -$ $, .  ! 3$ (! 34)/% %)5    6 7%                     + !" ##/+9 0::!  # %&!% '()*+*,   (-)*+*,,  ' %!% %  #.')+!$/0!  # $/0!2 )** ) - +$% $*$,** -$ $,* .  ! 3$ (! 34)/% %)5    6 7%                    + + !" # 8 !"  05;<!+ : 58 # %&!% '()*+*,   (-)*+*,,  ' %!% %  #.')+!/$0! )/$0  # /!0 1 2 )* ) +$% $*$, -$ $,   ! 3$ (! 34)/% %)5    6 7%                  '3 1#456 06/04/2019Page 11 of 18440 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 APPENDIX D SAMPLE CALCULATIONS 41 SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010) Client: Chemours Plant: Fayetteville, NC Test Number: Run 3 Test Date: 05/23/19 Test Location: VE South Stack Test Period: 1341-1536 1. HFPO Dimer Acid concentration, lbs/dscf. W x 2.2046 x 10-9 Conc1 = ------------------------------ Vm(std) 59.5 x 2.2046 x 10-9 Conc1 = ------------------------------ 60.861 Conc1 = 2.16E-09 Where: W = Weight of HFPO Dimer Acid collected in sample in ug. Conc1 = Division Stack HFPO Dimer Acid concentration, lbs/dscf. 2.2046x10-9 = Conversion factor from ug to lbs. 2. HFPO Dimer Acid concentration, ug/dscm. Conc2 = W / ( Vm(std) x 0.02832) Conc2 = 59.5 / ( 60.861 x 0.02832 ) Conc2 = 34.53 Where: Conc2 = Division Stack HFPO Dimer Acid concentration, ug/dscm. 0.02832 = Conversion factor from cubic feet to cubic meters. 3. HFPO Dimer Acid mass emission rate, lbs/hr. MR1(Outlet)= Conc1 x Qs(std) x 60 min/hr MR1(Outlet)= 2.16E-09 x 12055 x 60 MR1(Outlet)= 1.56E-03 Where: MR1(Outlet)= Division Stack HFPO Dimer Acid mass emission rate, lbs/hr. 4. HFPO Dimer Acid mass emission rate, g/sec. MR2(Outlet)= PMR1 x 453.59 / 3600 MR2(Outlet)= 1.56E-03 x 453.59 /3600 MR2(Outlet)= 1.96E-04 Where: MR2(Outlet)= Division Stack HFPO Dimer Acid mass emission rate, g/sec. 453.6 = Conversion factor from pounds to grams. 3600 = Conversion factor from hours to seconds. 6/5/20192:51 PM 052219 VE South stack (version 1)42 EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS Client: Chemours Test Number: Run 3 Test Location: VE South Stack Facility: Fayetteville, NC Test Date: 05/23/19 Period: 1341-1536 1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf. delta H 17.64 x Y x Vm x ( Pb + ------------ ) 13.6 Vm(std)= -------------------------------------------- (Tm + 460) 1.533 17.64 x 1.0107 x 63.015 x ( 30.28 + --------------------- ) 13.6 Vm(std)= ------------------------------------------------------------ = 60.861 101.04 + 460 Where: Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf. Pb = Barometric Pressure, in Hg. delt H = Average pressure drop across the orifice meter, in H2O Tm = Average dry gas meter temperature , deg F. Y = Dry gas meter calibration factor. 17.64 = Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg. 13.6 = Specific gravity of mercury. 2. Volume of water vapor in the gas sample corrected to standard conditions, scf. Vw(std) = (0.04707 x Vwc) + (0.04715 x Wwsg) Vw(std) = ( 0.04707 x 27.0 ) + ( 0.04715 x 20.1 ) = 2.22 Where: Vw(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf. Vwc = Volume of liquid condensed in impingers, ml. Wwsg = Weight of water vapor collected in silica gel, g. 0.04707 = Factor which includes the density of water (0.002201 lb/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), ft3/ml. 0.04715 = Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute temperature at standard conditions (528 deg R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft3/g. 6/5/20192:51 PM 052219 VE South stack (version 1)43 3. Moisture content Vw(std) bws = ------------------------- Vw(std) + Vm(std) 2.22 bws = ------------------------- = 0.035 2.22 + 60.861 Where: bws = Proportion of water vapor, by volume, in the gas stream, dimensionless. 4. Mole fraction of dry gas. Md = 1 - bws Md = 1 - 0.035 = 0.965 Where: Md = Mole fraction of dry gas, dimensionless. 5. Dry molecular weight of gas stream, lb/lb-mole. MWd = ( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) ) MWd = ( 0.440 x 0.0 ) + ( 0.320 x 20.9 ) + (0.280 x ( 79.1 + 0.00 )) MWd = 28.84 Where: MWd = Dry molecular weight , lb/lb-mole. % CO2 = Percent carbon dioxide by volume, dry basis. % O2 = Percent oxygen by volume, dry basis. % N2 = Percent nitrogen by volume, dry basis. % CO = Percent carbon monoxide by volume, dry basis. 0.440 = Molecular weight of carbon dioxide, divided by 100. 0.320 = Molecular weight of oxygen, divided by 100. 0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100. 6. Actual molecular weight of gas stream (wet basis), lb/lb-mole. MWs = ( MWd x Md ) + ( 18 x ( 1 - Md )) MWs = ( 28.84 x 0.965 ) +( 18 ( 1 - 0.965 )) = 28.45 Where: MWs = Molecular weight of wet gas, lb/lb-mole. 18 = Molecular weight of water, lb/lb-mole. 6/5/20192:51 PM 052219 VE South stack (version 1)44 7. Average velocity of gas stream at actual conditions, ft/sec. Ts (avg) Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2 Ps x MWs 554 Vs = 85.49 x 0.84 x 0.38979 x ( -------------------- )^1/2 = 22.4 30.32 x 28.45 Where: Vs = Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg)1/2 85.49 = Pitot tube constant, ft/sec x ------------------------------------ (deg R)(in H2O) Cp = Pitot tube coefficient, dimensionless. Ts = Absolute gas stream temperature, deg R = Ts, deg F + 460. P(static) Ps = Absolute gas stack pressure, in. Hg. = Pb + -------------- 13.6 delt p = Velocity head of stack, in. H2O. 8. Average gas stream volumetric flow rate at actual conditions, wacf/min. Qs(act) = 60 x Vs x As Qs(act) = 60 x 22.4 x 9.62 = 12951 Where: Qs(act) = Volumetric flow rate of wet stack gas at actual conditions, wacf/min. As =Cross-sectional area of stack, ft2. 60 = Conversion factor from seconds to minutes. 9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min. Ps Qs(std) = 17.64 x Md x ----- x Qs(act) Ts 30.32 Qs(std) = 17.64 x 0.965 x -------------------- x 12951 554.3 Qs(std) =12055 Where: Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min. 6/5/20192:51 PM 052219 VE South stack (version 1)45 10. Isokinetic variation calculated from intermediate values, percent. 17.327 x Ts x Vm(std) I = ----------------------------------- Vs x O x Ps x Md x (Dn)2 17.327 x 554 x 60.861 I = -------------------------------------------------- = 103.1 22.4 x 96 x 30.32 x 0.965 x (0.300)^2 Where: I = Percent of isokinetic sampling. O = Total sampling time, minutes. Dn = Diameter of nozzle, inches. 17.327 = Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D2/4, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in2)(min) (deg R)(ft2)(sec) 6/5/20192:51 PM 052219 VE South stack (version 1)46 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 APPENDIX E EQUIPMENT CALIBRATION RECORDS 47 Pitot Tube Identification Number: Inspection Date 2/19/19 Individual Conducting Inspection Distance to A Plane (PA) - inches 0.46 PASS Distance to B Plane (PB) - inches 0.46 PASS Pitot OD (Dt) - inches 0.375 1.05 Dt < P < 1.5 Dt PA must Equal PB Q1 and Q2 must be < 10o B1 or B2 must be < 5o Z must be < 0.125 inches W must be < 0.03125 inches X must be > 0.75 inches Thermocouple meets the Distance Criteria in the adjacent figure Impact Pressure Opening Plane is above the Nozzle Entry Plane NO NA NO NA PASS PASS PASS Distance between Sample Nozzle and Pitot (X) - inches Thermocouple meets the Distance Criteria in the adjacent figure YES YES PASS NO YES NA 0 0 Angle of B1 from vertical A Tube- degrees (absolute)0 0 0.8 Horizontal offset between A and B Tubes (Z) - inches Vertical offset between A and B Tubes (W) - inches 0.004 0.015 PASS/FAIL Angle of B1 from vertical B Tube- degrees (absolute) PASS PASS PASS P-694 ks Angle of Q1 from vertical A Tube- degrees (absolute) Angle of Q2 from vertical B Tube- degrees (absolute) Type S Pitot Tube Inspection Data Form Are Open Faces Aligned Perpendicular to the Tube Axis YES NO PASS If all Criteria PASS Cp is equal to 0.84 Sample Probe Type S Pitot Tube Temperature Sensor Dt 2 inch Sample Probe Temperature Sensor Dt Type S Pitot Tube 3 inch 3/4 inch A B Face Opening Planes A B A B Q1 Q1 Q2 B B B A A A FlowFlow B1(+)B1(-) B2(+ or -) B1(+ or -) B-Side Plane AB PA PB A-Side PlaneDt X Sampling D Impact Pressure Opening Plane Nozzle Entry Plane W B A B A Z 48 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI79E15A00E4 Reference Number:160-401424145-1 Cylinder Number:CC157024 Cylinder Volume:150.5 CF Laboratory:124 - Plumsteadville - PA Cylinder Pressure:2015 PSIG PGVP Number:A12019 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Feb 26, 2019 Expiration Date:Feb 26, 2027 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 9.000 %9.018 %G1 +/- 0.6% NIST Traceable 02/26/2019 OXYGEN 12.00 %12.06 %G1 +/- 0.3% NIST Traceable 02/26/2019 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 061507 K014984 13.94 % CARBON DIOXIDE/NITROGEN 0.57%Jan 30, 2024 NTRM 16060507 CC401541 23.204 % OXYGEN/NITROGEN 0.2%Dec 24, 2021 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration HORIBA VA5011 T5V6VU9P NDIR CO2 NDIR Feb 12, 2019 SIEMENS OXYMAT 61 S01062 O2 PARAMAGNETIC Feb 18, 2019 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 6141 Easton Road Bldg 1 Plumsteadville, PA 18949 Airgas.com Signature on file Approved for Release Page 1 of 160-401424145-149 CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number:E03NI62E15A0224 Reference Number:82-401288925-1 Cylinder Number:ALM047628 Cylinder Volume:157.2 CF Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG PGVP Number:B52018 Valve Outlet:590 Gas Code:CO2,O2,BALN Certification Date:Sep 04, 2018 Expiration Date:Sep 04, 2026 Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates CARBON DIOXIDE 17.00 %17.05 %G1 +/- 0.7% NIST Traceable 09/04/2018 OXYGEN 21.00 %21.25 %G1 +/- 0.5% NIST Traceable 09/04/2018 NITROGEN Balance - CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 13060804 CC415400 24.04 % CARBON DIOXIDE/NITROGEN +/- 0.6%May 16, 2019 NTRM 09061420 CC273671 22.53 % OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Horiba VIA 510-CO2-19GYCXEG NDIR Aug 09, 2018 Horiba MPA 510-O2-7TWMJ041 Paramagnetic Aug 09, 2018 Triad Data Available Upon Request Airgas Specialty GasesAirgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com Signature on file Approved for Release Page 1 of 82-401288925-150 Date: 12/4/14-12/5/14Analyzer Type: Servomex - O2Model No: 4900Serial No: 49000-652921Calibration Span: 21.09 %Pollutant: 21.09% O2 - CC418692 CO2 (30.17% CC199689)0.00 -0.01 0.00 . NO (445 ppm CC346681)0.00 0.02 0.11 NO2 (23.78 ppm CC500749)NA NA NA N2O (90.4 ppm CC352661)0.00 0.05 0.24 CO (461.5 ppm XC006064B)0.00 0.02 0.00 SO2 (451.2 ppm CC409079)0.00 0.05 0.23 CH4 (453.1 ppm SG901795)NA NA NA H2 (552 ppm ALM048043)0.00 0.09 0.44 HCl (45.1 ppm CC17830)0.00 0.03 0.14 NH3 (9.69 ppm CC58181)0.00 0.01 0.03 1.20 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) 51 Date: 12/4/14-12/5/14Analyzer Type: Servomex - CO2Model No: 4900Serial No: 49000-652921Calibration Span: 16.65%Pollutant: 16.65% CO2 - CC418692 CO2 (30.17% CC199689)NA NA NA . NO (445 ppm CC346681)0.00 0.02 0.10 NO2 (23.78 ppm CC500749)0.00 0.00 0.02 N2O (90.4 ppm CC352661)0.00 0.01 0.04 CO (461.5 ppm XC006064B)0.00 0.01 0.00 SO2 (451.2 ppm CC409079)0.00 0.11 0.64 CH4 (453.1 ppm SG901795)0.00 0.07 0.44 H2 (552 ppm ALM048043)0.00 0.04 0.22 HCl (45.1 ppm CC17830)0.10 0.06 0.60 NH3 (9.69 ppm CC58181)0.00 0.02 0.14 2.19 < 2.5% (a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences. Chad Walker INTERFERENCE CHECK INTERFERENT GAS ANALYZER RESPONSE % OF CALIBRATION SPAN(a) TOTAL INTERFERENCE RESPONSE METHOD SPECIFICATION INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%) 52 Calibrator PM Meter Box Number 26 Ambient Temp 71 Date 18-Jan-19 Wet Test Meter Number P-2952 Temp Reference Source Dry Gas Meter Number 16300942 Setting in H20 (∆H) ft3 (Vw) ft3 (Vd) oF (Tw) Outlet, oF (Tdo) Inlet, oF (Tdi) Average, oF (Td) Time, min (O)Y ∆H 4.524 72.00 72.00 9.510 73.00 73.00 4.986 72.50 72.50 9.510 72.00 72.00 16.455 73.00 73.00 6.945 72.50 72.50 16.455 73.00 73.00 26.361 74.00 74.00 9.906 73.50 73.50 26.361 74.00 74.0036.233 76.00 76.00 9.872 75.00 75.00 36.233 76.00 76.00 46.119 77.00 77.00 9.886 76.50 76.50 Average 1.0107 2.0868 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter Tdi - Temp of the inlet gas of the dry gas meter Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter 1 2 3 4 5 6 31 31 31 31 31 31.0 0.2% 212 212 212 212 212 212.0 0.0% 931 931 931 931 931 931.0 0.1% 1830 1830 1830 1830 1830 1830.0 0.1% 1 - Channel Temps must agree with +/- 5oF or 3oC 2 - Acceptable Temperature Difference less than 1.5 % 2.0 10.0 2.053813.5 1.0044 Dry Gas Meter 71.0 0.5 71.0 1.0 Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Orifice Manometer Wet Test Meter Dry gas Meter Gas Volume 2.03417.0 71.0 72.5 13.3 Y - Ratio of accuracy of wet test meter to dry gas meter ∆H - Pressure differential across orifice 3.0 10.0 71.0 Temperatures Wet Test Meter 72.5 1.5 10.0 1.0083 5.0 71.0 11.3 1.0145 73.5 75.0 2.1596 2.044213.5 1.0156 16.0 1.0105 932 1832 Reference Temperature Select Temperature oC oF 212 32 Average Temperature Reading Thermocouple Simulator (Accuracy +/- 1oF) Temp Difference 2 (%) Temperature Reading from Individual Thermocouple Input 1 Channel Number 2.1423 Calibration Results Baro Press, in Hg ( Pb)29.79 76.5 ( )( ) ( ) ( ) 2 Vw O460tw 460tdPb H0317.0H 460tw6.13 HPbVd )460td(PbVwY   ∗+∗   +∗ ∆∗=∆ +∗  ∆+∗ +∗∗= ( )()( )()( )    + +−+=460FTempferenceRe 460FTempTest460FTempferenceReDiffTempo oo 53 Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN VE SOUTH STACK METER BOX NO. 26 05/22/2019 & 05/23/2019 Run 1 Run 2 Run 3 MWd = Dry molecular weight source gas, lb/lb-mole. 0.32 = Molecular weight of oxygen, divided by 100. 0.44 = Molecular weight of carbon dioxide, divided by 100. 0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100. % CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0 % O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9 MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 ))) MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 ))) MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 ) MWd = 28.84 28.84 28.84 Tma =Source Temperature, absolute(oR) Tm = Average dry gas meter temperature , deg F.84.0 93.1 101.0 Tma = Ts + 460 Tma = 83.96 + 460 Tma = 543.96 553.13 561.04 Ps = Absolute meter pressure, inches Hg. 13.60 = Specific gravity of mercury. delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.47 1.27 1.53 Pb = Barometric Pressure, in Hg.30.20 30.28 30.28 Pm = Pb + (delta H / 13.6) Pm = 30.2 + ( 1.46791666666667 / 13.6) Pm = 30.31 30.37 30.39 Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.60.826 57.096 63.015 Y = Dry gas meter calibration factor (based on full calibration)1.0107 1.0107 1.0107 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.2.0868 2.0868 2.0868 avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.2036 1.1219 1.2326 O = Total sampling time, minutes.96 96 96 Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H Yqa = ( 96.00 / 60.83 ) * SQRT ( 0.0319 * 543.96 * 29 ) / ( 2.09 * 30.31 * 28.84 ) * 1.20 Yqa = 1.578 * SQRT 503.216 / 1,823.903 * 1.20 Yqa = 0.9978 0.9981 1.0004 Diff = Absolute difference between Yqa and Y 1.28 1.25 1.02 Diff = (( Y - Yqa ) / Y ) * 100 Diff = (( 1.0107 - 0.998 ) / 1.0107 ) * 100 Average Diff = 1.18 Allowable = 5.0 6/5/20192:52 PM 052219 VE South stack (version 1)54 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 APPENDIX F LIST OF PROJECT PARTICIPANTS 55 IASDATA\CHEMOURS\15418.002.009\VE SOUTH REPORT MAY 2019 - AMD 6/18/2019 The following Weston employees participated in this project. Jeff O’Neill Senior Project Manager Kris Ansley Team Member Kyle Schweitzer Team Member Nick Guarino Team Member 56