HomeMy WebLinkAbout2019.04.10_CCO.p8_Fluoromonomers Manufacturing Process Division Stack And Blower Intake Emissions Test ReportIASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019
FLUOROMONOMERS
MANUFACTURING PROCESS
DIVISION STACK AND BLOWER INTAKE
EMISSIONS TEST REPORT
TEST DATES: 26-28 FEBRUARY, 1 MARCH 2019
THE CHEMOURS COMPANY
FAYETTEVILLE, NORTH CAROLINA
Prepared for:
THE CHEMOURS COMPANY
22828 NC Hwy 87 W
Fayetteville, North Carolina 28306
Prepared by:
WESTON SOLUTIONS, INC.
1400 Weston Way
P.O. Box 2653
West Chester, Pennsylvania 19380
April 2019
W.O. No. 15418.002.010
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 i
TABLE OF CONTENTS
Section Page
1. INTRODUCTION..............................................................................................................1
1.1 FACILITY AND BACKGROUND INFORMATION ...........................................1
1.2 TEST OBJECTIVES ...............................................................................................1
1.3 TEST PROGRAM OVERVIEW .............................................................................1
2. SUMMARY OF TEST RESULTS ...................................................................................3
3. PROCESS DESCRIPTIONS ............................................................................................5
3.1 FLUOROMONOMERS ..........................................................................................5
3.2 PROCESS OPERATIONS AND PARAMETERS .................................................5
4. DESCRIPTION OF TEST LOCATIONS .......................................................................7
4.1 DIVISION STACK ..................................................................................................7
4.2 BLOWER INTAKE .................................................................................................9
5. SAMPLING AND ANALYTICAL METHODS ...........................................................11
5.1 STACK GAS SAMPLING PROCEDURES .........................................................11
5.1.1 Pre-Test Determinations .........................................................................11
5.2 STACK PARAMETERS .......................................................................................11
5.2.1 EPA Method 0010...................................................................................11
5.2.2 EPA Method 0010 Sample Recovery .....................................................14
5.2.3 EPA Method 0010 Sample Analysis.......................................................17
5.3 GAS COMPOSITION ...........................................................................................18
6. DETAILED TEST RESULTS AND DISCUSSION .....................................................20
APPENDIX A PROCESS OPERATIONS DATA
APPENDIX B RAW AND REDUCED TEST DATA
APPENDIX C LABORATORY ANALYTICAL REPORT
APPENDIX D SAMPLE CALCULATIONS
APPENDIX E EQUIPMENT CALIBRATION RECORDS
APPENDIX F LIST OF PROJECT PARTICIPANTS
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 ii
LIST OF FIGURES
Title Page
Figure 4-1 Division Stack Test Port and Traverse Point Location ................................................ 8
Figure 4-2 Blower Intake Sampling Location .............................................................................. 10
Figure 5-1 EPA Method 0010 Sampling Train ............................................................................. 13
Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010 ......................... 16
Figure 5-3 WESTON Sampling System ...................................................................................... 19
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 iii
LIST OF TABLES
Title Page
Table 1-1 Sampling Plan for Division Stack and Blower Intake Testing ....................................... 2
Table 2-1 Summary of Division Stack HFPO Dimer Acid Test Results ........................................ 3
Table 2-2 Summary of Division Stack and Blower Intake HFPO Dimer Acid Test Results ......... 4
Table 3-1 Test Campaign Process Conditions ................................................................................ 6
Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Division Stack – Runs 1-8
............................................................................................................................................... 21
Table 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Blower Intake – Runs 1-8
............................................................................................................................................... 23
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 1
1. INTRODUCTION
1.1 FACILITY AND BACKGROUND INFORMATION
The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina,
approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site
include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas,
Wastewater Treatment, and Powerhouse.
Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride,
captured as HFPO Dimer Acid, emission testing on the Division Stack at the facility.
Simultaneously, ambient air sampling was conducted at the Blower Intake. Testing was
performed on 26-28 February and 1 March 2019 and generally followed the “Emission Test
Protocol” reviewed and approved by the North Carolina Department of Environmental Quality
(NCDEQ). This report provides the results from the emission test program.
1.2 TEST OBJECTIVES
The specific objectives for this test program were as follows:
Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid
Fluoride from the Division stack which is located in the Fluoromonomers process area.
Measure the ambient air concentration of HFPO Dimer Acid Fluoride at the Blower
Intake which supplies room air to the Fluoromonomers process building.
Monitor and record process and emissions control data in conjunction with the test
program.
Provide representative emissions data.
1.3 TEST PROGRAM OVERVIEW
During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer
Acid were measured at two locations.
Table 1-1 provides a summary of the test locations and the parameters that were measured along
with the sampling/analytical procedures that were followed.
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 2
Section 2 provides a summary of test results. A description of the processes is provided in
Section 3. Section 4 provides a description of the test location. The sampling and analytical
procedures are provided in Section 5. Detailed test results and discussion are provided in
Section 6.
Appendix C includes the summary reports for the laboratory analytical results. The full
laboratory data package is provided in electronic format and on CD with each hard copy.
Table 1-1
Sampling Plan for Division Stack and Blower Intake Testing
Sampling Point & Location Division Stack and Blower Intake
Number of Tests: 16 (8 Division Stack, 8 Blower Intake)
Parameters To Be Tested: HFPO Dimer
Acid
(HFPO-DA)
Volumetric
Flow Rate and
Gas Velocity
Carbon
Dioxide
Oxygen Water Content
Sampling or Monitoring Method EPA M-0010 EPA M1, M2,
M3A, and M4
in conjunction
with M-0010
tests
EPA M3/3A EPA M4 in
conjunction
with M-0010
tests
Sample Extraction/ Analysis Method(s): LC/MS/MS NA6 NA NA
Sample Size ≥ 1.5m3 NA NA NA NA
Total Number of Samples Collected1 16 8 8 8 8
Reagent Blanks (Solvents, Resins)1 1 set 0 0 0 0
Field Blank Trains1 0 per source 0 0 0 0
Proof Blanks1 1 per train 0 0 0 0
Trip Blanks1,2 1 set 0 0 0
Lab Blanks 1 per fraction3 0 0 0 0
Laboratory or Batch Control Spike Samples
(LCS) 1 per fraction3 0 0 0 0
Laboratory or Batch Control Spike Sample
Duplicate (LCSD) 1 per fraction3 0 0 0 0
Media Blanks 1 set4 0 0 0 0
Isotope Dilution Internal Standard Spikes Each sample 0 0 0 0
Total No. of Samples 205 8 8 8 8
Key:
1 Sample collected in field.
2 Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.
3 Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).
4 One set of media blank archived at laboratory at media preparation.
5 Actual number of samples collected in field.
6 Not applicable.
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 3
2. SUMMARY OF TEST RESULTS
A total of eight test runs each were performed on the Division Stack and Blower Intake. Table 2-
1 provides a summary of the HFPO Dimer Acid emissions test results. The Blower Intake sample
location only measured the HFPO Dimer Acid concentrations of ambient air entering the blower.
Table 2-2 provides a comparison of the HFPO Dimer Acid concentrations at the Blower Intake
and the Division Stack. Detailed test results summaries are provided in Section 6.
It is important to note that emphasis is being placed on the characterization of the emissions
based on the stack test results. Research conducted in developing the protocol for stack testing
HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid
realized that the resulting testing, including collection of the air samples and extraction of the
various fraction of the sampling train, would result in all three compounds being expressed as
simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer
Acid results provided on Table 2-1 and 2-2, and in this report, include a percentage of each of the
three compounds.
Table 2-1
Summary of Division Stack HFPO Dimer Acid Test Results
Source Run No. Emission Rates
g/sec lb/hr
Division Stack 1 1.47E-02 1.17E-01
2 1.96E-03 1.56E-02
3 1.36E-03 1.08E-02
4 1.51E-02 1.20E-01
5 1.91E-02 1.51E-01
6 5.30E-03 4.21E-02
7 1.32E-02 1.05E-01
8 2.20E-03 1.75E-02
Average 9.12E-03 7.24E-02
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 4
Table 2-2
Summary of Division Stack and Blower Intake HFPO Dimer Acid Test Results
Run No. Division Stack Blower Intake
lb/dscf lb/dscf
1 6.87E-08 1.55E-11
2 9.22E-09 7.66E-12
3 6.41E-09 1.31E-11
4 7.06E-08 1.07E-11
5 8.87E-08 1.22E-11
6 2.44E-08 5.79E-11
7 6.01E-08 1.41E-11
8 1.00E-08 6.17E-12
Average 4.23E-08 1.72E-11
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 5
3. PROCESS DESCRIPTIONS
The Fluoromonomers area is included in the scope of this test program.
3.1 FLUOROMONOMERS
These facilities produce a family of fluorocarbon compounds used to produce Chemours
products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers.
Process emissions are vented to the Division waste gas scrubber system (which includes the
secondary scrubber) and vents to the Carbon Bed and then onto the Division Stack.
The Blower Intake is located on the rooftop of the Fluormonomers Process building and provides
room air to the building’s HVAC system.
The VE North building air systems are also vented to the Carbon Bed and connected to the
Tower Exhaust Blower.
3.2 PROCESS OPERATIONS AND PARAMETERS
The following table is a summary of the operation and products from the specific areas tested.
Source Operation/Product Batch or Continuous
Division PPVE Condensation is a continuous. Agitated Bed Reactor and Refining are batch.
During the test program, the following parameters were monitored by Chemours and are
included in Appendix A.
Fluoromonomers Process
o VEN Precurser Rate
o VEN Condensation Rate
o VEN ABR Rate
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 6
The following table provides a summary of the process conditions established for each of the
eight test runs:
Table 3-1
Test Campaign Process Conditions
Run No. Date ABR
1 2/26/19 Feeding
2 2/26/19 Burnout
3 2/27/19 Off
4 2/27/19 Feeding
5 2/28/19 Feeding
6 2/28/19 Burnout
7 3/1/19 Feeding
8 3/1/19 Burnout
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 7
4. DESCRIPTION OF TEST LOCATIONS
4.1 DIVISION STACK
Two 6-inch ID test ports were installed on the 36-inch ID fiberglass stack as shown below. The
four vents that enter the top of the stack and the one vent ~11 feet below are catch pots which,
under normal process operations, do not discharge to the stack. They are used to vent process gas
to the stack in the event of a process upset and are not considered a flow contributor or a
disturbance.
Per EPA Method 1, a total of 12 traverse points (six per axis) were used for M-0010 isokinetic
sampling. Figure 4-1 provides a schematic of the test ports and traverse point locations.
Location Distance from Flow Disturbance Downstream (B) Upstream (A) Division Stack 30 feet > 10 duct diameters 9 feet > 3 diameters
36 "
TRAVERSE
POINT
NUMBER
DISTANCE FROM
INSIDE NEAR
WALL (INCHES)
1
2
3
4
5
6
FIGURE 4-1
DIVISION STACK TEST PORT
AND TRAVERSE POINT LOCATIONS
IASDATA\CHEMOURS\15418.002.010\FIGURE 4-1 DIVISION STACK8
~ 9 '
BUILDING
EXHAUST
ID FAN
DISCHARGE
CATCH POT
~
~
~
~~~~~
CATCH POT VENTS
DRAWING NOT TO SCALE
~ 30 '
~ 128 "
1 5/8
5 3/8
10 7/8
26
31 5/8
33 3/8
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 9
4.2 BLOWER INTAKE
The Blower Intake is shown in Figure 4-2. Several air filters are located inside of the metal
housing prior to the blower. The underside of the Blower Intake housing is open to allow the free
flow of air into the system. The Method 0010 sample train probe was located below the metal
housing and close to the inlet of the air filters.
10
Figure 4-2
Blower Intake Sampling Location
IASDATA\CHEMOURS\15418.002.010\FIGURE 4-2 DIVISION STACK
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 11
5. SAMPLING AND ANALYTICAL METHODS
5.1 STACK GAS SAMPLING PROCEDURES
The purpose of this section is to describe the stack gas emissions sampling trains and to provide
details of the stack sampling and analytical procedures utilized during the emissions test
program.
The sample train used at the Blower Intake location was the same configuration as the standard
Method 0010 described below. However, the sample train was only positioned at a single
location below the Blower Intake air filters, was not moved during the test, and was sampled at a
constant rate.
5.1.1 Pre-Test Determinations
Preliminary test data were obtained at each test location. Stack geometry measurements were
measured and recorded, and traverse point distances verified. A preliminary velocity traverse
was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine
velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel
meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was
estimated by wet bulb/dry bulb temperature measurements.
A check for the presence or absence of cyclonic flow was previously conducted at the test
location. The cyclonic flow checks were negative (< 20°) verifying that the test location was
acceptable for testing.
Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic
sampling procedures.
Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement
devices was performed as specified in Section 5 of EPA Method 5 test procedures.
5.2 STACK PARAMETERS
5.2.1 EPA Method 0010
The sampling train utilized to perform the HFPO Dimer Acid sampling at the outlet location was
an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 12
that attached directly to a heated borosilicate probe. In order to minimize possible thermal
degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack
temperature to minimize water vapor condensation before the filter. The probe was connected
directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.
VENTWALLICE WATER RECIRCULATION PUMPCONDENSATE TRAPIMPINGERSICE BATHVACUUM LINEMAINVALVETEMPERATURESENSORSBY-PASS VALVEAIR-TIGHT PUMPDRY GAS METERORIFICEMANOMETERCHECKVALVETEMPERATURESENSORHEATED AREAFILTER HOLDERORIFICESILICA GELCONDENSERXAD-2 SORBENTMODULES ONE AND TWOTEMPERATURESENSORTEMPERATURESENSORVACUUMGAUGEIASDATA\CHEMOURS\15418.002.010\FIGURE 5-1 METHOD 0010FIGURE 5-1EPA METHOD 0010 SAMPLING TRAINHEATED PROBE/BUTTON HOOKNOZZLEREVERSE TYPEPITOT TUBE13 NOTE: THE CONDENSER MAY BE POSITIONED HORIZONTALLY. THE XAD-2 SORBENT MODULE WILL ALWAYS BE IN A VERTICAL POSITION..RIGID BOROSILICATE TUBINGOR FLEXIBLE SAMPLE LINEICE WATERRECIRCULATIONCONDENSATE TRAPIMPINGER
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 14
A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a
Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing
approximately 40 g of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet
temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and
a series of two impingers that contained 100 mL of high purity distilled water. The train also
included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling
train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap.
The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the
condensate traps were maintained in an ice bath. Ice water was continuously circulated in the
condenser and both XAD-2 modules to maintain method-required temperature. A control console
with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected
to the final impinger via an umbilical cord to complete the sample train.
HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to
be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO
Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and
during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount
of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride
and HFPO Dimer Acid.
During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube
into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was
observed immediately after positioning the nozzle at each traverse point, and the sampling rate
adjusted to maintain isokineticity at 100% ± 10. Flue gas temperature was monitored at each
point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each
traverse point during all test periods, as appropriate. Leak checks were performed on the
sampling apparatus according to reference method instructions, prior to and following each run,
component change (if required) or during midpoint port changes.
5.2.2 EPA Method 0010 Sample Recovery
At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the
components transported to the field laboratory trailer for recovery.
A consistent procedure was employed for sample recovery:
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 15
1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were
sealed and labeled.
2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a
polyethylene container along with any loose particulate and filter fragments.
3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the
filter holder were rinsed with a solution of methanol and ammonium hydroxide into a
polyethylene container while brushing a minimum of three times until no visible
particulate remains. Particulate adhering to the brush was rinsed with methanol/
ammonium hydroxide into the same container. The container was sealed.
4. The volume of liquid collected in the first condensate trap was measured, the value
recorded, and the contents poured into a polyethylene container.
5. All train components between the filter exit and the first condensate trap were rinsed with
methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene
container and sealed.
6. The volume of liquid in impingers one and two, and the second condensate trap, were
measured, the values recorded, and the sample was placed in the same container as Step 4
above, then sealed.
7. The two impingers, condensate trap, and connectors were rinsed with methanol/
ammonium hydroxide. The solvent sample was placed in a separate polyethylene
container and sealed.
8. The silica gel in the final impinger was weighed and the weight gain value recorded.
9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter
and distilled water were retained for analysis.
Each container was labeled to clearly identify its contents. The height of the fluid level was
marked on the container of each liquid sample to provide a reference point for a leakage check
during transport. All samples were maintained cool.
See Figure 5-2 for a schematic of the Method 0010 sample recovery process.
IASDATA\CHEMOURS\15418.002.010\FIGURE 5-2 EPA 0010FIGURE 5-2HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010NOZZLE, PROBE ANDFRONT-HALF FILTER HOLDERSAMPLE FRACTION 2FILTERSAMPLE FRACTION 1BACK-HALF FILTER HOLDER CONNECTORS, FLEXIBLE LINE CONDENSER SAMPLE FRACTION 5XAD-2 MODULE ONESAMPLE FRACTION 3REMOVE FROM IMPINGER TRAINWASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDESEAL IN LABELED POLYETHYLENE BOTTLE. COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLWASH WHILE BRUSHING WITH NANOGRADE METHANOL/ AMMONIUM HYDROXIDESEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOLTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLSEAL WASHINGS IN LABELED POLYETHYLENE BOTTLE. MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 4IMPINGER NO. 4 (SILICA GEL)WEIGH AND RECORDMEASURE VOLUME OF LIQUID AND RECORDTRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOL16WEIGH AND RECORDRETAIN FOR REGENERATIONFIRST AND SECOND CONDENSATE TRAPS AND IMPINGER NOS. 1 AND 2SAMPLE FRACTION 6WASH WITH NANOGRADE METHANOL/AMMONIUM HYDROXIDETRANSFER WASHINGS TO POLYETHYLENE BOTTLE; LABEL, SEAL AND MARK LIQUID LEVEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AND KEEP COOLXAD-2 MODULE TWOSAMPLE FRACTION 7REMOVE FROM IMPINGER TRAINSEAL ENDS WITH GLASS CAPS, COVER, LABEL, COMPLETE CUSTODY FORM, SECURE SAMPLE AT AND KEEP COOL
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 17
5.2.3 EPA Method 0010 Sample Analysis
Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid
analysis according to SW-846 Method 3542:
Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and
front-half of the filter holder solvent rinses;
Back-half Composite—comprised of the first XAD-2 resin material and the back-half of
the filter holder with connecting glassware solvent rinses;
Condensate Composite—comprised of the aqueous condensates and the contents of
impingers one and two with solvent rinses;
Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of
impingers.
The second XAD-2 resin material was analyzed separately to evaluate any possible sampling
train HFPO-DA breakthrough.
The front-half and back-half composites and the second XAD-2 resin material were placed in
polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18
hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid
chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was
concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the
cartridge using methanol. Portions of those extracts were also processed analytically by
HPLC/MS/MS.
Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their
preparation to provide accurate assessments of the analytical recoveries. Final data was corrected
for IDA standard recoveries.
TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO
Dimer Acid. These procedures were incorporated into the test protocol.
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 18
5.3 GAS COMPOSITION
The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon
dioxide (CO2) and oxygen (O2) concentrations. A diagram of the Weston sampling system is
presented in Figure 5-3.
The sample was collected at the exhaust of the Method 0010 sampling system. At the end of the
line, a tee permitted the introduction of calibration gas. The sample was drawn through a heated
Teflon® sample line to the sample conditioner. The output from the sampling system was
recorded electronically, and one minute averages were recorded and displayed on a data logger.
Each analyzer was set up and calibrated internally by introduction of calibration gas standards
directly to the analyzer from a calibration manifold. The calibration manifold is designed with an
atmospheric vent to release excess calibration gas and maintained the calibration at ambient
pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range
gases with appropriate adjustments until the desired responses were obtained. The high-range
standards were then introduced in sequence without further adjustment.
The sample line integrity was verified by performing a bias test before and after each test period.
The sampling system bias test consisted of introducing the zero gas and one up-range calibration
standard in excess to the valve at the probe end when the system was sampling normally. The
excess calibration gas flowed out through the probe to maintain ambient sampling system
pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure.
Instrument bias check response was compared to internal calibration responses to insure sample
line integrity and to calculate a bias correction factor after each run using the ratio of the
measured concentration of the bias gas certified by the calibration gas supplier.
The oxygen and carbon dioxide content of each stack gas was measured according to EPA
Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex
Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model
4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both
analyzers were calibrated with EPA Protocol gases prior to the start of the test program and
performance was verified by sample bias checks before and after each test run.
HEATEDSAMPLEPROBESTACK WALLHEATED FILTERHOLDER OR METHOD0010 SAMPLE TRAINHEATED SAMPLE LINESAMPLECONDITIONINGSYSTEMMOISTUREREMOVALVENTCO2O2GASANALYZERSACQUISTIONINTERFACEANALOGSIGNALLINECOMPUTER FOR DATAACQUISITION ANDREDUCTIONSAMPLEPUMPCALIBRATIONGASES= ON / OFF VALVECALIBRATION BIAS LINEFIGURE 5-3WESTON SAMPLING SYSTEMIASDATA\CHEMOURS\15418.002.010\FIGURE 5-3 WESTON SAMPLING SYSTEM219
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019 20
6. DETAILED TEST RESULTS AND DISCUSSION
Each test was a minimum of 96 minutes in duration. A total of eight test runs were performed at
each location.
Tables 6-1 and 6-2 provide detailed test data and test results for the Division stack and Blower
Intake, respectively.
The Method 3A sampling indicated that the O2 and CO2 concentrations were at ambient air
levels (20.9% O2, 0% CO2), therefore, 20.9% O2 and 0% CO2 values were used in all
calculations.
TABLE 6-1
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
DIVISION STACK
Test Data
Run number 1 2 3
Location Divison Stack Divison Stack Divison Stack
Date 2/26/19 2/26/19 2/27/19
Time period 0927-1143 1335-1530 0840-1035
SAMPLING DATA:
Sampling duration, min.96.0 96.0 96.0
Nozzle diameter, in.0.160 0.160 0.160
Cross sectional nozzle area, sq.ft.0.000140 0.000140 0.000140
Barometric pressure, in. Hg 30.19 30.10 30.12
Avg. orifice press. diff., in H2O 1.05 1.04 1.01
Avg. dry gas meter temp., deg F 68.7 74.3 54.8
Avg. abs. dry gas meter temp., deg. R 529 534 515
Total liquid collected by train, ml 25.2 20.2 18.7
Std. vol. of H2O vapor coll., cu.ft.1.2 1.0 0.9
Dry gas meter calibration factor 1.0069 1.0069 1.0069
Sample vol. at meter cond., dcf 52.225 52.835 51.040
Sample vol. at std. cond., dscf (1)53.107 53.006 53.177
Percent of isokinetic sampling 99.0 99.3 99.8
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.1 0.1 0.1
O2, % by volume, dry basis 20.8 20.8 20.8
N2, % by volume, dry basis 79.1 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.85 28.85 28.85
H20 vapor in gas stream, prop. by vol.0.022 0.018 0.016
Mole fraction of dry gas 0.978 0.982 0.984
Molecular wt. of wet gas, lb/lb mole 28.61 28.66 28.67
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:
Static pressure, in. H2O -0.70 -0.70 -0.70
Absolute pressure, in. Hg 30.14 30.05 30.07
Avg. temperature, deg. F 65 73 70
Avg. absolute temperature, deg.R 525 533 530
Pitot tube coefficient 0.84 0.84 0.84
Total number of traverse points 12 12 12
Avg. gas stream velocity, ft./sec.67.3 68.0 67.4
Stack/duct cross sectional area, sq.ft.7.07 7.07 7.07
Avg. gas stream volumetric flow, wacf/min.28544 28827 28576
Avg. gas stream volumetric flow, dscf/min.28291 28170 28117
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
4/2/2019 4:03 PM
21
02262019 Division 1-3
TEST DATA
Run number 1 2 3
Location Divison Stack Divison Stack Divison Stack
Date 2/26/19 2/26/19 2/27/19
Time period 0927-1143 1335-1530 0840-1035
CONDITION ABR Op. Burnout
Run
ABR Off
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 1656.00 221.72 154.60
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 1100.95 147.68 102.65
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 6.87E-08 9.22E-09 6.41E-09
EMISSION RESULTS, lb/hr.
HFPO Dimer Acid 1.17E-01 1.56E-02 1.08E-02
EMISSION RESULTS, g/sec.
HFPO Dimer Acid 1.47E-02 1.96E-03 1.36E-03
TABLE 6-1 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
DIVISION STACK
4/10/2019 9:44 AM
22
02262019 Division 1-3
TABLE 6-1 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
DIVISION STACK
Test Data
Run number 4 5 6
Location Divison Stack Divison Stack Divison Stack
Date 2/27/19 2/28/19 2/28/19
Time period 1231-1426 0823-1018 1429-1627
SAMPLING DATA:
Sampling duration, min.96.0 96.0 96.0
Nozzle diameter, in.0.160 0.160 0.160
Cross sectional nozzle area, sq.ft.0.000140 0.000140 0.000140
Barometric pressure, in. Hg 30.17 29.85 29.85
Avg. orifice press. diff., in H2O 1.06 0.98 1.10
Avg. dry gas meter temp., deg F 73.8 59.0 69.7
Avg. abs. dry gas meter temp., deg. R 534 519 530
Total liquid collected by train, ml 30.5 16.9 26.5
Std. vol. of H2O vapor coll., cu.ft.1.4 0.8 1.2
Dry gas meter calibration factor 1.0069 1.0069 1.0069
Sample vol. at meter cond., dcf 52.690 50.670 53.878
Sample vol. at std. cond., dscf (1)53.032 51.887 54.077
Percent of isokinetic sampling 98.6 96.3 99.2
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.1 0.1 0.1
O2, % by volume, dry basis 20.8 20.8 20.8
N2, % by volume, dry basis 79.1 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.85 28.85 28.85
H20 vapor in gas stream, prop. by vol.0.026 0.015 0.023
Mole fraction of dry gas 0.974 0.985 0.977
Molecular wt. of wet gas, lb/lb mole 28.56 28.68 28.60
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:
Static pressure, in. H2O -0.70 -0.70 -0.70
Absolute pressure, in. Hg 30.12 29.80 29.80
Avg. temperature, deg. F 75 70 76
Avg. absolute temperature, deg.R 535 530 536
Pitot tube coefficient 0.84 0.84 0.84
Total number of traverse points 12 12 12
Avg. gas stream velocity, ft./sec.69.2 68.6 70.8
Stack/duct cross sectional area, sq.ft.7.07 7.07 7.07
Avg. gas stream volumetric flow, wacf/min.29366 29099 30020
Avg. gas stream volumetric flow, dscf/min.28382 28433 28771
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
4/2/2019 4:06 PM
23
02262019 Division 4-6
TEST DATA
Run number 4 5 6
Location Divison Stack Divison Stack Divison Stack
Date 2/27/19 2/28/19 2/28/19
Time period 1231-1426 0823-1018 1429-1627
CONDITION ABR Op. ABR Op. Burnout Run
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 1699.08 2087.79 598.04
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 1131.18 1420.66 390.46
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 7.06E-08 8.87E-08 2.44E-08
EMISSION RESULTS, lb/hr.
HFPO Dimer Acid 1.20E-01 1.51E-01 4.21E-02
EMISSION RESULTS, g/sec.
HFPO Dimer Acid 1.51E-02 1.91E-02 5.30E-03
TABLE 6-1 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
DIVISION STACK
4/10/2019 9:52 AM
24
02262019 Division 4-6
TABLE 6-1 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
DIVISION STACK
Test Data
Run number 7 8
Location Divison Stack Divison Stack
Date 3/01/19 3/01/19
Time period 0813-1008 1237-1433
SAMPLING DATA:
Sampling duration, min.96.0 96.0
Nozzle diameter, in.0.160 0.160
Cross sectional nozzle area, sq.ft.0.000140 0.000140
Barometric pressure, in. Hg 29.99 29.99
Avg. orifice press. diff., in H2O 1.08 1.10
Avg. dry gas meter temp., deg F 53.9 64.9
Avg. abs. dry gas meter temp., deg. R 514 525
Total liquid collected by train, ml 16.9 24.9
Std. vol. of H2O vapor coll., cu.ft.0.8 1.2
Dry gas meter calibration factor 1.0069 1.0069
Sample vol. at meter cond., dcf 52.282 53.575
Sample vol. at std. cond., dscf (1)54.339 54.518
Percent of isokinetic sampling 98.3 98.9
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.1 0.1
O2, % by volume, dry basis 20.8 20.8
N2, % by volume, dry basis 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.85 28.85
H20 vapor in gas stream, prop. by vol.0.014 0.021
Mole fraction of dry gas 0.986 0.979
Molecular wt. of wet gas, lb/lb mole 28.69 28.62
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:
Static pressure, in. H2O -0.70 -0.70
Absolute pressure, in. Hg 29.94 29.94
Avg. temperature, deg. F 66 71
Avg. absolute temperature, deg.R 526 531
Pitot tube coefficient 0.84 0.84
Total number of traverse points 12 12
Avg. gas stream velocity, ft./sec.69.4 70.5
Stack/duct cross sectional area, sq.ft.7.07 7.07
Avg. gas stream volumetric flow, wacf/min.29452 29901
Avg. gas stream volumetric flow, dscf/min.29166 29094
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
4/2/2019 4:38 PM
25
02262019 Division 7-8
TEST DATA
Run number 7 8
Location Divison Stack Divison Stack
Date 3/01/19 3/01/19
Time period 0813-1008 1237-1433
CONDITION ABR Op. Burnout
Run
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 1480.24 248.02
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 961.80 160.62
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 6.01E-08 1.00E-08
EMISSION RESULTS, lb/hr.
HFPO Dimer Acid 1.05E-01 1.75E-02
EMISSION RESULTS, g/sec.
HFPO Dimer Acid 1.32E-02 2.20E-03
TABLE 6-1 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
DIVISION STACK
4/10/2019 10:19 AM
26
02262019 Division 7-8
TABLE 6-2
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
BLOWER INTAKE
Test Data
Run number 1 2 3
Location Blower Intake Blower Intake Blower Intake
Date 2/26/19 2/26/19 2/27/19
Time period 0927-1143 1335-1530 0840-1035
SAMPLING DATA:
Sampling duration, min.135.0 115.0 115.0
Nozzle diameter, in.0.365 0.365 0.365
Cross sectional nozzle area, sq.ft.0.000727 0.000727 0.000727
Barometric pressure, in. Hg 29.29 30.20 30.22
Avg. orifice press. diff., in H2O 3.00 3.00 3.00
Avg. dry gas meter temp., deg F 60.4 78.3 65.1
Avg. abs. dry gas meter temp., deg. R 520 538 525
Total liquid collected by train, ml 27.6 27.5 29.4
Std. vol. of H2O vapor coll., cu.ft.1.3 1.3 1.4
Dry gas meter calibration factor 1.0100 1.0100 1.0100
Sample vol. at meter cond., dcf 128.621 109.397 107.605
Sample vol. at std. cond., dscf (1)129.951 110.154 111.132
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.0 0.0 0.0
O2, % by volume, dry basis 20.9 20.9 20.9
N2, % by volume, dry basis 79.1 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84
H20 vapor in gas stream, prop. by vol.0.010 0.012 0.012
Mole fraction of dry gas 0.990 0.988 0.988
Molecular wt. of wet gas, lb/lb mole 28.73 28.71 28.70
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
4/2/2019 4:41 PM
27
02262019 Blower Intake 1-3
TEST DATA
Run number 1 2 3
Location Blower Intake Blower Intak Blower Intake
Date 2/26/19 2/26/19 2/27/19
Time period 0927-1143 1335-1530 0840-1035
CONDITION ABR Op. Burnout
Run
ABR Off
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 0.92 0.38 0.66
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 0.25 0.12 0.21
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 1.55E-11 7.66E-12 1.31E-11
TABLE 6-2 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
BLOWER INTAKE
4/10/2019 10:54 AM
28
02262019 Blower Intake 1-3
TABLE 6-2 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
BLOWER INTAKE
Test Data
Run number 4 5 6
Location Blower Intake Blower Intake Blower Intake
Date 2/27/19 2/28/19 2/28/19
Time period 1231-1426 0823-1018 1429-1627
SAMPLING DATA:
Sampling duration, min.115.0 0.6 118.0
Nozzle diameter, in.0.365 0.365 0.365
Cross sectional nozzle area, sq.ft.0.000727 0.000727 0.000727
Barometric pressure, in. Hg 30.17 29.95 29.95
Avg. orifice press. diff., in H2O 3.00 3.00 3.00
Avg. dry gas meter temp., deg F 73.6 63.4 81.8
Avg. abs. dry gas meter temp., deg. R 534 523 542
Total liquid collected by train, ml 45.9 40.7 36.4
Std. vol. of H2O vapor coll., cu.ft.2.2 1.9 1.7
Dry gas meter calibration factor 1.0100 1.0100 1.0100
Sample vol. at meter cond., dcf 106.883 106.308 110.497
Sample vol. at std. cond., dscf (1)108.454 109.171 109.630
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.0 0.0 0.0
O2, % by volume, dry basis 20.9 20.9 20.9
N2, % by volume, dry basis 79.1 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84
H20 vapor in gas stream, prop. by vol.0.020 0.017 0.015
Mole fraction of dry gas 0.980 0.983 0.985
Molecular wt. of wet gas, lb/lb mole 28.62 28.65 28.67
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
4/2/2019 4:43 PM
29
02262019 Blower Intake 4-6
TEST DATA
Run number 4 5 6
Location Blower Intake Blower Intake Blower Intake
Date 2/27/19 2/28/19 2/28/19
Time period 1231-1426 0823-1018 1429-1627
CONDITION ABR Op. ABR Op. Burnout Run
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 0.53 0.60 2.88
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 0.17 0.19 0.93
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 1.07E-11 1.22E-11 5.79E-11
TABLE 6-2 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
BLOWER INTAKE
4/10/2019 10:57 AM
30
02262019 Blower Intake 4-6
TABLE 6-2 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
BLOWER INTAKE
Test Data
Run number 7 8
Location Blower Intake Blower Intake
Date 3/1/19 3/1/19
Time period 0813-1008 1237-1433
SAMPLING DATA:
Sampling duration, min.115.0 115.0
Nozzle diameter, in.0.365 0.365
Cross sectional nozzle area, sq.ft.0.000727 0.000727
Barometric pressure, in. Hg 30.09 30.09
Avg. orifice press. diff., in H2O 3.00 3.00
Avg. dry gas meter temp., deg F 61.0 70.2
Avg. abs. dry gas meter temp., deg. R 521 530
Total liquid collected by train, ml 32.5 36.0
Std. vol. of H2O vapor coll., cu.ft.1.5 1.7
Dry gas meter calibration factor 1.0100 1.0100
Sample vol. at meter cond., dcf 105.079 106.831
Sample vol. at std. cond., dscf (1)108.916 108.807
GAS STREAM COMPOSITION DATA:
CO2, % by volume, dry basis 0.0 0.0
O2, % by volume, dry basis 20.9 20.9
N2, % by volume, dry basis 79.1 79.1
Molecular wt. of dry gas, lb/lb mole 28.84 28.84
H20 vapor in gas stream, prop. by vol.0.014 0.015
Mole fraction of dry gas 0.986 0.985
Molecular wt. of wet gas, lb/lb mole 28.69 28.67
(1)Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
4/2/2019 4:45 PM
31
02262019 Blower Intake 7-8
TEST DATA
Run number 7 8
Location Blower Intake Blower Intake
Date 3/1/19 3/1/19
Time period 0813-1008 1237-1433
CONDITION ABR Op. Burnout
Run
LABORATORY REPORT DATA, ug.
HFPO Dimer Acid 0.69 0.30
EMISSION RESULTS, ug/dscm.
HFPO Dimer Acid 0.23 0.10
EMISSION RESULTS, lb/dscf.
HFPO Dimer Acid 1.41E-11 6.17E-12
TABLE 6-2 (cont.)
CHEMOURS - FAYETTEVILLE, NC
SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS
BLOWER INTAKE
4/10/2019 10:58 AM
32
02262019 Blower Intake 7-8
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019
APPENDIX A
PROCESS OPERATIONS DATA
33
DateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowDateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowPPVE15000 kg/h75 kg/h98 kg/h140 kg/h125 kg/h145 kg/h1300140015001600Run 3Run 42/26/20198009001000110012002/27/2019Burnout15000 kg/h125 kg/h105 kg/h90 kg/h70 kg/h140015001600Run 1Run 2PPVE800900100011001200130034
DateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet FlowDateTimeStack TestingHFPOVEN ProductVEN PrecursorVEN Condensation (HFPO)VEN ABRVEN RefiningStripper Column VentDivision WGS Recirculation FlowDivision WGS Inlet Flow15000 kg/h120 kg/h80 kg/h 60 kg/h3/1/2019PPVEBurnout1300140015001600Run 7Run 82/28/2019800900100011001200Burnout15000 kg/h125 kg/h100 kg/h140015001600Run 5Run 6PPVE800900100011001200130035
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019
APPENDIX B
RAW AND REDUCED TEST DATA
36
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
DIVISION STACK
Test Data
Run number 1 2 3
Location Divison Stack Divison Stack Divison Stack
Date 2/26/19 2/26/19 2/27/19
Time period 0927-1143 1335-1530 0840-1035
Operator MW MW MW
Inputs For Calcs.
Sq. rt. delta P 1.20126 1.20298 1.19608
Delta H 1.0488 1.0367 1.0107
Stack temp. (deg.F)64.7 72.8 70.3
Meter temp. (deg.F)68.7 74.3 54.8
Sample volume (act.)52.225 52.835 51.040
Barometric press. (in.Hg)30.19 30.10 30.12
Volume H2O imp. (ml)10.0 3.0 6.0
Weight change sil. gel (g)15.2 17.2 12.7
% CO2 0.1 0.1 0.1
% O2 20.8 20.8 20.8
% N2 79.1 79.1 79.1
Area of stack (sq.ft.) 7.070 7.070 7.070
Sample time (min.)96.0 96.0 96.0
Static pressure (in.H2O)-0.70 -0.70 -0.70
Nozzle dia. (in.)0.160 0.160 0.160
Meter box cal.1.0069 1.0069 1.0069
Cp of pitot tube 0.84 0.84 0.84
Traverse points 12 12 12
4/2/2019 4:28 PM 02262019 Division 1-3
37
!j
ISOHINETIC FIELD DATA SI3EET EPA Method 0010 - HFPO Diener Acid Page~of~ a
client Chemours Stack Conditions Meter eox io ~ K FactorW.O.# 15418 Assum2d Actual Meter Box Y ~
Project ID cnemours °ro nnoisture t~ . ~ Mecer eox Lei H $ ~ Initial Mid-Point Final
Mode/Source ID Division Impinger Vol (ml)~J Probe ID /Length ~G~ ~ ,$~ ~ Sample Train (k')~
Samp. Loc. ID STK Silica gel (g)
~%t7
l,5, ~— Probe Material Boro Leak Check Q (in Hg)/ ~,,, t+
Run No.ID 1 CO2, % by Vol J Pitot /Thermocouple ID "] ^+,~ Pitot leak check good / ~o ! no / np
Test Method ID M0010 02, % by Vol ~~ Pitot Coefficient 0.84 Pftot Inspect}on good / rto— P ~4 / no J
Date ID
n_..___n _
25FE82019
e.~_..._.:__ ..._.....
Temperature (°F)
\I..~..~T....... iv~~r. . ~
NoaJe ID
.. _.
, ~~.~~7 Method 3 System good
~ R 1 / no / ~p / np
~uu~~x,~vcauun urvisrar ~~cR, ~~,~,a~ ~ =~~~N ~ ~ ~ ~ ~~ Nome nneasurements ~j 1 @(17P GhECK rre- i est Set F'OSt- I @St 58t
Sample Date ~ (p Static Press (in H2O) ~~ D Av Noale Dia in\7 9 ~~) ~ Meter Box Temp ;Z,,, ,
Baro. Press (in Hg) 3 I Area of Stack (ft2) Reference Temp S
Operator „ L y~ VAmbient Temp (°F) ~°"J^ y ~ Sample Time Pass/Fail (+/- 2°~ Fall a Fall
Total Traverse Pts JL Temp Change Response ; ! no s no
O'-r_ G~~
~~~~~~~a~~~~~~~~~~~~
~~~~~~~~«cfJ. ~~~~~'tL3~~i~~'~i'~~~7~~~~~~~~~bI7~-c~~~~7I,~~L''~i."~~~~~~~.'~~c~~~~'r:~~l~~L~~r ~~~~~ic~~t~/f►Z~~'L~i'~I~~:1.7~~~~+~~~~'~tlR~~~~. 'I~r~~i~~~`'~~~~
~~1~`~i~~1~7~~~ ~~~,i~~E~i~~L]~..~~0~~~~D~~~~~~+ ►~l~.~3t~«i1~m~~l~!►l~~~m~
-L~~~~~J~~+ ~F~~~~d~~ii~[Z~I~7~~~DE~~~~~i7~~~~~~~~1~~t~i~3J ~~L+]~tl*7~l~~iDE~r~~
~~~~~c~~:~s~■r~~~~~~a~~~~r~:.~~~m ..rmr~~~F~■~~~~~~~~«~,~ -~.~s~~rn~~~a~~~
i7~~~~6i~~~~~~7~~~~-r~~rlaE~~,iE~~~~~3'~J~~i~~«ii~~'1~3~J .•i7C~~~~ir.~~~~~1~
~~ii~i~~!~~~~.1C~~~t'1'~~~~`'~0~~~~~~ia~UL'~i~i~~1~~r7C?~~~~~~i'~7~~0~~~
W~•T`~ ~~I K v,:ZSo .o~,~J
Avg Sgrt Delta P Avg Sgrt Del H~
<,~a(~2 L~ t.a i 7.1a~'
..n.ni~a rvm umnn rvw m mun maJc vac~ ~~ ~~.~ ~m~lh'~ Ivy ~ S~9 y
EPA Method 0010 from'EPA SW-846
J ~~~38
ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HF~O Diener Acid Page ~
CNent Chemours Stack Conditions ►v~eter eox io
or~
w.o.#~sa~a Assumed Actual Meter Box Y K Factor b '~ I "~~Pro)ect Iv Chemours % nnoisture ~t Z, l.~Meter Box Del H L Initial Mid-Point FinalMode/Source ID Division Impinger Vol (mq ~Probe ID /Length ~j~~ay Sample Traln (ft3)(j ~'~~_
Samp. Loc. ID STK SiNca gel (g)j 7 Z Probe Material Boro Leak Check (c~ (in Hg)Fs ~+:"~'Run No.ID 2 CO2, % by Vol ~~pitot /Thermocouple ID (7~ Pitot leak check good / no (gyp / rpTest Method ID M0010 02, % by Vol ~ ~Pitot Coefficient 0.84 Pitot Inspection good / no / no / ~pDate ID
So r /L ti
25FE82019
DI 'slort Star
Temperature (°F)
Meter Tem ("F)
t-
-a —'NonJe ID Method 3 System good yes / po ygs' / flo s / nou ce oca on vi k P Noale Measurements Q~ ~ Temp Check Pfe- est et Post- est etSample Date `^~.,._ ~(, Static Press (in HZO) _ , ~/ Avg NoaJe Dia (in) ~/ Meter Box TempBaro. Press (fn Hg)`_'~ 3 '0 ) p~~ Area of Stack (ft2) ~/ Reference Temp p ~yOperator y 1 Nmbient Temp l~F) ~' W ~ Sample Time Pass/Fail (+/- 2°~ ss Falf ~ /Fait
12, . _ t ..r 1~ti1 ~:~ Total Traverse Pts / ' Temo Change Response r / no r~,
~~~~.~~—
~l~v~i>1~~~~1~E~~~i~~l~~t~~~~~E1.'-'~~~~~17~~r,~~i~'~~~i~3~l~~Il.~~~~~~0~~i~~~~5~«~' ~f~~~/~~f~~~~~~~~~~i~~i~~~~~~~►~~~~~0~~
~~~s~~~~«~~~~i~r- ~r~«~■~r~~
~~~~~~Y~~~~rRr~~~~~p~-
~~~~~~~r~~a~~~~~~~r~r~~~~i~~~~~~.~~~nrr~~~r~r~~~r~~■~~r~~~~~~~R~~~~~i~~- -r~om~~~~~~R~~~~.~r.~~r~r~~~~~~~~m~~~rr~~~~~~~~~~~~•~0■~~~
~"~~r~J~t~~■~i~~l~~I1~7/~~~fiit'~~~iis~~~~~fi~i1L'~F~~iII■~~• •~~l~~~~~5"F~~~~~i'~l~Z~~iZ'~~1:~~~~E~iO~~
..~~.~._.~ I i ys
~J~JI.~, Avg Sgrt CJ ~~z~~
r.~ a - ~ ~~ sz ~ - ~s~ ~yAvg Sgrt Del H Comments:
t~ x`12.2
r~ry rv~~~uman Inn ulvldR mdJl MdX V8C7'~ , 3 iof~ f63 ~~ ~~~3 H ~J ~(
EPA Method 0010 from EPA SW-846
39
ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Pam ! o,~
client Chamours Stack Conditions nneter sox i~
K Factorw.o.# 15418 Assumed Actual Meter eox r ~
Project ID Chemours %Moisture ~ ~' Meter Box Del H 8 Initial Mid-Point FinalMode/Source ID Division Impinger Vol (ml) ~ Probe ID (Length Sample Train (ft3) ,, ~
Samp. Loc. ID STK Silica gel (g) _~, +-L_ Probe Material Bpro Leak Check @ (in Hg) G' ~ ~„ ~—Run No.ID 3 CO2, °/ by Vol d • ~ V Pitot /Thermocouple ID Pitot leak check good / no / ~q / ,rpTest Method ID MOD10 02, % by Vol PRot Coefficient 0.84 Pitot Inspection good / no / no ~ ~pDate ID 25FEB2019 Temperature (°F) Noale ID l~ Method 3 System good yes / no / np yes / ~pSource/Location Alvislon Stack Meter Temp ("F) ~„ , j u Noale Measurements i ~ u Temp Check re- est et oSt- eSt etSample Date Static Press (in HZO) •~•U, N Avg Noale Dia (in) ~ Meter Box Temp (~
Baro. Press (in Hg) ~ 2 Area of Stack (ft2) '~ J Reference Temp ~Operator ~ ~~c;t is Ambient Temp (°F) /}. , j ~'~' Sample Time C+ Pass/Fail (+/- p°~ as ` FSII ,fail
Total Traverse Pts f ~ ~/ Temp Change Response i 1GAti no ~ no
~~~~~~:iC1'~'.~C.~G~t7-rte r~7~i~~~a~~~
~~-~~~~ r ~`=ice ~~~~~-
~~~-~~~i ~~~~~-
~~~3a1~~~a '~GF~+~%~t~I~I1~~i~~lS.'~~
~1~~L'~~~~~~i~[g7L'~~L'~=!~!~►»~~~~~del :~~' -~~`1~~~.7~rYr7 , .t~~~~0~~~~
~~~~~ '~~~y ~M7~~~~-
~~-~~~+lbi
~~~'~~/l~~/~L~-~7!~~~1~~i~i~
fi/I/~~~irt~~L:i~~~~~-~
~:flll~7~~~~~i~~
La~~
~~~—~~ ~f[il'~~f!~~~~~~0~—
i wi vu un vy i 5` '~ '~'~I I (07 1, c~ toy ~ , I ~,3~
Avg Sgrt DeR Avg Sgrt Del H Comments:'. Iq 6tr~ 9.~o taa
J MI ax MINMax Max Max VacIlan fR3 Ih.~,r~ ~ 4~ i~
EPA'Method 0010'~rom EPA SW-846
~~~40
SAMPLE RECOVERY FIELD DATA
EPA Method 0010 - HFPO Diener Acid
Client
Location/Plant
Chemours
Fayetteville, NC
W.O. #
Source &Location Division Stack
15418
Run No. 1 Sample Date ~-~~ ~+~ Recovery Date Z~1~
Sample I.D. Chemours -Gas - STK - 1 - M0010 - Analyst ~j~ Filter Number /L►~
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~C~~'t c~'~~~C~`'L
Initial ~100 100 ~300
Gain Z ~''~3 ! ~~~ Z
Impinger Color Labeled? 3 J
~~Silica Gel Condition Sealed?
Run No. 2 Sample Date ~2~1~ Recovery Date ~'Z-~ ~`~
~Sample I.D. Chemours -Gas - STK - 2 - M0010 - Analyst Filter Number /v~
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final r "j ~i7.
Initial i.~1 'goo goo ~soo
Gain '~''~3 ~'3 ~1 l . Z
Impinger Color ~•4~q,~r' Labeled?
Silica Gel Condition dCio~ Sealed?
Run No. 3 Sample Date 7~CZZ ~ ~ Recovery Date 2 2'~
Sample I.D. Chemours -Gas - STK - 3 - Mo010 - Analyst j~ ~'~' Filter Number
Impinger
1 2 3 4 5 6 7 Imp.Total S Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~~r3.~ 2.,
Initial ~100 100 (~300
Gain i ~j ^~'~']C2
Impinger Color '~"' Labeled?
Silica Gel Condition ~9 d 4 Sealed?
Check COC for Sample IDs of Media Blanks
41
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
DIVISION STACK
Test Data
Run number 4 5 6
Location Divison Stack Divison Stack Divison Stack
Date 2/27/19 2/28/19 2/28/19
Time period 1231-1426 0823-1018 1429-1627
Operator MW MW MW
Inputs For Calcs.
Sq. rt. delta P 1.22215 1.21328 1.24262
Delta H 1.0642 0.9783 1.0988
Stack temp. (deg.F)75.2 69.8 76.1
Meter temp. (deg.F)73.8 59.0 69.7
Sample volume (act.)52.690 50.670 53.878
Barometric press. (in.Hg)30.17 29.85 29.85
Volume H2O imp. (ml)14.0 3.0 7.0
Weight change sil. gel (g)16.5 13.9 19.5
% CO2 0.1 0.1 0.1
% O2 20.8 20.8 20.8
% N2 79.1 79.1 79.1
Area of stack (sq.ft.) 7.070 7.070 7.070
Sample time (min.)96.0 96.0 96.0
Static pressure (in.H2O)-0.70 -0.70 -0.70
Nozzle dia. (in.)0.160 0.160 0.160
Meter box cal.1.0069 1.0069 1.0069
Cp of pitot tube 0.84 0.84 0.84
Traverse points 12 12 12
4/2/2019 4:29 PM 02262019 Division 4-6
42
ISOHINETIC FIELD DATA SHEET
Client Chemours Stack Conditions
w.o.#~5aha Assumed
Protect ID Chemours %Moisture—
ModeJSource ID Division Impinger Vol (ml)
Samp. Loc. 1D STK Silica gel (g)
Run No.ID 4 CO2, % by Vol ~ ~;
Test Method ID M0010 02, % by Vol
EPA Method 0 10 - HFPO Diener Acid Pam of
Meter eox l0 2 K FactorActual Meter Box Y ~ 3 ~ ~i 3
'Meter Box Del H ~Z Initial Mid-Point Final{
Probe ID /Length Sample Train (ft')
Probe Material 8oro Leak Check Q (In Hg)
Pitot /Thermocouple ID Pitot leak check good
Pitot Coefficient 0.84 Pitot Inspection good
Date ID 25FEB2019 Temperature (F) ~y NoaJe ID (7 Method 3 System good
Source/Locatlon DiWsion Stack Meter Temp ("F) ,r.s~Noale Measurements {p Temp Check re- 2S e OS - I es eSample Date '7 Static Press (in H2O) ~ ~y p Avg NoaJe Dia (in) ~ ~ ~Meter Box Temp
Baro. Press (in Hg) -~ p `Area of Stack (ft2) '~:s, Li Reference Temp !
Operator ~ 4.Y .-(.Ambient Temp (°F) sj.. Vv Sample Tima Pass/Fafl (+/- z°~FaN Pass ' FaiF
Total Traverse Pts `Temp Change Response i ~ no yes r~~
ir7E~~irl~.~i~►~t-»Y:~"g7~~7~~,~~~~1'~~~~iL'~~~~~~~~-~~/~i~f~~F~i~Il~3~I~i~~~~L'~~~~~~~~~~«n~~~~~r~~~t~~~~~~~~~ic~~~~~~IN!~G~ii37m~i►~~~~1~~~~~~~~~~~f~~~G~~~~~~i1~~~.~~L''1~0~ir~~
~i'iL7~~~~~ii~,~ir'~Q+L~7~7~~LIE~L'L~~
~~~~~~~G~~~~~~~~~~~i~~~~~~• '~ir~i~~'~.c~~i~'z-~~~i'~~
~~—~~~~i_~i~~~iiiT/~La~L~~—~~~~i~~~—
~~—~~RW[~~R•1~~~~~~~~~m—~~~—~~/~LiY~~~~m~~m—
~~~~~~~~~r a~~~r~r~~~:a~~~~~a~p~~r~f~r~■~~...~_~_r~r~~~~~~~ . ~~ ~ I ~ j , ~~`~i I~Avg Sgrt Delta Avg Sgrt Del H
l,aa~ ~ s I, bd~1a,4~
im3 .~Marx Max Vac
7 ti
EPA Method EPA SW-846
~ ~~~~d~j'~1~~►
~~~~
`~.rte: '
J ~43
ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid Page~or~
client Chemours Stack Conditions Meter Box ID
w.o.#15418 Assumed Actual Meter Box Y
Project ID Chemours %Moisture ~'; Meter Box Del H
Mode/Source ID Division Impinger Vol (ml)
~
~__ Probe ID /Length
SBmp. Loc. ID STK SIAca gel (g)Probe Material
Run No.ID 5 CO2, % by Vol U, ~Pitot !Thermocouple ID
Test Method ID MQ010 02, % by Vol :Pitot Coefficient
Date ID 25FEB2019 Temperature (°F)Noale ID
Source/Location Divtslon Stack Meter Temp ("F)-~ S~NonJe Measurements
Sample Date Static Press (in H2~~Avg Noale Dia (in)
Baro. Press (in Hg)S Area of Stack (H2)
Operator /~.7 Ambient Temp (°F)r~ ~3 Sample Time
Total Traverse Pts
~2` ~~q, ~ K Factor ~~ 7~ `7
34 L Initial Mid-Point Final
,~ Sample Train (ft')
Born Leak Check (a~ Qn Hg)
S Pitot leak check good
0.84 Pitot Inspection good
Method 3 System good
~ ~r ~Cr~1+I+7~~i~t.
~~~~~~~
Al~:L•Llr'a~~..~~~~~~~
r'+~"rr1s4~~~
~, ((~ Mete Box Temp ~~e
O ~ 11, Tem Check re- es et os - I e
'7 , ~ ~ Reference Temp
Q(7 Pass/Fail (+/- 2°) s ' FaN' P Fali
Temp Change Response ; np ~ nr
~j~~~~~~i~,J~llJ~;~~~w~~~~~~-~-
~~~-~tr~t/~~a~~~~~~-'~
~~~~~~~i~~r~~r~r~s~~■~~~~~~~■rr~r~~c~r~v~r~s~~~~~,~~~~~r~~~r7~~~f~1►~~~~~'aia~~iE~~~l~~i~~~~'~~5~-~IF~~~~''~i'~~~~~i7~~~b~~~•~~~~5r`'~~1~7L~~~~l~~~fll~
~I~~~c-~~~~~: ,i~~k~i~..~~~~~~~~iT~~i~~l~~R~l~~iL'~cP~'~~~7~~afi~~l7~~~~'L~~~"~t'I~~
~~~~~~~1l~'~~L'~f~~~7~/~F7~~A~~i'r~i"~~~~~~~~~i~~~~~~;era ~rr~a~i~~.a~ss~~~~~~s~~«~~~a~s~~~~z~~r~~~~~~■~~
~~ ~~~~~rg Sgrt Delta Avg Sgrt Del~r3.~ c~.9~~~SC7 . Ei J 6 $ S`lm~ ,9 ti7L ~t /~~ JZ M~~c
EPA Method 0010 from EPA SW-846
J_~,~~44
ISOHINETIC FIELD DATA SHEET
Ci~ent Chemours Stack Conditions
w.o.#X5418 Assumed Actual
Project ID Chemours %Moisture / ' r
Mode/Source ID Division Impinger Vol (ml)
Samp. Loc. ID STK Silica gel (g)
Run No.ID 6 CO2, % by Vol
C Feec~rr~~;~ ice.- 13v, %t.n) 1c ~,~r—)
EPA Method 0010 - HFPO Diener Acid Page or
Meter Box ID
Meter Box Y
Meter Box Del H
Probe ID !Length
Probe Material
Pitot /Thermocouple ID
Test Method ID M0010 02, % by Vol ;Z , Pitot Ccefficfent
Date ID 25FE82019 Temperature (°F) .!,~ Noale ID
Source/Location Dials on Stack Meter Temp ("F) ~ Noale Measurements
Sample Date Z ~? .,Static Press (In HZO) — ~ , ~'` Avg Noale Dia (In)
Baro. Press (in Hg) ~ Area of Stack (ftZ)
Operator ~ "' ( ,, Ambient Temp (°F) <~^ ~~ Sample Time
~ ~ ~;~ (S~ — ~ ~ ~'~ Total Treverse Pts
L ~► '7 ~'7K Factor
(. 8 1 Initial Mid-Point Final
Sample Trafn (ft3)
Boro Leak Check @ (in Hg)
Pitot leak check good
0.84 Pitot Inspection good
Method 3 System good
s ,. A .x II ..~
r ~'S~2!
~~~'.`'
_~~~'~:i
~
~ Temp Check re- es e os - es e
Meter Box Temp R
~ Reference Tamp
Pass/Fail (+/- p°~ as / F8t( a /Fall
Temp Change Response P ~o ye / rvi
~~~~~~~r~~r.~~e~m~.:~~r~~Qrr.~~~t~~r~c~~~~r+~.~~r~~ ~r~~~a~r~~~~~~o■~rr~~r~~~Q~r~ric~~■r~■~a~~~~~~■~~~~~~~~~~~~7 ~r~«r~f~~~
~~~~~u~~~~~~~►~r~r~~~m~
~~~~~~~~a~a~c~~~~r.~r~~~~■~~~~~~~r~~~i~~~u - : _f►z~r~r~»~~E~~~►~r ~►~~~~~~~,~~~ir..na~s~~z~r~r~~~~~~~i~~~~iK'~i~fh~?1~'T=~i~lirZ~r~~J~t=~c~s;~~i~~~~~~i~'~~~Sr~~~~ic~L'L'~I~~~1~!I,~7~~J~d~i'~~~
~~l~i~~~~~~►~~■i'~~~~r~7~~~:~~c~t~~
~~~'~ii~I~f1C~~l~~t.7il~l~!M[~~ ~I~.7~~~~~c~~~7~ '~'~l'J~~l~XFa~IF~~~i1~~JL~I~~I~]~~:~ii~~1~'c~~_
. 5~~ 5 v ~~ ~ ~o„
Avg Sgrt Delta Avg Sgrt DEr.~w~+~ ~ow~E
J ,~A~
n h\~1 `~
i gym, vu'uuia~ hvy
L'~ ~v
Comments:"v I~U~ /f0~ IZ `r ~~) I ~~ I
Max~ac
I 1J~`~~
EPA Method 0010 from EPA SW-846
45
SAMPLE RECOVERY FIELD DATA
Client
Location/Plant
EPA Method 0010 - HFPO Dimer Acid
Chemours W.O. # 15418
Fayetteville, NC SOUfC2 & LOCBtIOn Division Stack
Run No. 4 Sample Date 2~~1--`~ (,Q Recovery Date ~~(~
Sample I.D. Chemours -Gas - STK - 4 - Mo010 - Analyst ~~'~ Filter Number /~~
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~~`~j~D ~< <'3 !, ~.,f
Initial d ioo goo soo
Gain ~Z'Q (t ~~E~J~
Impinger Color ~ Labeled? ~/
Silica Gel Condition ~'~ Sealed?
Run No. ZG~~"~5 Sample Date Recovery Date
Sample I.D. Chemours -Gas - STK - 5 - Moo10 - Analyst ~(~' Filter Number ~~
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~~d r C~'~jt`3`'
Initial 0 100 100 ~300
Gain ~C ~~~,'~
Impinger Color Labeled?
Silica Gel Condition ~~ Sealed? ~
Run No. 6 'Z' ~~~ ~t ~~-~ fSample Date Recovery Date ~
Sample I.D. Chemours -Gas - STK - 6 - M0010 - Analyst / ~ ~ Filter Number ~~
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~~.qtQ ~3 ~~ 4
Initial C`]100 100 Q 300
Gain ~~•. K 3 !~
Impinger Color Labeled?
Silica Gel Condition GO'rD~ Sealed? ~
Check COC for Sample IDs of Media Blanks
46
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
DIVISION STACK
Test Data
Run number 7 8
Location Divison Stack Divison Stack
Date 3/01/19 3/01/19
Time period 0813-1008 1237-1433
Operator MW MW
Inputs For Calcs.
Sq. rt. delta P 1.23598 1.24646
Delta H 1.0832 1.0996
Stack temp. (deg.F)65.6 71.3
Meter temp. (deg.F)53.9 64.9
Sample volume (act.)52.282 53.575
Barometric press. (in.Hg)29.99 29.99
Volume H2O imp. (ml)3.0 10.0
Weight change sil. gel (g)13.9 14.9
% CO2 0.1 0.1
% O2 20.8 20.8
% N2 79.1 79.1
Area of stack (sq.ft.) 7.070 7.070
Sample time (min.)96.0 96.0
Static pressure (in.H2O)-0.70 -0.70
Nozzle dia. (in.)0.160 0.160
Meter box cal.1.0069 1.0069
Cp of pitot tube 0.84 0.84
Traverse points 12 12
4/2/2019 4:29 PM 02262019 Division 7-8
47
ISOKINETIC FIELD DATA SHEET
client Cnemours Stack Conditions
w.o.# 15418 Assumed ~ Actual
roJect ID Chemours °/a Moisture
e/Source ID Division Impinger Vol (ml)
Samp. Loc. ID STK Silica gel (g)
Run No.ID 7 CO2, % by Vol
Test Method ID M0010 02, °/ by Vol
Date ID 25FEB2019 Temperature (°F)
Source/Location D(vislon Stack Meter Temp ("F)
Sample Date )/Static Press (In H2O)
Baro. Press (in Hg)
Operator ~ C N ,Ambient Temp (°F)
EPA Method 0010 - HFPO Diener Acid Page_ of
Meter Box ID ~Z' J K FactorMeter Box Y , v
Meter Box Del H L Initial id-Point Final
Probe ID /Length Sample Train (ft')
~~ Probe Material Boro Leak Check @ (In Hg)
. ~ +/ Pftot / Thermxouple ID Pkot leak check good
~ v v Pitot Coefficient 0.84 Pitot Inspection good
Noale ID J Method 3 System good
'S ~ NoaJe Measurements , ~ly~ ~ ~ Temp Check 'eS 38t OS - fes e
--"- i ~ Avg Noale Dfa (in) ~ Meter Box Temp
• ~Area of Stack (it') ~i Reference Temp i
_ Sample Time Pass/Fail (+/- 2°~ FeN ! .Fail'
Total Traverse Pts ~ y Temp Change Response i_ s na ~s no
0~~
~~-~r ~~~~~~~~~~~-~~~
~~~~~~~~~r~~~~~~r~a~~~~~~~~~~~~r7l~~irt~l~~~f~~~i~~~a~~~~~rr~c~~ro~«rmr~m~~~~~~~~~o~~~~~r~~~~~rr.~~~~~~~~■~~E~~~~o~~~..~~~~~~~~~~•~~~~~~~~~~r~~~~~~s ~~~ir~~~~w~~rz~~«~r~~~~~~r~~~+
Ri~i'I~L~[«►7 ~I7~r~~c~~~~.~~
~~~~s~a~n~s~~~~~~~~~~~~~~~~~~~~~~~~~~~t~~~~~~~~~~~~~~~~~r~~c~~~r~r~~~~~~~~~~~e~~.~~fr.~~~~s~■r~~~~~o~►~■~
a
1
~y~ Q„~~ ~ ~o~~ y ~ v~n~ v 7 ~ ~ ~, ~ rev i m Muu 0X MIN5 5 ~ .ti t'vv vvg Sgrt Detta Avg Sgrt Del Comments:` ,~35~ ~ 1,s taw ;~ I.a~' S3~~
M ~ I M2X V8C~ s~~ -~
EPA Method 0010 from EPA SW-846
~~1i4~1~, a.~~ ~
I~ "jiirL ~'"J~4a~~~~!'!
~r~~~~
48
C,~e~~Q~.~ ~~ e e. Csv 8~.~ o~~
ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid Pe~
spent chemours Stack Conditions Meter Box ID
w.o.#15x98 Assumed Actual Meter aox Y ~K Factor ~~
Project ID Chemours Rio Moisture ~-!Meter Box Del H L.Initial Mid-Point Final
'Mode/Source ID Division Impfnger Vol (ml)Probe ID /Length f Sample Train (ft')
Samp. Loc. ID STK Silica gel (g) ;~ ~Probe Material Boro Leak Check @ (in Hg)C 'Y.~
Run No.ID 8 CO2, % by Vol Pitot /Thermocouple ID ~ Pitot leak check good no / na j ~p
Test Method ID M0010 02, % by Vol "Z . ?~Pitot Ccefficfent 0.8 Pitot Inspection good / pn / np / pp
Date ID
S /L ti
25FEB2019
~
Temperature (°F) ~ -
Metar Tem ("F)
NoaJe ID Method 3 System good / ~p yes / rp / ~oounce oca on Div s on: Stasis P Noale Measurements ~ ~j Temp Check fe- est et Ost- es et
Sample Date d ► Static Press (in HZO) „r ~ , v ~ Avg Noale Dia (in) ~ Meter Box Temp
Baro. Press Qn Hg) Area of Stack (ft2) ~ Reference Temp 3Operator f ~i~ ' ' Ambient Temp ~~F) ~ i~' ~; Sample Time / Pass/Fall (+/- 2°~ Fail -- Pass 'Fall-w
~o ~ QeiY' _ i C>— f~c ~ ~ Ai \.. ~L 1Total Traverse Pts ~_ Temp Change Response i f~ i no ves no
~~~—~~~~~111~~~~~~~~—
~~~~~~~~~a~rr~_ -~r~~~~~
~m~~~1~~~lJ~~7ir1~~9~~I1~L~~~l~'~~~~~t~~~~+~t~~ii1~~Fi►~f~•7~IT.y~t'l~~~E'~~~~~~~~i~~~r~~~~~~r~~~~~~~~~~~~~~~~~-~~~~r~~~r~~~~r~~~~r:~~~~s~~~~~~~r a~~~~~r~r~■~e~~~~~~~w~r~rr~r~r~~r~_r~s-~~~o~a~r~~~~~~c~f~~r~~~~~`~~~~~~~~~rr~~~i~r~~s~iov~i~rm~~~~~~~ic~~r~~'~~~~~~' '~fiL~«~~i~~~~~ii'~~~
~~~~~~rJ~'T~~~~~-ra'~~~~~~a~~
~~~`J~~~J ~~~~~-
~~~~~~~~~I '~~~~~~-~i~~~a~~■~arr~~~~r,~r~~~~~~~~
~w~rw!~~~~~wrs~~..~~~~~~~~~
~ ~ $~7a~3
Avg Sgrt Delta F~t~°I~1/(~I ~3~ ~~~7~i ~ I ~ ly 1 v Il~~'~~~'7,I '1, -{',vvg ~qr[ uei Comments: 1
~+~~oZ ~ ~''W ~I ;Mi a i.i.1 ,~ ~GL ~ O) ~ ~
~~ I rviar a~ I Vf`~
EPA Method 0010 from EPA SW-846
~ ~~49
SAMPLE RECOVERY FIELD DATA
EPA Method 0010 - HFPO Dimer Acid
Client chemours W.O. #
Location/Plant Fayettevi~~e, Nc Source &Location
15418
Division Stack
Run No. 7 Sample Date ~ `ti IL`C Recovery Date 3 ! t
Sample I.D. Chemours -Gas - STK - 7 - M0010 - Analyst ~~ Filter Number ~~
Im anger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final 2 C~ 3 .~ ~ ~~ Q'
Initial ~goo goo o soo
Gain 't''—?j ~~'3 ~~j, ~!(~,9
Impinger Color G ~ Labeled?
Silica Gel Condition CD@.~~ Sealed? ~
Run No. 8 ~ll~ts'Sample Date ~ ~ Recovery Date
Sample I.D. Chemours -Gas - STK - 8 - M0o10 - Analyst f~~ Filter Number ~'d
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final P dP l~ ~Z ~,I`
~~Initial goo goo 300
Gain c~0 Z G!~ ~~~t 3 2~( q,
Impinger Color Labeled?
~Silica Gel Condition Sealed?
Run No. Sample Date Recovery Date
Sample I.D. Chemours -Gas - STK - 0 - M0010 - Analyst Filter Number
Impinger
1 2 3 4 5 6 7 Imp.Total S Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final
Initial goo goo soo
Gain
Impinger Color Labeled?
Silica Gel Condition Sealed?
Check COC for Sample IDs of Media Blanks
50
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
BLOWER INTAKE
Test Data
Run number 1 2 3
Location Blower Intake Blower Intake Blower Intake
Date 2/26/19 2/26/19 2/27/19
Time period 0927-1143 1335-1530 0840-1035
Operator JM JM JM
Inputs For Calcs.
Delta H 3.0000 3.0000 3.0000
Stack temp. (deg.F)59.9 68.4 60.3
Meter temp. (deg.F)60.4 78.3 65.1
Sample volume (act.)128.621 109.397 107.605
Barometric press. (in.Hg)29.29 30.20 30.22
Volume H2O imp. (ml)0.0 0.0 7.0
Weight change sil. gel (g)27.6 27.5 22.4
% CO2 0.0 0.0 0.0
% O2 20.9 20.9 20.9
% N2 79.1 79.1 79.1
Sample time (min.) 135.0 115.0 115.0
Nozzle dia. (in.)0.365 0.365 0.365
Meter box cal.1.0100 1.0100 1.0100
Traverse points 1 1 1
4/2/2019 4:31 PM 02262019 Blower Intake 1-3
51
ISOHINETIC FIELD DATA SHEET EPA Method 0010 -APO Diener Acid Page,Lor~
client ohemours Stack Conditions Meter Box ID ~ d` `T K Factorw.o.# 1Sa~8.o02:o~o.000~ Assumed Actual Meter sox v p
Protect ID Chemours %Moisture Meter Box Del H Initial Mid-Point Final
Mode/Source ID Bbwer Intake Impinger Vol (ml) ~ Probe ID /Length / Sample Train (ft')
Samp. Loc. ID Intake Sflica gel (g) Probe Material Bpro Leak Check @ (In Hg) ~~_
Run No.ID 1 CO2, °/a by Vol C '' ' Pitot /Thermocouple ID _ ~ ~ Pitot leak check good ~/~^
Test Method ID PA0010 02, % by Vol .~ `~ Pitot Coefficient ~f/ cA:9d~~ Pitot Inspection good ^/
Date ID 25FEB2019 Temperature (°F) NoaJe ID ~ Method 3 System good free-f-t1 rtp /-~T1a--
Source/Location BWWer lcita cfl Meter Temp ("F) ~ NoaJe Measurements Temp Chetk ~ re- est of OSt- GSt Bt
Sample Date / StaUc Press (in H2O) Avg NoaJe Dla (in) Meter Box Temp ~ y
Biro. Press (in Hg) Area of Stack (ftZ) Reference Temp y / 'r-
O~eretor ,: ~ Ambient Temp (°F) Sample Time Pass/Fail (+/- 2°) / Faif ~ `~s ~ Fa1i
Total Traverse Pts /~~ Temp Change Response S ~ Ps ! nn ~e no
O ~r ,-
~i
i ~~
~2/t~S v C
'1 a 2 /~
r ~~l
~4 ~
v
~2 ~~'
ZO C7 ~
S ~~
t t ~a nv
~r s p
~~~.2. ~~~~v
•a ~~T ~"~l ~l
~~b ~~
~~a ~1,1 `~' ~--
~,~ ~b t
1.I ~ `z.
1,t ~ S ~r .~'~! Z1It
~-~(I
Avg Delta P Avg Delta H Total Volume Avg Ts Avg Tm Min/Max Min/Max Max Max Vac Min/Max
Avg Sgrt Delta P Avg Sgrt Dal H Comments: EPA Method 0010 from EPA SW-846
52
ISOKINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid
Client
Source
Sample. Lx.
Chemours
Blower Intake
Operator j /~/
~~Run No.1
Date ~ ~KFactor
Page v of~
__
O (~ L
~a~. c~~~ , ~/62 ~~3 ~y a7 -~~~~ (~-z~,~-,
~~i■~~d _ ~
Avg Delta P
Avg Sqrt Delta P
Avg Delta H
Avg Sgrt Del H
Total Volume Avg Ts Avg Tm Min/Max Min/Max Max Temp Max Vac Max Temp
Comments:^'~n~
tom'!53
ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Dimer Acid
client chemours Stack Conditions Meter Box ID
w.o.#~~ate.002.0~o.000t Assumed Actual Meter Box Y ,
Project ID Chemours %Moisture Meter Box Del H
Mode/Source ID Bbwer Intake Impinger Vol (ml)Probe ID /Length Sample Train (k') C
Samp. Loc. ID Intake Silica gel (g) (Probe Material Boro Leak Check @ (in Hg)
Run No.ID 2 CO2, % by Vol °Ci V Pitot / Thermocrouple ID Pitot leak check good~~
Test Method ID M0010 02, °/ by Vol ,Pitot Coefficient ~ ~9:'L~' Pitot Inspection good ,r~//~
Date ID 25FEB2019 Temperature (°F)No~Je ID Method 3 System good
Source/Location BI Nerl ake Meter Temp ("F)' No~Je Measurements Temp Check
Sample Date Static Press Qn Hz0)Avg Noale Dia (in)Metar Box Temp
Baro. Press (in Hg)• Z .~Area of Stack (ftZ)Reference Temp
Operator y Ambient Temp (°F)Sample Tima Pass/Fall (+/- 20)
Total Traverse Pts 1} /✓Y Temp Change Response
Page ~ of!
K Factor
Initial Mid-Point Final
no I Yes /'no ~ yes t no
~e-hest et Post-Test ~--- :~ y—` S.f
s ~ k Fail i FaH
no -- ye5 i' rro
~~~~.!'ly~~i~V~~
~~■~~~~~.~ ,r~r~.~~~ro~~~~~r~r~~~~-~~~r~,-~~~~—
~~~~~~~~~~~~~~~~~~~~~~~~~p~~~~
~i~~~~~~.~~~~s~~s~~~~~~~~s~~
~r~~~~~~~~~~~~Il~~~-~~S~t9~i~~~R~~~~~r~~~l~y'~~~Si /~■~l~~~~i~~~~~~~~~~~~~~s~r~~~~r~ir~~■~■r~~~~r~■~~~~~~~~~~~r~c~~~~~~~~ —r~~~~~~Q~i~~.z~r~~■c~d~~~~
~r~~~~~~~~~~~:~rr~~c~~~~~~~~~
Avg Sgrt Delta P Avg Sgrt Del H Comments:
nvy i ui ~ rvunnv~an ~ rvmumen ~ man ~ mac vac ~ mnuma~c
EPA Method 0010 from EPA SW-846
..
54
ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HF,~~ Dimer Acid Page~of1,-r- . ~
~ ~' i ~ '~
~ - -
• - _ ~ .
- _ _ _ - .'r~~~~.. ~, - - - ::~r-
o ~~
~~~~~~~~~~rr;~r~v~■~tra~~~~~~~■~~~ic~~~~r~rss~■nr~~~~~~s~~~~~~x~~~i~~~~~~~s~~
~~z~~~~~c~s ~.~~~~~~~■m~~ss.;~~t~~~~~~~~~~~~■~~~~~~~~~~s~r~t~~~
~~~~~~~~~~~i~..~~r~~~~r~~~~~~~~~~~~~~~~~~~~~~~~ss~~~
~~~~~~~~r:~rr~~~~~~r~r:~~~~~r~~~~E~sraa~~~~~~~r~~r~r~~~■~~s~~~~~~~a~~~~~:~■~c~;~~,~~err-~~:~■c~~~~~~~~
~i~~r~~~~~~~r~~~r~~~~■~~
vu~'T:F =,ru ,. , ~~~~
55
SAMPLE RECOVERY FIELD DATA
EPA Method 0010 - HFPO Dimer Acid
Client
Location/Plant
Chemours
Fayetteville, NC
W.O. #
Source &Location Blower Intake
15418.002.010.0001
~ G~Run No. 1 Sample Date ~"~-~ Recovery Date
Sample I.D. Chemours -Blower Intake -Intake - 1 - M0010 - Analyst _ ~ ~~ Filter Number ~7'►
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~~(s{
Initial 8 goo goo O soo
Gain ~~~r3 ~l ~
Impinger Color f- Labeled?
Silica Gel Condition ~~~ Sealed?
Run No. 2 Sample Date ~, Z~ ~, Recovery Date
Sample I.D. Chemours -Blower Intake -Intake - 2 - M0010 - Analyst i ~"""'l- Filter Number ~M
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final `~-~) ~~Q ~ ~~~'"
Initial (~goo goo ~'soo
Gain `~'"'' u ~ ti ~.~1
Impinger Color ~'~'~ Labeled? `
/Silica Gel Condition Sealed?
Run No. 3 Sample Date 7-"L F~ Recovery Date
Sample I.D. Chemours -Blower Intake -Intake - 3 - M0010 - Analyst ~ Filter Number jt A
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O ~ HPLC H 0 Silica Gel
Final ~~Z2,
Initial ~100 100 ~300
Gain ~'~ ~~~,2
Impinger Color Labeled?
Silica Gel Condition ~ '~ Sealed?
Check COC for Sample IDs of Media Blanks
56
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
BLOWER INTAKE
Test Data
Run number 4 5 6
Location Blower Intake Blower Intake Blower Intake
Date 2/27/19 2/28/19 2/28/19
Time period 1231-1426 0823-1018 1429-1627
Operator JM JM JM
Inputs For Calcs.
Delta H 3.0000 3.0000 3.0000
Stack temp. (deg.F)64.1 57.3 70.8
Meter temp. (deg.F)73.6 63.4 81.8
Sample volume (act.)106.883 106.308 110.497
Barometric press. (in.Hg)30.17 29.95 29.95
Volume H2O imp. (ml)22.0 15.0 6.0
Weight change sil. gel (g)23.9 25.7 30.4
% CO2 0.0 0.0 0.0
% O2 20.9 20.9 20.9
% N2 79.1 79.1 79.1
Sample time (min.) 115.0 115.0 118.0
Nozzle dia. (in.)0.365 0.365 0.365
Meter box cal.1.0100 1.0100 1.0100
Traverse points 1 1 1
4/2/2019 4:32 PM 02262019 Blower Intake 4-6
57
ISOKINETIC FIELD DATA SHEET
CNent Chemours Stack Conditions
w.o.#15a18.oR2Ato.oOpt Assumed Actual
Project ID Chemours %Moisture ~~"
Mode/Source ID Bbwer Intake Impinger Vol (ml) ~w .~..«..«.r,.4-Samp. Loc. ID Intake SIUca gel (g)
Run No.ID 4 CO2, % by Vol
Test Method ID M0010 02, % by Vol (~ ~
Date ID 25FEB2019 Temperature (°F)
Source/LocaBon BlgWef! ke Meter Temp("F)Q
Sample Date $taUc Press (in HZO)
Barn. Press (in Hg)~J
Operator Ambient Temp (°F)
EPA Method 0010 - HFPO Dimer Acid ~,
Meter Box ID
Pam _ of _
e ~~K FactorMeter Box Y
Meter Box Del H Initial Mid-Point Final
Probe ID / Langth Sample Train (ft').~r~y 'i
Probe Material Bpro Leak Check (d~ (in Hg)
PRot /Thermocouple ID Pftot leak check goo~~ ~.~-+Yr
PRot Coefficient r/ .~.BA-- Pitot Inspecllon goodrt~~
NoaJa ID Method 3 System goo~~-~~~~~—
NoaJe Measurements Temp Check fe- est et Post- est et
Avg Noale Dia (in)Meter Box Temp
Area of Stack (ft2) Reference Temp
Sample Time Pass/Fail (+/- 20~
Total Traverse Pts Temp Change Response
~~ .~
_
Pa /Fail /Fall
yc l no y I no
58
I50HINETIC FIELD DATA SHEET EPA Method 0010 - HF~O Dimer Acid Page _ of
- _ •- . •.
• _ l~~-~~.. _
-...,. , _ r _ - o - - ~ _ -
- i~ I. - ~oYC~~
~~1 ~~~~~~~~~r~~r ~~~~r~~~~zy~s-~~i~~~~~~~~~r~~~r~~cv~r~■rrr„~~~~~■a~~►r~~r~r~~~~■~~~r~~-~~~~~~l~.~~~~iF~C~ylf~~s ~~i~~i'~~~7~~~~~~_~~.l~rre~i~~.!~~~~,5~~~~~~~~~'■~~G~7~~Ii~~~~L'~~~~~
~~~1~~~~~i~~r~■~S~.~~~~i~'~~l3rA~~■E'~~iL~/J~~~1~~~~~■I~~~~~i'/~~E~~~~~~
~~i~~~~~G3i~~~5'r7sr~~7~+~:~~'~~il~'~~lir~~0~~i1~tr'~~~~~'~~e~~~:'~~1~~~~1!~~'l~~~~~~~r '
~~-__~~'ll~~~~~~~~I~~~-~4a~1~ L
~~~~~~~~~i~■igi~ic~~ti'~~+~C~~ii~'~~~~~~S~ir7~
~~~~~L`:~~~i/~i~ic ~~'~11'Z~~~~'Il~~i~:~l~a~i~~%~~~~iil''.~J,~V~~~~~~~~~~~~~~,~ilt~~~~~~~~~~
yy~•T"~: =~fV ~~
~~
~~,59
ISOKINETIC FIELD DATA SI3E 0010 Dimer Acid
sT k conditions EtPB XMethod ~,HFPO Page_of_
w.o.#~~a18.Wz.o1o.000~Assumed Actual nneter eox v ~K Factor
Project ID cnemours ^io Molstura ;Meter Box Del H Iflltiel Mid-Point Final
Mode/Source ID Bbwer Intake Impinger Vol (ml)Probe ID /Length j Sample Train (ft3)
Samp. Loc. ID Intake Silica gel (g)Probe Material Bwo Leak Check Q (In Hg)
~
Run No.ID 6 CO2, % by Vol ~J ~f Pltot /Thermocouple ID Pitot leak check good ;Q"
~~'~
rye!-{-n p.h.pa—
Test Method ID M0010 02, °/ by Vol ~ ~Pitot Coefficient /j/ ---8~84~ Pitot Inspection good ~--~y~/-~m-.-
Date ID 25FE82019 Temperature (°F)NoaJe ID Method 3 System goodN
Source/Location B►a lust ltrt ke Meter Temp ("F)Noale Measurements Temp Check re-Test et Post- est etSample Date Static Press (In HZO)Avg NoaJe Dia (in)~ y Meter Box Temp
~ ~
~ ,
Baro. Press (in Hg)?i Area of Stack (ftZ)Reference Temp
Operator '~Ambient Temp (°F)Sample Time Pass/Fail (+/- 2°)_,,,.ass `Fail as Fa0
Total Traverse Pts Temp Change Response i yc rug ,~ no
~~~~~n~~~.~i'~ir~~arrt~r~~~~r~~~~~
~~~~~~~c~~~~~~~~~~~~~~~
~~~~~~~~z~~~~~~~~~~~~~~~~~~■~~~~~~~~~~~~f~r~~~~~~~~r~■~~~~r~.~~~r~~~~~~~~~ir~~~~~•~~=~~r~r~~■r~- ~r~~~~
s■i~~~~~~~■~~~-i~1~~~~~L~,+~■~~~~~frlr~a
O/Af-~~~~~~•~r iZ~!~»li'»~'~l~~
-~'~~~~~ic~~~~~ri1~S3~J~~'~~~~• .OJT~~~~~~''~li~~ :irl~• 'i~'~~~~~~i~rff~~~~~~~~~~~itr +~ir3~ifr/~~~~~~~~~~~S'J}~~~~~~~il7~r~i~i~~~i~~~~~~~~~~~I~l~~~~~~~~~~~~IC~r/l~~%ii~~QL~~►»~~~~~~~~g~~~~I'~fA~~~~I/~'~~~~~~3~'r~s~~~lld~~[E.~i~~~~l~~i~~~~CL~~rZ~~~'~L`~~~~1~~~~r'~l~J~.T~■~
~~iii~1iilri►1~~~~~~~~~~~~
i ~~ ~Avg Sgrt De
o a o ume vg I s vg m arc ax Max Max Vac Min/Max
EPA Method 0010 from EPA SW-846
60
SAMPLE RECOVERY FIELD DATA
EPA Method 0010 - HFPO Diener Acid
Cllent Chemours W.O. #
Location/Plant Fayetteville, Nc Source &Location
15418.002.010.0001
Blower Intake
Run No. 4 Sample Date 'YID-`71 ~ Recovery Date 2 /[
Sample I.D. Chemours -Blower Intake -Intake - 4 - M0010 - Analyst ~~'~' Filter Number /'~~
Im in er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica GeI
Final ~fQ ~~~~~~.3. ~{
Initial ~100 100 300
Gain G~^ (`~-~~2.`L-~,3~~~t~`,~`~
Impinger Color ~' Labeled?
Silica Gel Condition ~- Sealed?
Run No. 5 Sample Date ~'— ~ ~`~ Recovery Date ~f C
Sample I.D. Chemours -Blower Intake -Intake - 5 - M0010 - Analyst f~ r•~~ Filter Number '~
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O
Final ~ ~. c~~,Z ~.
Initial D 100 100 ~300
Gain ~ ~^~`~~~~,~
ImpingerColor C..~`e~Y Labeled? ` A~'1
.2.Fy7Silica Gel Condition ~~ Sealed?V
Run No. `U ~{ 4~ "~1 ~!~6 Sample Date Recovery Date
Sample I.D. Chemours -Blower Intake -Intake - 6 - M0010 - Analyst ~ ~"~ Filter Number 4'
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~~`~i n}
Initial c~goo ~goo ~~soo
Gain L •-'t ,~-~~~~, y ~3 ~, `?
Impinger Color (i Labeled? 3
Silica Gei Condition ~~ Sealed?
Check COC for Sample IDs of Media Blanks
61
CHEMOURS - FAYETTEVILLE, NC
INPUTS FOR HFPO DIMER ACID CALCULATIONS
BLOWER INTAKE
Test Data
Run number 7 8
Location Blower Intake Blower Intake
Date 3/1/19 3/1/19
Time period 0813-1008 1237-1433
Operator JM JM
Inputs For Calcs.
Delta H 3.0000 3.0000
Stack temp. (deg.F)51.4 61.4
Meter temp. (deg.F)61.0 70.2
Sample volume (act.)105.079 106.831
Barometric press. (in.Hg)30.09 30.09
Volume H2O imp. (ml)10.0 2.0
Weight change sil. gel (g)22.5 34.0
% CO2 0.0 0.0
% O2 20.9 20.9
% N2 79.1 79.1
Sample time (min.) 115.0 115.0
Nozzle dia. (in.)0.365 0.365
Meter box cal.1.0100 1.0100
Traverse points 1 1
4/2/2019 4:32 PM 02262019 Blower Intake 7-8
62
ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid
Client Chemours Stack Conditions Meter Box ID ~~' 2~
W.O.#15418.902sOT0.0001 AssumBd Actual Meter Box Y , Q ~~~—
Project ID Chemours %Moisture ;Meter Box Del H
Mode/Source ID Bbwer Intake Impinger Vol (ml) ~ ,',Probe ID /Length ~Sample Train (fl
Samp. Loc. ID Intake SiAca gel (g)Probe Material Bono Leak Check ~
Run No.ID 7 CO2, % by Vol CJ 1,J Pitot /Thermocouple ID Pitot leak check
Test Method ID M0010 02, % by Vol v.Picot Coefflclent Picot Inspection
Date ID 25FE82019 Temperature (°F)NoaJe ID Method 3 Systei
Source/Location Bio rltrtake Meter Temp ("F)NoaJe Measurements Temp Check
Sample Date ~Static Press (in HZO)Avg Noale Dfa (in)Meter Box Temp
Baro. Press (in Hg)~Area of Stack (ft~)Reference Temp
Operator cif '-/~ ~""Ambient Temp ~'F)Sample Time Pass/Fail (+/- 2`
~~Tofal Traverse Pts /~} yJj _Temp Change F
•~~■~~~
~~'~~~~~,~►■~~l~~iPrfi~tll~~l~~~~c~~
~~i~~~~i~~i~~l~~~~/cl~~t"~i~~l~t~f~~
~~l~~~~~~~1.7C:'~'~7~E~~~rt~E~E~~~~~~+~^~ -f~~~~~~t ~~~I il~C~~~~~~~~'~~~1~;~~~fIE3~~l~~~i~'~+~~r'I~'~~~~~'i~~l~~~[~'~~~~~G~~~f~~~~~~if~~L~l:~l~E~~~i~iflld~~f~~i''1~~~~~~~~~~~~~L~~~~i,~Ill'~l~3'~~.~~~~~~~I~l~~~i~~L'~a~r~~~~1~~~~lE~L~l~-l~~~~r~~~~~~~~r-~~~~3~~~i~~~~~~~~
~~i~111~►'l~I~~Lc~r7~~/.~~~1L'~~~t"j-s.~S~LZ'~~~~~~~~~l~I~~iii~r i~~~r~~
r..y vow ~ I r~ry vvna i i I i viol vu~u~i~a I nvy i a I Mvy I III I MIIUMdJ( I MIfYM3X I M3J( I M2X V8C I MINMeX I.
Avg Sgrt Delta P Avg Sgrt Del H Comments: EPA Method 0010 from EPA SW-846
~~j~-y`
U V
Page _ of _
K Factor
Initial Mid-Point Final
63
\~
ISOHINETIC FIELD DATA SHEET EPA Method 0010 - HFPO Diener Acid Page
~ .~~~
• l0 1 e 111 ~• ~j
1 _ ~ . ~ •~
~~7+~
. /•r(/'~
,. . ~~ _ ~
1 r A~i~~f~a.,.___...
n 11 1 • _ ~ - i• _ ~~~
1 _ 1 1 t _ _ _ e_ —~.•-~~.~
• y ~ ` ' ~
c t•e ,~/t - ~ -t -
~~. ~ - r / - - `~Ol~~
0'~~~L~~
~~■~~l~rc~■c~~~r~~~~~~~~~~~~~~~~~r~~r~~~r~~~~~~F,~~~~~.'~~~i~~ll~~i~fi~~t~~!~E'rP~~~~~~~~~~~~7~1I~'~~~~~I~~.~~~~a~~~~~~~~~~~~t~C~-'~~~~l~~lji~c~~~'l~~
~iL~~~~~~~~~~i'~l~I~il1l•~~~~~~.~~~~i~~~'~l
-~-~-~IIIIIII~~~~~~~~~~~~~-
~~,~~~~~~'~~~f~~~~~~~~Y~l~~~I~~~~~~~'l~~I'/6~~~i►~C.7irrl~~~~~~~~~~~~~~'~i~~~~~~y~Il~~~t~~~l~~~~fll~~~l~►~~~~~~~~~~~~~~r~~~~c~~~~~s:~~~
~r~~~~~~r~~r~~r~~~~c~~■~~~z~~~■~~I~~~r~~~~r~~~r , ~ r ~~~~~~~~~~~~~i~rr~~rr~~~~~ui~~~~~~~~~~
_,.T~:'N
i_-
C
~y64
SAMPLE RECOVERY FIELD DATA
EPA Method 0010 - HFPO Dimer Acid
Client cnemours W.O.,# 15418.002.010.0001
Location/Plant Fayetteville, Nc Source &Location Blower Intake Intake
Run No. 7 Sample Date . ~ l C~( Recovery Date ~11c~
Sample I.D. Chemours -Blower Intake - - 7 - M0010 - Analyst ~~~ Filter Number /~+
Impinger
1 2 3 4 5 6 7' Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gel
Final ~~'~ 2.'~
Initial 100 100 ~300
Gain ~~^ ~'~,4 Z~~ Z .~
Impinger Color Labeled? J
~Silica Gel Condition ~Dc1C QG Sealed?
Run No. 8 Sample Date ~ ~~ 1~~1 Recovery Date ~ ~[_
Sample I.D. Chemours -Blower Intake - - 8 - M0010 - Analyst ~ ~"`u1 Filter Number /~~
Impinger
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC 20 Silica GeI
Fina~~,1ft Z ~ 3ti_~'
Initial goo goo ~soo
Gain "~`~'~~~.~ ~~~~~-
Impinger Color Labeled? 3
Silica Gel Condition Sealed? ~
Run No. Sample Date Recovery Date
Sample I.D. Chemours -Blower Intake - - 0 - M0010 - Analyst Filter Number
Impin er
1 2 3 4 5 6 7 Imp.Total 8 Total
Contents Empty HPLC H2O HPLC H2O Silica Gei
Final
Initial goo goo soo
Gain
Impinger Color Labeled?
Silica Gel Condition Sealed?
Check COC for Sample IDs of Media Blanks
65
METHODS AND ANALYZERS
Client:
Location:
Source:
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
25 Feb 2019
Project Number:
Operator:
Date:
Folders.A-F\Chemours Fayetteville\15418.002.010 VE North 2019\Data\FEBUARY_MARCH 2019\022519 DIVISION
Program Version: 2.1, built 19 May 2017 File Version: 2.03
Computer: WSWCAIRSERVICES Trailer: 27
Analog Input Device: Keithley KUSB-3108
Channel 1
Analyte O2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No. Servomex 4900
Full-Scale Output, mv 10000
Analyzer Range, %25.0
Span Concentration, %21.0
Channel 2
Analyte CO2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No. Servomex 4900
Full-Scale Output, mv 10000
Analyzer Range, %20.0
Span Concentration, %16.6
66
CALIBRATION DATA
Number 1
Client:
Location:
Source:
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
25 Feb 2019
Project Number:
Operator:
Date:
Start Time: 10:59
O2Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
%Cylinder ID
12.0 CC18055
21.0 SG9169108
Calibration Results
Zero 6 mv
Span, 21.0 %7997 mv
Curve Coefficients
Slope Intercept
380.5 6
CO2
Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
%Cylinder ID
8.9 CC18055
16.6 SG9169108
Calibration Results
Zero 4 mv
Span, 16.6 %8287 mv
Curve Coefficients
Slope Intercept
499.6 4
67
CALIBRATION ERROR DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
25 Feb 2019
Project Number:
Operator:
Date:
Start Time: 10:59
O2Method: EPA 3A
Span Conc. 21.0 %
Slope 380.5 Intercept 6.0
Standard
%
Result
%
Difference
%
Error
%Status
Zero 0.0 0.0 0.0 Pass
12.0 12.0 0.0 0.0 Pass
21.0 21.0 0.0 0.0 Pass
CO2
Method: EPA 3A
Span Conc. 16.6 %
Slope 499.6 Intercept 4.0
Standard
%
Result
%
Difference
%
Error
%Status
Zero 0.0 0.0 0.0 Pass
8.9 8.9 0.0 0.0 Pass
16.6 16.6 0.0 0.0 Pass
68
BIAS
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
25 Feb 2019
Project Number:
Operator:
Date:
Start Time: 11:05
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
CO2Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.9 8.8 -0.1 -0.6 Pass
69
RUN DATA
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
25 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
response times
11:07:50 12.1 8.8
11:08:00 16.9 4.7
11:08:10 20.4 0.9
11:08:20 20.7 0.4
11:08:30 12.4 2.0
11:08:40 1.6 0.6
11:08:50 0.1 0.1
O2/CO2 UP
11:09:00 0.0 0.0
11:09:10 0.0 0.0
11:09:20 0.0 0.0
11:09:30 3.0 1.8
11:09:40 10.4 7.1
11:09:50 11.8 8.6
11:10:00 12.0 8.8
O2/CO2 DOWN
11:10:10 12.0 8.8
11:10:20 12.0 8.8
11:10:30 12.0 8.8
11:10:40 9.6 7.2
11:10:50 1.5 1.8
11:11:00 0.1 0.3
11:11:10 0.0 0.1
END
11:11:20 0.0 0.1
11:11:30 0.0 0.1
Avgs 7.3 3.5
70
RUN SUMMARY
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
25 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 11:07:40 to 11:11:30
Run Averages
7.3 3.5
Pre-run Bias at 11:05
Zero Bias
Span Bias
Span Gas
0.0 0.0
12.0 8.8
12.0 8.9
Post-run Bias at 07:37
Zero Bias
Span Bias
Span Gas
0.0 0.1
12.0 8.9
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
7.3 3.4
71
BIAS AND CALIBRATION DRIFT
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
Start Time: 07:37
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
*Bias No. 1
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.9 8.9 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.8 8.9 0.1 0.6 Pass
*Bias No. 1
72
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
RUN 1
PORT 1
09:27 20.9 0.1
09:28 20.9 0.1
09:29 20.9 0.1
09:30 20.9 0.1
09:31 20.9 0.1
09:32 20.9 0.1
09:33 20.9 0.2
09:34 20.9 0.2
09:35 20.9 0.2
09:36 20.9 0.2
09:37 20.9 0.2
09:38 20.9 0.2
09:39 20.9 0.2
09:40 20.9 0.2
09:41 20.9 0.2
09:42 20.9 0.2
09:43 20.9 0.2
09:44 20.9 0.2
09:45 20.9 0.2
09:46 20.9 0.2
09:47 20.9 0.2
09:48 20.9 0.2
09:49 20.9 0.2
09:50 20.9 0.2
09:51 20.9 0.2
09:52 20.9 0.2
09:53 20.9 0.2
09:54 20.9 0.2
09:55 20.9 0.2
09:56 20.9 0.2
09:57 20.9 0.2
09:58 20.9 0.2
09:59 20.9 0.2
10:00 20.9 0.2
10:01 20.9 0.2
10:02 20.9 0.2
10:03 20.9 0.2
10:04 20.9 0.2
73
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
10:05 20.9 0.2
10:06 20.9 0.2
10:07 20.9 0.2
10:08 20.9 0.2
10:09 20.9 0.2
10:10 20.9 0.2
10:11 20.9 0.2
10:12 20.9 0.2
10:13 20.9 0.2
10:14 20.9 0.2
10:15 20.9 0.2
PORT CHANGE
PORT 2
10:55 20.9 0.1
10:56 20.9 0.1
10:57 20.8 0.1
10:58 20.8 0.2
10:59 20.8 0.2
11:00 20.9 0.2
11:01 20.9 0.3
11:02 20.9 0.3
11:03 20.9 0.3
11:04 20.9 0.2
11:05 20.9 0.2
11:06 20.9 0.2
11:07 20.9 0.2
11:08 20.9 0.2
11:09 20.9 0.2
11:10 20.9 0.2
11:11 20.9 0.2
11:12 20.9 0.2
11:13 20.9 0.2
11:14 20.9 0.2
11:15 20.9 0.2
11:16 20.9 0.2
11:17 20.9 0.2
11:18 20.9 0.2
11:19 20.9 0.2
11:20 20.9 0.2
11:21 20.9 0.2
74
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
11:22 20.9 0.2
11:23 20.9 0.2
11:24 20.9 0.2
11:25 20.9 0.2
11:26 20.9 0.2
11:27 20.9 0.2
11:28 20.9 0.2
11:29 20.9 0.2
11:30 20.9 0.1
11:31 20.9 0.1
11:32 20.9 0.1
11:33 20.9 0.1
11:34 20.9 0.1
11:35 20.9 0.1
11:36 20.9 0.1
11:37 20.9 0.1
11:38 20.9 0.1
11:39 20.9 0.1
11:40 20.9 0.1
11:41 20.9 0.1
11:42 20.9 0.1
11:43 20.9 0.1
Avgs 20.9 0.2
75
RUN SUMMARY
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 09:26 to 11:43
Run Averages
20.9 0.2
Pre-run Bias at 07:37
Zero Bias
Span Bias
Span Gas
0.0 0.1
12.0 8.9
12.0 8.9
Post-run Bias at 11:44
Zero Bias
Span Bias
Span Gas
0.0 0.1
12.0 8.9
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.9 0.1
76
BIAS AND CALIBRATION DRIFT
Number 3
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
Start Time: 11:44
O2 Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
*Bias No. 2
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.9 8.9 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.1 0.0 0.0 Pass
Span 8.9 8.9 0.0 0.0 Pass
*Bias No. 2
77
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
R2 START
13:35 20.8 0.1
13:36 20.7 0.5
13:37 20.7 0.6
13:38 20.8 0.4
13:39 20.8 0.3
13:40 20.8 0.3
13:41 20.8 0.2
13:42 20.8 0.2
13:43 20.8 0.2
13:44 20.8 0.2
13:45 20.8 0.2
13:46 20.8 0.2
13:47 20.9 0.2
13:48 20.9 0.2
13:49 20.9 0.1
13:50 20.9 0.2
13:51 20.9 0.2
13:52 20.8 0.2
13:53 20.8 0.2
13:54 20.8 0.2
13:55 20.8 0.2
13:56 20.8 0.2
13:57 20.8 0.1
13:58 20.8 0.1
13:59 20.8 0.1
14:00 20.8 0.1
14:01 20.8 0.1
14:02 20.8 0.1
14:03 20.8 0.1
14:04 20.8 0.1
14:05 20.8 0.1
14:06 20.8 0.1
14:07 20.8 0.1
14:08 20.8 0.1
14:09 20.9 0.1
14:10 20.8 0.1
14:11 20.8 0.1
14:12 20.8 0.1
14:13 20.8 0.1
78
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
14:14 20.8 0.1
14:15 20.8 0.1
14:16 20.8 0.1
14:17 20.8 0.1
14:18 20.8 0.1
14:19 20.8 0.1
14:20 20.8 0.1
14:21 20.8 0.1
14:22 20.8 0.1
14:23 20.8 0.1
PORT CHANGE
PORT 2
14:42 20.8 0.1
14:43 20.8 0.1
14:44 20.8 0.1
14:45 20.8 0.1
14:46 20.8 0.1
14:47 20.8 0.1
14:48 20.8 0.1
14:49 20.8 0.1
14:50 20.8 0.1
14:51 20.8 0.1
14:52 20.8 0.1
14:53 20.8 0.1
14:54 20.8 0.1
14:55 20.8 0.1
14:56 20.8 0.1
14:57 20.8 0.1
14:58 20.8 0.1
14:59 20.8 0.1
15:00 20.8 0.1
15:01 20.8 0.1
15:02 20.8 0.1
15:03 20.8 0.1
15:04 20.8 0.1
15:05 20.8 0.1
15:06 20.8 0.1
15:07 20.8 0.1
15:08 20.8 0.1
15:09 20.8 0.1
79
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
15:10 20.8 0.1
15:11 20.8 0.1
15:12 20.8 0.1
15:13 20.8 0.1
15:14 20.8 0.1
15:15 20.8 0.1
15:16 20.8 0.1
15:17 20.8 0.1
15:18 20.8 0.1
15:19 20.8 0.1
15:20 20.8 0.1
15:21 20.8 0.1
15:22 20.8 0.1
15:23 20.8 0.1
15:24 20.8 0.1
15:25 20.8 0.1
15:26 20.8 0.1
15:27 20.8 0.1
15:28 20.8 0.1
15:29 20.8 0.1
15:30 20.8 0.1
Avgs 20.8 0.1
80
RUN SUMMARY
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 13:34 to 15:30
Run Averages
20.8 0.1
Pre-run Bias at 11:44
Zero Bias
Span Bias
Span Gas
0.0 0.1
12.0 8.9
12.0 8.9
Post-run Bias at 15:33
Zero Bias
Span Bias
Span Gas
0.0 0.1
11.9 9.0
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.9 0.0
81
BIAS AND CALIBRATION DRIFT
Number 4
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
26 Feb 2019
Project Number:
Operator:
Date:
Start Time: 15:33
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 11.9 -0.1 -0.5 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 11.9 -0.1 -0.5 Pass
*Bias No. 3
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.9 9.0 0.1 0.6 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.1 0.0 0.0 Pass
Span 8.9 9.0 0.1 0.6 Pass
*Bias No. 3
82
METHODS AND ANALYZERS
Client:
Location:
Source:
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
Folders.A-F\Chemours Fayetteville\15418.002.010 VE North 2019\Data\FEBUARY_MARCH 2019\022719DIVISION
Program Version: 2.1, built 19 May 2017 File Version: 2.03
Computer: WSWCAIRSERVICES Trailer: 27
Analog Input Device: Keithley KUSB-3108
Channel 1
Analyte O2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No. Servomex 4900
Full-Scale Output, mv 10000
Analyzer Range, %25.0
Span Concentration, %21.0
Channel 2
Analyte CO2
Method EPA 3A, Using Bias
Analyzer Make, Model & Serial No. Servomex 4900
Full-Scale Output, mv 10000
Analyzer Range, %20.0
Span Concentration, %16.6
83
CALIBRATION DATA
Number 1
Client:
Location:
Source:
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
Start Time: 07:29
O2Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
%Cylinder ID
12.0 CC18055
21.0 SG9169108
Calibration Results
Zero -3 mv
Span, 21.0 %8006 mv
Curve Coefficients
Slope Intercept
381.4 -3
CO2
Method: EPA 3A
Calibration Type: Linear Zero and High Span
Calibration Standards
%Cylinder ID
8.9 CC18055
16.6 SG9169108
Calibration Results
Zero -5 mv
Span, 16.6 %8288 mv
Curve Coefficients
Slope Intercept
500.2 -5
84
CALIBRATION ERROR DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
Start Time: 07:29
O2Method: EPA 3A
Span Conc. 21.0 %
Slope 381.4 Intercept -3.0
Standard
%
Result
%
Difference
%
Error
%Status
Zero 0.0 0.0 0.0 Pass
12.0 12.1 0.1 0.5 Pass
21.0 21.0 0.0 0.0 Pass
CO2
Method: EPA 3A
Span Conc. 16.6 %
Slope 500.2 Intercept -5.0
Standard
%
Result
%
Difference
%
Error
%Status
Zero 0.0 0.0 0.0 Pass
8.9 8.6 -0.3 -1.8 Pass
16.6 16.6 0.0 0.0 Pass
85
BIAS
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
Start Time: 07:39
O2 Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.1 12.0 -0.1 -0.5 Pass
CO2Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.6 8.4 -0.2 -1.2 Pass
86
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
RUN 3
POINT 1
08:40 20.8 0.1
08:41 20.7 0.1
08:42 20.8 0.1
08:43 20.8 0.1
08:44 20.8 0.1
08:45 20.8 0.1
08:46 20.8 0.1
08:47 20.8 0.1
08:48 20.8 0.1
08:49 20.8 0.1
08:50 20.8 0.1
08:51 20.8 0.1
08:52 20.8 0.1
08:53 20.8 0.1
08:54 20.8 0.1
08:55 20.9 0.1
08:56 20.9 0.1
08:57 20.9 0.1
08:58 20.9 0.1
08:59 20.9 0.1
09:00 20.9 0.1
09:01 20.9 0.1
09:02 20.9 0.1
09:03 20.9 0.1
09:04 20.9 0.1
09:05 20.9 0.1
09:06 20.9 0.1
09:07 20.9 0.1
09:08 20.9 0.1
09:09 20.9 0.1
09:10 20.9 0.1
09:11 20.9 0.1
09:12 20.9 0.1
09:13 20.9 0.1
09:14 20.9 0.1
09:15 20.9 0.1
09:16 20.9 0.1
09:17 20.9 0.1
87
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
09:18 20.9 0.1
09:19 20.9 0.1
09:20 20.9 0.1
09:21 20.9 0.1
09:22 20.9 0.1
09:23 20.9 0.1
09:24 20.9 0.1
09:25 20.9 0.1
09:26 20.9 0.1
09:27 20.9 0.1
09:28 20.9 0.1
PORT CHANGE
PORT 2
09:47 20.8 0.1
09:48 20.8 0.1
09:49 20.8 0.1
09:50 20.8 0.1
09:51 20.7 0.1
09:52 20.7 0.1
09:53 20.7 0.1
09:54 20.8 0.1
09:55 20.9 0.1
09:56 20.9 0.1
09:57 20.9 0.1
09:58 20.9 0.1
09:59 20.9 0.1
10:00 20.9 0.1
10:01 20.9 0.1
10:02 20.9 0.1
10:03 20.9 0.1
10:04 20.9 0.1
10:05 20.9 0.1
10:06 20.9 0.1
10:07 20.9 0.1
10:08 20.9 0.1
10:09 20.9 0.1
10:10 20.9 0.1
10:11 20.9 0.1
10:12 20.9 0.1
10:13 20.9 0.1
88
RUN DATA
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
10:14 20.9 0.1
10:15 20.9 0.1
10:16 20.9 0.1
10:17 20.9 0.1
10:18 20.9 0.1
10:19 20.9 0.1
10:20 20.9 0.1
10:21 20.9 0.1
10:22 20.9 0.1
10:23 20.9 0.1
10:24 20.9 0.1
10:25 20.9 0.1
10:26 20.9 0.1
10:27 20.9 0.1
10:28 20.9 0.1
10:29 20.9 0.1
10:30 20.9 0.1
10:31 20.9 0.1
10:32 20.9 0.1
10:33 20.9 0.1
10:34 20.9 0.1
10:35 20.9 0.1
Avgs 20.9 0.1
89
RUN SUMMARY
Number 1
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 08:39 to 10:35
Run Averages
20.9 0.1
Pre-run Bias at 07:39
Zero Bias
Span Bias
Span Gas
0.0 0.1
12.0 8.4
12.0 8.9
Post-run Bias at 10:36
Zero Bias
Span Bias
Span Gas
0.0 0.1
12.1 8.4
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.8 0.0
90
BIAS AND CALIBRATION DRIFT
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
Start Time: 10:36
O2 Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.1 12.1 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 12.1 0.1 0.5 Pass
*Bias No. 1
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.6 8.4 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.1 0.0 0.0 Pass
Span 8.4 8.4 0.0 0.0 Pass
*Bias No. 1
91
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
RUN 4
PORT 1 ONLY ( SEE NEXT RUN FOR SECOND PORT)
12:31 20.7 0.1
12:32 20.7 0.1
12:33 20.7 0.1
12:34 20.7 0.1
12:35 20.7 0.1
12:36 20.7 0.1
12:37 20.7 0.1
12:38 20.7 0.1
12:39 20.7 0.1
12:40 20.7 0.1
12:41 20.7 0.1
12:42 20.7 0.1
12:43 20.7 0.1
12:44 20.7 0.1
12:45 20.7 0.1
12:46 20.7 0.1
12:47 20.7 0.1
12:48 20.7 0.1
12:49 20.7 0.1
12:50 20.7 0.1
12:51 20.7 0.1
12:52 20.7 0.1
12:53 20.7 0.1
12:54 20.7 0.1
12:55 20.7 0.1
12:56 20.8 0.1
12:57 20.8 0.1
12:58 20.8 0.1
12:59 20.8 0.1
13:00 20.8 0.1
13:01 20.8 0.1
13:02 20.8 0.1
13:03 20.8 0.1
13:04 20.8 0.1
13:05 20.8 0.1
13:06 20.8 0.1
13:07 20.8 0.1
13:08 20.8 0.1
92
RUN DATA
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
13:09 20.8 0.1
13:10 20.8 0.1
13:11 20.8 0.1
13:12 20.8 0.1
13:13 20.8 0.1
13:14 20.8 0.1
13:15 20.8 0.1
13:16 20.8 0.1
13:17 20.8 0.1
13:18 20.8 0.1
13:19 20.8 0.1
Avgs 20.7 0.1
93
RUN SUMMARY
Number 2
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 12:30 to 13:19
Run Averages
20.7 0.1
Pre-run Bias at 10:36
Zero Bias
Span Bias
Span Gas
0.0 0.1
12.1 8.4
12.0 8.9
Post-run Bias at 13:21
Zero Bias
Span Bias
Span Gas
0.1 0.0
12.0 8.4
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.7 0.1
94
BIAS AND CALIBRATION DRIFT
Number 3
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
Start Time: 13:21
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.5 Pass
Span 12.1 12.0 -0.1 -0.5 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.1 0.1 0.5 Pass
Span 12.1 12.0 -0.1 -0.5 Pass
*Bias No. 2
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.6 8.4 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.0 -0.1 -0.6 Pass
Span 8.4 8.4 0.0 0.0 Pass
*Bias No. 2
95
RUN DATA
Number 3
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
RUN 4
PORT 2
13:38 20.7 0.1
13:39 20.7 0.1
13:40 20.7 0.1
13:41 20.7 0.2
13:42 20.6 0.2
13:43 20.6 0.2
13:44 20.7 0.2
13:45 20.7 0.2
13:46 20.8 0.2
13:47 20.8 0.2
13:48 20.8 0.2
13:49 20.8 0.2
13:50 20.8 0.2
13:51 20.8 0.2
13:52 20.8 0.2
13:53 20.8 0.2
13:54 20.8 0.2
13:55 20.8 0.2
13:56 20.8 0.2
13:57 20.8 0.2
13:58 20.8 0.2
13:59 20.8 0.2
14:00 20.8 0.2
14:01 20.8 0.2
14:02 20.8 0.2
14:03 20.8 0.1
14:04 20.8 0.1
14:05 20.8 0.1
14:06 20.8 0.1
14:07 20.8 0.1
14:08 20.8 0.1
14:09 20.8 0.1
14:10 20.8 0.1
14:11 20.8 0.1
14:12 20.8 0.1
14:13 20.8 0.1
14:14 20.8 0.1
14:15 20.8 0.1
96
RUN DATA
Number 3
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
14:16 20.8 0.1
14:17 20.8 0.1
14:18 20.8 0.1
14:19 20.8 0.1
14:20 20.8 0.1
14:21 20.8 0.1
14:22 20.8 0.1
14:23 20.8 0.1
14:24 20.8 0.1
14:25 20.8 0.1
14:26 20.8 0.1
Avgs 20.8 0.1
97
RUN SUMMARY
Number 3
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 13:37 to 14:26
Run Averages
20.8 0.1
Pre-run Bias at 13:21
Zero Bias
Span Bias
Span Gas
0.1 0.0
12.0 8.4
12.0 8.9
Post-run Bias at 14:28
Zero Bias
Span Bias
Span Gas
0.1 0.0
12.0 8.4
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.9 0.2
98
BIAS AND CALIBRATION DRIFT
Number 4
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
27 Feb 2019
Project Number:
Operator:
Date:
Start Time: 14:28
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.5 Pass
Span 12.1 12.0 -0.1 -0.5 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.1 0.0 0.0 Pass
Span 12.0 12.0 0.0 0.0 Pass
*Bias No. 3
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.6 8.4 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.4 8.4 0.0 0.0 Pass
*Bias No. 3
99
BIAS AND CALIBRATION DRIFT
Number 5
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
Start Time: 07:19
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.1 11.8 -0.3 -1.4 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.0 -0.1 -0.5 Pass
Span 12.0 11.8 -0.2 -1.0 Pass
*Bias No. 4
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.6 8.3 -0.3 -1.8 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.1 0.1 0.6 Pass
Span 8.4 8.3 -0.1 -0.6 Pass
*Bias No. 4
100
RUN DATA
Number 4
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
08:14 20.6 0.1
08:15 20.6 0.1
08:16 20.6 0.1
08:17 20.6 0.1
08:18 20.6 0.1
08:19 20.6 0.1
08:20 20.6 0.1
08:21 20.6 0.1
08:22 20.6 0.1
RUN 5
PORT 1
08:23 20.6 0.1
08:24 20.6 0.1
08:25 20.6 0.1
08:26 20.6 0.1
08:27 20.6 0.1
08:28 20.6 0.1
08:29 20.6 0.1
08:30 20.6 0.1
08:31 20.6 0.1
08:32 20.6 0.1
08:33 20.6 0.1
08:34 20.6 0.1
08:35 20.6 0.1
08:36 20.6 0.1
08:37 20.6 0.1
08:38 20.6 0.1
08:39 20.6 0.1
08:40 20.6 0.1
08:41 20.6 0.1
08:42 20.6 0.1
08:43 20.6 0.1
08:44 20.6 0.1
08:45 20.6 0.1
08:46 20.6 0.1
08:47 20.6 0.1
08:48 20.6 0.1
08:49 20.6 0.1
08:50 20.6 0.1
08:51 20.6 0.1
101
RUN DATA
Number 4
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
08:52 20.6 0.1
08:53 20.6 0.1
08:54 20.6 0.1
08:55 20.6 0.1
08:56 20.6 0.1
08:57 20.6 0.1
08:58 20.6 0.1
08:59 20.6 0.1
09:00 20.6 0.1
09:01 20.6 0.1
09:02 20.6 0.1
09:03 20.6 0.1
09:04 20.6 0.1
09:05 20.6 0.1
09:06 20.6 0.1
09:07 20.7 0.1
09:08 20.7 0.1
09:09 20.7 0.1
09:10 20.7 0.1
09:11 20.7 0.1
PORT CHANGE
09:12 20.7 0.1
09:13 20.7 0.1
09:14 20.7 0.1
09:15 20.7 0.1
09:16 20.6 0.1
09:17 20.6 0.1
09:18 20.6 0.1
09:19 20.6 0.1
09:20 20.6 0.1
09:21 20.6 0.1
09:22 20.6 0.1
09:23 20.6 0.1
09:24 20.6 0.1
09:25 20.6 0.1
09:26 20.6 0.1
09:27 20.6 0.1
09:28 20.6 0.1
09:29 20.6 0.1
102
RUN DATA
Number 4
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
PORT 2
09:30 20.6 0.1
09:31 20.6 0.1
09:32 20.6 0.1
09:33 20.6 0.1
09:34 20.6 0.2
09:35 20.6 0.2
09:36 20.6 0.2
09:37 20.6 0.2
09:38 20.6 0.2
09:39 20.6 0.2
09:40 20.6 0.2
09:41 20.7 0.2
09:42 20.7 0.2
09:43 20.7 0.2
09:44 20.7 0.2
09:45 20.7 0.2
09:46 20.7 0.2
09:47 20.7 0.2
09:48 20.7 0.2
09:49 20.7 0.2
09:50 20.7 0.2
09:51 20.7 0.2
09:52 20.7 0.2
09:53 20.7 0.2
09:54 20.7 0.2
09:55 20.7 0.2
09:56 20.7 0.1
09:57 20.8 0.1
09:58 20.8 0.1
09:59 20.8 0.1
10:00 20.8 0.1
10:01 20.8 0.1
10:02 20.8 0.1
10:03 20.8 0.1
10:04 20.8 0.1
10:05 20.8 0.1
10:06 20.8 0.1
10:07 20.8 0.1
10:08 20.8 0.1
103
RUN DATA
Number 4
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
10:09 20.8 0.1
10:10 20.8 0.1
10:11 20.8 0.1
10:12 20.8 0.1
10:13 20.8 0.1
10:14 20.8 0.1
10:15 20.8 0.1
10:16 20.8 0.1
10:17 20.8 0.1
10:18 20.8 0.1
Avgs 20.7 0.1
104
RUN SUMMARY
Number 4
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 08:13 to 10:18
Run Averages
20.7 0.1
Pre-run Bias at 07:19
Zero Bias
Span Bias
Span Gas
0.0 0.1
11.8 8.3
12.0 8.9
Post-run Bias at 10:21
Zero Bias
Span Bias
Span Gas
0.0 0.0
12.0 8.3
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.8 0.1
105
BIAS AND CALIBRATION DRIFT
Number 6
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
Start Time: 10:21
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.1 12.0 -0.1 -0.5 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 11.8 12.0 0.2 1.0 Pass
*Bias No. 5
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.6 8.3 -0.3 -1.8 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.1 0.0 -0.1 -0.6 Pass
Span 8.3 8.3 0.0 0.0 Pass
*Bias No. 5
106
RUN DATA
Number 5
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
14:12 20.6 0.1
14:13 20.6 0.1
14:14 20.6 0.1
14:15 20.6 0.1
14:16 20.6 0.1
14:17 20.6 0.1
14:18 20.6 0.1
14:19 20.6 0.1
14:20 20.6 0.1
14:21 20.6 0.1
14:22 20.6 0.1
14:23 20.6 0.1
14:24 20.6 0.1
14:25 20.6 0.1
14:26 20.6 0.1
14:27 20.6 0.1
14:28 20.6 0.1
RUN 6
PORT 1
14:29 20.6 0.1
14:30 20.5 0.2
14:31 20.5 0.4
14:32 20.5 0.2
14:33 20.6 0.2
14:34 20.6 0.1
14:35 20.6 0.1
14:36 20.6 0.1
14:37 20.6 0.1
14:38 20.6 0.1
14:39 20.6 0.1
14:40 20.6 0.1
14:41 20.6 0.1
14:42 20.6 0.1
14:43 20.6 0.1
14:44 20.6 0.1
14:45 20.6 0.1
14:46 20.6 0.1
14:47 20.6 0.1
14:48 20.6 0.1
14:49 20.6 0.1
107
RUN DATA
Number 5
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
14:50 20.6 0.1
14:51 20.6 0.1
14:52 20.6 0.1
14:53 20.6 0.1
14:54 20.6 0.1
14:55 20.6 0.1
14:56 20.6 0.1
14:57 20.6 0.1
14:58 20.6 0.1
14:59 20.6 0.1
15:00 20.6 0.1
15:01 20.6 0.1
15:02 20.6 0.1
15:03 20.6 0.1
15:04 20.6 0.1
15:05 20.6 0.1
15:06 20.6 0.1
15:07 20.6 0.1
15:08 20.6 0.1
15:09 20.6 0.1
15:10 20.6 0.1
15:11 20.6 0.1
15:12 20.6 0.1
15:13 20.7 0.1
15:14 20.7 0.1
15:15 20.7 0.1
15:16 20.7 0.1
15:17 20.7 0.1
PORT CHANGE
15:18 20.7 0.1
15:19 20.6 0.1
15:20 20.6 0.1
15:21 20.6 0.1
15:22 20.6 0.1
15:23 20.6 0.1
15:24 20.6 0.1
15:25 20.6 0.1
15:26 20.6 0.1
15:27 20.6 0.1
15:28 20.6 0.1
108
RUN DATA
Number 5
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
15:29 20.6 0.1
15:30 20.6 0.1
15:31 20.6 0.1
15:32 20.6 0.1
15:33 20.6 0.1
15:34 20.6 0.1
15:35 20.6 0.1
15:36 20.6 0.1
15:37 20.6 0.1
15:38 20.6 0.1
PORT 2
15:39 20.6 0.1
15:40 20.6 0.1
15:41 20.6 0.1
15:42 20.6 0.1
15:43 20.6 0.1
15:44 20.6 0.1
15:45 20.6 0.1
15:46 20.6 0.1
15:47 20.6 0.1
15:48 20.7 0.1
15:49 20.7 0.1
15:50 20.7 0.1
15:51 20.7 0.1
15:52 20.7 0.1
15:53 20.7 0.1
15:54 20.7 0.1
15:55 20.7 0.1
15:56 20.7 0.1
15:57 20.7 0.1
15:58 20.7 0.1
15:59 20.7 0.1
16:00 20.7 0.1
16:01 20.7 0.1
16:02 20.7 0.1
16:03 20.7 0.1
16:04 20.7 0.1
16:05 20.7 0.1
16:06 20.7 0.1
16:07 20.7 0.1
109
RUN DATA
Number 5
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
16:08 20.7 0.1
16:09 20.7 0.1
16:10 20.7 0.1
16:11 20.7 0.1
16:12 20.7 0.1
16:13 20.7 0.1
16:14 20.7 0.1
16:15 20.7 0.1
16:16 20.7 0.1
16:17 20.7 0.1
16:18 20.7 0.1
16:19 20.7 0.1
16:20 20.7 0.1
16:21 20.7 0.1
16:22 20.7 0.1
16:23 20.7 0.1
16:24 20.7 0.1
16:25 20.7 0.1
16:26 20.7 0.1
16:27 20.7 0.1
Avgs 20.6 0.1
110
RUN SUMMARY
Number 5
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 14:11 to 16:27
Run Averages
20.6 0.1
Pre-run Bias at 10:21
Zero Bias
Span Bias
Span Gas
0.0 0.0
12.0 8.3
12.0 8.9
Post-run Bias at 16:31
Zero Bias
Span Bias
Span Gas
0.0 0.0
11.9 8.4
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.7 0.1
111
BIAS AND CALIBRATION DRIFT
Number 7
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
28 Feb 2019
Project Number:
Operator:
Date:
Start Time: 16:31
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.1 11.9 -0.2 -1.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.0 11.9 -0.1 -0.5 Pass
*Bias No. 6
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.6 8.4 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.3 8.4 0.1 0.6 Pass
*Bias No. 6
112
BIAS AND CALIBRATION DRIFT
Number 8
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
Start Time: 07:24
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.1 12.2 0.1 0.5 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 11.9 12.2 0.3 1.4 Pass
*Bias No. 7
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.6 8.3 -0.3 -1.8 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.4 8.3 -0.1 -0.6 Pass
*Bias No. 7
113
RUN DATA
Number 6
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
RUN 7
PORT 1
08:13 21.2 0.1
08:14 21.0 0.7
08:15 21.1 0.5
08:16 21.1 0.3
08:17 21.1 0.2
08:18 21.1 0.2
08:19 21.2 0.1
08:20 21.1 0.1
08:21 21.2 0.1
08:22 21.2 0.1
08:23 21.2 0.1
08:24 21.2 0.1
08:25 21.2 0.1
08:26 21.2 0.1
08:27 21.2 0.1
08:28 21.2 0.1
08:29 21.2 0.1
08:30 21.2 0.1
08:31 21.2 0.1
08:32 21.2 0.1
08:33 21.2 0.1
08:34 21.2 0.1
08:35 21.2 0.1
08:36 21.2 0.1
08:37 21.2 0.1
08:38 21.2 0.1
08:39 21.2 0.1
08:40 21.2 0.1
08:41 21.2 0.1
08:42 21.2 0.1
08:43 21.2 0.1
08:44 21.2 0.1
08:45 21.2 0.1
08:46 21.2 0.1
08:47 21.2 0.1
08:48 21.2 0.1
08:49 21.2 0.1
08:50 21.2 0.1
114
RUN DATA
Number 6
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
08:51 21.2 0.1
08:52 21.2 0.1
08:53 21.2 0.1
08:54 21.2 0.1
08:55 21.2 0.1
08:56 21.2 0.1
08:57 21.2 0.1
08:58 21.2 0.1
08:59 21.2 0.1
09:00 21.2 0.1
09:01 21.3 0.1
PORT CHANGE
PORT 2
09:20 21.2 0.1
09:21 21.2 0.1
09:22 21.2 0.1
09:23 21.2 0.2
09:24 21.2 0.2
09:25 21.2 0.2
09:26 21.2 0.2
09:27 21.2 0.2
09:28 21.2 0.2
09:29 21.2 0.2
09:30 21.2 0.2
09:31 21.3 0.2
09:32 21.3 0.2
09:33 21.3 0.2
09:34 21.3 0.2
09:35 21.3 0.2
09:36 21.3 0.2
09:37 21.3 0.2
09:38 21.3 0.2
09:39 21.3 0.2
09:40 21.3 0.2
09:41 21.3 0.2
09:42 21.3 0.1
09:43 21.3 0.1
09:44 21.3 0.1
09:45 21.3 0.1
09:46 21.3 0.1
115
RUN DATA
Number 6
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
09:47 21.3 0.1
09:48 21.3 0.1
09:49 21.3 0.1
09:50 21.3 0.1
09:51 21.3 0.1
09:52 21.3 0.1
09:53 21.3 0.1
09:54 21.3 0.1
09:55 21.3 0.1
09:56 21.3 0.1
09:57 21.3 0.1
09:58 21.3 0.1
09:59 21.3 0.1
10:00 21.3 0.1
10:01 21.3 0.1
10:02 21.3 0.1
10:03 21.3 0.1
10:04 21.3 0.1
10:05 21.3 0.1
10:06 21.3 0.1
10:07 21.3 0.1
10:08 21.3 0.1
Avgs 21.2 0.1
116
RUN SUMMARY
Number 6
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 08:12 to 10:08
Run Averages
21.2 0.1
Pre-run Bias at 07:24
Zero Bias
Span Bias
Span Gas
0.0 0.0
12.2 8.3
12.0 8.9
Post-run Bias at 10:12
Zero Bias
Span Bias
Span Gas
0.0 0.0
12.2 8.4
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.9 0.1
117
BIAS AND CALIBRATION DRIFT
Number 9
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
Start Time: 10:12
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.1 12.2 0.1 0.5 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.2 12.2 0.0 0.0 Pass
*Bias No. 8
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.6 8.4 -0.2 -1.2 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.3 8.4 0.1 0.6 Pass
*Bias No. 8
118
RUN DATA
Number 7
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
RUN 8
PORT 1
12:37 21.1 0.1
12:38 21.1 0.1
12:39 21.1 0.1
12:40 21.1 0.1
12:41 21.1 0.1
12:42 21.1 0.1
12:43 21.1 0.1
12:44 21.1 0.1
12:45 21.1 0.1
12:46 21.1 0.1
12:47 21.1 0.1
12:48 21.1 0.1
12:49 21.1 0.1
12:50 21.1 0.1
12:51 21.1 0.1
12:52 21.1 0.1
12:53 21.1 0.1
12:54 21.1 0.1
12:55 21.1 0.1
12:56 21.1 0.1
12:57 21.1 0.1
12:58 21.1 0.1
12:59 21.1 0.1
13:00 21.1 0.1
13:01 21.1 0.1
13:02 21.1 0.1
13:03 21.1 0.1
13:04 21.1 0.1
13:05 21.1 0.1
13:06 21.1 0.1
13:07 21.1 0.1
13:08 21.1 0.1
13:09 21.1 0.1
13:10 21.2 0.1
13:11 21.2 0.1
13:12 21.2 0.1
13:13 21.2 0.1
13:14 21.2 0.1
119
RUN DATA
Number 7
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
13:15 21.2 0.1
13:16 21.2 0.1
13:17 21.2 0.1
13:18 21.2 0.1
13:19 21.2 0.1
13:20 21.2 0.1
13:21 21.2 0.1
13:22 21.2 0.1
13:23 21.2 0.1
13:24 21.3 0.1
PORT CHANGE
PORT 2
13:45 21.1 0.1
13:46 21.1 0.1
13:47 21.1 0.1
13:48 21.1 0.1
13:49 21.1 0.1
13:50 21.1 0.1
13:51 21.1 0.1
13:52 21.1 0.1
13:53 21.1 0.1
13:54 21.1 0.1
13:55 21.1 0.1
13:56 21.2 0.1
13:57 21.2 0.1
13:58 21.2 0.1
13:59 21.2 0.1
14:00 21.2 0.1
14:01 21.2 0.1
14:02 21.2 0.1
14:03 21.2 0.1
14:04 21.2 0.1
14:05 21.2 0.1
14:06 21.3 0.1
14:07 21.2 0.1
14:08 21.2 0.1
14:09 21.2 0.1
14:10 21.2 0.1
14:11 21.2 0.1
14:12 21.2 0.1
120
RUN DATA
Number 7
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
O2 CO2
%%Time
14:13 21.2 0.1
14:14 21.2 0.1
14:15 21.2 0.1
14:16 21.2 0.1
14:17 21.2 0.1
14:18 21.2 0.1
14:19 21.3 0.1
14:20 21.3 0.1
14:21 21.3 0.1
14:22 21.3 0.1
14:23 21.3 0.1
14:24 21.3 0.1
14:25 21.2 0.1
14:26 21.2 0.1
14:27 21.2 0.1
14:28 21.2 0.1
14:29 21.2 0.1
14:30 21.2 0.1
14:31 21.2 0.1
14:32 21.2 0.1
14:33 21.2 0.1
Avgs 21.2 0.1
121
RUN SUMMARY
Number 7
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
O2 CO2
Method EPA 3A EPA 3A
Conc. Units %%
Time: 12:36 to 14:33
Run Averages
21.2 0.1
Pre-run Bias at 10:12
Zero Bias
Span Bias
Span Gas
0.0 0.0
12.2 8.4
12.0 8.9
Post-run Bias at 14:35
Zero Bias
Span Bias
Span Gas
0.0 0.0
12.1 8.3
12.0 8.9
Run averages corrected for the average of the pre-run and post-run bias
20.9 0.1
122
BIAS AND CALIBRATION DRIFT
Number 10
Client:
Location:
Source: Calibration 1
Chemours
CHEMOURS
VE North Carbon Bed/Division
15418.002.010
SD
1 Mar 2019
Project Number:
Operator:
Date:
Start Time: 14:35
O2Method: EPA 3A
Span Conc. 21.0 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.1 12.1 0.0 0.0 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 12.2 12.1 -0.1 -0.5 Pass
*Bias No. 9
CO2
Method: EPA 3A
Span Conc. 16.6 %
Bias Results
Standard Cal.Bias Difference Error
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.6 8.3 -0.3 -1.8 Pass
Calibration Drift
Standard Initial*Final Difference Drift
Gas %%%%Status
Zero 0.0 0.0 0.0 0.0 Pass
Span 8.4 8.3 -0.1 -0.6 Pass
*Bias No. 9
123
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019
APPENDIX C
LABORATORY ANALYTICAL REPORT
Note: The analytical report is included on the attached CD.
124
!"#$%$"&'()&
!"#$%&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"*+
+*, -#$
#
#.
/
#
0#.*
*
" 2% *" 23+0' '+4
5'
// !"#$
6&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"*
+
+
-#$
#
#.
#
0#.
,
" 2% *" 23+0' '+4
5'
!"#$$07
18
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
1 23 4
+.
+
.0. -#$
#
/#.
/
#
0#.
" 2% *" 23+0' '+4
5'
/ !"#$
69"#!&14:&;"98!469
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
#.
#
0#.
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 14 of 664125
!"#$%$"&'()&
9 !"#8!"#9
61<9$%&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+
+
-#$
#
#.
/
#
0#.*/
" 2% *" 23+0' '+4
5'
9 !"#8!"#9
61<9$6&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"= >
+*
+
-#$
#
#.
#
0#.
" 2% *" 23+0' '+4
5'
9 !"#8!"#961<9
$$0718
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"=/ >
+*
+
* -#$
#
/#.
/
#
0#.
*
" 2% *" 23+0' '+4
5'
9 !"#8!"#961<9
$69"#!&14:&;"98!469
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
#.
#
0#.,
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 15 of 664126
!"#$%$"&'()&
# !"#$%&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"+*/
+
/ -#$
#
,#.
.
0
##.
" 2% *" 23+0' '+4
5'
# !"#$6&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"/
+
*+
-#$
#
/#.
0
.
#0#.
.
" 2% *" 23+0' '+4
5'
# !"#$$07
18
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"=/ >
+*
/
+
-#$
#
/#.
/
#
0#.
" 2% *" 23+0' '+4
5'
/
# !"#$
69"#!&14:&;"98!469
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
/#.
0
.
#0#.
*
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 16 of 664127
!"#$%$"&'()&
9 !"#8!"#9
61<9$%&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=/
+
,/
+
0*/ -#$
#
,#.
.
0
##.
,
" 2% *" 23+0' '+4
5'
9/ !"#8!"#9
61<9$6&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"= >
+*
+
-#$
#
/#.
0
.
#0#.
" 2% *" 23+0' '+4
5'
9 !"#8!"#961<9
$$0718
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"=// >
+*0
+
-#$
#
/#.
/
#
0#.
" 2% *" 23+0' '+4
5'
9 !"#8!"#961<9
$69"#!&14:&;"98!469
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
/#.
0
.
#0#.
.
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 17 of 664128
!"#$%$"&'()&
// !"#$%&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=+*/
+
/ -#$
#
,#.
.
0
##.
,
" 2% *" 23+0' '+4
5'
/// !"#$6&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=*+
+
-#$
#
/#.
0
.
#0#.
0
" 2% *" 23+0' '+4
5'
/ !"#$$07
18
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
1 23 4
+*
+
* -#$
#
/#.**
##.*
.
" 2% *" 23+0' '+4
5'
// !"#$
69"#!&14:&;"98!469
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
/#.
0
.
#0#.
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 18 of 664129
!"#$%$"&'()&
9/ !"#8!"#9
61<9$%&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+
+
. -#$
#
,#.
.
0
##.
*
" 2% *" 23+0' '+4
5'
9 !"#8!"#9
61<9$6&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+*
+
-#$
#
/#.
0
.
#0#.
0
" 2% *" 23+0' '+4
5'
9 !"#8!"#961<9
$$0718
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"= >
+*
+
, -#$
#
/#.**
##.**
" 2% *" 23+0' '+4
5'
9 !"#8!"#961<9
$69"#!&14:&;"98!469
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
/#.
0
.
#0#.
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 19 of 664130
!"#$%$"&'()&
# !"#$%&
#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=+
+/
-#$
#
#.
/
#
0#.
/
" 2% *" 23+0' '+4
5'
#/ !"#$6&
#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"*+
+
-#$
#
#.
#
0#.
" 2% *" 23+0' '+4
5'
# !"#$$07
18#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"=
+.
+
.0. -#$
#
/#.
/
#
0#.
" 2% *" 23+0' '+4
5'
# !"#$
69"#!&14:&;"98!469#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
#.
#
0#. /
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 20 of 664131
!"#$%$"&'()&
9 !"#8!"#961<9
$%&#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=/
+*/
+
/ -#$
#
#.
/
#
0#.
.
" 2% *" 23+0' '+4
5'
9/ !"#8!"#9
61<9$6&#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=/ >
+*
+
-#$
#
#.
#
0#. .
" 2% *" 23+0' '+4
5'
9 !"#8!"#961<9$
$0718#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
1 23 4
+0*
+
.*0 -#$
#
/#.
/
#
0#. 0
" 2% *" 23+0' '+4
5'
9 !"#8!"#961<9$
69"#!&14:&;"98!469#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
#.
#
0#.
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 21 of 664132
!"#$%$"&'()&
&// !"#$%&
#:,&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"+
+/
-#$
#
,#.
.
0
##.
" 2% *" 23+0' '+4
5'
&/// !"#$6&
#:,&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"
+
*+
-#$
#
/#.
0
.
#0#.
,
" 2% *" 23+0' '+4
5'
&// !"#$$07
18#:,&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"= >
+*
+
* -#$
#
/#.
/
#
0#.
,
" 2% *" 23+0' '+4
5'
& !"#$
69"#!&14:&;"98!469#:,&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#
/#.
0
.
#0#.
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 22 of 664133
!"#$%$"&'()&
& !"#$/%&
#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"/=+*/
+
/ -#$
#
,#.
.
0
##.
/
" 2% *" 23+0' '+4
5'
/
& !"#$/6&
#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"*+
+
-#$
##.
.*.
##.*
" 2% *" 23+0' '+4
5'
& !"#$/$07
18#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"=
+*
+
, -#$
#
/#.
/
#
0#.
" 2% *" 23+0' '+4
5'
& !"#$/
69"#!&14:&;"98!469#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
##.
.*.
##.*
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 23 of 664134
!"#$%$"&'()&
// !"#8!"#961<9
$%&#:,&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+
+
. -#$
#
,#.
.
0
##.
.
" 2% *" 23+0' '+4
5'
/// !"#8!"#9
61<9$6&#:,&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+*
+
-#$
#
/#.
0
.
#0#.,
" 2% *" 23+0' '+4
5'
// !"#8!"#961<9$
$0718#:,&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"&%01"
$
1 23 4
+0/
+
. . -#$
#
/#.
/
#
0#.
.
" 2% *" 23+0' '+4
5'
!"#8!"#961<9$
69"#!&14:&;"98!469#:,&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"= >
+*
+
-#$
#
/#.
0
.
#0#.*
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 24 of 664135
!"#$%$"&'()&
!"#8!"#961<9
$/%&#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+
,/
+
0*/ -#$
#
,#.
.
0
##.
" 2% *" 23+0' '+4
5'
!"#8!"#9
61<9$/6&#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"= >
+*
+
-#$
##.
.*.
##.*/
" 2% *" 23+0' '+4
5'
!"#8!"#961<9$
/$0718#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"= >
+*
+
* -#$
#
/#.
/
#
0#.
0
" 2% *" 23+0' '+4
5'
/
!"#8!"#961<9$
/69"#!&14:&;"98!469#:,&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
##.
.*.
##.**
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 25 of 664136
!"#$%$"&'()&
/
! !"#$%&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"+*/
+
/ -#$
#*#.
##.
" 2% *" 23+0' '+4
5'
//
! !"#$6&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"*
+
+
-#$
#*#.
0
##.
.
" 2% *" 23+0' '+4
5'
/
! !"#$$07
18
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"=
+.
+
.0. -#$
#
/#.**
##.*
" 2% *" 23+0' '+4
5'
/
! !"#$
69"#!&14:&;"98!469
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+*
+
-#$
#*#.
0
##.
.
" 2% *" 23+0' '+4
5'
/
!/ !"#$%&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"+*
+/ -#$
#*#.
##.
0 *
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 26 of 664137
!"#$%$"&'()&
/
!/ !"#$%&
$ '("' )*+,,
*-+,,
) '"'!'
/
! !"#$6&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"
+
*+
-#$
#*#.
0
##.
.0
" 2% *" 23+0' '+4
5'
/
! !"#$$07
18
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"=
+.*
+
.,. -#$
#
/#.**
##.*
" 2% *" 23+0' '+4
5'
/
! !"#$
69"#!&14:&;"98!469
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#*#.
0
##.
" 2% *" 23+0' '+4
5'
/
9 8!"#961<9
$%&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+*/
+
/ -#$
#*#.
##.
*
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 27 of 664138
!"#$%$"&'()&
/
9 8!"#961<9
$%&
$ '("' )*+,/,
*-+,,
) '"'!'
/
9 8!"#961<9
$6&
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=/
+*
+
-#$
#*#.
0
##.
0
" 2% *" 23+0' '+4
5'
/
9 8!"#961<9$$0
718
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"=/ >
+*
*
+
-#$
#
/#.**
##.* 0
" 2% *" 23+0' '+4
5'
//
9 8!"#961<9$
69"#!&14:&;"98!469
$ '("' )*+,/,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
1 23 4
+*
+
-#$
#*#.
0
##.
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 28 of 664139
!"#$%$"&'()&
/
9/ 8!"#961<9
$%&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=
+
*
+
-#$
#*#.
##.
*
" 2% *" 23+0' '+4
5'
/
9 8!"#961<9
$6&
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"=/ >
+*
+
-#$
#*#.
0
##.
,
" 2% *" 23+0' '+4
5'
/
9 8!"#961<9$$0
718
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"&%01"
$
&%01"= >
+./
+
... -#$
#
/#.**
##.*
" 2% *" 23+0' '+4
5'
/
9 8!"#961<9$
69"#!&14:&;"98!469
$ '("' )*+,,
*-+,,
) '"'!'
$.)+/"0%1" +0%1
$
&%01"= >
+*
+
-#$
#*#.
0
##.
*
" 2% *" 23+0' '+4
5'
563"78%
04/04/2019Page 29 of 664140
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019
APPENDIX D
SAMPLE CALCULATIONS
141
SAMPLE CALCULATIONS FOR
HFPO DIMER ACID (METHOD 0010)
Client: Chemours Plant: Fayetteville, NC
Test Number: Run 3 Test Date: 2/27/19
Test Location: Divison Stack Test Period: 0840-1035
1. HFPO Dimer Acid concentration, lbs/dscf.
W x 2.2046 x 10-9
Conc1 = ------------------------------
Vm(std)
154.6 x 2.2046 x 10-9
Conc1 = ------------------------------
53.177
Conc1 = 6.41E-09
Where:
W = Weight of HFPO Dimer Acid collected in sample in ug.
Conc1 = Division Stack HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10-9 = Conversion factor from ug to lbs.
2. HFPO Dimer Acid concentration, ug/dscm.
Conc2 = W / ( Vm(std) x 0.02832)
Conc2 = 154.6 / ( 53.177 x 0.02832 )
Conc2 = 1.03E+02
Where:
Conc2 = Division Stack HFPO Dimer Acid concentration, ug/dscm.
0.02832 = Conversion factor from cubic feet to cubic meters.
4/2/20195:11 PM 02262019 Division 1-3
142
3. HFPO Dimer Acid mass emission rate, lbs/hr.
MR1(Outlet)= Conc1 x Qs(std) x 60 min/hr
MR1(Outlet)= 6.41E-09 x 28117 x 60
MR1(Outlet)= 1.08E-02
Where:
MR1(Outlet)= Division Stack HFPO Dimer Acid mass emission rate, lbs/hr.
4. HFPO Dimer Acid mass emission rate, g/sec.
MR2(Outlet)= PMR1 x 453.59 / 3600
MR2(Outlet)= 1.08E-02 x 453.59 /3600
MR2(Outlet)= 1.36E-03
Where:
MR2(Outlet)= Division Stack HFPO Dimer Acid mass emission rate, g/sec.
453.6 = Conversion factor from pounds to grams.
3600 = Conversion factor from hours to seconds.
4/2/20195:11 PM 02262019 Division 1-3
143
EXAMPLE CALCULATIONS FOR
VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS
Client: Chemours Facility: Fayetteville, NC
Test Number: Run 3 Test Date: 2/27/19
Test Location: Division Stack Test Period: 840-1035
1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.
delta H
17.64 x Y x Vm x ( Pb + ------------ )
13.6
Vm(std) = --------------------------------------------
(Tm + 460)
1.011
17.64 x 1.0069 x 51.040 x ( 30.12 + --------------------- )
13.6
Vm(std) = ------------------------------------------------------------ = 53.177
54.75 + 460
Where:
Vm(std) = Volume of gas sample measured by the dry gas meter,
corrected to standard conditions, dscf.
Vm = Volume of gas sample measured by the dry gas meter
at meter conditions, dcf.
Pb = Barometric Pressure, in Hg.
delt H = Average pressure drop across the orifice meter, in H2O
Tm = Average dry gas meter temperature , deg F.
Y = Dry gas meter calibration factor.
17.64 = Factor that includes ratio of standard temperature (528 deg R)
to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 = Specific gravity of mercury.
2. Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vw(std) = (0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) = ( 0.04707 x 6.0 ) + ( 0.04715 x 12.7 ) = 0.88
Where:
Vw(std) = Volume of water vapor in the gas sample corrected to
standard conditions, scf.
Vwc = Volume of liquid condensed in impingers, ml.
Wwsg = Weight of water vapor collected in silica gel, g.
0.04707 = Factor which includes the density of water
(0.002201 lb/ml), the molecular weight of water
(18.0 lb/lb-mole), the ideal gas constant
21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), ft3/ml.
0.04715 = Factor which includes the molecular weight of water
(18.0 lb/lb-mole), the ideal gas constant
21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
temperature at standard conditions (528 deg R), absolute
pressure at standard conditions (29.92 in. Hg), and
453.6 g/lb, ft3/g.
4/2/20195:11 PM 02262019 Division 1-3
144
3. Moisture content
Vw(std)
bws = -------------------------
Vw(std) + Vm(std)
0.88
bws = ------------------------- = 0.016
0.88 + 53.177
Where:
bws = Proportion of water vapor, by volume, in the gas
stream, dimensionless.
4. Mole fraction of dry gas.
Md = 1 - bws
Md = 1 - 0.016 = 0.984
Where:
Md = Mole fraction of dry gas, dimensionless.
5. Dry molecular weight of gas stream, lb/lb-mole.
MWd = ( 0.440 x % CO2 ) + ( 0.320 x % O2 ) + ( 0.280 x (% N2 + % CO) )
MWd = ( 0.440 x 0.1 ) + ( 0.320 x 20.8 ) + (0.280 x ( 79.1 + 0.00 ))
MWd = 28.85
Where:
MWd = Dry molecular weight , lb/lb-mole.
% CO2 = Percent carbon dioxide by volume, dry basis.
% O2 = Percent oxygen by volume, dry basis.
% N2 = Percent nitrogen by volume, dry basis.
% CO = Percent carbon monoxide by volume, dry basis.
0.440 = Molecular weight of carbon dioxide, divided by 100.
0.320 = Molecular weight of oxygen, divided by 100.
0.280 = Molecular weight of nitrogen or carbon monoxide,
divided by 100.
6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.
MWs = ( MWd x Md ) + ( 18 x ( 1 - Md ))
MWs = ( 28.85 x 0.984 ) +( 18 ( 1 - 0.984 )) = 28.67
Where:
MWs = Molecular weight of wet gas, lb/lb-mole.
18 = Molecular weight of water, lb/lb-mole.
4/2/20195:11 PM 02262019 Division 1-3
145
7. Average velocity of gas stream at actual conditions, ft/sec.
Ts (avg)
Vs =85.49 x Cp x ((delt p)1/2)avg x ( ---------------- )1/2
Ps x MWs
530
Vs = 85.49 x 0.84 x 1.19608 x ( -------------------- )^1/2 = 67.4
30.07 x 28.67
Where:
Vs = Average gas stream velocity, ft/sec.
(lb/lb-mole)(in. Hg)1/2
85.49 = Pitot tube constant, ft/sec x ------------------------------------
(deg R)(in H2O)
Cp = Pitot tube coefficient, dimensionless.
Ts = Absolute gas stream temperature, deg R = Ts, deg F + 460.
P(static)
Ps = Absolute gas stack pressure, in. Hg. = Pb + --------------
13.6
delt p = Velocity head of stack, in. H2O.
8. Average gas stream volumetric flow rate at actual conditions, wacf/min.
Qs(act) = 60 x Vs x As
Qs(act) = 60 x 67.4 x 7.07 = 28576
Where:
Qs(act) = Volumetric flow rate of wet stack gas at actual
conditions, wacf/min.
As =Cross-sectional area of stack, ft2.
60 = Conversion factor from seconds to minutes.
9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.
Ps
Qs(std) = 17.64 x Md x ----- x Qs(act)
Ts
30.07
Qs(std) = 17.64 x 0.984 x -------------------- x 28576
530.3
Qs(std) =28117
Where:
Qs(std) = Volumetric flow rate of dry stack gas at standard
conditions, dscf/min.
4/2/20195:11 PM 02262019 Division 1-3
146
10. Isokinetic variation calculated from intermediate values, percent.
17.327 x Ts x Vm(std)
I = -----------------------------------
Vs x O x Ps x Md x (Dn)2
17.327 x 530 x 53.177
I = -------------------------------------------------- = 99.8
67.4 x 96 x 30.07 x 0.984 x (0.160)^2
Where:
I = Percent of isokinetic sampling.
O = Total sampling time, minutes.
Dn = Diameter of nozzle, inches.
17.327 = Factor which includes standard temperature (528 deg R),
standard pressure (29.92 in. Hg), the formula for
calculating area of circle D2/4, conversion of square
feet to square inches (144), conversion of seconds
to minutes (60), and conversion to percent (100),
(in. Hg)(in2)(min)
(deg R)(ft2)(sec)
4/2/20195:11 PM 02262019 Division 1-3
147
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019
APPENDIX E
EQUIPMENT CALIBRATION RECORDS
148
Date: 12/4/14-12/5/14Analyzer Type: Servomex - O2Model No: 4900Serial No: 49000-652921Calibration Span: 21.09 %Pollutant: 21.09% O2 - CC418692
CO2 (30.17% CC199689)0.00 -0.01 0.00
.
NO (445 ppm CC346681)0.00 0.02 0.11
NO2 (23.78 ppm CC500749)NA NA NA
N2O (90.4 ppm CC352661)0.00 0.05 0.24
CO (461.5 ppm XC006064B)0.00 0.02 0.00
SO2 (451.2 ppm CC409079)0.00 0.05 0.23
CH4 (453.1 ppm SG901795)NA NA NA
H2 (552 ppm ALM048043)0.00 0.09 0.44
HCl (45.1 ppm CC17830)0.00 0.03 0.14
NH3 (9.69 ppm CC58181)0.00 0.01 0.03
1.20
< 2.5%
(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.
Chad Walker
INTERFERENCE CHECK
INTERFERENT GAS
ANALYZER RESPONSE % OF CALIBRATION
SPAN(a)
TOTAL INTERFERENCE RESPONSE
METHOD SPECIFICATION
INTERFERENT GAS RESPONSE, WITH
BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%)
149
Date: 12/4/14-12/5/14Analyzer Type: Servomex - CO2Model No: 4900Serial No: 49000-652921Calibration Span: 16.65%Pollutant: 16.65% CO2 - CC418692
CO2 (30.17% CC199689)NA NA NA
.
NO (445 ppm CC346681)0.00 0.02 0.10
NO2 (23.78 ppm CC500749)0.00 0.00 0.02
N2O (90.4 ppm CC352661)0.00 0.01 0.04
CO (461.5 ppm XC006064B)0.00 0.01 0.00
SO2 (451.2 ppm CC409079)0.00 0.11 0.64
CH4 (453.1 ppm SG901795)0.00 0.07 0.44
H2 (552 ppm ALM048043)0.00 0.04 0.22
HCl (45.1 ppm CC17830)0.10 0.06 0.60
NH3 (9.69 ppm CC58181)0.00 0.02 0.14
2.19
< 2.5%
(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.
Chad Walker
INTERFERENCE CHECK
INTERFERENT GAS
ANALYZER RESPONSE % OF CALIBRATION
SPAN(a)
TOTAL INTERFERENCE RESPONSE
METHOD SPECIFICATION
INTERFERENT GAS RESPONSE, WITH
BACKGROUND POLLUTANT (%)INTERFERENT GAS RESPONSE (%)
150
CERTIFICATE OF ANALYSIS
Grade of Product: EPA Protocol
Part Number:E03NI79E15A00E4 Reference Number:82-401288926-1
Cylinder Number:CC18055 Cylinder Volume:150.5 CF
Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG
PGVP Number:B52018 Valve Outlet:590
Gas Code:CO2,O2,BALN Certification Date:Sep 04, 2018
Expiration Date:Sep 04, 2026
Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA
600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
volume/volume basis unless otherwise noted.
Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.
ANALYTICAL RESULTS
Component Requested Actual Protocol Total Relative Assay
Concentration Concentration Method Uncertainty Dates
CARBON DIOXIDE 9.000 %8.864 %G1 +/- 0.7% NIST Traceable 09/04/2018
OXYGEN 12.00 %12.00 %G1 +/- 0.4% NIST Traceable 09/04/2018
NITROGEN Balance -
CALIBRATION STANDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 13060629 CC413730 13.359 % CARBON DIOXIDE/NITROGEN +/- 0.6%May 09, 2019
ANALYTICAL EQUIPMENT
Instrument/Make/Model Analytical Principle Last Multipoint Calibration
Horiba VIA 510-CO2-19GYCXEG NDIR Aug 09, 2018
Horiba MPA 510-O2-7TWMJ041 Paramagnetic Aug 09, 2018
Triad Data Available Upon Request
Airgas Specialty GasesAirgas USA, LLC
600 Union Landing Road
Cinnaminson, NJ 08077-0000
Airgas.com
Signature on file
Approved for Release Page 1 of 82-401288926-1151
CERTIFICATE OF ANALYSIS
Grade of Product: EPA Protocol
Part Number:E03NI62E15A0224 Reference Number:82-401044874-1
Cylinder Number:SG9169108 Cylinder Volume:157.2 CF
Laboratory:124 - Riverton (SAP) - NJ Cylinder Pressure:2015 PSIG
PGVP Number:B52017 Valve Outlet:590
Gas Code:CO2,O2,BALN Certification Date:Nov 18, 2017
Expiration Date:Nov 18, 2025
Certification performed in accordance with “EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)” document EPA
600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
volume/volume basis unless otherwise noted.
Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.
ANALYTICAL RESULTS
Component Requested Actual Protocol Total Relative Assay
Concentration Concentration Method Uncertainty Dates
CARBON DIOXIDE 17.00 %16.58 %G1 +/- 0.7% NIST Traceable 11/18/2017
OXYGEN 21.00 %21.00 %G1 +/- 0.5% NIST Traceable 11/18/2017
NITROGEN Balance -
CALIBRATION STANDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 12061336 CC360792 11.002 % CARBON DIOXIDE/NITROGEN +/- 0.6%Jan 11, 2018
NTRM 09061415 CC273526 22.53 % OXYGEN/NITROGEN +/- 0.4%Mar 08, 2019
ANALYTICAL EQUIPMENT
Instrument/Make/Model Analytical Principle Last Multipoint Calibration
Horiba VIA 510-CO2-19GYCXEG NDIR Oct 30, 2017
Horiba MPA 510-O2-7TWMJ041 Paramagnetic Oct 27, 2017
Triad Data Available Upon Request
Airgas Specialty GasesAirgas USA, LLC
600 Union Landing Road
Cinnaminson, NJ 08077-0000
Airgas.com
Signature on file
Approved for Release Page 1 of 82-401044874-1152
Pitot Tube Identification Number:
Inspection Date 2/19/19 Individual Conducting Inspection
Distance to A Plane (PA) - inches 0.459 PASS
Distance to B Plane (PB) - inches 0.459 PASS
Pitot OD (Dt) - inches 0.375
1.05 Dt < P < 1.5 Dt PA must Equal PB
Q1 and Q2 must be < 10o
B1 or B2 must be < 5o
Z must be < 0.125 inches
W must be < 0.03125 inches
X must be > 0.75 inches
P-700
ks
Angle of Q1 from vertical A Tube- degrees (absolute)
Angle of Q2 from vertical B Tube-
degrees (absolute)
Type S Pitot Tube Inspection Data Form
Are Open Faces Aligned
Perpendicular to the Tube Axis YES NO PASS
If all Criteria PASS
Cp is equal to 0.84
PASS/FAIL
Angle of B1 from
vertical B Tube- degrees (absolute)
PASS
PASS
PASS0
0
Angle of B1 from
vertical A Tube-
degrees (absolute)0
0
0.93
Horizontal offset between A and B Tubes (Z) - inches
Vertical offset between A and B
Tubes (W) - inches
0.003
0.012
Distance between Sample Nozzle and Pitot (X) - inches
Thermocouple meets
the Distance Criteria
in the adjacent figure
YES
YES
PASS
NO YES
NA
PASS
PASS
PASS
Thermocouple meets
the Distance Criteria
in the adjacent figure
Impact Pressure
Opening Plane is
above the Nozzle
Entry Plane
NO
NA
NO
NASample Probe
Type S Pitot Tube
Temperature Sensor
Dt
2 inch
Sample Probe
Temperature Sensor
Dt Type S Pitot Tube
3 inch
3/4 inch
A B
Face Opening Planes
A
B A
BQ1Q1 Q2
B B
B
A A
A
FlowFlow
B1(+)B1(-)
B2(+ or -)
B1(+ or -)
B-Side Plane
AB
PA
PB
A-Side PlaneDt
X
Sampling D
Impact Pressure Opening Plane
Nozzle Entry Plane
W
B
A
B
A
Z
153
Pitot Tube Identification Number:
Inspection Date 2/19/19 Individual Conducting Inspection
Distance to A Plane (PA) - inches 0.46 PASS
Distance to B Plane (PB) - inches 0.46 PASS
Pitot OD (Dt) - inches 0.375
1.05 Dt < P < 1.5 Dt PA must Equal PB
Q1 and Q2 must be < 10o
B1 or B2 must be < 5o
Z must be < 0.125 inches
W must be < 0.03125 inches
X must be > 0.75 inches
P-695
ks
Angle of Q1 from vertical A Tube- degrees (absolute)
Angle of Q2 from vertical B Tube-
degrees (absolute)
Type S Pitot Tube Inspection Data Form
Are Open Faces Aligned
Perpendicular to the Tube Axis YES NO PASS
If all Criteria PASS
Cp is equal to 0.84
PASS/FAIL
Angle of B1 from
vertical B Tube- degrees (absolute)
PASS
PASS
PASS0
1
Angle of B1 from
vertical A Tube-
degrees (absolute)0
0
0.78
Horizontal offset between A and B Tubes (Z) - inches
Vertical offset between A and B
Tubes (W) - inches
0.006
0.018
Distance between Sample Nozzle and Pitot (X) - inches
Thermocouple meets
the Distance Criteria
in the adjacent figure
YES
YES
PASS
NO YES
NA
PASS
PASS
PASS
Thermocouple meets
the Distance Criteria
in the adjacent figure
Impact Pressure
Opening Plane is
above the Nozzle
Entry Plane
NO
NA
NO
NASample Probe
Type S Pitot Tube
Temperature Sensor
Dt
2 inch
Sample Probe
Temperature Sensor
Dt Type S Pitot Tube
3 inch
3/4 inch
A B
Face Opening Planes
A
B A B
Q1 Q1 Q2
B B
B
A A
A
FlowFlow
B1(+)B1(-)
B2(+ or -)
B1(+ or -)
B-Side Plane
AB
PA
PB
A-Side PlaneDt
X
Sampling D
Impact Pressure Opening Plane
Nozzle Entry Plane
W
B
A
B
A
Z
154
Y Factor Calibration Check Calculation
MODIFIED METHOD 0010 TEST TRAIN
DIVISION STACK
METER BOX NO. 12
2/26/2019 - 2/28/2019 & 3/1/2019
Run 1 Run 2 Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.
0.32 = Molecular weight of oxygen, divided by 100.
0.44 = Molecular weight of carbon dioxide, divided by 100.
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.
% CO2 = Percent carbon dioxide by volume, dry basis.0.1 0.1 0.1
% O2 = Percent oxygen by volume, dry basis.20.8 20.8 20.8
MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 )))
MWd = ( 0.32 * 20.8 ) + ( 0.44 * 0.1 ) + ( 0.28 * ( 100 - ( 0.1 + 20.8 )))
MWd = ( 6.66 ) + ( 0.04 ) + ( 22.15 )
MWd = 28.85 28.85 28.85
Tma =Source Temperature, absolute(oR)
Tm = Average dry gas meter temperature , deg F.68.7 74.3 54.8
Tma = Ts + 460
Tma = 68.67 + 460
Tma = 528.67 534.25 514.75
Ps = Absolute meter pressure, inches Hg.
13.60 = Specific gravity of mercury.
delta H = Avg pressure drop across the orifice meter during sampling, in H2O 1.05 1.04 1.01
Pb = Barometric Pressure, in Hg.30.19 30.10 30.12
Pm = Pb + (delta H / 13.6)
Pm = 30.19 + ( 1.04883333333333 / 13.6)
Pm = 30.27 30.18 30.19
Yqa = dry gas meter calibration check value, dimensionless.
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.
29.00 = dry molecular weight of air, lb/lb-mole.
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.52.225 52.835 51.040
Y = Dry gas meter calibration factor (based on full calibration)1.0069 1.0069 1.0069
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.8812 1.8812 1.8812
avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.0172 1.0142 1.0012
O = Total sampling time, minutes.96 96 96
Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H
Yqa = ( 96.00 / 52.23 ) * SQRT ( 0.0319 * 528.67 * 29 ) / ( 1.88 * 30.27 * 28.85 ) * 1.02
Yqa = 1.838 * SQRT 489.070 / 1,642.718 * 1.02
Yqa = 1.0203 1.0123 1.0153
Diff = Absolute difference between Yqa and Y 1.33 0.54 0.83
Diff = (( Y - Yqa ) / Y ) * 100
Diff = (( 1.0069 - 1.020 ) / 1.0069 ) * 100
Average Diff = 0.9
Allowable = 5.0
4/3/20199:57 AM 02262019 Division 1-3155
Y Factor Calibration Check Calculation
MODIFIED METHOD 0010 TEST TRAIN
BLOWER INTAKE
METER BOX NO. 29
2/26/2019 - 2/2/2019 & 3/1/2019
Run 1 Run 2 Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.
0.32 = Molecular weight of oxygen, divided by 100.
0.44 = Molecular weight of carbon dioxide, divided by 100.
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.
% CO2 = Percent carbon dioxide by volume, dry basis.0.0 0.0 0.0
% O2 = Percent oxygen by volume, dry basis.20.9 20.9 20.9
MWd = ( 0.32 * O2 ) + ( 0.44 * CO2 ) + ( 0.28 * ( 100 - ( CO2 + O2 )))
MWd = ( 0.32 * 20.9 ) + ( 0.44 * 0 ) + ( 0.28 * ( 100 - ( 0 + 20.9 )))
MWd = ( 6.69 ) + ( 0.00 ) + ( 22.15 )
MWd = 28.84 28.84 28.84
Tma =Source Temperature, absolute(oR)
Tm = Average dry gas meter temperature , deg F.60.4 78.3 65.1
Tma = Ts + 460
Tma = 60.39 + 460
Tma = 520.39 538.26 525.13
Ps = Absolute meter pressure, inches Hg.
13.60 = Specific gravity of mercury.
delta H = Avg pressure drop across the orifice meter during sampling, in H2O 3.00 3.00 3.00
Pb = Barometric Pressure, in Hg.29.29 30.20 30.22
Pm = Pb + (delta H / 13.6)
Pm = 29.29 + ( 3 / 13.6)
Pm = 29.51 30.42 30.44
Yqa = dry gas meter calibration check value, dimensionless.
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.
29.00 = dry molecular weight of air, lb/lb-mole.
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.128.621 109.397 107.605
Y = Dry gas meter calibration factor (based on full calibration)1.0100 1.0100 1.0100
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.1.9363 1.9363 1.9363
avg SQRT Delta H =Avg SQRT press. drop across the orifice meter during sampling , in. H2O 1.7321 1.7321 1.7321
O = Total sampling time, minutes.135 115 115
Yqa = (O / Vm ) * SQRT ( 0.0319 * Tma * 29 ) / ( Delta H@ * Pm * MWd ) * avg SQRT Delta H
Yqa = ( 135.00 / 128.62 ) * SQRT ( 0.0319 * 520.39 * 29 ) / ( 1.94 * 29.51 * 28.84 ) * 1.73
Yqa = 1.050 * SQRT 481.414 / 1,647.695 * 1.73
Yqa = 0.9827 0.9858 0.9896
Diff = Absolute difference between Yqa and Y 2.70 2.40 2.02
Diff = (( Y - Yqa ) / Y ) * 100
Diff = (( 1.01 - 0.983 ) / 1.01 ) * 100
Average Diff = 2.37
Allowable = 5.0
4/3/20199:55 AM 02262019 Blower Intake 1-3156
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019
APPENDIX F
LIST OF PROJECT PARTICIPANTS
157
IASDATA\CHEMOURS\15418.002.009\DIVISION REPORT FEB 2019-AMD 4/10/2019
The following WESTON employees participated in this project.
Paul Meeter Senior Project Manager
Matt Winkeler Team Member
Jack Mills Team Member
Kyle Schweitzer Team Member
158