HomeMy WebLinkAbout1304_Cabarrus_CharlotteMotorSpeedwayV_MSWLF_Phase5_DesignHydro_FID1628606_20211230Design Hydrogeologic Report
Charlotte Motor Speedway Landfill V
Phase 5
Permit No. 1304-MSWLF-I992
R
REPUBLIC
qjOA.� SERVICES
BFI Waste Systems of North America, LLC.
(a wholly owned subsidiary of Republic Services, Inc.)
5105 Morehead Road
Concord, NC 28027
02201314.91 1 December 29, 2021
2520 Whitehall Park Drive, Suite 450
Charlotte, North Carolina 28273
(704) 504-3107
CERTIFICATION
This Design Hydrogeologic Report has been prepared by a qualified geologist who is licensed to
practice in the State of North Carolina. The report was prepared based on firsthand knowledge of site
conditions and familiarity with North Carolina solid waste rules and industry standard protocol. This
report was prepared in general accordance with North Carolina Solid Waste Rule 15A NCAC 13B
.1623.
Jared T. Hamela Wyr jai
Senior Proiect Geoloqist
Date: December 29, 2021
NOT VALID UNLESS THIS DOCUMENT BEARS THE SEAL OF THE ABOVE -NAMED LICENSED PROFESSIONAL
CMS LF V Phase 5 www.scsenain ers.com
Design Hydrogeologic Report i
Table of Contents
Page
Report Content Cross -Reference Index for Applicable North Carolina State Solid Waste
Management Regulations.......................................................................................................
iv
1.0
INTRODUCTION
.............................................................................................................................1
1.1
Physical Setting........................................................................................................................1
1.2
Geologic Setting........................................................................................................................1
1.3
Hydrogeologic Setting..............................................................................................................3
1.4
Investigation History.................................................................................................................3
1.4.1 Initial Phase 1 Site Investigation................................................................................3
1.4.2 Phase 2 Cells A-E DHR................................................................................................4
1.4.3 Phase 2 Cells F-H DHR................................................................................................4
1.4.4 Phase 3 Cells I, J, K, and M DHR................................................................................4
1.4.5 Phase 4 DHR................................................................................................................4
2.0
PHASE 5 LANDFILL INVESTIGATION ACTIVITIES............................................................................5
2.1
Borehole Drilling.......................................................................................................................5
2.2
Rock Coring...............................................................................................................................7
2.3
Geotechnical Analysis..............................................................................................................7
2.4
Groundwater Level Measurements.........................................................................................8
2.5
Aquifer Testing..........................................................................................................................8
3.0
HYDROGEOLOGIC EVALUATION....................................................................................................9
3.1
Groundwater Flow Direction Assessment...............................................................................9
3.2
Groundwater Elevation Evaluation..........................................................................................9
3.3
Vertical Gradient Assessment..............................................................................................
10
3.4
Groundwater Flow Rate Calculations...................................................................................
10
3.4.1 Horizontal Hydraulic Gradient..................................................................................
10
3.4.2 Hydraulic Conductivity..............................................................................................
10
3.4.3 Porosity......................................................................................................................11
3.4.4 Groundwater Flow Rate............................................................................................
11
3.5
Top of Bedrock Evaluation....................................................................................................
11
3.6
Vertical Separation Assessment...........................................................................................
12
4.0
WATER QUALITY AND METHANE GAS MONITORING...................................................................12
5.0
CONCLUSIONS............................................................................................................................12
6.0
REFERENCES..............................................................................................................................13
Figures
Figure 1. Site Location Map
Figure 2. Groundwater Monitoring Well Map
Figure 3. Methane Gas Monitoring Well Map
Figure 4. Phase 5 Extent and Piezometer Locations
Figure 5. Geological Cross Section - A to A'
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report ii
Figure 6. Geological Cross Section - B to B'
Figure 7. Geological Cross Section - C to C'
Figure 8. Geological Cross Section - D to D'
Figure 9. Geological Cross Section - E to E'
Figure 10. Cross -Section Transect Map
Figure 11. Groundwater Contour Map - April 2021
Figure 12. Seasonal High Groundwater Surface Contour Map
Figure 13. Bedrock Surface Contour Map
Tables
Table 1. Rock Core Observations Summary
Table 2. Phase 5 Monthly Piezometer Groundwater Data Summary
Table 3A. Phase 5 Geotechnical Lab Data - Grain Size Distribution and Soil Classification
Table 3B. Phase 5 Geotechnical Lab Data - Undisturbed and Remolded Bulk Sample
Table 4. Hydraulic Conductivity Summary
Table 5. Vertical Gradient Summary
Table 6. Base Grade Separation Table
Appendices
Appendix A
Fracture Trace Analysis
Appendix B
Geological and Construction Summary
Appendix C
Geotechnical Analysis Summary
Appendix D
Hydraulic Conductivity and Porosity
Appendix E
Historical Groundwater Elevations
Appendix F
Vertical Hydraulic Gradients
Appendix G
Groundwater Flow Rate Calculations
Appendix H
In -Situ Hydraulic Conductivity and Porosity
Appendix I
Bedrock Evaluation
M:\PROJECT FILES\02201314.91\Deliverables\Ph 5 Design Hydro\CMS_Ph5 DHR - v.03.2.docx
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report iii
REPORT CONTENT CROSS-REFERENCE INDEX FOR APPLICABLE NORTH
CAROLINA STATE SOLID WASTE MANAGEMENT REGULATIONS
Regulation 15A NCAC 13B
Report Location
.1623 (b)(1)(A) .1624 (b)(4)
Sections 2.5, 3.2, 3.5 & 3.6
.1623 (b)(1)(A) .1624 (b)(7)
Sections 1.2, 2.1, 2.2, 2.3 & 3.5
.1631 (a)(2)(B)
Sections 1.3, 2.5, 3.0, 3.1, 3.2, 3.3, 3.4
.1623 (b)(2)(A) .1623 (a)(4)
Sections 1.0, 1.4, 2.1, 2.2, 2.3 & 3.4
.1623 (b)(2)(A) .1623 (a)(12)
Sections 1.2, 1.3, 3.1 & 5.0
.1623 (b)(2)(B)
Sections 1.1, 3.1, 3.3, 3.4 & 4.0
.1623 (b)(2)(C)
Sections 4.0 & 5.0 and Figures 2 & 3
.1623 (b)(2)(D)
Section 2.2 and Table 1
.1623 (b)(2)(E)
Section 3.2 and Figure 11
.1623 (b)(2)(F)
Section 3.5 and Figure 12
.1623 (b)(2)(G)
Section 2.1 and Figures 4 - 9
.1623 (b)(2)(H)
Sections 2.4, 2.5, 3.0, 3.1, 3.3 & 3.4
.1623 (b)(2)(1)
Section 4.0
.1623 (b)(3)(A-C)
Section 4.0
CMS LF V Phase 5 www.scsengineers.com
Design Hydrogeologic Report iv
1.0 INTRODUCTION
This Design Hydrogeologic Report (DHR) is prepared to support the Permit to Construct for Phase 5
of the Charlotte Motor Speedway (CMS) Landfill V in accordance with North Carolina Administrative
Code Title 15A Chapter 13B Subchapter .1623. The Landfill is constructed and operated in phases
per the Landfill's approved Facility Plan with Phase 5 as the next phase to be constructed. As
specified in the rule, the scope and purpose of this DHR is to:
• Provide adequate information to demonstrate compliance with the vertical separation
and foundation standards set forth in the rule.
• Provide an investigation of the hydrogeologic characteristics of the upper -most aquifer
for the proposed phase of landfill development. The purpose of this investigation is to
provide more detailed and localized data on the hydrogeologic regime for this area in
order to design an effective water quality monitoring system.
The following sections present descriptions of the physical, geologic, and hydrogeologic settings for
the proposed Phase 5 landfill and a history of previous investigations relevant to this DHR. The Solid
Waste Section previously authorized utilizing data from previous investigations prepared for the CMS
Landfill V to provide a characterization of the hydrogeology beneath Phase 5. A description of these
previous investigations is in Section 1.4.
1.1 PHYSICAL SETTING
The Charlotte Motor Speedway Landfill V is an active municipal solid waste management facility
operating under NCDEQ solid waste permit 1304-MSWLF-1992. BFI Waste Systems of North
America, LLC., a wholly owned subsidiary of Republic Services, Inc., owns and operates the Landfill.
The Landfill's physical address is 5105 Morehead Road in Concord, North Carolina and is located on
a combined 697.7-acre property. Figure 1 illustrates the location of the Landfill property on a United
States Geological Survey 7.5-minute topographic quadrangle map.
The Landfill is segmented into phases, with Phase 1-4 constructed and operational or permitted to
construct and Phase 5 as the next phase to construct. The proposed Phase 5 is roughly 12 acres in
size. An existing groundwater and methane gas monitoring well network encompass all Phases of
the Landfill as shown on Figures 2 and 3.
1.2 GEOLOGIC SETTING
The Landfill is located within the Charlotte Belt of Piedmont physiographic and geologic province. The
Charlotte Belt is characterized by intrusive felsic and mafic bodies with varying degrees of
metamorphism. The Landfill is more specifically located within the Concord Pluton of the Charlotte
Belt and is comprised of diorite (Ordovician to Devonian) with a mineral composition of cumulus
olivine, clinopyroxene, and plagioclase and syenite (Silurian) with a mineral composition of
orthoclase feldspar, augite, hornblende, biotite, and a coarse porphyritic texture with megacrysts of
pink feldspar.
Saprolitic overburden (aka saprolite) is the dominant upper -most geologic unit present at the
Landfill. At most locations throughout the Landfill property, the saprolite transitionally grades from
sediment material in which the relict metamorphic and igneous structures can be identified to the
parent bedrock from which it is derived. The transition zone where finer sediment materials grade
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 1
into more pebble and cobble sized fragments has been designated the partially weathered rock
(PWR) unit.
Saprolite is present at most locations across the Landfill property. The residuum associated with the
saprolite generally consists of clay and silt underlain by micaceous sandy silts and silty sands. In
addition, alluvium and colluvium were observed as the upper -most geologic unit near smaller surface
drainage features and the Rocky River. The alluvium is of limited thickness and overlays saprolite or
bedrock. The alluvium ranges in grain size from clayey silt to poorly sorted sands.
The saprolite consists primarily of red -brown or light to dark brown, fine micaceous sandy silt with
clay with some areas of silty clay or silty sand. The saprolite generally grades to silty sand with rock
fragments with depth. White, gray, brown, and black colors are present and correlate with the diorite,
syenite, or diabase bedrock from which the soils were derived. Thin zones of red -brown, orange, or
tan lean clays are also present in zones of differential weathering.
Hard rock fragments and partially weathered rock (PWR) are present in this lower portion of the
saprolite, which become larger and more frequent with depth. The contact with the underlying PWR
or bedrock is gradational. The depth at which drilling refusal with hollow -stem augers was
encountered defines the base of the saprolitic overburden.
Deeply weathered bedrock material consisting of white, gray, dark grey, brown, or yellow silty sand
with some intervals of sandy silt characterize the PWR. In addition, hard, but weathered, rock
fragments are also present within the PWR. Local areas grey/black and green/gray materials derived
from predominately-mafic parent rocks were also observed in the PWR unit.
Diorite with diabase intrusions dominate the bedrock type underlying the Landfill. The contact with
the syenite ring dike that encompasses the diorite unit is located just beyond the western boundary
of the Landfill. Syenite was reported in isolated surface exposures near the northwest portion of the
Landfill near banks of the Rocky River and in a few nearby cores within this relatively small area of
the site. These occurrences are expected, as the contact between these bodies is gradational and
typically not uniform on a local scale. Two small, northwest trending diabase dikes occur in this same
portion of the site and previous investigations in portions of Phase 3 identified small east -west
trending diabase dikes. The occurrence of the intrusions suggest a relationship between these
intrusive rock units, the local joint patterns, and the flow path of the Rocky River and tributaries. The
diorite is generally light gray and black in color, and generally comprises 90 percent of the rock
mass. The remaining rock mass is comprised of the isolated syenite identified and, to a lesser
extent, diabase intrusions. The syenite will appear similar to granite with black, gray, and brown fine
to coarse -grained crystals in a white matrix and the diabase will generally be dark green/gray in
appearance with fine to medium -grained crystals of similar color.
Bedrock outcrops at the Landfill near the banks of Rocky River and tributaries were reported in
previous investigations. No other bedrock outcrops at the Landfill have been observed. A fracture
trace analysis was performed and reported in the Phase 2 (Cells F-H) DHR and Site Suitability
Update. A map of the reported fracture trace analysis is provided in Appendix A. The dominant
fracturing directions at the Landfill are from N25E to N35E / S25W to S35W. Secondary sets of
fracturing are from N75E to N70E / N75W to N70W. Fracture directions appear uniform and
correlate to the flow path of the Rocky River and tributaries. No seismic activity was identified in this
or any of the previous investigations.
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 2
1.3 HYDROGEOLOGIC SETTING
This section presents a summary of the regional and local hydrogeology for Phase 5 and the overall
Landfill. Groundwater in the Piedmont physiographic and geologic province occurs as unconfined
aquifers in the saprolite, PWR, and fractured bedrock. These zones are interconnected through open
fractures and pore spaces. The surface of the upper -most aquifer typically correlates to the local
topography.
The infiltration of precipitation recharges the upper -most aquifer. The recharge rate is primarily
affected by rainfall intensity and duration, pre-existing soil moisture conditions, temperature
(evaporation), and plant uptake (transpiration). The property is comprised of the active landfill,
support infrastructure, and flood plain areas associated with Rocky River.
Seasonal high-water tables are typically observed during the spring to early summer months of the
year when maximum infiltration efficiency occurs due to lower temperatures and less plant uptake
(less evapotranspiration). In addition, as snow and ice melt from the higher elevation during the
spring months, the receiving rivers and streams will exhibit additional surge from the increased
runoff volume and will influence groundwater elevations in nearby areas. Seasonal low-water tables
are typically observed during the fall months when minimum infiltration efficiency occurs due to
higher temperatures and greater plant uptake of water (more evapotranspiration).
Precipitation that infiltrates into the ground will seep downward following the path of least resistance
through zones of relatively higher conductivity in the saprolite and PWR. Upon contact with a less
permeable surface (i.e. competent bedrock or clay confining layer), the water will spread laterally
until it finds another relatively higher conductive pathway downward such as a weathered zone or a
fracture, or until it is discharged to the surface water system. These discharges are generally
intermittent and generally occur in the secondary drainage features following precipitation events.
1.4 INVESTIGATION HISTORY
The following subsections summarize the previous investigations as documented and presented in
the Landfill's Initial Phase 1 Site Investigation, Phase 2 Cells 2A-2E DHR, Phase 2 Cells 2F-2H DHR,
and Phase 3 DHR (Cells 21, 2J, 2K & 2M), Phase 4 DHR. Data and information in these previous
documents is presented in this report only to the extent necessary to support the Phase 5 expansion.
1.4.1 Initial Phase 1 Site Investigation
On November 30, 1987, the City of Concord approved the re -zoning of the un-developed property to
allow construction of a sanitary landfill. Westinghouse Environmental and Geotechnical Services,
Inc. (Westinghouse) initially investigated the property on behalf of Browning -Ferris Industries (BFI at
the time) in 1988 as part of the site suitability study in support of the Site Plan Application. The
investigation consisted of installation of test borings and observation and monitoring wells with rock
coring performed at select locations to assess the suitability of the property for permitting and
construction of a sanitary landfill.
The North Carolina Department of Environment, Health, and Natural Resources (NCDEHNR) Solid
Waste Section (SWS) issued a Permit to Construct (PTC), Permit No. 13-04, for the Landfill on April 1,
1991, followed by minor permit amendments during the same year. The SWS approved the Permit to
Operate (PTO) for Phase 1 Cell 1A and amendments to the PTC on March 6, 1992.
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 3
1.4.2 Phase 2 Cells A-E DHR
S&ME submitted a DHR for Phase 2 Cells 2A, 213, 2C, 2D, and 2E in February 1994 and subsequent
revisions through 1995. 91 auger borings, 50 groundwater observation wells, and eight rock cores
completed for the DHR investigation. Standard Penetration Tests (SPTs) were performed at select
locations and at designated intervals during installation of the observation wells with collection of
bulk and undisturbed samples for geotechnical testing and analyses. Installed observation wells
slug testing for in -situ permeability was completed for calculating hydraulic conductivity.
Changes to the Water Quality Monitoring Plan (WQMP) included conversion of select observation
wells to permanent monitoring wells and the addition of two monitoring wells installed during cell
construction. On April 25, 1995, a PTO amendment was completed and a PTC was issued for Phase
2 Cells 2A-2E.
1.4.3 Phase 2 Cells F-H DHR
ENSR Consulting and Engineering (NC), Inc. submitted a DHR for Phase 2 Cells 2F, 2G, and 2H in
2003 with subsequent revisions through 2005. 129 test borings at 119 locations were performed as
part of the DHR investigation. 99 of the borings were converted to groundwater observation wells,
nine of which were deep wells screened in bedrock. Rock coring was performed at 16 boring
locations. Standard Penetration Tests (SPTs) were performed at 54 boring locations at designated
intervals during installation of the observation wells with collection of bulk and undisturbed samples
for geotechnical testing and analyses. For 42 of the installed observation wells, slug testing for in -
situ permeability was completed for calculating hydraulic conductivity.
Changes to the WQMP included conversion of five installed groundwater observation wells to
permanent monitoring wells with the addition of four monitoring wells installed during cell
construction. In addition, a receptor survey was updated and did not identify any existing or potential
receptors in the area. On July 14, 2006, an amendment was made to the PTC for construction of
Phase 2 Cells 2F-2H.
1.4.4 Phase 3 Cells I, J, K, and M DHR
David Garrett and Associates submitted a DHR for Phase 3 Cells 21, 2J, 2K, and 2M in 2008 and a
subsequent revision in 2009. 85 test borings were completed at 78 different locations with
numerous test pits completed as part of the DHR investigation. Most of the borings were converted
to groundwater observation wells with eight shallow and deep nested pairs. Rock coring was
performed at 13 of the boring locations. Standard Penetration Tests (SPTs) were performed at select
locations at designated intervals during installation of the observation wells with collection of bulk
and undisturbed samples for geotechnical testing and analyses. For 26 of the installed observation
wells, slug testing for in -situ permeability was completed for calculating hydraulic conductivity.
Changes to the WQMP included relocation of two monitoring wells and the addition of nine
monitoring wells installed during cell construction. On April 12, 2010, an amendment was made to
the PTC for construction of the Phase 3 landfill expansion.
1.4.5 Phase 4 DHR
SCS Engineers, P.C. (SCS) prepared the Phase 4 DHR. Phase 4 is roughly 7.78 acres in size and
located to the south and west of existing Cells 2C, 2D, 2E, and 2F. SWS authorized SCS to use data
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 4
from previous investigations prepared for the Facility to provide a characterization of the
hydrogeology beneath Phase 4. The Phase 4 DHR was submitted to SWS on March 9, 2021. A
supplemental document further detailing the vertical separation between the seasonal high
groundwater and the proposed subgrade for the liner system was requested by SWS and
submitted on April 27, 2021 (FID 1577894), the DHR for Phase 4 was approved on April 30, 2021.
No updates to the Landfill Gas Monitoring Plan (LFGMP) were needed. Changes to the WQMP
included:
• Groundwater monitoring wells MW-17, MW-17A, and MW-24 that exist within the proposed
footprint will be permanently abandoned in place in accordance with 15A NCAC 2C .0113
and in accordance with 15A NCAC 13B .1623.
• Groundwater monitoring wells MW-17 and MW-17A will be relocated and installed
downgradient of the proposed Phase 4 expansion area following construction of the Phase 4
landfill expansion.
Well abandonment records (GW-30 Forms) will be submitted in accordance with 15A NCAC
2C. 0114.
2.0 PHASE 5 LANDFILL INVESTIGATION ACTIVITIES
The proposed Phase 5 landfill expansion area is located adjacent to the existing Phase 1 Cell 113,
Phase 2 Cell 213, and Phase 3 Cell 2L, to the south and west of the referenced cells. The area for the
proposed Phase 5 is roughly 12 acres in size and the investigative area is 12 acres. As described in
the following subsections, this investigation includes previous site investigations borehole drilling,
groundwater observation wells (aka piezometer) installation and surveying, monthly groundwater
level measurements, and aquifer testing.
2.1 BOREHOLE DRILLING
To evaluate subsurface characteristics in the Phase 5 area, SCS used data previously collected from
monitoring wells and previous investigation borings and advanced 11 new piezometers (PZ-1, PZ-2,
PZ-3, PZ-4, PZ-5, PZ-6, PZ-7, PZ-8, PZ-10, PZ-11, and PZ-12) within the proposed waste unit
footprint. At a minimum, the area of investigation was the area within the proposed waste unit
footprint and waste unit compliance boundary. The extent of the proposed Phase 5 area and
piezometer locations are shown on Figure 4.
The piezometers are intended only for investigative use and were not constructed as permanent
monitoring wells, and will not be part of the established groundwater monitoring system. Prior to
landfill cell construction, the piezometers will be permanently abandoned in accordance with 15A
NCAC 2C, Rule .0113(a)(2) by over -drilling and filling the resulting boreholes the appropriate grout.
Piezometer drillings were performed by North Carolina licensed drillers. Methods for advancing
boreholes to target depths included hollow stem auger (HSA) drilling and wire -line rock coring. A
description of each drilling method utilized in the previous investigations are provided below.
HSA drilling was conducted at designated locations to obtain lithologic information. Each
HSA boring was advanced to the top of the bedrock (aka point of auger refusal) using
various drill rigs and various outer diameter HSAs. Lithologic information was obtained
CMS LF V Phase 5 www.scsengineers.com
Design Hydrogeologic Report 5
through split spoon sampling at 2-foot intervals as outlined in ASTM Method D-1586 or
logged from drill cuttings. During the driving of the split spoon sampler, blow counts were
recorded and the sample was examined by the field technician and described for color,
grain size, Unified Soil Classification System (USCS) code, and texture. The depth of the
partially weather rock (PWR) stratum was noted where observed. The depth to top of
bedrock was defined as the depth to auger refusal. Geotechnical samples collected
during HSA drilling included grab, bulk, and undisturbed Shelby tubes samples.
Geotechnical samples were collected and analyzed as described in Section 2.3.
• Wire -line rock coring was used to characterize the bedrock beneath the proposed Phase
5 waste unit and is further discussed in Section 2.2.
To demonstrate consistency with the bedrock characterization reported for Phase 5 and the bedrock
characterization across the facility, data sets from the previous reports were reviewed and used to
correlate, where appropriate. Various geologic, construction, and boring log recorded data for
installed groundwater observation wells (aka piezometers) and groundwater monitoring wells
previously within the Phase 2 and Phase 3 investigation areas (Appendix B) were compared to Phase
5 bedrock characterizations. The following selected lithologic observations are from the Phase 5
investigation data:
• The overburden observed during drilling included alluvium and saprolite.
• Across the proposed Phase 5 landfill area, saprolite is observed to range in thickness
from 2 feet to greater than 20 feet. Saprolite observed to be thicker beneath hills and
ridges compared to side slopes or drainage areas. The saprolitic soils have been
observed to be dry to saturated where encountered.
• PWR thickness across the Landfill property ranges from absent where alluvium or
saprolite directly overlies bedrock to more than 20 feet. Within the proposed expansion
area for the Phase 5 landfill, the average PWR thickness estimated at 0 to 5 feet.
• PWR is observed to be dry to saturated at most boring locations. Saturated conditions
observed in the PWR at two locations (PZ-11 and PZ-8) within the Phase 5 area.
• Bedrock is identified as largely diorite within the Phase 5 area. Bedrock fracture zones
were observed in the historical boring logs. Fracture zones can be identified by the
sudden drop of the drill rod or drastic change in drilling conditions, often paired with a
simultaneous pause in the chatter from the bit. When a substantial fracture was
encountered that produced water or a drastic increase in water production, this was
interpreted to indicate the presence a water -bearing fracture. This depth was targeted
for well screen placement in bedrock.
Stratigraphic cross -sections were created identifying the hydrogeologic and lithologic units and
stabilized water table. These cross -sections are based on the historical lithological information, static
groundwater elevations from the previous investigation borings and routine monitoring of the
groundwater wells at the Landfill, and the Phase 5 investigative findings. The cross -sections are
included as Figures 5 - 9 and a cross-section transect map is provided as Figure 10.
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 6
2.2 ROCK CORING
To address the requirement of Rule 1313.0538 (b) (2) (D), rock coring was performed using the CME
750 drill rig, equipped with a ten feet NQ diameter core barrel, for rock coring at five locations: PZ-2;
PZ-5; PZ-6; PZ-8; and PZ-11. The double tube core barrel was attached to the bottom of the drill rods
and lowered to the bottom of the borehole and top of formation. The desired coring interval was
drilled using a toothed core bit and potable water circulated inside the boring from the bottom of the
core barrel to ground surface to displace drill cuttings. When the desired depth was reached or
drilling conditions dictated as such, the core barrel and drill rods were retrieved from the borehole.
The core sample was then extruded and placed into a box labeled with the core ID and depth
intervals
The percent recovery, rock quality designation (RQD), orientation and frequency of likely fractures,
joints angles, observed fracture infilling or coatings, gross mineralogy, and other notable
characteristics were recorded during rock coring activities. The RQD was determined by dividing the
total length of rock fragment longer than four inches over the total length cored.
Core recoveries, RQD values, and lithologic descriptions for rock coring performed during the Phase
5 investigation at the Landfill are provided in Table 1.
Observations from the rock cores collected during previous investigations generally show a moderate
to highly fractured top of bedrock that becomes more competent with depth. Recovery values range
from zero to 100 percent and RQD values ranged from zero to 100 percent. These percentages
indicate that the bedrock is differentially weathered and variably fractured. Recovery and RQD values
generally increase with depth indicating less fracture density at greater depths.
2.3 GEOTECHNICAL ANALYSIS
Soil samples collected from the Phase 5 borings were visually inspected and classified by SCS
personnel. Several soil samples collected in overburden were selected for testing by an approved
geotechnical laboratory using the following methods.
• Standard Proctor (ASTM D 698);
• Particle size analysis (ASTM D 422);
• Soil classification: Unified Soil Classification System (USCS) (ASTM D 2487);
• Atterberg limits (ASTM D 4318);
• Natural moisture content (ASTM D 2216); and
• Undisturbed and remolded hydraulic conductivity (ASTM D 5084).
Tabulated geotechnical field and laboratory data from the Phase 5 investigation are provided in
Tables 3A and 3B and discussed further below.
• Particle size distribution mostly silts and sands with less clay and gravels present with
USCS classifications CL, CH, SM, and SC.
Total porosity values in undisturbed samples ranged from 0.41- 0.55 for the Phase 2
Cells 2A-2E and 0.39 - 0.61 for Phase 2 Cells 2F-2H. The porosity values for Phase 3
were established in DHR from soil sample particle size distributions and published
procedures. These values ranged from 0.03 - 0.38. Phase 5 porosity values ranged from
0.19 - 0.61.
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 7
• Undisturbed saturated hydraulic conductivity values ranged from 2.6x10-5 cm/sec to
8.410-6 cm/sec. (Table 3B)
2.4 GROUNDWATER LEVEL MEASUREMENTS
Static water level (aka depth to water) measurements were measured and recorded for the Phase 5
piezometers. Depth to water measurements were recorded at the time of boring and during well
development. Additionally, monthly measurements were taken in the piezometers during the period
from December 2020 to November 2021 to determine the seasonal high groundwater levels. Static
water level measurements were made using an electronic water level probe and measured from the
top of the PVC casing to + 0.01 foot. Static water level measurements collected from the
piezometers and during for the Phase 5 investigation are provided in Table 2.
A summary of our findings from the groundwater level measurements is as follows:
• The groundwater elevations for the monitoring wells installed within the Phase 5
investigation area are generally higher than the top of bedrock elevations.
• The groundwater elevations for the piezometers have been higher than the top of
bedrock elevations, with the exception of PZ-8 and PZ-11
The soil and sediment overburden, saprolite, and fractured bedrock are water -bearing
units beneath the proposed Phase 5 waste unit.
2.5 AQUIFER TESTING
On October 19, 2021, aquifer testing (via slug testing) was conducted by SCS at four piezometers
(PZ-6, PZ-7, PZ-8, and PZ-11). The purpose of the slug tests are to determine the values of hydraulic
conductivity for the aquifers at the site.
Aquifer test data were recorded using a pressure transducer with internal water level data logger.
The data logger recorded the change in the water level in the well after a slug (i.e., solid weighted
PVC tube) was inserted into and removed from the well. Using the field measurements and the well
construction details, the hydraulic conductivity of the formation was calculated using the Bouwer-
Rice single well method as implemented in the Aqtesolv Pro (Glenn, 2007) software program. The
hydraulic conductivity test method was selected based on which curve best fit the slug test data. A
summary of the aquifer testing results is shown on Table 4 and the slug testing reports generated by
Agtesoly are included in Appendix H.
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 8
3.0 HYDROGEOLOGIC EVALUATION
To further characterize the hydrogeology beneath the Phase 5 landfill expansion area, the following
data evaluation was performed: evaluation of groundwater elevations; assessment of groundwater
flow direction; calculation of groundwater flow rate; vertical gradient assessment; and identification
of top of bedrock surface. Data from the Phase 5 investigation were used for these evaluations. To
demonstrate consistency with the hydrologic characterization reported for Phase 5 and the
hydrologic characterization across the facility, data from the previous investigations were used.
3.1 GROUNDWATER FLOW DIRECTION ASSESSMENT
Groundwater flow at the Landfill property is generally from the east to the west, toward Rocky River,
as shown on the August 2021 Groundwater Statistical Analysis Report (Jett 2021) groundwater
contour map, included as Figure 11. The groundwater elevations collected monthly for Phase 5 and
the historically reported groundwater elevations from routine monitoring events (Appendix E) were
used for purposes of constructing groundwater flow contour lines. Groundwater contours were
generated using AutoCAD surface mapping system software and altered utilizing professional
judgement. The generated groundwater surface contours for the Phase 5 landfill expansion are
shown on Figure 12. Observations regarding the direction of groundwater flow within the proposed
Phase 4 landfill expansion area is as follows:
• Groundwater contours mimic topographic contours.
• Groundwater flows from east to west toward Rocky River.
The groundwater flow direction within the Phase 5 landfill expansion area is shown on Figure 12.
3.2 GROUNDWATER ELEVATION EVALUATION
Groundwater elevation data from the groundwater monitoring wells, piezometers, and borings
installed throughout the Landfill for previous DHR investigations were compiled and provided in
Appendix E. Based on this historical data, the maximum -recorded groundwater elevation was
identified for existing groundwater wells within the proposed Phase 5 boundary as the seasonally
high groundwater elevation for each existing groundwater well location. The seasonally high
groundwater elevations, as well as source and dates for the data are presented in Table 2 and Table
6. From this data, a seasonal high groundwater contour map was created, included as Figure 12. The
contours were generated using AutoCAD surface mapping system software and altered utilizing
professional judgement. Observations regarding the seasonally high water table within the proposed
Phase 5 landfill expansion area is as follows:
• High groundwater levels typically occurred during the spring semi-annual monitoring
events.
• The upper -most aquifer is first encountered within the residuum, saprolitic overburden,
and fractured bedrock.
• The saturated zone is also found in the PWR and fractured upper bedrock.
• The seasonally high water table mimics the surface topography.
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 9
3.3 VERTICAL GRADIENT ASSESSMENT
The vertical hydraulic gradients for the monitoring well clusters were calculated to assess whether
the area is a zone of groundwater discharge or recharge. The vertical hydraulic gradient is the
change in head (groundwater elevation) per unit of vertical distance (elevation of the middle of the
well screen) between wells. The vertical hydraulic gradient was calculated using the difference
between groundwater elevations measured in well pairs during previous investigations. Vertical
gradient calculations are shown in Table 5.
The calculated vertical hydraulic gradients for Phase 5 are from well pairs MW-22 and MW-22A, MW-
2A and MW-2B, and MW-10 and MW-10A and have reported ranges of 0.0004 to 0.08 feet per foot.
A positive vertical gradient indicates a vertically downward hydraulic gradient (recharge zone) and a
negative gradient indicates a vertically upward hydraulic gradient (discharge zone). This indicates
that within the Phase 5 limits, a slight recharge zone is present.
Water level data from previously installed nested monitoring well pairs indicate that upward
gradients exist near and within drainage features. Downward vertical gradients have been observed
during previous investigations in nested wells outside of the influence of the Landfill's drainage
features.
3.4 GROUNDWATER FLOW RATE CALCULATIONS
An aquifer's flow rate is determined by the hydraulic gradients, hydraulic conductivity, and porosity of
the aquifer. Details regarding each component of the groundwater flow rate calculations for the
upper -most aquifer are presented in the following sub -sections.
3.4.1 Horizontal Hydraulic Gradient
The horizontal hydraulic gradient (i) is the change in head (dH) per unit of distance (dQ in the
direction of groundwater flow. Hydraulic gradient is the one factor for groundwater velocity
calculations that may change over time. Horizontal hydraulic gradients were calculated using the
difference between groundwater contour lines within the Landfill property as shown on the
April 2021 Groundwater Contour Map (Figure 11). The hydraulic gradients used for groundwater flow
rate calculations were 0.022 feet per foot and 0.014 feet per foot, depending on location. The semi-
annual groundwater monitoring calculated groundwater flow velocity for the Landfill from April 2012
to April 2021 provided in Appendix G.
3.4.2 Hydraulic Conductivity
Hydraulic conductivity (K) is the measure of a specific geological unit's ability to transmit water and is
necessary to calculate groundwater flow rate. It is expressed as the volume of water that will move in
a unit of time at a hydraulic gradient through a unit area measured at right angles to the direction of
flow.
As documented in Section 2.4, aquifer testing was conducted by SCS to calculate the hydraulic
conductivity of the upper -most aquifer at piezometers PZ-6, PZ-7, PZ-8 and PZ-11. A summary of the
aquifer test results is shown on Table 4
In summary, the hydraulic conductivity (Ks) value for piezometers within the soil/saprolite aquifer is
1.59 x 10-5 cm/sec (PZ-7), and within the bedrock aquifer from 1.43 x 10-3 cm/sec (PZ-6) to 1.21 x
10-5 cm/sec (PZ-8).
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 10
3.4.3 Porosity
Porosity is the measure of a material's pore space through which water can flow. The upper -most
aquifer at the Landfill is found within the soil overburden, the saprolite/bedrock interface, or within
the fractured bedrock. Porosity values for the proposed Phase 5 ranged from 0.19 - 0.61(Table 3).
Porosity values used from previous investigations range widely as shown in Appendix D.
3.4.4 Groundwater Flow Rate
The groundwater flow rate for Phase 5 was calculated using the Darcy equation shown below.
FM
Vx =
ne
where: vX = groundwater flow rate
K = hydraulic conductivity
i = horizontal hydraulic gradient
n = total porosity of the aquifer
As shown in Appendix G, groundwater flow rates were calculated using the following data.
• An average horizontal hydraulic gradient of 0.018.
• The saprolite (1.10x10-4cm/sec), PWR (1.8x10-5cm/sec), and bedrock (1.8x10-5cm/sec)
values for hydraulic conductivity.
• A total porosity value of 0.16 for saprolite, 0.20 for PWR, and 0.07 for bedrock.
The Landfill's April 2021 water quality monitoring event reported groundwater flow rates ranging
from 19 feet/year to 113 feet/year. Historical groundwater flow from routine monitoring events
range from 21 feet/year to 146 feet/year. Groundwater flow rates from the Phase 2 Cells 2F-2H DHR
range from 10.95 feet/year to 200.75 feet/year in upland areas, 7.3 feet/year to 120.45 feet/year
in the mid surface elevations, and 124.1 feet/year to 182.5 feet/year in the lower surface
elevations. Therefore, the April 2021 flow rate range is consistent with flow rates previously
documented and those generated from the Phase 5 investigation data.
3.5 TOP OF BEDROCK EVALUATION
A bedrock surface contour map was created for the Phase 5 landfill expansion area. The bedrock
contour map was created by compiling the top of bedrock elevation data from groundwater
monitoring wells, piezometers, and borings installed within and near the Phase 5 area from the
various investigations previously completed for the Landfill. The top of bedrock elevations for
locations within the Phase 5 investigation area are shown in Table 6. The top of bedrock was
interpreted as the point at which auger refusal was identified during drilling, or as reported in the
historical table and boring logs provided in Appendix I.
A bedrock surface contour map was generated using AutoCAD surface mapping system software and
adjusted utilizing professional judgement and is included as Figure 13. Observations regarding the
bedrock surface within the proposed Phase 5 landfill expansion area is as follows:
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 1 1
• Depths from the ground surface to the top of the bedrock unit within the proposed Phase
5 waste unit range from 7.0 feet in PZ-9 to 29 feet in PZ-6. The depth to bedrock is
generally shallow in drainage features and deeper beneath topographic highs.
The majority of the area within the Phase 5 waste footprint had been graded or filled
during the initial landfill development for the construction of the scale house,
administration, and maintenance buildings. As a result, the topography of the areas that
were graded or filled may not mimic the bedrock surface. The bedrock surface generally
mimics the surface topography in areas that were not graded as part of Facility
development.
3.6 VERTICAL SEPARATION ASSESSMENT
A municipal solid waste landfill (MSWLF) unit shall be constructed so that the post -settlement
bottom elevation of the base liner system is a minimum of four feet above the seasonal high ground-
water table and bedrock datum. To gather data so the landfill design will comply with this
requirement, seasonally high groundwater and top of bedrock surface contour maps are created as
presented in Sections 3.2 and 3.5, respectively. These maps were provided to the landfill design
engineer for the development of base grades for the proposed Phase 5 waste unit. The proposed
landfill design base grades were calculated and are provided in Table 6.
4.0 WATER QUALITY AND METHANE GAS MONITORING
The water quality and methane gas monitoring plans for the Facility were updated and approved
prior to the submittal of the Phase 4 DHR. Proposed updates for the plans will be submitted to SWS
separately for approval. The proposed updates for the plans will include abandonment of select
groundwater and methane gas monitoring wells within the Phase 5 boundary and relocation of select
groundwater and methane gas monitoring wells to the Phase 5 compliance boundary and will be
performed concurrent with Phase 5 construction.
5.0 CONCLUSIONS
The geologic and hydrogeologic conditions for the proposed Phase 5 landfill expansion are
consistent with previous DHR investigations completed for the MSWLF units constructed at the
Charlotte Motor Speedway (CMS) Landfill V. No unusual or unexpected geologic features were
identified within the Phase 5 landfill expansion area.
Groundwater and bedrock surfaces typically mimic the surface topography across the Landfill.
Groundwater flow direction is from east to west across Phase 5 towards Rocky River. Groundwater
gradients have exhibited both upward and downward vertical flows across the Landfill.
Based on the findings presented in this DHR and previous DHR submittals, the Phase 5 area is
considered suitable for expansion of the Charlotte Motor Speedway Landfill V.
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 12
6.0 REFERENCES
American Society of Testing and Materials (ASTM). ASTM D1586/D1586M-18. Standard Test
Method for Standard Penetration Test (SPT) and Split -Barrel Sampling of Soils.
ASTM D1587/D1587M-15. Standard Practice for Thin -Walled Tube Sampling of Fine -Grained Soils
for Geotechnical Purposes.
David Garrett and Associates. Design Hydrogeologic Report. CMS Landfill V - Phase 3 (Cells 21 - 2K
and M). May 2009.
ENSR International. Design Hydrogeologic Study. CMS Landfill V Expansion. May 2003.
Jett Environmental Consulting, PLLC. Groundwater Statistical Analysis Report. Charlotte Motor
Speedway, Landfill V. April 2010 through April 2021.
NCGS (North Carolina Geological Survey). 1985. Geologic Map of North Carolina.
SCS Engineers, P.C. Groundwater and Landfill Gas Monitoring Well Installation Report. December
2020.
SCS Engineers, P.C. Monitoring Well Installation and Abandonment Report. February 2021.
S&ME, Inc. Design Hydrogeologic Report. CMS Development Corp. Landfill Expansion - Landfill V
Cells 2A- 2E. February 1994.
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report 13
Appendix A
Fracture Trace Analysis
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix A
Fracture Trace Analysis
Charlotte Motor Speedway Landfill Area
Diagram indicates observed fracture lengths as a distribution by bearing Within 3 miles of the site.
Source Data: 8—meter resolution aerial photographs (to an extent of 3 miles from site) and site topography maps
REVISIONS FIGURE NUMBER:
No. DESCRIPTION: DATE Fy: FRACTURE TRACE
CONSULTING AND ENGINEERING (NC), INC. ANALYSIS DIAGRAM
scAue:
7041 Old Wake Forest Road Suite 103 BFI Waste Systems. LLC
Raleigh. North Carolina 27616 Concord. North Carolina NTS
PHONE: (919) 872-6600
FAX: (919) 872-7996 1 DRAWN BY: DATE PROJECT NUMBER: DRAWING N"DER:
WEB: KTFP://WWW.ENSR.CDM JDM 02/04/03 00188-002 M31002AC
D S s �+ ��, " �_
CZv
f
DSs
4
.i-
"�:
J � r
1 Pz
floi
DSs. ,
PzZq �T�CZv
LEGEND ? r
CZv Metavolconic Rock
PzZm Metamorphosed lflc Rock 4
DSs Syenite
DOgb Gabbro
PzZq Metamorphosed Gabbro and Dlorlti
NOTES
Fracture traces shown on figure (blue) derived from 8—mater resolution aerial photographs and site topography.
Box area denotes site with red lines Indicating dominant fracture direction.
Major geologic features Ishown In black) from North Carolina Geological Survey Map (1985). xl
REVISIONS FIGURE NUMBER:
NO. DESCRIMON: DATE: BY: FRACTURE 12
Ime TRACE MAP
CONSULTING AND ENGINEERING (NC), INC, SCALE:
7041 Old Wake Forest Road Suite 103
Raleigh, North Corollno 27616 BFI Waste Systems, LLC
9 Cncord, North Carolina 1 ^=0.75 MILES
PHONE: (919] 872-6600
FAX: (919) 872 2— 6 DRAWN BY:oDATE: PROJECT NUMBER: DRAWING NUMBER:
WEB: HTfP;//WWW.ENSR.COM JDM 1 02/04/03 00188-002 M30004AC
Appendix B
Geological and Construction Summary
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix B
-
-
-
-
-
E
d
d
do
�,
E33
E
°
w
= a
U
N
`o
IT
v
O=
¢
IT
m ro
—00
=
=
H
_
_
=
-
2
-
w
v
-
m
N =
w
-
=
=
H S.SN
_
y
—
=
N =
-
-
m
= N
_
_
y -
_
-
- -
_
_
K K
��33333ddo33's's
a aaaaaamm
K f
KKK
°°
US
K K-
y
mmm
o
m
° K
o33'sd333's3
maammaaama
K
D KKK
- K
=
m
m m
===d3's's's3��333
m m
o
m ma
K_
m
y°
m maaaaaa
K K
K K
K K
y
=o
ma
K
a c
J
d 0
rn o
0 0
0 0
0 N
0 0
O 0
0 0
0 0
0 0
0 0
0 0
0 d
o m
d O
rn o
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 N
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
o o
0 0
o 0
0 0
0 0
0 0
m v
0 0
0.
v v
0 0
d
0
0
NN
N
O O
N O
N O
N Q
N O
O O
N Q
O N
N °NNNN
° O
N¢
0 0
ul t
r
Z �
Z �
Z
Z�
Z
° 0=
N
m
rMv�OiNNNaD�
N M
N N
N M
N M
N N
V
V M
F W
M
r
Z
NNN
Z
V
N
V N
M V
� O
N
M
M Z
O
o N
W
N N
N Z
rMaDN
V N
N V
OinNnNNc°
N
N
N Z�
N�
N
FFp
m0 M W�
N
N N
N N
N N
N N
N N
N N
N
N N
N
N
N N
N N
N N
. N N
N
N NNN
N
woo.
V
N N
tN0
N N
t
wN w N
N
N N
NN
y$
O
O aD
M N
O N
aD O
V O
O N
M
N N
O N
O O
Oi N
N
Q a7
Q O
Cl O
W
n
O O
N Q
W, O
V N
M Q
6 O
N O
O N
W N
V u0
6 N
M
V Q
N
v
1
N
M
V N
N tN0
V N
N
M
Z M
Z N
M N
,i
M
N
N
Z
M V
V
Z
M N
N M
N N
N N
Z
6
N M
g a
m
o=
6 '�
M
E v
N n
N
viN
V
W
CO
N M
n a0
V
O N
oro
CO V¢
n
07
N
¢ N
NO N
N
O
O N
. c0
on
O
�C
M Q
V
N O
N
O N.
a¢
IV..
O
N
A���
Or mnM
n N
V
N
<° ¢
N CN,
N
c
cN N�
WN
- �NN�cOn
V
nnw
i0N
V
V �Z
N
Zcon
V
Oi afpN
V NcpN
V Z�ovv
MNNfp
Z�oNnN�e
V fp
rcp
ZN
Oi tp
t O ai
pON
O NNONO
NN
0tONN1
n
O
H QZ
°OM11 O
VV N
M QZ
O
N
n N
°M1 N
N
V QZ
mO mO
u
*nlm!
NN
N
)
-N
`v
6
iEoo
N.
N
NMNoNOl0Oro
t0
N�NtGVN
o
Nr
M r
No.
MN
.VNN
N CN
M
N
W
EV
MN
cN
N N
j V
O
M V
i0 N
m V
M N
NN
N N
i0 N
f p NNNN
NO
V
M N
f p V
N N
-
a y
1
OI O
V N
O
0 0
i0
N
N
N
O
fp O
O O
N N
M
O
O
a 0
O
o
N
V
V N
N
N
N N
N N
N
N
V
N
N
N
N tN
M
NNNNN
M
o a
O ry N {�
:.. r O
= N
NN,6
E N
N N
M t0
M m
t0
,6
N A
c;
G t0
M N
V MaDNON¢¢¢O�¢¢MN¢NNaDOr
V V
O O
Oi C
g V
V I�
M
1°
r M
r M
t0
M N
Oi tp
V N
Ih t0
M Ol
NrN7N¢M¢N
C>
V m
V N
ap
Oi
V
G
V M
.
Ol tp
r
tp¢
O
V
M r
rrccrgMNN
N M
m V
N O
-
Z Z
Z
Z Z
N N
Z
N
N N
N N
N N
N N
Z
N
Z
N
N N
N
N
N N
N N
N N
N N
w
g m
x$
o
0-
0
o o
0 0
0
0
0
0 0
0
O
g 0
0 o
0 0
0 0
0
0 0
0 0
0 0¢¢¢
O¢¢
o o¢
o
0 o
0
O 4
0 0
0 0
o O
0
o¢
o¢
0
o o¢
o¢
0
0 0
0
0 0
0
0 0
0 0
N�4rNM�
M
M
MOiMvMZZZaCZZ
MM
ZM
�aC
aC
M
aC (V
MpM�°�
MC
ZMZ
aCZMZMMNlaC
MtO
OI
o
o
qoNNf
ON
ao
OMNO
NN��
OMOON
OM
OM�r0
n
4NN
ON'
OaMc
NVMO
zt
NNt0NN
NNNN
o�N
nNM
,�ONNIM�c
vnMNiviOp
NNOOM
.OMO�
.00N
NO� NNONN
m°NN�
6O
pVfM
oMNON
cq
pNfVnnO
vnNNV
NMNOO
N
H;
N
MCNNNNN
VNN�liNNONuONN
N
NI�NNMNV6V6O
V
MNNNMNN
NONN�ON
N
S
A
U
N
M
N N
V
r O
V N
N N
V
N r
N N
n N
a7
N O
N N
N 0
r 0¢
N
N¢
V
V
r V
O M
N M
N O
n
O O
N a
N
W¢
N
M V
N N
N N
N
a¢
O O
O
M ap
M O
O
O N
N N
n OO
m O
N
M¢
N n
N N
y
S y
- N
N N
N
M M
N N
N M
N N
N fV
Z M
Z fV
fV
M M
M M
lM M
lV Z
M N
M o
M Z
MMN
cV
M M
M M
M V
M Z
64
2 v
O C
�NNNrNraoD
uC
tMO�
V O¢�o
¢tN0
tN0 OOl
c!(I
i
N�NQNNM
aq
M¢
MNNtrq
N N
N M
a MC aC
V ¢ram
p
v
H U
E NM
N
MC
N
r r
N
N
M N
N A
� tOCrui
O r
r N
vi
N N
ZrZ<6
N
N
rrvM�nacMvZorN
o N
M N
r N
r M
N
N
V
O r
fV ZO11�1�
M
r r
V
NNN
tO ui
O)
A r
m aD
ZO)N
r
O A
n; v
t
- N
N N
N N
N N
N N
N N
N N
N N
N
N
N N
N N
N N
N N
N
N NNN
N
....
N N
.....
...
E;
c U E
NNNMmNOIMNOap
V
V
NMONrM
M N
V N
MOI
V map
V
V r
V MNr
V OMrNMm
V
NO
�� a E
y� N
N r
N m
M O
V Map
N
O N
r 0
0 m
M N
M N
r N
N ap
O r
N r
N �
N N
M O
N �
Oi aD
N V
r r
ap r
O M
N N
a�;
(� M W�
N
N
W
N .N.....
...
N
N W
O r
N N
N N
r N
O N
O N
M N
N N
........
r r
N n
N . N..........
r
r M
n r
N tO
N
r
c E a
a
a E
v� °
to °
to x
x x
x H
H x
x x
O x
x x
x x°
x
H H
x x
x x
x H
H x
Y
O x
Z»
o'
o
Z v m
O
a
W
N.
n
M N
N N�
O O
N N
M N
Oi N
N r
N
O
N N
N Ol
'NAM
M
N N
N N
M V
M r
V fN0
N N
M r
' 0
r
NNNN
N N
O r
0 0
r ao
N N
0 0
0'
tN0 tN0
N N
0 0
M
M N
fN0 N
N N
M N
N M
aD O
tN0 NNN
N N
M N
V N
m m
N N
M Ol
N N
o v
N N
N V
V N
N N
N N
N r
r r
M N
V
V V
N N
N r
r r'
m r
N V
N
V N
N N
N 0
N
M
N r
N O
V V
N N
0 Ol
r N
O M
V O
V
N N
N N
O O
N V
O N
N N
r
tr0 N
N N
O V
N A
r O
aD N
aD N
tM0 t°O
N N
N M
M
r N
Ol M
O r
��
N N
M O
O N
N N
N V
O N
fN0 fro
N N
aD O
N N
M O
aD N
V
b tM0
N N
O N
N V
M M
O) V
N
t°O N
N N
O N
N Gi
r V
O N
r aD
N N
N N
N N
N m
N N
aD M
O V
N N
N N
N V
N V
O r
N M
N
N V
N N
r
r
V
M
M
N
N
C
t
°
Z
N N
O N
N n
V
V M
a�D (NO
IM fV
0 Oi
rN
M M
O
NO'O'l0'fV
M N
NN
M M
M N
N N
N M
N M
N V
N u0
tO
N N
rrrorMNNrMrM
N N
N N
V
aC MI�OINM
r N
O
O M
O M
N
n N
t0 O
N M
N
a�D N
V aCMMNtO
� O
V
OO N
N M
N N
V
N
N n
N tr
M r
NNOiNOrN
N N
a N
N N
r
N N
n
i0 V
aD
NNN
N N
m
V MI��CCOl
O�
N M
M
N
rMO�NrNOI
M V
V OO
O V
N N
V V
N
N N
vi
O� M
V M
W
r
�oMr<6MoroviM
r M
M N
N N
V N
aDMMrM
M V
O a
N ONi
r N
M N
a M
N fp
r N
V
N N
N �
O
r Oi
M
N N
N
N i°
raor
N O
V OOIM
N N
N N
V
of
O r
N
of
N v
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N NNN
NNNN
NNN
NNN
NNN
NNNN
NNN
N o
N -
4
c
O N
N
N N
N N
M
M M
M M
V
N
V N
N
N N
N N
N N
N N
N N
N N
N v
m
dddddddaadddddadadddddadddddadaadddadddddddddddddp�a'
N
M
z° E a a
a
N M
M N
M N
M
M NNN
M
M N
M
a
t<
-
xSo
-
U
O O
v v
O
d
d
O
v
21
3
o
3
a
gg
Kr
-
-
a
maaa
K
o` K
K Q
K
842
K
ass
amm
�'s
aN
=
in
3
a
d3
ma
3
a
03333'ss�'s'ss333's
NaaaammaNNmaaaN
===d33d3d's3
in
in inmaamamNa
£ c
J
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
d O
m 0
0 0
0 0
0 0
0 0
m m
0 0
0 0
v
0
0
°: v v
d O 0
m 0 0
m m
0 0
0 0
m v
0 0
0 0
v v
0 0
0 0
v m
0 0
0 0
m
0 6
0 0
6 6
0 0
0 0
0 0
0 0
0 O
0 0
O OM
°:
d d
m
m m
0 0
0 0
E y
s Q
NNN
Q
O O
Q N
Q O
Q Q
Q O
O Q
N Q
N O
O ..............
NNNNNNNNNNNQQ
Q
...
N O
N t
H
.-'�...Z
Z��Z
Z�ZZZ��Z
Z
ZZZ
°
=T
VN
NNN
VNZ4ZZZ
NNN
Q
Q Q
Q NN
Q
NNNN
Q
NZNaCO
CN
rNVN
NMN.
NnrN NNN
N Nfp
N NV
a
NN
nNO
!nr
NN
W QQ
Q
O MO
N O
N V
nN
0
NpO N W0
ZMNN
NN ZNNN
ZNNN
N
MZN
n0ac6c46ZZZaIN
iN
N
a2
N
N
NNN
Eo d$
Q
V M
N Q
M i0
Q N
Q N
Q Q
Q O
V Q
Q
y
N
Z
,;6
6z
M N
Z N
Z N
Z Z
Z C
IN
Z
V Z
N
M
N
N
N
N N
N t
N
Z
N
Z Z
� N
v v
V
V O
W
NNO v
o O
m
-
0=
O NN
>
EZooNZ�
M N
N
N N
N N
N
fp
M
N
N
N
O
N M
V M
N V
V
N N
C1�N
O O)
O'>n7
V
r
O)
O'>ZZZaN�th
M
V N
M
Nap
N
A
M
tt)try
N
o c
O
H N y
W
N n
N t0
ZnZnZZZ�NZOZMahNNC>NG
N
V
N
N N
N N
N N
N N
N N
N N
r r
N N
r N
N NNN
N N
N
N
N NNM
N N
N N
V N
N N
N
N
r
N
N
N c
« O E
S Q
V M
N Q
M t0
Q OD
Q N
Q Q
Q O
V Q
h Q
n
n N
O N
N M
O
M V
M m
O Q
Q Q
M
r
O
cO0 u
Z
NNMZNOZrZNZZZ6MZOjZMN'
OttaM
6c6,i
V
NZZZN6M�ON')N
O
C t -
O
_
<OMi<ONinN�nONi
n tNO
V MnFN�tNONNO
V M
V MtNO
V
NtNOOA�
V
OOi ONiMr
V M
V N�MMNNn
o
V E O
{�
O
E V
V
N
a N
N
V
N n
N N
N
V
N C
N G
N A
N N
C N
M fV
NNN
V-
N
m
n7
E
K�
W
N
N fp
fp N
N V
N N
N N
N fp
N
N fp
fp
n N
r N
N V
N r
r V
N N
N r
V N
V N
V V
V NNN
N
N d_
m
x
O O
O O
O O
V O
O O
O N
r M
N N
V O
N N
O N
0
O
O
O-
O
L
ONO
V O
N O
N
o N
-
N N
N
N-
O N
!r
M N
V N
N
N V
N o
N N
th
N6,6
N V
O N
N OC
N
O N
MAN
N
N M
N N
6
6M
N N
M o
M
otJ
N M
M N
A
N
0
O O
N
0
O O
N N
O O
N N
M
M O
- M
N
No
C N
V M
O O
N N
M
O
N O
N
N
M
`o a
O N"t3 t
Qv
EC
O M
N N
N N
Q
r A�
Q NM
ZNw
rNO
NN NN
NN V
N
N
i
NNNNZrN
oMNN
n
V N
M N
N
N N
Z
jZM�
Q QO
ONN
O
2
QN
-
w
NNNNNNNNNN
Nl
NNZAVZ
NNoN
NN
y
o
c
O
0
0 0
0 0
0 0
N Q
0 0
Q O
0 0
0 0
0 0
0 0
0 o
O
Q O
O
O
Q Q
Q Q
O
Q Q
N O
Q
O
Z
°°rrNNNO
n7
N Oi
Z
NN
Z M
(h fh
V NNONNNM
M.
M
Z
N�N�
N V
th N
Z Z
Z Z
th
N�
Z Z
NN
Z
th
o
O p C=
VN
NN Vf
NnN
NN NV
nNNNN
6
aN
r
6
N N
NN
N N
NV oC
NNNN
N I*:
NN Na
N N
rN Nn
O
On
N
M nVMV
N
NMVa
v
o
0
��
p.pO
N
f
V
4
.
NN
NNNNN-OMVM
N--
o
NAN
No
NM
a
IV
N
NNN
n
4
VN
NV IN�
N
Na N
N
�V ON(1
Na WN
a tp
;
N
Wo
o
m
Oa
n O
V O
N 0
N
o
N N
O
O
V O
V N
o
N N
O N
O N
r NNN
O N
N M
' O
N N
M V
O N
M N
O O
O 0
O o
0
G
O O
O
M O
V 0
N O
0 0
O O
0 0
O O
0� uvi
N m y
O
ONO
N
-
N
N �
6 �
n
N
N V
N
N M
N V
N OC
N
M A
N
N G
N
C (h
N N
C M-
N M
A
N
�
N
N m
N N
V N
- V
tJ N
V M
a
N N
N a
M 3
o
V
Q
A V
M Q
O�
Q
Q N
Q Q
Q N
M Q
O> Q
M N
M N
O
N N
M fp
N
M Q
Q Q
O
N
N ww
O
N
n v
N
_Z
lh M
M Z
fV .Z
N
Z M
ZZZ
lh
lh Z
lV Z
M fh
fh M
N M
M
N M
O.jZZZ
M a
M (,i
M N
N
N
OV 2 B
^ o
O C
M
rN
MN
NrN
ON
NaN
NON
ON
Oo°�6Z�omm
NrN aN
VtrN°
WVnN
N N
W
e'U�
ZMN
"mmmoZlZ�ZZZZ
Z
m
ZZE
r°
mN
mt0 s3 "-
N
N
N N
N
N
NN
N
N
N N
N
N
N
No
N
N
N y E 3 u
5� 2
N
A N
N N
V
M m
O ....
r
O E
p 'CjE..
V
V V
N
r
N N
N
NOiN
n m
V
r
N
A N
46V
r N
N N
No.,,:
N N
O N
m
V i0
CN
N A
� A
A N
M A
n n
N N-
V M
N
V N
M N
A m
A N
M r
NfVO
V M
NO
n N
N
O
N M
M V
v o
ya
I
�7
Nrr.NO)rrr..
NNO�
ODONrNNOOiOrrNNOi
OiNrrrrNrNrNNNOi
O)rrMN
9 c ° _
N W�
N
N tp
N
r
c E a
s
'a
O y
Z y}}
0 0
0 0
Z}
y O
y Z
y 0
y Z}
0 0
Z
0 0-
Z Z
y
Y Y
0 0
Z}
0 0
Z}
y y
Y Y
y
Y
y y y
Y Y Y
y y
Y Y
y y
Y Y
y y
Y Y
y y
Y Y
0 0
Z Z
0 y
Z Y
y y
Y Y
y y
Y Y
y 0
Y Z
y 0
Y Z
y y
Y Y
m-
o
E
_15
m
m N
m V
N N
MVNNGCNAVAiNM..NNVM
O) N
O N
A M
N
M N
N N
V r
N N
V M
N
N N
V O
F,
O O
V O
N N
M N
N N
N V
N-
m O
N N
N N
N
N N
N
V O
V NVrVVV
N O)
N O)
N N
O V
V
N NNNNNNNNN
N
n a N
M N A
N
O NN
0
V M
N O
OrNN
0 0
N O
0000000000
M a
!n V
n
OOiNV
N O
N n
N
M N
ON
0 0
N
�M
NM
000
N
MNOi
NO)NNNNNo0000
N
O
oN
N
I
-
t
G
Z
aG N
N r
N N
..
O M
I� N
O) M
N N
M M
N M
N
N N
N N
C aC
N r
N M
n f�O
M f V
m r
N
M M
n n
N G
V N
MNN
M M
W M
V
M N
N
M M
..........
n
O
N N
V
V N
A
O
N V
V M
N r
M N
V O
O)
M N
0 t�0
V (h
O r
N
N N
V
N
N
V
N N O
W
fn
V M
a N
a
n
ONO i°
N th
iO
N W
M
A
M NNN
M
M N
N N
N M
-
N V
N
N N
NO Nth
I
O
N N
N N
-
N616
O�
N
V
V
M
M
ONO
I� M
m
. N
N N
N N
N NNN
....NNNNN-
4
_ c
N N
N r
r
r r
r r
r r
r N
Q M.
o M
O
M m
N
m m
O
O O O
-----<
O O
N
M V
N N
Q
N N
-
N
-
O
N
M
O'
N
OJp
�
m-
3
w_
m
dddddddddda.a.a.
adddddddddddddddddddddddad������
E-�
i E n
a
M M
M M
IN
:[I,
M N
N
N N MI
M M
M M
M M
I
.o .o
o0
x
2222
x
o
0
-
E
vm
o
o a
°
0
- -
EEEEE
E
_
3
Q QQQ¢
Q
E
7
=
x
K
33
K y
03
K
K
3
K K
333
K
K
333
c c
o e
.�
in min
min
min
inamin
in
inmaamin
in ainmm3
in
in in
rnaNN
in
022
J
(.7C�OO���
O O
O O
O O
cocoa
O O
O O
m m
mtn
m O
tn000��aON00��tn0000tn
0 0
0 0
0 0
m O
0 0
0 m
O 0
00
m
E
N
O
O N
N O
O N
O O
N O
O N
O N
N N
N N
N N
S
N
V
V N�
N�
V N
� V
i0 n
V V
FO N y
N
N
NNN
N
N
fO t0
N
N i0
N V
N
N N
N N
CEO N�
N N
N N
N N
N N
ttOO N
N
N N
N N
N N
E
O N
N N
O O
o 0
0 0
0 0
o
O
O N
o R
ao O
N O
o � o�
"p oo
a t0
� c0
c0 V
N
1�
f0
o
N
f0 O�
C
fV G
O'
NN
`
N
(n
E W
V r
r �
N M
N O
m It
C N
r'
N
C> G
A V
V N
V fV
N
1� V
O M
fV
M
I� N
O �
N
V V
V N
V N
A
N N
fV V
N M
N Ih
M A
N C>
M
N
r
M
r N
1� C
c
Obi
t0
N r
N N
V M
N t0
M N
N N
M
N N
OC N
N N
MNN
N N
N
N ...
r M
N M
N N
N N
N ....
r M
r N
N
r
N
n r
N ...
N N
O$
N
N
O
N
O
O
o
O O
M0 O
O O
O
O
y
O
G £
p U
G
"rc
E
V
N
Oi
N
OC
N
r
N
M
VNO
r
V
r N
V N
M'abMM
MIM
r V
C(TGN
V r
MO
O N
V
N
M
a
c E
-
'y
W
�+
a
N
a
N
a
N
N
O
N N
MrrNrNVN
N
N N
NNNN
N
m
y
y6 K
G
w Q
Z
O Q
N Z
O Q
2 Z
N¢¢
N Z
CO
Z N
u0 N
N N
Q 0
Z N
0 0
N N
O
O O
�
O
N v
O
� M
aD Q
N Z
Q
Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
O O
O_
-« O
_
E
v
N
V
�
t0
t0
N
N
N661�6MM
W
t
L N d
$ Q
O Q
O Q
Q Q
Q O
Q
Q
Q Q
Q Q
Q Q
Q
Q Q
Q
Q O
N N
N
N N
(A
Qa
Z
H Z
N Z
Z Z
Z �
� Z
N Z
Z Z
Z Z
Z Z
r Z
Z Z
r Z
Z-
"
3
-
_
V
N N
N
V N
N N
M'
O M
M
O �
O ItV
r
N N
N M
M O�aD
r
N
a
y
O
jO
EOjN
O
M I
M V
NrN1�
�
r V
fV
((INNMANNN
`o ;
y m m
y N
N ....
M
N
f p
N t0
N i0
r a
N N
N
N N
N
N N
N N
N N
N N
N NNNNNN
na
_
0
0 0
0 0
0 0
0 0
0 N
O 0
0 0
0 0
r 0
0 0
M
0 0
N G
ab O
C C
N O
f V MONO
O O
O N
N
N O
G M
� w
of y -
F
NN
N y
N M
N N
y NNN
M
M
s
� T
—
°
-FT
N
M NNNN
No
NNN
C°
N M
M N
N
N N
N N
N
O N
N N
N N
N N
N N
m
W=
Q N
U
EO^
NNNNNN
...
O
N
N N
NNNNN
N..
O
NAG
NNNNNNNNNN
MN
MbbDMM
N Nr
N M
OO
NNO;
O
OM
OO 1NM
V
roV.NM
O
NrO
O
N
I�rI
N N
3 u
d E
'O V 0=
O
V
N tO
m m
N
V N
N
O M
M
O
r It
N
v r
AMV.
N N
O M
NN.N.AMMr
@) m
o -
r
N
NNr
a9 3
NNN.............NN
M
N
c _
3 v
c E a
a
-
a E
� m
to
N t0
N W.
N N
O O
N N
r N
�
N O
O O
N N
M M
2 A
V V
O O
N N
N (A
O a
N
O O
N N
N
O O
N N
ao
t0
V
0
N
N N
O O
M M
0 0
N N
M
A m
N O
0 0
N N
aD �
O V
0 0
N N
V IQ
0 0
N N
NNNN
N N
CO M
0 0
N N
M V
N M
0 0
N N
O N
M N
M V
0
N N
V N
M V�
lA
m N
N N
N
N N
m a
N N
r
N
-
4
-
z
N N
m m
....
N N
r r
CN° N^
n r
N
CV
m
N
(A
M
N
N
V V
N
m
V N
N
N lV
N C O
N N
N V
i0 f O
N
V V
r l�
.............
O N
V
i0 V
w N
M M
tw N
M M
V
M V
V
V
@
QO]CQVmOQ�"mNQm
O
r
M
Oi
N
NQV
N
N
EiiiC#CC:
O
ih
_ c
w=
m°
22���������3�����3���3��333333333
N
N
N
CO
CkV�
c 3 q
pia=
a
N
V V
O
N N
N N
N N
N N
N
N
N;r
N
N
N
C
N
C
C
y
d
d
p
d
d
U
o
c
N
N
O
N
N
N
p
d
3
O
U
m
y-pa
�za
7
a
1p
m m
a C
=
N
a_
N
w�
wz
N
N
C
w
a
=
U d
p-
U '^
O D
U U
U U
U U
U
N N p
O N
N po
N
N p
N
N
N=
N.Oo
No
N
o KKK
.d ___
0 K
K K
K oo
00 o
00 00
o o
o
K K K
K K
K K
K K
KKK
K
K K
K K
K K
K K
K K
K K
d
mWaayrnrnrn
maWaammmmmmmmWaaWWaWWaaWaaWaaWWaWWaaWa
v d
v v
d d
d
;L
d
d
O_
O_ O_
O_ O_
Y
O
o ZZ
o
M L
H
E w ry
E
O
tp N
Oni M
S Q
Q M
m a
M O
fO
N M
N
1. N�
.1
N A
M V«
1.00i
V M
M a
Oi �
a�
io a�D
fp m
n
m W
n
ro Z
Z
V al
O IG
O
M
fC N
N V
V N
N V
M
Hi
V
O O C
L E y
-
a M
.1
M
'M Q
Q O
O 1.
S O
N N
O
E WM
S
2N
N N
O N
M N
m N
N O
M
M
ro
W
O
2 N
O.
N
m
m
N m
N N
NZ
Z O
tC N
Yi CV
�
N NN IV
b
fV
V
N
M
M
fV (V M
V
N N
O V
M
m
N N
M N
M N
m V
N
N
M
N N
-
N u
nNL
M
OO
tp NII(0
N
QQ
N
°V
MO
O
NN
NMr
NN
6
M V
V
S2 V
O
6
N
V�
j
F 0 W
N
CI
r
M Z
Z
(C
r
(C
N lV
N
V
M
1�
M
a6
�
w
� d
N
L Pn
S2 c6
�p
o QZ
OO
O
N N
0
IO
ffOO ((OO
NO� 6
O
N
N NN
^
mO N
M
yON
N
M
V YM
VM
N
^ 6
4 NN
N�
7 m
E a
M<��MNM
',2
°°NMNV
TVN
o«PV�BN
M<m�<�2
98<P°^�
K
>_
E
m N
O <V
I� ^
m N
N
0. N
O
M
N
.
V a
O
V c =E
W
L O
O
C
O
O N
O 0
00 N
N
W O
NN
M n
M
M
O N
V
O O
M N
N O
N N
N
V N
N
MN
O O
NoNNMNNVN
O
O O
N
N
O
M
V
O W
N
M
V a
Ng
-
o
O q Y
m<
r
N
M N
M Q^
O
fO
V M
M Q
OMi N
N
N r
m
M
r
V fp
6IV
N O
fp O
M acD
M V
N N
M fp
6
aND V
N r
M
> d 0
HIM
fV V
1�
M Z
^ a6
I�
V V
V Z
lC
N
M 6
V
fC N
6 fC
O V
V fC
al
Hi
6
6I�
d a
W
a
O T d
nt �ad,a
-�
o
ro Z
Q
OiZro
rovm
ei
Nm
O a
NiNM
c
C 4
N
O_
N
N V
V N
N N
M
N f0
V
M
V M
V M
ci M
N N
16
O
W N
N N
M
V
N N
�
M
N m e
n ^
r N
r
Z
Z
6
6
N
O
M -
F Ur
o
N
N 4 M
f0
fV
N
c'i
V
O CV
6g^
N
w
c0
tp tO0
vOi
uWi �
VfrNOO
Mt�NOO
M
N
V u0
0. .o
N
M
vb
N
MN
I n
n 3 y
d m0 moC
Yf='
N
N
N
MN
rl.E;
NMN.
M
NNW
M M
N
n o
W O O
d u
Yry
d
�.r
M N
N Z
Z M
O
lV CV
N
M Oi
N (O
fV fV
N m
c'i
V
<V M
V
(V
M r
N CV
O
"i V
V OOi
"i N
V V
�yy
� l
M N
M N
fV M
M N
N
M
4 N
<V M
O
vi 14
16 16
n 3 d
14 3 E 3 u
N_
� k u
a d O
C
V N.rN
r MNN
O
V MMNOMiN
WN
N
�r
V (ONO(OO
acOM
V
Otp
(Om
z v E
O •C j
U N w
m
h
tC Yi
(C h
fV
MO N
N
Yi (C
V c'i
(C O
M N
m r
(N(VV
1� M
V
_-
-
E a
e C
Z. z»
Z.
P
VNNmN�
AVM
MNo
O
p
N N M
Mom�NM
MVMVo
_
Y)�CM�rpM
VO
a^D Nm
N
NMM
NNO�OMO
MM«�mM.
f0
M V
V i0
M V
W N.M
O
W
0 0
0 0
0 0
0 0
0
0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
<pp�.0
'N 1.
m ���
ON
gaV
MI
MNON0mNOyyM��
�MMMMm
B'0�
—0g
2
m�
V N
n V
r
N
N M`
N
O M
N OOi
fp M
t0 M
m
V m
M aD
V n
a N
f0 a^D
OOi
N
O^i f0
m a
N
-
_
E&
00
z E a z
d
N
a
N N
N N
N N
N N
N N
N N
N M
M M
M M
M M
M M
M
M M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
a
pp
w
d
E
>
8 E
E
o
d
d 9
0
j
m
d
m a
O
j
d
3
¢
N3Nd
v
d
p'
ss
.-,
a
Z
T
y
y
N
a N
w> w>
K
N N
N N
Nf-$
N
N N»
> >
N
U
U o
O. d
d d
d d
d N
N N
N N
N N
'o'o
N N
'o'o'o
N N
N N
'o'o'o
N N
'o
N N
'o 'o'o'o
N N
N N
'o 'o
N N
'o 'o
N N
o
1.12
0001
o
d
'o
N
t 'C
d N
d d
0 0
0 d
d 0
d d
0 d
d 0
0 d
0 0
d 0
0 d
d 0
d N
0 0
N 0
N N
d d
N d
d d
N d
N N
N
E
2 22
E
T
T
C �
V
m
O Q
Z
O
Q
m Z
Q Q
Z z
Q Q
z Z
Q Q
z z
Q Q
Z z
Q Q
z Z
Q Q
Z Z
N t
F
N N
M N
N N
M m
M N
m V
f0 M
O
n N
fp OWi
m
N O
O
Q
N
W
O
M Vm
M
V Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
V
N
m
IV
1� l0
m
l0 aD
lC Z
f0
v
M V
N V
m z
z z
Z Z
Z Z
z Z
Z Z
Z Z
N
N
L O d
a`
a V
m
m V
N
W 0
m
O
N N
N M
w ni
N N
N di
M aOD
N cV
O
W
O
6 N
O N
m N
0¢
Z`
N
O m
N
N fp
m N
W
m
M
IvQ
of Z
Q Q
Z z
Q Q
z Z
Q Q
z z
Q Q
Z z
Q Q
z Z
Q QSoo
Z Z
-
cw'>
Oo•c
imp
�p
N
W
^ ohM
(O M
r;
m
M N
m
V
M 0
0 Q
Q Q
Q Q
Q Q
Q Q
Q
V
N
m
mV
�N
o(O M���Nyy
mVVO
6O6
z0n
MIV
—Gzzzzzzzzzzzz
lM
zQ
N
M
O
f0
f0
o
M
of
o N
N M
N
V
M
m^
O M
N
M m
M
M
O QQ
M Z
N
N o`
mom
O
QQ
Z
QQ QQ
Z Z
QQ QQ
Z Z
QQ QQ
Z Z
QQ QQ
Z Z
QQ QQ
Z Z
QQ Q
Z z
c
N
^
w
of
M
m
E .8
O Y
w
oraam
M N
4 N
O a�D
M
M V
w M
O Omi
M
f0 OWi
N O
r 0
aND N
O�
N V
M V
M O�
M n
O N
M V
Imp, r
r V
N
N N
N N
O
um
�=.E
>
x
umivo
mlcmmmm
�fcmrmo
rm�
�mv
�amm�
N
p
W
= d
r
Yg�
O
N
—
M a0
<ii6o�i�p
(C N
V N
N N
W
Oi
N M
M� w
6N�
6
N6
o
6 N
m M
w�pp
N M
;^i
N
opp
N M
OOo
O N
N O
mL6
6S
a
-
o
« N N Y
o
_
d O
fOO
N N
�pp
m
-. w
w
Q Q
VV
aD
Q
OOi
Q
V Q
m N
M
Q
Q Q^
N
Q
Q
m
0
M Q
V
Q
Q Q
r
Q
VV
M
Q
r N`
r Q
M N
I�
Q
n
Q
-
r a
��4
Mi
,No
zzZ6z��zm
w
NzZz„m,z�zm64-6Z6
w
zzzz�Nzs-pz��
8z
8z
as
W 3
_
a
6 t
L
Z o�
Z m
of Z
QQQOQOQO
�
z Z
z
Z^
gOQQQQOOQO
M
m Z
Z Z
Z
Z
OQO
m Z
o
OQOQ
m Z
m Z
x m
thZZQOQOOQO
w
{h
th
N
m
M
O a
aw
e
v
No
o
NN
N
`
N
M-
N
V m
VW
NWNNmN
M
oO
NN
NO MO
N Mm
°�
N VN
nm r
M
m
N
f0 tp
m
Om M0
V fV
Ni
N V
Q
Q Q
Q
QQQNN
Q
VS
N.
m�M V
-
UC
Zgg6
M
uN
o
pC=
«oro`oE
o
m
m
o
1�
v�
m
v,
m
M
W m
w
n
om
N
m
wN �u�
wror
vv'i
uu'i
u�umi
pi uu'i
umi `9iN
u�uu'i�Nu�umi
`"umi
u�u`"i
�i�u�piN��
Nv�i
umi
u'�m
`"umi
umi umi
umi fO
'uNi
m
o
W O O
n
6
u
M
N
N M
tmp
N M
(OO
N V
M
m
N N
O M
V N
V Q
m M
M 0
N
M 0
0 0
Q Q
Q Q
Q Q
Q Q
Q Q
O
O r
N
� M
V fV
M
(V
N fV
O t�l
fV M
M fV
fV fV
M Ni
fV M
M Z
fV M
Ni
V M
M z
z Z
Z z
Z Z
z Z
Z z
z Z
fV
IV fV
E a u
3
z E
O
N N
NYi
tp
N
r
N m
V a0
w M
V w
V w
0 V
m N
m
OMi
64
N r
m N
M
lC w
O V
0
M h
6.6
V w
fV
M I�
fV IV
O`
M V
r h
m N
w
a0 V
wl N
Yi (C
N
M
� �
fV
9 9
o d
U Nw=
N
^
^
^
_
� E a
a
i i
> i
i >
> i
> >
i >
z i
i >
i i
> >
i >
zd zd
z° z°
zd z°
z° zd
z° z°
zd zd
z° z°
a -
Oi
m 1�
o
a t00
M N
N^
�
Oi V
o
m m
0 V
V w
Om N
m
w 0
1�
m
N N
.N
V M
M O
N O
yy
V f0
tp m
O n
ttOO
m 0
tmp W
M m
N
tip ro
O M
M V
O^i N
tp O
O
M V
M N
2
N r.
m
M.
N
N
N
W
V
O O
O
tp
O O
ttpp
M m
Omi
rpp M
N
O
��pp
f0 V
Omi N
M
O M
r N
r
N
yy
f0
O
OOi N
Omi M
MOO rpp
V ffOO
N w
ryry
N f0
Omi M
O^i V
r
N
IvCi
O
2
VN
G
t t
NNE
o
-
N r
m
w tp
O v
N a
r
N
N M
N m
N M
r OOi
r m
w
N N`
N
M
I�
h
wA l�
m N
O N
m
E d d
e`oo
aadddda�Saaddaadddaadaddddddddddadddaaaadddddd�a�Sd�_az
W
�i
z E a
N
a
M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M
2 E
�
'a
N
a
t
N
a
a
a
N
N
N
N
a
N
N
N
N
N
a
n
a
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
n
0
n
0
0
a
e Q
a
a
a
a
a
a
a
a
a
a
a
a
a
a»
2
a
2@
q
0
0
0
0
0
o
a
o
0
0
0
0
0
0
0
0
0
0
o
a
a&
o
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
a
7
9
c
2=
2
c
c
c
2
c
2
o
c
2
7
7
2
\§77J6666
6
66a6�6cain
L
a
OZZZZZZZZZZZZZZZZZZZZZ
kz
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z»
z
2
#
\
K»
z»
z
z
z
z
z
z
z
z
z
z
z»
z
z
x»
2
�
a
0
= 2
Cr
o
r
'IT
=
r
r
r
r
r
r
r
r
r
r
'IT
�
r=
o
(D
/
§ \
Cl)
=2
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
//
= \
%
a
E °
Cl)
j
$ § ;
_ = e
+
]
j 2 a -
`
4)
o#
n*
o
o
o
o
o
o
o
w
_
p
r
o
6 6
m=
n
n_
e/ z 4 2
; / \ .
&
\ \ E K
7
§
2 = - (
0
t
$
$
-
$
ƒ
/
w
$
ƒ
$
o
$
$
o
o
k
$
$
0 \ E \ \ /
_
_
=
r
�
#
n
#
�
#
_
_
_
_
=
r
=
_
_
f E @ § E
§
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
F->: 2- o
§
E 2 2% E f
t 0) / §
_ § =
'@
#
N
_
-
=
0
o
=
N
-
IN'-
o
=
o
=
_
_
r@@
=
e
=
[ u
e-®
; E
n
w
R
=
R
_
R
_
<
e
R
=n
h
w
K
R
r
R
=
K
_
a
N
a R
7 = )
§
2 k
0
e
0
o
0
e
0
o
0
e
0
o
0
(00
0
0
(00
0
0
e
0
o
0
(0
0
o
0
(00
0
004
coo
§ §
&§ 0 y 7
§
E
e
n
f.
7$\
2
w
9
f/
2//
2$
2/
b § }
-
2
Z=»
e
@
+
E±
e
e
/
/
/
/
2
e
I=
e
e
/
/
/
/
/
/
/
/
/
E a a» 2»
k
\
2 E<= o= u LL 0
Appendix C
Geotechnical Analysis Summary
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix C
H
Q
w
Y
5 u
,cO• � x E
x CC u
U �
N
a I
�n
o
C ,pp
q3�
U �
rC.
W
C
O�
00
00
oq
C
M
y
�n C
�v
000
CDi
%0
"r
m
QC
O
.~-i
N
.N+
A
O
O
H
A
p�
O
M
N
.�-�
N
a
w y
w
E
lu
.a
d
a
O
vl
l�
n
m
cq
N
M cr1
O\
10
w
d
O N
w' o
N
Cl
v�/-�
�O
��/11
00
0o
v�
O
t�
O
o0
v1
O
o
\O
O
c
O+
S z
N
N
M
P1
V
�
.-+
N
N
1.
N
M
CEn
V
vi
vi
En
V)
w
.a
En
U
a
60
Cq
eo
fA
en
0
m
wfA
to
eu
eo
�epn
en
rn
v�
En
V)
W
u �
An
O
In
O
ON
Vl
l-
l-
00
N
N
to
N
O
O
O
O
O
O
O
O
M
uj
ul
v1
vl
�1
00
K1
6
Ki
G
r
iG
d
d
d
d
d
d
d
d
d
0
0
0
0
0
-,tI
w
O
'I
W
O �
zQz
U
coo
i
00
A A
aN. aV.
Q Q
'U
-E.
a'
�=
a
O
� R
o V
vac
C
.2Nco
E;o E
'10 a
Az
14
N
O •
z
1
h
Q
we,
r_
Ln
(n
w R
C N
O
o0
N
O
O
[�
k,
O
ri
�--�
V
N
�i
r
00
o0
�-•
0
N
�r
N
vi
v1
en
r
.'-�
�
N
a
[-
�z
y
N u
i S
7
00
to
00
•r
R
.r
O�
a
00
ri
o0
N C
N
M
W
�
.~-i
rl
'M-I
o6
(n
o
V
UV)
U
W
xx
vi
vi
vi
to
V)
U
a
�F •
cn
V)
cn
EnEn
cn
W
cn
�
�n
w
cn
cn
cn
cn
cn
u
vw
N
o
e-�
N
N
-:
`r
N
I i
o
.-r
N
MM
.
O
N
00
r'7
N1
c�i1
M
N
M
ry
00
ClO
ba
00
00
O
N
N
u'1
00
O
K1
G z
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I`
00
os
h N
A A
Y
Q..
O O
C
(% V)
'O N
U
a�
C
N
C�
y
cn-
A z
a C7
"
°
�7 a;
O
z
-1
I
H
Q
a
P4
Om
V 3
x
� •o
u
� Q
V v
O � o
� C �
U
�o
3
�EE
�n
A
� GQ a
0
�v
y C
�
o
"
N
Qa
Ch
cn
M
Q
00
�g
C N
V1
N
It
COet
O�
�I
O
O
O�
ti
O
O
I�
r
�--�
N
00
V�j
C
O
'
x
U
Lo
En
x
vi
vi
vi
En
w
U
•
En
cn
u
i
E u v
o
~
CD
N
CD
V1
wl
N
V)
v1
06
II}
00
V'�
O
h
00
O
M
00
InV�
O
00
v1
fM
Vl
00
bo
•�
N
(n
M
to
M
CD
kn
-
cmn
h
h
ro z
3
3
3
3
3
3
3
3
3
3
3
0
0
0
0
0
0
0
0
0
0
0
,=
1000
00
N H
Aq
0
u
O
G
w y
a
II
ii
C7a .°
v�iA� 3
•v z
N
O
z
w 7 X
o
O
O
O
'O 'C
(n
W
,O.
oq
M
oq
M
N
(ry
N
o3
a
�
aCD
C
R
W)
In
�
't
O
O
O
CDO
C
U
W
u 'S
o
a
a
o
(V
M
N
(V
(+7
4
w C
w
O
0
w
A•CC
i4
N
z
M
N
n
f
a
a
k
�g
v
C N
�+ O
sz
M
Vn
'ITIn
N
oo
.+
In
p ��
oq
oq
0
0
z�O• _Q
U
N
t�7
(N�1
N
N
C
.O
a
U
U
.a
R
U
U
h A v
N
N
,O
to
V
�•+
M
�
M
N
�r
N
O
z
wz
0
z¢z
U
000
00
N00
'n
AA
cu °�
c R
(n `n �.
a E
cn ^� a
�]co3 Az°
II (D II It
V)i]ro3vz
•
w
N
CA
N
^^C�
h�l
4
L
Z t N
4- O O
O Z O
0 co
E �
a) = O
y O O
(no O
CD w Z
0 L d
0
mva
L
O
u
C
O
u
mU
a
mUC
C
_
_
-CCU
UUO
+
O
C
a
CO
y
co
En
•>
-
>
T
>
a 0
U)
(n
�
(n
Cn
(n
F0
m2
�
co
>,p
co
UU�
mU)
2
(n
(n
7
N
ti
M_
N--
(D
(D
O
O
M
N
Q
Z
I�
r
V
6)
N
m
M
-I-
(N
Z
(n M
0 0
J
Q
J
J
Q
Q
Q
Q=
J
m
J=
(n'°�Zci�ZZZZ��(�ciU
++ w_
C
d
0)v
r
M
- U'O
C
Z
N-
Z
Z
Z
Z
N-
M
N
y m
°L a
C w
V
co
Q't
"t
Q
Q
Q
Q
r
r
In
r
a._
tZvvZZZZLnM���
-j
IL
Ln
C O
VCD E
N
N
[t
LO
Il-
N
O
LO
M
M
Q
LO
(1
O�
1*
r
Ln
r
c''
�
O
r
(D
M
N
N
Z
r
r
CA
I�
m@
IL
r
M
N
N
r
r
Cl)
N
CO
U
�, u•>
O
c E
Ln
Ln
M
Lq
N
r
O
0)
O
M
(D
M
Q
ti
M
'7
1-
Ln
O
Ln
ti
Ln
CD
N
O
0
` v E
(D
""
(O
O
M
N
Z
N
m
r�
CO
m
d
IL
M
CO
N
V
N
r
r
M
N
N
N
C y
0 0
I--
M
r-
O
O
M
c0
LO
O)
N
co
L()
Q
O�
(D
I-
CV
O)
r
O
CM
C)
LL
0co
LN
CCD
N
--
Z
CN
N
_
M
4
CMD
(ND
IL
C v
E
r
Cn
M
cJ
M
N
CD
O
r
f-
Ln
F-
Q
`-
LP)
M
N
m
f-
4
r
CD
CO
et
V
E
O
M
(D
Lo
M
O
Z~
~
Ln
Ln
to
I�
G7
a N
Cr)
('')
M
ti
c0
(D
LO
M
-tf
co
V .. >
co
r�
M
N
d>
O
(M
CM
0
O
CDQ
M
Z
O
M
0
co
0
0
0
•N
tt
r
a L
c7
d
¢anmmmm
co
co
d
O
O
O
O
g
M
Lo
0
0
0
0
0
a
N
ti
N
M
r
Ln
CO
M
R d
O
CDO
O
O
O
O
Ln
O
O
O
O
O
Q
m
0
0
N
O
m
M
r
r
r-
r
D
N
N
-0
d -
7 .>
C
M"T
O_
r
N
1`
00
N
(D
M
O
00
o
0CLmL
0-
Dz
o 0 Q
Z D Z
Phase 2 Cells F-H
Table 2B
Summary of Geotechnical Data
Undisturbed and Remolded Bulk Sample Conductivity
BFI Waste Systems of NA
Concord, Cabarrus County, North Carolina
Project No. 00188-002
Boring
Sample Depth
(ft)
Dry Unit
Weight (PCF)*
Wet Unit
Weight (PCF)*
Total
Porosity*
Specific
Gravity
Saturated
Conductivity
(cm/s)
Undisturbed Samples
P-13
22.0 - 24.0
76.2
100.4
0.57
2.86
8.08E-08
P-14
8.0 - 10.0
72.5
103.2
0.61
2.98
1.10E-04
Notes:
* Before test
Boring
Sample Depth
I (ft)
Maximum Dry
Density (PCF)
Optimum
Moisture (%)
Total
Porosity"*
Specific
Gravity**
Saturated
Conductivity
(cm/s)
Bulk Samples (Remolded)
P-10
0.0 - 7.0
108.1
18.2
0.39
2.75
1.30E-09
P-1
0.0 - 10.0
103.2
21.2
0.42
2.75
4.10E-08
P-26
1.0 - 10.0
126.0
12.5
0.30
2.85
5.00E-09
P-63
1.0 - 10.0
97.8
24.7
0.46
2.85
4.90E-09
P-70
1.0 - 7.0
115.1
16.1
0.36
2.85
1.30E-09
P-78
1.0 - 8.0
103.0
19.6
0.41
2.85
3.00E-09
Notes:
** As tested
DRAFT, 5/5/03, Page 1 of 1, Rev. 0
Mbl
•u�
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
OY•
•Y
M
CO
-
_
L
•L
L
L
L
L
L
L
LL
M
a)❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
J
U
o 0_-
U
""t3
O>
;
'O
a
a
V
>
U
T
V
O
n
c
@
rn@
y
N
°
c
Va
s
W
a
W
W
>
c>
T
a)
(D
a)U
T
c
c
c
r,
>
C6
cz
Co
Co
>1a
2
(a
�
UU��co
�
(n
L
7 Y
L-
CO
N
(O
(0
V
r-
N
r
Q
f�
r
0
V7
l6 '�
M
N
V
LO
I�
O
O
N
N
z
ti
N
V
r
V
N
z 0
•y
o
0
0
0
0
0
0
0
0
0
0
0
0
V
N
U.)N
O
O
O
O
O
CD,O
(n
(n
O
N
M
M
N
coN
LO
V
M
wa
N
cn N
J
J
J
J
U�
U
fn
fn
(n
U
In
U
U
U
❑ U��
V d
V=
r>
rn
(1)
N
N
r>
in
rn
>
W
N
(O
r
CO
M
(n
N
N
co
a
c
c
c
Z
Z
Z
V
O
V
ITfn
fn
u)
M
(0
V
LO
_a
J J
H
H
H
> O A
V)
(n
U O E
ONO
N
O
h«
*
0',
V
M
c E
O)
r
M
O
N
M
N
N
N
V
r
r
r
O)
M
I-
N
V
M
i
= N N
m
O)
0)
(.0i-
V
00Ntio
En(n
u)
rnmw
ml�
-
-
-
o
cCD q O E
M
M
N
V
N
N*
CO
O
M
N
N
N
c to o A
V a) o a)
L-
M
ti
O
O
M
w
(n
O)
N
w
(n
00
OR(D
0)
V
1-O)
N
r
0)
Cl)
G1 Il N
N
O
N
O
N
N
Cl)
V
(D
(fl
(D
a U)
c ' In
m Ln 1` E
00
M
-
M
N
(o
O
L�
(n
1-
co
00
r
U')N
Cl)
O)
('-
V
(O
00
V
fn ti C E
V O
w
M
co(0
M
V
Lo
M
M
f�
O
w
(D
V
(D
Lo
(n
(n
M
Lo
V
I—
M
0
m
N
w
(n
M
rrnr)coryr
(0
IT0)
M
�wwommo0
C9 ti
V
r
0
M
O
M
0
0
0
0
o �
a Q❑❑
J
J�����
J
J
J
J
tn~
mm
mmmm
a)
�
O
O
O
O
0
M
0.
Lo
0
0
0
o
0
Q. L
N-0
Ih
N
m
r
Lo
w
w
E .r
ao000000(no0000
>
(n
N
N
O
O
M
N
m
M
M
r
N
U
C
M
V
O
r
N
r
w
r
N
m
M
O
w
N
a
a
a
a
a
a
a
a
a
a
a
a
a
m
z
m
� X
>
O
O)
3 SZ
r p
Q
U �O
U
4
a)L
O >
CL
7 N
a (T
O
U a
(co m
L
o
m
c
L
°) u
>
L c
a a)
+0+ a) to
cu
c N
a)
0
>
O (n L
O >
(D L6
a)
Y
L 0)
:E O
> O
a) r
U
O
>
w -
Q
a
a) o
a)
O
i
U
Q
N w
C Q U
Ui
00
>n a
a)
00a)
-r
U
U
W Q
v
sl c N
C U
N
(6 E
O (n
= CD
U
>
L
LL i
`n O
> O
N
(n.3
c u
5 O
>
.LDa' a
U
U
N >,
o a)
fn
U) .N
a) Q
U
rn E
O
U?c
N
U
(D
c
° a)
u,
T
>
c
a)j
E v, N
3 u,
c
N 0 c)
c O
7
%n (n
a
O
=
>
(n
N
O
-p
Mn t Q
o
n
L O
10
O >
w a
fn N
f O
U
00 n
Y O L
> C
c
a
a) aai @
> Y w
T
Z O c
a cLi
> c
E w
n U> s
a)
O U
o N ui
o o O
U -
(n a)
aD n
a a'
0- �20
>
a) a)
+>+ U O
L L
a)
~
S co
V1 a)
.L.. 7
a'-
a) a)
_
�
U
m N
O
O
C
>
>a
o st�Lu
(y N -
n a U
O N
N N
O >
IZ
a) c m C
O c
a)
>
N Q
H � a)
Q m
L) c
rn
(T
.�)
m41
d
oo
O
v
O
R v N
3co
R C V
CDo
fn O
°O
U
U T
V >
co
m
CL
N
N
CO
T
r
r N
L j
Cl?
O
00
o.
j (Z
't
N
+ ++
O
O
U-
�U
d
N
LO
f.0
�
0 P
O
!Z
O
O
d
0
N
O
O w
to
E
cL
N
oo
m
E
N
G1
N
�
M
�
Y
0
d
tZ
w
O m
D
Z «
N
rn
O
w
O
rn
O
rn
O
rn
O
rn
O
L V
_
W
W
W
W
W
W
Cv1
p
M—
p
p
O
p
O
p
M
p
O
cc a
fn O
'IT
LO
If
cM
U
�.'
Lo
In
Lo
In
Lo
00
j
I—
I-
CO
CO
CO
r
fZ i
N
N
N
N
N
N
In (7
z
T
M�
M
N
��
IT
0
0
0
0
0
0
O
IL
7 y
C L
C
N
N
Lo
I--
7
O
3
CO
N
IT
Cfl
O
cL An
2
0
E IL
N
O
0c)
7O
r
00
O
N
O
E
In
O
T
X !_
� 0
-a
p
0
0
0
0
0
0
N
0
0
0
i`
00
N w
'Eav
E
'
0
0
0
0
0
0
y
0
p
r
N
N
O
!Z
C1
O
(O
M
O
a0
•L
0
Y
CL
a
N
!i
(O
d
ti
IZ
a
in
N N
m
Z
Appendix D
Hydraulic Conductivity and Porosity
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix D
Phase 2 Cells 2A-2E
TABLE 3
SUMMARY OF
LABORATORY PERMEABILITY TEST RESULTS
Depth
Coefficient
Sample
kFt.
USCS
Porosi
of Permeability
OW-5
1 - 2.5
CH
0.49
1.3x10"' cm/sec
OW-10
3-5
SM
0.55
2.8x10-4 cm/sec
OW-35
3-5
CH
0.47
1.6x10-4 cm/sec*
OW-48
2-4
CL-ML
0.41
1.8x10' cm/sec
* Rock Fragments Observed in Sample
3.5 Groundwater
Groundwater measurements were obtained in auger borings at the termination of drilling,
near 24 hours after drilling, and bi-weekly for a total of up to five groundwater
measurements. As previously mentioned, the observation wells consisted of generally 5
to 10-foot machine slotted screens. All of the auger borings that penetrated the
groundwater not converted to observation wells had a temporary standpipe installed.
Eight of the observations wells located outside the landfill (including 5 rock core nested
locations) were installed as Type II monitoring wells for potential use as future
groundwater monitoring wells.
�i Groundwater levels were measured using an electronic water level indicator from the top
of the PVC standpipe. The top of the PVC standpipe as well as ground surface elevations
�I
were surveyed by F.D. Lawrence & Associates, P.A. The groundwater level
measurements and elevations are presented in Table 4.
Groundwater levels in the area of Cells 2C through 2E will continue to be monitored on
a monthly basis until these areas are ready for construction. The auger borings and
observation wells located within the footprint of Cell 2A and 2B will be abandoned in
W, 15
Phase 2 Cells 2F-2H
Table 2B
Summary of Geotechnical Data
Undisturbed and Remolded Bulk Sample Conductivity
BFI Waste Systems of NA
Concord, Cabarrus County, North Carolina
Project No. 00188-002
Boring
Sample Depth
(ft)
Dry Unit
Weight (PCF)*
Wet Unit
Weight (PCF)*
Total
Porosity*
Specific
Gravity
Saturated
Conductivity
(cm/s)
Undisturbed Samples
P-13
22.0 - 24.0
76.2
100.4
0.57
2.86
8.08E-08
P-14
8.0 - 10.0
72.5
103.2
0.61
2.98
1.10E-04
Notes:
* Before test
Boring
Sample Depth
I (ft)
Maximum Dry
Density (PCF)
Optimum
Moisture (%)
Total
Porosity"*
Specific
Gravity**
Saturated
Conductivity
(cm/s)
Bulk Samples (Remolded)
P-10
0.0 - 7.0
108.1
18.2
0.39
2.75
1.30E-09
P-1
0.0 - 10.0
103.2
21.2
0.42
2.75
4.10E-08
P-26
1.0 - 10.0
126.0
12.5
0.30
2.85
5.00E-09
P-63
1.0 - 10.0
97.8
24.7
0.46
2.85
4.90E-09
P-70
1.0 - 7.0
115.1
16.1
0.36
2.85
1.30E-09
P-78
1.0 - 8.0
103.0
19.6
0.41
2.85
3.00E-09
Notes:
** As tested
DRAFT, 5/5/03, Page 1 of 1, Rev. 0
Table 2B
Summary of Geotechnical Data
Undisturbed and Remolded Bulk Sample Conductivity
Boring
Sample Depth
(ft)
Dry Unit
Weight (PCF)"
Wet Unit
Weight (PCF)"
Total
Porosity*
Specific
Gravity
Saturated
Conductivity
(cm/s)
Undisturbed Samples
P-13
22.0 - 24.0
76.2
100.4
0.57
2.86
8.08E-08
P-14
8.0 - 10.0
72.5
103.2
0.61
2.98
1.10E-04
Notes:
Before test
Boring
Sample Depth
(ft)
Maximum Dry
Density (PCF)
Optimum
Moisture (%)
Total
Porosity"*
Specific
Gravity"
Saturated
Conductivity
(cm/s)
Bulk Samples (Remolded)
P-10
0.0 - 7.0
108.1
18.2
0.39
2.75
1.30E-09
P-1
0.0 - 10.0
103.2
21.2
0.42
2.75
4.10E-08
P-26
1.0 - 10.0
126.0
12.5
0.30
2.85
5.00E-09
P-63
1.0 - 10.0
97.8
24.7
0.46
2.85
4.90E-09
P-70
1.0 - 7.0
115.1
16.1
0.36
2.85
1.30E-09
P-78
1.0 - 8.0
103.0
19.6
0.41
2.78
3.00E-09
Notes:
** As tested
Table 3
Hydraulic Conductivity Data
Phase
Boring
Screen
Length
(ft.)
Top of Water Level
to Bottom of Screen
(ft.)
Saturated Aquifer
Thickness
(ft.)
Static Water
Level"
(ft.)
Topographic
Position
Hydraulic Conductivity
Average
Values*
cm/sec
Hvorslev
cm/sec
Bower -Rice
cm/sec
2
P-46
10
38.97
10.00
9.65
flat upland
1.53E-05
1.11 E-05
9.79E-06
2
P-102
5
15.12
15.12
6.25
flat upland
6.02E-06
5.52E-06
1.12E-05
2
P-86
5
6.67
6.67
21.32
mod. slope
9.51 E-07
7.53E-07
2
P-82
10
58.20
10.00
15.37
flat upland
3.59E-05
2.61 E-05
3.10E-05
2
P-1
10
6.22
6.22
32.24
flat upland
8.81 E-05
6.48E-05
2
P-104
5
10.97
10.97
14.10
mod. slope
8.90E-06
7.86E-06
2.90E-05
3
P-10
10
6.25
6.25
11.94
sloping hilltop
3.73E-06
1.01 E-05
6.92E-06
3
P-12
10
18.76
10.00
5.72
stream bank
1.19E-05
8.17E-06
3
P-13
5
37.35
5.00
27.02
sloping hilltop
1.47E-06
1.07E-06
3
P-21
10
28.31
10.00
10.90
stream bank
4.00E-06
2.95E-06
3
P-52
10
30.15
30.15
3.12
sloping hilltop
4.99E-05
4.46E-05
1.55E-05
3
P-8
10
9.92
9.92
10.35
mod. sloe
6.32E-04
4.47E-04
3
P-9
10
10.99
10.99
7.66
flat upland
2.28E-05
1.69E-05
3
P-11
10
4.21
4.21
18.45
stream bank
5.35E-06
3.88E-06
3
P-15
10
9.87
9.87
16.75
sloping knoll
1.20E-06
8.60E-07
3
P-16
10
17.35
17.35
13.27
mod. sloe
6.99E-06
5.53E-06
3
P-58
5
7.58
7.58
27.05
steep sloe
4.77E-07
3.90E-07
3
P-60
5
11.85
11.85
11.90
mod. sloe
1.03E-06
9.16E-07
3
P-66
10
7.57
7.57
27.98
mod. sloe
2.92E-06
2.17E-06
3
P-72
10
15.39
15.39
25.06
sloping hilltop
1.25E-06
1.02E-06
3
P-91
10
23.17
23.17
20.12
mod. slope
3.33E-06
2.96E-06
5.79E-05
3
P-14
10
14.34
14.34
29.68
sloping hilltop
5.88E-06
4.71 E-06
3
P-23
10
10.97
10.97
11.34
stream bank
2.02E-06
1.53E-06
3
P-70
5
7.28
7.28
2.40
sloping hilltop
5.63E-06
4.27E-06
3
P-73
10
14.94
14.94
7.59
mod. slope
1.34E-05
1.08E-05
6.02E-06
3
P-19
10
20.35
10.00
13.20
flat lowland
5.00E-06
3.67E-06
4.34E-06
Notes:
^ -measured depth below top of casing, as used in the calculations **The diabase units are approximately 5 feet wide based on visual
* - Hvorslev and Bouwer-Rice values averaged for each respective ui inspection and similar in appearance to the diorite-gabbro unit; the
Saturated Aquifer Thickness Determined as Follows: contact zones are approximately 10 to 15 feet wide on either side
Saprolite: Top Water Level to Auger Refusal or Bottom of Screen of the dike -- these were exposed in grade cuts during the study
Bedrock: Thickness = Screen Interval Denotes Phase 2 piezometers close enough to Phase 3 to be relevant
Appendix E
Historical Groundwater Elevations
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix E
N
Op
Q n
4-
Q a
6 m
M 7
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
N
Z
4 r
Z Z6n6-
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
O
cMo
N
N
Q M
N w
Q a
7—
0 w
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
;�-
N
Z n
4 m
Z Z
6.�T
6,
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
N
O
N
M
Q M
m
Q
Q a
N
Q
O N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
a
Z o�
Z
Z Z
Z v
o-
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
N
O
O
�
aD
O rn
m-
a a
a a
a a
a a
a a
a a
a a
m
z�
a z
z z
z���
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
Z Z Z
N
N
O
po
Z Z
Z Z
Z Z
Z Z
0
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
N
n u
N
N
O
N
Q a
a Q
Q a
a a
a s
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a a
N
N
N
O
N
Q Q
Q Q
Q a
Q Q
a Q
Q a
Q Q
a Q
Q a
Q Q
a Q
Q a
a Q
a a
Q a
a Q
a a
Q a
a Q
a a Q
N
O
N
O
N
Q Q
Q Q
Q a
Q Q
a Q
Q a
Q Q
a Q
Q a
Q Q
a Q
Q a
a Q
a a
Q a
a Q
a a
Q a
a Q
a a Q
j0
N
M
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
y
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z z
a
N
O
N
Q a
a Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
a
N
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
0
0
N
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a a
N
0
0
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
N
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
0
N
Q a
a Q
Q a
a a
a s
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a a
n
N
T
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
O
N
Q Q
Q Q
Q a
Q Q
a Q
Q a
Q Q
a Q
Q a
Q Q
a Q
Q a
a Q
a a
Q a
a Q
a a
Q a
a Q
a a Q
N
W
Of
a Q
Q Q
Q a
Q Q
Q Q
Q a
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
a Q
a Q
Q Q
a Q
Q Q Q
M
O
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
W
W
�aaaaaaaaaasaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
a a
a a
a a
a a
a s
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a a
�aaaaaaasasaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z z
c
o
C q •— N^
u� m
N
rn u�
O> M
ro o
V N
o ro
ap tD
v
O N
v
I� O
M N
N
m
M r
M N
M N
7 u�
O
m N
N M
rn rn
O o.
N v
N
v m
N
in r�
v o
m
in M
61 D
o m
m
I
nM
u�
4 n
6 �
C� 41 W C
u, u�
u� cn
cn in
cn cn
u> cn
ummi
cn in
ui u4i
cn cn
u4i
u> cn
coo
cn u>
cn cn
uIi
cn
uIi coo
cn
cn
cn
cn
cn
cn
cn
Cr
p�
O
f�
O
N
M M
r
r w
co w
V O
00
W
M O
N
W cp
W M
M N
N cp
N N
N M
ap W
V ap
M W V
o0o
�
W
U
� p•
an
d d
d d
d a>
d d
a> d
d a>
d d
a> d
d m
d d
m d
d a>
a> d
a> a>
d a>
a> d
a> a>
d a>
a> d
a> a> d
rn
oddddddddddddaaadddddddddddddddddddddddddd
m
N
O
O
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
M
Q o
N
f0
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z z
z-�
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
;::
rl
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
p
M
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
a
N
N
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
O
N
Q¢
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
W
N
N
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q m
N O
N
N
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q N
a N
R
C
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
n
Q O
M n
M
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z O
O
M
`
N
l
V
pCp
U
N
y
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
z z
Q Q
Z Z
Q Q
Z Z
Q
Z
Q
Z
C
N
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q ir'
R Q
O
azzzzzzzzzzzzzzzzzzz--z
(u
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q
O Q
N
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z 10
�
1 Z
�
)
'O
N
N
3
�
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q v
c0 Q
Y
N
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z z
z Z
z
Z
N
C
l0
04
N
y
N
e
NQ
Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
co
Q m
N Q
n
Z Z
Z Z
Z Z
Z Z
z z
Z z
z z
z z
z z
Z�
N Z
U
N
u)
0
N
3
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q
Q
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
z Z
Z z
Z�
N z
j
N
�
u)
1
Q
T
Y
U
O
m
m
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
coo
Q u)
m (o
C
y
m
O
O
O O
fp
Z z
z Z
z z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z "
t l
O
OJ
N
T
-
N
E
O
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q M
00) -
PoM
Z z
z Z
z z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z O
M O
u�-�
� i u�-�
M
a
�
m
�!
Q Q
Q Q
Q Q
Q Q
4 Q
Q 4
Q Q
4 Q
Q 4
Q O
� Q
n
N
q
T
tO0 (m0
O u�'�
m m
�; n
N o
V M
r N
0 un'�
M m
O> E
N Oi
V
O
1� fh
m f+J
m
N m
O N
0 CO
N V
n
O
u°DDD'�u
uni
u�0i�uni
uni�uni
u�Oi�u°Di
uni�u°Di
N
a
O
m m
(
N
O
O
(p n
GO O
KJ n
N n
p)
n O
O M
0 it1M
Oo
m
M
V M
V
m V
N N
(p
O. C H
o•�, Emronrororommronnronroron<Omm�rom
r V
M
O n
M 0
w.
CJ N
N (M
M 0
CJ
i[J f0
a
I� O
U
� p
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
a Ecm
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
•
n n
n n
N N
m m
0 0
0
N
mcaaaaaaaaaaaaaaaaaaa���
v
W
b
� ifJ
N �
� ifl
� to
N to
LLJ N
(tJ ((J
N to
to �
to LL�
ifl �
� N
N �
ifl ifl
LLJ N
ifl LLJ
N ifl
� ifl
N �
ifl ifl LLJ
N
([) W
N
n n
W N
(C) n
N
n W
N N
W V
N
V V
N
V V
N N
(n n
TIT
W W
W
n n
N N
V V
W N
V W
N W
n n
W N
n n
W TIT
W W
W
(n n
W N
n n
W W
n n
N o
n n
o N
n n n
W o N
M
n W
M (n
n N
v m
0 (n
O N
W O
r
M V
W
O v
0 0
v r
0 W
n
N W
O N
m N
(n
M W
W V
N W
M W
v
N
W O
(n N
v r
0
W
N W
v W
O
M W
O N
O
r m
M M W
v r W
N
N
r W
W
S W
n n
�
n
I� r
n W
N
N O
W u
GO r
V V
GO r
V V
M GD
n
M
W W
N N
n n
W In
V V
N N
V W
O IDN
n n
W
n n
N
W W
I�
n
v 0
n n
w D m
n n
m
m
n W
N r W
n n n
(+l
o
([l W
W N
o
N W
N N
W N
N W
N N
o N
N W
N N
W N
N W
W No
N W
. N
W W
N W
W N
W W N
M
v M
O V
M m
V W
r W
m O
N
V V
m O
W W
m r
V
W
n V
m 0
n W
0 W
M 0
r M
(C)
N
W
W m
W N
0 W
(n W
r W
W W
W v
m (n
W m
(n W
m N
W M
W r
(n
N 0
m n
O v
W N V
r o
Wnn(nnnW
o t
O M
o o
O M
Wvvvvv�n
o o
o n
N r
n(n
m p
W(�rvvv
O
N r
r N
Wrnnnm(o
O v
M m
W O
�nrrWnnW
N m
W r
m r
W
r r o
nnr
a(n
In Ln
Ln LLJ
LLJ (A
LLJ LLJ
(A LLJ
� ifl
� �
(n LLJ
LLJ N
LLJ to
� LLJ
LLJ ifl
ifl LLJ
(A N
to N
(n to
N (n
LLJ ((J
ifl LLJ
(A N LL)
M
m_
� m
W v
m m
W W
O
O
m
O n
(n W
N M
r r
n (n
(n r
(C) W
r W
m M
(n v
M
C')
v v
(C)
v v
m n
(n r
([ W
(n W
m m
W W
m m
v v
W V
�
v W
W
W (V
W r
m W
� I�
r W
� O
W W
o. M
� O
(n r
W (n
(V I�
r W
W N
u'i (O
r r
m. N
N 1�
W W
(n (n N
m m m
r r r
N
p
(y
N m
o o
m N
It M
n
m m N
O N
(n IDS
W
W O
(O W
W N
(o N
W m
N m
W m
(O W
N O
(O (n
v M
N m
O m
W m
m N
(n dD
N W
M
W N
(O r
N W
O W
W
o (n n
W v
o I�
v
W O
m W 0
oN on
cW
(n
(n (C)
O iz
o m
O W
O
V m
N m
W n
m oh
h W
o co
n n
(n
n W
W v
v v
v v
n
o
(n W
o .
n W
(C) o
v v
LL'1 o
v W
o LL'1
W n
LL'1 o
n W
. LL'1
W W
W
r W
n n
W W
n n r
N
p
N
W n
M m
V N
W W
W m
W
o W
N m
M W
m O
W V
W
n
W O
W W
m O
W
N m
v m
� W
m m
M O
W O
N o
W m
N V
W N
n
fp (n
W r
m m
m
(n 0
(o
fp m
o
r N
O n W
(o m W
.
(y
(n W
r r
N
(n W
N
r W
v
N o
V V
N..
V V
v r
N..
(n W
N..
r W
v v
N..
v W
N
W W
NTN'
r W
W W
(n m
n m
N N.
r r
N
W Wl
N.
r n
N� N
N
O
W W
W N
m v
O N
O m
m O
N (n
m W
r O
m m
mvmvvV�u'�oW
W m
(n W
r
m m
m m
v W
W N
m (n
Pl
u)
N
p
O m
m N
M 0
O
V
M m
m n
(n (C)
(C) (n
O N
W
W
n
W
V m
W M
(n W
(C) M
N
O n n
N
v N
N r
v O
M N
W
r
� M
(n O
� v
r O
a r
r �
M W
Q W
m O
m W
v W
r N
M N
W � 0
M
C
W
o
� o
I N
r r
o u)
O N
o W
([) o
N 0
r W
([)
(n v
o v
O
v v
M v
v v
(O (O
v r
V
(fJ W
m N
W W
Z v
v
v W
v
W (m
W W
Z m
W
W (n
v W
n W
r r
W W
m
(O W
r r n
N
p
N o
o N
0 o
W
W
n m
m V
o m
n W
0
o n
N n
n N
n
O M
(O N
V M
(O M
V V O
(y
m (n
O O
M v
(n r
M W
0 W
O
N m
r (n
W r
(p W
Lq O
W N
Q O
W v
(n N
W m
N m
N W
v m 0
N
C
(n W
o ..
r r
o
(!J W
o o
r (A
(n o
(n v
o
v v
(n N
v v
o o
v r
o
(A W
o N
W W
o o
v v
Zoo.
o
v W
o N
m
W W
(n o
Z M
W
O W
W.
m W
v W
m N
m W
M V
r r
N N
W W
((1 W v
r W n
N
p
V 0
W M
m W
V W
V 0
Q
7 r
r
m(
N
O W
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
w��
z
v n
(o o
o m
l m
Z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z z
N
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
N Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q m
N Q
Q Q
V M
T Q Q
N
O
M N
V N
m m
M n
m
N W
O m
W
W
O o
O
W
V
N
O m
Q
Q
Q
,
Q
N
O
Q
r
Q
O
W
Q
Cv
W
u) (A
m W
W W
W W
V W
m W
W u'�
W N
(A V
V M
N N
V V
Z Z
z z
Z o
(A
Z (O
z z
Z Z
Z m
o
z
v Z
W
z
Z Z
m W
oo
Z n
on
O Z
z
Z Z
z
z
W Z
W
Z Z M
z n
p
(A (n
(n ([l
([l W
([l ([l
(n (n
([l W
([J (n
(n
([l
W
W
o ([l o
([l
(n
(n
([J
N
O
O
Q Q
W
Q m
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
M
Z Z
Z "
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
u
izz
N
O
N
V Q
m
O
M M
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
N
N N
m Z
o o
s m
ai V
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
N
o
o
o o
(A u)
N
O
O
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
N
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
Fz
N
O
(n O
m W
W v
M W
0
N
v m(
m.(
m W
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
p�
N
v n
u; i�:
n m
o m
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
f0
N
o
O
O m
M v
o r
(([ m
n
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
N,
N
v m
o
6 M
O n
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
(D
N
O
O
V W
am
W
(n v
n m
n n(
V O
O
W N
v
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
NI
N
V m
O -
6 v
o n
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
o W
n n(
n
n <o
W v
N
O
O O
V o
r r
o O
V
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q Q
N
n M
V M
a
0 �
u'nW V
O
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z Z
a-
W
n n
n
W vn
m
``oddddddddddddddddddddddddddddddddddddddddd
N N
N N
M M
M M
M
W
W W
W W
W W n
m
y�
� ifl
N �
ifl N
� LLJ
N to
to ifl
to to
N to
to N
to LLJ
� LLJ
l+f
O
m O
O W
N V
V O
c0 N
N
0 0
V m
N 0
TIT
TIT
Till
�
N �0
N A
M (o
�D N
(0 M
m.
N �
N.
r <o
i0 V
V M
�0 i0
�D r
GO Ni0
M m
�D
oo O
N u'�
N
N
N O
r r
�fi Oi
r r
7 N
r r
f0
r r
m M
r r
m M
to N
V M
to to
0 GD
(o to
f0 I�
�0
m
r
M
ro r
N
�
N N�
N
N�
N N�
N
o �
o
N
N
�
m 0
i0
r N
V N
M V
N M
i0 M
O m
V m
V O
r f0
N
N
M(p
r r
� Qi
r r
r r
r so
r r
m m
co co
�n co
�n �n
y r
m so
a
l0 l0
� u)
M
m
m
V N
O
N
oo
N-
o
V 1
O(
u 1
� O
m m
o o
o o
M m
o m
O m
N
p
l0 M
M
m N
u'� M
M O
GD N
N
N M
N o
V m
l M
r rrl
ocott<D(
o
rso
T
mso
O Z
M <o
�<D
W
o invvrm<D
V O
M to
N
� �
LL'1 LL�
LL� LL'1
LL� LL�
LL� LL�
LL� LL�
LL�
LL� LL�
LL� LL'1
LL� LL�
LL'1 LL�
N
p
N N
N r
M
V
(o (0
N
uJ m
m �
W W
In In
Iq
0 0
f0
IR
O f0
In
N
7
N
(O r
r r
(0 r
r t0
r r
(0 W
(0
l0 (0
l0 7
V (o
N (o
N
N
V T
V
N N
�0 t0
V O
M N
t0 Q
O
m Q
v M
fo M
GO
m
CO
r r
(0 V
co r
u) V
r <O
GO
co
m N
co r
GO Z
u�
O
o o
<o
M Z
V
v so
�
r so
min
o in
N
f0 t0
r r
c0 r
r (o
r f0
f0 r
io
7 f0
i0
o
V (o
r (o r o
N
O
O
Or
M
r
N Oo
N
l0
(0
N
(OD
Q Q
Q Q
Q Q
Q Q
Q Q
Q
N
O N
r r
(0 r
r (o
(o
r (o
N
0
m-
r
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q
z z
z z
z z
z z
z z
z z
z z
z z
z z
z 2
v m
e
N
Q Q
Q Q
Q Q��
_
Q Q
Q Q
Q Q
Q Q
Q Q
Q T
two M
N
N
Q Q�
m
Q N
0 GO
Q Q
Q Q
Q Q
Q Q
Q Q
Q r
N GO
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
M
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
N
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
N
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
O
N
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
C
p
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
� p
0
N N th
m
g
o
o
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q
q
n
c
ZN
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z l
o,
o
'o o 0
0 n 0
an d
N
o
N
ia
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
—
N
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Z
Q Q
Z Zi6
Z
;�
w
C- Q
z E zo . a C a❑
o
0 0
i0 f0
r N
m
(o N
r r
r r
m m
rn rn
0
N
N
0\
d E
p o
O .....
00
000
OOOQo
0 0
0 0
0 0
0 0
0 0
o
0 0
0 0
o
o 0
A d
N m
O---
T m-
M
m m
T m
T
m m
T
T
T m
T T
m T
T m
T
t0 m
T m
(O
m T
G a
N
n �
N
N
M M
LLJ
� LLJ
N LLJ
LLJ N
N
N LLJ
LL)
�
O
� ltJ
(D
ltJ
N �
�
N N
� ltJ
ltJ ltJ
ltJ
ltJ N
W �(J
N
� (D
� ltJ
a
d j
Z E
n O
N
V N
O f0
W N
O
O N
V M
M V
m N
W O
m V
M n
O M
n
n O
n N
M V
M n
N n
N M
V
O n
O
W
O M
W V
O V
m V
N N
N M
V
O O
M m
N O
m N
O
Vo
O M V
m
d
d K
m n
it
GO m
N
GO N
m GO
M m
V M
M V
N N
GO N
O
O N
N N
N M
O
Oi O
V V
NW
Oi O
0Mo
2
a
M m
n u�
n m
m W
o M
n m
M W
m W
o WNW
M m
n W
n m
M m
o W
N W
n v
m
n W
o W W
V V
A
u) O
n O
O O
O O
O V
V V
V O
O O
O (O
V V
V O
O O
n O
O O
O O
O O
O
O O
n n n
A
o
N
n
O O
O
Q m
W O
W
m M
W M
O W
O
V M
0 m
n W
O W
O n
n V
M O
n V
O n
O
m N
O O
N IQ
m n
W n
O O
N M
n
N M
m O
m N
O O
O O
O
7 Q
M V
7 V
M O m
N O N
(O N
E T
fh �
V
V�
u'i Qi
th V
Qi th
Qi CO
T th
n O
T Z
V V
Qi T T
A
v m
O
W n
W W
O N
O O
N N
O O
M O
ID <V
V O
N m
M O
O M
m O
m
n O
m
V ID
m 0 0
Z
ID W
V V
V in
ID W
n IDV
in in
ID
W W
Z
W
W W
W n n
A
O O
n O O
p
u7 N
01
W m�
m
W W
V M
01
W
n n
01 W
m n
N V
O W
N V
N N
W O
n
M n
cl n
p
M
0 O
M O
m n
O �
W �
W �
�
O O
ctJ W
M �
N O
N O
N O
M n
W O
O m
W O
m Q
O O
O M M
N
O W
W aD
u) W
Qi Oi
(O fh
Qi O
N
W
Z O
O
N
m r
O O
N LLJ
r
V n
LLJ N
o
n 0.
LLJ LLJ
n
V
N LLJ
V V
LLJ N
N
V V
n N
V n
o n
O
n V
O O
N LLJ
n M
M V
N N
M W
V
LLJ LLJ
0,0
O O
N LLJ
o
n O
LLJ N
W O
LLJ LLJ
mom
O
N N
M
O O
LLJ N
Z
n
N
W n
00
N N
O
n n n
LLJ N N
M
Z O
O O
V n
n O
O V
V V
V V
V n
O O
O O
M V
V O
O O
n O
O O
O O
n O
n n
O O
n n n
A
p
N
NV
tp
A
p
M
W
m m
V
O
W V
M M
O M
V O
m O
N
O N
V
O m
V O
O M
M N
N O
N O V
N
a N
Q M
M NION
(O a
W 00,
O n
n MOM
O Q
Q O
W O
N O
m i[J
N n
O OWN
�(O
n
O
O
n
O
i[J n
O O
n O
O O
O
O
V V
O O
V V
O O
O n
O O
i[J O
O O
O O
O O
V
O
O
O
O n
O O
n no
O O
O
O O
O O
O O
n O
O O
n n
O O
O n
O O
11 n
O O O
N
A
p
N
m O
O N
W N
N
O V
U M
O M
m W
N O
n
m
M 0
O M
W W
O V
M O
N
O O
V O W
N
nZ��ninpn0mZvvvOcNo1nvZZm0nn�<D
Q N
n O
N W
V V
N Q
V W
N V
O O
O O
N a
Q 1
0 V
1 W
m V
M M
O W
O
n W
w n V
sou
c0on00ronitronit
a
A
p
M 0
0 u)
n
W
n
In Lit
n M
W W
In
O I[l
m
W
M m
O O
n LLJ
W W
m W
0
m N�
n W
V V
V V.
r
O (NO
n r
V Z
Z O
r
n n
O tOD
LLn'1 (OO
r r
r r
r
r r n
t+l
A
CON
N
Q
n O
O ui
Q O
O
0 O
ui
O m
O i[i
n Q
O
0
O
N m
V.
V W
O
O W
m M
O O
M M
O O
M m
O
n O
O V
O m
W M
W n
O O
O W
V Oi
O m
O O
n
O O
n V V
O c+i
Z
Z
V
v
m N
W
n M
m O
m W
M n
m W
N V
m
O N
W n
o�
n M
W
O W
n
M O
N N M
0
N�
N
No
N N
tp
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O O
m
C
n W
m O
N M
V O
O n
W m
M
O n
N M
V O
O
N O
n O
N M
V O
n W
m 0
N
M O
W m-
�
N N
N N
M M
M M
M V
V V
V i[J
O O
i[J i[J
O N
N O
(D (O
O O
O O
�`odaadddddddddddddddddddddddddddddddddddddd
D
d
M n
M n
M M
M M
M M
M M
n M
M M
M M
M M
M n
a
d 7
V O
m N
(0
(0 r
M m
(O V
m r
n M
0 0
(0 (n
n n
d K
nnnnnnnnnn(o
m(om(o
(o
(n (o
(onron
02
p
O
(O O
M
V
M
O (0
O
m
O
(O N
(0 M
GO 7
c0
�}
(0 N
t0 01
(C) (O
01
(0 m
M m
V M
(0
N
'oN
O N
([J m
m
O
I�
O
�
m (A
n CJ
O 7
n
N
N O
(0 N
(0 (0
N
I
N r
(0
V}
�
O (0
(V m
(0 O
O (0
m r
{y
(0 (0
(0 (C)
u) (0
(C) u)
(0 (C)
u) (0
(C)
(0 (0
(C) (0
(0 (C)
(0 (0
A
O
n M
m
N (0
V (0
N (0
V O
n V
m (0
(O (0
M V
n
N
N
n (0
m
m
(0 ro
m
m v
(V O
Ih M
m N
M O
r r
(C) m
(0 O
N O
r N
m (0
m m
N N
M
O (0
(o (o
(o r
(o (o
(o (o
(o (D
(o r
(n (n
(n (o
v v
v (o
r (o
A
O
N
GO m
V
m N
n M
V M
u; V}
GO
M
O
(0 N
O N
O M
m
O
(0 r
o
N N
Iq M
(0 M
n
O r
n
(D (O
o
I� �
m m
� u'i
I� (h
� O
(O O
o
m
(h m
m
(D (O
N
m (V
o
O (A
p
(D r
N N
O
O
o (0 N}
r
M
O m
(0 O
O M
O M
N
7 r
M M
O M
M V
(0 O
N
(0 M
n M
N
m n
n m
(O
m
V O
m
O o
p
r m
M m
N 7
V (0
(0 V
GD m
N m
N m
GD O
(0 M
r M
p
O
m m
M
(O M
m N
(n o
M (n
O n
M ([l
m m
O V
w
([J N
00 f0
m (n
O
v m
n n
W ([l
n n
O (0
N
(•�
N O
n n
m V
(o n
0
n �
GO
n (o
(0
� (o
([J a
(o n
m m
(n (o
l M
((� (o
O O
(n ((�
T N(
((� (o
m
n (o
n
O
N
O
r v,
(0 a
m (0
M r
N n
M (0
O M
(0 V
M
o N 7
m GD o (0
(0 n
(0 7
M m
M N
m
N M
o o
(0 (0
tp
A
O
N
V 7
v
(0 r
n v
O M
n
m �
M 0
N m
N
m N
m (0
n
(0 m
V m
GO
M M
r m
N m
m
(n r
O m
M (0
M
(0 m
n N
N (0
N (0
V (0
n O
m N
r r
r r
r r
r r
r (D
(D r
(D (D
(o (o
(n (n
(n r
r r
N
A
O
m
(0 N
N V
M M
V m
m M
n N
(0 (0
n (0
O M
M
a
A
�nnnronnnnnn(o
ro(o
(o
(o (o
(n u�u�nron
o
�
� O
p
�O m
M N
dD (0
n m
ap M
O M
n N
M
O N
c A
M (0
(0 o�O
o
o C C
(•�
N
�O N
m 0
(0 N
V
n n
O O
M
(0
O
N Q
O m
V r
(n (0
rm
(p
(O Z
n
(0 r
nnnnnnnn(o
M (0
(n
N
W O
ro(o
M N
(o
N n
(o (o
(+J (A
(n (o
m m
(omnn
m (V
d U d
- g�
a m a m o
c > E = E .-
d
M
pm(000�rnmmvvov(n(o�(om
V O
M O
r (O
V (0
(0
r
(0 r
(O
M (O
(0 N
m 0
N
OrD (r0
^ m
(r0 r
n
n
fm0
fn0
N N
N (ro
om
N
r
E o
N Z 0 m t>❑
?> r >
O Q O O F
z E z a a o
m
d d
d d
d d
d d
d d
d d
d d
EL EL
(L EL
EL 2
m
N
a
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
a?
Z
O
N�!
(D
N
a0
(D
Q
Z
Q
Z
Q
Z
a
Z
a
Z
a
Z
a
Z
Q°
Z
In
M
°D
N
In
h
N
In
o
W
In
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
m
N
a
0
0
0
Q
a
a
a
Q
Q
Q
Q
a
a
Q
Q
Q
Q
Q
a
a
Q
Q
Q
Q
M
m
(D
m
(D
(D
I--
(D
(D
In
co
o
7
N
W
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
m
m
o
In
In
o
(D
In
TIT
LO
o
o
N
o
a
Q
Q
a
0
0
0
a
Q
a
Q
Q
a
a
a
Q
a
a
a
Q
a
a
a
a
a
M
N
o
N
0 o
N
o
N
o
N
I,
N
N
N
N
7
N
O
M
m
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
V
W
O
N
N
O
OO
°,0
a
Z
a
Z
Q
Z
Q
Z
a
Z
Q
Z
a
Z
a
Z
a
Z
Q
Z
a
Z
Q
Z
a
Z
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
Q
Z
a
Z
a
Z
Q
Z
Q
Z
Q
Z
Q
Z
7
N
M
r
N
I�
N
N
r
N
N
N
N
N
N
(D
W
In
7
pmj
I�
M
In
N
I�
O
O
(D
Z
o
m
m
oo
I�
o
01
(n
Q
a
Q
Q
Q
Q
a
Q
a
Q
a
Q
a
a
a
Q
Q
Q
Q
Q
a
M
m
InoZ
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
(D
(D
(D
O
In
N
N
N
N
N
tD
W
N
TIT.
7
m
7
W
O
I�
0
O
7
O
0
O
r
(D
In
N
(D
In
O)
O
N
N
W
a
Z
a
Z
Q
Z
Q
Z
Q
Z
Q
Q
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
Q
Z
a
a
a
Z
Q
Z
Q
Z
Q
Z
N
W
In
N
N
N
N
N
(D
In
TIT
IT
7
m
LO o
7
0
7
0
w
7
M
M
a
Q
Q
Q
Q
Q
Q
a
Q
Q
Q
Q
Q
a
a
Q
Q
Q
Q
a
a
Q
Q
Q
Q
o
r
r^
N
DD
N
N
m
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
In
In
In
N
N
N
(D
N
IT
IT
M
O
M
O
M
N
O
w
r
O
M
m
In
o
V
a
a
Q
Q
Q
Q
Q
Q
a
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
m
r
r
r
r
N
N
N
W
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
z
N
N
N
N
N
In
N
O
m
M
o
N°
o'
Q
Q
Q
Q
Q
a
a
a
a
a
Q
Q
a
a
a
Q
a
a
a
a
Q
Q
Q
Q
a
o)DO
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
r
(oo
ID
)
o
In
m
(D
N
N
N
m
(D
N
m
m
O
V
N
N
a0
7
O
oD
I�
7
O
M
N
O
a
Z
a
Z
0
Z
0
Z
0
Z
Q
Z
Q
Z
a
Z
a
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
(p
N
w
N
N
N
r
N
iZ
N
N
In
N
N
N
(D
04
In
M
O)
OO')
ON')
N
O
N
Ifj
ON0
o�
Q
a
Q
Q
Q
Q
Q
a
Q
Q
Q
Q
a
Q
Q
Q
Q
Q
Q
Q
a
Q
Q
Q
Q
h
r
r
mN
N
Ooo
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
In
o
In
(D
m
M
N
O
I(OnN
O
(OOD.
7
N
7
N
OO
Q
a
Q
Q
a
Q
Q
Q
a
Q
Q
a
a
Q
a
Q
Q
Q
Q
a
a
a
Q
Q
Q
p
m
N
N
N
m
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
N
N
N
N
N
In
N
O
N
N
m
or
or
m
oro
rn
Q
Q
Q
Q
Q
a
Q
Q
Q
Q
Q
Q
a
a
a
Q
Q
Q
Q
a
a
Q
Q
Q
Q
N
r
n
W
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
tmO
m
m
m
In
o
o
In
N
(D
In
mr-�
M
N
m
N
N
ONO
r
a
Z
a
Z
a
Z
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
a
Z
Q
Z
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
a
Z
Q
Z
Q
Z
Q
Z
a
Z
a
Z
Q
Q
Q
Z
Q
Z
N
Wm
w
N
m
N
m
N
N
N
N
N
N
N
(D
N
TIT.
W
Omj
(°On
W
7
Q
N
M
0
0
0
Q
Q
a
a
a
a
Q
Q
Q
a
Q
Q
Q
a
a
a
Q
a
a
Q
Q
Q
(p
(mD
(mD
r
Z
100n
N
W
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
If)
In
In
N
In
co
LO
m
N
(OD
Ix)O
Q
(7D
M
a
Q
Q
Q
Q
a
a
a
Q
Q
Q
Q
Q
a
Q
Q
Q
Q
Q
a
a
a
Q
Q
Q
p
N
Z
N
W
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
M
N
N
N
N
N
(D
In
O/ =
O C N�
In
7
I�
N
D7
N
D7
0
.
Il
O
N
W
O
(D
(D
In
N
W
O
(D
M
In
o0
W
N
W
M
In
I-
O
O
N
r
In
0)
0)
N
M
O
0
O
0
(D
OR
N
M
N
7
n
M
M
(D
(D
N
00
(D
O
I-
r
G ; E
D)
O
m
0)
m
o0
m
(o
0)
O
O
(D
0)
O
M
W
IN
CM
(D
.
(D
(D
0)
7
V
0)
(M
N
In
In
I-
O M
I-
W
I-
r
In
I--
In
r
o
CO
(D
O
m
N
(D
N
(D
N
(D
O
o
(D
In
I-
m
W
In
W
In
W
In
M
In
M
In
OD
N
M
m
W
m
I-
m
M
In
O
m
W
In
I,
In
r
In
0)
In
O
m
W
m
I-
m
I --
In
01
C
a
m
Q
N
m
N
O
Q
�
N
7
m
In
(D
I�
a
a
m
a
Q
m
NNN
N
a
7
N
N
(D
N
I-
N
m
N
m
N
O
M
M
NCO
M
M
7
M
O
O
O
N
I,-
OR
Cl)
O
N
O
I�
M
D)
I,
M
N
O)
,
M
M
N
Q
Q
ID
'IT7
M
M
N
O
(D
1�
(D
O
N
O
V
M
O
r
I�
(D
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
W(D
OD
M
O
I--N
m
W
Z
Z
(D
IO
(f1
N
(D
OD
Io
ID
I-
W
r
(D
m
I-
r
I-
r
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
m
m
m
(D m
m N
m N
N
4o
4o
m
O
N
M
N
W
r
r
m
M N
N
M
N
a
s
V
Q
�
M
4)
N
M
tT
I�
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
m
(D
(D
w
W
(D
(D
w
'I
N
V
N
co
N
O
I-
W
W
Z
Z
(D
N
I�
N
N
m
m
N
m
N
N
W
(D
(D
I-
r
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
(f1
4)
4)
N
N
N
(D
4)
(O
(O
(D
If)
N
N
N
lD
lD
lD
N
N
DD
O
O
m
O
N
4)
O
O
m
N
m
M
m
ID
r
O
co)l
m)
NN
Q
Q
ID
(D
h
N
W
W
OD
I�
I�
t`
�
O
N
OD
Q)
(f)
M
O
O
W
W
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
r
r
n
N
N
N
ci m
OO
OO
Z
Z
(mD
(rf)
(ND
(D
(f
r
r
(D
r
r
((DD
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
N
N
(D
m
m
ID
m
(D
(D
()
m
m
m
o
()
(D
(D
m
m
m
O
(D
�
W
I�
n
m
r
m
W
a
s
B
O
O
M
I�
O
W
m
W
N
(D
a
a
a
Q
a
a
m
m
m
w
m
m
ID
m
(D
(D
m
ID
N
m
m
m
m
m
N
N
N
TIT
O
O
0
N
7
O
N
N
oR
O
OD
ID
(D
N
ID
m
co
(!')
00
O
N
N
N
Q
Q
m
(D
O
I,
V
M"t
M
N
I-
co
OD
(D
N
I,
I�
m
-
co
-
W
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
I-
I-N O
O
n
m
N
N
m
M
N
(D
m
,
W
ZZ
ID
(D
Ih
Yo
M
(D
0
(D
O
4o
m
I)
O
OD
r
ID
O)
Io
00
Lo
O
Lo
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
(`�
(f1
m
4)
4)
N
N
N
ID
4)
(D
(D
N
(f1
(f1
4o
4o
N
N
N
(f1
4o
4o
N
O
O
y
N
It
O
N
N
m
O
m
(D
m
N
m
m
M
N
m
O
N
N
N
a
s
ID
(D
0
I�
7
M
M
7
N
I�
M
m
(D
N
I�
1-
m
7
M
7
O
u�
a
a
a
a
a
a
a
a
a
a
N
V
h
N
h
O
h
O
I-
(D
(D
ID
(D
co
N
4i
w
m
W
Z
Z
(D
m
I�
(D
M
co
O
co
O
M
m
I�
O
co
r
(D
W
r
m
r
O
I -
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
aN
N
N
lD
lD
lD
(D
N
(D
(D
lD
ID
N
N
N
(D
lD
lD
N
N
N
m
m
m
O)
N
N
W
OD
I�
O
M
O
D)
7
M
V
7
(D
(D
7
ID
I�
0
:
r
7
I�
LL,
Q
Q
(D
O
M
a)m
N
O
m
O
V
(D
N
O
7
N
M
N
m
N
M
N
(D
co
N
N
O
M
(o
(D
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
m
N
N
m
(O
m
(D
(D
m
(D
7
(D
ID
1-
Lo
(D
(D
7
Z
Z
N
(D
(f1
m
(f1
m
m
4�
m
7
m
I�
(D
N
N
(D
m
(D
r
m
m
7
m
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
O
O)
m
m
I-
I-
W
O
M
T
W
(D
O
m
oD
O
m
m
m
a
a
N
N
O
7
M
4)
(1')
I�
W
N
7
D)
N
N
7
I�
a
a
a
a
Q
Q
a
a
a
a
Z
N
r
i--
r
r
m
O
(D
(D
00
o (p
(p
(p
(p
lD
lD
m
N
m
m
m
N
(f1
M
O
M
O
W
O
(D
N
O
N
N
(D
N
(D
cD
ID
D)
ID
W
7
m
W
I�
m
W
OD
7
Q
Q
M
(D
M
m
m
(D
N
7
N
OD
(D
OD
O
7
O
I-
I�
(D
OD
D)
OD
I--
V
W
r
M
I�
V
m
(T
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Nr
r
N
N
N
W
N
N
Z
Z
N
(f1
(D
(D
(D
I�
r
m
I-
r-
ID
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
m
m
m
()
()
(D
ID
m
(D
(D
(n
Yo
Yo
m
LLO
(N
u)
N
Yo
LLO
LLO
N
co
m
O)
N
(D
N
O
N
W
m
N
-
M
N
N
t
0
It
7
(D
M
a
a
m
ID
O
a
a
a
(D
ID
OO
(D
m
V
o)4o
7
Y�
(D
a
a
a
a
a
a
a
a
a
a
N
O
O
O
OD
(D
(D
ID
N
Z
Z
M
N
Z
Z
Z
m
O
r
r
m
I-
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
�
(D
N
(D
N
(D
N
(D
(D
lD
lD
lD
lD
N
(D
m
N
N
(D
N
(D
lD
lD
N
ID
r
LD
O
lD
m
lD
r
N
r
N
m
N
O
C
O
y
O
R m
fn
w
(f)
N
I-
a
s
I'
r
V
M
ID
O
7�2
O
W
Q
Q
O
O
I
Q
Q
Q
O
N
W
O
(D
N
W
m
O
O
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
O (D
N
M
Z
Z
m
O
m
r�
m
Z
Z
m
m
Z
Z
Z
r
0
O
O
O
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
C N
I�
u)
r-
(!')
(D
N
ID
N
N
ID
w
(f1
N
(D
N
(D
(D
N
(f)
Yo
I-
()
m
(D
r
N
Yo
4o
4o
Z N
W
r
m
m
W
N
m
M
(D
(D
7
m
N
m
M
M
(DI
0
"I
N
"I
O
O
M
N
O
P
O
(D
M
m
m
m
wM
N
O
O
Z
Z
Z
Z
Z
Z
Z
m
O(D
m
m
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ID
N
O
m
N
m
N
m
N
m
(D
m N
lD
m N
lD
N
ID
m
N
N
(D
N
(D
I�
(D
W
lD
(D
lD
I�
N
r
N
T
u)
N
(D
D)
D)
N
7
(D
N
W
7
N
V
(D
(n
cD
V
O
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
D)
m
ID
ID
(D
w
Z
Z
Z
Z
Z
Z
Z
(D
D)
D)
m
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
m
m
m
(N
(n
(n
ID
00
m
N
N
(D
N
N
(D
(D
(D
(D
m
r
(f)
w
m
m
o)
r-
t`
(O
M
N
W
M
7
(D
0
W
a
a
a
a
a
a
a
D)
m
(D
r
Q)
M
�
m
m
7
a
a
a
a
a
a
a
a
a
a
N z
!n
V
M
I�
r
m
m
N
N
(D
oR
Z
Z
Z
Z
Z
Z
Z
m
O
W
OD
'It
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
W
r
m
m
N
N
N
m
N
N
r
m
m
r�
D
m
W
N
O
(D
M
N
a
Z
a
Z
a
Z
a
Z
a
Z
a
Z
a
Z
a
Z
m
N
O
N
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
7
N
7
D
N
D
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
(D
(D
(D
(D
4)
4)
�
'Z
M
N
W
m
LD
OO
"
m
m
N
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
N
r
N
1`
N
m
N
m
(D
N
lD
N
lD
N
(D
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
O/ =
O
(!')
7
N
N
O
(D
N
O
M
W
N
M
1-
OO
1-0)
M
O
O
(D
N
M
I�
M
(D
OO
O
O- Vi E
O)
O
m
O)
m
cD
w
OD
m
(D
(o
u�
m
W
O
(D
O
N
(D
OD
m
O
m
U�
W
O
m
N
()
(D
M
D)
e
N
w
.
(D
0
(D
0
m
OD
7
M
�
7
V
M
m
(D
M
N
N
(D
m
1-
m
r
I'-
O W
N
m
(1')
m
m
(1')
r
N
r
N
r
N
M
ID
O
4�
N
(D
N
(D
N
(D
O
(D
(D
N
(f1
m
m
(f)
OD
4o
00
4)
OD
N
OD
N
OD
5)
(f1
m
4)
m
4�
m
OD
N
O
4�
W
(f)
I)
N
r
N
D)
N
O
4o
OD
4o
Io
4o
r
N
01
Q
m
a
N
m
N
O
Q
N
7
m
(D
ID
I�
Q
Q
O
Q
Q
m
N
N
N
Q
N
7
N
(D
N
(D
N
I-
N
m
N
m
N
O
CO
M
N
M
CO
M
'It
M
O
M
M
O
O
W
O
O
(D
M
(n
Q)
.
co
V
M
N
N
V
n
M
(O
7
W
7
Q
Q
M
N
(!')
(D
W
W
(O
O
(D
N
n
W(D
Q)
7
OR
N
n
n
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
N
N
N
N
O
O
7
M
W
W
Z
Z
n
W
N
W
W
(D
n
n
O
(O
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
M
N
n
N
n
N
n
N
n
N
N
N
N
N
N
(D
m
N
(O
(D
N
N
N
N
(O
N
N
N
N
N
n
N
n
N
m
N
W
N
M N
(O
(!')
N
p
00
O
O)
n
(O
N
(O
N
W
(O
(O
M
w
N
n
w
N
OO
(D
(D
N
W
Q
O
N
O
I':a
a
W
m
v
a
n
a
(D
O)
M
(O
Q
a
a
a
Q
a
a
a
a
Q
Q
pO
(n
N
N
N
(D
Z
co
M
M
Z
Z
n
M
O
Z
O
Z
I--
n
N
O
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
n
4)
n
LO
n
LO
n
(n
N
(N
N
(D
W
LO
(D
(D
(N
(N
(f)
LO
(D
LO
(n
LO
n
0
(D
0
w
m
wa
m
N
C
r
(D
(D
In
N
CO
In
(D
7
(D
W
1-0
M
M
O
M
N
1-0
N
M
(D
O•)
O
N
N
D)
(D
N
n
Q
Q
n
n
0
7
4)
V
(n
N
7
n
7
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
NM
N
N
O
O
O
Nnn
O
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
M
N
N
W
N
O
w
W
O
N
W
O
M
N
W
7
O)
N
(O
w
N
N
N
V
N
N
7
(D
N
n
a
s
M
O-
O0
O0
O
W
(D
N
V
O
a
a
Q
Q
a
a
Q
a
a
Q
(n
0
0
0
m
N
N
n
0
W
n
Z
Z
(D
In
M
0]
n
(n
O
n
o
OO
(0
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
n
N
(D
N
(D
N
(D
N
N
N
N
N
N
O
n
N
(O
(O
N(
N
N
(D
N
m
N
m
N
n
N
n
N
(D
N
m
N
n
N
(O
N
N
W
N
O
(D
N
Cl
N
N
n
(D
n
(D
(D
n
(D
N
O
LQ
Q
Q
V
O
O
O
(D
M
N
N
OD
N
(D
O
V
O
M
(f1
O
00
m(D
LQ
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
p
(O
(f1
(O
4)
(O
4)
O
N
N
N
N
N
(D
n
4)
(D
(D
N
N
(O
(f1
(O
(f1
(O
4)
(O
4)
n
N
n
N
O
N
n
(1')
n
4)
(O
4)
N
G
N
n
O
W
N
n
W
Op
n
n
n
n
n
o0
CO
O
M
Q
O
(n
M
(O
M
Q
Q
M
(n
D7
W
M
O
N
n4)
N
O
(D4)
O
M
M
O
M
I[--
O)
O)
N
O
W
O
(O
nn
O
N
OM)N
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
W
(D
(D
(D
(D
v
N
v
N
OD
Z
Z
Z
N
((f)f1
(NO
In--n
V(D
n
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
N
N
N
N
N
N
(D
(p
(O
N
N
N
N
N
N
N
N
N
N
N
n
N
O
C
7
(!')
7
W
(1')
(!')
N
M
M
V
V
"t
7
7
n
OD
M
(D
Q
Q
N
(f1
(f1
Q
Q
Q
a
Q
Q
Q
Q
Q
Q
N
On
n
n
Z
Z
N
N
_
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
(D
O
O
(p
(n
N
(n
N
(n
N
(O
W
m
(D
(D
(n
N
m
(O
m
m
N
0
(n
n
(n
(O
(n
m
m
n
m
n
N
o
NO
n
OO
N
O
N
n
n
n
n
W
n M
Q
O
�
M
N
Q
Q
M
�
W
W
M
O
N
N
(O
(Dn
WC!
O)
W
N
O
O
N
O
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
C(D
(p
h
(p
h
(p
n
(p
V
N
V
N
D2
Z
LL')
M
Z
Z
(n
N
LE
N
N
(D
h
N
(D
N
M
n
n
n
V
(p
W
n
r
n
O
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
D
N
N
N
N
N
N
(D
(O
(O
N
N
N
N
N
N
N
N
N
N
N
N
O
o
O
n
O
m
O
(n
N
V
O
(D
N
V
V
N
7
7
M
0
LO
(D
Q
Q
(D
N
n
M
7
(D
(O
N
O•)
N
D)
O
D)
V
N
M
(D
M
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
O
W
W
m
(n
(n
M
O
I�
Z
Z
O
(`
(`
°P
°D
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
n
m
(D
m
(D
m
(D
(n
N
(n
N
(n
N
(D
M
m
(D
(D
(D
(n
m
LO
(D
(!')
m
LO
m
LO
n
(n
n
(n
(D
(n
1-1-
LO
LO
N
O
O
n
OO
W
O
O
N
7
M
n
n
N
W
V
n
V
N
M
N
V
Q
Q
M
.
N
O
W
M
OO
n
w
M
N
7
N
M
W
n
(O
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
N
O
O
(D
(D
V
W
W
Z
Z
n
n
v
M
n
(D
M
n
M
M
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Nn
N
n
N
n
N
n
N
N
N
N
N
N
(D
W
N
(O
(O
N
N
N
N
(O
N
N
N
N
N
n
N
n
N
(D
N
n
N
n
N
N
O
C
O
n
N
O•)
N
:
OD
M
n
n
(I
D)
N
(D
O
7
:
0
7
Q
Q
OD
OR
O
n
O•)
n
n
OO
N
OO
(D
(D
n
O
V
7
(f1
M
(D
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
(D
tV
0
0
(n
(n
M
W
W
Z
Z
cD
n
M
00
n
(D
OO
n
O)
W
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
(�
n
(f1
n
4)
n
4)
n
N
(n
N
(n
N
N
co
W
4)
(D
(D
Lf)0
N
m
(f1
(D
(f1
4)
0
m
4)
n
N
n
N
(D
N
n
(f1
n
(f1
M
N
G
O
n
N
(O
O
M
n
00
7
OO
N
OO
N
O
W
V
N
V
Q
Q
n
O
I�
M
n
a0
(D
OR
N
CC!O
n
M
N
M
W
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
I�
N
O
N
O
N
r
N
N
N
N
N
N
O
W
N
W
(O
W
(O
Z
Z
N
N
N
N
(MO
N
N
N
N
N
n
N
r
N
(Doi
N
N
r
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
N
N
(O
n
U)
n
N
Q)
OD
V
OO
V
n
(O
LO
M
O
7
Q
Q
n
(D
0
n
(f1
M
N
N
M
W
n
M
O
D)
V
M
O
LO
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
N
O
n
O
(D
O
(D
OD
(D
V
N
V
N
N
O
W
In
m
(D
0
0
n
n
(D
I-
n
Z
Z
Z
O
O
W
1-
W
OO
W
n
M
V
O
W
n
n
n
7
W
N
N
n
m
(O
N
(D
N
O
N
W
n
a
s
O
I�
�
N
O
O
n
n
W
Q
a
a
Q
Q
a
a
Q
a
a
Q
�
O
N
O
Ow
O
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
N
N
N
N
N
N
(D
N
(O
(O
N
N
N
N
N
N
N
N
(D
(D
p
7
(D
n
N
n
n
N
n
(1')
m
M
n
0
0
M
n
W
N
m
N
I�
(D
(n
I�
(D
N
OO
(D
Q
Q
OO
ClLQ
(D
O
O
n
O)
O
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
n
n
I�
r
V
V
N
W
I�
�
Z
Z
N
(!')
I-
(D
NM
(D
W
I'-Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
(O
(O
(D
N
N
N
n
(D
Lf)
(n
LO(O
O
m
m
n
n
(D
n
n
N
N
N
N
N
O
N
N
m
N
O
w
(O
(O
n
M
n
N
C)
m
(n
n
n
7
n
0
I-n
n
N
7
N
7
n
N
mn
W
n
OR
I-
Q
Z
Q
Z
n
N
M
(D
W
_
(D
I-
.
1-v
O)
.
00
(n
(D
0.
m
n
0
W
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
(O
CD
N
N
O
N
N
n
n
(O
n
n
(O
O)=
O �(
(!')
7
N
N
O
n
N
M
(O
N
O
M
WN
M
n
OO
n
0)
M
O
O
(D
N
N
n
M
(D
OO
O
C
G Vi E
't
O
n
O
rn
O
rn
M
.
(D
OO
OR
W
(D
W
(n
M
W
O
(D
O
(!)
(O
OR
M
O
W
Uf
W
O
M
N
N
(n
M
O)
�
N
W
.
(O
0
(D
0
M
OR
7
M
�
7
V
M
M
(D
M
N
N
(O
M
n
M
n
n
O W
m
mCD
O
N
N
N
O
(D
n
W
OO
OO
OO
OO
OD
OD
m
n
OD
O
W
Lo
n
n
O)
O
OD
n
n
01
C
Q
m
Q
N
m
N
O
Q
N
7
m
N
(D
n
a
a
M
a
Q
m
N
N
N
a
N
7
N
U)
N
(D
N
n
N
W
N
O)
N
C.N
M
M
M
CO
M
'It
M
O
p
I�
W
M
M
V
00
N
M
(D
M
7
01
0
01
7
M
L)
(c)
N
Q
L)
N
W
7
m
M
W
M
N
M
7
M
(D
I�
OO
O—
O
O
m
7
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
W
N
M
M
O
Z
N
N
n
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
(MO
L)
(MO
L)
N
(rD
N
LSO
0
Lq,
0
(O
OOD
mLJ
L1
(D
m
(MO
m
(MD
m
m
N
m
0
0
L)
m
M
L1
L1
(MD
N
L)
ti
p
p
0
OD
()
M
M
O
O
Iz
N
7
N
(D
0
M
D)
0
M
77
O
a
N
M
7
r
N
N
(D
L)
M
M
I-
(D
r
M
N
O
OD
N
L)
r
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
41
N
N
I�
N
r
m
t`
mN
N
L1
m
N
L)
W
N
N
(D
N
L)
L)
Z
-
N
N
U)
N
7
N
(D
N
((O
L)
N
N
I-
N
co
N
M
N
r
N
t`
L)
ONO
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
D
p
p
M
O
O
I,
M
I�
ti
M
I-
M
I�
OO
N
0
7
N
M(D
L1
I�
L)
O
N
W
L)
L)
�
N�
LJ
M
M
Q
LJ
M
O
N
(D
(q
�
N
L)
L)
�
N
NN
Q
Q
Q
Q
Q
Q
Q
Q
Q
L1
LMO
LMO
N
W
Z
N
N
(rO
(MO
(ND
L)
M
N
(00
Z
Z
Z
Z
Z
Z
Z
Z
Z
C
L)
L)
N
N
L)
L)
(O
L1
LJ
L)
L)
L1
L)
L1
L1
(O
L)
L)
L1
L)
M
N
L)
Ll
p
p
In
r
0
N
0•)
N
O1
M
W
M
O
M
N
O
M
m
O
)
La
M
N
O
V
m
V
V
(O
L)
V
h
O
N
(D
OD
N
V
M
00
O
L)
O
a
a
a
a
a
a
a
a
a
N
G
C
I)
N
r
N
Lo
L)
O
r
L)
N
N
N
m L1
L1
L)
N
L)
M
OD
N
O)
co
W
(D
N
L)
Z
(O
()
N
I)
(n
N
M
(O
N
(O
N
O
LO
L)
I-
I-
N
It
r
N
OD
co
N
OO
r
N
OD
r
N
O
m
L)
_
M
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
N
p
p
0
L1
O
I�
M
N
(D
N
L)
(D
M
I�
7
(D
L)
00
N
(")
Q
V
M
01
M
L1
M
(D
N
(")
I,
N
L)
O
N
(D
M
O
O
V
O
OO
I,
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
_
OD
M
M
Z
N
N
r
r
r
_
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
(D
L1
(D
L1
(D
(O
(D
(O
LO
L)
L)
L)
N
L1
M
L)
LJ
L)
L)
(M(1
L1
L)
L1
L1
L1
L1
(O
h
L)
L)
L)
L1
L)
M
L)
N
M
L)
L)
p
p
N_
r
N
M
V
N
7
N O
M
L)
L)
L)
I
D)
01
N
01
O
O
a
a
a
a
01
O
a
N
a
(D
a
L)
Iq
a
a
a
a
a
a
a
a
a
O
O
O
N
N
L)
Q)
O
Z
Z
Z
Z
M
(O
O
co
Z
I-
Z
M
r
Z
O
00
Z
Z
Z
Z
Z
Z
Z
Z
Z
p
N
(n
L)
L)
N
mL)
(n
(O
(O
()
(n
m
m(O
L)
m
N
p
N
M
M
L)
M
I-
(D
L)
M
N
M
I�
V
N
LJ
7
W
I-
01
(c)
O
Q
N
M
7
I�
0
M
0
M
0)
M
W
N
(D
M
W
O
n
L)
O
I�
(D
Q
Q
Q
Q
Q
Q
Q
Q
Q
n
r
r
r
OOO
N
N
Z
r
n
r
Z
Z
Z
Z
Z
Z
Z
Z
Z
O'1
L)
L)
N
L)
(f
L)
(f
L)
(O
M
L)
L)
L)
L)
(MO
L)
lO0
L)
(MD
L)
LJ
L)
(ND
(O
L)
L)
L)
(O
000
L1
L1
(O
ONO
L)
p
p
C.
CO
O
O
M
O
V
N
(O
V
Cl)
r
0
0
7
O)
D)
M
O
M
N
O
N
0
M
I-
OR
(N
(O
M
M
a
0
(O
I-
L)
I-
O
N
I-
O
a
a
a
Q
Q
a
a
a
a
NV
N
N
N
LJ
LJ
I�
N
D)
O
N
Z
OD
OD
(O
M
N
I-
(O
m
O
D)
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
I�
N
r
N
r
L)
r
L)
N
N
L1
L1
N
L)
M
N
(O
L)
L)
(O
(n
(O
(n
(O
(n
CO
(n
(O
m
I-
m
I-
m(n
CO
M
(n
r
(n
m
M
m
p
G
M
L)
L)
L)
O
M
N
O
N
N
N
V
"I:(D
L)
W
LJ
(D
M
Q
N
M
O
7
W
M
I,7
(C)
O
M
r
M
N
M
7
I�
L)
CC!
N
W
O
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
n
Z
N
n
n
_
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
L)
r
L)
r
N
I--
N
LO
L)
LO
L)
N
0
OO
L1
LJ
(D
L)
L1
L)
L1
(D
L1
(D
L1
(c)
(O
I-
L)
r-
L)
L)
L1
L1
L1
r
N
M
L)
M
p
M
O
L)
7
7
I-
r
M
N
O
V
N
V
O
I�
7
M
O
V
Cl)
O
I�
N
r
M
�
NC")
CD7
Cl
M
W
a
(D
OR
N
OR
V
O
Cl
a
a
a
a
a
a
Q
Q
Q
v,
ND)
01
O
O
(D
(D
M
01
Z
I-
r
Cl)
O
O
00
It
r
O
D)
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
(O
(D
I-
(O
N
L1
N
OD
(O
L)
(D
N
N
N
L)
(O
N
(D
N
mIl-
L)
N
I`
N
O
N
OD
N
I-
N
L)
M
N
3
C1
O
M
7
M
M
M
O
N
M
M
M
O
I�
N
I�
M
M
C
p
M
O)
I-
M
Q
Q
Q
M
OD
O
Q
Q
0)
L1
I-
N
(O
Q
Q
V
M,,
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
O
(�
CA
Cr;
N
Z
Z
Z
O
O
Z
Z
N
N(D
N
0
Z
Z
N
O
N
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
M
L1
L1
(O
(O
L1
LJ
L)
M
L1
L1
L1
(O
L)
L)
L_
C
G
NN
M
(O
I-
V
M
0
M
L1
M
M
M
7
L)
I--
(O
W
V
M
N
a
s
7
(D
00
M
M
W
(O
O
(O
N
W
M
M
O
(O
(O
N
(D
(D
a
a
a
a
a
a
a
a
a
a
N
N
2
V
M
V
7
W
W
N
O
O
Z
Z
N
(D
.
M
CO
O
N
(D
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
(�
N
N
N
L)
L)
L)
LJ
w
M
N
N
L)
N
L)
LJ
L)
L)
N
L)
(D
N
L)
N
L)
N
I�
L)
M
L)
r
L)
M
N
M
N
L)
N
�
m
� M
a
N
3 N
M
M
7
Q)
V
M
M
O
I-
r-�
Q
Q
0
M
L)
O
E
M
(D
(D
N
�
M
Q
Q
Q
Q
Q
Q
a
Q
Q
Q
N
Ot
L)
I'-
7
I-
L)
r
V
r
0
CO
O
CO
M
I'-
M
O
N
O
N
Z
Z
N
(O
N
(O
0
I-
7
(O
M
(O
I-
I-
M
I-
r
M
M
N
M
(D
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
B
E (�
m
m
0N
N
N
Co
L)
(O
(O
L1
L)
L)
L)
L)
()
U)
N
L)
L)
L)
O
X
L
IL M
O)
or--
G
p1
L)
I-
V
M
LJ
M
M
O
M
M
O
II-
O
N
D7
0
a
s
LJ
V
V
L)
N
M
O
M
M
7
O
N
L)
7
W
M
L)
(M
O
v
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
L
m
N
LW)
LW)
OM
LM
WO
N
Z
Z
O
(D
)
N
W
O
N
�
N
N
N
L)
L)
L)
L)
N
(D
(D
L)
N
N
N
N
L)
L)
L)
N
L)
N
C
0
M
p
O
O
L)
O
O
0)
I-
r
M
Q
Q
(n
O)
00
7
L)
I�
0)
r
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
N
(D
7
7
V
01
(N
M
(n
N
N
mO
M
Z
Z
O
(O
O
LO
M
LO
N
LO
LO
(D
I I--
M
I--O
m
N
M
M
N
I�
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
L)
L)
L)
L)
N
N
(O
mL)
w
L)
N
L)
L)
L)
L)
N
N
N
L)
L)
L)
M
M
p
p
M
r�
O
N
M
N
M
L1
(O
M
(D
V
N
I-
I-
L)
M
M
a
s
M
N
7
M
(D
�
M
N
M
N
N
M
I-
O
r
O
L)
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
N
L)
I�
r
L1
L)
N
M
L)
N
0O
M
M
M
LJ
r
M
r
M
L)
_
M
O
M
W
M
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
N
N
m
N
m
N
L)
L)
L)
L)
N
L)
L)
L)
L)
N
N
N
L)
L)
L)
N
N
N
N
O/ =
L)
V
N
N
O
Il
N
O
L)
N
O
M
OD
N
M
I�
M
r
Q)
M
O
O
L1
N
L)
I�
M
(D
M
O
G Vi E
O
O
O
M
.
M
(O
OD
OD
M
(O
W
L)
M
M
O
(O
O
L)
0
OD
M
O
M
L)
M
O
M
N
()
(n
M
m
A
N
W
.
LO
O
(O
O
M
M
7
M
�
7
V
M
M
(D
M
N
N
(D
M
I-
M
r
I-
O W
H (.1
m
L)
M
L)
L)
m
r
N
r
N
r
N
M
(O
O
L)
N
L)
N
(D
N
(O
O
L)
(O
N
L)
m
M
L)
OO
L)
OO
L)
OD
N
OD
N
OD
(n
M
L)
M
L)
m
L)
OD
N
O
L)
M
L)
I)
N
r
N
0)
N
O
L)
M
L)
IO
L)
r
N
01
C
Q
m
a
N
m
N
O
Q
N
7
m
(n
(O
I�
Q
Q
0)
Q
a
m
N
(v
N
N
Q
N
7
N
(N
N
(D
N
I�
N
M
N
D)
N
C.
M
M
N
M
CO
M
'It
Cl)
O
d
C
N
V
2
O
C
N
N
o
a
3
aR+
O
C
m
= N
r
U
Z
m
L (0
c d
3
m
W
E
d E
N C C
N L
9
N
'30
N
c U
m
d=
4)
o
a
Ucu
U
4c
c'-
a)
3
y
3
d
2so
N
s
oY
E
c
v
o
c
mZ
E
0
d
oma)
2
U
d
3
c
c d
C O N
N r2
CO
01
N
?
O
O
O
O
O
O
L0
M
N
0
V
m
('M
Q
Q
O
O
O
0
O
0
m
L0
N
m
Ln
l0
�
0
0
0
0
0
0
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
O L 3
s
N a
0
0
0
0
(O
O
(O
m
Z
Z
O
O
O
N
7
N
O
O
O
N
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
F m
.3 E
C
N
.t-.
O 3U
O O a)
L
'O
a)
r
0
M
0
Cl)
0
m
0
m
0
m
0
M
0
N
0
w
m
00
O
m
O
00
O
M
O
M
O
M
O
N
O
m
O
m
O
0
m
M
O
M
O
Cl)
O
LO
O
LO
O
00
O
00
O
00
O
00
O
00
O
w
O
w
O
w
O
w
O
O m
E
m 0
N
In
N
m
N
m
N
m
N
m
N
Ln
N
'No(2
N
(O
M
N
m
m
m
aM
M
M
V
m
m
m
M
M
N
N
N
N
N
N
N
N
N
O
C
Q N
a
�
N
N
N
N
N
N
�
N
N N
�
�
N
N
N
N
N
N
�
�
�
�
�
�
�
�
�
�
�
3 y
Q
Ln
a
N
Ln
u'/
N
(O
V
N
N�
Ln
N
N
N
a���
N
N
N��
Lf)
Li7
N
N
N
Ln
Liz
Liz
N
T :6 O
C
j O
of '
E m N
O
m
(D
I-
(D
V
N
O
0
O
V
00
m
V
0
(D
V
N
m
m
0"t
m
N
0
)`
00
)`
(0
O
m
m
q
m
O
-
O
(0
V
N
m
O
V
)`
m
V(0
L0
cl
N
-
1�
O
0
N
00
I�
O
V
00
V
W
O a)
(0 .t-.
E
E a C
O
a7 � N
m
N
0
N
N
V
l0
O
L0
0
L0
N
(O
I-
N
r
(O
0
m
V
m
M
l0
N
N
N
N
O
N
0
N
10
L0
a0
L0
N
L0
N
M
N
N
N
L0
N
L0
N
l0
0
l0
N
N
N
M
N
V
l0
M
l0
M
L0
l0
I,
V
N��
a)O
C N
N
W
(0 N C
9
N O t
co
GN
m
m
L0
I-
I-
M
N
I--
)`
00
m
M
00
L0
N
00
M
O
N
a
LO
N
I-
L0
00
L0
00
� N U
3� O
m
0
m
m
0
N
N
r
m
V
CO
CO
m
N
M
m
V
n
N
N
m
l0
M
O
N
1�
V
V
CO
M 3 3
O O
N
V
I-
n
n
O
)`
L0
L0
m
L0
N
N
a
00
ao
ao
N
M
m
m
L0
n
L0
m
m
M
m
N
(D
Pr'-L0
)`
)`
m
OD
m
I-
1�
m
00
N
m
(O
I.
w
m
n
m"t
n
)`
co
0
co
0
I�
V
m -
b
L0
L0
L0
0
m
m
m
L0
m
m
m
0
L0
N
N
N
m
0
0
L0
L0
L0
L0
L0
L0
L0
L0
L0
L0
L0
L0
L0
L0
(\
> N >
iT
O to
L0
N
N
O
I-
N
m
m
N
O
0
M
N
M
I-
M
I-
m
M
0
0
0
N
0
r
M
(O
a0
O
C
O- W E
m
r-
O
m
m
m
m
00
m
00
OD
00
m
m
L0
m
00
m
m
O
L0
(O
00
m
0
00
L0
00
O
00
N
L0
N
M
m
N
m
m
0
(O
0
m
00
y
M
V
a
M
m
(D
M
N
N
m
LL7
r
L0
r
n
H (j '
Lf
LO0
Lf
N
lrfj
N
(MO
Lm0
(NO
(NO
(NO
(00
lO
L�
Lm0
LO0
LO0
N
N
lO0
LO0
LO0
Lf
lO0
Lm0
LO0
W
W
N
Lm0
Lm0
Lf
l(
m
C<
Q
m
Q
N
m
N
O
Q
O
N
m
N
m
n
Q
00
00m
m
Q
O
m
N
N
N
N
Q
N
v-
N
w
N
(O
N
t`
N
00
N
m
N
0
M
M
N
co
M
M
a
co
Appendix F
Vertical Hydraulic Gradients
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix F
a
0
3
0
LL
Q
3
0
Z
O
m
(7
C
Z
a
N co
J N
mW
H�
mQ
W
2
W
a
9
W
LL
LL
O
m
a
i
N
J t2
u w
u d
C •�
2 U
W
J C/)
It m W U
„3 IW
nUv
Q m � C
Zltaa
Q.
LL Z
W ¢ >
cc
Q��U-a
mZ)zi—
Z
J J cr- Q
33�c
Cl
OOLLv;
==mow
U)(1)�o
w<
OLL OQU
U
ww�F
0�0LL
w >.
C7oo<
Phase 2 Cells 2F-2H
Table 6
Summary of Intra-Aquifer Flow (1/29/03)
BFI Waste Systems of NA
Concord, Cabarrus County, North Carolina
Project No. 00188-002
Well
Field •ID
WL Elev.
(ft, msl)
Screen Midpoint
Elev. (ft, msl)
Gradient
(ft/ft)
Direction
Aquifer
Code
P-11
544.98
544.89
-0.053
Upward
Sap
P-31
545.86
528.25
=
Sbdrk
P-72
572.64
559.26
0.002
Downward
Sap
P-13
572.59
532.86
Sbdrk
P-17
546.30
541.24
0.119
Downward
Sap
P-21
544.13
522.97
_
Sbdrk
P-18
543.31
542.81
0.008
Downward
Sap
P-19
543.18
526.49
': ; '
Sbdrk
P-42
545.83
535.11
-0.003
Upward
Sap
P-41
545.92
508.36
-
Sbdrk
P-54
561.19
555.18
-0.008
Upward
Sap
P-45
561.44
525.1
Sbdrk
P-102
593.14
582.88
-0.017
Upward
Sap
P-46
593.55
559.19
Sbdrk
P-70
576.21
570.42
0.012
Downward
Sap
P-52
575.98
551.07
° '
Sbdrk
P-104
590.82
580.96
0.002
Downward
Sap
P-82
590.73
536.53>::
% :'i
Sbdrk
Notes:
WL Elev. - Water Level Elevation
ft msl - Feet relative to mean sea level
Positive gradient is downward (shallow well head > deep well head).
Negative gradient is upward (shallow well head < deep well head).
January 2003 water level data used.
Sap - Shallow saprolitic portion of aquifer
Sbdrk - Shallow bedrock portion of aquifer
DRAFT, 5/6/03, Page 1 of 1, Rev. 0
Appendix G
Groundwater Flow Rate Calculations
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix G
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2012 Event
Velocitv Ranue
For wells in Saprohte
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V =135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021]/0.20
V = 2.1 x 10-5 cm/sec
V = 6.0 x 10-2 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021 ]/0.07
V = 2.1 x 10-5 cm/sec
V = 6.0 x 10-2 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each
unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each unit
monitored at the site. Effective porosities provided in "Groundwater Certification Document,
CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the First Semi -Annual 2012
potentiometric surface map across the northern portion of the site and the southern portion of
the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inorth: = 50 ft / 2, 377 ft = 0. 021
i,oulh: = 50 ft / 2, 547 ft = 0.020
Average gradient across the site is (0.021 + 0.020) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2012 Event
Velocitv Ranue
For wells in Saprohte
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V =135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021]/0.20
V = 2.1 x 10-5 cm/sec
V = 6.0 x 10-2 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021 ]/0.07
V = 2.1 x 10-5 cm/sec
V = 6.0 x 10-2 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each
unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each unit
monitored at the site. Effective porosities provided in "Groundwater Certification Document,
CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the Second Semi -Annual 2012
potentiometric surface map across the northern portion of the site and the southern portion of
the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inorth: = 50 ft / 2, 377 ft = 0. 021
i,oulh: = 50 ft / 2, 547 ft = 0.020
Average gradient across the site is (0.021 + 0.020) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2013 Event
Velocitv Ranue
For wells in Saprohte
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.022]/0.16
V = 1.4 x 10-4 cm/sec
V = 0.40 ft/day
V =146 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.0221/0.20
V = 2.2 x 10-5 cm/sec
V = 6.2 x 10-2 ft/day
V = 23 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.0221/0.07
V = 2.2 x 10-5 cm/sec
V = 6.2 x 10-2 ft/day
V = 23 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each
unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each unit
monitored at the site. Effective porosities provided in "Groundwater Certification Document,
CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the First Semi -Annual 2013
potentiometric surface map across the northern portion of the site and the southern portion of
the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inorth: = 50 ft / 2, 300 ft = 0.022
isoulh: = 50 ft / 2, 400 ft = 0.021
Average gradient across the site is (0.022 + 0.021) / 2 = 0.022
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2013 Event
Velocitv Ranue
For wells in Saprohte
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.022]/0.16
V = 1.4 x 10-4 cm/sec
V = 0.40 ft/day
V =146 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.0221/0.20
V = 2.2 x 10-5 cm/sec
V = 6.2 x 10-2 ft/day
V = 23 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.0221/0.07
V = 2.2 x 10-5 cm/sec
V = 6.2 x 10-2 ft/day
V = 23 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each
unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each unit
monitored at the site. Effective porosities provided in "Groundwater Certification Document,
CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the Second Semi -Annual 2013
potentiometric surface map across the northern portion of the site and the southern portion of
the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inorth: = 50 ft / 2, 300 ft = 0.022
i,oulh: = 50 ft / 2, 400 ft = 0.021
Average gradient across the site is (0.022 + 0.021) / 2 = 0.022
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2014 Event
Velocitv Ranee
For wells in Saprohte
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.020]/0.16
V = 1.3 x 104 cm/sec
V = 0.37 ft/day
V =135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 104 cm/sec)(0.020]/0.20
V = 2.0 x 10-5 cm/sec
V = 0.057 ft/day
V = 21 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.020]/0.07
V = 2.0 x 10-5 cm/sec
V = 0.057 ft/day
V = 21 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivityfor each
unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each unit
monitored at the site. Effective porosities provided in "Groundwater Certification Document,
CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the First Semi -Annual 2014
potentiometric surface map across the northern portion of the site and the southern portion of
the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
i,orth: = 50 ft / 2, 330 ft = 0.021
i,o„,h: = 50 ft / 2, 605 ft = 0.019
Average gradient across the site is (0.021 + 0.019) / 2 = 0.020
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2014 Event
Velocity Range
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor. ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
in,,rth: = 50 ft / 2,214 ft = 0. 023
is.tn: = 50 ft / 2,594 ft = 0. 019
Average gradient across the site is (0.023 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2015 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,214 ft = 0.023
isourn: = 50 ft / 2, 579 ft = 0.019
Average gradient across the site is (0.023 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2015 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,235 ft = 0.022
isourn: = 50 ft / 2, 627 ft = 0.019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2016 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,235 ft = 0.022
isourn: = 50 ft / 2,652 ft = 0. 019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2016 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,242 ft = 0.022
isourn: = 50 ft / 2,644 ft = 0. 019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2017 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,295 ft = 0.022
isourn: = 50 ft / 2,624 ft = 0. 019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2017 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,295 ft = 0.022
isourn: = 50 ft / 2,624 ft = 0. 019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2018 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor. ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,295 ft = 0.022
isourn: = 50 ft / 2,624 ft = 0. 019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2018 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.3 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor. ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,295 ft = 0.022
isouth: = 50 ft / 2,624 ft = 0. 019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2019 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.020)]/0.16
V = 1.25 x 10-4 cm/sec
V = 0.35 ft/day
V = 128 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.020)]/0.20
V = 2.0 x 10-5 cm/sec
V = 0.057 ft/day
V = 21 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.020)]/0.07
V = 2.0 x 10-5 cm/sec
V = 0.057 ft/day
V = 21 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor: ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
i.tn: = 50 ft / 2,326 ft = 0. 021
isoutn: = 50 ft / 2,649 ft = 0.019
Average gradient across the site is (0.021 + 0.019) / 2 = 0.020
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2019 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.31 x 10-1 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-1 cm/sec)(0.021)]/0.20
V = 2.1 x 10-1 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-1 cm/sec)(0.021)]/0.07
V = 2.1 x 10-1 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994.
Conversion factor. ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,210 ft = 0.023
isouth: = 50 At / 2,662 ft = 0.019
Average gradient across the site is (0.023 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
First Semi -Annual 2020 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.31 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor. ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,258 ft = 0.022
isouth: = 50 ft / 2,695 ft = 0. 019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Groundwater Flow Velocity Calculations
Charlotte Motor Speedway, Landfill V
Second Semi -Annual 2020 Event
Velocitv Ranae
For wells in Saprolite
V = [(k)(i)]/(n)
V = [(1 x 10-3 cm/sec)(0.021)]/0.16
V = 1.31 x 10-4 cm/sec
V = 0.37 ft/day
V = 135 ft/year
For wells in PWR
V = [(k)(i)]/(n)
V = [(2 x 10-4 cm/sec)(0.021)]/0.20
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
For wells in Bedrock
V = [(k)(i)]/(n)
V = [(7 x 10-5 cm/sec)(0.021)]/0.07
V = 2.1 x 10-5 cm/sec
V = 0.060 ft/day
V = 22 ft/year
Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity
for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater
Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Effective porosities (n) are from the geometric mean of the effective porosities for each
unit monitored at the site. Effective porosities provided in "Groundwater Certification
Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994.
Conversion factor. ft/day = 2,835 x cm/sec.
Gradient (i) is from the average gradient at site using the potentiometric surface map
across the northern portion of the site and the southern portion of the site.
Gradient (i) = Change in Groundwater Elevation along Flow Path
inortn: = 50 ft / 2,258 ft = 0.022
isouth: = 50 ft / 2,695 ft = 0. 019
Average gradient across the site is (0.022 + 0.019) / 2 = 0.021
Appendix H
In -Situ Hydraulic Conductivity and Porosity
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix H
a
0
3
0
LL
Q
3
0
Z
O
c7
C
Z
a
N coLU
N
M W
H�
mQ
W
2
W
a
9
W
LL
LL
O
m
a
i
N
J t2
u w
u d
C •�
2 U
W
J C/)
It m W U
„3 IW
nUv
Q m � C
Zltaa
Q.
LL Z
W ¢ >
cc
Q��U-a
mZ)zi—
Z
J J cr- Q
33�c
Cl
OOLLv;
==mow
U)(1)�o
w<
OLL OQU
U
ww�F
0�0LL
w >.
C7oo<
Table 3
Hydraulic Conductivity Data
BFI Waste Systems of NA
Concord, Cabarrus County, North Carolina
Project No. 00188-002
Boring
Screen
Length
ft.
Top of Water Level
to Bottom of Screen
ft.
Saturated Aquifer Static Water
Thickness Level^
ft. ft. b s
Topographic
Location
H draulic uctivity
Hvorslev
cm/sec
Bower -Rice
cm/sec
Sa rolite Aquifer
P-6
15
24.60
24.80
16.70
upland
2.66E-04
1.92E-04
P-7
15
17.26
17.26
6.32
lowland
5.62E-04
3.74E-04
P-9
10
10.99
10.99
5.06
upland
8.15E-04
5.35E-04
P-14
10
14.34
16.79
26.71
upland
3.69E-04
2.53E-04
P-15
10
9.87
9.87
13.63
u land
5.94E-05
4.54E-05
P-16
10
17.35
17.35
11.15
upland
4.82E-04
5.82E-04
P-23
10
10.97
10.97
7.03
lowland
8.70E-04
8.59E-04
P-29
5
12.92
24.16
6.34
upland
3.56E-05
3.51 E-05
P-40
15
41.36
41.36
7.30
upland
5.00E-05
5.65E-05
P-42
15
19.22
19.22
10.26
lowland
1.65E-03
1.42E-03
P-48
10
22.90
22.90
4.60
upland
7.89E-04
6.11 E-04
P-58
5
7.58
11.29
23.71
upland
4.74E-04
3.53E-04
P-60
5
11.85
24.65
8.35
upland
3.65E-04
2.19E-04
P-66
10
7.57
7.57
23.31
upland
3.10E-04*
2.13E-04*
P-70
5
9.12
9.12
-0.92
upland
1.42E-05
1.48E-05
P-72
10
15.39
15.39
22.91
upland
7.68E-04
6.27E-04
P-73
10
14.94
27.31
5.69
upland
5.12E-04
3.77E-04
P-86
5
6.67
28.51
17.99
u land
1.82E-04
1.16E-04
P-91
10
23.17
26.88
16.62
upland
9.81 E-04
9.06E-04
P-102
5
15.12
15.12
3.10
upland
9.94E-04*
7.28E-04*
P-104
5
10.97
10.97
12.10
upland
7.75E-04*
9.50E-04*
P-110
5
14.98
14.98
5.16
upland
1.75E-05
2.68E-05
Bedrock A uifer
P-4
5
28.30
5.00
16.88
upland
5.60E-06
3.67E-06
P-13
5
38.15
5.00
24.35
upland
9.73E-05
9.55E-05
P-19
10
20.35
10.00
11.20
lowland
1.4E-04*
9.22E-05*
P-21
10
28.31
10.00
8.71
lowland
2.98E-05*
5.79E-05*
P-41
10
43.60
10.00
10.66
lowland
2.37E-03
1.50E-03
P-46
_
10
38.97
10.00
5.52
upland
6.53E-04
5.12E-04
P-52
10
30.87
10.00
-0.70
upland
2.00E-04
1.49E-04
P-55
10
55.66
10.00
3.83
upland
7.54E-07
7.54E-07
P-82
10
58.20
10.00
11.87
upland
3.66E-04
2.43E-04
Notes:
^ - Reference Ground Surface (Correction Made)
* - Indicates "slugin" results used
Saturated Aquifer Thickness Determined as Follows:
Saprolite: Top Water Level to Auger Refusal or Bottom of Screen
Bedrock: Thickness = Screen Interval
DRAFT, 5/712003, Page 1 of 1, Rev. 0
r
lC
7
L
T
2
y y
0
0
O
99
O
O
99
1
y N
3
LU
W
W
W
W
W
W
W
W
D
fC E
O)
I�
N
O
O
O)
N
W
Lo
Q)
n
Nle
O
M
0)
N
Q V
W
Cl)
N
LO
LC)
f72
0
_n -6
cn
> E
Lo
O
ti
LO
LO
O
m
O
M
O
m
m
CO
I-
Cfl
r
ti
O
Cfl
Cfl
Cfl
O
Cfl
LD
O
O p
"6
•�
LL Q)
O
O
1
O
1
O
1
O
I
O
1
O
O
1
O
I
O
1
O
1
O
I
O
I
O
I
O
1
O
1
O
1
O
1
O
1
O
1
O
1
O
1
O
1
O
1
O
1
O
1
N 4! C
�)
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
y c m
C)
N
E
N
M
00
O
to
O
(7)
00
O
M
cm)O
N
O
M
I-
00
I`
L6 f6 O C N
3
LO
In
co
Do
o
o
rn
v
cfl
oo
co
In
o�
o
a�
I�
Lc>
N
o
co
cm
U
•� •O y o
•j
>
d U
d
0
0
O
00
0
0
0
CD
0
0
0
O
0
0
0
CO
0
O
00
0
0
0
CD
0
0
0
0
0
0
0
0
0
0
0
0
0
O
00
O
O
0
0
0
O
00
0
M
0
w cu
�� N
i
2 �)
W
1
W
1
W
1
W
I
W
1
W
1
W
1
W
I
W
1
W
1
W
I
W
I
W
I
W
1
W
1
W
1
W
1
W
1
W
1
W
1
W
1
W
1
W
1
W
1
W
W
LO 2r-
L
-O
p
E
N
O
O
M
A
0-')
I-
O
(A
N
CO
Ln
O
(A
I-
M
N
Ln
M
OO
N
M
O
T O
Lc,'))
O
In
In
a0
O
I�
O
(A
M
N
M
N
6?
I�
O
O
N
M
oo
O
O
M
O
2
2 C1
O
O
M
00
00
M
O
N
LC)
—
O
N
M
L!)
N
u)
LO
U O C L
E >, o X cu
w u)
n Ia n °N
t
m-a
-ao
o
o
m-c
c
O
m
o
m
w
o
m
CL
o
o
m'
C
O
O
O
O
O
O
O
O
O
u
O
03
Q N o
!=
m
a-
f6
y
0)
a-
0)
U)
L
Q
0)
-
m
Y
y
u)
U)
3
m .�
O
E
E
O
c N L)
O O
3
3
a
7
7
'6
.S
m
.0
m
.0
-6
7
m
•E
E.
a
N
a
-6
O
•OL
a
O
-
f6
.O
'O
L" Q N YN
m
G. d
m
m
0
i
i
O
Q
N
Q
N
Q
O
cu
N
°
O
O
O
O
0)
O
O
m n 3.. a
o
��E��E
o
y
o
y
_o
E�
y
y
E
y
E
E
of
o
y
of
w' m� o
•�
y
y
y
O
O
N
� N
6 y f6 N 'n
N
N
I N
d
LO
N
N
M
I—
M
'IT
N
O�
7
CA
r-
N
O
O
(A
LO
M
cq'*
0
U')
I-
I-
N
u')
O
O
m
m
O
O
O
N
7
w�
O
M
CD0
N
f6 O N Y_ d
C.) y
O
O
LO
N�
I`
O
�,.�
O
I`
o2
O
M
I�
t-
0
O
0)
N
r-
M
U U
E J
N
OM
N-
N
N
N
N
N
)
pc w c
U 0 00
6
W
C O
3 U)U
0 .- C
N
Q N
O
N
rl
O
N
O
CDO-
O
V)
N
O)
_
r
U)
LO
U)
r
W
I--
It�
N
v
O
7 Q U
C
6 Y$
CD
O
N
O
O
O
N
00
M
lf)
W
lf)
M
M
M
N
M
CD
U)
4) U)
V ,,.,
O
Lf)
o
0
0
000
0
0
0
0
0'It
0
N�O
E
75
C
In N LL O
7
rn N
(D V
f6 to
Na)
` f/)
6) N N
W w
+-' O
�
O
N
�
ti
O
O
N
N
N
I�
O
LO
N
o
O
Ln
LO
M
Ln
O
N
O
O
_
N
~
00
Ln
M
00
LO
Ln
00
~
LO
6)
M
ti
It
M
t`
O
00
N
V
O
LO
M
C S f6
In N >
f
m
�j E$
M
O00
O
O
CS7
O
M
N
OM
�
W
O
CA
I`
r
n
lf)
N
O
r
N
o
U 6 .0.
0 O Q
0
>
O
O m
O
O V A N
~
C >
+O'
0
N N U _ J 11
C w
3 fN
i$
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Qm ~ O
>CU
U) J
CL
N H
> Q H
N
G1
y N
L
CU U
O
Cfl
N
O
O
N
O
O
N
M
N
Ln
O
00
O
CO
N
M
O
M
m
y O> 0 0
.°3 E= 3 `o_ -a
m
00
00
N
In
00
i
i
i
lfi
Cfl
Cfl
I-
N
1�
f�
p 1 I (6 (6 O
tl
(Z
tl
tl
lL
(Z
Z < « (n (n m
N
y
LE
N
N
N
N
N
N
M
M
M
M
M
M
M
M
M
M
M
Cl)
Cl)
Cl)
Cl)
M
M
M
M
M
Z
a
V
10.
0.1
0.01
❑
❑
❑
❑
❑
❑
❑❑
❑
❑
❑ ❑ ❑
❑
❑
❑
❑
❑
0. 100. 200. 300
Time (sec)
400. 500.
RISING HEAD TEST
Data Set: M:\PROJECT FILES\02201314.91\Data and Calculations\Hyd Cond Phase 5 PZs\PZ-6.agt
Date: 12/29/21
Time: 21:06:06
PROJECT INFORMATION
Company: SCS Engineers
Client: CMS Landfill - V
Project: 0220134.91
Location: Concord, NC
Test Well: PZ-6
Test Date: 10/19/2021
AQUIFER DATA
Saturated Thickness: 10. ft
Anisotropy Ratio (Kz/Kr): 1.
WELL DATA (PZ-6)
Initial Displacement: 1.33 ft
Static Water Column Height: 29.63 ft
Total Well Penetration Depth:
41.3 ft Screen Length: 10. ft
Casing Radius: 0.125 ft
Well Radius: 0.125 ft
Gravel Pack Porosity: 0.3
SOLUTION
Aquifer Model: Confined
Solution Method: Bouwer-Rice
K = 0.001432 cm/sec
y0 = 0.6577 ft
z
we
10.
0.1
0.01
❑
❑°
❑°
❑°
El
❑°
❑
❑ °❑
❑
❑ 11 El❑❑
❑
❑°
❑°
11
°❑❑
❑
0. 120. 240. 360
Time (sec)
480. 600.
RISING HEAD TEST
Data Set:
Date: 12/29/21
Time: 21:01:26
PROJECT INFORMATION
Company: SCS Engineers
Client: CMS Landfill - V
Project: 0220134.91
Location: Concord, NC
Test Well: PZ-7
Test Date: 10/19/2021
AQUIFER DATA
Saturated Thickness: 13.05 ft
Anisotropy Ratio (Kz/Kr): 1.
WELL DATA (PZ-7)
Initial Displacement: 1.95 ft
Static Water Column Height: 13.05 ft
Total Well Penetration Depth: 22.6 ft
Screen Length: 15. ft
Casing Radius: 0.125 ft
Well Radius: 0.125 ft
Gravel Pack Porosity: 0.3
SOLUTION
Aquifer Model: Unconfined
Solution Method: Bouwer-Rice
K = 1.589E-5 cm/sec
y0 = 0.2081 ft
26.
12
0
-16.
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑191
El�❑
El
10.
100.
Time (sec)
1000.
1.0E+4
FALLING HEAD TEST
Data Set:
Date: 12/29/21
Time: 20:52:33
PROJECT INFORMATION
Company: SCS Engineers
Client: CMS Landfill - V
Project: 0220134.91
Location: Concord, NC
Test Well: PZ-8
Test Date: 10/19/2021
AQUIFER DATA
Saturated Thickness: 10. ft
Anisotropy Ratio (Kz/Kr): 1.
WELL DATA (PZ-8)
Initial Displacement: 7.38 ft
Static Water Column Height: 26.85 ft
Total Well Penetration Depth:
39.2 ft Screen Length: 10. ft
Casing Radius: 0.125 ft
Well Radius: 0.125 ft
Gravel Pack Porosity: 0.3
SOLUTION
Aquifer Model: Confined
Solution Method: Bouwer-Rice
K = 1.214E-5 cm/sec
y0 = 4.134 ft
z
we
10.
0.1
0.01
aTsTaMM
0. 400. 800. 1.2E+3
Time (sec)
1.6E+3 2.0E+3
FALLING HEAD TEST
Data Set:
Date: 12/29/21
Time: 20:45:04
PROJECT INFORMATION
Company: SCS Engineers
Client: CMS Landfill - V
Project: 0220134.91
Location: Concord, NC
Test Well: PZ-11
Test Date: 10/19/2021
AQUIFER DATA
Saturated Thickness: 5.86 ft
Anisotropy Ratio (Kz/Kr): 1.
WELL DATA (PZ-11)
Initial Displacement: 4.89 ft
Static Water Column Height: 5.86 ft
Total Well Penetration Depth:
27.77 ft Screen Length: 15. ft
Casing Radius: 0.125 ft
Well Radius: 0.125 ft
Gravel Pack Porosity: 0.3
SOLUTION
Aquifer Model: Confined
Solution Method: Bouwer-Rice
K = 1.175E-5 cm/sec
y0 = 0.7359 ft
Appendix
Bedrock Evaluation
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Appendix I
L LS
L
c c
a
m
m
g
E
p n
o
b
Q
Q
0
T'
m
E
0
ffffx
xK
ff
ffffff
ff
ffxKaeff
y
COG
N n.
w
a y
cc.o
m
a d
�i in
N a
N m
a
.o N
.o a
s
'o
W
m
fll
in
N
.o
N m
fD
m
.p
CR
N
.a
IA A
A,A
.a
V] I❑
N O N
Z
jn v
i i
i
i i
i i
f
v
C
2
•
=
.0
2 .
2
.0
2yi
�p .G C
g N
E _
:
1 m
. .G
L
C
L7L7[SOOi]OOOpOpNN❑y0
O O
O 9
7S
'C ❑
.O1
'�
d
0 0
C
m0
O C
pDOp
Q A
O❑
❑app
d Q
0
�'-
00
0 6 Q
0110
J
noC
D0
c m
m d
i
u
9
N�?4
ief
Gv11n44�Y744�i
00
6uTpb�44
04[./Y7
�1'1
L7 v�u]
LL']4
u7b0
w
r
� c p
E m a
ina
°° s�
ANaA
n
Mrn
�
�mvmo❑N
v�
u�p�om
ory
m Am[R
�
pgp�pyy
rl
non
nv
vyµs
v m
cq
Nu-�n
cnmNnmm�
mmv
ivamv�
vrnn
r�pprnvio
�N
ppq�pp
y4`
x u�j
u�i 47
.3�fGN
w
[447
NN�
0T
u�r
Su7
In
U7 ���0324
!FRIq,�
ZN2V;IZ
IlSIN
1-0
0 5 C
7
L E m
0
n [Fi
�M�ryv
m
us �n
�y
v
LL]�NSV
nioomv
ON<I��mNNN[�]
as
ma
v
NNNN[+➢i'i
vv
rnv
mb
t']M
N4]C1
Q 9
M�
NON
N
Nc]
+f
Q-i�
�
d� YwN
V iryCf
m��nmON
!]
d �
Q v
Ev
[+e m
E�.� ti�mp
cJ
c3 i❑fl
r^-
G y
iW0
'�
�A
i+] c
'Q �}
sQ
V1 m
N /O
�fl �1
W 4"J
Yl �1
C1-pp;;p
�+] 2
pvy
N �Ci
(u�y�u�}N[+J
iD
�] �!]
� M
����pp
u]
�'r
W �!
u] 4
Wm
W
N
c
w
NH
rm��
in
R'tv�prey
�(a�Qp�sr..yo
in
�m,n�
GG
C
'J
O
a Q
E
N
�a'nZM22
N
f+¢¢
LNG
¢m
�
ryr']C
r�
►�vvnvuv-�e�y
ci ri
ridmom
od
ii�
1z,
vl
liz
m
c'+2
m x
nl1
z n
�,
N
mla�NNY�]
V�1
�f�li
LL�94]N
4�'f
ul
0
S p
Y
Qu
O
N
0 ¢
a Z
61¢a
M Z
Q
C1 2
V1¢¢
Z
Z N
N w
¢
2 +"�
N N
4] 4]
N t
fa s•]
Z
¢¢Q¢
Z Z
2 2
QQ
2 2
¢ 6^
Z Z
<v¢
N 2
M Z
n ff
r
6 IN �r
2)a
L7
�'
`o
c��
n
�n
rr
c-i
v
vrn
nmmv
n
S.3 Z NW
m ■
E
N,Qm¢¢¢¢r=w�¢¢
Z�
2
Z Z
2
2�
2
Z 2
Z Z
2
2 2
m g
Z
Z Z
Qa
��
X
N
u77
N
N 4
un'f u;
,A ,O
4 N
... Q
�
J
0
W L o9r�+2N�zi
�ZM2Z�Z^2Z^
zQvcv
�°vi
�ri
Fq �.i22
y C)
6 a
N
N
r
7
=
9-9
E
Nz
p
Soma
� iD
i2
m
G ari'30;
�j
m
iS v
Az
�.7 p
M
M��
�iN�0
u;
09-
p�
fj
0 is
N
Y
L
a m
w
a ^n^
ncavnn�unim
c^.i r�.��numi
n
mmnmra`inN
N
NN[NV
�Nc�]
�YN4N'i
t'd
rp
[m+l
a
u
C ��NFiN
u7NN
NI+FN
pN�"1
ii'1�mN�]
W
N
u5Tk7
LdN�
ih
LL]ui
C3��
�tN]atiM
N
ryN
tY
N
NN[Y
[V
�
NN�TV
Nr
fll
NNE
�y
tY �jN
NN
njNN
G L 0 C
<
q rn
QNi
*^�
l!n]
m m
(�y
2
N LO
N
�te^l�7k
Q�
Rr tVPACMQam!�Y
90
r
u]
2
0�n
rM
mO
pMp
�v
�um
�nu^u�n�um
num
mh
w
uA
u^
47
]um
um u
u^ in]u^3
w m�
YW] M
k] V
w m`n
A!fl
m.-rnrsibain�nam�crmmmmmm+n�n���'+c,�`-3�rr�a
MrriNrn
rn c�.-m
m ncn
[�Ncn
mmb
^
n mm
b
�
ms❑u�n
mm
N
�
co
m
A
rnninrnm
�r,
p�
E
e
u-1 u�u?b
o.i
v
v, qu�n
nn.=oio
�wu��in
Qvi�oomw
m�
v,
vvu-1
o �.=m
ui
aio
rm
Q oain�
o
coo:
on
�.ov Am
N
�anvovvo
u`9-iv�Mc�n
f7 [N�IMNNN
a n
mmvo
ate,
V OM
oa
r
o0000
r
r r
r
r
i
4 m
� W
0 ovovvov
r r
r yr
r r,
`n
,_ �n
n
•-
u oa
•- r
v
•- m
v nui
w.-
nvs
m
�
R
of
Mm
W m
oo oa
fR ^
rz�
�n< onn
.o
Ancnry
Nmus
�n
m�sm�
00
��nmor�
pmLLp
mmuY�
rym
�n
mm�7 �my
v�❑"Ar9
A
n�Y�C
W
n
�m
�
Nmqx
m
�
is Tnc
Y�r
rY�
M NNCi
f'1N
Cf N
N ,b
� Ol
FIN
2
z2A
Date Started
: 11/20/1991
Date Completed
:11/20/1991
LOG OF BORING MW-2B
Hole Diameter
:unknown
Drilling Method
: unknown
(Page 1 of 1)
Depth to water JOC)
: 8.76 ft
Charlotte Motor Speedway Landfill
SCS Personnel
: N/A
Well Material
: PVC
5105 Morehead Road
Northing Coord.
: 587,912.904
Well Diameter
: 2 inch
Facility Permit 13-04
Easting Coord.
: 1,502,534.016
Well Slot
: 0.01 inch
Concord, NC 28027
Driller / Company
: unknown / Westinghouse
Sand Pack
:unknown
Project # 02201314.91
Logged By
: J. Hamela
Total Well Depth
: 36 feet
Q
Well: MW-21B
LL
.S
Surf.
=
Elev.:579.92
n
Elev.
U
Q
DESCRIPTION
Cover
a)
576.9
07
of
r—�
0
D
cD
Surface
0
Casing
Topsoil and roots
576
s
5
571
10
566
15
561
20
556
25
551
0
- 30
546
a
J
L
1
7
35
SANDY SILT with trace clay ,red brown, gray
ML
SILTY SAND, dark gray
SM
PWR
SP
Fractured rock
Rock
Boring Terminated at 37' bgs
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Riser
Grout
Sand
Screen I
Date Started : 11/20/1991
Date Completed :11/20/1991
LOG OF BORING MW-10A
Hole Diameter :unknown
Drilling Method : unknown
(Page 1 of 1)
Depth to water JOC) : 8.76 ft
SCS Personnel : N/A
Charlotte Motor Speedway Landfill
Well Material : PVC
5105 Morehead Road
Northing Coord. : 587,262.857
Well Diameter : 2 inch
Facility Permit 13-04
Easting Coord. : 1,501,693.493
Driller / Company : unknown / Westinghouse
Logged By : J. Hamela
Well Slot : 0.01 inch
Sand Pack :unknown
Total Well Depth : 36 feet
Concord, NC 28027
Project # 02201314.91
Q
Well: MW-10A
u_
.S
Surf.
=
Elev.:578.67
Elev.
07
IL
DESCRIPTION
0
576.17
j
of
Cover
Surface
0
576
Casing
SILTY SAND with clay, red brown, brown, gray
5
571'
10
566
SM
V
15
561
Riser
Grout
20
556
25
551}
Unknown sediment overburden
}
30
546
Rock
Sand
35
541
Screen
40
536
Boring Terminated at 43' bgs
Depth to water from TOC = 21.42' on 11/20/91
45
bgs = below ground surface
SAA = same as above
PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Date Started : 12/17/1991
Date Completed :12/21/1991
LOG OF BORING MW-22A
Hole Diameter : 8"
Drilling Method : HSA/Coring
(Page 1 of 1)
Depth to water JOC) : 4.00 ft
SCS Personnel : N/A
Charlotte Motor Speedway Landfill
Well Material : PVC
5105 Morehead Road
Northing Coord. : 587,314.247
Well Diameter : 2 inch
Facility Permit 13-04
Easting Coord. : 1,502,996.856
Driller / Company : unknown / S&ME
Logged By : J. Hamela
Well Slot : 0.01 inch
Sand Pack :unknown
Total Well Depth : 26 feet
Concord, NC 28027
Project # 02201314.91
Q
Well: MW-22A
u-
c
Surf.
=
Elev.:586.13
-E
Elev.
07
IL
DESCRIPTION
Cover
Q
576.17
j
of
Surface
Casing
576
SANDY SILT, brown, gray, stiff, dry
ML
SAND, fine to medium grained, dark gray, moist
5
571
Grout
SIP
Riser
10
566
15
561
Rock- Diorite
REC = 91%; RQD = 77%
Seal
20
556
Sand
Screen
25
Boring Terminated at 26' bgs
Depth to water from TOC = 4.0' on 11 /20/91
bgs = below ground surface
SAA = same as above
PWR = partially weathered rock
NA = not applicable
TOC = top of casing
N
O
N
r
0
N
Date Started
: 05/21/2002
Date Completed
:05/21/2002
LOG OF BORING MW-25
Hole Diameter
: 8"
Drilling Method
: HSA
(Page 1 of 1)
Depth to water (TOG) . 9.6 ft
Charlotte Motor Speedway Landfill SCS Personnel : NA Well Material : PVC
5105 Morehead Road Northing Coord. : 587,428.551 Well Diameter : 2 inch
Facility Permit 13-04 Easting Coord. : 1,502,970.342 Well Slot : 0.01 inch
Concord, NC 28027 Driller / Company : W. Harris / AmeriDrill Corp. Sand Pack :unknown
Project # 02201314.91 Logged By : J. Hamela Total Well Depth : 20.8 feet
m
u- U
c Surf. _
Elev. 07 IL DESCRIPTION
CL
589.00 � �
D CD
0-1 589
Topsoil
SM
5 -+584
SILTY SAND, fine to medium grained, tan, brown, with manganese nodules, dry
PWR with sand and silt, white, gray, wet
SP
20
.............
Auger refusal at 20.8' bgs
Depth to water from TOC = 9.6' on 05/21 /02
bgs = below ground surface
SAA = same as above
PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Well: MW-25
Elev.: 589.00
j Cover
Surface
using
Grout
Riser
Seal
Sand
Screen I
Date Started
: 11/6/2020
Date Completed
:11/6/2020
LOG OF
BORING PZ-1
M3
Hole Diameter
: 8 in
Drilling Method
: H.S.A.
(Page 1 of 1)
Depth to water JOC)
SCS Personnel
: 8.38 ft
: J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material
: PVC
5105 Morehead Road
Northing Coord.
: 587,860.25
Well Diameter
: 2 inch
Facility Permit 13-04
Easting Coord.
Driller / Company
Logged By
: 1,502,612,78
: Gary Winbourn / IET
: B.Eigenberger
Well Slot
Sand Pack
Total Well Depth
: 0.01"
: GP #1
: 16.5 ft
Concord, NC 28027
Project # 02201314.91
m
LL U
c Surf. _
Elev. U IL DESCRIPTION
CL
581.37 c/) of
0
Topsoil and roots
SM SILTY SAND with trace clay, grey, black, brown, slightly moist
580 ;.
CL
CL
10
570
5
SM
L
n
a
J
L 15
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
SANDY CLAY with silt, tan, red -brown, brown, slightly moist
SANDY CLAY with silt, red -brown, brown, moist
SILTY SAND, grey, black, white, damp
Auger Refusal at 16.5' bgs
Depth to water from TOC = 8.38' on 12/2/2020
Well: PZ-1
Blow Count Elev.: 583.88
Cover
Graph
12.5 25 37.5 50 Surface
Casing
Riser
3rout
Seal
Sand
Screen
Date Started : 11/5/2020
Date Completed :11/5/2020
LOG OF BORING PZ-2
Hole Diameter : 8 in
Drilling Method : H.S.A./ NQ Core
(Page 1 of 1)
Depth to water JOC) : 8.07 ft
SCS Personnel : J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material : PVC
5105 Morehead Road
Northing Coord. : 587,656.86
Well Diameter : 2 inch
Facility Permit 13-04
Easting Coord. : 1,502,523.12
Driller / Company : Gary Winbourn / IET
Logged By : B.Eigenberger
Well Slot : 0.01"
Sand Pack : GP #1
Total Well Depth : 19 ft
Concord, NC 28027
Project # 02201314.91
Q
Well: PZ-2
u-
.S
Surf.
=
Blow Count
Elev.: 580.57
Elev.
07
IL
of
DESCRIPTION
Graph
Cover
a)
p
578.47
cV/)
0 12.5 25 37.5 50
��
Surface
O
Casing
Topsoil and roots
AD-Riser
;` Grout
CLAYEY SAND with gravel and clay inclusions, brown, black,
SC
dark brown, dry
575
Seal
SANDY CLAY with silt, dark brown, gray -blue, organics,
5
slightly moist
CL
570
Sand
SILTY SAND, bronw, tan, saprolite, moist
10
Screen
565
SM
15
Auger Refusal at 19.0'LE
560
20
<
ROCK: Diorite
R-1 (19.0'-23.0') REC=30 RQD= 0
R-2 (23.5'-28.5') REC=25 RQD=11
R-3 (28.5'-30.3') REC=100 RQD=44
R-4 (30.3"-35.0') REC=38 RQD=O
Borehole collapsed to 19'
25
"
Water level at 8.07' on 12/2/2020
550
30
545
35
Boring terminated at 35.0' bgs
Borehole collapsed to 19' bgs
Depth to Water from TOC = 8.07' on 12/2/2020
bgs = below ground surface
SAA = same as above
PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Date Started
: 11/6/2020
Date Completed
:11/6/2020
LOG OF
BORING PZ-3
M3
Hole Diameter
: 8 in
Drilling Method
: H.S.A.
(Page 1 of 1)
Depth to water JOC)
SCS Personnel
: 9.95 ft
: J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material
: PVC
5105 Morehead Road
Northing Coord.
: 587,678.19
Well Diameter
: 2 inch
Facility Permit 13-04
Easting Coord.
Driller / Company
Logged By
: 1,502,828.49
: Gary Winbourn / IET
: B.Eigenberger
Well Slot
Sand Pack
Total Well Depth
: 0.01"
: GP #1
: 13.5ft
Concord, NC 28027
Project # 02201314.91
m
Q
u-
U
c
Surf.
_
Elev.
U
Q
589.15
c/)
of
0
SM
585
5
CL
580
SM
10
�IL
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
DESCRIPTION
Fill, sand and gravel, brown, grey, black, dry
SILTY SAND with trace clay, brown, grey, saprolite, dry
SILTY CLAY with sand, red brown, tan, slightly moist
SILTY SAND, grey, black, white, damp
Auger Refusal at 13.5' bgs
Depth to water from TOC = 9.95' on 12/2/2020
Blow Count
Graph
Well: PZ-3
Elev.: 591.45
Cover
>urface
;asing
Riser
3rout
Seal
Sand Pa I
Screen
Date Started
: 11/15/2020
Date Completed
:11/15/2020
LOG OF
BORING PZ-4
Hole Diameter
: 8 in
Drilling Method
: H.S.A.
(Page 1 of 1)
Depth to water JOC)
SCS Personnel
: 9.00 ft
: J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material
: PVC
5105 Morehead Road
Northing Coord.
: 587,496.98
Well Diameter
: 2 inch
Facility Permit 13-04
Easting Coord.
Driller / Company
Logged By
: 1,502,614.87
: Gary Winbourn / IET
: B.Eigenberger
Well Slot
Sand Pack
Total Well Depth
: 0.01"
: GP #1
: 11.5 ft
Concord, NC 28027
Project # 02201314.91
m
Q
u-
U
c
Surf.
_
Elev.
U
Q
582.64
c/)
of
0
MIL
5-1 1 SM
SC
575
SM
10
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
DESCRIPTION
Topsoil with roots, black
SANDY SILT, brown, roots, dry
SILTY SAND with clay, brown, slightly moist
CLAYEY SAND with silt, grey, brown, slightly moist
SILTY SAND, brown, tan, grey, black, saprolite, moist
Auger Refusal at 11.5' bgs
Depth to water from TOC = 9.00' on 12/2/2020
Blow Count
Graph
Well: PZ-4
Elev.: 585.01
Cover
>urface
;asing
Grout
Riser
Seal
Sand I
Screen I
Date Started : 11/3/2020
Date Completed :11/3/2020
LOG OF BORING PZ-5
Hole Diameter : 8 in
Drilling Method : H.S.A. / NQ Core
(Page 1 of 1)
Depth to water (TOC) : 3.58 ft
SCS Personnel : J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material : PVC
5105 Morehead Road
Northing Coord. : 587,427.97
Well Diameter : 2 inch
Facility Permit 13-04
Easting Coord. : 1,502,927.98
Driller / Company : Gary Winbourn / IET
Logged By : B.Eigenberger
Well Slot : 0.01"
Sand Pack : GP #1
Total Well Depth : 7 ft
Concord, NC 28027
Project # 02201314.91
Q
Well: PZ-5
u-
Surf.
=
Blow Count
Elev.: 584.83
n
Elev.
U
0-
DESCRIPTION
Cover
Gra h
p
��
p
582.7
u)
of
(�
0 12.5 25 37.5 50
Surface
Casing
0
Topsoil and roots
Riser
SILTY SAND with trace clay and roots, brown, tan, grey,
slightly moist-
Grout
SM
Seal
580
Sand
CLAYEY SAND, with silt, light tan, red -brown, damp
5
SC
Screen
Auger Refusal at 7.5'
575
— '—
ROCK: Diorite
R-1 (6.5' - 11.5') REC=90 RQD=90
R-2 (11.5-15.1') REC=97.2 =94.4
R-3 (15.1'- 16.0) REC=100 REC=100
R-4 (16.0' - 16.9') REC=98.9 RQD=98.9
10
GIN
570
15
Boring terminated at 16.9' bgs
Borehole collapsed to 7' bgs
Depth to Water from TOC = 3.58' on 12/2/2020
bgs = below ground surface
SAA = same as above
PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Date Started
: 11/4/2020
Date Completed
:11/4/2020
LOG OF
BORING PZ-6
Hole Diameter
: 8 in
Drilling Method
: H.S.A. NQ Core
(Page 1 of 1)
Depth to water (TOC)
SCS Personnel
: 8.74 ft
: J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material
: PVC
5105 Morehead Road
Northing Coord.
: 587,348.76
Well Diameter
: 2 inch
Facility Permit 13-04
Easting Coord.
Driller / Company
Logged By
: 1,502,681.77
: Gary Winbourn / IET
: B.Eigenberger
Well Slot
Sand Pack
Total Well Depth
: 0.01"
: GP #1
: 39.5 ft
Concord, NC 28027
Project # 02201314.91
m
Q
u-
U
c
Surf.
_
Elev.
U
Q
583.44
c/)
e'
(D
0
580
5
575
10
570
15
565
20
560
25
555
30
D
J
L 550
0
35
J
545
40
DESCRIPTION
Blow Count
Graph
Topsoil and roots
MIL
SANDY SILT, red -brown, brown, dry
SILTY SAND with PWR fragments, dark brown, black, slightly
most
SM
SANDY SILT with clay, brown, moist
ML
SILTY SAND, with PWR fragments, brown, black, moist
SM
SAND, black, saprolite, wet
SP
Auger Refusal at 24'
ROCK- Diorite
R-1 (24.0'-29.0') REC= 67 RQD=45
R-2 (29.0'-34.0') REC=62 RQD=38
R-3 (34.0'-39.5') REC=45 RQD=25
GR
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Boring terminated at 39.5' bgs
Depth to water from TOC = 8.74' on 12/2/2020
Well: PZ-6
Elev.: 585.25
Cover
>urface
;asing
Riser
Grout
Seal
Sand
Screen I
Date Started
: 10/29/2020
Date Completed
:10/29/2020
LOG OF
BORING PZ-7
Hole Diameter
: 8 in
Drilling Method
: H.S.A.
(Page 1 of 1)
Depth to water JOC)
: 7.05 ft
Charlotte Motor Speedway Landfill
SCS Personnel
: J. Hamela / B.Eigenberger
Well Material
: PVC
5105 Morehead Road
Northing Coord.
: 587,224.71
Well Diameter
: 2 inch
Facility Permit 13-04
Easting Coord.
: 1,502,895.62
Well Slot
: 0.01"
Concord, NC 28027
Driller / Company
: Gary Winbourn / IET
Sand Pack
: GP #1
Project # 02201314.91
Logged By
: B.Eigenberger
Total Well Depth
: 20 ft
m
LL U
c Surf. _
Elev. U IL DESCRIPTION
CL
584.86 � of
o � c9
01 Top soil and roots
I I MIL 7F77 SANDY SILT with roots, brown, black, tan, dry
5 --� 580
104575
SM
15 --� 570
204 565
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
SILTY SAND with silt, saprolite, brown, gray, black, white, tan
Auguer refusal at 20' bgs
Depth to water from TOC = 7.05' on 12/02/2020
Blow Count
Graph
Well: PZ-7
Elev.: 587.46
Cover
>urface
;asing
3rout
Riser
Seal
Sand
Screen I
Date Started
: 11/2/2020
Date Completed
:11/2/2020
LOG OF
BORING PZ-8
Hole Diameter
: 8 in
Drilling Method
: H.S.A. / NQ Core
(Page 1 of 1)
Depth to water JOC)
SCS Personnel
: 17.25 ft
: J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material
: PVC
5105 Morehead Road
Northing Coord.
: 587,063.00
Well Diameter
: 2 inch
Facility Permit 13-04
Easting Coord.
Driller / Company
Logged By
: 1,502,507.88
: Gary Winbourn / IET
: B.Eigenberger
Well Slot
Sand Pack
Total Well Depth
: 0.01"
: GP #1
: 36.7 ft
Concord, NC 28027
Project # 02201314.91
m
Q
u-
U
c
Surf.
_
Elev.
U
Q
583.32
uJ
of
0
580
5
575
10
570
4
15
565
20
4 560
25
555
30
550
J
>_ 35
545
40
DESCRIPTION
Blow Count
Graph
Top soil and roots
SANDY SILT with trace clay, red, brown, tan
ML
SILTY SAND with rock fragments, saprolite, red, tan,
grey,white, damp
SM
.
Auger refusal at 13.5'
ROCK: Diorite
R-1 (13.5-18.5) REC= 5.40 RQD=28
R-2 (18.5'-26.0') REC=13.3 RQD=13.3
R-3 (26.0'-31.5') REC=100 RQD=63
R-4 (31.5'-38.0') RED=49.0 RQD=49.0
GN
Boring terminated at 40.4' bgs
Borehole collapsed to 36.7' bgs
Depth to water form TOC = 17.25 on 12/2/2020
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Well: PZ-8
Elev.: 585.82
Cover
Surface
'asing
Riser
Grout
Seal
Sand
Screen I
Date Started
: 10/30/2020
Date Completed
:10/30/2020
LOG OF BORING PZ-10
Hole Diameter
: 8 in
Drilling Method
: H.S.A
(Page 1 of 1)
Depth to water (TOG) . 15.16 ft
Charlotte Motor Speedway Landfill SCS Personnel : J. Hamela / B.Eigenberger Well Material : PVC
5105 Morehead Road Northing Coord. : 587,201.81 Well Diameter : 2 inch
Facility Permit 13-04 Easting Coord. : 1,502,697.77 Well Slot : 0.01"
Concord, NC 28027 Driller / Company : Gary Winbourn / IET Sand Pack : GP #1
Project # 02201314.91 Logged By : B.Eigenberger Total Well Depth : 18.5 ft
m
LL U
c Surf. _
Elev. 07 IL DESCRIPTION
CL
588.52 � of
0
Topsoil and roots
SANDY SILT with trace clay, red, brown, dry, weathered
mica
585 ML
5
SILTY SAND, brown, red, black, PWR fragments, wet
580
10
575
of
15
LL
SM
Auger refual at 18.5' bgs
Depth to Water from TOC = 15.16' on 12/2/2020
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Blow Count
Graph
Well: PZ-10
Elev.: 591.04
j Cover
>urface
;asing
Riser
3rout
>eal
Sand
Screen I
Date Started : 10/27/2020
Date Completed :10/27/2020
LOG OF BORING PZ-11
Hole Diameter : 8 in
Drilling Method : H.S.A / NQ Core
(Page 1 of 1)
Depth to water (TOC) : 17.42 ft
SCS Personnel : J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material : PVC
5105 Morehead Road
Northing Coord. : 587,002.90
Well Diameter : 2 inch
Facility Permit 13-04
Easting Coord. : 1,503,054.11
Driller / Company : Gary Winbourn / IET
Logged By : B.Eigenberger
Well Slot : 0.01"
Sand Pack : GP #1
Total Well Depth : 25.5 ft
Concord, NC 28027
Project # 02201314.91
Q
Well: PZ-11
u-
.S
Surf.
=
Blow Count
Elev.: 599.69
Elev.
07
0-
of
DESCRIPTION
Graph
Cover
a)
597.42
cV/)
p
0 12.5 25 37.5 50
Surface
0
Casing
Topsoil and roots
CLAYEY SILT with sand, red,brown, roots, slightly moist
595
MIL
Grout
Riser
SILTY SAND with trace clay, gray, white, PWR, quartz
5
fragments
SM
590
Seal
Auger refusal at 10'
10
ROCK: Syenite
R-1 (10'-15')
R-2 (15'-18')
585
i—i—i
R-4 (21.5-25.5)
Total Recovery = 66%
15
Total RQD = 59.4 %
Sand
580
GN
Screen
20
575
25
Boring terminated at 25.5' bgs
Depth to water from TOC = 17.42 on 12/2/2020
bgs = below ground surface
SAA = same as above
PWR = partially weathered rock
NA = not applicable
TOC = top of casing
Date Started
: 10/28/2020
Date Completed
:10/28/2020
LOG OF
BORING PZ-12
Hole Diameter
: 8 in
Drilling Method
: H.S.A
(Page 1 of 1)
Depth to water JOC)
SCS Personnel
: 14.66 ft
: J. Hamela / B.Eigenberger
Charlotte Motor Speedway Landfill
Well Material
: PVC
5105 Morehead Road
Northing Coord.
: 586,963.50
Well Diameter
: 2 inch
Facility Permit 13-04
Easting Coord.
Driller / Company
Logged By
: 1,502,787.22
: Gary Winbourn / IET
: B.Eigenberger
Well Slot
Sand Pack
Total Well Depth
: 0.01"
: GP #1
: 18.5 ft
Concord, NC 28027
Project # 02201314.91
m
Q
u-
U
c
Surf.
_
Elev.
U
Q
585.99
C/)
of
0
5
585
580
ML
10
575
SM
15
570
0
V
J
L
n
a
J
J
L
1
20
bgs = below ground surface
- SAA = same as above
v
3 PWR = partially weathered rock
NA = not applicable
TOC = top of casing
DESCRIPTION
Top soil and roots
CLAYEY SILT, tan, brown, red
SILTY SAND, saprolite, brown, tan,white, slightly moist,
Auger refusal at 20' bgs
Borehole collapse to 18.5' bgs
Depth to water fro TOC = 14.66' on 12/2/2020
Blow Count
Graph
Well: PZ-12
Elev.: 588.53
Cover
Surface
Casing
Riser
Grout
Seal
Sand
Screen I
Figure 1
Site Location Map
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 1
F
t
650� �MDRESY,� _ _� �C �. _ g.P
0 NE�G
4 29
N o
o�— . SITE LOCATION o
wo
0�
r/ F
O \l✓v ��
upsPETS+)R0 — e (� Ll
Malla,.� HG ao
B CROSS
5SO lI�I- \� iEATHERWq_ODLN. �R\A
O,PKi\o
1
SCALE:
0 1000 2000 3000
APPROXIMATE SCALE IN FEET
BASE MAP SOURCE:
USGS TOPOGRAPHIC MAP, 7.5 MINUTE SERIES,
HARRISBURG, NORTH CAROLINA, 2016
•' Vv yO —
e 2
SITE LOCATION
CHARLOTTE MOTOR SPEEDWAY LANDFILL
5105 MOREHEAD ROAD
CONCORD, NC 28027
qr-q FN(,INFFRS
FIGURE 1 - SITE LOCATION MAP
Figure 2
Groundwater Monitoring Well Map
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 2
LEGEN D
700 — 10 FOOT ELEVATION CONTOUR
- - - — PROPERTY LINE
-- — — — — —- — LIMITS OF WASTE
— PHASE 1 EXTENTS
— PHASE 2 EXTENTS
— PHASE 3 EXTENTS
— FUTURE PHASE 4 EXTENTS (EST.)
— LIMITS OF CLOSURE CAP
BMW—# — EX. GROUNDWATER (GW) MONITORING WELL
MW—# — PROPOSED GW MONITORING WELL
MW—UNK — ABANDONED MONITORING WELL
w SW—# — APPR. SURFACE WATER SAMPLE LOCATION
TOPOGRAPHY NOTE:
1. LANDFILL SURFACE GRADES TAKEN FROM JANUARY 9,
2020, AERIAL SURVEY BY COOPER AERIAL SURVEYS.
�./ M W—
EXISTING
PHASE 1 EXTENTS ,
CELL 2A
2L
CELL 1113
CELL
SEE NOTE 1
w
I
LEACH ATE -
TREATMENT
BUILDING
�z
SITE
ENTRANCE
0 450 900 1350
SCALE IN FEET
O
NOTES:
1. SW-1 LOCATED UPSTREAM ON ROCKY RIVER BENEATH
US 29 OVERPASS
2. MW—UNK IS PERMANENTLY ABANDONED.
`'ALE &
CALE HOUSE
2
28
T
lk
• : ����
I ME
CELL 2E
LFG—TO—ENERGY
PRODUCTION BUILDINGS
0
m
au
6
d
--- _.,
cn
1
Z
0
w �
S —
V
,
0
M W— 42
I
J
J
W 41
�
W
SEE NOTE 2 I AM —40
Z
0
1 I W—U K '
PROP ,
ICELL 2M I
F-
—
PROP - 9 /
Z
0
CELL 2K
2
w
/
Lu
J
H
I
~
(�
u
I MW �4
L
6
M W—
a
7A 1
MW 7
' L
W-36 ;
EXISTING PHASE
3 EXTENTS
z
w
J
U
F-
w
0
a.
J �
J U
Q O
JO
U) W
v0
0
Q
>
J
o
J
IL
0
Q
co
N
V
C
o
p
W
z
N
Q
J
W
W
w
O
00
rr-
v
5
2
V
O
o
U
L)
0
r
>
♦ ♦
V
Q
�
a. 0 ti
Lc,
mQ
m
c N s
o
CL
a
W5 CN W �
U)
Q o
zb
W � J
X
W o�LL
Z Y a
U ~
o
a��
J
m
z
o
in=
Y
o
z Q z Ln
0
W Wwo
L
U 20Li
i W
NQO
0
zN}
a e
o
a
Z
o
0
DATE:
JANUARY 2021
J SCALE:
AS SHOWN
DRAWING NO.
REPUBLIC
SERVICES 0 of 1
Figure 3
Methane Gas Monitoring Well Map
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 3
I
LEGEND-
- 10 FOOT ELEVATION CONTOUR
— PROPERTY LINE
— LIMITS OF WASTE
— PHASE 1 EXTENTS
09S
— PHASE 2 EXTENTS 0 450 900 1350 1
v _ yIo z v
— PHASE 3 EXTENTS SCALE IN FEET Ne _ _ 56�_ 1 0
l � 0
— FUTURE PHASE 4 EXTENTS °LS °9S 55° ° tQ J
s sso hb 1 O
— LIMITS OF CLOSURE CAP 0 W
MMW-9
MMW—# — EX. METHANE MONITORING WELL MMW-7 MM 8 y° • o C� 0
° _j O
•
TOPOGRAPHY NOTE: _ - -` o� ° ► —ya- I a M p H
1. LANDFILL SURFACE GRADES TAKEN FROM JANUARY 9, W-6 0 62°� �� I bso I �� =
2020, AERIAL SURVEY BY COOPER AERIAL SURVEYS. O Z
,p . 630
6,p - ► � I I o Zell a Z a
EXISTING PHASE 2 EXTENTS ' W �; ;o° PROP I • MMW-10 0 J 0 L�u/
g� T10 m I Li
• ' 63p 0 I 6671Fn
II C E L L 2 M�1626CELL
- I� CELL PROP
� 6pCELL 21 2J CELL 2K I U) (
W
(�
2 H I I I 1
2 3° CELL Lt'�
• 6 6�0 ,//f//j�� ' t'
_ - _ _ L_ - • . ' • 6q0 / 640 l�0p0o °:% 2G a �V 0° 1 I I I fib° y Lu
W
1 650 M M 650 �l 1� C ELL ` 66° y9° n N
1 ' • 640 650 620 660 12 _
640 640 630 40 670 �' A0 2 F 1ho 12° / 6h6 °3(1 _ Of 69�99 'N° .n o l �, ' , W J
= o 61'A 690 i -'' TIP 6 ` ` \ 0J9 29 9 I b MMW- a a
I \ 740 1 _ 2 ~
660N,
720 / ^
1 OS9 069 6660 6680` ' ��-- 130 DSO f ` b��po , • ` I ae, i /60°ono• / hb° O Lu V ii
°►9 MW 2670
-- - ,38 1 12p b� MMW-42 °BS °t9 / �1 = Lu
o
o ° ` 089 700 --�' 740 y 10° ` bbo 09 �5 �0
••'•• 66 690 1i `° MM — a
1 b •, `' ❑ 680 ♦ 700---''---j30 ^po CELL 2E 0p y ` S OLS
6g0 - - - -740- - - 40 ^� 660 1
\\ MM —5
EXISTING z� 640 ° 5
'Oy°o �0 i'1b �j 0 ^ 0f9 •h 510 �• MMW-12 EXISTING PHASE 0
PHASE 1 EXTENTS 640 b"^° 723° V CELL2C ===o o � 029 0 \ a Q
11 ` 750 n�o in v�'i N 600 _ 'J '� " 3 EXTENTS
O / A° nnn n^ n ` N
O e —0� ----. ` ^°io/ CELL 2A 71gp ^ $o seo y1° 580 •
1 J o
1 69 ,. / 1^4°O 11° 19° 560 14 I J_ 0 co
1 • I 10 1 bo °o0 1 O
�° 1 BS ° ' M M v c
y0� `1 1yp 790 / 009 e ^ OC OAS 9S 560 '� in 13 W Z cV
/ o 029 s _ Z = N
♦ . I 750 760 1b oE9 SS Q W W 1 �
008 100 1q0 069 Oly $4
- � 008 �e9° 1y FUTURE PHASE 6° � � o
- ♦ I 09L C E L L p` / 130 OS9 0�9 570 �
MM - b n 770 2L Pp ` / p�L 1' 12o CELL 2D 099 4 EXTENTS °� o
g00 / 780 09L 1b �0°
790 ` CELL 2B �Ap y00 670 o N bbo o �� °ems s f 1 O („)
90 / ^ 1 ^hOb° I 800 C`�lb° OeL 130 ` 66° 650 b�oRo N ^0 510 V
800 02L 17' 6 099 b �o • _ g ,
jS 1 O 9 �q0 Of9 069 b b011 640°° ► d� W �A
DOB 170 '1 Ogg 6 O 620 029 8 p�p55 ° o o O J
OSL oe� DSO b 099 bbp OT9 OT9 O8 `� boo hb h^ hb 08S V
( 740 I O ! CELL 1 B 4p / 61y°�Op� OS9 by° 009 m
o r9 / 730 O �� 13° / F+'Ap� Of9 63p y
°°` o^9s999 CELL 1A I o6� 12p 620 06S MMW 5
Us
°09 9 690 } 62p° OBS • n 0
— 21 570 ♦ OBS
680 t 0 69p 09 — MMW-1 p � ' `
670 1D�g0 - 0 M W- 1 S 570 09
60
660 ��1 6 �y0 0-- `�06 06S • t1° '� OAS O � ��S S °9S °BS
O!S 0 _
f-
9 I b Ap
6400
O 6 �o 580 hb O 09S y ,� o ,, m Q
10 O b �S 09S ti
630 09,99 b2 / 57 I q 0$ O� oo Og a 09S U ;
p }
° h1 S o ` w
620 t..9 I 6 A° 6 M 580 okco9 55 0.9r�S o ,9S \ , lS �+ n q Q a:\ CL
580 ��9630 o o 5700 \ %� >g 0.95 (V L O Q
0 19 I O p , O� � n
N b2° O O h� i �+ 590 rt. � . �
ADMIN. BUILDING >a j/S///4 600 ° o<S to Q o
MMW- 2Q 610 0 ® ❑ "0,�) O / \ 6T0 23)
J
°Ls LU � Z
600 Q o OAS
5g° g°p X
"All q °° ,' 6 8� W o 0 �
•MMW_ MMW-19 BUILDINGS �� h ^ ° 9 % (((..///�11y}}���� h�° Z Y Q
570 hh ° SCALE 8C yb° Q o
a
I /� _ � ♦ � Z Y
h� SCALE HOUSE o
J Z In
bill
j0 / y9° , ♦ ° ° h $ b� 1 °eS, Lu W O
y LEACH ATE �0 6�° hb yb �8�9 y ~ o L
° LFG—TO—ENERGY cyg0p at 6� '� (f� = of W
y9° TREATMENT y PRODUCTION BUILDINGS �y°01 ,� w z o
BUILDING b�° °r� V o TQ OT zN }
♦♦ 0 0 N .000 o b2° Lc) 2= O
04
56 m
° 04 U a & N
� cu .
0°� 1 0 ° DATE:
SITE hep ° oo b O o .°
5q0 � �9p b b~° p b hQ ybo � h� O
ENTRANCE y1° �6�° b2 63° 1 e o DECEMBER 2020
y2°
h� 620 630
636040 09S 63 SCALE:
N 0 ` OOoSs S- 069 bpi AS SHOWN
DRAWING NO.
REPUBLIC
SERVICES 0 of 1
Figure 4
Phase 5 Extent and Piezometers Locations
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 4
W
O
Q
J
W
z
0
J
Q
N
N
I
O
0
N
a
a
O
0
J
Ln
0
.c
0
a
Q
Q)
co
O
0
N
O
a�
0
0
a
Z�
U
00
O
N
0
a
0
J
I
n
0
cn
0
Q
Q
0
N i
0 120 240 360 EXISTING PROPERTY EXTENTS
SCALE IN F15ET
s
PROPOSED PHASE � \
5 EXTENTS
FEMA 100-YR FLOODPLAIN EXTENT
MAIN
ACCESS ROAD
EXISTING 0&M
BUILDING
� 8on
EXISTING SCALE
HOUSE AND SCALES
w
O
I;-.oPz-2
000
O '
�'
P Z
/ FEMA 100-YR FLOODPLAIN EXTENT
I � .
F A,�
'APZ
1 `
\�\ PROPOSED BORING AND
\` \ GW PIEZOMETER LOCATION �.
(TYP. OF 12)
s6, ` � SEDIMENT
� BASIN
tS00
\ \
PROPOSED PHASE 5
(12 ACRES)
C��
in
A PZ-
0
PZ-7
PZ-12
EXISTING
CELL 113
I
Lfl o PZ-
00
o Lr) I
0
0
I
MM =22 I
p
�pz—1 1
coo
co
\ I 90
\ \ 1
' \ \ o0 0
\ \ Of
\\ \\ Ld
' cn
Ld
EXISTING \\ \\
CELL 2L
aaaaaa
ol
♦V^^
V
O
z J
00 0
> o \\ \\ Q Q LV
j \\ Z� >0
\\ WO JO
\� �J j
o W cp [L
0
�s ��o ► W Z = O
0 1 W a.
ap JZW
�N o ` j a w �.w
O 1 a W
\ w Lo
` J
W ~
~ U V♦
H LWLLI Q
V) a_ a
/ / / /
O 0
/ / / I o 0
0ID
�
ko
(oU r t0 w b
1 /
CSC 5B
0�
0�
o
N L �o
0 0
IMW 17 /
EXISTING
CELL
213
o
�O 'k 19\
00
a
\
/
J
N
c
Z04co
p
W
V
U c
z c�
z
JLu
�2o
2
c'4
co
O
V
coCD
w
c
Lo
I
U
ti
0
0
mQ
U
0
Q
cD in in 7
❑ 1
3
�
m
Lu
N L
o
a
N Lq
NaLa Z
W >JX
W �oQ
aLL
C)
z=o
m
m
a �
7
0
0
_
U
CD
Z QzL o
W W � 0
H F-
= OJ W
�wz
"'
o
V
�_U =
o
zomU)
Q
Nao
z
'
of
o
>
DATE:
SEPTEMBER 2020
SCALE:
AS SHOWN
DRAWING NO.
01
of 1
Figure 5
Geological Cross Section - A to A'
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 5
North South
600 600
595 -� /rim ■11 L1 1 595
590 -� I I -.ovM I I I 1- :1:1: 4 1:. 4 1:. 4 1:. 4 M� 590
585
/\ r\ r\
/\ /
585
580
r jl� jl� jl� j� j j j� j� j� j� j`
j� jt
580
575
_
575
r Pb 3\ r\ r\ r\ r\ r\ r\
Z
_ t
r�r\r�r�r�r�r�r�r�r�r�r�r�r�r�r
�r�r�r�r�r�r�r�r�r�r�r�r�r�r
PZ-11
570
570
a
r r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r
\r\r\r\r\r\r\r\r\r
>
t
w
J
_
� S r rr\r—r�r�r�r�r�r�r�r�r�r�r�r�r�r�r
w
565
/ r\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /
PZ-5
565
r r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r
560
560
_ �i � _ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ �
r\ \ \ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r
`I_
� _ � _ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_
r\ \ \ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\
555
555
r\ \ \ r\ r\ r\ r\ r\ r\ r\ r\ r
_ mot_ _ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_
550
\t_ t t_ t_ t_ t_ t_
550
_ _
r\ r r\ \ r\ r\ r\ r\ r\
545
\ \r /\ \/\/\/
545
\ r\ r\
I_ I_
\I \I
540
_
540
MW-2B
0 50 100 150 260 250 300 350 400 450 500 550 600 650
700 750 800 850 900 950 1000 1050 1100
1150
CMS Landfill - Permint No. 1304
Phase 5 Expansion
Design Hydrgeologic Report
Concord, NC
Project Number - 02201314.91
Figure 5 Topsoil
- SILTY SAND
GEOLOGIC CROSS SECTION
- Section A to A' SAND
® SILT
ROCK
isW-A'.cro
DISTANCE (Feet)
LEGEND
Groundwater Surface
Bedrock Surface
Figure 6
Geological Cross Section - B to B'
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 6
North
590
585
580
575
..:
570
Z
565
����_\IIIIIIIIIIIIIIIIIIIIIII_6L
>
P
W
560
555
550
545
_
PZ-6
540
CMS Landfill - Permint No. 1304
Phase 5 Expansion
Design Hydrgeologic Report
Concord, NC
Project Number - 02201314.91
Figure 6 Topsoil
- GEOLOGIC CROSS SECTION SILTY SAND
- Section B to B' SAND
® SILT
EE ROCK
is\B-B'.cro
DISTANCE (Feet)
LEGEND
Groundwater Surface
Bedrock Surface
South
r 590
585
580
575
570
PZ-12 �- 565
560
555
550
545
540
Figure 7
Geological Cross Section - C to C'
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 7
East West
590 590
585 _ 10714 f 3 l IJ TJ : F 3J— 585
580
580
575
575
I_\I_\I\I_\I_-570
MW-25
565
_ I _ I_
PZ-5
565
Zq.
560
560
LU
uJ
555
/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\
555
550
/� i� i� i� i� i� il— \ /� i� i� i� i� i� i� il� l�
550
545
_ I_ I_ I_ I_ I_ I_ I_ I_ _ I_ I_ I_ I_ I_ I
545
540
I
IIIIII_ III
540
535
\
I
\ / \
I
535
MW-10A
530
530
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1
DISTANCE (Feet)
CMS Landfill - Permint No. 1304
LEGEND
Phase 5 Expansion
Design Hydrgeologic Report
Figure 7
Topsoil
- SILTY SAND Groundwater Surface
-
SAND
Concord, NC
GEOLOGIC CROSS SECTION
Project Number - 02201314.91
'
Section C to C'
® SILT Bedrock Surface
ROCK
12-29-2021 CAUsemW504jth\DesktopTZ Logs\cross sections\C-C.—
Geological Cross Section - D to D'
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 8
East West
585
585
580
77777
�
Ifflimy
1580
575
575
570
i. ''�I_ �I �I_ �I_
570
565
565
560
560
0
...
uJ
..... .:.:..i :.
550
/\ /� it
/� it il_ I_
J
550
M W -22A
I—
545
. _ .I_I—
/� /\ /\ /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /
.I
/
545
\
/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /
PZ-6
540
I—
I
535
\
I— �I— �I_ �I_ �I_ �I— �I-
\ /\ /\ /\ /
535
MW-10A
530 530
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400
CMS Landfill - Permint No. 1304
Phase 5 Expansion
Design Hydrgeologic Report
Concord, NC
Project Number - 02201314.91
Figure 8 Topsoil
- SILTY SAND
GEOLOGIC CROSS SECTION
- Section D to D' SAND
® SILT
ROCK
,s\D-D'.cro
DISTANCE (Feet)
LEGEND
Groundwater Surface
Bedrock Surface
Figure 9
Geological Cross Section - E to E'
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 9
East West
600 --1 �- 600
595 -4 --.00rr7 I I I I I= F 595
590 -4 --wogOrf I I I I I I I I I I I 1t: F t: F t: F. t: F. t: ' I'M IF 590
585
/ \ / \
585
580
iI� iI�
580
\ \ \ \ \ \ \ \ \ \ \
I
I I I I I I I I I I I I
\ \ \ \ \ \ \ \ \ \ \ \ \
I
5757
I I I I I I I I I I I I I I
575
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \
I I I I I I I I I I I I I I I I
Z
y;
�I �I �I �I �I �I �I �I �I �I �I �I �I �I �I— �I— �I
570
570
_
__:I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—
LU
W�I-
565
\ /\
\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /
\ d /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /
565
560
_ \
- I
I
-560
555
_ \I
— I— I— I— I— I— I— I— I— I— I— I— I— I— I— — I— I— I— I— I— I— I
555
550
I_\I
I—�I—�I—�I—�I—�I—�I—�I—
550
—�I—�I—�I—
545
I_\I
\ /\
I_
I—
\ /\ /
I_
545
\I
\ /\
�I
PZ-8
1540
540
CMS Landfill - Permint No. 1304
Phase 5 Expansion
Design Hydrgeologic Report
Concord, NC
Project Number - 02201314.91
100 1
Figure 9 Topsoil
- SILTY SAND
GEOLOGIC CROSS SECTION
- Section E to E' SAND
® SILT
ROCK
is\E-E'.cro
DISTANCE (Feet)
LEGEND
Groundwater Surface
Bedrock Surface
Figure 10
Cross -Section Transect Map
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 10
N / �
o
80 0 80 60
SCALE IN FEET
A I
W- A
-2
EXISTING PROPERTY EXTENTS
I I e
� I
FEMA 100-YR FLOODPLAIN EXTENT
1
PZ-2 L
EXISTING SCALE
HOUSE AND SCALES
AD °
EXISTING 0&M O
BUILDING ❑
PZ-
LEACHATE
POND '
C
D
FEMA 100-YR FLOODPLAIN EXTENT
PZ-10
A6-PZ-8
❑ ❑
PZ-7
L
` Pz-1z
B❑
SEDIMENT
BASIN
C'
M -25
PZ-5
MW-21
TII
-22
M W-22
D'
1
PZ-9�
l
Pz-11 E'
.4. A_1_
LEGEND
soo - 10 FOOT ELEVATION CONTOUR
- FACILITY BOUNDARY
- EXISTING CELL BOUNDARY
- PROPOSED PHASE 5 BOUNDARY
A AF1 - NORTH TO SOUTH TRANSECT LINE
Y m
A A❑ - EAST TO WEST TRANSECT LINE
IL PZ-6 - PHASE 5 PIEZOMETER LOCATION
AL MW-25 - EXISTING GW MONITORING WELL LOCATION
Z
a
NOTES:
1. SURFACE CONTOURS FROM DECEMBER 9, 2020 AERIAL
FLYOVER BY COOPER SURVEYING, INC.
r
�
�
aaaaa
O
z
n
O
W
L)
Ill a
U
o
°
cn 2
> 00
j O CELL 2A
°
O U
J O
' S
L) z
LL W
Uz
aO
°
a
Q
O
J }
OJ
=
`
U) z
U w
O
J
F
�
VJ
Q `
w
W
cn
x
�
2
n
a
a.
0
Q
g
J
`
0
G
Q
W
L)r
z
W
a
J
w
Q
O ao
U r
O
U
w
U
CD
�
o
M
n � ^
W N N
H
/
� 7 N O
U1 a O
LJ 9 '7'
W caLL
0a
N G'',
Z o ^
L
Z JO
a Z Lo
= ui
W H g
m
d
co3. S 111
M
x
cc Z
0
o
�V/ N
V/Lo =
NUa
8 t
'
DATE:
DECEMBER 2021
SCALE:
AS SHOWN
REPUBLIC
DRAWING NO.
SERVICES
0
of i
I
Figure 11
Groundwater Contour Map - April 2021
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 11
sm w
0 - 0 200 a00 600 1200
TOM
g „•. t C� Scale in Fee[
Graphic Scale t inch = 600 fee[
3.. to wow. a ELL 1A C,s .. S' { ❑
f- � r LEGBd
SP Or
S' Rav n+o-J,vine �1x.xn
SBS T9 tr IM1m+I
�' � + — �see� vpnsw�uak Srr�+ywc�.rl�uq
1 ` Gaen�Hv�x Arralwn�
1� swlw w.wr s.npW�ylm��on Noororl
CLOM IaraMlcH iwudav
CELL is
1r ,CELL
sraao
uvr.l.a
L Pit
SKI t
;.+,
C
t 6rSii r
1
1'
-
r �YP 2 P t re
TI, EX7 ING
MAI
BB9.91
1 1� SVao? .71 PIi72
1
l �tZ R &"WA0 SS1J 1iA' '
•5 _
st
Mw- eatr• V I what CIE J
SR.9 SB9�5 M
1� A,-
4 4 CE
�� Spa 15
ee
� iilf i
` sAe.+L,
J ETT Figure 1
e �°"° First Semi -Annual 2a21 Potentiometric Surface Map
fht¢e0, M 6i3N
C OvNRS UJ ML ET hl NAG ��
Charlotte Motor Speedway Landfill V, Harrisburg, North Carolina
Figure 12
Seasonal High Groundwater Surface Contour Map
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 12
i
cn
z
0
Z:
0
Q
I
0
N
O
U
N
Q)
a�
0
Q_
Q
0
L
0
0
c
W
0
0
Q
0
0
QL
rn
0
N
O
cn
0
a�
C�
0
I�
U
Q3
0
N
O
c
v
I
O
N
O
co
Q
O
0
I
I
N •
El
� So
80 0 80 1160 60
SCALE IN FEET
EXISTING PROPERTY EXTENTS
FEMA 100-YR FLOODPLAIN EXTENT
�p o
(576.27) \ \
W-2A 1 \ \
2B -� \
Ids I\
�p s9 TOO
PROPOSED PHASE (575.50)
5 EXTENTS PZ- 1
• 1 \
1 1
�• 1 I 1
1 '
I
� , ♦ /'� � BORING AND GW ..
\ Sao PIEZOMETER LOCATION 1
(TYP. OF 1 1)
DAD
S9
o,
sip
S80\
�. PZ-2 1
\� (572.50)
EXISTING SCALE
HOUSE AND SCALES .. 1
�s9p
EXISTING 0&M
BUILDING
LEACHATE
POND
O
5� 0
100-YR
01
J
0
O
0
Z-4
1 (576.08)
/C01
x�
0 PZ-6
(576.8) Q
--�- -44-- - --�--�
PZ-10
577.79)
T
T `so
'moo
0
I \ \
(583.46)�
M W7- 25
LEGEND
800 - 10 FOOT ELEVATION CONTOUR
- FACILITY BOUNDARY
• - EXISTING CELL BOUNDARY
- PROPOSED PHASE 4 BOUNDARY
6� TO Oo l0 �O
O ° 580 - SEASONAL HIGH GROUNDWATER (SHGW)
2-FT ELEVATION CONTOUR
-51-0- - - - - SEASONAL HIGH GROUNDWATER (SGHW)
2-FT ELEVATION CONTOUR
EXISTING
CELL 1 B W.-- SHGW FLOW PATH
A PZ-6 - PHASE 5 PIEZOMETER LOCATION
(544.50) (EST. SHGW ELEVATION)
MW-25 - EXISTING GW MONITORING WELL LOCATION
(592.31) (EST. SHGW ELEVATION)
NOTES:
1. SURFACE CONTOURS FROM DECEMBER 9, 2020 AERIAL
FLYOVER BY COOPER SURVEYING, INC.
2. EXISTING GROUNDWATER WELL LOCATION SHGW
ELEVATIONS ARE FROM SEMI-ANNUAL GW MONITORING
DATA FROM 2015 THROUGH 2O20.
3. PZ-9 BORING WAS DRY WHEN DRILLED, NO
GROUNDWATER ELEVATION WERE RECORDED.
EXISTING TO ° CELL 2A
CELL 2L
O
,sp
cop
\ � o
(� \ C �10 °
V.
O O
%) v `-
P -5 z \
\ \
(583.46) 1 \
W— 2 I cn
MW 2A I o
� ' ► I 1
I ' I
I� 1
II I
I I I
PZ-7z�
581.06) I I 1
1 I MI �
1 o
cil
o CDP Z— 9 mu,cn
L\ N CD co
Lo . i co
%o ID co
I Ko
PZ-8 I
`(572.02)
\
Z-11 I
zt
(583.94)
AP -12
000
�--�.. : /
SEDIMENT
BASIN
Sao
s)o
ul BMW--21
J ( )
CD cfl
co
CD
in
' o 0
O O'
O
O O f ON
^OO ^O
(1J �D �D ko
o 0
J 0� o
co
o �: l
i
aaaaa�
w
O
�a
Lu
Z
O
ip
O
�z
J
JO
O
=
— LU
LL O
c� W
o O
= c)
Z o
Q LL
J >_
Z
O c
2
Z
a
Lu
V
w
Lu
0
F_
Ln
F-
Ld
F_
w
Lu
w
o
a
=
U'
a
a
Q
>
J
W
0
o
co '*
p
a
Q
Lu
W
U c
z N
`
J
tq
�
W04
O c
z ~
C)
c
o
z
w
Ln
J
U
REPUBLIC
SERVICES
CD
I�
m Q
r
M
>
Of
m
M C
E N Lo
o
a
CL
♦ /'�
V/ 1-1
M N
O
Z
L
W > J X
Lu oaw
o
0
Z
_ oYcvc
m
m
J
o
0
J O 0
Z az
Wwho
00
00
cn _o, Lucr
M
z
V NQO
Z�r
V/ NULo
a
0
0
z
a
o
DATE:
DECEMBER 2021
SCALE:
AS SHOWN
DRAWING NO.
01 1
of
Figure 13
Bedrock Surface Contour Map
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Figure 13
N
C�
0
z
0
J
E
Q
0
N
I
N
0
N
O
V
N
0
3
OO
0
Q
a
0
c
0
v
O
w
.c
0
4-
0
Q
0
co
0
QL
rn
0
N
O
cn
C�
O
I�
U
CQ
0
N
O
cn
0
J
v
I
O
N
O
s
O
U
ct
0
ER
0
N �
I ♦
♦
El
o � �
80 0 80 160
SCALE IN FEET,
h
W-2A
_
(546.92)
OV
EXISTING PROPERTY EXTENTS
� •./ / /� �. � �- 'moo
/ PIZ_
(564.87) 1
l FEMA 100-YR FLOODPLAIN EXTENT // / ^�/ ♦ / e
l000l
574 ♦ /
/
s8o� / C / ♦ l
LEGEND
800 - 10 FOOT ELEVATION CONTOUR
- FACILITY BOUNDARY
• - EXISTING CELL BOUNDARY
= � � � = - PROPOSED PHASE 5 BOUNDARY
�� ,lp �O
° ° TOP OF BEDROCK Y
570 - U m
2-FT ELEVATION CONTOUR
-560- - - - - ESTIMATED TOP OF BEDROCK
2-FT ELEVATION CONTOUR
0 PZ-6 - PHASE 5 PIEZOMETER LOCATION o
(544.50) (EST. BEDROCK ELEVATION) w
U
MW-25 - EXISTING GW MONITORING WELL LOCATION o
(568.20) (EST. BEDROCK ELEVATION)
NOTES:
1. SURFACE CONTOURS FROM DECEMBER 9, 2020 AERIAL w
FLYOVER BY COOPER SURVEYING, INC. Q
0
2. PZ-9 WAS DRY AT REFUSAL, NO DATA WAS Ld a a a a a a
COLLECTED AT THIS LOCATION.
� \ O
W
EXISTING �� doo o CELL 2A w > O
CELL 2L �. �° Q J p
° — w
,So ? 2 LL (�
_no
0
EXISTING SCALE �� / ` o� ° ♦ 0 J =
HOUSE AND SCALES / / 1 �9 °0 0 L) Z
�� o ♦ W (�
AD ° / �j o W
6°0 ° �p bi
J
EXISTING 0&M / `9p sp w �_
BUILDING / _ Q ~ �
O(571.14) M —25 ♦ dip o Q wLLI
S70 (568.20) No ♦ w o
I--Q
/ cif _
h
564 l � (575.20)
LEACHATE 562
POND _ 560 Q
- _S58 WAN- 22
556 - QW-2/2A ` J o
/ ♦ J 0 N
(554.44) / LL Q U CD
N
' 556 / ♦ W z ,
558 / / Z = p w
Sao ' Shp / _ -! _ J w O c
1 ,�p 562_ / ■ ... n - f
S
moo,
S8o
D Or 01-
564 / / V C U
}
PZ-7 z
Ln
/ (564.86) / / w
/ 566
PZ-10 // l
/ (570.02) /
• / cry —
/ ZI cDIle CD
_
CD CD
^ LV N o a
GO
/ tv b �b�O I O O ^O (p l0 ^ cn N
/ PZ-8 0 h o Lo �0 0
ro
W > —i c�
1 00YR FLOODPLAIN EXTENT PZ-11 W o W LL U o
BORING AND GW ` p (587.42) I EXISTING Y U r. r r a
Z a=0 z m
PIEZOMETER LOCATION \ - I CELL a o
(TYP. OF 12) 566��PZ 1 ��
(565.99) I _ 2B Q Z 0
PROPOSED PHASE "
5 EXTENTS �` � W ~ n00
-564'
lw �6p SEDIMENT o
BASIN .
Sao ,
S>0
� S
MW-21
(559.43)
CD u,
co
CD
I In
° u; M
V NQ0 ON
zN � o m
N a. 0 z
U)
a o
' DATE:
DECEMBER 2021
SCALE:
AS SHOWN
REPUBLICDRAWING NO.
SERVICES
1 01 of 1
Table 1
Rock Core Observations Summary
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Table 1
Table 1
Rock Core Obersavtions Summary
CMS - Phase 5 DHR
Permit No. 1304-MSWLF-1992
Boring/ Well ID
Phase
Lithology
Run Number
Run Interval feet
Recovery REC; %
Rock Quality Designation RQD;
PZ-2
5
Diorite
1
19-23
30
0
2
23.5-28.5
25
11
3
28.5-30.3
100
44
4
30.3-35
38
0
PZ-5
5
Diorite
1
6.5-1 1.5
90
90
2
11.5-15.1
97.2
94.4
3
15.1-16
100
100
4
16-16.9
98.9
98.9
PZ-6
5
Diorite
1
24-29
67
45
2
29-34
62
38
3
34-39.5
45
25
PZ-8
5
Diorite
1
13.5-18.5
5.4
28
2
18.5-26.
13.3
13.3
3
26-31.5
100
63
4
31.5-38.0
49
49
PZ-11
5
Syenite
1
10-15
90
92
2
15-18
45
20
3
18-21.5
40
17
4
21.5-25.5
85
82
Notes:
UND = Unidentified
Table 2
Phase 5 Monthly Piezometer Groundwater Data Summary
CMS LF V Phase 5 www.scsenciineers.com
Design Hydrogeologic Report Table 2
Table 2
Phase 5 Monthly Groundwater Data Summary
CMS Landfill Phase 5 DHR
Permit No. 1340-MSWLF-1992
Measured Depth to Groundwater from Top of Casing (TOC)
Well -ID
Northing
Easfing
Record
Survey
Ground
Elevation
(feet)
Record
Survey Top
of PVC Pipe
Elevation
(feet)
Well Depth
(TOC)
(feet)
Casing
Above
Ground
Surface
(feet)
12/2/2020
(feet)
1/20/2021
(feet)
2/4/2021
(feet)
3/5/2021
(feet)
4/5/2021
(feet)
5/4/2021
(feet)
6/9/2021
(feet)
7/6/2021
(feet)
8/2/2021
(feet)
9/2/2021
(feet)
10/7/2021
(feet)
11/5/2021
(feet)
PZ-1
587,860.25
1,502,612.78
581.37
583.88
18.90
2.51
8.33
9.00
8.80
8.75
8.92
9.75
10.05
9.88
10.12
10.50
11.38
11.47
PZ-2
587,656.86
1,502,523.12
578.47
580.57
20.00
2.10
8.07
8.86
8.41
8.45
8.55
9.35
9.55
9.35
9.80
9.87
10.65
10.71
PZ-3
587,678.19
1,502,828.49
589.15
591.45
15.00
2.30
9.95
10.28
10.21
9.98
10.12
10.58
11.03
11.42
11.81
12.10
12.58
12.95
PZ-4
587,496.98
1,502,614.87
582.64
585.01
12.60
2.37
9.00
9.56
9.26
8.93
9.08
10.18
10.95
11.22
11.52
11.65
12.15
12.52
PZ-5
587,427.97
1,502,927.98
582.7
584.83
8.50
2.13
3.58
4.27
3.85
4.93
4.22
5.26
5.96
6.25
6.43
6.24
6.40
6.58
PZ-6
587,348.76
1,502,681.77
583.44
585.25
38.40
1.81
8.74
9.10
8.80
8.45
8.64
9.56
10.42
10.90
11.25
11.30
11.75
12.06
PZ-7
587,224.71
1,502,895.62
584.86
587.46
21.10
2.60
7.05
7.35
6.80
6.40
6.79
8.37
9.04
9.44
9.63
9.40
9.68
9.77
PZ-8
587,063.00
1,502,507.88
583.32
585.82
39.60
2.50
17.25
15.70
15.20
13.80
14.03
15.30
16.45
17.28
17.88
18.23
18.61
19.09
PZ-10
587,201.81
1,502,697.77
588.52
591.04
21.40
2.52
15.16
14.85
14.62
13.25
13.82
15.13
16.11
16.63
16.95
17.25
17.65
18.00
PZ-11
587,002.90
1,503,054.11
597.42
599.69
27.00
2.27
17.42
17.38
16.53
15.75
16.66
18.27
19.21
20.02
20.65
20.90
20.93
21.07
PZ-12
586,963.50
1,502,787.22
585.99
588.53
21.00
2.54
14.66
14.80
14.10
13.10
13.63
15.15
16.30
17.02
17.50
17.75
18.08
18.20
Table 3A
Phase 5 Geotechnical Lab Data - Grain Size Distribution and Soil
Classification
CMS LF V Phase 5 www.scsenciineers.com
Design Hydrogeologic Report Table 3A
Table 3A
Phase 5 Geotechnical Laboratory Data
Grain Size Distribution and Soil Classification
CMS Landfill Phase 5 DHR
Permit No. 1304-MSWLF-1992
Boring
Sample
Depth (ft)
Sample
Type
%Gravel
(>4.75 mm)
%Sand (4.75 -
0.07)
mm)
% Silt (0.075 --
mm)
mm)
%Clay(0.002
mm>)
Liquid Limit
(%)
Placticity
Index (%)
USCS
Class
Effec&e
Porosity (%)
Moisture
Content
USDA
Hydrogeologic
Description
Parent
LiThologic Unit
ST-2
1 -3
UD
11.88
63.48
13.31
11.33
29
9
SC
26.9
15.6
Sandy loam
Diorite
ST-4
1 - 3
UD
2.12
61.06
18.29
18.54
39
23
SC
42.0
27.6
Sandy loam
Diorite
ST-5
1-3
UD
6.64
62.58
15.63
15.16
32
18
SC
30.0
15.2
Sandyloam
Diorite
ST-8
1-2
UD
0.02
40.82
32.13
27.03
52
26
CH
60.9
37.6
Clay loam
Diorite
ST-11
1-3
UD
0.55
21.05
24.45
53.95
70
37
CH
50.7
32.2
Clay
Syenite
PZ-1
1-3
BULK
5.69
50.23
23.98
20.1
35
18
SC
39,7
17.0
Sandy clay loam
Diorite
PZ-2
2-4
BULK
1.73
47.32
23.51
27.44
39
21
CL
45.1
27.3
Sandy clay loam
Diorite
PZ-3
4-6
BULK
8.27
65.63
15.29
10.81
35
19
Sc
21.8
18.0
Sandy loam
Diorite
PZ-4
2-4
BULK
1.58
58.68
20.34
19.40
33
13
SC
34.7
16.6
Sandy loam
Diorite
PZ-5
0-2
BULK
1.52
69.53
15.52
13.43
NP
NP
SM
24.4
13.5
Sandy loam
Diorite
PZ-6
0-2
BULK
2.00
28.68
30.09
39.22
41
20
CL
65.5
29.6
Clay
Diorite
PZ-7
2-4
BULK
2.03
73.38
18.02
6.57
NP
NP
SM
19.2
18.1
Sandy loam
Diorite
PZ-8
4-6
BULK
0.76
54.31
28.06
16.87
45
22
CL
38.3
28.9
Sandy loam
Diorite
PZ-10
0-2
BULK
2.16
34.94
24.26
38.64
57
34
CH
58.6
23.5
Clay loam
Diorite
PZ-11
6-8
BULK
0.89
42.59
31.79
24.73
43
22
CL
48.9
20.7
Loam
Diorite
PZ-12
1-3
BULK
0.00
59.48
26.67
13.85
41
13
SM
29.5
13.0
Sandy loam
Diorite
Notes:
UD = Undisturbed
NP = Non -Plastic
_1_X
I
J
Table 3B
Phase 5 Geotechnical Lab Data - Grain Size Distribution and Soil
Classification
CMS LF V Phase 5 www.scsenaineers.com
Design Hydrogeologic Report Table 3B
Table 3B
Phase 5 Geotechnical Laboratory Data
Undisturbed and Remolded Bulk Sample Conductivity
CMS Landfill Phase 5 DHR
Permit No. 1304-MSWLF-1992
Undisturbed Samples
Boring
Sample Depth
(it)
Dry Unit Weight (g)
Wet Unit Weight (g)
Total Porosity (%)
Specific Gravity
Average
Permeababiltiy
cm sec
ST-2
1-3
400.20
441.81
21.80
2.68
1.8E-06
ST-4
1-3
366.8
431.2
34.50
2.70
2.6E-05
ST-5
1-3
92.27
100.9
27.60
2.68
4.9E-06
ST-8
1-2
280.9
336.0
53.70
2.68
1.3E-06
ST-11
1-3
281.15
328.3
73.60
2.68
8.4E-06
Bulk Samples (Remolded)
Boring
Sample Depth
Dry Sample (g)
Moisture Content (%)
Total Porosity (%)
Specific Gravity
PZ-1
1-3
53.64
17.0
39.70
2.68
PZ-2
2-4
37.76
27.3
45.10
2.68
PZ-3
4-6
26.50
18.0
21.80
2.68
PZ-4
2-4
48.76
16.6
34.70
2.68
PZ-5
0-2
60.76
13.5
24.40
2.68
PZ-6
0-2
42.87
29.6
65.50
2.68
PZ-7
2-4
43.82
18.1
19.20
2.68
PZ-8
4-6
48.33
28.9
28.90
2.68
PZ-10
0-2
37.73
20.7
23.50
2.68
PZ-11
6-8
34.85
23.5
20.70
2.68
PZ-12
1 -3
38.07
13.0
13.00
2.68
Table 4
Hydraulic Conductivity Summary
CMS LF V Phase 5 www.scsengineers.com
Design Hydrogeologic Report Table 4
Table 4
Phase 5 Data for Hydraulic Conductivity
CMS LF - Phase 5 DHR
Permit No. 1304-MSWLF-1992
Location
H(0)
H
b
Kv/
Kh
d
L
transducer
depth (T)
r(C)
r(w)
r(Sk)
casing radius
corrections (BR-1976)
dispalcement
filter value
solution
n(e)
H(0)*
PZ-11
4.89
5.86
5.86
1
12.77
15
26.7
0.125
0.125
0.167
0.30
5.86
-21.93
conf. Bower -Rice sing. well method
PZ-8
7.38
26.85
10
1
29.20
10
34.2
0.125
0.125
0.167
0.30
7.38
-12.35
conf. Bower -Rice sing. well method
PZ-7
1.95
13.05
13.05
1
7.6
15
17.6
0.125
0.125
0.167
0.30
1.95
-9.55
unconf. Bower -Rice sing. well method
PZ-6
1.33
29.63.
10
1
31.3
10
36.31
0.125
0.125
0.167
0.30
1 1.33
-11.68
conf. Bower -Rice sing. well method
Location
K (cm/sec)
PZ-11
1.175E-05
PZ-8
1.214E-05
PZ-7
1.589E-05
PZ-6
1.432E-03
Table 5
Vertical Gradient Summary
CMS LF V Phase 5 www.scsengineers.com
Design Hydrogeologic Report Table 5
Table 5
Vertical Gradient Summary
CMS Landfill Phase 5 DHR
Well ID/Location
Well Screen
Top Elevation
Well Screen
Bottom Elevation
10/12/2020
Groundwater Elevation on Indicated Date
4/4/2019 10/1/2018 4/16/2018
10/ 4/17/2017 10/24/2016 4/13/2016
MW-2A
573.17
561.17
576.27r573.75!
570.41
574.37
574.60
574.02
570.79
572.42
570.60
572.52
Alluvium
Saturated Midpoint Elev.
568.72
565.79
567.77
567.89
567.60
565.98
566.80
565.89
566.85
MW-2B
550.92 540.92
575.71
570.23
574.08
574.17
573.52
570.57
572.18
570.37
572.16
Bedrock
Saturated Midpoint Elev.
545.92
545.92
545.92
545.92
545.92
545.92
545.92
545.92
545.92
Phase 5 tloodplain
Vertical Gradient
0.059
0.045
0.042
0.047
0.045
0.056
0.044
0.045
0.044
0.050
MW-22
581.21 571.21
582.36
582.43
579.03
580.81
580.94
580.46
579.01
580.36
581.62
580.79
Alluvium
Saturated Midpoint Elev.
MW-22A
562.53 1 557.53
582.01
581.03
579.12
580.60
580.52
580.19
579.02
580.18
580.69
580.33
Bedrock
Saturated Midpoint Elev.
560.03
560.03
560.03
560.03
560.03
560.03
560.03
560.03
560.03
560.03
Phase 5 (loodplain
Vertical Gradient
0.019
0.080
0.0004
0.013
0.022
0.016
0.004
0.012
0.044
0.024
Notes: Vertical Uraalents caIculatea using LVA Un-line tools torsite Assessment calculation -Vertical Gradient. nttps://www3.epa.gov/ceompubi/leam2model/part-two/onsite/vgmdient.ntmi
Table 6
Base Grade Separation Table
CMS LF V Phase 5 www.scsengineers.com
Design Hydrogeologic Report Table 6
Table 6
Proposed Phase 5 Liner System Base Grade Vertical Separation
CMS Phase 5 DHR
Permit No. 1304-MSWLF-1992
WELL ID
Ground
Elevation(')
(feet amsl)
ESTIMATED (feet amsl)
LINER SYSTEM BASE GRADE
ELEVATION
ESTIMATED LONG TERM SEASONAL HIGH
GROUNDWATER
TOP OF BEDROCK
Depth BGS
(feet)
Elevation
(feet amsl)
Vertical
Separation
(feet)
Depth BGS
(feet)
Elevation
(feet amsl)
Vertical
Separation
(feet)
PZ-1
581.37
594.04
5.87
575.50
18.54
16.50
564.87
29.17
PZ-2
578.47
Outside Phase 5 Limits
5.97
572.50
-
19.00
559.47
-
PZ-3
589.15
593.14
7.65
581.50
11.64
13.50
575.65
17.49
PZ-4
582.64
585.78
6.56
576.08
9.70
11.50
571.14
14.64
PZ-5
582.70
592.89
1.45
581.25
11.64
7.50
575.20
17.69
PZ-6
583.44
585.69
6.64
576.80
8.89
29.00
554.44
31.25
PZ-7
584.86
589.58
3.80
581.06
8.52
20.00
564.86
24.72
PZ-8
583.32
581.19
11.30
572.02
9.17
13.50
569.82
11.37
PZ-10
588.52
584.68
10.73
577.79
6.89
18.50
570.02
14.66
PZ-11
597.42
593.01
13.48
583.94
9.07
10.00
587.42
5.59
PZ-12
585.99
586.21
10.56
575.43
10.78
20.00
565.99
20.22
MW-2A
577.67
Outside Phase 5 Limits
1.40
576.27
-
30.75
546.92
-
MW-10
575.90
Outside Phase 5 Limits
16.95
558.95
-
32.23
543.67
-
MW-21
579.43
Outside Phase 5 Limits
8.01
571.42
-
20.00
559.43
-
MW-22
583.71
594.62
0.25
583.46
11.16
13.00
570.71
23.91
MW-25
589.00
594.84
5.36
583.64
11.20
20.80
568.20
26.64
(1) Surveyed ground elevation at the time of well installation.
BGS = Below ground surface.
amsl = above mean sea level