Loading...
HomeMy WebLinkAbout1304_Cabarrus_CharlotteMotorSpeedwayV_MSWLF_Phase5_DesignHydro_FID1628606_20211230Design Hydrogeologic Report Charlotte Motor Speedway Landfill V Phase 5 Permit No. 1304-MSWLF-I992 R REPUBLIC qjOA.� SERVICES BFI Waste Systems of North America, LLC. (a wholly owned subsidiary of Republic Services, Inc.) 5105 Morehead Road Concord, NC 28027 02201314.91 1 December 29, 2021 2520 Whitehall Park Drive, Suite 450 Charlotte, North Carolina 28273 (704) 504-3107 CERTIFICATION This Design Hydrogeologic Report has been prepared by a qualified geologist who is licensed to practice in the State of North Carolina. The report was prepared based on firsthand knowledge of site conditions and familiarity with North Carolina solid waste rules and industry standard protocol. This report was prepared in general accordance with North Carolina Solid Waste Rule 15A NCAC 13B .1623. Jared T. Hamela Wyr jai Senior Proiect Geoloqist Date: December 29, 2021 NOT VALID UNLESS THIS DOCUMENT BEARS THE SEAL OF THE ABOVE -NAMED LICENSED PROFESSIONAL CMS LF V Phase 5 www.scsenain ers.com Design Hydrogeologic Report i Table of Contents Page Report Content Cross -Reference Index for Applicable North Carolina State Solid Waste Management Regulations....................................................................................................... iv 1.0 INTRODUCTION .............................................................................................................................1 1.1 Physical Setting........................................................................................................................1 1.2 Geologic Setting........................................................................................................................1 1.3 Hydrogeologic Setting..............................................................................................................3 1.4 Investigation History.................................................................................................................3 1.4.1 Initial Phase 1 Site Investigation................................................................................3 1.4.2 Phase 2 Cells A-E DHR................................................................................................4 1.4.3 Phase 2 Cells F-H DHR................................................................................................4 1.4.4 Phase 3 Cells I, J, K, and M DHR................................................................................4 1.4.5 Phase 4 DHR................................................................................................................4 2.0 PHASE 5 LANDFILL INVESTIGATION ACTIVITIES............................................................................5 2.1 Borehole Drilling.......................................................................................................................5 2.2 Rock Coring...............................................................................................................................7 2.3 Geotechnical Analysis..............................................................................................................7 2.4 Groundwater Level Measurements.........................................................................................8 2.5 Aquifer Testing..........................................................................................................................8 3.0 HYDROGEOLOGIC EVALUATION....................................................................................................9 3.1 Groundwater Flow Direction Assessment...............................................................................9 3.2 Groundwater Elevation Evaluation..........................................................................................9 3.3 Vertical Gradient Assessment.............................................................................................. 10 3.4 Groundwater Flow Rate Calculations................................................................................... 10 3.4.1 Horizontal Hydraulic Gradient.................................................................................. 10 3.4.2 Hydraulic Conductivity.............................................................................................. 10 3.4.3 Porosity......................................................................................................................11 3.4.4 Groundwater Flow Rate............................................................................................ 11 3.5 Top of Bedrock Evaluation.................................................................................................... 11 3.6 Vertical Separation Assessment........................................................................................... 12 4.0 WATER QUALITY AND METHANE GAS MONITORING...................................................................12 5.0 CONCLUSIONS............................................................................................................................12 6.0 REFERENCES..............................................................................................................................13 Figures Figure 1. Site Location Map Figure 2. Groundwater Monitoring Well Map Figure 3. Methane Gas Monitoring Well Map Figure 4. Phase 5 Extent and Piezometer Locations Figure 5. Geological Cross Section - A to A' CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report ii Figure 6. Geological Cross Section - B to B' Figure 7. Geological Cross Section - C to C' Figure 8. Geological Cross Section - D to D' Figure 9. Geological Cross Section - E to E' Figure 10. Cross -Section Transect Map Figure 11. Groundwater Contour Map - April 2021 Figure 12. Seasonal High Groundwater Surface Contour Map Figure 13. Bedrock Surface Contour Map Tables Table 1. Rock Core Observations Summary Table 2. Phase 5 Monthly Piezometer Groundwater Data Summary Table 3A. Phase 5 Geotechnical Lab Data - Grain Size Distribution and Soil Classification Table 3B. Phase 5 Geotechnical Lab Data - Undisturbed and Remolded Bulk Sample Table 4. Hydraulic Conductivity Summary Table 5. Vertical Gradient Summary Table 6. Base Grade Separation Table Appendices Appendix A Fracture Trace Analysis Appendix B Geological and Construction Summary Appendix C Geotechnical Analysis Summary Appendix D Hydraulic Conductivity and Porosity Appendix E Historical Groundwater Elevations Appendix F Vertical Hydraulic Gradients Appendix G Groundwater Flow Rate Calculations Appendix H In -Situ Hydraulic Conductivity and Porosity Appendix I Bedrock Evaluation M:\PROJECT FILES\02201314.91\Deliverables\Ph 5 Design Hydro\CMS_Ph5 DHR - v.03.2.docx CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report iii REPORT CONTENT CROSS-REFERENCE INDEX FOR APPLICABLE NORTH CAROLINA STATE SOLID WASTE MANAGEMENT REGULATIONS Regulation 15A NCAC 13B Report Location .1623 (b)(1)(A) .1624 (b)(4) Sections 2.5, 3.2, 3.5 & 3.6 .1623 (b)(1)(A) .1624 (b)(7) Sections 1.2, 2.1, 2.2, 2.3 & 3.5 .1631 (a)(2)(B) Sections 1.3, 2.5, 3.0, 3.1, 3.2, 3.3, 3.4 .1623 (b)(2)(A) .1623 (a)(4) Sections 1.0, 1.4, 2.1, 2.2, 2.3 & 3.4 .1623 (b)(2)(A) .1623 (a)(12) Sections 1.2, 1.3, 3.1 & 5.0 .1623 (b)(2)(B) Sections 1.1, 3.1, 3.3, 3.4 & 4.0 .1623 (b)(2)(C) Sections 4.0 & 5.0 and Figures 2 & 3 .1623 (b)(2)(D) Section 2.2 and Table 1 .1623 (b)(2)(E) Section 3.2 and Figure 11 .1623 (b)(2)(F) Section 3.5 and Figure 12 .1623 (b)(2)(G) Section 2.1 and Figures 4 - 9 .1623 (b)(2)(H) Sections 2.4, 2.5, 3.0, 3.1, 3.3 & 3.4 .1623 (b)(2)(1) Section 4.0 .1623 (b)(3)(A-C) Section 4.0 CMS LF V Phase 5 www.scsengineers.com Design Hydrogeologic Report iv 1.0 INTRODUCTION This Design Hydrogeologic Report (DHR) is prepared to support the Permit to Construct for Phase 5 of the Charlotte Motor Speedway (CMS) Landfill V in accordance with North Carolina Administrative Code Title 15A Chapter 13B Subchapter .1623. The Landfill is constructed and operated in phases per the Landfill's approved Facility Plan with Phase 5 as the next phase to be constructed. As specified in the rule, the scope and purpose of this DHR is to: • Provide adequate information to demonstrate compliance with the vertical separation and foundation standards set forth in the rule. • Provide an investigation of the hydrogeologic characteristics of the upper -most aquifer for the proposed phase of landfill development. The purpose of this investigation is to provide more detailed and localized data on the hydrogeologic regime for this area in order to design an effective water quality monitoring system. The following sections present descriptions of the physical, geologic, and hydrogeologic settings for the proposed Phase 5 landfill and a history of previous investigations relevant to this DHR. The Solid Waste Section previously authorized utilizing data from previous investigations prepared for the CMS Landfill V to provide a characterization of the hydrogeology beneath Phase 5. A description of these previous investigations is in Section 1.4. 1.1 PHYSICAL SETTING The Charlotte Motor Speedway Landfill V is an active municipal solid waste management facility operating under NCDEQ solid waste permit 1304-MSWLF-1992. BFI Waste Systems of North America, LLC., a wholly owned subsidiary of Republic Services, Inc., owns and operates the Landfill. The Landfill's physical address is 5105 Morehead Road in Concord, North Carolina and is located on a combined 697.7-acre property. Figure 1 illustrates the location of the Landfill property on a United States Geological Survey 7.5-minute topographic quadrangle map. The Landfill is segmented into phases, with Phase 1-4 constructed and operational or permitted to construct and Phase 5 as the next phase to construct. The proposed Phase 5 is roughly 12 acres in size. An existing groundwater and methane gas monitoring well network encompass all Phases of the Landfill as shown on Figures 2 and 3. 1.2 GEOLOGIC SETTING The Landfill is located within the Charlotte Belt of Piedmont physiographic and geologic province. The Charlotte Belt is characterized by intrusive felsic and mafic bodies with varying degrees of metamorphism. The Landfill is more specifically located within the Concord Pluton of the Charlotte Belt and is comprised of diorite (Ordovician to Devonian) with a mineral composition of cumulus olivine, clinopyroxene, and plagioclase and syenite (Silurian) with a mineral composition of orthoclase feldspar, augite, hornblende, biotite, and a coarse porphyritic texture with megacrysts of pink feldspar. Saprolitic overburden (aka saprolite) is the dominant upper -most geologic unit present at the Landfill. At most locations throughout the Landfill property, the saprolite transitionally grades from sediment material in which the relict metamorphic and igneous structures can be identified to the parent bedrock from which it is derived. The transition zone where finer sediment materials grade CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 1 into more pebble and cobble sized fragments has been designated the partially weathered rock (PWR) unit. Saprolite is present at most locations across the Landfill property. The residuum associated with the saprolite generally consists of clay and silt underlain by micaceous sandy silts and silty sands. In addition, alluvium and colluvium were observed as the upper -most geologic unit near smaller surface drainage features and the Rocky River. The alluvium is of limited thickness and overlays saprolite or bedrock. The alluvium ranges in grain size from clayey silt to poorly sorted sands. The saprolite consists primarily of red -brown or light to dark brown, fine micaceous sandy silt with clay with some areas of silty clay or silty sand. The saprolite generally grades to silty sand with rock fragments with depth. White, gray, brown, and black colors are present and correlate with the diorite, syenite, or diabase bedrock from which the soils were derived. Thin zones of red -brown, orange, or tan lean clays are also present in zones of differential weathering. Hard rock fragments and partially weathered rock (PWR) are present in this lower portion of the saprolite, which become larger and more frequent with depth. The contact with the underlying PWR or bedrock is gradational. The depth at which drilling refusal with hollow -stem augers was encountered defines the base of the saprolitic overburden. Deeply weathered bedrock material consisting of white, gray, dark grey, brown, or yellow silty sand with some intervals of sandy silt characterize the PWR. In addition, hard, but weathered, rock fragments are also present within the PWR. Local areas grey/black and green/gray materials derived from predominately-mafic parent rocks were also observed in the PWR unit. Diorite with diabase intrusions dominate the bedrock type underlying the Landfill. The contact with the syenite ring dike that encompasses the diorite unit is located just beyond the western boundary of the Landfill. Syenite was reported in isolated surface exposures near the northwest portion of the Landfill near banks of the Rocky River and in a few nearby cores within this relatively small area of the site. These occurrences are expected, as the contact between these bodies is gradational and typically not uniform on a local scale. Two small, northwest trending diabase dikes occur in this same portion of the site and previous investigations in portions of Phase 3 identified small east -west trending diabase dikes. The occurrence of the intrusions suggest a relationship between these intrusive rock units, the local joint patterns, and the flow path of the Rocky River and tributaries. The diorite is generally light gray and black in color, and generally comprises 90 percent of the rock mass. The remaining rock mass is comprised of the isolated syenite identified and, to a lesser extent, diabase intrusions. The syenite will appear similar to granite with black, gray, and brown fine to coarse -grained crystals in a white matrix and the diabase will generally be dark green/gray in appearance with fine to medium -grained crystals of similar color. Bedrock outcrops at the Landfill near the banks of Rocky River and tributaries were reported in previous investigations. No other bedrock outcrops at the Landfill have been observed. A fracture trace analysis was performed and reported in the Phase 2 (Cells F-H) DHR and Site Suitability Update. A map of the reported fracture trace analysis is provided in Appendix A. The dominant fracturing directions at the Landfill are from N25E to N35E / S25W to S35W. Secondary sets of fracturing are from N75E to N70E / N75W to N70W. Fracture directions appear uniform and correlate to the flow path of the Rocky River and tributaries. No seismic activity was identified in this or any of the previous investigations. CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 2 1.3 HYDROGEOLOGIC SETTING This section presents a summary of the regional and local hydrogeology for Phase 5 and the overall Landfill. Groundwater in the Piedmont physiographic and geologic province occurs as unconfined aquifers in the saprolite, PWR, and fractured bedrock. These zones are interconnected through open fractures and pore spaces. The surface of the upper -most aquifer typically correlates to the local topography. The infiltration of precipitation recharges the upper -most aquifer. The recharge rate is primarily affected by rainfall intensity and duration, pre-existing soil moisture conditions, temperature (evaporation), and plant uptake (transpiration). The property is comprised of the active landfill, support infrastructure, and flood plain areas associated with Rocky River. Seasonal high-water tables are typically observed during the spring to early summer months of the year when maximum infiltration efficiency occurs due to lower temperatures and less plant uptake (less evapotranspiration). In addition, as snow and ice melt from the higher elevation during the spring months, the receiving rivers and streams will exhibit additional surge from the increased runoff volume and will influence groundwater elevations in nearby areas. Seasonal low-water tables are typically observed during the fall months when minimum infiltration efficiency occurs due to higher temperatures and greater plant uptake of water (more evapotranspiration). Precipitation that infiltrates into the ground will seep downward following the path of least resistance through zones of relatively higher conductivity in the saprolite and PWR. Upon contact with a less permeable surface (i.e. competent bedrock or clay confining layer), the water will spread laterally until it finds another relatively higher conductive pathway downward such as a weathered zone or a fracture, or until it is discharged to the surface water system. These discharges are generally intermittent and generally occur in the secondary drainage features following precipitation events. 1.4 INVESTIGATION HISTORY The following subsections summarize the previous investigations as documented and presented in the Landfill's Initial Phase 1 Site Investigation, Phase 2 Cells 2A-2E DHR, Phase 2 Cells 2F-2H DHR, and Phase 3 DHR (Cells 21, 2J, 2K & 2M), Phase 4 DHR. Data and information in these previous documents is presented in this report only to the extent necessary to support the Phase 5 expansion. 1.4.1 Initial Phase 1 Site Investigation On November 30, 1987, the City of Concord approved the re -zoning of the un-developed property to allow construction of a sanitary landfill. Westinghouse Environmental and Geotechnical Services, Inc. (Westinghouse) initially investigated the property on behalf of Browning -Ferris Industries (BFI at the time) in 1988 as part of the site suitability study in support of the Site Plan Application. The investigation consisted of installation of test borings and observation and monitoring wells with rock coring performed at select locations to assess the suitability of the property for permitting and construction of a sanitary landfill. The North Carolina Department of Environment, Health, and Natural Resources (NCDEHNR) Solid Waste Section (SWS) issued a Permit to Construct (PTC), Permit No. 13-04, for the Landfill on April 1, 1991, followed by minor permit amendments during the same year. The SWS approved the Permit to Operate (PTO) for Phase 1 Cell 1A and amendments to the PTC on March 6, 1992. CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 3 1.4.2 Phase 2 Cells A-E DHR S&ME submitted a DHR for Phase 2 Cells 2A, 213, 2C, 2D, and 2E in February 1994 and subsequent revisions through 1995. 91 auger borings, 50 groundwater observation wells, and eight rock cores completed for the DHR investigation. Standard Penetration Tests (SPTs) were performed at select locations and at designated intervals during installation of the observation wells with collection of bulk and undisturbed samples for geotechnical testing and analyses. Installed observation wells slug testing for in -situ permeability was completed for calculating hydraulic conductivity. Changes to the Water Quality Monitoring Plan (WQMP) included conversion of select observation wells to permanent monitoring wells and the addition of two monitoring wells installed during cell construction. On April 25, 1995, a PTO amendment was completed and a PTC was issued for Phase 2 Cells 2A-2E. 1.4.3 Phase 2 Cells F-H DHR ENSR Consulting and Engineering (NC), Inc. submitted a DHR for Phase 2 Cells 2F, 2G, and 2H in 2003 with subsequent revisions through 2005. 129 test borings at 119 locations were performed as part of the DHR investigation. 99 of the borings were converted to groundwater observation wells, nine of which were deep wells screened in bedrock. Rock coring was performed at 16 boring locations. Standard Penetration Tests (SPTs) were performed at 54 boring locations at designated intervals during installation of the observation wells with collection of bulk and undisturbed samples for geotechnical testing and analyses. For 42 of the installed observation wells, slug testing for in - situ permeability was completed for calculating hydraulic conductivity. Changes to the WQMP included conversion of five installed groundwater observation wells to permanent monitoring wells with the addition of four monitoring wells installed during cell construction. In addition, a receptor survey was updated and did not identify any existing or potential receptors in the area. On July 14, 2006, an amendment was made to the PTC for construction of Phase 2 Cells 2F-2H. 1.4.4 Phase 3 Cells I, J, K, and M DHR David Garrett and Associates submitted a DHR for Phase 3 Cells 21, 2J, 2K, and 2M in 2008 and a subsequent revision in 2009. 85 test borings were completed at 78 different locations with numerous test pits completed as part of the DHR investigation. Most of the borings were converted to groundwater observation wells with eight shallow and deep nested pairs. Rock coring was performed at 13 of the boring locations. Standard Penetration Tests (SPTs) were performed at select locations at designated intervals during installation of the observation wells with collection of bulk and undisturbed samples for geotechnical testing and analyses. For 26 of the installed observation wells, slug testing for in -situ permeability was completed for calculating hydraulic conductivity. Changes to the WQMP included relocation of two monitoring wells and the addition of nine monitoring wells installed during cell construction. On April 12, 2010, an amendment was made to the PTC for construction of the Phase 3 landfill expansion. 1.4.5 Phase 4 DHR SCS Engineers, P.C. (SCS) prepared the Phase 4 DHR. Phase 4 is roughly 7.78 acres in size and located to the south and west of existing Cells 2C, 2D, 2E, and 2F. SWS authorized SCS to use data CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 4 from previous investigations prepared for the Facility to provide a characterization of the hydrogeology beneath Phase 4. The Phase 4 DHR was submitted to SWS on March 9, 2021. A supplemental document further detailing the vertical separation between the seasonal high groundwater and the proposed subgrade for the liner system was requested by SWS and submitted on April 27, 2021 (FID 1577894), the DHR for Phase 4 was approved on April 30, 2021. No updates to the Landfill Gas Monitoring Plan (LFGMP) were needed. Changes to the WQMP included: • Groundwater monitoring wells MW-17, MW-17A, and MW-24 that exist within the proposed footprint will be permanently abandoned in place in accordance with 15A NCAC 2C .0113 and in accordance with 15A NCAC 13B .1623. • Groundwater monitoring wells MW-17 and MW-17A will be relocated and installed downgradient of the proposed Phase 4 expansion area following construction of the Phase 4 landfill expansion. Well abandonment records (GW-30 Forms) will be submitted in accordance with 15A NCAC 2C. 0114. 2.0 PHASE 5 LANDFILL INVESTIGATION ACTIVITIES The proposed Phase 5 landfill expansion area is located adjacent to the existing Phase 1 Cell 113, Phase 2 Cell 213, and Phase 3 Cell 2L, to the south and west of the referenced cells. The area for the proposed Phase 5 is roughly 12 acres in size and the investigative area is 12 acres. As described in the following subsections, this investigation includes previous site investigations borehole drilling, groundwater observation wells (aka piezometer) installation and surveying, monthly groundwater level measurements, and aquifer testing. 2.1 BOREHOLE DRILLING To evaluate subsurface characteristics in the Phase 5 area, SCS used data previously collected from monitoring wells and previous investigation borings and advanced 11 new piezometers (PZ-1, PZ-2, PZ-3, PZ-4, PZ-5, PZ-6, PZ-7, PZ-8, PZ-10, PZ-11, and PZ-12) within the proposed waste unit footprint. At a minimum, the area of investigation was the area within the proposed waste unit footprint and waste unit compliance boundary. The extent of the proposed Phase 5 area and piezometer locations are shown on Figure 4. The piezometers are intended only for investigative use and were not constructed as permanent monitoring wells, and will not be part of the established groundwater monitoring system. Prior to landfill cell construction, the piezometers will be permanently abandoned in accordance with 15A NCAC 2C, Rule .0113(a)(2) by over -drilling and filling the resulting boreholes the appropriate grout. Piezometer drillings were performed by North Carolina licensed drillers. Methods for advancing boreholes to target depths included hollow stem auger (HSA) drilling and wire -line rock coring. A description of each drilling method utilized in the previous investigations are provided below. HSA drilling was conducted at designated locations to obtain lithologic information. Each HSA boring was advanced to the top of the bedrock (aka point of auger refusal) using various drill rigs and various outer diameter HSAs. Lithologic information was obtained CMS LF V Phase 5 www.scsengineers.com Design Hydrogeologic Report 5 through split spoon sampling at 2-foot intervals as outlined in ASTM Method D-1586 or logged from drill cuttings. During the driving of the split spoon sampler, blow counts were recorded and the sample was examined by the field technician and described for color, grain size, Unified Soil Classification System (USCS) code, and texture. The depth of the partially weather rock (PWR) stratum was noted where observed. The depth to top of bedrock was defined as the depth to auger refusal. Geotechnical samples collected during HSA drilling included grab, bulk, and undisturbed Shelby tubes samples. Geotechnical samples were collected and analyzed as described in Section 2.3. • Wire -line rock coring was used to characterize the bedrock beneath the proposed Phase 5 waste unit and is further discussed in Section 2.2. To demonstrate consistency with the bedrock characterization reported for Phase 5 and the bedrock characterization across the facility, data sets from the previous reports were reviewed and used to correlate, where appropriate. Various geologic, construction, and boring log recorded data for installed groundwater observation wells (aka piezometers) and groundwater monitoring wells previously within the Phase 2 and Phase 3 investigation areas (Appendix B) were compared to Phase 5 bedrock characterizations. The following selected lithologic observations are from the Phase 5 investigation data: • The overburden observed during drilling included alluvium and saprolite. • Across the proposed Phase 5 landfill area, saprolite is observed to range in thickness from 2 feet to greater than 20 feet. Saprolite observed to be thicker beneath hills and ridges compared to side slopes or drainage areas. The saprolitic soils have been observed to be dry to saturated where encountered. • PWR thickness across the Landfill property ranges from absent where alluvium or saprolite directly overlies bedrock to more than 20 feet. Within the proposed expansion area for the Phase 5 landfill, the average PWR thickness estimated at 0 to 5 feet. • PWR is observed to be dry to saturated at most boring locations. Saturated conditions observed in the PWR at two locations (PZ-11 and PZ-8) within the Phase 5 area. • Bedrock is identified as largely diorite within the Phase 5 area. Bedrock fracture zones were observed in the historical boring logs. Fracture zones can be identified by the sudden drop of the drill rod or drastic change in drilling conditions, often paired with a simultaneous pause in the chatter from the bit. When a substantial fracture was encountered that produced water or a drastic increase in water production, this was interpreted to indicate the presence a water -bearing fracture. This depth was targeted for well screen placement in bedrock. Stratigraphic cross -sections were created identifying the hydrogeologic and lithologic units and stabilized water table. These cross -sections are based on the historical lithological information, static groundwater elevations from the previous investigation borings and routine monitoring of the groundwater wells at the Landfill, and the Phase 5 investigative findings. The cross -sections are included as Figures 5 - 9 and a cross-section transect map is provided as Figure 10. CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 6 2.2 ROCK CORING To address the requirement of Rule 1313.0538 (b) (2) (D), rock coring was performed using the CME 750 drill rig, equipped with a ten feet NQ diameter core barrel, for rock coring at five locations: PZ-2; PZ-5; PZ-6; PZ-8; and PZ-11. The double tube core barrel was attached to the bottom of the drill rods and lowered to the bottom of the borehole and top of formation. The desired coring interval was drilled using a toothed core bit and potable water circulated inside the boring from the bottom of the core barrel to ground surface to displace drill cuttings. When the desired depth was reached or drilling conditions dictated as such, the core barrel and drill rods were retrieved from the borehole. The core sample was then extruded and placed into a box labeled with the core ID and depth intervals The percent recovery, rock quality designation (RQD), orientation and frequency of likely fractures, joints angles, observed fracture infilling or coatings, gross mineralogy, and other notable characteristics were recorded during rock coring activities. The RQD was determined by dividing the total length of rock fragment longer than four inches over the total length cored. Core recoveries, RQD values, and lithologic descriptions for rock coring performed during the Phase 5 investigation at the Landfill are provided in Table 1. Observations from the rock cores collected during previous investigations generally show a moderate to highly fractured top of bedrock that becomes more competent with depth. Recovery values range from zero to 100 percent and RQD values ranged from zero to 100 percent. These percentages indicate that the bedrock is differentially weathered and variably fractured. Recovery and RQD values generally increase with depth indicating less fracture density at greater depths. 2.3 GEOTECHNICAL ANALYSIS Soil samples collected from the Phase 5 borings were visually inspected and classified by SCS personnel. Several soil samples collected in overburden were selected for testing by an approved geotechnical laboratory using the following methods. • Standard Proctor (ASTM D 698); • Particle size analysis (ASTM D 422); • Soil classification: Unified Soil Classification System (USCS) (ASTM D 2487); • Atterberg limits (ASTM D 4318); • Natural moisture content (ASTM D 2216); and • Undisturbed and remolded hydraulic conductivity (ASTM D 5084). Tabulated geotechnical field and laboratory data from the Phase 5 investigation are provided in Tables 3A and 3B and discussed further below. • Particle size distribution mostly silts and sands with less clay and gravels present with USCS classifications CL, CH, SM, and SC. Total porosity values in undisturbed samples ranged from 0.41- 0.55 for the Phase 2 Cells 2A-2E and 0.39 - 0.61 for Phase 2 Cells 2F-2H. The porosity values for Phase 3 were established in DHR from soil sample particle size distributions and published procedures. These values ranged from 0.03 - 0.38. Phase 5 porosity values ranged from 0.19 - 0.61. CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 7 • Undisturbed saturated hydraulic conductivity values ranged from 2.6x10-5 cm/sec to 8.410-6 cm/sec. (Table 3B) 2.4 GROUNDWATER LEVEL MEASUREMENTS Static water level (aka depth to water) measurements were measured and recorded for the Phase 5 piezometers. Depth to water measurements were recorded at the time of boring and during well development. Additionally, monthly measurements were taken in the piezometers during the period from December 2020 to November 2021 to determine the seasonal high groundwater levels. Static water level measurements were made using an electronic water level probe and measured from the top of the PVC casing to + 0.01 foot. Static water level measurements collected from the piezometers and during for the Phase 5 investigation are provided in Table 2. A summary of our findings from the groundwater level measurements is as follows: • The groundwater elevations for the monitoring wells installed within the Phase 5 investigation area are generally higher than the top of bedrock elevations. • The groundwater elevations for the piezometers have been higher than the top of bedrock elevations, with the exception of PZ-8 and PZ-11 The soil and sediment overburden, saprolite, and fractured bedrock are water -bearing units beneath the proposed Phase 5 waste unit. 2.5 AQUIFER TESTING On October 19, 2021, aquifer testing (via slug testing) was conducted by SCS at four piezometers (PZ-6, PZ-7, PZ-8, and PZ-11). The purpose of the slug tests are to determine the values of hydraulic conductivity for the aquifers at the site. Aquifer test data were recorded using a pressure transducer with internal water level data logger. The data logger recorded the change in the water level in the well after a slug (i.e., solid weighted PVC tube) was inserted into and removed from the well. Using the field measurements and the well construction details, the hydraulic conductivity of the formation was calculated using the Bouwer- Rice single well method as implemented in the Aqtesolv Pro (Glenn, 2007) software program. The hydraulic conductivity test method was selected based on which curve best fit the slug test data. A summary of the aquifer testing results is shown on Table 4 and the slug testing reports generated by Agtesoly are included in Appendix H. CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 8 3.0 HYDROGEOLOGIC EVALUATION To further characterize the hydrogeology beneath the Phase 5 landfill expansion area, the following data evaluation was performed: evaluation of groundwater elevations; assessment of groundwater flow direction; calculation of groundwater flow rate; vertical gradient assessment; and identification of top of bedrock surface. Data from the Phase 5 investigation were used for these evaluations. To demonstrate consistency with the hydrologic characterization reported for Phase 5 and the hydrologic characterization across the facility, data from the previous investigations were used. 3.1 GROUNDWATER FLOW DIRECTION ASSESSMENT Groundwater flow at the Landfill property is generally from the east to the west, toward Rocky River, as shown on the August 2021 Groundwater Statistical Analysis Report (Jett 2021) groundwater contour map, included as Figure 11. The groundwater elevations collected monthly for Phase 5 and the historically reported groundwater elevations from routine monitoring events (Appendix E) were used for purposes of constructing groundwater flow contour lines. Groundwater contours were generated using AutoCAD surface mapping system software and altered utilizing professional judgement. The generated groundwater surface contours for the Phase 5 landfill expansion are shown on Figure 12. Observations regarding the direction of groundwater flow within the proposed Phase 4 landfill expansion area is as follows: • Groundwater contours mimic topographic contours. • Groundwater flows from east to west toward Rocky River. The groundwater flow direction within the Phase 5 landfill expansion area is shown on Figure 12. 3.2 GROUNDWATER ELEVATION EVALUATION Groundwater elevation data from the groundwater monitoring wells, piezometers, and borings installed throughout the Landfill for previous DHR investigations were compiled and provided in Appendix E. Based on this historical data, the maximum -recorded groundwater elevation was identified for existing groundwater wells within the proposed Phase 5 boundary as the seasonally high groundwater elevation for each existing groundwater well location. The seasonally high groundwater elevations, as well as source and dates for the data are presented in Table 2 and Table 6. From this data, a seasonal high groundwater contour map was created, included as Figure 12. The contours were generated using AutoCAD surface mapping system software and altered utilizing professional judgement. Observations regarding the seasonally high water table within the proposed Phase 5 landfill expansion area is as follows: • High groundwater levels typically occurred during the spring semi-annual monitoring events. • The upper -most aquifer is first encountered within the residuum, saprolitic overburden, and fractured bedrock. • The saturated zone is also found in the PWR and fractured upper bedrock. • The seasonally high water table mimics the surface topography. CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 9 3.3 VERTICAL GRADIENT ASSESSMENT The vertical hydraulic gradients for the monitoring well clusters were calculated to assess whether the area is a zone of groundwater discharge or recharge. The vertical hydraulic gradient is the change in head (groundwater elevation) per unit of vertical distance (elevation of the middle of the well screen) between wells. The vertical hydraulic gradient was calculated using the difference between groundwater elevations measured in well pairs during previous investigations. Vertical gradient calculations are shown in Table 5. The calculated vertical hydraulic gradients for Phase 5 are from well pairs MW-22 and MW-22A, MW- 2A and MW-2B, and MW-10 and MW-10A and have reported ranges of 0.0004 to 0.08 feet per foot. A positive vertical gradient indicates a vertically downward hydraulic gradient (recharge zone) and a negative gradient indicates a vertically upward hydraulic gradient (discharge zone). This indicates that within the Phase 5 limits, a slight recharge zone is present. Water level data from previously installed nested monitoring well pairs indicate that upward gradients exist near and within drainage features. Downward vertical gradients have been observed during previous investigations in nested wells outside of the influence of the Landfill's drainage features. 3.4 GROUNDWATER FLOW RATE CALCULATIONS An aquifer's flow rate is determined by the hydraulic gradients, hydraulic conductivity, and porosity of the aquifer. Details regarding each component of the groundwater flow rate calculations for the upper -most aquifer are presented in the following sub -sections. 3.4.1 Horizontal Hydraulic Gradient The horizontal hydraulic gradient (i) is the change in head (dH) per unit of distance (dQ in the direction of groundwater flow. Hydraulic gradient is the one factor for groundwater velocity calculations that may change over time. Horizontal hydraulic gradients were calculated using the difference between groundwater contour lines within the Landfill property as shown on the April 2021 Groundwater Contour Map (Figure 11). The hydraulic gradients used for groundwater flow rate calculations were 0.022 feet per foot and 0.014 feet per foot, depending on location. The semi- annual groundwater monitoring calculated groundwater flow velocity for the Landfill from April 2012 to April 2021 provided in Appendix G. 3.4.2 Hydraulic Conductivity Hydraulic conductivity (K) is the measure of a specific geological unit's ability to transmit water and is necessary to calculate groundwater flow rate. It is expressed as the volume of water that will move in a unit of time at a hydraulic gradient through a unit area measured at right angles to the direction of flow. As documented in Section 2.4, aquifer testing was conducted by SCS to calculate the hydraulic conductivity of the upper -most aquifer at piezometers PZ-6, PZ-7, PZ-8 and PZ-11. A summary of the aquifer test results is shown on Table 4 In summary, the hydraulic conductivity (Ks) value for piezometers within the soil/saprolite aquifer is 1.59 x 10-5 cm/sec (PZ-7), and within the bedrock aquifer from 1.43 x 10-3 cm/sec (PZ-6) to 1.21 x 10-5 cm/sec (PZ-8). CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 10 3.4.3 Porosity Porosity is the measure of a material's pore space through which water can flow. The upper -most aquifer at the Landfill is found within the soil overburden, the saprolite/bedrock interface, or within the fractured bedrock. Porosity values for the proposed Phase 5 ranged from 0.19 - 0.61(Table 3). Porosity values used from previous investigations range widely as shown in Appendix D. 3.4.4 Groundwater Flow Rate The groundwater flow rate for Phase 5 was calculated using the Darcy equation shown below. FM Vx = ne where: vX = groundwater flow rate K = hydraulic conductivity i = horizontal hydraulic gradient n = total porosity of the aquifer As shown in Appendix G, groundwater flow rates were calculated using the following data. • An average horizontal hydraulic gradient of 0.018. • The saprolite (1.10x10-4cm/sec), PWR (1.8x10-5cm/sec), and bedrock (1.8x10-5cm/sec) values for hydraulic conductivity. • A total porosity value of 0.16 for saprolite, 0.20 for PWR, and 0.07 for bedrock. The Landfill's April 2021 water quality monitoring event reported groundwater flow rates ranging from 19 feet/year to 113 feet/year. Historical groundwater flow from routine monitoring events range from 21 feet/year to 146 feet/year. Groundwater flow rates from the Phase 2 Cells 2F-2H DHR range from 10.95 feet/year to 200.75 feet/year in upland areas, 7.3 feet/year to 120.45 feet/year in the mid surface elevations, and 124.1 feet/year to 182.5 feet/year in the lower surface elevations. Therefore, the April 2021 flow rate range is consistent with flow rates previously documented and those generated from the Phase 5 investigation data. 3.5 TOP OF BEDROCK EVALUATION A bedrock surface contour map was created for the Phase 5 landfill expansion area. The bedrock contour map was created by compiling the top of bedrock elevation data from groundwater monitoring wells, piezometers, and borings installed within and near the Phase 5 area from the various investigations previously completed for the Landfill. The top of bedrock elevations for locations within the Phase 5 investigation area are shown in Table 6. The top of bedrock was interpreted as the point at which auger refusal was identified during drilling, or as reported in the historical table and boring logs provided in Appendix I. A bedrock surface contour map was generated using AutoCAD surface mapping system software and adjusted utilizing professional judgement and is included as Figure 13. Observations regarding the bedrock surface within the proposed Phase 5 landfill expansion area is as follows: CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 1 1 • Depths from the ground surface to the top of the bedrock unit within the proposed Phase 5 waste unit range from 7.0 feet in PZ-9 to 29 feet in PZ-6. The depth to bedrock is generally shallow in drainage features and deeper beneath topographic highs. The majority of the area within the Phase 5 waste footprint had been graded or filled during the initial landfill development for the construction of the scale house, administration, and maintenance buildings. As a result, the topography of the areas that were graded or filled may not mimic the bedrock surface. The bedrock surface generally mimics the surface topography in areas that were not graded as part of Facility development. 3.6 VERTICAL SEPARATION ASSESSMENT A municipal solid waste landfill (MSWLF) unit shall be constructed so that the post -settlement bottom elevation of the base liner system is a minimum of four feet above the seasonal high ground- water table and bedrock datum. To gather data so the landfill design will comply with this requirement, seasonally high groundwater and top of bedrock surface contour maps are created as presented in Sections 3.2 and 3.5, respectively. These maps were provided to the landfill design engineer for the development of base grades for the proposed Phase 5 waste unit. The proposed landfill design base grades were calculated and are provided in Table 6. 4.0 WATER QUALITY AND METHANE GAS MONITORING The water quality and methane gas monitoring plans for the Facility were updated and approved prior to the submittal of the Phase 4 DHR. Proposed updates for the plans will be submitted to SWS separately for approval. The proposed updates for the plans will include abandonment of select groundwater and methane gas monitoring wells within the Phase 5 boundary and relocation of select groundwater and methane gas monitoring wells to the Phase 5 compliance boundary and will be performed concurrent with Phase 5 construction. 5.0 CONCLUSIONS The geologic and hydrogeologic conditions for the proposed Phase 5 landfill expansion are consistent with previous DHR investigations completed for the MSWLF units constructed at the Charlotte Motor Speedway (CMS) Landfill V. No unusual or unexpected geologic features were identified within the Phase 5 landfill expansion area. Groundwater and bedrock surfaces typically mimic the surface topography across the Landfill. Groundwater flow direction is from east to west across Phase 5 towards Rocky River. Groundwater gradients have exhibited both upward and downward vertical flows across the Landfill. Based on the findings presented in this DHR and previous DHR submittals, the Phase 5 area is considered suitable for expansion of the Charlotte Motor Speedway Landfill V. CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 12 6.0 REFERENCES American Society of Testing and Materials (ASTM). ASTM D1586/D1586M-18. Standard Test Method for Standard Penetration Test (SPT) and Split -Barrel Sampling of Soils. ASTM D1587/D1587M-15. Standard Practice for Thin -Walled Tube Sampling of Fine -Grained Soils for Geotechnical Purposes. David Garrett and Associates. Design Hydrogeologic Report. CMS Landfill V - Phase 3 (Cells 21 - 2K and M). May 2009. ENSR International. Design Hydrogeologic Study. CMS Landfill V Expansion. May 2003. Jett Environmental Consulting, PLLC. Groundwater Statistical Analysis Report. Charlotte Motor Speedway, Landfill V. April 2010 through April 2021. NCGS (North Carolina Geological Survey). 1985. Geologic Map of North Carolina. SCS Engineers, P.C. Groundwater and Landfill Gas Monitoring Well Installation Report. December 2020. SCS Engineers, P.C. Monitoring Well Installation and Abandonment Report. February 2021. S&ME, Inc. Design Hydrogeologic Report. CMS Development Corp. Landfill Expansion - Landfill V Cells 2A- 2E. February 1994. CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report 13 Appendix A Fracture Trace Analysis CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix A Fracture Trace Analysis Charlotte Motor Speedway Landfill Area Diagram indicates observed fracture lengths as a distribution by bearing Within 3 miles of the site. Source Data: 8—meter resolution aerial photographs (to an extent of 3 miles from site) and site topography maps REVISIONS FIGURE NUMBER: No. DESCRIPTION: DATE Fy: FRACTURE TRACE CONSULTING AND ENGINEERING (NC), INC. ANALYSIS DIAGRAM scAue: 7041 Old Wake Forest Road Suite 103 BFI Waste Systems. LLC Raleigh. North Carolina 27616 Concord. North Carolina NTS PHONE: (919) 872-6600 FAX: (919) 872-7996 1 DRAWN BY: DATE PROJECT NUMBER: DRAWING N"DER: WEB: KTFP://WWW.ENSR.CDM JDM 02/04/03 00188-002 M31002AC D S s �+ ��, " �_ CZv f DSs 4 .i- "�: J � r 1 Pz floi DSs. , PzZq �T�CZv LEGEND ? r CZv Metavolconic Rock PzZm Metamorphosed lflc Rock 4 DSs Syenite DOgb Gabbro PzZq Metamorphosed Gabbro and Dlorlti NOTES Fracture traces shown on figure (blue) derived from 8—mater resolution aerial photographs and site topography. Box area denotes site with red lines Indicating dominant fracture direction. Major geologic features Ishown In black) from North Carolina Geological Survey Map (1985). xl REVISIONS FIGURE NUMBER: NO. DESCRIMON: DATE: BY: FRACTURE 12 Ime TRACE MAP CONSULTING AND ENGINEERING (NC), INC, SCALE: 7041 Old Wake Forest Road Suite 103 Raleigh, North Corollno 27616 BFI Waste Systems, LLC 9 Cncord, North Carolina 1 ^=0.75 MILES PHONE: (919] 872-6600 FAX: (919) 872 2— 6 DRAWN BY:oDATE: PROJECT NUMBER: DRAWING NUMBER: WEB: HTfP;//WWW.ENSR.COM JDM 1 02/04/03 00188-002 M30004AC Appendix B Geological and Construction Summary CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix B - - - - - E d d do �, E33 E ° w = a U N `o IT v O= ¢ IT m ro —00 = = H _ _ = - 2 - w v - m N = w - = = H S.SN _ y — = N = - - m = N _ _ y - _ - - - _ _ K K ��33333ddo33's's a aaaaaamm K f KKK °° US K K- y mmm o m ° K o33'sd333's3 maammaaama K D KKK - K = m m m ===d3's's's3��333 m m o m ma K_ m y° m maaaaaa K K K K K K y =o ma K a c J d 0 rn o 0 0 0 0 0 N 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 d o m d O rn o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 o 0 0 0 0 0 0 0 m v 0 0 0. v v 0 0 d 0 0 NN N O O N O N O N Q N O O O N Q O N N °NNNN ° O N¢ 0 0 ul t r Z � Z � Z Z� Z ° 0= N m rMv�OiNNNaD� N M N N N M N M N N V V M F W M r Z NNN Z V N V N M V � O N M M Z O o N W N N N Z rMaDN V N N V OinNnNNc° N N N Z� N� N FFp m0 M W� N N N N N N N N N N N N N N N N N N N N N N N N . N N N N NNN N woo. V N N tN0 N N t wN w N N N N NN y$ O O aD M N O N aD O V O O N M N N O N O O Oi N N Q a7 Q O Cl O W n O O N Q W, O V N M Q 6 O N O O N W N V u0 6 N M V Q N v 1 N M V N N tN0 V N N M Z M Z N M N ,i M N N Z M V V Z M N N M N N N N Z 6 N M g a m o= 6 '� M E v N n N viN V W CO N M n a0 V O N oro CO V¢ n 07 N ¢ N NO N N O O N . c0 on O �C M Q V N O N O N. a¢ IV.. O N A��� Or mnM n N V N <° ¢ N CN, N c cN N� WN - �NN�cOn V nnw i0N V V �Z N Zcon V Oi afpN V NcpN V Z�ovv MNNfp Z�oNnN�e V fp rcp ZN Oi tp t O ai pON O NNONO NN 0tONN1 n O H QZ °OM11 O VV N M QZ O N n N °M1 N N V QZ mO mO u *nlm! NN N ) -N `v 6 iEoo N. N NMNoNOl0Oro t0 N�NtGVN o Nr M r No. MN .VNN N CN M N W EV MN cN N N j V O M V i0 N m V M N NN N N i0 N f p NNNN NO V M N f p V N N - a y 1 OI O V N O 0 0 i0 N N N O fp O O O N N M O O a 0 O o N V V N N N N N N N N N V N N N N tN M NNNNN M o a O ry N {� :.. r O = N NN,6 E N N N M t0 M m t0 ,6 N A c; G t0 M N V MaDNON¢¢¢O�¢¢MN¢NNaDOr V V O O Oi C g V V I� M 1° r M r M t0 M N Oi tp V N Ih t0 M Ol NrN7N¢M¢N C> V m V N ap Oi V G V M . Ol tp r tp¢ O V M r rrccrgMNN N M m V N O - Z Z Z Z Z N N Z N N N N N N N N N Z N Z N N N N N N N N N N N N N w g m x$ o 0- 0 o o 0 0 0 0 0 0 0 0 O g 0 0 o 0 0 0 0 0 0 0 0 0 0 0¢¢¢ O¢¢ o o¢ o 0 o 0 O 4 0 0 0 0 o O 0 o¢ o¢ 0 o o¢ o¢ 0 0 0 0 0 0 0 0 0 0 0 N�4rNM� M M MOiMvMZZZaCZZ MM ZM �aC aC M aC (V MpM�°� MC ZMZ aCZMZMMNlaC MtO OI o o qoNNf ON ao OMNO NN�� OMOON OM OM�r0 n 4NN ON' OaMc NVMO zt NNt0NN NNNN o�N nNM ,�ONNIM�c vnMNiviOp NNOOM .OMO� .00N NO� NNONN m°NN� 6O pVfM oMNON cq pNfVnnO vnNNV NMNOO N H; N MCNNNNN VNN�liNNONuONN N NI�NNMNV6V6O V MNNNMNN NONN�ON N S A U N M N N V r O V N N N V N r N N n N a7 N O N N N 0 r 0¢ N N¢ V V r V O M N M N O n O O N a N W¢ N M V N N N N N a¢ O O O M ap M O O O N N N n OO m O N M¢ N n N N y S y - N N N N M M N N N M N N N fV Z M Z fV fV M M M M lM M lV Z M N M o M Z MMN cV M M M M M V M Z 64 2 v O C �NNNrNraoD uC tMO� V O¢�o ¢tN0 tN0 OOl c!(I i N�NQNNM aq M¢ MNNtrq N N N M a MC aC V ¢ram p v H U E NM N MC N r r N N M N N A � tOCrui O r r N vi N N ZrZ<6 N N rrvM�nacMvZorN o N M N r N r M N N V O r fV ZO11�1� M r r V NNN tO ui O) A r m aD ZO)N r O A n; v t - N N N N N N N N N N N N N N N N N N N N N N N N N N N NNN N .... N N ..... ... E; c U E NNNMmNOIMNOap V V NMONrM M N V N MOI V map V V r V MNr V OMrNMm V NO �� a E y� N N r N m M O V Map N O N r 0 0 m M N M N r N N ap O r N r N � N N M O N � Oi aD N V r r ap r O M N N a�; (� M W� N N W N .N..... ... N N W O r N N N N r N O N O N M N N N ........ r r N n N . N.......... r r M n r N tO N r c E a a a E v� ° to ° to x x x x H H x x x O x x x x x° x H H x x x x x H H x Y O x Z» o' o Z v m O a W N. n M N N N� O O N N M N Oi N N r N O N N N Ol 'NAM M N N N N M V M r V fN0 N N M r ' 0 r NNNN N N O r 0 0 r ao N N 0 0 0' tN0 tN0 N N 0 0 M M N fN0 N N N M N N M aD O tN0 NNN N N M N V N m m N N M Ol N N o v N N N V V N N N N N N r r r M N V V V N N N r r r' m r N V N V N N N N 0 N M N r N O V V N N 0 Ol r N O M V O V N N N N O O N V O N N N r tr0 N N N O V N A r O aD N aD N tM0 t°O N N N M M r N Ol M O r �� N N M O O N N N N V O N fN0 fro N N aD O N N M O aD N V b tM0 N N O N N V M M O) V N t°O N N N O N N Gi r V O N r aD N N N N N N N m N N aD M O V N N N N N V N V O r N M N N V N N r r V M M N N C t ° Z N N O N N n V V M a�D (NO IM fV 0 Oi rN M M O NO'O'l0'fV M N NN M M M N N N N M N M N V N u0 tO N N rrrorMNNrMrM N N N N V aC MI�OINM r N O O M O M N n N t0 O N M N a�D N V aCMMNtO � O V OO N N M N N V N N n N tr M r NNOiNOrN N N a N N N r N N n i0 V aD NNN N N m V MI��CCOl O� N M M N rMO�NrNOI M V V OO O V N N V V N N N vi O� M V M W r �oMr<6MoroviM r M M N N N V N aDMMrM M V O a N ONi r N M N a M N fp r N V N N N � O r Oi M N N N N i° raor N O V OOIM N N N N V of O r N of N v N N N N N N N N N N N N N N N N N N N N N NNN NNNN NNN NNN NNN NNNN NNN N o N - 4 c O N N N N N N M M M M M V N V N N N N N N N N N N N N N N N v m dddddddaadddddadadddddadddddadaadddadddddddddddddp�a' N M z° E a a a N M M N M N M M NNN M M N M a t< - xSo - U O O v v O d d O v 21 3 o 3 a gg Kr - - a maaa K o` K K Q K 842 K ass amm �'s aN = in 3 a d3 ma 3 a 03333'ss�'s'ss333's NaaaammaNNmaaaN ===d33d3d's3 in in inmaamamNa £ c J O O O O O O O O O O O O O O O O O O O O O O O O O O O O d O m 0 0 0 0 0 0 0 0 0 m m 0 0 0 0 v 0 0 °: v v d O 0 m 0 0 m m 0 0 0 0 m v 0 0 0 0 v v 0 0 0 0 v m 0 0 0 0 m 0 6 0 0 6 6 0 0 0 0 0 0 0 0 0 O 0 0 O OM °: d d m m m 0 0 0 0 E y s Q NNN Q O O Q N Q O Q Q Q O O Q N Q N O O .............. NNNNNNNNNNNQQ Q ... N O N t H .-'�...Z Z��Z Z�ZZZ��Z Z ZZZ ° =T VN NNN VNZ4ZZZ NNN Q Q Q Q NN Q NNNN Q NZNaCO CN rNVN NMN. NnrN NNN N Nfp N NV a NN nNO !nr NN W QQ Q O MO N O N V nN 0 NpO N W0 ZMNN NN ZNNN ZNNN N MZN n0ac6c46ZZZaIN iN N a2 N N NNN Eo d$ Q V M N Q M i0 Q N Q N Q Q Q O V Q Q y N Z ,;6 6z M N Z N Z N Z Z Z C IN Z V Z N M N N N N N N t N Z N Z Z � N v v V V O W NNO v o O m - 0= O NN > EZooNZ� M N N N N N N N fp M N N N O N M V M N V V N N C1�N O O) O'>n7 V r O) O'>ZZZaN�th M V N M Nap N A M tt)try N o c O H N y W N n N t0 ZnZnZZZ�NZOZMahNNC>NG N V N N N N N N N N N N N N N r r N N r N N NNN N N N N N NNM N N N N V N N N N N r N N N c « O E S Q V M N Q M t0 Q OD Q N Q Q Q O V Q h Q n n N O N N M O M V M m O Q Q Q M r O cO0 u Z NNMZNOZrZNZZZ6MZOjZMN' OttaM 6c6,i V NZZZN6M�ON')N O C t - O _ <OMi<ONinN�nONi n tNO V MnFN�tNONNO V M V MtNO V NtNOOA� V OOi ONiMr V M V N�MMNNn o V E O {� O E V V N a N N V N n N N N V N C N G N A N N C N M fV NNN V- N m n7 E K� W N N fp fp N N V N N N N N fp N N fp fp n N r N N V N r r V N N N r V N V N V V V NNN N N d_ m x O O O O O O V O O O O N r M N N V O N N O N 0 O O O- O L ONO V O N O N o N - N N N N- O N !r M N V N N N V N o N N th N6,6 N V O N N OC N O N MAN N N M N N 6 6M N N M o M otJ N M M N A N 0 O O N 0 O O N N O O N N M M O - M N No C N V M O O N N M O N O N N M `o a O N"t3 t Qv EC O M N N N N Q r A� Q NM ZNw rNO NN NN NN V N N i NNNNZrN oMNN n V N M N N N N Z jZM� Q QO ONN O 2 QN - w NNNNNNNNNN Nl NNZAVZ NNoN NN y o c O 0 0 0 0 0 0 0 N Q 0 0 Q O 0 0 0 0 0 0 0 0 0 o O Q O O O Q Q Q Q O Q Q N O Q O Z °°rrNNNO n7 N Oi Z NN Z M (h fh V NNONNNM M. M Z N�N� N V th N Z Z Z Z th N� Z Z NN Z th o O p C= VN NN Vf NnN NN NV nNNNN 6 aN r 6 N N NN N N NV oC NNNN N I*: NN Na N N rN Nn O On N M nVMV N NMVa v o 0 �� p.pO N f V 4 . NN NNNNN-OMVM N-- o NAN No NM a IV N NNN n 4 VN NV IN� N Na N N �V ON(1 Na WN a tp ; N Wo o m Oa n O V O N 0 N o N N O O V O V N o N N O N O N r NNN O N N M ' O N N M V O N M N O O O 0 O o 0 G O O O M O V 0 N O 0 0 O O 0 0 O O 0� uvi N m y O ONO N - N N � 6 � n N N V N N M N V N OC N M A N N G N C (h N N C M- N M A N � N N m N N V N - V tJ N V M a N N N a M 3 o V Q A V M Q O� Q Q N Q Q Q N M Q O> Q M N M N O N N M fp N M Q Q Q O N N ww O N n v N _Z lh M M Z fV .Z N Z M ZZZ lh lh Z lV Z M fh fh M N M M N M O.jZZZ M a M (,i M N N N OV 2 B ^ o O C M rN MN NrN ON NaN NON ON Oo°�6Z�omm NrN aN VtrN° WVnN N N W e'U� ZMN "mmmoZlZ�ZZZZ Z m ZZE r° mN mt0 s3 "- N N N N N N NN N N N N N N N No N N N y E 3 u 5� 2 N A N N N V M m O .... r O E p 'CjE.. V V V N r N N N NOiN n m V r N A N 46V r N N N No.,,: N N O N m V i0 CN N A � A A N M A n n N N- V M N V N M N A m A N M r NfVO V M NO n N N O N M M V v o ya I �7 Nrr.NO)rrr.. NNO� ODONrNNOOiOrrNNOi OiNrrrrNrNrNNNOi O)rrMN 9 c ° _ N W� N N tp N r c E a s 'a O y Z y}} 0 0 0 0 Z} y O y Z y 0 y Z} 0 0 Z 0 0- Z Z y Y Y 0 0 Z} 0 0 Z} y y Y Y y Y y y y Y Y Y y y Y Y y y Y Y y y Y Y y y Y Y 0 0 Z Z 0 y Z Y y y Y Y y y Y Y y 0 Y Z y 0 Y Z y y Y Y m- o E _15 m m N m V N N MVNNGCNAVAiNM..NNVM O) N O N A M N M N N N V r N N V M N N N V O F, O O V O N N M N N N N V N- m O N N N N N N N N V O V NVrVVV N O) N O) N N O V V N NNNNNNNNN N n a N M N A N O NN 0 V M N O OrNN 0 0 N O 0000000000 M a !n V n OOiNV N O N n N M N ON 0 0 N �M NM 000 N MNOi NO)NNNNNo0000 N O oN N I - t G Z aG N N r N N .. O M I� N O) M N N M M N M N N N N N C aC N r N M n f�O M f V m r N M M n n N G V N MNN M M W M V M N N M M .......... n O N N V V N A O N V V M N r M N V O O) M N 0 t�0 V (h O r N N N V N N V N N O W fn V M a N a n ONO i° N th iO N W M A M NNN M M N N N N M - N V N N N NO Nth I O N N N N - N616 O� N V V M M ONO I� M m . N N N N N N NNN ....NNNNN- 4 _ c N N N r r r r r r r r r N Q M. o M O M m N m m O O O O -----< O O N M V N N Q N N - N - O N M O' N OJp � m- 3 w_ m dddddddddda.a.a. adddddddddddddddddddddddad������ E-� i E n a M M M M IN :[I, M N N N N MI M M M M M M I .o .o o0 x 2222 x o 0 - E vm o o a ° 0 - - EEEEE E _ 3 Q QQQ¢ Q E 7 = x K 33 K y 03 K K 3 K K 333 K K 333 c c o e .� in min min min inamin in inmaamin in ainmm3 in in in rnaNN in 022 J (.7C�OO��� O O O O O O cocoa O O O O m m mtn m O tn000��aON00��tn0000tn 0 0 0 0 0 0 m O 0 0 0 m O 0 00 m E N O O N N O O N O O N O O N O N N N N N N N S N V V N� N� V N � V i0 n V V FO N y N N NNN N N fO t0 N N i0 N V N N N N N CEO N� N N N N N N N N ttOO N N N N N N N N E O N N N O O o 0 0 0 0 0 o O O N o R ao O N O o � o� "p oo a t0 � c0 c0 V N 1� f0 o N f0 O� C fV G O' NN ` N (n E W V r r � N M N O m It C N r' N C> G A V V N V fV N 1� V O M fV M I� N O � N V V V N V N A N N fV V N M N Ih M A N C> M N r M r N 1� C c Obi t0 N r N N V M N t0 M N N N M N N OC N N N MNN N N N N ... r M N M N N N N N .... r M r N N r N n r N ... N N O$ N N O N O O o O O M0 O O O O O y O G £ p U G "rc E V N Oi N OC N r N M VNO r V r N V N M'abMM MIM r V C(TGN V r MO O N V N M a c E - 'y W �+ a N a N a N N O N N MrrNrNVN N N N NNNN N m y y6 K G w Q Z O Q N Z O Q 2 Z N¢¢ N Z CO Z N u0 N N N Q 0 Z N 0 0 N N O O O � O N v O � M aD Q N Z Q Z Q Q Z Z Q Q Z Z Q Q Z Z O O O_ -« O _ E v N V � t0 t0 N N N661�6MM W t L N d $ Q O Q O Q Q Q Q O Q Q Q Q Q Q Q Q Q Q Q Q Q O N N N N N (A Qa Z H Z N Z Z Z Z � � Z N Z Z Z Z Z Z Z r Z Z Z r Z Z- " 3 - _ V N N N V N N N M' O M M O � O ItV r N N N M M O�aD r N a y O jO EOjN O M I M V NrN1� � r V fV ((INNMANNN `o ; y m m y N N .... M N f p N t0 N i0 r a N N N N N N N N N N N N N N N NNNNNN na _ 0 0 0 0 0 0 0 0 0 0 N O 0 0 0 0 0 r 0 0 0 M 0 0 N G ab O C C N O f V MONO O O O N N N O G M � w of y - F NN N y N M N N y NNN M M s � T — ° -FT N M NNNN No NNN C° N M M N N N N N N N O N N N N N N N N N m W= Q N U EO^ NNNNNN ... O N N N NNNNN N.. O NAG NNNNNNNNNN MN MbbDMM N Nr N M OO NNO; O OM OO 1NM V roV.NM O NrO O N I�rI N N 3 u d E 'O V 0= O V N tO m m N V N N O M M O r It N v r AMV. N N O M NN.N.AMMr @) m o - r N NNr a9 3 NNN.............NN M N c _ 3 v c E a a - a E � m to N t0 N W. N N O O N N r N � N O O O N N M M 2 A V V O O N N N (A O a N O O N N N O O N N ao t0 V 0 N N N O O M M 0 0 N N M A m N O 0 0 N N aD � O V 0 0 N N V IQ 0 0 N N NNNN N N CO M 0 0 N N M V N M 0 0 N N O N M N M V 0 N N V N M V� lA m N N N N N N m a N N r N - 4 - z N N m m .... N N r r CN° N^ n r N CV m N (A M N N V V N m V N N N lV N C O N N N V i0 f O N V V r l� ............. O N V i0 V w N M M tw N M M V M V V V @ QO]CQVmOQ�"mNQm O r M Oi N NQV N N EiiiC#CC: O ih _ c w= m° 22���������3�����3���3��333333333 N N N CO CkV� c 3 q pia= a N V V O N N N N N N N N N N N;r N N N C N C C y d d p d d U o c N N O N N N p d 3 O U m y-pa �za 7 a 1p m m a C = N a_ N w� wz N N C w a = U d p- U '^ O D U U U U U U U N N p O N N po N N p N N N= N.Oo No N o KKK .d ___ 0 K K K K oo 00 o 00 00 o o o K K K K K K K K K KKK K K K K K K K K K K K K K d mWaayrnrnrn maWaammmmmmmmWaaWWaWWaaWaaWaaWWaWWaaWa v d v v d d d ;L d d O_ O_ O_ O_ O_ Y O o ZZ o M L H E w ry E O tp N Oni M S Q Q M m a M O fO N M N 1. N� .1 N A M V« 1.00i V M M a Oi � a� io a�D fp m n m W n ro Z Z V al O IG O M fC N N V V N N V M Hi V O O C L E y - a M .1 M 'M Q Q O O 1. S O N N O E WM S 2N N N O N M N m N N O M M ro W O 2 N O. N m m N m N N NZ Z O tC N Yi CV � N NN IV b fV V N M M fV (V M V N N O V M m N N M N M N m V N N M N N - N u nNL M OO tp NII(0 N QQ N °V MO O NN NMr NN 6 M V V S2 V O 6 N V� j F 0 W N CI r M Z Z (C r (C N lV N V M 1� M a6 � w � d N L Pn S2 c6 �p o QZ OO O N N 0 IO ffOO ((OO NO� 6 O N N NN ^ mO N M yON N M V YM VM N ^ 6 4 NN N� 7 m E a M<��MNM ',2 °°NMNV TVN o«PV�BN M<m�<�2 98<P°^� K >_ E m N O <V I� ^ m N N 0. N O M N . V a O V c =E W L O O C O O N O 0 00 N N W O NN M n M M O N V O O M N N O N N N V N N MN O O NoNNMNNVN O O O N N O M V O W N M V a Ng - o O q Y m< r N M N M Q^ O fO V M M Q OMi N N N r m M r V fp 6IV N O fp O M acD M V N N M fp 6 aND V N r M > d 0 HIM fV V 1� M Z ^ a6 I� V V V Z lC N M 6 V fC N 6 fC O V V fC al Hi 6 6I� d a W a O T d nt �ad,a -� o ro Z Q OiZro rovm ei Nm O a NiNM c C 4 N O_ N N V V N N N M N f0 V M V M V M ci M N N 16 O W N N N M V N N � M N m e n ^ r N r Z Z 6 6 N O M - F Ur o N N 4 M f0 fV N c'i V O CV 6g^ N w c0 tp tO0 vOi uWi � VfrNOO Mt�NOO M N V u0 0. .o N M vb N MN I n n 3 y d m0 moC Yf=' N N N MN rl.E; NMN. M NNW M M N n o W O O d u Yry d �.r M N N Z Z M O lV CV N M Oi N (O fV fV N m c'i V <V M V (V M r N CV O "i V V OOi "i N V V �yy � l M N M N fV M M N N M 4 N <V M O vi 14 16 16 n 3 d 14 3 E 3 u N_ � k u a d O C V N.rN r MNN O V MMNOMiN WN N �r V (ONO(OO acOM V Otp (Om z v E O •C j U N w m h tC Yi (C h fV MO N N Yi (C V c'i (C O M N m r (N(VV 1� M V _- - E a e C Z. z» Z. P VNNmN� AVM MNo O p N N M Mom�NM MVMVo _ Y)�CM�rpM VO a^D Nm N NMM NNO�OMO MM«�mM. f0 M V V i0 M V W N.M O W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <pp�.0 'N 1. m ��� ON gaV MI MNON0mNOyyM�� �MMMMm B'0� —0g 2 m� V N n V r N N M` N O M N OOi fp M t0 M m V m M aD V n a N f0 a^D OOi N O^i f0 m a N - _ E& 00 z E a z d N a N N N N N N N N N N N N N M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M a pp w d E > 8 E E o d d 9 0 j m d m a O j d 3 ¢ N3Nd v d p' ss .-, a Z T y y N a N w> w> K N N N N Nf-$ N N N» > > N U U o O. d d d d d d N N N N N N N 'o'o N N 'o'o'o N N N N 'o'o'o N N 'o N N 'o 'o'o'o N N N N 'o 'o N N 'o 'o N N o 1.12 0001 o d 'o N t 'C d N d d 0 0 0 d d 0 d d 0 d d 0 0 d 0 0 d 0 0 d d 0 d N 0 0 N 0 N N d d N d d d N d N N N E 2 22 E T T C � V m O Q Z O Q m Z Q Q Z z Q Q z Z Q Q z z Q Q Z z Q Q z Z Q Q Z Z N t F N N M N N N M m M N m V f0 M O n N fp OWi m N O O Q N W O M Vm M V Q Q Q Q Q Q Q Q Q Q Q Q Q V N m IV 1� l0 m l0 aD lC Z f0 v M V N V m z z z Z Z Z Z z Z Z Z Z Z N N L O d a` a V m m V N W 0 m O N N N M w ni N N N di M aOD N cV O W O 6 N O N m N 0¢ Z` N O m N N fp m N W m M IvQ of Z Q Q Z z Q Q z Z Q Q z z Q Q Z z Q Q z Z Q QSoo Z Z - cw'> Oo•c imp �p N W ^ ohM (O M r; m M N m V M 0 0 Q Q Q Q Q Q Q Q Q Q V N m mV �N o(O M���Nyy mVVO 6O6 z0n MIV —Gzzzzzzzzzzzz lM zQ N M O f0 f0 o M of o N N M N V M m^ O M N M m M M O QQ M Z N N o` mom O QQ Z QQ QQ Z Z QQ QQ Z Z QQ QQ Z Z QQ QQ Z Z QQ QQ Z Z QQ Q Z z c N ^ w of M m E .8 O Y w oraam M N 4 N O a�D M M V w M O Omi M f0 OWi N O r 0 aND N O� N V M V M O� M n O N M V Imp, r r V N N N N N O um �=.E > x umivo mlcmmmm �fcmrmo rm� �mv �amm� N p W = d r Yg� O N — M a0 <ii6o�i�p (C N V N N N W Oi N M M� w 6N� 6 N6 o 6 N m M w�pp N M ;^i N opp N M OOo O N N O mL6 6S a - o « N N Y o _ d O fOO N N �pp m -. w w Q Q VV aD Q OOi Q V Q m N M Q Q Q^ N Q Q m 0 M Q V Q Q Q r Q VV M Q r N` r Q M N I� Q n Q - r a ��4 Mi ,No zzZ6z��zm w NzZz„m,z�zm64-6Z6 w zzzz�Nzs-pz�� 8z 8z as W 3 _ a 6 t L Z o� Z m of Z QQQOQOQO � z Z z Z^ gOQQQQOOQO M m Z Z Z Z Z OQO m Z o OQOQ m Z m Z x m thZZQOQOOQO w {h th N m M O a aw e v No o NN N ` N M- N V m VW NWNNmN M oO NN NO MO N Mm °� N VN nm r M m N f0 tp m Om M0 V fV Ni N V Q Q Q Q QQQNN Q VS N. m�M V - UC Zgg6 M uN o pC= «oro`oE o m m o 1� v� m v, m M W m w n om N m wN �u� wror vv'i uu'i u�umi pi uu'i umi `9iN u�uu'i�Nu�umi `"umi u�u`"i �i�u�piN�� Nv�i umi u'�m `"umi umi umi umi fO 'uNi m o W O O n 6 u M N N M tmp N M (OO N V M m N N O M V N V Q m M M 0 N M 0 0 0 Q Q Q Q Q Q Q Q Q Q O O r N � M V fV M (V N fV O t�l fV M M fV fV fV M Ni fV M M Z fV M Ni V M M z z Z Z z Z Z z Z Z z z Z fV IV fV E a u 3 z E O N N NYi tp N r N m V a0 w M V w V w 0 V m N m OMi 64 N r m N M lC w O V 0 M h 6.6 V w fV M I� fV IV O` M V r h m N w a0 V wl N Yi (C N M � � fV 9 9 o d U Nw= N ^ ^ ^ _ � E a a i i > i i > > i > > i > z i i > i i > > i > zd zd z° z° zd z° z° zd z° z° zd zd z° z° a - Oi m 1� o a t00 M N N^ � Oi V o m m 0 V V w Om N m w 0 1� m N N .N V M M O N O yy V f0 tp m O n ttOO m 0 tmp W M m N tip ro O M M V O^i N tp O O M V M N 2 N r. m M. N N N W V O O O tp O O ttpp M m Omi rpp M N O ��pp f0 V Omi N M O M r N r N yy f0 O OOi N Omi M MOO rpp V ffOO N w ryry N f0 Omi M O^i V r N IvCi O 2 VN G t t NNE o - N r m w tp O v N a r N N M N m N M r OOi r m w N N` N M I� h wA l� m N O N m E d d e`oo aadddda�Saaddaadddaadaddddddddddadddaaaadddddd�a�Sd�_az W �i z E a N a M M M M M M M M M M M M M M M M M M M M M M M M M M M M 2 E � 'a N a t N a a a N N N N a N N N N N a n a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 n 0 n 0 0 a e Q a a a a a a a a a a a a a a» 2 a 2@ q 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 0 0 o a a& o - - - - - - - - - - - - - - - - - - a 7 9 c 2= 2 c c c 2 c 2 o c 2 7 7 2 \§77J6666 6 66a6�6cain L a OZZZZZZZZZZZZZZZZZZZZZ kz z z z z z z z z z z z z z z z z z» z 2 # \ K» z» z z z z z z z z z z z» z z x» 2 � a 0 = 2 Cr o r 'IT = r r r r r r r r r r 'IT � r= o (D / § \ Cl) =2 n n n n n n n n n n n n n n n n n n n n n // = \ % a E ° Cl) j $ § ; _ = e + ] j 2 a - ` 4) o# n* o o o o o o o w _ p r o 6 6 m= n n_ e/ z 4 2 ; / \ . & \ \ E K 7 § 2 = - ( 0 t $ $ - $ ƒ / w $ ƒ $ o $ $ o o k $ $ 0 \ E \ \ / _ _ = r � # n # � # _ _ _ _ = r = _ _ f E @ § E § z z z z z z z z z z z z z z z z z z F->: 2- o § E 2 2% E f t 0) / § _ § = '@ # N _ - = 0 o = N - IN'- o = o = _ _ r@@ = e = [ u e-® ; E n w R = R _ R _ < e R =n h w K R r R = K _ a N a R 7 = ) § 2 k 0 e 0 o 0 e 0 o 0 e 0 o 0 (00 0 0 (00 0 0 e 0 o 0 (0 0 o 0 (00 0 004 coo § § &§ 0 y 7 § E e n f. 7$\ 2 w 9 f/ 2// 2$ 2/ b § } - 2 Z=» e @ + E± e e / / / / 2 e I= e e / / / / / / / / / E a a» 2» k \ 2 E<= o= u LL 0 Appendix C Geotechnical Analysis Summary CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix C H Q w Y 5 u ,cO• � x E x CC u U � N a I �n o C ,pp q3� U � rC. W C O� 00 00 oq C M y �n C �v 000 CDi %0 "r m QC O .~-i N .N+ A O O H A p� O M N .�-� N a w y w E lu .a d a O vl l� n m cq N M cr1 O\ 10 w d O N w' o N Cl v�/-� �O ��/11 00 0o v� O t� O o0 v1 O o \O O c O+ S z N N M P1 V � .-+ N N 1. N M CEn V vi vi En V) w .a En U a 60 Cq eo fA en 0 m wfA to eu eo �epn en rn v� En V) W u � An O In O ON Vl l- l- 00 N N to N O O O O O O O O M uj ul v1 vl �1 00 K1 6 Ki G r iG d d d d d d d d d 0 0 0 0 0 -,tI w O 'I W O � zQz U coo i 00 A A aN. aV. Q Q 'U -E. a' �= a O � R o V vac C .2Nco E;o E '10 a Az 14 N O • z 1 h Q we, r_ Ln (n w R C N O o0 N O O [� k, O ri �--� V N �i r 00 o0 �-• 0 N �r N vi v1 en r .'-� � N a [- �z y N u i S 7 00 to 00 •r R .r O� a 00 ri o0 N C N M W � .~-i rl 'M-I o6 (n o V UV) U W xx vi vi vi to V) U a �F • cn V) cn EnEn cn W cn � �n w cn cn cn cn cn u vw N o e-� N N -: `r N I i o .-r N MM . O N 00 r'7 N1 c�i1 M N M ry 00 ClO ba 00 00 O N N u'1 00 O K1 G z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I` 00 os h N A A Y Q.. O O C (% V) 'O N U a� C N C� y cn- A z a C7 " ° �7 a; O z -1 I H Q a P4 Om V 3 x � •o u � Q V v O � o � C � U �o 3 �EE �n A � GQ a 0 �v y C � o " N Qa Ch cn M Q 00 �g C N V1 N It COet O� �I O O O� ti O O I� r �--� N 00 V�j C O ' x U Lo En x vi vi vi En w U • En cn u i E u v o ~ CD N CD V1 wl N V) v1 06 II} 00 V'� O h 00 O M 00 InV� O 00 v1 fM Vl 00 bo •� N (n M to M CD kn - cmn h h ro z 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 ,= 1000 00 N H Aq 0 u O G w y a II ii C7a .° v�iA� 3 •v z N O z w 7 X o O O O 'O 'C (n W ,O. oq M oq M N (ry N o3 a � aCD C R W) In � 't O O O CDO C U W u 'S o a a o (V M N (V (+7 4 w C w O 0 w A•CC i4 N z M N n f a a k �g v C N �+ O sz M Vn 'ITIn N oo .+ In p �� oq oq 0 0 z�O• _Q U N t�7 (N�1 N N C .O a U U .a R U U h A v N N ,O to V �•+ M � M N �r N O z wz 0 z¢z U 000 00 N00 'n AA cu °� c R (n `n �. a E cn ^� a �]co3 Az° II (D II It V)i]ro3vz • w N CA N ^^C� h�l 4 L Z t N 4- O O O Z O 0 co E � a) = O y O O (no O CD w Z 0 L d 0 mva L O u C O u mU a mUC C _ _ -CCU UUO + O C a CO y co En •> - > T > a 0 U) (n � (n Cn (n F0 m2 � co >,p co UU� mU) 2 (n (n 7 N ti M_ N-- (D (D O O M N Q Z I� r V 6) N m M -I- (N Z (n M 0 0 J Q J J Q Q Q Q= J m J= (n'°�Zci�ZZZZ��(�ciU ++ w_ C d 0)v r M - U'O C Z N- Z Z Z Z N- M N y m °L a C w V co Q't "t Q Q Q Q r r In r a._ tZvvZZZZLnM��� -j IL Ln C O VCD E N N [t LO Il- N O LO M M Q LO (1 O� 1* r Ln r c'' � O r (D M N N Z r r CA I� m@ IL r M N N r r Cl) N CO U �, u•> O c E Ln Ln M Lq N r O 0) O M (D M Q ti M '7 1- Ln O Ln ti Ln CD N O 0 ` v E (D "" (O O M N Z N m r� CO m d IL M CO N V N r r M N N N C y 0 0 I-- M r- O O M c0 LO O) N co L() Q O� (D I- CV O) r O CM C) LL 0co LN CCD N -- Z CN N _ M 4 CMD (ND IL C v E r Cn M cJ M N CD O r f- Ln F- Q `- LP) M N m f- 4 r CD CO et V E O M (D Lo M O Z~ ~ Ln Ln to I� G7 a N Cr) ('') M ti c0 (D LO M -tf co V .. > co r� M N d> O (M CM 0 O CDQ M Z O M 0 co 0 0 0 •N tt r a L c7 d ¢anmmmm co co d O O O O g M Lo 0 0 0 0 0 a N ti N M r Ln CO M R d O CDO O O O O Ln O O O O O Q m 0 0 N O m M r r r- r D N N -0 d - 7 .> C M"T O_ r N 1` 00 N (D M O 00 o 0CLmL 0- Dz o 0 Q Z D Z Phase 2 Cells F-H Table 2B Summary of Geotechnical Data Undisturbed and Remolded Bulk Sample Conductivity BFI Waste Systems of NA Concord, Cabarrus County, North Carolina Project No. 00188-002 Boring Sample Depth (ft) Dry Unit Weight (PCF)* Wet Unit Weight (PCF)* Total Porosity* Specific Gravity Saturated Conductivity (cm/s) Undisturbed Samples P-13 22.0 - 24.0 76.2 100.4 0.57 2.86 8.08E-08 P-14 8.0 - 10.0 72.5 103.2 0.61 2.98 1.10E-04 Notes: * Before test Boring Sample Depth I (ft) Maximum Dry Density (PCF) Optimum Moisture (%) Total Porosity"* Specific Gravity** Saturated Conductivity (cm/s) Bulk Samples (Remolded) P-10 0.0 - 7.0 108.1 18.2 0.39 2.75 1.30E-09 P-1 0.0 - 10.0 103.2 21.2 0.42 2.75 4.10E-08 P-26 1.0 - 10.0 126.0 12.5 0.30 2.85 5.00E-09 P-63 1.0 - 10.0 97.8 24.7 0.46 2.85 4.90E-09 P-70 1.0 - 7.0 115.1 16.1 0.36 2.85 1.30E-09 P-78 1.0 - 8.0 103.0 19.6 0.41 2.85 3.00E-09 Notes: ** As tested DRAFT, 5/5/03, Page 1 of 1, Rev. 0 Mbl •u� Y Y Y Y Y Y Y Y Y Y OY• •Y M CO - _ L •L L L L L L L LL M a)❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ J U o 0_- U ""t3 O> ; 'O a a V > U T V O n c @ rn@ y N ° c Va s W a W W > c> T a) (D a)U T c c c r, > C6 cz Co Co >1a 2 (a � UU��co � (n L 7 Y L- CO N (O (0 V r- N r Q f� r 0 V7 l6 '� M N V LO I� O O N N z ti N V r V N z 0 •y o 0 0 0 0 0 0 0 0 0 0 0 0 V N U.)N O O O O O CD,O (n (n O N M M N coN LO V M wa N cn N J J J J U� U fn fn (n U In U U U ❑ U�� V d V= r> rn (1) N N r> in rn > W N (O r CO M (n N N co a c c c Z Z Z V O V ITfn fn u) M (0 V LO _a J J H H H > O A V) (n U O E ONO N O h« * 0', V M c E O) r M O N M N N N V r r r O) M I- N V M i = N N m O) 0) (.0i- V 00Ntio En(n u) rnmw ml� - - - o cCD q O E M M N V N N* CO O M N N N c to o A V a) o a) L- M ti O O M w (n O) N w (n 00 OR(D 0) V 1-O) N r 0) Cl) G1 Il N N O N O N N Cl) V (D (fl (D a U) c ' In m Ln 1` E 00 M - M N (o O L� (n 1- co 00 r U')N Cl) O) ('- V (O 00 V fn ti C E V O w M co(0 M V Lo M M f� O w (D V (D Lo (n (n M Lo V I— M 0 m N w (n M rrnr)coryr (0 IT0) M �wwommo0 C9 ti V r 0 M O M 0 0 0 0 o � a Q❑❑ J J����� J J J J tn~ mm mmmm a) � O O O O 0 M 0. Lo 0 0 0 o 0 Q. L N-0 Ih N m r Lo w w E .r ao000000(no0000 > (n N N O O M N m M M r N U C M V O r N r w r N m M O w N a a a a a a a a a a a a a m z m � X > O O) 3 SZ r p Q U �O U 4 a)L O > CL 7 N a (T O U a (co m L o m c L °) u > L c a a) +0+ a) to cu c N a) 0 > O (n L O > (D L6 a) Y L 0) :E O > O a) r U O > w - Q a a) o a) O i U Q N w C Q U Ui 00 >n a a) 00a) -r U U W Q v sl c N C U N (6 E O (n = CD U > L LL i `n O > O N (n.3 c u 5 O > .LDa' a U U N >, o a) fn U) .N a) Q U rn E O U?c N U (D c ° a) u, T > c a)j E v, N 3 u, c N 0 c) c O 7 %n (n a O = > (n N O -p Mn t Q o n L O 10 O > w a fn N f O U 00 n Y O L > C c a a) aai @ > Y w T Z O c a cLi > c E w n U> s a) O U o N ui o o O U - (n a) aD n a a' 0- �20 > a) a) +>+ U O L L a) ~ S co V1 a) .L.. 7 a'- a) a) _ � U m N O O C > >a o st�Lu (y N - n a U O N N N O > IZ a) c m C O c a) > N Q H � a) Q m L) c rn (T .�) m41 d oo O v O R v N 3co R C V CDo fn O °O U U T V > co m CL N N CO T r r N L j Cl? O 00 o. j (Z 't N + ++ O O U- �U d N LO f.0 � 0 P O !Z O O d 0 N O O w to E cL N oo m E N G1 N � M � Y 0 d tZ w O m D Z « N rn O w O rn O rn O rn O rn O L V _ W W W W W W Cv1 p M— p p O p O p M p O cc a fn O 'IT LO If cM U �.' Lo In Lo In Lo 00 j I— I- CO CO CO r fZ i N N N N N N In (7 z T M� M N �� IT 0 0 0 0 0 0 O IL 7 y C L C N N Lo I-- 7 O 3 CO N IT Cfl O cL An 2 0 E IL N O 0c) 7O r 00 O N O E In O T X !_ � 0 -a p 0 0 0 0 0 0 N 0 0 0 i` 00 N w 'Eav E ' 0 0 0 0 0 0 y 0 p r N N O !Z C1 O (O M O a0 •L 0 Y CL a N !i (O d ti IZ a in N N m Z Appendix D Hydraulic Conductivity and Porosity CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix D Phase 2 Cells 2A-2E TABLE 3 SUMMARY OF LABORATORY PERMEABILITY TEST RESULTS Depth Coefficient Sample kFt. USCS Porosi of Permeability OW-5 1 - 2.5 CH 0.49 1.3x10"' cm/sec OW-10 3-5 SM 0.55 2.8x10-4 cm/sec OW-35 3-5 CH 0.47 1.6x10-4 cm/sec* OW-48 2-4 CL-ML 0.41 1.8x10' cm/sec * Rock Fragments Observed in Sample 3.5 Groundwater Groundwater measurements were obtained in auger borings at the termination of drilling, near 24 hours after drilling, and bi-weekly for a total of up to five groundwater measurements. As previously mentioned, the observation wells consisted of generally 5 to 10-foot machine slotted screens. All of the auger borings that penetrated the groundwater not converted to observation wells had a temporary standpipe installed. Eight of the observations wells located outside the landfill (including 5 rock core nested locations) were installed as Type II monitoring wells for potential use as future groundwater monitoring wells. �i Groundwater levels were measured using an electronic water level indicator from the top of the PVC standpipe. The top of the PVC standpipe as well as ground surface elevations �I were surveyed by F.D. Lawrence & Associates, P.A. The groundwater level measurements and elevations are presented in Table 4. Groundwater levels in the area of Cells 2C through 2E will continue to be monitored on a monthly basis until these areas are ready for construction. The auger borings and observation wells located within the footprint of Cell 2A and 2B will be abandoned in W, 15 Phase 2 Cells 2F-2H Table 2B Summary of Geotechnical Data Undisturbed and Remolded Bulk Sample Conductivity BFI Waste Systems of NA Concord, Cabarrus County, North Carolina Project No. 00188-002 Boring Sample Depth (ft) Dry Unit Weight (PCF)* Wet Unit Weight (PCF)* Total Porosity* Specific Gravity Saturated Conductivity (cm/s) Undisturbed Samples P-13 22.0 - 24.0 76.2 100.4 0.57 2.86 8.08E-08 P-14 8.0 - 10.0 72.5 103.2 0.61 2.98 1.10E-04 Notes: * Before test Boring Sample Depth I (ft) Maximum Dry Density (PCF) Optimum Moisture (%) Total Porosity"* Specific Gravity** Saturated Conductivity (cm/s) Bulk Samples (Remolded) P-10 0.0 - 7.0 108.1 18.2 0.39 2.75 1.30E-09 P-1 0.0 - 10.0 103.2 21.2 0.42 2.75 4.10E-08 P-26 1.0 - 10.0 126.0 12.5 0.30 2.85 5.00E-09 P-63 1.0 - 10.0 97.8 24.7 0.46 2.85 4.90E-09 P-70 1.0 - 7.0 115.1 16.1 0.36 2.85 1.30E-09 P-78 1.0 - 8.0 103.0 19.6 0.41 2.85 3.00E-09 Notes: ** As tested DRAFT, 5/5/03, Page 1 of 1, Rev. 0 Table 2B Summary of Geotechnical Data Undisturbed and Remolded Bulk Sample Conductivity Boring Sample Depth (ft) Dry Unit Weight (PCF)" Wet Unit Weight (PCF)" Total Porosity* Specific Gravity Saturated Conductivity (cm/s) Undisturbed Samples P-13 22.0 - 24.0 76.2 100.4 0.57 2.86 8.08E-08 P-14 8.0 - 10.0 72.5 103.2 0.61 2.98 1.10E-04 Notes: Before test Boring Sample Depth (ft) Maximum Dry Density (PCF) Optimum Moisture (%) Total Porosity"* Specific Gravity" Saturated Conductivity (cm/s) Bulk Samples (Remolded) P-10 0.0 - 7.0 108.1 18.2 0.39 2.75 1.30E-09 P-1 0.0 - 10.0 103.2 21.2 0.42 2.75 4.10E-08 P-26 1.0 - 10.0 126.0 12.5 0.30 2.85 5.00E-09 P-63 1.0 - 10.0 97.8 24.7 0.46 2.85 4.90E-09 P-70 1.0 - 7.0 115.1 16.1 0.36 2.85 1.30E-09 P-78 1.0 - 8.0 103.0 19.6 0.41 2.78 3.00E-09 Notes: ** As tested Table 3 Hydraulic Conductivity Data Phase Boring Screen Length (ft.) Top of Water Level to Bottom of Screen (ft.) Saturated Aquifer Thickness (ft.) Static Water Level" (ft.) Topographic Position Hydraulic Conductivity Average Values* cm/sec Hvorslev cm/sec Bower -Rice cm/sec 2 P-46 10 38.97 10.00 9.65 flat upland 1.53E-05 1.11 E-05 9.79E-06 2 P-102 5 15.12 15.12 6.25 flat upland 6.02E-06 5.52E-06 1.12E-05 2 P-86 5 6.67 6.67 21.32 mod. slope 9.51 E-07 7.53E-07 2 P-82 10 58.20 10.00 15.37 flat upland 3.59E-05 2.61 E-05 3.10E-05 2 P-1 10 6.22 6.22 32.24 flat upland 8.81 E-05 6.48E-05 2 P-104 5 10.97 10.97 14.10 mod. slope 8.90E-06 7.86E-06 2.90E-05 3 P-10 10 6.25 6.25 11.94 sloping hilltop 3.73E-06 1.01 E-05 6.92E-06 3 P-12 10 18.76 10.00 5.72 stream bank 1.19E-05 8.17E-06 3 P-13 5 37.35 5.00 27.02 sloping hilltop 1.47E-06 1.07E-06 3 P-21 10 28.31 10.00 10.90 stream bank 4.00E-06 2.95E-06 3 P-52 10 30.15 30.15 3.12 sloping hilltop 4.99E-05 4.46E-05 1.55E-05 3 P-8 10 9.92 9.92 10.35 mod. sloe 6.32E-04 4.47E-04 3 P-9 10 10.99 10.99 7.66 flat upland 2.28E-05 1.69E-05 3 P-11 10 4.21 4.21 18.45 stream bank 5.35E-06 3.88E-06 3 P-15 10 9.87 9.87 16.75 sloping knoll 1.20E-06 8.60E-07 3 P-16 10 17.35 17.35 13.27 mod. sloe 6.99E-06 5.53E-06 3 P-58 5 7.58 7.58 27.05 steep sloe 4.77E-07 3.90E-07 3 P-60 5 11.85 11.85 11.90 mod. sloe 1.03E-06 9.16E-07 3 P-66 10 7.57 7.57 27.98 mod. sloe 2.92E-06 2.17E-06 3 P-72 10 15.39 15.39 25.06 sloping hilltop 1.25E-06 1.02E-06 3 P-91 10 23.17 23.17 20.12 mod. slope 3.33E-06 2.96E-06 5.79E-05 3 P-14 10 14.34 14.34 29.68 sloping hilltop 5.88E-06 4.71 E-06 3 P-23 10 10.97 10.97 11.34 stream bank 2.02E-06 1.53E-06 3 P-70 5 7.28 7.28 2.40 sloping hilltop 5.63E-06 4.27E-06 3 P-73 10 14.94 14.94 7.59 mod. slope 1.34E-05 1.08E-05 6.02E-06 3 P-19 10 20.35 10.00 13.20 flat lowland 5.00E-06 3.67E-06 4.34E-06 Notes: ^ -measured depth below top of casing, as used in the calculations **The diabase units are approximately 5 feet wide based on visual * - Hvorslev and Bouwer-Rice values averaged for each respective ui inspection and similar in appearance to the diorite-gabbro unit; the Saturated Aquifer Thickness Determined as Follows: contact zones are approximately 10 to 15 feet wide on either side Saprolite: Top Water Level to Auger Refusal or Bottom of Screen of the dike -- these were exposed in grade cuts during the study Bedrock: Thickness = Screen Interval Denotes Phase 2 piezometers close enough to Phase 3 to be relevant Appendix E Historical Groundwater Elevations CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix E N Op Q n 4- Q a 6 m M 7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N Z 4 r Z Z6n6- Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z O cMo N N Q M N w Q a 7— 0 w Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q ;�- N Z n 4 m Z Z 6.�T 6, Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O N M Q M m Q Q a N Q O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q a Z o� Z Z Z Z v o- Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O O � aD O rn m- a a a a a a a a a a a a a a m z� a z z z z��� Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N N O po Z Z Z Z Z Z Z Z 0 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N n u N N O N Q a a Q Q a a a a s a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a N N N O N Q Q Q Q Q a Q Q a Q Q a Q Q a Q Q a Q Q a Q Q a a Q a a Q a a Q a a Q a a Q a a Q N O N O N Q Q Q Q Q a Q Q a Q Q a Q Q a Q Q a Q Q a Q Q a a Q a a Q a a Q a a Q a a Q a a Q j0 N M Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q y z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z a N O N Q a a Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q a N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 0 0 N a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a N 0 0 N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 0 N Q a a Q Q a a a a s a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n N T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z O N Q Q Q Q Q a Q Q a Q Q a Q Q a Q Q a Q Q a Q Q a a Q a a Q a a Q a a Q a a Q a a Q N W Of a Q Q Q Q a Q Q Q Q Q a Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q a Q a Q Q Q a Q Q Q Q M O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z W W �aaaaaaaaaasaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz a a a a a a a a a s a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a �aaaaaaasasaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z c o C q •— N^ u� m N rn u� O> M ro o V N o ro ap tD v O N v I� O M N N m M r M N M N 7 u� O m N N M rn rn O o. N v N v m N in r� v o m in M 61 D o m m I nM u� 4 n 6 � C� 41 W C u, u� u� cn cn in cn cn u> cn ummi cn in ui u4i cn cn u4i u> cn coo cn u> cn cn uIi cn uIi coo cn cn cn cn cn cn cn Cr p� O f� O N M M r r w co w V O 00 W M O N W cp W M M N N cp N N N M ap W V ap M W V o0o � W U � p• an d d d d d a> d d a> d d a> d d a> d d m d d m d d a> a> d a> a> d a> a> d a> a> d a> a> d a> a> d rn oddddddddddddaaadddddddddddddddddddddddddd m N O O Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q o N f0 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z z z-� N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q ;:: rl Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q p M Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q a N N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z O N Q¢ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q W N N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q m N O N N N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N a N R C N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q n Q O M n M Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z O O M ` N l V pCp U N y Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q z z Q Q Z Z Q Q Z Z Q Z Q Z C N N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q ir' R Q O azzzzzzzzzzzzzzzzzzz--z (u N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q O Q N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 10 � 1 Z � ) 'O N N 3 � Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q v c0 Q Y N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z z z Z z Z N C l0 04 N y N e NQ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q co Q m N Q n Z Z Z Z Z Z Z Z z z Z z z z z z z z Z� N Z U N u) 0 N 3 N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Z Z Z Z Z Z Z Z Z Z Z Z Z Z z Z Z z Z� N z j N � u) 1 Q T Y U O m m Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q coo Q u) m (o C y m O O O O fp Z z z Z z z Z Z Z Z Z Z Z Z Z Z Z Z Z " t l O OJ N T - N E O Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M 00) - PoM Z z z Z z z Z Z Z Z Z Z Z Z Z Z Z Z Z O M O u�-� � i u�-� M a � m �! Q Q Q Q Q Q Q Q 4 Q Q 4 Q Q 4 Q Q 4 Q O � Q n N q T tO0 (m0 O u�'� m m �; n N o V M r N 0 un'� M m O> E N Oi V O 1� fh m f+J m N m O N 0 CO N V n O u°DDD'�u uni u�0i�uni uni�uni u�Oi�u°Di uni�u°Di N a O m m ( N O O (p n GO O KJ n N n p) n O O M 0 it1M Oo m M V M V m V N N (p O. C H o•�, Emronrororommronnronroron<Omm�rom r V M O n M 0 w. CJ N N (M M 0 CJ i[J f0 a I� O U � p N N N N N N N N N N N N N N N N N N N N N N N N a Ecm > > > > > > > > > > > > > > > > > > > > > > • n n n n N N m m 0 0 0 N mcaaaaaaaaaaaaaaaaaaa��� v W b � ifJ N � � ifl � to N to LLJ N (tJ ((J N to to � to LL� ifl � � N N � ifl ifl LLJ N ifl LLJ N ifl � ifl N � ifl ifl LLJ N ([) W N n n W N (C) n N n W N N W V N V V N V V N N (n n TIT W W W n n N N V V W N V W N W n n W N n n W TIT W W W (n n W N n n W W n n N o n n o N n n n W o N M n W M (n n N v m 0 (n O N W O r M V W O v 0 0 v r 0 W n N W O N m N (n M W W V N W M W v N W O (n N v r 0 W N W v W O M W O N O r m M M W v r W N N r W W S W n n � n I� r n W N N O W u GO r V V GO r V V M GD n M W W N N n n W In V V N N V W O IDN n n W n n N W W I� n v 0 n n w D m n n m m n W N r W n n n (+l o ([l W W N o N W N N W N N W N N o N N W N N W N N W W No N W . N W W N W W N W W N M v M O V M m V W r W m O N V V m O W W m r V W n V m 0 n W 0 W M 0 r M (C) N W W m W N 0 W (n W r W W W W v m (n W m (n W m N W M W r (n N 0 m n O v W N V r o Wnn(nnnW o t O M o o O M Wvvvvv�n o o o n N r n(n m p W(�rvvv O N r r N Wrnnnm(o O v M m W O �nrrWnnW N m W r m r W r r o nnr a(n In Ln Ln LLJ LLJ (A LLJ LLJ (A LLJ � ifl � � (n LLJ LLJ N LLJ to � LLJ LLJ ifl ifl LLJ (A N to N (n to N (n LLJ ((J ifl LLJ (A N LL) M m_ � m W v m m W W O O m O n (n W N M r r n (n (n r (C) W r W m M (n v M C') v v (C) v v m n (n r ([ W (n W m m W W m m v v W V � v W W W (V W r m W � I� r W � O W W o. M � O (n r W (n (V I� r W W N u'i (O r r m. N N 1� W W (n (n N m m m r r r N p (y N m o o m N It M n m m N O N (n IDS W W O (O W W N (o N W m N m W m (O W N O (O (n v M N m O m W m m N (n dD N W M W N (O r N W O W W o (n n W v o I� v W O m W 0 oN on cW (n (n (C) O iz o m O W O V m N m W n m oh h W o co n n (n n W W v v v v v n o (n W o . n W (C) o v v LL'1 o v W o LL'1 W n LL'1 o n W . LL'1 W W W r W n n W W n n r N p N W n M m V N W W W m W o W N m M W m O W V W n W O W W m O W N m v m � W m m M O W O N o W m N V W N n fp (n W r m m m (n 0 (o fp m o r N O n W (o m W . (y (n W r r N (n W N r W v N o V V N.. V V v r N.. (n W N.. r W v v N.. v W N W W NTN' r W W W (n m n m N N. r r N W Wl N. r n N� N N O W W W N m v O N O m m O N (n m W r O m m mvmvvV�u'�oW W m (n W r m m m m v W W N m (n Pl u) N p O m m N M 0 O V M m m n (n (C) (C) (n O N W W n W V m W M (n W (C) M N O n n N v N N r v O M N W r � M (n O � v r O a r r � M W Q W m O m W v W r N M N W � 0 M C W o � o I N r r o u) O N o W ([) o N 0 r W ([) (n v o v O v v M v v v (O (O v r V (fJ W m N W W Z v v v W v W (m W W Z m W W (n v W n W r r W W m (O W r r n N p N o o N 0 o W W n m m V o m n W 0 o n N n n N n O M (O N V M (O M V V O (y m (n O O M v (n r M W 0 W O N m r (n W r (p W Lq O W N Q O W v (n N W m N m N W v m 0 N C (n W o .. r r o (!J W o o r (A (n o (n v o v v (n N v v o o v r o (A W o N W W o o v v Zoo. o v W o N m W W (n o Z M W O W W. m W v W m N m W M V r r N N W W ((1 W v r W n N p V 0 W M m W V W V 0 Q 7 r r m( N O W Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q w�� z v n (o o o m l m Z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z N N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N Q Q Q Q Q Q Q Q Q Q Q Q m N Q Q Q V M T Q Q N O M N V N m m M n m N W O m W W O o O W V N O m Q Q Q , Q N O Q r Q O W Q Cv W u) (A m W W W W W V W m W W u'� W N (A V V M N N V V Z Z z z Z o (A Z (O z z Z Z Z m o z v Z W z Z Z m W oo Z n on O Z z Z Z z z W Z W Z Z M z n p (A (n (n ([l ([l W ([l ([l (n (n ([l W ([J (n (n ([l W W o ([l o ([l (n (n ([J N O O Q Q W Q m Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Z Z Z " Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z u izz N O N V Q m O M M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N N N m Z o o s m ai V Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N o o o o (A u) N O O Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Fz N O (n O m W W v M W 0 N v m( m.( m W Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q p� N v n u; i�: n m o m Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z f0 N o O O m M v o r (([ m n Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N, N v m o 6 M O n Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z (D N O O V W am W (n v n m n n( V O O W N v Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q NI N V m O - 6 v o n Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z o W n n( n n <o W v N O O O V o r r o O V Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N n M V M a 0 � u'nW V O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z a- W n n n W vn m ``oddddddddddddddddddddddddddddddddddddddddd N N N N M M M M M W W W W W W W n m y� � ifl N � ifl N � LLJ N to to ifl to to N to to N to LLJ � LLJ l+f O m O O W N V V O c0 N N 0 0 V m N 0 TIT TIT Till � N �0 N A M (o �D N (0 M m. N � N. r <o i0 V V M �0 i0 �D r GO Ni0 M m �D oo O N u'� N N N O r r �fi Oi r r 7 N r r f0 r r m M r r m M to N V M to to 0 GD (o to f0 I� �0 m r M ro r N � N N� N N� N N� N o � o N N � m 0 i0 r N V N M V N M i0 M O m V m V O r f0 N N M(p r r � Qi r r r r r so r r m m co co �n co �n �n y r m so a l0 l0 � u) M m m V N O N oo N- o V 1 O( u 1 � O m m o o o o M m o m O m N p l0 M M m N u'� M M O GD N N N M N o V m l M r rrl ocott<D( o rso T mso O Z M <o �<D W o invvrm<D V O M to N � � LL'1 LL� LL� LL'1 LL� LL� LL� LL� LL� LL� LL� LL� LL� LL� LL'1 LL� LL� LL'1 LL� N p N N N r M V (o (0 N uJ m m � W W In In Iq 0 0 f0 IR O f0 In N 7 N (O r r r (0 r r t0 r r (0 W (0 l0 (0 l0 7 V (o N (o N N V T V N N �0 t0 V O M N t0 Q O m Q v M fo M GO m CO r r (0 V co r u) V r <O GO co m N co r GO Z u� O o o <o M Z V v so � r so min o in N f0 t0 r r c0 r r (o r f0 f0 r io 7 f0 i0 o V (o r (o r o N O O Or M r N Oo N l0 (0 N (OD Q Q Q Q Q Q Q Q Q Q Q N O N r r (0 r r (o (o r (o N 0 m- r N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q z z z z z z z z z z z z z z z z z z z 2 v m e N Q Q Q Q Q Q�� _ Q Q Q Q Q Q Q Q Q Q Q T two M N N Q Q� m Q N 0 GO Q Q Q Q Q Q Q Q Q Q Q r N GO N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z O N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q C p Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z � p 0 N N th m g o o Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q q n c ZN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z l o, o 'o o 0 0 n 0 an d N o N ia Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z — N Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Z Q Q Z Zi6 Z ;� w C- Q z E zo . a C a❑ o 0 0 i0 f0 r N m (o N r r r r m m rn rn 0 N N 0\ d E p o O ..... 00 000 OOOQo 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o o 0 A d N m O--- T m- M m m T m T m m T T T m T T m T T m T t0 m T m (O m T G a N n � N N M M LLJ � LLJ N LLJ LLJ N N N LLJ LL) � O � ltJ (D ltJ N � � N N � ltJ ltJ ltJ ltJ ltJ N W �(J N � (D � ltJ a d j Z E n O N V N O f0 W N O O N V M M V m N W O m V M n O M n n O n N M V M n N n N M V O n O W O M W V O V m V N N N M V O O M m N O m N O Vo O M V m d d K m n it GO m N GO N m GO M m V M M V N N GO N O O N N N N M O Oi O V V NW Oi O 0Mo 2 a M m n u� n m m W o M n m M W m W o WNW M m n W n m M m o W N W n v m n W o W W V V A u) O n O O O O O O V V V V O O O O (O V V V O O O n O O O O O O O O O O n n n A o N n O O O Q m W O W m M W M O W O V M 0 m n W O W O n n V M O n V O n O m N O O N IQ m n W n O O N M n N M m O m N O O O O O 7 Q M V 7 V M O m N O N (O N E T fh � V V� u'i Qi th V Qi th Qi CO T th n O T Z V V Qi T T A v m O W n W W O N O O N N O O M O ID <V V O N m M O O M m O m n O m V ID m 0 0 Z ID W V V V in ID W n IDV in in ID W W Z W W W W n n A O O n O O p u7 N 01 W m� m W W V M 01 W n n 01 W m n N V O W N V N N W O n M n cl n p M 0 O M O m n O � W � W � � O O ctJ W M � N O N O N O M n W O O m W O m Q O O O M M N O W W aD u) W Qi Oi (O fh Qi O N W Z O O N m r O O N LLJ r V n LLJ N o n 0. LLJ LLJ n V N LLJ V V LLJ N N V V n N V n o n O n V O O N LLJ n M M V N N M W V LLJ LLJ 0,0 O O N LLJ o n O LLJ N W O LLJ LLJ mom O N N M O O LLJ N Z n N W n 00 N N O n n n LLJ N N M Z O O O V n n O O V V V V V V n O O O O M V V O O O n O O O O O n O n n O O n n n A p N NV tp A p M W m m V O W V M M O M V O m O N O N V O m V O O M M N N O N O V N a N Q M M NION (O a W 00, O n n MOM O Q Q O W O N O m i[J N n O OWN �(O n O O n O i[J n O O n O O O O O V V O O V V O O O n O O i[J O O O O O O O V O O O O n O O n no O O O O O O O O O n O O O n n O O O n O O 11 n O O O N A p N m O O N W N N O V U M O M m W N O n m M 0 O M W W O V M O N O O V O W N nZ��ninpn0mZvvvOcNo1nvZZm0nn�<D Q N n O N W V V N Q V W N V O O O O N a Q 1 0 V 1 W m V M M O W O n W w n V sou c0on00ronitronit a A p M 0 0 u) n W n In Lit n M W W In O I[l m W M m O O n LLJ W W m W 0 m N� n W V V V V. r O (NO n r V Z Z O r n n O tOD LLn'1 (OO r r r r r r r n t+l A CON N Q n O O ui Q O O 0 O ui O m O i[i n Q O 0 O N m V. V W O O W m M O O M M O O M m O n O O V O m W M W n O O O W V Oi O m O O n O O n V V O c+i Z Z V v m N W n M m O m W M n m W N V m O N W n o� n M W O W n M O N N M 0 N� N No N N tp O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O m C n W m O N M V O O n W m M O n N M V O O N O n O N M V O n W m 0 N M O W m- � N N N N M M M M M V V V V i[J O O i[J i[J O N N O (D (O O O O O �`odaadddddddddddddddddddddddddddddddddddddd D d M n M n M M M M M M M M n M M M M M M M M n a d 7 V O m N (0 (0 r M m (O V m r n M 0 0 (0 (n n n d K nnnnnnnnnn(o m(om(o (o (n (o (onron 02 p O (O O M V M O (0 O m O (O N (0 M GO 7 c0 �} (0 N t0 01 (C) (O 01 (0 m M m V M (0 N 'oN O N ([J m m O I� O � m (A n CJ O 7 n N N O (0 N (0 (0 N I N r (0 V} � O (0 (V m (0 O O (0 m r {y (0 (0 (0 (C) u) (0 (C) u) (0 (C) u) (0 (C) (0 (0 (C) (0 (0 (C) (0 (0 A O n M m N (0 V (0 N (0 V O n V m (0 (O (0 M V n N N n (0 m m (0 ro m m v (V O Ih M m N M O r r (C) m (0 O N O r N m (0 m m N N M O (0 (o (o (o r (o (o (o (o (o (D (o r (n (n (n (o v v v (o r (o A O N GO m V m N n M V M u; V} GO M O (0 N O N O M m O (0 r o N N Iq M (0 M n O r n (D (O o I� � m m � u'i I� (h � O (O O o m (h m m (D (O N m (V o O (A p (D r N N O O o (0 N} r M O m (0 O O M O M N 7 r M M O M M V (0 O N (0 M n M N m n n m (O m V O m O o p r m M m N 7 V (0 (0 V GD m N m N m GD O (0 M r M p O m m M (O M m N (n o M (n O n M ([l m m O V w ([J N 00 f0 m (n O v m n n W ([l n n O (0 N (•� N O n n m V (o n 0 n � GO n (o (0 � (o ([J a (o n m m (n (o l M ((� (o O O (n ((� T N( ((� (o m n (o n O N O r v, (0 a m (0 M r N n M (0 O M (0 V M o N 7 m GD o (0 (0 n (0 7 M m M N m N M o o (0 (0 tp A O N V 7 v (0 r n v O M n m � M 0 N m N m N m (0 n (0 m V m GO M M r m N m m (n r O m M (0 M (0 m n N N (0 N (0 V (0 n O m N r r r r r r r r r (D (D r (D (D (o (o (n (n (n r r r N A O m (0 N N V M M V m m M n N (0 (0 n (0 O M M a A �nnnronnnnnn(o ro(o (o (o (o (n u�u�nron o � � O p �O m M N dD (0 n m ap M O M n N M O N c A M (0 (0 o�O o o C C (•� N �O N m 0 (0 N V n n O O M (0 O N Q O m V r (n (0 rm (p (O Z n (0 r nnnnnnnn(o M (0 (n N W O ro(o M N (o N n (o (o (+J (A (n (o m m (omnn m (V d U d - g� a m a m o c > E = E .- d M pm(000�rnmmvvov(n(o�(om V O M O r (O V (0 (0 r (0 r (O M (O (0 N m 0 N OrD (r0 ^ m (r0 r n n fm0 fn0 N N N (ro om N r E o N Z 0 m t>❑ ?> r > O Q O O F z E z a a o m d d d d d d d d d d d d d d EL EL (L EL EL 2 m N a Z Q Z Q Z Q Z Q Z Q Z Q Z a? Z O N�! (D N a0 (D Q Z Q Z Q Z a Z a Z a Z a Z Q° Z In M °D N In h N In o W In Q Z Q Z Q Z Q Z Q Z a Z Q Z Q Z Q Z Q Z Q Z m N a 0 0 0 Q a a a Q Q Q Q a a Q Q Q Q Q a a Q Q Q Q M m (D m (D (D I-- (D (D In co o 7 N W Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z m m o In In o (D In TIT LO o o N o a Q Q a 0 0 0 a Q a Q Q a a a Q a a a Q a a a a a M N o N 0 o N o N o N I, N N N N 7 N O M m N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z V W O N N O OO °,0 a Z a Z Q Z Q Z a Z Q Z a Z a Z a Z Q Z a Z Q Z a Z Q Z a Z Q Z Q Z Q Z Q Z a Z a Z Q Z Q Z Q Z Q Z 7 N M r N I� N N r N N N N N N (D W In 7 pmj I� M In N I� O O (D Z o m m oo I� o 01 (n Q a Q Q Q Q a Q a Q a Q a a a Q Q Q Q Q a M m InoZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N (D (D (D O In N N N N N tD W N TIT. 7 m 7 W O I� 0 O 7 O 0 O r (D In N (D In O) O N N W a Z a Z Q Z Q Z Q Z Q Q Q Z a Z Q Z Q Z Q Z Q Z Q Z a Z Q Z Q Z Q Z Q Z a a a Z Q Z Q Z Q Z N W In N N N N N (D In TIT IT 7 m LO o 7 0 7 0 w 7 M M a Q Q Q Q Q Q a Q Q Q Q Q a a Q Q Q Q a a Q Q Q Q o r r^ N DD N N m Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N In In In N N N (D N IT IT M O M O M N O w r O M m In o V a a Q Q Q Q Q Q a Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q m r r r r N N N W Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z z N N N N N In N O m M o N° o' Q Q Q Q Q a a a a a Q Q a a a Q a a a a Q Q Q Q a o)DO N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z r (oo ID ) o In m (D N N N m (D N m m O V N N a0 7 O oD I� 7 O M N O a Z a Z 0 Z 0 Z 0 Z Q Z Q Z a Z a Z Q Z Q Z Q Z Q Z Q Z a Z Q Z Q Z Q Z Q Z Q Z Q Z a Z Q Z Q Z Q Z (p N w N N N r N iZ N N In N N N (D 04 In M O) OO') ON') N O N Ifj ON0 o� Q a Q Q Q Q Q a Q Q Q Q a Q Q Q Q Q Q Q a Q Q Q Q h r r mN N Ooo Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z In o In (D m M N O I(OnN O (OOD. 7 N 7 N OO Q a Q Q a Q Q Q a Q Q a a Q a Q Q Q Q a a a Q Q Q p m N N N m Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N N N N N N In N O N N m or or m oro rn Q Q Q Q Q a Q Q Q Q Q Q a a a Q Q Q Q a a Q Q Q Q N r n W Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z tmO m m m In o o In N (D In mr-� M N m N N ONO r a Z a Z a Z Q Z a Z Q Z Q Z Q Z a Z Q Z Q Z a Z Q Z Q Z Q Z a Z Q Z Q Z Q Z a Z a Z Q Q Q Z Q Z N Wm w N m N m N N N N N N N (D N TIT. W Omj (°On W 7 Q N M 0 0 0 Q Q a a a a Q Q Q a Q Q Q a a a Q a a Q Q Q (p (mD (mD r Z 100n N W Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N If) In In N In co LO m N (OD Ix)O Q (7D M a Q Q Q Q a a a Q Q Q Q Q a Q Q Q Q Q a a a Q Q Q p N Z N W Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z M N N N N N (D In O/ = O C N� In 7 I� N D7 N D7 0 . Il O N W O (D (D In N W O (D M In o0 W N W M In I- O O N r In 0) 0) N M O 0 O 0 (D OR N M N 7 n M M (D (D N 00 (D O I- r G ; E D) O m 0) m o0 m (o 0) O O (D 0) O M W IN CM (D . (D (D 0) 7 V 0) (M N In In I- O M I- W I- r In I-- In r o CO (D O m N (D N (D N (D O o (D In I- m W In W In W In M In M In OD N M m W m I- m M In O m W In I, In r In 0) In O m W m I- m I -- In 01 C a m Q N m N O Q � N 7 m In (D I� a a m a Q m NNN N a 7 N N (D N I- N m N m N O M M NCO M M 7 M O O O N I,- OR Cl) O N O I� M D) I, M N O) , M M N Q Q ID 'IT7 M M N O (D 1� (D O N O V M O r I� (D Q Q Q Q Q Q Q Q Q Q Q W(D OD M O I--N m W Z Z (D IO (f1 N (D OD Io ID I- W r (D m I- r I- r Z Z Z Z Z Z Z Z Z Z Z N m m m (D m m N m N N 4o 4o m O N M N W r r m M N N M N a s V Q � M 4) N M tT I� N Q Q Q Q Q Q Q Q Q Q Q m (D (D w W (D (D w 'I N V N co N O I- W W Z Z (D N I� N N m m N m N N W (D (D I- r Z Z Z Z Z Z Z Z Z Z Z N (f1 4) 4) N N N (D 4) (O (O (D If) N N N lD lD lD N N DD O O m O N 4) O O m N m M m ID r O co)l m) NN Q Q ID (D h N W W OD I� I� t` � O N OD Q) (f) M O O W W Q Q Q Q Q Q Q Q Q Q N r r n N N N ci m OO OO Z Z (mD (rf) (ND (D (f r r (D r r ((DD Z Z Z Z Z Z Z Z Z Z N N N (D m m ID m (D (D () m m m o () (D (D m m m O (D � W I� n m r m W a s B O O M I� O W m W N (D a a a Q a a m m m w m m ID m (D (D m ID N m m m m m N N N TIT O O 0 N 7 O N N oR O OD ID (D N ID m co (!') 00 O N N N Q Q m (D O I, V M"t M N I- co OD (D N I, I� m - co - W N Q Q Q Q Q Q Q Q Q Q N I- I-N O O n m N N m M N (D m , W ZZ ID (D Ih Yo M (D 0 (D O 4o m I) O OD r ID O) Io 00 Lo O Lo Z Z Z Z Z Z Z Z Z Z (`� (f1 m 4) 4) N N N ID 4) (D (D N (f1 (f1 4o 4o N N N (f1 4o 4o N O O y N It O N N m O m (D m N m m M N m O N N N a s ID (D 0 I� 7 M M 7 N I� M m (D N I� 1- m 7 M 7 O u� a a a a a a a a a a N V h N h O h O I- (D (D ID (D co N 4i w m W Z Z (D m I� (D M co O co O M m I� O co r (D W r m r O I - Z Z Z Z Z Z Z Z Z Z aN N N lD lD lD (D N (D (D lD ID N N N (D lD lD N N N m m m O) N N W OD I� O M O D) 7 M V 7 (D (D 7 ID I� 0 : r 7 I� LL, Q Q (D O M a)m N O m O V (D N O 7 N M N m N M N (D co N N O M (o (D Q Q Q Q Q Q Q Q Q Q N m N N m (O m (D (D m (D 7 (D ID 1- Lo (D (D 7 Z Z N (D (f1 m (f1 m m 4� m 7 m I� (D N N (D m (D r m m 7 m Z Z Z Z Z Z Z Z Z Z O O) m m I- I- W O M T W (D O m oD O m m m a a N N O 7 M 4) (1') I� W N 7 D) N N 7 I� a a a a Q Q a a a a Z N r i-- r r m O (D (D 00 o (p (p (p (p lD lD m N m m m N (f1 M O M O W O (D N O N N (D N (D cD ID D) ID W 7 m W I� m W OD 7 Q Q M (D M m m (D N 7 N OD (D OD O 7 O I- I� (D OD D) OD I-- V W r M I� V m (T Q Q Q Q Q Q Q Q Q Q Nr r N N N W N N Z Z N (f1 (D (D (D I� r m I- r- ID Z Z Z Z Z Z Z Z Z Z m m m () () (D ID m (D (D (n Yo Yo m LLO (N u) N Yo LLO LLO N co m O) N (D N O N W m N - M N N t 0 It 7 (D M a a m ID O a a a (D ID OO (D m V o)4o 7 Y� (D a a a a a a a a a a N O O O OD (D (D ID N Z Z M N Z Z Z m O r r m I- Z Z Z Z Z Z Z Z Z Z � (D N (D N (D N (D (D lD lD lD lD N (D m N N (D N (D lD lD N ID r LD O lD m lD r N r N m N O C O y O R m fn w (f) N I- a s I' r V M ID O 7�2 O W Q Q O O I Q Q Q O N W O (D N W m O O Q Q Q Q Q Q Q Q Q Q O (D N M Z Z m O m r� m Z Z m m Z Z Z r 0 O O O Z Z Z Z Z Z Z Z Z Z C N I� u) r- (!') (D N ID N N ID w (f1 N (D N (D (D N (f) Yo I- () m (D r N Yo 4o 4o Z N W r m m W N m M (D (D 7 m N m M M (DI 0 "I N "I O O M N O P O (D M m m m wM N O O Z Z Z Z Z Z Z m O(D m m Z Z Z Z Z Z Z Z Z Z Z ID N O m N m N m N m (D m N lD m N lD N ID m N N (D N (D I� (D W lD (D lD I� N r N T u) N (D D) D) N 7 (D N W 7 N V (D (n cD V O Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q D) m ID ID (D w Z Z Z Z Z Z Z (D D) D) m Z Z Z Z Z Z Z Z Z Z Z N m m m (N (n (n ID 00 m N N (D N N (D (D (D (D m r (f) w m m o) r- t` (O M N W M 7 (D 0 W a a a a a a a D) m (D r Q) M � m m 7 a a a a a a a a a a N z !n V M I� r m m N N (D oR Z Z Z Z Z Z Z m O W OD 'It Z Z Z Z Z Z Z Z Z Z Z W r m m N N N m N N r m m r� D m W N O (D M N a Z a Z a Z a Z a Z a Z a Z a Z m N O N Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z 7 N 7 D N D Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z (D (D (D (D 4) 4) � 'Z M N W m LD OO " m m N a a a a a a a a a a a a a a a a a a a a a a a a a N r N 1` N m N m (D N lD N lD N (D N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N O/ = O (!') 7 N N O (D N O M W N M 1- OO 1-0) M O O (D N M I� M (D OO O O- Vi E O) O m O) m cD w OD m (D (o u� m W O (D O N (D OD m O m U� W O m N () (D M D) e N w . (D 0 (D 0 m OD 7 M � 7 V M m (D M N N (D m 1- m r I'- O W N m (1') m m (1') r N r N r N M ID O 4� N (D N (D N (D O (D (D N (f1 m m (f) OD 4o 00 4) OD N OD N OD 5) (f1 m 4) m 4� m OD N O 4� W (f) I) N r N D) N O 4o OD 4o Io 4o r N 01 Q m a N m N O Q N 7 m (D ID I� Q Q O Q Q m N N N Q N 7 N (D N (D N I- N m N m N O CO M N M CO M 'It M O M M O O W O O (D M (n Q) . co V M N N V n M (O 7 W 7 Q Q M N (!') (D W W (O O (D N n W(D Q) 7 OR N n n Q Q Q Q Q Q Q Q Q Q N N N N N O O 7 M W W Z Z n W N W W (D n n O (O Z Z Z Z Z Z Z Z Z Z M N n N n N n N n N N N N N N (D m N (O (D N N N N (O N N N N N n N n N m N W N M N (O (!') N p 00 O O) n (O N (O N W (O (O M w N n w N OO (D (D N W Q O N O I':a a W m v a n a (D O) M (O Q a a a Q a a a a Q Q pO (n N N N (D Z co M M Z Z n M O Z O Z I-- n N O Z Z Z Z Z Z Z Z Z Z Z n 4) n LO n LO n (n N (N N (D W LO (D (D (N (N (f) LO (D LO (n LO n 0 (D 0 w m wa m N C r (D (D In N CO In (D 7 (D W 1-0 M M O M N 1-0 N M (D O•) O N N D) (D N n Q Q n n 0 7 4) V (n N 7 n 7 Q Q Q Q Q Q Q Q Q Q NM N N O O O Nnn O N Z Z Z Z Z Z Z Z Z Z N M N N W N O w W O N W O M N W 7 O) N (O w N N N V N N 7 (D N n a s M O- O0 O0 O W (D N V O a a Q Q a a Q a a Q (n 0 0 0 m N N n 0 W n Z Z (D In M 0] n (n O n o OO (0 Z Z Z Z Z Z Z Z Z Z Z n N (D N (D N (D N N N N N N O n N (O (O N( N N (D N m N m N n N n N (D N m N n N (O N N W N O (D N Cl N N n (D n (D (D n (D N O LQ Q Q V O O O (D M N N OD N (D O V O M (f1 O 00 m(D LQ Q Q Q Q Q Q Q Q Q Q N p (O (f1 (O 4) (O 4) O N N N N N (D n 4) (D (D N N (O (f1 (O (f1 (O 4) (O 4) n N n N O N n (1') n 4) (O 4) N G N n O W N n W Op n n n n n o0 CO O M Q O (n M (O M Q Q M (n D7 W M O N n4) N O (D4) O M M O M I[-- O) O) N O W O (O nn O N OM)N Q Q Q Q Q Q Q Q Q Q N W (D (D (D (D v N v N OD Z Z Z N ((f)f1 (NO In--n V(D n Z Z Z Z Z Z Z Z Z Z N N N N N N N (D (p (O N N N N N N N N N N N n N O C 7 (!') 7 W (1') (!') N M M V V "t 7 7 n OD M (D Q Q N (f1 (f1 Q Q Q a Q Q Q Q Q Q N On n n Z Z N N _ Z Z Z Z Z Z Z Z Z Z (D O O (p (n N (n N (n N (O W m (D (D (n N m (O m m N 0 (n n (n (O (n m m n m n N o NO n OO N O N n n n n W n M Q O � M N Q Q M � W W M O N N (O (Dn WC! O) W N O O N O N Q Q Q Q Q Q Q Q Q Q C(D (p h (p h (p n (p V N V N D2 Z LL') M Z Z (n N LE N N (D h N (D N M n n n V (p W n r n O N Z Z Z Z Z Z Z Z Z Z N D N N N N N N (D (O (O N N N N N N N N N N N N O o O n O m O (n N V O (D N V V N 7 7 M 0 LO (D Q Q (D N n M 7 (D (O N O•) N D) O D) V N M (D M Q Q Q Q Q Q Q Q Q Q Q N O W W m (n (n M O I� Z Z O (` (` °P °D Z Z Z Z Z Z Z Z Z Z Z N n m (D m (D m (D (n N (n N (n N (D M m (D (D (D (n m LO (D (!') m LO m LO n (n n (n (D (n 1-1- LO LO N O O n OO W O O N 7 M n n N W V n V N M N V Q Q M . N O W M OO n w M N 7 N M W n (O Q Q Q Q Q Q Q Q Q Q Q N N O O (D (D V W W Z Z n n v M n (D M n M M Z Z Z Z Z Z Z Z Z Z Z Nn N n N n N n N N N N N N (D W N (O (O N N N N (O N N N N N n N n N (D N n N n N N O C O n N O•) N : OD M n n (I D) N (D O 7 : 0 7 Q Q OD OR O n O•) n n OO N OO (D (D n O V 7 (f1 M (D Q Q Q Q Q Q Q Q Q Q Q N (D tV 0 0 (n (n M W W Z Z cD n M 00 n (D OO n O) W Z Z Z Z Z Z Z Z Z Z Z (� n (f1 n 4) n 4) n N (n N (n N N co W 4) (D (D Lf)0 N m (f1 (D (f1 4) 0 m 4) n N n N (D N n (f1 n (f1 M N G O n N (O O M n 00 7 OO N OO N O W V N V Q Q n O I� M n a0 (D OR N CC!O n M N M W N Q Q Q Q Q Q Q Q Q Q Q N I� N O N O N r N N N N N N O W N W (O W (O Z Z N N N N (MO N N N N N n N r N (Doi N N r N Z Z Z Z Z Z Z Z Z Z Z N N N (O n U) n N Q) OD V OO V n (O LO M O 7 Q Q n (D 0 n (f1 M N N M W n M O D) V M O LO Q Q Q Q Q Q Q Q Q Q Q N N O n O (D O (D OD (D V N V N N O W In m (D 0 0 n n (D I- n Z Z Z O O W 1- W OO W n M V O W n n n 7 W N N n m (O N (D N O N W n a s O I� � N O O n n W Q a a Q Q a a Q a a Q � O N O Ow O Z Z Z Z Z Z Z Z Z Z Z N N N N N N N (D N (O (O N N N N N N N N (D (D p 7 (D n N n n N n (1') m M n 0 0 M n W N m N I� (D (n I� (D N OO (D Q Q OO ClLQ (D O O n O) O Q Q Q Q Q Q Q Q Q Q Q N n n I� r V V N W I� � Z Z N (!') I- (D NM (D W I'-Z Z Z Z Z Z Z Z Z Z Z (O (O (D N N N n (D Lf) (n LO(O O m m n n (D n n N N N N N O N N m N O w (O (O n M n N C) m (n n n 7 n 0 I-n n N 7 N 7 n N mn W n OR I- Q Z Q Z n N M (D W _ (D I- . 1-v O) . 00 (n (D 0. m n 0 W Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z (O CD N N O N N n n (O n n (O O)= O �( (!') 7 N N O n N M (O N O M WN M n OO n 0) M O O (D N N n M (D OO O C G Vi E 't O n O rn O rn M . (D OO OR W (D W (n M W O (D O (!) (O OR M O W Uf W O M N N (n M O) � N W . (O 0 (D 0 M OR 7 M � 7 V M M (D M N N (O M n M n n O W m mCD O N N N O (D n W OO OO OO OO OD OD m n OD O W Lo n n O) O OD n n 01 C Q m Q N m N O Q N 7 m N (D n a a M a Q m N N N a N 7 N U) N (D N n N W N O) N C.N M M M CO M 'It M O p I� W M M V 00 N M (D M 7 01 0 01 7 M L) (c) N Q L) N W 7 m M W M N M 7 M (D I� OO O— O O m 7 Q Q Q Q Q Q Q Q Q N W N M M O Z N N n Z Z Z Z Z Z Z Z Z N (MO L) (MO L) N (rD N LSO 0 Lq, 0 (O OOD mLJ L1 (D m (MO m (MD m m N m 0 0 L) m M L1 L1 (MD N L) ti p p 0 OD () M M O O Iz N 7 N (D 0 M D) 0 M 77 O a N M 7 r N N (D L) M M I- (D r M N O OD N L) r N Q Q Q Q Q Q Q Q Q N 41 N N I� N r m t` mN N L1 m N L) W N N (D N L) L) Z - N N U) N 7 N (D N ((O L) N N I- N co N M N r N t` L) ONO N Z Z Z Z Z Z Z Z Z N D p p M O O I, M I� ti M I- M I� OO N 0 7 N M(D L1 I� L) O N W L) L) � N� LJ M M Q LJ M O N (D (q � N L) L) � N NN Q Q Q Q Q Q Q Q Q L1 LMO LMO N W Z N N (rO (MO (ND L) M N (00 Z Z Z Z Z Z Z Z Z C L) L) N N L) L) (O L1 LJ L) L) L1 L) L1 L1 (O L) L) L1 L) M N L) Ll p p In r 0 N 0•) N O1 M W M O M N O M m O ) La M N O V m V V (O L) V h O N (D OD N V M 00 O L) O a a a a a a a a a N G C I) N r N Lo L) O r L) N N N m L1 L1 L) N L) M OD N O) co W (D N L) Z (O () N I) (n N M (O N (O N O LO L) I- I- N It r N OD co N OO r N OD r N O m L) _ M N Z Z Z Z Z Z Z Z Z N N p p 0 L1 O I� M N (D N L) (D M I� 7 (D L) 00 N (") Q V M 01 M L1 M (D N (") I, N L) O N (D M O O V O OO I, N Q Q Q Q Q Q Q Q Q N _ OD M M Z N N r r r _ Z Z Z Z Z Z Z Z Z N (D L1 (D L1 (D (O (D (O LO L) L) L) N L1 M L) LJ L) L) (M(1 L1 L) L1 L1 L1 L1 (O h L) L) L) L1 L) M L) N M L) L) p p N_ r N M V N 7 N O M L) L) L) I D) 01 N 01 O O a a a a 01 O a N a (D a L) Iq a a a a a a a a a O O O N N L) Q) O Z Z Z Z M (O O co Z I- Z M r Z O 00 Z Z Z Z Z Z Z Z Z p N (n L) L) N mL) (n (O (O () (n m m(O L) m N p N M M L) M I- (D L) M N M I� V N LJ 7 W I- 01 (c) O Q N M 7 I� 0 M 0 M 0) M W N (D M W O n L) O I� (D Q Q Q Q Q Q Q Q Q n r r r OOO N N Z r n r Z Z Z Z Z Z Z Z Z O'1 L) L) N L) (f L) (f L) (O M L) L) L) L) (MO L) lO0 L) (MD L) LJ L) (ND (O L) L) L) (O 000 L1 L1 (O ONO L) p p C. CO O O M O V N (O V Cl) r 0 0 7 O) D) M O M N O N 0 M I- OR (N (O M M a 0 (O I- L) I- O N I- O a a a Q Q a a a a NV N N N LJ LJ I� N D) O N Z OD OD (O M N I- (O m O D) N Z Z Z Z Z Z Z Z Z I� N r N r L) r L) N N L1 L1 N L) M N (O L) L) (O (n (O (n (O (n CO (n (O m I- m I- m(n CO M (n r (n m M m p G M L) L) L) O M N O N N N V "I:(D L) W LJ (D M Q N M O 7 W M I,7 (C) O M r M N M 7 I� L) CC! N W O Q Q Q Q Q Q Q Q Q N n Z N n n _ Z Z Z Z Z Z Z Z Z N L) r L) r N I-- N LO L) LO L) N 0 OO L1 LJ (D L) L1 L) L1 (D L1 (D L1 (c) (O I- L) r- L) L) L1 L1 L1 r N M L) M p M O L) 7 7 I- r M N O V N V O I� 7 M O V Cl) O I� N r M � NC") CD7 Cl M W a (D OR N OR V O Cl a a a a a a Q Q Q v, ND) 01 O O (D (D M 01 Z I- r Cl) O O 00 It r O D) Z Z Z Z Z Z Z Z Z N (O (D I- (O N L1 N OD (O L) (D N N N L) (O N (D N mIl- L) N I` N O N OD N I- N L) M N 3 C1 O M 7 M M M O N M M M O I� N I� M M C p M O) I- M Q Q Q M OD O Q Q 0) L1 I- N (O Q Q V M,, Q Q Q Q Q Q Q Q Q Q O (� CA Cr; N Z Z Z O O Z Z N N(D N 0 Z Z N O N N Z Z Z Z Z Z Z Z Z Z M L1 L1 (O (O L1 LJ L) M L1 L1 L1 (O L) L) L_ C G NN M (O I- V M 0 M L1 M M M 7 L) I-- (O W V M N a s 7 (D 00 M M W (O O (O N W M M O (O (O N (D (D a a a a a a a a a a N N 2 V M V 7 W W N O O Z Z N (D . M CO O N (D Z Z Z Z Z Z Z Z Z Z (� N N N L) L) L) LJ w M N N L) N L) LJ L) L) N L) (D N L) N L) N I� L) M L) r L) M N M N L) N � m � M a N 3 N M M 7 Q) V M M O I- r-� Q Q 0 M L) O E M (D (D N � M Q Q Q Q Q Q a Q Q Q N Ot L) I'- 7 I- L) r V r 0 CO O CO M I'- M O N O N Z Z N (O N (O 0 I- 7 (O M (O I- I- M I- r M M N M (D Z Z Z Z Z Z Z Z Z Z B E (� m m 0N N N Co L) (O (O L1 L) L) L) L) () U) N L) L) L) O X L IL M O) or-- G p1 L) I- V M LJ M M O M M O II- O N D7 0 a s LJ V V L) N M O M M 7 O N L) 7 W M L) (M O v Q Q Q Q Q Q Q Q Q Q L m N LW) LW) OM LM WO N Z Z O (D ) N W O N � N N N L) L) L) L) N (D (D L) N N N N L) L) L) N L) N C 0 M p O O L) O O 0) I- r M Q Q (n O) 00 7 L) I� 0) r N Q Q Q Q Q Q Q Q Q Q N N (D 7 7 V 01 (N M (n N N mO M Z Z O (O O LO M LO N LO LO (D I I-- M I--O m N M M N I� Z Z Z Z Z Z Z Z Z Z L) L) L) L) N N (O mL) w L) N L) L) L) L) N N N L) L) L) M M p p M r� O N M N M L1 (O M (D V N I- I- L) M M a s M N 7 M (D � M N M N N M I- O r O L) Q Q Q Q Q Q Q Q Q Q N L) I� r L1 L) N M L) N 0O M M M LJ r M r M L) _ M O M W M Z Z Z Z Z Z Z Z Z Z N N m N m N L) L) L) L) N L) L) L) L) N N N L) L) L) N N N N O/ = L) V N N O Il N O L) N O M OD N M I� M r Q) M O O L1 N L) I� M (D M O G Vi E O O O M . M (O OD OD M (O W L) M M O (O O L) 0 OD M O M L) M O M N () (n M m A N W . LO O (O O M M 7 M � 7 V M M (D M N N (D M I- M r I- O W H (.1 m L) M L) L) m r N r N r N M (O O L) N L) N (D N (O O L) (O N L) m M L) OO L) OO L) OD N OD N OD (n M L) M L) m L) OD N O L) M L) I) N r N 0) N O L) M L) IO L) r N 01 C Q m a N m N O Q N 7 m (n (O I� Q Q 0) Q a m N (v N N Q N 7 N (N N (D N I� N M N D) N C. M M N M CO M 'It Cl) O d C N V 2 O C N N o a 3 aR+ O C m = N r U Z m L (0 c d 3 m W E d E N C C N L 9 N '30 N c U m d= 4) o a Ucu U 4c c'- a) 3 y 3 d 2so N s oY E c v o c mZ E 0 d oma) 2 U d 3 c c d C O N N r2 CO 01 N ? O O O O O O L0 M N 0 V m ('M Q Q O O O 0 O 0 m L0 N m Ln l0 � 0 0 0 0 0 0 N Q Q Q Q Q Q Q Q Q Q O L 3 s N a 0 0 0 0 (O O (O m Z Z O O O N 7 N O O O N Z Z Z Z Z Z Z Z Z Z F m .3 E C N .t-. O 3U O O a) L 'O a) r 0 M 0 Cl) 0 m 0 m 0 m 0 M 0 N 0 w m 00 O m O 00 O M O M O M O N O m O m O 0 m M O M O Cl) O LO O LO O 00 O 00 O 00 O 00 O 00 O w O w O w O w O O m E m 0 N In N m N m N m N m N Ln N 'No(2 N (O M N m m m aM M M V m m m M M N N N N N N N N N O C Q N a � N N N N N N � N N N � � N N N N N N � � � � � � � � � � � 3 y Q Ln a N Ln u'/ N (O V N N� Ln N N N a��� N N N�� Lf) Li7 N N N Ln Liz Liz N T :6 O C j O of ' E m N O m (D I- (D V N O 0 O V 00 m V 0 (D V N m m 0"t m N 0 )` 00 )` (0 O m m q m O - O (0 V N m O V )` m V(0 L0 cl N - 1� O 0 N 00 I� O V 00 V W O a) (0 .t-. E E a C O a7 � N m N 0 N N V l0 O L0 0 L0 N (O I- N r (O 0 m V m M l0 N N N N O N 0 N 10 L0 a0 L0 N L0 N M N N N L0 N L0 N l0 0 l0 N N N M N V l0 M l0 M L0 l0 I, V N�� a)O C N N W (0 N C 9 N O t co GN m m L0 I- I- M N I-- )` 00 m M 00 L0 N 00 M O N a LO N I- L0 00 L0 00 � N U 3� O m 0 m m 0 N N r m V CO CO m N M m V n N N m l0 M O N 1� V V CO M 3 3 O O N V I- n n O )` L0 L0 m L0 N N a 00 ao ao N M m m L0 n L0 m m M m N (D Pr'-L0 )` )` m OD m I- 1� m 00 N m (O I. w m n m"t n )` co 0 co 0 I� V m - b L0 L0 L0 0 m m m L0 m m m 0 L0 N N N m 0 0 L0 L0 L0 L0 L0 L0 L0 L0 L0 L0 L0 L0 L0 L0 (\ > N > iT O to L0 N N O I- N m m N O 0 M N M I- M I- m M 0 0 0 N 0 r M (O a0 O C O- W E m r- O m m m m 00 m 00 OD 00 m m L0 m 00 m m O L0 (O 00 m 0 00 L0 00 O 00 N L0 N M m N m m 0 (O 0 m 00 y M V a M m (D M N N m LL7 r L0 r n H (j ' Lf LO0 Lf N lrfj N (MO Lm0 (NO (NO (NO (00 lO L� Lm0 LO0 LO0 N N lO0 LO0 LO0 Lf lO0 Lm0 LO0 W W N Lm0 Lm0 Lf l( m C< Q m Q N m N O Q O N m N m n Q 00 00m m Q O m N N N N Q N v- N w N (O N t` N 00 N m N 0 M M N co M M a co Appendix F Vertical Hydraulic Gradients CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix F a 0 3 0 LL Q 3 0 Z O m (7 C Z a N co J N mW H� mQ W 2 W a 9 W LL LL O m a i N J t2 u w u d C •� 2 U W J C/) It m W U „3 IW nUv Q m � C Zltaa Q. LL Z W ¢ > cc Q��U-a mZ)zi— Z J J cr- Q 33�c Cl OOLLv; ==mow U)(1)�o w< OLL OQU U ww�F 0�0LL w >. C7oo< Phase 2 Cells 2F-2H Table 6 Summary of Intra-Aquifer Flow (1/29/03) BFI Waste Systems of NA Concord, Cabarrus County, North Carolina Project No. 00188-002 Well Field •ID WL Elev. (ft, msl) Screen Midpoint Elev. (ft, msl) Gradient (ft/ft) Direction Aquifer Code P-11 544.98 544.89 -0.053 Upward Sap P-31 545.86 528.25 = Sbdrk P-72 572.64 559.26 0.002 Downward Sap P-13 572.59 532.86 Sbdrk P-17 546.30 541.24 0.119 Downward Sap P-21 544.13 522.97 _ Sbdrk P-18 543.31 542.81 0.008 Downward Sap P-19 543.18 526.49 ': ; ' Sbdrk P-42 545.83 535.11 -0.003 Upward Sap P-41 545.92 508.36 - Sbdrk P-54 561.19 555.18 -0.008 Upward Sap P-45 561.44 525.1 Sbdrk P-102 593.14 582.88 -0.017 Upward Sap P-46 593.55 559.19 Sbdrk P-70 576.21 570.42 0.012 Downward Sap P-52 575.98 551.07 ° ' Sbdrk P-104 590.82 580.96 0.002 Downward Sap P-82 590.73 536.53>:: % :'i Sbdrk Notes: WL Elev. - Water Level Elevation ft msl - Feet relative to mean sea level Positive gradient is downward (shallow well head > deep well head). Negative gradient is upward (shallow well head < deep well head). January 2003 water level data used. Sap - Shallow saprolitic portion of aquifer Sbdrk - Shallow bedrock portion of aquifer DRAFT, 5/6/03, Page 1 of 1, Rev. 0 Appendix G Groundwater Flow Rate Calculations CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix G Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2012 Event Velocitv Ranue For wells in Saprohte V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V =135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021]/0.20 V = 2.1 x 10-5 cm/sec V = 6.0 x 10-2 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021 ]/0.07 V = 2.1 x 10-5 cm/sec V = 6.0 x 10-2 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the First Semi -Annual 2012 potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inorth: = 50 ft / 2, 377 ft = 0. 021 i,oulh: = 50 ft / 2, 547 ft = 0.020 Average gradient across the site is (0.021 + 0.020) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2012 Event Velocitv Ranue For wells in Saprohte V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V =135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021]/0.20 V = 2.1 x 10-5 cm/sec V = 6.0 x 10-2 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021 ]/0.07 V = 2.1 x 10-5 cm/sec V = 6.0 x 10-2 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the Second Semi -Annual 2012 potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inorth: = 50 ft / 2, 377 ft = 0. 021 i,oulh: = 50 ft / 2, 547 ft = 0.020 Average gradient across the site is (0.021 + 0.020) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2013 Event Velocitv Ranue For wells in Saprohte V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.022]/0.16 V = 1.4 x 10-4 cm/sec V = 0.40 ft/day V =146 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.0221/0.20 V = 2.2 x 10-5 cm/sec V = 6.2 x 10-2 ft/day V = 23 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.0221/0.07 V = 2.2 x 10-5 cm/sec V = 6.2 x 10-2 ft/day V = 23 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the First Semi -Annual 2013 potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inorth: = 50 ft / 2, 300 ft = 0.022 isoulh: = 50 ft / 2, 400 ft = 0.021 Average gradient across the site is (0.022 + 0.021) / 2 = 0.022 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2013 Event Velocitv Ranue For wells in Saprohte V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.022]/0.16 V = 1.4 x 10-4 cm/sec V = 0.40 ft/day V =146 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.0221/0.20 V = 2.2 x 10-5 cm/sec V = 6.2 x 10-2 ft/day V = 23 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.0221/0.07 V = 2.2 x 10-5 cm/sec V = 6.2 x 10-2 ft/day V = 23 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the Second Semi -Annual 2013 potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inorth: = 50 ft / 2, 300 ft = 0.022 i,oulh: = 50 ft / 2, 400 ft = 0.021 Average gradient across the site is (0.022 + 0.021) / 2 = 0.022 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2014 Event Velocitv Ranee For wells in Saprohte V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.020]/0.16 V = 1.3 x 104 cm/sec V = 0.37 ft/day V =135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 104 cm/sec)(0.020]/0.20 V = 2.0 x 10-5 cm/sec V = 0.057 ft/day V = 21 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.020]/0.07 V = 2.0 x 10-5 cm/sec V = 0.057 ft/day V = 21 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivityfor each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4,1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the First Semi -Annual 2014 potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path i,orth: = 50 ft / 2, 330 ft = 0.021 i,o„,h: = 50 ft / 2, 605 ft = 0.019 Average gradient across the site is (0.021 + 0.019) / 2 = 0.020 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2014 Event Velocity Range For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor. ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path in,,rth: = 50 ft / 2,214 ft = 0. 023 is.tn: = 50 ft / 2,594 ft = 0. 019 Average gradient across the site is (0.023 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2015 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,214 ft = 0.023 isourn: = 50 ft / 2, 579 ft = 0.019 Average gradient across the site is (0.023 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2015 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,235 ft = 0.022 isourn: = 50 ft / 2, 627 ft = 0.019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2016 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,235 ft = 0.022 isourn: = 50 ft / 2,652 ft = 0. 019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2016 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,242 ft = 0.022 isourn: = 50 ft / 2,644 ft = 0. 019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2017 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,295 ft = 0.022 isourn: = 50 ft / 2,624 ft = 0. 019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2017 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,295 ft = 0.022 isourn: = 50 ft / 2,624 ft = 0. 019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2018 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor. ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,295 ft = 0.022 isourn: = 50 ft / 2,624 ft = 0. 019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2018 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.3 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor. ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,295 ft = 0.022 isouth: = 50 ft / 2,624 ft = 0. 019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2019 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.020)]/0.16 V = 1.25 x 10-4 cm/sec V = 0.35 ft/day V = 128 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.020)]/0.20 V = 2.0 x 10-5 cm/sec V = 0.057 ft/day V = 21 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.020)]/0.07 V = 2.0 x 10-5 cm/sec V = 0.057 ft/day V = 21 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor: ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path i.tn: = 50 ft / 2,326 ft = 0. 021 isoutn: = 50 ft / 2,649 ft = 0.019 Average gradient across the site is (0.021 + 0.019) / 2 = 0.020 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2019 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.31 x 10-1 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-1 cm/sec)(0.021)]/0.20 V = 2.1 x 10-1 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-1 cm/sec)(0.021)]/0.07 V = 2.1 x 10-1 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill W by S&ME, Inc. dated October 4, 1994. Conversion factor. ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,210 ft = 0.023 isouth: = 50 At / 2,662 ft = 0.019 Average gradient across the site is (0.023 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V First Semi -Annual 2020 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.31 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor. ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,258 ft = 0.022 isouth: = 50 ft / 2,695 ft = 0. 019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Groundwater Flow Velocity Calculations Charlotte Motor Speedway, Landfill V Second Semi -Annual 2020 Event Velocitv Ranae For wells in Saprolite V = [(k)(i)]/(n) V = [(1 x 10-3 cm/sec)(0.021)]/0.16 V = 1.31 x 10-4 cm/sec V = 0.37 ft/day V = 135 ft/year For wells in PWR V = [(k)(i)]/(n) V = [(2 x 10-4 cm/sec)(0.021)]/0.20 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year For wells in Bedrock V = [(k)(i)]/(n) V = [(7 x 10-5 cm/sec)(0.021)]/0.07 V = 2.1 x 10-5 cm/sec V = 0.060 ft/day V = 22 ft/year Hydraulic conductivities (k) are from the geometric mean of the hydraulic conductivity for each unit monitored at the site. Hydraulic conductivities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Effective porosities (n) are from the geometric mean of the effective porosities for each unit monitored at the site. Effective porosities provided in "Groundwater Certification Document, CMS Landfill V" by S&ME, Inc. dated October 4, 1994. Conversion factor. ft/day = 2,835 x cm/sec. Gradient (i) is from the average gradient at site using the potentiometric surface map across the northern portion of the site and the southern portion of the site. Gradient (i) = Change in Groundwater Elevation along Flow Path inortn: = 50 ft / 2,258 ft = 0.022 isouth: = 50 ft / 2,695 ft = 0. 019 Average gradient across the site is (0.022 + 0.019) / 2 = 0.021 Appendix H In -Situ Hydraulic Conductivity and Porosity CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix H a 0 3 0 LL Q 3 0 Z O c7 C Z a N coLU N M W H� mQ W 2 W a 9 W LL LL O m a i N J t2 u w u d C •� 2 U W J C/) It m W U „3 IW nUv Q m � C Zltaa Q. LL Z W ¢ > cc Q��U-a mZ)zi— Z J J cr- Q 33�c Cl OOLLv; ==mow U)(1)�o w< OLL OQU U ww�F 0�0LL w >. C7oo< Table 3 Hydraulic Conductivity Data BFI Waste Systems of NA Concord, Cabarrus County, North Carolina Project No. 00188-002 Boring Screen Length ft. Top of Water Level to Bottom of Screen ft. Saturated Aquifer Static Water Thickness Level^ ft. ft. b s Topographic Location H draulic uctivity Hvorslev cm/sec Bower -Rice cm/sec Sa rolite Aquifer P-6 15 24.60 24.80 16.70 upland 2.66E-04 1.92E-04 P-7 15 17.26 17.26 6.32 lowland 5.62E-04 3.74E-04 P-9 10 10.99 10.99 5.06 upland 8.15E-04 5.35E-04 P-14 10 14.34 16.79 26.71 upland 3.69E-04 2.53E-04 P-15 10 9.87 9.87 13.63 u land 5.94E-05 4.54E-05 P-16 10 17.35 17.35 11.15 upland 4.82E-04 5.82E-04 P-23 10 10.97 10.97 7.03 lowland 8.70E-04 8.59E-04 P-29 5 12.92 24.16 6.34 upland 3.56E-05 3.51 E-05 P-40 15 41.36 41.36 7.30 upland 5.00E-05 5.65E-05 P-42 15 19.22 19.22 10.26 lowland 1.65E-03 1.42E-03 P-48 10 22.90 22.90 4.60 upland 7.89E-04 6.11 E-04 P-58 5 7.58 11.29 23.71 upland 4.74E-04 3.53E-04 P-60 5 11.85 24.65 8.35 upland 3.65E-04 2.19E-04 P-66 10 7.57 7.57 23.31 upland 3.10E-04* 2.13E-04* P-70 5 9.12 9.12 -0.92 upland 1.42E-05 1.48E-05 P-72 10 15.39 15.39 22.91 upland 7.68E-04 6.27E-04 P-73 10 14.94 27.31 5.69 upland 5.12E-04 3.77E-04 P-86 5 6.67 28.51 17.99 u land 1.82E-04 1.16E-04 P-91 10 23.17 26.88 16.62 upland 9.81 E-04 9.06E-04 P-102 5 15.12 15.12 3.10 upland 9.94E-04* 7.28E-04* P-104 5 10.97 10.97 12.10 upland 7.75E-04* 9.50E-04* P-110 5 14.98 14.98 5.16 upland 1.75E-05 2.68E-05 Bedrock A uifer P-4 5 28.30 5.00 16.88 upland 5.60E-06 3.67E-06 P-13 5 38.15 5.00 24.35 upland 9.73E-05 9.55E-05 P-19 10 20.35 10.00 11.20 lowland 1.4E-04* 9.22E-05* P-21 10 28.31 10.00 8.71 lowland 2.98E-05* 5.79E-05* P-41 10 43.60 10.00 10.66 lowland 2.37E-03 1.50E-03 P-46 _ 10 38.97 10.00 5.52 upland 6.53E-04 5.12E-04 P-52 10 30.87 10.00 -0.70 upland 2.00E-04 1.49E-04 P-55 10 55.66 10.00 3.83 upland 7.54E-07 7.54E-07 P-82 10 58.20 10.00 11.87 upland 3.66E-04 2.43E-04 Notes: ^ - Reference Ground Surface (Correction Made) * - Indicates "slugin" results used Saturated Aquifer Thickness Determined as Follows: Saprolite: Top Water Level to Auger Refusal or Bottom of Screen Bedrock: Thickness = Screen Interval DRAFT, 5/712003, Page 1 of 1, Rev. 0 r lC 7 L T 2 y y 0 0 O 99 O O 99 1 y N 3 LU W W W W W W W W D fC E O) I� N O O O) N W Lo Q) n Nle O M 0) N Q V W Cl) N LO LC) f72 0 _n -6 cn > E Lo O ti LO LO O m O M O m m CO I- Cfl r ti O Cfl Cfl Cfl O Cfl LD O O p "6 •� LL Q) O O 1 O 1 O 1 O I O 1 O O 1 O I O 1 O 1 O I O I O I O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 N 4! C �) W W W W W W W W W W W W W W W W W W W W W W W W W W y c m C) N E N M 00 O to O (7) 00 O M cm)O N O M I- 00 I` L6 f6 O C N 3 LO In co Do o o rn v cfl oo co In o� o a� I� Lc> N o co cm U •� •O y o •j > d U d 0 0 O 00 0 0 0 CD 0 0 0 O 0 0 0 CO 0 O 00 0 0 0 CD 0 0 0 0 0 0 0 0 0 0 0 0 0 O 00 O O 0 0 0 O 00 0 M 0 w cu �� N i 2 �) W 1 W 1 W 1 W I W 1 W 1 W 1 W I W 1 W 1 W I W I W I W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W W LO 2r- L -O p E N O O M A 0-') I- O (A N CO Ln O (A I- M N Ln M OO N M O T O Lc,')) O In In a0 O I� O (A M N M N 6? I� O O N M oo O O M O 2 2 C1 O O M 00 00 M O N LC) — O N M L!) N u) LO U O C L E >, o X cu w u) n Ia n °N t m-a -ao o o m-c c O m o m w o m CL o o m' C O O O O O O O O O u O 03 Q N o != m a- f6 y 0) a- 0) U) L Q 0) - m Y y u) U) 3 m .� O E E O c N L) O O 3 3 a 7 7 '6 .S m .0 m .0 -6 7 m •E E. a N a -6 O •OL a O - f6 .O 'O L" Q N YN m G. d m m 0 i i O Q N Q N Q O cu N ° O O O O 0) O O m n 3.. a o ��E��E o y o y _o E� y y E y E E of o y of w' m� o •� y y y O O N � N 6 y f6 N 'n N N I N d LO N N M I— M 'IT N O� 7 CA r- N O O (A LO M cq'* 0 U') I- I- N u') O O m m O O O N 7 w� O M CD0 N f6 O N Y_ d C.) y O O LO N� I` O �,.� O I` o2 O M I� t- 0 O 0) N r- M U U E J N OM N- N N N N N ) pc w c U 0 00 6 W C O 3 U)U 0 .- C N Q N O N rl O N O CDO- O V) N O) _ r U) LO U) r W I-- It� N v O 7 Q U C 6 Y$ CD O N O O O N 00 M lf) W lf) M M M N M CD U) 4) U) V ,,., O Lf) o 0 0 000 0 0 0 0 0'It 0 N�O E 75 C In N LL O 7 rn N (D V f6 to Na) ` f/) 6) N N W w +-' O � O N � ti O O N N N I� O LO N o O Ln LO M Ln O N O O _ N ~ 00 Ln M 00 LO Ln 00 ~ LO 6) M ti It M t` O 00 N V O LO M C S f6 In N > f m �j E$ M O00 O O CS7 O M N OM � W O CA I` r n lf) N O r N o U 6 .0. 0 O Q 0 > O O m O O V A N ~ C > +O' 0 N N U _ J 11 C w 3 fN i$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Qm ~ O >CU U) J CL N H > Q H N G1 y N L CU U O Cfl N O O N O O N M N Ln O 00 O CO N M O M m y O> 0 0 .°3 E= 3 `o_ -a m 00 00 N In 00 i i i lfi Cfl Cfl I- N 1� f� p 1 I (6 (6 O tl (Z tl tl lL (Z Z < « (n (n m N y LE N N N N N N M M M M M M M M M M M Cl) Cl) Cl) Cl) M M M M M Z a V 10. 0.1 0.01 ❑ ❑ ❑ ❑ ❑ ❑ ❑❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ 0. 100. 200. 300 Time (sec) 400. 500. RISING HEAD TEST Data Set: M:\PROJECT FILES\02201314.91\Data and Calculations\Hyd Cond Phase 5 PZs\PZ-6.agt Date: 12/29/21 Time: 21:06:06 PROJECT INFORMATION Company: SCS Engineers Client: CMS Landfill - V Project: 0220134.91 Location: Concord, NC Test Well: PZ-6 Test Date: 10/19/2021 AQUIFER DATA Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (PZ-6) Initial Displacement: 1.33 ft Static Water Column Height: 29.63 ft Total Well Penetration Depth: 41.3 ft Screen Length: 10. ft Casing Radius: 0.125 ft Well Radius: 0.125 ft Gravel Pack Porosity: 0.3 SOLUTION Aquifer Model: Confined Solution Method: Bouwer-Rice K = 0.001432 cm/sec y0 = 0.6577 ft z we 10. 0.1 0.01 ❑ ❑° ❑° ❑° El ❑° ❑ ❑ °❑ ❑ ❑ 11 El❑❑ ❑ ❑° ❑° 11 °❑❑ ❑ 0. 120. 240. 360 Time (sec) 480. 600. RISING HEAD TEST Data Set: Date: 12/29/21 Time: 21:01:26 PROJECT INFORMATION Company: SCS Engineers Client: CMS Landfill - V Project: 0220134.91 Location: Concord, NC Test Well: PZ-7 Test Date: 10/19/2021 AQUIFER DATA Saturated Thickness: 13.05 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (PZ-7) Initial Displacement: 1.95 ft Static Water Column Height: 13.05 ft Total Well Penetration Depth: 22.6 ft Screen Length: 15. ft Casing Radius: 0.125 ft Well Radius: 0.125 ft Gravel Pack Porosity: 0.3 SOLUTION Aquifer Model: Unconfined Solution Method: Bouwer-Rice K = 1.589E-5 cm/sec y0 = 0.2081 ft 26. 12 0 -16. ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑191 El�❑ El 10. 100. Time (sec) 1000. 1.0E+4 FALLING HEAD TEST Data Set: Date: 12/29/21 Time: 20:52:33 PROJECT INFORMATION Company: SCS Engineers Client: CMS Landfill - V Project: 0220134.91 Location: Concord, NC Test Well: PZ-8 Test Date: 10/19/2021 AQUIFER DATA Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (PZ-8) Initial Displacement: 7.38 ft Static Water Column Height: 26.85 ft Total Well Penetration Depth: 39.2 ft Screen Length: 10. ft Casing Radius: 0.125 ft Well Radius: 0.125 ft Gravel Pack Porosity: 0.3 SOLUTION Aquifer Model: Confined Solution Method: Bouwer-Rice K = 1.214E-5 cm/sec y0 = 4.134 ft z we 10. 0.1 0.01 aTsTaMM 0. 400. 800. 1.2E+3 Time (sec) 1.6E+3 2.0E+3 FALLING HEAD TEST Data Set: Date: 12/29/21 Time: 20:45:04 PROJECT INFORMATION Company: SCS Engineers Client: CMS Landfill - V Project: 0220134.91 Location: Concord, NC Test Well: PZ-11 Test Date: 10/19/2021 AQUIFER DATA Saturated Thickness: 5.86 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (PZ-11) Initial Displacement: 4.89 ft Static Water Column Height: 5.86 ft Total Well Penetration Depth: 27.77 ft Screen Length: 15. ft Casing Radius: 0.125 ft Well Radius: 0.125 ft Gravel Pack Porosity: 0.3 SOLUTION Aquifer Model: Confined Solution Method: Bouwer-Rice K = 1.175E-5 cm/sec y0 = 0.7359 ft Appendix Bedrock Evaluation CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Appendix I L LS L c c a m m g E p n o b Q Q 0 T' m E 0 ffffx xK ff ffffff ff ffxKaeff y COG N n. w a y cc.o m a d �i in N a N m a .o N .o a s 'o W m fll in N .o N m fD m .p CR N .a IA A A,A .a V] I❑ N O N Z jn v i i i i i i i f v C 2 • = .0 2 . 2 .0 2yi �p .G C g N E _ : 1 m . .G L C L7L7[SOOi]OOOpOpNN❑y0 O O O 9 7S 'C ❑ .O1 '� d 0 0 C m0 O C pDOp Q A O❑ ❑app d Q 0 �'- 00 0 6 Q 0110 J noC D0 c m m d i u 9 N�?4 ief Gv11n44�Y744�i 00 6uTpb�44 04[./Y7 �1'1 L7 v�u] LL']4 u7b0 w r � c p E m a ina °° s� ANaA n Mrn � �mvmo❑N v� u�p�om ory m Am[R � pgp�pyy rl non nv vyµs v m cq Nu-�n cnmNnmm� mmv ivamv� vrnn r�pprnvio �N ppq�pp y4` x u�j u�i 47 .3�fGN w [447 NN� 0T u�r Su7 In U7 ���0324 !FRIq,� ZN2V;IZ IlSIN 1-0 0 5 C 7 L E m 0 n [Fi �M�ryv m us �n �y v LL]�NSV nioomv ON<I��mNNN[�] as ma v NNNN[+➢i'i vv rnv mb t']M N4]C1 Q 9 M� NON N Nc] +f Q-i� � d� YwN V iryCf m��nmON !] d � Q v Ev [+e m E�.� ti�mp cJ c3 i❑fl r^- G y iW0 '� �A i+] c 'Q �} sQ V1 m N /O �fl �1 W 4"J Yl �1 C1-pp;;p �+] 2 pvy N �Ci (u�y�u�}N[+J iD �] �!] � M ����pp u] �'r W �! u] 4 Wm W N c w NH rm�� in R'tv�prey �(a�Qp�sr..yo in �m,n� GG C 'J O a Q E N �a'nZM22 N f+¢¢ LNG ¢m � ryr']C r� ►�vvnvuv-�e�y ci ri ridmom od ii� 1z, vl liz m c'+2 m x nl1 z n �, N mla�NNY�] V�1 �f�li LL�94]N 4�'f ul 0 S p Y Qu O N 0 ¢ a Z 61¢a M Z Q C1 2 V1¢¢ Z Z N N w ¢ 2 +"� N N 4] 4] N t fa s•] Z ¢¢Q¢ Z Z 2 2 QQ 2 2 ¢ 6^ Z Z <v¢ N 2 M Z n ff r 6 IN �r 2)a L7 �' `o c�� n �n rr c-i v vrn nmmv n S.3 Z NW m ■ E N,Qm¢¢¢¢r=w�¢¢ Z� 2 Z Z 2 2� 2 Z 2 Z Z 2 2 2 m g Z Z Z Qa �� X N u77 N N 4 un'f u; ,A ,O 4 N ... Q � J 0 W L o9r�+2N�zi �ZM2Z�Z^2Z^ zQvcv �°vi �ri Fq �.i22 y C) 6 a N N r 7 = 9-9 E Nz p Soma � iD i2 m G ari'30; �j m iS v Az �.7 p M M�� �iN�0 u; 09- p� fj 0 is N Y L a m w a ^n^ ncavnn�unim c^.i r�.��numi n mmnmra`inN N NN[NV �Nc�] �YN4N'i t'd rp [m+l a u C ��NFiN u7NN NI+FN pN�"1 ii'1�mN�] W N u5Tk7 LdN� ih LL]ui C3�� �tN]atiM N ryN tY N NN[Y [V � NN�TV Nr fll NNE �y tY �jN NN njNN G L 0 C < q rn QNi *^� l!n] m m (�y 2 N LO N �te^l�7k Q� Rr tVPACMQam!�Y 90 r u] 2 0�n rM mO pMp �v �um �nu^u�n�um num mh w uA u^ 47 ]um um u u^ in]u^3 w m� YW] M k] V w m`n A!fl m.-rnrsibain�nam�crmmmmmm+n�n���'+c,�`-3�rr�a MrriNrn rn c�.-m m ncn [�Ncn mmb ^ n mm b � ms❑u�n mm N � co m A rnninrnm �r, p� E e u-1 u�u?b o.i v v, qu�n nn.=oio �wu��in Qvi�oomw m� v, vvu-1 o �.=m ui aio rm Q oain� o coo: on �.ov Am N �anvovvo u`9-iv�Mc�n f7 [N�IMNNN a n mmvo ate, V OM oa r o0000 r r r r r i 4 m � W 0 ovovvov r r r yr r r, `n ,_ �n n •- u oa •- r v •- m v nui w.- nvs m � R of Mm W m oo oa fR ^ rz� �n< onn .o Ancnry Nmus �n m�sm� 00 ��nmor� pmLLp mmuY� rym �n mm�7 �my v�❑"Ar9 A n�Y�C W n �m � Nmqx m � is Tnc Y�r rY� M NNCi f'1N Cf N N ,b � Ol FIN 2 z2A Date Started : 11/20/1991 Date Completed :11/20/1991 LOG OF BORING MW-2B Hole Diameter :unknown Drilling Method : unknown (Page 1 of 1) Depth to water JOC) : 8.76 ft Charlotte Motor Speedway Landfill SCS Personnel : N/A Well Material : PVC 5105 Morehead Road Northing Coord. : 587,912.904 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,502,534.016 Well Slot : 0.01 inch Concord, NC 28027 Driller / Company : unknown / Westinghouse Sand Pack :unknown Project # 02201314.91 Logged By : J. Hamela Total Well Depth : 36 feet Q Well: MW-21B LL .S Surf. = Elev.:579.92 n Elev. U Q DESCRIPTION Cover a) 576.9 07 of r—� 0 D cD Surface 0 Casing Topsoil and roots 576 s 5 571 10 566 15 561 20 556 25 551 0 - 30 546 a J L 1 7 35 SANDY SILT with trace clay ,red brown, gray ML SILTY SAND, dark gray SM PWR SP Fractured rock Rock Boring Terminated at 37' bgs bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing Riser Grout Sand Screen I Date Started : 11/20/1991 Date Completed :11/20/1991 LOG OF BORING MW-10A Hole Diameter :unknown Drilling Method : unknown (Page 1 of 1) Depth to water JOC) : 8.76 ft SCS Personnel : N/A Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,262.857 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,501,693.493 Driller / Company : unknown / Westinghouse Logged By : J. Hamela Well Slot : 0.01 inch Sand Pack :unknown Total Well Depth : 36 feet Concord, NC 28027 Project # 02201314.91 Q Well: MW-10A u_ .S Surf. = Elev.:578.67 Elev. 07 IL DESCRIPTION 0 576.17 j of Cover Surface 0 576 Casing SILTY SAND with clay, red brown, brown, gray 5 571' 10 566 SM V 15 561 Riser Grout 20 556 25 551} Unknown sediment overburden } 30 546 Rock Sand 35 541 Screen 40 536 Boring Terminated at 43' bgs Depth to water from TOC = 21.42' on 11/20/91 45 bgs = below ground surface SAA = same as above PWR = partially weathered rock NA = not applicable TOC = top of casing Date Started : 12/17/1991 Date Completed :12/21/1991 LOG OF BORING MW-22A Hole Diameter : 8" Drilling Method : HSA/Coring (Page 1 of 1) Depth to water JOC) : 4.00 ft SCS Personnel : N/A Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,314.247 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,502,996.856 Driller / Company : unknown / S&ME Logged By : J. Hamela Well Slot : 0.01 inch Sand Pack :unknown Total Well Depth : 26 feet Concord, NC 28027 Project # 02201314.91 Q Well: MW-22A u- c Surf. = Elev.:586.13 -E Elev. 07 IL DESCRIPTION Cover Q 576.17 j of Surface Casing 576 SANDY SILT, brown, gray, stiff, dry ML SAND, fine to medium grained, dark gray, moist 5 571 Grout SIP Riser 10 566 15 561 Rock- Diorite REC = 91%; RQD = 77% Seal 20 556 Sand Screen 25 Boring Terminated at 26' bgs Depth to water from TOC = 4.0' on 11 /20/91 bgs = below ground surface SAA = same as above PWR = partially weathered rock NA = not applicable TOC = top of casing N O N r 0 N Date Started : 05/21/2002 Date Completed :05/21/2002 LOG OF BORING MW-25 Hole Diameter : 8" Drilling Method : HSA (Page 1 of 1) Depth to water (TOG) . 9.6 ft Charlotte Motor Speedway Landfill SCS Personnel : NA Well Material : PVC 5105 Morehead Road Northing Coord. : 587,428.551 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,502,970.342 Well Slot : 0.01 inch Concord, NC 28027 Driller / Company : W. Harris / AmeriDrill Corp. Sand Pack :unknown Project # 02201314.91 Logged By : J. Hamela Total Well Depth : 20.8 feet m u- U c Surf. _ Elev. 07 IL DESCRIPTION CL 589.00 � � D CD 0-1 589 Topsoil SM 5 -+584 SILTY SAND, fine to medium grained, tan, brown, with manganese nodules, dry PWR with sand and silt, white, gray, wet SP 20 ............. Auger refusal at 20.8' bgs Depth to water from TOC = 9.6' on 05/21 /02 bgs = below ground surface SAA = same as above PWR = partially weathered rock NA = not applicable TOC = top of casing Well: MW-25 Elev.: 589.00 j Cover Surface using Grout Riser Seal Sand Screen I Date Started : 11/6/2020 Date Completed :11/6/2020 LOG OF BORING PZ-1 M3 Hole Diameter : 8 in Drilling Method : H.S.A. (Page 1 of 1) Depth to water JOC) SCS Personnel : 8.38 ft : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,860.25 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. Driller / Company Logged By : 1,502,612,78 : Gary Winbourn / IET : B.Eigenberger Well Slot Sand Pack Total Well Depth : 0.01" : GP #1 : 16.5 ft Concord, NC 28027 Project # 02201314.91 m LL U c Surf. _ Elev. U IL DESCRIPTION CL 581.37 c/) of 0 Topsoil and roots SM SILTY SAND with trace clay, grey, black, brown, slightly moist 580 ;. CL CL 10 570 5 SM L n a J L 15 bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing SANDY CLAY with silt, tan, red -brown, brown, slightly moist SANDY CLAY with silt, red -brown, brown, moist SILTY SAND, grey, black, white, damp Auger Refusal at 16.5' bgs Depth to water from TOC = 8.38' on 12/2/2020 Well: PZ-1 Blow Count Elev.: 583.88 Cover Graph 12.5 25 37.5 50 Surface Casing Riser 3rout Seal Sand Screen Date Started : 11/5/2020 Date Completed :11/5/2020 LOG OF BORING PZ-2 Hole Diameter : 8 in Drilling Method : H.S.A./ NQ Core (Page 1 of 1) Depth to water JOC) : 8.07 ft SCS Personnel : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,656.86 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,502,523.12 Driller / Company : Gary Winbourn / IET Logged By : B.Eigenberger Well Slot : 0.01" Sand Pack : GP #1 Total Well Depth : 19 ft Concord, NC 28027 Project # 02201314.91 Q Well: PZ-2 u- .S Surf. = Blow Count Elev.: 580.57 Elev. 07 IL of DESCRIPTION Graph Cover a) p 578.47 cV/) 0 12.5 25 37.5 50 �� Surface O Casing Topsoil and roots AD-Riser ;` Grout CLAYEY SAND with gravel and clay inclusions, brown, black, SC dark brown, dry 575 Seal SANDY CLAY with silt, dark brown, gray -blue, organics, 5 slightly moist CL 570 Sand SILTY SAND, bronw, tan, saprolite, moist 10 Screen 565 SM 15 Auger Refusal at 19.0'LE 560 20 < ROCK: Diorite R-1 (19.0'-23.0') REC=30 RQD= 0 R-2 (23.5'-28.5') REC=25 RQD=11 R-3 (28.5'-30.3') REC=100 RQD=44 R-4 (30.3"-35.0') REC=38 RQD=O Borehole collapsed to 19' 25 " Water level at 8.07' on 12/2/2020 550 30 545 35 Boring terminated at 35.0' bgs Borehole collapsed to 19' bgs Depth to Water from TOC = 8.07' on 12/2/2020 bgs = below ground surface SAA = same as above PWR = partially weathered rock NA = not applicable TOC = top of casing Date Started : 11/6/2020 Date Completed :11/6/2020 LOG OF BORING PZ-3 M3 Hole Diameter : 8 in Drilling Method : H.S.A. (Page 1 of 1) Depth to water JOC) SCS Personnel : 9.95 ft : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,678.19 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. Driller / Company Logged By : 1,502,828.49 : Gary Winbourn / IET : B.Eigenberger Well Slot Sand Pack Total Well Depth : 0.01" : GP #1 : 13.5ft Concord, NC 28027 Project # 02201314.91 m Q u- U c Surf. _ Elev. U Q 589.15 c/) of 0 SM 585 5 CL 580 SM 10 �IL bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing DESCRIPTION Fill, sand and gravel, brown, grey, black, dry SILTY SAND with trace clay, brown, grey, saprolite, dry SILTY CLAY with sand, red brown, tan, slightly moist SILTY SAND, grey, black, white, damp Auger Refusal at 13.5' bgs Depth to water from TOC = 9.95' on 12/2/2020 Blow Count Graph Well: PZ-3 Elev.: 591.45 Cover >urface ;asing Riser 3rout Seal Sand Pa I Screen Date Started : 11/15/2020 Date Completed :11/15/2020 LOG OF BORING PZ-4 Hole Diameter : 8 in Drilling Method : H.S.A. (Page 1 of 1) Depth to water JOC) SCS Personnel : 9.00 ft : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,496.98 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. Driller / Company Logged By : 1,502,614.87 : Gary Winbourn / IET : B.Eigenberger Well Slot Sand Pack Total Well Depth : 0.01" : GP #1 : 11.5 ft Concord, NC 28027 Project # 02201314.91 m Q u- U c Surf. _ Elev. U Q 582.64 c/) of 0 MIL 5-1 1 SM SC 575 SM 10 bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing DESCRIPTION Topsoil with roots, black SANDY SILT, brown, roots, dry SILTY SAND with clay, brown, slightly moist CLAYEY SAND with silt, grey, brown, slightly moist SILTY SAND, brown, tan, grey, black, saprolite, moist Auger Refusal at 11.5' bgs Depth to water from TOC = 9.00' on 12/2/2020 Blow Count Graph Well: PZ-4 Elev.: 585.01 Cover >urface ;asing Grout Riser Seal Sand I Screen I Date Started : 11/3/2020 Date Completed :11/3/2020 LOG OF BORING PZ-5 Hole Diameter : 8 in Drilling Method : H.S.A. / NQ Core (Page 1 of 1) Depth to water (TOC) : 3.58 ft SCS Personnel : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,427.97 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,502,927.98 Driller / Company : Gary Winbourn / IET Logged By : B.Eigenberger Well Slot : 0.01" Sand Pack : GP #1 Total Well Depth : 7 ft Concord, NC 28027 Project # 02201314.91 Q Well: PZ-5 u- Surf. = Blow Count Elev.: 584.83 n Elev. U 0- DESCRIPTION Cover Gra h p �� p 582.7 u) of (� 0 12.5 25 37.5 50 Surface Casing 0 Topsoil and roots Riser SILTY SAND with trace clay and roots, brown, tan, grey, slightly moist- Grout SM Seal 580 Sand CLAYEY SAND, with silt, light tan, red -brown, damp 5 SC Screen Auger Refusal at 7.5' 575 — '— ROCK: Diorite R-1 (6.5' - 11.5') REC=90 RQD=90 R-2 (11.5-15.1') REC=97.2 =94.4 R-3 (15.1'- 16.0) REC=100 REC=100 R-4 (16.0' - 16.9') REC=98.9 RQD=98.9 10 GIN 570 15 Boring terminated at 16.9' bgs Borehole collapsed to 7' bgs Depth to Water from TOC = 3.58' on 12/2/2020 bgs = below ground surface SAA = same as above PWR = partially weathered rock NA = not applicable TOC = top of casing Date Started : 11/4/2020 Date Completed :11/4/2020 LOG OF BORING PZ-6 Hole Diameter : 8 in Drilling Method : H.S.A. NQ Core (Page 1 of 1) Depth to water (TOC) SCS Personnel : 8.74 ft : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,348.76 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. Driller / Company Logged By : 1,502,681.77 : Gary Winbourn / IET : B.Eigenberger Well Slot Sand Pack Total Well Depth : 0.01" : GP #1 : 39.5 ft Concord, NC 28027 Project # 02201314.91 m Q u- U c Surf. _ Elev. U Q 583.44 c/) e' (D 0 580 5 575 10 570 15 565 20 560 25 555 30 D J L 550 0 35 J 545 40 DESCRIPTION Blow Count Graph Topsoil and roots MIL SANDY SILT, red -brown, brown, dry SILTY SAND with PWR fragments, dark brown, black, slightly most SM SANDY SILT with clay, brown, moist ML SILTY SAND, with PWR fragments, brown, black, moist SM SAND, black, saprolite, wet SP Auger Refusal at 24' ROCK- Diorite R-1 (24.0'-29.0') REC= 67 RQD=45 R-2 (29.0'-34.0') REC=62 RQD=38 R-3 (34.0'-39.5') REC=45 RQD=25 GR bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing Boring terminated at 39.5' bgs Depth to water from TOC = 8.74' on 12/2/2020 Well: PZ-6 Elev.: 585.25 Cover >urface ;asing Riser Grout Seal Sand Screen I Date Started : 10/29/2020 Date Completed :10/29/2020 LOG OF BORING PZ-7 Hole Diameter : 8 in Drilling Method : H.S.A. (Page 1 of 1) Depth to water JOC) : 7.05 ft Charlotte Motor Speedway Landfill SCS Personnel : J. Hamela / B.Eigenberger Well Material : PVC 5105 Morehead Road Northing Coord. : 587,224.71 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,502,895.62 Well Slot : 0.01" Concord, NC 28027 Driller / Company : Gary Winbourn / IET Sand Pack : GP #1 Project # 02201314.91 Logged By : B.Eigenberger Total Well Depth : 20 ft m LL U c Surf. _ Elev. U IL DESCRIPTION CL 584.86 � of o � c9 01 Top soil and roots I I MIL 7F77 SANDY SILT with roots, brown, black, tan, dry 5 --� 580 104575 SM 15 --� 570 204 565 bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing SILTY SAND with silt, saprolite, brown, gray, black, white, tan Auguer refusal at 20' bgs Depth to water from TOC = 7.05' on 12/02/2020 Blow Count Graph Well: PZ-7 Elev.: 587.46 Cover >urface ;asing 3rout Riser Seal Sand Screen I Date Started : 11/2/2020 Date Completed :11/2/2020 LOG OF BORING PZ-8 Hole Diameter : 8 in Drilling Method : H.S.A. / NQ Core (Page 1 of 1) Depth to water JOC) SCS Personnel : 17.25 ft : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,063.00 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. Driller / Company Logged By : 1,502,507.88 : Gary Winbourn / IET : B.Eigenberger Well Slot Sand Pack Total Well Depth : 0.01" : GP #1 : 36.7 ft Concord, NC 28027 Project # 02201314.91 m Q u- U c Surf. _ Elev. U Q 583.32 uJ of 0 580 5 575 10 570 4 15 565 20 4 560 25 555 30 550 J >_ 35 545 40 DESCRIPTION Blow Count Graph Top soil and roots SANDY SILT with trace clay, red, brown, tan ML SILTY SAND with rock fragments, saprolite, red, tan, grey,white, damp SM . Auger refusal at 13.5' ROCK: Diorite R-1 (13.5-18.5) REC= 5.40 RQD=28 R-2 (18.5'-26.0') REC=13.3 RQD=13.3 R-3 (26.0'-31.5') REC=100 RQD=63 R-4 (31.5'-38.0') RED=49.0 RQD=49.0 GN Boring terminated at 40.4' bgs Borehole collapsed to 36.7' bgs Depth to water form TOC = 17.25 on 12/2/2020 bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing Well: PZ-8 Elev.: 585.82 Cover Surface 'asing Riser Grout Seal Sand Screen I Date Started : 10/30/2020 Date Completed :10/30/2020 LOG OF BORING PZ-10 Hole Diameter : 8 in Drilling Method : H.S.A (Page 1 of 1) Depth to water (TOG) . 15.16 ft Charlotte Motor Speedway Landfill SCS Personnel : J. Hamela / B.Eigenberger Well Material : PVC 5105 Morehead Road Northing Coord. : 587,201.81 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,502,697.77 Well Slot : 0.01" Concord, NC 28027 Driller / Company : Gary Winbourn / IET Sand Pack : GP #1 Project # 02201314.91 Logged By : B.Eigenberger Total Well Depth : 18.5 ft m LL U c Surf. _ Elev. 07 IL DESCRIPTION CL 588.52 � of 0 Topsoil and roots SANDY SILT with trace clay, red, brown, dry, weathered mica 585 ML 5 SILTY SAND, brown, red, black, PWR fragments, wet 580 10 575 of 15 LL SM Auger refual at 18.5' bgs Depth to Water from TOC = 15.16' on 12/2/2020 bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing Blow Count Graph Well: PZ-10 Elev.: 591.04 j Cover >urface ;asing Riser 3rout >eal Sand Screen I Date Started : 10/27/2020 Date Completed :10/27/2020 LOG OF BORING PZ-11 Hole Diameter : 8 in Drilling Method : H.S.A / NQ Core (Page 1 of 1) Depth to water (TOC) : 17.42 ft SCS Personnel : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 587,002.90 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. : 1,503,054.11 Driller / Company : Gary Winbourn / IET Logged By : B.Eigenberger Well Slot : 0.01" Sand Pack : GP #1 Total Well Depth : 25.5 ft Concord, NC 28027 Project # 02201314.91 Q Well: PZ-11 u- .S Surf. = Blow Count Elev.: 599.69 Elev. 07 0- of DESCRIPTION Graph Cover a) 597.42 cV/) p 0 12.5 25 37.5 50 Surface 0 Casing Topsoil and roots CLAYEY SILT with sand, red,brown, roots, slightly moist 595 MIL Grout Riser SILTY SAND with trace clay, gray, white, PWR, quartz 5 fragments SM 590 Seal Auger refusal at 10' 10 ROCK: Syenite R-1 (10'-15') R-2 (15'-18') 585 i—i—i R-4 (21.5-25.5) Total Recovery = 66% 15 Total RQD = 59.4 % Sand 580 GN Screen 20 575 25 Boring terminated at 25.5' bgs Depth to water from TOC = 17.42 on 12/2/2020 bgs = below ground surface SAA = same as above PWR = partially weathered rock NA = not applicable TOC = top of casing Date Started : 10/28/2020 Date Completed :10/28/2020 LOG OF BORING PZ-12 Hole Diameter : 8 in Drilling Method : H.S.A (Page 1 of 1) Depth to water JOC) SCS Personnel : 14.66 ft : J. Hamela / B.Eigenberger Charlotte Motor Speedway Landfill Well Material : PVC 5105 Morehead Road Northing Coord. : 586,963.50 Well Diameter : 2 inch Facility Permit 13-04 Easting Coord. Driller / Company Logged By : 1,502,787.22 : Gary Winbourn / IET : B.Eigenberger Well Slot Sand Pack Total Well Depth : 0.01" : GP #1 : 18.5 ft Concord, NC 28027 Project # 02201314.91 m Q u- U c Surf. _ Elev. U Q 585.99 C/) of 0 5 585 580 ML 10 575 SM 15 570 0 V J L n a J J L 1 20 bgs = below ground surface - SAA = same as above v 3 PWR = partially weathered rock NA = not applicable TOC = top of casing DESCRIPTION Top soil and roots CLAYEY SILT, tan, brown, red SILTY SAND, saprolite, brown, tan,white, slightly moist, Auger refusal at 20' bgs Borehole collapse to 18.5' bgs Depth to water fro TOC = 14.66' on 12/2/2020 Blow Count Graph Well: PZ-12 Elev.: 588.53 Cover Surface Casing Riser Grout Seal Sand Screen I Figure 1 Site Location Map CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 1 F t 650� �MDRESY,� _ _� �C �. _ g.P 0 NE�G 4 29 N o o�— . SITE LOCATION o wo 0� r/ F O \l✓v �� upsPETS+)R0 — e (� Ll Malla,.� HG ao B CROSS 5SO lI�I- \� iEATHERWq_ODLN. �R\A O,PKi\o 1 SCALE: 0 1000 2000 3000 APPROXIMATE SCALE IN FEET BASE MAP SOURCE: USGS TOPOGRAPHIC MAP, 7.5 MINUTE SERIES, HARRISBURG, NORTH CAROLINA, 2016 •' Vv yO — e 2 SITE LOCATION CHARLOTTE MOTOR SPEEDWAY LANDFILL 5105 MOREHEAD ROAD CONCORD, NC 28027 qr-q FN(,INFFRS FIGURE 1 - SITE LOCATION MAP Figure 2 Groundwater Monitoring Well Map CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 2 LEGEN D 700 — 10 FOOT ELEVATION CONTOUR - - - — PROPERTY LINE -- — — — — —- — LIMITS OF WASTE — PHASE 1 EXTENTS — PHASE 2 EXTENTS — PHASE 3 EXTENTS — FUTURE PHASE 4 EXTENTS (EST.) — LIMITS OF CLOSURE CAP BMW—# — EX. GROUNDWATER (GW) MONITORING WELL MW—# — PROPOSED GW MONITORING WELL MW—UNK — ABANDONED MONITORING WELL w SW—# — APPR. SURFACE WATER SAMPLE LOCATION TOPOGRAPHY NOTE: 1. LANDFILL SURFACE GRADES TAKEN FROM JANUARY 9, 2020, AERIAL SURVEY BY COOPER AERIAL SURVEYS. �./ M W— EXISTING PHASE 1 EXTENTS , CELL 2A 2L CELL 1113 CELL SEE NOTE 1 w I LEACH ATE - TREATMENT BUILDING �z SITE ENTRANCE 0 450 900 1350 SCALE IN FEET O NOTES: 1. SW-1 LOCATED UPSTREAM ON ROCKY RIVER BENEATH US 29 OVERPASS 2. MW—UNK IS PERMANENTLY ABANDONED. `'ALE & CALE HOUSE 2 28 T lk • : ���� I ME CELL 2E LFG—TO—ENERGY PRODUCTION BUILDINGS 0 m au 6 d --- _., cn 1 Z 0 w � S — V , 0 M W— 42 I J J W 41 � W SEE NOTE 2 I AM —40 Z 0 1 I W—U K ' PROP , ICELL 2M I F- — PROP - 9 / Z 0 CELL 2K 2 w / Lu J H I ~ (� u I MW �4 L 6 M W— a 7A 1 MW 7 ' L W-36 ; EXISTING PHASE 3 EXTENTS z w J U F- w 0 a. J � J U Q O JO U) W v0 0 Q > J o J IL 0 Q co N V C o p W z N Q J W W w O 00 rr- v 5 2 V O o U L) 0 r > ♦ ♦ V Q � a. 0 ti Lc, mQ m c N s o CL a W5 CN W � U) Q o zb W � J X W o�LL Z Y a U ~ o a�� J m z o in= Y o z Q z Ln 0 W Wwo L U 20Li i W NQO 0 zN} a e o a Z o 0 DATE: JANUARY 2021 J SCALE: AS SHOWN DRAWING NO. REPUBLIC SERVICES 0 of 1 Figure 3 Methane Gas Monitoring Well Map CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 3 I LEGEND- - 10 FOOT ELEVATION CONTOUR — PROPERTY LINE — LIMITS OF WASTE — PHASE 1 EXTENTS 09S — PHASE 2 EXTENTS 0 450 900 1350 1 v _ yIo z v — PHASE 3 EXTENTS SCALE IN FEET Ne _ _ 56�_ 1 0 l � 0 — FUTURE PHASE 4 EXTENTS °LS °9S 55° ° tQ J s sso hb 1 O — LIMITS OF CLOSURE CAP 0 W MMW-9 MMW—# — EX. METHANE MONITORING WELL MMW-7 MM 8 y° • o C� 0 ° _j O • TOPOGRAPHY NOTE: _ - -` o� ° ► —ya- I a M p H 1. LANDFILL SURFACE GRADES TAKEN FROM JANUARY 9, W-6 0 62°� �� I bso I �� = 2020, AERIAL SURVEY BY COOPER AERIAL SURVEYS. O Z ,p . 630 6,p - ► � I I o Zell a Z a EXISTING PHASE 2 EXTENTS ' W �; ;o° PROP I • MMW-10 0 J 0 L�u/ g� T10 m I Li • ' 63p 0 I 6671Fn II C E L L 2 M�1626CELL - I� CELL PROP � 6pCELL 21 2J CELL 2K I U) ( W (� 2 H I I I 1 2 3° CELL Lt'� • 6 6�0 ,//f//j�� ' t' _ - _ _ L_ - • . ' • 6q0 / 640 l�0p0o °:% 2G a �V 0° 1 I I I fib° y Lu W 1 650 M M 650 �l 1� C ELL ` 66° y9° n N 1 ' • 640 650 620 660 12 _ 640 640 630 40 670 �' A0 2 F 1ho 12° / 6h6 °3(1 _ Of 69�99 'N° .n o l �, ' , W J = o 61'A 690 i -'' TIP 6 ` ` \ 0J9 29 9 I b MMW- a a I \ 740 1 _ 2 ~ 660N, 720 / ^ 1 OS9 069 6660 6680` ' ��-- 130 DSO f ` b��po , • ` I ae, i /60°ono• / hb° O Lu V ii °►9 MW 2670 -- - ,38 1 12p b� MMW-42 °BS °t9 / �1 = Lu o o ° ` 089 700 --�' 740 y 10° ` bbo 09 �5 �0 ••'•• 66 690 1i `° MM — a 1 b •, `' ❑ 680 ♦ 700---''---j30 ^po CELL 2E 0p y ` S OLS 6g0 - - - -740- - - 40 ^� 660 1 \\ MM —5 EXISTING z� 640 ° 5 'Oy°o �0 i'1b �j 0 ^ 0f9 •h 510 �• MMW-12 EXISTING PHASE 0 PHASE 1 EXTENTS 640 b"^° 723° V CELL2C ===o o � 029 0 \ a Q 11 ` 750 n�o in v�'i N 600 _ 'J '� " 3 EXTENTS O / A° nnn n^ n ` N O e —0� ----. ` ^°io/ CELL 2A 71gp ^ $o seo y1° 580 • 1 J o 1 69 ,. / 1^4°O 11° 19° 560 14 I J_ 0 co 1 • I 10 1 bo °o0 1 O �° 1 BS ° ' M M v c y0� `1 1yp 790 / 009 e ^ OC OAS 9S 560 '� in 13 W Z cV / o 029 s _ Z = N ♦ . I 750 760 1b oE9 SS Q W W 1 � 008 100 1q0 069 Oly $4 - � 008 �e9° 1y FUTURE PHASE 6° � � o - ♦ I 09L C E L L p` / 130 OS9 0�9 570 � MM - b n 770 2L Pp ` / p�L 1' 12o CELL 2D 099 4 EXTENTS °� o g00 / 780 09L 1b �0° 790 ` CELL 2B �Ap y00 670 o N bbo o �� °ems s f 1 O („) 90 / ^ 1 ^hOb° I 800 C`�lb° OeL 130 ` 66° 650 b�oRo N ^0 510 V 800 02L 17' 6 099 b �o • _ g , jS 1 O 9 �q0 Of9 069 b b011 640°° ► d� W �A DOB 170 '1 Ogg 6 O 620 029 8 p�p55 ° o o O J OSL oe� DSO b 099 bbp OT9 OT9 O8 `� boo hb h^ hb 08S V ( 740 I O ! CELL 1 B 4p / 61y°�Op� OS9 by° 009 m o r9 / 730 O �� 13° / F+'Ap� Of9 63p y °°` o^9s999 CELL 1A I o6� 12p 620 06S MMW 5 Us °09 9 690 } 62p° OBS • n 0 — 21 570 ♦ OBS 680 t 0 69p 09 — MMW-1 p � ' ` 670 1D�g0 - 0 M W- 1 S 570 09 60 660 ��1 6 �y0 0-- `�06 06S • t1° '� OAS O � ��S S °9S °BS O!S 0 _ f- 9 I b Ap 6400 O 6 �o 580 hb O 09S y ,� o ,, m Q 10 O b �S 09S ti 630 09,99 b2 / 57 I q 0$ O� oo Og a 09S U ; p } ° h1 S o ` w 620 t..9 I 6 A° 6 M 580 okco9 55 0.9r�S o ,9S \ , lS �+ n q Q a:\ CL 580 ��9630 o o 5700 \ %� >g 0.95 (V L O Q 0 19 I O p , O� � n N b2° O O h� i �+ 590 rt. � . � ADMIN. BUILDING >a j/S///4 600 ° o<S to Q o MMW- 2Q 610 0 ® ❑ "0,�) O / \ 6T0 23) J °Ls LU � Z 600 Q o OAS 5g° g°p X "All q °° ,' 6 8� W o 0 � •MMW_ MMW-19 BUILDINGS �� h ^ ° 9 % (((..///�11y}}���� h�° Z Y Q 570 hh ° SCALE 8C yb° Q o a I /� _ � ♦ � Z Y h� SCALE HOUSE o J Z In bill j0 / y9° , ♦ ° ° h $ b� 1 °eS, Lu W O y LEACH ATE �0 6�° hb yb �8�9 y ~ o L ° LFG—TO—ENERGY cyg0p at 6� '� (f� = of W y9° TREATMENT y PRODUCTION BUILDINGS �y°01 ,� w z o BUILDING b�° °r� V o TQ OT zN } ♦♦ 0 0 N .000 o b2° Lc) 2= O 04 56 m ° 04 U a & N � cu . 0°� 1 0 ° DATE: SITE hep ° oo b O o .° 5q0 � �9p b b~° p b hQ ybo � h� O ENTRANCE y1° �6�° b2 63° 1 e o DECEMBER 2020 y2° h� 620 630 636040 09S 63 SCALE: N 0 ` OOoSs S- 069 bpi AS SHOWN DRAWING NO. REPUBLIC SERVICES 0 of 1 Figure 4 Phase 5 Extent and Piezometers Locations CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 4 W O Q J W z 0 J Q N N I O 0 N a a O 0 J Ln 0 .c 0 a Q Q) co O 0 N O a� 0 0 a Z� U 00 O N 0 a 0 J I n 0 cn 0 Q Q 0 N i 0 120 240 360 EXISTING PROPERTY EXTENTS SCALE IN F15ET s PROPOSED PHASE � \ 5 EXTENTS FEMA 100-YR FLOODPLAIN EXTENT MAIN ACCESS ROAD EXISTING 0&M BUILDING � 8on EXISTING SCALE HOUSE AND SCALES w O I;-.oPz-2 000 O ' �' P Z / FEMA 100-YR FLOODPLAIN EXTENT I � . F A,� 'APZ 1 ` \�\ PROPOSED BORING AND \` \ GW PIEZOMETER LOCATION �. (TYP. OF 12) s6, ` � SEDIMENT � BASIN tS00 \ \ PROPOSED PHASE 5 (12 ACRES) C�� in A PZ- 0 PZ-7 PZ-12 EXISTING CELL 113 I Lfl o PZ- 00 o Lr) I 0 0 I MM =22 I p �pz—1 1 coo co \ I 90 \ \ 1 ' \ \ o0 0 \ \ Of \\ \\ Ld ' cn Ld EXISTING \\ \\ CELL 2L aaaaaa ol ♦V^^ V O z J 00 0 > o \\ \\ Q Q LV j \\ Z� >0 \\ WO JO \� �J j o W cp [L 0 �s ��o ► W Z = O 0 1 W a. ap JZW �N o ` j a w �.w O 1 a W \ w Lo ` J W ~ ~ U V♦ H LWLLI Q V) a_ a / / / / O 0 / / / I o 0 0ID � ko (oU r t0 w b 1 / CSC 5B 0� 0� o N L �o 0 0 IMW 17 / EXISTING CELL 213 o �O 'k 19\ 00 a \ / J N c Z04co p W V U c z c� z JLu �2o 2 c'4 co O V coCD w c Lo I U ti 0 0 mQ U 0 Q cD in in 7 ❑ 1 3 � m Lu N L o a N Lq NaLa Z W >JX W �oQ aLL C) z=o m m a � 7 0 0 _ U CD Z QzL o W W � 0 H F- = OJ W �wz "' o V �_U = o zomU) Q Nao z ' of o > DATE: SEPTEMBER 2020 SCALE: AS SHOWN DRAWING NO. 01 of 1 Figure 5 Geological Cross Section - A to A' CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 5 North South 600 600 595 -� /rim ■11 L1 1 595 590 -� I I -.ovM I I I 1- :1:1: 4 1:. 4 1:. 4 1:. 4 M� 590 585 /\ r\ r\ /\ / 585 580 r jl� jl� jl� j� j j j� j� j� j� j` j� jt 580 575 _ 575 r Pb 3\ r\ r\ r\ r\ r\ r\ Z _ t r�r\r�r�r�r�r�r�r�r�r�r�r�r�r�r �r�r�r�r�r�r�r�r�r�r�r�r�r�r PZ-11 570 570 a r r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r \r\r\r\r\r\r\r\r\r > t w J _ � S r rr\r—r�r�r�r�r�r�r�r�r�r�r�r�r�r�r w 565 / r\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ / PZ-5 565 r r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r 560 560 _ �i � _ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ � r\ \ \ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ r `I_ � _ � _ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ r\ \ \ r\ r\ r\ r\ r\ r\ r\ r\ r\ r\ 555 555 r\ \ \ r\ r\ r\ r\ r\ r\ r\ r\ r _ mot_ _ mot_ mot_ mot_ mot_ mot_ mot_ mot_ mot_ 550 \t_ t t_ t_ t_ t_ t_ 550 _ _ r\ r r\ \ r\ r\ r\ r\ r\ 545 \ \r /\ \/\/\/ 545 \ r\ r\ I_ I_ \I \I 540 _ 540 MW-2B 0 50 100 150 260 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 CMS Landfill - Permint No. 1304 Phase 5 Expansion Design Hydrgeologic Report Concord, NC Project Number - 02201314.91 Figure 5 Topsoil - SILTY SAND GEOLOGIC CROSS SECTION - Section A to A' SAND ® SILT ROCK isW-A'.cro DISTANCE (Feet) LEGEND Groundwater Surface Bedrock Surface Figure 6 Geological Cross Section - B to B' CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 6 North 590 585 580 575 ..: 570 Z 565 ����_\IIIIIIIIIIIIIIIIIIIIIII_6L > P W 560 555 550 545 _ PZ-6 540 CMS Landfill - Permint No. 1304 Phase 5 Expansion Design Hydrgeologic Report Concord, NC Project Number - 02201314.91 Figure 6 Topsoil - GEOLOGIC CROSS SECTION SILTY SAND - Section B to B' SAND ® SILT EE ROCK is\B-B'.cro DISTANCE (Feet) LEGEND Groundwater Surface Bedrock Surface South r 590 585 580 575 570 PZ-12 �- 565 560 555 550 545 540 Figure 7 Geological Cross Section - C to C' CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 7 East West 590 590 585 _ 10714 f 3 l IJ TJ : F 3J­— 585 580 580 575 575 I_\I_\I\I_\I_-570 MW-25 565 _ I _ I_ PZ-5 565 Zq. 560 560 LU uJ 555 /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 555 550 /� i� i� i� i� i� il— \ /� i� i� i� i� i� i� il� l� 550 545 _ I_ I_ I_ I_ I_ I_ I_ I_ _ I_ I_ I_ I_ I_ I 545 540 I IIIIII_ III 540 535 \ I \ / \ I 535 MW-10A 530 530 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1 DISTANCE (Feet) CMS Landfill - Permint No. 1304 LEGEND Phase 5 Expansion Design Hydrgeologic Report Figure 7 Topsoil - SILTY SAND Groundwater Surface - SAND Concord, NC GEOLOGIC CROSS SECTION Project Number - 02201314.91 ' Section C to C' ® SILT Bedrock Surface ROCK 12-29-2021 CAUsemW504jth\DesktopTZ Logs\cross sections\C-C.— Geological Cross Section - D to D' CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 8 East West 585 585 580 77777 � Ifflimy 1580 575 575 570 i. ''�I_ �I �I_ �I_ 570 565 565 560 560 0 ... uJ ..... .:.:..i :. 550 /\ /� it /� it il_ I_ J 550 M W -22A I— 545 . _ .I_I— /� /\ /\ /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� /� / .I / 545 \ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ / PZ-6 540 I— I 535 \ I— �I— �I_ �I_ �I_ �I— �I- \ /\ /\ /\ / 535 MW-10A 530 530 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 CMS Landfill - Permint No. 1304 Phase 5 Expansion Design Hydrgeologic Report Concord, NC Project Number - 02201314.91 Figure 8 Topsoil - SILTY SAND GEOLOGIC CROSS SECTION - Section D to D' SAND ® SILT ROCK ,s\D-D'.cro DISTANCE (Feet) LEGEND Groundwater Surface Bedrock Surface Figure 9 Geological Cross Section - E to E' CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 9 East West 600 --1 �- 600 595 -4 --.00rr7 I I I I I= F 595 590 -4 --wogOrf I I I I I I I I I I I 1t: F t: F t: F. t: F. t: ' I'M IF 590 585 / \ / \ 585 580 iI� iI� 580 \ \ \ \ \ \ \ \ \ \ \ I I I I I I I I I I I I I \ \ \ \ \ \ \ \ \ \ \ \ \ I 5757 I I I I I I I I I I I I I I 575 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ I I I I I I I I I I I I I I I I Z y; �I �I �I �I �I �I �I �I �I �I �I �I �I �I �I— �I— �I 570 570 _ __:I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I—�I— LU W�I- 565 \ /\ \ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ / \ d /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ / 565 560 _ \ - I I -560 555 _ \I — I— I— I— I— I— I— I— I— I— I— I— I— I— I— — I— I— I— I— I— I— I 555 550 I_\I I—�I—�I—�I—�I—�I—�I—�I— 550 —�I—�I—�I— 545 I_\I \ /\ I_ I— \ /\ / I_ 545 \I \ /\ �I PZ-8 1540 540 CMS Landfill - Permint No. 1304 Phase 5 Expansion Design Hydrgeologic Report Concord, NC Project Number - 02201314.91 100 1 Figure 9 Topsoil - SILTY SAND GEOLOGIC CROSS SECTION - Section E to E' SAND ® SILT ROCK is\E-E'.cro DISTANCE (Feet) LEGEND Groundwater Surface Bedrock Surface Figure 10 Cross -Section Transect Map CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 10 N / � o 80 0 80 60 SCALE IN FEET A I W- A -2 EXISTING PROPERTY EXTENTS I I e � I FEMA 100-YR FLOODPLAIN EXTENT 1 PZ-2 L EXISTING SCALE HOUSE AND SCALES AD ° EXISTING 0&M O BUILDING ❑ PZ- LEACHATE POND ' C D FEMA 100-YR FLOODPLAIN EXTENT PZ-10 A6-PZ-8 ❑ ❑ PZ-7 L ` Pz-1z B❑ SEDIMENT BASIN C' M -25 PZ-5 MW-21 TII -22 M W-22 D' 1 PZ-9� l Pz-11 E' .4. A_1_ LEGEND soo - 10 FOOT ELEVATION CONTOUR - FACILITY BOUNDARY - EXISTING CELL BOUNDARY - PROPOSED PHASE 5 BOUNDARY A AF1 - NORTH TO SOUTH TRANSECT LINE Y m A A❑ - EAST TO WEST TRANSECT LINE IL PZ-6 - PHASE 5 PIEZOMETER LOCATION AL MW-25 - EXISTING GW MONITORING WELL LOCATION Z a NOTES: 1. SURFACE CONTOURS FROM DECEMBER 9, 2020 AERIAL FLYOVER BY COOPER SURVEYING, INC. r � � aaaaa O z n O W L) Ill a U o ° cn 2 > 00 j O CELL 2A ° O U J O ' S L) z LL W Uz aO ° a Q O J } OJ = ` U) z U w O J F � VJ Q ` w W cn x � 2 n a a. 0 Q g J ` 0 G Q W L)r z W a J w Q O ao U r O U w U CD � o M n � ^ W N N H / � 7 N O U1 a O LJ 9 '7' W caLL 0a N G'', Z o ^ L Z JO a Z Lo = ui W H g m d co3. S 111 M x cc Z 0 o �V/ N V/Lo = NUa 8 t ' DATE: DECEMBER 2021 SCALE: AS SHOWN REPUBLIC DRAWING NO. SERVICES 0 of i I Figure 11 Groundwater Contour Map - April 2021 CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 11 sm w 0 - 0 200 a00 600 1200 TOM g „•. t C� Scale in Fee[ Graphic Scale t inch = 600 fee[ 3.. to wow. a ELL 1A C,s .. S' { ❑ f- � r LEGBd SP Or S' Rav n+o-J,vine �1x.xn SBS T9 tr IM1m+I �' � + — �see� vpnsw�uak Srr�+ywc�.rl�uq 1 ` Gaen�Hv�x Arralwn� 1� swlw w.wr s.npW�ylm��on Noororl CLOM IaraMlcH iwudav CELL is 1r ,CELL sraao uvr.l.a L Pit SKI t ;.+, C t 6rSii r 1 1' - r �YP 2 P t re TI, EX7 ING MAI BB9.91 1 1� SVao? .71 PIi72 1 l �tZ R &"WA0 SS1J 1iA' ' •5 _ st Mw- eatr• V I what CIE J SR.9 SB9�5 M 1� A,- 4 4 CE �� Spa 15 ee � iilf i ` sAe.+L, J ETT Figure 1 e �°"° First Semi -Annual 2a21 Potentiometric Surface Map fht¢e0, M 6i3N C OvNRS UJ ML ET hl NAG �� Charlotte Motor Speedway Landfill V, Harrisburg, North Carolina Figure 12 Seasonal High Groundwater Surface Contour Map CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 12 i cn z 0 Z: 0 Q I 0 N O U N Q) a� 0 Q_ Q 0 L 0 0 c W 0 0 Q 0 0 QL rn 0 N O cn 0 a� C� 0 I� U Q3 0 N O c v I O N O co Q O 0 I I N • El � So 80 0 80 1160 60 SCALE IN FEET EXISTING PROPERTY EXTENTS FEMA 100-YR FLOODPLAIN EXTENT �p o (576.27) \ \ W-2A 1 \ \ 2B -� \ Ids I\ �p s9 TOO PROPOSED PHASE (575.50) 5 EXTENTS PZ- 1 • 1 \ 1 1 �• 1 I 1 1 ' I � , ♦ /'� � BORING AND GW .. \ Sao PIEZOMETER LOCATION 1 (TYP. OF 1 1) DAD S9 o, sip S80\ �. PZ-2 1 \� (572.50) EXISTING SCALE HOUSE AND SCALES .. 1 �s9p EXISTING 0&M BUILDING LEACHATE POND O 5� 0 100-YR 01 J 0 O 0 Z-4 1 (576.08) /C01 x� 0 PZ-6 (576.8) Q --�- -44-- - --�--� PZ-10 577.79) T T `so 'moo 0 I \ \ (583.46)� M W7- 25 LEGEND 800 - 10 FOOT ELEVATION CONTOUR - FACILITY BOUNDARY • - EXISTING CELL BOUNDARY - PROPOSED PHASE 4 BOUNDARY 6� TO Oo l0 �O O ° 580 - SEASONAL HIGH GROUNDWATER (SHGW) 2-FT ELEVATION CONTOUR -51-0- - - - - SEASONAL HIGH GROUNDWATER (SGHW) 2-FT ELEVATION CONTOUR EXISTING CELL 1 B W.-- SHGW FLOW PATH A PZ-6 - PHASE 5 PIEZOMETER LOCATION (544.50) (EST. SHGW ELEVATION) MW-25 - EXISTING GW MONITORING WELL LOCATION (592.31) (EST. SHGW ELEVATION) NOTES: 1. SURFACE CONTOURS FROM DECEMBER 9, 2020 AERIAL FLYOVER BY COOPER SURVEYING, INC. 2. EXISTING GROUNDWATER WELL LOCATION SHGW ELEVATIONS ARE FROM SEMI-ANNUAL GW MONITORING DATA FROM 2015 THROUGH 2O20. 3. PZ-9 BORING WAS DRY WHEN DRILLED, NO GROUNDWATER ELEVATION WERE RECORDED. EXISTING TO ° CELL 2A CELL 2L O ,sp cop \ � o (� \ C �10 ° V. O O %) v `- P -5 z \ \ \ (583.46) 1 \ W— 2 I cn MW 2A I o � ' ► I 1 I ' I I� 1 II I I I I PZ-7z� 581.06) I I 1 1 I MI � 1 o cil o CDP Z— 9 mu,cn L\ N CD co Lo . i co %o ID co I Ko PZ-8 I `(572.02) \ Z-11 I zt (583.94) AP -12 000 �--�.. : / SEDIMENT BASIN Sao s)o ul BMW--21 J ( ) CD cfl co CD in ' o 0 O O' O O O f ON ^OO ^O (1J �D �D ko o 0 J 0� o co o �: l i aaaaa� w O �a Lu Z O ip O �z J JO O = — LU LL O c� W o O = c) Z o Q LL J >_ Z O c 2 Z a Lu V w Lu 0 F_ Ln F- Ld F_ w Lu w o a = U' a a Q > J W 0 o co '* p a Q Lu W U c z N ` J tq � W04 O c z ~ C) c o z w Ln J U REPUBLIC SERVICES CD I� m Q r M > Of m M C E N Lo o a CL ♦ /'� V/ 1-1 M N O Z L W > J X Lu oaw o 0 Z _ oYcvc m m J o 0 J O 0 Z az Wwho 00 00 cn _o, Lucr M z V NQO Z�r V/ NULo a 0 0 z a o DATE: DECEMBER 2021 SCALE: AS SHOWN DRAWING NO. 01 1 of Figure 13 Bedrock Surface Contour Map CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Figure 13 N C� 0 z 0 J E Q 0 N I N 0 N O V N 0 3 OO 0 Q a 0 c 0 v O w .c 0 4- 0 Q 0 co 0 QL rn 0 N O cn C� O I� U CQ 0 N O cn 0 J v I O N O s O U ct 0 ER 0 N � I ♦ ♦ El o � � 80 0 80 160 SCALE IN FEET, h W-2A _ (546.92) OV EXISTING PROPERTY EXTENTS � •./ / /� �. � �- 'moo / PIZ_ (564.87) 1 l FEMA 100-YR FLOODPLAIN EXTENT // / ^�/ ♦ / e l000l 574 ♦ / / s8o� / C / ♦ l LEGEND 800 - 10 FOOT ELEVATION CONTOUR - FACILITY BOUNDARY • - EXISTING CELL BOUNDARY = � � � = - PROPOSED PHASE 5 BOUNDARY �� ,lp �O ° ° TOP OF BEDROCK Y 570 - U m 2-FT ELEVATION CONTOUR -560- - - - - ESTIMATED TOP OF BEDROCK 2-FT ELEVATION CONTOUR 0 PZ-6 - PHASE 5 PIEZOMETER LOCATION o (544.50) (EST. BEDROCK ELEVATION) w U MW-25 - EXISTING GW MONITORING WELL LOCATION o (568.20) (EST. BEDROCK ELEVATION) NOTES: 1. SURFACE CONTOURS FROM DECEMBER 9, 2020 AERIAL w FLYOVER BY COOPER SURVEYING, INC. Q 0 2. PZ-9 WAS DRY AT REFUSAL, NO DATA WAS Ld a a a a a a COLLECTED AT THIS LOCATION. � \ O W EXISTING �� doo o CELL 2A w > O CELL 2L �. �° Q J p ° — w ,So ? 2 LL (� _no 0 EXISTING SCALE �� / ` o� ° ♦ 0 J = HOUSE AND SCALES / / 1 �9 °0 0 L) Z �� o ♦ W (� AD ° / �j o W 6°0 ° �p bi J EXISTING 0&M / `9p sp w �_ BUILDING / _ Q ~ � O(571.14) M —25 ♦ dip o Q wLLI S70 (568.20) No ♦ w o I--Q / cif _ h 564 l � (575.20) LEACHATE 562 POND _ 560 Q - _S58 WAN- 22 556 - QW-2/2A ` J o / ♦ J 0 N (554.44) / LL Q U CD N ' 556 / ♦ W z , 558 / / Z = p w Sao ' Shp / _ -! _ J w O c 1 ,�p 562_ / ■ ... n - f S moo, S8o D Or 01- 564 / / V C U } PZ-7 z Ln / (564.86) / / w / 566 PZ-10 // l / (570.02) / • / cry — / ZI cDIle CD _ CD CD ^ LV N o a GO / tv b �b�O I O O ^O (p l0 ^ cn N / PZ-8 0 h o Lo �0 0 ro W > —i c� 1 00YR FLOODPLAIN EXTENT PZ-11 W o W LL U o BORING AND GW ` p (587.42) I EXISTING Y U r. r r a Z a=0 z m PIEZOMETER LOCATION \ - I CELL a o (TYP. OF 12) 566��PZ 1 �� (565.99) I _ 2B Q Z 0 PROPOSED PHASE " 5 EXTENTS �` � W ~ n00 -564' lw �6p SEDIMENT o BASIN . Sao , S>0 � S MW-21 (559.43) CD u, co CD I In ° u; M V NQ0 ON zN � o m N a. 0 z U) a o ' DATE: DECEMBER 2021 SCALE: AS SHOWN REPUBLICDRAWING NO. SERVICES 1 01 of 1 Table 1 Rock Core Observations Summary CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Table 1 Table 1 Rock Core Obersavtions Summary CMS - Phase 5 DHR Permit No. 1304-MSWLF-1992 Boring/ Well ID Phase Lithology Run Number Run Interval feet Recovery REC; % Rock Quality Designation RQD; PZ-2 5 Diorite 1 19-23 30 0 2 23.5-28.5 25 11 3 28.5-30.3 100 44 4 30.3-35 38 0 PZ-5 5 Diorite 1 6.5-1 1.5 90 90 2 11.5-15.1 97.2 94.4 3 15.1-16 100 100 4 16-16.9 98.9 98.9 PZ-6 5 Diorite 1 24-29 67 45 2 29-34 62 38 3 34-39.5 45 25 PZ-8 5 Diorite 1 13.5-18.5 5.4 28 2 18.5-26. 13.3 13.3 3 26-31.5 100 63 4 31.5-38.0 49 49 PZ-11 5 Syenite 1 10-15 90 92 2 15-18 45 20 3 18-21.5 40 17 4 21.5-25.5 85 82 Notes: UND = Unidentified Table 2 Phase 5 Monthly Piezometer Groundwater Data Summary CMS LF V Phase 5 www.scsenciineers.com Design Hydrogeologic Report Table 2 Table 2 Phase 5 Monthly Groundwater Data Summary CMS Landfill Phase 5 DHR Permit No. 1340-MSWLF-1992 Measured Depth to Groundwater from Top of Casing (TOC) Well -ID Northing Easfing Record Survey Ground Elevation (feet) Record Survey Top of PVC Pipe Elevation (feet) Well Depth (TOC) (feet) Casing Above Ground Surface (feet) 12/2/2020 (feet) 1/20/2021 (feet) 2/4/2021 (feet) 3/5/2021 (feet) 4/5/2021 (feet) 5/4/2021 (feet) 6/9/2021 (feet) 7/6/2021 (feet) 8/2/2021 (feet) 9/2/2021 (feet) 10/7/2021 (feet) 11/5/2021 (feet) PZ-1 587,860.25 1,502,612.78 581.37 583.88 18.90 2.51 8.33 9.00 8.80 8.75 8.92 9.75 10.05 9.88 10.12 10.50 11.38 11.47 PZ-2 587,656.86 1,502,523.12 578.47 580.57 20.00 2.10 8.07 8.86 8.41 8.45 8.55 9.35 9.55 9.35 9.80 9.87 10.65 10.71 PZ-3 587,678.19 1,502,828.49 589.15 591.45 15.00 2.30 9.95 10.28 10.21 9.98 10.12 10.58 11.03 11.42 11.81 12.10 12.58 12.95 PZ-4 587,496.98 1,502,614.87 582.64 585.01 12.60 2.37 9.00 9.56 9.26 8.93 9.08 10.18 10.95 11.22 11.52 11.65 12.15 12.52 PZ-5 587,427.97 1,502,927.98 582.7 584.83 8.50 2.13 3.58 4.27 3.85 4.93 4.22 5.26 5.96 6.25 6.43 6.24 6.40 6.58 PZ-6 587,348.76 1,502,681.77 583.44 585.25 38.40 1.81 8.74 9.10 8.80 8.45 8.64 9.56 10.42 10.90 11.25 11.30 11.75 12.06 PZ-7 587,224.71 1,502,895.62 584.86 587.46 21.10 2.60 7.05 7.35 6.80 6.40 6.79 8.37 9.04 9.44 9.63 9.40 9.68 9.77 PZ-8 587,063.00 1,502,507.88 583.32 585.82 39.60 2.50 17.25 15.70 15.20 13.80 14.03 15.30 16.45 17.28 17.88 18.23 18.61 19.09 PZ-10 587,201.81 1,502,697.77 588.52 591.04 21.40 2.52 15.16 14.85 14.62 13.25 13.82 15.13 16.11 16.63 16.95 17.25 17.65 18.00 PZ-11 587,002.90 1,503,054.11 597.42 599.69 27.00 2.27 17.42 17.38 16.53 15.75 16.66 18.27 19.21 20.02 20.65 20.90 20.93 21.07 PZ-12 586,963.50 1,502,787.22 585.99 588.53 21.00 2.54 14.66 14.80 14.10 13.10 13.63 15.15 16.30 17.02 17.50 17.75 18.08 18.20 Table 3A Phase 5 Geotechnical Lab Data - Grain Size Distribution and Soil Classification CMS LF V Phase 5 www.scsenciineers.com Design Hydrogeologic Report Table 3A Table 3A Phase 5 Geotechnical Laboratory Data Grain Size Distribution and Soil Classification CMS Landfill Phase 5 DHR Permit No. 1304-MSWLF-1992 Boring Sample Depth (ft) Sample Type %Gravel (>4.75 mm) %Sand (4.75 - 0.07) mm) % Silt (0.075 -- mm) mm) %Clay(0.002 mm>) Liquid Limit (%) Placticity Index (%) USCS Class Effec&e Porosity (%) Moisture Content USDA Hydrogeologic Description Parent LiThologic Unit ST-2 1 -3 UD 11.88 63.48 13.31 11.33 29 9 SC 26.9 15.6 Sandy loam Diorite ST-4 1 - 3 UD 2.12 61.06 18.29 18.54 39 23 SC 42.0 27.6 Sandy loam Diorite ST-5 1-3 UD 6.64 62.58 15.63 15.16 32 18 SC 30.0 15.2 Sandyloam Diorite ST-8 1-2 UD 0.02 40.82 32.13 27.03 52 26 CH 60.9 37.6 Clay loam Diorite ST-11 1-3 UD 0.55 21.05 24.45 53.95 70 37 CH 50.7 32.2 Clay Syenite PZ-1 1-3 BULK 5.69 50.23 23.98 20.1 35 18 SC 39,7 17.0 Sandy clay loam Diorite PZ-2 2-4 BULK 1.73 47.32 23.51 27.44 39 21 CL 45.1 27.3 Sandy clay loam Diorite PZ-3 4-6 BULK 8.27 65.63 15.29 10.81 35 19 Sc 21.8 18.0 Sandy loam Diorite PZ-4 2-4 BULK 1.58 58.68 20.34 19.40 33 13 SC 34.7 16.6 Sandy loam Diorite PZ-5 0-2 BULK 1.52 69.53 15.52 13.43 NP NP SM 24.4 13.5 Sandy loam Diorite PZ-6 0-2 BULK 2.00 28.68 30.09 39.22 41 20 CL 65.5 29.6 Clay Diorite PZ-7 2-4 BULK 2.03 73.38 18.02 6.57 NP NP SM 19.2 18.1 Sandy loam Diorite PZ-8 4-6 BULK 0.76 54.31 28.06 16.87 45 22 CL 38.3 28.9 Sandy loam Diorite PZ-10 0-2 BULK 2.16 34.94 24.26 38.64 57 34 CH 58.6 23.5 Clay loam Diorite PZ-11 6-8 BULK 0.89 42.59 31.79 24.73 43 22 CL 48.9 20.7 Loam Diorite PZ-12 1-3 BULK 0.00 59.48 26.67 13.85 41 13 SM 29.5 13.0 Sandy loam Diorite Notes: UD = Undisturbed NP = Non -Plastic _1_X I J Table 3B Phase 5 Geotechnical Lab Data - Grain Size Distribution and Soil Classification CMS LF V Phase 5 www.scsenaineers.com Design Hydrogeologic Report Table 3B Table 3B Phase 5 Geotechnical Laboratory Data Undisturbed and Remolded Bulk Sample Conductivity CMS Landfill Phase 5 DHR Permit No. 1304-MSWLF-1992 Undisturbed Samples Boring Sample Depth (it) Dry Unit Weight (g) Wet Unit Weight (g) Total Porosity (%) Specific Gravity Average Permeababiltiy cm sec ST-2 1-3 400.20 441.81 21.80 2.68 1.8E-06 ST-4 1-3 366.8 431.2 34.50 2.70 2.6E-05 ST-5 1-3 92.27 100.9 27.60 2.68 4.9E-06 ST-8 1-2 280.9 336.0 53.70 2.68 1.3E-06 ST-11 1-3 281.15 328.3 73.60 2.68 8.4E-06 Bulk Samples (Remolded) Boring Sample Depth Dry Sample (g) Moisture Content (%) Total Porosity (%) Specific Gravity PZ-1 1-3 53.64 17.0 39.70 2.68 PZ-2 2-4 37.76 27.3 45.10 2.68 PZ-3 4-6 26.50 18.0 21.80 2.68 PZ-4 2-4 48.76 16.6 34.70 2.68 PZ-5 0-2 60.76 13.5 24.40 2.68 PZ-6 0-2 42.87 29.6 65.50 2.68 PZ-7 2-4 43.82 18.1 19.20 2.68 PZ-8 4-6 48.33 28.9 28.90 2.68 PZ-10 0-2 37.73 20.7 23.50 2.68 PZ-11 6-8 34.85 23.5 20.70 2.68 PZ-12 1 -3 38.07 13.0 13.00 2.68 Table 4 Hydraulic Conductivity Summary CMS LF V Phase 5 www.scsengineers.com Design Hydrogeologic Report Table 4 Table 4 Phase 5 Data for Hydraulic Conductivity CMS LF - Phase 5 DHR Permit No. 1304-MSWLF-1992 Location H(0) H b Kv/ Kh d L transducer depth (T) r(C) r(w) r(Sk) casing radius corrections (BR-1976) dispalcement filter value solution n(e) H(0)* PZ-11 4.89 5.86 5.86 1 12.77 15 26.7 0.125 0.125 0.167 0.30 5.86 -21.93 conf. Bower -Rice sing. well method PZ-8 7.38 26.85 10 1 29.20 10 34.2 0.125 0.125 0.167 0.30 7.38 -12.35 conf. Bower -Rice sing. well method PZ-7 1.95 13.05 13.05 1 7.6 15 17.6 0.125 0.125 0.167 0.30 1.95 -9.55 unconf. Bower -Rice sing. well method PZ-6 1.33 29.63. 10 1 31.3 10 36.31 0.125 0.125 0.167 0.30 1 1.33 -11.68 conf. Bower -Rice sing. well method Location K (cm/sec) PZ-11 1.175E-05 PZ-8 1.214E-05 PZ-7 1.589E-05 PZ-6 1.432E-03 Table 5 Vertical Gradient Summary CMS LF V Phase 5 www.scsengineers.com Design Hydrogeologic Report Table 5 Table 5 Vertical Gradient Summary CMS Landfill Phase 5 DHR Well ID/Location Well Screen Top Elevation Well Screen Bottom Elevation 10/12/2020 Groundwater Elevation on Indicated Date 4/4/2019 10/1/2018 4/16/2018 10/ 4/17/2017 10/24/2016 4/13/2016 MW-2A 573.17 561.17 576.27r573.75! 570.41 574.37 574.60 574.02 570.79 572.42 570.60 572.52 Alluvium Saturated Midpoint Elev. 568.72 565.79 567.77 567.89 567.60 565.98 566.80 565.89 566.85 MW-2B 550.92 540.92 575.71 570.23 574.08 574.17 573.52 570.57 572.18 570.37 572.16 Bedrock Saturated Midpoint Elev. 545.92 545.92 545.92 545.92 545.92 545.92 545.92 545.92 545.92 Phase 5 tloodplain Vertical Gradient 0.059 0.045 0.042 0.047 0.045 0.056 0.044 0.045 0.044 0.050 MW-22 581.21 571.21 582.36 582.43 579.03 580.81 580.94 580.46 579.01 580.36 581.62 580.79 Alluvium Saturated Midpoint Elev. MW-22A 562.53 1 557.53 582.01 581.03 579.12 580.60 580.52 580.19 579.02 580.18 580.69 580.33 Bedrock Saturated Midpoint Elev. 560.03 560.03 560.03 560.03 560.03 560.03 560.03 560.03 560.03 560.03 Phase 5 (loodplain Vertical Gradient 0.019 0.080 0.0004 0.013 0.022 0.016 0.004 0.012 0.044 0.024 Notes: Vertical Uraalents caIculatea using LVA Un-line tools torsite Assessment calculation -Vertical Gradient. nttps://www3.epa.gov/ceompubi/leam2model/part-two/onsite/vgmdient.ntmi Table 6 Base Grade Separation Table CMS LF V Phase 5 www.scsengineers.com Design Hydrogeologic Report Table 6 Table 6 Proposed Phase 5 Liner System Base Grade Vertical Separation CMS Phase 5 DHR Permit No. 1304-MSWLF-1992 WELL ID Ground Elevation(') (feet amsl) ESTIMATED (feet amsl) LINER SYSTEM BASE GRADE ELEVATION ESTIMATED LONG TERM SEASONAL HIGH GROUNDWATER TOP OF BEDROCK Depth BGS (feet) Elevation (feet amsl) Vertical Separation (feet) Depth BGS (feet) Elevation (feet amsl) Vertical Separation (feet) PZ-1 581.37 594.04 5.87 575.50 18.54 16.50 564.87 29.17 PZ-2 578.47 Outside Phase 5 Limits 5.97 572.50 - 19.00 559.47 - PZ-3 589.15 593.14 7.65 581.50 11.64 13.50 575.65 17.49 PZ-4 582.64 585.78 6.56 576.08 9.70 11.50 571.14 14.64 PZ-5 582.70 592.89 1.45 581.25 11.64 7.50 575.20 17.69 PZ-6 583.44 585.69 6.64 576.80 8.89 29.00 554.44 31.25 PZ-7 584.86 589.58 3.80 581.06 8.52 20.00 564.86 24.72 PZ-8 583.32 581.19 11.30 572.02 9.17 13.50 569.82 11.37 PZ-10 588.52 584.68 10.73 577.79 6.89 18.50 570.02 14.66 PZ-11 597.42 593.01 13.48 583.94 9.07 10.00 587.42 5.59 PZ-12 585.99 586.21 10.56 575.43 10.78 20.00 565.99 20.22 MW-2A 577.67 Outside Phase 5 Limits 1.40 576.27 - 30.75 546.92 - MW-10 575.90 Outside Phase 5 Limits 16.95 558.95 - 32.23 543.67 - MW-21 579.43 Outside Phase 5 Limits 8.01 571.42 - 20.00 559.43 - MW-22 583.71 594.62 0.25 583.46 11.16 13.00 570.71 23.91 MW-25 589.00 594.84 5.36 583.64 11.20 20.80 568.20 26.64 (1) Surveyed ground elevation at the time of well installation. BGS = Below ground surface. amsl = above mean sea level