Loading...
HomeMy WebLinkAbout6013_GreenwayNorthMeckCDLF_20191002_GWCAP_FID1358899CORRECTIVE ACTION PLAN FOR GREENWAY WASTE SOLUTIONS AT NORTH MECK, LLC (FORMERLY NORTH MECKLENBURG C&D LANDFILL) Prepared For: GREENWAY WASTE SOLUTIONS AT NORTH MECK, LLC 19109 W. CATAWBA AVENUE CORNELIUS, NORTH CAROLINA 28031-5611 Prepared By: CIVIL & ENVIRONMENTAL CONSULTANTS, INC. 3701 ARCO CORPORATE DRIVE, SUITE 400 CHARLOTTE NORTH CAROLINA 28273 North Carolina Board of Examiners For Engineers and Surveyors License No. C-3035 CEC PROJECT NO. 111-370.0001 REVISED OCTOBER 1, 2019 `\`\\,1�NirC+�rrr�lOi Q.-��r,ENS � y S ' • n G � , C NW111I 10/01/2019 Donald M. Cobb, P.G Project Manager �,j34933f193'! .��,� CAP, ,�a�°fO'i tee• �•av�,"' �`"(W' *Sa..00 y �jo I9 I� A O �e AL _ t 10/01/2019 Bruce D. Reilly, P.E. Senior Project Manager ZtA v Civil & Environmental Consultants, Inc. Charlotte3701 Arco Corporate Drive, Suite 400 1 Charlotte, NC 28273 1 p: 980-237-0373 f. 980-237-0372 1 www.cecinc.com TABLE OF CONTENTS 4.0 INTRODUCTION..............................................................................................................1 2.0 SITE BACKGROUND......................................................................................................2 2.1 Site Description....................................................................................................... 2 2.2 Aquifer Characteristics........................................................................................... 2 2.3 Water Quality Monitoring Network........................................................................ 4 2A Potential Contaminant Source(s)............................................................................ 7 2.4.1 Landfill Leachate.........................................................................................8 2.4.2 Landfill Gas (LFG)......................................................................................8 2.5 Presence of Landfill Gas and Active Mitigation..................................................... 9 3.0 CONCEPTUAL SITE MODEL.....................................................................................10 3.1 Local Geology and Hydrogeology........................................................................ 10 3,2 Slope -aquifer System and Applicability to Facility .............................................. 12 3.3 Surface Water........................................................................................................ 14 3 A Sources of Contamination..................................................................................... 14 3.4.1 Landfill Leachate.......................................................................................15 3.4.2 Landfill Gas...............................................................................................15 3.4.3 Site Geochemical Properties......................................................................18 3,5 Groundwater Contaminants.................................................................................. 20 3.5.1 Vinyl Chloride...........................................................................................21 3.5.2 Other Groundwater Constituents of Concern ............................................23 3.6 COC Physical Properties....................................................................................... 24 3,7 Groundwater End Use........................................................................................... 24 3.7.1 Current Status of Area Groundwater End Use...........................................25 3.7.2 Future Status of Area Groundwater End Use............................................26 3.8 Surface Water........................................................................................................ 27 4.0 RISK ASSESSMENT......................................................................................................28 4.1 Contaminants of Concern ..................................................................................... 28 4.2 Exposure Pathways............................................................................................... 28 4.2.1 Surface Water Pathway..............................................................................29 4.2.2 Groundwater Pathway - Local Worker Scenario.......................................29 4.2.3 Groundwater Pathway — Local Well User.................................................30 4.3 Potential Receptors............................................................................................... 32 4.4 Risk assessment Calculation................................................................................. 33 5.0 SELECTED AND APPROVED CORRECTIVE MEASURE....................................34 5.1 Soil Vapor Extraction Via Active Landfill Gas Extraction .................................. 36 5,2 Monitored Natural Attenuation(MNA)................................................................ 36 5.3 Institutional Controls............................................................................................ 37 6.0 REVISED WATER QUALITY MONITORING PLAN..............................................38 7.0 EVALUATION OF EFFECTIVENESS........................................................................39 7.1 Physical Changes.................................................................................................. 39 7,2 Chemical Changes................................................................................................ 39 7.3 Reporting...............................................................................................................40 8.0 CONTINGENCY PLAN.................................................................................................42 9.0 SCHEDULE AND MAINTENANCE............................................................................44 Civil & Environmental Consultants, Inc. -i- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Table of Contents (continued) Page ii 10.0 FINANCIAL ASSURANCE...........................................................................................46 11.0 COMPLETION OF GROUNDWATER CORRECTIVE ACTION ..........................47 12.0 REFERENCES.................................................................................................................48 FIGURES Figure 1 — Site Location Map Figure 2 — Overall Site Plan Figure 3 — Geologic Map Figure 4 — Water Quality Monitoring Locations Map Figure 5 — 2019 Spring Groundwater Potentiometric Map Figure 6 — Landfill Gas Extraction System Figure 7 — Water Supply Well Location Map Figure 8 — Area -Specific Drainage Basins/Slope-Aquifer Systems TABLES Table I — Summary of Vertical Hydraulic Gradients Table 2a — Summary of Point -of -Compliance (POC) Wells Table 2b — Summary of Review Boundary Wells Table 3 — Background Ranged and Medians of Selected Constituents Table 4 — Well Construction Details / Historic Groundwater Elevation Levels (Infill) Table 5 — Well Construction Details / Historic Groundwater Elevation Levels (Closed Phase I) Table 6 — Historical Groundwater and Surface Water Analytical Data (Infill) Table 7 — Historical Groundwater and Private Well Analytical Data (Closed Phase I) Table 8 — Physical and Chemical Fate and Transport Data for Methylene Chloride and Vinyl Chloride Table 9 — Indicator Parameter Summary Table 10 — Summary of Private Wells APPENDICES Appendix A — Boring Logs and Well Construction Diagrams - Partial Appendix B — LeGrand 2004 Publication Appendix C — VC Demonstration Letter Appendix D — Statistical Analysis Tables and Historical Lab Analytical Reports Appendix E — Alternate Source Demonstration Addendum Appendix F — VURAM Risk Assessment Output Appendix G — Contact Information for Responsible Parties Appendix H — Closure, Post -Closure, and Corrective Action Estimated Costs Civil & Environmental Consultants, Inc. -ii- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 1.0 INTRODUCTION On behalf of Greenway Waste Solutions at North Meck, LLC (GWS), Civil & Environmental Consultants, Inc. (CEC) has prepared this Corrective Action Plan to present the selected remedial option to address constituent concentrations in groundwater that exceed the 15A NCAC 02L .0202 Groundwater Quality Standards (2L Standards) at or beyond the compliance boundary at the GWS C&D landfill (formerly North Mecklenburg C&D Landfill). The landfill operates under Solid Waste Facility Permit Number 6013-CDLF-1993 issued by the State of North Carolina. The permit requires semi-annual monitoring of the groundwater that underlies the landfill with point of compliance, review, and assessment groundwater monitoring wells as defined by North Carolina Administrative Code 15A NCAC 13B.0544 (b)(1)B. Facility groundwater monitoring requirements are specified in the updated Water Quality Monitoring Plan (Revision 2 April 19, 2018) approved by the North Carolina Department of Environmental Quality - Solid Waste Section (Section) on April 20, 2018. Since 2013, analytical data has indicated the presence of certain volatile organic compounds (VOCs), specifically vinyl chloride and methylene chloride, in excess of the allowable concentrations as defined in 15A NCAC 13B .0544 and the 2L Standards at Point of Compliance wells. Additionally, since Fall 2018, analytical data has indicated the presence of 1,4-dioxane above the applicable standards in Point of Compliance wells; though assessment monitoring relating to the 1,4-dioxane exceedances has not been conducted, the Section requested the inclusion of 1,4-dioxane as a constituent of concern in a September 11, 2019 phone call. In accordance with 15A NCAC 13B .0545 and 15A NCAC 2L regulations, and the NC Solid Waste Section Guidelines for Corrective Action at Solid Waste Management Facilities, CEC has prepared this Corrective Action Plan discussing the use of active landfill gas extraction and monitored natural attenuation to address the groundwater impacts not meeting the 2L Standards. Civil & Environmental Consultants, Inc. -1- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 2.0 SITE BACKGROUND 2.1 SITE DESCRIPTION The facility address is 15300 Holbrooks Road, Huntersville, North Carolina (See Figure 1). The site is bounded on the west by undeveloped private properties, on the east by an undeveloped Mecklenburg County property, on the north by Holbrooks Road and a Mecklenburg County (closed Holbrooks Road MSW Landfill) property, and on the south by private residential properties. The facility contains two landfill phase areas — Closed Phase I Area and the Infill Area — situated in separate drainage basins separated by an unnamed tributary to Cane Creek. The Closed Phase I Area consists of the southern portion of the site and is generally bounded by the unnamed tributary of Cane Creek to the north; and private property to the east, south and west. Waste placement in this disposal unit generally occurred during the years 1993 to 2002. The disposal area is approximately 23.3 acres. It has been reported that the eastern and southern areas of the disposal unit are "ringed" with land -clearing debris approximately 30-40 feet wide and 20-30 feet deep. The second portion of the site includes Expansion Areas 1 and 2 and the Infill Area (collectively referred to as the Infill Area). The Infill Area is bordered on the south by the unnamed tributary of Cane Creek; on the northwest by undeveloped property owned by the Town of Huntersville; on the north by Holbrooks Road and property owned by Mecklenburg County (closed Holbrooks Road MSW Landfill); on the northeast by undeveloped property owned by Mecklenburg County; and to the west by private properties. Waste placement in the Infill Area began in 2003 and is ongoing. The disposal area is approximately 44.9 total acres. Figure 2 shows the overall site plan. 2.2 AQUIFER CHARACTERISTICS Based on the NC Geologic Map (1985), the subject site is underlain by granitic rocks. A facility map showing the underlying geology is shown in Figure 3. The local groundwater system is comprised of two interconnected zones: residual soil/saprolite/weathered fractured rock (regolith) overlying Civil & Environmental Consultants, Inc. -2- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 fractured crystalline bedrock. The regolith layer is vertically stratified by degrees of weathering. A highly weathered and structureless residual soil occurs near the ground surface. The residual soil grades into saprolite, a coarser grained material, which retains the structure of the parent bedrock. Beneath the saprolite, partially weathered/fractured bedrock occurs with depth until sound bedrock is encountered. A transition zone at the base of the regolith has been interpreted to be present in many areas of the Piedmont. The zone consists of partially weathered/fractured bedrock and lesser amounts of saprolite that grades into bedrock and has been described as "being the most permeable part of the system, even slightly more permeable than the soil zone" (2). Groundwater movement beneath the northern half of the Closed Phase I Area is to the north and northwest toward the unnamed stream tributary that separates the Closed Phase I Area and the Infill Area (see Figure 5 for the groundwater potentiometric map from the Spring 2019 sampling event). The "W-shaped potentiometric contours in the vicinity of the stream tributary are indicative of shallow groundwater discharge from the northern half of the Closed Phase I Area to this adjacent stream. For the one well cluster MW-5/MW-5D located along the southern margin of the stream tributary, an upward vertical hydraulic gradient of 0.074 was calculated during the Spring 2019 sampling event, indicating groundwater discharge from the deeper aquifer horizon to the stream tributary. A local groundwater divide bisects the Closed Phase I Area such that groundwater movement in the southern half of this landfill area is to the southeast toward Cane Creek, which lies beyond the landfill property boundary to the southeast. Groundwater movement across the Infill Area is to the southeast toward the unnamed stream tributary along the southern boundary of this area. The "W-shaped potentiometric contours in the vicinity of the stream tributary are indicative of shallow groundwater discharge from the Infill Area to this adjacent stream. Vertical gradient data from the last several semi-annual monitoring events is summarized below. In general, wells closer to the stream tributary exhibit negative vertical gradients, indicating they are discharging to the stream, while wells farther away exhibit positive vertical gradients, indicating they are recharging the aquifer. Civil & Environmental Consultants, Inc. -3- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Table 1— Summary of Vertical Hydraulic Gradients Fall 2017 Spring 2018 Fall 2018 Spring 2019 Well Cluster Gradient Well Cluster Gradient Well Cluster Gradient Well Cluster Gradient MW-4)(i) NM MW-4)(i) -0.15 MW-4)(i) -0.16 MW-4)(i) -0.16 MW-4D(i) MW-41)(i) MW-4D(i) MW-41)(i) MW-5(i) 0.07 MW-5(i) 0.06 MW-5(i) 0.08 MW-5(i) 0.09 MW-5D(i) MW-5D(i) MW-5D(i) MW-5D(i) MW-7(i) -0.059 MW-7(i) -0.065 MW-7(i) -0.002 MW-7(i) 0.044 MW-71)(i) MW-71)(i) MW-71)(i) MW-71)(i) MW-8(i) 0.02 MW-8(i) 0.03 MW-8(i) 0.025 MW-8(i) -0.006 MW-81)(i) MW-81)(i) MW-81)(i) MW-81)(i) MW-9(i) -0.005 MW-9(i) -0.008 MW-9(i) -0.006 MW-9(i) -0.017 MW-91)(i) MW-91)(i) MW-91)(i) MW-91)(i) MW-II(i) 0.0003 MW-II(i) -0.0003 MW-II(i) 0.0183 MW-II(i) -0.0089 MW-11D(i) MW-11D(i) MW-11D(i) MW-11D(i) MW-12(i) 0.003 MW-12(i) 0.003 MW-12(i) 0.004 MW-12(i) 0.007 MW-121)(i) MW-121)(i) MW-121)(i) MW-121)(i) NM — Not measured 2.3 WATER QUALITY MONITORING NETWORK The original Water Quality Monitoring Plans (WQMPs) for the subject landfill areas specified downgradient monitoring wells to be placed and monitored in both landfill areas along the centrally located tributary stream. It is our understanding that at the time the permit was issued for the Infill Area, the Section reasoned and GWS concurred that placement and routine monitoring of downgradient monitoring wells north of the internal stream tributary were needed should groundwater contamination be detected in order to assign cause to the contributing landfill area. These particular wells appeared reasonable and warranted until it was determined that both landfill areas are sources of VOC contamination. At this point, the monitoring wells along the tributary stream monitor groundwater conditions internal to the landfill facility. This internal monitoring area is more related to a "review boundary" than it is a point -of -compliance boundary. As shown on Civil & Environmental Consultants, Inc. -4- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Figure 5, groundwater moving away from the Infill Area and northern half of the Closed Phase I Area either discharges to the tributary stream or flows eastward beneath the stream until it passes beneath the eastern landfill property boundary and ultimately discharges to Cane Creek. To date, the historical monitoring data have not shown a significant impact to the tributary stream. The point - of -compliance boundary for groundwater moving eastward beneath the stream valley is at the east perimeter of the landfill facility. The intent of 15A NCAC 13B .0544 is to utilize relevant point of compliance wells to evaluate groundwater quality at a suitable interception distance from an adjacent landfill property boundary in a timely manner. A significant number of the internal monitoring wells placed along the tributary stream are located less than 50 feet from the respective waste disposal areas and at a considerable distance from the nearest property boundary. Thus, such wells are monitoring internal portions of the landfill facility and are not suitably located to meet the intent of point of compliance. As discussed below, the most recent updated WQMP specifies the site monitoring wells that are suitable for point - of -compliance boundary monitoring and those that are better suited for review boundary. Per the updated WQMP, the newly designated point of compliance (POC) wells, review boundary wells, and assessment wells at the facility have been defined per their existing locations and the following state regulations (15A NCAC 02L .0102 and/or 15A NCAC 13B .0544 (b)(1)(B)): • "Compliance boundary" means a boundary around a disposal system at and beyond which groundwater quality standards may not be exceeded and only applies to facilities which have received a permit issued under the authority of G.S. 143-215.1 or G.S. 130A. Per Rule 13B .0544 (b)(1)(B), the relevant point of compliance must be established no more than 250 feet from a waste boundary, or must be at least 50 feet within the facility property boundary, whichever point is closer to the waste boundary. • "Review boundary" means a boundary around a permitted disposal facility, midway between a waste boundary and a compliance boundary at which groundwater monitoring is required. Review boundary wells provide important data points to Civil & Environmental Consultants, Inc. -5- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 monitor groundwater conditions interior to the landfill, prior to potential impacts or exceedances crossing the compliance boundary. • "Assessment well" means a well installed to characterize the nature and extent of a release. POC and review boundary wells may be assessment wells, or vice -versa. The landfill facility is monitored semi-annually for groundwater and surface water quality. An updated Water Quality Monitoring Plan (WQMP) was approved by the Section on April 20, 2018. In accordance with Rule 2L .0102, the updated plan specifies 26 POC wells that are located around the facility perimeter (see Table 1 a below and attached Figure 4), and 18 review boundary wells that are located in the facility interior (see Table lb below and attached Figure 4). The review boundary wells provide for the assessment of groundwater impacts inside of the compliance boundary monitoring network. If adverse impacts are identified at the review boundary, the facility owner will 1) evaluate through predictive calculations or modeling, that natural site conditions, facility design and operational controls will prevent a violation of standards at the compliance boundary; or 2) submit a plan for alteration of existing site conditions, facility design or operational controls that will prevent a violation at the compliance boundary. Table 2a — List of Point -of -Compliance (POC) Wells POC Wells — Closed Phase I Area POC Wells — Infill Area MW-4 MW-71) MW-1(i) MW-4A MW-8R MW-2(i) MW-41) MW-81) MW-10(i) MW-4D-1 MW-9 MW-1 l(i) R MW-6 MW-11A MW-111)(i) MM-6D MW-1113 MW-12(i) MW-6D-1 MW-11D-1 MW-12D(i) MW-7 MW-11D-2 MW-15(i) MW-7A MW-16(i) Civil & Environmental Consultants, Inc. -6- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Table 2b — List of Review Boundary Wells Review Boundary Wells Closed Phase I Area Review Boundary Wells Infill Area MW-1 MW-3(i) MW-7(i) MW-5 MW-4(i) MW-7D(i) MW-5D MW-41)(i) MW-8(i) MW-10 MW-5(i) MW-8D(i) MW-10D MW-51)(i) MW-9(i) MW-11 MW-6(i) MW-9D(i) The facility monitoring well network also includes two assessment wells MW-13 and MW-14 that are located off -site beyond the west -central perimeter of the landfill facility (Infill Area) as shown on Figure 4. These assessment wells provide data to confirm that site impacts have not migrated off -site in this area. Also, three neighboring inactive water supply wells that lie south of the landfill facility (Closed Phase I Area) are sampled on a semi-annual basis. The approximate locations of these off -site supply wells are shown on Figure 4. The updated WQMP further specifies surface water sample collection on a semi-annually basis from the unnamed tributary and Cane Creek at nine locations. The approximate surface water sampling locations are shown on Figure 4. 2.4 POTENTIAL CONTAMINANT SOURCE(S) The mechanism for groundwater contamination beneath the landfill area is not clearly understood. The primary source for groundwater contamination beneath the landfill occurs within the waste mass disposed in the landfill areas. However, two secondary sources — landfill leachate and landfill gas (LFG) — are the media that typically come into contact with the underlying groundwater that could result in groundwater impacts. Leachate is not collected at the landfill; thus, direct analytical data is not available for its evaluation as a potential source of groundwater impact. LFG is monitored on a quarterly schedule in perimeter wells at the landfill. Civil & Environmental Consultants, Inc. -7- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 2.4.1 Landfill Leachate Leachate is the resultant liquid created when rainfall percolates into the landfill waste mass and then slowly drains through the waste under gravity. During this process, the leachate picks up soluble contaminants from the waste itself. Xenobiotic organic compounds in leachate may include chlorinated aliphatics, aromatic hydrocarbons, phenols, pesticides, and plasticizers. With the exception of phenols, all these organic groups have been observed in the site groundwater. Inorganic chemicals and elements in leachate may include arsenic, barium, borate, cobalt, lithium, mercury, selenium and sulfide. If not controlled or collected, leachate can migrate through permeable material that exists under the landfill. Although geologic materials below the landfill can filter some of the leachate constituents, the more mobile constituents in the migrating leachate can enter the underlying groundwater. Where leachate seeps into groundwater, a plume of groundwater contamination will occur. Published studies that characterize the chemical composition of landfill leachates have shown that sulfate and chloride are conservative (and therefore highly mobile) parameters that exist at significant concentrations (Gibbons, 1991(4); USEPA, 1987(5)). Therefore, in the event of a leachate release, these mobile indicator parameters, along with alkalinity and total dissolved solids (TDS), are likely to be the first parameters to be detected. 2.4.2 Landfill Gas (LFG) LFG is the product of microbiological decomposition of buried organic matter. Certain microorganisms turn complex organic compounds in landfill waste into methane (-50-55%), carbon dioxide (-40-45%), hydrogen sulfide and other sulfur compounds, and trace amounts of other VOCs. Civil & Environmental Consultants, Inc. -8- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Appreciable volumes of LFG are generated in landfills over approximately one to three years, depending on the waste types, amount of moisture and other factors. Peak production of LFG is typically five to seven years after waste is disposed in the landfill. LFG can migrate via advection and diffusion. Advection transport is a function of barometric pressure variations and landfill pressure gradients, and it is the primary transport mechanism with regard to emissions and migration control strategies. Diffusion transport is minor compared to advection; however, this mechanism is associated with the ultimate transfer of compounds into air, soil, and liquid media. Some consultants and researchers have recently theorized that landfill gas may be a source of low- level VOC contamination of groundwater. Low-level VOCs found in LFG and in LFG condensate are sometimes found in off -site gas and groundwater monitoring wells. Detection levels range from low part per billion (ppb) to low part per million (ppm) concentrations. The more commonly identified VOCs reported in LFG are chlorinated aliphatics and aromatic hydrocarbons. 2.5 PRESENCE OF LANDFILL GAS AND ACTIVE MITIGATION Due to the detected presence of LFG at the landfill facility, active LFG extraction systems are operated in the Closed Phase I and Infill Areas. The initial LFG extraction phase in the Closed Phase I Area was installed in 2014 and consists of 18 extraction wells connected to a vacuum blower system. A 2017 system expansion added an additional six in -waste extraction wells in the Closed Phase I Area. Both phases of the Closed Phase I extraction system are connected to a common vacuum blower. An LFG extraction system was installed in the Infill Area in Spring 2018. The Infill Area LFG extraction system consists of 16 in -waste extraction wells connected to a separate vacuum blower(') The active LFG systems and methane monitoring wells are monitored at least monthly. The facility LFG extraction system layouts are shown on Figure 6. Civil & Environmental Consultants, Inc. -9- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 3.0 CONCEPTUAL SITE MODEL 3.1 LOCAL GEOLOGY AND HYDROGEOLOGY Local lithologies are an igneous and possibly slightly metamorphosed granitic -type rock; granodiorite. Local bedrock is essentially a massive crystalline rock that typically has a low to moderate fracture frequency. Nearly horizontal stress -relief and higher -angle fractures occur in the upper one hundred feet of bedrock. Decreasing fractures occur at depths of 300 to 350 feet where fracture occurrence is sparse. In most places, massive granites have thin residual soils and tend to be poorly fractured. Significant scientific knowledge exists regarding groundwater occurrence and movement in the North Carolina Piedmont to conclude that where individual sites share common geologic and terrain characteristics, applicable conclusions or "generalizations" may be drawn for sites sharing such features (LeGrand 2004)(3). These generalizations, which are described in detail in Section 3.2, are applicable to the subject landfill facility. The following generalizations establish a reasonable level of understanding of the facility conditions. Groundwater Movement The water table surface is essentially a reflection of surface topography on a more subdued scale. As shown by the water table potentiometric map in Figure 5, recharge and discharges areas, and general flow directions can be reasonably projected by viewing surface drainage patterns. Water table depths in upland areas are typically on the order of 30 to 50 feet. The water table becomes shallower down a hillslope until it intercepts the land surface at a seep, wetland area, or a perennial stream. Well construction details with historic groundwater elevation levels are shown in Table 2 (Infill Area) and Table 3 (Closed Phase I Area). Recharge and Discharge Groundwater occurs in two or three aquifer zones including: 1) an upper clayey, granular unconsolidated soil/saprolite that typically becomes more granular at depth; 2) if present, an intermediate transient zone (a.k.a. partially weathered rock zone) composed of weathered, partially Civil & Environmental Consultants, Inc. -10- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 decomposed granular rock, boulders, and fractures; and 3) underlying bedrock fractures. The soil/saprolite zone is a good storage reservoir, but transmits groundwater slowly. The transient zone typically has the highest permeability and transmits water readily. The bedrock fracture system has little storage capacity, yet it can readily transmit water where interconnecting fractures occur. Fracture porosity of crystalline bedrock generally ranges from one to ten percent (Freeze and Cherry, 1979)(6) but according to Daniel and Sharpless, 1983(7), fracture porosity values of one to three percent are more typical. Most groundwater recharge and discharge takes place through porous granular soil/saprolite. Yet, much of the groundwater movement between recharge and discharge zones is through bedrock fractures. Discharge from bedrock fractures into a surface water body is common. Ground flow paths can vary significantly in length, depth, and travel time. Some groundwater moves within the saprolite zone until reaching a discharge area. Other flow paths may be deeper and longer as groundwater winds its way through an irregular maze of bedrock fractures and passes back through the saprolite zone before discharging to a surface stream. Groundwater Flow Cycle Under natural conditions, groundwater is always moving from upland recharge areas toward streams. Along the way, some groundwater is lost to evapotranspiration, and the remainder discharges as small springs and as bank seepage into streams. Small springs and seeps often occur in topographic draws and other depressions. Groundwater Flow Path In the North Carolina Piedmont, groundwater flow paths are relatively short due to the dense network of surface streams. Groundwater movement is invariably constrained to the zone underlying the topographic slope from a topographic divide to an adjacent stream (i.e. slope - aquifer). Rarely does groundwater move beneath a perennial stream to another distant stream Rate of Groundwater Movement The overall rate of flow is fairly slow due to the low permeability of the soil/saprolite zone and the sparse and poorly connected bedrock fractures at depth. Where it consistently occurs, the partially Civil & Environmental Consultants, Inc. -11- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 weathered rock zone exhibits the highest permeability and higher rate of flow than other parts of the system. Much of the flow is at a rate slightly greater than 10 feet per year. Areal Effect of Pumping The decline in the water table proximal to the well being pumped results in a cone of depression that draws surrounding water into the well. Pumping within an irregular network of bedrock fractures will result in an irregular shape and areal extent of the cone of depression within which the cone tends to be elongated parallel to the trend of the greater fractures, generally along the predominant rock structure (i.e., foliation, lineation, or regional structural trend). The hydraulic influence or capture zone affected by pumping a domestic well may extend up to a few hundred feet. 3.2 SLOPE -AQUIFER SYSTEM AND APPLICABILITY TO FACILITY Contracted by the State of North Carolina Department of Environment and Natural Resources in 2004, Harry E. LeGrand published "A Master Conceptual Model for Hydrogeological Site Characterization in the Piedmont and Mountain Region of North Carolina ". A copy of this document is included in Appendix B. The publication establishes a hydrogeologic model of the aforementioned composite regolith-fractured crystalline rock aquifer system in the Piedmont that is used as the baseline description of groundwater conditions by United States Environmental Protection Agency (USEPA), North Carolina Department of Environmental Quality (NCDEQ) and surrounding states. The basic hydrologic entity in this conceptual model is the surface drainage basin that contains a perennial stream. Each Piedmont drainage basin is similar to adjacent basins and the conditions are generally repetitive from basin to basin as shown in Figure 6 from LeGrand (2004)(3). Within a basin, movement of groundwater is typically restricted to the area extending from the drainage divides to a perennial stream. LeGrand refers to this hydrogeologic system as a "slope -aquifer system". Rarely does groundwater move beneath a perennial stream to another more distant stream or across drainage divides. Therefore, in most cases in the Piedmont, the groundwater system is a two -medium system restricted to the local drainage basin. Groundwater flow paths in the Piedmont are almost invariably restricted to the zone underlying the topographic slope extending from a topographic divide to an adjacent stream. Civil & Environmental Consultants, Inc. -12- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Under natural conditions, the general direction of groundwater flow can be approximated from the surface topography. Given the widely -accepted slope -aquifer system model, not only is the movement of groundwater normally restricted to the area extending from the drainage divides to a perennial stream; yet, so is the movement of groundwater -borne constituents within the specific drainage basin. LeGrand(3) states that "A slope -aquifer system is a unit of the groundwater flow regime that is seemingly separated and free of impact from adjacent, similar units". As groundwater rarely moves beneath a perennial stream to another more distant stream or across drainage divides; therefore, non - retarded groundwater -borne constituents are ultimately discharged to local surface water where mixing and volatilization dilute the already low groundwater constituent concentrations to trace or non -detectable levels that do not pose an exposure risk. The facility groundwater regime is typical of a Piedmont slope -aquifer system described by LeGrand. The groundwater potentiometric surface as shown in Figure 5, and the hydraulic upward gradients between the bedrock and shallow groundwater wells follow the predictions of the slope - aquifer system described by LeGrand (2004)(3). Importantly, the movement of groundwater contaminants within the slope -aquifer system is typically restricted to the specific impacted basin. With groundwater flow essentially restricted within the local drainage basin, movement of groundwater contaminants is most likely restricted to the area extending from the drainage divides to the area streams. As depicted in Figure 8, the landfill facility is situated in a separate adjoining slope -aquifer basin than the identified drinking water wells situated on the opposite side of Cane Creek to the south and east. LeGrand(3) mentions the rare possibility that an isolated fracture receiving recharge from one slope -aquifer system could extend beneath a boundary stream and intercept, or fall within, the area of pumping influence of a well in a neighboring slope -aquifer. He also states "The hydraulic effect of pumping a domestic well does not generally interfere with another domestic well located more than a few hundred yards away." This is critical when reviewing potential users of groundwater in the vicinity of the facility. Civil & Environmental Consultants, Inc. -13- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 The groundwater potentiometric data collected at the facility clearly illustrates conformance with LeGrand's conceptual model. The groundwater divide across the Closed Phase I Area separates the groundwater flow direction either towards Cane Creek to the south or towards the unnamed stream tributary to the north (see Figure 4 and Figure 8). Likewise, for the Infill Area, groundwater flow is south towards the unnamed stream tributary. These groundwater flow directions have essentially remained constant over the 21 years of groundwater and surface water sampling at the facility. The recent vertical gradient data and historical data indicate groundwater discharge from the deeper aquifer horizon (110 to 120 feet below grade) to the adjacent stream tributary confirming LeGrand's model. The well pairs located near a surface water feature show upward gradients in agreement with his model demonstrating groundwater flow is upwards (discharging) to the surface water feature. 3,3 SURFACE WATER As previously described, the unnamed tributary to Cane Creek that separates the Infill Area and the Closed Phase I Area is the likely discharge point for groundwater -borne contaminants from the Infill Area and from the northern half of the Closed Phase I Area. Groundwater -borne contamination, if any, from the southern half of the Closed Phase I Area would migrate south toward Cane Creek as shown in Figure 5. Both the unnamed tributary and Cane Creek have been identified as perennial streams, with Cane Creek being identified as a regional perennial stream. 3.4 SOURCES OF CONTAMINATION Two sources of potential groundwater contamination have been identified 1) landfill leachate contacting and mixing with shallow groundwater, and 2) landfill gas migration through the landfill and then mixing with groundwater. The following sections provide information on the historical sampling results with respect to leachate parameters, landfill gas sampling results, ongoing efforts to remove landfill gas and the measurable performance of this remedy with respect to landfill gas levels. Table 4 shows the historical groundwater and surface water analytical data for the Infill and Table 5 shows the historical groundwater and private well analytical data for the Closed Phase I Area. Civil & Environmental Consultants, Inc. -14- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 3.4.1 Landfill Leachate Landfill leachate is generated by excess rain percolating through landfilled waste layers. Combined physical, chemical and microbial processes in the waste layers transfer pollutants from the waste material to the percolating rainwater. All compounds in leachate entering an aquifer are subject to advection and dispersion as the leachate mixes with groundwater('). As previously stated, published studies that characterize the chemical composition of landfill leachates have shown that sulfate and chloride are conservative (and therefore highly mobile) parameters that exist at significant and, in the event of a leachate release, these mobile indicator parameters, along with alkalinity and total dissolved solids (TDS), are most likely to be the first parameters to be detected. For nonreactive components like chloride or sulfate, dilution is the only attenuation mechanism. Dilution is the interaction of the leachate flow in the aquifer with the flow of groundwater. Typical leachate "indicator" parameters including alkalinity, total dissolved solids (TDS), chloride, and sulfate were evaluated with regard to the recent groundwater data for Infill wells MW-7(i)/7D(i) and MW-9(i)/9D(i); these review boundary wells are located in close proximity to the waste mass, therefore the presence of leachate indicator parameters are not surprising. Leachate indicator parameters were also observed in POC wells MW-12(i)/12D(i); concentrations were below the 2L Standards with the exception of TDS. This is consistent with measurements from other POC wells in the Infill Area. Currently, MW-12(i)/12D(i) are the only POC wells in the Infill Area to exhibit VOC exceedances of 2L Standards. This data is summarized in Table 7. High TDS is detected in monitoring wells that are located in close proximity to the waste mass along the tributary stream. Higher TDS is also observed in the deeper well of each well cluster. 3.4.2 Landfill Gas Landfill gas (LFG) is the product of microbiological decomposition of buried organic matter. Certain microorganisms turn complex organic compounds in landfill waste into methane (-50- 55%), carbon dioxide (-40-45%), hydrogen sulfide and other sulfur compounds, and trace amounts of other VOCs. Appreciable volumes of LFG are generated in landfills in approximately one to Civil & Environmental Consultants, Inc. -15- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 three years, depending on the waste types, amount of moisture or other factors. Peak production of LFG is typically five to seven years after waste is disposed in the landfill. LFG can migrate via advection and diffusion. Advection transport is a function of barometric pressure variations and landfill pressure gradients, and it is the primary transport mechanism with regard to emissions and migration control strategies. Diffusion transport is minor compared to advection; however, this mechanism is associated with the ultimate transfer of compounds into air, soil, and liquid media. Some consultants and researchers have recently theorized that landfill gas may be a source of low- level VOC contamination of groundwater. Low-level VOCs found in LFG and in LFG condensate are sometimes found in off -site gas and groundwater monitoring wells. Headspace gas samples were collected in 2015 from two LFG extraction wells (GW-3 and GW-6) prior to start-up of the LFG collection system and from one groundwater monitoring well, MW- 4D-1, at the Closed Phase I Landfill. In addition, gas samples were collected from ten soil vapor probes (GP-1 through GP-10). These samples were collected in Summa canisters and submitted with a chain -of -custody record to Enthalpy Analytical, Inc. and analyzed for hydrogen, oxygen, nitrogen, carbon monoxide, methane, and carbon dioxide using ASTM D 1946-90 (Reapproved 2000), Standard Practice for Analysis of Reformed Gas by Gas Chromatography. The samples were also analyzed for the TO-15 Target Compound List using EPA Method TO-15, Determination of VOCs in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). Similar analytes were detected in the headspace of the gas wells GW-3 and GW-6 and groundwater well MW-4D-1. Moreover, several commonly detected VOCs including cis-1,2-dichloroethene, vinyl chloride, ethylbenzene, and xylenes were found to have similar concentrations in the gas and groundwater well headspace samples. Again, similar analytes detected in the soil gas are also present in the facility groundwater. Observation of the same VOCs or degradation products in site groundwater and LFG is indicative that dissolution of LFG is the likely primary source of VOCs found in groundwater. Civil & Environmental Consultants, Inc. -16- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Gas sampling has also taken place at the Infill Area. A headspace gas sample was collected from MW-9(i) for TO-15 analysis. Comparing these LFG sample results to groundwater samples collected from nearby monitoring wells again illustrates similarity between LFG and groundwater contaminants. This furthers the premise that groundwater impacts are from the dissolution of LFG into the groundwater. Numerous low-level non -methane VOCs were identified in the headspace gas sample that have also been historically detected in the facility groundwater. Theoretically, air - water partitioning calculations using Henry's Constants for selected VOCs indicated a potential for air -to -water transfer given that the gas VOC levels were sufficiently elevated to result in the detected groundwater VOC concentrations. Given the potential for LFG migration in the Infill Area, CEC collected LFG samples from eight soil gas probes (GPs) at locations shown on Figure 2. Gas probes GP-1, GP-2, GP-7, GP-8, and GP-10 were advanced within waste mass along the southern perimeter of the Infill Area. Soil gas probes GP-3, GP-4, and GP-9 were advanced into the natural vadose zone adjacent to the landfill disposal area in the vicinity of monitoring well clusters MW- l l (i)/MW- l l D(i) and MW- 12(i)/MW-12D(i) to evaluate the potential for LFG migration in the vicinity of these landfill areas. The gas samples were collected for TO-15 analyses. The data obtained from gas probes GP-1, GP-2, and GP-8 indicate the potential for LFG migration from the Infill Area. These potential areas of LFG migration coincide with the areas of VOC-impacted groundwater along the southern perimeter of the Infill Area. Should low-level non -methane VOCs be present in the LFG, vapor - phase transport with subsequent dissolution in groundwater is a possible mechanism for area groundwater impacts. GWS engaged CEC to design and install LFG extraction systems in the Closed Phase I and Infill Areas. The initial LFG control system was installed in the Closed Phase I Area and has been operational since April 2015. The initial LFG extraction system consists of 18 extraction wells connected to a vacuum blower system. In the fall of 2017, vinyl chloride was only detected in well cluster MW-5/5D in the Closed Phase I Area. At that time, the existing LFG extraction well network did not extend into the northeast portion of the Closed Phase I Area in the vicinity of MW- 5/5D. A 2017 system expansion added an additional six in -waste extraction wells in the Closed Phase I Area; vinyl chloride has not been detected in monitoring well MW-5 since the system Civil & Environmental Consultants, Inc. -17- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 expansion, and was not detected in well MW-5D during the most recent (Spring 2019) monitoring event. Both phases of the Closed Phase I extraction system are connected to a common vacuum blower. An LFG extraction system was installed in the Infill Area in Spring 2018. The system design encompasses the southern and western boundaries of the landfill area and consists of 16 in -waste wells connected to a separate vacuum blower. A small "tiki torch" style utility flares were installed adjacent to the blower on the Infill Area gas collection system in December 2018 to address odor complaints. The active LFG systems and methane monitoring wells are monitored monthly. The facility LFG extraction system layouts are shown on Figure 6. 3.4.3 Site Geochemical Properties Bedrock mineralogy and geochemical conditions in NC Piedmont crystalline aquifers affect the occurrence and distribution of potential naturally occurring contaminants (i.e., metals and anion compounds) in groundwater. Commonly, naturally occurring trace elements such as arsenic, manganese, and zinc in groundwater exceed public drinking water standards. Such elevated metal concentrations are associated with elevated pH (pH > 7.2) or reductive dissolution. Also, barium, beryllium, cadmium, copper, lead, selenium, boron, molybdenum, nickel, and strontium have been detected in groundwater samples at concentrations greater than one -tenth of the drinking water standards (Chapman et al., 2013)("). Dissolved chemicals in groundwater are derived from rock weathering, biological processes, and/or anthropogenic sources. Mineral dissolution in bedrock and overlying weathered residuum releases naturally occurring constituents to the groundwater. Major cations such as calcium, magnesium, sodium, and potassium, and major anions such as sulfate, chloride, fluoride, and bicarbonate are typically present at concentrations greater than 1 mg/L. Civil & Environmental Consultants, Inc. -18- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Groundwater from certain NC Piedmont crystalline aquifers may contain naturally occurring trace elements such as iron, manganese, zinc, lead, copper, nickel, vanadium, molybdenum, arsenic, radium, and uranium (Rose et al., 1979)(8). Elevated concentrations of trace constituents tend to be found locally associated with specific aquifer settings. In particular, these settings are 1) under acidic conditions where the solubilities of many species are increased or 2) under reducing conditions where the dissolution of ferric iron (Fe 3) and manganese (Mn3 and Mn4) to more soluble ferrous (Fe 2) and manganese (Mn2) can release adsorbed and co -precipitated metals (McMahon and Chapelle)(9). Mineral decomposition may be accelerated under strongly acidic or reducing conditions as a consequence of human activities (i.e., mining, gas emissions of sulfur or nitrogen oxides, disposal of organic wastes, or over -fertilization). USGS provided a range of background values for selected constituents in Piedmont mafic igneous rocks and their metamorphic equivalents, which is where they classify quartz diorite observed at the subject site (Chapman et al., 2013)(13). These background ranges and median values where given are listed below. Table 3 — Background Range and Medians of Selected Constituents Parameter Range (Median) Parameter Range (Median) Specific Cond. 80-700 (300) ms/cm pH 5.0-8.2 (6.6) pH units Alkalinity 15-250 (80) mg/L Arsenic 0.009 mg/L Barium 0.004-0.1 (0.02) mg/L Chloride 1.5-50 (8) mg/L Copper 0.001-0.015 (0.0025) mg/L Iron 0.006-5.5 (ns) mg/L Lead 0.0012 (ns) mg/L Magnesium 1-30 (8) mg/L Manganese 0.001-0.8 (0.004) mg/L Nickle 0.001-0.003 (ns) mg/L Selenium 0. 00 15 (ns) mg/L Sulfate 0.4-40 (10) mg/L Zinc 0.001-0.05 (0.0025) mg/L ns — not significant; median not provided as differences in measurements not statistically significant Water stability parameter data collected during well purging activities indicates low to negative oxidation-reduction potential (ORP) values throughout the landfill facility that are indicative of Civil & Environmental Consultants, Inc. -19- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 reductive dissolution conditions. Under these conditions, it is expected that the certain metal concentrations in groundwater will be elevated. Certain metals including chromium, cobalt, iron, manganese, and vanadium have been detected at concentrations exceeding the 2L Standards or Interim Allowable Maximum Concentrations (IMACs) in facility groundwater samples. Reported exceedances of these constituents are frequent enough to warrant further data validation with low -turbid sample analyses to determine their statistical significance. A metals sampling plan designed to provide statistically significant background metals data to compare with downgradient monitoring well data was formulated within an Alternate Source Demonstration Addendum dated April 24, 2018, which was reviewed and has been approved by the Section on April 30, 2018. The landfill facility has implemented a two-year temporary groundwater monitoring program to collect the required minimum number of non -turbid samples from background and downgradient wells so that statistical background and site groundwater metal concentrations can be estimated and compared. 3.5 GROUNDWATER CONTAMINANTS Groundwater and surface water sampling has been ongoing at the facility since 1996. While the scope of the sampling effort has changed due to expansions at the facility and changes in the quantity of sampling points, the analytical parameters have included: • Metals; • SVOCs; • VOCs; • Alkalinity; • Total Dissolved Solids; • Sulfate; and • Chloride. A summary of analytical results for groundwater and surface water during the Spring 2019 sampling event is provided in Table la (Infill Area) and Table lb (Closed Phase I Area). Civil & Environmental Consultants, Inc. -20- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 This section of the report describes the major contaminants detected in the sampling program; issues with the accuracy of the results for vinyl chloride until the fall of 2016; other contaminants detected; statistical analyses of the data; and identification of contaminants of concern (COC). 3.5.1 Vinyl Chloride Vinyl chloride is present in groundwater at concentrations exceeding its 2L Standard of 0.03 micrograms per liter (µg/L) and appears to present the largest concern. Vinyl chloride likely occurs as a second -order decomposition by-product of chlorinated solvent waste that has been unintentionally disposed in the landfill. Vinyl chloride is a second -order daughter product resulting from the reductive dechlorination of intermediate compounds 1, 1 -dichloroethene and cis- 1,2-dichloroethene, which are in turn first -order degradation byproducts of parent compounds tetrachloroethene and/or trichloroethene. The presence of low levels of 1,1-dichloroethene and cis-1,2-dichloroethene suggest that such reductive dechlorination is occurring in site groundwater. Ground and surface water quality sampling at the landfill has been performed in accordance with approved water quality monitoring plans and permit requirements since 1996. Enviro-Pro, P.C. (EP) conducted water quality monitoring at the subject landfill from 1997 through the first half of 2016, and CEC has conducted these activities since the second half of 2016. Several accredited laboratories have been providing the analytical testing of the various samples collected. The primary laboratories have been: • Prism Laboratories — 1996 thru 2000; • Shealy Environmental Services — 2001 thru 2004; • Pace Analytical — 2005 thru 2012; • Shealy Environmental Services — 2013 thru first half 2016; and • TestAmerica/Pace Analytical — second half 2016 to current. Vinyl chloride was first detected in site groundwater in the October 2012 monitoring event, and its concentrations were observed to increase in several landfill monitoring wells up to October 2014. Coincidentally, elevated LFG levels were initially detected in site gas monitoring wells Civil & Environmental Consultants, Inc. -21- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 GW-3, GW-4, GW-5, GW-6, and GW-8 in March 2014 (i.e., indicating the presence of migrating LFG). Also at that time, as discussed in considerable detail in the Demonstration Letter on Laboratory Analyses for Vinyl Chloride (Appendix C), Shealy Environmental Services, Inc. (Shealy) was analyzing the site groundwater samples and reported elevated vinyl chloride concentrations (up to 73 ppb) in site groundwater samples. When later questioned by CEC regarding implausible vinyl chloride detections in upgradient wells, Shealy informed CEC that a laboratory evaluation had confirmed Freon 151 (also found in the groundwater samples) was degrading to vinyl chloride by reaction with silica gel used in the purge and trap mechanism associated with the gas chromatograph. As a consequence, the lab testing equipment was artificially creating vinyl chloride in the sample under analysis. TestAmerica also reported a similar issue with their analytical instruments during the Fall 2016 sampling program. Both laboratories implemented corrective actions and audited their systems. Groundwater analyses for the more recent Spring 2017 and Fall 2017 monitoring events performed by TestAmerica and on split samples performed by Pace Analytical, Inc. (Pace) have demonstrated that vinyl chloride detections are limited to a concentration range of 0.7 to 2.9 ppb in the review boundary wells MW-4(i), MW-7(i), and MW-9(i), as well as the POC wells MW-12(i) and MW- 121)(I)(i) in the Infill Area; and between ND<0.2 and 2.0 ppb in the review boundary wells MW- 1, MW-5, and MW-5D in the Closed Phase I Area. Due to the concerns with the accuracy of the reported vinyl chloride concentrations in groundwater samples, CEC engaged three NC -certified environmental analytical laboratories (i.e., Shealy, TestAmerica, and Pace) to analyze split and duplicate well samples. Detailed discussion on the cause of the discrepancies of the split and duplicate sample analyses can be found in Fall 2016 Semi -Annual Groundwater Monitoring Reports issued by CEC in January 2017. Per 15A NCAC 13B .0544 (b)(1)(I), CEC prepared and submitted to NCDEQ a Demonstration Letter on the laboratory analysis of vinyl chloride in samples collected at the facility. The conclusion section of the letter presents the position that all analytical data on vinyl chloride detections in the groundwater at the facility prior to Spring 2017 are invalid. In a letter dated December 19, 2017, the SWS acknowledged that most vinyl chloride detections during the Spring Civil & Environmental Consultants, Inc. -22- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 2017 semi-annual water quality monitoring event appeared to be due to the Freon 151 to vinyl chloride conversion in lab equipment. However, the SWS did not accept this explanation for detections (and exceedances) of vinyl chloride prior to the Spring 2017 monitoring event, and further stated that several wells maintained vinyl chloride exceedances on the subsequent Spring 2017 sampling event after the analytical laboratories corrected for the Freon 151 to vinyl chloride conversion issue. 3.5.2 Other Groundwater Constituents of Concern While vinyl chloride is the most prevalent and highest priority groundwater impact at the facility, the Assessment of Corrective Measures, prepared by CEC and dated May 2018, identified methylene chloride as an additional constituent of concern. Methylene chloride is a chlorinated solvent used in a range of products and, similar to the parent compounds of vinyl chloride, was likely inadvertently disposed in the landfill. In a September 11, 2019, phone call, the Section further requested that 1,4-dioxane be included in this Corrective Action Plan as a constituent of concern. 1,4-dioxane is a synthetic chemical frequently used as a stabilizer for chlorinated solvents. Additionally, a number of metals were identified as constituents of concern, including chromium, cobalt, iron, manganese, thallium, and vanadium. It is CEC's position that these metals are naturally occurring at the facility. As previously discussed, an Alternative Source Demonstration Addendum was submitted to and approved by the SWS and the two year alternative sampling program to collect low -turbid samples is currently under way. As such, the Assessment of Corrective Measures and this Corrective Action Plan do not address these metals. A number of other VOCs and SVOCs have been periodically detected above the 2L Standards in landfill monitoring wells, most notably benzene. However, such exceedances have been infrequent and typically did not occur during sequential monitoring events, or have been detected consistently in review boundary wells but not point of compliance wells. In the case of benzene, while it has been consistently detected in review boundary wells in both the Closed Phase I Area and the Infill Area above the 2L Standard, it has consistently exceeded the Standard only in point Civil & Environmental Consultants, Inc. -23- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 of compliance wells in the Closed Phase I area. However, it was last detected in exceedance of the Standard in these wells during the Fall 2017 monitoring event; analytical data from subsequent monitoring events has indicated levels have dropped below the 2L Standard. As such, benzene is not considered a constituent of concern at this time. 3.6 COC PHYSICAL PROPERTIES Table 8 presents chemical properties that influence the mobility and biodegradability of methylene chloride, vinyl chloride, and 1,4-dioxame. The low concentrations of these VOCs observed in groundwater samples indicate that they are present in a dissolved state. In a dissolved state, their potential to migrate laterally is dependent on the advective groundwater flow velocity, which is retarded by sorption of the contaminants by geologic materials (i.e., contaminant transport rate). Their vertical movement is primarily a function of diffusion, contaminant transport rate, and the local vertical hydraulic gradient. Henry's Constant expresses the relative tendency of a compound to volatilize from liquid to air. Because of their high Henry's Constants and thus high volatility, both methylene chloride and vinyl chloride will readily volatilize into the atmosphere; 1,4-dioxane has a lower Henry's Law Constant and as such, volatilization into the atmosphere is moderate. Further, methylene chloride and vinyl chloride will naturally biodegrade under conducive aerobic and anoxic conditions("). Reducing (anoxic) groundwater conditions are observed at the site as demonstrated by prevalent negative ORP measurements in landfill monitoring well samples. 1,4- dioxane has been found to be resistant to biodegradation( . 3.7 GROUNDWATER END USE The potentiometric map shown in Figure 5 illustrates the groundwater flow patterns across the facility. If present, groundwater -borne contaminants will generally migrate along these flow paths. Groundwater -borne contaminants transported beneath the Infill Area will discharge to the unnamed tributary to the south. A local groundwater divide is shown to bisect the Closed Phase I Civil & Environmental Consultants, Inc. -24- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Area. Groundwater -borne contaminants in the northern half of the Closed Phase I Area will be transported and discharged to the unnamed tributary to the north. In the southern half of the Close Phase I Area, groundwater -borne contaminants will migrate to the south with discharge to Cane Creek. 3.7.1 Current Status of Area Groundwater End Use A map showing the locations of area private water supply wells is presented in Figure 7. Details on the users and usages of the private water supply wells are presented in Table 10. Until recently, several private residences immediately to the south and southeast of the landfill facility and within the same drainage basin used water supply wells. GWS connected these residences to the Charlotte Water public water system and the water supply wells were made inactive. Moreover, GWS has purchased adjacent parcels (Mecklenburg County Parcel Identification Numbers 01934118 [Deed Book 29456, Page 673] and 01918135 [Deed Book 29693, Page 913]). In addition, a land swap is currently under negotiation for a portion of the adjacent parcel owned by the Hamill family (Mecklenburg County Parcel Identification Number 01934108); negotiations are expected to conclude and the swap finalized in 2019. Based on information obtained from the Mecklenburg County Well Information System, approximately 20 private residential drinking water wells are located within 2,000 feet of the landfill property boundary. None of these private wells appear to serve a public (large demand) water supply system. Of these area private water supply wells, the following hydraulic relationships are noted: • Five wells occur hydraulically upgradient of the subject landfill property; • One on -site supply well is located hydraulically upgradient of the landfill disposal areas; • Approximately 12 wells are situated on the opposite side of Cane Creek (east) from the landfill property; and • Three inactive water supply wells are situated between the landfill facility and Cane Creek (see above concerning connection to Charlotte Water). Civil & Environmental Consultants, Inc. -25- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Although there are several active drinking water wells used by residences along Asbury Drive situated across Cane Creek from the landfill facility, a public water supply line provided by Charlotte Water was observed to be available to these residences. Five drinking water wells were identified to be situated in the same drainage basin as the landfill, yet are located hydraulically upgradient of the landfill facility as shown on Figure 8. Site upgradient background monitoring data does not indicate that groundwater contaminants are being "pulled" in the direction of an upgradient pumping well. Other identified active water supply wells are situated in a separate drainage basin (i.e. slope -aquifer system) located on the opposite side of Cane Creek. None of these wells have been identified as a public water supply well (large demand). Private water supply wells are pumped intermittently and Piedmont well yields are typically low (1-10 gallons per minute). It is extremely unlikely that such wells situated greater than 1,000 feet from the landfill property boundary and on the opposite side of Cane Creek could be impacted by groundwater -borne contaminants from the facility. (See page 24 of the LeGrand(3) publication for comment on radius of influence within a slope -aquifer system.) As previously discussed, groundwater contaminants from the facility are anticipated to ultimately discharge to the unnamed tributary or Cane Creek where surface water mixing and other processes remove the exposure risk to the discharged contaminant. Finally, it should be noted that GWS, of their own initiative and at their own expense, arranged for the Town of Huntersville municipal water supply to be extended to residences surrounding the landfill. Through this action, a primary risk pathway was eliminated. 3.7.2 Future Status of Area Groundwater End Use With regard to future groundwater use in the area, Mecklenburg County has adopted Groundwater Well Regulations that restrict the use of existing and new water supply wells in an Area of Regulated Groundwater Usage (ARGU). ARGUs are established by the County around sites with reported violations of the 2L Standards. The Mecklenburg Priority List (MPL) was established in 1989 to respond to the need for a more aggressive program to protect citizens from drinking contaminated groundwater. A site is added to the MPL when information is provided that reports Civil & Environmental Consultants, Inc. -26- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 soil or groundwater contamination. In 1999, landfills were added as MPL sites. Thus, future groundwater use in the area is restricted by public institutional controls. 3.8 SURFACE WATER Surface water samples are routinely collected as a part of the semi-annual water quality monitoring events as shown in Table 5. As specified in the updated WQMP, surface water samples are collected at nine site locations along the tributary to Cane Creek that bisects the landfill phase areas and along Cane Creek. These samples are typically analyzed for VOCs and metals. Vinyl chloride was detected in a tributary stream sample SW-4 at 1.2 ppb in October 2014 and in sample SW-2 at 1.3 ppb in October 2015. These vinyl chloride detections occurred during the same timeline when false positive values of vinyl chloride were being reported due to the analytical testing issue described above. CEC concludes that these detections should be considered as highly suspect. Vinyl chloride has not been detected in a stream sample since the October 2015 monitoring event as shown in Table 5. The earlier detections are below the 15A NCAC 2B Surface Water Standard for vinyl chloride of 2.4 ppb for Human Heath. The unnamed tributary is situated internally to the landfill facility and is not available for access by the general public. Civil & Environmental Consultants, Inc. -27- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 4.0 RISK ASSESSMENT This section of the Corrective Action Plan presents our evaluation of risk assessment due to groundwater COCs at the facility. The evaluation reviews COC concentrations, evaluates exposure pathways, and defines potential receptors. The final paragraphs determine a Cumulative Risk value for the two COCs. 4.1 CONTAMINANTS OF CONCERN As previously stated, methylene chloride, vinyl chloride, and 1,4-dioxane are the constituents of concern being addressed by this Corrective Action Plan as they have consistently been detected in point of compliance wells above the 2L Standards. Other constituents have been periodically detected in exceedance of the 2L Standards at point of compliance wells, however such detections have not been consistent. 4.2 EXPOSURE PATHWAYS Two exposure pathways have been identified for contact with the COCs. The first involves the contact with and/or use of surface water that drains through the facility or around the perimeter of the facility. The unnamed tributary is the groundwater discharge point for groundwater from the Infill Area and the northern half of the Closed Phase I Area. Cane Creek to the south of the facility is the discharge location for groundwater from the southern half of the Closed Phase I Area. The second pathway exists where direct contact could be made with the groundwater from the facility. This second pathway consists of two separate scenarios. The first involves the local worker case where sampling monitoring wells or installation of new wells could result in direct contact. The second involves the potential capture of groundwater from the facility by areal pumping where direct contact could result. The following paragraphs describe each of these scenarios. Civil & Environmental Consultants, Inc. -28- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 4.2.1 Surface Water Pathway This pathway includes the potential direct contact by facility employees or guests with surface impacted by the facility groundwater as it discharges into either the unnamed stream tributary or Cane Creek. A possibility exists for general population direct contact with Cane Creek as it runs through private property south of the facility. Surface water sampling of both Cane Creek and the unnamed tributary is part of the semi-annual sampling program at the facility. With the exception of the highly suspect vinyl chloride detections in October 2014 and October 2015, no detectable concentrations of monitored chemical compounds have been found in samples of the surface water at the facility sampling locations approved by NCDEQ. 4.2.2 Groundwater Pathway - Local Worker Scenario Since the facility is on private land and not open to the general public, the local worker pathway is very limited to only trained and medically -monitored workers having the potential for direct contact with facility groundwater. The worker training is defined in Title 29 Part 1910.120 of the Code of Federal Regulations, also known as HAZWOPER training. All workers contacting the groundwater are required to be trained in the protocol annually in accordance with the regulation. Additionally, the workers are medically -monitored annually per the regulation. Contact with the groundwater can occur via groundwater sampling and/or well installation activities. Each of these activities have been evaluated using Job Safety Analysis tools and the resulting safety procedures are detailed in the Site Health and Safety Manual for the facility. Facility employees and any guests do not perform either of the activities where direct contact with the groundwater could occur. This work is limited to outside -trained contractors. Civil & Environmental Consultants, Inc. -29- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 4.2.3 Groundwater Pathway — Local Well User Reiterating the LeGrand hydrogeological model, the basic hydrologic entity in this conceptual model is the surface drainage basin that contains a perennial stream. Each Piedmont drainage basin is similar to adjacent basins and the conditions are generally repetitive from basin to basin. Groundwater moves continuously toward streams so that the path of natural groundwater movement is relatively short. According to LeGrand(3), "It [groundwater movement] is almost invariably restricted to the zone underlying the topographic slope extending from a topographic divide to an adjacent stream." and "Groundwater rarely passes beneath a perennial stream to another, more distant, stream." His conceptual model further details the impacts of private water well pumping such that "The hydraulic effect of pumping a domestic well does not generally interfere with another domestic well located more than a few hundred yards away." He also states that "The area contributing groundwater to a well includes not only the area within the cone of depression, but also the area upgradient of the well as far as the water -table divide, in which the natural flow of groundwater is downgradient into the cone of depression." As discussed in Section 3.7.1, there are approximately 20 private residential drinking water wells are located within 2,000 feet of the landfill property boundary. None of these private wells appear to serve a public (large demand) water supply system. Of these area private water supply wells, the following hydraulic relationships are noted: • Five off -site wells occur hydraulically upgradient of the subject landfill property; • One on -site supply well is located hydraulically upgradient of the landfill disposal areas; • Approximately 12 wells are situated on the opposite side of Cane Creek (east) from the landfill property; and • Three inactive water supply wells are situated between the landfill facility and Cane Creek. A map showing the locations of area private water supply wells is presented in Figure 7. Table 10 presents available details on these private water supply wells. GWS recently connected several Civil & Environmental Consultants, Inc. -30- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 private residences immediately to the south and southeast of the landfill facility to public water and the water supply wells were made inactive. These now inactive supply wells are located hydraulically downgradient of the Closed Phase I Area and are situated within the same drainage basin as the landfill facility. Moreover, GWS has purchased adjacent parcels (Mecklenburg County Parcel Identification Numbers 01934118 [Deed Book 29456, Page 673] and 01918135 [Deed Book 29693, Page 913]). In addition, a land swap is currently under negotiation for a portion of the adjacent parcel owned by the Hamill family (Mecklenburg County Parcel Identification Number 01934108); negotiations are expected to conclude and the swap finalized in 2019. The five off -site and one on -site upgradient wells are part of the slope -aquifer system for the facility. This slope -aquifer system includes the southern edge of the closed Mecklenburg County Holbrooks Road MSW Landfill. Based on historical site background data obtained from upgradient monitoring wells, there is no indication that groundwater contaminants are migrating or are being "pulled" in the direction of an actively pumped well located hydraulically upgradient of the landfill facility. Reported LFG and groundwater impacts at this County landfill include the area immediately upgradient of these six wells. Approximately 12 active supply wells were identified to the south and east on the opposite side of Cane Creek from the landfill property. These identified active water supply wells are situated in an adjacent separated groundwater flow basin (i.e. slope -aquifer system) from the facility as depicted in Figure 8. It is extremely unlikely that such wells situated greater than 1,000 feet from the landfill property boundary and on the opposite side of Cane Creek could be impacted by groundwater -borne contaminants from the subject landfill. As previously discussed, groundwater contaminants from the landfill site are anticipated to ultimately discharge to the unnamed stream or Cane Creek where surface water mixing and volatilization dilute the already low groundwater constituent concentrations to trace or non -detectable levels that do not pose an exposure risk. Mecklenburg County has adopted Groundwater Well Regulations that restrict the use of existing and new water supply wells in an Area of Regulated Groundwater Usage (ARGU). ARGUs are established by the County around sites with reported violations of the 2L Standards. The Civil & Environmental Consultants, Inc. -31- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Mecklenburg Priority List (MPL) was established in 1989 to respond to the need for a more aggressive program to protect citizens from drinking contaminated groundwater. A site is added to the MPL when information is provided that reports soil or groundwater contamination. In 1999, landfills were added as MPL sites. Thus, future groundwater use in the area is restricted by public institutional controls. 4.3 POTENTIAL RECEPTORS Potential receptors for the two COCs at the facility are flora and fauna, and human. The flora/fauna receptor includes the natural conditions in and around the unnamed stream tributary and Cane Creek. Human receptors include facility employees and guests, and general population living near the facility. One of the exposure pathways for the flora and fauna, and humans would be due to the direct contact with surface water impacted by the groundwater discharges. Since sampling has indicated no surface water impacts beyond the two highly suspected detections of vinyl chloride in 2014 and 2015, there is no risk due to surface water impacts. The remaining pathway involves human receptors; 1) facility employees and guests, including monitoring well sampling and installation personnel, contacting facility groundwater; and 2) the general population who is using local water wells that have the extremely remote possibility of transporting COCs into the water supply well due to pumping. The only active water supply wells located are the 12 private wells located on the east side of Cane Creek in a different slope -aquifer system from the facility. Per the LeGrand model, the likelihood of COCs being pulled into private water wells located in a different slope -aquifer system is extremely low. Nevertheless, the remote possibility exists if a direct fracture path was to exist between the facility groundwater impacted area and a well location. Civil & Environmental Consultants, Inc. -32- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 4.4 RISK ASSESSMENT CALCULATION A quantitative risk assessment was performed to evaluate potential risk to human receptors related to the following potential exposure pathways: • Ingestion of impacted groundwater; • Dermal contact with impacted groundwater; and • Inhalation of vapors related to impacted groundwater. The Virginia Unified Risk Assessment Model (VURAM ver.1.12) software developed by the Virginia Department of Environmental Quality was employed for quantitative risk evaluation and calculation of cumulative risk. Chemical properties, reference doses, and carcinogenic slope factors were updated in VURAM using values reflective of USEPA Regional Screening Levels of May 2016('0). The VURAM software calculates hazard indices related to risk associated with both carcinogenic and non -carcinogenic constituents of concern, and calculates carcinogenic risk associated with carcinogenic constituents. Risk of exposure to groundwater contaminants was evaluated for a conservative residential exposure scenario using exposure factors for children to calculate non -carcinogenic risk and age -adjusted exposure factors to calculate carcinogenic risk. The cumulative carcinogenic risk for the COCs (i.e., methylene chloride and vinyl chloride) is calculated to be 1.45x10-4, which exceeds the acceptable cumulative risk threshold of 1.Ox10-6 to l .Ox 10-4. Therefore, an unacceptable level of risk is calculated for the measured on -site groundwater impacts under a residential land -use scenario. This risk calculation is conservative because transport of simulated groundwater COC concentrations to a potential downgradient receptor is not considered, only the risk at the point of detection (i.e. monitoring well). The capacity for natural attenuation of COCs during contaminant transport is not evaluated here. The VURAM quantitative risk assessment output is presented in Appendix F. A summary of the resulting hazard index and cumulative carcinogenic risk calculated is presented in Table 16. Civil & Environmental Consultants, Inc. -33- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 5.0 SELECTED AND APPROVED CORRECTIVE MEASURE The Assessment of Corrective Measures selected soil vapor extraction (SVE) via active landfill gas extraction within the waste mass supplemented by monitored natural attenuation (MNA) as the primary corrective measure. The facility has two POC wells (MW-12(i) and MW-12D(i) in the Infill Area) impacted by vinyl chloride above the 2L Standards. These same POC wells are also the only POC wells impacted by methylene chloride and 1,4-dioxane above the 2L Standards. Both of these POC wells are located hydraulically upgradient of the facility disposal areas (see Figure 5 for the latest potentiometric map). This observation provides significant evidence that LFG contact with groundwater in the vicinity of this well pair is the likely cause of the groundwater impacts. Additionally, POC wells MW-6 and MW-6D, located in the Closed Phase I Area and near the eastern property boundary, have been impacted by 1,4-dioxane above the 2L Standard. These wells are located hydraulically downgradient of the Closed Phase I disposal area. CEC plans to remediate the cause of the impacts by controlling and removing the LFG from the Closed Phase I and Infill Areas. As presented earlier, the initial LFG extraction system in the Closed Phase I Area was expanded in 2017, and a new LFG extraction system was made operational in the Infill Area in Spring 2018. Based on the success of the initial LFG system in the Closed Area, CEC expects the expanded facility LFG extraction well network to prevent any further LFG emissions from reaching the POC wells MW-6, MW-6D, MW-12(i), and MW-12D(i). Given the physical properties of the two COCs, removal of the LFG which contains the COCs will also remediate the groundwater at these wells. Additionally, GWS will perform quarterly monitoring of selected existing monitoring wells to determine the baseline and track changes in MNA parameters. These parameters will include: Civil & Environmental Consultants, Inc. -34- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 • Dissolved Oxygen; • Nitrate; • Iron; • Sulfate; • Sulfide; • Methane; • Ethane, Ethene; • Oxidation Reduction Potential; • Total Organic Carbon, Biochemical Oxygen Demand, Chemical Oxygen Demand; • Carbon Dioxide; • Alkalinity; • Chloride • Hydrogen; • Volatile Fatty Acids • pH; • Temperature; • Conductivity; and • Turbidity. MNA monitoring will be conducted at the following POC wells: MW-10(i), MW-12(i), MW- 12D(i), MW-4, MW-4A, MW-4D, MW-4D-1, MW-6, MW-6D, MW-6D-1, MW-7, MW-7A, MW-7D, MW-9, MW-11A, and MW-11D-1. Information collected will be added to the existing groundwater data tables and parameter trend lines established. The collected sample data and the trend lines will be added to the semi-annual monitoring reports that are prepared and submitted after each six-month sampling effort. After two years of baseline MNA monitoring (four events), GWS can petition the Section to remove specific MNA parameters and/or MNA wells from the schedule, and/or reduce the frequency of MNA monitoring. In the event that exceedances of constituents of concern are consistently detected at POC wells other than those listed above in exceedance of the 2L Standards, or in the event that additional constituents not currently considered constituents of concern are consistently detected at POC wells in exceedance of the 2L Standards, an addendum to this Corrective Action Plan will be issued that will discuss the addition of new MNA wells, new constituents of concern, and/or the expansion of the LFG collection system to address potential new exceedances. Civil & Environmental Consultants, Inc. -35- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 5.1 SOIL VAPOR EXTRACTION VIA ACTIVE LANDFILL GAS EXTRACTION SVE is accomplished by developing a vacuum within the landfill and/or surrounding soils to remove LFG and/or soil pore gas to remove volatile organics such as vinyl chloride and methylene chloride. The installed LFG extraction systems are considered active SVE systems. The existing system has proven to be effective in reducing both gas pressure and methane content in the Closed Phase I Area. The same is expected for the LFG system for the Infill Area. Combining the LFG system effectiveness with the historical data on landfill gas content, a reasonable probability of success can be expected to remove the methane and other gases in the LFG including methylene chloride and vinyl chloride. Measurements will be taken from landfill gas extraction wellheads on at least a monthly basis to ensure that the extraction system is operating as intended to address landfill gas impacts to groundwater. A GEM-5000 landfill gas analyzer or similar instrument will be used to measure flow (in standard cubic feet per minute, or SCFM), temperature (in degrees Fahrenheit), static and differential pressure (in inches of water column), and the methane, carbon dioxide, oxygen, and balance gas concentrations (by percent volume) of extracted landfill gas. The same parameters will be measured at the blower's inlet and outlet sample ports, as well as at the utility flares. All measurements will be recorded on landfill gas monitoring logs. These logs will be included in the semi-annual reports, as discussed below. 5.2 MONITORED NATURAL ATTENUATION (MNA) The demonstration and documentation of measurable MNA processes are key in the application of this measure. Typically, MNA programs indicate the status of the groundwater plume at different locations in the plume (stable, shrinking, or expanding), enable estimation of remediation rates, and warn of potential impact on sensitive receptors. Primary evidence of natural attenuation includes demonstration of a stable or shrinking plume, or a plume expanding more slowly than groundwater movement adjusted for retardation. Secondary evidence of natural attenuation Civil & Environmental Consultants, Inc. -36- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 includes monitoring for an inverse correlation between electron acceptors and contaminant concentrations, alkalinity, and the presence of expected daughter products. Surface water and downgradient wells, within and parallel to the groundwater flow path, would be sampled periodically for measurable changes in contaminant concentrations. The monitoring frequency for MNA depends on plume status, water table fluctuations and seasonal variability, groundwater velocity, and distance from the plume to a sensitive receptor. As previously discussed, POC wells MW-10(i), MW-12(i), MW-12D(i), MW-4, MW-4A, MW-41), MW-4D-1, MW-6, MW-61), MW-6D-1, MW-7, MW-7A, MW-71), MW-9, MW-11A, and MW-11D-1 will be monitored on a quarterly basis for MNA parameters listed in Section 5.0 for a minimum of four baseline monitoring events. Upon completion of these baseline events, GWS can petition the Section to remove specific MNA parameters and/or MNA wells from the schedule, and/or reduce the frequency of MNA monitoring. 5.3 INSTITUTIONAL CONTROLS In addition to the selection remediation options below, the facility will continue to implement institutional controls concerning access. One entry point to the landfill is maintained, which is gated and manned by facility personnel. When the facility is closed, the access gate is locked preventing access to the facility. On -foot trespassing could take place from the perimeter boundary of the facility, though no reported incidents have occurred. Regarding controlling groundwater use and access, Mecklenburg County has adopted Groundwater Well Regulations that restrict the use of existing and new water supply wells in an Area of Regulated Groundwater Usage (ARGU). ARGUs are established by the County around sites with reported violations of the 2L Standards. The Mecklenburg Priority List (MPL) was established in 1989 to respond to the need for a more aggressive program to protect citizens from drinking contaminated groundwater. A site is added to the MPL when information is provided that reports soil or groundwater contamination. In 1999, landfills were added as MPL sites. Thus, future groundwater use in the area is restricted by public institutional controls. Civil & Environmental Consultants, Inc. -37- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 6.0 REVISED WATER QUALITY MONITORING PLAN The most recent update to the facility's Water Quality Monitoring Plan, submitted by CEC on April 19, 2018, and approved by the SWS in a letter dated April 20, 2018, was prepared with the selected remedies in mind. As such, no additional updates or revisions are necessary. Civil & Environmental Consultants. Inc. -38- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 7.0 EVALUATION OF EFFECTIVENESS 7.1 PHYSICAL CHANGES The active component of the selected corrective measure, soil vapor extraction via active landfill gas extraction, will have minimal, if any, impacts on the physical characteristics of the aquifer. Landfill gas extraction wells have been installed within the waste mass; as such, no penetrations into the aquifer were or will be necessary for this corrective measure. The contaminant plume as it currently exists is limited in extent to the area immediately surrounding monitoring wells MW-6, MW-61), MW-12(i), and MW-12D(i); nearby POC monitoring wells have not demonstrated groundwater contamination of methylene chloride, vinyl chloride, and/or 1,4-dioxane. As the state of the landfill gas within the waste mass changes from being under positive pressure to being under a vacuum, it is expected that landfill gas in the surrounding soils will either be pulled back towards the waste mass by the gas extraction system or existing gas will naturally attenuate (either through advection to the atmosphere or diffusion into the groundwater) and not be replenished by further gas migration, effectively eliminating the source of contamination. As the source of the contamination is removed, it is expected that any COCs remaining in the groundwater will naturally attenuate and the plume will shrink. 7.2 CHEMICAL CHANGES No chemical changes are expected to the aquifer beyond the removal of landfill gas from pore spaces in and above the vadose zone. As landfill gas extraction continues and gas is removed from the soils surrounding the waste mass as discussed in the previous section, the minimum expected change in groundwater chemistry is a reduction in the measured concentrations of methylene chloride and vinyl chloride. The goal of this corrective measure is to reduce the concentrations of these COCs to below their respective 2L Standards, however the possibility exists that concentrations will be reduced to below the laboratory's practical quantitation limit for each COC. Civil & Environmental Consultants, Inc. -39- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 Additionally, minor changes in pH and ORP may be measured. Specifically, removing landfill gas from surrounding soils via gas extraction and thus preventing diffusion into the groundwater may result in pH readings in wells MW-12(i) and MW-12D(i) rising slight towards neutrality, and ORP readings likewise increasingly slightly. However, it should be noted that this is not an expected result of the corrective measure; pH and ORP readings are generally consistent across the entire facility while the impacts from landfill gas migration are limited to a small area. The possibility of such changes to groundwater chemistry is mentioned here for the sake of thoroughness. 7.3 REPORTING As previously discussed, MNA measurements will be taken on a semi-annual basis from wells MW-10(i), MW-12(i), MW-12D(i), MW-4, MW-4A, MW-41), MW-4D-1, MW-6, MW-61), MW- 6D-1, MW-7, MW-7A, MW-7D, MW-9, MW-11A, and MW-11D-1, and measurements on the landfill gas extraction system will be taken on at least a monthly basis. This data, combined with the data collected as part of the semi-annual water quality monitoring events conducted in the Spring and Fall of each year, will be used to generate the following: • A narrative summary of the effectiveness of the corrective measure to date; • Data tables summarizing groundwater measurements; • Data tables summarizing landfill gas measurements; • Groundwater contour maps in plan and cross section views; • Isoconcentration maps in plan and cross section views; • Trend graphs for methylene chloride and vinyl chloride; and • Laboratory reports. These items will be included as an appendix to the semi-annual water quality monitoring reports for the duration of the corrective action. Civil & Environmental Consultants, Inc. -40- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 In addition, upon completion of five years of corrective action, a Corrective Action Evaluation Summary will be prepared and submitted to the Section. This report will evaluate the effectiveness of the chosen remedies. Additional summaries will be prepared every five years for the duration of the corrective action outlined in this Corrective Action Plan. Civil & Environmental Consultants. Inc. -41- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 8.0 CONTINGENCY PLAN As a contingent measure, CEC will use in -situ bioremediation through enhanced reductive dechlorination (ERD) to address groundwater impacts between the waste mass and POC wells MW-6, MW-61), MW-12(i), and MW-12D(i). Implementation of the contingent remedy will be based on the continued concentration or increasing (+50 percent — over two sample events) concentration in methylene chloride, vinyl chloride, and/or 1,4-dioxane in MW-6, MW-61), MW- 12(i), or MW-12D(i) after five years after the start of the corrective action. This approach would use a series of injection wells installed in both the saprolite and bedrock to allow for the injection of a carbohydrate substrate into the formation. The substrate would create an anaerobic and reducing environment in the groundwater greatly accelerating the reductive dechlorination of the vinyl and methylene chlorides. Focusing specifically on the two POC wells (MW-12(i)/I2D(i)) in the Infill Area that are exhibiting vinyl chloride exceeding the 2L Standards, the preliminary plan for the ERD injection system would consist of a line approximately 200 feet in length located northeast of the MW- 12(i)/12D(i) well cluster, on the northeast side of the tributary stream. Each injection location would have both a saprolite and bedrock well pair and the locations would be on 25-foot centers. To assess the performance of the ERD injection process, a new assessment well pair would need to be located between the waste mass and MW-12(i)/12D(i) well clusters. CEC has reviewed existing well construction records for wells in the vicinity of MW-12(i)/I2D(i). For the saprolite injection wells, a total depth of 30 feet is forecasted for each. For the bedrock injection wells, a total depth of 80 feet is forecasted for each. Using an assumed length of 200 feet and 25 feet on center for the wells, the injection line would then have nine well pairs or an approximate total drilling length of 270 feet for the saprolite wells and 720 feet for the bedrock wells. Adding 30 and 80 feet each for the nested pair of new assessment wells, the total drilling lengths are then 300 and 800 feet for the saprolite and bedrock wells. Civil & Environmental Consultants, Inc. -42- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 For scheduling purposes, the total drilling effort is forecasted to take three weeks. The injectant procedure is expected to take one week to complete. Typical duration for ERD on a project of this scope is six months from injection to impacts being measured at the new assessment well pair. Treatment of the groundwater in MW-12(i)/12D(i) could take up to two years from the date of injection, but would not be considered a source removal approach. Civil & Environmental Consultants, Inc. -43- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 9.0 SCHEDULE AND MAINTENANCE CEC is prepared to initiate the corrective measure within 30 days of the SWS's approval of this Corrective Action Plan. The gas extraction systems in the Infill Area LFG control system was made operational in Spring 2018, however uptime on the system has not been consistent due to power supply issues (since resolved) and odor complaints, necessitating the installation of utility flares adjacent to the blower in December 2018. It is suspected that the vacuum setting on the Infill Area system was set too high prior to the installation of the flares as, after initially running full time, uptime on the system has been reduced to the operational hours of the landfill due to low methane content in the extracted gas. CEC is currently (as of August 2019) working to find a flow rate that will allow the system to be run full time again. CEC anticipates that, at a minimum, the system will have a daily runtime of 10 to 12 hours, and that during system downtime, the waste mass will remain under residual vacuum or be in a neutral pressure state — that is, it is neither under vacuum nor positive pressure. The LFG control system in the Closed Phase I area has been running consistently in its present configuration since 2017. Based on measurements taken from landfill gas extraction wellheads prior to the blower system being activated, the gas pressure within the waste mass is approximately three to five inches of water column (positive). During system downtime, a gas pressure of -0.5 inches to 0.5 inches would be considered a neutral pressure state for the waste. Pressure measurements prior to daily system startup (assuming overnight downtime) will be taken on at least a weekly basis for the first six months of the corrective action to determine whether the waste mass is under residual vacuum or in a neutral pressure state when the blower is off. In the event that the waste mass is demonstrated to be under positive gas pressure following system downtime, CEC and GWS will determine alternate odor control measures such that the blower can run full-time even if the flares are down. Civil & Environmental Consultants, Inc. -44- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 MNA monitoring as outlined in Section 5.0 will start the first quarter following the approval of a corrective action plan and will repeat quarterly until either the vinyl chloride concentrations in MW-12(i) and MW-12D(i) and 1,4-dioxane in MW-6, MW-6D, MW-12(i), and MW-12D(i) are below the PQL, or the contingent remedy is put in -place. MNA monitoring will be conducted simultaneously with semi-annual water quality monitoring. Maintenance on the landfill gas extraction systems will involve periodically servicing the blowers, which can generally be completed in one day or less, minimizing downtime. Further, condensate traps will need to be periodically inspected to ensure the header system is not impacted by excess liquid as this could potentially reduce the flow rate of the system and negatively impact the corrective action. Landfill personnel are qualified to perform general maintenance on the blowers, however more complicated maintenance or repairs may require a technician from the manufacturer. Condensate trap inspection can be conducted by landfill personnel or CEC field technicians; should the traps need to be emptied, a vacuum truck service would need to be retained. The gas extraction system may periodically experience downtime due to power outages, typically caused by storms. Downtime of 48 hours or less is considered acceptable, provided several such events do not occur within a short duration. Prolonged system downtime (>48 hours) may require the use of a backup generator to keep the extraction system operational. Site security is discussed in Section 5.3 above. Contact information for responsible parties is included in Appendix G. Civil & Environmental Consultants, Inc. -45- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 10.0 FINANCIAL ASSURANCE The cost for the Infill Area LFG system was included with the under contract cost for 2017 LFG extraction system expansion and was approximately $350,000. This capital cost was addressed by GWS's operational budget for 2017. Annual operational and maintenance costs for gas extraction system and NINA quarterly monitoring has been estimated at $50,000. Over a 30-year operational window, the total current cost for operations and maintenance and monitoring is $2,000,000, which will be included in post -closure cost estimates and financial assurance method. The full financial assurance calculations can be found in Appendix H Civil & Environmental Consultants. Inc. -46- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 11.0 COMPLETION OF GROUNDWATER CORRECTIVE ACTION Per 15A NCAC 13B .0545(l), the corrective action will be considered complete when the concentrations of constituents of concern methylene chloride, vinyl chloride, and 1,4-dioxane are below the applicable 2L Standards for six consecutive semi-annual monitoring events (six consecutive events represents the three consecutive years stated in the regulations). At that time, a summary report of all data collected during the corrective action will be prepared and submitted to NCDEQ along with a request to end assessment monitoring at the landfill. Note that the operation of the LFG extraction system will likely continue upon completion of the corrective action for odor control purposes and minimize the likelihood of future LFG migration beyond the waste boundary. The summary report will include an outline of the future plans for the LFG extraction system. Civil & Environmental Consultants, Inc. -47- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 12.0 REFERENCES (1) Landfill Gas Remediation Plan, North Meck C&D Landfill, CEC, March 31, 2017 (2) Hoffman, J.D., and Buttleman, Kim, 1994. National Geochemical Data Base: National Uranium Resource Evaluation Data for the Conterminous United States, U.S. Geological Survey Digital Data Series DDS-18-A (3) LeGrand, H. A., 2004. A Master Conceptual Model for Hydrogeological Site Characterization in the Piedmont and Mountain Region of North Carolina for the NC Department of Environment and Natural Resources (4) Gibbons, R.D. 1994. Statistical Methods for Groundwater Monitoring. New York; John Wiley and Sons (5) U. S. Environmental Protection Agency, 1987b. Leachate Baseline Report — Determination of Municipal Landfill Leachate Characteristics. National Technical Information Service. NTIS PB88-127956 (6) Freeze, R. Allen and Cherry, John A., 1979. Groundwater. New Jersey, Prentice -Hall, Inc. (7) Daniel, C. C., III, and Sharpless, N. B., 1983. Groundwater Supply Potential and Procedures for well -site selection Upper Cape Fear River Basin, Cape Fear River Basin Study 1981-83: North Carolina Department of Natural Resources and Community Development and U. S. Water Resources Council in cooperation with U. S. Geological Survey (8) Rose, A.W., Hawkes, H.E., and Webb, J.S., 1979. Geochemistry in Mineral Exploration: New York, Academic Press (9) McMahon, P.B., and Chapelle, F.H., 2008. Redox Processes and Water Quality of Selected Principal Aquifer Systems: Groundwater, v. 46 (10) U.S. Environmental Protection Agency, 2017. Scope of the Risk Evaluation for Methylene Chloride. Environmental Protection Agency. EPA 740-R1-7006 (11) Davis, J.W., and Carpenter, C.L., 1990. Aerobic Biodegradation of Vinyl Chloride in Groundwater Samples. Applied and Environmental Microbiology (12) U.S. Center for Disease Control, 2012. Toxicological Profile for 1,4-dioxane Civil & Environmental Consultants, Inc. -48- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 (13) Chapman, M.J., et. al., 2013. Naturally Occurring Contaminants in the Piedmont and Blue Ridge Crystalline -Rock Aquifers and Piedmont Early Mesozoic Basin Silicastric-Rock Aquifers, Eastern United States, 1994-2008, U.S. Geological Survey Scientific Investigations Report 2013-5072 Civil & Environmental Consultants. Inc. -49- Corrective Action Plan North Mecklenburg C&D Landfill October 2019 1 of 4355 FIGURES of 4355V'-- ' r- NORTH �U `ro Aso � v �5p �O�BRpOKS RD --' Oo / IN O , � SITE _ 75� / I lz:� ) 1� j 0 (Z) , C) Epp �50 O 8� Q) O � O h0 O � REFERENCE U.S.G.S. 7.5' TOPOGRAPHIC MAP, CORNELIUS QUADRANGLE, NC DATED: 2016. SCALE IN FEET 0 1000 2000 Aw A A A f7 NORTH REE WAY WASTE SOLUTIONS OF L Civil & Environmental Consultants, Inc. NORTH MECK, LLC 3701 Arco Corporate Drive - Suite 400 - Charlotte, NC 28273 Ph: 980.237.0373 - Fax: 980.237.0372 SITE LOCATION MAP www.cecinc.com DRAWN BY: CTH CHECKED BY: DMC APPROVED BY: DMC I FIGURE NO.: 1 DATE: AUGUST 20191 DWG SCALE: 1 "=1000' PROJECT NO: 111-370.001 3 of 4355 r 71:'1'1� -A I - . 171, 1 "I'l-f -11 '�'.. , I . �i't � 1.7 � 19, -.,k" �-�- ,-, -­',';�,� 4 EiFORT, "I w 11.1 � �, . w '� W'. %, I �� .. 1, . I , � 1, 4rc� - i4j, �?�',- %.-, - I � 1: �- - - .- " � - 1 � .'. istll ��, � 1p!�t 7, I '. , �',�;,.� ,, '.- ;-- - �, - I .&.�- I . �. - I -:' - . - - ""', ""' ,�11;" "� �, ril�'yll a 'A' - , 'y " , I 1�y -�' , 7 '1,4 1-1, .. . � � — L - , .,�, %, t;," R.", � . ..� . 1, � I I . .: -1 . . '11�11 i I -4.4 - - ", - I SN. 2.) - I '. -; �, , . . .1 . ' " JLW ,;,;,%t,�V, � " . , I : -" Mill I , W­ '.1'. 11 - I - , I 47 — ' -, '7 - Tm 11�..if. -I 1',%4,A ,,,'�,k��7 ', jyr*wl - - w t, , - I , T , ;0jjFt:,1!w,-,,4*,,! ,�tK :*, . , ,:,,�.,�:4.j, . � , - , I �pr. 'T.- . ,,w�,77��':',,,,.,��-.--4f*,;":, - , - -'� -,-,� A . � - ,7'' 1% - .1 -1 `�' .1 - . . ", -V 4" , , , ` I* ,� ­­ " . . I k,yl'�� .,. , il�vt�' P'�. - � I 1, 1%� 14 . , . , '. , � ­!- , :' . - -- - .. . � I .. - , JIM . , 11;F �----w 7- - . 1� I" '­' ­�,,m­ ­". ­ �- . � . . I . � �: � . -� I 11� � -�- jff2 ., ­ I .."t--l- -11 0 .-I,- .. - I I . � .-�'. . - I . - 't , - !" I'� It. � . " W,if- .,,%% ��­ ,,, �, -­ . : -,I',' . .. - , , 11*10 , � lt�-Z; 1,-�J,T.c �­ T . I I - � y " t . I , �. - . 11 , 4,:� -- I � i I M, �� � �� � - 1 4 , '. �4 . .. *1 � . , * - '. , ,-­,�' , �.45v 7� t - O.."w', . -f - , - I".. � I � Iii, .. t . , le- W, . - It . � - �.! , "NORTH' 2­ 0I , "A �4, , . � - � , , " - " -- --wt- il, � � , ,' 4�' , � , , , t4k " *;, - I , .�". � , " I!& , � . 7`1 9 1 i t , - � i�'. . , (�, -,--- '1 I *!w t I - I , 11 r ­ ,­ � I '. I " " I A�.' - - .. I- _ 4 ­ 4 '. . m . , R,�- V,�,t4a�,;,�'..:�' # ., �ii �J�,-� , . I -&�, .- " c. .� *­ * ­!,�, ", ­ , .,�., , " - ­ - � , � # - , , ­11 I Z t, - * ­ e - � - .. ft, %.7&� , ..., . - �, ,�,'.,w. . , I ­­ � -�' --Z 1!g',Y.-� .t4. - 'i " - ­T�*-, I ��, � . ",'r � �, ­ � .�, , 11.101 I \ 4,�;f, ; � ��, "I -� �.., .1 , , #­f*,�- -1 i . I 1��,,�,-? - -j ­'.., � � �-: � %, � -, �-` -- , , � � - "­ � .. &I ­f't "�r 1, mll,;i -1 �, I N, �. - " - �'. 11 �� �,,,,­­ I . ­ ­.. "t 1 w , " � -,T. I.." L, 11 � �.Ifl' � j ". - 1., . 1-Y6 i ,� I I �-� I , . i7 ­ . . , . ,�. � � 1�m I -1? . 11 , , - t'. " t� � I 17N --- ,�� � . - ­ , IF-,. I" 1 44 * . - . � . ­1 , " ­� 7 -1 -. , "�,� ��, "y I " 1� , , - �. - 7-...� iv,�-,., -4. I I . AIr . - , . � " , - , , -, 'I :- " I 0 , -, Vo - � : . N4 f �N, �A , .� �-,- "A.- � �'.' " � , I :,�11, K � , � , 6 . . �.i . . ,� �i ., n ,. I . � 3 .?i ?Sr 1 1 . '.1 I . ;, ­,;,&e,x.4' , , I � ,,.:: . -y I .� "; 7:11� 1, I � I ;-7�; "! . .�. � , " - .14' I , �­4, AJW!�­ 1 1 1 ., -A 1% M71 . �- . i - " . 0 . � � . "i ,� , — 1, , �, F . I *, ` , � ,); -- . � .�,X. V, , � � I �. . I F; ��l - I I - *- I . . . t �� , 41 I . , 'y .T" � �`. . - -, iko� 1­.. " ..i. , , � . :,! 1.4w, 11 , - �7 , , 40 i .,�, , % . " ,�,' It , - k '. , - I ill - , ­ , . . � , Z j, ,;' ,��*J, " . - � . '. � �. �.;t'. - f -- I , . ! . . - 11. 1.11! t , 1� - . I , - . I . IV` -1 , . : . - . , ,.,. , --­�, - - � !:��­ 1�, i I Kh" "."o, q V � I . WA, - - ­ �,a ... - ', , - ii � 1�'�.4� ., N , ", - '� ­ .�- i ',� !s� . .�, , , .1 .. . I �­,. . ; A ,�7""-, �', �V , -, . , I . t,' . - ... . , 1 , -- - � -, � L 7— " � - . - .- � , ., I - , -- -7. . I . 7'1 I . iN I -..�� - � . �4­ "', � . a. . '1,1� , E t i t, "' , 4 " ii� I .11 11: -i,A'V4"e7+1' . -" ` 7`5 , " , , , , * ; I - I . I I ` ?;� ; '4- ,411 �% - 4� � , , - , ,, .""', I �, 7f N� A - 1111 . , N I � % -A-�,;:%' I - ... . 0 P.,.04 , x I ki,�� oil-, I � - t, , 1, I " � .- i " -. 1­1 , , �, . �,"� I *1 4 -, J�, ,'.I �,'% I - " . " � - "A ;0 , ,� e i , . I .;p I I - , � , ,-, ), ", 4 , ,; , -1v-F - ,..- . W1. I .111.1 .��AILX� Lj& :v, �" I'. - - - - .I 1, , .1. 4i , � . Mi ... "� -� I . . " ."; EXISTING MECK � -, - �*-�-- " , ­,�i .1 I I . .. -�, , � ­6 ,A- I . . . � . I I .� , .� � - .��e., n . , , " K ­. . , - 1 I? -!"�� -� - i I , . , -^- � .Iqp i '4 - , , L-,�" - � . , . .�.4 -,"Y'% �.J, I... . � 4 1 a ,�, - A , ,�-, 7. �.,�,; � - I " - I . . 'd. L ��, * , - t-W.V 11�, I., �r, I I , 0�--%, - '' � lm*'� Ij _-� � � , ... - , f I ­11 .A, w"i . � iiIIIIIIIIIIIIIIIIIIIIIII I I I � L.,., COUNTY LA , , - Ow ..- �,�l � , -1 ,�,�' " Wr - , 1% 11� . a* I* �,, �"j, � , ��j � - I , , . � , � 4 " ... 11 , , -), . . - "A'� 4 l. � . � P" : - ,4* 104� , . , . z", . . ­�Cll�'11 r , '01 �� zi �`, , I ., , 40'. I , ILI' � ­%0. 5 0 ,� , -­ . .� �, w � I .1 , . . . -7 �. - �r 1� �,., - I . � ,** '* - — . 1h - . � �- . ,� ,, 'I., I f- ­ . � % . "-- .a- , �� -�'.C,' pr -, . 1.1� I � !". 't, .� , . , , : ­'Y' . ",""Ift, 4111* I . , - f�,:�;: , I , .. , �', , � 1'.1 � , I �-�4 1; EXIS7 NG HOL 1) . # . - - � I— -1 . I ��'Irk` .,It� A , " , � � VWFA �,, 't ,-.-. � - 1 4 � I � " - - . . .-A- i - ­.. k � 1.1 .1 " p", . . . - I , 1-� R. . , .". 11 ef�i - �', I * � ­­ .. - . �.. * I � - i , ;. i "i . -0'g�:�14i�1'1'1 , . , � . � �-: ,�, ,-.� .-'1.-`., . . 1� �. k � I , "� ,*��4� , �� Y�Z;��!,-�`, - - ,�, - -11� - - . - A , I jV , '. I . . . . . . . 1. '. � . L.� � - 1, . I .. . I �1't, , . � -1 .1 - , - 4 - .4r* : . � I L i L A, , 1", r. . ­ , .t:', - �, - I 1. .1 - .1 �11 , , �, j - � . ";".-- � .- L I � . ��. ,,%it , 1, ---"� " - -­ ­ 'q .. � 10 ,, � Is, , ,.. w .1 I I ­01 x- '� I - , : , , �, . �f#�, .40 �-,11 � 41% ote ,. �L ,� m-�N' *T L j� I �' �1 � ��,�i��-.,;4".,T,m 11 , - I .'i, I . , I t V�, . `�" ,� '14, ! 1� .� -- - 101 4��, A .1, .. 41, �"! , wj; �� �..,: , � ". , - -I ?IjiiA � IrWr - - - 11. - - � -i-11" %.- � N I � 1� ,� ,',� "!r I. . I � - � . ff , I I, , - , * , , ` I I I �-i-1 .- f . 3 � L 7 . .1 .to , ; � . , 4% EXIS77NG SO4LEHOUSE � d" � ��L � L":, � , t 11 . -1 .�'. � . � I I I � V, 1; * ! 1. . ;5 - I � N I " I " . . �k �, L I .� "I � A., - I ­ &' - 1:, - 1, ­ I 1, I Sit -'*.­� . .1.. 11 ... 1, - 4 � , :1 1-14!r.� a - ;i%;­i�T, v"� 1� . I q. "...- �. I- ,.. �y , . ., - . ­4, 1�m k-, , � " - It � , � .11. 11 1, .1 AR - ' - L . ­ 4A7 41 .� - I � , , ;_ . �t ill, - .,-. - -_ ­ 4 114, , I ,. ...... :,F'k - ", I p , -,_� ew: I . ij 11 -, - , 'I, .� I , . I � �� "; , . . . � I., I - I I , t . , � . � , I I . ...:v -. ll L ,� -- - 'A'st'.p ' ' * J�� $� , L'� . , ,,V .4 ­ , k -, , - - 4-71 1 . 11 1-1 k. L , ik 11 . � 4 ­�r �'!­. ��,�,'�,.;,,), - "r, I-X. . I . I I I � .- L, �,t� - - %,. , - , , .'�,��] . :M';,j' ,,t" , � . �. 11 I , A � . . . - , � 4K, , . , . 4 � -, � 1��tY ­F Q . 'I'll'. ... � . Wm&& 1. ` � �A. " 1- . . . :;.; r .- �'� P, ­ . � - - . - I'lo � � " - . ! 9 ', '14 ,", *' � Y 1, , , ""' , ` , , k , IN , 4. 11 �. - Ir"o-1- I � , " `� � , I - I , , 1-� A, -1 �, -�, � -; I �111 I � I I ,"%m .i., = I �, � � , . , � 61 � : L - 11 - I , k , � t�l � � I il� ! - 1`�i`fl) 1. 4w . :1 .". � . - - - - -1 . . i, I , - , , " , . 1w, ! ,� � ,,,� I .�,,�,'� �t,p.,;J, , ­ . I I . I , . - -s ' -- * yi�'I; i L�i . I , I I M �! ENMNCE muqu - . . ., -�.-.-J' . "L , , ,,'. - �� , , � I L .�, � I 1".. I 1. - _r �4!" ,,, ,..-- ;Npl,�,,$Ak -. .. lu� *-�5 ­e - - . "".. I r 1, "'P,* Mtt-, . . - . . - - - -j : i; ...... , . . .... ,�'. -�, . , � , � , 4 I ­ )0 i�-:!` - 111�41 1 6';;;;;' I'll, : � I *. ... . I 11 - 4:1 I . - .. I i I . , ­e ., , ". , � " I � I ' � ­ '- � � I ­ 6' """ "� - ."i, ." . 'A� 1 i, N . �, ". ,1 I k � , I . .� , : t . ,�4 J- " , ,. .1 , -%... t i , . . - ��;, � - I --i�--i':v . . C p � , � . to - IF . 2 I . I - ,­r-! . � -40 .... � 4! s-­­ , .7 - - 111 � � " - I N - " I -�it , i- ". � .- -1�4 I ­ - .. ,� 41� "' , R��.11'1 -, . . - "'10- " ­1 , 1b , , 1, � I ­­ - -17. . . . . . , A' V.!�% � ,,q . . , , � 3. "� ` " - . "1­4 " ­4. .1,�,�: ., �� -�� 0, . . " i, 1. ­ 11 . V . * . . , , , , - I . � ., . I - �11 - L . It'- L �...�- .�ftt,�"­ . v - k - L ��-, ) I - 1§. . ., . . . .. ., - I�R I - � , - ,� 1�1'.' �, - I , , . - �� - . ­ ` . 04.,�- � Al -'t f 1 144- ; , I' 'III". �j..": " L. 41 ,,, �, . � A �41, "? -P'Ir: . I.e . 1, - ., , . ,,�� p - �, , �, . , , - P.O. �7 -. �.�­14, ..,�,, , � -1 :;.,� ,,R-.. - I. - I " �Awl- � . I � I'. ­ .t- I iv, - I "i . . 1*1 ; , 4, � I , ­ ..,S� ki�-J�: -- -- - I 1��, , 0 - , , " - j -� � I . 't,� ') ! "I I * " , ­ - - 11, . , ­i�-., . % I - , . . , .,�q, " ,q ­f, .., 111L . : ,,�. -s 4�1%k � I �10 � , 5:7 $4 � . .� I � f . I .. -� , R . % I'� liff7 . � , . �, L', ,�' � � �'. - I . ­ g , , V,� , w L ��4�1�,'i�.'. Z, 41 , . I -. I , , . ,�� , '7 , I- -, .i 6� . . 7 f . 0,4 _ �� -- � � k 1, � , �t� -7 ", � � . . - I I - - C., I � ; I.. I L)�,'".�O. . I I . �,,V'4' ., . �, 'A% '1�, ,A ,, ,Z �F�*" %. - . . � I I . I ­W - I - . . I I `� I , .1 1, Ir" '75 ,.. ��Ai � I , I I ",.v - , . 1 4 L , - - - - --J� � _ , ��_ ,4? � , �,,�. ; J�. �.11 �": � ��­­ � 0� L� � - � " - , -"� 't "" ,� V I �,I, �:i , ., , . ", ��. - . - -11 L . , , ,,,�.�,'17,1 T 4� �01 It � �1- � " . !.�-� 1, -1 - 11, P f I I . ­.. ".. I �11'.�..-,e��:,), 141 i �.i ;� � , � r. � ", , �14141'�' 4"L ; ", --,-.,-: ,,-Ivl� I , , - . - � �-.!4:"J� 1'. ,: a ." 'L '"' . Ir N"ARC. I 1�' Wlr I I i�- .I. "L .. 'j-'i ­, �v ,� I 011U, I ,C4" ".. "., . 1� I 11 . � W , . W�: 'L, _4.y", �., � 10111L,�i I , 4 . , ,.-"; . , ,�, . , � ., , _ 'I �J"." ", . _,­ , _, I , . �, I "�,L; 1� . ,:� 7 e, __ M. , �t _ :1 � � 'i�' uj lPINwi -"� L ;,_I, �-- , 11c < 11 , I -" c) , — :,'J� � '��,� � , '11 0 7-1i�� � L z c . , , " � ­� - t: 111 , � V I '' m. .. ' . I - I .1, 1 14, 1 . "' , , I ,L_, I , I _ -7, �,Jq LW �-, 1.11 ' * � ' ­4`.�, 'j, I Al, . I �t 1­ . I , � L,* .,;,t _ �j ,,�LL j�t',� � -�� ­q­iz, "'. , '-: '!� .. - L . , 4 , " - . L '- V6, -; I T. ��l , , I I . AF �, 1 �4'..'�* ,3�11 ,� , F"" � . .1 . ;1A ­� I . �t-� �..i,, 1-1 �. , . - - . - �� � � -1 I j��:j� L , - ir,�-;,� ��,� - � . , ,� cn I ­ -- . I - 1� , '. - c; r- L . , . .. 1:1 ,. 6 ! , " ,- -101i", T L.'I ;� ­,"w �! "'IT, ., I j I ; , � I % . � , � - � ,ik%. m% N­%,�- . .is, ok . . " � . k�� cq 1. � I " , - , - ­L. - , -'rL!:.' .. ,6,� .; ­t, - 4� ... , '. I 0 L I Raj , ,q, 'A -0 " I , I .� , , I , �'k [t . - i J, . _ _ - L. . , 11 I I - . I ,­ , " , I,: $M L , L �� . i " 00 , , . I � :t - . -1. '. I ,,, � ytl " , , . ..,4� ,�.- - cq .4 k ­ L N -1 I 11 . ­� - I I , I � -", .1 �,LV ­ " ­ k .1 I � - LL 0% :r� . I . ­ - 1 , ,� , -7'1:!�- - - �- �- � 41 � . I ; �. wtl ee,� . 'A . �- I � - . . �kt,.,I- ;;; g t�� . - <�,. - :, . I . I .. 11. , � . . . - � " V t%t'o - - � - . � I 't". 4"� - F., ... ! - ­ . I i , ,� ' > � , , ,� "L 't'-".4, -, - w 0 - - l!, .`�F . , � � I - , -, "�T L�' ,�., " �,�*'-I.:XX�y ri�- i ,� ., - .. - 4 1 " 1� L " , , � I -' ,W,11 4 +.-o z " I . .-, 11" . L . - ­nq,.� % ' N� i�, �A I '- - " , I . ,�JL�, �N L, ­­ - I I , ,��" ni� -, - , , ? 1".­ .- .ji �� I . I -�, , I . � . _ . , i� n � a 1 11 .­�� I �i, " � I � �, �.� - I 'I L T.!4 o . � .. -- , A751 11 11:%��' ,�- - I , �,�4;�,. ,�;,a�l � I I '! , ,,: .1 lk;0"'".�: � -, � ..:. I .,. '-� , I 't, .4 ;P, .-- .t. - �� ; t.Tq �"�? . .. 11 V4 6 .5 N . , , - , A - �� , V, N ,� � , .. cu -w CNI , , 1�7 I . , "", �i - 'L. ,�: `�,* I ,, Lk' I - - L­ ""i. .,i ­h` i , , MR -w ).- . � , - . - - I , .1 ­ I I ­ . , .7,) , ,; " , � � . L.- *. .. . . I -9- � ,� �2.1. I A -� I . +�' 0 r.. I �. �,\# �, , i-41, : � " I I . -Jmw �. � - , - -'� , 1; .n - , I �. , - . . ­� I , , , - � I I '* -�,: ­� ,�,,�- � - . - . .;-q -11 L i��7 'C , , MNO] " k , V lv� , -14 c1l) %'.1, W 3 .. - ­ �, -- , �, ". '.1 . -�-- ov�t . '', . , - , , -, .. .JV'�­ 4 , - I * , ii � 6' 1 , , �, AL �. 11.1 � . .- .1 � ­ I - .. I - �1� ;$ m q - � I . �� , , 0. - - I 11 1�1 - :,.f . *�� ', � �; , :j� ""­­"­, .� " 1. I -� . -. I 114;. -. - .. I 9, � - � L I . ,, " �, �, �� ... 1. ­*­'k, - , , r- I ,� L�,, �', -,�- i 4�- - w`.Im ­ , V. � - I - i I - ­ 11� .. � , � � , . , 'we . � 111--­r . 1�'. -A,'� ��;,­Xl­ 4 J. , .N I fil .A... '. I ,,,. " - ::�= - - 4� �, �11%"':t,;s-, 1 - �.. "" - : .. �!,. - �,��, � * I � a - " , , - 0 cn . - t, �,'41 ,tww,��­ - - " m , . .1 S, - I - , .b - ., " - ., -11�111 t!, I . I - % " I . - . . .- . L_P,, i 101w -� I - � - I , , , .1 k � � �� I . �R , It" 4 kv. L, I ��, 1-� - I ­; I & :ii�, " . � . oz;2 , �i ji, 7j., �� . I , � . 14' "�� .' , L �,,-7-4!':4t',��, , 'f4.111J` , I I I &,;�­'L �! , - - � - . - - .- q* ,��,',­� 4� t -j!­.k�,��., ,_.IV q - .. � , ;" CN .wl - , . , - . "L' I L - - - ­* , ", "", , , - _ 1� L � I Q . - 't . I . :, �, %� .-, . -':­'�'%-- J "JZ, M i L" i 7.. , "I L �,� .11, - �;, I I "�� - , " 7 � . t ! �ki i�. I 0 �, i!�'7 .� �, �.,., , :�; 1. ,r _ . : �W- ";, I 4W - I . � ,- _� _. I 11 � , i� ,�, 'I � u 0 GO � � 7 . . - - Z ,� .- I , L ,... I ". . � , , A - - I - .k i� , .. .1 . . _ .�T _ I Ul','� .. I . . i L '-� �-,.� -. , , 4-,P-�_2 - I - I . N­, & - I 11 I , �?�' - , , w I'-, �z �.L!."�t," - ' - ' Z* -" ':-- L � 0 ­ '� lij ffLl "' a 5 RZ�4 , , , - . o) E �.L 1, L, V, , �, �, - "i , . . � . � ", I .. '�' "'S. �.�j. . , 41T . . 0 1 , I , 1. . I 4.T-t� 24A -1 1- �' .: ;":,I , Is] -- '11, . ,% A, " - I IWI, I'l, F-4 x L� , � � .1. -. . =- 'i:­1 �, , , " - , , C t I I - ­­ 1w;;ij,..�', I �� . I . , '( z Vik t., , ... I , � ­ - -Ix ,-_----: -.-,- , � . w -,�� I . , . . - -. ­ - .1 .- , - 111" fl , . � ..., i � , , . "P. L`� . �' I �-pr,�.,, �,-"- G!"' �� , I � . . !, , � , " - . , � ­ -, - - ", , I ,!�,:" - I - L �� � I , * " ' , 'L , - _"NL'- I - - - '- - ' I � .- , , ur, . 0 ; , L -� - �,:� �t, V , V -­ - .. w L� , � ­ - � .", ,�, :.� "t .I - n ',.'I�� #4 "" ­ " " . . .11 . . ­ . i , .r,- 4 11� . 1�1­� i , Eta. V.." - , ,. �. , '. .," -, � I �7 # , I . I � I I . - - I -, ­4 '. .. I.' . �� ,�­­­. J �,ij � , cz W Cc 0 v 1,.: r v I t - , ­­'�' ., I .%. � I - - ' . � i L I ­ , :i -"��-� - I 11" . .,�, . � �.; � 1: , .,�, I _ 4". 1�� - %'�; : - -�� V -7LC�L�!ii - .,'7. �.,� . - � -5 LL. .9 " . , "' , - ., � I . . 4 � -. -- I L �,_ �..,O,.--j,Vleff�`,*�� A-1, "I , Y, ., �- i",';L, � � ir � ,4,1- -4 . . 1,ti.- -.,.,,,.'�1.r.w, j ii., f I .: �� L , I.![. . ?, . ��� I- , 4, . I I , -, I —, - . � ,­ 4 . , � , ".- , , 4- w � R. w Ti 4-'o 0 ".4 , . T ,..�p,�­' 6 . ;" .1-� 4 - �� I I � I & .w � , , ,:�,V. � 1� , ­ ". - . � , .�� - - I ­ ,­-�cllw,. ,w %, !-,." "i-, ,� t -, -,� Wl[ " ­ L"". ill . . ,�7vm i4i, * -.,- I .11111� - 1 , , , "' � . . I . v I k'wfl. .11-1. ., I -1 I I L � -,, �'j ­�", ­j;1) . I I , , . I . � . I --- - �, ��,��. A ­ ,"IV I - '�7'-` . � - . ,� � .� ­'� 1-1 -:L'' ' _ 11 J_­,F­ - 1 � - - , 11 *4�:_ _ , . �,...,. I" , , 14 N4% � _ ". - I _-x , , .". � . nl . -. L -. - , , 4. �, , , -- � I 0 , -I - Q) I P. § . :,4 � �, - �;' -, . ,.; I � , � j I - -1E - I I ., � 0 1 .� . I . �� , - ­ , ­ _,_ . �. , , ., , , :1 ,. , `� '. , ,,, , �' "' 1� I � . 31�' 1 cn - ,� L - I � -Z: .f. . ­ ', , , i': , �,L,.,;. "f �, . "': � , ,;, . - `1 " �11F!4,--� "L Ik , ' I 0 cn au) ,&. - 4� ;- . I 4 - _ " . kk - 4 . I - V . . - ­� - r." ,;. I k. I 11", � I )IMM'". 111. .-� .'� �", 6"I ,I, I , . I , . . - � - 11L`�,-11 , - I , �, �," . , I , ­1, �4 T11 d "It . '_L' " .. _ r I , . bL.k , 11. " - , �; 3: ., . _ I . - I ", - , � � "' ­ --- �,�i ". -� "' (D .. 11 4 Ide `.- -t I - .11 . I . -�-ll v - � i�­� a 4111k � ,,, .?,:,I A � . ., i� I �kNrp-%�?-�w, , il - �h , - 4 -, `L;�� . �v 3,11, , A I Ir , �12 ) -� " -4 � !: V­ - .", .1 � .. �7;1k�l � I #�. . 1. � - I 'o. A - ; 11 . . � . . 1) � -. , ,o,,,01W,:....: ! M, - - I ." - � � . ,,, " ; I- �wr� - I 11!1� 1 . - 11 - I . - , .1 1. W . . I - - : EXPANSION AREA 2 . � � �, , - E - � 1. . ., , r ,� ", - ,F.. � -1. I I . I . , ", - I; .t Z?- - IL -� llt,�7115 0 t: 11� - � , . I 1. L, . ­ . -11-1 -,��.; x; �. L , , ; , ., . � ;c I - . - . . - . 0.1,1111 � I-) 'N . ,,, I I I T: �.,), -4 , � . I %, . , , i -�� , f�v*- e, 1 " , r, . � , k, -.,e �. - , , IL � .11� . .1 -In , ": p � I --- I � w 1. I 1, -,' �� . - -� - - -­ I � A . , , . �;F'- `� 4 PHASE 1, 2 AND J ; � �t� .,), �, .4- '"'L ' ­ O'� -� I All t" - � , I ... 0 LJ CM I . "k, � - - - I -� '9 _ - �, -� AC77VE C&D LANDFILL I rpj� I , -.� 1. ­,i, - t,-rj -- , ­ , , To � �11 ,-1-i't. : . , %b 1- - - � � I " li, . � �4A! - - �,. �; - .w I 1. .1 - � I ­1 I , . - , iAg, "', I . -1, wl, � I t� � I ­ . %'�."�'­ o �V - .. � -�' r J; ' �.,'.�',.', I I . 11 .. � LL , - ;A c - - �, .L I . L I , " '41 5� 1: . L - � I.". . , j, ��,j p , . J'�j Lj'� ;1 � .. I .. ,, - � ,. . , ; . �.,�, , . F!r 11 .. , � '��,, i�; I - . , - .av- . � 1� ��* :L, ,­-I�;A�-'- ,I .1. L 1 ­�- �,-�, ,� CELLS L 11 I "I, ... . .� -� . ". I - _ �, I I � I'— � A � t� i F.,:.."i -, - �,�., � �', e"'.7 -- - , ,�. 'i, qt­,]r,. . I ­ L, . 1�il I- - -11, , 11 ;. ,:" -1 ,."c'.,�- , - , , I � ., I I ;­-t - i L I �­ .��­ �jn I I .. I w a . ffza"", .. <% ;-4 2 c; . I :�� . V�1;74 ;14� �, ( 1, . " M wj - ­1 - I I 'L'.A, 11 .-'J� , I ii- 0) ,V��hi-� ��,i,!,�, Mjzlt�� tfrq. , . - � , . .- ­­ - . ... . '­ . " � JnL ,� I . ,� , I � -L_ I . I --- � . i .., 1i � . -. i . � �� 4�-, ,� , ,�: -.,�,i,.,.­, ' .L - , , ;;I. 0 . . ­-; " I . � � I . .& - L . � . . - ' 41:4411 .," 0 `t� , L #, -� , .,- .1 � . - I �f�. '�LLLL I . �, " � ... . , ". . I I . , ­W�,, L . . . - L L ,gf - .� . . ,,7 � . .1� , . ', " j3�. .) L r ­V V It, L I , , 'C' I INFU EXPANSION ; L f I , L V� . ,'.� g 0. = !V, I- .11 I -.1 IL- " I- . � ,.­ 1, . I - ---� -' -S 9­� , p, i 1,4 �!, � �, -- - .- ,F .V�.- 0. , - L . . I - L:Lf� - "' ". - ­ I . 1 ' N, L.; "'. ',* ,w- ---r. , , -, " �L �i!�­ t.:'p, � �- -" ��xj�'.-­:�� ,"4!4-," . �j I " 7-�,�,--J'i, ": -Z,5 , r'.­'1­,% - 14L.1- ,I I 0 1 OR J . . ,� --�- ", T---- ?t,�"-, a% -,:;-', . I . L ;'I .' �', w - I . , . 11 .4w;.,, "Lft% ­u'­ I - . . ­7 % , , i ", I " , : , � I I , - , � _ 7 ­ , . i - , . �': . �� - i:, - , , , , , ­ � i .1 " . - . A . �.... ,.� - , ` ., " s - J;".,� :11 . 4 , - "� ARE4 ACT'VE C&D , Z �+ , s . I'll, " �, !", 1- - - .1. L. � - .. -� I- "', . -11% IN- 4. - -'..?-,,.--"�� ' " 1 4. �C LL " . ki. I ,� 01 I ,�, -,-; :, ­V, - ., � - . 11 . . I . ;. I - -� L I I ,,,, ,k --�-� , !,�-,' ­ -; � . - '-Ik'.- L-�- -- �1- -1 4 ; 'T- ,. . - pq I L I . - ,I.' .% i . I ".. ,ill. 4 " "'. �,- .�� �A;:,;N-!,�,�, -: , -- LANDFILL CELLS � - L � . I 1 - "' *�l - :f f 21 L ,.�. I" , �OL* 0 11 I . I . , , ,� . . - ­ . . � I � ­ -L - I ­ . � * - "I 11 .,- , � ,.141 �­ . ­ . , , I � " �J�, - I .. - . --I,,-- -.-MT , � r 0-4'Y .,I,,:-- I �LA�:Jjj.�­i"L,�T�, 'i � ,, - � ­­ -1 .1u I. . . LL ­ I . ,�. *' - *- , - n' " ,��­"�j-,"".,�,.L, , . - �- _ _ , , '� .- ,1. , � 0�,, . 'L ..­,­­­"­ ­ , T - , i�i _ - I" .. =� � , . ­� !�w - , . � -V I .,.,L" � . -,;W . , _ .- . \ � , - 7, - -- 7­� - , � " I .. .. I ­i - '..14 111w L , 'I I ., � I 4 -, ,� A, -.1 . - - - , � , , � � , 0 , ,.� , m,��­�,�,�-�wg�-­,�F.�, �,-;tn� k�,,,----.%,7 -, _- ­ rj ­­- I " ­ . -- 1, . I I ­�,.. L . . .� (.1-f . "!W L ,� . , . �." . I . ,� "L I �, N . I Ili . � - .. - , ' - I .:., ­ " , ,� -11, ­4 ­1 - ­ 401 "" ­. , ,;, '� . � . , L .. ,,4, - I . - " 4 0 ,�� --l'.".. , . g �� .,��,7-��',�'.,':�-,, l'- K'�;­-.,-,4,e-�,;Iw�%- , I "44-- ,'.�'.\L ., - I L ­ , .', , 'S.,' , ,4 I� , ", . L�..�"Z:"��, .,� i .� I I � �7,\ .!,',7,',, � . z., ml� , �, ,�. �,, I -- . . I JL�,� , i,. L . �� , k�'L L- -�­­ l.- ,, �. ":-, _'. � . I . ­ L��j,: ' �: L'' L �- �L­ .11 -1 -I- � ., .., I - I --- ,,, �- -;--- , ,.L . � . . c,4�'I� F-4 < '. �, ,';,� ,- -_-!'�Q - �,, %." .: , . I - , .. ,.','I; 11 "'I - .k� 1: I I " ­1.2 t�a � � , "�'�� ';L,;., � - . . , 7 I " 1 4 1r: '. I ��,�, - . - . ,,, . llf:� " �'.­ 0 F-4 1 1 1 -. 11 ; - 11 , Q I , r 1f7*w3wwT!-7"? I . I 11 ; I .�, � , - 4i��, , ,4 , 11 L T11 -­ 11 I ­!�� I : ;� , "",.L �4 " I ,�' , ,� - -.1 , ., '�, � , ;> Lr � ­,- - , � -�,� -. i W­ " ­ , - - _:7 L ­:��. - - -Nk4,_.",_ , ,;, I . Ll� �L �', � :., �:, � . , 6� , I ", , ; "' sk, 4 1, �.,,, , .. ,,:�,, , *f-11 1. . ," 1* -Ii�' , _ I t , !, I , k � i. ,� L - --�i , I . � , .* �et� , � - � z , L :� I � -�� , ,' -, -,,�. -� h , �-,�;�'% - - - '�Ik 1�'- L , , -�� - ��.%,, .., .! � I , .* 1 " � N;& C4, �-- ,%' , ,, k, , ". - 1 � � Y , 0 � I , , 11 ,L . . , !,� ...;�L� �.: , n - .1.0 i I . - .1-1-- ­W, �-r ;L"�--- .-,. � -� - ­ . �, �_ , -, ,� , -t ,�, � - - �,! ',� � - 1, .�i , .4 , �.,: ­� .:Ii -S, .k I 1.� �i ,�, * F-4 �, . . . . . . . . . . . � I I ­ I - � I I � -, - . ,- .m, . �0:. ,� f -- ,i. 2 , ;-.;%%�,. .."'.'g-'IN" ,.� w 1. i� V r*_ . � ... �, - T - � 1, . I � . . . . . .. i ":. .1 .... - I I , - � 11 � 1, - L , ,.� �1� - I I . . � X-1 -- I 1".. I � � I �* 4,g , - , �� . � , � . . � T ,.,w $ . � . , � 1. , m , ft L 7, I 3.­":,�.:�IS2- 11 I . , , ��,, , I I . I ­1­1 � " - I ,.!: ' ' . . I I I . I " -, , i id Nr- k �. ­Z, ��- . � . T., ­, -� ". ' -' ` . I .I ... L-j u - - ,- N 1, � . -1 ­ r .- . . � i � L � ' I - , il�'N;� I ,N , L. . 1: � . - I - - . ­ ­ I �L " % N". -%-- -,��,L`,'-�,!;� ,",- ,�;...' � ., � -91" . � L 11 %, L , -,- - -, I T-1.111�,r:,!, 1K , ' . � `t- +mq � AL, - .V1 *k��, . 'L ",�, ." - 1. - tv , . . I IW I �-&,-,JAR li-.m . I , I � , , I . 4* . � - . . . I ; �.` ri ��,, - I ' 1-11 -.�,. �'T-, - . I - . . 1 - 5 .".. ,;- � �.4. -�� � I .�,Y' . � - * ., Tr, I,! : *k" . I I ­���, - , � - � I -,�, ­�, `,­ � 13f � . I .,- L , , . $N., ,V6, 1 - ,. - , � ' I �� � I �.. ,.. -�­ - . 4 = L--' ' - j �,, .I ,, � - - ­ . - v1i '] , 'i­ �. , I L ��_ , - ] g " 1, L�� - ��­ . Nl."., I ,­ I '" I - 'A ;Lil .� 't I I T 3 6� _ I � ­4 , .- -!Ir.lr 41 I., - " �­ � -� � ". , L. , , ------rp-L&�.� ,- A - ", . . .. w7p.. 7 ", - - , ­9 I " - t .1 r '.., , � . I ,ti "? . . � I L , . " , ,� li)le- 1. TING CREEK ' . "t � ,,, , - �L% , - . ' . . -1 ';p, � , � - I . .. * 0 1 � - . ,7y�:-,�.,,,-�� "" " .1 i�l! , I , I 4 ,mi &..�. ­ ,.�... �� , : ,�7 ! v . . ­ - - - I I . � . . - ��;4. , - , 4, , , , , ­ . - ,- - I , .S�"" . �c� I ... -�4-'�-'L' , , , I .1) " ,, � �1!1 � , , � � i 0 � 4 , . ' - �­ L' I.; I -,, �,� ­­­ " ­. . I - . .. d lt��u.,:�r a- - I R, "I , "i I -�� , , I � - !'WaL" L�'"' � it . . i.. 4 .. '��"­' I X, a Al V� i,: 'x, i I I � ,.� , ­*­ $ i I AX!,.L 1. . ,.:­ , 0 4e , , - - .,., - . . m .4 TING EXPANSION AREA I -,. . . . '* , : "­ -- ­ .. . ! 'L .1 . 1. � I &,-` �­fv - ,,�,��, . AffE!YZ5 - .. --- ", L,;�O"� . - V, L ,� M _ I . ,,�-� t L . i - % I � ,rAl �- , ,* �77i 4 , , " . I- I' ,,�-- . . - I � 11 . . - - I . .- .., - . - L�� CLOSED C&D LANDFILL CELLS . . . I � I . :4 " - , _ J;' ""4 i,�, " OL, .. I. - . - . I - . L . 5 ,� " , � F - 7 - I I � I I . � � . , �- " " 4F .- 1­1 . I . L OF I I - , � . � . . - , . L . _ .1 - 6 1 1 . - , 1� . - . . _��L I '. " - I ' . I , � - L .� I.- - - - I L�, ' - ! "12 ill ,� I , I � I . . , " _ ­­'­� ,� L � _ ��t,� -$")qrffl.q* .P" � 1-1- 471 W��T 711­..fr­.17 ��, '. . , . , %-�� - . ''. - .'. I _7111 R 9 . �m A � - 0 (n .1 17 11 " r 1L., , %7%7"t I . ,�," , . — �� ikb�i­,i. - 1, . � . Om"L -- ---.!---, L . , I I . ,�� � I - I I .--�� 1-�:,% I �', I.- "'., "i . I L I — -. I I I ­� ­ , , I ­ I � ", X'' i 1. I 1� ­ ­11 I- I . I- T -11 � - ". I � I .4�,-,Zc-!�,,.­ . I '.L L *$ - 7 - . .., .vx� � , z a: . I L " .. �� � 1; Almr,7", - . . " .. ; . ". , . I L ; ", I,, . , r � 1 1 L ­ .I- . 11 I ­ I ' ­ I v,,i!!!! 11 � 11�� �, e ,.;J� . I ; �� - I - L . ­ ­,­ I L �1\1 I .,.. �- t�!" "I I'll, I L . . . . . . 11 .. L 0 . � ,� .: .L .. 0 a ,�- '1�� � . I (I , .1, . I �, . r "�:, - .1 I , � , i.11 I . . L � I .� ,�' -", � ." -, � . � -- IT, I , L I ' � ' , 'i , J'� � w �, (; �, v L I . : I - - : -I- �. . I . � � 1. . I . � .,;' �,;'�, �"A, , ' 6 . ��' , L ' . 71. - �--ii . -7,", ", -�!, 'i . - - L. 1'. � I �;, . I- �,�, .E'; L I I � Z u z - . I I - � .. �!� �' A"I'L' F . . � "�!L�,?L�� i , : "-LLL -- I'Li _ �­ " ' I � � � ,,,.p t-C �� ** ­ L.%,_ ,. I . � . . 1; i � -r ".. . , r I I =) .1 4 0 OA '�,`N "A' . m � L . .11 If -, �. !.�.,, � L � � T.111Z i . '�- I I I . . . � I — k . I j I t I L . " - , � . , ��, t, � - � 14 k.Ti-.. � ,; � : I 1 ,4 1 1 . , � - "'' t � 1;,'. h-� I '. , -� ,7 , - I N V9 " ­4',L,' I L - - " ��. L �,- , 'I 0 . I I 1. ­ ,T,� " t�, 11 'L -" . r lo� .'­ ". ­ � �L�j ;�, I, k .J .J Z "LL'S"L, ",. " . . , . I I . � I 1� - - - ­g.', � I .1 L ' '' � , t. I -1r, L I b"-. . I . � . . "', � ': � *IV . , L �� ,. 1, k � - . I I I . . I*L 111N� . I � I I., " ­ ;L .t " .4 ' . . I 111 . .11 � .It I , , I �- - 9 , 3 ll.-11!11�. 0 �! (5 � "" . I ,� """,� I , , I - , - �'t ': .�, . It! '?" t-jj�'T�' ., "��'l,,. �L . 041 . L I r , � . 0 11.11, ml, ,� �, �Y:" '� ' - - h . v ,. I 1; , 7 ­.. uj I � 1� 1�',k �i �f - , '' , . L � AK I , - I . 0 - - , � � - . .1: L - . . & , t � I , %10 . , 'r r � -- �1? , L, I - ­�, - I , 1�� , L ' - . , . -, . � � ' " I . � � -, . � � �',C,' I., : . I . . 1�. , i ':: �, "j-,,� �', ,-, t ; - e! . I L I � I :z1h, I No: , .��4 , --,-, ; ,� . ! � ­ U L" .1 . �, ­.. .- ." .. � � - I &- . ji - -j' - � 1'..'.� I , , 4 �,i J - ..., �- . ­ uJ UJ .J .J : �-­ . �� � � X .L. .�, �v 'y".11 �k: �.% ,qpppwp�wrr-"7.-r­ 1'. �4 1! i - lly-L�­�:.� ' . . , t, I , ,�,T� _ I "! I �, � I � . � �, , 110. . , , �&i F. 1� f� ?11 4 0 . 11 I — - "'r) 77 1 ,�l ; j, --- : I ­ . . . - _ ��'. . . . 7L . , I I . . - . '� 1� . �1, , ir I - -.1 ­. I L. 11 . � I ­ � I �-�. Z Api., - . . , �... '%W,;: " L'"'�' It . . . , , � ,w-,-,- , � I - . I 0_ F .' . . _I . a. � i ., A - -- Rip- �— 2 a] — . I L�� I � 11. "k, I . . r * , , �,� , I . .1 . t ­ I , , I L"'.1i" 11 1A IT, �, * , - P I:,;, I-, , ;!� " �� - - � , - , , If 11 , I . f-% -� � � - , j it, y if, t . 0 �� ;:v . U, 1� ... , , . . . . I '. . I 1� , - Xv �, � �, - ;,,, i: -�Fj .'- L� - '�'�.'�' �1 I 'r" .7 I j 'R � , �11. 4 lxx/,� 1 11",4 ; . . .1 -:7 , - - L��L- L7� , r4", , - - �-, I � . . L I f . �­.�L%L: . ­411� ! ... I . I — I , , "- - . - �r -.! I" 1100 . . �. Lh i2 , F n ,­ L q . "' -1-M, ?� t . . - . 10 .. ,7,D , � A I . - . - � . L ­ Al, I I � 6 e. I �, , - I 4 : !�-- d. ch I . . � . .. I � -. . r ­. . I ., . .L- � - cpj�, ;� j ; I 'Ll � �:,� 1, , 1W ... � 1-. , I 1. ,.�� I * , I- �­ I ,4s)e !'-%, p- I . L - - - I ­�- L , L . I . - / I - , -A", ,,, < = Lu v i � ' , -p ", ' 'I �*"' " —I It, - . � - I T -­%, I , , , � . / � 41i L ' I � ... I ill. 3: �. .] Im _ j q -� "I -L� - 11� , J, ? �11"?�� . � . A. 1A �11 �","":-.,". � rT � . .� ,ALI � . � If, - -.., I , ;7 �� - ., �, %%IV,� L'k,­',L ­...'. '­.'!J",�' L. � I 11 -- , - - � -�..'I' Tt ­ I . � q. 'f 't ,tl 'A I '! . - , � . �l k � - - I 11 I .%,.. JJZW! , I . L . . I _ ­ .� 4 ��,,' L 0. - I . . I I L -1 I . .di , . uj I � � I I . .. � ,t , 41 lykl�jj' �!Ajv 0 . %�, , - I - .1 , I I . I/ " .1-7-1 1 il' ' ' ­ �� I L %'��* '+$"'.��" I I 'A � ,� . 9.­­ . � ,,, . I . I . , , L ... I - 1 , , � oiliwlW'i. IAI�' , - ` � ,�L' " . , I 1, LL = W "".'o '�.**­', �- - . . � I . �, t . - , - 14 11,: ­,�ft, - ..'" .. , , �, - 0 , , V 1. V".. �., J: 6" � nr 11 . I . I I �.' I " ? !j � .!.�; li I -- . �� " ., � 0 .A-� . , � - - I .. I I I , . 11 * -, ;p .fr , . h"M , , - . . 1 � , , , , , ! �., 4, , ff- � p ­- A C ­ 't ­,f - . ­� . . ' '' ' - . . I ' L � I I . � I 1. - . I " . %, '4 A, I . I I , � I . . . ­' '. " % ­ - ' I I "Q, C11r, -7V � .. . � ,;,. -. . -4 VL . -11 . . V. , A � k I � '�� ' A, I L� , - � - . I L _ " I ­­ it,,-. i%: - . , �f �,,;�V�;�r-.: EXIS17NG CLOSED .1 . I ­ �, ­! , -1 :) 44 --k z Lu e-- . . -, " � I ,.� eX, �1 , , , IV. , ". 1� . I , .1. . 11 1'... - . I . 1VI, -4� - i�.� f � ,,, ,,�, �91. . I . - . . L ' - I ,I, , , t ,� i , ., , �, .";", P I -� , , , , - - -, �11 lt� I .1 , ;,"L . . . 4'. ,­, ,*, I, , , - � ­ L 11 . `� 11 5�., 1 , � � L � P,�.c .� �, ­ L r� "A I I I �� . 4 , - ,. , , � WA , � I � ". 0 `­ "' �e ,�, : - ,� L .��, I. . iilo`-"� & L I. ; , �- FM, . ': , �, - , . - �;!��. � LFV.,jl , is , �. ". ..k , , ,.k� .". � 1'�, I 119v : i-i", � IT �4o � I k , ,� , i!, . , , �. ­ *1 LT � 11 ig . k., I I . ; ' L �.,c "; . .­%�m� . �. 11 ,�- ,"�"C�'-'_, � L ., elf, , . A�, 6, " . . 6 .:, . . I " , . _- , - ' - -0 JR . � � 7 . . . " ,!� 'i �m I - I . ? . - . -, " . L 7 1 , �, ., 'i , , i � "I � ' PHASE I C&D LANDFILL , , 4`17 , ' - - .1 - ' - � 6 � .1 . rI - 6 ��, : �, -- � I , �. ' A, - . , j.; . 4 . 1, .. � . �t'vt ­* -1 a, I I �­�­�� �; ,f , - 1. L . J, , Of.: ,q,l, U. a 3: - . � , k�-, "� , - -1. � .A. � il , , ." . A" ' ' - L Of?'�"A. .- , ,11�"4­; . ,. J� ;L'AL I- . ".1 ` e.. .il".�, 99mm '� . 0 �'#- 1;,�­ 7 mly-llivlv� "" , , is,,:- 'o -. , 4'. A, �ffi ". ­ , . 0 3: -- - !-, , .1 � 1­ Lu . �� L . 1, � ,�&: �-� � .1 .I- ., . 4 ­�­ 1"', ,, �, - - , �, i.�, e- '. A , ., .1 , � , �k, ." , -- . R, "I I . I ,�, I � � .: ", . . - L ", ­. - ,� I I . . 4 ." , , I . , '.` - -b". � .� " w t !.,� F � ,.�, , L - .. I - $1 � 7" � '. . , V uj : , "" I � i-��?t P ;1 . :;� -,-. I �, ' . i c ,��. . F- Z . T*­ . -1. , � -''- '' VNI , I -A , .... . - ) , " (%k iA� I l- LN , I - ", , - ,, - . . I L I 1. I It �,, I L :�;�fr� L , 'in, -, ­1 � I ff , , - : I h . , '. i _ , . ; - . , (� I I , � � 1�41, "'NiFIZ 1. A �. 4 1$ - it 'I." . v , I , a­r � , 03. it 1= � , i � � . I .1 ii "i-`, k ,,, L , I , - , t � , . , �j ' "" 7�­' ' .�JT� L ��­. :" 11 f ; 'i,- ­ ' I -, �n I � 'a . - . ; 7--, L ' .'. - V , � - � - - " ., . . i�,! -, f 0 - 11 4, ,� . �,t � . I - ir , , I �. I . . I � J';.A I .L, I " , ..c, 1-1 .;FM -t�7�'��k, �, , I � . . . , � vaw ?-11 ! .. , 4� 1 , I I � , :: i L - .: j . � � 'i I . . 7, �­ b. � i � I 11 . ' - -- 1 . . 1, 1 �,;4' 1 . t, i.C- ;!�. '. � - . . . 'A": �� .., 1� I "' f4 ,',1L1 - ' ' , � - -� I!, I z I ,.� . p I . L. � I .. 11 ,,� �,4 i 7ery.­V'.,L , . � I L I � I ' I I � I I . � 'I e'? �'.­ � � ,3it,i - -, I . LL, ' � eX", - I � I I . I -1 - - ,�qf . . . v I � . � . . - , , -. -,. . . �L � 1 7 IV . I i ., r4 . I I .11 L� � . I . I "I '. ..;I I .., " . L � L - -1 I . I � I � I , T, . . L � ': o , . �� , y k, -, b;---Zw.l L 1. . I I I L ,� I ? :�� , - I . . , , , 'A I 1 '- L . . idm� . �, )1 -�V ,; I . . I ""All 1-�i . , - .1. I " ` ' , it I I . .. . r " � I - 11,11k. .� , W11 . - i ,, , .". '�,'��'��.' I '� 'j'.'.! A, . �' � 10 � ;� , ,., il� 1- �� ,�,..v;., �: . . I 11 , !�� I � , I k I ; i -;�i­;; "i - I N - 1:" i 14 1 � " , L,:. i 104 ,e - f . : . � I 11 . I � I ,- "., , at i �*� , I , " .. I I �­. 'N"r, , . - - . � . I I � " I �111 z . , I -,. .� Ir . I ' . � I I , - � I " - ­ � L ,-,�-",L, - - ` ? w ­ 4 'I. � - . . I L I . , , .� - I "� �.i �;,�� .., . , v , ", 1. .1 - "' , �;, , "' - I i I" L --��6"4 i, �&ki I . ' . , ". I ". !,;� ,:., -� ,�- , -- - -,iv�,,, , � . , ; I r t7 �.­j ��'��',­l .! k,--,�-,.�,:: �.1,�...-:--�:�,��* � 'L I . ; , . '%�.' . . . .1 .jj 1­-� t-.1 � : . , � I V. I I L �1 I I . 'A `7 � , " !�� ;�Rfr - . , K� I I . *� . 4i4- � - -� . ". -#,� w1* � . - %,� - - -­ � A - . � '. , Aqr k; , �. i - 15;A , 1, () a - a a " L . L I , I I I I ! I , X - , ; i t :;-t!.-'. j)j �,� ".*.,.. -�tj�%Lr, - , ­T�": �i � � . I -,- L, I r- :- '. I , i :� I I _ ;,� . 1 -1, � Z ­'!"k I ' " , Lj �'( ­ �. L - . , � : � 1. .4'. .� --& ­TI: " - �- ... !�":, " , ,�) (v) cli I � ,. . L " . . L * ;-, �� . I I 1111101 1. . - � `�,,A - ".; !,A 'eL,L ­,­'. ­1 '' ; "' " . ­1 ­..�.: .. I L . I .1 , 11-�.I­ .... , .: [I : I ,;j.�i..� . � � - I .11 'I . �, �LZ I �. " . . , - .17). ;L,�;,,��!,F% T ! N � - I Nt.,',�,:-�,�,!7,i,,,,, - . �L� I . 'o h '' I �� ,; �� '� "? 9" L.. I I. . I ill 11, - f , ­ � , - I "' * - -q-1, � I I . I r - � �, - � " *, - 6"', ", , T- : ;1 L. ­ 'I � _'j,L �, , ,.-' 4h, � L'o-,-;�" ! . . . .� . . . "I � I . -A I's -j;,­,, , A, -Q I I �.� � " � , ­1 ­.Ir I ;;!�,,.;i, ,� ­ 'S v I. ­4,4 -�'�`, - I . . i.. . . , ..... . N� y ,- �� ", -, '. _; ,1� i -A, 11" . I ;-Q 'I ,­�-s ,,,�;, .N .�.I- �t-, ,'�.­ � .� ik , IF � , . I � , I ,�� 1, " , i I . L I . L �, , '. � . - , ­ - ., ,' � �Ii i . " L": ,F" 'r, I N I - L L , L . 't-t ;. P, .L. ' I ,, I .� � . , 1 it)rp) , �,T� � 4 - _ '. �, ,0, - ­ '.."', LEGEND I � I W. 'It 4 I ,V1 . '.I%',l�­.' ­ .L; L �11 , ; , VIT 71 1W -� - - ?41 .� , �' el'ili. i, '", z . L L%:V, 1� "�ir-��f'.k,­r­ 6, 11 �-. t '*1 - . 1�`t;'.I�""�-i ":; . ,.-,.)( -1, I . �.,i I - I � I . I . . � m m � ­ .� r . : J� � v 4�% � I : ''. I � .11 �7� � ...itf � 'J.!�-" LINE �, . , I I IL . L �� j, � ­ I - 'A. I I � ;., . � -4, ;�4 4,' � 5.: 7 11 -11 `:�":-,.4,j1--,,,�,- , 11, . . - 1�­­ . 11, i 11 . . ­. 1 . . B - .. 1­4�� - `�"!"',";� - � 11. � � �. - � - , ', L , r �4� a. >- - , I - , , , 0 '. ., ,��:�-F­ .� .� ­r I I - � , . I � , , . 'I, % I - .. . L 'L,'j , � - - .1 " " , ", _,! . . — - I *­ Li _ _ , k�, , - '� , , ��� � �', I �,��-�,-- -­�"­ ,7..Ty'�� L r rj , ft T 7. - " .1 il �4. z ..., , : � . , Itin �, , ': , y 'b L,-,, ,�'!.,- I . _ I .4 � LL1 () _ � �� .. .'� I . [it, . � �11, �: , . 1 5,11 T Z7 ,;?..,, �. ,,,, . T ,V.,� �-74'�.'I.ti'�'.jl,� ­�� �, �. I �- < Lu - , t�" i w`,*,v--',­ EXISTING LIMITS OF — a: m: .. - . -11 11 1 WASTE ci) '. I A. . �,. .. I I ,� , ", , I - `41 1�k (� ,�, zq � 1 , N, --, . �", � " "i "'. ; � a) " .. , , , SCALE IN FEET 0 1 i ".. , -1" .", " ,,I "� . . 'I �',J` - -; - , - "I N , -j T- i U N" ,, � -j R . .� I ­ ,- 14&� , , . ­t' iL�li � MMENI Im 'IT Q . I � < �- = p - . I . . � � . i - � . � ., - , , I I � I I—. '!. � ..4'.., � " �1��7�"!T-17)4!41+­ � ww­ . , 0 200 400 C/) -r- � - ­ . � , �r,T�., � ­, �� , - ,. - '. I I : I "� cc :) 2 1 �.p - . " 1; -.,F', ':' ". , tT. - - !i� , , i ..., 'c", - Z.1. . uj " '. I � -- --- , . :'. r, )�,� , . I I , - A ,I,, ; , , I . 0 I �, ,­ . -- - ­­­ , 1'--A�4' 6�\ '� I 111A A,, . , - : - I I �� ­ .'., -1g; , �, ..; - 1p - I , , � .11 '. . : � - ,­ , :7�� - - - Vr- R�11 .1�;,,�, it ; API - '. �. , I- .. . ,� 'n � > :) ., - - _- 1w i , , . - - - � �-' . . . , . - , < : , : �' ­ '.1 . � 14 I I M , .AL ­­-11. . I �--­�, i - �q W I i � 71�,% . ­..., 0 - — 'T ". 1�1!�� . 'LL . �­ , � , . . I-- It, I- - I IMF_ ­ . 'j 1:� I � , - . � - -_ I zz . ­_- - . ,z� -�- , - . �' � _ . - JL " 6 � . . . . - . I . . - - � "t , , .. I ". :- , �.?,�, - - - - L IIIIIIIIIIIIIIIIIII11211wGri. , , A "10 � :.. e, -- . � - - N . I , 4 � - LL , T ;"� )I 1011� �� �� W � ..�k � � ��, f . . . . . , I 11 �, , ? - . - �� I IQ . - - I � I , �Q Z, . . 5-: 3L fj 0 M NORTH CAROLINA -i Z 0 - < �­ m 2 0 0 > BOARD OF EXAMINERS .. U) ui 0 2 Z5 FOR ENGINEERS AND < Cr CL I 1. AERIAL IMAGERY FROM 2012. 1 SURVEYORS LICENSE 0 0 o- < f i . � . 11 ga­ I jit.6 �id 61v��� - I ­ - - — I 0 " - I I . � I . �- A FIGURE NO. A I NO. C-3035 z 1;�' 2 � r� I I I 1 7 1 6 1 1 2 1 M r I 4 of 4355 A �, �� \ LEGEND PZZq METAMORPHOSED QUARTZ �/ •r -���, DIORITE — FOLIATED TO MASSIVE 9A NORTH .- , NNW Li bT Jjn t t_ -� r or DSg' nn PN Lu t - � � t Pie � A j Mill -CzV CZ q �. -..� 1� r ock. 4V CZ ph � 1 zv' max• � � "'' � I 10. ft- US �i low Ilen r1AF=,= tit PO GREENWAY WASTE SOLUTIONS AT NORTH MECK, LLC Civil & Environmental Consultants, Inc. NORTH MECK LANDFILL 3701 Arco Corporate Drive - Suite 400 - Charlotte, NC 28273 HUNTERSVILLE, NORTH CAROLINA REFERENCE Ph: 980.237.0373 - Fax: 980.237.0372 GEOLOGIC MAP 1. NORTH CAROLINA GEOLOGICAL SURVEY. 1985, GEOLOGIC www.cecinc.com MAP OF NORTH CAROLINA: NORTH CAROLINA GEOLOGICAL DRAWN BY: JKS I CHECKED BY: DMC APPROVED BY: DMC FIGURE NO.: SURVEY. GENERAL GEOLOGIC MAP. DATE: AUGUST 20191 DWG SCALE: NTS PROJECT NO: 111-370.001 3 0 .c 4 O J m 3 O N N I N 8 1 7 1 6 1 5 1 4 1 3 1 2 1 6 of 4355 I� lei F E WE N 1, C N z m J a I_ N a 0 B A \\�\\\ \\\\\1� I ( r \ \ ( ��� i ��� \\\� \�ii \ /�/ ==-J " 1 / '/�\��/' /� /,///,///�� �� ' 1\� \\ i'll' 1\ ,� /' /�'i/i'/��i���/%/�/i'"" '/i% /-'/r�i/i%// i�/�,�rr��///�-� \ I / ���,�, f -i j'///'i/i'/,,—/ �___���_ NOTES: \ \ ����� ( \ �/ l \\ l / / �� / ll l /��� I III /ii /i/iii //// / ��1III� � I \ \ \\ 1 I /- _ illl l/ / ,� \ \ I I /i ri / rill 'i//�////�iir/ii/i ri /i 1 l // //� // / /fir,// \ 111��,. \\\\\\\ \\\\ \\\\ ` I I �� \�\\�� l \\\� 1xI1 ,/ �/ // ��__ �\ �/% l / /�� `��i //�/ //�l/ / J \ \ \ IIIII -� / / / /// r�/rid /i%rill r// C/ ////ii�j //, r, rrri/�/ 1 \ ( 11//�� -� �/ / / ���;_, , \ \ ' \ \ `� \ I ( -/ /// ��/� \ III / / // r/r x,/// // //�// /// /,// //// / I \ \ Il///// //�/ �� z- 1. GROUNDWATER POTENTIOMETRIC CONTOURS ARE APPROXIMATE \�, \\\ \\\\\\\ \\\\\ l i \\ �� \\\\ 111 II �/ / �- /////// , / �� J 1\ 1 �l I / /� / rr r� //�� /// // /i \ I l/ �� --% i� / l / -� ��� / \\ ' \\\ \\\\\\ \ ( \ \�� - \ I li / \•� / ( ( _ -`�\\\ / / / // / ( , /// / /// // I / // ��--_ // E � \ -� /i AND INTERPOLATED BETWEEN WELL MEASURING POINTS. \, %�ii I \\�\\�_��'� I \\\\II�1111 III l/� ��/// l \\\ - /// /�//� �\\ )/ //III 11 // / // //ii/ /�m/r/i/ / el `� ��//��/ // ii///, /i \ \ )1 /IIII/// / ��ii // l ���� -/// ��� -��\ \\\\\i\ \ \\ \\\� \ I \\\\IIIIII I\ 111 II I' /^� ��--� \ \\ \ \\�� ( �/ % ��� \\� // /11 11 // / /// ////ii/ice %/j//// �� //��/%/////// j/////,/ I I \ i I/ //////////////�/// / / ���� \���___� 2. ELEVATION DATA IS FROM APRIL 22, 2019 GROUNDWATER IIII) - /j 11) \I\ \ ` \ \\ \ '\\ I 1 I \ l IIII III / / / /��� \ \�__ \ \ \\ \\ / -j/,// /��\\�\�/ / 111I / // %////// �// /� �- /i�/ /i///i/////// _ I I I I I////////// / ��� �/ i�� j // \\� - �/ / 1, / -=__ _--J 1 \ �� 1 l 1 IIII V IIII / -_\� \ \\ \\ \\ ( //� // /�\ \\\ / / 11 I / / /�////// %�// // � =�j /„//,////////i � I ////// ///////� ��-�'� �/ / �������-=_� MONITORING EVENT. / I I 1\\\ \� \ I \ 1 U� I I III I III I / / /� �-, \ \ \ \ 1\ \ (I /// / \ �ll / /i/ /i // / / �� /i /i//ii�/� I I I 1 I I/ / // / / /��i / ����___-�' l% ll . � _ \ \ \ \ \ I 1� 1 �Jli I /IIIII I l I -�\� \ \ \\ \ \/ii/��- \\ \ �� 1 ) / / //i�/iiii'�//i%%ii'i �j� �� /// /ii/ // / I I I ��(((((/// L I �// =ice �// _- - / ) / J \ ) / l I I I I \�_ III \ \ , \\\� /�r / /,/ /. -�.// i/i/ �// . / ► I I ( �( -1 / / / \J �� / III /� i)1 /��� //, %%%/// / --_- -- / / III�I� , ;II!l�lll%// j \ \ \ / -� ///////� V/ III I / / I 1 \� \ \\\\\\\ I i/�//// -_ �\ \\\��l I / / / /// // /// __-- ,,, �� i / /ii / 1 II IIIIII i / ---- //l ((� \\ I \ �J •�j ////��/// �l I l / I (� \ \\ \ \�, ,/ / /%_,_ \�� /-' l // ��/// i� ��i%��i'/i/�/� 1 I I I ( IIIII\\\\11��� ������\\ /� /'//� ---_ ��� \ \ I \ / / / / iiii�/r/ / / /IIII I /� \ \ / / / / �\\\\ I l/�� ll/ (�/ _�� ���� ///�// � I I I \ \ \\ \ \ / / LEGEND //�/NORTH ll l l l l I r% �� �1 1 /� �� %� // /// / �- //i /IIII I ( ` 1 11 \\\ , /// /r ��� \ \\�� / I I �ll/lull // //�� _= �,A_ //// _ � l � I I 1 ))�I ))I11 �\ \ �\\\\ \\I ' / / , II�11111111 I // � \\� J 1 / ll/ / ��%//// ( / /// IIII I I I ) ) I I I � � \\\\\\`/ / / //��� \\ \ I 111l lllrl/l //i i/� � _�� � �///��/,� / / I I I �i�l� \l�i�� 111��\ \i � / / o I I I �% I III I �\ \\ \ / ! I / �j /� _ / / I I 1 I \ \� /I ��// / \\ \ \\/ l / �' / �" / �/ -� I I l APPROXIMATE LOCATION OF INFILL AREA C ))))I)lll I II I III \ \\ I I / / //// L__� I / / �� I\\\_ \ I \\ 'l l/ //i -���- I / //// / /) I I / / ® GROUNDWATER MONITORING WELL IIx I /ice / �,, ,� // l ► , ) lji/ /r �)) Ji1l»��)» I C� �� IIIII) /l/illlllllll I I I I I I ((( \\\\\\� l /�JJ /i/j / , I I I I / \ �J // \ / I // %// / / =�ll�lllll //l 1 I I \\ ---� / / � l ' ' \ -\\�� / l ll/lri�i li(/' % - - r l ) % / /�// %// (� �i lIll/ /r / 1/ l / \ " i ��-� I 1 I // ��-- \\� _-�/ // / I / 1 I I 1 �' I -� / IIII �l - ^-� /�/�'���/// �// /// // / / / / /// �Il 1 / l / / �___=����- = APPROXIMATE LOCATION OF V z �� �, lI I 11 l I 1 \ \� /�i� C(<<� �- I \\�� l / l � I % l��l/� �// �, %; ,//, / r l /� l/ r� l -� - _ \\III(( /� \\�\` \ \ \ \ \\ \ \�� \ \\ \�� //�-- �� / --, ���— �� 1 I I l � / / ll /II'/l //j�/������/i /�-� / / /� / / ///////%� ) /�/�/ // Il /ll/ / / / //���- - �- CLOSED PHASE I GROUNDWATER o \\ IIII J \ \ \ \ \\ \� I 1 (( \ \-- % % ��� -� __� l 1 I I ( II /I I /� ��i/,/-� �'� --� n /� --- _�/_��i j// / //r///i/ �/I IIII /Ill / %/ ��- - _ _ -- z 11 I \ \\ \ �\ / \ / / ) I / III lI / �-�/// �/ / / 1 / / / /� / / //// / / /// l /I 11 / / `/ MONITORING WELL \ (( �\ / / 1 ( III 11 / ���//i / / / ��-- _ / / / / /� lI I /ll l / i ��� --- ))111111111 �� ��j)� \\ \ \ \ \ \ \ III �/�\\ \ �\ / / I I II I I (�ii / /, %,� / �,��ii / �_ _ / -� / / i =���i� / / _��-� APPROXIMATE LOCATION OF LANDFILL cn V \\ \ 1 \ \ /-� \ \ \ - 1 I / I III // __-����/ �/ /// / - ��� \\ ® o l \----� \ / l l I I / // / // ��ji '\ // //// / // l l l/ / / '/ / �� POINT OF COMPLIANCE WELL - )�)) 111)I)I /, - �� ) I \ \ \ I �—, \ \\ \��/ �`\ \\ --- —_ I �r— \ \\ / / / JJ I 1 � l ) I I I I(U '�'%''/� —\ � i//� � —_ �� ///i / // ii 111 // //� cn \ � I I %� \ ( , // �l \ I \ �\ IIIIIII,//i / /�� /%// � % /// �\ \�� //j/////Ili I I 1 I I \ \\\ - / ----�� �� / / \ \ `�6� /� I I l(� �� �// / / 1 / //ii//�//i���`=�j/��/� j�/ /,' m/ l ll/ // /l -� \\ I // / / / I I \ ®\ � / / / / / / / / 1 \ \ \ \ 1 I IIIIIII / � /,/// // // //// /// / / �-'\ \ \_ _ WATER LEVEL ELEVATION GAUGED IN %/ //////� ((� \ \ \ > - - / / \ \ / I \ \ J \ II I I ((11 «� // / / /�i /��� j%� / L / /// //irk/// �� / // �� -- 676.99 W ,/ I I (� ( I (� \ \ \ > % //� - - \\ / \ \ \ S / / IIII /� / / / / /ri ///// /� / / / / ,/ // I I ( ( ( I I I l \ \ / / / / _ --- �- - // / / \ I I \\ )� / / /// \ �/i �J 3 / // //�////�// / l 11 I I / / �� �\ OCTOBER 2018, EXCEPT OFF -SITE ;�/� III \ ` ` \ \ \ \ i / '�/� _ _- ---- -�� \ �/ // /- \ \ _ / I \� ��. 11111111I I )) //�///� // / ,/r%/ //%%/� /�;;_ �: i_ iI //// / /// // I III ��/// /// ���\� WELLS - V I ((I \ \ \ \ \� \\ \ \ \ / // / �/ /�"�\ , ---- \\ �� // / I \ � IIII `/ I / �� // /// / / // / //� , // ii� — ,� / /�// �� / // l �\�� I \ \ // / I / / /// / � ��/� ,// /� / / \))Ill / // / _ - - - - 1 \\ \ \ I I / / / / _- \ \ I I I ! ( // / / / / / / / / / / / -� / / /i --�/ // / / / / ��� - EXISTING CREEK \ \ \ \� \ \ \ / /ii \ \/ / �--___ / / / / / / / / j/// /� _ �� / / //� /� ���\ �) \ \\\ \ \\ \ \\ \ \ \ i / / / / // ��� ---- \\ \� //// �5� J o� I v �- �� `-'/ �// // / l l / / / / / // // ((l (\\�\\C / / /////// //-� _--� / ////////// / / __ �i GROUNDWATER POTENTIOMETRIC %�\\\\ \\\\\\ \ \\\ \\ \ \ \ \ / /l/ ////� //i/ // �-\\ ��_-----\\\ \� ii �i I I I 1 1 ��\��-/�//i / /i / /// %li�<<\�� /J \\\�\\�� / ��,///i%jj/ //i/ii/iiii/ /r//// _680— ��\\ \ \\\ �� \ \ \ \ // / / / / // _ -----` / / o \\ �/ / / // / -� / \ \ / / // / // CONTOUR (APRIL 2019) W // / / \\ / / / ///��_- �� \ \ J \\ \\ \ \ / / , / _ 11 / I I \ \ \ \\ // //// / / /\\ \ \ \ \ / / I --\\\\ ��//�\ \ / I o-Sa �� �� / // / r / \ C< << / / /\\ J \ \\\\\ \\ \ \ \ \ / / / / / / /// ( / ) - - \ \ \� / MW-15 (i)� _ �/ / 1 �/ / / ////// / J ) / /, �,] \\ \ \\ \ \ \ \ ���` (/////�'% i //�/ /,//// ////// //////� / ��\ \\ \\ \ , \ \ \ /�/ ' \ / / /III ��\�� //� \ \\� �% �/ / \ I 718.84 \� \v '�� / /// / /, ///// // // �� �/' ''// -� \\ \\\ \��\ �I'/I l /// �� / / ///// INFERRED POTENTIOMETRIC CONTOUR \\ �� --� \ \\\\ \\ \ \� / I I I Illy �� \�� l l �� ; ,�� �\ �� � / �, 1 l o \� \\\� / / / / /// / / ////// // r / \ \\���\\ \�11 l III'lli /// I I (/II��//� ////i///// / w /// ��11� \ � _-� \\ \ \ I 1 I I // / ( \ _ ��� �_,��\�,/�\\�� __ ///, /-\� 1 1 I I� \� \\ / /r //// / / /i r / /// \ \ > \ III 111 11 I /��((((( (( a \ \\ \ , \ I I I I ( \\ �� �\ \ /\ \ / / / 1 I �` o / \�� / / // / -\ \ J ) I 1 1� IIIf ( IIIIII ((( �1 /j; GROUNDWATER FLOW DIRECTION o IIIIII \ ����J \\\ / I I I � __ ��� ` � \\ ��\ J \\ ��� , / r ( t� / \\\\\\ \� / /// /� / / / \ \ 11� I IIIIII 1 111 I I (11 �� \ 1 / 1�� �% \ \\ \ 1 I \_ - / \ // / / / //r / 1 IIII I I (���1 (\ <� 1 I II /I' \\ 1 III \ ` ��,��\�\\\\� Z\\ /\\\\ / r I \\\\\ // � / // //// / / /�� �__� ►IIIIII I I 11\ ' I11 \\\ \ \ \\ \\ / 1 `'/%illlI , ����\J \ �\ I 1 I ► \�_� \ )\ �---\ ��,,- \�\ \\\\ \\� \\\� ti(I I I I� �I l � \\\\� // / // ( /�/ / /r -_�J > I I I IIII 11111 �I f� IIII \\\\ \ \\ \\ \ \\\ \ \ ` �I o / I \�// III II\/ I l \J \ 1 ) I 1 1 \ �� \ \ ) �_-��� ,-\ �\\\\\ � \\ �� o \\ �� / / / / / ( 1 II IIIIIIII 1 , I1 % ,�`\\\\� \ \\\\ \\ \ �\ z /ll I Ill/- \ ,\ ) I I � \ \ 1 1 % r /--- \ r / II /�� \\J / / i i I I I \ \ \ 1 �� -\ \ \`\\ `� 1 I \`"��� 1 °J /�j/ //// (�\�� I / //----- l/ 111 11111 I V'l \ \ \ l 1 �i l l \ �,,-� \\ \ \\\ \ \� \�r \ ��' l ,!/ %�/il \ \ 1 / / /��----_ �I I II IIII) J /� //�J 1\\�\\\\\\��� \\ \\\ \\\\t \\ ( / � l\�� / /�\ \\�� / i / / / / j \ \ \ \ �� --- \\\ \\\ \N III \ - 2- 1 so. --�/,--.� I I / / -- �// / III I I )) \1 , / / / / -� ////Ill II Illl�� I // l �/ /-J \\\\\ \,\ \\\\� \\ \ \ \ \ SCALE IN FEET ( \ l J \ �\ \ \\ \ �i\ --� // I ( / _ III 111 l L , �___� \ \\ \\ \ l CI \ �� // //��\ / , / / / \ \ \\\ \� ��; -_ \\ \\ \ \\\\ II� / --_ -----� l I I 1 / �- __ IIII I I /�/ - �� \\� \\ \\\\ \ \� \ \ \ / / , - \\�� / / / \ \ �/ _ _��\ \�\\�\ \\ 1 ��� \ -� o ° 01 �') I '/ _ - _-- \� ((III 1 / I \ W (� _-� 11 l ull �I� it J\ \ \ \\� 0 200 400 \ \ / / �- / \ \ �� �- \ \\ \\ \\�\\ a o I - - / �� \ \� \ � ' i' III l I %� - :��� \\\ ����\\ \\ \\\\ \\ v -\ \ �- �// \`�i - � / / // �_ _� \ / - --- \� \ \ \ \\ �\ \ I o ra _- - \\ \ ) I I 1 l I I \ \ �i -�� J�l ljl II I j/j - ^�\��� \\ \ \ \\\�_ �� / // �� / \\ \\\\�\\\�\\\\\\\��� 1 ^h � _-_\\\\\\\\l(I/III I I I �r // ��_- __�'//�J/IIIIIII % �% �_�\\ \\\\\\\\\\� �. /� \ \\ o / _ _ \ \ I / ^\�\ \-- \ / rill /�� \\\ \ -\ / / / / \ \\ \ \\ \ \\\� \\\ �� (� / �\ \\ \\\\ ' l -__7 r I \ \ \�/ �' - ) / // / \ / �_ �� \ \ \ \\\\\\\\\\\ \\ ° �\ 1 !` ��- \\ \� \\ \ \\ I I / / / 1 I I I ( I I �1 I / //// //////� / \\�\\\�J\\\� \\\�� 1 �/ / \ / �\ \\ 11111111111\�\ 1� 740'��/ ti \\ �l�so�� a s� \\\\� o\\� 11)�lJ / / / J I I \ \ 1 �j 1)1 I I 111 / //r�ri �/ \\���\ \�\\\\\\ \\\ +� U \-�/ /// / / \ )�)) \\I w �� / 1 �� _ �� l f oo, ��o `� \�^O.�\\\�\�\�� li / / / I I / \ I 1 I i I I //// ///////////�/ /\\��\��\ \\ \\ \� Z ��/ // /� / l / // it r�� / ,, �� r \ ff ,ram o \\ 1 _\\ \, ,� / ll I ) I 111 / �(/ .: \\ - \ \ \ \\\ \ �_� __----=�j // 1 ) / l / / -- / // / ///��%) r\ / /LJ o / ��),\ \ \ \ r�`�5 ?)� o \\\� r\\��_� l / / l I I �� J \ \ \ \ )I III llllliil�/��� I ' /'/ ����� ��\\ \ \\\\ CIS 0 N --- _ i %�� ) / - / / // /////// /// 1ti .�r \ �l, 1 �1� \I \� --� / / / 1 I � \ \ I I I I I ( �� III / \\� \�\\\\� \\ - w_ �i_ _� l / l I __� / // / (_ o / / �J �� , - \ 1\\\\ 11 r\ � \ / 1 1 \ \ �l I I lllllllll I ��� /�\\ ��\�\\�\\\ \ \. +� �. r� --- _ /�-/ � ) / / / -� / / / //� / // L,� ( / l/1 1 JJr\\\.� / o� , ��� I I I I \I \\\ % / I I \ \ I I I I I I I I) /// /�\ \\\�\ \\\�� \� o r� - / i / �- / / l ) / �� / ///// /�� �� ko 0' // 1 /� \moo; \ : �� I I 1 1 I \ �_� / / / / / I II 111 ��� l 111 //�\� �� \�\\\\� \ o /////%- / /� / �� / //// /���/lrC -�. I /j I II111 \\ \ / l i / i I J IIIII 1 ll / \ \\��\\\\\ -- %� �� i// `�j//� �` / / / ////// I �/� '� ° ..1,oi �� (/I , ///ram \\\\\� %ill J�)I II1111\11 \����1 / II / /�l %/ / ) >�����)� )) IIIIIIII/Ill llJl) �/ 111 \\� ,\,,N \\\J / // % /�= _ I ��-�/// l / i//// l I U//��¢ k J// II//,", , �\\� / �� I111\\, �\ \ / / 1 / // /// / ////////J I II ��� ��/ // \ \� \\\\\\\\ U N / `� /�%/�'1/ ��--__ I '' ��% \ ( 1 /ll(f(I (IiI/I L//j/� ��� /�� - /,�/� ���0\\\�o2.g1 - / / � I ��o\\\�� �_ III / / /l /� / /// / ///rii � I IIIII ��il/� (I �� \\\\\\�\� � . / , / ///, /// _ 111 11 = I / , I///// r - / //� \ \\\\\ \\\ / (/ I lo��\\ \\ I I // /� /� / /, //// 11111111111�(((ll// jl� r��(�1( \\\�\\\�\��\�� 1 o c // / 1 I I %-__- I 1 /i))))) /i// J� \\ 11 l/ \\ \\ \ ( 1 1 ��\\I \\ �l l I l / // / /////r, I I IIIIIIII Illl I ► __ \ \\ \ , 0 00 /%-//�// / j(r��r�` ` -_� 1 1111/� l I Ill ////// J%�/�� ll �o,� 1 \ //�l///\\\11111 I - 1J \\ Ir��/ )IIIIII\\\\� 1 / l I I I I ��/�//// //' IIII/ ' I III �IIIIIIIII11111 111i \� \�_ \\\�\ \ \\\\\ 1 o c� /�- �� / / //` I (� \\���--�-�____ ��I,,�--� /, (I(/,/,/i �� ,, 6o I ,// \\�\�,�\���,I I\I I // ► \\� 1 , , 1 I (,r`/,,,, / /, I , I �I11 II �\ \ \\\ \ \ ,� ;� / \ / �\ ` I // IIIIIIII I \ \-� \��� \\�\� ° / _ __ l /i �I \ '---� �lll /// / I ► I I (( // // o� 1 1 I /� /i �-\ \ \ I%il)l/l\\\ / l 1 I 1 I / / 1 \���� \ \, ,/ /--� / /� I11 \ \ i --- --- / /// o /' i1� \ \1 / I I 1 / / / / 1 111 / \\ \/� / / // // / / I ��(( ,- Illy // I \r \\\\ ,y� `r'� \' 1 ► 1 I \ / //i� I I I \\ �\ \\ �\ = �i -_' ///� �/ j' ' \IIII\ \ _�/ �� �� / I �\ ��- �' ��` o / o II �'�� \ -/ �,\\ T �/ / I I JI III II (�I ��� � \� \\ \\\\ \\ 111 C� // /��\ 1 I 1 \\�\� %-- —__J/ /j / I l // / �` ( \\�= �/ / / �\� 5 1 \\ \ \ l L, I / I I l /`° I I 1 / 1 I / / ��( / IIIIII \ \� �� \ \\\\ M �\ // 11 1 // / � / o \ / / 1 ) I ��� ��i/i 1 I \ \ __-�//// //i //// / / \ l \ \ �� �/ / / / �o �o /�, ( ll1 IIII /I / I��\Il \� \\` \\o \ 1 (- �\�� 1, �° 0 IIIIII 1 I �� / / I 1 I IIII \\; ��\\ \\ \�\\ \\ \ G� ti I", IIII � -" I \\ �� -�//�% �i////�/ / \ \ \� // / o l ( /l 11I 1 1 1 11 \ \\ \\1 \ \\� --�% 1 I / \ l�\ 1 \\\ - // /� I ► I \ \� - ,) l / - '/ // / I I 1 \ IIII 1 ll/l l / I I ���\ \ \ I I // /� \- \,� ,� // // / \ �_, / / ll��(� l 1 I 1111111 I III \\I \ \o\ ` `\\\\\\ \ �)�) I MW-16(i) i) I I I I % / // I I I11` \\ ��\ 1 > o ; , \\ 1 /l / /, III \ \ � //� /ii/ // / /// / 1 ) \ / / ° ��� =-J� �� I III \ l \. / 1 / l J \ ))) l I 1 / �� / I / /i / , /) I �.-- _ // // \ �- ^ o --- 1 1 II \, A" \�\�� \\ / //ii 681.19 1 I I I / I \ ���� I \ 1 r- \ \ J / / // I -- _ \� //i / 111 l l / o p ^� II I I l i �I I 1 \� �\ / �i� 1 I \ // / )) (I I / / / �( / / l 11\ �� , / I o \ l -� %// / / / I 1 II ��_ \ \ �, �// // / // i% / / (�r(( �. I / I I o I o l\j)\ \\�\� /��i� I I \� I I ( I I I i / ���� rrii/r / I \\ ��� \\�-i / / / /i1 \ �_,/ i�/,/� l/Ill l / / \ \ \ \ ( ( I 2 0_ /JIl I �� I \ \ \ \\\� �\ I J� / l III / / / I / / // cy \\\\��////// / / -\ \ i// ��ll /� l /' ��� / ci II I� ICJ �� �, 1)1 I / 1 1 co // I I I I 1 I / / ,v II I ( I J I // ((� o / / // // \ \ - �� �-� // j j'� l l //l / // / / \ \ r � 1 ^ -< /6) I 11 � ��)) � _ I \ J // ( (�(\ ` �� � � \ i/ / /\\ /i / / V ,_J� �\ J )IIII) ) , \ /,� III %� ���\� \ 1/(/) l�- III I I , I J 1 I I �// _-� �1( 1i \ \ \\ \ \\ \\ •�, °° \ \\� / / - / /i l /i / l / J (l \ \ -� � // lrf\\\ �_ '\\��� /�///�/�///// / / / / \ / IIII/ 3o f / /o,� \_�,i/� I I `� F IIII ii/ /ii i se ` ---� I I ' �� \\�( \\ \ \\ \ �� o o) \�\ \_� l \ -��\ \_� /// / // / / i I �// ^ \ 1 / i� �11 �. \ \\\' II �i i-� o, _ I / I ((((� \\ \\\\ \ \ \\ \ \ J CL .. - -_ �\� / / ( \\ _-�'� \\\����/ii/ //////// / / l `- /i /�-� - - / �� \ \�/ �40 2° / %'�/�i/ � ���/�/�_ \��� c o \���� \ \\`II 11111�iJ -� III l I I ��� l , �_�-� \\\\\\\\ \\ \\\\ \ \ \\ \��_ ��� - /�// \ \\ _ ��\ �- �% /�, / , // J / \ III ?/�l�/ / �� %/�' \ __ \\I 11 < < J � r �__� 1 / / I IIIII �� J \\\ \\ \ \ \ iC; o /�/ ���� ��� -��\\ i/ ///! /� I / / \ \� o /�/'r/ `/ \ �' - � V �\ \�'\\1�,\I 1111,1 , , / I I (I 1 f i / I I I1� II I I (� \\'�� 1 1\ \ \\ �\ v a J �// //-- / / \ \ r �� \\ \ l I I I 1 I I-- w ---_�— / \ /�\ �� /ice �l/ /�/ /ll ��/ �1 / I " �i- -1 /i � , o �� --- i \\\\��� \, /�� l l/I ��- ;i-� / // �\ \ /.= - 1 /�� ��� \\ ��� 7 \ I�\'\ \�I \\�, \� \ � of / �_ ^ �/) / I III � � ► I I I I I�I I i111 � � ),)) �) ) )) I � coy -__________ J ����\\ \\\���`����/ ��'' I///// I �i %�'� ) / // / �\� y/ _ ��i -- \\ l \ �\ \,\ \ \\ \ \ 1\\1�, � \( ® - / JJ J I I 1 I I I I 1\ \ \ �� � -�� / /// ) // \" o� _ _ ) /� \ � - // /� / JI / / � \ \ /(� �_,< // ► I J \\ ) \\ \ �w-„ i -R J )) I I I I , / J a _ ---- J l \\ �< \��iii�� 11 I ( � / 11 // \� ! I �� \ '�\ ����,6�'i� i /�/ /) // \ p �\ , \\\ \ \\ \ O / J /// I I �� / �� /�� .N r ---_ - ___ ��J �\\\��_ �� �ll�lllllll �_��%: /l//� l l �� I I I /\ �.� /�Q_ / /� / \�\ 70_r (((, \\ \ \ \ \\ \1\"' \l11 669.13) 662.74 ��i// 1 % 1 )%)) I lJ �_// 11 ��/ ,,� O - ----_ = -��� ��-' i\ �-/� _ �1�1 /l ( �_-i %�` //// / ��� // II I I / v�� ���-� / //�// \ - \ \ MW-1 1 D i i - /� l ) i) ll /��/ /iJ/i � _- 11 / r _ / / / \ r- - / `- ( / / MW-10 R - ii!^ l �� / /� / C \ �° =/ \ \ \ \\\ \\ () / / // / / /ir M _� / �'� ��� ��1 \l�-�i//'i ���1//, l � l/ /�/ l \1 11 \ \ I 711.55 /�iI `` INFILL AREA �i�/,,//� 1 z�? 1 1 / C� l / 11/lull /��/i�/�/ j� /�� ///� ( - - ,, / \ `-�i� l l ��/ / I 1 %� /� LANDFILL %ii /i/ \�� I60 �s��; \ p lull ( ( / ' ��'� / �/1 ����� �� ///� /l//l/ 11 ( �ll 11 �\\\1 \��� /L / I / �-f „ ��/ 60 \���"� o-%/ 06 \\ / / / (/ I I( ( / /� �� I _��_\ ` \ _ ��\\\\\\�=�ii/� l 11 /I I �/ IIII /l ,� \ \1\� +1 , 11 �� \ /i���io� _ \ ��% - 5 %� / \ \ \ / �( I `\\� \C\(� ( ` ��ii%� �� II II ���\\, _ � \ /\ �; \\\��-%/ii� IIII /lull I \ \ P� \\ \ �i� 1� I /i/�i�6 �J \ L�%%; Sao // �j / /� �I II �I I �`\ \ \ / �'�' �111 II _ °- \ ( I I \\ \ \ \ \ \ �� � \\ � \ �_\ \ � �/� ll I ll1 / \ ` \ 6i / �� / / /i/ ��� ✓�%, . s / / �\))� III 11 \\\\ \ \ - i � I� _�' � \� ��--\ -\\\ \�_�� l � �( I \/ II /(, \ /111� ��j \\ (1\\ > 75o ii�i��i� / ° / MW-3(i) \ / I I \ \\ \ \ \ / / 1 I �� ��__���\ �\\ � \\ ---- ��11/(ll (( (\ \\ lllllllll �11 `\�� ° > )/ e° %�� �\ _/ \ \ - �_- ���!;; /,�2 662.98 X �/ \ I I IIII \ \\\ \ \ /// , Jl� I ��\ �_�� \ \\ III 1 �\ �/l IIII \ \� /�, ►,,o, )\\\� r � ! W �/ �� I \ /// l //l ---_ \ -,-\�� \\ \ \ \� �I I (1 \�\�i l I IIIII �� i \\ , ;,/%//,/1� o° o-.\\. \ ,!, \ I \ \ / / // / I -i I l \\ \ I i ) \ \ \ / I\\\\ \\ \ \������\1 ///j //r/ I / -� \\\� �� �\ /��\ C� �\ �� ( \ \\ \\\��/ /Jl I \�� l `\ \�� , I i////� ,/ "I \ � (l / ice___ — -�� / / i \ 1 \\ \ \\ \ / / / �i // \ \ \ i l I \ / \ S 1 // _J�� �1� �l�\\�/'�- ��I /\� \ \\\\/llll O �''\ \ \ 1 I I l/l l / / 1���o'�s�o / / \\\ /��3///�% �� 'i i Mw-116 \\ \ \ \ \ \\ \ \ / / I I / ill I) /--- 1 I /� \� `\\\\\\\ r�� \� \\ \\\\ I �/ N \ \ I I �^ ��� / ` \ o \ I 1 \ \ \ \ \ \\� / / , I �� //� � IIII 11 I - I V / �\ _ '\ \ \\\\\ \\ / I l l l/ 1 \\�\\\ \ \\\� �2//�i \ \ \\ \ / //� I / �� I II �� II //�\\ ��\\ \\ \\\\ \\ \\\ \\�� // \� >>l�l�/I� Ill / �. /(/ I I ( \ \\\\\\\�- � \\\\\\\\ , -, j� MW-4D(i) ��-i u 662.86 \ \\\ I \ \ \\ \\ i \,/ I 1 �_ //// I I IIIII�11\�/ /�/f( /����\�\�\\ ��\� \\� \ l \\ %l/'l 1 N� / (( I i/ ) \ �\\\\\\ � ,� I cj /- MW-4//� MW-11D\ \ \ \ \ 1 1 /// III �_ - �I II I III I �� / I I ( \ \ \ `� \ � 1 I I l\ / ) ) �'� %/ / •69: So 668.77 / \_ I �� I / _ I I ll �/,� \` IIII ����\\\\ \ \ \\�\� \\\\ \��_� // l l \ l I 0 8�0 = �/ /i%i 11//. ' J i� / W \ \ 1 �� / // /� \\ �/ )I1111IIIII!11(�/� �\\\/IIIIII ���\ \ \\ \\\\\\\\\�J/ / \ \ l \ '9 -'JI °' / �/� 1� O � \ \ \ /// I 1)) I ® IIIII \� Z III �� \ \ , \� \ \ \ j'/ II \ \ ° _ _ - \ \ ,�°i5o MW-6(')/ /-' o _ (� \ \ I (( (I 1 / l l l l // I �,- O %l'I 1j111 % \ I �� % \ \ \ \\ ��\ / 8° == _ \ `: � /ii ' MW-5D / ' / /%%� I /^:\ \I \ I)) // \ \\� \ \� �) / \ 1 / �, // - -1 1\ / f / O MW-5 \ , , \\ \ 1 / l / //� I I \���� _ J / l /I I �\ \ \J I 1 I �� l� \ \ \ \ I i % / I �� o - _ �� �� 11\ o, /� // �, l li 1 ( / / 1 �� / ll I //'� \ \ \ II I 1 /�// / \ \\ �\ \ \� � y Il / / I I 1 �� / � /'�i//� /�� r � �664.74 \ / �/ I 1 I (f ( \ �_�//// / n \ ����/- � V J l l ll ll1 I -//� \ \ \\ l I(I I I n I I/I)l�r)%iii/ / \ \ \ \\\\\ \\ // / \��� �� ti _ ��o- I 1 l 1 //��// / \ \\\�\\ 1 II ( \J % ///// / / �--�� \ \ \\ \\�_� / �,\ �\ ,-6p`_ \= Aso- / I "" - �:�/, �o" ��iC \ ) �� (') \ /�� I \\\\\` \� / j' ��� J - u / �// / I �\ \ \ III \ A Il,l/ /� / � _ \\\ \ � 2 J / i� � ��s � -780� r��1 �/i�\��i / 665 06 730 � ,l � ( \ � \ / / \�� ll/ll 1 \� �\ \\ \\ \\\� I�\\ \\ 1lllll/l� C,� \\\\�\\\ \\\\\� I \ o� �/ �� f ii/ /.' % �i/ 6�• 6 ) " MW-5D \ \ ( \\ � Q Z / f' \ ( G \ \ \ \ �/ / / --\ J J �) l 1, \��� \ \ \ �// ll // //l ���'� \\ \\ \ \ �� 'Ro - \� _ —/ !� 11`7- ���1/�// \� s j/ �/ { \\ � \ lr , \\\�__ �_ \ /i/ �� .. �\ \ / \ \ \\\ I \ /// \ \ \ \ 9 _ _ 6p _ , _ / / l , \ / -�' J ,_ -goo= > �,I \ \\ \ \ \ \ _� i'� Q ., Jl l lr (�\� \\ -/ /'� \\ \ \\\J l I� �/ // ( L// \ \\ \ \\ o �- --- S_�= �_— i �� MW-7D(i) f�// / �___` /_ _\ ��>1 i- ,,� Q l �� o ��% \ \ — �� �/\ \�� / l \\\\\\\\\�� \���\\\\J�II �///���1//�/ %�% \ ���\\\\\\�/' i�r�� j o �= _jai, // 6goo_��)� \ a J'6�' e ti % �i 10� %' / �jj���� MW-11 �I ooW-11D-1, ^ \\\ \\ �� ���� \ W / / \ _ \ ( Z \ \�- �_- \\\ 1 / / _� -\\ \ _ _ / i // \\\\ N \ l / \ —_ - V Q J , / ^�\\ \ 720; �/ (i) / , / �/i 750= 691.63-\\ \ \ J J \� \ \ ���-_- \\\ I// / / ��\�\ ^\\ \ �� \ 700 \��-_� �'� 6 0.62 �/r MW-1 %// i� — ,// �'' v MW-11A \ \ -� �- ��\ , 1 / ��/ / / \\���\\o��� _%- (i) a / "% i -\/ 80 1 / ��.,'- o\\�\\ \ �\\ / /'I \ \-,--- _ _ _ i / W J \ \\ W /�,i,,. , , �/ i i � cr o 662.80 / / I \ �_ W 672.65/// /� \ J \\\\\\ \ ' ' �)I I I I �'\ (�C�\� ��/\�\\\\\\\\ \ , _ BMW-8D(� �0� 6�_ `-_ `0/ �%;�/'//�ov �%/ _ lllli 11� 1 / / // I \ /%�\ 5 \ 11 \ / \�_ �\/111ii(�� �_ �� \\ \\ \ \ /,� r/, ,/� i \��-,\ ��\ �`�I IIIl11JlIl ( -\'� ��/�� C� V) \ \ �� I �( ��- \i 1 ��- \ \�-\�\\\\\\ \� \\ -� 90` 693.33`69�- �-i/ i/ / i� �� ��-��,// �/ �_�_M '� 1 \ \\ �- \����\\ \\\\\ Mw'si� -a/ /I�ii/ �6 // \/��1 IIIIII )l/Ill ( �� 1 1\ -_� //� a W \ l �\ \ \ — \\ or /; / / , \ �\ ��II I\ I � IIIII �III(I ///// \\ \ \ \ ,— ' / / (I 1//% �/' \ \\\\��\\�� � \\ MW-12(i)— I / co °0 689.29 l >� j i \ I III( ll I I \\ (\ /i \ \ \ �\\ - \ I �/� ��j /- � �\\\ \ � � r� \�� � � loi � � � MW-10 �\ I �i� ///�//� o� %, / �\\\\\\\\ ti it I , � IIIIII IIIIII (1 IIIII 111 �11) � \ ( / /� � W \ \ \ \ ��-��� III �// iX \ 11 \ 1\\11\\\\\\\\\ \ �� �- 687.55 l\ Ip' 680.74 „� ^6go / , i / // // ��� s / �� I ,��\\\\ \\ _ I I I IIII IIIIIII 1I�1�11 I�) \\ \�� l - �� \ _- �� \ /, / '\ > I I I\\\\\ '� _ 01 '�_�- , , / /// ,, /�; /�, 111 \\ \\\ I o I11 1 I I I I ! _ _ \\\\ \ C( (\\\ ~ / / \\\ - �� 1 �/� ��) J �/ III \\ �Mw 12D(i) 1 \.� <� _ '� //�//�/i/�i' i/ /io1/// /// I\`\\\� II I^ o IIIII 1111111 I /� _ \ \\ \\\ \\\\\ \\ O = / // \ \ - \\-���i=��� \\\\\ I� /// / J/ /// '/li'll I 1\ �' MW-14 i i _ U �11�'Z'0 -=�7 �-� _��' - �/ / /// / / ,/j////� g�/i�i�/i/1\ \ \\1\\\ 1 �I I ^�I II III 111 1 I I I�// / / =_ -� \\� \�\\\ �\\\\\\ \ \ Q Z 1 \ \ \ \ ) / \ \ O ��� _ ,_ \ 7,� v_ ��_ �/, /� / / // \ \ 1 I 1 IIII II I I II� / \ \ 1 -� J// \\\\ �� / /l/ / /� / / /// / / i IIIIII �� o \ s9 \\(�i ��w, 720- ��- 10 - �iiii i,// // /r��i �i %� \ 11 \\ I I I J�yllllnll 1 I I / -=_ � \\ \�� \\\\\\ \\ \ Z l / / // �� ��-���� \\\ \\�� // / ,/// �// Ji 1 I\\ / / 0��690.6 j� = �o "L -730-Q = ��= �� ��j/////off//'i/ �/ 1 \1\11 \� J r IIIII 1111III II / // /��_ _ \\\� \\\\ \\ / \�__�� \ \ \ \� �� \�/ / / ���/ // ��I / /// ///////ice _ \ h�� 740__MW _10� '`z---�=z �2° /// .�/ / - IIIII \\1\\ III I J /� / // / // _ \\ �\� r �� �� \ \ \ �___ / / /// / / / / I I / /ill /� % __ \ �S ,/ l / /i/ ` \ I ►►I IIIII ► % J�i / / — __ J _ _\\ \\ \, Z _ / III % �-� \ \\ ---- /////// � / //// // ) /// ///%/ ,� MW-13,)� \\ \� � `o � o j i r//i/ //// i \\\I\\\,. 6 0.49 I IIIII / /� // // J �� \\. Q / _�-�\ \� �- I \ \\ -_J�i / /�/ / l / ( // /// / v so o //- I \\ I I IIII IIII 1 /, / / / / , /, � �� JJ W Z J) I l / / ��� \ �� // // �/j // ///�//J�/// j�/�/// //�/��� 690.49�\\\\ \� o v\ s z-tea 50 �/ �,a" 1 �111 IIIII I ' /� / / __ ,__ I \ \ / / / / / ( / � // / \ oti l C _ ��''' CLOSED PHASE II J b v° to II III /, / / / / / / / / /� -�� / U \ I / / //'� / /i // / / / /i / _ \\\ \ \ \ ,� `� __ _! '6 j /� jl� II IIIIIIlIIIIjo1 ,0 / / / / / / / ///// / ;�____ - \\ \\ \\ / / /i/ / / / / // \ C\_���� 1 �o L75o_r =- _ /.� o�/, C&D LANDFILL �� 1 I m (��/ / / / / / / / / / -,- ��-��� I \ \ \ \ ,� / / / / ) 111��1 0 0 - t _=---- �� //- / 1 \ I,' IIIII i `° / / l //// /i / ///�__'- -���� I I ( O \ \ \\ �\ , , I I , �/ /, / l/ // /i// / / �/ /i ////�� _ ` \ �111\ 1 h Mw-9 \) �� z ------ _ / ,,, /��,,i I I II I ( / I \ \ \ \ r / / / 1 �� ( / _ r' \1 - _______- %� / /' /%�ii �I ° III�r� �I11 I I / l / /,- // // % I \ \\\\ I I - '� / / (�� //,, / /, ///i/ // �/ 111 I I (IIII \ �_ ��7so:= %/� i/// / / / \ \\ I �/ % �� / / I / / �� /� // // /// �- 1 ll I I I 692.77 Vi\\ t 1R �^ - =7�0= _______ %�i//%��'i/�i %�//� �!, 01/� II111 Illllli�l� �II / // / / 111 l //� / //,/i// ;%� \ \� \ �•/ / \J I Ill / / =�/i / / )) / / ���1% '/ii /// 1I II III IIIIIIIIIIIII)JJ / 1, I I\��\` ��� �_____- _____- _ --_=i �'� /// /"/,/ ,/��/�/ % ol,l'° MW-6D1 // / l l l /i/ ///�� -�/� -��� l l / / l J �/ // ////�/// � \ I I I / / / 1 \\ ------__- /� /��ir�j / - 'r ^h o 2 III / � �/ / / i�i/i� J \ 1 > )l l l l l /// % / / /// / / ���//�/ L-%i - / /j/ // / II 11111111111///� / \ I I \\I\ \11\(��«-- =780==_______ // / /'i, 8� �, 1 o I I I I I I / I l// //// l _ / / ) / / �/ /i / �� % / , /// ) I I I ► / / I \r \\\,\ \ \ _-� - -- --- _,�-%/ 2�'//i �/� �, ^ ,\ ° 1111�11 I� I / / I I /�I ( / ��� �/ i ��- / I 1 / i �/ ll /i/ / / // // / //�ii��//r / )� )11 I IIIIIIIIII////( \ \\\�\\\\��\�� - / I I \ // / I I II % / // // / 1 1 ' ��`- ���/�% /� / / // l/ - _�/ r �� / ///����� // /// // / /�� J I ( I l v\ \ ,/ , / /-/ �II11111 I \ / / ®I I I I I l I I I l 11 lr �/ I J��� �/ // ,,� / �: /z' / /i/ /� //' 1 %iIl I I )i \� \ \\.�\��-�7so== _%j�� �� l �j �ii $o.//// / / /� / l �I1, \�\ // / I I I I Il 11 I (( % ' / / I I / ( n \' o\\o\\\ �� /� 0"�' / / / o ��� I I I J I ( --_-_ ///j�//ii/ice//� /l J ��%// l ��j %/���� // // // //� I II (I�� (\ \ ////' \ �\ \\ . \ \ ��<< /� =aoo _-__-- /�// ���'� ��' ( I I I ( I I ��� / / I (r ���� / /// / III I II \(( o \ �~ C {--810=-==J��'' C /// /i / MW� 6D-11 I (� �% /�%iii' /� \ ( ��/ J /^� //� / / % / // I I III 11\\ `` / /, \ \� J \\\ \��� `1r� _ �i /ii,� 19 //�/'� / I I I 1 I I �II I I I ( (� ��� I �� \ / \ \\\ ��� �� ,- --- - --- /�/ o // /� // ( / I I I I I l / I I ;�% / ///�i%// )i < < �� I i/// �/ - / /// /// / II IIIIIII \\\ I�/// /// \� , \R��J 1/��zz ««�\\\�C\ ��r�-��==_-_ �0� /�i�'i�i� of///%, / �, / I I I I ( I I I I\ �� \\\�1 11 ri/ �� / / I I / - _ _ _ %%��� // /�/ / / / / / i) /�� -J I I I l�/ _ �j / / / / // / I 1\\\\\\\ \\/ I I I\\\\ \ \\\\ c - 20=� y/, /i/� ,�� i�i/ �// r/, /)� I I (� I I n 1 I 1 I I I I I ((I `�� \ \ = 111 I I I 1 m c� o c� I �� /i/i/ / �/ / / \ ll /- / / //i� /� l I \\ III �/ / T o \ (� ��i ^ > \ /ii // / /o, /i /� l _ 1 % % IIII �� ��i/ /l / / // i� \ / �� �`J 11 I i�(/�/% // i // ) 1 / \ \\\ \\\\1\III`\ �-� /o�/ �/� 11 //i� / I \/ \ �� I \ \\�\ �- \ III I I I l l �l l a o i i/ i / // �_� lI I �r/ /�j / J1) 111�\�\ 1 II II %/ 1\\ ����� \\\�\ \III /�j/ 1111 \� \\\\ �� \ \ \ I a a m c m / I / / / / ���� 1 / 1111 �� I // /J //�� // )� \ h\ 111� / 1 \\�� \\�\� \\ \111N\1 c-- i�i-� /ii/�/� / �ii/ /ice/ i // II \ \ 11 �� IIII 1 I Q /� / / I \ \ I 1 << i // / ����< C L-1� I IIII J III / / /i/// / // III \i 111 / // / ��\ \ \" \\ ,I I � , ,,, / o////// ///, i� i / ) \ \\ \\\ \\\\ \ , III III I /, , M \ I �� \\�; L� ����= I t I / IIII(( i �/ / �(It �< // )II I i�l� (( \�\ \\�\\\\\��° -'\1� I _oo�/ i h o' / i//�/ / / i // / III II \ \\\ \\\ \� l) 11)II I I I \/ / , / / \ \ \ \ , \\ ������_ —�,�\\ \ l l i//�\- / // �� %l I I /, \ \ \\" \\ I , / // o // / / \ l / I I l �� / I \ \ ��� \\\\�\�=_ _ \\\�� _ �\ IIIIII J�J 1111I I / l/l)) 11i /%JJJ I //III 1 III \\�-\�) �'o\,��� �\��1��, 820 ••,jam /� /11k1^�120'���/ , /�// / 1 II�%II ����\\\\\\\\�\� ��l11 Ij11IIII ( //�/ r / �--, -�\\ \ �\ \ -� 11 IIIIIIII( J I ��� ll I I%<< I I \� \�\ \ i / / I I \�\\\\\\� , 1�� // // I, / v r I \ �� \ \ � - -\ \\ \\\ III - J))II /� /II III ��i< / /I ll �� \ \ \\ �\� / '� �� / //// Mw-4 0 / ►�/ \ \ \\ / / /I I I II \\ �/ I _�/ / / \ \ �- \ ��� ` -\ \� \\\\\ \ \\ lllllll�l111 / J 1I /%%//// // II III ll �iil(I V �� l�\�\\�\\\ \�� \�J)'�\ \\ \\�\�� �1N�/ii 1/� /i ® o �( �(�( III \ L-- \\\\\\\\�\\ III ((I� (,II \ \-/ /� / / \ \ \_ \� \\ �� \\ �_ \ \\\ \\ \ \i 1 I �II / /%% / / //// //i III ) )) I li \\� \ \�<_ �) 1 �-i �� �\\\ t_('� ; ��iti // ///MW 4D / I �� I I ( J \\\\\ 1) II I('II(( I 1 \\ \ \ / \ �\ \ \ - 1 \ IIIIIII I ) I // % I JJ / J� \\\\ 1 \ �\ \\�///i/ / /� �� I �I (� �r� \ \ ��� 1I 11 \ H / / \ \ \ \\//-\� �� \�� 11 1 �11� III I III ( ////// //i �J 1)II //����%I%^J���� o\(( i �� \\����\�` ;�///)////� i/� / / ))�) !j /, �l \\ \\\ \�\� ( l��I��1 \\ \ \ \ \�/ W / �\ \ \ �//- - \ \ )) I I I I �)) / / I IIIIII (((� // / Ill // / / / �—� ' % % `� I // �\ \ \\ \ \ I l \ \\ \\ \ \ ____ / \ \\ \�/\\ \� �/J i I I I ����\ \ \ \ I ///// L//j/��� �J I //� MW-8D \ \_ /i��/ /,j/�//� %/%/' MW�4A // / //// /// l/ l I � / �� \ ��\ \\ 11 \\ \\ \\ \ \ \ \ \ \ \ �� \ ���%J /// << III�<<�\��� l ��1�/ �/ / r / /;���J �� /� > \ o \\ 800 , /�,/ //// /,f / / / ( _ / / \\ J \ \ \\\\ \ \ \ \ \ \ \� ��// �< I I III 1 ) i r (( / /// // L l /i/ > 6 �� %/ / l /� �/ / /l Ili l� / //-\ \\ \ \ \\ \\\\ \ \\ \ \ \ \\ ���� \ I)))i /i�i� ��j/L_ \\I ) / l I I ��i�j/ // ///�j���\� I III //� /// ' MW-8-R ���-7so%� //�� , i %/ (I / ///� i / -\�Z\ \ \ \\ \ \\\ \\ \ \ O m \ �_ \ \ \ \� ��� / /,� �� ) �������� /I �� � %� \\\J III /// �� : �_� �//� �, . 50 ��� (r / Il l/ / �/j / I / / l ji�/i ;� \\\� \ \\\�\\\\\\ \\\\\\\\\\\\\\\\\\\ \ \\ \ �\ O - m \ \� I II )I >>»>> 1 / / / /�/ �\\� I I / 695.25 / i / 1 0 1 I - / / / / / �� /�_, ��� /� - �\ \ \\\\ \ \ \ _ H W \ \ \ I I �i%� `��_— i1�1 / J) / I \\\ \\�� // / // / / // ///\�\� III I I I / / t / �k �,o ° / I l / % / / /� �� / i� -- \\\\\\\\\\\ \\\\\ \\\\ \\ \ \\\ \ \ \\ , Z z \ \ \ \ \ \III / � 111 / l llllll�l i� /� / / 1 / / 1 \\\\ \\��� l� / / /// /� \��� IIIIIIII ,1 04 '��,7800 /� 1 s. / �--� 1 I // / / / � //�i _ �\\\\\ '� � �` \ )1 r r / - I \\ f � / //// / \\�\) l I ,-� /� // /,� l l I l �l / // / / / / �; _ _�\\\\ \ \ \\\\\\ \ \\ \ \ \ \ Z \ \-\ 111 / / J \ i / / / � \\ IIII / r'\ __ o ram,/, I , % II / �wj / \\\ J \ \\\\\ \\\\\\\ \\\\\\\ \\ \ \\\� w ----� \ \\ 1 1) 11)%�;Ji� /���\\ �) ) ///11U//1111111111(( L-�// O �1) \\\ II �j-��\� I III/ i / /// \ l I % I I i� i- / \\\ \\ C // / ( / ��� \ \\ \ � \\\\\ 111\� \ \ \ \ \\ �/ �� l ��� JJ I / ( \ / =� 111 I ��� /// ��// / \\ J / �\ 770� // i/i �' I (��- J 1 III �o /� / / / ���_ \\�\ \ \\\ 11�1 \ \ \�\\ a o \ � l b %�L / �1� / ,i ll 1�1\\\\� I �// / -�� )1 '% // /// / /i/ ����\�JJ�J / < l ( < o \ - _ /� /// I \r I 11 l I f / // , / // // //� �\ \\\ 1 1 \\111i�� I I I�����)I I I I \ \. cn o \ \ / � ��� // /�/I I I \ \\ \ / i %����/l I (// // /// //� ��� �/ \\\co°' \ ��o /� �;_�so ��"�i ,✓ I \r I I I 1 / III I /r '�I I / / / / / --� \\��\\ I I I I' I I I I \ \\\\\ O r o \ i/ �� (����1 I C"�� /� \\\\\\\\\�\ \ / / / ��/l /�//��/ // /� ����/���� \ \\\.�\\ �\� 70-�r " ii/, /i I I \ / /%JJ 1 I I ) // // ////////-_��\�\ ) II II 111 1i// ( �, -, \ O� a c� \ \ 1 /„�/ � ;-- (��� \\ J \\\\\\\\\ / �� ///// / L/// //i///// ////�— _ ��/ \\\ \\\\ ��\(Mw-7 ///� ��J/� I I // / 1 IK / /l/ /, /// /////// �/ \\\\\\\\\\\�\ J I I IIi I ( �1 `\, \\ r II � /%�C�j \ � �\ \I� / �,/ \ \�\\ \ /- ��//// //////� /////�// - \ \\ \��30; ^ i // / ,�� / J 1 I / / ll I l / / // /�/ ll l / �\ \\\\� /l J)�11i,I I �� \� ``` \ ' O CC ~ - / \ I I////// �'� \ \\\\\\1111 / �� \\ lilllll =�i//// L� / / // ///i/ / = -� \ 11} 1\\I 689.58 / %'�/„ %% / I �/ // l (I �i//// ��� /l//// 11 ��- \\\�\\��1�� �/ //I III \\\ �\ \ \\ \ N T \ \_� � ) / //%///Lc���\� ( � �111111111 �/ J��� } 1111 I � , I( �( (/r l(I ---_ 1 1 I} % ))/ „1)�l� \�\ 1h��,�^�� Ill �, / /-�,� i � 1 ////// / � i i/ � �^� / 111 I �I �� -�\\\IIIII11111111, llI \\� �\ � H / \ l / J I I ( l 1 -\ I 1111 I (I ( ,/ �((�\ I 1 % % MW 7A ✓ f i / �^ / l l 1 I 1 11 I I ////// _-/ I I - \ \ ` \\ \ \ \ \ I I //cam j J�� l�)) I I /� \��� «�� \ I IIIII /� ��� /l , r, // / / / I J I Il /l I / -\\ \ \ 11\II ( ���\ \ , � , , \ Q Q L >11 �)� r / / / \IIIII \ \ , 1 ( %�� ll /// �� Il ll� \ �� \\- \ ,� \\ \ �� / , �/�-) I I I / / // rill / \ ;�0) I ��/ / \\ ��� \\\�-,\ l l 1/(l(�( ���i(( / /, / �_� , I II�� ( lI 111�1l / �/ �l / \\\\ \\�\�\ \\\ \\\ \ \ - J J� )) l///// �/ ���///�l �'�� %���� I l\\\\\ \�� ���i�/ �� ) 1-�\ \ J 111 I I (\��I��MW-7D--,� / / / / , / / I 1 / / J I Illli i�l l l // �' \\ \�\\ \\\\ \ \ \\1)��\ \ \ o J / // \ \ \J 1 \\ \ I I►1\\ ��� I r,- / / / / --� 111 l �� / I 11 I �� %/ l \� \�\\\\ \\ \\�\ 11 / / / %i/ / /// /� / _ , ��_ J f l /\\\ \� \ l % \ I I I \\\\� - �� / __ I \ II // I I (I( I llr- / / \\ \\� z -- / / / //'/////// �/ ,i ��_ - =-�/ / l l / \\\ ��� \� l / /�% ///� I� \� \\� Jl I IIII \\\\\\\\ \ \\ 1 // / /i / I I I 1 \ I III Ill _ _� j / / �\ \\\� \\�\\\\\ 1�1�\ )� \ \ ��- I I \ \\ \ -� / / /----- )) 11 (� I I IIII I I I i / / /'� \\\ \ \\\\\\\ \ \\ �_ w -- / / / � //fir% _ / / �� \\, / // / -� /�-,� \ \\ J 1 I I 1 \\\\\\ \\ \ r _ 1 1 G I 11 —� \ \\ \ \ _� J z �.-_��� / / ///// //j/ / �� (//� _�� l \�\\� �� l / /� \ \ \ r-� // // -� I I \ IIII / / \ \ \ \ �1� \ O a W \ , / // / )� _ ___— �,\ \ \\\\ �� \\ �(1( /��//////��� �� �`iJ)) I 1 \ 1\ >>\\\\�\\\1-�/ / / 1 11 I 1 III I�I1 I ((il -_� // /'��\\\ \\\ \\\\\\\\��\\ �\ ��\�-� / / /i/� %/�� \\\ �,�i ----- \ \\ �\ \ \\ III I f �l /// ii rr\\\\ �) ) \\\ \\\�� ( _- /// //---��/ll 1 1 I I I ) II I IIIIII IIIII ((� _--�� // �\ \\ \\�\\\\\\\�\\� \\\I I�� ��ii���) cc � w 'o �_� / / , / / /ii //�// �- -\\ \�/i %�%- ----- ( \ \ \\ J // /�� \ \� I I I \ \ \ �� J l�))) �\ \\\�o \ /// //// / / / / ) ) IIIIIIII IIIIIIIIII �:� /\ \\ \ \\\��\\ \\ 1 , � �/, w 0 CL - \ J \\\ \\\� / / / I) �\\ \\\ ��/��/ ) \ \� / // ' _-�� / %� �) I I IIIIII IIIII --�/i / \\ \�\\\\\� \ \��\� \`\ �/ O Q ° -\ / / �--=� / /i��,� \ \ \\�\ \-��/� // / ��l�ll Illi�\\\\\�_�j , /////l/) )' � \\ / / //,// I 1 I IIIIIII I 1 I�I(( \\\\\\\\\\ �\\\\\\ \\\\\\ \ / / o o a ¢ \__�� /,/ / (� (�/,/ __ I�\ r / // " \\ \��/, // / i / / 11 I ///\\\ \\`�,/ ///////� // �) \\�\\ ���� �,`_�// // ///„// I Il) II 1111IIIII II�<<�� - ;///���� \�\\\��\�\\\\\\\ h� \\\ \\\ \ ((1 (( ( \ 1 / ) I \ / / \ \ \ FIGURE NO. / \ \ L�=-- �� I ( / �, J 1 \\� /� 11�1i( \\ /�, ////� / �� / 1 1 , / // l IIIIII II III \\\ �� � \ \\ \\�\p) �J 11\ \ \ \ 1 \ / �-� \ �� \IIII I (����-� % / \ �� ��/ / �� IIII///�\ \\� /j /i// // l // ) l) )) I I / --� / //� �// I� l l/lIl/Ill IIIIIIII \\\ \\\ \ , % ����\� \\\ \\ \ )1 1 I I,1\\ \ \ \\ \ \ \ \ 11 �_ / \ I I ) \ \ �__� I \ / / / / J / l l l l I \ I / / �\ \ \ ll I I I \ \ \ \ \ / \\( 1l / (� %%1 1/ '\\ \_� // %J / ) �)) (// 111 \\\\ \ �i \ �111111 \ \ \ \\ /�— \\ -�\ IIII I)) / �� ��� �,� /'/J%ills/�\ \ �;-/// ////i�/� // /,// /,/,111 _� ,/lr�/ ///IiIIII(Il��\\\\\\\`\\\11 /,�/ \\\\\\11 /ill Illy\\\\\ \\ \ 1 5 / \\�\\\ 1\\\ )f (l/ /// �\�\ , \ _�/ ///, \\\� ///�/�/ r// �i /// / / I r l / / IIII \\\ \ii1/ //i, \\ �\\\ ����II ,(�(� I \\ \ \ \\\\\ , \. --_ �\ / / - 1 �. \\\\\�\ 1 \\\\\�"J/// I Ili /� / l/,�\��\\� \ �'-�: ��/i /�1��1 ����\\���-- /�!%/�i./� /��/i �/ ��(/ / ��/� �i l \ ) /��/i ��'1 ,��j//%/)> > ili�l�\l\\ih\ �11�1��1 ! I//i./��\�\�\\�\\���\\``����\���X I \. �� \,�\� \ \l I I I I H 3 8 1 7 1 6 1 5 1 4 1 3 1 6 1 7 of 4355 8 1 7 1 6 1 5 1 4 1 3 1 2 rn N z g G F E c 0 W / / / / i / /i , / // / // / i \- \\, �" ---- � ` \ ,�� �/ / I I I I � /�—_ / 1 ' I 1% �— %\ �\\��i% %// '/ / / / ' / / i i/// 1 ��- � \' \ \ \ -, /- / / / i i71 ///// "'' '////'// // � / '� 1 I �� //�\ I �� ) / \ \ 1 \ �-- //// / / \ \ / /// // / / / //i - / '/ ) I I \� / \ \ \ 1 / // / 1 �� / / j \ \ \ \� \ \ i /i r////r // /� / / 1 \ \� ,- -- - / \ i �. \ Imo/ /� / // , i///// // / l / �� `\ `�� \`�`\\ C // I , ,/ / \ l \ V 1 / \ f \ `G � / / //// / / / / \\ \ \\ \ \ l //// /// / z � , \�/ /, /, / I \ III > \ 1 \ � / i , / , / / // / / / / / \ \ / // / // / �.� /�\ \ \ �- / �� \ \ \ \ < < / \ \\\\\\ \ \ II Ill I ' I Ir(� /�///// /// / // /,- \ / \ \ I / / / // , \ \ \ 1 I // I ( /�/// / ' \ / // // I \ r _ � // \\ �� � / // \ I I 1 \ / / / / /// // // / / / / / / ��---,� \ ` \ `\ \1 \ III �� //// / / --�\ �' / / ��`\ �� \ \� -�;��� \\`� / ,-\ IIII \� \ I)I `\�\\ ( /' / / / / /�/ ///// / /// / / / / / / � \� \\ \` \ \\111 I I�I I'lll I I111 �i( ii / / \ I / � �_- -� - �� - ��\�/ \ / , / / , �\ \\ \\\ / / //, / //// /, / \ \ \) I \� ►I 11 ►I ► ►IIII II rrr�ir( (( � ( �_ -\ \ - -- \ \ / \ \ \ - �1� / , , I I �\ o I` / \\ \ \ / / / / ,,, / /� , / / , / �\ \ J i 1 11, I I I I�I (( I I I ( � � �� ( (\ � \\\\ �\ \ � \\ ��, / ( ,-\\ \ / -\ \\ \\ �J / ( / / / /// / / / / // , / / I \ \ 111 I I IIIIII \ IIII I I ( l �� \ I \ % \ �\ - \\ l \ I I l / li \ I 1 \\\ \ \ / / / / / / / II I I II I\ \\ \\ '\ \ \ \ \ ` �\\�%-�-�, \�\\\\\�\\ �� \ \\\` ( / / ( I r%» I / \_-� \ \\\\\ 1 / / // / /// / // / // / / // �__�J III III I11111►I I 1 \ I II11� \\\ \\\ \\ \ \ \ \ l \ 1 i �--\ ��-,-� \ \\ \\\\\\\ �\ \\ \` / / \ \\\�- ( \ / �;� 0 I� l l l - \\ \�� �� /�/ / ////i// / l l l ( l / / , , /,�� I I I I I i ( \\ \ \ \ \ \ ` \ \ \\ \\ \\\\ \\ \\ L l 11 ( I I I I I I I II I I I I �' J I 11��\\\\ \\\\\ \\ \\ \\ \\\ \ \ \ / �-� \ \ \\ \\ \\ \� r� 1 / U ' I /) /- � ,��� / /i// l l ( I / / -----� / III ►I I1111111 I / \\\\\ \� �\\ \ \� \\ \� \\\\ - \ \ // I \ \ ��5 /, \ I / I n )) / / / \ \\\ \ \ \ NORTH 1 \ \ \ \ \\ \\ \\ 1 \ \ — I \ / ----- ---� // / / J \\\\ \ \ \ \ \ \ �\ \ // ���' �� � \ \\ \ \ \1 \\ � \ r �.__-- / - � 1 Ill - � �`_ _ // / � I I I \ \ \ 1 / / � � /) )ll I I I � _) � 1 \ \\\\\\\ \\ \ \ � \\ \ I \ l l ';- \ \`\\`\\\`\\\` \\ 1 �\\� \ �\`�-_-' // ' Il Ali �� ---_�' �i/l I I I 1 \ I I r / / l 1, I;II�I�IIIII�I �/ l / i / �'/ \\\ \ \ \\\\�\ \\\\\ I\ \ \\ \ \� ;� � ----- \\\ \ \\ \\\ \\\ \\I ► I \\�- a '',//\ "--1-./ I I,l / / / , I I I 1 1 1 1 I 1 (, / _ il, // 1 1 I II IIIIII F/ l / / - \\ \\\\\ � \\\\ \ \ \\ \\ \ \\ \ 0 \ \ \ �/ � _ � \ \ \\\\ \\ III \� I/ \___ /�-/� / j ---` ------ � l I I)) _ / I Illlllll 1 ,l l L_ ; / ; \ \ \\ \\ \ \ o \ \ / �_�__ --_� \ \\ \ \\ \\\\\\\\\ \�� �I IIII ),I / / '� I I 1 I I j I I I \ ( r l l II, I 1 / I \\\\\\\\\\ \ \\ \ \ \\\ \ \� �'// --- �� \ \\\\ \\\ \ \\\ \ \ / - — --- — \\ �� I --- \ 1 \ /' �- II Ill /%;; ^��� \ \ \ �- _ \ \ \\\ II 11 �� , �- --- \ \\ `\ l I \ \ �- /l II l� i i - _ �`\ \\\\ \ \\\\\ \\ \ W o \ \� \ \ \ \\ \\� �\\ MMW-1 II III 1 �----- \ \ 1 \ i �/ II (_ // \\\� \ �� \ \ \ \ \ \ \\\ oc / ---__ \ `�� AI-- -- \\��\ `� \�\ \\\\\\\\\\\\\\\�\ \�\ I I I/IIII �=�/ /, ;__ _ ��� \\\\ I I \ I _-- \\\ \ -- _ J _ Ill I / //� _ _ \\ �� �� \ \ \ \\\\\\\\\\\\\ \ J , _ \ \ \ I / 1 / 1 I t 1 / �__ _-�/;�/ l l �ll IIII - I I ,, ��.// �� ��\\\ \ \ \ \ \ \ \ \\\\ _�—�\ \ ` \ \\ \ \ \ �-> I ►/ /�/ / ��- _-_-_= \\ \ \\\ 1 / , I 1 l I / - / �, / /// ,I ,I I� , - ������� \ \\ \ \ \ \ \ \ z / - � \ \ \ \ \ \\ _ - / i _ / I _ 1 l l / //i/ ---� \\ \ \ \ \ \ \ �_� , \ \ \\ \\ \\\\ \\\ \ o /� II �� `-- l/ -__ _ ��\\ \\ \\\\ \ l I I I i _ -� �/ // % I I / �����\\�\\\� \\\\\\\ \�\ \ \ \ \ W \ \ \ \ \\ \\ \\\ \\\\\\ \\\ \ \ rr / \� _ ._ _ _ \ \\\\ \ I I . -_- / 1 I � \ _ \ \ I I / ' / �% /, ^\� \� \ \\\\ \\\ \\ \ \ \ _ // \ \ \ \\\\ / I // / \ \\ \ \ - -� \ \ \ \ \ \\ / MMW-2 \ \ \\ \ \\\ \I J J / I I 1 _�/ /� / I / /// /%,5 � \\\ \ \\ \ / ���, �� \ \ \\\ \ / \\� 1 III ///�/ / > \ \ \ \ \\��\\\\\\\\ \\ \ i 1 // I \ / / - \� \\\ \\ \\ \ \ )/ J I—/ \���--�\\\\ , \\ \1 \ \\ \\\ I I / / / / /III I I / / � //I ///�� ^�\\\�\�� \ \\\ �\ \ ��/� 1 i// /'\ \�(`� �� `� \ \\\\\\\\ \� ��\ \\ \\\\\� �1 ii1) I / / / / / /III ) \ \ (/�/ I 1 1) I I I / ///// %// ///iir %///� �� \\\�� \ \\\\ \ \ o�c \ I / Z,\ ,� � ) 1 ) 11111111111 �1 \ / /��, / //� \ L- ��� I , \\\\\\\\ \\ (�\\ \\\\�\� J) ) / / I I / /// / // ��\ \\\\\\ \ \\\\\\` ( / \ �� )� 1 \ /- I� �� �� \� �� `- )Jli �11 \ \\\\\\ \ \ \\\ \ \ �;� l/ l l / / / l 1 I l / � \ \ I � / , I I I I / _ I I / // //// �/ ///// /�� / ��\\� -� ` \\ \\; / / - % / / i% iiiii)))) I %- /-� \ c� .11 r��ml�� \ 1 \��� // / / / / \ \ / II - I I//////// ��/��////�� - \� \\ \\\�\�\ \\\\\ i I % / / / // , JJ)) ////� I (1! \II /i :\\ ��11\n111 \\`,''`- \` \\\\\\\\ \`\ / / / l l 1 \ \ \ I I 1 % ( �\ \\\\\, \\\\� / / 1 / / ---� / / I 1 / \ \ / , \ 1 �„/ („ c� 7� J \ 1 \\\ � —_� / I --,/ \ ( / / I / //�/ / / ��\\\\\\ \\\ \\� \� \\ \\ / �/ / , / / // //j ////�/// �— I /%/ // /,,���/I \ \ )�\v �\\C/ T \ \\\\ �\\ �_ --_�// / / / / ( I, \ \ \\\ ( % �I ���II I�i/ii� (((((I I / \\\\�\�,\\\\�\�— \\ \" i ) / i / / —__ � / / / // // /, ��////// �- // /�/// .,r C ` _ \ )11� \\ \I -- / / / / I I I I� \ \ \, \ ` 1 � - I I I I1 III II11 �(l \ \ I I I // / / \\\\\`\�\�\\�\��\\� `\` / / / / / / / / -- / / / // /, //////// /// L r / /, / r \ �r \\\ \ z MMw 3('� �` Y II I I IIII M 1\ ( �\ / / 1 I I � / 1 \ \ \\\ \ \ III III IIIIIIIII \ i / // %� \\\ \� �\\��\\�\\�� J I / --1 / / � / // 1 / I l I I \\ \\ / ti I I \ / / / I —� \ \ \ \ \ I 1 II I I I I III I I \ , / \ \� \� \\\\\ \�� / / / % � / / / / / / / / �� I I/ / 1 �„� ��\\ \\ / l; I 1 I/ IIII I 1111 \\ 1 I \\ \ // / / / / % I / % I �� )) l Il l l / \\ \\ \� \\� �\\\ \\ / J / / / / // //�/�r C - �� � \ \ �� ; 11 � / \� �� � I I I 1 111 \ \ / / / / ' I l I J /' / / / / // . / / , /, ��\ / / / / / / / /// // ,//� ,, / I/\\\ \\ , 1 I I \\\\� , / I / ) )) I I / ll/IIIII ) i ) / l 1 / �\ \\\\ \ / \\\ \ - I I I11 II 1 / / I / / > 1 1 I Ill l / l l l/ `� \\\\ �// /�� \ / /// / /III//i - \� �� I ///�_�\�\\ \� / I�/ 11111 / ,( //%% // II / // / ��\\\ \\\\\\\\� / / / / / I / 1 1%I / \ \ \\ \ ia� I I , ,` \ / / / / ) % / l l III 111 l/ ll / l , / i/ / l / /�`\ \\ \\\\ \\\\ \ / / �/ / / \ \� l i i //� III / , \\ \ �/ / / 11 I \ \\\ 1 / / } / /, / , Il // 1 / /////l 11 l i \ \\\ \\\\\\\ \\\. _ �� - _ I � �_ //� / i / I I /j \ �� /< I I I r �/ \\`\\ \\ �l / 11 \ \ \ / / l I I l / / / / / / �/� / / / l I 111 l / l \\ \ \ \ ��� // \ I llI //%(( I I //�/ /r I/ (�\ \ / , ),I 1 OK\ � \\\\ / / /,/// / / / IIIll((( �l IIII /l l ( \\\ \\\\ _ = - I I I �/ ;i 1 I l l I I I I I I / / I �ii j, MMW-1 1(i) /�� �_ I I / i \ \ �\ \\` / / / /I 11� \� \\\ \ \\ \�- J 1 I 1 / / / / / / I / , / , , / / ///// I I I II I I I I III �II �l / / l I II ( ( I ( ` ��� \ � �\ \\\ \� \\ o \ I 1 II /�- 1 / /////' �� \ /' / \\\\ \\ /� (/ tf %III \ \ I \ \ / I l l lii //, / / / / / / / / , �// I ►IIII I I I I (�l \ \ \\\\\\\�. l ' II'l r� -_= ' 1 ' l J J)�ll J I (�// //- �l V , �� \ ll 111l \ \ \\ �\ \ I _� ) 1( 1�7 ), � \\ \�i I (-\`\ \ �-, i , I l / l l / /� �, , / / / / , / / /,//, 1111,1 11II I II III I I I, I I I I 1 I --� \ \\ \\\\ \\� \ I I 1 I / � ( \� / / / / , l l / I 1,111 III I III - \\ \ \ \\\ o \ _--� Illlllll/ % // i (j /////�/// �,��j�///��/,�i, / /�^� I II/11/l (-'�,\\\�\\\\\ \ 1 /1 \I III1(rT�//� )11� �11 I \\\ l 1 I l 1 II( / / F/ I II II I I ���\ -_� \ \\\\\\\ \ Z / / / / /"o\ // // \ \ 1 I \ ��) l 1 1 (�--� / / / / l l / I I I III III II I I � ��� -� ---�/ 1 // II 11j �- �� / / / I I I (( ( //,,�, ///"� / ((I / /- I , / \ \ \\\ \ \ \\ I i\\\1 / �'/ JJ� I �\\ \\ l I I I I I I ► I �' /�/ / / / / / IIIII 11111 111 I I I III \ \�- � \ \ \\ \ \\ / / / / / / ( /i/� _\�� 11 1/ / \ \ ( I 1► r V /l,%i/� \ / / 1 I / / // II►1 I (IIIII \ \ \\� \ \ \ \\ \, // / / /,/�/,,�\l �\ ► // /(/ / �\ \II\ \ \\\\ \ ���1\ \\\ 1 i ,/ / 1i1 \ \\ I 1 IIII / / / / / _ J II I \ \ \ \ \ \ _ �� / I I I \ , / // / 1 III \ 1 �� ���� \ \ \ \ \ \\ \\---- %// l/ l // % i// /i i ► III (\�\� ��-� ///�/// / \I\ / // / / /,X / 1I I \\ \ 1 / / / , \ _ __-_ �/ / /i / / I I \ ii / \ l�/� r / l l I I II �l I l r \\\ \\I \\>\ \\ \ J ��\ I / ,1 I \ \ / I III / I I I I \� �\ \ \\ \ \ \ \ \ \ _\ -_-_ter // / i / / / / I I \ ;� , //1 �� ) 1 \\\ I- - o\` 1 /' '� ► I 1 1 1 I \ \ / �/ ; / Ol �/ / , l III 1111II \ \ \\ \ \�� � \\\ \ \ \ \\\ \\ /// // / / / \ \ \� / /////// l l/ 1 I I III l / �\ Ul IIII \ \\\ \ \ \\ I J `\\ I ( I \\ /) � \ __-��///// i� ) 1I // i// / / \ 1 I \\ \�_�- //11 .... ��l//��r /// 1 // 1 I II ll/ //-\�\ �\ IIII \\\\\\\\ \\\ 1 I - \�\\�\ I l I ( ���� I I I 1 I ) �' / / / I I �/ 11 / 11 II II11�\ \ \\ \\\�, \\---: \ \\\ \ \ \\\ v � / / / / �/ / ���- �/ //j- o / I Il I 1 II l l II \I \\\ \ �\ _ I 1 I \ �� ��\ I \ co 1 �- I I I I \ \�� \ \ \\\\ \ \ N ,- / // / / / � ,, ,/,/ / / II l l III II I 1 \\\\\\� \`\\ \ \\ � \\�\\ ���� (/ 1 , � � i I � I 1 I / I , i / / I l/ \ " � \ �-�/ �/ / )/ // // / / \ \ \ \ \� / D I I /I� /i�J � I III \\\\ ,►I►\\ \ \\ \ \\��\ l 1 1 I I / 1 I I I I I �\ \\ _ � \�\ i i i \ � � N \�- ,� i/i/,/ //� i/ l//,/ / / \ \ �_,� / ��/ /�(1��(\ ` // �II111 I\\ \))rY�\\ \\ \\\ \\\\ 1 \ MMW-4(i)� �\ \������) (/�\� / / I I 1 I I 1 I I I I / / / // // / / / 111`�� ���� � �\ \ �' /�i // l l// /// 1 \ i /� - J 11I II \l \\\\\\�\\\ \ \ 1 / 1 �l//i //1/ l l I I �� / / i / I , I / // / / 1 I \�� �\� �� �)�)) I `I vi U \ \ // /i 1 // // / \ �_ / , �� „_� III \\r \\\ \\ \\ \ // (/\ I \ �� I / (�_ ) 1 \\\ ���>� I / \ / � //// //� / �/ / / ) - , I� >--- I , I �11 II \\\� \\ \\ \\\\\ \ \ f�J�///�,/ii/') III 1\\ / / / ) I (I I I / / / ( l i I \ \ /// //// /// / / �/ I /�, � z \ \� / �/ /// / /// / / // / / J � 1 / o 1I I 111 \ \ \\ \\ \\\ \ \ �/i�i� 1 I \� __,- I I I I � 1 / / ///// \ \ ` / -/� /--/// l 11 111 / i / / / % \ 1 �� ( I I r / I (► ►II �� \ \ \ \ < ► ► I \ \ \ 1 _ / / % / // / ) / 1 r /1 III / 1\ \ I� \\\\\\\\\\\ \�\�\'�( �Zt� I, I I _ / / / / I I I I I / / 1 II = I I l l / - l I \ l��lj///////// // / / I \ �- ///� �i%i/ l/ I I I i / / // \ 1 \ \ \ \ \ 1 I IIIII \ // �/ ) I 1 V I I I ��\ ` \"`\ )1hI \ \\\�\ \\�� -, \ \ \ \ 111 �� l III 1 I I �\ - / / 1 III 1 I / - I 1 / -� 1 I / /// / / C� c� \ \��/ / // / / /// / //// / / / / I ( �1i1► / II �\ 0-, \\��\\�\� \ \ \� ,III I / \\�� _--� / I 1 / I I 1 I / __� I / C \ 43 o / / // / / // l / ` 1 )) ) / / / , IIII % /����1 / ` \�\�\� �\ \ 1/ I( �J IIII /,/ \mot-_ / I I I I I / / /v J� �1 I I I�/� -J I 111( �((` (( \� \ \ \\ \ \ \ � i M \\ //// // / /,- / \ �/ ) III /�/ / „I - ` ��_ \� I �I/// s --_� I I ) , / - 1 I '/ -� (�`` \ \ \\ \\\ cao \\\ t 11 ( / I -)I\ \ \ \ \\ \ \�_� / / ///� ///� �/ / // // / / / \ I III �/ / .�- \-� //, / ( \ / EXPANS/ON AREA 2 �� \ \ \ 1 I ( `� / �_ I S �— \ \\\ \ \ \\\ \ \ \ t \ r /// /��/ --�1 1 \�\\\ \\\ \ \ III ( / / �: I - _ l / J I i (( \ \ \ \ \ r� \ �\�-�/�//i/ //////�//� // l �� //��� / //`� \\'J I I (� i�r/ / l\ /,�- , --\ \\ ��� PHASE 1, 2 AND 3 ��� ,\\ \\1 \, \III ((II I�/��/ -_�) I I I 1 , l I 1 / % / I I ((�� ,-j \ \\\\\\\ \\\\\ \\� \\` \ \ \ �. U) U cl) /� /////// // --�// �/� / / \ \ /j / /�/�� 1 ACT/�E C&D LANOF/LL \ ` I �/ (r ` _� i I I �/ / III ���� \ \ \\\\\ \� , \` 1\ \ \ \ �i cal \ \ \ ' / / \ /�\ \ / rr �/ �\\ \ \� / CELLS 11 I \ ) \ / / / I I I ( J ` ` \ C o / / / // / //�\ MMW-10 I / ✓�/i v 11\ 11 1 \\ / l / I ( ( 1 �� \\ \ \ //� /// / /l �� / j j/� / �// \ //i//ii/ � / \ \ \\ 1i GP-9 \1 \ \\ \ \ \ (/ / �\ � i I / i 1 III I �� 1 \ 11 \ U o c� E \/�j��/ �/ / // /,/ I - 1 '� \ \ \ I/ //// / // // \ \ \ I �� / I I 1 (r �r ( / I I 1 I I , I ,� I 1\ \ \ \\\ \ \ \ �� 1 o ao / �_ / / / \\ \ V //// / // \ \ l �1 \ \ \ \\ \ >--_� I I I - c / I I I I _ - > \ \ \ / / / // 1 \ / \ /// // // / \ \\ II � \\ \ \ 11 \ \ I11 \ �,� // ///� /� / / I / / /i//// / /i \ I 11 \\\ 1\ \` \�\ 11 1 \\\\ I l / \ ---� % I 1 I 1 I IIII 1 � \ \ ` J) ) ) , � J) \ \ D m \\��/ �� I111 l / 1 U�-i�i ���� ' 1 / l / �� \� \\ < /�://// ( ///I , I \\ \ , \\\ `�� ��N , \,\ \�\\ \\\\\ 111 \\ I\\\ \\I�� \\\ \ ♦ ��--,��� % III I , I I II / , / /)) / ca U 1 /// l� i l l , �� \\\ i\ , ///�/ 1 \ \\\\ \\ \ \ \ \ %�J ) I II - ,/ , / I 1 �� Il 11/ l I ' �_�. /� - ' / p ll l l / / i t \ / ( I , \ \ \\\\ \\ , \ / / / I III 1 / / / // / / / \ ////� // / r i \ \\ \� 1 \ 11\ I I 1 \\ \ 1 / i I I I I �� / / / �� 1 N //I // / // /� %/�i / / / / \\ 1 \ 1 1 1 \ / / /i I / I I / i c� �����'_��1/ 111 l I-�i/i%' / l l l l l l/ /�1 I I I \ \ \) 1 '\ \//�\ ' /��/ i /�' // �i \\ \ \\, \ \\\\ \\1 \ \ \\\ \ \�\ \ l 1 / / - i y r. /� // // l I �__� // /� l / I l / / I 1 I / / \ \ % / / �/�i/ //� / // \ --- \\ \ / l ) l) � / / l / / / -- l / 3 \�// �'_ � / l/ I , � j/ //,-- l/// / / ///// /�\ 1 1 III \✓ \ /j \ \ - - // \_�/i/�, // /i//� \\- - ��`'�) GP-1 0 , \\ \ \\ \\ \ \\ \ \ \\/ / / ��i / / /ice l �� I -1 1 M �/ / � _ / / I ( // / / / / / / / /// / // \ III 1 \ 1 I I�1 / / \ \ 1 /// / /% - �� I 1 , \ 1 \\ \ \ \� \\ \\ / / / / / / / // // / // / � - , -_ / / / - ' a� o \� / ( ( // // / 1 i �// 1 /i/ // //i \ \ 5 S o rJ I'I I11 \\\� \ \ \\ \ \ \\ \ \ \ \ / / / / /� l / l l ll // // /�- / i� �� / /ice >_ /, �///iii l/l // 1 1t o I/D \ \ ``' /� /��/ 1 // 1 ,/i //' < \ _�i� / )�I 11 I1 1 IIII\\ \ \\ \ I/ / / / _� ti \ I ( \� / /ii / ( / / / / / \ \ III \ \ I \ (� ) //'� \ \ I // / / / �s r111111 111 1 I \ 1 \II \ \ \\ \ \ \ \\ \ / / _ ( l l l / l/ l l ll ����� / / / i' /// % / 1 0 •: m \ �/ /��\ I I (I 1 \ �_—�// % //� / //// r I ( /��/ / I / \ / /ii ✓jam%/� \�--��/ / \ \ L —� i i—ii \ / , I \\\ �\ \ // / l� I / \ I \I V ,\ /G I /i % /NF/LL EXPANS/On -� /� r )�\�\\\I\\ \ \ \\ \\\\ II \\ \ \\ �_ / / / /// //// , -, , / / �/� o N \/ I 1 \ \� // //� / / / / 1 // / 1 /^ \ I \ I / /. �� C l AREA ACT/VE C&D� -- � - / S l % \\ \\\ \ \� \ / / I I \ \ / / / / // - �� ��\\\\\ \ �� /ii/ �/ l // / I I II/l/ \ I\ I //� ) I / /� ��/ �� \� ��/<_s ?� > ;\�\\ ��\ 1 \ 1 \ -' J ,\� l l i1 / l (1 I I ( / /,�-i S� o �/ \\\\\ \�__-�// l / l/ l / I / / I 1 / ��, \ \ I aC / i//, i \ \ LANOF/LL CELLS -_v_ \ /� �/ ����/� j�� s �s(( >I > >> I \ I 1 \ / \ \ / / I I I I I \ \ \ \ ( � / / � •� ca / \ ��, \\\\���--�///ice // //// i / / / Ill i /'\ \ \� \l \\\ \ //ii `1 %\ / ;/���j GP_8 / /�/ /i��/ ) I,l�\ l / \ 11 I I I I (( \\\ \ \ \ \ \\//ii =--� I I o \� \\ \\��_ ii ��1 /i Ii I �� //1 I��I \\ \\\�\ / c-\� / j, \\ / l //�i� ���\ �i� //=/i�/i�l�/ �J I ) i �II �I I1 1 \ \\ \\ \\ \ I at _ / l 1 I II \ ) /� / / //- \ \ \ _i_� ^��\, " - / /, _ 1/ \ = I I I I \ \ \ ��� // %�- J1l o —� /-- /// / / I \\ \ \ \ \ - I I l I \ III U \ / i //// / \ \ ( 1\ �/ / „- �`�\ �%� / (( I \ II \ �►\\ (l \ �� ) / /�/// / / \\ / l \ \ \\\ / // \ ✓�' % � �'���j//i//iii�/� / //%%� �j \ I I I 1\ \ \ \ \\ \ \ \ \ \ � �i / l w V III I ` �� \ \\ / /1 IIII �� \0 \\\� / ///,�/�i/i \ -/ � \ \ \ c- >�% /// / %/ C I I \\ \ \� / �l I \ \\�—=J I \ �� / 11 II \ \ \ \ ( / //// / j /�\\\\� \\ �� � j j/�j/�� j �� ��'/iii�j/'�'i //%/� MMW-5(i) / \ \ I I I \� \ \ \ \ \\ \ `\ \ \ //�/� /////// p \ I I 1 \ \ \ IIII l l ` \ \ / /// / / 1, / \,. \ \ \ \\ / // / //' �' rii //- I I \ \ \ \ \ \�--1-i 1 I � (� I ( \� \\ \ �' I I III // 1 I I \ \1 / /// // / / // / / �\\ / \ \111 , I J� ����„ ; / // ///� / � � /ii /� / � I \ \ \ \ \ \ \ \� / / / / ////// / % �\ \\ / / I 1 I ` \� J ///////// / /\ \\ \ / �/� �/ /i//i /// i/// / /� /� \ % I \ \ \\ / i \ \ \ \ \\ \ \� // / �� l ll 11 \ \ \\ \ I / r( / // /// /j// \��\��\ ���\ / 1 ( \ r� /�Ji ii % / / �/ ii i� / , / //, - \\- / ` I \ \ � \ \ / / \ I \ \ / / l I \ \ II ,I'll II /// /e/ � \ L , , Ill( // �/ / % _ ' /�� /%// �'��/ t i // / / o ♦ \ \ < \ \ \\ \ \ \ \ / / �� i i/ /� ���'\\\ \ -�� � l \\�\\ \\ \\ \\ ��,- // / /'' \� \\ `\ \ 1 I 1 /I II l l // l// // /// / I �\ \\\ ii �f/ // /// / !� // //�// > �,i r/ \ \- \ I \ \ \ \ \\ \ \ \ \ \ �/ / / l / I l �� ( ( ,� o \` \ \\\ \ \ \\ \\ \\ // l ll Il l \ \ \\ \ \ \ ) 11 II / 111 /l// l//l �// EX/ST/NG EXPANS/ON AREA 1 \ \ \ ` ,���-'J //i�ii ��/i /� _ i i�/'� ��i�i" �� `/'',,r -_ `\\ \ I \ \ \ \ \\\ \ \ \ ` \ \ \�_�' / / I 1 ( (I ( l .ry I- -� -- \ (� ,� \\\\ \ \ \ �, - / 1/ \ \ \ 1 \ I I Il / I / l l / �. �� \\ \ //� / /i� /i/ r ///, /r \ \ \ \ I \ \ \ / / / i ( I ��\\\\�\ `�\`` \`\\ \ \ \/IIiV/ \\\\\ \ \ Jl //� I1111�11II /// l CLOSEDC&DLANOF/LLCELLS / \ /// ///////�j ��^�i // � I ll / l \ \\ \ ///// �//� rr /// / //// %// `� � - � _ \ \� \ \ \ \\ \ �\\\\ \ \ /// / / III 1 -- M \- \��\ \\� \� \ �\ \\\\\\ \ \\ \ / , \ �l/ 1 I I I I I 1 / I T� \\\� `\ \ I I Q`�// ///�ii/ �� /ii/ /�i /�� � �, MMW-6 /� �-' l \ > \ \ \ \\ \ / �(,y 1 \ l// III I I1 IIIIII l\��►1 I I / i 1'\ \�\\ \\\\�\\ / 1j)� I ���/�//i/i /// /i//// % �� ���-/�S \ \\ I \ \ 11 I \� / / / 1I11�� �_ ��\\ \ \\\\\\\ \\\\\\ \\\\\ \\�� /� N' \ \\� 1 / // \, II11111 I(�I, III - 1 J l - 1 \ \\\\\ / ) /� r /;// / /�/� �� / i �%/ /�";-may 1\\_ `� \ \ \ I \ ! 1 I I 1 1 I 1 / 1 1 �- \\\\\ �\\\\\ \ \\\\ \ \\ \`\ / /I 11 \ I / //,/ / III I I I l l \���_ / /�/ \\ \� ii/ / /i/�/�/i //i /�� / /�� / J J�� // '�� _�\ \ \ \ \ l / / / �\ I I I \ \ \ \\\� \ \\\\ \ \ / / III 1 l \\\1 ��_ - / / J \\\\\ \\ //� //// / / r/ /� J / /�/ / >� //� _ ♦\ \ l / I \ \ \\\\\ \ \ . �Il \�// //// / II 1 \\��__ // // \\\\ / /, ////i�///�i�i" J� //� ��/ %_�—�� /���ii�� -� 1 \ \ \\ \ I /// I I ) 1 I I / / / // i III �— \ \ \ \ \ \\\ \\ \ \ �� / / l , \\\\\ �✓ //// //////%//ram// ,/// //l�o ///%�f //�� �_ /�_i///' �� I I I / I \ ��\ \ \ 1 1 �� \ f \ \\ \\ \\\ " I ��/ /`_/ / �, \ IIII l / / I / / / / �\ I 1 \�— 1 11 ) I I )) / \ \ �-' \ / /� // �1� \\ � \ _ _ 1,�J/ /i,�i /� frr/� „ ���� i/ \ ( / jig— /�` L \ \ \ \ I / / / / I 1 1j / \ \ \ \� \\\\ \\\\ ill ) / / ll/ l lr \ \\�\��� - - , m►� ��� \\ �ii / /�i /i /f /� � /� \ \ �, \ I I I I / / I �� - I l I ) ij/ // �\ \ \ \\ \ ��'/ // Il / // 11 ����__ -1 1�'� '�� /���J�i,/i // /�i/ ✓/i/J /i / /�%���/ ���� �:,\� cw-1 > ) \ 1 1 \ II 1 1 / i �_� �/ / / / I 1 1 \ \�� I I )l /l/i/ // \ \ \ \\\ \\\ I / / /I I \ ( �-��// / J / Jj)r Jr/i /� :% / / / /��/ / //// /// r 4 �i \.� \f �� ( / ,> I \ I 1 ( � ( / / / / \ \�� / �� > / / / // (I I ,// i l/ // / / C \ \ 1 \ \\ \\\\ \' // // �/ // \l( _ �\ , < z - _ /%��' �iii / �1 / ����� / �/ ��_, I / l i I l/ ll/ / // /// \ \\ \ \ \ / l// l//� �� — 1 _ — %� i i//iii/ / 1 l> fry //// // ///�/// ((/�� ) 1 /�i� — \\ \ ) I \ _ ) 1 I \ �_� / /, / \ \ / l I l ll / / \ \ \ \ l� - __= ; / % / f' ' Jr� ,r �/ ���\\ \\\\\� L / �/ J I \ �l \ \ \\_ /// / \ \ �� / J 11 11 /�/ / / ��-�� \ \ \\ \\\ \ '1 /l l \ ` \ - - �- - //i �ii /�J ( ///II i / jj// \ �`\\ MMW-7(i) //1%/�-=r�_ii% ����\\\\ I \ \ \ / / \ I C _ _- //// / 1 / / / \ r /- \ \ / / \ /� (n J r/ _ _ / // / ////� /i1' Q \ \\\ \ / /////� //// ///�-� \\\ \\ \\\ I \ \ \ \\\�/ �..r i —__ _ ___ ���'�� �i��� �!/ //i ///i / ) /i�/ )\`� `—� // =� � �— - �/ / / / / III 1 ���C —� \�� \ \\ 11 I \ \ \ \\ �__ __ \ /// \ 0 0 //�///// i L----I \� \ \\\ \\\ \ \ \\\\��� ��_�-_— — = ���— — ii /i//�/ //�/� i S !/ice l �— / !� / / ' \- ( �C l< < C �l \\ \ II 1111 IIIII \,— \ ♦ \\� \ \ \\\� \ \—_ _ _�� j// ,�\\ / _ / / �-� \ \ \\\ \ \���!�� _ _ /// �/ / ///�/ _ \ -' m� IIII 1 1 \, \ \ _ -%%� / /// / /�� \\\\\�� ��\� \ 1\ ��\��� ���� --- _�/// / ///i / // �/ (') r ��� - / _ r _ \ �1 I I 1 111IIII1 \\\ \ \ \ \ \\ �\ �� Z / / L /z /��� -\\� \ \\ �\ �� \;,.� -- _ = /// // ///� a�� GP 5 �/ / ��J'" _ \ 1 I IIII I \ \ /� 1 /� \ -- _ - \ H V //// / \ \ \ \ �. ���_ _/ _—_ � � j� / %/� /i �� MMW-8 I , A / ii / //j/ /%/ // / �� \\ I \\ \\ l / \ ��� \�- --_ _ \ , I i11 , \ -� Q �i/ �\ / // / i /� \�/ �\ \� — \\ \\ \ �— \ \ \\ i / / / \l'� / / j/////� i / 5 ��i ��ii/ -� \ EX/ST/NG PER/MET R�,ti.i. t 1r1NE / / ,/ \\ \_ _ �i J Z //� /� \\��� \ \ \ �\ �\ _ /i i ///� ice/ J/ : % /ii / / �_—� J J \ \ \ \\ \\� \ Z ��i �i / % / / / / / \ \ - _ \ MON/TOR/NG W i M.i �/ // I , \\_ / -- �_ \ //�/ / ��� / / / / // i, �i/ /// /// i \ \ O �• ��// MMW-9 / l / /// / /� �� / � �/� ��- \ I \_ _� /ice i / _�� �''` = / r� \ \ \\\ 1 C� Ill 1 �� 1 / \ , �\ � ,,0\'' �� =- -„ (� - - - /� r �,, , \\\\\ I I ►Ili I ( ir( \ C� J \ I I \ - \\� \\ \\\\ \ /�� ��� /( // // ///i / / � \\ \ \ r II III Gw-z lull Illlllll ( ��- /// -�� W \ \ I _ \\ \\ \\�\\ \\`` \ \ � -,, /, �i / //I /� //// �,� \ \ \ \ I 111 I 1 1 - _�,�� % W J / / /, �,� \ \\\ \� I I (III / 1111 l I \ \ ♦ \ \ \ �\ \ \ /11 Ill�ii,/�////\\ \ \\\ \\\ \ \ \\\\�\\\\`\\ \ _ _ I1� IIIIII,\\ `�� ,� ,/ Ill /,///// ////��j��//// //%// 1\\\\\ \\\\\, III 1 I11 (l(Ill(( 111 I 1 \\ ii� \ \ \ ` ' LESEIlQ _ Z I // / \ \ \\ \\ \ \ \ G P 4 IIIII \,_ / //// /� /��/ %�// 1 �/ /i/i/i / �\ \ \\ \\\\i\\\\\ \\ \� I IIII 1 \ ��_ \ �/ / / J/�i�//// // //// //Z� / / /��,// % - )1 \ \\\\ III I I I / // /i //// \ \ ,/ I IIII I� / /// / l / 111 /� //// / / \ \ \ 1 1 1 % 1 �\ \\ ��� Ih I� lllllll\\\�/ ���, %" �/ - /�"" %�l� //%%////j// //�//1 ///�/� //// %//����/� jl \ \\ \\ \ I II III11111I111111iII�II I 111 1)� '- _� \ \\ \ \ Cl ( EXISTING PROPERTY _ _ a W Im I I l��////// / // \ 1 ) IIII IIII\\\\ \ \\ �� , ����//�% GP-3 IIIII 111\/_ ,�_� //i Ji/�� _ - / / ri /� / - ) l / \ i // - J \\ -»�< < <=y�'�=1��/w /�ii i,/ // //ll /ii///�j/�/iii��'%�� ,Ill j 1"\\\� 1 I 1 IIII IIIIIIIIII111I I I III // ,�� _ �\\\\\ \\� LINE �j H J //�//� 1 J l l/ % II 111\\\ \\\ /i/ii�i ���- 1'\� -✓ l</ -(L-\„ //i�///� //// / //� /ice / 1 I\\ \\ \ i I I �I lllllll II I 1 /' \ U / / / l // /ill I I \ \ / / ///// J11\/1\\\� \� �, v �l //„/i//iii /ii�// ////�r /////, // �(( 1I\\ \ 11 1 1 I II�I� IIII����)I I1111 I I I _7 �( / /��____ - \\ W / / / III \ , // / —� JI �\ ` � /`-- - / \�- /i ill / / /� // ///i /i /ii / \ \ \I 1 \ I I I I ,'IIII III I I 1 - / / / / — EXISTING CONTOUR �� / / , / /// �,/ IIII 111 \ l L /i -/�/� \ t_= — =�- _ �� j / / / \\ \\�I I I I J I I IIIIII 11, I 1 I / /___��� \ - / / / \ �/ /r// / . ///;, / //, i , ( �� / / / / i � j� � i : �\ // / -fir -_ _ �- = - v � � 7 � �t „/ ////� r �� / / /// / // / ///// �/ /- \ \ Y 1I 11111 I I 1 V _ /i / / / / / / // �/ // /J) I I IIIII \ \ / / / /// // j / /--�-_-__ _ -z _ /�i/ , // �/ / 1 �1 �` I III / / MAJOR .� / /, / , / / )i i / / / %� _-_ �� ( / ° ``�-==__== - �\`-�_ ,�/ /r//�//,r� �i� /�// //�// /�i/ii �, \\\IIIIII \\��111( (� �4 f, I IIIIIIIII I III I IIII / // / � � - Q Z Z / / / / // / I I I l/ / / / / / /ice \ \ < J �- __- - \� Z-���� /i//�/ / / // ///11 ///� II 1 \� 1� I f / , _ Z W �- // I \1 �X /, // /, / , / / ///�)� 1 ,, /, , //,�/i, / \\ , / // / / \\ I I \ j I �I // / // / // / / / / / / / ///// /� �_----��\� \ /��_- -- -___ `i- �� ti_ / , //�i//// /// /// / l/ // , 1 \\\ Ill\\ J11 I III 1 I ) _ '1 /, / —_/----/ / // / / \ ( '=�i \- L /- / "' / // I \\ III \ IIIIII III )/) / / / / / // / /�- _ EXISTING CONTOUR --- \ / / / / / / / / // l / I I 1 / / / /// // ice_ -� \ \� \< < ��� _ _=—= �\� ��= % ,'%% ��"�iir�i� /,/� /i// /� / /l1/ //// /\\\\\ \\ \\ \�1111 \\\ \1 I I II III I I I //// (/ / / �,/ / / / / / / �- _ ==- MINOR _ \ _--� /�/ / // /�j'/i�i��///�/ I I) l / /// /////,/�� �j� ;_%= \� \\ GW-10 \� \\ \s (r�� �� -_-r�-__--�J c� >>1 �_ -/-==�_'%�///i/�/i/ / / /r/ / / //r ///�/ 1 \ \\ \ , � �I I l ( I III I \ \ / / // // �/ / / / / / // //// // �/ / %�- �\ \\\ (�Cl - �// / / /// �. I I \ 1 I GW-3 III I I //// / / / / / ,� \\ \\\ \ ��/��� �� _ ,--__-.,% / /// / / 1 1 I I \ 1 / III 1 �/ / / / / / / �� - Z O = \ \ /// / / / / / / / / // // i // �// //, �/ //� _ � \\ \ \\\ ) (1' S cam/ �� /= _ =- ����i/i/ j/ j/// j//// ///� //�j//� (_-\- I IIIII��� 111111(\\�1111 111 (\ I / 1111111111I /// // // / / / / // // / / // / �; EXISTING CREEK W i / / / l// / / / / / /i� �/ ////��, /// // �� \\ \ \\ \ \ i I I �� �� -= _ /�/,�/i�iri�i/ / /J II \1 I I I I I I T 11 11 / ; /// / / / / / / �� 1 �i / / // / / / / / /// / �ii//// /// / // -� \\ \�\� \ \\\ II I ��\�_� > > /c/ _ �____ / /// / /ice /� /�i/j�/ `7 /r�l I IIIII ) I 1 (� IIII 11111 I I l)/ / /// / / / / / / / W H \\ 1 I ��- / / / / / / -� / // // /, / / //// // // /, / , \ \ \\ \\\\\ \\\( I I( - / / /�-_%�=/�i/' jii ////// / I _` %/lI II II II 1 I III / / / / / / / / / / / /� EXISTING LIMITS OF - �/ / / // / // / / \� // / / / ---\\ ==__=-__- ///%i /i//ii/i /i�i//i / 1 lI I I IIII I IIIII 111 11111111 IIII /, / / �/ / / , / / // / /, � \ /////i / ////iii // / / / / / // _- \\ \ \\\ II > > I --- __----%�/ /�%/%/ /���ii/i ��r/�/i/-/////l IIII IIII I II II /IIIIII/ Ii1 IIII 11 IIIII - �// / / / / / WASTE \ 1 ► 1 I l �� / / / / / / / \ \ 1\11\>>\11�1111\, ---___ %' I / / / / / / / / / / / / \ I ��/ // / / //i, /// ///// ///// // /// / //���-_ i� l���l I IIIII I 1 II �� \� (�` �\ _ �--� _ -- - _ /�// /��i //i / // //i/ /��� it �, IIIII I I I II III(/ 1 II I IIIII I I�II� (� / // / / / / / / / / / / // , (� Q \\ \ I I l i ( %� / / l // / / / / ///// // / /�////// III I I I I o I7 I c , \\ _------_---_- - -- __ /�/ii �i/ /�/ �/ /�ii'i/%i�i /// 11 I /1 I y �I / / 1111 I1 I IIII I = �I / / / / / / / / // / EXISTING PERIMETER METHANE \ \ I I // / �,�, / / I ��� /// / �� ///////// / /// \\\111111111 IIII I� l 1 I\ ��f ----- -==_-__�,, �/ / / �/ / /% / /l / II I III I / / / , MONITORING WELL \ \ I / / / / / // 1)1 I r / 1 \� o ---- -- //// // / /////o/ / //-, / // // ;/ /1 1/ 111 11) ,I(/ /1 I I,(1 IIII 11 1 / / / / / / // / / / / O Z \ I I % i/ l / / �// i J )) �j//// ,�/1��� //r /// /// �� I 1 11 ►► III Il��/ / J� �r l J I \ �_- _--- ___------ -__ __ ����// /, /�/i/i�/ /���'/'��'/�'//'���i/i /i// Ilh��'�Ii�/II II 1\ I►IlI IIIII - ► I / / / / // / / // /// //// IIII / it/ l 1 / / ;� / % �/ / ��'-���� l// / //i/////// \ IIII I I I IIII��I / / / / I I I\\I\) \ \\ (I --- - -- ---��j/// / / //% / / // ///- ///// / III /' I // I ► I ' / / i / / // 1 I / / / / // -/� / / // // / i/ ����^-/ /// //// // / IIIII IIIIII // / / / I \ \ 1 (\ " -- _ - --- - �i/�, // ////,/ ,/ // // ///�i,//�,// �) //' I/ II IIIIII I I / I I I / / // // PROPOSED LANDFILL I ,, / , / / �� / // / // / I lllllll l l _--_--- - ////,�,/ // // //// // I )) l 1 / / ,� / / / / / / j///�/ /i /// , ) IIIII 1 I ► I IIIII /li/lll I I (� \\ I `\�\ \ _ !, /� .� ,///i. , /////�//// /� / , �, i 11 1/ 1 II I / / / , I I I I (/ l / //// j i JJJ /i/l /ii l / l // / / // / ////i% ,,%/ // / l I I �I IIII IIIII I/l ` \ I \ \\\ \ \ \\ \� �_________________ �i / ,�j �/ ,��� ���j /�%//// x Il // /�I IIIIIIIII �� / / // I I IIIIIIII 1 / 1 / / /// / GAS EXTRACTION WELLS /// / // / / l r /j /// // / / �i - ,- � ///// /� / /) I I I I / \ / \ - — - � / EX/ST/NG CLOSED C&D LANDF/LL / // �i / I r� I I //�� I - / I l l / / i / / / - _ / / �� / / /�/ ��/// / / / ) i I I I I lllllll IIII ( I J) \ I \\� \\ ��\\\ \ (- _------- --- / ///� 'i //�/ /ice ,/ / 1 / IIIIIIIII ,\ \ \ / / I I I I / /� //// //�/// / / l l / /iii /�� // // / J II I I \\\ 1 \\\ \ \\\ \\` \\ \\--___ — —___— /ii/'/ '/ //ii/ / i// I lJ // I / / I I / I \ �i /ii /i / / / /-I // i I I IIIIII I / / �I r APPROXIMATE LOCATION OF /////ii/i/i // // I I -��% /i / %/%��% ��//// /i ��/ // / // / IIIIII II( II / ///' GW-s \ \\ \\\ \ _ _ = /-�/ / i/���/ice/ /� / 1� i / I , I I I /I a� m r m /ii /ii/i/i /� / // l ��/ // // / / / .� ///� /�i/ / l / / / l I I I II II111<«� �l\ �! /\ 1 \\\� \\\ \�.\ �\ 1 (/ �=____-_-�--_ _ / /���/ / / ����,� // '�i, i// /ii �ii/� ��/ i, �� I(//� lllJ� I �� ( IIII I I l I SOIL GAS PROBE /� , j /, /, /��/�/// i I I 1 ( / / // / //� /// / ��J /� / / // 11 I I IIII �\ \.�\e \\ \\\ \ \ `( / - /i/ �/ / �- �i /i /ii // /// ) (I \ - I - I / I I (I I ( o o //�i/i% / / // \ �� / / /J // _� //////�i / l 1 II IIII\\\\\\ \\\ ////,/// \ __ / / / ) ) I I / / �� //i / / // l I I I \\ I / / \\ I \\\U 1\\ \�����y��<<<��� `� ___ _ - __� /iiiii,/�//i /i////�i /i/ �i"/ �J��/ / /ll I i i 1 IIII I I I (( N /�/j/i/ /�/// / // ) 1 ! �� II��( / -�%// / / // // /� 1111111\\\\\\\\ I��( //l \ \\�) ��\� z\ \\ c .,�� -_ _ -- ,� �iii�/� /�i/ /// / //, / /�/i� // /l \1\ I I I I� III I 1 11 / / 1 \ % �� ( \ -- �/ /� '' '''' �/ '/ /i �, //�/ I ( I I ( l 1 I \ \ APPROXIMATE METHANE Z m // - ' /� / /� / / / ) C �' =J I - �/ / / / / // /// /� I I) I I \\\\ \\� / \�\- \ C\` \ \\ \\ \ \ S -- /ii� // ii� //,// /�� /i / / � /�� / ��///// / I I 1 1 I I \� T M // i / / / / / \ \ / // _ I I I' I / / / / / / / I I I\\\\ \ J / / r \ \ \\ \ r //// /�/ /// //,// / / // / // /// // ' // // / %) > \1 I �\ 1 MONITORING WELL LOCATION //� /��// /, , / /, /))) \ /� J I /j / / / /,,,,, ///////// %) II \\\\\\ III // „ .,\ \., I\ 1 Z \\\ \\\\\ \ I\\\ \ / / // // //// //.. / / / / 1 / \ 1 I I IIII ( I I �� \ / 1 ��) I I (/ / / / / / // /i// ) I \ 1 II II I (// \ \\\� \\ -�11�\ \\ \\\ \\\1 1 �� l �� /��i/////, /, /i/�///i// / / / //�ii/��/,/// l/ l 111 1 1 `\ \`\\\ \ T // /// / / / // 11/l I II / // / / /i/////i// i /// I \ /// L;�<\�< \ /IIII/��j�� '�I IIIIII �/ / / //// /i�i///�// �) II\\ \i\� III I / //� / )JII\\\J I��' \\�\\ \\\\\ \Ill I \\ ��_ _ //�//�j�///�//i��//i� / �// / ////// 1111 \, \ ��\��\\�� \, r / \ / / �/ ) 1\ I I I / / / \\ \ \ \ \\ \ \ \> >�__, /�% i ( ( I 11 � \� \\_ SCALE IN FEET / / \� < �\��� �' I \-/ I //(\ I I / / /, / / / /� ii - � // i� III \ 11 // / / 1�\\\\\� ��\ \\\��\ \\ \� \ y//i �� // / //� /�i / / / ii i // /'!// /I/ // ( \ \ \ \\ \\ \\ \\ \\ �_�i��\\�\\���� IIIII/(1� /` I I ' ((1\ ��( %)IIIIII V III (� / / I \ ( e \ \\\ \\�' I /////// / /// ////����//�/ ' �x IZI / /// /G / / \ I I \ ) I �\ ` \ \\\ \`\ `\���� /��\ \\ \� -_ - �� I l / I -, 1( I / / / / , (/// / I ) )I I I I (� / I \\\\\ \�, \ `\\� \,,,) ,`\I 1 / '' '' ' � /� / �__���. \ ������� I II 11/l - �J III I i/ / // / I I /� III ii� \\\\\�` \� \ \\ \� \\\ \\\\\\\\\\\\' l `-� ,�iii%��//-/i,�i/ice/ �' %i'- ��/ //�/i�, , // // / I I ) �\ \ \\\�\\\ \��\\\\ \\\\ �� 0 150 300 \\\\\ I I r / �) / J III �(C \ �� , / // / ,/ �� , / , /i// / 1 )I I \\ \\� \\� \\\\� \ \ �_� \\ \1� / I�I ��� IIIII l �� // l )) i �((� / / l� �� 1 //I 1111 I I \ \� �\� \\ \ \\ \ / / // �i� // / / /// / / / / / / \ \ \\\ \ \\ W /r/ II I I /// / / / / �/ \\\�\\\\�\` \\\ 1 / l 11/Il I I \ ~ } _ - \ - \\\ \ \\\ I I II I /�/ // // /I I IIII ►I 1` \�(\\ III\\ l� ` \\\\ \\ �� , \ \� c� \\, ,Z�//�/i ��/i/,��/�ii�// �/ / // / I \ \ \ \ l \ \�_ �� \ \ IIIII II J I / \ \ \ \\\\\ \ ,� , \ / (I I =_ �\\\ �� \\\\ \�\ \ \\ \\\ IIIIII 111 I / ���J) I I I I ( % / // / / I I I \ (6 (I / / I �� �� �\\ \ \ \\��� \��� \ \\�\ ,1 //�i//� //��i/ /�� /i�i / / ,� / / / //�i.)` i / I I U/ �� -- �--� \ \ \ \ I I I / i / / / I I 1 I I I I 1 I ( I 1 \ \ \\\ \ \ \\ \� \ \ \ 1, \�\.\\\\\ \� „1 • /i�/ii/i /i\//, i�/�ii� /� /ti / /� I �� (�� I - \ L----] \ \\\\\\\�� `\ \ \ �' / / IIII I ( I III \ Q m o __� \\� - \\\\\\\ \\\\ \ IIIIIIIII III / //ii11 1 / / // /// J II Ill��ll}) III I\�\\���\��/' 1 \ (� \\\\\\\\\�\\��laC/ii/iii/�� /i/ii/iii/ii, /��i '/i' �(ll l I I `I I I I �( C �'�',\�\\ \\ \ )II/ II 1111111� \ \ Z Y \ �__ �� 1 \ \ \ II1111111 I I I / / I U / // /j// / /J I I I JJ ��) �J \ \`\ ���� \\ \� I 1 ���1 \\\\\\\\\\ \ �` /i /��,/�,/�/i/� �� /�/�� /� / 1 / \ \ I 1 I ) )i - I ��♦ \ \� 111 I IIII ` 1 \� \\\ C� -� \\� ��- �� IIII 11 )) Ill 11 IIII / / i , // / I I )) // /��J� / // ��\ ,>� \\\ \ ) l \ \�\\\�\�� %ii/) /ii// /i/ /i /� / / / )) / - \ - �_ \\\\\\\\\ �� I I III \ J Q W \1 /\\ \ \\\\ \\ \ \ ,/ �� I I / // i/ \ \\\ \\"/i / //i/ / // / / l � �� \ � ,, 1 11 1 1 I I III 1 ( i < I / /// /�/�� I //// /// i� _-� l r "r \\V \\\\\ \\�,� �„ , ;� / / / /' �-� / / /, ) )) I I ,//i \ \ - \ \ \\ I I (i ( �� \ \ Z \ \ ) IIII ) %� / l I l i I I II I I I I1111 \ \ / / //�j� _� Ji // / l //i% -� I / /i \\\�\\ I , / \\ \ \ /i �/i / /' / , ,/ r / / �/ �l �' �\\ \ \ \ \\ / / / // //i / / l l I �iii \ �, \ \ I I I \\ \ \ \ \ \ \ J o U \ �� :� l 1/%ll/ I ( ( 1 ���\\\ \ \ \ \ \ \ \- l / /// // ,—_�// /�/// / L/ /ice/ III ( /�/ // �)\.\\� 7((�� \�\ \ \\ = % ���ii��i��� /���' / / / / ///�\\ \ \ \ \ \\ \ `111 \\\\\\ \\\\ \\ \ \ \ \ NORTH CAROLINA Q F- i l l I II III \� I //// /// �%� \ y \ \ \ 1 \\� \\ \ \ \ BOARD OF EXAMINERS 1 �/ �- ��/i/ / \ \\ \ \ \ I l I l l l -�i // // /i�/��// ��\\J I I I I I �� / �/ / O \�� \`= �// �j/ , / / / / / j ///\�/- ///�///�/l I // l / l��_� /�/ //,��`�� \ \ \\ \ \\ \\\ \\\ \\ \ \ \ (n N / /ii���� /�//// III l 111\\\ 1 i I I I ���( /// /// /ii/ice/��\ JI I I ( / // >. ��� ,- ///�� i � GW-5 / / / / I / /// // \� \\ ; \ \\\ \\ \ \ \ \�� \ \\ \\ \ \ / \\ I I)) J /ice/ice%� _��/// L� \\ I �> ))� ) 1 I I / l I I (� I (�� �ii / l/�j// /����� I ► I I�I I ��I / / / ����\\ �1i= =-_'� i�///ii�///�� / 1 I \_� - , I �� /j /// / l /// / 1/l __�/ /i% / ��\ \ \\ \\\�\\\ \\\\\ \\``\\ \\\ \ \\ \ FOR ENGINEERS AND Z U n I / 1 / %/'/ ��� %'� �\ I I / ))%%�� ��� / 1 i I \ \�� /i/�// / ��i/� /�/ , \, I I I I (i i / \\ I 1 ti ;��_/� 1 /// /i /� / /� �(1 I I _� / I % // / �/ / / �- i �i/ / _ \ \ \\ \ \ T / / / ) / / III 11 �� / / / ������ I IIII I I I 1 / / /// / /� / I - / / / \� �\ \ \ \\\ \ \\\\\ \ \ \ SURVEYORS LICENSE Q a \ �\ / I I I I I / �, t `���/ �� �/ i i ,/ // i, / / I r I / , , / - \\ \ \\ \\ \\ \\ \ \ \ \ Q �\ '((�(��//�j� /�\� �_- 111111I �/ 1�I /////// // 1 , I \ \\\\\\ / //i,///// ice-- \ \\ 1 I i ♦ �s �� t// // / r l I I / / //// , // // ��\\\\♦ \\\\\\\\\\ \ \ \\ // / / /i /// // �\� �� 1 I I ( cw-s -, <\ / / / / / / / % / // � / --// \\\ \ \\\\\ \ \\ \ J OC I /%/// �j��\���_ - I I / I �����I�� / / / / / l / / ) I I \\ \\\\\\\��(( //�// / / //�i ��\�\ \� I 11 I I 1 I / /`\ , 0 -- ✓ii'/�ii ��/ / // I / l 1, I,' ---- / I I �I I / / / i/ �j// ///�i %i �---_�\\\\\\ \\\ \ \\ \ \ \` \\ \% \ \ \ NO. C-3035 \ ���J%� // / \ \\ \ ��II)) /IIIIII II��/ / /�% \\\\\\ \ I I (( i ,/ ///, I ///// i ^ \ , I IIIII I I / / / % W`AL_� //i , / � / I / / I I / /�� // / / �, _ \\\\�� \\ \\\\\\ \ \ //� // \\ ,1 I (i / / /%J \ I / / / / �\\\\\� IIII / / /�\\'i �\� _�i'///,�/ / ///( `\ l I / _��� III I� / /// I % / �/ / �/ // �� __- __\\\���\ =\�\\ \\\\\\\\\\` \\\\\ \ 1 1) / o//////r / %�`\ J 1/ U / I11►I1IIIII I L� // 1 �� \\\ I //// / / // / / \\�� I III / (i( _��//,/ . / // I I l I % I II i / / / / /,/ \\�\\\ \ \ \\ 1\\ \ \ W Ill%// �/ li > > IIIII I < // 11 IIIII �, ,///,/,////�,/ ���\\�\�� / \\ �\`�� __;�//" ,/� I J I ((� /III I ( //i�� - / / / / / %__ \\� \\ 1 \ 11 ���� \ ///// �L� ll1 )1�)/ >�%i I / II11 I� / _ I /�//i////// // \\ ��l �- .,,,,,, ll1 \( I /Ill �/ // / \�\\\\ -� \\\ 1 ll 1i \ JJ l i L_� , / / I ( ���` \ �, / _ %i it / / / / / / ���\\\����i% / \��\ - / /��ii/ � J I I I / I / / / / / / �// // --- \\\ \ \\ - \� 1 I I //// I) \ . // /, l\ I\ \ / / �� / / / i \\� / \ \ - / / \ 1 I i / / / / \\ 1 I I ll ��- ,�%/ l� I I l //�/ / I \� I \ �\ \ \ \\ \ / /� _� / �� % �/ , // / /// / / ��,-� \\\\ J/� / , //, I // I I 1 ,// lJ I I I l / - I / / , // / // //// /---' , \� \ \ III III I IIIII \ -� L J ��/ //� \\\\\ \\ �\ \ \ / /� �/- �'%//// l I /, /i// /// / �i / // / — //'//� \\ \\ \\\\\ , \� / r T /// I I I 1 \ I / / J I I I I /� _� / / / / ��\ \\\o \\� 1 I I I (11 I 1 } �j ��\ I I \ \\ // l /,) \ \� \\\\ / /��/ / / //// / /// / // �� -�i/�� \\ \ � �/"`� �I� / i/�� // cw-s y I I / % / / / / i / // / - \ \ \\ \ i III I �1 Z o // \\\ \/// /_-��///r / /// / / /- \ \\\\ \ u� // / I I / /) I III= /l /l /, / /IIII// / \\\\\\\\\\\ I I I l ���%.� \\��\\\ �\ \II (( / ��� \\ \\ \ IIII / - /// // /iri/// / //i// // i,�- / \ /i�i / / l / l I / / I / / / / / / / l JIJ�i , 1 (1 \\` �\ Q W \ \\ ^�--i i U U > \ \\ \ \ \\\IIIII / \` \ \ l _��///, /,/ ,/// ,//////i /// f _ �\ \\\ \\ ��� ,/ \ , /� ///, �/ / l / l I 1 / / /� 11�V� ( (2/ // '/i_� ///l1/l111 ( �� \�\\�11\\1\\�1\ / / / 11 1 �\\ \ \ , \. \\\,,,,11 �� / �� \ \\ \ /IIIII% ���// / ��,/ / / /,/,///, ///-______- 1\ 'll) \11 �\ �\�\I ,r ��//, , ,/// / / I I I ///// / l \\\ ;\\� �/ ///�// --� / IIII \\IIII 11 III I� // //,/I I11 \\ \ \\\ \� \� o REFERENCE IIII I i� / / / / I )� �� % / / l l / _� 1 1 II III / / I 1 \ �\ I -� ) 1 \ I I I / // l ( iiiii i ii /( ---- 1 1 II) )))) \ I 1 / / / �' / / J ► I ll, / / 1 \\ t�l�, - //�� _�// // I (I ( Ir _-��I\ III 1 III It / (I I \ \ \ \�� o o a a i ) III 11 / (( ( ( 1 )// i �) \\ / /- l I l / ( ill/// I 1 \ I \I IIIII 1 - \\ \ 1. X TIN NT R N RT F T XI I K / �� 1 / I / / / I _ I \ \ E IS G CO OU S 0 H 0 HE E ST NG CREE / III ( ( I I ( - I 1 ( \ 1 / // i IIIIII / I \ �� �l`� � � ` � \ I ( c ) I ) i/,/ / /l/// // / cw-� 1 �/ / / �, / I I / / / �) I I /l/l / / i I 1 \ \\ - (`���`� \ \\ ��� FIGURE NO. PR VI Y P R N N RV IN P I I l I I % \\ \\ / / / \vim_/ / , , / / / / l I I / / % I / \ \ �\, III \, \ \ 0 DED B ATTE SO LA D SU EY G, A DATED // / l lI I 1 1 �- l 1111 //// l / / ) l I / / �� I I / \ \\\\�\ \ �� ��\\ \ ) \\\\\ \ \\\\� _ / / 1, I l // I T ii�//'�'�/'�' / / 1 I II� /(f �/J // /I =11 /�l%l/li//� �� // \ �\ \\\ \ 2. EXISTING CONTOURS SOUTH OF THE EXISTING CREEK /�% I // �\\\\� \ \ �_— �-� �/ ))� '>>)i� I 1 -�\ \��/ / / � I 1 I I��( \���` 1 1 ---Ic _� / / / / / // / / 1 / / I I I I I I /// 4 / l / III/IIIII///j / // l Ill /// / \\\\\\\\\\\\\`\�\\ \\ \\\\ --, < 6 PROVIDED BY PATTERSON LAND SURVEYING. PA. DATED I \ \ \ \ ���-,� \ // �i % \ ,- \ \ �(` �_ - / / / _ I 1 1 _ % -, / / -�� \ \ \ \ \ %� J 1 / / \ \\\���� �� �_ \\�� /�� =�i/ %� \\\ \ I I I I I I \ \\\\\\\ \\ \ I I ___� / / / / / �/ / ---� % 1 \ / / l - I I I' / l l l 1 / /-__� / ///�l l/ / \ \\\\\ \\\\\\\\j \ \ \\\ \\ \�� 2014. ;--� ll l / \\���\�\\� \\`� i dill %/�� %�i�/�//J i ,� %�;\�� I I \\\\\�.\���\���\\\ �� ��i /i / /,�/ / ,/ �----�'� I I I I1 \ \ ii/ /�� I (�l Il/l / f// /// // \\\\\\\ \\\�� 1 \ i 1) 1 \ \\ \ -//, , / / , , /- �.\.� � \\,\� - , / \ IIII 11\ 1!`�----- , I I 1 ► 16 . � I i I _ I /II,I, „111,, ,,/� --_ r//, / . ��\ \ .\.�.��\�\\\\,,,\� W X 7 1 6 1 5 1 4 1 3 2 C Ql l REFERENCE 1. AERIAL IMAGERY INFORMATION BASED UPON MECKLENBURG COUNTY POLARIS 3G. 2. REFER TO THE ASSESSMENT CORRECTIVE MEASURES REPORT TABLE 18 "SUMMARY OF POTABLE WELL INVENTORY SEARCH RESULTS" FOR WELL LOCATION DATA. LEGEND 9 of 4355 a �'50— NORT REFERENCE 1. U.S.G.S. 7.5' TOPOGRAPHIC MAP, CORNELIUS QUADRANGLE, NORTH CAROLINA DATED: 2016. 2. LeGRAND, HARRY A. MASTER CONCEPTUAL MODEL FOR HYDROGEOLOGICAL SITE CHARACTERIZATION IN THE PIEDMONT AND MOUNTAIN REGION OF NORTH CAROLINA. RALEIGH, NORTH CAROLINA: NC DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES, 2004. 1�1 STREAM/SLOPE AQUIFER SYSTEM BOUNDARY TOPOGRAPHIC DIVIDE/SLOPE AQUIFER SYSTEM BOUNDARY PROPERTY BOUNDARY GENERALIZED GROUNDWATER FLOW DIRECTION LOCAL DRAINAGE BASIN 1 LOCAL DRAINAGE BASIN 2 LOCAL DRAINAGE BASIN 3 LOCAL DRAINAGE BASIN 4 SCALE IN FEET 0 2000 4000 10 of 4355 TABLES 11 of 4355 Table 2a Summary of POC Wells North Meck Area Landfill CEC Project No. 114-370.0001 Well ID Infill / Closed Phase I Area MW-1(i) Infill Area MW-2(i) Infill Area MW-10(1) Infill Area MW-11(i) Infill Area MW-11D(i) Infill Area MW-12(i) Infill Area MW-12D(i) Infill Area MW-15(i) Infill Area MW-16(i) Infill Area MW-4 Closed Phase I Area MW-4A Closed Phase I Area MW-4D Closed Phase I Area MW-4D-1 Closed Phase I Area MW-6 Closed Phase I Area MW-6D Closed Phase I Area MW-6D-1 Closed Phase I Area MW-7 Closed Phase I Area MW-7A Closed Phase I Area MW-7D Closed Phase I Area MW-8 Closed Phase I Area MW-8D Closed Phase I Area MW-9 Closed Phase I Area MW-11A Closed Phase I Area MW-11B Closed Phase I Area MW-11D-1 Closed Phase I Area MW-11 D-2 Closed Phase I Area 12 of 4355 Table 2b Summary of Review Boundary Wells North Meck Area Landfill CEC Project No. 111-370.0001 Well ID Infill / Closed Phase I Area MW-3(i) Infill Area MW-4(i) Infill Area MW-4D(i) Infill Area MW-5(i) Infill Area MW-5D(i) Infill Area MW-6(i) Infill Area MW-7(i) Infill Area MW-7D(i) Infill Area MW-8(1) Infill Area MW-8D(i) Infill Area MW-9(1) Infill Area MW-9D(i) Infill Area MW-1 Closed Phase I Area MW-5 Closed Phase I Area MW-5D Closed Phase I Area MW-10 Closed Phase I Area MW-lOD Closed Phase I Area MW-1 I Closed Phase I Area Table 4 13 of 4355 History of Groundwater Elevation Data and Well Construction Details North Meck Infill Area Landfill CEC Project No. 111-370.0001 Well ID Well Depth* Screen Interval* TOC Elev. (ft) Depth to Water TOC * WT Elev. (ft) Depth to Water TOC * WT Elev. (ft) Depth to Water TOC * WT Elev. (ft) Depth to Water TO C WT Elev. (ft) Fall 2017 Spring 2018 Fall 2018 Spring 2019 MW-1(1) 60 45-60 740.71 52.25 688.46 52.53 688.18 51.93 8.07 38.1 702.61 MW-2(i) 25 10-25 678.34 10.69 667.65 10 668.34 8.91 16.09 9.21 669.13 MW-3(i) 16 6-16 667.98 6.34 661.64 6.95 661.03 5.62 10.38 5 662.98 MW-4(i) 17.5 7.5-17.5 678.10 10.88 667.22 10.79 667.31 10.65 6.85 9.33 668.77 MW-4D(i) 52 42-52 676.10 13.86 662.24 13.89 662.21 13.8 38.2 12.61 663.49 MW-5(i) 18 8-18 672.92 8.49 664.43 8.05 664.87 8.25 9.75 7.86 665.06 MW-5D(i) 58 43-58 678.27 11.51 666.76 11.32 666.95 11.15 46.85 10.42 667.85 MW-6(i) 17 7-17 NM 12.11 NM 12.49 NM 12.75 NM 6.11 NM MW-7(i) 23 8-23 691.64 14.01 677.63 13.45 678.19 13.4 9.6 11.02 680.62 MW-7D(i) 64 49-64 703.72 27.80 675.92 27.41 676.31 25.53 38.47 21.84 681.88 MW-8(i) 28 13-28 706.71 22.31 684.40 22.42 684.29 21.32 6.68 17.42 689.29 MW-8D(i) 100 85-100 719.02 33.40 685.62 32.95 686.07 32.13 67.87 30.08 688.94 MW-9(i) 25 10-25 713.34 23.61 689.73 23.05 690.29 23.55 1.45 20.01 693.33 MW-9D(i) 80 65-80 713.24 23.78 689.46 23.41 689.83 23.77 56.23 20.87 692.37 MW-10(i) 60 40-60 761.22 53.01 708.21 53.74 707.48 54.67 5.33 49.67 711.55 MW-11(i) 22 7-22 678.97 17.76 661.21 17.05 661.92 17 5 16.23 662.74 MW-11D(i) 50 45-50 679.22 18.00 661.22 17.31 661.91 16.65 33.35 16.77 662.45 MW-12(i) 32 17-32 708.74 21.65 687.09 21.45 687.29 21.63 10.37 21.19 687.55 MW-12D(i) 55 50-55 709.26 22.10 687.16 21.89 687.37 22.05 31.95 21.52 687.74 MW-13 81 71-81 735.17 46.05 689.12 45.5 689.67 41.68 39.32 44.68 690.49 MW-14 24.5 14.5-24.5 704.76 15 689.76 14.76 690 14.93 9.57 14.15 690.61 MW-15(i) 63.5 48.5-63.5 752.96 41.85 711.11 41.82 711.14 41.11 22.39 34.12 718.84 MW-16 i 29 17-27 698.21 24.72 673.49 22.35 675.86 22.68 6.32 17.02 681.19 MW= Monitoring Well TOC= Top of Casing WT= Water Table * = Measured in Ft Below Ground Surface NM= Not Measured N/A= Not Applicable Table 5 14 of 4355 History of Groundwater Elevation Data and Well Construction Details North Meek Closed Phase I Area Landfill CEC Project No. 111-370.0001 Well ID Well Depth* Screen Interval* TOC Elev. (ft) Depth to Water (TOC)* WT Elev. (ft) Depth to Water (TOC)* WT Elev. (ft) Depth to Water (TOC)* WT Elev. (ft) Depth to Water (TOC)* WT Elev. (ft) Fall 2017 IF Spring 2018 IF Fall 2018 11 Spring 2019 MW-1 25 15-25 685.31 13.89 671.42 13.67 671.64 13.56 671.75 12.66 672.65 MW-4 42 32-42 717.55 35.42 682.13 36.49 681.06 35.87 681.68 31.1 686.45 MW-4A 44 34-44 711.63 33.01 678.62 33.18 678.45 32.73 678.9 28.96 682.67 MW-413 100 85-100 711.30 32.55 678.75 32.81 678.49 32.5 678.8 28.22 683.08 MW-4D-1 135 120-135 NM 33.05 NM 33.22 NM 33.02 NM 28.91 NM MW-5 29 19-29 682.99 20.49 662.50 19.98 663.01 21.4 661.59 18.25 664.74 MW-5D 55 45-55 681.84 18.61 663.23 18.1 663.74 18.75 663.09 15.1 666.74 MW-6 67 57-67 738.25 58.44 679.81 58.78 679.47 58.55 679.7 57.76 680.49 MW-6D 95 80-95 737.90 58.71 679.19 58.4 679.5 58.25 679.65 53.34 684.56 MW-6D-1 160 145-160 NM 58.82 NM 58.65 NM 58.3 NM 53.57 NM MW-7 85 70-85 738.27 52.89 685.38 53.25 685.02 52.37 685.9 48.69 689.58 MW-7A 60 50-60 727.52 43.10 684.42 43.35 684.17 42.55 684.97 39.5 688.02 MW-7D 110 95-110 727.36 44.90 682.46 44.55 682.81 43.91 683.45 40.92 686.44 MW-8 80 70-80 764.39 68.41 695.98 68.57 695.82 73.6 690.79 69.14 695.25 MW-8D 122 107-122 768.20 72.00 696.20 71.9 696.3 72.35 695.85 68.59 699.61 MW-9 25 15-25 706.30 17.03 689.27 16.28 690.02 16.36 689.94 13.53 692.77 MW-10 25 15-25 696.81 17.88 678.93 17.29 679.52 17.74 679.07 16.07 680.74 MW-10D 65 55-65 726.77 42.83 683.94 41.55 685.22 42.09 684.68 37.35 689.42 MW-11 73 63-73 731.90 46.34 685.56 47.98 683.92 46.56 685.34 40.27 691.63 MW-11A 30 20-30 675.74 16.23 659.51 13.91 661.83 16.67 659.07 12.94 662.8 MW-1113 27 17-27 673.24 13.68 659.56 11.4 661.84 13.89 659.35 10.38 662.86 MW-11D-1 60 50-60 674.44 14.91 659.53 12.8 661.64 14.4 660.04 11.84 662.6 MW-11D-2 40 30-40 673.92 14.31 659.61 12.22 661.7 13.94 659.98 11.06 662.86 MW= Monitoring Well TOC= Top of Casing WT= Water Table * = Measured in Ft Below Ground Surface NM= Not Measured Table 6 History of Infill Groundwater and Surface Water Analytical Data Spring 2019 Semi -Annual Groundwater Monitoring North Meek Infill Area Landfill CEC Project No. 111-370.0001 15 of 4355 a000©©©©©©©o®mmoo® ©mmmmmmmmmmmmmmm®® Ac ©mmmmmmmmmmmmmmm�� ommm�mmm��m®®®mm®® o���mmmm���m�®mmmm ommmm������mm�m�mm ©mmmmmmmm���mmmm�® mmmm®mmm��mm®®®mmm mmmmmm®®®��mmmmmmmm ©mmmmmmm��mmm®mmmm ommmmmmm��®mmmmmmm �mmmmmmm��®mmmmmmm �mmmmmmm��®mmmmmmm mmmmmmmm���mmmmmmm �mmmmmmm��mm���m�� ommmmmmm��m�®��m�� mmmmmmmm��mm���mmm m®®®mmmm��mmmmmmmm I II: mmmm I I I I 11 I I 11 ® I I 1111 I I ® I I 11 I tI• mmmm I I I I 11 I I 11 I I 11 1111 I I ® I I 11 II• mmmm I I I I 11 I I 11 I I I I 11 I I ® I I 11 ®®®® II II 11 11 11 11 11 11 11' 11 ® II 11 �mmmmmmmm�m�m�mm�� ©mmmmmmm®�®m®®®mmm �mmmmmmm� III mm®�®mmm ®mmmmmmm®mmm®�®mm® mm®mmmmmmmmmmmmmm® ommmmmmmmmmmmmmm®® mm®mmmmmmmmmmmmm�� ®m®mmmmm��mmmmmmmm ®mmmmmmmmmmmmmmmmm II m®m®m®mmm®®m®®mmmm . © I I I I ' I11 111 I11 mmmm I I I I I11 111 I11 111 I11 ® I. I11 . t 1I I 't •• � • ©®®®®mmmm 'I III III ®®®®®®® .. I. .. II 111 • I I I I. I II I I I I II mmmm 1111 11 � I 1 � I III ® I I I I I �m®mmmmmmmm���m�� I III ��� III mmmmmm®®® III ®®' Nate Allunita mein µg/Lunles otherwisedivdicated NCDEQ StavdsM —15A NCAC 02L.0202 Groundwater St& (Ef. .. 2013) **Ivtuim Maximum Allowable Conowtratiov (Eff. 2013) *Labotamnes=Pane (P), Shealy (S), end Test America (TA) 1 = Estimated cant. above the adjusted method detection limit and below the adjusted mponivg limit B=Compound was fouvd iv the bIsal,.d sample. o— Ref to Case Narredve for fhu detail Bold /yellow values exceed the NCDEQ Standard Grew boxes represent Point of Compliance Wells NE=Not Established <^Report Limit" — Value is less that the Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek tofill Area Landfill CEC Project No. 111-370.0001 16 of 4355 ammmmmmmmmm I I . mmm ©mmmmmmmmmmmmmm 0®®mmmmmmm®®®m �mmmmmmmmmmm®m® ©mmmmmmmmmmmmmm ommmmmmmmmm®®®® �mmmmmmmmmmmmmm 0®mmmmmmmmmmmmm mmmmmmmmmmm®mmo ommmmmmmmmmmm®m �mmmmmmmmmmmmmm �mmmmmmmmmmmmmm �mmmmmmmmmmmmmm �mmmmmmmmmmmmmm omm®mmmmmmm®mmm ©mmm®mmmmmmmmmm ©mmmmmmmmmmmmmm mmmm®mmmmmmm®®® mmmm®®®mmmmmmm ©mmmmmmmmmmmmmm mmmm®®®®mmmo®®® ©mmmmmmmmmmmmmm ommmmm®®mmmmmmm �mmmom®m®00mmmm mmmmmmmmmmm®®®® �mmmmmmmmmmmmmm ommmmmmmmmmmmmm �mmmmmmmmmmmmmm �mmmmmmmmmmmmmm mmmmmmmmmmmmmmm mmmmm®®®®®mm®m® �mmmmmmmmmmmmmm ommmmmmmmmmm®mm �mmmmmmmmmmmmmm ©mmmm®®®®®mm®m® mmmmmmmmmmmmmmm m®®®mmmmmmmmmmm I: mmmm 1 1 I I 1 1 I I 1 1 m 1 1 I I 1 1 I I I :I• mmmm I I :: I I 11 I I 11 I I :: I I I II• mmmm I I :: I I :: m 1111 I I - ®mm®m©®mmm®m®mm �mmmmmmmmmmmmm® ©mmmmmmmmmmm®®® ®mmmmmmm®mmm®m® mmmmmmmmmmmmmmm ommmmmmmmmmmmmm mmmmmmmmmmmmmmm mmmmm®®®®mmo®®m �mmmmmmmmmmm®m® mmmmmmmmmmmmmmm mmmm®mmmmmm®mmm mmmmmmmmmmmm®®® �mmmmmmmmmmmmmm ©mmm®®®®®mmmmmm ®mmmmmmmmmmmmmm ®®®®mmmmmmm®®®® ®m®mm©m®®m®m®®® :: ®m®mmmmm®®m®mm I' ©mmmmmmmmmmm I I :: . © 111 :: I11 II 111 mmmm 111 I : 111 .•11 1 111 ::: 't I mmmmmmmm®mmmm •• • ©mmmmmmmm I mmmm .. I . ; 11 111 • 111 I11 • 111 I11 mmmm��� I I : 11I I11 ' �mmmmmmmmmmmmm tt 1 111 111 •:I II I11 mmmmmm '®�� Itl ©mmmmmmmmmmmmmm �mmmmmmmmmmmmmm Nate All units arein µglL unless otherwised indicated NCDEQ StsadsM=15A NCAC OM.0202 Groundwater Stds (Eff.: **Ivtuim Maximum Allowable Covowtratiov (Efi. 2013) *Labommries=Pane (P), Shealy (S), end Test America (TA) 1 = EstimatN cant. above the adjusted method detection limit and below the adjusted mp—, limit E=Compound was found iv the blW end sample. v=R6 to Case Narrativefrfurtherdetail Hold /yellow values exceed the NCDEQ S..&d Omw boxes represent Point of Campliavice Wells NE=Not Established <^Report Limit" = Value is less that the Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek tofill Area Landfill CEC Project No. 111-370.0001 17 of 4355 ao®000©©©©©©©ommmom ammmmmmmmmmmm I I . mmmmm ©®®mmmmmmmmmmmmmm®® ®mmm®mmmmmmm®®®m®® �mmmmmmmmmmmmm®m®mm ©mmmmmmmmmmmmmmmmmm o®®mmmmmmmmmm®®®®®® �mmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmm m®®®mmmmmmmmmmmmm®m ommmmmmmmmmmmmm®mmm �mmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmm ©mmmmm®mmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmm mmmmmm®mmmmmmm®®®mm �mmmmmm®®®mmmmmmmmm ©mmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmm o®®mmm®®®®mmm®m®m®m ®mmmm®®®®mm©mm®m®® m®®mmmmmmmm®m®®®®®® �mmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmm mmmmmmm®®®®®mm®m®mm �mmmmmmmmmmmmmmmmmm ommmmmmmmmmmmm®mmmm �mmmmmmmmmmmmmmmmmm ©mmmmmm®®®®®mm®m®mm mmmmmmmmmmmmmmmmmmm mmm®®®mmmmmmmmmmmmm I :I• :: I I mmmm I I :: I I :: I I :: I I :: I I :: I I II• :: I I mmmm I I :: I I :: I I :: I I :: I I ' �mmmmmmmmmmmmmmmmmm ©mmmmmmmmmm®mm®®®mm ®mmmmmmmmm®mmm®m®mm mmmmmmmmmmmmmmmmmmm o®®mmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmm m®®mmmm®®®m®m®®®®®® �mmmmmmmmmmmmm®m®mm mmmmmmmmmmmmmmmmmmm m®®mmm®mmmmmm®®mm®® mmmmmmmmmommmm®®®mm ®mmmmmmmmmmmmmmmmmm ®mmmmm®®®®®mmmmmmmm ®mmmmmmmmmmmmmmmmmm ®mm®®®mm®mmmm®®®®mm �mmmmmmmmmm®®m®mmmm I' ©�mmmmmmmmmmmm I I ��m ©®mmmmmmmmmmmm I I ��m . © . 111 I11 • 111 :I11 II :111 mmmm 111 .. ::: : :II ::: 111 ::: II 't 11 II :: mmmmmmmm®� II mmm II •• • ©mmmmmmmmmm Itl I I11 mmmmmm t :: 111 •' 11 l I11 � I11 •' l l l I11 mmmm 1 111 I11 : 111 I11 1 111 I11 111 ' �mmmmmmmmmmmmmmm®mom 1 111 • 111 I11 � 11 111 I11 mmmmmm� I11 1 111 I11 ®® ,; �mmmmmmmmmmmmmmmmmm Nate All units arein µglL unless otherwised indicated NCDEQ Srevda - 5A NCAC 02L.0202 Groundwater Stds (Eff.: **Ivtuim Maximum Allowable Covowtratiov (Efi. 2013) *Labotamnes=Pane (P), Shealy (S), end Test America (TA) 1 = EstimatN cant. above the adjusted method detection limit and below the adjusted rep—, limit H=Compound was found iv the blW end sample. --Ref to Case Nartedve fr furtbu detail Hold /yellow values exceed the NCDEQ Standard Grew boxes represent Point of Compliance Wells NE=Not Established <^Report Limit"= Value is less that the Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 18 of 4355 ammmmmmmmmmm I I . mmmmmmmmmmm ©mmmmmmmmmmmmmmmmm®®m®mm m®®®mmmmm®m®®®®m®®®®®m® mmmmmmmmmmmmm®mmm®mmmmmm ®mmmmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmm®®m®®®®mm®mm �mmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmommmmmmmmmm �mmmmmmmmmmm®ommmmmmmomm ommmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm ommmmmm®mmmmmmmmmmmmmmmm ©mmmm®mm®mmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmmmmmmmmm mmmmm®mmmmmmm®mm®®mm®m®® �mm0mm®®®mmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmmmm mmmmmm®®®mmm®®mm®®®mm®mm ©mmmmmmmmmmmmmmmmmmmmmmm ommmm®m®®omm®omm®m®mmmmm �m®®mm®®0®®0®0mm®m®mmmmm �mmmmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmm®mmmmmmmmmmm mmmmm®®®®®mm®mmm®mmmmmm �mmmmmmmmmmmmmmmmmmmmmmm ommmmm®mmmmmm®mmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm ®mmmmm®®®®®mm®mmm®mmmmmm �mmmmmmmmmmmmmmmmmmmmmmm ®®®®mmmmmmmmmmmmmmmmmmm 111: mmmmm 1 1 ' I I•• 1 1 I I 1 1 m 1 1 I I mm 1 1 I I 1 1 mm I I mm I I1. mmmmm 11 I I 11 I I 11 I I 11 I I mm 11 I I 11 mm I I mm 1 11 mmmmm 1 1 I I 1 1 I I 1 1 m 1 1 I I mm 1 1 I I 1 1 mm I I mm mmmmm 11 II 11 II 11 II 11 II mm 11 II 11 mm II mm mmmmm 11 I I 11 I I 11 m 11 I I mm 11 I I 11 mm I I mm " ®mmmmmm®®m®ammmmm®®mm®mm mmmmmmmmmm��mmmmmmmmmmmmm ommmmmmmm t I mm®mmm®®®mm®mm ©mmmmmmmmmmmm®®®®®mmmm®® �mmmmmmmm I I • 1 t' mm®mmm®mmmmmm ®mmmmmmm®®mmm®mmm®mmmmmm mmmmmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmm®mm®mm 11 mmmmmmmmmmmmmmmmmmmmmmm 11 mmmmm®®®®mm®mmm®o®mm®mm mmmmmmmmmmmmm®mmm®mmmmmm 11 mmmmmmmmmmmmmmmmmmmmmmm mmmmm®mmmmmm®®mmmm®mm®mm mmmmmmmmm®mmm®mm®®mmmmmm �mmmmmmmmmmmmmmmmmmmmmmm I t mmmmm®®�®®m®mmmm®®mm®mm ®mmmm®®®®m®mmmmmmmmmmmmm ®mmmmmmmmmmmmmmmmmmmmmmm �®®®®m®®®mmmm®mm®®mmmmmm �m®m®®®m®®mm®mmmammmmmmm :1' ®mmmmmmmmmmmmmmm®®mmmmmm ®mmmmmmmmmmmmmmmm®mmmmmm mmmmm 11 I I 11 �' �` mmmm®mmmmmmm 111 mmmmmm' 1t m®�®' m®mmmm®mmmmm ® . I11 II : I11 111 I11 mmmm 111 I 1 ..111 111 mm 111 I11 111 mmmm •. 11 mmmmmmmmmmmmmmmmmmmmmmm t•, ®mmmmmmmmmmmmmmmmmmmmmmm I I I11 • I11 •1111 I11 111 I11 mmmm���mmm� '®®mm t I mm • 11 mmmmmmmmmmmmmmmmmmmm -mmm . I11 m tll :11 m 11t mmmmmmm®mmm '®®mm 'tit mm ®mmmmmmmmmmmmmmmmmmmm 11 mm •'• �mmmmmmmmmmmmmmmmmmmmmmm N..1. All witsare in pg/L.lessotl,r iu indicated NCDEQ Standard= 15A NCAC 02L .0202 Gmwdwater Stds (Eff.: -Interim Mmcimum Allowable Concennnion(Eff. 2013) 'Labomt 6, Pace (P), Shwly (S), and Test Amok. (TA) 1= Estimated con, above the adjusted method detection limit and below the adjusted repordng limit Bxompound was found in the blade and sample. u= Refer to Case Nartaave for further detail Bold /,11—values exceed the NCDEQ Standard Green boxes represent Point ofCompliance Wells NE=Not Established <"Report Limit"= Value is less Mat Me Repon Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek tofill Area Landfill CEC Project No. 111-370.0001 19 of 4355 ammmmmm I I . mmmmmmmmmmmmmmmmmm ©mmmmmmmmmm®®mmmmmmmmmmmmm mmmmmmm®®®m®®®®®®mmmmmmm®® Ac mmmmmmm®m®mmmmmmmmmmmmmm® ©mmmmmmmmmmmmmmmmmmmmmmmmm ommmmmm®®®®®®mmmmmmmmmmm®® �mmmmmmmmmmmmmmmmmmmmmmmmm 0mmommmmmmmmmmmmmm®mm®mmmm m0®®m®®m0mommmmmmmmmmmm0mm ommmmmmmm®mmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmm®mmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm�mmm mmmmmmmm®®®mmmmmm®mmmmmmm® ®®®mmmmmmmmmmmmmm®®®mmmmm ©mmmmmmmmmmmmmmmmmmmmmmmmm m®®®mmm®®®®®®mmom®®mmmmm®® ©mmmmmmmmmmmmmmmmmmmmmmmmm o®®®mmm®mmm®®®mmm®®m©mmm®m �mm0®®®®mmm®®mmmm®®00®mm®m mmmmmmm®®®®®®mmmmmmmmm®m®® �mmmmmmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmm®mmmmmmmm m®®®®®mm®m®mmmmmmm®®®®®mm® �mmmmmmmmmmmmmmmmmmmmmmmmm ommmmmmm®mmmmmmmmm®mmmmmm® �mmmmmmmmmmmmmmmmmmmmmmmmm ©®®®mmmm®m®mmmmmmm®®®®®mm® mmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmm®®®®mmmmmmmmm I :I• :: I I :: I I :: I I :: I I :: I I :: I I mmmmm I I :: I I :: I I :: I I :: II• :: I I :: I I :: m 11 :: I I :: I I mmmmm I I :: I I :: 11 m t l :: - ®mmmm®m®mmm®®mm®mmm®mm®®®m mmmmmmm®a®m®®mmmmmmmmmmmmm Ommm 11 :: mmmmmm®mmmmmmmm :: mm®m Kill ©mmmmmmm®®®mmmmmmmmmmmmmm® mmm 11: :: mm®m®mmmmmmmmmm :: 11 mm® ®mmm®mmm®m®mmmmmmmmmm®mmm® mmmmmmmmmmmmmmmmmmmmmmmmmm ommmmmmmmmm®®mmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmm m®®®mmm®®®®®®mmmmm®m®m®m®m mmmmmmm®m®mmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmm®mmm®®mmmm®mmmmmm®® mmmm®mmm®®®mmmmmmmm®a®®mm® �mmmmmmmmmmmmmmmmmmmmmmmmm 111 ®®m®®m®mm®®®mmmmm®®®®®m®® ®®®®®mmmmmmmmmmmm®mmmm®mmm ®mmmmmmmmmmmmmmmmmmmmmmmmm tl momo®m®mm®®®mmmmmmmm®m®mm ®mm®mmmm®®®m®®®®®m®®®®mm®® ®®®mmmm®®m®®®®®®m®mmm®m®®® mmm®m®mm®®®m®mmm®a®mmm®mmm I' ©mmmmmmm I I mmmmmmmmmmmmmmmm ©mmmmmmm I I m®mmmmmmmmmmmmmm :: I I :: m' m` mmmmmmmmmmmm I I m 11 m` m' mmm 111 mmmmm®' 'mmmmmmmmmm®mmm `Ommmm ©mmmm Itl I I11 111 111 :: 111 I11 1111 I11 111 :: 111 I: I11 111 mmmm I : . 111 m itl 't tl mmmmmm II mmm II mmmmmmmmmmmmm •• • ©mmmm Itl I I11 mmmmmmmmm®�,mmmmmm®mm .. I . . ; 11111 mmmm 1111 I I11 111 I11 1111 I11 111 I11 111 I :t'i'//S'l'1'a . 111 mmmm mmmmmmm II mmmmmmmmmmmmmmlLl''l'a �,, 1 111 mmmmmm I I 111 111 :::: 111 ::: m • ::: mm I mmmmmm '®m ©m :::: m mm II mmm II :: mmmmmmm I11 '®m '®mm � �mmmmmmmmmmmmmmmmmmmmmmmmm Nate All units arein µglL unless otherwised indicated NCDEQ SrevdsM=15A NCAC OM.0202 Groundwater SMs (Eff.: **Ivtuim Maximum Allowable Covowtratiov (Efi. 2013) *Labommries=Pane (P), Shealy (S), end Test America (TA) 1 = EstimatN cant. above the adjusted method detection limit and below the adjusted rep—, limit B=Compound was found iv the blW end sample. --Ref to Case Narrative fr further detail Bold /yellow values exceed the NCDEQ SU.&d Green boxes represent Point of Compliance Wells NE=Not Established <^Report Limit"= Value is less that the Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 20 of 4355 ammmom©©©©©©ommmom ammtmtmtmtmmmmmmmmmmmm ©mmmomtmmmmmmmmmmm® ®®®®®mmmmmm®®mm®® �mmt®mtmtmmmmmmm®m®mm ©m®®mtmtmmmmmmmmmmmm o®®®®®mmmmmm®®®®®® �mmtmtmtmtmmmmmmmmmmmm mmmtmtmtmtmmmmmmmmmmmm mmmtmt®mtm®m®m00®0m®m ommtmtmmtmmmmmmmm®mmm �mmtmtmtmtmmmmmmmmmmmm �mmtmtmtmtmmmmmmmmmmmm �mmtmtmtmtmmmmmmmmmmmm �mmtmtmtmtmmmmmmmmmmmm ommmmmmmmmmmmmmmmm ©mmtmtmmmmmmmmmmmmmm ©m®®mt®mmmmmmmmmmmm mm®®mmmmmmmmm®®®mm mmmmmmm®®®mmmmmmmmm ©mmmmmmmmmmmmmmmmm ©mmtmtmtmtmmmmmmmmmmmm om®mt®mt®®®mmm®mmm®® �mmtmt®mtm®®®m®®mmm®m m®®®®®mmmmmm®®®®®® �mmtmtmtmtmmmmmmmmmmmm ommmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmm mmmt®mtmt®®®®®mm®m®mm �mmtmtmtmtmmmmmmmmmmmm ommtmtmtmtmmmmmmm®mmmm �mmtmtmtmtmmmmmmmmmmmm ©mmt®mm®� ®mmmm®m®mm mmmtmtmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmm : 11: m :: :: I I I I I I :: I I :: I I m I I :: I I • :: I I :: I :I• m :: :: I I I I I I :: I I :: I I :: I I :: I I • :: I I :: I II• m :: :: I I 11 I I :: 11 :: 11 m 11 :: I I • :: I I :: I : m :: :: I I : I : I :: : I :: : I :: : I :: I I • :: I I :: - ®mmt®®mtmmmm®®®mmm®® mmmtmtmtmtmmmmmm®®®o®m ©®®®mmmmmmmmm®®®mm ®mmt®®®mmm®mmm®m®mm mm®®®®mmmmmmmmmmmm om®®®mtmmmmmmmmmm®® �m®®mtmtmmmmmmmmmmmm �mmt®mtmtmmmmmmm®mmmm �mmtmtmtmtmmmmmmmmmm®® mmmtmt®®mmmmmm®mmm®® mm®®mtmtmmmmmmm®®®mm �mmmmmmmmmmmmmmmmm ®m®mtmtmt®®®®mmmmmmmm ®m®®mmmmmmmmmmmmmm ®m®®mtmtmm®mmm®®®®m® :: m®®mmmmmm®®®mmmmm : t' ®m���®mmmmmmm I t • ��m ®m���®mmmmmmm I t • ��m :: mmtmtmtmtmmmm®mmmmmmm ®m I : I : :.I : I : mmmm I11 .: 111 •. I11 111 I I11 111 I : • 111 't �m®®mt®mmmmmm mmmm® •• • ®m®®®®mmmm I I11 :: 111 mmmmmm �m�mtmt�mmmmmmmm®m®® �mmtmtmtmtmmmmmmmmmmmm Nate All units are µ in/L unles otherwised indicated NCDEQ Srenda —15A NCAC 02L.0202 Groundwater Stds (Eff.: '*Intuim Maximum Allowable C000wtration (Efi. 2013) 'Labotamnes=Pane (P), Shealy (S), end Test America (TA) 1= EstimatN cant. above the adjusted method detection limit and below the adjusted reposing limit B=Compound was found m the blW end sample. o— Ref to Case Nartedve f funhu detail Bold /yellow values exceed the NCDEQ Standard Grew boxes represent Point of Campliaoce Wells NE=Not Established <^Report Limit"=Value is less that the Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 21 of 4355 a000©©©©©©©©ommm ammmmmmmmmmmmmmm ©mmmmmmmmmmmmmmm ®®m®mmmmmmm®m®® mmmmmmmmmmmmm®mm ®mmmmmmmmmmmmmmm ommmmmmmmmmm®®®® �mmmmmmmmmmmmmmm mmmmmmm®®mmmmmmm mmmmm®mmmmmmmmmmm ommmmmmmmmmmmmmm �mmmmmmmmmmmmmmm �mmmmmmmmmmmmmmm �mmmmmmmmmmmmmmm �mmmmmmmmmmmmmmm ommmmmmmmmmmmmmm ©mm®m®mmmmmmmmmm ®mmmmmmmmm�mmmmm mmmmm®mmmmmmm®m® mmmmm®®®mmmmmmm ©mmmmmmmmmmmmmmm mmmmm®®®®m®m®®m® ©mmmmmmmmmmmmmmm ommmm®®®®m®m®mmm mmmmm®000m0m®mm® Carbon DmIfid. �mmmmmmmmmmm®®®® �mmmmmmmmmmmmmmm ommmmmmmmmmmmmmm �mmmmmmmmmmmmmmm �mmmmmmmmmmmmmmm .is_, 2-Di,hlomethem mmmmmmmmmmmmmmmm Di-,-b,tyl phthalate mmmmm®®®®®mm®mm �mmmmmmmmmmmmmmm ommmmmmmmmmmm®mm �mmmmmmmmmmmmmmm ©mmmmm®®®®®mmmmm �mmmmmmmmmmmmmmm ®®®®mmmmmmmmmmm I I1: mmmmm 11 I I 11 I I 11 m 11 I I m I I I I1. mmmmm 11 I I 11 I I 11 I I 11 I I m I I 111' mmmmm 11 I I 11 I I 11 m 11 I I m I I mmmmm 11 I I 11 I I 11 I I 11 I I m I I - mmmmm 11 I I 11 I I 11 m 11 I I m I I ®mmmmmmmmm®®®®m® mmmmmmmmmmmmmmmm ommmmmmmm t I mm®mm® ©mmmmmmmmmmmm®®® mmmmmmmm I I • 1 t' mm®mm ®mmmmmmmm®mmm®mm mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmm tt mmmmmmmmmmmmmmm tt mmmmm®®®®®m®®m® mmmmmmmmmmmmm®mm tt mmmmmmmmmmmmmmm mmmmm®mmmmmm®mmm mmmmmmmm®®®mm®m® �mmmmmmmmmmmmmmm I t mmmmm®®®®®m®mmm ®mm®m®®m®®mmmmmm ®mmmmmmmmmmmmmmm 1 mmmmmmmmmmmmmmm mmmmm®®®m®®®m®m '1' ®mmmmmmmmmmmmmm I ®mmmmmmmmmmmmmm I mmmmm 11 I I 11 mmmmmmm 111 mm®mm®mmmmmmmmm . ® :11 II I11 . 111 I11 mmmm 111 I 1 . 111 I 1 mm 't 11 mmmmmmmmmmmmmmm � ®mm®mmmmmm • t I �m�m,m I I I11 I11 • 111 �� 111 mmmm�t'L'A'l'l'a®!K'A'l'l'am'W'S'l'l'a �m, 11 mmmmmmmmmmmmmmm I11 .1 :11 �®' t I 11t mmmmmm®mm® '• ®mmmmmmmmmmmmmmm • �mmmmmmmmmmmmmmm N..1. All its are in pgtL.less otberwiu indica NCDEQ Standard- 15A NCAC 02L .0202 Gmwdwater SWs (Eff.: -Interim Mmcimum Allowable Concennnion(Eff. 2013) 'Labamt 6, Pace (P), Shwly (S), and Test America (TA) 1= Estimated con, above the adjusted method detection limit and below the adjusted repordng limit Bxompound was found in the blade and sample. n= RelrrW Case Nanaave for further detail Bold /yellow values exceed the NCDEQ Standard Green boxes represent Point ofCompliance Wells NE=Not Established <"Report Limit"= Value is less Mat Me Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 22 of 4355 a mom 000©©©©©©©ommmmom a mmmt ��������mmmm�m,m■mm a m®0 mmmmmmmmmmmmm®®mm m ®mmt mmmmmmmmmmm®mm.®mm ®mmmt mmmmmmmmmmmmm®®mm mmmt mmmmmmm�mmmmmmtm•mm m ommt ����mm®�mmmmmm,m•mm mmmt ��������mmmmmm.m■mm o mmmt ���m®�®�®m®®�®m•®m �mmmtmmmmmmm�mmmmmm.m■ m mmmt mmmmmmm�mmmmmm.m■mm mmmt mmmmmmm�mmmmmm.m■mm � mmmt mmmmmmm�mmmmmm.m■mm o mmm mmmm����mmmmmmmmm ©mmm mmm®����mmmm�m.m•mm ®mm®mmmmmmmmmmmmm®®mm m ®mmm®m®mmmmmmmm®m®®mm mmm mmmm®®®�mmmmmmmmm ©mmm mmmmmmm�mmmmmmmmm ©mmmt mmmmmmm�mmmmmm.m■mm � mmmt mmmm����mmmmmm.m.mm o mmm mmmmmmm�mmmmmmmmm mmm mmmmmmm�mmmmmmmmm mmm mmmo�®oommmmmmmmm m mmm mm�mmmm�mmmm�mtm•mm mmmt mmmm®®®®®mm®mm.m.mm mmmt mmmmmmm�mmmmmm.m■mm o mmmt mmmm®mm�mmm®mm.m•mm �mmmtmmmm���� mmmmm.m■mm ®®mm mmmm®®®®®mm®mm,®mm mmm mmmmmmm�mmmm�m.m•mm mmm �®®mmmm�mmmmmmmmm I I1: I I I I I I ®®®® I I 11 I I �� 11 I I 11 ® I I • I I I I 11 I I1. I I I I I I mmmm I I 11 I I �mm I I 11 ® I I • I I I I 11 1 11. I I I I 1 1 mmmm I I 1 1 ��� 1 1 t l 1 1® I I • 1 1 I I 1 1 II II 11 mmmm II 11 ®®' m-� 11 ®m��m 11 II II mmmm II 11 II 11 �� tl 11 ® tl• 11 11 11 m mmmt mmmmmmmm®ammmm.m•®m ©®mm mmmmmmmmmmm®m®®mm ®®m®mmmmmmm®mmm®mm.®mm mmm®mmmmmmmmmmmmm®®mm ©m®®mmmmmmmmmmmmm®®m® � mmmt mmmmmmmmmmmmm®®mm m ®mmt mmmmmmmm®mm®mm.®mm � mmmt mmmmmmmm®mmmmm.m.mm � mmm mmmmmmmm®mmmmmmmm ®mmmt ���®®®®mmm®mmm®mm ®mm®mmmmmmmmmmmmm®®mm � mm®mmmm®mm�mmmmmmmmm � mmm mmm®��®®mmmm®m.m•mm :1 ®mm®mmmmmmmmmmmmmm.®mm ®m®®mmmmmmmmmmmmmm.®mm mmmmmmmm 1 t mmmmmmmm.®mm . ®� . I 1 I 1 I11 111 I11 1111 mmmm I11 • 11 I11 I11 ® 11 m♦ :11 . 111 tt mm®mmmmmmmmm®®mm®®®® I I I m�� ' l l l :. 111 I' 1 1 1 1 111 ®mmma'L1'A'L'1'a�l'YS'l'l'a14'A'l'1'aml15L'6'LL'�4Y1'l'1'am � mmm mmmmmmmmmmmm®m.m.mm ®m�mt®®®®� •tl �� `®®mmm®®mm •'• �mmmt����mmmmmmmmmm.m.mm Note All wits are in pB�L wless oNerwised indicatN NCDEQ Standard= 15A NCAC 02L .0202 Cm.d m.r Stds (Eff.: '"Interim Mmcimum Allowable Concenrcation (Eff.2013) 'Labomtori, Pace (P), Shwly (S), and TestA d.. (TA) 1= Esama[ed cone. above the adjusted method detection limit and below the adjusted repordng limit Bx—pound was found in the b1sak and sample. n= Refer to Case Nartaave for farther detail Bold/yellow values exceed the NCDEQ Standard Green boxes represent Point ofCompliance Wells NE=Not Established <"Report Limit"= Value is less Mat Me Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 23 of 4355 a©©©©©©ommmom000©©©©©©©ommmmom ammmmmtmmmtmtmtmtmtm•mmmmmmmmmmmmmmmm ammmmmmm®®mmtm®mmmmmmmmmmmmmm®® mmmmmtm®®®®®®®®®mmmmmmm®®®®®®® mmmmm®mm®�®��®mmmmmmmmmm®mm®mm ®mmmm®mm®®mmtmt®mmmmmmmmmmmmmmmm ommmmmtm®®�®®®mmmmmmmmmm®®®®®®® �mmmmmtmmmtmlmtmtmt®mmmmmmmmmmmmmmmm mmm®mmt®mmt®mtmtmtm•mmmmmmmmmmmmmmmm �mmmmmtmmmtmtmtmtmtm•®mmm®0000mmmmom0 ommmmmtmmmtmtmtmmlm•mmmmmmmmmmmm®mmm �mmmmmtmmmtmlmtmtmt®mmmmmmmmmmmmmmmm �mmmmmtmmmtmlmtmtml®mmmmmmmmmmmmmmmm �mmmmmtmmmtmlmtmtmt®mmmmmmmmmmmmmmmm �mmmm�mm�����®mmmmmmmmmmmmmmmm ommmmmtmmmmmmmmmmmmmmmmmmmmmmmm ©mmmmmtmmmtmtmtmmmmm®mmmmmmmmmmmmm ®mmmmmm®®mmt®®mmmmmmmmmmmmmmmm mmmmmmtmm®®®mmm®m®mmmmmmmmm®®mm ®®®mmmmmmmmmmmmmm®®®mmmmmmmmmm ©mmmm�mmmmmmmmmmmmmmmmmmmmmmmmmmm m®®®mmm®®�®�®m•mm®®®®mmm®®m®®m® ©mmmm�mm�����mmm®mmmmmmmmmmmmmmmm om®®mmm®®�mmmmmm€a®�m•mm®®®®mmm®mmm®®m mmm®©om®®��®�mmmmmm0mmm®mmmmmm®®mm®mmm �mmmm�m®®®®®®mmmmmmmmmmmmm®®®®®®® �mmmm�mm�����mmm®mmmmmmmmmmmmmmmm ommmm�mmmmmmmmmmmmmmmmmmmmmmmmmmm �mmmm�mmmmmmmmmmmmmmmmmmmmmmmmmmm �mmmm�mmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmm�mmmmmmmmmmmmmmmmmmmmmmmmmmm ®®®mmmmmmaa®mm®�®��mmm®mmm®®®®®mm®mmmmm �mmmm�mm�����mmm®mmmmmmmmmmmmmmmm o®mmmmmm®����mmm®mmmmmmmmmm®mmmmm �mmmm�mm����mmm®mmmmmmmmmmmmmmmm ©®®®mmmm®�®mmmmm®mmm®®®®®mm®mm®mm mmmm®®mm���m�mmmmmmmmmmmmmmmmmmmm mmmm®�mmmmmmm®®®mmmmmmmmmmmmmm I I1: I I 1 1 I I 1 1 mmmmt l• m 1 1 1 1 1 1 I I 1 1 1 1 ®mmm 1 1 I I 1 1 I I 1 1 m 1 1 I I m I I • 1 1 I I 1 1 I I1. I I 1 1 I I 1 1 �� 1 1 t t t 1 I I 1 1 1 1 ®mmm t 1 I I 1 1 I I 1 1 I I 1 1 I I m I I • 1 1 I I 1 1 1 11 I I 1 1 I I I t 1 1 m 1 1 1 1 1 1' I I 1 1 1 1 ®mmm 1 1 I I 1 1 1 1 1 1 m 1 1 I I m I I • 1 1 I I 1 1 I I 11 I I ��,��® 11 11 11 I I 11 11 ®mmm 11 11 11 11 11 11 11 I I m I I • 11 I I 11 I I 11 11 mmnl'a!!f!•mmm •W'.alalm 11 11 11 11 11 11 ®mmm 11 11 11 11 11 m 11 11 m 11 • 11 11 11 " ®mmmm®®®���®®m•mmmmmm®mmm®®®®mm®®® mmmmm�mm���� mmm®mmmmmmmmmmmmmmmm ommm 1 t . �m®�®®®®m•mm®m®mmmm®mm®®®® ©mmmmmm®®r,®mmmmmmmmarm®®®m®ar®®ar,®®m ���� 11' 1 I• mm®' �®��®mmm��� 1 I: 1 t• mmmmmmlII•ammmmmal6la® ®mmmmmmm®®mmm®�®m®mmm®mmmmmm®mmm®mm®mm �mmmmmmm®mmm®mmm®mmmmmmmmmmmmmmmm ©mmmmmmm®®m®®®mmmmmmmmmmmmmm®® �mmmmmmm®®m��mmm®mmmmmmmmmmmmmmmm �mmmmmmmta®®m®m®m®�mm•mmm®®®®mm®mm®mm® mmmmmm®m®�®��mmm®mmmmmmmmmm®mm®mm �mmmm�mm�����mmm®mmmmmmmmmmmmm®mm �mmmm�m®���®®m•mm®mmm®®m®®mm®®® �®®mm®mm®®®��m•mmmm©®®©mm®m®®mm �mmmm�ammmmmmmmmm®mmmmmmmammmmmmmmm ®mmmm®mmmm®��m•mmmmmmmmmmmmmmmmmmmm®mm®mmmmmmm ®marmmarmr,®ar,/mar,/m®ar®armrmrmrmmm®ar�marmmmmarmmar,/mmmmmmmmm 1 mmmmml✓•mmmmmmmmmmml✓•mmmmal'd1ammmmalOi"immmmalOi"immmmmmmmmmmmal✓•mmmmmmal✓•mmmmmm0✓•mmmmmm0✓•mmmmmm0✓•mmmmmmmal✓_mmmmml✓•mmmmmmmmmmmmmmmmmml✓•mmmmmmmmmmalOi"i®�������� ®mmmmmmmmmmmmmmmmmm®�ma®®®®®®®®®m®®mm®m®m®mm® �®am®®a,mmmmmmm®®mm®mmm0mmmmmmm®®m®®®mm®m®®r,mar,® 't' ®mmmm®a,mm 1 t 1 t ��mmmmmmmmmmmmmmmtmmmmmmmmmm I I mmmmm�mmmmalr',Lmmmml'dam ®mmmm®mm tart, 1a 1, �,�r,®r,®mmmmmmmmmm I I m I I mmmmal'Lmmmmmm�m I I mmmmal'd'a✓• I I �` �` mmmmmmmmmmmmalammmmmla'mmmmml'mmmmmmSalmmmmmmS®mmm 11 11 11 �' �` mmmmmmmmmmmmmmmmmmmmmmm . I I I I 1 111 I I 1 111 111 • 11 mmmm®mm®a,® • itl ®®mmmmmmmmtmmmmmmmmmmm 'mmm II mmmm 11 II t• ®mmmm®� t i ma�,®�,mmm�mmmm,mmm�mmmm,mmmmmmmmmmmmamm,,mmmmmmmmtmmmmmmm 1 itl ' :I I I m�,m�,mmm�,mm I r I I11 mmmm�������� , 111 I11 • 111 I11 mmmm 1 111 I 1 ��m I 1 � I I 1 111 mmmmmm®a,mm!,��,��,��,���,®mmmmmmmmmmmmm,m,m,m, I11 mmmarmmmmmmmLLmy,mmmmmaL•'mmmt3aA•,Y•ammmLdL'mmmL" 'AL" 1,I mmmLd'•L,•' 1 I �� ' l l mmarmmay,m,mmm�mmmmmSilLammmmai'L•'mmmmmlLammmm`•' '• ®� • `tl mmmmml✓• '® '®mmmmaY`tam®mmmmmmmmmmmmmmmmmmmlL••ammmmmlL••ammmmmmmmtmmmmmmmmmmmmmm0✓•mmmmmmmmmmaY`tammmmN•fa' :It mmmmm tt II • �mmmmmtmmmtmtmtmtmtm■mmmmmmmmmmmmmmmm Note All wits are in pB�L wless oNerwised indicatN NCDEQStandard=15ANCACO2L.0202Cm.d m.rSWs(EH.: '"Interim Mmcimum Allowable Concenrcation (Eff.2013) 'Labomtori, Pace (P), Shwly (S), and TestA d.. (TA) 1= Esama[ed cone. above the adjusted method detection limit and below the adjusted repordng limit Bx—pound was found in the b1sak and sample. n= Refer to Case Nartaave for farther detail Bold/yellow values exceed the NCDEQ Standard Green boxes represent Point ofCompliance Wells NE=Not Established <"Report Limit"= Value is less Mat Me Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 24 of 4355 a©©©©©©ommmmomoo© ammmmmmmmmmmmmmmm ©mmmmmmmmmmm®®mmm mmmmmm®m®®®®®®®m mmmmmm®m®mm®mmmmm ®mmmmmmmmmmmmmmmm ommmmmm®®®®®®®mmm �mmmmmmmmmmmmmmmm mm®mmmmmmmmmmmmmm �m®®®®®m0m®mmmmmm ommmmmmmmm®mmmmom �mmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmm® ®mmmmmmmmmmmmmmmm mmmmmmmm®m®®mmmm® ®®®mmmmmmmmmmmmm ©mmmmmmmmmmmmmmmm mm®®mmm®®m®®®®mm® ©mmmmmmmmmmmmmmmm o®®®mmm®mmmm®®mm® ®am®®m®®mmm®®mm® �mmmmmm®®®®®®®mmm �mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmm ®amm®®mmmmmmmmm® mmmmmmmmmmmmmmm®m ®®®®®mm®mm®mmmmm �mmmmmmmmmmmmmmmm ommmmmmm®mmmmmmmm �mmmmmmmmmmmmmmmm ©®®®®®mm®mm®mmmmm �mmmmmmmmmmmmmmmm �mmmmmmmmmmmmm®®m - ®mmmmmm®mmmm®®mmm mmmmm®m®®m©a®®mmm ommm ::: mmmmmmm®mmm ©mmmmmmm®®®®mmmm® ®mmm®mmm®mm®mmmmm mmmmmmmmmmmmmmmmm ommmmmmmmmmm®®mmm �mmmmmmmmmmmmmmmm mmmmmmmm®mm®mmmmm �mmmmmmmmmmmm®mmm mmmmmmm®mmmm®®mm® mmm®ammm®m®®mmmmm �mmmmmmmmmmmmmmmm ®®®®®m®mmmmmmmmm® ®mmmmmmmmmmmmmmmm �o®mm®mmm®®mm®mmm :' ®mmmmmmmmm mmmmmm ®mmmmmmmmm mmmmmm ®mmmm I11 •: 111 I11 111 : m •: 111 I11 1' 11 l I11 111 • I11 1 111 ' mmmm�� mmmm II mmm � ®mmmm 111 1tl mmmmmmmmmm : I I11 mmmm :: I11 •: 111 :I11 1111 m .: 111 I11 111 I11 1111 :I11 1111 ' �mmmmmm� II m� ��mmm I11 mmmmmm : :: ::: m 111 111 : • I I .::: : 111 :: 111 '• • �mmmmmmm�mmmmmmmm Note All wits are in pB�L wless oNerwised indicatN NCDEQ Smndmd= 15A NCAC 02L .0202 Gm.d m.r Stds (Efi.: '"Interim Mmcimum Allowable Concenrcation (Eff.2013) 'Labomtori, Pace (P), Shwly (S), mid TestA d.. (TA) 1= Esama[ed cone. above the adjusted method detection limit mid below the adjusted repordng limit Bx—pound was found in the blmdc and sample. n= Referm Case Nanaaveforfurtherdetail Bold/yellow values exceed the NCDEQ Standmd Green boxes represent Point of Compliance Wells NE=Not Established <"Report Limit"= Value is less Mat Me Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek tofill Area Landfill CEC Project No. 111-370.0001 25 of 4355 ammmmmm I I . mm�mmm�mmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm®m®m mmmmmmmm®®®®m®m®®m®®®0®®®m® �mmmmmmmmmmmmm®mmmm®mmmmmm ©mmmmmmmmmmmmmmmmmmmmmmmmm ommmmmm®mmmmmm®m®®m®mm®m®m �mmmmmmmmmmmmm�mmmmmmmmmmm mmmmmm®mmmmmmm�mmmmmmmmmmm mmmmmmmmmmmmmm�mmmmmmmmmmm o®m®m®m®®®®®m®mmm®®®®mmm®® �mmmmmmmmmmmmm�mmmmmmmmmmm �mmmmmmmmmmmmm�mmmmmmmmmmm �mmmmmmmmmmmmm�mmmmmmmmmmm �mmmmmmmmmmmmm�mmmmmmmmmmm ommmmmmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmm�mmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmm�mmm®mm®®®®mm®m® ®®®mmmmmm�mmmmmmmmmmmmmmm ©mmmmmmmmm�mmmmmmmmmmmmmmm m®®mm®m®mmmmmm©mm®m®mm®m®m ©mmmmmmmmmmmmm�mmmmmmmmmmm oo®®mmmm mmmmmmmmmmm®mm®mmm �0mm®mm®mmmmmm�mmmmmmm®m®m �mmmmmmmmmmmmm�mmmmmmmmmmm o®m®mmmmmm�mmm�mmmmmmmmmmm �mmmmmmmmm�mmmmmmmmmmmmmmm ®mmmmmmmm�mmmmmmmmmmmmmmm mm®mm®m©®mmm®mmm®®®®mm®®®mm m®®®®®mmmmmmmm®mmmmmmmmmmm �mmmmmmmmmmmmm�mmmmmmmmmmm ommmmmmmmmmmmm®mmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmm ©®®®®®mmmmmmmm®mmmm®mmmmmm mmmmmmmmmm�mmm�mmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmm 11 11 ���� I I I I mmmmmm I I mm I I m I I mm I I m I I m II• 11 I I 11 � I I m I I mmmmmm I I mm I I m I I mm I I m I I m 11 11 II ®' 11 � II II mmmmmm II mm III m II mm II m II m - 11 11 II 11 11 11 m II mmmmmm II mm III m II mm II m II m ®mm®mm®®mmmmmm®mm®m®mm®m®m �mmmmmmmmm®®mm�mmmmmmmmmmm 0 ��® I I ®m®mmmmmm®mm®m®mm®m®m ©®m®mmmmmmmm©®®®®®®®mmmm® ���® I I: I I' mmmm®mmm�mm�m®mm�m�m ®mmm®mmmmmmmmm�mmmm®mmmmmm mmmmmmmmmm®®mmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmmmm®m®m mmmmmmmmmmmmmmmmmmmmmmmmmm mmm®mmmmmmmmmm�mm®m®mm®m®m �mmmmmmmmmmmmm®mmmm®mmmmmm mmmmmmmmmmmmmm�mmmmmmmmmmm mmmmmmm®mmmmmm�mmmmmmm®m®m mmm®®mmmmmmmmm®mm®m®mmmmmm ®mmmmmmmmm�mmmmmmmmmmmmmmm I I ®®®®®m®mm®mmm mmmm®mm®m®m ®®®®®®mmmm®mmm mmmmmmmm®mm ®mmmmmmmmmmmmmmmmmmmmmmmmm ®®®®mmm®mmmmmm®mm®m®mmmmmm ®®mmmm®®mmmmmm®mmmmmmmmmmm mmmmmm®®®®®®mmmm®m®®mmm®mm I' ©mmmmmmmmm®mmm�mm�m�mm�mmm ©mmmmmmmmmmmmm�mm I I mmmmmmmm �� I I ��' �` mmm®mmm�mmmmmmm�m�m III ®����®' mmm®mmm�mmmmmmmmmmm ©mmmm 111 I I I 111 mm '1 I I I mmm • 1111 t mm 1 I m• 1 1 I mm 11 m 11 m 't II mmmmmm®mm®mmm®mmmmmmm®m®m •• • ©mmmm® • ICI mmm®mmm®mmmmmmmmmmm •, I • • I I I I I mmmm�1'L'1'ammmmm]'A'l'l'ammmmmmm �mmmmmmmmm�mmm�mmmmmmmmmmm I III mmmmmm�mm�mmm®mm�m�mm®` m®m ©� 11 � II '® II ®mm®mmm®mmmmmmm�m�m �mmmmmmmmm�mmm�mmmmmmmmmmm Nate All units arein µglL unless otherwised indicated NCDEQ StsadsM=15A NCAC OM.0202 Groundwater Stds (Eff.: **Ivtuim Maximum Allowable Covowtratiov (Efi. 2013) *Labommries=Pane (P), Shealy (S), end Test America (TA) 1 = EstimatN cant. above the adjusted method detection limit and below the adjusted rep—, limit E=Compound was found iv the blW end sample. o- Ref to Case Narrative f further detail Hold /yellow values exceed the NCDEQ S..&d Green boxes represent Point of Compliance Wells NE=Not Established <^Report Limit" - Value is less that the Report Limit Table 6 (Cont.) History of Infll Groundwater and Surface Water Analytical Data North Meek tofill Area Landfill CEC Project No. 111-370.0001 26 of 4355 ammmmmm I t . mmmmmmtm�mtm•m•m• ©mmmmmmmmmmmmmmm®®®m■ mmmmmmmm®®®®®®mt®®®o®® mmmmmmm®mmmmmm®mmm,®m■m■ ©mmmmmmmmmmmmmmm®®m•m• ommmmmm®mmmmm®mm®®®® �mmmmmmmmmmmmmtmmm,m■m•m■ 0oo®mmmmmmmmmmtmmm,m■m■m■ mmmmmmmmmmmmmmtmm00m■m■ ommmmmmmmmmmmmtm�®m■mm• �mmmmmmmmmmmmmtmmmtm•m•m• �mmmmmmmmmmmmmtmmmtm•m•m• �mmmmmmmmmmmmmtmmmtm•m•m• �mmmmmmmmmmmmmtmmmtm•m•m• ommmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmtm�mtm•mm ©mmmmmmmmmmmmmmm®®m•® mmmmmmmmmmmmm®mm®®mm ®®®mmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmm®mmm m®®®mmm®mmmmmmmm®®®® ©mmmmmmmmmmmmmtmmmtm•m•m• o®®®mmm®mmmmmmmmmm®® ®®®mm0®mmmmmmtmmm,m•®m■ mmmmmmm®mm®mm®mm®®®® �mmmmmmmmmmmmmtmmm,m■m•m• omm®mmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmm �0®0mm®mmammommmmmmm m®mmmmm®®om®©mmmmm■m■® m®®®®®mmmmmmm®mmmtm■m■m■ �mmmmmmmmmmmmmtmmmtm•m•m• ommmmmmmmmmmm®mmmtm■m•m• �mmmmmmmmmmmmmtmmm,m■m•m• ©®®®®®mmmmmmm®mmm,®mm mmmmmmmmmmmmmmtm�mtm•mm mmmmmmmmmmmmmmmmmmmm I :I• :: I I :: I I :: I I :: mmmmm m® I I :: :: I II• :: I I :: I I :: m mmmmm m® I I :: :: - ®mmmmm®®mmmmmmtmmmt®®® �mmmmmmmmmmmm®mmmm•m■m■ o®®®mmmmmmmmmmmm®®®® ©mom®mmm®®®mm®®®®m■®m■ �®®®m®mmmmmmm®mmm,®m•m• ®®®®®mmmmmmmm®mmm,®®® mmmmmmmmmmmmmmmm®®®® ommmmmmmmmmmmmmm®®®® mmmmmmmmmmmmmmmm®®m•m• mm®®mmm®mmmmm®mm®®®® �mmmmmmmmmmmm®mmm®m■m■ mmmmmmmmmmmmmmtmmmtm•m•® mmmmmmm®mmmmmmtmmmtm•®® m®mm®mmmmmmmm®mmm®m■m■ �mmmmmmmmmmmmmmm®mmm t ®®®®®m®mmmmmmtm®m1®®® ®®®®mmmmm®®mmmtm�mt®®® ®mmmmmmmmmmmmmmm®®mm• : I mmmmmmmmmmm®mtmmmt®®® ®®®®mmm®mmmmm®mm®®®® ®®®®m®®mmmmmmmmmm,®®® :: mmmm®®m®®m®mmtm®®®®m■ t ®mmmmmmmmmmmmmtm® m♦®® ©mmmmmmmmmmmm : mm m•®® t �' �` mmmmmmmmtm®m1m■m♦m■ Itt �' ���®' m®mmmmmmtm®m1m■®® t mmmm®®®mmmmmmmm®®®® t ©mmmmmmmmmmmmmmm®®®® t mmmmmmmm�n�mm mmmmmmmm®mmmmm®mmmtm•m■m■ t mmmmmmmmmmmm t m®mt "®®® © tl :: m 11 I11 II mmmmmmmm®®®� �mmmmmmmmmmmmmtmmmt�m■m■ Nate All units are in µglL unless otherwised indicated NCDEQ StsvdsM=15A NCAC OM.0202 Groundwater Stds (Eff.: **Ivtuim Maximum Allowable Covowtratiov (Efi. 2013) *Labommries=Pane (P), Shealy (S), end Test America (TA) 1= EstimatN cant. above the adjusted method detection limit and below the adjusted rep—, limit B=Compound was found iv the blW end sample. o- Ref to Case N.-- f fc ,her detail Bold /yellow values exceed the NCDEQ S..&d Green boxes represent Point of Compliance Wells NE=Not Established <^Report Limit" - Value is less that the Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 27 of 4355 a000®®®®®®©ommom©oo®o ammm®mmmmmm 1 1, mmtml�mm I I. 1 1, ©mmmmmmmmmmmm®®®mmmmm ®®®mmmmmmm®®®®®a®®m® mmmmmmmmm®mmm®mt�mmmmm ®mmmmmmmmmmmm®mt�mmmmm ommmmmmmmmm®®®®®mm®mm �mmmmmmmmmmmmmtmt�mmmmm mmmmmmmmmmmmm®mt�mmmmm �m®m®mmmmm®mo®ml�mmmmm ommmmmmmmmmm®mtm�mmmmm �mmmmmmmmmmmmmtmt�mmmmm �mmmmmmmmmmmmmtmt�mmmmm �mmmmmmmmmmmmmtmt�mmmmm �mmmmmmmmmmmmmtmt�mmmmm ommmmmmmmmmmm®mmmmmmmm ©mmm©mmmmmmmm®mmmmmmmm ®mmmmmmmmmmmm®�®mmmmm mmmm©mmmmmmm®®mmmmmmmm mmmmm®®®mmmmmmmmmmmm ©mmmmmmmmmmm®mmmmm®® mmmm®®®®mmm®®®®�mm®mm ©mmmmmmmmmmmmmtmt�mmmmm ommm®®®®mmm®m®®�mm®mm mmmmm®®®®o®mm®®mtomm®mm mmmmmmmmmmmm®®®®®m®®m® �mmmmmmmmmmmmmtmt�mmmmm ommmmmmmmmmmmmm�mmmmm �mmmmmmmmmmmmmm�mmmmm �mmmmmmmmmmmmmm�mmmmm mmmmmmmmmmmmmmm�mmmmm mmmmm®®®m®mmm®mt�mmmmm �mmmmmmmmmmmmmtmt�mmmmm ommmmmmmmmmmmmtmt�mmmmm �mmmmmmmmmmmmmtmt�mmmmm ©mmmm®®®m®mmm®mmmmmmm �mmmmmmmmmmmmmtm�mmmmm ®©®mmmmmmmmmmm mmmmm I I1: mmmm I I 11 I I 11 I I m I I 11 11 I I 11 mm 11 mm I I1. mmmm II 11 II 11 II 11 II 11' 11 II 11 mm 11 mm 111' mmmm I I 11 I I 11 I I m I I 11 11 11 11 mm 11 mm mmmm II 11 II 11 II 11 II 11' 11 11 11 mm 11 mm - mmmm II 11 II 11 II m II 11' 11 ��mm 11 mm ®mmmmmmmmmm®m®®®mm®mm mmmmmmmmm®®mm®®mmmmmm ommmmmmm t 1: t l : m®®®®®mm®mm ©mmmmmmmmm®m®®mmmmm®m �mmmm��� 1 t t I' mm�®��mmmmm ®mmmmmmm®mmmm®®®mmmmm mmmmmmmmmmmmm®®®mmmmm ommmmmmmmmmmm®®®mmmmm tt mmmmmmmmmmmm®mt�mmmmm mmmmmmmmmmmmm®mt�mmmmm tt mmmmmmmmmmmmmtmt�mmmmm mmmmm®mmmmmm®m®®®mm®mm mmmmmm®®®mmm®®mt�mmmmm ®mmmmmmmmmmmmmmmmmmmm I t mmmm®®®®®m®m®®®mm®mm ®mmm®®®®®mmm®mtmt�mmmmm ®mmmmmmmmmmmm®mmmmmmm ®®m®m®m®mmmm®®®®mmmmm ®®®®mm®m®m®®m®mtamm®mm mmmmmmmm®mm®mmm®mmmmmm :1 ®mmmmmmmmmmm 11 mtmt®mmmmm ®mmmmmmmmmmm 1 t mtmt®mmmmm . ® I11 111 I11 •I 111 mmmm I11 111 I I 1 � I 1 • II • 111 mm • 1tl mm 't 11 mmmmmmmm®m®m® II II mm®mm � ®mmmmmmmm��I tt,�mm®®®mmmmm I I I11 I. I11 • t 111 I11 • tt 111 ----11'YA'l'1'a�����®mmmm '.. 11 mmmmmmmmmmmm®ml�mmmmm I11 I11 •• II .I11 1111 mmmmmm®®®��mm®mm •'• �mmmmmmmmmmmmmtmt�mmmmm Note All wits are in pB�L wless oNerwised indicated NCDEQ Standard= 15A NCAC 02L .0202 Gmwdwater SWs (Efi.: '"Interim Mmcimum Allowable Concenrcation (Eff.2013) 'Labomtori, Pace (P), Shwly (S), and Test America (TA) 1= Esama[ed cone. above the adjusted method detection limit and below the adjusted repordng limit Bxompound was found in the blade and sample. n= Refer W C. Nartaave for further detail Bold /yellow values exceed the NCDEQ Standard Green boxes represent Point of Compliance Wells NE=Not Established I 'Report Limit"= Value is less Mat Me Repon Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 28 of 4355 am©mmmom©oo©o®®®m®om ammmmmmmmm I I . :: , mmmmmmmm ©mmmmm®®mmmmmmmmmm®® ®®®®®®mm®®®®®m®®m®m mmm®m®mmmmmmmmm®m®mm ®mmmmmmmmmmmmmmmmmm® omm®®®®®mm®mmmm®®®®® mmmmmmmmmmmmmmmmmmm® mmmmmommmmmmmmmmm®m® mmmmmmm®mmmmmmmmm®mo ommm®mmmmmmmmmmm®mmm mmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmmmmm mmm®®®mmmmmmmmm®®®mm mmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmm mmm®®®®®mm®mmmm®®m®® ©mmmmmmmmmmmmmmmmmmm omm®m®®®mm®mmmmmmm®® mmm®m®®®mm®mmmm®mm®m mmm®®®®®m®®m®mm®®®®® mmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmm mmm®m®mmmmmmmmm®m®mm mmmmmmmmmmmmmmmmmmm omm®mmmmmmmmmmm®mmmm mmmmmmmmmmmmmmmmmmm ®mm®m®mmmmmmmmm®m®mm mmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmm I I1: mm 1111 I I 11 I I mm 11 mmmm 1111 I I 11 I I ®mm®®®®®mm®mmmmmmm®® mmmmmmmmmm®mmmmmmm®® ommm®®®®mm®mmmmmmmmm ©mm®®®m®mmm®mmm®®®mm mmm®m®mmmmmmmmm®m®mm ®mm®m®mmmmmmmmm®m®mm mmmmmmmmmmmmmmmmmmmm ommmmm®®mmmmmmmmmmmm mmmmmmmmmmmmmmmmmmm mmm®am®®mm®mmmm®®m®m mmm®m®mmmmmmmmm®m®mm mmmmmmmmmmmmmmmmmmm mmmmmm®®mm®mmmmmmm®® mmm®®®mmmmmmmmm®®®mm mmmmmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmmmmm It mmmmmmm®®mmmmo®mmm® mmm®®®mmmmmmmmm®®®®® mmm®®®®®mm®mmmmm®m®m �mmmmmmmmmmmmmm®®mm® ®mm I I ��mmmmmmmm I I :: I I �m mmmmmmmmmmmmmmmmmmmm . ® I : m • 111 1111 I11 II ::: mm III mm •111: m ::: . 111 . ::: II •:: ' 11 mmmmm II 11 mm®mmmmmmm II 11 � ®mmmmmmmmmmmmmm�m�,,mmmm : I I11 �m��� : 111 �mm�mm�ma"W'S'l'1'a� : I11 111 II II �mmmmmmmmm®mmm�,mm�,® 11 mm Itt ®m®®®®®mm®mmtL'A'l'1'am'!1'L'1'a� :I11 111 111 ®mmmmm��mm�mmmmmmm II 11 •'. mmmmmmmmmmmmmmmmmmm Note All wits are in pB�L wless oNerwised indicatN NCDEQ Standard= 15A NCAC 02L .0202 Gm.d m.r Stds (Efi.: '"Interim Mmcimum Allowable Concenrcation (Eff.2013) 'Labomtori, Pace (P), Shwly (S), mid TestA d.. (TA) 1= Esama[ed cone. above the adjusted method detection limit grid below the adjusted repordng limit Bxompound was found in the blm and sample. n= Refer m Case Nanaave for further detail Bold/yellow values exceed the NCDEQ Standmd Green boxes represent Point ofCompliance Wells NE=Not Established < "Report Limit'— Value is less Mat Me Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 29 of 4355 a®oo©©om©mom®mm���o�mm ammmmmmmmm®®mm®®®���® mmmmmmmmm®®mom®®®®�®�® ®mmmmmmmmm®mmmm®®®�®�® omm®mmmmm®®®®m®®®®®®®® ommmmmmmmm®mmmmm®®m®m® ©mmmmmmmmm®��m��®®m®m® ®mmmmmmmmm®mmmm®®®�®m® �mmm��m��mmmmmm®mmmmmm ©mmm��m��mmmmmm®mmmmmm mmm®mmmmm®®m®m®®®®®®®® �mm®mmmmmm®m®ma®®®®�® o®mm�®m��mmmmmm®mmmmmm �mmm��m��mmmmmm®mmmmmm �mmm00m���mmmmm®mmmmmm ©mmmmmmmm®®mom®®®®m®m® �mmm��mm�mmmmmm®mmmmmm 1 11 ®® I I mmmmm I I ®® ® ®®® I I ® I ®® I I mmmmm I I ®® ® ®®® I I ® I ommmmmmmmm®m®m®®®®®®�® ®mmmmmmmmm®®m®m®®®®m®m® mmmmmm©mmmmmm®®®m®m® ©mmmmmmmmm®mmmm®®®�®®® mmmmmmmmm®mmmm®®®�®�® mmmmmmmmm®®mmm��®®�®�® mmmmmmmmm®®mom®®®®�®�® ®�mm��m�®mmmmm®mmmmmm ®mmmmmmmmm®mmmm®®®m®mom ®mm®mmmmmm®m®m®®®®®®®® mmmmmmmmm®®m�m�®®®m®m® mm®mmmmmm®mmmm®®®®®®® ®mmmmmmmmm®mmmm®®® ®�® Note All wits are in pB�L wless oNerwised indicatN NCDEQStandard=15ANCACO2L.0202Gm.d m.rSWs(EH.: '"Interim Mmcimum Allowable Concenrcation (Eff.2013) 'Labomtori, Pace (P), Shwly (S), and TestA d.. (TA) 1= Esama[ed cone. above the adjusted method detection limit and below the adjusted repordng limit Bxompound was found in the blade and sample. n= Refer to Case Nartaave for farther detail Bold /,11—values exceed the NCDEQ Standard Green boxes represent Point ofCompliance Wells NE=Not Established I 'Report Limit"= Value is less Mat Me Repon Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 30 of 4355 ammmmmmmmmm■m■mmmam.m•m•m•m,mtm® ammmmmmmmm®®mm®m®®®mtmt®m m®®m®®®m®®®o®®m,®m•®®®®® mmmmmmmmm®®®mm®®®®®mt®mm ®mmmmmmmmm®®mm®®®®®mt®mm omm®mmmmm®®®®®®®®®®®®®m mmmmmmmmm®®mm®m.®®®m,®mm mmmmmmmmmm®®m®®m,m.®®mt®mm mmmmmmmmm®®mm®m.m•®®m,®mm ommmmmmmmmm■mmmm•mt®m•mmmmmm mmmmmmmmm®®mm®m.®®®mt®mm mmmmmmmmm®®mm®m.®®®mt®mm mmmmmmmmm®®mm®m.®®®mt®mm mmmmmmmmm®®mm®m.®®®mt®mm ommmmmmmmm®®mm®mm®®m®mm ©mmmmmmmmm®®mm®mtm■®®m®mm ®mmmmmmmmm®®mm®®®®®mt®mm mmmmmmmmm®®mm®®®®®mm®m® mmm®mmmmmmmmmmmm®mmmmmm ©mmmmmmmmmmmmmmm®mmmmmm mmm®mmmmm®®®m®®®®®®®®®m ©mmmmmmmmm®®mm®m.®®®mt®mm omm®mmmmmm®®m®®®®®®®®mm mmm®mmmmm®®®m®®®®®®®®®m mmmmmmmmm®®mm®mt®®®m,®mm ommmmmmmm®mmmmmm®mmmmmm �mmmmmmmmmmmmmmm®mmmmmm mmmmm®®mmoo®mmmmm®mmmmmm m©®mmmmm®mm■®®mmm®m•m•®®mm mmmmmmmmm®®®mm®®®®®mt®mm mmmmmmmmm®®mm®m.®®®mt®mm ommmmmmmm®®®mm®m,®®®mt®mm mmmmmmmmm®®mm®mt®®®m,®mm ©mmmmmmmm®®®mm®®®®®m®mm �mmmmmmmmmm■mmmm•m.®m•mmmtmm �mmmmmmmmmmmmmmm®mmmmmm ®mm®mmmmm®®®mm®®®®®®®®m mmmmmmmmmm®®mm®mtm®®m,®mm omm®mmmmmm®®m®®®®®®®®®m ©mm®mm®mm®®m•®®®®®m•m•®aa® mmmmmmmmm®®m®®®®®®mt®mm ®mmmmmmmm®®®mm®®®®®®®mm mmmmmm®mm®m•mm®®®®®®mmm ©mmmmmmmmm®®mm®®®®®®m®m mmmmmmmmm®®mm®®®®®mtmmm mmmmmmmmm®®m®®®©®®®mmm mmmmmmmmm®®®mm®®®®®mtmmm mmmmmmmmm®®mm®m.®®®mtmmm mmm®mmmmmm®®mm®m.m•®®®m®m mmmmmmmmm®®®m®®®®®®mtmmm �mmmmmmmmmmmmmmm®mmmmmmm ®mmmmmm®®mm®mmm•m.®m•m•mtmtmm ®mmmmmmmmm®®mm®m®®®mmmm mmm®mmmmm®®®m®®®®®®mt®®m mmm®mmmmm®®®m®®®®®®®®®m :' ®mmmmmmmmm®®mm®m.®®®mt®mm ®mmmmmmmmm®®mm®m.®®®mt®mm mmmmmmmmm®®®mm®m.®®®m®mm mm®mmmmmm®®mm®®®®®®®mm : • I I11 mm�mmm�m�®®m�®�®®®�®�m mmmmmmmmm®®mm®mtm•®®mt®mm '• ®mmmmmmmmm®®mm®®®®®mt®mm • mmmmmmmmm®®mm®mt®®®mtmmm N..1. All witsare in pgtL.lessotl,—iu indicated NCDEQ Standard= 15A NCAC 02L .0202 Gmwdwater Suds (Eff.: -Interim Mmcimum Allowable Concennation (Eff. 2013) 'Labamt 6, Pace (P), Shwly (S), and Test America (TA) 1= Estimated con, above the adjusted method detection limit and below the adjusted repordng limit Bxompound was found in the blade and sample. n= Refer to Case Nave for further detail Bold /,11—values exceed the NCDEQ Standard Green boxes re present PointofCompliance Wells NE=Not Established <"Report Limit"= Value is less Mat Me Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek tofill Area Landfill CEC Project No. 111-370.0001 31 of 4355 ammmmmmmmmmmmmmmmmtmtmmmmm ©mmmm®®mmmm®®mmmm®®mmm®® ®mmm®®®®mm®®®m®m®®®m®®® mmm®mmmmm®mmmmmmmmtmtmmmmm ©mmmmmmmmmmmmmmmmmtmtmmmmm �mmmmmmmmmmmmmmmmmtmtmmmmm 0mmomm®mmmmmmm®mmmtmtmmmm® mm®m®®mmmm®®®mm®®®mmmmm®m om®mmmmm®mmmmm®mmmmm®mmm �mmmmmmmmmmmmmmmmmtmtmmmmm �mmmmmmmmmmmmmmmmmtmtmmmmm �mmmmmmmmmmmmmmmmmtmtmmmmm �mmmmmmmmmmmmmmmmmtmtmmmmm ommmmmmmmmmmmm®mmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmt®mmmmm mm®®mmmm®®mmmm®®mmmm®®mm �mmmmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmmmm mm®m®®®m®®®®®mo®m®mtm®m®® ©mmmmmmmmmmmmmmmmmtmtmmmmm omm©m®®mmmm®®momm®©mmmmm mmmm®®mmmm0®®mm®m®mtmmm®m �mmmmmmmmmmmmmmmmmtmtmmmmm ommmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmm mmm®mmmmm®mmmmmmmmtmtmmmmm �mmmmmmmmmmmmmmmmmtmtmmmmm ommmmmmmmmmmmmmmmmtmtmmmmm �mmmmmmmmmmmmmmmmmtmtmmmmm ©mm®mmmmm®mmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmm : 11: m I I • :: m :: I I m I I • :: m :: I I mmmm I I I I mmm I I :: 11 m I I • :: m I I m I I • :: m I I mmmm I I I I mmm I I :: II• m I I • :: m :: I I m I I • :: m :: 11 mmmm I I I I mmm I I :: :: m II• :: m :: II m II• :: m :: 11 mmmm II II mmm II :: :: m II• :: m :: II m II• :: m :: 11 mmmm II II mmm II :: ' mmmmmmmmmm®®©mm®mmtmtmmmmm om®®®®®m®mmmmm®m®®mtm®®®® ©®®®mmm®®®mmm®®®mmm®®®mm mmm®mmmmm®mmmmmmmmtmtmmmmm ©mm®mmmmm®mmmmmmmm®mmmmm mmmmmmmmmmmmmmmmmm®mmmmm ommmm®®mmmm®®mmmm®®mmm®® mmmmmmmmmmmmmmmmmmtmtmmmmm mmmm®m®m®®®®®mm®m®mtmm®®® mmm®mmmmm®mmmmmmmmtmtmmmmm mmmmmmmmmmmmmmmmmmtmtmmmmm mmmmm®®mmmm®®mmmm®®mmm®® mm®®®mmm®®®mmmm®mmtmtm®®mm �mmmmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmtmtmmmmm ®mmmmmmmmmmmmmmmmmmmmmmm ®m®®®mmm®®®m®m®®®mt®m®®®® ®m®m®®®m®®m®®mm®®®mtm®m®m :: mm®mmmmm®mm®m®mmm®m®mmm I' ©m I I • �m�mm I I • �m�mmmmm�®mmmm ©m I I • �m�mm I I • �m�mmmmm�®mmmm �mmmmmmmmmmmmmmmmmmmmmmm ©m 1111 1111 m • 111 : I11 m . ::: . 111 m . II . ::: m 1111 :: 111 m I I11 :: I11 m .::: 111 . ::: ' 11 . II mmmm II mmmm II mmmm tl tl mmm t ©mmmmmmmmmmmmmmmmm®mmmmm 11011FRMORM, NO, :: 111 :: 111 I : 111 m 111 I : � I : 111 m •111 I11 �� •: 111 m I 1 :::I ::I •. II �1I,,: ��I:,: ��I:,: : 111 m��m��m��m • 11 :: m® :::: m��m •���� ©mmmm II mmmm tl mmmm tl tl mmm tl �mmmmmmmmmmmmmmmmmtmtmmmmm Nate All units are in µglL unless otherwised indicated NCDEQ StsvdsM=15A NCAC OM.0202 Groundwater Stds (Eff.: **Ivtuim Maximum Allowable Covowtratiov (Efi. 2013) *Labommries=Pane (P), Shealy (S), end Test America (TA) 1= EstimatN cant. above the adjusted method detection limit and below the adjusted rep—, limit E=Compound was found iv the blW end sample. --Ref to Case Narmdve fr furthu detail Hold /yellow values exceed the NCDEQ S..&d Green boxes represent Point of Compliance Wells NE=Not Established "'Report Limit" - Value is less that the Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 32 of 4355 a000©©©©©©©ommmom ammmmmmmmmm 1 1 , ® 1 1 mmm ©mmmmmmmmmmmmmm®® m®®mmmmm®m®m®m®® mmmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm ommmmmmmmmm®®mmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmm �m0®mmmmmm®®0mmm® ommmmmmmmmmmm®mmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmm ©mmm®mmmmmmmmmmmm ®mmmmmmmmm®mmmmmm mmmm®mmmmmmmm®®mm mmmmmm®®®mmmmmmmmm ©mmmmmmmmmmmmmmmm mmmm®mmm®mm®®mmmm ©mmmmmmmmmmmmmmmm ommm®®®®mmm®®mmmm mmm®mmmmmm®mmmmm �mmmmmmmmmm®®®®®® mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ®®®mmmmmmmmmmmmm I I1: mmmmmmmmmmmmmmmm I II mmmmmmmmm 11 mmmmmm 1I mmmmmmmmmmmmmmmm �mmmmmmmmm 11 mmmmmm - mmmmmmmmmmmmmmmm ®mmmmmmmmmm®®mmm® mmmmmmmmmmm®mmmmm ommmmmmm 11: t l : mmmmmmm ©mmmmmmmmmmm®®®mm mmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmm ommmmmmmmmmmmmm®® mmmmmmmmmmmmmmmm mmmmmm®®®mmm®®mmmm mmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmm®mmmmmm®mmmmm mmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm I t mmmmmmmmmm®mmmmm ®mmm®®®®®mmmmmmmm ®mmmmmmmmmmmmmmmm 1 mmmmmmmmmmmmmmmm �m®mmmmmmmm®®mmmm �mmmmmmm 1 t mmm®®mmm :t' ®mmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm 't 11 mmmmmmmmmmmmmmmm � ®mmmmmmmmmmmmmmmm I I I11 mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm 111 mmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm N..I. All wits are in VgtL.less otl, r iu l indicated NCDEQ Standard- 15A NCAC 02L .0202 Gmwdwater Stds (Eff.: a"Interim Mmcimum Allowable Concennnion(Eff. 2013) 'Labomt 6, Pace (P), Shwly (S), and Test Amok. (TA) 1= Estimated conc.above the adjusted method detection limit and below the adjusted repordng limit Bxompound was found in the blade and sample. n= Refer to Case Nave for further detail Bold /,11—values exceed the NCDEQ Standard Green boxes re present Point ofComplia Wells NE=Not Established <"Report Limit"= Value is less Mat Me Repon Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 33 of 4355 a000©©©©©©©ommmom ammmmmmmmmm 1 1 , ® 1 1 mmm ammmmmmmmmmmmmm®® m®®mm®®m®m®®®®®® mmmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm ommmmmmmmmm®®mmmm mmmmmmmmmmmmmmmm mmmmmm®mmmmmmmmmm �mmm0mmm0m®mmmmmm ommmmmmmmmmmm®mmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmm ©mmm®mmmmmmmmmmmm ®mmmmmmmmm®mmmmmm mmmm®mmmmmmmm®mmm mmmmmm®®®mmmmmmmmm ©mmmmmmmmmmmmmmmm mmmm®mmmmmm®®mmmm ©mmmmmmmmmmmmmmmm ommm®®m®®mm®®mmmm �mmm®©®0®mo®mmmmm �mmmmmmmmmm®®®®®® mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ®®®mmmmmmmmmmmmm I I1: mmmmmmmmmmmmmmmm I II mmmmmmmmm 11 mmmmmm 1I. mmmmmmmmmmmmmmmm us— �mmmmmmmmm 11 mmmmmm - mmmmmmmmmmmmmmmm ®mmmmmmmmmm®mmmmm mmmmmmmmmmmmmmmmm ommmmmmm t t : m®mmmm® ©mmmmmmmmmmm®®®mm mmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmm®® mmmmmmmmmmmmmmmm mmmmmm©m®m®m®®mmmm mmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm �mmm®mmmmmm®mmmmm mmmmmmm®mmmmm®mmmm mmmmmmmmmmmmmmmm �mmmmmmmmmm®mmmmm ®mmm®®m®®mmmmmmmm ®mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm �®®®mmmmmmm®®mmmm mmmmmm®mmm®mm®®mmm :t' ®mmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmm mmmmmmm®m®mmmmmmm ®mmmmmmmmmmmmmmmm 't 11 mmmmmmmmmmmmmmmm � ®mmmmmmmmmmmmmmmm I I I11 mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm 111 mmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm N..I. All wits are in VgtL.less otl, r iu l indicated NCDEQ Standard- 15A NCAC 02L .0202 Gmwdwater Stds (Eff.: a"Interim Mmcimum Allowable Concennnion(Eff. 2013) 'Labomt 6, Pace (P), Shwly (S), and Test Amok. (TA) 1= Estimated conc.above the adjusted method detection limit and below the adjusted repordng limit Bxompound was found in the blade and sample. n= Refer to Case Nave for further detail Bold /,11—values exceed the NCDEQ Standard Green boxes re present Point ofComplia Wells NE=Not Established <"Report Limit"= Value is less Mat Me Repon Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 34 of 4355 aoo©©©©©©oommmom ©mmmmmmmmmmmmm®a ®®mmmmm®m®m®®®® mmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmm ommmmmmmmm®®mmmm mmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm �mm0mm®®mmmommmm ommmmmmmmmmm®mmm mmmmmmmmmmmmmmm mmmmmmmmmmmmmmm mmmmmmmmmmmmmmm mmmmmmmmmmmmmmm ommmmmmmmmmmmmmm ©mm®®®mmmmmmmmmm ®mmmmmmmm®mmmmmm mmm®®®mmmmmm®mmm �mmmmm®mmmmmmmmm ©mmmmmmmmmmmmmmm mmm®mmmmmm®®mmmm ©mmmmmmmmmmmmmmm omm®®®®mmm®®mmm® mmm®©®mmm®®®mmmm Carbon DmIfid. �mmmmmmmmm®®®®®® mmmmmmmmmmmmmmm ommmmmmmmmmmmmmm mmmmmmmmmmmmmmm mmmmmmmmmmmmmmm .is_, 2-Di,hlomethem mmmmmmmmmmmmmmmm Di-,-b,tyl phthalate mmmmmmmmmmmmmmm mmmmmmmmmmmmmmm ommmmmmmmmmmmmmm mmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmm mmmmmmmmmmmmmmm ®®mmmmmmmmmmmmm I I1: mmmmmmmmmmmmmm® I I1 mmmmmmmm I I mmmmmm t 1I mmmmmmmmmmmmmmm mmmmmmmm II mmmmmm - mmmmmmmmmmmmmmm ®mmmmmmmmm®mmmmm mmmmmmmmmmmmmmmm ommmmmm t l : 11: m®mmm®® ©mmmmmmmmmm®®®mm mmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ommmmmmmmmmmmm®® tt mmmmmmmmmmmmmmm tt mmm®®®m®m®mmmmm mmmmmmmmmmmmmmmm tt mmmmmmmmmmmmmmm mmm®mmmmmm®mmmmm mmmmmmmmmmm®mmmm mmmmmmmmmmmmmmm I t mmmmmmmmm®mmmmm ®mm®®®®®mmmmmmmm SIR ®mmmmmmmmmmmmmmm 19 1 mmmmmmmmmmmmmmm �®®mmmmmmmm®mmmm :1 ®mmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmm 't 11 mmmmmmmmmmmmmmm � ®mmmmmmmmmmmmmmm I I I11 mmmmmmmmmmmmmmm 1t mmmmmmmmmmmmmmm 111 mmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmm mmmmmmmmmmmmmmm N..1. All witsare in pgtL.lessotberwiu indica NCDEQ Standard- 15A NCAC 02L .0202 Gmwdwater Stds (Eff.: -Interim Mmcimum Allowable Concennnion(Eff. 2013) 'Labomt 6, Pace (P), Shwly (S), and Test Amok. (TA) 1= Estimated con, above the adjusted method detection limit and below the adjusted repordng limit Bxompound was found in the blade and sample. n= Relrr to Case Nanaave for further detail Bold /yellow values exceed the NCDEQ Standard Green boxes re present Point ofCompIia Wells NE=Not Established <"Report Limit"= Value is less Mat Me Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek Infill Area Landfill CEC Project No. 111-370.0001 35 of 4355 aoo©©©©©©©ommmomomomom ammmmmmmmm 1 1 , ® 1 1 mmmmmmmmm ©mmmmmmmmmmmmm®®®®®®®® ®®mmmmmmm®m®m®®®®®®®® mmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm ommmmmmmmm®®mmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm mmmmmommmmmmmmmmmmmmmm mmmmmmmm0mmmmmm0mmm0mm ommmmmmmmmmm®mmmmmmmmm mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmmmm ©mm®mmmmmmmmmmmmmmmmmm ©mmmmmmmm®mmmmmmmmmmmm mmm®mmmmmmmm®®mmmmmmmm mmm®®®mmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm mmm®®®m®mm®®mmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm omm®®®®mmm®®mmmmmmmmm�a mmm®mmm®m®®mmmm®m®mmm® mmmmmmmmmm®®®®®®®®®®®® mmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmm Di —butyl phthalate mmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmm m®®mmmmmmmmmmmmmmmmmmm t 1t: mmmmmmmmmmmmmmmmmmmmm 11 mmmmmmmm 11 mmmmmmmmmmmm tt• mmmmmmmmmmmmmmmmmmmmm t 1 mmmmmmmm 11 mmmmmmmmmmmm - 11 mmmmmmmmmmmmmmmmmmmmm ®mmmmmmmmm®®mmm®m®mmmm mmmmmmmmmmmmmmmmmmmmmm ommmmmm 11: 11 m®mmmm®m®m®m® ®mmmmmmmmmm®®®mmmmmmmm mmmmmmmmmmmmmmmmmmmmm ®mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmm ommmmmmmmmmmmm®®®®®®®® mmmmmmmmmmmmmmmmmmmmmm mmmm®®®mmm®®mmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmm mmm®mmmmmm®mmmmmmmmmmm mmmmommmmmm®mmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm tit mmmmmmmmm®mmmmmmmmmmm ©mm®®®®®mmmmmmmmmmmmm® ®mmmmmmmmmmmmmmmmmmmmm 111 mmmmmmmmmmmmmmmmmmmm® ®®®mmmmmmm®®mmmmmmmmmm ®®®m®®®®®m®mmmmmm®mmmm �mmmmm® 11 mmm®®mmmmmmmm® t' ©mmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmm 1tt mmmmOm®®��®mmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm 't tt mmmmmmmmmmmmmmmmmmmmm •• ©mmmmmmmmmmmmmmmmmmmmm • t • "' tt 1tt mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm t ltt mmmmmmmmmmmmmmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmm Nate Allunits are in µg/L unles oth—mdindicated NCDEQ StandsM - ISA NCAC 02L.0202 Oround—St& (Eff. '*1-no, Maximum Allowable Conowtretion (Efi. 2013) 'Labotamnes=Pane (P), Shealy (S), end Teat America CTA) J = Estimated cant. above the adjusted method detection limit and below the adjusted reposing limit B=Compound was found in the blW end sample. o- Ref to Case Nartative f further detail Bold /yellow values exceed the NCDEQ S..&d Green boxes represent Point of Compliance Well, NE -Not Established <^Report Limit"- Value is less that the Report Limit Table 6 (Cont.) History of Infill Groundwater and Surface Water Analytical Data North Meek tofill Area Landfill CEC Project No. 111-370.0001 36 of 4355 ©mmmmmmmmmmmmm®®mmmmmmmmmmmmm©® ®®mmmmm®m®mm®®®®®mmmmmmm®®®®®® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ommmmmmmmm®®mmmmmmmmmmmmm®®mmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® 0mmmm®mmmmmommmmmmmm©mmmomommmmt mmm®®mm®m®mmmmmmmm®mmmmmmmmmmmmt ommmmmmmmmmm®mmmmmmmmmmmmmm®mmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ommmmmmmmmmmmmmmmmmmmmmmmmmmmm® .. ©mm®mmmmmmmmmmmmmm®mmmmmmmmmmm® ©mmmmmmmm®mmmmmmmmmmmmmm®mmmmm® mmm®mmmmmmmm®mmmmm®mmmmmmmm®mmm mmmm®®®mmmmmmmmmmmm®®®mmmmmmmmm ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmm®mmmmmm®®mmmmmm®®®mmmm®®mmm® ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ommm®®®mmm®mmmm®mmm®®®mmm®®mmmmt mmm®mmmm®m®mmmmmmm®®®mmm®®ommmmt mmmmmmmmmm®®®®®®mmmmmmmmm®®®®m® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ommmmmmmmmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm �mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ommmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmm�mmt m®®mmmmmmmmmmmmm®®mmmmmmmmmmmmm III: mmmmmmmmmmmmmmmmmmmmmmmmmmm®®® 11 mmmmmmmm I I mmmmmmmmmmmmmm I I mmm®®® III• mmmmmmmmmmmmmmmmmmmmmmmmmmm®®® mmmmmmmm I I mmmmmmmmmmmmmm I I mmm®®® aaaaaaaaaaaaaa,- 11 mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ®mmmmmmmmm®®mmmmmmmmmmmmm®®mmm® mmmmmmmmm®mmmmmmmmmmmmmmmmmmmm Ommmmmm 11 11 m®mmmm®®mmmmm 11 11 m®mm®�® ©mmmmmmmm®m®®®mmmmmmmm®m®m®®®mm mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ®mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ommmmmmmmmmmmm®®mmmmmmmmmmmmm®® mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmm®®®m®m®®mmmmmmm®®®mmm®®mmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmm®mmmmmm®mmmmmmm®mmmmmm®®mmm® mmmmmmmmmmm®mmmmmmmmmmmmmm®mmm® �mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm III mmmmmmmmm®mmmmmmmmmmmmmm®mmmm® ©mm®®®®®mmmmmmmmmm®®®®®m®mmm��mt ®mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm III mmmmmmmmmmmmmmmmmmmmmmmmmmm�mmt ®®®mmmmmmm®®mmmm®®mmmmmmm®®mmm® ®®®m®®®®®m®mmmm®®®m®®®®mm®®mmm® I' ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® II mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ••'t ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® • , I • 1I 11I mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm I III mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® ©mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® mmmmmmmmmmmmmmmmmmmmmmmmmmmmm® Nate Allunits arein µ /Lunles otherwisedivdicated NCDEQ Srevda —15A NCAC 02L.0202 Groundwater Stds (Eff.: '*Ivtuim Maximum Allowable Covowtratiov (Efi. 2013) 'Labotamnes=Pane (P), Shealy (S), end Test America (TA) 1 = EstimatN cant. above the adjusted method detection limit and below the adjusted reponivg limit B=Compound was found m the blW and sample. o— Ref to Case Nartedve f Cunha detail Bold /yellow values exceed the NCDEQ Standard Green boxes represent Point of Compliance Wells NE=Not Established <^Report Limit" — Value is less that the Report Limit Table 7 History of Closed Groundwater and Private Wells Analytical Detections Spring 2019 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 37 of 4355 Constituent Std. MW-1 Laboratory PR PR PR PR PR PR S S S S S S S S P P P P P P P P P P S S Sample Date 3.20.98 7.16.98 4.13.99 8.25.99 3.9.00 8.16.00 3.23.01 10.6.01 3.16.02 10.31.02 3.26.03 9.13.03 3.26.04 12.2.04 4.23.05 10.25.05 3.28.06 9.27.06 3.31.07 4.9.08 5.13.09 10.18.11 4.12.12 10.24.12 4.25.13 10.3.13 Acetone 6000 <50 <50 <50 <50 <50 <50 <20 <20 <20 <20 <20 <20 <20 <20 <25 <25 <25 <25 <25 <25 <25 2.6 <25 <25 <20 <20 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Antimony* 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <6 <6 <6 <10 <10 Arsenic 10 <50 <10 <50 <10 <10 <10 18 <5 <5 <5 <5 <5 <10 <10 <5 <5 <5 <5 <5 <5 3.6 <10 <10 13.1 12 <10 Barium 700 <100 <100 <100 690 100 73 59 75 53 51 45 55 45 59 43 250 46 53 43 59.2 40.2 25.2 68 193 120 71 Benzene 1 <5 <5 <5 <5 <5 <5 15 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <1 <1 Beryllium* 4 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <I <I <I <4 1 <4 Bromodichloromethane 0.6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 Bromoform 4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 B fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 2-Butamme(MEK) 4,000 <10 <10 <10 <10 <10 <10 <10 <10 <10 QO <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <5 <5 <5 <10 <10 Cadmium 2 5 <5 <5 <5 <5 <1 <2 <2 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 Calcium NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloroethane 3000 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <1 <1 <1 <2 <2 Chloroform 70 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 Chromium 10 <5 <5 <50 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <2 22 <2 <2 <5 0.57 <5 <10 <10 8.61 <5 <5 Cobalt* 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <10 <10 <10 <25 <25 Copper 1,000 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <10 1 <10 1 31.4 15 1 <5 Carbon Disulfide 700 <50 <50 <50 <50 <50 <50 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <2 <2 <2 <1 <1 Dibromochloromethane 0.4 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <I <I <I <I <I 1,1-Dichloroethane 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 1,1-Dichloroethene 350 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 1,4-Dichlombenzene 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 cis-1,2-Dichloroethene 70 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Eth Ibenune 600 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 2-flexanone NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 4-Meth 1-2- entmone 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Toluene 600 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 X lens 500 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <2 <2 <2 <1 <1 Lead 15 <15 <5 <15 <5 <5 <5 <3 <3 <3 <3 <3 <3 <3 <3 <5 6.8 <5 <5 <5 <5 <5 <10 <10 <10 <10 QO Manganese 50 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Mercury 1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.I <0.1 <0.1 <0.4 <0.4 <0.4 <0.4 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <10 <0.2 <0.2 <0.2 <0.1 0.1 Methylene Chloride 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 NS <1 <1 <1 <1 <1 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Pyre- 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Nickel 100 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <50 1 50 1 50 <40 1 <40 Selenium 20 <10 QO <10 QO 31 <10 <5 <5 <5 7.2 <5 <5 <5 <5 <5 <5 <5 <5 <10 QO <10 <10 <10 <10 <10 QO Sulfide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Silver 20 <18 <5 <18 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <2 <2 <2 <2 <5 <5 <5 <10 <10 <10 <5 <5 Tetrah drofiamn NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <10 <10 <10 <5 <5 Thallium* 0.2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <5.5 6.7 <5.5 NS NS Ti. 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vanadium* 0.3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <25 8.1 53A <50 <50 Vinyl Chloride 0.03 <10 <10 <10 <10 <10 <10 <2 <2 <2 <2 <2 1 <2 <2 <2 1 <5 <5 <5 <5 <5 <5 <5 <1 <1 <I <1 <1 Zinc 1000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <10 17.2 45.7 <20 20 Alkaliity NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 348,000 [sv,000,000 289,000 330,000 NS Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Total Dissolved Solids 500,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 351, 000 208,000 371,000 310, 000 NS Sulfate 250,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 14,600 7,270 14,400 31,000 NS Carbon Dioxide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloride 250,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <5000 6,350 3,040 3,600 NS Notes: All units are in µg/L unless otherwised indicated NCDEQ Standard=15A NCAC 02L .0202 Groundwater Stds (Eff. 2013) * Interim Maximum Allowable Con-botion (Eff. 2013) Laboratories= Pace (P), Shealy (S), and Test America (TA) J= Estimated conc. above the adjusted method detection limit and below the adjusted reporting limit B=Compound was found in the blank and sample. n=Refc,to Case Narrative for "her detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Limit Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 38 of 4355 Constituent Std. NM-1 (cont.) MW4 Laboratory S S S S S P TA TA TA P TA PR PR PR PR PR PR S S S S S S S S Sample Date 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 4.28.17 10.10.17 4.10.18 10.5.18 4.22.19 3.20.98 7.28.98 4.13.99 8.25.99 3.9.00 8.16.00 3.23.01 10.6.01 3.16.02 10.31.02 3.26.03 9.13.03 3.26.04 12.2.04 Acetone 6000 <20 <20 <20 2.6 <20 <25 5.1 <5 <5 <25 <10 <50 <50 <50 <50 <50 <50 <20 <20 <20 <20 <20 <20 <20 <20 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS <0.5 <0.76 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Anthracene 2000 NS NS NS NS NS NS NS NS NS <0.05 <0.76 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Antimony' 1 <10 <10 <10 1.2 NS <5 13 <3 <3 <5 <3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Arsenic 10 <10 <10 10 <26 2.6 <10 1.3 1 0.97 J <10 1.7 <50 <10 <50 <10 <10 <10 14 <5 <5 <5 <5 <5 <10 <10 Barium 700 65 110 77 460 81 66.4 67 370 33 64.2 85 <100 870 <100 110 <100 100 140 120 82 100 120 190 220 220 Benzene 1 <1 <1 <t <0.21 <1 <1 <0.5 <0.5 <0.5 <1 <0.50 <5 15 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Beryllium' 4 <4 <4 <4 1 1.6 NS I <1 I <1 <1 <1 <1 I <1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Bromodichloromethane 0.6 <1 <1 <1 <0.23 NS <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Bromoform 4 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <5 1 <5 1 <5 <5 <5 1 <5 <5 1 <5 1 <5 <5 1 <5 <5 <5 1 <5 Bem o(b)fluranthene 0.05 NS NS NS NS NS NS NS NS NS <0.05 <0.15 NS NS NS NS NS NS NS NS NS NS NS NS NS NS 2-Butamn(MEK) 4,000 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 Cadmium 2 <2 <2 <2 0.64 <2 <1 <0.5 <0.5 <0.5 <1 <0.50 5 <5 <5 <5 <5 <1 <2 <2 <2 <2 <2 <2 <2 <2 Calcium NE NS NS NS 110,000 100,000 98,500 NS NS NS 90,500 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloroethane 3000 <2 <2 <2 <0.28 NS <1 <1 <1 <1 <1 <1 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 Chloroform 70 <1 <1 <1 <0.21 NS <1 <2 <2 <2 <1 <2 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Chromium 10 <5 <5 <5 1 20 1 <5 <5 <0.5 <0.5 <5 <5 1 <5 <5 <5 <50 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Cobalt' 1 <25 Q5 <25 16 <25 <5 1 1.7 7.2 0.87 J <5 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Copper 1,000 <5 7.3 <5 67 5.1 <5 1 <2 0.68 <2 <5 <2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Disulfide 700 <1 <1 <1 <0.45 NS <2 1 -2 <2 <2 Q <2 <50 <50 <50 <50 <50 <50 <5 <5 <5 <5 <5 <5 <5 <5 Dibromochloromethane 0.4 <I <1 <I <0.23 NS <I <1 <I <I <1 <I NS NS NS NS NS NS NS NS NS NS NS NS NS NS 1,1-Dichloroethane 6 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,1-Dichloroethene 350 <1 <1 <1 <0.31 <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dichlombemme 6 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 cis-1,2-Dichloroethene 70 <1 <1 <1 <02 <1 <1 <1 <1 <1 <t <t <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS 6.9 8.7 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Eth Ibenune 600 <1 <1 <I 1 <0.21 1 NS <1 <0.5 <0.5 <0.5 <1 <0.50 <5 1 <5 1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 2-Hexamme NE NS NS NS NS NS <5 <5 <5 <5 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS 4-Meth 1-2- entmone 100 NS NS NS NS NS <5 1 <5 <5 <5 <5 1 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Toluene 600 <1 I <1 1.1 <0.24 NS <1 <0.5 <0.5 <0.5 <1 <0.50 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 X lens 500 <1 <1 1.3 <0.32 NS <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Lead 15 <10 <10 <10 16 <10 <5 0.21 0.29 <0.5 <5 <0.50 <15 <5 <15 <5 <5 <5 <3 <3 <3 <3 <3 <3 <3 <3 Manganese 50 NS NS NS 4,500 3,200 2,960 2,100 18,000 1600 2,550 5,400 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Mercury 1 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.4 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.4 <0.4 Methylene Chloride 5 <I <1 <I 0.22 NS <1 <5 <5 <5 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1 <5 1 <5 <5 <5 <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS <1.5 <0.76 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Phemmthrene 200 NS NS NS NS NS NS NS NS NS <0.2 <0.76 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Pyre- 200 NS NS NS NS NS NS NS NS NS <0.1 <0.76 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Nickel 100 <40 <40 <40 14 <40 1 <5 <2 <2 <2 1 <5 1 0.81 J NS NS NS NS NS NS NS NS NS NS NS NS NS NS Selenium 20 <10 I <10 <10 <9.5 NS QO -2.5 <2.5 <2.5 <10 <2.5 QO <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 Sulfide NE NS NS NS NS NS <100 NS NS NS <100 NS NS NS NS I NS NS I NS NS NS NS NS NS NS NS NS Silver 20 <5 <5 <5 <1.7 NS <5 <0.5 <0.5 <0.5 <5 <0.50 <18 <5 <18 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Tetrah drofuran NE <5 <5 <5 <0.57 <5 <10 <10 <10 <10 <10 20 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Thallium' 0.2 NS NS NS NS NS 6.7 Q <2 <2 <10 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Tin 2000 NS NS NS NS NS NS NS NS <5 <5 NS NS NS NS NS NS NS NS NS NS NS I NS NS NS NS Vanadium' 0.3 <50 <50 <50 71 7 <5 <5 <5 <5 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vinyl Chloride 0.03 1.5 <1 <1 <0.5 <1 <t 0.65 1.8 NS <1 <1 <10 <10 <10 <10 <10 <10 <2 <2 <2 <2 <2 <2 <2 <2 Zinc 1000 43 31 <20 200 11 1 40 1 <20 12 <10 <10 <10 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Alkalinity NE NS NS NS 370,000 370,000 396,000 290,000 230,000 210,000 1 344,000 1 450,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Ammonia-N 1,500 NS NS NS 860 700 720 NS NS NS 470 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Iron 300 NS NS NS NS NS 13,800 15,000 8,100 6,000 21,700 20000 B NS NS NS NS NS NS NS NS NS NS NS NS NS NS Total Dissolved Solids 500,000 NS NS NS 460,000 400,000 432,000 410,000 280,000 270,000 458,000 950,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Sulfate 250,000 NS NS NS NS NS 34,200 46,000 34,000 42,000 40,300 22,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Dioxide NE NS NS NS 440,000 500,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloride 250,000 NS NS NS 3,300 3,000 3,300 6,000 3,100 7,300 <1000 30,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS Notes: All units are in µg/L unless othe-ised indicated NCDEQ 3tsndard= l5A NCAC 02L .0202 Ground ' Interim Maximum Allowable Concentration (Eff. Labomoon- Pace (P), Shealy (S), and Test A"' J= Estimated cone . above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample n=Refetto Case Narrative for "he, detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 39 of 4355 Constituent Std. MW4 (cont.) Laboratory P P P P P P P P P P S S S S S S S P "IA "IA TA 'IA P TA Sample Date 4.23.05 10.25.05 328.06 9.27.06 3.31.07 4.9.08 5.13.09 10.18.11 4.12.12 10.24.12 4.25.13 10.3.13 4.M14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 5.1.17 6.15.17 10.10.17 4.10.18 10.5.18 4.22.19 Acetone 6000 <25 <25 <25 <25 <25 <25 <25 5 <25 <25 <20 28 <20 <20 <20 5 <20 <25 15 5.8 5.7 2.7 Jcn <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 Anthmeene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.05 10.05 Antimony' 1 NS NS NS NS NS NS NS <6 <6 <6 <10 <10 <10 <10 <10 0.23 NS <5 <3 <3 <3 <3 <5 <5 Arsenic 10 <5 15 <5 <5 <5 <5 3.2 7.6 <10 <10 <10 <10 <10 <10 <10 1.9 5.6 <10 0.62 NS 0.56 0.82 J <10 0.52 J Barium 700 1 240 280 260 280 320 336 343 557 <100 527 620 620 650 610 650 550 660 241 440 NS 410 430 345 430 Benzene 1 <5 <5 <5 <5 <5 <5 <5 <10 <10 <100 <1 <1 <1 <1 <1 <0.21 <1 <t 1.1 0.32 1.1 0.74 <1 0.71 Beryllium' 4 NS NS NS NS NS NS NS <1 <1 <10 <4 <4 <4 <4 <4 <0.12 NS <1 <t <1 <1 <1 <1 Bromodichloromethane 0.6 <5 <5 1 <5 1 <5 <5 1 <5 <5 1 <1 I <1 <I <I <I <1 <I <1 <0.23 NS <t <t <t <1 <1 <1 <I Bromoform 4 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <1 B fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.05 10.05 2-Butanone(MEK) 4,000 <10 <10 <10 <10 <10 QO <10 <5 <5 <1 <10 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 <5 Cadmium 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <2 <2 <2 <2 <2 <0.044 0.12 <1 <0.5 NS <0.5 <0.5 <1 <1 Calcium NE NS NS NS NS NS NS NS NS NS <1 NS NS NS NS NS 550,000 71,000 34,700 NS NS NS NS 51,000 NS Chloroethane 3000 <10 <10 <10 <10 <10 <10 <10 <1 <1 NS <2 <2 <2 <2 <2 <0.28 NS <1 <1 <1 <1 <1 <1 <1 Chloroform 70 1 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0.21 NS <1 <2 <2 <2 <2 <1 I <1 Chromium 10 <2 <2 <2 <2 <5 <5 1 0.4 <10 <10 I <t <5 <5 <5 <5 1 <5 0.87 6.l <5 8 NS 2.6 It J 8.1 <5 Cobalt' 1 NS NS NS NS NS NS NS 102 <10 11.7 Q5 <25 -25 <25 <25 18 1 19 <5 6 NS 4.9 1 4.8 <5 4.6 Copper 1,000 NS NS NS NS NS NS NS <10 <,0 <10 <5 5.9 <5 <5 <5 1.9 20 <5 3.8 NS l.6 12 <5 0.71 JB Carbon Disulfide 700 <10 <10 <10 <10 <10 <10 <10 Q Q <2 <1 <1 <1 <1 <1 1.7 NS <2 <2 <2 Q Q Q <2 Dibromochloromethone 0.4 NS NS NS NS NS NS NS <l <l <I <I <I <l <I <l <0.23 NS <I <I <I <l <l <l <I 1,1-Dichloroethane 6 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 1,1-Dichloroethene 350 <5 <5 <5 <5 <5 <5 <5 <1 <1 <I <I <I <1 <I <1 0.45 <1 <1 <1 <1 <1 <1 <1 <I 1,4-Dichlorrbemene 6 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 cis-1,2-Dichloroethene 70 <5 <5 <5 <5 <5 <5 <5 <1 <1 <I <I <I <1 <I <1 <02 <I <I <I <I <1 <1 <1 <I 1,4-1hoxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <2 <2 Eth (benzene 600 <5 <5 <5 <5 1 <5 <5 1 <5 1 <1 <1 <I <I <I <1 <I <1 <0,21 1 NS <1 <0.5 <0.5 <0.5 <0.5 <1 <I 2-Hexanone NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <5 <5 <5 <5 1 <5 <5 <5 4-Meth 1-2- entmone 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 15 <5 <5 <5 <5 <5 15 Toluene 600 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0.24 NS <1 <0.5 <0.5 <0.5 <0.5 <1 <1 X lens 500 <5 <5 <5 <5 <5 <5 <5 <2 <2 <2 <I <I <1 <I <1 <0.32 NS <t <t <t <1 <1 <1 <t Lead 15 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 0.28 2.7 1 5.9 11 1 NS 3.9 1.1 5.3 1.3 Manganese 50 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 3,300 3,500 1390 820 NS 760 730 680 670 Mercury 1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 <0.2 NS <0.2 <0.2 <0.2 <0.2 Methylene Chloride 5 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <I <I <1 I <I <1 <0,42 NS <I <5 <5 <5 <5 <1 <I Naphthalene 6 1 NS NS I NS I NS NS I NS I NS NS I NS I NS NS I NS NS NS NS NS NS NS NS NS NS NS 1 <1.5 <1.5 Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS I NS NS NS NS NS NS <0.2 <0.2 Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.1 <0.1 Nickel 100 NS NS NS NS NS NS NS <50 <50 <50 <40 <40 <40 <40 <40 8 15 <5 9.3 NS 3.8 4.9 7 4.2 Selenium 20 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <9.5 NS <10 <2.5 NS -2.5 -2.5 <10 <10 Sulfide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <100 NS NS NS NS 1,500 NS Silver 20 <2 Q <2 Q <5 <5 <5 <10 <10 <10 <5 <5 <5 <5 <5 <1.7 NS <5 <0.5 NS <0.5 <0.5 <5 <5 Tetrah drofmm NE NS NS NS NS NS NS NS <10 <10 <10 <5 <5 <5 <5 <5 <0.57 <5 <10 1 <10 1 <10 <10 <10 <10 <10 Thallium' 0.2 NS NS NS NS NS NS NS <5.5 <5.5 <5.5 NS NS NS NS NS NS NS <5A <2 NS <2 <2 <10 <10 Tin 2000 1 NS NS NS NS NS NS NS NS I NS NS NS NS NS I NS I NS NS NS NS NS NS NS <5 <5 <5 Vandium' 0.3 NS NS NS NS NS NS NS <25 <25 <25 <50 <50 <50 <50 <50 1.9 1 20 <5 2.5 NS <5 <5 <5 1 3.2 Vinyl Chloride 0.03 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 3.5 7.1 6.8 7 2.7 1.2 <l <l 14 <0.5 <0.5 <1 <1 <1 Zinc 1000 NS NS NS NS NS NS NS <10 <10 <10 <10 27 <20 <20 <20 140 <20 300 96 NS 51 40 163 24 Alkalinity NE NS NS NS NS NS NS NS 332,000 <5000 306,000 390,000 NS NS NS NS 320,000 390,000 253,000 310,000 NS 300,000 310,000 291,000 310,000 Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 1,000 11,000 140 NS NS NS NS 210 NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 3,590 2,500 NS 1,700 1,600 1,630 1,800 Total Dissolved Solids 500,000 NS NS NS NS NS NS NS 427,000 <25,000 357,000 420,000 NS NS NS NS 440,000 440,000 344,000 480,000 NS 400,000 410,000 388,000 450,000 Sulfate 250,000 NS NS NS NS NS NS NS <5000 <5000 <5000 8,000 NS NS NS NS NS NS 11,900 20,000 NS 10,000 18,000 4,800 19,000 Carbon Dioxide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 660,000 900,200 NS NS NS NS NS NS NS Chloride 250,000 NS NS NS NS NS NS NS 6,230 <5000 5,740 4,700 NS NS NS NS 85100 7 . 16,%0 21,000 1 NS 19,000 23,000 1 <1000 17,000 Notes: All units are in µg/L unless oths-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground ' Interim Maximum Allowable Concentation (Eff. Laboamnee=Pace (P), Shealy (S), and Test Amen J= Estimated coot. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample. n= Refer m Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. MW4A Laboratory S S S S S S P S(split) 'IA '1'A 7'A '1'A P 'IA Sample Date 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 10.27.16 5.1.17 6.15.17 10.10.17 4. 10.18 10.5.18 422.19 Acetone 6000 <20 <20 <20 <20 2.4 <20 <25 <2 <5 <5 15 2.6 Jcn <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 rac Anthene 2000 NS NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 Antimony* 1 <10 <10 <10 <10 0.83 NS 15 NS <3 <3 <3 <3 <5 <5 Arsenic 10 <10 <10 <10 <10 0.37 <10 <10 NS 0.43 NS 0.3 0.75 J <10 0.42 J Barium 700 270 120 83 110 110 68 246 NS 160 NS 170 180 141 78 Benzene 1 <1 <1 <1 <1 <0.21 <1 <1 <0.4 0.35 <0.5 <0.5 <0.5 <1 <1 Beryllium* 4 <4 <4 <4 <4 <0.12 NS <1 NS <1 NS <1 <1 <1 <1 Bromodichloromethame 0.6 <I <1 <I <1 <0,23 NS <1 <0,4 <1 <1 <1 <I <I <1 Bromoform 4 <1 <1 <1 <1 <0.35 NS <1 <0.4 <1 <1 <1 <1 <1 <1 Benw(b)fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS <0.05 10.05 2-Butanon (MEK) 4,000 <10 <10 <10 <10 <18 NS <5 <2 <5 <5 <5 <5 <5 <5 Cadmium 2 <2 <2 <2 <2 <0.044 0.12 <1 NS <0.5 NS <0.5 <0.5 <I <1 Calcium NE NS NS NS NS 34,000 14,000 42,400 NS NS NS NS NS 34,200 NS Chloroethane 3000 12 <2 <2 <2 <0.28 NS <1 <0,4 <1 <1 <1 <1 <1 <1 Chloroform 70 <1 <1 <1 <1 <0.21 NS <1 <0.4 <2 <2 <2 <2 <1 <1 Chromium 10 27 1 <5 <5 <5 0.87 <5 1 9.9 NS 2.3 NS 10 1 7.9 <5 <5 Cobalt* 1 <25 <25 <25 1 <25 0.7 <25 5.4 NS 0.95 NS 0.94 3.6 <5 1 <5 Copper 1,000 86 <5 <5 1 <5 5.3 3.7 102 NS 6.3 NS 6.4 23 <5 2.2B Carbon Disulfide 700 <1 <1 <1 <1 <0.45 NS <2 <0.4 <2 <2 <2 <2 <2 <2 Dibromochloromethane 0.4 <I <1 <1 <1 <0,23 NS <1 <0,4 <1 <1 <I <I <I <1 1,1-Dichlomethane 6 <1 <1 1.2 <1 0.83 <1 <1 0.61 0.64 0.54 0.75 <1 <1 <1 1,1-Dichloroethene 350 <1 1.7 2.4 <1 1.8 1.4 <1 0.78 <1 <1 <I <I <I <1 1,4-Dichlorobenzene 6 <1 <1 <1 <1 <0.19 <1 <1 <0.4 <1 <1 <1 <1 <1 <1 cis-1,2-Dichloroethene 70 <I <1 <I <1 0.5 <I <1 <0,4 <1 <1 <I <I <I <1 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS <2 <2 Eth Ibenune 600 1 <I I <1 <I <1 <0,21 NS I <1 <0,4 <0.5 <0.5 1 <0.5 1 <0.5 <I <1 2-Hexanone NE I NS I NS NS NS NS NS <5 <2 <5 <5 <5 <5 1 <5 <5 4-Meth 1-2- entmone 100 NS NS NS NS NS NS 15 <2 <5 <5 <5 <5 <5 <5 Toluene 600 <1 <1 <1 3 <0.24 NS <1 <0.4 <0.5 <0.5 <0.5 <0.5 <1 <1 X lens 500 <1 <1 <I 3.9 <0.32 NS <1 <0.4 <1 <1 <1 <t <I <1 Lead 15 26 <10 <10 <10 0.94 <10 27A NS 1.5 NS 1.2 6.5 <5 0.41 J Mang -se 50 NS NS NS NS 26 21 285 NS 39 NS 34 94 22.8 1.9 J Mercury 1 0.32 <0.1 <0.1 0.25 0.1 <0.1 NS NS <0.2 NS 0.43 0.26 0.95 0.16 J Methylene Chloride 5 <I <1 <I <1 <0.42 NS <1 <0,4 <5 <5 <5 <5 <I <1 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS <1.5 <1.5 Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS NS NS <0.2 <0.2 Pyre- 200 1 NS I NS NS NS NS NS NS NS NS NS NS NS <0.1 <0.1 Nickel 100 <40 <40 <40 <40 2.3 <40 18.6 NS 3.6 NS 6.5 9.7 <5 <5 Selenium 20 <10 <10 <10 <10 <9.5 NS <10 NS <2.5 NS <2.5 <2.5 <10 <10 Sulfide NE NS NS NS NS NS NS <100 NS NS NS NS NS <100 NS Silver 20 <5 <5 <5 15 <1.7 NS <5 NS <0.5 NS <0.5 <0.5 <5 <5 Tetrah drofuran NE 15 <5 <5 <5 <0.57 <5 <10 <I <10 <10 <10 <10 <10 <10 Thallium* 0.2 NS NS NS NS NS NS <5.4 NS <2 NS <2 <2 <10 <10 Tin 2000 NS NS NS NS NS NS NS NS NS NS NS <5 <5 <5 Vanadium* 0.3 68 <50 <50 <50 1 4.3 <50 55A NS 5 NS 3.5 14 <5 3.27 Vinyl Chloride 0.03 3.4 3A 3.4 <1 1.2 2 <1 2 3.7 <0.5 <0.5 <1 <1 <l Zinc 1000 1 13 1 320 15 290 890 1200 257 NS 39 NS 1 16 1 90 15.7 13 Alkalinity NE NS NS NS NS 170,000 190,000 201,000 NS 200,000 NS 210,000 200,000 214,000 t20,000 Ammonia-N 1,500 NS NS NS NS 170 <10 <100 NS NS NS NS NS <100 NS Iron 300 NS NS NS NS NS NS 21,300 NS 1,700 NS 1,300 5,600 632 <100 To Dissolved Solids 500,000 NS NS NS NS 280,000 280,000 273,000 NS 320,000 NS 330,000 250,000 314,000 250,000 Sulfate 250,000 NS NS NS NS NS NS t0,800 NS t1,000 NS 12,000 9,800 10,500 16,000 Carbon Dioxide NE NS NS NS NS 380,000 620,000 NS NS NS NS NS NS NS NS Chloride 250,000 NS NS NS NS 8,200 8,400 9,700 NS 1Q000 NS 11,000 10,000 <1000 7,100 Notes: All units are in µg/L unless othe-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Labommnee=Pace (P), Shealy (S), and Test Amen J= Estimated coot. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample. n=Refc, to Case Narrative for "he, detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells 40 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. MW4D Laboratory S S S S S S P 'f:1 'IA 'IA 'IA P FA Sample Date 10.3.13 4.10. 14 10.23.14 424.15 10.21.15 4.22.16 10.27.16 5.1.17 6.15.17 10.10.17 4.10.18 10.5.18 4.22.19 Acetone 6000 <20 <20 <20 <20 <16 <20 <25 <5 <5 15 15 <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 Antimony* 1 <10 <10 <10 <10 0.19 NS 15 <3 <3 <3 <3 <5 <5 Arsenic 10 <10 <10 <10 <10 1.5 1.2 <10 0.64 NS 0.48 3.5 <10 0.66 J Barium 700 86 89 140 110 140 110 56.2 50 NS 47 180 47.8 190 Benzene 1 <1 <I <1 <I <0,21 <1 <1 <0.5 <0.5 <0.5 <0.5 <I 0.15 J Beryllium* 4 <4 <4 <4 <4 <0.12 1 NS <1 <1 NS <1 I <1 <1 <1 Bromodichloromethane 0.6 <1 <I <1 <I <0.23 NS <1 <1 <1 <I <I <I <I Bromoform 4 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <1 Benno flmanthene 0.05 NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 2-Butanone(MEK) 4,000 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 <5 Cadmium 2 <2 <2 <2 <2 <0.044 <2 <1 <0.5 NS <0.5 <0.5 <1 <1 Calcium NE NS NS NS NS 84,000 70,000 35,900 NS NS NS NS 35,400 NS Chlomethane 3000 1 <2 <2 <2 <2 <0.28 NS <1 <1 <1 <1 <1 <I <1 Chloroform 70 <1 <1 <1 <1 <0.21 NS <1 <2 Q <2 <2 <1 <1 Chromium 10 <5 <5 8 <5 <6.3 <5 <5 <0.5 NS 1 <0.5 <5 <5 <5 Cobalt* 1 <25 <25 <25 <25 0.28 1 <25 <5 <1 I NS <1 I <1 <5 0.53 J Copper 1,000 <5 <5 16 <5 0.76 1.3 <5 <2 NS <2 5.9 <5 0.98 JB Carbon Disulfide 700 <1 <1 <1 <1 <0.45 NS <2 <2 Q <2 <2 <2 <2 Dibromochloromethane 0.4 <1 <1 <1 <1 <0,23 NS <1 <1 <1 <1 <1 <1 <1 I,1-Dichloroethane 6 2.4 2.8 2.8 2.5 1.3 <1 <1 0.55 1.8 <1 1.9 <1 1.8 1,1-Dichloroethene 350 1.1 2.6 3.7 <1 1.4 1.1 <1 <1 <1 <1 <1 <1 <1 I,4-Dichlorobonzene 6 <1 <1 <1 <1 <0.19 <1 <1 <1 <l 21 <1 <1 <1 cis-1yDichloroethene 70 <1 <I <1 <1 0.28 <1 <1 <1 <1 <1 <1 <1 0.541 1,4-Dimmne 3 NS NS NS NS NS NS NS NS NS NS NS <2 2 Eth (benzene 600 1.5 <I <1 <I <0,21 NS <1 <0.5 <0.5 <0.5 <0.5 <I <I 2-11examme NE NS NS NS NS NS NS 1 <5 <5 <5 <5 <5 <5 <5 4-Me! 1-2- en .mm 100 NS NS NS NS NS NS <5 15 <5 <5 <5 <5 <5 Toluene 600 7.4 <1 <1 <1 0.34 NS <1 <0.5 <0.5 <0.5 <0.5 <1 <1 X lens 500 8.1 <I <1 1.1 <0.32 NS <1 <1 <1 <t <t <t <t Lead 15 <10 <10 <10 <10 <0.15 <10 <5 <0.5 NS 0.17 1 <5 0.231 Man anew 50 NS NS NS NS 460 410 210 280 NS 260 460 244 500 Mercury t <0.1 0.32 0.48 <0.1 0.071 <0.1 NS <0.2 NS <0.2 <0.2 <0.2 <0.2 Meth lene Chloride 5 <1 <1 <1 <1 <0,42 NS <1 <5 <5 <5 <5 <t <I Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS <1.5 <1.5 Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS NS <0.2 <0.2 Pyrme 200 NS NS NS NS NS NS NS NS NS NS NS <0.I <0.I Nickel 100 <40 <40 <40 <40 6.6 <40 <5 <2 NS <2 0.68 J <5 0.68 J Selenium 20 <10 <10 <10 <10 <9.5 NS <10 <2.5 NS <2.5 <2.5 <10 <10 Sulfide NE NS NS NS NS NS NS <I00 NS NS NS NS <100 NS Silver 20 <5 <5 <5 <5 <1.7 NS <5 <0.5 NS <0.5 <0.5 <5 <5 TVdrofivan NE <5 <5 <5 <5 <0.57 <5 <10 <10 <10 <10 <10 <10 <10 Thallium* 0.2 NS NS NS NS NS NS <5.4 <2 NS <2 <2 <10 I <10 Tin 2000 NS NS NS NS NS NS NS NS NS NS <5 <5 <5 Vanadium* 0.3 <50 <50 <50 <50 <15 <50 <5 <5 NS <5 <5 <5 2.5 J Vinyl Chloride 0.03 1 4.7 1 6 6.9 1.7 0.65 0.85 <1 1.1 <0.5 1 <0.5 <I <I <I Zinc 1000 QO <20 45 <20 43 44 72 8.7 NS 11 12 16.1 13 Alkali, NE NS NS NS NS 190,000 180,000 132,000 140,000 NS 140,000 330,000 138,000 350,000 tor 1,500 NS NS NS NS 120 <10 <100 NS NS NS NS <100 NS Iron 300 NS NS NS NS NS NS 285 330 NS 320 2,200 393 2,400 Total Dissolved Solids 500,000 NS NS NS NS 270,000 230,000 182,000 210,000 NS 180,000 360,000 186,000 430,000 Sulfate 250,000 NS NS NS NS NS NS 8,100 8,500 NS 7,800 14,000 6,300 9,700 Carbon Dioxide NE NS NS NS NS 210,000 210,000 NS NS NS NS NS NS NS Chloride 250,000 NS NS NS NS 8,400 7,200 5,700 5,500 NS 5,900 14,000 <]000 13,000 Notes: All units are in µg/L unless otherwised indicated NCDEQ Standard= 15A NCAC 02L .0202 Ground * Interim Maximum Allowable Cortemo tion (Eff. Laboratories= Pace (P), Shealy (S), and Test Amen 1= Estimated tort. above the adjusted method dete and below the adjusted reporting limit Bxompmmd was found in the blank and sample. n= Refer to Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE = Not Established < "Report Limit" = Value is less that the Report Lit. Green boxes indicate Point of Compliance Wells 41 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 42 of 4355 Constituent Std. MW4D-1 MW-5 Laboratory S S S S P 'FA 'IA 'IA 'IA P 'IA PR PR PR PR PR PR S S S S S S S S P Sample Date 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 5.1.17 6.15.17 10.10.17 4.10.18 10.5.19 4.22.19 3,20.98 7.16.98 4.13.99 8.25.99 3.9.00 8.16.00 3.23.01 10.6.01 3.16.02 10.31.02 3.26.03 9.13.03 3.26.04 12.2.04 4.23.05 Acetone 6000 <20 <20 9.1 <20 <25 <5 <5 <5 <5 <25 9.6J <50 <50 <50 <50 <50 <50 <20 <20 <20 <20 <20 <20 <20 <20 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS <0.5 <0.5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Antlnacene 2000 NS NS NS NS NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Antimony* 1 <]0 <10 0.56 NS 15 <3 <3 <3 <3 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Arsenic 10 <10 <10 1.5 1.7 <10 3.3 NS 3.6 3.4 <10 3.4 <50 <10 <50 <10 <10 <10 24 <5 <5 <5 <5 <5 <10 <10 <5 Barium 700 30 31 32 45 49.8 62 NS 68 74 48.6 68 1 <100 280 <100 300 280 200 170 150 140 120 150 140 130 400 370 Benzene 1 <1 <1 <0.21 <1 <1 0.46 <0.5 <0.5 <0.5 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Beryllium* 4 <4 <4 <0.12 NS <1 <1 I NS <1 <1 <1 <1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Bmmodichloromethane 0.6 <1 <1 <023 NS <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Bmmoform 4 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Benno flmanthene 0.05 NS NS NS NS NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS 2-Butmone(MEK) 4,000 QO <10 <18 NS <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 Cadmium 2 <2 <2 <0.044 <2 <1 <0.5 NS <0.5 <0.5 <1 <1 14 14 <5 <5 <5 <1 <2 <2 <2 <2 <2 <2 MNS <2 <1 Calcium NE NS NS 37,000 44,000 42,400 NS NS NS NS 30,700 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chlomethane 3000 <2 <2 <0.28 NS <1 <1 <1 <1 <1 <1 <1 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <10 Chloroform 70 <1 <1 <0.21 NS <1 <2 Q 4.3 <2 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Chromium 10 <5 <5 0.93 <5 <5 5.8 NS <0.5 7.6 <5 <5 <5 18 <50 <5 6 <5 <5 5.1 5.1 5.1 5.1 5.1 <5 <2 Cobalt* 1 <25 <25 <2.6 <25 <5 2.2 NS 9.5 <1 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Copper 1,000 <5 <5 0.32 1 <5 <5 1 L3 NS 12 1 0.81 J <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Disulfide 700 9.6 <1 2.1 NS <2 Q Q <2 <2 <2 Q <50 <50 <50 <50 <50 <50 <5 <5 <5 <5 <5 <5 <5 <5 <10 Dibromochloromethane 0.4 <1 <I <0.23 NS <1 <1 <1 0.76 <I <I <1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 1,1-Dichloroethane 6 <1 <1 1 <1 <1 0.72 0.71 <1 <1 <1 0.58J <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,1-Dichlomethene 350 1.2 <1 1.5 1.1 <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dichlorobenzene 6 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 cis-1,2-Diohl-eth.e 70 <1 <1 <0.2 <1 <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS <2 <2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Eth (benzene 600 <1 <1 <021 NS <1 <0.5 <0.5 NS <0.5 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 2-Hexamme NE NS NS 0.8 NS <5 <5 <5 <0.5 1 <5 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 4-Methyl-2-pentanom, 100 1 NS I NS 0.81 NS <5 <5 <5 <5 <5 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Toluene 600 <1 <1 0.66 NS <1 <0.5 <0.5 0.38 <0.5 <1 0.15 J <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 X Imes 500 NS 1.2 0.43 NS <l <l <1 0.41 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Lead 15 <10 <10 <0.15 <10 <5 1.2 NS <0.5 0.22 J <5 <5 <15 <5 <15 <5 <5 <5 <3 <3 <3 <3 <3 <3 <3 <3 <5 Man anew 50 NS NS 30 180 194 210 NS 250 270 144 270 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Mercury 1 <0.I <0.1 <0.028 <0.1 NS <0.2 NS <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.4 <0.4 <0.2 Methylene Chloride 5 <1 <I <0.42 NS <1 <5 <5 <5 <5 <1 <1 <5 <5 <5 <5 <5 <5 1 <5 <5 <5 <5 <5 <5 <5 <5 <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS <1.5 <1.5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Phenanth ne 200 NS NS NS NS NS NS NS NS NS <0.2 <0.2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Pyrene 200 NS NS NS NS NS NS NS NS NS <0.1 <0.1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Nickel 100 <40 <40 <6.3 <40 <5 3.6 NS 2.3 3.5 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Selenium 20 1 QO <10 <9.5 NS <10 -2.5 NS -2.5 <2.5 <10 <10 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 5.2 8.8 <5 <5 <5 Sulfide NE NS NS NS NS <100 NS NS NS NS <100 <100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Silver 20 <5 <5 <1.7 NS <5 <0.5 NS <0.5 <0.5 <5 <5 Q8 <5 <19 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Q Tetrah drofman NE <5 <5 <0.57 <5 <10 <10 <10 <10 <10 <10 <10 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Thallium* 0.2 NS NS NS NS <5.4 <2 NS <2 <2 <10 <10 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Tin 2000 NS NS NS NS NS NS NS NS <5 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vanadium* 0.3 <50 <50 <15 <50 <5 <5 NS 2.8 <5 <5 <5 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vinyl Chloride 0.03 1.2 <t 0.52 1 0.76 <1 2.1 <0.5 <0.5 1 <I <I <1 <10 <10 <10 <10 <10 <10 <2 1 <2 <2 <2 <2 <2 <2 <2 <5 Zinc 1000 QO <20 9.8 11 <10 16 1 NS <20 <10 12.4 <10 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Alkalinity NE NS NS 150,000 t90,000 187,000 200,000 NS 210,000 210,000 127,000 200,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Ammonia-N 1,500 NS NS 74 <10 <100 NS NS NS NS 170 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Iron 300 NS NS NS NS 362 490 NS 530 1,000 947 660 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Total Dissolved Solids 500,000 NS NS 210,000 240,000 239,000 240,000 NS 250,000 260,000 153,000 290,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Sulfate 25Q000 NS NS NS NS 5,300 3,000 NS 1,300 1,500 1,400 530 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Dioxide NE NS NS 140,000 190,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloride 250,000 NS NS 13,000 12,000 12,300 13,000 NS 8,900 13,000 <1000 12,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Notes. All units are in µg/L unless oth-ised indicated NCDEQ Standard= l5A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Laboratories= Pace (P), Shealy (S), and Teat Ameri J = Estimated coot. above the adjusted method dete and below the adjusted reporting limit B-Compoond was found in the blank and sample. n= Refer to Case Narrative for fiuther detail Bold /yellow values exceed the NCDEQ Standard NE = Not Established < "Report Limit" = Value k less that the Report Lit Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 43 of 4355 Constituent Std. AM-5 (cont.) Laborato P P P P P P P P P P S S S S S S P TA TA TA TA P TA Sam le Date 10.25.05 31L26 9.27.06 3.31.07 4.9.08 5.13.09 10.18.11 4.12.12 10.24.12 4.25.13 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 4.27.17 6.15.17 10.10.17 4.10.18 10.5.18 4.22.19 Acetone 6000 <25 <25 <25 <25 <25 <25 3.8J <25 <25 <20 <20 <20 <20 <20 2.2 <20 <25 <5 <5 <5 15 Q5 <10 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.76 Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 0.075 <0.76 Antimony* 1 NS NS NS NS NS NS <6 <6 <6 <10 <10 <10 <10 <10 0.34 NS <5 <3 <3 <3 <3 <5 <3 Arsenic 10 15 15 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 0.34 <10 <10 0.15 NS <1 0.32 J <10 0.34 J Barium 700 500 280 280 220 257 239 247 <100 1320 460 410 370 460 280 310 310 254 230 NS 240 240 230 200 Benzene 1 <5 <5 <5 <5 0.44 0.53 <10 <10 0.53 J <1 <1 <1 <1 <1 0.67 <1 <1 0.74 0.76 0.76 0.67 <1 0.36 J Beryllium* 4 1 NS I NS NS NS NS NS <1 <7 1 1 <4 <4 14 <4 <4 <0.12 NS <1 <1 NS <1 <1 <1 <1 Bromodichloromethane 0.6 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0,23 NS <1 <1 <1 <1 <1 <1 <1 Bromofman 4 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 Q <1 <1 <1 B fluanthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 10,05 10,15 2-Bufanone (MEK) 4,000 <10 <10 <10 <10 <10 <10 <5 <5 <5 <10 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 <5 Cadmium 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 Q Q <2 Q <2 110 Q <1 <0.5 NS <0.5 <0.5 <1 <0.50 Calcium NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS 99,000 120,000 128,000 NS NS NS NS 143,000 NS Chloroethane 3000 <to <10 <10 <10 <10 <10 <I <t <1 Q Q <2 Q <2 t NS <I <I 1.5 1.7 1 <1 <1 Chloroform 70 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0.21 NS <1 <2 Q Q Q <1 Q Chromium 10 43 <2 <2 <5 <5 <5 <10 <to 31.9 5.3 <5 <5 5.5 15 0.93 <5 <5 <0.5 NS <0.5 <5 <5 <5 Cobalt* 1 NS NS NS NS NS NS <10 <10 33.8 <25 <25 <25 <25 <25 1.9 Q5 <5 2.7 NS 1.6 1.6 <5 0.76J Co 1,000 NS NS NS NS NS NS 27.3 <t0 1130 160 110 63 140 11 21 49 34.4 5.4 NS 1.2 1.2 J <5 5.3 Carbon Disulfide 700 <10 <10 <10 <10 <10 <10 <2 <2 <2 <1 <1 I <1 <1 <1 <0.45 NS <2 <2 <2 Q Q <2 Q Dibromochloromethane 0A NS NS NS NS NS NS <I <I <l <l <l <I <l <I <0.23 NS <I <I <I <I <I <I <I IJ-Dichloroethane 6 <5 <5 <5 <5 2.8 3.5 <1 <1 0.73J <1 <] <1 <] 3.3 0.68 <1 <1 0.83 0.91 0.98 <] <1 <1 IJ-Dichloroethene 350 <5 <5 <5 <5 <5 <5 <I <I <l <1 <1 <I <1 <I <0.31 <I <I <I <1 <I <I <I <1 1,4-Dichlombemme 6 <5 <5 <5 <5 <5 0.39 <1 <1 <1 <1 <] <1 <] <1 0.31 <1 <1 <1 <1 <1 <1 <1 <1 cis-1,2-Dichlomethene 70 <5 <5 <5 <5 <5 <5 <I <I 1.9 2.1 2.1 1.8 1.9 1.9 1.9 1.4 2.1 1.9 2 <l <1 1.9 1.2 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 32.5 11 Eth Ibenune 600 <5 <5 <5 <5 <5 <5 <I <I <l <1 <l <I <l <I <0.21 NS <I <0.5 <0.5 <0.5 <0.5 <1 <0.50 2-Hexanone NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 1 <5 <5 1 <5 1 <5 <5 1 <5 <5 4-Meth 1-2- entanone 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <5 15 <5 15 15 15 <5 Toluene 600 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <0.24 NS <1 <0.5 <0.5 <0.5 <0.5 <1 <0.50 X lens 500 <5 <5 <5 <5 <5 <5 <2 <2 <2 <1 <1 <1 <1 1.1 <0.32 NS <t <I <1 <1 <1 <1 <1 Lead 15 <5 <5 <5 <5 <5 <5 QO <10 13.7 <10 <10 <10 <10 <10 0.38 NS <5 0.22 NS <0.5 <0.5 <5 <0.50 Man anew 50 NS NS NS NS NS NS NS NS NS NS NS NS NS NS 290 310 416 490 NS 370 410 468 180 Mercury 1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.12 J <0.1 <0.1 <0.1 <0.1 <0.1 <0.028 <0.I NS <0.2 NS <0.2 <0.2 <0.2 <0.2 Meth lene Chloride 5 15 <5 <5 <5 <5 <5 <1 <I <l <l <l <I <l <I 0.24 NS <t <5 <5 <5 <5 <1 <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <1.5 <0.76 Phemmonene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.2 <0.76 Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.1 <0.76 Nickel 100 NS NS NS NS NS NS <50 <50 24.3 J <40 <40 <40 <40 <40 3.5 <40 <5 2.4 NS 1.2 2.4 <5 1.11 Selenium 20 1 <5 1 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 1.4 NS <10 <2.5 NS Q.5 Q.5 <10 Q.5 Sulfide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <100 NS NS NS NS <100 NS Silver 20 <2 <2 <2 <5 <5 <5 <10 <10 <10 <5 <5 <5 <5 <5 <1.7 NS <5 <0.5 NS <0.5 <0.5 <5 <0.50 Tetrah drofman NE NS NS NS NS NS NS <10 <to <to <5 <5 <5 <5 <5 3.4 <5 <10 <10 <10 <10 <10 <10 3.4 Thallium* 0.2 NS NS NS NS NS NS <5.5 <5.5 <5.5 NS NS NS NS NS NS NS <5.4 <2 NS <2 Q <10 <5 Tin 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <5 15 NS Vanadium* 0.3 NS NS NS NS NS NS 6.3 J <25 324 51 <50 <50 <50 <50 7.2 14 7.6 <5 NS <5 <5 <5 3.4 J Vin 1 Chloride 0.03 <5 <5 <5 <5 0.64 <5 <l <I 0.95 J 4.6 7.5 6.4 8.6 3 2.1 3.3 <l 7.9 1.6 1.3 <I <1 <1 Zinc 1000 NS NS NS NS NS NS 27.9 <10 327 49 31 26 55 <20 85 12 <10 <20 NS <20 <10 <10 <10 Alkalinity NE NS NS NS NS NS NS 1 343,000 <5000 1 232,000 1 230,000 1 NS NS NS NS 1 310,000 310,000 398,000 420,000 11 S 450,000 480,000 507,000 270,000 Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS NS NS NS=INS 6 <10 <100 NS NS NS NS <100 NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS NSS NS 2,800 550 NS 210 240 222 70 JB Total Dissolved Solids 500,000 NS NS NS NS NS NS 344,000 <25,000 433,000 470,000 NS NS000 450,000 612,000 730,000 NS 690,000 720,000 792,000 510,000 Sulfate 250,0oo NS NS NS NS NS NS 14,600 <5000 114,000 100,000 NS NSS NS 80,700 92,000 NS t00,000 99,000 97,300 68,000 Carbon Dioxide NE NS NS NS NS NS NS NS NS NS NS NS NS000 1,300,000 NS NS NS NS NS NS NS Chloride 250,000 NS NS NS NS NS NS <5000 <5000 26,800 25,000 NS NS000 23,000 34,300 37,000 NS 42,000 49,000 <1000 23,000 Notes. All units are in µg/L unless oth-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentation (Eff. Laboodones=Pace (P), Shealy (S), and Test Ameri J= Estimated cone. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample. n= Ride, to Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 44 of 4355 Constituent Std. MW-51) Laboratory S S S S S S P S s lit TA P split TA TA P s ut TA TA DUP P s ut P P DUP TA split TA TA DUP P split Sample Date 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 10.27.16 4.27.17 4.27.17 6.15.17 10.10.17 10.10.17 4.10.18 4.10.18 4.10.18 10.5.18 10.5.18 10.5.18 4.16.19 4.16.19 4.16.19 Acetone 6000 <20 <20 <20 <20 2.4 <20 <25 12 <5 <25 <5 5.3 <25 <5 <5 <25 <25 <25 5 <10 <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.5 NS NS <0.76 NS NS Antluacene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 0.19 NS NS <0,76 NS NS Antimony* 1 <10 <10 <10 <10 0.28 NS 15 NS <3 NS <3 <3 NS <3 NS NS <5 NS NS <3 NS NS Arsenic 10 <10 <10 <10 <10 1 2.3 <10 NS 0.27 NS NS 0.49 NS 0.67 J NS NS <10 NS NS 2 NS NS Barium 700 1 280 320 320 320 290 750 260 NS 230 NS NS 240 NS 210 NS NS 211 NS NS 190 NS NS Benzene 1 <1 1.1 <1 1.2 1.3 <1 <1 1.1 1.3 <1 0.97 0.7 <1 0.99 0.85 <1 <1 <1 1 0.64 0.63 <1 Beryllium* 4 <4 <4 1 <4 1 <4 <0.12 NS <1 NS <l NS NS <1 NS <1 NS NS <1 NS NS <1 NS NS Bromodichloromethane 0.6 <1 <1 <1 <1 <0.23 NS <1 <0.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <I <I <1 Bromoform 4 <1 <1 <1 <1 <0.35 NS <1 <0.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Q Benno flmanthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.05 NS NS <0.15 NS NS 2-Butmone(MEK) 4,000 <10 <10 <10 <10 <18 NS <5 Q <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Cadmium 2 Q <2 Q <2 <0.044 0.31 <1 NS <0.5 NS NS <0.5 NS <0.5 NS NS <1 NS NS <0.50 NS NS Calcium NE NS NS NS NS 250,000 220,000 251,000 NS NS NS NS NS NS NS NS NS 240,000 NS NS NS NS NS Chloroethone 3000 2.5 2.5 2.5 2.2 2.1 NS 1.4 1.3 1.1 1.6 1.8 1.6 1.7 1.2 1.3 <I <I <1 1.7 0.911 0.86 J <1 Chloroform 70 <1 <1 <1 <1 <0.21 NS <1 <0.4 <2 <1 Q <2 <1 Q Q <1 <1 <1 Q <2 <1 Q Chromium 10 1 13 <5 <5 <5 1.2 9.7 <5 NS <0.5 NS NS <0.5 NS 2.91 NS NS <5 NS NS <5 NS NS Cobalt* 1 Q5 <25 Q5 <25 2.1 7.6 <5 NS 0.71 NS NS 0.89 NS 0.76J NS NS <5 NS NS 0.83J NS NS Copper 1,000 28 19 1 7.2 1 5.8 5.2 1 290 1 <5 NS 1.1 NS NS 24 NS 1.31 NS NS 6.6 NS NS 6 NS NS Carbon Disulfide 700 <1 <1 <1 <1 <0.45 NS Q <0.4 <2 NS Q <2 NS Q Q <2 <2 Q Q <2 <2 Q Dibromochloromethane 0.4 <1 <1 <1 <1 <023 NS <1 <0.4 <I <I <1 <1 <1 <1 <1 <I <I <1 <1 <1 <I <1 1,1-Diohloroethane 6 3.6 3.3 1.9 2.9 2.8 2 1.9 2 1.7 2.1 2 1.6 1.7 1.9 1.8 1.7 1.7 1.6 1.6 1.6 1.5 1.3 1,1-Dichloroethene 350 <1 <1 <1 <1 <0.31 <1 <1 <0.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 1,4-Dichlorobenzene 6 <1 <1 <1 <1 0.44 <1 <1 <0.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 6s-1,2-Dichlomethene 70 6.5 5.4 3.1 4.3 3.8 2.5 2.8 <0.4 2.4 3.2 2.3 1.8 2.5 <1 <1 2.3 1.9 1.9 L7 1.5 1.4 1.2 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 58.6 Q 50 37 36 NS Eth (benzene 600 1 <1 <I <1 <I <021 NS <1 <0,4 <0.5 <I <0.5 <0.5 <I <0.5 <0.5 <I <t <1 <0.5 <0.50 <t <0.5 2-Ilexanone NE I NS NS NS NS <0.26 NS <5 <2 <5 <5 1 <5 <5 <5 <5 NS NS <5 NS <5.0 <5 NS <5.0 4-Methyl-2-pentsmom, 100 NS NS NS NS 0.69 NS 15 <2 <5 <5 <5 <5 <5 <5 NS NS <5 NS <5.0 <5 NS <5.0 Toluene 600 <1 <1 I <1 I <1 0.65 NS I <1 <0.4 <0.5 <1 <0.5 1 <0.5 1 <1 <0.5 1 <0.5 <1 <1 I <1 0.16 J <0.50 <1 <1 X Imes 500 <1 <1 <1 1.5 0.56 NS <1 <0,4 <1 <1 <1 <1 <1 <1 <1 <1 <t <1 <1 <1 <1 <1 Lead 15 <10 <10 <10 <10 <0.15 4.8 15 NS 0.26 NS NS <0.5 NS <0.5 NS NS <5 NS NS <0.50 NS NS Matigamese 50 NS NS NS NS 800 1,200 620 NS 670 NS NS 740 NS 780 NS NS 877 NS NS 770 NS NS Mercury 1 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 NS NS 0.16 NS NS <0.2 NS <0.2 NS NS <0.2 NS NS <0.2 NS NS Methylene Chloride 5 <1 <I <1 <1 <0.42 NS <1 <0.4 <5 <2 <5 <5 NS <2 <5 <5 <I <I <1 4.1 J <5 <I <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <1.5 NS NS <0.76 NS NS Phemmtlmene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.2 NS NS <0.76 NS NS Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.1 NS NS <0.76 NS NS Nickel 100 1 <40 <40 <40 <40 9.8 15 7.4 NS 9.1 NS NS 8.5 NS 9.7 NS NS 9.6 NS NS 11 NS NS Selenium 20 QO <10 <10 I <10 4.1 NS <10 NS <2.5 NS NS <2.5 NS <2.5 NS NS <10 NS NS <2.5 NS NS Sulfide NE NS NS NS NS NS NS <I00 NS NS NS NS NS NS NS NS 170 NS NS NS NS NS Silver 20 <5 <5 <5 <5 <1.7 NS <5 NS <0.5 NS NS <0.5 NS <0.5 NS NS <5 NS NS <0.50 NS NS Tetrzh drofimm NE 36 37 33 30 24 24 29.7 25 26 <10 24 15 23.4 24 20 21.5 17.3 17.1 25 21 21 <10 Thallium* 0.2 NS NS NS NS NS NS <5.4 NS <2 NS NS <2 NS <2 NS NS <10 NS NS <5 NS NS Tin 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS <5 NS NS <5 NS NS NS NS NS Vanadium* 0.3 <50 <50 <50 <50 7 110 6.1 NS 5.5 NS NS 3.2 NS 6 NS NS 6.2 NS NS 17 NS NS Vinyl Chloride 0.03 12 13 3 6.2 6.6 5.5 2.1 6 7.2 2.4 2.5 1.8 2.4 1.7 1.4 1.7 <I 1.6 2 0.47 J <0.2 <1 Zinc 1000 QO <20 QO <20 78 32 <10 NS QO NS NS QO NS <to NS NS <10 NS NS <to NS NS Alkalinity NE NS NS NS NS 620,000 700,000 703,000 NS 750,000 NS NS 790,000 NS 830,000 NS NS 884,000 NS NS 870000 NS NS Ammonia-N NS NS NS 85 <10 <I00 NS NS NS NS 720 NS NS NS NS 150 NS NS NS NS NS Iron NS NS NS NS NS l61 NS 110 NS NS 160 NS 230 NS NS 148 NS NS 83 JB NS NS Total Dissolved Solids NS NS NS 1,maa a 1,toaaoo tA9aam NS 1,3aa a NS NS 1,3aa a NS 1, s ,a a NS NS 1,330,000 NS NS 1,400,000 NS NS Sulfate ;25*0,000NS NS NS NS NS NS 145,000 NS 170,000 NS NS 190,000 NS t70,000 NS NS 155,000 NS NS 160000 NS NS Carbon Dioxide NS NS NS 1,400,0M 2,100,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloride 2 NS NS NS 84,000 79,000 91,500 NS 85,000 NS NS 91,000 NS 100,000 NS NS <1000 NS NS 71000 NS NS Notes. All units are in µg/L unless otherwised indicated NCDEQ Standard= 15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Laboratories= Pace (P), Shealy (S), and Test Ameri J = Estimated coot. above the adjusted method dete and below the adjusted reporting limit Bxompound was found in the blank and sample. n= Refer to Case Narrative for further detail Bold /Yellow values exceed the NCDEQ Standard NE = Not Established < "Report Limit" = Value is less that the Report Lit. Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. MW-6 Laborato PR PR PR PR PR PR S S S S S S S S P P P P Sam le Date 3.20.99 7.16.98 4.13.99 8.25.99 3.9.00 8.16.00 3.23.01 10.6.01 3.16.02 10.31.02 3.26.03 9.13.03 3.26.04 12.2.04 4.23.05 10.25,05 3.28.06 9.27.06 Acetone 6000 <50 <50 <50 <50 <50 <50 <20 <20 <20 <20 <20 <20 <20 <20 <25 <25 <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Anth—te, 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Antimony* 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Arsenic 10 <50 <10 <50 <10 <10 <10 17 <5 <5 <5 <5 <5 <10 <10 <5 <5 <5 <5 Barium 700 <100 <100 <100 <100 <100 27 130 140 58 82 84 40 96 110 120 190 170 190 Benzene 1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Beryllium* 4 NS NS NS NS I NS NS NS NS NS NS NS NS I NS NS NS I NS NS NS Bromodichloromethane 0.6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Bromoform 4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Beti,mbfflumathene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 2-Butanon(MEK) 4,000 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 QO <10 <10 <10 <10 <10 <10 Cadmium 2 <5 <5 <5 <5 <5 <1 <2 <2 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 Calcium NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloroethane 3000 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 Chloroform 70 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Chromium 10 <5 <5 <50 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <2 <2 <2 <2 Cobalt' 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Copper 1,000 NS I NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Disulfide 700 <50 <50 <50 <50 <50 <50 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 Dibromochlo rmsethane 0.4 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Dichloroethane 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,1-Dichloroethene 350 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dichlombemme 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 cis-1,2-Dichloroethene 70 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Eth Ibenune 600 <5 <5 1 <5 <5 <5 1 <5 <5 <5 1 <5 <5 <5 1 <5 <5 1 <5 <5 <5 <5 <5 2-Hexanone NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 4-Meth 1-2- entmone 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Toluene 600 <5 1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 X lens 500 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Lead 15 <15 <5 <15 <5 <5 <5 <3 4.7 4.7 4.7 4.7 <3 <3 <3 <5 <5 <5 <5 Manganese 50 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Mercury 1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.4 <0.4 <0.2 <0.2 <0.2 <0.2 Methylene Chloride 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS I NS NS NS NS NS NS Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Pyrene 200 NS NS NS NS NS NS NS NS I NS NS NS NS NS NS NS NS NS NS Nickel 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Selenium 20 <10 <10 <10 <10 I <10 <10 <5 <5 <5 <5 1 5.9 <5 <5 <5 <5 1 <5 1 <5 <5 Sulfide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Silver 20 <18 <5 <18 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <2 <2 <2 <2 Tetrah drofuran NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Thallium' 0.2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Tin 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vanadium' 0.3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vinyl Chloride 0.03 <10 <10 <10 <10 <10 <10 <2 <2 <2 <2 <2 <2 <2 1 <2 <5 <5 <5 <5 Zinc 1000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Alkalinity NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Total Dissolved Solids 500,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Sulfate 250,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Dioxide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloride 250,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Notes: All units are in µg/L unless othe—ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground ' Interim Maximum Allowable Concentration (Eff. Laboratories=Pace (P), Shealy (S), and Test Ameri 3= Estimated cone. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample. v=Refc, to Case Narrative for "her detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells 45 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 46 of 4355 Constituent Std. MW-6(cont.) Lab -to P P P P P P P S S S S S S P 7':t 'I A 'I A 'I A P '1.1 Sample Date 3.31.07 4.10.08 5.13.09 10.18.11 4.12.12 10.24,12 4,25.13 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 422.16 10.27.16 4.27.17 6.15.17 10.10.17 4.10.18 10.5.18 4.22.19 Acetone 6000 125 125 <25 2.71 <25 <25 <20 <20 <20 <20 <20 <16 <20 <25 <5 15 <5 2.7 Jcn <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 Antimony* ] NS NS <6 <6 <6 <6 QO <10 <10 <10 <10 0.45 NS 15 <3 <3 <3 <3 <5 <5 Arsenic 10 15 <5 2.7 <10 <10 <10 <10 <10 <10 <10 <10 1.2 <10 <10 0.77 NS 3.8 14 <10 1.1 Barium 700 1 190 205 200 255 <100 288 310 320 300 320 300 290 270 265 190 NS 220 1600 210 360 Benzene 1 <5 <5 <10 <10 <10 <10 <1 <I <1 <I <1 <0,21 <1 <1 <0.5 <0.5 <0.5 0.35 J <1 0.48 J Beryllium* 4 NS NS <1 <1 <1 <1 <4 <4 <4 <4 <4 <0. 12 NS Q <1 NS <] 6.1 <1 <] Bromodichloromethane 0.6 <5 <5 <I <1 I <1 I <1 <1 I <I <1 I <I I <1 <0,23 NS <1 I <1 <I I <I <l I <I <I Bromofotm 4 <5 <5 <1 <1 <1 Q <1 <] <1 <] <1 1.2 NS Q Q <] <] <1 <] <] B fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 0.08 <0.05 2-Butanone (MEK) 4,000 <10 <10 <5 <5 <5 <5 QO <10 <10 <10 QO <18 NS <5 <5 <5 <5 <5 <5 <5 Cadmium 2 <I <1 <I <1 <1 <1 Q <2 Q <2 Q 0.15 0.27 <1 0.25 NS <0.5 3.1 <l <I Calcium NE NS NS NS NS NS NS NS NS NS NS NS 140,000 130,000 154,000 NS NS NS NS 119,000 NS Chloroethane 3000 <10 <10 <1 <1 <1 <1 Q <2 Q <2 Q <0.28 NS <1 <1 <1 <1 <I <1 <1 Chloroform 70 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.21 NS <1 Q <2 <2 <2 <1 <1 Chromium 10 <5 0.69 <10 <10 <10 <10 <5 <5 <5 <5 <5 1.3 <5 <5 3.9 NS <0.5 58 8.5 1.3 J Cobalt* ] NS NS <10 <10 <10 Q0 <25 <25 Q5 <25 Q5 0.5 <25 <5 0.86 NS 2.7 32 <5 5.2 Copper 11000 NS NS <10 <10 <10 9.6 J <5 10 11 20 6.5 6.8 5.9 6 8.5 NS 3.2 450 <5 16 B Carbon Disulfide 700 1 <10 <10 1 <2 Q Q Q <1 I <] <1 <1 I <1 <0.45 NS Q I Q <2 1 <2 <2 1 <2 <2 Dibromochloromethane 0.4 NS NS <I <l <l <1 <1 <I <1 <I <1 <0,23 NS <1 <1 <I <I <I <I <I 1,1-Dichlomethane 6 <5 <5 <1 <1 <1 Q <1 <] <1 <] <1 <0. 19 <1 <1 <1 <] <] <] <] <] 1,1-Dichloroethene 350 <5 <5 <I <1 <1 <1 <1 <I <1 <I <1 <031 <1 <1 <1 <I <I <I <I <I 1,4-Dichlorobenzene 6 <5 <5 <1 <1 <1 Q <1 <1 <1 <1 <1 <0. 19 <1 <1 <1 <1 <1 <1 <1 <1 cis-1,2-Dichloroethene 70 <5 <5 <I <l <l <1 <1 <I <1 <I <1 <0.2 <1 <1 <1 <I <I <I <I <I 1,4-1hoxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <2 4.2 Eth Ibenune 600 <5 <5 <I <l <l <1 <1 <I <I <I <1 <0.21 NS <1 <0.5 <0.5 <0.5 <0.5 <I <I 2-flexamme NE NS NS NS NS NS NS NS NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 <5 4-Meth 1-2- entmone 100 NS NS NS NS NS NS NS NS NS NS NS 1 NS <5 <5 <5 <5 <5 <5 <5 Toluene 600 <5 <5 <1 <1 <1 Q <1 <] <l <] <l 0.4 NS <l <0.5 <0.5 <0.5 <0.5 <] <] X lens 500 1 <5 <5 1 <2 <2 <2 <2 <1 I <I <I <I 1 1.4 <0.32 NS <I <I <I <I <I <1 <1 Lead 15 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 0.29 <10 5.1 0.65 NS 2.3 94 <5 2.4 Manganese 50 NS NS NS NS NS NS NS NS NS NS NS 150 25 3,510 170 NS 1,500 5,000 1,520 6,300 Mercury 1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 0.17 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 0.81 <0.2 0.111 Methylene Chloride 5 <5 <5 <I <1 <1 <1 <1 <I <1 <I <1 <0.42 NS <1 <5 <5 <5 <5 <I <I Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <1.5 <1.5 Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.2 <0.2 Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 0.11 <0.1 Nickel 100 NS NS <50 11.7 <50 13.11 <40 <40 <40 <40 <40 12 15 <5 17 NS 2.3 42 7 11 Selenium 20 <10 I <10 <10 I <10 <10 QO I <10 <10 I <10 <10 <10 1 1.7 NS <10 <2.5 NS 1.5 1 9.4 <10 <10 Sulfide NE NS NS NS NS NS NS NS NS NS NS NS NS NS <100 NS NS NS NS <100 NS Silver 20 1 <5 <5 <10 <10 <10 I QO <5 <5 15 <5 1 <5 <1.7 NS <5 <0.5 NS <0.5 0.49 J <5 <5 Tetralrdrofrean NE NS NS <10 <10 <10 <10 <5 <5 <5 <5 <5 <0.57 <5 34.8 <10 <10 <10 25 <10 61 Thallium* 0.2 NS NS <5.5 <5.5 <5.5 <5.5 NS NS NS NS NS NS NS <5.4 <2 NS <2 <2 <10 <10 Tin 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <5 <5 <5 Vanadium* 0.3 NS NS <25 <25 <25 Q5 <50 <50 <50 <50 <50 3.6 <50 <5 3.8 NS 2.7 160 <5 6 Vinyl Chloride 0.03 <5 <5 <I <1 <1 <1 <1 2.9 1.6 <l <1 10.5 <1 <1 0.7 <0.5 <0.5 <1 <l <I Zinc 1000 NS NS <10 26 <10 28 21 130 40 60 20 81 23 <10 20 NS 16 400 10.2 13 Alkalinity NE NS I NS NS 675,000 <5000 662,000 670,000 NS NS NS NS 660,000 420,000 791,000 1 530,000 NS 750,000 750,000 656,000 630,000 Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS NS NS 63 <10 <100 NS NS NS NS <100 NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS NS NS 1 2,380 990 NS 2,400 76,000 657 3,200 Total Dissolved Solids 500,000 NS NS NS 692,000 <25,000 773,000 700,000 NS NS NS NS 870,000 490,000 942,000 720,000 NS 910,000 870,000 1,640,000 820,000 Sulfate 250,000 NS NS NS 26,100J <5000 31,300 17,000 NS NS NS NS NS NS 43,700 30,000 NS 38,000 36,000 34,600 49,000 Carbon Dioxide NE NS NS NS NS NS NS NS NS NS NS NS 900,000 500,000 NS NS NS NS NS NS NS Chloride 250,000 NS NS NS 27,000 <5000 30,000 30,000 NS NS NS NS 37,000 34,000 31,900 31,000 NS 36,000 39,000 <1000 29,000 Notes: All units are in µg/L unless oth-ised indicated NCDEQ Standard - 15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Labondon- Pace (P), Shealy (S), and Test A"' J= Estimated cone. above the adjusted method Bete and below the adjusted reporting limit B=Compound was found in the blank and sample. n=Reftt m Case Narrative for "he, detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 47 of 4355 Constituent Sid. MW-6D NM-6D-1 Laboratory S S S S S S P 'I A 'I A 'IA 'I A P 'I',k S S S S P 7'A 'IA T.A Sample Date 10.3.13 4,10.14 10.23.14 4.24.15 10.21.15 4.22.16 M27.16 428.17 6.15.17 10.10.17 4.10.19 10.5.18 4.22.19 10.23.14 4.24.15 10,21.15 4.22. 16 I0,27.16 4.29.17 6.15.17 10.10.17 Acetone 6000 <20 <20 <20 <20 1.8 <20 <25 6.7 <5 <5 <5 <25 16 <20 <20 2A 20 - 6.7 <5 <5 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 NS NS NS NS NS NS NS NS Amhoo cm, 2000 NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS NS NS Antimony* 1 <10 <10 <10 <10 0.52 NS 15 <3 <3 <3 <3 <5 <5 <10 QO 0.43 NS <5 <3 <3 <3 Arsenic 10 <10 <10 <10 <10 1.3 <10 <10 2 NS 0.35 0.63 J <10 0.51 J <10 <10 1.7 2.7 <10 2 NS 2.7 Barium 700 210 220 240 190 220 120 244 360 NS 270 260 257 240 250 230 290 290 372 360 NS 380 Benzene 1 <1 <1 <1 <1 0.5 <1 <1 2.6 0.71 0.66 0.51 <1 0.54 <1 <1 <0.21 <1 <1 2.6 1.7 1.4 Beryllium* 4 1 <4 <4 <4 1 <4 1 <0. 12 NS <1 <1 NS <1 <1 <1 <1 <4 <4 1 <0. 12 NS I <1 <1 I NS <l Bromodichloromethane 0.6 <1 <I <1 <I <0.23 NS <1 <1 <I <1 <1 <1 <1 <I <1 <0.23 NS <1 <1 <1 <I Bromoform 4 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 Benno flmanthene 0.05 NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS NS NS 2-Butanone(MEK) 4,000 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 <5 <10 <10 <18 NS <5 <5 <5 <5 Cadmium 2 <2 <2 <2 <2 <0.044 <2 <1 <0.5 NS <0.5 <0.5 <1 <1 <2 <2 0.13 <2 <I <0.5 NS <0.5 Calcium NE NS NS NS NS 190,000 180,000 188,000 NS NS NS NS 135,000 NS NS NS 150,000 140,000 160,000 NS NS NS Chloroethane 3000 <2 <2 <2 <2 <0.28 NS <1 <I <I <1 <1 <1 <1 <2 <2 <0.28 NS <l <1 <1 <I Chloroform 70 <1 <1 <1 <1 <0.21 NS <1 <2 <2 <2 <2 <1 <1 <1 <1 <0.21 NS <1 <2 <2 <2 Chromium 10 <5 <5 <5 <5 <6.3 <5 <5 4.2 NS 3.2 6.8 <5 <5 <5 <5 0.65 <5 17.3 4.2 NS <0.5 Cobalt* 1 1 <25 1 <25 <25 1 <25 1 1.8 Q5 <5 6.5 NS 3.9 <5 4.6 1 <25 Q5 0.72 <25 <5 6.5 NS 0.85 Copper 1,000 11 <5 <5 <5 1.3 <5 7.5 2.2 NS 3.5 11 5.1 6.6 B <5 <5 0.85 <5 19.6 2.2 NS 0.94 Carbon Disulfide 700 <1 <1 <1 <1 <0.45 NS Q <2 <2 <2 <2 <2 <2 <1 <1 2.8 NS <2 <2 <2 <2 Dibromochlommethane 0.4 <1 <I <1 <I <0.23 NS <1 <I <I <1 <1 <1 <1 <I <1 <0.23 NS <I <1 <1 <I 1,1-Dichloroethane 6 <1 <1 <1 <1 <0. 19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0. 19 <1 <1 <1 <1 <1 1,1-Dichlomethene 350 <l <I <l <I <0.31 <I <I <I <I <1 <1 <1 <1 <I <1 <0.31 <I <I 2.8 <1 <I 1,4-Dichlorobenzene 6 <1 <1 <1 <1 <0. 19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0. 19 <1 <1 <1 <1 <1 cis-1,2-Dichlomethene 70 <l <I <1 <I <0.2 <I <I <I <I <1 <1 <7 <1 <I <1 <0.2 <I <I <l <1 <I 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS 4.9 NS NS NS NS NS NS NS NS Eth (benzene 600 1 <1 <I <l <I <0.21 NS <1 <0.5 <0.5 1 <0.5 1 <0.5 <I <I <I <1 <0.21 NS <I <0.5 1 <0.5 <0.5 2-Ilexanon, NE NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 <5 NS NS <0.26 NS <5 <5 <5 1 <5 4-Methyl-2-pentanom, 100 NS NS NS NS <0.29 NS <5 <5 <5 <5 <5 <5 <5 NS NS <0.29 NS <5 <5 <5 <5 Toluene 600 <1 <1 <1 <1 0.4 NS <1 <0.5 <0.5 <0.5 <0.5 <1 0.20 J <1 <1 0.7 NS <1 <0.5 <0.5 <0.5 X lens 500 <1 <I <1 1.1 0.39 NS <I <I <I <I <I <1 0.26 J <I 1.1 0.54 NS <1 <I <I <I Lead 15 <10 <10 <10 <10 <0.15 <10 <5 0.16 NS 0.19 <0.5 <5 <5 <10 <10 NS <10 <5 0.16 NS <0.5 Manganese 50 NS NS NS NS 1,600 1,300 3,560 370 NS 6,900 7200 6,630 6,100 NS NS 370 480 355 370 NS 300 Mercury 1 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 Methylene Chloride 5 <1 <I <1 <I <0.42 NS <1 15 <5 <5 <5 <1 <1 <I <1 0.35 NS <1 <5 <5 15 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS <1.5 1 <1.5 NS NS NS NS NS NS NS NS Phemmlmene 200 NS NS NS NS NS NS NS NS NS NS NS <0.2 10.2 NS NS NS NS NS NS NS NS Pyrene 200 1 NS I NS NS NS NS NS NS NS NS NS NS <0.1 <0.1 NS NS NS NS NS NS NS NS Nickel 100 <40 <40 <40 <40 5.8 <40 8.6 5 NS 13 19 11.9 12 <40 <40 2.5 <40 12.1 5 NS 2 Selenium 20 <10 <10 <10 <10 <9.5 NS <10 <2.5 NS 1.2 <2.5 <10 <10 <10 <10 1.2 NS <10 <2.5 NS 1.3 Sulfide NE NS NS NS NS NS NS <100 NS NS NS NS <100 NS NS NS NS NS <100 NS NS NS Silver 20 <5 <5 <5 <5 <1.7 NS <5 <0.5 NS <0.5 <0.5 <5 <5 <5 <5 <13 NS <5 <0.5 NS <0.5 Tetrah drofivan NE 18 25 27 33 2.9 7.2 29.4 13 67 48 44 39.7 62 120 11 11 7 11.2 13 11 10 Thallium* 0.2 NS NS NS NS NS NS <5.4 <2 NS <2 <2 <10 <10 NS NS NS NS <5.4 <2 NS <2 Tin 2000 NS NS NS NS NS NS NS NS NS NS <5 <5 <5 NS NS NS NS NS NS NS NS Vanadium* 0.3 <50 <50 <50 <50 5.7 <50 <5 <5 NS 33 3.77 <5 3.11 <50 <50 1.8 <50 7.3 <0.5 NS 7.3 Vinyl Chloride 0.03 4.7 5.7 <I 1.8 1.5 2.7 <I 3.7 <0.5 <0.5 <1 <1 <1 3.8 <I 0.79 1.6 <1 3.7 <0.5 <0.5 Zinc 1000 20 25 NS <20 56 <20 30.3 <20 NS 8.3 19 <10 <10 <20 <0 73 <20 <10 <20 NS <20 Alkalinity NE NS NS NS NS 730,000 850,000 953,000 62g000 NS 7'0,000 750,000 706,000 640,000 NS NS 500,000 57Q000 637,000 620,000 NS 65Q000 Ammonia-N 1,500 NS NS NS NS 87 <10 <100 NS NS NS NS <100 NS NS NS 68 <10 140 NS NS NS Iron 300 NS NS NS NS 2,320 2,100 NS 480 780 712 530 NS NS NS NS 5,330 2,100 NS 3,300 Total Dissolved Solids 500,000 NS NS NS NS 910,000 920,000 1,040,000 750,000 NS 9'0,000 890,000 822,000 850,000 NS NS 600,000 620,000 666,000 750,000 NS 700,000 Sulfate 250,000 NS NS NS NS <2,000 11,000 NS 28,000 28,000 32,600 48,000 NS NS NS NS NS I1,000 NS 13,000 Carbon Dioxide NE NS NS NS NS 990,000 1,600,000 NS NS NS NS NS NS NS NS NS 490,000 590,000 NS NS NS NS Chloride 250,000 NS NS NS NS 21,000 20,000 25,100 24,000 NS 27,000 29.000 F1 <1000 2,700 NS NS 25,000 25,000 29,600 24,000 NS 25,000 Notes. All units are in µg/L unless othe-ised indicated NCDEQ Standard- 15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Laboratories=Pace (P), Shealy (S), and Test Amen J = Estimated coot. above the adjusted method date and below the adjusted reporting limit B-Compound was found in the blank and sample. n= Refer to Case Narrative for fiuther detail Bold /yellow values exceed the NCDEQ Standard NE=Not Established < "Repon Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 48 of 4355 Constituent Std. NM-6D-1 (cont) AM-7 MW-7A Lab -to 'IA P FA S S S S S S P 'IA 'IA '1'.1 'IA P 1'.1 S S S S S S P Sample Date 4.10.19 10.5.18 4.22.19 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 5.1.17 6.15.17 10.10.17 4.10.18 10.5.18 4.22.19 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 Acetone 6000 15 <25 2.2J <20 <20 <20 <20 <16 <20 <25 <5 15 <5 <5 <25 <25 <20 <20 <20 <20 <16 <20 <25 Acenaphthylene 80 NS <0.5 <0.5 NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 NS NS NS NS NS NS NS Anthmeene 2000 NS <0.05 10.05 NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS NS Antimony' 1 <3 5.3 <5 QO <10 QO <10 1.7 NS <5 <3 <3 13 <3 <5 <5 <10 QO <10 QO 0.56 NS <5 Arsenic 10 4.8 <10 3.4 <10 <10 <10 <10 0.67 <10 <10 0.43 NS <1 0.83 J <10 0.43 J <10 <10 <10 <10 0.45 <10 <10 Barium 700 1 410 348 330 260 250 240 310 260 290 284 330 NS 330 410 365 360 220 300 260 300 280 270 276 Benzene 1 0.41 J <1 0.43 J <1 <1 <1 <1 <0.21 <1 <1 0.35 <0.5 <0.5 <0.5 <1 0.36 J <1 <1 <1 <1 <0.21 <1 <1 Beryllium' 4 <1 <1 <1 <4 <4 <4 <4 <0. 12 NS <1 <1 NS <1 <1 <1 Q <4 <4 <4 <4 <0. 12 NS <1 Bromodichloromethane 0.6 <I <I <I <1 <I <1 <I <0.23 NS <I <I <I <1 <I <1 <1 <I <1 <I <1 <0.23 NS <I Bromoform 4 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 Q Q <1 <1 <1 <1 <0.35 NS <1 B fluranthene 0.05 NS <0.05 <0.05 NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS NS 2-Butanon(MEK) 4,000 <5 <5 <5 <10 <10 <10 <10 <19 NS <5 <5 <5 <5 <5 <5 <5 <10 QO <10 QO QS NS <5 Cadmium 2 <0.5 <1 <1 Q <2 Q <2 0.052 Q <1 <0.5 NS <0.5 <0.5 <1 <1 <2 Q <2 Q <0.044 Q <1 Calcium NE NS 155,000 NS NS NS NS NS 86,000 91,000 89,200 NS NS NS NS 110,000 NS NS NS NS NS 61,000 63,000 58,200 Chloroethane 3000 <I <I <I Q <2 Q <2 <0.28 NS <I <t <I <1 <t <1 <1 <2 Q <2 Q <0.28 NS <I Chloroform 70 <2 <1 <1 <1 <1 <1 <1 <0.21 NS <1 <2 <2 Q <2 <1 Q <1 <1 <1 <1 0.23 NS <1 Chromium 10 3.3 J 7.9 <5 <5 <5 <5 <5 0.67 <5 <5 18 NS 2.4 35 <5 <5 <5 <5 <5 <5 <6.3 <5 <5 Cobalt' 1 0.65 J <5 0.40 J Q5 <25 Q5 <25 1.4 <25 <5 67 NS 0.7 4.2 <5 1.3 <25 Q5 <25 Q5 0.47 Q5 <5 Copper 1,000 1.4 J <5 <5 6.3 <5 1 <5 1 45 4.8 8.9 <5 1 26 NS 1 2 44 <5 3.5 <5 <5 <5 1 7.8 1.6 1.4 1 <5 Carbon Disulfide 700 <2 <2 <2 <1 <1 <1 <1 <0.45 NS <2 <2 <2 Q <2 Q Q <1 <1 <1 <1 0.62 NS <2 Dibromochloromethme 0.4 <I <I <I <1 <I <1 <I <0,23 NS <I <I <I <1 <I <1 <1 <1 <1 <1 <1 <0.23 NS <I 1,1-Dichloroethane 6 <1 <1 <1 <1 <1 <1 <1 <0. 19 NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0. 19 NS <1 1,1-Dichloroethene 350 <I <I <I <1 1.3 2.3 <1 2.6 2.4 <1 2.8 <I <1 <I <1 <1 <I <1 1.1 <1 1.4 1.9 <I 1,4-Dichlorobenzene 6 <1 <1 <1 <1 <1 <1 <1 <0. 19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0. 19 <1 <1 6s-1,2-Dichloroethene 70 <I <I <I <1 <I <1 <I <0.2 <1 <I <I <I <1 <I <1 1.1 <I <1 <I <1 <0.2 <I <I 1,4-Dioxane 3 NS <2 <2 NS NS NS NS NS NS NS NS NS NS NS Q Q NS NS NS NS NS NS NS Eth Ibenune 600 <0.5 <I <I <1 <I <1 <I <0,21 1 NS <I <0.5 <0.5 <0.5 <0.5 1 <1 <1 <I I <1 <I <1 1 <0,21 NS <I 2-Hexamme NE <5 <5 1 <5 NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 <5 NS NS NS NS <0.26 NS <5 4-Meth 1-2- entmone 100 <5 <5 <5 NS NS NS NS <0.29 NS <5 1 <5 <5 1 <5 <5 <5 <5 NS NS NS NS <0.29 NS <5 Toluene 600 <0.5 <1 <1 <I <1 <1 1.1 0.66 NS <1 <0.5 <0.5 <0.5 <0.5 Q 0.18 J <1 <1 <1 <1 0.5 NS <1 X lens 500 <t <t <t <1 <I <1 1.5 0.43 NS <t <1 <1 <1 <1 <I <I <I <1 <1 1.6 0.38 NS <l Lead 15 <0.5 <5 <5 <10 13 <10 <10 0.51 1.1 <5 2.4 NS 0.2 4.7 <5 0.27 J <10 <10 <10 <10 <0.15 <10 <5 Manganese 50 410 394 350 NS NS NS NS 190 200 88.9 160 NS 130 290 281 160 NS NS NS NS 200 65 64.4 Mercury 1 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 0.53 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 0.21 <0.1 NS Methylene Chloride 5 <5 <t <t <1 <I <1 <I 027 NS <I <5 <5 <5 <5 <1 <1 <I <1 <1 <1 <0.42 NS <l Naphthalene 6 NS <1.5 <1.5 NS NS NS NS NS NS NS NS NS NS NS <1.5 <1.5 NS NS NS NS NS NS NS Phemarthrene 200 NS <0.2 <0.2 NS NS NS NS I NS NS NS NS NS NS NS <0.2 <0.2 1 NS NS NS NS NS NS NS Pyrene 200 NS <0.1 <0.1 NS NS NS NS NS NS NS NS NS NS NS <0.1 <0.1 NS NS NS NS NS I NS NS Nickel 100 2 5.2 0.80 J <40 <40 <40 <40 1.9 <40 <5 1 12 NS 1 2 17 <5 1.1 J <40 <40 <40 <40 1.6 <40 <5 Selenium 20 Q.5 <10 <10 <10 <10 <10 <10 1.6 NS <10 <2.5 NS 1.3 <2.5 <10 <10 <10 QO <10 QO 1.4 NS <10 Sulfide NE NS <100 NS NS NS NS NS NS NS <100 NS NS NS NS <100 NS NS NS NS NS NS NS <100 Silver 20 <0.5 <5 <5 <5 <5 <5 <5 <1.7 NS <5 0.13 NS <0.5 <0.5 <5 <5 <5 <5 <5 <5 <1.7 NS <5 Tetrah drofuran NE 9.91 <10 17 <5 <5 <5 <5 <0.57 <5 <10 <10 <10 10 <10 <10 <10 <5 <5 <5 <5 <0.57 <5 <10 Thallium' 0.2 <2 <10 <10 NS NS NS NS NS NS <5.4 <2 NS Q <2 <10 <10 NS NS NS NS NS NS <5.4 Tin 2000 <5 <5 <5 NS NS NS NS NS NS NS NS NS NS <5 15 <5 NS NS NS NS NS NS NS Vanadium' 0.3 <5 <5 <5 <50 <50 <50 <50 3.8 5.7 <5 13 NS <5 19 1 <5 3.2J <50 <50 <50 <50 3.9 <50 7.5 Vinyl Chloride 0.03 1 <t <t <I IA 1 1.4 3.3 1.1 1 1.6 2.2 <I 9.3 <0.5 <0.5 <l <I <I <I <1 <I I <1 <0.5 <I <l Zinc 1000 <10 13.6 <10 <20 <20 48 32 73 16 <10 18 NS <20 30 <10 <10 <20 <20 <20 <20 74 <20 QO Alkalinity NE 680,000 686,000 660,000 NS NS NS NS 310,000 390,000 376,000 400,000 NS 440,000 490,000 <5000 520,000 NS NS NS NS 230,000 270,000 242,000 Ammonia-N 1,500 NS 170 NS NS NS NS NS 190 <10 I <100 NS NS NS NS 493,000 NS NS NS NS NS 53 <10 <100 Iron 300 6,500 6,090 6,100 NS NS NS NS NS NS 180 3,900 NS 160 7,300 406 670 NS NS NS NS NS NS 1,540 Total Dissolved Solids 500,000 730,000 1,500,000 760,000 NS NS NS NS 470,000 490,000 485,000 550,000 NS 560,000 620,000 1,220,000 670,000 NS NS NS NS 350,000 370,000 376,000 Sulfate 250,000 t3,000 11,400 11,000 NS NS NS NS NS NS 33,200 25,000 NS 35,000 26,000 26,700 27,000 NS NS NS NS NS NS 21,100 Carbon Dioxide NE NS NS NS NS NS NS NS 370,000 540,000 NS NS NS NS NS NS NS NS NS NS NS 350,000 460,000 NS Chloride 250,000 27,000 <1000 21,000 NS NS NS NS 44,000 44,000 55,600 51,000 NS 47,000 57,000 <1000 44,000 NS NS NS NS 30,000 32,000 37,500 Notes. All units are in µg/L unless othe-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground ' Interim Maximum Allowable Concentration (Eff. Labomtonee= Pace (P), Shealy (S), and Test Amen J= Estimated coot. above the adjusted method Bete and below the adjusted reporting limit B=Compound was found in the blank and sample. n=Refer to Case Narrative for "he, detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. NM-7A(cont) MW-7D Laboratory TA FA FA FA P 'f:1 S S S S S S P 'IA '1'A 'IA 'IA P 'IA Sample Date 5.1.17 6.15.17 10.10.17 4.10.18 10.5.18 422.19 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.28.16 5.1.17 6.15.17 10.10.17 4.10.18 10.5.18 422.19 Acetone 6000 <5 <5 <5 <5 <25 <25 <20 <20 <20 <20 <16 <20 <25 <5 <5 <5 <5 <25 <25 Acenaphthylene 80 NS NS NS NS <0.5 <0.5 NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 Antivacene 2000 NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS NS NS NS NS NS <0.05 1.1 Antimony* 1 G3 <3 <3 <3 <5 <5 <10 <10 <10 <10 0.21 NS <5 <3 <3 <3 <3 <5 <5 Arsenic 10 0.28 NS 0.86 0.69 J <10 0.43 J <10 <10 <10 <10 0.29 <10 <10 <1 NS <1 0.29 J <10 0.29 J Barium 700 270 NS 340 320 311 320 190 220 210 180 19 200 200 210 NS 220 230 288 220 Benzene 1 <0.5 <0.5 <0.5 <0.5 <1 0.26 J <1 <1 <1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <0.5 <1 0.17 J Beryllium* 4 <1 NS <1 I <1 <1 I <1 <4 <4 <4 1 <4 <0.12 1 NS <1 <1 NS <1 <1 <1 <1 Bmmodichloromethane 0.6 <] <] <1 <1 <] <] <1 <I <] <1 <023 NS <] <] <] <1 <1 <1 <1 Bromoform 4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <1 Benno flumnthene 0.05 NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS NS NS NS NS NS <0.05 1.1 2-Butmone(MEK) 4,000 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 <5 Cadmium 2 <0.5 NS <0.5 <0.5 <1 <1 <2 <2 <2 <2 <0.044 <2 <1 <0.5 NS <0.5 <0.5 <1 <1 Calcium NE NS NS NS NS 71,400 NS NS NS NS NS 82,000 84,000 84,600 NS NS NS NS 90,100 NS Chlomethane 3000 <1 <1 <t <t <1 <1 <2 <2 <2 <2 <028 NS <1 <1 <1 <1 <1 <1 <1 Chloroform 70 <2 <2 <2 <2 <1 <1 <1 I <1 <1 <1 1 <0.21 NS <1 <2 <2 1 <2 <2 <1 <1 Chromium 10 2.4 NS 18 15 12.6 <5 <5 <5 <5 <5 <6.3 <5 <5 <0.5 NS <0.5 <5 <5 <5 Cobalt* 1 2.3 NS 1 3.4 1 2.1 <5 1 0.67 J <25 <25 <25 <25 <2.6 1 <25 <5 <1 NS <1 <1 <5 1 <5 Copper 1,000 L3 NS 9.6 9.4 <5 1.3 JB <5 <5 <5 <5 0.44 1.4 <5 <2 NS <2 <2 <5 <5 Carbon Disulfide 700 Q Q <2 <2 Q Q <l <1 <l <1 1.8 NS Q Q Q <2 <2 <2 <2 Dibmmochloromethane 0.4 <] <] <1 <1 <] <] <t <1 <] <1 <023 NS <] <] <] <1 <1 <1 <1 1,1-Dichloroethane 6 2.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 I J-Dichlowethene 350 <1 <1 <1 <1 <1 <1 NS <1 1.1 <1 1.5 1.9 <1 2 <1 <1 <1 <1 <1 1,4-Dichlombmzene 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 cis-1yDichlomethene 70 <1 <1 <1 <1 <1 0.72J <1 <1 <1 <1 <0.2 <1 <1 <1 <1 <1 <1 <1 <1 1,4-Dioxane 3 NS NS NS NS <2 <2 NS NS NS NS NS NS NS NS NS NS NS <2 <2 Eth (benzene 600 <0.5 <0.5 <0.5 1 <0.5 <1 I <1 I <1 <I <1 <I <021 NS <1 <0.5 <0.5 1 <0.5 <0.5 1 <I I <I 2-Hexanone NE <5 <5 <5 <5 <5 <5 NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 1 <5 4-Methyl-2-pentsmone 100 1 <5 1 <5 <5 <5 <5 <5 NS NS NS NS <0.29 NS <5 <5 <5 <5 <5 <5 <5 Toluene 600 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 1.1 0.76 NS <1 <0.5 <0.5 <0.5 <0.5 <1 <1 X lens 500 <1 <1 <t <t <1 <1 <1 <1 <1 1.4 0.5 NS <1 <1 <1 <1 <1 <1 <t Lead 15 0.21 NS 0.81 0.58 <5 <5 <10 <10 <10 <10 <0.15 <10 <5 0.22 NS <0.5 <0.5 <5 <5 Manganese 50 47 NS 120 92 42.7 60.0 NS NS NS NS 170 83 90.7 50 NS 48 46 44.6 55.0 Mercury 1 0.12 NS 0.94 0.35 0.32 0.35 <0.I <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 <0.2 <0.2 <0.2 Methylene Chloride 5 <5 <5 <5 <5 <1 <1 <1 <I <1 <1 <0.42 NS <1 <5 <5 <5 <5 <I <I Naphthalene 6 NS NS NS NS <1.5 <1.5 NS NS NS NS NS NS NS NS NS NS NS <1.5 <1.5 Phenantluene 200 NS NS NS NS <0.2 <0.2 NS NS NS NS NS NS NS NS NS NS NS <0.2 0.34J Pyrme 200 NS NS NS NS <0.I <0.1 NS NS NS NS NS NS NS NS NS NS NS <0.1 1.7 Nickel 100 1 2.1 NS 11 8.6 6.7 1.6 1 <40 <40 1 <40 <40 1.1 1 <40 <5 <2 NS <2 <2 <5 <5 Selenium 20 -2.5 NS 1.5 <2.5 <10 <10 <10 <10 <10 <10 <9.5 NS <10 -2.5 NS <2.5 <2.5 QO <10 Sulfide NE NS NS NS <100 NS NS NS NS NS NS NS <100 NS NS NS NS 670 NS Silver 20 <0.5 NS <0.5 <0.5 <5 <5 <5 <5 <5 <5 <1.7 NS <5 <0.5 NS <0.5 <0.5 <5 <5 Tetrah drofivan NE <10 <10 <10 <10 <10 4.1 J <5 <5 <5 <5 0.63 <5 <10 5.2 <10 <10 <10 <10 6.7 J Thallium* 0.2 <2 NS <2 <2 <10 <10 NS NS NS NS NS NS <5.4 <2 NS <2 <2 <10 <10 Tin 2000 NS NS NS 15 <5 <5 NS NS NS NS NS NS NS NS NS NS <5 <5 <5 Vanadium* 0.3 5.2 NS 15 11 63 6.1 <50 <50 <50 <50 <15 <50 <5 <5 NS <5 <5 <5 23 J Vinyl Chloride 0.03 3.2 <0.5 <0.5 <t <1 0.22 J <1 1.3 1.6 <l 0.64 1.1 <1 4 <0.5 <0.5 <I <I <l Zinc 1000 <20 NS 19 13 <10 <10 QO <20 QO <20 50 <20 <10 <20 NS QO <10 <10 <10 Alkalinity NE 1 260,000 1 NS 280,000 290,000 1 5000 1 340,000 NS NS NS NS 270,000 310,000 323,000 320,000 NS 340,000 350,000 371,000 380,000 Ammonia-N 1,500 NS NS NS NS 1 301,000 NS NS NS NS NS 73 <10 <100 NS NS NS NS <100 NS Iron 300 800 NS 4,800 3,200 1,070 1,000 NS NS NS NS NS NS 332 610 NS 620 650 642 670 Total Dissolved Solids 500,000 420,000 NS 410,000 400,000 426,000 480,000 NS NS NS NS 390,000 410,000 433,000 480,000 NS 480,000 460,000 491,000 540,000 Sulfate 250,000 20,000 NS 22,000 22,000 22,300 24,000 NS NS NS NS NS NS 23,100 27,000 NS 26,000 28,000 28,200 36,000 Ca±mt Dioxide NE NS NS NS NS NS NS NS NS NS NS M0,000 400,000 NS NS NS NS NS NS NS Chloride 250,000 36,000 NS 38,000 46,000 <1000 <1000 NS NS NS NS 35,000 35,000 48,100 42,.0 NS .,000 48,000 <10. 38,000 Notes. All units are in µg/L unless otherwised indicated NCDEQ Standard= 15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Laboratories= Pace (P), Shealy (S), and Test Amen J = Estimated cone. above the adjusted method dete and below the adjusted reporting limit Bxompound was found in the blank and sample. n= Refer to Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE = Not Established < "Report Limit" = Value is less that the Report Lit. Green boxes indicate Point of Compliance Wells 49 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 50 of 4355 Constituent Std. Fm- MW-8 MW-8R MW-81) Laboratory S S S S S S P 'IA 'IA Ek 'IA P 'f:1 S S S S S S P Ek 'fA 'fA Sample Date 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.28.16 4.28.17 6.15.17 10.11.17 4.10.18 10.5.18 4.22.19 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.28.16 4.29.17 6.15.17 10.11.17 Acetone 6000 <20 <20 20 360 27 32 <25 8.9 <5 <5 4.4 J cn 25.7 5.9 J <20 <20 <20 <20 <16 <20 <25 5.7 <5 <5 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 NS NS NS NS NS NS NS NS NS NS Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS 0.068 1.1 NS NS NS NS NS NS NS NS NS NS Antimony' 1 <10 QO <10 QO 3.1 NS <5 <3 <3 <3 NS 15 <5 <10 QO <10 QO 0.21 NS <5 <J <3 <3 Arsenic 10 <10 <10 <10 <10 <26 <10 <10 2.9 NS 1.5 NS <10 3.8 <10 <10 <10 <10 0.52 <10 <10 2 NS 0.15 Barium 700 230 200 57 45 150 37 130 140 NS 140 NS 1 184 160 1 140 91 91 34 72 55 115 350 NS 110 Benzene 1 <1 <1 <1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 Beryllium' 4 <4 <4 <4 <4 <0.12 NS <1 0.91 NS 0.64 NS <1 <1 <4 <4 <4 <4 <0.12 NS <1 <1 NS <1 Bromodichloromethane 0.6 <I <1 <I <1 <0.23 NS <I <I <I <0.5 <1 <1 <I <I <1 <I <1 <0.23 NS <I <1 <I <I Bromoform 4 <1 <1 <1 <1 <0.35 NS <1 <1 <1 NS <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 B fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS NS <0.05 1.1 NS NS NS NS NS NS NS NS NS NS 2-Butanone(MEK) 4,000 <10 <10 <10 <10 <19 NS <5 <5 <5 NS <5 <5 <5 <10 <10 <10 <10 <19 NS <5 <5 <5 <5 Cadmium 2 <2 < <2 < <0.044 <2 <1 0.37 NS 0.52 <0.5 <1 <1 <2 < <2 < <0.044 <2 <1 0.23 NS <0.5 Calcium NE NS NS NS NS 57,000 43,000 47,800 NS NS NS NS 75,700 NS NS NS NS NS 85,000 85,000 119,000 NS NS NS Chloroethaoe 3000 <2 <2 <2 <2 <0.28 NS <t <t <I <t <1 <1 <t <2 <2 <2 <2 <0.28 NS <t <1 <l <1 Chloroform 70 <1 <1 <1 <1 <0.21 NS <l <2 <2 <2 1 <2 I <1 <1 I <1 <1 <1 <1 <0.21 NS <1 <2 <2 <2 Chromium 10 6.6 29 5.7 <5 16 <5 17.1 62 NS 870 NS 82.8 9.1 <5 <5 <5 <5 1.3 <5 15 140 NS 13 Cobalt' 1 <25 <5 <25 27 45 6.4 48A 38 NS 37 NS 35.1 8.8 <25 <5 <25 <5 1.4 <5 7.9 47 NS 3.3 Copper 1,000 35 120 t5 <5 60 2.1 47.1 too NS 110 NS 44.4 t6.0B 38 <5 NS 30 6.5 4.5 16.2 78 NS 7.9 Carbon Disulfide 700 <1 <1 <1 <1 2.6 NS 1 <2 <2 <2 <2 < < 0.66 J <1 <1 <1 <1 0.5 NS <2 < <2 <2 Dibromochloromethana 0.4 <I <1 <t <1 <0.23 NS <I <I <I <I <1 <1 <I <I <1 <I <1 <0,23 NS <I <1 <I <I Dichloroethane 6 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 4.2 <1 <1 <1 <1 Dichloroethene 350 <I <l <I <1 0.7 <I <I <I <I <I <1 <1 <I <I <1 <I <1 0.69 <I <1 0.81 <I <I 1,4-Dichlombemme 6 <1 <1 <1 <l <0.19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 cis-1,2-Dichlomethene 70 <I <1 <I <l <0.2 <I <I <I <I <I <1 <1 <I <I <1 <I <1 <0.2 <I <I <1 <I <I 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS < <2 NS NS NS NS NS NS NS NS NS NS Eth Ibenzeoe 600 <I <l <I <1 <0.21 NS <I <0.5 <0.5 <0.5 1 <0.5 1 <1 <I I <I <1 <I <1 <0.21 NS <I <0.5 <0.5 <0.5 2-flexanone NE NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 7.9 <5 NS NS NS NS <0.26 NS <5 <5 <5 <5 4-Meth 1-2- entmone 100 NS NS NS NS <0.29 NS <5 <5 <5 <5 <5 <5 <5 NS NS NS NS <0.29 NS <5 <5 <5 <5 Toluene 600 <1 <1 <1 <1 <0.24 NS <1 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <1 0.76 NS <1 <0.5 <0.5 <0.5 X lens 500 1 <t I <1 <I I <1 <0.32 NS <t <t <I <t <1 <1 <t <I <1 <I I <1 0.49 NS <t <1 <I <I Lead 15 15 27 <10 QO 15 <10 7.4 <0.5 NS 13 NS <5 0.96 <10 <10 <10 <10 0.23 <10 <5 <0.5 NS 0.74 Manganese 50 NS NS NS NS 4,400 2,400 4,280 3,100 NS 4,300 NS 4,130 4,400 NS NS NS NS 81 130 254 670 NS 260 Mercury 1 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 NS <0.2 <0.2 0.12 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 Methylene Chloride 5 <I <1 <I <1 <0.42 NS <t <5 <5 <5 <5 <1 <I <I <1 <I <1 0.38 NS <I <5 <5 15 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS 3.5 <1.5 NS NS NS NS NS NS NS NS NS NS Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS I NS 1 0.57 0.37 J I NS NS NS NS NS NS NS NS NS NS Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS 0.16 1.8 NS NS NS NS NS NS NS NS NS NS Nickel 100 <40 <40 <40 <40 26 <40 228 46 NS 470 NS 58.1 9.7 <40 <40 <40 <40 2.9 <40 9.9 110 NS 12 Selenium 20 <10 <10 <10 QO <9.5 NS <10 <2.5 NS 2.3 NS <10 <10 <10 <10 <10 <10 1.7 1 NS <10 1.6 NS <2.5 Sulfide NE I NS I NS NS NS NS NS <100 2.8 NS NS NS <100 NS NS NS NS NS NS NS <100 NS NS NS Silver 20 <5 15 <5 15 <1.7 NS <5 0.34 NS <0.5 NS <5 <5 <5 <5 <5 <5 <1.7 NS <5 <0.5 NS <0.5 Tetrah drofuran NE <5 <5 <5 <5 <0.57 <5 <10 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <0.57 <5 <10 <10 <10 <10 Thallium' 0.2 NS NS NS NS NS NS 6.1 <2 NS <2 NS <10 <10 NS NS NS NS NS NS 6 < NS <2 Tin 2000 NS NS NS NS NS NS NS NS NS NS NS <5 <5 NS NS NS NS NS NS NS NS NS NS Vanadium' 0.3 82 120 <50 150 59 <50 511 77 NS 72 NS 50.8 14 <50 <50 <50 <50 4.2 <50 28 76 NS 11 Vinyl Chloride 0.03 <t <t 1.1 <1 <0.5 <I <l 0.45 <0.5 <0.5 1 <1 I <l <l 1 1.6 1.7 2.1 <1 <0.5 0.66 <l 3.2 <0.5 <0.5 Zinc 1000 71 190 28 <20 130 <20 537 88 NS 79 NS 33.8 12 <20 <20 <20 970 33 1.6 IT8 69 NS 16 Alkalinity NE NS NS NS NS 250,000 260,000 280,000 <5000 NS 290,000 300,000 327,000 440,000 NS NS NS NS 250,000 280,000 355,000 <5000 NS 400,000 Ammonia-N 1,500 NS NS NS NS 460 1,800 270 1 NS NS NS NS <100 NS NS NS NS NS 1 <50 <10 <100 NS NS NS Iron 300 NS NS NS NS NS NS 16,600 23,000 NS 29,000 NS 18,700 11,000 NS NS NS NS NS NS 9,510 1 31,000 NS 4,300 Total Dissolved Solids 500,000 NS NS NS NS 220,000 300,000 332,000 430,000 NS 420,000 370,000 439,000 570,000 NS NS NS NS 430,000 410,000 509,000 560,000 NS 570,000 Sulfate 250,000 NS NS NS NS NS NS 50,200 41,000 NS 46,000 43,000 55,300 40,000 NS NS NS NS NS NS t4,700 17,000 NS 15,000 Carbon Dioxide NE NS NS NS NS 290,000 440,000 NS NS NS NS NS NS NS NS NS NS NS 240,000 280,000 NS NS NS NS Chloride 250,000 NS NS NS NS 7,900 6,400 9,000 10,000 NS 12,000 12,000 10,500 19,000 NS NS NS NS 55,000 53,000 77,200 71,000 NS 82,000 Notes. All units are in µg/L unless otha-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground ' Interim Maximum Allowable Concentration (Eff. Labomtonea=Pace (P), Shealy (S), and Test A"' J= Estimated coot. above the adjusted method Bete and below the adjusted reporting limit B=Compound was found in the blank and sample. n= Refu to Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Lit. Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. MW-81)(cont) MW-9 Laboratory 7'.1 P 'IA S S S S S S P 'IA 'IA Lk P 'IA Sample Date 4.M18 10.5.18 422.19 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 4.28.17 10.10.17 4.10.18 10.5.18 4.22.19 Acetone 6000 15 <25 1.81 <20 <20 <20 <20 <16 <20 <25 <5 <5 <5 <25 <10 Acenaphthylene 80 NS <0.5 <0.5 NS NS NS NS NS NS NS NS NS NS <0.5 <0.76 Anthracene 2000 NS <0.05 <0.05 NS NS NS NS NS NS NS NS NS NS <0.05 <0.76 Antimony* 1 <3 15 <5 <10 <10 <10 <10 <0.17 NS <5 <3 <3 <3 <5 <3 Arsenic 10 0.34J <10 2.2 <10 <10 <10 <10 0.37 <10 <10 <1 <1 <1 <10 <1 Barium 700 81 168 120 250 110 210 210 70 65 49.7 42 54 48 43.8 53 Benzene 1 <0.5 <1 1.5 <1 <1 <1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <1 <0.50 Beryllium* 4 <1 <1 <1 <4 <4 <4 <4 <0.12 NS <1 <1 <1 <1 <1 <1 Bmmodichloromethane 0.6 <1 <l <l <I <] I <I I <l <023 NS I <I <l <l <] I <I I <l Bromoform 4 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 B flumnthene 0.05 NS <0.05 <0.05 NS NS NS NS NS NS NS NS NS NS <0.05 <0.15 2-Butanone (MEK) 4,000 <5 <5 <5 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 Cadmium 2 <0.5 <1 <1 <2 <2 <2 <2 <0.044 <2 <I <0.5 <0.5 <0.5 <I <0.50 Calcium NE NS 106,000 NS NS NS NS NS 13,000 14,000 12,200 NS NS NS 11,600 NS Chloroethane 3000 <t <1 <1 12 <2 12 <2 <0.28 NS <1 <1 <1 <1 <1 <1 Chloroform 70 <2 <1 <1 <l <1 <l <1 <0.21 NS <1 <2 <2 <2 <1 <2 Chromium 10 18 <5 <5 16 <5 12 15 1.7 <5 <5 <0.5 <0.5 <5 <5 <5 Cobalt' 1 1.2 <5 <5 <25 <25 <25 <25 1.7 <25 <5 0.41 <1 <1 <5 0.58 J Copper 1,000 2.9 <5 7.1 B 43 13 29 31 4.9 2.6 <5 0.92 <2 0.5 J <5 1.6 J Carbon Disulfide 700 <2 1 2 0.70 J <1 <1 <1 I <1 <0.45 NS <2 <2 <2 <2 1 <2 1 <2 Dibromochloromethane 0.4 <t <l <l <I <l <I <l <023 NS <I <l <l <l <I <l 1,1-Dichloroethene 6 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 1,1-Dichloroethene 350 <1 <1 <1 <1 <1 <1 <1 <0.31 <1 <1 <1 <1 <1 <1 <1 1,4-Dichlombemme 6 <1 <1 <1 I <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 cis-1,2-Dichloroethene 70 <1 <1 <1 <1 <1 <1 <1 <02 <1 <1 <1 <1 <1 <1 <1 1,4-Dioxane 3 NS <2 <2 NS NS NS NS NS NS NS NS NS NS <2 <1 Eth Ibenune 600 <0.5 <1 <1 <1 <1 <1 <1 <0.21 NS <1 <0.5 <0.5 <0.5 <1 <0.50 2-Hexanone NE <5 <5 <5 NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 4-Meth 1-2- entmone 100 <5 <5 <5 NS NS NS NS <0.29 NS <5 <5 <5 <5 <5 <5 Toluene 600 <0.5 <1 0.35 J <1 <1 <1 <1 <0.24 NS <1 <0.5 <0.5 <0.5 <1 <0.50 X lens 500 1 <t I <1 <1 <1 <1 <I I <1 <032 NS <1 <1 <1 <1 <1 <1 Lead 15 0.23 J <5 <5 <10 <10 <10 <10 0.54 <10 <5 0.32 <0.5 <0.5 <5 0.31 JB Manganese 50 180 208 370 NS NS NS NS 60 34 6.2 30 1.9 <2.5 <5 21 Mercury 1 <0.20 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 <0.2 <0.2 <0.2 <0.2 Methylene Chloride 5 <5 <1 <1 11 I <1 <I <1 <0.42 NS <I <5 <5 <5 <I <5 Naphthalene 6 NS <1.5 <1.5 NS NS NS NS NS NS NS NS NS NS 1.6 <0.76 Phenanthrene 200 NS <0.2 <0.2 NS NS NS NS NS NS NS NS NS NS <0.2 <0.76 Pyrene 200 NS <0.1 <0.1 NS NS NS NS NS NS NS NS NS NS <0.1 <0.76 Nickel 100 9.2 5.6 1.5 J <40 <40 <40 <40 2.4 <40 <5 1 <2 0.73 J <5 1.01 Selenium 20 <2.5 <10 <10 <10 <10 <10 <10 <9.5 NS <10 <2.5 <2.5 <2.5 <10 <2.5 Sulfide NE NS <I00 NS NS NS NS NS NS NS <100 NS NS NS <100 I NS Silver 20 <0.5 <5 <5 <5 <5 <5 <5 <1.7 NS <5 <0.5 <0.5 <0.5 1 <5 <0.50 Tetrah drofuran NE <10 <10 <10 <5 <5 <5 <5 <0.57 <5 <10 <10 <10 <10 <10 <10 Thallium' 0.2 <2 <10 <10 NS NS NS NS NS NS <5.4 <2 <2 <2 <10 <5 Tin 2000 NS <5 <5 NS NS NS NS NS NS NS NS NS <5 15 NS Vanadium' 0.3 6.3 <5 <5 58 150 <50 50 63 <50 <5 3.2 2.2 3.4 J <5 43 J Vinyl Chloride 0.03 <t <1 <1 <t <1 <I <t <0.5 <t <t <0.5 <0.5 <1 <t <1 Zinc 1000 <10 <10 8.3J 81 94 83 80 26 QO <10 <20 <20 <10 <10 <10 Alkalinity NE 410,000 407,000 380,000 NS NS NS NS 40,000 53,000 50,200 45,000 52,000 47,000 <5000 50,000 Ammonia-N 1,500 NS <100 NS NS NS NS NS 300 <10 <100 I NS NS NS <100 NS Iron 300 1 2,400 1 92 3,500 NS NS NS NS NS NS 167 380 NS 75 J <50 760 B Total Dissolved Solids 500,000 600,000 1,200,000 560,000 NS NS NS NS 250,010 220,000 161,000 160,000 180,000 150,000 157,000 210,000 Sulfate 250,000 I5,000 17,000 10,000 NS NS NS NS NS NS 18,500 t8,000 15,000 I6,000 16,200 14,000 Carbon Dioxide NE NS NS NS NS NS NS NS 100,000 320,000 NS NS NS NS NS NS Chloride 250,000 82,000 <1000 1 71,000 NS NS NS NS 14,000 30,000 18,600 9,000 24,000 1 22,000 1 20,800 23,000 Notes: All units are in µg/L unless othe-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground - Interim Maximum Allowable Concentation (Eff. Laboratories, Pace (P), Shealy (S), and Test Amen J= Estimated cone. above the adjusted method date and below the adjusted reporting limit B=Compound was found in the blank and sampl, n=Reftt m Case Narrstive for farther detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells 51 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. AM-10 Laborato PR PR PR PR PR PR S S S S S S S S P P P P Sam le Date 3.20.98 7.16.98 4.13.99 8.25.99 3.9.00 8.16.00 3.23.01 10.6.01 3.16.02 10.31.02 3.26.03 9.13.03 3.26.04 12.2.04 4.23.05 10.25.05 3.28.06 9.27.06 Acetone 6000 <50 <50 <50 <50 <50 <50 <20 <20 <20 <20 <20 <20 <20 <20 <25 <25 <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Antimony* 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Arsenic 10 <50 <10 <50 <10 <10 <10 17 <5 <5 <5 <5 <5 <10 <10 <5 <5 <5 <5 Barium 700 <]00 <100 <100 100 <100 72 97 120 46 58 <25 100 82 91 96 460 130 48 Benzene 1 <5 <5 <5 <5 <5 <5 15 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Beryllium* 4 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Bromodichloromethane 0.6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Bromoform 4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 B fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 2-Butanone(MEK) 4,000 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 QO <10 <10 <10 <10 <10 <10 Cadmium 2 6 <5 <5 <5 <5 <1 <2 <2 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 Calcium NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloroethan, 3000 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 Chloroform 70 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Chromium 10 <5 <5 <50 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <2 49 <2 <2 Cobalt' 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Copper 1,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Disulfide 700 <50 <50 <50 <50 <50 <50 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 Dibromochloromethane 0.4 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 1,1-Dichloroethane 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,1-Dichloroethene 350 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dichlombemme 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 cis-1,2-Dichloroethene 70 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Eth Ibenune 600 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1 <5 <5 <5 <5 <5 2-Hexanone NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 4-Meth 1-2- entmone 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Toluene 600 <5 1 <5 1 <5 <5 1 <5 <5 <5 1 <5 <5 <5 <5 <5 <5 <5 <5 1 <5 <5 <5 X lens 500 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Lead 1.5 <15 <5 <15 <5 <5 <5 <3 <3 <3 <3 <3 <3 <3 <3 <5 10 <5 <5 Manganese 50 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Mercury 1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.4 <0.4 <0.2 <0.2 <0.2 <0.2 Methylene Chloride 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Nickel 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Selenium 20 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 5.4 <5 Sulfide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Silver 20 <18 <5 <18 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <2 <2 <2 <2 Tetrah drofuran NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Thallium' 0.2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Tin 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vanadium' 0.3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vinyl Chloide 0.03 <10 <10 <10 <10 <10 <10 <2 <2 <2 <2 <2 <2 <2 <2 <5 <5 <5 <5 Zinc 1000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Alkalinity NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Total Dissolved Solids 500,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Sulfate 250,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Dioxide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloride 250,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS I NS Notes: All units are in µg/L unless othe—ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground ' Interim Maximum Allowable Concentation (Eff. Laboamries=Pace (P), Shealy (S), and Test Ameri ]= Estimated cone. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sampl, v=Refc,to Case Nartstwe for forlher detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells 52 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 53 of 4355 Constituent Std. AM-10(cont.) Laboratory P P P P P P P S S S S S S P TA TA TA TA P TA Sample Date 3.31.07 4.10.08 5.13.09 10.18.11 4.12.12 10.24.12 4.25.13 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 5.1.17 6.15.17 10.10.17 4.10.18 10.5.18 4.22.19 Acetone 6000 <25 <25 <25 2.6 <25 <25 <20 <20 <20 <20 <20 2.5 <20 <25 <5 <5 <5 <5 <25 <10 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.76 Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.76 Antimony* 1 NS NS <6 <6 <6 <6 <10 <10 <10 <10 <10 <0.17 NS 15 <9 <3 <3 <3 <5 <3 Arsenic 10 15 <5 2.7 <10 <10 9.6 12 <10 13 <10 <10 5.1 1.2 <10 1.5 NS 1.3 1.2 <10 0.95 J Barium 700 110 96.7 73.9 110 <100 426 220 170 540 250 520 270 390 249 290 NS 240 340 206 290 Benzene 1 <5 <5 <10 <10 <10 <10 <25 <1 <t <1 <1 <0.21 <1 <1 0.41 <0.5 <0.5 0.42 J <1 0.45 J Beryllium* 4 NS I NS <1 <7 I <1 1.5 11 <1 <4 <4 1 <4 <4 0.13 NS <1 <1 NS <1 <1 <1 <1 Bromodichlom-thane 0.6 <5 <5 <1 <1 <I <1 <4 <1 <I <1 <I <0.23 NS <1 <1 <1 <I <1 <1 <1 Bmmoform 4 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <1 Benno flmanthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.15 2-Butanone(MEK) 4,000 <10 <10 <5 <5 <5 <5 <1 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 <5 Cadmium 2 <1 <1 <1 <1 <1 <1 <10 <2 <2 <2 <2 <0.044 <2 <1 <0.5 NS <0.5 <0.5 <1 <0.50 Calcium NE NS NS NS NS NS NS NS NS NS NS NS 50,000 100,000 61,600 NS NS NS NS 64,300 NS Chloroethane 3000 <10 <10 <1 <I <t <l < < <2 < <2 <0.28 NS <1 <1 <1 <I <1 <1 <1 Chloroform 70 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.21 NS <1 Q < <2 < <1 <2 Chromium 10 <5 <5 <10 <10 <10 33 <5 <5 <5 <5 <5 2.4 <5 <5 <0.5 NS <0.5 <5 <5 <5 Cobalt* 1 NS NS <10 6.4 <10 18 <25 <5 <25 <5 <25 6.9 <5 <5 4.9 NS 5 5.1 <5 3.5 Copper 1,000 NS I NS <10 I <10 I <10 65.5 1 <5 11 <5 1 <5 <5 1 5.1 1 1.4 <5 1 <2 NS 1 1.3 <2 1 <5 0.62 J Carbon Disulfide 700 <10 1.2 < <2 <2 < <1 <l <1 <1 <1 0.48 NS < < < <2 < <2 <2 Dibromochlommethane 0.4 NS NS <1 <I <I <1 <1 <1 <I <1 <I <0.23 NS <1 <1 <1 <I <1 <1 <1 1,1-Dichlomethane 6 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 1,1-Dichlomethene 350 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.31 <1 <1 <1 <1 <1 <1 <1 <I 1,4-Dichlombenzene 6 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 cis-1yDichloroethene 70 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.2 <1 <1 <1 <1 <1 <1 <I <I 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 3.6 6.7 Eth (benzene 600 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.21 NS <1 <0.5 <0.5 <0.5 <0.5 <1 <0.50 2-Hexamme NE NS NS NS NS NS NS NS NS NS NS NS <0.26 NS <5 1 <5 <5 1 <5 1 <5 <5 <5 4-Methyl-2-pent... 100 NS NS NS NS NS NS NS NS NS NS NS <0.29 NS <5 <5 15 <5 <5 15 <5 Toluene 600 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.24 NS <1 <0.5 <0.5 <0.5 <0.5 <1 <0.50 X Imes 500 <5 <5 < <2 <2 < <1 <1 <1 <1 <1 <0.32 NS <1 <1 <1 <t <1 <I <I Lead 15 <5 <5 <10 <10 <10 31.1 <10 QO <10 <10 <10 1.9 <10 <5 <0.5 NS <0.5 <0.5 <5 <0.50 Man anew 50 NS NS NS NS NS NS NS NS NS NS NS 2900 3,700 3,480 4,000 NS 4,100 4,600 3,240 3,300 Mercury 1 <0.2 <0.2 <0.2 <0.2 <0.2 0.12 <0.1 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 <0.2 <0.2 <0.2 Methylene Chloride 5 <5 <5 <1 <1 <I <1 <1 <1 <I <1 <I 0.19 NS <1 <5 <5 <5 <5 <I <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 3.8 1.5 Phenanthome 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.2 <0.76 Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS I NS NS NS <0.1 <0.76 Nickel 100 NS NS <50 <50 1 <50 17 <40 1 <40 <40 <40 <40 2.3 1 <40 <5 < NS <2 1.31 <5 0.82 J Selenium 20 15 4.3 4.2 <10 <10 <10 <10 I <10 <10 <10 <10 <9.5 NS <10 <2.5 NS <.5 <.5 <10 <2.5 Sulfide NE NS NS NS NS NS NS NS NS NS NS NS NS NS <100 NS NS NS NS <100 NS Silver 20 <5 <5 <10 <10 <10 <10 <5 <5 <5 <5 <5 <1.7 NS <5 <0.5 NS <0.5 <0.5 <5 <0.50 Tetmh drofimn NE NS NS <10 <10 <10 <10 <5 <5 15 <5 <5 0.86 <5 <10 7.4 <10 <10 9 J <10 I I Thallium* 0.2 NS NS <5.5 <5.5 <5.5 <5.5 NS NS NS NS NS NS NS <5.4 <2 NS <2 <2 <10 1 <5 Tin 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <5 <5 NS Vanadium* 0.3 NS NS <5 7.1 <25 162 <50 <50 <50 <50 <50 12 <50 53 <5 NS <5 <5 <5 <5 Vinyl Chloride 0.03 <5 <5 <1 <t <t <1 2.2 5.3 7.2 6.7 3.1 0.8 <1 <1 6.1 <0.5 1 <0.5 <1 <I <I Zinc 1000 NS NS NS 14.6 1 <10 107 NS <20 <20 <20 <20 76 1 <0 <10 <0 NS <20 <10 <10 <10 Alkalinity NE NS NS NS 188,000 <5000 175,000 220,000 NS NS NS NS 220,000 580,000 360,000 500,000 NS 380,000 630,000 363,000 530,000 Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS NS NS 1,500 1,500 1,500 NS NS NS NS 1,400 NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS NS NS 67,700 60,000 NS 60,000 66,000 46,800 54,000 B Total Dissolved Solids 500,000 NS NS NS 244,000 <25,000 212,000 130,000 NS NS NS NS 340,000 670,000 430,000 610,000 NS 510,000 930,000 448,000 730,000 Sulfate 250,000 NS NS NS <5000 <5000 2,720 <I,000 NS NS NS NS NS NS <2,000 700 NS 780 340 <3000 450 Carbon Dioxide NE NS NS NS NS NS NS NS NS NS NS NS 320,000 1,300,000 NS NS NS NS NS NS NS Chloride 250,000 NS NS NS 11,300 <5000 12,300 13,000 NS NS NS NS 16,000 30,000 23,800 32,000 NS 25,000 47,000 <]0. 35,000 Notes. All units are in µg/L unless offi-ised indicated NCDEQ Standard= 15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Laboratories= Pace (P), Shealy (S), and Teat Amen J = Estimated coot. above the adjusted method dete and below the adjusted reporting limit Bxompound was found in the blank and sample. n= Refer to Case Narrative for fiuther detail Bold /yellow values exceed the NCDEQ Standard NE = Not Established < "Report Limit" = Value is less that the Report Lit. Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. NM-10D Laborato S S S S S S P S (s 10 TA TA TA TA P TA Sam le Date 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 10.27.16 5.1.17 6.15.17 10,11.17 4.10.18 10.5.18 4.22.19 Acetone 6000 <20 <20 <20 <20 4 <20 <25 12 <5 <5 s 7.2 cn <25 3.1 J Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS 0.53 0.68 J Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS NS 0.35 0.35 Antimony* 1 <10 <10 <10 <10 0.64 NS <5 NS 13 <3 <3 <3 <5 <5 Arsenic 10 <l0 <10 <10 <10 2.3 <10 <10 NS 1.4 NS 1.6 2.3 <10 9 Barium 700 1 290 190 200 200 190 150 244 NS 200 NS 210 220 359 360 Benzene 1 3.1 2.7 2.9 2.5 1.3 2.5 2.9 2.9 3.2 3.3 3.2 3.3 3.2 3.5 Beryllium* 4 <4 <4 <4 <4 1 <0.12 1 NS <1 NS <1 NS <1 <1 <1 <1 Bromodichloromethane 0.6 <t <1 <t <1 <0.23 NS <I <0.4 <1 <1 <I <I <I <I Bromoform 4 <1 <1 <1 <1 <0.35 NS <1 <0.4 <1 <1 <1 <1 <1 <1 Benzo(b)fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 2-Butanon (MEK) 4,000 <10 <10 <10 <10 <18 NS <5 <2 <5 <5 <5 <5 <5 <5 Cadmium 2 <2 <2 <2 <2 <0.044 <2 <I NS 0.54 NS 3.1 1.6 5.8 3.6 Calcium NE NS NS NS NS 380,000 420,000 392,000 NS NS NS NS NS 341,000 NS Chloroethane 3000 <2 <2 <2 <2 <0.28 NS <I <0.4 <1 <1 I <1 I <I Chloroform 70 <1 <1 <1 <1 <0.21 NS <1 <0.4 < < <2 <2 <1 <t Chromium 10 <5 <5 <5 <5 3.8 <5 9.9 NS 6 NS 6.6 8.2 40.6 20.0 J Cobalt* Co 1 1,000 33 1 68 <5 11 26 15 26 7 1 7.6 1 15 36.4 1,440 NS NS 38 460 NS NS 49 1 1,800 43 460 59.7 2120 67 1,600 B Carbon Disulfide 700 <1 <1 <1 <1 <0.45 NS <2 <0.4 < < <2 0.5 J <2 0.65 J Dibromochloromethane 0.4 <I <1 <I <1 <0.23 NS <I <0.4 <1 <1 <I <I <I <I 1,1-Dichloroethene 6 <1 <1 <1 <1 <0.19 <1 <1 <0.4 <1 <1 <1 <1 <1 <1 1,1-Dichloroethene 350 <I <1 <I <1 <0.31 <I <1 <0.4 <1 <1 <1 <I <I <I 1,4-Dichlombecame 6 3 2.9 2.4 <1 0.91 1.6 1.9 <0.4 0.19 2.2 1.8 2 1.4 2 cis-1,2-Dichloroethene 70 <I <l <I <l <0,2 <I <1 <0.4 <I <I <I <I <I <I 1,4-Dioxane Eth Ibenune 3 600 NS <I NS <l NS <I NS <l NS <0.21 NS NS NS <I NS <0.4 NS <0.5 NS <0.5 NS <0.5 I NS <0.5 71.9 <I <I 2-Hexamme, NE NS NS NS NS <0.26 NS <5 <2 <5 <5 <5 <5 <5 <5 4-Meth 1-2- entmone 100 NS NS NS NS <0.29 NS <5 <2 15 <5 <5 <5 <5 <5 Toluene 600 <1 <1 <1 3 1 <0.24 1 NS <1 <0.4 1 <0.5 <0.5 1 <0.5 <0.5 <1 0.23 J X lens 500 <1 <1 <1 4 <0.32 NS <I <0.4 <1 <1 <1 <I <I <I Lead 15 <10 <10 <10 <10 NS <10 <5 NS 1.2 NS 2.9 1.1 8.4 9.1 Man arise 50 NS NS NS NS 13,000 17,000 17,000 NS 17,000 NS 17,000 17,000 17,100 1 16,000 Mercury 1 0.13 <0.1 <0.1 <0.1 <0.028 <0.1 NS NS <0.2 NS 0.16 <0.2 0.29 0.29 Methylene Chloride 5 <I <1 <I <1 <0,42 NS <I <0.4 <5 <5 7.5 <5 <I <I Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS 2.3 2.3 Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS NS NS 0.21 1.7 Pyre- 200 NS NS NS NS NS NS NS NS NS NS NS NS <0.1 <0.1 Nickel 100 51 43 <40 1 40 42 46 50.9 1 NS 48 NS 60 49 82.8 75 Selenium 20 <10 <10 <10 <10 8.9 NS <10 NS <2.5 NS 1.2 <2.5 <10 4 Sulfide NE NS NS NS NS NS NS <100 NS NS NS NS NS <100 NS Silver 20 <5 <5 <5 <5 <1.7 NS <5 NS <0.5 NS 0.12 <0.5 <5 0.23 J Tetralrdrofuran NE 120 110 91 85 61 54 81 64 76 77 79 97 83.9 74 Thallium* 0.2 NS NS NS NS NS NS 5.9 NS <2 NS NS <2 <10 <10 Tin 2000 NS NS NS NS NS NS NS NS NS NS NS 15 15 15 Vanadium* 0.3 <50 <50 <50 <50 5 <50 52.8 NS 15 NS 20 8.7 110 160 Vinyl Chloride 0.03 25 27 29 8.1 2.4 11 <I 7.5 18 <0.5 <0.5 <I <I <I Zinc 1000 37 <0 <20 QO 53 15 22.7 NS 9.6 NS 45 11 71.4 91 Alkalinity NE NS NS NS NS 1,600,000 1,500,000 1,610,000 NS 1,700,000 NS 1,700,000 1,700,000 1,770,000 1,700,000 Ammonia-N 1,500 NS NS NS NS 1 510 190 <100 NS NS NS NS NS <100 NS Iron 300 NS NS NS NS NS NS 9,440 NS 2,300 NS 1 2,700 2,100 26,700 39,000 Total Dissolved Solids 500,000 NS NS NS NS 2,300,000 2,300,000 2,260,000 NS 2,500,000 NS 2,500,000 2,400,000 2,880,000 1 2,600,000 Sulfate 250,000 NS NS NS NS NS NS 216,000 NS 190,000 NS 140,000 130,000 113,000 1 110,000 Carbon Dioxide NE NS NS NS NS 2,000,000 2,100,000 NS NS NS NS NS NS NS NS Chloride 1 250,000 NS NS NS NS 130,000 1.,000 179,000 NS 190,000 NS 200,000 1 200,000 159,000 1 170,000 Notes: All units are in µg/L unless otherwised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Labomton- Pace (P), Shealy (S), said Test Ameri J= Estimated cone. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample. n=Refer to Case Narrative for "he, detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells 54 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. AM-11 Laboratory PR PR PR PR PR PR S S S S S S S S P P P P P P Sample Date 3.20.98 7.16.98 4.13.99 8.25.99 3.9.00 8.16.00 3.23.01 10.6.01 3.16.02 10.31.02 3.26.03 9.13.03 3.26.04 12.2.04 4.23.05 10.25.05 3.28.06 9.27.06 3.31.07 4.10.09 Acetone 6000 <50 <50 <50 <50 <50 <50 <20 <20 <20 <20 <20 <20 <20 <20 <25 <25 <25 <25 <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Amiatteene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Antimony* 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Arsenic 10 <50 <10 <50 <10 <10 <10 15 <5 <5 <5 <5 <5 <10 <10 <5 <5 <5 <5 <5 <5 Barium 700 1 <100 <]00 <100 150 140 150 180 220 160 180 170 210 250 300 300 370 220 160 150 179 Benzene 1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 0.9 Beryllium* 4 NS NS I NS I NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Bmmodichloromethane 0.6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Bmiamform 4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Benno flmanthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 2-Butanone(MEK) 4,000 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 QO <10 <10 <10 <10 <10 <10 <10 Cadmium 2 <5 <5 <5 <5 <5 <1 Q <2 Q <2 Q <2 Q <2 <1 <1 <1 <1 <1 <1 Calcium NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chlomethone 3000 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 Chlorofomr 70 1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1 <5 Chromium 10 <5 <5 <50 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Q <2 Q <2 <5 1.1 Cobalt* 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Copper 1,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Disulfide 700 <50 <50 <50 <50 <50 <50 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 Dibromochloromethane 0.4 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 1,1-Dichlomethane 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 0.54 1,1-Dichlomethene 350 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dichlorobenzene 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 cis-1,2-Dichloroethene 70 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Eth (benzene 600 1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1 <5 2-Hexanone NE I NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 4-Methyl-2-pentanome 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Toluene 600 <5 <5 <5 <5 <5 1 <5 1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 1 <5 <5 <5 <5 X Imes 500 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Lead 15 <15 <5 <15 <5 <5 <5 <3 <3 <3 <3 <3 <3 <i <3 <5 <5 <5 <5 <5 <5 Man anew 50 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Mercury 1 <0.2 <0.2 0.2 <0.2 <0.2 <0.2 0.74 0.93 0.16 0.82 <0.4 <0.4 1 <4 0.48 0.95 0.71 2 0.27 NS Methylene Chloride 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 15 <5 <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Phenantlmene 200 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Nickel 100 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Selenium 20 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <10 <10 Sulfide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Silver 20 Q8 <5 <18 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Q <2 Q <2 <5 <5 Tetmh drofivan NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Thallium* 0.2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Tin 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vanadium* 0.3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Vinyl Chloride 0.03 1 <10 <10 <10 <10 <10 <10 Q <2 Q <2 Q <2 Q <2 <5 <5 <5 <5 <5 <5 Zinc 1000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Alkalinity NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Total Dissolved Solids 500,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Sulfate 250,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Carbon Dioxide NE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Chloride 250,000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Notes. All units are in µg/L unless otherwised indicated NCDEQ Standard— 15A NCAC 02L .0202 Ground * Interim Maximum Allo wable Concentration (Eff. Laboratories= Pace (P), Shealy (S), and Test Amen 1= Estimated cone. above the adjusted method dete and below the adjusted reporting limit Bxompound was found in the blank and sample. n= Refer to Case Narrative for fruther detail Bold /yellow values exceed the NCDEQ Standard NE = Not Established < "Report Limit" = Value is less that the Report Lit. Green boxes indicate Point of Compliance Wells 55 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 56 of 4355 Constituent Std. AM-11 (cont.) Laboratory P P P P P S S S S S S P TA TA TA TA P TA Sample Date 5.13.09 10.18.11 4.12.12 10.24.12 4.25.13 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.28.16 4.28.17 6.15.17 10.11.17 4.10.18 10.5.18 4.22.19 Acetone 6000 <25 3.2 125 <25 <20 <20 <20 <20 <20 <16 <20 <25 7 15 15 15 <25 <25 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.5 <0.5 Antivacene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0,05 <0.05 Antimony* 1 <6 <6 <6 <6 QO QO <10 QO <10 0.5 NS 15 <3 <3 <3 4.3 9.3 <9 Arsenic 10 8.6 <10 '10 <10 <10 14 <10 <10 <10 1.2 <10 <10 0.83 NS 0.52 0.58J <10 1.2 Barium 700 174 343 <100 244 140 270 100 290 240 260 210 448 310 NS 270 190 238 310 Benzene 1 <10 <10 <10 0.87 <1 1 <1 <1 1.2 0.62 <1 <1 1.1 0.7 0.9 0.42 J <1 0.56 Beryllium* 4 <] I <1 I <1 <1 1 <4 <4 1 <4 <4 1 <4 <0. 12 NS Q <l NS Q <1 <1 I <1 Bmmodichloromethane 0.6 <1 <I <I <1 <I <1 <I <1 <l <0.23 NS <1 <l <1 <1 <I <I <1 Bro rmform 4 <] <1 <1 <l <1 <1 <1 Q <1 <0.35 NS Q <l Q Q <1 <1 Q Benno flmanthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.05 <0.05 2-Butanone(MEK) 4,000 <5 <5 <5 <5 QO QO <10 QO <10 QS NS <5 <5 <5 <5 <5 <5 <5 Cadmium 2 <1 <I <I <1 <2 Q <2 Q <2 0.0047 0.8 <1 0.51 NS 0.45 0.34 J <I 0.62 Calcium NE NS NS NS NS NS NS NS NS NS 270,000 160,000 290,000 NS NS NS NS 231,000 NS Chlomethane 3000 <1 <1 <1 <1 <2 Q <2 Q <2 <0.28 NS <1 <l <1 <1 <l <l <l Chloroform 70 <1 <1 <1 <l <1 <1 <1 Q <1 <0.21 NS Q <2 Q Q <2 <l <l Chromium 10 0.85 <10 <10 <10 <5 <5 <5 <5 <5 1.5 <5 22 17 NS 51 25 26.6 40.0 Cobalt* 1 <10 <10 <10 <10 Q5 Q5 <25 Q5 <25 2 <25 8.9 6.2 NS 3.1 1.9 <5 4.2 Copper 1,000 1 <10 I <10 <10 I <10 10 1 6.5 1 14 32 1 42 1 14 45 1 203 89 NS 36 38 29 160 B Carbon Disulfide 700 Q <2 <2 Q <1 <1 <1 <1 <1 <0.45 NS Q <2 Q Q <2 <2 Q Dibromochloromethane 0.4 <1 <I <I <1 <1 <1 <1 <1 <1 <0,23 NS <1 <1 <1 <1 <1 <1 <1 1,1-Dichlomethane 6 <1 <1 <1 <1 <1 <1 <1 Q <1 <0. 19 Q Q <1 Q Q <1 <1 Q 1,1-Dichlomethene 350 <1 <I <I <1 <I <1 <I <1 <1 <031 <1 <1 <I <1 <1 <I <I <1 1,4-Dichlorobenzene 6 <1 <1 <1 <1 <1 <1 <1 Q <1 <0. 19 Q Q <1 Q Q <1 <1 Q cis-1yDichlomethene 70 <1 <I <I <1 <I <1 <I <1 <1 <0,2 <1 <1 <I <1 <1 <I <I <I 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 15.2 12.0 Eth Ibenzene 600 <1 <I <I <1 <I <1 <I <1 <I <0.21 NS <1 <0.5 <0.5 <0.5 <0.5 <l <1 2-Hexamme NE NS NS NS NS NS NS NS NS NS <0.26 NS <5 <5 1 <5 <5 11 5 <5 <5 4-Meth 1-2- entumme 100 NS NS NS NS NS NS NS NS NS <0.29 NS <5 <5 <5 <5 15 <5 1 Toluene 600 <] <1 <1 <1 <1 <1 <1 <1 <1 0.29 NS Q <0.5 <0.5 <0.5 <0.5 <1 <1 X lens 500 1 <2 11 <2 <2 Q <I <1 <I <1 <1 <0.32 NS <1 <I <1 <1 <I <l <1 Lead 15 QO <10 <10 <10 <10 <10 <10 <10 <10 0.4 <10 153 2.6 NS 0.76 0.62 <5 3 Man anew 50 NS NS NS NS NS NS NS NS NS 1,800 730 1,730 2,200 NS 2,500 1,400 2,370 2,100 Mercury 1 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 NS <0.2 <0.2 <0.2 <0.2 Methylene Chloride 5 <1 <I <I <1 <1 <1 <1 <1 <1 <0,42 NS <1 <5 <5 <5 <5 <I <1 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <1.5 <1.5 Phemanthrene 200 NS NS I NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.2 <0.2 Pyrene 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <0.1 <0.1 Nickel 100 <50 18.1 <50 16.4 <40 <40 1 <40 <40 <40 1 23 12 20.4 31 NS 53 26 32.2 38.0 Selenium 20 QO <10 <10 <10 QO <10 <10 <10 <10 2.7 NS <10 <2.5 NS Q.5 <2.5 QO <10 Sulfide NE NS NS NS NS NS NS NS NS NS NS NS <100 NS NS NS NS <100 NS Silver 20 QO <10 <10 <10 <5 <5 <5 <5 <5 <1.7 NS <5 <0.5 NS <0.5 <0.5 <5 1 <5 Tetralr, drofivan NE <10 <10 <10 28.4 28 52 23 28 30 22 9.4 28.9 20 16 17 6 J 21.2 19.0 Thallium* 0.2 <5.5 <5.5 <5.5 <5.5 NS NS NS NS NS NS NS <5.4 <2 NS <2 <2 <10 <10 Tin 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS <5 <5 <5 Vanadium* 0.3 Q5 Q5 <25 <25 <50 <50 <50 <50 <50 5.4 19 65.5 34 NS 7 5.9 <5 20.0 Vinyl Chloride 0.03 1 <1 <I <I <1 2.7 8.6 9.2 12 2 1.9 <1 <1 6.9 <0.5 <0.5 <l <l <1 Zinc 1000 QO <10 <10 <10 NS <20 <20 QO <20 68 31 86.7 25 NS 51 15 QO 25.0 Alkalinity NE NS 331,000 <5000 227,000 990,000 NS NS NS NS 990,000 830,000 1,150,000 11100,000 NS 1,100,090 680,000 1,100,000 1,100,000 Ammonia-N 1,500 NS NS NS NS NS NS NS NS NS I60 <10 120 NS NS NS NS <100 NS Iron 300 NS NS NS NS NS NS NS NS NS NS NS 33,000 5,600 NS 750 620 1,600 6,600 Total Dissolved Solids 500,000 NS 382,000 Q5,000 1,16aao0 1,200,00o NS NS NS NS 1,400,000 1,100,000 1,100,8M 1,5M,Mo NS 1�t0aao0 880,000 2,670,000 1,500,000 Sulfate 250,000 NS <5000 <5000 156,000 100,000 NS NS NS NS NS NS 112,000 95,000 NS 96,000 68,000 93,600 98,000 Carbon Dioxide NE NS NS NS NS NS NS NS NS NS 1,400,000 1,100,0M NS NS NS NS NS I NS NS Chloride 250,000 NS 6,180 15000 59,700 49,000 NS NS NS NS 45,000 36,000 54,800 46,000 NS 51,000 35,000 <1000 40,000 Notes. All units are in µg/L unless offi-ised indicated NCDEQ Standard= 15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Laboratories= Pace (P), Shealy (S), and Teat Amen J = Estimated cone above the adjusted method date and below the adjusted reporting limit Bxompound was found in the blank and sample. n= Refer to Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE = Not Established < "Report Limit" = Value k less that the Report Lit. Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 57 of 4355 Constituent Std. NM-11A NM-11B Lab -to S S S S S S P TA Lk '1'.1 P FA S S S S S S P 'IA '1'A '1'A P Lk Sample Date 10.3.13 4.10.14 10.23.74 4.24.15 10.21.75 4.22.16 10.27.16 4.29.17 10.10.77 4.10.18 10.5.18 4.22.19 10.3.13 4.10.14 10.23.74 4.24.15 10.21.75 4.22.16 10.27.76 4.28.17 10.10.17 4.70.18 10.5.18 4.22.19 Acetone 6000 <20 <20 <20 <20 <16 <20 <25 15 15 15 <25 <10 <20 <20 <20 <20 <16 <20 <25 <5 <5 15 <25 <10 Acenaphthylene 80 N S NS NS NS NS NS NS NS NS NS <0.5 <0.76 NS NS NS NS NS NS NS NS NS NS <0.5 <0.76 Anthene rac 2000 NS NS NS NS NS NS NS NS NS NS <0.05 <0.76 NS NS NS NS NS NS NS NS NS NS <0.05 <0.76 Antimony* 1 <10 <10 <10 <10 0.34 NS <5 <3 <3 <3 <5 13 <10 <10 <10 <10 0.25 NS <5 <3 `3<3 <5 <3 Arsenic 10 <10 <10 <10 <10 Q6 <10 <10 <1 <1 <1 <10 <1 <10 <10 <10 <10 <26 <10 <10 <1 <1 <1 <10 <1 Barium 700 1 47 47 50 39 54 36 329 35 39 33 30.8 33 85 85 85 100 200 88 84.4 70 85 63 79.1 50 Benzene 1 <1 <1 <1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <1 <0.50 <1 <1 <1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <1 <0.50 Beryllium* 4 <4 <4 <4 <4 <O.12 NS <1 <1 <1 <1 <1 <1 <4 <4 <4 <4 0.15 NS <1 <1 <1 <1 <1 <1 Bromodichloromethane 0.6 <I <1 <I <1 <0.23 NS <I <I <I <I <I <1 <I <1 <I <1 <0.23 NS <I <1 <1 <I <I <I Bromoform 4 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 B fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS <0.05 <0.15 NS NS NS NS NS NS NS NS NS NS <0.05 <O.15 2-Butanon (MEK) 4,000 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 <10 <10 <10 <10 <18 NS <5 <5 <5 <5 <5 <5 Cadmium 2 <2 Q <2 Q <0.044 <2 <I <0.5 <0.5 <0.5 <I <0.50 <2 Q <2 Q <0.044 Q 11,500 <0.5 <0.5 <0.5 <I <0.50 Calcium NE NS NS NS NS 13,000 8,300 138,000 NS NS NS 8,830 NS NS NS NS NS 15,000 9,500 <100 NS NS NS 10,400 NS Chlomethane 3000 <2 Q <2 Q <0.28 NS <I <I <I <I <I <1 <2 Q <2 Q <0,28 NS <t <1 <1 <I <I <I Chloroform 70 1 <1 <1 <1 <1 <0.21 NS <1 <2 <2 <2 <1 Q <1 <1 <1 <1 <0.21 NS <1 Q Q <2 <1 <2 ro Chmima 10 <5 <5 <5 <5 <6.3 <5 <5 <0.5 <0.5 <5 <5 <5 <5 <5 <5 <5 2J <5 <5 <0.5 <0.5 <5 <5 <5 Cobalt* 1 <25 Q5 <25 Q5 <2.6 1 <25 <5 <1 I <1 <1 <5 <1 <25 QS 1 <25 Q5 1.8 Q5 <5 Q <1 <1 <5 <1 Copper 1,000 <5 <5 <5 <5 0.82 <5 <5 13 0.71 0.63 J <5 1.7 J <5 <5 <5 <5 43 8.5 <5 3.4 3.8 3.1 10.3 2.4 Carbon Disulfide 700 <1 <1 <1 <1 <0.45 NS <2 <2 <2 <2 <2 Q <1 <1 <1 <1 <0.45 NS <2 Q Q <2 <2 <2 Dibromochloromethane 0.4 <I <l <I <l <0.23 NS <I <I <I <I <I <l <I <l <I <l <0.23 NS <I <l <l <I <I <I 1,1-Dichloroethane 6 <1 <1 <1 <1 <O.19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <O.19 <1 <1 <1 <1 <1 <1 <1 1,1-Dichloroethene 350 <I <1 <I <1 <0.31 <I <I <I <I <I <I <1 <I <1 <I <1 <0.31 <1 <I <1 <1 <I <I <I 1,4-Dichlombemme 6 <1 <1 <1 <1 <O.19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <O.19 <1 <1 <1 <1 <1 <1 <1 cis-1,2-Dichlomethene 70 <I <l <I <l <0,2 <I <I <I <I <I <I <l <I <l <I <l <0,2 <1 <I <l <l <I <I <I 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS <2 <I NS NS NS NS NS NS NS NS NS NS <2 <1 Eth (benzene 600 1 <I <1 <I <1 <0,21 NS <I <0.5 <0.5 <0.5 <I <0.50 <I <1 <I <1 <0,21 NS <I <0.5 <0.5 <0.5 <I <0.50 2-Hexanone NE I NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 4-Meth 1-2- entmone 100 NS NS NS NS <0.29 NS <5 <5 <5 <5 <5 <5 NS NS NS NS <0.29 NS <5 <5 <5 <5 <5 <5 Toluene 600 <1 <1 <1 <1 0.56 NS <1 <0.5 <0.5 <0.5 <1 <0.50 <1 <1 <1 <1 0.34 NS <1 <0.5 <0.5 <0.5 <1 <0.50 X lens 500 <1 <1 <t 1.1 0.8 NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 0.52 NS <1 <1 <1 <1 <1 <1 Lead 15 <10 <10 <10 <10 <O.15 <10 <5 2.4 <0.5 <0.5 <5 <0.50 <10 <10 <10 <10 0.84 <10 <5 0.24 <0.5 <0.5 <5 <0.50 Mang -se Mercury 50 1 NS <0.1 NS <O.1 NS <0.1 NS <O.1 15 <0.028 12 <0.1 60.8 NS 6.1 <0.2 3.6 <0.2 3.9 <0.2 10 <0.2 3 <0.2 NS <0.1 NS <O.1 NS <0.1 NS <O.1 110 <0.028 34 <O.1 25 NS 5.3 <0.2 13 <0.2 7.6 <0.2 <0.2 4.6 <0.2 Meth leae Chloride 5 <I <1 <1 <1 <0,42 NS <I <5 <5 <5 <I <5 <I <1 <1 <1 <0,42 NS <I <5 <5 <5 <I <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS <1.5 <0.76 NS NS NS NS NS NS NS NS NS NS <1.5 1 <0.76 Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS <0.2 <0.76 NS NS NS NS NS NS NS NS NS NS <0.2 <0.76 Pyrene 200 NS NS NS NS NS NS NS NS NS NS <0.1 <0.76 NS NS NS NS NS NS NS NS NS NS <O.1 <0.76 Nickel 100 1 <40 <40 1 <40 1 <40 <6.3 1 <40 1 <5 <2 1 <2 <2 1 <5 1 Q <40 <40 <40 <40 1 2.1 <40 1 <5 1 Q <2 1 <2 <5 <2 Selenium 20 <10 <10 <10 <IO <9.5 NS <10 <2.5 <2.5 <2.5 <10 <2.5 <10 <10 <10 <10 <9.5 NS <10 Q.5 <2.5 <2.5 <10 <2.5 Sulfide NE NS NS NS NS NS NS <100 NS NS NS <100 NS NS NS NS NS NS NS <100 NS NS NS <100 NS Silver 20 <5 <5 <5 <5 <1.7 NS <5 <0.5 <0.5 <0.5 <5 <0.50 <5 <5 <5 <5 <1.7 NS <5 <0.5 <0.5 <0.5 <5 <0.50 Tetrah drofuran NE <5 <5 <5 <5 3.4 <5 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <0.57 <5 <10 <10 <10 <10 <10 <10 Thallium* 0.2 NS NS NS NS NS NS <5.4 <2 <2 <2 <10 <5 NS NS NS NS NS NS <5.4 Q Q <2 <10 <5 Tin 2000 NS NS NS NS NS NS NS NS NS <5 <5 NS NS NS NS NS NS NS NS NS NS 15 15 NS Vanadium* 0.3 <50 <50 <50 <50 <15 <50 <5 <5 <5 <5 <5 <5 <50 1 <50 <50 <50 17 <50 <5 <5 <5 <5 <5 1 2.2J Vinyl Chloride 0.03 3.7 <l <I <l <0.5 <I <I <0.5 <0.5 <I <I <l <I <l <I <l <0.5 <l <I <0.5 <0.5 <I <I <t Zinc 1000 <20 <20 <20 <20 16 <20 <10 16 QO <10 <10 <10 <20 QO <20 QO 58 1 QO <10 <20 QO <10 <10 <10 Alkalinity NE NS NS NS NS 88,000 33,000 502,000 37,000 38,000 23,000 26,000 21,000 NS NS NS NS 65,000 1 39,000 46,900 48,000 50,000 36,000 53,600 28,000 Ammonia-N 1,500 NS NS NS NS NS <10 <100 NS NS NS <100 NS NS NS NS NS 87 <10 I <I00 NS NS NS <100 NS Iron 300 NS NS NS NS NS NS l64 <100 NS <100 94 <I00 NS NS NS NS NS NS 97.4 <100 57 <I00 611 <100 Total Dissolved Solids 500,000 NS NS NS NS 240,000 110,000 657,000 140,000 120,000 100,000 119,000 110,000 NS NS NS NS 670,000 110,000 131,000 140,000 110,000 130,000 138,000 100,000 Sulfate 25,0000 NS NS NS NS NS NS 42,600 14,000 11,000 12,000 11,300 13,000 NS NS NS NS NS NS 13,400 17,000 16,000 18,000 16,900 19,000 Carbon Dioxide NE NS NS NS NS 150,000 110,000 NS NS NS NS NS NS NS NS NS NS 130,000 150,000 NS NS NS NS NS NS Chloride 250,000 NS NS NS NS 9,100 3,500 32,800 3500 3,400 3,800 0000 2,400 NS NS NS NS 4,600 4,400 4,800 3,800 3,600 4,500 <]000 3,700 Notes: All units are in µg/L unless othe-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentation (Eff. Labomton- Pace (P), Shealy (S), and Test Amen J= Estimated coot. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample. n= Refer to Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 58 of 4355 Constituent Std. NM-111 MW-11D-2 Laborato S S S S S S P TA '1'.1 '1'.1 P 'IA S S S S S S P 'IA 'IA Lk P 'IA Sam le Date 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 4.29.17 10.10.17 4.10.18 M5.18 4.22.19 10.3.13 4.10.14 10.23.14 4.24.15 10.21.15 4.22.16 10.27.16 4.28.17 10.10.17 4.10.18 10.5.18 4.22.19 Acetone 6000 120 120 <20 <20 <16 <20 <25 <5 15 15 <25 <10 <20 <20 <20 <20 <16 <20 <25 <5 <5 <5 <25 <10 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS <0.5 <0.76 NS NS NS NS NS NS NS NS NS NS <0.5 <0.76 Andoneene 2000 NS NS NS NS NS NS NS NS NS NS <0.05 <0.76 NS NS NS NS NS NS NS NS NS NS <0.05 <0.76 Antimony' 1 <10 <10 <10 <10 0.51 NS <5 <3 <3 <3 15 <3 <10 QO <10 QO <0.17 NS <5 <3 <3 <3 <5 <3 Arsenic 10 <10 <10 <10 <10 0.59 <10 <10 0.43 0.37 0.6 J <10 0.57 J <10 <10 <10 <10 Q6 <10 <10 <1 <1 0.23 J <10 0.26 J Barium 700 1 130 130 130 1 96 74 110 85.2 92 1 94 93 92 81 120 150 56 130 83 110 1 97.9 120 140 1 110 112 1 98 Benzene 1 <1 <1 <1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <1 <0.50 <1 <1 <1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <I <0.50 Beryllium' 4 <4 <4 <4 <4 <0.12 NS <1 <1 <1 <1 <1 <1 <4 <4 <4 <4 <0.12 NS <1 <1 <1 <1 <1 Q BromodwIdar nethane 0.6 <I <1 <I <1 <0,23 NS <1 <I <I <1 <1 <1 <I <1 <I <1 <0,23 NS <I <1 <1 <1 <I <1 Bromoform 4 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.35 NS <1 <1 <1 <1 <1 <1 B fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS <0.05 <0.15 NS NS NS NS NS NS NS NS NS NS <0.05 <0.15 2-Butanon(MEK) 4,000 <10 <10 <10 <10 Q8 NS <5 <5 <5 <5 <5 <5 <10 <10 <10 QO <19 NS <5 <5 <5 <5 <5 <5 Cadmium 2 <2 Q <2 Q 0.044 <2 <I <0.5 <0.5 <0.5 <1 <0.50 <2 Q <2 Q <0.044 <2 <I <0.5 <0.5 <0.5 <I <0.50 Calcium NE NS NS NS NS 57,000 13,000 70,600 NS NS NS 82,100 NS NS NS NS NS 14,000 13,000 12,600 NS NS NS 12,100 NS Chloroethane 3000 <2 Q <2 Q <0.28 NS <I <I <I <I <1 <1 <2 Q <2 Q <0,28 NS <I <1 <1 <1 <I <1 Chloroform 70 1 <1 <1 I <7 I <1 <0.21 NS <1 <2 1 <2 <2 <1 Q <1 <1 <1 <1 <0.21 NS <1 Q Q Q <1 Q Chromium 10 7.6 <5 <5 <5 2.3 <5 <5 <0.5 <0.5 1.6 J <5 <5 <5 <5 <5 <5 <6.3 <5 <5 <0.5 <0.5 <5 <5 <5 Cobalt' 1 <25 Q5 <25 Q5 <2.6 Q5 <5 <1 <1 <1 <5 <1 <25 Q5 <25 Q5 0.53 Q5 <5 1.2 0.32 0.75 J <5 Q Co 1,000 5.9 20 20 10 27 4.3 8.1 9.6 9.7 9.9 9.3 6 7.8 <5 <5 <5 1.5 4.7 <5 8.5 5 4.8 <5 4.1 Carbon Disulfide 700 <1 <1 <1 <1 <0.45 NS <2 <2 <2 <2 Q Q <1 <1 <1 <1 <0.45 NS <2 Q Q Q <2 Q Dibromochloromethme 0.4 <I <1 <I <1 <0,23 NS <I <I <I <I <1 <1 <I <1 <I <1 <0,23 NS <t <1 <1 <1 <I <1 Dichloroethene 6 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 Q Dichloroethene 350 <I <1 <I <1 <031 <I <I <I <I <I <1 <1 <I <1 <I <1 <0.31 <I <I <1 <1 <1 <I <1 1,4-Dichlombemme 6 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.19 <1 <1 <1 <1 <1 <1 Q cis-1,2-Dichloroethene 70 <I <1 <I <1 <0,2 <I <I <I <I <I <1 <1 <I <1 <I <1 <0.2 <I <I <1 <1 <1 <I <1 1,4-Dioxane 3 NS NS NS NS NS NS NS NS NS NS <2 1.2 NS NS NS NS NS NS NS NS NS NS <2 <I Eth (benzene 600 <I <1 <I <1 <0,21 NS <I <0.5 <0.5 <0.5 <1 <0.50 <I <1 <I <1 <0.21 NS <I <0.5 <0.5 <0.5 <I <0.50 2-Hexanone NE NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 NS NS NS NS <0.26 NS <5 <5 <5 <5 <5 <5 4-Meth 1-2- entmone 100 NS NS NS NS <0.29 NS <5 <5 <5 <5 15 1 <5 NS NS NS NS <0.29 NS <5 <5 <5 <5 <5 <5 Toluene 600 <1 <1 <1 <1 0.33 NS <1 <0.5 <0.5 <0.5 <1 <0.50 <1 <1 <1 Q 0.75 NS <1 <0.5 <0.5 <0.5 <1 <0.50 X lens 500 <I <1 <I <1 0.51 NS <I <I <I <1 <1 <1 <I <1 <I <1 1.4 NS <t <1 <1 <1 <I <1 Lead 15 <10 <10 <10 <10 0.27 <10 <5 <0.5 0.16 <0.5 <5 <0.50 <10 QO <10 QO <0.15 <10 <5 <0.5 <0.5 0.34 J <5 <0.50 Man anew 50 NS NS NS NS 14 220 10.1 10 7.2 5.1 <5 5 NS NS NS NS 98 2" 39.4 99 73 42 26 25 Mercury 1 0.14 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.028 <0.1 NS <0.2 <0.2 <0.2 <0.2 <0.2 Meth lene Chloride 5 <I <1 <I <1 <0,42 NS <1 <5 <5 <5 <1 <5 <I <1 <I <1 <0.42 NS <I <5 <5 <5 <I <5 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS <1.5 <0.76 NS NS NS NS NS NS NS NS NS NS <1.5 <0.76 Phenanthrene 200 NS NS NS NS NS NS NS NS NS NS <0.2 <0.76 NS NS NS NS NS NS NS NS NS NS <0.2 <0.76 Pyrene 200 NS NS NS NS NS NS NS NS NS NS <0.1 <0.76 NS NS NS NS NS NS NS NS NS NS <0.1 <0.76 Nickel 100 <40 <40 <40 <40 2 <40 <5 <2 <2 1.2 J <5 1.31 <40 <40 <40 <40 <6.3 <40 <5 Q 1 1.11 <5 Q Selenium 20 <10 <10 <10 <10 1 NS <10 <2.5 <2.5 <2.5 <10 Q.5 <10 <10 <10 QO <9.5 NS <10 Q.5 Q.5 <2.5 <10 Q.5 Sulfide NE NS NS NS NS NS NS <100 NS NS NS <100 NS NS NS NS NS NS NS <100 NS NS NS <100 NS Silver 20 <5 <5 <5 <5 <1.7 NS <5 <0.5 <0.5 <0.5 <5 <0.50 <5 <5 <5 <5 <1.7 NS <5 <0.5 <0.5 <0.5 <5 <0.50 Tetrah drofuran NE 8.4 <5 <5 <5 <0.57 <5 <10 <10 <10 <10 <10 <10 <5 <5 <5 <5 <0.57 <5 <IO <IO <IO <10 <IO <IO Thallium' 0.2 NS NS NS NS NS NS <5.4 <2 <2 <2 <10 <5 NS NS NS NS NS NS <5.4 Q Q <2 <10 <5 Tin 2000 NS NS NS NS NS NS NS NS NS <5 <5 NS NS NS NS NS NS NS NS NS NS <5 <5 NS Vanadium- 0.3 <50 <50 <50 <50 3.2 <50 <5 2.2 2.5 2.9 J <5 3.5 J <50 <50 <50 <50 Q5 <50 <5 <5 <5 2.3 J <5 2.8 J Vinyl Chloride 0.03 4.5 2.9 2 1A <0.5 <I <I <0.5 <0.5 <l <1 <1 <I <1 <1 <1 <0.5 <I <I <0.5 <0.5 <1 <l <1 Zinc 1000 <20 <20 <20 <20 26 <20 <10 19 20 32 23.8 32 <20 QO <20 QO 22 QO <10 <20 9.2 13 <10 <10 Alkslini NE NS NS NS NS 280,000 280,000 268,000 280,000 290,000 300,000 317,000 250,000 NS NS NS NS 75,000 69,000 62,800 50,000 48,000 53,000 59,300 51,000 Ammonia-N 1,500 NS NS NS NS 150 <10 <100 NS NS NS <100 NS NS NS NS NS <50 <10 <I00 NS NS NS <I00 NS Iron 300 NS NS NS NS NS NS <50 <100 NS <100 <50 <I00 NS NS NS NS NS NS 71 50 NS <100 69 <100 Total Dissolved Solids 500,000 NS NS NS NS 400,000 360,000 386,000 410,000 400,000 380,000 435,000 370,00' NS NS NS NS 190,000 170,000 145,000 130,000 100,000 94,000 137,000 130,000 Sulfate 250,000 NS NS NS NS NS NS 33,200 32,000 34,000 35,000 35,100 3Q000 NS NS NS NS NS NS 11,800 15,000 10,000 17,000 15,900 18,000 Carbon Dioxide NE NS NS NS NS 290,000 310,000 NS NS NS NS NS NS NS NS NS NS 140,000 160,000 NS NS NS NS NS NS Chloride 250,000 NS NS NS NS 19,000 15,000 17,800 17,000 18,000 25,000 <1000 15,000 NS NS NS NS 4,400 5,500 4,100 4,100 3,200 5,400 <1000 5,400 Notes: All units are in µg/L unless otha-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground ' Interim Maximum Allowable Concentation (Eff. Labomom- Pace (P), Shealy (S), and Test Ameri J= Estimated coot. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample. n= Refer to Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. Tinsley WSW Gilkerson WSW Laboratory S S S P TA TA TA P TA S S S P TA TA TA P TA Sample Date 4.24.15 10.21.15 4.22.16 10.28.16 5.1.17 10.31.17 4.10.18 10.5.18 4.22.19 4.24.15 10.21.15 4.22.16 10.28.16 5.1.17 10.31.17 4.10.18 10.5.19 4.22.19 Acetone 6000 <20 <16 <20 <25 d <5 <5 <25.0 <25.0 <20 <16 <20 <25 <5 <5 <5 <25.0 <25.0 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Anthracene 2000 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Antimony* 1 <10 <0.17 NS <5 <3 <3 <i 15.0 <5.0 <10 <0.17 NS <5 <3 <3 <3 <5.0 <5.0 Arsenic 10 <10 <26 <10 <10 0.54 0.19 <1 <10.0 <10.0 <10 <26 <10 <10 0.18 0.15 <1 <10.0 <10.0 Barium 700 1 100 95 84 33 93 10 13 9.1 14 31 48 32 44.1 51 12 14 9.1 11 Benzene 1 <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <1.0 <LO <1 <0.21 <1 <1 <0.5 <0.5 <0.5 <LO <1.0 Beryllium* 4 <4 <0.12 NS <1 <1 <l <1 <1.0 <1.0 <4 <0.12 NS <1 <1 <1 <l <1.0 <1.0 Bromodichloromethane 0.6 <I <0.23 1 NS <I I <I 1 14 14 1 14.6 63 1 <l 1 <0.23 NS I <I I <1 14 1 12 13.3 4.9 Bromoform 4 <1 <0.35 NS <1 <1 0.78 <1 <1.0 <1.0 <1 <0.35 NS <1 <1 <1 0.62 J <1.0 <1.0 B fluranthene 0.05 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 2-Butanone (MEK) 4,000 <10 <18 NS <5 <5 <5 <5 <5.0 <5.0 <10 <18 NS <5 <5 <5 <5 <5.0 <5.0 Cadmium 2 <2 <0.044 <2 <I <0.5 <0.5 <0.5 <1.0 <I.0 <2 <0.044 <2 <I <0.5 <0.5 <0.5 <I.0 <1.0 Calcium NE NS 63,000 62,000 98,100 NS NS NS 8,500 NS NS 22,000 23,000 21,200 NS NS NS 8,500 NS Chloroethane 3000 <2 <0.28 NS <I <I <I <1 <1.0 <I.0 <2 <0.28 NS <I <1 <1 <I <I.0 I <1.0 Chloroform 70 1 <1 <0.21 NS <1 <2 42 37 71.5 29 <1 <0.21 NS <1 <2 41 31 64.6 30 Chromium 10 1 <5 <6.3 <5 <5 <0.5 <0.5 <5 <5.0 <5.0 <5 1.5 <5 <5 <0.5 <0.5 1.5 J <5.0 <5.0 Cobalt* 1 <25 0.32 <25 1 <5 <1 <1 <1 <5.0 1 <5.0 <25 2 <25 <5 2.2 <1 <1 <5.0 0.40 J Coppe, 1,000 <5 0.44 4.1 202 1.1 1 4.1 3.7 B 7.4 7.7 1 <5 7.6 1 <5 1 <5 13 18 23 B 44 38 Carbon Disulfide 700 <1 <0.45 NS <2 <2 <2 <2 <2.0 <2.0 <1 <0.45 NS <2 <2 1 <2 <2 <2.0 <2.0 Dibromochloromethane 0.4 <I <0.23 NS <I <I 6.9 6 3.7 13 <l <0.23 NS <I <1 7.6 5.5 3.4 1.4 1,1-Dichloroethane 6 <1 <0.19 <1 <1 <1 <1 <1 <1.0 <1.0 <1 <0.19 <1 <1 <1 <1 <l <1.0 <1.0 1,1-Dichloroethene 350 <I <0.31 <1 <I <I <I <1 <,0 <I.0 <t <0.31 <1 <I <1 <1 <t <I.0 <1.0 1,4-Dichlombemme 6 <1 <0.19 <1 <1 <1 <1 <1 <1.0 <1.0 <1 <0.19 <1 <1 <1 <1 <1 <1.0 <1.0 cis-1,2-Dichlomethene 70 <I <0.2 <1 <I <I <I <1 <,0 <I.0 <I <0.2 <1 <I <1 <1 <I <I.0 <1.0 1,4-Dioxane 3 NS NS NS NS NS NS NS <2.0 <2.0 NS NS NS NS NS NS NS <2.0 <2.0 Eth Ibenune 600 <I <0.21 NS <I <0.5 <0.5 <0.5 <1.0 <I.0 <I <0.21 NS <I <0.5 <0.5 <0.5 <I.0 <1.0 2-flexamme NE NS <0.26 NS <5 1 <5 <5 <5 1 <5.0 <5.0 1 NS <0.26 NS <5 <5 <5 <5 <5.0 <5.0 4-Meth 1-2- entmone 100 NS 10.29 NS <5 <5 <5 <5 <5.0 <5.0 NS <0.29 NS <5 1 <5 <5 <5 <5.0 <5.0 Toluene 600 <1 <0.24 NS <1 <0.5 <0.5 <0.5 <1.0 0.20 J <1 <0.24 NS <1 <0.5 <0.5 <0.5 <1.0 0.20 J X lens 500 <t <0.32 NS <t <I <I <1 <,0 <I.0 <t <0.32 NS <I <1 <1 <1 <I.0 <1.0 Lead 15 <10 <0.15 <to 88.6 <0.5 <0.5 <0.5 <5.0 <5.0 <10 0.38 QO <5 0.54 5 7.4 5.7 1.1 Manganese 50 NS 120 25 543 40 1.6 1.81 <5.0 4.4 NS 120 <10 21.4 98 16 28 30 34 Mercury 1 <0.1 <0.028 <0.1 NS <0.2 <0.2 <0.2 <0.20 <0.20 <0.1 0.14 0.12 NS <0.2 0.29 <0.2 <0.20 <0.20 Methylene Chloride 5 <I <q.. NS <I <5 <5 <5 <,0 <I.0 <I <0.42 NS <I <5 <5 1 <5 <1.0 I <1.0 Naphthalene 6 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Phemmthnme 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Pyre- 200 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS Nickel 100 <40 1.4 <40 <5 <2 <2 <2 <5.0 <5.0 <40 1.9 <40 1 <5 1 1.5 1.5 1.11 <5.0 0.911 Selenium 20 <10 <9.5 NS <10 <2.5 <2.5 <2.5 <10.0 <10.0 <10 <9.5 NS <10 I <2.5 <2.5 <2.5 <10.0 <10.0 Sulfide NE NS NS NS <100 NS NS NS NS NS NS NS NS <I00 NS NS NS NS NS Silver 20 <5 <1.7 NS <5 <0.5 <0.5 <0.5 <5.0 <5.0 <5 <1.7 NS <5 <0.5 <0.5 <0.5 <5.0 <5.0 Tetrah drofman NE <5 <0.57 <5 <10 <10 <10 <10 <10.0 <10.0 <5 <0.57 <5 <10 <10 <10 <10 <10.0 <10.0 Thallium* 0.2 NS NS NS <5.4 <2 <2 Q <0.10 <0.10 NS NS NS <5.4 <2 <2 <2 1 <0.10 <0.10 Tin 2000 NS NS NS NS NS NS <5 NS NS NS NS NS NS NS NS <5 NS NS Vanadium* 0.3 <50 <15 <50 <5 1 <5 1 <5 <5 <5.0 1 <5.0 <50 7.7 <50 <5 10 NS 1 <5 <5.0 1 <5.0 Vinyl Chloride 0.03 <I <0.5 <1 <I <0.5 <0.5 <1 <1.0 <I.0 <t <0.5 0.93 <l 0.86 NS <I <I.0 <1.0 Zinc 1000 24 33 1 <20 366 9.3 <20 <10 11.2 8.2 -0 20 <20 <to 15 32 190 55 440 Alkalinity NE NS 150,000 160,000 95,600 160,000 23,000 22,000 NS 15,000 NS 82,000 98,000 93,100 85,000 21,000 23,000 NS 23,000 Ammonia-N 1,500 NS <50 <10 <100 NS NS NS NS NS NS 74 <10 I <100 NS NS NS NS NS Iron 300 NS NS NS 311 200 NS <I00 <50.0 <50.0 NS NS NS 477 3,000 660 1,500 B 336 83.0 J Total Dissolved Solids 500,000 NS 320,000 320,000 550,000 380,000 66,000 66,000 NS 90,000 NS 140,000 170,000 155,000 160,000 62,000 120,000 NS 84,000 Sulfate 250,000 NS NS NS 310,000 83,000 31,000 8,400 NS NS NS NS NS 6,700 5,200 8,900 8400 B NS NS Carbon Dioxide NE NS 130,000 160,000 NS NS NS NS NS NS NS 100,000 170,000 NS NS NS NS NS NS Chloride 250,000 NS 171000 17,000 1 5,300 17,000 35,000 1 8,300 NS NS NS 7,700 7,100 10,800 7,800 1 9,500 8,800 NS NS Notes: All units are in µg/L unless othe-ised indicated NCDEQ Standard=15A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (BIT Labommnee=Pace (P), Shealy (S), and Test Amen J= Estimated coot. above the adjusted method dete and below the adjusted reporting limit B=Compound was found in the blank and sample. n= Refu to Case Narrative for further detail Bold /yellow values exceed the NCDEQ Standard NE =Not Established < "Report Limit" = Value is less that the Report Li, Green boxes indicate Point of Compliance Wells 59 of 4355 Table 7 (cont.) History of Closed Groundwater and Private Wells Analytical Detections Spring 2018 Semi -Annual Groundwater Monitoring North Meek Closed Phase I Area Landfill CEC Project No. 111-370.001 Constituent Std. Hammlll WSW Laboratory S S S P TA TA TA P TA Sample Date 4.24.15 10.21.15 4.22.16 10.28.16 5.1.17 10.31.17 4.10.18 10.5.18 4.22.19 Acetone 6000 <20 <16 <20 <25 7.4 6.5 <5 <25.0 <25.0 Acenaphthylene 80 NS NS NS NS NS NS NS NS NS Anthms,ene 2000 NS NS NS NS NS NS NS NS NS Antimony* 1 <10 0.2 NS 15 <3 <3 <3 <5.0 <5.0 Arsenic 10 <10 5.3 4 <10 2.8 0.47 0.68 J <I0.0 2.2 Barium 700 44 49 37 79.5 35 41 38 37.8 41 Benzene 1 <l <0.21 <1 <1 <0.5 <0.5 <0.5 <1.0 <1.0 Beryllium* 4 <4 <0.12 NS I <1 I <1 <1 I <1 <1.0 I <1.0 Bmmodichloromethane 0.6 <1 <0.23 NS <1 <1 <1 <1 <1.0 <1.0 Bmtoolmon 4 <1 <0.35 NS <1 <1 <1 <1 <1.0 <1.0 Benno flmanthene 0.05 NS NS NS NS NS NS NS NS NS 2-Butanone (MEK) 4,000 <10 <18 NS <5 <5 22 <5 <5.0 <5.0 Cadmium 2 <2 <0.044 <2 <1 <0.5 <0.5 <0.5 <1.0 <1.0 Calcium NE NS 110,000 110,000 55,300 NS NS NS 111,000 NS Chlomethane 3000 <2 <0.28 NS <1 <1 <1 <1 <1.0 <1.0 Chloroform 70 <1 <0.21 NS <1 <2 <2 <2 <1.0 <1.0 Chromium 10 <5 0.69 <5 <5 <0.5 <0.5 <5 <5.0 <5.0 Cobalt* 1 <25 1 0.43 <5 1 <5 1 <1 <1 I <1 <5.0 <5.0 Copper 1,000 <5 4.7 8 32.8 4.4 4.3 5.1 B 17.9 73 Carbon Disulfide 700 <1 <0.45 NS <2 < < <2 <.0 <.0 Dibromochloromethane 0.4 <1 <0.23 NS <1 <1 <1 <1 <1.0 <1.0 1,1-Dichloroethane 6 <1 <0.19 <1 <1 <1 <1 <1 <1.0 <1.0 1,1-Dichlomethene 350 <1 <0.31 <1 <1 <1 <1 <1 <1.0 <1.0 1,4-Dichlombenzene 6 <1 <0.19 <1 <1 <1 <1 <1 <1.0 <1.0 cis-1yDichlomethene 70 <1 <0.2 <1 <1 <1 <1 <1 <1.0 <1.0 1,4-Dioxane 3 NS NS NS NS NS NS NS 14.8 14.8 Eth (benzene 600 <1 <0.21 NS <1 <0.5 <0.5 <0.5 <1.0 <1.0 2-Hexanone NE NS <0.26 NS 1 <5 <5 1 <5 <5 <5.0 <5.0 4-Meth 1-2- ntanone 100 NS <0.29 NS <5 <5 <5 <5 <5.0 <5.0 Toluene 600 <1 0.43 NS <1 <0.5 <0.5 <0.5 <1.0 0.23 J X lens 500 <1 <0.32 NS <1 <1 <1 <1 <1.0 <1.0 Lead 15 <10 0.7 <10 6 0.6 0.28 0.32 J <5.0 12 Man anew 50 NS 62 58 53 72 60 88 78 85 Mercury 1 <0.1 <0.028 <0.1 NS <0.2 <0.2 <0.2 <0.20 <0.20 Methylene Chloride 5 <1 0.34 NS <1 <5 <5 <5 <1.0 <1.0 Naphthalene 6 NS NS NS NS NS NS NS NS NS Phenanthome, 200 NS NS NS NS NS NS NS NS NS Pyrene 200 NS I NS NS NS NS NS NS NS NS Nickel 100 <40 1 2.5 <40 <5 < 0.95 0.72 J <5.0 0.77 J Selenium 20 <10 <9.5 NS <10 <.5 <.5 <2.5 <10.0 <10.0 Sulfide NE NS NS NS <I00 NS NS NS NS NS Silver 20 <5 <1.7 NS <5 <0.5 <0.5 <0.5 <5.0 <5.0 Tetmh drofinan NE <5 <0.57 26 <10 <10 230 12 <I0.0 <10.0 Thallium* 0.2 NS NS NS <5.4 < < < <0.I0 <0.10 Tin 2000 NS NS NS NS NS NS 2.11 NS NS Vanadium* 0.3 <50 23 <50 <5 <5 <5 <5 <5.0 <5.0 Vinyl Chloride 0.03 <1 <0.5 <1 <1 <0.5 <0.5 <1 <1.0 <1.0 Zinc 1000 53 25 14 27 33 490 260 318 820 Alkalinity NE NS1 99,000 99,000 159,000 94,000 95,000 93,000 NS 94,000 Ammonia-N 1,500 NS 310 <10 <100 NS NS NS NS NS Iron 300 NS NS NS 324 790 290 210 B 496 5,500 Total Dissolved Solids 500,000 NS 510,000 570,000 309,000 600,000 600,000 590,000 NS 610,000 Sulfate 250,000 NS NS NS 72,300 310,000 320,000 310,000 B NS NS Carbon Dioxide NE NS 92,000 96,000 NS NS NS NS NS NS Chloride 250,000 NS 5,200 5,000 18,500 5,400 5,600 5,600 NS NS Notes. All units are in µg/L unless offi-ised indicated NCDEQ Standard- l5A NCAC 02L .0202 Ground * Interim Maximum Allowable Concentration (Eff. Laboratories= Pace (P), Shealy (S), and Test Amen J = Estimated cent. above the adjusted method date and below the adjusted reporting limit Bxompound was found in the blank and sample. n= Refer to Case Nanative for farther detail Bold /yellow values exceed the NCDEQ Standard NE = Not Established < "Repot Limit" = Value is less that the Report Lit Green boxes indicate Point of Compliance Wells 60 of 4355 61 of 4355 Table 8 Physical and Chemical Fate and Transport Data for Methylene Chloride, Vinyl Chloride, and 1,4-dioxane North Meck Area Landfill CEC Project No. 111-370.0001 Parameter Methylene Chloride' Vinyl Chloride' 1,4-dioxane' CAS No. 75092 75014 123911 Specific Gravity 1.329 0.9106 1.029 M.W. (g/mol) 84.9 82.5 88.106 Solubility (mol/L) 0.153 0.0957 6.06 Log Kow 1.25 1.42 -0.27 Vapor Pressure (mmHg) 435 2980 38.1 Henry's Constant atm-m3/mol 0.00325 0.0278 0.0000147 Koc (L/kg) 27.5 22.9 1.23 Biodegradation Half -Life (days) 20.3 7.2 10.2 1. Taken from https://comptox.epa.gov/dashboard/ 62 of 4355 Table 9 Indicator Parameter Summary North Meck Infill Area Landfill CEC Project No. 114-370.0001 Leachate Indicator Parameter MW-7 Infill MW-71) Infill MW-9 Infill MW-91) Infill MW-12 Infill MW-12D Infill Vinyl Chloride (µg/L) 0.7 <0.0005 0.93 <0.0005 2.7 1.7 Alkalinity (mg/L) 520 730 750 600 480 580 TDS (mg/L) 1100 1200 970 990 700 780 Chloride (mg/L) 67 89 71 23 36 34 Sulfate m /L 160 130 43 50 75 52 Table 10 Summary of Private Wells North Meek Closed Area Landfill CEC Project No. 111-370.0001 63 of 4355 Owned or Distance from Well No. Site PIN Well PIN Street Address Tied to Parcel Owner Name Owner Address Well Type Well Status Leased? Property Line 1 01920314 01920314 14901 Holbrooks Rd Leased SOUTHSIDE NEIGHBORHOOD LLC 13815 CINNABAR PL Drinking Water Active On Property HUNTERSVILLE NC 28078 C&D MANAGEMENT 19141 W CATAWBA AVECOMPANY 2 01920315 01920315 14931 Holbrooks Rd Leased Drinking Water Active 100 It LLC CORNELIUS NC 28031 19141 W CATAWBA AVE 3 01910115 01910115 15018 Holbrooks Rd Leased GREENWAY WASTE SOLUTIONS LLC Drinking Water Active 550 It CORNELIUS NC 28031 19109 W CATAWBA AVE STE 200 4 01910110 01910109 15120 Holbrooks Rd Leased GREENWAY WASTE SOLUTIONS LLC Drinking Water Active 150 It CORNELIUS NC 28031 C&D MANAGEMENT 19141 W CATAWBA AVECOMPANY 5 01910102 01910112 15114 Holbrooks Rd Owned Drinking Water Inactive On Property LLC CORNELIUS NC 28031 C&D MANAGEMENT 19141 W CATAWBA AVECOMPANY 6 01910102 01910108 15300 Holbrooks Rd Owned Drinking Water Active On Property LLC CORNELIUS NC 28031 19109 W CATAWBA AVE STE 118 Permanently 7 01934118 01934118 11743 Trails End Lane Owned GREENWAY WASTE SOLUTIONS LLC Drinking Water <100 ft CORNELIUS NC 28031 Abandoned 8 01934105 01934105 11737 Trails End Lane Owned Michael and Tracy Tinsley 11737 TRAILS END LN Drinking Water Inactive 500 It HUNTERSVILLE NC 28078 13029 ASBURY CHAPEL RD 9 01938101 01938101 13029 Asbury Chapel Rd Owned Carolyn Hart Drinking Water Active 2250 It HUNTERSVILLE NC 28078 10 01918141 01918141 12727 Wildlife Lane Owned Herman and Betty Lemmons 12727 WILDLIFE LN Drinking Water Active 1500 It HUNTERSVILLE NC 28078 11 01918140 01918140 12717 Wildlife Lane Owned Lorene Brannon 12717 WILDLIFE LN Drinking Water Active 1400 ft HUNTERSVILLE NC 28078 12 01918139 01918139 12707 Wildlife Lane Owned David Rogers 12707 WILDLIFE LN Drinking Water Active 1300 ft HUNTERSVILLE NC 28078 13 01918135 01918135 12539 Wildlife Lane Owned GREENWAY WASTE SOLUTIONS LLC 19109 W CATAWBA AVE SUITE 110 Drinking Water Inactive 650 It CORNELIUS NC 28033 14 01934108 01934108 11745 Trails End Lane Owned William and Campbell Hammill 11745 TRAILS END LN Drinking Water Inactive 300 ft HUNTERSVILLE NC 28078 15 01934108 01934108 11745 Trails End Lane Owned William and Campbell Hammill 11745 TRAILS END LN Irrigation TD =Active 350 It HUNTERSVILLE NC 28078 500 ft 4 gpra 16 01934118 01934118 11743 Trails End Lane Leased GREENWAY WASTE SOLUTIONS LLC 19109 W CATAWBA AVE STE 118 Drinking Water TD = Inactive 400 It CORNELIUS NC 28031 250 ft 6 gpra 19109 W CATAWBA AVE STE 118 Permanently 17 01934118 01934106 11743 Trails End Lane Leased GREENWAY WASTE SOLUTIONS LLC Drinking Water 500 It CORNELIUS NC 28031 Abandoned 18 01934111 01934111 11763 Trails End Lane Owned Rodney and Kelly Case 11763 TRAILS END LN Drinking Water Active 1850 ft HUNTERSVILLE NC 28078 19 01934111 01934111 11763 Trails End Lane Owned Rodney and Kelly Case 11763 TRAILS END LN Irrigation Temporarily 1950 ft HUNTERSVILLE NC 28078 Abandoned 20 01934111 01934111 11763 Trails End Lane Owned Rodney and Kelly Case 11763 TRAILS END LN Irrigation Inactive 2100 It HUNTERSVILLE NC 28078 21 01918138 01918138 12619 Wildlife Lane Owned Stella Strader 12619 WILDLIFE LN Drinking Water Active 1400 ft HUNTERSVILLE NC 28078 22 01918134 01918134 12532 Wildlife Lane Owned Kenneth and Loma Stephens, Laurie Kennerly 12532 WILDLIFE LN Drinking Water Active 1750 ft HUNTERSVILLE NC 28078 13018 ASBURY CHAPEL RDHUNTERSVILLE 23 02103106 02103106 13018 Asbury Chapel Rd Owned Josie and Daniel Pressley Irrigation Inactive 3200 ft NC 28078 12957 ASBURY CHAPEL RD Permanently 24 01938105 01938105 12957 Asbury Chapel Rd Owned Ronald Ferrell HUNTERSVILLE NC 28078 Drinking Water Abandoned 2800 ft 25 02103116 02103116 14601 Has McGinnis Owned Jennifer and Jeffrey Taylor 14601 HUS MCGINNIS RDHUNTERSVILLE Drinking Water Active 4500 It NC 28078 26 01918117 01918117 12401 Asbury Chapel Rd Owned Blaine and Barbara Fagel 12401 ASBURY CHAPEL RD Drinking Water Active 2650 It HUNTERSVILLE NC 28078 ENERGY UNITED ELECTRIC PO BOX 1831 Permanently 27 02102110 02102110 12300 Asbury Chapel Rd Owned MEMBERSHIP STATESVILLE NC 28687 Drinking Water Abandoned 3250 ft 1. Mecklenburg County well records indicate that 3 wells exist at this address; however, CEC has confirmed with owner that only one inactive drinking water well exists at this address (Well No. 7) 64 of 4355 APPENDIX A BORING LOGS AND WELL CONSTRUCTION DIAGRAMS - PARTIAL 65 of 4355 EN VIRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-4A Job No: EP-1217(a) Port Mill, South Carolina Client: Cneenway GVaste Solutions, LLC Project Location: 15300 Holbrooks Road, Hunterm+ille State: NC Total Depth: 100' Logged By: THH Soil Sample Method: Soil Cuttings Date Started: 9/13/2013 Date Complete: 9/13/2013 Driller: Tommy w/EDPS _ Drill Method: Air Rotary Equipmeat Type: Canterra CT450 Boring Diameter: 6" Soil Gras Sample Method: Groundwater (burp): 0 his 24 hrs Land Surface Elevation (LS): Measuring Point Elev. (MP): Remarks: Elevation ft. Depth 8. SPT/tnterval Sample ID No. Description Soil Gas Moisture Uses Lo Co»unents 10.0 20.0 30.0 40.0 brown saLdy Silt tan -brown slightlysfighily clayeyolayey sanL Silt Light gray -brown silty Sand w/rock fragments (PWR) water @ 33' Bedrock Terminated Air Drillin 44 ft. b s Set 2" PVC sch.40 well; screened from 34-44; sand to 32; bentonite to 29 ; grout to surface Page 1 of l ENVIRO-PRO, P.C. Well Completion Log Type III Well #. MWdA J # P- 17(a) Fort MITI, SC Client: Greenway Wa ado s, LLC Project Location 15300 Holbrooks Road, Huntersville County State Mecklenburg NC Logged By: THB Land Surface Elev. Measuring Pt. Elev. Date Began: Date Completed. 9/13I13 9l13l9 3 Well Dev. Method Volume Evacuated: Appearance: Monitored Formation: PET CASING ABOVE GROUND =ED CAP BELOW GROUND MAT FINISH FINISH SCH (MP) FT WELL LOCK I STI DIA ALS —BOX DM L S WELL D PIAIE Toc FT ALS PROTECTIVE CASING C%TI'SIDE MPlFT7 — ®LS) FT L.S - DIA BOREHOLE-1 DIA.----tFT) SURFACE CASING FT MAT SURFACE SCH BOREHOLE DIA DIA CEMENT/BENTONITE CALC USED INNER CASING FT MAT:PVC _ INNER SCH* 40 _ BOREHOLE DIA ; 2" � W/0 I DIA_ CENTRALIZER TYPE MAT SIZE DIA i 29 ft. CEMENT/BENTONITE VOL CALC BENTONITE SEAL VOL USED SIZE Pellets TYPE 32 ft. DRILL METHODS VOL CALC x x !) Air Rotary VOL USED 21 X x x 34 ft. SAND PACK S) -TYPE X X A) -SIZE GRADE: 42: Medium K X x X X REMARKS — x x --K x x x NOTE: ALL MEASURMENTS INDEPTH SCREEN X K BELOW LAND SLRFACE (BLS) OR ABOVE -MAT: PVC LAND SURFACE (ALS) SLOT x X x 44 ft, - SIZE: 0.01 OPTIONAL -SLOT TYPE X x x x 67 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-4D Jae No: EP-t 217(a) Fort Mill, South Carolina Client: Greenway Waste Solutions LLC Project Location: 15300 Holbrooks Road, HuntersAle State: NC Total Depth: l00' Lugged By: THB Soil Sample Method: Soil Cuttings Date Started: 9/12/2013 Date Complete: 9/13/2013 Driller: Tommy w/EDPS Drill Method: Air Rotary Equipment Type: Canterra CT-450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (braft 0 hrs 24 hrs Laud Surface Elevation (LS): Measuring Point Elev. (MP); Remarks; Elevation it. Depth f. S.PT/Interval Sample ID No. Description Soil Gas Moisture USCS i o Continents 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Brown sandy Silt Tan -brawn slightlyslightty clayey Silt Light gray -brown silty Sand w/rock fragments (MR) Bedrock Set 6" scliA4 PVC casing to 55 $. 6 s ganited it to grvand surface No Fractures No Water Page 1 of 2 68 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG BoringNo.: MWAD Job No: EP-1217(a) Port Mill, South Carolina Client: GEmway Waste Solutions, l.T,C Project location: 15300 Holbrooks Road, Huntersville State: NC Total Depth: 1001 Logged By: THB Soil Sample Method: Soil Cuttings Date Started: 9/12/2013 Date Complete: 9/13/2013 Driller: Tommy w/EDPS Drill Method: Air Rotary Equipment Type: Canters CT450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (burp): 0 Ins 24 hrs Land Surface Elevation (LS): Measuring Point Elev. (MP): Remarks: Elevation ft. Depth ft. SPT/interval Sample IDNo. Description Soil Gas Moisture 11SCS Log Comments 50.0 90.0 100.0 Terminated Air Drilling (a 100 ft. bgs No fraeturas Open Borehole No water Page 2 of 2 ENVIRO-PRO, P.C. Well Completion Log Type III Well #: MW4D Job #: EP-1217(a) Fort MI11, SC Client: Greenway W464614§5ns, LLC Project Location County State Logged By: THB 15300 Holbrooks Road, Huntersville Mecklenburg NC Land Surface Elev. Measuring Pt. Elev. Date Began: Date Completed: 9112113 9113113 o ume vacua JWell Dev. Method Appearance: Monitored Formation: ABOVE GROUND VE>`rrED CAP FINISH (MP) FT WELL LOCK AL.S WELL D PLATE TOC FT ALS PROTECTIVE CASWG CITI'SIDE FT LS — D[A. BOREHOLE-1 DIA. SURFACE CASING MAT SCH DIA CEMENT/BENTONTTE — CALC USED INNER CASING MAT: PVC �R IA D40 _ BOREHOLE DIA ; DIA CENTRALIZER TYPE MAT SIZE DIA CEMENT/BENTONITE VOL CALL VOL USED DRILL METHODS i] Air Rotary 21 31 41 REMARKS BENTONITE SEAL SIZE Pellets TYPE VOL CALC VOL USED SAND PACK -TYPE -SIZE GRADE: 42: Medium NOTE: ALL MEASURMENTS IN DEPTH SCREEN BELOW LAND SLRFACE (BLS) OR ABOVE _MAT: PVC LAND SURFACE (ALS) SLOT - SIZE: 0.01 OPTIONAL _SLOT TYPE BELOW GROUND FINISH }<RI STI Box X X x x X x x X 3C X x x x X x X x X X x X X X X X PET CASING MAT SCH DIA LS MPF1 -- ®L� ---FT FT SURFACE BOREHOLE DIA -- FT w wf0 0 O O 1 bOft. 70 of 4355 EN VIRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-5D Job No: EP-1217(a) Fort Mill, South Carolina -] Client: Circenway Waste Solutions, LLC Project Location: _ 15300 Holkooks Road, Huntersville State: NC Total Depth: 55' Logged By: IIIB Soil Sample Method: Soil Cuttings Date Started: 9/13/2013 Date Complete: 9/16/2013 Driller: Tommy w/EDPS Drill Method: Air Rotary Equipment Type: Canterra CT-450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (bmp): 0 hrs 24 hrs Land Surface Elevation (LS): Measuring Point Elev. (W): Remarks: Elevation 8. Depth & SPT/Intercml Sample ID No. Description Soil Gas Moisture USCS Log Cotmnents 10.0 20.0 30.0 40.0 50.0 Brown sandy Silt Gray -brown sii Sand w/rack £ra eats (PWR Set 6" sch.40 PVC casing to 35' bgs & groded it to ground surface fracture Qa 38' Bedrock no water fracture front a9'-5r 1 gpni Terminated Air Drillin 55 8, b s Set 2" PVC sch.40 well; screened from 45-55 ; sand to 43; bentonite to 40; grout to surface Page 1 of ENVIRO-PRO, P.C. Well Completion Log Type III Well #: MW-5D Job #: EP-1217(a) Fort Mill, SC Client: Greenway Wail"Adfigns, LLC Project Location County state Logged By: THB 1530D Holbrooks Road, Huntersville Mecklenburg NC Land Surface Elev. Measuring Pt. Elev. Date Began: Date Completed: 8l13113 9116113 Volume Evacuated, LW-11 Dev. Method Appearance: Monitored Formation: PET CASING ABOVE GROUND VEXED CAP BELOW GROUND MAT FINISH FINISH SCH (MP) FT WELL LOCK I STI DIA ALS ----BOX DT L S WELL D PLATE TaC FT ALS PROTECTIVE CASING aWSIDE MP(FT7 — ELS) FT L-S D[A BOREHOLE-1 DIA. SURFACE CASING _ FT MAT SMFAC E SCH BOREHOLE DIA DIA CEMENT/BENTONITE CALC USED INNER CASING FT MAT: PVC _ W/0 SCH: 40 _ —� INNER BOREHOLE DIA DIA CENTRALIZER TYPE MAT SIZE DIA CEMENT/BENTONITE € VOL CALC VOL USED BENTONITE SEAL Pallets SIZE TYPE 43 ft. DRILL METHODS I) Air Rotary VOL CALC X X x 2) VOL L15® X X 45 ft. SAND PACK 3) -TYPE x X 41 -SIZE GRADE: X 42: Medium X X x REMARKS — x x �-x x x x NOTE: ALL MEASURMENTS IN DEPTH SCREEN x BELOW LAND SLRFACE (BLS) OR ABOVE .,MAT: PVC x X LAND SURFACE (ALS) SLOT X 55 ft. SIZE: 0.01 X OPTIONAL ..SLOT TYPE x x x 55 ft.. 72 of 4355 I ENV'IRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-61) Job No: EP-1217(a) Fort Mill, South Carolina Client: Greenwa Waste Solutions, LLC Project Location: 153001lolbrooksRoad,_Huntersviilla State: NC TotalI)epth: 95' 1.oggCd By: TUB Soil Sample Method.- Soil Cuttings Date Started: 9/11/2013 Date Complete: 911212013 Driller: Tommy w/EDPS Drill Method: Air Rotary Equipment Type: Canters CT-450 Boring Diameter; 6" Soil Gas Sample Method: Groundwater (bmp): 0 hrs 24 hrs. Land Surface Elevation (1.5): Measuring Point Elev. (MP): Remarks: Elevation tt. Depth ft. SPT&tmval Sample ID No. Description Soil Gas Moisture USCS Log CcnmuentR 10.0 20.0 30.0 40.0 so..0 60.0 70.0 Light brown silty Sand Light gray -tan silty Sand with rock fragments (PWR) Bedrock Few &aclures No water Set 6" sth. 40 PVC casing to 75' bgs & grouted it to growid stuface Page I of 2 73 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG Boring No.! MW-6D 7obNo: EP-1217(a) Fort Mill, South Carolina Client: Greenway Waste Solutions LLC ,,.r........._ Project Location: 15300 Holbrooks Road, Huntersville State: NC Total Depth: 95' Logged By: THB Soil Sample Method: Soil Cuttings Date Started: 9/11/2013 Date Complete: 9/12/2013 Driller: Tommy w/EDPS Drill Method: Air Rotary Equipment Type: Canterra CT450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (bmp): 0 hrs 24 hrs Land Surface Elevation (LS): Measuring Point Elev. (MP): Remarks: Elevation ft. Depth ft. SPT/lnterval Sample 11) No. Description Soil Gas Moisture USCS Lop, Comments 80.0 90.0 Fracture $7g.(1-2gpm) Fracture @) 90ft. (I 2 gpm) Terrninated Air Drilling 95 ft. U s Set 2" PVC sch,40 well; screened from 85-95 ; sand to 83'; bentonite to 80'; grout to surface Page 2 of 2 ENVIRO-PRO, P.C. Fort Mill, Sc Wetl Completion Log Type III Well #: MW-BB 41, J J%y17{a} Client: Greenway Wa o �j pns, LLC Project Location County State Logged By: THB 1530D Holbrooks Road, Huntersville Mecklenburg NC Land Surface Elev. Measuring Pt Elev. Date Began: Date Completed: 91111t3 9112113 Well Dev. Method Yuluillu 9 Guamu: Appearance: Monitored Formation: PET CASING ABOVE GROUND VFTUFD CAP BELOW GROUND MAT FINISH FINISH SCH (MP) FT WELL LOCK I STI DIA ALS _BOX DM L S WELL D PLATE TOC FT ALS PROTECTIVE I MP(FT) CASING OUISIDE -- IELS) FT LS ` DIA. BOREHOLE-1 \7DIA, ----- -lFT7 SURFACE CASING FT MAT SURFACE SCH BOREHOLE DIA DIA CEMENT/BENTONITE CALC USED INNER CASING FT MAT: PVC _ W!O SCH: 40 — — INNER BOREHOLE DIA ' „ DIA " CENTRALIZER TYPE MAT SIZE DTA 80 ft. CEMENT/BENTONITE VOL CALC VOL USED BENTONITE SEAL, SIZE Peilets TYPE $. DRILL METHODS Il Air Rotary VOL CALC x x 2) VOL USEDX x x 85 ft. SAND PACK 31 -TYPE x x 41 -SIZE GRADE: X _02: Medium X x x REMARKS — x x -K x x x x NOTE: ALL MEASURMENTS IN DEPTH SCREEN K x BELOW LAND SLRFACE (BLS) OR ABOVE .,MAT: PVC x x LAND SURFACE (ALS) SLOT X 95 ft. SIZE: 0.01 x OPTIONAL _SLOT TYPE x x x 95 ft. 75 of 4355 ENVIRO-PRO, P.C. I LITHOLOGIC LOG Boring No.: MW-7A 7obNo: EP-1217(A) Fort Mill, South Carolina Client: Greenway Waste Solution s= LLC _ —� project Location: 15300 Holbrooks Road, Huntersville State: NC Total Depth; 69 Logged By. THB Soil Sample Method: Soil Cuttings Date Started: 9/18/2013 Date Complete: 9/18/2013 Driller: Tommy w/EDPS Brill Method; . _ Aix Rotary Equipment Type: Canters CT450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (lmip): 0 hrs 24 brs Land Surface Elevation (LS): Measuring Point frlev, (MP): Remarks: Elevation I Depth 8. SPUlnterval Sample ID No. Description Soil Gas Moisture USCS Log Comments 10.0 20.0 30.0 40,0 5U.0 60.0 Tan -brown silty Sand Gray. -brown silty Sand (PWR) Brown silty Sand with rook fragments Bedrock (granite Terminated Air Drilling 60 ft. b s Set 2" PVC well screened from 45-60; sand to 43 ; bentonite to 40 ; grout to surface Page I of ENVIRO-PRO, P.C. Well Completion Log Type li Well tf: MW-7A Jo p g3 7(a) Fort Mill, SC Client: Greenway Waste So u ons LLC Project Location County state Logged By: THB 15300 Holbrooks Road, Huntersvilie Mecklenburg NC Land Surface Elev. Measuring Pt. Elev. Date Began: Date Completed: 9f1$113 911ti193 Volume Evacuated' Well Dev. Method Appearance: Monitored Formation: PET CASING ABOVE GROUND VENTED CAP BELOW GROUND MAT FINISH FINISH SCH fMPI F'T WELL LOCK __VnI emT DIA ALS _ TOC ET ALS € FT LS WELL D PLATE PROTECTIVE CASING CXT!'SIDE DIA. BOREHOLE-1 DIA, SURFACE CASING MAT SCH DIA CEMENT/BENTONITE CALC USED INNER CASING MAT: PVC INNER SCH: 40 BOREHOLE DIA : 2" CENTRALIZER TYPE MAT SIZE DIA CEMENT/BENTONITE VOL CALC VOL USED DRILL METHODS 11 f Air Rotary 21 31 41 REMARKS NOTE: ALL MEASURMENTS IN DEPTH BELOW LAND SURFACE (BLS) OR ABOVE LAND SURFACE (ALS) OPTIONAL BENTONITE SEAL SIZE Pellets TYPE VOL CALC VOL USED SAND PACK -TYPE -SIZE GRADE: 42: Medium _MAT: PVC SLOT SIZE: 0.01 _SLOT TYPE — BOX DID L S MP(FTI — ELS) -------IFT) _FT SURFACE BOREHOLE DIA FT Wi0 77 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG BoringNo.: Mw-7D 7obNo: EP-1217(A) Fort Mill, South Carolina Client: Greenwa waste Solutions, LLC Project Location: 15300 1 lolbrooks Road, Huntersville State: NC Total Depth: 110' Logged By: THB Soil Sample Method: Soil Cuttings Date Started: 9/17/2013 Date Complete: 9/18/2013 Driller: Tommy w/EDPS Drill Method: Air Rotary Equipment Type: Cantem CT-450 Boring Diameter: G' Soil Gas Sample Method: Grounclivater (brnp): 0 hrs 24 hrs Land Surface Elevation (1.S): Measuring Point Elev, (MP): Remarks: Elevation ]t. Depth A. SPT/Interval Sample ID No. Description Soil Gas Moisture USCS Log Comments 10.0 20.0 30.0 40.0 50.0 60,0 70.0 Tan -brown silty Sand Gray -brown sit Sand with rock fra eats (PWR) Brown silty Sand with rock fragnmis Bedrock (hardgranite) Page 1 of 2 78 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-7D Job No: EP-1217(A) Port Mill, South Carolina Client: Greenway Waste Solutions LLC Proicct location: 15300 Holbrooks Road, Fluntersville State: NC Total Depth: 110, Logged By: THB Soil Sample Method: Soil Cuttings Date Started: 9/17/2013 Date Complete: 9/1812013 Driller: Tormay w/EDPS Drill Method: Air notary Equipment Type: Canterra CT450 Boring Diameter: 6" Soil Chas Sample Method: Groundwater (bmp): 0 hrs 24 his Land Suriaee Elevation (LS): Measuring Point Elev. (MP): Remarks: Elevation ft. Deptb ft. SP7"/interval Sample IDNo. Description Soil Gas Moisture USCS Log comments 80.0 90.0 100.0 110.0 Set 6" sch.40 PVC casing to 80' bgs & grouted it to gmiind surface Bedrock (lardgranite) fmctnre zone from 100' to 105' Terminated Air Drilling a 110 $. bgs Set 2" PVC well screened from 100-110 ; sand to 98 ; bentonite to 95 ; Eout to surface Pago __ 2 of ENVIRO-PRO, P.C. Well Completion Log Type III We115: MW 71) Job #:F��ad�17(a) Fort Mlil, SC e o Client: Greenway Wa ns, LLC Project Location County State Logged By: THB 1530D Holbrooks Road, Hunte►svilfe Mecklenburg NC Land Surface Elev. Measuring Pt. Elev. Date Began: Date Completed: 9117113 9118113 Volume Evacuated: Well Dev. Method Appearance: Monitored Formation: MAT PET CASING DIA ABOVE GROUND =ED CAP BELOW GROUND 80 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG BoringNo.: MW-8D Job No: EP4217(a) j Fort Mill, South Carolina Client: Greenwa Waste Solutions LLC Project Location: 15300 Holbrooks Road fluntersville State: NC Total Depth: 122` Logged By: THB Soil Sample Method: Soil Cuttings Date Started: 9/16/2013 Date Complete: 9/17/2013 Driller: Tommy v/EDPS Drill Method: .Air Rotary_ ------------- Equipment Type: Canterra CT-450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (bmp): 0 hrs 24 hrs Land Surface Elevation (LS): Measuring Point Elev. (MP): Remarks: Elevation & Depth ft. SPT/Interval Sample ID No. Description Soil Gas Moisture USCS Log Continents 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Brown sandy Silt GYM -brown sil fine Sand Tan -brown silty Sand with rock fragments Bedrock (hard ranite) Page 1 of 81 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-8D Job No: EP-1217(a) Port Mill, South Carolina Client: Greenwa Waste Solutions,TLC Project Location: 15300 Holbrooks Road, Huntersville State: NC Total Depth: 122' Logged By: THB Soil Sample Method: Soil Cuttings Date Started: 9/16/2013 Date Complete: 9/17/2013 Driller: Tommy w/EDPS Drill Method: Air Rotary Equipment Type: Canterra CT450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (bmp): 0 hrs 24 hrs Land Surface Elevation (LS): Measuring Point Elev. (IvT): Remarks: Elevation ft. Depth ft. SPTldnterval Sample ID No, Description Soil Gas Moisture USCS Log Contents 80.0 90.0 100.0 110.4 120.0 Bedrock (hard granite) Set 6" scb.40 PVC casing to 90' bgs & grouted it to ground surface Bedrock (hard granite Fracture from 119'-120' no water Terminated Air Drilling 122 ft. b s Open Borehole Page 2 of 2 F rIIRO, SC , P.C. Well Completion Log Type Ili Client: GreenwaY W te° Y ns{ LLC Project Location County State Logged By: THB 15300 Hoibrooks Road, Huntersvilie Mecklenburg NC Land Surface Elev. Measuring PL Eiev, Date Began: Date Completed: 9116113 9117113 Volume vacua e : Weil Dev. Method Appearance: Monitored Formation: PET CASING ABOVE GROUND VFMM CAP BELOW GROUND MAT FINISH FINISH SCH (MP) FT WELL LOCK I STI DIA ALS - BOX DMf L S WELL D PLATE TOC FT ALS PROTECTIVE CASING MPEFTI WFSIEE —(BLS) FT LS — D[A. BOREHOLE-1 DIA. T - - l T] SURFACE CASING _ FT MAT "FACE SCH BOREHOT,E DIA DIA CEMENT/BENTONITE CALC USED INNER CASING FT MAT: PVC SCH: 40INNER — — BOREHOLE DIA ; DIA 6" CENTRALIZER TYPE MAT !I SIZE DIA CEMENT/BENTONITE r VOL CALC BENTONITE SEAL VOL USED SIZE Peltets TYPE DRILL METHODS X X it Air Rotary VOL GALL 2) VDL USEDx xPACK SAND PACK Sl -TYPE x X ql -SIZE GRADE: x -#2: Medium X X x REMARKS -- x X �-K x x x NOTE: ALL ME=ASURMENTS IN DEPTH SCREEN x BELOW LAND SLRFACE (BLS) OR ABOVE _MAT: PVC x X LAND SURFACE (ALS) SLOT x SIZE: 0.01 X OPTIONAL _SLOT TYPE x X x 9 22ft. 83 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-10D Job No: EP4217(a) Fort MiI1, ,South Carolina Client: Greely"y Waste Solutions, ITT Project Location: 15300 Holbrooks Road, Huntersville State: NC Total Depth: 65' Logged By: THD Soil Sample Method: Soil Cuttings Date Started: 9/1612013 Date Complete: 9/19/2013 Driller: Tonun w/EDPS Drill Method: Air Rotary Equipment Type: Canterra CT-450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (burp): 0 hrs 24 hrs Land Surface Elevation (LS): Measuring Point Elev. (MP): Remarks: Elevation I Depth ft. SPT/lnterval Sample ID No. Description Soil Gas Moisture USCS Log Comments 10.0 20.0 30.0 40.0 50.0 60.0 Brown sandy Silt Gray -brown slightly clayey sandy Siit Gray silty Sand with rock fragments (PWR Gray -brown silty Sand Bedrock Set 6" sch.40 PVC casing to 50' bgs e@ grouted it to ground surf"w weathered zones (a) 56, 59', and 6T Terminated Air DrWin 65 ft. h s Set 2" PVC sch.40 well; screened from 55-65'; sand to 53'; bentonite to 50; grout to surface Page . 1 of _ l ENVIRO-PRO, P.C. Well Completion Log Type III Well #: MW-101) b .zff Fort Mill, SC �217(a) A Client: Greenway W to o ns, LLC Project Location County state Logged By: THB 15301) Holbrooks Road, Huntersville Mecklenburg NC Land Surrace Elev. Measuring Pt. Elev. date Began: Date Completed: 8116113 9119113 Volume vacua Well Dev, Method Appearance: Monitored Formation: ABOVE GROUND VENTFO CAP FINISH WP} FT WELL LOCK AL..S TOC WELL D PLATE ET ALS PROTECTIVE CASING CUTSIDE FT LS 01A. BOREHOLE-1 DIA. SURFACE CASING - MAT SCH DIA CEMENT/BENTONITE CALC USED INNER CASING MAT:PVC _ INNER SCH: 40 , BflFtEHflLE - DIA ; 2" DIA" CENTRALIZER TYPE MAT SIZE DIA CEMENT/BENTONITE VOL CALC VOL USED DRILL METHODS 1} FAW Rotary 2} S} 4} REMARKS BENTONITE SEAL SIZE Pellets TYPE VOL CALC VOL USED SAND PACK -TYPE -SIZE GRADE: 42: Medium NOTE: ALL MEASURMENTS IN DEPTH SCREEN BELOW LAND SURFACE (BLS) OR ABOVE _MAT: PVC LAND SURFACE (ALS) SLOT - SIZE: 0.01 OPTIONAL _SLOT TYPE BELOW GROUND FINISH M STI -- BOX x x X x x X x X x X x x x x x x x x x X X x x x PET CASI NG MAT SCH DrA LS MPFT) - -- (BLS) __._(F'T) FT SURFACE BOREHOLE DIA FT W/0 85 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG 13oring No.: NW-1 lA Job No: EP-1217(a) Fort Mill, South Carolina Client: Crreeurvay Waste Solutions, IIC Prgject Loealion: 1530011olhrooks Road, lluntersville State: NC Total Depth: 30' Logged By: TUB Soil Sample Method: Soil Cuttin s Date Started: 9/24/2013 Dale Complete: 9/24/2013 Driller: Tommy iv/EDPS _ Drill Method: Air RoLaEy Equipment Type: Canterra CT-450 Boring Diameter: 6" Soil Gas Sample Method: Gromidwater (burp): 0 lus 24 hrs Land Surface Elevation (1.8): Measuring Point Elev. (MP): Remarks: Elevation ft, Depth ti. SPT/Iuterval Sample ID No. Deseription Soil Gas Moisture USCS I o Comments 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Brown sandy Silt Orango-brown slightly clayey sandy Silt Tan -brown silty Sand Gra -brown siRy Sand with rock Laaments (MR) Bedrock ranite) Tenninated Air Drillin 30 ft, b s Set 2" PVC well screened fiom 15-30'; sand to 13'• bemonite to 10 ; grout to surface Page 1 of 1 ENVIRO-PRO, P.C. Well Completion Log Type 11 Well M MW-11A .P4 fft217(A) Fort MITI, SC Client: Greenway Waste Solutions, LLC Project Location County State Logged By: THB 15300 Holbrooks Road, Huntersvllle Mecklenburg NC Land Surface Elev. Measuring Pt. Elev. Date Began: Vale Completed: 9124113 9124113 Volume Evacuated: Well Dev. Method Appearance: Monitored Formation: PET CASING ABOVE GROUND VENTED CAP BELOW GROUND MAT FINISH FINISH SCH (MP) FT WELL LOCK STI DIA ALS —BOX D L S TOC WELL D PLATE Fr ALS PROTECTIVE CMP(FT1 CASING OUTSIDE BLS] FT L S CIA, BOREHOLE` 1 DIA. SURFACE CASING FT NEAT SURFACE SCH BOREHOLE DIA DIA CEMENT /BENTONI TE CALC USED INNER CASING FI MAT:PVC _ SCH: 40 _ w_____w/0,� INWR BOREHOLE DIA ; _2L CENTRALIZER TYPE MAT SIZE DIA CEMENT /BENTONT TE VOL CALC BENTONITE SEAL VOL USED DRILL METHODS I} Air Rotary 2} 3) 41 NOTE: ALL MEASURMENTS IN DEPTH BELOW LAND SLRFACE (BLS) OR ABOVE LAND SURFACE (ALS) OPTIONAL Pellets SIZE TYPE: 73 ft. x VOL CALC X VOL USED x x x SAND PACK TYPE X x -SIZE GRADE: X 42: Medium x x X X x --X x X X x SCREEN x _ MAT: PVC SLOT X x SIZE: 0.01 x _SLOT TYPE X X X 3p ft. i 87 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-11B Job No: EP-I217(a) Port Mill, South Carolina Client: Greeimay Waste Solutions, LLC Project Location: 15300 Holbrooks Road, Huntersville State: NC Total Depth: 27' Logged By: THB Soil Sample Method: Soil Cuttings Date Started: 9/25/2011 Date Complete: 912512013 Driller: Tommy NW/EDPS Drill Method: Air Rotary Equipment Type: Canterra CT-450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (binp): 0 hrs 24 hrs Land Surface Elevation (LS): Measuring Point Elea. (MP): Remarks: Elevation ft. Depth ft. SPT/Interval Sample M No. Description Soil Gas Moisture USCS Lo Comments 10.0 20.0 Brown sandy Silt Oran e-brown slightly clayey sandy Silt Tan -brown silty Sand Gray -brown sifty Sand with rock fragments (PWIt Bedrock (granite) Tem inated Air Drilling 27 ft. b s fracture zone Set 2" PVC well screened from 12-27'; at 26 fL sand to 10; bentonite to 7 ; Erout to surface Page 1 of ENVIRO-PRO, F.C. Well Completion Log Type 11 Well #: MW-11 B Job #: EP-1217(A) Fort Mill, SC Client: Greenway WMAud1` ns, LLC Project Location County state Logged By: TH8 15300 Holbrooks Road, Huntersvllle Mecklenburg NC Land surface Elev. Measuring Pt. Elev. Date Began: Date Completed., 9l25113 9125113 Volume Evacuated: Well Dev. Method Appearance: Monitored Formation: PET CASING ABOVE GROUND VENTED CAP BELOW GROUND MAT FINISH FINISH SC H (MP) FT WELL LOCK I STI DIA ALS —BOX DIA L S WELL D PLATE TOC FT ALS PROTECTIVE CASIIVG MPIFT3 "SIDE -- (BLS)FT LS DIA, BOREFf LE--1 DIA. SURFACE CASING _ FT MAT SURFACE S CH BOREHOLE DIA DIA CEMENT/BENTONITE CALC USED INNER CASING # —FT MAT: PVC _ W--- W1Q SCH : 40 INNER D BOREHOLE IA ; 2" I DIA 6„ CENTRALIZER TYPE MAT I SIZE DIA j CEMENT/BENTONITE # VOL CALC BENTONITE SEAL VOL USED pellets SIZE TYPE i0 ft, DRILL METHODS 1) Air Rotary VOL CALC x x x 211 VOL USED X X 12 ft. SAND PACK K X x 31 -TYPE x X 41 -SIZE GRADE: X -#2: Medium X x REMARKS - x X x X x NOTE: ALL MEASURMENTS IN DEPTH SCREEN >1 x BELOW LAND SLRFACE (BLS) OR ABOVE _MAT; PVC x X LAND SURFACE (ALS) SLOT X x 27 ft. - SIZE: 0.01 x OPTIONAL -SLOT TYPE x x x 27 ft. 89 of 4355 ENVIRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-l1D-1 Job No: HP-1217(a) Fort Mill, South Carolina Client: Ovelmy Waste Solutions, LLC Proj4xt Location: 15300 Holbrooks Road, I-luntersville State; NL' 'Total Dcpth: 60' Loggers By: THB Soil Sample Method: Soil Cuttings Date Started: 9/24/2013 Bate Complete: 9/25/2013 Driller. Tommy ,v/LDPS Drill Method: Air Rotary Equipment Type: Canters CT-450 Baring Diameter: 6" Soil Gas Sample Method: Groundwater (bmp): 01us 24 his Land Surface Elevation (LS): Measuring Point Elev. (MP): Remarks: Elevation ft. Depth ft. SPT/lnterval Sample ID No, Description Soil Gas Moisture USCS Lo Connuents 10.0 20.0 30-0 4U.0 50.0 6U.0 Brown sandy Silt Orange -brown slightly clayey sandy Silt Tan -brown silty Sand Gray -brown silty Sand with rock fragments (PWR) Bedrock (granite) Set 6" sclu.40 PVC casing to 40' bgs & grouted ii to ground surface Ternrinated Air Drillin , 60 ft, b s Open Borehole No fractures Page 1 of FortlMa, SC ' P C Well Completion Log Type III Client: ( enway W i ns, L�LC Project Location County state Logged By: THS 15300 Holbrooks Road, Huntersville Mecklenburg AEC Land Surface Elev. Measuring Pt. Elev. Date Began: Cate Completed: 9/2.4113 9125113 Volume Evacuated: Well rev. Method Appearance: Monitored Formation: ABOVE GROUND VENTED CAP FINISH tMP) FT WELL LOCK ALS WELL D PLATE TOC FT ALS PROTECTIVE CASING aITSIDE FT LS DIA. BOREHOLE-1 DIA,� SURFACE CASING — MAT SCH DIA CEMENT/BENTONITE — CALC USED INNER CASING MAT: PVC _ INNER SCH: 40 BOREHOLE DIA DIA � CENTRALIZER TYPE MAT SIZE DIA CEMENT/BENTONITE VOL CALC VOL USED _... DRILL METHODS 1] Air Rotary 2i 3) 4) REMARKS BENTONITE SEAL SIZE Pellets TYPE VOL CALC VOL USED SAND PACK -TYPE -SIZE GLADE: 42: Medium NOTE: ALL MEASURMENTS IN DEPTH SCREEN BELOW LAND SLRFACE {BLS} OR ABOVE _ MAT: PVC LAND SURFACE (ALS) SLOT SIZE: 0.01 OPTIONAL SLOT TYPE BELOW GROUND FINISH KRI STI — BOX X X X X Xx x x X X x X X x X x x X X X X X x x x PET CASI NG MAT SCH ❑IA LS MP(FT) - ---- (BLS) _—_F T7 FT SJRIACE BOREHOLE DIA -- FT W W/0 O 91 of 4355 ENWRO-PRO, P.C. LITHOLOGIC LOG Boring No.: MW-11 D-2 .lob No: EP-1217(a) Fort Mill, South Carolina Client: Crrwriwa Waste Solutions, LLC Project Location: 15300 Holbrooks Road, Huntersville State: TIC Total Depth: 40' Logged By: T7IB Soil Sample Method: Soil Cuttings Date Started: 9/24/2013 Date Complete: 9/25/2013 Driller: 'I onai Nv/EDPS Drill Method: Air Rotary Equipment "type: Canterra CT450 Boring Diameter: 6" Soil Gas Sample Method: Groundwater (burp): 0 hrs 24 firs Land Surface Elevation (LS): Measuring Point Elev. (MP): Remarks: Elevation P, Depth 8, SPT/]nterval Sample ID No. Description Soil Gas Moisture USCS Log Comments 10.0 20.0 30.0 40.0 Brawn samidy Silt Orange -brown slightly clayey sandy Silt Tan -brown silty Sand Gray -brown silty Sand with rock fra meats (PWR) Bedrock (granite) Set 6" sdi,40 PVC casing to 30' bgs & grautcd it to ground surface fracture @ 32' Terminated Air Drilling @ 40 ft, bgs Set 2" PVC well screened from 30-40; sand to 28; bentonite to 25 ; grout to surface Page 1 of ENVIRO-PRO, P.C. Well Completion Log Type III Well #: MW-11D-2 -to 1217(A) Fart Mill, SC Client: Greenway Was e o u ons, LLC Project Location County State Logged By: THS 15300 Holbrooks Road, Huntersville Mecklenburg NC Land Surrace Elev. Measuring Pt. Elev. Date Began: Date Completed: 9/24/13 9125113 Volume Evacuated: Well Dev. Method Appearance: Monitored Formation: PET CAST NG ABOVE GROUND VENTED CAP BELOW GROUND FIAT FINISH FINISH SCH (MP) FT WELL LOCK I STI DIA f ALS --BOX DI L S WELL D PLATE INN TOC FT ALS PROTECTIVE CASING ��� OUTSIDE — ELS) FT LS — DELI. BOREHOLE1 DIA, SURFACE CASING _ FT MAT SURFACE SCH BOREHOLE DIA DIA CEMENT/BENTONITE CALC USED INNER CASING FT MAT: PVC _ � W/O SCH: 40 INNER BOREHOLE DIA : 2" DIA CENTRALIZER TYPE MAT SIZE DIA i CEMENT/BENTONITE i VOL CALL BENTONITE SEAL VOL USED Pellets SIZE � TYPE 28 ft DRILL METHODS Li Air Rotary VOL CALC x x x 21 VOL. USED x x 3a � SAND PACK > Sl -TYPE x x qJ -SIZE GRADE: x _#2: Medium x x x REMARKS -- x x x x x NOTE: ALL MEASURMENTS IN DEPTH SCREEN 7 x BELOW LAND SLRFACE (BLS) OR ABOVE _MAT: PVC x x LAND SURFACE (ALS) SLOT x x 40 ft. SIZE: 0.01 x OPTIONAL -SLOT TYPF x x x 40 ft. 93 of 4355 APPENDIX B LeGRAND 2004 PUBLICATION 94 of 4355 A Master Conceptual Model for Hydrogeological Site Characterization in the Piedmont and Mountain Region of North Carolina A Guidance Manual North Carolina Department of Environment and Natural Resources Division of Water Quality Groundwater Section Prepared for the Groundwater Section by Harry E. LeGrand, Sr. Independent Hydrogeologist 2004 95 of 4355 Preface Contrary to prevailing thoughts and practices, much knowledge about groundwater conditions at almost any site in the Piedmont and Mountain Region of North Carolina can be developed for practical use before new data are collected. Bringing into focus some useful knowledge gained and recast from past studies can offer optimal value in virtually seeing much of what is under ground at any place. This manual attempts to demonstrate that interested persons can gain knowledge quickly at an early stage of investigation. Groundwater in the Piedmont and Mountain Region of North Carolina occurs in a complex underground environment that is difficult to understand and explain. Adding to the complexities is a variety of reactions that occur as water is withdrawn from wells or as man modifies the natural settings. It is not surprising that in many cases some problems and serious consequences of human actions occur before useful knowledge can be applied. Groundwater occurs almost everywhere throughout the Region, not in a single, widespread aquifer, but in thousands of local aquifer systems and compartments that have similar characteristics and are hydraulically connected. Interspersed among water -supply wells are at least an equal number of waste sites or contaminated zones beneath land surface. Some environmental problems are known to exist. Others are unrecognized and may reach serious proportions. Wherever activities involving groundwater exist, there are likely degrees of concern about problems that could occur. Unanswered questions prevail. Trying to sort out favorable and unfavorable actions related to groundwater is essential, but elements of contrariness are commonly involved in considering actions and reactions. For example, relatively low -yield wells on nearly flat, populated uplands in the Piedmont tend to compete for space under ground with nearby waste sites and contamination zones. High -yielding wells are more likely in adjacent, low topographic positions, but are likely to be inconvenient for human use and may be in the path of contaminated groundwater from upland areas. The opposite conditions occur in the Mountains, where the population and groundwater activity are chiefly in the valleys. Striving for favorable conditions in the environmental mix with unfavorable conditions places constraints and limitations on proper human actions and decisions. Some types of constraints and serious undesirable consequences have not been fully studied. Ideal regulatory measures are difficult to achieve. Rather than trying to focus on solving specific problems, this manual puts forward some key generalizations, or scientific rules of thumb that should help interested persons gain a basic understanding of some groundwater features common to the Region. In doing so, the report brings into play many useful, imprecise statements that are difficult to express with precision - oriented approaches. The proposed methodology should enable an investigator to forge ahead at the earliest opportunity with the best information available. Many useful studies of the Region have been made, but they have not completely jelled in a form for widespread use. In spite of misgivings and shortcomings, we attempt to improve overall knowledge of many groundwater activities and problems in the Region. ii 96 of 4355 The manual is written in common narrative language without quantitative values and equation - based expressions. Although planned chiefly for groundwater specialists, much information should be understandable and useful to others. The manual contains concise, synthesized scientific information that can be expanded by logical reasoning. The typical local system can serve as a generic, or master, conceptual model for all other local systems without the need to collect new data at each locality during the early stages of study. Good reasoning and expressions in narrative language are stressed. How are benefits derived from use of this manual? Study of the manual and reasoning from the generalizations should offer some useful information. By using the methodology a trained groundwater specialist can prepare a reliable early -stage report of conditions for a setting in a brief period of time, at little or moderate cost, without relying on specific data. This needed approach has been lacking. In spite of an assertion here that more good information can be readily disclosed, modesty is almost everywhere needed because knowledge about the groundwater system must be expressed in imprecise and qualified terms. Inherent vagueness and uncertainty can be reduced readily but rarely eliminated. Harry E. LeGrand, Sr. February 2004 iii 97 of 4355 Table of Contents Page No. Preface........................................................................................................................... ii Introduction.................................................................................................................... I Acknowledgements...............................................................................................2 Use of Generalizations and Connecting Inferences.......................................................2 Benefits of Conceptual Model Application...................................................................3 Description of the Region..............................................................................................4 Physiography.........................................................................................................4 Geology.................................................................................................................5 Hydrogeology.......................................................................................................5 The Master Conceptual Model.......................................................................................6 KeyGeneralizations..............................................................................................8 Generalizations Associated with Natural Conditions....................................8 Generalizations Associated with Conditions Imposed by Humans .............23 Model Procedures and Application..............................................................................28 Case1..................................................................................................................29 Case2..................................................................................................................30 Conclusions..................................................................................................................3 0 Bibliography................................................................................................................32 Glossary.......................................................................................................................36 Figures 1. Physiographic provinces in North Carolina...........................................................4 2. Diagram showing the principal components of the groundwater system in the Piedmont and Mountain Region of North Carolina .........................6 3. Diagram showing a conceptual view of the groundwater flow system in the Piedmont and Mountain Region of North Carolina.....................................7 4. Diagram showing some inter -relationships of key generalizations ........................9 5. Distribution of annual precipitation in North Carolina........................................11 6. Diagram showing the relative storage and transmission capabilities of the Piedmont and Mountains groundwater system.....................................................12 7. Hydrograph of USGS observation well NC 146, Mecklenburg Co., NC, forthe 2002 water year.........................................................................................13 8. Slope -aquifer systems (A, B, and C) delineated on the USGS (1987) 7.5 minute Harrisburg Quadrangle topographic map....................15 9. Conceptual view of double slope -aquifer system and included compartments.......................................................................................................16 10. Topographic map showing fracture controlled tributaries of Rocky River, Stanly, and Cabarrus Counties, NC................................................20 iv 11. Idealized cross-section showing hydraulic head relationships in recharge anddischarge areas...............................................................................................21 12. Well -yield probability graph................................................................................26 13. Schematic diagram showing the areal extent and direction of movement of a hypothetical contaminant plume...................................................................27 Tables Table 1. Comparison of natural chemical constituents of groundwater from acidic (granite) and basic or intermediate rocks (diorite) in the Piedmont and Mountain Region, North Carolina......................................23 Table 2. Site topographic ratings.............................................................................25 Table 3. Soil -thickness rating table..........................................................................26 A-1 Site Evaluation Matrix A-2 Site Evaluation Worksheet A-3 Site Evaluation Inventory Appendix v A Master Conceptual Model for Hydrogeological Site Characterization In the Piedmont and Mountain Region of North Carolina A Guidance Manual Introduction Public and private interests have directed much effort, often at great cost, toward the study and application of remedies to existing and potential groundwater related problems in the Piedmont and Mountain Region of North Carolina. Yet, these efforts represent only a small fraction of the problems, potential problems, and concerns that prevail. A better distribution of work and funding is critically needed, and a greater understanding of groundwater conditions in the region is required for proper management of groundwater related issues. A method of developing an early -stage conceptual model of key groundwater conditions is needed. The purpose of this manual is to present a new method to help interested persons understand groundwater conditions in the Region. A challenge to any method is the fact that the geologic settings in the Region are very complex. The proposed method relies on extensive use of conventional language and reasoning to develop an understanding of site groundwater conditions without the collection of new data. The manual is planned chiefly for use by groundwater specialists but should benefit interested non-professionals as well. It may seem strange that the method is designed for both specialists in groundwater and others having limited knowledge of the science. The narrative language and reasoning allows the interested individual to assemble bits of information, sort, and integrate them to develop a reasonable picture of various groundwater conditions. For example, using the conceptual model, one may observe a nearly flat wetland and reason that the water table is near land surface, and that the wetland is underlain by relatively impermeable material, such as clay or poorly fractured rock. By using this manual groundwater specialists can broaden their reasoning power to see how many factors interplay to form a reasonable, preliminary conceptual model. The specialists should be able to express the results of their reasoning in narrative language, which can be more understandable than mathematical and technical language. The specialists should be able to prepare a two- to five -page informal report of conditions at a site that approximates the state-of- the-art understanding. LeGrand and Rosen (2000) refer to this type of report as a Prior Conceptual Model Explanation (PCME). At the core of the method are 25 key statements, or generalizations, that encapsulate much needed knowledge and from which many useful inferences may be generated. The generalizations are somewhat similar to laws of other sciences, such as physics and chemistry, although, by correctness and necessity, they are not universal in application but are expressed in imprecise and qualified terms. Their value lies in their interrelationship and associated inferences, which often results in the creation of more knowledge. The key generalizations and inferences derived from them constitute the master conceptual model. `Nlfrom CM Although many excellent studies of groundwater in the Region have been conducted, they typically provide specific data and expansive information about local sites and areas. Though helpful, they may not be adequate for public needs. The prevailing effort and mindset has been to put early emphasis on the collection of new data for processing by precision -oriented mathematical methods and routine interpretations. The process is commonly directed from an arena of rigid regulatory procedures. Being time consuming and costly to varying degrees, studies and investigations relying on this process can only cope with a small fraction of the problems and questions needing attention. To some extent, the mathematical approach is based on the assumption that the computational results of data from the Piedmont and Mountain groundwater system are equivalent to the results derived from data from porous, granular aquifer material, such as is typical of the Coastal Plain. This precision -oriented approach can be pretentious or misleading when applied to the complex geology of the Region. Moreover, this approach is difficult to understand for those not trained in hydrogeology. Thus, the distribution of useful information to the public has been limited. In this manual, the main effort is directed toward making optimal use of imprecise information. Missing from the work being done is a knowledge base that can be widely applied. The method proposed here derives optimal value from past experience and knowledge for application at an early stage in the evaluation of a site. Acknowledgements The author wishes to thank the many members of the North Carolina Department of Environment and Natural Resources, the Raleigh District Office of the U.S. Geological Survey, and Ralph Heath, consulting hydrogeologist, for their assistance in the critical review of this manual. Special thanks are extended to Perry Nelson, who assisted the author throughout the preparation of the manuscript, particularly in confirming the validity of the generalizations and their application. The author also wishes to thank Walter Haven, of the Groundwater Section, for his assistance in the preparation of the manual, and Carl Bailey, Assistant Chief of the Groundwater Section, for his sponsorship and continuing support of the project. Use of Generalizations and Connecting Inferences Twenty-five generalizations represent the core of the method by which a broad understanding of the groundwater conditions can be generated. They have been reproduced, with modifications, from a paper (LeGrand, 1992) included in a symposium volume published by Clemson University (Daniel and others, editors, 1992). The generalizations have been developed from many years of study by experienced groundwater specialists and are drawn chiefly from various reports included in the references listed at the end of this document. The generalized statements were developed by a combination of statistical studies, observations, and logical deductive reasoning. The skillful and intensive studies by Charles C. Daniel, III, of the U.S. Geological Survey, in the past two decades have verified almost all of the general statements, as indicated in his referenced published reports. The studies conducted by Ralph Heath have also contributed greatly to the development of the generalizations. 101 of 4355 Most of the generalizations are expressed in the form of tendencies because precise information at a particular place is not likely to be known. The generalizations provide a reservoir of background information from which inferences can be exploited for optimal value. Values of various parameters and factors are needed in the evaluation of a site. Although specific values from measured data have appeal and are needed in quantitative studies, they may not fit in this practical, early -stage method. Rather, the values selected are imprecise estimates from a range of conditions. If the approximate value of one factor is not easily known, connective inferences of the other factors can help to estimate an acceptable value. Each generalization need not stand alone for routine interpretation. An inference derived from a generalization can be connected to another inference of the same generalization or another associated generalization. For example, a view of a specific topographic setting likely reveals the (1) direction of groundwater flow, (2) concentration or divergence of flow, (3) approximate hydraulic gradient, (4) area of groundwater discharge, (5) depth to the water table at various positions, and (6) inklings of the relative distribution of permeability. The interplay of cause and effect relations can be compounded and anchored to many generalizations. The generalizations and various inferences can be linked and connected to reveal a true conceptual model. The linkage is not of a decision tree or single -chain type that can be simply weakened or broken. Rather, the linkage is derived from a matrix of various generalizations and inferences that form a pictorial fabric. If one or more inferences do not fit, the situation is re-examined and flagged as an anomaly or error. There can be almost interlocking proof that a conceptual model constructed in this manner is reliable and fairly expansive in broad interpretations. Benefits of Conceptual Model Application The following benefits may be expected from application of the Master Conceptual Model: • Assisting in early -stage planning of hydrogeological investigations. • Screening contamination sites for priority ranking. • Reducing costs of site studies. • Assisting in wellhead protection studies. • Providing information in the early stages of environmental audits and brownfield studies. • Providing early orientation on possible remedial action. • Providing a basis for early -stage risk assessments. 102 of 4355 • Estimating potential for natural attenuation at groundwater contamination sites. Providing insight to prevent purely mechanical interpolation and extrapolation of hydrogeologic information. Description of the Region As shown in Figure 1, North Carolina includes parts of three physiographic provinces: the Atlantic Coastal Plain, Piedmont, and Blue Ridge (Fenneman, 1938). All of North Carolina, west of the Coastal Plain, lies in the Piedmont and Blue Ridge Provinces. They include all or part of 65 of the state's 100 counties and a population of over six million, of which approximately 47 percent rely on groundwater as a source of water supply. The authors have taken the liberty of referring to the two provinces as "the "Region," and to the Blue Ridge Province as the "Mountains." Coastal Plain 100 0 100 Miles Stream Figure 1. Physiographic provinces in North Carolina. Physiography In North Carolina the Piedmont extends from its boundary with the Coastal Plain westward to the escarpment of the Blue Ridge Mountains, a distance of 150 to 225 miles. It is characterized by gently rolling hills rising from a base altitude of about 300 feet above mean sea level at its eastern boundary, to about 1500 feet at the foot of the Blue Ridge escarpment. Topographic relief, from stream valley to ridge top, ranges from 75 to 200 feet. Scattered across the province are remnants of ancient mountains that have resisted erosion and now stand from 500 to 1,500 feet above the surrounding terrain. 4 103 of 4355 The Mountains extend from the base of the Blue Ridge escarpment, west into Tennessee, a distance of from 30 to 120 miles, where they border the Valley and Ridge Province. They comprise an area of rugged, forested slopes rising from an altitude of about 1,500 feet at the base of the escarpment, to over 6,000 feet among the highest mountain peaks. Of the many rivers that drain the mountains, all but three, the Broad, Catawba, and the Yadkin-Peedee, rise on the western side of the eastern continental divide and flow generally northwest towards the Tennessee River. It is interesting to note that the rural population in the Mountains tends to congregate in the valleys, while in the Piedmont, communities are generally found along the ridgelines. From the standpoint of hydrogeology such positioning of rural homes and communities could have important implications. Geology The geology of the Region is complex and includes representatives of all of the three main classes of rocks; igneous, metamorphic, and sedimentary. Of these, metamorphic rocks predominate. Among the metamorphic rocks, gneiss, schist and metamorphosed granitic rocks are the most prevalent. Quartzite, slate, phyllite, argillite, and marble are less widely distributed. Intrusive igneous rocks, such as granite, diorite, and gabbro are significant, but account for only about 6 percent of the area (Daniel and Dahlen, 2002). Over geologic time all or part of the region has experienced uplift, folding and faulting, alteration, and erosion. The major rock units occur as northeast trending belts, corresponding to the trend of the regional geologic structure. Four sedimentary basins, formed during the Triassic and Jurassic Periods, occur in a southwest -northeast trending belt across the Piedmont. As this report pertains primarily to areas underlain by igneous and metamorphic rocks, a discussion of the Triassic sediments is excluded. Throughout the Region, bedrock is overlain by a mantle of unconsolidated material known as regolith. The regolith includes, where present, the soil zone, a zone of weathered, decomposed bedrock known as saprolite, and alluvium. Saprolite, the product of chemical and mechanical weathering of the underlying bedrock, is typically composed of clay and coarser granular material up to boulder size, and may reflect the texture of the rock from which it was formed. Thus, the weathering product of granitic rocks may be quartz -rich and sandy -textured, whereas rocks poor in quartz and rich in feldspar and other soluble minerals form a more clayey saprolite. Alluvial and terrace deposits are generally restricted in area and thickness and represent a very small fraction of the geology of the region. Hydrogeology The main characteristics of the hydrogeology of the Region are highlighted in the lists of generalizations found on later pages. The groundwater system in the region is essentially a two-part system (Figure 2) comprised of the regolith and the underlying bedrock. 104 of 4355 The regolith, which may have a porosity ranging from 35 to 55 percent (Heath, 1980), serves as the principal storage reservoir for the underlying bedrock. Precipitation infiltrates the regolith until it reaches the saturated zone, typically in saprolite, where it is stored as groundwater in inter -granular pore spaces. Where saprolite is very thin, the saturated zone may be entirely contained in fractured bedrock. In many locations, the regolith includes a transition zone between saprolite and fractured bedrock. The transition zone consists of coarse fragments of partially weathered bedrock and lesser amounts of saprolite (Daniel and Dahlen, 2002). Some groundwater moves through the regolith and into interconnected fractures in the underlying bedrock while another component flows through the regolith parallel to the bedrock surface (Figure 3). The destination of both components is an area where groundwater discharges as seepage into streams, lakes, or other surface water bodies, and also as evapotranspiration in lowland areas. RegolRh unsaturated zone REGOLITH I Regolith saturated rune SOIL _ ZONE 4vater table TRAN SITI O N ZONE ,t FRACTURED BED ROCK• SAPROLITE WEATHERED BEDROCK, BOULDERS UNWEATHERED BEDROCK SHEETJOINT BEDROCK STRUCTURE FRACTURE Figure 2. Diagram showing the principal components of the groundwater system in the Piedmont and Mountain Region of North Carolina. (from Harried and Daniel, 1992) The Master Conceptual Model In the event of groundwater contamination, or threat of contamination, it is imperative to assess rapidly the effect on groundwater users and inform them of the nature and severity of the 6 105 of 4355 incident. In the likely event that multiple incidents compete for attention, priority must be determined swiftly in order to minimize the threat to human health and the environment. The Master Conceptual Model is designed to create a plateau of knowledge of the hydrogeology of the Region in the early stage of site characterization, not dependent upon acquisition of new data. The model thus developed establishes a sound foundation for more detailed studies and provides an early indication of site vulnerability and sensitivity. Fortunately, significant knowledge exists concerning the occurrence and movement of groundwater in the Piedmont and Mountain Region. From this body of knowledge, certain conclusions have been reached regarding the groundwater system. Where individual sites have geologic and terrain characteristics in common, conclusions concerning groundwater conditions may be drawn that are applicable to most sites sharing those features. These common characteristics are referred to as "generalizations." /I l SHEET JOINTS RECHAOIS5HARGE —4-- 1 RECHARGE DISCHARGE .■ l _ I l , - �UNSATUR, ZONE �t r WATER foe ee l� s g9 FAULT �nl r I ARROWS SHOW DIRECTION OF GROUNDWATER MOVEMENT t WATER TAg SATURATED ZONE 6pdo v-p.p:a� v ,�O% • _ ZONE OF FRACTURE !' CONCENTRATION Figure 3. Diagram showing a conceptual view of the groundwater flow system in the Piedmont and Mountain Region of North Carolina. (from Daniel, 1990) Armed with a foreknowledge of conditions affecting a site, it is possible to develop a rational estimate of site conditions before the first test boring is advanced, allowing specific additional data needs to be defined more accurately and acquired at the least cost and in the most timely manner. 7 Key Generalizations A generalization may be defined as an inductive conclusion stating that something is true about all or some members of a class. Some generalizations, such as in Darcy's law, are considered universal, and are applicable in almost all situations. Many universal generalizations are derived directly from physics and chemistry and can be translated into mathematical form for application. Non -universal generalizations, such as those offered herein, have their basis in empirical knowledge derived from decades of field observations by trained investigators. They may be applicable in every conceivable geologic setting and are necessary for proper interpretation and expression. Generalizations may be used in the absence of typical site -specific data such as soil borings, test wells, cores, and geophysical surveys, to establish a reasonable level of knowledge about a site. On the strength of that knowledge, decisions may be reached regarding such factors as water - table depth, direction of groundwater flow, hydraulic gradient, recharge potential, and groundwater vulnerability. The generalizations may form the foundation for locating and designing monitoring wells, as well as production or recovery wells, and may indicate the need for the provision of alternative water supplies to local users. It is important to understand that the generalizations presented in this report have limitations in their application and, in many circumstances, must be augmented with traditional investigative methods, such as drilling or geophysical technology. - The following generalizations, grouped into those associated with natural conditions and those resulting from man's activities, are directly applicable to the Piedmont and Mountain Region. Most of the generalizations associated with natural conditions are products of geologic processes and are interrelated in varying degrees (Figure 4). Generalizations Associated with Natural Conditions The following generalizations are associated with natural conditions. Additional commentary follows the generalizations where appropriate. N-1. ROCK TYPES Igneous and metamorphic rocks are closely interspersed throughout most of the Region. Geologic maps at various scales show the distribution of rock types, which tend to have locally erratic outcrop and subsurface distribution patterns, but regionally trend generally northeast -southwest. Although the igneous rocks are predominantly granite, subordinate amounts of diorite and gabbro are widespread. Metamorphic rocks, chiefly gneiss and schist, are common and tend to be folded and faulted extensively. Argillites occur extensively in the southeastern Piedmont. As the bedrock is characterized by fracture -type permeability, 107 of 4355 some general knowledge of the fracture characteristics of the predominant rock type in a specific area or site is desirable. Fortunately, indirect evidence of the degree of fracturing of a particular rock may be derived from terrain analysis, chiefly soil thickness and topographic expression. In most places, massive granite and gabbro have thin soils and are poorly fractured, whereas gneiss and schist have thicker soils and moderate to relatively high fracture densities. Geologic History Permeability Rate of (N-12) Groundwater Flow (N-15) Chemical Character Depth of Fracture Rock Type Circulation System (N-1) (N-11) (N-13) Groundwater Flow Cycle Hydraulic (N-9) Head (N-14) Groundwater Recharge, 9 Occurrence Discharge (N-5) (N-g) Topography (N-3 ) Soil-Saprolite Precipitation Water Table GroundwaterFlow Path (N-2) (N-4) (N-6, N-7) (N-10) Figure 4. Diagram showing some interrelationships of key generalizations. Arrows indicate significant influence of one characteristic (generalization) on others. Numbers in parenthesis correspond to numbered generalizations in text. As igneous and metamorphic rocks have little or no primary porosity, their importance as sources of groundwater is dependent upon the extent to which they have developed, or have the potential to develop, secondary porosity in the form of fractures and solution openings. Daniel (1989) developed a hydrogeologic classification based on the origin, composition and texture of rocks and their water -bearing potential. His statistical analysis of 4,815 wells (excluding those in the Triassic basins) indicated that the highest average yields occurred in wells constructed in schist, phyllite, and undifferentiated metavolcanics. Lowest average yields occurred in argillite and metavolcanic tuffs. N-2. SOIL—SAPROLITE Soil and soft, highly weathered rock, known as saprolite, overlie bedrock in most places. The soil-saprolite and the underlying fractured bedrock represent a composite water -table aquifer system. There are no underlying aquifers. The thickness of the soil-saprolite zone varies according to the type of parent rock, topography, and geologic history. Saprolite thickness ranges from zero to as much as 100 feet in some places. In the Piedmont, the zone is usually thicker beneath broad upland areas than in valleys. In the Mountains, ridge tops and upper slopes generally have thin soil-saprolite zones due to the resistant nature of the underlying, ridge forming bedrock. A soil-saprolite zone only a few feet thick may suggest poorly fractured rocks below, especially in the Piedmont. A transition zone of partially weathered rock may occur at the base of the regolith between the soil-saprolite and unweathered bedrock (Stewart and others, 1964; Nutter and Otten, 1969; Harped and Daniel, 1992). A transition zone is a zone of relatively high permeability resulting from incomplete mechanical and chemical alteration of the bedrock. It may be composed of rock fragments of varying size, depending upon the composition of the parent rock, and generally contains less clay than the overlying saprolite. The transition zone may serve as a zone of rapid flow within the fractured rock system and may also be a conduit for the transmission of contaminated groundwater to a well or other point or area of discharge. The concept of the transition zone is useful in distinguishing between distinctive soil-saprolite and unweathered bedrock. The zone may thicken and thin within short distances, and upper and lower boundaries may be difficult to identify. Thus, establishing a reasonable thickness or the degree of permeability within an area of a few acres is arbitrary. Figure 2 illustrates the relationship between the transition zone, soil-saprolite, and bedrock. N-3 TOPOGRAPHY The topography of the Piedmont is characterized by hills and valleys; the hills commonly having gentle, rounded slopes. A close network of perennial streams prevails, and in most inter -stream areas a perennial stream is within 3, 000 feet. The topography of the Mountains is more rugged, and typified by steep, forested slopes. Subtleties or extremes of terrain and vegetation may limit visual analysis of site physiography. A topographic map reveals in detail the arrangement of landscape features such as surface water bodies, hills, ridges and valleys, slope steepness, population centers, and isolated structures. It also may provide evidence of land -use practices and geological features such as rock type and bedrock fractures. A topographic map of a scale of 1:24,000, or larger, is essential to a preliminary site evaluation using the conceptual model. The evaluation of some sites may be improved by enlarging a 10 `IMS1LSM 1:24,000 map to 1:6,000 scale. The maps may also be used to determine the direction of groundwater movement and provide estimates of water table depth and velocity of groundwater movement. N-4 PRECIPITATION Precipitation, the source of groundwater recharge, averages 3.0 to 3.5 inches per month in the Piedmont and 4.0 to 4.5 inches per month in the Mountains. Extreme variations in precipitation occur locally, especially in the southwestern Mountains where more than 80 inches per year has been recorded. As shown in Figure 5, annual precipitation ranges from less than 40 inches per year in the central Piedmont to more than 80 inches per year in the southwestern mountains (Daniel and Dahlen, 2002). In much of the Region the annual distribution of precipitation is fairly even throughout the year; yet, the three- or four -inch average monthly precipitation can be misleading. Droughts and floods are common. Droughts tend to reduce greatly groundwater storage in the soil-saprolite zone to the extent that many wells may produce less water or fail completely. Also, a decline in groundwater discharge to streams and lakes during droughts severely affects surface -water supplies. During periods of excessive precipitation, the high stage of the water table can flood some buildings and adversely affect certain human activities. Figure 5. Distribution of mean annual precipitation in North Carolina. (isohyetal lines in inches) N-5 GROUNDWATER OCCURRENCE Groundwater occurs in two contrasting media: (a) clayey, granular soil- saprolite that typically becomes less clayey with depth and (b) underlying 11 110 of 4355 fractures and other planar openings in bedrock (Figure 2). The soil- saprolite zone is capable of storing water readily, but transmits it slowly. In contrast, the bedrock fracture system has a relatively low storage capacity but is capable of transmitting water readily where interconnecting fractures occur (Figure 6). WELL- D REGOLITH RESERVOIR J 4 ,N TORAGE �EG01.hT�' sraRacE Iry BEDROCK BEDROCK -FRACTURES Figure 6. Diagram showing the relative storage and transmission capabilities of the Piedmont and Mountain groundwater system. (modified from Heath, 1984) The extent to which bedrock functions as a source of water supply to wells depends upon precipitation, the permeability and saturated thickness of the overlying regolith, and the density and interconnection of bedrock fractures. Because igneous and metamorphic rocks consist of interlocking crystals, primary porosity is very low, generally less than three percent. Secondary porosity of crystalline bedrock results from weathering and fracturing and generally ranges from one to ten percent (Freeze and Cherry, 1979) but according to Daniel and Sharpless (1983), porosity values of from one to three percent are more typical. Daniel (1990) reported that the porosity of the regolith ranges from 35 to 55 percent near land surface but decreases with depth as the degree of weathering decreases. N-6 DEPTH OF WATER TABLE The water table is near land surface in valleys and as much as 30 to 50 feet below land surface beneath hills. The range of seasonal fluctuation of the water table is as little as two feet in valleys, but may exceed ten feet beneath hills. Although precipitation is relatively evenly distributed throughout the year, the water table fluctuates noticeably, rising during the winter to an annual high in April or May, and declining steadily during the summer and fall as a result of evapotranspiration (Figure 7). 12 i.5 .A h 111 of 4355 6.5 2001 2AC2 Figure 7. Hydrograph of USGS observation well NC 146, Mecklenburg Co., NC, for the 2002 water year. (USGS, 2003) During the coldest months of the winter and early spring, a lack of evaporation and plant use allows water levels to recover. N-7 WATER TABLE CONFIGURATION Streams are linear "lows " in the water table, representing the intersection of the water table and the land surface. Under natural conditions the topography of the water table is crudely similar to that of the land surface, but has less relief (Figure 3). One may construct synthetic water -table maps without water -table measurements from wells by using USGS 7.5 minute topographic maps scaled at 1:24,000. If possible, the map scale should be increased to 1:12,000 or greater. The maps may be constructed by extrapolating upward from the known elevations along the course of a perennial stream (the points at which topographic contours cross streams) to the hilltop, where the water table is likely to range from 30 to 50 feet below land surface. Water -table contours connecting points along stream courses should be drawn roughly parallel to the topographic contours, but with less intricate curvature. As groundwater moves in the direction of decreasing head, and at right angles to the water -table contour lines, one can approximate the general direction of groundwater flow from the surface topography. N-8 RECHARGE AND DISCHARGE Most recharge and discharge is through porous granular material (clayey soil-saprolite or floodplain deposits), but much of the intermediate flow between recharge and discharge areas is through bedrock openings. Recharge occurs chiefly on upland areas and slopes, while discharge is concentrated in lowland areas bordering surface water bodies, marshes, and floodplain. Natural discharge from fractures into a surface body of water is common. Evapotranspiration is a significant part of the natural discharge. Although not easily quantifiable, evapotranspiration is 13 112 of 4355 especially high in lower parts of draws and from flood plains, especially at high stages of the water table. On reaching the water table, groundwater flow paths vary greatly in length, depth, and travel time to areas of discharge, depending upon local hydrogeologic conditions. Some moves laterally in the soil-saprolite zone and may remain there until reaching a discharge area. Other paths may be deeper and longer and require groundwater to move erratically through the fractured bedrock and pass again through the soil or alluvium before discharging into a surface stream. N-9 GROUNDWATER FLOW CYCLE Groundwater moves continuously toward streams. In transit to an area of discharge, some groundwater is lost to evapotranspiration, especially in valleys; the remainder discharges as small springs and as bank channel seepage into streams. Small springs and seeps are common in draws and other topographic depressions, especially near the base of valleys. Springs and seeps at higher elevations are commonly of the wet -weather type and may suggest poorly fractured rocks below. N-10 GROUNDWATER FLOW PATH The path of natural groundwater movement is relatively short. It is almost invariably restricted to the zone underlying the topographic slope extending from a topographic divide to an adjacent stream. Groundwater rarely passes beneath a perennial stream to another, more distant, stream. Thus the concept of a local slope -aquifer system applies. On the opposite sides of an inter -stream topographic divide are two similar slope -aquifer systems, as shown by (A) and (B) in Figure 8. Two similar slope -aquifer systems occur on the opposite sides of a drainage basin (B) and (Q. As described, the region is a network of slope -aquifer systems, the boundaries of which may be arbitrary or indistinct. A double slope - aquifer system can be considered in the vicinity of the groundwater divide at the ridgetop (Figures 8 and 9). A slope -aquifer system is a unit of the groundwater flow regime that is seemingly separated and free of impact from adjacent, similar units. Commonly, the slope -aquifer system includes smaller hill -and -dale configurations that are observed as topographic "spurs" (ridges branching from a main ridge or mountain crest). Similar undulations, although of lesser amplitude, may also occur in the underlying water table and form important natural groundwater flow -control features. The crests of the water table undulations represent natural groundwater divides within a slope -aquifer system and may limit the area of influence of wells or contaminant plumes located within their boundaries. The concave topographic areas between the topographic divides may be considered as flow compartments that are open-ended down slope. 14