Loading...
HomeMy WebLinkAbout60H_ThomasRd_Geotechhnical Engineering Evaluation_2016 7606 Whitehall executive Center Drive, Suite 800 Charlotte, NC 28273 Tel: 704-529-3200 Fax: 704-529-3272 www.atcassociates.com N.C. Engineering License No. C-1598   December 8, 2016    Mr. Bart Hopper    Hopper Communities    229 E. Jackson Avenue    Charlotte, NC 28203      Subject:  Geotechnical Engineering Evaluation   Proposed Single Family Residential Community     Thomas Road   Charlotte, North Carolina   ATC Project Number 199HOP1636     Dear Mr. Hopper:    ATC Associates has completed the authorized Geotechnical Engineering Evaluation for the above referenced site.   This report reviews our current understanding of the project, presents our exploration procedures, describes  encountered subsurface conditions, and presents our evaluations, conclusions, and recommendations  concerning geotechnical aspects of the project.  PURPOSE AND SCOPE OF EXPLORATION     The purpose of this work is (a) to further define and evaluate the subgrade soils with specific intent to these  conditions as they relate to the site design and construction and (b) to provide recommendations as required for  design and construction of the proposed building foundations, roadways, and utility infrastructure.      Prior to the field exploration, a geotechnical engineer from our office evaluated the referenced information.   The observations and findings were used in planning this exploration, in establishing areas of special interest,  and in relating site conditions to known geologic conditions in the area.     SITE DESCIRPTION    The property consists of two parcels, totaling 38.3 acres, located on the west side of Thomas Road in  southwest Charlotte, North Carolina. The property address is 14816 Thomas Road in Charlotte, Mecklenburg  County, North Carolina 28278. According to information obtained from the Mecklenburg County Property  Ownership and Land Records System (POLARIS), the property is comprised of two parcels identified as Parcel  Numbers 217‐031‐02 and 217‐031‐55.     The surrounding area is mostly residential and undeveloped. The vicinity of the subject property is  characterized by residential use to the north, east, and south, and undeveloped land to the west. Local  topography slopes to the southwest towards a tributary of Torrence Branch Creek that runs from northeast  to southwest through the western part of the property.    Thomas Road Site  Charlotte, North Carolina   2 The “front” portion of the property is currently developed with a single‐family residential structure and metal  storage shed. A dilapidated wooden storage shed was also observed in the southeastern part of the property.  A majority of the property is undeveloped wooded land with a creek observed in the western part of the  property.  According to the USGS Topographic 7.5‐Minute Series Lake Wylie, South Carolina quadrangle map, dated  2014, the property is located in an area with an approximate elevation of 734 feet above mean sea level  (MSL). Local topography slopes to the southwest towards a tributary of Torrence Branch Creek that runs from  northeast to southwest through the western part of the property.     Based on the Geologic Map of North Carolina (1985), the property lies within the Charlotte Belt of the  Piedmont Physiographic Province. The crystalline metamorphic bedrock beneath the site is likely  metamorphosed granite that is light pinkish gray. The shallow subsurface in most areas of the Piedmont,  including the property, contains residual soil overburden, including structure‐free residuum, saprolite, and  partially weathered rock (PWR) that each derive from in‐place weathering of the crystalline bedrock.  Occasional areas of recent deposits of alluvium in the uppermost subsurface are found near streams and  rivers. Saprolite and PWR typically contain some relict structures from the original rock material. Depth to  rock ranges from ground surface at occasional outcrops to depths of greater than 100 feet in areas of easily  weathered rock.   FIELD EXPLORATION   In order to evaluate subsurface conditions of the proposed residential community and per your authorization, a  subcontractor working under the direction of ATC performed sixteen test borings (designated B‐1 through B‐9  and TP‐1 through TP‐5) at the approximate locations indicated on the attached Boring Location Plan. The  locations of the soil test borings should be considered approximate.    The soil test borings were drilled using a truck‐mounted rig with a manual Standard Penetration Test (SPT)  hammer. The borings were extended to depths ranging from 3 to 25 feet below the existing ground surface  elevation. Soil samples were collected during the drilling operations and retained in the field by ATC personnel.   The samples were brought back to the laboratory where each was classified by the geotechnical engineer using  the Unified Soil Classification System. These classifications were based on visual examination and selected  laboratory testing.  The soil descriptions on the attached Soil Boring Logs should be considered approximate. The  soil drilling logs are included in the report Appendix. The groundwater observations represent conditions at the  time of drilling.      In order to investigate the depth and extent of the fill material, a series of test pit excavations was also performed  at the site.  The test pit excavations were extended to depths ranging from approximately 5 feet to 20 feet below  the existing ground surface. Site observations of the test pits were performed by a senior geotechnical engineer  in order to assess the content of the residual and fill materials encountered during the excavation operations.                Thomas Road Site  Charlotte, North Carolina   3 SUBSURFACE CONDITIONS     The subsurface conditions discussed in the following paragraphs and those shown on the logs represent an  estimate of the subsurface conditions based on interpretation of the field data using normally accepted  geotechnical engineering judgments.  We note that the transition between different soil strata is generally less  distinct than those indicated on the logs. Although individual logs are representative of the subsurface conditions  at the locations shown, they are not necessarily indicative of subsurface conditions at other locations or at other  times.     Fill Soil    Fill materials were encountered in the general area noted on the attached site plan. It is our understanding the  area noted was used as landfill for various materials for a landscaping business at some point in the past. The fill  materials encountered in the drilling and test pit operations primarily consisted of tree stumps and branches,  organic laden soil, and to a lesser degree building materials such as brick and masonry block fragments. Surficial  fill materials observed at the site consisted on aged lumber, car tires, large rock fragments, and metal scrape.   The subsurface organic laden fill materials extended to depths approaching 20 feet in some of the test pit  excavations. The average depth of the materials was in the 5 to 10 foot range. The fill materials encountered in  the soil test borings ranged in depth from approximately 3 to 17 feet below the existing ground surface. The fill  soils will be discussed in the Recommendation Section of this report.     Based on laboratory tests performed, the surficial fill materials also contained fat CLAY soils which can be  described as marginally suitable for use as general fill if the moisture condition of the soil is elevated.     Residual Soils     Residual soils were encountered in the soil test borings and underlying the referenced fill materials.  The residual  soils generally consisted of sandy SILT (ML), sandy CLAY (CL), and silty sand (SM) materials. Review of the  laboratory tests performed on representative soil samples indicated that the in‐place soils had natural soil  moisture contents ranging from 10.7 to 34.8 percent.      Laboratory Testing      The following laboratory tests were performed on the bag soil samples obtained at the site.  The laboratory test  results are summarized below.       Natural Moisture Content Tests:  Twenty‐four natural moisture content tests were performed on selected bag  samples.  The natural moisture content tests were used to determine the suitability of the on‐site soils for use as  structural fill and to evaluate the variation of soil moisture content across the project site.     Atterberg Limit Tests: Atterberg limits, including liquid and plastic limits, are used to define plasticity of clays.  As moisture content increases, clay changes its state of consistency from solid to plastic and viscous flow state.  Liquid limit is defined as the moisture content at the lower limit of viscous flow or the upper limit of the plastic  state. Plastic limit is defined as the moisture content at the lower limit of the plastic state. The tests were  performed in accordance with ASTM D 4318. The test results are summarized below.     Thomas Road Site  Charlotte, North Carolina   4 BORING  LOCATION  DEPTH, ft. LIQUID LIMIT, % PLASTICITY INDEX,  %  USCS CLASSIFICATION  B‐4 1 ‐ 2.5 60 38 CH    Groundwater    Groundwater conditions were not encountered during the drilling operations. It should be noted that  groundwater levels can fluctuate significantly with seasonal and climatic variations and may be different at  other times. In additional, groundwater conditions in close proximity to the creek are expected to be fairly  shallow.        Thomas Road Site  Charlotte, North Carolina   5 CONCLUSIONS AND RECOMMENDATIONS    General Findings and Recommendations    Given the past site use and the results of the exploration provided herein, the area highlighted on the attached  Boring Location Plan indicates the general location and approximate lateral extent of the fill soils encountered.  The fill materials appear to have been placed in a remnant naturally formed drainage channel at the site. As  indicated herein, the fills soils appear to have been placed in conjunction with the past landscaping business that  operated in the 1970’s and 80’s. The fill materials appeared to primarily consist of organic laden materials, tree  stumps and rock fragments. Some inert building materials including brick and block fragments were also  observed. Other items including aged lumber, glass, and scrap metal were also encountered. It is our  understanding that some landfill closure documentation was provided for the site.     It should be noted that as with any previously placed fill materials, it is always possible to find deleterious  materials in unexplored areas of the site. In addition, the estimated quantity of fill provided is subject to change  if site conditions change in unexplored areas of the site. Based on the findings provided herein, we estimate the  fill to be approximately 8,000 to 12,000 cubic yards in volume.      The following geotechnical conclusions and recommendations are based on our observations at the site,  interpretation of the field data obtained during the explorations, and our experience with similar subsurface  conditions. SPT N‐Values have been used to estimate allowable bearing pressures using industry recognized  correlations.  Subsurface conditions in unexplored locations may vary somewhat from those encountered.      Based on the results of the soil test borings performed, the site contains some near surface low and high plasticity  silts and clays (ML, CL, and CH).  With depth, the silty and clayey soils transition to silty sand soils and partially  weathered rock materials. The high plasticity clays (CH) were encountered within generally the uppermost 5 to  6 feet of the existing ground surface in some portions of the site. However, deeper depths are encountered in  some areas of the site. The moisture content tests indicated that some of these materials are at moisture  contents near or above their optimum moisture contents. The high plasticity silts and clays (CH) encountered at  the site are moisture sensitive and may become unstable when exposed to moisture and heavy construction  traffic.  If unstable soil conditions are encountered during the site construction operations, selected undercutting  will be required as determined by qualified site personnel. It is recommended that the proposed building pad  slob not bear directly on CH soils. We recommend at least 2 feet of engineered fill per placed between the floor  slabs and any high plasticity fat clay (CH) soils.       The ML, CL, and SM soils are suitable for use as fill materials and foundation bearing materials if the materials  are at or below their optimum moisture content and undergo a successful proofroll.  Mass undercutting of the  materials is not recommended or expected. Some undercutting operations of the near surface soils may be  required as site conditions at the time of construction dictate, but extensive undercutting of the materials is not  anticipated. Additional recommendations regarding the soil use are provided in Site and Subgrade Preparation  section of this report.        Thomas Road Site  Charlotte, North Carolina   6 Preliminary Foundations Recommendations    Pending completion of site and subgrade preparation as discussed in this report, the proposed single family  structures can be supported on shallow spread and continuous wall foundations or turned‐down monolithic slabs  bearing on the in‐place residual soils or properly placed structural fill placed over stable soils. A net allowable  design foundation bearing pressure of 2,000 pounds per square foot (psf) can be used for foundation design.     Total preliminary settlements are expected to be 1‐inch or less with differential settlements between adjacent  column footings of ½‐inch or less with a design foundation bearing pressure of 2,000 psf. These settlement  estimates are dependent on proper implementation of the recommended site preparation measures.    We recommend widths of not less than 24 inches for rectangular and continuous footings for ease of  construction and to reduce the possibility of localized shear failures.  Exterior footing bottoms should be at least  24 inches below exterior grades for protection against frost damage and erosion.    Construction and Evaluation     Bottoms of foundation excavations should be evaluated by a geotechnical engineer prior to placement of  reinforcing steel and concrete to verify that adequate bearing materials are present and that all debris, mud, and  loose, frozen or water‐softened soils are removed.      Foundation excavations should be concreted as soon as practical after they are excavated. Water should not be  allowed to pond in any excavation. If an excavation is left open for an extended period, a thin mat of lean concrete  should be placed over the bottom to minimize damage to the bearing surface from weather or construction  activities. Foundation concrete should not be placed on frozen or saturated subgrades.      Groundwater Conditions     If groundwater is encountered, the contractor should be responsible for assuring adequate groundwater control  is in‐place and functioning prior to the start of any work to allow the work to be performed in a dry (free from  flowing or standing water) condition. The contractor should be responsible for establishing the means and  methods of groundwater control and to include all such items in his bid and scope of work. Methods to control  groundwater include temporary ditches, sumps, pumps, well points, or other methods.      In order to prevent adverse effects of groundwater to exposed subgrade materials, it has been our experience  that groundwater levels when lowered and maintained at a depth of at least 3 feet below the limits of subgrade  excavation and undercutting elevation typically provide a stable working platform.  Additionally, the dewatering  system should be in‐place and functioning sufficiently prior to beginning earthwork construction within the area.   Inadequate dewatering may cause the subgrade to destabilize under loads from earthwork equipment and be  problematic in placement and compaction of fill soils.    Site and Subgrade Preparation      All vegetation, root systems, and other deleterious non‐soil materials and topsoil should be stripped from  proposed construction areas.  Topsoil may be stockpiled and reused later in landscaped areas or other non‐load  bearing areas.  After clearing, stripping, and undercutting, areas intended to support floor slabs, pavements, new  fill, and foundations should be carefully evaluated by a geotechnical engineer.  At that time, the engineer may  Thomas Road Site  Charlotte, North Carolina   7 require proofrolling of the subgrade with a 20‐ to 30‐ton, loaded dump truck or other pneumatic‐tired vehicle of  similar size and weight.  The purpose of the proofrolling is to locate soft, weak, or excessively wet soils present  at the time of construction that may not have been detected in our borings. Any unsuitable materials observed  during the evaluation and proofrolling operations should be undercut and replaced with compacted fill or  stabilized in‐place.    Low to high plasticity silts and clays were encountered in the some of the near surface soils at the site.  Based on  the in‐place moisture contents of these soils, utilization of these soils as structural fill material may be difficult in  seasonally wet periods of the calendar year.  In some instances mechanical or chemical drying of the soils prior  to placement and compaction may be required.  The silty and clayey soils encountered on‐site are moisture  sensitive and if these soils are subjected to moisture and construction traffic they may become unstable and  require stabilization or removal and replacement.  At the time of construction and prior to fill placement  operations, an ATC Geotechnical Engineer should evaluate these areas.         Soil Supported Slabs     Floor slabs for the proposed building may be soil‐supported and subject to the subgrade preparation and  earthwork recommendations contained in this report.  Provided the subgrade is prepared as recommended and  a 6‐inch thick layer of gravel (ASTM #57 stone or GAB) is properly placed and compacted, a subgrade modulus  (k) of 125 pci may be used for the design of the floor slab based on short term and concentrated loads, such as  fork lift loads.  This value is based on soil properties evaluated from field and laboratory data.  The value is  appropriate for design using the Portland Cement Association (PCA) publication “Slab Thickness Design for  Industrial Concrete Floors or Grade.” If alternate design methods are used for slab design, ATC should be  consulted such that appropriate parameters can be provided.    Structural Fill      Natural moisture content analysis was performed to assess the suitability of the on‐site soils in cut areas for re‐ use as structural fill.  Our testing and observation of the soil samples indicates that the in‐situ moisture content  of the on‐site soils is generally at or above the soils optimum moisture content range required for compaction.   These soils included silty sands, sandy clays sandy elastic silts, and sandy silts.  Soil should generally be within + 3  percent of optimum moisture content for use as structural fill.     The wetter than optimum soils encountered above groundwater levels will require drying for re‐use as structural  fill.  Mechanical drying (discing) is one option for drying the wetter than optimum soils. Mechanical drying is time‐ consuming and is dependent on ideal weather.  Chemical drying with lime or soil cement is a less time consuming  option, as is mixing the wetter soils with drier soils. Chemical drying or mixing should be performed under the  supervision of the Geotechnical Engineer.    Structural fill installed to replace undercut areas or achieve finished grades should be free of deleterious  materials and rock fragments larger than 3 inches in diameter and placed at soil moisture contents within 3  percent of the soil's optimum moisture content.        Thomas Road Site  Charlotte, North Carolina   8 Import fill materials should be evaluated prior to use for adherence to CBR and unit weight requirements.  The  following guidelines are recommended and preferred:      Maximum Dry Density       (ASTM D‐698 Method)    90 pcf    Liquid Limit    50    Plasticity Index    25    California Bearing Ratio    5    Structural fill should be placed in lifts of 6 to 8 inches loose measure. We recommend that structural fill within  the building pad or parking areas be compacted to a minimum of 95 percent of the Standard Proctor maximum  dry density. Structural fill in the upper 1 foot below floor slab and pavement subgrade should be compacted to  at least 98 percent of Standard Proctor. All fill material should be placed in horizontal lifts and adequately keyed  into stripped and scarified subgrade soils.     Slopes, embankments, and inclines on greater than 5 horizontal to 1 vertical may require benching in order to  place and compact fill to the required density and to establish an adequate bond between lifts.  Prior to fill  placement, approved surfaces should be scarified or rolled with a sheepsfoot type roller.             During fill placement, density tests should be performed by a soils technician to determine the degree of  compaction and compliance with the project specifications.  For underfloor areas, at least one field density test  should be made per 2,500 square feet of fill area for each 1‐foot thickness of compacted soil.  Testing frequency  should be increased in confined areas.  Any areas that do not meet the compaction specifications should be  recompacted to achieve compliance.     We recommend that the grading contractor have equipment on site during earthwork for both drying and  wetting fill soils.  We do not anticipate significant problems in controlling moistures within the fill during dry  weather, but moisture control may be difficult during winter months or extended periods of rain, especially if  poor grading practices are used.    Wet Weather Construction  Site grading that occurs during traditional wet weather periods will be problematic at this site. Some targeted  undercutting of saturated soils and chemical drying may be required if prolonged periods of unfavorable weather  conditions occur during fill placement operations at the site.  Although specific recommendations would be made  at the time of construction, the following guidelines are provided.     Saturated surface soils are difficult to dry by mechanical and/or chemical methods depending on the  season and the soil type.  Consequently, consideration should be given to removal and wasting of  saturated surface soils at the site.   Lime or cement can be an effective in drying of soils that are typically about 4 to 8 percent wet of their  optimum moisture content.  We expect chemical drying will be required during periods of wet weather  construction.   The on‐site soils are sensitive to excessive moisture.  These soils types may require undercutting and  chemical drying if subjected to inclement weather conditions.         Thomas Road Site  Charlotte, North Carolina   9  Disturbed or uncompacted soils will more readily absorb and hold water.  Disturbed or uncompacted  soils should be kept to a minimum area.  Special attention and detail should be given to “sealing‐off” or  compaction with a sooth drummed roller of disturbed areas prior to wet weather periods.  The  contractor should also provide cut ditches to channel surface water runoff from the construction areas.   The site should also be graded to prevent ponding of water on the site.  Pumping should be performed  in a timely manner in areas where water has collected.         Retaining Walls  Earth pressures on walls below grade are influenced by structural design of the walls, conditions of wall restraint,  methods of construction and/or compaction, and the strength of the materials being restrained. The most  common conditions assumed for earth retaining wall design are the active and at‐rest conditions.   Active conditions apply to relatively flexible earth retention structures, such as freestanding walls, where some  movement and rotation may occur to mobilize soil shear strength. Walls which are rigidly restrained, such as  basement, tunnel, or loading dock walls, should be designed for the at‐rest condition. A third condition, the  passive state, represents the maximum possible pressure when a structure is pushed against the soil, and is used  in wall foundation design to help resist active or at‐rest pressures. Because significant wall movements are  required to develop the passive pressure, the total calculated passive pressure should be reduced by one‐half  for design purposes.  Based on previous experience with similar soils and construction, we recommend the following earth pressure  coefficients and equivalent fluid pressures for design of reinforced concrete retaining or below grade walls on  this project:  Earth Pressure Conditions Coefficient Recommended Equivalent Fluid Pressure, (pcf)  Active (Ka)                       0.36 43  At‐Rest (Ko)         0.53 64  Passive (Kp)         2.77 166    A moist soil unit weight of 120 pounds per cubic foot (pcf) should be used for design calculations. Our  recommendations assume that the ground surface above the wall is level. A coefficient of friction value between  soil and concrete of 0.35 is recommended. A preliminary allowable bearing pressure of 2,000 psf may be used  for footings designed to bear on competent existing fill materials, residual soils, or new structural fills.  The recommended equivalent fluid pressures assume that constantly functioning drainage systems are installed  between walls and soil backfill to prevent the accidental buildup of hydrostatic pressures and lateral stresses in  excess of those stated. If a functioning drainage system is not installed, then lateral earth pressures should be  determined using the buoyant weight of the soil (approximately 58 pcf). Hydrostatic pressures calculated with  the unit weight of water (62.4 pcf) should be added to these earth pressures to obtain the total stresses for  design.     Thomas Road Site  Charlotte, North Carolina   10 Tractors and other heavy equipment should not operate within 10 feet of below grade walls to prevent lateral  pressures in excess of those cited. If foundations or other surcharge loadings are located a short distance outside  below grade walls, they may also exert appreciable additional lateral pressures that must be considered in design.  These retaining wall/below grade wall recommendations should not be correlated with soil parameters for use  in mechanically stabilized earth (MSE) wall design. We recommend that soil parameters for any MSE retaining  wall design be established through appropriate laboratory testing by the wall designer.  Recommended Pavement Design and Construction  Based on the anticipated site loading and volumes and an estimated California Bearing Ratio (CBR) value of 4 to  6 based on the on‐site soil conditions, we recommend the below pavement sections for the site.      Light Duty Asphalt Pavement:  2 inches of asphaltic concrete (2.0‐inches of Surface Course SM‐9.5) overlying a minimum of 8‐inches of  compacted Aggregate Base Course (ABC).  Heavy Duty Asphalt Pavement:  3 inches of asphaltic concrete (1.25‐inches of Surface Course SM‐9.5 and 1.75‐inches of Intermediate  Course IM‐19.0) overlying a minimum of 8‐inches of compacted Aggregate Base Course (ABC)    The recommended pavement design alternatives are subject to successful completion of site and subgrade  preparation and structural fill placement as recommended in this report.  If off‐site soils are used in paved areas,  this pavement design may require revision.  The compaction, quality, and gradation of the aggregate base course  materials will directly affect the quality and life of the pavement section. Consequently, we recommend a  minimum compaction of 100 percent of the Modified Proctor maximum dry density for the aggregate base  course material (ABC) as determined by the North Carolina Department of Transportation. A soil engineering  technician working under the direction of a geotechnical engineer should observe placement and compaction of  the base course material and perform soil density tests to confirm that the material has been placed in  accordance with our recommendations.      Seasonal Groundwater Conditions  Based on the data collected, we estimate that the Seasonal High Groundwater Table at the site is at an  elevation of approximately 650 to 655 feet msl.      Thomas Road Site  Charlotte, North Carolina   11 CLOSURE    ATC appreciates the opportunity to be of continued service to you on this project. Please contact us if you have  any questions about this report, or if we may be of further service.       Sincerely yours,    ATC Associates of N.C., P.C.                Brain Carpenter, P.E.      Joseph G. Schold, P.E.  Staff Engineer       Principal Geotechnical Engineer          Registered, N.C. 21736                             Important Information About Your Geotechnical Engineering Report Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes The following information is provided to help you manage your risks. Geotechnical Services Are Performed for Specifi c Purposes, Persons, and Projects Geotechnical engineers structure their services to meet the specifi c needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfi ll the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geo- technical engineering report is unique, prepared solely for the client. No one except you should rely on your geotechnical engineering report without fi rst conferring with the geotechnical engineer who prepared it. And no one - not even you - should apply the report for any purpose or project except the one originally contemplated. Read the Full Report Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only. A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specifi c Factors Geotechnical engineers consider a number of unique, project-specifi c factors when establishing the scope of a study. Typical factors include: the client’s goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and confi guration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engi- neer who conducted the study specifi cally indicates otherwise, do not rely on a geotechnical engineering report that was: • not prepared for you, • not prepared for your project, • not prepared for the specifi c site explored, or • completed before important project changes were made. Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect: • the function of the proposed structure, as when it’s changed from a parking garage to an offi ce building, or from alight industrial plant to a refrigerated warehouse, • elevation, confi guration, location, orientation, or weight of the proposed structure, • composition of the design team, or • project ownership. As a general rule, always inform your geotechnical engineer of project changes - even minor ones - and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed. Subsurface Conditions Can Change A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natu- ral events, such as fl oods, earthquakes, or groundwater fl uctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems. Most Geotechnical Findings Are Professional Opinions Site exploration identifi es subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review fi eld and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ-sometimes signifi cantly from those indi- cated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions. A Report’s Recommendations Are Not Final Do not overrely on the construction recommendations included in your re- port. Those recommendations are not fi nal, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can fi nalize their recommendations only by observing actual subsurface conditions revealed during construction. The geotechnical engi- neer who developed your report cannot assume responsibility or liability for the report’s recommendations if that engineer does not perform construction observation. A Geotechnical Engineering Report Is Subject to Misinterpretation Other design team members’ misinterpretation of geotechnical engineer- ing reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team’s plans and specifi cations. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation. Do Not Redraw the Engineer’s Logs Geotechnical engineers prepare fi nal boring and testing logs based upon their interpretation of fi eld logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk. Give Contractors a Complete Report and Guidance Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give con- tractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report’s accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct ad- ditional study to obtain the specifi c types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors have suffi cient time to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the fi nancial responsibilities stemming from unantici- pated conditions. Read Responsibility Provisions Closely Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled “limitations” many of these provisions indicate where geotechnical engineers’ responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly. Geoenvironmental Concerns Are Not Covered The equipment, techniques, and personnel used to perform a geoenviron- mental study differ signifi cantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually re- late any geoenvironmental fi ndings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental in- formation, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else. Obtain Professional Assistance To Deal with Mold Diverse strategies can be applied during building design, construction, op- eration, and maintenance to prevent signifi cant amounts of mold from grow- ing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, wa- ter infi ltration, and similar issues may have been addressed as part of the geotechnical engineering study whose fi ndings are conveyed in-this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer’s study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be suffi cient to prevent mold from growing in or on the struc- ture involved. Rely on Your ASFE-Member Geotechnical Engineer For Additional Assistance Membership in ASFE/The Best People on Earth exposes geotechnical engi- neers to a wide array of risk management techniques that can be of genuine benefi t for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information. 8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone:’ 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE’s specifi c written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other fi rm, individual, or other entity that so uses this document without being anASFE member could be committing negligent or intentional (fraudulent) misrepresentation. IIGER06045.0M The Best People on Earth Location Plan Figure 1 Field Work Thomas Road Site Charlotte, NC Date: November 8, 2016 PROJECT No: 199HOP1635 SCALE: NTS SOURCE: Partial Copy Google Earth Photo = approximate boring location B-1 7606 Whitehall Executive Center Dr. Suite 800 Charlotte, North Carolina 28217 www.atc-enviro.com Phone: 704-529-3200 Fax: 704-529-3272 N.C. Engineering License No. C-1598 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 TP-2 TP-1 TP-3 TP-4 TP-5 = approximate location of trash/debris = approximate creek location 17 18 13 13 14 14 32.8 34.8 1 2 3 4 5 6 1" Topsoil FILL: Stiff reddish brown and brown sandy CLAY RESIDUUM: Stiff to very stiff reddish brown and tan sandy SILT with some clay Medium dense reddish brown and tan silty SAND BORING TERMINATED SS SS SS SS SS SS 0.1 3.5 13.5 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-01 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 18 24 22 29 18 17 13.5 22.4 1 2 3 4 5 6 4" Topsoil RESIDUUM: Very stiff reddish brown and tansandy CLAY Very stiff reddish tan and brown sandy SILT Medium dense reddish brown, tan, and gray siltySAND BORING TERMINATED SS SS SS SS SS SS 0.3 3.5 8.5 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-02 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 21 35 24 13 13 13 24.3 16.4 1 2 3 4 5 6 6" Topsoil RESIDUUM: Very stiff reddish brown and tansandy CLAY Hard to very stiff reddish brown and tan sandy SILT Medium dense tan silty SAND BORING TERMINATED SS SS SS SS SS SS 0.5 3.5 8.5 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-03 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 22 44 12 14 8 11 226017.9 15.1 1 2 3 4 5 6 1" Topsoil FILL: Very stiff reddish brown and brown sandy fatCLAY RESIDUUM: Hard to stiff reddish brown and tan sandy SILT with some clay Loose to medium dense reddish brown and tan silty SAND BORING TERMINATED SS SS SS SS SS SS 0.1 3.5 13.5 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-04 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 18 19 8 10 14 11 27.0 12.6 1 2 3 4 5 6 1" Topsoil RESIDUUM: Very stiff reddish brown and tansandy CLAY Loose to medium dense reddish brown and tan silty SAND Medium dense white and gray silty SAND BORING TERMINATED SS SS SS SS SS SS 0.1 3.5 13.5 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-05 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 26 20 19 15 13 27 23.1 10.7 1 2 3 4 5 6 1" Topsoil RESIDUUM: Very stiff reddish brown and tansandy CLAY Medium dense reddish brown and tan silty SAND Medium dense tan and gray silty SAND BORING TERMINATED SS SS SS SS SS SS 0.1 3.5 7.5 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-06 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 19 30 32 12 9 18 18.4 14.9 1 2 3 4 5 6 1" Topsoil RESIDUUM: Very stiff reddish brown sandy CLAY Very stiff toi hard reddish brown and tan sandy SILT Medium dense brown silty SAND Loose to medium dense white and tan silty SAND BORING TERMINATED SS SS SS SS SS SS 0.1 3.5 8.5 13.5 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-07 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 23 40 34 25 14 26 20.2 16.1 1 2 3 4 5 6 RESIDUUM: Very stiff reddish brown sandy CLAY Medium dense to dense reddish brown and tan silty SAND Medium dense tan, brown, and gray silty SAND BORING TERMINATED SS SS SS SS SS SS 3.5 15.0 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-08 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 22 15 9 13 17 14 26.4 12.2 1 2 3 4 5 6 2" Topsoil FILL: Very stiff reddish brown and brown sandy fatCLAY RESIDUUM: Stiff reddish brown and tan sandy SILT with some clay Medium dense reddish brown and tan silty SAND BORING TERMINATED SS SS SS SS SS SS 0.2 3.5 13.5 20.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY B-09 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 5 18 15 17 12.8 11.3 1 2 3 4 1" Topsoil FILL: Firm brown sandy fat CLAY with some rockfragments RESIDUUM: Medium dense brown and gray clayey SAND Medium dense reddish brown and tan silty SAND BORING TERMINATED SS SS SS SS 0.1 5.0 8.5 10.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY TP-1 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 3 2 8 11 17.6 16.7 1 2 3 4 1" Topsoil FILL: Very soft brown sandy fat CLAY RESIDUUM: Loose tan and brown silty SAND Medium dense reddish brown and tan silty SAND BORING TERMINATED SS SS SS SS 0.1 5.0 8.5 10.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY TP-2 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 14 26 14 16.5 18.4 1 2 3 FILL: Stiff to very stiff brown sandy fat CLAY AUGER REFUSAL SS SS SS 8.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY TP-3 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 36 23 4 5 AUGER DRILLING RESIDUUM: Hard reddish brown sandy CLAY Very stiff brown and tan sandy CLAY BORING TERMINATED SS SS 8.5 13.5 15.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY TP-3A JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 3 14 6 5 4 19 16 1 2 3 4 5 6 7 1" Topsoil FILL: Very soft to stiff brown and tan sandy CLAYwith some rock fragments Sandy CLAY with ORGANIC MATTER RESIDUUM: Medium dense reddish brown and tansilty SAND Medium dense reddish tan and gray silty SAND BORING TERMINATED SS SS SS SS SS SS SS 0.1 6.0 17.0 23.5 25.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY TP-4 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 15 20 25 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 121 1" Topsoil FILL: Brown and reddish brown clayey SAND withconcrete debris AUGER REFUSAL SS 0.1 3.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfDry DryNA NA NA NA HSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD 140 30 2.25 NA NA lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY TP-5 JGS JGS 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type 11/8/16 11/12/16 RDL MB HSA Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After NA NA hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 13 23 21 2 3 4 AUGER DRILLING FILL: Stiff reddish tan and brown sandy CLAY Medium dense reddish brown and tan silty SAND BORING TERMINATED SS SS SS 3.5 6.0 10.0 GroundwaterPlastic Limit (PL)Standard PenetrationTest, N - blows/footLiquid Limit (LL)Qu-psi UnconfinedCompressive StrengthMoisture Content %RemarksPocket Penetrometer, tsfHSACFADC MD - Hollow Stem Augers- Continuous Flight Augers- Driving Casing - Mud Drilling CLIENT PROJECT NAME PROJECT LOCATION Hopper Communities Hopper Communities Charlotte, North Carolina Date Started Date Completed Drill Foreman Inspector Boring Method Hammer Wt. Hammer Drop Spoon Sampler OD Rock Core Dia. Shelby Tube OD lbs. in. in. in. in. BORING # JOB # DRAWN BY APPROVED BY TP-5A 11Page TEST BORING LOG DRILLING and SAMPLING INFORMATION TEST DATA Sample Type Noted on Drilling Tools At Completion (in augers) At Completion (open hole) After After hours hours SURFACE ELEVATION ofCave Depth ft. ft. ft. ft. ft. ft.StratumDepthDepthScaleSampleNo.Sampler GraphicsRecovery GraphicsSample TypeSSSTCA RCCU CT - Driven Split Spoon- Pressed Shelby Tube- Continuous Flight Auger - Rock Core- Cuttings - Continuous Tube Depth to Groundwater Boring Method SOIL CLASSIFICATION 5 10 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273 704-529-3200Fax 704-529-3272 Sample Type Indicator Tested By: W. Spann Checked By: MHO Client Project Project No.Figure ATC GROUP SERVICES INC. Location: B-4 Depth: -1' to -2.5'Sample Number: S-1 11/08/16 11/10/16 11/17/16 Hopper Communities 199HOP1635 1A Identification Date Sampled Date Received Date TestedPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE - mm. 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0 0 0 2 14 26 58 6 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4 #10 #20 #30 #40 #60 #100 #140 #200 U.S. SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER Particle Size Distribution Report Thomas Road - Geotech Tested By: W. Spann Checked By: MHO LIQUID AND PLASTIC LIMITS TEST REPORT PLASTICITY INDEX0 10 20 30 40 50 60 LIQUID LIMIT 0 10 20 30 40 50 60 70 80 90 100 110 CL-ML CL or O L CH o r O H ML or OL MH or OH Dashed line indicates the approximate upper limit boundary for natural soils 47 WATER CONTENT58.2 58.6 59 59.4 59.8 60.2 60.6 61 61.4 61.8 62.2 NUMBER OF BLOWS 5 6 7 8 9 10 20 25 30 40 50 60 MATERIAL DESCRIPTION LL PL PI %<#40 %<#200 USCS Project No.Client:Remarks: Project: Location: B-4 Sample Number: S-1 Depth: -1' to -2.5' ATC GROUP SERVICES, INC.Figure Red and Brown Sandy Fat Clay 60 22 38 84 58 CH 199HOP1635 Hopper Communities 1B Thomas Road - Geotech KEY TO SYMBOLS AND CLASSIFICATIONS │ Undisturbed sample recovered ● Standard Penetration Resistance (ASTM D 1587) 100/2” Number of blows (100) to drive the spoon a number of inches (2) AX,BX,NX Core barrel sizes thet obtain cores 1-1/8, 1-5/8, and 2-1/8 inches in diameter respectively 65% Percentage of rock core recovered RQD Rock quality designation U Unit weight test performed A Atterberg limits test performed C Consolidation test performed GS Grain size test performed T Triaxial shear test performed P Permeability test performed V Field shear test performed Caved Level Water table at least 24-hours after drilling Water table one hour or less after drilling CORRELATION OF PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY Approximate No. of Blows, N Relative Density SANDS 0-4 Very Loose 5-10 Loose 11 – 30 Medium Dense 31 – 50 Dense 50+ Very Dense SILTS AND 0 – 2 Very Soft CLAYS 2 – 4 Soft 5 – 8 Firm 9 – 15 Stiff 16 – 30 Very Stiff 30+ Hard Soil sampling and standard penetration testing performed in accordance with ASTM D 1586. The standard penetration resistance is the number of blows of a 140 pound hammer falling 30 inches to drive 2-inch o.d., 1.4-inch i.d., split barrel sampler one foot. Core drilling in accordance with ASTM D 2113. The undisturbed sampling procedure is described by ASTM D 1587. Soil and rock samples will be discarded 30 days after the date of the final report unless otherwise directed.