PHASE II LIMITED SITE ASSESSMENT

SCOTCHMAN #139

WORSLEY COMPANIES, INC.

HUBERT, NORTH CAROLINA

DELTA PROJECT NO. X0NC-170

PHASE II LIMITED SITE ASSESSMENT SCOTCHMAN #139 101 HIGHWAY 172 AND HIGHWAY 24 HUBERT, ONSLOW COUNTY, NORTH CAROLINA AUGUST 8, 2000

Facility ID:

0-021332

Property Owner:

Patrick Partnership c/o George Patrick 102 Hollihaven Drive Hubert, NC 28539

Facility Owner:

Worsley Companies, Inc.

P.O. Box 3227 10 S. Cardinal Drive Wilmington, NC 28406

UST Owner:

Worsley Companies, Inc.

P.O. Box 3227 10 S. Cardinal Drive Wilmington, NC 28406

(910) 395-5300

Release Information:

Discovery Date: November 1996 - quantity

unknown.

Cause of Release:

Failed tank tightness test on UST system consisting

of 1-2,000 gallon diesel UST and 1-8,000 gallon

diesel UST.

Latitude:

34.7106 N

Longitude:

77.2335 W

Prepared for: Worsley Companies, Inc.

P.O. Box 3227 Wilmington, NC 28406

Prepared by:

Delta Environmental Consultants Inc.

1201 16th Street

P.O. Box 3747

Wilmington, NC 28406

Michael H. Hasoline North Carolina Licensed Geologist No. 1574

TABLE OF CONTENTS

LIST OF TABLES, FIGURES, AND APPENDICES

1.0	SITE	E HISTORY, SOURCE CHARACTERIZATION, AND TANK OWNERSHIP	1
	1.1	SITE HISTORY	1
	1.2	SOURCE CHARACTERIZATION	
	1.3	UNDERGROUND STORAGE TANK OWNERSHIP	3
2.0	MET	THODS OF LIMITED SITE ASSESSMENT ACTIVITIES	3
	2.1	REVIEW OF SITE-SPECIFIC, LOCAL, AND REGIONAL DATA	3
	2.2	MONITORING WELL INSTALLATIONS	3
	2.3	SOIL SAMPLING	
	2.4	GROUNDWATER SAMPLING	5
3.0		ITED SITE ASSESSMENT RISK CLASSIFICATION	
	AND	LAND USE	5
4.0	REC	EPTOR PATHWAY INFORMATION	۶
•••	4.1	WATER SUPPLY WELLS	
	4.2	PUBLIC WATER SUPPLIES	
	4.3	SURFACE WATER BODIES	
	4.4	WELLHEAD PROTECTION AREAS	
	4.5	DEEP AQUIFERS IN THE COASTAL PLAIN	,
		PHYSIOGRAPHIC REGION	Ç
	4.6	SUBSURFACE STRUCTURES	
	4.7	LAND USE	
	4.8	ADJACENT PROPERTY OWNERS AND OCCUPANTS	
5.0	SITE	E GEOLOGY AND HYDROGEOLOGY	11
	5.1	DESCRIPTION OF SHALLOW SUBSURFACE GEOLOGY	
	5.2	GROUNDWATER OCCURRENCE	
	5.3	GROUNDWATER FLOW DIRECTION	12
	5.4	VERTICAL MOVEMENT	
6.0	ANA	LYTICAL RESULTS	12
	6.1	SOIL ANALYTICAL RESULTS	12
	6.2	GROUNDWATER ANALYTICAL RESULTS	
7.0	CON	ICLUSIONS AND RECOMMENDATIONS	13
	7.1	CONCLUSIONS	
	7.2	RECOMMENDATIONS	
8.0	REM	IARKS	14

TABLES

Table 1: Adjacent Property Owners and Water Supply Well Survey Data – Limited Site

Assessment

Table 2: Monitoring Well Construction Details and Groundwater Elevation Data –

Limited Site Assessment

Table 3: Summary of Analytical Results for Groundwater – Limited Site Assessment

FIGURES

Figure 1: Site Vicinity Map

Figure 2: Site Map with Monitoring Well/Soil Sample Locations – Limited Site

Assessment

Figure 3: Cross-reference Location Map for Adjacent Property Owners and Water Supply

Well Locations

Figure 4: Water Table Elevation Contour Map and Groundwater Flow Direction

Figure 5: Estimated Area of Dissolved Petroleum Hydrocarbons above 2L Standards

APPENDICES

Appendix A: Referenced NCDENR Correspondence

Appendix B: Monitoring Well Construction Records and As-Built Well Construction Details -

Limited Site Assessment

Appendix C: Boring Logs – Limited Site Assessment

Appendix D: Copy of Receptor Survey Letter and Survey Form

Appendix E: Soil Sampling Laboratory Report – Limited Site Assessment

Appendix F: Groundwater Sampling Laboratory Report – Limited Site Assessment

PHASE II LIMITED SITE ASSESSMENT SCOTCHMAN #139 101 HIGHWAY 172 AND HIGHWAY 24 HUBERT, NORTH CAROLINA

On behalf of the Worsley Companies, Inc. (WCI), Delta Environmental Consultants, Inc. (Delta) has prepared the following Phase II Limited Site Assessment (LSA) Report on assessment activities performed at the Scotchman #139 facility in Hubert, Onslow County, North Carolina. This report has been prepared pursuant to Title 15A, North Carolina Administrative Code (NCAC), Chapter 2, Subchapter 2L, Section .0115(4) and in accordance with the *Groundwater Section Guidelines for the Investigation and Remediation of Soil and Groundwater*, Volume II, January 2, 1998.

1.0 SITE HISTORY, SOURCE CHARACTERIZATION, AND TANK OWNERSHIP

1.1 Site History

The subject facility is located at 101 Highway 172 and Highway 24 in Hubert, Onslow County, North Carolina (Figures 1 and 2). The facility, owned by Patrick Partnership c/o Mr. George Patrick, operates as a convenience market and retail fuel outlet.

On December 19, 1997, the North Carolina Department of Environment and Natural Resources (NCDENR) issued a Notice of Regulatory Requirements (NORR) to WCI regarding the subject facility. The NORR was issued in response to the suspected failure of an underground storage tank (UST) system tightness test, performed in November 1996. The NORR stated the failure indicated a product release might have occurred from the facility's diesel UST systems. WCI retained the services of Clark Environmental Services, P.C. (CES) to assist them in addressing the NORR.

Subsequently, on April 1, 1998, CES installed one monitoring well (MW-1) adjacent to the southern diesel UST area. During drilling for the monitoring well installation, soil samples were collected from the borehole at two and seven feet below ground surface (bgs). In addition to the collection of soil samples, a groundwater sample was collected from the monitoring well on April 30, 1998. Upon receipt of the analytical results, CES prepared a Subsurface Petroleum Detection Summary Report documenting the field activities and laboratory data. The report, dated June 25, 1998, was submitted to the NCDENR.

On October 26, 1999, the NCDENR forwarded a letter of comment to WCI regarding the referenced CES report. The letter noted that appropriate test methods were not performed on the soil samples. The NCDENR requested that additional samples be collected and submitted for the required analyses. In August of 1999, WCI retained the services of Delta to assist them in addressing the deficiencies noted in the NCDENR's October 26, 1999 letter.

On December 3, 1999, Delta personnel performed soil sampling activities adjacent to monitoring well MW-1. The soil samples were collected at two and seven feet bgs. Upon receipt of the analytical results, Delta prepared a Subsurface Petroleum Detection Summary Report Addendum. The report, dated December 22, 1999, was submitted to the NCDENR.

The NCDENR forwarded a review of the referenced Delta addendum to WCI on February 11, 2000. The review noted that an apparent petroleum release from the subject facility's diesel UST

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 2 of 14

system did not occur and a No Further Action letter was issued. However, the Division noted that the December 19, 1997 NORR referenced that two diesel UST systems were present at the subject facility. Therefore, the Division required WCI to perform an environmental assessment of the other diesel UST system, located on the northern side of the property.

On April 19, 2000, Delta personnel supervised the installation of monitoring well MW-2 in the vicinity of the second diesel UST area. A soil sample was collected from the borehole for the monitoring well at five to seven feet bgs. In addition to the collection of a soil sample, a groundwater sample was collected from the monitoring well on April 25, 2000. Upon receipt of the laboratory analytical results, Delta initiated Phase II Limited Site Assessment activities.

Copies of referenced state regulatory correspondence are presented in Appendix A.

1.2 Source Characterization

The UST system locations are depicted in Figure 2, and specific UST data are tabulated below.

TANK	GALLONS	CONTENTS	DATE INSTALLED	DATE REMOVED
1	4,000	Gasoline	1987	NA
2	6,000	Gasoline	1987	NA
3	2,000	Diesel	1987	NA
4	8,000	Diesel	1987	NA
5	4,000	Kerosene	1987	NA

NOTE:

1) NA denotes not applicable. USTs have not been removed from subject facility.

Laboratory analyses of soil samples collected by CES during installation of monitoring well MW-1 did not identify the presence of petroleum-related compounds above laboratory method detection limits (MDLs) associated with the diesel UST. Soil samples collected by Delta adjacent to monitoring well MW-1 were analyzed by appropriate laboratory methods. Target compound concentrations were not detected above MDLs. The soil sample locations are depicted in **Figure 2**. Additionally, laboratory analysis of the soil sample collected from the borehole for monitoring well MW-2 were not detected target compound concentrations at or above MDLs.

Laboratory analyses of a groundwater sample collected from monitoring well MW-1 did not detect target compound concentrations above MDLs. However, laboratory analyses of a groundwater sample collected from monitoring well MW-2 detected dissolved petroleum hydrocarbon concentrations above Title 15A NCAC 2L Standards (2L Standards).

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 3 of 14

On June 6, 2000, Delta field personnel initiated the Limited Site Assessment activities by installing three additional shallow monitoring wells (MW-3 through MW-5) and a deep monitoring well (DW-1). Further discussion on the event is presented in Section 2.2.

1.3 Underground Storage Tank Ownership

The UST system is owned by:

Worsley Companies, Inc.
Post Office Box 3227
10 S. Cardinal Drive
Wilmington, North Carolina 28406
(910) 395-5300

2.0 METHODS OF LIMITED SITE ASSESSMENT ACTIVITIES

The limited site assessment activities performed to collect data for this LSA Report included researching site-specific, local and regional data, installing monitoring wells, performing groundwater sampling, and submitting groundwater samples for analytical testing. The following sections discuss specific methodologies used in conducting these limited site assessment activities.

2.1 Review of Site-Specific, Local, and Regional Data

A review of available site-specific, local and regional data was performed to include:

- A well survey within a 1,500-foot radius of the subject facility, including a records inquiry and a visual survey for water meters and pump houses.
- □ Identification of wellhead protection areas.
- □ Researching geology and hydrogeology of the region, including topography, soil types, and surface water drainage patterns.
- ☐ Identification of surface waters within a 1,500-foot radius of the subject facility.
- □ Land use observations (site reconnaissance) and zoning classifications.
- □ A visual survey for subsurface structures and potential impacts from the source area.
- □ Gathering information on adjacent property owners and occupants.

2.2 Monitoring Well Installations

On April 19, 2000 and during the period of June 6 through June 7, 2000, five additional monitoring wells were installed at the subject facility. Geologic Exploration, Inc. installed the monitoring wells, with oversight provided by Delta. The monitoring well installed in April 2000 was labeled MW-2 and the newly installed wells were labeled MW-3, MW-4, MW-5, and DW-1. Monitoring wells MW-2 through MW-5 are shallow wells, installed to an approximate average depth of 17.5 feet bgs. Monitoring well DW-1 is a deep well, installed to a depth of 39 feet bgs. Placement of the additional four monitoring wells was based on locations of pre-existing wells, location of the UST basin, an estimated direction of groundwater flow, and available analytical data. The deep well was placed adjacent to existing, shallow monitoring well MW-2. The newly installed monitoring well locations are presented in **Figure 2**.

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 4 of 14

The outer casing installation for the deep well and casing installations for the shallow monitoring wells were performed using the hollow-stem auger drilling method. The mud rotary drilling method was used to install the inner casing and screen for the deep well.

The shallow wells are constructed with two-inch diameter, flush-joint, threaded schedule 40 PVC. The PVC well screens are 0.010-inch slot with screened intervals of 12 and 13 feet. The shallow wells were installed at 17 to 18 feet below ground surface (bgs). A coarse sand pack (filter pack) was used to backfill the well annuli to a depth of one-foot above the well screen. A two to five-foot thick bentonite seal was placed above the filter pack in the shallow monitoring wells, and Portland cement was used to fill the remaining, open, well annuli to ground surface.

The outer casing for the deep well is six-inch diameter, schedule-40 PVC. The casing was set at 30 feet bgs. The inner casing is two-inch diameter flush-joint, threaded schedule-40 PVC. The PVC well screen is 0.010-inch slot with a screened interval of five feet. The total well depth is 39 feet bgs. During installation of the deep well, split-barrel samples were collected for the purpose of logging the borehole lithology.

The filter pack for the deep well was placed in the well annulus to one-foot above the well screen. A four-foot bentonite seal was placed above the filter pack, and neat cement was used to fill the remaining 29 feet of well annulus to ground surface.

Appropriate decontamination protocols were adhered to during the monitoring well installations to prevent cross-contamination. The wells are flush-mounted and have been provided with sealing and locking caps. Protective manhole-type covers were placed over each well upon completion. The monitoring well construction records and as-built details are presented in **Appendix B** and the boring logs are provided in **Appendix C**.

2.3 Soil Sampling

Borehole logging was performed by Delta during drilling for the monitoring wells. One soil sample, for analytical testing, was collected from above the saturated zone in monitoring well borehole MW-2. Additionally, Delta performed an organic vapor soil screening on soil samples collected from boreholes MW-3 through MW-5 and DW-1. Screened samples were collected from approximate one-foot intervals to above the saturated zone. The screening was conducted with a photoionization detector (PID). The results have been noted on the boring logs in **Appendix C**.

Appropriate decontamination protocols were adhered to between sampling locations to prevent cross-contamination. The soil sample from monitoring well MW-2 was collected from approximately 5.0 to 7.0 feet bgs. This sample interval was selected based on PID readings. The sample was obtained with a split spoon. Upon collection, the soil sample was placed in laboratory-supplied containers, labeled, and placed on ice for delivery to the project laboratory. The sample was inventoried on the chain-of-custody document and submitted for analyses by EPA Methods 8260 and 8270, (volatiles and semi-volatiles) and MADEP-VPH and -EPH (volatile petroleum hydrocarbon and extractable petroleum hydrocarbon fractions). The analytical results are discussed in Section 6.1.

2.4 Groundwater Sampling

Prior to collecting groundwater samples, the monitoring wells were allowed to stabilize for a minimum of seven days after development. On April 25, 2000, the depth-to-groundwater was recorded for monitoring wells MW-1 and MW-2. The respective purge volume for monitoring well MW-2 was calculated. Additionally, on June 12, 2000, the depth-to-groundwater was recorded for each well included in this assessment, and the respective purge volumes were calculated. Before sample collection was initiated, a minimum of three purge volumes was removed from each well column to ensure the replacement of stagnant water with representative formation water.

Groundwater samples were collected using disposable bailers. Samples were slowly poured from the bailers into laboratory-supplied containers. The containers were sealed, labeled, and immediately placed on ice for delivery to the project laboratory. The samples were inventoried on the chain-of-custody documents and submitted for analyses by EPA Methods 601/602 (volatiles), 625 plus 10 highest peaks (semi-volatiles), 504.1 (ethylene dibromide - EDB), 3030C (lead), and MADEP-VPH and EPH. The analytical results are discussed in Section 6.2.

3.0 <u>LIMITED SITE ASSESSMENT RISK CLASSIFICATION AND LANDUSE</u>

Part 1 – Groundwater/Surface water/Vapor Impacts

High Risk:

- 1. Has the discharge or release contaminated any water supply well including any used for non-drinking purposes? NO
- 2. Is a water supply well used for drinking water located within 1,000 feet of the source area of the discharge or release? YES
 - Four Onslow County production wells were identified within 1,000 feet of the source area. Water supply wells used for purposes other than potable water were not identified within 1,000 feet of the source area. The subject facility and vicinity have the option of being connected to a municipal water supply system.
- 3. Is a water supply well used for any purpose (e.g. irrigation, washing cars, industrial cooling water, filling swimming pools) located within 250 feet of the source area of the release or discharge? NO
 - Water supply wells used for purposes other than potable water were not identified within 250 feet of the source area of the release or discharge.
- 4. Does groundwater within 500 feet of the source area of the discharge or release have the potential for future use in that there is no other source of water supply other than the groundwater? **NO**
 - The groundwater within 500 feet of the release or discharge could have the potential for future use as there are no restrictions; however, the likelihood that potable wells will be constructed is minimal due to the fact that a public water system is available to the area.

- 5. Do vapors from the discharge or release pose a threat of explosion because of accumulation of the vapors in a confined space or pose any other serious threat to public health, public safety, or the environment? **NO**
 - Two storm drains (catch basins) are located in the right-of-way along Highway 172. On June 6, 2000, the storm drains were visually inspected for petroleum-related impacts. The storm drains were dry and no evidence of petroleum-related impact was visually detected.
- 6. Are there any other factors that would cause the discharge or release to pose an imminent danger to public health, public safety, or the environment? NO
- 7. Is a surface water body located within 500 feet of the source area of the discharge or release? NO

An unnamed tributary of Bell Swamp is located approximately 600 feet east of the subject facility. Additionally, Queen Creek lies approximately 4,000 feet northeast and Bell Swamp lies approximately 2,700 feet southeast of the facility. Surface water bodies were not identified within 500 feet of the suspected source area.

If yes, does the maximum groundwater contaminant concentration exceed the surface water quality standards and criteria found in 15A NCAC 2B .0200 by a factor of 10? NA

- 8. Is the source area of the discharge or release located within a designated wellhead protection area as defined in 42 USC 300h-7(e)? NO
 - The source area is not known to be located within a designated wellhead protection area as defined by 42 USC 300h-7(e).
- 9. Is the discharge or release located in the Coastal Plain Physiographic Region as designated on a map entitled "Geology of North Carolina" published by the Department in 1985? YES

If yes, is the source area of the discharge or release located in an area in which there is recharge to an unconfined or semi-confined aquifer that is being used or may be used as a source of drinking water?

Within most areas of Onslow County, the surficial aquifer lies within 10 to 30 feet of ground surface and is capable of supplying sufficient water for domestic use. Due to the nature of the surficial aquifer, recharge to the aquifer has the potential to occur in proximity to the subject facility. Although it is possible that some wells in the vicinity may draw water from the surficial aquifer, water supplies in the majority of the area are likely drawn from deeper aquifers, including the Castle Hayne and Peedee aquifers. Throughout the Coastal Plain groundwater-system, recharge to aquifers can be expected to occur in interstream areas but, under most conditions, streams and flood plains act as discharge areas. Therefore, due to the presence and proximity of the unnamed tributary, Queen Creek and Bell Swamp, these water features likely act as discharge points for the area's aquifers. Points of significant recharge to deeper aquifers in the immediate area would not be expected.

10. Do the levels of groundwater contamination for any contaminant exceed the gross contamination levels established by the Department? **NO**

Part II – Land Use

Property Containing Source Area of Discharge or Release:

The questions below pertain to the property containing the source area of the release.

1. Does the property contain one or more primary or secondary (permanent or temporary) residences? NO

The property does not contain primary or secondary residences; however, single-family homes are present in proximity to the subject facility.

2. Does the property contain a school, daycare center, hospital, playground, park, recreation area, church, nursing home, or other place of public assembly? **NO**

The property does not contain places of public assembly.

3. Does the property contain a commercial (e.g. retail, warehouse, office/business space, etc.) or industrial (e.g., manufacturing, utilities, industrial research and development, chemical/petroleum bulk storage, etc.) enterprise, and inactive commercial or industrial enterprise, or is the land undeveloped? YES

The site is presently active as a retail fuel outlet and convenience market.

4. Do children visit the property? YES

The site is presently active and children visit the site consistent with its use.

5. Is access to the property reliably restricted consistent with its use (e.g., by fences, security personnel or both)? YES

The property is reliably restricted consistent with its use. A chain link fence is located along the northern edge of the property near Highway 24.

6. Do pavement, building, or other structures cap the contaminated soil? YES

Analytical results indicate that soil at the subject facility has not been impacted by petroleum hydrocarbons. However, the majority of the site is covered with asphalt and concrete.

If yes, what mechanisms are in place or can be put into place to ensure that the contaminated soil will remain capped in the foreseeable future?

At present, asphalt and concrete ensure soil will remain capped. Plans for future site development are not apparent at this time.

7. What is the zoning status of the property?

According to the Onslow County Tax Office, the subject facility is not currently zoned.

8. Is the use of the property likely to change in the next 20 years? NO

The subject facility is presently operating as a convenience market and retail fuel outlet. The use of the property is unlikely to change in the next 20 years.

Property Surrounding Source Area of Discharge or Release:

The questions below pertain to the area within 1,500 feet of the source area of the discharge or release (excludes property containing source area of the release):

9. What is the distance from the source area of the release to the nearest primary or secondary residence (permanent or temporary)?

A residence is located approximately 400 feet west, 500 feet south, 550 feet north, and 500 feet east of the source area of the discharge or release.

10. What is the distance from the source area of the release to the nearest school, daycare center, hospital, playground, park, recreation area, church, nursing home, or other place of public assembly?

A church (Queens Creek Methodist Church) is located approximately 800 feet southeast of the subject facility.

11. What is the zoning status of properties in the surrounding area?

Based on information obtained from Onslow County Tax Office, the area within a 1,500-foot radius of the subject facility is currently not zoned.

12. Briefly characterize the use and activities of the land in the surrounding area.

Land use in the immediate area is predominantly residential with some light commercial activity.

•

4.0 RECEPTOR PATHWAY INFORMATION

As defined by NCDENR, a receptor is "any human, plant or animal that is or has the potential to be adversely affected by the release or migration of contaminants." With respect to the subject facility, the following sections present information regarding potential receptor pathways for the migration of contaminants and pathway relationships to the facility.

4.1 Water Supply Wells

In an effort to gain complete and accurate data regarding water supply wells, Delta mailed water supply well surveys to property owners within a 1,500-foot radius of the subject facility. A copy

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 9 of 14

of the survey form is presented in **Appendix D**. A site reconnaissance also was conducted for visual evidence of pump houses and/or water meters.

Information collected during the mail-survey process is detailed below. The survey resulted in a 65 percent return of responses from property owners. Based on the responses received, the survey data have been summarized and are presented in **Table 1**. A water supply well location map is presented in **Figure 3** and is cross-referenced with **Table 1**.

- A total of 17 water supply wells were identified within a 1,500-foot radius of the subject site.
- One (1) operational water supply well (parcel 1301-7) is used for potable purposes. It is located approximately 1,450 feet from the subject facility.
- Four (4) operational water supply wells (parcels 1302-19.2, 1302-1.8, 1302-1.6, and 1302-1.1) are Onslow County production wells. They are located approximately 700 to 1,100 feet north/northwest of the subject facility. Three of the production wells are cased to a depth of 201 feet bgs and open to a depth of 240 feet bgs. The fourth production well is cased to a depth of 153 feet bgs and open to a depth of 176 feet bgs. The production wells obtain potable water from the deep Castle Hayne aquifer.
- Seven (7) water supply wells are used for non-potable purposes.
- Five (5) water supply wells are non-operational. Available information did not indicate whether or not these wells have been properly abandoned.

4.2 Public Water Supplies

Municipal water service is presently available to the Town of Hubert. Per a telephone conversation with the Onslow County Water Department (June 14, 2000), Delta was informed that a municipal water system is available to the Town of Hubert from Onslow County; however, it is not mandatory for properties to be connected to the municipal water service. Presently, sanitary sewer services are not available so properties within Hubert utilize septic tanks.

4.3 Surface Water Bodies

An unnamed tributary to Bell Swamp is located approximately 600 feet east of the subject facility. Additionally, Queen Creek is located approximately 4,000 feet to the northeast and Bell Swamp is located approximately 2,700 feet to the southeast of the subject facility. Surface water bodies were not identified within 500 feet of the suspected source area.

4.4 Wellhead Protection Areas

At the time of this assessment, a designated wellhead protection area, as defined in 42 USC 300h-7(e), is not reported to exist within 1,500 feet of the source area.

4.5 Deep Aquifers in the Coastal Plain Province

As part of the Tidewater Region or Outer Atlantic Coastal Plain province, Onslow County has four predominant aquifer systems. These aquifers include surficial sands of post-Miocene age, the Castle Hayne Formation of Eocene age, the Beaufort Formation of Paleocene age, and late Cretaceous sediments of the Peedee Formation (in descending order). The names of deep aquifers in the Coastal Plain province of North Carolina are generally taken from the predominant

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 10 of 14

geologic formation with which an aquifer is associated (e.g., the surficial aquifer, Castle Hayne aquifer, and Peedee aquifer). The lithology of each formation is significant with respect to the manner in which it will influence aquifer properties (e.g., groundwater chemistry, hydraulic conductivity, groundwater velocity, vertical movement, etc.).

The formations capable of yielding good water quality (potable water) are those not older than the late Cretaceous. The deep, older formations generally contain water too salty for potable use. The potable water aquifers, lying within the late Cretaceous and younger sediments, are generally comprised of imperfectly connected sand beds, limestone, to unconsolidated sediments of the surficial sands. Confining units may also be present, which separate the major aquifers. These confining units consist of clay beds or groups of clay beds and silt with varying amounts of sand. The lithology of a confining unit tends to retard the vertical exchange (movement) of groundwater between upper and lower aquifer systems.

The surficial aquifer is of major importance due to its extended coverage throughout the Coastal Plain. Precipitation infiltrating this aquifer is responsible for the bulk of water recharging the Coastal Plain aquifer system. The Atlantic Coastal Plain province consists of two natural subdivisions, the Tidewater region and the Inner Coastal Plain. The Tidewater region is coastal, existing where large streams and their tributaries are tidally influenced. Additionally, the topographic relief in this region is generally below 50 feet above mean sea level and swampy. The surficial aquifer in the Tidewater region is composed of fine sand, silt, clay, shell, peat beds, and scattered deposits of coarser-grained material with an average thickness of 35 feet. Hubert is located within the Tidewater region, east of the Inner Coastal Plain boundary. Within the Inner Coastal Plain, the unconsolidated sediments of the surficial aquifer become coarser grained and more poorly sorted.

Based on available well log information regarding the Hubert, North Carolina region, the surficial sands overlie the Castle Hayne Formation in the area. While recharge to Coastal Plain aquifers generally occurs within interstream areas and discharge occurs in streams and flood plains, recharge to the Castle Hayne aquifer can be facilitated in areas where the formation is shallow and overlain by flat-lying sandy material. This enables precipitation to readily infiltrate the aquifer.

The Castle Hayne confining unit is generally ten feet thick with less than 10 percent permeable material. Underlying the confining unit is the Castle Hayne aquifer, which consists of limestone and sand, with some minor amounts of clay. The aquifer is generally 312 feet thick with an estimated hydraulic conductivity of 45 feet/day (ft/dy). It consists of approximately 76 percent permeable material. The Castle Hayne aquifer overlies the Beaufort confining unit. confining unit is approximately 20 feet thick and less than 10 percent permeable material. Underlying this confining unit is the Beaufort aquifer. The Beaufort aquifer is composed of fine to medium glauconitic sand, clayey sand, and clay beds of marine origin, with occasional shell and limestone beds. This aquifer is 80 feet thick and consists of 62 percent permeable material with a 55 ft/dy estimated hydraulic conductivity. The Peedee confining unit underlies the Beaufort aquifer. This confining unit is 42 feet thick and consists of an estimated 24 percent permeable material. The Peedee aquifer, underlying the confining unit, is composed of fine to medium grained sand interbedded with gray to black marine clay and silt. The Peedee aquifer consists of 75 percent permeable material and is approximately 145 feet thick. It has an estimated hydraulic conductivity of 65 ft/dy. (Source: U.S. Geological Survey, Professional Paper 1401-I, Hydrogeologic Framework of the North Carolina Coastal Plain, 1996).

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 11 of 14

4.6 Subsurface Structures

Storm water flow around the site is routed to an open storm water drainage area and an underground storm drain system. Two storm drain grates (catch basins) were observed in the right-of-way at the western side of the facility. Two open storm water drainage areas were located along the right-of-way on the southern and northern sides of the facility. The Town of Hubert is supplied water by the Onslow County municipal water system. The subject facility is on municipal water as a water meter was observed to be on-site. A sanitary sewer system is not currently available to the area. All residences and businesses use septic tank systems.

4.7 Land Use

Commercial and residential land uses have been identified within a 1,500-foot radius of the facility. In proximity to the site, land use is predominantly residential with light business activity. The site and surrounding properties are not zoned by Onslow County.

4.8 Adjacent Property Owners and Occupants

The names and addresses of property owners, having properties located adjacent to the source area, have been tabulated and are presented in **Table 1**. Additionally, a cross-reference map depicting the locations of adjacent properties is presented in **Figure 3**.

5.0 SITE GEOLOGY AND HYDROGEOLOGY

5.1 Description of Shallow Subsurface Geology

The surficial soil at the subject facility is classified as Baymeade fine sand (BaB) with 0-6% slopes (U.S. Department of Agriculture: Soil Conservation Service, Soil Survey of Onslow County, North Carolina, 1992). These soils are well drained and found on convex slopes near large drainageways and on low ridges. In these areas, infiltration is rapid and surface runoff is slow. The surficial soil is typically gray fine sand. The subsurface layer is light gray fine sand grading to light yellowish brown fine sand that has soft, dark yellowish brown nodules to approximately 15 inches bgs. From 15 to 30 inches bgs, the subsurface layer is described as white fine sand that has very pale brown mottles and a few thin bands of brownish yellow fine sandy loam. The subsoil is brownish yellow fine sandy loam to about three feet bgs. From three to approximately five feet bgs, the soil is a light yellowish brown fine sandy loam that has light gray mottles and thin layers of fine sand. Permeability is moderately rapid and available water capacity is low. The seasonal high water table is four to five feet bgs.

During drilling for the monitoring wells, asphalt, stone, and gravel were encountered from approximately zero to one-half foot bgs. The surficial sediments generally were tan and gray silty sandy clay below one-half foot bgs. In the boring log for monitoring well MW-4, brown to tan clayey sandy silt was encountered to approximately two feet bgs. The soil below two feet bgs was predominantly yellowish-orange to gray silty sandy clay to approximately ten feet bgs. Below ten feet bgs, the soil graded into a yellowish-orange to light gray silty fine sand with some clay. The lithology became a gray fine sand at approximately 14 feet bgs. This graded into a tan

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 12 of 14

silty fine sand to approximately 38 feet bgs. From 38 to 40 feet bgs, the lithology became a brown silty fine sandy clay.

The boring logs are presented in Appendix C.

5.2 Groundwater Occurrence

On June 6, 2000, the apparently saturated soil was encountered at approximately four to six feet bgs during drilling activities. Depth-to-groundwater measurements were obtained on June 12, 2000 during the groundwater sampling event. On this date, the depth-to-groundwater was measured at an approximate average depth of 14.43 feet bgs.

5.3 Groundwater Flow Direction

In studying the Hubert Quadrangle map (7.5 minute series topographic map, U.S. Geological Survey –USGS), the predominant local influence on direction of surface water runoff appears related to the presence of Queen Creek and Bell Swamp, located east of the subject facility. Typically, the surficial groundwater in the vicinity would be expected to flow in an eastern direction, mirroring the topography. Data obtained during the June 12, 2000 groundwater sampling event indicate the groundwater flow direction generally conforms to the topographic influences. A summary of water table elevation data is presented in **Table 2**. Groundwater elevation contours have been derived from the water table elevation data and are mapped on **Figure 4**.

5.4 Vertical Movement

Water table elevations obtained on June 12, 2000 indicate a head difference between shallow monitoring well MW-2 and deep monitoring well DW-1. The head difference between the two wells is 0.66 feet, with the higher water table elevation being in the shallow well and the lower water table elevation being in the deeper well.

The apparent head difference suggests gravity potential for downward flow between the surficial aquifer and deeper underlying strata. Vertical permeability measurements were not obtained to quantitatively assess the potential for this occurrence. A summary of the water table elevation data is presented in **Table 2**.

6.0 ANALYTICAL RESULTS

A soil sample was submitted to Research and Analytical Laboratories, Inc. (RAL) of Kernersville, North Carolina. Groundwater samples were submitted to Paradigm Analytical Laboratories, Inc. of Wilmington, North Carolina and RAL. The following sections discuss the analytical data provided in the laboratory reports.

6.1 Soil Analytical Results

Laboratory analysis of the soil sample collected from monitoring well MW-2 did not indicate the presence of petroleum hydrocarbons above MDLs. Soil samples were not collected from the boreholes for monitoring wells MW-3 through MW-5 and DW-1, as PID readings did not

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 13 of 14

indicate impact by petroleum hydrocarbons. The laboratory report for the soil sample collected from the borehole for monitoring well MW-2 is provided in **Appendix E**.

6.2 Groundwater Analytical Results

Laboratory analyses detected dissolved petroleum hydrocarbon concentrations in groundwater samples from monitoring wells MW-2, MW-3, MW-4, and MW-5 above their respective 2L Standards. Dissolved petroleum hydrocarbon concentrations were not identified above laboratory MDLs in the groundwater samples collected from monitoring wells MW-1 and DW-1. A tabulated summary of the analytical results is presented in **Table 3**, and the laboratory report is provided in **Appendix F**. The estimated area of dissolved petroleum hydrocarbons above 2L Standards is depicted in **Figure 5**.

7.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

7.1 Conclusions

Based on information obtained during this Limited Site Assessment, it appears a petroleum release from the UST system at the subject facility may have occurred. Additionally, the subject facility meets the criteria for a *High-Risk* classification.

- Impacted soil was not detected in the vicinity of the diesel UST.
- Dissolved petroleum hydrocarbon concentrations were identified above 2L Standards in monitoring wells MW-2 through MW-5; however, GCLs were not exceeded.
- Free product was not encountered during the LSA field activities.
- Four Onslow County production wells were identified within 1,000 feet of the subject facility to the north/northwest and in an apparent cross/up-gradient location. These wells obtain potable water from the Castle Hayne aquifer. The Castle Hayne confining unit separates the Castle Hayne aquifer from the surficial aquifer in the area.
- Potable water supply wells were not identified within 500 feet of the subject facility. The subject facility and vicinity are connected to a municipal water supply system.
- Water supply wells, used for purposes other than drinking, were not identified within 250 feet of the subject facility.
- Surface water was not identified within 500 feet of the source area.

7.2 Recommendations

Delta has arranged for the performance of a UST system tightness test to confirm that the gasoline system is operating within established guidelines. These results will be forwarded to NCDENR upon receipt.

Phase II Limited Site Assessment Delta Project No. X0NC-170 August 8, 2000 Page 14 of 14

Groundwater modeling may reveal the fate and transport of the petroleum constituents with respect to the production and private wells. Delta recommends the collection of necessary data to perform this modeling.

8.0 REMARKS

The recommendations contained in this report represent our professional opinions. These opinions were arrived at in accordance with currently accepted hydrogeologic practices and relevant regulatory guidelines at this time and location. Other than this, no warranty is implied or intended.

This report was prepared by:

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Maureer apres

Maureen Jones

Staff Geologist

This report was reviewed by:

Michael H. Haseltine, P.G.

Project Geologist

North Carolina Licensed Geologist No. 1574

TABLE 1 PROPERTIES WITHIN 1,000-FOOT RADIUS OF SUBJECT SITE SCOTCHMAN #139 HUBERT, NORTH CAROLINA DELTA PROJECT NO. X0NC-170

PARCEL NUMBER	PROPERTY OWNER NAME AND ADDRESS	PUBLIC WATER	WATER SUPPLY WELL	USE OF WATER SUPPLY WELL	COMMENTS*	APPROX. DISTANCE FROM SITE (ft.)
TOMBETT	David and Susan Taphous			OUT ET WEEL		THOMES/IE/(IE/
1301-111	P.O. Box 501 Hubert, NC 28539	YES	YES	Non-operational	Depth unknown.	1,700
1301-7	Samuel Muscari c/o John Hrko P.O. Box 769 Pineville, West Virginia	NO	YES	Operational Drinking, bathrooms	Depth unknown.	1,450
1302-1.4	Michael and Debra Williams 175 Starling Road Hubert, NC 28539	YES	YES	Operational Irrigation	Depth unknown.	550
1306-63	Mark and Patricia Bennett 432 Hubert Boulevard Hubert, NC 28539	YES	YES	Non-operational	Depth unknown.	1,250
1302-7	Clifton and Mary Foreman P.O. Box 74 Hubert, NC 28539	YES	YES	Non-operational	Depth unknown.	1,150
1302-6	Clifton and Mary Foreman P.O. Box 74 Hubert, NC 28539	YES	YES	Non-operational	Depth unknown.	1,050
1302-8	Clifton and Mary Foreman P.O. Box 74 Hubert, NC 28539	YES	YES	Non-operational	Depth unknown.	1,250
1302-18	Elizabeth and Charles Redeker, Jr. 124 Leslie Drive Hubert, NC 28539	YES	YES	Operational Irrigation	Supply well at present is being repaired from hurricane.	375
1307-23	John and Louise Horne P.O. Box 42 Hubert, NC 28539	YES	YES	Operational Irrigation	Depth 125 feet.	1,000
1302-4	Joseph and Carol Kowalski 143 Highway 172 Hubert, NC 28539	YES	YES	Operational Irrigation	Depth unknown.	800
1307-23.1	Dennie and Mary Horne 231 Starling Road Hubert, NC 28539	YES	YES	Operational Irrigation	Depth 95 feet.	1,125
1307-23.4	Dennie and Mary Horne 231 Starling Road Hubert, NC 28539	YES	YES	Operational Irrigation	Depth 95 feet.	1,075
1302-19.2	Onslow County 521 Mill Avenue Jacksonville, NC 28540	NO	YES	Operational Onslow County Production Well	Depth 176 feet.	1,150
1302-1.8	Onslow County 521 Mill Avenue Jacksonville, NC 28540	NO	YES	Operational Onslow County Production Well	Depth 240 feet.	700
1302-1.6	Onslow County 521 Mill Avenue Jacksonville, NC 28540	NO	YES	Operational Onslow County Production Well	Depth 240 feet.	800
1302-1.1	Onslow County 521 Mill Avenue Jacksonville, NC 28540	NO	YES	Operational Onslow County Production Well	Depth 240 feet.	750
1306-56	Nancy and J. Harvey Lilley 475 Hubert Boulevard Hubert, NC 28539	YES	YES	Operational Irrigation	Depth 90 feet.	1,250

^{*} Comments are based on information provided by the property owners during the supply well survey. The comments are not substantiated by verified documentation/well construction records.

TABLE 2 WELL CONSTRUCTION DETAILS AND GROUNDWATER ELEVATION DATA SCOTCHMAN #139 HUBERT, NORTH CAROLINA DELTA PROJECT NO. X0NC-170

		_			APRI	L 25, 2000	JUNE 1	2, 2000
WELLID	INSTALLATION DATE	WELL DEPTHS ¹ (ft.)	WELL SCREEN INTERVAL (ft.)	TOC ² ELEVATION (ft.)	DEPTH TO WATER ³ (ft.)	WATER TABLE ELEVATION ⁴ (ft.)	DEPTH TO WATER ³ (ft.)	WATER TABLE ELEVATION ⁴
MW-1	4/1/98	15.0	5-15	100.00	11.75	88.25	13.16	86.84
MW-2	4/19/00	17.0	5-17	99.84	13.61	86.23	14.61	85.23
MW-3	6/7/00	17.0	5-17	100.15	NI	NI	14.35	85.80
MW-4	6/6/00	17.0	5-17	99.98	NI	NI	15.05	84.93
MW-5	6/6/00	18.0	5-18	99.79	NI	NI	15.00	84.79
DW-1	6/6/00	39.0	34-39	99.91	NI	NI	15.27	84.64

NOTES:

- 1) Well depths per well construction records measuring point from top-of-casing.
- 2) TOC denotes top-of-casing elevation. The TOC elevations are based on an arbitrary benchmark elevation of 100 feet above mean sea level.
- 3) The depth to water eas measured from top-of-casing.
- 4) The water table elevations are based on the respective top-of-casing measurements minus the depth to water measurements.
- 5) NI denotes no information available. Wells were not constructed at this time.

TABLE 3 ANALTYICAL SUMMARY FOR GROUNDWATER SCOTCHMAN #139 HUBERT, NORTH CAROLINA **DELTA PROJECT NO. X0NC-170**

Sample ID	MW-1	MW-2	MW-3	MW-4	MW-5	DW-1		
Sample Date	4/30/98	4/25/00	6/12/00	6/12/00	6/12/00	6/12/00		
Analyses	EPA Methods 602 and 625 plus 10	EPA Methods 602, 625 plus 10, and MADEP-VPH	EPA Methods 601/602; 504.1; 3030C; MADEP- VPH; MADEP-EPH	GROSS CONTAMINANT LEVELS	2L STANDARDS			
Detected Compounds	Concentrations	Concentrations	Concentrations	Concentrations	Concentrations	Concentrations	Sec. 25, 49	100
Detected Compounds	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	ppb	ppb
Benzene	BQL	97	835	3.6	646	BQL	5,000	1
Ethylbenzene	BQL	BQL	1,040	BQL	1,020	BQL	29,000	29
Toluene	BQL	BQL	3,970	BQL	12,100	BQL	257,500	1,000
Total Xylenes	BQL	BQL	6,060	BQL	5,870	BQL	87,500	530
IPE	BQL	180	BQL	12	BQL	BQL	70,000	70
MTBE	BQL	250	BQL	68	BQL	BQL	200,000	200
Lead	BQL	BQL	8	5	12	BQL	15,000	15
Naphthalene	BQL	BQL	BQL	BQL	113	BQL	15,500	21
Creosols	NI	NI	NI	NI	102	NI	NS	NS
Benzene, propyl	NI	NI	NI	NI	55	NI	NS	NS
Benzene, 1-ethyl-2-methyl	NI	NI	NI	NI	345	NI	NS	NS
Benzene, 1-ethyl-4-methyl	NI	NI	381	NI	NI	NI	NS	NS
Benzene, 1-ethyl-3-methyl	NI	NI	187	NI	NI	NI	NS	NS
Benzenemethanol, 2-methyl	NI	NI	87	NI	NI	NI	NS	NS
Benzene, 1-methyl-3-propyl	NI	NI	80	NI	NI	NI	NS	NS
Benzene, 4-ethyl-1,2-dimethyl	NI	NI	71	NI	NI	NI	NS	NS
Benzene, 2-ethenyl-1,4-dimethyl	NI	NI	65	NI	NI	NI	NS	NS
Benzene, 1,2,4,5-tetramethyl	NI	NI	39	NI	NI	NI	NS	NS
Benzene, 1,2,4-trimethyl	NI	NI	195	NI	136	NI	28,500	350
Benzene, 1,3,5-trimethyl	NI	NI	NI	NI	504	NI	25,000	350
Benzene, 1,2,3-trimethyl	NI	NI	504	NI	151	NI	NS	NS
Indane	NI	NI	148	NI	94	NI	NS	NS
Trimethylbenzene, Isomer of	NI	7.9	NI	NI	NI	NI	NS	NS
Dimethylbenzene, Isomer of	NI	6.5	NI	NI	NI	NI	NS	NS
C5-C8 Aliphatics (VPH)	NA	930	9,840	BQL	19,100	BQL	NS	420
C9-C18 Aliphatics (EPH + VPH)	NA	120 (VPH only)	16,820	345 (EPH only)	16,300	BQL	NS	4,200
C19-C36 Aliphatics (EPH)	NA	NA	231	120	197	BQL	NS	42,000
C9-C22 Aromatics (VPH + EPH)	NA	44 (VPH only)	5,390	505 (EPH only)	3,490	BQL	NS	210

NOTES:

- NOTES.

 1) NA denotes not analyzed.
 2) BQL denotes below quantitation limit.
 3) Analytical results exceeding 2L Standards are in bold type.
 4) Analytical results presented in parts per billion (ug/L).
 5) NI denotes compounds not detected in library search.

- 6) NS denotes no narrative standard has been established.

CONTOUR INTERVAL 5 FEET NATIONAL GEODETIC VERTICAL DATUM OF 1929

HUBERT QUADRANGLE

NORTH CAROLINA—ONSLOW CO. 7.5 MINUTE SERIES (TOPOGRAPHIC)

Delta

Environmental Consultants, Inc. 1201 South 16th Street Wilmington, North Carolina 28401

PROJECT NO. XONC170	FIGURE NO.	CLIENT/LOCATION	Worsley Companies, Inc.	
PROJECT MANAGER A. LORD	1		Wilmington, NC	
DESIGNED BY	DRAWN	G DESCRIPTION	SITE VICINITY MAP	
DRAWN BY SML			Hubert, NC	
REVIEWED BY	DATE	12/27/99	SCALE 1 in. = 2,000 ft.	CAD NO.

LEGEND:

MONITORING WELL TELESCOPING WELL FENCE GRASS UST FILL PORT

VACUUM

KEROSENE DISPENSER GASOLINE DISPENSER DIESEL DISPENSER

ATTEMPTED MONITORING WELL LOCATION SEPTIC TANK

SOIL SAMPLE LOCATION

LEGEND:

MONITORING WELL TELESCOPING WELL

FENCE GRASS

UST FILL PORT

VACUUM KEROSENE DISPENSER GASOLINE DISPENSER

DIESEL DISPENSER ATTEMPTED MONITORING WELL LOCATION

SEPTIC TANK

86.84 GROUNDWATER ELEVATION (ft.)

85.01 GROUNDWATER ELEVATION CONTOUR (ft.)

APPARENT DIRECTION OF GROUNDWATER FLOW

Delta

Environmental Consultants, Inc. 1201 South 16th Street Wilmington, North Carolino 28401

X0NC-170	FIGURE NO.	CLIENT/LOCATION	WORSLEY COMPANIES, INC.
PROJECT MANAGER A.LORD	4		SCOTCHMAN #139 HUBERT, NORTH CAROLINA
CIBICHED BY	DRAMIN	G DESCRIPTION	
DRAWN BY		(GROUNDWATER ELEVATION CONTOUR MAP
REVIEWED BY	JATE	6/21/00	SCALE 1" = 40 FEET CAD NO.

State of North Carolina
Department of Environment
and Natural Resources
Wilmington Regional Office
Division of Water Quality
Groundwater Section

James B. Hunt, Jr., Governor Wayne McDevitt, Secretary

December 19, 1997

CERTIFIED MAIL Z 312 648 469 RETURN RECEIPT REQUESTED

Mr. Cecil Worsley Worsley Companies, Inc. 10 Cardinal Drive Wilmington, NC 28403

SUBJECT:

NOTICE OF REGULATORY REQUIREMENTS of 15A NCAC 2N

Scotchman # 139

101 Hwy. 172 & Hwy. 24 Hubert, Onslow County

Dear Mr. Worsley:

Our records indicate that you are the owner and/or operator of the underground storage tanks at the above referenced site. This letter is a standard notice explaining the actions you must take as a result of the confirmation of a suspected release from underground storage tanks at this site in accordance with North Carolina laws. The Groundwater Section of the Division of Water Quality (DWQ), administers the State's rules for underground storage tanks and the required response for suspected releases from underground storage tanks. Those rules are located in Title 15A, Subchapter 2N of the North Carolina Administrative Code (NCAC).

Results of the underfill portion of the USTest 2000 P/U precision tank tightness tests conducted pursuant to 15A NCAC 2N .0603, by Petro Tech, Inc., on November 26, 1996, were received by this office on January 22, 1997. This test indicates a release of product may have occurred from the 2000 gallon Diesel #2, and from the 4000 gallon Diesel #2 underground storage tanks at the subject site. According to USTest representatives, the leak rate is computed using the best fit line through data points plotting change in product level versus time. The formula for computing the leak rate is expressed by; leak rate = (slope)(differential volume). Using the data from the November 26, 1996, test of the 2000 gallon Diesel #2 tank, leak rate = (.00422 in/hr)(77.77 gal/in) = 0.328 gal/hr. The leak rate for the 4000 gallon Diesel #2 tank = (.00458 in/hr)(101.81 gal/in) = 0.466 gal/hr. These leak rates exceed the rate at which both tanks are declared leaking by the third party certification of the USTest 2000 P/U (.05 gal/hr).

Worsley Companies, Inc. Page 2

In accordance with NCAC 2N .0603 you are required to repair, replace, or upgrade these underground storage tanks, and begin corrective action. Listed below are general descriptions of actions you must take to comply with State rules (2N .0702-.0705 are attached). For a detailed description of your requirements please refer to the enclosed rules.

- 1) If you have not already done so, you must take immediate action to prevent any further release of the regulated substance into the environment and identify and mitigate any fire, explosion, and vapor hazards (Title 15A NCAC 2N .0702). To comply with this requirement, please immediately remove as much of the regulated substance from the subject underground storage tanks as is necessary to prevent further release to the environment. Note: Because the USTest 2000 P/U is incapable of determining the exact location of the leak, please empty the subject underground storage tanks completely. (Title 15A NCAC 2N .0703)
- 2) Undertake initial abatement measures, perform a site check, and if free product is discovered, begin recovery within 14 days thereafter. A report of the measures you have taken to comply with this rule must be received by the Wilmington Regional Office at the letterhead address no later than 20 days from the receipt of this letter. While conducting the site check please be aware that you are required to measure for the presence of a release where contamination is most likely to be present at the site. To comply with this requirement please collect soil samples immediately adjacent to, and directly below the bottom of the subject underground storage tanks, product lines, and dispensers. If groundwater is encountered, please collect a groundwater sample. The samples should be sent to a certified laboratory for appropriate analyses (Please refer to the North Carolina Groundwater Section publication, "Groundwater Section Guidelines for the Investigation and Remediation of Soil and Groundwater" for additional guidance). (Title 15A NCAC 2N .0703)
- 3) Assemble information about the nature and quantity of the release and about the site and the surrounding area. Please include the locations of all supply wells located within 1500 feet of the facility, and the results of the analyses of the samples collected during the initial site check (#2 above). A report of this information must be received by the Wilmington Regional Office by no later than 45 days from the receipt of this letter. (Title 15A NCAC 2N .0704)
- 4) If free product is discovered during the initial site check (#2 above), a report describing the free product removal measures being undertaken must be received by the Wilmington Regional Office by no later than 45 days from the receipt of this letter. (Title 15A NCAC 2N .0705)

If requested, the Wilmington Regional Office may allow an alternate compliance schedule for the release response rules and may allow certain reports to be combined. In order for such an alternate compliance schedule to be considered, you must contact the Wilmington Regional Office immediately and follow-up in writing with a proposed schedule. An alternate compliance schedule cannot be granted for the 20 day initial abatement report (#2 above).

Your prompt attention to the items described herein is required. Failure to comply with the State's rules may result in the assessment of civil penalties and/or the use of other enforcement mechanisms available to the State. Each day that a violation continued.

Worsley Companies, Inc. Page 3

If you believe you are not the responsible party notify the Groundwater Section within 15 days of receipt of this letter. If you have any questions regarding the actions that must be taken or the rules mentioned in this letter, please contact Charles F. Stehman, Ph.D., P.G., of the Wilmington Regional Office, at the letterhead address and/or telephone number. If you have any questions regarding trust fund eligibility or reimbursement, please contact the Groundwater Section at (919) 733-8486.

Sincerely,

DICK SHIVER

Rick Shiver, P.G. Regional Supervisor

RSS/CFS/PC/JH/gjg

Enclosures

cc: Arthur Mouberry

WiRO

gws\john\nov\139-1126.wpd

Ventued in DB

State of North Carolina Department of Environment and Natural Resources Wilmington Regional Office Division of Waste Management UST Section

James B. Hunt, Jr., Governor Bill Holman, Secretary

October 26, 1999

Mr. Don Quinn Worsley Companies, Inc. P. O. Box 3227 Wilmington, NC 28406

Subject:

Review of Report Entitled "Subsurface

Petroleum Detection Summary Report"

Scotchman #139 Incident No. NA

Hubert

Onslow County

Dear Mr. Quinn:

The Division has reviewed the subject report that was received on June 25, 1998. All of the appropriate test methods were not performed on the soil samples obtained for analysis. Only EPA Method 8260 (volatiles) was performed on the samples. Therefore, please have your consultant obtain and analyze soil samples for the remainder of the required tests for diesel fuel. A copy of the test methods are attached for your reference. Please submit a copy of the results shortly after receipt.

Thank you for your attention to this matter. If you have any questions concerning this letter, please call me at (910) 395-3900.

Sincerely,

Bruce Reed

Hydrogeologist II

BR

cc: Alison Lord (Delta Env.)
WiRO-UST

Table 5 Approved Methods for Soil Analyses

(Laboratories must be certified by the North Carolina DWQ to perform the following methods)

The state of the s	· · · · · · · · · · · · · · · · · · ·	ionowing metrods)
Confaminant Testing For:	Method (See Notes)	Reportable Concentrations
Low Boiling Point Fuels: gasoline, aviation gasoline, gasohol, etc.	EPA 8260 with IPE & MTBE AND MADEP VPH: Alkanes/Aromatics*	Any Amount Above the MDL
2. Medium/High Boiling Point Fuels: jet fuels, kerosene diesel varsol, mineral spirits, naphtha, fuel oil #2, etc.	 EPA 8260 AND MADEP VPH: Alkanes/Aromatic* AND EPA 8270 AND MADEP EPH: Alkanes/Aromatics* 	Any Amount Above the MDL
3. Heavy Fuels: #4, #5, #6 fuel oils; motor oil; hydraulic fluid; etc.	I) EPA 8270 AND 2) MADEP EPH: Alkanes/Aromatics*	Any Amount Above the MDL
4. Used / Waste Oil	 EPA 8260 AND MADEP VPH: Alkanes/Aromatic* AND EPA 8270 & EPA 8080 (pesticides/PCBs)** AND MADEP EPH: Alkanes/Aromatics* AND EPA 3050 or 3051 Preparation: Total Metals*** (Chromium and Lead) 	Any Amount Above the MDL

* The MADEP VPH and EPH methods should be used only after the laboratories receive DWQ approval for their use. The laboratories will be notified when DWQ approval is issued.

** EPA 8080 has been replaced by a combination of EPA 8081 and EPA 8082 in the SW 846 test methods. Continue to analyze for EPA 8080 until laboratories are certified for EPA 8082. (Laboratory certification is already available for EPA 8081.)

** If the total metal concentration for Chromium or Lead exceeds the corresponding TCLP limits using one of the following equations, then contact the DWM – Hazardous Waste Section at (919) 733-2178 for a regulatory status determination. The TCLP regulatory limits are provided in Figure 12 in Appendix B1.

M = C/20 where:

M = maximum theoretical leachate concentration (mg/L);

 $C = \text{concentration of analyte in the solid (mg/kg) (total metal concentration); and mg/L = ppm = mg/kg.$

Abbreviations

EPA = Environmental Protection Agency

EPH = Extractable petroleum hydrocarbons

IPE = Isopropyl ether

MADEP = Massachusetts Department of Environmental Protection

MDL = Method Detection Limit MTBE = Methyl tertiary butyl ether

VPH = Volatile petroleum hydrocarbons

NOTE: 1) Other EPA approved comparable methods which have similar costs, same constituents, and equivalent or lower detection limits may be used if analyses are conducted by a NC certified laboratory. 2) Report all results on a "dry weight" basis.

extered in DB

State of North Carolina Department of Environment and Natural Resources Wilmington Regional Office Division of Waste Management UST Section

James B. Hunt, Jr., Governor Bill Holman, Secretary

February 11, 2000

Mr. Don Quinn Worsley Companies, Inc. P. O. Box 3227 Wilmington, NC 28406

Subject:

Review of Report Entitled "Subsurface

Petroleum Detection Summary Report

Addendum" Scotchman #139

Hubert, Onslow County

Dear Mr. Quinn:

The Division has reviewed the subject report that was received on December 29, 1999. Review of this report and the previous report received on June 25, 1998, indicates that contaminated environmental media was not encountered during the investigations around the diesel tank located on the southern-end of the subject site. Therefore, this specific tank site is not considered a petroleum incident by the Division, and no further action is required at this time in regard to the Division's December 19, 1997-letter: However, while reviewing the file on this date, it was discovered that the Notice of Regulatory Requirements letter referenced two diesel tanks. Therefore, Worsley Companies must investigate the other diesel tank which is located on the other side of the site. A copy of the December 19, 1997-letter is enclosed for your reference. Please submit a copy of the results of the investigation by May 15, 2000.

Thank you for your attention to this matter. If you have any questions concerning this letter, please call Bruce Reed or myself at (910) 395-3900.

Sincerely,

Patricia C. Coughlan

UST Section Regional Supervisor

Attachment

BR

cc: Alison Lord (Delta Env.)

WiRO-UST

s:\bruce\s#139.feb

HORTH CAROLINA DEPARTMENT OF ENVIRONMENT, HEALTH AND NATURAL RESOURCES DIVISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION P.O. BOX 27687 - RALEIGH, NC 27611-7687 PHONE (919)733-3221

SCOTCHMAN 139, 97214 MW-I

WELL CONSTRUCTION RECORD

14.

		Header	Ent GW-1 Ent
DRILLING CONTRACTOR CES		L	Cit.
DRILLER REGISTRATION NUMBER 1300	STATE PERMIT	WELL CO	ONSTRUCTION R:NA
1 WELL LOCATION: (Show sketch of the location below)			
Nearest Town: Hubert, NC	0	On	slow
Highway 24 & Highway 172	_		
(Road, Community, or Subdivision and Lot No.)	- Depth		DRILLING LOG
2. OWNER WCI	From	10 ———	Formation Description
ADDRESS PO Box 3227			
Wilmington (Street or Route Ho.) 28406			see attached
City or Town State Zip Code 3. DATE DRILLED $4-1-98$ USE OF WELL Monitoring			
4. TOTAL DEPTH 15 CUTTINGS COLLECTED X Yes No			
5. DOES WELL REPLACE EXISTING WELL 2 TO YOU TO NO			
6. STATIC WATER LEVEL: 10 FT. D above TOP OF CASING.			
TOP OF CASING IS U FT. ABOVE LAND SURFACE.			
7. YIELD (gpm): NA METHOD OF TEST NA			
8. WATER ZONES (depth):surficial aquifier		<u></u> -	
		. –	
9. CHLORINATION: Type NA Amount NA			
10. CASING:	ll addi	itional soat	ce is needed use back of form.
Depth Diameter or Weight/Ft. Material			
From _0 To _5_ Ft 2"010 PVC	(Show directive	on and dis	CATION SKETCH two State Roads.
From To Ft	or other map	reference	points)
From ToFt			
Depth Material Method			
From 0 To 1.5 _{ft.} concrete hand pour		see at	tached
From To Ft.			
12. SCREEN:			
Depth Diameter Stot Size 44			
From 5 To 15 Ft. 2 in .010 PVC			
From To Ft in in			
From To FL in in in			•
13. GRAVEL PACK:			
Depth Size Material			
From 5 To 15 Ft. coarse sand			
FromToFt			
14. REMARKS:			

STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER (6)35/98

FOR OFFICE USE ONLY

Lat. _____ Pc ____

Quad. No._

Basin Code ____

Minor Basin _____

____ Serial No. __

SCOTCHMAN #139 CES#97214 MW-1

AS-BUILT MONITORING WELL DETAIL

NOT TO SCALE

2.0. Box 29535 - Raleigh, N.C. 27624-9535 Phone (919) 733-3221

WELL CONSTRUCTION RECORD

DRILLING CONTRACTOR: Geologic Exploration, Inc.

60 or 2: 12 or 2	
And the second s	with the fulfillation was residential. The new appropriation is a continued to
12 22 Sandard Charges North	
and the second s	FOR OFFICE HISPONIA
The second second	
QUAD NO	CEDITAL
and the Control of th	FOR OFFICE USE ONLY SERIAL NO
SCOLETE CONTRACTOR	
Sales Company of the company of the company	EO RO
Minor Bas	
	40
Paragram and a	e
- Destil Cod	
Secretary and the second	
releemin	e C GW-L Enc
Production of the Commence of	
er and the second control of the second cont	

STATE WELL CONSTRUCTION DRILLER REGISTRATION NUMBER: 1175 PERMIT NUMBER: WELL LOCATION: (Show sketch of the location below) Nearest Town: HUBERT County: ONSLOW 101 HWY 172/HWY 24 DEPTH DRILLING LOG (Road, Community, or Subdivision and Lot No.) From Formation Description 2. OWNER WORSLEY OIL CO. 9.0" CRAY/TAN SILTY CLAY ADDRESS 12 CARDINAL DR. 9_0* 17.0* WHITE/GOLD AND (Street or Route No.) WILMINGTON NC City or Town State Zip Code DATE DRILLED 4-19-00 USE OF WELL MONITOR TOTAL DEPTH 17.0 FEET NO |X| CUTTINGS COLLECTED YES NO IXI 7: STATIC WATER LEVEL Below Top of Caring:

(Use "- if Above Top of Caring)

7: TOP OF CASING IS

1: O.0 FT Above Land Surface Caring Caring Terminated at/or below Tand surface is illegal unless a s issued in accordance with 15A NCAC 2C .0118). YIELD (gpm): N/A METHOD OF TEST N/A 10 WATER ZONES (depth): N/A 1. CHLORINATION: Type N/A Amount N/A If additional space is needed use back of form .2. CASING: Wall Thickness Dench Diameter or Weight/re. Material From 0.0 to 7.0 Ft. 2 INCH SCH 40 PVC LOCATION OF SKETCH (Show direction and distance from at least two State From _____ To ____ Ft. ____ Roads, or othe map reference points.) To _____ Ft. 3. GROUT: Depth From Q.Q To 2.0 Ft PORTLAND BENTONIE SLURRY Materiel From 10 _____ ft. ___ Site Depth Diameter Slot Size Material From 7.0 To 17.0 Ft. 2.0 in. .010 in. PVC _____ To _____ in. ____ in. ____ From 5. SAND/GRAVEL PACK: Ft. in. ___ in. ___ in. __ | Depth | Size | Material | From | E. | To | 17.0 | Ft. | Z0-40 | FINS SIZEO | SAND To _____ Pt. ____ FM MWH 6. REMARKS: BENTONITE SEAL FROM 2.0 TO 5.0 FEET MW-2 I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.

SIGNATURE OF CONTRACTOR OR AGENT DATE

W-1 REV. 9/91

Submit original to Division of Environmental Management and copy to well connec-

<u>| | | 2</u>

North Carolina - Department of Environment, Health, and Natural Resources
Division of Environmental Management - Groundwater Section
P.O. Box 29535 - Raleigh, N.C. 27626-0535
Phone (919) 733-3221

WELL CONSTRUCTION RECORD

DRILLING CONTRACTOR: Geologic Exploration, Inc.

	FOR OFFICE USE ONLY
QUAD N	
Lat	Long RO
Minor Basin	
Header	

Submit original to Division of Environmental Management and copy to well owner.

DRILLER REGISTRATION NUMBER 1175

1. WELL LOCATION: (Show sketch of the loca	tion below)	
Nearest Town:HUBERT	County	: ONSLOW
NC HWY 24E & NC HWY 172	DEPTH	DRILLING LOG
(Road, Community, or Subdivision and Lot No.)	From To	,
2. OWNER WORSLEY OIL CO.		GRAVEL TAN/GREY SILTY CLAY
ADDRESS P.O. BOX 3227 (Street or Route No.)		WHITE/GOLD SAND
WILMINGTON NC 28406		
City or Town State Zip Code		
3. DATE DRILLED 6-7-00 USE OF WELL MONITOR 4. TOTAL DEPTH 17.0 FEET		
5. CUTTINGS COLLECTED YES NO X 6. DOES WELL REPLACE EXISTING WELL? YES NO X 7. STATIC WATER LEVEL RELEVANCE.		
7: STATIC WATER LEVEL Below Top of Casing: (Use "+" if Above Top of Casing) FT		
8. TOP OF CASING IS 0.0 FT Above Land Surface* *Casing Terminated at/or below land surface is illegal unless a		
variance is issued in accordance with 15A NCAC 2C .0118		
9. YIELD (GDM): N/A METHOD OF TEST N/A		
10. WATER ZONES (depth): N/A		
11. CHLORINATION: Type N/A Amount N/A 12. CASING:	If addition	al space is needed use back of form
Wall Thickness Depth Diameter or Weight/Ft. Material		LOGARION OF GWERGY
From 0.0 To 2.0 Ft. 2 INCH SCH 40 PVC		LOCATION OF SKETCH
From To Ft	(Show direction Roads, or othe m	and distance from at least two State
From To Ft.	,	-F 1-101011 politicot,
13. GROUT:		
Depth Material Method		
Depth Material Method From 0.0 To 0.5 Ft. PORTLAND BENTONITE SLURRY		We Havy 172
From 0.0 To 0.5 Ft. PORTLAND BENTONITE SLURRY From To Ft. To To Ft.		Ne Hwy 172
From 0.0 To 0.5 Ft. PORTLAND BENTONITE SLURRY From To Ft. 14. SCREEN:		
Depth Material Method		No Huy 24
Depth		
Depth Material Method SLURRY		No Huy 24
Depth		No Huy 24
Depth		No Huy 24
Depth		No Huy 24
Depth From O.0 To O.5 Ft. PORTLAND BENTONITE SLURRY	TED IN ACCORDA	NCE WITH 15A NCAC 2C. WELL
Depth	TED IN ACCORDA	NCE WITH 15A NCAC 2C. WELL
Depth From O.0 To O.5 Ft. PORTLAND BENTONITE SLURRY	TED IN ACCORDA	NCE WITH 15A NCAC 2C. WELL
Depth From O.0 To O.5 Ft. PORTLAND BENTONITE SLURRY	TED IN ACCORDA RECORD HAS BE	NCE WITH 15A NCAC 2C, WELL EN PROVIDED TO THE WELL OWNER.

MW-3

North Carolina - Department of Environment, Health, and Natural Resources
Division of Environmental Management - Groundwater Section
P.O. Box 29535 - Raleigh, N.C. 27626-0535
Phone (919) 733-3221

WELL CONSTRUCTION RECORD

GW-1 REV. 9/91

DRILLING CONTRACTOR: Geologic Exploration, Inc.

	FOR OFFICE USE ONLY
QUAD NO	SERIAL NO
Lat Minor Ba	Long RO
Basin Co	
Header F	
neuder .	1120

Submit original to Division of Environmental Management and copy to well owner.

STATE WELL CONSTRUCTION
DRILLER REGISTRATION NUMBER: 1175 PERMIT NUMBER:

Nearest Town:	Show sketch of the lo		ounty:	ONSLOW	•
		DEE		DRILLING LOG	
NC HWY 24E & NC HW (Road, Community, or Subo		From	 To .	Formation Description	
2. OWNER WORSLEY OIL CO		0_0*	2.0'	GRAVEL	
ADDRESS P.O. BOX 322	27			TAN SILTY CLAY	
(Street or F	Route No.)	13.0*	17.01	GOLD/WHITE SAND	
WILMINGTON NO	28406				
City or Town Sta 3. DATE DRILLED 6-6-00	ate Zip Code - USE OF WELL MONITOR				
4. TOTAL DEPTH 17.0 FEE	<u></u>				
5. CUTTINGS COLLECTED 6. DOES WELL REPLACE EXISTING	WELL? YES I I NO IXI				
7: STATIC WATER LEVEL Below To	no of Casing. T				
8. TOP OF CASING IS 0.0 *Casing Terminated at/or below	op of Casing) FT Above Land Surface* land surface is illegal unless				
variance is issued in accordance with 15		<u> </u>			
9. YIELD (gpm): N/A METH	HOD OF TEST N/A				
10. WATER ZONES (depth):	N/A	<u>. </u>			
11. CHLORINATION: Type N	N/A Amount N/A	I.	f additional s	pace is needed use back of form	
12. CASING:	Wall Thickness		<u> </u>		
Depth	Diameter or Weight/Ft. Materi	al		LOCATION OF SKETCH	
	t. 2 INCH SCH 40 PVC	(Show di	rostion an	d distance from at least two S	7+ o +
From To F	t	Roads, or	cothe map	reference points.)	الطالة
From To F	't	<u>—</u>			
			1	NC Hay 172	
Depth	Material Method		1	<u> </u>	
From <u>0.0</u> To <u>0.5</u> F	t. PORTLAND BENTONITE SLURRY			V	
From 0.0 To 0.5 F	Material Method t. PORTLAND BENTONITE SLURRY				ч ⊃.
From 0.0 To 0.5 F From To F 14. SCREEN:	t. PORTLAND BENTONITE SLURRY t			NC HU	イネ
From 0.0 To 0.5 F From To F 14. SCREEN: Depth From 2.0 To 17.0 Ft.	t. PORTLAND BENTONITE SLURRY t Diameter Slot Size Materia 2.0 in010 inPVC	 L	-		イネ
From 0.0 To 0.5 F From To F 14. SCREEN: Depth From 2.0 To 17.0 Ft. From From From From Ft.	t. PORTLAND BENTONITE SLURRY t Diameter Slot Size Materia	L			イネ
From 0.0 To 0.5 F From To F 14. SCREEN: Depth From 2.0 To 17.0 Ft. From To Ft. From To Ft. From To Ft. SAND/GRAVEL PACK:	Tt. PORTLAND BENTONITE SLURRY Tt	L			42
From 0.0 To 0.5 F From To F 14. SCREEN: Depth From 2.0 To 17.0 Ft. From From From From Ft.	Tt. PORTLAND BENTONITE SLURRY Tt	L			ベア
From 0.0 To 0.5 F From To F 14. SCREEN: Depth From 2.0 To 17.0 Ft. From To Ft. From To Ft. From To Ft. SAND/GRAVEL PACK:	t. PORTLAND BENTONITE SLURRY t. Diameter Slot Size Materia. 2.0 in010 in. PVC in. in. in. size Material 20-40 FINE SILICA SAND	L			:\>
From 0.0 To 0.5 F From To F 14. SCREEN: Depth From 2.0 To 17.0 Ft. From To Ft. From To Ft. SAND/GRAVEL PACK: From 1.0 To 17.0 Ft. 2 From To Ft.	t. PORTLAND BENTONITE SLURRY t. Diameter Slot Size Materia. 2.0 in010 in. PVC in. in. in. Size Material FINE SILICA SAND				42
From 0.0 To 0.5 F From To F 14. SCREEN: From 2.0 To 17.0 Ft. From To Ft. From To Ft. From 1.0 To 17.0 Ft. 2 From To Ft. 16. REMARKS: MW-4	t. PORTLAND BENTONITE SLURRY t. Diameter Slot Size Materia. 2.0 in010 in. PVC in. in. in. in. Size Material FINE SILICA SAND BENTONITE SEAL FROM 0.	5 TO 1.0 F	EET	AC HU	スス
From 0.0 To 0.5 F From To F 14. SCREEN: From 2.0 To 17.0 Ft. From To Ft. From To Ft. From 1.0 To 17.0 Ft. 2 From To Ft. 16. REMARKS: MW-4 I DO HEREBY CERTIFY 5	t. PORTLAND BENTONITE SLURRY t. Diameter Slot Size Materia. 2.0 in010 in. PVC in. in. in. in. Size Material FINE SILICA SAND BENTONITE SEAL FROM 0. THAT THIS WELL WAS CONSTR	5 TO 1.0 F	EET	AC HU Sik E WITH 15A NCAC 2C, WELL	•
From 0.0 To 0.5 F From To F 14. SCREEN: From 2.0 To 17.0 Ft. From To Ft. From To Ft. From 1.0 To 17.0 Ft. 2 From To Ft. 16. REMARKS: MW-4 I DO HEREBY CERTIFY S	t. PORTLAND BENTONITE SLURRY t. Diameter Slot Size Materia. 2.0 in010 in. PVC in. in. in. in. Size Material FINE SILICA SAND BENTONITE SEAL FROM 0. THAT THIS WELL WAS CONSTR	5 TO 1.0 F	EET	AC HU	•
From 0.0 To 0.5 F From To F 14. SCREEN: From 2.0 To 17.0 Ft. From To Ft. From To Ft. From 1.0 To 17.0 Ft. 2 From To Ft. 16. REMARKS: MW-4 I DO HEREBY CERTIFY S	t. PORTLAND BENTONITE SLURRY t. Diameter Slot Size Materia. 2.0 in010 in. PVC in. in. in. in. Size Material FINE SILICA SAND BENTONITE SEAL FROM 0. THAT THIS WELL WAS CONSTR	5 TO 1.0 F UCTED IN A IS RECORD	eet ccordance has been Liad	E WITH 15A NCAC 2C, WELL PROVIDED TO THE WELL OWN	ER.

MW-4

North Carolina - Department of Environment, Health, and Natural Resources
Division of Environmental Management - Groundwater Section
P.O. Box 29535 - Raleigh, N.C. 27626-0535
Phone (919) 733-3221

WELL CONSTRUCTION RECORD

DRILLING CONTRACTOR: Geologic Exploration, Inc.

DRILLER REGISTRATION NUMBER: 1175

FOR OFFICE USE ONLY
QUAD NO SERIAL NO
Lat Long RO
Minor Basin
Basin Code
Header Ent GW-1 Ent

STATE WELL CONSTRUCTION

PERMIT NUMBER:

1. WELL LOCATION: (Show sketch of the location Nearest Town: HUBERT		ounty:	ONSLOW	•
NC HWY 24E & NC HWY 172	DEI		DRILLING LOG	
(Road, Community, or Subdivision and Lot No.)	From	To .	Formation Description	
2. OWNER WORSLEY OIL CO.	0.0	3.01	GRAVEL	
ADDRESS P.O. BOX 3227			TAN SILTY CLAY	
(Street or Route No.)	12.0	17.0'	WHITE/GOLD SAND	
WILMINGTON NC 28406				
City or Town State Zip Code			-	
3. DATE DRILLED 6-6-00 USE OF WELL MONITOR 4. TOTAL DEPTH 17.0 FEET		-		
5. CUTTINGS COLLECTED YES NO X				
5. CUTTINGS COLLECTED YES NO X 6. DOES WELL REPLACE EXISTING WELL? YES NO X 7: STATIC WATER LEVEL Below Top of Casing: FT (Use "+" if Above Top of Casing)	·			
(Use "+" if Above Top of Casing) 8. TOP OF CASING IS 0.0 FT Above Land Surface*				
*Casing Terminated at/or below land surface is illegal unless a variance				
is issued in accordance with 15A NCAC 2C .0118	•			
9. YIELD (gpm): N/A METHOD OF TEST N/A 10. WATER ZONES (depth): N/A				
10. WATER ZONES (depth). N/A				
11. CHLORINATION: Type N/A Amount N/A	. 1	r additional s	pace is needed use back of form	
12. CASING:	-			
Depth Diameter or Weight/Ft. Material			LOCATION OF SKETCH	
From 0.0 To 2.0 Ft. 2 INCH SCH 40 PVC	(Show di	rection an	d distance from at least tw	ro Ctata
From To Ft	Roads, or	cothe map	reference points.)	O State
From To Ft				
10 dports				
13. GROUT:			NC Aug 172	
13. GROUT: Depth Material Method From 0.0 To 0.5 Ft. PORTLAND BENTONITE SLURRY				
13. GROUT: Depth			NC thuy 172	H242
Depth Material Method From 0.0 To 0.5 Ft. PORTLAND BENTONITE SLURRY From To Ft. 14. SCREEN:			NC they 172	H072
13. GROUT: Depth			NC thuy 172	<u>.</u> H072
13. GROUT: Depth			NC they 172	.H2272
13. GROUT: Depth			NC they 172	_H272
13. GROUT: Depth			NC they 172	_H2272
Depth			NC they 172	2 p ce 4.
13. GROUT: Depth			NC they 172	2 pcetts
Depth		EET	NC they 172	, H27 2
13. GROUT: Depth	0 1.0 F		NC they 172 NC	
13. GROUT: Depth	0 1.0 F ED IN A	CCORDANCI	With 15A NCAC 2C, WEI	.L .
13. GROUT: Depth	0 1.0 F ED IN A	CCORDANCI	With 15A NCAC 2C, WEI	.L .
13. GROUT: Depth Material Method From 0.0 To 0.5 Ft. PORTLAND BENTONITE SLURRY From To Ft. 14. SCREEN: Depth Diameter Slot Size Material From 2.0 To 17.0 Ft. 2.0 in010 in. PVC From To Ft. in. in. From To Ft. in. in. 15. SAND/GRAVEL PACK: Depth From 1.0 To 17.0 Ft. 20-40 FINE SILICA SAND From To Ft. 16. REMARKS: MW-5 BENTONITE SEAL FROM 0.5 T I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCT CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS	O 1.0 F ED IN A RECORD	ccordanci has been	WITH 15A NCAC 2C, WEI PROVIDED TO THE WELL C	L WNER.
Depth Material Method From 0.0 To 0.5 Ft. PORTLAND BENTONITE SLURRY From To Ft. 14. SCREEN: Depth Diameter Slot Size Material From 2.0 To 17.0 Ft. 2.0 in010 in. PVC From To Ft. in. in. From To Ft. in. in. 15. SAND/GRAVEL PACK: Depth From 1.0 To 17.0 Ft. 20-40 FINE SILICA SAND From To Ft. 16. REMARKS: MW-5 BENTONITE SEAL FROM 0.5 T I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCT CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS	O 1.0 F ED IN A RECORD F CONT	CCORDANCI HAS BEEN NILOWO RACTOR	With 15A NCAC 2C, WEI PROVIDED TO THE WELL C	L WNER.

<u>MW-5</u>

North Carolina -Department of Environment and Natural Resources - Division of Water Quality - Groundwater Section 1636 Mail Service Center - Raleigh, N.C. 27699-1636 - Phone (919) 733-3221

WELL CO	NTRACTOR: Brian Thomas NTRACTOR CERTIFICATION #: 258 ELL CONSTRUCTION PERMIT #:	31
WELL USE (Check Applicable Box): Residential Municipal Recovery Heat Pump Water Injection Other If] Industrial [] Agricultural [☐ Monitoring ☑
WELL LOCATION: (Show sketch of the location below) Nearest Town: Hubert		
NC HWY 24E & NC HWY 172	12.001	•
(Road name and Numbers, Community, or Subdivision and Lot No.)	DRILLING LOG	DEPTH
3. OWNER Worsley Oil Company	From To	Formation Description
Address P.O. Box 3227	0.0 3.0	Gradi
(Street or Route No.)	3.0′ 13.0′	Tan Gray Saly day
Wilmington NC 28408 City or Town State Zip Code	13.0 18.0	Gold With Sand
4. DATE DRILLED 67-00	18.0' 27.0'	Gold Sana
5. TOTAL DEPTH 39.0 FL	27.0' 39.0'	Gray Clay मंद्री rock fragments
6. CUTTINGS COLLECTED YES ☐ NO ☒	·	
7. DOES WELL REPLACE EXISTING WELL? YES NO 🗵		
8. STATIC WATER LEVEL Below top of Casing:FT.		
9. TOP OF CASIING IS 0.0 FT. Above Land Surface		
9. TOP OF CASIING IS 0.0 FT. Above Land Surface Top if casing terminated attor below land surface required a variance in accor-		
dance with 15A NCAC 2C .0118		
10. YIELD (gmp); n/a METHOD OF TEST n/a		
11 WATER ZONES (depth); r/s		
12. CHLORINATION: Type n/a Amount n/a 13. CASING	If additional space is neede	ad use back of form
Prom 0.0 To 34.0 Ft. 2 inch sch.40 pvc From To Ft. 6 inch sch.40 pvc From To Ft.	Roads, or other map re	from at least two State
14. GROUT:		
From 0.0 To 27.0 Ft. portland/bentonite sturry From 0.0 To 20.0 Ft. portland/bentonite sturry 15. SCREEN:		NC 246
From 34.0° To 39.0° Ft. 2.0 in010 in	S	TE .
Depth Size Material		· .
I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACC STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDE	CORDANCE WITH 15A NCAC 2C, WELL O	CONSTRUCTIONS
FOR OFFICE USE ONLY BOTTOM	Themes	7/15/00
Quad No: SIGNATURE OF F	PERSON CONSTRUCTING THE WELL	DATE
Serial NoSubmit original to Division of Water Quali	ny, Groundwater Section within 30 days	

DW-1

CLARK ENVIRONMENTAL SERVICES, INC. BORING LOG

PROJECT NAME: Scotchman # 139

LOCATION: Hubert, NC CES PROJECT #: 97214 LOGGED BY: KD BORING/WELL #: MW-1

DATE: 04/01/98 GROUND ELEV.: NA

DEP	ТН			VAPOR S	URVEY
FROM	ТО	DESCRIPTION	BLOW COUNT	ODOR	HNU (ppm)
0	0.3	Asphalt		NO	_
0.3	0.5	Sand, silt and gravel	-	NO	_
0.5	3	Orange, medium brown, clayey, silty very fine grained sand	-	NO	0.75
3	6.5	Medium brown, orange, silty, clay	_	NO	0
6.5	8	Light brown, tan, silty sand	_	NO	0
8	9	Light brown, silty sand	-	NO	0
9	15	Tan, silty, very fine grained sand, wet at 10 feet	<u>-</u>	NO	0
				 	
ļ	_				
					
			-		

REMARKS:

Boring Log Site Name: Scotchman #139 Soil Boring ID: MW-2 Location: 101 Highway 172 and Highway 24 Construction Date: 04/19/00 Hubert, Onslow County Drilling Contractor: Geologic Exploration North Carolina Drill Rig Type: Not Applicable Project No.: X0NC-170 Drilling Method: Hand Auger (0.0' - 2.5') Client: Worsley Companies, Inc. Hollow-stem Auger (2.5'-17') 10 Cardinal Drive Logged By: Wilmington, North Carolina Top-of-Casing Elev.: Not Applicable Organic Vapor Reading (ppm) Sample Interval/Type Depth bgs (ft.) Screened Interval (ft.) Blow Count n value Sroundwater Comments Soil Description & Classification (USCS) Asphalt and stone. Sample collected for lab Tan and gray silty Clay (CL). analysis from 1.0' - 3.0' 2.0 bgs. Gray silty Clay (CL). 4.0 Sample collected for lab analysis from 5.0' - 7.0' 6.0 1.2 bgs. Gray and tan silty Clay (CL). 8.0 Yellowish-orange silty Clay (CL). 10 Sample collected for lab analysis from 10.0' -0.7 Yellowish-orange silty fine Sand (SM). 12.0' bgs. 12 Wet @ 13.0 feet bgs. Light gray silty fine Sand (SM), moist to wet. 14 16 Light gray silty fine Sand (SM), wet. EOB @ 17 feet bgs. Symbols Groundwater Level @ Time-of-Boring Hand Auger IIIII - Direct Push - Screened Interval Std. Penetration Test - Cuttings (SPT) Notes: - Submitted for laboratory analysis Organic Vapor Readings by a PID - photoionization detector bgs - below ground surface Delta Environmental Consultants, Inc. ppm - parts per million 1201 South 16th Street, Suite B EOB - end of boring Wilmington, NC 28401 Page 1 of 1

							3orir	ıg Log		
						•	<i></i> 1	-33		
Site Name:	Scotchmar	า #13	9					Soil Boring ID:	MW-3	
Location:						_	Construction Date:	06/06/00		
	Hubert, On						_	Drilling Contractor:	Geologic Exploration	
	North Caro							Drill Rig Type:	Not Applicable	
Project No.:							_	Drilling Method:	Hand Auger (0.0' - 2.5')	
Client:	Worsley Co	ompa	nies, In	C.			_		Hollow-stem Auger (2.5'-17')	
	10 Cardina			•			_	Logged By:	ВР	
	Wilmington	ı, Nor	th Caro	lina		-	_	Top-of-Casing Elev.:	Not Applicable	
Comme	nts	Depth bgs (ft.)	Groundwater Level @ Time-of-Boring	Screened Interval (ft.)	Organic Vapor Reading (ppm)	Blow Count n value	Sample Interval/Type		scription & Classification (USCS)	
								Asphalt and stone.		
		1		<u> </u>				Tan silty sandy Clay (
		1		ļļ	<u> </u>			Yellowish-orange silty		
		2.0		 	0.0		_	Brown silty fine Sand	(SM).	
 		4.0						- Tan silty clayey fine S	and (SM/SC).	_
		٦٠٠٠								
_			1		0.0		1.4			_
ı					0.5			Yellowish-orange silty	sandy Clay (CL).	
		6.0			-		11			
•								=		_
					1					_
									01	_
_		8.0			1			Dark gray silty sandy	Clay (CL), moist.	_
		1			1 1			-		-
_										
		4						 		
_		10						- ·		_
		1 .			1 1			Light grow eith fine Sc	and (SM)	-
								Light gray silty fine Sa	and (Sivi).	_
							1	-	•	-
		12								
		Ì					1+	-		
_]		1 3 3	Tan silty fine Sand (S	M	
					1		1.73	- Tarrolly file carra (c		
Wet @ 14.5	feet bgs.	14			1					_
		1					1000		· · · · · · · · · · · · · · · · · · ·	
					1					_
		1]					Light gray silty fine Sa	and (SM).	•
		16							······ · · · · · · · · · · · · · · · ·	_
			ŀ		1			-		
EOB @ 17 t	feet bas.	1					1 2 2 2			
					<u> </u>			<u>-</u>		
_						<u>Symi</u>	ols			
 Groundwate 	er Level @ Tim	e-of-E	Boring					- Hand Auger	- Direct Push	
- Screened Ir	nterval							- Std. Penetration Test (SPT)	- Cuttings	
Notes:								- Submitted for laboratory	analysis	
Organic Vapor Re	adings by a P	la - Ol	notoioniza	ation d	etector		20000000	, , , , , , , , , , , , , , , , , , , ,	-	
bgs - below groun		•							Delta Environmental Consultants, Inc.	
ppm - parts per m									1201 South 16 th Street, Suite B	
EOB - end of bori									Wilmington, NC 28401	
	-						Pac	e 1 of 1	·	

<u> </u>							Bori	ng Log	
							וווטם	ig Log	
Site Name:	Scotchmar	1#13	39					Soil Boring ID:	DW-1
Location:							_	Construction Date:	6/6 and 6/7/2000
2000110111	Hubert, Onslow County					_	Drilling Contractor:	Geologic Exploration	
	North Carolina							Drill Rig Type:	Not Applicable
Project No.:							_	Drilling Method:	Hand Auger (0.0' - 2.5'),
Client:	Worsley Co		nies In	<u> </u>			_	Drinking Motificati	Hollow Stem (2.5'-30.0')
Onorit.	10 Cardina			<u> </u>			_		Mud Rotary (30.0'-40.0')
	Wilmington			lina			_	Logged By:	BP
<u></u>	TTIMITISTEE	, 10						Top-of-Casing Elev.:	Not Applicable
Comme	nts	Depth bgs (ft.)	Groundwater Level @ Time-of-Boring	Screened Interval (ft.)	Organic Vapor Reading (ppm)	Blow Count n value	Sample Interval/Type		scription & Classification (USCS)
								Asphalt and stone. Tan silty sandy Clay (CI).
		1						 Gray silty sandy Clay 	
_ .		5.0						Tan silty sandy Clay (· · · · · · · · · · · · · · · · · · ·
		-		_			_	Gray clayey Silt (SC),	moist.
Wet at appro	oximately 12	10						 Yellowish-orange san 	
13 feet bgs.		{					-	Tan fine Sand (SP), v	• • •
		1		†					· .
		15				<u>.</u>		Gray fine Sand (SP).	- -
		20							
		25						— - Tan silty fine Sand (S - - -	- P)
- -								 	end (SM)
		35			1			——	
-		1			1			- .	•
	<u></u>	1			}		-} ′∵∵	Tan silty fine Sand (S	SM)
·····		1					- []	Brown silty fine sandy	/ Clav (SM/SC).
EOB @ 40 f	eet bas	40	-	†	 				, , , , , , , , , , , , , , , , , , ,
				1	1			_	
	•			1					· · · · · · · · · · · · · · · · · · ·
-									
- Groundwate	r Level @ Tim	e-of-E	3oring			<u>Sym</u>	<u>bols</u>	- Hand Auger	- Direct Push
- Screened Ir	iterval							- Std. Penetration Test	- Cuttings
Notes:								(SPT) - Submitted for laboratory	analysis
Organic Vapor Re		ID - p	hotoioniz	ation d	letector		>000000000	,	
bgs - below groun								1	Delta Environmental Consultants, Inc.
ppm - parts per m			•						1201 South 16 th Street, Suite B
EOB - end of bori	ng						_	ge 1 of 1	Wilmington, NC 28401
							۲a	JE I ULI	

June 20, 2000

Gary and Sally Morton 127 Sand Ridge Road Hubert, NC 28539

Subject: Supply Well Survey, Onslow County, Hubert, North Carolina

Parcel ID 1307-28.2

Delta Project No. X0NC-170

Dear Mr. and Mrs. Morton:

Delta Environmental Consultants, Inc. (Delta) is conducting a supply well survey in your area as part of an environmental investigation requested by the North Carolina Department of Environment and Natural Resources (NCDENR). Delta respectfully requests information pertaining to the water supply usage for your property located in Hubert, Onslow County, North Carolina.

A survey form listing the information needed is enclosed. Following your review, please complete the form and return to Delta within 30 (thirty) days. A self-addressed stamped envelope is included for your convenience. If you have any questions regarding this matter, please contact me at (910) 772-9329.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Maureen Jones Staff Geologist

Enclosures

Gary and Sally Morton 127 Sand Ridge Road Hubert, NC 28539 Subject: Parcel ID 1307 Delta Project No. XONO

Thank you for your time and cooperation.

Subject: Parcel ID 1307-28.2 Delta Project No. X0NC-170				
Please circle the appropriate response:				
Is your site connected to a public water supply?	YES		NO	
Does your site have a water supply well?	YES		NO	
If you answered yes to your site having a water s	upply well, p	olease ans	wer some addition	nal questions.
Is the water supply well operational? YES	3	NO		•
s the water supply well used as a source of drink	ing water?	YES	NO	
If you answered no to using the water supply well use of the water supply well.	l as a source	of drinki	ng water, please b	riefly explain the
Fo the best of your knowledge, please fill in the a	innronriata r	ecnonce:		
to the best of your knowledge, please fiff in the a	ippropriate i	esponse.		
he depth of the water supply well				
he screened interval for the water supply well	<u></u>			

Analytical/Process Consultations

Chemical Analysis for Selected Parameters and Soil Samples identified as Scotchman #139 (A Delta Environmental Project#XONC170, 19 April 2000)

1418 00/61/140 38888		Sanple Number Sangle Date Sample Time	1419 0411900 38888		Sample Mumber Sample Date Sample Time
			ι		Dilution Factor
			פסר פסר פסר	0.01 0.01 0.01	C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics
l 		Dilution Factor			Parameter
80F 80F	55.0 55.0	Pyrene 1,2,4-Tichlorobenzene			На∧
8 <i>0</i> F	55.0	Phenanthrene			II. MADEP 98-1
80F 80F	88.0 88.0	M-nitrosodin-n-propylamine M-Nitrosodipinenylamine	i		Dilution Factor
.00°	££.0	N-Nitrosodimethylamine	•		YOTOGE BOITHIO
300	55.0	Nitrobenzene			
90r 90r	66.0 66.0	lsophorone Naphthalene	807	0.005	N-Propylbenzene
108	££.0	Indeno(1,2,3-cd) pyrene	90F 80 F	800.0 800.0	Sec-Butylbenzene I-Propylbenzene
BOL	55.0	Hexachloroethane	108	300.0	Terr-Butylbenzene
308	55.0	Hexachlorocyclopentadiene	פסר	0.005	4-Chlorotoluene
80F	EE.0 EE.0	Hexachlorobenzene Hexachlorobutadiene	907	900.0	Z-Chlorotoluene
80F	55.0	Fluorene	פסר פסר	800.0 800.0	ənəznədiydrəminT-2,E,† ənəznədiydrəminT-4,2,†
BOL	65.0	Fluoranthene 	BOL	300.0	N-Butylbenzene
80	39.1	1,2-Diphenylhydrazine	BOL	0.005	p-laopropyltoluene
80F 80F	88.0 88.0	Di-N-Octyl phthalate	BQL	300.0	1,2-Dibromoethane (EDB)
708	55.0	۲٫4-Dinitrotoluene ک,G-Dinitrotoluene	פסר פסר	810.0 820.0	1,2,3-Trichloropropane 1,2,9-Trichloropropane(D8CP)
BOL	55.0	Di-N-Butyl phthalate	80 F	300.0	enarharoniolateisT-S,f,f,f
800	55.0	Dimethyl phthalate	פסר	010.0	ensrtemornoridiO
BOF BOF	88.0 EE.0	3,3-Dichlorobenzidine Diethyl phthalate	DB	0.005	Bromochloromethane
BOL	££.0	eneznedoroldoiO-4,†	פסר פסר	0.00.0 010.0	Cis-1,2-Dichloroethene Methyl lodide
פסר	55.0	anesnedorolhoiQ-£, f	פסר	001.0	Trans-1, 4-Dichloro-2-butene
800	6.33	1,2-Dichlorobenzene	פֿסר	500.0	1,4-Dichlorobenzene
BOT BOT	65.0 66.0	Chrysene Dibenzo(a,h)anthracene	BOL	900'0	1,2-Dichlorobenzene
BOL	55.0	4-Chlorophenyl phenyl ether	BOL BOL	300.0 005.0	Total Xylenes Acrylonitrile
BOL	£E.0	2-Chloronaphthalene	9OF	010.0	Styrene
BOL	££.0	4-Bromophenyl phenyl ether	BOL	0.050	2-Hexanone
BOT BOT	65.0 65.0	Bis(2-chloroisopropyl)ether Bis(2-thyl-hexyl)phthalate	80 ר 80ר	001.0 001.0	anonetuB-S enonstna9-S-lydfaM- P
708	55.0	Bis(2-chloroethyl)ether	801	0.000	Viny Acetate
BOL	55.0	Bis(2-chloroethoxy)methane	ВОГ	001.0	Carbon Disulfide
BOT BOT	EE.0	Benzyl butyl phrhalate	BOT	001.0	anotabA
BOL	66.0 66.0	Benzo(ghi)perylene Benzo(k)fluoranthene	פסר פסר	010.0 010.0	· Vinyl Chloride Chloroethane
ВОГ	55.0	Benzo(b)fluoranthene	108	010.0	Bromomethane
905	65.0	Benzo(a)pyrene	9OF	010.0	Chloromethane
BOT BOT	0.33	Benzo(a) anthracene	80 <u>r</u>	300.0	Ethyl Benzene
BOL	€€.0 ∂∂.1	Anthracene Benzidine	80F 80F	300.0 300.0	
BOL	££.0	ənəlyrinqsnəcA	708	300.0	Bromoform 1,1,2,2-Tetrachloroethane
ВОГ	65.0	Acenaphthene	BOF	010.0	Trans-1,3-Dichloropropene
BOF BOF	65.0 65.0	loneriquoidhin T-8,4,2	BOL	900'0	auszuag
801	89.1	Pentachlorophenol Phenol	80F 80F	800.0 010.0	-Bromodichloromethane Cis-1,3-Dichloropropene
BGL	39.1	lonariqoniiN-4	80F	800.0	1,1,1-Trichloroethane
BOL.	55.0	lonariqontiN-S	ВОГ	900.0	9nerheoroldoid-2,1
BOF BOF	88.1 88.1	۲٫4-Dinitrophenol ۲-Methyl-4,6-dinitrophenol	800	900.0	Frans-T tanporoethene
108 80F	££.0	lonadqlyhamiO-4,2	BOL BOL	300.0 300.0	Tetrachloroethene Chlorobenzene
ם פסר	66.0	2,4-Dichlorophenol	80F	300.0	1,1,2-Trichloroethane
פסר ,	££.0	2-Chlorophenol	вог	500.0	Dibromochloromethane
ВОГ	55.0	4-Chloro-3-methylphenol	80F	300.0	Trichloroethene
		AN8 0728 botteM A93	פסר פסר י	0.00.0 0.005	Carbon Tetrachloride 1,2-Dichloropropane
		IV. Semivolatile Organics	807	300.0	Cathon Terraphorida
700	بخنم		BOF	900.0	1,1-Dichloroethane
80F	0.01 0.01	C19-C36 Aliphatics C17-C22 Aromatics	8 <i>O</i> C	900.0	from the restriction of the rest
108	0.01	C9-C18 Aliphatics	פסר פסר	0.020 0.005	Methylene Chloride Trichlorofluoromethane
(ша\ка) WM-S	Limits (Rylkg)	rra Parmeter	(<u>mā/kā)</u>	(<u>wā\kā)</u>	Parameter
	NUMBER OF	r-86 930AM.III H93	2-WM	Ouant Simil	I. Volatile Organics EPA Method 8260
THILITIES	11/1/2			0	: oli+e/o//

MADEP VPH 98-1 = Volatile Petroleum Hydrocarbons via the Massachusetts Department of Environmental Protection Method ASADEP EPH 98-1 = Extractable Petroleum Hydrocarbons via the Massachusetts Department of Environmental Protection Method

Attachment 2

VPH Laboratory Reporting Form

Calibration and QA/QC Information

Initial Calibration Date _

Calibration Ranges and Limits mg/kg

Range	MDL	ML	RL
C5 - C8 Aliphatics	2.84	9.03	10.0
C9 - C12 Aliphatics	, 0.90	2.86	10.0
C9 - C10 Aromatics	0.66	2.10	10.0

NOTE: Please include units as appropriate

Method of Quantitation (check one): X Curve

☐ Average

Response Factor

Calibration Concentration Lev	rels mg/kg	
Range	Levels	% RSD or CCC
	7.50	
	75.0	9.88 % RSD
C5 - C8 Aliphatics	150	
	225	ccc=0.998
	300	
	5.50	
	55.0	10.8 % RSD
C9 - C12 Aliphatics	110	
,,	165	ccc=0.999
	220	
	5.0	
	13.0	12 1 0/ BSD
C9 - C10 Aromatics	20.0	12.1 % RSD
	30.0	ccc=0.998
	40.0	

NOTE: Please indicate units as appropriate.

Calibration Check Date _04/26/00

Calibration Check

mg/kg

Range	Level	RPD
C5 - C8 Aliphatics	150	22 %
C9 - C12 Aliphatics	110	22 %
C9 - C10 Aromatics	20	19 %

MDL = Method Detection Limit

ML = Minimum Limit

RL = Reportable Limit Fn: L:\WORK\REPORTS\8260\DELTA.D5

RPD = Relative Percent Difference %RSD = Percent Relative Standard Deviation CCC = Correlation Coefficient of Curve

copy of revision 5/6/98

VPH (Aliphatics/Aromatics) Laboratory Reporting Form Continued

Client Name	DELTA - Scotchman #139	Laboratory Name <u>RESEARCH & ANALYTICAL LABORATORIES</u> , INC.
Project Name	Project #XONC170	NC Certification # (Lab) 34
Site Location	RAL#'s 388828	

INCLUDE APPROPRIATE UNITS: PPM (Parts Per Million) (i.e., for Water: mg/L | for Soil: mg/kg)

		Sample Info	mation and Analy	tical Results		
Sample Identification	MW-2	Blank				
Sample Matrix	soil	Methanol				
Collection Option (for soil)	1	N/A		-		
Date Collected	04/19/00	04/19/00				
Date Received	04/21/00	04/21/00				
Date Extracted	N/A	N/A				
Date Analyzed	04/26/00	04/26/00				
Dry Weight	83.2	N/A				
Dilution Factor	1	1				
C5 - C8 Aliphatics "	BRL	BRL				
C9 - C12 Aliphatics "	BRL	BRL				
C9 - C10 Aromatics	BRL	BRL				
Surrogate % Recovery - PID	97	96				
Surrogate % Recovery - FID	101	100				

^{*} Option 1 = Established fill line on vial Option 2 = Sampling Device (indicate brand, e.g. EnCore) Option 3 = Field weight of soil

^{**} Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.

	#0000000000000000000000000000000000000	C9 - C12 Aliphatic	C9 - C10 Aromatic
Percent Recovery - Fortified Blank (Spike) - PID	-	-	84
Relative Percent Difference - PID Duplicate	-	-	7.5
Percent Recovery - Fortified Blank (Spike) - FID	86	79	-
Relative Percent Difference - FID Duplicate	4.2	0.8	_

Attachment 3

Labui	alory	nepoi	ung	ГОПП
Calibra	tion and Q	A/QC Inter	nation	

Initial Calibration Date <u>11/11/99</u>

Calibration Ranges and Limits

mg/kg

Range	MDL	ML	RL
C9 - C18 Aliphatics	5.3	16.8	10.0
C19 - C36 Aliphatics	, 2.4	7.63	10.0
C11 - C22 Aromatics	4.3	13.7	10.0

NOTE: Please include units as appropriate

Method of Quantitation (check one): X Curve

☐ Average

Response Factor

Calibration Concentration Levels mg/kg

Range	Levels	% RSD or CCC
	15	
	30	3.79 % RSD
C9 - C18 Aliphatics	60	
1	150	ccc=0.996
	300	
	20	
	40	12.1 % RSD
C19 - C36 Aliphatics	80	
	200	ccc=0.979
	400	
	42.5	
	85	8.17 % RSD
C11 - C22 Aromatics	170	
	425	ccc=0.998
	850	

NOTE: Please indicate units as appropriate.

Calibration Check Date _04/21/00

Calibration Check mg/kg

Range	Level	RPD
C9 - C18 Aliphatics	150	7 %
C19 - C36 Aliphatics	200	8 %
C11 - C22 Aromatics	425	17 %

MDL = Method Detection Limit

ML = Minimum Limit

RL = Reportable Limit Fn: L:\WORK\REPORTS\FORMS\DELTA.D5 RPD = Relative Percent Difference %RSD = Percent Relative Standard Deviation CCC = Correlation Coefficient of Curve

copy of revision 5/6/98

EPH (Aliphatics/Aromatics) Laboratory Reporting Form Continued

Client Name	DELTA - Scotchman #139	Laboratory Name RESEARCH & ANALYTICAL LABORATORIES, INC.
Project Name	Project #XONC170	NC Certification # (Lab) 34
Site Location	RAL#'s 388828	

INCLUDE APPROPRIATE UNITS: PPM (Parts Per Million) (i.e., for Water: mg/L | for Soil: mg/kg)

Sample Information and Analytical Results										
Sample Identification	MW-2									
Sample Matrix	soil									
Date Collected	04/19/00									
Date Received	04/21/00									
Date Extracted	04/21/00									
Date Analyzed	04/21/00									
Dry Weight	83.2									
Dilution Factor	1									
C9 - C18 Aliphatics *	BRL									
C19 - C36 Aliphatics *	BRL									
C11 - C22 Aromatics *	BRL									
Surrogate % Recovery - Aliph.	60									
Surrogate % Recovery - Aroma.	73									
Fractionation Surrogate % Recovery	not fract.									
Fractionation Surrogate % Recovery	not fract.									

^{*} Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.

	C9 C18 Aliphatic	C19 - C36 Aliphatic	C11 - C22 Aromatic
Percent Recovery - Fortified Blank (Spike)	96	93	85
Relative Percent Difference - Sample Duplicates	0.0	0.0	0.0

RESEARCH & ANALYTICAL LABORATORIES, INC. Analytical / Process Consultations Phone (336) 996-2841

CHAIN OF CUSTODY RECORD

												Ţ		WA	TER / \	NAST	EWA	TER		MISC.		
COMPANY	_	_1			JO	B NC). V K 150 100	1					/ /	//	/5/6	./	//	/ /		//,		
De ita F	Saller	ENMERT	<u>a</u> .			10.15	XONCIJO	_				/ /	//	/ /,		1	\ <u>\</u>	//	/ / /	' / /		
STREET ADDRESS	C +4 C				PR	(OJE	C +1				/		/ /	\z ⁸) / Ž	/_/	//		/ /		
CITY, STATE, ZIP	6	Steel				MOL	CT Scotchinan 139 ER NAME (PLEASE PRINT)	4			40	/\$/	6		g/5%	(§/\	8 /2	/ /	///			
1.1:\. \ 4		c 00	Val		1 24		ER NAME (PLEASE PRINT)	ERS		,		ر کج	/55/ ₀	3/20/	Q /20				//,			
W:\mire	ton 10	1, 20	PHONE		SA	<u>Ю</u> Р	er SIGNATURE	NO. OF CONTAINERS		/.	8/3	4/3		% % %		<u>\$</u> /{	<u>`</u> ``	//	///			
Alison Lo	1	0	~_ A	.	Š		· C	Ş		18	18/	5/8/		\$/&/	\$ \?	<u>`</u> /o	7		//			
IThison had) ~ d	110	· 172.	47	11	(C)	rad Primo	_ ₽ 		/6){i	~ 	È/3	2/6/	/6/6 q:/q:		<u></u>	/	/ /	′			
SAMPLE NUMBER (LAB USE ONLY)		TIME COI	HP GRAB TEMI	RES R		IPLE IRIX r W)	SAMPLE LOCATION / I.D.		\angle	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\$\\\{\\$\\\\\		2/2	/×/·	×/8				/ REC	UESTE	D ANAL	YSIS
388828	4/19/00	14:19	X				Mw-2(5'-7')	3	1		1					_ _	_		VP			
ļ <u>.</u>	<u> </u>					_		1	L							_ _			EP	H		
			$\perp \downarrow \downarrow \perp$			$ \bot $		1	_										826	0 00	4 TBE	*IPE
	- L	4	1				<u> </u>	1											<u> </u>	270		
829							neoh Blank	<u> </u>													:	
·····			_ _					<u> </u>														
										11				- 1						-		
WA			- -						Τ													
											\Box					1						
											\dagger					1						
			1			- -		\vdash	╁		+	+	$\dagger \dagger$	_		╁	+	-	•			
					-	1			╁	-	+	-	+		-	╁	-					
			+			-+			+-	╂	+		+			-	-	_			· - · · · · · · · · · · · · · · · · · ·	
			 			-		 	+				++	_ _	-	┵	+					
				_				<u> </u>	₋									_				
						_		<u> </u>	_					_ _				\perp				
																1						
RELINQUISHED BY		DATE/JIME	RECEIVE	D BY	·· · · · · · · · · · · · · · · ·		REMARKS:								·	4						
Brade		11:00						•														
RELINQUISHED BY	NU .	DATE/TIME	RECEIVE	D BY																		
		11:15	1		_		onice															1
+ Upst	۴	4/21/20			•		SAMPLE TEMPERATURE AT RE	CFIE	рт	3.	1 00											1
		1000	747		-		J EL TEIN EIGHORE MINE															

PARADIGM ANALYTICAL LABORATORIES, INC. Results for Volatiles

by GC 602

Client Sample ID: MW-2

Client Project ID: SM 139 XONC-170

Lab Sample ID: 86356 Lab Project ID: G129-214 Analyzed By: EKR
Date Collected: 4/25/00
Date Received: 4/25/00

Matrix: Water

Compound	Date Analyzed	Dilution	Quantitation Limit (ug/L)	Result (ug/L)
Benzene	5/4/00	10	10	97
Diisopropyl ether (DIPE)	5/4/0.0	10	10	180
Ethylbenzene	5/4/00	10	10	BQL
Methyl-tert-butyl ether (MTBE)	5/4/00	10	20	250
Toluene	5/4/00	10	10	BQL
m/p-Xylene	5/4/00	10	20	BQL
o-Xylene	5/4/00	10	20	BQL

Surrogate Spike Recoveries	Spike	Spike	Percent
	Added	Result	Recovered
Trifluorotoluene	40	41	101

Comments:

All values corrected for dilution.

Flags:

BQL = Below quantitation limit

Results for Semivolatiles by GCMS 625

Client Sample ID: MW-2 Client Project ID: SM 139 XONC-170

Client Project ID: SM 139 XONC-17 Lab Sample ID: 86356

Matrix: Water

Lab Project ID: G129-214

Date Collected: 4/25/00 Date Received: 4/25/00

Date Analyzed: 5/4/00 Analyzed By: MRC

Dilution: 1

	0	-
Compound	Quantitation	Result
Acenaphthene	Limit (ug/L) 10	(ug/L)
Acenaphthylene	10	BQL
Anthracene	10	BQL .
Benzo[a]anthracene	10	BQL
Benzo[a]pyrene	10	BQL
Benzo[b]fluoranthene	10	BQL
Benzo[g,h,i]perylene	10	BQL
Benzo[k]fluoranthene	10	BQL
Bis(2-chloroethoxy)methane	10	BQL
Bis(2-chloroethyl)ether	10	BQL
Bis(2-chloroisopropyl)ether	10	BQL
Bis(2-ethylhexyl)phthalate	10	BQL
4-bromophenyl phenyl ether	10	BQL
Butylbenzylphthalate	10	BQL
4-Chloro-3-methylphenol	10	BQL
2-Chloronaphthalene	10	BQL
2-Chlorophenol	10	BQL
4-Chlorophenyl phenyl ether	10	BQL
Chrysene	10	BQL
Di-n-Butylphthalate	10	BQL
Di-n-octylphthalate	10	BQL
Dibenzo[a,h]anthracene	10	BQL
1,2-Dichlorobenzene	10	BQL
1,3-Dichlorobenzene	10	BQL
1,4-Dichlorobenzene	10	BQL
3,3'-Dichlorobenzidine	20	BQL
2,4-Dichlorophenol	10	BQL
Diethylphthalate	10	BQL
2,4-Dimethylphenol	10	BQL .
Dimethylphthalate	10	BQL
4,6-Dinitro-2-methylphenol	and a second of the contract of	BQL
2,4-Dinitrophenol	50 50	BQL
2,4-Dinitrotoluene	10	BQL
2,6-Dinitrotoluene	10	BQL
Fluoranthene	10	BQL
Fluorene	10	BQL
Hexachlorobenzene	10	BQL
Hexachlorobutadiene	10	BQL
Hexachlorocyclopentadiene	20	BQL BOL
Hexachloroethane	10	BQL BQL
	10	BUL

Results for Semivolatiles by GCMS 625

Client Sample ID: MW-2

Client Project ID: SM 139 XONC-170

Lab Sample ID: 86356

Lab Project ID: G129-214

Date Collected: 4/25/00

Date Received: 4/25/00

Date Analyzed: 5/4/00

Analyzed By: MRC

Matrix: Water Dilution: 1

Compound	Quantitation Limit (ug/L)	Result (ug/L)
Indeno(1,2,3-c,d)pyrene	10	BQL
Isophorone	10	BQL
N-Nitrosodi-n-propylamine	10	BQL
N-Nitrosodiphenylamine	10	BQL
Naphthalene	10	BQL
Nitrobenzene ·	10	BQL
2-Nitrophenol	10	BQL
4-Nitrophenol	50	BQL
Pentachlorophenol	50	BQL
Phenanthrene	10	BQL
Phenol	10	BQL
Pyrene	10	BQL
1,2,4-Trichlorobenzene	10	BQL
2,4,6-Trichlorophenol	10	BQL

Surrogate Spike Recoveries	Spike Added	Spike Result	Percent Recovered
2-Fluorobiphenyl	10	7.6	76
2-Fluorophenol	10	4.7	47
Nitrobenzene-d5	10	6.9	69
Phenol-d6	10	6.2	62
2,4,6-Tribromophenol	10	10	100
4-Terphenyl-d14	10	8.9	89

Comments:

Results are corrected for %solids and dilution where applicable.

Flags:

BQL = Below Quantitation Limit.

Reviewed By: www.

Results of Library Search for Semivolatile Compounds by GCMS

Client Sample ID: MW-2	Date Collected: 4/25/00
Client Project ID: SM 139 XONC-170	Date Received: 4/25/00
Lab Sample ID: 86356	Date Analyzed: 5/4/00
Lab Project ID: G129-214	Analyzed By: MRC
Matrix: Water	Dilution: 1

Nụm.	Compound	CAS#	Match Probability	Resuit (ug/L)
1	Unknown		1 TODUDINEY	18
2 .	Unknown .	•		11
3	Trimethylbenzene, Isomer of			7.9
4	Unknown			7.5
_. 5	Dimethylbenzene, Isomer of			6.5
6	Unknown			5.2
7	Unknown			4.9
8				4.5
9				
10	•			

Comment:

Tentatively Identified Compound (TIC) refers to substances which are not present in the list of target compounds. Therefore, not all TICs are identified and quantitated using individual standards. TIC listings are prepared utilizing a computerized library search of electron impact mass spectral data and evaluation of the relevant data by a mass spectral data specialist.

Quantitation is accomplished by relative peak height of the compound compared to that of the nearest internal standard from the total ion chromatogram. TICs are identified and quantitated only if the peak height is equal to or greater than 10% of that of the nearest internal standard. Quantitation provided is an estimate.

Reviewed by: M

VPH (Aliphatics/Aromatics) Laboratory Reporting Form

Client Name: Delta Environmental Consultants

Project Name: SM 139 XONC-170

Sample Information and A	BANA C
Sample Matrix	MW-2
Collection Option (for Soil)*	Water
Date Collected	04/25/00
Date Received	04/25/00
Date Extracted	04/26/00
Date Analyzed	04/26/00
Dry Weight	
Dilution Factor	1
C ₅ -C ₈ Aliphatics**	930 (µg/L)
C ₉ -C ₁₂ Aliphatics**	120 (µg/L)
C ₉ -C ₁₀ Aromatics**	44 (µg/L)
Surrogate % Recovery - PID	67
Surrogate % Recovery - FID	81

^{* =} Option 1 = Established fill line on vial, Option 2 = Sampling Device/Brand, or Option 3 = Field weight of soil.

Lab Info: G129-214-86356 Reviewed By: M

^{** =} Excludes any surrogates or internal standards.

VPH (Aliphatics/Aromatics) Laboratory Reporting Form

Client Name: Delta Environmental Consultants

Project Name: SM 139 XONC-170

Sample Information and Analytical Results				
Sample Identification	Trip Blank			
Sample Matrix	Water			
Collection Option (for Soil)*				
Date Collected	04/25/00			
Date Received	04/25/00			
Date Extracted	04/27/00			
Date Analyzed	04/27/00			
Dry Weight				
Dilution Factor	1			
C ₅ -C ₈ Aliphatics**	< 10 (µg/L)			
C ₉ -C ₁₂ Aliphatics**	< 10 (µg/L)			
C ₉ -C ₁₀ Aromatics**	< 10 (μg/L)			
Surrogate % Recovery - PID	72			
Surrogate % Recovery - FID	88			

^{* =} Option 1 = Established fill line on vial, Option 2 = Sampling Device/Brand, or Option 3 = Field weight of soil.

Lab Info: G129-214-86357 Reviewed By: 100-

^{** =} Excludes any surrogates or internal standards.

Attachment 2

VPH Laboratory Reporting Form

Calibration and QA/QC Information

FID Initial Calibration Date:

04/10/00

PID Initial Calibration Date:

04/10/00

Calibration Ranges and Limits

Range	MDL		ML		RL	
	(μg/L)	(µg/Kg)	(µg/L)	(μg/Kg)	(µg/L)	(µg/Kg)
C ₅ -C ₈ Aliphatics	2.4	,120	7.5	380	.10	500
C ₉ -C ₁₂ Aliphatics	1.3	65	4.0	210	10	500
C ₉ -C ₁₀ Aromatics	0.5	25	1.6	80	10	500

Calibration Concentration Levels

Range	Le (µg/L)	vels (µg/Kg)	%RSD or CCC	Method of Quantitation
C₅-C ₈ Aliphatics	40 160 400 1600 4000	2000 8000 20000 80000 200000	20.7	Calibration Factor
C ₉ -C ₁₂ Aliphatics	30 120 300 1200 3000	1500 6000 15000 60000 150000	18.5	Calibration Factor
C ₉ -C ₁₀ Aromatics	65 260 650 2600 6500	3250 13000 32500 130000 325000	10.7	Calibration Factor

Calibration Check Date:

04/26/00

Calibration Check

Range	Le	vels	
	(µg/L)	(μg/Kg)	RPD
C ₅ -C ₈ Aliphatics	400	20000	-8.5
C ₉ -C ₁₂ Aliphatics	300	15000	0.4
C ₉ -C ₁₀ Aromatics	650	32500	21.8

MDL = Method Detection Limit

ML = Minimum Limit

RL = Reportable Limit

RPD = Relative Percent Difference

%RSD = Percent Relative Standard Deviation

CCC = Correlation Coefficient of Curve

Attachment 2

VPH Laboratory Reporting Form

Calibration and QA/QC Information

FID Initial Calibration Date:

04/10/00

PID Initial Calibration Date:

04/10/00

Calibration Ranges and Limits

Range		IDL	1	ИL		RL
	(µg/L)	(µg/Kg)	(µg/L)	(µg/Kg)	(µg/L)	(μg/Kg)
C ₅ -C ₈ Aliphatics	2.4	,120	7.5	380	10	500
C ₉ -C ₁₂ Aliphatics	1.3	65	4.0	210	10	500
C ₉ -C ₁₀ Aromatics	0.5	25	1.6	80	10	500

Calibration Concentration Levels

Range	Le (µg/L)	vels (µg/Kg)	%RSD or CCC	Method of Quantitation
C ₅ -C ₈ Aliphatics	40 160 400 1600 4000	2000 8000 20000 80000 200000	20.7	Calibration Factor
C ₉ -C ₁₂ Aliphatics	30 120 300 1200 3000	1500 6000 15000 60000 150000	18.5	Calibration Factor
C ₉ -C ₁₀ Aromatics	65 260 650 2600 6500	3250 13000 32500 130000 325000	10.7	Calibration Factor

Calibration Check Date:

04/27/00

Calibration Check

Range	Le	evels	
	(µg/L)	(µg/Kg)	RPD
C ₅ -C ₈ Aliphatics	400	20000	-3.6
C ₉ -C ₁₂ Aliphatics	300	15000	0.7
C ₉ -C ₁₀ Aromatics	650	32500	24.0

MDL = Method Detection Limit

RPD =

RPD = Relative Percent Difference

ML = Minimum Limit

%RSD = Percent Relative Standard Deviation

RL = Reportable Limit

CCC = Correlation Coefficient of Curve

EPH (Aliphatics/Aromatics) Results

by MDEP-EPH

Client Name: Delta Environmental Consultants

Project Name: SM 139 XONC-170

Sample Information and Analytical Results				
Sample Identification	MW-2			
Sample Matrix	Water			
Date Collected	04/25/00			
Date Received	04/25/00			
Date Extracted	05/02/00			
Date Analyzed	05/08/00			
· Dry Weight	33.33.33			
Dilution Factor	1			
C ₉ -C ₁₈ Aliphatics*	< 1 (µg/mL)			
C ₁₉ -C ₃₆ Aliphatics*	< 1 (µg/mL)			
C ₁₁ -C ₂₂ Aromatics*	< 1 (µg/mL)			
Aliphatic Surrogate % Recovery	18			
Aromatic Surrogate % Recovery	18			

Comments:

Lab info: G129-214-86356

 ^{* =} Excludes any surrogates or internal standards.
 Sample did not require fractionation.
 Low surrogate comfirmed by duplicate analysis.

EPH Laboratory Reporting Form

Calibration and QA/QC Information

Initial Calibration Date:

02/22/00

Calibration Ranges and Limits

Range.	MDL		ML		RL	
	(µg/mL)	(mg/Kg)	(µg/mL)	(mg/Kg)	(µg/mL)	(mg/Kg)
C ₉ -C ₁₈ Aliphatics	0.1	2 .	0.3	6.5	1	10
C ₁₉ -C ₃₆ Aliphatics	0.1	· 1	0.3	3.1	1	10
C ₁₁ -C ₂₂ Aromatics	0.2	2.5	0.6	8	1	10

Calibration Concentration Levels

Range	Lev (µg/mL)	/els (mg/Kg)	%RSD or CCC	Method of Quantitation
	 		<u> </u>	
C ₉ -C ₁₈	0.6	10 25		
	1.5			
Aliphatics	3	50	3.10	Calibration Factor
ł	6	100		
	12	200		
	.0.8	13.3		
C ₁₉ -C ₃₆	2	33.3		
Aliphatics	4	66.7	2.8	Calibration Factor
	. 8	133		
	16	267		
	1.2	20		
C ₁₁ -C ₂₂	3	50		
Aromatics	6	100	4.3	Calibration Factor
	12	200		34.12.4.1011 40.001
	24	400		

Calibration Check Date:

05/08/00

Calibration Check

Range	Lev	/els	
	(µg/mL)	(mg/Kg)	RPD
C ₉ -C ₁₈ Aliphatics	6	100	4.0
C ₁₉ -C ₃₆ Aliphatics	8	133	-0.9
C ₁₁ -C ₂₂ Aromatics	12	200	5.5

MDL = Method Detection Limit

ML = Minimum Limit

RL = Reportable Limit

RPD = Relative Percent Difference

%RSD = Percent Relative Standard Deviation

CCC = Correlation Coefficient of Curve -

DIGM ANALYTICAL LABORATORIES, INC. COC# Chain-of Custody Record & Analytical Request orthchase Parkway SE, Wilmington, NC 28405 Page _____ of ____ (910)-350-1903 FAX: (910)-350-1557 X0NC-170 Delta Envisionmento Project ID: SM 139 Date: April 25,2000 Report To: Alison Love :: 1201 S. 11et St. Contact: Maureen Jones Turnaround: STD 5: Soite B Phone: 910-772-9329 Job Number: XONC-170 +Wilnington, NC 28401 Fax: 910-Invoice To: Delta Environne D S. P.O. Number: Analyses **Comments:** Preservatives ... Please specify any special reporting requirements Date nple ID Time Matrix 2 4/25/00/1145 elinquished By Time . Date Received By -Date Time **Temperature State Certification Requested** 4/25/00/331 Emily Ralus ureen tones ON ICL NC___SC___Other___ SEE REVERSE FOR TERMS AND CONDITIONS

Research & Analytical Laboratories, Inc.

T nalysis fayt Selagrad Cargmeters and Sampling Locations Identified as SM#139 Environmental Consultants Project# XONC-170, 12 June 2000)

I. Volatile Organics	Quant.					11/1	FIFED
EPA Methods 601/602	Limits	MW-3	DW-1	V. Semi-Volatile Organics	0	₹ /	
<u>Parameter</u>	(mg/L)	(mg/L)	(mg/L)	EPA Method 625 BNA	Quantita Limit	MW-3	DW-1
				Parameter	(mg/l)	(mg/l)	
Bromodichloromethane	0.0005	BQL	BQL	4-Chloro-3-methylphenol	0.010	BQL	(mg/l) BQL
Bromoform	0.0005	BQL	BQL	2-Chlorophenol	0.010	BQL	BQL
Bromomethane	0.0005	BQL	BQL	2,4-Dichlorophenal	0.010	BQL	BQL
Carbon Tetrachloride	0.0005	BQL	BQL	2,4-Dimethylphenol	0.010	BQL	BQL
Chloroethane	0.0005	BQL	BQL	2,4-Dinitrophenol	0.050	BQL	BQL
Chloroform	0.0005	BQL	BQL	2-Methyl-4,6-dinitrophenol	0.050	BQL.	BQL
Chloromethane	0.0005	BQL	BQL	2-Nitrophenol	0.010	BQL	BQL
2-Chloroethyl vinyl ether	0.0005	BQL	BQL	4-Nitrophenol	0.050	BOL	BQL
Cis-1,3-Dichloropropene	0.0005	BQL	BQL	Pentachlorophenol	0.050	BQL	BQL
Dibromochloromethane	0.0005	BQL	BQL	Phenol	0.010	BQL	BQL
Dichlorodifluoromethane	0.0005	BQL	BQL	2,4,6-Trichlorophenol	0.010	BQL	BQL
1,1-Dichloroethane	0.0005	BQL	BQL	Acenaphthene	0.010	BQL	BQL
1,2-Dichlornethane	0.0005	BQL	BQL	Acenaphthylene	0.010	BQL.	BQL,
1,1-Dichloroethene	0.0005	BQL.	BQL	Anthracene	0.010	BQL	BQL.
1,2-Dichloropropane	0.0005	BQL	BQL	Benzidine:	0.050	BOL	BQL
Methylene Chloride	0.0005	BQL	BQL	Benzo(a)anthracene	0.010	BQL	BQL
1,1,2,2-Tetrachloroethane	0.0005	BQL.	BQL	Benzo(a)pyrene	0.010	BQL	BQL
Tetrachloroethene	0.0005	BQL	BQL	Benzo(b) fluoranthene	0.010	BOL.	BOL
Trans-1,2-Dichloroethene	0.0005	BQL	BQL	Benzo(ghi)perylene	0.010	BQL	BQL
Trans-1,3-Dichloropropene	0.0005	BQL	BOL	Benzo(k)fluoranthene	0.010	BQL	BQL
1,1,1-Trichloroethane 1,1,2-Trichloroethane	0.0005	BQL	BQL.	Benzyl butył phthalate	0.010	BQ1.	BQL
	0.0005	BQL	BQL	Bis(2-chloroethoxy)methane	0.010	BQL	BQL.
Trichloroethene	0.0005	BQL	BQL	Bis(2-chloroethyl)ether	0.010	BQL	BQL
Trichlorofluoromethane	0.0005	BQL	BQL	Bis(2-chloroisopropyl)ether	0.010	BQL	BQL
Vinyl Chloride	0.0005	BOL	BQL	Bis(2-ethyl-hexyl)phthalate	0.010	BOL	BQL
Benzenc Chlorobenzene	0.0005	0.835	BQL	4-Bromophenyl phenyl ether	0.010	BQL	BQL
	0.0005	BQL	BQL	2-Chioronaphthalene	0.010	BQL	BQL
1,3-Dichlorobenzene 1,4-Dichlorobenzene	0.0005	BOL	BQL	4-Chlorophenyl phenyl ether	0.010	BQL	BQL
1,2-Dichlorobenzene	0.0005	BOL	BQL	Chrysene	0.010	8QL	BQL
Ethylbenzene	0.0005 0.0005	BQL	BQL	Dibenzo(a,h)anthracene	0.010	BQL	BQL
Toluene	0.0005	1.04	BQL	1,2-Dichlorobenzene	0.010	BQL	BQL
Total Xylenes	0.0005	3.97	BQL	1,3-Dichlorobenzene	0.010	BQL	BQL
Methyl-Tert-Butyl ether (MTBE)	0.0005	6.06	BOL	1,4-Dichlorobenzene	0.010	BQL	BQL
Isopropyl ether (IPE)	0.010	BQL BQL	BQL	3,3-Dichlorobenzidine	0.020	BQL.	BOL
isopropy, duties (in E)	0.010	BUL	BQL	Diethyl phthalate	0.010	BQL	BQL
Dilution Factor		100	1	Dimethyl phthalate	0.010	BQL	BQL
		100	1	Di-N-Butyl phthalate	0.010	BQL	BQL
II. Method 504.1				2,4-Dinitrotoluene	0.010	BQL	BQL
Parameter				2,6-Dinitrotoluene	0.010	BOL	BQL
Tarameter				Di-N-Octyl phthalate	0.010	BOL	BQL
· EDB	0.000020	BOI	BQL	1,2-Diphenylhydrazine	0.050	BQL	BQL
	0.000020	BUL	BUL	Fluoranthene	0.010	BQL	BQL
Dilution Factor		1	1	Fluorene	0.010	BQL	BQL
		•	1	Hexachlorobenzene	0.010	BQL.	BQL
III Method 3030-C				Hexachlorobutadiene	0.010	BQL	BQL
Parameter				Hexachlorocyclopentadiene	0.010	BQL	8QL
				Hexachloroethane	0.010	BOL	BQL
Lead	0.005	0.008	BQL	Indeno(1,2,3-cd) pyrene	0.010	BQL	BQL
	0.000	0.000	BUL	Isophorone	0.010	BQL	BQL
IV. EPA Method 625 (Library Search)				Naphthalene Marsh	0.010	BQL	BQL
· Tentatively Identified		Est.	Est.	Nitrobenzene	0.010	BQL	BQL
Compounds		Conc.	Conc.	N-Nitrosodimethylamine	0.010	BQL	BQL
		00170.	Conc.	N-nitrosodi-n-propylamine	0.010	BQL	. BOF
Benzene, 1-ethyl-4-methyl		0.381	NOPI	N-Nitrosodiphenylamine	0.010	BQL	BQL
Benzene, 1-ethyl-3-methyl		0.187	11011	Phenanthrene	0.010	BQL	BQL
Benzenemethanol, 2-methyl		0.087		Pyrene	0.010	BQL	BQL
Benzene, 1-methyl-3-propyl		0.080		1,2,4-Trichlorobenzene	0.010	BQL	BQL
Benzene, 4-ethyl-1, 2-dimethyl		0.071		Dilution Control			
Benzene, 2-ethenyl-1, 4-dimethyl		0.065		Dilution Factor		4	1
Benzene, 1, 2, 4, 5-tetramethyl		0.039		VI. Method MADEP 98-1 VPH			
Benzene, 1, 2, 4-trimethyl		0.195		Parameter			
Benzene, 1, 2, 3-trimethyl		0.504		C5-C8 Aliphatics	0.100	9.84	BO!
Indane		0.148		C9-C12 Aliphatics	0.100	14.7	BQL
				C9-C10 Aromatics	0.100	4.34	RGL
				Dilution Factor	0.100		
				ONGRIGHT FACTOR		25	1
Sample Number		392806	392807	Method MADEP 98-1 EPH			
Sample Date		06/12/00	06/12/00	Parameter			
Sample Time(hrs)		1230	1350	C9-C18 Aliphatics	0.100	2.12	BQL
•				C-19-C-36 Aliphatics	0.100	0.231	BQL
				C11-C22 Aromatics	0.100	1.05	BQL
BQL = Below Quantitation Limits				Dilution Factor		1	1
= not requested							

Research & Analytical Laboratories, Inc.

Analytical/Process Consultations

Qualtiy

QUALITY CONTROL DATA SUMMARY

					Control	
601/602+MTBE+IPE	RAL	Date	Date	Method	Standard Results	
Parameter	Sample #	Collected	Analyzed	Blank	(% Recovery)	A 1
<u>r urameter</u>	Sample #	Conected	Anaryzeu	DIAIK	(% Recovery)	<u>Analyst</u>
Bromodichloromethane	392806/07	06/12/00	06/22-24/00	ND	99.5	MB
Bromoform	392806/07	06/12/00	06/22-24/00	ND	98.0	MB
Bromomethane	392806/07	06/12/00	06/22-24/00	ND	73.2	MB
Carbon Tetrachloride	392806/07	06/12/00	06/22-24/00	ND	83.0	MB
Chloroethane	392806/07	06/12/00	06/22-24/00	ND	80.8	MB
Chloroform	392806/07	06/12/00	06/22-24/00	ND	88.4	MB
Chloromethane	392806/07	06/12/00	06/22-24/00	ND	73.2	MB
2-Chloroethyl vinyl ether	392806/07	06/12/00	06/22-24/00	ND	73.4	MB
Cis-1,3-Dichloropropene	392806/07	06/12/00	06/22-24/00	ND	82.4	MB
Dibromochloromethane	392806/07	06/12/00	06/22-24/00	ND	89.8	MB
Dichlorodifluoromethane	392806/07	06/12/00	06/22-24/00	ND	286	MB
1,1-Dichloroethane	392806/07	06/12/00	06/22-24/00	ND	101	MB .
1,2-Dichloroethane	392806/07	06/12/00	06/22-24/00	ND	82.8	MB
1,1-Dichloroethene	392806/07	06/12/00	06/22-24/00	ND	90.7	MB
1,2-Dichloropropane	392806/07	06/12/00	06/22-24/00	ND	84.6	MB
Methylene Chloride	392806/07	06/12/00	06/22-24/00	ND	96.2	MB
1,1,2,2-Tetrachloroethane	392806/07	06/12/00	06/22-24/00	ND	82.5	MB
Tetrachloroethene	392806/07	06/12/00	06/22-24/00	ND	76.5	MB
Trans-1,2-Dichloroethene	392806/07	06/12/00	06/22-24/00	ND	89.2	MB
Trans-1,3-Dichloropropene	392806/07	06/12/00	06/22-24/00	ND	85.0	MB
1,1,1-Trichloroethane	392806/07	06/12/00	06/22-24/00	ND	91.5	MB
1,1,2-Trichloroethane	392806/07	06/12/00	06/22-24/00	ND	83.7	MB
Trichloroethene	392806/07	06/12/00	06/22-24/00	ND	82.6	MB
Trichlorofluoromethane	392806/07	06/12/00	06/22-24/00	ND	95.1	MB
Vinyl Chloride	392806/07	06/12/00	06/22-24/00	ND	104	MB
Benzene	392806/07	06/12/00	06/22-24/00	ND	78.9	MB
Chlorobenzene	392806/07	06/12/00	06/22-24/00	ND	83.4	MB
1,3-Dichlorobenzene	392806/07	06/12/00	06/22-24/00	ND	79.5	MB
1,4-Dichlorobenzene	392806/07	06/12/00	06/22-24/00	ND	80.4	MB
1,2-Dichlorobenzene	392806/07	06/12/00	06/22-24/00	ND	80.5	MB
Ethylbenzene	392806/07	06/12/00	06/22-24/00	ND	79.6	MB
Toluene	392806/07	06/12/00	06/22-24/00	ND	78.9	MB
Total Xylenes	392806/07	06/12/00	06/22-24/00	ND	75.1	MB
MTBE	392806/07	06/12/00	06/22-24/00	ND	120	MB
IPE	392806/07	06/12/00	06/22-24/00	ND	78.7	MB
Lead	392806/07	06/12/00	06/16/00	ND	90.2	IB
504.1					•	
EDB	392806/07	06/12/00	06/15/00	ND	108	SEC
				-		

Delta Project# XONC-170 (SM#139) ND = Not Detected

--- = Data Not Available

Fn L:\WORK\REPORTS\Grnd_Wst\Waters\601_602\Delta.00

VPH Laboratory Reporting Form

VPH	Laborator	y Repor	ting Form
			nation

Initial Calibration Date 06/02/2000

Calibration Ranges and Limits $\mu g/I$

Range	MDL	ML	RL
C5 - C8 Aliphatics	52	165	100
C9 - C12 Aliphatics	18	57	100
C9 - C10 Aromatics	9.0	29	100

NOTE: Please include units as appropriate

Method of Quantitation (check one): \square Curve or \square Average Response Factor Calibration Concentration Levels $\mu g/l$

	, , ,	
Range	Levels	% RSD or CCC
	75	
C5 - C8 Aliphatics	750	7.69 % RSD
	1500	
	2250	ccc=0.997
	3000	
	55	
	550	5.13 % RSD
C9 - C12 Aliphatics	1100	
, inplication	1650	ccc=0.998
	2200	
	50	
	100	3.55 % RSD
C9 - C10 Aromatics	200	
	300	ccc=0.998
	400	

NOTE: Please indicate units as appropriate.

Calibration Check Date $\frac{06/14/2000}{\mu g/l}$

Range	Level	RPD
C5 - C8 Aliphatics	1500	5 %
C9 - C12 Aliphatics	1100	5 %
C9 - C10 Aromatics	200	2 %

MDL = Method Detection Limit

ML = Minimum Limit

RL = Reportable Limit

RPD = Relative Percent Difference %RSD = Percent Relative Standard Deviation CCC = Correlation Coefficient of Curve

copy of revision 5/6/98

VPH (Aliphatics/Aromatics) Laboratory Reporting Form Continued

Client Name	DELTA # XONC170	Laboratory Name RESEARCH & ANALYTICAL LABORATORIES, INC.
Project Name _	SM#139	NC Certification # (Lab) 34
Site Location _	RAL#'s 392806/07	

INCLUDE APPROPRIATE UNITS: PPM (Parts Per Million) (i.e., for Water: mg/L | for Soil: mg/kg)

Sample Information and Analytical Results												
Sample Identification	MW-3	DW-1										
Sample Matrix	Water	Water										
Collection Option (for soil)*	N/A	N/A										
Date Collected	06/12/00	06/12/00										
Date Received	06/13/00	06/13/00										
Date Extracted	N/A	N/A										
Date Analyzed	06/14/00	06/14/00										
Dry Weight	N/A	N/A										
Dilution Factor	25	1										
C5 - C8 Aliphatics "	9.84	BRL										
C9 - C12 Aliphatics **	14.7	BRL										
C9 - C10 Aromatics **	4.34	BRL										
Surrogate % Recovery - PID	109	86										
Surrogate % Recovery - FID	106	93										

^{*} Option 1 = Established fill line on vial Option 2 = Sampling Device (indicate brand, e.g. EnCore) Option 3 = Field weight of soil

^{**} Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.

	●	C9 C12 Aliphatic	•
Percent Recovery - Fortified Blank (Spike) - PID	-	-	108
Relative Percent Difference - PID Duplicate	·	-	3.4
Percent Recovery - Fortified Blank (Spike) - FID	114	112	-
Relative Percent Difference - FID Duplicate	5.6	2.7	-

Attachment 3

EPH	Labora	tory F	Reportin	g Form

Calibration and QA/QC Information

Initial Calibration Date 05/23/00 Calibration Ranges and Limits $\mu g/I$

Range	MDL	ML	RL
C9 - C18 Aliphatics	63	200	100
C19 - C36 Aliphatics	31	99	100
C11 - C22 Aromatics	9.0	29	100

NOTE: Please include units as appropriate

☐ Average Method of Quantitation (check one): X Curve Response Factor Calibration Concentration Levels µg/I

Range	Levels	% RSD or CCC
	60	,
	120	3.60 % RSD
C9 - C18 Aliphatics	300	
• 1	600	ccc=0.999
	800	
	80	
	160	3.41 % RSD
C19 - C36 Aliphatics	400	
,	800	ccc=0.999
	1200	·
	85	
	170	5.68 % RSD
C11 - C22 Aromatics	340	
	850	ccc=0.998
	1700	

NOTE: Please indicate units as appropriate.

Calibration Check Date 06/16/00 Calibration Check $\mu g/l$

		70
Range	Level	RPD
C9 - C18 Aliphatics	300	11 %
.C19 - C36 Aliphatics	400	11 %
C11 - C22 Aromatics	850	9 %

MDL = Method Detection Limit

Fn: L:\WORK\REPORTS\Grnd_Wst\Waters\601_602\Delta.00

ML = Minimum Limit%

RL = Reportable Limit

RPD = Relative Percent Difference

RSD = Percent Relative Standard Deviation

CCC = Correlation Coefficient of Curve

copy of revision 5/6/98

EPH (Aliphatics/Aromatics) Laboratory Reporting Form Continued

Client Name	DELTA # XONC-170	Laboratory Name RESEARCH & ANALYTICAL LABORATORIES, INC.
Project Name	SM#139	NC Certification # (Lab) 34
Site Location _	RAL#'s 392306/07	

INCLUDE APPROPRIATE UNITS: PPM (Parts Per Million) (i.e., for Water: mg/L | for Soil: mg/kg)

		Sample li	iformation a	nd Analytical	Results		
Sample Identification	MW-3	DW-1					
Sample Matrix	Water	Water					
Date Collected	06/12/00	06/12/00					
Date Received	06/13/00	06/13/00					
Date Extracted	06/15/00	06/15/00					
Date Analyzed	06/16/00	06/16/00					
Dry Weight	N/A	N/A					
Dilution Factor	1	1					
C9 - C18 Aliphatics *	2.12	BRL		1			
C19 - C36 Aliphatics *	0.231	BRL		<u> </u>			
C11 - C22 Aromatics *	1.05	BRL					
Surrogate % Recovery - Aliph.	55	50					
Surrogate % Recovery - Aroma.	65	68					
Fractionation Surrogate % Recovery	82	not fract.					
Fractionation Surrogate % Recovery	59	not fract.					

^{*} Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.

	C9 - C18 Aliphatic	C19 - C36 Aliphatic	C11 - C22 Aromatic
Percent Recovery - Fortified Blank (Spike)	97	81	82
Relative Percent Difference - Sample Duplicates	0.0	0.0	0.0

RESEARCH & ANALYTICAL LADORATORIES, INC. Analytical / Process Consultations

Car Warmer Society To	Phone	(336)	996	5-28	41								г		1070	*FD			-1010	TER	<u>0</u> 2		MISC.		
COMPANY DEL	TT.						JOB N	0.						77	/WA	TER (a)	/w/	/	7	TER ()	757	7	MISC.		
STREET ADDRESS					PROJE	ECT				/	/ /	//	/ /;	5./\2	5/	18	?/?	94	7/	41	///				
1201 5.	1201 S. Noth Street CITY, STATE, ZIP Walnungton NC 28401 CONTACT PHONE				XD	18 170 0				/5	/_/	//,	\ &\] je	/g>/	5/s	⟨`h',	7	[E	1/4/					
CITY, STATE, ZIP	CITY, STATE, ZIP					SAMPI	LER NAME (PLEASE PRINT)	- L			\Q ⁶ / ₂	£/	/9/	ફર્જે/હ	\$\f\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	18	/ 3	1	7.II	[5]	¥N				
Wilnum	STOV	NC	<u> </u>	.T.E	240	>)	Vic	SAMPLER NAME (PLEASE PRINT) SAMPLER SIGNATURE SAMPLER SIGNATURE				THE REQUESTED TO THE RE													
CONTACT	1	r1	PH	ONE			SAMA	LER SIGNATURE	¥ ¥		\z	1/2/6	07/0	18/8	`\&		X	/\$		7 5/	17"	4			
ALDRO		410)	77	2+	90	15	\\	LER SIGNATURE WOOL WOO	8	١.	[®]	(3)(0)	/q/c	\$\&\	6/6	5//	5/9	<i>[]</i> [1/2	$\frac{1}{2}$	1.7	,			
SAMPLE NUMBER (LAB USE ONLY)	DATE	CID)	COMPG	RAB TEM	P RES Cl	CHLORINE REMOVED (Y or N)	SAMPLE MATRIX (S & W)	SAMPLE LOCATION / I.D.	NO. OF CONTAINERS	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			/6/q ≈/≈/	/2'/ ~/	\$*/g	8 / 2		Ž,	7 70		REQUE	STED A	NALY	SIS
392806	6/12	12:30	(X			W	MW-3	i,						1	7	Ta	J	7	1					
807	6112	1350		χ			W	DUDH	1/1					1	7	6,	12	0	13		, —				
208								78						1	<u> </u>			Ť	0	٥				<u> </u>	
													\exists					t					-		
					<u> </u>																				
			-		ļ										1_										
			_		ļ										_										
				_	<u> </u>			-,				11					_								
					 							11					_								
		-																							
					ļ								<u> </u>			<u> </u>			_						
				_								<u> .</u>		$\perp \perp$	1_	_									
			_		ļ						_	1	_ _		ļ	,,									
			_	-							_	1-1-	_		ļ					_					
			-		-					_		1-1-	-		ļ					_					
										_					_										
RELINGUISHED BY					ll										_										
Y / O A		DATE/TIM	1					REMARKS:																	
RELINQUISHED BY	A LL	DATE/TIM	15 B	COLUMN TO THE PROPERTY OF THE	D RV																				
		10:30	וֹ [לַ	LOCIVE	וט ט.			Dnice																	
ups		612123 DATE/TIM 10:30	ob	0	AC	AVL	ile	SAMPLE TEMPERATURE AT	RECEIP	Τ	2	'_ ℃													

CHAIN OF CUSTODY RECORD

Research & Analytical Laboratories, Inc.

Chemical Analysis for S lected Parameters and Sampling Locations Identified as SM#139 (A Delta Consultants Project# XONC-170, SULFILIP 2000)

March Organics Claser Cl								Ti.	YYELER
Parameter Para	ı.								I LU
Parameter Para								ation	-41111
Bernon-dichloromethane		Parameter	(mg/L)	(mg/L)	(mg/L)			141.84-2	181 44 -++
Bromorenthame		Dan - diable - and - about	0.000	201	201				
Sementhemen						• • • • • • • • • • • • • • • • • • • •			
Carbon Frienchloride						·			
Chlorosthame						·			
Chicarontem									
Chloromethame									
2-Chinocethyl wiyl whele 0.005 BGL BGL BGL Pentanthrophenol 0.056 BGL									
Control Cont									
Disconnecisionemethane						·			
Delahrordifilipromethane		The state of the s				the contract of the contract o			
1.1-10-foliorosthame									
1,1-Dichloroschane						·			
1.1- Colicitionershere						•			
1.2-Dickforopropane		•							
Methylen Chloride									
1,1,2,2-Tertanchrorethane								BQL	BQL
Terrachioroethere									
Trans-1-2-Olichloroptopene								BQL	BQL
Tensa-1-3-Dichloropropene						Benzo(b) fluoranthene	0.010	BQL	BOL
1,1-17-fichioresthane						Benzo(ghi)perylene	0.010	BQL	8QL
1,12-7 fichloroethane						Benzo(k)fluoranthene	0.010	BQL	BQL
Trichiprorethene						Benzyl butyl phthalate	0.010	BQL	BQL
Trichtorfuluromentane		• •			BQL	Bis(2-chloroethoxy)methane	0.010	BQL	BQL
Virty Chiloride					BQL	Bis(2-chloroethyl)ether	0.010	BQL	BQL
Benzene				BQL	BQL	Bis(2-chloroisapropyl)ether	0.010	BQL	BQL,
Chinorbenzene		Vinyl Chloride	0.0005	BQL	BQL	Bis(2-ethyl-hexyl)phthalate	0.010	BQL	BQL
1.3-Eichlorobenzene		Benzene	0.0005	0.646	0.0036	4-Bromophenyl phenyl ether	0.010	BQL	BQL
1.4-Dichlorobenzene 0.0005 80L 80		Chlorobenzene	0.0005	BQL	BQL	2-Chloronaphthalene	0.010	BQL	BQL
1.2-Dichlorobenzene			0.0005	BQL.	BQL	4-Chlorophenyl phenyl ether	0.010	BQL	BQL
Ethylbenzene		1,4-Dichiorobenzene	0.0005	BQL	BQL	Chrysene	0.010	BQL	BQL
Tolue		1,2-Dichlorobenzene	0.0005	BQL	BQL	Dibenzo(a,h)anthracene	0.010	BQL	BQL
Total Xylens		Ethylbenzene	0.0005	1.02	BQL	1,2-Dichlorobenzene	0.010	BQL	BQL
Methyl-Tert-Butyl ether (MTBE)		Toluene	0.0005	12.1	BQL	1,3-Dichlorobenzene	0.010	BQL	BQL
Sopropy ether (IPE)		Total Xylenes	0.0005	5.87	BQL.	1,4-Dichlorobenzene	0.010	BQL	BOL
Dilution Factor		Methyl-Tert-Butyl ether (MTBE)	0.010	BQL	0.068	3,3-Dichlorobenzidine	0.020	BQL	BQL
Dilution Factor 400 1		Isopropyl ether (IPE)	0.010	BQL	0.012	Diethyl phthalate	0.010	BQL	BQL
Method 504.1						Dimethyl phthalate	0.010	BQL	BQL
Method 504.1 Parameter		Dilution Factor		400	1	Oi-N-Butyl phthalate	0.010	BQL	BQL
Parameter						2,4-Dinitrotoluene	0.010	BQL	BQL
Parameter	11.	. Method 504.1				2,6-Dinitrotoluene	0.010	BQL	BQL
FOB		Parameter				Di-N-Octyl phthalate	0.010		
Flue							0.050	BQL	
Dilution Factor 1 1 1 1		EDB	0.000020	BQL	BQL				
Dilution Factor									
Hexachlorobutadiene		Dilution Factor		1	1				
Method 3030-C						Hexachlorobutadiene			
Parameter	114	Method 3030-C							
Indeno(1,2,3-cd pyrene 0.010 8QL 8		Parameter				. ,			
Lead									
N. EPA Method 625 (Library Search) Search Naphthalene Nitrobenzene Nitr		Lead	0.005	0.012	0.005	• •			
Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene No.010 BQL B									
Tentatively Identified	- 1\	/. EPA Method 625 (Library Search)							
Compounds Conc. Conc. Conc. N-nitrosodi-n-propylamine 0.010 BQL BQL		Tentatively Identified		Est.	Est.				
N-Nitrosodiphenylamine 0.010 BQL BQL		Compounds		Conc.	Conc.	· · · · · · · · · · · · · · · · · · ·			
Creosols 0.102 NOPI Phenanthrene 0.010 BQL BQL									
Benzene, propy		Creosols		0.102	NOPI	· · · · · · · · · · · · · · · · · · ·			
Benzene, 1-ethyl-2-methyl 0.345 1,2,4-Trichlorobenzene 0.010 BQL BQL									
Benzene, 1,3,5-trimethyl Dilution Factor D									
Benzene, 1,2,3-trimethyl 0.151 Dilution Factor 4 1 1 1 1 1 1 1 1 1						1,2, Thamarabancong	0.010	our	DQL
1,2,4-Trimethylbenzene		Benzene, 1,2,3-trimethyl		0.151		Dilution Factor		4	1
Sample Number 392804 392805 C9-C12 Aliphatics 0.100 19.1 BQL						VI. Method MADEP 98-1 VPH			
Sample Number 392804 392805 C9-C12 Aliphatics 0.100 13.9 BQL									
Sample Date 06/12/00 06/12/00 C9-C10 Aromatics 0.100 2.78 BQL							0.100	19.1	BQL
Sample Time(hrs)		Sample Number		392804	392805	C9-C12 Aliphatics	0.100	13.9	BQL
Method MADEP 98-1 EPH Parameter C9-C18 Aliphatics C100 C197 C120		Sample Date		06/12/00	06/12/00	C9-C10 Aromatics	0.100	2.78	BQL
Parameter C9-C18 Aliphatics C-19-C-36 A		Sample Time(hrs)		1153	1200	Dilution Factor		10	1
BQL = Below Quantitation Limits C11-C22 Aromatics 0.100 0.197 0.120 = not requested Dilution Factor 1 1						Method MADEP 98-1 EPH			
BQL = Below Quantitation Limits C.19-C-36 Aliphatics 0.100 0.197 0.120									
BQL = Below Quantitation Limits C11-C22 Aromatics 0.100 0.708 0.505 = not requested Dilution Factor 1 1									
= not requested Dilution Factor 1 1									
							0.100		
ma/l = miliorams per liter = parts der million (pom)			****			Dilution Factor		1	1
	п	no// = milliorams per liter = parts be	r million (oon	nı					

Qualtiy

QUALITY CONTROL DATA SUMMARY

601/602+MTBE+IPE Parameter	RAL Sample #	Date <u>Collected</u>	Date <u>Analyzed</u>	Method <u>Blank</u>	Control Standard Results (% Recovery)	Analyst
Bromodichloromethane	392804/05	06/12/00	06/22-24/00	ND	99.5	MB
Bromoform	392804/05	06/12/00	06/22-24/00	ND	98.0	MB
Bromomethane	392804/05	06/12/00	06/22-24/00	ND	73.2	MB
Carbon Tetrachloride	392804/05	06/12/00	06/22-24/00	ND	83.0	MB
Chloroethane	392804/05	06/12/00	06/22-24/00	ND	80.8	MB
Chloroform	392804/05	06/12/00	06/22-24/00	ND	88.4	MB
Chloromethane	392804/05	06/12/00	06/22-24/00	ND	73.2	MB
2-Chloroethyl vinyl ether	392804/05	06/12/00	06/22-24/00	ND	73.4	MB
Cis-1,3-Dichloropropene	392804/05	06/12/00	06/22-24/00	ND	82.4	MB
Dibromochloromethane	392804/05	06/12/00	06/22-24/00	ND	89.8	MB
Dichlorodifluoromethane	392804/05	06/12/00	06/22-24/00	ND	286	MB
1,1-Dichloroethane	392804/05	06/12/00	06/22-24/00	ND	101	MB
1,2-Dichloroethane	392804/05	06/12/00	06/22-24/00	ND	82.8	MB
1,1-Dichloroethene	392804/05	06/12/00	06/22-24/00	ND	90.7	MB
1,2-Dichloropropane	392804/05	06/12/00	06/22-24/00	ND	84.6	MB
Methylene Chloride	392804/05	06/12/00	06/22-24/00	ND	96.2	MB
1,1,2,2-Tetrachloroethane	392804/05	06/12/00	06/22-24/00	ND	82.5	MB
Tetrachloroethene	392804/05	06/12/00	06/22-24/00	ND	76.5	MB
Trans-1,2-Dichloroethene	392804/05	06/12/00	06/22-24/00	ND	89.2	MB
Trans-1,3-Dichloropropene	392804/05	06/12/00	06/22-24/00	ND	85.0	MB
1,1,1-Trichloroethane	392804/05	06/12/00	06/22-24/00	ND	91.5	MB
1,1,2-Trichloroethane	392804/05	06/12/00	06/22-24/00	ND	83.7	MB
Trichloroethene	392804/05	06/12/00	06/22-24/00	ND	82.6	MB
Trichlorofluoromethane	392804/05	06/12/00	06/22-24/00	ND	95.1	MB
Vinyl Chloride	392804/05	06/12/00	06/22-24/00	ND	104	MB
Benzene	392804/05	06/12/00	06/22-24/00	ND	78.9	MB
Chlorobenzene	392804/05	06/12/00	06/22-24/00	ND	83.4	MB
1,3-Dichlorobenzene	392804/05	06/12/00	06/22-24/00	ND	79.5	MB
1,4-Dichlorobenzene	392804/05	06/12/00	06/22-24/00	ND	80.4	MB
1,2-Dichlorobenzene	392804/05	06/12/00	06/22-24/00	ND	80.5	MB
Ethylbenzene	392804/05	06/12/00	06/22-24/00	ND	79.6	MB
Toluene	392804/05	06/12/00	06/22-24/00	ND	78.9	MB
Total Xylenes	392804/05	06/12/00	06/22-24/00	ND	75.1	MB
MTBE	392804/05	06/12/00	06/22-24/00	ND	120	MB
IPE	392804/05	06/12/00	06/22-24/00	ND	78.7	MB
Lead	392804/05	06/12/00	06/16/00	ND	90.2	IB
<u>504.1</u>					<i>:</i>	
EDB	392804/05	06/12/00	06/15/00	ND	108	SEC

Delta Project# XONC-170 (SM#139) ND = Not Detected

--- = Data Not Available

Fn L:\WORK\REPORTS\Grnd_Wst\Waters\601_602\Delta.00

Attachment 3

EPH Laboratory Reporting Form

Calibration and QA/QC Information

Initial Calibration Date 05/23/00

Calibration Ranges and Limits

 μ g/l

Range	MDL	ML	RL
C9 - C18 Aliphatics	63	200	100
C19 - C36 Aliphatics	31	99	. 100
C11 - C22 Aromatics	9.0	29	100

NOTE: Please include units as appropriate

Method of Quantitation (check one): X Curve

Response Factor

Calibration Concentration Levels

Range	Levels	% RSD or CCC
	60	
	120	3.60 % RSD
C9 - C18 Aliphatics	300	
·	600	ccc=0.999
	800	
	80	
	160	3.41 % RSD
C19 - C36 Aliphatics	400	-]
	800	ccc=0.999
	1200	
	85	
C11 - C22 Aromatics	170	5.68 % RSD
	340	
	850	ccc=0.998
	1700	

NOTE: Please indicate units as appropriate.

Calibration Check Date 06/15/00 Calibration Check μg/l

Range	Level	RPD
C9 - C18 Aliphatics	300	10 %
C19 - C36 Aliphatics	400	3 %
C11 - C22 Aromatics	850	3 %

MDL = Method Detection Limit

ML = Minimum Limit

RL = Reportable Limit

RPD = Relative Percent Difference

%RSD = Percent Relative Standard Deviation

CCC = Correlation Coefficient of Curve

---- of ravision 5/6/98

EPH (Aliphatics/Aromatics) Laboratory Reporting Form Continued

Client Name _	DELTA # XONC-170	Laboratory Name RESEARCH & ANALYTICAL LABORATORIES, INC.
Project Name	SM#139	NC Certification # (Lab) 34
Site Location _	RAL#'s 392304/05	

INCLUDE APPROPRIATE UNITS: PPM (Parts Per Million) (i.e., for Water: mg/L | for Soil: mg/kg)

		Sample li	nformation a	nd Analytical	Results		
Sample Identification	MW-5	MW-4					
Sample Matrix	Water	Water					
Date Collected	06/12/00	06/12/00					-
Date Received	06/13/00	06/13/00					
Date Extracted	06/15/00	06/15/00					
Date Analyzed	06/15/00	06/15/00					
Dry Weight	N/A	N/A					
Dilution Factor	1	1					
C9 - C18 Aliphatics *	2.40	0.345	-				
C19 - C36 Aliphatics *	0.197	0.120					
C11 - C22 Aromatics *	0.708	0.505					
Surrogate % Recovery - Aliph.	81	67					
Surrogate % Recovery - Aroma.	92	82	-				
Fractionation Surrogate % Recovery	69	81					
Fractionation Surrogate % Recovery	51	60					

^{*} Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.

	C9 - C18 Aliphatic	C19 - C36 Aliphatic	C11 - C22 Aromatic
Percent Recovery - Fortified Blank (Spike)	97	81	8,2
Relative Percent Difference - Sample Duplicates	0.0	0.0	0.0

VPH Laboratory Reporting Form

Calibration and QA/QC Information

Initial Calibration Date $\underline{06/02/2000}$ Calibration Ranges and Limits $\mu g/I$

Range	MDL	MŁ	RL
C5 - C8 Aliphatics	52	165	100
C9 - C12 Aliphatics	18	57	100
C9 - C10 Aromatics	9.0	29	100

NOTE: Please include units as appropriate

Method of Quantitation (check one): \square Curve or \square Average Response Factor Calibration Concentration Levels $\mu g/l$

	μg/1	
Range	Levels	% RSD or CCC
	75	
	750	7.69 % RSD
C5 - C8 Aliphatics	1500	
	2250	ccc=0.997
	3000	
	55	
	550	5.13 % RSD
C9 - C12 Aliphatics	1100	•
	1650	ccc=0.998
	2200	
	50	
C9 - C10 Aromatics	100	3.55 % RSD
	200	
	300	ccc=0.998
	400	

NOTE: Please indicate units as appropriate.

Calibration Check Date $\frac{06/14/2000}{\mu g/l}$

Range	Level	RPD
C5 - C8 Aliphatics	1500	5 %
C9 - C12 Aliphatics	1100	5 %
C9 - C10 Aromatics	200	2 %

MDL = Method Detection Limit

ML = Minimum Limit RL = Reportable Limit RPD = Relative Percent Difference %RSD = Percent Relative Standard Deviation CCC = Correlation Coefficient of Curve

VPH (Aliphatics/Aromatics) Laboratory Reporting Form Continued

Client Name	DELTA # XONC170	Laboratory Name RESEARCH & ANALYTICAL LABORATORIES, INC.
Project Name	SM#139	NC Certification # (Lab) 34
Site Location	RAL#'s 392804/05	

INCLUDE APPROPRIATE UNITS: PPM (Parts Per Million) (i.e., for Water: mg/L | for Soil: mg/kg)

		Sam	ple Informat	ion and Analy	tical Results				
Sample Identification	MW-5	MW-4					Τ		
Sample Matrix	Water	Water			 -	 -			ļ
Collection Option (for soil)	N/A	N/A		 		 		 	
Date Collected	06/12/00	06/12/00			 	 			-
Date Received	06/13/00	06/13/00		<u> </u>	 		 		
Date Extracted	N/A	N/A			 		 		<u> </u>
Date Analyzed	06/14/00	06/14/00		 			 		
Dry Weight	N/A	N/A					 		
Dilution Factor	10	1			 				· · · · · · · · · · · · · · · · · · ·
C5 - C8 Aliphatics "	19.1	BRL				<u> </u>	 		
C9 - C12 Aliphatics "	13.9	BRL			 				
C9 - C10 Aromatics "	2.78	BRL			ļ				
Surrogate % Recovery - PID	82	92		 					
Surrogate % Recovery - FID	84	93		 					

^{*} Option 1 = Established fill line on vial Option 2 = Sampling Device (indicate brand, e.g. EnCore) Option 3 = Field weight of soil

** Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.

	#00/2002/2002/2002/2000/2000/2000/2000/		C9 - C10 Aromatic
Percent Recovery - Fortified Blank (Spike) - PID	-	-	108
Relative Percent Difference - PID Duplicate	_		3.4
Percent Recovery - Fortified Blank (Spike) - FID	114	112	
Relative Percent Difference - FID Duplicate	5.6	2.7	-

RESEARCH & ANALYTICAL LABORATORIES, INC. Analytical / Process Consultations Phone (336) 996-2841

CHAIN OF CUSTODY RECORD

JOB NO. COMPANY STREET ADDRESS
1201 S. 16+12 Street
CITY, STATE, ZIP PROJECT XONC-170C SAMPLER NAME (PLEASE PRINT) NO. OF CONTAINERS Wilmington NC 28401
CONTACT PHONE A. LORD SAMPLE NUMBER (LAB USE ONLY) TIME COMP GRAB TEMP RES CHLORINE REMOVED (Y & N) REQUESTED ANALYSIS SAMPLE LOCATION / I.D. 6-12 1153 X W mw-5 805 6-12 1200 mw-4 X DATE/TIME | RECEIVED BY **REMARKS:** REHNQUISHED BY 2 DATE/TIME | RECEIVED BY 16:26 Manyle SAMPLE TEMPERATURE AT RECEIPT