Loading...
HomeMy WebLinkAboutDEQ-CFW_00073023Supporting information Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina Supporting information includes analytical method description, 6 tables, and 5 figures. Mei Sun1,2- ", Elisa Areval02, Mark Strynar3, Andrew Lindstrom3, Michael Richardson4, Ben Kearns4, Adam Pickett5, Chris Smith6, and Detlef R.U. Knappe2 'Department of Civil and Environmental Engineering University of North Carolina at Charlotte Charlotte, North Carolina 28223, USA 2 Department of Civil, Construction, and Environmental Engineering North Carolina State University Raleigh, North Carolina 27695, USA 3 National Exposure Research Laboratory U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711, USA 4 Cape Fear Public Utility Authority Wilmington, North Carolina 28403, USA 5 Town of Pittsboro Pittsboro, North Carolina 27312, USA 6 Fayetteville Public Works Commission Fayetteville, North Carolina 28301, USA *Corresponding Author Email: msun8@uncc.edu; Phone: 704-687-1723 Page 1 of 12 DEQ-CFW 00073023 Analytical standards: PFASs studied in this research are listed in Table S1. For legacy PFASs, native and isotopically labeled standards were purchased from Wellington Laboratories (Guelph, Ontario, Canada). Native PFPrOPrA was purchased from Thermo Fisher Scientific (Waltham, MA). No analytical standards were available for other PFECAs. PFAS quantification: PFAS concentrations in samples from DWTPs and adsorption tests were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a large - volume (0.9 mL) direct injection method. An Agilent 1100 Series LC pump and PE Sciex API 3000 LC-MS/MS system equipped with a 4.6 mm x 50 mm HPLC column (Kinetex C18 5µm 100A, Phenomenex Inc.) was used for PFAS analysis. The eluent gradient is shown in Table S4 in SI. All samples, calibration standards, and quality control samples were spiked with isotopically labeled internal standards, filtered through 0.45-µm glass microfiber syringe filters, and analyzed in duplicate. The MS transitions for PFAS analytes and internal standards are shown in Table S5 in SI. The quantitation limit (QL) was 25 ng/L for PFOS and perfluorodecanoic acid, and 10 ng/L for other legacy PFASs and PFPrOPrA. The QL was defined as the first point of the standard curve, for which the regression equation yielded a calculated value within ±30% error. For PFECAs without analytical standards, chromatographic peak areas are reported. PFAS concentrations along the treatment train of DWTP C were analyzed using a Waters Acquity ultra performance liquid chromatograph interfaced with a Waters Quattro Premier XE triple quadrupole mass spectrometer (Waters, Milford, MA, USA) after solid phase extraction. Method details are described elsewhere.' The QL for all PFASs with analytical standards was 0.2 ng/L, and peak areas were recorded for PFECAs without standards. Page 2 of 12 DEQ-CFW 00073024 Table S1. Perfluoroalkyl substances (PFASs) detected in the Cape Fear River (CFR) watershed carbonsMolecular It of Chain length Compound weight Formula CAS perfluorinated (including all • and S) Perfluorocarboxylic acids (PFCAs) Perfluorobuanoic acid (PFBA) 214.0 C4HF702 375-22-4 3 4 Perfluoropentanoic acid (PFPeA) 264.0 C5HF902 2706-90-3 4 5 Perfluorohexanoic acid (PFHxA) 314.1 C6HFnO2 307-24-4 5 6 Perfluoroheptanoic acid (PFHpA) 364.1 C7HF1302 375-85-9 6 7 Perfluorooctanoic acid (PFOA) 414.1 C8HF1502 335-67-1 7 8 Perfluorononanoic acid (PFNA) 464.1 C9HF1702 375-95-1 8 9 Perfluoroheanoic acid (PFDA) 514.1 CioHFi9O2 335-76-2 9 10 Perfluorosulfonic acids (PFSAs) Perfluorobutane sulfonic acid (PFBS) 300.1 C4HF9SO3 375-73-5 4 5 Perfluorohexane sulfonic acid (PFHxS) 400.1 C6HF13SO3 355-46-4 6 7 Perfluorooctane sulfonic acid (PFOS) 500.1 C8HFi7SO3 1763-23-1 8 9 Perfluoroalkyl ether carboxylic acids with one ether group (mono -ether PFECAs) Perfluoro-2-methoxyacetic acid (PFMOAA) 180.0 C3HF503 674-13-5 2 4 Perfluoro-3-methoxypropanoic acid (PFMOPrA) 230.0 C4HF703 377-73-1 3 5 Perfluoro-4-methoxybutanoic acid (PFMOBA) 280.0 C5HF903 863090-89-5 4 6 Perfluoro-2-propoxypropanoic acid (PFPrOPrA) 330.1 C6HF1103 13252-13-6 5 7 Perfluoroalkyl ether carboxylic acids with multiple ether group (multi -ether PFECAs) Perfluoro(3,5-dioxahexanoic) acid (PF02HxA) 246.0 CAHF704 39492-88-1 3 6 Perfluoro(3,5,7-trioxaoctanoic) acid (PF030A) 312.0 CsHF905 39492-89-2 4 8 Perfluoro(3,5,7,9-tetraoxadecanoic) acid (PF04DA) 378.1 C6HF1106 39492-90-5 5 10 Page 3 of 12 Table S2.Operational conditions of DWTP C on sampling day (August 18, 2014) Parameter Raw water ozone dose Value 3.1 m /L Raw water total organic carbon concentration 6.0 m /L Aluminum sulfate coagulant dose 43 m /L Coagulation pH 5.70 Settled water ozone dose 1.3 m /L Settled water total organic carbon concentration 1.90 m /L Empty bed contact time in biological activated carbon filters 9.4 minutes for granular activated carbon layer 2.3 minutes for sand layer Medium pressure UV dose 25 mJ/cmz Free chlorine dose 1.26 mg/L as C12 Free chlorine contact time 17.2 hours Table S3. Water quality characteristics of surface water used in adsorption tests Table S4. LC gradient method for PFAS analysis Time (min) Mobile Phase A°a (v/v) 1 • Mobile Phase B0% Flow Rate (mL/min) 1• • 1• 1 • 1 •1 1 • 1 1 , 1 •1 . 1 • 1 � 1 • •1 1 • Mobile phase A: 2 mM ammonium acetate in ultrapure water with 5% methanol Mobile phase B: 2 mM ammonium acetate in acetonitrile with 5% ultrapure water Page 4 of 12 DEQ-CFW 00073026 Table S5. MS transitions for PFAS Analysis Legacy PFASs Compound PFBA MS/MS Transition 212.8 168.8 Internal standard 13C4-PFBA PFPeA 262.9 218.8 13C2- PFHxA PFHxA 313.6 268.8 13C2- PFHxA PFHpA 362.9 318.8 13C4- PFOA PFOA 413.0 368.8 13C4- PFOA PFNA 463.0 418.8 13C4- PFOA PFDA 513.1 68.8 13C2-PFDA PFBS 299.1 98.8 1802-PFHxS PFHxS 399.1 98.8 1802-PFHxS PFOS 498.9 98.8 13C4-PFOS PFECAs PFMOAA 180.0 85.0 N/A PFMOPrA 229.1 184.9 N/A PFMOBA 279.0 -> 234.8 N/A PFPrOPrA 329.0 -> 284.7 13C2- PFHxA PFO2HxA 245.1 --),85.0 N/A PFO3OA 311. 84.9 N/A PFO4DA 377.1 85.0 N/A Internal standards Perfluoro-n-[1,2,3,4-13C4]butanoic acid (13C4-PFBA) 217.0 172 -> Not applicable Perfluoro-n-[1,2-13C2]hexanoic acid (13C2-PFHxA) 315.1-> 269.8 Perfluoro-n-[1,2,3,4-13C2]octanoic acid (13C4-PFOA) 417.0 --), 372.0 Perfluoro-n-[1,2-13C2]decanoic acid (13C2-PFDA) 515.1 469.8 Sodium perfluoro-1- hexane["02]sulfonate (1802-PFHxS) 403.1 83.8 Sodium perfluoro-1-[1,2,3,413C4]octane sulfonate (13C4-PFOS) 502.9 79.9 -> Page 5 of 12 DEQ-CFW 00073027 Table S6. Maximum, minimum, mean and median concentrations (ng/L) of PFASs at three drinking water intakes. min medianmax -.median PFBA 99 <10 26 33 38 <10 12 12 104 <10 12 22 PFPeA 191 14 44 62 38 <10 19 19 116 <10 30 36 PFHxA 318 <10 48 78 42 <10 <10 11 24 <10 <10 <10 PFHpA 324 <10 39 67 85 <10 <10 11 24 <10 <10 <10 PFOA 137 <10 34 46 32 <10 <10 <10 17 <10 <10 <10 PFNA 38 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 PFDA 35 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 PFBS 80 <10 <10 <10 11 <10 <10 <10 <10 <10 <10 <10 PFHxS 193 <10 10 14 14 <10 <10 <10 14 <10 <10 <10 PFOS 346 <25 29 44 43 <25 <25 <25 40 <25 <25 <25 PFPrOPrA <10 <10 <10 <10 10 <10 <10 <10 4560 55 304 631 PFOA+PFOS 447 0 64 90 59 0 0 9 55 <10 <10 <10 1: PFASs** 1502 18 212 355 189 0 47 62 4696 55 345 710 * Concentrations less than quantitation limits were considered as zero to calculate means and T, PFASs. ** Other PFECAs were present in water samples from community C but could not be quantified and were therefore not included in PFASs Page 6 of 12 F O FO � -F F OH F F PFMOAA F F F O O F� F F F OH F F PFMOBA PF02HxA F F O O F� F F OH F F PFMOPrA \ /F F\ / \ /F F F F x O j� O x O�O OH F \ // F F \ F F PF04DA O PFPrOPrA rrusuA Figure S1. Molecular structures of PFECAs evaluated in this study Page 7 of 12 DEQ-CFW 00073029 Cape Fear River watershed Haw River Comm A N DV%rTP Deep River Flow direction Community B DVVTP 13 North Carolina Cape Fear River ` SPFAS Surface water sampling site Cape Fear river basin manufacturing, for PAC test MN — plant Community C., �OR ro so M DVVTP f WY W --f'Ny Vr NH--- [A NE PA IL IN OH NV UT CO ► Ke MO IDE CA K TH KY NC z; AZ NM sc MS AL TX LA FL,, 100 km Figure S2. Sampling sites in the Cape Fear River watershed, North Carolina. The scale is for the Cape Fear River watershed map. Page 8 of 12 DEQ-CFW-00073030 1200 1000 _ 800 rn c c 0 600 m c 400 0 200 v Community I QQQ`oQcPQQ� QFQe QF� QQ�pPQQpPQQ�PQQpPQQQ, QQ�.�SQQ01QQOPkQQ05 QF 200 150 J 0) 0 100 c� c c 50 co 0 in • Community B • • QQQ�OQ�PQF6 QQQe QF� QQ,�'pPPFOPPF�PPFaPQFQ' ',? � oI O`' QF Page 9 of 12 DEQ-CFW 00073031 5000 4000 J 3000 c 0 c� 2000 N c 0 U 1000 0 • Community C • • • • JL -9- .�. PPP��P�p'PF6 PFPe PF� PF�pPPP�PPP�PPP�PPP� PF���PF�PF�PxPP�� PF Figure S3. PFAS concentration distributions in the CFR watershed at three drinking water intakes. Concentrations less than quantitation limits were considered as zero. Upper and lower edges of a box represent the 751h and 25th percentile, respectively; the middle line represents the median; upper and lower bars represent the 901h and 10th percentile, respectively; and dots represent outliers (>90th or <1011, percentile). Page 10 of 12 DEQ-CFW 00073032 2.5 E+07 2.0E+07 a 1.5E+07 3 0 1.0E+07 �o aU 5.0E+06 0 0E+00 2500 2000 1500 0 V) 1000 LL a w 500 0 6/15/13 7/30/13 9/13/13 10/28/13 12/12/13 S00 5. E+07 a 4. E+07 m 3. E+07 3 0 2.E+07 �o v 5 1. E+07 0. E+00 400 J 300 N N 200 LL a w 100 0 6/15/13 7/30/13 9/13/13 10/28/13 12/12/13 6000 6/15/13 7/30/13 9/13/13 10/28/13 12/12/13 6000 6. E+07 5. E+07 4. E+07 o 3. E+07 2. E+07 1. E+07 0 E+00 5000 4000 ao 3000 c A a LL 2000 w 1000 0 6/1/13 7/1/13 7/31/13 8/30/13 9/29/13 Figure S4. Total PFAS concentrations in the source water and stream flow at the three studied DWTPs. Stream flow data were acquired from US Geological Survey stream gage records Page 11 of 12 DEQ-CFW 00073033 awio a 80% M 40% w 20% 0% -20% 4 1 -.,4 0 20 40 60 80 100 120 140 time (min) -+-PFBA t PFPeA PFHxA-*-PFHpA-*--PFOA tPFNA-0•-PFDA-o-PFBS--O-PFHxS-I-PFOS 100% C 80% X 60% A 9 40% E d °C 20% 0% It -20% 0 20 40 60 80 100 120 140 time (min) -f-PFBA -s-PFPeA f PFHxA -k-PFHpA -*-PFOA -i-PFNA -0-PFDA ---PFBS -O-PFHS -i-PFOS 100% 80% ar�a�--- 60% A �O 40% - E m °C 20% 0% IIA -20%-- 0 20 40 60 80 100 120 140 time (min) -0-PFBA -I*--PFPeA PFHxA -)E-PFHpA -*-PFOA t PFNA -o-PFDA -o-PFBS -0-PFHxS -t PFOS lw� 80% 60% m 40% d °C 20% 0% -20% 300% 80% 60% A '0 40% E v 20% 0% -20% 0 M 0 20 40 60 80 time (min) 4 PFMOPrA-FPFMOBA -0-PF02HxA -U-PF030A 100 SG°o 60% A 6 40% E a, s 20% 0% -20% 100 120 140 PFPrOPrA PF04DA 20 40 60 80 100 120 140 time (min) -10,-PFMOPrA-*-PFMOBA tPFPrOPrA -P-PF02HxA -{-} PF030A-0-PF04DA f .� y 0 20 40 60 80 100 120 140 time (min) -*--PFMOPrA i-PFMOBA-A-PFPrOPrA -*-PF02HxA-0-PF030A O-PF040A Figure S5. PFAS adsorption at powdered activated carbon doses of (a, b) 30 mg/L, (c, d) 60 mg/L and (e, f) 100 mg/L. Figures show average PFAS removal percentages of duplicate tests. Reference 1. Nakayama, S.; Strynar, M. J.; Helfant, L.; Egeghy, P.; Ye, X.; Lindstrom, A. B., Perfluorinated compounds in the Cape Fear drainage basin in North Carolina. Environ. Sci. Technol. 2007, 41, (15), 5271-5276. Page 12 of 12 DEQ-CFW 00073034