Loading...
HomeMy WebLinkAboutDEQ-CFW_00002962is 0 I' n Io 0 0 0 N co 0) N Perfluoroalkyl ether carboxylic acids: Occurrence in the Cape Fear river watershed and fate in drinking water treatment processes Mei Sun, Elisa Arevalo, Leigh -Ann Dudley, Andrew Lindstrom, Mark Strynar, Detlef Knappe NC DEQ Raleigh, June 16, 2017 r J�tOD S Tq r�S ."Wolrz; PR Y t Perfluoroalkyl acids are organic compounds in which all C=H bonds are replaced with C=F bonds. F a F F 0 H F S—C? F F O n Long -chain PFASs: PFCAS: CnF2n+lCOOHI n>_7 PFSAS: CnF2n+1S03H7 I7>_6 F F F F F F 0 F, �OH F F F F F F F F F F F F F\ F F F j S03H F � F F F F F F F F 0 To protect the public from adverse health effects, health based guidelines have been established EPA Health Advisory (chronic exposure) New Jersey recommended MCLs PFOS + C8: 70 ng/L C8: 14 ng/L C9: 13 ng/L At first glance, UCIVIR3 data suggest low PFAS detection frequency UCMR3 requires monitoring for six PFASs in US drinking water. Monitoring began in 2013, and latest data release was January 2017. PFALS C7 .. •/L) 10 • 0.64 • (ng/L) 410 .n Locations'high concentrations Saipan, PA, NY, DE, CO C8 20 1.03 349 PA, MN, Saipan, DE, WV C9 20 0.05 56 NJ, DE, PA, MA, NY PFBS 90 0.05 370 GA, Saipan, CO, AL, PA PFHxS 30 0.56 11600 Saipan, AZ, DE, CO, PA PFOS 40 0.79 71000 Saipan, DE, CO, PA, WA 36,972 samples from 4,920 PWSs PFAS detects: 599 samples (1.6%) from 198 PWSs (4.0%) Of samples with PFAS detects: 23.4% derived from surface water Some drinking water samples had PFOA+PFOS levels well above the HAL 4 UCMR3 Data for North Carolina: PFAS detection frequency higher than for entire US Compound- Detects (ng/L) Perfluoroheptanoic acid (PFHpA, C7) 10 29 (max. 60 ng/L) Perfluorooctanoic acid (PFOA, C8) 20 10 (max. 30 ng/L) Perfluorononanoic acid (PFNA, C9) 20 0 Perfluorobutanesulfonic acid (PFBS) 90 0 Perfluorohexanesulfonic acid (PFHxS) 30 5 (max. 110 ng/L) Perfluorooctanesulfonic acid (PFOS) 40 8 (max. 90 ng/L) 1,320 samples from 151 PWSs in NC PFAS detects: 43 samples (3.3%) from 20 PWSs (13.2%) Of samples with PFAS detects: 79% derived from surface water Elevated PFAS levels affect a sizeable number of US residents Hydrological units with detectable PFASs Detected Not detected No data PFOS+PFOA levels estimated to exceed the 70 ng/L HAL in the drinking water of 6 million US residents Hu et al. ES&T Letters (2016) ...but are we seeing the complete picture ? Many PFASs are used in commerce Sub -classes of PFASs PFCSs (Cri ,ri+l—COOH) PFSAs perfluoroalkyl adds (CnF2n+l--SOzH) (PFAAs) PFPAs (CnF2n+,--PO3H2; PFPiAs (CnF,,,—PO,H-C,„F Examples of Individual compounds* o PFBA(n=4) o PFPeA (n=5) u PFHxA (n=6) v PFHpA (n=7) n PFOA (r)=B) o PF-V.A (n=g) n PFC•,=.(n-lo;. PFLJM(n=ri) r, PFDoA(n=r2) o PFTrA o PF Te;A (n=i4) o PFBS (n=4) o PFHxS i;n=6) o PFC)S (r,=8) C, PFDS (n=rc,) PFBPA (n=4) PFHxPA (n=6) o PFiOPA (n=8) n PFDPA (n-io) o C41124 PFPiA (n.m=4) C6tC6 PFPiA (n,m=6) CSfCS PFPiA (n,m=8) _6?C3 PMA (n 6 m> S) Number of peer -reviewed articles since 2oo2** F6.-it-C3lFi PFECA.s & PFESAs €enx(C,F,-cr(cF,J—COt�H) (C F_ t r �y —O—C I —R ) .,+I =' EEA!,C,F,-O-C_Ft-O-CF_-C.00H; r e . F-.3B (C1-i -G'-C,Fy- �t +i m 2rr,+; ,F, fvtc BSA (n=4, =N H jH (n=8.R=N(CH'.)H) CtFBSA (n=4,R.N(C,H6jH) PFASs PASF-based : rtra;•.;n=a,�=N(e.,fl ,ll) M,PBSE (n=4Y N(r_H' C,HaQH) substances (CnF2n+1— R) (C n F2n+l— SO2 — R) , r;•,,•=;; ; in=Fs,R=V(CH IC HyOHj Et F BSE (n=4.R=N(C,.H,)CIH4OH) EtFC;SE (n=.3.P=N(C;-i.,}C,HrOHj > over 3000 D SAm:PAP III ,.' PFASs may PFAA loos Vothers have been precursors 4:2 F70H (n=4,R=C1H) on the global 0 6:2 FTOH (n•6,R»OH) market fluorotelomer-based o S:2 F70:-1 tin=s,R=CH substances j io:2 FTOH (n-io,R=OH) c7 12:2 FTOH ;n=,2,R=OH) (CnF2n+i—C2H4—R) v 6:2diiPAP[(C6F,,C,,HQO),-PO=HI o 3:2 diPAP ';C:,F..C,H 1011-130,14; loos oothers o polytetrafluoroelhylene (PTFE) fluoropolymers Q polyAnylidenefluoride (PVDF) others- „ fluorinated ethylene propylene (FEP) Wang et al. ES&T (2017) -' perfluorcalkexyl _alymer(PFA) Perfiuoropolyethers (PFPEs) 928 698 1081 1186 4066 1496 1407 1069 1016 426 587 654 1081 3507 340 3 33 31 35 4 12 12 8 4 26 1L 25 134 7 259 24 116 4 146 8 106 375 412 165 42 23 25 Two series o discovered X,,Os I-ESI EIC(178.9T3) Scan Frag=80.Uv `;rorklistGa a3.d O x'V -ESI EIC(22E 9?�T� Scan Fra^,-?Q G`J'rJorklictCata3 d 1 y It a5 T II� f\ f 0 xT0' -E51 EI--[278.97091 Scan Frag-30.G4 1'1orklistData3.d 2 1 x1 4 I-ESI EICs320 HM Scan Frac=BOCi','lorklistCaa3d 0 x10 a -ESI EIC; 379.%45) Scan Frag4O.OV 1'tor$distbata3.d x1�71 �-E£I E1=4�:E3 `:C13) Scan Frsg-3J Q'i 1:+srkl�atDn7e3 r1 2 Strynar et al. ES&T (2015) f PFECAs were in the Cape Fea F�_"-// F F b F F 3 F F OH F ty40 F F F F F F F � F F F F F F F F O F F ' F HA 6 7 - T- Counts vs Acquisition Titre (min) recently r River "GenV F F F C F F F F\ // H F F x 4t F F O F F F F F D� �F F Jam, itl P! F 9.5 10 10.5 11 11.5 12 12.5 13 135 Two series of PFECAs were recently discovered in the Cape Fear River x10 2 1 O t EIC(754 9123) Scan Frao-SO OV %-IMkhetD8t86 d 6 580 0 � F F /�'Of `,O-',©H F FF F F •F-9r EIC(672 9289) Scan Frao-SO pV t•hvkh-lD-ta6 d S 6a_ � 0 a F F F F 'OH 1 F F F F t ) , a 10 tt ,? 13 is L cwn1-[-.rv. +gcOurAgnor. Irma ,nvr. + F*t FIC(490 9455) ' -n Frao-PA) OV 1Vcwktr.,D-t-, d S F F F� OH s �\ ' F K F 5 C our,1�I-.)vim CicCureif._+n Irma rrun} -ESI EICI358 %21) 'x a� Fraq-Sa OV `.•:'orkt.etData6 tl 8 1262 O 6 F F s 2 F�O� OH 6 F F s 2 10 11 12 13 14 Cour,ta I'•:1 vs ..lcn —h— T— (mrnl Strynar et al. ES&T (2015) Molecular Formula: cnH1711Or Monoisotopic Mass 377.9596 Da [M•H]•: 376.9525 Da Molecular Formula C,HF.O. Monoisotopic Masts 311.9680 Da [M-H]-: 310.9608 Da Molecular Formula: C4HF,O, Monolsotoplc Mass: 245.9763 Da [M.H]-: 244.9690 Da Molecular Formula: C,HF,;O, Monoisotopic Mass: 179.9846 Da [M-H]-: 178.9773 Do GenX F� �F F F F F F CF3 Commercially produced polymer processing aid (ammonium salt) to replace PFOA • By-product of "vinyl ether process" hexafluoropropylene oxide (REPO) gas can form a stable dimer (GenX) Serum Elimination Half -Lives Table 4 Serum elimination halfwthes (%2) ofGenX ADONA, PFBA,PFHx& and PFOA in male (M) and female (F) rats, mice and humans. In so me cases, halt -Ile isexpressed in the form of"arith- metic mean ± standard deviation",while in other cases when the standard deviation is less than 15%o fthe arith metic me an on ly the arithmetic mean is p ro%ided. Noteson stud ies on rats and mice and monkeys provide information on dosing method (e g. single oral done or single intravenous (IV) dose) and dosage fin ppm_ m8 substancerkg bww); notes on studies on humans provide sample members (n) of humans involved. "-" means no data .available. Rats. Mice Humans ti,•: Notes t,;_ Notes t,;%-, Notes ti,.-.l Motes tl; Notes GenX (F) <=12 h Oral' 30 ppm - - >12 h. <7 d Orar 3 ppm - - - - GenX (M) <12 h - _ >12 h.<7d - - - - ADONA (M) 44 h 5-,. oral - - - - - - 23 ± lid 3'x'n PFBA (F) 1 h P41c 30 ppm 2 h Orai` 30 ppm 3 h Orals 10 ppm 3 h Oralc3O ppm 87 f 31 h 2cm PFBA(M) 6h 9h 13±5h 16 7h 68#35h 7c�m PFHxA (F) 0.4 h r\ d 10 ppm 12 h W 15 ppm <72 h Gastric 50 ppm -- - - - PFHxA (M) 1 h 2A h <72 h - - <:28 days 8&m PFOA (F) 2 h W 20 ppm - - 17 days - - 3.3 years 2im PFOA (M) 6 days - - 19 days - -- 3.8 $ 13 years 24im PFOA (all) - •- - - - - - - 3.26 years 138I.n PFOA (all) - - - - - - - - 2.3 years 200kn PFOA (all) - - - - - - - - 2.9 years 643tn PFOA (all) - - - - - - - - 8.5 years 10294n a ECHA (2014).b EFSA (2011a).' Chang et al (20081"Chengelis et A (2009)! Oh mo ri et A (2003) f Iwvai (2011) Nilsson eta1. (2010) hLau eta1.(2007)' Olsen et al. (2007)*! Brede et al. (2010)' Bartell et al. (2010).1 Seals et al. (2011 'Ibese studies foasson samples from people who were occupationally exposed to these substance sa nd the levels in serum were h igh.'Thes e studies focus on samples from people who were exposed to PFOA maim through highly wntaminate d drinking water. 0 Comparing the potency in vivo of PFAS alternatives and their predecessors Gomis Ferreira, Melissa Ines; Vestergren, Robin; Borg, Daniel; Cousins, Ian T. Abstract Since the year 2000, a number of per- and polyfluoroalkyl substances (PFASs) have been introduced onto the market to replace long -chain perfluoroalkyl acids (e.g. perfluoroctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)) and their respective precursors. The main rationale for this industrial transition is that the PFAS alternatives are less bioaccumulative and toxic than their predecessors. Here, we evaluated to what extent differences in toxicological effect thresholds for PFASs, expressed as an administered dose, were confounded by differences in their distribution and elimination kinetics. Increased liver weight was selected as the investigated endpoint based on the availability of sufficient toxicological and toxicokinetic data to enable a comparison of sub -chronic effects. Converting administered doses into equivalent serum and liver concentrations significantly reduced the variability in the dose -response curves for perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononaoic acid (PFNA) and ammonium 2,3,3,3-tetrafluoro-2- (heptafluoropropoxy)-propanoate (GenX). The toxicity ranking using serum (PFNA>GenX> PFOA> PFHxA> PFBA) and liver (GenX> PFNAN PFOAN PFHxAN PFBA) concentrations also indicated that some PFAS alternatives may have a higher toxic potency than their predecessors when correcting for differences in toxicokinetics. For PFOS and perfluorobutane sulfonic acid (PFBS) the conversion from administered dose to serum concentration equivalents did not change the toxicity ranking which, however, could be due to the internal dose of PFBS being too low to allow a correct comparison. This study illustrates the importance of taking toxicokinetics/internal dose into account in substitution of hazardous chemicals for independent evaluation of bioaccumulation and toxicity criteria. Cl) DEQ-CFW 00002975 Haw River ELI Cape Fear River Basin Deep River Flow direction Community B A Cape Fear River "E' I•pA 7•C Ai — IL PEAS <' Surface water sampling site CO f" K8 NJ vey a�D �,N �`M VA manufacturing for PAC test AZ NM_ __ I .'. Ms' AL 00, plant .Fl. �? North Carolina Comrunity C Cape Fear river basin 0 I I 25 50 1 I I 1 I I 100 km �' { I �. • Largest watershed in NC • Supplies ~1.5M people with drinking water Sampling Protocol • Samples collected in 1-L HDPE bottles • Two sampling approaches — Daily composite samples of source water at three drinking water treatment plants — Grab samples to track PFAS fate in drinking water treatment plant • No preservative • Storage at room temperature • Analysis within 7 days of sample collection • 70-day holding study showed no changes in PFAS concentrations PFAS Analytical Method • PFAS concentrations measured by LC-MS/MS • Large -volume direct injection (900 pL) • Sample and standard preparation: — filtration with a 0.45-pm glass fiber filter — addition of mass -labeled internal standards — addition of formic acid • Calibration curves ranged from 10 - 750 ng/L • Limit of quantitation was 10 ng/L for all PFASs except C10 and PFOS (25 ng/L) • Acceptance criterion: QCs within 30% Compound MS/MS Transition Internal standard PFBA 212.8 --* 168.8 13C4-PFBA PFPeA 262.9 ---).218.8 13C2- PFHxA PFHxA 313.6 --.),268.8 13C2- PFHxA PFHpA 362.9 --),318.8 13C4- PFOA PFOA 413.0 -.368.8 13C4- PFOA Legacy PFASs PFNA 463.0 418.8 13C4- PFOA PFDA 513.1 i 68.8 13C2-PFDA PFBS 299.1-98.8 1802-PFHxS PFHxS 399.1-98.8 1802-PFHxS PFOS 498.9 98.8 13C4-PFOS PFMOAA 180.0 85.0 N/A PFMOPrA 229.1 184.9 N/A PFMOBA 279.0 234.8 N/A PFPrOPrA 329.0 --),284.7 13C2- PFHxA PFECAs PF02HxA 245.1 85.0 N/A PF030A 311. 84.9 N/A PF04DA 3777.1 --OS5.0 N/A Perfluoro-n-[1,2,3,4-13C4]butanoic acid (13C4-PFBA) 217.0 ---).172 Perfluoro-n-[1,2-13C2]hexanoic acid (13C2-PFHxA) 315.1 269.8 Perfluoro-i-i-[1,2,3,4-13C2]octanoic acid (13C4,-PFOA) 417.0 372.0 Internal standards Not applicable Perfluoro-n-[1,2-13C2]decanoic acid (13C2-PFDA) 515.1--+ 469.8 Sodium perfluoro-l- hexane[1802]-,Ulfonate (1802-PFHxS) 403.1 83.8 Sodium perfluorc)-1 -[ 1,2,3,4-'3C4] octane sulfonate (13C4-PFOS) 502.9 79.9 W M 1.4 M 1.2 Cn 1.0 _ L _ 0.8 L 0.6 a m 0.4 0.2 IM Representative calibration curves 0 200 400 600 Concentration, ng/L O HE a 1.2 L = 1.0 Cn 0.8 L 0.6 a aL 0.4 0 500 Concentration, ng/L 0 rn p n n 0 0 0 0 N Back -calculated standard concentrations and QC results GenX C4 C5 C6 C7 Sample Name Mean Accuracy Mean Accuracy Mean Accuracy Mean Accuracy Mean Accuracy 10 ng/L 7.4 73.9 8.3 81.7 10.1 99.5 8.3 80.5 7.6 70.7 25 ng/L 28.5 114.1 27.7 110.5 23.3 91.2 29.7 115.2 29.6 110.4 50 ng/L 56.5 112.9 54.4 108.2 52.2 102.2 54.0 104.6 64.5 120.6 100 ng/L 104.1 104.1 103.1 102.1 112.5 110.3 107.9 104.7 110.6 103.4 250 ng/L 240.0 96.0 242.3 96.6 252.6 99.0 245.6 95.2 260.5 97.2 500 ng/L 488.0 97.6 503.1 100.0 496.0 97.1 517.6 100.1 511.0 95.5 750 ng/L 760.6 101.4 755.8 100.2 773.1 100.9 777.8 100.4 819.9 102.1 r 0.9975 0.9991 0.9927 0.9978 0.9975 Sample Name GenX C4 C5 C6 C7 100QC 98.1 90 101 104 105 111 98 96.9 113 101 500QC 462 441 497 511 526 540 512 478 412 485 C8 C9 C10 PFBS PFHS PFOS Mean Accuracy Mean Accuracy Mean Accuracy Mean Accuracy Mean Accuracy Mean Accuracy 8.2 80.3 7.4 73.7 7.8 76.1 7.44 73.63 7.2 71.1 8.7 86.5 28.5 111.7 28.1 111.2 27.8 109.0 28.25 111.66 29.0 115.0 25.5 101.6 56.1 109.8 60.5 119.9 56.7 111.3 57.76 114.16 57.3 113.4 58.1 115.7 105.3 103.2 99.4 98.4 110.1 108.0 108.95 107.88 107.0 105.9 99.9 99.9 243.1 95.3 246.9 97.6 250.7 98.3 237.15 93.74 241.8 96.0 244.3 97.3 511.3 100.1 494.4 97.9 482.1 94.7 497.59 98.34 491.4 97.3 496.5 98.9 769.4 100.5 765.6 101.0 781.6 102.3 768.91 101.31 767.4 101.4 758.8 100.8 0.9987 0.9982 0.998 0.9972 0.9981 0.9985 C8 C9 C10 PFBS PFHS PFOS 117 103 109 98.5 110 102 105 105 106 101 98.5 85.8 528 509 415 422 501 434 507 493 463 449 462 426 PFAS Occurrence in the CFR Watershed PFBA ■ PFOA ■ PFHxS Community A Community B Community C 111 ■ PFPeA PFNA ■ PFOS ■ PFHxA ■ PFHpA 7 PFDA ■ PFBS ■ PFPrOPrA = "GenX" n=127 F F "GenX" F F ���- F n=76XFF OH F FIF O n=351 200 Average concentration in drinking water source (ng/L) Sun et al. (2016) ES&T Letters 0 No measurable PFAS removal by conventional and advanced treatment-, Raw water Pre -ozone effluent Settled water Settled -ozone effluent BAC effluent Finished water Raw TOC: 6.0 mg/L, 03: 3.1 mg/L M Settled TOC: 1.9 mg/L, 03: 1.3 mg/L u MP UV: 25 mJ/Cm2, FAC: 1.3 mg/L, 17 h 200 400 600 800 PFAS Concentration (ng/L) C4 IN C5 0 C6 0 C7 C8 C9 C10 0 PFBS 0 PFHS 0 PFOS 0 GenX Recently discovered perfluoroalkyl ether carboxylic acids occur at substantially higher concentrations than traditional PFASs and GenX Raw water Pre -ozone effluent Settled water Settled -ozone effluent BAC effluent Finished water F i F F F O ► L � ► o ► o F O I F OF I F ' 0 I 'F PF02HxA I F I F OH I F F PFMOAA I I 0 503000 100,000 150,000 200,000 250,000 300,000 Peak area counts of emerging PFASs at a WTP in Community C ® PFPrOPrA PFMOAA PFMOPrA ■ PFMOBA PF02HxA PF030A m PF04DA Sun et al. (2016) ES&T Letters What about activated carbon?. PAC: thermally activated, wood -based PAC Doses: 30, 605 100 mg/L Contact time: 60 minutes Water: Cape Fear River (TOC: 9.0 mg/L) PFECAs: Native levels PFCAs and PFSAs: Spiked at 1000 ng/L �� a Adsorbability of PFASs varies greatly. The PFECAs that were present at the highest concentrations were essentially non -adsorbable 100% ■ 30 mg jL 80% _ ■ 60 mg/L 60% - ■ 100 mgy'L 40% - 20% 0% -20% U, Vi rj PFCAs Mono -ether PFECAs Multi -ether PFECAs PFSAs Sun et al. (2016) ES&T Letters . 1000/0 05 .0 80% It 60% 40% a E o 200% V l0 ^E W 20% -o- PFCAs 3 PFAS adsorbability: PFSA>PFCA>PFECA �Y GenX Mono -ether PFECAs Sun et al. (2016) ES&T Letters am 7 9 Chain length --♦-Multi-ether PFEC.As 11 y PFSAs Conclusions • Legacy PFASs dominant in upstream river reaches • PFOA+PFOS levels exceeded 70 ng/L in community A on 57 of 127 sampling days • PFECAs dominated PFAS signature downstream of a fluorochemical manufacturer • PFECA concentrations were not attenuated by: - Conventional treatment - Ozonation - Biofiltration - Disinfection by medium pressure UV lamps and free chlorine • Activated carbon adsorption only effective for long -chain PFASs Acknowledgments • National Science Foundation (Award #1550222) • North Carolina Urban Water Consortium • Adam Pickett, Chris Smith, Michael Richardson, Ben Kearns at participating utilities J� QED 5 Tq'f. I _ " =\ r 4P�rq[ ano�E�sg DEQ-CFW 00002990 Land application of biosolids in watershed of a NC drinking water reservoir 1< 43 2,010 ell LFOS = ND PFOA = ND,: 54ever knimal ctuary Ni"KS I;d PFOS = 65 ng/L 4e PFOA = 109 ng/L Cane Creek 0 Baptist Church Oairyla'16' �roFelI P(_1 CLaarry Rdca PFOS 500 ng/L PFOA ­9 qgiL PFOS = 720 ng/C' PFOA = 1020 ng/L 0 Data from A. Lindstrom, USEPA, RTF C) C) C) N) 7, CD en 01