Loading...
HomeMy WebLinkAboutDEQ-CFW_00002950Supporting information Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina Supporting information includes analytical method description, 6 tables, and 5 figures. Mei Sun' 2- ", Elisa Areval02, Mark Strynar3, Andrew Lindstrom3, Michael Richardson 4, Ben Kearns4, Adam Pickett5, Chris Smith6, and Detlef R.U. Knappe2 'Department of Civil and Environmental Engineering University of North Carolina at Charlotte Charlotte, North Carolina 28223, USA 2 Department of Civil, Construction, and Environmental Engineering North Carolina State University Raleigh, North Carolina 27695, USA 3 National Exposure Research Laboratory U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711, USA 4 Cape Fear Public Utility Authority Wilmington, North Carolina 28403, USA 5 Town of Pittsboro Pittsboro, North Carolina 27312, USA 6 Fayetteville Public Works Commission Fayetteville, North Carolina 28301, USA *Corresponding Author Email: msun8@uncc.edu; Phone: 704-687-1723 Page 1 of 12 DEQ-CFW 00002950 Analytical standards: PFASs studied in this research are listed in Table S1. For legacy PFASs, native and isotopically labeled standards were purchased from Wellington Laboratories (Guelph, Ontario, Canada). Native PFPrOPrA was purchased from Thermo Fisher Scientific (Waltham, MA). No analytical standards were available for other PFECAs. PFAS quantification: PFAS concentrations in samples from DWTPs and adsorption tests were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a large - volume (0.9 mL) direct injection method. An Agilent 1100 Series LC pump and PE Sciex API 3000 LC-MS/MS system equipped with a 4.6 mm x 50 mm HPLC column (Kinetex C18 5µm 100A, Phenomenex Inc.) was used for PFAS analysis. The eluent gradient is shown in Table S4 in SI. All samples, calibration standards, and quality control samples were spiked with isotopically labeled internal standards, filtered through 0.45-µm glass microfiber syringe filters, and analyzed in duplicate. The MS transitions for PFAS analytes and internal standards are shown in Table S5 in SI. The quantitation limit (QL) was 25 ng/L for PFOS and perfluorodecanoic acid, and 10 ng/L for other legacy PFASs and PFPrOPrA. The QL was defined as the first point of the standard curve, for which the regression equation yielded a calculated value within ±30% error. For PFECAs without analytical standards, chromatographic peak areas are reported. PFAS concentrations along the treatment train of DWTP C were analyzed using a Waters Acquity ultra performance liquid chromatograph interfaced with a Waters Quattro Premier XE triple quadrupole mass spectrometer (Waters, Milford, MA, USA) after solid phase extraction. Method details are described elsewhere.' The QL for all PFASs with analytical standards was 0.2 ng/L, and peak areas were recorded for PFECAs without standards. Page 2 of 12 DEQ-CFW 00002951 Table S1. Perfluoroalkyl substances (PFASs) detected in the Cape Fear River (CFR) watershed CompoundMolecular # of Chain length . .• . •. (including all carbonsweight • and S) Perfluorocarboxylic acids (PFCAs) Perfluorobutanoic acid (PFBA) 214.0 C4HF7O2 375-22-4 3 4 Perfluoropentanoic acid (PFPeA) 264.0 C5HF9O2 2706-90-3 4 5 Perfluorohexanoic acid (PFHxA) 314.1 C6HF11O2 307-24-4 5 6 Perfluoroheptanoic acid (PFHpA) 364.1 C7HF13O2 375-85-9 6 7 Perfluorooctanoic acid (PFOA) 414.1 C8HF1502 335-67-1 7 8 Perfluorononanoic acid (PFNA) 464.1 C9HF17O2 375-95-1 8 9 Perfluorodecanoic acid (PFDA) 514.1 CloHF19O2 335-76-2 9 10 Perfluorosulfonic acids (PFSAs) Perfluorobutane sulfonic acid (PFBS) 300.1 C4HF9SO3 375-73-5 4 5 Perfluorohexane sulfonic acid (PFHxS) 400.1 C6HF13SO3 355-46-4 6 7 Perfluorooctane sulfonic acid (PFOS) 500.1 C8HF17SO3 1763-23-1 8 9 Perfluoroalkyl ether carboxylic acids with one ether group (mono -ether PFECAs) Perfluoro-2-methoxyacetic acid (PFMOAA) 180.0 C3HF503 674-13-5 2 4 Perfluoro-3-methoxypropanoic acid (PFMOPrA) 230.0 C4HF7O3 377-73-1 3 5 Perfluoro-4-methoxybutanoic acid (PFMOBA) 280.0 C5HF9O3 863090-89-5 4 6 Perfluoro-2-propoxypropanoic acid (PFPrOPrA) 330.1 C6HF11O3 13252-13-6 5 7 Perfluoroalkyl ether carboxylic acids with multiple ether group (multi -ether PFECAs) Perfluoro(3,5-dioxahexanoic) acid (PFO2HxA) 246.0 C4HF7O4 39492-88-1 3 6 Perfluoro(3,5,7-trioxaoctanoic) acid (PFO3OA) 312.0 C5HF9O5 39492-89-2 4 8 Perfluoro(3,5,7,9-tetraoxadecanoic) acid (PFO4DA) 378.1 C6HF11O6 39492-90-5 5 10 Page 3 of 12 Table S2. Operational conditions of DWTP C on sampling day (August 18, 2014) Parameter Raw water ozone dose Value Raw water total organic carbon concentration 6.0 m /L Aluminum sulfate coagulant dose 43 m /L Coagulation pH 5.70 Settled water ozone dose 1.3 m /L Settled water total organic carbon concentration 1.90 m /L Empty bed contact time in biological activated carbon filters 9.4 minutes for granular activated carbon layer 2.3 minutes for sand layer Medium pressure UV dose 25 mJ/cm2 Free chlorine dose 1.26 mg/L as C12 Free chlorine contact time 17.2 hours Table S3. Water quality characteristics of surface water used in adsorption tests Table S4. LC gradient method for PFAS analysis Time (min) Mobile Phase A% (v/v) Mobile Phase B% Flow Rate (mL/min) Mobile phase A: 2 mM ammonium acetate in ultrapure water with 5% methanol Mobile phase B: 2 mM ammonium acetate in acetonitrile with 5% ultrapure water Page 4 of 12 DEQ-CFW 00002953 Mobile phase A: 2 mM ammonium acetate in ultrapure water with 5% methanol Mobile phase B: 2 mM ammonium acetate in acetonitrile with 5% ultrapure water Page 4 of 12 DEQ-CFW 00002953 Table S5. MS transitions for PFAS Analysis Legacy PFASs PFECAs Internal standards PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFBS PFHxS PFOS PFMOAA PFMOPrA PFMOBA PFPrOPrA PFO2HxA o ^,5 L PFO3OA 7,z PFO4DA Perfluoro-n-[1,2,3,4-13C4]butanoic acid (13C4-PFBA) Perfluoro-n-[1,2-13C2]hexanoic acid (13C2-PFHxA) Perfluoro-n-[1,2,3,4-13C2]octanoic acid (13C4-PFOA) Perfluoro-n-[1,2-13C2]decanoic acid (13C2-PFDA) Sodium perfluoro-1- hexane[1802]sulfonate (1802-PFHxS) Sodium perfluoro-l-[1,2,3,413C4]octane sulfonate (13C4-PFOS) L12.8 168.8 262.9 218.8 313.6 268.8 362.9 318.8 413.0 --> 368.8 463.0 418.8 513.1 68.8 299.1 --> 98.8 399.1 ---> 98.8 498.9 - 98.8 180.0 - 85.0 229.1 184.9 279.0 234.8 329.0 284.7 245.1 85.0 311. 84.9 377.1 - 85.0 217.0 - 172 315.1 -� 269.8 417.0 372.0 515.1 469.8 403.1 --+ 83.8 502.9 - 79.9 13C4-PFBA 13C2- PFHxA 13C2- PFHxA 13C4- PFOA 13C4- PFOA 13C4- PFOA 13C2-PFDA 1802-PFHxS 1802-PFHxS 13C4-PFOS N/A N/A N/A 13C2- PFHxA N/A N/A N/A Not applicable Page 5 of 12 DEQ-CFW 00002954 Table S6. Maximum, minimum, mean and median concentrations (ng/L) of PFASs at three drinking water intakes. * min medianmax •. ian mean PFBA 99 <10 26 33 38 <10 12 12 104 <10 12 22 PFPeA 191 14 44 62 38 <10 19 19 116 <10 30 36 PFHxA 318 <10 48 78 42 <10 <10 11 24 <10 <10 <10 PFHpA 324 <10 39 67 85 <10 <10 11 24 <10 <10 <10 PFOA 137 <10 34 46 32 <10 <10 <10 17 <10 <10 <10 PFNA 38 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 PFDA 35 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 PFBS 80 <10 <10 <10 11 <10 <10 <10 <10 <10 <10 <10 PFHxS 193 <10 10 14 14 <10 <10 <10 14 <10 <10 <10 PFOS 346 <25 29 44 43 <25 <25 <25 40 <25 <25 <25 PFPrOPrA <10 <10 <10 <10 10 <10 <10 <10 4560 55 304 631 PFOA+PFOS 447 0 64 90 59 0 0 9 55 <10 <10 <10 E PFASs** 1502 18 212 355 189 0 47 62 4696 55 345 710 * Concentrations less than quantitation limits were considered as zero to calculate means and Y- PFASs. ** Other PFECAs were present in water samples from community C but could not be quantified and were therefore not included in PFASs Page 6 of 12 F O O F i4OH F F PFMOAA F F F O O F F F F OH F F PFMOBA F F O O F F F OH F F PFMOPrA PFPrOPrA PFO2HxA PF03vA F F F F F p O O OH O O F F F F F PFO4DA O Figure S1. Molecular structures of PFECAs evaluated in this study Page 7 of 12 DEQ-CFW 00002956 Cape Fear River watershed Haw River Commt ' A N DWTP Deep River r Flow direction Community S DWTP North Carolina ` �- Cape Fear River v . P1.AS Surface Neater sampling site � • Cape Fear river basin manufacturing for PAC test plant w� -- No Community CWIT �-.f' MN MI _ DWTP YV r OR Y SO - Yh MI NY } NN NE IA__ _. 1 t MA I __ IL IN ON FA �►LI CT •� �,J NV VT CO -' KS---- '--MO TOE KY VA CA --z OK TN NC AR AZ NM SC S MS AL OA rx LA FL d f 100 km Figure S2. Sampling sites in the Cape Fear River watershed, North Carolina. The scale is for the Cape Fear River watershed map. Page 8 of 12 DEQ-CFW 00002957 1200 1000 J 800 a" c c 0 600 ca L c 400 0 A 200 0 QFQtCPcP PF0 PFPe PF* Q 01.9PpP PF�P PF�P PF6 PP��S QF� PF �PxPFC� PF 200 Community B 150 J c 0 100 cB c O U 0 50 U 0 4 PFQ�oPtP PF6 PFQe 1?0 PQ�QPPPpP PF�P PF�P QF� PP��S QFOlb PF OP ,011b PF Page 9 of 12 DEQ-CFW 00002958 611I1ZI 4000 J � 3000 c O m 2000 a� U C O U 1000 M • Community C • • • el PFP�pPtP PF6 QFPe QF� QP�Qp Popp PF�P PF�P PF� QQ�� P �oPkP�pS P Figure S3. PFAS concentration distributions in the CFR watershed at three drinking water intakes. Concentrations less than quantitation limits were considered as zero. Upper and lower edges of a box represent the 751h and 25th percentile, respectively; the middle line represents the median; upper and lower bars represent the 90th and 101h percentile, respectively; and dots represent outliers (>901h or <101h percentile). Page 10 of 12 DEQ-CFW 00002959 2.5E+07 • 2.0E+07 a • m 1.5E+07 • 3 • o •• C 1.0E+07 •� oft 5.0E+06 � i• • 'A-0 S• At 2500 7Mean 2000 t� 1500 e ° e 1000 a ° e ee e w e e A Qe o A 500 eY 0 0.0E+00 6/15/13 7/30/13 9/13/13 10/28/13 12/12/13 5. E+07 4. E+07 -B E 3. E+07 3 0 2.E+07 1. E+07 0 E+00 Community B s Mean flow 61 PFASs e e ° ebb ° 500 400 J 300 in 200 a w 100 0 6/15/13 7/30/13 9/13/13 10/28/13 12/12/13 6. E+07 •t Community C 5.E+07F- 4.E+07 • • • Mean flow • e PFASs E• n 0 3.E+07 • C L, v 2. E+07 ° e 1. E+07 , � 0.E+00 �� ao 6/1/13 7/1/13 7/31/13 8/30/13 9/29/13 6000 5000 4000 ao V 3000 cn Q 2000 w 1000 0 Figure S4. Total PFAS concentrations in the source water and stream flow at the three studied DWTPs. Stream flow data were acquired from US Geological Survey stream gage records Page 11 of 12 DEQ-CFW 00002960 1W7o a 80% 60%- m 40% —�1C E• o--- .� _ _.`a 20% 0% -20% r i i 0 20 40 60 80 100 120 140 time (min) --HPFBA-*-PFPeA -A- PFHxA -*-PFHpA-W-PFOA -- PFNA -0-PFDA --c)--PFBS -0- PFHxS - -PFOS 100% _ c 80% 601% 'm 0 40% E d Cr 20% 0% -20% 0 20 40 60 80 100 120 140 time (min) -�-PFBA -4&-PFPeA-*-PFHxA-E-PFHpA-W-PFOA -,--PFNA-O-PFDA -a-PFBS-O-PFHS--*-PFOS 100 % _ 80% a^ 60%.�.�---�"� A '0 40% E a °C 201% 0% e -20% 0 20 40 60 80 100 120 140 time (min) -I-PFBA-+-PFPeA -& PFHxA-*-PFHpA fit(-PFOA -�-•PFNA-O-PFDA-o--PFBS-0-PFHxS-*w-PFOS 1W7o 80% 60% m E40% 20% 0% -20% IUU7a 80% 60% 'm 0 40% E L Cr 20% 0% -20% 1W7o 80% 60% m '0 40% E w 20% 0% -20% b 0 20 40 60 80 100 120 140 time (min) -+-PFMOPrA-If-PFMOBA- -PFPrOPrA -0-PF02HxA-0-PF030A •;r-PF04DA d 0 20 40 60 80 100 120 140 time (min) --PFMOPrA-f-PFMOBA--PFPrOPrA -O-PF02HxA-D-PF030A •-C�--PF04DA f 0 20 40 60 80 100 120 140 time (min) -#-PFMOPrA-fPFMOBA --PFPrOPrA -O-PF02HxA-0-PF030A o.-PF04DA Figure S5. PFAS adsorption at powdered activated carbon doses of (a, b) 30 mg/L, (c, d) 60 mg/L and (e, f) 100 mg/L. Figures show average PFAS removal percentages of duplicate tests. Reference 1. Nakayama, S.; Strynar, M. J.; Helfant, L.; Egeghy, P.; Ye, X.; Lindstrom, A. B., Perfluorinated compounds in the Cape Fear drainage basin in North Carolina. Environ. Sci. Technol. 2007, 41, (15), 5271-5276. Page 12 of 12 DEQ-CFW 00002961